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Abstract
Metaheuristics are problem independent optimisation techniques. As such, they do not

take advantage of any specificity of the problem and, therefore, can provide general frameworks
that may be applied to many problem classes. These iterative upper level methodologies can
furnish a guiding strategy in designing subordinate heuristics to solve specific optimisation
problems. Their use in many applications shows their efficiency and effectiveness to solve
large and complex problems. Nowadays, metaheuristics applied to the solution of optimisation
problems have shifted towards integrating other optimisation techniques, so that solution
methods benefit from the advantages each offers. This thesis seeks to contribute to the study
of vehicle routing problems with optional visits by providing a dynamic programming-based
operator that works embedded into a generic metaheuristic. The operator retrieves the optimal
tour of customers to visit, satisfying the side constraints of the problem, while optimising the
defined objective. The operator formulates the problem of selecting the best customers to visit
as a Resource Constrained Elementary Shortest Path Problem on an auxiliary directed acyclic
graph where the side restrictions of the problem considered act as the constraining resource.
In vehicle routing problems with optional visits, the customers to serve are not known a
priori and this fact leaves a more difficult to solve problem than a classic routing problem,
which per se is already NP-hard. Routing problems with optional visits find application in
multiple and diverse areas such as bimodal distribution design, humanitarian logistics, health
care delivery, tourism, recruitment, hot rolling production, selected collection or delivery, and
urban patrolling among others.

Keywords: Metaheuristics, dynamic programming, vehicle routing.
Résumé

Les métaheuristiques sont des techniques d’optimisation indépendantes des problèmes
traités. Elles ne profitent pas d’une spécificité du problème et, par conséquent, peuvent fournir
des cadres généraux qui peuvent être appliqués à de nombreuses classes de problèmes. Les
métaheuristiques peuvent fournir une stratégie de guidage dans la conception des heuristiques
pour résoudre des problèmes d’optimisation spécifiques. Leur utilisation dans de nombreuses
applications montre leur efficacité pour résoudre des problèmes importants et complexes. De
nos jours, les métaheuristiques appliquées à la solution des problèmes d’optimisation ont évolué
vers l’intégration d’autres techniques d’optimisation, de sorte que les méthodes de résolution
peuvent bénéficier des avantages de chacune des composantes. Le travail dans cette thèse vise
à contribuer à l’étude des problèmes de tournées de véhicules avec des visites optionnelles
en fournissant un opérateur à base de programmation dynamique intégré dans un processus
métaheuristique générique. L’opérateur récupère le tour optimal de clients à visiter, répondant
aux contraintes du problème, tout en optimisant l’objectif défini. L’opérateur pose le problème
de la sélection des meilleurs clients à visiter comme un problème de plus court chemin avec
contraintes de ressources sur un graphe auxiliaire dirigé acyclique représentant les choix de
visite possibles. Dans les problèmes de tournées de véhicules avec des visites optionnelles, les
clients à servir ne sont pas connus a priori et cela rend plus difficile à résoudre le problème qu’un
problème de routage classique qui est lui-même déjà NP-difficile. Les problèmes de tournées
avec des visites optionnelles trouvent des applications dans des domaines multiples et variés
tels que la conception de la distribution, la logistique humanitaire, la prestation des soins de
santé, le tourisme, le recrutement, la collection ou la livraison de marchandises et patrouille en
milieu urbain.

Mots-clés: Métaheuristiques, programmation dynamique, tournées de véhicules.
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Introduction
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1.1 Affiliation

The thesis work took place at the research centre LAAS (Laboratoire d’Analyse et
d’Architecture des Systèmes) of Toulouse which belongs to the CNRS (the French Na-
tional Centre for Scientific Research). Both the thesis advisors and the author of this
manuscript belong to the team named ROC (Recherche Opérationnelle, Optimisation
Combinatoire et Contraintes which translates into Operations Research, Combinato-
rial Optimisation and Constraints). The research domains considered by this team
are branches of Operational Research and/or Artificial Intelligence (more specifically
Constraint Programming).

The team conducts research on models and methods for solving efficiently com-
binatorial (or discrete) optimisation problems and constraint satisfaction problems.
To achieve this aim, the team develops, on the one hand, studies on the structure of
fundamental problems in graph theory, scheduling, constraint satisfaction, and integer
programming. On the other hand, the team aims at designing and evaluating generic
solution methodologies to cope with the combinatorial explosion of the search space.

1.2 Motivation

Enterprises face a heavy economic burden when it comes to pay for the costs of trans-
portation such as fuel, vehicles, maintenance, and wages. As a result, optimisation
within transportation is a subject that is used and sought-after in the business world
and not just a topic studied in academia. The industry has looked into the operational
research (OR) and mathematical programming techniques because the use of com-
puterized procedures for planning the distribution process leads to substantial savings
(Toth and Vigo, 2002). These authors estimate that the savings could be from 5% to
20%, so studying and applying such procedures seems worthwhile. Furthermore, the
road transportation sector is responsible for a high percentage of the CO2 emissions,
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and, hence, for high fuel consumption (Pedersen, 2005). According to US Environ-
mental Protection Agency (2015), approximately 82.5% of total greenhouse gas emis-
sions by human activities was CO2. Along with passenger cars, which generated 42.7%
of CO2 emissions, the second largest source of CO2 emissions in transportation was
freight trucks (22.8%). Hence, improvements in distribution planning might help ease
the strain caused on the environment by the transportation of goods and passengers.
Nonetheless, reducing CO2 emissions goes beyond being environmentally friendly. It
also translates into a financial benefit.

Due to this major economic and social importance, the academic community has
given a lot of attention to the problems concerning the distribution of goods between
depots and final users. This class of problems is known as Vehicle Routing Problems
(VRP), and they constitute a key component of transportation optimisation. Toth
and Vigo (2002) explain that the distribution of goods concerns the service, in a given
time period, of a set of customers by a set of vehicles, which are located in one or
more depots, are operated by a set of crews (drivers), and perform their movements by
using an appropriate road network. In particular, the solution of a VRP calls for the
determination of a set of routes, each performed by a single vehicle that starts and ends
at its own depot, such that all the requirements of the customers are fulfilled, all the
operational constraints are satisfied, and the global transportation cost is minimised.

The vehicle routing software survey that recently appeared in OR/MS Today (Hall
and Partyka, 2016) lists 22 vendors of vehicle routing software world-wide. The survey
should not be considered as comprehensive, but rather as a representation of available
vehicle routing packages. All of these companies offer software to solve variations of the
Vehicle Routing Problem—finding an assignment of customers to vehicles, as well as
the sequence and schedule of customers served by each vehicle. The aim is to minimise
transportation costs while satisfying feasibility constraints as to when and where stops
are visited, what can be loaded in each vehicle, and what routes drivers can serve. So-
lutions are usually generated in advance and executed as planned, though sometimes
routes are dynamically updated throughout the day. The platforms where the different
software applications can be used range from smart phones to Linux-based servers.
Routing software is used to plan deliveries from central locations, pick-ups from ship-
pers, routes of service fleets (e.g., appliance repair), and bus and taxi schedules. The
companies that use routing software vary greatly in size, ranging from small businesses
with a fleet of ten vans or fewer, to large corporations routing thousands of trucks.
What these companies have in common is the need to coordinate and sequence tasks
across multiple drivers and stops, ensuring predictable and expedient customer service
at the lowest cost.

The market seeks solution methods that consider the following traits.

i. Simplicity. Cumbersome, difficult to understand procedures are not easy to im-
plement, test and maintain.

ii. Rapid response. The faster the software provides a solution, the better.
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iii. Precise. The more accurate the yielded results are, the higher the potential is for
accurate budget forecast.

iv. Easiness in adapting to a variety of problem features. It is too costly to develop
software from scratch every time a company wants an application for a new class
of routing problem.

v. Robustness. It is better to have a method that produces fairly good results for all
problem instances, than one that produces very good results for just a portion
of the instances, and very poor results for the rest.

These characteristics may be somewhat in conflict, so some kind of trade-off might
be necessary. The scientific literature usually evaluates the solution methods proposed
in terms of execution speed and solution quality. Robustness is sometimes considered,
but simplicity and easiness to adapt to a variety of problems rarely receive attention.

Within the family Vehicle Routing Problems, an important subclass is routing
problems with optional visits, since a wide variety of applications can be modelled
as problems of this subclass. In these problems, the assumptions, restrictions, needs
and objectives are very similar to those of classical routing problems. However, the
main difference is that the set of customers to serve is not known a priori. This situa-
tion gives rise to a problem which is more difficult to solve since there is an additional
level of decision-making. Now, one has to select which customers to serve, cluster them
in routes and order them in the best visitation sequence possible within each route.
In this subclass, there are two kinds of problems. The first kind considers explicit and
implicit visits of customers and the second one considers gaining a profit upon visiting
a customer.

Many real-world routing problems exist for which the classic assumption of visit-
ing every customer is not valid. For example, time or budget constraints may prevent
a service technician or sales person from visiting all of his customers, or a company
may be able to serve only the more urgent/profitable requests at a given time because
the available number of resources is not sufficient to visit all customers and satisfy
their demands. Another application emerges when delivering rural health care or dis-
aster relief. It might not be possible to visit each village directly, but rather it may
be sufficient for all villages to be near a stop on the route. Inhabitants of villages
not on the route would be expected to travel to the nearest stop. A parallel situation
emerges when providing a service such as post boxes or when designing tours in the
entertaining industry. In general, these situations may be grouped as bimodal distribu-
tion design. An important application appears in the tourist industry. Due to budget
and time constraints, visitors must select what they believe to be the most interesting
attractions. A similar necessity, but in a different context emerges in the military or
scientific exploration. The expedition of an unmanned aircraft or submarine involved
in surveillance activities is constrained by its fuel supply, so it needs to select the best
sites to visit or photograph.

In wide contrast with classical VRP, commercial applications seldom consider rout-
ing problems with optional visits. On the other hand, in academia, some of the routing
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problems with optional visits have been only scarcely studied. Therefore, in spite of the
several decades of research in vehicle routing, there still exists ample room for further
investigation and improvement in the solution methods employed, and OR methods
and techniques could be applied to a wider array of problems encountered within the
transportation industry.

1.3 Thesis Proposal

VRP are difficult to solve problems since the set of solutions grows exponentially in
function of the size of the instance to solve. Medium-sized instances may be solved with
exact methods, but larger instances often require approximate methods also known as
heuristics. This is usually the case for real-world applications.

The focus of this PhD. thesis is vehicle routing problems with optional visits (VR-
POV). The problems studied in this work have been inspired from real-world applica-
tions, albeit they are not real-world problems themselves. More specifically, the aim of
the thesis is to develop a heuristic method that addresses the solution of VRPOV in a
unified manner.

The solution methodology developed is based upon the seminal approach of Beasley
(1983) to solve the Capacitated Vehicle Routing Problem (CVRP). He indicated that
a given sequence of the customers to visit (permutation known as giant tour) could
be optimally splitted into feasible vehicle routes by finding the least cost path in the
auxiliary acyclic graph that represents the set of n customers. A problem that can
be solved in polynomial time. Beasley named his approach route first–cluster second,
indicating in this way the tasks that need to be accomplished. First, determine a visi-
tation order of all the customers, and then cluster them in feasible routes. Nonetheless,
he did not explore the two stages of the method since the routing part was left aside.
He provided few computational results for his proposal, and the method neither out-
performed more traditional CVRP heuristics nor was it given adequate recognition
(Laporte and Semet, 2002).

However, Beasley’s seminal method has led to several successful metaheuristics
for diverse VRP beginning notably with the genetic algorithm of Prins (2004) for the
CVRP. This algorithm provided the first computational implementation of the splitting
method suggested by Beasley, the Split operator. This kind of methods explores only
the space of giant tours, but evaluates them using a splitting operator able to optimally
segment the tour into feasible routes. A reason for the success of these metaheuristics
is that a smaller solution space is searched, since the search is done over the set of giant
tours rather than over the much larger set of VRP solutions. In some implementations,
the giant tour is replaced by an ordering of the customers or by a priority list. This
explains the more general name of order first–split second given to this class of heuristics
by Prins et al. (2014) in their recent survey of more than 70 algorithms which follow
this idea.

Unified or general-purpose solvers are algorithms that can be used to address large
classes of problem settings without requiring extensive adaptations. Several general
vehicle routing metaheuristics have been proposed in the literature. Among the most
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recent ones: Ropke and Pisinger (2006), Pisinger and Ropke (2007), and Subramanian
et al. (2013). These methods have addressed a single compound problem formulation
including several variants as special cases. However, Vidal et al. (2014) have contributed
the most problem-independent and efficient general-purpose solver for a very broad and
diverse set of Multi-Attribute Vehicle Routing Problems: the unified hybrid genetic
search metaheuristic, a considerable research challenge.

This thesis proposes a method following Beasley’s approach for solving VRPOV in
a unified fashion. The clustering is handled by a novel dynamic programming-based
operator, named Selector, that allows to optimally separate a given ordering of cus-
tomers into visited and non-visited subsequences. Meanwhile, the routing is solved via
a generic metaheuristic which produces a number of different giant tours from which
Selector extracts a VRPOV solution. In this case, an Adaptive Large Neighborhood
Search (ALNS), developed by Ropke and Pisinger (2006) and Pisinger and Ropke
(2007), was used. Our proposal solved very successfully three VRPOV: the Covering
Tour Problem, both the single and the multi-vehicle version, and the Orienteering
Problem.

1.4 Overview of the PhD. Thesis

The manuscript is divided into five technical chapters that firstly provide some back-
ground for the method proposed and for the problems treated. Next, the proposed
methodology is detailed, and later the application of the methodology to solve dif-
ferent VRPOV is explained. The manuscript finishes with some general concluding
remarks as well as future research perspectives.

• Chapter 2: Routing Problems and Solution Methods. It explains the
subclass of problems known as VRPOV. It provides numerous examples of these
problems and identifies some of the solution approaches presented in the litera-
ture to solve them. Next, it presents the solution methods available in OR to solve
VRPOV. Emphasis is placed on heuristic methods and it expands on large-scale
neighborhood search metaheuristics.

• Chapter 3: Solution Methodology Developed. It starts by presenting the
foundations of the method developed, and proceeds to discuss the backbone of
the Selector operator. Later, it presents the performance enhancements done to
the basic algorithm, and the version developed to solve multi-vehicle problems.
It finishes with a presentation of the version of the ALNS implemented.

• Chapter 4: Solving the Covering Tour Problem with Selector . It ex-
plains the particular facts of how the method is applied to solve a particular
VRPOV that includes implicit customer visits. It provides computational results
that give evidence of the efficiency of the method. A paper based on preliminary
work done on this problem was published in the Proceedings of the 9th Learn-
ing and Intelligent OptimizatioN Conference (LION9) (Vargas et al., 2015a). A
second paper that considers all the development done for the problem has been
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submitted to the Journal of Heuristics and it has undergone a first round of
revision (Vargas et al., 2015b).

• Chapter 5: Solving the Multi-Vehicle Covering Tour Problem with m-
Selector . It discusses the implementation done for this problem. Computational
results are presented and they show the method is competitive with the state-of-
the-art metaheuristic and exact algorithm. A paper based on this work has been
submitted to Computers & Operations Research (Vargas et al., 2016).

• Chapter 6: Solving the Orienteering Problem with Selector . It explains
how the method is applied to solve a VRPOV where profit is gained upon visita-
tion of a customer. It includes computational results that demonstrate the quality
of the suggested method. A technical report based on this work is available and
will be submitted to an international journal (Vargas et al., 2015c).

The methodology developed and its application to different problems have been
presented in different international conferences with or without proceedings. The fol-
lowing studies are co-authored with Nicolas Jozefowiez and Sandra Ulrich Ngueveu.

• Covering Tour Problem for Emergency Logistics. In the book of abstracts of
the XVII Conferencia Latinoamericana en Investigación de Operaciones (CLAIO
2014) Monterrey, México, October 2014.

• A Selector Operator-Based Adaptive Large Neighborhood Search for the Cover-
ing Tour Problem. In the proceedings of the Learning and Intelligent Optimisa-
tioN 9 Conference (LION 9) Lille, France, January 2015.

• A Selector Operator-Based Adaptive Large Neighborhood Search for the Ori-
enteering Problem. In the book of abstracts of VeRoLog 2015 Austria, Vienna,
June 2015.

• Resolviendo el Problema de Senderismo Usando Búsqueda Adaptativa de Vecin-
dad Amplia Basada en el Operador Selector. In the book of abstracts of the IV
Congreso de la Sociedad Mexicana de Investigación de Operaciones Cd. Juárez,
México, October 2015.

• Solving the Single and Multi-Vehicle Covering Tour Problem with a General
Purpose Operator. In the book of abstracts of the 17ème conférence de la société
Française de Recherche Opérationnelle et d’Aide à la Décision (ROADEF 2016)
Compiègne, France, February 2016.

• A Dynamic Programming-Based Metaheuristic to Solve the Single and Multi-
Vehicle Covering Tour Problems. In the book of abstracts of VeRoLog 2016
Nantes, France, June 2016.

• Solving the Multi-Vehicle Covering Tour Problem with a Dynamic Programming-
Based Operator. To be presented in the V Congreso de la Sociedad Mexicana de
Investigación de Operaciones Cd.Victoria, Tamaulipas, México, October 2016.
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2.1 Introduction

During the past 30 years, heuristic solution methods, in particular metaheuristics, have
achieved impressive results solving very difficult optimisation problems in the area of
transportation as well as in others. There is a wealth of publications on heuristics for
vehicle routing, so this chapter by no means pretends to provide yet another intro-
duction to the topic. We would not contribute anything new. The aims of the chapter
include: (i) present the class of problems treated in this thesis; (ii) provide a frame of
reference for the concepts applied to devise the heuristic solution method presented in
this study; and (iii) provide some insight into the research that has been reported in
the scientific literature for the problems studied.
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The remainder of the chapter is organised as follows. Section 2.2 provides an
overview of the class of problems treated in this thesis. Section 2.3 presents the pos-
sible solution methods for such problems. The chapter then focuses on explaining the
classic heuristic methods available for solving routing problems in Section 2.4. Next,
in Sections 2.5 and 2.6, it proceeds with the explanation of the family of metaheuristic
procedures used in this study. The final remarks are presented in Section 2.7.

2.2 Routing Problems

Due to the economic importance that the transportation, either of passengers or goods,
has in modern societies, great effort has been put into finding the most efficient ways to
perform it. For this purpose, operational research (OR) has been a great ally. It could be
said that solving transportation-related problems is one of the greatest achievements
of OR. Its techniques have been successfully applied, among others, in crew roster-
ing, timetable design, pickup and delivery of goods, vehicle routing, facility location,
network design. The wide applicability and economic importance of transportation
problems has led to the creation of several abstractions of real-life problems that have
been intensively studied. This section explains two that serve as a basis to later present
the problems addressed in this work.

The thesis studied a type of transportation problems known as vehicle routing prob-
lems, and within this class, it focused in routing problems where it is not compulsory
to visit all the given locations. This family is named Tour Location Problems (Laporte,
1997) or Vehicle Routing-Allocation Problems (Beasley and Nascimento, 1996). They
all are combinatorial optimisation problems. A combinatorial problem is one whose
decision variables have discrete and finite domains. As a consequence, a combinatorial
problem has a finite number of solutions, although typically exponential in the num-
ber of variables. A combinatorial optimisation problem (COP) searches for the “best”
configuration of the set of variables. Papadimitriou and Steiglitz (1982) provide the
following formal definition.

Definition 1. A Combinatorial Optimisation Problem P = (S, f) can be defined by:

– a set of variables X = {x1, . . . , xn};

– variable domains D1, . . . , Dn;

– constraints among variables;

– an objective function f to be minimised1, where f : D1 × · · · ×Dn → R+.

The set of all possible feasible assignments is S = {s = {(x1, v1), . . . , (xn, vn)} | vi ∈ Di,
s satisfies all the constraints}.

S is usually called a search (or solution) space, as each element of the set can be seen
as a candidate solution. The objective function associates a value to each solution s ∈ S.
We refer to f(s) as the objective value of a solution s ∈ S. To solve a COP one has to

1Without any loss of generality, since maximising objective function f is equal to minimising −f
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find a solution s∗ ∈ S with minimum objective value, that is f(s∗) ≤ f(s) ∀s ∈ S. A
solution s∗ is called a globally optimal solution of (S, f), and the set S∗ ⊆ S is called
the set of globally optimal solutions. Thus, in COP we are looking for an object from
a finite—but usually extremely large—set. This object is typically an integer number,
a subset, a permutation, or a graph structure. In the problems treated in this work we
are looking for a permutation on a set of objects.

In general, COP are the most difficult to solve problems. The difficulty arises
from the following. First, as mentioned, the solution space grows exponentially in the
instance size. Even for moderate instance sizes, the solution space can reach an astro-
nomical size. Second, no exact algorithm with a number of steps polynomial in the size
of the instances is known for solving them. This means large-sized instances are not
solvable in reasonable time. Some COP can be solved by efficient algorithms, however,
these cases are exceptions to the rule. The Shortest Path Problem, the Minimum Span-
ning Tree Problem, or The Assignment of Jobs to Workers Problem belong to these
exceptions.

2.2.1 The Travelling Salesman Problem

The Travelling Salesman Problem (TSP) is one of the most widely studied combi-
natorial problems. Starting with the seminal publication of Dantzig et al. (1954), its
solution methods have now reached a very high level, and the original problem has
been extended to other decision settings (e.g., DNA sequencing and chip design). The
TSP is quite simple to define, yet very difficult to solve. A set of n cities is given
together with a way of determining the distances between each city. The aim is to
find the shortest tour visiting each city exactly once (Hamiltonian cycle). For coming
explanations, consider this note about nomenclature: the visitation sequence of the
salesman, which in essence is a permutation, is named giant TSP tour or simply giant
tour.

Depending on the properties the distances satisfy, there are different versions. If the
distance from city i to city j is the same as the distance from city j to city i for all cities
i and j, then the problem is said to be symmetric. Otherwise, it is named asymmetric.
A problem is said to be Euclidean if the cities are located in R2 and the distance
between two cities is the Euclidean distance. Lawler et al. (1985) provide a good
introduction to the problem. New variants have been introduced such as the Selective
TSP (Laporte and Martello, 1990); the Generalized TSP (Fischetti et al., 1997); the
TSP with profits (Feillet et al., 2005) among others. Gutin and Punnen (2002) provide
an in-depth explanation of the different variants and solution procedures.

Nowadays, very large Euclidean instances can be solved to optimality with the
Concorde code (branch-and-cut method) of Applegate et al. (2007). The largest in-
stance solved by this group has 85,900 locations (chip-design application) and the
largest Euclidean instance has 24,978 cities2. Another impressive figure is the 0.0474%
gap between the currently best known upper and lower bounds for a 1.9-million-city

2www.math.uwaterloo.ca/tsp/sweden/index.html
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instance obtained by the LKH heuristic of Helsgaun3. It is worth mentioning these
advancements because they are encouraging as they give hope for significant improve-
ments in solution methods for other routing problems.

2.2.2 The Capacitated Vehicle Routing Problem

The Vehicle Routing Problem (VRP) is a generic name given to a whole class of prob-
lems. In this family of problems, different vocabulary is used. Cities are now called
customers, the salespersons are named vehicles, and the starting point is known as de-
pot. The vehicles (all equal) start at a given depot, visit customers at given locations
in individual routes and then return to the depot. Routes for the vehicles are designed
to minimise some objective such as the total distance travelled. The objective function
may also consider other costs linked to the use of a vehicle. Then, the given VRP
should solve for each route (or vehicle) not only the problem of finding the shortest
visitation order, but also the one of assigning, in the best way possible, the customers
it will visit, see Figure 2.1.

The most basic version of the VRP is the Capacitated Vehicle Routing Problem
(CVRP) which introduced the idea of delivering goods to customers. For such purpose,
every customer has a certain associated demand for a commodity aside from a given
location, and every delivery vehicle a given capacity. In the CVRP one is given a depot,
a set of n customers, a set of m vehicles, a vehicle capacity Q and every customer
i ∈ {1, . . . , n} has a demand qi. The problem calls to find m vehicle routes where all
customers are served exactly once within the capacity of the vehicle assigned, while
minimising the total transportation cost. Variants of the problem include relaxing the
constraint on the number of vehicles used to at most m vehicles or no restriction at
all on this number. Other variants place an upper bound on the length of a route.

Theoretical research and practical applications in the field of vehicle routing started
with the work of Dantzig and Ramser (1959) who posed the truck dispatching problem
for a fleet of gasoline delivery trucks. The area has been intensively researched since
then. To better address customer requirements, several other variants of the basic
VRP have been introduced such as consideration of time windows, pickup and deliv-
ery, backhauls, split delivery, or multiple depots, for example. The reader may refer
to the taxonomic review presented by Eksioglu et al. (2009). Applications are var-
ied and include solid-waste collection, street cleaning, school bus routing, delivery of
goods to retailers, dial-a-ride systems, health care logistics among others. For further
information, Golden et al. (2008) and Toth and Vigo (2014) are excellent sources.

2.2.3 The Vehicle Routing-Allocation Problem

Vehicle Routing-Allocation Problems (VRAP) (Beasley and Nascimento, 1996) differ
from classic vehicle routing problems since the assumption shared by problems of
the TSP and VRP families is that all customers should be served. In VRAPs, some
customers may be left unvisited, refer to Figure 2.1. In other words, one does not

3www.math.uwaterloo.ca/tsp/world/index.html
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know, a priori, which customers will be on the tour. Many real-world routing problems
exist for which the classic assumption of visiting every customer is not valid. For
example, time or budget constraints may prevent a serviceperson from visiting all of
his customers, or a company may be able to serve only the more urgent/profitable
requests at a given time because the available number of vehicles is not sufficient
to visit all customers and satisfy their demands. Another application emerges when
delivering rural health care. It might not be possible to visit each village directly, but
rather it may be sufficient for all villages to be near a stop on the route. Inhabitants
of villages not on the route would be expected to travel to the nearest stop.

Compared to the TSP and VRP families, an additional decision level has been
introduced, since now one has to select which customers to serve, cluster them in routes
and order them in the best visitation sequence possible within each route. This family
of problems has been the subject of a well-developed literature since the 1980s. Beasley
and Nascimento (1996) presented a paper where they concentrate their discussion on
the single-vehicle version of the VRAP (SVRAP) and show how the SVRAP provides
a unifying framework for understanding a number of papers and problems presented in
the literature such as the: covering tour problem, the covering salesman problem, the
median tour problem, the selective travelling salesman problem, the prize collecting
travelling salesman problem, among others. In other words, many of the problems
presented in the literature under different names are special cases, or variants, of a
single general problem, namely the SVRAP. In addition to routing costs, allocation
costs incurred by the customers not on the tour, together with penalty costs incurred
by the customers left isolated are defined in this framework. Depending on the values
given to these three different costs, diverse problems considered in the literature can
be modelled. The focus of their discussion is theoretical rather than computational.
Years later, Vogt et al. (2007) presented a tabu search algorithm to solve the SVRAP.

Beasley and Nascimento choose to consider the problem as a routing-allocation
problem, i.e. to decide a route and an appropriate allocation for each customer (on,
off the route or isolated). Deciding an allocation may well also involve deciding an
underlying location for some facility (e.g., the location of collection points in the design
of postal collection routes). For this reason, this class of problems has also been labelled
using some combination of the words routing, location and allocation. Laporte (1988),
for example, refers to some of the problems considered in the study of the SVRAP as
location-routing problems. Later on, the same author studied them as tour-location
problems (Laporte, 1997). For the sake of simplicity, in this study, they are referred as
vehicle routing problems with optional visits (VRPOV). Figure 2.1 provides a pictorial
representation of the problems formerly explained.

Henceforth, some of the most representative VRPOV are reviewed. The problems
are not presented under the approach of Beasley and Nascimento (1996). Instead, they
are explained in a more simple form as they have been presented in the literature.
To perform the explanation I divided them into two subclasses according to a shared
characteristic: (1) covering problems, which consider explicit and implicit visits, and
(2) profit problems, in which a profit is gained upon visitation. Compared to covering
problems, routing problems with profits have been much more intensively researched.
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TSP solution VRP solution

multi-vehicle VRPOV solutionsingle-vehicle VRPOV solution

Figure 2.1: Solutions for routing problems with compulsory visits (top) and optional visits
(bottom).

This work only considers problems where the customers are represented as vertices of a
graph. The problems where customers are represented as edges or arcs of a graph (arc
routing problems) are out of the scope of this study. In the following explanation, the
first vertex is named depot, and the rest of the vertices may also be named customers,
since we may think of the customers as being located on a network.

Covering Problems. The concept that Beasley and Nascimento (1996) explain in
their framework as “customers not visited have to be allocated to some customer on
one of the vehicle tours” is named covered vertex in some problems of this subclass.
A vertex is considered covered if it lies within a given radius from a visited vertex.
This travel distance from a visited stop is named covering distance. A covered vertex
is, then, implicitly visited. This notion of covering is introduced in the literature to
model situations in which unavailability of roads or restrictions on resources prevent
from visiting a customer. In this case, the demand of an unvisited (covered) customer
is delivered at a place located within an acceptable distance from it. This concept has
a wide variety of applications as shown in Tableau 2.1.

Current and Schilling (1989) extended the concept of covering from the facility
location literature to the TSP and introduced the Covering Salesman Problem (CSP).
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Table 2.1: Applications of covering problems.

Application Publication

location of post boxes Labbé and Laporte (1986)
Laporte et al. (1989)

bimodal distribution systems Current and Schilling (1989)

health care delivery Current and Schilling (1989)
Hodgson et al. (1998)

design of tours in the entertaining industry ReVelle and Laporte (1993)

humanitarian logistics Naji-Azimi et al. (2012)

design of urban patrolling services Oliveira et al. (2013)

One of the first routing problems in which visiting each of the given customers is not
necessary. In the CSP, a network of n vertices and a value p ≤ n are given. The aim
is to identify a least-cost Hamiltonian tour which visits p of the n vertices and covers
all the n − p vertices not on the tour. In essence, the tour must cover each vertex
rather than visit it directly. They provide an integer linear formulation, and a two-step
heuristic based upon solution procedures for the Set Covering Problem (SCP) and the
TSP. In the first step, a SCP is solved in order to find the minimum number of vertices
that cover all the vertices of the problem. In the second step, the optimal TSP tour is
calculated over the set of vertices obtained in the first step.

Later on, Current and Schilling (1994) presented two bi-objective variants of the
CSP: the Median Tour Problem (MTP) and the Maximal Covering Tour Problem
(MCTP). In both problems, the tour must visit only p of the vertices, and the length of
this tour is minimised (as in the CSP). In the MTP, the second objective is to minimise
the total distance between each unvisited vertex and the nearest visited vertex. For the
MCTP, the second objective is to maximise the total demand within some prespecified
maximal covering distance. The second objective in both problems maximises access
to the tour for the vertices not directly on it. To generate a good approximation of the
efficient frontier, a heuristic procedure is used since the number of efficient solutions
may grow exponentially with the number of points in the particular problem instance.

Golden et al. (2012) developed a generalisation of the CSP—the Generalized CSP—
on the basis that in some applications it might not be possible to meet the demand
of some customers by visiting or covering them only once, and each unvisited vertex
i has to be covered ki times. Besides the usual routing cost, they consider a cost
associated with visiting a vertex. The problem seeks a minimum-cost tour such that
each unvisited vertex i is covered at least ki times by the tour. They define three
variants of the problem and propose two local search heuristics based on classic TSP
improvement procedures.
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Salari and Naji-Azimi (2012) presented an algorithm to solve the CSP which com-
bines heuristic search with integer linear programming (ILP) techniques. Given an ini-
tial feasible solution, the tour length is improved using a destroy-and-repair method.
Vertices are removed from the tour and reassigned by solving an ILP-based model to
optimality. Their ILP-based methodology outperformed the algorithms of Current and
Schilling (1989) and Golden et al. (2012). Salari et al. (2015) approached the CSP
with a hybrid heuristic algorithm which combines ant colony optimisation (ACO) and
dynamic programming techniques that improve the quality of the solution. They also
proposed a polynomial-size mathematical formulation for the studied problem. Their
method outperforms all previous CSP algorithms.

Gendreau et al. (1997) proposed a generalisation of the CSP called the Covering
Tour Problem (CTP). The CTP is defined on a weighted graph G = (V ∪W,E), where
V is the set of vertices that can be visited, T ⊆ V is a set of vertices that must be
visited but provide no covering, and W is a set of vertices that must be covered. The
CTP calls to find a minimum-length Hamiltonian cycle on a subset of V such that
every member of T is on the tour and every member of W is covered. Unlike the CSP,
in this problem the total number of vertices to visit is not fixed. When T = ∅, the
CTP reduces to a CSP, and when T = V , the CTP reduces to a TSP. They present a
heuristic algorithm and a branch-and-cut method to solve it. The solution procedure
developed in this thesis was applied to this problem, so a more in-depth explanation
of the problem and additional solution approaches are provided in Chapter 4.

Hachicha et al. (2000) introduced a multi-vehicle version of the CTP (m-CTP) in
which the goal is to find m Hamiltonian cycles over a subset of eligible vertices to
visit such that all of the vertices not on the routes are covered and the total distance
travelled is minimised. They present three heuristic algorithms to solve it. Their solu-
tion procedures are based upon solution heuristics for the SCP, the TSP and classic
construction and improvement algorithms for the VRP. The solution methodology de-
veloped in this work was also applied to this problem, further details and solution
proposals are given in Chapter 5.

Another problem closely related to the CSP is the Generalized Travelling Salesman
Problem (GTSP). In this problem, the vertices are clustered into disjoint sets, and the
aim is to identify the shortest route passing through each cluster at least once and
through each vertex at most once. Fischetti et al. (1997) proposed a branch-and-cut
procedure to solve it, while Karapetyan and Reihaneh (2012) presented a hybrid ACO
algorithm. The latter is a modification of a simple ACO for the TSP improved by an
efficient GTSP-specific local search procedure. Their computational experimentation
shows that the local search procedure dramatically improves the performance of the
ACO algorithm, making it one of the most successful GTSP metaheuristics to date.

Another related problem is the Ring Star Problem (RSP) which finds application in
telecommunications network design and in rapid transit systems planning as explained
in Labbé et al. (2004) and in Kedad-Sidhoum and Nguyen (2010). The two previous
publications propose an exact solution method. This problem is an extension of the
classical location–allocation problem introduced in the early 1960s. Each vertex is
either visited by the tour (generating a routing cost) or is assigned to its closest vertex
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on the tour (generating an assignment cost). The aim is to locate a simple cycle through
a subset of vertices minimising the sum of routing and assignment costs. The notion
of covering distance as defined previously is not present. A variant of the RSP is the
Median Cycle Problem (MCP) which places an upper bound on the total assignment
cost. The objective is to minimise the routing cost, subject to this upper bound. Labbé
et al. (2005) proposed a branch-and-cut method which solves up to medium-size library
instances and a medium-size real instance of the city of Milan, Italy. Moreno Pérez et al.
(2003) implemented a variable neighborhood tabu search that solves both versions of
the problem for library data sets. For some identified instances, their method obtained
better solutions than the then state-of-the-art approach. However, Renaud et al. (2004)
presented an evolutionary algorithm which outperformed the more complex heuristic
of Moreno Pérez et al. (2003).

Table 2.2 offers a summary of the problems explained. The label for the first four
columns is self-explanatory. The following two show if a covering distance is consid-
ered in the problem, and if the vertices are visited exactly once (H=Hamiltonian)
respectively. The last one indicates the number of vehicles the problem considers.

Table 2.2: Summary of covering problems.

Problem Objective function No. Vertices Type of Covering H. Vehicles

name in tour vertex distance tour

CSP min distance known, p one
√ √

single

MTP Z1 min distance known, p one
√

single
Z2 min allocation distance

MCTP Z1 min distance known, p one
√ √

single
Z2 max demand within a covering distance

GCSP min (distance + visiting cost) known, p one
√

single

CTP min distance while covering every wi ∈W unknown three
√ √

single

m-CTP min distance while covering every wi ∈W unknown three
√ √

multiple, m

GTSP min distance while visiting every cluster unknown one
√ √

single

RSP min (distance + allocation cost) unknown one
√

single

MCP min distance subject to a max allocation cost unknown one
√

single

Profit Problems. As in the covering problems, their key characteristic is that the
set of customers to serve is not known a priori. However, a profit value is associated
with each customer. This figure places some level of attractiveness on it. Therefore,
the route or set of routes can be measured both in terms of distance travelled and
in terms of profit collected. Feillet et al. (2005) gather the single-vehicle version of
these problems under the umbrella name Travelling Salesman Problems with Profits
(TSPP). Their counterpart, the multi-vehicle version, is named routing problems with
profits. However, Archetti et al. (2014) name both versions vehicle routing problems
with profits. The following explanations follow the nomenclature of Feillet et al. (2005).
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Numerous practical applications can be modelled by this kind of problems as shown
in Tableau 2.3.

Table 2.3: Applications of routing problems with profits.

Application Publication

deliver home heating fuel where the customer’s tank level Golden et al. (1987)
sets the urgency of service which translates into a score

route customer visits to maximise the sales score Ramesh and Brown (1991)

recruit high school athletes for college teams Butt and Cavalier (1994)

delegate unprofitable customers to Chu (2005)

an external logistics provider Bolduc et al. (2008)

schedule hot rolling production Tang and Wang (2006)

Zhang et al. (2009)

design time-constrained personalised tourist routes Vansteenwegen and Van Oudheusden (2007)

to maximise the value of the visited attractions Vansteenwegen et al. (2011b)

with a limited number of auditors, select the suppliers Ilhan et al. (2008)
to visit in order to maximise recovered inventory claims

select customers for waste collection Aksen et al. (2014)

design a multi-day tourist or sales trip Divsalar et al. (2014)
where hotel choosing is also considered

TSPP may be seen as bi-objective TSP with two opposite objectives: one pushing
the vehicle to travel in order to collect profit, and the other one encouraging it to
minimise travel costs with the option of skipping vertices. It is a combination of vertex
selection and determination of the shortest elementary cycle among the selected ver-
tices. Nevertheless, most researchers address them as single-criterion versions where
either the two objectives are combined linearly in a single function or one of the ob-
jectives is treated as a constraint with a specified bound value. Depending on the way
the two objectives are addressed, Feillet et al. (2005) define three generic TSPP:

i. Both objectives are combined in the objective function, and the goal is to find a
tour that minimises travel costs minus collected profit. The problem has been de-
fined as the Profitable Tour Problem (PTP) by Dell’Amico et al. (1995). Though
seldom studied as such, it often appears as a subproblem in solution schemes
based on column generation for a variety of routing problems.

ii. The travel cost objective is treated as a constraint, and the goal is to find a
circuit that maximises the collected profit but whose length does not exceed a
given bound Lmax. This problem is known in the literature as the Orienteering
Problem (OP) as in Tsiligirides (1984) and Golden et al. (1987). Also, as the
Selective Traveling Salesman Problem (STSP) as in Laporte and Martello (1990),
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Gendreau et al. (1997), and Thomadsen and Stidsen (2003). Kataoka and Morito
(1988) name it the Maximum Collection Problem and Awerbuch et al. (1998) the
Bank Robber Problem. The solution approach presented in this thesis was applied
to this problem, a detailed presentation is provided in Chapter 6.

iii. The profit objective is treated as a constraint, and the goal is to find a circuit that
minimises travel costs but whose collected profit is above a given bound Pmin.
Such problem is called the Prize Collecting TSP (PCTSP) as in Balas (1989)
and Fischetti et al. (1997).

Multi-vehicle versions of the three problems mentioned above can be defined. How-
ever, the only routing problem with profits that has been widely studied is the multi-
vehicle version of the OP, the Team Orienteering Problem (TOP). Butt and Cavalier
(1994) initiated its study out of the necessity to model the recruitment of high school
athletes in college teams, and suggested a heuristic procedure to solve it. Their paper
presented it as the Multiple Tour Maximum Collection Problem following the nomen-
clature of Kataoka and Morito (1988) for the single-vehicle version. The name TOP
starts with the paper of Chao et al. (1996a) as a way to highlight that the problem is a
multi-vehicle version of the OP. In fact, a paper for each version was published simulta-
neously, Chao et al. (1996b) and Chao et al. (1996a). For both versions, they presented
a quite simple heuristic solution method based on the geometry of the problem. The
other two multi-vehicle versions considered in the literature are the Capacitated Prof-
itable Tour Problem (CPTP), and the so-called VRP with Private Fleet and Common
Carrier (VRPPFCC). The latter occurs when the total demand is greater than the
whole capacity of owned trucks and some customers can be serviced by an external
logistics provider. Two kinds of tabu search algorithms and a VNS-based algorithm
were proposed by Archetti et al. (2009) to solve the CPTP and the TOP, while Vidal
et al. (2015) presented three heuristic methods to solve multi-vehicle routing prob-
lems. Li and Tian (2016) present a variant of the CPTP which they name the Prize
Collecting Vehicle Routing Problem (PCVRP). This problem is derived from the prac-
tical hot rolling production process. It adds the constraint that the total demands of
served customers should not be less than a prespecified value. They propose a two-level
self-adaptive variable neighborhood search to solve it.

Variants for the explained problems with profits have been introduced, a good
study is that of Archetti et al. (2014) where both single and multi-vehicle versions
are thoroughly explained as well as their variants. Feillet et al. (2005) presented an
in-depth explanation of the works related to TSPP, and Vansteenwegen et al. (2011a)
offered an extensive survey that focuses on the studies that have been done for the
OP, the TOP and their variants. Table 2.4 depicts a summary of the problems with
profits explained. The acronyms in parenthesis indicate alternative names given to the
problem.
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Table 2.4: Summary of problems with profits.

Problem name Objective function Constraints Vehicle(s)

PTP min (cost - profit) none single

OP max profit route length single
(STSP, MCP, BRP)

PCTSP min cost route profit single

CPTP min (cost - profit) capacity multi

TOP max profit route length multi
(MTMCP)

VRPPFCC min cost limited fleet capacity multi

PCVRP min (cost - profit) capacity multi
total demand

2.3 Overview of Solution Methods

Since the set of solutions of a COP is a finite set, a naive proposition to solve it would
be to do an exhaustive enumeration of this set and select the best solution. However,
this set is frequently so large that complete enumeration of all possible solutions is not
doable even in the fastest computers available. An example with the simplest problem
explained—the TSP—gives a dimension to the former statement. The size of the search
space in this problem is n! possible solutions. Given different values of n, Table 2.5
shows the combinatorial explosion of the number of solutions as the number of cities
grows. Consequently, we need to turn to smarter methods.

The COP explained in Section 2.2 are NP-hard. This is to say that, no polyno-
mial time algorithm has been designed, or is expected to be designed, to solve them
to optimality. These problems are also referred as being computationally intractable.
Depending on their size, two approaches can be considered to search their solution
space and solve them: exact and approximate, refer to Fig 2.2. Nevertheless, a solution
methodology may combine both strategies at different stages. This thesis presents a
methodology of this type.

2.3.1 Exact Methods

These procedures, also known as complete methods, explore the search space exhaus-
tively, but not by merely enumerating all the solutions. A common technique to im-
plement this idea is to keep an incumbent solution, and try to prove that specific
regions of the search space cannot contain better solutions, and as a consequence, can
be avoided (pruned). However, if the search strategy is unfortunate for the problem
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Table 2.5: Effect of the size of the instance on the number of feasible solutions.

Number of cities, n Size of the search space

5 120

10 3,628,800

75 2.5 ×10109

100 9.3 ×10157

Optimisation Methods

Exact methods

Dynamic programming

Constraint programming

Branch & X

Branch & bound

Branch & cut

Branch & price

Approximate methods

Heuristic algorithms

Metaheuristics

Single-solution based

Population-solution based

Problem-specific heuristics

Approximation algorithms

Figure 2.2: Classical optimisation methods for COP.

being solved, an exhaustive or almost exhaustive search can occur. A very important
advantage of exact methods is that they guarantee that the solution found is optimal
if the procedure is given sufficient time and space.

