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One could define tribology as an area of research that focuses on friction, wear and 

lubrication challenges. Tribology requires a multidisciplinary approach including mechanical 

engineering, material science and chemistry. One main discipline of tribology is lubrication of 

mechanical parts. Respectively in 1966, 1977 and 1983, United Kingdom (UK), United States 

of America (USA) and Germany published studies estimating the cost due to unawareness of 

tribology in their industrial system. These cost has been estimated at US$16.25 billion for 

USA or 1.3 to 1.6% of German GDP1. Mang et al.1 recently published a study summarizing 

the cost related to tribology all around the world in 2008. In those studies, it was reported that 

tribological unawareness costs every year, 303, 186 and 68 US$ billion respectively to 

European Union, United States and China. Energy savings and increasing environmental 

issues are another main challenge related to tribology mainly in transportation industries, 

especially the automotive one. In fact, due to the increasing use of vehicles, carbon dioxide 

emissions are increasing exponentially. Recently in 2012, Holmberg et al.2 published a work 

focused on the global energy consumption due to friction in passenger cars. They estimated 

that enhancing tribological parts in car engines could generate by 2030, 385 billions liters and 

1 billion tons of fuel and CO2 savings respectively. 

Improving engines in order to create outstanding and environment-friendly ones thanks 

to tribology is thus a critical economic and environmental issue. Different solutions are being 

explored since long, including enhancing the engines’ lubricants. In boundary lubrication 

regimes however (when the lubricant does not cover all the asperities of the engine parts), the 

lubricant alone could not sustain engines’ efficiency. There is therefore a need to develop 

solid lubricants as coatings for steel parts in the engine. Diamond-Like Carbon (DLC) 

coatings are one of solid lubricants used for that aim. For better design of DLC coatings and 

optimization of their efficiency the fundamental interactions between DLCs and their 

tribological environment should be given a particular attention and that is the main focus of 

this thesis. 

DLC coatings are consisting in amorphous hydrogenated or non-hydrogenated 

metastable carbon networks. They are mainly deposited using CVD (chemical vapor 

deposition) or PVD (physical vapor deposition)3 methods and exhibit outstanding tribological 

behavior (ultra-low friction in some conditions4 and very low wear). To impart new properties 

or to modify existing ones while keeping the characteristic amorphous structure of a-C:H 

films, different elements such as Si, O, F, N, or metals5–7 can be incorporated into the 

amorphous carbon network. 
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The incorporation of oxygen together with silicon in a-C:H films leads to the 

development of a new class of coatings, i.e. silicon oxide-doped hydrogenated amorphous 

carbon (a-C:H:Si:O), sometimes referred to as Diamond-Like Nanocomposite (DLN) or SiO-

doped Diamond-Like carbon. a-C:H:Si:O films are so far generally described as a fully 

amorphous film consisting of two interpenetrating and interbonded networks, one being a 

silica glass (SiOx) network and the second one, an amorphous hydrogenated carbon network 

(a-C:H). 

a-C:H:Si:O exhibit impressive durability, i.e. mechanical properties, thermal stability, 

and tribological performances8–13. In order to develop a fundamental physically-based 

understanding of the tribo-mechanical and structural durability of a-C:H:Si:O films, a 

collaboration, named MADDiLiN (Mechanics And Durability of Diamond Like 

Nanocomposites), has been built between researchers at Laboratoire de tribologie et 

Dynamique des Systemes (Ecole Centrale Lyon, France) and University of Pennsylvania  

(Philadelphia, PA, USA). In order to address the key question “what exactly is responsible for 

the beneficial properties of a-C:H:Si:O” the collaboration is based on the synergy of the two 

institutions’ expertise while using a multidisciplinary, multi-scale and multi-technique 

experimental approach as well as research stays of the team members between the two 

institutions. Three main research directions are explored in this collaboration: 

• Material design 

• Characterization of the material’s properties  

• Tribological behavior of the material.  

This thesis is part of the MADDiLiN project and focuses on the fundamental 

understanding of the tribological behavior of a-C:H:Si:O by addressing these questions: 

• What are the main structural changes that occurs upon sliding a-C:H:Si:O film against 

52100 steel ?  

• What is the influence of environment of the macroscale tribological behavior of  

a-C:H:Si:O ?  

To answer these questions, this manuscript is presented in five chapters. In the first 

chapter, a discussion of existing literature on carbon-based materials, from their structure to 

their tribological behavior is presented, with and emphasis on the tribology of diamond-like 

carbon solid lubricant. The second chapter describes the experimental approach we used to 

reach our goal, from tribological experiments to the study of the coatings’ surfaces. In the 

third chapter, we discuss the influence of water vapor and oxygen on the tribological behavior 
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of a-C:H:Si:O by using an ambient air tribometer equipped with a gas blowing system, thus 

allowing a quick change of the sliding environment. The fourth chapter discusses the 

influence of oxygen, hydrogen and water vapor pressure on the tribological behavior of 

a-C:H:Si:O while using a environment-controlled analytical tribometer. Finally, in chapter 

five, a model is proposed for describing the fundamental tribological process, including 

tribochemical reactions that occurs when sliding a-C:H:Si:O. 
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Introduction 

La tribologie est une science multidisciplinaire conjuguant la mécanique du contact, la 

science des matériaux et la physico-chimie pour étudier les phénomènes de frottement, 

d’usure et de lubrification, principalement pour répondre aux enjeux de lubrification des 

systèmes mécaniques. Respectivement en 1966, 1977 et 1983, le Royaume Uni, les Etats-Unis 

et l’Allemagne ont publié des données relatives à la négligence des aspects liés à la tribologie 

dans l’industrie. Le coût de cette négligence a été estimé à 16,25 milliards de dollars pour les 

Etats-Unis ou 1,3 à 1,6% du Produit National Brut pour l’Allemagne1. Un peu plus 

récemment, en 2008, une étude de Mang et al.1 a montré que le coût annuel des pertes 

d’origine tribologique dans l’industrie s’évaluerait à 303, 186 et 68 milliards de dollars 

respectivement pour l’Union Européenne, les Etats-Unis et la Chine. 

Par ailleurs, l’industrie des transports, en particulier l’industrie automobile, fait 

dorénavant face à des problématiques grandissantes de réduction des consommations 

énergétiques et d’impact environnemental, qui renforcent le besoin d’une meilleure 

considération des aspects tribologiques. L’augmentation du nombre de véhicules contribue 

pour une grande part aux émissions de dioxyde de carbone (gaz à effet de serre). En effet, une 

étude menée par Holmberg et al.2 en 2012, a démontré que si les solutions tribologiques 

adéquates étaient mises en œuvre dès la conception des moteurs de voiture, il y aurait, d’ici 

2030, une réduction de consommation de 385 milliards de litres de carburant, correspondant à 

une diminution des émissions de CO2 d’un milliard de tonnes. 

Si l’amélioration des propriétés des lubrifiants fluides est une des pistes pour diminuer 

les pertes dans les moteurs à combustion interne, elle ne suffit pas à répondre aux enjeux de 

lubrification de contact de plus en plus sévères, favorisant les régimes de lubrification mixte 

et limite, pour lesquels le film de lubrifiant ne sépare pas entièrement les aspérités de surface 

des pièces en contact. Il est alors indispensable d’améliorer non seulement l’huile, mais 

également les surfaces en contact, pour améliorer le rendement énergétique et la durabilité des 

systèmes mécaniques. En outre, tous les contacts ne peuvent pas être lubrifiés par une huile 

ou un fluide, que ce soit pour des raisons opérationnelles (faibles vitesses, fortes pressions, 

grandes variations thermiques…), ou environnementales (fonctionnement sous vide, en 

microgravité, en ambiance propre…). 

Ainsi, le recours à des lubrifiants solides ou des matériaux anti-usure en couche mince 

se généralise dans l’industrie, pour protéger et lubrifier les systèmes mécaniques. Parmi les 

matériaux de choix pour ces applications figurent les couches minces à base de carbone 
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amorphe, connues sous le terme générique Diamond–Like Carbon (DLC). Dans une 

perspective d’optimisation de la structure et des performances de ces couches DLC, il 

convient de porter une attention particulière aux interactions physico-chimique pouvant 

intervenir entre ces revêtements en couche mince et leur environnement de fonctionnement. 

C’est dans ce cadre que s’inscrit cette thèse.  

Les revêtements en couche mince DLC sont constitués d’un réseau amorphe et 

métastable de carbone, hydrogéné ou non. Ils sont déposés principalement par des procédés 

physiques (PVD : Physical Vapor Deposition) ou chimiques (CVD : Chemical Vapor 

Deposition)3 en phase vapeur, et présentent des propriétés tribologiques exceptionnelles14, 

associant faible frottement (coefficient de frottement contre acier inférieur à 0,01 dans 

certaines conditions) et faible usure. Afin d’améliorer certaines propriétés de ces revêtements 

tout en maintenant leur structure amorphe, différents éléments d’addition peuvent être 

incorporés dans la structure initiale de carbone amorphe, notamment le silicium, l’oxygène, le 

fluor ou des éléments métalliques5,6,15.  

Dans le cas d’une incorporation de silicium et d’oxygène dans la couche amorphe de 

carbone, on obtient un revêtement couramment dénommé Diamond-Like Nanocomposite 

(DLN) ou plutôt silicon-oxide containing hydrogenated diamond-like carbon (a-C:H:Si:O).  

Les a-C:H:Si:O présentent une très bonne durabilité, c’est à dire, de bonnes propriétés 

mécaniques, une bonne stabilité thermique et un bon comportement tribologique8–13. Afin de 

développer une compréhension fondamentale des phénomènes tribo-mécaniques et des 

modifications structurales de ces revêtements, une collaboration internationale a été mise en 

place entre le Laboratoire de Tribologie et Dynamique des Systèmes (LTDS) de l’École 

Centrale de Lyon et le departement Mechanical Engineering and Applied Mechanics 

(MEAM) de l’Université de Pennsylvanie (Philadelphie, USA). Ce partenariat scientifique 

dénommé MADDiLiN (Mechanics And Durability of Diamond Like Nanocomposites) avait 

pour objectif principal de répondre à la question « comment expliquer les propriétés 

exceptionnelles des revêtements a-C:H:Si:O ? ».  

Dans le cadre de cette thèse, nous nous sommes focalisés sur le troisième axe du projet, 

notamment la compréhension fondamentale du comportement tribologique d’un revêtement 

a-C:H:Si:O, autour de certains questionnements : 

• Quels sont les principaux changements structuraux qui peuvent intervenir lors 

d’une sollicitation tribologique des a-C:H:Si:O ? 

• Quelle est l’influence de l’environnement sur le comportement tribologique du 

a-C:H:Si:O à macro-échelle ? 
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Ce manuscrit, qui vient apporter des éléments de réponse à ces questionnements, 

s’organise en cinq chapitres. 

Le premier chapitre propose une étude approfondie de la littérature existante sur les 

revêtements en couche mince à base carbone en général et leur comportement tribologique. 

Dans le deuxième chapitre sont décrites les démarches expérimentales mises en œuvre 

tant sur l’aspect tribologie que pour les caractérisations pré- et post-essais tribologiques. 

Le troisième chapitre met en évidence les rôles respectifs de la vapeur d’eau et de 

l’oxygène sur le frottement et l’usure des a-C:H:Si:O, grâce un tribomètre linéaire alternatif 

fonctionnant dans l’air ambiant mais équipé d’un système de soufflage de gaz autour du 

contact, permettant ainsi un changement rapide de l’environnement d’essai. 

Une étude approfondie de l’influence de la vapeur d’eau, de l’oxygène et de 

l’hydrogène sur le comportement tribologique des a-C:H:Si:O, réalisée sur un tribomètre 

linéaire alternatif fonctionnant sous vide poussé, est présentée dans le quatrième chapitre. 

Toutes ces investigations nous ont permis de proposer un modèle expliquant les mécanismes 

tribologiques fondamentaux des a-C:H:Si:O, présenté dans le cinquième et dernier chapitre. 
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Chapter 1. 

Literature review
 

Thinking of solid lubrication as proposed by Bowden et al.16, low friction is promoted 

by low shear strength interfacial material and thus one might be tempted to argue that only 

soft materials could serve as lubricants. Indeed, the fundamental lubrication mechanism of 

soft solid materials such as transition metal dichalcogenide compounds (MoS2 and WS2), 

graphite, polymers (PTFE) and other soft metals (silver, tin, indium, gold etc.) have been 

widely studied in literature17. But hard carbon-based materials such as Ultra Nano 

Crystalline Diamond (UNCD) and Diamond-Like Carbon (DLC) thin films have shown 

superior tribological properties. DLC films also find a wide range of commercial applications 

as thin films, thanks to their mechanical properties together with outstanding tribological 

behavior and chemical inertness. A substantial body of literature is dedicated to understand 

the lubrication mechanisms for these “contradictory” materials (hard modulus, solid but 

lubricious)18 but there is still a considerable amount of investigation required to gain a 

fundamental understanding of their tribological mechanisms. In this chapter, we give first a 

short overview of the main components of DLC coatings, namely, carbon, in its different 

states. Later, a brief summary of the literature on different DLC coatings and their 

tribological behavior are presented. In the last part of this chapter, the latest developments in 

addition element DLC coatings especially for silicon oxide containing amorphous carbon 

films (a-C:H:Si:O) – the material under investigation in this thesis – are given. 
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1. Carbon atom and its hydridization states 

Hybridization of an atomic orbital is defined by Riichiro Saito et al.19 as the mixing of 

atomic orbitals which possess different angular momenta so as to change the direction of the 

chemical bonds and to lower the total energy of the molecule. 

Carbon is the sixth element in the periodic table and the sixth most abundant element in the 

universe20 but its chemistry is one of the most complex. In its neutral electrical state, a carbon 

atom has six electrons, which occupy 1s2, 2s2, 2p2 atomic orbitals in the ground state. Two of 

the 6 electrons (named core electrons) are strongly bonded in the orbital 1s whose one-

electron energy is about 285 eV below vacuum level19. The four other electrons (valence 

electrons), which occupy the 2s2 and 2p2 orbitals, are the ones, which contribute to the 

chemical bonding.  

In the crystalline phase, the valence electrons give rise to 2s, 2px, 2py and 2pz orbitals 

which are important in forming covalent bonds in carbon materials. Due to the relatively 

small energy difference between the upper 2p energy level and the lower 2s energy level in 

carbon (4 eV)19, in comparison with the energy gain in forming the chemical bonds, the 

electronic wavefunctions for the four valence electrons have a capability to reorganize and 

enhance the binding energy of the carbon atom with its neighboring atoms. A hybrid spn 

orbital is made of a mix between a single 2s orbital and n (n= 1, 2 or 3) 2p orbitals thus 

resulting in sp, sp2 and sp3 hybridization structures of carbon (Figure 1.1).  
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Figure 1.1. Schematic of the three different hybridization of carbon: (a) sp, (b) sp2 and (c) 

sp3 from Chemistry Glossary 

 

In case of sp configuration, two linear 2sp orbitals are formed, leaving two non-

hybridized 2p orbitals. The overlapping of these two sp orbitals with the neighboring atoms 

generates linear σ bonds. The remaining two non-hybridized 2p overlap to create 2 π bonds. 

Acetylene (C2H2) is a typical example of this configuration. Similarly, sp2 hybridization leads 

to three 2sp2 hybrid orbitals while one 2p orbital remains unhybridized. This remaining p 

orbital on each carbon atom can form a π bond by overlapping with the orbital of the 

neighboring atom. This is the case of ethylene (C2H4) molecule. Finally in sp3 hybridization, 

carbon forms four equivalent 2sp3 hybrid orbitals that are tetrahedrally oriented and thus 

forming equivalent tetrahedral σ bonds neighboring atoms21. Ethane (C2H6) molecule is an 

example of sp3 hybridization where overlapping of sp3 orbitals creates C–C σ bonds and three 

C-H σ bonds are formed on each carbon atom. The bond angle of the hybrid spn orbital can be 

obtained by cos-1(-1/n) resulting in bond angles of 180°, 120° and 109,47° for sp, sp2 and sp3 

hybridizations, respectively. Furthermore, except carbon, none of the other group IV elements 

present different hybridization states since the electron-electron repulsion between their inner 
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and outer electronic shells facilitating only sp3 hybridization. Being in the same group as 

carbon, Silicon shares the bonding versatility of carbon with its four valence electrons. The 

most common compound of silicon is SiO2, commonly kwon as sand, which is the most 

abundant chemical compound on earth. 

2. Crystalline carbon materials 

Crystalline forms of carbon materials are commonly related to a polycyclic saturated 

hydrocarbons22 which organization and interbondings are responsible for the physical and 

chemical properties of the material. Thermodynamic stability and the configuration of the 

polycyclic saturated hydrocarbon determine the different crystalline forms of carbon materials 

such as graphite, diamond, fullerenes, carbon nanotubes, etc., for example. 

2.1. Graphite 

2.1.1. Structure of Graphite 

Graphite is the most common and thermodynamically-stable crystalline form of carbon 

under ambient conditions and room temperature. It is structurally related to polycyclic 

benzenoid aromatic hydrocarbon, which forms a two dimensional three-connected (2D3C) 

benzenoid sp2 bonding network with bond angles of 120° and bond lengths of 1.42 Å22. There 

are covalent bonds between carbon atoms coupled with delocalized electrons which are free 

to move anywhere within the sheet. Nevertheless, there is no direct contact between 

delocalized electrons the different sheets. 

Graphite commonly exists in Hexagonal (ABABAB) or configuration. Graphite has a 

layered structure linked by weak van der Walls interactions, produced by delocalized π-

orbitals. Graphite can also be found in Rhombohedral (ABCABC) configuration (Figure 1.2). 

The Rhombohedral structure of graphite is less stable than ordinary graphite. Proportion of 

Rhombohedral graphite in single crystals graphite can either be reduced or enhanced by 

deformation processes such as grinding (typically from few percent to approximately 20%) or 

by high temperature heat-treatment and quenching23, respectively.  

Geim and Novosely24 recently were able to extract, by exfoliation method, a single layer of 

graphite from a bulk sample resulting in a two-dimensional (2D) honeycomb lattice of 

graphene. The authors were granted the Nobel Prize in Physics in 2010 by royal Swedish 

Academy of sciences for this discovery.  
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Figure 1.2. (a)Rhombohedral and (b)Hexagonal unit cell structure of graphite (b) from 

Pierson et al.25 

2.1.2. Mechanical properties of Graphite 

Graphite is a very anisotropic material. There is a very strong bonding between the in 

plane carbon atoms (stronger bonding than in diamond thanks to the delocalized electrons). 

Therefore, graphite is a soft material that can easily be exfoliated into single layered graphene 

structures. Mechanical properties of graphene depend on the number of layers used for 

measurement. Due to the complexity in measuring the hardness such thin graphene layers, 

different values are reported in the literature. Using nanoindentation Zhang et al.26 have 

reported hardness and elastic modulus of graphene at 950 and 305 GPa respectively for a 

monolayer of graphene or 190 and 410 GPa for a four layers graphene, whereas WenXing et 

al.27 while using both experiments and molecular dynamic simulations estimated the elastic 

modulus of graphene at 1033 and 1025 GPa respectively (measurements were carried out in a 

sample with 3 graphene layers).  

2.1.3. Tribological behavior of Graphite 

It is known that graphite has poor intrinsic lubrication properties28. Its frictional 

response is rather due to its ability to adsorb vapors such as water or hydrocarbons as 

demonstrated early in 1948 by Savage et al.29. They have shown that a minimum amount of 

water vapor is needed to promote the sliding of graphite lamellas against each other and thus 

lead to low friction. Berman et al.30,31 have recently shown that the presence of graphene (the 

single monolayer of graphite mentioned in the previous section) at the sliding interface of 

self-mated steel surfaces can reduced friction by ~ an orders and wear by 3-4 orders of 
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magnitude, respectively, comparing to self-mated steel contacts. One has to notice that in their 

experiments, graphite was chemically suspended in ethanol. 

It seems rather unlikely that graphene sheets alone could induce such low coefficient of 

friction as observed in these studies mainly because of the surface roughness. Another 

mechanism could be a generation of a third body made of mixture of graphene and 

environment species that promotes low friction. Further studies could be made to clarify the 

actual mechanisms.  

2.2. Diamond 

2.2.1. Structure of Diamond 

Diamond is also related to the family of polycyclic saturated hydrocarbons, which forms 

a highly rigid three -dimensional four connected (3D4C) carbon network. Diamond is the 

second most thermodynamically stable allotrope of carbon with all carbon atoms forming 

tetrahedral sp3 bonding with bond angles of 109.5 ° and bond length of 1.54 Å as in alkanes22. 

The nearest neighbors of each carbon atom can be imagined to be placed at the fourth of the 

eight cornered cube and these cubes are stacked to form a cubic lattice structure of diamond32. 

The second possible configuration for diamond – called hexagonal or lonsdaleite diamond– 

the nearest neighboring sp3 carbons define a triangular prism to form hexagonal lattice. 

 Figure 1.3 shows both cubic and hexagonal structural configuration of diamond. 

The density of Diamond is 50% higher than that of graphite and therefore a conversion 

from graphitic structure to diamond structure is possible at high temperatures33. As a 

comparison, table 1.1 summarizes some relevant thermodynamic properties of diamond and 

graphite.   
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Property, 298K, 1 bar Graphite Diamond 

Enthalpy, ΔH° 0 1.895 kJ/mole 

Free energy, ΔG° 0 2.900 kJ/mole 

Entropy, S 5.740 J/mole K 2.377 J/mole K 

Heat capacity, Cp 8.527 J/mole K 6.113 J/mole K 

Density 2.26 g/cm3 3.515 g/cm3 

Table 1.1. Comparison of thermal properties of Diamond and Graphite from  

Pierson et al.25 

 

 
Figure 1.3. Schematic representation of (a) hexagonal and (b) cubic diamond structures as 

proposed by Di Fisica et al.32 

 

At 1200 °C, a slow transition from diamond to graphite can be observed and the free-

energy transformation of diamond into graphite has been reported to occur at -10.05 kJ/mol25. 

At higher temperatures, this transformation is accelerated. Environment can also play a key 

role in this phase transformation, for instance, diamond can be transformed into graphite 
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already at 500°C in presence of cobalt while it remains stable until 2000°C under hydrogen 

environment or until 1700°C under ultra-high vacuum.  

The thermal conductivity of an impurity-free diamond is five times higher than that of copper 

making this allotropic form of carbon as the highest solid thermal conductor at room 

temperature.  

2.2.2. Mechanical properties of Diamond 

Diamond, is known as the hardest solid material on earth. The Knoop test provides the 

most accurate measurements for estimating the mechanical properties of crystalline materials. 

This test employs a hard diamond tip as indenter. Thus it is hard to have an accurate 

measurement of mechanical properties of Diamond or harder materials. Therefore different 

values of diamond’s hardness and elastic modulus can be found in the literature, namely, from 

57 GPa to 104 GPa and 1050 GPa respectively25.  

Nevertheless in the last few years, a several novel and synthetic hard materials have 

been synthetized and it has been shown that a combination of Hall-Petch effect and quantum 

confinement effects can be used to obtain boron nitride nanocomposites with similar hardness 

values as a single crystal or polycrystalline diamond. In 2009, Zicheng Pan et al.34 have 

reported the hardness of wurtzite boron nitride (w-BN) and lonsdaleite (hexagonal diamond) 

via total energy calculations, as higher than diamond. They propose that such high hardness 

values for w-BN and lonsdaleite result from higher indentation strengths on their cleavage 

planes due to the generation of a stress-induced structural phase transformation34. Under the 

similar conditions, the computed hardness values of diamond, w-BN and lonsdaleite were 

reported as 97±1 GPa, 114±1 GPa and 152±1 GPa respectively. 

Figure 1.4shows the hardness of diamond compared to other reference materials such as 

aluminum oxide (Al2O3), tungsten carbide (WC), silicon carbide (βSiC), Boron nitride (BN) 

and wurtzite boron nitride (w-BN).  

One has to notice that the mechanical properties computed for these new materials 

(w-BN) has been estimated on defect free materials. Values for actual physical materials 

could be different.  
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Figure 1.4. Hardness of few hard materials compared to Diamond  

adapted from Dubrovinskaia and Pan. Z34,35 

2.2.3. Tribological behavior of Diamond 

Diamond displays a low friction (under specific conditions), low wear, and high erosion 

resistance and thus is extensively used for industrial applications, mainly for cutting tools. 

Thus understanding the friction and wear mechanisms of diamond has been a long-term 

research topic36–39. The literature indicates two key phenomena explaining the fundamental 

tribological mechanisms for diamond as re-hybridization and passivation.  

Ø Rehybridization 

The work of E. M. Wilks and J. Wilks attempts to understand the resistance of diamond 

to abrasion36,37,40. In 1972, they published a paper explaining the “surprising feature” in 

diamond machining, by a microscopic cleavage process36. They observed the cutting process 

of natural diamond frequently used for jewelry making and proposed that the rate of removal 

of diamond during machining depends on both crystallographic orientation of the material and 

the direction of the abrasive tool. Several authors have also supported rehybridization 

process41,42. Erdemir et al42 explained that rehybridization is a phase transformation that 

occurs at the surface of nanocrystalline diamond. This transformation is induced or assisted 

by local contact pressures and temperatures generated between two asperities in rubbing 

contact resulting in graphitization. Later in this chapter we will further discuss the 
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graphitization hypothesis proposed by Erdemir et al.42. Recently in 2010, the work of 

Pastewka et al39 from Fraunhofer Institute for Mechanics of Materials published an article 

entitled “How to soften diamond?”, where they reported several new insights in the 

understanding of the friction and wear mechanisms of diamond. Their molecular dynamic 

simulations showed that the polished diamond undergoes a sp3- to sp2- bonded carbon 

transformation at the interface thus resulting in the generation of an amorphous layer whose 

growth rate depends on the surface orientation. These findings go against the graphitization 

hypothesis previously proposed by Erdemir et al. 

Ø Passivation 

High vacuum tribometry experiments on polycrystalline diamond, performed by 

Gardos et al.43 showed high friction coefficient, which was attributed to the interactions 

between carbon dangling bonds at the interface. In the same study, the friction coefficient was 

observed to decreases in presence of hydrogen. This phenomenon has been interpreted as a 

consequence of the “tribo-catalytically enhanced dissociative chemisorption of molecular 

hydrogen” on the carbon dangling bonds. Konicek et al.44,45 have given further evidence of 

passivation of carbon dangling bonds for ultranonocrystalline diamond (UNCD) in presence 

of water vapor. In facts, by using spatially resolved near-edge x-ray absorption fine structure 

(NEXAFS) spectroscopy, the evidence of dissociation of water vapor as OH and H was 

observed, which leads to the passivation of the carbon dangling bonds creating C-OH bonds, 

while sliding UNCD in humid environment. As a consequence, the friction coefficients for 

UNCD showed a decrease from 0.6 in vacuum to 0.008 in humid environments. Furthermore, 

first-principles simulations and gas phase lubrication tribometry performed by De Barros et 

al.46 concur with the passivation phenomena as described by Konicek et al.44,45. Both their 

experimental and simulation results revealed enrichment of the worn region of diamond with 

hydrogen and hydroxyl groups when sliding under hydrogen and water environments, 

respectively. In their hypothesis, the build-up of the chemical bonds in the worn region can 

result in the decrease of adhesion between the two sliding surfaces and thus might result in the 

prevention of generation of covalent bonds across the interface and therefore leading to lower 

friction coefficients. Passivation hypothesis is thus a proven mechanism that explains the low 

coefficient of friction of diamond in presence of chemical radicals such as OH or H.  
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2.3. Fullerene 

Unlike the two previously described crystalline forms of carbon, i.e. graphite and 

diamond, which are infinite network solids, fullerenes are considered as a major allotrope of 

carbon which are stable, finite in their discrete molecular form25. They generally are arranged 

in the form of a geodesic spheroids, named after the inventor of the geodesic dome M. 

Buckminster Fuller25. Even though, they were randomly discovered at first in 1985, by 

Smalley and Kroto47 (Nobel prize in Chemistry in 1996) while performing mass-spectroscopy 

analysis of carbon vapor, Kratschmer and Huffman48 were the ones who demonstrated the 

practical synthesis of fullerenes as solid aggregates in 1990, and thanks to them, fullerenes are 

now available in large quantities, allowing detailed studies and their evaluations for practical 

applications. 

2.3.1. Structure of Fullerenes 

Fullerenes are a family of molecular, geodesic structures in the form of cage-like 

spheroids consisting of a network of five-membered rings and six-membered rings49. The 

uniqueness of fullerenes resides in the fact that, in order to be closed into a spheroid, the 

geodesic structures must have exactly twelve pentagons along with a variable number of 

hexagons. 

The hybridization states in fullerenes molecules is not fixed but varies depending on the 

number of carbon atoms it contains. In order to account for the bonding of carbon atoms in a 

fullerene molecule, the hybridization must be a modification of the sp3 hybridization of 

diamond and sp2 hybridization of graphite in such a way that the sigma orbitals no longer 

contain all of the s-orbital character and the π orbitals are no longer of the purely p-orbital 

character as they are in graphite25.  

Theoretically, there can be many possible structures for fullerene but only C60, C70, C76, 

C78 and C84 have been characterized so far. C60 was the first stable fullerene to be discovered. 

It contains sixty carbon atoms arranged in the way that they form twenty hexagons and twelve 

pentagons, giving it the appearance of a soccer ball as shown in Figure 1.5. Each carbon atom 

is shared by one pentagon and two hexagons generating thus the spheroidal shape of 

fullerenes. The intermolecular bonding in fullerenes is dominated by van der Waals forces.  
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Figure 1.5. Structure of Fullerene C60 from Bhushan et al.50 

Pentagons or heptagons are required to generate the curved surface. For a different 

number of pentagons, many other forms of fullerenes can be obtained such as carbon 

nanotubes, bucky-Onions etc. Depending on the ordering between layers, the clustered carbon 

based material can be either graphitizable i.e. can undergo thermally activated transformation 

into graphite, partially graphitizable or non-graphitizable. This renders difficult the 

understading of tribologically-induced structural evolution of clustered carbon based 

materials.  

