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About wind waves...

“No really satisfactory explanation of the phenomenon has been offered and not even the
physical processes involved can be regarded as known.”

O. M. Phillips,
On the generation of waves by turbulent wind,
(1957) J. Fluid Mech., vol. 2 (5), pp. 417–445

“If one talks to a typical physicist about this question, one is likely to encounter surprise
that such an obvious problem remains unsolved. [...] We can only say that the subject of
the mechanics of the air-sea interface still requires more measurements and more ideas.”

R. W. Stewart,
Mechanics of the Air–Sea Interface,

(1967) Phys. Fluids, vol. 10, pp. S47–S55

“Many formidable challenges are still ahead for a better understanding of physics of wind
and waves.”

T. Hara & C. C. Mei,
Frequency downshift in narrowbanded surface waves under the influence of wind,

(1991) J. Fluid Mech., vol. 230, pp. 429–477

“A definitive explanation of the wave growth mechanism either physical or theoretical
remains to be propounded at the present time.”

Y. S. Tsai, A. J. Grass & R. R. Simons,
On the spatial linear growth of gravity-capillary water waves sheared by a laminar airflow,

(2005) Phys. Fluids, vol. 17 (9), 095101

“[T]he mechanisms that generate these surface waves are still an open issue”

M.-Y. Lin, C.-H. Moeng, W.-T. Tsai, P. P. Sullivan & S. E. Belcher,
Direct numerical simulation of wind-wave generation processes,

(2008) J. Fluid Mech., vol. 616, pp. 1–30

“Despite a significant progress and numerous publications over the last few decades a
comprehensive understanding of the process of waves’ excitation by wind still has not
been achieved.”

D. Liberzon & L. Shemer,
Experimental study of the initial stages of wind waves’ spatial evolution,

(2011) J. Fluid Mech., vol. 681, pp. 462–498
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“You know nothing, Jon Snow.”

Ygritte, Games of Thrones, season 2, episode 7.
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List of symbols:

cϕ phase velocity
f frequency
g gravity constant
h depth of the tank
k wavenumber
kc capillary wavenumber
u mean velocity profile in the tank
u∗ friction velocity
u∗c critical friction velocity
x distance along the test section (fetch)
y transverse distance to the center of the channel
z vertical distance to the interface
z+ dimensionless distance from the interface

H height of the wind tunnel
L length of the tank
Re Reynolds number in the liquid
Reτ half-height channel Reynolds number
U mean air velocity profile
U+ dimensionless mean velocity in the air
Ua mean air velocity at the center of the channel
Uc critical velocity
Us surface velocity
Vc convection velocity
Vconv experimental convection velocity
W width of the tank and wind channel

β spatial growth rate of the squared amplitude of the waves
δ0.99 thickness of the boundary layer in the air
δν thickness of the viscous sublayer in the air
γ surface tension
λ wavelength
λc capillary wavelength
ν kinematic viscosity of the liquid
νa kinematic viscosity of the air
ρ density of the liquid
ρa density of the air
τ interfacial shear stress
ζ amplitude of the surface deformation

Λx correlation length in the x direction
Λy correlation length in the y direction
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Chapter 1

General introduction

The encounter of a perfectly still mirror-like stretch of water outdoors is a relatively
rare occurrence. Indeed, it may look like slight wind is enough to create oscillations at
the surface of any body of water, be it a lake, the ocean, or a simple puddle. True,
these deformations may be tiny tremors, only visible when light reflects adequately on the
water. If the wind is only a faint breeze, the water surface retains a general flat smooth
appearance, with at the most minute barely distinguishable deformations. However, when
the wind grows stronger, the surface becomes rougher and small ripples start to emerge.
After a prolonged wind action or propagation from their point of origin, these first waves
may evolve greatly, getting longer and longer, shifting from the short wavelengths of a few
centimeters of the first ripples to the greater wavelengths of the order of ten to a hundred
meters that can be observed at sea. Depending on the wind, hardly visible perturbations
may grow into waves so steep they break.

Figure 1.1: Small surface waves generated by wind over a lake. The wind is blowing
roughly diagonally from the bottom left to the top right corner. Photography taken at
Xuanwu Lake, in Nanjing, China.

Wind waves are a fascinating phenomenon and their generation is a fundamental prob-
lem of fluid mechanics that has lead to more than a century of research. Since the sur-
face motions caused by wind and swell play an important role in the mass and heat
exchanges between oceans and atmosphere, this question is deeply related to the fields of
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oceanography, meteorology and coastal engineering [LeBlond and Mysak, 1981, Janssen,
2004] [Babanin et al., 2012]. Oceans are indeed far from being flat and smooth. The mean
wind velocity over the ocean surface is of the order of 7 m.s−1, while waves amount to
more than a meter of average height [Tokinaga and Xie, 2011]. Many works of research
have been motivated by the accurate inclusion of the effects of wind waves into air-sea
fluxes [Bretschneider, 1951] [Kudryavtsev et al., 2014] towards applications in meteoro-
logical forecasting, marine transportation safety or coastal protection. More recently, the
increasing demand for ecologically clean energy sources has encouraged attempts towards
the efficient harnessing of the largely available energy of waves and has fueled more re-
search into the field [Falcão, 2010].

The great interest for the understanding of wind waves may only be equaled by the
difficulty of grasping the details of their generation and evolution. Indeed, a wide panel
of parameters come to play a role and the intrinsic coupling between wave and wind (the
airflow acts on the waves and vice versa) leads to complex interactions. Independently
from the propagation, amplification and general behavior of the waves once they have
been generated, the generation process of waves under the action of wind is somewhat still
obscure. Energy is transferred from the air motion to the liquid, creating a drift current
and surface waves in a process than has still not been made entirely clear. A great number
of scientists have attempted to characterize the different stages of generation and growth
of water waves under the action of wind, but despite the numerous works of research, the
specifics of wind wave formation remains poorly explained.

One may be surprised that such a simple system is not fully understood. The problem
looks straightforward and its apparent simplicity is reinforced by the fact that almost
everybody has seen waves created by wind over water. Nevertheless, the more we seem
to learn about wind waves, the more we unearth questions. After a century of theoretical
analyses, numerical simulations, experiments in laboratory and field observations, there
are still major gaps in our understanding of the phenomenon, as quotes from various
publications in the past sixty years may attest (see page vii).

The physics of wind wave generation has indeed been under investigation for quite a
long time. In 1844, Russel describes the visual aspect of a air-water interface for a wind
of increasing strength [Russell, 1844]. He notes the “considerable regularity” of the small
waves generated uniformly over smooth water by a wind stronger than two miles per hour
(about 1 m.s−1). A couple of decades later, Helmholtz and Kelvin lay the first bases for
the theoretical analysis of the wind waves problem [von Helmholtz, 1868] [Thomson, 1871],
subsequently giving their names to what is now known as one of the most classical insta-
bility in fluid mechanics. The next leap in the understanding the wind waves phenomenon
then waited until 1957, a pivotal turn for wind wave research. It was indeed a prolific year
as no less than two models, developed independently by Phillips and Miles, were proposed
that same year [Phillips, 1957] [Miles, 1957]. While these two models both provide ex-
tremely interesting theoretical analyses, they are based on different approaches and lead
to quite different predictions. Phillips’ and Miles’ works brought a renewed interest to
the problem of wind wave generation and growth, and an abundance of publications came
to be, to test, improve, validate or confront these models, as well as explore the problem
through new approaches or more advanced techniques.
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This chapter is intended as an introduction to the general understanding of wind
wave generation and growth. However, the bibliography in this field is so vast 1 that this
chapter cannot give an exhaustive review of the state of the art for the entire literature
on the subject. Therefore, it only reviews the most relevant publications and provides the
necessary background to understand the scientific context in which the work of my PhD
has been carried out.

The structure of this chapter loosely follows the historical development. First, the
theoretical frame is defined, with emphasis on the Kelvin-Helmholtz instability. The im-
portance of the multiple parameters at play are discussed in the context of the experimental
study of the early stages of wind wave generation (section 1.1). Next, Phillips and Miles
models are presented (section 1.2). The most relevant experimental and numerical findings
from this point onward are then introduced (section 1.3), insisting on the latest advances
in direct numerical simulation and instrumentation. Finally, this chapter concludes with
the goals and scope of this PhD thesis (section 1.4).

1.1 Theoretical framework

1.1.1 Free surface waves

If the interface between two fluids initially at rest is disturbed, restoring forces work
to bring back the system to equilibrium and waves can propagate at this interface. The
restoring forces are gravity (through the density contrast between the two fluids) and
capillarity (through the interfacial surface tension). Depending on the relative importance
of gravity and surface tension, waves are labeled as “capillary waves”, “gravity waves”
or “capillary-gravity waves”. Let us consider two Newtonian, incompressible and inviscid
fluids, the lighter fluid on top of the denser one. Neglecting mean flow, the dispersion
relation for free linear surface waves is:

ω2 = ∆ρ
ρ1 + ρ2 tanh(kh)gk

[
1 +

(
k

kc

)2]
tanh(kh), (1.1.1)

with k = 2π/λ the wavenumber associated to the wave, ρ1 and ρ2 the densities of the lower
and upper fluids respectively, ∆ρ = ρ1 − ρ2 the density difference, g the gravitational
acceleration, h the depth of the lower fluid (the upper fluid is supposed infinite), kc =√

∆ρg/γ the capillary wavenumber and γ the surface tension. Note that in the case of
large depth, tanh(kh) can be approximated by 1, yielding the simplified dispersion relation
ω2 = (∆ρ/(ρ1 + ρ2))(gk + γk3/∆ρ). Equation (1.1.1) takes into account both gravity
and surface tension (capillary-gravity waves); the corresponding relations for capillary or
gravity waves are obtained by imposing g = 0 or γ = 0, respectively. It follows from
equation (1.1.1) that the phase velocity cϕ is given by:

cϕ = ω

k
=
[

∆ρ
ρ1 + ρ2 tanh(kh)

(
g

k

)[
1 +

(
k

kc

)2]
tanh(kh)

]1/2

. (1.1.2)

The separation between the two branches of the dispersion relation (i.e. the theoretical
separation between the waves primarily controlled by gravity and the waves primarily

1. In 2009, Ardhuin listed more than 2600 publications on ocean waves, with at least 300 of them
concerning directly wind waves and/or wind-sea interactions. The entire bibliography can be found under
different formats at http://surfouest.free.fr/WISEBIB/.

http://surfouest.free.fr/WISEBIB/


4 Chapter 1. General introduction

10
−3

10
−2

10
−1

10
00

0.1

0.2

0.3

0.4

0.5

0.6

λ (m)

λc

cmin

gr
av

ity
 w

av
escapillary wavesc φ

 (m
/s

)

Figure 1.2: Phase velocity of waves as a function of their wavelength, from the dispersion
relation for free linear surface waves on an inviscid liquid at rest and of finite depth (with
γ = 0.06 N/m, ρ1 = 1.2 × 103 kg.m−3, ρ2 = ρair = 1.2 kg.m−3 and h = 35 mm). The
black dashed line corresponds to the dispersion relation for infinite depth. Note that the
dispersion relations for finite and infinite depth depart from one another only at relatively
large λ (here for λ > 10 cm ' 3h). When the wavelength becomes large compared to the
liquid depth, the phase velocity asymptotically reaches its shallow-depth limit

√
gh.

controlled by surface tension) occurs at the capillary wavelength λc = 2π/kc for the
following phase velocity (see figure 1.2):

cmin =
(4gγ

∆ρ

)1/4 ( ∆ρ tanh(kch)
ρ1 + ρ2 tanh(kch)

)1/2
. (1.1.3)

In practice, waves of wavelength close to λc are controlled by both surface tension and
gravity (hence the term capillary-gravity waves).

The dispersion relation (1.1.1) applies for free surface waves: waves are not amplified
or damped. The situation of wind waves is quite different: wind (and a number of other
parameters like viscosity or current) can affect the waves’ propagation. In this case, the
dispersion relation (1.1.1) is not necessarily respected.

Moreover, in the case of wind waves, the upper fluid is a gas while the lower one is a
liquid. The strong density contrast often leads to neglecting the density of the upper fluid
for the wave propagation, yielding the following relations (ρ1 = ρ and ρ2 = 0):

ω2 =
(
gk + γ

ρ
k3
)

tanh(kh), (1.1.4)

cϕ = ω

k
=
√(

g

k
+ γk

ρ

)
tanh(kh), (1.1.5)

with the capillary wavelength becoming λc = 2π
√
γ/ρg. Note that whether (1.1.2) or

(1.1.5) is used makes a difference of order 0.1% in the results presented in figure 1.2. As
shown in this figure, depth correction on the phase velocity is negligible (< 1 %) for all
wavelengths at λ < 10 cm (for h = 35 mm).
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1.1.2 The Kelvin-Helmholtz instability

Let us start with the simplest model possible for the wind wave problem: two fluids,
the lighter on top, each one occupying an half-infinite space, with the flow in each fluid
being laminar, parallel to the interface at rest, constant and uniformly equal to Ui in the
laboratory reference frame. The velocity and density jumps are thus entirely located at
the interface (no boundary layer). As before, the phase on the bottom is denoted by the
index 1 while the upper one is referred by the index 2. The system is represented in
figure 1.3 in the reference frame of the lower fluid, in which the upper fluid has a velocity
U2 = ∆U and the lower fluid is at rest (U1 = 0).

 
U1 = 0

x

z

0

air

ζ(x,t)

liquidρ1

 
U2 = ΔU

ρ2

Figure 1.3: Sketch of the simplified velocity profile in the reference frame of the lower fluid
used for the Kelvin-Helmholtz analysis.

The first works on this system may be attributed to Helmholtz [von Helmholtz, 1868]
and Lord Kelvin [Thomson, 1871]. In particular, the stability analysis of Kelvin leads to
a velocity criterion for the generation of waves at the interface between the two fluids.
If the relative motion between the two fluids exceeds a critical value, a small upwards
perturbation of the interface will create an upward force due to the local pressure decrease
above the interface greater than the downward stabilizing forces associated with gravity
and surface tension: the perturbation grows (the same destabilizing effect occurs for a neg-
ative deformation). The system becomes unstable and waves can grow from perturbations
if the difference of velocity ∆U is greater than a certain value UKH:

UKH =
[
4gγ∆ρ

(
ρ1 + ρ2
ρ1ρ2

)2
]1/4

= cmin,∞
ρ1 + ρ2√
ρ1ρ2

, (1.1.6)

with cmin,∞ = (4gγ/∆ρ)1/4(∆ρ/(ρ1 + ρ2))1/2 the minimal phase velocity in infinite depth.
Below this velocity, no disturbance of any wavenumber grows. As the wind increases

and UKH is finally reached, waves of a single critical wavenumber, the first wavenumber
to become unstable, start to grow. As it turns out, this wavenumber at onset is the
capillary wavenumber kc. For a velocity difference ∆U further past UKH, a wider range of
wavenumbers (containing kc) becomes unstable.

For wind over water, the Kelvin-Helmholtz instability yields a theoretical onset of
about 6.6 m.s−1 at which point wind waves of wavelength approximately λc = 17 mm are
generated. However, in-fields observations as well as laboratory experiments are in strong
disagreement with these theoretical results. Indeed, ripples can be observed at the surface
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of the sea for winds as small as 1 m.s−1. In the controlled environment of a laboratory,
the observed threshold velocities are greater, at usually about 3 m.s−1, but still way below
the theoretical value of 6.6 m.s−1 (see table 5.3 on page 104).

Kelvin was well aware of this discrepancy. He postulated that the difference between
his theoretical prediction and the observed onset on a air-water interface comes from the
viscosity of the water that is not included in his computations [Thomson, 1871]. Generally
speaking, the few theoretical analyses on the influence of the viscosity on the Kelvin-
Helmholtz instability lead to only a small effect of viscosity on the critical velocity. For
example, Lindsay investigates through a stability analysis the influence of the viscosity
of the lower denser fluid on the onset of the Kelvin-Helmholtz instability, still with the
assumption that the mean velocity profiles are discontinuous [Lindsay, 1984]. Surprisingly,
it is found that whatever its value, the viscosity reduces the classical destabilizing velocity
UKH by a factor based on the density of the two fluids: Uc, visc = (ρ1/(ρ1 + ρ2))1/2UKH
(which in the case of a gas over a liquid leads to a very small correction). Taking the
viscosity of both fluids into account leads to similar results. The viscosity ratio in a
gas-liquid system can have a significant influence on the critical velocity only if the gas
is strongly confined compared to the liquid, if the height of gas is less than 20% of the
sum of the liquid depth and wind channel height, which is very possible in pipe flows but
uncommon in experimental studies of wind waves 2 [Funada and Joseph, 2001] [Kim et al.,
2011]. These results are in contradiction with the experimental observations of the critical
velocity of wind waves in a typical configuration. Indeed, a more viscous liquid yields a
higher threshold velocity (again, see table 5.3 on page 104).

1.1.3 Wind waves’ parameters

Since the Kelvin-Helmholtz description appears too simple to fully grasp the complex-
ity of the wind waves problem, more parameters need to be taken into account. Generally
speaking, wind waves should depend on the exact velocity profiles in the air and liquid
and therefore may depend on the viscosity of the liquid, the drift currents induced in the
liquid, the boundary layer turbulence, and the distance over which the wind blows, but
also on the time variation of the wind strength and direction, the time since the wind
started, the heat and mass exchanges at the interface, and so on. One would argue that
surely some of these parameters can still be neglected. This PhD thesis is based on an
experimental approach of the study of the early stages of wind wave generation and growth
in a laboratory. Consequently, in order to narrow down the relevant parameters, this sec-
tion is dedicated to an overview of the importance of the wind waves’ parameters in the
context of laboratory experiments.

Mean wind velocity profile

Since turbulence is not necessary for the generation of surface waves, some authors have
studied waves induced by laminar airflows [Blennerhassett, 1980] [Gondret and Rabaud,
1997] [Gondret et al., 1999] [Tsai et al., 2005b]. However, more often than not, experi-
mentalists do focus on turbulent airflows, since it is the natural state of wind. In order to
improve over the crude simplification of a constant uniform wind velocity at all elevations
above the interface, it is interesting to take a look at the mean velocity profile of a typical
turbulent flow.

2. The Kelvin-Helmholtz instability is also important in engineering applications involving liquid and
gas transport in pipes [Hewitt, 2013].
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U+= z+
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Figure 1.4: Mean velocity profiles for turbulent flows over smooth and rough walls. U+

and z+ are the mean velocity and the altitude over the boundary adimensionalized by
the friction velocity u∗ and the thickness of the viscous sublayer δν , respectively (see
section 2.2.a). ε∗ = ε/δν is the non-dimensional size of the roughness. Adapted from
[Van Driest, 1956].

Supposing the wind has a constant uniform mean velocity far from the interface, the
mean air velocity at the interface is much lower than this far-field value. Indeed, at the
interface, the mean velocities of the air and liquid flows are the same: they are equal
to the surface drift. The surface drift is fairly small compared to the wind velocity (see
below), therefore there is a layer, the boundary layer, above the interface in which the
mean velocity increases from the surface drift to a much higher wind velocity far above
the liquid.

The mean velocity profile of a boundary layer turbulent airflow is quite classical. From
the interface, the mean air velocity grows linearly with elevation in the viscous sublayer,
then grows logarithmically in the inertial sublayer until reaching a constant wind velocity,
for altitudes greater than the boundary layer thickness (more details about the mean
velocity profile in a turbulent flow and the turbulent boundary layer theory will be given
in section 2.2.a on page 35).

The existence of a region of logarithmic velocity profile has been widely stated experi-
mentally [Francis, 1954] [Plate et al., 1969] [Hsu et al., 1981] [Hsu and Hsu, 1983] [Liberzon
and Shemer, 2011] [Longo, 2012] [Zavadsky and Shemer, 2012] [Buckley and Veron, 2016]
and numerically [Lombardi et al., 1996] [Tsai et al., 2005a] [Lin et al., 2008] for a turbu-
lent wind above a liquid interface, provided that the amplitude of the surface deformation
is not too large [Plate et al., 1969]. Indeed, laboratory measurements of the mean ve-
locity profile above an air-water interface that is only slightly perturbed (using Particle
Image Velocimetry (PIV), Pitot tubes, hot-wire anemometry, etc.) yield profiles that fol-
low a logarithmic-type law in the boundary layer, similarly to the boundary layer over
a solid wall. Waves of higher amplitude may increase the roughness of the surface lead-
ing to a slight modification of the logarithmic law [Van Driest, 1956] [Raupach et al.,
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1991] [Schlichting, 2000] [Longo, 2012]: the mean velocity is smaller in the logarithmic
region (see figure 1.4).

Note that, if the wind is not stationary (either in strength or direction), the response
of the interface is more complicated. For example, an increasing wind can result in a tran-
sition from laminar to turbulent flow and waves can strongly interact with the Langmuir
circulations initiating this transition [Veron and Melville, 2001]. At sea, wind is com-
monly intermittent and gusty, but in the context of laboratory experiments, the gustiness
of the wind and the heat and mass exchanges are neglected (though they would not be in
oceanographic context). The wind forcing thus is taken to be sustained in time.

Liquid depth

As wind waves experiments are usually designed such that the infinite depth approx-
imation can be assumed, depth is usually not a remarkably important parameter. Most
analyses take the liquid depth to be infinite or equal to a constant value great enough to
yield only small corrections. The study of liquid films acted upon by wind is not expected
to lead to similar results. It is beyond the scope of our study and will not be reviewed
here 3.

Drift current

If the thickness of the liquid layer is supposed large enough not to have a significant
effect of the waves, the current in the liquid can however be more important. Indeed, the
wind does not only transfer momentum at the interface to create waves but also to the
bulk of the liquid to create a current drift, which may be laminar or turbulent.

The surface drift, the current velocity at the interface, is particularly important as it
gives the wind forcing its boundary condition. The ratio of the drift velocity to the mean
wind speed is usually of a few percents, typically around 2-3% of the wind velocity in the
case on an air-water interface [Plate et al., 1969] [Gottifredi and Jameson, 1970] [Wu, 1975]
[Veron and Melville, 2001] [Caulliez et al., 2008] [Liberzon and Shemer, 2011] [Pomeau
and Le Berre, 2011]. In the case of fluids of higher viscosity than water, the drift is
significantly smaller [Keulegan, 1951]. The base flow in the liquid may also affect the
waves’ propagation, so it is important to know the current in the liquid to apply possible
corrections.

The laminar-turbulent transition and the turbulence below the surface in general
have been investigated experimentally, often with the role of heat and mass exchanges
or mixing at the air-sea interface in mind [Caulliez et al., 2007] [Siddiqui and Loewen,
2007] [Schnieders, 2015]. Teixeira & Belcher have developed an analytical model to study
separately the influence of the turbulence in the air and in the water on the growth of
surface waves [Teixeira and Belcher, 2006]. They found that the pressure fluctuations in
water leads to steeper waves compared to a turbulent flow in the air producing pressure
fluctuation of similar magnitude. Their results suggest that the turbulence in water may
play a more important role than previously thought. This is consistent with the experi-
mental results of [Caulliez et al., 1998] that supports that the laminar-turbulent transition
in the water induces an explosive wave growth. However, it can be argued that, starting
from a liquid at rest, the turbulence in the liquid come from momentum transfer from the
wind, so there will be stages in which the turbulence in the air is predominant. While

3. Another parameter related to the liquid depth is the confinement of the liquid and gas flows. While
it can be an important parameter in an instability mechanism [Matas, 2015], the confinement in our case
is negligible and its influence is not reviewed here.
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the turbulence in the liquid may be important, waves can also be generated before the
laminar-turbulent transition in the liquid. The influence of this laminar-turbulent transi-
tion will not be further reviewed and in the context of laboratory experiments, the current
will be assumed unequivocally either laminar or turbulent.

Surface contamination

Surface properties are of a great importance in the wind waves system. For example,
the inception of waves by wind is strongly inhibited and delayed if the surface is contami-
nated, whether from the addition of surfactants [Keulegan, 1951] [Gottifredi and Jameson,
1970] [Kiefhaber, 2014] or by natural aging of the liquid [Tang and Wu, 1992] [Savtchenko
et al., 1997]. Indeed, surfactants reduce the surface roughness, leading to a smooth water
surface at wind velocities where ripples would cover a clean surface. Such suppression of
wind waves over water is most effective below 6 m.s−1, as at higher wind velocity the film
of pollutant may be disrupted and the interface reacts to wind like a clean surface [Tang
and Wu, 1992]. However, if this disruption does not occur, the inhibition remains: Keule-
gan reports that over water contaminated with soap or detergent, even the maximal wind
velocity of his facility (12 m.s−1) is unable to produce ripples or even simply the tremors
easily seen on clean water at low wind velocity. The generation of waves is therefore highly
influenced by the state of the interface. This makes perfect sense as in the situation of
capillary-gravity waves, the surface tension works as a competing restoring force against
gravity. Surface tension should not be neglected in the study of the early stage of wind
wave generation since it is mainly populated by capillary-gravity waves. However, gra-
dients of surface tension are neglected: the interface is supposed clean and therefore of
constant surface tension.

Viscosity

As mentioned in paragraph 1.1.2, the viscosity of the liquid has a significant effect on
the velocity onset of the waves, as experiments show that the critical wind velocity is higher
for more viscous liquids [Keulegan, 1951] [Francis, 1956]. Recently, it has been postulated
that the viscosity of the methane-ethane-nitrogen lakes on Titan may explain the fact
that no waves can be seen on Titan’s lakes despite winds stronger than the theoretical
estimates of wave onset [Ghafoor et al., 2000] [Lorenz et al., 2010] [Hayes et al., 2013].

The viscosity of the liquid can also directly affect the wave propagation. Lamb suggests
the following correction [Lamb, 1995]:

cϕ =
√(

g

k
+ γk

ρ

)
tanh(kh)− ν2k2. (1.1.7)

The complete dispersion relation of linear capillary-gravity wave on a viscous liquid of
finite depth is presented in [LeBlond and Mainardi, 1987] (equation (21) in their paper)
and numerical results for this fairly complicated relation are given for four liquids of
viscosity ranging from 0.01 to 18.5 ×10−4 m2.s−1. The parameter θ is defined as the ratio
squared of the diffusion scale D =

√
ν/ω over the inverse of the wavenumber : θ = νk2/ω,

ω being the radian frequency of undamped free waves (i.e. verifying the inviscid dispersion
relation (1.1.4)). In the case of infinite depth, the only cut-off is for short wavelengths
for θ0 ' 1.31 (the corresponding wavelength is noted λ0). Periodic motions of wavelength
smaller than λ0 are over-damped, blocking their propagation (see figure 1.5). If the liquid
height is finite, the short wave cut-off remains at θ0 ' 1.31 but a long wave cut-off also
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Figure 1.5: Figure 2 in [LeBlond and Mainardi, 1987]. Phase velocity (scaled with cm =
(4γg/ρ)1/4) as a function of the wavelength (scaled with λm = 2π

√
γ/ρg) for four viscous

liquids of infinite depth (water, glycol, oil, glycerine). The viscosities are in ×10−4 m2.s−1.

occurs (not shown in Fig. 1.5 as it presents results in infinite depth). It arises for liquid
depth small enough that the influence of the bottom friction reaches the interface: long
waves such that D =

√
ν/ω > h cannot propagate.

Figure 1.5 also conveys the range where the liquid can be considered as quasi-inviscid,
that is to say, when the waves are weakly damped but with a frequency unaffected by
viscosity. The range of validity of the quasi-inviscid regime correspond to the portion of
the graph over which the dispersion curve almost coincide with the inviscid dispersion
curve, i.e. λ > 10λ0. The quasi-inviscid approximation leads to a correction of ω into
ω − 2iνk2.

All these results show that viscosity can have a major influence on the wind wave
generation. As a consequence, the viscosity of the liquid will not be neglected in our
system (its influence will even be closely studied).

Wind waves in the laboratory

Based on the importance of each of the parameters discussed above, let us refine the
system that will be considered for wind wave generation. This more complete system
departs from the simplified system of the Kelvin-Helmholtz instability (Fig. 1.3) and is
presented in figure 1.6. Both fluids are supposed incompressible of constant uniform
density and viscosity, separated by an interface over which the surface tension is uniform.
The depth of the liquid is constant and large enough that corrections due to finite-depth
effects are small. The wind is a turbulent airflow whose mean velocity is parallel to the
interface at rest and the current in the liquid is taken into account.

While wind waves have been studied in different configurations than this one, the rest
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Figure 1.6: Sketch of the system. Adapted from [Longo, 2012].

of this chapter mainly focuses on publications that concern similar systems. In accordance
with the literature, we use the term fetch to refer to the distance over which the wind
blows, which in wind waves experiments is usually the distance from the beginning of the
liquid surface.

1.2 Mechanisms for wind wave generation and growth
Beyond the Kelvin-Helmholtz instability, the first to venture into suggesting a mecha-

nism for wind wave generation was Jeffreys [Jeffreys, 1925]. Jeffreys proposes a ‘sheltering’
model in which each wave crest is partially sheltered by the previous crest from the full
effect of the wind, based on a sheltering coefficient. This supposes the separation of the
airflow above each crest and leads to a greater pressure on the slopes facing the wind than
on those away from it, resulting in the wave development. However, measurements re-
vealed a sheltering coefficient an order of magnitude smaller than predicted, and Jeffreys’
mechanism was proven beyond doubt not efficient enough to account for the generation
of the first wind waves [Phillips, 1957].

The next models were presented three decades later. Published simultaneously in 1957,
the groundbreaking works of Phillips and Miles on wind wave generation were entirely
independent from one another and consider the wind wave generation from two very
different approaches, complementary rather than competitive.

1.2.1 Phillips resonant model: wave generation by turbulent fluctua-
tions

In 1957, Phillips proposes in an easily readable article a theory for the generation of
wind waves [Phillips, 1957]. Contrary to the Kelvin-Helmholtz approach, Phillips does
not view wind waves as a stability problem but as a resonance one, between the pressure
fluctuations in the airflow and the modes of the free surface.

Wind wave generation through the pressure fluctuations in the turbulent airflow was
first proposed by Eckart [Eckart, 1953]. While Eckart studies the effect of a known en-
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semble of gusts of prescribed extent in space and time, Phillips generalizes this approach
with a random distribution of normal pressure into a resonant model for the generation
of wind waves over water. In his model, the water, assumed to be inviscid 4, is initially
at rest and becomes deformed by the pressure fluctuations, but without any countereffect
on the air profile due to these deformations of the interface. Based on this assumption of
decoupling between waves and wind, Phillips expresses the spectrum of the surface waves
as a function of the spectrum of the pressure fluctuations in the turbulent wind. He shows
that if the convection velocity Vc of the pressure fluctuation of length Λ is equal to the
phase velocity cϕ of the wave of this specific wavelength Λ, resonance occurs and the wave
is amplified.

On this basis, it can be considered that the waves develop in two stages. At times
shorter than the time of development of the pressure fluctuations, the “initial stage of
development”, only short waves are generated, prominently capillary waves propagating
in the direction cos−1(cϕ/Vc) relatively to the wind direction. The “principal stage of
development”, where most of the wave growth occurs, happens at later times, when the
waves created in the first stage enter in resonance. The theory predicts a linear growth
in time of the mean square of the amplitude of the wave (i.e. a linear growth of the wave
energy):

ζ2 ' p2t

2
√

2ρ2Vcg
. (1.2.1)

This growth of the wave amplitude as the square root of time continues until the waves’
amplitude becomes so high that nonlinear effects are not negligible anymore. According
to Phillips, this occurs when the mean square slope of the waves reaches a certain limit
value. He postulates that past that point, an equilibrium is attained (the waves do not
grow anymore).

This is a very different approach from the Kelvin-Helmholtz model, in which the wind
must reach a certain threshold before perturbations can be amplified. In Phillips’ model,
the minimum wind velocity capable of setting off the resonance is the minimal phase
velocity cmin = (4gγ/ρ)1/4 (approximately 0.23 m.s−1 for water waves). However, surface
deformations will occur for a turbulent wind of any velocity since any turbulent flow
necessarily includes some level of fluctuations.

Phillips’ model can be criticized on the basis of its complete disregard of the correlations
between air and liquid motions. This coupling, as well as other parameters like the liquid
viscosity entirely neglected in his theory, may have an important role in wave generation.
Consequently, Phillips acknowledges that his resonance effect of the pressure fluctuations
cannot be claimed as the sole mechanism capable of generating waves. Other instabilities
may occur and a critical wind velocity may be defined at their arrival.

1.2.2 Miles shear flow model: wave generation by shear flow

Only a few months after the publication of [Phillips, 1957], Miles suggests an entirely
different approach to the problem and proposes a shear flow mechanism for the wind wave
generation [Miles, 1957]. Contrary to Phillips, Miles studies this problem from a stability
point of view.

As for the Kelvin-Helmholtz instability, the air is assumed to be inviscid and incom-
pressible. The disturbances in velocity and pressure due to interfacial waves are assumed

4. Phillips states that the viscosity of the water is “probably unimportant” for all but the shortest
waves over moderate intervals of time.
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to be 2D and small enough to be able to use linearized equations of motion. The turbulent
fluctuations are neglected, except for the development of the mean velocity profile. In this
sense, Miles model is said to be quasi-laminar as the turbulence of the airflow is taken
into account only through the base flow of the turbulent airflow. The liquid is supposed
inviscid as well, incompressible and irrotational, and its mean motion is neglected. Using
Rayleigh’s equation (i.e. the inviscid Orr-Sommerfeld equation), Miles analyses the energy
transfer from an airflow of mean velocity profile U(z) (in absence of waves) to a wave of
phase velocity c. He demonstrates that this energy transfer rate is proportional to the
profile curvature −U ′′(zc) at the critical altitude zc above the interface where the mean
air velocity is equal to the phase speed of the wave: U(zc) = c. Depending on the sign
of the curvature U ′′(zc), the energy transfer rate will be either negative or positive, and
the waves are either damped (stable profile) or amplified (unstable profile). In case of
amplification, the wave energy grows exponentially.

Theory of wave generation by wind 393 
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FIGURE 1. Airflow relative to a travelling water wave. The figure depicts, in a frame of 
reference moving to the right with a travelling sinusoidal water wave of velocity c ,  a 
sheared airflow, in the direction of the wave, whose unperturbed velocity profile U ( y )  - c 
in this frame of reference is as shown, being zero at y = 0.1 wavelengths. Eight stream- 
lines are shown, representing Miles's first approximation (21), the velocity on each being 
to a first approximation given by the length of the corresponding arrow on the velocity- 
profile diagram. The figure exhibits one wavelength only, in the case when the amplitude 
of the surface elevation is 0.02 wavelengths (that is, 30 yo of the maximum possible ampli- 
tude). The next approximation to the streamline pattern would be obtained by calculating 
as in (22) the pressure distribution (low over crests, high over troughs) needed to produce 
the streamline curvatures of figure 1, and deducing an improved distribution of velocity 
and streamtube area, by means of the Bernoulli and continuity equations, respectively. 

FIGURE 2. Effect of a sinusoidal pressure gradient on a uniformly sheared airflow, in the 
absence of viscous or turbulent diffusion. Streamlines a t  equal intervals of the stream 
function are shown, on the assumption of a velocity gradient a t  the critical layer as 
in figure 1, and a pressure distribution there obtained by numerical solution (Miles 1959a) 
of the equations for a logarithmic wind profile linearly perturbed by the surface displace- 
ments of figure 1. The application of the pattern of figure 2 to figure 1 might be attempted 
by bending it so that the dash-dotted critical level takes up the shape which it has in figure 1, 
but it should be observed that the curvature of the velocity profile assumed in figure 1 
would tend to produce compression of the streamlines below the critical level and expansion 
of those above it, and moreover, that turbulent diffusion would substantially alter the 
pattern. It would not, however, alter the need for downflow ahead of the crest, and up- 
flow behind it, which results from slow fluid being turned back on approaching the higher- 
pressure regions over troughs, and must be such that the vortex force, approximately 
-pU'(y,) w, balances the sinusoidal pressure gradient. When the unperturbed vorticity 
decreases with height, this sinsuoidal variation of vertical velocity generates a negative 
mean vortex force, - p G ,  capable of extracting air momentum and energy in the correct 
ratio, c ,  for transfer to the water wave. 

Figure 1.7: Sheared airflow relative to a travelling sinusoidal wave of velocity c. The front
and back of the crest (terms used in the text) correspond here respectively to the right
and left sides on the figure. From [Lighthill, 1962].

Lighthill gives a physical interpretation of Miles model in [Lighthill, 1962]. Let us
consider a sheared airflow over the crest of a sinusoidal wave propagating at a velocity
c. The wind decreases the pressure over the wave crests and increases it in the troughs.
The streamlines follow the shape of the interface and the critical height is therefore wavy.
Since the mean air velocity at the critical height zc is equal to the wave phase velocity,
in the reference frame of the wave, the air flows in the direction of the wave propagation
above this critical elevation and in the opposite direction below zc, close to the interface
(see Fig. 1.7). A perturbation just above the critical height slowly overtakes the crest,
moves down below the critical layer because of the higher pressure above the trough, and
returns towards the crest. An upward air motion occurs at the critical height behind the
crest. Since the vorticity of the turbulent undisturbed airflow decreases with altitude, the
downflow ahead of the crest produces a local vorticity deflect and the upflow behind the
crest a local vorticity excess. As a consequence, the mean vortex force −ρωv (with ω
the vorticity and v the vertical velocity) is negative and reduces the mean momentum at
the critical height, by energy transfer to the wave. The energy transfer rate varies as the
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square of the wave amplitude (since it governs the pressure distribution), which means
that the energy transfer rate varies as the wave energy itself. Consequently, the wave
energy grows exponentially.

