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THÈSE

pour obtenir le grade de

DOCTEUR
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Résumé

Dans le cadre de cette thèse, on s’intéresse à la dynamique de quelques fluides complexes. D’une
part on étudie la dynamique des cristaux liquides nématiques, en utilisant les modèles proposés par

• Ericksen et Leslie,

• Beris et Edwards,

• Qian et Sheng.

D’autre part, on analyse un fluide complexe dont la dynamique dépend de la température et qui
est modélisée par

• le système de Boussinesq.

Les cristaux liquides sont des matériaux avec une phase de la matière intermédiaire entre les
liquides et les solides qui sont des phases plus connues. Dans cette thèse, on s’intéresse à l’étude du
problème de Cauchy associé à chaque système modélisant leurs hydrodynamiques. Tout d’abord
on obtient des résultats d’existence et d’unicité de solutions faibles ou classiques, solutions qui sont
globales en temps. Ensuite, on analyse la propagation de la régularité des données initiales pour
ces solutions.

Le cadre fonctionnel adopté pour les données initiales est celui des espaces de Besov homogènes,
généralisant des classes d’espaces mieux connues : les espaces de Soboloev homogènes et les espaces
de Hölder.

Le système Ericksen-Leslie est considéré dans la version simplifiée proposée par F. Lin et C.
Liu, version qui préserve les principales difficultés du système initial. On étudie ce problème en
dimension supérieure ou égale à deux. On considère le système dans le cas inhomogène, c’est-à-
dire avec une densité variable. De plus, on s’intéresse au cas d’une densité de faible régularité qui
est autorisée à présenter des discontinuités. Donc, le résultat que l’on démontre peut être mis en
relation avec la dynamique des mélanges de nématiques non miscibles. On démontre l’existence
globale en temps de solutions faibles de régularité invariante par changement d’échelle, en supposant
une condition de petitesse sur les données initiales dans des espaces de Besov critiques. On démontre
aussi l’unicité de ces solutions si de plus on suppose une condition supplémentaire de régularité
pour les données initiales.

Le système Beris-Edwards est analysé dans le cas bidimensionnel. On obtient l’existence et
l’unicité de solutions faibles globales en temps, lorsque les données initiales sont dans des espaces de
Sobolev spécifiques (sans condition de petitesse). Le niveau de régularité de ces espaces fonctionnels
est adapté pour bien définir les solutions faibles. L’unicité est une question délicate et demande
une estimation doublement logarithmique pour une norme sur la différence entre deux solutions
dans un espace de Banach convenable. Le lemme d’Osgood permet alors de conclure à l’unicité de
la solution. On obtient également un résultat de propagation de régularité d’indice positif.

Afin de prendre en compte l’inertie des molécules, on considère aussi le modèle proposé par
Qian et Sheng, et on étudie le cas de la dimension supérieure ou égale à deux. Ce système montre
une caractéristique structurale spécifique, plus précisément la présence d’un terme inertiel, ce qui
génère des difficultés significatives. On démontre l’existence d’une fonctionnelle de Lyapunov et



l’existence et l’unicité de solutions classiques globales en temps, en considérant des données initiales
petites.

Enfin, on analyse le système de Boussinesq et on montre l’existence et l’unicité de solutions
globales en temps. On considère la viscosité en fonction de la température en supposant simplement
que la température initiale soit bornée, tandis que la vitesse initiale est dans des espaces de Besov
avec indice de régularité critique. Les données initiales ont une composante verticale grande et
satisfont à une condition de petitesse spécifique sur les composantes horizontales: elles doivent être
exponentiellement petites par rapport à la composante verticale.

Mots clés: Cristaux liquides nématiques, système Ericksen-Leslie, système Beris-Edwards,
système Qian-Sheng, système Boussinesq, densité variable, viscosité variable, théorie de Littlewood-
Paley, espaces de Besov, analyse harmonique, inégalités logarithmiques, régularisation du noyau de
la chaleur.



Abstract

The present thesis is devoted to the dynamics of specific complex fluids. On the one hand we study
the dynamics of the so-called nematic liquid crystals, through the models proposed by

• Ericksen and Leslie,

• Beris and Edwards,

• Qian and Sheng.

On the other hand we analyze the dynamics of a temperature-dependent complex fluid, whose
dynamics is governed by

• the Boussinesq system.

Nematic liquid crystals are materials exhibiting a state of matter between an ordinary fluid
and a solid. In this thesis we are interested in studying the Cauchy problem associated to each
system modelling their hydrodynamics. At first, we establish some well-posedness results, such as
existence and uniqueness of global-in-time weak or classical solutions. Moreover we also analyze
some dynamical behaviours of these solutions, such as propagations of both higher and lower
regularities.

The general framework for the initial data is that of Besov spaces, which extend the most widely
known classes of Sobolev and Hölder spaces.

The Ericksen-Leslie system is studied in a simplified form proposed by F. Lin and C. Liu,
which retains the main difficulties of the original one. We consider both a two-dimensional and a
three-dimensional space-domain. We assume the density to be no constant, i.e. the inhomogeneous
case, moreover we allow it to present discontinuities along an interface so that we can describe a
mixture of liquid crystal materials with different densities. We prove the existence of global-in-time
weak solutions under smallness conditions on the initial data in critical homogeneous Besov spaces.
These solutions are invariant under the scaling behaviour of the system. We also show that the
uniqueness holds under a tiny extra-regularity for the initial data.

The Beris-Edwards system is analyzed in a two-dimensional space-domain. We achieve existence
and uniqueness of global-in-time weak solutions when the initial data belongs to specific Sobolev
spaces (without any smallness condition). The regularity of these functional spaces is suitable in
order to well define a weak solution. We achieve the uniqueness result through a specific analysis,
controlling the norm of the difference between to weak solutions and performing a delicate double-
logarithmic estimate. Then, the uniqueness holds thanks to the Osgood lemma. We also achieve a
result about regularity propagation.

The Qian-Sheng model is analyzed in a space-domain with dimension greater or equal than two.
In this case, we emphasize some important characteristics of the system, especially the presence of
an inertial term, which generates significant difficulties. We perform the existence of a Lyapunov
functional and the existence and uniqueness of classical solutions under a smallness condition for
the initial data.

Finally we deal with the well-posedness of the Boussinesq system. We prove the existence of
global-in-time weak solutions when the space-domain has a dimension greater or equal than two.
We deal with the case of a viscosity dependent on the temperature. The initial temperature is just
supposed to be bounded, while the initial velocity belongs to some critical Besov Space. The initial
data have a large vertical component while the horizontal components fulfil a specific smallness
conditions: they are exponentially smaller than the vertical component.



Keywords: Nematic liquid crystal, Ericksen-Leslie system, Beris-Edwards system, Qian-Sheng
system, Boussinesq system, variable viscosity, Littlewood-Paley theory, Besov spaces, harmonic
analysis, logarithmic estimates, regularizing effects for the heat kernel.
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Chapter 1

Introduction (Version Française)

Le principal objet de cette thèse est l’étude de plusieurs équations aux dérivées partielles provenant
de la dynamique des cristaux liquides de type nématique. Plus précisément, on montre que les
systèmes d’Ericksen-Leslie, Beris-Edwards et Qian-Sheng sont bien posés et on étudie la propagation
des régularités des solutions associées.

On renvoie le lecteur au prochain chapitre pour la dérivation de ces systèmes et une introduction
avec plus d’explications. Dans ce chapitre, on donne une présentation générale des résultats obtenus.
En premier lieu, on s’intéresse au problème de Cauchy associé à chacun des systèmes considérés,
pour des conditions initiales convenables, c’est-à-dire prises dans des espaces fonctionnels bien
choisis, de sorte que le modèle présente aussi un intérêt physique. Par exemple, dans le cas du
système Ericksen-Leslie, le résultat que l’on démontre peut être mis en relation avec la dynamique
des mélanges de nématiques non miscibles.

On considère à la fois le cas bidimensionnel et le cas N -dimensionnel, pour N ≥ 3. D’une
part, on montre l’existence et l’unicité de solutions dans le cas N -dimensionnel, en utilisant prin-
cipalement des outils d’analyse harmonique. D’autre part, on démontre l’existence et l’unicité
de solutions faibles ou classiques dans le cas bidimensionnel, au moyen cette fois ci d’estimations
d’énergies, d’analyse de Fourier, et du calcul para-différentiel.

On étudie aussi la propagation des régularités, principalement dans le système proposé par
Beris-Edwards. Ici, les méthodes employées sont principalement des techniques issues de l’analyse
de Fourier et des estimations de type logarithmique.

On commence la présentation par celle du modèle d’Ericksen-Leslie.

1.1 Résultats pour le système d’Ericksen-Leslie

Durant les années 50-60, J.L. Ericksen [41] et F. Leslie [69] ont développé la théorie la plus
répandue jusqu’à aujourd’hui pour la modélisation de la dynamique des cristaux liquides du type
nématique. Ils ont considéré que les molécules ont une orientation locale, ce qui est représenté
mathématiquement par des fonctions prenant leurs valeurs dans l’espace des directors, c’est-à-dire
dans la sphère unité. Leur évolution dans le temps est représentée par une équation dont les in-
connues sont des champs de vecteurs unitaires d qui sont transportés et tournés par un champ
de vitesse u. La vitesse du centre de gravité des molécules satisfait un système de Navier-Stokes
incompressible couplé à un tenseur de contraintes généré par la présence des directors.

3



4 CHAPTER 1. INTRODUCTION (VERSION FRANÇAISE)

On considère la version simplifiée du système Ericksen-Leslie proposée par F. Lin [74,75,80]:

∂tρ+ div (ρu) = 0 R+ × RN ,
∂t(ρu) + div(ρu⊗ u)−∆u+∇Π = −div

(
∇d�∇d

)
R+ × RN ,

div u = 0 R+ × RN ,
∂td+ u · ∇d−∆d = |∇d|2d R+ × RN ,
|d| = 1 R+ × RN ,
(u, ρ, d)|t=0 = (u0, ρ0, d0) RN .

(1.1)

C’est un système couplé entre les équations de Navier-Stokes (inhomogènes et incompressibles) et
le flot de la chaleur harmonique sur la sphère transporté par la vitesse u. On rappelle que les
fonctions considérées sont définies par :

ρ = ρ(t, x) ∈ R+ désigne la densité,

u = u(t, x) ∈ RN représente le champ de vitesse,

Π = Π(t, x) ∈ R est la pression,

d = d(t, x) ∈ SN−1 est le director,

chacune dépendant de la variable de temps t ∈ R+ et de la variable d’espace x ∈ RN . On considère
l’espace entier RN comme domaine pour la variable x, pour une dimension N quelconque supérieure
ou égale à deux. Le symbole ∇d � ∇d désigne la matrice de taille N × N dont la coordonnée en
position (i, j) est donnée par :

(∇d�∇d)ij := ∂id · ∂jd = dk,idk,j ,

pour i, j = 1, . . . , N .

Il est important d’observer que F. Lin a proposé ce système simplifié pour un fluide homogène,
c’est-à-dire pour une densité constante. La version inhomogène que l’on considère ici est intéressante
en particulier pour modéliser un mélange de cristaux liquides de densités différentes.

1.1.1 Énoncés des principaux résultats

Avant d’énoncer notre principal résultat dont on donne la preuve dans le chapitre 5, il nous faut
décrire les espaces fonctionnels dans lesquels nos données initiales sont définies. Notre intérêt est
d’imposer une faible régularité sur la densité initiale ρ0, de sorte que l’on puisse autoriser des
discontinuités. On la suppose donc simplement bornée :

ρ0 ∈ L∞(RN ).

Maintenant, on peut remarquer que le système (1.1) a une propriété en commun avec les équations
de Navier-Stokes classiques. Précisément, si (ρ, u, d) satisfait (1.1) pour les conditions initiales
(ρ0, u0, d0), alors pour tout λ positif, les fonctions

(ρ, u, d)λ(t, x) := (ρ(t, x), λu(λ2t, λx), d(λ2t, λx))

sont aussi solutions, mais pour les conditions initiales (ρ0(λx), λu0(λx), d0(λx)). Ainsi, une car-
actéristique importante du système (1.1) est que le gradient du director ∇d et la vitesse u ont un
changement d’échelle équivalent. Il est donc naturel de prendre u0 et ∇d0 dans le même espace
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fonctionnel.

De plus, d’autres heuristiques (que l’on détaille dans le chapitre 5) suggèrent que les espaces
fonctionnels les plus adaptés pour (u0, ∇d0) sont les espaces de Besov homogènes avec un indice
de régularité critique. Plus précisément, on suppose

(u0, ∇d0) ∈ Ḃs
p,r.

pour des indices p, r ∈ [1,∞] convenables et un indice de régularité s ∈ R critique. Ces espaces
fonctionnels sont définis grâce à la théorie de Littlewood-Paley (on renvoie le lecteur à la section 5.3
pour une description complète). Il est peut-être intéressant de remarquer que les espaces de Besov
homogènes généralisent des classes d’espaces mieux connues: les espaces de Soboloev homogènes
et les espaces de Hölder. Cette généralisation se voit à travers les relations

Ḃs
2,2 = Ḣs, Ḃσ

∞,∞ = Ċσ,

pour s ∈ R+ et σ ∈ R+ \ Z.

Notre résultat principal à propos du modèle Ericksen-Leslie peut être résumé par l’énoncé
suivant :

Théorème 1.1.1. Supposons que les données initiales (ρ0, u0, ∇d0) remplissent la condition de
petitesse : ∥∥∥ 1

ρ0
− 1
∥∥∥
L∞x

+ ‖u0‖
Ḃ
N
p −1

p,r

+ ‖∇d0‖
Ḃ
N
p −1

p,r

≤ c0,

pour une constante c0 suffisamment petite, avec 1 < p < N et 1 < r < ∞, alors le système (1.1)
admet des solutions faibles globales en temps. Si de plus on suppose une condition supplémentaire
de régularité sur (u0,∇d0), précisément

(u0,∇d0) ∈ Ḃ
N
p
−1+ε

p,r , (1.2)

pour un petit ε positif, alors une telle solution est unique.

Dans l’énoncé ci-dessus, il n’y a pas d’information sur l’espace fonctionnel dans lequel vivent
nos solutions faibles. Par souci de clarté, on renvoie ce type d’informations au chapitre 5, ainsi
qu’un énoncé plus détaillé du Thèorème 1.1.1. Toutefois, on peut anticiper le fait que les espaces
fonctionnels dans lesquels on va chercher nos solutions faibles sont de deux types : si les données
initiales sont assez lisses, on considère des espaces du type Lebesgue Lq1(0, T ;Lq2(RN )), pour de
bons choix de q1 et q2 dépendant de r, tandis que si les données initiales manquent de régularité,
l’espace fonctionnel est celui de Serrin, qui sont des espaces anisotropes de Lebesgue avec des poids
en temps.

De plus, il est important de mentionner que la condition supplémentaire de régularité que
l’on impose dans l’énoncé du théorème 1.1.1 joue un rôle crucial dans la preuve d’unicité. En
effet, on travaille sur la preuve d’unicité en reformulant le système (1.1) dans les coordonnées de
Lagrange, suivant l’approche de Danchin et Mucha dans [27] pour les équations de Navier-Stokes
inhomogènes. Plus précisément, la régularité supplémentaire dont on dispose maintenant sur le
champ de la vitesse permet de construire l’application de flot ψ(t, x), i.e.

ψ(t, x) = x+

ˆ t

0
u(s, ψ(s, x))ds.

L’existence d’une telle application est due à la régularité du type Lipschitz que le champ de vitesse u
possède, grâce à l’hypothèse supplémentaire sur les données initiales. Les coordonnées de Lagrange
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simplifient en un sens notre problème, assurant que la densité ρ est constante dans les variables
lagrangiennes, puisque qu’elle est régie par l’équation de transport.

1.2 Résultats pour le système de Beris-Edwards

Cette thèse est aussi dévouée au problème de Cauchy relié au système de Beris-Ewards. On prend
pour domaine l’espace R2 tout entier, de sorte que l’hydrodynamique des matériaux nématiques
est décrite par 

∂tQ+ u · ∇Q+ S(∇u, Q) = H(Q) R+ × R2,

∂tu+ u · ∇u− ν∆u+∇Π = div{τ + σ} R+ × R2,

div u = 0 R+ × R2,

(u, Q)t=0 = 0 = (u0, Q0) R2.

(1.3)

Ici Q = Q(t, x) est le de Gennes tenseur (section 3.3.1), u = u(t, x) ∈ R3 représente le champ de
vitesse, Π = Π(t, x) ∈ R désigne la pression, le tout dépendant des variables de temps t ∈ R+ et
d’espace x ∈ R2.

H(Q) est défini par

H(Q) = L∆Q− aQ+ b

(
Q2 − tr{Q2} Id

3

)
− cQtr{Q2},

avec a, b et c des constants qui dépendent du matériau. C’est un tenseur dépendant de Q et de
son gradient, représentant la contribution de l’énergie élastique et de l’énergie de “bulk”. Enfin,
τ et σ sont respectivement les parties symétriques et antisymétriques du tenseur des contraintes
additionnel, dont la formule est décrite par

τ := −ξ
(
Q+

1

3
Id
)
H(Q)− ξH(Q)

(
Q+

1

3
Id
)

+ 2ξ
(
Q+

1

3
Id
)
QH(Q)− L∇Q�∇Q,

σ := QH(Q)−H(Q)Q = [Q,H(Q)].

Le terme S(∇u, Q) tient compte du fait que les molécules sont transportées, tournées et alignées
par le flot et est défini par:

S(∇u,Q) := (ξA+ Ω)(Q+
1

3
Id) + (Q+

1

3
Id)(ξA− Ω)− 2ξ(Q+

1

3
Id)tr(Q∇u),

avec A = (∇u + t∇u)/2 et Ω = (∇u − t∇u)/2. Le paramètre ξ est une constante spécifique aux
cristaux liquides. D’ordinaire, il prend des valeurs petites, on peut donc négliger sa contribution.
Dans cette situation, le système (1.3) se présente sous la forme suivante :

Q̇−ΩQ+QΩ− ΓL2∆Q =−Γ(aQ− b
(
Q2− tr{Q2} Id

3

)
+ ctr{Q2}Q)R+ × R2,

∂tu+ u · ∇u− ν∆u+∇Π = Ldiv {Q∆Q−∆QQ−∇Q�∇Q} R+ × R2,

div u = 0 R+ × R2,

(u, Q)t=0 = (u0, Q0) R2,

(1.4)

où le point désigne la dérivée matérielle ∂t + u · ∇ et ∇Q � ∇Q est un tenseur 3 × 3, dont la
composante (i, j) est donnée par

(∇Q�∇Q)ij = tr{∂iQ∂jQ} = ∂iQαβ∂jQαβ.
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Ensuite on divise notre étude en deux sous-cas :

• le cas corotationnel, quand ξ est nul,

• le cas général, lorsque ξ est positif (ou nul).

On démontre l’existence et l’unicité de solutions faibles aussi bien pour ξ nul que pour ξ non nul,
ainsi que des résultats de propagation de régularité pour le cas corotationnel. Afin de comprendre
le cadre fonctionnel dans lequel chercher nos solutions faibles, il peut être intéressant de remarquer
que le champ de vitesse u et le gradient du tenseur d’ordre ∇Q ont le même changement d’échelle,
ce qui est similaire à l’un des systèmes Ericksen-Leslie. Si (u, Q) est une solution de (1.3) avec les
conditions initiales (u0, Q0), alors

(u, Q)λ(t, x) := (λu(λ2t, λx), Q(λ2t, λx)), λ > 0,

est toujours une solution pour un système avec une densité de “bulk” rééchelonnée, avec cette fois-ci
pour données initiales (λu0(λx), Q0(λx)). Dans le cas nématique uni-axial, ce comportement peut
être vu comme une conséquence de celui du système Ericksen-Leslie. En effet, le tenseur d’ordre Q
prend ici la forme

Q(t, x) = s
(
d(t, x)⊗ d(t, x)− Id

3

)
,

de sorte que le “scaling behaviour” de Q se déduit de celui du champ des directors

dλ(t, x) := d(λ2t, λx), λ > 0.

1.2.1 Énoncés des principaux résultats

Le cas corotationnel

D’après les remarques précédentes, il est naturel de prendre nos données initiales u0 et ∇Q0 dans
le même espace fonctionnel. De plus, puisqu’on travaille en dimension deux d’espace, les solutions
faibles les plus adaptées sont celles de Leray. Alors, on prend les données initiales dans des espaces
de Sobolev, c’est-à-dire

(u0, Q0) ∈ L2(R2)×H1(R2).

Notre résultat d’existence et d’unicité peut être énoncé comme suit :

Théorème 1.2.1. Supposons (u0, Q0) dans L2(R2) × H1(R2) et supposons que le paramètre ξ
soit nul. Alors le système (1.4) admet une unique solution faible (u, Q), globale en temps, et qui
satisfait

u ∈ L∞(0, T ;L2(R2)) ∩ L2(0, T ;H1(R2)),

Q ∈ C(R+, H
1(R2)) ∩ L2(0, T, Ḣ2(R2)),

(1.5)

pour tout réel positif T .

Le principal intérêt du Théorème 1.2.1 concerne l’unicité, puisque l’existence a été traitée par
Paicu et Zarnescu dans [99]. Cependant, on étudie aussi cette question d’existence, mais avec une
approche différente de la leur : on utilise une méthode entre le schéma de Friedrichs et le thérorème
de point fixe de Schaefer.

Les principales difficultés qui apparaissent lors de la preuve d’unicité de la solution pour le
système (1.4) sont liées à l’équation de la quantité de mouvement. On peut essentiellement imaginer
le système comme un système de Navier-Stokes fortement perturbé. Pour les équations de Navier-
Stokes classiques, il est bien connu que l’unicité des solutions faibles en dimension deux découle
d’arguments plutôt standards, tandis qu’il s’agit d’un problème ouvert majeur en dimension trois.
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Les systèmes étendus que l’on traite se situent dans une position intermédiaire, puisque la
perturbation produite par la présence du tenseur des contraintes additionnel entrâıne de réelles
difficultés techniques liées surtout au manque du contrôle d’un nombre suffisant de dérivées sur
la vitesse u. Une façon plutôt classique de gérer ce problème est d’utiliser une norme faible pour
estimer la différence entre deux solutions, c’est-à-dire une norme définie sur des espaces moins
réguliers que ceux contenant les solutions. Cette approche a déjà été utilisée dans le contexte
Navier-Stoke classique, dans [48] et [88].

Dans notre cas, pour des raisons techniques, on considère un espace de Sobolev homogène
d’indice négatif, précisément Ḣ−1/2. Le fait que la donnée initiale de la différence des deux solutions
soit zéro (i.e. (δu, δQ)t=0 = 0) nous aide à contrôler la différence dans un espace homogène de
faible régularité. Pour contrôler les termes non linéaires on utilise une loi qui montre que le produit
est un opérateur borné opérant sur les espaces suivants :

Ḣs(R2)× Ḣt(R2)→ Ḣs+t− 1
2 (R2),

pour tout réel s et t, avec |s|, |t| < 1 et tels que s + t est strictement positif. Il faut alors
remarquer que le fait d’évaluer la différence à un niveau de régularité s = 0, c’est-à-dire dans
L2(R2), permettrait seulement d’établir un résultat d’unicité “weak-strong”, comme dans [99]. En
se plaçant dans un espace de Sobolev avec un indice négatif, Ḣs avec s ∈ (−1, 0), on peut montrer
l’unicité de solutions faibles. On s’attend à avoir une preuve similaire dans n’importe quel Ḣs avec
s ∈ (−1, 0), et notre choix s = −1/2 est juste pour la clarté de la présentation.

Dans la preuve d’unicité, notre but principal est d’obtenir une inégalité de type Gronwall. En
effet, l’unicité se réduit alors à une estimation du type suivant :

Φ′(t) ≤ χ(t)Φ(t),

où Φ(t) est la norme de la différence entre deux solutions, et χ est à priori dans L1
loc(R+).

D’autres difficultés propres à ce système viennent s’ajouter. Celles-ci sont de deux types :

• contrôler les termes avec les dérivées maximales, c’est-à-dire les dérivées les plus grandes en u
qui apparaissent dans l’équation de Q, et les dérivées les plus grandes en Q qui apparaissent
dans l’équation de u,

• contrôler les grandes puissances de Q, comme par exemple Qtr{Q2} dans l’énergie de “bulk”.

On traite la première difficulté en prenant en compte les caractéristiques spécifiques du système, qui
permettent d’éliminer les termes les plus compliqués. En ce qui concerne la seconde, on la contourne
par des arguments d’analyse harmonique, qui mènent à l’inégalité de Gronwall mentionnée plus
haut.

Un autre résultat important de cette thèse dans le cas corotationnel, est un résultat de propa-
gation de régularité. On prend notre donnée initiale dans un espace de Sobolev inhomogène, avec
un indice de régularité positif, i.e

(u0, ∇Q0) ∈ Hs(R2), avec s > 0.

Ensuite, on étudie la propagation de la norme homogène de Sobolev Ḣs. La première étape est
assez classique, on considère des estimations d’énergie dans les espaces Ḣs. Toutefois, le fait de
considérer s > 0 enlève une caractéristique importante du système : on ne peut plus éliminer les
termes les plus difficiles. Ainsi, on doit contrôler tous les termes, mais en le faisant, un premier
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problème apparâıt : il faut contrôler la norme L∞(Rd) de la solution (u, ∇Q). Une façon habituelle
de gérer ce problème est d’utiliser les inclusions de Sobolev classiques

Hs(R2) ↪→ L∞(R2),

mais celui-ci impose un indice de régularité s > 1, de sorte qu’en procédant de cette façon, on
s’attend à propager seulement les hautes régularités, comme dans [99]. Ce problème est résolu en
contrôlant différemment les hautes fréquences des basses fréquences de notre solution. On localise
la transformée de Fourier de notre solution sur une boule d’un rayon convenable N , en utilisant
une fonction de “cut-off”. Ensuite, d’une part, on contrôle la norme L∞(R2) de notre solution
localisée sur les basses fréquences pour l’inégalité de Bernstein, et d’autre part, on estime les hautes
fréquences en utilisant le fait que les solutions ont une régularité convenable. Enfin, en faisant un
choix approprié de N , la propagation des régularités se réduit à une estimation logarithmique

Φ′(t) ≤ χ(t)Φ(t)
(

1 + ln Φ(t)
)
,

où Φ(t) désigne la norme Ḣs de notre solution et χ est à priori dans L1
loc(R+). Cette estimation

conduit à un contrôle à croissance doublement exponentielle en temps de Φ(t). Notre résultat de
propagation s’énonce alors:

Théorème 1.2.2. Si ξ est nul et (u0, Q0) est dans Hs(R2) × Hs+1(R2), pour un réel positif s,
alors la solution donnée par le Théorème 4.2.1 satisfait

u ∈ L∞(0, T ;Hs(R2))∩L2(0, T ;Hs+1(R2)),

Q ∈ C(R+, H
s+1(R2))∩L2(0, T, Ḣs+2(R2)).

Le cas général

Dans le cas général, i.e. lorsque le paramètre ξ est supposé positif ou nul, on montre l’existence et
l’unicité de solutions faibles. Ceci est résumé dans l’énoncé suivant :

Théorème 1.2.3. Supposons que (u0, Q0) soit dans L2(R2)×H1(R2) et que ξ soit positif. Alors
le système (1.3) admet une unique solution faible (u,Q), globale en temps et qui satisfait

u ∈ L∞(0, T ;L2(R2)) ∩ L2(0, T ;H1(R2)),

Q ∈ C(R+, H
1(R2)) ∩ L2(0, T, Ḣ2(R2)),

pour tout T positif.

Malgré la simplicité de l’énoncé, la preuve met en jeu une analyse profonde, notamment des
termes qui apparaissent lorsque ξ est non nul.

Remarquons que dans ce cas aussi, le principal résultat du Théorème 4.2.3 réside dans l’unicité,
la preuve de l’existence étant une révision des arguments de [98].

La présence des termes relatifs à ξ accrôıt les principales difficultés associés à l’unicité des
solutions pour les systèmes (1.3). Par exemple, on doit contrôler les puissances les plus hautes
de Q qui interagissent avec u, comme Qtr{∇uQ}. Même si on procède de la même manière que
dans le cas corotationnel, en utilisant la norme faible Ḣ−1/2 pour estimer la différence entre deux
solutions faibles, nous allons aboutir à une estimation du type double-logarithmique, qui conduit
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à l’unicité à l’aide du lemme d’Osgood. En effet, l’unicité se réduit à une estimation du type :

Φ′(t) ≤ χ(t)Φ(t)
(

1 + ln
(

1 + e+
1

Φ(t)

)
+ ln

(
1 + e+

1

Φ(t)

)
ln ln

(
1 + e+

1

Φ(t)

))
,

où Φ(t) désigne les normes Ḣ−1/2 de nos solutions et χ est à priori dans L1
loc(R+). La preuve se base

sur une technique spécifique d’analyse harmonique, localisant la transformée de Fourier de notre
solution dans une boule de rayon N et en estimant séparément les basses fréquences des hautes
fréquences.

Dans ces estimations, on utilise des inclusions de Sobolev bien choisies, et on écrit explicitement
les constantes associées à chacune d’entre eux. Ensuite, une relation spécifique mettant en jeu ces
constantes, le rayon N , et Φ(t) permet enfin d’obtenir l’estimation double-logarithmique attendue.

1.3 Résultats pour le système de Qian-Sheng

Les derniers résultats de cette thèse relatifs à la dynamique des cristaux liquides concernent
l’existence et l’unicité de solutions pour le modèle proposé par Qian et Sheng, dans un espace
à d dimensions, pour d = 2, 3.

∂tu+ u · ∇u+∇p = div
{
σ + σ′

}
R+ × Rd,

div u = 0 R+ × Rd,
JQ̈+ µ1(Q̇− [Ω, Q])−∆Q = −L∂ψB∂Q + µ2A R+ × Rd,
(u, Q)t=0 = (u0, Q0) Rd.

(1.6)

Ici, les fonctions sont les mêmes que dans le système de Beris-Edwards : u ∈ Rd est le champ de
vitesse, Q ∈ Rd×d est le tenseur de de Gennes, le scalaire p désigne la pression, A est la partie
symétrique de ∇u, et Ω est la partie antisymétrique de ∇u. On va définir la densité de l’énergie
de “bulk” ψB(Q) dans (3.25), alors que les tenseurs des contraintes σ et σ′ dans (3.34) et (3.36).
Toutes ces fonctions dépendent des variables de temps t ∈ R+ et d’espace x ∈ Rd.

La nouveauté la plus importante dans ce modèle est la contribution d’inertie JQ̈ dans l’équation
du tenseur de de Gennes Q. Ce terme apparâıt en considérant la contribution de l’énergie cinétique
rotationnelle, précisément

J

2
|Q̇|2.

D’ordinaire, cette densité est négligeable, puisque la densité d’inertie J prend généralement de très
petites valeurs. Prendre en considération ce terme rend le système (1.6) plus difficile à traiter
en comparaison au modèle proposé par Beris et Edwards. En effet, l’équation de Q devient une
équation du type hyperbolique, alors que celle qui apparait quand J = 0 est de type parabolique.
Ainsi, on ne peut espérer aucun effet régularisant pour le tenseur Q.

Notre premier résultat concerne le comportement dissipatif relatif au système (1.6). On démontre
l’existence d’une fonctionnelle de Lyapunov E(t) = E(u(t), Q(t)), qui correspond à l’énergie totale
du matériel. L’énoncé est le suivant :

Théorème 1.3.1. Supposant quelques restrictions sur les coefficients de viscosité (voir Théorème
8.1.1), le système (1.6) admet la fonctionnelle de Lyapunov suivante :

E(t) :=

ˆ
Rd

1

2

(
|u|2 + J |Q̇|2 +

1

2
|∇Q|2 + ψB(Q)

)
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avec ψB(Q), la densité d’énergie de “bulk” donnée par (3.25).

Notre second résultat concerne l’existence et l’unicité de solutions classiques pour le système
(1.6). On travaille dans des espaces de Sobolev Hs(Rd), pour s suffisamment grand. Notre résultat
s’énonce ainsi :

Théorème 1.3.2. Supposons (u0, Q0) : Rd → Rd×Rd×d dans Hs(Rd)×Hs+1(Rd) avec s supérieur
à d/2. Supposant quelques restrictions sur les coefficients de viscosité (voir Théorème 8.1.1), et
supposant que les normes des données initiales ‖v0‖Hs et ‖Q0‖Hs+1 soient assez petites, alors il
existe une unique solution forte (v, Q) du système (1.6). Cette solution est globale en temps et
satisfait

u ∈ L∞(R+;Hs(Rd)) ∩ L2(R+;Hs+1(Rd)),
Q ∈ L∞(R+;Hs+1(Rd)) avec Q̇ ∈ L∞(R+;Hs(Rd)).

1.4 Résultats pour le système de Boussinesq

Bien que les résultats que nous ayons exposés jusqu’à présent concernent la dynamique des cristaux
liquides, dans cette thèse on considère aussi le système de Boussinesq. Dans le chapitre 9, on étudie
l’évolution d’un fluide dont la viscosité dépend de la température et l’hydrodynamique est modélisée
par le système suivant

∂tθ + div (θu) = 0 R+ × Rd,
∂tu+ u · ∇u− div (ν(θ)D(u)) +∇Π = 0 R+ × Rd,
div u = 0 R+ × Rd,
(u, θ)|t=0 = (ū, θ̄) Rd,

(1.7)

où d, θ, u,Π et M désignent respectivement la dimension, la température, la vitesse, la pression et
le tenseur de déformation donné par D(u) := (∇u+ t∇u)/2.

Ce système est un couplage entre une équation de transport qui gouverne l’évolution de la
température et les équations de Navier-Stokes homogènes qui modélisent la vitesse du fluide. Notons
qu’il s’agit ici d’un cas spécifique du système de Boussinesq général où la viscosité ν(θ) dépend de
la température (on renvoie le lecteur au chapitre (9) pour plus de détails). Ce cas particulier nous
permet de décrire quelques phénomènes géophysiques, notamment lorsque la viscosité du fluide a
tendance à décrôıtre quand sa température augmente.

En suivant l’approche utilisée pour le système de Ericksen-Leslie, on considère une température
initiale qui peut présenter des discontinuités, de sorte qu’on puisse modéliser un mélange entre des
fluides non miscibles et de températures différentes.

Notre résultat principal concerne l’existence globale en temps des solutions faibles du système
(1.7) sous certaines conditions naturelles sur les données initiales. Avant d’énoncer le résultat, on
rappelle brièvement quelques propriétés de ce système.

Comme le système de Navier-Stokes classique, le système (1.7) admet un changement d’échelle
particulier : si (u(t, x), θ(t, x)) est solution de (1.7) de donnée initiale (ū(x), θ̄(x)), alors les fonc-
tions suivantes

(u, θ)λ(t, x) := (λu(λ2t, λx), θ(λ2t, λx)), λ > 0

sont encore solutions de (1.7) de données initiales (λū(λx), λθ̄(x)).
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Par conséquent, il est assez naturel de considérer des données initiales dans des espaces de
Banach de normes invariantes par ce changement d’échelle. En premier lieu, on exige seulement
que θ̄ soit bornée, i.e.

θ̄ ∈ L∞(Rd),

ce qui permet à la température de présenter des discontinuités. Ensuite, on considère une vitesse
initiale appartenant à un espace de Besov homogène avec un indice de régularité critique, i.e.

u0 ∈ Ḃ
d
p
−1

p,r (Rd),

pour des valeurs appropriées p, r ∈ [1,∞].

Sous une hypothèse spécifique de petitesse sur les données initiales, plus précisément, en sup-
posant que

η :=
(
‖ν − 1‖∞ + ‖ūh‖

Ḃ
−1+ d

p
p,r

)
exp

{
cr‖ūd‖4r

Ḃ
−1+ d

p
p,r

}
(1.8)

soit suffisamment petit, où ūh := (ū1, . . . , ūd−1) sont les composantes horizontales de la vitesse et
ūd sa composante verticale, on démontre l’existence globale en temps des solutions faibles pour
le système (1.7). De (1.8), on voit que la viscosité est supposée proche d’une constante positive,
qu’on impose égal à 1 par souci de clarté. De plus, la composante verticale ūd peut être large si la
fluctuation de la viscosité ν(θ0) − 1 et les composantes horizontales ūh sont suffisamment petites
(exponentiellement petites par rapport à ūd).

Ce type de condition initiale a déjà été considéré dans la littérature, par example dans [60] et [30]
dans le cadre du système de Navier-Stokes inhomogène.

Les méthodes utilisées dans la preuve de l’existence des solutions faibles pour le système (1.7)
sont similaires à celles qu’on utilise pour le système de Ericksen-Leslie, en considérant une car-
actérisation particulière des espaces de Besov homogènes et le théorème maximale de régularité
pour le noyau de la chaleur. Cependant, il y a quelques difficultés spécifiques du système (1.7) :

• l’anisotropie sur la condition de petitesse des données initiales exige de nouvelles méthodes
afin de contrôler les normes des solutions,

• la basse régularité sur la viscosité diminue le nombre de dérivés qu’on peut contrôler sur la
vitesse u.

Dû à l’anisotropie sur la condition de petitesse (1.8), les composantes horizontales uh et la
composante verticale ud de la vitesse doivent être estimées séparément. La structure algébrique du
système de Navier-Stokes joue un rôle important dans nos estimations.

En utilisant la condition de divergence nulle sur la vitesse et la structure algébrique des termes
non-linéaires, on observe que l’équation sur la composante verticale est du type parabolique-linéaire
où les coefficients dépendent des composantes horizontales. Pour cette raison, on n’impose pas de
condition de petitesse sur ūd.

Ensuite, on étudie l’équation sur les composantes horizontales en analysant deux types de termes
non-linéaires : d’une part les termes bilinéaires sur les composantes horizontales et, d’autre part,les
interactions entre les composantes horizontales et verticales. À cause de la non-linéarité, une
condition de petitesse sur les composantes horizontales de la vitesse initiale est nécessaire pour
résoudre l’équation globalement en temps. De plus, la contribution donnée par la composante
verticale conduit à une amplification exponentielle de cette condition de petitesse, donc l’estimation
qu’on obtient est de la même structure que η donnée par (1.8).
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Enfin, la condition de basse régularité sur la température initiale implique une basse régularité
aussi sur ν(θ), c’est pour cela que le terme div (ν(θ)M) doit être vu au sens des distributions.
Ainsi, en écrivant l’équation sur u sous forme intégrale, le terme précédent devient

ˆ t

0
divS(t− s)((ν(θ)− 1)M)(s)ds,

où S(·) est le semi-groupe de la chaleur. Pour cela, on a besoin de l’effet régularisant du noyau de
la chaleur pour contrôler la vitesse u. C’est pour cette heuristique que le théorème de régularité
maximale de la chaleur permet d’estimer seulement u et ∇u dans des espaces de Lebesgue du type
Lq1(0, T ;Lq2(Rd)), tandis que ∆u prend un sens simplement distributionnel.

Notre résultat principal s’énonce alors :

Théorème 1.4.1. Soit (θ̄, ū) dans L∞(Rd) × Ḃd/p−1
p,r (Rd) avec p dans (1, d) et r dans (1,∞). Si

on suppose
η :=

(
‖ν − 1‖∞ + ‖ūh‖

Ḃ
−1+ d

p
p,r

)
exp

{
cr‖ūd‖4r

Ḃ
−1+ d

p
p,r

}
≤ c0

pour une petite constante positive c0, alors le système (1.7) admet une solution faible globale en
temps. De plus, on obtient les estimations suivantes :

‖(uh, ∇uh)‖X ≤ C1η, ‖(ud, ∇ud)‖X ≤ C2‖ūd‖
Ḃ
d
p−1

p,r

+ C3,

pour certaines constantes positives C1, C2 et C3, et où X est un espace de Banach approprié (voir
9.1.4).

L’espace fonctionnel X est un espace du type Lebesgue à poids en temps (on renvoie le lecteur
au chapitre 9, Théorème 9.1.3 et Théorème 9.1.4, pour une description détaillée).
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Chapter 2

Introduction

2.1 The Discovery of Liquid crystals

Generally, the physical state of a material can be determined by the motion degree of freedom about
its molecules. Certainly, anyone knows the three most widespread physical states of matter, namely
solid, liquid and gas. If the movement degree of freedom is almost zero, namely the forces which act
on the molecules do not allow any kind of movement, forcing the material structure to be confined
in a specific order, then we are classifying a solid material. If such degree still preserves a strong
intermolecular force but it is not able to restrict the molecules to lie on a regular organization,
then we are considering a fluid state of matter. Finally in the gas phase the forces and the distance
between the molecules are weak and large respectively, so that the material is not confined and it
is able to extend its volume.

However this classification is not quite accurate. Indeed some organic materials do not exhibit
a single transition from solid to liquid, but rather several intermediate transitions involving new
phases. At lower temperatures these materials become solid, while at higher temperatures they
become isotropic liquids. However, when cooling down, we encounter phase transitions to the liquid
crystalline forms, often referred to as mesophases, or also mesomorphic phases (mesomhorphic: of
intermediate form). Materials exhibiting this type of intermediate state of matter are called Liquid
Crystals.

Liquid crystals were discovered in 1888, when the Austrian botanist Reinitzer [102], working in
the Institute of Plant Physiology at the University of Prague, observed a particular phenomena.
He was performing experiments on cholesteryl benzoate, a cholesterol based compound, in order to
establish the correct formula and molecular weight of cholesterol. Trying to precisely determine the
melting point (an important indicator of the purity of a substance), he heated up the temperature
and observed that the material became a cloudy liquid at 145.5◦C while at 178.5◦C the cloudiness
suddenly disappeared and the substance turned into a clear liquid. As a first deduction, Reinitzer
believed that this phenomena was due to impurities in the material, however further purifications
did not change this particular behavior property. He was reporting what now we denote a cholesteric
liquid crystal (or chiral nematic liquid crystal).

Astonished by his discovery, Reinitzer sent two samples and a letter to the German physicist
Otto Lehmann, an expert in crystal optics. Reinitzer believed that his observation had some
relations with the research of the physicist. Eventually, Lehmann [65] determined that the cloudy
liquid had a specific type of molecular order while the transparent liquid at higher temperature had
the characteristic isotropic state of all common liquids. He finally realized that the cloudy liquid
was a new state of matter and he called it liquid crystal, since it retained properties of both liquids
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and solids. Nowadays such term is commonly used.

An other relevant contribution in the liquid crystal study was given by Vorländer in 1907 [111].
He was able to derive the rule of the most extended molecular shape of material presenting at least
two melting points: the constitutive molecules must present a rod-like structure. Such discovery
was to be of great importance in order to develop the mathematical theory modelling liquid crystal
also from a geometrical point of view.

2.2 Meshophases of liquid crystals

Some liquid crystal materials can present a considerable range of mesophases. This phenomena
is known as polymorphism. In the 1922, Friedel [46] classified different liquid crystal mesophases
into three main categories: nematic, smectic and cholesteric. In this sections we present the main
features for each of them, referring the reader to [107] and [33] for more details.

2.2.1 Nematic liquid crystal

The nematic liquid crystal mesophase is mainly characterized by molecules which present an align-
ment along a privileged direction, as shown in Figure 2.1. Commonly, this direction is called the
anisotropic axis. In this mesophase, the molecules do not have a specific long-range positional

Figure 2.1: A schematic represen-
tation of nematic molecules.

distribution. Indeed the center of mass of the molecules
can freely translate, as in a common isotropic fluid. Most
of nematic liquid crystals are uniaxial, namely one can
observe a rotational symmetry along the anisotropic axis.
However some liquid crystals are biaxial, meaning that
in addition the molecules orient along a secondary axes.

The word nematic derives from the Greek νηµα
(Greek: nema), which means thread. Indeed, in a ne-
matic sample, one can often observe thread-like defects,
namely lines of singularity in the alignment of the con-
stituent molecules.

We present now a short history about the development of nematic liquid crystals. For more de-
tails we refer the reader to [107]. The first nematic-type liquid crystal was discovered by Gatterman
and Ritschke [49] in the 1890. They synthesized the so called p-azoxyanisole (PAA), a material
which does not naturally occur. In the 1969 Kelker and Scheurle [64] successfully managed to syn-
thesize the 4-methoxybenzylidene-4’-butylane (MBBA). It was the first nematic exhibiting stability
under a room temperature, however, despite this interesting property, such material was not consid-
ered suitable for applications. In the 1973 Gray and collaborators [51] [52] obtained a nematic-type
material, useful to display technological purposes, that is the 4-pentyl-4’-cyanobiphenyl(5CB).

The reader should keep in mind that the main results of this thesis concern the dynamics of
nematic-type liquid crystals, which are the most interesting from an applicative point of view.
Indeed, nowadays, the most of displays and monitors are often composed by a mixture of nematic
materials.

2.2.2 Smectic liquid crystal

In this phase, molecules show a degree of translational order which is not present in the nematic.
In the smectic state, the molecules maintain the general orientational order of nematics, but also
tend to align themselves in layers or planes as depicted in Figure 2.2. Since smectics are more



2.2. MESHOPHASES OF LIQUID CRYSTALS 17

Figure 2.2: The smectic state of liquid crystal: starting from the left-hand side, smectic A, smectic
C and semctic C* mesophases, respectively.

ordered than nematics, usually this mesophase occurs at a lower temperature with respect to the
ones of materials exhibiting a nematic state.

The word smectic derives from the Greek word σµηγµα, namely soap. Indeed each layer can
slide over another one, thus smectic liquid crystals present some mechanical properties which are
common in soaps.

The smectic mesophases can also be classified into three main categories, as illustrated in
Figure 2.2: smectic A, smectic C, smectic C*.

When smectic A mesophase occurs, the constituent molecules have a stratified positional order
and, on average, an orientation along the layer normal (left-hand image of Figure 2.2). In each
layers, the centres of gravity present no long-range order, which means that every stratification
dynamics is that of a two-dimensional isotropic liquid. This lamellar-type alignment was detected
by several macroscopic effects, some of them known since the beginning of the 20th century, for
instance by Friedel and Grandjean in [46,47,50].

The smectic C mesophase preserves the layer-type alignment of smectic A materials, however
the preferred axis is tilted away from the layer-normal (see the image in the middle of Figure 2.2).
As a consequence the material is optically biaxial. The angle between the orientation and the layer
normal is commonly called the smectic C tilt angle or smectic cone angle and it usually depends
on temperature.

The Smectic C* phase, also called chiral smectic C, exhibits the same layer-type alignment and
orientation of smectic C, expect that the two-dimensional stratifications evolve in an helical con-
figuration, proceeding along the layer normal, as shown on the right-hand side image of Figure 2.2.
This phase can occur when the constitutive molecules are enantiomorphic, namely the mirror im-
age cannot be reoriented so as to appear identical to the starting structure. The first compound
fulfilling these specifications was synthesized by Liébert, Strzelecki and Keller [90] and is known by
the acronym DOBAMBC, which stands for (S)-(-)-p’-decyloxybenzylidene p’-amino 2-methylbutyl
c.

Up to now, smectic liquid crystal have received few attentions for application, neverthless
smectic C* materials exhibit a spontaneous polarization, a property which is not present in the
other mesophases. Such feature is due to the material’s ferroelectricity, as explained by P. Oswald
and P. Pieranski in [95] and it has recently attracted interest for displays technology.
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2.2.3 Cholesteric

The cholesteric meshopase, also called chiral nematic, exhibits properties similar to the nematic
one, except for a particular helical structure: the constitutive molecules distribute themselves into
two-dimensional nematic like layers, whose orientations twist along a continuous helical pattern,
as shown in Figure 2.3. This helical structure is due to the chiral characteristic of the constituent

molecules, namely their mirror image has an identical
composition which can not be superposed to the starting
configuration.
An important parameter of cholesteric liquid crystal is
the so called pitch of cholesteric. It is determined mea-
suring the distance between two nematic-type layers,
once the axis of orientation rotates through a full cir-
cle. The periodicity lenght of the cholesteric is half of
this distance, because, on average, the molecules have
a lack of polarity, so there is no physical difference be-
tween a molecule in a certain configuration and the same
rotated of 180◦.

Figure 2.3: the helical structure of
a chiral liquid crystal.

The constituent molecules of cholesterics can twist both with a left-hand or right-hand side,
however at a given fixed temperature, a sample of such material produces helical structure always
in the same sense. Anyway there exists cholesterics that change the orientation of the helix by
modifying the temperature, as explained in [33].

Many cholesteric liquid crystals derive from cholesterol (which is not a liquid crystal), so that
the name. However, as exposed by Collings in [21], some cholesterics have no correlation with
cholesterol, thus the second denomination chiral nematic.

2.2.4 Some examples

Some liquid crystal materials can show several type of mesophases, a phenomena called polymor-
phism, and the phase transitions mainly depend on temperature. We present here a phase diagram,
taken from [107], pag. 7. We can observe the phase transitions of three different types of liquid
crystals: PAA, cholesteryl myristate and 10S5.



Chapter 3

Dynamic theory of nematics

One of the main purposes of this thesis is to give a contribution to the dynamic theory of nematic
liquid crystals. At first, it seems convenient to recall the most widespread theories modelling the
time-evolution of nematics, namely the Ericksen-Leslie theory, the Beris-Edwards theory and the
Qian-Sheng theory. These theories provided specific partial differential equations, which are the
basis of our research.

In this chapter we are going to present an overview concerning the development of these models.
Once this background will be completed, we will state the results concerning the contribution of
this thesis, whose proofs will be postponed to the next sections.

3.1 The fluid behaviour

Before starting with the presentation of the cited theories modelling the nematic hydrodynamics,
it is perhaps interesting to mention that all of them can be seen as generalizations of the more
widespread Navier-Stokes dynamical theory for an usual isotropic fluid.

In nematic liquid crystals, the center of mass of each constituent molecule has a freely degree
of translation, as a common particle in an isotropic liquid. This allows us to introduce a natural
continuum variable describing the dynamic of liquid crystal, namely the velocity field u(t, x), at a
position x and for a fixed time t. We should interpret u(t, x) as in the case of an usual homogeneous
fluid, so that we can already present two balance laws: the conservation of mass and the balance of
linear momentum. If our material occupies a three dimensional volume U = U(t) with boundary
∂U = ∂U(t) at a time t, then the two conservation laws are given by

d

dt

ˆ
U
ρ(t, x)dx = 0, (3.1)

d

dt

ˆ
U
ρ(t, x)u(t, x)dx =

ˆ
U
ρ(t, x)F (t, x)dx+

ˆ
∂U
σdν, (3.2)

respectively, where the scalar ρ stands for mass-density of the nematic material, F is the external
body force per unit mass and σ is the surface force per unit area. The first equation tells us that
the mass of the volume U is conserved for any time t, while the second one states that the time
rate of change of linear momentum of our nematic is equal to the total acting force.

We are going to assume our nematic liquid crystal to be incompressible, that is every subsection
of our material does not change volume under the pressure of the flow. This feature can be expressed
as a free divergence condition on the velocity field u. Indeed, assuming the velocity field to be
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smooth enough, we can construct the so-called velocity flow ψ(t, x), determined by{
∂tψ(t, x) = u(t, ψ(t, x)) (t, x) ∈ [0, T )× U0,

ψ(0, x) = x x ∈ U0,

a well-posed system, thanks to the Cauchy-Lipschitz theorem. Here U0 stands for the initial
volume-configuration of the material, so that, the evolutionary trajectory of a particle x ∈ U0 in
the material is given by the time-dependent function t → ψ(t, x). Then, for any positive time t,
the volume U(t), corresponds to the set of every ψ(t, x), such that the related particle x belongs
to U0. Now, the incompressibility condition can be formulated in integral form as follows

m(V0) =

ˆ
V0

dx =

ˆ
V (t)

dx = m(V (t)),

for any sub-volume V0 of U0, where m is the usual Lebesgue measure on R3 and V (t) is the
configuration of the volume V0 at a time t, that is V (t) = ψ(t, V0). Thanks to a standard change
of variables x = ψ(t, y), we formulate both the left and right-hand sides as integrals on the domain
V0, i.e. ˆ

V0

dx =

ˆ
V0

|det Jψ(t, y)|dy,

where Jψ stands for the Jacobian matrix of ψ. Thus, from the arbitrariness of V0, the flow ψ must
satisfy

|det Jψ(t, y)| = det Jψ(t, y) = 1

at every point y in V0 and for every time t, where the modulus is negligible because of the continuity
of the Jacobian and the initial condition detJψ(0, ·) = 1. Deriving in time and thanks to some
easy calculations, the incompressibility condition assumes the form

0 = ∂t det Jψ(t, y) =
[

det Jψ(t, y)
]
tr{∇u} = div u,

namely a free divergence condition on the velocity field u.

Now, we want to reformulate the two balance laws (3.1) and (3.2) in point form. The conser-
vation law for mass (3.1) in point form can be easily achieved through the Reynolds’ transport
theorem. Indeed, by the change of variables x = ψ(t, y), (3.1) becomes

0 =
d

dt

ˆ
U(t)

ρ(t, x)dx =
d

dt

ˆ
U0

ρ(t, ψ(t, y))| det Jψ(t, y)|dy.

Now, recalling that det Jψ(t, y) = 1 and passing the time-derivative under the integral sign,

0 =
d

dt

ˆ
U0

ρ(t, ψ(t, y))dy =

ˆ
U(t)

[
∂tρ+ u · ∇ρ

]
(t, x)dx.

Thanks to the arbitrariness of U = U(t) (that is the arbitrariness of U0), we achieve

∂tρ(t, x) + u(t, x) · ∇ρ(t, x) = 0, (3.3)

so that, the conservation of mass in point form corresponds to the well-known transport equation.

Now, we take care of the balance of angular momentum. Denoting by ν the normal to the
boundary ∂U(t), one can show by the usual tetrahedron argument (see for instance [38], section
1.6.1) that the i-th component σi of the surface force can be expressed in terms of the so-called
total stress tensor σij , i.e.
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σi :=

3∑
j=1

σijνj .

Thus the balance law of linear momentum (3.2), the Reynolds’ theorem and the Green’s theorem
lead to

d

dt

ˆ
U
ρudx =

ˆ
U
∂t(ρu) + div(ρu⊗ u) dx =

ˆ
U
ρF + div σ dx,

where u⊗u stands for the quadratic tensor defined by (u⊗u)ij = uiuj . Writing this result in point
form and recalling the transport equation (3.3), we obtain the more familiar momentum equation

ρ
(
∂tu+ u · ∇u

)
= ρF + div σ. (3.4)

In the forthcoming sections we are going to establish an explicit formula for the total stress tensor
for a nematic liquid crystal, however for the sake of completeness, let us present the isotropic form
of this tensor, known as the Cauchy stress tensor :

σij = δijp+ µA, (3.5)

where p stands for the pressure of the fluid, δij is the Kronecker delta, µ is the viscosity of the fluid
and finally A is the rate of strain tensor whose formula is given by

Aij =
(∇u+ t∇u

2

)
ij

=
ui,j + uj,i

2
.

Replacing the Cauchy stress tensor (3.5) into the linear momentum equation (3.4), the dynamic of
a liquid crystal in an isotropic state can be modelled by

ρ
(
∂tu+ u · ∇u

)
− µ∆u+∇p = ρF,

which is the widely-known Navier-Stokes equation. It is perhaps interesting to remark that in this
case the total stress tensor (3.5) is affected by friction forces. One can neglect this contribution
when the viscosity is small enough. In this case the Cauchy stress tensor corresponds to σij = −δijp,
so that the momentum equation (3.4) reads as

ρ
(
∂tu+ u · ∇u

)
+∇p = ρF,

namely the well-known Euler equations. In the next section we will see the difference between the
total stress tensor for nematics and the Cauchy stress tensor for the Navier-Stokes and Euler equa-
tions. The anisotropic orientations of the constituent molecules contribute to the linear momentum
equation by an additional forcing term. This term corresponds to an additional stress tensor which
depends on the variations of the molecular alignment.

3.2 The Ericksen-Leslie theory

3.2.1 Development of the theory

Usually a dynamical theory for a complex fluid should take inspiration by the related static one.
Thus the early static theory for nematics proposed by Oseen [93, 94] in the 1925 and Zocher [119]
in the 1927 should be considered as the starting point for the Ericksen-Leslie development. Their
approach was of great importance for Franck [45], indeed, making use of their ideas, he performed a
complete static theory for nematics in the 1958, theory based on the so called Oseen-Frank energy
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Figure 3.1: A schematic representation of a nematic liquid crystal. The unit vector d describes the
average alignment of the molecules

density. An explicit formula of this energy will be exposed in section 3.2.2, since it plays a main
role for the formulation of the Ericksen-Leslie system.

The first formulation of a constitutive theory for the liquid crystals dynamics dates back to the
works of Anzelius [6] in 1931, however the first widely accepted model was made by Ericksen [40] in
the 1961. Ericksen performed some balance laws in order to extend the static theory of nematics to
their dynamical behaviour. Thus, in the 1966 [68] and in the 1968 [69], Leslie proceeded to generalise
his approach, successfully obtaining some constitutive equations in order to model the dynamic
evolution of nematic liquid crystal. This led to one of the most widespread and useful theory
describing the dynamics of these materials, namely the well-celebrated Ericksen-Leslie theory.

Starting from these works, the interest for the dynamical behaviour of nematics increased, for
instance in the 1979 Leslie [71] reviewed his theory and gave some impression of the type of problem
arising, while de Gennes and Prost [33] investigated examples and applications for such materials.

In the 1992, Leslie [67] proceeded to reformulate constitutive equations for the Ericksen-Leslie
theory, passing through a more comprehensible approach, well exposed also in the Stewart’s work
[107]. Taking inspiration by this two works, we now present a derivation of the Ericksen-Leslie
theory, arising to constitutive equations for nematic materials.

3.2.2 The Oseen-Frank energy density

In this section we present the so-called Oseen-Frank energy density and we proceed similarly as to
the approach proposed by Frank in [45].

As already explained in the previous chapter, a nematic liquid crystal is characterized by con-
stituent rod-like molecules which tend to align each other along a privileged direction. Then it is
natural to represent such orientation through a unit vector d, called the director, as depicted in
figure Figure 3.1. We recall that, on average, the molecules have a lack of polarity, thus the vector
d and −d are equivalent in the sense that the sign has no physical meaning.

We consider the three dimensional Euclidian space R3 and we denote by x = (x1, x2, x3) the
coordinates with respect to the canonical basis. If our nematic occupies a smooth domain U into
R3, the mean alignment at a point ζ in U is

d = d(ζ) ∈ R3, with |d(ζ)|2 = 1.

Once the sign of the director d is chosen, we introduce in ζ a local right-handed Cartesian coor-
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Figure 3.2: A local Cartesian co-
ordinate system with y3 parallel to
the director.

dinate system y := (y1, y2, y3) as depicted in figure Fig-
ure 3.2, imposing y3 parallel to d(ζ). Moreover we as-
sume that our nematic liquid crystal is uniaxial, thus the
y1 and y2 axis can be freely chosen in the plain perpen-
dicular to d(ζ). Then the transformed coordinates y are
determined via rotation and translation as follows:

yi =
3∑
j=1

Rij(xj − ζj), (3.6)

for any i = 1, 2 and 3, where R is a suitable 3×3-rotation
matrix. We denote by d̃ the director d with respect to
the new coordinates y, so that its formula is given by

d̃i(y) =
3∑
i=1

Rijdj(x) =
3∑
i=1

Rijdj(ζ + tRy),

where tR is the transposed (and thus the inverse) matrix of R.