2.3.2. Mechanical properties of Fullerenes 

C60 has been considered for long, as the softest solid phase of carbon until Curl and 

Smalley51 demonstrated that fullerenes can become even harder than diamond when they are 

compressed to less than 70% of its original volume. Unlike graphite, which can undergo a 

transformation into diamond at high temperature and high pressure, fullerenes can 

instantaneously transform into polycrystalline diamond at room temperature when a non-

hydrostatic compression of approximately 20 GPa is applied on C60
52 

2.3.3. Tribological behavior of Fullerenes 

Thanks to the weak van der Waals interatomic interactions between fullerenes layers49, 

which result in low shearing stresses making fullerenes a good possible candidate for solid 

lubricants. Thanks to their high hardness, onion-like fullerenes present a “roll bearing” effect 

as well as sliding between layers that increases their lubricating properties53. 
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3. Diamond-Like Carbon (DLC) 

DLC films are amorphous hydrogenated or non-hydrogenated metastable carbon 

networks made of sp-, sp2- and sp3- bonded carbon.  shows a molecular dynamic simulation 

representing hydrogenated DLC with carbon atoms in blue and hydrogen in red. It can easily 

be seen that the film is made of carbon in different hybridization states as well as bonded and 

free hydrogen. They are mainly deposited by CVD and PVD methods. DLC films show good 

tribological properties making them excellent candidates for solid lubrication. DLC films 

already applied as protective coatings in outstanding engines, biomedical implants, watch etc. 

 

 
Figure 1.6. Schematics of molecular dynamics simulation showing atomic structure of 

hydrogenated DLC adapted from Erdemir et al.54 

3.1. Different types of DLC coatings: structure and deposition methods 

Depending on the deposition method and control parameters, the hybridization state of 

carbon atoms and the hydrogen content in the deposited films can be varied. The 

classification of the different existing DLC coatings in the literature has been provided by 

Jacob and Moller55 via a pseudo ternary phase diagram and from the work of Robertson3.  
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Figure 1.7. Pseudo ternary phase diagram describing different types of diamond-like 

carbon coatings as described by Robertson et al.3 

The extreme top and the left-bottom of the triangle (Figure 1.6) represent 100% 

diamond and graphite, respectively. ta-C films (tetrahedral amorphous carbon) coatings are 

mostly rich in sp3-bonded carbon and these films possess beneficial properties similar to 

diamond such as high mechanical hardness, chemical and electrochemical inertness3. On 

other end, a-C (amorphous carbon) coatings are mostly rich in sp2-bonded carbon. In the 

center of the phase diagram, ta-C:H and a-C:H films (respectively for tetrahedral amorphous 

hydrogenated carbon and amorphous hydrogenated carbon) are composed of both carbon and 

hydrogen at varying concentrations. The increase in hydrogen content results mostly in a 

decrease in the mechanical properties of the coatings.  

Various deposition techniques are used to deposit amorphous carbon thin films on 

required substrates. They can be divided in two different categories:  

• Deposition techniques using a solid carbon source such as physical vapor 

deposition (PVD), ion beam sputtering, cathodic arc deposition, laser evaporation 

etc. These techniques are used for depositing a-c and ta-C films. 

• Deposition techniques using hydrocarbon gas source such as chemical vapor 

deposition (CVD), plasma-enhanced chemical vapor deposition (PECVD), electron 

cyclotron resonance chemical vapor deposition (ECR-CVD) etc. These techniques 

are used to deposit a-C:H and ta-C:H films.  
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Figure 1.8 illustrates the schematics of some of the deposition techniques. Full 

description of these techniques can be found elsewhere3,18,54,56. PECVD is one of the most 

popular techniques used to deposit DLC coatings. This technique can be described in four 

steps50: 

• The plasma decomposes the hydrocarbon precursors into hydrocarbon species and 

ions. 

• The hydrocarbon free radicals react with one another resulting in polymerization. 

• Polymers adsorbe onto the substrate, generating thus chemical bonds with atoms 

on the surface 

• densification of the radicals onto the surface with high energy ion. 

As mentioned in the previous section, the structure and properties of the coatings are 

dependent on the deposition techniques and coating parameters. It is well established that 

harder and denser coatings can be obtained using high-energy surface bombardment 

techniques50 thus resulting in higher sp3/sp2 fraction until a threshold in ion energy is reached. 

A good balance has then to be found between the incident ions (with enough energy to 

penetrate the surface atomic layer) while minimizing thermal dissipation energy57.  
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Figure 1.8. Examples of DLC deposition techniques using either solid carbon precursor or 

hydrocarbon gas source. The schematic is adapted from Bhushan et al.50 

3.2. Mechanical properties of DLCs 

Similar to the structural properties, the mechanical properties of DLC coatings strongly 

depend on the deposition method and therefore on the sp3/sp2 fraction and the amount of 

hydrogen in the coating. As demonstrated by Gao et al.58 while using molecular dynamics 

simulations, along with sp3/sp2 fraction and hydrogen content, the tridimensional 

configuration of the carbon network is responsible for the mechanical response of DLC 

coatings3,50. Thus, a wide range of hardness (10<H<80) and elastic modulus (100<E<500) for 

DLC coatings can be found in the literature. Experimental proof of the tridimensional 

configuration of the carbon network and its consequences on the tribological behavior of DLC 

coatings have been provided by Fontaine et al.4 while working on DLC coatings with various 

hydrogen content. They have shown that direct correlation could not be established between 

hydrogen content in DLC coating and their mechanical properties, namely hardness. They 

rather demonstrated that DLC coatings could exhibit viscoplastic behavior with increasing 

hydrogen content. Furthermore they were able to show that superlow friction (coefficient of 

friction <0.01) could be obtained only for coatings with significant viscoplastic behavior. This 
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shows the direct correlation between the relaxation properties of DLC coatings and their 

tribological behavior, viscoplasticity being controlled by the network relaxation.  

3.3. Tribology of DLCs 

A wide range of tribological behavior is observed for DLC coatings, which are directly 

related to the structural properties in the coatings and also on the employed tribological 

conditions. In a comprehensive review paper on DLC coatings A. Erdemir and C. Donnet54 

classified the different parameters that influence the tribological response of DLC, described 

in Figure 1.9.  

 
Figure 1.9. Illustration of the different parameters that influence the tribological properties 

of DLC coatings. The schematic adapted from Erdemir et al.54 

Intrinsic factors are mainly related to the structure and chemistry of the coatings as well 

as the roughness of the coatings. On the other hand extrinsic factor involve structure and 

chemistry of the counterface material, the contact mechanical conditions and the chemistry of 

the sliding environment. It is important to note that sp3/sp2 fraction together, the three-

dimensional structure and hydrogen content58 of the film are paramount in determining its 

tribological response. In the following sections, we will mainly discuss the mechanically-

induced structural changes in DLC coatings.  

3.3.1. Fundamental structural and chemical changes during sliding of DLC coatings 

Similar to the tribology of diamond, DLC films also show two main structural changes 

while sliding: rehydridization44,59–65 (conversion from sp3- to sp2-bonded carbon) and 

passivation66–70 (functionalization or interactions with external environment).   



Chapter 1. Literature review 

 51 

a) Rehybridization 

Le Huu et al.59 have shown that upon rubbing hydrogenated amorphous carbon thin 

film, a transition from sp3- to sp2-bonded carbon occurs. This phenomenon is attributed to the 

desorption of hydrogen from the DLC, leaving dangling bonds and followed by the formation 

of energetically more favorable π bonds assisted by increased interfacial temperatures. 

According to their studies, such processes result in a “thin graphitic” layer at the sliding 

interface which promotes low friction coefficients. Later, Konicek et al.44 have refuted the 

temperature induced graphitization hypothesis proposed by Le Huu et al.59 and  

Erdemir et al.40, based on NEXAFS evidence of enrichment in sp2-bonded carbon in the 

extreme surface of ta-C and UNCD. Kunze et al.65 work on rehybridization hypothesis shows 

that when self-mated surfaces of ta-C slide against each other, there is a stress-induced 

transition from sp3- to sp2-bonded carbon. In addition, the newly generated sp2-rich surface is 

strained due to the mechanical stress in the contact. Their results were also supported by the 

molecular dynamic simulations65. Other authors61,63 have also supported the hypothesis of 

stress-induced rehybridization for ta–C coatings upon sliding using molecular dynamic 

simulations as described in Figure 1.10. As illustrated on Figure 1.10.a, while sliding ta–C in 

unlubricated self-mattered contact in vacuum conditions, a transfer of material occurs from ta-

 C (1) to ta–C (2). Figure 1.10.b represents the corresponding chemical states of Figure 1.10.a. 

In the initial state, both ta-C films are made of sp3- (grey), sp2-(green) and sp-(yellow) bonded 

carbon. Upon sliding, rehybridization occurs, leading to a more sp2-bonded carbon material at 

the interface.  
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Figure 1.10. Molecular dynamics simulations illustrating (a) transfer and (b) 

rehybridization upon sliding of self-mated ta-C coatings in vacuum, from Romero et al.71 

It has been thus proposed54,72–74 that the high friction coefficients observed for hydrogen 

free DLC coatings (ta-C or a-C) when sliding under vacuum conditions is a consequence of 

the rehybridization phenomenon, since the interaction between the free and active covalent 

bonds (as called carbon dangling bonds) could generate high friction under vacuum 

conditions.  

Thanks to these studies (both experimental and simulations) is it now well established 

that upon sliding DLC films, mechanically induced rehybridization (conversion from sp3- to 

sp2 bonded carbon) occurs generating carbon dangling bonds. In absence of reactive 

environmental elements, interactions between dangling bonds results in high friction. 

b) Passivation 

In presence of gaseous species it has been established45,65,69,70,73,74 that dangling carbon 

bonds in the sliding contact of DLC films are passivated. Several authors including Fontaine 

et al.66, Donnet et al.67 and Erdemir et al.68 have investigated the role of passivation of 

dangling carbon bonds, in hydrogen environment, on the tribological behavior of 

hydrogenated amorphous carbon films. They proposed that the intrinsic hydrogen trapped in 

the coating during deposition or the native hydrogen present in the sliding environment can 

serve as a reservoir for passivation and thus prevents the direct interaction between the 

dangling bonds. Therefore, according to Erdemir et al.54, a dipole configuration is created at 
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the sliding interface, which gives rise to short-range repulsion between the hydrogen-

terminated sliding surfaces, and therefore lower friction coefficients can be obtained  

(Figure 1.11.a). While working on ta-C coatings, in presence of glycerol, Matta et al.69 

proposed that the –OH bonds generated from glycerol decomposition passivates carbon 

dangling bonds on the surface and thus resulting in lower friction coefficients (Figure 1.11.b). 

 

 
Figure 1.11. Proposed model for the passivation of carbon dangling bonds by hydrogen for 

hydrogenated DLC coatings from Erdemir et al.54(a) and (b)model of passivation of carbon 

dangling bonds by -OH groups from ta-C films, from Matta et al.69) 

 

More recently, Konicek et al.64 have investigated the friction behavior of ta-C coatings 

in presence of water vapor and further evidence of passivation of dangling bonds by H or -OH 

groups generated from decomposition of water vapor is observed.  

3.3.2. Role of the third body in the tribological behavior of DLC coatings 

As pointed out in the beginning of this chapter and proposed by Scharf et al.11, the high 

hardness of DLC coatings can seem to contradict with their low friction properties. Such a 

contradiction can be explained using a “Third Body Approach”. The Third body Approach 

was first proposed by Godet et al.75,76 who defined the third body as the “material formed by 

the relative motion of the two parent (first bodies) materials in the sliding contact”. 

From an exclusive mechanical point of view, the properties of third body can be 

characterized by its rheology by being indifferent to the composition of the film while from 

an exclusive chemistry approach, the third body can be characterized via its chemical 

composition, by remaining indifferent to its rheology. Combining this dual approach, Singer 

et al.77 proposed a shear strength approach, which bridges the gap between the chemistry of 
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the third body and its rheology (shear strength). Thus the shear strength of a given third body 

depends on its chemistry, which is influenced by the chemical species in the sliding 

environment. Ronkainen et al.78 have also demonstrated the predominant role of the shear 

strength of the third body in the frictional response of a-C:H films while sliding against steel 

or alumina surfaces. 

On the other hand, the chemistry, structure and stickiness of the third body is influenced 

by the counterface material. Erdemir and Donnet54 reported that counter-body made of 

materials known to be carbide-forming such as titanium, iron, tungsten and silicon, for 

example, generate tribofilms at a much higher growth rate in comparison to other non-carbide 

forming surfaces. Several other authors10,11,17,78–82 have also reported the crucial role of the 

third body in controlling the frictional response of DLC coatings. Also, Erdemir et al.82 

highlighted the influence of the interfacial materials’ structure in controlling the frictional 

response between a-C:H and sintered MgO-PSZ. They emphasized the so-called “graphitic 

third body” generated at the sliding interface which played a crucial role in reducing the 

friction. According to them, mechanically induced thermal heating leads to graphitization and 

this further explains the reduced rates of graphitization with relative humidity. As mentioned 

above, the graphitization hypothesis has recently been ruled out by Konicek et al.64 while 

working on UNCD and ta-C. They found that the increased temperatures at the contact are not 

sufficient enough to promote graphitization but rather stress-assisted transformation can 

increase the amount of sp2-bonded carbon in ring-like structure.  

In summary, given the evidences provided by works based on stress-induced 

rehybridization followed or not by passivation, depending on the sliding environment, 

mechanically-induced thermal heating followed by graphitization seems unlikely to occur 

during tribological test on DLC coatings. Rehydridization and passivation hypothesis is so far, 

more valid. However, only few studies have presented spectroscopic evidence of these two 

phenomena while mainly working on UNCD or ta-C. As well, no previous studies have 

clearly verified these hypotheses for addition elements containing DLC coatings. Further 

work has to be accomplished in order to provide new evidence of the validity of these 

hypotheses for addition elements containing DLC coatings. Among other things, this thesis 

will overcome that shortcoming.  
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3.4. Different addition elements containing DLCs 

In order to broaden the range of properties achieved with DLC coatings or to enhance 

the existing ones, different elements such as B, N, O, F, Si, P, Ca and metals6,15,83–87 can be 

incorporated into the carbon network as illustrated in Figure 1.12. 

Panwar et al.84 have conducted a comparative study on the influence of boron and 

phosphorous inclusions in DLC coatings and they found that incorporating 2 at.% of boron in 

DLC decreased the sp3 fraction by ~ 4%, while incorporation of phosphorous ~ 2 at.% leads 

to a 30 % decrease in sp3 fraction. 

Presence of elemental nitrogen in the amorphous carbon network improves the hardness 

and anti-corrosion properties87. Liu et al.86 have highlighted the influence of nitrogen 

incorporation in the mechanical properties of hydrogenated amorphous carbon films. 

Papakonstantinou et al.88 work on the effect of nitrogen incorporation in DLC, quantify the 

threshold of nitrogen content in the films that enhances the mechanical properties. While 

small amounts of nitrogen incorporation (2 at.%) reduces the clustering of sp2-bonded carbon 

and increases the mechanical properties of the coating, the higher contents of nitrogen  

(19 at.%) increases the amount of sp2-bonded carbon clusters thus lowering the hardness and 

elastic modulus i.e. 56 and 573 GPa respectively – for 2 at.% of nitrogen – down to 2 and 

44 GPa respectively for 19 at.% of nitrogen.  

Fluorination of DLC was reported to induce an increase in –CF2 and -CF3 groups and 

thus reduce the mechanical properties of the coating. Donnet et al.89 have reported that high 

percentages of fluorine incorporation in DLC (i.e. greater than 20 at.%) can enhance the 

crosslinking of the network and therefore increase the wear resistance compared to low 

fluorine containing DLCs.  

As seen for the other dopants, Calcium and Oxygen (Ca-O) incorporation in the 

amorphous carbon network also promotes and increase of amount of sp2-bonded carbon 

nanoclusters. Incorporation of Ca-O in the amorphous carbon network can increased the 

biological acceptance as shown as shown by Doner-Reisel et al.90 while working on mouse 

cells.  
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Figure 1.12. Schematic of different addition elements incorporated into amorphous carbon 

network for enhancing properties from Sanchez-Lopez et al.83 

3.4.1. Silicon and oxygen incorporation in DLC: a-C:H:Si:O films 

3.4.1.1. Structure 

The incorporation of Oxygen together with Silicon in amorphous hydrogenated (a-C:H) 

films lead to the development of a new class of coatings, i.e. silicon oxide containing 

hydrogenated amorphous carbon (a-C:H:Si:O), sometimes referred to as diamond-like 

nanocomposite (DLN) or SiO-containing diamond-like carbon. a-C:H:Si:O films are 

generally deposited using PECVD method with a siloxane precusors8,91–94. They are generally 

described as a fully amorphous films consisting of two interpenetrating and inter-bonded 

networks, one being a silica glass (SiOx) network and the other an amorphous hydrogenated 

carbon network (a-C:H) as described in Figure 1.12. Randeniya et al.95 have shown that 

depending on the silicon content, the network could either exhibit an amorphous single phase 

structure -for silicon content lower than ~ 13 at.% – or double phase structure (SiOx-DLC 

network and SiOx segregated phase) – for silicon content higher than ~ 13 at.%.  

SiO-based DLC coatings usually exhibit lower internal stresses (typically less than 

1 GPa9,91) than a:C-H. The drop in the compressive residual stress in a-C:H:Si:O films has 

been ascribed by Neerinck et al.8 to the presence of Si–C bonds, which are longer that C-C 

bonds (Si–C bond length = 1.89 Å vs. C–C bond length = 1.54 Å). 
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Figure 1.13. Schematic of atomical structure of Diamond-Like Nanocomposite films from 

Scharf et al.96 

3.4.1.2. Main advantages of a-C :H :Si :O vs a-C:H 

As a consequence of their low internal stresses, a-C:H:Si:O coatings exhibit lower 

delamination while deposited onto various types of substrates in comparison to a-C:H 

coatings12,97. The thermal stability of a-C:H:Si:O films has been found to be higher than that 

of a-C:H. This occurs from the fourfold coordination of Si atoms with Carbon thereby 

stabilizing the carbon atoms in the sp3 hybridization state and inhibiting their conversion into 

threefold-coordinated sp2-bonded carbon at high temperature. This would imply that the 

activation energy required for the conversion of sp3- to sp2-bonded carbon atoms in 

a-C:H:Si:O is higher than in a-C:H, which has been estimated by Mangolini et al.98 to be 

3.5 ± 0.5 eV. However, no experimental evidence to explain the effect of the incorporation of 

silicon and oxygen in the amorphous carbon matrix on the thermal stability of the resulting 

structure has been reported yet. Some of this aspect will also be investigated in this thesis as 

well as the tribological behavior of annealed a-C:H:Si:O.  
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Concerning their tribological behavior it has been shown that incorporation of Si 

reduces the extent to which the frictional properties of DLCs are dependent on the 

environmental conditions99,100. In particular, Gilmore and Hauert85 demonstrated that the 

incorporation of approximately 4 at. % of Si into the amorphous carbon network can render 

its friction response less dependent on the sliding environment especially while sliding against 

steel counterface. Fundamental understandings of the role of silicon in enhancing the 

tribological properties of Si-containing DLC coatings are still missing.  

3.4.1.3. Fundamental tribological mechanisms of a-C:H:Si:O 

Even though the coefficient of friction for a-C:H:Si:O coatings is less dependent on the 

external environment in comparison to pure DLC, different values can be obtained from the 

literature as illustrated by Meskinis et al.101. In fact, in 1989, Sugimoto et al.81 reported a 

coefficient of friction of 0.007 for a silicon containing a-C:H film under vacuum conditions 

which they attributed to a “transfer of hydrocarbon species from the coating to the steel 

counterbody”. While working in humid environments (50 % RH and 90 % RH) Neerinck et 

al.9 have reported coefficients of friction of 0.04 and 0.08 respectively for a-C:H:Si:O while 

pure a-C:H exhibited a coefficient of friction of 0.15. A fundamental understanding of the 

tribological behavior of a-C:H:Si:O coatings have been proposed by Scharf et al.96, using the 

third body hypothesis as proposed by Sugimoto et al.81. They demonstrated that the friction 

mechanism of a-C:H:Si:O is mainly governed by the interfacial sliding between the  

a-C:H:Si:O coating and the friction-induced tribofilm formed on the silicon nitride or steel 

counterface. Moreover, the environment plays a major role on the composition and 

mechanical properties of this interfacial film: while in dry environment the interfacial film 

mainly consists of carbon and has a low shear strength (9 GPa), under humid conditions the 

interfacial film consists of silica-rich fragments and exhibits a high shear strength (78 GPa). 

Further analysis of the fundamental tribological mechanism of a-C:H:Si:O is thus 

needed in order to provide complementary information or a better understanding of the 

influence of environment on the tribological behavior of a-C:H:Si:O films.   
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4. Summary 

Diamond-like carbon (DLC) coatings are amorphous carbon solid lubricant with a wide 

range of exciting applications. By incorporating elements into the amorphous carbon network, 

mechanical and tribological properties of the films can be altered according to the 

requirement in a specific application. Silicon oxide containing hydrogenated amorphous 

carbon (a-C:H:Si:O) coatings are known for their lower environment dependences of friction 

properties than pure DLC films. Although several groups proposed different tribological 

mechanisms to explain this behavior, there still is a lack in the fundamental understanding of 

the friction mechanisms of a-C:H:Si:O coatings. This thesis will attempt to address the 

mechanism behind the enhanced tribological properties of a-C:H:Si:O coatings by 

understanding the fundamental physical and chemical phenomenon that occur at the interface 

upon tribological testing. 
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5. Résumé Chapitre 1 

Les revêtements Diamond-Like Carbon (DLC) sont des lubrifiants solides de structure 

amorphe très attractifs dans différents domaines d’application. Afin de modifier les propriétés 

mécaniques de ces revêtements et d’améliorer leurs performances tribologiques, différents 

éléments peuvent être incorporés dans le réseau amorphe de carbone.  

Dans ce chapitre nous rappelons d’abord les bases des phénomènes d’hybridation de 

l’atome de carbone afin de mieux présenter la structure des matériaux à base carbone en 

général, notamment le diamant, le graphite, les fullerènes, pour ensuite focaliser sur les 

revêtements DLC, leur structure, leurs propriétés intrinsèques et leur comportement 

tribologique. 

Un parallèle est établi entre les principaux mécanismes tribologiques observés dans la 

littérature pour les revêtements diamant et DLC. Il ressort de cette analyse bibliographique – 

menée autant sur les travaux expérimentaux que sur les travaux de simulation – que trois 

phénomènes principaux interviennent dans le comportement tribologique des revêtements en 

couche mince à base carbone : 

• La réhybridation sp3–sp2 (conversion des carbones hybridés sp3 en carbones hybridés 

sp2) ; 

• La passivation (recombinaison entre les carbones réhybridés et les éléments ou 

groupements chimiques réactifs de l’environnement) ; 

• Le rôle joué par le tribofilm (le troisième corps généré lors du frottement des deux 

corps initiaux, par transfert de matière et interactions avec l’environnement).  

Ce chapitre aborde également les différents éléments d’addition pouvant être incorporés 

dans le réseau amorphe de carbone hydrogéné afin de modifier certaines propriétés. L’accent 

est mis sur le matériaux qui a fait l’objet de ce travail de thèse, le a-C:H:Si:O. En effet, il est 

prouvé que les revêtements de carbone amorphe hydrogéné contenant du silicium et de 

l’oxygène (a-C:H:Si:O) présentent une réponse tribologique moins sensible à leur 

environnement de fonctionnement comparativement aux revêtements DLC purs. Bien que des 

équipes de recherche aient apporté quelques éléments de réponse à la compréhension de cette 

différence de comportement des a-C:H:Si:O, les mécanismes fondamentaux pouvant 

l’expliquer et les interactions physico-chimiques entre les a-C:H:Si:O et leur environnement 

de fonctionnement manquent encore. C’est donc dans cette perspective que s’inscrit ce travail 

de thèse. 
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Chapter 2. 

Experimental approach  
 

In this chapter we will highlight the details of our experimental approach, from the full 

characterization of the as-received material as well as the annealing-induced structural 

changes, the tribological method and the details of characterization of the worn material. In 

fact, in order to meet the primary objectives of this thesis presented in the general 

introduction, namely, understanding the fundamental interactions between the chemical 

species in the sliding environment and a-C:H:Si:O upon tribological testing and the influence 

of the annealing-induced structural changes of a-C:H:Si:O coatings on their tribological 

behavior,  experiments were performed on commercially available a-C:H:Si:O coatings. 

Prior to the tribological investigations, a complete characterization of the coatings (structure, 

chemistry and mechanical properties) has been jointly conducted at LTDS and in the Carpick 

Research Group at the University of Pennsylvania.  

The role of the environment on the tribological behavior of as-received a-C:H:Si:O has been 

investigated using two approaches:  

- Ambient air tribological tests with gas blowing facility, allowing rapid cycling of the 

sliding environment, 

- High vacuum and controlled-environment tribological tests, allowing precise control 

of a static sliding environment. 

In order to study the influence of chemical and structural changes on the tribological 

response of a-C:H:Si:O, modifications of a-C:H:Si:O were obtained through annealing of 

samples under high vacuum. Tribological behavior of annealed samples was investigated in 

dry conditions using an ambient air linear alternative tribometer equipped with a gas blowing 

system. After annealing and tribological testing, the morphology, structure and chemistry of 

the worn materials have been analyzed using electron microscopy and surface analysis 

techniques.
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1. Material of interest  

1.1. As received a-C:H:Si:O 

The Diamond-Like Carbon (DLC) coating investigated here is a silicon oxide-doped 

amorphous hydrogenated carbon (a-C:H:Si:O) coating. The films were deposited on silicon 

(100) wafers by Sulzer-Metco Inc. (Winterthur, Switzerland, now Oerlikon Metco) using a 

proprietary plasma-enhanced chemical vapor deposition (PECVD) process, whose details are 

described in the literature8,9,96,102. Briefly, a plasma discharge is formed from a siloxane 

precursor by means of a hot filament, whose temperature ranged between 2073 and 2273 K. 

In order to favor interactions between the plasma and the surfaces to coat, thus promoting the 

deposition, a negative radio frequency (RF) bias voltage between -300 and -500 V is applied 

to the substrates. Although the substrate temperature is not deliberately increased during the 

deposition process, it may locally increase due to ion impingement on the surface; the 

temperature rise is expected to be no more than 200 K above room temperature. The typical 

deposition rate for a-C:H:Si:O films ranges between 0.5 and 1.5 µm/h103. The residual stresses 

in a-C:H:Si:O films are compressive and usually in the range of 200 to 300 MPa104. The 

thickness, topography, mechanical properties, chemical and structural analysis of the coating 

have been analyzed and details of the results will be presented in the next chapter.  

1.2. Annealing induced structural changes of the a-C:H:Si:O 

 

To investigate the structural evolution of a-C:H:Si:O upon annealing in vacuum, heating 

experiments were performed inside an XPS chamber. Details of the XPS will be given in 

section 2.3.8. The samples (6 x 6 mm2) were mounted in a holder (RHK Technology, Inc., 

Troy, MI, USA) that included a tungsten filament for radiative heating and a K-type 

thermocouple in contact with the sample for recording specimen temperature. 

The films were annealed at 150°C, 250°C, 350°C and 450°C for one hour under UHV 

and cooled after each annealing (heating and cooling rate: 10°C/min).   
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2. Tribological approach 

2.1. Measuring the tribological response of two materials in contact  

 

When two solids in contact slide against each other, the coefficient of friction between 

them is defined as the ratio of the tangential force and the normal force. The device that is 

used to measure this coefficient is called a tribometer. The friction coefficient is not an 

intrinsic parameter of the materials in contact, but it strongly depends on contact conditions, 

such as stress, motion and environmental conditions105 (vacuum or ambient air, relative 

humidity, temperature) and it usually evolves with sliding cycles. Studying the tribological 

behavior of two bodies in contact can be of technological interest for a variety of applications 

including energy savings and decrease of CO2 emissions for car engine2 optimization of 

biomedical prostheses106, etc…or for fundamental insights such as understanding the action 

mechanisms of antiwear additives107 or probing the kinetics of fullerene nanoparticle 

friction108,109. 

Depending on the targeted application, the following contact parameters could be totally 

different thus determining the type of tribometer that can be used110: 

• The contact geometry: point contact (pin-on-disk, ball on flat or ball and inner ring 

configuration), line contact (cylinder on plane or cylinder on cylinder configuration), 

areal contact (plane on plane)… 

• The type of motion: sliding, rolling, spin, impact or a combination of these with a 

sequence of motions that can be back and forth, unidirectional or intermittent.  

• Velocities 

• Load and loading time 

• Temperature 

Appropriate tribometers can be chosen to best simulate the technologically-relevant operating 

parameters. In the following, we will focus on two of the most commonly used tribometers in 

academic laboratories, namely, rotating pin-on-disk and linear reciprocating pin-on-flat 

tribometers.  
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2.1.1. Rotating pin-on-disk tribometer 

 

 
Figure 2.1.  Schematic of a rotating pin-on-disk tribometer 

 

In this type of system, as illustrated in Figure 2.1 a motor induces a rotation of the disk, 

while the pin does not move (or vice versa). This leads to a relative motion between the pin 

and the disk. The friction is measured through a tangential force sensor. The total motion of 

the pin in one cycle is thus: 2πR (where R is the radius of the wear stroke). 