Despite the considerable positive interest taken in Miles model [Janssen, 2004], it also
aroused some controversy [Komen et al., 1996]. The quasi-laminar approach was said to
oversimplify the problem and ignore nonlinearities. In particular, this leads to a significant
issue concerning the location of the critical layer at which the mean wind velocity equals
the wave phase velocity. For short waves, the altitude at which the mean velocity equals
the phase velocity lies in the viscous sublayer, where the mean air velocity linearly increases
with the altitude. Therefore, the curvature of the profile there is zero, which leads to a
zero energy transfer rate according to [Miles, 1957], and Miles’ mechanism cannot play a
role in the generation of waves. Miles’ mechanism as defined in [Miles, 1957] is relevant
only provided that the critical layer is located outside the viscous sublayer, that is to say
for waves of sufficiently high wavelength and for a wind velocity that is not too large.

To deal with this issue, Miles extends his model in [Miles, 1959a] by taking into account
(to some extent) the viscosity. Following the approach of [Benjamin, 1959], he includes
the dominant viscous term in the Orr-Sommerfeld equation and uses a more accurate
numerical model to obtain results for the air-water case, leading to a wave generation
mechanism also applicable to shorter waves. Miles continues to improve his model in later
papers [Miles, 1962] [Miles, 1967] [Miles, 1993] 5. The core of his model remains the same
as in [Miles, 1957], with the shared result of an exponential growth of the wave energy.
Note that when later papers compare their results to “Miles’ model”, this is not necessarily
in reference to [Miles, 1957].

Miles applies his model to deep-water waves generated by wind, with the mean air
velocity profile taken to be logarithmic so as to mimic the profile in the boundary layer in
turbulent flows [Miles, 1957] [Miles, 1959a] [Conte and Miles, 1959] 6. The minimum wind
velocity for the initiation of gravity waves is calculated to be about 1 m.s−1 in qualitative
agreement with the onset of ripples over a calm sea, but much smaller than the onset
velocity of about 3 m.s−1 observed in controlled laboratory experiments. Miles notes that
the energy transfer due to turbulent fluctuations as described by [Phillips, 1957] renders
the question of the critical wind velocity of secondary significance, as Phillips’ mechanism
is bound to have produced surface waves beforehand. He applies the same method to
revisit the Kelvin-Helmholtz instability in [Miles, 1959b] and generalizes the problem for
a parallel shear flow with a light inviscid fluid over a denser viscous fluid. Applying his
results to a air-water interface, he concludes that including viscous forces in the liquid have
no effect on the critical velocity and that Kelvin-Helmholtz instability is unlikely to appear
at the typically observed wind speeds. He also finds that his modified Kelvin-Helmholtz
model may adequately explain the onset of waves for a parallel shear flow over a fairly
viscous liquid like oil.

5. He incorporates the energy transfer through viscous stresses [Miles, 1962], the energy transfer through
turbulent Reynolds stresses [Miles, 1967] and the wave-induced perturbations of the Reynolds stresses
[Miles, 1993]. Note that in [Miles, 1962], Miles prefers the term viscous Reynolds stress over viscous stress,
stating that “[i]t must be emphasized that, in first approximation, the energy transfer at the interface
is through the out-of-phase component of the pressure and that energy transfer through the shear stress
enters only in the next approximation. It was, among other things, to emphasize this distinction that the
term viscous Reynolds stress, rather than viscous stress, was selected and has been retained.”

6. [Conte and Miles, 1959] provides the details of the computation and results.
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1.2.3 Limitations and complementarity of Phillips’ and Miles’ models

It is interesting to note that Phillips’ and Miles’ models are less competitive than they
are complementary. Neither of the two models fully encompasses the complexity of a
turbulent airflow. Phillips’ model takes into account the fluctuations independently of the
base flow while Miles’ model is based on the stability of the mean velocity profile alone,
neglecting any effect of the fluctuations except for the development of the turbulent base
flow. Phillips’ model is three dimensional, while Miles’ model is purely 2D. Miles’ model
works on a positive feedback of the interface response; Phillips’ model injects energy into
surface waves at all frequencies independently of the amount already there, be it zero (flat
interface). Phillips’ model is uncoupled as the excitation (the turbulent fluctuations) is
assumed to remain independent of the response of the interface. In contrast, coupling
between the airflow and the interface is central in Miles’ model, as it is based on stability
analysis, where the excitation is proportional to the response when the flow becomes
unstable. Based on their description, it also appears that Phillips’ mechanism is more
suitable for the growth of short waves while Miles’ mechanism would better govern the
longer wind waves, calling into question the response to their competition at intermediate
wavelengths.

Due to their complementarity, Phillips and Miles theories are sometimes combined
into the Miles-Phillips’ model [Hidy and Plate, 1966] [Stewart, 1967] [Plate et al., 1969].
In this approach, the first deformations of the interface are generated by the pressure
fluctuations of the turbulent airflow as proposed by [Phillips, 1957], leading to a linear
growth in time of the wave energy, until Miles’ mechanism [Miles, 1957] takes over and
the wave energy starts to grow exponentially. Therefore, Phillips’ mechanism would be
responsible for the first surface perturbations, populating the interface with capillary-
gravity waves of small amplitude. These small deformations create a surface roughness
that “trips” Miles’ mechanism into action, shifting the preceding linear wave growth to
an exponential growth. This growth then continues until an equilibrium (saturation) is
reached. Note that this implies that neither model is expected to give a full picture of the
interface response for all times.

Also note that both Phillips’ and Miles’ models provide predictions for the temporal
growth rate of the wave energy. In experiments, the available instrumentation and set-
up configuration usually leads to the measurement of either the temporal or the spatial
growth rate. The spatial growth rate β and temporal growth rate βt are related at onset
through the group velocity cg = ∂ω/∂k [Gaster, 1962] 7:

βt = cgβ, (1.2.2)

but experimentally, the surface drift also has to be included, especially if the current
is non-uniform in the direction of the wave propagation [Longuet-Higgins and Stewart,
1961]. Moreover, the Gaster relation is valid only in the limit of weak departures from the
threshold (small rates of amplification).

7. In our notations, waves are amplified in time or space for positive βt and β respectively. [Gaster,
1962] uses another notation where temporal amplification corresponds to βt > 0 while spatial amplification
occurs for β < 0, which leads to a negative sign in his equation (12).
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1.3 Experimental and numerical results

1.3.1 Comparison with the models

Since the publications of Phillips’ and Miles’ models, many attempts have been made
to test these predictions or to improve these models. Experiments concerning the effect of
wind over waves can be separated into two categories: purely wind-generated waves [Plate
et al., 1969] [Mitsuyasu and Rikiishi, 1978] [Kawai, 1979] [Kahma and Donelan, 1988]
[Veron and Melville, 2001] [Liberzon and Shemer, 2011] [Grare et al., 2013], and wind-
ruffled mechanically-generated waves, in which waves are not generated by wind but by a
forcing at a certain frequency [Bole and Hsu, 1969] [Gottifredi and Jameson, 1970] [Wilson
et al., 1973] [Mitsuyasu and Honda, 1982].

Mechanically-generated waves amplified by wind

Mechanically-generated waves have the advantage of the accurate knowledge of the as-
pect the wave has in absence of wind. The amplification by wind at a particular frequency
can be evaluated without any filtering by the direct measurement of the wave amplitude.
Using a wave generator in a wind wave tank at low wind velocity (at 1.1 and 1.8 m.s−1),
Wilson et al. observe growth rates two to five times larger that Miles predictions [Wilson
et al., 1973]. At higher wind velocity (5 to 12.5 m.s−1) in a comparable configuration,
Mitsuyasu & Honda measure growth rates twice as great as Miles theory [Mitsuyasu and
Honda, 1982]. However, in a similar experiment, Gottifredi & Jameson find growth rates
much closer to Miles theory [Gottifredi and Jameson, 1970]. Generating waves with a
paddle and measuring their amplification by wind over water or dilute glycerol solutions,
they witness that liquids of higher viscosity show lower growth rates. Contrary to [Wilson
et al., 1973], they find their experimental results to be in accordance with Miles theory,
at least up to a certain wind velocity. In the case of water, the agreement runs up to
3 m.s−1. With a glycerol-water mixture of kinematic viscosity eleven times greater that
the one of water, it continues up to 5 m.s−1. Above these values, experiments and theory
show no common trends. The results of [Gottifredi and Jameson, 1970] and [Wilson et al.,
1973] are however subject to caution. Indeed, Tsai [Tsai, 2002] comments that the wind
profiles parameters in [Gottifredi and Jameson, 1970] is likely to contain large errors due
to the growth of the turbulent boundary layer and the absence of correction of the shear
effect on their Pitot-tube measurements close to the interface, while the meniscus on the
wave wire gauge used in [Wilson et al., 1973] reduces the accuracy on the wave amplitude
(it ranges from 0.02 to 0.3 mm). In any case, it is difficult to conclude on the validity
of Miles’ model based on these experiments of mechanically-generated waves amplified by
wind.

Wind waves experiments

Numerous publications deal with the experimental measurement of wind wave growth
in laboratory. To do so, most experiments are conducted under similar conditions: a
wind blower injects a turbulent wind over a tank filled with water 8. The tank is usually
quite long (5 to 40 meter long) and deep enough that finite-depth effects are weak. If
the tank is short enough for reflected waves to be an issue, the end of the tank may be
equipped with a wave absorber or a sloped beach to damp or break the incoming waves.

8. To my knowledge, no experimental work has presented growth rates of wind-induced waves over a
liquid other than water.
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The air generally flows above a portion of smooth floor before suddenly transition to the
liquid boundary. Different methods can be used to determine the wave growth rate. For
example, the temporal growth rate can be measured easily by a wave elevation probe.
With more than one of these probes arranged along the tank, the spatial growth rate can
be assessed. Growth rates can be measured by other means than the spatial change of
wave energy from surface elevation records. Indeed, wave growth rates can also be derived
from microwave backscatter [Larson and Wright, 1975] [Ebuchi et al., 1987] [Savtchenko
et al., 1997], static air pressure measurements [Donelan et al., 2006] or tangential stress
measurements [Grare et al., 2013]. For more details on these methods and a review and
comparison of a selection of data sets from the literature, see [Peirson and Garcia, 2008].
Note that determining the growth rate associated with a particular frequency is however
not as easy as in wave experiments with a mechanical forcing. In the case of waves purely
generated by wind blowing over the liquid surface, the forcing by the wind can excite all
frequencies. Just above the wave onset, the ripples generated by wind are usually close
to being monochromatic. However, further away from the wave generation threshold, the
surface waves may be composed of various components and a wider spectrum of frequencies
may be produced. In this case, spectral decomposition is required to obtain the growth
rate for a particular frequency.

Many publications report a temporal exponential growth rate [Larson and Wright,
1975] [Plant and Wright, 1977] [Mitsuyasu and Rikiishi, 1978] [Kawai, 1979] or a spatial
exponential growth rate [Hidy and Plate, 1966] [Sutherland, 1968] [Plate et al., 1969]
[Mitsuyasu and Rikiishi, 1978] [Liberzon and Shemer, 2011]. While this is a point in favor
for Miles’ model, the associated growth rate is not necessarily close to the one predicted.
For a wind velocity of about 11 m.s−1, Plate et al. find an exponentional growth rate with
fetch with an error of more than 60% relatively to Miles’ model [Plate et al., 1969]. For
wind speeds between 4 and 16 m.s−1, Plant & Wright also find a temporal exponential
growth of short gravity waves at higher rates than predicted [Plant and Wright, 1977].
On the contrary, in [Hidy and Plate, 1966], Hidy & Plate observe spatial exponential
growth in the range of the predictions of Miles’ model, for wind velocities between 10.8
and 14.5 m.s−1. They comment that their measurements are too inaccurate at small fetch
and time to be able to detect the linear growth predicted by Phillips. Sutherland reports
regions of spatial linear growth at his lowest velocity (6.7 m.s−1) and exponential growth at
higher velocities (9.4 to 15.2 m.s−1) [Sutherland, 1968]. The exponential growth rates are
in agreement with the theory for wave frequency below 3.5 Hz and an order of magnitude
smaller for higher frequencies. The scatter in the regions of linear growth is too important
for a quantitative comparison with Phillips’ model.

Using microwave backscatter responding to waves of wavelengths of 0.7-7 cm, Larson
& Wright also note exponentional wave growth with time for wind velocities ranging
from 1.4 to 15 m.s−1 [Larson and Wright, 1975]. They do not compare their results
with theoretical predictions but with data from others wind waves experiments. They
find little overlap between their experimental results and those of the publications they
are compared with. They explain the discrepancies by the fact that the way the data is
reduced (through the wavenumber) does not take the drift into account. The only datasets
leading to an acceptable agreement with their results are the ones from [Gottifredi and
Jameson, 1970] and [Wilson et al., 1973] for which the wind drift was small. In [Plant,
1982], Plant introduces the data presentation of wind wave growth rates through the
non-dimensional ratio βt/f as a function of u∗/cϕ, where f is the wave frequency and
u∗ the air friction velocity. He summarizes the data collected at sea and in laboratories
available at that time, reconciling some discrepancies and proposing the empirical relation
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βt/f = 2π(0.04 ± 0.02)(u∗/cϕ)2 cos θ over a large range of frequencies, with θ the angle
between the wind and wave directions. Plant’s representation has often been used since
then for data comparison, even though the comparison sometimes leads to disagreements
with his empirical relation [Mitsuyasu and Honda, 1982] [Lin et al., 2008]. Measuring
spatial growth rates based on the momentum transfer and based on direct determination
of the wave amplitude increase with fetch, Liberzon & Shemer find that the spatial growth
rates based on the momentum transfer are greater than those obtained through the direct
measurement of the spatial growth of the wave amplitude [Liberzon and Shemer, 2011].
The latter are in better agreement with Miles’ model than the former in terms of value,
but both their evolutions with u∗/cϕ are completely different from the theory.

To summarize, the comparison between the models of wind wave generation and lab-
oratory experiments lead to mixed results. A qualitative agreement can be shown with
Phillips and Miles theories but not a quantitative one [Stewart, 1967] [Massel, 1996] [Liber-
zon, 2010]. Phillips’ model concerns waves of such weak amplitude that definitive con-
clusions cannot be drawn, and the experimental exponential growth rates are usually at
least an order of magnitude higher than the predicted values by Miles’ model [Massel,
1996]. In addition to that, the format of the data comparison itself is not trivial [Plant,
1982] and different measurements techniques can lead to significant differences in growth
rates [Morland and Saffman, 1993] [Liberzon and Shemer, 2011]. It should also be noted
that many of the wind wave experiments are conducted at high wind velocity, well above
the threshold of wave generation, even in ranges where airflow separation can occur above
wave crests [Wilson et al., 1973].

1.3.2 Beyond Phillips’ and Miles’ models

Phillips’ and Miles’ models of 1957 are not the only mechanisms for wind wave gen-
eration that have been proposed. Mention may be made for example of [Deardorff,
1967], [Kahma and Donelan, 1988] and [Belcher and Hunt, 1993], among others. The
range of validity of each of these mechanisms is still discussed.

Generally speaking, the full stability analysis of the system amounts to an Orr-Sommer-
feld problem on each fluid, coupled through conditions at the perturbed interface. The
literature is abundantly populated with stability analyses of parallel two-phase flows and
tentative improvements of already existing models ( [Taylor, 1940] [Yih, 1967] [Valenzuela,
1976] [Blennerhassett, 1980] [Hooper and Boyd, 1983] [Katsis and Akylas, 1985] [van Gastel
et al., 1985] [Hooper and Grimshaw, 1985] [Charru and Hinch, 2000] [Teixeira and Belcher,
2006] [Montalvo et al., 2013] [Otto et al., 2013] [Young and Wolfe, 2014], to name a few).
This profusion can be explained by the large number of parameters that can be taken
into account in the analysis, as well as different ways to take them into account. The
complexity comes from the fact that the stability analysis can take into account some
parameters while neglecting others, like the surface tension, the density difference, the
viscosity, the current in the lower fluid, etc, which leads to different equations. Once the
stability equation has been derived, the stability of a given profile can be studied, usually
with the help of the computational capacity of a computer. Moreover, the numerical
applications of these equations require specification of the profiles of the parameters in
the two fluids. The density is generally chosen to be constant in each fluid, and the same
goes for the viscosities (when they are not neglected). But for the mean velocity profiles,
the issue is not straightforward. While the influence of changes in current profile is weak,
a slight change in the shape of the wind profile can yield very different results [van Gastel
et al., 1985].

Indeed, Boomkamp & Miesen argue that due to the great number of parameters, the
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studies found in the literature only apply to a relatively small portion of the parameter
space and it is not always clear which instability is actually examined [Boomkamp and
Miesen, 1996]. Aiming for a clarification of the literature, they devise a classification of the
two-phase flows based on the five different ways of energy transfer from the primary to the
disturbed flow, in the context of the Orr-Sommerfeld analysis in both fluids coupled at the
interface. Grouping together the instabilities driven by the same energy terms, they list five
classes of instability: (i) Rayleigh-Taylor instability, originating from density stratification;
(ii) Miles instability, originating from velocity profile curvature; (iii) instability induced by
tangential disturbances, originating from density and viscosity stratification 9; (iv) shear
mode instability, originating from shear effects; (v) internal mode, originating from a
combination of viscosity stratification and shear effects. They also indicate which papers
study the same instability and fall into which class of instability.

Boomkamp & Miesen particularly discuss the viscosity-induced type of instability, first
theorized by Yih [Yih, 1967]. Indeed, considering the stability of a plane Couette-Poiseuille
of two superposed fluids of different viscosities, Yih shows that the viscosity stratification
alone can cause instability. His work has paved the way to numerous investigations of
the stability of the interface between two shearing fluids of different viscosities [Hooper
and Boyd, 1983] [Hooper and Grimshaw, 1985] [Barthelet et al., 1995] [Charru and Hinch,
2000] and Boomkamp & Miesen insist on the importance of viscosity stratification in
liquid-liquid flows but also in gas-liquid flows.

Two other observations of [Boomkamp and Miesen, 1996] are of particular relevance
to our experimental study of wind waves. First, they note that the classical Kelvin-
Helmholtz instability is lacking from their classification. Applying their scheme to the
Kelvin-Helmholtz instability, they find that the assumption of inviscid fluids makes some
of the energy terms vanish and only the Reynolds stresses remain. Stating that none of
their computations for various air-liquid combinations provided any evidence of the Kelvin-
Helmholtz instability (as they lead to a viscosity-induced instability), they conclude that
including viscous effects into the stability problem, even to a small extent, excludes the
possibility of the inviscid Kelvin-Helmholtz instability. Second, they also apply their clas-
sification scheme to the Miles instability for a system as defined in [Miles, 1962] 10 and
find that the energy transfer through Reynolds stresses are too small to explain the gener-
ation of capillary-gravity waves. They conclude that capillary-gravity wind waves are not
generated by the mechanism proposed by Miles but originates from a viscosity-induced
energy transfer at the liquid-air interface.

This existence of multiple mechanisms capable of generating wind waves makes it
harder to define the threshold of wave generation. Should it be defined on the first visible
surface deformations? On the arrival of the first ripples? On the transition between
two particular mechanisms? On the growth of the waves? This asks the question of the
recognition without failure of all the instabilities at play during an experiment and the
accuracy of the intruments used to detect this threshold. The possible existence of multiple
stages of wave development also fosters the ambiguity [Caulliez, 1987].

Generally speaking, in a lot of works (including [Phillips, 1957] and [Miles, 1957]), the
emphasis is put on the theoretical, numerical or experimental determination of the wave
growth rate. Many studies focus on the waves’ behavior far above the threshold and on the
generation and amplification of long wavelengths and the conditions related to the onset

9. The instabilities induced by tangential disturbances are separated into three sub-categories: viscosity-
induced instability, gravity-induced instability and viscosity-gravity-induced instability.
10. In which the energy transfer to capillary-gravity waves through viscous Reynolds stresses is included.
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Figure 1.8: Snapshots of the instantaneous water surface elevation under the threshold,
at time t = 2.6 s (left) and above the threshold, at t = 66 s (right). The wind is blowing
in the direction of positive x. Adapted from [Lin et al., 2008].

of wave generation of wave growth are often only mentioned. The threshold is generally
defined in experiments either as the minimal wind velocity at which waves can be observed,
or as the minimal wind velocity at which waves start to grow. This begs the question of
the accurate detection of the threshold. A detection based on wave amplitude or growth
necessarily carries an embedded bias due to the limitation of the instrumentation. The
debatable definition of the threshold wind velocity and the issues related to this question
may partially explain the discrepancies between the different wave generation thresholds
found in the literature for water waves (see table 5.3 on page 104).

1.3.3 Recent advances

Direct numerical simulation

Direct numerical simulation (DNS) of wind waves is not an easy task. To obtain results
representing accurately the physical system, a lot of parameters have to be taken into
account. The main difficulty lays in the coupling between the two fluids, whose integration
into simulations had not been made possible until recently [Lombardi et al., 1996] [Fulgosi
et al., 2003] [Tsai et al., 2005a] [Lin et al., 2008] [Yang and Shen, 2011] [Liao and Kaihatu,
2012] [Ó Náraigh et al., 2014]. Before this improvement, direct numerical simulations
were restricted to the turbulent airflow, above flat, rough or wavy undeformable walls
[De Angelis et al., 1997] [Cherukat et al., 1998] [Sullivan et al., 2000] [Jimenez et al.,
2004] [Deck et al., 2014]. These DNS provide crucial information on the characteristics of
the turbulent wind and bring some insight on the airflow above the waves. However, they
do not, of course, offer any more details on the waves themselves.

As more advanced computational resources became progressively available, it became
possible to include the coupling between air and liquid motions into the DNS of wind
waves. In [Tsai et al., 2005a], Tsai et al. simulate numerically the turbulent shear flow
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beneath a stress-driven flat free surface. The formation of surface waves is inhibited:
the surface motion is allowed horizontally but not vertically. Thus, the focus is put on
the two-way interaction between the stress-imposed surface and the turbulent flow. The
numerical simulations are carried out for three wind speeds (3, 4 and 5 m.s−1). It is
found that there are streamwise velocity streaks at the interface, whose spacing decreases
with wind velocity. In [Lin et al., 2008], Lin et al. take the numerical simulation a step
further. They perform a complete 3D numerical simulation of the turbulent airflow and
the flow in the water, including the coupling between the two and the initiation of surface
waves. The fully developed turbulent airflow is obtained by starting the simulation over
an undeformable flat free surface, then at time t = 0 the boundary becomes suddenly
deformable, mimicking a liquid surface acted upon by a fully developed turbulent wind.
The DNS is executed in a periodic box: they can therefore only observe the temporal
evolution of the surface deformations over a field of 24×24 cm, not their spatial evolution.
The simulation is stopped before nonlinear effects become significant. They report two
regimes of generation of wind wave generation: a first regime of light tremors where the
temporal growth is linear, and a second regime of transverse waves of exponential growth
(see Fig. 1.8). At short times, below the wave onset, surface deformations are not organized
in transverse waves yet and the streamwise velocity presents high-speed streaks similar
to those reported in [Tsai et al., 2005a]. At later times, the interface becomes populated
with transverse waves. As the surface goes from streak to wave patterns, wave energy goes
through a linear stage followed by an exponential stage. This evolution is supported by the
combined model of Phillips-Miles. Comparing their results in the linear growth stage to
Phillips’ model [Phillips, 1957], Lin et al. obtain a simulated growth rate that is about 1.5
times greater than the theoretical prediction [Lin et al., 2008]. In the exponential stage, the
simulated wave growth is found consistent with the mechanism of Belcher & Hunt [Belcher
and Hunt, 1993] and larger by a factor of two relatively to the empirical relation given
in [Plant, 1982]. Their numerical simulations also allow to access the pressure and stress
fields at the interface, which are very difficult to measure in experiments. Comparing the
pressure fields in air and water and the field of surface elevation, they conclude that the
energy transfer mechanisms originate from turbulence-induced pressure fluctuations in the
early linear growth regime and from in-phase relationship between wave-induced pressure
fluctuations and wave slope in the later exponential growth regime.

Liao & Kaihatu improve the work of [Lin et al., 2008] by imposing the nonlinear
boundary conditions for normal stress at the interface while Lin et al. used linearized
forms [Liao and Kaihatu, 2012]. They obtain results similar to those of [Lin et al., 2008]
but with relatively faster growth in the linear stage and slower growth in the exponential
stage, compared to the case with linearized normal stress boundary conditions.

Note that the surface perturbation obtained by numerical simulation below the wave
onset are extremely small: less than 25 µm. Experimentalists often report slight interface
motions below the threshold velocity [Keulegan, 1951] [Kunishi, 1963] [Hidy and Plate,
1966] [Plate et al., 1969] [Gottifredi and Jameson, 1970] [Wu, 1978] [Kahma and Donelan,
1988] [Ricci, 1992] [Caulliez et al., 1998] [Lorenz et al., 2005]. Usually by watching the
variations in reflected light on the interface, they observe over the entire surface very
small oscillations of the liquid that appear not to be growing. For example, [Ricci, 1992]
describes small waves of very weak amplitude (0.01-0.02 mm) and states that the first
ripples amplified by wind slowly emerge from the “noise” of these surface oscillations of
random frequency. These surface deformations are of such small amplitude that their
measurements in experiments is a challenge, heightened by the major effect of outside
vibrations at this scale [Kahma and Donelan, 1988]. As far as I have been able to discover,
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these small surface deformations at low wind velocity below wave onset have not been the
focus of any experimental study. Consequently, a fair part of my work has been dedicated
to their analysis.

Instrumentation

The accurate measurement of the deformation amplitude of the liquid surface is of
primary importance in the study of surface waves. It allows access to the evolution in
time and space of the surface deformations, the wave parameters, its temporal spectrum,
its steepness, its growth rate, etc. Nowadays, the measurement of the topography of a free
surface can be achieved through a wide variety of instruments employed in laboratory or
in open sea.

The simplest method consists in using a local probe, like a capacitance or resistive wave
gauge. Generally speaking, local probes are the easiest instrument to implement on a set-
up. In the case of surface waves, they make it easy to do long temporal measurements and
study the statistics of the waves. Conventional capacitance and resistive wave probes are
so convenient that they have been used for decades [Kunishi, 1963] [Sutherland, 1968] [Wu,
1975] [Kawai, 1979] [Caulliez, 1987] [Hasselmann and Bösenberg, 1991] [Ricci, 1992] [Veron
and Melville, 2001] [Caulliez et al., 2007] [Longo, 2012] [Grare et al., 2013]. They can
accurately measure the height of the liquid (with a typical precision of 0.1 to 1 mm) but
because they go through the interface they have an embedded limitation in resolution of the
order of a tenth of the height of the meniscus around the probe. This can be problematic
if the deformation that is being studied is smaller than this limit, which is bound to be the
case at an early stage of wave generation. To circumvent this problem, non intrusive probes
measuring the wave height or slope have also been developed and used, for instance laser
slope gauge [Kahma and Donelan, 1988] [Tang and Wu, 1992] [Savtchenko et al., 1997],
ultrasound distance meter [Longo et al., 2012] [Longo, 2012] or profile detection using
a laser sheet crossing the interface [Siddiqui and Loewen, 2007] [Caulliez, 2013] [André
and Bardet, 2014] [Buckley and Veron, 2016]. These methods have different measuring
ranges and precisions but usually allow access to smaller wave amplitudes than capacitance
or resistive wave gauges. In particular, the smallest amplitude of surface deformation
measured unintrusively by a local probe seems to have been achieved by Kahma & Donelan
[Kahma and Donelan, 1988]. Using a sensitive slope gauge based on the reflection of a
laser beam on the interface, they are able to measure surface deformations of amplitude
as small as 10 µm.

Intrusive or not, local gauges are inherently restricted in the information they can
provide: spatial information can only be recovered by using multiple probes or by repeating
runs with the probe moved to a different location. As a consequence, optical methods have
been explored quite early on in order to have access to full two dimensional measurements
of the topography of a free surface. Indeed, global optical methods are usually more
difficult to implement and imply some degree of calibration and computations, but they
give access to the spatio-temporal dynamics of the interface over a relatively large field of
view. The principles at the core of quite a few of these optical techniques have be known
for a relatively long time, but recent technological advances have drastically simplified
their implementation and improved their accuracy and resolution. A recent review of the
optical methods for the measurements of the deformations of a free surface can be found
in chapter 2 of [Gomit, 2013] 11.

For example, stereo-imaging of a free surface, a method using the image correlation

11. In French.
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between two cameras, has largely improved thanks to faster image processing and the
availability of better cameras. [Leckler et al., 2015] describes a stereo video system using
two synchronized cameras installed at sea. Each point recorded by a camera is associated
to another point in the recordings of the other camera. The processing of the video data
provides a surface elevation map ζ(x, y, t) over a large area: a field of approximately
15× 20 m with a resolution of 5 cm in each direction.

In a laboratory, another technique consists in injecting white dye into the liquid and
projecting a pattern on the interface. Thanks to the dye, the instantaneous liquid surface
appears as a white diffusive surface and its topography can be reconstructed by comparing
the projected pattern to the deformed pattern on the interface. In [Tsubaki and Fujita,
2005], the projection of an irregular greyscale pattern allows to measure waves as small as
1 mm with a 16% accuracy (∼ 0.15 mm), over a 18×14 cm field, with a spacing of 0.6 cm
in each direction. Similarly, Cobelli et al. have devised an optical method of topography
measurements based on the projection of fringes (fringe projection profilometry) [Cobelli
et al., 2009]. A fringe pattern of known characteristics is projected by videoprojector
on the interface while a camera records the deformed fringes resulting from the surface
deformation (dye is added to the water to enhance its diffusivity). The surface can be
reconstructed from the comparison between the reference (undeformed) fringes to the
recorded (deformed) ones. This method is able to measure surface perturbations in the
range 0.2− 100 mm with a 0.2 mm vertical resolution, over a field of view of 45× 30 cm
with a 0.1 mm spatial resolution. The vertical resolution depends on the size on the
projected pixel, which means that it can be improved by a better projector resolution or a
reduced size of sampled windows. Other measurement methods of free surface deformation
based on fringe projection profilometry have been developed (for example [Cochard and
Ancey, 2008]) but the technique of [Cobelli et al., 2009] seems to have the best vertical
resolution. Note that the choice of the coloring dye added to the liquid is important
since most paint pigments contain surfactants that will strongly affect the surface waves.
For fringe projection profilometry to be efficiently used, the coloring additive mixed with
the liquid has to be carefully chosen so that it does not significantly change the surface
tension [Przadka et al., 2012].

Refraction of a specific light source through the liquid-air interface can also be used
to measure the surface elevation. Indeed, if the light source is coded in intensity or
color, its refraction through the interface allows for the measurement of the local slope
by combining the refraction laws and the light coding pattern. An integration of this
surface gradient then provides the topography over the whole field of visualization. For
instance, in [Zhang and Cox, 1994], the local slopes of wind waves of a few centimeters of
amplitude are measured using collimated color-encoded light. The area of visualization is
of 20× 14 cm, with a spatial resolution of 0.6 mm and a vertical resolution depending on
the color-coding of the slopes. Likewise, in [Veron and Melville, 2001], the local slope of
the surface is measured by Color Imaging Slope Gauge (CISG), based on the refraction
of a color-coded light screen through the interface. The screen is such that each point on
it has a unique color, which allows to measure the slope by the color difference resulting
from the refraction. Their field of view is of 27×37 cm with a spatial resolution of 0.6 and
1.1 mm in the x and y directions, respectively. Using the refraction of a rapid sequence of
four intensity gradients in different directions combined into one slope image, Kiefhaber
et al. [Kiefhaber et al., 2014] are able to capture the 2D distribution of surface slope over
20× 16 cm field with an excellent spatial resolution of 0.22 mm (see figure 1.9).

Like [Zhang and Cox, 1994] but unlike [Veron and Melville, 2001], they use a lens so
that their light source is collimated into parallel rays. This is an important limitation
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17 cm

20 cm

Figure 1.9: 3D rendering of the wave field at 6.4 m.s−1. The arrow indicates the wind
direction. Adapted from [Kiefhaber et al., 2014] .

of their technique: the field of view can be only as large as the lens that is used. This
restriction incites use of an optical method based on the refraction, not of collimated
light, but of scattered light from a grating or a random set of dots. In this case, each
point of the light source is not coded to correspond to a particular height or slope, but
a pattern deformed by refraction is compared to its original image [Kurata et al., 1990].
This leads to a simpler set-up and calibration than in the case of collimated light. This
approach has first been applied to stratified fluids, where the index of refraction changes
with density resulting in a different refraction and the measurement of the density field
[Dalziel et al., 2000] [Meier, 2002]. Building on these works, Moisy et al. have modified
this technique for the measurement of the deformation of a free surface [Moisy et al.,
2009]. Their method, the Free Surface Synthetic Schlieren method (FS-SS), is based
on the apparent displacement of a refracted random dot pattern through an interface.
Correlating a recorded image to a reference image taken when the liquid is at rest allows
for the reconstruction of fluid height. Strong curvatures leading to caustics limit this
method, but under certain conditions, the vertical resolution of FS-SS can be more than
a 100 times smaller than the one in [Cobelli et al., 2009]. This method, successfully used
for the study of small-amplitude surface waves in the context of the parametric instability
due to an harmonic forcing [Moisy et al., 2012], is adapted to the experimental set-up for
this PhD and is described in more details in chapter 2.

All measurement techniques have a combination of assets and drawbacks based on
their range of application, accuracy, size of field of view, spatial resolution, easiness of
implementation and use, sensitivity, etc. In the study of the first stages of wind wave gen-
eration, the limiting parameter would be the range and accuracy of the instrumentation.
The measurement method must be able to measure surface deformations of very small am-
plitude (less than a tenth of a millimeter) with a great accuracy. These criteria are both
verified by the FS-SS method of visualization, as it is an optical method of measurement
of the instantaneous topography of a fluid interface with an excellent vertical resolution,
with a field of view only limited by the sizes of the pattern and camera field of view.
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1.4 Goals and scope of this PhD

Exploring experimentally the early stages of wind wave generation requires an in-
strumentation allowing for a precise measurement of submillimetric amplitude of surface
deformation. As seen in the previous section, the FS-SS method seems to be an appro-
priate tool for this study. The first goal of this PhD is to study experimentally, taking
advantage of the great vertical resolution of the FS-SS technique, the evolution of the
shape of an interface under the action of a turbulent airflow. Departing from the large
literature on water waves, the experiments are carried out with a liquid much more viscous
than water. This represents a double advantage. First, the drift current in the tank is
simpler and weaker than in the typical situation of a turbulent current in water. Second,
the high viscosity of the liquid implies that the perturbations of the interface that are not
amplified are rapidly damped. At low wind speed, the surface deformations are therefore
expected to be the direct local response to the wind. The liquid viscosity being a central
parameter in our system, the second objective of this PhD is then to study the influence
of the viscosity, both below and above the onset of wave generation.

The structure of this manuscript is as follows. The theoretical framework and relevant
literature have been introduced in the present chapter. Chapter 2 describes in details the
set-up and method of visualization on which stand the results presented in chapters 3, 4
and 5. In the same chapter are presented the results of the base flow characterization in
the air and liquid flows. In chapter 3, the early stages of wave generation are explored
experimentally over a liquid thirty times more viscous than water. Two regimes of wave
generation are reported and described in detail. The nonlinear behavior observed beyond
the critical wind velocity are presented in chapter 4. In chapter 5, experiments are con-
ducted with different liquids in order to study the influence of the liquid viscosity on the
system. A particular interest is taken in the effect of viscosity on the wave generation
threshold and on the earliest stage of interface deformation before wave onset. It is shown
that the earliest stage of generation of surface deformation can be explained by a model
based on the influence of pressure fluctuations on the viscous interface. Finally, the thesis
concludes in chapter 6 with a general conclusion and the possible outlooks to this work.
For the reader’s convenience, each chapter is quickly summarized in a boxed text at the
end before the subsequent chapter.

1.5 Conclusion

The generation of waves under the action of wind over a liquid interface is a long-
standing problem incepted by the universal observations of natural wind waves over water.
Despite the considerable body of literature on the subject, there still exist significant gaps
in our understanding of the mechanisms associated with wind wave generation.

The first attempt to explain wind wave formation consisted in the inviscid Kelvin-
Helmholtz instability, but it leads to predictions that are in strong disagreement with the
observations at an air-water interface. The pioneering works of Phillips and Miles later
brought major theoretical contributions. Phillips proposed a model based on the direct
effect of the pressure fluctuations of the turbulent wind over the interface. Disregarding
the coupling between wind and wave motion, he obtained a linear temporal growth of
the wave amplitude squared. Using a completely difference approach, Miles introduces a
mechanism based on the stability analysis of the shear flow. Neglecting viscosity, surface
tension, drift current and turbulent fluctuations, he showed that this stability depends
on the sign of the curvature of the mean velocity profile at the critical height at which
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the wind speed equals the wave phase velocity. If this curvature is negative, the flow is
unstable, resulting in an exponential growth in time of the amplitude of the wave.