Since d̃(0) (namely d(ζ)) is parallel to the y3-axis, then the gradient of d̃ in the origin (namely
in ζ) reads as follows

∇yd̃(0) =


∂d̃1
∂y1

(0) ∂d̃1
∂y2

(0) ∂d̃1
∂y3

(0)

∂d̃2
∂y1

(0) ∂d̃2
∂y2

(0) ∂d̃2
∂y3

(0)

0 0 0

 (3.7)

and the six components of curvature at the point ζ are given by

s =

(
s1

s2

)
=

 ∂d̃1
∂y1

(0)

∂d̃2
∂y2

(0)

 , t =

(
t1

t2

)
=

−∂d̃2
∂y1

(0)

∂d̃1
∂y2

(0)

 , b =

(
b1

b2

)
=

−∂d̃1
∂y3

(0)

∂d̃2
∂y3

(0)

 , (3.8)

which stand for the splay, the twist and the bend, respectively, as illustrated in Figure 3.3.

Now, as explained by Andrienko in [5], the Gibbs free energy density wF of a liquid crystal can
be written taking in consideration six curvature strains:

wF =
6∑
i

kiai +
1

2

6∑
i,j

kijaiaj

where ki and kij = kji are curvature elastic constants, and where the terms ai are defined by

a1 := s1, a2 := t2, a3 := b1, a4 := −t1, a5 := s2 and a6 := b2.

Since we are considering uniaxial nematics, then the energy density must be invariant under a
rotation around the axis y3. Thanks to this feature, considering for instance a rotation about π/2
and one about π/4, we achieve some constrictions on the curvature elastic constants, so that our
energy density reads as follows:

wF = k1(s1 + s2) + k2(t1 + t2) +
k11

2
(s1 + s2)2 +

k22

2
(t1 + t2)2+

+
k33

2
(b21 + b22) + k12(s1 + s2)(t1 + t2)− (k22 + k24)(s1s2 + t1t2).

Further material considerations, as the absence of polarity, the absence of enantiomorphysm, yield
k1, k2 and k12 to be null, while some specifics of the curvatures (postponed in the appendix 10.1)
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Figure 3.3: The three distinct curvature strains of a nematic liquid crystal: (a) splay, (b) twist and
(c) bend.

allow the Oseen-Frank energy density to be formulated depending on the director field d and its
gradient, i.e.

wF (d, ∇d) =
k11

2
(divd)2 +

k22

2
(d · rot d)2 +

k33

2
|d ∧ rot d|2+

+
k22 + k24

2

{
tr{∇d2} − (divd)2

}
,

(3.9)

which is the Oseen-Frank energy density in its widespread form. As already pointed out, the
first three terms represent splay, twist and bend respectively, while the last one is known as the
saddle-splay term and it can be rewritten in a divergence form as follows:

tr{(∇d)2} − (divd)2 =
3∑

i,j=1

∂di
∂xj

∂dj
∂xi
− ∂di
∂xi

∂dj
∂xj

=

3∑
i,j=1

∂

∂xi

[ ∂di
∂xj

dj

]
− ∂2di
∂xi∂xj

dj −
∂

∂xj

[∂di
∂xi

dj

]
+ dj

∂2di
∂xi∂xj

=
3∑
i=1

∂

∂xi

[ 3∑
j=1

∂di
∂xj

dj

]
−

3∑
j=1

∂

∂xj

[ 3∑
i=1

∂di
∂xi

dj

]
= div

{
d · ∇d− (div d)d

}
,

thus it acts as a surface-energy contribution. We conclude this section with the total elastic free
energy of a nematic occupying a three dimensional domain U :

ˆ
U
wF (d(ζ)),∇d(ζ))dζ =

ˆ
U

k11

2
(divd(ζ))2 +

k22

2
(d(ζ) · rot d(ζ))2+

+
k33

2
|d(ζ) ∧ rot d(ζ)|2 +

k22 + k24

2

{
tr{∇d(ζ)2} − (divd(ζ))2

}
dζ.

3.2.3 The balance laws

We now come back to the dynamic description of a nematic liquid crystal and this section is devoted
to the derivation of the so-called Ericksen-Leslie equations. We mainly follow the structure proposed
by Stewart in [107], and we refer the reader to the exhaustive review of Leslie [71] for more details
concerning the physical assumptions.

We start the description of a nematic liquid crystal dynamics introducing a new continuum
variable: the local angular velocity w(t, x), which corresponds, on average, to the angular velocity
of the constituent molecules at a position x and time t. Then, since director d is a unit vector field,
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it fulfils:
ḋ = w ∧ d, (3.10)

where the superposed dot is an abbreviation for the material time derivative Dt

ḋ = Dtd := ∂td+ u · ∇d.

It is perhaps worth remarking that the local angular velocity does not correspond to the classical
angular velocity for an isotropic fluid, also known as vorticity, whose formula is (rotu)/2. In
a nematic liquid crystal this kinematic parameter is referred as regional angular velocity, and it
describes the local spinning motion of the material near some point. Furthermore the difference ω
between these continuum variables

ω := w − 1

2
rotu (3.11)

is called the relative angular momentum.

After the mass conservation law and the balance of linear momentum, the third law in the
continuum theory of nematics liquid crystal is given by the conservation of the angular momentum,
which reads as follows:

d

dt

ˆ
U
ρ(x ∧ u)dx =

ˆ
U
ρ(x ∧ F +K)dx+

ˆ
∂U

(x ∧ σ + l)dν. (3.12)

Here K is the external body moment per unit mass and l is the surface moment per unit area,
while F is the external body force per unit mass introduced in (3.2). Several terms related to the
relative angular momentum ω and the director d are intrinsically hidden inside the above equation.

It is perhaps worth remarking that in this formulation we have not taken in consideration the
so called director inertial density, a material parameter which is usually negligible in the most of
nematics. However, in this thesis we will also investigate the no-null inertial case, whose presence
changes the internal structure of the constitutive equations (see section 3.4).

Now we handle with the balance law of the angular momentum. Using the notation of the
Levi-Civita symbols, (3.12) becomes

d

dt

ˆ
U
ρεijkxjukdx =

ˆ
U
ρεijkxjFk + ρKidx+

ˆ
∂U
εijkxjσk + lidν. (3.13)

As for the surface force for unit area, the external body moment per unit mass l can be rewritten
in tensor form through li = lijνj , where lij is the so called couple stress tensor and we recall that
ν is the normal to the boundary ∂U . Similarly σk = σkp,pνl. Moreover, observing that

Dt(εijkxjuk) = εijkẋjuk + εijkxj u̇k = εijkujuk + εijkxj u̇k = εijkxj u̇k,

where we have used ẋj = ∂txj + us∂xsxj = uj , we can rewrite (3.13) as follows:

ˆ
U
ρεijkxj u̇kdx =

ˆ
U
ρεijkxjFk + ρKidx+

ˆ
U

(εijkxjσkp),p + lij,jdx

=

ˆ
U
ρεijkxjFk + ρKidx+

ˆ
U
εijkσkj + εijkxjσkp,p + lij,jdx.

Reorganizing the above equality we get

ˆ
U
εijkxj

(
ρu̇k − ρFk − σkp,p︸ ︷︷ ︸

=0

)
dx =

ˆ
U

(
ρKi + εijkσjk + lij,j

)
dx,
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where the left-hand side is null thanks to the linear momentum equation (3.4). Finally, from the
arbitrariness of U the angular momentum equation in point form reads as follows:

ρKi + εijkσjk + lij,j = 0. (3.14)

If the external body moment K and the couple stress tensor l are null, then the momentum
equation determines the total stress tensor σ to exactly corresponds to the Cauchy stress tensor
(3.5), reducing our dynamical system to the classical Navier-Stokes equations.

Now, we want to express both the total stress tensor σ and the couple stress tensor l in terms
of the nematic continuum variables, the director d and the velocity field u. In order to do that, we
need to introduce the so-called Ericksen work postulate.

3.2.4 The general Ericksen-Leslie equations

It is useful to introduce some terminology and some kinematic quantities. We have already defined
rate of strain tensor A as the symmetric tensor of the velocity gradient. Then we denote by Ω the
so called vorticity tensor, which corresponds to the skew-adjoint tensor of the velocity gradient,
that is:

Ω :=
∇u− t∇u

2
. (3.15)

Always following the structure of [107] and [67], we consider the vector field N given by

N := ω ∧ d,

where we recall that ω stands for the relative angular velocity (3.11). Now, recalling that 2Ωv =
(rotu) ∧ v for any vector v, then we can reformulate the vector field N as

N = w ∧ d− 1

2
(rotu) ∧ d = ḋ− Ωd,

where we have also used equality (3.10). Following the terminology of Truesdell and Noll [110], N
stands for the co-rotational time flux of the director d. The co-rotational time flux N gives an
important contribution into the total stress tensor σ. More precisely it plays an important role in
the so called Leslie stress tensor, and for specific information on this point the reader is referred to
the appendix.

In order to achieve an explicit formulation of the total and couple stress tensors, Ericksen [40,41]
and Leslie [67] introduced a work postulate. It states as follows:

the rate at which forces and moments do work on a volume of nematic goes into
changes in either the above stored energy or the kinetic energy, or is lost in viscous
dissipation.

Then, their work postulate is expressed as follows:

ˆ
U
ρ
(
F · u+K · w

)
dx+

ˆ
∂U

(
σ · u+ l · w

)
dν =

D

Dt

ˆ
U

(1

2
ρ|u|2 + wF

)
dx+

ˆ
U
Ddx, (3.16)

where wF is the Oseen-Frank energy density (3.2.2) and D is the rate of viscous dissipation per
unit volume, also known as dissipation function. Thanks to this postulate and several structural
remarks (postponed in the appendix), one can finally achieve the sequent formulation for the total
stress tensor σ and the couple stress tensor l

σij = −pδij −
∂wF
∂dk,j

dk,i + σ̃ij ,
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lij = εislds
∂wF
∂dl,j

,

where σ̃ stands for the Leslie stress tensor also called viscous stress, whose formula is

σ̃ij = α1Alkdkdldidj + α2diNj + α3Nidj + α4Aij + α5djAikdk + α6diAjkdk. (3.17)

Here, the coefficients α1, . . . α6 are known as the Leslie viscosity coefficients. The reader should
observe that if the Oseen-Frank energy wF (d,∇d) is null (as in the case of a constant director d)
and the viscous stress reduces to α4A, then the relative total stress tensor σ corresponds to the
Cauchy stress tensor (3.5), while the couple stress l vanishes. This is the case of an isotropic liquid
crystal which dynamics is governed by the Navier-Stokes equations.

Taking into account the above expressions into (3.2) and (3.4), we can finally perform the widely
celebrated Ericksen-Leslie equations, which reads as follows

∂tρ+ u · ∇ρ = 0,

ρ
(
∂tu+ u · ∇u

)
= div σ,

div u = 0,

d ∧
(
g̃ + h

)
= 0,

|d|2 = 1

(3.18)

where g̃ = −γ1N − γ2An, with γ1 and γ2 parameters dependent on the viscosity coefficients, and
with h as the molecular field

h = div
{∂wF
∂∇d

}
− ∂wF

∂d
.

3.2.5 A useful simplification

The Ericksen-Leslie equations (3.18) are particularly complicated as they contain a large number
of terms, so there are few mathematical studies of the full systems (for more details see chapter 5).
Nevertheless the main mathematical difficulties are still present in the following simplified model,
a version of which was originally proposed by Fanghua Lin around the 1990 in [74,75,80]:

∂tρ+ div (ρu) = 0

ρ(∂tu+ u · ∇u)− ν∆u+∇p = −λ div
(
∇d�∇d

)
div u = 0

∂td+ u · ∇d− γ∆d = γ|∇d|2d
|d| = 1

(3.19)

This is a strongly coupled system between the inhomonegenous and incompressible Navier-Stokes
equation and the transported heat flow of harmonic maps into sphere. We recall that here the
continuum variables are denoted as follows:

ρ = ρ(t, x) ∈ R+ denotes the density, u = u(t, x) ∈ R3 represents the velocity field,

p = p(t, x) ∈ R is the pressure and d = d(t, x) ∈ S2 is the director,

all depending on the time variable t ∈ R+ and on the space variables x ∈ R3. The symbol ∇d�∇d
is a tensor whose components are given by

(∇d�∇d)ij = ∂id · ∂jd, (3.20)
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while S2 is the two-dimensional unit-sphere in R3.

The general Ericksen-Leslie equations (3.18) and the above system have a strong interconnec-
tion. For instance we can consider a simplified version of the Oseen-Frank energy (3.9), imposing
the three coefficients k11, k22, k33 to coincide to a positive constant λ whose value depends on
the material, and assuming the remaining coefficient k24 to be null. Under this assumptions the
Oseen-Frank energy density assumes the usual form of an elastic-type energy density

wF (∇d) =
λ

2
di,jdi,j =

λ

2
|∇d|2. (3.21)

In this case, the steady-state formulation of the general system (3.18) and its simplified version
(3.19) coincide (where with steady-state we mean the absence of fluid motion, imposing the velocity
field to be null u ≡ 0). Indeed, the angular momentum equation of (3.18) becomes

d ∧
(
− γ1dt + λ∆d

)
= 0,

that is
−γ1dt + λ∆d+ βd = 0,

where the scalar β is the Lagrangian multiplier due to the constraint |d| = 1. Its value can be
calculated multiplying the above equation by d, i.e.

β =
γ1

2

d

dt
|d|2 − λ∆d · d = −λdk,jjdk = −λ

(
dk,jdk

)
,j

+ λdk,jdk,j = λ|∇d|2, (3.22)

where in the last equality we have used 2dk,jdk = ∂j |d|2 = 0. Imposing γ = λ/γ1, we deduce
that the director equations of the general and the simplified Ericksen-Leslie systems are equivalent,
namely they read as follows:

∂td− γ∆d = γ|∇d|2d.

It is perhaps interesting remarking that if we also assume the director d to not depend on time,
which means d to be a stationary solution, the above angular momentum coincides with

−∆d = |∇d|2d,

namely the harmonic map into the sphere whose solutions are minimizers of the elastic energy

ˆ
U
|∇d|2,

for a domain U and suitable boundary conditions, under the restriction d to returns value into the
sphere, i.e. |d| = 1.

However, in general it is not natural to have a flow of liquid crystals for which there is no motion
in the fluid itself, i.e. u is null. Thus, it is of major interest taking in consideration the action of
the velocity field u. In this case, the simplified Ericksen-Leslie system (3.19) arises from additional
conditions on the Leslie viscosity: we always assume the Oseen-Frank energy to read as the elastic
energy (3.21) and we also impose α1, α2, α3, α5 and α6 to be null in the viscous stress tensor σ̃
(3.17). This yields the viscous stress σ̃ to be equal to α4A, so that the balance of linear momentum
reads as follows

ρ(∂tu+ u · ∇u) = div σ = −∇p+ λdiv{∇d�∇d}+
α4

2
∆u.
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Figure 3.4: Pair of point defects, called Boojums in a nematic film1.

Finally, Fanghua Lin [77] neglected the action of the vortex stretching term −Ωd to the co-
rotational time flux N , simplifying N as the material derivative of the director

N = ḋ.

Hence, the balance of angular momentum in the Ericksen-Leslie system (3.18) is equivalent to

− γ1N + λ∆d+ βd = −γ1ḋ+ λ∆d+ βd = 0, (3.23)

with β always the Lagrangian multiplier related to the restriction |d| = 1. Observing that the
dot-product between the director d and its material derivative is null

d ·N = d · ḋ =
1

2

D

Dt

[
|d|2
]

= 0,

we can compute the value of β proceeding as in (3.22), i.e. β = λ|∇d|2. Then equation (3.23)
becomes

γ1

(
∂td+ u · ∇d

)
− λ∆d = λ|∇d|2d,

namely the balance of angular momentum of the simplified system (3.19).

The simplified system (3.19) is more handy than the original equations, yet it exhibits the
main analytic challenges, as we will see in one of the main contributions of this thesis concerning
a well-posedness result for this simplified version of Ericksen-Leslie.

3.3 The Beris-Edwards dynamic theory

In the previous chapter we have seen that the nematic phase is most naturally described by a
director field d which returns value into the sphere. Moreover we have already remarked that the
constituent molecules present a lack of polarity, on average, so that there is no physical difference
between d and its opposite −d. This sign arbitrariness makes the Ericksen-Leslie theory presenting
some deficiency on modelling some physical phenomena, especially the so-called defects.

Defects are among one of the most important visual patterns associated with nematic liquid
crystals. Polarized light microscopy techniques are the simplest way to observe these physical
phenomena, thanks to sudden and localised changes in the intensity of the light, as illustrated in
Figure 3.4.

If defects occur in a nematic material, it means that the director d is not a smooth function in

1Oleg Lavrentovich, Liquid Crystal Institute, Kent State University
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Figure 3.5: On the left-hand side a point disclination occurs around the molecular-orientation lines.
On the right-hand side the choice of a direction generates a discontinuity on the director field as
in the case of a line disclination.

space, and it presents discontinuities along the associated patterns. These discontinuities can be
located at a point, a line or on a surface.

The most common defects are the point and the lines defects, known as disclinations (from the
Frank terminology disinclinations [45]). Nevertheless, some liquid crystal samples may contain
surface defects, known as sheet defects, which are physically unstable since they tend to smear out
into continuously distorted regions of finite thicknesses, called walls. For more details concerning
defects we refer the reader to the book by the Gennes and Prost [33].

For instance, a first deficiency that occurs in the director model is that of considering a point
disinclination (see for instance [9]), as illustrated in figure Figure 3.5. The choice of a sign for
the director d can generate discontinuities which have a no-physical relation with defects. Indeed
figure Figure 3.5 is an example of a non-orientable field which is continuous in every point except
on the defect. Thus, the natural idea of defining defects as discontinuities of the director field is
not completely well-posed.

We present now an alternative approach describing the nematic dynamics, which also removes
the orientation problem described above. This approach is based on the concept of order tensor,
introduced by de Gennes [31, 33], in order to phrase a Landau-Ginzburg-type theory for nematic
materials.

3.3.1 The de Gennes order tensor

Let us assume that our nematic material lies on a three-dimensional domain U at a time t. For
any position x in U , instead of considering an exact direction on the sphere S2, we establish the
probability that the director field d(t, x) belongs to some measurable subset A of the sphere, as
depicted in Figure 3.6. Then, we introduce a continuously distributed probability P = Pt,x on S2,
driven by a density f through

P(A) =

ˆ
P∈A

f(P )dν(P ) =:

ˆ
A

df(P ),

where A is a Lebesgue measurable set on the unit sphere.

As always, we assume the constituent molecules to be unpolar on average. Then, the no-physical
difference between the extremities can be expressed as a symmetric constriction on the probability:

P(A) = P(−A)
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Figure 3.6: Instead of fixing a precise position into the sphere, the de Gennes theory considers the
probability of the director to belong to a set A

for any measurable subset A. Note that because of this symmetry, the first momentum of the
probability P vanishes: ˆ

P∈S2

Pdf(P ) = 0.

Thus the first nontrivial information comes from the second order momentum M , which is believed
to be the most important contribution to the energy [80],

M :=

ˆ
P∈S2

P ⊗ Pdf(P ) =

(ˆ
P∈S2

PiPjdf(P )

)
i,j=1,2,3

∈M3(R),

where M3(R) denotes the 3 × 3 matrices with real coefficients. It yields a symmetric matrix M
with trace trM = 1.

In the presence of an isotropic liquid, the orientation of the molecules is uniform in every
direction, hence in this case the probability P0 is given by

P0(A) =
1

4π

ˆ
P∈A

dν(P ),

so that the corresponding second momentum tensor M0 is exactly Id /3. We denote by Q the
difference between a general M and M0

Q = M − Id

3
=

ˆ
P∈S2

[
P ⊗ P − Id

3

]
df(P ),

obtaining a tensor which is known as the de Gennes order parameter tensor or simply the order
tensor. Thus we can interpret Q as a deviation of the second moment tensor from its isotropic
value.

From the definition, it is clear that the order parameter tensor takes value in the space of
three-dimensional matrices which are traceless and symmetric

S
(3)
0 :=

{
Q ∈M3(R), Q = tQ, tr{Q} = 0

}
.
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This is a five-dimensional Hilbert space, equipped with the inner-product induced by M3(R):

〈Q, Q̃〉
S

(3)
0

:= QijQ̃ji = QijQ̃ij = tr{QQ̃},

for any tensors Q and Q̃ in S0.

The order tensor Q is the new continuum variable modelling the nematic dynamics, replacing
the director d. Then, it is perhaps important to recall its dependence on time and space Q = Q(t, x).

An order tensor Q can describe three different types of structure, thanks to its eigenvalues:

(i) If Q admits three equal eigenvalues, namely Q is null, then the resulting material is an
isotropic fluid.

(ii) If Q admits two equal eigenvalues, then the material is optically uniaxial with the distin-
guished eigen-direction as optic axis.

(iii) If Q admits three distinct eigenvalues, then the material is biaxial.

The uniaxial order tensor Q is the most common in nematic materials. Moreover a polar decom-
position leads these tensors to be expressed as follows:

Q = s
(
d⊗ d− Id

3

)
, with |d| = 1, (3.24)

where d is exactly the director of the Ericksen-Leslie theory. Here the scalar quantity s is a measure
of the degree of alignment of molecules.

We remark that the choice of (3.24) as new continuum variable allows us to overcome the defect-
representation difficulty presented in Figure 3.5. Indeed, now the point disclination can easily be
described as discontinuity of the order tensor parameter associated do the director d.

As already pointed out in the introduction, most of nematic liquid crystals are uniaxial. Nev-
erthless some of them are biaxial, presenting an additional orientation along a secondary axes. In
this case the order tensor Q is of type (iii) and can be expressed as

Q = s1

(
d⊗ d− Id

3

)
+ s2

(
m⊗m− Id

3

)
, with |d| = 1, |m| = 1 and s1 6= s2.

The parameters s1 and s2 are not null, while d and m are two distinct eigenvectors with eigenvalues
(2s1 − s2)/3 and (2s2 − s1)/3, respectively. Finally, the third eigenvalue is given by −(s1 + s2)/3.

De Gennes proposed two free-energy types governing nematic materials. The first one is a
Landau-type potential, the bulk energy, a polynomial in the invariants of the order tensor Q, which
dictates the preferred phase of the material. The second contribution is given by an elastic free-
energy density in the form of a quadratic expression in the gradient of Q, describing any distortion
of the structure of the material. The following sections describe the components of these energies.

3.3.2 The bulk free energy

The bulk free energy, also known as the Landau-de Gennes thermotropic energy [92], is a potential
function describing which state the liquid crystal tends to be in, i.e. uniaxial, biaxial, or isotropic.
The isotropic state Q = 0 should be minimizer at high temperature, while at low temperature there
should appear uniaxial minimizers.
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Up to fourth order, the most general form of the energy density is

ψB(Q) :=
a

2
|Q|2 − b

3
tr{Q3}+

c

4
|Q|4, (3.25)

where a,b and c are temperature and material dependent constants.

It is perhaps important to remark that this is a truncated Taylor expansion on Q = 0 [104].
Indeed the fourth order is the lowest that is suitable to describe a phase transition. Indeed it allows
the free-energy density to have two distinct minima (for more details we refer the reader to [106]).

In order to have the bulk energy (3.25) bounded from below, c needs to be a positive constant.
Moreover, for an uniaxial nematic, the order tensor assumes the form (3.24), thus by a direct
calculation tr{Q3} = 2s3/9 which is positive assuming s > 0. By contrast, if the molecules are
aligned on average perpendicular to the axis of symmetry then tr{Q3} is negative. In order to
distinguish those two states b needs to be different from zero. Finally the constant a does not
present a structural restriction.

3.3.3 The elastic free energy

The elastic energy density of a liquid crystal corresponds to the induced energy which occurs when
distorting the order tensor in space. It is commonly taken to depend on Q and its gradient ∇Q.
Moreover, as explained in [92], this energy must remain unchanged if we apply a rotation or a
translation to the material. Thus, the second order elastic energy can involve only four invariant
terms, that is

|∇Q|2 = Qαβ,iQαβ,i, |divQ|2 = Qαi,iQαj,j , Qαi,jQαj,i, QijQαβ,iQαβ,j ,

and commonly it assumes the following form

ψe(Q, ∇Q) :=
L1

2
|∇Q|2 +

L2

2
|divQ|2 +

L3

2
Qαi,jQαj,i +

L4

2
QijQαβ,iQαβ,j . (3.26)

with L1, L2, L3 and L4 material-dependent constants, typically very small compared with the bulk
constants a, b and c.

Usually, the constant L4 is taken equal to zero, since it may cause the elastic energy to be not
bounded from below (see for instance [8]), so that ψe is often written in the following form:

ψe(Q, ∇Q) :=
L1

2
|∇Q|2 +

L2

2
|divQ|2 +

L3

2
Qαi,jQαj,i.

However, the L4-term is necessary to distinguish splay and bend deformations [106], performing
the full anisotropy characteristics of the Oseen-Frank energy density (3.9).

3.3.4 The Beris-Edwards system

There exist several models which describe the dynamics of liquid crystals making use of the Q
order tensor. A comparison of these models can be found in [105] and in this section we present
the so-called Beris-Edwards system.

This model was presented by Beris and Edwards in 1994 and it has been largely adopted in
literature both for numerical and analytical studies ( [1,35,54]). Their theory is derived formulating
on a macroscopic scale the Poisson-bracket method, as extensively exposed in their book [12].
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There is a strictly correlation between this model and the Ericksen-Leslie one: if we assume the
order tensor to be uniaxial as in (3.24), the Beris-Edwards system coincides with the Ericksen-Leslie
system.

The system models the evolution of liquid crystal molecules together with the underlying flow,
through a parabolic-type system coupling an incompressible Navier-Stokes system with a nonlinear
convection-diffusion system. The local orientation of the molecules is described through the order
tensor Q. The evolution of the Q’s is driven by the free energy of the molecules as well as the
transport, distortion and alignment effects caused by the flow. The flow field u satisfies a forced
incompressible Navier-Stokes system, with the forcing provided by the additional, non-Newtonian
stress caused by the molecules orientations, thus expressed in terms of Q.

The evolution of Q is given by:

∂tQ+ u · ∇Q− S(∇u,Q) = ΓH(Q), (3.27)

with Γ a material-dependent positive constant. For a nonnegative velocity field u, the molecules
are transported by the flow (as indicated by the convective derivative ∂t + u · ∇) as well as being
tumbled and aligned by the flow, fact described by the term

S(∇u,Q) := (ξA+ Ω)(Q+
1

3
Id) + (Q+

1

3
Id)(ξA− Ω)− 2ξ(Q+

1

3
Id)tr(Q∇u), (3.28)

where A = (∇u+ t∇u)/2 is the rate of strain tensor and Ω = (∇u− t∇u)/2 is the vorticity tensor.
The constant ξ is specific to the liquid crystal material and measures the ratio between the tumbling
and the aligning effect that shear flow would exert over the liquid crystal director.

We also denote by H, the Q-dependent tensor

H(Q) := −L
[
∂ψB(Q)

∂Q
+ div

∂ψe(Q)

∂∇Q

]
with

[
div

∂ψe(Q)

∂∇Q

]
αβ

=

3∑
γ=1

∂γ
∂ψe(Q)

∂(∂γQαβ)
,

where ψB and ψe are the bulk and elastic energy densities, formulated in (3.25) and (3.26) respec-
tively, and denoting with L the projection onto the space of trace-free matrices.

In this thesis we consider the most widespread elastic energy density, that is

ψe(∇Q) =
L

2
|∇Q|2, (3.29)

imposing L := L1, and neglecting the other elastic coefficients L2, L3 and L4. Hence H can be
explicitly formulated as follows:

H(Q) = L∆Q− aQ+ b

(
Q2 − tr{Q2} Id

3

)
− cQtr{Q2}. (3.30)

The vector field u satisfies the forced incompressible Navier-Stokes system

∂tu+ u · ∇u− ν∆u+∇p = λdiv {τ + σ}
div u = 0

where ν, λ > 0 with λ measuring the ratio of the elastic effects (produced by the liquid crystal
molecules) to that of the diffusive effects. The forcing is provided by the additional stress caused
by the presence of the liquid crystal molecules, more specifically we have the symmetric part τ of
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the additional stress tensor:

τ := −ξ
(
Q+

1

3
Id
)
H(Q)− ξH(Q)

(
Q+

1

3
Id
)

+ 2ξ
(
Q+

1

3
Id
)
QH(Q)− L∇Q�∇Q, (3.31)

where the tensor ∇Q�∇Q is defined as

(∇Q�∇Q)ij := Qαβ,iQαβ,j = tr{∂iQ∂jQ}.

Moreover the antisymmetric part σ of the stress tensor is given by

σ := QH(Q)−H(Q)Q = [Q,H(Q)]. (3.32)

Summarizing, the Beris-Edwards equations read as follows
∂tQ+ u · ∇Q− S(∇u,Q)− ΓL∆Q = −aQ+ b

(
Q2 − tr{Q2} Id

3

)
− cQtr{Q2},

∂tu+ u · ∇u− ν∆u+∇p = λdiv{QH(Q)−H(Q)Q}+
+λdiv

{
− ξ
(
Q+ Id

3

)
H(Q)− ξH(Q)

(
Q+ Id

3

)
+ 2ξ

(
Q+ Id

3

)
tr{QH(Q)} − L∇Q�∇Q

}
,

div u = 0.

(3.33)
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3.4 The Qian-Sheng dynamic theory

We have seen that both Ericksen-Leslie (3.18) and Beris-Edwards (3.33) describe the continuum
theory of nematic through a strongly coupled system between two parabolic-type equations. In the
Ericksen-Leslie case, this structure is more clear when the simplified version (3.19) occurs. However
this intrinsic characteristic is achieved neglecting a physical contribution, namely the inertia of the
constituent molecules.

Let us come back to the work postulate (3.16) proposed by Ericksen and Leslie:

ˆ
U
ρ
(
F · u+K · w

)
dx+

ˆ
∂U

(
σ · u+ l · w

)
dν =

D

Dt

ˆ
U

(1

2
ρ|u|2 + wF

)
dx+

ˆ
U
Ddx,

The law explains how the rate at which force and moments do work is stored in the total-material
energy or is lost in viscous dissipation. However, the above total energy considers only the kinetic
and the Oseen-Frank energies contribution, meaning that we have neglected the action of the
rotational kinetic energy

J

2

ˆ
U
|ḋ|2.

Here J stands for the moment of inertial density. In most circumstances the rotational kinetic
energy is negligible, imposing J to vanish, nevertheless it can play a non-trivial role when the
anisotropic axis of the constituent molecules is subject to large accelerations. In this situation, the
work-postulated must take in consideration the inertial contribution (see [70]) as follows:

ˆ
U
ρ
(
F · u+K · w

)
dx+

ˆ
∂U

(
σ · u+ l · w

)
dν =

D

Dt

ˆ
U

(1

2
ρ|u|2 + J |ḋ|2 + wF

)
dx+

ˆ
U
Ddx.

In this case Ericksen-Leslie system becomes

∂tρ+ u · ∇ρ = 0,

ρ
(
∂tu+ u · ∇u

)
= div σ,

div u = 0,

d ∧
(
Jd̈+ g̃ + h

)
= 0,

|d|2 = 1,

hence the angular momentum equation change from a parabolic to a hyperbolic-type equation.

One of the main results of this thesis concerns the contribution of the inertial term, in the
setting of the order parameter tensor. We proceed considering an alternative formalism to the one
of Beris and Edwards. Indeed, in the 1998 Qian and Sheng [101] arrived at a system of evolution
equations for both the velocity field and the order tensor field, taking inspiration with the analogy
to the balance laws of Ericksen and Leslie.

The governing momentum and order evolution equations are

u̇i = ∂j(−pδji + σji + σ′ji),

with the free-divergence condition div u = uk,k = 0, and

JQ̈ij = hij + h′ij − λδij − εijkλk.



3.4. THE QIAN-SHENG DYNAMIC THEORY 37

Here, the distortion stress tensor σ is given by

σji := − ∂ψe
∂(Qαβ,j)

Qαβ,i, (3.34)

with ψe stands for the elastic energy

ψe(∇Q) :=
L

2
|∇Q|2. (3.35)

Moreover, the elastic molecular tensor h is defined as

hij := − ∂ψB
∂Qij

+ ∂k
∂ψe

∂(Qij,k)

Furthermore the viscous stress σ′ and the viscous molecular field h′ are given by

σ′ij : = β1QijQlkAlk + β4Aij + β5QilAlj + β6QjlAli

+
1

2
µ2Nij − µ1QilNlj + µ1QjlNli, (3.36)

h′ij := −1

2
µ2Aij − µ1Nij

where β1, β4, β5, β6, µ1 and µ2 are viscosity coefficients. A is the rate of strain tensor (∇u+ t∇u)/2
and N is the time rate of change of Qij with respect to the background fluid angular velocity,
whose formula is

N = Q̇− ΩQ+QΩ,

where Ω is the vorticity tensor. The Qian and Sheng equations in a no-index form reads as follows:

∂tu+ u · ∇u− β4

2 ∆u+∇p = div
{
−∇Q�∇Q+ β1Qtr{QA}+

+β5AQ+ β6QA
}

+ div
{µ2

2 (Q̇− [Ω, Q]) + µ1[Q, (Q̇− [Ω, Q])]
}
,

div u = 0,

JQ̈+ µ1(Q̇− [Ω, Q])−∆Q = −L∂ψB∂Q + µ2

2 A.

(3.37)
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Chapter 4

Contributions of the thesis

The present thesis is mainly devoted to the analysis of several partial differential equations arising
from the dynamics of nematic liquid crystals. More precisely, we perform some well-posedness
results and dynamic behaviours for the simplified Ericksen-Leslie system (3.19), the Beris-Edwards
model (3.33) and the Qian-Sheng system (3.37), which we have introduced in the previous chapter.

In this chapter, we present an exhaustive overview about the achieved results. First, it is worth
mentioning that one of the main contributions of this thesis concerns the study of the Cauchy
problem associated to each system, up to suitable initial data. These initial data belong to suitable
functional spaces, the properties of which make each model interesting also from a physical point
of view. In the Ericksen-Leslie case, for instance, we consider an initial density that can present
discontinuities along an interface, thus our result can be related to the dynamics of immiscible-
nematics mixture.

This thesis studies the dynamics of nematic materials which occupy a two-dimensional or an
N -dimensional space-domain, where N is an integer greater than three. More precisely we consider
the Beris-Edwards system in the two-dimensional whole space, while the Ericksen-Leslie and the
Qian-Sheng system are defined in the N -dimensional whole space.

On the one hand, we prove existence and uniqueness of weak or classical solutions in the two-
dimensional case, making use of energy estimates, Fourier analysis and the paradifferential calculus.
On the other, we prove well-posedness results in the N -dimensional framework, mainly adopting
tools of harmonic analysis.

The thesis is interested also to the propagation of regularity for the initial data, especially under
the dynamics proposed by Beris and Edwards. Here, we mainly use techniques which are mostly
based on Fourier analysis and logarithmic-type estimates.

Let us briefly describe the structure of this chapter. In the next section we begin our presenta-
tion, starting from the Ericksen-Leslie model for nematics. In section 4.2 we take into consideration
the dynamics proposed by Beris and Edwards. Here we separately consider two cases, on the one
hand we analyze the general system, on the other we take into consideration a simplified version,
the co-rotational system, which retains the main features of the original one. Finally, in section 4.3
we present the results concerning the Qian-Sheng model.

4.1 Contribution to the Ericksen-Leslie theory

As already exposed in the introduction, in the 50s and 60s, J.L. Ericksen [41] and F. Leslie [69]
developed the most widely accepted model describing the dynamics of nematic liquid crystals. The

39
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rod-like molecules have a local orientation, fact modelled mathematically through functions taking
values into the space of directors that is the unit sphere. Their time evolution is described by an
equation for unit-length vector fields d that are transported and rotated by a velocity field u. The
velocity of the centers of masses of the molecules obeys an incompressible Navier-Stokes system
with an additional stress tensor generated by the presence of the directors.

We consider the simplified version of the Ericksen-Leslie system introduced in section 3.2.5:

∂tρ+ div (ρu) = 0 R+ × RN ,
∂t(ρu) + div(ρu⊗ u)−∆u+∇Π = −div

(
∇d�∇d

)
R+ × RN ,

div u = 0 R+ × RN ,
∂td+ u · ∇d−∆d = |∇d|2d R+ × RN ,
|d| = 1 R+ × RN ,
(u, ρ, d)|t=0 = (u0, ρ0, d0) RN .

(4.1)

This is a strongly coupled system between the inhomonegenous and incompressible Navier-Stokes
equation and the transported heat flow of harmonic maps into sphere. We recall that the continuum
variables are defined as follows:

ρ = ρ(t, x) ∈ R+ denotes the density,

u = u(t, x) ∈ RN represents the velocity field,

Π = Π(t, x) ∈ R is the pressure,

d = d(t, x) ∈ SN−1 is the director,

all depending on the time variable t ∈ R+ and on the space variables x ∈ RN . We consider the
whole space RN as space-domain, with a general dimension N greater or equal to two. The symbol
∇d�∇d denotes the N ×N matrix whose (i, j)-th entry is given by

(∇d�∇d)ij := ∂id · ∂jd = dk,idk,j ,

for i, j = 1, . . . , N . The positive constants ν, λ and γ introduced in section 3.2.5 has been imposed
equal to 1, for the sake of simplicity.

It is perhaps important to remark that the simplified system proposed by F. Lin is for homoge-
nous fluids, that is with constant density. The inhomogeneous version we consider here is relevant
particularly for modelling a mixture of liquid crystals with different densities. Most importantly,
perhaps it also allows to give an interpretation of defect patterns as discontinuities in the density.
This defect interpretation is not new in literature, for instance we cite [34] of De Matteis and Virga,
despite it concerns a density-dependent kortweg fluid. Our main contribution is to prove a well-
posedness result that allows for the existence of these discontinuities, since we deal with densities
that are only bounded.

4.1.1 Statement of the main results

In order to announce our main result whose proof is given in chapter 5, it is perhaps important to
define the functional spaces where our initial data are defined.

Our interest is to impose a regularity on the initial density ρ0 as low as possible, so that we can
allow discontinuities along an interface. Thus our initial density is only assumed to be bounded
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ρ0 ∈ L∞(RN ).

Now, we can remark that the liquid crystal system (4.1) has a scaling property, like the classical
Navier-Stokes equations. Namely, if (ρ, u, d) solves (4.1) with initial data (ρ0, u0, d0), then for
every positive λ, the functions

(ρ, u, d)λ(t, x) := (ρ(t, x), λu(λ2t, λx), d(λ2t, λx))

also provide a solution but with initial data (ρ0(λx), λu0(λx), d0(λx). Thus, an important feature
of system (4.1) is that of the gradient of the director field ∇d and the velocity field u have an
equivalent “scaling behaviour”. Then, it is natural to consider u0 and ∇d0 into the same functional
framework.

Moreover, other heuristics (extensively exposed in chapter 5) suggest that the most suitable
functional spaces for (u0, ∇d0) are that of homogeneous Besov spaces with a critical index of
regularity. More precisely, we assume

(u0, ∇d0) ∈ Ḃs
p,r.

for suitable integrability indexes p, r in [1,∞] and a critical regularity index s in R. These functional
spaces are defined through the so-called Littlewood-Paley theory (we refer the reader to section
5.3 for a complete description). It is perhaps interesting to remark that the homogeneous Besov
spaces extend the most widely known classes of homogeneous Sobolev and Hölder spaces, through
the relations

Ḃs
2,2 = Ḣs, Ḃσ

∞,∞ = Ċσ,

for any s ∈ R and for any σ ∈ R+ \ Z.
Then, our main results concerning the Ericksen-Leslie dynamic theory can be summarized in

the following statement:

Theorem 4.1.1. Let us assume that the initial data (ρ0, u0, ∇d0) fulfil the smallness condition∥∥∥ 1

ρ0
− 1
∥∥∥
L∞x

+ ‖u0‖
Ḃ
N
p −1

p,r

+ ‖∇d0‖
Ḃ
N
p −1

p,r

≤ c0,

for a small enough positive constant c0, with 1 < p < N and 1 < r <∞, then system (4.1) admits
weak solutions. If moreover we assume an extra tiny regularity on (u0,∇d0), namely

(u0,∇d0) ∈ Ḃ
N
p
−1+ε

p,r , (4.2)

for a small positive ε, then such solutions are unique.

In the above statement, there is no information about the functional space where our weak
solutions live. Specific information and an extended version of Theorem 4.1.1 are postponed to
chapter 5, for the sake of simplicity. Nevertheless, we anticipate that the functional setting where
to look for weak solutions are of two types: if the initial data are smooth enough, we consider
Lebesgue-type spaces Lq1(0, T ;Lq2(RN )), for suitable r-dependent indexes q1 and q2, while if the
initial data exhibit low regularity, the functional space is that of the Serrin’s weighted in time class.

Moreover, it is perhaps worth mentioning that the extra regularity we impose in Theorem
4.1.1 plays a major part in proving the uniqueness result. Indeed, we handle the uniqueness
part reformulating system (4.1) in Lagrangian coordinates, following the approach of Danchin and
Mucha in [27] for the inhomogeneous Navier-Stokes equations. More precisely, the extra regularity
allows to construct the flow map ψ(t, x), i.e.

ψ(t, x) = x+

ˆ t

0
u(s, ψ(s, x))ds, .
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The existence of such map is due to the Lipschitz space-regularity the velocity field u achieves,
thanks to the extra condition on the initial data. The Lagrangian coordinates simplify in some way
our problem, granting the density ρ to be constant, since it is governed by a transport equation.

4.2 Contribution to the Beris-Edwards theory

This thesis is also devoted to the Cauchy problem associated to the Beris-Edwards system. We
consider the two dimensional whole space R2 as space-domain, so that the hydrodynamics of nematic
materials is described by

∂tQ+ u · ∇Q+ S(∇u, Q) = H(Q) R+ × R2,

∂tu+ u · ∇u− ν∆u+∇Π = div{τ + σ} R+ × R2,

div u = 0 R+ × R2,

(u, Q)t=0 = 0 = (u0, Q0) R2,

(4.3)

Here Q = Q(t, x) is the order tensor introduced in section 3.3.1, u = u(t, x) ∈ R2 represents the
velocity field, Π = Π(t, x) ∈ R stands for the pressure, everything depending on time t ∈ R+ and
space x ∈ R2.

H(Q) has been defined in (3.30), it is a tensor dependent on Q and ∇Q, and it is a forcing
term related to the contribution given by the elastic and the bulk energies. Finally, τ and σ are
the symmetric and antisymmetric part of the additional stress tensor respectively, whose formula
has been proposed in (3.31) and (3.32).

It is perhaps interesting to remark that one can assume the system to have a three-dimensional
target despite the two-dimensional domain. This situation occurs when physically there is no
dependence on one of the three spacial directions.

As expressed in definition (3.28), the term S(∇u, Q) depends also on a parameter ξ. This is
a constant specific to the liquid crystal material. Usually ξ assumes small values, thus one can
neglect its contribution. In this situation, system (4.3) reads as follows:

Q̇− ΩQ+QΩ− ΓL2∆Q = −Γ(aQ− b
(
Q2− tr{Q2} Id

2

)
+ ctr{Q2}Q) R+ × R2,

∂tu+ u · ∇u− ν∆u+∇Π = Ldiv {Q∆Q−∆QQ−∇Q�∇Q} R+ × R2,

div u = 0 R+ × R2,

(u, Q)t=0 = (u0, Q0) R2,

(4.4)

where the superposed dot is the material derivative ∂t+u ·∇ and ∇Q�∇Q is a 2×2-tensor, whose
(i, j)-th component is given by

(∇Q�∇Q)ij = tr{∂iQ∂jQ} = ∂iQαβ∂jQαβ.

We divide our study into two subcases:

• the corotational case, when ξ is null,

• the general case, when ξ is positive (or null).

We prove existence and uniqueness of weak solutions both for ξ different and equal to zero and we
also prove a result about regularity propagation for the cororational case.
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In order to understand the functional framework where to look for weak solutions, it is perhaps
interesting to remark that the velocity field u and the gradient of the order tensor ∇Q have the
same scaling behaviour, which is similar to the one of the Ericksen-Leslie system (3.19). If (u,Q)
is solution for (4.3) with initial data (u0, Q0), then

(u, Q)λ(t, x) := (λu(λ2t, λx), Q(λ2t, λx)), λ > 0,

is still solution with new initial data (λu0(λx), Q0(λx)). In the uniaxial nematic case, this scaling
behaviour can be seen as a consequence of the Ericksen-Leslie’s one. Indeed, here the order tensor
Q assumes the form

Q(t, x) = s
(
d(t, x)⊗ d(t, x)− Id

3

)
,

so that the scaling behaviour of Q turns out from the director field ones:

dλ(t, x) := d(λ2t, λx), λ > 0.

4.2.1 Statement of the main results

The corotational case

According to the previous considerations, it is natural to take our initial data u0 and ∇Q0 in the
same functional space. Moreover, since we consider a two-dimensional space-domain, the more
suitable type of weak solutions are the Leray’s ones. Then the initial data are taken in Sobolev
functional spaces, that is

(u0, Q0) ∈ L2(R2)×H1(R2).

Our well-posedness result can be summarized in the following theorem.

Theorem 4.2.1. Assume that (u0, Q0) belongs to L2(R2)×H1(R2) and let us suppose the parameter
ξ to be null. Then system (4.4) admits an unique weak solution (u,Q), which is global in time and
it satisfies

u ∈ L∞(0, T ;L2(R2)) ∩ L2(0, T ;H1(R2)),

Q ∈ C(R+, H
1(R2)) ∩ L2(0, T, Ḣ2(R2)),

(4.5)

for any positive real time T .

We remark that, although the solution (u, ∇Q) is defined globally in time, the L2(R2)-norm
(respectively Ḣ1(R2)-norm) is only locally bounded (respectively L2

loc(R+)). In the usual Navier-
Stokes equations, classical energy estimates for Leray’s weak solutions allow a global in time L2-
integrability for the Ḣ1-norm of u and a global in time bound for the L2(R2)-norm. In the Beris-
Edwards system we lose this feature and this is mainly due to a structural difficulty.

The order tensor equation is driven by the variational derivative of the bulk energy density
ψB(Q), up to projection to the set of null trace matrices, that is

L
∂ψb(Q)

∂Q
= −Γ

(
aQ− b

(
Q2− tr{Q2} Id

2

)
+ ctr{Q2}Q

)
.

When applying a classical energy estimate, the bulk energy occurs as additional term to the solu-
tion’s norms. If the bulk energy could only interact as a positive term, then we would achieve the
classical global control in time, however we can only expect the bulk density to be bounded from
below (imposing the constant c > 0). This also requires to estimate the bulk energy contribution,
however we will see that the best control one can achieve has an exponential grow in time.
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The main contribution of Theorem 4.2.1 is about uniqueness, as the existence part was dealt
by Paicu and Zarnescu in [99]. Nevertheless we approach also to the existence part with a different
method to the author’s ones: we make use of a coupled technique between the Friedrichs scheme
and the Schaefer’s fixed point theorem.

The main difficulties associated with treating the uniqueness of solutions for systems (4.4) are
related to the presence of the momentum equation. One can essentially think of the system as a
highly non-trivial perturbation of the Navier-Stokes equations. It is known that for Navier-Stokes
alone, the uniqueness of weak solutions in dimension two can be achieved through rather standard
arguments, while in three dimension it is a major open problem.

The extended systems that we deal with have an intermediary position, as the perturbation
produced by the presence of the additional stress-tensor generates significant technical difficulties
related in the first place to the weak norms available for the u term. A rather common way of
dealing with this issue is by using a weak norm for estimating the difference between the two weak
solutions, a norm that is below the natural spaces in which the weak solutions are defined. This
approach was used before in the context of the usual Navier-Stokes system in [48] and [88]

In our case for technical convenience we use a homogeneous Sobolev space, namely Ḣ−1/2.
The fact that the initial data for the difference is zero (i.e. (δu, δQ)t=0 = 0) helps in controlling
the difference in such a low regularity space. Moreover, one of the main reasons for choosing the
homogeneous setting is a specific product law which shows that the product is a bounded operator
acting in the following spaces:

Ḣs(R2)× Ḣt(R2)→ Hs+t− 1
2 (R2),

for any real s and t with |s|, |t| < 1 such that s+ t is positive. It is worth remarking that evaluating
the difference at regularity level s = 0 i.e. in L2(R2), would only allow to prove a weak-strong
uniqueness result, along the lines of [99]. Working in a negative Sobolev space, Ḣs with s ∈ (−1, 0)
allows to capture the uniqueness of weak solutions. We expect that a similar proof would work in
any Ḣs with s ∈ (−1, 0) and our choice s = −1/2 is just for convenience.

In the uniqueness proof, our main work is to obtain a Gronwall-type inequality. Indeed the
uniqueness reduces to an estimate of the following type:

Φ′(t) ≤ χ(t)Φ(t),

where Φ(t) is the norm of the difference between two solutions and χ is a-priori in L1
loc(R+).

In addition there are some difficulties that are specific to this system. These are of two different
types, being related to:

• Controlling the “extraneous” maximal derivatives: that is the highest derivatives in u that
appear in the Q equation and the highest derivatives in Q that appear in the u equation,

• Controlling the high powers of Q, such as Qtr{Q2} in the bulk energy contribution.

The first difficulty is dealt with by taking into account the specific feature of the coupling that allows
for the cancellation of the worst terms, when considering certain physically meaningful combination
of terms. For what concerns the second difficulty, this is overcome by delicate harmonic analysis
arguments leading to the usual Gronwall inequality mentioned before.

Another important contribution of this thesis in the corotational setting is a result about regu-
larity propagation. We consider our initial data to belong to a nonhomogenous Sobolev space with
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positive index of regularity, i.e.

(u0, ∇Q0) ∈ Ḣs(R2), with s > 0.

Then we study the propagation of the homogeneous Sobolev norm Ḣs. The first step is rather
standard, namely we consider an Ḣs-energy estimate. However, considering s > 0 leads to losing
an important structural feature of the system, namely the cancellation of the worst terms. Thus,
it is necessary to make a control for each of them, but doing that, a first problem appears: the
control of the L∞(Rd)-norm for the solution (u, ∇Q). A rather common way of dealing with this
problem is by using a classical Sobolev embedding

Hs(R2) ↪→ L∞(R2),

but this requires an index of regularity s > 1, so that proceeding along this line, we can expect to
propagate only higher regularities, in the same line of [99]. This difficulty is dealt with separately
controlling the high and the low frequencies of our solution. We localise the Fourier transform
of our solution into a ball with a suitable radius N , making use of a cut-off function. Then on
the one-hand we control the L∞(R2)-norm of our solution localised in the low frequencies, and on
the other-hand we estimate the higher ones. Then, choosing a suitable radius N , the regularity
propagation reduces to a delicate one-logarithmic estimate

Φ′(t) ≤ χ(t)Φ(t)
(

1 + ln Φ(t)
)
,

where Φ(t) stands for the Ḣs-norms of our solution and χ is apriori in L1
loc(R+). This estimate leads

to a double-exponential control of the growth-in-time of Φ(t). Then our regularity-propagations
result reads as follows:

Theorem 4.2.2. If ξ is null and (u0, Q0) belongs to Hs(R2) × Hs+1(R2), for a positive real s,
then the solution given by Theorem 4.2.1 fulfils

u ∈ L∞(0, T ;Hs(R2))∩L2(0, T ;Hs+1(R2)),

Q ∈ C(R+, H
s+1(R2))∩L2(0, T, Ḣs+2(R2)).

The general case

In the general framework, i.e. when the parameter ξ is assumed to be greater or equal to zero, we
performed existence and uniqueness of weak solutions. This result can be resumed in the following
statement:

Theorem 4.2.3. Assume that (u0, Q0) belongs to L2(R2) × H1(R2) and let the parameter ξ be
positive. Then system (4.3) admits an unique weak solution (u,Q), which is global in time and it
satisfies

u ∈ L∞(0, T ;L2(R2)) ∩ L2(0, T ;H1(R2)),

Q ∈ C(R+, H
1(R2)) ∩ L2(0, T, Ḣ2(R2)),

for any positive real time T .

Despite the simplicity of the statement, the proof requires a deep analysis with a specific study
of the terms appearing when ξ is not null.
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Let us remark that also in this case the main contribution of Theorem 4.2.3 is about uniqueness,
as the existence part is just a fairly straightforward revisit of the arguments in [98].

The presence of the ξ-terms increases the main difficulties associated with treating the unique-
ness of solutions for systems (4.3). For instance we have to control the high powers of Q interacting
with u such as Qtr{∇uQ}. Although we proceed along the same line of the corotational case, by
using the weak norm Ḣ−1/2 for estimating the difference between the two weak solutions, now our
main goal is to obtain a delicate-double logarithmic estimate that leads to the Osgood lemma.
Indeed the uniqueness reduces to an estimate of the following type:

Φ′(t) ≤ χ(t)Φ(t)
(

1 + ln
(

1 + e+
1

Φ(t)

)
+ ln

(
1 + e+

1

Φ(t)

)
ln ln

(
1 + e+

1

Φ(t)

))
,

where Φ(t) stands for the Ḣ−1/2-norms of our solution and χ is apriori in L1
loc(R+). The proof is

based on a specific harmonic technique, localising the Fourier transform of our solution with a ball
of radius N and separately estimating both the low frequencies and the high frequencies.

In these estimates, we make use of suitable Sobolev embeddings and we explicitly write the
constant of embedding for each of them. Then, a specific relation between these constants, the
radius N and Φ(t) finally allows to achieve the cited double-logarithmic estimate.

4.3 Contribution to the Qian-Sheng theory

As a last contribution to the dynamics of liquid crystals, this thesis is also devoted to the well-
posedness of the Qian-Sheng system in a d-dimensional setting, for d = 2, 3.

∂tu+ u · ∇u+∇p = div
{
σ + σ′

}
R+ × Rd,

div u = 0 R+ × Rd,
JQ̈+ µ1(Q̇− [Ω, Q])−∆Q = −L∂ψB∂Q + µ2A R+ × Rd,
(u, Q)t=0 = (u0, Q0) Rd.

(4.6)

Here, the continuum variables are the same of the Beris-Edwards system: u ∈ Rd is the velocity
field, Q ∈ Rd×d is the order tensor, the scalar p stands for the pressure, A is the rate of strain
tensor and Ω is the vorticity tensor. The bulk energy density ψB(Q) has been defined in (3.25),
while the stress tensor σ and σ′ are in (3.34) and (3.36). Everything depends on the time variable
t ∈ R+ and the space variables x ∈ Rd.

It is worth recalling that the most important novelty in this model is the inertial contribution
JQ̈ in the order tensor equation. This term comes from when considering the contribution of the
rotational kinetic energy density, namely

J

2
|Q̇|2.

Usually this energy density is negligible, since the inertial density J commonly assumes very tiny
values. Taking into consideration this term makes system (4.6) more challenging than the model
proposed by Beris and Edwards. Indeed the order tensor equation becomes a hyperbolic-type
equation, in contrast to the parabolic one occurring when J = 0. Thus, we can not expect any
kind of regularizing effects for the order tensor Q.

Our first result concerns a dissipative behaviour related to system (4.6). More precisely we
prove the existence of a Lyapunov functional E(t) = E(u(t), Q(t)), which correspond to the total
energy of the material, that is the kinetic energy, the bulk energy and the rotational kinetic energy.
The statement reads as follows
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Theorem 4.3.1. Under some restriction on the viscosity coefficients (see Theorem 8.1.1), system
(4.6) admits the following Lyapunov functional:

E(t) :=

ˆ
Rd

1

2

(
|u|2 + J |Q̇|2 +

1

2
|∇Q|2 + ψB(Q)

)
with ψB(Q), the bulk energy density (3.25).

Considering smooth solutions, we prove that the time derivative of E does not assume positive
value:

d

dt
E(t) ≤ 0, for any t ∈ R+.

It is worth remarking that we can not construct weak solutions making use of this Lyapunov
functional, as in the case of Beris-Edwards. This is due to the hyperbolic structure of the order
tensor equation, which does not allow regularizing effects on Q. More precisely the highest number
of derivative inQ we can control in L2(Rd) is one, namely ‖∇Q‖L2(Rd). This leads to some difficulties
when constructing weak solutions, mainly due to the nonlinear forcing term

(∇Q�∇Q)ij = ∂iQαβ∂jQαβ,

in the stress tensor σ. Indeed, the most common way to construct weak solutions is by a com-
pactness method, so that this nonlinear term should present some troubles when considering its
weak-limit convergence.

Then, our second result concerns the existence and uniqueness of classical solutions for system
(4.6). We work in a Hs(Rd)-Sobolev spaces, for a sufficient large positive s. Our statement reads
as follows:

Theorem 4.3.2. Let us assume (u0, Q0) : Rd → Rd × Rd×d to belong to Hs(Rd)×Hs+1(Rd) with
s greater than d/2. Up to suitable conditions on the viscosity coefficients (see Theorem 8.1.2 ) and
supposing the initial norms ‖u0‖Hs and ‖Q0‖Hs+1 to be small enough, then there exists an unique
solution (v, Q) of system (4.6). This solution is global in time and it fulfils

u ∈ L∞(R+;Hs(Rd)) ∩ L2(R+;Hs+1(Rd)),
Q ∈ L∞(R+;Hs+1(Rd)) with Q̇ ∈ L∞(R+;Hs(Rd)).

In the existence part, thanks to a Friedrichs-type scheme, we construct approximate solutions
which satisfy uniform estimates. These estimate turn out from a rather standard Hs-energy control
of the equations.

The reader should observe that in the above theorem, we impose a smallness condition on the
initial data (u0, Q0) also in the two-dimensional setting d = 2. It is known that in the simplest
case of the Navier-Stokes equations, existence and uniqueness of classical and weak solutions are
achieved for any initial data, while in the case of a three dimensional setting it is still a major
problem. Our system has an intermediate difficulty, because of the presence of the forcing terms
related to the order tensor Q. In a L2(R2)-energy level these terms are handled by specific features
of the coupling which allow their cancellation. However, in a Hs-setting this characteristic is lost
and we need to estimate each forcing term related to the stress tensors.

Our main work on proving the existence of classical solutions is to obtain an uniform estimate
for our approximate solutions, that is

Φ′(t) + Ψ(t) ≤ CΦ(t)Ψ(t), (4.7)



48 CHAPTER 4. CONTRIBUTIONS OF THE THESIS

where C is a suitable positive constant, Φ is the bounded in time Hs-norms of our solution and Ψ
is the integrable in time Hs-norms. Then, a rather standard argument (see Lemma 8.5.1) allows to
propagate the smallness condition on the initial data (i.e. on Φ(0)). This leads the right-hand side
of the above equation to be absorbed by the left-hand side, which allow to have an uniform control
of the norms. Then we can construct our classical solution, through a compactness method.

The uniqueness of our solutions is proven evaluating the difference between two solutions at a
regularity level s = 0, i.e. in L2(R2). Our work is mainly to obtain an estimate that leads to the
Gronwall lemma. Here the main difficulties are handled taking into account a specific feature of the
coupling system related to the difference of the two solutions. This feature allows the cancellation
of the worst term when considering certain physically meaningful combinations.