A primary advantage of the pin-on-disk system is that the velocity of the pin is constant, 

allowing an equivalent exposure time to the environment for all the points along the wear 

track on the disk105. In terms of friction and wear mechanism, the sliding direction being the 

same, any eventual wear debris is likely to be pushed outside the contact when we are in 

rotating disk configuration111.  

There are several disadvantages to using a pin-on-disk tribometer, including a 

misalignment of the disk during the motion that could induce a displacement of the contact 

point on the ball. Due to the radius of the wear track, a larger specimen is required with a very 

limited number of tracks. Changing the radius of the track’s trajectory can result in varying 

the sliding speed.  
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2.1.2. Linear reciprocating pin-on-flat tribometer 

 

 
 

Figure 2.2. Schematic of a linear reciprocating pin-on-flat tribometer 

 

In the pin-on-flat configuration as illustrated in Figure 2.2, a motor induces a motion of 

the flat while the pin is kept stationary. The total travel of the pin in one cycle is thus: 2L 

(where L is the length of the wear stroke).  

In this configuration, the amplitude and frequency of the reciprocation can be varied as 

desired and the friction force must be measured in both sliding directions. Unlike the pin-on-

disk configuration, the sliding pin – or ball – stops at the ending points of the wear track. 

When changing the sliding direction, the tangential force applied by the actuator will increase 

progressively, first leading to an overall strain of the tribometer due to its finite stiffness and 

static friction of the contact, until full sliding occurs inside the contact. These ending points 

can thus be used for calculating the static coefficient of friction, while the average kinetic 

coefficient of friction is calculated only in the center of the track length. Another consequence 

of the variation of the sliding speed in the reciprocating configuration in opposition to the pin-

on-disk is that leading edge wear debris can be shed at the end of the contact whereas in 

rotating tribometry, leading edge wear debris builds up continuously until it is shed out the 

sides of the contact, and this could lead to a different wear mechanism for the same tribopairs 

depending on the type of tribometer that is used.   
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2.1.3. Partial conclusion 

For a given radius of the wear stroke in pin-on-disk configuration (R) equal to the 

length of the wear stroke in pin-on-flat configuration and an equal number of sliding cycles, 

the travel of the ball is larger in the pin-on-disk configuration than in pin-on-flat 

configuration. Thus, the linear reciprocating pin-on-flat tribometer offers more severe 

tribological conditions for the flat than in the rotating one. This allows reducing the number of 

sliding cycles required to obtain equivalent structural changes in the material, that might have 

occurred upon sliding during a higher number of cycles in the rotating pin-on-disk 

configuration.  

In summary, the followings are the main advantages of linear reciprocating tribometer 

relative to the pin-on-disk method: 

a) The more severe tribological conditions for the flat specimen allow a shorter duration 

of the friction test for obtaining similar stress-induced structural changes in the 

material. 

b) It is possible to generate a larger number of different wear tracks with the same 

kinematics on the same sample, thus allowing more efficient post-processing and 

analysis of the wear tracks. 

c) Pin-on-flat tribometers, since their stroke lengths can be reduced to very small values, 

can be built compactly, which allows their introduction to confined chambers. The 

small linear amplitude of the stroke also allows a homogeneous exposure of the wear 

track to any gas flow system.  

These reasons motivated our decision to utilize the linear reciprocating configuration 

as our primary tribological investigation tool in this thesis. In the next section, the two linear 

tribometers that have been used are described: an ambient air operating tribometer, equipped 

with a gas blowing system, and a tribometer placed inside a vacuum chamber, allowing 

careful control of the sliding environment. 

2.2. Ambient air tribometer with gas blowing system 

2.2.1. Tribometer Design 

The linear reciprocating tribometer that we used operates in ambient air and is in the 

ball-on-flat configuration (Figure 2.3). The flat is mounted on a linear reciprocating arm, 

connected to an electrodynamic actuator that induces the motion in the X direction. The ball is 

first mounted in a ball holder, which is then mounted on a horizontal arm through which the 
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normal load is applied and the tangential force is measured. This ball holder allows easier 

handling of the ball, especially for analyses of the wear scar. 

The horizontal arm holding the ball consists of two stages: a stage with an assembly of 

dual leaf springs providing low stiffness in the Z direction, while preserving high stiffness in 

the X and Y direction, and a stage separating the arm from the tribometer’s frame by a 

piezoelectric force transducer, allowing the measurement of the tangential force. This arm is 

connected to the frame through a Y-Z micrometer stage, the Y direction allowing a precise 

positioning of the parallel wear tracks, the Z direction allows for bringing the ball into 

contact. Once the position of the track is chosen, the normal load is applied with a dead 

weight, placed on top of the ball holder. 

 

 
Figure 2.3. Detailed description of the ambient air linear reciprocating tribometer with the 

gas flow equipment 
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Figure 2.4. Interface of the Labview software developed to control the mass flow controller 

In order to evaluate the influence of the sliding environment on the tribological behavior 

of our tribopairs, we equipped the tribometer with a gas blowing system that allows a precise 

control of a gas flow, oriented toward the contact. 

The gas is blown through two lay-flat hoses connected to the output port of a mass flow 

regulator (Bronkhost El-Flow F-201CV, Bronkhost hight-Tech B.V, Neederlands,). The input 

port of the regulator is connected to the gas bottle through a permanent pressure gauge. 

Details of the tribometer’s layout and the gas blowing system are given in Figure 2.3 

We also developed a LabVIEW (National Instruments Corporation, Austin, USA) code 

to communicate with the mass flow controller in order to be able to precisely adjust the flow 

of gas blown toward the contact. The software offers several options, namely, we can either 

run the tribological test under a constant gas flow or alternate between a high and low level of 

gas flow with adjustable duration, as shown in Figure 2.4. This allows a rapid change in the 

environment for a precise duration. 

The mass flow regulator controller was factory calibrated for dry argon and can deliver 

gas flows ranging from 0,1 l/min to 5 l/min. For the results shown in the following chapters, 

different gases (dry nitrogen, dry air and dry argon) have been successively blown toward the 

contact at 5 l/min in order to quickly induce changes in the sliding environment. One must 
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notice that due to the calibration with dry argon, the effective nitrogen and dry air flow was 

evaluated at 4.2 l/min. 

In order to ensure that the gas flow was not affecting the tribological experiment, 

especially by decreasing the applied load through lifting effect, we used the electrical contact 

resistance measurement system of the tribometer. The electrical contact resistance is 

calculated from the measurement of the bias voltage between the ball holder and the flat 

holder while applying a small current through the interface (approximately 3 mA), as 

described by Belin et al112. While varying the gas flow up to 5 l/min, no measurable change of 

the electrical contact resistance of a self-mated bronze contact, in linear reciprocating motion 

could be measured, indicating that the contact area and thus the normal load was not affected. 

2.2.2. Experimental conditions 

The tribological experiments were performed by sliding a 52100 stainless steel ball with 

a diameter of 6 mm against a flat silicon wafer specimen coated with an  a-C:H:Si:O thin film, 

as described in section 2.1. The steel ball was ultra-sonically cleaned for 5 minutes 

successively in acetone and isopropanol. The a-C:H:Si:O specimen was also ultra-sonically 

cleaned in isopropanol and then glued with cyanoacrilate (“super glue”) on top of a flat steel 

sample holder. 

Both specimens are systematically observed with a digital microscope (Keyence, VHX-

1000 series, Keyence digital microscope and imaging solution, OSAKA, JAPAN) in order to 

check their cleanliness before being mounted on the tribometer. 

The constant-load friction tests were carried out while applying a dead weight of 1 N, 

corresponding to a maximum Hertzian contact stress of approximately 570 MPa and an 

apparent contact diameter of 60 µm. The sliding speed and stroke length were respectively 

3 mm/s and 3 mm. Load dependence friction test have also been performed using 2 N and 5 N 

dead weights. Table 1 summarizes the different loads and corresponding contact pressure and 

contact area.  
Load [N] Maximum Hertzian 

contact pressure [MPa] 

Mean Hertzian contact 

pressure [MPa] 

Apparent contact 

diameter [µm] 

1 570 380 60 

2 715 480 70 

5 970 650 100 

Table 2.1. Applied load with the corresponding Hertzian contact pressure and 

corresponding apparent contact diameter 
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The relative humidity (RH) and the room temperature were collected at the beginning of 

each experiment with a hygrometer (Testo 645, Testo, Germany) with a measurement range 

of -20°C to 80°C and 2% to 100% RH and a resolution of ±1°C and 1% respectively for 

temperature and relative humidity.  

Three types of tribological experiments were performed:  

• Ambient air tests at room temperature and constant relative humidity; 

• Constant gas flow tests, with a 5 l/min flow of dry nitrogen, dry air or dry argon, 

leading to a measured relative humidity lower than 5% RH near the contact, at 

room temperature; 

• Alternating tests with gas flow switching on and off after defined durations. 

After the experiments, the friction coefficient was determined for each cycle as an 

average between back and forth motion by considering only data from 1/15 to 14/15 of the 

stroke. In the manuscript, the friction coefficient at a given cycle will be reported as its 

average value ± the standard deviation. All experiments were repeated at list four times in 

order to check the reproducibility of the results. 

 2.3. Controlled-Environment Analytical Tribometer  

2.3.1. Tribometer set-up 

The Controlled-Environment Analytical Tribometer (CEAT) is a unique device located 

at LTDS. It has been designed for performing tribological experiments under high vacuum or 

under a precisely controlled environment, hence its name. 

The CEAT consists of a linear reciprocating pin-on-flat tribometer placed inside a high 

vacuum (HV) chamber, which allows introduction of gases at controlled pressures up to 

2 bars. The device has been extensively described previously46,69,70,113–115. As shown in figure 

2.5, the tribometer chamber (in green) is coupled with a sample preparation chamber (in 

brown) and a X-ray Photoelectron Spectroscopy chamber (XPS, in blue). 

In the tribometer chamber, the flat sample holder is mounted on a force measurement 

stage, while the hemispherical pin, placed inside a pin holder, is mounted on an actuating 

horizontal shaft. This shaft is connected to a XYZ micrometer feedthrough, with X and Z-axis 

motorized. The load is applied through the Z-axis while linear reciprocated motion is 

provided by the X-axis.  The normal and tangential forces are measured with a dual stage 

displacement-based force sensor, placed between the flat sample holder and the frame of the 

tribometer. The stage for the normal force consists in two parallel thin metallic annular plates 
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with several slots, providing a vertical compliance. The sample holder is attached to the 

internal side of the annuli. The stage for the tangential force consists in four parallel beams 

with two width’s reductions on each, thus combining a large vertical stiffness with a good 

lateral compliance. Both vertical and lateral displacements are measured with optical sensors. 

The force-displacement relations are calibrated by using dead weights applied directly on the 

sensor for the normal force and using a pulley for the tangential force. 

The tribometer is computer-controlled through a customized LabVIEW (National Instruments 

Corporation, Austin, USA) user interface. This software controls the X and Z axis motions for 

applying the load and provide the motion, and monitors the tangential and normal force. 

 

 
Figure 2.5. Description of the Controlled Environment Analytical tribometer (green) 

equipped with a gas adsorption system (brown) and an XPS (blue). The tribometer is 

equipped with a mass spectrometer and a gas admission system. The sample holder’s 

temperature can vary from -100°C up to 500°C. 

A time-averaging data-reduction method is applied for processing the friction 

coefficient data by averaging the data acquired during one sliding cycle. To avoid end-point 

effects, only the data corresponding to a slider position between 1/8 and 7/8 of the stroke 

length were considered for each cycle. The standard deviation of the values acquired during a 

cycle is also evaluated. 

Introduction of different gases into the tribometer chamber is achieved through a leak 

valve, while the tribometer chamber can be isolated from the sample introduction chamber, 

equipped with a turbomolecular pump, thanks to a butterfly valve. The base pressure in the 

chamber is lower than 10-7 mbar. A Baratron gauge monitors the gas pressure in the chamber, 
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while a mass spectrometer (Transpector 2 Gas Analysis System, Inficon, NY, USA) installed 

in the sample introduction chamber monitors the gas purity in the tribometer chamber by 

taking samples of gases thanks to a leak valve placed between the two chambers.  

2.3.2. Experimental conditions 

Tribological tests were performed at room temperature using 52100 steel pins with a 

radius of curvature of 8 mm, against polished silicon wafer specimens coated with the a-

C:H:Si:O film. Before each experiment, the pins were mechanically polished leading to a 

root-mean square roughness lower than 30 nm (measured by white light interferometry) and 

then ultra-sonically cleaned successively in acetone and isopropanol during 5 minutes each. 

Experiments were run under an applied load of 3 N over a track length of 2 mm at a sliding 

speed of 2 mm/s. The contact conditions correspond to an initial maximum Hertzian contact 

stress of 430 MPa and an apparent contact diameter of 120 µm. At least three independent 

tribological tests were performed for each environmental condition to check reproducibility. 

Oxygen and hydrogen gas used in this work were provided by Air Liquide (Air 

Liquide Creative Oxygen, France). The bottles  (ALPHAGAZ 2) were limited to the 

following impurity levels (H2O < 0.5 ppm, O2 < 0.1 ppm, CO2 < 0.1 ppm, CO < 0.1 ppm, 

CnHm < 0.1 ppm, H2 < 0.1 ppm). 

Water vapor was also introduced to the chamber, following a two-step process. First, 

deionized water was placed inside a hermetically sealed steel tube and connected to the 

vacuum chamber via a leak valve. Liquid nitrogen was used to freeze the water contained in 

the tube. It was then possible to pump down the tube to remove remaining gases. In a second 

step, the frozen water was heated and leaked into the vacuum chamber, in order to obtain the 

desired water vapor pressure in the tribometer chamber. 

3. Characterization techniques 

3.1. Surface observation, topography and mechanics  

3.1.1. Digital optical microscopy and scanning electron microscopy 

A digital microscope (Keyence, VHX-1000 series, Keyence digital microscope and 

imaging solution, OSAKA, JAPAN) was used in order to check the cleanliness of the 

tribopairs and observe the wear tracks on the ball and the flat. 

Two scanning electrons microscopes have been used: a JEOL 7500F (JEOL, USA) and 

an ESEM-FEG XL 30 (ESEM-FEG XL30, FEI-Philips, UK), providing a 2 nm resolution at 
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30 kV. These two systems are particularly useful for soft-matter studies. The JEOL 7500F is 

located in the Singh Center for Nanotechnology at the University of Pennsylvania and the 

ESEM-FEG, at the Centre Lyonnais de Microscopie (CLYM). Through a stage biasing 

system, referred to as the “gentle-beam” mode, the electron beam interacting with the sample 

may be reduced to a fraction of the accelerating voltage of the gun (down to 200 V), allowing 

for the imaging of soft or insulating samples without the need for carbon or metal coating. 

Good resolution SEM images have thus been take at low accelerating voltage (3 kV) while 

EDX analyses were carried out using an acceleration voltage of 8 kV, the minimum energy 

required to probe Kα electrons of the silicon. 

3.1.2. White light Interferometry  

 

Figure 2.6 shows the schematic of an optical interferometer. Light incident from a laser 

source is split using a beam splitter into two separate beams: the reference and the object 

beams. The reference beam is reflected back to the beam splitter by a reference mirror at a 

constant distance lr, while the object beam is also reflected back by the sample’s surface on 

the beam splitter, but at a variable distance lo. The reflected beams thus create an interference 

pattern on the detector (usually a CCD camera), which provide information about the surface 

topography with very accurate vertical resolution.  
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Figure 2.6. Schematic of an optical white light interferometer: the beam emitted by the 

light source is divided in reference and objective beams by the beam splitter. The reflections 

of both beams are superposed on the detector where interference occurs. 

From Wiora et al.116 

This method allows a quick yet precise measurement of the surface topography. In 

particular, the very accurate Z resolution (< 1 nm) provides a detailed measurement of a wear 

track’s depth. A significant advantage of optical interferometry is that it is a non-contact 

measurement, which will not affect the surface’s topography or chemistry. 

Interferometry measurements were carried out on a Bruker interferometer GT-K1 

(Bruker Nano Surface Division, USA) equipped with two light sources (green and white) and 

two lenses (X5 and X50). The software of the device (Vision 64) allows selecting the  

Z-resolution of the measurement and the output format of the data. 

Measurements were carried out using a vertical scanning interferometer mode with a 

Z-resolution of 0.5 nm. The white light was focused on the sample surface using the X5 lens 

and a numerical zoom of X2.  

Quantifying the wear volume on a wear track was performed by sampling the wear 

track in 5 regions, then averaging the values. The first operation was to mask the wear track 

and then plane fit the data, excluding the masked wear track region, This resulted in all areas 
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outside of the wear track being centered near “zero height”. The volume and depth of the 

wear track could then be easily determined by integrating or subtracting from this reference 

“zero” height.  This operation is believed to be sufficiently accurate thanks to the low surface 

roughness of our samples (typically 1.2±0.1 nm rms over an area of 5 µ*5 µm)…After the 

plane fit, a depth profile can be taken across the wear track, allowing the computation of the 

wear depth or the worn volume. 

3.1.2. Atomic force microscopy  

3.1.2.1. Brief description of the technique 

 

Atomic force microscopy (AFM) is a method of measuring the topography of a surface 

via the interactions between an atomically sharp tip and a surface, thus overcoming the 

diffraction limit of optical and electron microscopes and allowing for the  observation of a 

surface in three-dimensional detail with sub-nanometer resolution. AFM can be used to image 

different types of materials (hard, soft, biological structures…) without any conductivity 

requirements unlike SEM117.  

Figure 2.7 shows the schematic of the interactions of a tip with a surface in AFM. There 

is an abundant literature on AFM topography measurements117–119. In brief, the apparatus is 

made of a sharp tip attached to a flexible microcantilever, which bends under the influence of 

interaction forces between the tip and the sample. The bending of the cantilever is measured 

by reflecting a laser beam on the cantilever and onto a photodiode split in four quadrant, 

which measures the position of the laser spot. The vertical movement of the laser spot, or the 

tip , (A+B) – (C+D) (Figure 2.7) provides information on the height of the surface 

(topography measurement)117. 

3.1.2.2. Experimental details 

 

Two AFM have been used for our studies. The surface topography of the as-received 

material was measured using an Asylum Research MFP-3D AFM (Asylum Research, Santa 

Barbara, USA) located at the University of Pennsylvania. Measurements have been carried 

out using a Nanosensor Si cantilever with a normal spring constant of 0.06±0.01 N.m-1 and a 

DLC coated tip. A normal load of 1.1±0.1 nN was applied while scanning an area ranging 

from 5 x 5 µm2 down to 100 x 100 nm2 with a resolution of 256 lines. 
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After tribological experiments, some wear tracks have been characterized using a Veeco 

V AFM (Veeco Instruments Inc., NY, USA) located at LTDS. Measurements were carried out 

with a diamond tip (Arrow-CONTR10) with a normal stiffness of 0.2 N.m-1. A normal load of 

10 nN was applied while scanning an area of 80 x 80 µm centered on the wear tracks with a 

resolution of 512 lines.  

All observations were performed in ambient air at room temperature. Data processing 

was performed using Gwyddion (Czech Metrology Institute, Czech Republic). 

 

 
Figure 2.7.  Schematic of the basic principle of AFM and Friction Force Microscopy 

(FFM) (a) from Bhushan et al.120(b) typical AFM tip on its cantilever.  

3.1.3. Friction force microscopy (FFM) 

3.1.3.1. Brief description of the technique 

 

This technique is derived from AFM and is used to measure lateral force (i.e. friction 

force) while sliding an AFM tip against a surface thus allowing tribological studies at the 

nanoscale. In order to do so, the sample is scanned back and forth in a direction orthogonal to 

the long axis of the cantilever beam120 and the friction force between the tip and sample 

produces a twisting of the cantilever as described in the previous section for AFM. Therefore, 

there is an intensity difference between the laser signal received by the left hand (A+C) and 

the right hand (B+D) sectors of the photodiode as illustrated on Figure 2.7.a. This intensity 

difference is directly proportional to the magnitude of the friction force for small strains of the 

cantilever. One major advantage of this technique consists of measuring friction, adhesion and 

wear in one measurement. Since the friction data is directly related to the mechanical 
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properties (normal and lateral spring constant) of the cantilever, for reliable friction data 

measurements the tip must be carefully calibrated121–123 .  

3.1.3.2. Experimental details 

FFM was used to estimate the microscale tribological behavior of a-C:H:Si:O coatings 

while sliding against steel under dry and humid conditions. To that end, we used an 

environment controlled scanning probe microscope (RHK 350, RHK Technology, Michigan, 

USA) as illustrated in Figure 2.8 located at university of Pennsylvania. Experiments have 

been performed in humid (~ 50% RH) and dry (~ 1%) environment. Humid conditions were 

obtained by blowing humid nitrogen into the chamber while dry environment was obtained by 

introducing dry nitrogen to the chamber.  

 

 
Figure 2.8. RHK 350 Scanning probe microscope from Carpick Research Group 

carpick.seas.epenn.edu 

Since our interest resides in understanding the interactions between a-C:H:Si:O and 

steel at microscale and due to the lack of commercially available steel-tipped AFM probes, 

we used a customized AFM probe made of a steel colloid glued with a conductive epoxy 

silver glue (MG Chemicals, USA) onto a commercial tipless AFM cantilever using a micro-

manipulator. Prior to the gluing process, the tipless cantilevers were calibrated (normal and 

lateral stiffness) using beam geometry124. Once the customized cantilever is ready for use, the 

roughness of the colloid is measured by scanning them with a standard sharp AFM tip.  
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Experiments have been performed using a 25±5 µm diameter colloid, an applied load of 

1000 nN while scanning back and forth a 5 µm line (sliding stroke).  

3.1.4. Nanoindentation  

Measuring the mechanical properties of thin films or of volumes close to the surface 

cannot be performed accurately with conventional indentation tools. Indeed, the mechanical 

properties of materials in locally small regions and very close to the surface can be very 

different from that of the bulk material average having the same composition125. 

Nanoindentation is a method for measuring the mechanical properties down to the nanoscale 

range125,126, which makes it very useful for probing thin films. Its technique consists of 

penetrating the sample with a stiff tip – usually diamond – and measuring the resulting 

interactions. 

The following equations allow the determination of hardness H and elastic modulus E* 

from the measurements performed in nanoindentation: 

 ! = !
!!

         Eq 2. 1 

And 

 !!∗ = !
!

!
!!

         Eq 2. 2 

where P is the applied load, S the contact stiffness and Ac the contact area. 

Since the Pyramidal indenter with square or triangular base, are not axis symmetrical, it has 

been shown that equation 2 has to be corrected by a factor β (β=1.012 for Vickers tips and 

β=1.034 for Berkovich tips)127 

Precise measurement of the applied load, the contact area and the contact stiffness is crucial 

for an accurate determination of the mechanical properties. In the next subsections we will 

describe the method that has been used to calculate the contact area and contact stiffness.   
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3.1.4.1. Estimation of the contact area 

The contact area is related to the penetration depth but cannot be directly estimated, 

mainly because of the shape of the indent and the tip defect… We used Loubet’s method, 

extensively detailed in reference126,128 to estimate the contact area.  

3.1.4.2. Estimation of the contact stiffness 

There are two existing ways to calculate the contact stiffness; a static method and the 

continuous stiffness measurement method as detailed in the supplementary information. 

For thin coating on substrate configuration, there are challenges in measuring the film’s 

stiffness mainly because of the substrate effect. One main existing method that is used to get 

rid of the influence of the substrate is to limit the indentation depth typically to values 10 

times lower than the thickness of the coating. It has been shown in the literature that even at 

this low penetration depth, the substrate effect can still influence the measurements129,130. 

There are several methods proposed to get rid of the substrate effect while indenting a thin 

film deposit on a substrate131. The one we used has been proposed by Bec et al130 for a good 

estimation of the film stiffness and will be described in the next section.  

3.1.4.3. Determination of the contact stiffness using Bec et al method  

This new method consists of considering the substrate and the film as two springs 

connected in series as illustrated in Figure 2.9130. 

 
Figure 2.9. Schematic of the spring model of substrate and coating proposed by Bec et al130. 

A is the tip radius, Ef*and Es* the reduced young’s modulus of the film coating and 

substrate respectively and t, the thickness of the coating.   
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The global contact stiffness can thus be deduced as follows: 

 
!
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)        Eq 2. 3 

with t, the thickness of the coating, a, the radius of the indent, Ef*, and Es* the reduced 

Young’s modulus of the film and substrate respectively.  

3.1.4.4. Experimental details  

Nanoindentation test were performed using a MTS Nano Indenter XP following the 

continuous stiffness measurement (CSM) method described previously while using a 

Berkovich tip. During the test, the load was applied exponentially versus time, in order to 

keep a constant strain rate throughout indentation. P′/P was set at 0.03 Hz. Experiments were 

performed in ambient air, at room temperature. The reported values of the mechanical 

properties are an average of 9 different measurements at different locations (we were able to 

check the location of each indent on the surface, thanks to an integrated optical microscope). 

For each test the maximum applied load was 450 mN.  

3.2. Chemical and structural analysis of a-C:H:Si:O 

In order to understand the tribological behavior of the a-C:H:Si:O coatings, we need to 

understand the structural and chemical changes involved during sliding, both on the flat and 

on the ball surfaces. These materials are amorphous metastable thin films made of low atomic 

weight elements. It is thus necessary to cross-correlate the results of several techniques to 

obtain stronger insight into the structure and chemistry of our material, before and after the 

tribological experiments. 

3.2.1. Raman spectroscopy 

Raman spectroscopy consists of measuring the intensity of inelastically scattered light 

by a material as a function of the wavelength. Shifts in the wavelength of the scattered light 

occur due to interactions of the incident light with the material’s vibrational modes132. Raman 

scattering occurs when a lattice vibrational mode causes a deformation in the electron cloud, 

thus affecting the polarizability (ability for a molecule to produce a dipole moment when 

exposed to an electromagnetic wave). The polarizability changes as the molecular bonds are 

altered by their vibrational motion. 



Chapter 2. Experimental approach 

 87 

3.2.1.1. Single wavelength Raman 

 

Raman scattering from sp2 hybridized carbon bonds is always a resonant process due to 

the relatively small optical gap of the π states from the conduction and valence band edges132. 

Raman can be a powerful non-destructive tool to investigate the structure of carbon-based 

materials. There are two characteristic peaks on Raman spectra of carbon-based materials 

using visible wavelength light: the G peak and the D peak located at around ~1560 cm-1 and 

~ 1360 cm-1 respectively87,133–137.  

Visible Raman excitation are dominated by sp2 bonded carbon atoms since the Raman 

cross-section of π states is more than fifty times higher than that of σ states138. The G peak is 

due to bond stretching of all pairs of sp2 atoms in both rings and chains while the D peak is 

due to the breathing modes of sp2 ring-like atoms139.  

Much information can be extracted from the position of the G and D peak. In fact, 

Ferrari et al139 have shown that the variation in G peak position correlates with the disorder in 

the carbon amorphous network. An increasing G peak position is thus a consequence of short 

C=C bonded chains139. This means that the shift of the G peak position (Pos G) is 

proportional to the degree of disorder in the material. Pos G is due to a resonant selection of 

the sp2 clusters with wider π band gaps. The ratio between the intensity of the D peak and the 

G peak gives information on the number of ordered sp2 carbon rings in the material133,139,140.  

As illustrated in Figure 2.10, it is believed that an increasing ratio I(D)/I(G) together 

with a shift of the G peak toward higher wavenumbers can be understood as an increase of the 

number of clusters of ring-like sp2 bonded carbon atoms.. Thus, a careful analysis of the 

position and intensity of the D and G peaks may provide information about the structural 

changes occurring during a tribological experiment on amorphous carbon coatings.  
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Figure 2.10. Schematic diagram of structural changes affecting a Raman spectrum for 

carbon-based material. From Ferrari et al.133 

3.2.1.2. Multiwavelength (MW) Raman 

As mentioned in the section above, I(D)/I(G) measurements give us the amount of a 

specific size of sp2 clusters for a given Raman wavelength, i.e. the ones where local band gaps 

are resonant with visible wavelengths as reported by several authors133,137,138,140–142. Therefore, 

each laser wavelength resonantly select a specific range of sp2 clusters of a finite distribution 

of similar sizes and shapes138.  High Raman excitation energies (lower wavelengths) could be 

used to probe smaller clusters since they are more resonant with UV excitations. 

This means that I(D)/I(G) alone is not sufficient to probe the sp2 fraction in the sample.  

Therefore, using multiwavelength Raman, it can be considered that the total distribution of 

the sp2 clusters in the volume of a-C:H:Si:O probed by Raman is determined138.  

With a careful processing of the Multiwavelength Raman, one can thus deduce the 

remaining sp3 bonded carbon fraction in the coating. Cui et al142 proposed an empirical model 

to extract the sp3 fraction by calculating the dispersion of the G peak, Disp (G), as a function 

of the excitation energy (Raman wavelength). The dispersion of the G peak is defined as 

follows11: 

 !"#$ ! =  !"# ! !!!!"#(!)!!
!!!!!

     Eq 2. 4   

with !! !"# !!  two different Raman wavelengths and !"# ! !!,  !"# ! !!  the 

corresponding positions of the G peak. 
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3.2.1.3. Experimental conditions 

Two Raman devices have been used for characterizing the as-received and worn  

a-C:H:Si:O coatings. A single wavelength apparatus located at the University of Pennsylvania 

and a multiwavelength apparatus located at the “Laboratoire Hubert Curien” of Université 

Jean Monnet (Saint Etienne). 