The numerous attempts to confirm experimentally or improve the theoretical models
of wind wave generation yield no definitive conclusion at the present time. However,
direct numerical simulations are nowadays capable to address the coupling between the
air and liquid motions and their influence on the generation of surface deformations. These
simulations fuel the approach of the combined Phillips-Miles’ model and have shown the
existence of streamwise streaks at the interface below the wave generation threshold. While
small tremors at the liquid surface before the onset of wave generation are often reported
during experiments, no study focuses on their analysis due to the challenge of measuring
such weak deformations.

Recent improvements in optical methods have made it possible to study the early stage
of wind wave generation. During my PhD, I have implemented such an optical technique of
excellent vertical resolution, the Free Surface Synthetic Schlieren method of visualization,
for the study of the generation and growth of wind waves over a viscous liquid. The choice
of a liquid more viscous than water is motivated by the simplification of the system’s
response due to a rapid damping of the unamplified perturbation and by the particular
importance that viscosity seems to have in the behavior of wind waves.

Summary:

• Wind waves are a complex and fascinating phenomenon that involves numerous
parameters. Despite a large literature on the subject, a great number of questions
remain concerning the physical mechanisms of wind wave generation.

• The two central models of wind wave generation originate from Phillips [Phillips,
1957] and Miles [Miles, 1957]. Phillips’ model deals with the direct effect on the
interface of the pressure fluctuations in the turbulent wind and leads to a linear
growth in time of the wave amplitude squared. Miles’ model is based on a shear-flow
instability and leads to an exponential growth in time of the wave amplitude.

• Direct numerical simulations have benefited from recent improvements and are now
able to take into account the complex coupling between wind and wave motions.
They report surface deformations of very small amplitude below the threshold ve-
locity of wave generation but can only access their temporal evolution, not their
spatial evolution.

• This PhD thesis presents an experimental work conducted using the Free Surface
Synthetic Schlieren method of visualization, an optical method of excellent vertical
resolution, in order to study the wind wave generation and growth over a viscous
liquid.



Chapter 2

Experimental set-up and flow
characterization

The experiments described and discussed in the present thesis have been carried out
in a new set-up built at the laboratory FAST. In this chapter are presented first the
experimental set-up and the method of visualization, then the characterization of the base
flows in the air and liquid.

2.1 Experimental set-up

2.1.1 Design and general view

In order to investigate the generation and growth of wind waves, a set-up combining
a wind tunnel and a wave tank was designed, built and tested at the laboratory FAST.
The objective was to adapt the Free Surface Synthetic Schlieren (FS-SS) method of vi-
sualization onto a wind wave tank so as to study the initial stages of wave generation
under the action of wind. As a matter of fact, the FS-SS method has several advantages
compared to the techniques previously used to study this phenomenon (see chapter 1).
First, it allows to visualize the surface deformation induced by wind with an unequaled
vertical accuracy. The micrometric resolution we are able to achieve makes it possible to
study the first surface perturbations at small wind speeds, which, to our knowledge, has
not been done globally with such precision. Indeed, unlike local probes, this visualization
method also enables access to the entire topography of the liquid surface. The field of view
covers almost the entire width of the tank and about 40 cm in the downstream direction.
Thanks to our good spatial and temporal resolutions, the FS-SS method thus gives access
to the spatio-temporal dynamics of the interface deformation.

The set-up features a tank and a wind blower creating the airflow above the liquid. The
wind blower was provided by the Laboratory of Hydrodynamics of the École Polytechnique.
The tank and wind tunnel were designed so that the dimensions of the internal rectangular
section of the wind channel match precisely the internal dimensions of the wind blower
at its exit. Figures 2.1 and 2.2 provide a sketch and a picture of the final set-up. The
turbulent airflow is injected by a wind blower into the wind channel at the bottom of which
is fitted a tank containing the liquid. The method of visualization, requiring a camera and
a dot pattern, will be described in section 2.1.3.



28 Chapter 2. Experimental set-up and flow characterization

x

z

0

L = 1.5 m

H

dot pattern

camera

honeycomb

h

Uafan

flexible
coupling

Figure 2.1: Sketch of the experimental set-up.

Figure 2.2: Photography of the experimental set-up.
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2.1.2 Liquid tank and wind tunnel

Tank and wind channel body

The experimental set-up is composed of a fully transparent Plexiglas rectangular tank
of length L = 1.5 m and width W = 296 mm fitted to the bottom of a horizontal channel
of rectangular cross-section. While the total depth of the tank is 50 mm, 15-mm thick
Plexiglas plates were added at the bottom of the tank in order to decrease the volume of
liquid to be used. Thus, the depth of the tank was reduced to h = 35 mm. The channel
width is identical to that of the tank, its height is H = 105 mm, with two horizontal floors
of length 26 cm before and after the tank.

The tank and wind channel were manufactured by the company Abaqueplast from
8-mm thick laser-cut Plexiglas plates. Careful attention was paid to the locations of the
junctions of the panels. These locations were specified to the contractor in order to make
sure that the entrance and exit horizontal floors were kept smooth. A draining hole was
drilled at the end of the tank in a corner. A T-connection allows to separate the flow from
this opening into a draining duct and a pipe leading to a container placed on a laboratory
jack used for the filling of the tank and rough adjustment of the level of the liquid. Apart
from the draining orifice, the tank and wind tunnel body is symmetrical. The tank is
propped up on Norcan beams on its side walls only, so that the support beams do not
restrict the visualization through the bottom of the tank. Slender Norcan beams are also
fixed along the set-up to prevent the side walls from bending (Plexiglas plates tends to
bend after a prolonged contact with a water-based liquid). The upper part of the wind
channel can be removed to access the inside of the set-up if needed. When the insertion of
a probe is necessary inside the wind channel, a second Plexiglas plate with holes is used
while the original ceiling is kept untouched for optical measurements.

We define the coordinate axes (x, y, z) in the streamwise, spanwise and upwards vertical
direction, respectively. The origin (0,0,0) is located at the free surface at mid-distance
between the lateral walls of the wind channel. Thus, z = 0 is defined at the level of the
liquid at rest and the liquid fills the negative z space until the depth −h. As mentioned
in the previous chapter, in accordance with the literature, the term fetch refers to the
distance over which the wind blows; in our case, the fetch is the distance x from the
beginning of the tank.

Wind blower

The airflow is generated by a centrifugal fan with forward-curved impellers that pro-
duces little to no swirl in the outgoing flow. The fan is connected by a belt to a three-phase
3 kW motor and the motor is controlled via a variator with an input frequency range of
0-50 Hz with a 0.1 Hz accuracy. The relationship between the wind speed and the variator
frequency is linear. The air is injected from the fan through a honeycomb and a convergent
(ratio 2.4 in the vertical direction) into the wind channel. The wind velocity Ua, measured
at the center of the outlet of the wind tunnel with a hot-wire anemometer, can be adjusted
in the range 1− 10 m.s−1. The wind profile will be described in details in section 2.2.1.

The wind channel and the wind blower are not in contact. To minimize the air leaks
and the transmission of vibrations induced by the fan, they are are separated by a gap of a
few millimeters and are only connected via a flexible coupling. To further isolate the tank
from outside vibrations, the wave tank is placed on a 2 m × 1 m, 10 cm thick, granite
plate weighting about 500 kg, itself on top of a thick metal frame. The entire experimental
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set-up is on a concrete floor that isolates it well from the vibrations created by a person’s
motion in the room. Nevertheless, the experiments being very sensitive to vibrations, they
had to be carried out during evenings because of sources of strong vibrations during the
day, due to the traffic outside and a nearby construction site. Residual vibrations induce
surface deformations of less than 1 µm.

Liquid mixture

During the experiments later described and discussed, the tank is filled with a mixture
of water and either glycerol or glucor. The properties of the various liquid mixtures that
were used are specified in the first sections of chapters 3 and 5. Regardless of the mixture
used, the fluid is always assumed to be Newtonian and incompressible. The liquid is
thoroughly mixed outside the tank by an overhead stirrer then mixed again in the tank
under the wind action until no density gradient is visible anymore. A small dam of height
8 mm is placed at the end of the tank in order to avoid overflow.

In a turbulent flow, the shear stress at the liquid surface and at the lateral and up-
per walls is balanced by a small longitudinal pressure gradient ∆p/L in the air along
the channel. This pressure gradient introduces a complication in the set-up: the liquid
surface becomes slightly tilted, with the inlet liquid height below the outlet height (this
is analogous to the “wind tide” effect observed on lakes [Keulegan, 1951]). Assuming
equal stress τ on the liquid surface and on the solid walls, this pressure gradient reads
∆p/L ' 2τ(1/W + 1/H). For a wind velocity Ua = 4 m.s−1, the pressure drop along the
tank is ∆p ' 2 Pa, which results in a hydrostatic height difference between the two ends
of the tank of ∆p/ρg ' 0.2 mm, in good agreement with our measurement. We observed
that the resulting backward facing step at x = 0 significantly increases the turbulent fluc-
tuations and enhances the wave amplitude at small fetch by typically a factor of 2. It
is therefore critical to maintain the liquid level at x = 0 by carefully tilting the channel.
Thus, the surface of the liquid is leveled to precisely coincide with the bottom of the wind
tunnel. We achieve a leveling of the liquid at x = 0 better than 20 µm by using the
tangential reflection of a laser sheet intersecting the upstream plate and the liquid surface.

2.1.3 Surface deformation measurement: Free Surface Synthetic Schlieren
method

The FS-SS method of visualization

We measure the surface deformation of the liquid using the Free Surface Synthetic
Schlieren (FS-SS) method developed by Moisy, Rabaud and Salsac [Moisy et al., 2009].
This optical method is based on the analysis of the refracted image of a pattern visualized
through the interface. A random dot pattern is placed under the tank and a camera is
placed above it, on the other side of the liquid-air interface. A reference image of the
undeformed pattern is taken when the liquid is flat, at rest in absence of wind. When
the wind blows, the interface deforms under its action and the refracted image of the dot
pattern is acquired through the liquid-air interface. The apparent displacement field δr
between the reference image and the distorted image in presence of waves is computed
using an image correlation algorithm. In the linear approximation of small slopes, the
displacement field induced by the refraction is proportional to the gradient of the surface
height.
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The relation between the surface height gradient and the displacement field can be
written as (see Eq. (13) in [Moisy et al., 2009]):

∇ζ = − δr
h∗

with 1
h∗

= 1
αhp
− 1
H
. (2.1.1)

α = 1−nair/nliquid is a coefficient based on the refractive indices nair and nliquid of the air
and of the liquid, respectively. H is the pattern-camera distance and hp is the equivalent
height of liquid, computed from on the thicknesses hi and refractive indices ni of the
different layers of matter between the pattern and the interface. In our case (see Fig. 2.3),
the interface is separated from the pattern by liquid (in the tank), Plexiglas (the bottom
of the tank) and air (from the bottom of the tank to the pattern). Thus, the equivalent
height is (see Eq. (14) in [Moisy et al., 2009]):

hp = h+ nliquid
nplexiglas

hplexiglas + nliquid
nair

hair. (2.1.2)

Using equation (2.1.1), the integration of the displacement field thus allows to re-
construct the surface topography and gives the height field ζ(x, y, t) (see examples in
figures 2.4 on the following page and 3.1 on page 60).

h

dot pattern

hair

hplexiglas

δr

liquid

air

air

plexiglas

Figure 2.3: Sketch of the optical path through the liquid, Plexiglas and air. The dot pat-
tern colored in blue correspond to the pattern placed the furthest away from the interface,
on the granite table; the pattern in red correspond to the position of the pattern closest
to the interface, directly under the tank.

Implementation

The acquisitions are done with a PCO 1200hs fast camera mounted with a 35 mm
Nikon lens. The camera is centered on the field of view and adjusted to a right angle with
the dot pattern. The PCO camera is controlled using the software Camware 3.14 under
Windows 7. Each image is recorded separately in .tiff format at the full frame resolution
of 1280×1024 pixels. The images are transferred from the internal memory of the camera
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Figure 2.4: (Top to bottom) Dot pattern, displacement field and height field obtained by
FS-SS. The wind is blowing from left to right at 6.9 m.s−1.
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to the computer through a Firewire IEEE 1394a connection. This camera memory buffer
is of 4 Go, which represents a little over 2000 images. At first, the camera was mounted
on a tripod 1 m above the set-up as in figures 2.1 and 2.2. The experiments described in
chapter 3 were done in this configuration. Later on, to minimize the distortions due to
parallax, a mirror was installed at a 45◦ angle above the set-up, the camera was moved
3 m away from the set-up, and the 35 mm lens was changed for a 105 mm one. The
experiments described in chapters 4 and 5 were done in this configuration. It was later
found that the distortions due to parallax were much smaller than the distortion implied
by waves entering or leaving the field of visualization (it induces an artificial change in
the mean displacement field, see appendix A). The accuracy is thus actually very similar
in both configurations.

The dot pattern has to be random in order to maximize the information content
and avoid fortuitous image matching. Indeed, if the pattern were periodic (a grid for
example), the displacement would be known only modulo the pattern periodicity, leading
to an incorrect apparent displacement. The random dot pattern is created 1 in such a
way that the dots diameter is between 2 and 5 pixels in the acquired images, and that
the smallest interrogation windows later used in the image correlation algorithm (16× 16
pixels) contains 5 to 10 dots. In practice, we use an A3 sheet randomly covered by
50 000 dots of diameter 2 mm. The pattern is printed on a transparent plastic sheet and
positioned over a LED light sheet that provides an uniform light source, allowing to avoid
stroboscopic effects. This light sheet is a FlexLedLight CFEA3 electroluminescent foil
of dimensions 30 × 40 cm. In order to maximize contrast and avoid fluctuations in light
intensity, the lens aperture is set to its maximum and the lighting of the room is turned
off.

The displacement fields are computed by the software Davis (version 8.1) by image
correlation. To obtain the surface height ζ(x, y, t) from equation (2.1.1), an inversion of
the gradient ∇ζ is required. Numerically, ζ is taken as the best solution in the least-
square sense, that is to say the solution minimizing the residual ‖ ∇ζ − (−δr/h∗) ‖2
where δr is the measured apparent displacement field. This is achieved using the Matlab
function surfheight. Appendix A provides the details of the different steps during an FS-SS
experiment and the computations that follow.

Resolution and limitations

The distance hp between the random dot pattern and the liquid surface sets the sensi-
tivity of the measurement. The further away the pattern is below the tank, the smaller are
the slopes that can be measured, since the same apparent displacement will correspond
to a smaller slope. However, a curved surface acts as a convergent lens of focal length
decreasing as the curvature increases. Thus, crossing of light rays can appear for large
equivalent height or below waves of large curvature, creating caustics and preventing the
measurement of the apparent displacement field, and the FS-SS method is no longer ap-
plicable in this situation (see Fig. 2.5). The greater the distance from the pattern to the
surface, the smaller the highest slope can be (caustics arise at a lower surface steepness).
Therefore, the pattern-interface distance is actually chosen according to the typical steep-
ness of surface deformation. Because they are quite sinusoidal, it is found experimentally
that in our case of wind waves, this steepness criterion is quite equivalent to a limitation
of amplitude. We choose to put the pattern the furthest away, on the granite table, at a

1. Using the Matlab function makebospattern of the PIVmat toolbox, see http://www.fast.u-psud.
fr/pivmat/.

http://www.fast.u-psud.fr/pivmat/
http://www.fast.u-psud.fr/pivmat/
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distance of 29 cm for waves of weak amplitude (of order of 1 − 10 µm), and the closest
away, just below the tank, at 6 cm for waves of large amplitude (up to 1 mm). The two
positions of the pattern are presented in figure 2.3 on page 31. With this distance of 6 cm,
numerous caustics prevent the FF-SS method from being used for wave amplitudes larger
than a few millimeters.

The observation and reconstruction of the liquid surface can be carried out over the
entire width of the tank, but about 1 cm is excluded near each walls because of the
deformation induced by the meniscus close to the vertical walls. This leads to a rectangular
field of view elongated in the x direction of dimensions 390×280 mm. The resolution in x
and y is 3 mm, and the vertical resolution is of order of 1% of the wave amplitude (but it
is important to keep in mind that the residual vibrations can induce surface deformation
of amplitude up to 1 µm).

h

Figure 2.5: (Left) Large curvature or large pattern-interface distance induce ray crossings
(adapted from [Moisy et al., 2009]). (Right) Visual result of caustics on the recorded
image. The stretched dots lead to incorrect FS-SS reconstruction.

2.2 Characterization of the base flows
In order to better understand the conditions under which the liquid-air interface is

deformed and wind waves are created, the base flows in the wind tunnel and tank were
characterized, respectively by hot-wire anemometry and Particle Image Velocimetry (PIV).
For both flow characterizations, the liquid is a glycerol-water mixture of 80% glycerol and
20% water (in weight) maintained at temperature 25 ◦C, of density ρ = 1.20× 103 kg.m−3

and kinematic viscosity ν = 30 × 10−6 m2.s−1. For this liquid, the threshold of wave
generation is Uc = 6.3 m.s−1 (see chapter 3).

2.2.1 Airflow

This section focuses on the characterization by hot-wire anemometry of the flow in the
upper part of the set-up, in the air above the interface (0 < z < H, see figure 2.6). While
it also addresses the velocity fluctuations in the airflow, this characterization of the airflow
is centered on the mean flow profile. U is the mean velocity in the x direction and u′ is
the fluctuating part of the wind velocity in the x direction. The mean airflow is supposed
to be essentially unidirectional and to barely change in the y direction. The mean velocity
at the center of the wind channel is denoted by Ua (velocity outside the boundary layers).
The air is considered incompressible and its density is taken as the tabulated air density
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Figure 2.6: Sketch of the airflow.

at 25 ◦C and 1 atm: ρa = 1.2 kg.m−3. The kinematic viscosity of the air is also supposed
to be equal to its tabulated value for the same parameters of temperature and pressure:
νa = 1.5× 10−5 m2.s−1.

In accordance with the notation in the literature, the friction velocity u∗ is defined
from the interfacial shear stress τ through the relation:

u∗ =
√
τ

ρa
. (2.2.1)

The friction velocity is taken as the characteristic velocity scale in the airflow boundary
layers. From the friction velocity is built the viscous length scale:

δν = νa
u∗
. (2.2.2)

The superscript + indicates a quantity normalized using these scales: U+ = U/u∗ is the
dimensionless mean velocity and z+ = z/δν the dimensionless distance from the wall or
interface. The Reynolds number is defined based on the half-height of the wind channel:

Reτ = u∗H

2νa
= H

2δν
. (2.2.3)

a) Turbulent boundary layer theory: Mean velocity profile in a turbulent
flow over a wall

In this section, we recall the classical results from the turbulent boundary layer theory
that details the mean velocity profile in a turbulent flow over a solid boundary. This
description will later be used to characterize our data.

Let us consider a turbulent flow over a flat fixed wall. The mean velocity is zero at the
wall and Ua far from the wall. At the vicinity of the wall stands a boundary layer where
the mean velocity rapidly increases from 0 to Ua. The theory of the turbulent boundary
layer states that the turbulent airflow over a wall can be separated into three main regions:
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the viscous sublayer, the inertial sublayer, and the outer layer. The mean velocity profile
can be approximated by a different law in each of these layers [Schlichting, 2000] [Guyon
et al., 2012]. Note that the boundary layer thickens in the downstream direction if the
flow is not fully developed, so the different variables are slightly dependent on the fetch
x, even when this dependence is omitted to lighten the notations.

Close to the wall, the viscous sublayer extends up to about 10δν (i.e., up to z+ ' 10).
In this first layer, the dimensionless velocity increases linearly with the dimensionless
altitude from the wall:

U+ = z+. (2.2.4)

In the inertial sublayer, spreading from the outer layer towards the viscous layer, the
classic logarithmic law expressed in its non dimensional form writes:

U+(x, z) = U(x, z)
u∗(x) = 1

κ
ln
(

z

δν(x)

)
+ C+, (2.2.5)

where κ = 0.4 is the von Kármán constant and C+ is constant. In the case of a smooth
wall, C+ is approximatively 5 [Schlichting, 2000] [Guyon et al., 2012]. The intersection
between the two theoretical profiles of the viscous sublayer and the inertial sublayer occurs
at z+ = 11 (for κ = 0.4 and C+ = 5).

Past this logarithmic growth, the profile connects to a constant velocity profile:

U+ = Ua
u∗
. (2.2.6)

In the literature, the mean profile of the airflow over the liquid is always considered
as logarithmic in the inertial sublayer, which is confirmed experimentally [Francis, 1954]
[Plate et al., 1969] [Hsu et al., 1981] [Hsu and Hsu, 1983] [Liberzon and Shemer, 2011]
[Longo, 2012] [Zavadsky and Shemer, 2012] [Buckley and Veron, 2016]. At the center of
the channel, the literature gives u∗/Ua to be around 3% (U+ ' 30) [Liberzon and Shemer,
2011], while our measurements show u∗/Ua to be roughly 5% (U+ ' 20) in our set-up (see
§ 2.2.3). This difference may be explained by the fact that this ratio slightly depends on
Reτ . Figure 2.7, that presents the three connected profiles (viscous sublayer (Eq. (2.2.4)),
inertial sublayer (Eq. (2.2.5)), and center of the channel (Eq. 2.2.6)), uses this value of 5%
for the center of the channel 2.

This description of the mean profile given by the turbulent boundary layer theory
still holds for a fully developed turbulent channel flow, in the theoretical case of a wind
tunnel of infinite length, or for channel flow numerical simulations as they use periodical
boundaries in the downstream direction. Thus, figure 2.7 also features the simulated
mean velocity profile obtained at Reτ = 1000 for a fully developed 3D turbulent channel
flow [Perlman et al., 2007] [Li et al., 2008] [Graham et al., 2013] 3. This profile derived by
direct numerical simulation (DNS) gives a better idea of the smooth transition from the
viscous to the inertial sublayer.

2. Depending on this value Ua/u
∗, the connection between the logarithmic and constant profiles occurs

at a different altitude z+
a = exp (κ(Ua/u

∗ − C+)). For Ua/u
∗ = 30, z+

a is about 2 200, while for Ua/u
∗ = 20,

the junction happens closer to the interface, at z+
a approximately equal to 400.

3. These three references correspond to the same database, the John Hopkins Turbulence database,
available at http://turbulence.pha.jhu.edu.

http://turbulence.pha.jhu.edu
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Figure 2.7: Theoretical law of the wall (dashed line) compared to direct numerical simula-
tions (continuous line) from the John Hopkins Turbulence Database (see footnote 3 on the
previous page) in linear and semilogarithmic coordinates. Note that the axes are inverted
between the two plots. The simulated profile is truncated when U+ reaches 20.

b) Hot-wire measurements

Equipment

All the equipment used for the hot-wire measurements is of brand Dantec Dynamics.
The probe is a 55P01 hot-wire used with a 55H21 support and a 4-meter-long A1863 cable.
The hot-wire is of 5 µm in diameter with an active length of 1.25 mm (for a total length
of 3 mm). The probe is mounted on a sliding arm allowing vertical displacement with a
0.1 mm accuracy. Because of the surface deformation with the wind action, the hot-wire
probe was not positioned closer to the interface than 0.5 mm. The part of the support
introduced into the channel is of 4 mm in diameter. The hot-wire probe is inserted in the
set-up by a set of holes of 7 mm of radius drilled into a Plexiglas plate closing the top part
of the channel. In order to minimize leakage, a rubber cover closes the interstice around
the probe and the openings that are not being used are taped shut.

The hot-wire probe is connected to a MiniCTA 54T30 (4-20 Ω) box, itself connected to
a NI PCI-6023E acquisition board. The signal is acquired through the MiniCTA software.
Before acquisition, the probe is calibrated using this software in order to convert the
measured voltage into the velocity of the airflow. Once the acquisition and conversion are
completed, the signal is transferred to Matlab for the analysis.

Acquisitions

The airflow reaches its stationary mean velocity profile in less than three seconds
after the wind blower is turned on, and comes back down to zero in about ten seconds
after stopping the wind blower. Therefore, the set-up is not adapted to the study of
the transitory states of the wind action and is only used once the stationary state is
reached. The characteristic viscous time of installation is of order h2/ν ' 40 s (for
ν = 30 × 10−6 m2.s−1). The flow is considered stationary if the wind has been blowing
for longer than this characteristic time. All acquisitions (by hot-wire anemometry, PIV or
FS-SS) are performed once this stationary state is reached, after a safety margin of two
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to three minutes after the wind blower has been switched on.
Each data point by hot-wire anemometry corresponds to an acquisition of 20000 points

at the acquisition frequency of 1 kHz, hence a total time of acquisition of 20 seconds. In
order to study the evolution of the wind profile with wind speed and fetch, two series
of acquisitions are performed at different wind speeds and fetches. In the first series,
the probe is positioned at the center of the wind channel at fetch x = 500 mm and the
mean wind velocity at the center of the channel is set in turns at 1.0, 1.9, 3.9, 5.8 and
6.6 m.s−1. The velocity is acquired at different altitudes above the interface. A second
series of acquisitions is realized at a fixed wind speed and the velocity profiles are recorded
at different fetches. The wind velocity is chosen below the threshold of wave generation at
Ua = 3.9 m.s−1 and the measurements are taken at fetch −100, 20, 500 and 1000 mm (a
negative fetch stands for a location upstream of the liquid, above the flat Plexiglas floor).

Post-processing

Due to the small amplitude of the signal, sources of electromagnetic perturbations can
interfere with the acquisition. In particular, the motor of the wind blower is a source of
noise that can not be avoided without stopping the airflow. Despite the installation of
aluminum foils around the acquisition equipment to decrease the reception of this electro-
magnetic noise, the level of remaining noise made it necessary to process the signals. The
data points that are affected by the noise are rejected using the Matlab function smooth
with the option ‘rlowess’ applied with its default parameters 4. This processing does not
affect the value of the mean velocity U .

c) Results and interpretations

Vertical profiles of mean velocity

The mean wind velocity profiles at the center of the channel are presented in figures
2.8 and 2.9. Figure 2.8 shows the profiles at fetch x = 500 mm for different wind velocities
while figure 2.9 displays the profiles taken at Ua = 3.9 m.s−1 at different fetches along the
tank. The mean velocity profiles are compatible with a logarithmic region and they keep
appreciably similar shapes at the different fetches and wind speeds, remaining close to the
theoretical profiles presented in part 2.2.a.

Using equation (2.2.5), logarithmic fits can be used to obtain the experimental friction
velocities. We find u∗ to slightly decrease with fetch: for Ua = 3.9 m.s−1, u∗ decreases from
0.22 m.s−1 at x ' 0 down to 0.17 m.s−1 at x = 1 m. Accordingly, δν(x) slightly increases
with fetch, from 0.07 to 0.09 mm. The procedure is repeated for different wind velocities
at a fixed fetch, x0 = 500 mm. Measurements are restricted to Ua < 6.6 m.s−1, when the
surface deformations remain weak (less than 10 µm, see chapter 3), because the hot-wire
could not be positioned too close to the liquid. We find that in this range u∗ is almost
proportional to Ua, u∗(x0) ' 0.05Ua (see figure 2.23 on page 54). The corresponding
half-height channel Reynolds number at this fetch, Reτ = Hu∗/2νa, varies in the range
200 − 1200, and the thickness of the viscous sublayer δν decreases from 0.3 to 0.05 mm
when Ua increases from 1 to 6.6 m.s−1.

4. The option ‘rlowess’ corresponds to a robust local regression using weighted linear least squares
and a first degree polynomial model. For more information on the function smooth and its different op-
tions, see http://fr.mathworks.com/help/curvefit/smooth.html and http://fr.mathworks.com/help/
curvefit/smoothing-data.html.

http://fr.mathworks.com/help/curvefit/smooth.html
http://fr.mathworks.com/help/curvefit/smoothing-data.html
http://fr.mathworks.com/help/curvefit/smoothing-data.html
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Figure 2.8: Mean wind velocity profiles at x = 500 mm at the center of the wind channel
at wind speeds 1.0 m.s−1(◦), 1.9 m.s−1(�), 3.9 m.s−1(♦), 5.8 m.s−1(M) and 6.6 m.s−1(O).
(Left) In linear coordinates. (Right) Compared in semilogarithmic coordinates with direct
numerical simulations (continuous lines). Note that the axes are inverted between the two
plots. The simulated profiles correspond from bottom to top to the increasing Resim in
table 2.1.
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Figure 2.9: Mean wind velocity profiles at Ua = 3.9 m.s−1at the center of the wind chan-
nel at fetch -100 mm (•), 20 mm (�), 500 mm (�) and 1000 mm (N). (Left) In linear
coordinates. (Right) Compared in semilogarithmic coordinates with direct numerical sim-
ulations (continuous lines). Note that the axes are inverted between the two plots. The
simulated profiles correspond from top to bottom to the increasing fetch x in table 2.2.
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Ua u∗exp δν = νa/u
∗
exp Re = UaH

2νa
Reτ = u∗expH

2νa
Resim

(m.s−1) (m.s−1) (±0.005 mm)
1.0 0.06 0.268 3.4× 103 200 180
1.9 0.11 0.140 6.5× 103 380 300
3.9 0.20 0.074 1.4× 104 710 650
5.8 0.29 0.052 2.0× 104 1000 1000
6.6 0.33 0.046 2.3× 104 1200 1000

Table 2.1: Parameters used for the comparison between numerical simulation and experi-
mental data at x = 500 mm.

x u∗exp δν = νa/u
∗
exp Re = UaH

2νa
Reτ = u∗expH

2νa
Resim

(mm) (m.s−1) (±0.005 mm)
20 0.22 0.068 1.4× 103 710 650
500 0.20 0.074 1.4× 103 710 650
1000 0.17 0.088 1.4× 103 710 650

Table 2.2: Parameters used for the comparison between numerical simulation and experi-
mental data for Ua = 3.9 m.s−1.

The mean velocity profiles are compared to numerical simulation data obtained at
the University of Tokyo ( [Iwamoto, 2002], [Iwamoto et al., 2002]) 5 and Johns Hopkins
University ( [Li et al., 2008], [Perlman et al., 2007], [Graham et al., 2013]) 6. These
openly accessible datasets provide data from direct numerical simulations of 3D turbulent
channel flow developed over smooth fixed walls for different Reynolds numbers. Among
this data, we choose those whose Reynolds numbers Reτ are closest of the experimental
Reτ . To compare the simulated velocity profiles to the experimental profiles, we modify
the dimensionless profiles U+

sim = f(z+
sim) using the results of the local logarithmic fit, the

experimental friction velocities u∗exp, into Usim(zsim) = U+
simu

∗
exp with zsim = z+

simνa/u
∗
exp.

Dimensional fluctuations profiles are obtained by a similar transformation (see figures 2.11
and 2.12).

There are obvious differences between simulations and experimental results close to
the interface. Two phenomena can explain this divergence. First, while the probe can be
moved vertically with a 0.1 mm accuracy, the distance from the probe to the interface can
only be known with a 0.5 mm precision. While this does not visibly affect the profiles in
the logarithmic region, the possible differences are very visible in logarithmic coordinates
at small z. Secondly, when the hot-wire probe is that close to the interface, its mere
presence may be enough to modify the airflow.

Nevertheless, the experimental data and the data obtained by DNS are in agreement
in the logarithmic region. Therefore, we can consider that the classical description of
the turbulent boundary layer theory applies to the present flow in our system despite
the obvious differences in its underlying hypotheses. Hence, while the liquid-air interface
in our set-up differs through many aspects from a stationary solid boundary, as long as
the surface deformation remains small, the airflow over it is essentially the same as it

5. See the DNS Database of Turbulence and Heat Transfer of the University of Tokyo, available at
http://www.thtlab.jp/DNS/dns_database.html.

6. See the John Hopkins Turbulence database, available at http://turbulence.pha.jhu.edu.

http://www.thtlab.jp/DNS/dns_database.html
http://turbulence.pha.jhu.edu
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would be above a smooth fixed wall (this was previously noticed by [Plate et al., 1969]).
This is further confirmed by the smallness of the interface roughness. Indeed, if the
behaviour of the boundary itself changes (from a solid smooth wall to a deformable liquid-
air interface), the roughness does not change much along the tank. The amplitude of the
surface perturbations remains small and does not increase the roughness much until the
wind velocity is large enough to create transversal waves. It will later be shown that below
the wave generation threshold, the surface deformation does not exceed a dozen microns
(see chapter 3). Using the values of δν obtained by hot-wire measurement and the root
mean square of the amplitude of the surface deformation (see Fig. 3.2 on page 61) as the
size of the roughness ε, the non dimensional roughness ε∗ = ε/δν only reaches 0.2 under
the wave threshold. A boundary with a roughness this small can easily be considered
as smooth [Van Driest, 1956] (see figure 1.4 on page 7). Therefore, we can consider the
airflow to be close to a canonical turbulent flow over a no-slip flat wall, at least for a
wind velocity up to 6 m.s−1. This does not hold for larger wind velocity, for which the
roughness induced by the waves decreases the value of C+ in equation (2.2.5), affecting
the mean velocity profile [Longo, 2012] [Zavadsky and Shemer, 2012].

Development of the boundary layer with fetch

If the experimental mean velocity profiles present the correct shape, it is however
clear that these profiles evolve with fetch (see Fig. 2.9). This evolution with fetch can
be attributed to the fact that the flow is not fully developed yet. While an estimate of
the extent of the turbulence would be provided by the fit of both the friction velocity u∗
and the coefficient C+, the lack of data points close enough to the interface to be in the
viscous boundary layer makes this kind of fit impossible.

A better way to estimate the extent of the turbulence in the airflow is through the
thickness of the boundary layer. The turbulence in our wind channel being not fully
developed, the boundary layer, the layer from the interface to the central constant portion
of the airflow, must grow along the tank. The boundary layer thickness δ0.99 is defined as
the distance from the surface at which the mean velocity is 0.99Ua. It is deduced from the
velocity profiles U(z) in the air measured using hot-wire anemometry at different fetches
along the liquid-air interface. These profiles are shown in figure 2.10 for a wind velocity
Ua = 3.9 m.s−1 at fetch x = 20, 500 and 1000 mm. They show the development of
the boundary layer along the channel: the boundary layer thickness δ0.99 increases nearly
linearly, from 13 mm at x = 2 cm to 32 mm at x = 1.0 m (slope of order of 2%). The fact
that δ0.99(x) approaches the channel half-height H/2 ' 52 mm at the end of the channel
indicates that the flow becomes fully developed there.

In order to accelerate the transition to a fully turbulent airflow in our wind tunnel,
the flexible coupling between the wind blower and the wind channel was slightly modified.
This coupling was previously made from thin flexible plastic covering the gap between the
blower and the rest of the set-up, fixed inside the wind blower but free to move at the
entrance of the wind tunnel. It was replaced with strips of coarse sandpaper of the same
dimensions and positioned in the same way. The idea was to locally increase the roughness
of the wall to start up the growth of the boundary layer sooner. However, this attempt
was not successful and no significant change was observed.

Velocity fluctuations and turbulence rate

The root mean square u′ of the wind velocity fluctuations is computed at the same
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Figure 2.10: Mean velocity profiles U(z) in the air for Ua = 3.9 m.s−1 at the centerline
y = 0 and at fetch x = 20, 500 and 1000 mm. The dotted line shows the streamwise
development of the 99% boundary-layer thickness, δ0.99(x) ' 12.6 mm + 0.02x. The
curves for z < δ0.99(x) show the fit with the logarithmic law (Eq. (2.2.5)).

location and wind speeds as the mean velocities: at the center of the channel at x = 500 mm
for different wind velocities (Fig. 2.11) and at the center of the channel for a fixed wind
speed Ua = 3.9 m.s−1 at different fetches (Fig. 2.12).

Similarly to the fluctuations profiles derived from DNS, the fluctuations are minimal
and constant at the center of the channel and maximal close to the walls. The turbulence
rate of the wind blower, the ratio of the turbulent fluctuations over the mean value of
the wind velocity outside the upper and lower boundary layers, is calculated to determine
the “cleanliness” of the wind blower. Experimentally, the turbulence rate is computed as
the ratio of the fluctuation level in the central 4 cm of the airflow over the wind velocity
averaged over the same part of the flow. Measurements show that the turbulence rate is
between 1.5% and 2.5% with a mean value of 2.1%, which is consistent with the turbulence
rate of a few percents generally found in wind tunnels.

Contrary to the mean velocity profiles, the fluctuation profiles are relatively far from
the results obtained by numerical simulations. In particular, the experimental results are
always smaller than the simulations. This may mainly come from the fact that the flow
is not fully developed, but note that the post-processing may also contribute to slightly
weaken the root mean square of the velocity fluctuations.