The worst-case running time of an exact method for large-sized instances (or even
medium-sized) of many NP-hard problems is still very poor (exponential). They may
take numerous hours to find moderately decent, let alone optimal, solutions. However,
the size of the instance is not the unique indicator to describe the difficulty of the
problem, but also its structure. It is possible that for a given problem some small in-
stances are very hard to solve to optimality while larger instances may be solved exactly
more easily. Since most vehicle routing problems are computationally intractable, the
current limit of exact algorithms is a network of around one hundred customers. Ap-
proximate approaches are applied when solving the much larger instances met in many
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industries. The following paragraphs explain the classical exact algorithms: dynamic
programming, the branch & X family and constraint programming.

Dynamic Programming. The idea underlying this technique is to represent a prob-
lem by a decision process (minimisation or maximisation) which proceeds in a series of
stages. Dynamic programming (DP) decomposes a problem into a number of smaller
subproblems (also known as states) each of which is further decomposed until subprob-
lems have trivial solutions. In this decomposition process, partial results are stored,
and later, whenever they are needed, they are looked up instead of recomputed. Thus,
it gains efficiency by avoiding solving common subproblems many times. The term “dy-
namic programming” stems from control theory. Programming means that an array
or tableau is used to store partial results which lead to the construction of a solution.
Therefore, it is a bottom-up approach. The procedure avoids total enumeration of the
search space by pruning partial results that cannot lead to the optimal solution. Al-
though it may seem that any optimisation problem can be solved using DP, this is not
the case. The optimisation problem must exhibit two properties:

(1) Bellman’s principle of optimality—an optimal solution to an instance of a prob-
lem always contains optimal solutions to all subinstances—must apply in the
problem (Bellman, 1957).

(2) The space of subproblems should be relatively small. The decomposition done by
this technique seems to lead to an exponential-time algorithm, which is indeed
true in the TSP (Neapolitan and Naimipour, 1998). Typically, however, the total
number of distinct subproblems is polynomial in the input size.

For instance, the Shortest Path Problem complies with Bellman’s principle, and DP
has become the standard method to solve it. In VRP, DP is usually utilized together
with other solution methods, for example metaheuristics, in order to solve some specific
portion of the problem.

Branch & X Family. These procedures are based on an implicit enumeration of all
the solutions of the problem considered. A branch & X algorithm uses a divide and
conquer strategy to partition the solution space into subproblems and then optimises
each subproblem individually. The search space is explored by dynamically building
a tree whose root node represents the problem being solved and its whole associated
search space. The leaf nodes are the potential solutions and the internal nodes are
subproblems of the total solution space. In this tree, the solution set of the child
nodes is equal to the solution set of the parent nodes. In branch-and-bound (B&B),
the pruning of the search tree is based on a bounding function that prunes subtrees
that do not contain any optimal solution. However, the efficiency of the method relies
upon its ability to prune nodes early in the tree, before they produce too many child
nodes. A branch-and-cut method is similar, but valid inequalities are added to the
mathematical description of the problem to further prune non-promising areas of the
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search space. When B&B considers column generation methods, a branch-and-price
scheme appears.

These procedures, commonly referred as integer linear programming, have been
used extensively in the solution of vehicle routing problems, but with the limitation that
they can solve efficiently only small or medium-sized instances. Toth and Vigo (2014)
provide a good introduction to the application of these methods on the CVRP, while
Nemhauser and Wolsey (1999) provide an in-depth explanation of these methodologies
applied to different combinatorial optimisation problems.

Constraint Programming. Constraint Programming (CP) (Rossi et al., 2006) is
a paradigm for representing and solving a wide variety of problems. CP combines
techniques from artificial intelligence, logic programming, and operations research.
CP is traditionally an exact approach. However, by virtue of the decoupling between
modelling of the problem and searching for a solution that it is capable of doing, many
alternative search methods, not necessarily complete, have been devised.

Problems are modeled in terms of decision variables, domains for those variables
and constraints between the variables. In addition to expressions involving the usual
arithmetic and logical operators, complex symbolic constraints can be used to describe
a problem. The problems are then solved using complete search techniques such as
depth-first search (for satisfaction) and B&B (for optimisation). However, for routing
problems of practical size, complete search methods cannot produce solutions in a
short time. By contrast, iterative improvement methods (refer to 2.4.2) have proved
very successful in this regard. Iterative improvement methods operate by changing
small parts of the solution, for instance moving a visit from one route to another.
CP enhances the search using constraint propagation. If bounds or constraints on a
variable can be inferred, or are tentatively set, these changes are “propagated” through
all the constraints to reduce the domains of constrained variables.

CP has proved to be a very efficient approach for solving job scheduling problems,
but such is not the case for VRP. Very few efficient methods based on CP have been
published for solving routing problems. Shaw (1998) coupled a local search method he
termed Large Neighborhood Search (LNS) with constraint-based technology to solve
vehicle routing problems. LNS explores a large neighborhood of the current solution by
removing customer visits from the set of planned routes, and re-inserting these visits
using a constraint-based tree search. His results over benchmark problems showed his
method to be competitive with OR metaheuristic procedures. De Backer et al. (2000)
introduced a CP model for vehicle routing, and a system for integrating CP and it-
erative improvement techniques. They coupled their iterative improvement technique
with a metaheuristic to avoid the search getting trapped in local minima. Two meta-
heuristics were investigated: a simple tabu search procedure and guided local search.
An empirical study over benchmark problems shows the relative merits of their tech-
niques.
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2.3.2 Approximate Methods

These procedures represent a possibility to overcome the performance issue of exact
methodologies. Approximate methods, also known as incomplete, explore the search
space in a non-exhaustive (even, possibly, stochastic) way usually improving an in-
cumbent solution iteratively. Many approximate methods cannot offer any guarantee
about the quality of the solutions found, because they cannot detect when the search
space has been completely explored, which might never happen. On the other hand,
they have two important advantages. First, since they do not have to be exhaustive,
they can explore promising regions of the search space much earlier than exact meth-
ods. Second, since they can move freely through the search space, without sticking
to a fixed systematic exploration rule, they usually exhibit better anytime properties,
i.e., the more time is given to the search method, the better is the returned solution.
Two kinds of algorithms compose this class: approximation algorithms and heuristic
algorithms.

Approximation Algorithms. Unlike heuristics, which usually find good quality
solutions in a reasonable time but without guarantees, approximation algorithms pro-
vide provable solution quality and provable run-time bounds. For example, an ε-method
guarantees that the solution obtained is at most ε times more costly than the best so-
lution attainable. The aim in designing an approximation algorithm for a problem is
to find tight worst-case bounds. It gives more knowledge on the difficulty of the prob-
lem and can help to design efficient heuristics. However, this type of algorithms are
problem-dependent and this limits their applicability. Moreover, for real-life applica-
tions it might not be possible to design a polynomial-time approximation algorithm
with constant error guarantee or approximation can be impractical. This is to say, error
guarantee may be too poor or the running time of the algorithm may be too high. For
example, when solving the TSP using benchmark instances, the best approximation
ratio is 1.5, whereas the best heuristics are less than 1% away from optimality. Vazirani
(2003) provides an in-depth presentation of these algorithms.

Heuristics. The concept of heuristic search as an aid to problem solving was firstly
introduced by Polya (1945). A heuristic is a solution method which seeks (and hopefully
finds) a feasible solution of good quality within modest computing time. Modest is
defined more exactly as a time which is bounded by a low-order polynomial function.
A heuristic is approximate in the sense that it provides (hopefully) a good solution
for relatively little effort, but it does not guarantee optimality. Neither does it provide
an approximation guarantee on the obtained solutions. These procedures are tested
empirically and the quality of the solutions obtained can be evaluated by comparing
them against the output of an exact method when possible, or against the output of
other heuristic approach. This implies the existence of standard data sets. Heuristics
are conspicuously preferable in practical applications because of their easiness to adapt
them to diverse and complex constraints (usually present in real problems), and their
ability to solve large instances in polynomial time. These techniques typically require
an ad hoc construction of the algorithm applied.
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Heuristics can be categorised broadly into two types: problem-specific and meta-
heuristics. Problem-specific heuristics are problem-dependent algorithms. As such, they
usually are adapted to the problem at hand and they try to take full advantage of the
particularities or structure of the problem. However, when these algorithms are fol-
lowed by an improvement procedure (local search), they perform a relatively limited
exploration of the search space, and usually exhibit the limitation of getting trapped
in a local optimum and thus fail, in general, to obtain the global optimum solution.

Metaheuristics, on the other hand, are problem-independent techniques. As such,
they do not take advantage of any specificity of the problem and, therefore, can pro-
vide general frameworks that may be applied to many problem classes. Blum and Roli
(2003) compile the formal definitions that several researchers have tried to give of these
procedures. In short, one may view them as iterative upper level general methodolo-
gies that can furnish a guiding strategy in designing subordinate heuristics to solve
specific optimisation problems. The underlying heuristics may be high (or low) level
procedures, or a simple local search, or just a construction method.

Compared to problem-specific heuristics, metaheuristics incorporate strategies
which allow them to explore more thoroughly the most promising regions of the so-
lution space. Consequently, solution quality is much higher (many times even finding
the global optimum), but so is the computing time. Even though a metaheuristic is
a problem-independent technique, it is nonetheless necessary to fine tune its intrinsic
parameters in order to adapt the technique to the problem at hand.

Metaheuristics have been heavily researched in the past 30 years and very impres-
sive results have been attained using these heuristics. Their use in many applications
shows their efficiency and effectiveness to solve large and complex problems. The fam-
ily of metaheuristics includes, but is not limited to, adaptive memory procedures, tabu
search, ant systems, greedy randomized adaptive search, variable neighborhood search,
large neighborhood search, evolutionary methods, genetic algorithms, scatter search,
neural networks, simulated annealing. Voß (2001), Blum and Roli (2003) and Gen-
dreau and Potvin (2005) provide an introduction to these methods, while Talbi (2009)
presents a more in-depth explanation. The recently released book of Labadie et al.
(2016) is specifically dedicated to the application of metaheurisics to solve VRP. The
aim of the authors is to provide a book for people wishing to discover and quickly
master metaheuristics dedicated to VRP. They combine tutorials with algorithms, ex-
amples, and a quick overview of the state-of-the-art for these methods in the context
of the CVRP and some of its variants.

Different criteria exist to classify metaheuristics. I mention only one: number of
solutions used at the same time. Population-based perform search processes which
describe the evolution of a set of points in the search space, while single-solution, as
the name says, work on only one at a time.

2.4 Classical Heuristics in Vehicle Routing

Laporte and Semet (2002) name the problem-specific heuristics for vehicle routing clas-
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Figure 2.3: Families of problem-specific heuristics proposed for solving the VRP.

sical heuristics, and identify three categories within this type: constructive heuristics,
two-phase heuristics and improvement methods. The category two-phase heuristics in-
cludes those algorithms that divide the construction into two phases: a routing phase
and a clustering phase. In fact, this class can be seen as a subset of the construction
heuristics: one stage is in charge of route construction, while the other one constructs
clusters of vertices. This is how two-phase methods are considered in this manuscript,
see Figure 2.3.

A constructive algorithm builds a solution from scratch by assigning values to one
or more decision variables at a time; while an improvement algorithm generally starts
with a constructed feasible solution and iteratively attempts to obtain a better solution.
No consideration was made in this classification of the destruction heuristics that are
nowadays frequently used to solve routing problems.

2.4.1 Construction Heuristics

Laporte and Semet (2002) define them as: procedures that gradually build a feasible
solution while keeping an eye on solution cost, but they do not contain an improvement
phase per se. Since the 1960s, a great deal of constructive heuristics have been proposed
for vehicle routing problems. However, as metaheuristics became more dominant due
to their superior performance in terms of solution quality, the popularity of this type
of heuristics as stand-alone procedures has somewhat faded in the scientific literature.
They are now more used as subroutines inside more time consuming metaheuristics.
This approach is used in the solution methodology proposed in this thesis.

Many construction heuristics for vehicle routing problems fall into one of the three
classes: insertion heuristics, savings heuristics and clustering heuristics.
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Insertion Heuristics. These procedures build a solution by inserting one vertex
at a time. They can construct one route at a time (sequential insertion heuristics) or
build many or all routes in parallel (parallel insertion heuristics). The choice of which
vertex to insert and where to insert it is what differentiates insertion heuristics. In this
work, for example, an insertion heuristic which inserts the vertex that increases the
overall cost the least is used.

Savings Heuristics. These heuristics initially build a solution by assigning each
vertex to its own route. Routes are then merged one by one according to some criteria.
Savings algorithms vary by the criterion used to merge routes (amount of savings
obtained by merging two routes). Clarke and Wright (1964) were the first ones to
propose a savings heuristic, and many variants and improvements of the algorithm
have been published since then.

Clustering Heuristics. They are two-phase algorithms based on the idea that solv-
ing a vehicle routing problem involves two decisions: partitioning the customers into
clusters compatible with vehicle capacity, and ordering the customers in each cluster
to get a route. Therefore, the clustering phase consists of grouping the vertices into
subsets (clusters) where each is served by one feasible route (vehicle), and the routing
phase then finds the best visitation order for each cluster. Feedback loops between the
two stages might exist. The cluster first–route second approach determines the par-
tition first, and then a TSP is solved for each cluster, refer to Figure 2.4 where the
circles represent customers and the square the depot. This technique includes, among
others, the Gillett and Miller (1974) sweep algorithm where vertices are clustered in
sectors of a circle whose center contains the depot, and customers in each sector of the
circle are served by one route. Also, the Fisher and Jaikumar (1981) algorithm which
builds the clusters by solving a Generalized Assignment Problem instead of using a
geometric method. It also includes the petal algorithms which are an extension of the
sweep algorithm. In these algorithms routes are named petals, and they are formed by
solving a Set Partitioning Problem.

In the route first–cluster second approach the phases are inverted. A tour is first
built on all vertices, and it is then partitioned into a set of feasible vehicle routes,
see Figure 2.5. The idea was firstly proposed by Beasley (1983) when solving the
CVRP. He noticed that the giant tour could be optimally segmented by finding the
least cost path in the auxiliary acyclic graph that represents the set of n customers.
This standard Shortest Path Problem (SPP) can be solved in O(n2) time using, for
example, Dijkstra’s algorithm or the Bellman-Ford algorithm. This possibility gives
this approach an advantage over cluster first–route second: the clustering algorithm is
an exact polynomial-time algorithm.

Beasley provided few computational results for his proposal, and the method nei-
ther outperformed more traditional CVRP heuristics nor was it given adequate recog-
nition, see Laporte and Semet (2002). However, when Beasley’s seminal method was
efficiently implemented within a genetic algorithm (GA) (Prins, 2004), it proved to
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Figure 2.4: A cluster first–route second approach in vehicle routing problems.

be the first GA able to compete with the best methods available at that time for the
solution of the CVRP, i.e., tabu search heuristics. The clustering algorithm is since
known as the basic Split procedure. Other versions of the Split operator have also
been developed in order to tackle additional constraints, (Prins et al., 2009).

In the last decade, the route first–cluster second approach has led to successful
constructive heuristics and metaheuristics for routing problems as explained in Prins
et al. (2014), where a more general name—order first–split second—is given to the
methodology, and an analysis of 70 articles involving splitting procedures is made. A
reason for this growing success is that a smaller solution space is searched since the
search is done over the set of giant tours rather than over the much larger set of VRP
solutions.

2.4.2 Improvement Heuristics

Laporte and Semet (2002) explain that improvement algorithms attempt to upgrade
a feasible solution by performing a sequence of arc or vertex exchanges within or
between vehicle routes. Tour improvement heuristics are based on the heuristic of Lin
and Kernighan (1973) for the TSP. Here, λ edges are removed from the tour, and the λ
remaining segments are reconnected in all possible ways. If any profitable reconnection
is identified, it is implemented. The procedure stops when no further improvements
can take place. The Lin-Kernighan heuristic modifies λ dynamically throughout the
search.

Multi-route improvement heuristics for the VRP operate on each vehicle route, but
taking on several routes at a time. Descriptions of multi-route edge exchanges for the
VRP can be found in these three references. Thompson and Psaraftis (1993) describe
a general “b-cyclic, k-transfer” scheme in which a circular permutation of b routes
is considered and k customers from each route are shifted to the next route of the
cyclic permutation. The authors show that applying specific sequences of b-cyclic, k-
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Figure 2.5: A route first–cluster second approach in vehicle routing problems.

transfer exchanges (with b = 2 or b variable, and k = 1 or 2) yields interesting results.
Van Breedam (1994) classifies the improvement operations as “string cross”, “string
exchange”, “string relocation”, and “string mix”, which can all be viewed as special
cases of 2-cyclic exchanges, and provides a computational analysis on a restricted
number of test problems. Kindervater and Savelsbergh (1997) define similar operations
and perform experiments mostly in the context of the VRP with time windows.

The term improvement heuristic used by Laporte and Semet (2002) describes a
local search heuristic that only performs moves (operations) that lead to a betterment
of the objective function value. Local search heuristics start from a complete solution
(obtained by a constructive heuristic or even randomly), modify a rather small part of
it by performing a sequence of operations (changing the values of some variables), and
produce a new, hopefully, improved solution. In more advanced local search heuristics,
the algorithm sometimes performs changes that lead to a solution that is worse than
the current. This is done as one can hope to find an even better solution after a few
more changes. In the following section, local search heuristics are introduced more
formally.

2.5 Large Neighborhood Search Metaheuristics

The focus of this section is a particular very large-scale neighborhood search meta-
heuristic called large neighborhood search (LNS) and specifically an extension of it
named adaptive large neighborhood search (ALNS). However, some fundamentals will
be presented first.

An important concept in local search heuristics is that of move. A move is an oper-
ation that transforms a solution s into another solution s′ that shares some characteris-
tics of s. Local search algorithms, alternatively called neighborhood search algorithms,
are a wide class of improvement algorithms where at each iteration an improving solu-
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tion is found by searching the neighborhood of the current solution. That is, this kind
of methods try to improve an initial solution of an optimisation problem by repeatedly
applying a local change (move). In each iteration, the heuristic replaces the current
solution by some neighboring one which improves the objective function value. How-
ever, some schemes allow the acceptance of solutions that are worse than the current
one as explained before. Two key issues in local search algorithms are the definition of
a neighborhood and the way to examine it.

2.5.1 Neighborhoods

Let I be an instance of a combinatorial optimisation problem, and S(I) be the set of
feasible solutions of I. In order to have a quality measure for a solution, a cost function
c : S(I) → R is defined. For each solution s ∈ S(I) all the candidate solutions that
are reachable in one logical step of the algorithm are defined as the neighborhood of
s. More formally, a neighborhood N (s) can be defined as a function N : S(I) →
P(S(I)) that assigns to every candidate solution s in the search space S(I) a set
of neighbors N (s) ⊆ S(I). Frequently, modifications to obtain neighboring solutions
introduce rather small changes. The simplest local search algorithm only accepts better
neighbors and for this reason it is called iterative improvement. It terminates once no
improving neighbor is available anymore. In such case, a local optimum has been found.
More formally, a solution s is a local optimum with respect to a neighborhood N if
c(s) ≤ c(s′) ∀s′ ∈ N (s). The vast number of solutions contained in S(I) makes it
impossible in practice to search through it completely.

A simple example of a neighborhood for the TSP is the 2-opt neighborhood. Here,
for a solution s, the neighborhood consists of the set of solutions that can be reached
from s by deleting two edges in s and adding two other edges in order to reconnect
the tour. Another example, which can be applied to only one route or to several, is
the relocate neighborhood where N (s) is defined as the set of solutions that can be
created from s by relocating a single customer. The customer can be moved to other
position in its current route or to other route. These two neighborhoods are used in the
metaheuristic algorithm proposed in this thesis. A broad presentation of neighborhoods
for vehicle routing is provided by Funke et al. (2005).

Variants of local search may be distinguished according to the order in which
the neighboring solutions are generated (deterministic/stochastic) and the selection
strategy of the neighboring solution (best/first/random).

2.5.2 Neighborhood Search

The iterative improvement algorithm formerly outlined can be described with the above
definitions. It takes an initial solution smin as input. It finds the cheapest solution s′ in
the neighborhood of smin. If the cost of solution s′ is better than the best known, smin
is updated . The neighborhood of the new solution smin is searched for an improving
solution and this is repeated until a local optimum smin is reached. The algorithm is
denoted steepest descent as it always chooses the best solution in the neighborhood.
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Another strategy is to choose the first improving solution observed in the neighborhood.
Such an algorithm would be a descent algorithm.

Algorithm 1 : Neighborhood Search (steepest descent)
Input: s ∈ S(I) initial solution
Output: smin ∈ S(I) best solution found

1: smin ← s
2: improving ← true
3: while ( improving ) do
4: s′ ← arg minŝ∈N (smin){c(ŝ)}
5: if c(s′) < c(smin) then
6: smin ← s′

7: else
8: improving ← false
9: end if

10: end while
11: return smin

The main disadvantage of neighborhood search algorithms is the convergence to-
wards local optima, so different alternatives have been proposed to avoid becoming
trapped at local optima. These alternatives include (1) accepting non-improving neigh-
bors (used in simulated annealing); (2) iterating from different initial solutions (used
in GRASP); (3) changing the neighborhood (used in variable neighborhood search);
and (4) changing the objective function (used in guided local search).

2.5.3 Large Neighborhood Search

As formerly stated, a neighborhood search approach requires a good choice of the
neighborhood structure. Ahuja et al. (2002) explain that as a rule of thumb, the larger
the neighborhood, the better the quality of the locally optimal solutions, and as a
consequence, the greater the accuracy of the final solution obtained. Additionally,
the possibility to make larger modifications to candidate solutions allows to traverse
the search space in less steps. However, the larger the neighborhood, the longer it
takes to search it. For this reason, a larger neighborhood does not necessarily produce
a more effective heuristic unless it can be searched in a very efficient manner. To
meet this challenge, algorithms that search large neighborhoods typically implement
filtering techniques to limit them to a subset of the solutions which can be searched
efficiently. Another approach is to define neighborhoods that although exponential
in size admit polynomial-time algorithms for their exploration, or the exploitation of
problem-specific knowledge to speed up the search as much as possible. One example
of these polynomial search techniques is given by dynamic programming approaches
known as dynasearch. The interested reader may consult Chiarandini et al. (2008) for
further explanations.

A precise definition of when a neighborhood is large or small is not simple to give.
Ahuja et al. (2002) define large neighborhoods as those whose size grows exponentially
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with the number of solution components that are allowed to be changed by one single
search step. Nevertheless, they also consider those whose size is simply too large and
cannot be searched explicitly in practice. Ahuja et al. (2002) name the algorithms that
search this kind of neighborhoods very large-scale neighborhood search (VLSN) tech-
niques. They identify three categories of VLSN algorithms: (1) variable-depth methods
in which large neighborhoods are searched heuristically; (2) network flow-based or dy-
namic programming-based neighborhood search methods; and (3) problem-restricted
methods solvable in polynomial time. Even though the concept of VLSN was formally
defined recently, former methods widely used in operations research can be seen as
based on the same principles. For example, if the simplex algorithm used for solving
linear programs is viewed as a neighborhood search algorithm, then column generation
is a VLSN method.

The Large Neighborhood Search (LNS) metaheuristic, originally proposed by Shaw
(1997), does not fit well into any of the three categories defined by Ahuja et al.
(2002), but it definitely belongs to the class of VLSN algorithms as it explores a very
large neighborhood that cannot be searched fully. The LNS metaheuristic defines the
neighborhood through one destroy and one repair method. These methods are usually
problem-specific heuristics which replace the former neighborhood search function of
Algorithm 1 (line 4). They specify the way in which the search is carried out.

A destroy method, as the name indicates, partially destroys an incumbent solu-
tion (removes some members), and a repair method then rebuilds it (reinserts the
members back) to obtain a new feasible solution. Thus, the neighborhood N (s) of
a solution is the set of solutions that can be obtained by applying a destroy-repair
pair. The neighborhood N (s) contains a very large number of solutions since a de-
stroy method can remove a large part of the solution. Consider an instance of a giant
tour with 100 customers, and a method that removes 25% of the customers. There are
C(100, 25) = 100!/(25!× 75!) = 2.4× 1023 different ways to select the customers to be
removed, and for each removal choice there are many ways of repairing the solution.
Of course, different removal choices can yield the same solution after the repair, but
still the size of N (s) is huge.

Algorithm 2 depicts the LNS metaheuristic for a minimisation problem. The initial
solution may be obtained with a constructive heuristic and parameter k sets the scope
of the search. Three variables are used: (1) smin stores the best solution found during the
search; (2) s maintains the current solution; and (3) s′ keeps the new solution obtained
by applying the destroy-repair methods, and it can be promoted to current solution.
Function d(s, k) destroys a k portion of solution s, and function r(·) reconstructs it
to obtain a new feasible solution, s′. Elements of stochasticity are introduced so that
different parts of the solution are destroyed at every call of the method. The new
solution s′ is evaluated and the algorithm determines if it should be promoted to
the current solution s. The accept function does not need to accept only improving
solutions like in Shaw’s original paper. Other possibilities are explained in the ensuing
section. Function c(·) denotes the objective function. In line 7, the algorithm updates
the best solution found if necessary. The typical termination criteria are a given number
of iterations or a time limit. The algorithm returns the best solution found. One can
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observe that the LNS metaheuristic does not search the entire neighborhood of a
solution, but rather it merely samples this neighborhood.

The destroy–repair idea has been proposed in computer science under different
names: remove and insert (Ropke and Pisinger, 2006), fix and optimise (Pisinger and
Ropke, 2007), ruin and recreate (Schrimpf et al., 2000), ripup and reroute (Dees Jr
and Karger, 1982), and remove and reinsert (Duff, 1967).

Algorithm 2 : Large Neighborhood Search
Input: s ∈ S(I) initial solution, k ∈ N parameter that determines the size of the

neighborhood
Output: smin ∈ S(I) best solution found

1: smin ← s
2: while ( stopping criterion not met ) do
3: s′ ← r(d(s, k))
4: if accept(s, s′) then
5: s← s′

6: if c(s) < c(smin) then
7: smin ← s
8: end if
9: end if

10: end while
11: return smin

2.5.4 Adaptive Large Neighborhood Search

Adaptive Large Neighborhood Search (ALNS) extends Shaw’s LNS metaheuristic by
allowing the use of several destroy and repair methods within the same search process.
Also, it adds an adaptive layer which uses statistics gathered during the search to
adjust the probability of choosing a destroy or repair method every defined number of
iterations. In this way, it randomly controls which methods to choose according to their
past performance (score). Therefore, ALNS operates on multiple large neighborhoods
corresponding to the destroy (removal) and repair (insertion) sub-heuristics. Like in
the LNS algorithm, the neighborhoods are not necessarily well defined in a formal
mathematical sense, but, rather, are defined by the corresponding heuristic algorithms.

Algorithm 3 shows the pseudocode for the ALNS metaheuristic. Let
D = {di|i = 1, . . . , k} be the set of k destroy sub-heuristics, and R = {ri|i = 1, . . . , l}
the set of l repair sub-heuristics. The probability vectors Pd ∈ R|D| and Pr ∈ R|R|
store the probability of choosing each destroy and repair method respectively. Initially
all methods are equally likely to be chosen. Variable ς stores the number of iterations
performed before updating the probability vectors. Aside from the choice of a destroy-
repair pair and the periodic probability updating, the structure of this algorithm is
equal to the one of the LNS metaheuristic shown in Algorithm 2.

At each iteration, the algorithm selects, according to the adaptive probabilistic
mechanism, a destroy-repair pair with which it destroys part of the current solution s,
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Algorithm 3 : Adaptive Large Neighborhood Search
Input: s ∈ S(I) initial solution, k ∈ N parameter that determines the size of the

neighborhood
Output: smin ∈ S(I) best solution found

1: smin ← s; Pd = (1, . . . , 1);Pr = (1, . . . , 1)
2: while ( stopping criterion not met ) do
3: for i = 1 to ς do
4: select d ∈ D and r ∈ R according to probabilities Pd and Pr
5: s′ ← r(d(s, k))
6: if accept(s, s′) then
7: s← s′

8: if c(s) < c(smin) then
9: smin ← s

10: end if
11: end if
12: update scores of sub-heuristics chosen
13: end for
14: update probability vectors Pd and Pr
15: end while
16: return smin

and repairs it to generate a new solution s′. This new solution is accepted according
to a criterion defined by a search mechanism applied at the master level, for example,
the one proposed by simulated annealing (SA) where if s′ is better than s, the search
continues from s′, otherwise, it continues from s′ with some probability. Implementing
a SA algorithm is straightforward as one solution is sampled in each iteration of the
ALNS, but other choices are possible. Table 2.6 summarizes different ideas presented
in the literature (Schrimpf et al. (2000), Dueck (1993), Ropke and Pisinger (2006), Hu
et al. (1995)) for the accept function of Algorithm 3. All methods accept improving
solutions, but they differ in the way they accept non-improving solutions.

ALNS competes strongly with genetic algorithms (GA) in vehicle routing. However,
the efficiency of GAs relies on sophisticated local search procedures and population
management techniques, while in ALNS, the neighborhoods are searched by simple
and fast heuristics. The ALNS framework has several advantages. For most optimisa-
tion problems, a number of well-performing heuristics is already known and they can
form the core of an ALNS algorithm. Also, due to the large size and diversity of the
neighborhoods, the ALNS algorithm will explore large parts of the solution space in
a structured way. Another advantage is its adaptive layer which allows the algorithm
to work, for the instance at hand, with the best method among the ones available.
Then, the resulting algorithm becomes very robust as it is able to adapt to various
characteristics of the individual instances, and is seldom trapped in a local optimum.
ALNS has provided very competitive solutions for a wide variety of routing problems.
Some are explained in the following paragraphs.

Ropke and Pisinger (2006) used it to solve the Pickup and Delivery Problem with
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Table 2.6: Different propositions for the accept function.

Method Description

Random Walk Every new solution s′ is accepted.

Greedy Acceptance The new solution s′ is accepted only if c(s′) < c(s).

The steepest descent method is of this kind.

Simulated Annealing Every improving solution s′ is always accepted.

Otherwise s′ is accepted with probability e( c(s)− c(s′)
T

),

where T is the so-called temperature.

T decreases by a factor β at every iteration.

Threshold Accepting A non-improving solution s′ is accepted if c(s′)− c(s) < T ,

where T is a threshold. T decreases by a factor α at every iteration.

Old Bachelor Acceptance A non-improving solution s′ is accepted if c(s′)− c(s) < T ,

where T is a threshold.

T decreases by a factor φ at every acceptance,

and increases by a factor ϕ after every rejection.

Great Deluge Algorithm A non-improving solution s′ is accepted if c(s′) < L,

where L represents a level.

L decreases by a factor ϑ only if the solution is accepted.

Time Windows. They tested their heuristic on more than 350 benchmark instances
with up to 500 requests. Their method improved the best-known solutions from the
literature for more than 50% of the problems. Pisinger and Ropke (2007) presented an
ALNS-based unified heuristic able to solve five different variants of the VRP. All prob-
lem variants are transformed into a rich pickup and delivery model and solved using
the ALNS framework. Ribeiro and Laporte (2012) developed an ALNS algorithm to
solve the Cumulative Capacitated Vehicle Routing Problem, a variation of the classical
CVRP, in which the objective is the minimisation of the sum of arrival times at the
customers instead of the total routing cost. Their approach outperformed the then
available heuristics.

Demir et al. (2012) published an ALNS heuristic for the Pollution-Routing Problem
which determines the speed of the vehicles on each route segment so as to minimise a
function comprising fuel, emission and driver costs. Kovacs et al. (2012) approached
the service technician routing and scheduling problems which appear in infrastructure
service and maintenance provision. The objective is to minimise the sum of the total
routing and outsourcing costs. They solved both problem versions by means of an
ALNS algorithm. It is tested on both artificial and real-world instances, and high
quality solutions are obtained within short computation times.

Aksen et al. (2014) studied a selective and periodic inventory routing problem
and developed an ALNS algorithm for its solution. The problem concerns a biodiesel
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production facility which collects used oil from sources, such as restaurants, catering
companies and hotels that produce waste vegetable oil in considerable amounts. The
facility reuses the collected waste oil as raw material to produce biodiesel. The objective
is to minimise the total collection, inventory and purchasing costs while meeting the
raw material requirements and operational constraints.

Azi et al. (2014) solved The Vehicle Routing Problem with Multiple Routes (each
vehicle can perform multiple routes during its operations day). This problem is rel-
evant in applications where the duration of each route is limited, for example, when
perishable goods are transported. The objective is first to maximise the number of
served customers and then, to minimise the total distance traveled by the vehicles.
An ALNS is proposed for solving this problem. Computational results on Euclidean
instances, derived from well-known benchmark instances, demonstrate the benefits of
this approach.

Tunalioglu et al. (2016) analysed a problem related to the olive oil production pro-
cess. This process yields two by-products, one of which is the brown-coloured Olive Oil
Mill Wastewater (OMWW) and has no direct use. OMWW is generally disposed of
into soil or rivers, potentially polluting the environment. OMWW can be treated using
ultrafiltration facilities, but this requires that it is collected from oil mills and delivered
to the treatment facilities using a fleet of vehicles in an economically viable manner.
Such considerations give rise to a multiperiod location-routing problem. They formally
introduce the problem and propose an ALNS metaheuristic for its solution. The al-
gorithm is applied on a case study drawn from one of the major olive oil producing
countries.

2.6 Hybrid Metaheuristics

Nowadays, metaheuristics applied to the solution of combinatorial optimisation prob-
lems have shifted towards the hybridization of these procedures with other optimisation
techniques. These hybrids are also named cooperative approaches. The realization that
a performance limit had been hit or encountering convergence issues led researchers
towards the exploration of integrating metaheuristics with other techniques. This trend
originated the field of hybrid metaheuristics, which brought together practitioners from
many optimisation paradigms, e.g., constraint programming, mathematical program-
ming, machine learning. The hybrid metaheuristics community has now come of age,
and has its own set of conferences and journals. Moreover, many well-established hy-
brid search techniques, which simultaneously exploit the advantages of a wide range
of algorithms, have been developed.

The main motivation behind this tendency is to benefit from synergy. This is,
choosing an adequate combination of complementary algorithmic concepts might be the
key for achieving top performance in solving NP-hard optimisation problems. However,
developing an effective hybrid approach is challenging since it requires expertise from
different areas of optimisation. There are several possible hybridization schemes:

• combining metaheuristics with (meta)heuristics,
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• combining metaheuristics with exact methods from mathematical programming
approaches (hybrids are known as matheuristics),

• combining metaheuristics with constraint programming approaches,

• combining metaheuristics with dynamic programming,

• combining metaheuristics with data mining and machine learning techniques

An explanation of these topics is beyond the scope of this chapter. The interested
reader may consult the papers of Blum et al. (2008) Jourdan et al. (2009), Blum et al.
(2011), and Milano and Van Hentenryck (2011), and the PhD. thesis of Urli (2014).
Archetti and Speranza (2014) present a survey of matheuristics for routing problems.

2.7 Conclusions

This chapter presents a summary of the problems studied, which are VRPOV. Two
families of problems may be identified within this subclass: covering problems and
profit problems. Both exact and approximate methods can be used to solve them. The
size of the instances to solve determines the strategy to use. Among the approximate
methods, metaheuristics are the preferred choice since they can search more thoroughly
the solution space. They define a general-purpose iterative master process which guides
and modifies the operations of subordinate heuristics to efficiently produce high-quality
solutions. Nevertheless, the actual trend is to implement hybrid metaheuristics that
take advantage of both exact and heuristic methods for specific purposes.

Local search heuristics are often built on moves that make small changes to the
current solution, so they are able to investigate a large number of solutions in a short
time. Since the solution changes only slightly, such heuristics can have difficulties in
moving from one promising area of the search space to another. For this reason, instead
of using small conventional moves, a heuristic that explores very large moves that can
rearrange a high percentage of the solution is advantageous. However, larger moves
require more computational time to perform and evaluate, but the metaheuristic may
evaluate only a fraction of the solutions that could be evaluated by a standard heuristic
and still exhibit very good performance as observed in the solution approaches reported
in the literature.
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3.1 Introduction

In this chapter, the unified solution approach proposed to solve VRPOV is explained.
The approach is based on the route first–cluster second idea introduced by Beasley
(1983) for solving the Capacitated Vehicle Routing Problem (CVRP). As a matter of
fact, Beasley coined the name of the approach based on the tasks required to be accom-
plished at each stage, but he did not propose any method for the routing phase. When
solving the CVRP, he considered a TSP tour was made available by some procedure
(exact or heuristic), and only proposed a way to optimally segment the given TSP tour
into feasible vehicle routes: find the shortest path on the network that represents the
set of customers. Prins (2004) implemented this idea on the Split algorithm and used it
to evaluate a given giant tour (a tour that visits all the vertices of the given customer
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network) within a population solution-based metaheuristic, a genetic algorithm. Since
then, very successful metaheuristics based on this route first–cluster second idea have
been implemented to solve diverse vehicle routing problems. A reason for this success
is that a smaller solution space is searched, since the search is done over the set of
giant tours rather than over the much larger set of VRP solutions. In some implemen-
tations, the giant tour is replaced by an ordering of the customers or by a priority list
which explains the more general name of order first–split second given to this class of
heuristics by Prins et al. (2014) in their recent survey.

This thesis work developed a hybrid metaheuristic of this family for solving VR-
POV. Its main feature is a dynamic programming-based operator aimed at extracting
VRPOV solutions. The routing phase of the unified solution approach proposed is
handled by a generic metaheuristic which produces high quality giant tours using
subordinate heuristics. The applied metaheuristic for this work is the adaptive large
neighborhood search introduced by Ropke and Pisinger (2006). The clustering phase is
solved by the dynamic programming-based operator which is embedded into the meta-
heuristic. The operator, named Selector , accomplishes the following tasks: (i) optimally
selects the vertices to visit in the giant tour formed by the sub-heuristics (clusters the
vertices into visited and non-visited subsequences); (ii) evaluates route costs and (iii)
in multi-vehicle problems, co-works with the Split operator to optimally segment a
selected set of vertices into feasible vehicle routes. All in all, the overall task of the
metaheuristic is to build good quality giant tours from which the Selector operator
retrieves efficient VRPOV solutions.

The Selector operator is a novel algorithm introduced in this thesis work. Pre-
liminary work on it was presented in the XVII Conferencia Latino Americana en In-
vestigación de Operaciones (CLAIO 2014), Monterrey, Mexico, October 6-10, 2014.
Further work was later presented in the 9th Learning and Intelligent OptimizatioN
Conference (LION9), Lille, France, January 12-15, 2015, and a paper was published
in the conference proceedings, (Vargas et al., 2015a). Selector was firstly applied to
the solution of the CTP, and later on, the version implemented to solve the OP was
presented in the 4th meeting of the EURO Working Group on Vehicle Routing and
Logistics Optimization (VeRoLog 2015) in Vienna, Austria, June 8-10, 2015. The ver-
sion of Selector aimed at solving multi-vehicle VRPOV was applied to the solution
of the m-CTP, and the results were presented at the 17ème Conférence de la Société
Française de Recherche Opérationnelle et d’Aide à la Décision (ROADEF 2016) in
Compiègne, France, February 10-12, 2016.

Vidal et al. (2015) recently published a large neighborhood search for multi-vehicle
routing problems with profits based on an algorithm which follows similar principles
as Selector . They heuristically produce a conventional VRP solution, which they name
exhaustive solution representation because it visits all customers, and then repeatedly
apply their select algorithm on each new route in order to retrieve the optimal sub-
sequences of visits to customers. They test their neighborhood structure within three
heuristic frameworks: a multi-start local search, a multi-start iterated local search
based on the method of Prins (2009), and a hybrid genetic search (UHGS) derived
directly from the general framework of Vidal et al. (2014). Selector is envisioned as a
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unified operator to solve VRPOV, whereas their select algorithm is conceived only in
the context of multi-vehicle routing problems with profits.

The remainder of the chapter is organised as follows. The starting point of the
explanation is a brief presentation, in Section 3.2, of the Split operator of Prins (2004)
and of the labelling algorithm of Desrochers (1988). Next, a detailed explanation of
the Selector algorithm is provided in Section 3.3. Sections 3.4 through 3.6 present
modifications done to the basic Selector algorithm to fulfill specific purposes. The
implementation made of the selected metaheuristic is later detailed in Section 3.7. The
final remarks are presented in Section 3.8.

3.2 Foundations of Selector

When solving a VRPOV, the Selector operator optimally splits a giant tour into sub-
sequences of visited and non-visited vertices in a similar way as the Split operator
optimally segments a giant tour into feasible vehicle routes when applied to solve the
CVRP as proposed by Prins (2004). Splitting the giant tour into vehicle routes entails
solving a Shortest Path Problem (SPP). However, in the case of a VRPOV, the side
restriction(s) considered act(s) as a constraining resource and the problem to be solved
then becomes a Resource-Constrained Elementary Shortest Path Problem (RCESPP).

The Selector operator shares similarities with the Split operator. However, the fact
of not knowing a priori which vertices constitute the tour leaves a more difficult to
solve problem. Nonetheless, the RCESPP for a VRPOV can be solved quickly enough
in practice by adapting the algorithm devised by Desrochers (1988) for the Resource
Constrained Shortest Path Problem (RCSPP). The elementary requirement is guaran-
teed by the fact that the order given by the giant tour is respected.

This section provides an explanation of the mechanics of the Split process and of the
pseudocode of its algorithm together with the fundamental principles of the algorithm
of Desrochers (1988).

3.2.1 Split Operator

As stated before, Prins (2004) provided the first computational implementation of the
clustering idea of Beasley (1983) for finding the optimal routes in a CVRP. Using
any TSP algorithm, the first phase of Split computes a giant tour of all customers
T = (T1, T2, , . . . , Tn) by relaxing vehicle capacity Q and maximum route length L.
The second phase builds an auxiliary acyclic graph H from T , and applies the well
established Bellman-Ford shortest-path algorithm to obtain an optimal partition of
the giant tour into least-cost, capacity-feasible vehicle routes.

The specifics are as follows. H contains n + 1 vertices indexed from 0 to n. Each
cluster of customers (Ti, Ti+1, . . . , Tj) that can be treated as one feasible trip, i.e., a
trip for which all the problem constraints are satisfied, is modelled by one arc (i−1, j)
in H. The weight of the arc is given by the trip cost cost(i, j) = c(0, Ti)+

∑j−1
k=i(s(Tk)+

c(Tk, Tk + 1)) + s(Tj) + c(Tj , 0), where s(Ti) represents the service cost of customer
Ti. To find the shortest path, the algorithm inserts visits to the depot within the
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Figure 3.1: Example of a splitting procedure.

sequence, so the depot is first considered at vertex v0, and then it is moved iteratively
to vertices v1, v2, . . . , vn−1. Thus, when reading an arc, interpret the vertex where the
tail lies as the depot rather than as a customer vertex. A shortest path from vertex v0
to vertex vn in H corresponds to an optimal splitting of T . The splitting is optimal
for the given customer ordering. Figure 3.1 illustrates an example with five customers.
In drawing 1, the set of customers is represented as the giant tour T = (a, b, c, d, e),
and the figures represent the traveling costs between customers and between customers
and the depot, the ones in brackets are the customer demands. The graph depicted in
drawing 2 is built assuming Q = 10, and L = ∞. For example, arc cd models a trip
visiting customers c and d, with cost 95, while arc cde does not exist because the trip
is not feasible due to excessive demand (13). The shortest path has three arcs (ab,c,de)
and a cost of 205. The computation of the shortest path is reasonably fast because H
is circuitless and the vertex numbering provides a natural topological ordering.

The Split procedure, shown in Algorithm 4, is a version in O(n) space which does
not generate H explicitly. Instead, for each vertex j = 1, 2, . . . , n in H, it maintains
two labels: (1) Vj , the cost of the shortest path from vertex v0 to vertex vj in H,
and (2) Pj , the predecessor of vertex vj on this path. The repeat loop enumerates
all feasible subsequences Ti . . . Tj , and instead of storing the arcs of feasible trips, the
labels of vertex vj are directly updated when improved (lines 17 and 18). At the end,
the total cost is stored in Vn and the set of routes is obtained from the information
stored in vector P . For a given i—pointer which indicates the current position of
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the depot—note that j is increased until the route length L is exceeded: no feasible
trip is discarded since the triangle inequality holds. The resulting algorithm is simple,
compact and fast, for further details see Prins (2004).