4.4 Contribution to the Boussinesq theory

Although this introduction and the main results we have exposed until now concern the dynamics
of liquid crystals, this thesis is also devoted to the so-called Boussinesq system. In chapter 9 we
study the evolution of a fluid presenting a temperature-dependent viscosity, the hydrodynamics of
which is modelled by the following system:

∂tθ + div (θu) = 0 R+ × Rd,
∂tu+ u · ∇u− div (ν(θ)D(u)) +∇Π = 0 R+ × Rd,
div u = 0 R+ × Rd,
(u, θ)|t=0 = (ū, θ̄) Rd,

(4.8)

where d is the dimension, θ is the temperature, u stands for the velocity, Π is the pressure and
finally D(u) is the rate of strain tensor D(u) := (∇u+ t∇u)/2, all depending on the time variable
t ∈ R+ and on the space variables x ∈ Rd.

This is a strongly coupled system between a transport equation, governing the evolution of the
temperature, and the homogeneous Navier-Stokes equations modelling the velocity of the fluid.
The temperature-dependent viscosity ν(θ) leads to a specific sub-case of the general Boussinesq
system (we refer the reader to chapter 9 for more details). This condition allows us to to describe
several geophysical phenomena, for instance it is well known that the viscosity of a fluids tends to
decrease (or, alternatively, its fluidity tends to increase) as its temperature increases.

Moreover, following the approach used for the Ericksen-Lelie system, our interest is to consider
an initial temperature with discontinuities along an interface, so that our model assumes also a
physical meaning when describing a mixture of immiscible fluids with different temperatures.

Our main result concerns the existence of global weak solutions for system (4.8) under specific
and natural conditions on the initial data. Before stating our main result, let us briefly describe
some features of system (4.8).

As the classical Navier-Stokes equations, system (4.8) admits a particular scaling behaviour: if
(u(t, x), θ(t, x)) solves (4.8) with initial data (ū(x), θ̄(x)), then the following rescaled functions

(u, θ)λ(t, x) := (λu(λ2t, λx), θ(λ2t, λx)), λ > 0

are still solutions of (4.8) with (λū(λx), λθ̄(x)) as new initial data. Then, it is natural to consider
initial data in Banach spaces whose norms are invariant under the above scaling behaviour. First
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we assume θ̄ only to be bounded, that is

θ̄ ∈ L∞(Rd),

whose low regularity allows the initial temperature to present discontinuities. Then, we consider
an initial velocity in an homogeneous Besov space with critical index of regularity, i.e.

u0 ∈ Ḃ
d
p
−1

p,r (Rd),

for suitable p and r in [1,∞].
We prove the existence of weak solutions for system (4.8) under a specific smallness condition

on the initial data, that is when

η :=
(
‖ν − 1‖∞ + ‖ūh‖

Ḃ
−1+ d

p
p,r

)
exp

{
cr‖ūd‖4r

Ḃ
−1+ d

p
p,r

}
(4.9)

is assumed to be sufficiently small, where ūh := (ū1, . . . , ūd−1) are the horizontal coordinates of the
velocity field, while ūd stands for the vertical one. Let us analyse this type of smallness condition.
First the viscosity is supposed close to a positive constant, and we impose it equal to 1 for the sake
of simplicity. Moreover the initial velocity field can present a large vertical component ūd, if the
initial fluctuation of the viscosity ν(θ0) − 1 and the horizontal components of the initial velocity
ūh are small enough (exponentially small when compared to the vertical component ūd). This
fact is described by the exponential term in (4.9), which can assume large values, multiplied by a
small enough quantity in order to have η small enough. This type of initial condition is not new in
literature, for instance we cite [60] and [30], devoted to the well-posedness of the inhomogeneous
Navier-Stokes equations.

When proving the existence of weak solutions, we follow an approach similar to the one used for
the Ericksen-Leslie system, considering a useful characterization of the homogeneous Besov spaces
and the maximal regularity theorem for the heat kernel. Nevertheless, there are some difficulties
that are specific to system (4.8):

• the anisotropic smallness condition, which requires some particular new ideas and technical
tools when controlling the norms of our solutions,

• the low regularity of the viscosity, which decreases the maximal number of derivative on u we
can control.

The anisotropic smallness condition (4.9) requires to separately estimate the horizontal coordinates
uh and the vertical coordinate ud of the velocity field. At first, it is worth remarking that the
algebraical structure of the Navier-Stokes system plays a main role when propagating the bound
for the norms of our solutions.
Using the divergence free condition and the special algebraical structure of the non-linear term, we
notice that the equation on the vertical component is a linear parabolic equation whose coefficients
depends on the horizontal components. This yields the vertical component to not require any type
of smallness condition on ūd.
As second step, we analyse the equation on the horizontal coordinates together with the underlying
non-linear terms. These are of two types: on the one hand there are bilinear terms in the horizontal
coordinates, on the other hand there are coupling terms as interactions between the horizontal
components and the vertical one. Because of this non-linearity, it is necessary a smallness condition
on the horizontal coordinates of the velocity field in order to solve the equation. Moreover, the
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contribution given by the vertical coordinate leads to an exponential amplification of this smallness
condition, so that the bound we achieve has the same structure of η in (4.9).

Now, the assumption on the initial temperature does not allow ν(θ) to exhibit enough regu-
larity in order to read div (ν(θ)M) in a strong sense. Then, writing the equation on u in a mild
formulation, the previous term leads to

ˆ t

0
divS(t− s)((ν(θ)− 1)M)(s)ds,

where S is the heat kernel. This means that we already need a regularizing effect of the heat
kernel when controlling the velocity field u. Because of this heuristics we deduce that the maximal
regularity theorem permits an estimate only of u and ∇u in a Lq1(0, T ;Lq2(Rd))-Lebesgue space,
while ∆u assumes only a distributional sense.

Our main result concerning the Boussinesq theorem can be summarized in the following state-
ment:

Theorem 4.4.1. Let us assume our initial data (θ̄, ū) to belong to L∞(Rd) × Ḃd/p−1
p,r (Rd) with p

in (1, d) and r in (1,∞). Supposing

η :=
(
‖ν − 1‖∞ + ‖ūh‖

Ḃ
−1+ d

p
p,r

)
exp

{
cr‖ūd‖4r

Ḃ
−1+ d

p
p,r

}
≤ c0

for a small positive constant c0, then system (4.8) admits a weak solutions which is global in time.
Moreover, denoting by X the Banach space where the components of the velocity field live, we have
the following control:

‖(uh, ∇uh)‖X ≤ C1η, ‖(ud, ∇ud)‖X ≤ C2‖ūd‖
Ḃ
d
p−1

p,r

+ C3,

for some suitable positive constants C1, C2 and C3.

The functional framework X where we look for our solutions is a Lebesgue-type functional space
with specific weight-in-time (we refer the reader to chapter 9, Theorem 9.1.3 and Theorem 9.1.4,
for a complete description).



Chapter 5

Ericksen-Leslie system

In this chapter we present the results of the following manuscript:

F. De Anna, Global solvability of the inhomogeneous Ericksen-Leslie system with only bounded
density, submitted (2015)

5.1 Introduction and main results

In the 50s and 60s, J.L. Ericksen [41] and F. Leslie [69] developed the most widely accepted model
describing the dynamics of nematic liquid crystals. This is a material exhibiting a state of matter
between the ordinary isotropic liquids and the solids. Its main characteristic feature is that the
rod-like molecules have a local orientation, fact modelled mathematically through functions taking
values into the space of “directors” that is the unit sphere. Their time evolution is described by
an equation for unit-length vector fields that are transported and rotated by a velocity field. The
velocity of the centers of masses of the molecules obeys an incompressible Navier-Stokes system
with an additional stress tensor generated by the presence of the directors.

The equations are particularly complicated as they contain a large number of terms, so there
are few mathematical studies of the full systems (for more details see next section). Nevertheless
the main mathematical difficulties are still present in the following simplified model in the whole
space, a version of which was originally proposed by F. Lin in [74,75,80]:

∂tρ+ div (ρu) = 0 R+ × RN ,
∂t(ρu) + div(ρu⊗ u)− ν∆u+∇Π = −λ div

(
∇d�∇d

)
R+ × RN ,

div u = 0 R+ × RN ,
∂td+ u · ∇d− γ∆d = γ|∇d|2d R+ × RN ,
|d| = 1 R+ × RN ,
(u, ρ, d)|t=0 = (u0, ρ0, d0) RN .

(5.1)

This is a strongly coupled system between the inhomonegenous and incompressible Navier-Stokes
equation and the transported heat flow of harmonic maps into sphere. Here

ρ = ρ(t, x) ∈ R+ denotes the density, u = u(t, x) ∈ RN represents the velocity field,

Π = Π(t, x) ∈ R is the pressure and d = d(t, x) ∈ SN−1 is the director

all depending on the time variable t ∈ R+ and on the space variables x ∈ RN , with N ≥ 2.
The symbol ∇d � ∇d denotes the N × N matrix whose (i, j)-th entry is given by ∂id · ∂jd, for

51
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i, j = 1, . . . , N . The positive constants ν, λ and γ stand for the viscosity, the competition between
kinetic energy and potential energy and respectively the microscopic elastic relaxation time for the
molecular orientation field.

Let us note that the original Ericksen-Leslie as well as the simplification proposed by F. Lin
are for homogenous fluids. The inhomogeneous version we consider here is relevant particularly for
modelling a mixture of liquid crystals with different densities. Most importantly perhaps it also
allows to give an interpretation of defect patterns as discontinuities in the density and our main
contribution is to prove a well-posedness result that allows for the existence of these discontinuities,
since we deal with densities that are only bounded.

A presentation of the previous literature is provided in the next subsection, while the last
subsection of the introduction contains a non-technical exposition of the main results.

5.1.1 A short review of some results on the nematic liquid crystal theory

We present here a short (and of course incomplete) overview of the literature, referring the reader
to the recent review of F. Lin and C. Wang [82] for more details on current developments in the
hydrodynamics of nematic liquid crystals.

The well-posedness of the general Ericksen-Leslie equations was studied by Fanghua Lin and
Chun Liu in [79] where they proved the existence of weak and strong solutions under certain specific
restrictions. The results were further improved by Wu, Xu and Liu in [117].

The homogeneous version of system (5.1) was introduced by Fanghua Lin (see [74,75,80]) as a
simplification (see the appendix in [77]) of the Ericksen-Leslie equations. The simplified system (5.1)
is simpler than the original Ericksen-Leslie equations, yet it exhibits the main analytic challenges
of the original system.

The homogeneous case

In [77] F. Lin and C. Liu proposed the homogeneous version of the system (5.1), in which they
replaced the most challenging term |∇d|2d with one given by f(d) = ∇F (d). Their motivation

was to simplify the nonlinear term |∇d|2d in the director equation, the term which encodes the
constraint d ∈ SN−1. This corresponds to a Ginzburg-Landau type of penalisation for the unit-

length constraint, by setting for instance F (d) = (1−|d|2)2

4ε2
where ε is a positive small parameter.

They studied the wellposedness of the system, establishing the following basic energy law:

1

2

d

dt

ˆ
Ω

(‖u‖2 + λ‖∇d‖2 + 2λF (d))dx = −
ˆ

Ω
(ν‖∇u‖2 + λγ‖∆d− f(d)‖2)dx.

Then, with a modified Galerkin method, they were able to prove the existence of a weak solution.
They also obtained uniqueness in the two dimensional case and, for large enough viscosity, also in
the three dimensional case. Furthermore they proved a stability result for the equilibria.

Later, in [78] F. Lin and C. Liu obtained a partial regularity result for the system, showing that a
suitable weak solution has the potentially singular set of one-dimensional Hausdorff measure zero
in space-time.

Afterwards, the more challenging case when one keeps the d|∇d|2 term, and works with unit-length
vector fields d, was first considered in F. Lin, J. Lin and C. Wang in [76]. They assumed two-
dimensional domains, but allowed for the director to take values in 3D that is in S2. They proved
both interior and boundary regularity theorems under a smallness condition, which allowed to
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obtain the existence of global weak solutions on a bounded smooth domain. Such solutions were
shown to be smooth except possibly for a finite set of times.

More recently, in [83], F. Lin and C. Wang established the existence of a global in time weak
solution for the homogeneous version of (5.1), in the three dimensional setting. In here the initial
condition u0 was taken to satisfy the natural assumptions, namely free divergence and in L2(Ω,R3),
while the initial director field d0 was assumed to be in H1(Ω,R3). However, they made a special
restriction on d0 by assuming that d0 has a positive vertical component d3

0(x) > 0, for a.e x ∈ Ω.

In [81] F. Lin and C. Wang developed some uniqueness results. In the two dimensional case they
proved that uniqueness holds provided that u belongs to the classical energy space L∞t L

2
x ∩ L2

tH
1
x

, the gradient of the pressure ∇Π is in L
4/3
t L

4/3
x and the director field d is in L∞t Ḣ

1
x ∩ L2

t Ḣ
2
x.

In the three dimensional case they proved a similar result under stronger assumptions, namely

u ∈ L∞t L2
x ∩ L2

tH
1
x ∩ C([0, T ), LNx ), Π ∈ LN/2t L

N/2
x and d ∈ L2

t Ḣ
1
x ∩ C([0, T ), Ẇ 1,N ), where Ḣ1

x and
Ẇ 1,N denote the classical homogeneous Sobolev spaces on RN .

Recently, Hieber, Nesensohn, Prüss and Schade [55] proposed an alternative approach, namely to
consider the system as a quasilinear parabolic equation, proving the existence and uniqueness of
strong solutions on a maximal time interval. They also showed that the equilibria are normally
stable, i.e. for an initial data close to equilibria, there exists a global solution which converges
exponentially in time to an equilibrium. Moreover they proved the analytic regularity of their
solutions.

The inhomogeneous case

In [63], Jiang and Tan considered the system (5.1) on a three dimensional bounded domain with
f(d) = ∇F (d) instead of |∇d|2d. They derived the global existence of weak solutions assuming
that the boundary is smooth enough, and a specific relation between the initial density and the
initial velocity holds, namely u0 = 0 whenever ρ0 = 0 and |u0|2/ρ0 ∈ L1(Ω).

In [118], Zhou, Fan and Nakamura established an existence and uniqueness result for the two
dimensional inhomogeneous system (5.1) on a smooth bounded domain, for arbitrary initial velocity
u0 and small ∇d0 in L2 and initial density ρ0. We emphasise that in here the initial density ρ0 was
assumed to be sufficiently smooth, namely in W 1,r(Ω), with r ∈ (2,∞).

In [72], J. Li considered the system (5.1) on a bounded domain Ω in two or three dimension, with
Dirichlet boundary conditions. Assuming regularity on the initial density, namely ρ0 ∈ H1(Ω), Li
proved the existence of a unique global strong solution provided the data are small in the L2

x-setting.

In the compressible case results were obtained in [114], by D. Wang and Yu, and also [61] by
F. Jiang, S. Jiang and D. Wang.

Statement of the main results

At first, let us observe that system (5.1) contains(formally imposing the molecular orientation field
to be constant) the incompressible inhomogeneous Navier-Stokes equations, thus we cannot expect
to obtain better results than those of this sub-system. We mention the paper of Huang, Paicu, and
Zhang [60] where the authors established the existence and uniqueness of solutions in the whole
space as well as the paper of Danchin and Zhang [30] where similar results are obtained in the
half-space setting. In this work we aim to extend their results to the liquid crystal framework.

We immediately observe that the presence of the additional equations, for the director field,
requires a significant update of the strategy used in the inhomogeneous Navier-Stokes setting.
Indeed now we consider a coupled system between the inhomogeneous Navier-Stokes equation
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and the director field equation. The directory field equation is not only a classical parabolic-type
equation (which could be dealt with as in [60] and [30]), but it is a transported heat flow of harmonic
maps into the sphere, namely d solves a parabolic-type equation and is constrained to belong to
SN−1. This restriction generates a challenging nonlinear term, namely |∇d|2d, which is known to
be capable of generating finite-time singularities (for the equation where u = 0).

For instance, although it is natural to assume that u and ∇d belong to the same functional space
( because of their scaling, see Remark 5.1.1 below), the presence of such a nonlinear term will require
additional control on ∇d. Moreover this term will also generate difficulties when we will construct
approximate solutions (see for instance Remark 5.2.3). Another significant challenge, specific to the
system, and which is not present in the inhomogeneous Navier-Stokes equation, will appear in the
proof of the uniqueness result. Here we will use a non-standard Lagrangian formulation, in which
we will formally take the d and ∇d as independent unknowns, see the beginning of Section 5.6.

There is no loss of generality in taking the constant viscosity ν = 1 in (5.1). Similarily we
impose the constants λ and γ to be 1, for the convenience of the reader. Thanks to the properties
of the transport equation, for smooth enough u we have that if ρ0 > 0 then this will hold for all
times and thus we can define a := 1/ρ− 1 and reformulate the system (5.1) as

∂ta+ div (au) = 0 R+ × RN ,
∂tu+ u · ∇u+ (1 + a)

{
∇Π−∆u

}
= −(1 + a)div

(
∇d�∇d

)
R+ × RN ,

div u = 0 R+ × RN ,
∂td+ u · ∇d−∆d = |∇d|2d R+ × RN ,
|d| = 1 R+ × RN ,
(u, a, d)|t=0 = (u0, a0, d0) RN ,

(5.2)

Remark 5.1.1. The liquid crystal system (5.2) has a scaling property, like the classical Navier-
Stokes. Namely, if (a, u, d, ∇Π) solves (5.2) with initial data (a0, u0, d0), then for every positive
λ, the functions

(a, u, d, ∇Π)λ := (a(λ2t, λx), λu(λ2t, λx), d(λ2t, λx), λ2∇Π(λ2t, λx))

also provide a solution but with initial data (a0(λx), λu0(λx), d0(λx)).

It is thus natural to consider the initial data in a Banach space which has a norm invariant
under the previous scaling. Moreover, we note that ∇d0 has the same scaling as u0, thus it is natural
to take them in the same functional space. An example of scaling-invariant space is (a0, u0, ∇d0) ∈
L∞x ×Ḃ

N/p−1
p,r ×ḂN/p−1

p,r , where Ḃ
N/p−1
p,r stands for the homogeneous Besov space (see the next section

for more details and for the definition of Besov spaces).

We are going to consider an initial data of this type and we note that the case of bounded density
allows discontinuities along an interface. This is important from a physical point of view as it can
describe a mixture of liquid crystal materials with different densities and it is also relevant to defect
patterns, when interpreting defects as discontinuities in density.

In this work we will consider initial data of the following type:

a0 ∈ L∞x , (u0, ∇d0) ∈ Ḃ
N
p
−1

p,r with d0 : RN → SN−1 and div u0 = 0, (5.3)

where Ḃ
N/p−1
p,r is the critical homogeneous Besov space, with indexes 1 < r < ∞ and 1 < p < N .
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From now on we suppose that our initial data verifies the following smallness condition:

η := ‖a0‖L∞x + ‖u0‖
Ḃ
N
p −1

p,r

+ ‖∇d0‖
Ḃ
N
p −1

p,r

≤ c0, (5.4)

where c0 is a positive constant, small enough.

Remark 5.1.2. We will be be working with weak solutions, as these are the only ones compatible
with the initial density being only L∞.

However, let us note that our weak solutions are constructed in critical scaling invariant spaces
which is the classical framework for strong solutions for classical Navier-Stokes system.

In our situation the smallness conditions on the initial data are natural as one can check in the
papers ( [26], [60] and [100]), concerning the inhomogeneous Navier-Stokes equations. Indeed this
case is unlike the Leray solutions for the homogeneous Navier-Stokes system in the 2D or 3D situ-
ation where no smallness conditions is required on the weak solution but the solution is constructed
in the L2

x setting which is the space of the conserved energy.

Our main results (Theorem 5.2.2, Theorem 5.2.4, Theorem 5.2.6 and Theorem 5.2.7) can be suma-
rized in the following statement:

Theorem 5.1.3. Let us assume that the initial data (a0, u0, ∇d0) fulfil the smallness condition
(5.4), with 1 < p < N and 1 < r < ∞, then system (5.2) admits weak solutions. If moreover we
assume an extra tiny regularity on (u0,∇d0), namely

(u0,∇d0) ∈ Ḃ
N
p
−1+ε

p,r , (5.5)

then such solutions are unique.

Let us now briefly describe the structure of this work. In the next section we state the tech-
nical versions of the previously mentioned result. In section 5.3 we briefly recall some properties
and characterizations of Besov spaces, and prove in detail some technical Lemmas and Theorems
concerning the regularizing effects of the heat kernel.

In the section 5.4 we prove the existence of solutions for system (5.2) with initial data more
regular than in (5.3). Such results will play an important role in the proofs of our main results,
both for the existence part (with regularized initial data), and the uniqueness part (allowing to
reformulate (5.2) in Lagrangian coordinates). Section 5.5 is devoted to the proof of the existence
part, split into two cases, namely Theorem 5.2.2 and Theorem 5.2.4. Regularizing the initial data
we construct a sequence of approximate solutions and we pass to the limit thanks to some uniform
estimates.

In section 5.6 and section 5.7 we present the uniqueness results. We impose a little bit more
regularity on the initial data, which allows us to obtain the Lagrangian coordinates. Thus, we
are able to prove the uniqueness of the solution for system (5.2) on a small initial time-interval.
Then we conclude by a bootstrap method, obtaining the uniqueness in two different cases, namely
Theorem 5.2.6 and 5.2.7. Finally in section 5.8 we prove, for the convenience of the reader, some
technical results which are useful in the main proofs.

5.2 Main results

As in the case of the inhomogeneous Navier-Stokes equation, we can not assume u with a better

regularity than L̃1
t Ḃ

N/p+1
p,r (see [7] for a complete explanation of such space). Hence, the product
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a∆uL between L∞x and Ḃ
N/p−1
p,r assumes a distributional sense only if p < N , where uL is the free

solution of the heat equation with u0 as initial datum. This explains the restriction for p. If the
index r is supposed to be equal to 1 then we expect to obtain a velocity field to be in L1

tLipx
(where L1

tLipx stands for L1(R+,Lip(RN ))) which is very useful to solve the transport equation
on the density by Lagrangian coordinates. Our condition r > 1 is general enough to include the
case of non-Lipschitz velocity field.

Before introducing our main Theorems, let us explain the meaning of weak solution for system
(5.2).

Definition 5.2.1. (a, u, d) is a weak solution of (5.2) if |d| = 1 almost everywhere and

B for any test function φ ∈ C∞c (R+×RN ) the following equalities are well-defined and fulfilled:

ˆ
R+×RN

a(t, x) (∂tϕ(t, x) + u(t, x) · ∇ϕ(t, x)) dtdx+

ˆ
RN

a0(x)ϕ(0, x)dx = 0

ˆ
RN

u · ∇ϕ = 0.

B for any vector valued function Φ = (Φ1, . . . ,ΦN ) ∈ C∞c (R+×RN ) the following identities are
well-defined and satisfied:

ˆ
R+×RN

u · ∂tΦ−
{
u · ∇u+ (1 + a)

[
∇Π−∆u+ div{∇d�∇d}

]}
· Φ +

ˆ
RN

u0 · Φ(0, ·) = 0,

ˆ
R+×RN

d · ∂tΦ−
{
u · ∇d−∆d− |∇d|2d

}
· Φ +

ˆ
RN

d0 · Φ(0, ·) = 0.

The functional framework: the smooth case

The maximal regularity Theorem (see Theorem 5.3.2) and the characterization of the homogeneous
Besov spaces (see Theorem 5.3.11) play an important role for the study of (5.2), since we can
reformulate the second and the third equations of (5.2) in the following integral form:

u(t) = et∆u0 +

ˆ t

0
e(t−s)∆{− u · ∇u− (1 + a)∇Π + a∆u− (1 + a)div

(
∇d�∇d

)}
(s)ds,

d(t) = et∆d0 +

ˆ t

0
e(t−s)∆{− u · ∇d+ |∇d|2d

}
(s)ds.

It is reasonable to suppose the solution having the same regularity as for the linear heat equation
given by the heat kernel convoluted with the initial data. Moreover, due to the low regularity of
the initial density, which is supposed to be a general bounded function, the transport equation
on the density forces us to suppose a only bounded. Finally, the classical maximal regularizing
effect for heat kernel (see Theorem 5.3.2) suggests us to look for a solution in a LrtL

q
x setting.

Now in the simpler case where u just solves the heat equation with initial data u0, having ∆u in

LrtL
q
x is equivalent to u0 ∈ ḂN/q−1

q,r on the condition N/q − 1 = 2 − 2/r (see Corollary 5.3.11.1).

From the immersion Ḃ
N/p−1
p,r ↪→ Ḃ

N/q−1
q,r for every q ≥ p, we understand that this strategy requires

p ≤ Nr/(3r − 2). Furthermore, since the velocity field u may be seen as solution of the Stokes
system

∂tu−∆u+∇Π = −u · ∇u+ a(∆u−∇Π)− div{∇d�∇d}, div u = 0,
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it turns out that

‖(∂tu, ∇2u, ∇Π)‖LrtLqx . ‖u0‖
Ḃ
N
q −1

q,r

+ ‖(u · ∇u, a∆u, a∇Π, (1 + a)div{∇d�∇d})‖LrtLqx ,

where we have applied the characterization of the homogeneous Besov Space (Corollary (5.3.11.1)
and the Maximal-Regularity Theorem (Theorem 5.3.2). Here the first relation we expect between
the regularities of u and d, namely u · ∇u = div(u⊗ u), ∆u and div{∇d�∇d} to be in the same
LrtL

q
x space. Thus, according to the previous remark, it is natural to look for a solution such that

u and ∇d fulfill the same functional properties and this explains why we suppose ∇d0 and u0

belonging to the same critical Besov space Ḃ
N/p−1
p,r .

According to the above heuristics, imposing q = Nr/(3r − 2), we aim to find a solution in the
following space: a, d ∈ L∞t,x and (u, ∇d, ∇Π) ∈ Xr,T , where

Xr,T :=
{

(u, ∇d,∇Π) with ∇d ∈ L3r
t L

3Nr
3r−2
x , (u, ∇d) ∈ L2r

T L
Nr
r−1
x ,

∇(u, ∇d) ∈ L2r
T L

Nr
2r−1
x ∩ LrtL

Nr
2(r−1)
x , (∇2u, ∇3d, ∇Π) ∈ LrTL

Nr
3r−2
x

}
.

We also define the following norm

‖(u, ∇d,∇Π)‖Xr,T := ‖∇d‖
L3r
T L

3Nr
3r−2
x

+ ‖∇(u, ∇d)‖
L2r
T L

Nr
2r−1
x

+ ‖∇(u, ∇d)‖
LrTL

Nr
2(r−1)
x

+

+ ‖(u, ∇d)‖
L2r
T L

Nr
r−1
x

+ ‖(∇2u, ∇3d, ∇Π)‖
LrTL

Nr
3r−2
x

,

and impose Xr = Xr,∞. Thus, our first result reads as follows:
Theorem 5.2.2. Let 1 < r < 2 and p ∈ (1, Nr/(3r− 2)]. Suppose that the initial data (a0, u0, d0)
are determined by (5.3). There exists a positive constant c0 such that, if

η := ‖a0‖L∞x + ‖u0‖
Ḃ
N
p −1

p,r

+ ‖∇d0‖
Ḃ
N
p −1

p,r

≤ c0,

is fulfilled, then there exists a global weak solution (a, u, d, ∇Π) of (5.2), such that (u, ∇d,∇Π) ∈
Xr, (u, ∇d) ∈ L2

tL
∞
x and a, d ∈ L∞t,x. Furthermore ‖a‖L∞t,x ≤ ‖a0‖L∞x and the following inequality

is satisfied:

‖(u, ∇d, ∇Π)‖Xr + ‖(u, ∇d)‖L2
tL
∞
x

. η. (5.6)

Remark 5.2.3. In this first theorem we have supposed the constriction 1 < r < 2. To explain
this condition, we anticipate that the proof will be based on an iterate scheme which includes the
following one:

∂td
n −∆dn = |∇dn−1|2dn−1 − un−1 · ∇dn−1.

The condition (un, ∇dn)N ⊂ Xr is not enough to easily control the L∞t,x-norm of (dn)N (moreover
the structure of the iterate scheme doesn’t yields dn ≡ 1 almost everywhere). Thus, we have added
the condition (un, ∇dn)N ⊂ L2

tL
∞
x which requires (u0, ∇d0) ∈ Ḃ−1

∞,2. We conjecture that such
restriction is not necessary, however we have imposed it to simplify the proof for the reader. Indeed
the case r ≥ 2 is treated in our second result, Theorem 5.2.4.

The functional framework: the general case

As we have already pointed out, the choice of a Lr̄tL
q
x functional setting requires the condition

p ≤ Nr/(3r − 2). The more general case 1 < p < N can be handled by the addiction of a
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weight in time. Indeed the simpler case where u just solves the heat equation with initial data u0,

having u0 ∈ ḂN/p1−1
p1,r̄ for some p1 ∈ [p,N) and r̄ ∈ [r,∞] is equivalent to impose t1/2(3−N/p1)∆u in

Lr̄(R+,dt/t). Hence, with similar heuristics proposed in the first case, adding such weights in time,
we aim to find a solution in the following functional space: a, d ∈ L∞t,x and (u, ∇d, ∇Π) ∈ Yr,T ,
where Yr,T = Yr,T (p1, p2, p3) is the set of (u, ∇d, ∇Π) such that{

tγ1(u, ∇d) ∈ L2r
t L

p3
x , tγ2(u, ∇d) ∈ L∞t Lp3

x , tγ3∇d ∈ L2r
t L

3p1
x , tγ4∇d ∈ L∞t L3p1

x ,

tβ1∇(u, ∇d) ∈ L2r
t L

p2
x , tβ2∇(u, ∇d) ∈ L∞t Lp2

x , tβ3∇(u, ∇d) ∈ L2r
t L

p3
2
x ,

tβ4∇(u, ∇d) ∈ L∞t L
p3
2
x , tα1(∇2u, ∇3d, ∇Π) ∈ L2r

t L
p1
x , tα2(∇2u, ∇3d, ∇Π) ∈ LrtLp1

x

}
.

where we have fixed max{p,Nr/(2r − 1)} < p1 < N , Nr/(r − 1) < p3 ≤ ∞ and p2 such that
1/p1 = 1/p2 + 1/p3. Furthermore, the weight in time exponents are defined by

α1 := 1
2

(
3− N

p1

)
− 1

2r , β1 := 1
2

(
2− N

p2

)
− 1

2r , γ1 := 1
2

(
1− N

p3

)
− 1

2r , γ2 := 1
2

(
1− N

p3

)
,

α2 := 1
2

(
3− N

p1

)
− 1

r , β2 := 1
2

(
2− N

p2

)
, γ3 := 1

2

(
1− N

3p1

)
− 1

2r , γ4 := 1
2

(
1− N

3p1

)
,

β3 := 1
2

(
2− 2N

p3

)
− 1

2r , β4 := 1
2

(
2− 2N

p3

)
,

We also denote by ‖(u, d, ∇Π)‖Yr,T the following norm:

‖tβ1∇(u, ∇d)‖L2r
T L

p2
x

+ ‖tβ2∇(u, ∇d)‖L∞T Lp2x + ‖tβ3∇(u, ∇d)‖
L2r
T L

p3
2
x

+

+ ‖tβ4∇(u, ∇d)‖
L∞T L

p3
2
x

+ ‖tγ1(u, ∇d)‖L2r
T L

p3
x

+ ‖tγ2(u, ∇d)‖L∞T Lp3x + ‖tγ3∇d‖
L2r
T L

3p1
x

+

+ ‖tγ4∇d‖
L∞T L

3p1
x

+ ‖tα1(∇2u, ∇Π)‖L2r
T L

p1
x

+ ‖tα2(∇2u, ∇3d, ∇Π)‖LrTLp1x

and impose Yr := Yr,∞. Hence our second and more general result concerning the existence of a
solution reads as follows:

Theorem 5.2.4. Let 1 < r < ∞ and p ∈ (1, N). Suppose that the initial data (a0, u0, d0) are
determined by (5.3). There exists a positive constant c0 such that, if

η := ‖a0‖L∞x + ‖u0‖
Ḃ
N
p −1

p,r

+ ‖∇d0‖
Ḃ
N
p −1

p,r

≤ c0,

is fulfilled, then there exists a global weak-solution (a, u, d) of (5.2), such that (a, d) ∈ L∞t,x and
(u, ∇d,∇Π) belongs to Yr. Furthermore ‖a‖L∞t,x ≤ ‖a0‖L∞x , |d(t, x)| = 1 for almost every (t, x) ∈
R+ × RN and the following inequality is satisfied:

‖(u, ∇d, ∇Π)‖Yr . η.

Uniqueness

In order to recover the uniqueness of the constructed global weak-solutions, we need to add an
extra regularity on the initial data for the velocity field and the director field. Namely we add to
(5.3) the following hypotheses

(u0, ∇d0) ∈ Ḃ
N
p
−1+ε

p,r ,

for a sufficient small positive constant ε. With this extra-regularity, we are able to obtain the
velocity field u to be in L1

t,locLipx. This allows us to reformulate system (5.1) in Lagrangian
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coordinates. Such coordinates simplify in some way our problem, granting the density a to be
constant, since it is governed by a transport equation. Therefore, we proceed in the same line
of [60], proving the uniqueness of the constructed solutions for a initial time interval. Thus we
conclude by a bootstrap method in order to recover the global uniqueness.

First, let us introduce the functional frameworks. Fixing the value of ε in (0, 1) and assuming the
constriction r < 2/(2− ε), we define the following space:

Xεr :=
{

(u, ∇d,∇Π) with ∇d ∈ L3r
t L

3Nr
(3−ε)r−2
x , ∇(u, ∇d) ∈ L

2
2−ε
t L∞x ,

∇(u, ∇d) ∈ L2r
t L

Nr
(2−ε)r−1
x , (∇2u, ∇3d, ∇Π) ∈ LrtL

Nr
(3−ε)r−2
x

}
.

Remark 5.2.5. Let us immediately remark that for r < 2/(2− ε) we get Nr/((3− ε)r − 2) > N .
Thus, it will be possible to apply the Sobolev inequality in order to get the velocity field to be Lipschitz
in space, which plays an important role, as we have already mentioned.

The first uniqueness result of this article reads as follows:

Theorem 5.2.6. Let ε be a positive constant in (0, 1). Suppose that the hypotheses of Theorem
5.2.2 are satisfied with r < 2/(2− ε) and let (a, u, d) be the solution generated. Let us assume that

(u0, ∇d0) also belongs to Ḃ
N/p−1+ε
N,p , then we have (u, ∇d, ∇Π) ∈ Xεr with

‖(u, ∇d, ∇Π)‖Xεr . ‖(u0,∇d0)‖
Ḃ
N
p −1+ε

p,r

+ ‖∇d0‖
Ḃ
N
p −1+ 2

3 ε

p,r

.

and the uniqueness holds in this functional framework.

As we have already exposed, the results of Theorem 5.2.2 and 5.2.6 require the constriction 1 <
p ≤ Nr/(3r− 2). Here, the existence and the uniqueness hold in a setting of type LrtL

q
x. However,

to recover the uniqueness for the general case 1 < p < N , we need again to add a weight in time.
More precisely, fixing q1 ∈ (N, N/(1 − ε)), q3 > Nr/((1 − ε)r − 1) and imposing q2 such that
1/q1 = 1/q2 + 1/q3, we define the space:

Yε
r,T = Yε

r,T ( q1, q2, q3) :=
{

(u, ∇d,∇Π) with tγ
ε
1 (u, ∇d) ∈ L2r

t L
q3
x ,

tγ
ε
2 (u, ∇d) ∈ L∞t Lq3x , tγ

ε
3∇d ∈ L2r

t L
3q1
x , tγ

ε
4∇d ∈ L∞t L3q1

x , tβ
ε
1∇(u, ∇d) ∈ L2r

t L
q2
x ,

tβ
ε
2∇(u, ∇d) ∈ L∞t Lq2x , tα

ε
1(∇2u, ∇3d, ∇Π) ∈ L2r

t L
q1
x , tα

ε
2(∇2u, ∇3d, ∇Π) ∈ LrtLq1x

}
,

where the exponents of the weights in time are defined by

αε1 := 1
2

(
3− N

q1
− ε
)
− 1

2r , βε1 := 1
2

(
2− N

q2
− ε
)
− 1

2r , γε1 := 1
2

(
1− N

q3
− ε
)
− 1

2r ,

αε2 := 1
2

(
3− N

q1
− ε
)
− 1

r , βε2 := 1
2

(
2− N

q2
− ε
)
, γε2 := 1

2

(
1− N

q3
− ε
)
,

γε3 := 1
2

(
1− N

3q1
− ε
)
− 1

2r γε4 := 1
2

(
1− N

3q1
− ε
)
.

Therefore, our main uniqueness result reads as follows:

Theorem 5.2.7. Let us assume that the hypotheses of Theorem 5.2.4 are satisfied and suppose

also that (u0, ∇d0) ∈ ḂN/p−1+ε
p,r for a positive ε bounded by min{1/r, 1− 1/r, N/p− 1}. Then the

solution (a, u, d) determined by Theorem 5.2.4 fulfills also (u, ∇d, ∇Π) ∈ Yε
r and we have

‖(u, ∇d, ∇Π)‖Yεr . ‖(u0, ∇d0)‖
Ḃ
N
p −1+ε

p,r

.
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Moreover, such solution is unique in this functional framework.

Remark 5.2.8. Let us observe that if (a, u, d, ∇Π) is a weak solution of (5.2), then, ω := (|d|2−
1)/2 is a weak solution of the following heat equation with a linear perturbation and with null initial
datum: {

∂tω + u · ∇ω + |∇d|2ω −∆ω = 0 R+ × RN ,
ω = 0 RN .

Since the unique solution of such system is ω ≡ 0, then the condition |d(t, x)| = 1 almost everywhere,
is already determined by the fourth equation of (5.2). Hence, from here on, (5.2) is going to be
analyzed without |d| = 1 which is already given by the remaining equations of the system. Such
feature is not preserved by the approximate systems (5.13) and (5.14) of (5.2), hence in the third
section we cannot utilize |dn(t, x)| = 1 almost everywhere.

5.3 Preliminaries

This section is devoted to the study of several regularizing effects for the heat kernel, which will
be useful for the proof of the main theorems. At first step let us recall the well-known Hardy-
Littlewood-Sobolev inequality (see [7]. Theorem 1.7).

Theorem 5.3.1 (Hardy-Littlewood-Sobolev inequality). Let f belongs to Lpx, with 1 < p < ∞,
α ∈]0, N [ and suppose r ∈]0,∞[ satisfies

1

p
+
α

N
= 1 +

1

r
.

Then
| · |−α ∗ f ∈ Lrx,

and there exists a positive constant C such that∥∥| · |−α ∗ f∥∥
Lrx
≤ C ‖f‖Lpx .

A direct consequence is the following corollary (see [66], Theorem 2.4)

Corollary 5.3.1.1. Let f belongs to Lpx, with 1 < p < N and let (
√
−∆)−1 be the Riesz potential,

defined by

(
√
−∆)−1f := F−1

( 1

|ξ|
f̂
)
.

Then (
√
−∆)−1 is a bounded operator from Lpx to Lp∗x with p∗ = pN/(N − p)

Let us now enunciate the well-known LpLq-Maximal Regularity Theorem, whose proof is available
in [66].

Theorem 5.3.2 (Maximal LptL
q
x regularity for the heat kernel). Let T ∈ (0,∞], 1 < p, q <∞ and

f ∈ Lp(0, T ;Lqx). Let the operator A be defined by

Af(t, ·) :=

ˆ t

0
∆e(t−s)∆f(s, ·)ds.

Then A is a bounded operator from Lp(0, T ;Lqx) to Lp(0, T ;Lqx).
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Lemma 5.3.3. Let T ∈ (0,∞], 1 < r1, r2 <∞, q1 ∈ [1,∞] and q2 ∈ [q1,∞], such that

N

2

( 1

q1
− 1

q2

)
<

1

2
. (5.7)

Let the operator B be defined by

Bf(t, ·) :=

ˆ t

0
∇e(t−s)∆f(s, ·)ds.

Then, we have that B is a bounded operator from Lr1(0, T ;Lq1x ) with values to Lr2(0, T ;Lq2x ), if the
following equality is fulfilled:

1

r1
+
N

2

( 1

q1
− 1

q2

)
=

1

2
+

1

r2
. (5.8)

Proof. At first let us observe that, if K denotes the heat kernel, than for all 1 ≤ λ ≤ ∞ we have

‖∇K(t, ·)‖Lλx =
1

t
d
2

1
λ′+

1
2

‖K(1, ·)‖Lλx . (5.9)

Observe that, for every t ∈ R+,

∥∥ˆ t

0
∇e(t−s)∆f(s)ds

∥∥
L
q2
x
≤
ˆ t

0
‖∇K(t− s, ·) ∗ f(s, ·) ‖Lq2x ds ≤

ˆ t

0
‖∇K(t− s)‖

Lq̃x
‖ f(s) ‖Lq1x ds,

with 1/q̃ + 1/q1 = 1/q2 + 1. Thus, by (5.9), we obtain

‖Bf(t)‖Lq2x =
[
1[0,T ](s)|s|

−N
2

(
1
q1
− 1
q2

)
− 1

2 ∗s 1[0,T ](s)‖f(s)‖Lq1x
]
(t)

and by virtue of Theorem 5.3.1 we conclude the proof of Lemma 5.3.3.

Moreover we have also

Lemma 5.3.4. B is a bounded operator from Lr(0, T ;Lpx) to Lr(0, T ;Lp∗x ), for any T > 0, with
1 < p < N and p∗ = pN/(N − p).

Proof. It is a direct consequence of Theorem 5.3.2 and Corollary 5.3.1.1, observing that

Bf(t) := −
ˆ t

0
∆e(t−s)∆(

√
−∆)−1Rf(s)ds,

where R is the Riesz transform Rf = ∇√
−∆

f := F−1(i ξ|ξ| f̂), which is a bounded operator from Lqx

to Lqx for any q ∈ (1,∞).

Lemma 5.3.5. Let T ∈ (0,∞], 1 < r1, r2 <∞, q1 ∈ [1,∞] and q2 ∈ [q1,∞], such that

N

2

( 1

q1
− 1

q2

)
< 1. (5.10)

Let f ∈ Lr1T L
q1
x and let the operator C be defined by

Cf(t, ·) :=

ˆ t

0
e(t−s)∆f(s, ·)ds,
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Then, C is a bounded operator from Lr1(0, T ;Lq1x ) with values to Lr2(0, T ;Lq2x ), where

1

r1
+
N

2

( 1

q1
− 1

q2

)
= 1 +

1

r2
. (5.11)

Proof. The proof is basically equivalent to the previous one, observing that

‖K(t, ·)‖Lλx =
1

t
N
2

1
λ′
‖K(1, ·)‖Lλx , (5.12)

for every 1 ≤ λ ≤ ∞.

The next Theorem is a variation of Theorem 5.3.2 for functions which belong to some LptL
q
x-space,

up to a weight in time. Its proof has already been presented in [60] by Lemma 3.1.

Theorem 5.3.6. Let T ∈]0,∞], 1 < r̄, q < ∞ and α ∈ (0, 1 − 1/r̄). Let the operator A be
defined as in Theorem 5.3.2. Suppose that tαf(t) belongs to Lr̄(0, T ;Lqx). Then tαAf(t) belongs to
Lr̄(0, T ;Lqx) and there exists C > 0 such that

‖tαAf(t)‖Lr̄(0,T ;Lqx) ≤ C‖tαf(t)‖Lr̄(0,T ;Lqx).

The next two Lemmas are a particular case of Lemma 5.8.1 and Lemma 5.8.2, therefore the proof
is postponed to section 5.8.

Lemma 5.3.7. Let the operator C be defined as in Lemma 5.3.5. Consider T ∈ (0,∞], 1 < r̄ <∞,
and moreover suppose that q, q̃ satisfy N/2 < q < N , N < q̃ ≤ ∞. Let α, γ and γ̄ be defined by

α :=
1

2

(
3− N

q

)
− 1

r̄
, γ :=

1

2

(
1− N

q̃

)
− 1

r̄
and γ̄ :=

1

2

(
1− N

q̃

)
.

If tαf(t) belongs to Lr̄(0, T ;Lqx) then tγCf(t) belongs to Lr̄(0, T ;Lq̃x). Furthermore there exists a
constant C = C(q, q̃, r̄) > 0 such that

‖tγCf(t)‖
Lr̄(0,T ;Lq̃x)

≤ C‖tαf(t)‖Lr̃(0,T ;Lqx).

Moreover, if r̄ > 2 and Nr̄/(2r̄ − 2) < q, then tγ̄Cf(t) belongs to L∞T L
q̃
x and there exists a positive

constant C̄ = C̄(q, q̃, r̄) such that

‖tγ̄Cf(t)‖
L∞T L

q̃
x
≤ C̄‖tαf(t)‖Lr̄TLqx .

Lemma 5.3.8. Let the operators B be defined as in Lemma 5.3.3. Consider T ∈ (0,∞], 1 < r̄ <∞,
and moreover suppose that q, q̄ satisfy N/2 < q < N and q ≤ q̄ such that 1/q − 1/q̄ < 1/N . Let α
be defined as in Lemma 5.3.7 and β and β̄ be defined by

β̄ :=
1

2

(
2− N

q̄

)
and β :=

1

2

(
1− N

q̄

)
− 1

r̄
.

If tαf(t) belongs to Lr̄TL
q
x then tβBf(t) belongs to Lr̄TL

q̄
x and there exists a positive constant C =

C(q, q̄, r̄) such that
‖tβBf(t)‖Lr̄TLq̄x ≤ C‖t

αf(t)‖Lr̄TLqx .

Moreover, if r̄ > 2, Nr̄/(2r̄ − 2) < q and q̄ < Nr then tβ̄Bf(t) belongs to L∞T L
q̄
x and there exists a
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positive constant C̄ = C̄(q, q̄, r̄) such that

‖tβ̄Bf(t)‖L∞T Lq̄x ≤ C̄‖t
αf(t)‖Lr̄TLqx .

For the main properties of homogeneous Besov Spaces we refer to [7]. However, let us briefly recall
the definition and two important results which characterize such spaces in relation to the heat
kernel.

Definition 5.3.9. Let χ be a smooth nonincreasing radial function which has support in B(0, 4/3)
and such that χ ≡ 1 on B(0, 1). Imposing ϕq(ξ) := χ(ξ2−q−1)−χ(ξ2−q) for every q ∈ Z, we define
the homogeneous Lettlewood-Paley dyadic block ∆̇q by

∆̇qu := F−1(ϕqFu),

where u is a temperate distribution and F is the Fourier transform on RN .

The homogeneous Besov Space is defined as follows:

Definition 5.3.10. For any s ∈ R and (p, r) ∈ [1,∞]2, let us define Ḃs
p,r as the set of tempered

distribution f such that
‖f‖Ḃsp,r := ‖2sq‖∆̇qf‖Lpx‖lr(Z)

and for all smooth compactly supported function θ on RN we have

lim
λ→+∞

θ(λD)f = 0 in L∞(RN ).

Theorem 5.3.11 (Characterization of Homogeneous Besov Spaces). Let s be a negative real number
and (p, r) ∈ [1,∞]2. u belongs to Ḃs

p,r if and only if et∆u belongs to Lpx for almost every t ∈ R+

and

t−
s
2

∥∥et∆u∥∥
Lpx
∈ Lr

(
R+;

dt

t

)
.

Moreover, there exists a positive constant C such that

1

C
‖u‖Ḃsp,r ≤

∥∥∥∥∥∥∥t− s2 et∆u∥∥∥Lpx
∥∥∥∥
Lr(R+; dt

t
)

≤ C ‖u‖Ḃsp,r .

An immediate consequence is the following Corollary:

Corollary 5.3.11.1. Let p ∈ [1,∞] and r ∈ [1,∞). u belongs to Ḃ
− 2
r

p,r if and only if et∆u ∈ LrtL
p
x.

Moreover, there exists a positive constant C such that

1

C
‖u‖

Ḃ
− 2
r

p,r

≤
∥∥et∆u∥∥

LrtL
p
x
≤ C ‖u‖

Ḃ
− 2
r

p,r

.

Theorem 5.3.12. Let 1 ≤ p1 ≤ p2 ≤ ∞ and 1 ≤ r1 ≤ r2 ≤ ∞. Then for any real number s, the

space Ḃs
p1,r1 is continuously embedded in Ḃ

s−N(1/p1−1/p2)
p2,r2 .

5.4 Smooth initial data

In order to prove Theorem 5.2.2 and Theorem 5.2.4, in this section we are going to establish the
global existence of a solution for system (5.2), considering more regular initial data. More precisely
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we are going to consider an initial Lipschitz density and moreover we suppose the initial velocity
and the initial director field with a little bit more regularity with respect to the one of Theorem
5.2.2 and Theorem 5.2.4.

Proposition 5.4.1. Let ε ∈ (0, 1), r ∈ (1, 2/(2−ε)], p ∈ ( 1, Nr/(3r−2) ]. Suppose that the initial

condition (5.3) is fulfilled and moreover ∇a0 ∈ L∞x and (u0, ∇d0) ∈ ḂN/p−1+ε
p,r . If the smallness

condition (5.4) holds, then (5.2) admits a global weak-solution (a, u, d) such that (a, d) ∈ L∞t,x, ∇a
belongs to L∞t,locL

∞
x , (u, ∇d, ∇Π) belongs to Xr ∩ Xεr and (u,∇d) belongs to L2

tL
∞
x , with

‖(u, ∇d, ∇Π)‖Xr + ‖(u, ∇d)‖L2
tL
∞
x

. η

‖(u, ∇d, ∇Π)‖Xεr . ‖(u0, ∇d0)‖
Ḃ
N
p −1+ε

p,r

+ ‖∇d0‖3
Ḃ
N
p −1+ 2

3 ε

p,r

.

Proof. The mainly idea is to proceed by an iterate scheme with a similar approach as the one
proposed by Danchin and Mucha in [30]. We solve a sequence of linear systems which comes
from (5.2) and we prove that their solutions converge to the one we are looking for. We set
(a0, u0,∇d0,∇Π0) = (0, 0, 0, 0) and we solve inductively the following two systems:{

∂ta
n + un−1 · ∇an = 0 R+ × RN ,

an|t=0 = a0 RN ,
(5.13)


∂td

n −∆dn = |∇dn−1|2dn−1 − un−1 · ∇dn−1 R+ × RN ,
∂tu

n + un−1 · ∇un −∆un +∇Πn = Fn R+ × RN ,
div un = 0 R+ × RN ,
(un, dn)|t=0 = (u0, d0) RN ,

(5.14)

where Fn is defined by:

Fn := (1 + an)div
(
∇dn �∇dn

)
+ an(∆un−1 −∇Πn−1). (5.15)

The global existence and uniqueness of a solution to (5.13) is standard, since un−1 belongs to
L1
locLip and so it is possible to construct the Lagrangian coordinates. Furthermore,

‖an‖L∞t,x ≤ ‖a0‖L∞x (5.16)

and

‖∇an(t)‖L∞x ≤ ‖∇a0‖L∞x exp
{ˆ t

0
‖∇un−1(s)‖L∞x ds

}
(5.17)

are fulfilled for every natural number n. For system (5.14) we apply Proposition 5.9.1. We have
already pointed out in Remark 5.2.8 that (5.14) does not yield |dn| = 1 almost everywhere, while
such constriction is given by the fourth equation of (5.2).

Let us prove by induction that the following inequalities are satisfied for every n ∈ N:

‖dn‖L∞t,x ≤ (1 + Cη)eCη, (5.18)

‖(un, ∇dn, ∇Πn)‖Xr + ‖(un, ∇dn)‖L2
tL
∞
x

. η, (5.19)

where C is a positive constant. We consider initially system (5.14) and we want to estimate dn.



5.4. SMOOTH INITIAL DATA 65

By the mild formulation for the heat equation, we obtain that

dn(t) = et∆d0 +

ˆ t

0
e(t−s)∆{− un−1 · ∇dn−1 + |∇dn−1|2dn

}
(s)ds. (5.20)

Hence, we deduce

‖dn(t)‖L∞x ≤ ‖d0‖L∞x +

ˆ t

0
‖un−1(s)‖L∞x ‖∇d

n−1(s)‖L∞x + ‖∇dn−1(s)‖2L∞x ‖d
n(s)‖L∞x ds

≤ 1 + ‖un−1‖L2
tL
∞
x
‖∇dn−1‖L2

tL
∞
x

+ ‖∇dn−1(s)‖2L∞x ‖d
n(s)‖L∞x ds

≤ 1 + Cη +

ˆ t

0
‖∇dn−1(s)‖2L∞x ‖d

n(s)‖L∞x ds.

(5.21)

Applying the Gronwall inequality and by the induction hypotheses, we obtain (5.18). We want now
to estimate ∇dn and un. From (5.20) we get

∇dn(t) = et∆∇d0 +

ˆ t

0
e(t−s)∆∇

{
un−1 · ∇dn−1 + |∇dn−1|2dn

}
(s)ds (5.22)

First, let us estimate ∇dn in L3r
t L

3Nr/(3r−2)
x . By Corollary 5.3.11.1 and Lemma 5.3.3, with r1 =

6r/5, r2 = 3r, q1 = 3Nr/(6r − 5) and q2 = 3Nr/(3r − 2) which verify (5.7) and (5.8), namely

N

2

( 1

q1
− 1

q2

)
=

1

2
− 1

2r
<

1

2
and

1

r1
+
N

2

( 1

q1
− 1

q2

)
=

5

6r
+

1

2
− 1

2r
=

1

2
+

1

r2
, (5.23)

we get

‖∇dn‖
L3r
t L

3Nr
3r−2
x

. ‖∇d0‖
Ḃ
N
p −1

p,r

+ ‖(un−1,∇dn−1)‖
L2r
t L

Nr
r−1
x

‖∇dn−1‖
L3r
t L

3Nr
3r−2
x

. η (5.24)

Moreover, applying Corollary 5.3.11.1, Lemma 5.3.3, Lemma 5.3.4, Lemma 5.3.5 and Theorem
5.3.2, we obtain

‖∇dn‖L2
tL
∞
x

+ ‖∇dn‖
L2r
t L

Nr
r−1
x

+ ‖∇2dn‖
L2r
t L

Nr
2r−1
x

+ ‖∇2dn‖
LrtL

Nr
2(r−1)
x

+ ‖∇3dn‖
LrtL

Nr
3r−2
x

.

. ‖∇d0‖
Ḃ
N
p −1

p,r

+ ‖un−1‖
L2r
t L

Nr
r−1
x

‖∇2dn−1‖
L2r
t L

Nr
2r−1
x

+ ‖∇un−1‖
L2r
t L

Nr
2r−1
x

‖∇dn−1‖
L2r
t L

Nr
r−1
x

+

+ ‖∇2dn−1‖
L2r
t L

Nr
2r−1
x

‖∇dn‖
L2r
t L

Nr
r−1
x

‖dn‖L∞t,x + ‖∇dn−1‖2
L3r
t L

3Nr
3r−2
x

‖∇dn‖
L3r
t L

3Nr
3r−2
x

.

(5.25)

We have used Lemma 5.3.5 with r1 = r, r2 = 2r (respectively r2 = 2), q1 = Nr/(3r − 2) and
q2 = Nr/(r − 1) (respectively q2 =∞), which fulfill the conditions (5.10) and (5.11), namely

N

2

( 1

q1
− 1

q2

)
= 1− 1

2r
< 1

(
resp.

N

2

( 1

q1
− 1

q2

)
=

3

2
− 1

r
< 1 since r < 2

)
,

1

r1
+
N

2

( 1

q1
− 1

q2

)
= 1 +

1

2r
= 1 +

1

r2

(
resp.

1

r1
+
N

2

( 1

q1
− 1

q2

)
=

3

2
= 1 +

1

r2

)
.

Moreover, (Nr/(3r− 2))∗ = Nr/(2(r− 1)) for Lemma 5.3.4 and the constants of Lemma 5.3.3 are
determined by r1 = r, q1 = Nr/(3r−2), r2 = 2r and q2 = Nr/(2r−1) which satisfy the conditions
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(5.7) and (5.8), that is

N

2

( 1

q1
− 1

q2

)
=

1

2
− 1

2r
<

1

2
and

1

r1
+
N

2

( 1

q1
− 1

q2

)
=

1

r
+

1

2
− 1

2r
=

1

2
+

1

r2
.

The hypotheses (5.19) for n− 1 allows us to absorb all the terms on the right-hand side of (5.25)
with index n by the left-hand side (for η small enough). Hence, (5.19) is true at least for the terms
related to d. Now, let us estimate the remaining terms. By the Mild formulation for the Stokes
equation, we get

un(t) = et∆u0 +

ˆ t

0
e(t−s)∆P

{
− un−1 · ∇un(s) + Fn(s)

}
ds (5.26)

where P is the well known Leray projector. Moreover, applying div to the second equation of (5.14),
we get −∆Πn = {−un−1 · ∇un + Fn}, which yields

∇Πn = RR ·
{
− un−1 · ∇un + Fn

}
, (5.27)

where R is the Riesz transform (see Lemma 5.3.4). Since P and R are bounded operators from Lp

to Lp, for every 1 < p <∞, applying Corollary 5.3.11.1, Lemma 5.3.3, Lemma 5.3.4, Lemma 5.3.5
(with the constants r1, r2, q1 and q2 as in (5.25)) and Theorem 5.3.2, we deduce that

‖∇un‖
L2r
t L

Nr
2r−1
x

+ ‖∇un‖
LrtL

Nr
2(r−1)
x

+ ‖un‖
L2r
t L

Nr
r−1
x

+ ‖un‖L2
tL
∞
x

+ ‖(∇2un, ∇Πn)‖
LrtL

Nr
3r−2
x

.

‖u0‖
Ḃ
N
p −1

p,r

+ ‖un−1‖
L2r
t L

Nr
r−1
x

‖∇un‖
L2r
t L

Nr
2r−1
x

+ ‖Fn‖
LrtL

Nr
3r−2
x

. η‖∇un‖
L2r
t L

Nr
2r−1
x

+ η.
(5.28)

As in the previous estimates, the term of index n in the right-hand side can be absorbed by the
left-hand side, obtaining finally (5.19).

Now, let us observe that ‖∇dn‖
L3r
t L

3Nr
(3−ε)r−2
x

. ‖∇d0‖
Ḃ
N
p −1+ 2

3 ε

p,r

, for every n ∈ N. Indeed, by induction

and recalling the Mild formulation of dn (5.20), we get

‖∇dn‖
L3r
t L

3Nr
(3−ε)r−2
x

. ‖∇d0‖
Ḃ
N
p −1+ 2ε

3
p,r

+ ‖(un−1,∇dn−1)‖
L2r
t L

Nr
r−1
x

‖∇dn−1‖
L3r
t L

3Nr
(3−ε)r−2
x

. ‖∇d0‖
Ḃ
N
p −1+ 2ε

3
p,r

,

where we have used Corollary 5.3.11.1 and Lemma 5.3.3, with r1 = 6r/5, r2 = 3r, q1 = 3Nr/((6−
ε)r − 5) and q2 = 3Nr/((3− ε)r − 2) which verify (5.7) and (5.8), as in (5.23). Thus, in the same
line of (5.25) we get

‖∇2dn‖
L

2
2−ε
t L∞x

+ ‖∇2dn‖
L2r
t L

Nr
(2−ε)r−1
x

+ ‖∇3dn‖
LrtL

Nr
(3−ε)r−2
x

. ‖∇d0‖
Ḃ
N
p −1+ε

p,r

+

+ ‖un−1‖
L2r
t L

Nr
r−1
x

‖∇2dn−1‖
L2r
t L

Nr
(2−ε)r−1
x

+ ‖∇un−1‖
L2r
t L

Nr
(2−ε)r−1
x

‖∇dn−1‖
L2r
t L

Nr
r−1
x

+

+ ‖∇2dn−1‖
L2r
t L

Nr
(2−ε)r−1
x

‖∇dn‖
L2r
t L

Nr
r−1
x

‖dn‖L∞t,x + ‖∇dn−1‖2
L3r
t L

3Nr
(3−ε)r−2
x

‖∇dn‖
L3r
t L

3Nr
(3−ε)r−2
x

.