The single wavelength Raman is a near-field scanning Raman spectrometer (NT-MDT 

NTGRATM Spectra Upright, NT-MDT Co., Moscow, Russia). A continuous wave diode-

pumped solid-state laser (Compass 315M-100, Coherent Inc., Santa Clara, CA, USA) 

provides linearly polarized (transverse electromagnetic mode: TEM00) light with wavelength 

and power of 532 nm and 22 mW, respectively. The laser output enters the spectrometer 

through a single-mode optical fiber. After being expanded, the laser beam is focused by a 

long-working-distance objective (magnification: 100X, numerical aperture: 0.7, Mutotuyo, 

Kanagawa, Japan) on the sample surface. Light scattered from the sample is collected by the 

same optics and directed into the grating of the Raman spectrometer. The point of analysis 

can be defined using a white-light CCD camera, which offers, together with the long-

working-distance lens, a magnified live image of the sample surface. The laser beam has a 

spot size of 1 µm when focused on the sample. Data acquisition is performed using Nova 

Software (v.1.1.0.1812, NT-MDT Co., Moscow, Russia). In the present work, all Raman 

spectra were recorded with a laser power of 60 µW, to avoid any sample damage, and within 

a spectral range of 278-2676 cm-1. A 600 lines/mm grating provided a spectral resolution 

better than 2 cm-1. 

The multivalength Raman device is an Aramis spectrometer (Aramis Jobin Yvon, 

Horiba, Japan), an integrated confocal micro-Raman system described elsewhere35. The 

confocal microscope is coupled to a 460 mm focal length spectrograph equipped with four 

PC-controlled interchangeable grating-turrets. Two internal lasers provide visible and near 

infrared wavelengths (488 nm and 633 nm respectively). The device is also equipped with 

two additional lasers that provide two wavelengths, one in UV (325 nm) and the second in 

visible (442 nm). Analysis can be thus performed at four different wavelengths from UV to 

IR. 

The laser beam is focused on the surface towards a confocal objective (X40 for UV) and 

(X100) (Horiba, Japan) for visible an infrared wavelengths (442, 488 and 633 nm). In order to 

avoid damaging the sample, the laser power was regulated at 85±2 µW, 19±2 µW, 25±2 µW 

and 15±1 µW respectively at 633, 488, 442 and 325 nm. The acquisition time was set at 30 s 
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with 5 averaging measurements. The grating was set at 2400 l/mm for 325 nm and 600 l/mm 

for 442, 488 and 633 nm. The resulting wavenumber accuracy is less than 2 cm-1. 

Prior to the measurements on the samples, a pure silica calibration sample was analyzed 

and the Raman shift was corrected for all the wavelengths with the theoretical value for silica, 

520 cm-1. 

3.2.2. Secondary Ion Mass Spectroscopy analysis 

3.2.2.1. Theoretical background 

 

As suggested by the technique’s name, Secondary Ion Mass Spectroscopy (SIMS) 

analytical technique consists of recording secondary ions emitted from a surface due to 

interactions with a beam of bombarding primary ions as illustrated in Figure 2.11. 

 
Figure 2.11. Schematic of ion beam sputtering of a surface from reference144 

 

When the solid surface is sputtered with high-energy primary ions such as CS+, O2, O-, 

Ar+, N2
+ and Ga+ in the energy range from 1 to 30 keV144, the primary ions transfer their 

energy to the lattice atoms. As a result, secondary electrons, neutral atoms or clusters of 

atoms, positively and negatively charged atoms or clusters (called secondary ions) as well as 

photons145 issued from the collision cascade146, emerge from the surface.  

Analyzing the secondary ions with a mass spectrometer can provide chemical 

information about the target material. It is thus possible to identify elemental and molecular 

ions since the technique is based on the mass-to-charge ratio and ion counts per elements144.  
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3.2.2.2. Experimental details 

 Deph-profiling SIMS performed by Evans Analytical Group (EAG, Sunnyvale 

California, USA) has been used to measure the distribution of carbon, hydrogen, silicon and 

oxygen within the coating. However, SIMS is not a quantitative technique: while it is useful 

to monitor any changes in the composition, it can’t provide absolute values. It is thus 

necessary to couple this technique with quantitative ones to fully describe our material. 

3.2.3. Rutherford Backscattering Spectroscopy / Hydrogen Forward Scattering 

3.2.3.1. Theoretical background 

RBS is an analytical technique based on the use of accelerators that provides a method 

to give quantitative composition of a solid material and the depth profile of the elements in 

ppm contained in the thin surface region of a sample. The technique is based on bombarding a 

desired target sample with high-energy ions (ion beam ranging from 0.5 to 4 MeV). 4He 

protons and sometimes lithium ions are often used as projectiles and the common 

backscattering angle is typically between 150° and 170°147. 

Figure 2.12 shows the schematics of a projectile having a charge Z1 and a mass M1 moving 

with a velocity of v1 with a kinetic energy of E0, scattered from a target nucleus having a 

charge Z2 and a mass M2.  

 
Figure 2.12. Scattering of moving ion (Z1, M1, E0) by a target atom (Z2,M2) from Verma 

et al.147 

 



Chapter 2. Experimental approach 

 92 

For backscattering to occur, the projectile and the target must get close enough together so 

that the distance of closest approach of the incoming particle, represented by “d” on 

Figure 2.12 is within the K-shell radius. “d” is given by: 

 

! = !!!!!!
!"!!

!
!!

          Eq 2. 5 

3.2.3.1. Experimental details 

RBS and HFS analysis have been performed by Evian Analytical Group (EAGSM EAG, 

Sunnyvale California, USA). As illustrated in Figure 2.13, RBS spectra are acquired at a 

backscattering angle of 160° and an appropriate grazing angle (with the sample oriented 

perpendicular to the incident ion beam). Experiments were carried out using Helium (He++) 

ion beam which energy was set at 2.275 MeV, with a normal detector angle of 160° and a 

grazing Detector Angle of 100°. The sample is rotated with a small angle to present a random 

geometry to the incident beam. This avoids channeling in both the film and the substrate. The 

use of two detector angles can significantly improve the measurement accuracy for 

compositions when, like in our case, thin films are analyzed.  

 

 
Figure 2.13. Schematic showing a scattering geometry in a typical of RBS  

experimental setup 



Chapter 2. Experimental approach 

 93 

When a thin (<100nm) amorphous or polycrystalline film resides on a single crystal 

substrate, “ion channeling” may be utilized to reduce the backscattering signal from the 

substrate. This result in improved accuracy in the composition of layers containing elements 

that overlay with the substrate signal, typically light elements, such as oxygen, nitrogen and 

carbon. Spectra were fitted by applying a theoretical layer model and iteratively adjusting 

elemental concentrations and thickness until good agreement was found between the 

theoretical and the experimental spectra. 

In general, the physical thickness of films is checked with a direct measurement 

technique (cross section SEM in our case) prior to RBS measurement thus allowing a direct 

calculation of the real density of the coating. Conversely, if the density of the coating is 

known, RBS can provide accurate thicknesses evaluation. The equation governing the 

conversion from the RBS densities and thicknesses and real thicknesses to the real densities 

is: 

!!"#$ = (!!"#×!!"#)/!!"#$        Eq 2. 6 

with !!"#$ and !!"# the real and RBS densities of the coating respectively, !!"#$ the physical 

thickness of the coating and !!"#, the thickness determined with RBS.  

 

In HFS experiments, a detector is placed 30° from the forward trajectory of the 

incident He++ ion beam (operating energy of 2.275 MeV) and the sample is rotated so that the 

incident beam strikes the surfaces 75° from normal as illustrated in Figure 2.14. In this 

geometry it is possible to collect light atoms, namely hydrogen, forward-scattered from a 

sample after collisions with the probing He++ ion beam. A thin absorber foil is placed over the 

detector to filter out He++ ions that are also forward scattered from the sample. 

Hydrogen concentrations are determined by comparing the number of hydrogen counts 

obtained from reference samples after normalizing by the stopping powers of the different 

materials. A hydrogen implanted silicon sample and a geological sample, muscovite, are used 

as references. The hydrogen concentration in the hydrogen implanted silicon sample is taken 

to be its stated implant dose of 1.6E17 ±0.2E17 atoms/cm2. The muscovite (MUSC) sample is 

known to have ~6.5 ±0.5 atomic percent hydrogen. 
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Figure 2.14. Scanning geometry of an HFS experiment 

 

Samples are checked for hydrogen loss in the analyzed region. This is done by acquiring 

spectra for different acquisition times (initially a short exposure followed by a longer 

exposure to the He++ beam). Charge accumulations for 5 and 40 µC are used. Lower 

proportional signal in the 40 µC spectrum indicates hydrogen loss.  

In those cases the shorter exposure is chosen for analysis at the expense of higher noise 

in the spectrum. To account for surface hydrogen due to residual moisture or hydrocarbon 

adsorption a silicon control sample is analyzed together with the actual samples and the 

hydrogen signal from the control sample is subtracted from each of the spectra obtained from 

the actual samples. During the HFS acquisition backscattering spectra are acquired using the 

160° angle detector (with the sample in forward scattering orientation). The RBS spectra are 

used to normalize the total charge delivered to the sample.  

3.2.4. XPS 

3.2.4.1. Theoretical background 

X-ray photoelectron spectroscopy is an “X-ray in, electron out” technique that is used to 

probe the outermost surface region of a material. XPS is one of the few techniques that can 

provide information about the chemical bonding of the top few nanometers of a surface148. 

The technique provides elemental information, except hydrogen and helium, of the top 10 to 

200 Å of any solid that is vacuum compatible.  

XPS is based on the photoelectric phenomenon (interaction between a photon and 

atomic orbital electrons) as illustrated in Figure 2.15. 
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Figure 2.15. Schematic of XPS principle 

 

In brief, when the incident photon interacts with the electronic structure of an atom, an 

electron is ejected from the atom whenever the photon energy is higher than the electron 

binding energy. The kinetic energy of the emitted electron is approximately equal to the 

difference between the photon energy and the electron’s binding energy149. The binding 

energy of the electron can be written as follows: 

!! ≈ !"− !!         Eq 2. 7 

With Eb, Ek the electrons bending energy and kinetic energy respectively, hν is the photon 

energy.  

3.2.4.2. Experimental details 

The chemistry of the near-surface region of the as received silicon oxide-doped 

hydrogenated amorphous carbon (a-C:H:Si:O) was investigated by X-ray photoelectron 

spectroscopy (XPS) using a customized XPS spectrometer, developed by Mangolini et al150. 

Briefly, the XP-spectrometer is equipped with a monochromatic Al Kα X-ray source with a 

X-ray spot size of 1 x 3 mm2. The photoelectrons emitted from the specimen are collected 

with an electrostatic lens, whose axis is normal to the sample surface. After passing the 

hemispherical analyzer, the photoelectrons are detected by a two-dimensional MCP/CCD 

detector. In the present work, the X-ray source was run at 30 mA and 12 kV, whereas the 

analyzer was operated in constant-analyzer-energy (CAE) mode. Survey spectra were 

acquired with the pass energy and step size equal to 200 eV and 1 eV, respectively. For the 

high-resolution (HR) spectra, the pass energy and step size were, respectively, 100 and 0.05 

eV (full width at half maximum (FWHM) of the peak height for the Ag3d5/2 equal to 0.57 

eV). The curved slit at the entrance of the hemispherical analyzer has a width of 0.8 mm. The 

residual pressure in the analysis chamber was always below 1.10-6 Pa. The spectrometer was 

calibrated according to ISO 15472:2001 with an accuracy better than ±0.05 eV. The high-
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resolution spectra were processed using CasaXPS software (v2.3.16, Casa Software Ltd., 

Wilmslow, Cheshire, U.K.). An iterated Shirley-Sherwood background subtraction was 

applied before peak fitting using a linear least-square algorithm151. 

No sample charging was ever observed, as determined by checking the position of the 

carbon (C1s) signal and of the valence band (this is expected since the samples have moderate 

electrical conductivity). 

Chemical investigation of the worn material has been performed using a VersaProbe 

PHI XPS apparatus. The residual pressure in the analysis chamber was below 1.10-7 Pa. 

Extensive description of the apparatus can be consulted elsewhere 108,152,153. The spectrometer 

was calibrated in energy using a gold sample (the 4f7/2 eletronic level for a binding energy of 

83.95 eV). 

In a first step, we performed a roughly resolved survey scan in order to identify the 

different elements present in the tribofilm. In a second step, a more resolved acquisition was 

carried out while focusing on C1s, N1s, O1s, Si2p and Fe2p signal. XPS data where 

processed using PHI Multipack software.  

3.2.5. NEXAFS analyses 

3.2.5.1. Theoretical background 

NEXAFS (near edge X-ray absorption fine structure spectroscopy) is a synchrotron 

based spectroscopy technique that probes the structure and the electronic states of the surface 

of a material. The fact that this technique allows the investigation of the chemical changes and 

the chemical environment of an atom with a very high sensitivity makes it an important tool 

for studying the chemical changes that occurs in the near-surface region of our coatings  

(a-C:H:Si:O) following a tribological test. The technical basis of NEXAFS has been widely 

described by Gregory Hahner154.  As with all synchrotron-based techniques, NEXAFS 

analysis uses the basic electromagnetic principle: radiations come from an acceleration of 

electric charges. As described in Figure 2.16, the synchrotron facility consist of 3 main 

parts154: 

• The booster: a ring equipped with highly powerful magnets where the electrons are 

injected at ~100 MeV and accelerated at ~ GeV in order to nearly reach the speed 

of light before being introduced in the storage ring.  

• The storage ring: a second ring bigger than the booster and connected to it with a 

constant magnetic field, where the electrons issued from the booster are being 
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introduced. The radiation comes then from the electrons that are accelerated inside 

the storage ring. 

•  Beamline: they are lines issued from the storage ring and connected to the 

experimental chamber.  

 

 

Figure 2.16. Description of synchrotron facility from reference154 

Once in the beamline, a monochromator helps to select a single wavelength allowing a 

high-brilliance and tunable monochromatic X-ray source to be obtained with a high degree of 

polarization for the experimentalist.  

Figure 2.17 shows a schematic of the interactions between the high energy X-rays and the 

material that is analyzed. The absorption of X-rays results in the emission of a photoelectron 

from an inner shell level to an unoccupied state leaving a hole (core hole). For light element 

such as carbon, nitrogen, oxygen and sulfur the photoionization results in the removal of a 

K-shell electron. The typical K-hole lifetimes are in the order of 1 to 10 fs155. There are two 

possible ways of filling the vacant hole: 

• Either another higher energy electron from the same atom fills the hole with the 

emission of a fluorescent photon (Figure 2.17.b) 

• Or a higher energy electron from the same atom fills the hole with emission of an 

Auger electron (Figure 2.17.c) 

 



Chapter 2. Experimental approach 

 98 

  



Chapter 2. Experimental approach 

 99 

It is known that the Auger electron yield is much higher than the florescence yield for 

low-Z molecules (carbon, nitrogen, oxygen) and this mode provides a better surface 

sensitivity. For this reason, all NEXAFS spectra in this thesis were acquired in Auger 

detection mode.  

Another possible way to enhance the surface sensitivity using NEXAFS is to apply a 

retarding voltage to the electrons before they enter the channeltron156. Thus, there are two 

possible measurement configurations: 

• Partial Electron Yield (PEY): lower kinetic energy electrons are suppressed and 

only electrons from the outermost surface (~ 3 nm157) are detected. 

• Or Total Electron Yield (TEY): all the electrons that emerge from the surface can 

be detected.  

All the spectra in this thesis were acquired in PEY mode since it provides a better signal 

to background resolution than the TEY.  

If the energy of the incoming photons matches the difference between the initial state and the 

unoccupied state, the enhanced resonant transitions are superimposed on the step-like 

shape154, resulting thus in the NEXAFS spectra. A C1s to π* transition occurs at lower photon 

energies than a transition from C1s to σ* and this is characteristic of molecules with double 

and triple bonds.  

 

 
Figure 2.17. Schematics of NEXAFS spectroscopy principles 
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Unlike XPS measurement, which consists of a fingerprint of a direct excitation of the 

elastically scattered electrons, meaning that the core electron levels measured do not vary 

much depending on the type of bond and what the atom is bonded to, NEXAFS probes the 

unoccupied states. The shape of a NEXAFS spectrum depends on the local bonding state of 

the near surface region. NEXAFS is thus a powerful tool that allows for probing the chemical 

bonding states in the material. This means that many of the structural changes that might 

occurs during a tribological test could be detected by NEXAFS.  

3.2.5.2. Computing the sp2 fraction in carbon materials using nexafs 

 

Figure 2.18 illustrates typical NEXAFS spectra that can be obtained for ultra 

nanocrystalline diamond (UNCD) and highly ordered pyrolytic graphite (HOPG). 

For HOPG reference samples, there are two characteristic peaks: 

• A sharp peak located at 285.0 eV, due to the C 1s → π* transition for ordered sp2-

bonded carbon. It corresponds to a transition of an electron from a 1s core state to 

an unoccupied π anti-bonding state (referred as π*)105,156,158,159.  

• A peak located at ~292.0 eV, corresponding to C 1s → σ* transition (transition 

from a 1s core state to an unoccupied σ anti-bonding state, referred as σ*).  

For UNCD reference sample, two main peaks can be noticed: 

• The characteristic peak corresponding to C 1s → π* transition (located at 

285 eV).Ideally, diamond should be composed of 100% sp3 bonded carbon, making 

the presence of this peak questionable, but in fact, multiple sources of sp2 bonded 

carbon are present in UNCD, namely, the grain boundaries and surface 

reconstruction.  

• the large peak at ~289.0 eV followed by the ones at ~289.3 eV and 302.5 eV are all 

due to C 1s → σ* transition156,158,159.  

For our a-C:H:Si:O sample, the two characteristic peaks are located at : 

• 285.0 eV, corresponding to C 1s → π* for sp2 bonded carbon  

• 289.0 eV corresponding to C 1s → σ* transition for (C-O, C-Si). More details about 

the characteristic peaks of a-C:H:Si:O coating, will be given in chapter 3.  
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From the shape of the spectra, the fraction of sp2 bonded carbon in our material can be 

calculated by integrating the intensity ratio of the C 1s → π* peak and the C 1s → σ* region 

for the investigated sample and a reference sample (usually freshly cleaved HOPG) as 

reported in the following formula 159–161 and illustrated in Figure 2.18. 

 

!!"! =
!!"#!∗ !!"#(∆!)
!!"#!∗ !!"#(∆!)

        Eq 2. 8 

with !!"#!∗  and !!"#!
∗

 the areas under the π* peak of the sample and the reference respectively 

and !!"# ∆!  and !!"#(∆!) the areas calculated for the remaining part of the spectra which 

correspond to the contribution the σ* region. 

3.2.5.3. Experimental details 

Imaging near-edge X-ray absorption fine structure (NEXAFS) spectroscopic 

measurements were performed using the parallel processing imaging system at the NIST/Dow 

endstation of beamline U7A at the National Synchrotron Light Source (NSLS), Brookhaven 

National Laboratory (Upton, NY, USA). This imaging technique, which allows for the 

structural and chemical characterization of the near-surface region with a lateral resolution of 

50 µm and a field of view of 18x13 mm2, has been extensively described earlier158. The 

photon source for this beamline is a bending magnet, and covers an energy range from 100 to 

800 eV. The photon flux is 2x1011 photons/second/0.1% bandwidth. In the present work, 

NEXAFS images were acquired in partial electron yield (PEY) mode using a photon energy 

range of 260-340 eV for the carbon K-edge (energy resolution of 0.1 eV). The entrance grid 

bias (EGB) of the channeltron detector was set to 50, 150, and 220 V for the carbon K-edge. 

Changing the EGB voltage allows NEXAFS measurements with different surface sensitivity 

to be performed157.  
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Figure 2.18. Schematic of the calculation of sp2 fraction from nefaxs spectra of the 

reference sample (HOPG) and a-C:H:Si:O 

The monochromator energy was calibrated using the carbon K-edge π* transition of 

freshly-cleaved highly ordered pyrolytic graphite (HOPG, grade 2, SPI Supplies, West 

Chester, PA, USA), located at 285.5 eV. All NEXAFS images were first normalized to the 

absorption current measured simultaneously from a gold mesh placed in the beamline 

upstream from the analysis chamber, and then normalized to the spectral intensity in the pre-

edge region (intensity between 270 and 280 eV). 

4. Summary 

In this chapter we described the experimental approach that has been used to investigate 

the chemistry, composition and mechanical properties of a-C:H:Si:O as well as the 

environmental dependence of its tribological behavior, both at macro- and micro-scale. 

Macroscale environmental dependence experiments have been performed using an ambient 

air linear reciprocating tribometer equipped with a gas blowing system and a Controlled-

Environment Analytical Tribometer. Analysis techniques used for the worn material, namely 

microscopy and x-ray based analytical techniques have also been presented. 
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5. Résumé Chapitre 2 

Ce chapitre porte sur la description de l’approche expérimentale que nous avons 

adoptée pour répondre à la problématique soulevée par cette thèse : la compréhension des 

phénomènes physico-chimiques qui interviennent entre un a-C:H:Si:O et son environnement 

de fonctionnement lors d’une sollicitation tribologique.  

Pour ce faire, le matériau qui a fait l’objet de ce travail a été développé par le Groupe 

Sulzer-Metco Inc. (Winterthur, Switzerland, now Oerlikon Metco) en utilisant un procédé de 

dépôt chimique en phase vapeur assisté par plasma (Plasma-Enhanced Chemical Vapor 

Deposition – PECVD). Une présentation des techniques et des procédures mises en œuvre 

pour une caractérisation complète de la couche mince avant et après essais tribologiques est 

présentée suivant deux axes : 

• Les techniques et procédures d’observation de la surface, la topographie et les 

propriétés mécaniques de la couche, avec notamment microscopie numérique, 

microscopie électronique à balayage, interférométrie en lumière blanche, microscopie 

à force atomique, microscopie à force de frottement et nanoindentation ; 

• Les techniques et procédures d’analyse chimique et structurale du matériau initial et 

des surfaces après essais tribologiques, avec notamment la spectroscopie Raman à 

plusieurs longueurs d’onde, la spectroscopie de masse des ions secondaires 

(Secondary Ion Mass Spectroscopy – SIMS), la spectroscopie de rétrodiffusion 

Rutherford couplée à la spectroscopie de diffusion de l’hydrogène (Rutherford 

Backscattering Spectoscopy – RBS / Hydrogen Forward Scattering – HFS), la 

spectroscopie de photoélectrons (X-Ray Photoelectron Spectroscopy – XPS), ou 

encore la spectroscopie fine d’absorption des rayons X (Near-Edge X-ray Absorption 

Fine Structure – NEXAFS).  

Aussi, après une discussion du choix de la configuration des essais tribologiques, nous 

présentons dans ce chapitre les deux tribomètres utilisés dans cette étude : 

• Un tribomètre linéaire alternatif fonctionnant dans l’air ambiant et que nous avons 

équipé d’un système programmable de soufflage de gaz, permettant ainsi de changer 

rapidement l’environnement du contact ; 

• Un tribomètre linéaire alternatif placé dans une chambre sous vide poussé  

(<10-8 mbar) mais permettant aussi l’admission de gaz (oxygène, hydrogène ou 

vapeur d’eau dans notre cas) de manière contrôlée jusqu’à une pression de maximale 

de 2000 mbar. 
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Chapter 3. 

Influence of environment on 

the tribological behavior of  

a-C:H:Si:O 
This chapter focuses on the tribological behavior of a-C:H:Si:O coatings under 

different relative humidity levels in the sliding environment, in order to understand the role of 

water vapor on the friction mechanisms of a-C:H:Si:O. As discussed in chapter 2, the results 

presented herein were obtained using an ambient air linear reciprocating tribometer 

equipped with a gas flow system that allows a controlled gas flow in the contact, resulting in 

a quickly tunable RH of the sliding environment. We illustrated in chapter 1 that, even though 

the friction behavior of a-C:H:Si:O has been found to be less dependent on the relative 

humidity than the one of undoped DLC coatings9, different values of  the  friction coefficient 

of a-C:H:Si:O have been reported depending on the relative humidity of the sliding 

environment10,12,13,162. Further investigations on the humidity dependence of the friction 

behavior of a-C:H:Si:O have been performed by Scharf et al.96, who proposed a friction 

mechanism to account for such dependence. The main idea of this model is based on the shear 

strength96 of the interfacial material (referred to as “tribofilm” in this document). According 

to Scharf’s model, under humid environment a more silica-like and hard-to-shear tribofilm is 

generated, while under dry conditions, a rather carbon-like and easy-to-shear tribofilm is 

formed in the contact. The relatively high friction under humid conditions was then 

interpreted as a consequence of the high shear strength of the tribofilm (78 MPa)96 and the 

low friction in dry conditions, to the low shear strength of the tribofilms (9 MPa)96. 

In the experiments performed in this chapter, we will first compare ambient air with dry 

sliding conditions by blowing different gases toward the contact (dry nitrogen, dry air, dry 

argon), under different normal loads. The goal of these experiments is to verify the shear 
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strength hypothesis and compare the chemical composition and structure of the obtained 

tribofilms. We will refer to this set of experiments as “constant environment”. 

In the second part of this chapter the gas flow will be switched on and off while sliding. The 

goal is to determine if the friction behavior is reversible when the environment varies from 

humid to dry or vice versa. This set of experiments will be labeled as “dynamic environment”. 

We will also investigate the chemistry of the tribofilm when the environment is switched from 

humid to dry and from dry to humid in order to establish a relationship between the reversible 

friction behavior and the chemistry of the tribofilm.  
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1. Material Characterization  

Rutherford backscattering spectrometry (RBS), and HFS (Hydrogen forwards 

Spectroscopy) were performed on the samples in collaboration with Evans Analytical Group, 

Sunnyvale, CA, USA. Briefly, the chemical composition of the films was: [C] = 57±3 at.%; 

[O] = 3±1 at.%; [Si] = 6±1 at.%; [H] = 34±3 at.%. The fraction of sp2-bonded carbon in the 

as-deposited material was determined to be 0.54±0.02 using NEXAFS spectroscopy and 

0.38±0.04 with multiwavelenght (MW) Raman spectroscopy. Knowing that NEXAFS probes 

the very surface of the material (3 nm)157 whereas Raman probes deeper (250 nm),163 these 

results are not incompatible since amorphous carbon coatings are known to have a more sp2-

bonded carbon-like surface layer. The root-mean square roughness of the as-received 

a-C:H:Si:O films was 1.3±0.1 nm (measured using contact mode AFM over an area of  

1x1 µm2). The Young’s modulus and hardness of the film, measured with a MTS Nano 

Indenter XP using a continuous stiffness measurement (CSM) method with a Berkovich 

tip164,165 were 142±2 GPa and 10±0.2 GPa respectively. Details of characterization results 

could be found in appendix 1.  

Upon UHV annealing, the fraction of sp2-bonded carbon increased to 0.73±0.02 and 

0.78±0.04 respectively measured by NEXAFS and Raman. XPS analysis on the annealed 

sample also revealed an increased line shape asymmetry of the C1s peak, suggesting a 

progressive clustering and ordering of sp2 carbon sites upon annealing. All the data can be 

found in appendix 2.  

2.Tribological behavior of a-C:H:Si:O under constant 

environment  

2.1. Role of humidity on the friction 

Following the experimental procedure described in chapter 2 (section 1.2.2.2), 

tribological experiments were performed on a-C:H:Si:O under ambient air and under dry 

nitrogen, dry air or dry argon flows. As mentioned in the experimental part, while blowing 

gas toward the contact, the relative humidity RH decreases from about 35% down to less than 

5%, independent of the gas.  
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On the first reference test performed under ambient air (23±1 °C and RH 35±1%), 

plotted in Figure 3.1.a, the friction starts at 0.30±0.01 and stabilizes at 0.18±0.01 after a 

running-in period of about 200 sliding cycles.  

 

 
Figure 3.1. Evolution of the coefficient of friction as a function of sliding cycles 

for a-C:H:Si:O under (a) ambient air and 5 l/min flows of dry nitrogen, dry argon and dry 

air (b)ambient air with different relative humidity. 

  

Under the gas flow (Figure 3.1.a), the initial value of the friction coefficient is comparable to 

the one in ambient air, but the steady-state friction coefficient is drastically reduced to around 

0.03, i.e. 6 times lower than the one obtained under ambient air at 35% RH. This lower value 

is most probably due to the difference in the relative humidity between the two set of 

experiments. In fact, as discussed in the introduction and illustrated in Figure 3.1.b, lowering 

the relative humidity results in reducing the frictional response of a-C:H:Si:O. These results 

are consistent with Scharf’s96 findings. Since the decrease in friction is similar for all the 

gases blown toward the contact (inert ones, nitrogen or argon, as well as dry air), we can 

argue that this phenomenon is not related to the chemistry of the gas, but rather to the 

decrease in the relative humidity induced by the flow of gas around the contact.  

2.2. Load dependence of the friction under a constant environment 

In order to verify the shear strength hypothesis, as presented in the introduction, a set of 

load dependence friction experiments has been carried out under the four different 

environment conditions, namely ambient air, constant flow of dry nitrogen, dry air or dry 

argon, as reported on Figure 3.2. Loads of 1, 2 and 5 N, corresponding to a mean theoretical 

Hertzian pressure of respectively 380, 480 and 650 MPa, were used for each environment in 
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order to study the effect of the mean theoretical contact pressure on the friction. At each load, 

experiments were carried out three times for checking the reproducibility. 

The shear strength of the tribofilm was then deduced from a linear fit of a contact mechanics 

model proposed by Singer et al.77. In this model, due to the pressure dependence of the 

mechanical properties of solids at high contact pressures, the shear strength S can be 

considered as: 

	 ! = !! + !"         (Eq. 1) 

 

 
Figure 3.2. Evolution of the coefficient of friction as a function of the inverse of the mean 

theoretical Hertzian pressure for a-C:H:Si:O under different environmental conditions, 

and corresponding linear fits. 