Algorithm 4 : Clustering algorithm for Split procedure
Input: giant tour
Output: optimal set of routes for the given giant tour, total route length

1: V0 ← 0
2: for i = 1 to n do
3: Vi ←∞
4: end for
5: for i = 1 to n do
6: load← 0; cost← 0; j ← i
7: repeat
8: load← load+ qTi

9: if i = j then
10: cost← cost(0, Tj) + sTj + cost(Tj , 0)
11: else
12: cost← cost− cost(Tj−1, 0) + cost(Tj−1, Tj) + sTj + cost(Tj , 0)
13: end if
14: if (load ≤ Q) and (cost ≤ L) then
15: {here subsequence Ti . . . Tj corresponds to arc (i− 1, j) in H}
16: if Vi−1 + cost < Vj then
17: Vj ← Vi−1 + cost
18: Pj ← i− 1
19: end if
20: j ← j + 1
21: end if
22: until (j > n) or (load > Q) or (cost > L)
23: end for
24: Decode(P )
25: return set of routes

3.2.2 Resource-Constrained Elementary Shortest Path Problem

The Resource-Constrained Elementary Shortest Path Problem (RCESPP) is the prob-
lem of finding an elementary1 shortest path from a source vertex vs to a target vertex
vt in a network such that the overall resource usage does not exceed some given limits.
Hence, record of the resources used by each path should be kept. Resources are con-
sumed when visiting vertices or traversing arcs. Such problem is NP-hard (Dror (1994)).
The standard approach to solve a RCESPP to optimality in pseudo-polynomial time
is dynamic programming.

This approach relies upon the seminal work of Desrochers (1988) who proposed an
1synonym of Hamiltonian, vertices are visited only once
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algorithm to solve a relaxed version of this problem, the Resource Constrained Shortest
Path Problem (RCSPP), where the path needs not be elementary. Desrochers’ proce-
dure is a multi-label extension of the Bellman-Ford algorithm taking resource con-
straints into consideration. The dynamic programming-based Bellman-Ford algorithm
is designed to find a shortest path in a graph. It is a label-correcting approach where
a single label representing the cost of the path which gradually improves is assigned
to each vertex of the given network. However, in the case of the RCSPP, the necessity
of keeping record of used resources obliges to assign several labels to each vertex.

Feillet et al. (2004) explains that in label-correcting approaches, vertices are re-
peatedly treated and their labels extended. Within this approach, two strategies can
be used: reaching algorithms and pulling algorithms. In reaching algorithms, labels
on a vertex are extended to its successors, while in pulling algorithms, labels from its
predecessors are pulled to the vertex currently treated. Aside from the label-correcting
approach, there is the label-setting approach, an extension of Dijkstra’s algorithm. It
works by the permanent marking of the labels, which are treated in an order based on
the resource consumption.

In this context, Desrochers’ procedure is a label-correcting reaching algorithm. Its
basic principle is to associate a label with each partial path that goes from the origin
vertex vs to a vertex vi. The label represents the cost of the path and its consumption
of resources. Unnecessary labels are eliminated as the search progresses. Vertices are
iteratively treated until no new labels are created. When a vertex is treated, all its new
labels are extended toward every possible successor vertex. Throughout the search,
then, every vertex receives several labels. When a label is extended from vertex vi to
vertex vi+1 to generate another feasible label, the cost and resource consumption of
the new label must be computed according to a recurrence formula.

The so-called label, which represents a feasible path, can be understood as a vector
V = [ζ|r1, r2, . . . , rm] that memorizes the path cost ζ and the resource consumptions ri
along the corresponding path. These consumptions enable to know if a partial path can
still be extended. The efficiency of the dynamic programming-based algorithm outlined
in the former paragraph relies heavily upon the possibility of pruning labels that cannot
lead to an optimal solution. For this purpose, suitable dominance tests are always
performed when labels are extended, so that only non-dominated labels are stored. To
find the optimal path only non-dominated paths need to be considered. For a survey
on models and algorithms for the RCSPP and the RCESPP, the interested reader may
consult Irnich and Desaulniers (2004). Feillet et al. (2004) presented an exact algorithm
to solve the RCESPP applied to VRPs. Also, the papers of Righini and Salani (2006)
and Righini and Salani (2008) which propose new ideas for RCESPP algorithms, and
the publication of Boland et al. (2006) which explains an implementation of a label
setting algorithm to solve the RCESPP.
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3.3 Selector Operator

The explanation now proceeds to the clustering mechanism proposed in this thesis:
the Selector operator. Selector is a label-correcting reaching algorithm that, given a
sequence of customers, selects which ones to visit in order to obtain the best solution
value for the given goal while keeping the original routing order and satisfying side
constraints. Formally, the operator formulates the problem of selecting the customers
to visit in some given giant tour as a RCESPP on an auxiliary directed acyclic graph
H. Every traversed arc (i, j) ∈ H | i < j indicates a resource consumption. The
input of the algorithm is a permutation σ of a vertex set V which represents a set
of customers. The depot is always the first vertex in this permutation. The output is
a subset V ′ ⊂ V to be visited in the same order given in σ such that the value of
the objective function considered is optimal and the resource constraints are satisfied.
It is important to note that such solution technique implies there is no need for a
local search based on insertions and removals of customers as is the case in many
heuristics, e.g., Campos et al. (2014), Vansteenwegen et al. (2009), Gendreau et al.
(1997). Instead, our algorithm builds all the possibilities pruning those that cannot
lead to the optimal solution.

3.3.1 Auxiliary Graph

The Selector operator can be described as searching for an optimal path in a directed
acyclic graph that portrays how the vertices of the giant tour are connected to each
other. It builds the set of vertices S =

⋃
i∈[0,n−1]{σi} of graph H from an initial

permutation of the n vertices that can be visited. In other words, the topological order
of the vertices contained in the auxiliary graph represent the position of a customer in
the giant tour. In order to represent non-visited vertices, this set is replicated |S| − 2
times, eliminating the first element each time. As a result, there are now n(n − 1)/2
vertices, plus the depot and a copy of it, σ+

0 , arranged in n−1 levels (the depot belongs
to level 1, and the different levels are numbered from top to bottom). For instance,
a directed graph obtained from a network of customers G = (V,A) where |V | = 5 is
illustrated in Figure 3.2 where only a subset of the possible arcs is represented. In this
figure, each vertex is denoted σij , where i represents the level the vertex belongs to,
while j indicates the vertex number.

The arc set is built as follows. Arcs whose endpoints lie within the same level i
are firstly explained. Every arc of this kind represents a continuous path. Such arcs
always start at the depot, (σ0, σ

i
j), and exist if the subsequence {σ0, σ

i
1, σ

i
2, . . . , σ

i
j} is

feasible, for instance, the subpath does not exceed the maximal length allowed. Thus,
for example, arc (σ0, σ

1
3) in Figure 3.2 indicates the path {σ0, σ

1
1, σ

1
2, σ

1
3}. In order to

make it a tour, arcs whose head lies at σ+
0 do not indicate a path but a finishing point,

i.e., arc (σ1
3, σ

+
0 ) is subsequence {σ1

3, σ
+
0 } (dashed line). In addition, an arc between

two vertices that lie in different levels (σki , σmj ) | k ≤ m − 2 exists if it is feasible
to skip the subsequence formed by the vertices located at the first position of the
in-between skipped levels. For example, arc (σ1

1, σ
4
4), in bold in Figure 3.2, indicates
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Figure 3.2: Auxiliary graph representing some of the possible arcs.

the subsequence {σ2
2, σ

3
3} has been skipped. Whereas, the coloured arcs exemplify the

visited sequence {σ0, σ
1
1, σ

3
3, σ

3
4, σ0}.

A cost matrix specifying a non-negative integer cost between any two vertices σi is
known, and these costs satisfy the triangle inequality. The cost of an arc is the sum of
the weights of the arcs included in the subsequence. The problem is to search for an
optimal path from σ0 to σ+

0 that meets a set of constraints that cannot be included
in the definition of the arcs, for example, the need to cover a given set of vertices in
a covering problem. The optimal path from vertex σ0 to vertex σ+

0 in H corresponds
to an optimal splitting of the giant tour σ into visited and non-visited vertices. This
search has pseudo-polynomial complexity of O(Bn2), where B represents the number
of labels.

This auxiliary graph is described in order to clarify the algorithm. However, the
vertices σk | k > 1 are not built explicitly. The algorithm maintains only the first level
of vertices.

3.3.2 Labels

Dynamic programming is a technique that builds the sought solution in a bottom-up
fashion by solving subproblems whose complexity gradually increases. In this case,
the first subproblem solved is the one of finding the cost or profit and the resource
consumption for the path {σ0, σ1}. With this information, it is possible to easily solve
a similar subproblem for the path reaching vertex σ2. Equally when reaching vertex
σ3, and so on. Therefore, the technique requires the storage of intermediate results
to avoid recomputation. In practice, this is accomplished by using labels. In the case
of Selector , a label represents a feasible elementary path that starts at σ0 and has
considered vertices up to σi. A label λ = [z, i|r1, r2, . . . , rm] is defined as a triplet
which stores: the value z of the objective function considered, the rank i reached in σ
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(last vertex visited), and the resource consumption r1, r2, . . . , rm that enables to know
how a partial path can be extended. For example, in a covering problem, this resource
consumption is interpreted as which vertices that must be covered are still uncovered,
and this information enables to know if a vertex vi ∈ V can be skipped when extending
a label. A vertex σi may be reached through different paths composed of visited and
skipped predecessors, each with different cost and different use of the resources. As a
result, a set of labels Λi is associated to each vertex σi, for i ∈ {0, . . . , n− 1}, starting
with Λ0 = {[0, 0, 0]} for the vertex acting as the depot.

A label on a vertex is repeatedly extended to its successors until the considered
restrictions prevent the creation of feasible labels. This operation is repeated until all
labels have been extended in all feasible ways. When a label is extended, its objective
function value (cost or profit) and its rank are computed using previous results, and
the information linked to the side constraints (resources) is updated to ensure that a
feasible solution is still possible. Then, for any i, a set of labels Λi+1 is constructed
by considering iteratively any arc (j, i + 1) ∈ H and extending all labels of j using
a recurrence equation. Since every extension creates a new label, a way to control
their proliferation is by applying dominance relations between pairs of labels. Suitable
dominance criteria allow to identify labels whose extension cannot produce an optimal
solution. Two labels can be compared only if both have reached the same rank i in
σ. Also, the dominating label must be less or equally constrained by the resource
information stored, and must offer a better or equal objective function value.

3.3.3 Algorithm

In an algorithm designed to visit all the vertices of the given network, a label can only
be extended from vertex σi to successor vertex σi+1 with no possibility of skipping
vertices. In such case, the extension of a label corresponds to appending an additional
arc (i, i + 1) to a path from σ0 to σi, obtaining a feasible path from σ0 to σi+1. The
process also implies updating the objective function value, the rank reached (i+1) and
the resource consumption.

In Selector , a similar operation occurs when a label is extended, but in this algo-
rithm vertices may be skipped, so we consider that a label is extended from vertex σi
to vertex σi+k, where k may take any of the following values {1, 2, 3, . . . , n− i−1} with
n = |V |. In addition, the extension of a label λ = [z, i|r1, r2, . . . , rm] from vertex σi to
successor vertex σi+k, implies that one of two possible operations is performed: visit
vertex σi+k, or skip vertex σi+k. If when extending a label it is decided that the vertex
σi+k is skipped, the extension proceeds to vertex σi+k+1 and it is evaluated again if
it is useful to visit it. Not visiting is possible, for example, when a vertex proves to
be redundant or visiting it violates a restriction. However, no labels are created for
skipped vertices. Only when the vertex is visited, a non-dominated label is stored.

When k = 1, the extension occurs to the immediate adjacent successor vertex. It
is comparable to constructing an arc at some given level on the auxiliary graph H.
On the other hand, when 2 ≤ k ≤ n− i− 1, the extension occurs skipping a sequence
of vertices. This is possible only if the side restrictions allow to skip the sequence
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{σi+1, . . . , σi+k−1}. This extension is equivalent to constructing an arc whose head lies
at least two levels down in the auxiliary graph H.

Algorithm 5 illustrates the core procedure of Selector . The algorithm may be un-
derstood as first extending label λ = [0, 0, 0] from the depot σ0 to every level of graph
H (lines 1-6). This is to say, extend the label λ to every vertex σi | i ∈ {1, 2, . . . , n−1}
if possible, i.e., create the sequences of vertices {σ0, σi}. If the extension is successful,
it is followed by an extension that repeatedly attempts to visit the immediate adjacent
successor vertex trying to go as deeply as it proves useful. In other words, it attempts
to construct sequence {σ0, σi, σi+1, σi+2, . . . , σi+j} | j = n − i − 1. However, at each
step of the construction of this sequence, i.e., at every visited vertex, a non-dominated
label is stored. Later, if possible, the labels that were stored at each step are extended
more deeply but now considering skipping defined sequences of vertices (lines 7-10).
In other words, an initial set of labels is created for each visited vertex and the set is
further extended later. The complexity of the first phase is O(n2). Figure 3.3 shows an
example of the initial phase where only a small subset of V is shown for explanatory
purposes.

Algorithm 5 : Selector
Input: giant tour σ, distance matrix D
Output: optimal tour of visited vertices T , cost value of tour c(T )
{build an initial set of labels, Λ}

1: for ( i = 1 to n− 1 ) do
2: if ( λi can be extended from σ0 to σi ) then
3: Λ← Λ ∪ {λi} {λi is the label being treated}
4: Extend(λi) {see Algorithm 6}
5: end if
6: end for
{extend labels created skipping a defined sequence of vertices}

7: while ( Λ 6= ∅ ) do
8: λ← Extract Best(Λ) {find label with best objective function value}
9: Extend Skipping(λ) {see Algorithm 7}

10: end while

Algorithm 6 depicts the general process of repeatedly extending a label λ to the
immediate adjacent successor. Its main tasks are the following: (i) evaluate if it is
useful/possible to visit a vertex; in case it is, (ii) update the label data; (iii) update the
best-known solution if applicable and (iv) determine if the label is non-dominated. In
this algorithm, stopping criteria other than reaching σn−1 can be defined. For example,
finding a complete solution or finding a path whose objective function value is worse
than the best incumbent solution. The algorithm is adapted to the problem treated
to make it efficient, so it is further detailed in each of the chapters that explain the
application of Selector to solve a specific problem.

Algorithm 7 shows the next phase. The initial labels are further extended skipping
defined sequences of vertices. These sequences are located after the last rank visited.
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Algorithm 6 : Extend(λ)
Input: label to be extended λ = [ζ, i | r1, . . . , rm], z∗
Output: labels derived from λ
{only non-dominated labels that can be later extended skipping are kept}
{z∗ represents the best known objective function value}

1: for ( j = i+ 1 to n− 1 ) do
2: if ( vertex σj is visited ) then
3: update rank(λj) and resource consumption(λj)
4: compute z(λj)
5: compare z(λj) against z∗ and update z∗ if possible
6: if ( λj is a complete solution ) then
7: return
8: end if
9: if ( λj not dominated ) then

10: Λ← Λ ∪ {λj}
11: end if
12: end if
13: end for

Extending from vertex σi, the first successor that can be visited skipping intermediate
vertices is σi+2, i.e., it skips one vertex. In addition, if the restrictions allow it, the
maximum number of extensions ψ that can be done from σi to successors σk | k ≥ i+2 is
given by ψ = n− i− 2. Then, when a label λ is chosen for extension, it first attempts to
reach vertex σi+2, this is, build sequence {σ0, . . . , σi, σi+2}, and from this point, it does
an extension that iteratively attempts to visit the immediate adjacent successor vertex,
i.e., it creates, if possible, sequence {σ0, . . . , σi, σi+2, σi+3, . . . , σi+j} | j = n− i− 1. It
continues with the next possible extension for λ which is to successor vertex σi+3, in this
case it skips two vertices. It proceeds again with an iterative extension to the immediate
adjacent successor vertex, i.e., it creates sequence {σ0, . . . , σi, σi+3, σi+4, . . . , σi+j} | j =
n− i−1. The process repeats, if possible, until ψ is reached. The number of extensions
possible, ψ, may not be reached if, for example, it is not feasible to skip a certain vertex
within the subsequence because vertices may be left uncovered. Then, the remaining
possibilities that consider even larger subsequences of skipped vertices are not feasible
and, therefore, not worth analysing.

At each iteration, the label chosen for extension is always the one that documents
the best objective function value and the execution of this second step continues until
there are no labels to extend. Recall that at every extension, the best solution found
is updated so that at the end it can be retrieved from this variable. The complexity
of this extension is O(n2). Figure 3.4 shows an example with the same assumptions
explained for Figure 3.3.

A distinctive and important characteristic of Selector is that aside from the con-
straints mentioned in the definition of the problem, it does not impose any further
restrictions on the selected vertices of V such as adjacency, for example. This operator
can discard any vertex vi ∈ V at any point in the tour. Bouly et al. (2010) designed
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Algorithm 7 : Extend Skipping(λ)
Input: label to be extended λ = [ζ, i | r1, . . . , rm]
Output: labels derived from λ

1: for ( k = 2 to n− i− 1) do
2: if ( λi can be extended from σi to σi+k ) then
3: Extend(λi+k)
4: end if
5: end for

σ0 σ+
0level 1

σ2
2 σ2

3 σ2
4level 2

σ3
3 σ3

4level 3

Figure 3.3: Phase 1: Create initial list. The labels created in level 2 document se-
quences: {σ0, σ2, σ0}, {σ0, σ2, σ3, σ0}. Label {σ0, σ2, σ3, σ4, σ0} is not created because it
is either infeasible or useless. The labels created in level 3 store the following sequences:
{σ0, σ3, σ0}, {σ0, σ3, σ4, σ0}. Thus, the set of labels associated with each vertex contains
Λ2 = {{σ0, σ2, σ0}}, Λ3 = {{σ0, σ2, σ3, σ0}, {σ0, σ3, σ0}}, and Λ4 = {{σ0, σ3, σ4, σ0}}.
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σ0 σ1
1 σ1

2 σ1
3 σ1

4 σ+
0level 1

level 2

σ3
3 σ3

4level 3

σ4
4level 4

Figure 3.4: Phase 2: Extension of labels skipping defined subsequences of vertices. The
label that stores the subsequence {σ0, σ1, σ0} is extended to levels 3 and 4. Labels
which store the following subsequences are created: {σ0, σ1, σ3, σ0}, {σ0, σ1, σ3, σ4, σ0}
and {σ0, σ1, σ4, σ0} respectively.

an operator to solve the Team Orienteering Problem which selects m possible routes
that satisfy the constraint on the route length. It is a polynomial algorithm based on a
PERT/CPM technique. However, a route must be constituted of consecutive (adjacent)
vertices.

3.4 Generating a Feasible Solution

The methodology proposed requires building quickly a feasible solution. This solution
serves as a probe to determine the execution of Selector to optimality, and in some
problems, it is used as a bound. There are several ways to construct it. One of them
is using a greedy heuristic. For example, when solving the Covering Tour Problem,
Gendreau et al. (1997) used the greedy heuristic designed by Balas and Ho (1980) to
solve the Set Covering Problem, PRIMAL1. The heuristic gradually includes vertices
into the solution according to a greedy criterion in order to minimise a given func-
tion. Three different functions are used in PRIMAL1. It builds two distinct solutions
by applying these functions in a different order, and chooses the best one. Another
possibility is a GRASP-based construction method as the one used by Campos et al.
(2014) to solve the Orienteering Problem. Another option we considered was using a
simplified version of Selector .

When deciding on the method to use to construct this solution, one has to find
a good compromise between solution quality and computational effort to obtain it.
We did some testing to observe the ratio z

z∗
(z represents a solution value and z∗ the

optimal value) obtained by our proposal. It was close enough to one many times and
the computational effort was frugal. This is, then, the procedure implemented.

Algorithm 8 seeks a solution using the same graph and extension operations as the
main body of Selector , howbeit, it only explores some of the possible paths to find
the solution fast. Starting at σ0 it tries to extend λ to σi ∀i ∈ {1, 2, . . . , n− 1}, and
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from σi it will attempt to extend λi to σi+k ∀k ∈ {1, 2, . . . , n− i− 1}. Once sequence
{σ0, σi, σi+k} is constructed, it continues, if possible, by iteratively visiting the adjacent
successor vertex. For instance, it first attempts to construct sequence {σ0, σ1, σ2}, and
will attempt to continue by repeatedly extending to the immediate adjacent successor.
Next, it constructs the sequence for the next value of k: {σ0, σ1, σ3}, and again repeats
the extension to the adjacent successors. Once all values of k are exhausted, it treats
the next vertex σi in a similar way. The process finishes when all vertices σi have been
treated. Every complete tour found is compared and the best one is kept, no labels are
stored in order to execute it fast. The complexity of the search is O(n3).

Algorithm 8 : Search Feasible Solution
Input: giant tour σ, distance matrix D
Output: feasible tour of visited vertices T , cost value of tour c(T )

1: i← 1
2: while ( λ0 can be extended from σ0 to σi ) do
3: k ← i
4: while ( λi can be extended from σi to σk+1 ) do
5: Extend(λk+1) {see Algorithm 6}
6: k ← k + 1
7: end while
8: i← i+ 1
9: end while

3.5 Performance Improvements

To either maintain tractability or speed up the search, three mechanisms were intro-
duced in Selector : (i) extending only a predefined number of labels; (ii) computing a
lower/upper bound, which is compared to the incumbent best feasible solution; and
(iii) performing bidirectional search in the graph.

3.5.1 Restricting the Number of Labels Extended

In computer science, one common way to attempt to maintain tractability is to use
beam search so we adopted some of the techniques used by this type of process. The
term beam search was coined by Raj Reddy, Carnegie Mellon University, 1976. Beam
search is a restricted version of either a breadth-first search or a best-first search, and
it is restricted in the sense that the amount of memory available for storing the set
of states is limited, and in the sense that less-promising states can be pruned at any
step in the search by problem-specific heuristics as explained by Zhang (1999). The
set of most promising states is called the “beam”. Beam search has the advantage
of potentially reducing the time of a search. This potential advantage rests upon the
accuracy and effectiveness of the heuristic rules used for pruning states, and having such
rules can be somewhat difficult due to the expert knowledge required of the problem
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domain. The main disadvantage of a beam search is that the search may result in a non-
optimal solution. Therefore, this forward-pruning heuristic search sacrifices optimality
for tractability. Despite this disadvantage, it is able to achieve a satisfactory level of
solution quality, and has found success in areas such as machine learning and speech
recognition (Zhang, 1999).

In Selector , we are not dealing with a shortage of memory, but we aim to restrict
the number of labels extended in order to maintain tractability. The notion of beam
search is applied in Selector in the sense that only promising labels are stored in the
search queue (beam), and only a predefined number (beam width) of the labels stored
is extended. A search process that extends the most promising label of a limited set.
This way a reasonable search time is guaranteed since computations are restricted by
a known value. Promising labels are identified by a bounding mechanism, as explained
in section 3.5.2.

Therefore, this type of search requires that the algorithm knows the rules for prun-
ing labels and the beam width. This technique was applied to the solution algorithm
for the OP as presented in Chapter 6.

3.5.2 Computing a Lower/Upper Bound

Pruning non-promising states first requires identifying them. This is possible using a
bound. In Selector , computing a bound serves two pruning purposes: avoid storing and
avoid extending non-promising labels. The following function may be used to estimate
the objective function value of a complete path

µ(λ) = z(λ) + h(λ) (3.1)

where

• λ = [z, σi|r1, r2, . . . , rm] is a label that memorizes σi as the last visited vertex on
the path represented.

• z(λ) is the actual objective function value of the label (from the start vertex σ0
to vertex σi).

• h(λ) is the lower/upper bound computed on the objective function visiting only
vertices in the subsequence ϕ = {σi+1, . . . , σn−1}. This can be a lower bound of
the cost to cover the remaining vertices or an upper bound of the profit collected
from the vertices that lie ahead of σi.

Equation A.1 is inspired in the A* (pronounced “A star”) algorithm used in com-
puter science for path finding and graph traversal. Noted for its performance and
accuracy, it enjoys widespread use. Hart et al. (1968) of Stanford Research Institute
(now SRI International) first described the algorithm, which was used by a prototype
robot to improve its path planning. It is an extension of Dijkstra’s shortest path algo-
rithm using heuristics to guide its search. At each iteration of its main loop, A* needs
to determine which of its partial paths to expand into a longer path. It does so based
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on an estimate of the cost (total weight) still to go to the goal vertex. Specifically,
A* selects the path that minimises f(n) = g(n) + h(n) where n is the last vertex on
the path, g(n) is the cost of the path from the start vertex to n, and h(n) is the cost
estimated by a problem-specific heuristic of the cheapest path from n to the goal.

Retaking the mechanics of Selector , to solve Equation A.1, we only need to find
the value of bound h(λ). Of course, the vertices we want to visit are those with a
good benefit/cost ratio. Then, the value of bound h(λ) can be found by solving a
Fractional Knapsack Problem (FKSP), i.e., the linear relaxation of a 0-1 Knapsack
Problem. The FKSP can be solved in polynomial time, O(n logn) taking into account
the sorting of the items considered. In order to solve this knapsack problem, it is
necessary to first define the objects, their profit and their weight. An object is created
for each vertex in ϕ. The profit pi of an object is given by the number of vertices it
covers or by the profit its visitation yields. The weight wi of an object is computed
as follows. Let ∆i = {wji}i−1

j=0 be the set of weights of the in-going edges of σi, those
that connect vertex σi with each of its predecessor vertices in the giant tour σ, and
∆′i = {wik}n−1

k=i+1 ∪ {wi0} be the set of weights of the out-going edges of σi, those that
connect vertex σi with each of its successor vertices in σ. Then, a lower bound of the
travel cost (weight) of visiting vertex σi can be obtained by

wi = min ∆i + min ∆′i (3.2)

In case there is a tie between both sets—the predecessor vertex is the same as the
successor—the global second-best edge weight is chosen.

The FKSP is solved with the classical greedy algorithm of Dantzig (1957). The ratio
profit/weight, pi

wi
, serves to determine the best vertices to visit. Order the vertices

in non-increasing order according to their ratio profit/weight, and select them in
sequence until the capacity of the knapsack is exceeded. In this case, the capacity of
the knapsack may represent the number of clients still to cover or the length of the path
that still remains out of the maximum allowed. Nonetheless, in the FKSP, we do not
have to select all of the profit of a vertex, but rather can take any fraction of it. Thus,
for the last vertex chosen, we may only include the fraction of profit that fits in the
remaining capacity. This way the greedy algorithm never wastes any capacity, and as
a result, it always yields an optimal solution for the FKSP as explained in Neapolitan
and Naimipour (1998). Depending on the objective function considered, the value of
bound h(λ) is then the sum of the profit or weight values of the chosen vertices.

If the estimated objective function value (bound) of a given path is worse than the
best-known solution, the search in that trajectory must be abandoned. Thus, function
µ(λ) needs to be calculated at each step of the extension of a label in order to determine
if the label is promising. It is worth noting that when solving the FKSP, computing
the ratio profit/weight at the level of the giant tour provides more accuracy than
doing it at the level of the graph G that represents the given network of customers.
However, it results in more computational effort since the metaheuristic builds a new
giant tour at each iteration.
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The value of function µ(λ) is stored in an added label field and it is applied again in
the same manner when the label is retrieved for extension. This test is useful because
the value of the best-known solution might have changed since the label was stored.
This technique was applied to the solution algorithms for the CTP and the OP as
explained in Chapters 4 and 6 respectively.

3.5.3 Bidirectional Search

Pohl (1971) was the first one to design and implement a bidirectional heuristic search
algorithm. In this kind of algorithm, two search processes are performed simultane-
ously: one starts from σ0 and considers σ in the order given, and the other one also
starts at σ0 but considers the sequence obtained by inverting σ. When the two search
frontiers intersect, the algorithm can reconstruct a single path that extends from the
start vertex through the frontier intersection to the goal vertex. In the implemen-
tation of this kind of search in Selector , the recurrence equation, dominance rule,
label-extension procedures, feasibility rule and use of an upper bound are symmetrical
to those previously presented.

The rationale behind using bidirectional search is the following. The dynamic pro-
gramming algorithm presented generates a number of labels which rapidly increases
with the size of the problem at hand. Every time a label λ is extended from σi, it
generates as many other labels as the number of possible successors of σi. Therefore,
in the worst case, the number of labels grows exponentially with the number of vertices
in the path. Due to this exponential dependence on the number of steps, it is intuitive
that generating shorter paths may yield a significant advantage in terms of number
of labels considered. This is precisely the effect of bidirectional search with bounding,
whose purpose is to limit the length of the paths considered to at most half of the
length of the optimal path.

Henceforth, it is explained how key performance features of this type of search were
implemented. The search process to perform at each iteration needs to be selected.
Although iterating equally between both searches—forward and backward—would be
the simplest method, it is not the most efficient. The best strategy is to identify the
path (label) with the best objective function value so far. That is, during each iteration,
concentrate the computational effort on the search having the best path cost.

A new problem arises during a bidirectional search, namely ensuring that the two
search frontiers actually meet. For this reason, at each iteration, the occurrence of
complete paths is monitored. Every time a non-dominated label is stored, the opposite
search queue is revised to determine if there is a label that can be joined to it to form
a complete solution. Thus, two labels of opposite direction meet when the last visited
vertices match, and it is then tested if they can form a complete feasible solution. If
the test yields positive, this solution is compared against the incumbent best known
and the latter is updated if necessary. Both labels examined are kept regardless of
the result of this test, since with another opposite half they may construct a better
solution.

The termination policy is crucial to significantly reduce the computational time.
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The monodirectional version proceeds until all labels are treated, but applying this
criterion to the bidirectional version may produce a performance equal or worse to
that of the monodirectional version for some instances.

The classical termination criterion of a bidirectional search on a minimisation prob-
lem compares the sum of the lowest actual forward cost plus the lowest actual backward
cost with the cost of the best-known solution, and stops if the former is larger or equal
to the latter. However, in our case, labels are arranged by estimated cost µ(λ), so
the corresponding minimum actual cost is not available in O(1) complexity. For this
reason, we adapted the termination criterion as follows: if Equation A.3 is true and
the two labels that comply with this equation constitute a feasible solution, then the
algorithm stops the search.

min
σi∈S\{σ0}

{µi(λ)forward}+ min
σi∈S\{σ0}

{µi(λ)backward} ≥ bestKnownCost (3.3)

If both labels form a feasible solution, the lower bound computed by Equation A.3
gives the minimum cost value that can be obtained for a complete feasible solution. If
this minimum value is worse than the best-known solution, it is certain our solution
value will not improve and we can halt the search. This technique was applied to the
solution algorithm for the CTP as detailed in Chapter 4.

3.6 Multi-Vehicle Selector

The first idea that springs up when solving a multi-VRPOV with Selector is to pipe
the output of Selector to the input of the Split operator, a select first–cluster second
type of approach. It was certainly tried, but it only worked for very small values of
the number of vertices that can be visited, |V | ≤ 25. It was shown that an optimal
selection of visits followed by an optimal partition does not necessarily lead to an
optimal set of vehicle routes. Therefore, either the selection and the partition are done
simultaneously, or a local search VRP heuristic first selects vertices and then partitions
them into routes. Split had formerly been used inside such local search framework as
a tool to evaluate the sequence of vertices selected by a previous stand-alone process,
for instance, the heuristic method suggested by Hà et al. (2013). We chose to develop
the novel idea of an m-Selector that chooses the best vertices to visit and at the same
time solves how these vertices can be optimally arranged in routes.

Solving the partition problem requires inserting visits to the depot in order to
evaluate the total cost of segmenting the given tour into feasible vehicle routes, as it is
done by the Split algorithm. In the case of the multi-vehicle Selector , this would require
the creation of even more labels than the ones produced by the single-vehicle version.
Given the exponential dependence the growth in the number of labels has with the size
of the path searched, the idea of adding more labels is not attractive. Instead, a way
of doing these visits implicitly was sought, and it came in the form of using the Split
algorithm as the cost function. Hence, instead of using the simple function of adding
edge costs of the single-vehicle version, a modified version of Split was implemented
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in order to compute the optimal cost of segmenting the selected vertices into feasible
routes. As a matter of fact, the equation used by Split to compute the multi-route tour
cost is very similar to the one used by the single-vehicle version of Selector . A modified
version of Split is in the sense that the segmentation of the VRPOV tour has to occur
step by step as vertices are added to it. This is to say, the trips represented in graph H
of the Split algorithm are built as vertices are selected. In Selector , the cost of a label is
the cost of assigning the selected vertices to a single route, while in m-Selector the cost
is that of assigning them to several routes. In essence, the same notion. If when selecting
a vertex, it is also evaluated how the selected set can be segmented into feasible routes,
the resulting cost is truly considering both levels of decision-making at the same time.
Since in m-Selector both decision processes—selecting and segmenting—are done by
exact methods, the output is optimal. The assumption that all customers have the
same demand made it easier to implement the idea. Embedding the Split algorithm in
Selector in order to compute the cost of a label is more computationally demanding
than calculating the simple addition of the cost of an edge, so ways to achieve good
performance was also a matter that required careful consideration.

The structure of the m-Selector label remains basically the same, albeit the two
vectors that the Split algorithm uses to keep track of the travel cost and of the prede-
cessor vertex for each customer selected were incorporated. The dominance rule also
adds a test in order to consider the vehicle capacity, and performance improved when
more methods to build the initial giant tour were made available. All in all, merging
both processes (Selector and Split) resulted in few changes to the original design of
the algorithm, so the resulting implementation of m-Selector has a core which is very
similar to the one of the original version. Chapter 5 explains the implementation in
more detail.

3.7 Metaheuristic Framework

The second component of the solution approach presented in this study is the routing
mechanism. This thesis work proposes to use the adaptive large neighborhood search
(ALNS) algorithm. Chapter 2 presented some of the advantages of searching over a
large neighborhood. ALNS is a local search framework which uses several competing
destroy and repair sub-heuristics to modify the current solution, and it chooses amongst
them using statistics gathered during the search. Even though it is a general heuristic,
it can be as efficient as most specialized heuristics since its core may be formed by
best-performing heuristics for the problem treated.

Figure A.1 shows how the proposed routing and clustering components interact
when solving a minimisation problem. The algorithm starts with an initial giant tour
σinit which can be produced randomly or via a construction heuristic. Tour σinit under-
goes a 2-opt local search process to improve its length rapidly and avoid a long random
initial walk. Then, in each iteration, the algorithm considers a giant tour σ and has
at its disposal several destruction and construction sub-heuristics to modify it. The
algorithm first selects, with an adaptive probability, a destruction sub-heuristic which
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select DH(Pd)
σnew− ← DH(σcurrent) 2-opt(σinit)

select RH(Pr)
σnew ← RH(σnew−)

B ← Search B(σnew)

B <
α ∗Bbest

Selector(σnew)

- decide acceptance of
solution

- update scores
- update probabilities when

needed

yes

no

Figure 3.5: Routing and clustering components of the unified solution methodology.

removes some customers from the giant tour, and produces σnew−. Next, again with an
adaptive probability, it selects a repair sub-heuristic which inserts the customers back,
but choosing better places so that the tour length is further improved. Over this new
giant tour σnew, it looks for a feasible solution (bound) using a reduced version of the
Selector operator. To search for this solution efficiently, the operator analyses only a
subset of the possibilities. Next, if the value of the feasible solution improves, Selector
is executed, this time to optimality, with the expectation of obtaining a better VRPOV
solution from σnew. To avoid making this step very strict, the value of the best-known
bound is multiplied by a convenient α value. The algorithm also contains a scheme to
avoid stagnation of the search process. In addition, the adaptive layer requires updat-
ing the scores of the sub-heuristics used in the iteration, and, every update period, the
selecting probability of every sub-heuristic. The process repeats until the termination
criterion is met.

Improvements on the travel cost of the giant tour do not necessarily lead to a better
objective function value on the tour computed by Selector. Furthermore, an optimal
giant tour does not necessarily yield an optimal VRPOV solution value. However, in
the long run, the VRPOV tour does benefit from improvements on the length of the
giant tour, since the shorter the tour, the more likely additional vertices can be put
into it. An important consequence of this independence is that execution of Selector to
optimality at each iteration is of low benefit. The computed bound can serve as a probe
to determine if the complete process is worth executing. This derives in important time
savings.
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Parameter Meaning

γ number of vertices removed in each ALNS iteration
(instance size dependent)

ς period size for updating probabilities in number of ALNS iterations
τ reaction factor that controls the rate of change of the weight adjustment
δ avoids determinism in the SRH
ρ avoids determinism in the WRH
κ1 score for finding a new global best solution
κ2 score for finding a new solution that is better than the current one
κ3 score for finding a new non-improving solution that is accepted
β cooling factor used by simulated annealing
ε fixes the upper limit of vertices removed at each iteration

Table 3.1: The ALNS parameters were tuned using the R-implemented irace package devel-
oped by López-Ibáñez et al. (2011).

The main elements of the ALNS implementation are explained following the three
backbones explained by Pisinger and Ropke (2010): (i) the destroy heuristics (Section
3.7.1), (ii) the repair heuristics (Section 3.7.2), and (iii) the metaheuristic that defines
the criteria to accept a new solution and guides the search (Section 3.7.3),. Three
destroy and three repair heuristics were implemented. In the following, lower-case
Greek letters indicate the user-controlled parameters documented in Table A.1.

The ALNS parameters were firstly tuned using a ceteris paribus approach based
on sets of three or four values for each parameter. Later on, a software package that
automatically configures optimisation algorithms was used and better results were
obtained. It is the R-implemented irace package developed by López-Ibáñez et al.
(2011), Iterated Racing for Automatic Algorithm Configuration. It implements the
iterated racing procedure, an extension of Iterated F-race.

3.7.1 Destroy Sub-heuristics

Shaw Removal Heuristic (SRH). Originally proposed by Shaw (1997), its general
idea is to remove vertices that exhibit similitude, characteristic computed by a relat-
edness measure R(i, j). It is expected to be reasonably easy to shuffle similar vertices
around and thereby create new, perhaps better, solutions. We measure the similarity
between two vertices by R(i, j) = dij , where dij is the Euclidian distance between
vertices σi and σj . The lower R(i, j) is, the more related the two vertices are. This
relatedness measure is used to remove vertices in the same way as described by Shaw
(1998). Given a solution σ, the first vertex σi to be removed is selected randomly, and
it is put into set F of removed vertices. Thereafter, in every iteration the algorithm
randomly selects a vertex σi from F , computes R(i, j) between it and all of the vertices
σj ∈ σ, and then chooses a new vertex σi ∈ σ to be inserted in F . This process repeats
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while |F | < γ. In more detail, choosing the vertex to remove requires building a list L
ordered by increasing relatedness values. A random number y is chosen in the interval
[0, 1] and vertex i = byδ|L|c is removed from σ. Parameter δ ≥ 1 controls the amount
of randomization. In order to avoid the sorting required at each iteration, a nearest
vertex matrix is pre-computed and kept at hand. The complexity of the SRH is O(n2).

Worst Removal Heuristic (WRH). Ropke and Pisinger (2006) propose a heuris-
tic that randomly removes vertices with a high cost in the current solution σ and
tries to insert them in better positions. Let cost(i, σ) = f(σ)− f−i(σ) be the cost as-
sociated with vertex σi in the current solution σ, where f−i(σ) is the solution cost
without vertex σi. vertices are first sorted according to cost(i, σ) and then one is ran-
domly chosen to be removed. The process iterates recalculating the costs, cost(i, σ),
until it has removed the indicated number of vertices. The removal, though random,
is user-controlled by parameter ρ. The complexity of the WRH is O(n2).

Random Removal Heuristic (RRH). This procedure simply selects γ vertices at
random and removes them from the current solution σ. Though it tends to generate
a poor set of removed members, it is useful to diversify the search. The complexity of
the RRH is O(n).

How Many to Remove. The number of vertices removed, γ, from the current
solution σ is key to the ALNS performance. When few elements are removed, the
heuristic has a higher probability of being trapped in one suboptimal area of the search
space. On the other hand, when too many are removed, it is almost like starting from
scratch and the insertion heuristics cannot build a good solution from such situation.
In addition, the larger the number removed, the larger the execution time of both
insertion and removing heuristics. Parameter γ is chosen randomly between a lower
and an upper limit. The lower limit is fixed at a value given according to the number
of vertices in σ, while the upper limit is fine-tuned with parameter ε. This parameter
indicates the maximum percentage of elements removed from the complete solution
size. Hence, the algorithm works with a randomized degree of destruction in the interval
[0.3× |V |, ε× |V |].

3.7.2 Repair Sub-heuristics

Best Greedy Heuristic (BGH). This simple construction heuristic performs at
most γ iterations as it inserts one vertex into solution σ in each iteration. The minimum
cost position value is computed for all vertices waiting insertion—set F—and the one
with the minimum global cost position is chosen. This process is repeated until F = ∅.
The complexity of the BGH is O(n2).

First Greedy Heuristic (FGH). This heuristic works similarly to the previous
one. However, instead of inserting the vertex having the minimum global cost position,
it inserts the one sitting in the first position. That is to say, it respects the order of
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the vertices in F . After the first vertex has been inserted, the minimum cost position
for each is recalculated and the process repeats until all vertices in set F have been
inserted.

Ropke and Pisinger (2006) add a noise term to the objective function during the
insertion phase of the BGH and regret-k heuristics in order to randomize them and
avoid always making the move that seems best locally. In our implementation, the FGH
is used mainly to introduce this noise into the insertion process as done by Ribeiro
and Laporte (2012). This heuristic obviously runs faster than the BGH.

Regret Heuristic (RKH). This heuristic tries to improve the myopic behaviour of
the greedy heuristics by incorporating a kind of look ahead information when selecting
the vertex to insert, as done by Ropke and Pisinger (2006) and Pisinger and Ropke
(2007). Let ∆f1

i denote the change in tour length incurred by inserting vertex σi at
its minimum cost position, and ∆f2

i denote the change by inserting it at its second
best position. The regret value is defined as c∗i = ∆f2

i − ∆f1
i . In each iteration, the

heuristic inserts the vertex σi that maximizes the regret value c∗i at its minimum cost
position. Ties are broken by selecting the vertex with lowest cost insertion. Informally
speaking, it chooses the insertion that we will regret the most if it is not done now.
This is a time-consuming operator but unnecessary computations were avoided when
computing ∆fni . The complexity of the RKH is O(n3).

Choosing a Destroy-Repair Heuristic Pair. In order to select a heuristic,
weights are assigned to them and a roulette wheel selection principle is applied by
the adaptive layer. Let D = {di|i = 1, . . . , 3} be the set of destroy sub-heuristics, and
R = {ri|i = 1, . . . , 3} the set of repair sub-heuristics. The weights of the heuristics are
denoted w(di) and w(ri) respectively, so that the probabilities to select one are

p(di) = w(di)∑3
j=1w(dj)

, p(ri) = w(ri)∑3
j=1w(rj)

(3.4)

The removal heuristic is selected independently of the insertion heuristic and vice versa.
Initially, all heuristics are equally likely to be chosen, e.g., w(di) = 1 ∀di ∈ D.

Adaptive Weight Adjustment. Adjusting the weights of the heuristics enables to
increase the probability that successful heuristics are more frequently used than less
successful ones. The weights could be updated at every iteration or after some given
number of iterations. In this version, the second one is used for efficiency reasons.
Hence, the total number of ALNS iterations is divided into a number of update periods
whose size, ς, is experimentally determined. These update periods are also named
segments. Let h denote a destroy or repair heuristic. To allow the weight adjustment,
a score s(h) is memorized for every heuristic, and it is updated at each iteration by a
quantity equal to parameters κk, where k ∈ {1, 2, 3}, when it identifies new solutions,
refer to Table A.1. For reasonable adjustments the inequality κ1 > κ2 > κ3 is ensured.
Then, at the end of each update period, these recorded scores are used to calculate
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new weights and probabilities thereof. In addition, all weights are reset to zero at the
beginning of each segment. Since two heuristics are applied in each iteration, the scores
for both are updated by the same amount.