Here, we have used Theorem 5.3.2 and Lemma 5.3.3 with r1 = r, q1 = Nr/((3− ε)r − 2), r2 = 2r
(respectively r2 = 2/(2− ε)) and q2 = Nr/((2− ε)r − 1) (respectively q2 = ∞), which satisfy the
conditions (5.7) and (5.8), namely

N

2

( 1

q1
− 1

q2

)
=

1

2
− 1

2r
<

1

2

(
resp.

N

2

( 1

q1
− 1

q2

)
=

3− ε
2
− 1

r
<

1

2
since r <

2

2− ε
)
,
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1

r1
+
N

2

( 1

q1
− 1

q2

)
=

1

2
+

1

2r
= 1 +

1

r2

(
resp.

1

r1
+
N

2

( 1

q1
− 1

q2

)
=

1

2
+

2− ε
2

=
1

2
+

1

r2

)
.

Furthermore, in the same line of (5.28), we get

‖∇un‖
L2r
t L

Nr
(2−ε)r−1
x

+ ‖∇un‖
L

2
2−ε
t L∞x

+ ‖(∇2un, ∇Πn)‖
LrtL

Nr
(3−ε)r−2
x

.

. ‖u0‖
Ḃ
N
p −1+ε

p,r

+ ‖un−1‖
L2r
t L

Nr
r−1
x

‖∇un‖
L2r
t L

Nr
(2−ε)r−1
x

+

+ η‖∇(un,∇dn−1)‖
L2r
t L

Nr
(2−ε)r−1
x

+ η‖(∇2un−1, ∇Πn−1)‖
LrtL

Nr
(3−ε)r−2
x

.

Summarizing the previous consideration, we get by induction

‖(un, ∇dn, ∇Πn)‖Xεr . ‖(u0, ∇d0)‖
Ḃ
N
p −1+ε

p,r

+ ‖∇d0‖3
Ḃ
N
p −1+ 2

3 ε

p,r

, n ∈ N. (5.29)

At last, arguing as in the proof of (5.29), we get also the following inequality

‖∇dn‖
L

12r
4−3ε
t L

3Nr
3r−2
x

+ ‖∇(un, ∇dn)‖
L

4r
2−ε
t L

Nr
2r−1
x

+ ‖(∇2un, ∇Πn)‖
L

4r
4−ε
t L

Nr
3r−2
x

. ‖(u0, ∇d0)‖
Ḃ
N
p −1+ ε

2r
p,r

. η + ‖(u0,∇d0)‖
Ḃ
N
p −1+ε

p,r

.
(5.30)

Here, we need Lemma 5.3.5 with r1 = 4r/(4 − ε), r2 = 4r/(2 − ε), q1 = Nr/(3r − 2) and q2 =
Nr/(r − 1), which fulfill the conditions (5.10) and (5.11), namely

N

2

( 1

q1
− 1

q2

)
= 1− 1

2r
< 1 and

1

r1
+
N

2

( 1

q1
− 1

q2

)
=

4− ε
4r

+ 1− 1

2r
= 1 +

2− ε
4r

= 1 +
1

r2
,

We need also Lemma 5.3.3 with r1 = 4r/(4 − ε), q1 = Nr/(3r − 2), r2 = 4r/(2 − ε) and q2 =
Nr/(2r − 1), which satisfy the conditions (5.7) and (5.8),

N

2

( 1

q1
− 1

q2

)
=

1

2
− 1

2r
<

1

2
and

1

r1
+
N

2

( 1

q1
− 1

q2

)
=

4− ε
4r

+
1

2
− 1

2r
=

1

2
+

2− ε
4r

=
1

2
+

1

r2
.

Now we claim that, for every T > 0, dn is a Cauchy sequence in L∞T L
∞
x , (un, ∇dn,∇Πn)N is

a Cauchy sequence in Xr,T and (un, ∇dn)N is a Cauchy sequence in L2
TL
∞
x . Denoting δun :=

un+1 − un, δan := an+1 − an, δdn := dn+1 − dn, δΠn := Πn+1 −Πn, we define

δUn(T ) := ‖δdn‖L∞T L∞x + ‖(δun, ∇δdn∇δΠn)‖Xr,T + ‖(δun, ∇δdn)‖L2
TL
∞
x

We want to prove that
∑

n∈N δU
n(T ) is finite. First, let us consider δan, which is solution of the

following system {
∂tδa

n + un · ∇δan = −δun−1∇an R+ × RN ,
δan|t=0 = 0 RN .

(5.31)

Using standard estimates for the transport equation, we obtain that

‖δan(t)‖L∞x ≤
ˆ t

0
‖δun−1(s)‖L∞x ‖∇a

n(s)‖L∞x ≤ ‖δu
n−1‖L1(0,t;L∞x )‖∇a0‖L∞x ×

× exp
{ ˆ t

0
‖∇un(s)‖L∞x ds

}
≤ C̄(T )δUn−1(t)‖∇a0‖L∞x ,

(5.32)
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for every t ∈ (0, T ), where C̄(T ) := T
1
2 exp

{
T
ε
2

(
‖(u0,∇d0)‖

Ḃ
N/p−1+ε
p,r

+ ‖∇d0‖3
Ḃ
N/p−1+ε
p,r

)}
. Consid-

ering δdn we observe that it is solution of{
∂tδd

n −∆δdn = δHn R+ × RN ,
δdn|t=0 = 0 RN ,

(5.33)

where

δHn := −δun−1 · ∇dn − un−1 · ∇δdn−1 +∇δdn−1 �∇dndn+

+∇dn−1 �∇δdn−1dn +∇dn−1 �∇dn−1δdn.

Thus ‖δdn(t)‖L∞x ≤ ‖δH
n‖L1

TL
∞
x

. η‖(δun−1,∇δdn−1)‖L2
TL
∞
x

+ η2‖δdn(t)‖L∞T L∞x , which yields

‖δdn‖L∞T L∞x . ηδUn−1(T ). (5.34)

Arguing exactly as in the proof of inequality (5.24) and (5.25), we obtain

‖∇δdn‖
L3r
T L

3Nr
3r−2
x

+ ‖∇δdn‖L2
TL
∞
x

+ ‖∇δdn‖
L2r
T L

Nr
r−1
x

+ ‖∇2δdn‖
L2r
T L

Nr
2r−1
x

+ ‖∇2δdn‖
LrTL

Nr
2(r−1)
x

+

+ ‖∇3δdn‖
LrTL

Nr
3r−2
x

. ‖δHn‖
L

6
5 r

T L
3Nr
6r−2
x

+ ‖∇δHn‖
LrTL

Nr
3r−2
x

. η
(
δUn(T ) + δUn−1(T )

)
.

In order to conclude our estimate we have to bound the terms related to δun, which is solution of
∂tδu

n + un · ∇δun + δun−1 · ∇un −∆δun +∇δΠn = δFn R+ × RN ,
div δun = 0 R+ × RN ,
δun|t=0 = 0 RN ,

(5.35)

where δFn := Fn+1 − Fn. First, let us observe that

‖∇δun‖
L2r
T L

Nr
2r−1
x

+ ‖∇δun‖
LrTL

Nr
2(r−1)
x

+ ‖δun‖
L2r
T L

Nr
r−1
x

+ ‖δun‖L2
TL
∞
x

+

+ ‖(∇2δun, ∇δΠn)‖
LrTL

Nr
3r−2
x

. η
(
‖δun−1‖

L2r
T L

Nr
r−1
x

+ ‖∇δun‖
L2r
T L

Nr
2r−1
x

)
+ ‖δFn‖

LrTL
Nr

3r−2
x

.

Hence, denoting by Gn := div
(
∇dn �∇dn

)
, we have that

‖δFn‖
LrTL

Nr
3r−2
x

. ‖δan
(
Gn, ∆un, ∇Πn

)
‖
LrTL

Nr
3r−2
x

+ ‖δGn‖
LrTL

Nr
3r−2
x

+

+ η‖(∆δun−1, ∇δΠn−1)‖
LrTL

Nr
3r−2
x

.

Since ‖δGn‖
LrTL

Nr
3r−2
x

. η
(
‖∇δdn‖

L2r
T L

Nr
r−1
x

+ ‖∇2δdn‖
L2r
T L

Nr
2r−1
x

)
, and recalling (5.30) and (5.32),

‖δFn‖
LrTL

Nr
3r−2
x

. ‖(Gn, ∆un,∇Πn)‖
L

4r
4−ε
T L

Nr
3r−2
x

‖δan‖
L

4r
ε
T L∞x

+ δUn(T )η

. C̄(T )‖∇a0‖L∞x ‖δU
n−1‖

L
4r
ε
T

+ δUn(T )η.
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Summarizing the previous considerations and supposing η small enough, we obtain

δUn(T ) . ηδUn−1(T ) + C̄(T )‖∇a0‖L∞x ‖δU
n−1‖

L
4r
ε (0,T )

. (5.36)

We claim that there exists C(T ) > 0 and K(T ) > 0 such that, for all t ∈ [0, T ], and for all n ∈ N

δUn(t) ≤ C(T )η
n
2 exp

{
K(T )

t
√
η

}
. (5.37)

We are going to prove it by induction and the base case is trivial, since it is sufficient to find C(T ) >
0 such that, for all t ∈ [0, T ], δU0(t) ≤ C(T ). Then it is fulfilled δU0(t) ≤ C(T ) exp

{
K(T )t/

√
η
}

,
for all K(T ) > 0 and for all t ∈ [0, T ]. Passing trough the induction hypotheses and by (5.36), we
have that there exists C̃ > 0 such that, for all t ∈ [0, T ]

δUn(t) ≤ C̃
[
ηδUn−1(t) + C̄(T )‖∇a0‖L∞x ‖δU

n−1‖
L

4r
ε (0,t)

]
≤ C̃

[
ηC(T )η

n−1
2 exp

{
K(T )

t
√
η

}
+

+ C̄(T )‖∇a0‖L∞x C(T )η
n−1

2

(ˆ t

0
exp

{4r

ε
K(T )

s
√
η

}
ds
) ε

4r
]

≤ C̃
(√

ηC(T ) +
ε
ε
4r

(4rK(T ))
ε
4r η

1
2
− ε

4r

C(T )C̄(T )‖∇a0‖L∞x
)
η
n
2 exp

{
K(T )

t
√
η

}
.

Choosing K(T ) > 0 big enough and supposing η small enough, we can assume

C̃
(√

ηC(T ) +
ε
ε
4r

(4rK(T ))
ε
4r η

1
2
− ε

4r

C(T )C̄(T )‖∇a0‖L∞x
)
≤ C(T ),

which finally yields (5.36). It is now immediate to conclude that (dn)N, (∇(un, ∇dn) )N and more-
over (un, ∇dn, ∇Πn)N are Cauchy sequences in L∞T L

∞
x , L2

TL
∞
x and Xr,T , respectively. Furthermore,

resuming (5.32), we deduce that (an)N is a Cauchy sequence in L∞T L
∞
x . Granted with these con-

vergence results and recalling the inequalities (5.16), (5.19) and 5.29 we conclude that the limit
(a, u, ∇d, ∇Π) fulfills the property of the Proposition.

Finally, recalling that, for every positive integer n, (an, un, dn) is solution of (5.13) and (5.14),
passing through the limit, we deduce that (a, u, d) is solution of (5.2) with (a0, u0, d0) as initial
data, and this completes the proof of Proposition 5.4.1.

Proposition 5.4.2. Let r ∈ (1,∞), p ∈ (1, N). Suppose that the initial data fulfill (5.3) and

moreover ∇a0 ∈ L∞x and (u0, ∇d0) ∈ Ḃ
N/p−1+ε
p,r with ε < min{1/r, 1 − 1/r,N/p − 1}. If the

smallness condition (5.4) holds, then there exists a global weak-solution (a, u, d) with the same
property of Theorem 5.2.4. Moreover ∇a ∈ L∞t,locL∞x , (u, ∇d,∇Π) belongs to Yε

r and

‖(u, ∇d, ∇Π)‖Yεr . ‖(u0, ∇d0)‖
Ḃ
N
p −1+ε

p,1

. (5.38)

Remark 5.4.3. The condition (5.38) ensures the velocity field to be in L1
t,locLipx. Indeed, a

classical Gagliardo-Niremberg interpolation inequality

‖∇f‖L∞x . ‖f‖1−θ
L
q3
x
‖∇2f‖θ

L
q1
x

θ =
Nq1 + q1q3

Nq1 + 2q1q3 −Nq3
=

1

1 + q1q3−Nq3
q1q3+Nq1

∈
[

1

2
, 1

]
,
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allows us to obtain the following estimate for every positive T :

‖∇(u, ∇d)‖L1
TL
∞
x

. ‖(t−γε1 , t−αε1)‖
L

(2r)′
T

(
‖tγε1 (u, ∇d)‖L2r

T L
q3
x

+ ‖tαε1∇2(u, ∇d)‖L2r
T L

q1
x

)
<∞.

As already mentioned, such condition permits the existence of the flow for the velocity field, hence
we can reformulate system (5.1) trough Lagrangian coordinates (see Section 6). Adding a weight
in time, we can increase the time integrability by

‖tαε1(∇u, ∇2d)‖L2r
T L
∞
x

. Tα
ε
1−γε1‖tγε1 (u, ∇d)‖L2r

T L
q3
x

+ ‖tαε1∇2(u∇d)‖L2r
T L

q1
x
<∞,

observing that αε1 − γε1 is positive. These estimates are going to be useful to prove the uniqueness
for the solution of (5.1) in the Yr ∩Yε

r functional framework.

Proof of Proposition 5.4.2. Proceeding with the same strategy of Proposition 5.4.1, we consider the
sequence of solutions for the systems (5.13) and (5.14). We claim by induction that such solutions
belong to the same space of Theorem 5.2.4 and moreover that

‖(un, ∇dn, ∇Πn)‖Yr . η. (5.39)

At first, let us observe that ‖et∆d0‖L∞x ≤ ‖d0‖L∞x ≤ 1. Furthermore let us recall the Mild formula-
tions

dn(t) = et∆d0 +

ˆ t

0
e(t−s)∆{|∇dn−1|2dn − un−1 · ∇dn−1

}
(s)ds, (5.40)

by Lemma 5.8.3, with r̄ = r, q = p3/2 > Nr/(2r − 2) and σ = 2γ1 = 1−N/p3 − 1/r,

‖dn(t)‖L∞t,x ≤ 1 + Cr‖s2γ1un−1 · ∇dn−1(s)‖
LrsL

p3
2
x

+ Cr

(ˆ t

0
s2rγ1‖∇dn−1(s)‖2r

L
p3
x
‖dn(s)‖rL∞x ds

) 1
r
,

for every t ∈ R+, where Cr is a suitable positive constant. Thus, by the induction hypotheses and
the Gronwall inequality, we deduce

‖dn(t)‖rL∞x ≤ 2r−1(1 + Crη
2)r exp

{
2r−1Crη

2r
}
≤ C̄r, (5.41)

where C̄r is a suitable positive constant which dependents only by r. Furthermore, using standard
estimates for the transport equation, we have ‖an‖L∞t,x ≤ ‖a0‖L∞x and for all t > 0,

‖∇an(t)‖L∞t,x ≤ ‖∇a0‖L∞x exp
{ˆ t

0
‖∇un−1(s)‖L∞x ds

}
. (5.42)

First, let us remark that, by Theorem 5.3.11 and Theorem 5.3.12,

‖tγ1et∆(u0, ∇d0)‖L2r
t L

p3
x

+ ‖tγ2et∆(u0, ∇d0)‖L∞t Lp3x + ‖tγ3et∆∇d0‖L2r
t L

3p1
x

+

+‖tγ4et∆∇d0‖L∞t L3p1
x

+ ‖tβ1∇et∆(u0, ∇d0)‖L2r
t L

p2
x

+ ‖tβ2∇et∆(u0, ∇d0)‖L∞t Lp2x +

+‖tβ3∇et∆(u0, ∇d0)‖
L2r
t L

p3
2
x

+ ‖tβ4∇et∆(u0, ∇d0)‖
L∞t L

p3
2
x

+ ‖tα1∇2et∆(u0, ∇d0)‖L2r
t L

p1
x

+

+‖tα1∇2et∆(u0, ∇d0)‖LrtLp1x . ‖(u0, ∇d0)‖
Ḃ
N
p3
−1

p3,r
∩Ḃ

N
3p1
−1

3p1,r
∩Ḃ

N
p2
−1

p2,r
∩Ḃ

2N
p3
−1

p3
2 ,r

∩Ḃ
N
p1
−1

p1,r

. ‖(u0, ∇d0)‖
Ḃ
N
p −1

p,r

. η.
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We claim now that tγ1∇dn belongs to L2r
t L

p3
x , tγ2∇dn to L∞t L

p3
x , tγ3∇dn to L2r

t L
3p1
x and tγ4∇dn to

L∞t L
3p1
x . At first, denoting by Tn := ∇(|∇dn−1|2dn − un−1 · ∇dn−1), we have that tα1Tn belongs

to L2r
t L

p1
x , thanks to the induction hypotheses and (5.41). Moreover, applying Lemma 5.3.7 with

r̄ = 2r, q := p1 > Nr/(2r − 1) = Nr̄/(2r̄ − 2), q̃ := p3 > Nr/(r − 1) > N and the same Lemma
with q := p1 and q̃ := 3p1 > 3Nr/(2r − 1) > N , we finally obtain

‖tγ1∇dn‖L2r
t L

p3
x

+‖tγ2∇dn‖L∞t Lp3x +‖tγ3∇dn‖
L2r
t L

3p1
x

+‖tγ4∇dn‖
L∞t L

3p1
x

. η+‖tα1Tn‖L2r
t L

p1
x
. (5.43)

Similarly, by Lemma 5.3.8 with q := p1 ∈ (N/2, N) and q̄ := p2 (respectively q̄ := p3/2), so that
1/q − 1/q̄ = 1/p3 < (r − 1)/Nr < 1/N (respectively 1/q − 1/q̄ < (2r − 1)/Nr − 2(r − 1)/Nr =
1/Nr < 1/N), we deduce that

‖tβ1∇2dn‖L2r
t L

p2
x

+ ‖tβ2∇2dn‖L∞t Lp2x + ‖tβ3∇2dn‖
L2r
t L

p3
2
x

+ ‖tβ4∇2dn‖
L∞t L

p3
2
x

. η + ‖tα1Tn‖L2r
t L

p1
x
.

(5.44)
Finally, by Theorem 5.3.6, with r̄ := 2r (respectively r̄ := r), α := α1 (respectively α := α2) and
q := p1, it turns out

‖tα1∇3dn‖L2r
t L

p1
x

+ ‖tα2∇3dn‖LrtLp1x . η + ‖tα1Tn‖L2r
t L

p1
x

+ ‖tα2Tn‖LrtLp1x . (5.45)

Summarizing (5.43), (5.44), (5.45), developing the right-hand side related to Tn by

‖tα1Tn‖L2r
t L

p1
x

. ‖tγ1∇dn−1‖L2r
t L

p3
x
‖tβ2∇2dn−1‖L∞t Lp2x + ‖tγ3∇dn−1‖

L2r
t L

3p1
x
‖tγ4∇dn−1‖

L∞t L
3p1
x
×

×‖tγ4∇dn‖
L∞t L

3p1
x

+ ‖tγ1un−1‖L2r
t L

p3
x
‖tβ2∇2dn−1‖L∞t Lp2x + ‖tβ1∇un−1‖L2r

t L
p3
x
‖tγ2∇dn−1‖L∞t Lp2x

and by

‖tα2Tn‖LrtLp1x . ‖tγ1∇dn−1‖L2r
t L

p3
x
‖tβ1∇2dn−1‖L2r

t L
p2
x

+ ‖tγ3∇dn−1‖
L2r
t L

3p1
x
‖tγ3∇dn−1‖

L2r
t L

3p1
x
×

×‖tγ4∇dn‖
L∞t L

3p1
x

+ ‖tγ1un−1‖L2r
t L

p3
x
‖tβ1∇2dn−1‖L2r

t L
p2
x

+ ‖tβ1∇un−1‖L2r
t L

p2
x
‖tγ1∇dn−1‖L2r

t L
p3
x

we can absorb the terms with index n by the left-hand side of (5.43), (5.44) and (5.45), thus it
results that (5.39) is true at least for the terms related to d.

Now, let us take the velocity field into account. At first, we recall that un fulfills

un(t) = et∆u0 +

ˆ t

0
e(t−s)∆P

{
− un−1 · ∇un(s) + Fn(s)

}
ds, (5.46)

with Fn = (1 +an)div
(
∇dn�∇dn

)
+an(∆un−1−∇Πn−1). Arguing as for (5.43), (5.44) we obtain

‖tγ1un‖L2r
t L

p3
x

+ ‖tγ2un‖L∞t Lp3x + ‖tβ1∇un‖L2r
t L

p2
x

+ ‖tβ2∇un‖L∞t Lp2x +

+ ‖tβ3∇un‖
L2r
t L

p3
2
x

+ ‖tβ4∇un‖
L∞t L

p3
2
x

. η + ‖tα1Fn‖L2r
t L

p1
x

+ ‖tα1un−1 · ∇un‖L2r
t L

p1
x
.

(5.47)

Proceeding as for (5.45) and recalling that ∇Πn = RR ·
{
− un−1 · ∇un + Fn

}
, we have also

‖tα1(∇2un, ∇Πn)‖L2r
t L

p1
x

+ ‖tα2(∇2un, ∇Πn)‖LrtLp1x . η + ‖tα1Fn‖L2r
t L

p1
x

+

+ ‖tα1un−1 · ∇un‖L2r
t L

p1
x

+ ‖tα2Fn‖LrtLp1x + ‖tα2un−1 · ∇un‖LrtLp1x
(5.48)
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Thus, developing the terms related to Fn by

‖tα1Fn‖L2r
t L

p1
x

+ ‖tα2Fn‖LrtLp1x . (1 + ‖a0‖L∞x )‖tβ1∇2dn‖L2rL
p2
x
‖tβ3∇2dn‖L∞Lp3x +

+ ‖a0‖L∞x
(
‖tα1(∆un−1,∇Πn−1)‖L2r

t L
p1
x

+ ‖tα2(∆un−1,∇Πn−1)‖LrtLp1x
)

and summarizing (5.47) and (5.48), we can absorb the terms with index n by the left-hand side, so
that (5.39) is fulfilled for all the indexes n ∈ N.

Moreover, applying Lemma 5.3.7 to (5.40) and (5.46), with r̄ := 2r of q := p1 and q̃ :=∞, we get
also

‖t
1
2
− 1

2r (un, ∇dn)‖L2r
t L
∞
x

+ ‖t
1
2 (un, ∇dn)‖L∞t L∞x . η + ‖tα1(Tn, Fn, un−1 · ∇un)‖L2r

t L
p1
x

. η.

Now, we claim by induction that (un, ∇dn, ∇Πn) belongs to Yε
r and moreover

‖(un, ∇dn, ∇Πn)‖Yεr . ‖(u0, ∇d0)‖
Ḃ
N
p −1+ε

p,r

, (5.49)

for every n ∈ N (uniformly). Recalling (5.40) and (5.46) and thanks to Lemma 5.3.7 with r̄ := 2r,
q = p1 ∈ (Nr̄/(2r̄ − 2), N), q̃ = q3 > Nr/((1− ε)r − 1) > N (since ε < 1− 1/r) or q̃ = 3q1 > 3N ,

‖tγε1−ε(un, ∇dn)‖L2r
t L

q3
x

+ ‖tγε3−ε∇dn‖
L2r
t L

3q1
x

+ ‖tγε4−ε∇dn‖
L∞t L

3q1
x

.

. ‖(u0, ∇d0)‖
Ḃ
N
p −1

p,r

+ ‖tα1(Tn, Fn, un−1 · ∇un)‖L2r
T L

p1
x
,

for every n ∈ N. Hence, since ‖(un, ∇dn, ∇Πn)‖Yr . η, we deduce the following uniformly estimate:

‖tγε1−ε(un, ∇dn)‖L2r
t L

q3
x

+ ‖tγε3−ε∇dn‖
L2r
t L

3q1
x

+ ‖tγε4−ε∇dn‖
L∞t L

3q1
x

. η. (5.50)

We still proceed by induction and the base case (0, 0, 0) ∈ Yε
r is trivial. Now, let us assume

that (un−1, ∇dn−1, ∇Πn−1) belongs to Yε
r. At first, since (u0, ∇d0) ∈ ḂN/q3−1+ε

q3,2r
, ∇(u0, ∇d0) ∈

Ḃ
N/q2−2+ε
q2,2r

and ∇2(u0, ∇d0) ∈ ḂN/q1−3+ε
q1,2r

, by Theorem 5.3.11 we get that the conditions for u and

∇d determined by Yε
r are satisfied by et∆u0 and et∆∇d0. Now, arguing as for proving (5.43) and

(5.47), by Lemma 5.8.1 with r̄ := 2r, q := q1 ∈ (N,N/(1− ε)) and q̃ := q3 > q or q̃ := 3q1 > q, we
obtain that

‖tγε1 (un, ∇dn)‖L2r
t L

q3
x

+ ‖tγε2 (un, ∇dn)‖L∞t Lq3x + ‖tγε3∇dn‖
L2r
t L

3q1
x

+

+ ‖tγε4∇dn‖
L∞t L

3q1
x

. ‖(u0, ∇d0)‖
Ḃ
N
p −1+ε

p,r

+ ‖tαε1(Tn, Fn, un−1 · ∇un)‖L2r
t L

q1
x

(5.51)
Moreover by Lemma 5.8.2 with r̄ := 2r, q := q1 and q̄ := q2, so that 1/q − 1/q̄ = 1/q3 < 1/N , we
have

‖tβε1∇(un, ∇dn)‖L2r
t L

q2
x

+ ‖tβε2∇(un, ∇dn)‖L∞t Lq2x .

. ‖(u0, ∇d0)‖
Ḃ
N
p −1+ε

p,r

+ ‖tαε1(Tn, Fn, un−1 · ∇un)‖L2r
t L

q1
x

(5.52)

Finally, by Theorem 5.3.6 with r̄ := 2r (respectively r̄ := r) and α := αε1 (respectively α := αε2),
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we get

‖tαε1(∇2un, ∇3dn∇Π)‖L2r
t L

q1
x

+ ‖tαε2(∇2un, ∇3dn∇Π)‖LrtLq1x . ‖(u0, ∇d0)‖
Ḃ
N
p −1+ε

p,r

+

+ ‖tαε1(Tn, Fn, un−1 · ∇un)‖L2r
t L

q1
x

+ ‖tαε2(Tn, Fn, un−1 · ∇un)‖LrtLq1x
(5.53)

Thus, summarizing (5.51), (5.52), (5.53) we develop the terms on the right-hand sides as follows

‖tαε1(Tn, Fn, un−1 · ∇un)‖L2r
t L

q1
x

+ ‖tαε2(Tn, Fn, un−1 · ∇un)‖LrtLq1x . ‖tγε1−ε∇dn−1‖L2r
t L

q3
x
×

×‖tβε2∇2dn−1‖L∞t Lq2x + ‖tγε3−ε∇dn−1‖
L2r
t L

3q1
x
‖tγε4−ε∇dn−1‖

L∞t L
3q1
x
‖tγε4∇dn‖

L∞t L
3q1
x

+

+‖tγε1−εun−1‖L2r
t L

q3
x
‖tβε2∇2dn−1‖L∞t Lq2x + ‖tβε1∇un−1‖L2r

t L
q3
x
‖tγε2−ε∇dn−1‖L∞t Lq2x +

+‖tγ1∇dn−1‖L2r
t L

p3
x
‖tβ1∇2dn−1‖L2r

t L
p2
x

+ ‖tγ3∇dn−1‖
L2r
t L

3p1
x
‖tγ3∇dn−1‖

L2r
t L

3p1
x
×

×‖tγ4∇dn‖
L∞t L

3p1
x

+ ‖tγ1un−1‖L2r
t L

p3
x
‖tβ1∇2dn−1‖L2r

t L
p2
x

+ ‖tβ1∇un−1‖L2r
t L

p2
x
×

×‖tγ1∇dn−1‖L2r
t L

p3
x

+ (1 + ‖a0‖L∞x )‖tβ1∇2dn‖L2r
t L

q2
x
‖tγ3−ε∇dn‖L∞t Lq3x +

+‖a0‖L∞x
(
‖tαε1(∆un−1,∇Πn−1)‖L2r

t L
p1
x

+ ‖tαε2(∆un−1,∇Πn−1)‖LrtLp1x
)
.

Thus, recalling (5.50), we can absorb all the terms with index n by the left-hand side of (5.51),
(5.52) and (5.53), finally obtaining (5.49), thanks to the induction hypotheses.

Now let us observe that, by Remark 5.4.3, for every T > 0 there exists Ĉ(T ) > 0 such that

‖∇un‖L1
TL
∞
x

. Ĉ(T )‖(u0, ∇d0)‖
Ḃ
N
p −1+ε

p,r

.

To conclude the proof we want to show that (an, dn, un)N is a Cauchy sequence in the considered
spaces. The strategy is similar to the last part of Theorem 5.4.1. Denoting δun := un+1 − un and
so on for δdn, δan and δΠn, for all T > 0 we define

δUn(T ) := ‖(δun, ∇δdn, ∇Πn)‖Yr,T + ‖δdn‖L∞T L∞x + ‖t
1
2 δun‖L∞T L∞x .

We want to prove that
∑

n∈N δU
n(T ) is finite. Let us consider δan which is solution of

∂tδa
n + un · ∇δan = −δun−1∇an in R+ × RN with δan|t=0 = 0 in RN .

By standard estimates for the transport equation and by (5.42), we obtain

‖δan(t)‖L∞x ≤
ˆ t

0
‖δun−1(s)‖L∞x ‖∇a

n(s)‖L∞x ds ≤ C̄(T )
(ˆ T

0

1

s
3
4

ds
) 2

3 ‖δUn−1‖L3
T
‖∇a0‖L∞x , (5.54)

where C̄(T ) = exp{Ĉ(T )‖(u0, ∇d0)‖
Ḃ
N/p−1+ε
p,r

}. Considering δdn, we recall that is solution of

∂tδd
n −∆δdn = δHn in R+ × RN , δdn|t=0 = 0 in RN ,

with δHn = −δun−1 · ∇dn − un−1 · ∇δdn−1 +∇δdn−1 � ∇dndn +∇dn−1 � ∇δdn−1dn +∇dn−1 �
∇dn−1δdn. Hence, by Lemma 5.8.3 with σ = 2γ1 and q = p3/2, we get

‖δdn(t)‖L∞x ≤ ‖s
2γ1δHn‖

Lr(0,t;L
p3
2
x )

. ηδUn−1(T ) + η2‖δdn‖L∞T L∞x ,



74 CHAPTER 5. ERICKSEN-LESLIE SYSTEM

for every t ∈ (0, T ). Taking the sup on t ∈ (0, T ), we obtain

‖δdn‖L∞T L∞x . ηδUn−1(T ). (5.55)

Moreover, recalling that δun is solution of

∂tδu
n −∆δun +∇δΠn = δFn − un · ∇δun − δun−1 · ∇un, div δun = 0, δun|t=0 = 0,

where the explicit formula of δFn is

δFn = δan(div{∇dn �∇dn}+ ∆un−∇Πn) + (1 + an+1)div{∇δdn �∇dn+

+∇dn+1 �∇δdn}+ an(∆δun−1 −∇δΠn−1),

which yields that

‖(δun, ∇δdn, ∇δΠn)‖Yr + ‖t
1
2 δun‖L∞T,x . ‖tα1(∇δHn, δFn, un · ∇δun, δun−1 · ∇un)‖L2r

T L
p1
x

+‖tα2(∇δHn, δFn, un · ∇δun, δun−1 · ∇un)‖LrTLp1x . η
(
δUn−1(T ) + δUn(T ) + ‖δan‖L∞T,x

)
.

(5.56)
Summarizing (5.55) and (5.56), it turns out that

δUn(T ) . ηδUn−1(T ) + η‖δan‖L∞T L∞x

and thanks to (5.54), we finally obtain

δUn(T ) . ηδUn−1(T ) + C̄(T )T
1
6 ‖δUn−1‖L3

T
‖∇a0‖L∞x .

Such inequality is strictly similar to (5.36), hence we can conclude the proof of the proposition
arguing exactly as in the last part of the proof of proposition 5.4.1.

5.5 Existence of a Global Solution

Let us now tackle the proof to the existence part of our main results, namely Theorem 5.2.2 and
Theorem 5.2.4. Thanks to the dyadic partition we regularize the initial velocity u0 and the initial
molecular orientation d0, while we regularize the initial density a0 by a family of mollificators. The
key is to use the existence results and the estimates of the previous section, constructing a family
of solutions for (5.2) with the regularized initial data. Due to the low regularity of a0, it is not
possible to prove the strong convergence of such approximate solutions. Hence, we shall focus on
a compactness method, along the same line of [30] and [60].

Let (χn)N be a family of mollifiers, we define a0,n := χn ∗ a0, for every n ∈ N. a0,n belongs to

W 1,∞
x and its L∞x -norm is bounded by ‖a0‖L∞x . Moreover, (a0,n)N weak* converges to a0 up to a

subsequence (which we still denote by (a0,n)N). Since d0 belongs to L∞x , which is a subset of Ḃ0
∞,∞,

and u0 belongs to Ḃ
N/p−1
p,r , we cut the low and the high frequencies in the following way:

u0,n :=
∑
|k|≤n

∆̇ku0, d0,n :=
∑
|k|≤n

∆̇kd0.

Each term d0,n belongs to L∞x with norm bounded by 1. Moreover u0,n and ∇d0,n belong to Ḃs
p,1 for

every real number s. In addition, the smallness condition (5.4) is still valid for (a0,n, u0,n, ∇d0,n).
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Proof of Theorem 5.2.2. As already pointed out, u0,n and ∇d0,n belong to Ḃs
p,1, for every real

number s, in particular for s = N/p− 1 and s = N/p+ 1. The hypotheses of Proposition 5.4.1 are
fulfilled, hence it determines (un, dn, an) solution of (5.2) with u0,n, d0,n and a0,n as initial data.
Furthermore we get the following uniform estimates for the norms of such solutions:

‖(un, ∇dn, ∇Πn)‖Xr . η

for every n ∈ N. By these inequalities and the momentum equation of (5.2), (∂tu
n)N is a bounded

sequence in LrtL
Nr/(3r−2)
x and (∂td

n)N is a bounded sequence in LrtL
Nr/(2r−2)
x . Thus, applying

Ascoli-Arzela Theorem, we conclude that there exists a subsequence of (un, dn, an)N (which we
still denote by (un, dn, an)N) and some (u, d, a, ∇Π) with a, d ∈ L∞t,x and (u, ∇d, ∇Π) ∈ Xr such
that

(an, dn) ⇀ (a, d) weak ∗ in L∞t,x,

∇dn ⇀ ∇d weakly in L3r
t L

3Nr
3r−2
x , L2r

t L
Nr
r−1
x , L2

tL
∞
x ,

∇(un, ∇dn) ⇀ ∇(u, ∇d) weakly in L2r
t L

Nr
2r−1
x , LrtL

Nr
r−1 ,

with in addition

∇(∇un, Πn) ⇀ ∇(∇u, Π) weakly in LrtL
Nr

3r−2
x

and

un → u strongly in Lrt,locL
Nr
r−1
−ε̄

x,loc ,

for all positive ε̄ small enough. The last strongly convergence is due to an interpolation result,
observing that, for every T > 0, the sequence (un−et∆u0,n)N is uniformly bounded and equicontin-

uous in C([0, T ], L
Nr/(3r−2)
x ) and moreover (et∆u0,n)N converges to et∆u0 strongly in LrtL

Nr/(r−1)
x

(since (u0,n)N converges to u0 strongly in Ḃ
N/r−1
p,r ). We deduce that un ·∇dn and un ·∇un converge

to u · ∇d and u · ∇u respectively. Then, it is sufficient to prove that an(∆un +∇Πn) converge to
a(∆u +∇Π) in the distributional sense, in order to conclude that (u, d, a) is a solution for (5.2)
with initial data (u0, d0, a0). Toward this, we shall follow [30] and [60], proving that (an)N strongly
converges to a in Lmloc(R+×RN ) for any m <∞. thanks to the transport equation of (5.2) we have

∂t(a
n)2 + un · ∇(an)2 = 0,

which yields
∂tω + u · ω = 0,

where ω is the weak ∗ limit of ((an)2)N (up to a subsequence). Moreover, by a mollifying method
as that in [37], we infer that

∂ta
2 + div(u a2) = 0.

Thus {
∂t(a

2 − ω) + div{u(a2 − ω)} = 0 R+ × RN

(a2 − ω)|t=0 = 0,

and from the uniqueness of the transport equation (see [37]) we conclude that a2 − ω = 0 almost
everywhere. We deduce that (‖an‖L2(Ω))N converges to ‖a‖L2(Ω), for every Ω bounded subset of

R+ × RN , hence (an)N strongly converges to a in L2(Ω). By interpolation, we deduce that (an)N
strongly converges to a in Lmloc(R+ × RN ) for any m < ∞ and this completes the proof to the
existence part of Theorem 5.2.2.
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Proof of Theorem 5.2.4. We proceed along the same line of the previous proof, using Proposition
5.4.2 instead of Proposition 5.4.1. We get the following uniform estimates for the sequence of the
approximate solutions:

‖(un, ∇dn, ∇Πn)‖Yr . η.

Since α2r
′ = (1/2(3 − N/p1) − 1/r)r′<(1 − 1/r)r′ = 1, (∇2un,∇Πn)N = (t−α2tα2(∇2un, ∇Πn)N

is uniformly bounded in Lτ1T L
p1
x , where τ1 belongs to (1, r/(1 + α2r) ) and T > 0. Similarly

(∇un,∇2dn)N and (un, ∇dn)N are uniformly bounded in Lτ2T L
p2
x and Lτ3T L

p3
x respectively, where

τ2 belongs to (1, 2r/(1+β12r) ) and τ3 ∈ (1, 2r/(1+γ12r) ). It is not restrictive to choose τ2 and τ3

such that 1/τ4 := 1/τ2 + 1/τ3 is less than 1. Hence (∂tu
n)N is uniformly bounded in Lτ1(0, T ;Lp1

x )
which yields that (un−et∆u0,n)N is uniformly bounded and equicontinuous in C([0, T ], Lp1

x ). More-
over (et∆u0,n)N converges to et∆u0 in Lτ3(0, T ;Lp3). Hence, by Ascola-Arzela Theorem, we conclude
that, up to extraction, the sequence (un, dn, an, ∇Πn)N converges to some (u, d, a, ∇Π)N such that
a, d belong to L∞t,x and (u, ∇d, ∇Π) ∈ Yr. The convergence is in the following sense:

(an, dn) ⇀ (a, d) weak ∗ in L∞t,loc,

∇dn ⇀ ∇d weakly in Lτ3t,locL
p3
x ,

∇(un, ∇dn) ⇀ ∇(u, ∇d) weakly in Lτ2t,locL
p2
x ,

with in addition
∇(∇un, Πn) ⇀ ∇(∇u, Π) weakly in Lτ1t,locL

p1
x

and
un → u strongly in Lτ3t,locL

p3−ε
x,loc ,

for all positive ε small enough. Finally we can repeat the argument at the end of the proof of
Theorem 5.2.2, concluding the existence part of Theorem 5.2.4.

5.6 Lagrangian Coordinates

The uniqueness result is basically based on the Lagrangian coordinates concept. The key is to
rewrite system (5.2) under such coordinates, obtaining a new formulation which allows the unique-
ness in the functional framework of the main Theorems. This strategy has already been treated
by Danchin and Mucha in [27] on a subfamily of (5.2), namely the incompressible Navier-Stokes
equations with variable density in the whole space. We claim to extend it to the general simplified
Ericksen-Leslie system. Before going on, in this section we recall some mainly results concerning
the Lagrangian coordinates.
Let T ∈ (0,∞], we consider a vector field u in L1

TLipx. The flow X of u is defined as the solution
of the following ordinary differential equation:{

∂tX(t, y) = u(t,X(t, y)) (t, y) ∈ R+ × Rn,
X(0, y) = y y ∈ Rn.

The unique solution is granted by Cauchy-Lipschitz Theorem. Defining v(t, y)= u(t,X(t, y)) we
get the following relation between the Eulerian coordinates x and the Lagrangian coordinates y:

x = X(t, y) = y +

ˆ t

0
v(s, y)ds.

Furthermore, fixing t′ ∈ R, let X̃ = X̃(t′, t, x) be the unique solution of
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∂tX̃(t′, t, x) = u(t,X(t′, t, x)) (t, x) ∈ (t′,∞)× Rn,
X̃(t′, t′, x) = x y ∈ Rn.

Then Y = Y (t, x) = X̃(−t, 0, x) is the inverse map of X. Setting D := t∇, we get A(t, y) :=
(DyX)−1(t, y) = DxY (t,X(t, y)) and moreover

‖A(t)− Id ‖L∞x ≤
ˆ t

0
‖Dyv(s)‖L∞x ds.

Assuming that u has L1
TLipx-norm small enough, we obtain that the right-hand side of the previous

inequality is less than 1. Thus A(t, y) is determined by

A(t, y) = DxY (t,X(t, y)) = (Id +(DyX(t, y)− Id))−1 =
∞∑

k=−∞
(−1)k

(ˆ t

0
Dyv(s, y)ds

)k
.

Furthermore

(∇xu)(t,X(t, y)) = tA(t, y)∇yv(t, y), (divxu)(t,X(t, y)) = divy{A(t, y)v(t, y)},

Setting b(t, y) := a(t,X(t, y)), P (t, y) := Π(t,X(t, y)) and moreover

ω(t, y) := d(t,X(t, y), h(t, y) := (∇xd)(t,X(t, y)), (5.57)

system (5.2) becomes

∂tb = 0 R+ × RN ,
∂tv − (1 + b)divy{A tA∇yv}+ tA∇yP = −(1 + b)divy{Ah� h} R+ × RN ,
∂tω − tA : ∇h = |h|2ω R+ × RN ,
div( tAv) = 0 R+ × RN ,
h = tA∇yω R+ × RN ,
(v, b, ω)|t=0 = (u0, a0, d0) RN ,

which is the Lagrangian formulation. Moreover, taking the derivative in x to the third equation of
(5.2)

∂t∇d+ u · ∇2d+∇u · ∇d−∆∇d = 2∇d · ∇2d+ |∇d|2∇d,
thus, h is solution of

∂th+ ( tA∇yv) · ∇yh− divy(A
tA∇yh) = 2h · ∇yhω + |h|2h.

5.7 Uniqueness

This section is devoted to the proof of Theorem 5.2.6 and Theorem 5.2.7. For i = 1, 2, let (ui, di, ai)
be two solutions of (5.2) satisfying the condition of Theorem 5.2.4. Let Xi be the flow generated
by ui, for i = 1, 2, and (vi, ωi, bi) the Lagrangian formulations of the solutions. At first, let us
observe that b1 ≡ b2 ≡ a0, thus setting δv := v1− v2, δω := ω1−ω2 and δP := P1−P2, we observe
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that (δv, δω δh, δP ) is solution for

∂tδv −∆δv +∇δP = a0(∆δv −∇δP ) + δf1 + δf2 + δf3 R+ × RN ,
∂tδω = δf4 + δf5 R+ × RN ,
∂tδh−∆δh = δf6 + δf7 + δf8 R+ × RN ,
div{δv} = δg R+ × RN ,
∂tδg = δR R+ × RN ,
(δv, δω, δh)|t=0 = (0, 0, 0) RN ,

(5.58)

where
δf1 := (1 + a0)[(Id− tA2)∇δP − δA∇P1],

δf2 := (1 + a0)div{(A2
tA2 − Id)∇δv + (A2

tA2 −A1
tA1)∇v1},

δf3 := (1 + a0)div
{
δA(h2 � h2) +A1(δh� h2) +A1 (h1 � δh)

}
,

δf4 := δh · h2ω2 + h1 · δhω2 + |h1|2δω,
δf5 := tδA : ∇h2 + tA1 : ∇δh,

and
δf6 := − tδA∇v2 · h2 − tA1∇δv · h2 − tA1∇v1 · δh,
δf7 := div

{
(A2

tA2 − Id)∇δh+ (A2
tA2 −A1

tA1)∇h1

}
,

δf8 := 2δh · ∇h2 ω2 + 2h1 · ∇δhω2 + h1 · ∇h1δω,

δg := (Id− tA2) : ∇δv + tδA : ∇v1,

δR := ∂t
[
(Id−A2)δv

]
− ∂t

[
δAv1

]
.

In what follows, we will use repeatedly the following identity:

δA(t) =
(ˆ t

0
Dδv(τ)dτ

)(∑
k≥1

∑
0≤j<k

Cj1(t)Ck−1−j
2 (t)

)
, (5.59)

with

Ci(t) :=

ˆ t

0
Dvi(τ), for i = 1, 2.

5.7.1 Uniqueness: the smooth case

Let us assume that 1 < p < Nr/(3r−2), ε ∈ (0, 1] and r ∈ (1, 2/(2−ε). We suppose our initial data

(u0, ∇d0) to be in Ḃ
N/p−1+ε
p,r ∩ ḂN/p−1

p,r and we want to prove that the solution for (5.1), given by
Theorem 5.2.2, is unique. First, let us observe that our solution belongs to the functional framework
of Theorem 5.2.6, thanks to proposition 5.4.1. Now, let us tackle the proof of the uniqueness. We
need the following Lemma

Lemma 5.7.1. Let T > 0 and let us assume that f , ∇g, and R belong to LrTL
Nr/(3r−2)
x . Then

∂tv −∆v +∇P = f (0, T )× RN ,
divv = g (0, T )× RN ,
∂tg = divR (0, T )× RN ,
v|t=0 = 0 RN ,
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admits a unique solution such that

‖v‖
L2r
T L

Nr
r−1
x

+ ‖v‖L2
TL
∞
x

+ ‖∇v‖
L2r
T L

Nr
2r−1
x

+ ‖∇v‖
L2r
T L

Nr
2(r−1)
x

+

+ ‖(∂tv, ∇2v, ∇Π)‖
LrTL

Nr
3r−2
x

. ‖(f, ∇g, R)‖
LrTL

Nr
3r−2
x

.

Proof. Applying −div to the first equation, we get

−∆P = div {R− f −∇g},

which yields ∇P = RR · {R − f − ∇g}. Hence, ‖∇P‖Lqx ≤ ‖R, f, ∇g‖Lqx , for every q ∈ (1,∞).
Moreover, v is determined by

v(t) =

ˆ t

0
e(t−s)∆(f −∇P )(s)ds,

thus by Lemmas 5.3.3, 5.3.5 and Theorem 5.3.2, we obtain the required estimate.

Thus, recalling system (5.58), we get

‖δv‖
L2r
T L

Nr
r−1
x

+ ‖δv‖L2
TL
∞
x

+ ‖∇δv‖
L2r
T L

Nr
2r−1
x

+ ‖∇δv‖
L2r
T L

Nr
2(r−1)
x

+ ‖δv‖L2
TL
∞
x

+

+ ‖(∂tδv, ∇2δv, ∇δΠ)‖
LrTL

Nr
3r−2
x

. ‖(δf1, δf2, δf3, ∇δg, δR)‖
LrTL

Nr
3r−2
x

,

where we have also used that ‖b0‖L∞x = ‖a0‖L∞x ≤ η. Furthermore by the second equation of (5.58),

we get δω ∈ L∞T L
Nr/2(r−1)
x and

‖δω‖
L∞T L

Nr
2(r−1)
x

. ‖(δf4, δf5)‖
L1
TL

Nr
2(r−1)
x

,

and by Theorem 5.3.2, Lemmas 5.3.3 and 5.3.5, we get

‖δh‖
L2r
T L

Nr
r−1
x

+ ‖δh‖
L3r
T L

3Nr
3r−2
x

+ ‖δh‖L2
TL
∞
x

+ ‖∇δh‖
L2r
T L

Nr
2r−1
x

+

+ ‖∇δh‖
L2r
T L

Nr
2(r−1)
x

+ ‖∇2δh‖
LrTL

Nr
3r−2
x

. ‖(δf6, δf7, δf8)‖
LrTL

Nr
3r−2
x

.

Summarizing the previous inequality, we need to control the right-hand side of

‖(δv, δh, δP )‖Xr,T + ‖∂tv‖
LrTL

Nr
3r−2x

+ ‖δω‖
L∞T L

Nr
2(r−1)
x

.

. ‖(δf1, δf2, δf3, δf6, δf6 δf7, δf8, ∇δg, δR)‖
LrTL

Nr
3r−2
x

+ ‖(δf4, ∇δf5, δf6)‖
L1
TL

Nr
2(r−1)
x

.

We are going to estimate each of these terms step by step. Moreover, in what follows we will use
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that

‖(∇2vi, ∇2hi,∇Pi)‖LrTLNx . ‖(∇2vi, ∇2hi,∇Pi)‖
LrTL

Nr
(3−ε)r−2
x

+ ‖(∇2vi, ∇2hi,∇Pi)‖
LrTL

Nr
3r−2
x

<∞,
‖∇(vi, hi)‖L2r

T L
Nr
x

. ‖∇(vi, hi)‖
L2r
T L

Nr
2r−1
x

+ ‖∇(vi, hi)‖
L2r
T L

Nr
(2−ε)r−1
x

<∞,

‖∇Ai‖
L∞T L

Nr
(3−ε)r−2
x

. ‖∇Ai‖L∞T LNx + ‖∇Ai‖
L∞T L

Nr
3r−2
x

<∞,

for i = 1, 2.

Bounds for δf1. From the definition of δf1, we readily get

‖δf1‖
LrTL

Nr
3r−2
x

. ‖ Id− tA2‖L∞T L∞x ‖∇δP‖
LrTL

Nr
3r−2
x

+ ‖δA‖
L∞T L

Nr
2(r−1)
x

‖∇P‖L2r
T L

N
x
,

where Nr/(2r − 2) is the Lebesgue exponent in the critical Sobolev embedding

W
1, Nr

3r−2
x ↪→ L

Nr
2(r−1)
x .

Consequently, because T < 1, recalling (5.59), we obtain

‖δf1‖
LrTL

Nr
3r−2
x

. ‖∇v2‖
L

2
2−ε
T L∞x

‖∇δP‖
LrTL

Nr
3r−2
x

+ ‖∇2δv‖
LrTL

Nr
3r−2
x

‖∇P‖
LrTL

Nr
3r−2
x

.

Thus there exists a continuous function t→ χ1(t), which goes to 0 for t→ 0 and

‖δf1‖
LrTL

Nr
3r−2
x

. χ1(T )‖(δv, δh, ∇δP )‖Xr,T . (5.60)

Bounds for δf2. From the definition of δf2 and observing that A2
tA2−A1

tA1 = δA tA2 +A1
tδA,

we deduce that

‖δf2‖
LrTL

Nr
3r−2
x

. ‖∇(A2
tA2)‖L∞T LNx ‖∇δv‖

LrTL

Nr
2(r−1)
x

+ (‖A2
tA2‖L∞T L∞x + 1)‖∇2δv‖

LrTL
Nr

3r−2
x

+

+ ‖δA‖
L∞T L

Nr
2(r−1)
x

(‖∇A2‖L∞T LNx + ‖∇A1‖L∞T LNx )‖∇v1‖
L

2
2−ε
T L∞x

+ ‖∇δA‖
L∞T L

Nr
3r−2
x

(‖A2‖L∞T L∞x +

+ ‖A1‖L∞T L∞x )‖∇v1‖
L

2
2−ε
T L∞x

+ ‖δA‖
L∞T L

Nr
2(r−1)
x

(‖A2‖L∞T L∞x + ‖A1‖L∞T L∞x )‖∇2v1‖LrTLNx

Hence, there exists a continuous function t→ χ2(t) which goes to 0 for t→ 0, such that

‖δf2‖
LrTL

Nr
3r−2
x

. χ2(T )‖(δv, δh, ∇δP )‖Xr,T . (5.61)
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Bounds for δf3 From the definition of δf3 we get

‖δf3‖
LrTL

Nr
3r−2
x

.

‖∇δA‖
L∞T L

Nr
3r−2
x

‖h1‖2
L

2
2−ε
T L∞x

+ ‖δA‖
L∞T L

Nr
2r−1
x

‖∇h1‖
L

2
2−ε
T L∞x

‖h1‖
L2r
T L

Nr
r−1
x

+

+ ‖∇A1‖L∞T LNx ‖∇δh‖L2r
T L

Nr
2r−1
x

‖h2‖
L2r
T L

Nr
r−1
x

+ ‖∇A1‖L∞T LNx ‖δh‖L2r
T L

Nr
r−1
x

‖h2‖
L2r
T L

Nr
r−1
x

+

+ ‖A1‖L∞T L∞x ‖∇δh‖
L2r
T L

Nr
2r−1
x

‖h2‖
L2r
T L

Nr
r−1
x

+ ‖A1‖L∞T L∞x ‖δh‖
L2r
T L

Nr
r−1
x

‖∇h2‖
L2r
T L

Nr
2r−1
x

+

+ ‖∇A1‖L∞T LNx ‖∇δh‖L2r
T L

Nr
2r−1
x

‖h1‖
L2r
T L

Nr
r−1
x

+ ‖∇A1‖L∞T LNx ‖δh‖L2r
T L

Nr
2r−1
x

‖h1‖
L2r
T L

Nr
r−1
x

+

+ ‖A1‖L∞T L∞x ‖∇δh‖
L2r
T L

Nr
2r−1
x

‖h1‖
L2r
T L

Nr
r−1
x

+ ‖A1‖L∞T L∞x ‖δh‖
L2r
T L

Nr
r−1
x

‖∇h1‖
L2r
T L

Nr
r−2
x

Hence, there exists χ3(t) such that

‖δf3‖
LrTL

Nr
3r−2
x

. χ3(T )‖(δv, δh, ∇δP )‖Xr,T . (5.62)

Bounds for δf6 From the definition of δf6 we get

‖δf6‖
LrTL

Nr
3r−2
x

. ‖δA‖
L∞T L

Nr
2r−1
x

‖∇v2‖
L

2
2−ε
T L∞x

‖h2‖
L2r
T L

Nr
r−1
x

+

+ ‖A1‖L∞T L∞x ‖∇δv‖
L2r
T L

Nr
2r−1
x

‖h2‖
L2r
T L

Nr
r−1
x

+ ‖A1‖L∞T L∞x ‖∇v1‖
L2r
T L

Nr
r−1
x

‖δh‖
L2r
T L

Nr
r−1
x

,

Thus
‖δf6‖

LrTL
Nr

3r−2
x

. χ6(T )‖(δv, δh, ∇δP )‖Xr,T , (5.63)

for an opportune continuous function χ7(t) which goes to 0 when t→ 0.

Bounds for δf7. From the definition of δf7 we have

‖δf7‖
LrTL

Nr
3r−2
x

. ‖∇A2‖L∞T LNx ‖A2‖L∞T L∞x ‖∇δh‖
LrTL

Nr
2(r−1)
x

+ (‖A2
tA2‖L∞T L∞x + 1)‖∇2δh‖

LrTL
Nr

3r−2
x

+

+ ‖∇δA‖
L∞T L

Nr
3r−2
x

(‖A1‖L∞T L∞x + ‖A2‖L∞T L∞x )‖∇h1‖
L

2
2−ε
T L∞x

+

+ ‖δA‖
L∞T L

Nr
2(r−1)
x

(‖∇A1‖L∞T LNx + ‖∇A2‖L∞T LNx )‖∇h1‖
L

2
2−ε
T L∞x

+

+ ‖δA‖
L∞T L

Nr
2(r−1)
x

(‖A1‖L∞T L∞x + ‖A2‖L∞T L∞x )‖∇h1‖LrTLNx ,

which yields that there exists a continuous function χ7(t) ≥ 0, with χ7(0) = 0, such that

‖δf7‖
LrTL

Nr
3r−2
x

. χ7(T )‖(δv, δh, ∇δP )‖Xr,T . (5.64)
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Bounds for δf8. From the definition of δf8 we get

‖δf8‖
LrTL

Nr
3r−2
x

. ‖δh‖
L2r
T L

Nr
r−1
x

‖∇h2‖
L2r
T L

Nr
2r−1
x

‖ω2‖L∞T L∞x +

+ ‖h1‖
L2r
T L

Nr
r−1
x

‖∇δh‖
L2r
T L

Nr
2r−1
x

‖ω2‖L∞T L∞x + ‖h1‖
L2r
T L

Nr
r−1
x

‖∇h1‖L2r
T L

Nr
x
‖δω‖

L∞T L
Nr

2(r−1)
x

which yields that there exists a continuous function χ8(t) ≥ 0, with χ8(0) = 0, such that

‖δf8‖
LrTL

Nr
3r−2
x

. χ9(T )
{
‖(δv, δh, ∇δP )‖Xr,T + ‖δω‖

L∞T L
Nr

2(r−1)
x

}
. (5.65)

Bounds for ∇δg. By the definition of δg we get

‖∇δg‖
LrTL

Nr
3r−2
x

. ‖∇A2‖L∞T LNx ‖∇δv‖
LrTL

Nr
2(r−1)
x

+ ‖ Id−A2‖L∞T L∞x ‖∇
2δv‖

LrTL
Nr

3r−2
x

+

+ ‖∇δA‖
L∞T L

Nr
3r−2
x

‖∇v1‖
L

2
2−ε
T L∞x

+ ‖δA‖
L∞T L

Nr
2(r−1)
x

‖∇2v1‖LrTLNx .

We deduce that there exists a continuous function χg(t) with χg(0) = 0 such that

‖∇δg‖
LrTL

Nr
3r−2
x

. χg(T )‖(δv, δh, ∇δP )‖Xr,T . (5.66)

Bounds for δR. From the definition of δR we have

‖δR‖
LrTL

Nr
3r−2
x

. ‖∇v2‖
L2r
T L

Nr
2r−1
x

‖δv‖
L2r
T L

Nr
r−1
x

+ ‖ Id−A2‖L∞T L∞x ‖∂tδv‖
LrTL

Nr
3r−2
x

+

+ ‖∇δv‖
L2r
T L

Nr
2r−1
x

‖v1‖
L2r
T L

Nr
r−1
x

+ ‖δA‖
L∞T L

Nr
2(r−1)
x

‖∂tv1‖LrTLNx ,

Thus, there exists a continuous function χR(t) with χR(0) = 0 such that

‖δR‖
LrTL

Nr
3r−2
x

. χR(T )
{
‖(δv, δh, ∇δP )‖Xr,T + ‖∂tδv‖

LrTL
Nr

3r−2
x

}
. (5.67)

Bounds for δf4. From the definition of δf4 it follows

‖δf4‖
L1
TL

Nr
2(r−1)
x

. ‖δh‖
L2r
T L

Nr
r−1
x

‖(h1, h2)‖
L2r
T L

Nr
r−1
x

‖ω2‖L∞T L∞x +

+ ‖h1‖2L2
TL
∞
x
‖δω‖

L∞T L
Nr

2(r−1)
x

.