 

Knowing that the friction force Ft can be reported as77: 

!! = !.!+ !!        (Eq. 2) 

where A is the contact area and Fp the plowing contribution, which can be neglected in the 

case of hard materials. The coefficient of friction can then be written as follows: 

! = !!
!!
= !.!

!.! =
!
!             (Eq. 3) 
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By combining equation 1 and 3, the load dependence of the coefficient of friction can 

be written as: 

! = !!
! + !         (Eq. 4) 

where P is the mean contact pressure and ! the pressure dependence of the shear strength.  

This model supposes that an easily deformable interfacial material (the tribofilm) is able to 

distribute the load across the contact. The apparent contact area becomes thus the real contact 

area, meaning that the friction is mainly controlled by the Hertzian contact conditions79. The 

shear strength of the interface may then be determined by plotting the evolution of the 

coefficient of friction as a function of the mean contact pressure.  

By fitting the pressure dependence of the stabilized friction data of Figure 3.2with equation 

(4), we were able to determine the shear strength of the tribofilm generated under the different 

environmental conditions. The shear strength of the tribofilm generated in ambient air was 

found to be almost 10 times higher than under the one generated under gas flows, namely 

90.7±0.2 MPa, 18±7 MPa, 13±5 MPa, 11±4 MPa for respectively ambient air, dry argon, dry 

air and dry nitrogen. We can clearly notice the high shear strength of the tribofilm obtained 

under ambient air compared to the one of the tribofilms obtained under dry conditions 

imposed by the different gas flows. However, there is no difference considering the 

uncertainty in the shear strength of the tribofilms obtained under these three different gases. It 

is noticeable that the lowest attainable coefficient of friction deduced from the experiments in 

ambient air is evaluated at -0.06. This negative value can probably come from the error 

between the real contact area and the theoretical one that we used, and to a lower extent to 

subtle changes in the humidity in the room between the experiments at different loads. Also, 

one has to keep in mind that a relevant value of ! is only obtained when the load goes to 

infinity, which is physically impossible.  

From these calculations, we can argue that the tribofilm plays a major role in the 

decrease in friction of the a-C:H:Si:O films. The low coefficient of friction obtained under gas 

flows is thus believed, at this step of our investigations, to be a consequence of the low shear 

strength of the tribofilm. So far, these findings are in accordance with Scharf’s96 results 

namely the shear strength of a tribofilm obtained under humid environment is higher than the 

one of a tribofilm generated under dry conditions, resulting in high friction under humid 

environment and low friction in dry environment. Moreover, in our case, dry environment 

was distinctively obtained by blowing 3 different gases in the contact, while only dry nitrogen 
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was used in Scharf’s96 study, strengthening the contention that water vapor is primarily 

responsible for the modulation of friction.  

In the following sections, we will investigate and compare the chemistry and structure of the 

different tribofilms obtained under different constant environments. Our goal is to provide 

evidence to support explanations for the different shear strengths that we estimated, and 

therefore the different coefficients of friction of a-C:H:Si:O in various environments. 

2.3. Morphology and composition of the tribofilms 

The morphology and composition were studied thanks to scanning electron microscopy 

(ESEM-FEG XL30, FEI-Philips, UK) equipped with energy dispersive X-ray spectroscopy 

(EDX, SDD Xmax 50 mm2, Oxford Instruments, UK), as described in chapter 2 (section 

1.3.1.1).  

In Figure 3.3, carbon, silicon and oxygen incorporation in the tribofilm varies depending on 

the sliding environment. According to the EDX maps, the tribofilm obtained under ambient 

air is heterogeneous, containing mainly silicon and oxygen in the expected Hertzian contact 

area and surrounded by carbon, while the one obtained under dry nitrogen is homogeneous, 

mostly made of carbon with much less silicon and oxygen. So far, these results are consistent 

with Scharf’s96 findings.  
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Figure 3.3. SEM micrographs with the corresponding EDX maps of the tribofilms obtained 

(a) under ambient air and (b) under dry nitrogen flow. 

However, the EDX maps on tribofilms obtained under dry air or dry argon 

environment, on Figure 3.4, reveal that for both environmental conditions, the tribofilm is an 

intimate admixture of carbon, silicon and oxygen, with at least as much silicon and oxygen as 

in the tribofilm obtained under ambient air, despite very different friction evolutions. 

It can also be noticed that the tribofilm obtained under dry air is much thicker than the 

one obtained under the other conditions and concentrated in the theoretical Herztian contact 

area. Assuming that the growth of the tribofilm is due to material removal from a-C:H:Si:O, 

the thick tribofilm obtained under dry air conditions seems to point towards a different wear 

rate in the case of dry air. 
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Figure 3.4. SEM micrographs with the corresponding EDX maps of the tribofilms obtained 

(a) under argon flow and (b) under dry air flow. 

 

In summary, even though under dry argon and dry air, the relative humidity in the 

contact decreased down to less than 5%, like with dry nitrogen, there is a high amount of 

silicon and oxygen in the tribofilms. The amount of silicon and oxygen is close to the one 

obtained under ambient air, yet the shear strength of tribofilms obtained under dry argon flow 

and dry air flow is similar to the one of the tribofilm obtained under dry nitrogen flow and 

about a decade lower than the one of the tribofilm obtained under ambient air. Therefore, 

other facts than the composition must be considered to account for the observed shear 

strengths. Indeed, the structure of the carbon phase in the tribofilm is known to be critical in 

the frictional response of amorphous carbon films54. 

2.4. Structural changes in the carbon phase of the tribofilms and wear 
tracks 

In order to investigate the structure of the carbon phase in the tribofilms obtained under 

different environments, we used UV Raman. Raman analyses were performed following the 

experimental approach described in chapter 2, section 1.3.2.1.2. All Raman analyses on the 

tribofilms were carried out at a single wavelength (325 nm) on the fact that Raman spectra 

acquired using UV wavelength are less affected by the photoluminescence background than 

the ones acquired using visible wavelengths. The wear tracks on the flat were analyzed using 

the four different wavelengths, allowing the computation of potential changes in the sp3 

fraction, using the procedure described in section 1.3.2.1.2 of chapter 2.  
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2.4.1. Analysis of the tribofilms and wear tracks by UV Raman 

Figure 3.5 displays the Raman spectra acquired at 325 nm in the central and lateral parts 

of the different tribofilms, as well as the reference spectra acquired on the as-received and 

worn a-C:H:Si:O. The higher intensity of the spectra acquired inside and outside the wear 

track on the flat is mainly due to the higher Raman power that we applied as specified in 

chapter 2. From these spectra, it can be noticed that whatever the environment, there are 

significant differences between the tribofilm and the original or worn a-C:H:Si:O. 

According to Casiraghi et al.140, there are two reliable methods for fitting the Raman spectra 

in order to extract typical characteristics, such as the position of the D and G peak, their 

relative intensities, or the full width at half maximum (FWHM) of the G peak: the Gaussian 

fit and the Breit Wigen-Fano (BWF). Due to the significant photoluminescence background 

observed in the Raman spectra of a-C:H:Si:O, especially in visible Raman, BWF fitting 

method did not seem suitable for our data, since this method tends to adjust its asymmetry in 

order to recover a part of the photoluminescence140. We thus used a Gaussian fit of the G peak 

to extract its position, Pos(G), from the Raman spectra acquired at 325 nm on the different 

tribofilms. The corresponding data are reported in Table 3.1.  
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Figure 3.5. Raman spectra at 325 nm wavelength, on as-received and worn a:C:H:Si:O 

and on the corresponding tribofilms, after tribological experiment against 52100 steel ball 

performed (a) under ambient air, (b) under dry nitrogen flow, (c) under dry air flow and (d) 

under dry argon flow. 

The values reported in table 3.1 show that the position of the G peak inside the 

a-C:H:S:O wear tracks obtained in ambient air, or under dry nitrogen, dry argon or dry air 

flows, doesn’t change significantly. We can thus argue that there is no big structural 

difference between the worn and unworn material, in the volume probed by Raman. On the 

contrary, a significant drift of Pos(G) is observed toward higher wavenumbers in the 

tribofilms, which can be understood either as a clustering of the sp2-bonded carbon atoms in 

the tribofilms or a decrease in sp3 fraction followed by an increase in sp2 chains and a 

decrease in bond disorder 10,133,138, as described in chapter 2, section 3.2.1.1.   
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 G peak position 

(cm-1) 

Ambient air 

G peak position (cm-1) 

Dry nitrogen 

G peak position (cm-1) 

Dry air 

G peak position (cm-1) 

 Argon 

As received a-C:H:Si:O 1573.2±0.2 1573.2±0.2 1573.2±0.2 1573.2±0.2 

Worn a-C:H:Si:O 1573.5±0.2 1572.8±0.2 1570±0.3 1572.4±0.2 

Tribofilm center 1609.8±0.3 1602.5±0.2 1605.9±0.2 1607.7±0.2 

Table 3.1. G peak positions extracted by a Gaussian fit from Raman spectra on as-received 

a-C:H:Si:O, on worn a-C:H:Si:O and on the central part of the tribofilm, after tribological 

experiments under ambient air and under dry nitrogen, dry air and dry argon flows. 

At this stage, thanks to the Raman spectroscopy, we believe that the tribofilm is a 

material transferred from the worn region of a-C:H:Si:O to the steel ball, but having a 

different structure. 

Nevertheless, the G peak position of the tribofilms after tribological experiments in the 

four different environmental conditions seems to be very close. This suggests that there is no 

significant difference in the size and shape distribution of the sp2-bonded carbon clusters 

present in the tribofilm. Nevertheless, the differences in their calculated shear strengths 

suggest that their compositions and/or structures might be different.  

Extending the Raman analysis to consider the intensity ratio between the D and G 

bands, and the FWHM of the G band allows a better characterization of the different 

tribofilms. Indeed, as detailed in chapter 2 section 2.3.2.1.1, it has been shown139that the ratio 

between the intensities of the two main bands I(D)/I(G) is related to the size of sp2-bonded 

carbon atoms organized in rings133,139,140. The size of the excited sp2-bonded ring-like carbon 

clusters is related to a given Raman excitation energy (the wavelength),i.e. small sp2-bonded 

ring-like clusters are excited by low Raman wavelength and bigger clusters, by higher Raman 

excitation energy (higher wavelength). Thus, an increase in I(D)/I(G) is a signature of an 

increase in the size of the sp2 ring-like carbon clusters and vice-versa. 

On the other hand, the FWHM of the G band is a measurement of the structural 

disorder, in bond lengths and in bond angles133,138–140. Thus, low values of the FWHM of the 

G band could be understood as defect free or unstrained sp2 clusters whereas high values of 

FWHM of the G band reveal a high bond length and bond angle disorder of the sp2 bonded 

carbon atoms, ie, strained sp2 ring-like carbon atoms. Figure 3.6 shows an example of a 

typical Gaussian fit of the Raman spectra on the tribofilm obtained under dry nitrogen. 
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Figure 3.6. Gaussian fit of a Raman spectrum acquired at 325 nm on a tribofilm obtained 

after sliding a-C:H:Si:O against a 52100 steel ball under dry nitrogen flow. 

Figure 3.7 reports the FWHM of the G band and the I(D)/I(G) ratio for the tribofilms 

obtained under various environmental conditions. From these plots, we can notice a high 

FWHM of the G peak for all the tribofilms obtained under gas flow compared to the one 

obtained under ambient air. Tribofilms obtained under dry conditions also exhibit a relatively 

lower I(D)/I(G). In summary, under dry conditions, the sp2-bonded ring-like carbon clusters 

in the tribofilm are relatively smaller and more strained than the ones found in the tribofilm 

obtained under ambient air. 

 

 
Figure 3.7. FWHM (G) and I(D)/I(G) extracted from a Gaussian fit of the Raman spectra 

on tribofilms obtained under ambient air, dry nitrogen, argon and dry air at 325 nm. 
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2.4.2. Analysis of the wear tracks on a-C:H:Si:O by Multi-Wavelength Raman 

Using Multi-Wavelength Raman with the Gaussian fitting procedure described above, 

we were able to extract the Pos(G) for each of the 4 Raman wavelengths from UV to near 

infrared, and this, for as-received a-C:H:Si:O and for the wear tracks obtained on it after 

sliding in ambient air and under dry nitrogen, dry argon and dry air flows. 

Following the methodology described by Rose et al.138, we deduced the dispersion of 

the G peak, Disp(G) (cm-1/nm), by quantifying the slope of a linear fit of the G peak position, 

Pos(G), as a function of the wavelength. The standard deviations of the Pos(G) were 0.2, 0.5, 

0.5 and 0.7 for 325 nm, 442nm, 488nm and 633nm Raman wavelengths respectively.  

The fraction of sp3-bonded carbon atoms, fsp3, was then deduced from the empirical 

formula proposed by Cui et al.142 for hydrogenated DLC coatings, which is as follows: 

 

 !!"! =  −!.!"+ !.!× !"#$(!)± !.!"    (Eq. 5) 

The last term of the equation is the standard deviation related to the linear fit as deduced from 

the empirical method used by Cui et al.142. 

Figure 3.8 shows the linear fit results of Pos(G) for the wear tracks obtained under the 

four different environments and the corresponding values of Disp(G). These values and the 

corresponding sp3-bonded carbon fractions are gathered on Table 3.2, for as-received  

a-C:H:Si:O and the wear tracks obtained after sliding in ambient air and under dry nitrogen, 

dry air and dry argon. 
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Figure 3.8. Calculation of Disp(G) from the linear fit of Pos(G) for spectra acquired at 

325, 442, 488 and 633 nm, on as-received a-C:H:Si:O sample and on the wear tracks 

obtained after sliding in ambient air and under dry nitrogen, dry air and dry argon flows 

 
 Reference Ambient air Dry nitrogen Dry air Dry argon 

Disp (G) 0.2770±0.0174 0.2589±0.0220 0.2744±0.0173 0.2690±0.0312 0.2700±0.0359 

fsp
3 62±4 58±5 62±4 60±7 60±8 

Table 3.2. Summary of disp(G) and the fraction of sp3-bonded carbon atoms calculated 

using MW Raman on the reference a-C:H:Si:O as well as inside the wear track obtained 

after the friction test under ambient air, dry nitrogen, dry air and dry argon. 

 

For the as-received a-C:H:Si:O sample, the sp3-bonded carbon fraction is evaluated at 

62±4% using MW Raman. Such value is not in agreement with the one obtained by NEXAFS 

spectroscopy, at 46±2%. Two reasons can be brought forward to account for such 

discrepancy: 

• Heterogeneity in the film: indeed, NEXAFS spectroscopy probes the very surface of 

the coating (approximately the first 3 nm157) while Raman probes deeper in the 

coating (with an optical mean free path of approximately 250 nm163); 

• The role of additional elements on the measured values: the method we used for 

estimating the sp3-bonded carbon fraction from MW Raman data was developed for 

pure hydrogenated amorphous carbon coatings, without any additional element. 
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Despite these uncertainties, we estimated the sp3-bonded carbon fraction after sliding in 

ambient air and under dry nitrogen, dry air and dry argon flows, as reported in Table 3.2. As 

discussed in chapter 1, by using both molecular dynamic simulations and experiments, several 

authors39,65,71,166–169 have reported that for carbon-based amorphous materials, a stress-induced 

conversion from sp3- to sp2-bonded carbon occurs upon sliding. In our case, for 

a-C:H:Si:O sliding under the four different environmental conditions, we could only notice a 

very small difference in the Disp(G) values. As it can be seen on Figure 3.9. Calculated sp3-

bonded carbon fraction on the as-received a-C:H:Si:O and inside the wear tracks obtained in 

ambient air and under dry nitrogen, dry air and dry argon flow., no clear tendency on the 

amount of sp3-bonded carbon could be extracted from these results. 

This suggests that any potential friction-induced structural change that might have 

occurred is below the resolution of Raman analysis, i.e. such structural changes would be in 

the very surface region that only a very surface sensitive analysis could reveal. 

 
Figure 3.9. Calculated sp3-bonded carbon fraction on the as-received a-C:H:Si:O and 

inside the wear tracks obtained in ambient air and under dry nitrogen, dry air and dry 

argon flow. 

2.5. Quantifying the wear by optical interferometry and AFM 

White light interferometry was used to study the morphology of the wear tracks 

produced by the tribological experiments run in ambient air and under dry nitrogen, dry air 

and dry argon flows following the experimental details given in chapter 2, section 3.1.2. 

However, to ensure that the potential stress-induced phase transformation from sp3- into sp2-

bonded carbon, and the consequences in the optical gap3 that it can generate, doesn’t induce 
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errors in the measurements, these wear tracks were also observed by Atomic Force 

Microscopy (AFM) in contact mode. 

On Figure 3.10 AFM and interferometry images of the wear tracks, obtained under the 

different environments, are compared. From each image, we extracted a relative depth profile 

taken at the middle of the wear tracks. These depth profiles are gathered in Figure 3.11 

 

 
Figure 3.10. Comparison of AFM (left) and white light interferometry (right) images of the 

wear tracks obtained on a-C:H:Si:O after sliding under various environmental conditions. 
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Figure 3.11. Comparison of the relative depth profiles, measured by AFM and white light 

interferometry, of the wear tracks obtained on a-C:H:Si:O after sliding (a) in ambient air, 

and under (b) dry nitrogen flow, (c) dry air flow and (d) dry argon flow 

From Figure 3.10 and Figure 3.11 it can be clearly seen that there is very low wear of 

the coating when sliding in ambient air or under dry nitrogen or dry argon flows. On the 

contrary, drastic wear can be observed under dry air flow. This higher wear seems thus related 

to the thicker tribofilm observed in section 1.3.4. Knowing that the amount of oxygen in the 

contact while blowing dry air is higher than the one under dry nitrogen and dry argon, we can 

argue that in dry conditions, oxygen promotes a higher wear of a-C:H:Si:O coating. A careful 

analysis of the role of oxygen in the tribological behavior of a-C:H:Si:O will be presented in 

chapter 4.  

Thanks to this systematic study of the wear tracks, we can compare the two techniques: 

AFM and white light interferometry. Better lateral resolution of the AFM images may help in 

quantifying the worn volumes more accurately. However, the results of white light 

interferometry are not too far from the AFM ones, and this technique is much faster to 

implement and allows the sampling of a representative fraction of the wear track volume, 

which allows the measurement of a considerable number of wear tracks in a reasonable time. 

In the remainder of this document, we will only use white light interferometry for wear 

characterization.  
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3. Reversible friction behavior of a-C:H:Si:O coatings in dynamic 

environments 

3.1. Tribological behavior of a-C:H:Si:O in dynamic environment 

From the static environment analysis, we were able to demonstrate that the shear 

strength of the tribofilm is mainly controlled by the carbon amount in the tribofilm and its 

structure. We were also able to show that the carbon amount and its coverage in the tribofilm 

increase while switching the environment from humid to dry. In this section, we will address 

two key questions: 

• What would be the frictional response of a-C:H:Si:O when the environment is 

quickly changed from humid to dry and reverse?  

• What are the chemical and structural changes occurring in the tribofilm upon a 

quick change of the sliding environment?  

Figure 3.12 presents the evolution of the friction coefficient of a-C:H:Si:O sliding 

against 52100 steel under dynamic gas flows. When the friction experiment starts in ambient 

air (red curve), the running-in period lasts about 400 sliding cycles before reaching a steady-

state friction at ~ 0.1. Then, each time the nitrogen gas is blown in the contact, the friction 

coefficient decreases from ~ 0.1 to ~ 0.04 within about 40 sliding cycles, and remains at this 

low value until the nitrogen flow stops. When the friction experiment starts in dry nitrogen 

(pink curve) the running-in period lasts about 40 cycles before reaching a steady-state friction 

at ~0.04. When the nitrogen flow stops, the friction coefficient increases to reach ~ 0.1 and is 

stabilized at this value until the nitrogen flow restarts. Each time the nitrogen flow stops, a 

fast increase of the friction coefficient, back to ~ 0.1 within about 40 cycles, is observed. 

These alternating phases for the friction coefficient last until the end of the friction test (3000 

sliding cycles). 
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Figure 3.12. Evolution of the coefficient of friction for a-C:H:Si:O sliding 

against 52100 steel under dynamic flow of nitrogen gas, the experiments 

starting either in ambient air (red curve) or in dry nitrogen (pink curve). 

Notice that upon a sudden change of the environment, an accommodation time is 

needed before reaching a steady-state friction and this explains the “shoulders” that can be 

observed in the friction behavior every time the environment is changed.  

 
Figure 3.13. Detailed evolution of coefficient of friction for a-C:H:Si:O sliding against 

52100 steel under a dynamic nitrogen flow (from Figure 12), (a) transition between high 

and low friction regimes for friction test started in ambient air (red) and dry nitrogen (pink) 

early in test. (b) transition at the end of the experiments. 
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One transition (Figure 3.13.a) early in the friction experiments (from 300 to 550 cycles) 

shows that when nitrogen is blown into the contact sliding in ambient air, the transition from 

high (0.1) to low friction (0.04) requires around 80 sliding cycles while when near the end of 

the experiment (Figure 3.13.b), the transition requires only 15 sliding cycles.  

A similar observation can be made for the friction test started in dry nitrogen. When the 

nitrogen flow is stopped near the beginning of the friction test, it requires about 40 sliding 

cycles to increase from low friction (0.04) to high friction (0.1). Near the end of the test, the 

transition time decreased down to 15 sliding cycles.  

Knowing that near the end of the friction test (from 2600 to 2850 sliding cycles) the 

sliding environment becomes dryer due to the long time exposure of the contact to the gas 

flow, we can argue that the transition time required to switch from high to low friction regime 

and the reverse is shorter in relatively dry conditions. This means that the structural and 

chemical phenomena that might induce this reversible friction behavior occur faster in dry 

environment than in ambient.  

The reversible friction behavior tests have been performed 3 times in order to check the 

reproducibility and in all cases, this effect on the friction has been confirmed throughout the 

whole duration of the test (3000 cycles). Likewise, as reported on Figure 3.14 the same 

phenomena have been observed when using dry argon or dry air. 

 

 
Figure 3.14. Evolution of coefficient of friction for a-C:H:Si:O sliding against 52100 steel 

under (a) a dynamic argon gas flow and (b) a dynamic dry air flow. 

Black curve and dark blues curves correspond to experiments starting in ambient air, 

while gray and blue curve correspond to experiments starting under gas flow. 
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In order to track any tribochemical reaction that may account for the humidity induced 

reversible friction behavior of a-C:H:Si:O, experiments were performed while alternating the 

environment only once or twice (Figure 3.15), in order to end the experiment in each 

environment. An experiment was thus started in ambient air, and switched to nitrogen gas 

flow after the running-in period, resulting in low stabilized friction at the end of the 

experiment. We will refer to this experiment in the following as “ambient air vs. dry nitrogen 

bottom”. An experiment was performed in the same way, but was continued by a switch back 

to ambient air environment, resulting in high stabilized friction at the end of the experiment. 

We will refer to this experiment as “Ambient air vs. dry nitrogen top”. Two additional 

experiments were performed, in ambient air and under dry nitrogen flow, for 1000 cycles, as 

references (not shown).  

In order to limit the amount of experiments and the corresponding chemical analysis, 

the “bottom” and “top” friction tests were performed only with dry nitrogen flow. 

Experiments were performed under a relative humidity in the experimental room of 32±1%, at 

25±1°C.  

 

 
Figure 3.15. Evolution of coefficient of friction for a-C:H:Si:O sliding against 52100 steel 

under a dynamic nitrogen flow. Two cases are plotted: bottom (green) and up (red). 
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For both cases, “bottom” and “top”, the friction coefficient reached its steady state after 

about 200 sliding cycles in ambient air, before nitrogen was blown toward the contact, thus 

resulting in the decrease in the friction down to ~ 0.03.  

3.2. Investigating the structure of the tribofilms obtained in “bottom” and 
“top” configurations 

3.2.1. Morphology and composition of the tribofilms 

As illustrated in Figure 3.16 below, SEM and EDX observations reveal that the 

tribofilms generated in “bottom” and “top” configurations are made of carbon, silicon and 

oxygen, as expected. In the “top” configuration, carbon is being pushed out of the contact area 

where silicon and oxygen signals are strong and the carbon signal is weak. In the bottom 

configuration, there is no clear separation of the elements in the central part of the tribofilm, 

but rather an intimate mixture. 

 

 
Figure 3.16. SEM observations and EDX analysis on the tribofilms 

generated (a) in bottom and (b) in top configurations. 

This suggests that during the transition time of 40 sliding cycles between the “bottom” 

configuration and the “top” configuration, the friction varies from ~ 0.03 to ~ 0.18 

concomitantly with the removal of carbon from the central part of the tribofilm. 
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3.2.1. Structural characterization of the tribofilms by UV Raman 

Figure 3.17 shows the Raman spectra acquired at 325 nm on the tribofilms obtained 

under bottom and top configurations compared to the two references (ambient air and dry 

nitrogen). It can be noticed that the Pos(G) did not change for the 4 different tribofilms. 

Nevertheless, there is a difference in the photoluminescence background that may depend on 

different parameters, including a different organization of the sp2-bonded carbon ring 

clusters138.  

 

 
Figure 3.17. Raman spectra acquired at 325 nm on the tribofilms obtained in bottom and 

up configurations, in ambient air and under constant dry nitrogen flow. 

Further Raman analysis have been performed on the tribofilms obtained in “bottom” 

and “top” configurations by analyzing the Full Width at Half Maximum (FWHM) of the G 

peak and the I(D)/I(G) as illustrated in Figure 3.18. These analyses could not provide us with 

any information on the differences between the two corresponding tribofilms since both their 

FWHM of G peak and I(D)/I(G) are very close. Nevertheless, the values obtained for FWHM 

of G peak and I(D)/I(G) for bottom and top configuration are close to the one of the test 

performed under constant nitrogen flow. This may suggest that the overall structure of the 

sp2-bonded carbon atoms in the tribofilms generated under dry nitrogen flow is close to the 

one of “bottom” and “top” configurations.  
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Knowing that the data is a normalized signal issued from the probed volume by 

Raman, we believe that there might be some changes in the tribofilms’ structure as suggested 

by the EDX analysis but these differences might be under the resolution of the UV Raman. 

We used then XPS to analyze the four different tribofilms.  

 

 

Figure 3.18. (a) FWHM of the G peak and (b) I(D)/I(G) ratio from Raman spectra 

of the tribofilms obtained under ambient air, dry nitrogen, bottom and up conditions. 

3.2.3. Surface analysis of the tribofilms by XPS 

The tribofilms produced by the tribological experiments in “bottom” and “top” 

configurations were analyzed using the Quantera PHI XPS apparatus described in chapter 2. 

The measurements were performed under UHV (<10-7 Pa) with a depth sensitivity lower than 

10 nm, as described elsewhere108,152,153. One must underline the fact that the spot size used for 

the XPS was only 20 µm while the tribofilm covers all the contact area (diameter of 60 µm) 

and beyond, i.e. these measurements may not be representative of the entire tribofilm. 

Nevertheless, we were able to quantify the atomic concentrations of carbon, nitrogen, oxygen, 

silicon and iron on the surface of the different tribofilms, as shown in Figure 3.19. 
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Figure 3.19. XPS quantification of carbon, oxygen, silicon, nitrogen and iron content 

in the tribofilms obtained under various environmental conditions. 

The XPS quantification shows a clear delineation in tribofilm compositions. In ambient 

air, the surface of the tribofilm is a mixture of silicon, oxygen and carbon while the one 

obtained under dry nitrogen flow is mostly made of carbon. This result supports the previous 

ones obtained using EDX and explained in section 3.2.1. Only very few differences between 

the tribofilms obtained upon sliding in “bottom” and “top” configurations can be noticed. 

There are no big differences in carbon, oxygen and silicon amount for the two tribofilms but 

their overall composition is closer to the one of the tribofilm obtained under dry nitrogen.  

In this section, by means of SEM/EDX, UV Raman and XPS analysis of the tribofilms 

generated under “bottom” and “top” configuration, we were able to highlight the fact that the 

presence of carbon in the Hertzian contact area is related to a decrease of the friction 

coefficient. The low coefficient of friction obtained under dry environment correlates with an 

abundance of carbon in the contact area while under humid condition, the relatively high 

coefficient of friction correlates with a special segregation of carbon towards the sides of the 

contact.  
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4. Summary 

Thanks to constant environment friction tests, especially the one performed under dry 

air, we were able to point out in this chapter that in absence of water vapor, oxygen promotes 

the wear of a-C:H:Si:O resulting is the generation of a thick tribofilm on the steel 

counterbody. Dynamic friction tests allowed us to highlight the predominant role of water 

vapor in controlling the frictional response of a-C:H:Si:O upon sliding against 52100 steel. 

We also underlined the fact that the amount of silicon and oxygen in the tribofilm does not 

seem to be crucial for controlling the frictional response of a-C:H:Si:O coatings as suggested 

by the main existing work96 that focused on the fundamental mechanisms of friction of a-

C:H:Si:O films. In fact we were able to show that only the presence of carbon in the contact 

area and its structure modulates the shear strength of the tribofilm and thus the coefficient of 

friction. Both EDX and XPS performed on “bottom” and “top” tribofilms revealed that, in 

ambient conditions, carbon is being pushed out of the Herztian contact area, while in dry 

conditions there is an abundance of carbon in the contact area. The higher amount of carbon 

in dry condition as well as its structure (small and strained sp2 clusters) seems to be more 

favorable for obtaining low friction. In brief, the role of oxygen and water vapor in the 

tribological response of a-C:H:Si:O has been highlighted in this chapter. In the following 

chapter, we will focus on the fundamental mechanisms occurring upon sliding a-C:H:Si:O 

against steel in oxygen, water vapor and hydrogen environment using Controlled-

Environment Analytical Tribometer.  
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5. Résumé Chapitre 3 

Le chapitre 3 intitulé « influence de l’environnement sur les propriétés tribologiques des a-

C:H:Si:O » présente les résultats de l’analyse du revêtement utilisé ainsi que des essais 

réalisés sur le tribomètre alternatif fonctionnant sous air ambiant et équipé du système de 

soufflage de gaz, introduit dans le chapitre précédent. 