New weights are computed as follows. Let w(hi)j be the weight of heuristic i in
update period j. After period j finishes, the new weight to be used in period j + 1 for
heuristic hi is given by

w(hi)j+1 =

w(hi)j(1− τ) + τ
s(hi)
u(hi)

, if u(hi) > 0

w(hi)j(1− τ), if u(hi) = 0
(3.5)

where s(hi) is the score of heuristic hi obtained during the last period and u(hi) is
the number of times heuristic hi was used during this same period. τ is known as the
reaction factor, and it controls how quickly the weight adjustment mechanism reacts
to changes in the effectiveness of the heuristics. If τ = 0, the weight adjustment is
ignored and the initial weights prevail. If τ = 1, the score obtained in the last segment
decides the weight to be used in the next one.

This implementation keeps track of visited solutions using a hash table. A hash
key is assigned to each solution and this key is stored in the table.

3.7.3 Simulated Annealing Guides the Search

Simulated annealing (SA) is the outer metaheuristic that guides the search. SA applied
to optimisation problems emerges from the work of Kirkpatrick et al. (1983). It had a
major impact on the field of heuristic search for its simplicity and efficiency in solving
combinatorial optimisation problems as presented in Talbi (2009). SA is a stochastic
algorithm that enables, under some conditions, the degradation of a solution with the
objective to escape from local optima and so to delay the convergence. Then, SA implies
to not only accept solutions that are better than the current solution, but rather, on
occasion, accept solutions that are worse than the current one.

SA is a memoryless algorithm in the sense that it does not use any information
gathered during the search, and it is based on the principles of statistical mechan-
ics. From an initial solution, a random neighbor is generated at each iteration. Moves
that improve the objective function are always accepted. Otherwise, the neighbor is
accepted with a calculated probability that depends on the control parameter called
temperature, t, and on the amount of degradation of the objective function (energy),
∆E = f(σ′) − f(σ). The computed value ∆E represents the difference in the objec-
tive value between the current solution σ, and the generated neighbouring solution
σ′ (minimisation process). As the algorithm progresses, the probability of accepting a
non-improving solution decreases. This probability follows, in general, the Boltzmann
distribution.

P (∆E, t) = e
−
f(σ′)− f(σ)

t (3.6)

Hence, the probability of accepting a non-improving solution is proportional to
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parameter t, and inversely proportional to the change of the objective function, ∆E.
The temperature starts at a preset level, which Ropke and Pisinger (2006) explain is
instance-dependent, and is decreased in every iteration according to a cooling schedule
such that few solutions are accepted towards the end of the search, t = t · β, where
0 < β < 1 is the cooling factor. In this implementation, the initial value of t is set to the
length of the improved initial giant tour divided by an instance-dependent factor, and
t decreases in each iteration. This is, in this SA scheme, only one solution is explored
at each value of temperature.

3.8 Conclusions

The solution methodology proposed emulates a route first–cluster second constructive
heuristic, so it is composed of a clustering method and a routing method. The cluster-
ing method proposed is the Selector operator which is a dynamic programming-based
algorithm aimed to solve VRPOV. The algorithm is an adaptation of the one developed
by Desrochers (1988) in the context of the RCSPP. It is a label-correcting, reaching
algorithm. Selector is integrated into an ALNS metaheuristic, the routing method,
which fulfills the task of assigning the visitation order of the n given customers. From
this constructed sequence, Selector optimally retrieves the ones to visit. The problem
of selecting the visited customers is formulated as a RCESPP on an auxiliary directed
acyclic graph where the side restrictions of the problem considered act as the constrain-
ing resource. This auxiliary graph represents the topological order of the n customers
contained in the giant tour treated.

The basic principle of the algorithm is to associate with each partial path from the
depot vertex σ0 to a vertex σi ∈ H a label representing the cost of the path and its
consumption of resources, and to eliminate useless labels with the aid of dominance
rules as the search progresses. Labels are iteratively extended in all feasible ways until
no more labels can be created, while the incumbent best path is updated throughout
the search process. The extension of a label to a visited vertex corresponds to (1)
appending an additional arc (i, i + k) to a path from σ0 to σi, obtaining a feasible
path from σ0 to σi+k; and (2) updating the cost of the path and its consumptions of
resources. Since the number of labels produced during the search has an exponential
dependence on the size of the problem at hand, diverse mechanisms aimed to limit the
proliferation of labels were added to the basic algorithm. Furthermore, a multi-vehicle
version which co-works with the Split operator was also proposed.



62 Chapter 3. Solution Methodology Developed



Chapter 4

Solving the Covering Tour
Problem with Selector
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4.1 Introduction

Section 2.2.3 introduced the family of problems that include the notion of cover, pro-
vided an insight into their different applications, and described some of the most rele-
vant approaches that have been used to solve problems of this subclass. This chapter
focuses on one of them—the Covering Tour Problem (CTP)—and describes a solution
procedure based on the Selector operator that allows to convert a giant tour into an
optimal CTP solution. The method is competitive as shown by the quality of results
evaluated using the output of a state-of-the-art exact algorithm, the one of Gendreau
et al. (1997).

The CTP emerged as a problem where features other than merely minimising route
length are considered. Current and Schilling (1994) presented practical situations where
a vehicle travels through a network making service stops and natural aims are to:
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(1) maximise cover, interpreted as the demand within a defined distance from a
service stop.

(2) maximise access to the service by minimising the sum of the distances to the
nearest service stop.

(3) minimise route length, might also be considered as cost, or travel time.

Considering items (1) and (3), a Shortest Path Problem that seeks maximal covering
appears. Current and Schilling (1994) formulated it as the explicit multi-objective
problem named Maximal Covering Tour Problem. Considering items (2) and (3), a
Median Shortest Path Problem is defined which they formulated as the Median Tour
Problem, also an explicit multi-objective problem. Boffey et al. (1995) argue that these
problems may be regarded as an implicit multi-objective problem corresponding to
the surrogate problem of minimising route length subject to a fixed percentage of the
relevant demand being covered. Gendreau et al. (1997) introduced the CTP with this
implicit multi-objective approach.

The CTP defines two types of vertices: the covering ones (visited service stops) and
the ones to cover (implicitly visited demand points). The aim is to identify a lowest-
cost elementary cycle over a subset of the covering vertices in such a way that every
element not of this type is covered. In this case, a vertex is considered covered when it
lies within a prespecified radius from at least one covering vertex. A CTP solution has
two components. The first component corresponds to a Set Covering Problem (SCP)
and selects the points that are visited. The second component corresponds to a TSP
and provides the order in which the selected points are visited.

The remainder of the chapter is organised as follows. Section 4.2 makes a formal
presentation of the problem, discusses practical applications of it, and provides a view
of the methods previously proposed to solve the CTP. The solution approach used to
assess the quality of our results is explained in more detail. Sections 4.3-4.5 present the
solution method suggested in this thesis. Section 4.6 documents the results obtained.
Finally, Section 4.7 discusses the contribution of this work.

4.2 The Covering Tour Problem

4.2.1 Formal Definition of the CTP

Although integer programming—field that studies ways to solve optimisation problems
defined with integer variables—is used for solving exactly a variety of combinatorial
optimisation problems, metaheuristic approaches tend to directly exploit the combina-
torial nature of a problem rather than its integer programming formulation. For this
reason, the mathematical models of the problems treated are not presented in this
manuscript.

The CTP is a generalisation of the Travelling Salesman Problem (TSP) and it
can be formally described as follows. Let G = (N,E) be an undirected complete
graph, where N = V ∪ W represents the vertex set and the edge set is given by
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E = {(vi, vj)|vi, vj ∈ N, i < j}. Set V = {v0, v1, v2, . . . , vn−1} is the subset of n vertices
that can be visited at most once, while W is the subset of vertices that must be covered
but cannot be visited. Set V includes a subset T of vertices that must be visited,
|T | ≥ 1. Vertex v0 represents the depot. Let dij be the distance associated with each
edge (i, j) ∈ E, and D = (dij) the distance matrix defined on E that satisfies the
triangle inequality. A vertex wi ∈ W is covered if there exists at least one vertex
vj ∈ V in the cycle for which dij 6 c, where c is known as the covering distance.
Each vertex in V covers a subset of W , so for each wi ∈ W , a subset of vertices of
V that can cover it is given. A solution is a minimum-length Hamiltonian cycle on a
subset of V such that for all the vertices in W at least one vertex of its covering set
is visited. Figure 4.1 shows a feasible CTP tour for an instance where |V | = 11, and
|W | = 16, and exemplifies how the subset {vA, vB} ∈ V covers vertices {w1, w2}. The
square represents the depot.

In this study, the cardinality of set T was kept at one since higher values tend to
produce easier problems because less labels are produced. The only member of T is
the depot and this vertex covers no vertex wi ∈W . The CTP is NP-hard as it reduces
to a TSP when c = 0 and every vertex of W coincides with a vertex of V , V = W .
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Figure 4.1: Example of CTP tour.

4.2.2 Applications Reported in the Literature

The CTP finds application in situations in which one needs to design a tour in a network
where there are points that can be visited and points that cannot be visited explicitly,
but can easily be reached from the points that can be in the tour. Such situation arises
in distribution network design such as the bimodal distribution network explained by
Current and Schilling (1989), where the customers (cities) on the tour are served by
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air, and the smaller cities not in the tour are served (covered) by trucks which originate
at their nearest city on the air route.

Furthermore, the notion of having points that cannot be visited explicitly, yet de-
mand service, finds wide application in humanitarian logistics and health care delivery
where service crews may face unavailable roads or scarce resources. For instance, in
many developing countries, the ministries of health face the problem of providing a
number of primary health care facilities sufficient enough to be geographically acces-
sible, yet few enough to be properly stocked and staffed. Using the CTP, Hodgson
et al. (1998) successfully modelled the use of mobile facilities to solve the challenge in
Suhum District, Ghana. The model minimises a mobile facility’s travel while serving
all population centres within range of a feasible stop.

Doerner et al. (2007) published a multicriteria treatment of the CTP for planning
mobile health care facilities. The goal of their problem is to find a single tour over a
subset of vertices considering three objectives: (1) improve the economic efficiency of
the tour (2) minimise the average distances that the unvisited people travel to reach
their nearest tour stops and (3) minimise the percentage of population unable to reach
a tour stop within a prespecified maximum travel time. They developed both a multi-
objective ant colony optimisation method and multi-objective genetic algorithms to
solve it, and applied their approach to the Thiès region in Senegal. Doerner and Hartl
(2008) discussed the CTP in the context of its application to health care logistics and
disaster relief with a focus on the Austrian situation.

Another application arises in the problem of determining the appropriate location
of post boxes in urban areas such that the distance travelled by the collecting vehicle
through all post boxes is minimal and every user is located within a reasonable travel
distance from a post box (Labbé and Laporte, 1986). ReVelle and Laporte (1993) used
the CTP model to plan the stops of a circus so that it is always accessible by unvisited
populations. They presented it as the Travelling Circus Problem and any unvisited
location may generate a penalty.

4.2.3 Solution Approaches Reported in the Literature

Despite its practical importance, few publications exist for the CTP. In the literature,
only one exact method, a branch-and-cut algorithm by Gendreau et al. (1997), has
been presented so far to solve the CTP. Jozefowiez et al. (2007) retook the implicit
multi-objective nature of the CTP and proposed a bi-objective treatment of the prob-
lem: minimisation of the tour length and minimisation of the covering distance, and
developed a two-phase cooperative strategy that combines a multi-objective evolution-
ary algorithm with the branch-and-cut algorithm of Gendreau et al. (1997). To assess
the efficiency of their hybrid metaheuristic, they also developed an ε−constraint ap-
proach to determine optimal Pareto sets. Furthermore, they applied their method to
the real-world case of the Suhum district in Ghana.

Besides their exact method, Gendreau et al. (1997) also presented a heuristic so-
lution approach. It is based upon the combination of approximate solution procedures
for the Set Covering Problem (PRIMAL1 due to Balas and Ho (1980)) and the TSP
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(GENIUS of Gendreau et al. (1992)). They applied their method to randomly-built
instances where |V | ≤ 100 and |W | ≤ 500, and compared their results against the
solutions computed by their exact method. Their heuristic solved most instances tried
within 3% of optimality. Other heuristic algorithms have also been studied. Motta
et al. (2001) proposed a GRASP metaheuristic to solve a generalized version of the
CTP where the tour may also include vertices of set W . They also presented some
reduction rules to meaningfully diminish the size of the generalized CTP instances
treated. They studied randomly-generated data sets in which |V ∪W | ≤ 300. Baldacci
et al. (2005) treated the CTP with a two-commodity flow formulation and developed
three scatter-search heuristic algorithms. They treat randomly-produced instances with
|V | ≤ 100 and |W | ≤ 500. For |V | > 75 optimality gaps can be very large. Although
the instances they solved are different from the ones used by Gendreau et al. (1997),
they claim their heuristic is slower than the one of Gendreau et al. (1997).

4.2.4 Solution Approach Used as Reference

Gendreau et al. (1997) formulated the CTP as an integer linear program, investigated
polyhedral properties of several classes of constraints and developed a branch-and-cut
algorithm. In their algorithm, a linear program containing a subset of valid constraints
is solved at a generic vertex of the enumeration tree. Violated constraints are searched
and some of them are introduced into the current program which is then reoptimised.
The process repeats until a feasible or dominated solution is found, or until it becomes
more promising to branch on a fractional variable. In order to save time and memory,
ineffective constraints are periodically deleted from the program. The method was
applied to solve instances with |V | ≤ 100 and |W | ≤ 500. An instance was deemed
successful if it could be solved within three hours. Hodgson et al. (1998) applied this
exact method to a real problem in rural health care delivery: the routing of a mobile
medical facility. This problem is described in Section 4.2.2.

4.3 Application of Selector to Solve the CTP

Chapter 3 provides an explanation of the principles of design and operation of Selector.
However, any unified method must ultimately account for the objective and constraints
of the specific problem to solve, so components of the method need to be tailored in
order to fit the problem’s needs. This section explains how the operator is adjusted and
its principles are put into practice to solve the CTP. At a later section, the practical
proposal to enhance its performance is presented.

The basic principle of the label-correcting reaching algorithm designed is to asso-
ciate a label with each elementary partial path that goes from the depot vertex σ0
to vertex σi. The label memorizes the value of the objective—length of the tour—and
maintains accounting of the used resources, in this case, the vertices that need to be
covered. Useless labels are eliminated as the search progresses with the aid of domi-
nance rules. A label is extended toward every successor vertex as long as feasible labels
can be generated. Therefore, in order to apply the explained algorithm, we first need
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to define the structure of the label, the dominance criterion, and the considerations
made when extending a label such as redundancy checking, feasibility testing and the
updating of a label.

4.3.1 Label Definition

A label λ = [ζ, ν, ω] is defined by:

i. ζ, the travel cost of the partial elementary tour from vertex σ0 to vertex σν . This
corresponds to the sum of the weights of the edges included in the label.

ii. ν, the last vertex visited in the partial tour.

iii. ω, a vector indexed by the vertices of W where ω[i] indicates either that wi ∈W
is already covered or the number of vertices of V that can still be visited to cover
it.

Other information could be stored in the label to accelerate the search, but these
three pieces of data are the only ones really needed. For example, it is useful to know
in O(1) complexity how many vertices are already covered by the label at hand or the
value of a previously computed bound. However, one must keep in mind that the more
complex the label is, the less efficient the algorithm becomes.

The labels generated could be stored in a single search queue. However, to attain
search efficiency, every vertex σi ∈ S \ {σ0} maintains a separate label queue Λi. Each
label is stored in the queue of its last visited vertex, and the queues are arranged by
decreasing order of cost. The label chosen for extension is the one that documents the
lowest path cost. It is a best-first search.

4.3.2 Dominance Test

This test is performed before storing a label in order to prune the redundant ones: at
least one other label with a similar trajectory exists that offers a better or equal travel
cost value and a less constrained or equal resource consumption. A label λ1 = [ζ1, ν1, ω1]
dominates a label λ2 = [ζ2, ν2, ω2] with λ1 6= λ2 if and only if:

i. ν1 = ν2

ii. ζ1 ≤ ζ2

iii. {wi : ω2[i] indicates wi is covered} ⊆ {wi : ω1[i] indicates wi is covered}

Two labels are comparable only when arriving at the same vertex so that similar
past and future trajectories are compared. A label dominates when its cost is lower or
equal, and its set of covered vertices is a superset of the second one. To perform test
(iii), the vector ω maintained in each label is used to compare the vertices covered by
both labels tested. In O(1) complexity the flag that indicates if any vertex wi ∈ W is
covered can be known.
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4.3.3 Extension of a Label

In the Selector algorithm, the extension of a label λ = [ζ, ν, ω] from vertex σν to a
successor vertex σk with k > ν implies that one of two possible operations is performed:
visit vertex σk or skip vertex σk. However, at every extension, feasibility must be
maintained and redundant vertices must not be considered. Therefore, when no vertex
wi ∈ W , is left uncovered the label λ is extended by skipping vertex σk. Whereas,
when this restriction is not met, extension is done by visiting σk. The details of these
operations are as follows.

Redundancy Checking. When extending the label by visiting σk, we need to ensure
that σk is useful, i.e., that all the vertices wi it covers are not already covered. For
computational efficiency, a matrix relating the coverage of the vertices wi ∈ W by
the vertices vj ∈ V is precomputed and kept at hand, so that information needed for
decision-making is readily available.

Feasibility Checking. Let Ω denote the subset of vertices of W that are not covered
by the subpath represented by label λ. When extending the label by skipping vertex
σk, we must be certain that each wi ∈ Ω is not affected by this decision. This is to say
that, for each wi ∈ Ω there still remain vertices ahead of σk which can be visited to
cover it. The number of such vertices is kept through field ω. Thus, for each wi ∈ Ω,
feasible labels yield ω[i] > 0.

Look-Ahead Mechanism. This mechanism allows to further reduce the number of
labels created. Let Ωk be the set of vertices wi that remain to be covered in the set of
σk. If when extending a label it is found that a vertex σk must be visited in the future
because it is the only one remaining that can cover a set Γ ⊆ Ωk, then all the vertices
wi ∈ Ωk, but one, are marked as covered. One vertex wi ∈ Γ must remain uncovered,
so that when vertex σk is reached, it proves useful. Looking ahead makes some label
extensions unnecessary because redundant vertices are detected earlier and, therefore,
are skipped. As a result, less labels are created. In addition, when the dominance test
is applied, the sets compared are already taking into consideration vertices wi ∈ Ωk as
covered, and this also helps to delete useless labels earlier.

Figure 4.2 provides an example where i < j < k. The label is extended to vertex σi,
and it is found that for set Γ = {w5, w7} the only vertex that remains ahead which can
cover it is vertex σk. Then, the vertices {w2, w4, w7, w9} ∈ Ωk are marked as covered.
Vertex w5 remains as uncovered, so that when vertex σk is reached, it is found useful.
This is, vertex w5 remains as a sentinel to ensure vertex σk is included. The former
implies that set Ωj is now marked as covered, making vertex σj redundant. Therefore,
when σj is reached no labels are produced.
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σi−1 σi σj σk
. . . . . . . . . . . .

Ωj = {w2, w9} Ωk = {w2, w4, w5, w7, w9}

Figure 4.2: Portion of a giant tour used to exemplify the look-ahead mechanism.

Algorithm for Extending a Label. Algorithm 9 shows the specific implementation
of Algorithm 6 for the CTP. It depicts how a label is iteratively extended to the
adjacent successor vertex to maintain feasibility and efficiency. Label λcurrent stores
the last vertex visited in the path, and label λj memorizes the vertex to which the
label is extended, σj . Set Ω contains the vertices wi ∈ W that are already covered
by the path, and set Ωj contains the vertices that remain to be covered in the set of
vertex σj . Set Λj contains the non-dominated labels stored at σj . At every step of the
label extension, the following conditions are verified:

i. vertex to be included is not redundant (line 3)

ii. ζ(λj) < UBbest (line 6)

iii. label is non-dominated (line 9)

First, it must be ensured that the vertex is useful. Any vertex that turns out to
be redundant is simply skipped and the construction of the path continues, no labels
are kept for skipped vertices. It is important to note that in this test the look-ahead
mechanism is also applied and the resources (vector ω) are updated. If the vertex is
worth visiting, the label cost and label index ν are updated. Next, test (ii) guarantees
that the search in that trajectory is abandoned if the cost of the path turns out to be
worse than the cost of the incumbent best-known solution. This acts as a bounding
mechanism that enables to further control the proliferation of labels. If test (ii) is
true, it is possible that the extension yields a complete solution. In such case, the
incumbent best-known upper bound is updated in order to improve the limits for the
creation of labels, and the extension in that direction stops. Otherwise (no complete
solution exists), test (iii) makes sure only useful labels are kept.

4.4 Performance Improvements

A version of Selector which uses bidirectional search with bounding was implemented
in order to study the performance improvement that could be attained. In this search,
the recurrence equation, dominance rule, label-extension procedures, feasibility and
redundancy checking and use of an upper bound are symmetrical to those previously
presented, albeit the look-ahead mechanism is not used.

The bidirectional search, however, includes the computation of a lower bound on
the cost of the tour, which aims at reducing label proliferation. Having a good lower
bound allows to identify non-promising labels that can be pruned. Then, at each step
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Algorithm 9 : Extend(λ) in the CTP
Input: label to be extended λ = [ζ, ν, ω], UBbest, |Ω|
Output: labels derived from λ = [ζ, ν, ω]
{only non-dominated labels that can later be extended skipping are kept}

1: λcurrent ← λ
2: for ( j = ν + 1 to n− 1 ) do
3: if ( vertex σj is not redundant ) then
4: |Ω| ← |Ω ∪ Ωj |
5: ζ(λj)← ζ(λcurrent) + cost(σcurrent, σj)
6: if ( ζ(λj) < UBbest ) then
7: if ( |Ω| 6= |W | ) then
8: λcurrent ← λj
9: if ( λj non-dominated ) then

10: Λj ← Λj ∪ {λj}
11: end if
12: else
13: UBbest ← ζ(λj)
14: return {complete solution has been built}
15: end if
16: else
17: return {cost of path being explored is worse than best-known cost}
18: end if
19: end if
20: end for

of the label extension, a lower bound on the cost of the complete tour represented by
the label needs to be computed. The obtained bound can be compared against the
incumbent best-known cost in order to determine if the label created by visiting that
vertex is worth storing for further extension. One way to estimate the cost of the path
that remains to be searched is by solving a Fractional Knapsack Problem (FKSP).
Both mechanisms—computation of a bound and bidirectional search—are thoroughly
explained in Chapter 3. Hereafter, the explanation indicates only the specifics of the
computation of the lower bound. To estimate the cost of a complete path, Equation
4.1 can be used.

µ(λ) = ζ + h(λ) (4.1)

where

• λ = [ζ, i, ω] is a label that memorizes σi as the last visited vertex

• Ω is a set of vertices that remain to be covered

• h(λ) is a lower bound computed on the cost incurred to cover the vertices wj ∈ Ω
visiting only vertices in the subsequence ϕ = {σi+1, . . . , σn−1}. This is, cover the
remaining vertices wj using only vertices that lie ahead of σi.
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In the FKSP solved in order to estimate the cost of the unexplored path, the profit
of an object σi ∈ ϕ is given by the number of vertices wj ∈ W the object covers, and
the capacity of the knapsack is given by |Ω|. The value of bound h(λ) is then the sum
of the weight values of the vertices chosen from ϕ. Figure 4.3 shows an example. Let
us consider that the figures in parenthesis indicate the vertices wi ∈ W covered by
vertices σi | i ∈ {1, . . . , 6}, and that the label has been extended up to vertex σ3 and
no vertex has been skipped. Also, |W | = 28 and 13 vertices wi ∈W have been covered.
First, we determine the capacity of the knapsack which is given by the vertices that
remain to be covered: C = |W | − |Ω| = |Ω|. Applying this equation to our example
yields C = 28− 13 = 15.

Next, we define the objects that will be put into the knapsack. These are vertices
ϕ = {σ4, σ5, σ6}. The problem is solved with a greedy approach, so we need to deter-
mine the ratio profit/weight for each item in ϕ. The profit is a piece of data stored for
each σi, and its weight di is computed in each iteration as follows. Let ∆i = {dji}i−1

j=0
be the set of weights of the in-going edges of σi, those that connect vertex σi with each
of its predecessor vertices in the giant tour σ, and ∆′i = {dik}n−1

k=i+1 ∪ {di0} be the set
of weights of the out-going edges of σi, those that connect vertex σi with each of its
successor vertices in σ. Then, an estimation of the least travel cost (weight) of visiting
vertex σi can be obtained by

di = min ∆i + min ∆′i (4.2)

Exemplifying this for vertex σ4 we have ∆4 = {d(0, 4), d(1, 4), d(2, 4), d(3, 4)},
∆′4 = {d(4, 5), d(4, 6), d(4, 0)}, and d4 = min ∆4 + min ∆′4. The same applies for the
rest of the vertices in ϕ. Since our greedy strategy is to choose the items with the
largest profit per unit weight first, we order these items in decreasing order of their
profit/weight ratio. Let us suppose we get σ6, σ4, σ5. Then, we choose the items in
this order, so we take all of σ6 and σ4, C = 15 − 7 − 6 = 2. However, the greedy
algorithm never wastes any capacity in the FKSP, so we can use the 2 units of the
remaining capacity to take 2

5 of σ5. Then, our total estimated cost for the path that

remains to be explored is h(λ) = d6 + d4 + 2
5d5.

σ0 σ1 σ2 σ3 σ4 σ5 σ6

(0) (6) (5) (4) (6) (5) (7)

Figure 4.3: Giant tour used to exemplify the computation of a lower bound.

Applying this result to the original problem, if µ(λ) ≥ UBbest, the label can be
pruned. Otherwise, the label is stored if it is non-dominated. In the bidirectional version
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of Selector , the value of function µ(λ) is stored in a label field and it is applied again in
the same manner when the label is retrieved for extension. This test is useful because
the value of the best-known solution might have changed since the label was stored.

4.5 ALNS: Pseudocode and Parameters

The ALNS algorithm is used as described in Chapter 3, albeit its parameters need to be
defined for the target problem. Algorithm 10 illustrates the ALNS process implemented
to solve the CTP with simulated annealing as the outer metaheuristic that guides
the search. This algorithm shows the specific implementation of the general process
depicted in Figure A.1. The algorithm deals with two solution variables: the giant
tour σ iteratively improved by the ALNS removal and insertion operators, and the
CTP solution T produced by Selector . The ALNS-algorithm shown corresponds to the
version of Selector that uses bidirectional search with bounding. The monodirectional
version is very much alike. It only deletes line 16 which builds the structures needed
to solve the FKSP in the bounding mechanism.

The process starts with a random giant tour σinit which undergoes a local search
procedure 2-opt to improve its length. The rationale behind this optimisation is that
a shorter tour allows Selector to work more efficiently. The algorithm then sets the
initial temperature to the length of the initial giant tour and prepares the adaptive
layer of the ALNS in order to start the loop of iterations. A destroy-repair pair of
sub-heuristics tries to further improve the length of the giant tour. Next, Selector
quickly finds a feasible solution (upper bound) over this enhanced tour. This bound
serves as a probe to determine if Selector will be executed to optimality. Then, if this
test is positive, the data needed to solve the FKSP which allows to determine a lower
bound is computed. Next, if the solution obtained by Selector improves, it is accepted;
otherwise, it may be accepted with a computed probability. Finally, the temperature
and the adaptive layer are updated, and the process restarts by choosing again a pair
of sub-heuristics.

To define an efficient parameter setting, we used the irace1 package of López-Ibáñez
et al. (2011). A separate set of 50 learning instances (some derived from TSPLIB and
others randomly generated) was designed and both versions of Selector—unidirectional
and bidirectional—were tuned independently. The learning instances used to calibrate
the algorithm are, of course, different from the ones used in the benchmark. The
two resulting sets of parameters are listed in Table 4.1, where M and B stand for
monodirectional and bidirectional search with bound respectively. Only the first row
of Table 4.1 indicates a value shared by both versions.

1The software and its documentation are available at http://iridia.ulb.ac.be/irace
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Algorithm 10 : The General Framework of the ALNS with Simulated Annealing
Input: Giant tour σinit, distance matrix D
Output: Tbest and c(Tbest) {Best CTP tour and its cost}

1: 2-opt(σinit)
2: compute l0(σinit) {cost of initial giant tour}
3: initialize, to the same value, probability P tr for each removal operator r ∈ R, and

likewise probability P ti for each insertion operator i ∈ I.
4: t← l0, {set initial temperature, variable used in probability function}
5: lcurrent ← l0 ; σcurrent ← σinit

6: UBbest ←Search Upper Bound(σinit) {see Algorithm 8}
7: c(Tbest)← c(Tcurrent)←Selector(σinit) {see Algorithm 5}
8: i← 1 {iteration counter}
9: repeat

10: select a removal operator r ∈ R with probability P tr {roulette wheel}
11: obtain σnew− by applying r to σcurrent

12: select an insertion operator i ∈ I with probability P ti
13: obtain σnew by applying i to σnew−

14: UBcurrent ←Search Upper Bound(σnew)
15: if ( UBcurrent < α ·UBbest ) then
16: compute ratio profit/weight for each σi ∈ σnew\{σ0} ; sort ratios
17: c(Tnew)←Selector(σnew)
18: else
19: c(Tnew)← UBcurrent
20: end if
21: if (UBcurrent < UBbest) then
22: UBbest ← UBcurrent
23: end if

{decide acceptance of new solution}
24: if ( c(Tnew) < c(Tcurrent) ) then
25: c(Tcurrent)← c(Tnew) ; σcurrent ← σnew

26: else

27: p← e
−
c(Tnew)− c(Tcurrent)

t

28: generate a random number n ∈ [0, 1]
{new solution might be accepted even if it is worse}

29: if ( n < p ) then
30: c(Tcurrent)← c(Tnew) ; σcurrent ← σnew

31: end if
32: end if
33: if ( c(Tnew) < c(Tbest) ) then
34: c(Tbest)← c(Tnew) ; Tbest ← Tnew
35: end if
36: t← β · t {cooling rate set to be very slow}
37: if ( segment size = ς ) then
38: update probabilities using the adaptive weight adjustment procedure
39: end if
40: i← i+ 1
41: until ( defined number of iterations is met )
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Table 4.1: Values of the ALNS parameters after tuning with irace for both search
algorithms.

Parameter Meaning M-Value B-Value

γ number of vertices removed in each ALNS iteration [0.3 · |V |, ε · |V |]
(instance size dependent)

ς segment size for updating probabilities in number of ALNS iterations 100 75
τ reaction factor that controls the rate of change of the weight adjustment 0.4 0.4
δ avoids determinism in the SRH 7 6
ρ avoids determinism in the WRH 2 3
κ1 score for finding a new global best solution 60 40
κ2 score for finding a new solution that is better than the current one 25 25
κ3 score for finding a new non-improving solution that is accepted 15 15
β cooling factor used by simulated annealing 0.99999 0.99999
ε fixes the upper limit of vertices removed at each iteration 0.5 0.5

4.6 Computational Results

4.6.1 Benchmarking Conditions.

The majority of the studies done for the CTP have conducted their experimentation
using test beds of randomly generated instances, and unfortunately no library of data
sets exists in the literature. Therefore, in order to assess the effectiveness of our method,
we carried out two benchmarks.

(1) Comparison of the results obtained by the monodirectional version of our meta-
heuristic against the optimal solutions computed by the branch-and-cut algo-
rithm of Gendreau et al. (1997). For this purpose, small and medium-size in-
stances were used.

(2) Comparison of the results obtained by both the monodirectional and bidirectional
versions against each other. In this benchmark medium and large-sized instances
were utilized. The unidirectional version consists of the basic algorithm with no
performance enhancements, while the bidirectional version integrates bounding.

We created a test set based on 18 TSPLIB2 instances (Reinelt (1991)) whose sizes
range from 100 to 575 vertices. Set V is defined by taking the first |V | points, while
W is defined by the remaining points. The value |V | was chosen to be around 15%,
25%, 35% and 50% of the instance size. However, it should not be understood that
all instances were tested for these four different values of |V |, small or medium-sized
ones use only two or three values. The end result is a set of 60 different test instances.
In benchmark one, 24 instances were used, and in benchmark two 44. These last two
numbers do not add up to 60 because eight instances were used in both benchmarks.
The number contained in the instance name indicates its size.

2Files found at http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
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The costs {ci,j} are treated as integer values equal to bdij + .5c, where dij is the
Euclidean distance between points i and j (Reinelt (1991)). The value of c is computed
using

c = max
(

max
vk∈V \{v0}

min
wl∈W

{cl,k}, max
wl∈W

{cl,k(l)}
)

(4.3)

where k(l) indicates the vertex vk ∈ V \{v0} that is the second nearest to wl. Computing
this value in such way ensures that each vertex vi ∈ V \ {v0} covers at least one
vertex wi ∈ W , and each vertex wi ∈ W is covered by at least two different vertices
vi ∈ V \ {v0} as explained in Gendreau et al. (1997).

Several independent executions were done to test our randomized heuristic. Each
instance is solved 30 times with a different seed each time, and each execution lasts
30,000 iterations. The value of α, parameter used to make the test that determines the
execution of Selector to optimality less strict (line 15 of Algorithm 10), was kept at one
in both benchmarks. The heuristic algorithms are coded in C++ (gcc Ubuntu/Linaro
4.6.3-1ubuntu5) and the exact algorithm of Gendreau et al. (1997) is written in Python
2.7 and uses 5.6 Gurobi callbacks. Library Python-Igraph 0.7.0 helps to solve graph
problems occurring in the valid cut separation. The benchmarks were done under
Linux OS type 64 bits on an Intel Core i7-4770 CPU@3.40GHz machine with 8 GB of
memory.

4.6.2 Discussion of Tables of Results

Table 4.2 shows the results of the first benchmark where 24 small and medium-size
instances were used. As mentioned before, the quality of these results is evaluated
using the output of the state-of-the-art exact algorithm of Gendreau et al. (1997).
In this table, the first three columns document the instance information, the next
three report the findings of the exact method, and the last five those of the heuristic
approach. The solution quality is measured for each instance as a percentage of de-
viation from the best cost value found by the branch-and-cut algorithm, zBKS. Then,
θ = 100 ∗ (z − zBKS)/zBKS, where z documents the average tour cost value computed
over the 30 independent executions. Columns UB and Opt show the time in seconds
needed to reach an upper bound and the optimal value respectively. Column θ indicates
the deviation of the heuristic solution from the best value found in percentage, and t

corresponds to the total run time in seconds. These two figures are average values over
the 30 executions. Column Found indicates how many times the heuristic found the
optimum value out of the set of 30 executions. Column Best Gap shows how close (in
percentage) the heuristic came to the optimum value, and the last one, labeled SN−1,
exhibits the corrected sample standard deviation.

The results shown in Table 4.2 allow us to state that it is a heuristic capable of
identifying very good quality solutions quite quickly, since for 96% of the instances it
was capable of finding the optimum value rapidly. In the few cases where the optimum
was not reached, the minimum value computed was less than 1% away from the optimal
solution value. In addition, the average deviation is typically within 1% of optimality,
and it repeatedly found the optimum value for 63% of the instances. Furthermore, in
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general, the spread around the optimum of the values computed is very moderate.
The second benchmark was done using a set of 44 medium and large-sized in-

stances, and each was tested with both the monodirectional and the bidirectional with
bounding versions. Thus, there are 88 possible results. A comparison of these results
can be observed in Tables 4.3 and 4.4 which document the evolution of the search. In
these tables, column z documents the average tour cost value computed over the 30
independent executions, while column t shows the average execution time (in seconds)
obtained by the heuristic, both values are documented at the number of iterations
indicated in the corresponding box. For each instance, the first line exhibits the evo-
lution of the search for the unidirectional version, whereas the line below it for the
bidirectional one. The abbreviation TO stands for time-out. To execute the 30,000
iterations, a time limit was set. If a given instance exceeds this limit at least once in
the 30 times it is solved, then a TO mark is given to it. Hence, results not listed or
labeled as TO in these two tables obtained a time-out mark. This occurred in 15 out
of the 88 possible results.

The behaviour exhibited by the heuristic in the first benchmark leads us to believe
that the solution values reported in Tables 4.3 and 4.4 are of high quality. However,
since the results of both heuristics are compared against each other, no specification
can be made regarding their optimality gap. In addition, the average gap obtained
by our algorithm is better than the average gap reached by both the scatter search
processes published in Baldacci et al. (2005) and the heuristic algorithm of Gendreau
et al. (1997). Nonetheless, it was not possible to obtain the exact same instances to test.
Both studies were conducted using randomly-generated instances no longer available.

Tables 4.3 and 4.4 demonstrate that, for 54 (74%) out of the 73 results obtained,
there is no improvement on the solution value as the number of iterations increases.
Faster execution times could be achieved by adding an additional criterion to stop the
search when a certain number of iterations have taken place with no change. One also
observes that the problem difficulty increases with |V |, but is fairly insensitive to |W |.

Table 4.5 lists the best values found by the two search processes—mono and bidirec-
tional. Column θ indicates the deviation (in percentage) of the final average value—z

obtained at the end of the 30,000 iterations—from the best value found during the
whole search process. The results show that for nearly 92% of the results, the average
deviation lies within 1% of the best value found. They also demonstrate that both
versions find the same best values but in one instance (pr 299, |V | = 45), and the
deviation of the average value from the best value found is only slightly smaller for
nearly all instances in the bidirectional search. However, it is important to note that
the bidirectional version was capable of solving instance rd 400, |V | = 100, while the
unidirectional was not.

Table 4.6 compares only one run (Selector is executed to optimality only once)
of each type of search under exact circumstances in order to get an insight of the
number of labels each version deals with during the search. It can be observed that the
bidirectional search benefits from the bounding mechanism that prevents the creation
of labels, since in 44% of the instances the number of labels stored is smaller than the
one of the monodirectional version.
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To compare the performance of both search versions, we applied the Mann-Whitney
test with a significance value α = 0.05. This is a well-known nonparametric statistical
hypothesis test which performs a pairwise comparison of the heuristics. In each com-
parison, the null hypothesis is that the two heuristics exhibit equivalent performance
while the alternative hypothesis is that one of them is better. This performance as-
sessment was done using the tool suite provided in PISA3. Table 4.7 shows the results.
The metrics considered are execution time, t, and objective function value, z. For the
metric under examination, either the results of the bidirectional search are better (�)
than those of the monodirectional version, either they are not better (≺) or there is
no statistically significant difference between both versions (≡). In each cell of Table
4.7, read row (bidirectional) against column (monodirectional). In this table, one ob-
serves that regarding the execution time, the unidirectional search yields better results
in nearly 60% of the instances. This is not surprising because the bidirectional algo-
rithm demands higher computational effort since it is calculating and sorting the items
needed to solve the FKSP every time Selector is executed; for every label generated,
it computes the lower bound useful to evaluate it; this heuristic manages twice the
number of search queues; and it verifies the existence of complete solutions every time
a label is stored. Regarding the second metric, both versions are equivalent most of
the times.

4.7 Conclusions

Our contribution is the development of a novel solution method for a difficult combi-
natorial optimisation problem which finds application in network design and vehicle
routing. Its key feature is the Selector operator which optimally splits an initial se-
quence of vertices into subsequences of visited and non-visited ones. The operator
works within an adaptive large neighborhood search. It is a simple, easy to implement
heuristic and its core, the Selector operator, is new and creative in its own right. We
have proposed both a monodirectional and a bidirectional with bounding version of a
heuristic method capable of obtaining very high quality solutions in short periods of
time. For small and medium-sized instances, the gap to optimality is within 1%. The
bidirectional version improves the performance of the original version from the point
of view that it allowed to find solution values in instances where the latter could not.
We have reported computational results for a set of instances whose size ranges from
a 100 to 575 vertices and the tour may contain from 25 up to 268 vertices.

3Software available at http://www.tik.ee.ethz.ch/sop/pisa/?page=pisa.php
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Table 4.2: Comparison of the results obtained by the heuristic and the branch-and-cut
algorithm of Gendreau et al. (1997) using small and medium-sized instances.

Exact Method (B&C) Selector-ALNS
Instance |V | |W | Optimum UB(s) Opt(s) θ(%) t(s) Found Best

SN−1Based on Gap(%)
kroA100 25 75 7985 0.17 0.17 2.36 0.42 14 0 272.51
kroA100 50 50 8608 22.20 44.95 0.21 0.95 11 0 23.06
kroB100 25 75 6449 0.21 0.27 0.16 0.50 24 0 22.79
kroB100 50 50 8043 1.18 21.54 0.70 1.25 1 0 60.20
kroC100 25 75 6161 0.01 0.01 0 0.81 30 0 0
kroC100 50 50 7942 0.81 0.81 0 2.27 30 0 0
kroD100 25 75 6651 0.24 0.38 0 0.31 30 0 0
kroD100 50 50 8411 3.75 4.33 0.02 1.13 27 0 4.64
kroE100 25 75 7417 0.26 0.27 0.02 0.42 29 0 8.71
kroE100 50 50 8493 1.10 1.11 0 1.00 30 0 0
kroA150 25 125 8050 0.13 0.13 1.43 0.54 3 0 131.72
kroA150 50 100 9623 118.80 121.58 0.37 1.16 2 0 38.56
kroA150 75 75 9971 1569.38 2884.34 0.60 2.93 0 0.59 59.81
kroB150 25 125 6165 0.01 0.01 0 1.50 30 0 0
kroB150 50 100 7818 1.16 1.16 0.02 2.32 29 0 7.23
kroB150 75 75 7434 13.34 38.24 0.01 4.32 26 0 2.16
kroA200 25 175 6165 0.01 0.01 0 1.63 30 0 0
kroA200 50 150 8273 0.46 0.49 0 5.09 30 0 0
kroA200 75 125 8499 141.97 266.19 0 6.31 30 0 0
kroA200 100 100 8355 4110.87 4789.22 0 14.21 30 0 0
kroB200 25 175 6450 0.15 0.15 0.18 1.17 23 0 24.62
kroB200 50 150 8171 2.69 3.46 0.78 2.6 3 0 77.29
kroB200 75 125 10007 0.65 0.65 1.42 4.5 5 0 166.52
kroB200 100 100 9988 17.20 17.68 1.73 11.60 5 0 202.63
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Table 4.3: Comparison of the results obtained by the monodirectional and the bidirec-
tional algorithms using large-sized instances (Part 1/2).