Transverse profiles of mean velocity

Transverse profiles measured by a simpler commercial hot-wire anemometer (of brand
Testo, model 425) are presented in figure 2.13. The velocity is averaged over 20 seconds
of measurement acquired at 2 Hz. The anemometer calibration was verified beforehand
using a professionally calibrated anemometer of the same brand and type. For small and
high wind velocities alike, there is no major disparity of velocity between the left and
right sides of the wind blower (see profiles for Ua = 2.9 m.s−1 and for Ua = 10.0 m.s−1 at
x = −10 cm). The boundary layers over side walls evolve in the x direction (see profiles
at x = −10 cm and x = 175 cm for Ua = 2.9 m.s−1), a priori in a likewise manner that the
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Figure 2.11: Root mean square of the velocity fluctuations at x = 500 mm at the center of
the wind channel at wind speeds 1.0 m.s−1(◦), 1.9 m.s−1(�), 3.9 m.s−1(♦), 5.8 m.s−1(M)
and 6.6 m.s−1(O). (Left) In linear coordinates. (Right) Compared in semilogarithmic
coordinates with numerical simulations (continuous lines). Note that the axes are inverted
between the two plots. The simulated profiles correspond from bottom to top to the
increasing Resim in table 2.1 on page 40.
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Figure 2.12: Root mean square of the velocity fluctuations at Ua = 3.9 m.s−1at the
center of the wind channel at fetch -100 mm (•), 20 mm (�), 500 mm (�) and 1000 mm
(N). (Left) In linear coordinates. (Right) Compared in semilogarithmic coordinates with
numerical simulations (continuous lines). Note that the axes are inverted between the two
plots. The simulated profiles correspond from bottom to top to the increasing fetch x in
table 2.2 on page 40.
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boundary layer above the interface, but their development is expected not to be crucial to
the system response. Moreover, a slight convergence of the turbulent airflow is expected
to occur close to the free surface from the walls towards the corners (secondary flow of
Prandtl’s second kind [Schlichting, 2000], see Fig. 2.14). This is unavoidable for a turbulent
channel flow in a rectangular geometry. The secondary velocities usually correspond to a
few percents of the bulk velocity. This secondary flow may be the origin of the central
dislocation observed in presence of transverse waves (see chapter 3, in particular figure 3.1
on page 60).
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Figure 2.13: Transverse profiles of the mean velocity measured over the flat floor at
x = −10 cm at half the total height of the channel for Ua = 2.9 m.s−1(•) and
Ua = 10.0 m.s−1(�), and at the exit of the set-up at x = 175 cm for Ua = 2.9 m.s−1(◦).

Figure 2.14: (Top) Curves of constant velocity in a rectangular duct. (Bottom) Sketch
of the secondary flow of Prandtl’s second kind expected in a rectangular duct. Figures
adapted from [Schlichting, 2000].
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Temporal analysis

In order to check that no frequency is predominantly present in the airflow, a temporal
spectral analysis is performed on the signal acquired by the hot-wire probe. Figure 2.15
displays the power spectrum of the hot-wire signal recorded at x = 500 mm at the center of
the channel for the wind speed Ua = 3.9 m.s−1 (spectra have similar shapes independently
of the wind speed and location of the probe). No peak is observed at low frequency (up
to 20 Hz). This suggests that the wind blower vibrations are not transmitted to the tank
and that the liquid will “naturally” choose the waves’ frequency. Thus, the low frequency
peaks detected in the later chapters during spatio-temporal analyses of the surface height
correspond to the natural response of the interface to the turbulent airflow, and not to a
forcing at a particular frequency originating from the wind blower.
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Figure 2.15: Power spectrum of the velocity signal at the center of the channel at
x = 500 mm and for a wind velocity of Ua = 3.9 m.s−1.

2.2.2 Flow in the liquid

It is visually obvious that a drift current appears at the surface under the wind action,
which implies that the liquid cannot be considered at rest anymore. Since this flow can
possibly have an influence on the surface waves, it is important to have an accurate
knowledge of the motion of the liquid in the tank. To do so, Particle Image Velocimetry
(PIV) measurements are performed in various conditions and results are compared to the
laminar theory.

This section focuses on the characterization by PIV of the flow in the lower part of the
set-up, below the interface (−h < z < 0, see Fig. 2.16). The characterization of the flow
in the tank is performed in the same fluid as for the hot-wire measurements.

a) Laminar theoretical profile

The viscous fluid is considered incompressible of density ρ. For the performed experi-
ments, the Reynolds number in the liquid Re = Ush/ν remains under the relatively small
value of 80. Therefore, we can consider that the flow in the liquid stays laminar. The
flow is supposed stationary, unidirectional in the x direction and invariant by translation
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Figure 2.16: Sketch of the flow in the tank.

in x and y. The pressure p counteracts the hydrodynamic effects in the z direction: the
pressure variation is supposed linear in the x direction. These hypotheses lead to the
simplification of the Stokes equation projected in the x direction into d2u

dz2 = constant.
Combined with the boundary conditions that the velocity is zero at the bottom of

the tank and equal to the surface drift at the interface and that the flow rate through a
vertical cut is zero (since the tank is closed), we obtain the following parabolic law, unique
solution of the stationary Stokes problem:

u(x, z) = Us(x)
(

1 + z

h

)(
1 + 3 z

h

)
, (2.2.7)

for −h ≤ z ≤ 0, where Us(x) = u(x, z = 0) is the surface velocity. This profile is sketched
in figure 2.16: the shear stress induced by the wind at the interface drives a drift flow in
the liquid, compensated by a backflow at the bottom of the tank. Note the zero velocity
at z = −h/3.

b) Direct observations and surface contaminants

The water-glycerol mixture is extremely sensitive to surface contamination, which may
induce strong surface tension gradients and alter both the mean flow in the liquid and the
generation of waves [Keulegan, 1951] [Gottifredi and Jameson, 1970] [Kahma and Donelan,
1988] [Tang and Wu, 1992]. Indeed, independently of the initial cleanness of the liquid
mixture, contaminants settle at the liquid-air interface in only a few minutes. Direct ob-
servations of the displacement of particles at the liquid surface are enough to see that
there exists two distinct flow zones in the tank depending on the surface contamination.
When the wind starts to blow, the film of pollutants is entrained downstream and a clear
line of separation can be observed. The stronger the wind, the further away the contam-
inants are blown downstream, until they are blocked at the end of the tank. Upwards
the contaminated region, in the upstream part of the tank, a first zone of quasi uniform
streamwise flow can be observed. There, the liquid is brought about at the surface under
the action of the wind with a counterflow at the bottom of the tank. In the polluted part,
the flow is more complex and shows longitudinal recirculation cells organized in the wind
direction.

This issue of surface contaminant is recurrent in experimental works focusing on wind
waves [Wilson et al., 1973] [Larson and Wright, 1975] [Kawai, 1979] [Kahma and Donelan,
1988] [Liberzon and Shemer, 2011] and it might even explain some discrepancies in the
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values of wind speed threshold obtained by different authors [Kahma and Donelan, 1988].
To overcome this problem, we let the wind blow for a few minutes, and we remove the
contaminated part of the surface liquid by collecting it at the end of the tank. The
procedure is repeated frequently, and in normal operating conditions less than 30 cm of
polluted surface remain at the end of the tank. The rest of the liquid bath acts as a self-
cleaning interface where the first three quarters of the tank are kept clean by the supply
of fresh clean fluid from the counterflow in the bulk. The polluted section of the tank is
excluded from all PIV, hot-wire anemometry and FS-SS acquisitions.

c) PIV measurements

The PIV measurements are done in the vertical plane at the center of the tank using
a pulsed laser of brand Continuum Minilite PIV. A cylindrical lens at the exit of the laser
allows to spread the beam into a laser sheet. The acquisition is performed using a LaVision
Image Pro X camera operated by the software Davis (version 7.2). The laser pulses and the
camera frames are synchronized at an acquisition frequency of 10 Hz over a total time of
recording of 2 seconds. The PIV field of visualization covers the entire depth of the liquid
and spreads over 10 cm in the streamwise direction. The PIV computation is performed
by the software Davis. The velocity profiles thus obtained are averaged temporally over
all the measurements taken and spatially in the x direction. The measurements are done
at fetch x = 200, 415, 720 and 870 mm.

d) Results and interpretations

Base flow profiles

The mean velocity profiles measured at the centerline of the tank using PIV in vertical
planes (x, z) are presented in figures 2.17 and 2.18 (mean velocity profiles outside the
centerline will be presented and discussed later in this section, see figure 2.22 on page 53).
As expected from direct observation, except at small fetch (on a distance of the order
of the liquid height) and over the last 30 cm of the tank (where surface contamination
cannot be avoided), the velocity profiles are found nearly homogeneous in x. However,
slight differences can be observed depending on the wind velocity.

For wind speeds under 7 m.s−1, the flow is laminar, parabolic and bidimensional.
The velocity profiles are well described by the parabolic law, solution of the stationary
Stokes problem (Eq. (2.2.7)). The flow is stationary and uniform: the instantaneous and
temporally averaged velocity fields are almost equivalent. Alike the parabolic law, the
velocity is zero at the bottom of the tank and at z ' −h/3.

Disturbances start to arise for higher wind velocities. While waves appear for Ua
greater than Uc = 6.3 m.s−1, the flow is not significantly affected by the waves until the
wind velocity exceeds 7 m.s−1. Small streamwise fluctuations of mean velocity occur in
the lower two thirds of the tank. Close to the interface, circular orbits superimpose on
the base flow (see Fig. 2.19). The averaging being done only over 2 seconds, we cannot
consider that enough waves went through the PIV field of view to guarantee a proper
time average close to the interface. Therefore, the mean velocity profiles displayed in the
region −h/3 ≤ z ≤ 0 in figure 2.18 are not correctly averaged and no conclusion can be
inferred from them. In particular, the possible change of flow rate in presence and absence
of waves cannot be assessed based on these PIV data.
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Figure 2.17: PIV measurements in the liquid at fetch x = 72 cm at the center of the tank.
The wind is blowing left to right. (a) Instantaneous velocity field at Ua = 5.0 m.s−1.
(b) Temporally averaged velocity field at Ua = 5.0 m.s−1. (c) Mean velocity profiles for
various wind velocities Ua under 7 m.s−1. The profiles are averaged in time and in the
streamwise direction over ∆x = 100 mm. The continuous line shows the quadratic profile
(2.2.7) for Ua = 7.0 m.s−1, with Us fitted at 0.029 m.s−1.
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Figure 2.18: PIV measurements in the liquid at fetch x = 72 cm at the center of the tank.
The wind is blowing left to right. (a) Instantaneous velocity field at Ua = 7.5 m.s−1.
(b) Temporally averaged velocity field at Ua = 7.5 m.s−1. (c) Mean velocity profiles for
various wind velocities Ua over 7 m.s−1. The profiles are averaged in time and in the
streamwise direction over ∆x = 100 mm. The continuous line shows the quadratic profile
(2.2.7) fitted on the lower two third of the profile for Ua = 7.9 m.s−1.
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Figure 2.19: Velocity fields after subtraction of the base flow from the instantaneous ve-
locity fields in figures 2.17(a) and 2.18(a) obtained by PIV in the liquid at fetch x = 72 cm
at the center of the tank at Ua = 5.0 m.s−1 (top) and Ua = 7.5 m.s−1 (bottom).
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Figure 2.20: At fetches x = 200, 415, 720, 870 mm. (Left) Evolution of the surface drift
Us with the wind speed Ua. (Right) Growth of the ratio Us/Ua with Re = Uah/ν. Open
symbols correspond to wind velocities above 7 m.s−1. The continuous line corresponds to
Keulegan’s law (Eq. (2.2.8)) with K = 7.3× 10−4.
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Surface velocity and evolution with fetch

The surface velocity Us(x) is computed from the parabolic fit of the mean velocity
profile (Eq. (2.2.7)). In the case of wind speeds above 7 m.s−1, the parabolas are fitted
only in the lowest two thirds of the profile (−h ≤ z ≤ −h/3), this part being mostly
unaffected by the waves. Note that in figure 2.18 on page 49, the parabolic fit is extended
to the interface despite the obvious change in the velocity field close to the surface in
presence of waves.

Unsurprisingly, the surface drift increases with wind speed (see Fig. 2.20 (left)) while
remaining small relatively to the wind velocity. For Ua = 4 m.s−1 the surface velocity
is of order of 1 cm.s−1, which leads to a Reynolds number Re = Ush/ν ' 10. This
drift velocity is in agreement with measurements at small Reynolds number [Keulegan,
1951], but is much smaller than the 2-3% of wind velocity typically found in classical air-
water experiments [Plate et al., 1969] [Gottifredi and Jameson, 1970] [Veron and Melville,
2001] [Tsai et al., 2005b] [Caulliez et al., 2008] [Liberzon and Shemer, 2011] [Pomeau
and Le Berre, 2011]. Even at the highest wind speeds and fetches, the drift velocities
always remain small compared to the wind velocity; the surface drift never reaches 1%
of the wind speed. This is consistent with the findings of [Keulegan, 1951] that if the
Reynolds number in the liquid is smaller than about 100 (which is always the case in our
system), the surface velocity is noticeably affected by the viscosity of the liquid. Based on
a dimensional analysis, Keulegan proposes the experimental law

Us
Ua

= KRe1/2 = K

(
Ush

ν

)1/2
(2.2.8)

which leads to a quadratic evolution of the surface drift with wind speed:

Us = K2h

ν
U2
a . (2.2.9)

Experimentally, we find K to be between 6.7 × 10−4 (at x = 20 cm) and 7.9 × 10−4 (at
x = 87 cm), with a mean value of 7.3× 10−4. This is in good agreement with the value of
about 7.6× 10−4 found by Keulegan.

The surface velocity Us decreases slightly along the tank for wind velocity under
7 m.s−1(see Fig. 2.21). This is consistent with the development of the boundary layer
and the resulting decreasing friction velocity (see § 2.2.3).

By blocking waves’ formation with surfactants, Keulegan also find that there is no
effect of the presence of wind on the surface drift. This is only partially consistent with our
results, since the surface drift is in good agreement with Keulegan’s law past the threshold
Uc = 6.3 m.s−1, but departs from it for Ua > 7 m.s−1 (open symbols in figure 2.20). More
than by the presence of waves, the surface drift is affected by the amplitude of those
waves. Indeed, bigger waves have a higher “windload” than the smaller waves and will be
entrained by the wind, increasing the drift velocity.

In addition to the surface velocity coming from the shear stress effect on the interface, a
small drift implied by wave propagation, the Stokes drift, may reinforce the current in the
tank. The Stokes drift at the interface, where it is maximal, can be written for a potential
flow as USt = 4π2a2/λT , with a the wave amplitude, λ the wavelength and T the wave
period [Longuet-Higgins, 1953]. The wave amplitude does increase with fetch above the
wave threshold (see chapters 3 and 4), so the Stokes drift is expected to grow with fetch.
However, even considering the extreme values of each of this parameters, the maximal
Stokes drift is only of order 0.008 m.s−1 (with a = 1 mm, λ =35 mm and T = 0.15 s) and
the Stokes drift is therefore negligible.
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Figure 2.21: Evolution of surface drift Us with fetch at various wind speeds: 3.0, 5.0, 5.5,
6.0, 6.5, 7.0 and 7.2 m.s−1 (from bottom to top plot).

The small surface velocity here is expected to have negligible effect on the dispersion
relation of free waves (Eq. (1.1.1)): Lilly (see appendix of Hidy and Plate [Hidy and
Plate, 1966]) shows that the correction to the phase velocity for this parabolic profile
is Us(1 − 2/kh), which is 10% of the phase velocity for the most unstable wavelength
(λ ' 30− 40 mm). This will be explained in more details in chapter 4.

Transverse evolution of the base flow profile

The base flow profiles are measured at x = 720 mm for wind speeds Ua = 3.0, 5.0 and
7.0 m.s−1 at different y from the centerline. The results are presented in figure 2.22 on the
next page. The mean profiles appear to be quite invariant in the transverse direction for
the considered wind velocities. However, the slight difference in the profile at y = −50 mm
for Ua = 7.0 m.s−1 tends to indicate that the profiles outside the centerline may be more
affected by the waves’ presence. Indeed, we will see in chapter 3 that the maximum
amplitude of transverse waves is not located on the centerline y = 0.

2.2.3 Friction velocity and interfacial shear stress

Now that the mean velocities profiles have been measured on both sides on the inter-
face, we will relate these results obtained in the liquid and in the air through the friction
velocity. The profiles are related through the condition of no jump in shear stress at the
liquid-air interface:

τair = τliq = τ with


τair = ρau

∗2

τliq = η

(
du

dz

)
z=0

Using the parabolic law (2.2.7), interfacial shear stress from the liquid becomes τliq = 4ηUs/h.
Measuring Us thus provides another way to determine u∗: using the continuity of the stress
at the interface, one has τ = ρau

∗2 = 4ηUs/h, yielding:

u∗ =
√

4ηUs
ρah

. (2.2.10)
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Figure 2.22: Mean velocity profiles obtained by PIV measurement in the liquid at fetch
x = 72 cm at various y. The wind is blowing from left to right at wind velocity (a)
Ua = 3.0 m.s−1; (b) Ua = 5.0 m.s−1; (c) Ua = 7.0 m.s−1.
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The friction velocity deduced from the PIV measurements is plotted in figure 2.23 and gives
a linear growth of u∗ with Ua: u∗ ' 0.05Ua. This result is consistent with the quadratic
evolution of the surface drift with Ua observed for wind velocities below 7 m.s−1 (see
Fig. 2.20). Indeed, combining equations (2.2.9) and (2.2.10), we obtain:

K = 1
2

(
u∗

Ua

)√
ρa
ρl
' 7.9× 10−4

which is close to the average experimental coefficient K = 7.3×10−4 found in section 2.2.2.

Let us compare this friction velocity to the one that can be extracted from the mean
velocity profile in the air. As mentioned before (see Eq. (2.2.5)), the evolution of the
friction velocity u∗(x) along the channel can be obtained by fitting the velocity profiles
for z < δ0.99(x) with the classical logarithmic law [Plate et al., 1969] [Schlichting, 2000]
[Zavadsky and Shemer, 2012]. Measurements at fetch x0 = 500 mm show u∗ to be almost
proportional to Ua, u∗(x0) ' 0.05Ua (see Fig. 2.23).
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Figure 2.23: Friction velocity u∗, deduced from the mean profile in the airflow at x0 =
500 mm (�) and deduced from the shear stress at the liquid surface (Eq. (2.2.10)) (◦), as
a function of the wind velocity Ua. The continuous line corresponds to u∗ = 0.05Ua.

As a consequence, both the friction velocity u∗ measured by PIV in the liquid and
the one measured in air with the hot-wire at x0 = 500 mm are in excellent agreement
with the result that the friction velocity grows linearly with the wind velocity. Despite
the slight evolution of the surface drift with fetch (and thus the slight evolution of the
corresponding friction velocity u∗), for simplicity, the ratio of u∗/Ua is taken in chapters 3
and 5 as constant and equal to 0.05 for all fetches. By comparison, the ratio of u∗/Ua is
generally found of the order of 3% in air-water experiments [Plate and Hidy, 1967] [Wu,
1975] [Mitsuyasu and Rikiishi, 1978] [Liberzon and Shemer, 2011] with weak dependence
on the wind velocity [Mitsuyasu and Rikiishi, 1978].
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Note that the continuity of the interfacial shear stress implies that we can consider that
τ is imposed by the wind and thus is the same independently of the liquid. Similarly, given
a fixed wind velocity, the friction velocity is supposed to be the same for the different liquid
mixtures used (see chapters 3 and 5). The only limitation of this consideration would be
if the drift velocity becomes large enough to have an influence back onto the airflow. The
surface drift remaining smaller than 1% of the wind velocity, this effect is negligible and
the hypothesis of the invariance of the friction velocity with the liquid is expected to hold
for all mixtures (except in the case of water for which the flow may not longer be laminar
and the drift may be greater).

2.3 Conclusion

In this chapter, we have presented the experimental set-up and the FS-SS method of
visualization that I later used to study the generation and growth of wind waves. The
FS-SS technique is particularly well adapted to study this problem since it is non intrusive,
global and allows to measure the first surface deformation under the action of small wind
speeds. The flows in the wind channel and in the tank have also been characterized, by
hot-wire and PIV measurements, respectively. While flow characterization was performed
for a liquid 30 times more viscous than water, the conclusions that are inferred can be
extrapolated to the more viscous liquids used later.

The turbulent airflow, while not fully developed, was found to be similar to the tur-
bulent airflow above a smooth fixed wall for wind velocity under the threshold of wave
generation. In agreement with the literature, the mean air velocity profile presents a
logarithmic region in the inertial sublayer and can be described by locally applying the
turbulent boundary theory. The friction velocity can be evaluated by a fit in this loga-
rithmic region. The ratio u∗/Ua is found to be 5%, above the 3% generally found in the
literature in air-water experiments. As the airflow is not fully developed until the end of
the channel, the boundary layer slowly grows linearly with fetch at a 2% rate. Bound-
ary layers also develop in the vicinity of the side walls but the transverse mean velocity
is observed to be constant and symmetrical outside these boundary layers. A temporal
analysis confirmed that the wind waves’ frequency is chosen freely, and not by a forcing
from the wind blower.

The flow in the liquid can easily be affected by the presence of surface contaminants.
A maximum of the pollutants are removed and no acquisition is performed in the last
30 cm of the tank where contamination cannot be avoided. All the results described
and discussed in this manuscript concern the non contaminated rest of the tank (on the
first meter). Thanks to the high viscosity of the liquid, the flow remains laminar for all
wind speeds. Up to 7 m.s−1 of wind velocity, the flow in the liquid is almost uniform
and bidimensional. The base flow is well described by the parabolic law solution of the
stationary Stokes problem. The surface velocity can be obtained from this parabolic fit.
For wind speeds above 7 m.s−1, the presence of waves starts to affect the base flow. This
effect occurs mainly in the upper third of the liquid depth but the surface drift can still be
evaluated by a parabolic fit on the other two thirds. While it increases with wind speed
and decreases slightly with fetch, the surface velocity remains small compared to the wind
velocity in all cases.

The friction velocities deduced from the profiles in the air and in the liquid were
compared and shown to be compatible. The friction velocity decreases slightly with fetch,
consistently with the decrease of drift velocity. This evolution is slow enough to consider
that the friction velocity is uniform and simply evolves linearly with the wind speed
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through the empirical law u∗ = 0.05Ua, for wind velocity up to the wave threshold.
Note that the flow characterization shows that the conditions in which our experiments

are carried out are quite different from those of natural wind waves. Indeed, atmospheric
boundary layers are not bounded in the same way that laboratory channel boundary layers
are. The flow in the liquid is also different. In water, it is generally turbulent with different
type of currents under the surface and can also depend on the wind duration. All of this
can affect the behavior of waves and results found in our set-up are not expected to be in
good agreement with data gathered at sea or on lakes.

Summary:

• Wind waves initiation and growth are studied by using a global optical method of
visualization of the deformation of the interface, with an excellent vertical resolution.

• The turbulent airflow can be described by applying locally the turbulent boundary
layer theory. Under the wave threshold, the mean velocity profile can be considered
the same as if the airflow was over a smooth fixed wall.

• Until the waves start to significantly affect the mean profiles at wind velocities
higher than the wave threshold, the flow in the liquid is laminar, almost uniform
and bidimensional, and follows the parabolic law solution of the stationary Stokes
problem. In all situations, the surface velocity remains small.

• Measurements in the air and liquid are consistent with each other and under the
wave threshold, they lead to a friction velocity linearly increasing with the wind
velocity.

• Flow characterizations were performed by measurements in a liquid 30 times more
viscous than water but the conclusions that are inferred can be extrapolated to the
more viscous liquids used later.



Chapter 3

Wind waves initiation: two
regimes of surface deformation

Using the set-up and visualization method detailed in the previous chapter, experi-
ments are conducted so as to investigate the early stages of wave generation by a turbu-
lent wind over a viscous liquid. Exploring the response of the surface to winds of different
strengths, the spatio-temporal structure of the surface deformation is analyzed and two
regimes of deformation of the liquid-air interface are identified. The experimental results
presented in this chapter have been published in [Paquier et al., 2015].

3.1 Experiments

Liquid mixture

The viscous liquid used in these experiments is a mixture of glycerol and water. The
choice of an aqueous glycerol solution was motivated by the advantageous characteristics
of glycerol. Indeed, glycerol is transparent, nontoxic and stable under most conditions 1,
which allows for long term use and storage [Soap and Detergent Association, 1990].

The viscosity of a glycerol-water solution is dependent on the concentration and tem-
perature of the mixture (see figure 5.1 on page 92), so we use here an evenly mixed solution
of 80% glycerol and 20% water and the room temperature is regulated to 25oC. The den-
sity and temperature of the liquid are measured in situ using a densimeter Anton Paar
DMA 35. A resistance thermometer Pt100 is used to track the temperature in the room.
The viscosity of the mixture is measured by a Contraves low shear rheometer after the
experiments. At 25oC, the density of the mixture is found to be ρ = 1.20×103 kg.m−3 and
its kinematic viscosity is ν = η/ρ = 30 × 10−6 m2.s−1, in agreement with the tabulated
value of viscosity found for a glycerol-water mixture of such composition and tempera-
ture. The surface tension of the mixture, measured with a Wilhelmy plate tensiometer, is
γ = 60± 5 mN.m−1.

From these measurements, we can compute that the capillary wavelength is λc =
2π
√
γ/(ρ− ρa)g ' 14.2 mm and the minimum phase velocity cmin = 21.5 cm.s−1 (see

Eq. (1.1.3)). The depth correction factor, tanh(kh), in the dispersion relation (Eq. (1.1.1))
is larger than 0.98 for wavelength smaller than 90 mm, so finite depth effects are quite
negligible in the present experiments. For this interface, the velocity threshold for the
Kelvin-Helmholtz instability is predicted to be UKH ' 6.7 m.s−1 (Eq. (1.1.6)).

1. Except in very high concentrations, in which case its hygroscopicity can be a problem, see chapter 5.
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As discussed in chapter 1 (see § 1.1.3 on page 9), the viscosity of the liquid implies
the existence of two wavelength cut-offs and the wavelengths between these two limits
are the only ones that can propagate [LeBlond and Mainardi, 1987]. In the case of our
mixture of viscosity ν = 30 × 10−6 m2.s−1, the wavelength cut-offs are calculated to
occur for wavelengths shorter than 0.06 mm or greater than 150 m. These values being
considerably far from all the wavelengths considered here, this means that we can safely
assume that these cut-offs do not affect the wave propagation in our experiments.

Generally speaking, despite the large viscosity of the liquid used in our experiments,
the liquid can be considered as quasi-inviscid, i.e. the surface waves are damped but
their dispersion relation is unaffected by the viscosity of the liquid. Indeed, the phase
velocity with the viscous correction (Eq. (1.1.7)) matches the inviscid prediction with a
difference of less than 0.2% for all wavelength greater than λc [Lamb, 1995] [Padrino and
Joseph, 2007]. However, the damping of the waves’ amplitude cannot be neglected. It
is even an advantage in the way the set-up has been designed: since the large viscosity
of the liquid induces a strong attenuation of the surface deformations, the distance over
which an unamplified perturbation can propagate is rather limited. Generally speaking,
wave damping comes from the friction with the bottom and sides of the tank as well as
the dissipation in the bulk [Lamb, 1995] [Lighthill, 1978]. For the wave tank geometry
and the typical wavelengths considered here, friction with the bottom and side walls is
negligible, and the attenuation length for free waves is governed by the dissipation in the
bulk, Lv = cg/(2νk2), with cg the group velocity. Accordingly, in the range of wavelengths
observed experimentally, a free disturbance at these wavelengths cannot propagate over a
distance much larger than a few wavelengths. For example, for λ ' 35 mm the attenuation
length is Lv ' 80 mm. In water, the corresponding attenuation length would be 25 times
greater. Such great attenuation length leads to issues of reflecting waves and this is usually
why wind waves experiments with water are carried out in long tanks. Although the tank
we use is of limited size, thanks to the high viscosity of the liquid, reflections on the walls
or at the end of the tank are not observed in our experiments.

Mean velocity profiles

The wind-induced shear stress drives a current drift close to the interface compensated
by a backflow at the bottom of the tank (see section 2.2.2). Except at small fetch (x . h)
and at the end of the tank where surface contamination cannot be avoided (x & 120 cm),
the velocity profiles in the liquid are well described by a parabolic law. Thanks to the
high viscosity of the liquid, the flow induced by the wind in the liquid remains laminar,
with a relatively weak surface drift (of the order of a few centimeters per second). This
surface drift is expected to have only a small effect on the dispersion relation. Indeed,
Lilly shows that the correction to the phase velocity of free waves for a parabolic mean
velocity profile in the tank is Us(1− 2/kh) (see appendix of [Hidy and Plate, 1966]). The
first term (Us) corresponds to a simple transport, attenuated more and more strongly for
higher wavelength λ by the second term (−2Us/kh) due to the backflow in the tank. For
the most unstable wavelength λ ' 35 mm, this correction amounts to about 10% of the
phase velocity.

As detailed in section 2.2.1, the airflow generated by the wind blower is similar to a
canonical turbulent airflow above a smooth fixed wall for wind velocities under the wave
generation threshold. It presents a mean velocity profile with a logarithmic region in the
inertial sublayer and can be locally described by the turbulent boundary layer theory. The
friction velocity u∗ is very similar independently of whether it is deduced from the velocity
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profile in the liquid or in the air: it is approximately 5% of Ua the mean air velocity of
the center of the channel.

FS-SS measurements

The surface deformation of the liquid is measured using the Free Surface Synthetic
Schlieren (FS-SS) method described in section 2.1.3. The acquisitions are performed over
390 × 280 mm windows centered at three different fetches, so that the fields of visual-
ization roughly correspond to the first three quarters of the tank with a small overlap:
x ∈ [10, 400] mm; x ∈ [370, 760] mm; x ∈ [700, 1090] mm (no measurement are carried over
the last quarter because of surface pollutants, see section 2.2.b). Examples of surface re-
construction are provided in figure 3.1 (over the second quarter, centered on x = 570 mm).
Two types of recordings are performed: acquisitions of 2 s at 200 Hz for time-resolved wave
reconstruction, and acquisitions of 100 s at 10 Hz to ensure a good convergence of the wave
statistics.

3.2 Evolution of the surface characteristics with wind ve-
locity

3.2.1 Evolution of the deformation amplitude with wind velocity

The change of the surface appearance for winds of increasing velocity is easily visible
by the direct analysis of the surface fields reconstructed by FS-SS. Figure 3.1 presents
four snapshots of the surface deformation at increasing wind velocity, Ua = 3.2, 5.9, 7.0
and 7.8 m.s−1, taken at intermediate fetch x ∈ [370, 760] mm. At small wind velocity, the
surface is populated with rapidly moving disorganized perturbations of weak amplitude,
of order 10 µm, elongated in the streamwise direction (Fig. 3.1(a)). Note that such slight
interface motions are often reported below the threshold velocity during wind waves ex-
periments [Keulegan, 1951] [Kunishi, 1963] [Hidy and Plate, 1966] [Plate et al., 1969] [Got-
tifredi and Jameson, 1970] [Wu, 1978] [Kahma and Donelan, 1988] [Ricci, 1992] [Caulliez
et al., 1998] [Lorenz et al., 2005]. However, there is no consensus on their designation and
the terms used to refer to them are quite diverse (“tiny undulations”, “small oscillations”,
“shimmering of the surface”, “surface disturbances”, “initial wavelets”, “tremors”, etc).
In the rest of this manuscript, these streamwise surface deformations of weak amplitude
at low wind velocity are designated by the term “wrinkles”.

When the wind velocity is increased, noisy spanwise crests, normal to the wind direc-
tion, gradually emerge in addition to the streamwise deformations (Fig. 3.1(b)). As the
velocity is further increased (Ua ' 6 − 7 m.s−1), the amplitude of these spanwise crests
rapidly grows with Ua and the streamwise deformations, of weaker amplitude in compar-
ison, become less and less visible. Finally, the surface does not display a combination of
streamwise and spanwise surface deformations anymore but is dominated by transverse
waves. At wind velocity Ua = 7.0 m.s−1, the surface field is covered by a regular wave
pattern of typical amplitude 0.2 mm, with a well defined wavelength in the streamwise
direction (Fig. 3.1(c)). Note that the wave crests are not strictly normal to the wind di-
rection as there are dislocations near the center line y = 0. Since the wind mean velocity
profile bears no significant disparity between the left and right halves of the channel (see
Fig. 2.13 on page 44), these dislocations may rather be due to a slight convergence of the
turbulent airflow close to the free surface towards the walls, unavoidable for a turbulent
channel flow in a rectangular geometry (secondary flow of Prandtl’s second kind [Schlicht-
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Figure 3.1: Instantaneous surface height ζ(x, y) measured by FS-SS centered at in-
termediate fetch x = 570 mm, at increasing wind velocities. (a) Ua = 3.2 m.s−1,
showing disorganized wrinkles of small-amplitude elongated in the streamwise direction
(ζrms = 0.0032 mm). (b) Ua = 5.9 m.s−1, showing a combination of streamwise wrin-
kles and spanwise waves (ζrms = 0.009 mm). (c) Ua = 7.0 m.s−1, showing well-defined
spanwise waves of mean wavelength λ = 35 mm (ζrms = 0.12 mm). (d) Ua = 7.8 m.s−1,
showing large-amplitude waves of mean wavelength λ = 44 mm with increasing disorder
(ζrms = 0.6 mm). The wind is blowing from left to right. Note the change of scale in the
color map between all four fields of surface deformation.

ing, 2000], see figure 2.14 on page 44). For wind velocities even greater, the wave amplitude
continues to grow and the disorder of the wave pattern increases, with more dislocations
appearing, not necessarily on the center line (Fig. 3.1(d)). Simultaneously, the typical
wavelength becomes larger.

These patterns below and above wave onset are quite similar to those obtained by direct
numerical simulations of temporally growing waves with periodic boundary conditions [Lin
et al., 2008] [Liao and Kaihatu, 2012] (see figure 1.8 on page 20). It should be noted that
dislocations in the wave patterns can also be seen in their results despite the absence
of secondary flows (the periodic boundary at the “walls” imply that there are no corner
causing the secondary flows). This suggests that an inherent destabilization of the wave
crests is possible.

To study the evolution from the disorganized streamwise wrinkles to the transverse
waves, the root mean square of the deformation amplitude averaged in time and space

ζrms = 〈ζ2(x, y, t)〉1/2 (3.2.1)

is plotted as a function of the wind velocity. Here, the brackets are both a temporal
average and a spatial average over the entire field of view. Figure 3.2 shows the evolution
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Figure 3.2: Root mean square of the surface height ζrms as a function of wind velocity
Ua. The data is averaged over the measurement window of dimensions 390 × 280 mm
centered at two values of the fetch x = 205 mm (•) and x = 895 mm (�). The letters and
vertical arrows show the velocities corresponding to the four snapshots in figure 3.1. The
continuous line corresponds to the linear fit ζrms = αUa, with α = 10−6 s.

of this quantity ζrms with respect to the wind velocity, on the first and third quarter of
the tank (x ∈ [10, 400] and x ∈ [700, 1090]). Two regimes are clearly visible. At low wind
velocity, the interface is dominated by longitudinal wrinkles and the surface deformation
amplitude slowly increases with Ua. However, past a velocity threshold of order 6 m.s−1,
the increase of ζrms becomes much sharper: while ζrms rises by a factor of 10 between
1 and 6 m.s−1, it grows by a factor of 100 for Ua increasing from 6 to 8 m.s−1. A
similar transition in the wave amplitude is observed in air-water experiments [Kahma and
Donelan, 1988] [Caulliez et al., 1998]. This fast growth with wind velocity slows down at
higher Ua: at the largest velocity (Ua ' 8 m.s−1), the sharp increase of the wave amplitude
seems to start to saturate. In any case, this wind velocity represents an upper limit for the
FS-SS measurements. Because of the caustics induced by strong wave curvatures, surface
visualization by FS-SS is impaired at larger wind velocities 2.

Comparing the wave height at the two different values of fetch in figure 3.2, it is found
that in the wrinkles regime (Ua < 6 m.s−1), the amplitude of the surface deformation
is almost independent of the fetch. The wave height in this regime is simply following
an approximately linear law with respect to the wind velocity: ζrms ' αUa, with α =
10−6 s. The independence of the surface deformation with fetch suggests that the interface
response to the wind is not a function of the surface deformations created upstream but
is only function of the wind at the current fetch. The perturbations generated at shorter
fetch do not propagate over a distance great enough to significantly affect the evolution
of the wave height with fetch. This suggests that the wrinkles can be viewed as imprints

2. At least for this liquid and particular viscosity. A different liquid may respond to the same wind
velocity with a smaller wave amplitude still measurable by the FS-SS method.
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on the free surface of the pressure fluctuations in the turbulent airflow.
Expressing the correlation between the fluctuations in surface height and the fluctua-

tions in pressure in order to quantitatively validate this approach is however not a simple
exercise. Let us try the simplest representation. A crude estimate can be given by neglect-
ing all capillary and viscous effect and assuming the instantaneous hydrostatic response
of the liquid interface. This leads to a deformation amplitude linearly increasing with
pressure fluctuations:

ζrms '
prms
ρg

. (3.2.2)

While accessing the pressure fluctuations at an interface is particularly difficult experi-
mentally, such information is now available by direct numerical simulations, at least on
a smooth undeformable boundary. Since the airflow above the liquid-air interface can be
approximated by a flat fixed wall for wind velocity below the wave onset (see chapter 2),
the results of these DNS are used here to complete our calculations. The pressure fluctu-
ations at the wall in a fully developed turbulent channel is well described by the empirical
law [Hu et al., 2006] [Jimenez and Hoyas, 2008]:

prms = f(Reτ )ρau∗2, (3.2.3)

with:
f(Reτ ) = (2.60 ln(Reτ )− 11.25)1/2. (3.2.4)

In the range Ua ' 1− 6 m.s−1, the corresponding Reynolds number is Reτ ' 160− 1000.
Neglecting the logarithmic variation over this range and taking u∗ ' 0.05Ua, this empirical
law yields prms ' 0.006ρaU2

a , and thus:

ζrms '
0.006ρaU2

a

ρg
' 0.3− 20 µm. (3.2.5)

The order of magnitude is consistent with Fig. 3.2 but the predicted scaling (ζrms ∝ U2
a )

is not compatible with the data. A more complete (but more complex) approach would
require accounting for the viscous response time of the surface to a local change in pressure,
with the added difficulties that the pressure fluctuations are not permanent but transient
and are moving at a certain speed above the interface (more details will be given in
chapter 5).