Les analyses ont permis une caractérisation structurale précise du revêtement, en 

déterminant précisément la fraction de carbone sp2 présente (54±2%). Les mesures RBS 

(Rutherford Backscattering Spectroscopy) et HFS (Hydrogen Forward Scattering) couplées 

aux profils SIMS (Secondary Ions Mass Spectroscopy) ont, quant à elles, permis de 

déterminer avec précision la composition chimique du revêtement ([C] = 57±3 % at., 

[O] = 3±1 % at., [Si] = 6±1 % at., [H] = 34±3 % at.). Les propriétés mécaniques et la 

topographie, mesurées respectivement par nanoindentation et microscopie à force atomique 

ont révélé une dureté d’environ 10 GPa et une rugosité de 1.4±0.1 nm (mesurée sur un carré 

de 2 µm de côté). 

Quant aux essais tribologiques, la procédure qui consistait à souffler du gaz autour du 

contact nous a permis de permuter rapidement la quantité de vapeur d’eau et d’oxygène 

présent dans l’environnement du contact. 

Dans ce chapitre nous revenons sur les explications fournies par d’autres groupes de 

recherche, en particulier Scharf et al.96, concernant le rôle de la vapeur d’eau dans le 

comportement tribologique des couches a-C:H:Si:O. Le mécanisme proposé par 

Scharf et al.96 est basé sur la variation de composition du tribofilm et de son taux de 

cisaillement en fonction du taux de vapeur d’eau dans l’environnement. Ils ont montré qu’en 

environnement humide, le tribolfilm généré est constitué essentiellement de silicium et 

d’oxygène et que son taux de cisaillement est 10 fois supérieur à celui obtenu en 

environnement sec. Le tribofilm généré sous environnement sec (essais réalisés dans une 

enceinte remplie d’azote) était quant à lui essentiellement constitué de carbone. Ceci 

expliquerait donc le coefficient de frottement élevé en environnement humide et faible en 

environnement sec. 

Dans nos travaux, nous avons considéré deux configurations d’essais : 

• Les essais à environnement constant. 

Dans cette configuration nous avons réalisé trois types d’essais : 

o à air ambiant (environnement humide correspondant au taux d’humidité dans la 

salle d’expérimentation) ; 
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o avec soufflage de 5 l/min d’azote sec ou d’argon pour diminuer le taux de vapeur 

d’eau et d’oxygène dans l’environnement du contact ; 

o avec soufflage de 5 l /min d’air sec pour diminuer le taux de vapeur d’eau mais 

maintenir constante, le taux d’oxygène dans l’environnement de contact. 

• Les essais à environnement dynamique 

Ici nous avons fait alternativement évoluer l’environnement d’un état humide à sec et vice-

versa pour évaluer la réversibilité du rôle de la vapeur d’eau dans le comportement 

tribologique des a-C:H:Si:O.  

Ces expériences nous ont permis de confirmer le bas coefficient de frottement obtenu sous 

flux de gaz sec en environnement constant et un coefficient de frottement reversible en 

environnement dynamique.  

Après essais tribologiques, les différents tribofilms ont été analysés par Raman à 

plusieurs longueurs d’onde, par EDX et par XPS. Le Raman a permis d’évaluer toute 

modification structurale éventuelle du revêtement survenue pendant les essais tribologiques et 

de comprendre la structure des tribofilms générés dans les différentes configurations choisies. 

Nous avons ainsi montré que l’abondance et la structure du carbone (petits clusters de sp2 

contraints) dans le tribofilm généré en environnement sec est favorable à l’obtention du bas 

frottement. 

Les données EDX et XPS ont quant à elles révélé que la composition chimique du 

tribofilm n’explique pas à elle seule la différence du taux de cisaillement de l’interface lors du 

frottement. 

En effet, les analyses EDX ont montré que les teneurs en silicium et en oxygène dans le 

tribofilm généré lors du frottement en environnement sec (en soufflant de l’air sec ou de 

l’argon) sont similaires à ceux du tribofilm généré en environnement humide. Toutefois, les 

taux de cisaillement de l’interface en environnement sec sont 10 fois inferieurs à ceux 

calculés en environnement humide. 

Ceci montre donc que la composition chimique du tribofilm n’est pas nécessairement 

corrélée au taux de cisaillement de l’interface, comme proposé par Scharf et al96. En outre, les 

analyses élémentaires quantitatives par XPS des tribofilms générés lors des essais en 

environnement dynamique corrobore cette conclusion. 

Le mécanisme principal élucidé dans ce chapitre est ainsi que la vapeur d’eau agit comme un 

« film protecteur » de la couche de a-C:H:Si:O contre l’usure, bien qu’elle ne soit pas 

favorable à l’obtention d’un bas frottement. La présence d’oxygène, quant à elle, conduit à 
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une usure importante du revêtement, mais permet l’obtention de bas niveaux de frottement. 
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Chapter 4. Influence of 

hydrogen, oxygen, and water 

vapor on the tribological 

behavior of a-C:H:Si:O 
 

In the previous chapter, we were able to show that the amount of water vapor and 

oxygen in the sliding environment plays a key role in controlling the tribological response of 

a-C:H:Si:O upon sliding against 52100 steel. A precise control of the environmental 

conditions is thus required for a fundamental understanding of the influence of the gaseous 

species on the tribological response of a-C:H:Si:O. For that aim, in the results herein 

presented, we employed the Controlled-Environment Analytical tribometer (CEAT) 

extensively described in chapter 2 section 2.2.3.1. The device allows performing tribological 

experiments in a wide range of environmental conditions from high vacuum to elevated 

pressures of different gases. Experiments were carried out under high vacuum as well as in 

presence of water vapor, oxygen and hydrogen (up to 2000 mbar). The subsequent 

characterization of both the a-C:H:Si:O coatings and the steel countersurface by multiple 

analytical techniques (interferometry, SEM/EDX, Raman and NEXAFS) allowed elucidating 

the structural transformations and chemical reactions that occurred upon sliding, and 

understanding the origin of the environmental dependence of the friction force. 
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1.Tribological investigations under different environmental 

conditions 

1.1. Tribological behavior of a-C:H:Si:O in high vacuum 

Figure 4.1 displays the evolution of the coefficient of friction while sliding a-C:H:Si:O 

against 52100 steel under high vacuum (HV, i.e., 2.10-7 mbar). The coefficient of friction 

starts at an initial value around 0.3 and rapidly increases to reach values around 1.2 after few 

numbers of cycles (6-10). The experiment was thus stopped to avoid damaging of the 

tribometer’s force sensor and to preserve the worn surfaces from heavy damage.  

 
Figure 4.1. Evolution of the coefficient of friction vs. sliding cycles during tribological tests 

performed on a-C:H:Si:O sliding against 52100 steel pin under HV 
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1.2. Tribological behavior of a-C:H:Si:O in presence of hydrogen 

Figure 4.2 illustrates the evolution of the coefficient of friction as a function of the 

number of cycles during tribological experiments performed on a-C:H:Si:O under different 

environmental conditions, ranging from HV to elevated pressures of hydrogen. To facilitate 

visualization of the results, only a few curves (corresponding to an hydrogen pressure of 0.01, 

50, 100, 200 and 2000 mbar) are reported in Figure 4.2. Several additional experiments were 

performed at other hydrogen pressures and the results are collectively displayed in Figure 4.5.  

Under low hydrogen pressure (i.e.< 50 mbar), the friction coefficient has an evolution similar 

to the one in HV, i.e. it increases rapidly with the number of cycles, thus resulting in a very 

high value (>1) within less than 15 sliding cycles. For hydrogen pressures above 50 mbar, the 

coefficient of friction starts also at around 0.3 but after a running-in period it eventually 

stabilizes at low values (<0.1). Also, the running-in period is progressively reduced: it lasted 

100 cycles at 50 mbar, 80 cycles at 100 mbar, 50 cycles at 200 mbar, and 20 cycles at 

2000 mbar. It clearly appears that increasing hydrogen promotes low steady-state friction and 

decreases the running-in period. As for the friction tests performed below 50 mbar of 

hydrogen pressure, the experiments were stopped on purpose to avoid damaging of the 

tribometer’s force sensor and to preserve the worn surfaces from heavy damage.  
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Figure 4.2. Evolution of the coefficient of friction vs. sliding cycles during tribological tests 

performed on a-C:H:Si:O sliding against 52100 steel pin under various hydrogen pressures 

(from high vacuum to 2000 mbar) 

1.3. Tribological behavior of a-C:H:Si:O in presence of oxygen 

In Figure 4.3 the evolution of the coefficient of friction with sliding cycles in presence 

of different pressure of oxygen is displayed. Experiments were carried out on a wide range of 

oxygen pressures but only the data corresponding to an oxygen pressure of 0.01, 14, 100, 500, 

and 1000 mbar are reported in Figure 4.3 to facilitate the visualization of the experimental 

results. In the presence of low pressure of oxygen (i.e., < 14 mbar), the friction increases and 

reaches the same values as under HV, (>1) after only 15 sliding cycles.  

Unlike under HV or low oxygen pressure, upon increasing oxygen pressure up to 

1000 mbar, the coefficient of friction decreases during a running-in period and got stabilized 

at low values (<0.1). In contrast to the experiments performed in the presence of hydrogen, no 

clear tendency was observed in the evolution of the running-in period with increasing oxygen 

pressure. The lowest steady state friction was obtained under 14 mbar of oxygen at 0.02±0.01. 

Beyond this pressure, the friction progressively increases to reach its highest value 

(0.06±0.01) at 1000 mbar.  
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Figure 4.3. Evolution of the coefficient of friction vs. sliding cycles during tribological tests 

performed on a-C:H:Si:O sliding against 52100 steel pin under various environmental 

conditions (from high vacuum to 1000 mbar of oxygen) 

1.4. Tribological behavior of a-C:H:Si:O in presence of water vapor 

Figure 4.4 shows the evolution of the coefficient of friction of a-C:H:Si:O upon sliding 

under different pressures of water vapor. Only the data obtained for a pressure of water vapor 

of 0.01 mbar (~ 0.04% RH), 1 mbar (~ 0.4% RH), 5 mbar (~ 18% RH), 10 mbar (~ 35% RH), 

16 mbar (~ 60% RH), and 28 mbar (~ 100% of RH) are presented. 

Below 1 mbar (~ 0.4% RH) of water vapor, the friction coefficient behaves as in the 

previous cases of low gas pressure or <HV, i.e., it increases rapidly to reach 0.7±0.1. 

For higher water vapor pressure, a decrease in the coefficient of friction is observed 

until a threshold is reached, followed by an increase with increasing water vapor pressure. 

At 1 mbar (~ 4% RH), the steady state friction reaches its lowest value at 0.05±0.01. 

For water vapor pressure > 1 mbar (~ 4% RH), the stabilized coefficient of friction 

increases with the pressure of water vapor up to a maximum value of 0.17±0.02 at 28 mbar 

(~100% RH).  
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Figure 4.4. Evolution of the coefficient of friction vs. sliding cycles during tribological tests 

performed on a-C:H:Si:O sliding against 52100 steel pin under various environmental 

conditions (from high vacuum to 28 mbar of water vapor) 

1.5. Summary of the environmental dependence of the tribological behavior 
of a-C:H:Si:O  

Figure 4.5 displays the dependence of the steady-state coefficient of friction on the 

pressure of hydrogen, oxygen, and water vapor. The steady-state coefficient of friction was 

calculated by averaging the coefficient of friction values over the last 200 sliding cycles. For 

the case of the tests performed under gas pressures lower than 1 mbar of water vapor, 10 mbar 

of oxygen and 50 mbar of hydrogen, the average coefficient of friction was calculated 

considering all data points. The corresponding standard deviation is reported in Figure 4.5, as 

well. 

Upon increasing the gas pressure in the chamber, a threshold between high and low 

stabilized friction coefficients is evidenced for hydrogen, oxygen or water vapor. 

In hydrogen, the threshold in coefficient of friction occurs between 10 and 50 mbar. 

Upon further increasing hydrogen pressure, the coefficient of friction kept on decreasing and 

reached its lowest value (0.02±0.01) at 1000 mbar followed by a slight increase at 2000 mbar 

(0.04±0.01), which might be due to non reproducibility related to the high pressure applied on 

the mechanical parts of the tribometer.  
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In case of oxygen, the threshold in the coefficient of friction (0.02±0.01) occurs 

between 12 and 14 mbar and then slightly increases to reach 0.06±0.01 for a maximum 

pressure of 1000 mbar. 

Under water vapor, the threshold in the coefficient of friction, was reached between 0.5 

and 1 mbar (~ 4% RH) and further increases of the pressure leads to an increase of the friction 

coefficient from 0.05±0.01 at 1 mbar (~ 4% RH) until its highest value, 0.17±0.02 at 

28 mbar (~100% RH).   

 

 
Figure 4.5. (a)Average stabilized coefficient of friction as a function of the hydrogen, 

oxygen and water vapor pressure in the tribometer chamber. (b) Highlight of steady-state 

coefficient of friction as function of water vapor pressure and RH. 

2. Investigation of material transfer phenomena triggered by the 

environment 

2.1. Analysis of the worn material generated in HV and low gas pressure 

Figure 4.6 shows the electron dispersive X-ray analysis on the wear track obtained after 

sliding a-C:H:Si:O against 52100 steel under 0.01 mbar of oxygen. The grey spots that can be 

observed on surface of the flat are made of iron. Since the source of iron in the tribosystem is 

the steel counterbody, this finding clearly indicates that a preferential transfer of materials 

from the steel pin to the a-C:H:Si:O flat occurs under a oxygen pressure of 0.01 mbar. Very 

similar results (not shown) were also observed for wear tracks obtained upon sliding under 

HV, a low pressure of oxygen (<10 mbar), hydrogen (<50 mbar), or water vapor (<1 mbar). 

We can thus argue that upon friction experiments under HV or low gas pressure, a transfer of 
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material occurs from the steel counterbody to a-C:H:Si:O flat and much less transfer from the 

flat to the pin. 

 

 
Figure 4.6. SEM micrograph (left) with the corresponding EDX maps (right) of  

a-C:H:Si:O after tribological testing at 0.01 mbar of oxygen 

2.2. Analysis of the worn material generated under intermediate and high 
gas pressure 

At intermediate and high gas pressure there is no more transfer occurring from the steel 

to a-C:H:Si:O flat but rather a transfer from the flat to the steel pin as illustrated by 

SEM/EDX analysis of the wear track obtained after sliding under 100 mbar of oxygen is 

(Figure 4.7). 

 
Figure 4.7. SEM micrograph (left) with the corresponding EDX maps (right) of  

a-C:H:Si:O after tribological testing at 100 mbar of oxygen 
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The following figures illustrate SEM micrographs of material transferred on top of the 

steel pin. 

Figure 4.8 shows the SEM micrographs of the tribofilms corresponding to wear tracks 

obtained under hydrogen. It can be noticed that upon increasing the gas pressure, the 

thickness of the tribofilm decreases. In other words, less material is transferred from  

a-C:H:Si:O to the steel pin as the hydrogen pressure increases (above 50 mbar).  

 

 
Figure 4.8. SEM micrographs of tribofilms on the steel counterbody formed after sliding 

against a-C:H:Si:O at (a)50 mbar, (b) 200 mbar and (c) 2000 mbar of hydrogen 

In case of oxygen (Figure 4.9) the presence of a tribofilm on the steel counterbody is 

also observed, suggesting the same transfer phenomenon as in case of hydrogen. No clear 

evolution of the thickness of the tribofilm with oxygen gas pressure was observed.  

 

 
Figure 4.9. SEM analysis of the tribofilms formed on the steel counterbody upon sliding 

against a-C:H:Si:O under (a)10 mbar, (b)100 mbar  and (c) 1000 mbar of oxygen  
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In Figure 4.10 the SEM micrographs of the tribofilms formed on steel pin after sliding 

under 1 mbar, 10 mbar and 28 mbar of water vapor are displayed. A tribofilm is also 

systematically observed but its relatively small amount suggests a lower wear of a-C:H:Si:O 

than in hydrogen or oxygen environment. 

 

 
Figure 4.10. SEM analysis of the tribofilms formed on the steel counterbody upon sliding 

against a-C:H:Si:O under (a) 1 mbar, (b) 10 mbar and (c) 28 mbar of water vapor 

EDX analysis on the steel pin used for running tribological tests at the transition 

pressure between high and low friction regime, namely 50 mbar of hydrogen, 10 mbar of 

oxygen and 1 mbar of water vapor (Figure 4.11), indicates that the tribofilm formed on the pin 

is composed of carbon, oxygen and silicon, thus suggesting a transfer from the a-C:H:Si:O 

flat to the steel pin. No transfer has been observed from the steel pin to the flat. The formation 

of tribofilms composed of carbon, oxygen, and silicon on steel pins was also observed for all 

tribotests carried out at gas pressures higher than the threshold mentioned above. This finding 

suggests that the transfer of iron to the flat ceases upon increasing the gas pressure in the 

chamber above to 1 mbar of water vapor, 10 mbar of oxygen and 50 mbar of hydrogen. These 

pressure values are the same ones at which a drastic reduction in friction was observed. 

 
Figure 4.11. EDX analysis of the tribofilm formed on the steel counterbody upon sliding 

against a-C:H:Si:O at (a) 50 mbar of hydrogen, (b)10 mbar of oxygen and (c) 1 mbar of 

water vapor 
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2.3. Main tribological process of a-C:H:Si:O: Abrasion vs. adhesion 

The friction results presented in section 2 reveal that the tribological behavior of 

a-C:H:Si:O films strongly depends on the sliding environment, i.e., the amount and nature of 

gas introduced in the vacuum chamber. Under HV or low gas pressure, the coefficient of 

friction increases rapidly and reaches values >1 just after few sliding cycles. The transfer of 

iron from the steel pin to the a-C:H:Si:O film after tribotests under HV or low gas pressure, 

revealed by SEM/EDX analyses, indicates that strong adhesion occurred between a-C:H:Si:O 

and steel (i.e. formation of bonds across the sliding interfaces, in agreement with Gao et 

al.61,63), followed by a breaking of the adhesive junctions on the steel side. The close hardness 

values of the steel pin and the a-C:H:Si:O (9±1 GPa and 10±1GPa, respectively) and the 

relative smoothness of the surfaces (rms =1.3±0.1 nm and < 30 nm for the a-C:H:Si:O coating 

and the steel pin respectively measured on a area of 5*5 µm2) indicate that this transfer 

phenomenon is a consequence of adhesion, rather than abrasion of the steel by the a-C:H:Si:O 

followed by an accumulation of the abrasive debris on a-C:H:Si:O film’s surface. This is 

consistent with Fontaine et al.170, who showed that while sliding a very smooth a-C:H film 

against a steel counterbody, adhesion occurs between the flat and the pin by starting at some 

key locations on the flat and spread to the whole wear track. Molecular dynamics simulations 

of such systems indeed find that the generation of covalent bonds through the interface 

induces an increase in friction upon sliding63,171. 

A relatively small, yet significant, pressure of water vapor, oxygen or hydrogen gas is 

required to transition from the high friction regime to the relatively low friction regime: 

1 mbar of water vapor, 10 mbar of oxygen gas or 50 mbar of hydrogen gas. This indicates that 

the reduction of friction is due to tribochemical reactions, which require a sufficiently 

abundant source of gas molecules to achieve and maintain low friction.  

In addition, at these intermediate and higher gas pressures (>1 mbar water vapor, 10 

mbar oxygen, >50 mbar hydrogen), there is no more transfer from the steel pin to the film as 

observed under HV. Rather, there is transfer in the other direction: from the  

a-C:H:Si:O to the steel pin (Figure 4.7). The gas thus plays a key role in determining the 

friction response by inducing tribochemical reactions that prevent the mechanical transfer of 

steel to a-C:H:Si:O film, observed under HV. In light of this, the transfer phenomena 

observed in the experiments can be interpreted as a consequence of the creation of adhesive 

junctions between the two surfaces and not because of abrasion.  



Chapter 4. Effect of hydrogen, oxygen and water vapor on the tribological behavior of  

a-C:H:Si:O 

 153 

3. Analysis of the environment dependence of the wear kinetics  

3.1. Interferometry observation of the wear track on a-C:H:Si:O  

The following figures represent interferometry images of the wear tracks obtained under 

different sliding environments. The theoretical Hertz contact diameter is displayed for 

reference. These images were extracted from the central part of every track. As illustrated in 

Figure 4.12, after friction tests under vacuum conditions, additional material adheres on the 

worn region of a-C:H:Si:O flat, which makes unfeasible any measurement of the volume of  

a-C:H:Si:O material removed. This confirms the SEM measurements, which show material 

transfer from steel to a-C:H:Si:O under HV or low gas pressure.  

 

 
Figure 4.12. Scanning white light interferometry measurements on the wear track obtained 

after friction test of a-C:H:Si:O against 52100 steel in HV 
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Figure 4.13 compares the wear tracks generated on a-C:H:Si:O after sliding at 

increasing hydrogen pressure (50 mbar, 200 mbar and 2000 mbar). Upon increasing the 

hydrogen pressure, the wear track becomes narrower, suggesting a decrease in wear.  

 

 

 

Figure 4.13. Scanning white-light interferometry measurements of the wear tracks 

obtained after friction test of a-C:H:Si:O against 52100 steel under (a) 50 mbar, (b) 200 

mbar, (c) 2000 mbar of hydrogen with the corresponding depth profile. 

Figure 4.14 illustrates the wear tracks formed on a-C:H:Si:O after sliding under 

different oxygen pressures (10  mbar, 100 mbar, and 1000 mbar). When increasing oxygen 

pressure, a deeper wear tracks are generated, suggesting a higher material removal from  

a-C:H:Si:O contrary to increasing hydrogen pressure. 
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Figure 4.14. Scanning white-light interferometry measurements of the wear tracks 

obtained after friction test of a-C:H:Si:O against 52100 steel under (a) 10 mbar, (b) 100 

mbar, (c) 1000 mbar of oxygen with the corresponding depth profile. 

 

In Figure 4.15 the interferometric images of the wear tracks generated on a-C:H:Si:O 

after sliding in presence of 1 mbar (~ 4% RH), 10 mbar (~ 35% RH), and 28 mbar 

(~ 100% RH) of water vapor. There seems not to be is big differences in the wear for different 

water vapor pressures. Further interferometric computation of the wear provided a clear 

tendency of increasing wear with increasing water vapor pressure as discussed in the next 

section. 

It can be underlined that for the tracks obtained under water vapor, the wear is much 

lower than in case hydrogen or oxygen or gas. 



Chapter 4. Effect of hydrogen, oxygen and water vapor on the tribological behavior of  

a-C:H:Si:O 

 156 

 

 
Figure 4.15 Scanning white-light interferometry measurements of the wear tracks obtained 

after friction test of a-C:H:Si:O against 52100 steel under (a) 1 mbar, (b) 10 mbar and (c) 

28 mbar of water vapor n with the corresponding depth profile. 

3.2. Summary of the wear process of a-C:H:Si:O in presence of hydrogen, 
oxygen and water vapor 

Figure 4.16 displays the wear rates of a-C:H:Si:O after friction test under different 

pressures of hydrogen (50 mbar, 200 mbar, 2000 mbar), oxygen (10 mbar, 100 mbar, 1000 

mbar), and water vapor (1 mbar, 10 mbar, 28 mbar). The wear rate decreases with increasing 

hydrogen pressure, while it increases with oxygen or water vapor pressure. Among the three 

different environments, the lowest wear rate was achieved upon sliding in the presence of 

water vapor while oxygen environment leads to the highest wear. This finding can explain the 

higher wear obtained in case of dry air flow reported in the previous chapter compared to the 

results of tribological tests performed in the presence of inert gases or ambient air. 
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Figure 4.16. Wear rate of a-C:H:Si:O after sliding under different pressure of hydrogen 

(green), oxygen (red) and water vapor (blue) 

Figure 4.17 reports the worn volume, total dissipated energy and the specific wear 

energy for tribological tests performed under hydrogen (50 mbar, 200 mbar, 2000 mbar), 

oxygen (10 mbar, 100 mbar, 1000 mbar) and water vapor (1mbar, 10 mbar, 28 mbar) 

following the calculations described in Chapter 2, section 4.1.2. The computed total dissipated 

energy (Figure 4.17) reveals that less energy is dissipated when increasing the pressure of 

hydrogen, while it increases with the oxygen and water vapor pressure.  

From the computed specific wear energy (the energy needed to wear out a unit volume 

of a-C:H:Si:O under a defined environmental condition) (Figure 4.17) it can be understood 

that wearing a-C:H:Si:O requires much more energy in presence of water vapor than in 

hydrogen or oxygen environments. Increasing the hydrogen or water vapor pressure seems to 

increase the specific wear energy for a-C:H:Si:O. In other words, the presence of oxygen 

facilitates the wear process of a-C:H:Si:O, while this is the opposite case for hydrogen and 

water vapor.  
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Figure 4.17. (a) measured wear volume, (b) calculated total dissipated energy and  

(c) specific wear energy (b) when sliding a-C:H:Si:O against a steel pin in the presence of 

hydrogen, oxygen, or water vapor. 

4. Tribologically-induced chemical and structural changes of  

a-C:H:Si:O 

To gain insights of the fundamental mechanisms responsible for the friction and wear 

results presented in the previous sections (dependence of the frictional behavior of a-C:H:S:O 

on the amount of gas in the vacuum chamber, wear process etc) it is paramount to study the 

potential mechanically-induced chemical and structural analysis of the worn material. Raman 

and NEXAFS were used and the results are discussed in this section.  

4.1. Structural analysis of the worn material: Raman spectroscopy 

To gain insights into the structural changes occurring in a-C:H:Si:O upon sliding as well 

as into the structure of the tribofilm formed on the steel pin, Raman analyses were performed 

(Figure 4.18). The spectra were acquired on tribofilms generated in the low friction regime 

(i.e. at 100 mbar of hydrogen, 15 mbar of oxygen).  
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Figure 4.18. Visible Raman spectra acquired on worn and unworn regions of a-C:H:Si:O 

as well as on the tribofilm formed on 52100 steel pin after sliding at (a)100 mbar of 

hydrogen and (b) 15 mbar of oxygen  

Due to instrument availability limitations, visible Raman measurements were carried 

out for the experiments performed in hydrogen and oxygen, while the worn material 

generated under 1 mbar of water vapor was analyzed by UV Raman (Figure 4.19).  
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Figure 4.19. UV Raman spectra acquired on worn and unworn regions of a-C:H:Si:O as 

well as on the tribofilm formed on 52100 steel pin after sliding at 1 mbar of water vapor 

As already mentioned in Chapter 3, the Raman spectra of amorphous carbon-based 

materials is dominated by the signal originating from sp2-hybridized carbon, since the 

scattering cross section of π states is more than 50 times higher than that of σ 

states133,138,140,172.  

The characteristic Raman spectrum of unworn a-C:H:Si:O (from the as-grown, non-

contact region) exhibits the characteristic broad envelope for amorphous hydrogenated 

carbon-based materials137,172,173. After sliding under oxygen or hydrogen environments, no 

significant changes in the Raman spectra of a-C:H:Si:O were observed, regardless of the gas 

pressure. Under water vapor, even though the Pos(G) stays constant (1573±1 cm-1 and 

1570±1 cm-1 respectively for unworn and worn region) there is as slight shift in the 

photoluminescence background. These could be related either to a presence of carbon-

hydrogen bonds or to the clustering of the sp2-bonded carbon phase in the worn region138. 

As for the Raman measurements on the tribofilms generated in the three different 

environmental conditions, the spectra exhibited clear differences compared to the spectrum of 

as-received a-C:H:Si:O: the G band shifts towards higher wavenumbers, the ratio between the 

D and G band increases, and the photoluminescence background intensity increases. These 

results indicate that the tribofilms generated are rich in sp2-bonded carbons in ring-like 

structure.   
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These findings suggest that no significant structural changes occurred in a-C:H:Si:O 

upon sliding under either oxygen, water vapor, or hydrogen environment, in the volume 

probed by the Raman experiments (the optical mean free path of a-C:H:Si:O films has been 

reported by Scharf et al.163 to be 245±26 nm). In contrast, the Raman analysis of the wear 

particles and the tribofilms formed on steel pins clearly indicates the occurrence of a 

structural reorganization of the sp2 carbon phase, forming a material with sp2-hybridized 

carbon organized in clusters to a greater extent than in the as-grown film.  

4.2. Chemical analysis of the wear tracks of a-C:H:Si:O using near edge 
adsorption fine structure spectroscopy (NEXAFS) 

4.2.1. Chemistry and structure of the worn material at threshold for oxygen and 

hydrogen  

To further investigate the structural transformations and surface reactions occurring on 

a-C:H:Si:O upon sliding under different environmental conditions, imaging near edge X-ray 

absorption fine structure spectroscopy (NEXAFS) measurements were performed on  

a-C:H:Si:O samples with wear tracks formed under HV conditions, 15 mbar of oxygen and 

100 mbar of hydrogen (note: two different samples were used for NEXAFS and SEM 

observation to avoid carbon contamination from electron beam exposure in SEM, and X-ray 

induced sample modification in NEXAFS). NEXAFS measurements are highly surface 

sensitive (for electron yield NEXAFS spectroscopy of low atomic number elements, the 

information depth, which is the specimen thickness measured normal to the surface from 

which a specified percentage of typically 95% of the detected signal originates, is usually less 

than 5 nm)156,. A typical carbon K-edge NEXAFS image is reported in Figure 4.20. a. 