ALNS iterations 1,000 5,000 10,000 15,000 20,000 25,000 30,000
Instance |V | |W | z t z t z t z t z t z t z t
Based on
kroA200 25 175 6165 0.06 6165 0.28 6165 0.54 6165 0.80 6165 1.1 6165 1.3 6165 1.6

6165 0.07 6165 0.31 6165 0.59 6165 0.88 6165 1.2 6165 1.5 6165 1.7
kroA200 50 150 8275 0.22 8275 0.85 8275 1.5 8275 2.1 8273 2.7 8273 3.3 8273 4.0

8273 0.32 8273 1.1 8273 1.9 8273 2.7 8273 3.5 8273 4.3 8273 5.0
kroA200 75 125 8499 0.61 8499 1.8 8499 3.1 8499 4.1 8499 5.1 8499 5.9 8499 6.9

8499 0.82 8499 2.1 8499 3.3 8499 4.5 8499 5.5 8499 6.5 8499 7.5
kroA200 100 100 8356 1.2 8356 4.3 8356 7.7 8356 10.3 8356 12.4 8356 14.4 8356 16.4

8356 1.7 8356 5.8 8356 9.4 8356 12 8356 14.2 8356 16.4 8356 18.9
kroB200 25 175 6450 0.04 6450 0.20 6450 0.38 6450 0.57 6450 0.74 6450 0.94 6450 1.1

6450 0.05 6450 0.22 6450 0.42 6450 0.62 6450 0.82 6450 1.0 6450 1.2
kroB200 50 150 8235 0.32 8230 0.78 8228 1.3 8225 1.7 8225 2.1 8223 2.6 8221 3

8234 0.42 8233 0.91 8231 1.4 8224 1.9 8223 2.4 8219 2.8 8219 3.2
kroB200 75 125 10196 0.59 10196 1.8 10193 3.3 10185 4.5 10185 5.6 10185 6.8 10179 7.8

10184 1.1 10160 2.8 10150 4.4 10150 5.8 10150 6.8 10144 7.8 10144 8.8
kroB200 100 100 10183 3.1 10143 6.9 10130 10.3 10120 14.6 10111 16.8 10103 19.1 10100 21.2

10256 32.1 10238 61.7 10168 110 10141 121 10107 143 10094 155 10093 157
pr 264 40 224 5280 0.96 5280 4.2 5280 8.4 5280 12.8 5280 17.1 5280 21 5280 24.8

5280 1 5280 5 5280 9.6 5280 14 5280 18.4 5280 22.6 5280 27
pr 264 66 198 5280 5.4 5280 26.9 5280 52.9 5280 79.7 5280 106 5280 132 5280 157

5280 6.4 5280 31.2 5280 61.2 5280 90 5280 118 5280 147 5280 176
pr 264 92 172 5553 7.8 5553 33.1 5553 64.1 5553 92.1 5553 118 5553 147 5553 177

5553 8.2 5553 33.6 5553 60.2 5553 88.1 5553 115 5553 141 5553 165
pr 264 132 132 6401 3.5 6401 21.7 6401 40.6 6401 56.3 6401 79 6401 105 6401 126

6401 3.6 6401 28.6 6401 60.4 6401 89.6 6401 127 6401 170 6401 225
pr 299 45 254 10942 2.1 10942 9.2 10942 17.8 10942 26.1 10942 35.1 10942 44.5 10942 53.5

10941 2.8 10941 11.6 10941 22.6 10941 34.9 10941 46.8 10941 57.9 10941 68.9
pr 299 75 224 10874 5.5 10874 27.3 10874 54.1 10874 79.7 10874 104 10874 127 10874 147

10874 6.5 10874 34 10874 65.3 10874 96.8 10874 128 10874 156 10874 184
pr 299 105 194 13369 10.2 13369 40.3 13369 74.3 13369 105 13369 136 13369 166 13369 192

13369 11.5 13369 50.3 13369 91.5 13369 129 13369 166 13369 201 13369 237
pr 299 150 149 11621 12.5 11621 48.7 11621 91.1 11621 132 11621 171 11621 209 11621 250

11622 15.2 11622 60 11622 111 11622 157 11622 205 11622 250 11622 294
lin 318 48 270 3262 3.9 3262 15.7 3262 29.5 3262 42.3 3262 54.7 3262 65.5 3262 76.9

3262 4.2 3262 15.7 3262 29.4 3262 43.8 3262 57.1 3262 70.9 3262 84.5
lin 318 80 238 4958 20 4958 98.9 4957 195 4957 292 4957 381 4957 470 4957 551

4957 20.6 4957 95 4957 172 4957 236 4957 301 4957 374 4957 450
lin 318 112 206 8419 42.9 8419 207 8419 402 8419 589 8419 778 8419 962 8419 1,150

8419 44.8 8419 220 8419 425 8419 619 8419 809 8419 992 8419 1,170
lin 318 159 159 5467 34.8 5467 180 5467 356 5467 537 5467 720 5467 905 5467 1,090

5467 35.8 5467 187 5467 374 5467 557 5467 740 5467 926 5467 1,110
rd 400 60 340 2642 2.2 2631 4.1 2630 6.4 2630 8.6 2630 10.6 2630 12.6 2630 14.8

2636 2.6 2626 5 2624 7.8 2624 10.3 2624 12.7 2624 15 2624 17.5
rd 400 100 300 TO

3881 127 3854 198 3852 636 3848 650 3846 657 3845 667 3845 753
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Table 4.4: Comparison of the results obtained by the monodirectional and the bidirec-
tional algorithms using large-sized instances (Part 2/2).

ALNS iterations 1,000 5,000 10,000 15,000 20,000 25,000 30,000
Instance |V | |W | z t z t z t z t z t z t z t
Based on
pcb 442 67 375 6009 5.9 6009 28.2 6009 53.1 6009 76.1 6009 97.5 6009 117 6009 135

6009 5.9 6009 29.2 6009 55.6 6009 78.4 6009 101 6009 122 6009 144
pcb 442 111 331 4748 69.8 4743 273 4742 522 4742 782 4742 1,020 4742 1,280 4742 1,520

4749 56.4 4744 227 4742 425 4742 615 4742 826 4742 1,030 4742 1,220
pcb 442 155 287 6282 99.8 6277 461 6271 914 6271 1,370 6271 1,810 6271 2,250 6271 2,700

6279 73.2 6271 354 6271 697 6271 1,030 6271 1,380 6271 1,750 6271 2,100
pcb 442 221 221 6985 86.6 6985 400 6985 741 6985 1,090 6985 1,440 6985 1,770 6985 2,120

6985 95.7 6985 443 6985 850 6985 1,240 6985 1,660 6985 2,070 6985 2,490
d 493 75 418 6840 7.6 6840 38.6 6840 77.4 6840 117 6840 157 6840 197 6840 235

6840 4.8 6840 23.4 6840 46.6 6840 69.4 6840 91.5 6840 114 6840 136
d 493 124 369 6475 3.1 6475 15.1 6475 30.1 6475 45.4 6475 60.9 6475 76.3 6475 91.8

6475 2.6 6475 13.2 6475 26.4 6475 39.5 6475 52.8 6475 65.7 6475 78.4
d 493 173 320 5682 106 5682 395 5682 706 5682 1,060 5682 1,450 5682 1,850 5682 2,270

5682 116 5682 455 5682 881 5682 1,320 5682 1,750 5682 2,160 5682 2,650
att 532 81 451 2262 66.7 2262 330 2262 631 2262 841 2262 1,010 2262 1,160 2262 1,340

2262 62.1 2262 288 2262 501 2262 673 2262 865 2262 1,060 2262 1,220
att 532 134 398 2715 139 2715 732 2715 1,390 2715 1,920 2715 2,470 2715 3,080 2715 3,630

2715 143 2715 782 2715 1,550 2715 2,240 2715 2,940 2715 3,670 2715 4,400
ali 535 81 454 43537 5.9 42888 32.8 42787 62.5 42706 93.2 42705 127 42697 159 42697 191

43340 9.1 42837 43.1 42820 85.1 42742 122 42721 158 42706 193 42706 231
ali 535 135 400 46089 15.2 44788 85.2 44119 195 43760 318 43634 431 43454 548 43454 662

46213 13.6 44393 84.5 43953 170 43798 254 43540 336 43427 413 43427 492
ali 535 188 347 49735 37 49307 188 48432 394 48141 603 47563 782 47145 948 46842 1,140

49874 39 49111 200 48254 383 47522 604 47249 816 46645 1,020 46493 1,190
ali 535 268 267 50000 20.6 50000 131 50000 305 50000 488 50000 689 50000 909 50000 1,150

50000 23.8 50000 247 50000 553 50000 917 50000 1,250 50000 1,600 50000 1,920
rat 575 87 488 262 52.8 262 256 262 503 262 742 262 970 262 1,200 262 1,430

262 68 262 339 262 675 262 969 262 1,250 262 1,510 262 1,790
rat 575 145 430 375 110 375 468 375 915 375 1,350 375 1,790 375 2,230 375 2,650

375 123 375 584 375 1,100 375 1,590 375 2,070 375 2,540 375 3,010
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Table 4.5: Best values found by the monodirectional and bidirectional searches.

Instance |V | |W | MONODIRECTIONAL BIDIRECTIONAL w/BND
Based on best found θ (%) best found θ (%)
kroA200 25 175 6165 0 6165 0

50 150 8273 0 8273 0
75 125 8499 0 8499 0

100 100 8356 0 8356 0
kroB200 25 175 6450 0 6450 0

50 150 8171 0.61 8171 0.59
75 125 10008 1.71 10008 1.36

100 100 9988 1.12 9988 1.05
pr 264 40 224 5280 0 5280 0

66 198 5280 0 5280 0
92 172 5553 0 5553 0

132 132 6401 0 6401 0
pr 299 45 254 10942 0 10941 0

75 224 10874 0 10874 0
105 194 13369 0 13369 0
150 149 11621 0 11621 0

lin 318 48 270 3262 0 3262 0
80 238 4957 0 4957 0

112 206 8419 0 8419 0
159 159 5467 0 5467 0

rd 400 60 340 2621 0.34 2621 0.11
100 300 NR 3820 0.65

pcb 442 67 375 6009 0 6009 0
111 331 4742 0 4742 0
155 287 6271 0 6271 0
221 221 6985 0 6985 0

d 493 75 418 6840 0 6840 0
124 369 6475 0 6475 0
173 320 5682 0 5682 0

att 532 81 451 2262 0 2262 0
134 398 2715 0 2715 0

ali 535 81 454 42643 0.13 42643 0.15
135 400 43150 0.70 43150 0.64
188 347 45450 3.06 45450 2.29
268 267 50000 0 50000 0

rat 575 87 488 262 0 262 0
145 430 375 0 375 0
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Table 4.6: Comparison of the number of labels produced in one iteration of Selector
and CPU time used.

Instance |V | |W | MONODIRECTIONAL BIDIRECTIONAL w/BND
Based on created stored t (s) created stored t (s)
kroA200 25 175 564 171 0 1,073 303 0

50 150 19,010 1,801 0 21,891 2,173 0.01
75 125 68,408 5,121 0.02 107,849 5,381 0.03

100 100 287,689 11,356 0.06 371,212 9,947 0.09
kroB200 25 175 2,525 500 0 1,259 508 0

50 150 72,764 8,262 0.03 32,206 4,771 0.02
75 125 102,657 10,607 0.03 101,326 15,579 0.07

100 100 337,443 26,695 0.11 329,576 24,564 0.14
pr 264 40 224 285 169 0 217 87 0

66 198 1,365 281 0 1,417 296 0.01
92 172 1,957 383 0 2,653 594 0.01

132 132 5,833 709 0 186,331 8,706 0.15
pr 299 45 254 5,718 2,246 0 5,856 2,236 0.01

75 224 11,728 4,559 0.02 8,898 3,051 0.01
105 194 337,600 37,879 0.71 213,819 32,757 0.76
150 149 825,417 56,829 1.11 473,044 37,891 0.81

lin 318 48 270 2,473 353 0 2,526 368 0.01
80 238 19,461 2,018 0.02 16,778 2,075 0.02

112 206 509,751 9,320 0.22 570,819 9,654 0.26
159 159 60,046 5,278 0.05 55,965 4,423 0.04

rd 400 60 340 247,176 15,257 0.25 243,003 16,594 0.30
100 300 13,257,328 316,542 28.10 7,278,543 188,562 12.94
140 260 17,228,926 529,899 68.32 8,691,701 291,064 19.31

pcb 442 67 375 33,514 24,566 0.02 7,251 3,814 0
111 331 79,665 10,279 0.09 63,120 8,540 0.08
155 287 375,959 36,638 0.36 242,391 18,208 0.20
221 221 1,782,107 97,848 0.72 582,023 34,988 0.38

d 493 75 418 11,242 969 0.01 8,066 1,217 0.01
124 369 730 158 0.01 1,077 432 0
173 320 765 289 0 1,359 528 0.01
247 246 285 246 0.17 532 477 0.01

att 532 81 451 15,800 622 0.01 19,398 835 0.02
134 398 56,708 1,525 0.05 100,868 3,055 0.07
187 345 430,068 5,140 0.35 602,604 8,729 0.58
266 266 1,348,446 11,705 0.86 2,220,767 27,703 1.86

ali 535 81 454 51,207 3,603 0.05 155,966 7,859 0.15
135 400 1,543,983 28,002 1.12 948,595 17,205 0.93
188 347 790,841 19,151 0.86 629,960 9,008 0.60
268 267 468,916 21,781 0.33 6,816,306 92,834 9.17

rat 575 87 488 3,749 785 0.01 2,823 600 0.01
145 430 16,589 2,846 0.12 24,246 2,448 0.05
202 373 45,693 6,848 0.11 101,751 7,025 0.15
288 287 664,958 22,559 0.73 246,734 9,661 0.22
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Table 4.7: Results of the Mann-Whitney statistical test for the monodirectional and
bidirectional algorithms.

Instance MONO
Based on |V | |W | t z

kroA200 25 175 BI ≺ ≡
50 150 BI ≺ ≡
75 125 BI ≺ ≡

100 100 BI ≺ ≡
kroB200 25 175 BI ≺ ≡

50 150 BI ≺ ≡
75 125 BI ≺ ≡

100 100 BI ≺ ≡
pr 264 40 224 BI ≺ ≡

66 198 BI ≺ ≡
92 172 BI ≡ ≡

132 132 BI ≺ ≡
pr 299 45 254 BI ≺ ≡

75 224 BI ≺ ≡
105 194 BI ≺ ≡
150 149 BI ≺ ≺

lin 318 48 270 BI ≡ ≡
80 238 BI ≡ ≡

112 206 BI ≡ ≡
159 159 BI ≡ ≡

rd 400 60 340 BI ≺ ≡
100 300 BI � �

pcb 442 67 375 BI ≡ ≡
111 331 BI ≡ ≡
155 287 BI ≡ ≡
221 221 BI ≺ ≡

d 493 75 418 BI ≡ ≡
124 369 BI ≡ ≡
173 320 BI ≺ ≡

att 532 81 451 BI ≡ ≡
134 398 BI ≺ ≡

ali 535 81 454 BI ≺ ≡
135 400 BI ≡ ≡
188 347 BI ≡ ≡
268 267 BI ≺ ≡

rat 575 87 488 BI ≺ ≡
145 430 BI ≡ ≡
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5.1 Introduction

In this fifth chapter, the solution procedure proposed to solve the multi-vehicle version
of the Covering Tour Problem (m-CTP) is discussed. The m-CTP is a generalisation
of the CTP. Hence, like the CTP, it considers two kinds of geographically scattered
locations. The first kind are the covering ones, potential locations at which vehicles
may stop, and the second kind are the locations to cover. The latter cannot be visited,
but they must lie within the required distance of a vehicle route. The problem consists
in identifying a minimum-length set of routes over the covering locations such that
those that cannot be visited by the routes are close enough to a covering location.
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To solve the problem, a version of Selector that manages the definition of routes
was implemented. This version is named m-Selector . The method is competitive as
shown by the quality of results evaluated using the output of exact (Hà et al. (2013)
and Jozefowiez (2014)) and heuristic methods (Hà et al. (2013) and Kammoun et al.
(2015)).

The remainder of the chapter is organised as follows. Section 5.2 formally presents
the problem, discusses applications of it, and provides a view of some of the solution
approaches that have been presented in the literature. The methods used as reference to
compare our results are explained more precisely. Sections 5.3–5.4 explain the solution
method proposed in this thesis. Section 5.5 documents the results obtained. Finally,
Section 5.6 discusses the contribution of this work.

5.2 The Multi-Vehicle Covering Tour Problem

5.2.1 Formal Definition of the m-CTP

The m-CTP can formally be described by considering a complete undirected graph
G = (N,E) where the vertex set is represented by N = V ∪W and the edge set by
E = {(vi, vj)|vi, vj ∈ N, i < j}. The subset of n vertices that can be visited at most
once is given by V = {v0, v1, v2, . . . , vn−1}, while the subset of vertices that must be
covered but cannot be visited is given by W . Set V includes a subset T of vertices that
must be visited, |T | ≥ 1. Vertex v0 represents the depot where m identical vehicles are
available. Let dij be the distance associated with each edge (i, j) ∈ E, and D = (dij)
the distance matrix defined on E that satisfies the triangle inequality. A vertex wi ∈W
is covered if there exists at least one vertex vj ∈ V in the set of routes for which dij 6 c,
where c is known as the covering distance. Each vertex in V covers a subset of W , so
for each wi ∈W , a subset of vertices of V that can cover it is given. The m-CTP calls
to find a set of m vehicle routes such that the total travel cost is minimised and the
following constraints are satisfied:

i. There are at most m vehicle routes, and each of them starts and ends at the
depot vertex v0.

ii. Each vertex vi ∈ V belongs to at most one route, while each vertex vi ∈ T

belongs to exactly one route.

iii. Each vertex wi ∈W is covered by only one route.

iv. The number of vertices on any route cannot exceed a preset value p (depot not
included).

v. The length of each route cannot exceed a prefixed value q.

The m-CTP is NP-hard as it reduces to a CVRP with unit demand when T = V

and W = ∅, or simply to a CTP when there are no capacity constraints. Figure 5.1
shows a feasible m-CTP tour for an instance where |V | = 13, |W | = 20, m = 4, and
p = 3. The square represents the depot.
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Figure 5.1: Example of m-CTP tour.

5.2.2 Applications Reported in the Literature

Likewise the CTP, the problem finds application in the design of bilevel transportation
networks, for example, networks for humanitarian aid distribution. In an emergency
situation, help crews cannot visit every single dwelling. Rather, a set of help-dispatch
centres is established, and in order to obtain survival goods, inhabitants are expected
to reach these centres which are located within reasonable distance. The centres must
be supplied with goods from a central depot using a capacitated vehicle fleet.

A scenario of disaster relief distribution based on a covering problem is studied
by Doerner and Hartl (2008) in the Austrian context. Nolz et al. (2010) defined a
multi-objective covering problem to plan routes for the delivery of drinking water to
the population affected by a disaster. The objectives they considered were minimise
(1) the total distance travelled by the covered customers in order to reach their near-
est visited stop; (2) the number of customers unable to reach a visited stop within a
prespecified maximum distance; (3) the tour length; and (4) the latest arrival time at
a customer. They solved bi-objective problems by considering simultaneously only two
of the objectives formerly presented. They developed a hybrid metaheuristic encom-
passing genetic algorithms, variable neighborhood search and path relinking in order
to solve these bi-objective problems. In addition, the algorithm is tested on real-world
data from the province of Manab́ı in Ecuador.

Naji-Azimi et al. (2012) use the m-CTP to model the location and supply of dis-
tribution centers which aim to provide humanitarian help to the people affected by
a disaster. They present a mathematical model, and a heuristic solution approach: a
multi-start local search algorithm. Their local search contains four procedures designed
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to tackle specific characteristics of a solution.
In the context of health care distribution, the dairy industry presents the location

and routing of milk collection points and animal health care facilities which farmers
can reach, Simms (1989). In Western countries, a problem, similar to the one presented
by Hodgson et al. (1998) for the CTP, is encountered in the design of routes for mobile
health care prevention teams (Brown and Fintor, 1995). Another application arises in
the study of Oliveira et al. (2013) in which they adapt the model of the m-CTP in order
to design routes for patrolling urban geographical areas in the city of Vinhedo, São
Paulo, Brazil. They solve their model with a heuristic approach based on four heuristic
algorithms that are an extension of the heuristics presented by Hachicha et al. (2000)
and classic VRP heuristics.

Flores-Garza et al. (2015) presented a variant of the m-CTP where the objective
function is modified to better suit the considerations made by humanitarian logistics.
Classic logistics problems aim at maximising profit, while humanitarian logistics aims
at minimising losses by providing relief to the victims as soon as possible (Galindo and
Batta, 2013). Therefore, length minimisation may not properly reflect the need for
quick service, equity and fairness which characterise the transport of survival goods.
Instead, fairer objective functions such as the minimisation of the sum of arrival times
at delivery points have been proposed (Ngueveu et al., 2010). Flores-Garza et al. (2015)
consider such function and propose a mixed integer linear formulation and a GRASP-
based solution procedure.

5.2.3 Solution Approaches Reported in the Literature

The branch-and-cut method developed by Gendreau et al. (1997) for the CTP does not
extend easily to the m-CTP, as this problem turns out to be more difficult to solve than
the standard VRP, which itself can rarely be solved exactly when |V | > 100. Heuris-
tic approaches were the first attempts to solve the problem. Hachicha et al. (2000)
introduced the m-CTP. They used a three-index vehicle flow formulation, and three
heuristics based on classic VRP algorithms: savings, sweep and route first–cluster sec-
ond to solve randomly-generated instances with |V | ≤ 200. They compared the results
of the three heuristics to each other. The optimality gap is, therefore, unknown. Not
many publications can be identified after this introductory article until Tricoire et al.
(2012) presented a bi-objective variant with stochastic demand. Cost and expected
uncovered demand define the two objectives. The problem was solved with a branch-
and-cut technique within an ε-constraint algorithm. Furthermore, the approach was
applied to solve the organisation of a disaster relief operation for rural communities in
Senegal.

Later on, Hà et al. (2013) proposed a new formulation for a variant of the m-
CTP—named the m-CTP-p—where the route length constraint is relaxed and the
m number of vehicles used is a decision variable. They used an exact as well as a
heuristic method to solve the problem. Murakami (2014) formulated the m-CTP as a
Set Covering Problem (SCP). To solve it, he suggested a column generation approach
where the route generation subproblem is solved by the cheapest insertion heuristic and
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the heuristic of Gendreau et al. (1997) for the CTP. The testing considers randomly-
generated instances with |V | ≤ 500. He compares his results against the ones of the
three heuristics of Hachicha et al. (2000), and obtains better quality solutions, but
worse execution times. Kammoun et al. (2015) solved the same variant of the m-CTP
as Hà et al. (2013) using an algorithm based on the variable neighborhood search
(VNS) proposed by Mladenović and Hansen (1997). Their results outperform those of
Hà et al. (2013).

Recently, Allahyari et al. (2015) published a multi-depot version of a variant of
the m-CTP, the Multi-Depot Covering Tour Vehicle Routing Problem. They developed
two mixed integer programming formulations and implemented a hybrid metaheuristic
combining GRASP, iterated local search and simulated annealing. They treat instances
with |V | ≤ 90. For values of |V | ≤ 30 they solve their mathematical model with a
commercial solver and compare the results of their heuristic against this output. They
obtain a very competitive comparison.

Exact methods to solve the problem have also been proposed. Lopes et al. (2013)
proposed a branch-and-price algorithm which enforces all the constraints defined in the
problem. The pricing subproblems reduce to the RCESPP and are solved with dynamic
programming. However, to find routes with negative reduced cost faster, they also
implement a GRASP algorithm which embeds a VNS metaheuristic in the local search
phase. Their test bed is composed of randomly-generated instances with |V | ≤ 200,
but the algorithm only managed to solve to optimality 33% of it within a four-hour
execution time limit. Jozefowiez (2014) suggested a path-based model for the m-CTP
and a branch-and-price algorithm to solve it.

5.2.4 Solution Approaches Used as Reference

Hà et al. (2013) contributed by providing a model, a-branch-and-cut procedure and
a two-phase hybrid metaheuristic. Their formulation is based on the one done for
the CTP by Baldacci et al. (2005), and considers that each vertex of V \ {v0} has a
unit demand. They relaxed the constraint on the length of each route of the original
problem because their formulation cannot express it. However, its advantage is that
the number of variables and constraints increases polynomially with the instance size.
Their branch-and-cut method uses the valid inequalities proposed by Baldacci et al.
(2005) for their CTP solution method. They allotted a running time of two hours to
their exact algorithm.

In their two-phase heuristic, the first phase solves exactly a SCP in order to generate
a subset of V that can cover all the vertices of W . That is to say, the generated set are
the vertices that must be visited, a CTP-tour. The problem then becomes a VRP which
is solved by an algorithm based on the evolutionary local search (ELS) method of Prins
(2009). The backbone of their ELS implementation is the Split operator. Using one of
the sets generated in the first phase, their algorithm produces a giant tour over which
the Split operator is applied. Next, the set of routes obtained undergoes local search
to improve its quality. They use two classic local search neighborhoods: relocation of
a vertex and swapping the position of two vertices. They introduce: combining two
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unsaturated routes and replacing a vertex in the solution by a new vertex. For the
next iteration, they concatenate the set of routes in order to obtain the original giant
tour and apply a mutation operator over it to obtain a new one. The algorithm iterates
a fixed number of times. The results obtained by the metaheuristic, compared against
the output of their branch-and-cut method when possible, show an optimality gap of
up to 1.5%. Their study considered TSPLIB-derived instances with |V | ≤ 100.

In the branch-and-price approach of Jozefowiez (2014), the subproblem is a variant
of the Profitable Tour Problem, which is modeled as a Ring Star Problem and solved
with a branch-and-cut procedure. The algorithm was applied to randomly-generated
instances and to TSPLIB-derived instances with |V | ≤ 60. Some of the tests were
done relaxing the route length constraint, while others relaxing the restriction on the
number of visited vertices on a route. His experimentation showed that the constraint
on the number of vertices is easier to manage than the one on the route length in terms
of execution times as the subproblem is easier to solve.

Kammoun et al. (2015) proposed a simple deterministic case of VNS, known as
variable neighborhood descent (VND), which is based on finding the best neighbor.
The basic idea of VNS and its variants is the systematic change of neighborhoods
within a local search procedure when the search becomes trapped at local optima
(Hansen et al., 2010). More precisely, VNS explores larger and larger neighborhoods
of the incumbent solution. The search jumps from its current point in the solution
space to a new one if an improvement has been made or some acceptance criterion
is met. Kammoun et al. (2015) used two neighborhood structures within their VND
algorithm: inserting the vertex that maximises the number of covered vertices, and
swapping a vertex that belongs to the solution by one not on it.

5.3 Application of m-Selector to Solve the m-CTP

The considerations done in this study are the following.

i. The m number of vehicles used is a decision variable.

ii. Firstly, the restriction on the number of vertices allowed on a route is considered,
p ≤ k, and the restriction on the route length is relaxed, q = +∞. Secondly,
p = +∞ and q ≤ 2ϕ+ %, where

ϕ = max
vj∈V \{v0}

{c0,j} (5.1)

c0,j is the cost of reaching vertex vj from the depot (weight of edge (v0, vj)), and
% is a given constant. The rationale behind the value of q is as follows. If a vehicle
is needed to serve every vertex vj ∈ V \{v0}, then for the problem to be feasible,
the minimum route length needs to be q = 2ϕ.

iii. Every vertex vi ∈ V \ {v0} has a demand of one, therefore, every vehicle has a
capacity of p.
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The principles of operation of m-Selector are very similar to those of the single-
vehicle version. The algorithm acts on a sequence of vertices that represent customers,
and simultaneously selects the best ones to visit and assigns them to optimal vehicle
routes, while keeping the original routing order and satisfying side constraints. The
selection problem is modelled as a RCESPP in an auxiliary acyclic directed graph,
while the problem of segmenting the selected vertices into feasible routes is solved
via a modified version of the Split operator embedded into the RCESPP algorithm.
Formally, the input of the algorithm is a permutation σ of set V , where the depot is
always the first vertex. The output is a subset V ′ ⊂ V segmented into routes and to
be visited in the same order given in σ such that the value of the objective function
considered is optimal and the side constraints are satisfied.

As explained in Chapter 3, the core of the algorithm remained the same, however,
changes were indeed necessary to enable the construction of more than one route. The
next sections explain the changes introduced in order to have a multi-vehicle version.

5.3.1 Label Definition

In general terms, the definition of a label is the same as the former one. A label
λ = [ζ, ν, ω] stores

i. ζ, the optimal cost of the partial multi-route tour.

ii. ν, the last vertex visited in the elementary partial tour.

iii. ω, a vector indexed by the vertices of W where ω[i] indicates either wi ∈ W is
already covered or the number of vertices of V that can still be visited to cover
it.

However, auxiliary vectors, used to compute the split cost and keep the multi-route
tour, are also memorized. No field is maintained for the vehicle capacity Q, since this
information can be inferred from the number of vertices already visited. Recall that
all vertices vi ∈ V \ {v0} have a unit demand.

5.3.2 Dominance Rule

Dominance tests are always performed when labels are extended, so that the algo-
rithm records only non-dominated labels. A label λ1 = [ζ1, ν1, ω1] dominates a label
λ2 = [ζ2, ν2, ω2] with λ1 6= λ2 if and only if:

i ν1 = ν2

ii ζ1 ≤ ζ2

iii {wi : ω2[i] indicates wi is covered} ⊆ {wi : ω1[i] indicates wi is covered}

iv Q1 ≥ Q2
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This is to say, two labels are comparable only when arriving at the same vertex. In
this way, equivalent past and future trajectories are compared. One label dominates
when its cost is lower or equal, its set of covered vertices is a superset of the second
one, and its remaining vehicle capacity is larger or equal. It is important to consider
the vehicle capacity because the value of this variable determines how soon the vehicle
must return to the depot, so a label with larger capacity has the possibility of attaining
a lower tour cost.

5.3.3 Cost Function

When extending a label from vertex σi to a successor vertex σk with k > i, the single-
vehicle version computes the cost of label λk using a very simple recurrence equation
which simply adds the weight of the arc added to the path to the known cost:

ζ(λk) = ζ(λi) + cost(i, k) | 1 ≤ k ≤ n− i− 1 (5.2)

Instead, the m-Selector operator computes the cost of segmenting the path repre-
sented by the label into feasible routes. The cost of a label is, therefore, the cost of
the best routes possible. This computation is done with a modified version of the Split
operator. It is modified in the sense that it computes the arc weights of graph H of
the Split algorithm as vertices are added to the path represented by the label. The fact
that the demand is equal for all customers allows to implement a very simple algo-
rithm. Then, to determine the best split for the set of vertices included in the label, one
needs to figure out only the lowest travel cost possible to reach the last added vertex.
This means one has to find the weight of the in-going arcs that exist in graph H for
the added vertex and choose the best one. The cost function varies slightly depending
on the restriction relaxed, q = +∞ (route length) or p = +∞ (number of vertices
visited on a route), so the two versions will be explained separately. However, these
algorithms can be merged into one (see Vargas et al. (2016)). For clarity reasons, they
will be explained separately.

Considering p constant and q = +∞. Algorithm 11 shows how it is computed.
Vectors V [ ] and P [ ] have the same meaning as in the Split algorithm. They store the
best travel cost to the corresponding vertex and the index of the predecessor vertex
respectively. Since demand is equal for all customers, the route capacity is given by
p. Hence, at most p arcs must be constructed in graph H. Firstly, the algorithm
determines the vertex where the construction of the arcs in graph H will stop, variable
lastDepot. Secondly, it iteratively computes the weight of at most p arcs, according to
the definition of arcs given by the Split operator. The one of lowest weight is the one
stored.

Figure 5.2 illustrates an example in which p = 4 and ν = 6. Graph H represents
the vertices stored so far in the label. First, the stopping point is determined. In this
case, it is vertex σ2, since every route can have at most four vertices. Recall that in the
Split algorithm the tail of an arc rests at the depot, so the first iteration computes the
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Algorithm 11 : Compute ζ(λ) in m-Selector when q = +∞
Input: extended label λ = [ ζ, ν, ω | V [ ], P [ ] ], p
Output: best total route cost stored in V [ν]

1: i← ν
2: lastDepot← ν − p
3: if ( lastDepot < 0 ) then
4: lastDepot← 0
5: end if
6: path← cost(σi, σ0)
7: while ( i > lastDepot ) do
8: arcH = V [i− 1] + cost(σ0, σi) + path
9: if ( arcH < V [ν] ) then

10: V [ν]← arcH
11: P [ν]← i− 1
12: end if
13: path← path+ cost(σi−1, σi)
14: i← i− 1
15: end while

arc cost for trip {σ0, σ6, σ0} (shown in green). The cost to get to vertex σ5 is known
from the previous computation. In the second iteration, the depot is now at σ4, so it
computes the cost of trip {σ0, σ5, σ6, σ0} and the cost to get to σ4 is again known.
It follows in the same fashion until it reaches vertex σ2 and constructs the arc that
represents trip {σ0, σ3, σ4, σ5, σ6, σ0}. No more customers can be put into the route,
so it stops.

Considering q = 2ϕ + % and p = +∞. Algorithm 12 shows how it is computed.
This algorithm shares many similarities with Algorithm 11. Vectors V [ ] and P [ ] have
the same meaning. They store the best travel cost to the corresponding vertex and
the index of the predecessor vertex respectively. Variable i stores the position of the
depot. The algorithm constructs arcs in graph H as long as the route length is within
the limit, and there still are vertices where to place the depot. Since the cost matrix
satisfies the triangle inequality, it is safe to stop once the maximum route length is
exceeded. Then, the algorithm constructs at most ν arcs.

5.3.4 Sets of Elite Vertices

As the size of V increases, the problem becomes more challenging. For this reason, we
established a strategy for working with a smaller set V, but composed of elite vertices
that might still allow to find an optimal solution or at least a solution of high quality
in low execution times. In the test bed considered in the benchmark, the only instance
that showed very long execution times, and which motivated the design of this strategy,
was the one derived from kroB200 with |V | = 100.

The strategy is the following. We use different vertex-selection criteria to generate
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σ0 σ1 σ2 σ3 σ4 σ5 σ6

V [5]

σ0 σ1 σ2 σ3 σ4 σ5 σ6

V [4]

σ0 σ1 σ2 σ3 σ4 σ5 σ6

V [3]

σ0 σ1 σ2 σ3 σ4 σ5 σ6

V [2]

Figure 5.2: Example of the computation of the cost of a label for p = 4 and q = +∞.
The first row, from top to bottom, shows the first iteration, the second row depicts the
second one, and so forth.

different subsets of V, Γ = {γi | γi ⊂ V } for i ∈ {1, . . . , s}. Next, we merge the sets
obtained into a single set of elite vertices, γ′. Finally, the m-Selector-based algorithm
previously presented is executed to obtain the final solution.

It is important to say that, in order to obtain a feasible solution, any subset γi ⊂ V
created must be capable of covering all the vertices in W . When a set of elite vertices
is used, the algorithm works in exactly the same way as explained, but it does so over
a sub-graph of G whose set V is built with the elite vertices. It is worth noting that
the process of reducing set V still requires computing the covering distance with the
original set, so that we insure the problem solved is the original problem.

Let Ωi be the set of vertices wi ∈W covered by vertex vi ∈ V \ {v0}, and χi be the
sum of two edges connecting vertex vi ∈ V \ {v0} to any other vertex vj ∈ V . Then,
the following criteria for creating subsets of V were applied:

i. Compute the ratio |Ωi|
log2χi

for each vertex vi ∈ V \ {v0}, where χi considers the

two smallest edges (on the original graph G) of vertex σi. Order the vertices in
decreasing order of this ratio. To build the subset, select the vertices, starting by
best, until every vertex wi ∈W is covered by at least two vertices vi ∈ V \ {v0}.
While selecting, discard redundant vertices.

ii. Same as above but the edges considered are the largest ones.

iii. Compute the ratio |Ωi|
log2χi

for each vertex, where χi considers the two largest
edges of vertex σi. Order the vertices in decreasing order of this ratio. Starting
by the best vertex, determine the vertices it dominates below it in the ordering
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Algorithm 12 : Compute ζ(λ) in m-Selector when p = +∞
Input: extended label λ = [ ζ, ν, ω | V [ ], P [ ] ], q
Output: best total route cost stored in V [ν]

1: i← ν
2: fits← true
3: path← cost(σi, σ0)
4: while ( fits ) and ( i > 0 ) do
5: route← cost(σ0, σi) + path
6: if ( route ≤ q ) then
7: arcH = V [i− 1] + route
8: if ( arcH < V [ν] ) then
9: V [ν]← arcH

10: P [ν]← i− 1
11: end if
12: path← path+ cost(σi−1, σi)
13: i← i− 1
14: else
15: fits← false
16: end if
17: end while

made and eliminate them. Continue until all vertices vi ∈ V \ {v0} are treated.
A vertex vi dominates a vertex vj if and only if Ωj ⊆ Ωi. The vertices that are
not eliminated compose the subset.

Using the above three criteria, we obtained the sets of elite vertices Γ for all the 200-
vertex instances of the test bed. Very good results were obtained as can be observed
in the corresponding table of results. One of the criteria tested to construct subsets
γi ⊂ V was solving a SCP using the Gurobi solver. However, the sets obtained were of
poor quality and finally rendered useless. In the work of Hà et al. (2013), this strategy
works because, over the generated subset, they apply local search procedures that allow
to introduce new vertices to it. In that way, vertices that enable to obtain high-quality
or optimal solutions and were not originally included in the subset can become part of
it, but in our case such is not possible. Our algorithm must start with a good-quality
set.

5.4 ALNS: Pseudocode and Parameters

Unlike Selector , we observed that m-Selector showed to be sensitive to the starting
giant tour given to the algorithm. The single-vehicle version uses a quickly constructed
random initial giant tour, σinit, which undergoes a 2-opt procedure to improve its
total length. However, in the multi-vehicle version, results improved when a better
starting point was used. Five methods were tested on the twelve benchmark instances
to construct σinit: (a) Nearest neighbour; (b) Nearest insertion; (c) Farthest insertion;
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(d) Cheapest insertion; and (e) Random. For eleven instances, nearest neighbour or
farthest insertion were either the best or second best methods. Best means the method
obtained the shortest σinit after undergoing the 2-opt procedure. As a result of this
test, the ALNS version of m-Selector incorporates these two construction methods and
allows the instance to work with the best choice (second best choice in only one case).
For the remaining instance (the one derived from kroA100 where |V | = 50), nearest
insertion was the best, random was the second best choice, and farthest insertion came
in third place. Thus, this one works with its third best. It is worth mentioning that
random was the best or second best construction method in four instances.

Algorithm 13 illustrates the ALNS process implemented to solve the m-CTP with
simulated annealing as the outer metaheuristic that guides the search. This algorithm
is quite similar to the one explained in Chapter 4. The main difference is that it
incorporates methods to construct the initial giant tour σinit.

To define an efficient parameter setting, we again used the irace package of
López-Ibáñez et al. (2011). A learning set of 50 instances (some derived from TSPLIB
and others randomly generated) was designed and m-Selector was executed over
them. The learning instances used to calibrate the algorithm are, of course, different
from the ones used in the benchmark. The resulting set is shown in Table 5.1.

Table 5.1: Values of the ALNS parameters after tuning with irace.

Parameter Meaning Value

γ number of vertices removed in each ALNS iteration [0.3 · |V |, ε · |V |]
(instance size dependent)

ς segment size for updating probabilities in number of ALNS iterations 75
τ reaction factor that controls the rate of change of the weight adjustment 0.36
δ avoids determinism in the SRH 7
ρ avoids determinism in the WRH 2
κ1 score for finding a new global best solution 50
κ2 score for finding a new solution that is better than the current one 20
κ3 score for finding a new non-improving solution that is accepted 5
β cooling factor used by simulated annealing 0.99975
ε fixes the upper limit of vertices removed at each iteration 0.50

5.5 Computational Results

5.5.1 Benchmarking Conditions

The testing conditions were kept as the former ones: 30 independent executions of
the algorithm per instance, 30,000 ALNS-iterations per execution. The hardware and
software platforms are also the same, and so are the definitions of cost values and
cover.

There are neither libraries of instances nor reference benchmarks for the m-CTP.
Hence, to be able to compare the quality of the results yielded by our method, we
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Algorithm 13 : The General Framework of the ALNS with Simulated Annealing
Input: Set V , distance matrix D
Output: Tbest and c(Tbest) {Best m-CTP tour and its cost}

1: σinit ← Construct Tour(V )
2: 2-opt(σinit)
3: compute l0(σinit) {cost of initial giant tour}
4: initialize, to the same value, probability P tr for each removal operator r ∈ R, and

likewise probability P ti for each insertion operator i ∈ I.
5: t← l0, {set initial temperature, variable used in probability function}
6: lcurrent ← l0 ; σcurrent ← σinit

7: UBbest ←Search Upper Bound(σinit) {see Algorithm 8}
8: c(Tbest)← c(Tcurrent)← m-Selector(σinit) {see Algorithm 5}
9: i← 1 {iteration counter}

10: repeat
11: select a removal operator r ∈ R with probability P tr {roulette wheel}
12: obtain σnew− by applying r to σcurrent

13: select an insertion operator i ∈ I with probability P ti
14: obtain σnew by applying i to σnew−

15: UBcurrent ←Search Upper Bound(σnew)
16: if ( UBcurrent < α ·UBbest ) then
17: c(Tnew)← m-Selector(σnew)
18: else
19: c(Tnew)← UBcurrent
20: end if
21: if (UBcurrent < UBbest) then
22: UBbest ← UBcurrent
23: end if

{decide acceptance of new solution}
24: if ( c(Tnew) < c(Tcurrent) ) then
25: c(Tcurrent)← c(Tnew) ; σcurrent ← σnew

26: else

27: p← e
−
c(Tnew)− c(Tcurrent)

t

28: generate a random number n ∈ [0, 1]
{new solution might be accepted even if it is worse}

29: if ( n < p ) then
30: c(Tcurrent)← c(Tnew) ; σcurrent ← σnew

31: end if
32: end if
33: if ( c(Tnew) < c(Tbest) ) then
34: c(Tbest)← c(Tnew) ; Tbest ← Tnew
35: end if
36: t← β · t {cooling rate set to be very slow}
37: if ( segment size = ς ) then
38: update probabilities using the adaptive weight adjustment procedure
39: end if
40: i← i+ 1
41: until ( defined number of iterations is met )
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performed two different sets of tests. In each set, one of the side restrictions related to
bounds p or q is relaxed. The first set considers p constant and q = +∞, whereas the
second one establishes q = 2ϕ + % and p = +∞. The considerations for each case are
as follows.

Considering p constant and q = +∞. In this set of tests, the quality of the results
obtained by our method are compared against the output of both the branch-and-cut
method and the meta-heuristic of Hà et al. (2013). In addition, we also compare against
the results of the VNS heuristic of Kammoun et al. (2015). Therefore, the instances
used are derived from TSPLIB-instances kroX100 | X ∈ {A − D}, and kroX200 | X
∈ {A−B} (Reinelt, 1991), and |V | ∈ {25, 50, 100}. In total, 12 instances are obtained
and each is tested with four different values of p ∈ {4, 5, 6, 8}. Hence, there are 48
possible results, with α fixed at some given value.

It is also worth noting that for some instances, tests were conducted using an
initial giant tour built with a strategy that is different to the one observed to be the
best. This is the reason why some tables of results document tests where the strategy
used is documented. This testing was done to learn more about the behaviour of our
algorithm.

Considering q = 2ϕ+ % and p = +∞. In this set of tests, the quality of the results
obtained by our method are compared against the output of the branch-and-price
method of Jozefowiez (2014). Therefore, the instances used are derived from TSPLIB-
instances kroX150 and kroX200 | X ∈ {A−B} (Reinelt, 1991), and |V | = 50. In total,
4 instances are obtained and each is tested with two different values of % ∈ {250, 500}.
Hence, there are 8 possible results, with α fixed at some given value.

5.5.2 Discussion of Tables of Results

Considering p constant and q = +∞. Tables 5.2, 5.3, and 5.4 offer a comparison
of the solution quality and the execution time amongst (1) m-Selector ; (2) the branch-
and-cut method as well as the two-phase hybrid heuristic of Hà et al. (2013); and
(3) the VNS of Kammoun et al. (2015). In addition to instance-related information
(|V |, |W | and p), the columns of these tables document the following.

• α, the constant by which the best known solution is multiplied when compared
against the current feasible solution in order to determine the execution of m-
Selector to optimality. If the value does not appear, it is assumed equal to the
nearest one shown above.

• z, the solution value obtained by the corresponding heuristic. In the case of m-
Selector , two values are shown. The upper value corresponds to the minimum
value obtained in the 30 executions done, while the lower one corresponds to the
maximum value. If only one value appears, it means both are equal.

• t, the time (in seconds) needed to find the solution shown on the immediate left
column. In the case of m-Selector , it is an average time.
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• θ, the percentage of deviation from the best-known solution (zBKS),
θ = 100(z − zBKS)/zBKS.