Therefore, we obtain

‖δf4‖
L1
TL

Nr
2(r−1)
x

. χ4(T )
{
‖(δv, δh, ∇δP )‖Xr,T + ‖δω‖

L∞T L
Nr

2(r−1)
x

}
. (5.68)

Bounds for δf5. From the definition of δf5 it follows

‖δf5‖
L1
TL

Nr
2(r−1)
x

. ‖δA‖
L∞T L

Nr
2(r−1)
x

‖∇h2‖
L

2
2−ε
t L∞x

+ t1−
1
r ‖A1‖L∞T L∞x ‖∇δh‖

LrtL

Nr
2(r−1)
x
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Therefore, we obtain
‖δf5‖

L1
TL

Nr
2(r−1)
x

. χ5(T )‖(δv, δh, ∇δP )‖Xr,T . (5.69)

Summarizing (5.60), (5.61), (5.62), (5.63), (5.64), (5.65), (5.66), (5.67), (5.68) and (5.69), we deduce
that there exists a continuous function χ(t) =

∑
i χi(t) which assume 0 for t = 0, such that

‖(δv, δh, δP )‖Xr,T + ‖∂tv‖
LrTL

Nr
3r−2x

+ ‖δω‖
L∞T L

Nr
2(r−1)
x

.

. χ(T )
{
‖(δv, δh, δP )‖Xr,T + ‖∂tv‖

LrTL
Nr

3r−2x
+ ‖δω‖

L∞T L
Nr

2(r−1)
x

}
,

which yields the uniqueness of the solution to (5.2) on a sufficiently small interval. Then uniqueness
part can be completed by a bootstrap method.

5.7.2 Uniqueness: the general case

Now let us consider the general case 1 < p < N , ε ∈ (0,min{1/r, 1 − 1/r, N/p − 1}] and our

initial data (u0, ∇d0) in Ḃ
N/p−1+ε
p,r ∩ ḂN/p−1

p,r . We want to prove that the solution for (5.1), given by
Theorem 5.2.4, is unique. Let us observe that our solution belongs to the functional framework of
Theorem 5.2.6, thanks to proposition 5.4.2. We also recall Remark 5.4.3 for the Lispschitz-estimates
and suppose T < 1. In order to prove the uniqueness we need the following Lemma

Lemma 5.7.2. Let α1, βi, γj and p1, p2, p3 be defined by Theorem 5.2.4, for i = 1, 2 and j = 1, 2, 3.
If tα1f , tα1∇g and tα1R belong to L2r

T L
p1
x , then

∂tv −∆v +∇P = f (0, T )× RN ,
divv = g (0, T )× RN ,
∂tg = divR (0, T )× RN ,
v|t=0 = 0 RN ,

has a unique solution such that

‖tγ1v‖L2r
T L

p3
x

+ ‖tγ2v‖L∞T Lp3x + ‖tγ3v‖
L2r
T L

3p1
x

+ ‖tγ4v‖
L∞T L

3p1
x

+ ‖tβ1v‖L2r
T L

p2
x

+

+ ‖tβ2v‖L∞T Lp2x + ‖tα1(∂tv, ∇2v, ∇P )‖L2r
T L

p1
x

. ‖tα1(f, ∇g, R)‖L2r
T L

p1
x

(5.70)

Proof. The proof is basically equivalent to the one of Lemma 5.7.1

By (5.58) and the previous Lemma, it follows that

‖tβ1∇δv‖L2r
T L

p2
x

+ ‖tβ2∇δv‖L∞T Lp2x + ‖tγ1δv‖L2r
T L

p3
x

+ ‖tγ2δv‖L∞T Lp3x + ‖tγ3δv‖
L2r
T L

3p1
x

+

+ ‖tγ4δv‖
L∞T L

3p1
x

+ ‖tα1(∂tδv, ∇2δv, ∇δP )‖L2r
T L

p1
x

. ‖tα1(δf1, δf2, δf3, ∇δg, δR)‖L2r
T L

p1
x
,

where we have also used that ‖b0‖L∞x = ‖a0‖L∞x ≤ η. Furthermore, by the second equation of

(5.58) we get tα1δω ∈ L∞T L
p∗1
x , where p∗1 = p1N/(N − p1) is the Lebesgue exponent in the critical

Sobolev embedding

W 1,p1
x ↪→ L

p∗1
x .
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Moreover
‖tα1δω‖

L∞T L
p∗1
x

. ‖tα1(δf4, δf5)‖
L1
TL

p∗1
x

.

By Theorem 5.3.6, Lemma 5.3.7 and Lemma 5.3.8, we get

‖tγ1δh‖L2r
T L

p3
x

+ ‖tγ2δh‖L∞T Lp3x + ‖tγ3δh‖
L2r
T L

3p1
x

+ ‖tγ4δh‖
L∞T L

3p1
x

+

+ ‖tβ1∇δh‖L2r
T L

p2
x

+ ‖tβ2∇δh‖L∞T Lp2x + ‖tα1∇2δh‖L2r
T L

p1
x

. ‖tα1(δf6, δf7, δf8)‖L2r
T L

p1
x
.

Summarizing the last inequalities, we deduce that we have to control the right-hand side of

‖(δv, δh,∇δP )‖Yr,T + ‖tα1∂tδv‖L2r
T L

p1
x

+ ‖tα1δω‖
L∞T L

p∗1
x

. ‖tα1(δf1, δf2, ∇δf3)‖L2r
T L

p1
x

+

+ ‖tα1(δf6, δf7, δf8,∇δg, δR)‖L2r
T L

p1
x

+ ‖tα1(δf4, δf5)‖
L1
TL

p∗1
x

.
(5.71)

Let us now estimate the right-hand side of (5.71) term by term.

Remark 5.7.3. In what follows, we will use repeatedly the following estimates:

tα1 < tα
ε
1 for t ≤ T < 1,

‖∇δA‖L∞T Lp1x . ‖∇2δv‖L1
TL

p1
x

. ‖tα1∇2δv‖L2r
T L

p1
x
,

‖δA‖L∞T Lp2x . ‖∇δv‖L1
TL

p2
x

. ‖tβ1∇δv‖L2r
T L

p2
x
.

Moreover, if we consider p3 =∞ we get also the following estimate

‖t
1
2
− 1

2r h1‖L2r
T L
∞
x

+ ‖t
1
2h1‖L∞T L∞x <∞.

Bounds for tα1δf1. From the definition of δf1, we readily get

‖tα1δf1‖L2r
T L

p1
x

. ‖ Id− tA2‖L∞T L∞x ‖t
α1∇δP‖L2r

T L
p1
x

+ ‖δA‖
L∞T L

p∗1
x

‖tα1∇P‖L2r
T L

N
x
,

where p∗1 = p1N/(N − p1) is the Lebesgue exponent in the critical Sobolev embedding

W 1,p1
x ↪→ L

p∗1
x .

Consequently, recalling (5.59) and observing that LNx ↪→ Lp1
x ∩ Lq1x , we obtain

‖tα1δf1‖L2r
T L

p1
x

. ‖tαε1∇v2‖L2r
T L
∞
x
‖tα1∇δP‖L2r

T L
p1
x

+ ‖∇2δv‖L1
TL

p1
x
‖tα1∇P‖θ

L2r
T L

p1
x
‖tα1∇P‖1−θ

L2r
T L

q1
x
,

for θ determined by 1/N = θ/p1 + (1− θ)/q1. We get

‖tα1δf1‖L2r
T L

p1
x

.

. ‖tαε1∇v2‖L2r
T L
∞
x
‖tα1∇δP‖L2r

T L
p1
x

+ ‖∇2δv‖L1
TL

p1
x
‖tα1∇P‖θ

L2r
T L

p1
x
‖tαε1∇P‖1−θ

L2r
T L

q1
x
,

. ‖tαε1∇v2‖L2r
T L
∞
x
‖tα1∇δP‖L2r

T L
p1
x

+ ‖t−α1‖
L

(2r)′
T

‖tα1∇2δv‖L2r
T L

p1
x

. ‖tαε1∇v2‖L2r
T L
∞
x
‖tα1∇δP‖L2r

T L
p1
x

+ T 1−α1(2r)′‖tα1∇2δv‖L2r
T L

p1
x

Thus there exists a continuous function t→ χ1(t), which goes to 0 for t→ 0 and

‖tα1δf1‖L2rTL
p1
x

. χ1(T )‖(δv, δh, ∇δP )‖Yr,T (5.72)
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Bounds for tα1δf2. From the definition of δf2 and observing that A2
tA2−A1

tA1 = δA tA2+A1
tδA,

we deduce

‖tα1δf2‖L2r
T L

p1
x

. ‖∇(A2
tA2)‖L∞T LNx ‖t

α1∇δv‖
L2r
T L

p∗1
x

+ (‖A2
tA2‖L∞T L∞x + 1)‖tα1∇2δv‖L2r

T L
p1
x

+

+ ‖δA‖
L∞T L

p∗1
x

(‖∇A2‖L∞T LNx + ‖∇A1‖L∞T LNx )‖tαε1∇v1‖L2r
T L
∞
x

+

+ ‖∇δA‖L∞T Lp1x (‖A2‖L∞T L∞x + ‖A1‖L∞T L∞x )‖tαε1∇v1‖L2r
T L
∞
x

+

+ ‖δA‖
L∞T L

p∗1
x

(‖A2‖L∞T L∞x + ‖A1‖L∞T L∞x )‖tα1∇2v1‖L2r
T L

N
x

Again by LNx ↪→ Lp1
x ∩ Lq1x and the critical Sobolev embedding, there exists a continuous function

t→ χ2(t) which goes to 0 for t→ 0, such that

‖tα1δf2‖L2r
T L

p1
x

. χ2(T )‖(δv, δh, ∇δP )‖Yr,T . (5.73)

Bounds for tα1δf3 From the definition of δf3 we get

‖tα1δf3‖L2r
T L

p1
x

. ‖∇δA‖L∞T Lp1x ‖t
1
2
− 1

2r h1‖L2r
T L
∞
x
‖t

1
2h1‖L∞T L∞x +

+ ‖δA‖
L∞T L

p∗1
x

(
‖tβ1∇h1‖L2r

T L
p2
x
‖tγ2h1‖L∞T Lp3x + ‖tβε1∇h1‖L2r

T L
q2
x
‖tγε2h1‖L∞T Lq3x

)
+

+ ‖∇A1‖L∞T LNx ‖t
β1∇δh‖L2r

T L
p2
x
‖tγ2h2‖L∞T Lp3x + ‖∇A1‖L∞T LNx ‖t

γ1δh‖L2r
T L

p2
x
‖tβ2h2‖L∞T Lp3x +

+ ‖A1‖L∞T L∞x ‖t
β1∇δh‖L2r

T L
p2
x
‖tγ2h2‖L∞T Lp3x + ‖A1‖L∞T L∞x ‖t

γ1δh‖L2r
T L

p3
x
‖tβ2∇h2‖L∞T Lp2x +

+ ‖∇A1‖L∞T LNx ‖t
β1∇δh‖L2r

T L
p2
x
‖tγ2h1‖L∞T Lp3x + ‖∇A1‖L∞T LNx ‖t

γ1δh‖L2r
T L

p2
x
‖tβ2h1‖L∞T Lp3x +

+ ‖A1‖L∞T L∞x ‖t
β1∇δh‖L2r

T L
p2
x
‖tγ2h1‖L∞T Lp3x + ‖A1‖L∞T L∞x ‖t

γ1δh‖L2r
T L

p3
x
‖tβ2∇h1‖L∞T Lp2x

Hence, arguing exactly as for (5.72) and (5.73), there exists χ3(t) such that

‖tα1∇δf3‖L2r
T L

p1
x

. χ3(T )‖(δv, δh, ∇δP )‖Yr,T . (5.74)

Bounds for tα1δf6 From the definition of δf6 we get

‖tα1δf6‖L2r
T L

p1
x

. ‖tβ1δA‖L∞T Lp2x ‖t
αε1∇v2‖L2r

T L
∞
x
‖tγ2h2‖L∞T Lp3x +

+ ‖A1‖L∞T L∞x ‖t
β1∇δv‖L2r

T L
p2
x
‖tγ2h2‖L∞T Lp3x + ‖A1‖L∞T L∞x ‖t

β2∇v1‖L2r
T L

p2
x
‖tγ3δh‖L∞T Lp3x ,

Thus
‖tα1δf6‖L2r

T L
p1
x

. χ6(T )‖(δv, δh, ∇δP )‖Yr,T , (5.75)

for an opportune continuous function χ6(t) which goes to 0 when t→ 0.

Bounds for tα1δf7. From the definition of δf7 we have

‖tα1δf7‖L2r
T L

p1
x

. ‖∇A2‖L∞T LNx ‖A2‖L∞T L∞x ‖t
α1∇δh‖

L2r
T L

p∗1
x

+ (‖A2
tA2‖L∞T L∞x + 1)‖tα1∇2δh‖L2r

T L
p1
x

+

+ ‖δA‖
L∞T L

p∗1
x

‖∇(A1, A2)‖L∞T LNx ‖t
αε1∇h1‖L2r

T L
∞
x

+

+ ‖δA‖
L∞T L

p∗1
x

(‖A1‖L∞T L∞x + ‖A2‖L∞T L∞x )‖tα1∇2h1‖L2r
T L

N
x
,
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which yields that there exists a continuous function χ7(t) ≥ 0, with χ7(0) = 0, such that

‖tα1δf7‖L2r
T L

p1
x

. χ7(T )‖(δv, δh, ∇δP )‖Yr,T . (5.76)

Bounds for tα1δf8. From the definition of δf8 we get

‖tα1δf9‖L2r
T L

p1
x

. ‖tβ1δh‖L2r
T L

p3
x
‖tβ2∇h2‖L∞T Lp2x ‖ω2‖L∞T L∞x + ‖tβ2h1‖L∞T Lp3x ‖t

β1∇δh‖L2r
T L

p2
x
×

×‖ω2‖L∞T L∞x + ‖tβ2h1‖L∞T Lp3x ‖t
β2∇h1‖L∞T Lp2x ‖t

− 1
2
− 1

2r ‖
L

2r
r−1−ε̄
T

‖t
1
2 δω‖L∞T L∞x

For ε̄ small enough, that is,

‖tα1δf8‖L2r
T L

p1
x

. χ9(T )
{
‖(δv, δh, ∇δP )‖Yr,T + ‖t

1
2 δω‖L∞T L∞x

}
. (5.77)

Bounds for tα1∇δg. By the definition of δg we get

‖tα1∇δg‖L2r
T L

p1
x

. ‖∇A2‖L∞T LNx ‖t
α1∇δv‖

L2r
T L

p∗1
x

+ ‖ Id−A2‖L∞T L∞x ‖t
α1∇2δv‖L2r

T L
p1
x

+

+ ‖∇δA‖L∞T Lp1x ‖t
αε1∇v1‖L2r

T L
∞
x

+ ‖δA‖
L∞T L

p∗1
x

‖tα1∇2v1‖L2r
T L

N
x
.

We deduce that there exists a continuous function χg(t) with χg(0) = 0 such that

‖tα1∇δg‖L2r
T L

p1
x

. χg(T )‖(δv, δh, ∇δP )‖Yr,T . (5.78)

Bounds for tα1δR. From the definition of δR we have

‖tα1δR‖L2r
T L

p1
x

. ‖tβ2∇v2‖L∞T Lp2x ‖t
γ1δv‖L2r

T L
p3
x

+ ‖ Id−A2‖L∞T L∞x ‖t
α1∂tδv‖L2r

T L
p1
x

+

+ ‖tβ1∇δv‖L2r
T L

p2
x
‖tγ2v1‖L∞T Lp3x + ‖δA‖

L2r
T L

p∗1
x

‖tα1∂tv1‖L2r
T L

N
x
,

Thus, there exists a continuous function χR(t) with χR(0) = 0 such that

‖tα1δR‖L2r
T L

p1
x

. χR(T )
{
‖(δv, δh, ∇δP )‖Yr,T + ‖tα1∂tδv‖L2r

T L
p1
x

}
. (5.79)

Bounds for tα1δf4. From the definition of δf4 it follows

‖tα1δf4‖
L1
TL

p∗1
x

. ‖tβ1∇δh‖L2r
T L

p2
x
‖tγ2(h1, h2)‖L∞T Lp3x ‖(ω1, ω2)‖L∞T L∞x + ‖tγ1δh‖L2r

T L
p2
x
×

×‖tγ2∇(h1, h2)‖L∞T Lp3x ‖(ω1, ω2)‖L∞T L∞x + ‖tβ1δh‖L2r
T L

p2
x
‖tγ2(h1, h2)‖L∞T Lp3x ‖∇(ω1, ω2)‖L2r

T L
∞
x

+

+ ‖t
1
2h1‖2L∞T L∞x ‖t

α1δω‖
L∞T L

p∗1
x

Therefore, we obtain

‖tα1δf4‖
L1
TL

p∗1
x

. χ4(T )
{
‖(δv, δh, ∇δP )‖Yr,T + ‖tα1δω‖

L∞T L
p∗1
x

}
. (5.80)

Bounds for tγ1δf5. By definition

‖tγ1δf5‖
L1
TL

p∗1
x

. ‖tα1δA‖
L∞T L

p∗1
x

‖∇h2‖L1
TL
∞
x

+ ‖A1‖L2rTL∞x
‖tα1∇δh‖

L2r
T L

p∗1
x

. ‖tα1∇2δv‖L2r
T L

p1
x
‖∇h2‖L1

TL
∞
x

+ ‖A1‖L2rTL∞x
‖tα1∇2δh‖L2r

T L
p1
x
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hence
‖tα1δf5‖

L1
TL

p∗1
x

. χ5(T )‖(δv, δh, ∇δP )‖Yr,T . (5.81)

with χ5 as the previous functions.

Summarizing points (5.72), (5.73), (5.74), (5.75), (5.76), (5.77), (5.78), (5.79), (5.80) and (5.81),
we finally obtain

|(δv, δh,∇δP )‖Yr,T + ‖tα1∂tδv‖L2r
T L

p1
x

+ ‖tα1δω‖
L∞T L

p∗1
x

.

χ(T )
{
|(δv, δh,∇δP )‖Yr,T + ‖tα1δω‖

L∞T L
p∗1
x

+ ‖tα1∂tδv‖L2r
T L

p1
x

}
where χ stands for

∑
i χi. Thus, for T sufficiently small, the left-hand side has to be 0. This

proves the uniqueness at least in small time interval. Then uniqueness part can be completed by a
bootstrap method. This concludes the proof of Theorem 5.2.6.

5.8 Estimates

Lemma 5.8.1. Let the operator C be defined as in Lemma 5.3.5. Consider T ∈ (0,∞], ε ≥ 0 small
enough, 1 < r̄ < ∞, and moreover suppose that q, q̃ satisfy N/2 < q < N/(1 − ε), max{N, q} <
q̃ ≤ ∞. Let αε, γε and γ̄ε be defined by

αε :=
1

2

(
3− N

q
− ε
)
− 1

r̄
, γε :=

1

2

(
1− N

q̃
− ε
)
− 1

r̄
and γ̄ε :=

1

2

(
1− N

q̃
− ε
)
.

If tα
ε
f(t) belongs to Lr̄(0, T ;Lqx) then tγ

εCf(t) belongs to Lr̄(0, T ;Lq̃x). Furthermore there exist
Cε = Cε(q, q̃, r̄) > 0 such that

‖tγεCf(t)‖
Lr̄(0,T ;Lq̃x)

≤ Cε‖tα
ε
f(t)‖Lr̃(0,T ;Lqx). (5.82)

Moreover, if r̄ > 2 and Nr̄/(2r̄ − 2) < q, then tγ̄
εCf(t) belongs to L∞(0, T ;Lq̃x) and there exists a

positive constant C̄ε = C̄ε(q, q̃, r̄) such that

‖tγ̄εCf(t)‖
L∞(0,T ;Lq̃x)

≤ C̄ε‖tα
ε
f(t)‖Lr̄(0,T ;Lqx). (5.83)

Proof. Recalling (5.12) we have

‖tγεCf(t)‖
Lq̃x

.
ˆ t

0

1

|t− s|
N
2

(
1
q
− 1
q̃

) ‖f(s)‖Lqxds.

Defining F (s) := ‖sαεf(s)‖Lqx , by a change of variable s = tτ and because γε − αε + 1 = (1/q −
1/q̃)N/2, we get that

tγ
ε‖Cf(t)‖

Lq̃x
.
ˆ 1

0

1

|1− τ |
N
2

(
1
q
− 1
q̃

) τ−αεF (tτ)dτ.

Applying Minkowski inequality, we deduce that

‖tγεCf(t)‖
Lr̄tL

q̃
x
.
ˆ 1

0

1

|1− τ |
N
2

(
1
q
− 1
q̃

) τ−αε(ˆ Tτ

0
F (tτ)r̄dt

) 1
r̄
dτ,
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which yields

‖tγεCf(t)‖
Lr̄tL

q̃
x
.
ˆ 1

0

1

|1− τ |
N
2

(
1
q
− 1
q̃

) τ−αε− 1
r̄ dτ‖tαε1f(t)‖Lr1 (0,T ;L

q1
x ).

Thus, because (1/q − 1/q̃)N/2 < 1 and 0 < 1/2(3−N/q − ε) < 1, we obtain inequality (5.82).

On the other hand, observing that

tγ̄
ε‖Cf(t)‖

Lq̃x
.
ˆ t

0

tγ̄
ε
s−α

ε

|t− s|
N
2

(
1
q
− 1
q̃

)F (s)ds .
(ˆ t

0

tγ̄
εr̄′s−α

εr̄′

|t− s|
N
2

(
1
q
− 1
q̃

)
r̄′

ds
) 1
r̄′ ‖tαεf(t)‖Lr̄(0,T ;Lqx).

By a change of variable s = tτ and because γ̄εr̄′ − αεr̄′ − (1/q − 1/q̃)Nr̄′/2 + 1 = 0, we obtain

tγ
ε
2‖Cf(t)‖Lq2x .

(ˆ 1

0

τ−α
εr̄′

|1− τ |
N
2

(
1
q
− 1
q̃

)
r̄′

dτ

) 1
r̄′

‖tαε1f(t)‖Lr̄(0,T ;L
q1
x ).

Since q > Nr̄/(2r̄− 2) yields (1/q− 1/q̃)N/2 < 1/r̄′ and q < N/(1− ε) implies αεr̄′ < 1, we obtain
(5.83), which completes the proof of the Lemma.

Lemma 5.8.2. Let the operators B be defined as in Lemma 5.3.3. Consider T ∈ (0,∞], ε ≥ 0
small enough, 1 < r̄ <∞, and moreover suppose that q, q̄ satisfy N/2 < q < N/(1− ε) and q ≤ q̄
such that 1/q − 1/q̄ < 1/N . Let αε be defined as in Lemma 5.8.1 and βε and β̄ε be defined by

β̄ε :=
1

2

(
2− N

q̄
− ε
)

and βε :=
1

2

(
1− N

q̄
− ε
)
− 1

r̄
.

If tα
ε
f(t) belongs to Lr̄(0, T ;Lqx) then tβ

εBf(t) belongs to Lr̄(0, T ;Lq̄x) and there exists a positive
constant Cε = Cε(q, q̄, r̄) such that

‖tβεBf(t)‖Lr̄(0,T ;Lq̄x) ≤ C̄ε‖t
αεf(t)‖Lr̄(0,T ;Lqx). (5.84)

Moreover, if r̄ > 2, Nr̄/(2r̄ − 2) < q and q̄ < Nr then tβ̄
εBf(t) belongs to L∞(0, T ;Lq̄x) and there

exists a positive constant C̄ε = C̄ε(q, q̄, r̄) such that

‖tβ̄εBf(t)‖L∞(0,T ;Lq̄x) ≤ Cε‖t
αεf(t)‖Lr̄(0,T ;Lqx). (5.85)

Proof. At first, recalling (5.9), we get that

tβ
ε‖Bf(t)‖Lq̄x . tβ

ε

ˆ t

0

1

|t− s|
N
2

(
1
q
− 1
q̄

)
+ 1

2

‖f(s)‖Lqxds.

Defining F (s) := ‖sαεf(s)‖Lqx , by a change of variable s = tτ and because βε − αε + 1 = 1/2 +
(1/q − 1/q̄)N/2, we get that

tβ
ε‖Bf(t)‖Lq̄x .

ˆ 1

0

1

|1− τ |
N
2

(
1
q
− 1
q̄

)
+ 1

2

τ−α
ε
F (tτ)dτ.
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Applying Minkowski inequality, we deduce that

‖tβεBf(t)‖Lr̄tLq̄x .
ˆ 1

0

1

|1− τ |
N
2

(
1
q
− 1
q̄

)
+ 1

2

τ−α
ε
(ˆ Tτ

0
F (tτ)r̄dt

) 1
r̄
dτ, (5.86)

which yields

‖tβεBf(t)‖Lr̄tLq̄x .
ˆ 1

0

1

|1− τ |
N
2

(
1
q
− 1
q̄

)
+ 1

2

τ−α
ε− 1

r̄ dτ‖tαεf(t)‖Lr̄(0,T ;Lqx).

Because 0 < (1/q− 1/q̄)N/2 + 1/2 < 1 and 0 < 1/2(3−N/q− ε) < 1, we deduce inequality (5.84).

For the second inequality, proceeding in a similar way of the previous Lemma, we obtain that

tβ
ε
2‖Bf(t)‖Lq̄x .

(ˆ t

0

tβ
εr̄′s−α

εr̄′1

|t− s|
N
2

(
1
q
− 1
q̄

)
r̄′+ 1

2
r̄′

ds

) 1
r̄′

‖tαεf(t)‖Lr̄(0,T ;Lqx)

By a change of variable s = tτ and because βεr̄′−αεr̄′− (1/q−1/q̄)Nr̄′/2− r̄′/2+1 = 0, we obtain

tβ
ε‖Bf(t)‖Lq̄x .

(ˆ 1

0

τ−α
εr̄′

|1− τ |
N
2

(
1
q
− 1
q̄

)
r̄′+ 1

2
r̄′

dτ

) 1
r̄′

‖tαεf(t)‖Lr̄(0,T ;Lqx).

Since by the hypotheses we can deduce αε1r̄
′ < 1 and (1/q− 1/q̄)Nr̄′/2 + r̄′/2 < 1 then there exists

Cε > 0 such that
‖tβεBf(t)‖L∞(0,T ;Lq̄x) ≤ Cε‖t

αεf(t)‖Lr̄(0,T ;Lqx)

Lemma 5.8.3. Let 1 < r̄ < ∞, q > Nr̄/(2r̄ − 2) and σ := 1 − N/(2q) − 1/r̄. Let us suppose
that tσf belongs to Lr̄(0, T ;Lqx) with T ∈ (0,∞]. Then Cf belongs to L∞(0, T ;L∞x ) and for every
t ∈ (0, T )

‖Cf(t)‖L∞x ≤ Cr̄‖s
σf‖Lr̄(0,t;Lqx),

where Cr̄r is a positive constant dependent only by r̄.

Proof. Recalling (5.12) we get

‖Cf(t)‖L∞x ≤
ˆ t

0

1

|t− s|
N
2

1
q sσ

F (s)ds,

for every t ∈ (0, T ), where F (s) = sσ‖f(s)‖L∞x . By the change of variable s = t τ we obtain

‖Cf(t)‖L∞x ≤
ˆ 1

0

1

|1− τ |
N
2

1
q τσ

F (t τ)t
1−N

2
1
q
−σ

ds =

ˆ 1

0

1

|1− τ |
N
2

1
q τσ

F (t τ)t
1
r̄ ds.

Hence, by Hölder inequality, it follows

‖Cf(t)‖L∞x ≤
(ˆ 1

0

1

|1− τ |
N
2

1
q
r̄′

dτ
) 1
r̄′
(ˆ 1

0
|F (t τ)|rtdτ

) 1
r
.
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Since r̄′N/(2q) < 1, we finally get

‖Cf(t)‖L∞x ≤ Cr̄
(ˆ 1

0
|F (t τ)|rtdτ

) 1
r

= Cr̄‖sσf‖Lr̄(0,t;Lqx).

Finally we enunciate the following Lemma, which proof is basically equivalent to the previous one.

Lemma 5.8.4. Let 2 < r̄ <∞, q > Nr̄/(r̄− 2) and σ := (1−N/q)1/2− 1/r̄. Let us suppose that
tσf belongs to Lr̄(0, T ;Lqx) with T ∈ (0,∞]. Then Bf and t−1/2Cf belong to L∞(0, T ;L∞x ) and for
every t ∈ (0, T )

‖Bf(t), t−
1
2Cf(t)‖L∞x ≤ Cr̄‖s

σf‖Lr̄(0,t;Lqx),

where Cr̄ is a positive constant dependent only by r̄.

5.9 Technical Results for the Heat and Stokes equations

We consider the following system, composed by an Heat equation and a free Stokes equation with
a linear perturbation: 

∂tu+ v · ∇u−∆u+∇Π = f1 R+ × RN ,
∂td−∆d = f2 R+ × RN ,
div u = 0 R+ × RN ,
(u, d)|t=0 = (u0, d0) RN ,

(5.87)

where d0 ∈ L∞x and (u0, ∇d0) belongs to Ḃ
N/p−1
p,r with 1 < p < N and 1 < r < ∞. Propositions

5.9.1 and Proposition 5.9.2 concern the existence of a solution (u, d, ∇Π), which belong to Xr,T
and Yr,T respectively. For p less than (or equal to) the critical exponent Nr/(3r− 2) we can solve
our system in a functional framework based only on some regularizing effects for the heat kernel in
LpLq spaces. However, if p exceeds this critical value, in order to handle this less of regularity we
have the add a weight in time.
Proposition 5.4.1 requires the following result:

Proposition 5.9.1. Let 1 < r ≤ 2 and 1 < p ≤ Nr/(3r − 2). Suppose that f1, ∇f2 belong to

LrTL
N3/(3r−2)
x , f2 ∈ L1

TL
∞
x ∩LrTL

Nr/2(r−1)
x , ∇f2 belongs to L

6r/5
T L

3Nr/(6r−2)
x . Assume that v belongs

to L2r
T L

Nr/(r−1)
x and its norm is small enough. Let us assume that d0 takes value in SN−1, u0, ∇d0

belong to Ḃ
N/p−1
p,r and condition (5.4) is satisfied. Then there exists (u, d, ∇Π) solution of (5.87)

such that d belongs to L∞T L
∞
x , (u, ∇d, ∇Π) belongs to Xr,T and (u, ∇d) belongs to L2

TL
∞
x .

Proof. The case of the simple heat equation in d is provided by the Mild formulation, namely

d(t) = et∆d0 +

ˆ t

0
e(t−s)∆f2(s)ds = et∆d0 + Cf2(t). (5.88)

We immediately get d ∈ L∞T L∞x and its norm is bounded by ‖d0‖L∞x +
´ t

0 ‖f2(s)‖L∞x ds. Moreover,

by Corollary 5.3.11.1, because ∇d0 ∈ Ḃ
N/p−1
p,r ↪→ Ḃ

−1/r
Nr/(r−1),2r, we deduce that et∆∇d0 belongs

L2r
T L

Nr/(r−1)
x . the integral part ∇Cf2(t) = C∇f2(t) is handled by Lemma 5.3.5 with r1 = r,

r2 = 2r q1 = Nr/(3r− 2) and q2 = Nr/(r− 1). Similarly, because ∇2d0 belongs to Ḃ
−1/r
Nr/(2r−1),2r ∩
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Ḃ
−2/r
Nr/(2r−2),r, we get∇et∆∇d0 ∈ L2r

T L
Nr/2r−1
x ∩LrTL

Nr/(2r−2)
x and by Lemma 5.3.3 we obtain B∇f2 ∈

L2r
T L

Nr/2r−1
x ∩ LrTL

Nr/(2r−2)
x . Observing also that Ḃ

N/r−1
p,r is embedded in Ḃ

−2/3r
3Nr/(3r−2),3r, again by

Corollary 5.3.11.1 we get that et∆∇d0 belongs to L3r
T L

3Nr/(3r−2)
x . The same property is fulfilled

by Bf2 = C∇f2, using Lemma 5.3.3 with r1 = 6r/5 and q1 = 3Nr/(6r − 5). At last, since

∇3d0 ∈ Ḃ−2/r
Nr/(3r−2),r we deduce again by Corollary 5.3.11.1 that∇2et∆∇d0 belongs to LrTL

Nr/(3r−2)
x ,

while the same result is allowed for A∇f2 by Theorem 5.3.2. Hence, (u, ∇d, ∇Π) belongs to Xr,T
at least for the terms related to d. Furthermore, since ∇d0 belongs to Ḃ−1

∞,2 (here the necessary

condition r ≤ 2) we get et∆∇d0 ∈ L2
TL
∞
x and by Lemma 5.3.3 with r1 = r, r2 = 2, q1 = Nr/(r− 1)

and q2 =∞, we deduce that Bf2 belongs to L2
TL
∞
x , that is ∇d ∈ L2

TL
∞
x

Concerning the Stokes equation with the v-linear perturbation the mainly idea is to use the Fixed-
Point Theorem on the space X̃r,T determined by

X̃r,T :=
{

(u, ∇Π) such that (u, d, ∇Π) ∈ Xr,T
}
.

Indeed, let (ωi, ∇Pi) belong to X̃r,T , for i = 1, 2, and let us define

ui(t) := et∆u0 +

ˆ t

0
e(t−s)∆{− v · ∇ωi −∇Pi + f1(s)

}
ds,

∇Πi := −RR ·
{
v · ∇ωi + f1

}
,

(5.89)

then we have (ui, ∇Pi) ∈ X̃r,T , by the same techniques used for d. Moreover, subtracting in i,
δu := u1 − u2, δ∇Π := ∇Π1 −∇Π2, δω := ω1 − ω2 and δ∇P := ∇P1 −∇P2, we get

‖(δu, δ∇Π)‖X̃r,T . ‖v‖
L2r
T L

Nr
r−1
x

‖(δω, δP )‖X̃r,T .

Thus, by the Fixed-Point Theorem, on the condition ‖v‖
L2r
T L

Nr/(r−1)
x

small enough, there exists

(u, d,∇Π) solution for (5.87), with the properties described by the statement. This concludes the
proof of Proposition 5.9.1.

Now we extend the range of r to (1, ∞) and we consider an index of integrability p greater than
the critical Nr/(3r − 2). As already mentioned, here the addition of a weight in time is necessary.
The following result is used in proposition 5.4.2.

Proposition 5.9.2. Let 1 < r <∞ and Nr/(3r− 2) < p < N . Recalling the notation of Theorem

5.2.4, let us suppose that tα1(f1, ∇f2) belongs to L2r
T L

p1
x and t2γ1f2 belongs to LrTL

p3/2
x . Assume

that tγ1 ∈ L2r
T L

p3
x and its norm is small enough. Let d0 and u0 be defined as in Proposition 5.9.1.

Then there exists (u, d, ∇Π) ∈ Yr,T solution of (5.87), with d ∈ L∞T L∞x .

Proof. The proof is basically equivalent to the one of Proposition 5.9.1. At first, by (5.88) and
Lemma 5.8.3, we get

‖d‖L∞T L∞x . ‖d0‖L∞x + ‖t2γ1f2‖
LrTL

p3
2
x

.

Recalling Theorem 5.3.11, by ∇d0 ∈ ḂN/p3−1
p3,2r

, ∇2d0 ∈ ḂN/p2−1
p2,2r

and ∇3d0 ∈ ḂN/p1−1
p1,2r

, we get that

tγ1et∆∇d0 ∈ L2r
T L

p3
x , tβ1∇et∆∇d0 ∈ L2r

T L
p2
x and tα1et∆∇d0 ∈ L2r

T L
p1
x . Similarly tγ2et∆∇d0 ∈ L∞T L

p3
x

and we get also tβ2∇et∆∇d0 ∈ L∞T L
p2
x . Because ∇d0 ∈ ḂN/(3p1)−1

3p1,2r
we get tγ3et∆∇d0 ∈ L2r

T L
3p1
x and

tγ4et∆∇d0 belongs to L∞T L
3p1
x .
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Using Lemma 5.8.1 and Lemma 5.8.2 with ε = 0, q = p1, q̃ = p2, q̄ = p3 or q̄ = 3p1, we deduce the
previous results for C∇f2 instead of et∆∇d0 (observing also that ∇C = B and ∇2C = A). Thus ∇d
fulfils all the condition imposed by Yr,T .
To conclude the proof, we use the Fixed-Point Theorem. Denoting Ỹr,T the set composed by the
couples (u, ∇Π) such that (u, d, ∇Π) belongs to Yr,T , we consider (ωi, ∇Pi) ∈ Ỹr,T , for i = 1, 2.
Thus, defining (ui,∇Πi) by (5.89), we have

‖(δu, δ∇Π)‖X̃r,T . ‖tγ1v‖L2r
T L

p3
x
‖(δω, δP )‖X̃r,T ,

hence there exists (u, d, ∇Π) ∈ Yr,T solution of (5.87), and this concludes the proof.



Chapter 6

Corotational Beris-Edwards model

In this chapter we present the results of the following manuscript:

F. De Anna, A Global 2D well-posedness result on the order tensor liquid crystal theory, submitted
(2015)

The reader should consider the results achieved in this chapter as an introduction to the ones
of chapter 7, where we study the general Beris-Edwards system. The complexity of the general
system requires a very deep analysis, making use of particular structural features. In this chapter,
the difficulties coming from the corotational Beris-Edwards system are more handleable, then they
should make the reader familiar with some specifics of the system, which will be useful when
considering the general model in Chapter 7.

6.1 Introduction and main results

The theory of liquid crystal materials has attracted much attention over the recent decades. Gen-
erally, the physical state of a material can be determined by the motion degree of freedom about
its molecules. Certainly, the widespread physical states of matter are the solid, the liquid and
the gas ones. If the movement degree of freedom is almost zero, namely the forces which act on
the molecules don’t allow any kind of movement, forcing the material structure to be confined in
a specific order, then we are classifying a solid material. If such degree still preserves a strong
intermolecular force but it is not able to restrict the molecules to lie on a regular organization,
then we are considering a fluid state of matter. Finally in the gas phase the forces and the distance
between the molecules are weak and large respectively, so that the material is not confined and it
is able to extend its volume.

However, some materials possess some common liquid features as well as some solid properties,
namely the liquid crystals. As the name suggests, a liquid crystal is a compound of fluid molecules,
which has a state of matter between the ordinary liquid one and the crystal solid one. The molecules
have not a positional order but they assume an orientation which can be modified by the velocity
flow. At the same time a variation of the alignment can induce a velocity field as well. In a common
liquid (more correctly an isotropic liquid) if we consider the orientation of a single molecule then we
should see the random variation of its position. Nevertheless, in a crystal liquid, we see an amount
of orientational order.

It is well-documented that liquid crystals have been well-known for more than a century, however
they have received a growth in popularity and much study only in recent decades, since they have
attracted more attention thanks to their potential applications (see for instance [90]).

93
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Commonly, in literature the liquid crystals are categorized by three sub-families, namely the ne-
matics, the cholesterics and the smectics. On a nematic liquid crystal, the molecules have the same
alignment with a preferred direction, however their positions are not correlated. On a cholesteric
liquid crystal we have a foliation of the material where, on each plaque, the molecules orient
themselves along the same direction (which can depend on the foliation). As in the nematic case, a
cholesteric liquid crystal doesn’t require any kind of relation between the positions of the molecules.
At last, on a smectic liquid crystal we have still a privileged direction for all the molecules, as in
the nematic case, however the position of them is bonded by a stratification. In addition to the
orientational ordering, the molecules lie in layers.

6.1.1 The Order Tensor Theory

A first mathematical approach to model the generic liquid crystals was proposed by Ericksen [41]
and Leslie [69] over the period of 1958 through 1968. Even if they presented a system which has been
extensively studied in literature, for instance in [79] and [117], several mathematical challenges and
difficulties reside in such model. Hence, in 1994, Baris and Edwards [12] proposed an alternative
approach based on the concept of order Q-tensor, that one can find also in physical literature, for
example [35] and [109]. The reader can find an exhaustive introduction to the Q-tensor Theory
in a recent paper of Mottram and Newton [92], however we present here some hints in order to
introduce the Q-tensor system.

Let us assume that our material lies on a domain Ω of R3. A first natural strategy to model the
molecules orientation is to introduce a vector field d, the so called director field (see for instance [80],
which returns value on S2, the boundary of the unit sphere on R3. Here d(t, x) is a specific vector
for any fixed time and for any x ∈ Ω. Instead of considering a precise vector d(t, x) on S2, an
alternative approach is to establish the probability that this vector belongs to some measurable
subset A ⊆ S2. Therefore we introduce a continuously distributed measure P on S2, driven by a
density ρ

P(A) =

ˆ
P∈A

ρ(P )dσ(P ) =

ˆ
P∈A

dρ(P ).

We supposed the molecules to be unpolar, so that there is no difference between the extremities
of them, so mathematically the probability P(A) is always equal to P(−A), which yields that the
first order momentum vanishes: ˆ

P∈S2

ρ(P )dσ = 0.

Now considering the second order momentum tensor, given by

M :=

ˆ
P∈S2

P ⊗ Pdρ(P ) =

(ˆ
P∈S2

PiPjdρ(P )

)
i,j=1,2,3

∈M3(R),

where M3(R) denotes the 3× 3 matrices with real coefficients, we observe that M is a symmetric
matrix and it has trace trM = 1.

In the presence of an isotropic liquid, the orientation of the molecules is uniform in every direction,
hence in this case the probability P0 is given by

P0(A) =

ˆ
P∈A

dσ(P ),

so that the corresponding second order momentum M0 is exactly Id /3. We denote by Q the
difference between a general M and M0 obtaining a tensor which is known as the de Gennes order
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parameter tensor. Roughly speaking, Q interprets the deviation between a general liquid crystal
and an isotropic one. From the definition, it is straightforward that Q is a symmetric tensor and
moreover it has null trace. If Q assumes the form s+(d⊗d− Id /3), where s+ is a suitable constant,
then the system which models the liquid crystal (and we are going to present) reduces to the
widespread Ericksen-Leslie system (see for instance [12]).

6.1.2 The Q-Tensor System

The present work is devoted to the global solvability issue for the following system as an evolutionary
model for the liquid crystal hydrodynamics:

∂tQ+ u · ∇Q− ΩQ+QΩ = ΓH(Q) R+ × R2,

∂tu+ u · ∇u− ν∆u+∇Π = Ldiv { Q∆Q−∆QQ−∇Q�∇Q } R+ × R2,

div u = 0 R+ × R2,

(u, Q)t=0 = (u0, Q0) R2,

(P )

Here Q = Q(t, x) ∈M3(R) denotes the order tensor, u = u(t, x) ∈ R3 represents the velocity field,
Π = Π(t, x) ∈ R stands for the pressure, everything depending on the time variable t ∈ R and on
the space variable x ∈ R2. The symbol ∇Q�∇Q denotes the 3× 3 matrix whose (i, j)-th entry is
given by tr(∂iQ∂jQ), for i, j = 1, 2, 3. Moreover Γ, ν and L are three positive constants.

The left hand side of the order tensor equation is composed by a classical transport time derivative
while, defining Ω as the antisymmetric matrix Ω := (∇u− t∇u)1/2, QΩ− ΩQ is an Oldroyd time
derivative and describes how the flow gradient rotates and stretches the order parameter. On the
right-hand-side, H(Q) denotes

H(Q) := −aQ+ b
(
Q2 − tr(Q2)

Id

3

)
− c tr(Q2)Q︸ ︷︷ ︸

P (Q)

+L∆Q,

and P is the so called Landau-de Gennes thermotropic forces (more precisely it is a truncated
taylor expansion about the original one, see for instance [104]). Here a, b and c are real constant,
and from here on we are going to assume c to be positive.

In reality, (P ) is a simplification of a more general system. More precisely, fixing a real ξ ∈ [0, 1],
we consider 

∂tQ+ u · ∇Q− S(∇u,Q) = ΓH(Q) R+ × R2,

∂tu+ u · ∇u− ν∆u+∇Π = div {τ + σ} R+ × R2,

div u = 0 R+ × R2,

(u, Q)t=0 = (u0, Q0) R2,

(Pξ)

where S(∇u, Q) stands for

S(Q,∇u) := (ξ D + Ω)
(
Q+

Id

3

)
+
(
Q+

Id

3

)
(ξ D − Ω)− 2ξ

(
Q+

Id

3

)
tr(Q∇u),

with D := (∇u+ t∇u)1/2. Moreover τ and σ are the symmetric and antisymmetric part of the the
additional stress tensor respectively, namely

τ := −ξ(Q+
Id

3
)H(Q)− ξH(Q)(Q+

Id

3
)+
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+ 2ξ(Q+
Id

3
)tr{QH(Q)} − L{∇Q�∇Q+

Id

3
|Q|2},

σ := QH(Q)−H(Q)Q.

Here ξ is a molecular parameter which describes the rapport between the tumbling and aligning
effect that a shear flow exert over the liquid crystal directors. From here on, we are going to
consider the simplest case ξ = 0, which leads to system (P ).

Before going on, let us recall what we mean by a weak solution of system (P ).

Definition 6.1.1. Let Q0 and u0 be a 3×3 matrix a 3-vector respectively, whose components belong
to L2(R2). We say that (u, Q) is a weak solution for (P ) if u belongs to L∞loc(R+, L

2
x)∩L2

loc(R+, Ḣ
1),

Q belongs to C(R+, H
1) ∩ L2

loc(R+, Ḣ
2) and (P ) is fulfilled in the distributional sense.

6.1.3 Some Developments in the order tensor Theory

Although the Q-tensor theory has received more attention in several disciplines as Physics [90],
numerical analysis [86], mathematical analysis [92], the solvability study of the related system has
not received numerous investigations, yet. We recall here some recent results.

in [113], D. Wang, X. Xu and C. Yu developed the existence and long time dynamics of globally
defined weak solution. In their paper, system (P ) is considered in the compressible and inhomoge-
neous setting, the fluid density ρ not necessarily constant, described by a transport equation, and
moreover a pressure dependent on ρ.

In [42] J. Fahn and T. Ozawa proved some regularity criteria for a local strong solution of system
(P ).

In [99], M. Paicu and A. Zarnescu first showed the existence of a Lyapunov functional for system
(P ). Then they proved the existence of a weak solution thanks to a Friedrichs scheme. They also
showed the propagation of higher regularity, namely Hs(R2)×H1+s(R2) for (u, Q), with s > 1. At
last they established an uniqueness result on the condition that one of the two considered solutions
is a strong-solution, that is they proved the so-called weak-strong uniqueness.

In [98] M. Paicu and A. Zarnescu proved existence of weak solutions for system (Pξ) when ξ is a
general value of [0, ξ0] for some 0 < ξ0 < 1.

In [53] F. G. Guillén-Gonzàlez and L. A. Rodŕıquez-Bellido established the existence and uniqueness
of a local in time weak solution on a bounded domain. They also gave a regularity criterion which
yields such solutions to be global in time. Moreover they proved the global existence and uniqueness
of strong solutions provided a viscosity large enough.

In [54] F. G. Guillén-Gonzàlez and L. A. Rodŕıquez-Bellido proved the existence of global in time
weak-solutions, an uniqueness criteria and a mximum principle for Q. They also established the
traceless and symmetry for Q, for any weak solution.

6.1.4 Main Results

Article [99] is probably one of the best-known research interesting the solvability of (P ), globally
in time and in the whole space. Nevertheless they results can be improved and this work is mainly
devoted to this purpose.

First Paicu and Zarnescu proved an uniqueness result on the condition that at least one of the
considered solutions is a strong solution. This is due to the necessity to control (u(t), ∇Q(t))
in L∞(R2), which leads to control (u(t), ∇Q(t)) in Hs(R2) with s > 1, thanks to the Sobolev
Embedding Hs(R2) ↪→ L∞(R2). Assuming s > 1, they imposed one of the two solutions to be a



6.1. INTRODUCTION AND MAIN RESULTS 97

classical solution. Their approach is to estimate the difference between two solutions in the same
functional space the solutions belong to, i.e. in an L2(R2)-setting.

In this work, we improve their result making use of a strategy which is inspired by [48] and [88].
Indeed, since the difference between two solutions has null initial datum, then it is possible to
estimate such difference in a functional space with a lower regularity than the one related to the
existence part, namely in an H−1/2(R2)-functional framework. We will see that this allows us to
avoid the problem of controlling the L∞(R2) norm, so that we are able to prove the following result:

Theorem 6.1.2. Let us assume that system (P ) admits two weak solutions (ui, Qi), i = 1, 2, in
the sense of of definition 6.1.1. Then such solutions are equal, (u1, Q1) ≡ (u2, Q2).

The second (and last) gap concerns the propagation of regularity. Paicu and Zarnescu consider
initial data (u0, Q0) in Hs(R2) × H1+s(R2), with s greater than 1. Then, they are able to prove
that such high-regularity is preserved by the related solution of (P ). Denoting by

f(t) := ‖u(t)‖2
Ḣs + ‖∇Q(t)‖2

Ḣs , g(t) := ‖∇u(t)‖2
Ḣs + ‖∆Q(t)‖2

Ḣs ,

the major part of their proof releases on the Osgood lemma, applied on an inequality of the following
type:

d

dt
f(t) + g(t) ≤ Cf(t) ln{e+ f(t)}, t ∈ R+,

for a suitable positive constant C. However such estimate requires again to control the norm
‖(u(t), ∇Q(t))‖L∞ by ‖(u(t), ∇Q(t))‖Hs , and this is true only if s is greater than 1. We fix such
lack, namely we extend the propagation for 0 < s, passing through an alternative approach. Indeed
we control the L∞-norm by a different method (see Lemma 6.7.2 and (6.38)). Thus, our second
result reads as follows:

Theorem 6.1.3. Assume that (u0, Q0) belongs to Hs(R2) × H1+s(R2), with 0 < s. Then, the
solution (u, Q) given by Theorem 6.1.4 fulfills

(u, ∇Q) ∈ L∞t,locḢs(R2) ∩ L2
t,locḢ

s+1(R2).

Now, we have also chosen to perform an existence result, for the sake of completeness, although
it was proven by Paicu and Zarnescu. Nevertheless, here we use an alternative approach. Indeed
in [99], the authors utilize a Friedrichs scheme, regularizing every equation of (P ), while our
method is based on a coupled technique between the Friedrichs scheme and the Schaefer’s fixed
point theorem, regularizing only the momentum equation of (P ). This method is inspired by [77],
where F. Lin use a modified Galerkin method coupled with the Schauder fixed point theorem, in
the proof of an existence result. Then our last result reads as follows:

Theorem 6.1.4. Assume that (u0, Q0) belongs to L2(R2) × H1(R2), then system (P ) admits a
global in time weak solution (u, Q), in the sense of definition 6.1.1.

Let us briefly describe the structure of this chapter: in the next section we recall some classical
tools which are useful for our proofs, in section 6.3 we deal with Theorem 6.1.4, the existence of
weak solutions, in section 6.4 and 6.5 we establish Theorem 6.1.2, i.e. such solutions are unique,
and finally in section 6.6 we deal with Theorem (6.1.3), proving the propagation of regularities. We
put forward in section 6.7 some technical details, for the sake of simplicity.
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6.2 Preliminaries and Notations

In this section we illustrate some widely recognized mathematical tools and moreover we report
some notations which are going to be extensively utilized in this research.

6.2.1 Sobolev and Besov Spaces

First, let us introduce the spaces we are going to work with (we refer the reader to [7] for an
exhaustive study and more details) . We recall the well-known definition of Homogeneous Sobolev
space Ḣs and Non-Homogeneous Sobolev Space Hs:

Definition 6.2.1. Let s ∈ R, the Homogeneous Sobolev Space Ḣs (also denoted Ḣs(R2)) is the
space of tempered distributions u ∈ S ′ over R2, the Fourier transform of which belongs to L1

loc(R2)
and it fulfills

‖u‖Ḣs :=

ˆ
R2

|ξ|2s|û(ξ)|2dξ <∞.

Moreover u belongs to the Non-Homogeneous Sobolev Space Hs (or Hs(R2)) if û ∈ L2
loc(R2) and

‖u‖Ḣs :=

ˆ
R2

(1 + |ξ|)2s|û(ξ)|2dξ <∞.

Hs is an Hilbert space for any real s, while Ḣs requires s < d/2, otherwise it is Pre-Hilbert. Their
inner products are

〈u, v〉Hs =

ˆ
R2

(1 + |ξ|)2sû(ξ)v̂(ξ)dξ and 〈u, v〉Ḣs =

ˆ
R2

|ξ|2sû(ξ)v̂(ξ)dξ,

respectively. Even if such dot-products are the most common ones, from here on we are going
to use the ones related to the Besov Spaces (at least for the homogeneous case). Hence, first we
need to define them. In order to do that, it is fundamental to introduce the Dyadic Partition. Let
χ = χ(ξ) be a smooth function whose support is inside the the ball |ξ| ≤ 1. Let us assume that χ
is identically equal to 1 in |ξ| ≤ 3/4, then, imposing ϕq(ξ) := χ(ξ2−q−1) − χ

(
ξ2−q) for any q ∈ Z,

we define the Homogeneous Litlewood-Paley Block ∆̇q by

∆̇qf := F−1(ϕqf̂) ∈ S ′, for any f ∈ S ′.

Moreover we denote by Ṡj the operator
∑

q≤j−1 ∆̇q, for any j ∈ Z. We can now present the
definition of Homogeneous Besov Space

Definition 6.2.2. For any s ∈ R and (p, r) ∈ [1,∞]2, we define Ḃs
p,r as the set of tempered

distribution f such that
‖f‖Ḃsp,r := ‖2sq‖∆̇qf‖Lpx‖lr(Z)

and for all smooth compactly supported function θ on R2 we have

lim
λ→+∞

θ(λD)f = 0 in L∞(R2).

It is straightforward that the space Ḃs
2,2 and Ḣs coincides for any real s, and their norms are



6.2. PRELIMINARIES AND NOTATIONS 99

equivalent, so we will use the following abuse of notation from here on:

〈u, v〉Ḣs := 〈u, v〉Ḃs2,2 =
∑
q∈Z

22qs〈∆̇qu, ∆̇qv〉L2
x
,

where 〈·, ·〉L2 is the common inner product of L2
x := L2(R2).

A profitable feature of the Homogeneous Besov space with negative index s is the following one
(see Proposition 2.33 of [7])

Proposition 6.2.3. Let s < 0 and 1 ≤ p, r ≤ ∞. Then u belongs to Ḃs
p,r if and only if(

2qs‖Ṡqu‖Lpx
)
q∈Z ∈ L

r(Z).

Moreover there exists two positive constant cs and CS such that

cs‖u‖Ḃsp,r ≤ ‖
(
2qs‖Ṡqu‖Lpx

)
q∈Z‖lr(Z) ≤ Cs‖u‖Ḃsp,r .

6.2.2 Homogeneous Paradifferential Calculus

In this subsection we give some hints about how the product acts between Ḣs and Ḣt, for some
appropriate real s and t. We present several tools which will play a major part in all our proofs.
First, let us begin with the following Theorem, whose proof is put forward in the appendix:

Theorem 6.2.4. Let s and t be two real numbers such that |s| and |t| belong to [0, 1). Let us
assume that s+ t is positive, then for every a ∈ Ḣs and for every b ∈ Ḣt, the product ab belongs to
Ḣs+t−1 and there exists a positive constant (not dependent on a and b) such that

‖ab‖Ḣs+t−1 ≤ C‖a‖Ḣs‖b‖Ḣt

One of the main reasons we should consider the Besov formulation Ḃs
2,2 of the homogeneous Sobolev

space Ḣs is the so-called Bony decomposition:

fg = Ṫfg + Ṫgh+ Ṙ(f, g), with Ṫfg :=
∑
q∈Z

Ṡq−1f∆̇qg and Ṙ(f, g) :=
∑

q∈Z, |l|≤1

∆̇qf∆̇q+lg.

This decomposition is quite helpful when analizying ∆̇q(fg) for some integer q. In order to deal the
most challenging terms, in this work we will make use of a reformulation of the Bony decomposition.
We present it in its matrix form. Let q be an integer, and A, B be N × N matrices, whose
components are homogeneous temperate distributions, we denote by

J 1
q (A,B) :=

∑
|q−q′|≤5[∆̇q, Ṡq′−1A]∆̇q′B, J 3

q (A,B) := Ṡq−1A∆̇qB,

J 2
q (A,B) :=

∑
|q−q′|≤5(Ṡq′−1A− Ṡq−1A)∆̇q∆̇q′B, J 4

q (A,B) :=
∑

q′≥q−5 ∆̇q(∆̇q′A Ṡq′+2B),

(6.1)
then the following product law for AB, is satisfied:

∆̇q(AB) = J 1
q (A,B) + J 2

q (A,B) + J 3
q (A,B) + J 4

q (A,B), (6.2)

for any integer q.
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6.2.3 The Frobenius Norm

Before beginning with the proofs of our main results, let us give the following remark:

Remark 6.2.5. The most common inner product defined on M3(R) (the 3 × 3 real matrices) is
determined by:

A ·B =

3∑
i,j=1

AijBij = tr{tAB}, for any A, B ∈M3(R).

Hence, if at least one of the two matrices is symmetric, for instance A, then we obtain

A ·B = tr{AB}, (6.3)

which determines the well-known Frobenius norm of a matrix |A| :=
√

tr{A2}. Since any solution
(u, Q) for (P ) fulfills

Q(t, x) ∈ S0 :=
{
A ∈M3(R), tr{A} = 0 and tA = A

}
,

for almost every (t, x) ∈ R+×R2 (see [99] and [54]), then from here on we will repeatedly use (6.3).

Moreover, we will use the symbol . (instead of ≤) which is defined as follows: for any non-negative
real numbers a and b, a . b if and only if there exists a positive constant C (not dependent on a
and b) such that a ≤ C b.

6.3 Weak Solutions

This section deals with the existence of weak solutions for (P ) in the sense of definition 6.1.1. As
we have already explained, we are going to proceed with a coupled method between the Friedrichs
scheme and the Schaefer’s Theorem. Hence, before going on, let us recall the widely recognized
Schaefer’s fixed point Theorem

Theorem 6.3.1. Let Ψ be a continuous and compact mapping of a Banach Space X into itself,
such that the set {x ∈ X : x = λΨx for some 0 ≤ λ ≤ 1} is bounded. Then T has a fixed point.

First, we introduce one of the key ingredients of our proofs, namely the mollifying operator Jn
defined by

F (Jnf)(ξ) = 1[ 1
n
, n](ξ) for ξ ∈ R2

ξ ,

which erases the high and the low frequencies.
We claim the existence and uniqueness of a solution for the following system

∂tQ+ (Jnu · ∇Q)− JnΩQ+QJnΩ = ΓH(Q) [0, T )× R2,

∂tu+ JnP( Jnu · ∇Jnu )− ν∆u = LJnPdiv { Q∆Q−∆QQ−∇Q�∇Q } [0, T )× R2,

div u = 0 [0, T )× R2,

(u, Q)t=0 = (u0, Q0) R2,

(Pn)

where P stands for the Leray projector operator, which is determined by

F{Pf }(ξ) := f̂(ξ)− ξ

|ξ|
ξ

|ξ|
· f̂(ξ), for f ∈ (Lpx)2, with 1 < p <∞,
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and T is a positive real number. It is well known that P is a bounded operator of (Lpx)2 into itself
when p ∈ (1,∞).