Figure 4.20.b illustrates the NEXAFS spectra extracted from the corresponding  

C K-edge image. The characteristic absorption features for amorphous carbon materials are 

observed at 285.0±0.1 eV (due to the C1s→π* transition for disordered carbon-carbon 

bonds), ~ 286.5 eV (due to the C1s→π* transition for carbonyl groups), 287.5±0.1 eV 

(assigned to the C1s→σ* transition for carbon-hydrogen bonds), and 288.9±0.1 eV (assigned 

to the C1s→ σ* transition for carbon-oxygen and carbon-silicon bonds, as well as to the 

C1s→ π* transition for carboxyl groups)156,174. These assignments are summarized in Table 

4.1. 
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Figure 4.20. a) NEXAFS partial electron yield image of a-C:H:Si:O after tribological 

experiments under high vacuum, oxygen (15 mbar), and hydrogen (100 mbar) 

environments. The image is the sum of the images acquired at photon energies between 282 

and 330 eV. Brighter colors correspond to higher intensity. The sample was cracked during 

sample handling and mounting; b) NEXAFS spectra extracted from region of interests (i.e., 

inside and outside the wear tracks) 

Peak Position (eV) Assignment 

285.0±0.1 C1s→π* for disordered C=C bonds 

~286.5 C1s→π* transition for C=O groups 

287.5±0.1 C1s→σ* transition for C-H bonds 

288.9±0.1 C1s→σ* transition for C-O and C–Si bonds; C1s→π* transition for O=C–OH 

Table 4.1. Summary of the carbon K-edge characteristic absorption features and the 

corresponding assignment, from175,176  

Similarly, NEXAFS spectra were extracted from the wear tracks. To compare the worn 

regions of a-C:H:Si:O with the unworn region, a pre- and post-edge normalization was 

performed (Figure 4.21, upper right inset. A larger plot of the NEXAFS spectra extracted 

from the corresponding C K-edge image is reported in Figure 4.20. In this way, variations in 

spectral intensity only arise from chemical changes and are independent of the total carbon 

content. In addition, to more easily investigate the structural transformations occurring in the 

near-surface region of a-C:H:Si:O upon sliding, the difference between spectra obtained from 
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the worn and unworn a-C:H:Si:O regions was calculated (Figure 4.21). Computing these 

difference spectra also allows eliminating the contribution of the carbonaceous contamination 

layer present on the sample surface due to its exposure to air to (this is valid under the 

assumption that the adventitious contamination layer is laterally homogeneous in 

composition, density, and thickness across both worn and unworn regions, i.e. is due to 

ambient exposure after the tribotesting; this approach avoids the need for correcting the  

as-acquired spectra for the presence of an adventitious carbonaceous contamination using a 

reference sample159). Since significant transfer of material from the steel pin to the a-

C:H:Si:O surface occurs under HV or low gas pressures, the difference spectrum cannot be 

employed to elucidate the transformations occurring in the material in these cases. As for the 

tests performed under 15 mbar of oxygen and 50 mbar of hydrogen, the intensity of the 

C1s→π* transition for disordered carbon-carbon bonds at 285.0 eV significantly increased, 

thus demonstrating a significant conversion from sp3- to sp2-bonded carbon. Furthermore, a 

decrease in the signal at 288.9±0.1 eV (assigned to the C1s→σ* transitions for C–O and C–Si 

bonds, as well as to the C1s→π* transition for O=C–OH groups) was observed. Finally, an 

intense peak at 286.0 eV (due to the C1s→π* transition for carbonyl groups)156,175 was 

detected in the difference spectrum obtained from the track produced under oxygen 

environment. This peak is also detected (with much less intensity) from the track produced 

under hydrogen, which can be due to some residual oxygen in the vacuum chamber. 

To quantify the change in the carbon hybridization state upon sliding, the relative 

variation of the fraction of threefold-coordinated carbon atoms was calculated as follows 

(Equation.4.1): 

∆!!"! = !"" ∗
!!"!"#$ !"#$%&! ! !!"!"#$%" !"#$%&!

!!"!"#$%" !"#$%&!
     (Eq.4 1.) 

The results are displayed as a function of the entrance grid bias (EGB) voltage in the 

lower inset of Figure 4.21 (increasing the EGB voltage allows NEXAFS measurements with 

higher surface sensitivity to be performed157).  
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Figure 4.21. Difference in the NEXAFS partial electron yield spectra between worn and 

unworn regions of a-C:H:Si:O Green curve: difference between a spectrum taken from the 

wear track generated upon sliding in hydrogen (100 mbar) and a spectrum from unworn 

a-C:H:Si:O; Blue curve: difference between a spectrum taken from the wear track 

generated upon sliding in oxygen (15 mbar) and a spectrum from unworn a-C:H:Si:O. The 

upper inset recall figure 15 (b) for comparison. The lower inset shows the relative 

variation of the fraction of sp2-bonded carbon for the track generated in hydrogen (100 

mbar) or oxygen (15 mbar) as a function of the entrance grid bias (EGB) voltage (the 

surface sensitivity increases with the EGB voltage). 

Upon increasing the EGB voltage, a higher fraction of sp2-bonded carbon was detected 

independently of the gas environment. This finding suggests the formation of a gradient in 

carbon bonding configuration, with even more conversion to sp2-bonded carbon occurring in 

the near-surface region of a-C:H:Si:O during sliding. 
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4.2.2. Chemical and structural evolution of the worn material with increasing oxygen 

and hydrogen pressure 

To investigate the effect of gas pressure on the structural and chemical changes 

occurring on a-C:H:Si:O, NEXAFS measurements were performed on wear tracks obtained 

under different pressures of oxygen (10, 100 and 1000 mbar) and hydrogen (50, 200 and 2000 

mbar). Figure 4.22.a shows the chemical NEXAFS maps at the carbon K-edge corresponding 

to four different spectral features (C=C, C–H, C=O, and C–O/C–Si/COOH).  
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Figure 4.22. NEXAFS partial electron yield image of a-C:H:Si:O after tribological 

experiments under hydrogen (50, 200, 2000 mbar) and oxygen (10, 100, 1000 mbar) gas 

pressure. (a) The image is the sum of the images acquired at photon energies between 282 

and 330 eV. Brighter colors correspond to higher intensity; (b) NEXAFS spectra extracted 

from region of interests (i.e. inside and outside the wear tracks) 

Six tracks can be observed in the maps, three obtained after sliding in oxygen at 10, 

100, and 1000 mbar, and three generated after sliding in hydrogen (50, 200, and 2000 mbar). 

The color contrast in the maps displayed in Figure 4.22.a clearly indicates the occurrence of 

structural and chemical changes upon sliding in the presence of oxygen and hydrogen. The 

spectra extracted from the NEXAFS maps are displayed in Figure 4.22.b. Since subtle 

differences between the spectra can be noticed on Figure 4.22.b, the difference spectra 

between worn and unworn region were computed to highlight structural and chemical 

variations induced by the sliding process (Figure 4.23).  
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Figure 4.23. Difference in the NEXAFS partial electron yield spectra between worn and 

unworn regions of a-C:H:Si:O Red series curves: difference between a spectrum taken 

from the wear track generated upon sliding in hydrogen (50, 200 and 2000 mbar) and the 

spectrum from unworn a-C:H:Si:O; Blue series curves: difference between a spectrum 

taken from the wear track generated upon sliding in oxygen (10, 100 and 1000 mbar) and 

the spectrum from unworn a-C:H:Si:O. 

 

From Figure 4.23, we can confirm that upon sliding under hydrogen or oxygen: 

• The intensity of C1s→π* transition for disordered carbon-carbon bonds at 285.0 

eV significantly increased upon sliding, thus demonstrating a significant 

conversion from sp3- to sp2-bonded carbon as observed in the previous section. In 

case of hydrogen, there is a clear gradient in the C1s→π* peak of sp2-bonded 

carbon with increasing pressure (namely, upon increasing the hydrogen pressure, 

less sp2-bonded carbon is present on the sample surface), while under oxygen, such 

a difference is less pronounced; 

• The intensity of C1s→π* transition for C=O and C–O Rydberg orbitals at 

285.9±0.1 eV increased upon sliding, both in oxygen and hydrogen. The detection 

of this feature upon sliding in hydrogen might be due to some residual oxygen in 

the chamber; 

sp2 C
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• The intensity of C1s→σ* transition for C–H at 287.8±0.1 eV slightly increased, 

especially upon sliding at 2000 mbar of hydrogen. The relative ratio between C–H 

and C=O depends on the sliding environment, (I C-H/I C=O under hydrogen > I C-

H/I C=O under oxygen); 

• Furthermore, a decrease in the signal at 289±0.1 eV (assigned to the C1s→σ* 

transitions for C–O and C–Si bonds, as well as to the C1s→ π* transition for 

O=C–OH groups) was observed independently on the sliding environment. The 

main origin of this spectral feature is assigned to C–Si, since the calculation of the 

difference spectra most likely allows the removal of any contribution of the 

adventitious carbon contamination layer (which contains C–O, C=O, and COOH 

species). 

 

The relative change in the fraction of sp2-bonded carbon calculated using equation 1 is 

displayed in Figure 4.24 as a function of the pressure of hydrogen and oxygen and of the EGB 

voltage. On Figure 4.24.a, it can be noticed that independently of the gas pressure, the worn 

material generated upon sliding under oxygen contains more sp2-bonded carbon in their near-

surface region than in the wear tracks generated under hydrogen environment. For both 

oxygen and hydrogen environment, when increasing the gas pressure (Figure 4.24.a), the 

fraction of sp2-bonded carbon decreases.  

The fraction of sp2-bonded carbon increases with increasing surface sensitivity for all 

wear tracks generated under oxygen and hydrogen environment independently of the gas 

pressure (Figure 4.24.b). This finding indicates the formation of a sp2-bonded carbon-rich 

layer on a-C:H:Si:O upon sliding independently of the gas and its pressure.  
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Figure 4.24. Relative variation of the fraction of sp2-bonded carbon for the track generated 

in hydrogen (50, 200 and 2000 mbar) or oxygen (10, 100, and 1000 mbar) as (a) function of 

the gas pressure and (b) the entrance grid bias (EGB) voltage (b) 

5. Discussion: Surface passivation vs. rehybridization in 

determining the friction response of a-C:H:Si:O  

NEXAFS spectra (Figure 4.21, Figure 4.23 and Figure 4.24) acquired inside the worn 

region after tribotests performed either under oxygen or hydrogen revealed the presence of an 

sp2-bonded carbon rich surface layer, with an increasing sp2 concentration towards the 

surface. This is in agreement with Le Huu et al., who have shown a transformation of sp3- to 

sp2-bonded carbon upon sliding. This rehybridization phenomenon is also supported by 

experimental data from self-mated sliding studies of diamond and tetrahedral amorphous 

carbon (ta-C) films44,64 and molecular dynamics simulations of sliding of hydrogenated and 

hydrogen-free amorphous carbon films63,65. 

In addition, according to NEXAFS analysis, the wear track produced when sliding in 

oxygen environment exhibited carbon-oxygen bonds in the near-surface region of a-C:H:Si:O. 

This increase in intensity of the signal assigned to carbon-oxygen bonds (286.0 eV) could be 

interpreted as the dissociative reaction of oxygen molecules with strained sp2–hybridized C-C 
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bonds, which are produced upon sliding65. This reaction results in the formation of an oxygen-

passivated layer on a highly sp2-bonded carbon surface produced by sliding on a-C:H:Si:O in 

oxygen. 

However, according to the NEXAFS analysis, the wear track produced in hydrogen 

environment did not lead to a higher increase in C–H bonds at the surface (a slight increase 

was observed only at 2000 mbar of hydrogen) than in the wear tracks generated in oxygen 

environment. In addition, the near-surface region of this track exhibits much less sp2-bonded 

carbon than the wear track produced under oxygen environment (note: the tribological 

conditions used for performing experiments were the same for the different environments). 

This suggests that either hydrogen is favoring the breakage of a-C:H:Si:O thanks to the newly 

generated strained sp2 carbon rich layer to form a tribofilm on the steel countersurface, or the 

carbon atoms react with hydrogen to generate volatile hydrocarbon fragments. This finding is 

different than results reported by Fontaine et al.66, Donnet et al.67, and Erdemir et al.68 who 

studied hydrogenated amorphous carbon films under HV and in presence of hydrogen or in 

dry environment. Matta et al.69 also studied tetrahedral hydrogen free amorphous carbon films 

in presence of OH-containing environments. They all explained the decrease of the friction in 

the presence of hydrogen or –OH elements respectively, as a consequence of the passivation 

of the sp2 bonded carbon by either hydrogen of –OH groups. 

6. Summary 

In this Chapter, the tribological response of a-C:H:Si:O film under different 

environmental conditions, ranging from high vacuum to elevated hydrogen, oxygen and water 

vapor pressures, was investigated. Three major conclusions can be drawn on the basis of the 

results presented in this Chapter: 

1. By using a Controlled Environment Analytical Tribometer from high vacuum up to 

two atmospheres, we were able to determine, for the first time, a threshold in water 

vapor (1 mbar), oxygen (10 mbar) or hydrogen gas pressure (50 mbar), necessary to 

switch from a high friction regime to a low friction regime. This indicates that the 

reduction of friction is due to tribochemical reactions, which require a sufficiently 

abundant source of gas molecules to achieve and maintain low friction. Even though 

water is more reactive than oxygen and hydrogen (only 1 mbar of water vapor is 

needed to switch from high to low friction regime whereas 10 or 50 mbar is required 

for oxygen and hydrogen respectively), the energy required to wear a-C:H:Si:O in 
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presence of water vapor is higher than the one required for the same process under 

oxygen or hydrogen; 

2. Under high vacuum and low gas pressure (P < 1 mbar of water vapor, P < 10 mbar of 

oxygen or P < 50 mbar of hydrogen), transfer of material from the steel pin to the  

a-C:H:Si:O flat was observed. In contrast, above 1 mbar of water vapor, 10 mbar of 

oxygen and 50 mbar hydrogen, transfer of material takes place from the a-C:H:Si:O 

flat to the steel pin, resulting in the formation of a tribofilm on the steel 

countersurface. This latter tribofilm has a low shear strength thus favoring low 

friction; 

3. The NEXAFS characterization of a-C:H:Si:O after the tribological tests revealed that 

upon sliding under oxygen (P > 10 mbar) or hydrogen (P > 50 mbar) environments, a 

surface layer with a higher fraction of sp2-bonded carbon atoms compared to the 

unworn material is formed on a-C:H:Si:O. 
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7. Résumé Chapitre 4 

Dans ce chapitre intitulé « influence de l’hydrogène, de l’oxygène et de la vapeur d’eau 

sur le comportement tribologique des a-C:H:Si:O », nous approfondissons les résultats du 

chapitre précédent, en travaillant sous un environnement bien mieux contrôlé, mais par 

conséquent statique. À la vapeur d’eau et l’oxygène abordé précédemment, nous ajoutons 

l’hydrogène, bien connu pour son rôle majeur dans la réduction du frottement des couches 

minces DLC. 

Pour ce faire, nous avons utilisé un tribomètre linéaire alternatif placé dans une chambre 

mise sous vide poussé, telle que décrite dans le chapitre deux. Les pressions d’oxygène et 

d’hydrogène considérées varient entre 0,01 et 2000 mbar, et les pressions de vapeur d’eau 

entre 0,01 et 20 mbar (correspondant respectivement à 0,04% et 100% d’humidité relative). 

Ces essais montrent que les a-C:H:Si:O présentent un mauvais comportement tribologique 

intrinsèque (sous vide), avec des coefficients de frottement autour de 1. En conduisant des 

essais à différentes pressions de gaz dans la chambre, nous avons quantifié, pour la première 

fois, les pressions exactes d’hydrogène, d’oxygène et de vapeur d’eau nécessaires à la 

transition entre un régime de frottement élevé et un régime de frottement faible, pour un 

contact entre une couche mince a-C:H:Si:O et un antagoniste en acier 100Cr6. Ces seuils sont 

de 50 mbar d’hydrogène, 10 mbar d’oxygène et 1 mbar de vapeur d’eau. 

Lorsque les essais tribologiques sont menés en dessous de ce seuil, non seulement le 

frottement est très élevé, mais il se produit en outre, un transfert de l’acier vers le revêtement. 

Comme la dureté de la couche mince a-C:H:Si:O est très légèrement supérieure à celle de 

l’acier, ce comportement s’explique par une usure adhésive de l’acier. 

Pour des pressions de gaz supérieures à ce seuil, le transfert de matière se produit dans 

le sens inverse, du a-C:H:Si:O vers l’acier, avec formation d’un tribofilm adhérent à l’acier.  

Une analyse approfondie des processus d’usure du revêtement en fonction de 

l’environnement de fonctionnement confirme la tendance trouvée au chapitre trois. En effet, 

l’oxygène agit comme un « accélérateur » dans le processus d’usure de l’a-C:H:Si:O, alors 

que la vapeur d’eau constitue un « film protecteur » qui inhibe l’usure du revêtement.  

Les données Raman recueillies sur les tribofilms montrent, quant à elles, que les 

tribofilms carbonés générés dans les différents environnements sont riches en clusters de 

carbone sp2. 

En effectuant des analyses de spectroscopie d’absorption des rayons X (NEXAFS), 

nous montrons pour la première fois sur les revêtements a-C:H:Si:O que lors d’un essai 
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tribologique en présence de quantité suffisante de gaz (au delà des pressions seuil identifiées), 

un changement structural des carbone sp3 en sp2 intervient en extrême surface du revêtement, 

avec un gradient décroissant vers le cœur.  

Ces analyses montrent également une passivation de la surface par l’oxygène 

environnant. Par ailleurs, plus la pression de gaz environnant est élevée, plus la fraction de 

carbone sp2 dans la zone de frottement diminue et plus le tribofilm obtenu sur l’antagoniste en 

acier est épais. Tous ces éléments permettent de confirmer et clarifier les mécanismes de 

lubrification des couches a-C:H:Si:O en présence d’oxygène, d’hydrogène et de vapeur d’eau. 
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Chapter 5. Influence of 

environment and structural 

evolutions on the tribological 

behavior of a-C:H:Si:O: 

proposition of a model  
 

In this chapter, the effect of annealing induced structural changes on the tribological 

properties of a-C:H:Si:O in dry conditions as well as the main scientific outcomes of the 

experimental work presented in the previous Chapters (environmental dependence of 

tribological behavior) are summarized and discussed. A thorough discussion of the results 

obtained from the experiments with previously published, state-of-the-art works will be made. 

Finally, a model that describes the fundamental mechanisms behind the tribological response 

of a-C:H:Si:O in different environments is proposed and discussed.  
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1. Effect of structural changes on the tribological behavior of  

a-C:H:Si:O 

As demonstrated in chapter 4, stress-induced rehybridization (conversion from sp3 to 

sp2-bonded carbon) plays a major role in the overall friction response of a-C:H:Si:O. 

Changing the initial sp2-bonded carbon fraction in the coating by annealing of a-C:H:Si:O has 

been achieved. Upon annealing a-C:H:Si:O under UHV, an increase in the fraction of sp2 

bonded carbon with increasing temperature has been verified by NEXAFS and Raman 

spectroscopic measurements, following the procedure described in chapter 2 session 4.2. 

Below an annealing temperature of 450°C, NEXAFS and Raman results are in slight 

disagreement (Figure 5.1.) which might be due to the difference in the information depth 

probed by the two techniques (~5 nm for NEXAFS157 and ~ 300 nm for Raman163) and to the 

presence of a surface gradient in the structure of the material (meaning that the near-surface 

region is richer in sp2-bonded carbon). At 450 °C, the good agreement between Raman and 

NEXAFS spectroscopic measurements suggests that the structure of the material is 

homogeneous within the volume probed by Raman. Despite these structural changes, SIMS 

analyses (Appendix A.2) indicated the absence of any significant composition change upon 

annealing. 
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Figure 5.1. sp2-bonded carbon fraction in a-C:H:Si:O upon UHV annealing measured by 

MW Raman (red) and NEXAFS (green) 

Using the linear reciprocating tribometer equipped with the gas blowing system 

extensively described in chapter 2, session 3.2.1, tribological experiments performed on 

samples annealed in UHV under dry nitrogen flow (Figure 5.2) indicate that there is no 

significant difference in the steady-state frictional response between annealed samples and as 

received material (the coefficient of friction got stabilized at ~0.03 for annealed sample as 

well as the as-received one). Differences might be present in the duration of the running-in 

period, but a careful statistical evaluation of the running-in duration requires more extensive 

work to be performed. This finding suggest, for the first time, that under dry conditions the 

steady-state frictional response is not significantly affected by the structure of the coating.  
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Figure 5.2. Evolution of coefficient of friction vs. cycles of annealed a-C:H:Si:O sliding 

against 52100 steel under dry nitrogen flow 

2. Effect of water vapor and oxygen on the tribological behavior of 

a-C:H:Si:O 

2.1. Effect of water vapor on the frictional response of a-C:H:Si:O 

As discussed in Chapters 3 and 4, and herein illustrated (Figure 5.3) water vapor plays a 

major role in controlling the frictional response of a-C:H:Si:O. For water vapor pressures 

lower than 1 mbar (~ 4% RH) high friction is achieved, while at this threshold, the lowest 

coefficient of friction (0.02±0.01) was reached. Above 1 mbar of water vapor, the coefficient 

of friction starts increasing again (Figure 5.3.a). Comparing these results to the ones obtained 

with the ambient air linear tribometer equipped with the gas blowing system, it can be noticed 

that the friction response of a-C:H:Si:O in dry environment (dry nitrogen, dry argon or dry air 

flow (<5% RH), Figure 5.3.b) is equivalent to the one obtained at 1 mbar, namely 0.04±0.01. 

Also, the coefficient of friction values obtained in ambient air (35% RH at 27 °C or 13 mbar 

partial pressure of water vapor, Figure 5.3.c) with the linear reciprocating tribometer is not 
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significantly different from the one obtained with Environment Controlled Analytical 

tribometer (15 mbar of water vapor or 50% RH at 24 °C), i.e., 0.18±0.01. 

Even though a correlation between the results obtained with the two experimental 

methods employed in the study can be performed, it has to be underlined that the 

environmental conditions are not exactly the same. In facts, while the partial pressure of water 

matches between the two experimental methodologies, during tribological experiments 

performed in ambient air while blowing gas, some residual gaseous species such as oxygen, 

nitrogen or carbon dioxide are still present in the environment. On the contrary, in the 

Controlled Environment Analytical Tribometer, leaking specific gases in the HV chamber 

allows having only one gas species at the time. However, the fact that it is possible to 

correlate the tribological results obtained as a function of water vapor partial pressure with the 

two experimental apparatuses clearly suggest that the residual species in air (oxygen, carbon 

dioxide, and nitrogen) do not play a major role in affecting the frictional response of 

a-C:H:Si:O. In other words, water vapor has a higher reactivity with a-C:H:Si:O compared to 

the other gaseous species. This is also in agreement with the higher threshold found for 

oxygen (14 mbar) and hydrogen (50 mbar) while the one of water vapor is 1 mbar. 
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Figure 5.3. Correlation between the results obtained with the Environment Controlled 

Analytical Tribometer and the ambient air tribometer (CEAT) equipped with gas blowing 

system. Evolution of the coefficient of friction vs. sliding cycles with (a) various partial 

pressure of water vapor, (b) in ambient air (RH 35%), (c) under dry nitrogen, dry argon or 

dry air flow (RH<5%). 

2.2. Effect of oxygen on the wear of a-C:H:Si:O 

As mentioned in chapter 3, blowing dry air in the contact in order to lower the relative 

humidity down to RH < 5% and thus decrease the steady-state coefficient of friction, results 

in generating more wear than under ambient air (RH 35%), dry nitrogen flow or dry argon 

flow (RH <5%) as illustrated in Figure 5.4.a. 

Figure 5.4.b shows the relative wear of a-C:H:Si:O in presence of oxygen (1000 mbar), 

hydrogen (2000 mbar) or water vapor (28 mbar). The higher wear of a-C:H:Si:O was obtained 

in oxygen environment. 

Coupling CEAT wear results together with the ones obtained under dry air flow and keeping 

in mind that under dry air flow, the residual oxygen in the sliding environment is higher than 

under dry nitrogen and dry argon, we can argue that oxygen is the main gaseous element 

responsible for the wear of a-C:H:Si:O.  
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Figure 5.4. Relative depth profile of the wear tracks obtained on a-C:H:Si:O after 

tribological experiments performed using (a) CEAT in oxygen (1000 mbar), hydrogen 

(2000 mbar) and water vapor (28 mbar) or (b) open air tribometer equipped with gas flow 

system in ambient air, dry air, dry nitrogen and dry argon.   

3. Tribological behavior of a-C:H:Si:O under HV and in presence 

of oxygen, hydrogen and water vapor: a new model 

On the basis of the results presented in Chapter 3 and 4, we were able to propose a 

model depicted in Figure 5.5 for explaining the frictional response of a-C:H:Si:O under 

different environmental conditions.  

➢ Stage 1: Initial state without applying any mechanical stress; 

➢ Stage 2: Upon sliding, asperities come into contact. As shown by several authors59,65, 

carbon rehybridization (stress-induced conversion from sp3- to sp2-bonded carbon) occurs 

within the contact area. The initial and newly-generated sp2-bonded carbon is highly strained 

and thus prone to react with the environment69; 

➢ Stage 3, under HV and low gas pressure: Upon further sliding, the reactive sp2 

bonded carbon atoms at the surface interact with the steel counterbody and create adhesive 

junctions. The interaction of carbon sp2 orbitals under HV has been also observed by Donnet 

et al.67; 

➢ Stage 4, under HV and low gas pressure: Some adhesive bonds are stronger than the 

metallic bonds in the steel countersurface, thus leading to a transfer of steel onto the  

a-C:H:Si:O. The large amount of energy required for breaking metallic bonds in steel results 

in high friction under HV conditions and low gas pressure. 
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➢ Stage 3’, under intermediate and high gas pressure: The observed transfer of 

material from the coating to the steel pin indicates that interfacial adhesion, as described at 

Stage 3 (under HV and low gas pressure), still occurs. However, the direction of the material 

transfer is changed: carbon, silicon, and oxygen are observed transferred to the steel 

countersurface (hydrogen is presumed to be transferred as well), whereas no iron is 

transferred to a-C:H:Si:O. Based on NEXAFS data, a layer with a higher fraction of sp2-

hybridized carbon is formed during sliding, similar to simulations and experiments for self-

mated sliding of diamond and ta-C films44,64,65. In the presence of highly reactive gases, the 

strained sp2 carbon-carbon bonds can easily break, thus leading to transfer of material to the 

steel countersurface and leaving behind a passivated highly-sp2-bonded carbon surface. The 

increase of C=O peak intensity at 286.0 eV in the track obtained upon sliding under oxygen 

supports this. The fact that the C-H peak does not increase in intensity for sliding in hydrogen 

environments may be due to the highly favorable reaction of hydrogen molecules with 

strained sp2 carbon-carbon bonds, resulting in either an easier removal of material from the 

wear track or the formation of volatile short-chain hydrocarbon fragments. More work is 

required to have insights into the dominant tribochemical reaction(s). The etching of the 

softer, disordered, highly-sp2-bonded carbon layer is supported by the fact that the absolute 

values of the variation in the fraction of sp2-bonded carbon in the near-surface region of the 

wear track created upon sliding under hydrogen environment is lower than upon sliding in 

oxygen (chapter 4, lower inset, Figure 4.16).  

➢ Stage 4’, under intermediate and high gas pressure: Under the combined effect of a 

larger total sliding distance of the steel pin (higher than the worn region of the a-C:H:Si:O 

flat) and the applied load and stress, the transferred sp2 hybridized carbon-rich top layer on 

the steel pin, has enough energy to reorganize itself into larger aromatic clusters, leading then 

to a sp2 layer rich in ring-like structures between the steel pin and the flat, as indicated by 

Raman spectroscopic measurements explained in chapter 4, session 5.1. Nevertheless, once 

the modified carbon tribofilm is generated in the contact, the friction will no longer only 

depend on the way the adhesive junctions are released (the energy that is needed to break the 

bonds in the steel side or in the a-C:H:Si:O) but also on the shear strength of this tribofilm. In 

fact, as shown by Scharf et al.96, the shear strength of tribofilms generated when sliding 

against a-C:H:Si:O depends on its chemical composition, which is a function of the sliding 
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environment. This might explain differences in the friction coefficients obtained under water 

vapor, oxygen gas or hydrogen gas.  

 

 
Figure 5.5. Schematic model for describing the friction properties of an a-C:H:Si:O vs. 

steel tribosystem sliding under different environmental conditions.  
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4. Summary 

The tribological response of a-C:H:Si:O film was investigated under different environmental 

conditions, ranging from humid and dry sliding environment to high vacuum or elevated 

water vapor, oxygen and hydrogen pressures. Four major conclusions can be drawn on the 

basis of the results presented in this work: 

• We were able to establish a direct relationship between the amount of water vapor 

in the sliding environment and the frictional response of a-C:H:Si:O, thanks to an 

ambient air tribometer equipped with a gas flow system and the Controlled 

Environment Analytical Tribometer (CEAT). It has also been possible to 

demonstrate that oxygen is the main gaseous elements responsible for the wear of 

a-C:H:Si:O. 

• We were able to determine, for the first time, a threshold in water vapor (1 mbar), 

oxygen (10 mbar) or hydrogen gas pressure (50 mbar), necessary to switch from a 

high friction regime to a low friction regime by using an CEAT from high vacuum 

up to elevated pressures of hydrogen, oxygen, or water vapor. This indicates that 

the reduction of friction is due to tribochemical reactions, which require a 

sufficiently abundant source of gas molecules to achieve and maintain low friction. 