• Opt, the optimal value found by the branch-and-cut method.

• |γ′|, the size of the set of elite vertices (applies only to Table 5.4).

Tables 5.6 and 5.7 document the benchmark results, using the complete original
vertex set. The results obtained using elite sets are reported in Table 5.8. The columns
of these tables document the following data (average values are over the 30 runs).

• α, the same meaning defined above.

• iter , the average number of iterations needed to find the best value.

• z, the average best value found by the algorithm.

• t, the average time (in seconds) taken to find the best value.

• θ, the average percentage of deviation from the best-known solution
θ = 100 ∗ (z − zBKS)/zBKS.

• Found, the number of times, out of 30, the optimal or best-known value was
found by the algorithm.

• Percent, the above number expressed in percentage.

• Best Gap, the gap (in percentage) between the optimal or best-known value and
the best value found by the algorithm in the 30 runs.

In case the construction method used to build σinit is not the best suited for the
given instance, its name is indicated below the name of the instance. Recall that for
the instance derived from kroB200 and |V | = 100 these results are for the original data
set.

Considering q = 2ϕ+% and p = +∞. Table 5.5 offers a comparison of the solution
quality and the execution time between m-Selector and the branch-and-price method
of Jozefowiez (2014). The columns of this table document the same information as
explained for Table 5.2, except for %. The benchmark results are documented in Table
5.9. The columns of this table document the same information as explained for Table
5.6, except for the one labelled %.

5.5.3 Comments

The following comments are based on the comparisons presented in Tables 5.2, 5.3, 5.4
and 5.5.
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• In Table 5.2, one observes that m-Selector finds the optimal value for all the
tested instances, and execution times are comparable to the ones of the state-
of the-art heuristic most of the times. In Table 5.3, the same can be stated
but for the instance derived from kroB200 with |V | = 100. Even though it is
difficult to perform comparisons of execution times taken from different hardware
platforms, some insight can be given by standard benchmarks. Our processor has
a SiSoft Sandra Whetstone benchmark score 6.6 times higher than the one used
by Hà et al. (2013), and no comparison can be stated for the hardware used by
Kammoun et al. (2015), since their paper does not specify it. Results show that
the problem difficulty increases with |V |, but is fairly insensitive to |W |.
It is worth noting that m-Selector is solving two combinatorial optimization
problems simultaneously: the optimal selection of the covering vertices and its
segmentation into optimal vehicle routes. Furthermore, there is an important dif-
ference amongst these three heuristics. The m-Selector operator and the heuristic
of Hà et al. (2013) are more general procedures since they can introduce the con-
straint on the route length rather easily. The use they make of the Split operator
enables this feature. The former is not true for the VNS procedure which would
require specific changes in the different operators used in the local search process,
and also in the procedure that constructs the initial solution.
Table 5.4 offers the same type of comparison as Table 5.3, but using sets of elite
vertices. In the cases where it was possible to get results using the complete set V ,
we can compare and state that the algorithm obtains the same solution quality
for all the instances considered, and in some cases lower execution times than
those obtained using the complete set. For the instance derived from kroB200
with |V | = 100, solution quality is slightly inferior to the one of the reference
heuristic and execution times notably higher. The longer execution times are
a direct consequence of the need to use larger α values. For the instances in
which |V | = 100, the set reduces roughly to half its size, while for those in which
|V | = 50 the set size reduces around 20%.
All in all, in 46 out of the 48 possible results, the best gap obtained is zero. This
is to say, the algorithm finds the optimal or best-known value in at least one
of the 30 executions tried. However, for the results not included in this remark
(kroB200 with |V | = 100 and p ∈ {4, 8}, Table 5.4), the deviation from the
optimum is below 1%.

• Table 5.5 shows that the optimal value is found in all tested instances very
quickly.

The following comments are based on the benchmark results presented in Tables
5.6, 5.7, 5.8. Only the last comment pertains to Table 5.9. Within a given instance,
results are grouped by α value, so the remarks presented are done considering the
group of best results.

• For instances where |N | = 100 and |V | = 25 the performance is outstanding
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since only one iteration is needed to find the optimum value and this occurs in
each instance. However, these problems are fairly easy to solve.

• For instances where |N | = 100 and |V | = 50 the performance is very good. The
algorithm finds the optimal value for all the instances in at least three out of the
30 executions. In roughly 40% of the cases, it finds it in all the executions. For the
instance derived from kroD100 | p = 6, the metaheuristic of Hà et al. (2013) fails
to find the optimum. Nonetheless, ours does. The average gap remains relatively
low, below 1.7%, but for one instance (kroD100| p = 4).

• For instances where |N | = 200 and |V | = 50 the performance is also very good.
A larger alpha value yields solutions of better quality, but, at the same time, it
deteriorates the execution time since m-Selector is executed a greater number of
times. Also, it shows that the quality of results is influenced by the construction
method used to build the initial giant tour. For instance, see the last two blocks of
results of the instance obtained from kroB200. The results are of higher quality,
and, for some cases, also better execution times are achieved when constructing
the σinit with random, which, as a matter of fact, is not the method that yields
the best initial sequence.

Except for one case (instance kroB200| p = 4), the average gap remains below
1.5%. Unfortunately, our times are frequently quite larger than the ones of the
metaheuristics we are comparing against.

• For instances where |N | = 200 and |V | = 100 the performance is acceptable,
but the remarks regarding the output obtained are less generalisable. For the
instance obtained from kroA200, it was possible to explore the behaviour using
values of α which are equal to the ones used for smaller instances. However, the
instance derived from kroB200 exhibited inoperable times for α = 1.05, though
the testing was patiently done. Again, we can observe that results improve as
α grows, but execution times worsen. For the instance obtained from kroA200,
the optimal or best upper bound value is found in at least one execution out of
the 30. In this instance, the optimal value is unknown for the last two cases, and
our algorithm does not improve the upper bound values known. Furthermore,
comparing the two blocks of results for α = 1.05, one observes that results
are of similar quality, but execution times are worse for the random construction
method, which came out as the best choice for this instance. An opposite situation
to the one observed in the instance derived from kroB200 with |V | = 50, however,
in the latter random is not the best choice.

For the instance derived from kroB200, our algorithm neither finds the optimal
values nor does it improve the best-known upper bounds. Average gap values
remain between 2 and 5 percent, and execution times are, in general, higher than
the ones of the reference metaheuristics. However, these results quite improve
when we test this instance with a set of elite vertices. In these tests, a larger α
value was used so execution times are higher than with the original set.
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• In eleven out of the twelve instances studied, the best gap obtained is zero for
all values of p. This is to say, the algorithm finds the optimal value in at least
one of the 30 executions tried. However, for the instance not included in this
remark (kroB200 with |V | = 100), the best gap becomes zero for p = 5 and p = 6
when a reduced set of vertices is used. For the other two values of p treated, the
deviation from the optimum is below 1%.

• It is worth noting that m-Selector is solving two NP-hard, combinatorial opti-
misation problems simultaneously: the selection of the covering vertices and its
arrangement in optimal vehicle routes. The execution times reported by Hà et al.
(2013) refer only to the solution of the VRP. The covering part is solved via inte-
ger programming, and they only mention that the solution of the mathematical
model is rapid even for the large instances tested, however, no quantitative mea-
sure is given. Regarding the computers used, our machine has a SiSoft Sandra
Whetstone benchmark score 6.6 times higher than theirs, and no comparison can
be stated for the hardware used by Kammoun et al. (2015) since their paper does
not specify it.

• In Table 5.9, one observes that for small values of α the algorithm is able to find
the optimal value in a very reasonable amount of time in all tested instances. No
general statement can be made as to which problem (p = +∞ or q = +∞) is
easier to solve.

5.6 Conclusions

This study proposed a novel solution method to solve the m-CTP. Results, as good as
the ones of the state-of-the-art algorithms, are presented. In addition, we introduced
a novel way to use the Split operator which allows to solve the target problem with a
dynamic programming-based algorithm without resorting to the use of additional labels
to define and evaluate routes. The considerations made by the the problem allow a
quite simple implementation of a modified version of the Split algorithm. An additional
advantage of using the Split algorithm is that the segmentation of the selected vertices
into vehicle routes is optimal for the original sequence given.

Computational results were obtained for instances with up to 200 vertices, where
|V | ≤ 100. On the one hand, when q = +∞, for almost all of the instances tested,
the solution quality of our results is equal to that of the state-of-the-art heuristic. The
m-Selector operator missed to find the same value in only two of the results possible,
and in these cases the deviation is below 1%. However, the execution time of some
results is quite higher. This outcome is very encouraging, and our future research path
is to find further means to improve the performance of our algorithm. On the other
hand, when p = +∞, in a very short execution time the solution quality of our results
equals that of the state-of-the-art exact algorithm.

When solving the CTP, it was possible to obtain good quality solutions using α

values of one. Such was not possible when solving the m-CTP, a more difficult problem.
Values larger than one were necessary. This has a direct effect on the execution time.
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Table 5.2: Comparison of the best values found by m-Selector , the branch-and-cut
method as well as the hybrid heuristic of Hà et al. (2013), and the VNS procedure of
Kammoun et al. (2015) for 100-vertex instances (p constant and q = +∞).

Instance |V | |W | p α
m-Selector-ALNS Hà et al. VNS

Based on z t (s) θ Opt t (s) z t (s) z t (s)
kroA100 25 75 4 1.03 8479 0.00 0 8479 1.13 8479 0.16 8479 0.016

5 8479 0.00 0 8479 3.27 8479 0.17 8479 0.016
6 8479 0.00 0 8479 6.87 8479 0.16 8479 0.013
8 7985 0.00 0 7985 20.10 7985 0.16 7985 0.014

kroB100 25 75 4 1.03 7146 0.00 0 7146 1.81 7146 0.22 7146 0.004
5 6901 0.00 0 6901 3.23 6901 0.18 6901 0.005
6 6450 0.00 0 6450 4.33 6450 0.23 6450 0.004
8 6450 0.00 0 6450 10.88 6450 0.20 6450 0.004

kroC100 25 75 4 1.03 6161 0.00 0 6161 2.82 6161 0.16 6161 0.004
5 6161 0.00 0 6161 5.81 6161 0.16 6161 0.004
6 6161 0.00 0 6161 7.73 6161 0.15 6161 0.004
8 6161 0.00 0 6161 9.42 6161 0.17 6161 0.004

kroD100 25 75 4 1.03 7671 0.00 0 7671 1.04 7671 0.16 7671 0.020
5 7465 0.00 0 7465 5.38 7465 0.16 7465 0.022
6 6651 0.00 0 6651 3.80 6651 0.15 6651 0.015
8 6651 0.00 0 6651 12.85 6651 0.16 6651 0.014

kroA100 50 50 4 1.03 10271 0.00 0 10271 9.91 10271 0.80 10271 0.022
5 9220/9742 0.54 0 9220 12.36 9220 0.78 9220 0.017
6 9130 0.00 0 9130 24.79 9130 0.81 9130 0.023
8 9130 0.00 0 9130 203.93 9130 0.81 9130 0.018

kroB100 50 50 4 1.03 10107/10754 4.14 0 10107 16.63 10107 0.62 10107 0.012
5 9723/9976 2.94 0 9723 84.08 9723 0.64 9723 0.009
6 9382/9529 4.03 0 9382 162.24 9382 0.58 9382 0.016
8 8348/8379 0.74 0 8348 76.06 8348 0.58 8348 0.016

kroC100 50 50 4 1.03 11372 0.00 0 11372 8.12 11372 0.64 11372 0.028
5 9900/9976 1.37 0 9900 13.28 9900 0.67 9900 0.013
6 9895 0.00 0 9895 56.91 9895 0.67 9895 0.017
8 8699 0.00 0 8699 8.47 8699 0.65 8699 0.007

kroD100 50 50 4 1.03 11606/12161 0.45 0 11606 9.34 11606 0.93 11606 0.021
5 10770/11357 0.47 0 10770 29.32 10770 0.85 10770 0.263
6 10525/10764 0.33 0 10525 281.28 10680 0.82 10525 0.026
8 9361/9566 0.00 0 9361 110.62 9361 0.93 9361 0.028
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Table 5.3: Comparison of the best values found by m-Selector , the branch-and-cut
method as well as the hybrid heuristic of Hà et al. (2013), and the VNS procedure of
Kammoun et al. (2015) for 200-vertex instances (p constant and q = +∞).

Instance |V | |W | p α
m-Selector-ALNS Hà et al. VNS

Based on z t (s) θ Opt t (s) z t (s) z t (s)
kroA200 50 150 4 1.003 11550/11612 0.14 0 11550 82.21 11550 0.89 11550 0.024

5 10407/10769 2.81 0 10407 340.58 10407 0.87 10407 0.025
6 10068/10362 3.76 0 10068 1075.80 10068 0.89 10068 0.023
8 8896 0.00 0 8896 153.40 8896 0.94 8896 0.063

kroB200 50 150 4 1.05 11175/11833 3.45 0 11175 166.00 11175 0.91 11175 0.177
5 1.003 10502/10533 0.14 0 10502 1114.67 10502 0.90 10502 0.020
6 9799 0.00 0 9799 1273.97 9799 0.91 9799 0.018
8 8846/9124 0.78 0 8846 629.77 8846 0.87 8846 0.072

kroA200 100 100 4 1.05 11885 0.00 0 11885 4593.91 11885 2.89 11885 0.154
5 10234/10400 0.23 0 10234 1440.13 10234 2.82 10234 0.058
6 10020/10075 4.78 0 - 7200.13 10020 2.92 10020 0.026
8 9093 0.00 0 - 7200.12 9093 2.92 9093 0.270

kroB200 100 100 4 1.2 - 600.00 - 18370 6614.98 18370 15.03 18370 0.057
5 - 600.00 - 15876 1471.99 15876 15.61 15876 0.076
6 - 600.00 - - 7200.08 14926 14.83 14867 0.05
8 - 600.00 - - 7200.09 13137 15.68 13137 0.026
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Table 5.4: Comparison of the best values found by m-Selector , when using sets of elite
vertices, against the branch-and-cut method as well as the hybrid heuristic of Hà et al.
(2013), and the VNS procedure of Kammoun et al. (2015) for 200-vertex instances (p
constant and q = +∞).
Instance |V | |γ′| |W | p α

m-Selector-ALNS Hà et al. VNS
Based on z t (s) θ Opt t (s) z t (s) z t (s)
kroA200 50 40 150 4 1.003 11550/11612 0.11 0 11550 82.21 11550 0.89 11550 0.024

5 10407/10880 0.92 0 10407 340.58 10407 0.87 10407 0.025
6 10068/10362 1.55 0 10068 1075.80 10068 0.89 10068 0.023
8 8896 0.00 0 8896 153.40 8896 0.94 8896 0.063

kroB200 50 42 150 4 1.05 11175/11646 3.59 0 11175 166.00 11175 0.91 11175 0.177
5 1.003 10502/10533 1.57 0 10502 1114.67 10502 0.90 10502 0.020
6 9799/10057 0.37 0 9799 1273.97 9799 0.91 9799 0.018
8 8846/9124 0.68 0 8846 629.77 8846 0.87 8846 0.072

kroA200 100 51 100 4 1.05 11885 0.00 0 11885 4593.91 11885 2.89 11885 0.154
5 10234/10655 1.44 0 10234 1440.13 10234 2.82 10234 0.058
6 10020/10075 5.34 0 - 7200.13 10020 2.92 10020 0.026
8 9093 0.00 0 - 7200.12 9093 2.92 9093 0.270

kroB200 100 49 100 4 1.2 18424/18921 23.33 0.29 18370 6614.98 18370 15.03 18370 0.057
5 15876/16408 45.83 0 15876 1471.99 15876 15.61 15876 0.076
6 14867/15422 35.54 0 - 7200.08 14926 14.83 14867 0.05
8 13232/13444 6.11 0.72 - 7200.09 13137 15.68 13137 0.026

Table 5.5: Comparison of the best values found by m-Selector , and the branch-and-
price method of Jozefowiez (2014) (q = 2ϕ+ % and p = +∞).

Instance |V | |W | % α
m-Selector-ALNS Jozefowiez

Based on z t (s) θ Opt t (s)
kroA150 50 100 250 1.003 13654/13680 0.37 0 13654 3072
kroA150 500 1.05 13654/13680 1.69 0 13654 5598
kroB150 50 100 250 1.003 9479/9901 1.64 0 9479 1673
kroB150 500 9479/9731 1.53 0 9479 4126
kroA200 50 150 250 1.05 11022/11024 0.13 0 11022 12919
kroA200 500 11022/11024 0.11 0 11022 13812
kroB200 50 150 250 1.003 9362/9630 3.63 0 9362 5403
kroB200 500 9360/9570 6.93 0 9360 11308
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Table 5.6: Results obtained by m-Selector for 100-vertex instances when q = +∞.

Instance |V | |W | p α
m-Selector-ALNS Best

Based on iter z t (s) θ Found Percent Gap
kroA100 25 75 4 1.03 1 8479 0.00 0 30 100 0

5 1 8,479 0.00 0 30 100 0
6 1 8,479 0.00 0 30 100 0
8 1 7,985 0.00 0 30 100 0

kroB100 25 75 4 1.03 1 7,146 0.00 0 30 100 0
5 1 6,901 0.00 0 30 100 0
6 1 6,450 0.00 0 30 100 0
8 1 6,450 0.00 0 30 100 0

kroC100 25 75 4 1.03 1 6,161 0.00 0 30 100 0
5 1 6,161 0.00 0 30 100 0
6 1 6,161 0.00 0 30 100 0
8 1 6,161 0.00 0 30 100 0

kroD100 25 75 4 1.03 1 7,671 0.00 0 30 100 0
5 1 7,465 0.00 0 30 100 0
6 1 6,651 0.00 0 30 100 0
8 1 6,651 0.00 0 30 100 0

kroA100 50 50 4 1.03 1 10,271 0.00 0 30 100 0
5 8,141 9,294 0.54 0.80 24 80 0
6 99 9,130 0.00 0 30 100 0
8 29 9,130 0.00 0 30 100 0

kroB100 50 50 4 1.03 14,635 10,264 4.14 1.55 12 40 0
5 13,121 9,776 2.94 0.55 11 36 0
6 14,224 9,419 4.03 0.39 4 13 0
8 4,383 8,349 0.74 0.02 28 93 0

kroC100 50 50 4 1.03 1 11,372 0.00 0 30 100 0
5 9,846 9,916 1.37 0.16 10 33 0
6 1 9,895 0.00 0 30 100 0
8 40 8,699 0.00 0 30 100 0

kroD100 50 50 4 1.03 3,227 12,070 0.45 4.00 4 13 0
5 3,779 10,948 0.47 1.65 5 16 0
6 2,672 10,688 0.33 1.55 3 10 0
8 59 9,368 0.00 0.07 29 96 0

kroD100 50 50 4 1.1 8,163 11,868 3.23 2.26 13 43 0
5 3,674 10,905 0.95 1.25 10 33 0
6 6,521 10,622 2.09 0.92 12 40 0
8 56 9,361 0.00 0 30 100 0
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Table 5.7: Results obtained by m-Selector for 200-vertex instances when q = +∞.

Instance |V | |W | p α
m-Selector-ALNS Best

Based on iter z t (s) θ Found Percent Gap
kroA200 50 150 4 1.05 1,482 11,598 0.38 0.42 7 23 0

5 11,775 10,444 5.69 0.36 14 46 0
6 12,486 10,095 5.79 0.27 8 26 0
8 1 8,896 0.00 0 30 100 0

kroA200 50 150 4 1.003 712 11,606 0.14 0.49 3 10 0
5 10,658 10,530 2.81 1.18 2 6 0
6 13,403 10,146 3.76 0.77 3 10 0
8 1 8,896 0.00 0 30 100 0

kroB200 50 150 4 1.05 3,154 11,531 3.45 3.19 6 20 0
5 181 10,506 0.29 0.04 26 86 0
6 6,876 9,936 9.85 1.40 8 26 0
8 4,010 8,944 7.46 1.11 18 60 0

kroB200 50 150 4 1.003 3,860 11,647 1.82 4.22 0 0 3.95
5 499 10,516 0.14 0.13 16 53 0
6 2,398 10,029 0.72 2.35 1 3 0
8 3,236 9,030 0.78 2.08 9 30 0

kroB200 50 150 4 1.003 2,958 11,631 0.58 4.08 2 6 0
Random 5 796 10,510 0.24 0.08 22 73 0

6 1 9,799 0.00 0 30 100 0
8 2,753 8,923 0.81 0.87 20 66 0

kroA200 100 100 4 1.05 1 11,885 0.00 0 30 100 0
5 93 10,394 0.23 1.56 1 3 0
6 353 10,073 4.78 0.53 1 3 0
8 1 9,093 0.00 0 30 100 0

kroA200 100 100 4 1.003 1 11,885 0.00 0 30 100 0
5 100 10,400 0.09 1.62 0 0 1.62
6 1 10,075 0.00 0.55 0 0 0.55
8 1 9,093 0.00 0 30 100 0

kroA200 100 100 4 1.05 1 11,885 0.00 0 30 100 0
Random 5 1,127 10,394 188.41 1.56 1 3 0

6 1,538 10,069 30.38 0.49 2 6 0
8 0 9,093 0.00 0 30 100 0

kroB200 100 100 4 1.05 6,927 18,789 94.64 2.28 0 0 2.15
5 4,779 16,601 133.48 4.57 0 0 2.16
6 8,533 15,415 304.78 3.28 0 0 2.39
8 2,316 13,391 5.34 1.93 0 0 1.66

kroB200 100 100 4 1.003 9,181 19,062 26.46 3.77 0 0 2.00
5 1 16,682 0.00 5.08 0 0 5.08
6 9,704 15,585 35.33 4.42 0 0 3.32
8 2,394 13,400 4.08 2.00 0 0 1.60

kroB200 100 100 4 1.003 6,713 19,007 19.46 3.47 0 0 2.47
Random 5 1,645 17,056 1.21 7.43 0 0 4.52

6 9,096 15,615 24.75 4.62 0 0 2.60
8 12,055 13,491 98.64 2.69 0 0 1.66
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Table 5.8: Results obtained by m-Selector for sets of elite vertices when q = +∞.

Set |V | |W | p α
m-Selector-ALNS Best

iter z t (s) θ Found Percent Gap
kroB200 1 49 100 4 1.2 13,885 18,592 23.33 1.21 0 0 0.29
Random 5 14,276 16,129 26.42 1.59 0 0 1.13

6 13,350 15,204 35.54 2.27 3 10 0
8 2,872 13,438 6.11 2.29 0 0 0.72

kroB200 2 49 100 4 1.2 15,164 18,591 43.94 1.20 0 0 0.29
NN 5 16,254 16,124 45.83 1.56 1 3 0

6 16,573 15,151 52.60 1.91 6 20 0
8 954 1,3444 2.82 2.34 0 0 2.34

kroB200 3 48 100 4 1.2 10,035 18,682 173.10 1.70 0 0 1.3
Random 5 14,146 16,280 278.53 2.54 0 0 0.25

6 13,183 15,447 306.34 3.49 0 0 2.06
8 4,153 13,466 124.63 2.50 0 0 0.81

Table 5.9: Results obtained by m-Selector when p = +∞.

Instance |V | |W | % α
m-Selector-ALNS Best

Based on iter z t (s) θ Found Percent Gap
kroA150 50 100 250 1.003 5055 13677 0.37 0.17 2 6 0
kroA150 250 1.05 3770 13674 0.93 0.15 5 16 0
kroA150 500 1.003 2577 13677 0.19 0.37 0 0 0.01
kroA150 500 1.05 4684 13675 1.69 0.15 4 13 0
kroB150 50 100 250 1.003 10619 9544 1.64 0.69 14 46 0
kroB150 250 1.05 10886 9479 3.09 0.00 29 96 0
kroB150 500 1.003 10302 9524 1.53 0.47 14 46 0
kroB150 500 1.05 7988 9479 1.86 0.00 29 96 0
kroA200 50 150 250 1.003 0 11024 0.00 0.02 0 0 0.02
kroA200 250 1.05 445 11024 0.13 0.02 1 3 0
kroA200 250 1.1 0 11024 0.00 0.02 0 0 0.02
kroA200 500 1.003 0 11024 0.00 0.02 0 0 0.02
kroA200 500 1.05 381 11024 0.11 0.02 1 3 0
kroA200 500 1.1 0 11024 0.00 0.02 0 0 0.02
kroB200 50 150 250 1.003 9477 9428 3.63 0.70 13 43 0
kroB200 250 1.05 12062 9407 28.01 0.48 13 43 0
kroB200 250 1.1 5237 9380 49.62 0.19 19 63 0
kroB200 500 1.003 9531 9406 6.93 0.49 3 10 0
kroB200 500 1.05 12992 9366 21.56 0.06 18 60 0
kroB200 500 1.1 8365 9361 45.66 0.01 19 63 0
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6.1 Introduction

This chapter discusses the specific practical details of the approach developed to solve
the Orienteering Problem (OP). Feillet et al. (2005) situate this problem, together with
other variants of the TSP, under the family they named Travelling Salesman Problems
with Profits. The unifying concept in this family is the notion of collecting a profit when
visiting a vertex and the use of only one vehicle. In the OP, a set of locations (vertices
in a graph when modelled) is given, each with an associated profit, and the travel
between locations involves a known cost. The problem calls to maximise the collected
profit subject to a constraint on the total travel cost allowed. Then, not all the given
locations can be visited since the available time (or distance) is limited. Unlike the
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covering problems treated in previous chapters, the OP and its multi-vehicle version,
the Team Orienteering Problem (TOP), have been thoroughly studied, and extensive
literature has been published together with standard libraries of data sets. The survey
of Vansteenwegen et al. (2011a) and the chapter written by Archetti et al. (2014)
illustrate this fact.

The OP, whose name originates from a treasure-hunt game in which players must
collect scores in a preset time frame by visiting control points, may be seen as a bicri-
teria problem with two opposite objectives: one pushing the vehicle to travel in order
to collect profit, and the other one encouraging it to minimise the travel cost with the
option of skipping vertices. It is a combination of vertex selection and determination of
the shortest elementary cycle among the selected vertices. In other words, a combina-
tion of the Knapsack Problem and the TSP. Nevertheless, most researchers address it
as a single-criterion version where one of the objectives is constrained with a specified
bound value. In the case of the OP, the travel cost objective is treated as a constraint,
hence, the goal is to find a circuit that maximises the collected profit but whose length
does not exceed a given bound.

Golden et al. (1987) and Laporte and Martello (1990) demonstrated that it is an
NP-hard combinatorial optimisation problem. In the literature, the OP has been given
several names: the Selective Traveling Salesman Problem (STSP) as in Laporte and
Martello (1990), Gendreau et al. (1998a), and Thomadsen and Stidsen (2003); the
Maximum Collection Problem as in Kataoka and Morito (1988); and the Bank Robber
Problem as in Awerbuch et al. (1998).

The remainder of the chapter is organised as follows. Section 6.2 formally presents
the problem, provides an insight of the numerous applications reported for the OP,
and explains different solution approaches that have been presented in the literature.
The solution approaches that served as a reference against which we compare the
quality of our results are explained in more detail. Sections 6.3-6.5 explain the solution
method proposed in this thesis to solve the OP. Section 6.6 documents and discusses
the results obtained. Finally, Section 6.7 reports the contribution of this work and
provides conclusions.

6.2 The Orienteering Problem

6.2.1 Formal Definition

The OP can be formally defined by considering a complete, undirected graph
G = (V,E) where V = {v0, v1, . . . , vn−1} defines its vertex set which repre-
sents the n profit-collecting points. Vertex v0 designates the depot, and set
E = {(vi, vj)|vi, vj ∈ V, i < j} defines the edge set. Let pi denote the non-negative
profit associated with each vertex vi ∈ V (p0 = 0). Each vertex vi is defined by its Eu-
clidean coordinates, so let dij be the distance associated with each edge (i, j) ∈ E, and
D = (dij) the distance matrix that satisfies the triangle inequality. The OP consists of
determining a maximal profit Hamiltonian tour over a subset of V , which includes v0
as the starting point, while satisfying the given travel cost limit Lmax. We assume all
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Figure 6.1: Example of OP tour.

profits are integer, and interpret distances as travel costs. Figure 6.1 depicts a feasible
OP tour. The square represents the depot. The number next to the vertices that can
be visited indicates the profit gained upon visitation of the vertex.

In many studies, the OP is defined in terms of a path to be found between a start
and a goal point rather than a circuit. The difference is innocuous. The two endpoints
of the sought path may coincide or adding a dummy arc from the destination to the
origin of the path makes the two problems equivalent.

6.2.2 Applications Reported in the Literature

A number of applications in logistics, tourism, vehicle routing, production scheduling
and other fields have been modelled as orienteering problems, which explains its wide
study. Tsiligirides (1984) and Ramesh and Brown (1991) proposed the OP to model
the situation of a salesperson who wants to keep the total travelled time within a
limit, but wants to maximise total sales. The salesperson knows the amount of sales to
expect from each customer. A related but much more complex problem has recently
been presented by Tricoire et al. (2010): the Multi-Period Orienteering Problem with
Multiple Time Windows (MuPOPTW), a new routing problem combining objective
and constraints from the OP and TOP, constraints from standard vehicle routing
problems, and original constraints from a real-world application. Field workers and
sales representatives can use a tool based on this model to schedule their customer visits
for a certain planning horizon. They apply a variable neighborhood search algorithm
to solve it.

In logistics, Golden et al. (1987) presented the fuel delivery problem, and used the
OP to represent the first phase of the problem. A company has to provide heating fuel
to a large number of customers on a daily basis, and must maintain the customers’ fuel
supply at a certain level at all times. This forecasted supply level can set a measure of
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urgency of service which translates into a score. A primary goal is to select a subset
of customers who urgently require a delivery and are clustered in such a way that an
efficient truck path can be constructed. A similar situation is solved by Hemmelmayr
et al. (2009) for the Austrian Red Cross, entity that needs to deliver blood supply
to hospitals. Their solution approach uses a basic heuristic that is driven by blood
inventory levels at the hospitals. Each day, those hospitals that need to receive a
delivery on that day, because they would otherwise experience a stockout the next
day, will be visited.

Tourism is an area where the OP has found wide applicability. Vansteenwegen and
Van Oudheusden (2007) presented the Tourist Trip Design Problems (TTDP) in which
the OP is the simplest form of the TTDP. Due to time and budget restrictions, tourists
must select what they believe to be the most interesting sites to visit. The TTDP solve
the task of designing a feasible plan in order to visit the desired attractions in the
available time span. Though the OP makes no provision for the modelling of the time
spent visiting the selected site, this time can easily be modelled as part of the travel
time to reach (or depart from) the site. Typically, half of the visiting time is added
to the travel time of all incoming arcs and the other half is added to the outgoing
arcs. Nowadays, mobile tourist guide applications are available, refer to Souffriau et al.
(2008) and Vansteenwegen et al. (2011b). Gavalas et al. (2014) published a survey
in which models, algorithmic approaches and methodologies concerning tourist trip
design problems are discussed.

Wang et al. (2008) considered the Generalised Orienteering Problem (GOP) to
model tourist plans that suggest visiting combinations of tourist attractions. This
problem differs from the OP in the objective function considered. While in the OP the
profit values associated with each vertex are added to obtain the total collected profit,
in the GOP, this total is a nonlinear function of the visited vertices. This function is
applied in the sense that attractions are variations on a certain theme and in order
to really appreciate the series, it is preferable to visit all, or low valued attractions
become more appealing when visited in combination with others.

Schilde et al. (2009) modelled a tourist’s different interests when selecting attrac-
tion sites with a multi-objective OP. Their solution method is an adaptation of the
Pareto ant colony optimisation (ACO) algorithm, and it also includes variable neigh-
borhood search (VNS), which is extended to the multi-objective case. Both methods
are hybridized with path relinking procedures. They solve real-world instances from
different Austrian regions and from the cities of Vienna and Padua together with li-
brary instances.

Ilhan et al. (2008) reported an application of inventory management using the OP.
A US car manufacturer must reimburse its suppliers for the inventory at hand when
design changes lead to inventory becoming obsolete. It is in the manufacturer’s best
interest to audit the inventory claims of the suppliers so that they only pay for actual
inventory. With a limited number of auditors, the car manufacturer must determine
which suppliers to visit to maximise the recovered claims. A recovered claim is the
difference between the value of the inventory claimed by the supplier and the audited
inventory value. To model the situation they defined the Orienteering Problem with
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Stochastic Profits (OPSP) in which normally distributed random profits are associated
with the vertices. The goal is to maximise the probability of collecting more than a
prespecified target profit level within a prespecified time limit. They developed an
exact solution approach and a bi-objective genetic algorithm to solve the OPSP.

Wang et al. (2008) suggested a military application of the OP. The expedition of an
unmanned aircraft or submarine involved in surveillance activities is constrained by its
fuel supply, so it needs to select the best sites to visit or photograph. Thomadsen and
Stidsen (2003) studied a variant of the STSP, the Quadratic STSP (QSTSP) where
each pair of vertices has an associated profit which can be gained only if both vertices
are visited. The QSTSP emerges as a subproblem when constructing hierarchical ring
networks.

6.2.3 Solution Approaches Reported in the Literature

Since the 1980s, diverse solution methods have been developed for the OP. Amongst
the exact solution approaches that have been suggested one finds the following. Laporte
and Martello (1990) solved small, randomly-generated problems containing up to 20
points using a branch-and-bound method while Ramesh et al. (1992) used Lagrangian
relaxation within a branch-and-bound procedure to solve also randomly-generated
problems that contain as many as 150 points. On the other hand, more efficient solution
procedures use a branch-and-cut scheme aided by heuristics. Gendreau et al. (1998a)
proposed a branch-and-cut algorithm to solve randomly-generated instances of up to
300 locations. In order to provide an initial feasible solution, this procedure uses two
new heuristics, which make use of the already known GENIUS composite heuristic
for the TSP (Gendreau et al., 1992). Both heuristics perform very well, but they do
not introduce any major new concept. Fischetti et al. (1998) solved TSPLIB-derived
instances involving up to 500 locations using also a branch-and-cut procedure.

A number of approximate methods have also been proposed. The following are
some of the most relevant studies published. Studies that solved only small instances
(n 6 66) are firstly presented. Tsiligirides (1984) solved the OP by using both a stochas-
tic heuristic based on Monte Carlo techniques and a deterministic heuristic based on
the Wren and Holliday (1972) vehicle-routing procedure. He contributed a set of in-
stances (21 ≤ n ≤ 33) that are still used today to compare the performance of newly
proposed methods. Optimal values for these instances are known and most methods
presented nowadays are able to find them. Golden et al. (1987) presented a center-
of-gravity heuristic based on the Knapsack Problem which Golden et al. (1988) later
improved by incorporating Tsiligirides’s randomization concept along with learning
capabilities. Keller (1989) modified his multi-objective vending problem heuristic to
solve the OP. Ramesh and Brown (1991) developed a four-phase heuristic where they
consider a general cost function rather than the Euclidean cost function assumed in
the former approaches. They also use a tabu list to store the computed paths in or-
der to avoid them, but make no reference of their method as a tabu search. Wang
et al. (1995) applied an artificial neural network method to solve the OP, whereas
Chao et al. (1996b) exploited the underlying geometry of the problem and proposed
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a five-step heuristic which considers only vertices that can be reached. These vertices
lie within an ellipse whose foci are the start and end vertices, and Lmax is the length
of the major axis. The algorithm implements an efficient initialisation step, three im-
provement steps and one diversification step. This heuristic clearly outperforms the
algorithms of Tsiligirides (1984), Golden et al. (1987), Golden et al. (1988), Keller
(1989) and Ramesh and Brown (1991). Chao et al. (1996b) proposed additional sets
of testing instances (n = 64 or n = 66) which have been used to test the procedures
recently published as the one of Schilde et al. (2009) (explained in Section 6.2.2). The
instances proposed by Tsiligirides and Chao are distributed in sets. All the instances
in a set are based on the same graph, and they only differ in the value given to the
tour limit, Lmax.

To solve larger instances three solution methods have been published in the litera-
ture: Gendreau et al. (1998b), Vansteenwegen et al. (2009), and Campos et al. (2014).
The first paper describes a tabu search heuristic that yields near-optimal solutions for
randomly-generated instances with up to 300 vertices. This heuristic iteratively inserts
clusters of locations in the tour or removes a chain of locations. Compared to previous
methods, this algorithm reduces both the probability of getting trapped in a local op-
timum, and the probability of including locations with a high score that are far from
the current tour. The second paper explains a guided local search (GLS) metaheuristic
that successfully solves a subset of the TSPLIB-derived instances (up to 400 points)
studied by Fischetti et al. (1998). This algorithm is the one used to solve the TTDP
explained in Section 6.2.2. The state-of the-art metaheuristic is the GRASP with path
relinking of Campos et al. (2014), which also solves the same instances proposed by
Fischetti et al. (1998), but obtains better quality solutions than those of the GLS
of Vansteenwegen et al. (2009). The procedures of Vansteenwegen et al. (2009), and
Campos et al. (2014) were also tested on the small instances of Tsiligirides (1984) and
Chao et al. (1996b).

Considering the methods explained, the Pareto-ACO and Pareto-VNS heuristics of
Schilde et al. (2009), and the GRASP of Campos et al. (2014) outperform both the
heuristics of Chao et al. (1996b) and the GLS of Vansteenwegen et al. (2009). The
solution quality of the Pareto-ACO and Pareto-VNS heuristics is very similar to the
one obtained by the GRASP with path-relinking, though the Pareto heuristics were
not tested with standard large-sized instances.

Feillet et al. (2005) presented an in-depth explanation of some of the works pre-
viously mentioned. Their focus is on single-vehicle problems with profits, whereas
Vansteenwegen et al. (2011a) published a very detailed survey for both the OP and
the TOP, its variants, and its applications. The chapter of Archetti et al. (2014) on
vehicle routing with profits presents the complete family of problems the OP belongs
to.

6.2.4 Solution Approaches Used as Reference

The quality of our results was compared against the output of the branch-and-cut
method of Fischetti et al. (1998), and against the results of both the GLS-based heuris-
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tic of Vansteenwegen et al. (2009) and the GRASP heuristic with path-relinking of
Campos et al. (2014).

The algorithm of Fischetti et al. (1998) is based on several families of valid in-
equalities. They introduce a family of cuts, called conditional cuts, which can cut off
the optimal OP solution, and propose an effective way to use them within the overall
branch-and-cut framework. They also adapt and simplify the heuristic of Ramesh and
Brown (1991) in order to compute a lower bound in the root node of the branch-and-cut
search tree, and quickly tighten the bounds with valid inequalities all along the search
tree. Their method requires about five hours of CPU time to obtain the optimum in
some of their largest instances. Fischetti et al. (1998) also contributed by providing a
library of benchmark instances derived from the OP, VRP and TSP literature. They
defined three different ways to generate the profit of a vertex1.

GLS, developed by Voudouris and Tsang (2003), is a penalty-based metaheuristic
that sits on top of other local search algorithms, with the aim of improving their effi-
ciency and robustness. GLS penalises, based on a utility function, unwanted solution
features during each local search iteration. The penalty augments the objective func-
tion during every iteration. In this way the solution procedure may escape from local
optima and allow the search to continue. The version of Vansteenwegen et al. (2009) is
a composite heuristic which firstly constructs an initial solution using the greedy con-
struction heuristic of Chao et al. (1996b). Afterwards, two local search heuristics try
to increase the total score of the solution. One of this pair of heuristics seeks to insert
new locations into a tour in the position that yields the least travel cost. The order in
which the locations are considered for insertion is based on an ”appropriateness” mea-
sure computed for the tour. The second heuristic seeks to replace an included location
by a non-included one with a higher score. Again, the locations not yet included are
ranked by their appropriateness. This replacing heuristic works under a guided local
search mechanism in order to improve its performance, and it is the one that con-
tributes the most to the enhancement of the solution quality. The heuristics perform
a maximum of 1,000 iterations. Finally, a third heuristic tries to reduce the travel cost
between the previously selected locations. In this heuristic, 2-opt is used as the local
search mechanism, and it also uses guided local search to improve its performance. No
randomness appears in the GLS algorithm.

GRASP, developed by Feo and Resende (1995), is a multi-start metaheuristic for
combinatorial optimisation problems, in which each iteration consists of two phases:
construction and local search (improvement). The construction phase builds a feasible
solution, whose neighborhood is investigated until a local optimum is found during
the local search phase. The best overall solution is kept as the result. In the context
of GRASP, path-relinking (PR) is a form of intensification (Laguna and Marti, 1999).
Starting from a GRASP solution, it tries to find a path between this solution and
a chosen elite solution which serves as a guide. Campos et al. (2014) explore four
construction methods and combine two neighborhoods in the local search phase. One
is based on the exchange of a vertex in the tour for another one not in the tour, while

1All the benchmark instances mentioned are available at www.mech.kuleuven.be/cib/op
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meeting the constraint on the tour length. After a one-to-one exchange is performed,
the algorithm tries the second neighborhood: an insertion move in which a vertex not
currently in the tour is considered to be added to it. After each exchange, as many
insertions as Lmax allows are considered. Insertions occur at the best place possible.
Both neighborhoods are applied to all the vertices in the tour. A 2-opt neighborhood,
both at the start of the improvement phase and at the end, is used to further improve
the solution. All the different solutions obtained undergo a relinking post-processing.

6.3 Application of Selector to Solve the OP

Gendreau et al. (1998b) explain why, despite its apparent simplicity, it is rather difficult
to design good heuristics for the OP. Profits and distances are independent and a
good solution with respect to one criterion is often unsatisfactory with respect to
the other, so selecting the vertices that are part of the optimal solution is difficult.
Simple construction and improvement heuristics, though rather quick, may direct the
algorithm in undesirable directions. As a consequence, it might happen that large
portions of the search space remain unexplored, and also previous wrong decisions are
not corrected.

The main challenge we faced when trying to solve the OP using the Selector opera-
tor was how to control the enormous proliferation of labels. In the CTP, it is desirable
to skip vertices in order to reduce the travel cost, whereas in the OP, it is desirable
to visit vertices to increase the profit. The objective, then, favors the label extension,
and every visited vertex generates a label. The search space is much larger in the OP.
This high proliferation of labels obliged to augment the standard mean—dominance
rules—this kind of algorithm provides for label growth control. However, when adding
the measures to control label growth, it was necessary to reach a compromise between
optimality of the decoding and search time efficiency. In spite of these additions, the
core of the Selector operator and the solution method applied remain the same.

In order to apply the designed algorithm to the solution of the OP, one needs to
define: the structure of the label, the dominance rule, and the steps to be taken when a
label is iteratively extended trying to reach the immediate successor vertex. Hereupon
the features of the basic Selector algorithm are described, and at a later section, the
performance enhancements aimed at controlling the combinatorial explosion of labels
are presented.

6.3.1 Label Definition

A label represents an elementary path that starts at the origin vertex σ0 and has
considered vertices up to the one where the label is stored. In this algorithm, a label
is a quadruplet λ = [π, ν, ζ, µ] that stores data which is useful for the decision-making
at different stages of the algorithm.

i. π, the profit collected from the depot σ0 to vertex σν , which corresponds to the
sum of the profit values of the vertices included in the label.
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ii. ν, the last vertex visited in the partial tour (site where the label is stored).

iii. ζ, the travel cost of the partial elementary tour from vertex σ0 to vertex σν . This
corresponds to the sum of the weights of the edges included in the label.

iv. µ, an upper bound on the total profit of the tour. This value corresponds to
the sum of the profit already collected from the origin vertex to vertex σν
(value stored in π), plus an upper bound of the profit that can be collected from
the adjacent successor of σν , σν+1, to the goal vertex. In a later section, an
explanation on how this upper bound is computed is provided.