Remark 6.3.2. We say (u, Q) is a weak solution of the problem (Pn), provided that

u ∈ C([0, T ], L2
x) ∩ L2(0, T ; Ḣ1) , Q ∈ C([0, T ];H1) ∩ L2(0, T ; Ḣ2)

and (Pn) is valid in the distributional sense.

The following proposition plays a major part in our main proof, since it allows us to control the
Lpx-norm of Q only by Q0.

Proposition 6.3.3. Suppose that u ∈ C([0, T ], L2
x)∩L2(0, T ; Ḣ1) and moreover that Q ∈ C([0, T ], H1)∩

L2(0, T ; Ḣ2) is a weak solution of

∂tQ+ u · ∇Q− ΩQ+QΩ− ΓL∆Q = ΓP (Q) in [0, T )× R2, and Qt=0 = Q0 ∈ H1.

Then, for every 2 ≤ q <∞, the following estimate is fulfilled

‖Q(t)‖Lqx + q

ˆ
R2

tr{Q(t)2}
q
2
−1|∇Q(t)|2dx ≤ ‖Q0‖H1 exp{Ct},

for a suitable positive constant C dependent only on q, Γ, a, b and c.

Proof. Fixing p ∈ (1,∞), We multiply both left and right-hand side by 2pQ tr{Q2}p−1, we take the
trace and we integrate in R2, obtaining that

d

dt
‖Q(t)‖2p

L2p
x
− Γ2Lp〈Q(t)tr{Q(t)2}p−1,∆Q(t)〉L2

x
=

= 2Γp

ˆ
R2

tr{Q(t)2}p−1tr{P (Q(t, x))Q(t, x) }dx,

for almost every t ∈ (0, T ), where we have used div u = 0 and tr{QΩQ − ΩQ2} = 0 . First,
analyzing the second term on the left-hand side, integrating by parts, we determine the following
identity:

−〈2pQtr{Q2}p−1,∆Q〉L2 =

=

2∑
i=1

[
2p

ˆ
R2

tr{Q2}p−1tr{(∂iQ)2}+ 2p

ˆ
R2

∂i[tr{Q2}p−1]tr{Q∂iQ}
]

= 2p

ˆ
R2

tr{Q2}p−1|∇Q|2 + 4p(p− 1)

ˆ
R2

tr{Q2}p−2|∇[tr{Q2}]|2 ≥ 0,

which allows us to obtain

d

dt
‖Q(t)‖2p

L2p + 2p

ˆ
R2

tr{Q2}p−1|∇Q|2 ≤ Γ

ˆ
R2

2ptr{Q2}tr{P (Q(t, x))Q(t, x) }dx.

Now, we deal with the right-hand side by a direct computation, observing that

ˆ
R2

tr{Q2}p−1tr{P (Q)Q}dx = Γ

ˆ
R2

[
− a tr{Q2}p + b tr{Q2}p−1tr{Q3} − c tr{Q2}p+1

]
. ‖Q‖2p

L2p
x
− c

2
‖Q‖2(p+1)

L
2(p+1)
x

. ‖Q‖2p
L2p
x
,
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where we have used the following feature about a symmetric matrix with null trace:∣∣ˆ
R2

tr{Q2}p−1tr{Q3}
∣∣ ≤ ε‖Q‖2(p+1)

L2(p+1) +
1

ε
‖Q‖2p

L2p ,

for a positive real ε, small enough. Indeed, if Q has λ1, λ1, and −λ1−λ2 as eigenvalues, we achieve
that tr{Q3} = −3λ1λ2(λ1 + λ2) and tr{Q2} = 2(λ2

1 + λ2
2 + λ1λ2), hence

|tr{Q3}| . ελ2
1λ

2
2 +

1

ε
(λ2

1 + λ2
2 + 2λ1λ2)

. ε(λ2
1 + λ2

2 + λ1λ2)2 +
1

ε
(λ2

1 + λ2
2 + λ1λ2) . εtr{Q2}2 +

1

ε
tr{Q2}.

Therefore, we deduce that∣∣ˆ
R2

tr{Q2}p−1tr{Q3}
∣∣ . ε

ˆ
RN

tr{Q2}(p+1) +
1

ε

ˆ
RN

tr{Q2}p. (6.4)

Summarizing the previous consideration, we get 1
2

d
dt‖Q(t)‖2p

L2p
x

. ‖Q(t)‖2p
L2p
x

, so that the statement

is proved, thanks to the Gronwall’s inequality.

Now, let us focus on one of the main theorems of this section, which reads as follows:

Theorem 6.3.4. Let n be a positive integer and assume that (u0, Q0) belongs to L2
x ×H1

x. Then,
system (Pn) admits a unique local weak solution.

Proof. The key method of the proof relies on the Schauder’s Theorem. We define the compact
operator Ψ from C([0, T ], L2

x)2 ∩ L2(0, T ; Ḣ1)2 to itself as follows: (Ψ(u), Q) =: (ũ, Q) is the
unique weak solution (in the sense of remark 6.3.2) of the following Cauchy problem:

∂tQ+ (Jnu · ∇Q)− JnΩQ+QJnΩ = ΓH(Q) [0, T )× R2,

∂tũ+ JnP( Jnũ · ∇Jnũ )− ν∆ũ = LJnPdiv { Q∆Q−∆QQ−∇Q�∇Q } [0, T )× R2,

div ũ = 0 [0, T )× R2,

(ũ, Q)t=0 = (u0, Q0) R2.

We claim that the hypotheses of the Schauder’s Theorem are fulfilled, namely Ψ is a compact
mapping of X := C([0, T ], L2

x) ∩ L2(0, T ; Ḣ1) into itself, and the set

{u = λΨ(u) for some 0 ≤ λ ≤ 1}
is bounded. First we deal with the compactness of Ψ. Considering a bounded family F of X, we
claim that the closure of Ψ(F) is compact in X. If we prove that Ψ(F) is an uniformly bounded
and equicontinuous family of C([0, T ];L2

x) and moreover that {Ψ(u)(t) with t ∈ [0, T ] and u ∈ F}
is a compact set of L2

x, then the result is at least valid as Ψ mapping of X into C([0, T ], L2), thanks
to the Arzelà-Ascoli Theorem. Multiplying the first equation by Q−∆Q and integrating in R2, we
get

1

2

d

dt

[
‖∇Q‖2L2

x
+ ‖Q‖2L2

x

]
+ ΓL

(
‖∇Q‖2L2

x
+ ‖∆Q‖2L2

x

)
=

ˆ
R2

[
tr{(JnΩQ−QJnΩ)∆Q }−

− tr{(Jnu · ∇Q)∆Q }
]
− ΓL

ˆ
R2

[
a tr{Q∆Q} − b tr{Q2∆Q}+ c tr{Q∆Q}tr{Q2}

]
+

+ Γ

ˆ
R2

[
a tr{Q2} − b tr{Q3}+ c tr{Q2}2

]
,
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almost everywhere in (0, T ), which allows us to achieve

d

dt

[
‖∇Q(t)‖2L2

x
+ ‖Q(t)‖2L2

x

]
+ ΓL

(
‖∇Q‖2L2

x
+ ‖∆Q‖2L2

x

)
≤

≤ Cn
(
1 + ‖u(t)‖2L2

x

)(
‖Q(t)‖2L2 + ‖Q(t)‖6L6

x
+ ‖∇Q(t)‖2L2

x

)
+

ΓL

100
‖∆Q(t)‖2L2

x
,

where Cn is a positive constant dependent on n. Therefore, thanks to Proposition 6.3.3, we realize
that the family composed by Q = Q(u) as u ranges on F is a bounded family in C([0, T ];H1) ∩
L2(0, T ; Ḣ2). Now, multiplying the second equation by ũ we get the following equality:

1

2

d

dt
‖ũ(t)‖2L2

x
+ ν‖∇ũ(t)‖2L2

x
= L

ˆ
R2

tr{
(
∇Q�∇Q+Q∆Q−∆QQ

)
∇ũ }(t, x)dx =: F (t),

for almost every t ∈ (0, T ). Thus it turns out that

d

dt
‖ũ(t)‖2L2

x
+ ν‖∇ũ(t)‖2L2

x
≤ |F (t)| ≤ ‖∇Q‖2L4

x
‖∇ũ‖L2

x
+ ‖Q‖L2

x
‖∆Q‖L2

x
‖∇ũ‖L∞x

≤ Cn
(
‖Q(t)‖2L2

x
+ ‖∇Q(t)‖2L2

x

)
‖∆Q(t)‖2L2

x
+

ν

100
‖∇ũ(t)‖2L2

x
,

(6.5)

where Cn > 0 depends on n. Here, we have used the feature Jnũ = ũ, which comes from the
uniqueness of the solution for the second equation, so that ‖∇ũ‖L∞x ≤ Cn‖∇ũ‖L2

x
. Summarizing

the previous considerations and thanks to the Gonwall’s inequality we discover that Ψ(F) is a
bounded family in X, so in C([0, T ], L2). Moreover, from (6.5) and the previous result, it turns
out that |F (t)| is bounded on [0, T ], uniformly in u ∈ F . Hence Ψ(F) is an equicontinuous family
of C([0, T ];L2

x). Finally, because Jnũ = ũ, we get that {Ψ(u)(t) with t ∈ [0, T ] and u ∈ F} is
a subset of a bounded L2

x-family composed by functions with Fourier-transform supported in the
anulus C(1/n, n), which is a compact family of L2

x. Summarizing all the previous consideration, we
get that Ψ(F) is compact in C([0, T ], L2

x) thanks to the Arzelà-Ascoli Theorem.

It remains to prove that Ψ(F) is compact in L2(0, T ; Ḣ1), so that Ψ is a compact mapping of X
into itself. Since JnΨ(u(t)) = Ψ(u(t)) for every u ∈ F and t ∈ (0, T ), the precompactness of Ψ(F)
in L2(0, T ; Ḣ1) is equivalent to the precompactness of Ψ(F) in L2((0, T ) × R2 ). Recalling that
Ψ(F) is precompact in C([0, T ], L2

x) which is embedded in L2((0, T ) × R2 ) (for T finite), then we
determine the result, so that, in conclusion Ψ is a compact operator from X to itself.

Now, we deal with the Schaefer’s Theorem hypotheses, namely the set

{u = λΨ(u) for some λ ∈ (0, 1)}
is a bounded family of X. First, we point out that if u = λΨ(u), then the couple (u, Q) is a solution
for 

∂tQ+ λJnu · ∇Q− λJnΩQ+ λQJnΩ = ΓH(Q) [0, T )× R2,

∂tu+ JnP( Jnu · ∇Jnu )− ν∆u = LJnPdiv { Q∆Q−∆QQ−∇Q�∇Q } [0, T )× R2,

div u = 0 [0, T )× R2,

(u, Q)t=0 = (u0, Q0) R2.

We multiply the first equation by Q −∆Q, the second equation by u, we integrate everything in
R2 and we sum the results, obtaining:

d

dt

[
‖Q‖2L2 + ‖∇Q‖2L2 + ‖u‖2L2

]
+ ΓL‖∇Q‖2L2 + ΓL‖∆Q‖2L2 + ν‖∇u‖2L2 =
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λ〈Jnu · ∇Q, Q−∆Q〉L2 + λ〈JnΩQ−QJnΩ, Q−∆Q〉L2 + Γ〈P (Q), Q−∆Q〉L2−
−〈Jnu · ∇Jnu, ∇Jnu〉L2 + L〈Q∆Q−∆QQ, ∇Jnu〉L2 + L〈∇Q�∇Q, ∇Jnu〉L2 .

According to ‖Jnu‖L∞ + ‖∇Jnu‖L∞ ≤ Cn‖u‖L2 , up to a positive constant Cn dependent on n, it
is not computationally demanding to achieve the following estimate:

d

dt

[
‖Q‖2L2

x
+ ‖∇Q‖2L2

x
+ ‖u‖2L2

x

]
+ ΓL‖∆Q‖2L2

x
+ ν‖∇u‖2L2

x
≤

≤ C̃n‖∇Q‖2L2
x

[
‖Q‖2L2

x
+ ‖∇Q‖2L2

x
+ ‖u‖2L2

x

]
+

ν

100
‖∇u‖2L2

x
+

ΓL

100
‖∆Q‖2L2

x
.

Now, we recall that ∇Q is in bounded in L2(0, T, L2
x) thanks to Proposition 6.3.3 (imposing q = 2).

Therefore, thanks to the Gronwall’s inequality, we detect the following estimate:

‖Q‖2L∞(0,T ;L2
x) + ‖∇Q‖2L∞(0,T ;L2

x) + ‖u‖2L∞(0,T ;L2
x)+

+ ‖∆Q‖2L2(0,T ;L2
x) + ‖∇u‖2L2(0,T ;L2

x) . ‖(u0, Q0, ∇Q0)‖L2
x
eCn‖Q0‖H1eCT ,

so that, the family {u = λΨ(u) for some 0 ≤ λ ≤ 1} is bounded in X. Hence, applying the
Schaefer’s fixed point Theorem, we conclude that there exists a fixed point for Ψ, namely there
exists a weak solution (u, Q) (in the sense of remark 6.3.2) for the system (Pn).

Remark 6.3.5. In the previous proof T has only to be bounded, and it has no correlation with the
initial data, so that the solution (un, Qn) of system (Pn), given by Proposition 6.3.3, it should be
supposed to belong to

C(R+, L
2
x) ∩ L2

loc(R+, Ḣ
1)× C(R+, H

1) ∩ L2
loc(R+, Ḣ

2).

We are now able to prove our main existence result, namely Theorem 6.1.4.

Proof of Theorem 6.1.4. Let us fix a positive real T and let (un, Qn) be the solution of (Pn) given
by Proposition 6.3.3, for any positive integer n. We analyse such solutions in order to develop
some n-uniform bound for their norms, which will allow us to apply some classical methods about
compactness and weakly convergence.

We multiply the first equation of (Pn) by Qn − L∆Qn, the second one by un, we integrate in R2

and finally we sum the results, obtaining the following identity

d

dt

[
‖un‖L2

x
+ ‖Qn‖L2

x
+ ΓL‖∇Qn‖2L2

x

]
+ ν‖∇un‖L2

x
+ ΓL‖∇Qn‖L2

x
+ ΓL2‖∆Qn‖L2

x
=

= −〈un · ∇Qn, Qn〉L2
x

=0

+L〈un · ∇Qn, ∆Qn〉L2
x

B

+〈ΩnQn −QnΩn, Qn〉L2
x

=0

−

−L〈ΩnQn −QnΩn, ∆Qn〉L2
x

A

+Γ〈P (Qn), Qn〉L2
x
− ΓL〈P (Qn), ∆Qn〉L2

x
−

−〈un · ∇un, un〉L2
x

=0

−L〈Qn∆Qn −∆QnQn, ∇un〉L2
x

AA

−L〈div{∇Qn �∇Qn}, un〉L2
x

BB

.

(6.6)

First, let us observe that A+AA = 0 thanks to Lemma 6.7.1. Moreover 〈un ·∇Qn, Qn〉L2
x

and 〈un ·
∇un, un〉L2

x
are null , because of the divergence-free condition of un, while 〈ΩnQn−QnΩn, ∆Qn〉L2

x

is zero since Qn is symmetric. Furthermore B + BB = 0 since the following identity is satisfied:

tr{un · ∇Qn ∆Qn} = div{∇Qn �∇Qn} · un − div{un( |∂1Q
n|2 + |∂2Q

n|2)}.
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Recalling (6.4) with p = 1, it turns out that

Γ〈P (Qn), Qn〉L2 . ‖Qn‖2L2
x
− c

2
‖Qn‖4L4

x
≤ ‖Qn‖2L2

x
,

while, by a direct computation and thanks to Proposition 6.3.3, we deduce

ΓL〈P (Qn), ∆Qn〉L2
x
. ‖∇Qn‖2L2

x
+ ‖Qn‖3L6‖∆Qn‖L2

x

. ‖∇Qn‖2L2
x

+ ‖Q0‖6H1e
6Ct + CΓ,L‖∆Qn‖2L2

x
,

where C is positive real constant, not dependent on n and CΓ,L > 0 is a suitable small enough
constant which will allow to absorb ‖∆Qn‖2L2

x
by the left-hand side of (6.6). Thus, summarizing

the previous considerations, we get

d

dt

[
‖un‖2L2

x
+ ‖Qn‖2L2

x
+ ΓL‖∇Qn‖2L2

x

]
+ ν‖∇un‖2L2 + ΓL2‖∆Qn‖2L2

x
.

. ‖Qn‖2L2
x

+ ‖∇Qn‖2L2
x

+ ‖Q0‖6H1e
6Ct,

which yields

‖(un, Qn, ∇Qn)‖L∞(0,T ;L2
x) + ‖(∇un, ∆Qn)‖L2(0,T ;L2

x) .

. (‖u0‖L2
x

+ ‖Q0‖L2
x

+ ‖Q0‖6H1) exp{C̃t},
(6.7)

for a suitable positive constant C̃, independent on n.

Thanks to the previous control, we carry out to pass to the limit as n goes to +∞, and we claim
to found a weak solution for system (P ). We fix at first a bounded domain Ω of R2, with a smooth
enough boundary. At first we claim that (Qn)N is a Cauchy sequence in C([0, T ], L2(Ω)), and the
major part of the proof releases in the Arzelà-Ascoli Theorem. We have already proven that (Qn)N
is bounded in such space, moreover, since Qn(t) belongs to H1(Ω) which is compactly embedded in
L2(Ω), we get that {Qn(t) : n ∈ N and t ∈ [0, T ]} is a compact set of L2(Ω). Moreover, observing
that

‖∂tQn‖L2(Ω) ≤ ‖un‖L4
x
‖∇Qn‖L4

x
+ ‖∇un‖L2

x
‖Qn‖L∞x + ‖P (Qn)‖L2

x

≤ ‖un‖
1
2

L2
x
‖∇un‖

1
2

L2
x
‖∇Qn‖

1
2

L2
x
‖∆Qn‖

1
2

L2
x

+ ‖∇un‖L2
x
‖Qn‖H2 + ‖Qn‖L2

x
+ ‖Qn‖2L4

x
+ ‖Qn‖3L6

x
.

Therefore, it turns out that (∂tQ
n)N is an uniformly bounded sequence in L1(0, T ;L2

x) which yields
that (Qn)N is uniformly equicontinuous in C([0, T ], L2

x), so that, applying the Arzelà-Ascoli The-
orem, there exists Q ∈ C([0, T ], L2

x) such that Qn strongly converges to Q, up to a subsequence.
Moreover, thanks to (6.7), we also obtain that ∇Q and ∆Q belong to L∞(0, T ;L2

x) and L2(0, T ;L2
x)

respectively, and we have:

∇Qn ⇀ ∇Q w − L2(0, T ;L2
x) and ∆Qn ⇀ ∆Q w − L2(0, T ;L2

x),

up to a subsequence. Now, let us fix a bounded smooth domain Ω of R2. Then ∇Qn(t) weakly
converges to ∇Q(t) in H1(Ω), for almost every t ∈ (0, T ), up to a subsequence, so that, from the
compact embedding H1(Ω) ↪→↪→ L2(Ω), we deduce that ∇Qn(t) strongly converges to ∇Q(t) in
L2(Ω), for almost every t ∈ (0, T ). Moreover ‖∇Qn −∇Q‖L2(Ω) belongs to L∞(0, T ) and its norm
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is uniformly bounded in n. Hence applying the dominated convergence Theorem, we get

lim
n→∞

ˆ T

0
‖∇Qn(t)−∇Q(t)‖2L2dt =

ˆ T

0
lim
n→∞

‖∇Qn(t)−∇Q(t)‖2L2dt = 0,

namely ∇Qn strongly converges to ∇Q in L2(0, T ;L2(Ω)). Since ∇Qn is bounded in the Lebesgue-
space L2(0, T ;L6

x) (from the embedding H1 ↪→ L6
x) we get also that ∇Qn weakly converges to ∇Q

in w − L2(0, T ;L6
x), so that ∇Qn strongly converges to ∇Q in L2(0, T ;L4(Ω)) by interpolation.

This range of convergences shows that ∇Q � ∇Q and Q∆Q −∆Q are the limits of ∇Qn � ∇Qn
and Qn∆Qn −∆QnQn, as n goes to infinity, respectively in L1(0, T ;L4(Ω)) and L1(0, T ;L4/3(Ω)).
The strongly convergence of P (Qn) to P (Q) in L2(0, T ;L2(Ω)) is straightforward, while, with a
similar strategy, we are able to prove the existence of u ∈ L∞(0, T ;L2

x) with ∇u ∈ L2(0, T ;L2
x)

such that un strongly converges to u in L2(0, T ;L4(Ω)) and ∇un weakly converges to ∇u in
L2(0, T ;L2(Ω)) (everything up to a subsequence). Hence un · ∇un and ΩnQn − QnΩn weakly
converges in L1(0, T ;L4/3(Ω)) to u · ∇u and ΩQ−QΩ respectively. Finally un · ∇Qn strongly
converges to u · ∇Q in L1(0, T ;L2(Ω)).

Now, Jnφ strongly converges to φ in L∞(0, T ;Lpx), for any φ ∈ D( (0, T )×Ω ) and for any 1 ≤ p <∞.
Considering all the previous convergences and since (un, Qn) is a weak solution of (Pn), namely

−
ˆ T

0

ˆ
RN

tr{Qn∂tΨ} −
ˆ
RN

tr{Q0Ψ(0, ·)}+

ˆ T

0

ˆ
RN

tr{(un · ∇Qn)Ψ}+

+

ˆ T

0

ˆ
RN

tr{(ΩnQn −QnΩn)Ψ} = Γ

ˆ T

0

ˆ
RN

tr{H(Qn)Ψ},

for every N ×N -matrix Ψ with coefficients in D([0, T )× Ω) and

−
ˆ T

0

ˆ
RN

un · ∂tψ−
ˆ
RN

u0 · ψ(0, ·) +

ˆ T

0

ˆ
RN

(un · ∇un) · PJnψ − ν
ˆ T

0

ˆ
RN

un ·∆ψ =

= −L
ˆ T

0

ˆ
RN

[Qn∆Qn −∆QnQn −∇Qn �∇Qn] · PJn∇ψ,

for any N -vector ψ with coefficients in D([0, T ) × Ω), we pass through the limit as n goes to ∞,
obtaining

−
ˆ T

0

ˆ
RN

tr{Q∂tΨ} −
ˆ
RN

tr{Q0Ψ(0, ·)}+

ˆ T

0

ˆ
RN

tr{(u · ∇Q)Ψ}+

+

ˆ T

0

ˆ
RN

tr{(ΩQ−QΩ)Ψ} = Γ

ˆ T

0

ˆ
RN

tr{H(Q)Ψ}

and

−
ˆ T

0

ˆ
RN

u · ∂tψ −
ˆ
RN

u0 · ψ(0, ·) +

ˆ T

0

ˆ
RN

(u · ∇u) · Pψ − ν
ˆ T

0

ˆ
RN

u ·∆ψ =

= −L
ˆ T

0

ˆ
RN

[Q∆Q−∆QQ−∇Q�∇Q] · P∇ψ.

From the arbitrariness of T and Ω, we finally achieve that (u, Q) is a weak solution for (P ) in the
sense of definition 6.1.1.
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6.4 The Difference Between Two Solutions

This section is devoted to an important remark which plays a major part in our uniqueness result.
We deal with the difference between two weak solutions (ui, Qi), i = 1, 2, of (P ) in the sense of
definition 6.1.1. Denoting by (δu, δQ) the difference between the first and the second one, we claim
that such element belongs to a lower regular space than the one the solutions belong to.

Proposition 6.4.1. For any finite positive T , δu and ∇δQ belong to L∞(0, T ; Ḣ−1/2).

Remark 6.4.2. In virtue of Proposition 6.4.1 and since (∇δu, ∆δQ) belongs to L2
tL

2
x then

(∇δu, ∆δQ) ∈ L2(0, T ; Ḣ−1/2),

for any finite positive T , thanks to a classical real interpolation method:

‖∇δu‖
Ḣ−

1
2
. ‖∇δu‖

1
3

Ḣ−
3
2
‖∇δu‖

2
3

L2
x
. ‖δu‖

Ḣ−
1
2

+ ‖∇δu‖L2
x
,

‖∆δQ‖
Ḣ−

1
2
. ‖∆δQ‖

1
3

Ḣ−
3
2
‖∆δQ‖

2
3

L2
x
. ‖∇δQ‖

Ḣ−
1
2

+ ‖∆δQ‖L2
x
.

Proof of Proposition 6.4.1. Fixing T > 0 we are going to prove that δu belongs to the space
L∞(0, T ; Ḣ−1/2) and δQ belongs to L∞(0, T ; Ḣ1/2). We denote by f1 and f2

f1 := −u1 · ∇Q1 + u2 · ∇Q2 + Ω1Q1 − Ω2Q2 −Q1Ω1 +Q2Ω2 +

+ Γ
{ b

3

(
Q2

1 −Q2
2 − tr{Q2

1 −Q2
2}

Id

3

)
− c tr{Q2

1}Q1 + c tr{Q2
2}Q2

}
,

f2 := P
[
− div{u1 ⊗ u1 − u2 ⊗ u2}+ Ldiv { Q1∆Q1 −Q2∆Q2−

−∆Q1Q1 + ∆Q2Q2 −∇Q1 �∇Q1 +∇Q2 �∇Q2 }
]
,

respectively. Then δQ and δu are weak solutions of the following Cauchy Problems:

∂tδQ− ΓL∆δQ+ Γa δQ = f1 and ∂tδu− ν∆δu = f2 in [0, T )× R2,

with null initial data. By the classical Theory of Evolutionary Parabolic Equation, it is sufficient to
prove that f1 and f2 belong to L2(0, T ; Ḣ−1/2) and L2(0, T ; Ḣ−3/2) respectively in order to obtain

‖(δu, ∇δQ)‖
L∞(0,T ;Ḣ−

1
2 )

. ‖f1‖
L2(0,T ;Ḣ−

1
2 )

+ ‖f2‖
L2(0,T ;Ḣ−

3
2 )
,

and conclude the proof. We start by f1 and Theorem 6.2.4 plays a major part. For any i = 1, 2,
we get

‖ui · ∇Qi‖
Ḣ−

1
2
. ‖ui‖

Ḣ
1
2
‖∇Qi‖L2

x
. ‖ui‖

1
2

L2
x
‖∇ui‖

1
2

L2
x
‖∇Qi‖L2

x
∈ L4(0, T ),

‖ΩiQi‖
Ḣ−

1
2
. ‖∇ui‖L2

x
‖Qi‖

Ḣ
1
2
. ‖∇ui‖L2

x
‖Qi‖

1
2

L2
x
‖∇Qi‖

1
2

L2
x
∈ L2(0, T ),

‖Q2
i ‖Ḣ− 1

2
. ‖Qi‖

Ḣ
1
2
‖Qi‖L2

x
. ‖Qi‖L2

x
‖∇Qi‖

1
2

L2
x
‖Qi‖

1
2

L2
x
∈ L∞(0, T ),

‖tr{Q2
i }Qi‖Ḣ− 1

2
. ‖Q2

i ‖L2
x
‖Qi‖

Ḣ
1
2

. ‖∇Qi‖
3
2

L2
x
‖Qi‖

3
2

L2
x

∈ L∞(0, T ).

Then, summarizing the previous estimates, we deduce that f1 belongs to L2(0, T ; Ḣ−1/2). Now, let
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us handle the terms of f2:

‖div{ui ⊗ ui}‖
Ḣ−

3
2
. ‖ui ⊗ ui‖

Ḣ−
1
2
. ‖ui‖

Ḣ
1
2
‖ui‖L2

x

. ‖ui‖
1
2

L2
x
‖∇ui‖

1
2

L2
x
‖ui‖L2

x
∈ L4(0, T ),

‖div{Qi∆Qi}‖
Ḣ−

3
2
. ‖Qi∆Qi‖

Ḣ−
1
2
. ‖Qi‖

Ḣ
1
2
‖∆Qi‖L2

x

. ‖Qi‖
1
2

L2
x
‖∇Qi‖

1
2

L2
x
‖∆Qi‖L2

x
∈ L∞(0, T ),

‖div{∇Qi �∇Qi}‖
Ḣ−

3
2
. ‖∇Qi �∇Qi‖

Ḣ−
1
2
. ‖∇Qi‖

Ḣ
1
2
‖∇Qi‖L2

x

. ‖∇Qi‖
1
2

L2
x
‖∆Qi‖

1
2

L2
x
‖∇Qi‖L2

x
∈ L4(0, T ),

which finally implies that f2 belongs to L2(0, T ; Ḣ−
3
2 ). This concludes the proof of Proposition

6.4.1.

6.5 Uniqueness

In this section we present our first original result. We are going to prove Theorem 6.1.2, namely
the uniqueness of the weak solutions, given by Theorem 6.1.4. We implement the uniqueness result
of Paicu and Zarnescu in [99], concerning the weak-strong uniqueness. Indeed the authors suppose
that at least one of the solutions is a classical solution. The leading cause of such restriction
relies on the choice to control the difference between two solutions in an L2

x-setting. However, this
requires to estimate the L∞x -norm of one of the solutions, ‖(u, ∇Q)‖L∞x , for instance by a Sobolev

embedding, therefore the necessity to put (u(t), ∇Q(t)) in some Ḣs with s > 1, for any real t.

In this article we overcome this drawback, performing the uniqueness of weak solutions, thanks to an
alternative approach which is inspired by [48] and [88]. The main idea is to evaluate the difference
between two weak solutions in a functional space which is less regular than L2

x. Considering two
weak solutions (u1, ∇Q1) and (u2, ∇Q2), we define (δu, δQ) as the difference between the first one
and the second one. It is straightforward that such difference is a weak solution for the following
system:

∂tδQ+ δu · ∇Q1 + u2 · ∇δQ− δS(∇u, Q)− ΓL∆δQ = ΓδP (Q) R+ × R2,

∂tδu+ δu · ∇u1 + u2 · ∇δu− ν∆δu+∇δΠ = Ldiv
{
δQ∆Q1+

+Q2∆δQ−∆δQQ1 −∆Q2δQ−∇δQ�∇Q1 −∇Q2 �∇δQ
}

R+ × R2,

div δu = 0 R+ × R2,

(δu, δQ)t=0 = (0, 0) R2,

(δP )

where we have also defined

δΩ := Ω1 − Ω2, δΠ := Π1 −Π2, δP (Q) := P (Q1)− P (Q2).

and moreover

δS(Q, ∇u) := Ω1Q1 −Q1Ω1 + Ω2Q2 −Q2Ω2 = δQδΩ− δΩδQ+ δΩQ2 −Q2δΩ + Ω2δQ− δQΩ2.

Recalling the previous subsection, we take the Ḣ−1/2-inner product between the first equation of
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(δP ) and −L∆δQ and moreover we consider the scalar product in Ḣ−1/2 between the second one
and δu:

d

dt

[1

2
‖δu‖2

Ḣ−
1
2

+ L‖∇δQ‖2
Ḣ−

1
2

]
+ ν‖∇δu‖2

Ḣ−
1
2

+ ΓL2‖∆δQ‖2
Ḣ−

1
2

=

= LΓ〈δP (Q),∆δQ〉
Ḣ−

1
2
− L〈δu · ∇Q1,∆δQ〉

Ḣ−
1
2

+ L〈u2 · ∇δQ,∆δQ〉
Ḣ−

1
2
+

+ L〈δS(Q,∇u),∆δQ〉
Ḣ−

1
2
− L〈∇δQ�∇Q1,∇δu〉

Ḣ−
1
2

+ L〈∇Q2 �∇δQ,∇δu〉
Ḣ−

1
2
−

− 〈δu · ∇u1, δu〉
Ḣ−

1
2
− 〈u2 · ∇δu, δu〉

Ḣ−
1
2

+ L〈δQ∆δQ−∆δQδQ,∇δu〉
Ḣ−

1
2
+

+ L〈Q2∆δQ−∆δQQ2,∇δu〉
Ḣ−

1
2

+ L〈δQ∆Q2 −∆Q2δQ,∇δu〉
Ḣ−

1
2
.

(6.8)

Denoting by Φ(t) = 1
2‖δu(t)‖2

Ḣ−
1
2

+ L‖∇δQ(t)‖2
Ḣ−

1
2

we claim that

d

dt
Φ(t) ≤ χ(t)Φ(t), for almost every t ∈ R+,

where χ ≥ 0 belongs to L1
loc(R+). Hence, uniqueness holds thanks to the Gronwall Lemma and

since Φ(0) is null. Thus, we need to analyze every term of the right-hand side of (6.8). From here
on CΓ,L and Cν are suitable positive constants which will be determined in the end of the proof.

Simpler Terms

First, we begin evaluating every term which is handleable by Theorem 6.2.4.
Estimate of ΓL〈δP (Q),∆δQ〉

Ḣ−
1
2

From the definition of δP (Q), and since tr{∆Q} is null, we need to control

ΓL〈δP (Q),∆δQ〉
Ḣ−

1
2

= −ΓLa‖∇δQ‖2
Ḣ−

1
2

+ ΓLb〈δQQ1 +Q2δQ,∆δQ〉
Ḣ−

1
2

− ΓLc〈δQtr{Q2
1},∆δQ〉Ḣ− 1

2
− ΓLc〈tr{ δQQ1 +Q2δQ }Q1,∆δQ〉

Ḣ−
1
2
.

We overcome the second term in the right hand-side of the equality as follows:

ΓLb〈δQQ1 +Q2δQ,∆δQ〉
Ḣ−

1
2
. ‖δQ‖

Ḣ
1
2
‖(Q1, Q2)‖L2

x
‖∆δQ‖

Ḣ−
1
2

. ‖∇δQ‖2
Ḣ−

1
2
‖(Q1, Q2)‖2L2

x
+ CΓ,L‖∆δQ‖2

Ḣ−
1
2
.

Furthermore, we observe that

ΓLc〈δQtr{Q2
1},∆δQ〉Ḣ− 1

2
. ‖δQ‖

Ḣ
1
2
‖Q2

1‖L2
x
‖∆δQ‖

Ḣ−
1
2
. ‖∇δQ‖

Ḣ−
1
2
‖Q1‖2L4

x
‖∆δQ‖

Ḣ−
1
2

. ‖∇δQ‖
Ḣ−

1
2
‖Q1‖L2

x
‖∇Q1‖L2

x
‖∆δQ‖

Ḣ−
1
2

. ‖∇δQ‖2
Ḣ−

1
2
‖Q1‖2L2

x
‖∇Q1‖2L2

x
+ CΓ,L‖∆δQ‖2

Ḣ−
1
2

and moreover

ΓLc〈tr{ δQQ1 +Q2δQ }Q1,∆δQ〉
Ḣ−

1
2

. ‖δQ‖
Ḣ

1
2

(
‖|Q1|2‖L2

x
+ ‖|Q2||Q1|‖L2

x

)
‖∆δQ‖

Ḣ−
1
2

. ‖∇δQ‖
Ḣ−

1
2
‖(Q1, Q2)‖2L4

x
‖∆δQ‖

Ḣ−
1
2

. ‖∇δQ‖
Ḣ−

1
2
‖(Q1, Q2)‖L2

x
‖∇(Q1, Q2)‖L2

x
‖∆δQ‖

Ḣ−
1
2

. ‖∇δQ‖2
Ḣ−

1
2
‖(Q1, Q2)‖2L2

x
‖∇(Q1, Q2)‖2L2

x
+ CΓ,L‖∆δQ‖2

Ḣ−
1
2
.
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Finally, summarizing the previous inequality, we get

ΓL〈δP (Q),∆δQ〉
Ḣ−

1
2
. ‖∇δQ‖2

Ḣ−
1
2
‖(Q1, Q2)‖2L2

x
‖∇(Q1, Q2)‖2L2

x
+ CΓ,L‖∆δQ‖2

Ḣ−
1
2

Estimate of L〈δu · ∇Q1,∆δQ〉
Ḣ−

1
2

L〈δu · ∇Q1,∆δQ〉
Ḣ−

1
2
. ‖δu‖

Ḣ−
1
4
‖∇Q1‖

Ḣ
3
4
‖∆δQ‖

Ḣ−
1
2
. ‖δu‖

3
4

Ḣ−
1
2
‖∇δu‖

1
4

Ḣ−
1
2
‖∇Q1‖

1
4

L2
x
×

×‖∆Q1‖
3
4

L2
x
‖∆δQ‖

Ḣ−
1
2
. CΓ,L‖∆δQ‖2

Ḣ−
1
2

+ Cν‖∇δu‖2
Ḣ−

1
2

+ ‖∇Q1‖
2
3

L2
x
‖∆Q1‖2L2

x
‖δu‖2

Ḣ−
1
2
.

Estimate of L〈u2 · ∇δQ,∆δQ〉
Ḣ−

1
2

L〈u2 · ∇δQ,∆δQ〉
Ḣ−

1
2
. ‖u2‖

Ḣ
3
4
‖∇δQ‖

Ḣ−
1
4
‖∆δQ‖

Ḣ−
1
2

. ‖u2‖
1
4

L2
x
‖∇u2‖

3
4

L2
x
‖∇δQ‖

3
4

Ḣ−
1
2
‖∆δQ‖

5
4

Ḣ−
1
2

. CΓ,L‖∆δQ‖2
Ḣ−

1
2

+ ‖u2‖
2
3

L2
x
‖∇u2‖2L2

x
‖∇δQ‖2

Ḣ−
1
2
.

Estimate of L〈δQδΩ− δΩδQ,∆δQ〉
Ḣ−

1
2

L〈δQδΩ− δΩδQ,∆δQ〉
Ḣ−

1
2
. ‖δQ‖

Ḣ
1
2
‖δΩ‖L2

x
‖∆δQ‖

Ḣ−
1
2

. ‖∇(u1, u2)‖2L2
x
‖∇δQ‖2

Ḣ−
1
2

+ CΓ,L‖∆δQ‖2
Ḣ−

1
2
.

Estimate of L〈Ω2δQ− δQΩ2,∆δQ〉
Ḣ−

1
2

L〈Ω2δQ− δQΩ2,∆δQ〉
Ḣ−

1
2
. ‖Ω2‖L2

x
‖δQ‖

Ḣ
1
2
‖∆δQ‖

Ḣ−
1
2

. ‖∇u2‖2L2
x
‖∇δQ‖2

Ḣ−
1
2

+ CΓ,L‖∆δQ‖2
Ḣ−

1
2
.

Estimate of L〈∇δQ�∇Q1,∇δu〉
Ḣ−

1
2

L〈∇δQ�∇Q1,∇δu〉
Ḣ−

1
2
. ‖∇δQ‖

Ḣ−
1
4
‖∇Q1‖

Ḣ
3
4
‖∇δu‖

Ḣ−
1
2

. ‖∇δQ‖
3
4

Ḣ−
1
2
‖∆δQ‖

1
4

Ḣ−
1
2
‖∇Q1‖

1
4

L2
x
‖∆Q1‖

3
4

L2
x
‖∇δu‖

Ḣ−
1
2

. CΓ,L‖∆δQ‖2
Ḣ−

1
2

+ Cν‖∇δu‖2
Ḣ−

1
2

+ ‖∇Q1‖
2
3

L2
x
‖∆Q1‖2L2

x
‖∇δQ‖2

Ḣ−
1
2

Estimate of L〈∇Q2 �∇δQ, ∇δu〉
Ḣ−

1
2

L〈∇Q2 �∇δQ, ∇δu〉
Ḣ−

1
2
. ‖∇δQ‖

Ḣ−
1
4
‖∇Q2‖

Ḣ
3
4
‖∇δu‖

Ḣ−
1
2

. ‖∇δQ‖
3
4

Ḣ−
1
2
‖∆δQ‖

1
4

Ḣ−
1
2
‖∇Q2‖

1
4

L2
x
‖∆Q2‖

3
4

L2
x
‖∇δu‖

Ḣ−
1
2

. CΓ,L‖∆δQ‖2
Ḣ−

1
2

+ Cν‖∇δu‖2
Ḣ−

1
2

+ ‖∇Q2‖
2
3

L2
x
‖∆Q2‖2L2

x
‖∇δQ‖2

Ḣ−
1
2

Estimate of 〈δu · ∇u1, δu〉
Ḣ−

1
2

〈δu · ∇u1, δu〉
Ḣ−

1
2
. ‖δu‖

Ḣ
1
2
‖∇u1‖L2

x
‖δu‖

Ḣ−
1
2
. Cν‖∇δu‖2

Ḣ−
1
2

+ ‖∇u1‖2L2
x
‖δu‖2

Ḣ−
1
2
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Estimate of 〈u2 · ∇δu, δu〉
Ḣ−

1
2

〈u2 · ∇δu, δu〉
Ḣ−

1
2
. ‖δu‖

Ḣ
1
2
‖∇u2‖L2‖δu‖

Ḣ−
1
2
. Cν‖∇δu‖2

Ḣ−
1
2

+ ‖∇u2‖2L2‖δu‖2
Ḣ−

1
2

Estimate of L〈δQ∆δQ−∆δQδQ,∇δu〉
Ḣ−

1
2

L〈δQ∆δQ−∆δQδQ,∇δu〉
Ḣ−

1
2
. ‖∆(Q1, Q2)‖L2

x
‖∇δQ‖

Ḣ−
1
2
‖∇δu‖

Ḣ−
1
2

. ‖∆(Q1, Q2)‖2L2
x
‖∇δQ‖2

Ḣ−
1
2

+ Cν‖∇δu‖2
Ḣ−

1
2
.

Estimate of L〈δQ∆Q2 −∆Q2δQ,∇δu〉
Ḣ−

1
2

L〈δQ∆Q2 −∆Q2δQ,∇δu〉
Ḣ−

1
2
. ‖∆Q2‖L2

x
‖∇δQ‖

Ḣ−
1
2
‖∇δu‖

Ḣ−
1
2

. ‖∆Q2‖2L2
x
‖∇δQ‖2

Ḣ−
1
2

+ Cν‖∇δu‖2
Ḣ−

1
2
.

The Residual Terms

Now we deal with the terms in the right-hand side of (6.8) which we have not evaluated yet, namely

L〈δΩQ2 −Q2δΩ,∆δQ〉
Ḣ−

1
2

+ L〈Q2∆δQ−∆δQQ2,∇δu〉
Ḣ−

1
2
. (6.9)

Here, the difference between the two solutions appears with the higher derivative-order, more
precisely the inner product is driven by ∇δu ( i.e. δΩ) and ∆δQ. This clearly generates a drawback
if we want to analyze every remaining term, proceeding as the previous estimates. Let us remark
that if we consider the L2

x-inner product instead of the Ḣ−1/2-one, then this last sum is null,
thanks to Lemma 6.7.1. However the Ḣ−1/2-setting force us to analyze such sum, and we overcome

the described obstacle, first considering the equivalence between Ḣ−1/2 and Ḃ
−1/2
2,2 , and moreover

thanks to decomposition (6.1), namely

J 1
q (A,B) :=

∑
|q−q′|≤5[∆̇q, Ṡq′−1A]∆̇q′B, J 3

q (A,B) := Ṡq−1A∆̇qB,

J 2
q (A,B) :=

∑
|q−q′|≤5(Ṡq′−1A− Ṡq−1A)∆̇q∆̇q′B, J 4

q (A,B) :=
∑

q′≥q−5 ∆̇q(∆̇q′A Ṡq′+2B),

with ∆̇q(AB) = J 1
q (A,B) + J 2

q (A,B) + J 3
q (A,B) + J 4

q (A,B), for any integer q.

First, let us begin with

L〈δΩQ2,∆δQ〉
Ḣ−

1
2

=
∑
q∈Z

2−qL〈∆̇q(δΩQ2), ∆̇q∆δQ〉L2
x

=
∑
q∈Z

4∑
i=1

2−qL〈J iq (δΩ, Q2), ∆̇q∆δQ〉L2
x
.

First we separately study the case i = 1, 2, 4. The term related to i = 3 is the challenging one and
we are not able to evaluate it. However, we will see how such term is going to be erased. Let us
begin with i = 1 then

I1
q := 2−qL〈J 1

q (δΩ, Q2), ∆̇q∆δQ〉L2
x

= L2−q
∑

|q−q′|≤5

〈[∆̇q, Ṡq′−1Q2]∆̇q′δΩ, ∆̇q∆δQ〉L2
x

.
∑

|q−q′|≤5

2−q‖[∆̇q, Ṡq′−1Q2]∆̇q′δΩ‖L2
x
‖∆̇q∆δQ‖L2

x
.
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Hence, applying the commutator estimate (see Lemma 2.97 in [7]) we get

I1
q .

∑
|q−q′|≤5

2−2q‖Ṡq′−1∇Q2‖L4
x
‖∆̇q′δΩ‖L4

x
‖∆̇q∆δQ‖L2

x

.
∑

|q−q′|≤5

‖Ṡq′−1∇Q2‖
1
2

L2
x
‖Ṡq′−1∆Q2‖

1
2

L2
x
2−

q′
2 ‖∆̇q′δu‖L4

x
2−

q
2 ‖∆̇q∆δQ‖L2

x

.
∑

|q−q′|≤5

‖∇Q2‖
1
2

L2
x
‖∆Q2‖

1
2

L2
x
‖∆̇q′δu‖L2

x
2−

q
2 ‖∆̇q∆δQ‖L2

x
,

which finally yields

I1
q . ‖∇Q2‖

1
2

L2
x
‖∆Q2‖

1
2

L2
x
‖δu‖L2

x
‖∆δQ‖

Ḣ−
1
2

. ‖∇Q2‖
1
2

L2
x
‖∆Q2‖

1
2

L2
x
‖δu‖

1
2

Ḣ−
1
2
‖∇δu‖

1
2

Ḣ−
1
2
‖∆δQ‖

Ḣ−
1
2
,

that is

L
∑
q∈Z

2−q〈J 1
q (δΩ, Q2),∆̇q∆δQ〉L2

x
.

. ‖∇Q2‖2L2
x
‖∆Q2‖2L2

x
‖δu‖2

Ḣ−
1
2

+ Cν‖∇δu‖2
Ḣ−

1
2

+ CΓ,L‖∆δQ‖2
Ḣ−

1
2
.

(6.10)

Now, let us handle the case i = 2. We argue as before:

I2
q := 2−qL〈J 2

q (δΩ, Q2),∆̇q∆δQ〉L2
x

= L2−q
∑

|q−q′|≤5

〈(Ṡq′−1Q2 − Ṡq−1Q2)∆̇q∆̇q′δΩ, ∆̇q∆δQ〉L2
x

. 2−q‖(Ṡq′−1Q2 − Ṡq−1Q2)‖L∞x ‖∆̇q∆̇q′δΩ‖L2
x
‖∆̇q∆δQ‖L2

x
,

so that, observing that Ṡq′−1Q2 − Ṡq−1Q2 fulfills

‖Ṡq′−1Q2 − Ṡq−1Q2‖L∞x . 2−2q‖Ṡq′−1∆Q2 − Ṡq−1∆Q2‖L∞x . 2−q‖Ṡq′−1∆Q2 − Ṡq−1∆Q2‖L2
x
,

then we obtain

I2
q . 2−2q

∑
|q−q′|≤5

‖(Ṡq′−1∆Q2 − Ṡq−1∆Q2)‖L2
x
‖∆̇q∆̇q′δΩ‖L2

x
‖∆̇q∆δQ‖L2

x

. 2−2q
∑

|q−q′|≤5

‖∆Q2‖L2
x
‖∆̇q′δΩ‖L2

x
‖∆̇q∆δQ‖L2

x

.
∑

|q−q′|≤5

2−
q′
2 ‖∆̇q′δu‖L2

x
2−

q
2 ‖∆̇q∆δQ‖L2

x
‖∆Q2‖L2

x
.

Thus, it turns out that

L
∑
q∈Z

2−q〈J 2
q (δΩ, Q2), ∆̇q∆δQ〉L2

x
. ‖∆Q2‖2L2

x
‖δu‖2

Ḣ−
1
2

+ CΓ,L‖∆δQ‖2
Ḣ−

1
2

(6.11)
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Now, we take into consideration the case i = 4. Here we will use a convolution method and the
Young inequality, since the sum in q′ is not finite. Then, let us observe that

I4
q := 2−qL〈J 4

q (δΩ, Q2), ∆̇q∆δQ〉L2
x

= L2−q
∑

q−q′≤5

〈∆̇q′Q2Ṡq′+2δΩ, ∆̇q∆δQ〉L2
x

. 2−q
∑

q−q′≤5

‖∆̇q′Q2‖L∞x ‖Ṡq′+2δΩ‖L2
x
‖∆̇q∆δQ‖L2

x
.

Observing that

‖∆̇q′Q2‖L∞x . 2q
′‖∆̇q′Q2‖L2

x
. 2−q

′‖∆̇q′∆Q2‖L2
x
,

‖∆̇q∆δQ‖L2
x
. 2q‖∆̇q∇δQ‖L2

x
,

it turns out

I4
q . 2−q

∑
q−q′≤5

2−q
′‖∆̇q′∆Q2‖L2

x
‖Ṡq′+2δΩ‖L2

x
2q‖∆̇q∇δQ‖L2

x

.
∑

q−q′≤5

2
q−q′

2 ‖∆̇q′∆Q2‖L2
x
2−

q′+2
2 ‖Ṡq′+2δΩ‖L2

x
2−

q
2 ‖∆̇q∇δQ‖L2

x

. ‖∆Q2‖L2
x
‖∇δQ‖

Ḣ−
1
2

∑
q−q′≤5

2
q−q′

2 2−
q′+2

2 ‖Ṡq′+2δΩ‖L2
x
.

Then, by convolution, the Young inequality and Proposition 6.2.3, we finally obtain

L
∑
q∈Z

2−q〈J 4
q (δΩ, Q2), ∆̇q∆δQ〉L2

x
. ‖∆Q2‖L2

x
‖∇δQ‖

Ḣ−
1
2
‖∇δu‖

Ḣ−
1
2

. ‖∆Q2‖2L2
x
‖∇δQ‖2

Ḣ−
1
2

+ Cν‖∇δu‖2
Ḣ−

1
2

(6.12)

Summarizing (6.10), (6.11) and (6.12) and recalling the definition of J3
q (δΩ, Q2), we finally get

L〈δΩQ2,∆δQ〉
Ḣ−

1
2
−
∑
q∈Z

2−q〈Ṡq−1δΩ ∆̇qQ2, ∆̇q∆δQ〉L2
x
.

. χ̃1 Φ + Cν‖∇δu‖2
Ḣ−

1
2

+ CΓ,L‖∆δQ‖2
Ḣ−

1
2
,

where χ̃1 belongs to L1
loc(R+). Hence, we need to analyze

L
∑
q∈Z

2−q〈Ṡq−1δΩ ∆̇qQ2, ∆̇q∆δQ〉L2
x

and this term is going to disappear by a simplification.

Now we handle the term 〈Q2δΩ,∆δQ〉
Ḣ−

1
2

of (6.9). Observing that it can be rewritten as

〈t(Q2δΩ), t∆δQ〉
Ḣ−

1
2
, that is −〈δΩQ2,∆δQ〉

Ḣ−
1
2

then we proceed as in the previous estimates,

obtaining

L〈δΩQ2 −Q2δΩ,∆δQ〉
Ḣ−

1
2
−
∑
q∈Z

2−q〈Ṡq−1δΩ ∆̇qQ2 − ∆̇qQ2 Ṡq−1δΩ, ∆̇q∆δQ〉L2
x

. χ̃Φ + Cν‖∇δu‖2
Ḣ−

1
2

+ CΓ,L‖∆δQ‖2
Ḣ−

1
2
,

(6.13)
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so that it remains to control

L
∑
q∈Z

2−q〈Ṡq−1δΩ ∆̇qQ2 − ∆̇qQ2 Ṡq−1δΩ, ∆̇q∆δQ〉L2
x
. (6.14)

Now, we focus on L〈Q2∆δQ,∇δu〉
Ḣ−

1
2

of (6.9) and we use again decomposition (6.1) as follows

L〈Q2∆δQ,∇δu〉
Ḣ−

1
2

= L
∑
q∈Z

2−q〈∆̇q(Q2∆δQ), ∆̇q∇δu〉L2
x

= L
∑
q∈Z

4∑
i=1

2−q〈J iq (Q2, ∆δQ), ∆̇q∇δu〉L2
x
.

As before, we estimate the terms related to i = 1, 2, 4 while when i = 3 the associated term is going
to be erased. When i = 1 we get

L2−q〈J 1
q (Q2, ∆δQ), ∆̇q∇δu〉L2

x
= L

∑
|q−q′|≤5

2−q〈[∆̇q, Ṡq′−1Q2]∆̇q′∆δQ, ∆̇q∇δu〉L2
x

.
∑

|q−q′|≤5

2−q‖[∆̇q, Ṡq′−1Q2]∆̇q′∆δQ‖L2
x
‖∆̇q∇δu‖L2

x

.
∑

|q−q′|≤5

2−2q‖Ṡq′−1∇Q2‖L4
x
‖∆̇q′∆δQ‖L4

x
‖∆̇q∇δu‖L2

x

.
∑

|q−q′|≤5

2−q‖Ṡq′−1∇Q2‖
1
2

L2
x
‖Ṡq′−1∆Q2‖

1
2

L2
x
‖∆̇q′∇δQ‖L4

x
‖∆̇q∇δu‖L2

x

.
∑

|q−q′|≤5

‖∇Q2‖
1
2

L2
x
‖∆Q2‖

1
2

L2
x
‖∆̇q′∇δQ‖L2

x
2−

q
2 ‖∆̇q∇δu‖L2

x

Hence, taking the sum as q ∈ Z,

L
∑
q∈Z

2−q〈J 1
q (Q2, ∆δQ), ∆̇q∇δu〉L2

x
. ‖∇Q2‖

1
2

L2
x
‖∆Q2‖

1
2

L2
x
‖∇δQ‖L2

x
‖∇δu‖

Ḣ−
1
2

. ‖∇Q2‖
1
2

L2
x
‖∆Q2‖

1
2

L2
x
‖∇δQ‖

1
2

Ḣ−
1
2
‖∆δQ‖

1
2

Ḣ−
1
2
‖∇δu‖

Ḣ−
1
2

. ‖∇Q2‖2L2
x
‖∆Q2‖2L2

x
‖∇δQ‖2

Ḣ−
1
2

+ Cν‖∇δu‖2
Ḣ−

1
2

+ CΓ,L‖∆δQ‖2
Ḣ−

1
2
.

We evaluate the term related to i = 2 as follows:

L2−q〈J 2
q (Q2, ∆δQ),∆̇q∇δu〉L2

x
= L2−q〈(Ṡq′−1Q2 − Ṡq−1Q2)∆̇q∆̇q′∆δQ, ∆̇q∇δu〉L2

x

.
∑

|q−q′|≤5

2−q‖(Ṡq′−1Q2 − Ṡq−1Q2)‖L∞x ‖∆̇q∆̇q′∆Q‖L2
x
‖∆̇q∇δu‖L2

x
,
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so that

L2−q〈J 2
q (Q2, ∆δQ),∆̇q∇δu〉L2

x

.
∑

|q−q′|≤5

2−2q‖(Ṡq′−1∆Q2 − Ṡq−1∆Q2)‖L2
x
‖∆̇q∆̇q′∆δQ‖L2

x
‖∆̇q∇δu‖L2

x

.
∑

|q−q′|≤5

2−2q‖Ṡq′−1∆Q2‖L2
x
‖∆̇q∆δQ‖L2

x
‖∆̇q∇δu‖L2

x

.
∑

|q−q′|≤5

2−
q
2 ‖∆̇q′δu‖L2

x
2−

q
2 ‖∆̇q∆δQ‖L2

x
‖∆Q2‖L2

x

Thus, taking the sum in q, it turns out that

L
∑
q∈Z

2−q〈J 2
q (Q2, ∆δQ), ∆̇q∇δu〉L2

x
. ‖∆Q2‖2L2

x
‖δu‖2

Ḣ−
1
2

+ CΓ,L‖∆δQ‖2
Ḣ−

1
2

At last, when i = 4,

L2−q〈J 4
q (Q2, ∆δQ),∆̇q∇δu〉L2

x
= L2−q

∑
q−q′≤5

〈∆̇q′Q2Ṡq′+2∆δQ, ∆̇q∇δu〉L2
x

. 2−q
∑

q−q′≤5

‖∆̇q′Q2‖L∞x ‖Ṡq′+2∆δQ‖L2
x
‖∆̇q∇δu‖L2

x

. 2−q
∑

q−q′≤5

2−q
′‖∆̇q′∆Q2‖L2

x
‖Ṡq′+2∆δQ‖L2

x
2q‖∆̇qδu‖L2

x

.
∑

q−q′≤5

2
q−q′

2 ‖∆̇q′∆Q2‖L2
x
2−

q′+2
2 ‖Ṡq′+2∆δQ‖L2

x
2−

q
2 ‖∆̇qδu‖L2

x

. ‖∆Q2‖L2
x
‖δu‖

Ḣ−
1
2

∑
q−q′≤5

2
q−q′

2 2−
q′+2

2 ‖Ṡq′+2∆δQ‖L2
x

Hence, by convolution, the Young inequalities and Proposition 6.2.3, we obtain∑
q∈Z

2−q〈J 4
q (Q2, ∆δQ), ∆̇q∇δu〉L2

x
. ‖∆Q2‖L2

x
‖δu‖

Ḣ−
1
2
‖∆δQ‖

Ḣ−
1
2

. ‖∆Q2‖2L2
x
‖δu‖2

Ḣ−
1
2

+ CΓ,L‖∆δQ‖2
Ḣ−

1
2
.

Since 〈∆δQQ2,∇δu〉
Ḣ

1
2

= 〈t(∆δQQ2), t∇δu〉
Ḣ

1
2

= 〈Q2∆δQ, t∇δu〉
Ḣ

1
2

, then we proceed as for

estimating 〈Q2∆δQ,∇δu〉
Ḣ

1
2

, so that we obtain the following control

L〈Q2∆δQ−∆δQQ2,∇δu〉
Ḣ−

1
2
−L

∑
q∈Z

2−q〈Ṡq−1Q2 ∆̇q∆δQ− ∆̇q∆δQ Ṡq−1Q2δΩ, ∆̇q∇u〉L2
x

. χ̃2 Φ + Cν‖∇δu‖2
Ḣ−

1
2

+ CΓ,L‖∆δQ‖2
Ḣ−

1
2

(6.15)

where χ2 belongs to L1
loc(R+). Now, the term we need to erase is

L
∑
q∈Z

2−q〈Ṡq−1Q2 ∆̇q∆δQ− ∆̇q∆δQ Ṡq−1Q2δΩ, ∆̇q∇u〉L2
x
. (6.16)



116 CHAPTER 6. COROTATIONAL BERIS-EDWARDS MODEL

Thus, summing (6.14) and (6.16), we obtain

L
∑
q∈Z

2−q
{
〈Ṡq−1Q2∆̇qδΩ− ∆̇qδΩ Ṡq−1Q2,∆∆̇qδQ〉L2

x
+

+ 〈Ṡq−1Q2∆∆̇qδQ−∆∆̇qδQ Ṡq−1Q2,∇δu〉L2
x

}
,

which is a series with every coefficients null, thanks to Lemma 6.7.1. In virtue of this last result,
recalling (6.13) and (6.15), we finally obtain

L〈δΩQ2 −Q2δΩ,∆δQ〉
Ḣ−

1
2

+ L〈Q2∆δQ−∆δQQ2,∇δu〉
Ḣ−

1
2

. χ̃Φ + Cν‖∇δu‖2
Ḣ−

1
2

+ CΓ,L‖∆δQ‖2
Ḣ−

1
2
.