3.2.2 Spatial growth rate

The data comparison at the two different fetches in figure 3.2 leads to the clear con-
clusion that beyond a certain wind velocity, the amplitude of the surface deformation
ceases to be approximately independent of fetch and starts to evolve with fetch. Indeed,
contrarily to the wrinkles, the amplitude of the transverse waves strongly increases with
x. In order to study more closely the spatial evolution of the surface height, the root
mean square amplitude ζrms(x) is computed locally at a certain fetch, that is to say using
an average over y and time only. The amplitude of the surface deformation is plotted in
semilogarithmic coordinates for different wind velocities in figure 3.3 (the wind velocity
increases from the bottom to top plot). In agreement with the data presented in figure 3.2,
the amplitude of the surface deformation in the wrinkles regime does not change much
with fetch, while it does in the wave regime. At small fetch (x < 400 mm), the spatial
growth is approximately exponential, which is expected for a convective supercritical in-
stability in an open flow [Huerre and Rossi, 1998] and has been reported in many air-water
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Figure 3.4: Spatial growth rate β, measured at small fetch (x < 400 mm), as a function
of wind velocity. The continuous line shows the linear fit (3.2.7).
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experiments [Hidy and Plate, 1966] [Sutherland, 1968] [Plate et al., 1969] [Mitsuyasu and
Rikiishi, 1978] [Liberzon and Shemer, 2011]. At larger fetches however, the wave am-
plitude grows less rapidly, which suggests that nonlinear effects come to be important,
resulting in this weaker wave growth (see chapter 4).

The spatial growth rate β is estimated in the initial exponential growth region (x <
400 mm) by fitting the squared amplitude as:

ζ2
rms(x) ∝ exp(βx). (3.2.6)

Figure 3.4 presents this growth rate β as a function of the wind velocity Ua: β is almost
zero before a certain wind velocity and becomes positive past this value. This allows to
accurately define the onset Uc of the wave growth. For Ua < Uc, there is next to no spatial
growth (β ' 0), and for Ua > Uc, the spatial growth rate increases linearly, as it can be
fitted by:

β ' b(Ua − Uc) (3.2.7)

with Uc ' 6.3± 0.1 m.s−1 and b ' 11.6± 0.8 s m−2. Interestingly, in the small range of
fetch over which β is computed, the waves are nearly monochromatic, with λ ' 35 mm (see
section 3.2.3). This indicates that although computed from the total wave amplitude, the
growth rate measured here corresponds roughly to the growth rate of the most unstable
wavelength (see also section 4.1.4 on page 80).

One may note that the velocity threshold Uc ' 6.3 m.s−1 turns out to be close to
the onset prediction of the Kelvin-Helmholtz instability (Eq. (1.1.6)). This agreement is
however coincidental as the wave threshold depends on viscosity. Since the critical velocity
increases with viscosity (see chapter 5), it makes sense that a certain viscosity will lead to
the same result as the inviscid Kelvin-Helmholtz prediction. It should also be noted that
the critical wind velocity as it is defined implies that Uc corresponds to the minimal wind
velocity at which waves start to grow, and not to the inception velocity, the minimal wind
velocity at which waves start to appear. Indeed, as shown in figure 3.1b, transverse waves
may be locally generated below Uc (this point will be further discussed on page 67).

To compare with other experiments and theoretical results, it is interesting to express
equation (3.2.7) in terms of a temporal growth rate instead of a spatial one. In the frame
moving with the group velocity, this temporal growth rate writes βt = cgβ [Gaster, 1962].
Using the group velocity cg ' 0.16 m.s−1 corresponding to the most unstable wavelength
λ ' 35 mm, and writing Ua in terms of the friction velocity u∗ ' 0.05Ua, we obtain:

βt ' (36± 8)(u∗ − 0.31) (3.2.8)

(in s−1). These values are smaller by a factor of order of 2 to 5 than the ones given by
theoretical predictions [Miles, 1959a] or reported in air-water experiments [Larson and
Wright, 1975] [Mitsuyasu and Honda, 1982] [Plant, 1982]. This is not a surprising result
as one would intuitively expect the wave growth to be weakened by the high viscosity of
the liquid.

An interesting question is whether the wrinkles are perturbations on which the trans-
verse waves are initiated. To address this, let us compare the wrinkles’ amplitude and the
initial wave amplitude. From figure 3.3, the initial wave amplitude ζrms can be extrapo-
lated at x = 0 for Ua > 6.3 m.s−1. This initial amplitude ζrms(x = 0) grows with Ua much
more rapidly than the amplitude of the wrinkles. Indeed, for Ua increasing from 6.3 to
7.7 m.s−1, ζrms(x = 0) increases from 8 to 30 µm, which corresponds to a much quicker
growth that the linear one ζrms = αUa with α = 10−6 s observed for the wrinkles. As a
consequence, it appears that the wrinkles are not necessary for the growth of the waves
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and cannot be considered as the seed noise for the exponential growth of the waves at
larger velocity. The seed noise may instead result from the surface disturbance at x = 0,
where the boundary condition suddenly changes from no-slip to free-slip. In agreement
with this idea, the root mean square of amplitude of surface deformation can be described
as the sum of the wrinkle amplitude (linearly increasing with Ua) and the wave amplitude
(exponentially increasing with Ua):

ζrms ' αUa + ζn(Ua) exp [b (Ua − Uc)x] , (3.2.9)

with ζn(Ua) the amplitude of the noise at x = 0. The fact that the wave amplitude is
quite sensitive to the liquid level at x = 0 (see page 30) agrees with this description.

3.2.3 Spatial structures

In order to characterize the spatial structure of the surface deformations, both in the
wrinkles and wave regimes, a two-point correlation function is used:

C(r) = 〈ζ(x, t)ζ(x + r, t)〉
〈ζ(x, y, t)2〉

, (3.2.10)

where 〈 · 〉 is both a spatial and temporal average. Figure 3.5 presents the correlation 3 in
the streamwise direction (r = rxex) for the same four wind velocities as for the snapshots
in figure 3.1. Oscillations in the correlation indicate a periodic structure in the streamwise
direction. In contrast, the monotonic decay of C(rx) as it can be observed at low wind
velocity is a signature of the spatial disorder in the wrinkles regime. The presence of
slight oscillations below the critical velocity (at Ua = 5.9 m.s−1) confirms that there are
transverse waves under the threshold Uc ' 6.3 m.s−1 (see also Fig. 3.1b). This suggests
that the transition between the wrinkles and wave regimes is not abrupt but continuous.
Both wrinkles and transverse waves coexist with different relative amplitude over a sig-
nificant range of velocity around Uc. This was already intuited by the slow transition in
figure 3.2 and strengthens the importance of the spatial growth in the criterion for the
determination of the critical velocity.

To further characterize the smooth transition between the wrinkles and wave regime,
the correlation lengths Λi in the direction ei (i = x, y), defined as 6 times the first value of
ri satisfying C(ri) = 1/2, are computed. The correlation lengths could a priori be defined
based on any other value of C(ri) than 1/2 (as long as C(ri) reaches this value for all
wind velocities). The definition with 1/2 and the factor 6 is chosen so that the correlation
length may take on a physical meaning. Indeed, for a monochromatic wave propagating in
the direction ei, the correlation length Λi defined in this way and the wavelength coincide.
Of course, no wavelength can be defined in the wrinkles regime because of the inherent
disorder of these surface deformations. Nevertheless, below the threshold, the correlation
lengths Λx and Λy give estimates of the characteristic size of wrinkles, in the streamwise
and spanwise directions respectively.

Figure 3.6 presents the correlation lengths Λx and Λy relative to the wind velocity 4.
At very low wind (∼ 1 m.s−1), both lengths are approximately of the same order, Λx '
Λy ' 250 mm. Slightly larger wind velocity leads to a quick decline of Λy to about

3. All correlations are computed using the Matlab function corrf from the toolbox PIVMat.
4. The correlation lengths presented in figure 3.6 are averaged over x ∈ [700, 1090]. The plots at other

fetches are similar, with the only difference that the increase past the threshold of Λx is less pronounced
at smaller fetch. As the evolution of the wavelength will be discussed in the next chapter, these differences
are not detailed here. The same remark applies to figure 3.10.
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70 mm, while Λx remains of the same order of magnitude. Between 2 and 5 m.s−1,
both correlation lengths do not evolve much and the surface deformations are mostly in
the streamwise direction (Λx/Λy ' 3). Between 5 and 7 m.s−1, Λx decreases while Λy
increases, and past 7 m.s−1, the surface deformations are now essentially in the spanwise
direction (Λx/Λy ' 0.15). Note that a pure monochromatic wave propagating in the x
direction would lead to a constant correlation in the y direction (C(ry) = 1) and therefore
the associated correlation length would be infinite (Λy =∞). The fact that the correlation
length Λy saturates in our case past the velocity threshold indicates that the transverse
waves do not span over the entire width of the tank. Instead, dislocations are visible near
the center line y = 0 (see Fig. 3.1(c,d)) and the saturation of Λy is the result of these
dislocations.

As mentioned above, the decrease of Λx and the increase of Λy start at a wind velocity
of approximately 5 m.s−1. This indicates that transverse waves are present simultaneously
with the wrinkles well before the critical velocity Uc ' 6.3 m.s−1 where waves start to be
amplified. The coexistence of wrinkles and transverse wave below Uc, coupled with the
other experimental results presented above, allows to propose the following view for the
evolution of the surface deformation with wind velocity. At low wind velocity, below
the wave onset, wrinkles locally excite waves. However, these waves are not amplified
but are damped exponentially (β < 0). If this excitation was not randomly distributed
on the interface but at a well-defined fixed location (like in the case of a mechanical
forcing), this decay would be measurable. In our case, the interface response is the sum
of a large number of spatially decaying transverse waves, locally excited by the randomly
distributed wrinkles, themselves generated by the turbulent fluctuations in the airflow
above the surface. Since the wrinkles’ amplitude is essentially independent of the fetch,
the result of the combination of the wrinkles and the decaying transverse waves locally
excited by them is independent of the fetch as well. This leads to an apparent zero growth
rate that can be seen below the threshold in figure 3.4. To put it another way, the negative
growth rate expected below the threshold is hidden by the spatial average induced by the
random distribution of the decaying waves.

Working under the assumption that the elongated wrinkles visible at low velocity are
the traces of the pressure fluctuations in the turbulent boundary layer located above the
interface, one would expect to find correlations between their characteristic spanwise and
streamwise dimensions. A full validation through experiments of this would require to
compare the spatial structure of the pressure fluctuations and of the interface deforma-
tions directly in the set-up. Unfortunately, accurate measurements of pressure fluctuations
very close to an interface are experimentally extremely difficult to achieve. As a result,
we use again data obtained by direct numerical simulation. The data here refered to is
from [Jimenez and Hoyas, 2008] 5 and was obtained atReτ up to 2000 [ 6]. Starting from the
center of the airflow (large z), the intensity of the pressure fluctuations increases logarith-
mically with a decreasing altitude down to z ' 30δν . It then remains essentially constant
in the viscous sublayer down to the interface (see Fig. 3.7(left)). In the region close to the
interface where the pressure fluctuations are close to being maximal (0 < z < 30δν), the
most energetic pressure structures have approximately the same characteristic dimensions
in both the streamwise and spanwise direction: `x ' `y ' 160δν (see Fig. 3.7(right)). Since
the thickness of the viscous sublayer δν = νa/u

∗ decreases with increasing wind velocity,
these characteristic dimensions `x and `y also decrease as Ua increases. Comparing these
features with the correlation lengths Λx and Λy, it is found that they are compatible, at

5. The dataset is available at http://torroja.dmt.upm.es/ftp/channels/.
6. The results presented here vary little with the Reynolds number.

http://torroja.dmt.upm.es/ftp/channels/
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Figure 3.7: (Left) Pressure fluctuation profile as a function of the adimensionalized altitude
above the wall z+ = z/δν ; (right) Normalized energy at lengths `x and `y at the elevation
z+ = z/δν = 30. Colored regions from the outside in (from dark blue to red) present the
energy between 0.1 and 0.3, 0.3 and 0.5, 0.5 and 0.7 and larger than 0.7. The central red
region thus corresponds to the most energetic structures. The continuous line represents
the relation `x = `y. Both graphs present the data obtained at Reτ = 2000 refered to
in [Jimenez and Hoyas, 2008].

Figure 3.8: Pressure field at the interface. DNS data obtained at Reτ = 550 refered to
in [Jimenez and Hoyas, 2008].

least at low wind speeds (see Fig. 3.6). Indeed, at very low wind velocity, the wrinkles
are nearly isotropic (see Fig. 3.8): Λx ' Λy ' 250 mm. However, for wind speeds slightly
higher, the evolution of Λx and Λy departs from one another. The spanwise correlation
length decreases as Λy ' 550δν , following the evolution of the width `y of the pressure
fluctuations up to 3 m.s−1. In contrast, the streamwise correlation length Λx does not
display the same decrease and stays relatively large. This may result from the viscous time
response of the interface to a moving pressure perturbation (since pressure fluctuations
are advected with the wind in the streamwise direction while leaving traces on the liquid
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surface).

3.2.4 Spatio-temporal dynamics

To further confirm the central importance of the pressure fluctuations in the surface
deformation in the wrinkles regime, let us now compare their spatio-temporal dynamics.

Figure 3.9(left) presents the spatio-temporal diagrams at the same four wind velocities
as in figure 3.1, constructed by plotting the surface deformation ζ(x, y, t) in the plane (x, t)
along the center line y = 0. The oblique lines in these diagrams indicate the characteristic
velocity of the patterns of surface deformation. The closer these lines are to the horizontal,
the larger the characteristic velocity is. Figure 3.9(right) displays the two-point two-time
correlation in the streamwise direction at the same increasing velocities. This spatio-
temporal correlation is defined as:

C(rx, τ) = 〈ζ(x + rxex, t+ τ)ζ(x, t)〉
〈ζ(x, t)2〉

, (3.2.11)

where 〈 · 〉 represents a spatial and temporal average. For statistically stationary and
homogeneous deformations, the spatio-temporal correlation is such that C(−rx,−τ) =
C(rx, τ) and consequently, only the positive domain (here, in time) needs to be shown.

At small wind speed (Ua = 3.2 m.s−1), the surface displays rapidly propagating dis-
organized structures, with a life time of order of their transit time (Fig. 3.9(a)). The
broad correlation in figure 3.9(b) is the signature of the distribution of their characteristic
velocity being broad.

At Ua = 5.9 m.s−1, wrinkles and waves coexist: slow wave packets with well-defined
velocity appear embedded in rapid disorganized fluctuations (Fig. 3.9(c)). These wave
packets further confirm the picture presented above for the wrinkles-wave transition: wrin-
kles locally excite evanescent transverse waves that rapidly fade away. Furthermore, the
corresponding spatio-temporal correlation (Fig. 3.9(d)) allows inferring the wavelength
and phase velocity of these decaying waves.

At Ua = 7.0 m.s−1, the interface becomes dominated by spatially growing trans-
verse waves: the spatio-temporal diagram is populated with well defined oblique lines
(Fig. 3.9(e)) and the spatial growth is indicated by the gradual change of color along
these lines. In the spatio-temporal correlation, the waves translate into a marked spatial
and temporal periodicity (Fig. 3.9(f)). However, wave packets delimited by boundaries
propagating at the group velocity are still visible, which indicates that the transverse
waves are not strictly monochromatic. For this wind velocity (Ua = 7.0 m.s−1) and fetch
(x = 570 mm), the local wavelength is λ = 37 mm, for which the predicted phase and
group velocities are c = 0.26 m.s−1 and cg = 0.16 m.s−1, in accordance with the slopes
observed in figure 3.9(f) (black and white dashed lines correspond respectively to the phase
and group velocity).

Finally, at even larger wind velocity (Ua = 7.9 m.s−1), the phase velocity and wave-
length both somewhat increase. Accordingly, the spatial and temporal periodicity weakens
in the corresponding spatio-temporal correlation (Fig. 3.9(h)).

For monochromatic waves propagating in the x direction with a wavenumber k and
a radian frequency ω, the two-point two-time correlation yields C(rx, t) = cos(krx − ωt).
This means that the correlation is equal to 1 along characteristic lines parallel to rx/t = c,
with c = ω/k the phase velocity. For non-monochromatic waves propagating in the same
direction, the correlation C(rx, t) is weaker but is still the largest along a line rx/t given
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velocities and scales as in figure 3.1. (b,d,f,h) Corresponding longitudinal spatio-temporal
correlation C(rx, τ) (Eq. (3.2.11)). Colormap is [−1, 1] from blue to red. The black dashed
line shows the convection velocity Vconv (Eq. (3.2.12)). In (f), the two white dashed
lines show the group velocity cg = 0.16 m.s−1 corresponding to the observed wavelength
λ = 37 mm, which delimit the wave packets.
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Figure 3.10: Convection velocity Vconv = Λx/T, averaged over x ∈ [700, 1090] mm, as a
function of the wind velocity Ua. The continuous line shows Vcorr = 0.6Ua. The vertical
dashed line indicates the onset of wave growth at Uc = 6.3 m.s−1, where the growth rate β
transitions from zero to positive values. The horizontal dashed line shows the local phase
velocity c = 0.27 m.s−1 corresponding to the local wavelength λ = 44 mm.

by the characteristic velocity of the pattern. As a consequence, the characteristic velocity,
referred to as the convection velocity, can be defined as:

Vconv = Λx
T , (3.2.12)

with Λx and T the first value such that C(Λx/6, 0) = 1/2 and C(0,T/6) = 1/2, respectively.
Similarly to the correlation length, the convection velocity could be defined with different
factors. Here, Λx and T are defined such that they corresponds to the wavelength and
period for monochromatic waves, in which case the convection velocity Vconv is simply the
phase velocity.

The convection velocity is represented by a black dashed line in the spatio-temporal
correlation in figure 3.9 and is plotted as a function of the wind speed Ua in figure 3.10. It is
found that at very small velocity, Vconv increases approximately linearly as Vconv ' 0.6Ua,
until Ua ∼ 2 m.s−1. This evolution is remarkably similar to the one of the convection
velocity of the pressure fluctuations in turbulent boundary layers [Choi and Moin, 1990].
Let us recover the convection velocity from the characteristics of the turbulent airflow
close to the interface. In a turbulent boundary layer, the maximum of pressure fluctuation
is located at about zm/δν ' 20− 50 (see Fig. 3.7(left)). Following the logarithmic law in
the inertial sublayer (Eq. 2.2.5), the mean velocity at this altitude is u(zm) ' (13± 1)u∗.
Using the approximation u∗ ' 0.05Ua, we obtain u(zm) ' (0.65 ± 0.05)Ua. This result
suggests that the response of the interface to the moving pressure fluctuation is essentially
instantaneous and local up to Ua ' 2 m.s−1.

The convection velocity departs from the linear growth 0.6Ua at wind velocity larger
than 2 m.s−1 and saturates at Vconv ' 1.2 m.s−1. This saturation is possibly the conse-
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quence of the high viscosity of the liquid: the viscous damping prevents the surface from
having an instantaneous response to the turbulent fluctuations because of the too rapid
propagation of the pressure disturbances. As the wind speed is further increased, the con-
vection velocity decreases down to c ' 0.27 m.s−1, matching the expected phase velocity
of free waves of the observed wavelength. Note that this decrease does not correspond to
the wrinkles slowing down. It is rather due to an average over the rapid wrinkles propa-
gating at velocities of about 1.2 m.s−1 and the slow transverse waves at velocity of about
0.27 m.s−1. As the wind velocity increases, the interface is less and less dominated by
the wrinkles and progressively features predominantly the transverse waves, leading to a
decreasing average velocity. Finally, from Ua ∼ 7 m.s−1, the convection velocity increases
again, in accordance with the wavelength increase in figure 3.6. It should be noted that
these increases of wavelength and convection velocity do not necessarily occur at shorter
fetches. This implies that at high wind velocity, the wave characteristics may change with
fetch. This phenomenon is similar to the wavenumber and frequency downshift observed at
sea [Dias and Kharif, 1999] and suggests that nonlinear effect are not negligible anymore.
These evolutions of the wave characteristics with fetch will be described and discussed in
the next chapter.

3.3 Conclusion

This chapter presents the results of an experimental investigation of the surface defor-
mation of a viscous interface by a turbulent airflow for a given viscosity. The data obtained
by FS-SS shows the existence of two regimes of deformation of the liquid-air interface.

In the first regime, at low wind velocity, rapidly propagating disorganized perturbations
elongated in the streamwise direction are observed. These wrinkles have a small amplitude
(< 10 µm) that increases approximately linearly with the wind velocity but is almost
independent of fetch. At larger wind velocity, above a certain threshold, the surface is
dominated by well-defined transverse waves propagating downstream. The crests of these
gravity-capillary waves are nearly perpendicular to the wind direction but with some
dislocations close to the center line. Contrary to the wrinkles, these waves are of a larger
amplitude (from a dozen microns to a few millimeters) and grow with the downwind
distance from the beginning of the tank. At small fetch, this evolution agrees with an
exponential growth but the growth slows down at larger fetch. Using the exponential
growth rate measured at small fetch, a critical velocity can be accurately defined as the
velocity where the growth rate becomes positive.

The experimental data suggest that the wrinkles are traces on the interface of the
pressure fluctuations in the turbulent boundary layer above the surface. This is confirmed
at low wind velocity by the comparison of the spatial structures and spatio-temporal
dynamics of the surface deformation and those of the pressure fluctuations advected by
the turbulent airflow. However, quantitative validation is achieved only at very low wind
speed. At higher velocity, the interface response changes, probably due to the viscous
response time of the surface to too rapidly traveling pressure perturbations. The FS-SS
acquisitions also indicate that at the transition between the two regimes, both wrinkles and
waves are present. The following picture has been proposed: below the critical velocity,
waves are locally excited by the wrinkles but are spatially damped. The presence of
these evanescent waves results in the smooth transition relatively to wind speed of the
characteristic amplitude, lengths and velocity associated with the surface deformation.
Interestingly, the seed noise for the growth of the waves above onset seems not to be
governed by the wrinkles. It appears instead to depend on the perturbations at the inlet
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boundary condition at zero fetch.
Note that the use of a highly viscous liquid in these experiments implies that certain

results may be specific to this system and irrelevant in the context of an air-water inter-
face. For example, the fact that the wrinkles at low wind velocity are compatible with
the instantaneous and local response of the interface to the pressure fluctuations in the
boundary layer may not hold at lower liquid viscosity. Indeed, in the case of a liquid
of lower viscosity, one would expect the surface deformation at a given location to also
depend on the perturbations emitted elsewhere on the surface at previous times. The
influence of the liquid viscosity on the wrinkles regime and wave onset is later explored in
chapter 5.

Summary:

• FS-SS measurements of the response of a viscous interface to a turbulent wind shows
the existence of two regimes of surface deformation that we call the wrinkles regime
and the wave regime.

• At low wind velocity, the surface is perturbed by small-amplitude elongated stream-
wise wrinkles that do not grow with fetch. The wrinkles can be interpreted as
the imprints on the viscous interface of the pressure fluctuations in the turbulent
boundary layer above the surface.

• At higher wind velocity, beyond a critical velocity, well-defined transverse waves
propagate downstream. Their amplitude grows exponentially with fetch over a cer-
tain distance, before nonlinearities are not negligible anymore and this spatial growth
slows down at higher fetch.

• The separation between the wrinkles and wave regimes can be accurately defined by
the velocity at which the spatial growth rate becomes positive. However, there is a
significant range of velocity where wrinkles and waves cohabit. Experimental results
suggest that transverse waves are locally excited by the wrinkles that are amplified
and grow only past the critical velocity.





Chapter 4

Nonlinearities in the early growth
of wind waves

In the previous chapter, we have shown the existence of two regimes of surface defor-
mation by wind over a liquid thirty times more viscous than water. Depending on the
wind velocity, the response of the air-liquid interface is different: at low wind speeds,
the surface is populated with disorganized wrinkles of small amplitude that do not grow
spatially; at high wind velocity, above a well defined velocity threshold, spatially growing
quasi-2D gravity-capillary waves propagate at the interface. In this chapter, we focus on
the nonlinear spatio-temporal behavior of these waves slightly above the onset.

4.1 Experimental observations

Experiments are realized in the same set-up and conditions as described in chapters 2
and 3. The liquid is a mixture of glycerol and water of density ρ = 1.20×103 kg.m−3 and of
kinematic viscosity ν = 30× 10−6 m2.s−1. The temperature of the liquid is maintained at
25.0± 0.5 ◦C. The threshold of wave generation for this mixture, as defined and measured
in chapter 3, is Uc = 6.3± 0.1 m.s−1. The surface deformation ζ(x, y, t) of the interface is
measured using the FS-SS method of visualization over series of 2000 images acquired at
40 Hz.

4.1.1 Direct observation of the effects of nonlinearities

As discussed in the previous chapter, one major difference between the wrinkles regime
below onset and the wave regime above it is the evolution of the amplitude of surface
deformation with fetch. While the wrinkles amplitude is approximately independent of the
fetch, the transverse waves generated past the critical velocity Uc grow with the distance
from the beginning of the tank (see figure 3.3 on page 63). At small fetch, the spatial
wave growth is compatible with an exponential one but it slows down at larger fetch. As
the wind velocity increases, the exponential growth is steeper but the region over which
the growth is exponential becomes smaller and smaller. The wave growth is clearly visible
in figure 4.1 which shows the FS-SS reconstruction of the interface for two wind velocities
in the wave regime, at 6.6 m.s−1 and 7.8 m.s−1. In addition to that, figure 4.1 also shows
the evolution along the tank of the wave pattern. At 6.6 m.s−1, slightly above the onset,
the waves remain globally aligned with each other and the wavelength varies very little
with fetch. However, further away from the wave generation threshold, at 7.8 m.s−1, the
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Figure 4.1: Surface height ζ(x, y, t) for two wind velocities Ua = 6.6 m.s−1 (top) and
Ua = 7.8 m.s−1 (bottom). Wind is blowing from left to right. The acquisition over each
portion of fetch is taken during a different experimental run. Note that the color map is the
same on a row but varies between the two rows (the same color represents a deformation
amplitude ten times greater on the second row compared to the first row).
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Figure 4.2: Cuts of the surface fields along the line y0 = −50 mm for two wind velocities
Ua = 6.6 m.s−1 (top) and Ua = 7.8 m.s−1 (bottom). Note the change in scale by a factor
of 10 between the vertical axes of the two plots. The acquisition over each portion of fetch
is taken during a different experimental run, represented by the three different colors.
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wavelength distinctly increases with the downstream coordinate x and more dislocations
are visible.

These evolutions with fetch imply that nonlinearities can significantly affect the wind
waves behavior in our system for a fetch or wind velocity great enough. Nevertheless, it
should be noted that the shape of the waves (as observed by a cut along a line of constant
y, see figure 4.2) is not visibly affected by these nonlinearities. Unlike waves about to
break [Tulin, 1996] [Siddiqui and Loewen, 2007] [Babanin, 2011], the front-back symmetry
of the waves in our set-up is conserved, whatever the fetch or wind velocity 1. Clearly, no
wave breaking or droplet atomization occur during our experiments.

4.1.2 Spatial evolution of the wavelength

In chapter 3, the characteristic length in the x direction of the surface fields (which is
equal to the wavelength in the wave regime) was determined using a correlation function
(see section 3.2.3 on page 65). While this method allows to evaluate the characteristic
length at all wind velocities, it has the embedded limitation to require a field of computa-
tion of a great enough spatial extent, i.e. much larger than the characteristic length. As a
result, it provides an average over this field and is not suitable for a detailed analysis of the
spatial evolution of the characteristic length associated to the interface deformation. This
is a problem in the wave regime where the wavelength clearly increases with fetch. Past
the threshold, in the wave regime, we can use another method, a local one, to compute
the wavelength of the transverse waves in presence.

Let us consider a signal u(x, t) = u0e
iφ(x,t) with a phase φ(x, t) = kx+ f(t). The local

wavenumber can be defined from the gradient of the phase of this signal [Pedlosky, 2003]:

∂u

∂x
= i

(
∂φ

∂x

)
u = iku ⇒

∣∣∣∣∂u∂x
∣∣∣∣2 = k2|u|2.

In our case, the signal is the surface deformation ζ(x, y, t) and we can thus deduce the
local wavelength from:

k(x) =

√√√√√√√
〈(

∂ζ

∂x

)2〉
y,t

〈ζ2〉y,t
(4.1.1)

where the brackets correspond to a temporal and transverse averaging.
The local wavelength λp(x) = 2π/kp(x) is computed using equation (4.1.1) and is

plotted in figure 4.3 (the index p stands for “predominant”). Generally speaking, it can be
inferred from figure 4.3 that the local wavelength starts at the same value of about 40 mm
at small fetch then quickly increases with fetch further downstream. This is particularly
visible at the highest velocities where the wavelength at the end of the tank is doubled
relatively to its value at short fetch. Nevertheless, this increase does not necessarily start
from the very beginning of the tank: the higher the wind velocity, the sooner the local
wavelength departs from its value at short fetch.

The only wind velocity for which this description does not apply is Ua = 6.6 m.s−1,
slightly above the wave generation threshold. At this wind velocity, the local wavelength
is almost independent of fetch. The wavelength being approximately constant with fetch
close to onset is consistent with linear waves propagating over a liquid with constant or low
surface drift. Indeed, a surface drift independent of fetch does not change the wavelength,
as the wave is advected as a whole, whereas in presence of surface drift evolving with fetch,

1. At least up to 7.8 m.s−1, the highest wind velocity at which experiments were performed.



78 Chapter 4. Nonlinearities in the early growth of wind waves

0 200 400 600 800 1000 1200
0

20

40

60

80

100

x (mm)

λ p (
m

m
)

 

 

Figure 4.3: Measured predominant wavelength λp(x) as a function of fetch x for the wind
velocities Ua = 6.6 (�), 6.9 (4), 7.2 (♦), 7.5(O) and 7.8 m.s−1(◦). In theory, the local
wavelength can be measured with the same spatial resolution in the x direction as the
FS-SS method. In practice, the wavelength is averaged over 10 data points (2.5 cm in the
streamwise direction).

the wavelength can be streched or compressed [Lighthill, 1978]. However, if at all fetches
the surface drift remains weak compared to the characteristic phase velocity, the change
of wavelength will be small. The influence of surface drift on the wave characteristics will
be developed in further detail in section 4.2.1.

Note that if equation (4.1.1) allows to locally measure the wavelength, the very fact that
this method is local makes it more sensitive to small defects. To minimize this problem,
the surface fields are slightly smoothed before the computation of the wavelength by a 2D
convolution with a Gaussian kernel of half-peak width 1.5 mm. As it is obvious that the
smoothing can negatively impact the wavelength measurements if applied too strongly, it
has been verified that the results of the computation were approximately the same for a
range around the parameters chosen for the smoothing, validating these parameters.

4.1.3 Spatial evolution of the dominant frequency

The temporal spectrum E(f) of the waves is also measured at a particular fetch x by
using the FS-SS data averaged in the transverse direction y and restricted over the narrow
range [x − ∆x/2, x + ∆x/2] with ∆x = 6 cm. The temporal spectra obtained at two
different wind velocities above the wave generation threshold are presented in figure 4.4.
It is found that the wave spectra display a broad peak centered around a certain frequency.
This peak frequency fp can be retrieved by fitting the spectrum with a Gaussian function
over the frequency interval [3, 9] Hz (continuous lines in Fig. 4.4):

E(f, x) = E0(x) exp
[
−(f − fp(x))2

2σ2(x)

]
(4.1.2)

Figure 4.5 presents the evolution of this dominant frequency with fetch. While fp is
approximately constant with respect to fetch close to wave onset, it is a decreasing function
of the fetch for greater wind velocities. As the same time, the energy density associated
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Figure 4.4: Power spectra of the surface elevation at fetch x = 28, 48, 65, 81 and 98 cm
(from bottom to top), at wind velocity Ua = 6.6 m.s−1 (left) and Ua = 7.8 m.s−1 (right).
Note that the vertical scale is different between the two graphs. The continuous lines are
Gaussian fits applied to the data.
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Figure 4.5: Measured dominant frequency fp(x) as a function of fetch x for the wind
velocities Ua = 6.6 (�), 6.9 (4), 7.2 (♦), 7.5(O) and 7.8 m.s−1(◦).
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with this dominant frequency grows with fetch. This phenomenon of decreasing dominant
frequency with fetch is often observed experimentally and is classically called “frequency
downshift” [Dias and Kharif, 1999] (more details in the next section). Note however that at
short fetch and for all wind velocities, the predominant frequency remains approximately
at the same value of 6.4± 0.2 Hz.

The evolution with fetch of the dominant frequency is much slower than the relative
change in local wavelength. At the highest wind velocity (Ua = 7.8 m.s−1), where the
nonlinear effects are expected to be the greatest, the dominant frequency decreases from
6.2 to 4.2 Hz in a meter of fetch, which represents a decline of about 30 % from its
initial value. Over the same distance at the same wind velocity, the wavelength more than
doubles, rising from 44 to 95 mm.

It can be noted that some of the temporal spectra present unusual amounts of energy
at very low frequency f < 2 Hz (see Fig. 4.4 (right)). The reason for this phenomenon is
yet unknown.

4.1.4 Measurement of the growth rate of each frequency

The spatial growth rate of the amplitude of the surface deformation βf (f) associated
with each frequency f can be measured directly from the temporal spectra obtained at
various fetches (as in Fig. 4.4). To do so, the amplitude of each frequency in the spectrum
E(f) is measured at different x and is fitted by an exponential law:

E(f) = Ex=0(f) exp [βf (f)x] (4.1.3)

Figure 4.6 gives examples of the spatial evolution of various modes between 3.4 and 9.4 Hz
at Ua = 7.2 m.s−1. These modes grow exponentially at the beginning of the tank. The
fastest growing mode at small fetch is for f = 6.4 Hz. All modes corresponding to a larger
frequency (see Fig 4.6 (right)) have a lower amplitude at all fetch. However, some modes
at slightly smaller frequency than fc become more energetic at larger fetch (x > 600 mm,
see Fig 4.6 (left)). Indeed, the amplitude of a mode that grows at the beginning of the
tank may saturate or even decay past a certain fetch. As a consequence, the exponential
fit is valid only in a certain range of x. In practice, the amplitude of each mode is fitted in
the same range x = 150− 350 mm, the largest interval of x over which an exponential fit
is possible for all modes and all wind velocities for which the measurement is done. This
is consistent with the fact that the exponential growth of the global wave amplitude is
restricted to small fetch (x < 400 mm, see figure 3.3 on page 63).

The evolution of the measured βf with frequency is shown in figure 4.7 for five wind
velocities above the wave onset, and for f ranging from 1.5 to 14 Hz. For all wind velocities,
βf can be fitted by a parabolic function between 4 and 9 Hz (continuous lines in Fig. 4.7).
This parabolic form of the modal growth rate is consistent with the expected general
characteristics of a threshold instability, i.e. governed by a control parameter (in our case
the wind velocity Ua) [Charru, 2011]. However, outside the 4-9 Hz interval, the evolution
of βf is less easily interpreted and not fully understood. Indeed, at lower frequencies, the
measured modal growth rate derives from the unexpectedly large amount of energy in the
temporal spectra, while at higher frequencies, it comes from the appearance of the first
harmonics of the predominant frequency fp.