6.3.2 Dominance Test

Such test is performed before storing a label in order to prune those that are not
useful, since there is at least one other label with a similar trajectory, but which offers
a better or equal profit value and a smaller or equal resource consumption. A label
λ1 = [π1, ν1, ζ1, µ1] dominates a label λ2 = [π2, ν2, ζ2, µ2] with λ1 6= λ2 if and only if:

i ν1 = ν2

ii π1 ≥ π2

iii ζ1 ≤ ζ2

Two labels are comparable only when arriving at the same vertex, so that they
share a similar past trajectory and similar possibilities for their future paths. A label
eliminates another one when its collected profit value is greater or equal to the value
of the second one and its travel cost is lower or equal.

6.3.3 Extension of a Label

In the Selector algorithm, the extension of a label λ = [π, ν, ζ, µ] from vertex σν to a
successor vertex σk with k > ν implies that one of two possible operations is performed:
visit vertex σk or skip vertex σk. At every extension, feasibility must be maintained
so we need to ensure that the constraint on the tour length is met. Therefore, when
the total tour length is within the limit, the label λ is extended by visiting vertex σk.
Whereas, when this restriction is not met, extension is done by skipping σk.

The algorithm to extend a label will now be explained. However, one of its steps is
the computation and application of an upper bound. The procedure to compute this
bound is discussed in the next section. Algorithm 14 shows the specific implementation
of Algorithm 6 for the OP. It depicts how a label is iteratively extended to the adjacent
successor vertex to maintain feasibility and efficiency. Label λcurrent stores the last
vertex visited in the path, and label λj memorizes the vertex to which the label is
extended, σj . At every step of the label extension the following four conditions are
tested:
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Algorithm 14 : Extend(λ) in the OP
Input: label to be extended λ = [π, ν, ζ, µ], LBbest, Lmax
Output: labels derived from λ = [π, ν, ζ, µ]
{only non-dominated labels that can later be extended skipping, are kept}

1: λcurrent ← λ
2: for ( j = ν + 1, n− 1 ) do
3: if ( ζ(λcurrent) + cost(σcurrent, σj) ≤ Lmax ) then
4: π(λj)← π(λcurrrent) + profit(σj)
5: λcurrent ← λj
6: if ( π(λj) > LBbest ) then
7: LBbest ← π(λj)
8: compute upper bound µ(λj) {solve FKSP to determine if the label is promising}

9: if ( µ(λj) > LBbest ) then
10: if ( λj not dominated ) then
11: Λj ← Λj ∪ {λj}
12: end if
13: else
14: return
15: end if
16: end if
17: end if
18: end for

i. ζpath ≤ Lmax (line 3)

ii. LBcurrent > LBbest (line 6)

iii. µ(λ) > LBbest (line 9)

iv. label is not dominated (line 10)

Test (i) enforces the restriction on the maximum tour length. Any vertex whose visit
causes the travel cost to exceed the preset bound is simply skipped and the construction
of the path continues in the same trajectory. No labels are kept for skipped vertices. If
it is possible to reach a vertex, the collected profit is updated, and test (ii) guarantees
that the best incumbent always stores the best solution found so far. The upper bound
µ(λ) is calculated at each step of the extension of a label by solving a FKSP, and its
value is stored in label field µ for later use. Test (iii) allows to determine if a label can
be pruned. When µ(λ) ≤ bestKnownProfit, the search in that direction will not find
anything better than the current best solution and it can be abandoned. Note that
bestKnownProfit = LBbest, since we are solving a maximisation problem.

The value of function µ(λ) is used again when the label is retrieved for extension
skipping a defined sequence of vertices in the following way: if µ(λ) > bestKnownProfit,
the label is extended. This test is useful because the value of the best-known solution
might have changed since the label was stored.
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For each vertex, its queue of labels is ordered by decreasing value of function µ(λ),
and in each iteration, the one chosen for extension is the most promising one, i.e., that
with the global highest value for this function.

6.4 Performance Improvements

To meet the challenge of controlling the large number of labels created by Selector
when used to solve the OP, two mechanisms that aim at reducing label proliferation
were implemented. Their principles are explained in Chapter 3, so in this section only
the specifics of the implementation are discussed.

6.4.1 Computation of an Upper Bound

The knowledge of a well computed upper bound allows to identify non-promising labels
that can be pruned. Then, at each step of the label extension, an upper bound on the
profit of the complete tour represented by the label needs to be computed. The obtained
bound can be compared against the incumbent best-known profit in order to determine
if the label created by visiting that vertex is worth storing for further extension. One
way to estimate the profit of the path that remains to be searched is by solving a
Fractional Knapsack Problem (FKSP). Equation 6.1 can be used to estimate the profit
of a complete path.

µ(λ) = π + h(λ) (6.1)

where

• λ = [ζ, σi, π, µ] is a label that memorizes σi as the last visited vertex.

• π is the sum of the profit values of the already visited vertices.

• h(λ) is the upper bound computed on the profit that can be collected visiting
only vertices in the subsequence ϕ = {σi+1, . . . , σn−1}. This is to say, the profit
obtained by visiting only vertices that lie ahead of σi.

When solving the FKSP for a given label λ, the capacity of the knapsack is com-
puted as C = Lmax− ζ. The objects are the vertices in the subsequence ϕ. Their profit
is self-explanatory and their weight is computed as the sum of the minimum in-going
edge weight plus the minimum out-going edge weight. The edges considered are the
ones that connect any σi ∈ ϕ with its predecessor and successor vertices respectively
in the giant tour σ considered in that iteration. The FKSP is solved with a greedy
approach. The value of h(λ) is the sum of the profit values of the vertices chosen from
sequence ϕ. For a detailed example on the solution of the FKSP, the reader may refer
to Section 4.4.

As formerly mentioned, if the upper bound computed on the profit of a given path is
worse than the best-known solution, the search in that trajectory must be abandoned.
Consequently, if µ(λ) ≤ bestKnownProfit, the label can be pruned. Otherwise, the
label is stored if it is non-dominated.
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6.4.2 Restrict the Number of Labels Extended

In order to guarantee a reasonable search time, a limit can be set on the number of
labels that are extended when a given instance is solved. In this way, computations are
restricted by a known value. However, if only some labels will be extended, we want
those to be very good labels, so that, hopefully, we can find a good-quality solution.
Hence, we need a mechanism to identify promising labels. This is done in Selector with
the bounding mechanism explained in the former section. Then, in this implementa-
tion of Selector , the algorithm extends the most promising label of a limited set. We
name the cardinality of the limited set beam width. This number was experimentally
determined for the instances tested and it is one of the inputs of the algorithm. During
the search process, accounting is kept on the number of labels extended, and when
this number reaches the beam width, the search stops. However, there is an impor-
tant consequence in this scheme: it is no longer guaranteed that the solution found is
optimal for the given giant tour. This feature makes it an approximate search. All in
all, in this implementation, there are three ways for reducing label growth: dominance
rules, bounding and limitation on the number of labels extended.

6.5 ALNS: Pseudocode and Parameters

To improve our results, we explored four different construction methods to build the
initial giant tour. The aim of a constructive method that is part of a larger solving
method is to produce good starting points for the master method. In particular, we
want a method that builds an initial giant tour σinit considering both the goal of
the problem—profit maximisation—and the total tour length restriction. We believed
this process would generate a good σinit for Selector to operate on. However, we also
included construction methods with different considerations in order to compare. The
following explanations mention an identifier for the tours constructed. These identifiers
are useful when reading the tables of results, and the same remark applies for the name
given to the construction method.

a. Constructive method C1. Each candidate vertex σi is evaluated by a greedy
function. The one with the best function value is chosen and inserted at the best
position (this is, the one that produces the least increase in the tour length).
The function used is a ratio between the profit pi associated with σi and its
smallest insertion cost ∆li in σinit as shown in equation (6.2). The vertex with
the maximum quotient is the best choice. In other words, vertices with high scores
that do not add too much length to the tour are ideal candidates. Afterwards,
the produced sequence undergoes a 2-opt procedure. Tour σinit1 is built using
this method.

f(σi) = pi
min ∆li

(6.2)
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b. Constructive method C2. Same principle as method C1, but randomization is
introduced. In each selection of σi, the best or second best candidate is chosen
according to a generated random number. We seek to enable one second best
candidate in one out of ten choices. Tours σinitk | k ∈ {2, . . . , 10} are built using
this method.

c. Constructive method C3. Each candidate element σi is randomly selected, and
the produced sequence undergoes a 2-opt procedure. Tour σinit11 is built using
this method.

d. Constructive method C4. The algorithms of nearest neighbour and farthest in-
sertion are used to build σinit. Both sequences obtained undergo a local search
procedure 2-opt to optimize their length and the shorter one is kept. Tour σinit12

is built using this method.

Algorithm 15 illustrates the ALNS process implemented to solve the OP with
simulated annealing as the outer metaheuristic that guides the search. This algorithm
is quite similar to the one explained in Chapter 4. It starts with the construction of
the initial giant tour using one of the four construction methods presented, and this
tour undergoes a local search procedure 2-opt to improve its length. The rationale
behind this optimisation is that the shorter the tour, the more ”room” we have to fit
in vertices in the tour extracted by Selector . The algorithm then prepares the adaptive
layer of the ALNS. Next, it finds a lower bound to start the loop of iterations. The
process continues as formerly explained in Chapter 4.

To define an efficient parameter setting, we again used the irace package of
López-Ibáñez et al. (2011). A learning set of 50 instances (some derived from TSPLIB
and others randomly generated) was designed and Selector was run over them. The
learning instances used to calibrate the algorithm are, of course, different from the
ones used in the benchmark. The resulting set is shown in Table 6.1.

Table 6.1: Values of the ALNS parameters after tuning with irace.

Parameter Meaning Value

γ number of vertices removed in each ALNS iteration [0.3 · |V |, ε · |V |]
(instance size dependent)

ς segment size for updating probabilities in number of ALNS iterations 50
τ reaction factor that controls the rate of change of the weight adjustment 0.35
δ avoids determinism in the SRH 7
ρ avoids determinism in the WRH 3
κ1 score for finding a new global best solution 40
κ2 score for finding a new solution that is better than the current one 25
κ3 score for finding a new non-improving solution that is accepted 10
β cooling factor used by simulated annealing 0.99999
ε fixes the upper limit of vertices removed at each iteration 0.50
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Algorithm 15 : The General Framework of the ALNS with Simulated Annealing
Input: Set V , distance matrix D
Output: Tbest and c(Tbest) {Best OP tour and its profit}

1: σinit ← Construct Tour(V ) ; 2-opt(σinit)
2: compute l0(σinit) {cost of initial giant tour}
3: initialize, to the same value, probability P tr for each removal operator r ∈ R, and

likewise probability P ti for each insertion operator i ∈ I.
4: t← l0, {set initial temperature, variable used in probability function}
5: lcurrent ← l0 ; σcurrent ← σinit

6: LBbest ←Search Lower Bound(σinit) ; c(Tbest)← c(Tcurrent)←Selector(σinit)
7: i← 1 {iteration counter}
8: repeat
9: select a removal operator r ∈ R with probability P tr {roulette wheel}

10: obtain σnew− by applying r to σcurrent

11: select an insertion operator i ∈ I with probability P ti
12: obtain σnew by applying i to σnew−

13: LBcurrent ←Search Lower Bound(σnew)
14: if ( LBcurrent > α · LBbest ) then
15: compute ratio profit/weight for each σi ∈ σnew\{σ0} ; sort ratios
16: c(Tnew)←Selector(σnew)
17: else
18: c(Tnew)← LBcurrent
19: end if
20: if (LBcurrent > LBbest) then
21: LBbest ← LBcurrent
22: end if

{decide acceptance of new solution}
23: if ( c(Tnew) > c(Tcurrent) ) then
24: c(Tcurrent)← c(Tnew) ; σcurrent ← σnew

25: else

26: p← e
−
c(Tcurrent)− c(Tnew)

t

27: generate a random number n ∈ [0, 1]
{new solution might be accepted even if it is worse}

28: if ( n < p ) then
29: c(Tcurrent)← c(Tnew) ; σcurrent ← σnew

30: end if
31: end if
32: if ( c(Tnew) > c(Tbest) ) then
33: c(Tbest)← c(Tnew) ; Tbest ← Tnew
34: end if
35: t← β · t {cooling rate set to be very slow}
36: if ( segment size = ς ) then
37: update probabilities using the adaptive weight adjustment procedure
38: end if
39: i← i+ 1
40: until ( defined number of iterations is met )
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6.6 Computational Results

6.6.1 Benchmarking Conditions

In order to assess the effectiveness of our method, the results obtained by the
metaheuristic are compared against the optimal solution values computed by the
branch-and-cut algorithm of Fischetti et al. (1998). Moreover, they are also compared
against the solution values obtained by the guided local search (GLS) metaheuristic
of Vansteenwegen et al. (2009) and against the state-of-the-art GRASP with path-
relinking heuristic of Campos et al. (2014). Vansteenwegen et al. (2009) and Campos
et al. (2014) also compare their results against the ones of Fischetti et al. (1998).

However, there exist discrepancies in the results of Fischetti et al. (1998). Vansteen-
wegen et al. (2009) compared their results against the ones of the original publication
of Fischetti et al. (1998), and for some instances, reported higher solution values than
the optimal values published by Fischetti et al. (1998). The differences were not very
large and they explained them to be the product of rounding-off errors. Later, Campos
et al. (2014) experienced the same but finding much larger differences. Due to this
situation, they asked for the original code and conducted their own benchmark for the
branch-and-cut algorithm, using the same hardware platform and linear programming
solver as Fischetti et al. (1998). Campos et al. (2014) publish all the results of their
benchmark, but provide no explanation for the differences. For this reason, our tables
of results list both values for the branch-and-cut algorithm.

To conduct our experimentation, we used the data set proposed by Vansteenwegen
et al. (2009), which itself is a subset of the instances proposed by Fischetti et al. (1998).
This test bed of eleven instances is taken from the OP, VRP and TSP literature.
Problems whose name starts with the particle tsi are OP instances introduced by
Tsiligirides (1984), but their travel times were multiplied by 100. The ones identified
by the particle eil are VRP instances taken from the TSPLIB of Reinelt (1991). The
rest are TSP instances also contained in TSPLIB. Instance size ranges from 21 to 400
vertices. The number contained in the instance name indicates its size.

Vansteenwegen et al. (2009) demonstrate that problems with a maximum total
travel cost, Lmax, that allows to select almost all locations or almost no locations
are easier to solve than problems where around half of the locations can be selected.
The eleven test problems have an Lmax value that allows to select half of the points.
Fischetti et al. (1998) define the maximum total travel cost as

Lmax = dα · υ(TSP)e (6.3)

where υ(TSP) is the length of the shortest Hamiltonian tour, and α = 0.5. For all
instances taken from TSPLIB, the value υ(TSP) is provided within the library. For
problems tsi21, tsi32, and tsi33 the values 4598, 8254, and 9755 were used respectively.

The costs {cij} are treated as integer values equal to bdij + .5c, where dij is the
Euclidean distance between points i and j, Reinelt (1991). The profit values are ob-
tained in the following way. For VRP instance eil30, the client demands are inter-
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preted as profits, while for the rest of the non-OP instances, the vertex profits pi for
i ∈ V \{0} are pseudorandom values in the range [1, 100] and are generated as suggested
by Fischetti et al. (1998):

pi = 1 + (7141 · (i+ 1) + 73)mod(100) (6.4)

Using the described instances, several independent executions of the heuristic were
performed, as is customary in testing the performance of randomized heuristic algo-
rithms. For a given giant tour, an instance is solved ten times with a different seed each
time, and each execution lasts 20,000 iterations. The hardware and software platforms
are as reported in Chapter 4.

Four construction methods were used to build the initial giant tour σinit. For meth-
ods C1, C3 and C4 only one tour is tested, but for method C2 nine different tours are
explored. Instances tsi21 and tsi32 were tested with method C1 only because they are
very easy to solve problems, and we observed very small variation in the results. We
consistently obtained the optimal value in the majority of the executions. For tsi21
the minimum obtained was 200 and for tsi32 it was 150. Furthermore, these two in-
stances were not included in the benchmark of Campos et al. (2014), only in the one
of Vansteenwegen et al. (2009). This is another reason why we did not test them with
all the construction methods proposed. For instances eil30 and tsi33, we only tested
four tours, instead of nine, in construction method C2. The reasons are again easiness
of solution and no variation in results.

6.6.2 Discussion of Tables of Results

Table 6.2 documents the comparison of the best values found by the three heuristics
(GLS, GRASP and Selector) against the optimum value found by the branch-and-
cut algorithm. Due to the discrepancies in the results of the branch-and-cut method,
we list the results obtained by both research groups, and the gap values reported are
against the exact method documented. Letter C indicates that the results are obtained
by Campos et al. (2014) or that the gap reported is against these results, while letter
F corresponds to Fischetti et al. (1998). Time is given in seconds and the gap in
percentage. In the case of Selector , the time shown is the one needed to find the best
value reported. Selector clearly outperforms the GLS method, since the quality of the
solutions obtained is always notably higher than the ones of the GLS heuristic, though
for some instances execution time is worse. However, when compared to the GRASP
method, the quality of the solution obtained is moderately inferior for most instances.
It is better only in one instance, surprisingly, the largest one, but the execution time
in this case is far worse for Selector .

However, it is difficult to perform indirect comparisons of execution times taken
from different hardware platforms. Our processor has a SiSoft Sandra Whetstone
benchmark score that is roughly 3 times the value of the processor used by the GRASP
algorithm. Nonetheless, our average execution time is almost twice the value of the
GRASP method. Specifically, in some instances our time is considerably smaller, but
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Table 6.2: Comparison of the best values found by the three heuristics against the
optimal values obtained by the branch-and-cut procedure.

instance optimum optimum time GLS gap time GRASP gap time Selector gap gap time

Fischetti Campos F C F C

tsi21 205 - 0.7 210 -2.44 0.3 - - - 205 0.0 - 0.0

tsi32 160 - 1.3 160 0.0 0.7 - - - 160 0.0 - 0.0

eil30 7600 7600 5.2 7600 0.0 0.7 7600 0.0 0.0 7600 0.0 0.0 0.0

tsi33 500 500 1.8 510 -2.0 0.7 500 0.0 0.6 500 0.0 0.0 0.0

eil51 1674 1778 30.7 1707 -2.0 3.2 1778 0.0 3.8 1731 -3.41 2.64 5.6

rd100 3359 3470 27.8 3265 2.8 8.3 3453 0.49 33.7 3442 -2.47 0.81 166.5

kroA100 3212 3181 67.8 3165 1.5 11.6 3181 0.0 29.1 3165 1.46 0.50 0.0

kroA200 6547 6616 805.1 5428 17 29.4 6551 0.98 111.5 6429 1.80 2.83 0.0

pr299 9161 9107 18000 8088 12 64.9 8689 4.59 400.9 8681 5.24 4.68 0.0

lin318 10900 10962 18000 9145 16 101.2 10339 5.68 339.7 10121 7.15 7.67 0.0

rd400 13648 13555 18000 11362 17 215.5 12365 8.78 229.2 12916 5.36 4.71 1780.5

Average 4994.6 5.4 39.7 2.28 127.6 1.38 2.65 177.5

for two instances it is remarkably higher. Specially when one considers that ours is a
much faster hardware platform.

Table 6.3 and Table 6.4 document the maximum and minimum values obtained by
the different construction methods tested. Values in bold indicate the best value found
for the given instance. In general, the difference between the best and worst values is
roughly 5%. The solution procedure does benefit from considering both the profit and
the length in the construction of σinit since methods C1 or C2 find the best values.
However, it is not sufficient. The way the giant tour is improved throughout the search
needs to be revised. This means the sub-heuristics of the ALNS need to consider both
profit and length and not only length as presently done.

Table 6.5, Table 6.6 and Table 6.7 report the average best results obtained by each
σinitk | k ∈ {1, . . . , 12} over the ten runs. The columns of these tables document the
following.

• iter, average number of iterations needed to find the best profit value.

• z, average best profit value found for the given σinit.

• t, average time taken to find the best profit value in seconds.

• θ, average percentage of deviation from the best-known solution (zBKS),
θ = 100 ∗ (zBKS − z)/zBKS.

One observes in these tables that the larger the instance, the larger the aver-
age deviation from the optimum. No general statement can be made regarding which
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construction method obtains the lowest average deviation. The average number of it-
erations needed to find the best value is usually below 5,000. One also observes great
variability in the average time needed to find the best solution.

Table 6.8, Table 6.9, Table 6.10 and Table 6.11 demonstrate the evolution of the
search process, and for this purpose, results have been grouped every 5,000 iterations.
In these tables, the first row shows the output for σinit1 (C1), the next nine rows (four
for the first two instances) for σinitk, k ∈ {2 . . . 10} (C2), the next for σinit11 (C3), and
the last one for σinit12 (C4). The columns document the following (average values are
over the 10 runs).

• BW , size of the beam width used.

• α, constant by which the best-known solution is multiplied when compared
against the current feasible solution in order to determine the execution of Se-
lector.

• OPT , optimal value found by Campos et al. (2014).

• SV , average profit value.

• time, average total run time in seconds.

• θ, average percentage of deviation from the best-known solution.

These tables show that very frequently the deviation highly improves as more
iterations are done. The gap reached varies greatly among the different initial giant
tours used to solve the instance.

6.7 Conclusions

We successfully applied the Selector operator to the solution of a difficult single-vehicle
problem that involves gaining profit upon visitation. Having been able to solve both
types of problems considered in this work: covering and profit, we demonstrate that
the operator provides a unified methodology for vehicle routing problems with optional
visits. The TSP with profits considered proved to be much more difficult to solve than
the covering problems studied. Further ideas and concepts need to be explored in order
to improve the execution times.

In addition, even though the quality of our results is quite high, they are not better
yet than the ones of the state-of-the-art-heuristic. The average deviation for Selector
in the test bed used is 0.4% larger than the average deviation of the best reference
heuristic. Nonetheless, the following considerations must be made. The ALNS method
implemented is very simple. More sophisticated destroy-repair sub-heuristics that take
into consideration, not only the length of the tour, but also the gained profit can
easily enhance it and lead to better results. The other consideration to be made is that
Campos et al. (2014) used the instances tested to calibrate their algorithm. This is,
the test bed was used to find the best values for key search parameters and also to
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compare different search strategies. In other words, the algorithm is prepared to solve
those instances. This is in great contrast with our heuristic in which the tuning of the
algorithmic parameters is made using learning instances which are different from the
ones tested. The test bed included instances whose size ranges from 21 to 400 vertices.
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Table 6.3: Maximum and minimum values found by the different construction methods
for instances in which n ≤ 50.

instance C1 C2 C3 C4

σinit1 σinit2 σinit3 σinit4 σinit5 σinit11 σinit12

eil30 7600 7600 7600 7600 7600 7600 7275

7600 7250 7600 7600 7600 7600 7275

tsi33 500 500 500 500 500 500 500

490 490 490 490 490 500 490

Table 6.4: Maximum and minimum values found by the different construction methods
for instances in which n > 50.

instance C1 C2 C3 C4

σinit1 σinit2 σinit3 σinit4 σinit5 σinit6 σinit7 σinit8 σinit9 σinit10 σinit11 σinit12

eil51 1727 1731 1696 1720 1731 1707 1707 1707 1707 1707 1707 1720

1698 1680 1665 1662 1665 1656 1651 1652 1660 1683 1652 1680

rd100 3403 3423 3403 3403 3403 3410 3423 3442 3427 3403 3427 3423

3376 3401 3086 3379 3376 3355 3363 3094 3386 3363 3394 3373

kroA100 3122 3165 3129 3165 3087 3102 3134 3107 3165 3125 3129 3131

3019 3033 2818 3037 2935 2920 3063 3051 2984 3074 3087 2835

kroA200 6374 6251 6396 6134 6329 6344 6382 6254 6153 6429 6169 6167

6235 6004 6165 5805 6085 6210 5985 5988 6059 6152 5860 5973

pr299 8505 8576 8550 8474 8681 8575 8594 8508 8607 8600 8433 8513

8177 8211 7839 7773 8411 7747 7965 8358 8356 8032 8113 8301

lin318 10121 9613 9613 9829 9545 9529 9713 9769 9545 9735 9878 9572

9250 9043 9065 9144 9151 9062 9074 9281 8879 9123 9336 9113

rd400 12106 12408 12460 12176 12297 12604 12311 12240 12041 12916 12085 12465

11581 11672 11774 11718 11592 12050 11753 11668 11708 12565 11439 12152
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Table 6.5: Best average values over the ten executions (Part 1/3).

Campos et al.
Instance iter z t (s) θ optimum z t(s)

eil30 σinit1 0 7600 0.00 0 7600 7600 0
σinit2 1998 7300 0.05 3.95
σinit3 0 7600 0.00 0
σinit4 0 7600 0.00 0
σinit5 0 7600 0.00 0
σinit11 0 7600 0.00 0
σinit12 0 7275 0.00 4.28

tsi33 σinit1 1 497 0.00 0.6 500 500 0.6
σinit2 2743 494 0.07 1.2
σinit3 2748 492 0.08 1.6
σinit4 3889 492 0.16 1.6
σinit5 2837 494 0.12 1.2
σinit11 41 500 0.00 0
σinit12 13 495 0.00 1.0

eil51 σinit1 932 1713 0.61 3.7 1778 1778 3.8
σinit2 386 1707 0.49 4.0
σinit3 6500 1674 4.99 5.8
σinit4 2540 1687 2.30 5.1
σinit5 3751 1689 3.48 5.0
σinit6 6302 1686 4.35 5.2
σinit7 7282 1677 4.74 5.7
σinit8 5730 1691 5.00 4.9
σinit9 2817 1695 3.02 4.7
σinit10 3777 1696 3.23 4.6
σinit11 4130 1690 3.97 4.9
σinit12 1964 1706 1.96 4.0
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Table 6.6: Best average values over the ten executions (Part 2/3).

Campos et al.
Instance iter z t (s) θ optimum z t(s)

rd100 σinit1 2374 3390 25.44 2.3 3470 3453 33.7
σinit2 3744 3411 28.57 1.7
σinit3 4440 3354 31.27 3.3
σinit4 3489 3389 21.12 2.3
σinit5 1945 3396 37.49 2.1
σinit6 3268 3384 20.36 2.5
σinit7 3070 3388 30.22 2.4
σinit8 7166 3294 31.31 5.1
σinit9 4259 3412 28.93 1.7
σinit10 2123 3387 5.47 2.4
σinit11 5231 3411 51.21 1.7
σinit12 2230 3405 19.84 1.9

kroA100 σinit1 1382 3058 5.20 3.9 3181 3181 29.1
σinit2 4271 3082 16.67 3.1
σinit3 2726 2988 6.66 6.1
σinit4 281 3097 0.00 2.6
σinit5 4878 3010 8.05 5.4
σinit6 868 3033 3.67 4.7
σinit7 1349 3100 12.50 2.5
σinit8 3231 3083 12.45 3.1
σinit9 2327 3083 7.40 3.1
σinit10 2441 3093 12.87 2.8
σinit11 2767 3103 5.95 2.5
σinit12 6248 3014 16.84 5.2

kroA200 σinit1 1235 6305 19.53 4.7 6616 6551 111.5
σinit2 1715 6115 16.98 7.6
σinit3 9619 6279 91.05 5.1
σinit4 295 5934 3.84 10.3
σinit5 2647 6253 32.79 5.5
σinit6 1464 6285 11.07 5.0
σinit7 1660 6212 29.78 6.1
σinit8 811 6159 11.24 6.9
σinit9 978 6112 7.89 7.6
σinit10 404 6299 2.76 4.8
σinit11 2186 6045 22.63 8.6
σinit12 921 6045 5.29 8.6
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Table 6.7: Best average values over the ten executions (Part 3/3).

Campos et al.
Instance iter z t (s) θ optimum z t(s)

pr299 σinit1 7589 8357 180.98 8.2 9107 8689 400.9
σinit2 3770 8393 96.79 7.8
σinit3 1900 8072 68.52 11.4
σinit4 6232 8185 155.88 10.1
σinit5 836 8484 15.07 6.8
σinit6 4625 8330 117.72 8.5
σinit7 2394 8308 76.24 8.8
σinit8 2539 8449 73.05 7.2
σinit9 4965 8495 107.15 6.7
σinit10 3879 8279 89.63 9.1
σinit11 1023 8243 28.24 9.5
σinit12 3046 8409 97.25 7.7

lin318 σinit1 3208 9473 58.82 13.6 10962 10339 339.7
σinit2 2279 9316 105.21 15.0
σinit3 2168 9312 38.90 15.1
σinit4 3576 9445 130.64 13.8
σinit5 2153 9330 39.86 14.9
σinit6 3476 9305 104.08 15.1
σinit7 2702 9384 117.49 14.4
σinit8 2283 9524 63.16 13.1
σinit9 605 9105 12.24 16.9
σinit10 2277 9400 82.24 14.2
σinit11 1626 9611 31.51 12.3
σinit12 2933 9348 76.41 14.7

rd400 σinit1 4232 11704 401.05 13.7 13555 12365 229.2
σinit2 7917 11993 723.58 11.5
σinit3 5010 12131 448.76 10.5
σinit4 5582 11856 362.40 12.5
σinit5 5040 11980 321.10 11.6
σinit6 7060 12312 585.27 9.2
σinit7 5489 11961 409.20 11.8
σinit8 9730 11928 998.68 12.0
σinit9 6783 11871 501.93 12.4
σinit10 5127 12774 430.72 5.8
σinit11 5423 11891 403.66 12.3
σinit12 1519 12343 129.44 8.9
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7.1 Conclusions

The main focus of this thesis is the study of a heuristic methodology general enough
to be applied to a class of routing problems in which one does not know, a priori,
which customers will be on the tour. The key element of this study is an operator
which formulates the problem of selecting the best customers to visit for the given
objective as a Resource Constrained Elementary Shortest Path Problem on an auxiliary
directed acyclic graph where the side restrictions of the problem considered act as the
constraining resource. This auxiliary graph represents the topological order of the n
customers treated. The operator solves the problem with a dynamic programming
approach, and the algorithm is an adaptation of the one developed by Desrochers
(1988) in the context of the RCSPP. It is a label-correcting reaching algorithm Feillet
et al. (2004). The solution methodology proposed emulates a route first–cluster second
constructive heuristic, so the operator works embedded into a generic metaheuristic
in charge of providing permutations of customers (routing) from which the operator
retrieves a VRPOV solution (clustering) which fulfills the resource constraints, while
optimising the given objective. The operator can be understood as a splitting operator
that separates the customers into visited and non-visited sequences.

In order to enhance the performance of our operator, several strategies were ex-
plored such as computing a lower/upper bound that enables to identify promising
labels and prune those that are not. This mechanism greatly contributed to control
the proliferation of labels and it proved to be crucial in the solution of the Orienteering
Problem (OP). Bidirectional search was also explored when solving the Covering Tour
Problem (CTP), although we were not able to solve a considerably larger set of in-
stances with this version than with the monodirectional one. Other resource explored
was limiting the number of labels extended in a given search. Even though this trans-
formed the search into a non-optimal one, this technique allowed to attain tractability
when solving the OP. We also looked into reducing the size of the given instance by
defining criteria to select sets of elite vertices that still allowed to obtain good-quality
solutions. This strategy proved successful and allowed to solve a 200-vertex instance
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that exhibited quite high execution times. Providing better starting points for the al-
gorithm was also analysed, and better suited construction methods for the problem at
hand allowed to attain better results.

The metaheuristic chosen does not use small conventional moves to perform local
search. Instead, it explores very large moves that can rearrange a high percentage of
the solution in the hope of avoiding difficulties in moving from one promising area of
the search space to another. In reality, such a large neighborhood is merely sampled,
but it is still possible to obtain good performance as shown by the results obtained.

When designing the heuristic, the characteristics sought by users and explained in
Chapter 1 such as simplicity, precision, easiness in adapting to a variety of problems,
etc. were taken into account, though we might not have been successful in integrating
them wholly in all our implementations.

The heuristic was applied to diverse VRPOV: the single-vehicle CTP, the multi-
vehicle CTP (m-CTP), and the OP. The customization required by the operator in
order to adapt it to the solution of a particular problem was fairly simple. Very few and
specific modules of the code needed tailoring. The CTP and m-CTP are much easier
to solve problems compared to the OP which required more mechanisms to control the
proliferation of labels. When solving the CTP, the quality of the results obtained for
small and medium-sized instances, compared against the output of an exact method,
is very good. For most of the tested instances, the solution obtained is within 1% of
optimality. There are neither standard libraries of instances nor reference benchmarks
for the CTP, so for larger instances, the results of the monodirectional and bidirectional
searches were compared. Therefore, the gap to optimality is unknown. Computational
results were reported for a set of instances whose size ranges from 100 to 575 vertices
and the tour may contain from 25 up to 268 vertices.

Regarding the m-CTP, the implementation of Selector introduces a novel way to
use the Split operator which allowed to solve the problem without resorting to the
use of labels to define and evaluate routes. The considerations made by the problem
eased the task of adapting this operator. The results obtained are of similar quality to
the ones of the state-of-the-art exact and heuristic algorithms. However, the execution
time for the case when the route length constraint is relaxed needs to be improved.
Instances with up to 200 vertices where the tour may contain up to 100 of them were
solved.

The quality of the results obtained for the OP is very close to the one of the
state-of-the-art heuristic. However, in this heuristic the test bed is used to calibrate
the algorithm. This is, the tested instances were used to find the best values for key
search parameters and also to compare different search strategies. In other words,
the algorithm is prepared to solve those instances. This is in great contrast with our
heuristic in which the tuning of the algorithmic parameters is made using learning
instances which are different from the ones tested. Notwithstanding, further ideas and
concepts need to be explored in order to improve the execution times. Instances as
large as 400 vertices were solved.

All in all, the contributions of this thesis work are (1) the development of the
m-Selector operator and its performance improvement features; (2) the unified heuris-
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tic methodology that incorporates this operator to solve VRPOV; and (3) the novel
ways proposed to solve the different VRPOV in which the developed methodology was
applied.

7.2 Perspectives

Heuristic search for solving VRP is a widely spread topic in the operational research
community. Some studies have reached quite a high level, yet researchers will continue
to be challenged to develop even better, more general and robust heuristics as more
complex vehicle routing problems keep coming up in real life together with the need
to solve larger instances. In my opinion, it is very likely that the trend will continue
to be towards hybrid heuristics that take advantage of the benefits of diverse solution
methods. Also, parallel implementations will continue to be an important topic of
research.

In our specific case, further research can be done by applying the heuristic to the
solution of other VRPOV. In fact, we have already started this activity. We have
adapted the Selector operator to solve the Cumulative Covering Tour Problem where
the objective is not total route cost minimisation, but the minimisation of the sum
of arrival times at delivery points. We have concluded the one-vehicle version, and
have compared the results yielded by our implementation to the ones of the GRASP-
based heuristic of Flores-Garza et al. (2015). Selector has clearly outperformed these
results. We will continue to implement the multi-vehicle version. Another problem that
is clearly of interest because of its wide applicability is the Team Orienteering Problem.

Another research path is the metaheuristic used. The ALNS is very modular so it
is not difficult to further explore its different components. The implementation done in
this thesis work is quite simple, and it can be enriched by developing more sophisticated
sub-heuristics that consider other measures rather than only the length of the giant
tour constructed. For example, consider profit as well as length in the routing problems
with profits. In addition, the method used to accept a non-improving solution can be
further explored. The scheme used, simulated annealing, is simple to implement and
integrates well with the ALNS, but Table 2.6 refers some other possibilities. Other
element that could be analysed is to add the noise term, suggested by Ropke and
Pisinger (2006) to favour diversification, in a different manner to the one used. A more
radical move is to replace the metaheuristic for other one, such as a population-based
method like genetic algorithms or ant colony optimisation.

However, for all its strengths, the greatest shortcoming of Selector is that a dynamic
programming formulation of a problem always yields an algorithm whose efficiency is
determined by the number of states, labels in our case, created. Thus, a future research
path for Selector is finding additional ways to reduce the number of labels created. One
possibility is the idea introduced by Toth and Vigo (2003) in their granular tabu search
algorithm: graph sparsification. This is to say, approximate a given graph by a graph
with fewer edges or vertices. The main idea behind this pre-processing stems from the
observation that the longer edges of a graph have only a small possibility of belonging
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to an optimal solution. Hence, by eliminating all edges whose length exceeds a value,
which Toth and Vigo named granularity threshold, several non-promising solutions will
never be considered by the search process. In order to set the granularity threshold,
Toth and Vigo proposed using ν = βc, where β is referred as a sparsification parameter
and c is the average edge length of a solution obtained by a fast heuristic. These
authors explain that if β ∈ [1.0, 2.0], then the percentage of remaining edges in the
graph tends to be in the 10% to 20% range. If graph sparsification is applied to the
auxiliary graph H over which Selector operates, less labels will be created and a more
efficient algorithm is possible. However, adequate values of β need to be investigated
together with an appropriate granularity threshold. In addition, considerations such as
maintaining a set of important edges such as those incident to the depot or belonging
to high-quality solutions need to be examined.

Solving the RCSPP with a dynamic programming-based algorithm is closely related
to solving multi-objective shortest path problems. The aim in these problems is also
to generate non-dominated paths (i.e. Pareto optimal paths). Then, another possible
research path could be to develop a multi-objective Selector operator. Many of the
VRPOV are multi-objective in nature and could be treated as explicit bi-objective
problems, so an operator with this approach is not out of place.
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A.1 Introduction

Cette thèse vise à contribuer à l’étude des problèmes de tournées des véhicules avec
des visites optionnelles (PTVVO) en proposant une approche heuristique unifiée pour
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résoudre ce genre de problèmes. La méthodologie développée a été appliquée pour
résoudre le Covering Tour Problem (CTP) Gendreau et al. (1997), le Multi-Vehicle
Covering Tour Problem (m-CTP) (Hachicha et al., 2000), et le Orienteering Prob-
lem(OP) (Tsiligirides, 1984).

Nous avons développé un méta-heuristique hybride basé sur l’approche séminale de
Beasley (1983) connu comme route first–cluster second. Sa principale caractéristique
est un opérateur basé sur la programmation dynamique, nommé Selector , visant à ex-
traire des solutions de PTVVO. La phase de routage de l’approche de solution unifiée
proposée est géré par un méta-heuristique générique qui produit des tours géantes (per-
mutation de tous les n clients pour visiter) de haute qualité en utilisant des heuristiques
subordonnés. Le méta-heuristique appliquée pour ce travail est la recherche adaptatif
à grand voisinage introduit par Ropke and Pisinger (2006). La phase de cluster est
résolu par l’opérateur Selector incorporé dans le méta-heuristique. L’opérateur accom-
plit les tâches suivantes: (i) sélectionne de façon optimale les sommets à visiter dans le
tour géant formée par les sous-heuristiques (groupes les sommets dans sous-séquences
visités et sous-séquences non visités); (ii) évalue les coûts de l’itinéraire et (iii) des
problèmes multi-véhicules, co-travaux avec le opérateur Split de façon optimale le seg-
ment un ensemble de sommets sélectionnés dans les itinéraires faisables de véhicules
possibles. La tâche globale du méta-heuristique est de construire de tours géantes de
bons qualité à partir de laquelle l’opérateur Selector récupère des solutions PTVVO
efficaces.

L’opérateur Selector est un nouvel algorithme introduit dans ce travail de thèse. Les
travaux préliminaires sur elle a été présentée dans le XVII Conferencia Latino Amer-
icana en Investigación de Operaciones (CLAIO 2014), Monterrey, Mexique, Octobre
6-10 2014. D’autres travaux a ensuite été présenté dans le 9e Learning and Intelligent
OptimizatioN Conference (LION9), à Lille, en France, janvier 12-15, 2015, et un docu-
ment a été publié dans les actes du colloque, (Vargas et al., 2015a). Selector a d’abord
été appliquée à la solution du CTP, et plus tard, la version mis en œuvre pour résoudre
le OP a été présenté dans la 4e réunion du EURO Working Group on Vehicle Routing
and Logistics Optimization (VeRoLog 2015) à Vienne, en Autriche, juin 8-10, 2015.
La version de Selector visant à résoudre plusieurs véhicules PTVVO a été appliqué
à la solution du m-CTP, et les résultats ont été présentés à la 17ème Conférence de
la Société Française de Recherche Opérationnelle et d’Aide à la Décision (ROADEF
2016) à Compiègne, en France, février 10-12, 2016.

Vidal et al. (2015) a récemment publié un recherche à grand voisinage pour
problèmes de tournée de plusieurs véhicules avec des profits basés sur un algorithme
qui suit les mêmes principes que Selector . Ils produisent d’une manière heuristique une
solution conventionnelle de tournée de véhicule, qu’ils nomment une représentation ex-
haustive de la solution car elle rend visite à tous les clients, puis à plusieurs reprises
appliquent leur sélection algorithme sur chaque nouvel itinéraire afin de récupérer les
séquences optimales de visites aux clients. Ils testent leur structure de voisinage dans
les trois cadres heuristiques: un multi-démarrage recherche locale, un multi-démarrage
itéré recherche locale basée sur la méthode de Prins (2009), et une recherche génétique
hybride (UHGS) découle directement du cadre général de la Vidal et al. (2014). Selector
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est envisagé comme un opérateur unifié pour résoudre PTVVO, alors que leur select
algorithme est conçu uniquement dans le cadre de problèmes de tournée de plusieurs
véhicules avec les bénéfices.

Le résumé est organisé comme suit. Le point de départ de l’explication est une
brève présentation, dans la section A.2, des fondements de la méthode. Ensuite, une
explication de l’algorithme de Selector est fourni dans la section A.3. Sections A.4 à A.6
présentent des modifications effectuées à l’algorithme de base de Selector pour remplir
des objectifs spécifiques. La mise en œuvre faite de le méta-heuristique sélectionnée
est ensuite détaillé dans la section A.7. Les observations finales sont présentées dans
la section A.8.

A.2 Les Bases du Selector

Quand la résolution d’un PTVVO, l’opérateur Selector divise de manière optimale
une tour géant en séquences de sommets visités et non visités d’une manière semblable
comme le Split opérateur segmente de façon optimale une tour géant dans les itinéraires
faisables de véhicules lorsqu’il est appliqué pour résoudre le problème de tournée de
véhicule capacitation tel que proposé par Prins (2004). La division de la tour géant
dans des itinéraires de véhicule nécessite de résoudre un problème de plus court chemin.
Cependant, dans le cas d’un PTVVO, les restrictions latérales ont considéré des actes
comme ressources de contrainte et le problème à résoudre alors devient un problème
de plus court chemin élémentaire avec ressources limitées (PPCCERL).

L’opérateur Selector partage des similitudes avec le opérateur Split. Cependant, le
fait de ne pas savoir a priori que les sommets constituent la tournée laisse un problème
un plus difficile à résoudre. Néanmoins, le PPCCERL pour un PTVVO peut être
résolu assez rapidement dans la pratique en adaptant l’algorithme conçu par Desrochers
(1988) pour le problème de plus court chemin avec ressources limitées (PPCCRL).
L’exigence élémentaire est garantie par le fait que l’ordre donné par la tour géant est
respectée.

Le Problème de Plus Court Chemin Élémentaire avec Ressources Limitées
(PPCCERL). Le PPCCERL est le problème de trouver un plus court chemin
élémentaire d’un sommet de source vs à un sommet de cible vt dans un réseau tels
que l’utilisation de ressource globale ne dépasse pas quelques limites données. Par
conséquent, le disque des ressources employées par chaque chemin devrait être gardé.
Des ressources sont consommées quand la visite des sommets ou la traversée des arches.
Un tel problème est NP-difficile (Dror (1994)). L’approche standard pour résoudre
un PPCCERL à l’optimalité est programmation dynamique, et d’avoir la complexité
pseudo-polynomiale.

Cette approche compte sur le travail séminal de Desrochers (1988) qui a proposé
un algorithme pour résoudre une version décontractée de ce problème, le PPCCRL,
où les besoins de chemin ne pas être élémentaire. La procédure de Desrochers est
une extension multi-label de l’algorithme de Bellman-Ford prenant en compte des
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contraintes de ressource. La nécessité de garder le disque des ressources utilisées oblige
d’assigner plusieurs labels à chaque sommet.