Conclusion

Recalling (6.8) and summarizing all the estimate of the previous two sub-sections, we conclude that
there exists a function χ which belongs to L1

loc(R+) such that

d

dt
Φ(t) + ν‖∇δu‖2

Ḣ−
1
2

+ ΓL2‖∆δQ‖2
Ḣ−

1
2
. χ(t)Φ(t) + Cν‖∇δu‖2

Ḣ−
1
2

+ CΓ,L‖∆δQ‖2
Ḣ−

1
2

for almost every t ∈ R+. Thus, choosing CΓ,L and Cν small enough, we absorb the last two terms
in the right-hand side by the left-hand side, finally obtaining

d

dt

[1

2
‖δu(t)‖2

Ḣ−
1
2

+ L‖∇δQ(t)‖2
Ḣ−

1
2

]
. χ

[1

2
‖δu(t)‖2

Ḣ−
1
2

+ L‖∇δQ(t)‖2
Ḣ−

1
2

]
.

Since the initial datum is null and thanks to the Gronwall inequality, we deduce that (δu,∇δQ) = 0
which yields (δu, δQ) = 0, since δQ(t) decades to 0 at infinity for almost every t. Hence, we have
finally achieved the uniqueness of the weak solution for system (P ).

6.6 Regularity Propagation

We now handle the propagation of low regularity, namely we prove Theorem 6.1.3.

Proof of Theorem 6.1.3. Let us consider the following sequence of system:

∂tQ
n + JnP

(
Jnu

n∇JnQn
)
− JnP

(
JnΩnJnQ

n
)
+

+ JnP
(
JnQ

nJnΩn
)
− ΓL∆JnQ

n = Pn(Qn) R+ × R2,

∂tu
n + JnP

(
Jnu

n∇Jnun
)
− ν∆Jnu

n =

= ΓLdivJnP{JnQn∆JnQ
n −∆JnQ

nJnQ
n −∇JnQn �∇JnQn} R+ × R2,

div un = 0 R+ × R2,

(un, Qn)|t=0 = (u0, Q0) R2,

(P̃n)

where

Pn(Qn) := −aJnQn + b
[
Jn(JnQ

nJnQ
n)− tr{Jn(JnQ

nJnQ
n)} Id

3

]
− cJnQntr{Jn(JnQ

nJnQ
n)}.
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Moreover we recall that Jn is the regularizing operator defined by

ˆJnf(ξ) = 1[ 1
n
, n](ξ)f̂(ξ)

and P stands for the Leray projector. The Friedrichs scheme related to (P̃n) is not much different
to the (Pn)-one, however here the Q-tensor equation has been regularized, as well. System (Pn)
has been utilized in [99] and the authors have proven the existence of a strong solution (un, Qn)
which converges to a weak solution for (P ), as n goes to ∞ (up to a subsequence). Thanks to our
uniqueness result, Theorem 6.1.2, we deduce that such solution is exactly the one determined by
Theorem 6.1.4 and it is unique. Hence, instead of proceeding by a priori estimate (as in [99]), we
formalize our proof, evaluating directly the (P̃n)-scheme. We will establish some estimates, which
are uniformly in n, which yields that the weak-solution of (P ) fulfills them as well. This is only a
strategy in order to formalize the a priori-estimate, while the major part of our proof releases on
the inequalities we are going to proof.

Since (Jnu
n, JnQ

n) = (un, Qn) (by uniqueness), then (un(t), Qn(t)) belongs to H1+s × H2+s for
almost every t ∈ R+ and for every n ∈ N. We apply ∆̇q to the first and the second equations of
(P̃n), then we apply 〈 · , ∆̇qu

n〉L2 to the first one and −L〈 · , ∆̇q∆Q
n〉L2 to the second one, obtaining

the following identity:

d

dt

[
‖∆̇qu

n‖2L2 + L‖∆̇q∇Qn‖2L2

]
+ ν‖∆̇q∇un‖2L2 + ΓL2‖∆̇q∆Q

n‖2L2

= 〈∆̇q(∆Q
nQn −Qn∆Qn), ∆̇q∇un〉L2 − 〈∆̇q(u

n · ∇un), ∆̇qu
n〉L2+

+ 〈∆̇q(∇Qn �∇Qn), ∆̇q∇un〉L2 + L〈∆̇q(u
n · ∇Qn), ∆̇q∆Q

n〉L2+

+ L〈∆̇q(Ω
nQn −QnΩn), ∆̇q∆Q

n〉L2 − L〈∆̇qP
n(Qn), ∆̇q∆Q

n〉L2 .

Multiplying both left-hand and the right-hand sides by 22qs and taking the sum as q ∈ Z we obtain

d

dt

[
‖un‖2

Ḣs + L‖∇Qn‖2
Ḣs

]
+ ν‖∇un‖2

Ḣs + ΓL2‖∆Qn‖2
Ḣs

= L〈∆QnQn −Qn∆Qn,∇un〉Ḣs − 〈un · ∇un, un〉Ḣs + L〈∇Qn �∇Qn,∇un〉Ḣs+

+ L〈un · ∇Qn,∆Qn〉Ḣs + L〈ΩnQn −QnΩn,∆Qn〉Ḣs − L〈Pn(Qn),∆Qn〉Ḣs .

(6.17)

The key part of our proof relies on the Osgood inequality, therefore we need to estimate all the
terms of the right-hand side of (6.17). First, let us proceed estimating the easier terms.

Estimate of 〈un · ∇un, un〉Ḣs

We begin with 〈∆̇q(u
n · ∇un), ∆̇qu

n〉L2 , with q ∈ Z. Passing through the Bony decomposition

〈∆̇q(u
n · ∇un, ∆̇qu

n〉L2 =

=
∑

|q−q′|≤5

〈
2∑
i=1

∆̇qTuni ∂iu
n + ∆̇qT∂iunu

n
i , ∆̇qu

n〉L2

︸ ︷︷ ︸
Aq

+
∑

q′≥q−5

〈
2∑
i=1

∆̇qR(uni , ∂iu
n), ∆̇qu

n〉L2

︸ ︷︷ ︸
Bq

We handle the term Aq as follows:

Aq .
∑

|q−q′|≤5

[
‖Ṡq′−1u

n‖L∞‖∆̇q′∇un‖L2 + ‖Ṡq′−1∇un‖L∞‖∆̇q′u
n‖L2

]
‖∆̇qu

n‖L2
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.
∑

|q−q′|≤5

[
‖Ṡq′−1u

n‖L∞‖∆̇q′∇un‖L2 + 2q
′‖Ṡq′−1u

n‖L∞‖∆̇q′u
n‖L2

]
‖∆̇qu

n‖L2

.
∑

|q−q′|≤5

[
‖Ṡq′−1u

n‖L∞‖∆̇q′∇un‖L2 + ‖Ṡq′−1u
n‖L∞‖∆̇q′∇un‖L2

]
‖∆̇qu

n‖L2

. ‖un‖L∞‖∆̇qu
n‖L2

∑
|q−q′|≤5

‖∆̇q′∇un‖L2 ,

so that, multiplying by 22sq and taking the sum as q ∈ Z,∑
q∈Z

22qsAq . ‖un‖L∞
∑
q∈Z

{
22qs‖∆̇qu

n‖L2

∑
|q−q′|≤5

‖∆̇q′∇un‖L2

}
. ‖un‖L∞‖un‖Ḣs‖∇un‖Ḣs .

(6.18)
The control of Bq relies on convolution and the Young inequality, indeed

Bq .
∑

q′≥q−5
|l|≤1

‖∆̇q′+lu
n‖L∞‖∆̇q′∇un‖L2‖∆̇qu

n‖L2 . ‖un‖L∞‖∆̇qu
n‖L2

∑
q′≥q−5

‖∆̇q′∇un‖L2 ,

hence ∑
q∈Z

22qsBq . ‖un‖L∞
∑
q∈Z

{
22qs‖∆̇qu

n‖L2

∑
q′≥q−5

‖∆̇q′∇un‖L2

}
. ‖un‖L∞

∑
q∈Z

{
2qs‖∆̇qu

n‖L2

∑
q′≥q−5

2(q−q′)s2q
′s‖∆̇q′∇un‖L2

}
. ‖un‖L∞‖un‖Ḣs

∑
q∈Z

{
2qs‖∆̇qu

n‖L2

∑
q′∈Z

2(q−q′)s1(−∞, 5)(q − q′)bq′
}
,

where (bq′)Z belongs to l2(Z). Thus, we obtain∑
q∈Z

22qsBq . ‖un‖L∞‖un‖Ḣs‖∇un‖Ḣs , (6.19)

thanks to the Young inequality. Finally, summarizing (6.18) and (6.19), we obtain

〈un · ∇un, un〉Ḣs =
∑
q∈Z

22qs〈∆̇q(u
n · ∇un), ∆̇qu

n〉L2 . ‖un‖L∞‖un‖Ḣs‖∇un‖Ḣs . (6.20)

Estimate of 〈un · ∇Qn,∆Qn〉Ḣs

Arguing exactly as for proving (6.20), we obtain

〈un · ∇Qn,∆Qn〉Ḣs =
∑
q∈Z

22qs〈∆̇q(u
n · ∇Qn, ∆̇q∆Q

n〉L2 . ‖un‖L∞‖∇Qn‖Ḣs‖∆Qn‖Ḣs . (6.21)

Estimate of 〈∇Qn �∇Qn, ∇un〉Ḣs

We keep on our control, evaluating the term 〈∆̇q(∇Qn�∇Qn), ∆̇q∇un〉L2 , with q ∈ Z. The explicit
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integral formula of such term is the following one:

ˆ
R2

2∑
i,k=1

∆̇q( tr{∂iQ∂kQ} )∆̇q∂ku
n
i =

ˆ
R2

2∑
i,k=1

3∑
j,l=1

∆̇q[ ∂iQ
n
jl ∂kQ

n
lj ]∆̇q∂ku

n
i

=

ˆ
R2

2∑
i,k=1

3∑
j,l=1

∆̇q[ Ṫ∂iQnjl∂kQ
n
lj + Ṫ∂kQnlj∂iQ

n
jl ]∆̇q∂ku

n
i︸ ︷︷ ︸

Cq

+

ˆ
R2

∑
i,k,j,l

∆̇qṘ(∂iQ
n
jl, ∂kQ

n
lj)∆̇q∂ku

n
i︸ ︷︷ ︸

Dq

,

where we have used the Bony decomposition again. First, let us observe that

Cq .
∑

|q−q′|≤5

‖Sq−1∇Qn‖L∞‖∆̇q′∇Qn‖L2‖∆̇q∇un‖L2

. ‖∇Qn‖L∞‖∆̇q∇un‖L2

∑
|q−q′|≤5

‖∆̇q′∇Qn‖L2 ,

which yields ∑
q∈Z

22qsCq . ‖∇Qn‖L∞
∑
q∈Z

22qs
{
‖∆̇q∇un‖L2

∑
|q−q′|≤5

‖∆̇q′∇Qn‖L2

}
. ‖∇Qn‖L∞‖∇un‖Ḣs‖∇Qn‖Ḣs .

(6.22)

Moreover, considering Dq, we get

Dq .
∑

q′≥q−5
|l|≤5

‖∆̇q′+l∇Qn‖L∞‖∆̇q′∇Qn‖L2‖∆̇q∇un‖L2

. ‖∇Qn‖L∞‖∆̇q∇un‖L2

∑
q′≥q−5

‖∆̇q′∇Qn‖L2 ,

so that, proceeding as in the proof of (6.19),∑
q∈Z

22qsDq . ‖∇Qn‖L∞
∑
q∈Z

{
2qs‖∆̇q∇un‖L2

∑
q′∈Z

2(q′−q)s2q
′s‖∆̇q′∇Qn‖L2

}
. ‖∇Qn‖L∞‖∇un‖Ḣs‖∇Qn‖Ḣs ,

(6.23)

thanks to the Young inequality. Thus, summarizing (6.22) and (6.23), we achieve∑
q∈Z

22qs〈∆̇q(∇Qn �∇Qn), ∆̇q∇un〉L2 . ‖∇Qn‖L∞‖∇un‖Ḣs‖∇Qn‖Ḣs , (6.24)

Estimate of 〈∆QnQn −Qn∆Qn, ∇un〉Ḣs

Now, we carry out of 〈∆QnQn − Qn∆Qn, ∇un〉Ḣs . This is the first non trivial term to evaluate.
We choose to use the decomposition (6.1), presented in the preliminaries, instead of the classical
Bony decomposition (which we have used until now). We will remark the presence of a term inside
such decomposition, which is hard to control. However we will see that such drawback is going to
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be erased. Let us begin controlling 〈Qn∆Qn, ∇un〉Ḣs :

〈Qn∆Qn, ∇un〉Ḣs =
∑
q∈Z

22qs〈∆̇q(Q
n∆Qn), ∆̇q∇un〉L2

=
∑
q∈Z

4∑
i=1

22qs〈J iq (Qn, ∆Qn), ∆̇q∇un〉L2 .

where J iq has been defined by (6.1), for i = 1, . . . , 4. When i = 1, we point out that

〈 J 1
q (Qn, ∆Qn), ∆̇q∇un〉L2 =

∑
|q−q′|≤5

〈[∆̇q, Ṡq′−1Q
n]∆̇q′∆Q

n, ∆̇q∇un〉L2

.
∑

|q−q′|≤5

2−q
′‖Ṡq′−1∇Qn‖L∞‖∆̇q′∆Q

n‖L2‖∆̇q∇u‖L2

. ‖∇Qn‖L∞
∑

|q−q′|≤5

‖∆̇q′∇Qn‖L2‖∆̇q∇u‖L2 .

which yields ∑
q∈Z

22qs〈J 1
q (Qn, ∆Qn), ∆̇q∇un〉L2 . ‖∇Qn‖L∞‖∇Qn‖Ḣs‖∇un‖Ḣs . (6.25)

On the other hand, for i = 2, we proceed as follows:

〈J 2
q (Qn, ∆Qn), ∆̇q∇un〉L2 =

∑
|q−q′|≤5

〈(Ṡq′−1Q
n − Ṡq−1Q

n)∆̇q∆̇q′∆Q
n, ∆̇q∇un〉L2

.
∑

|q−q′|≤5

‖Ṡq′−1Q
n − Ṡq−1Q

n‖L∞‖∆̇q∆̇q′∆Q
n‖L2‖∆̇q∇un‖L2

.
∑

|q−q′|≤5

‖Ṡq′−1∇Qn − Ṡq−1∇Qn‖L∞‖∆̇q∇Qn‖L2‖∆̇q∇un‖L2

. ‖∇Qn‖L∞‖∆̇q∇Qn‖L2‖∆̇q∇un‖L2 ,

which yields ∑
q∈Z

22qs〈J 2
q (Qn, ∆Qn), ∆̇q∇un〉L2 . ‖∇Qn‖L∞‖∇Qn‖Ḣs‖∇un‖Ḣs . (6.26)

The case i = 4 is handled as follows:

〈J 4
q (Qn, ∆Qn), ∆̇q∇un〉L2 =

∑
q′≥q−5

〈∆̇q[ ∆̇q′Q
nṠq′+2∆Qn], ∆̇q∇un〉L2

.
∑

q′≥q−5

‖∆̇q′Q
n‖L2‖Ṡq′+2∆Qn‖L∞‖∆̇q∇un‖L2

.
∑

q′≥q−5

‖∆̇q′∇Qn‖L2‖Ṡq′+2∇Qn‖L∞‖∆̇q∇un‖L2

. ‖∇Qn‖L∞‖∆̇q∇un‖L2

∑
q′≥q−5

‖∆̇q′∇Qn‖L2 .
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Therefore, multiplying by 22qs and taking the sum as q ∈ Z,∑
q∈Z

22qs〈J 4
q (Qn, ∆Qn), ∆̇q∇un〉L2 .

. ‖∇Qn‖L∞
∑
q∈Z

(
2qs‖∆̇q∇un‖L2

∑
q′∈Z

2(q−q′)s1(−∞,5)(q − q′)2q
′s‖∆̇q′∇Qn‖L2

)
. ‖∇Qn‖L∞‖∇un‖Ḣs

{∑
q∈Z

(∑
q′∈Z

2(q−q′)s1(−∞,5)(q − q′)2q
′s‖∆̇q′∇Qn‖L2

)2} 1
2
,

so that, by convolution and the Young inequality∑
q∈Z

22qs〈J 4
q (Qn, ∆Qn), ∆̇q∇un〉L2 . ‖∇Qn‖L∞‖∇un‖Ḣs‖∇Qn‖Ḣs . (6.27)

It remains to control the term related to J 3
q , namely∑

q∈Z
22qs〈J 3(Qn,∆Qn), ∆̇q∇un〉L2 =

∑
q∈Z

22qs〈Ṡq−1Q
n∆̇q∆Q

n, ∆̇q∇un〉L2 (6.28)

As already remarked in the beginning, such term presents some difficulties. For instance, fixing
q ∈ Z in the sum, the more natural estimate is the following one:

〈Ṡq−1Q
n∆̇q∆Q

n, ∆̇q∇un〉L2 ≤ ‖Ṡq−1Q
n‖L∞‖∆̇q∆Q

n‖L2‖∆̇q∇un‖L2 .

The presence of the low frequencies Ṡq−1 in the first norm doesn’t permit to transport a gradient
to Qn, so the best expectation is the following one:∑

q∈Z
22qs〈Ṡq−1Q

n∆̇q∆Q
n, ∆̇q∇un〉L2 . ‖Qn‖L∞‖∆Qn‖Ḣs‖∇un‖Ḣs .

Of course such inequality is not useful for our purpose, i.e. an Osgood type inequality. For example
there isn’t a term that appears in the time derivative of the left-hand side of (6.17). Even if there
exists a way to overcome such challenging evaluation, we will see that (6.28) is going to be erased.

Now, let us keep on our control. We have to examine 〈∆QnQn, ∇un〉Ḣs . Observing that an
equivalent formulation is 〈Qn∆Qn, t∇un〉Ḣs (Qn and ∆Qn are symmetric matrices) we recompute
the previous inequality (with t∇u instead of ∇u), so that∑

q∈Z

∑
i=1,2,4

22qs〈J iq (Qn, ∆Qn), ∆̇q
t∇un〉L2 . ‖∇Qn‖L∞‖∇un‖Ḣs‖∇Qn‖Ḣs . (6.29)

As before, J 3
q is an inflexible term, so that, recalling (6.28), we need to erase what follows:∑

q∈Z
22qs

{
〈Ṡq−1Q

n∆̇q∆Q
n,∆̇q∇un〉L2 − 〈Ṡq−1Q

n∆̇q∆Q
n, ∆̇q

t∇un〉L2

}
=

=
∑
q∈Z

22qs〈Ṡq−1Q
n∆̇q∆Q

n − ∆̇q∆Q
nṠq−1Q

n, ∆̇q∇un〉L2 .
(6.30)

Estimate of 〈ΩnQn −QnΩn, ∆Qn〉Ḣs
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Now, let us continue estimating 〈ΩnQn −QnΩn, ∆Qn〉Ḣs . The strategy as the same organization
of the previous evaluation. We begin analyzing 〈QnΩn, ∆Qn〉Ḣs

〈QnΩn, ∆Qn〉Ḣs =
∑
q∈Z

22qs〈∆̇q(Q
nΩn), ∆̇q∆Q

n〉L2 =
∑
q∈Z

4∑
i=1

22qs〈J iq (Qn, Ωn), ∆̇q∆Q
n〉L2 .

First, considering i = 1 and q ∈ Z, we get

〈J 1
q (Qn, Ωn), ∆̇q∆Q

n〉L2 =
∑

|q−q′|≤5

〈[∆̇q, Ṡq′−1Q
n]∆̇q′Ω

n, ∆̇q∆Q
n〉L2

.
∑

|q−q′|≤5

2−q‖Ṡq′−1∇Qn‖L∞‖∆̇q′∇un‖L2‖∆̇q∆Q
n‖L2

. ‖∇Qn‖L∞‖∆̇q∇Qn‖L2

∑
|q−q′|≤5

‖∆̇q′∇un‖L2 .

therefore, taking the sum as q ∈ Z,∑
q∈Z

22qs〈J 1
q (Qn, Ωn), ∆̇q∆Q

n〉L2 . ‖∇Qn‖L∞‖∇Qn‖Ḣs‖∇un‖Ḣs . (6.31)

By a similar method as for proving (6.31) or (6.26), the case i = 2 produces∑
q∈Z

22qs〈J 2
q (Qn, Ωn), ∆̇q∆Q

n〉L2 . ‖∇Qn‖2L∞‖∇Qn‖2Ḣs +
ν

100
‖∇un‖2

Ḣs ,

while, for i = 4, we get

〈J 4
q (Qn, Ωn), ∆̇q∆Q

n〉L2 =
∑

q′≥q−5

〈∆̇q[ ∆̇q′Q
nṠq′+2Ωn], ∆̇q∆Q

n〉L2

.
∑

q′≥q−5

‖∆̇q′Q
n‖L2‖Ṡq′+2Ωn‖L∞‖∆̇q∆Q

n‖L2

.
∑

q′≥q−5

‖∆̇q′∇Qn‖L2‖Ṡq′+2u
n‖L∞‖∆̇q∆Q

n‖L2

. ‖un‖L∞‖∆̇q∆Q
n‖L2

∑
q′≥q−5

‖∆̇q′∇Qn‖L2 .

Thus, multiplying by 22qs and taking the sum as q ∈ Z, we realize that∑
q∈Z

22qs〈J 4
q (Qn, Ωn), ∆̇q∆Q

n〉L2 .

. ‖un‖L∞
∑
q∈Z

(
2qs‖∆̇q∆Q

n‖L2

∑
q′∈Z

2(q−q′)s1(−∞,5)(q − q′)2q
′s‖∆̇q′∇Qn‖L2

)
. ‖un‖L∞‖∆Qn‖Ḣs

[∑
q∈Z

(∑
q′∈Z

2(q−q′)s1(−∞,5)(q − q′)2q
′s‖∆̇q′∇Qn‖L2

)2] 1
2
,

so that, passing through the Young inequality,∑
q∈Z

22qs〈J 4
q (Qn, Ωn), ∆̇q∆Q

n〉L2 . ‖un‖L∞‖∆Qn‖Ḣs‖∇Qn‖Ḣs . (6.32)



6.6. REGULARITY PROPAGATION 123

As the reader has already understood, the challenging term is the one related to J 3
q , that is∑

q∈Z
22qs〈J 3

q (Qn, Ωn), ∆̇q∆Q
n〉L2 =

∑
q∈Z

22qs〈Ṡq−1Q
n, ∆̇qΩ

n, ∆̇q∆Q
n〉L2 (6.33)

As (6.30), we are not capable to control it, so we claim that such obstacle is going to be simplified.
Going on, we observe that 〈ΩnQn, ∆Qn〉Ḣs can be reformulated as 〈QnΩn, ∆Qn〉Ḣs , which we
have just analyzed. Hence we need to control (6.33) twice, that is∑

q∈Z
22qs2〈Sq−1Q

n∆̇qΩn, ∆̇q∆Q
n〉L2 =

∑
q∈Z

22qs〈Sq−1Q
n∆̇qΩn − ∆̇qΩnSq−1Q

n, ∆̇q∆Q
n〉L2 , (6.34)

The Simplification

Recalling (6.30) and (6.34), we have not evaluated∑
q∈Z

22qs
{
〈Ṡq−1Q

n∆̇q∆Q
n−∆̇q∆Q

nṠq−1Q
n, ∆̇q∇un〉L2+

+ 〈Sq−1Q
n∆̇qΩn − ∆̇qΩnSq−1Q

n, ∆̇q∆Q
n〉L2

}
,

yet. However, this is a series whose coefficients are null, thanks to Theorem 6.7.1. Hence, we have
overcome all the previous lacks, so that the following inequality is fulfilled:

〈∆QnQn −Qn∆Qn, ∇un〉Ḣs−〈ΩnQn −QnΩn, ∆Qn〉Ḣs .

. ‖(un, ∇Qn)‖L∞‖(∇un, ∆Qn)‖Ḣs‖(un, ∇Qn)‖Ḣs .
(6.35)

Estimate of 〈P(Qn), ∆Qn〉Ḣs

Finally, the last term to estimate is 〈P(Qn), ∆Qn〉Ḣs . Such evaluation is not a problematic, however
it is computationally demanding, therefore we put forward in section 6.9 the proof of the following
inequality:

〈 P(Qn), ∆Qn〉Ḣs . (1 + ‖Qn‖H2 + ‖Qn‖2H2)‖∇Qn‖2
Ḣs , (6.36)

where we remind that H2 is a non-homogeneous Sobolev Space.

The Final Step

Summarizing the equality (6.17) and the inequalities (6.20), (6.21), (6.24), (6.35) and (6.36), we
deduce

d

dt

[
‖un‖2

Ḣs + L‖∇Qn‖2
Ḣs

]
+ ν‖∇un‖2

Ḣs + ΓL2‖∆Qn‖2
Ḣs .

. ‖(un, ∇Qn)‖L∞‖(un, ∇Qn)‖Ḣs‖(un, ∇Qn)‖Ḣ1+s + (1 + ‖Qn‖H2 + ‖Qn‖2H2)‖∇Qn‖2
Ḣs .

(6.37)

We define Φ(t) := ‖un‖2
Ḣs + ‖∇Qn‖2

Ḣs and Ψ(t) := ‖∇un‖2
Ḣs + ‖∆Qn‖2

Ḣs , so that (6.37) yields

Φ′(t) + Ψ(t) . ‖(un(t), ∇Qn(t))‖L∞‖(un(t),∇Qn(t))‖Ḣs‖(un(t), ∇Qn(t))‖Ḣ1+s+

+ (1 + ‖Qn(t)‖H2 + ‖Qn(t)‖2H2)Φ(t).
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Then, fixing a positive integer N = N(t), we apply Lemma 6.7.2, obtaining

Φ′ + Ψ .
{
‖(un, ∇Qn)‖L2+

√
N‖(un, ∇Qn)‖Ḣ1 + 2−Ns‖(un, ∇Qn)‖Ḣs+1

}
×

×‖(un, ∇Qn)‖Ḣs‖(un, ∇Qn)‖Ḣ1+s + (1 + ‖Qn‖H2 + ‖Qn‖2H2)Φ.
(6.38)

For simplicity, let us define

f1 := ‖(un, ∇Qn)‖2L2 + 1 + ‖Qn‖H2 + ‖Qn‖2H2 , f2 := ‖(un, ∇Qn)‖2
Ḣ1 ,

hence (6.38) implies

Φ′(t) + Ψ(t) ≤ C
{
f1(t) Φ(t) +Nf2(t)Φ(t) + 2−Ns‖(un, ∇Qn)(t)‖ḢsΨ(t)

}
, (6.39)

for a positive constant C. Now, choosing N(t) to be a positive integer which fulfills

1

s
log2{2 + 4C + Φ(t)} ≤ N(t) ≤ 1

s
log2{2 + 4C + Φ(t)}+ 1

it turns out from (6.39)

Φ′(t) + Ψ(t) ≤ C
{
f1(t) Φ(t) + f2(t)Φ(t)(

1

s
log2{2 + 4C + Φ(t)}+ 1)

}
+

1

2
Ψ(t),

so that, finally, increasing the value of C, we obtain

Φ′(t) + Ψ(t) ≤ C
(
f1(t) + f2(t)

)
Φ(t) log2{2 + 4C + Φ(t)}, (6.40)

which yields

Φ′(t) ≤ C

ln 2

(
f1(t) + f2(t)

)
(2 + 4C + Φ(t)) ln{2 + 4C + Φ(t)}.

By integrating this differential inequality, we obtain

2 + 4C + Φ(t) ≤ (2 + 4C + Φ(0))exp{ C
ln 2

´ t
0 (f1(s)+f2(s))ds}.

Recalling the definition of Φ, f1 and f2, we obtain

‖(un,∇Qn)(t)‖2
Ḣs ≤

≤ (2 + 4C + ‖(u0, ∇Q0)‖2
Ḣs)

exp{ C
ln 2

´ t
0 (‖(un(s),∇Qn(s))‖2

L2+1+‖Qn(s)‖H2+‖Qn(s)‖2
H2 )ds},

so that, thanks to Proposition 6.8.1

‖(un,∇Qn)(t)‖2
Ḣs ≤ (2 + 4C + ‖(u0, ∇Q0)‖2

Ḣs)
C̃
(
‖Q0‖H1+‖u0‖L2

x

)
eCT

,

for some suitable positive constants C̃ and C. Moreover, integrating (6.40) in time, we get

ˆ t

0
Ψ(s)ds ≤ Φ(0) + C

ˆ t

0

(
f1(t) + f2(t)

)
Φ(t) log2{2 + 4C + Φ(t)},
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that is

ˆ t

0
‖(un, ∇Qn)(τ)‖2

Ḣs+1dτ ≤ ‖(u0, ∇Q0)‖2
Ḣs + C

ˆ t

0

{
‖(un, ∇Qn)‖2L2 + 1 + ‖Qn‖H2+

+ ‖Qn‖2H2

}
(τ)dτ‖(un, ∇Qn)(t)‖2

Ḣs log2{2 + 4C + ‖(un, ∇Qn)(t)‖2
Ḣs}

≤ ‖(u0, ∇Q0)‖2
Ḣs + C(t, ‖u0‖L2

x
, ‖Q0‖H1)‖(un, ∇Qn)(t)‖2

Ḣs log2{2 + 4C + ‖(un, ∇Qn)(t)‖2
Ḣs},

where C(t, ‖u0‖L2
x
, ‖Q0‖H1) is a suitable positive constant, given by Proposition 6.8.1. Since such

estimates are uniform in n, we pass to the limit as n goes to ∞, obtaining

‖(u,∇Q)‖2
L∞T Ḣ

s ≤

≤ (2 + 4C + ‖(u0, ∇Q0)‖2
Ḣs)

C̃
(
‖Q0‖H1+‖u0‖L2

x

)
eCT

,

and ˆ T

0
‖(u, ∇Q)(τ)‖2

Ḣs+1dτ ≤ ‖(u0, ∇Q0)‖2
Ḣs + C(t, ‖u0‖L2

x
, ‖Q0‖H1)×

×(2 + 4C + ‖(u0, ∇Q0)‖2
Ḣs)

C̃
(
‖Q0‖H1+‖u0‖L2

x

)
eCT
×

× log2{2 + 4C + (2 + 4C + ‖(u0, ∇Q0)‖2
Ḣs)

C̃
(
‖Q0‖H1+‖u0‖L2

x

)
eCT

,

where (u, Q) is solution of (P ) with (u0, Q0) as initial data. This concludes the proof of Theorem
(6.1.3).

6.7 Thecnincal tools

Lemma 6.7.1. Let Q1 and Q2 be two 3×3 symmetric matrices with entries in H2(R2). Assume that
u is a 3-vector with components in H1(R2) and let Ω be the 3×3 matrix defined by 1/2(∇u− t∇u).
Then the following identity is satisfied:

ˆ
R2

tr{(ΩQ2 −Q2Ω)∆Q1}+

ˆ
R2

tr{(∆Q1Q2 −Q1∆Q2)∇u} = 0

Proof. By a direct computation

ˆ
R2

tr{(ΩQ2 −Q2Ω)∆Q1} =

ˆ
R2

[
tr{ΩQ2∆Q1} − tr{Q2Ω∆Q1}

]
=

ˆ
R2

[
tr{ΩQ2∆Q1}−

− tr{∆Q1
tΩQ2}

]
= 2

ˆ
R2

tr{ΩQ2∆Q1} =

ˆ
R2

tr{∇uQ2∆Q1 − t∇uQ2∆Q1} =

=

ˆ
R2

tr{(Q1∆Q2 −∆Q1Q2)∇u},

which concludes the proof of the Lemma.

Lemma 6.7.2. Let f be a function in H1 ∩ Ḣ1+s with s > 0. Then, there exists C > 0 such that

‖f‖L∞ ≤ C
(
‖f‖L2 +

√
N‖f‖H1 + 2−Ns‖f‖Ḣ1+s

)
,

for any positive integer N .
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Proof. Let us fix N > 0. Then f = ṠN+1f + (Id−ṠN+1)f fulfills

‖f‖L∞ ≤ ‖ṠN+1f‖L∞ + ‖
∑
q≥N

∆̇qf‖L∞ ≤
∑
q<N

‖∆̇qf‖L∞︸ ︷︷ ︸
A

+
∑
q≥N
‖∆̇qf‖L∞︸ ︷︷ ︸
B

.

First, let us analyze A:

∑
q<N

‖∆̇qf‖L∞ =
∑
q≤0

‖∆̇qf‖L∞ +

N∑
q=1

‖∆̇qf‖L∞ .
∑
q≤0

2q‖∆̇qf‖L2 +

N∑
q=1

2q‖∆̇qf‖L2

.
∑
q≤0

‖∆̇qf‖L2 +
√
N‖f‖Ḣ1 . ‖f‖L2 +

√
N‖f‖Ḣ1 .

Finally, from the definition of B∑
q≥N
‖∆̇qf‖L∞ =

∑
q≥N

2q‖∆̇qf‖L2 =
∑
q≥N

2−sq2q(1+s)‖∆̇qf‖L2 . 2−Ns‖f‖Ḣ1+s ,

which concludes the proof of the lemma.

Proof. proof of Theorem 6.2.4 At first we identify the Sobolev Spaces Ḣs and Ḣt with the Besov

Spaces Ḃs
2,2 and Ḃt

2,2 respectively. We claim that ab belongs to Ḃ
s+t−N/2
2,2 and

‖ab‖
Ḃ
s+t−N/2
2,2

≤ C‖a‖Ḃs2,2‖b‖Ḃt2,2 ,

for a suitable positive constant.

We decompose the product ab through the Bony decomposition, namely ab = Ṫab+ Ṫba+R(a, b),
where

Ṫab :=
∑
q∈Z

∆̇qa Ṡq−1b, Ṫba :=
∑
q∈Z

Ṡq−1a ∆̇qb, Ṙ(a, b) :=
∑
q∈Z
|ν|≤1

∆̇qa ∆̇q+νb.

For any q ∈ Z, we have

2q(s+t−
N
2

)‖(∆̇qṪab, ∆̇qṪba)‖L2 .

.
∑

|q−q′|≤5

2q
′s‖∆̇qa‖L22q

′(t−N
2

)‖Ṡq−1b‖L∞ +
∑

|q−q′|≤5

2q
′(s−N

2
)‖Ṡq−1a‖L∞2q

′t‖∆̇qb‖L2 ,

so that we determine the following feature

‖(Ṫab, Ṫba)‖
Ḃ
s+t−N2
2,2

≤ ‖(Ṫab, Ṫba)‖
Ḃ
s+t−N2
2,1

. ‖a‖Ḃs2,2‖b‖Ḃt−
N
2

∞,2

+ ‖a‖
Ḃ
s−N2
∞,2

‖b‖Ḃt2,2 . ‖a‖Ḃs2,2‖b‖Ḃt2,2 ,

where we have used the embedding Ḃσ
2,2 ↪→ Ḃ

σ−N/2
∞,2 , for any σ ∈ R and Proposition 6.2.3.

In order to conclude the proof, we have to handle the rest Ṙ(a, b). By a direct computation, for
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any q ∈ Z,

2(t+s)q‖∆̇qṘ(a, b)‖L1 ≤
∑

q′≥q−5
|ν|≤1

2(q−q′)(s+t)2q
′s‖∆̇q′a‖L22(q′+ν)t‖∆̇q′+νa‖L2 ,

so that, thanks to the Young inequality, we deduce

‖Ṙ(a, b)‖
Ḃ
s+t−N2
2,2

. ‖Ṙ(a, b)‖Ḃs+t1,1
. ‖a‖Ḃs2,2‖b‖Ḃt2,2 ,

where we have used the embedding Ḃs+t
1,1 ↪→ Ḃ

s+t−N/2
2,2 and moreover that

∑
q≤5 2q(s+t) is finite,

since s+ t is positive.

6.8 A bound for the Friedrichs scheme

This section is devoted to a specific bound for the norms of the solutions of system P̃n. This result
has already been presented in [99]. We propose here the proof for the sake of completeness.

Proposition 6.8.1. Let (un, Qn) be a solution for system P̃n with initial data (u0, Q0) ∈ L2
x×H1.

Then

‖(Qn, ∇Qn, un)‖2L∞(0,T ;L2
x) + ‖(∆Qn, ∇un)‖2L2(0,T ;L2

x) .
(
‖Q0‖H1 + ‖u0‖L2

x

)
eCT (6.41)

Proof. We multiply the fist equation by Qn−L∆Qn, while the momentum equation by un and we
integrate everything in R2, obtaining

d

dt

[
‖Qn‖2L2

x
+ L‖∇Qn‖2L2

x
+ ‖un‖2L2

x

]
+ ν‖∇un‖2L2

x
+ ΓL‖∇Qn‖2L2

x
+ ‖∆Qn‖2L2

x
+ c‖Qn‖4L4

x
=

= −a‖Qn‖2L2
x

+ b〈(Qn)2, Qn〉L2
x

+ aL‖∇Qn‖2L2
x
− bL〈(Qn)2,∆Qn〉L2

x
+ cL〈Qntr{(Qn)2},∆Qn〉L2

x
.

At first, recalling that c > 0 and integrating by part, we get

cL〈Qntr{(Qn)2},∆Qn〉L2
x

= −cL
ˆ
R2

|∇Qn|2tr{(Qn)2} − cL
ˆ
R2

∣∣∣∣∇|Qn|22

∣∣∣∣2 ≤ 0.

This yields that

d

dt

[
‖Qn‖2L2

x
+ L‖∇Qn‖2L2

x
+ ‖un‖2L2

x

]
+ ν‖∇un‖2L2

x
+ ΓL‖∇Qn‖2L2

x
+ ΓL2‖∆Qn‖2L2

x
+

+cL

ˆ
R2

|∇Qn|2tr{(Qn)2}+ cL

ˆ
R2

∣∣∣∣∇|Qn|22

∣∣∣∣2 + c‖Qn‖4L4
x

≤ −a‖Qn‖2L2
x

+ aL‖∇Qn‖2L2
x

+ cΓ,L‖∆Qn‖2L2
x

+ b〈(Qn)2, Qn〉L2
x
− bL〈(Qn)2,∆Qn〉L2

x

Assuming cΓ,L small enough, we can absorb cΓ,L‖∆Qn‖2L2
x

by the left-hand side. Moreover, still
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integrating by part

−bL〈(Qn)2,∆Qn〉L2
x

= −bL〈(Qn)2,∆Qn〉L2
x

ˆ
R2

2∑
i=1

tr{(∂iQn)2Qn}

≤ c

100

ˆ
R2

|∇Qn|2tr{Q2}+ C‖Qn‖2L2
x
,

for a suitable positive constant C. Finally, proceeding as for proving (6.4) when p = 1, we get

b〈(Qn)2, Qn〉L2
x
≤ c

100
‖Qn‖4L4 +

100

c
‖Qn‖2L2

x
.

Summarizing, we finally deduce

d

dt

[
‖Qn‖2L2

x
+ L‖∇Qn‖2L2

x
+ ‖un‖2L2

x

]
+ ν‖∇un‖2L2

x
+ ΓL‖∇Qn‖2L2

x
+ ΓL2‖∆Qn‖2L2

x
+

+cL

ˆ
R2

|∇Qn|2tr{(Qn)2}+ cL

ˆ
R2

∣∣∣∣∇|Qn|22

∣∣∣∣2 + c‖Qn‖4L4
x

. ‖Qn‖2L2
x

+ ‖∇Qn‖2L2
x
,

which yields (6.41).

6.9 Estimate

The purpose of this section is to estimate 〈P(Qn), ∆Qn〉Ḣs . In order to facilitate the reader, we
are not going to indicate the index n, from here on. We have to examine

〈P(Q), ∆Q〉Ḣs = 〈−aQ+ b[Q2 − tr{Q2} Id

3
]− ctr{Q2}Q, ∆Q〉Ḣs

= 〈−aQ+ bQ2 − ctr{Q2}Q, ∆Q〉Ḣs ,

where 〈tr{Q2} Id, ∆Q〉Ḣs = 0 since ∆Q has null trace. It is trivial that

− 〈aQ, ∆Q〉Ḣs . ‖∇Q‖Ḣs . (6.42)

Now, let us consider b〈Q2, ∆Q〉Ḣs . By definition we have

b〈Q2, ∆Q〉Ḣs = b
∑
q∈Z

22qs〈∆̇q[Q
2], ∆̇q∆Q〉L2

= b
∑
q∈Z

22qs
[
2 〈∆̇qṪQQ, ∆̇q∆Q〉L2︸ ︷︷ ︸

Aq

+ 〈∆̇qṘ(Q, Q), ∆̇q∆Q〉L2︸ ︷︷ ︸
Bq

]
We concentrate on Aq, getting

Aq ≤
∑

|q−q′|≤5

‖Ṡq′−1Q∆̇q′Q‖L2‖∆̇q∆Q‖L2 . ‖Q‖L∞‖∆̇q∇Q‖L2

∑
|q−q′|≤5

‖∆̇q′∇Q‖L2 ,

so that
b
∑
q∈Z

22qsAq . ‖Q‖L∞‖∇Q‖2Ḣs . (6.43)
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Now, analyzing Bq, we observe that

Bq ≤
∑

q′≥q−5
|l|≤1

‖∆̇q′Q∆̇q′+lQ‖L2‖∆̇q∆Q‖L2 . ‖Q‖L∞‖∆̇q∇Q‖L2

∑
q′≥q−5

2q−q
′‖∆̇q′∇Q‖L2 ,

so that

b
∑
q∈Z

22qsBq . ‖Q‖L∞b
∑
q∈Z

2qs‖∆̇q∇Q‖L2

∑
q′∈Z

2(q−q′)(s+1)1(−∞,5)(q − q′)‖∆̇q′∇Q‖L2 .

Thus, by convolution and young inequality b
∑

q∈Z 22qsBq . ‖Q‖L∞‖∇Q‖2Ḣs and, recalling (6.43),

b〈Q2, ∆Q〉Ḣs . ‖Q‖L∞‖∇Q‖2Ḣs . (6.44)

Now, it remains to examine c〈Qtr{Q2}, ∆Q〉Ḣs . The procedure is quietly similar to the previous
one. At first we use the Bony decomposition as follows:

〈Qtr{Q2}, ∆Q〉Ḣs =
∑
q∈Z

22qs〈∆̇q(Qtr{Q2}), ∆̇q∆Q〉L2

=
∑
q∈Z

22qs
[
〈∆̇qṪQ(tr{Q2} Id), ∆̇q∆Q〉L2︸ ︷︷ ︸

Aq

+ 〈∆̇qṪtr{Q2} IdQ, ∆̇q∆Q〉L2︸ ︷︷ ︸
Bq

+

+ 〈∆̇qṘ(Q, tr{Q2} Id), ∆̇q∆Q〉L2︸ ︷︷ ︸
Cq

]

First, we concentrate on Aq, the more computationally demanding term, obtaining

Aq ≤
∑

[q−q′|≤5

‖Ṡq′−1Q∆̇q′(tr{Q2} Id)‖L2‖∆̇q∆Q‖L2 . ‖Q‖L∞
∑

[q−q′|≤5

‖∆̇q′(Q
2)‖L2‖∆̇q∆Q‖L2

. ‖Q‖L∞
∑

[q−q′|≤5

[
2‖∆̇q′ ṪQQ‖L2‖∆̇q∆Q‖L2︸ ︷︷ ︸

Iq,q′

+ ‖∆̇q′Ṙ(Q,Q)‖L2‖∆̇q∆Q‖L2︸ ︷︷ ︸
IIq,q′

]

The term Iq is the simpler one, indeed

Iq,q′ .
∑

|q′−q′′|≤5

‖Ṡq′′−1Q∆̇q′′Q‖L2‖∆̇q∆Q‖L2 . ‖Q‖L∞
∑

|q′−q′′|≤5

‖∆̇q′′Q‖L2‖∆̇q∆Q‖L2 ,

so that∑
q∈Z
‖Q‖L∞

∑
[q−q′|≤5

Iq,q′ . ‖Q‖2L∞
∑
q∈Z

∑
[q−q′|≤5

∑
|q′−q′′|≤5

‖∆̇q′′Q‖L2‖∆̇q∆Q‖L2

. ‖Q‖2L∞
∑
q∈Z

∑
|q−q′′|≤10

‖∆̇q′′∇Q‖L2‖∆̇q∇Q‖L2 . ‖Q‖2L∞‖∇Q‖Ḣs .

We overcome the term IIq,q′ as follows:
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IIq,q′ . ‖∆̇q∆Q‖L2

∑
q′′≥q′−5
|l|≤1

‖∆̇q′′Q‖L2‖∆̇q′′+lQ‖L∞

. ‖Q‖L∞‖∆̇q∇Q‖L2

∑
q′′≥q′−5

2q−q
′′‖∆̇q′′∇Q‖L2 ,

so that∑
q∈Z
‖Q‖L∞

∑
[q−q′|≤5

IIq,q′ . ‖Q‖2L∞
∑
q∈Z

22qs‖∆̇q∇Q‖L2

∑
[q−q′|≤5

∑
q′′≥q′−5

2q−q
′′‖∆̇q′′∇Q‖L2

. ‖Q‖2L∞
∑
q∈Z

2qs‖∆̇q∇Q‖L2

∑
q′′≥q−10

2(q−q′′)(s+1)2q
′′s‖∆̇q′′∇Q‖L2 ,

so that, by convolution and Young inequality
∑

q∈Z ‖Q‖L∞
∑

[q−q′|≤5 IIq,q′ . ‖Q‖2L∞‖∇Q‖Ḣs . Sum-

marizing the previous inequalities, we get
∑

q∈Z 22qsAq . ‖Q‖2L∞‖∇Q‖2Ḣs . In order to examine Bq
it is sufficient to observe that∑

q∈Z
22qsBq .

∑
q∈Z

22qs
∑

|q−q′|≤5

‖Ṡq′−1(tr{Q2} Id)∆̇q′Q‖L2‖∆̇q∆Q‖L2

. ‖Q2‖L∞
∑
q∈Z

22qs
∑

|q−q′|≤5

‖∆̇q′∇Q‖L2‖∆̇q∇Q‖L2 . ‖Q‖2L∞‖∇Q‖2Ḣs .

It remains indeed Cq, which is straightforward, indeed∑
q∈Z

22qsCq .
∑
q∈Z

22qs
∑

q′≥q−5
|l|≤1

‖∆̇q′Q∆̇q+l(Q
2)‖L2‖∆̇q∆Q‖L2

. ‖Q‖2L∞
∑
q∈Z

2qs‖∆̇q∇Q‖L2

∑
q′≥q−5

2(q−q′)(s+1)‖∆̇q′∇Q‖L2 ,

thus, by convolution and the Young inequality,
∑

q∈Z 22qsCq . ‖Q‖2L∞‖∇Q‖2Ḣs . Summarizing, we

finally get c〈Qtr{Q2}, ∆Q〉Ḣs . ‖Q‖2L∞‖∇Q‖2Ḣs and recalling (6.42)-(6.44), we finally obtain

〈P(Q),∆Q〉Ḣs . (1 + ‖Q‖L∞ + ‖Q‖2L∞)‖∇Q‖2
Ḣs . (1 + ‖Q‖H2 + ‖Q‖2H2)‖∇Q‖2

Ḣs ,

where the last inequality is due to the embedding H2(R2) ↪→ L∞(R2). Hence, inequality (6.36) is
proven.



Chapter 7

General Beris-Edwards system

In this chapter we present the results of the following paper:

F. De Anna, A. Zarnescu (accepted), Uniqueness of weak solutions of the full coupled Navier-Stokes
and Q-tensor system in 2D, Comm. Math. Sci., (2016)

7.1 Introduction

The main aim of this work is to prove the uniqueness of weak solutions for a type of coupled
Navier-Stokes and Q-tensor systems proposed in [12] and studied numerically and analytically
in [1, 35, 54, 58, 98]. This type of system models nematic liquid crystals and provides in a certain
sense an extension of the classical Ericksen-Leslie model [35], whose uniqueness of weak-solutions
was proved in [115]. In the remainder of this introduction we will briefly present the equations and
we state our main result.

The system models the evolution of liquid crystal molecules together with the underlying flow,
through a parabolic-type system coupling an incompressible Navier-Stokes system with a nonlinear
convection-diffusion system. The local orientation of the molecules is described through a function
Q taking values from R+ ×Ω ⊂ R+ ×Rd,d = 2, 3 into the set of so-called d-dimensional Q-tensors
that is

S
(d)
0

def
=
{
Q ∈Md×d;Qij = Qji, tr(Q) = 0, i, j = 1, . . . , d

}
(the most relevant physical situations being d = 2, 3). The evolution of the Q’s is driven by a
gradient flow of the free energy of the molecules as well as the transport, distortion and alignment
effects caused by the flow. The flow field u : R+×Ω→ Rd satisfies a forced incompressible Navier-
Stokes system, with the forcing provided by the additional, non-Newtonian stress caused by the
molecules orientations, thus expressed in terms of Q. We restrict ourselves to the case Ω = Rd and
work with non-dimensional quantities. The evolution of Q is given by:

∂tQ+ u · ∇Q− S(∇u,Q) = −Γ
∂Fe
∂Q

with Γ > 0. Here

Fe(Q) =

ˆ
Rd

L

2
|∇Q|2 +

(a
2

tr(Q2)− b

3
tr(Q3) +

c

4
tr2(Q2))dx (7.1)

is the free energy of the liquid crystal molecules and ∂Fe
∂Q denotes the variational derivative. The

L, a, b, c constants are specific to the material with:

L > 0 and a, b, c ∈ R, c > 0 (7.2)

131
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If u = 0 the Q-tensor equation would simply be a gradient flow of the free energy. For u 6= 0 the
molecules are transported by the flow (as indicated by the convective derivative ∂t + u · ∇) as well
as being tumbled and aligned by the flow, fact described by the term

S(∇u,Q) := (ξD + Ω)(Q+
1

d
Id) + (Q+

1

d
Id)(ξD − Ω)− 2ξ(Q+

1

d
Id)tr(Q∇u) (7.3)

where D := 1
2

(
∇u+ t∇u

)
and Ω := 1

2

(
∇u− t∇u

)
are, respectively, the symmetric part and the

antisymmetric part, of the velocity gradient matrix ∇u. The constant ξ is specific to the liquid
crystal material.

The flow satisfies the forced Navier-Stokes system:

∂tu+ u · ∇u = ν∆u+∇p+ λdiv{τ + σ}
div u = 0

where ν, λ > 0 with λ measuring the ratio of the elastic effects (produced by the liquid crystal
molecules) to that of the diffusive effects. The forcing is provided by the additional stress caused
by the presence of the liquid crystal molecules, more specifically we have the symmetric part of the
additional stress tensor:

τ :=
[
− ξ
(
Q+

1

d
Id
)
H − ξH

(
Q+

1

d
Id
)

+ 2ξ
(
Q+

1

d
Id
)
QH − L∇Q�∇Q

]
and the antisymmetric part:

σ := QH −HQ
where we denoted

H := −∂Fe
∂Q

= L∆Q− aQ+ b[Q2 − tr(Q2)

d
Id]− cQtr(Q2) (7.4)

Summarising we have the coupled system:

∂tQ+ u · ∇Q− S(∇u,Q) = Γ(L∆Q− aQ+ b[Q2 − tr(Q2)

d
Id]− cQtr(Q2))

∂tu+ (u · ∇)u = ν∆u+∇p+ λ∇ · (QH −HQ) + λ∇ ·
[
− ξ
(
Q+

1

d
Id
)
H−

− ξH
(
Q+

1

d
Id
)

+ 2ξ
(
Q+

1

d
Id
)
QH − L∇Q�∇Q

]
div u = 0

(7.5)

where Γ, L, ν, c > 0, a, b ∈ R. Let us observe that this is a slight extension of the system considered
in [98], where λ = 1. However, this does not create any major difficulties compared to equations
in [98] but it is more relevant from a physical point of view.

The main result of this work is the uniqueness of weak solutions, which are defined in a rather
standard manner:

Definition 7.1.1. A pair (Q, u) is called a weak solution of the system (7.5), subject to initial data

Q(0, x) = Q̄(x) ∈ H1(Rd;S(d)
0 ), u(0, x) = ū(x) ∈ L2(Rd), div ū = 0 in D′(Rd) (7.6)

if Q ∈ L∞loc(R+;H1) ∩ L2
loc(R+;H2), u ∈ L∞loc(R+;L2) ∩ L2

loc(R+;H1) and for every compactly

supported ϕ ∈ C∞([0,∞)× Rd;S(d)
0 ), ψ ∈ C∞([0,∞)× Rd;Rd) with divψ = 0 we haveˆ ∞

0

ˆ
Rd

(−Q · ∂tϕ− ΓL∆Q · ϕ)−Q · u∇xϕdx dt−
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−
ˆ ∞

0

ˆ
Rd

(ξD + Ω)(Q+
1

d
Id) · ϕ+ (Q+

1

d
Id)(ξD − Ω) · ϕdxdt−

−
ˆ ∞

0

ˆ
Rd

2ξ(Q+
1

d
Id)tr(Q∇u) · ϕdxdt =

ˆ
Rd
Q̄(x) · ϕ(0, x) dx+

+ Γ

ˆ ∞
0

ˆ
Rd

{
− aQ+ b[Q2 − tr(Q2)

d
Id]− cQtr(Q2)

}
· ϕ dx dt (7.7)

and
ˆ ∞

0

ˆ
Rd
−u∂tψ − uαuβ∂αψβ + ν∇u∇ψ dt dx−

ˆ
Rd
ū(x)ψ(0, x) dx

= Lλ

ˆ ∞
0

ˆ
Rd
Qγδ,αQγδ,βψα,β −Qαγ∆Qγβψα,β + ∆QαγQγβψα,β dx dt+

+ ξλ

ˆ ∞
0

ˆ
Rd

(
Qαγ +

δαγ
d

)
Hγβψα,β +Hαγ

(
Qγβ +

δγβ
d

)
ψα,βdxdt−

− 2ξλ

ˆ ∞
0

ˆ
Rd

(Qαβ +
δαβ
d

)QγδHγδψα,β dx dt. (7.8)

We can now state our main result, which is the existence and uniqueness of weak solutions:

Theorem 7.1.2. Let d = 2, 3 and take

Q(0, x) = Q̄(x) ∈ H1(Rd;S(d)
0 ), u(0, x) = ū(x) ∈ L2(Rd), div ū = 0 in D′(Rd)

Then system (7.5) admits a global weak solution. Moreover if d = 2, then uniqueness holds.

Remark 7.1.3. With minor modifications to the proof, that are left to the interested reader, the
result also holds when the system is 2D in the domain but 3D in the target, which physically
corresponds to a situation where there is no dependence in one of the three spatial directions.

The main part of the theorem is about uniqueness, as the existence part is just a fairly straight-
forward revisit of the arguments in [98]. The main difficulties associated with treating the system
(7.5) are related to the presence of the Navier-Stokes part. One can essentially think of the system
as a highly non-trivial perturbation of a Navier-Stokes system. It is known that for Navier-Stokes
alone the uniqueness of weak solutions in 2D can be achieved through rather standard arguments,
while in 3D it is a major open problem.

The extended system that we deal with has an intermediary position, as the perturbation
produced by the presence of the additional stress-tensor generates significant technical difficulties
related in the first place to the weak norms available for the u term. A rather common way of
dealing with this issue is by using a weak norm for estimating the difference between the two weak
solutions, a norm that is below the natural spaces in which the weak solutions are defined. This
approach was used before in the context of the related Leslie-Ericksen model [73] as well as for the
usual Navier-Stokes system in [48] and [88].

In our case, for technical convenience we use a homogeneous Sobolev space, namely Ḣ−
1
2 .

The fact that the initial data for the difference is zero (i.e. (δu, δQ)t=0 = 0) helps in controlling
the difference in such a low regularity space. However, one of the main reasons for chosing the
homogeneous setting is a specific product law, see Proposition 7.4.4 in section 7.5. The mentioned
theorem shows that the product is a bounded operator from Ḣs(R2) × Ḣt(R2) into Ḣs+t−1(R2),
for any |s|, |t| ≤ 1 such that s+ t is positive. We note that evaluating the difference at regularity
level s = 0 i.e. in L2, would only allow to prove a weak-strong uniqueness result, along the lines
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of [99]. Working in a negative Sobolev space, Ḣs with s ∈ (−1, 0) allows to capture the uniqueness
of weak solutions. We expect that a similar proof would work in any Ḣs with s ∈ (−1, 0) and our
choice s = −1

2 is just for convenience.

Our main work is to obtain the delicate double-logarithmic type estimates that lead to an
Osgood lemma, a generalization of the Gronwall inequality (see [7], Lemma 3.4). Indeed the
uniqueness reduces to an estimate of the following type:

Φ′(t) ≤ χ(t)
{

Φ(t) + Φ(t) ln
(

1 + e+
1

Φ(t)

)
+ Φ(t) ln

(
1 + e+

1

Φ(t)

)
ln ln

(
1 + e+

1

Φ(t)

)}
,

where Φ(t) is the norm of the difference between two solutions and χ is apriori in L1
loc.

In addition to these there are some difficulties that are specific to this system. These are of two
different types, being related to:

• controlling the “extraneous” maximal derivatives: that is the highest derivatives in u that
appear in the Q equation and the highest derivatives in Q that appear in the u equation,

• controlling the high powers of Q , such as Qtr(Q2) in particular those that interact with u
terms (such as Qtr(Q∇u)).

The first difficulty is dealt with by taking into account the specific feature of the coupling
that allows for the cancellation of the worst terms, when considering certain physically meaningful
combinations of terms. This feature is explored in the next section where we revisit and revise
the existence proof from [98]. In what concerns the second difficulty, this is overcome by delicate
harmonic analysis arguments leading to the double logarithmic estimates mentioned before.

The work is organised as follows: in the next section we revisit the existence arguments done in
cite [98], providing a slight adaptation to our case and a minor correction to one of the estimates
used there. The main benefit of this section is that it exhibits in a simple setting a number of
cancellations that are later-on crucial for the uniqueness argument. In the third section we start by
introducing a number of technical harmonic analysis tools related to the Littlewood-Paley theory
and then use them in the proof of our main result. Some standard but perhaps less-known tools,
toghether with some more technical estimate are postponed in section 7.5.

Notations and conventions

Let S
(d)
0 ⊂Md×d denote the space of Q-tensors in dimension d, i.e.

S
(d)
0

def
=
{
Q ∈Md×d;Qij = Qji, tr(Q) = 0, i, j = 1, . . . , d

}
We use the Einstein summation convention, that is we assume summation over repeated indices.