Between 4 and 9 Hz, the mode fc at which the growth rate is maximal (the most
unstable mode) is almost the same for all wind velocity: fc ' 6.4 Hz (see Fig. 4.8 (left)).
Extending the parabolic fit outside the interval over which it is performed allows to esti-
mate the range of unstable modes at each wind velocity. This range ∆f of unstable modes
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Figure 4.6: Spatial evolution of the amplitude of various modes at wind velocity
Ua = 7.2 m.s−1. The frequencies associated with these plots vary from one to the next
with a step of 0.5 Hz: (left) from 3.4 to 6.4 Hz, the colors of the lines and symbols shifting
continuously from red to blue, (right) from 6.4 to 9.4 Hz, with a color shift from blue
to green. On both plots, the filled symbols (•) correspond to f = 6.4 Hz. For a better
readability, the data presented in this figure is smoothed over a running average over three
points. However, the exponential fits performed for the computation of the modal growth
rate βf (f) are realized over the unsmoothed data (over x ∈ [150, 350] mm).
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Figure 4.7: Plots of the growth rate βf (f) for the wind velocities Ua = 6.6 (�), 6.9
(N), 7.2 (�), 7.5 (H) and 7.8 m.s−1 (•), measured from the temporal spectra obtained
experimentally. The continuous lines correspond to parabolic fits performed for f between
4 and 9 Hz.
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Figure 4.8: (Left) Frequency fc corresponding to the maximal growth rate as a func-
tion of wind velocity. The dashed line indicates fc = 6.4 Hz. (Right) Evolution of the
maximal growth rate βmax with wind velocity. The black squares (�) correspond to the
spatial growth rate of the global wave amplitude obtained by FS-SS measurements (see
section 3.2.2 on page 62) and the continuous line is the associated linear fit β = b(Ua−Uc)
(Eq. (3.2.7)). For both plots, the filled symbols correspond to the same velocities as in
Fig 4.7.

appears quite large, even at the smallest wind velocity, at only 5% above the threshold
velocity (for Ua = 6.6 m.s−1, we have ∆f/fc ' 80 %). As the wind velocity increases,
the maximal growth rate increases. At the same time, the range of unstable modes seems
to widen, although the evolution of βf outside the interval of the parabolic fit makes it
difficult to reach a definite conclusion.

Figure 4.8 (right) presents the growth rate associated to the frequency fc as a function
of the wind velocity, that is to say the maximal growth rate βmax for a given Ua. Comparing
it to the growth rates obtained in chapter 3 by the direct measurement of the spatial growth
of the global wave amplitude, we can see the βmax is always larger than this measured
spatial growth rate, whenever the comparison is possible. This is not surprising as βmax
represents the maximal growth rate associated of a single mode (by definition the most
unstable mode) while the spatial growth rate measured in chapter 3 is related to the
“effective” growth of the overall wave, associated to all the excited modes.

4.1.5 Spatial evolution of the phase velocity

In order to analyze the spatio-temporal dynamics of the waves above the threshold,
another wave characteristic, the phase velocity, can be explored. We compute the “local”
phase velocity as the product of the measured dominant wavelength and frequency:

c(x) = λp(x)fp(x). (4.1.4)

This velocity is in fact more of a pseudo phase velocity, as a phase velocity is only rig-
orously defined for a monochromatic wave. However, it gives an estimate of the local
propagation velocity of the waves at a certain fetch. The local phase velocity obtained
from equation (4.1.4) is presented in figure 4.9. The evolution of c(x) is less straight-
forward that those of the local dominant wavelength and frequency. Nevertheless, a few
trends can be observed.
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Figure 4.9: Local phase velocity c(x) as a function of fetch for the wind velocities Ua = 6.6
(�), 6.9 (4), 7.2 (♦), 7.5(O) and 7.8 m.s−1(◦) (Eq. 4.1.4). The lines present the corre-
sponding phase velocity computed from the dispersion relation for free waves of wavelength
λp(x) without (dashed lines) and with (continuous lines) the correction due to the drift
current (Eq. 4.2.5).

At small fetch, the local phase velocity is roughly the same for all wind velocities.
At the two wind velocities closest to the velocity threshold (Ua = 6.6 and 6.9 m.s−1),
the local phase velocity decreases with fetch then becomes approximately constant (for
Ua = 6.6 m.s−1) or start to grow (for Ua = 6.9 m.s−1). At higher wind velocities, c simply
increases with fetch without the initial decline. Note that precisely at small fetch and
slightly above the velocity threshold, the presence of wrinkles can affect the measurement
of the wavelength. In particular, it is slightly visible on the plot of the wavelength as
a function of fetch (Fig. 4.3) at the lowest wind velocity Ua = 6.6 m.s−1. At this wind
velocity, the wavelength is almost independent of fetch but with a slight initial decline
at short fetch. As the predominant frequency is highest at small fetch, this decrease is
amplified and more visible when the local phase velocity is plotted (Fig. 4.9).

At higher wind velocity, the quick increase of λp(x) and the moderate decline of fp(x)
in the downstream direction result in an increasing local phase velocity c(x). For example,
at wind velocity 7.8 m.s−1, the local phase velocity increases by more than 40%.

The phase velocity c0(x) computed from the inviscid linear dispersion relation for free
waves (Eq. 1.1.5) of wavelength λp(x) is also plotted in dashed lines in figure 4.9 (the
effect of the drift current will be discussed in the next section). Generally speaking, c0
is smaller than c, except at the first wind velocity above wave onset Ua = 6.6 m.s−1,
where it is significantly higher. One would have expected the propagation velocity of wind
waves to be greater than the phase velocity of free waves, due to the wind “pushing” the
waves. However, that the opposite occurs slightly above onset is quite surprising and at
the present time unexplained.

4.1.6 Spatial evolution of the local slope of the wave

As both the wave amplitude and the dominant wavelength increase with fetch, the wave
slope, which combines the two, is an interesting quantity to look at to further characterize
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Figure 4.10: Evolution of the estimated typical local slope s(x) = ζrms(x)kp(x) with fetch
for the wind velocities Ua = 6.6 (�), 6.9 (4), 7.2 (♦), 7.5(O) and 7.8 m.s−1(◦).

the waves evolution. In order to obtain the local wave slope, a rigorous approach would
require to filter the wave height ζ at the wavenumber k to get the wave amplitude ζk
associated to this particular mode and define the slope as sk(x) = ζk(x)k(x). However, if
we suppose that the wave amplitude is governed by the predominant wavelength λp(x) =
2π/kp(x), we can estimate the typical local slope from the measurements of the local wave
amplitude ζrms(x) and the local wavenumber kp(x) as:

s(x) = ζrms(x)kp(x) = 2πζrms(x)
λp(x) . (4.1.5)

The evolution of this local slope with fetch is displayed in figure 4.10. The typical
wave slope increases with fetch at all wind velocities. The higher the wind velocity, the
slower the increase at large fetch, leading eventually to a saturation at smax ' 0.10.

This saturation in slope, as well as the evolution with fetch of the other waves’ char-
acteristics presented in this section, can be related to similar results from the literature.
In the next section, these evolutions with fetch will thus be discussed in the context of
various arguments from the wind waves literature.

4.2 Evolution of wave characteristics: discussions
The experimental results presented in the previous section show nonlinear effects im-

pacting the wave characteristics: the dominant frequency undergoes a downshift with
fetch while the wavelength and phase velocity increase. Such evolutions are often re-
ported in the literature. Indeed, frequency downshift is very commonly observed at large
fetch at sea or during wind waves experiments over water [Hidy and Plate, 1966] [Plate
and Hidy, 1967] [Plate et al., 1969] [Plant and Wright, 1977] [Mitsuyasu and Rikiishi,
1978] [Bliven et al., 1986] [Caulliez and Collard, 1999] [Veron and Melville, 2001] [Waseda
et al., 2001] [Caulliez et al., 2008] [Liberzon and Shemer, 2011] [Longo, 2012] [Zavadsky
et al., 2013]. The wavelength is also often observed to be increasing with fetch [Keulegan,
1951] [Hidy and Plate, 1966] [Caulliez and Collard, 1999], and so does the phase veloc-
ity [Hidy and Plate, 1966] [Liberzon and Shemer, 2011] [Longo, 2012] [Zavadsky et al.,
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2013]. Increase followed by saturation of the wave amplitude or wave steepness are fre-
quently stated too [Lake and Yuen, 1978] [Caulliez and Collard, 1999] [Caulliez et al.,
2008] [Longo, 2012]. It is however important to note that these nonlinearities are usually
recorded in longer tanks or outdoors, over significantly larger fetches. In our case, likely
because of the higher viscosity of the liquid, these evolutions of the waves characteris-
tics already occur unmistakably at somewhat small fetch (x < 1 m) and small velocity
((Ua − Uc)/Uc < 5%).

If these symptoms of the nonlinearities, in particular the frequency and wavenumber
downshift, are well-documented, the underlying origins of these phenomena have not been
clearly explicited yet. Numerous attempts have been made to clarify the sources of these
evolutions and different arguments can be found in the literature [Dias and Kharif, 1999].
In this section, we review possible explanations and discuss them in the context of our
experiments. First, the corrections to apply to the free waves dispersion relation in the
case of wind waves are explored; second, different approaches to the frequency downshift
are reviewed.

4.2.1 Modification of the dispersion relation

The free waves dispersion relation applies, by definition, to waves propagating without
forcing. As wind waves do precisely include a forcing, this dispersion relation may not hold.
If the actual dispersion relation verified by wind waves comprises a spatial evolution, this
can partly explain the downstream evolution of the wave characteristics. In the following
section, different possible modifications of the inviscid free linear waves dispersion relation
are discussed.

• Effect of the viscosity of the liquid:
As discussed in chapter 1, the viscosity of the liquid can modify the dispersion
relation (see § 1.1.3 on page 9)). Lamb’s correction can be written as [Lamb, 1995]
[Padrino and Joseph, 2007]:

cvisc =
√
c2

0 − ν2k2, (4.2.1)

where c0 denotes the phase velocity associated to free linear waves over an inviscid
liquid. Note that this equation is the same as Eq. (1.1.7) on page 9 written in a
slightly different form. In the case of our liquid, this correction reaches only 0.2 %
at the most (see § 3.1 on page 57): the effects of the liquid viscosity are therefore
negligible. In any case, this correction would not have explained the spatial evolution
of the wavelength and frequency.

• Nonlinear dispersion relation:
Another possible explanation for the evolution of the phase velocity is the modifi-
cation of the free waves dispersion relation due to nonlinear effects. Based on the
equations given by [Babanin, 2011] and [Newman, 1977] (which give the same results
at first order), we have:

cNL = c0(1 + a2k2), (4.2.2)

where a is the wave amplitude. In our case the typical slope s saturates at 0.10,
so the correction factor a2k2 ' s2 only reaches 1 %, considerably below the 40 %
increase that can be observed for c(x) over a meter of fetch at Ua = 7.8 m.s−1. As
a consequence, the nonlinear effects on the dispersion relation cannot explain the
evolution with fetch of the phase velocity.
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• Effect of surface velocity:
Because of the wind action at the interface, a drift current develops in the liquid.
The effect of the surface current can be an argument to explain the evolution of wind
wave with fetch [Liberzon and Shemer, 2011]. An homogeneous current with fetch
and depth, Us, simply transports the wave at a modified phase velocity:

c = c0 + Us. (4.2.3)

This equation remains valid for a depth-independent current slowly varying with
fetch, but with Us simply replaced by Us(x):

cs = c0 + Us(x), (4.2.4)

provided that dUs
dx � kUs. In that case however, the wave is not advected as a whole

anymore and its characteristics can change with fetch. Indeed, a non-homogeneous
surface drift can stretch or compress the wave, and therefore increase or decrease
its wavelength. In the local frame of the liquid at rest, the wave frequency is con-
served but not the wavelength because of the stretching of the wave at the inter-
face [Lighthill, 1978]. This approach is particularly pertinent in the case of water, as
drift currents can there be important, vary significantly in space but may be consid-
ered depth-independent on a certain liquid layer because of the turbulent character
of the current. However, in our case of a highly viscous liquid, the surface drift
is laminar and changes much more rapidly with depth than with fetch. Correct-
ing the phase velocity by the surface velocity alone (either by equation (4.2.3) or
(4.2.4)) leads to an over-evaluation of about 10 to 20% above the observed local
phase velocity c(x).

• Effect of a current inhomogeneous with depth:
Even if the surface drift does not change much with fetch, the current in the liquid can
still affect the wave propagation. Indeed, if the current is not constant with the depth
of the liquid, its vorticity leads to a modification of the dispersion relation [Hidy and
Plate, 1966] [Karageorgis, 2012] [Ellingsen and Brevik, 2014]. In our case, the mean
velocity profile in the tank is parabolic with maximum drift at the surface (see
section 2.2.2). The dispersion relation for such a velocity profile can be written as
(see appendix of [Hidy and Plate, 1966] written by Lilly):

cs = c0 + Us

(
1− 2

kh

)
, (4.2.5)

assuming that the surface drift Us is small compared to c0, which is the case in our
experiments. The first term (Us) corresponds to the simple transport of the wave
as a whole (see previous paragraph) while the second term (−2Us/kh) attenuates
this transport if the wavelength considered “sees” the bottom of the tank. For a
wavelength that is small relatively to the liquid depth, this term becomes negligible.
Even though the high viscosity in our case results in the surface drift to remain
relatively small (see Fig. 2.20), the corresponding correction to the phase velocity is
not quite negligible: 2 to 13 % of c0, depending on wind velocity and fetch. The phase
velocity obtained with this correction from the measured wavelength is plotted in
continuous lines in figure 4.9. Although the agreement is not quantitative, including
this correction seems to better reconcile the observed local phase velocity and the
phase velocity obtained through the dispersion relation, except for the lowest wind
velocity.
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Based on these considerations, it seems that the evolution of the phase velocity can
be qualitatively explained by Lilly’s correction of the linear inviscid dispersion relation of
free waves due to the vorticity in the tank, and that the other corrections are negligible.
However, note that all these modifications of the dispersion relation, first are intended
for monochromatic waves; and second, impose that the wave frequency is conserved with
fetch. In our case, as in the case of the more classical experiments in water, waves cannot
be considered as monochromatic, especially when nonlinear effects arise, and the wave
dominant frequency clearly decreases with fetch. The possible origins for this frequency
downshift are addressed in the following section.

4.2.2 Frequency downshift with fetch: potential approaches

Many works of research have been devoted to the study of the downshift of wave
frequency. The difficulty of the study of the spatial evolution of waves as they propagate
start with the issue that even an initially monochromatic wave can be affected by significant
changes during its propagation, due to energy transfers, even in absence of wind. Indeed,
Benjamin and Feir have shown the existence of what is now called the Benjamin-Feir
instability or sideband instability: monochromatic waves of small amplitude subjected to
low-frequency perturbations evolve with fetch such that new peaks emerge on each side of
the original spectral peak [Benjamin and Feir, 1967] [Dias and Kharif, 1999] [Charru, 2011].
These new frequencies in the wave spectra, located symmetrically on each sideband of the
original peak frequency (hence the name sideband instability), induce a time-evolution
of the wave train and a cyclic frequency downshift with fetch occurs. Such frequency
downshift with fetch originating from this instability have been observed experimentally
by [Lake et al., 1977] and [Melville, 1982] using mechanically-generated waves.

One important feature of this instability is that the system’s response to the Benjamin-
Feir instability, and in particular the frequency downshift, is strongly affected by the
presence of wind. Indeed, the wind induces an asymmetric response of the upper and
lower sidebands: the lower sideband (lower frequencies) grows at a faster rate than the
upper sideband (higher frequencies) resulting in the downward shift of the spectral peak.
Deriving a fourth-order evolution equation including wind forcing and dissipation, Hara
& Mei show that the nonlinear development of the Benjamin-Feir instability, originally
modulational in absence of wind, gives rise to a persistent frequency downshift in presence
of wind [Hara and Mei, 1991] [Hara and Mei, 1994].

Since then, it has been speculated that the Benjamin-Feir instability is responsible for
the frequency downshift for wind waves over water. This approach is however not fully
endorsed [Dias and Kharif, 1999]. Indeed, the Benjamin-Feir instability corresponds to
interactions that are predominantly two dimensional, which may not be a valid assumption,
especially when the nonlinearities supposedly explained by the sidebands evolution become
significant. Secondly, a more problematic issue is that the Benjamin-Feir instability is
fundamentally based on the evolution of a narrow band of frequencies, which is far from
being the case in wind waves systems where wind definitely excites a broad band of modes
(see Fig. 4.7).

The nonlinear evolution of a quasi-monochromatic wave packet is generally described
by one of a handful of equations. The most commonly used are the Ginzburg-Landau
equation and the nonlinear Schrödinger equation [Tulin, 1996] [Huang et al., 1999] [Charru,
2011]. These equations are of the third order and the later is sometimes extended to the
fourth order into Dysthe’s equation [Dysthe, 1979], itself recently extended for weakly
viscous liquid in [Carter and Govan, 2016]. Because the exact form of these equations
depends on the exact system considered, especially through its invariances by translation
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or reflection, they are not explicitly transcribed here. Their common characteristic is the
existence of this third order term, necessary to express the saturation of the wave.

Indeed, in situ observations and laboratory experiments show that over large fetches,
the slope of wind water waves saturates at a certain value between 0.1 and 0.2 [Lake and
Yuen, 1978] [Caulliez and Collard, 1999]. This idea of the saturation of the wave steepness
is underlying in some other arguments for the frequency downshift. The general view is
the following. As the waves gradually gain energy from the wind and grow, they approach
the limiting steepness, shift to lower frequency (or higher wavelength) which allows for
the gain of more energy [Lake and Yuen, 1978]. This approach is consistent in the context
of our experiments with the fact that the typical wave slope saturates while other waves
characteristics like wavelength and frequency still evolve (see Fig. 4.3, 4.5 and 4.10).

Note that viscous dissipation may play a significant role in the slope limitation. In-
deed, it has been proposed that the frequency downshift with fetch can be based on the
balance between the energy received from the wind and the dissipation due to the liquid
motion [Hidy and Plate, 1966]. The smaller waves grow more rapidly but the associated
dissipation is also more pronounced. As a consequence, the lower frequencies continue
to gain energy from the wind before reaching equilibrium, resulting in the observed fre-
quency downshift. Due to the high viscosity of the liquid used in the experiments, it is
not unlikely that dissipation is an important parameter in the nonlinear evolution of the
waves characteristics.

4.3 Conclusion

In this chapter, experimental results focused on the wave regime are presented in order
to study the spatial evolution of the waves characteristics. The experiments are conducted
with the same viscous liquid and in the same conditions as in chapter 3, except for the
length and acquisition rate of the recordings that where adjusted for better spatial and
temporal analyses.

The dominant wavelength is computed using a local method and is observed to increase
with fetch for wind velocity sufficiently greater than the wave generation threshold. The
dominant frequency is measured as the peak frequency in the temporal spectrum computed
over a short fetch interval. This locally predominant frequency decreases with fetch. The
temporal analysis also allows to evaluate the growth of the energy in each frequency mode.
It is found that the range of amplified modes is quite large, and that the fastest growing
mode at short fetch is overrun at larger fetch by lower frequencies. The nonlinearities can
also be noted through the increase with fetch of the phase velocity, although its debatable
definition for non-monochromatic waves makes interpretations more difficult. The typical
wave steepness increases with fetch as well, and eventually saturates in the case of the
highest wind velocities.

This gradual shift with fetch from shorter waves of higher frequencies to longer waves
of lower frequencies is commonly reported for wind waves over water, both in laboratory
experiments and at sea. However, it should be noted that in our experiments, the fre-
quency downshift is observed for much smaller wave amplitudes and much shorter fetches
than in the literature. Despite this difference, different arguments from the literature are
considered. The different possible modifications to the inviscid linear dispersion relation
for free waves are discussed. Most corrections can be neglected, except the one due to the
current in the liquid. Provided that the drift current is taken into account, it is found that
the locally dominant wavelength and frequency qualitatively verify the corrected disper-
sion relation. Concerning the frequency downshift, different approaches from the literature
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are reviewed but the question remains open.

Summary:

• Wind waves over a highly viscous liquid shows that nonlinearities can significantly
affect the waves behavior even for waves of small amplitude propagating over short
fetch, similarly to what can be observed for waves of larger amplitude over larger
fetch.

• For wind velocity sufficiently greater than the wave generation threshold, the local
wavelength increases with fetch while the dominant frequency decreases with fetch.
The pseudo phase velocity obtained by the product of these predominant wavelength
and frequency also increases spatially, as well as the typical wave steepness which
eventually even saturates. The range of excited modes is found to be relatively large.

• The locally dominant wavelength and frequency seem to qualitatively verify the
dispersion relation corrected to take into account the drift current.





Chapter 5

Wind waves over a viscous liquid:
influence of the viscosity

In this chapter, we study the influence of the viscosity of the liquid on the initial
stages of generation and growth of wind waves. The aim is to extend the results obtained
at ν = 30 × 10−6 m2.s−1 in chapters 3 and 4 to different viscosities. The emphasis is
put on the change of surface deformation amplitude and of the threshold wind velocity
with respect to viscosity. We observe a new phenomenon at high viscosity and high wind
velocity that is not present at ν = 30 × 10−6 m2.s−1. This specific phenomenon occurs
under the form of solitary waves of large amplitude. These waves are described in the last
section of this chapter.

5.1 Experiments

5.1.1 Liquid mixtures

In chapters 3 and 4, the viscosity of the glycerol-water mixture that is used is of
30 × 10−6 m2.s−1. In this chapter, the viscosity of the liquid over which wind is blown
changes from 0.9 to 562× 10−6 m2.s−1 in order to investigate the influence of viscosity on
wind wave generation. While the initial intention was to only use differently concentrated
glycerol-water mixtures, practical obstacles related to the chemical properties of highly
concentrated aqueous glycerol mixtures lead to the use of an alternative product to reach
very high viscosities.

Hygroscopic nature of glycerol

The viscosity of a glycerol-water solution is highly dependent on the concentration and
temperature of the mixture, especially for a high concentration of glycerol (see Fig. 5.1).
The more concentrated the mixture is, the greater the kinematic viscosity is, in an exponen-
tial way. A 99% glycerol-1% water mixture at 25◦C is almost five times more viscous than
a 90% glycerol-10% water solution at the same temperature (all percentages of concentra-
tion mentioned in this chapter are in weight). The evolution is reverse with temperature:
the greater the temperature, the smaller the kinematic viscosity. For example, heating a
90% glycerol-10% water mixture from 20 to 30◦C divides its viscosity by 2.

Therefore, starting with a pure glycerol solution and gradually diluting it with water
seems like a practical and efficient way to repeat experiments in our set-up while reaching
a wide range of viscosities. The problem with this strategy is the hygroscopic nature of
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Figure 5.1: Kinematic viscosity of an aqueous mixture of glycerol as a function of the
composition in weight, at temperature T = 10, 20 and 30 ◦C, plotted from data of [Segur
and Oberstar, 1951].

Figure 5.2: Relative humidity at equilibrium as a function of the concentration of glycerol
when the exchange of water vapor between air and the solution is in balance (Fig. 1
in [Soap and Detergent Association, 1990]).
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glycerol. An aqueous glycerol solution in an open container will absorb or reject water
from the atmosphere until an equilibrium concentration of glycerol is reached [Soap and
Detergent Association, 1990]. While this is considered an advantage in most of the ap-
plications of glycerol, it is a major inconvenience in our case. Since our set-up offers a
large surface of exchange through the liquid-air interface, a highly concentrated solution
of glycerol and water absorbs the moisture in the air via a slightly exothermic process and
the density of the mixture changes significantly over the course of the few hours required
for a series of FS-SS acquisitions. This out-of-equilibrium process leads to a significant
change in viscosity and refractive index as well, making the FS-SS technique impossible
to use and experimental results unexploitable.

The equilibrium concentration depends on the relative humidity of the environment
(see Fig. 5.2). At the time of the experiments, the air ventilation kept the humidity level in
the room between 45 and 50%. At this level of humidity, the equilibrium concentration is
about 85%, a little over the 80% we used in chapters 3 and 4. Experimentally, we observed
that the closer the composition is to the stable composition the slower this evolution is.
We also noted that a solution above the stability concentration evolves much more quickly
towards stability than solutions below stability. While a low concentration solution is
stable enough to be used for months for FS-SS acquisitions (as long as the set-up is closed
back when not in use, to avoid surface pollution), a highly concentrated solution comes
to its equilibrium composition in only a few days. As a result, any glycerol-water mixture
with a concentration higher than approximately 85% cannot be used for series of FS-SS
acquisitions. To bypass this problem and access higher viscosities, we switched to mixtures
of glucor and water instead of glycerol and water.

Glucor

Glucor 60/80HM (referred here simply as glucor) is a glucose syrup used in the food
industry. Glucor is transparent with a faint yellow tint that does not interfere with FS-SS
acquisitions. In pure or almost pure form, it is more than 10000 times more viscous than
water. As for glycerol, aqueous solutions of glucor increases in viscosity with increased
concentration or decreased temperature.

Highly concentrated mixtures of glucor and water are much more stable in time than
highly concentrated mixtures of glycerol and water. Using glucor thus allowed to have
access to liquids of higher viscosity that could be used during FS-SS experiments. A minor
downside of this shift from glycerol to glucor is that glucor is a lesser known product than
glycerol and unlike glycerol, most of its physical and chemical properties are not tabulated.

Mixtures’ properties

A variety of differently concentrated mixtures of glycerol and water or glucor and water
are used during the experiments. The composition, temperature T , density ρ, kinematic
viscosity ν, surface tension γ and refractive index n of the different mixtures are listed in
table 5.1 from least to most viscous. Density and temperature are measured as described
in chapter 3 1. The kinematic viscosity and refractive index of the glycerol-water mixtures
are the tabulated values at these obtained values of ρ and T . The kinematic viscosity
of glucor-water mixture is measured by a rheometer Anton Paar Physica MCR 501 and
the refractive index is obtained by refraction through the width of the set-up of a laser

1. Except for the glucor-based mixtures, for which a densimeter Anton Paar DMA 5000 is used instead
of the densimeter Anton Paar DMA 35 used in chapter 3, due to the high viscosity of these liquids
incompatible with the model DMA 35. The accuracy is the same for both models (0.001× 103 kg.m−3).
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ray at different incidence angles. The surface tension is measured by a tensiometer Krüss
DSA30S. Note that the temperature can be measured with a 0.1◦C accuracy but the
control on the temperature over the duration of an experiment is such that the difference
between the maximal and minimal measured temperatures is higher than this value, but
still remains below 1◦C. As a more concentrated aqueous mixture of glycerol or glucor
changes viscosity more quickly with temperature compared to a less concentrated mixture,
this leads to a higher deviation from the mean viscosity in the various mixtures (labelled
1−10).

Concentration T ρ ν γ
n Measurementsin water (oC) (×103 kg/m3) (×10−6 m2/s) (N/m2)

1 0% (pure water) 24 0.997 0.91 ±0.02 - 1.33 Laser
2 0% (pure water) 20 0.998 1.00 ±0.02 0.072 1.33 Laser + FS-SS
3 45% glycerol 25 1.12 3.9 ±0.1 0.069 1.39 Laser + FS-SS
4 67% glycerol 25 1.17 12 ±1 0.067 1.42 Laser + FS-SS
5 80% glycerol 28 1.20 23 ±1 - 1.44 FS-SS
6 80% glycerol 25 1.20 30 ± 1 0.065 1.44 FS-SS
7 85% glycerol 22 1.22 85 ±5 0.063 1.45 Laser + FS-SS
8 88% glycerol 21 1.23 122 ±10 - 1.46 Laser
9 80% glucor 25 1.34 195 ± 10 0.079 1.45 Laser + FS-SS
10 85% glucor 25 1.36 562 ± 15 0.079 1.45 Laser + FS-SS

Table 5.1: Mixtures’ parameters. In bold are the parameters that were measured (the
other values are obtained from the tables). The line in grey corresponds to the mixture
used in chapters 3 and 4.

The density of the liquid does not change much (it only increases by a factor 1.4)
while its kinematic viscosity changes over a wide range (it increases by a factor 600).
The results presented in chapters 3 and 4 correspond to experiments done with mixture
6 (ν = 30 × 10−6 m2.s−1, see line in gray in table 5.1). As explained in section 2.2.3, we
can consider the mean air velocity profile to be unaffected by the change in viscosity of
the liquid for wind velocities below the threshold. The observations and hypothesis made
in chapter 2 about the airflow are supposed to hold true for all the mixtures and we did
not perform any additional hot-wire measurements. Similarly, this is also assumed for the
flow in the liquid except for the case of pure water (the other mixtures are viscous enough
for the flow in the liquid to stay laminar).

Due to the liquid viscosity, there exist two cut-offs at short and long wavelengths and
only the wavelengths in between these two cut-offs can propagate [LeBlond and Mainardi,
1987] (see also § 1.1.3 on page 9). In our case, the cut-off at long wavelength does not have
the slightest influence for any of our viscous mixtures, as the wavelength corresponding to
this cut-off spans from 8 m (for mixture 10) to 5 km (for mixture 1), considerably greater
than any wavelength at play in our 1.5 meter long tank! The cut-off at short wavelength
also has a very limited influence for almost all of the mixtures. Indeed, the short wave-
length cut-off occurs for wavelengths shorter than a limit ranging from 0.04 µm (mixture
1) to 2 mm (mixture 9). However, for mixture 10, the most viscous one, wavelengths
shorter than about 12 mm cannot propagate, and wavelengths only a little longer than
this limit will see their propagation affected by the liquid viscosity. This point will be
further discussed in section 5.4.
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5.1.2 Measurements

FS-SS acquisitions

The experimental set-up is the same as described in chapter 2. As in chapter 3,
FS-SS acquisitions are realized at various wind velocities and repeated for the different
liquid mixtures presented in table 5.1. The experiments and computations are the same
as described in chapter 2 and appendix A. Particularly, the threshold can be deduced
from FS-SS acquisitions in the same way as in chapter 3. As the index of refraction of all
mixtures is fairly similar, the vertical accuracy of the FS-SS method remains approximately
the same (1% of the wave amplitude).

However, contrary to chapters 3 and 4, the acquisitions are performed here only at
small fetch x = 10− 390 mm. Indeed, the focus is on the influence of the viscosity on the
wrinkles’ regime and the critical velocity. The whole analysis over the entire tank length
is not repeated for the different viscosities.

Slope measurements

laser

graduated
paper

Ls = 2.6 m

∆z

α

Figure 5.3: Sketch of the set-up equipped with the laser.

While FS-SS acquisitions are rendered impossible for highly concentrated glycerol mix-
tures by the evolution in time of their viscosities, measurements that only requires a short
period of time are still possible. In particular, detecting the wave threshold can be done in
a much shorter time than an entire FS-SS campaign. While an estimate by direct obser-
vation is always possible (but dependent on the observer’s assessment of the threshold),
observing the displacement of the laser point reflected on the interface allows for a better
precision. The last column of table 5.1 details whether FS-SS acquisition were performed
on the mixture or if only the reflection method with the laser was used.

The laser is installed along the direction of the tank (see Fig. 5.3). The incident laser
beam is at an angle α = 17◦ above the interface. The laser dot is reflected on the surface
of the liquid in the tank onto a sheet of graph paper taped on the opposing wall of the
room at a distance Ls = 2.6 m. The laser is aligned with the tank in order to measure the
slope in x. The slope S = ∂ζ/∂x is related to the vertical displacement ∆z of the laser
dot on the screen by:

S = tan
[1

2 arctan
(∆z
Ls

+ tanα
)
− α

]
. (5.1.1)

Note that the vertical displacement induced by a local change ζ(x, y, t) is of the order
of ±ζrms, which is negligible compared the ∆z due to the change of slope. Below the



96 Chapter 5. Influence of the viscosity

10
0

10
110

−5

10
−4

10
−3

10
−2

10
−1

10
0

U
a
 (m/s)

S

Uc

Figure 5.4: Local slope S at x = 80 cm based on the vertical deviation ∆z of the laser
ray due to its reflection on the interface. These results correspond to mixture 4, i.e. for
ν = 12× 10−6 m2.s−1.

threshold, the surface gets significantly deformed by the wind in both x and y directions
and the laser dot moves inside a small approximately elliptical region. Above the threshold
however, since the waves are mostly perpendicular to the wind direction, the surface
gradient varies much more in the x direction than in the y direction and the laser dot
displacement materializes almost as a line. Figure 5.4 presents typical results for the
evolution of S with wind velocity. These results are compatible with the slope that can be
derived from the FS-SS acquisitions. The rapid change of slope gives a good evaluation
of the threshold velocity. Thus, in a much smaller time scale than a FS-SS series of
acquisition, the threshold can be evaluated, but of course without any spatial or temporal
information.

5.2 Experimental results

5.2.1 Amplitude of the surface deformation

For the main part, direct observations of the surface height fields yield similar results
to those in chapter 3. First, long elongated wrinkles of small amplitudes appear, then
transverse waves arise past a certain wind velocity. Figure 5.5 presents snapshots of the
surface deformation for different viscosities. Height fields in the left column (Fig. 5.5 (a-e))
are taken for different viscosities below the wave generation threshold, at a wind velocity
of about 3.2 m.s−1. The right column (Fig. 5.5 (f-j)) presents surface fields for different
viscosities above the threshold velocity. Note that because of the limited number of data
points above the threshold Uc, the absolute difference Ua − Uc as well as the relative
difference (Ua − Uc)/Uc from the threshold to the chosen wind velocities is not the same
for all viscosities. It comes out of the study of the surface height fields that the snapshots
of figure 3.1 on page 60 are still somewhat representative of the behavior of the liquid-air
interface in these regimes, even though the corresponding velocities change with viscosity.
Nevertheless, at very high viscosity, a distinct phenomenon occurs when wind velocity
becomes high enough. This phenomenon will be presented in section 5.4.

As in chapter 3, the evolution of the surface deformation amplitude with wind velocity
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(a) ν = 0.01 × 10    m /s, U  = 3.2 m/s−4 2
a (f) ν = 0.01 × 10    m /s, U  = 5.1 m/s−4 2

a

(b) ν = 0.04 × 10    m /s, U  = 3.2 m/s−4 2
a (g) ν = 0.04 × 10    m /s, U  = 5.7 m/s−4 2

a

(c) ν = 0.12 × 10    m /s, U  = 3.2 m/s−4 2
a (h) ν = 0.12 × 10    m /s, U  = 6.0 m/s−4 2

a

(d) ν = 0.30 × 10    m /s, U  = 3.2 m/s−4 2
a (i) ν = 0.30 × 10    m /s, U  = 7.0 m/s−4 2

a

(e) ν = 0.85 × 10    m /s, U  = 3.4 m/s−4 2
a (j) ν = 0.85 × 10    m /s, U  = 8.4 m/s−4 2

a

Figure 5.5: Instantaneous surface height ζ(x, y) measured by FS-SS centered at fetch
x = 190 mm, for the increasing viscosities ν = 0.01, 0.04, 0.12, 0.30 and 0.85 ×10−4 m2.s−1

(for each pair of fields on a line, from top to bottom); (a-e) below the threshold, at a wind
velocity chosen to be about 3.2 m.s−1; (f-j) above the threshold velocity. Note that the
color map is the same within each column but varies from one column to the other.
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Figure 5.6: R.m.s. of the surface height ζrms (averaged in time and space over x = 150-
300 mm) as a function of the wind velocity Ua. From top to bottom, these results cor-
respond to the viscosities ν = 1.0, 3.9, 12, 30, 85, 195 and 562 ×10−6 m2.s−1. The
continuous lines correspond to linear fits. The horizontal dotted line gives the lower limit
ζrms = 0.65 µm.
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Figure 5.7: Coefficient of the linear fits in the wrinkles’ regime in figure 5.6 as a func-
tion of the kinematic viscosity. The line shows the fit (ζrms/Ua)avg = Kν−0.4 with
K = 1.1 × 10−8 SI.



5.2. Experimental results 99

2 4 6 8 10

0

5

10

15

20

U
a
 (m/s)

β 
(m

−
1 )

Figure 5.8: Spatial growth rate measured at small fetch (x ∈ [150, 300] mm) as a function
of wind velocity for different viscosities. From left to right, these results correspond to the
viscosities ν = 1.0, 3.9, 12, 30 and 85 ×10−6 m2.s−1. The continuous lines are the linear
fits used to obtain the critical wind velocity (equation (3.2.7)).
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Figure 5.9: Coefficient b of the exponential fit ζrms ∝ ζ0 exp[bx(Ua − Uc)] in the waves’
regime (with x = 225 mm, see also equation (3.2.9)) as a function of the kinematic
viscosity.



100 Chapter 5. Influence of the viscosity

is presented through the root mean square of the surface height:

ζrms = 〈ζ2(x, y, t)〉1/2 (3.2.1)

The brackets represent both a temporal average and a spatial average over x = 150 −
300 mm. ζrms is plotted as a function of the wind velocity Ua in figure 5.6 for the mixtures
2, 3, 4, 6, 7, 9 and 10. This plot suggests that ζrms is the sum of the true height rms
and a background noise ζnoise ' 0.65 µm, which probably originates from slight residual
vibrations due to the camera. Henceforth, reliable measurements of the height rms are
obtained for wind velocities satisfying ζrms > ζnoise. Not surprisingly, this only affects
the plots corresponding to the highest viscosities (ν = 85, 195 and 562 ×10−6 m2.s−1).
Indeed, for viscosities ν ≤ 30× 10−6 m2.s−1, the smallest wind velocities at which FS-SS
acquisitions are performed are already large enough for the surface perturbations to be
bigger than 0.65 µm. Past this lower limit, the evolution of ζrms with wind velocity is
similar for all viscosities to those at ν = 30 × 10−6 m2.s−1 presented in chapter 3. Up
to the wave threshold Uc, the amplitude of the surface deformation grows approximately
linearly with Ua: ζrms can be fitted by the power law Uma with m ∈ [0.95, 1.20]. In
figure 5.6, this exponent is approximated to m ' 1 (i.e. we approximate the growth of
ζrms by a linear evolution): the fits in the wrinkles regime in figure 5.6 are linear (as in
figure 3.2 on page 61). Then, past the wrinkles regime, from Uc, transverse waves start
to appear and the growth of the amplitude is much quicker. As expected intuitively, at a
given wind velocity, wind over a more viscous liquid leads to a weaker surface deformation.
The transition from the wrinkles’ regime to the transversal waves occurs at higher wind
velocity and is also more and more abrupt as the viscosity increases, from a slow continuous
transition for water to a genuine abrupt break at the highest viscosity (see figures 5.6 and
5.8). The coefficient b of the exponential fit ζrms ∝ ζ0 exp[bx(Ua − Uc)] in the waves’
regime (with x = 225 mm, see equation (3.2.9)), which can be used to characterize this
abruptness, increases by a factor of 5 between the least and most viscous mixtures (see
Fig. 5.9). The smooth transition to the arrival of transversal waves in the case of water
may explain some of the discrepancies in the thresholds found in water in the literature,
as discussed in the next section. In order to compare the growth rates obtained in water
to the prediction from Miles model βt/f ' 0.16(u∗/cϕ)2 [Miles, 1959a] [Mitsuyasu and
Rikiishi, 1978], we use the wave frequency fw ' 12 Hz observed experimentally just above
wave onset in water. It is found that our experimental growth rates are 1.5 to 5 times
larger than the predicted growth rates.