The difference in the threshold values also reflects a different reactivity of the 

gases, i.e., reactivity of water vapor > reactivity of oxygen > reactivity of 

hydrogen; 

• Under high vacuum and low gas pressure (p < 1 mbar of water vapor, 10 mbar of 

oxygen or p < 50 mbar of hydrogen), transfer of material from the steel pin to the 

a-C:H:Si:O flat was observed. In contrast, above 1 mbar of water vapor, 10 mbar 

of oxygen and 50 mbar hydrogen, transfer of material takes place from the 

a-C:H:Si:O flat to the steel pin, thus building a tribofilm on the steel 

countersurface. This latter tribofilm has a low shear strength; 

• The NEXAFS characterization of a-C:H:Si:O after the tribological tests revealed 

that upon sliding under oxygen (p > 10 mbar) or hydrogen (p > 50 mbar) 

environments, a surface layer with a higher fraction of sp2-bonded carbon atoms 

compared to the unworn material is formed on a-C:H:Si:O. 
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The outcomes of the present thesis suggest that the build-up and release of adhesive 

junctions between steel and a-C:H:Si:O strongly depends on the environment. In particular, 

the tribochemical changes occurring in a-C:H:Si:O upon sliding in the presence of water 

vapor (1 mbar), oxygen (p > 10 mbar) or hydrogen (p > 50 mbar) indicate, for the first time, 

that these gases favor the release of the chemical bonds by dissociatively reacting with the 

mechanically-stressed sp2 carbon-rich surface layer in the near-surface of a-C:H:Si:O. 
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5. Résumé Chapitre 5 

Du fait de l’importance des modifications chimiques et structurales mises en évidence 

dans le chapitre quatre, nous abordons dans ce chapitre des investigations complémentaires 

concernant l’influence de modifications chimiques et structurales du revêtement sur le 

comportement tribologique de ce dernier. Pour ce faire, nous nous intéressons à des 

échantillons ayant subi un traitement thermique sous vide à 150°C, 250°C, 350°C et 450°C. 

Après analyses structurales (NEXAFS et Raman à plusieurs longueurs d’onde) et 

mécanique (nanoindentation) du revêtement après traitement thermique, une étude de l’effet 

synergique de la modification structurale et de l’influence de la vapeur d’eau et de l’oxygène 

sur la réponse tribologique du revêtement a été menée. Nous avons ainsi montré que même si 

l’enrichissement de la surface de la couche en carbone sp2 ne modifie pas de façon notoire, le 

coefficient de frottement stabilisé de la couche, l’oxygène accélère l’usure de la couche alors 

que la vapeur d’eau semble jouer le rôle d’un élément anti usure comme c’est le cas pour la 

couche n’ayant pas subi de traitement thermique.  

Ce dernier chapitre propose ensuite – à la lumière de tous les résultats présentés dans le 

manuscript– un modèle expériemental expliquant les interactions physico-chimiques entre 

l’environnement et les revêtements a-C:H:Si:O en contact avec un antagoniste en acier 

100Cr6. Ce modèle est résumé dans la figure ci-dessous. 
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Modèle schématique décrivant l’évolution d’un contact a-C:H:Si:O / acier 100Cr6 en 

fonction de l’environnement (hydrogène, oxygène, vapeur d’eau) et les phénomènes 

locaux correspondants 
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Conclusion 
Diamond-Like Carbon (DLC) thin films are a class of solid lubricant with a wide range 

of technological applications from automotive industries to cutting tools and biomedical 

prosthesis. Different additional elements can be incorporated into this amorphous carbon 

network in order to enhance some specific properties while maintaining the amorphous 

structure. Silicon-oxide doped amorphous hydrogenated carbon coatings are a variant of 

DLC, known for their higher thermal stability and tribological properties, which are less 

dependent on the sliding environment than pure DLC coatings. 

This thesis aims to understanding the fundamental mechanical, physical and chemical 

interactions occurring between a-C:H:Si:O and environmental constituents upon sliding 

against 52100 steel and their consequences for the overall tribological response. Thanks to 

annealing-induced structural changes of a-C:H:Si:O, effect of structural evolutions on the 

tribological behavior of a-C:H:Si:O have been also studied.  

Since the tribological behavior of DLC coatings is a global response due to both 

intrinsic and extrinsic factors, as described in this thesis, a complete characterization of the 

material has been carried out prior to tribological experiments. Multi-Wavelength Raman 

spectroscopy, coupled with Near-Edge X-ray Absorption Fine Structure (NEXAFS) 

spectroscopy, confirmed the amorphous structure of the material of interest, while Rutherford 

Backscattering Spectroscopy (RBS) coupled with Hydrogen Forward Scattering (HFS), 

together with depth profiling Secondary Ions Mass Spectroscopy (SIMS), provided a precise 

chemical composition of the a-C:H:Si:O. The mechanical properties and the surface 

topography were measured by nanoindentation and AFM, respectively.  

Experiments using an ambient air linear reciprocating tribometer that we equipped 

with a gas blowing system, revealed that water vapor and oxygen play a key role respectively 

in the frictional response and in the wear of a-C:H:Si:O,. Thanks to the static and 

dynamically-controlled variation of the humidity of the sliding environment, we were able to 

show that the friction response of a-C:H:Si:O is governed by the amount of carbon in the 

tribofilm generated at the sliding interface and its structure, which in turn, depends on the 

amount of water vapor in the environment. In dry conditions, there is a high fraction of carbon 

in the tribofilm – small and strained aromatic carbon clusters – while in humid conditions the 
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lower fraction of carbon are primarily segregated to regions outside of the theoretical Hertzian 

contact area.  

A more precisely controlled examination of the environmental dependence of the 

tribological response was then performed using a Controlled Environment Analytical 

Tribometer (CEAT) that allowed performing experiments in a wide range of conditions; from 

HV to elevated pressures of water vapor, oxygen and hydrogen (0.01 mbar up to 2000 mbar).  

For low water vapor, oxygen and hydrogen pressures (P<1, P<10 and P<50 mbar 

respectively, a transfer of material occurs from steel to a-C:H:Si:O resulting in high friction. 

For intermediate and high gas pressures (P>1, P>10 and P>50 mbar of water vapor, oxygen 

and hydrogen respectively) transfer occurs in the opposite direction from a-C:H:Si:O to steel 

resulting in low friction.  

We were thus able to define precisely, for the first time, the minimum amount of water vapor, 

oxygen or hydrogen needed to achieve low friction while sliding a-C:H:Si:O against 52100 

steel. For gas pressures bellow the threshold, transfer of material occurs from the steel to  

a-C:H:Si:O, resulting in high friction while above the threshold, the transfer occurs from  

a-C:H:Si:O to steel, resulting in low friction. 

Furthermore, based on detailed surface analysis using NEXAFS together with 

extensive Raman spectroscopy and SEM/EDX observations, we proposed a new model 

describing the fundamental friction mechanism of a-C:H:Si:O in the presence of oxygen and 

hydrogen. This mechanism is based on the build-up and release of adhesive junctions through 

the sliding interface. For oxygen and hydrogen pressures lower than 10 and 50 mbar 

respectively, adhesive junctions are broken inside the steel, resulting in a transfer of iron on 

top of a-C:H:Si:O. Due to the strength of the metallic bonds between the steel and the 

transferred, the friction coefficient in this range of gas pressure was as high as ~ 1.2. For 

oxygen and hydrogen pressure higher than 10 and 50 mbar respectively, adhesive junctions 

are released inside the a-C:H:Si:O promoting a lower coefficient of friction.  

Thanks to chemical mapping using NEXAFS, we were able to show that, when sliding in the 

presence of gases, rehybridization (the transition from sp3- to sp2-bonded carbon) occurs in 

the near-surface region of a-C:H:Si:O, as suggested by several molecular dynamics simulation 

works. 

Increasing oxygen or hydrogen pressure in the sliding environment favors a decrease 

of sp2-bonded carbon formation in the near surface region, suggesting that either gaseous 

species preferentially break strained sp2 carbon bonds in the near surface region, followed by 

a transfer to the steel counterbody, as verified by Raman either in presence of gas less 
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adhesive junctions are created and broken. Passivation of the remaining dangling carbon 

bonds in the worn region was observed in oxygen environment while no significant increase 

in C–H was observed in the wear track, even at 2000 mbar of hydrogen. The total amount of 

hydrogen in the wear track being the same, one could be tempted to think that passivation 

does not occur upon sliding under hydrogen. Nevertheless it is also plausible that 

environmental hydrogen acts as a permanent reservoir as discussed in chapter 1, thus 

compensating the amount of hydrogen “leaked out” from a-C:H:Si:O. Further experiments 

using deuterium and Tof-SIMS analysis could be of a good interest in determining weather or 

hydrogen identified in the wear track comes from the environment, i.e. weither or not 

passivation occurs  

Under UHV annealing, a-C:H:Si:O evolves towards a more sp2-bonded carbon-like 

structure. The tribological response of this new material appeared unchanged compared to the 

one of as-received a-C:H:Si:O. This implies that under dry conditions, the tribological 

response a-C:H:Si:O does not seem to be controlled by the fraction of sp2-bonded carbon in 

the initial state, but rather by the chemistry and structure of the tribofilm. 

Outlooks 
Although this thesis contributes to the fundamental understanding of the tribogocial 

behavior of a-C:H:Si:O solid lubricants in various environmental conditions by shedding light 

on the mechanical, physical and chemical interactions that occur upon sliding a-C:H:Si:O 

films against 52100 steel, there are still different interesting aspects that could be explored for 

further understanding of the tribological behavior of these coatings. Here are some ideas for 

future work: 

• Varying the composition of the material 

In order to confirm the beneficial effect of the presence of silicon in the amorphous 

carbon network on the tribological behaviour of a-C:H:Si:O, performing experiments on films 

with different silicon contents would be helpful, and would allow a better understanding of its 

actual role. 

• Improving experimental conditions while using the ambient air reciprocating 

tribometer equipped with the gas flow system 
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As discussed in chapter 3, the steady-state coefficient of friction strongly depends on 

the amount of water vapor in the sliding environment. Relative humidity (RH) controls thus 

the stabilized coefficient of friction that can be obtained prior to the gas flow. As mentioned 

in chapter 3, session 3.1, RH and temperature in the sliding environment can be very 

dispersed depending on the weather conditions, affecting thus the stabilized coefficient of 

friction prior to the gas flow. For a better control of this stabilized friction, prior to the gas 

flow, the device could be introduced in a glove box. 

• Further surface analysis by PhotoEmission Electron Microscopy 

Due to the strong magnetic field in the synchrotron end station’s analyzing chamber, we 

were not able to analyze the material transferred on the steel counterbody. Investigating the 

structural changes occurring in the near surface region has thus been carried out only in the 

worn region of a-C:H:Si:O. Nevertheless, as suggested by all our results, the chemistry and 

structure of the tribofilm play a major role in the overall tribological response of  

a-C:H:Si:O. Analyzing the tribofilm transferred on the steel counterbody using 

PhotoEmission Electron Microscopy (PEEM) could be of a good contribution in bridging the 

gap between the chemistry and structure of the tribofilm and the tribological behavior of  

a-C:H:Si:O. For that aim, a proposal that we submitted to “Synchrotron soleil” (Saint Aubin, 

France) has been accepted and beam time granted. PEEM experiments should be thus 

conducted in the upcoming months. 

• Controlled environment FFM (Friction Force Microscopy) 

As described in supplementary material S.3, results obtained using FFM in humid and 

dry conditions correlate with macroscale measurements (lower friction obtained under dry 

condition than in humid air). There still is a lot of investigations than could be carried out in 

order to understand the fundamental microscale tribolofigical mechanisms of a-C:H:Si:O and 

hopefully, at the scale of a single asperity.  
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Conclusion et Perspectives 

Les films minces DLC représentent une classe de lubrifiants solides aux domaines 

d’application multiples pouvant aller de l’industrie automobile aux outils de coupe et aux 

applications biomédicales. Différents éléments peuvent être incorporés dans le réseau de 

carbone amorphe de ces revêtements en couche mince afin de les « fonctionnaliser » pour une 

application cible, tout en maintenant leur structure amorphe. L’incorporation de silicium et 

d’oxygène dans le réseau amorphe de carbone permet d’obtenir des revêtements dénommés 

a-C:H:Si:O, connus pour leur meilleure stabilité thermique et la faible dépendance 

environnementale de leurs performances tribologiques, comparativement aux revêtements 

DLC « purs ». La compréhension fondamentale des phénomènes responsables de ces 

différences de comportement permettrait de concevoir des matériaux à base carbone aux 

propriétés tribologiques optimales pour différents environnements.  

Le but de ce travail de thèse était ainsi d’élucider les phénomènes fondamentaux impliqués 

dans la réponse tribologique de revêtements a-C:H:Si:O, tant du point de vue de la mécanique 

que des interactions physico-chimiques avec l’environnement et/ou leur antagoniste (en acier 

100Cr6). En outre, afin de répondre à la problématique de la stabilité thermique de ces 

revêtements, nous avons pu étudier l’effet des changements structuraux induits par traitement 

thermique sur leur réponse tribologique. 

Il est bien établi dans la littérature que le comportement tribologique des revêtements DLC en 
général est une réponse globale conjuguant à la fois les facteurs intrinsèques et extrinsèques, 
tel que présenté dans le premier chapitre de ce manuscrit.  

Nous avons donc procédé à une analyse complète des revêtements a-C:H:Si:O avant essais 
tribologiques, exposée dans le chapitre 2, notamment par des mesures Raman à plusieurs 
longueurs d’ondes couplées avec de la spectroscopie NEXAFS (Near-Edge X-Ray Absorption 
Fine Structure).  
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Nous avons menés des essais tribologiques, à pression atmosphérique, sur un tribomètre 
linéaire alternatif, que nous avons équipé d’un système de soufflage de gaz, permettant de 
changer l’environnement du contact de l’air ambiant à l’air sec, l’azote sec ou l’argon sec 
(Chapitre 3). Ces essais ont révélé que la vapeur d’eau et l’oxygène jouent un rôle clé 
respectivement sur le coefficient de frottement et sur le taux d’usure du revêtement  
a-C:H:Si:O. Ce dispositif nous a également permis de varier de façon dynamique 
l’environnement du contact. Il nous a ainsi été possible de démontrer que la réponse en 
frottement du revêtement est contrôlée par la réponse mécanique de l’interface (structure et 
composition du tribofilm, taux de cisaillement de l’interface), elle-même dépendante du taux 
de vapeur d’eau dans l’environnement. Cette variation de la réponse en frottement en fonction 
du taux d’humidité s’avère réversible. Ces expériences à pression atmosphérique ont aussi 
permis de mettre en évidence le rôle prépondérant de l’oxygène dans l’accélération de l’usure 
des revêtements a-C:H:Si:O.  

Afin de mieux comprendre le rôle de l’environnement sur la réponse tribologique des 
a-C:H:Si:O, nous avons mené des essais sur un tribomètre analytique en environnement 
contrôlé (Chapitre 4), fonctionnement depuis un vide poussé jusqu’à des pressions élevées de 
vapeur d’eau, d’oxygène ou d’hydrogène. Ces expériences ont révélé que les revêtements  
a-C:H:Si:O tribologiques intrinsèques médiocres (essais sous haut vide ou à faible pression de 
gaz, c’est à dire P<1 mbar de vapeur d’eau, P<10 mbar d’oxygène, P<50 mbar d’hydrogène). 
Néanmoins à partir et au-delà de ces pressions seuil, on obtient un faible coefficient de 
frottement. 

Une analyse plus approfondie des surfaces antagonistes après essais tribologiques (trace 
d’usure et tribofilms) par NEXAFS et spectroscopie Raman ainsi que par microscopie 
électronique en Balayage couplée à l’analyse EDX (Electron Dispersive X-Ray Spectroscopy) 
nous ont permis de proposer un modèle expérimental décrivant globalement les mécanismes 
fondamentaux qui interviennent entre les revêtements a-C:H:Si:O et leur environnement 
lorsqu’ils sont soumis à des sollicitations tribologiques (Chapitre 5). Ce modèle est basé sur la 
formation et la dissociation de jonctions adhésives créées à l’interface entre le revêtement et 
l’acier. En effet, sous vide poussé ou sous faible pression de gaz (régime de haut coefficient 
de frottement), un phénomène de transfert de matière se produit de l’acier vers le revêtement, 
alors qu’à pression de gaz suffisamment élevée (régime de faible coefficient de frottement), le 
phénomène de transfert a lieu en sens opposé, du revêtement vers l’acier. 

Ces analyses structurales en extrême surface du revêtement a-C:H:Si:O nous ont également 
permis de donner pour la première fois, une preuve expérimentale du phénomène de ré-
hybridation du carbone, généré par les sollicitations tribologiques, phénomène largement 
étudié dans le cas d’autres familles de couches minces à base carbone. La formation de 
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carbone sp2 en extrême surface des traces d’usure serait donc le résultat de la rupture des 
jonctions adhésives dans la couche à base carbone. Nous avons ainsi pu démontrer l’existence 
d’une réaction dissociative entre les gaz environnants (oxygène et hydrogène) et les liaisons 
carbone contraintes dans le revêtements suite aux sollicitations mécaniques, favorisant la 
rupture des liaisons C–C et in fine des jonctions adhésives.  

Les essais tribologiques réalisés sur des revêtements ayant subi une transformation structurale 
par traitement thermique sous ultra vide ont aussi montré qu’une plus importante fraction 
initiale de carbone sp2 en extrême surface du revêtement a-C:H:Si:O ne prédispose pas à 
l’obtention d’un bas coefficient de frottement.  

 

Perspectives 

En apportant de nouveaux éclairages sur les interactions mécaniques et physico-chimiques 
intervenant entre les revêtements à base de carbone amorphe contenant du silicium et de 
l’oxygène (a-C:H:Si:O) et leur environnement lorsqu’ils sont soumis à des sollicitations 
tribologiques, ce travail de thèse a contribué à la compréhension fondamentale des 
performances tribologiques des couches minces à base carbone. Différents aspects restent 
toutefois, à explorer, notamment : 

• La variation de la composition du revêtement 

Afin de confirmer l’effet bénéfique de la présence du silicium et de l’oxygène dans la stabilité 
thermique et la moindre dépendance environnementale des propriétés tribologiques des  
a-C:H:Si:O, de nouvelles campagnes d’essais avec des revêtements à taux de silicium et 
d’oxygène variable pourraient être envisagées.  

• Améliorer l’installation du tribomètre à air ambiant et son dispositif de changement 
rapide d’environnement 

Comme évoqué au Chapitre 3, à air ambiant, le coefficient de frottement stabilisé dépend 
fortement de l’humidité relative et donc des conditions climatiques au sein du laboratoire. 
Afin de permettre une meilleure reproductibilité des résultats, il serait envisageable 
d’introduire le dispositif dans une boite à gants, permettant en particulier un contrôle de 
l’humidité ambiante. 

• Davantage d’analyses structurale des différents tribofilms générés 

Du fait de la forte force magnétique appliquée dans la chambre d’analyse de la ligne du 
synchrotron lors des analyses NEXAFS, il nous a été impossible de procéder à une analyse de 
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la structure et de l’hybridation des tribofilms formés sur les pions en acier. Il n’en demeure 
pas moins que la chimie et la structure du tribofilm peuvent nous renseigner davantage sur la 
de la corrélation entre la réponse tribologique des revêtements amorphes à base carbone et la 
nature de l’environnement. Dans cet ordre d’idée, une demande de temps d’analyses par 
PEEM (PhotoEmission Electron Microscopy) a été soumise et acceptée par le synchrotron 
SOLEIL (ligne HERMES). Les analyses des tribofilms par PEEM viendront donc compléter 
les résultats ici présentés dans les mois à venir.  

• Essais tribologiques en environnement contrôlé à nano-échelle par FFM (Friction 
Force Microscopy) 

Comme présenté dans l’annexe S.3, les résultats obtenus par FFM en environnement humide 
(RH = 50%) ou sec (RH<1%) en utilisant des colloïdes d’acier collés sur des leviers d’AFM 
sont en adéquation avec ceux obtenus à macro échelle. Davantage d’investigations pourront 
être menées afin de comprendre les mécanismes de lubrification solide des couches minces à 
base carbone à nano échelle.  
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Appendix A.1. Characterization of the as received material 

A.1.1. Film thickness, topography and mechanics  

A.1.1.1. Film thickness: cross section SEM 

 

 
Figure A.1. Cross section SEM micrograph of as received a-C:H:Si:O  
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A.1.1.2. Surface roughness: AFM measurements 

 

 
 
Figure A.2. rms roughness of a-C:H:Si:O measured by AFM an area of (a) 2*2 µm2,  
(b) 1*1 µm2 and (c) 500*500 nm2 

A.1.1.3. Mechanical properties: Nanoindentation 

 
Figure A.3. (a) Hardness and (b) Elastic modulus of a-C:H:Si:O  
measured by nanoindentation 
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A.1.2. Chemical characterization 

A.1.2.1. Composition: RBS/HFS and SIMS 

 
Figure A.4. (a) RBS and (b) SIMS characterization of as-received a-C:H:Si:O. 
Data acquired by Evans Analytical Group. 

A.1.2.2. Surface analysis: NEXAFS 

 
Figure A.5. NEXAFS spectra with peak assignment for as recieved a-C:H:Si:

→π

→π
→σ

→σ
→π
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A.2. Characterization of UHV annealed sample 

A.2.1. Mechanical properties: Nanoindentation 

 
Figure A.6. (a) Hardness and (b) Elastic modulus measurement on ultra high vacuum 
annealed a-C:H:Si:O at 150, 250 and 450°C for one hour. 

A.2.2. Chemical characterization: SIMS 

 
Figure A.7. SIMS analysis of a-C:H:Si:O after annealing at 450°C under ultra-High 
vacuum conditions 
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A.2.3. Surface analysis 

A.2.3.1. XPS 

 
Figure A.8. High-resolution XPS spectra ((a) and (b) C1s, (c) Si2p) of  
a-C:H:Si:O acquired before annealing and after annealing at different temperatures under 
ultra high vacuum condition. Colored lines are curve fits. (c) composition calculated from 
XPS data of the near-edge surface region of a-C:H:Si:O as function of annealing 
temperature. Data were acquired by Dr. F. Mangolini. 
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A.2.3.2. NEXAFS 

 

 
Figure A.9. (a) C-K edge NEXAFS spectra of a-C:H:Si:O acquired before and after 
annealing at different temperatures under ultra-high vacuum conditions. 
The C K-edge spectra of reference sample (i.e. HOPG and UNCD) are also displayed 
(dashed lines). Spectra are presented and post-edge normalized as well as offset for clarity; 
(b) zoomed view of the absorption edge region of C K-edge NEXAFS spectra. Spectra 
displayed without any offset to allow for comparisons; (c) fraction of sp2-hybridized carbon 
vs. annealing temperature calculated from NEXAFS spectra. 
Data were acquired by Dr. F. Mangolini. 
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Appendix A.3. Effect of environment on microscale tribological 

behavior of a-C:H:Si:O 

 

 
Figure A.10. Microscale coefficient of friction of a-C:H:Si:O sliding against steel colloidal 
probe . Red measurements acquired in dry conditions (RH<1%), green: measurements 
acquired in humid conditions (RH 50%). 
 
 









Abstract 
Silicon oxide-containing hydrogenated amorphous carbon (a-C:H:Si:O) is a class of solid lubricants from the family of Diamond-
Like Carbon (DLC) coatings that exhibit outstanding mechanical properties, thermal stability and tribological performance. It is 
well established that the frictional and wear performances of a-C:H:Si:O are less dependent on environment than that of pure 
hydrogenated amorphous carbon (a-C:H). However the fundamental mechanisms accounting for such excellent tribological 
behavior of a-C:H:Si:O are still not fully understood. The present work, which is part of a collaboration between the Laboratoire 
de Tribologie et Dynamique des Systèmes of Ecole Centrale de Lyon and the department of Mechanical Engineering and Applied 
Mechanics of University of Pennsylvania, consists in using a multi-scale, multidisciplinary and multi-technique experimental 
approach for understanding the influence of environment on the tribological response of a-C:H:Si:O. 
A wide rang of complementary techniques, including nanoindentation, Atomic Force Microscopy (AFM), Friction Force 
Microscopy (FFM), optical and electron microscopy, Raman, X-ray Photoelectron Spectroscopy (XPS) and near edge x-ray 
absorption fine structure spectroscopy (NEXAFS), have thus been used to fully characterize the structure, composition and 
mechanics of the studied material, as deposited as well as after tribological testing. Control of the environment has been achieved 
first thanks to an open air linear reciprocating tribometer that we equipped with a gas blowing system, thus allowing a quick 
change of the sliding environment, and a environment-controlled analytical tribometer operating from high vacuum to elevated 
pressures of desired gases. 
We were able to evidence the strong influence of the amount of water vapor in the environment on the friction behavior of a-
C:H:Si:O, with a reversible behavior when abruptly changing the environment. Contrary to water vapor, oxygen promotes the 
wear of a-C:H:Si:O. SEM observations revealed that while sliding a-C:H:Si:O against 52100 steel, the frictional response is 
controlled by the build-up and the release of adhesive junctions within the interface. Under high vacuum and below a threshold 
pressure of water vapor (1 mbar), oxygen (10 mbar) and hydrogen (50 mbar), adhesive junctions are released in the steel, resulting 
in a transfer of material from steel to a-C:H:Si:O and in a high coefficient of friction (µ≈1.2). However, as the gas pressure is 
increased above the threshold, the adhesive junctions break on the a-C:H:Si:O side, leading to a material transfer in the opposite 
direction, from the a-C:H:Si:O to the steel. NEXAFS spectroscopy revealed that a dissociative reaction occurs between the 
gaseous species and the strained C–C atoms in the near surface region ofa-C:H:Si:O, thus resulting in a drastic decrease of the 
steady state coefficient of friction by at least an order of magnitude. 
In light of these observations, an analytical model has been proposed to describe the fundamental interaction mechanisms between 
the environment and the a-C:H:Si:O/steel tribopairs. 
 
Keywords: Solid lubricants, Diamond-like Carbon, a-C:H:Si:O, surface analysis, XPS, NEXAFS, Raman, nanoindentation, environment-
controlled tribology, tribofilms, re-hybridization. 

Résumé 
Les revêtements de carbone amorphe hydrogéné (a-C:H) avec incorporation de silicium et d’oxygène (a-C:H:Si:O) sont une 
catégorie de lubrifiants solides, de la famille des Diamond-Like Carbon (DLC), présentant aussi bien de bonnes propriétés 
mécaniques que tribologiques et une bonne stabilité thermique. Bien qu’il soit établi que le comportement tribologique de ces 
couches est moins dépendant de l’environnement que celui des couches a-C:H, sans éléments d’addition, l’origine physico-
chimique de ce comportement reste à élucider. Ce travail de thèse s’inscrit dans le cadre une collaboration internationale entre le 
Laboratoire de Tribologie et Dynamique des Systèmes de l’Ecole Centrale Lyon et le département de Génie Mécanique et 
Mécanique Appliquée de l’Université de Pennsylvanie, et a pour objectifs d’apporter des réponses à ces questions ouvertes. 
Un large éventail de techniques expérimentales complémentaires, notamment la nanoindentation, la microscopie à force atomique 
(AFM), la microscopie à mesure de force (FFM), la microscopie optique et électronique, le Raman, la spectroscopie de 
photoélectron X (XPS) et la spectroscopie de structure près du front d’absorption de rayons X (NEXAFS) a été mis en œuvre pour 
non seulement établir une carte d’identité mécanique, structurale et chimique du revêtement initial, mais aussi comprendre les 
modifications structurelles induites par le frottement. Afin de contrôler l’environnement au cours des essais tribologiques, nous 
avons utilisé d’une part un tribomètre linéaire alternatif, que nous avons équipé d’un système de soufflage de gaz permettant de 
changer rapidement l’environnent au cours des essais, et d’autre part un tribomètre analytique à environnement contrôlé autorisant 
des expérimentations tant sous vide poussé qu’à pression élevée de gaz.  
Ainsi, nous avons pu montrer que le coefficient de frottement augmente avec le taux de vapeur d’eau dans l’environnement et cela 
est réversible lorsqu’on diminue brusquement l’humidité. En outre, la vapeur d’eau protège la couche de l’usure alors que la 
présence d’oxygène la favorise. 
Grace aux observations en microscopie électronique, nous avons pu prouver que le comportement tribologique des couches a-
C:H:Si:O, lors d’un frottement contre de l’acier 100Cr6, est essentiellement contrôlé par la formation de jonctions adhésives dans 
l’interface. 
Sous vide poussé ou à faible pression de gaz (<1 mbar de vapeur d’eau, <10 mbar d’oxygène ou <50 mbar d’hydrogène), la 
rupture de ces jonctions adhésives a lieu dans l’acier, résultant en un transfert de matériau de l’acier vers l’a-C:H:Si:O 
s’accompagnant d’un coefficient de frottement élevé (µ≈1.2). Au delà de ces pressions seuils de gaz, les jonctions adhésives se 
rompent du côté du a-C:H:Si:O, le transfert de matière s’opérant alors dans la direction opposée, du revêtement vers l’acier. Des 
analyses NEXAFS ont révélé que ce phénomène s’expliquait par une réaction dissociative entre les éléments du gaz environnant 
et les liaisons carbone C–C contraintes, favorisée par la sollicitation mécanique en extrême surface de l’a-C:H:Si:O. Ceci résulte 
en une diminution drastique du coefficient de frottement à des valeurs d’un ordre de grandeur inférieures à celles obtenues dans la 
configuration précédente. 
L’ensemble de ces résultats nous a ainsi permis de développer un modèle expérimental expliquant les mécanismes fondamentaux 
d’interaction entre l’environnement et les lubrifiants solides du type a-C:H:Si:O. 
 
Mots clés : Lubrification solide, Diamond-Like Carbon, a-C:H:Si:O, analyse de surface, XPS, NEXAFS, Raman, nanoindentation, tribologie en 
environnement contrôlé, tribofilms, ré-hybridation. 