La procédure de Desrochers est un algorithme de atteignant de correction de la-
bel. Son principe de base est d’associer un label à chaque chemin partiel qui va du
sommet d’origine vs à un sommet vi. Le label représente le coût du chemin et de sa
consommation des ressources. On élimine des labels inutiles pendant que la recherche
progresse. Des sommets sont itérativement traités jusqu’à ce qu’aucun nouveau label
ne soit créé. Quand un sommet est traité, tous ses nouveaux labels sont prolongés vers
chaque sommet de successeur possible. Dans toute la recherche, puis, chaque sommet
reçoit plusieurs labels. Quand un label est prolongé du sommet vi au sommet vi+1
pour produire d’un autre label faisable, le coûtent et la consommation de ressource du
nouveau label doit être calculée selon une formule de répétition.

Le soi-disant label, qui représente un chemin faisable, peut être compris comme un
vecteur V = [ζ|r1, r2, . . . , lerm] qui mémorise le coût du chemin ζ et les consommations
de ressource ri le long du chemin correspondant. Ces consommations permettent de
savoir si un chemin partiel peut encore être prolongé. L’efficacité de l’algorithme basé
sur la programmation dynamique décrit dans l’ancien paragraphe compte fortement
sur la possibilité d’élagage les labels qui ne peuvent pas mener à une solution optimale.
À cet effet, des essais appropriés de dominance sont toujours réalisés quand les labels
sont prolongés, de sorte que seulement des labels dominés par non soient stockés. Pour
trouver le chemin optimal seulement les chemins dominés par non doivent être con-
sidérés comme. Pour une enquête sur des modèles et des algorithmes pour le PPCCRL
et le PPCCERL, le lecteur intéressé peut consulter Irnich and Desaulniers (2004). Feil-
let et al. (2004) a présenté un algorithme exact pour résoudre le PPCCERL appliqué
à Problèmes de Tournées de Véhicules.

A.3 L’Opérateur Selector

L’explication procède maintenant au mécanisme de groupement proposé dans cette
thèse : l’opérateur Selector . L’opérateur est un algorithme de atteignant de correc-
tion de label et un algorithme basé sur la programmation dynamique qui, donné un
ordre des clients, sélectionne lesquels pour visiter afin d’obtenir la meilleure solution
évaluent pour le but donné tout en gardant l’ordre de acheminement original et les
contraintes latérales satisfaisantes. Formellement, l’opérateur formule le problème de
sélectionner les clients pour visiter dans une certaine tour géant donnée comme un
PPCCERL sur un graphe auxiliaire H qui est dirigé et acyclique. Ce graphe auxili-
aire représente l’ordre topologique des les n clients contenus dans le tour géant trait.
Chaque arc traversé (i, j) ∈ H | i < j indique une consommation de ressource. L’entrée
de l’algorithme est une permutation σ d’un ensemble de sommet V qui représente un
ensemble de clients. Le dépôt est toujours le premier sommet dans cette permuta-
tion. La sortie de l’algorithme est un sous-ensemble V ′ ⊂ V à visiter dans le même
ordre donné dans σ tels que la valeur de la fonction objectif considérée est optimale
et les contraintes de ressource sont satisfaisantes. Il est important de noter qu’une
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telle technique de solution implique là n’est aucun besoin de recherche locale basée sur
des insertions et des retraits des clients de même que le cas dans les beaucoup heuris-
tique, par exemple, Campos et al. (2014), Vansteenwegen et al. (2009), Gendreau et al.
(1997). Au lieu de cela, notre algorithme construit toutes les possibilités d’élagage ceux
qui ne peuvent pas conduire à la solution optimale.

A.3.1 Les Labels

La programmation dynamique est une technique qui établit la solution cherchée d’une
mode de bas en haut par la solution des sous-problèmes dont la complexité augmente
graduellement. Dans ce cas, le premier sous-problème résolu est celui de trouver le
coût ou le bénéfice et la consommation des ressources pour le chemin {σ0, σ1}. Avec
cette information, il est possible de résoudre facilement un sous-problème semblable
pour le chemin pour atteindre le sommet σ2. Également en atteignant le sommet
σ3, et ainsi de suite. Par conséquent, la technique exige du stockage des résultats
intermédiaires d’éviter le recomputation. Dans la pratique, ce fait à l’aide des labels.
Dans le cas de Selector , un label représente un chemin élémentaire faisable que les
débuts à σ0 et a considéré des sommets jusqu’à σi. Un label λ = [z, i|r1, r2, . . . , rm] est
défini comme triplet qui stocke: la valeur z de la fonction objectif considérée, le grade i a
atteint dans σ (dernier sommet visité), et la consommation de ressource r1, r2, . . . , rm
qui permet de savoir un chemin partiel peut être prolongé. Par exemple, dans un
problème de couvrant, cette consommation de ressource est interprétée comme que des
sommets qui doivent être couverts sont encore découvert, et cette information permet
de savoir si un sommet vi ∈ V peut être sauté en prolongeant un label. Un sommet σi
peut être accédé par différents chemins composés de prédécesseurs visites et sautés, de
chacun avec le coût différent et d’utilisation différente des ressources. En conséquence,
un ensemble de labels Λi est associé à chaque sommet σi, pour i ∈ {0, . . . , n − 1},
commençant par Λ0 = {[0, 0, 0]} pour le sommet agissant en tant que dépôt. Une
label sur un sommet est prolongée à plusieurs reprises à ses successeurs jusqu’à ce que
les restrictions considérées empêchent la création d’labels faisables. Cette opération
se répète jusqu’à ce que toutes les labels ont été prolongées dans toutes les manières
faisables.

Des répétitions de cette opération jusqu’à tous les labels ont été de toutes les
manières. Quand un label est prolongé, sa valeur de la fonction objectif (coût ou
bénéfice) et son rang sont calculés utilisant des résultats précédents, et l’information
liée aux contraintes latérales (ressources) est mise à jour pour s’assurer qu’une solution
faisable est encore possible. Dans chaque itération, le label prolongé est toujours celui
qui documente la meilleure valeur de la fonction objectif. Puis, pour n’importe quel
i, un ensemble de labels Λi+1 est construit en considérant itérativement n’importe
quel arc (j, i+ 1) ∈ H et en prolongeant tous les labels de j utilisant une équation de
répétition. Puisque chaque extension crée un nouveau label, une manière de commander
leur prolifération est en appliquant des relations de dominance entre les paires de labels.
Les critères appropriés de dominance laissent identifier les labels dont l’extension ne
peut pas produire une solution optimale. Deux labels peuvent être comparés seulement
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si chacun des deux ont atteint le même grade i dans σ. En outre, le label de domination
doit être moins ou également contraint par l’information de ressource stockée, et doit
offrir une meilleure ou égale valeur de la fonction objectif.

A.3.2 Les Bases de l’Algorithme

Dans un algorithme conçu pour visiter tous les sommets du réseau donné, un label peut
seulement être prolongé du sommet σi au sommet de successeur σi+1 sans la possibilité
de sauter des sommets. Dans un tel cas, l’extension d’un label correspond à apposer
un arc supplémentaire (i, i + 1) à un chemin de σ0 à σi, obtenant un chemin faisable
de σ0 à σi+1. Le processus implique également mettre à jour la valeur de la fonction
objectif, le dernier sommet atteint (i+ 1) et la consommation des ressources.

Dans (m)-Selector , une opération semblable se produit quand un label est prolongé,
mais dans cet algorithme des sommets peuvent être sautés, ainsi nous considérons
qu’un label est prolongé du sommet σi au sommet σi+k, où k peut prendre l’un des
après les valeurs {1, 2, 3, . . . , n− i− 1} avec n = |V |. En outre, l’extension d’un label
λ = [ζ, ν|r1, r2, . . . , rm] du sommet σi au sommet de successeur σi+k, implique qu’une
de deux opérations possibles est effectuée: visitez le sommet σi+k, ou sautez le sommet
σi+k. Si en prolongeant un label il est décidé que le sommet σi+k est sauté, l’extension
procède au sommet σi+k+1 et il est évalué à nouveau s’il est utile de visiter il. Non visite
est possible, par exemple, quand un sommet se révèle être redondant ou en visitant il
viole une restriction. Cependant, pas des labels sont créées pour les sommets sautés.
Seulement quand le sommet est visité, un label dominé par non est stocké.

Quand k = 1, l’extension se produit au sommet successeur adjacent immédiat.
D’autre part, quand 2 ≤ k ≤ n − i − 1, l’extension se produit sautant un séquence
des sommets. Ceci est possible seulement si les restrictions latérales laissent sauter la
séquence {σi+1, . . . , σi+k−1}.

Une caractéristique distinctive et importante de (m)-Selector est c’hormis les con-
traintes mentionnées dans la définition du problème, il n’impose pas toute autre restric-
tion aux sommets sélectionnés de V tels que la contigüıté, par exemple. Cet opérateur
peut rejeter tout sommet vi ∈ V à tout moment de la tournée.

A.4 Générer une Solution Faisable

La méthodologie de solution proposée nécessite établir rapidement une solution fais-
able. Cette solution est utilisée comme une sonde pour déterminer l’exécution de Se-
lector à l’optimalité, et dans quelques problèmes, el est utilisée comme une limite. Il
y a plusieurs manières de construire cette solution. Nous avons considéré utilisant une
version simplifiée de Selector .

L’algorithme simplifié cherche une solution utilisant le même graphe et les même
opérations d’extension que le noyau de l’algorithme Selector , cependant, il explore
seulement certains des chemins possibles pour trouver la solution rapide. Commençant
à σ0 il essaye pour se prolonger λ à σi ∀i ∈ {1, 2, . . . , n− 1}, et de σi il essayer pour
se prolonger λi à σi+k ∀k ∈ {1, 2, . . . , n− i− 1}. Une fois la séquence {σ0, σi, σi+k} est
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construit, il continue, si possible, en visitant itérativement le sommet successeur adja-
cent. Par exemple, il essaye d’abord de construire la séquence {σ0, σ1, σ2}, et essayera
de continuer en se prolongeant à plusieurs reprises au successeur adjacent immédiat.
Après, il construit la séquence pour la prochaine valeur de k : {σ0, σ1, σ3}, et répète
encore l’extension aux successeurs adjacents. Une fois que toutes les valeurs de k sont
épuisées, il traite le prochain sommet σi d’une manière semblable. Le processus finit
quand tous les sommets σi ont été traités. Chaque tour complèt trouvé est comparé et
le meilleur est gardé, aucun labels sont stockées afin de l’exécuter rapidement.

A.5 L’Amélioration de Performance

Pour maintenir la tractabilité ou accélérer la recherche, trois mécanismes étaient
présenté dans Selector : (i) prolonger seulement un nombre prédéfini de labels; (ii) cal-
culer une limite inférieure/supérieure, qui est comparée à la meilleure solution faisable
en exercice; et (iii) exécuter la recherche bidirectionnelle dans le graphe.

A.5.1 Limiter le Nombre de Labels Prolongés

Dans de l’informatique, une manière commune d’essayer de maintenir la tractabilité est
d’employer la beam search. Le terme beam search a été inventé par Raj Reddy, Carnegie
Mellon University, 1976. La beam search est une version restreinte d’une recherche en
largeur ou d’une meilleur-première recherche, et il est limité dans le sens que la quan-
tité de mémoire disponible pour stocker l’ensemble d’états est limitée, et dans le sens
que des états moins-prometteurs peuvent être taillés à n’importe quelle étape dans
la recherche par l’heuristique problème-spécifique comme expliqué par Zhang (1999).
L’ensemble de la plupart des états prometteurs s’appelle le beam. La beam search a
l’avantage de réduire potentiellement la période d’une recherche. L’inconvénient prin-
cipal de la beam search est que la recherche peut avoir comme conséquence une solution
non-optimale. Par conséquent, cette recherche heuristique sacrifie l’optimalité pour la
tractabilité. En dépit de cet inconvénient, il peut réaliser un niveau satisfaisant de
qualité de solution, et a trouvé le succès dans les secteurs tels que l’apprentissage
automatique et la reconnaissance de la parole (Zhang, 1999).

Dans Selector , nous ne traitons pas une pénurie de mémoire, mais nous visons à
limiter le nombre de labels prolongés afin de maintenir la tractabilité. Les notions de
le beam et la beam width sont appliqué dans Selector dans le sens que seulement un
nombre prédéfini (le beam width) des labels stockés les plus prometteurs (le beam)
sont prolongé. En d’autres termes, le beam est la queue d’attente de recherche parce
que seulement des labels de promesse sont stockés, et seulement un nombre prédéfini
de labels stockés dans cette queue d’attente sont prolongé. Des labels de promesse
sont identifiés par un mécanisme de bondissement, comme expliqué dans la section
3.5.2. En d’autres termes, c’est un processus de recherche qui prolonge le label le plus
prometteur dans un ensemble limité. De cette façon un temps de recherche raisonnable
est garantie puisque des calculs sont limités par une valeur connue.
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Ce type de recherche exige alors que l’algorithme connâıt les règles pour l’élagage
labels et la beam width. Cette technique a été appliquée à l’algorithme de solution
pour l’OP.

A.5.2 Calculer une Limite Inférieure/Supérieure

Pour élaguer les états non-prometteurs exige d’abord les identifier. C’est possible util-
isant une limite. Dans Selector , calculant une limite atteint deux objectifs d’élagage :
éviter de stocker et éviter de prolonger les labels non-prometteurs. La fonction suivante
peut être employée pour estimer la valeur de la fonction objectif d’un chemin complet

µ(λ) = z(λ) + h(λ) (A.1)

là où

• λ = [z, σi|r1, r2, . . . , rm] représente le label qui mémorise σi comme le dernier
sommet visité sur le chemin a représenté.

• z(λ) représente la valeur réelle de la fonction objectif du label (dès le début
sommet σ0 à sommet σi).

• h(λ) représente la limite inférieure/supérieure calculée sur la fonction objectif
visitant seulement des sommets dans le subsequence ϕ = {σi+1, . . . , σn−1}. Ceci
peut être une limite inférieure du coût pour couvrir les sommets restants ou une
limite supérieure du bénéfice recueilli à partir des sommets qui se trouvent devant
σi.

Équation A.1 est inspiré dans l’algorithme d’A* utilisé dans de l’informatique
pour le recherche de un chemin et le traversal de un graphe. Hart et al. (1968) de
Stanford Research Institute (maintenant SRI International) a décrit la première fois
l’algorithme. C’est une extension de l’algorithme du plus court chemin de Dijkstra
utilisant l’heuristique pour guider sa recherche. À chaque itération de sa boucle prin-
cipale, A* doit déterminer lesquels de ses chemins partiels à augmenter dans un plus
long chemin. Il fait ainsi basé sur une estimation du coût (poids total) reste à par-
courir pour le sommet de but. Spécifiquement, A* sélectionne le chemin qui réduit au
minimum l’équation f(n) = g(n)+h(n) où n est le dernier sommet sur le chemin, g(n)
est le coût du chemin à partir du sommet de début à n, et h(n) est le coût estimé par
une heuristique spécifique au problème du chemin le moins cher à partir de n au but.

Reprenant la mécanique de Selector , pour résoudre l’équation A.1, nous devons
seulement trouver la valeur de la limite h(λ). Naturellement, les sommets que nous
voulons visiter sont ceux avec un bon rapport de avantage

coût
.

Ensuite, la valeur de la limite h(λ) peut être trouvée par la solution de un Problème
de Sac Partiel (PSP), i.e. la relaxation linéaire d’un Problème du Sac 0-1, quel com-
plexité est polynôme, O(n logn), prenant en considération le tri des articles considérés.
Afin de résoudre ce problème de sac, il est nécessaire de définir d’abord tout les objets,
leur bénéfice et leur poids. Un objet est créé pour chaque sommet dans ϕ. Le bénéfice
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pi d’un objet est donné par le nombre de sommets qu’il couvre ou par le bénéfice sa
visite rapporte. Le poids wi d’un objet est calculé comme suit. Soit ∆ = {wji}i−1

j=0
l’ensemble des poids des arêtes d’entrée de σi, ceux qui se connectent le sommet σi
avec chacun de ses sommets prédécesseurs dans σ, et soit ∆′ = {wik}n−1

k=i+1 ∪ {wi0}
l’ensemble des poids des arêtes sortantes de σi, ceux qui se connectent le sommet σi
avec chacun de ses sommets successeurs dans σ. Ensuite, une limite inférieure du coût
de voyage (poids) de visiter le sommet σi peut être obtenue par

wi = min ∆ + min ∆′ (A.2)

Dans le cas où il y a égalité entre les deux ensembles — le sommet prédécesseur
est le même que le successeur — le deuxième meilleur poids global de arête est
choisi. Le PSP est résolu avec l’algorithme avide classique de Dantzig (1957). Le rap-
port bénéfice/poids, pi

wi
, services pour déterminer les meilleurs sommets pour vis-

iter. Commandez les sommets dans l’ordre non-croissant en fonction de leur rapport
bénéfice/poids, et sélectionnez-les dans l’ordre jusqu’à ce que la capacité du sac est
dépassée. Dans ce cas, la capacité du sac peut représenter le nombre de clients encore
pour couvrir ou la longueur du chemin qui reste hors du maximum permis. Néanmoins,
dans le PSP, nous ne devons pas sélectionner tout le bénéfice d’un sommet, mais plutôt
peut prendre n’importe quelle fraction de celle-ci. Ainsi, pour le dernier sommet choisi,
nous pouvons seulement inclure la fraction du bénéfice qui s’adapte dans la capacité
restante. De cette façon l’algorithme avide ne gaspille jamais n’importe quelle capacité,
et en conséquence, il rapporte toujours une solution optimale pour le PSP comme dans
expliqué Neapolitan and Naimipour (1998). Selon la fonction objectif considérée, la
valeur de la limite h(λ) est alors la somme des valeurs de bénéfice ou de poids des som-
mets choisis. Si la valeur estimée de la fonction objectif (limite) d’un chemin indiqué
est plus mauvaise que la solution la plus connue, la recherche dans cette trajectoire doit
être abandonnée. Ainsi, la fonction µ(λ) doit être calculée à chaque étape de l’extension
d’un label afin de déterminer si le label est prometteur. La valeur de la fonction µ(λ)
est stockée dans un champ supplémentaire de le label et il est appliqué encore de la
même manière quand le label est récupéré pour l’extension. Ce test est utile parce que
la valeur de la solution la plus connue pourrait avoir changé depuis que le label a été
stocké. Cette technique a été appliquée aux algorithmes de solution pour le CTP et
l’OP.

A.5.3 La Recherche Bidirectionnelle

Pohl (1971) était le premier pour concevoir et mettre en application un algorithme
de recherche heuristique bidirectionnel. Dans ce genre d’algorithme, deux processus
de recherche sont effectués simultanément: on commence à partir de σ0 et considère
σ dans l’ordre donné, et l’autre également commence à σ0 mais considère que la
séquence obtenu en inversant σ. Quand les deux frontières de recherche intersectent,
l’algorithme peut reconstruire un chemin unique qui prolonge dès le sommet de départ
par l’intersection de la frontière au le sommet de but.
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Le raisonnement derrière employer la recherche bidirectionnelle est le suivant.
L’algorithme de programmation dynamique présenté produit d’un certain nombre de
labels qui augmente rapidement avec la taille du problème actuel. Chaque fois un label
λ est prolongé de σi, il produit d’autant d’autres labels comme nombre de successeurs
possibles de σi. Par conséquent, dans le pire des cas, le nombre de labels se développe
exponentiellement avec le nombre de sommets dans le chemin. En raison de cette
dépendance exponentielle à l’égard le nombre d’étapes, il est intuitif que produire des
chemins plus courts puisse rapporter un avantage significatif en termes de nombre de
labels considérés. Ceci est précisément l’effet de la recherche bidirectionnelle avec le
bondissement, quel but est de limiter la longueur des chemins a considéré tout au plus
à la moitié de la longueur du chemin optimal.

Désormais, il est expliqué comment les principales caractéristiques de performance
de ce type de recherche ont été mises en application. Le processus de recherche à
exécuter à chaque itération doit être sélectionné. Bien que itérer à parts égales entre
les deux recherches — vers l’avant et vers l’arrière — serait la méthode la plus simple,
il n’est pas le plus efficace. La meilleure stratégie est d’identifier le chemin (label) avec
la meilleure valeur de la fonction objectif jusqu’à présent. C’est-à-dire, pendant chaque
itération, concentrer l’effort informatique sur la recherche ayant le meilleur chemin.

Un nouveau problème surgit pendant une recherche bidirectionnelle, à savoir
s’assurant que les deux frontières de recherche se réunissent réellement. Pour cette
raison, à chaque itération, l’occurrence de chemins complets est surveillée. Chaque fois
un label dominé par non est stocké, la queue de recherche opposée est vérifiée pour
déterminer s’il y a un label qui peut être joint à lui pour former une solution complète.
Ainsi, deux labels de la direction opposée se réunissent quand les derniers sommets
visités s’assortissent, et il est alors examiné s’ils peuvent former une solution faisable
complète. Si le test est positif, cette solution est comparée contre le titulaire le plus
connu et ce dernier est mis à jour si nécessaire. Les deux labels examinés sont gardés
quel que soit le résultat de ce test, puisqu’avec une autre moitié opposée ils peuvent
construire une meilleure solution.

La politique de terminaison est cruciale pour réduire de manière significative le
temps informatique. La version de monodirectional procède jusqu’à ce que tous les
labels sont traités, mais l’application de ce critère à la version bi-directionnel peut
produire une performance égale ou pire à celle de la version unidirectionnelle pour
certains cas.

Le critère classique de terminaison d’une recherche bidirectionnelle sur un problème
de minimisation compare la somme des plus bas coût réel de l’avant, plus le coût le plus
bas en arrière réelle avec le coût de la solution la plus connue, et arrêts si la première
est supérieure ou égale à ce dernier.

Cependant, dans notre cas, des labels sont organisés par le coût estimatif µ(λ), de
sorte que le coût réel minimum correspondant n’est pas disponible dans complexité
O(1). Pour cette raison, nous avons adapté le critère de terminaison comme suit: si
l’équation A.3 est vraie et les deux labels qui sont conformes à cette équation con-
stituent une solution faisable, alors l’algorithme arrête la recherche.



A.6. Selector de Multi-Véhicule 151

min
σi∈S\{σ0}

{µi(λ)enavant}+ min
σi∈S\{σ0}

{µi(λ)versl′arrière} ≥ LeCoûtLeP lusConnu (A.3)

Si les deux labels forment une solution faisable, la limite inférieure calculée par
l’équation A.3 donne la valeur de coût minimum qui peut être obtenu pour une solution
faisable complète. Si cette valeur minimum est pire que la solution la plus connue, il
est certain que notre valeur de solution ne s’améliorera pas et nous pouvons arrêter la
recherche. Cette technique a été appliquée à l’algorithme de solution pour le CTP.

A.6 Selector de Multi-Véhicule

La première idée qui surgit lors de la résolution d’un multi-PTVVO avec Selector
est de canaliser la sortie de Selector à l’entrée de la opérateur Split, une approche
de type sélectionner première–regrouper deuxième. Il a été certainement essayé, mais
cela a seulement fonctionné pour des valeurs très petites du nombre de sommets qui
peuvent être visités, |V | ≤ 25. Il a été montré que une sélection optimale des visites
suivies d’une partition optimale ne conduit pas nécessairement à un ensemble optimal
de routes de véhicules. Par conséquent, l’un ou l’autre la sélection et la partition sont
effectuées simultanément, ou une heuristique de recherche locale sélectionne d’abord
les sommets, et puis les divise dans les routes. Nous avons choisi de développer l’idée
nouvelle d’un m-Selector qui choisit les meilleurs sommets à visiter et résout en même
temps comment ces sommets peuvent être arrangés de façon optimale dans des routes.

La solution du problème de partition exige insérer des visites au dépôt afin d’évaluer
le coût total de segmenter la tournée donnée dans les routes de véhicule faisables,
comme il est fait par l’algorithme Split. Dans le cas du l’opérateur Selector de multi-
véhicule, ceci exigerait la création encore plus des labels que ceux produits par la
version à un seul véhicule. Etant donné la dépendance exponentielle la croissance du
nombre de labels a avec la taille du chemin recherché, l’idée d’ajouter plus de labels
n’est pas attrayante. Au lieu de cela, une manière de faire ces visites implicitement a
été cherchée, et il est venu sous la forme d’utiliser l’algorithme Split comme la fonction
de coût. Par conséquent, au lieu d’utiliser la fonction simple d’ajouter des coûts de
arêtes de la version à un seul véhicule, une version modifiée de l’algorithme Split a été
mis en œuvre afin de calculer le coût optimal de segmenter les sommets sélectionnés
dans les routes faisables. Une version modifiée de Split est dans le sens que la seg-
mentation de la tournée de PTVVO doit se produire point par point pendant que des
sommets sont ajoutés à elle. C’est de dire, les voyages représentés dans le graphique
H de l’algorithme Split sont construits comme les sommets sont sélectionnés. Dans
Selector , le coût d’un label est le coût d’assigner les sommets sélectionnés à un seul
route, tandis que dans m-Selector le coût est celui de les assigner à plusieurs itinéraires.
Essentiellement, la même notion. Si lors de la sélection d’un sommet, il est également
évalué comment l’ensemble sélectionné peut être segmenté en routes faisables, le coût
en résultant considère vraiment les deux niveaux de prise de décision en même temps.
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Puisque dans m-Selector les deux processus de décision—sélectionner et segmenter—
sont faits par des méthodes précises, la sortie est optimale. L’hypothèse que tous les
clients ont la même demande l’a facilité pour mettre en application l’idée. L’intégration
de l’algorithme Split dans le Selector afin de calculer le coût d’un label est plus infor-
matiquement exigeant que le calcul de l’addition simple du coût d’une arête, ainsi les
manières de réaliser la bonne performance étaient également une question qui a exigé
un examen consciencieux.

La structure du label de m-Selector demeure fondamentalement la même, cepen-
dant les deux vecteurs que l’algorithme Split utilise pour maintenir le coût de voyage
et du sommet prédécesseur pour chaque client sélectionné ont été incorporés. La règle
de dominance ajoute également un test afin de considérer la capacité de véhicule, et la
performance améliore quand plusieurs méthodes pour construire le premièr tour géant
ont été rendues disponibles. Par conséquent, le fusionnement de les deux processus (Se-
lector et Split) a eu comme conséquence peu de changements à la conception originale
de l’algorithme, de sorte que la mise en oeuvre résultant de m-Selector a un noyau qui
est très semblable à celui de la version originale.

A.7 Le Cadre du Méta-heuristic

Le deuxième composant de l’approche de solution présentée dans cette étude est le
mécanisme de routage. Ce travail de thèse propose d’utiliser l’algorithme de recherche
adaptatif à grand voisinage (RAGV): un cadre de recherche locale qui utilise plusieurs
sous-heuristiques de destruction et de construction qui concurrencent et il choisit parmi
eux utilisant des statistiques recueillies pendant la recherche.

La figure A.1 montre comment les composants de routage et de groupement pro-
posés interagissent pour résoudre un problème de minimisation. L’algorithme com-
mence par une tour géant initial σinit qui peut être produite de manière aléatoire
ou par l’intermédiaire d’une heuristique de construction. Le tour σinit subit un pro-
cessus de recherche locale 2-opt pour améliorer sa longueur rapidement. Puis, dans
chaque itération, l’algorithme considéré un tour géant σ et a à sa disposition plusieurs
sous-heuristiques de destruction et de construction pour le modifier. L’algorithme
sélectionne d’abord, avec une probabilité adaptatif, une sous-heuristique de destruc-
tion qui élimine quelques clients du tour géant, et produit σnouveau. Puis, encore avec
une probabilité adaptatif, il sélectionne un sous-heuristique de réparation qui insère les
clients de retour, mais choisissant de meilleurs endroits de telle sorte que la longueur
du tour geant est plus loin améliorée. Au-dessus de cette nouveau tour géant σnouveau,
il cherche une solution faisable (une limite) utilisant une version réduite de l’opérateur
Selector . Pour rechercher cette solution efficacement, l’opérateur analyse seulement un
sous-ensemble des possibilités. Puis, si la valeur de la solution réalisable est améliorée,
le Selector est exécuté, cette fois à l’optimalité, avec l’espoir d’obtenir une meilleure
solution de PTVVO à partir de σnouveau. Pour éviter de faire cette étape très stricte,
la valeur de la limite la plus connue est multipliée par une valeur pratique de α.
L’algorithme contient également un système pour éviter la stagnation du processus
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select DH(Pd)
σnew− ← DH(σcurrent) 2-opt(σinit)

select RH(Pr)
σnew ← RH(σnew−)

B ← Search B(σnew)

B <
α ∗Bbest

Selector(σnew)

- décider l’acceptation
de la solution

- mettre à jour les scores
- mettre à jour les

probabilités si nécessaire

oui

non

Figure A.1: Composants de routage et de groupement de la méthodologie unifié de
solution.

de recherche: recuit simulé (RS). En plus de cette, la couche adaptatif exige mettre à
jour les scores des sous-heuristique utilisées dans l’itération, et, chaque période de mise
à jour, la probabilité de sélection de chaque sous-heuristique. Le processus se répète
jusqu’à la critère de rupture est atteint.

Les améliorations sur les coût de voyage du tour géant ne mènent pas
nécessairement à une meilleure valeur de la fonction objective en le tournée calculée par
le Selector . En outre, un tour géant optimal ne rapporte pas nécessairement une valeur
de solution de PTVVO optimale. Cependant, à longue échéance, le tournée de PTVVO
bénéficie d’améliorations sur la longueur du tour géant, puisque plus le tour est court,
plus les sommets supplémentaires peuvent être mis dans il. Une conséquence impor-
tante de cette indépendance est que l’exécution du Selector à l’optimalité à chaque
itération est de bas avantage. La limite calculée peut servir de sonde pour déterminer
si le processus complet vaut l’exécution. Ceci dérive dans l’épargne importante de
temps. Nous suivons les trois bases expliquées par Pis pour expliquer les éléments
principaux de la mise en œuvre de RAGV: (i) les sous-heuristiques de destruction, (ii)
les sous-heuristiques de construction, et (iii) le metaheuristic qui définit les critères
pour accepter une nouvelle solution. Trois sous-heuristiques de destruction et trois
sous-heuristiques de construction ont été mises en œuvre. Les paramètres du méta-
heuristique ont été accordés utilisant le paquet irace mis en œuvre en R et développé
par López-Ibáñez et al. (2011), Iterated Racing for Automatic Algorithm Configu-
ration. Il met en œuvre la procédure de course itérative, une extension de F-course



154 Appendix A. Un opératur de programmation dynamique...

Paramètre Signification

γ le nombre de sommets enlevés à chaque itération de RAGV
(dépend de la taille de l’instance)

ς la taille de la période pour mettre à jour des probabilités
en terme des itérations de RAGV

τ le facteur de réaction qui commande le taux de changement
de l’ajustement de poids

δ évite le déterminisme dans le HSS
ρ évite le déterminisme dans le HSP
κ1 le score donné pour trouver une nouvelle meilleure solution globale
κ2 le score donné pour trouver une nouvelle solution qui est meilleure

que l’actuelle
κ3 le score donné pour trouver une nouvelle solution de non-amélioration

qui est acceptée
β facteur de refroidissement employé par le recuit simulé
ε fixe la limite supérieure des sommets enlevés à chaque itération

Table A.1: Les paramètres de RAGV sont réglés avec le software irace mis en œuvre en R
par López-Ibáñez et al. (2011).

Itérative. Dans le suivant, les lettres grecques en bas de casse indiquent les paramètres
dépendants de l’utilisateur documentés dans le Tableau A.1.

A.7.1 Les Sous-heuristiques de Destruction

L’Heuristique de Suppression de Shaw (HSS). Initialement proposé par Shaw
(1997), son idée générale est de supprimer les sommets qui montrent la similitude, car-
actéristique calculée par une mesure de connexité R(i, j). Nous mesurons la similitude
entre deux sommets par R(i, j) = dij , où dij est la distance euclidienne entre les som-
mets σi et σj . Le R(i, j) inférieur est, plus les deux sommets sont plus connexes. Cette
mesure de connexité est utilisée pour supprimer les sommets de la même manière que
celle décrite par Shaw (1998).

L’Heuristique de Suppression des Pires (HSP). Ropke and Pisinger (2006)
proposer une heuristique qui retire de façon aléatoire les sommets avec un coût élevé
dans la solution actuelle σ et il essaie de les insérer dans de meilleures positions. Soit
coût(i, σ) = f(σ)− f−i(σ) le coût associé au sommet σi dans la solution actuelle σ, où
f−i(σ) est le coût de la solution sans le sommet σi. Des sommets sont d’abord assortis
selon coût(i, σ) et ensuite un est aléatoirement choisi pour être retiré. Le processus
réitère recalculer les coûts, coût(i, σ), jusqu’à ce qu’il ait retiré le nombre de sommets
indiqués.
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L’Heuristique de Suppression Aléatoire (HSA). Cette procédure sélectionne
simplement γ sommets au hasard et les retire de la solution actuelle σ. Bien qu’il
tende à produire d’un ensemble pauvre de membres enlevés, il est utile de diversifier
la recherche.

Combien à Supprimer. Le paramètre γ indique le nombre d’éléments supprimés à
partir de la taille complète de la solution. Ce paramètre γ est choisi de manière aléatoire
entre une limite inférieure et une limite supérieure. La limite inférieure est fixée à une
valeur donnée en fonction du nombre de sommets dans la solution sigma, tandis que la
limite supérieure est affiné avec le paramètre ε. Par conséquent, l’algorithme fonctionne
avec un degré randomisé de destruction dans l’intervalle [0, 3× |V |, ε× |V |].

A.7.2 Les Sous-heuristiques de Réparation

Le Meilleur Heuristique Glouton (MHG). Cet heuristique de construction sim-
ple effectue au plus γ itérations comme il insère un sommet dans la solution σ à chaque
itération. La valeur de la position de coût minimum est calculé pour tous les sommets
attendant l’insertion —setF— et la position de coût minimum global est choisie. Ce
processus est répété jusqu’à ce que F = ∅.

Le Premier Heuristique Glouton (PHG). Cet heuristique fonctionne de façon
similaire à la précédente. Cependant, au lieu d’insérer le sommet ayant la position du
coût global minimum, il insère le sommet situé dans la première position. Autrement
dit, il respecte l’ordre des sommets dans F . Après le premier sommet a-été insérée, la
position de coût minimum pour chaque sommet est recalculée et le processus se répète
jusqu’à tous les sommets dans l’ensemble F ont été insérées.

Ropke and Pisinger (2006) ajoutent un terme de bruit à la fonction objective pen-
dant la phase d’insertion du MHG et du heuristique regret-k afin de les randomiser
et évitez de faire toujours le mouvement qui semble le mieux localement. Dans notre
implémentation, le PHG est principalement utilisé pour introduire ce bruit dans le
processus d’insertion comme fait par Ribeiro and Laporte (2012). Cet heuristique fonc-
tionne évidemment plus rapidement que le MHG.

L’Heuristique Regret (HRK). Cet heuristique tente d’améliorer le comportement
myope des heuristiques gloutonnes en incorporant une sorte de regarder en avant
l’information lors de la sélection du sommet à insérer, comme fait par Ropke and
Pisinger (2006) and Pisinger and Ropke (2007). Soit ∆f1

i représentent la variation
de la longueur du tour encourue par l’insertion du sommet σi à sa position de coût
minimum, et ∆f2

i représentent le changement en l’insérant à sa deuxième meilleure
position. La valeur de regret est définie comme c∗i = ∆f2

i −∆f1
i . À chaque itération,

l’heuristique insère le sommet σi qui maximise la valeur de regret c∗i à sa position de
coût minimum. Les égalités sont en sélectionnant le sommet avec le insertion de la
plus faible coût. Parlant officieusement, il choisit l’insertion que nous regretterons les
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la plupart si elle n’est pas faite maintenant. C’est un opérateur qui prend du temps,
mais les calculs inutiles ont été évités lors du calcul de ∆fni .

Choix d’Une Paire Heuristique de Destruction-Réparation. Afin de
sélectionner un heuristique, des poids leur sont assignés et un principe de sélection
de roue de roulette est appliqué par la couche adaptative. Soit D = {di|i = 1, . . . , 3}
l’ensemble des sous-heuristiques de destruction et R = {ri|i = 1, . . . , 3} l’ensemble des
sous-heuristiques de réparation. Les poids des heuristiques sont dénotés w(di) et w(ri)
respectivement, de sorte que les probabilités pour sélectionner l’un sont

p(di) = w(di)∑3
j=1w(dj)

, p(ri) = w(ri)∑3
j=1w(rj)

(A.4)

L’heuristique de destruction est sélectionné indépendamment de
l’heuristique de réeparation et vice versa. Initialement, tous les
heuristiques sont également susceptibles d’être choisis, par exemple,
w(di) = 1 ∀di ∈ D.

Ajustement Adaptatif de Poids Soit ς (déterminée expérimentalement) désignent
les périodes de mise à jour dans laquelle le nombre total d’itérations ALNS est divisé, et
h dénotent un heuristique de réparation ou de destruction. Pour permettre l’ajustement
de poids, un score s(h) est mémorisé pour chaque heuristique, et il est mis à jour à
chaque itération par une quantité égale aux paramètres kappa où k ∈ {1, 2, 3}, quand il
identifie de nouvelles solutions, voir le Tableau A.1. Pour des ajustements raisonnables
l’inégalité κ1 > κ2 > κ3 est assurée. Puis, à la fin de chaque période de mise à jour,
ces scores enregistrés sont employés pour calculer de nouveaux poids et probabilités
s’y rapportant. En outre, tous les poids sont remis à zéro au début de chaque période.
Depuis deux heuristiques sont appliqués à chaque itération, les scores pour les deux
sont mis à jour par le même montant.

Les nouveaux poids sont calculés comme suit. Soit w(hi)j le poids de l’heuristique
i à la période de mise à jour j. Après la période j finitions, le nouveau poids à utiliser
dans la période j + 1 pour l’heuristique hi est donnée par

w(hi)j+1 =

w(hi)j(1− τ) + τ
s(hi)
u(hi)

, if u(hi) > 0

w(hi)j(1− τ), if u(hi) = 0
(A.5)

où s(hi) est le score de l’heuristique hi obtenu au cours de la dernière période et u(hi)
est le nombre de fois heuristique hi a été utilisé au cours de cette même période. τ est
connu comme le facteur de réaction, et il commande à quelle rapidité le mécanisme
d’ajustement de poids réagit aux changements de l’efficacité de l’heuristique. Cette
mise en oeuvre assure le suivi des solutions visitées en utilisant une table de hachage.
Une clé de hachage est associée à chaque solution, et cette clé est stockée dans la table.
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A.7.3 Le Recuit Simulé Guide la Recherche

Le recuit simulé (RS) est le metaheuristic externe qui guide la recherche. RS appliquée
aux problèmes d’optimisation émerge du travail de Kirkpatrick et al. (1983). Il a eu
un impact majeur sur le champ de la recherche heuristique pour sa simplicité et son
efficacité en résolvant ded problèmes d’optimisation combinatoire comme présenté dans
Talbi. RS est un algorithme stochastique qui permet, dans certaines conditions, la
dégradation d’une solution avec l’objectif à échapper des optimums locaux et pour
retarder ainsi la convergence. Puis, RS implique d’accepter non seulement les solutions
qui sont meilleures que la solution actuelle, mais plutôt, occasionnellement, accepte les
solutions qui sont plus mauvaises que le actuelle.

A.8 Conclusions

La méthodologie de solution proposée émule un heuristique constructive connu comme
route first–cluster second, ainsi il se compose d’un procédé de séparation (groupe-
ment) et d’une méthode qui construit un tour. La méthode de séparation (groupe-
ment) proposée est l’opérateur Selector qui est un algorithme basé sur la program-
mation dynamique visant pour résoudre PTVVO. L’algorithme est une adaptation de
celui développée par Desrochers (1988) dans le contexte du PPCCRL. Il est un algo-
rithme atteignant de correction de label. L’opérateur Selector est intégré dans un méta-
heuristique RAGV, qui est la méthode qui construit un tour, cette méthode accomplit
la tâche d’assigner l’ordre de visite des n clients donnés. De cette séquence construite,
Selector recherche de façon optimale ceux à visiter. Le problème de sélectionner les
clients visités est formulé comme un PPCCERL sur un graphe auxiliaire acyclique et
dirigé où les restrictions du problème considéré agissent en tant que les ressources de
contrainte. Ce graphe auxiliaire représente l’ordre topologique des n clients contenues
dans la tour géant traité.

Le principe de base de l’algorithme est d’associer à chaque chemin partiel du
sommet de dépôt σ0 à un sommet σi ∈ H un label représentant le coût du chemin
et sa consommation des ressources et éliminer les labels inutiles à l’aide des règles
de dominance comme la recherche progresse. Des labels sont itérativement prolongés
de toutes les manières faisables jusqu’à ce que plus de labels ne puissent être créés,
alors que le meilleur chemin en exercice est mis à jour dans tout le processus de
recherche. L’extension d’un label à un sommet visité correspond à (1) ajouter un arc
supplémentaire (i, i+ k) à un chemin de σ0 à σi, obtenant un chemin faisable de σ0 à
σi+k; et (2) mise à jour le coût du chemin et de ses consommations des ressources.
Puisque le nombre de labels produits au cours de la recherche a une dépendance
exponentielle de la taille du problème actuel, divers mécanismes visant à limiter la
prolifération des labels ont été ajoutés à l’algorithme de base. En outre, une version
multi-véhicule qui co-travaux avec le Split opérateur a également été proposé.
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D.L. Applegate, R.E. Bixby, V. Chvátal, and W.J. Cook. The Traveling Salesman
Problem: A Computational Study. Princeton University Press, 2007.

C. Archetti and M.G. Speranza. A survey on matheuristics for routing problems.
EURO Journal on Computational Optimization, 2:223–246, 2014.

C. Archetti, D. Feillet, A. Hertz, and M.G. Speranza. The capacitated team orienteer-
ing and profitable tour problems. Journal of the Operational Research Society, 60:
831–842, 2009.

C. Archetti, M.G. Speranza, and D. Vigo. Vehicle Routing: Problems, Methods and
Applications, chapter Vehicle routing problems with profits, pages 273–298. SIAM,
Philadelphia, USA, 2014.

B. Awerbuch, Y. Azar, A. Blum, and S. Vempala. New approximation guarantees for
minimum-weight k-trees and prize-collecting salesmen. SIAM Journal on Comput-
ing, 28:254–262, 1998.

N. Azi, M. Gendreau, and J-Y. Potvin. An adaptive large neighborhood search for a
vehicle routing problem with multiple routes. Computers & Operations Research,
41:167–173, 2014.

E. Balas. The prize-collecting travelling salesman problem. Networks, 19:621–636,
1989.

E. Balas and A. Ho. Set covering algorithms using cutting planes, heuristics, and
subgradient optimization: A computational study. Mathematical Programming, 12:
37–60, 1980.

R. Baldacci, M.A. Boschetti, V. Maniezzo, and M. Zamboni. Metaheuristic Optimiza-
tion Via Memory and Evolution, chapter Scatter search methods for the covering
tour problem, pages 59–91. Kluwer, Boston, USA, 2005.



160 Bibliography

J. Beasley. Route first-cluster second methods for vehicle routing. OMEGA The
International Journal of Management Science, 11:403–408, 1983.

J. Beasley and E.M. Nascimento. The vehicle routing-allocation problem: a unifying
network. Top, 4:65–86, 1996.

R. Bellman. Dynamic programming. Princeton University Press, New Jersey, USA,
1957.

C. Blum and A. Roli. Metaheuristics in combinatorial optimization: Overview and
conceptual comparison. ACM Computing Surveys, 35:268–308, 2003.

C. Blum, M.J.B. Aguilera, A. Roli, and M. Samples, editors. Hybrid Metaheuristics
An Emerging Approach to Optimization. Springer-Verlag, Berlin, Germany, 2008.

C. Blum, J. Puchinger, G.R. Raidl, and A. Roli. Hybrid metaheuristics in combinatorial
optimization: A survey. Applied Soft Computing, 11:4135–4151, 2011.
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