As mentioned above, figure 5.6 suggests that the approximate linear law ζrms ∝ Ua
found for ν = 30 × 10−6 m2.s−1 in chapter 3 holds also for other values of ν. In order
to check the dependence with respect to ν, we plot in figure 5.7 the coefficient of these
linear fits as a function of the viscosity (for wind velocities chosen in the range such
that ζrms ∝ Ua). A power law fit gives ζrms/Ua ' Kνn with n ' −0.4 ± 0.1 and
K ' 1.1 × 10−8 SI.

5.2.2 Threshold velocity

Evolution of the wave threshold with viscosity

As explained above, the threshold velocity Uc is deduced either from the FS-SS ac-
quisitions or from the measurements of the laser-dot deviation. The laser method, while
leading to a better accuracy than an estimation based on visual observations, is however
less precise than the threshold determination based on FS-SS recordings. With FS-SS,
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the threshold velocity is defined as the wind velocity at which the spatial growth rate β
becomes positive (in practice, β(Ua) is fitted linearly above the threshold and the extrap-
olation of this linear fit to β = 0 gives the threshold velocity Uc, see figure 5.8). At the
two highest viscosities, the presence of solitary waves makes it impossible to estimate the
growth rates accurately enough for the threshold velocity to be determined through this
method. Instead, the threshold is determined by fitting lines in the wrinkles and wave
regimes as in figure 5.6; their intersection gives the threshold velocity. The transition from
the wrinkles to the waves regime is so abrupt for these viscosities that there is little doubt
on the value of the threshold velocity. With this method, the threshold velocity can be
evaluated with an accuracy of 0.1 to 0.2 m.s−1 depending on the number and proximity
of data points in the vicinity of the threshold. With the laser, the threshold can be mea-
sured with only a 0.3 m.s−1 accuracy. The threshold velocities measured for each mixture
using either the FS-SS acquisitions or the laser, as well as their accuracy, are specified
in table 5.2. Experiments in which the threshold is measured from both methods show
similar results in both cases. Thresholds based on FS-SS being a little more accurate, they
are used instead of the thresholds based on the laser measurements whenever results from
both methods are available.

Mixture Kinematic viscosity ν Threshold velocity Threshold velocity
(×10−6 m2/s) by laser (m/s) by FS-SS (m/s)

1 0.91 ±0.02 2.8 ±0.3 -
2 1.00 ±0.02 3.2 ±0.3 3.4 ±0.2
3 3.9 ±0.1 3.8 ±0.3 4.1 ±0.2
4 12 ±1 4.7 ±0.2 5.0 ±0.1
5 23 ±1 - 5.9 ±0.1
6 30 ±1 - 6.3 ±0.1
7 85 ±5 8.0 ±0.2 8.0 ±0.2
8 122 ±10 8.6 ±0.2 -
9 195 ±10 10.0 ±0.3 10.1 ±0.2
10 562 ±10 10.8 ±0.3 10.7 ±0.2

Table 5.2: Threshold velocities obtained experimentally using mixtures of different vis-
cosities.

The velocity threshold is plotted as a function of the kinematic viscosity in figure 5.10.
As one could expect, the threshold velocity increases with viscosity: the more viscous the
liquid is, the more difficult it is to amplify perturbations and set off wave generation. The
line on figure 5.10 shows the fit Uc = aνn. The exponent of this power fit is n = 0.22 ± 0.03.
Note that this exponent is compatible both with values of 1/4 and 1/5. The data point
at highest viscosity is excluded from this power fit. Indeed, it seems that at very high
viscosity (ν & 300 × 10−6 m2 s−1), the evolution of the threshold velocity changes for a
slower growth with viscosity (this is further discussed in section 5.4). This observation is
in agreement with the experimental results of [Francis, 1956] (see next paragraph).

Comparison with thresholds from the literature

Figure 5.10 also allows to compare the critical velocities obtained in the present ex-
periments to other thresholds obtained in the literature. Table 5.3 provides some of the
wind velocity thresholds found in the literature. As mentioned in chapter 1, most of the
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Figure 5.10: Threshold velocity plotted as function of the kinematic viscosity. The red
squares (�) correspond to our data, the black diamonds (�) to data from [Keulegan, 1951],
the green triangles (N) to data from [Francis, 1956], the blue dots (•) to data from [Kahma
and Donelan, 1988] and the magenta triangle (I) to data from [Gottifredi and Jameson,
1970]. The grey rectangle represents the range of thresholds from the literature obtained
experimentally over water. The continuous line is a power fit Uc = aνn, with n = 0.22
and a = 62.6 SI. Note that error bars are often smaller than the markers.

experimental works about wind waves in the literature are performed over water. When
the viscosity of the water is available, the value is given as is in the table. If only the water
temperature is mentioned, its viscosity is taken as the tabulated value of pure water at
this temperature. Otherwise, when neither the viscosity nor the temperature of the water
during their wind waves experiments is indicated by the authors, the kinematic viscosity
of the water is taken to be about 1.0 × 10−6 m2.s−1 (the tabulated value at 20◦C). Our
results are in accordance with the thresholds in water in the literature, despite the varia-
tions between the results of the different authors. Note that the fact that the power law
extends to such a low viscosity as the one of water was not expected by us. Indeed, our
set-up was designed with the use of more viscous liquids in mind. In the case of water,
the surface drift is greater, the flow in the liquid can be turbulent, and waves are damped
over a longer distance, allowing for reflections at the end of the tank to be visible. Despite
these changes at low viscosity, it seems that there is a continuum of the behavior of the
threshold velocity with respect to viscosity, at least down to the viscosity of water.

It also comes out from the comparison in figure 5.10 that our results are in a fairly
good agreement with [Kahma and Donelan, 1988] at low viscosity and [Francis, 1956] at
high viscosity. Aiming for the exploration of the effect of viscosity on the minimum wind
speed creating waves, Kahma and Donelan carried out laboratory experiments for water
at different temperature, ranging from 4 to 35◦C [Kahma and Donelan, 1988]. Their
results are represented by blue dots in figure 5.10 and are in excellent agreement with
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our data over the corresponding range of viscosity 2. [Francis, 1956] is one of the few
sources of data from the literature concerning the wave threshold over a liquid that is
not water. His results over two viscous oils and a syrup are displayed in green triangles
in figure 5.10 3. [Keulegan, 1951] also offers some results over liquids more viscous than
water. He observes that the critical velocity decreases with fetch: thresholds measured
at the end of his 20 m long wind tunnel are almost 5 times smaller than those taken at
the entrance of the tank. Thus, he takes the critical velocity to be the average of the
values at fetches x = 6, 8 and 10 m, which may explain the difference between his results
and ours. His values are plotted with black diamonds and are about 40% above ours.
Indeed, contrary to Keulegan who observes that at a given wind velocity, a minimal fetch
is necessary before waves are generated, in our set-up, we have not observed any situation
in which waves appears at high fetch and not at smaller fetch.

The study of [Gottifredi and Jameson, 1970] is focused on the growth of mechanically-
generated waves amplified by wind over water or aqueous glycerol solutions but it also
mentions the critical wind velocity in the absence of artificial waves. However, this wind
velocity is based on the observation of the wave growth, which may explain a result slightly
above ours, as weak wave growths may not have been visible.

Natural wind waves (waves generated by wind in outdoors conditions, for example on a
lake or at sea) present a critical velocity that is usually lower than wind waves in laboratory.
This may be explained by the fundamental differences between the two systems considered
(see section 2.3 on page 55). Indeed, the conditions in which natural wind waves occur
are quite different from the ones in which our experiments are performed: unbounded
non stationary airflow, turbulent flow in the liquid, presence of unsteady currents under
the surface, etc. Thresholds in outdoors conditions are given for information purposes in
table 5.3 but they are not represented in figure 5.10.

2. When they performed more than one measurement at a given temperature, the average wind velocity
is represented.

3. The threshold associated to the most viscous liquid he used (Lyle’s golden syrup, a molasses syrup)
is to be interpreted with caution. Indeed, Francis points out that the uncertainty on the viscosity of this
liquid is important due the hygroscopic nature of this liquid. As a consequence, an arbitrary error bar of
±50% of the viscosity is added in figure 5.10.
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5.3 Analyses and interpretations

5.3.1 Friction velocity vs wind velocity

It has been argued by some authors that the friction velocity u∗ is a more relevant
parameter than the mean wind velocity Ua for a fine analysis of wind waves [Phillips, 1957].
Indeed, while Ua is a relevant parameter far from the interface, u∗ is the characteristic
velocity scale close to the interface, in the viscous sublayer. Moreover, Ua depends on the
geometry of the wind channel while u∗ is only related to the state of the surface. It is
therefore of interest to express the experimental results presented in the previous section
with respect to the friction velocity instead of relatively to the wind velocity.

First, let us revisit the definition of u∗ relatively to Ua. As we have seen in section 2.2.3
in chapter 2 from our measurements, we can approximate u∗ by the linear relation u∗ '
0.05Ua, that is to say:

Ua ' 20u∗. (5.3.1)

However, following equation (2.2.5) of chapter 2, a more complete theoretical form would
be:

Ua =
[1
κ

logReτ + C+
]
u∗, (5.3.2)

with Reτ = Hu∗/2νa and C+ = 5. Henceforth, u∗ refers to the friction velocity derived
from equation (5.3.2).

Figure 5.11 shows the friction velocity u∗ as a function of the wind velocity Ua compared
to its linear approximation (Eq. (5.3.1)). As shown in section 2.2.3, equation (5.3.1) is an
acceptable approximation over the range of velocity corresponding to the wrinkles regime
for viscosity ν = 30 × 10−6 m2/s (i.e. over 1 to 6.3 m.s−1). Indeed, the logarithmic
evolution over this range is small enough to be neglected in favor of the linear evolution.
However, as we increase the viscosity of the liquid, the waves start to appear at higher
wind velocities, and the linear approximation of equation (5.3.1) becomes less reliable over
the range of higher velocities corresponding to the wrinkles’ regime at these viscosities.
Therefore, the experimental results previously presented using Ua will now be analyzed
relatively to the friction velocity u∗ as defined in equation (5.3.2).
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Figure 5.11: (Left) Friction velocity as a function of the wind velocity Ua from equa-
tions (5.3.1) (dashed line) and (5.3.2) (continuous line). (Right) Relative difference be-
tween the friction velocities derived from equations (5.3.1) and (5.3.2).
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5.3.2 Experimental results relatively to the friction velocity

Since u∗ may be a more relevant parameter than Ua, let us plot the same data as
previously presented relatively to the friction velocity. Figure 5.12 presents the amplitude
of the surface deformation as defined in the previous section (see Fig. 5.6), but as a
function of the friction velocity. It is found that the amplitude of the surface deformation
now increases approximately as u∗m′ with m′ ∈ [1.35, 1.65], whereas we had previously
an evolution of ζrms as Uma with m ∈ [0.95, 1.20]. Note that although equation (5.3.1)
would predict m ' m′ ' 1, we find that using equation (5.3.2) leads to an approximate
power law with a larger exponent m′ ' 1.5. The coefficient a = ζrms/u

∗1.5 is plotted as
a function of the viscosity ν in figure 5.13. We find that the coefficient a is such that
a = ζrms/u

∗1.5 = Kνn with n = −0.46 ± 0.05 and K = 3.0 × 10−7 SI. Note that the
exponent n is compatible with the value of 1/2.
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Figure 5.12: R.m.s. of the surface height ζrms (averaged in time and space over x =
150 − 300 mm) as a function the friction velocity u∗. From top to bottom, these results
correspond to the viscosities ν = 1.0, 3.9, 12, 30, 85, 195 and 562 ×10−6 m2.s−1. The
continuous lines correspond to fits of power 1.5. The horizontal dotted line gives the
lower limit ζrms = 0.65 µm. The dash-dot line corresponds to ζ = c/u∗ with c = 1.5 ×
10−6 m2.s−1. The vertical lines represent the critical friction velocities u∗c for each ν.
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Figure 5.13: Coefficient of the fits in u∗1.5 in the wrinkles regime in figure 5.12 as a
function of the kinematic viscosity. The line shows the fit (ζrms/u∗1.5)avg = Kν−0.46 with
K = 3.0× 10−7 SI.

10
−6

10
−5

10
−4

10
−3

10
−20.1

0.2

0.3

0.4

0.5

ν (m2/s)

u* c (
m

/s
)

Figure 5.14: Critical friction velocity u∗c as a function of the kinematic viscosity of the
liquid. The continuous line shows the fit u∗c = aν0.20 with a = 2.3 SI.
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5.3.3 Model for the wrinkles

In this section, we propose a model to relate ζ to u∗ and ν based on the influence of the
pressure fluctuations over a viscous liquid. This model is based on Phillips model, modified
to account for the influence of viscosity. In Phillips model, the square of the amplitude
of the surface deformation grows linearly in time until the slope of the waves exceeds a
certain limit; in our model, we postulate that a viscous saturation arises beforehand.

a) Influence of pressure fluctuations over an interface: viscous saturation of
Phillips’ model

In order to model the interaction between the turbulent airflow and the interface and
evaluate the amplitude of the surface deformation of the wrinkles, the surface deformation
is supposed to be the result of the effects of the pressure fluctuations on the interface.
From the analysis of [Phillips, 1957] (see section 1.2.1 for more details), in the principal
stage of development of wind waves, the amplitude of waves generated by a turbulent
airflow that is statistically stationary, uniform in the x direction and applied over the
interface during a time t is given by (equation (4.13) in [Phillips, 1957]):

ζ2 ' p2t

2
√

2ρ2Vcg
(1.2.1)

where p2 is the mean square turbulent pressure on the interface 4 , t the elapsed time and Vc
the convection velocity of the pressure fluctuations. Vc as defined by Phillips is the velocity
of the frame of reference in which the time scale of the normal stresses fluctuations (i.e.
the pressure fluctuations) is the greatest. According to Phillips, the convection velocity of
pressure fluctuations of length scale ` is approximately the mean wind speed at a height `
above the surface. In his model, the pressure fluctuations can trigger a resonance with the
interface deformation mode of the corresponding wavelength and the growth of the waves
continues until the slope of the waves becomes high enough that nonlinear effects are not
negligible anymore. In this approach, the viscosity is not taken into account.

In the case of a viscous liquid, the wave growth may saturate before the nonlinearities
become important, in a time scale t given by the dissipation time τ in the liquid. Let Λ
be the main wavelength excited at the interface. The dissipation time at this scale for a
laminar flow is τ = (2ν(2π/Λ)2)−1 = Λ2/8π2ν [Lamb, 1995]. The root mean square of
the pressure fluctuations prms = p21/2 at the wall in a fully developed turbulent channel,
unavailable at the time of [Phillips, 1957], is nowadays accessible by numerical simulation.
It is well described by the empirical law prms = f(Reτ )ρau∗2 with f(Reτ ) = (2.60ln(Reτ )−
11.25)1/2 (equations (3.2.3) and (3.2.4)). We can interpret the convection velocity Vc as
the mean velocity at the altitude above the interface where the pressure fluctuations are
maximal. In a turbulent boundary layer, such altitude corresponds to z+

max = zmax/δν '
20 − 50 [Jimenez and Hoyas, 2008]. According to the logarithmic law (Eq. (2.2.5)), the
mean velocity at this altitude, i.e. the convection velocity, is u(zmax) = Vc ' (13 ± 1)u∗.
Note that if we use the approximation u∗ ' 0.05Ua, this yields Vc ' (0.65±0.05)Ua, which
is consistent with this evaluation of the convection velocity Vc ' 0.6Ua given by [Choi and
Moin, 1990].

Incorporating these expressions of prms, τ and Vc into equation (1.2.1), we obtain:

ζ2 ' f(Reτ )2ρ2
au
∗4(Λ2/8π2ν)

2
√

2ρ2((13± 1)u∗)g
(5.3.3)

4. The mean pressure is set to zero.
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which leads to:
ζrms ' K∗ν−1/2u∗3/2 (5.3.4)

with K∗ = αφf(Reτ ) (5.3.5)

with α = 1/4π(
√

2(13± 1))1/2 ' (18.6± 0.7)× 10−3 and φ = ρaΛ/ρg1/2.
Note that K∗ still depends on u∗ through the factor f(Reτ ). This dependence is

weak: over the entire range of friction velocity over which all wrinkles regimes span,
u∗ ∈ [0.05, 0.5] m.s−1, f(Reτ ) increases by 20%, from 3.7 to 4.4. Moreover, for each liquid
of different viscosity, the range of friction velocity corresponding to the wrinkles regime is
more restricted. Over each of these ranges, f(Reτ ) departs from its average value f(Reτ )
over the wrinkles regime by only 5 to 10%. Thus, while this is not expected to hold for
wide ranges of u∗, an average value of K∗ to describe the evolution of ζrms may be used as
an approximation over the small range of friction velocity of each wrinkles regime. This is
confirmed by the fact that fitting the experimental data with f(Reτ )u∗3/2 instead of u∗3/2

in figure 5.12 leads to a difference that is smaller than the line thickness. As a result,
equation (5.3.5) can be simplified using the average value K∗ and we can write:

ζrms ' K∗ν−1/2u∗3/2 (5.3.6)

with K∗ = αφf(Reτ ) (5.3.7)

with α = 18.6× 10−3 the average of α, and f(Reτ ) the average value of f(Reτ ) over the
range of friction velocity of the wrinkles regime for the considered liquid. Equation (5.3.6)
is in agreement with the experimental results. Indeed, figures 5.12 and 5.13 show that
in the wrinkles regime we can fit ζrms ∝ u∗3/2 and ζrms ∝ ν−1/2. Therefore, this model
allows us to account for the evolution of the amplitude of the surface deformation both
with respect to the kinematic viscosity and with respect to the friction velocity.

b) Validity of the model: complete comparison with data

As mentioned above, the model presented in the previous section leads to an evolution
of the amplitude of the surface deformation ζrms that is in accordance with the experi-
mental results. In order to further test the validity of this model, the applicability of the
theoretical coefficient K∗ of equation (5.3.4) is explored.

To do so, the experimental results of ζrms are divided by αφν−1/2u∗3/2 and plotted as
a function of the friction velocity u∗. According to the model, ζrms/αφν−1/2u∗3/2 should
evolve as f(Reτ ). The values in table 5.1 are used for the computation of φ = ρaΛ/ρg1/2

for each mixture. However, there is one parameter not in this table the evaluation of which
remains: Λ, the wavelength used in the estimation of the dissipation time. Figure 5.15
presents the characteristic lengths Λx and Λy (the correlation lengths in the x and y
directions as defined in chapter 3, section 3.2.3), as a function of the viscosity for a wind
velocity chosen in the wrinkles regime. For all but the highest viscosity, the correlation
lengths are taken at a wind velocity Ua = 3.2 ± 0.2 m.s−1. However, for the highest
viscosity, the FS-SS measurements are still in the lower limit ζrms = 0.65µm at Ua =
3.2 m.s−1. The data at the smallest available velocity in the wrinkles regime (Ua =
4.5 m.s−1) is used instead. Figure 5.15 shows that the viscosity seems not to have a major
influence on the correlation lengths Λx and Λy. As Λx and Λy can be interpreted as the
characteristic lengths of the response of the pressure fluctuations on the viscous interface,
this suggests that the length scale Λ does not depend on viscosity. As a consequence, for



110 Chapter 5. Influence of the viscosity

10
−6

10
−5

10
−4

10
−30

50

100

150

200

250

ν (m2/s)

Λ
x, Λ

y (
m

m
)

Figure 5.15: Correlation lengths Λx in the x direction (�) and Λy in the y direction (N)
as a function of the viscosity, in the wrinkles regime. For all but the highest viscosity, the
correlation lengths are taken at a wind velocity Ua = 3.2±0.2 m.s−1. Because of the lower
limit ζrms = 0.65µm, the data at the smallest available velocity in the wrinkles regime
(Ua = 4.5 m.s−1) is used instead (open symbols). The two dotted line correspond to the
average values Λx ' 200 mm and Λy ' 75 mm.
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the calculation of φ, we take Λ to be here equal to λc = 2π
√
γ/ρg, the capillary wavelength,

which is independent of viscosity. The evolution of ζrms/αφν−1/2u∗3/2 as a function of the
friction velocity u∗ is displayed in figure 5.16. This test is performed only in the range of
velocities for which it was previously shown that the power fit u∗3/2 is applicable (that is
to say that the data points at 0.65 µm and those above the wrinkles regime are excluded).

Despite the scatter, the data collapses fairly well: ζrms/αφν−1/2u∗3/2 can be described
by 0.57f(Reτ ). The main discrepancy corresponds to the experiments performed with
water. It is likely that the low viscosity of water leads to a slightly different behavior
of the system, particularly regarding the expression of the viscous dissipation scale. This
collapse further confirms the validity of our model. However, the prefactor 0.57 shows that
the model may not encompass all of the complexity of the system or that one parameter
may not be estimated accurately enough. In particular, the expression of Λ as 2π

√
γ/ρg

can be subject to criticism. As the lifetime of the pressure fluctuation is of the same order
than its time of propagation over its characteristic streamwise length, it may be more
accurate to express Λ as depending on the size of the pressure fluctuations rather than on
the wavelength associated to free capillary waves.

5.3.4 Critical friction velocity and amplitude of the surface deformation

Let us return to figure 5.12 to look more closely at the amplitude of surface deformation
when the threshold is reached. Figure 5.12 shows that this amplitude at the threshold of
wave generation seems to decrease as 1/u∗. Indeed, the transitions to a quicker increase of
amplitude appear to roughly correspond to the velocities at which the root mean square of
the deformation amplitude reaches c/u∗ with c = 1.5× 10−6 m2.s−1 (dash-dot line). This
could suggest that the threshold velocity is related to the thickness of the viscous sublayer
δν = νa/u

∗. Attempts in the literature to evaluate the threshold velocity are mostly on
stability or dimensional analysis [Keulegan, 1951] [Miles, 1957]. However, based on our
results, it looks like trying to relate the critical friction velocity for wave generation u∗c and
the amplitude of the surface deformation could be a fruitful approach. The experimental
law of evolution of this deformation amplitude with the friction velocity can be written
as:

ζrms ' K∗ν−1/2u∗3/2. (5.3.6)

Let us consider that the wave threshold is reached when the amplitude of the surface
deformation becomes greater than a fraction A of the thickness of the viscous sublayer δν .
Thus, we have:

ζrms,c = Kν−1/2u∗3/2 = A
νa
u∗c

This leads to:
u∗c ∝ ν1/5. (5.3.8)

This exponent 1/5 turns out to be in very good agreement with the experimental results.
Figure 5.14 presents the evolution of the critical friction velocity u∗c for wave formation
as a function of the kinematic viscosity of the liquid. The line on figure 5.14 shows the
fit u∗c = aνn. The exponent of this power law fit is n = 0.20 ± 0.01 and a = 2.3 SI, in
accordance with equation (5.3.8) for A = 0.1.

It should be noted that these results have to be considered with caution. Indeed, while
the transitions from wrinkles to waves are sharp at high viscosity, they are smooth and
continuous at lower viscosity, which allows for some flexibility in the plot that can fit the
location of the transitions from one regime to the other. Relating the threshold velocity
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to the thickness of the viscous sublayer is based on the idea that waves could start to grow
when the surface deformation reaches an amplitude comparable to the viscous sublayer
thickness. However, the agreement between equation (5.3.8) and experimental results is
to be tempered by the fact that this leads to a criterion for wave generation based on the
surface deformation reaching only a tenth of the viscous sublayer thickness (A = 0.1), for
which it is difficult to provide a physical interpretation.

5.4 Solitary waves over a highly viscous liquid

For viscosities above about 120×10−6 m2.s−1, a peculiar phenomenon appears at high
wind velocities that was not at all present at lower viscosities. This phenomenon specific
to high viscosity and high wind velocity arise under the form of solitary waves (SW) of
large amplitude. This last section is dedicated to the description of these waves.

5.4.1 Direct observations

When the wind velocity reaches a value Usw over a highly viscous liquid, transverse
deformations of great amplitude suddenly appear, starting from x = 0 and propagating
downstream rather slowly, like small liquid dunes pushed by wind. A picture of such
solitary wave is presented in figure 5.17. These large deformations appear close to the wall
on one side or the other or on both. They are of length of about 10 cm transversely but
are only about 2-3 cm wide. They are curved in a crescent shape and the front and back
of the wave are not symmetrical. They propagate downstream at a velocity Vsw of order
a 0.1 m.s−1, that is to say about 100 times smaller that the wind velocity (or of the order
of the surface velocity, since it is a few percent of the wind velocity, see section 2.2.d on
page 47). These waves are at least half a centimeter high, which is already three times
larger than the highest amplitude of the waves discussed in chapters 3 and 4, and in this
chapter until this point. The associated slopes are far above the limit for FS-SS surface
reconstruction and the FS-SS technique is no longer applicable.

wind

Figure 5.17: Picture of a solitary wave.
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Figure 5.18: Deformation of the dot pattern by a solitary wave. The black spike near
the wall corresponds to the deformation of the border of the light sheet seen through the
interface.

Nevertheless, the raw recorded images of the dot patterns can be used to observe
these solitary waves. Indeed, while differences from the reference frame are hardly visible
to the naked eye during typical FS-SS acquisitions, solitary waves correspond to such
great surface deformations that they are easily observable on the unprocessed images
acquired by the camera (see Fig. 5.18). Figure 5.19 shows some snapshots taken from
the recordings at different wind velocities for mixture 10 (ν = 562 × 10−6 m2.s−1). The
evolution with respect to the wind velocity is fairly similar independently of the mixture’s
viscosity. For wind velocity slightly above Usw, only one of these deformations at a time
can be observed (Fig. 5.19 (a)). After the solitary wave propagates downstream over 30 to
40 cm, its amplitude decreases abruptly and the solitary wave disappears. A few moments
later, another solitary wave appears, propagates and disappears in the same way as the
previous one, and this phenomenon repeats itself quite regularly. As Ua is increased, the
characteristic time between two solitary waves decreases and more than a single solitary
wave can be present at the same time (Fig. 5.19 (b)), but not necessarily on the same
side on the tank (Fig. 5.19 (c)). The solitary waves also slightly widen from about one
third to one half of the total width of the tank when Ua increases. Thus, the greater
the wind velocity, the more numerous the solitary waves and the wider they are. Finally,
the solitary waves become wide enough to connect to solitary waves on the opposite side
through the entire width of the tank (Fig. 5.19 (d)). Once this has occurred, such a fully
transverse solitary wave straightens and propagates rapidly to the end of the tank, going
above the small dam, making the tank overflow in the process.

While solitary waves arise on one side of the tank before populating the other then
the entire width, the preference of the side at which they appear first can change with the
mixture or if the experiment is repeated. Nonetheless, solitary waves seem to emerge on
the side y < 0 somewhat more often than on the opposite side y > 0. This probably does
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Figure 5.19: Dot patterns in presence of solitary waves for ν = 562× 10−6 m2.s−1, (a) at
Ua = 10.9 m.s−1, (b) at Ua = 11.2 m.s−1. Red lines are added to ease the visualization of
the solitary waves.
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Figure 5.19 (continued). At Ua = 11.8 m.s−1, (c) with multiple solitary waves, (d) with a
fully transverse solitary wave.
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not come from inhomogeneities in the base flow of the wind channel as the uniformity of the
transverse mean velocity profile was previously verified (see figure 2.13 on page 44). This is
neither from a transverse change of the boundary conditions at x = 0. Indeed, to test this
hypothesis, the set-up was carefully transversally inclined by an angle i = 0.1◦, creating at
x = 0 a rising meniscus on one side of the center line y = 0 and a descending meniscus on
the other. Relatively to the Plexiglas floor, the liquid is above it by W/2 tan(i) ' 260 µm
at one side wall and below it by the same amount at the other wall. This inclination
(in either direction) did not changed the arrival or behavior of the solitary waves in any
visible way, disproving the hypothesis that the leveling of the liquid was an issue.

5.4.2 A few qualitative results

Despite the lack of in-depth experimentation and analysis concerning solitary waves,
a few qualitative results can be derived from the direct observations and the analysis of
the FS-SS raw recorded images. These results are presented in the following paragraphs,
as well as their limitations.

Minimal wind velocity

The minimal wind velocity Usw at which the solitary waves are observed is recorded
for viscosities between 122 and 562 ×10−6 m2.s−1 (see table 5.4 and figure 5.20). For the
aqueous glycerol mixtures of concentration 88% and above, the observations were done
during the initial attempts for FS-SS acquisitions with a highly concentrated glycerol-water
solution. Starting from almost pure glycerol, the mixture naturally absorbed water over
the course of a few days and solitary waves were observed over the range of corresponding
viscosity. Blowing a strong wind over the liquid for an hour ensured that the liquid
was properly mixed, and observations were made over a small time scale, over which the
liquid’s parameters could be considered as constant. The accuracy of determination of Usw
depends on the steps of gradual change of the wind blower variator frequency as the wind
velocity is increased. As one could have expected, it is found that the minimum velocity
Usw slowly increases with viscosity. A power law Usw = Kν0.11 with K = 25.2 SI can be
fitted from the data. The evolution of Usw with viscosity is slower than for the one of the
threshold velocity (Uc = aν0.22 with a = 62.6 SI). These two power laws intercept for a
cut-off viscosity νc ' 210× 10−6 m2.s−1.

Mixture T ρ ν Usw
(oC) (×103 kg/m3) (×10−6 m2/s) (m/s)

glycerol 88%, water 12% (8) 21 1.230 122 ±10 9.14 ±0.05
glycerol 89%, water 11% 21 1.233 143 ±20 9.26 ±0.05
glucor 80%, water 20% (9) 25 1.34 195 ±10 10.3 ±0.3
glycerol 92%, water 8% 23 1.242 219 ±20 9.54 ±0.05
glycerol 94%, water 6% 27 1.247 229 ±30 9.85 ±0.05
glucor 85%, water 15% (10) 25 1.36 562 ±15 10.9 ±0.3

Table 5.4: Mixtures’ parameters for highly viscous liquids.

Note that these results imply that a few points on figure 5.6 on page 98 and figure 5.12
on page 106 correspond to data taken in the presence of solitary waves. Indeed, in these
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Figure 5.20: Evolution of the minimal wind velocity at which solitary waves are observed
as a function of the kinematic viscosity of the liquid. This minimal velocity Usw (•) is
compared to the threshold velocity Uc (�) found previously. The dashed line corresponds
to the power fit Usw = Kν0.11 with K = 25.2 SI, while the continuous line is the power
fit associated to the threshold velocities Uc = aν0.22, with a = 62.6 SI (see figure 5.10 on
page 102).

figures, solitary waves are present at the highest velocity for ν = 195×10−6 m2.s−1 and the
four highest velocities for ν = 562× 10−6 m2.s−1. This means that for this later viscosity
ν = 562 × 10−6 m2.s−1, the threshold Uc actually corresponds the emergence of solitary
waves, and not to the transition to the waves’ regime as defined in chapter 3.

The precise origin of the solitary waves is unknown at the present time. However, we
can postulate that the onset of solitary waves is due to an instability that is set off at
high viscosity in our set-up. The general behavior of the solitary waves points toward
a subcritical instability. Moreover, as the onset appears to occur independently of the
wrinkles or waves (since solitary waves can arise in both regimes), this new instability seems
to be decoupled from the one we studied in the rest of this manuscript. The departure
from the power law u∗c ∝ ν1/5 at high viscosity would thus be due to the emergence of
this second instability, when Uc becomes greater than Usw. Based on the computation
of the limit wavelength under which waves cannot propagate (see § 5.1.1 on page 93), it
seems likely that the influence of the liquid viscosity on the wave propagation through
the over-damping of short wavelength is of particular importance in the generation of the
solitary waves.

The appearance and behaviour of these solitary waves are not without reminding of
other nonsymmetrical waves in rather different systems, for example, liquid films over
inclined planes [Ruyer-Quil et al., 2014] or nonlinear solitons over oil in a confined geometry
[Gondret and Rabaud, 1997]; or even waves over non-liquid media: the flutterings of a flag
or plastic foil [Connell and Yue, 2007], waves over a viscoelastic gel [Gad-El-Hak et al.,
1984], parabolic-type sand dunes [Tsoar and Blumberg, 2002] [Durán et al., 2008], etc.
It would be interesting to analyze in the future the possible similarities between those
problems.
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Propagation velocity and separation length

The propagation velocity of the solitary waves Vsw is estimated from visually tracking
waves on the raw images. Similarly, the separation length between two waves λsw is esti-
mated from pairs of waves on the recorded frames. As solitary waves appear to accelerate
when they emerge and decelerate when they die out 5, these measurements are performed
in between, far enough from the generation and vanishing stages of the solitary waves.
This can be achieved by observing the deformation of the border of the light sheet seen
through the interface, which materializes by a black spike near the walls (see figures 5.18
and 5.19). Vsw and λsw are recorded at each wind velocity for at least 5 separate solitary
waves and at least 5 separate pairs of solitary waves, respectively. The average values
of Vsw and λsw are presented in table 5.5, while all the measured values are plotted in
figure 5.21. Since FS-SS recordings were performed only for two of the six mixtures for
which solitary waves were observed and for only a small range of wind velocities, these
experimental results should be interpreted with caution. Nevertheless, a few trends can
be deduced from the measurements of Vsw and λsw.

ν Usw Ua (Ua − Usw)/Usw
Vsw λsw

(×10−6 m2/s) (m/s) (m/s) (m/s) (m)
195 ±10 10.3 10.6 0.03 0.169 0.139
562 ±15 10.9 10.6 0 0.066 0.157
562 ±15 10.9 11.2 0.03 0.086 0.116
562 ±15 10.9 11.5 0.06 0.111 0.107
562 ±15 10.9 11.8 0.08 0.141 0.138

Table 5.5: Average propagation velocities and separation lengths of the solitary waves.

The propagation velocity of solitary waves increases over the small range of wind
velocity Ua where observations were carried out, consistently with the intuition that a
stronger wind will push the wave harder and make it propagate more quickly. Similarly,
as one would have expected, a smaller viscosity leads to a higher propagation velocity.
Indeed, comparing the results for ν = 195 ×10−6 m2.s−1 and ν = 562 ×10−6 m2.s−1 at
the same ratio (Ua − Usw)/Usw of 3% leads to a propagation velocity about twice greater
for the smallest of the two viscosities.

Let us now focus on the propagation velocity of fully transverse solitary waves at the
highest wind velocity and viscosity (open symbols in figure 5.21 (left)). While the average
velocity of fully transverse waves (0.15 m.s−1) is a little above the average velocity of
unconnected solitary waves (0.14 m.s−1), the scatter of the velocity corresponding to fully
transverse waves is much greater. Most of the fully transverse waves are of velocity greater
or comparable than the one of unconnected waves at the same wind velocity, but some are
slower. This may be explained by the fact that the results presented in figure 5.21 concern
measurements taken over the first 40 cm of the tank, where fully transverse solitary waves
are not necessarily propagating at a constant speed. Indeed, two solitary waves that are
connecting are generally misaligned and it seems that a transverse solitary wave starts
to accelerate only once straightened, which it does as it propagates. Direct observations
show that a fully transverse wave quickly propagates to the end of the tank in less than

5. This suggests that the velocity of the solitary waves may be a function of their amplitude. Indeed,
one may expect intuitively that the greater the amplitude of the deformation, the easier it is for the wind
to “push” it.
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Figure 5.21: Evolution with wind velocity of the propagation velocity Vsw of the
solitary waves (left) and of separation length λsw between solitary waves (right), for
ν = 562 ×10−6 m2.s−1 (•) and ν = 195 ×10−6 m2.s−1 (�). The dashed line connects
the average values given in table 5.5. The open symbols (◦) corresponds the propagation
velocity of fully transverse solitary waves observed for ν = 562 ×10−6 m2.s−1.

3 seconds. Thus, its mean propagation velocity over the entire tank is be of the order
of 0.5 m.s−1. However, the maximum velocity measured over the first 40 cm of fetch is
below 0.2 m.s−1, which confirms the acceleration of the wave. Note that the non constant
velocity of the fully transverse waves may not be the only explanation for the scatter. For
example, differences in amplitude may also strongly influence the propagation velocity of
the solitary waves.

Contrary to the propagation velocity, the average distance λsw separating two waves
seems to slightly decrease with wind velocity, at least up to (Ua − Usw)/Usw ' 0.06.
However, the scatter is quite large and this result may be questionable. The scatter may
be due to the fact that, despite being similar, the propagation velocities of two consecutive
waves are not exactly the same, and a solitary wave may catch up or fall behind a little
relatively to the preceding or following wave. At (Ua − Usw)/Usw ' 0.08, the decreasing
tendency inverts and the average separation length λsw slightly increases compared to
the preceding value. The scatter of the data, the coexistence of solitary waves on both
sides and the occasional emergence of fully transverse waves make it harder to interpret
this result and give a definitive conclusion on the apparent increase of λsw at high wind
velocity.

To conclude, the observation of the solitary waves yield new and interesting results,
though still mainly qualitative. A more thorough and complete analysis would be valuable
to bring forth more information on this phenomenon.

5.5 Conclusion

In this chapter, wind waves experiments with liquids of different viscosities have been
presented to extend the results from chapter 3.

The influence of the viscosity on the evolution of the surface deformation with wind
velocity and on the threshold velocity were discussed. In particular, the wrinkles and
wave regimes can be identified for all viscosities and results presented in chapter 3 can
be found in similar forms over a wide range of viscosity. The transition between the
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two regimes becomes more and more abrupt for an increasing viscosity. As the friction
velocity seems to be a more relevant parameter than the wind velocity, these results were
also presented relatively to the friction velocity. It was found that the amplitude of the
surface deformation evolves as ν−1/2u∗3/2 in the wrinkles regime. A criterion for wave
amplification was introduced on this basis, leading to an evolution of the critical friction
velocity as ν1/5, in accordance with the experimental results.

A model was developed to account for this evolution. Starting from the Phillips’
model, instead of a slope-based saturation of the effect of the pressure fluctuations on
the interface, a viscous cut-off is applied. This model leads to the same evolution of the
amplitude of the surface deformation as the experimental data: ζrms ' K∗ν−1/2u∗3/2.
While this model allows for the collapse of the data in the wrinkles regime to a fairly good
extent, experimental results shows that the prefactor K∗ could be further refined.

In addition to that, a phenomenon specific to high viscosity and high wind velocity was
described in the last section of this chapter. Indeed, for a liquid viscous enough and a wind
strong enough, peculiar solitary waves appear at the beginning of the tank propagating
downstream. A few quantities were measured and rough conclusions were drawn from
them. These solitary waves seem to be associated to a distinct instability.

Summary:

• The system behavior is fairly similar over a wide range of viscosity. In particular, the
distinction between wrinkles and wave regime can be assessed for all viscosity. The
transition between the two regimes becomes more and more abrupt as the viscosity
increases.

• The amplitude of the surface deformation evolves as ν−1/2u∗3/2 in the wrinkles
regime. The critical velocity increases with viscosity as ν1/5.

• A model based on a viscous saturation of Phillips model was developed. It accounts
for the evolution of the amplitude of surface deformation with friction velocity and
viscosity observed experimentally.

• Solitary waves, possibly associated to a distinct subcritical instability, appear at high
viscosity and velocity.



Chapter 6

General conclusion and outlook

Conclusion

Despite the considerable amount of research on the subject and the recent advances
in numerical simulations and visualization instrumentation, wind waves still foster a num-
ber of open questions. The main part of the literature focuses on wind waves over water
and on the wave behavior past the wave generation threshold. In this context, my PhD
aimed for a better understanding of the deformation by wind of a viscous interface, but also
for an improved comprehension of the influence in this matter of the viscosity of the liquid.

To do so, a new experimental set-up was designed and built. The FS-SS method of
visualization was adapted onto it in order to take advantage of its great vertical resolution
to explore the first surface deformations. To simplify the problem, the idea was to depart
from the literature and carry out the experiments with a liquid much more viscous than
water. Indeed, because of this large viscosity, the surface deformations that are not am-
plified can only propagate over a limited distance and the flow in the tank stays laminar.
This last point was verified during the characterization of the flow in the tank and wind
tunnel. Performing PIV measurements, the flow in the liquid was indeed observed un-
der the threshold velocity to be laminar, quasi uniform and bidimensional with its mean
velocity following the parabolic law solution of the problem for a stationary Stokes flow.
Carrying out hot-wire measurements, the airflow characteristics were also assessed and it
was found that below the wave generation threshold, the airflow is the same as turbulent
flow over a flat fixed wall. This outcome allowed us to later use results from direct nu-
merical simulation databases to get around the experimental difficulties of accessing the
pressure field in the airflow close to the interface. The friction velocities deduced from the
profiles in the air and in the liquid were shown to be similar, which leads to a single linear
empirical law relating the wind velocity and the friction velocity.

Using a liquid thirty times more viscous than water, the surface deformation by the
action of wind was explored in details with the FS-SS method of visualization. The
experimental results clearly show that there are two regimes of surface deformation.

First, at low wind velocity, the surface of the liquid is populated with small-amplitude
disordered surface deformations that we called “wrinkles”. These wrinkles are elongated
in the streamwise direction, propagate rapidly downstream, and their amplitude grows
linearly with the wind velocity, in an approximately linear manner. However, the wrinkles
bear no significant evolution with fetch (the distance of liquid over which the wind blows).
These wrinkles can be interpreted as the traces on the interface of the pressure fluctuations



122 Chapter 6. General conclusion and outlook

in the turbulent boundary layer above the surface. This is suggested in particular by
the comparison of the spatial structures and spatio-temporal dynamics of the surface
deformation and those of these turbulent fluctuations.

Secondly, past a certain threshold, at higher wind velocity, well-defined transverse
waves of much larger amplitude propagate downstream with their crests quasi normal to
the wind direction, yet with dislocations close to the center line. The wave amplitude
increases much more quickly with the wind velocity than the wrinkles’, and contrary to
the wrinkles, the waves’ amplitude grows with fetch. Indeed the amplitude of the waves
can be fitted exponentially at short fetch. At larger fetch however, nonlinearities play a
significant role and the spatial growth of the wave is slower and slower in the downstream
direction. Nevertheless, the exponential growth rate measured at small fetch allows to
accurately define a critical wind velocity, when the spatial growth rate becomes positive.

Still, the transition from wrinkles to waves is not as abrupt as the precision on the
velocity threshold makes it look like. Indeed, in a significant range of velocity around the
threshold, both wrinkles and waves are present on the interface. The experimental results
suggest that below the critical velocity, waves are locally excited by the wrinkles but are
spatially damped, which leads to an apparent zero growth rate and the interface gradually
shifts from being dominated by wrinkles to being dominated by transverse waves as the
wind speed increases.

The spatial evolution of the wave characteristics in the waves regime was studied
subsequently. The effects of nonlinearities lead to an increase of the local wavelength and
a decrease of the dominant frequency with fetch. The typical wave steepness also increases
with fetch, and may eventually saturate. The evolution of the local phase velocity, defined
as the product of the locally predominant wavelength and frequency, is less straightforward.
This may be due to the fact that the range of excited modes is quite large and that observed
waves are therefore not strictly monochromatic.

The frequency and wavenumber downshift observed in our experiments for waves of
small amplitude propagating over short fetch are similar to those reported over water in
experiments in longer tanks or at sea. However, the origin of this downshift bears no
consensus.

Corrections to the free linear waves inviscid dispersion relation can be made. In our
case, all corrections but one, the one due to the current in the tank, may be neglected.
Indeed, it was found that the locally dominant wavelength and frequency qualitatively
verify the corrected dispersion relation once the drift current is taken into account.

Finally, wind waves experiments with liquids of different viscosities were performed.
It was found that many of the results reported during the experiments with the liquid
thirty times more viscous than water can be extended over more than two decades of
viscosity. In particular, the two regimes of surface deformation were observed at all the
viscosities. However, the transition from wrinkles to waves is more and more abrupt as the
viscosity increases, meaning that the range of wind velocity around the threshold where
both wrinkles and waves cohabit shrinks for more viscous liquids. The critical velocity
itself increases with the viscosity to the power 1/5, up to very high viscosities where
solitary waves, possibly associated to a distinct instability, were observed.

The evolution of the wrinkles’ amplitude with the wind strength is similar for all
viscosities. Switching from the wind velocity Ua to the friction velocity u∗ for a more
refined analysis, it turned out that the linear approximation of the relationship between
the two is not accurate enough for such an analysis. Using the complete form of the
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friction velocity, the amplitude of the surface deformation in the wrinkles regime evolves
as ν−1/2u∗3/2. To account for this evolution, a model was developed based on viscous
saturation applied to Phillips’ model. This new model is able to capture the evolution of
the surface deformation both with respect to the viscosity and to the friction velocity.

Outlook

Evolution of a moving local deformation imposed over a viscous liquid

The agreement between our model and experimental data at different viscosity shows
the clear correlation between wrinkles and pressure fluctuations. One may note however
that, while the analysis of the spatial structures and spatio-temporal dynamics of the
surface deformations below the threshold in chapter 3 shows a quantitative agreement
with the corresponding characteristics of the pressure fluctuations, this agreement only
occurs over a restricted range of low velocities. At higher velocity, viscosity and capillarity
have a strong effect on the response of the interface to the pressure fluctuations: the
characteristics lengths and velocity of the surface deformations depart from the expected
values they would have if the pressure fluctuations had an instantaneous effect on the
interface. The actual response is much harder to theorize.

An interesting approach would be to reproduce in a controlled fashion the effect of
the pressure fluctuations action on the interface. This can be done experimentally with
the FS-SS method by studying the evolution of a perturbation over a liquid surface, for
example by locally blowing air over a viscous interface. The inherent difficulty with this
problem is the duality of the important time scales: the characteristic time needed for
the surface to be fully deformed while the pressure is applied and the characteristic time
over which the pressure is actually applied. In the wind waves problem, the latter can
be smaller than the former since the pressure fluctuations are intermittent and advected
downstream by the airflow. Experiments can help decouple these time scales by either
focusing on the interface response to a fixed but time-dependent pressure or to a constant
moving pressure.

Note that this approach may be restricted due to the lower limit of the FS-SS method
because of the residual vibrations. Recently, the camera has been mounted on a sturdier
support and a switch was installed on the camera to temporally stop its fan during acqui-
sitions. In these conditions, the residual vibrations should be reduced sufficiently that the
FS-SS lower limit is not of concern anymore (provided that the experiments keep on being
carried out during evening or night to avoid outside sources of vibrations). In addition,
since the accuracy of the FS-SS technique is directly related to the distance between the
interface and the dot pattern, moving this pattern further away should allow to improve
the already excellent vertical resolution of the method and to explore even smaller surface
deformations.

Theoretical stability analysis

As mentioned in chapter 1, a large number of papers deal with wave generation through
the stability analysis of the mean velocity profiles of the air and liquid flows, and the results
depend greatly on the shape of those profiles. While stability analysis for a system with
a classical turbulent air profile is quite common, the parabolic laminar flow in the liquid
is unfortunately less typical. To my knowledge, there is no publication that fully handles
the theoretical stability of such a system.
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The comparison of our experimental study of wind waves with a stability analysis being
of particular interest, this approach has been tested in collaboration with P. D. M. Spelt
and L. Ó Náraigh. Using a slightly modified version of their method in [Ó Náraigh et al.,
2011] applied to the mean velocity profiles we obtained by hot-wire or PIV measurement,
Spelt and Ó Náraigh conducted a linear stability analysis of our system in the case of
the 80% glycerol-20% water mixture (ν = 30 × 10−6 m2.s−1). Their analysis resulted
in the flow being unstable for all velocities studied (Ua = 5, 6 and 7 m.s−1). An energy
budget analysis places the most unstable mode in the category of an instability induced by
tangential disturbances (using the instability classes from [Boomkamp and Miesen, 1996],
see section 1.3.2 on page 18). Their theoretical spatial growth rates fairly agree with our
experimental measurement, but the associated wavelengths and phase velocities are quite
different.

Confirming these results would require to run a linear direct numerical simulation as
in [Ó Náraigh et al., 2013]. It would be also interesting to investigate the stability in the
case of the other liquids of different viscosity. In any case, these first results are promising
and incite further investigation.

Mechanically-forced wind waves

Since the range of unstable modes excited by wind is fairly large and each mode seems
to grow at a different rate, it would be interesting to compare purely wind-induced waves
to waves of a single frequency affected by wind. To do so, waves can be mechanically
generated at a particular frequency in the tank, for example by the oscillation of a rod at
a close distance below the interface.

Knowing that even slight perturbations of the interface are picked up by the FS-SS
visualization, the set-up used for the forcing must meet a certain number of requirements.
First, the forcing rod should be entirely under the surface in order to minimize the inter-
actions with the airflow and avoid the parasitic waves that would be created for example if
the support of the rod were going through the interface. Second, the forcing must generate
as little vibrations as possible, as preliminary tests on the wind waves set-up proved that
slight vibrations are enough to generate longitudinal waves propagating from the sides of
the tank to its center that are very visible in the FS-SS reconstruction. These requirements
lead to the following design (see Fig. 6.1). The rod is supported by two metal bars and a
metal wire connects the rod to a shaker located downwind outside the set-up. This wire
is thus the only part of the forcing system that goes through the interface and it does so
at a safe distance from the oscillating rod. A generator feeds the shaker with a periodic
generation function: the shaker periodically pulls on the wire, causing the rod to oscillate
in translation under the interface. Note that if the forcing is not realized close to fetch
x = 0, part of the generated waves propagate in the upstream direction, allowing to also
explore the wave attenuation due to opposing wind.

I designed and tested this forcing concept, while Antoine Hector recently installed
the forcing system into the tank and is now carrying out preliminary tests in presence
of wind during his internship at the laboratory FAST in April 2016. One goal is to
study the amplification or decay of modes based on the wind velocity, in order to better
characterize the instability. The preliminary results in this matter are encouraging and
more experiments are planned.
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z = 0

z = -h

Figure 6.1: Close-up picture of the oscillating rod of the forcing system. The distance
between the rod and the surface can be adjusted thanks to the plastic screws in which the
bars supporting the rod are inserted.

Nonlinear evolution of wind waves

In order to account for the spatial evolution of the waves’ characteristics in the wave
regime, we attempted to develop a model based on the assumption that each unsta-
ble mode grows independently downstream and saturates when reaching a certain slope.
The nonlinearities would then arise from the sequential saturation of these non interact-
ing unstable modes as they reach the limiting slope one after the other when traveling
downstream. While a discrete description leads to encouraging results, a mathematically
rigorous continuous description proved to be a (still standing) challenge. Indeed, in the
spectral description, the criterion for the saturation of one mode can not be defined based
on a limiting steepness and another more adequate criterion remains to be found.

There may be two other more fundamental reasons that cause our difficulties. First, as
discussed in [Annenkov and Shrira, 2013], the inherent broadness of the range of excited
modes makes it difficult to precisely define the waves’ characteristics. Indeed, charac-
terizing without ambiguity a given wave field by a single frequency or wavelength, even
just locally, requires a narrow band so that the most energetic mode alone can depict the
whole wave field. As a consequence, the definition of the local wavelength or frequency
may not be as simple as it seems and the characteristics of broadband wind waves may be
accurately described only by a spectral approach.

This leads to the second problem: the spectral description itself. Indeed, Huang et
al. argue that the Fourier spectrum, very commonly used in the analysis of the frequency
downshift of wind waves, is “a very poor way” to analyze or quantify the downshift phe-
nomenon [Huang et al., 1999] 1. Arguing that the perturbation approach used in Fourier
view is limited to only small linearities and that the solution to a collection of linear

1. To quote them: “Is the peak frequency change a good measure of downshift? Or is Fourier spectral
analysis a good tool for studying downshift? The answer to both these questions is no.”
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equations may have different physical and mathematical properties than the solution to
a nonlinear equation, they propose a Hilbert spectrum analysis method as an alternative.
To my knowledge, their suggestion has not been successfully followed and a full explana-
tion of the frequency downshift using Hilbert spectrum analysis remains to be developed.
It thus would be interesting to attempt a Hilbert spectrum analysis of our experimental
data.

Solitary waves

A last topic that could be explored in the future is the phenomenon of solitary waves
reported for strong winds over very viscous liquids (see section 5.4 on page 112). More
information is obviously required to better characterize these solitary waves. In particular,
knowing how the amplitude of a solitary wave evolves during its propagation and how this
amplitude relates to its propagation velocity is of particular importance. Unfortunately,
the FS-SS method is of little help in this matter, as such high amplitudes are out of
its range. Another technique with the appropriate measurement range would have to be
implemented on the set-up. For example, fringe profilometry with its micrometric range
may be used [Cobelli et al., 2009]. Due to the relatively high amplitude and spatial
extension of the solitary waves, the influence of the depth of the tank is an open problem
as well. The question of this influence of the liquid depth could be addressed by removing
the 15-mm thick Plexiglas plate originally put at the bottom of the tank to reduce the
liquid height to h = 35 mm. Using plates of a different thickness (or no plate at all) would
allow to vary the liquid depth at will up to 50 mm.

From a more theoretical point of view, one could also examine whether this name
of “solitary waves” is really suited in the physical sense for these large-amplitude slowly
propagating deformations, i.e. whether these so-called solitary waves we observe actually
are solitary waves. While there is no consensus of the exact definition of a soliton, three
properties are generally ascribed to solitons: localness (the wave is localized within a re-
gion), shape permanence (the wave retains the same form as it propagates) and reversible
interactions with other solitons (after a collision, two waves emerge unchanged) [Helal,
2009]. Determining if the solitary waves we observe in our system at high viscosity and
high wind velocity do verify these properties would help defining the equations related to
this phenomenon. The Korteweg-de Vries equation is often used to describe solitons in
water [Michallet and Barthelemy, 1998] [Charru, 2011], but it should be noted that other
possibly applicable equations, like the nonlinear Schrödinger equation, used to described
the nonlinear evolution of a wave packet, have soliton solutions [Peregrine, 1983]. As
pointed out in chapter 5, the solitary waves we observe could derive from the short wave-
length cut-off due to viscosity or may be compared to nonsymetrical waves (that are not
necessary solitary) in quite different systems, possibly leading to very different equations.



Appendix A

FS-SS: Experiments and
computations

General view

Graphic A.1 details the different steps during an experiment.
A few precautions are to be taken before any acquisition. The tilts of the camera, tank

and mirror are checked. The density and temperature of the liquid are measured at the
beginning and end of the experiment. The liquid is thoroughly mixed and a maximum
of the surface pollutants is eliminated after having gathered them at the end of the tank
by blowing a strong wind. After that, the level of liquid is adjusted in absence of wind
to be precisely at x = 0 by using the tangential reflection of a laser sheet intersecting the
upstream plate and the liquid surface. No liquid is to be added or subtracted after this
operation. Indeed, the reference image used for the FS-SS computation is acquired when
the liquid is at rest at x = 0 with the wind blower off. If liquid overflows from the tank
because of waves of great amplitude, the liquid is leveled again and a new reference image
is taken. The temperature is checked frequently during the experiment. If the variation
to the mean temperature is of more that 0.5◦C, acquisitions have to be discarded because
of the resulting variation of the viscosity of the liquid.

Once the reference image have been acquired, the wind blower is turned on to the
adequate wind velocity. After waiting a few minutes for the system to reach its stationary
state, an acquisition can be started. Then, the recorded images are transferred from the
camera to the computer before the next acquisition.

A laser was installed to evaluate the presence of vibrations likely to disturb the ex-
periments. The laser dot is reflected on the surface of the liquid in the tank to a sheet
of graph paper taped on the opposing wall of the room. When the dot is moving while
the liquid is supposed totally at rest, it means that small vibrations are transmitted to
the set-up from the ground and that FS-SS acquisitions should not be performed for wind
velocities below the waves threshold. If they are, the surface fields present long transverse
waves propagating from the walls to the center of the tank (see Fig. A.2).

Computations

Displacement field

The images are imported into Davis 8.1 from the format .tiff and converted into the
format .IM7. Once the calibration of the images is done, the displacement fields are
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Figure A.1: Graphic of the different steps during an experiment and the subsequent FS-SS
computations.
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Figure A.2: Parasitic waves originating from vibrations of the lateral walls (y = ±150 mm).

computed and returned in .VC7 format. To quicken the computations, a ‘mask’ is created
to discard the regions of the field of view outside the dot pattern.

The displacement fields are computed by cross-correlation similarly to the classical
PIV method. Each frame is separated in interrogation windows. For each interrogation
windows, the Davis software searches where the content of that window has moved from
its initial position in the reference image. To do so, cross-correlation is computed in the
vicinity around the window that is being considered. The displacement is defined by the
location of the highest correlation peak. The best results are obtained with three passes:
the first one with interrogation windows of size of 32 × 32 pixels, then two passes with
windows of size 16 × 16 pixels (decreasing the window size allows to refine the computa-
tion). The first two passes use the standard cross-correlation function, the last one uses a
normalized version of it.

Surface height field

The .VC7 files are imported into Matlab and the computation of the height fields is
realized using the function surfheight of the Matlab toolbox PIVMat developed by Moisy 1.
This function takes in input the displacement field, the equivalent mean height of liquid,
the refractive index, the distance from the camera to the pattern and the position of the
center of the camera 2 and gives in return the height field ζ(x, y, t). Some options can be
chosen in order to take into account the parallax (option ‘remap’) or to subtract the average
displacement (option ‘submean’). Both these options are used in the computations.

1. More information on this toolbox and the implementation of the FS-SS method can be found on
the FAST website, see http://www.fast.u-psud.fr/pivmat/ and http://www.fast.u-psud.fr/~moisy/
sgbos/tutorial.php.

2. Adding the distance from the camera to the pattern and the position of the center of the camera to
the input variables is not absolutely necessary for the computation of the surface height but leads to more
accurate results. In their absence, the camera is supposed to be infinitely far away from the pattern and
perfectly centered.

http://www.fast.u-psud.fr/pivmat/
http://www.fast.u-psud.fr/~moisy/sgbos/tutorial.php
http://www.fast.u-psud.fr/~moisy/sgbos/tutorial.php
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In particular, the option ‘submean’ allows to remove the uniform displacement added
by the slight vibration of the camera due to its cooling fan. However, it induces an
artificial change in the mean displacement field when a wave enters or leaves the field of
visualization that translate into oscillation of the surface field around the center of the
field in the x direction. This oscillation does not change the global root mean square of
the amplitude of the surface deformation (over the entire field of view). However, it has a
strong influence of the local root mean square of the deformation amplitude: it leads to the
overestimation of this root mean square in the outermost regions of the field. This effect
is counteracted by the use of a highpass filter. Since the highest wavelength of the wind
waves is a factor of 4 smaller than the dimension in the x direction of the field of view, the
global oscillation of the field can be efficiently filtered out. This issue has been recently
resolved by the addition of a switch on the camera in order to be able to temporally stop
its fan during acquisitions.
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Thesis abstract in French

Malgré les nombreux travaux théoriques, expérimentaux et numériques sur le sujet,
un certain nombre de questions demeure sans réponse précise à propos de la formation
des vagues sous l’effet du vent. Les mécanismes de génération et de croissance des vagues
induites par un écoulement d’air restent encore mal compris et les prédictions fournies par
les modèles existants (les plus classiques étant ceux de Kelvin-Helmholtz [von Helmholtz,
1868] [Thomson, 1871], de Phillips [Phillips, 1957] et de Miles [Miles, 1957]) sont souvent
contradictoires et assez éloignées de la réalité. Afin d’étudier l’origine de la formation des
premières vagues par le vent, j’aborde ce problème dans ma thèse selon une approche peu
explorée : l’étude expérimentale de la déformation sous l’effet du vent de la surface d’un
liquide fortement visqueux.

Montage expérimental

Le montage expérimental est constitué d’une cuve en Plexiglas mesurant 1.5 m de long
sur 296 mm de large et de profondeur 35 mm (cette profondeur est suffisante pour être
dans l’approximation des grandes profondeurs pour les ondes observées). Cette cuve est
surmontée par un canal de même largeur et de hauteur 105 mm, complété en amont et
aval de la cuve par deux zones planes de 26 cm (voir Fig. B.1). La cuve est remplie de
liquide de telle façon à ce que le niveau du liquide coïncide exactement avec la surface
inférieure du canal. Une soufflerie injecte de l’air dans le canal à une vitesse moyenne
ajustable entre 1 et 10 m/s. Contrairement à la majeure partie de la littérature sur le
sujet, le liquide utilisé n’est pas de l’eau mais un liquide sensiblement plus visqueux (1 à
600 fois la viscosité de l’eau, suivant les expériences). Cela a en pratique l’avantage de
simplifier le problème : l’écoulement dans le liquide reste laminaire et les perturbations de
l’interface qui ne sont pas amplifiées ne peuvent se propager que sur une distance limitée.

La mesure de la hauteur du liquide est réalisée par la méthode optique Free Surface-
Synthetic Schlieren (FS-SS) [Moisy et al., 2009]. Pour cela, un motif aléatoire de points
disposé sous la cuve est filmé par une caméra rapide à travers l’interface sur un large champ
de visualisation. Un calcul par corrélation d’image permet d’en déduire le déplacement
apparent des points entre l’image de référence (quand le liquide est au repos) et l’image
déformée (quand l’interface est perturbée) à partir duquel la topographie de l’interface
peut être entièrement reconstruite avec une résolution verticale micrométrique.
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Figure B.1: Schéma du montage expérimental.

Résultats principaux

• Deux régimes de déformation de l’interface

Dans un premier temps, les expériences ont été conduites sur un liquide trente fois plus
visqueux que l’eau. Grâce aux données expérimentales obtenues par FS-SS (voir Fig. B.2),
deux régimes de déformation de l’interface liquide-air ont été mis en évidence. À vitesse de
vent faible, l’interface est recouverte de “wrinkles”, des perturbations de faible amplitude
à peine visibles à l’œil nu, désorganisées spatialement et globalement alignées dans le sens
de l’écoulement. À plus forte vitesse, au-dessus d’une vitesse critique de vent, apparaissent
des vagues transverses perpendiculaires à la direction du vent et quasi-parallèles entre elles.

Les distinctions entre les deux régimes sont détaillées dans ces travaux de thèse. En
particulier, à faible vitesse de vent, l’amplitude des vagues augmente lentement avec la
vitesse du vent en suivant une loi de puissance avec un exposant proche de l’unité. Au
dessus d’un certain seuil, l’amplitude continue de croître avec la vitesse du vent mais
beaucoup plus rapidement que dans le premier régime, d’où la rupture de pente nette
au passage entre les deux régimes (voir Fig. B.3). De plus, les wrinkles ne croissent pas
avec la distance depuis le début de la cuve (fetch) alors que l’amplitude des vagues trans-
verses augmentent avec cette distance (d’abord exponentiellement, puis plus lentement en
aval quand les effets non-linéaires ne sont plus négligeables). Par ailleurs, la comparaison
des structures spatiale et spatio-temporelle des wrinkles avec des résultats de simulations
numériques de l’écoulement d’air au-dessus d’une paroi [Jimenez and Hoyas, 2008] mon-
trent que l’on peut interpréter les wrinkles comme la réponse de l’interface visqueuse aux
fluctuations de pression dans la couche limite turbulente.

• Non-linéarités des vagues de vent

Les non-linéarités émergeant au-dessus du seuil ont aussi été étudiées. Il apparaît
que ces non-linéarités affectent significativement les vagues de vent observées, de faibles
amplitudes se propageant sur de faibles distances (voir Fig. B.4), et ce de façon similaire à
ce qui peut être constaté par exemple en mer pour des vagues de plus grandes amplitude
se propageant sur de plus grandes distances. En particulier, on retrouve deux phénomènes
souvent mentionnés dans la littérature : l’augmentation de la longueur d’onde avec le fetch
et la diminution de la fréquence avec le fetch (voir Fig. B.5). Si des pistes existent pour
expliquer ces effets non-linéaires, la question de leur origine reste cependant ouverte.
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Figure B.2: Champ de hauteur instantanés mesurés par FS-SS pour des vitesses de vent
croissantes. (a) Ua = 3.2 m.s−1, montrant des wrinkles désorganisés de faible amplitude
dans la direction du vent. (b) Ua = 5.9 m.s−1, montrant une combinaison de wrinkles et
d’ondes transversales. (c) Ua = 7.0 m.s−1, montrant des vagues transversales bien définies
de longueur d’onde moyenne λ = 35 mm. (d) Ua = 7.8 m.s−1, montrant des vagues de
grande amplitude de longueur d’onde moyenne λ = 44 mm avec un désordre croissant. Le
vent souffle de la gauche vers la droite. Remarque : l’échelle de couleurs n’est pas la même
pour les quatre champs de hauteur.
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Figure B.3: Amplitude moyenne des déformations ζrms en fonction de la vitesse du vent
Ua. Les données sont moyennées sur la fenêtre de visualisation 390 × 280 mm centré à
deux valeurs de fetch x = 205 mm (•) et x = 895 mm (�). Les lettres et les flêches
verticales correspondent aux quatre champs de hauteur instantanés de la figure B.2. La
ligne continue correspond à l’approximation linéaire ζrms = αUa, avec α = 10−6 s.
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Figure B.4: Champ de hauteur ζ(x, y, t) pour deux vitesses de vent Ua = 6.6 m.s−1 (haut)
et Ua = 7.8 m.s−1 (bas). Le vent souffle de la gauche vers la droite. L’enregistrement
sur chaque portion de fetch est réalisée durant une acquisistion différente. Remarque :
l’échelle des couleurs n’est pas la même sur les deux lignes (la même couleur représente
une déformation dix fois plus grande sur la deuxième ligne que sur la première).
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Figure B.5: Longueur d’onde dominante λp(x) (gauche) et fréquence dominante fp(x)
(droite) en fonction du fetch x, pour les vitesses de vent Ua = 6.6 (�), 6.9 (4), 7.2 (♦),
7.5(O) et 7.8 m.s−1(◦).
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• Influence de la viscosité du liquide sur la formation des vagues de vent

La viscosité du liquide a par la suite été changée sur une large gamme (1 à 600 fois
la viscosité de l’eau). Les expériences montrent que les deux régimes de déformation de
l’interface sous l’effet du vent précédemment identifiés pour un liquide trente fois plus
visqueux que l’eau se retrouvent sur l’ensemble des viscosités parcourues (voir Fig. B.6).
Le seuil de génération des vagues augmente avec la viscosité du liquide. Plus précisément,
la vitesse de friction critique évolue selon une loi de puissance d’ordre 0.20 (voir Fig. B.7) :

u∗c ∝ ν0.20 (B.0.1)

Il découle également des données expérimentales que dans le régime des wrinkles, l’amplitude
des wrinkles évolue comme la vitesse de friction à la puissance 3/2 et comme la viscosité
cinématique à la puissance -1/2 (voir Fig. B.6) :

ζrms ∝ u∗3/2ν−1/2 (B.0.2)

Suite à ces résultats, un modèle décrivant l’évolution de l’amplitude des wrinkles en fonc-
tion du vent et de la viscosité du liquide a été développé à partir d’une saturation visqueuse
du modèle de Phillips. Ce modèle permet de renormaliser les résultats sur une courbe
maîtresse, à l’exception des données obtenues dans l’eau (voir Fig. B.8), confirmant la
validité du modèle.
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Figure B.6: Moyenne quadratique de la hauteur de l’interface (moyennée en temps et en
espace sur x = 150-300 mm) en fonction de la vitesse de friction. De haut en bas, ces
résultats correpondent à une viscosité ν = 1.0, 3.9, 12, 30, 85, 195 and 562 ×10−6 m2.s−1.
Les lignes continues correspondent à une évolution en puissance 3/2. La ligne horizontale
pointillée est une limite basse ζrms = 0.65 µm liée aux vibrations résiduelles. Encart :
Coefficient ζrms/u∗3/2 dans le régime des wrinkles en fonction de la viscosité cinématique
ν. La ligne montre le fit αν−1/2 avec α = 1.9× 10−7 m1/2.s.
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Figure B.7: Vitesse de friction critique u∗c en fonction de la viscosité cinématique du
liquide. La ligne continue montre le fit u∗c = aν0.20 avec a = 2.3 SI. Encart : Vitesse seuil
de génération des vagues en fonction de la viscosité cinématique. Les carrés rouges (�)
correspondent à nos données expérimentales ; les losanges noires (�), les triangles verts
(N), les points bleus (•) et le triangle magenta (I) correspondent respectivement aux
données de [Keulegan, 1951], [Francis, 1956], [Kahma and Donelan, 1988] et [Gottifredi and
Jameson, 1970]. Le rectangle gris représente l’intervalle des vitesses seuil de la littérature
obtenues avec de l’eau. La ligne continue est une loi de puissance Uc = aνn, avec n = 0.22
et a = 62.6 SI.
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Titre : Génération et croissance des vagues à la surface d'un liquide visqueux sous l'effet du vent) 
Mots clés : Ondes de surface, instabilités hydrodynamiques, génération d'ondes par le vent. 

Résumé : Bien qu'ayant suscité de nombreuses études 
sur le sujet, un certain nombre de questions à propos de 
la formation des vagues sous l'effet du vent restent sans 
réponse précise. Dans ma thèse, j'aborde ce problème 
selon une approche peu explorée : l'étude expérimentale 
de la déformation sous l'effet du vent de la surface d'un 
liquide fortement visqueux. En effet, contrairement à la 
majeure partie de la littérature sur le sujet, le liquide 
que j'utilise n'est pas de l'eau mais un liquide 
sensiblement plus visqueux. Indépendamment des 
questions fondamentales sous-jacentes, cela a en 
pratique l'avantage de simplifier le problème. En effet, 
du fait de la forte viscosité du liquide, l'écoulement 
dans le liquide reste laminaire et les perturbations de 
l'interface qui ne sont pas amplifiées ne peuvent se 
propager que sur une distance limitée. Pour observer 
ces déformations de l'interface liquide-air, j'ai 
développé un nouveau montage expérimental sur lequel 
a été mise en œuvre la méthode de visualisation Free 
Surface Synthetic Schlieren (FS-SS). Cette technique 
non intrusive a permis de mesurer avec une résolution 
micrométrique les amplitudes de déformations de la 
surface et d'accéder aux premières déformations à faible 
vitesse de vent.  

Dans un premier temps, les expériences ont été 
conduites sur un liquide trente fois plus visqueux que 
l'eau. Grâce aux données expérimentales obtenues par 
FS-SS, deux régimes de déformation de l'interface 
liquide-air ont été mis en évidence. À vitesse de vent 
faible, l'interface est recouverte de "wrinkles", des 
perturbations de faible amplitude désorganisées 
spatialement et globalement alignées dans le sens de 
l'écoulement. Ces wrinkles peuvent être interprétés 
comme l'effet sur l'interface des fluctuations de pression 
de l'écoulement turbulent d'air. à plus forte vitesse, au-
dessus d'une vitesse critique, apparaissent des vagues 
transverses quasi-parallèles entre elles et 
perpendiculaires à la direction du vent. Les distinctions 
entre les deux régimes ont été détaillées et les non-
linéarités émergeant au-dessus du seuil ont aussi été 
étudiées. Par la suite, la viscosité du liquide a été 
changée sur une large gamme. Il ressort des expériences 
que les deux régimes de déformation de l'interface sous 
l'effet du vent peuvent être identifiés pour l'ensemble 
des viscosités parcourues. Suite à ces résultats, un 
modèle décrivant l'évolution de l'amplitude des 
wrinkles en fonction du vent et de la viscosité du 
liquide a été développé. 

 

 

Title : Generation and growth of wind waves over a viscous liquid 
Keywords : Surface waves, hydrodynamic instabilities, wave generation by wind, wind waves. 

Abstract: Despite numerous studies on the subject, the 
development of waves under the action of wind still 
retains a certain number of open questions. In my PhD, 
I approach this problem through a fairly uncommon 
angle: the experimental study of the deformation by 
wind of the surface of a highly viscous liquid. Indeed, 
contrary to the major part of the literature on the matter, 
the liquid I used is not water but a significantly more 
viscous liquid. Regardless of the fundamental 
underlying questions, this has the practical advantage of 
simplifying the problem. Indeed, due to the high 
viscosity of the liquid, the flow in the liquid stays 
laminar and the unamplified perturbations of the 
interface can only propagate over a limited distance.  
To observe these deformations at the liquid-air 
interface, I have developed a new experimental set-up 
upon which the Free Surface Synthetic Schlieren (FS-
SS) method of visualization was implemented. This 
non-intrusive technique allowed to measure with a 
micrometric accuracy the amplitude of the surface 
deformation and to access the first deformations at low 
wind velocity. 

First, experiments were conducted over a liquid thirty 
times more viscous than water. The experimental data 
obtained by FS-SS show two regimes of deformation of 
the liquid-air interface. At low wind velocity, the 
interface is populated with "wrinkles", small-amplitude 
streamwise spatially disorganized perturbations. These 
wrinkles can be interpreted as the effect on the interface 
of the pressure fluctuations in the turbulent wind. At 
higher windspeed, above a critical velocity, transverse 
waves appear with quasi-parallel crests perpendicular to 
the wind direction. The distinctions between the two 
regimes have been detailed and the nonlinearities 
emerging above the threshold have also been studied.  
Then, the viscosity of the liquid has been changed over 
a large range. It results from the experiments that the 
two regimes of surface deformation by wind can be 
identified for all the viscosities explored. Following 
these results, a model was developed to account for the 
evolution of the wrinkles' amplitude both with wind 
velocity and with viscosity.   
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