We define the Frobenius norm of a matrix |Q| def
=
√

trQ2 =
√
QαβQαβ and define Sobolev spaces

of Q-tensors in terms of this norm. For instance H1(Rd, S(d)
0 )

def
= {Q : Rd → S

(d)
0 ,
´
Rd |∇Q(x)|2 +

|Q(x)|2 dx < ∞} where |∇Q|2(x)
def
= Qαβ,γ(x)Qαβ,γ(x) with Qαβ,γ

def
= ∂γQαβ. For A,B ∈ S(d)

0 we

denote A : B = tr(AB), |A| =
√

tr(A2) and ‖(A, B)‖X = ‖A‖X + ‖B‖X , for any suitable Banach

space X. We also denote Ωαβ
def
= 1

2 (∂βuα − ∂αuβ),uα,β
def
= ∂βuα and (∇Q�∇Q)ij = Qαβ,iQαβ,j .
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7.2 The energy decay, apriori estimates and scaling

In the absence of the flow, when u = 0 in the equations (7.5), the free energy is a Lyapunov
functional of the system. If u 6= 0 we still have a Lyapunov functional for (7.5) but this time one
that includes the kinetic energy of the system. These estimates provide as usually the basis for
obtaining apriori estimates for the system. The propositions in this section show this and their
proofs follow closely the ones of the similar propositions in [98] where they were done for the case
λ = 1. The reason for including them is to display in relatively simple setting the cancellations
that will appear again in the proof of the uniqueness theorem but in a much more complicated
framework. We have:

Proposition 7.2.1. The system (7.5) has a Lyapunov functional:

E(t)
def
=

1

2

ˆ
Rd
|u|2(t, x)dx+

ˆ
Rd

Lλ

2
|∇Q|2(t, x)dx

+ λ

ˆ
Rd

(
a

2
tr(Q2(t, x))− b

3
tr(Q3(t, x)) +

c

4
tr2(Q2(t, x)))dx

(7.9)

If d = 2, 3 and (Q, u) is a smooth solution of (7.5) such that Q ∈ L∞(0, T ;H1(Rd))∩L2(0, T ;H2(Rd))
and u ∈ L∞(0, T ;L2(Rd)) ∩ L2(0, T ;H1(Rd)) then, for all t < T , we have:

d

dt
E(t) =− ν

ˆ
Rd
|∇u|2 dx

− Γλ

ˆ
Rd

tr

(
L∆Q− aQ+ b[Q2 − tr(Q2)

d
Id]− cQtr(Q2)

)2

dx ≤ 0

(7.10)

Proof. We multiply the first equation in (7.5) to the right by −λH, take the trace, integrate over
Rd and by parts and sum with the second equation multiplied by u and integrated over Rd and by
parts (let us observe that because of our assumptions on Q and u we do not have boundary terms,
when integrating by parts). We obtain:

d

dt

ˆ
Rd

1

2
|u|2 +

Lλ

2
|∇Q|2 + λ(

a

2
tr(Q2)− b

3
tr(Q3) +

c

4
tr2(Q2))dx

+ν

ˆ
Rd
|∇u|2dx+ Γλ

ˆ
Rd

tr

(
L∆QL− aQ+ b[Q2 − tr(Q2)

d
Id]− cQtr(Q2)

)2

dx

= λ

ˆ
Rd
u · ∇Qαβ

(
−aQαβ + b[QαγQγβ −

δαβ
d

tr(Q2)]− cQαβtr(Q2))

)
dx︸ ︷︷ ︸

def
= I

+λ

ˆ
Rd

(−ΩαγQγβ +QαγΩγβ)

(
−aQαβ + b[QαδQδβ −

δαβ
d

tr(Q2)]− cQαβtr(Q2))

)
dx︸ ︷︷ ︸

def
= II

−λξ
ˆ
Rd

(
Qαγ +

δαγ
d

)
DγβHαβdx︸ ︷︷ ︸

def
= J1

−λξ
ˆ
Rd
Dαγ

(
Qγβ +

δγβ
d

)
Hαβdx︸ ︷︷ ︸

def
= J2
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+2λξ

ˆ
Rd

(
Qαβ +

δαβ
d

)
Hαβtr(Q∇u)dx︸ ︷︷ ︸

def
= J3

+Lλ

ˆ
Rd
uγQαβ,γ∆Qαβdx︸ ︷︷ ︸

def
=A

−Lλ
2

ˆ
Rd
uα,γQγβ∆Qαβdx︸ ︷︷ ︸

def
= B

+
Lλ

2

ˆ
Rd
uγ,αQγβ∆Qαβdx︸ ︷︷ ︸

def
= C

+
Lλ

2

ˆ
Rd
Qαγuγ,β∆Qαβdx︸ ︷︷ ︸

C

−Lλ
2

ˆ
Rd
Qαγuβ,γ∆Qαβdx︸ ︷︷ ︸

B

+Lλ

ˆ
Rd
Qγδ,αQγδ,βuα,βdx︸ ︷︷ ︸

def
=AA

−Lλ
ˆ
Rd
Qαγ∆Qγβuα,βdx︸ ︷︷ ︸

def
= CC

+Lλ

ˆ
Rd

∆QαγQγβuα,βdx︸ ︷︷ ︸
def
= BB

+λξ

ˆ
Rd

(
Qαγ +

δαγ
d

)
Hγβuα,βdx︸ ︷︷ ︸

def
= JJ 1

+λξ

ˆ
Rd
Hαγ

(
Qγβ +

δγβ
d

)
uα,βdx︸ ︷︷ ︸

def
= JJ 2

−2λξ

ˆ
Rd

(
Qαβ +

δαβ
d

)
uα,βtr(QH)dx︸ ︷︷ ︸

def
= JJ 3

= −Lλ
ˆ
Rd
uα,γQγβ∆Qαβdx︸ ︷︷ ︸

2B

+Lλ

ˆ
Rd
uγ,αQγβ∆Qαβdx︸ ︷︷ ︸

2C

−Lλ
ˆ
Rd
Qαγ∆Qγβuα,βdx︸ ︷︷ ︸

CC

+Lλ

ˆ
Rd

∆QαγQγβuα,βdx︸ ︷︷ ︸
BB

= 0 (7.11)

where I = 0 (since ∇ · u = 0), II = 0 (since Qαβ = Qβα) and for the second equality we used

ˆ
Rd
uγQαβ,γ∆Qαβdx︸ ︷︷ ︸

A

+

ˆ
Rd
Qγδ,αQγδ,βuα,βdx︸ ︷︷ ︸

AA

=

ˆ
Rd
uγQαβ,γ∆Qαβdx

−
ˆ
Rd
Qγδ,αQγδ,ββuαdx−

ˆ
Rd
Qγδ,αβQγδ,βuαdx =

ˆ
Rd

1

2
Qγδ,βQγδ,βuα,αdx = 0

together with Qαα = Hαα = uα,α = 0, J3 = JJ 3 and

J1 + J2 =

ˆ
Rd

1

2
Qαγuγ,βHαβ +

1

2
Qαγuβ,γHαβdx

+

ˆ
Rd

1

2
uα,γQγβHαβ +

1

2
uγ,αQγβHαβdx+

2

d

ˆ
Rd
DαβHαβdx

=

ˆ
Rd

1

2

(
Qαγuγ,βHαβ + uγ,αQγβHαβ

)
+

1

2

(
Qαγuβ,γHαβ + uα,γQγβHαβ

)
dx

+
1

d

ˆ
Rd

(uα,β + uβ,α)Hαβdx =

ˆ
Rd
HβαQαγuγ,β +QγαHαβuβ,γdx

+
2

d

ˆ
Rd
uα,βHαβdx = JJ 1 + JJ 2.
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Finally, the last equality in (7.11) is a consequence of the straightforward identities 2B+BB =
2C + CC = 0.

It can be easily checked that the system has a scaling, namely we have:

Lemma 7.2.2. Let (Q, u, p) be a solution of (7.5). Then letting

uδ(t, x)
def
= δu(δx, δ2t), Qδ(t, x)

def
= Q(δx, δ2t), pδ(t, x)

def
= δ2p(δx, δ2) (7.12)

we have that (Qδ, uδ, pδ) satisfy (7.5) with F (Q) = −aQ+ b[Q2 − tr(Q2)
d Id]− cQtr(Q2) replaced by

Fδ(Qδ) = δ2
[
−aQδ + b[(Qδ)

2 − tr(Q2
δ)

d − cQδtr(Qδ)
2
]
. We note that, in dimension two, the space

Ḣ1(R2)× L2(R2) is invariant by the scaling.

In the following we assume that there exists a smooth solution of (7.5) and obtain estimates on
the behaviour of various norms.

Proposition 7.2.3. Let (Q, u) be a smooth solution of (7.5) in dimension d = 2 or d = 3, with
restriction (7.2), and smooth initial data (Q̄(x), ū(x)), that decays fast enough at infinity so that
we can integrate by parts in space (for any t ≥ 0) without boundary terms. We assume that |ξ| < ξ0

where ξ0 is an explicitly computable constant, scale invariant, depending on a, b, c, d,Γ, ν, λ.
For (Q̄, ū) ∈ H1 × L2

x,we have

‖Q(t, ·)‖H1 ≤ C1 + C̄1e
C̄1t‖Q̄‖H1 , ∀t ≥ 0 (7.13)

with C1, C̄1 depending on (a, b, c, d,Γ, L, ν, Q̄, ū). Moreover

‖u(t, ·)‖2L2
x

+ ν

ˆ t

0
‖∇u‖2L2

x
≤ C1. (7.14)

Proof. We denote:

Xαβ
def
= L∆Qαβ − cQαβtr(Q2), α, β = 1, 2, 3.

Then equation (7.10) becomes:

d

dt
E(t) + ν‖∇u‖2L2

x
+ ΓλL2‖∆Q‖2L2

x
+ Γλc2‖Q‖6L6

− 2cLΓλ

ˆ
Rd

∆QαβQαβtr(Q2)dx+ a2Γλ‖Q‖2L2
x

+ b2Γλ

ˆ
Rd

tr

(
Q2 − tr(Q2)

d

)2

dx

≤ 2aΓλ

ˆ
Rd

tr(XQ)dx︸ ︷︷ ︸
def
= I

−2bΓλ

ˆ
Rd

tr(XQ2)dx︸ ︷︷ ︸
def
= J

+2abΓλ

ˆ
Rd

tr(Q3)dx.

(7.15)

Integrating by parts we have:

−2cLΓλ

ˆ
Rd

∆QαβQαβtr(Q2)dx = 2cLΓλ

ˆ
Rd
Qαβ,kQαβ,ktr(Q

2)dx

+2cLΓλ

ˆ
Rd
Qαβ,kQαβ∂k

(
tr(Q2)

)
dx

= 2cLΓλ

ˆ
Rd
|∇Q|2tr(Q2)dx+ cLΓλ

ˆ
Rd
|∇
(
tr(Q2)

)
|2dx ≥ 0 (7.16)
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(where for the last inequality we used the assumption (7.2) and L,Γ, λ > 0). One can easily see
that

I = −L
2
‖∇Q‖2L2

x
− c‖Q‖4L4 . (7.17)

On the other hand, for any ε > 0 and C̃ = C̃(ε, c) an explicitly computable constant, we have:

J = L

ˆ
Rd
Qαβ,kkQαγQγβdx− c

ˆ
Rd

tr(Q2)tr(Q3)dx ≤ −L
ˆ
Rd
Qαβ,kQαγ,kQγβdx

−L
ˆ
Rd
Qαβ,kQαγQγβ,kdx+

ˆ
Rd

tr(Q2)

(
C̃

ε
tr(Q2) + εtr2(Q2)

)
dx

≤ Lε
ˆ
Rd
|∇Q|2tr(Q2)dx+

C̃

ε
‖∇Q‖2L2

x
+

ˆ
Rd

tr(Q2)

(
C̃

ε
tr(Q2) + εtr2(Q2)

)
dx

Using the last three relations in (7.15) we obtain:

d

dt
E(t) + ν‖∇u‖2L2

x
+ ΓλL2‖∆Q‖2L2

x
+ c2Γλ‖Q‖6L6 + a2Γλ‖Q‖2L2

x

+2cLΓλ

ˆ
Rd
|∇Q|2tr(Q2)dx+ cLΓλ

ˆ
Rd
|∇
(
tr(Q2)

)
|2dx

≤ 2|a|Γλ(
L

2
‖∇Q‖2L2

x
+ c‖Q‖4L4) + 2|b|ΓλLε

ˆ
Rd
|∇Q|2tr(Q2)dx

+2|b|ΓλC̃
ε
‖∇Q‖2L2

x
+ 2|b|Γλ

ˆ
Rd

tr(Q2)

(
C̃

ε
tr(Q2) + εtr2(Q2)

)
dx

+2|ab|Γλ(ε‖Q‖2L2
x

+
C̃

ε
‖Q‖4L4)

Taking ε small enough we can absorb all the terms with an epsilon coefficient on the right into
the left hand side, and we are left with

d

dt
E(t) + ν‖∇u‖2L2

x
+ ΓλL2‖∆Q‖2L2

x
+ Γλc2‖Q‖6L6

+Γλa2‖Q‖2L2
x

+ 2cLΓλ

ˆ
Rd
|∇Q|2tr(Q2)dx

+cLΓλ

ˆ
Rd
|∇
(
tr(Q2)

)
|2dx ≤ C̄

(
‖∇Q‖2L2

x
+ ‖Q‖4L4

)
,

(7.18)

with C̄ = C̄(a, b, c).

The last relation is not yet enough because the Q terms without derivatives in E(t) are not
summing to a positive number. However, let us note that, if a > 0 we obtain the a-priori estimates
by using the inequality tr(Q3) ≤ 3

8tr(Q2) + tr(Q2)2. If a ≤ 0 we have to estimate separately ‖Q‖L2
x

and this ask for a smallness condition for ξ.

We need to control in some sense low frequencies of Q. To this end, we multiply the first
equation in (7.5) by Q, take the trace, integrate over Rd and by parts and we obtain:

1

2

d

dt

ˆ
Rd
|Q|2(t, x)dx = Γ

(
− L
ˆ
Rd
|∇Q|2dx− a

ˆ
Rd
|Q(x)|2dx+
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+b

ˆ
Rd

tr(Q3)dx− c
ˆ
Rd
|Q|4dx

)
+

ˆ
Rd

tr(ΩQ2 −QΩQ)dx︸ ︷︷ ︸
def
= I

+ ξ

ˆ
Rd
Dαγ(Qγβ +

δγβ
d

)Qαβ + (Qαγ +
δαγ
d

)DγβQαβ − 2(Qαβ +
δαβ
d

)Qαβtr(Q∇u)dx︸ ︷︷ ︸
def
= II

.

Recalling that Q is symmetric we have I = 0. Also:

|II| = |2ξ||
ˆ
Rd

1

d
DαβQαβ +DαγQγβQβα −QαβQαβtr(Q∇u)dx|

≤ C(d)

ˆ
Rd
ε|∇u|2dx+

ˆ
Rd

|ξ|2

ε
(|Q|2 + |Q|6)dx

Thus we get:

d

dt

ˆ
Rd
|Q|2dx ≤ C(d)ε

ˆ
Rd
|∇u|2dx+

|ξ|2

ε

ˆ
Rd
|Q|2 + |Q|6dx+ Ĉ

ˆ
Rd
|Q|2 + |Q|4dx (7.19)

with Ĉ = Ĉ(a, b) > 0. Let us observe now that there exists M = M(a, b, c) large enough, so that

M

2
tr(Q2) +

c

8
tr2(Q2) ≤ (M +

a

2
)tr(Q2)− b

3
tr(Q3) +

c

4
tr2(Q2) (7.20)

for any Q ∈ S0. Multiplying the equation (7.19) by M and adding to (7.18) we obtain:

d

dt
(E(t) +M‖Q‖2L2

x
) + ν‖∇u‖2L2

x
+ ΓλL2‖∆Q‖2L2

x
+ Γλc2‖Q‖6L6 + a2‖Q‖2L2

x

+2cLΓλ

ˆ
Rd
|∇Q|2tr(Q2)dx+ cLΓλ

ˆ
Rd
|∇
(
tr(Q2)

)
|2dx

≤ C̄
(
‖∇Q‖2L2

x
+ ‖Q‖4L4

)
+MC(d)ε

ˆ
Rd
|∇u|2dx

+
M |ξ|2

ε

ˆ
Rd
|Q|2 + |Q|6dx+MĈ

ˆ
Rd
|Q|2 + |Q|4dx

(7.21)

We chose ε small enough so that MC(d)ε < ν. Finally we make the assumption that |ξ| is small

enough, depending on a, b, c, d, ν so that M |ξ|2
ε ≤ Γλc2. Then taking into account equation (7.20)

we obtain the claimed relation (7.13).

We note that the ξ small hypothesis is necessary because we are in infinite domain, for example,
in the periodic domain, we can add a constant to the functional and get the apriori Lp estimates
without any smallness condition on ξ.

7.3 The existence of weak solutions

The next proposition follows closely the similar result in [98] where it was done for λ = 1. The
purpose for including it here is to provide an alternative approximation system thus correcting the
proof in [98] and also to show how the cancellations that appeared previously in the derivation of
the energy law still survive at the approximate level but with some differences, phenomenon which
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will appear in a much more complex setting in the proof of uniqueness in the next section.

Proposition 7.3.1. For d = 2, 3 there exists a weak solution (Q, u) of the system (7.5) subject
to initial conditions (7.6). The solution (Q, u) is such that Q ∈ L∞loc(R+;H1) ∩ L2

loc(R+;H2) and
u ∈ L∞loc(R+;L2) ∩ L2

loc(R+;H1).

Proof. As first step of the construction of weak solutions for the system (7.5) we construct for any
fixed ε > 0 a global weak solution

Qε ∈ L∞loc(R+;H1) ∩ L2
loc(R+, H

2), uε ∈ L∞loc(R+, L
2) ∩ L2

loc(R+, H
1)

for the modified system obtained by mollifying the coefficients of the equation for the Q tensor
and by adding to the equation of the velocity a regularizing term. This term is needed in order to
estimate some ”bad” terms which does not disappear in an energy estimate. For the simplicity of
the notations, we drop the indices ε and we denote the solution (Qε, uε) by (Q, u).

∂tQ+ (Rεu)∇Q−
((
Rε(ξD + Ω)

)
(Q+ 1

dId)
)

−
(

(Q+ 1
dId)Rε(ξD − Ω)

)
+2ξ

(
(Q+ 1

dId)tr
(
Q∇Rεu

))
= ΓH

∂tu+ (Rεu)∇u− ν∆u+∇p = −εPRε
(∑d

l,m=1∇Qlm (Rεu · ∇Qlm) |Rεu∇Q|
)

+εP∇ ·Rε
(
∇Rεu|∇Rεu|2

)
− λξ∇ ·Rε

((
Q+ 1

dId
)
H

)
− ξP∇ ·Rε

(
H
(
Q+ 1

dId
))

+2λξ∇ ·Rε
((
Q+ 1

dId
)(
QH

))
− LλRε(∇ · tr(∇Q∇Q))

+LλP∇ ·Rε (Q∆Q−∆QQ)

(Q, u)|t=0 = (RεQ,Rεu).

where Rε is the convolution operator with the kernel ε−dχ(ε−1·).
In order to construct the global weak solution for this system, we use the classical Friedrich’s

scheme. We define the mollifying operator

Ĵnf(ξ)
def
= 1{2−n≤|ξ|≤2n}f̂(ξ).

We consider the approximating system:

∂tQ
(n) + Jn

(
RεJnu

n∇JnQ(n)
)
− Jn

(
(ξJnRεD

(n) + JnRεΩ
(n))(JnQ

(n) + 1
dId)

)
−Jn

(
(JnQ

(n) + 1
dId)(ξJnRεD

(n) − JnRεΩ(n))
)

+2ξJn

(
(JnQ

(n) + 1
dId)tr

(
JnQ

(n)∇JnRεu(n)
))

= ΓH̃(n)

∂tu
n + PJn(PJnRεun∇PJnun)− ν∆PJnu(n) =

−εPJnRε
(∑d

l,m=1∇JnQ
(n)
lm

(
RεJnu

n · ∇JnQ(n)
lm

)
|RεJnun∇JnQ(n)|

)
+εP∇ · JnRε

(
∇RεJnu(n)|∇RεJnu(n)|2

)
−λξP∇ · Jn

((
JnQ

(n) + 1
dId
)
H̃(n)

)
− λξP∇ · Jn

(
H̃(n)

(
JnQ

(n) + 1
dId
))

+2λξP∇ · Jn
((
JnQ

(n) + 1
dId
)(
JnQ

(n)H̃(n)
))
− LλPJn(∇ · tr(JnQ(n)∇JnQ(n)))

+LλP∇ · Jn
(
JnQ

(n)∆JnQ
(n) −∆JnQ

(n)JnQ
(n)
)

(7.22)
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where P denotes the Leray projector onto divergence-free vector fields, M is a positive constant, and

H̃(n) def= L∆JnQ
(n)− aJnQ(n) + bJn[(JnQ

(n)JnQ
(n))− tr(JnQ(n)JnQ(n))

d Id]− cJn
(
JnQ

(n)
∣∣JnQ(n)

∣∣2).

We take as initial data (JnRεQ̄, JnRεū).

The system above can be regarded as an ordinary differential equation in L2 verifying the con-
ditions of the Cauchy-Lipschitz theorem. Thus it admits a unique maximal solution (Q(n), u(n)) ∈
C1([0, Tn);L2(Rd;Rd×d)×L2(Rd,Rd)). As we have (PJn)2 = PJn and J2

n = Jn the pair (JnQ
(n),PJnu(n))

is also a solution of (7.22). By uniqueness we have (JnQ
(n),PJnu(n)) = (Q(n), u(n)) hence (Q(n), u(n)) ∈

C1([0, Tn), H∞) and (Q(n), u(n)) satisfy the system:

∂tQ
(n) + Jn

(
Rεu

n∇Q(n)
)
− Jn

(
(ξRεD

(n) +RεΩ
(n))(Q(n) + 1

dId)
)

−Jn
(

(Q(n) + 1
dId)(ξRεD

(n)−RεΩ(n))
)

+ 2ξJn

(
(Q(n)+ 1

dId)tr
(
Q(n)∇Rεun

))
= ΓH̄(n)

∂tu
n + PJn(Rεu

n∇un)− ν∆u(n) =

−εPJn
(∑d

l,m=1∇Q
(n)
lm

(
Rεu

n · ∇Q(n)
lm

)
|Rεun∇Q(n)|

)
+εP∇ · JnRε

(
∇Rεu(n)|∇Rεu(n)|2

)
−λξP∇ · Jn

((
Q(n) + 1

dId
)
H̄(n)

)
− λξP∇ · Jn

(
H̄(n)

(
Q(n) + 1

dId
))

+2λξP∇ · Jn
((
Q(n) + 1

dId
)(
Q(n)H̄(n)

))
−LλPJn(∇ · tr(∇Q(n)∇Q(n))) + LλP∇ · Jn

(
Q(n)∆Q(n) −∆Q(n)Q(n)

)

(7.23)

where

H̄(n) def= L∆Q(n) − aQ(n) + bJn[(Q(n)Q(n))− tr(Jn(Q(n)Q(n)))

d
Id]− cJn(Q(n)|Q(n)|2).

The initial data is (JnQ̄, Jnū). We recall now a few properties of Jn :

Lemma 7.3.2. The operators P and Jn are selfadjoint in L2. Moreover Jn and PJn are also
idempotent and Jn commutes with distributional derivatives.

We proceed in a manner analogous to the proof of Proposition 7.2.1 and multiply the first
equation in (7.23) by −λH̄(n), take the trace, integrate over Rd and by parts, and add to the
second equation multiplied by u(n). Let us observe that almost all the cancellations in the proof of
(7.2.1) hold, except for a few terms that need to be estimated separately. We also have some more
new terms that we added in the regularization, terms that control the ones which do not cancel.
Thus we have:

d

dt

ˆ
Rd

1

2
|un|2 +

Lλ

2
|∇Q(n)|2 + λ

(a
2
|Q(n)|2 − b

3
tr(Q(n))3 +

c

4
|Q(n)|4

)
dx

+ν

ˆ
Rd
|∇un|2dx+ Γλ

ˆ
Rd

tr

[
Jn

(
L∆Q(n) − aQ(n) + b[(Q(n))2

−tr((Q(n))2)

3
Id]− cQ(n)

∣∣Q(n)
∣∣2)]2

dx

+ε

ˆ
Rd
|Rεu∇Q(n)|3dx+ ε

ˆ
Rd
|Rε∇un|4dx ≤
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≤ λ
ˆ
Rd
Jn

(
Rεu

n · ∇Q(n)
αβ

)
Jn

(
bQ(n)

αγQ
(n)
γβ − cQ

(n)
αβ

∣∣Q(n)
∣∣2) dx

+λ

ˆ
Rd
Jn

(
−RεΩ(n)

αγQ
(n)
γβ +Q(n)

αγRεΩ
(n)
γβ

)
Jn

(
bQ

(n)
αδ Q

(n)
δβ − cQ

(n)
αβ

∣∣Q(n)
∣∣2) dx (7.24)

hence :

d

dt

ˆ
Rd

1

2
|un|2 +

Lλ

2
|∇Q(n)|2 + λ

(a
2
|Q(n)|2 − b

3
tr(Q(n))3

+
c

4
|Q(n)|4

)
dx+ ν

ˆ
Rd
|∇un|2dx+ Γλ

ˆ
Rd
L2|∆Q(n)|2dx+ Γλa2

ˆ
Rd
|Q(n)|2dx

+C(b2, d,Γ, λ)

ˆ
Rd
|Q(n)|4dx+ Γλc2

ˆ
Rd

∣∣Jn(Q(n)|Q(n)|2)
∣∣2dx

+ε

ˆ
Rd
|Rεu∇Q(n)|3dx+ ε

ˆ
Rd
|Rε∇un|4dx ≤ 2Γλc

ˆ
Rd
L∆Q(n) ·Q(n)|Q(n)|2dx︸ ︷︷ ︸

def
= I

−2Γλ

ˆ
Rd
L∆Q(n) ·

(
− aQ(n) + bJn

[
(Q(n))2 − tr(Q(n))2

d
Id)

] )
dx

−2Γλ

ˆ
Rd
cQ(n)|Q(n)|2 ·

(
aQ(n) − bJn

[
(Q(n))2 − tr(Q(n))2

d
Id

])
dx

+λ

ˆ
Rd
Jn

(
Rεu

n · ∇Q(n)
αβ

)
Jn

(
bQ(n)

αγQ
(n)
γβ − cQ

(n)
αβ

∣∣Q(n)
∣∣2)dx︸ ︷︷ ︸

def
= II

+C

ˆ
Rd
|Rε∇un|2|Q(n)|2dx+

Γc2

8

ˆ
Rd
|Jn(Q(n)|Q(n)|2)|2dx+ C

ˆ
Rd
|Q(n)|4dx.

We have that

II =

ˆ
Rd

(
Rεu

n · ∇Q(n)
αβ

)
Jn

(
bQ(n)

αγQ
(n)
γβ − cQ

(n)
αβ

∣∣Q(n)
∣∣2) dx

≤
(

4

Γc2
+

1

4C(b2, d,Γ)

) ˆ
Rd
|Rεun · ∇Q(n)|2dx

+
C(b2, d,Γ)

2
‖Q(n)‖4L4 +

Γc2

8

ˆ
Rd
|Jn(Q(n)|Q(n)|2)|2dx

≤ ε

2

ˆ
Rd
|Rεun · ∇Q(n)|3dx+ C(ε, b2, c2, d,Γ)

ˆ
Rd

d∑
l,m=1

|Rεun · ∇Q(n)
lm |dx

+
C(b2, c2, d,Γ)

2
‖Q(n)‖4L4 +

Γc2

8

ˆ
Rd
|Jn(Q(n)|Q(n)|2)|2dx

≤ ε

2

ˆ
Rd
|Rεun · ∇Q(n)|3dx+ C1(ε, b2, c2, d,Γ)

ˆ
Rd
|un|2dx

+ C2(ε, b, c, d2,Γ)

ˆ
Rd
|∇Q(n)|2dx+

C(b2, d,Γ)

2
‖Q(n)‖4L4

+
Γc2

8

ˆ
Rd
|Jn(Q(n)|Q(n)|2)|2 dx (7.25)
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Using the fact that I ≤ 0 and the estimate for II shown before, we replace in (7.24) and obtain:

d

dt

ˆ
Rd

1

2
|un|2 +

Lλ

2
|∇Q(n)|2 + λ

(a
2
|Q(n)|2 − b

3
tr(Q(n))3 +

c

4
|Q(n)|4

)
dx

+ν

ˆ
Rd
|∇un|2dx+ Γλ

ˆ
Rd
L2|∆Q(n)|2dx+

ε

2

ˆ
Rd
|Rεun · ∇Q(n)|3dx+

ε

2

ˆ
Rd
|∇Rεun|4dx

≤
ˆ
Rd
|Q(n)|2 + |Q(n)|4dx+ C

ˆ
Rd
|∇Q(n)|2dx+ C(ε)

ˆ
Rd
|u(n)|2dx.

This estimate does not readily provide bounds on Q(n) because the term a
2 |Q

(n)|2 − b
3tr(Q(n))3 +

c
4 |Q

(n)|4 could be negative. In order to obtain H1 estimates we proceed as in the proof of Proposi-
tion 7.2.3. We put the proof in the chapter 7.5 by Proposition 7.5.1. We can continue to proceed
as in the proof of Proposition 7.2.3 and in fact in this case because of the first two regularizing
terms on the right hand side of the un equation in (7.23) we do not need the ξ small assumption.
These estimates allow us to conclude that Tn =∞ and we also get the following apriori bounds:

sup
n
‖∇Rεun‖L4(0,T ;L4), sup

n
‖Rεun · ∇Q(n)‖L3(0,T ;L3) ≤ C(ε)

sup
n
‖Q(n)‖L2(0,T ;H2)∩L∞(0,T ;H1) <∞,

sup
n
‖un‖L∞(0,T ;L2)∩L2(0,T ;H1) <∞,

(7.26)

for any T < ∞. By the bounds which can be obtained by using the equation on ∂t(Q
(n), un) in

some L∞loc(H
−N ) for large enough N , we get, by classical local compactness Aubin-Lions lemma,

on a subsequence, that:

Q(n) ⇀ Q in L2(0, T ;H2) and Q(n) → Q in L2(0, T ;H2−δ
loc ), ∀δ > 0

Q(n)(t) ⇀ Q(t) in H1 for all t ∈ R+

un ⇀ u in L2(0, T ;H1) and un → u in L2(0, T ;H1−δ
loc ), ∀δ > 0

un(t) ⇀ u(t) in L2 for all t ∈ R+

Thus we can pass to the limit and obtain a weak solution of the approximating system:

∂tQ
(ε) +Rεu

ε∇Q(ε)− (ξRεD
ε +RεΩ

ε)(Q(ε) + 1
dId)

)
+
(

(Q(ε) + 1
dId)(ξRεD

ε −RεΩε)
)

−2ξ
(

(Q(ε) + 1
dId)tr

(
Q(ε)∇uε

))
= ΓHε

∂tu
ε + PRεuε∇uε = −εPRε

(∑d
l,m=1∇Qlm (Rεu · ∇Qlm) |Rεu∇Q|

)
+εP∇ ·Rε

(
Rε∇u|Rε∇u|2

)
− λξP∇ ·Rε

((
Q(ε) + 1

dId
)
Hε

)
−λξP∇ ·Rε

(
Hε
(
Q(ε) + 1

dId
))

+ 2λξP∇ ·Rε
((
Q(ε) + 1

d

)(
Q(ε)Hε

))
−LλP(∇ ·Rεtr(∇Q(ε) �∇Q(ε))) + LλP∇ ·Rε

(
Q(ε)∆Q(ε) −∆Q(ε)Q(ε)

)
+ ν∆uε

(7.27)

where we recall that H = L∆Q(ε)− aQ(ε) + b[(Q(ε))2− tr((Q(ε))2))
d Id]− cQ(ε)tr((Q(ε))2). The initial

data for the limit system is (RεQ̄, Rεū).

One can easily see that the solutions of (7.27) are smooth, first by obtaining C∞ regularity for
the first Q equations, by bootstrapping the regularity improvement provided by the linear heat
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equation, and then the regularity for the u equation, by bootstrapping the regularity improvement
provided by a linear advection equation. For this system we can proceed as in the case of apriori
estimates and obtain the same estimates, independent of ε because the solutions are smooth and
all the cancellations that were used in the apriori estimates also hold here. In particular we obtain:

sup
ε
‖Q(ε)‖L∞(0,T ;H1)∩L2(0,T ;H2) <∞,

sup
ε
‖uε‖L∞(0,T ;L2)∩L2(0,T ;H1) <∞

(7.28)

for any T < ∞. Taking into account those bounds and also the bounds which can be obtained
by using the equation on ∂t(Q

ε, uε) in some Lploc(H
−N ) for large enough N , we get, by classical

local compactness Aubin-Lions lemma and by weak convergence arguments, that there exists a
Q ∈ L∞loc(R+;H1)∩L2

loc(R+;H2) and a u ∈ L∞loc(R+;L2)∩L2
loc(R+;H1) so that, on a subsequence,

we have:
Q(ε) ⇀ Q in L2(0, T ;H2) and Q(ε) → Q in L2(0, T ;H2−δ

loc ), ∀δ > 0

Q(ε)(t) ⇀ Q(t) in H1 for all t ∈ R+

uε ⇀ u in L2(0, T ;H1) and uε → u in L2(0, T ;H1−δ
loc ), ∀δ > 0

uε(t) ⇀ u(t) in L2 for all t ∈ R+

(7.29)

These convergences allow us to the pass to the limit in the weak solutions of the system (7.27) to
obtain a weak solution of (7.5), namely (7.7), (7.8). Of all the terms there is only one type that is
slightly difficult to treat in passing to the limit, namely:

L

ˆ ∞
0

ˆ
Rd
∂β

(
Q(ε)
αγ∆Q

(ε)
γβ −∆Q(ε)

αγQ
(ε)
γβ

)
ψαdxdt =−L

ˆ ∞
0

ˆ
Rd

(
Q(ε)
αγ∆Q

(ε)
γβ −∆Q(ε)

αγQ
(ε)
γβ

)
· ψα,βdxdt.

Taking into account that ψ is compactly supported and the convergences (7.29) one can easily pass

to the limit the terms ψα,βQ
(ε)
αγ and ψα,βQ

(ε)
γβ strongly in L2(0, T ;L2). Relations (7.29) give that

∆Q
(ε)
γβ , ∆Q

(ε)
αγ converges weakly in L2(0, T ;L2). Thus we get convergence to the limit term

L

ˆ ∞
0

ˆ
Rd
∂β(Qαγ∆Qγβ)ψαdxdt− L

ˆ ∞
0

ˆ
Rd
∂β(∆Qαγ)Qγβ)ψαdxdt

= −L
ˆ T

0

ˆ
Rd

(∆Qγβ)(∂βψαQαγ)dxdt+ L

ˆ T

0

ˆ
Rd

(∆Qαγ)(∂βψαQγβ)dxdt.

Using also the uniform bound of ε‖Rεuε∇Qε‖3L3 it is easy to check that ε
´
|Rεuε∇Qε|2∇Qε ·

RεPϕdxdt converges to zero. A similar result holds for the ε-term εP∇ · (Rε∇u|Rε∇u|2).

7.4 The uniqueness of weak solutions

We start with a number of technical tools that are crucial for our proof.

7.4.1 Littlewood-Paley theory

We define C to be the ring of center 0, of small radius 1/2 and great radius 2. There exist two
nonnegative radial functions χ and ϕ belonging respectively to D(B(0, 1)) and to D(C) so that

χ(ξ) +
∑
q≥0

ϕ(2−qξ) = 1, ∀ξ ∈ Rd (7.30)
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|p− q| ≥ 5⇒ Supp ϕ(2−q·) ∩ Supp ϕ(2−p·) = ∅. (7.31)

For instance, one can take χ ∈ D(B(0, 1)) such that χ ≡ 1 on B(0, 1/2) and take

ϕ(ξ) = χ(ξ/2)− χ(ξ).

Then, we are able to define the Littlewood-Paley decomposition. Let us denote by F the Fourier
transform on Rd. Let h, h̃, ∆̇q, Ṡq (q ∈ Z) be defined as follows:

h = F−1ϕ and h̃ = F−1χ,

∆̇qu = F−1(ϕ(2−qξ)Fu) = 2qd
ˆ
h(2qy)u(x− y)dy,

Ṡqu = F−1(χ(2−qξ)Fu) = 2qd
ˆ
h̃(2qy)u(x− y)dy.

We recall that for two appropriately smooth functions a and b we have the Bony’s paraproduct
decomposition [13]:

ab = Ṫab+ Ṫba+ Ṙ(a, b)

where

Ṫab =
∑
q∈Z

Ṡq−1a∆̇qb, Ṫba =
∑
q∈Z

Ṡq−1b∆̇qa, and Ṙ(a, b) =
∑
q∈Z,

i∈{0,±1}

∆̇qa∆̇q+ib.

Then we have
∆̇q(ab) = ∆̇qṪab+ ∆̇qṪba+ ∆̇qṘ(a, b) = ∆̇qṪab+ ∆̇qR̃(a, b),

where R̃(a, b) = Ṫba+ Ṙ(a, b) =
∑

q∈Z Ṡq+2b∆̇qa. Moreover:

∆̇q(ab) =
∑

|q′−q|≤5

∆̇q(Ṡq′−1a∆̇q′b) +
∑

q′>q−5

∆̇q(Ṡq′+2b∆̇q′a)

=
∑

|q′−q|≤5

[∆̇q, Ṡq′−1a]∆̇q′b+
∑

|q′−q|≤5

Ṡq′−1a∆̇q∆̇q′b+
∑

q′>q−5

∆̇q(Sq′+2b∆̇q′a)

=
∑

|q′−q|≤5

[∆̇q, Ṡq′−1a]∆̇q′b+
∑

|q′−q|≤5

(Ṡq′−1a− Ṡq−1a)∆̇q∆̇q′b

+
∑

q′>q−5

∆̇q(Ṡq′+2b∆̇q′a) +
∑

|q′−q|≤5

Ṡq−1a∆̇q∆̇q′b︸ ︷︷ ︸
=Ṡq−1a∆̇qb

(7.32)

In terms of this decomposition we can express the Sobolev norm of an element u in the (nonhomo-
geneous!) space Hs as:

‖u‖Hs =
(
‖Ṡ0u‖2L2 +

∑
q∈N

22qs‖∆̇qu‖2L2

)1/2
These are a particular case of the general nonhomogeneous Besov spaces Bs

p,r, for s ∈ R, p, r ∈
[1,∞]2 consisting of all tempered distributions u such that:

‖u‖Bsp,r :=

{
‖(‖Ṡ0u‖rLp +

∑
q∈N 2rqs‖∆̇qu‖rLp)

1
r if r <∞

max(‖Ṡ0u‖Lp , supq∈N 2qs‖∆̇qu‖Lp) if r =∞
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which reduces to the nonhomogeneous Sobolev space Hs for p = r = 2.
Similarly we also have the norm of the homogenous Sobolev spaces Ḣs:

‖u‖Ḣs =
(∑
q∈Z

22qs‖∆̇qu‖2L2

)1/2
and the homogenous Besov spaces Ḃs

p,r for s ∈ R, p, r ∈ [1,∞]2 consisting of all the homogeneous
tempered distributions u such that:

‖u‖Ḃsp,r
def
=

{
‖(
∑

q∈Z 2rqs‖∆̇qu‖rLp)
1
r if r <∞

supq∈Z 2qs‖∆̇qu‖Lp if r =∞

which reduces to the homogeneous Sobolev space Ḣs for p = r = 2.
Let us note that the homogeneous Besov spaces have somewhat better product rules, and this

specificity encoded in Proposition 7.4.4 will be very useful in our subsequent estimates.
Furthermore we will need the following characterisation of the homogeneous norms, in terms of

operators Ṡqu:

Lemma 7.4.1. [ Prop. 2.33] , [7] Let s < 0 and p, r ∈ [1,∞]2. A tempered distribution u belongs
to Ḃs

p,r if and only if:

(2qs‖Ṡqu‖Lp)q∈Z ∈ lr

and for some constant C depending only on the dimension d we have:

C−|s|+1‖u‖Ḃsp,r ≤ ‖(2
qs‖Ṡqu‖Lp)q‖lr ≤ C(1 +

1

|s|
)‖u‖Ḃsp,r

We will use the following well-known estimates:

Lemma 7.4.2. ( [18], [19])
(i) (Bernstein inequalities)

2−q‖∇Ṡqu‖Lpx ≤ C‖u‖Lpx , ∀1 ≤ p ≤ ∞

c‖∆̇qu‖Lpx ≤ 2−q‖∆̇q∇u‖Lpx ≤ C‖∆̇qu‖Lpx , ∀1 ≤ p ≤ ∞

(ii) (Bernstein inequalities)

‖∆̇qu‖Lbx ≤ 2d( 1
a
− 1
b
)q‖∆̇qu‖Lax , for b ≥ a ≥ 1

‖Ṡqu‖Lbx ≤ 2d( 1
a
− 1
b
)q‖Ṡqu‖Lax , for b ≥ a ≥ 1

(ii) (commutator estimate)

‖[∆̇q, u]v‖Lpx ≤ C2−q‖∇u‖Lrx‖v‖Lsx (7.33)

with 1
p = 1

r + 1
s . The constant C depends only on the function ϕ used in defining ∆̇q but not on

p, r, s.

Proof. For the commutator estimate we begin by writing

[∆̇q, u]v(x) = ∆̇q(uv)(x)− u(x)∆qv(x) = 2qd
ˆ
h(2qy)(u(x− y)− u(x))v(x− y)dy
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= 2qd
ˆ
Rd

ˆ 1

0

∂

∂τ

{
h(2qy)u(x− τy)v(x− y)dy

}
dτ

= −2qd
ˆ 1

0

ˆ
Rd
h(2qy)y · ∇u(x− τy)v(x− y)dydτ

= −2−q
ˆ 1

0

ˆ
Rd
h̃2q(y) · ∇u(x− τy)v(x− y)dydτ,

where h̃(y) := yh(y) ∈ S(Rd)d and h̃λ(y) := λdh̃(λy). Using the Cauchy-Schwartz inequality and a
change of variables, we get

|[∆̇q, u]v(x)| ≤ 2−q
ˆ 1

0

(ˆ
Rd
|h̃2q(y)||∇u(x− τy)|

r
pdy

) p
r

dτ

(ˆ
Rd
|h̃2q(y)||v(x− y)|

s
pdy

) p
s

= 2−q
ˆ 1

0

(ˆ
Rd

|h̃2qτ−1(y)|
τd

|∇u(x− y)|
r
pdy

) p
r

dτ

(ˆ
Rd
|h̃2q(y)||v(x− y)|

s
pdy

) p
s

= 2−q
ˆ 1

0

( |h̃2qτ−1 |
τd

∗ |∇u|
r
p (x)

) p
r
dτ
(
|h̃2q | ∗ |v|

s
p (x)

) p
s

Taking the Lp norm in the x variable, using the Cauchy-Schwartz inequality in the x variable and
convolution estimates we obtain

‖[∆̇q, u]v‖Lpx ≤ 2−q
ˆ 1

0

∥∥∥( |h̃2qτ−1 |
τd

∗ |∇u|
r
p (x)

) p
r
∥∥∥
Lrx

dτ
∥∥∥(|h̃2q | ∗ |v|

s
p (x)

) p
s
∥∥∥
Lsx

≤ 2−q
(ˆ 1

0
‖|h̃2qτ−1 |

τd
∗ |∇u|

r
p ‖

p
r

Lpx
dτ

)
‖|h̃2q | ∗ |v|

s
p ‖

p
s

Lpx

≤ 2−q
ˆ 1

0

‖h̃2qτ−1‖
p
r

L1
x

τd
dτ‖∇u‖Lrx‖h̃2q‖

p
s

L1
x
‖v‖Lsx

≤ 2−q‖h̃2−q‖
p
r

L1‖h̃2−q‖
p
s

L1‖∇u‖Lrx‖v‖Lsx .

Now, since

‖h̃2−q‖L1
x

=

ˆ
Rd

2−qd|h̃(2−qx)|dx =

ˆ
Rd
|h̃(y)|dy = ‖h̃‖L1

x
,

we finally obtain

‖[∆̇q, u]v‖Lpx ≤ 2−q‖h̃‖
p
r

L1
x
‖h̃‖

p
s

L1‖∇u‖Lrx‖v‖Lsx = ‖h̃‖L1
x
2−q‖∇u‖Lrx‖v‖Lsx

so the constant in the inequality is C = ‖h̃‖L1 and it does not depend on p, r, s.

We will also make use of a Bernstein-type inequality evolving the operator Ṡq.

Lemma 7.4.3. there exist two positive constants c̃ and C̃ such that

c̃‖(Ṡq − Ṡq′)u‖Lpx ≤ 2−q‖(Ṡq − Ṡq′)∇u‖Lpx ≤ C̃‖(Ṡq − Ṡq′)u‖Lpx , ∀1 ≤ p ≤ ∞,

for any integers q and q′ with |q − q′| ≤ 5.
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Proof. First, we consider new localizer functions as follows:

ϕ̃q(ξ) :=
1

10

∑
|q−j|≤10

ϕj(ξ) and χ̃(ξ) :=

{∑
q≤−1 ϕ̃q(ξ) if ξ 6= 0,

1 otherwise,

so that (7.30) and (7.31) are satisfied with ϕ̃ and χ̃ instead of ϕ and χ. Then defining the new

homogeneous dyadic block ˙̃∆q in the same line of ∆̇q, we have

˙̃∆q(Ṡq − Ṡq′)u =
1

10

∑
|q−j|≤10

∆̇j(Ṡq − Ṡq′)(u) =
1

10
(Ṡq − Ṡq′)(u).

Then the inequality turns out from (i) of Lemma 7.4.2, making use of ˙̃∆q instead of ∆̇q.

Now, we prove an useful product law between homogeneous Sobolev which will play a main role
in our estimates.

Proposition 7.4.4. Let s and t be two real numbers such that |s| and |t| belong to [0, d/2). Let us
assume that s+ t is positive, then for every a ∈ Ḣs(Rd) and for every b ∈ Ḣt(Rd), the product ab
belongs to Ḣs+t−d/2 and there exists a positive constant (not dependent by a and b) such that

‖ab‖Ḣs+t−d/2 ≤ C‖a‖Ḣs‖b‖Ḣt

Proof. At first we identify the Sobolev Spaces Ḣs and Ḣt with the Besov Spaces Ḃs
2,2 and Ḃt

2,2

respectively. We claim that ab belongs to Ḃ
s+t−d/2
2,2 and

‖ab‖
Ḃ
s+t− d2
2,2

≤ C‖a‖Ḃs2,2‖b‖Ḃt2,2 ,

for a suitable positive constant.

We decompose the product ab through the Bony decomposition, namely ab = Ṫab+ Ṫba+R(a, b),
where

Ṫab :=
∑
q∈Z

∆̇qa Ṡq−1b, Ṫba :=
∑
q∈Z

Ṡq−1a ∆̇qb, Ṙ(a, b) :=
∑
q∈Z
|ν|≤1

∆̇qa ∆̇q+νb.

For any q ∈ Z, we have

2q(s+t−
d
2

)‖(∆̇qṪab, ∆̇qṪba)‖L2 .

.
∑

|q−q′|≤5

2q
′s‖∆̇qa‖L2

x
2q
′(t− d

2
)‖Ṡq−1b‖L∞ +

∑
|q−q′|≤5

2q
′(s− d

2
)‖Ṡq−1a‖L∞x 2q

′t‖∆̇qb‖L2 ,

hence

‖(Ṫab, Ṫba)‖
Ḃ
s+t− d2
2,2

≤ ‖(Ṫab, Ṫba)‖
Ḃ
s+t− d2
2,1

. ‖a‖Ḃs2,2‖b‖Ḃt−
d
2

∞,2

+ ‖a‖
Ḃ
s− d2
∞,2

‖b‖Ḃt2,2 . ‖a‖Ḃs2,2‖b‖Ḃt2,2 ,

where we have used the embedding Ḃσ
2,2 ↪→ Ḃ

σ−d/2
∞,2 , for any σ ∈ R and moreover the following
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norm-equivalence
‖u‖Ḃσ̃p,r ≈ ‖(2

σ̃‖Squ‖Lpx)q∈Z‖lr(Z), u ∈ Ḃσ̃
p,r,

for any 1 ≤ p, r ≤ ∞ and σ̃ < 0.
In order to conclude the proof, we have to handle the rest Ṙ(a, b). By a direct computation, for
any q ∈ Z,

2(t+s)q‖∆̇qṘ(a, b)‖L1
x
≤

∑
q′≥q−5
|ν|≤1

2(q−q′)(s+t)2q
′s‖∆̇q′a‖L2

x
2(q′+ν)t‖∆̇q′+νa‖L2

x
,

so that, thanks to the Young inequality, we deduce

‖Ṙ(a, b)‖
Ḃ
s+t− d2
2,2

. ‖Ṙ(a, b)‖Ḃs+t1,1
. ‖a‖Ḃs2,2‖b‖Ḃt2,2 ,

where we have used the embedding Ḃs+t
1,1 ↪→ Ḃ

s+t−d/2
2,2 and moreover

∑
q≤5 2q(s+t) < ∞ since s + t

is positive.

Let us finally present two specific Sobolev inequalities. The first one allows a bound for the
L∞-norm of the low frequencies of a suitable function, while the second one is interpolation-type
inequality. The explicit formula of the constants of embedding will play a key role when establishing
the delicate double-logarithmic inequality.

Proposition 7.4.5. Let N be a positive real number and f a function in H1. Then ṠNf belongs
to L∞x and

‖ṠNf‖L∞x . ‖f‖L2
x

+
√
N‖∇f‖L2

x
. (1 +

√
N)‖(f, ∇f)‖L2

x
.

Proof. We split ṠNf into two parts, namely ṠNf =
∑

q<0 ∆̇qf +
∑

0≤q<N ∆̇qf . First we observe
that

‖
∑
q<0

∆̇qf‖L∞x ≤
∑
q<0

‖∆̇qf‖L∞x .
∑
q<0

2q‖∆̇qf‖L2
x
.
(∑
q<0

2q
)
‖f‖L2

x
.

Similarly, considering the second term, we get

‖
∑

0<q≤N
∆̇qf‖L∞x ≤

∑
0<q≤N

‖∆̇qf‖L∞x .
∑

0<q≤N
2q‖∆̇qf‖L2

x

.
∑

0<q≤N
‖∆̇q∇f‖L2

x
.
( ∑

0<q≤N
1
) 1

2
( ∑

0<q≤N
‖∆̇q∇f‖2L2

x

) 1
2
.
√
N‖f‖Ḣ1 ,

which concludes the proof of the Theorem.

The following Lemma plays a main role in the uniqueness result of Theorem 7.1.2, more precisely
inequality (7.34) is the key for the double-logarithmic estimate.

Lemma 7.4.6. There exists a positive constant C such that for any p ∈ [1,∞) the following
inequality is satisfied:

‖f‖L2p(R2) ≤ C
√
p‖f‖

1
p

L2(R2)
‖∇f‖

1− 1
p

L2(R2)
(7.34)

Proof. The proof of this lemma was presented in [96] (lemma 4.3) and we report it here, for the
sake of simplicity. thanks to Sobolev embeddings, we have

‖f‖L2p(R2) ≤ C
√
p‖f‖

Ḣ
1− 1

p (R2)
. (7.35)
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Moreover, since Ḣ1−1/p(R2) is an interpolation space between L2(R2) and Ḣ1(R2), the following
inequality is satisfied:

‖f‖
Ḣ

1− 1
p (R2)

≤ ‖f‖
1
p

L2(R2)
‖∇f‖

1− 1
p

L2(R2)
,

which leads to (7.34), together with (7.35).

7.4.2 The proof of the uniqueness

In this section we provide the proof of the uniqueness result for the weak solutions of system (7.5).
The main idea is to evaluate the difference between two weak solutions in a functional space which is
less regular than L2

x such as Ḣ−
1
2 . Such strategy is not new in literature, for instance we recall [48]

and [88]. We now provide the uniqueness part of the proof of Theorem 7.1.2.

Proof. Let us consider two weak solutions (u1, Q1) and (u2, Q2) of system (7.5). We denote
δu := u1−u2 and δQ := Q1−Q2 while δS(Q, ∇u) stands for S(Q1, ∇u1)−S(Q2, ∇u2). Similarly,
we define δH(Q), δF (Q), δτ and δσ. Thus (δu, δQ) is a weak solution of

∂tδQ− L∆δQ = δS(Q,∇u) + ΓδH(Q)− δu · ∇Q1 − u2 · ∇δQ R+ × R2,

∂tδu−∆δu+∇δΠ = Ldiv{δτ + δσ} − δu · ∇u1 − u2 · ∇δu R+ × R2,

div δu = 0 R+ × R2,

(δu, δQ)t=0 = (0, 0) R2.

(7.36)

First, let us explicitly state δS(Q, ∇u), δF (Q), δτ and δσ in terms of δQ and δu, namely:

δS(Q,∇u) = +(ξδD + δΩ)δQ+ (ξδD + δΩ)( Q2 +
Id

2
) + (ξD2 + Ω2)δQ+ δQ(ξδD − δΩ)+

+ ( Q2 +
Id

2
)(ξδD − δΩ) + δQ(ξD2 − Ω2)− 2ξδQ tr(δQ∇δu)− 2ξδQ tr(δQ∇u2)+

− 2ξδQ tr(Q2∇δu)− 2ξ(Q2 +
Id

2
)tr(δQ∇δu)− 2ξδQ tr(Q2∇u2)+

− 2ξ(Q2 +
Id

2
)tr(δQ∇u2)− 2ξ(Q2 +

Id

2
)tr(Q2∇δu),

δF (Q) = −a δQ+ b (Q1δQ+ δQQ2 )− b tr{δQQ1 +Q2δQ}
Id

2
−

−c
[
δQtr{Q2

1}+Q2tr{δQQ1 +Q2δQ}
]

δH(Q) = δF (Q) + L∆δQ.

δτ = −ξδQF (Q1)− ξ( Q2 +
Id

2
)δF (Q)− LξδQ∆δQ− LξδQ∆Q2 − Lξ( Q2 +

Id

2
)∆δQ+

− ξF (Q1)δQ− ξδF (Q)( Q2 +
Id

2
)− Lξ∆δQδQ− Lξ∆Q2δQ− Lξ∆δQ( Q2 +

Id

2
)+

+ 2ξδQtr{Q1F (Q1)}+ 2ξQ2tr{δQF (Q1)}+
+ 2ξQ2tr{Q2δF (Q)}+ 2LξδQtr{δQ∆δQ}+ 2LξδQtr{δQ∆Q2}+ 2LξδQtr{Q2∆δQ}+

+ 2Lξ( Q2 +
Id

2
)tr{δQ∆δQ}+ 2LξδQtr{Q2∆Q2}+ 2Lξ( Q2 +

Id

2
)tr{δQ∆Q2}+
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+ 2Lξ( Q2 +
Id

2
)tr{Q2∆δQ} − L∇δQ�∇Q1 − L∇Q2 �∇δQ−

− L Id

2
tr{δQQ1} − L

Id

2
tr{Q2δQ}

δσ = δQF (Q1) +Q2δF (Q)− F (Q1)δQ− δF (Q)Q2 + LδQ∆δQ+ LQ2∆δQ+ LδQ∆Q2

− L∆δQδQ− L∆Q2δQ− L∆δQQ2

Taking the inner product in Ḣ−1/2 of the first equation with −Lλ∆δQ and adding to it the scalar
product in Ḣ−1/2 of the second one by 1

λδu we get:

d

dt

[ 1

2λ
‖δu‖2

Ḣ−
1
2

+ L‖∇δQ‖2
Ḣ−

1
2

]
+
ν

λ
‖∇δu‖2

Ḣ−
1
2

+ ΓL2‖∆δQ‖2
Ḣ−

1
2

=

− L〈(ξδD + δΩ)δQ,∆δQ〉−Lξ〈δDQ2,∆δQ〉
A1

−L〈δΩQ2,∆δQ〉
B1

−Lξ〈δD
2
,∆δQ〉

C1

−L〈δΩ
2
,∆δQ〉
D1

−L〈(ξD2 + Ω2)δQ,∆δQ〉 − L〈δQ(ξδD − δΩ),∆δQ〉−Lξ〈Q2δD,∆δQ〉
A2

+L〈Q2δΩ,∆δQ〉
B2

−Lξ〈δD
2
,∆δQ〉

C2

+L〈δΩ
2
,∆δQ〉
D2

−L〈δQ(ξD2 − Ω2),∆δQ〉

+ 2Lξ〈δQ tr(δQ∇δu),∆δQ〉+ 2Lξ〈δQ tr(δQ∇u2),∆δQ〉+ 2Lξ〈δQ tr(Q2∇δu),∆δQ〉

+ 2Lξ〈Q2 tr(δQ∇δu),∆δQ〉+2Lξ〈 Id
2

tr(δQ∇δu),∆δQ〉
=0

+2Lξ〈δQ tr(Q2∇u2),∆δQ〉

+ 2Lξ〈Q2 tr(δQ∇u2),∆δQ〉+2Lξ〈 Id
2

tr(δQ∇u2),∆δQ〉
=0

+2Lξ〈Q2 tr(Q2∇δu),∆δQ〉
E1

+2Lξ〈 Id
2

tr(Q2∇δu),∆δQ〉
=0

+LaΓ〈δQ,∆δQ〉 − LbΓ〈Q1δQ+ δQQ2,∆δQ〉

+LbΓ〈tr{δQQ1 +Q2δQ}
Id

2
,∆δQ〉

=0

+LcΓ〈δQtr{Q2
1},∆δQ〉

+ LcΓ〈Q2tr{δQQ1 +Q2δQ},∆δQ〉+ L〈δu · ∇Q1,∆δQ〉

+ L〈u2 · ∇δQ,∆δQ〉 − aξ〈δQQ1,∇δu〉+ bξ〈δQQ2
1,∇δu〉 − bξ〈δQtr(Q2

1)
Id

2
,∇δu〉 (7.37)

− cξ〈δQtr(Q2
1)Q1,∇δu〉 − aξ〈(Q2 +

Id

2
)δQ,∇δu〉

+ bξ〈(Q2 +
Id

2
)(Q1δQ+ δQQ2),∇δu〉 − bξ〈Q2

2
tr{δQQ1 +Q2δQ},∇δu〉

−bξ〈tr{δQQ1 +Q2δQ}
Id

9
,∇δu〉

=0

−cξ〈(Q2 +
Id

2
)δQtr{Q2

1},∇δu〉

− cξ〈(Q2 +
Id

2
)Q2tr{δQQ1 +Q2δQ},∇δu〉+ Lξ〈δQ∆δQ,∇δu〉+ Lξ〈δQ∆Q2,∇δu〉

+Lξ〈Q2∆δQ,∇δu〉
A3

+Lξ〈∆δQ
2

,∇δu〉
C3

−aξ〈Q1δQ,∇δu〉
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+ bξ〈(Q2
1 − tr{Q2

1 }
Id

2
)δQ,∇δu〉 − cξ〈Q2

1tr{Q2
1 }δQ,∇δu〉 − aξ〈δQ(Q2 +

Id

2
),∇δu〉

+ bξ〈(Q1δQ+ δQQ2 )(Q2 +
Id

2
),∇δu〉 − bξ〈tr{δQQ1 +Q2δQ}

Q2

2
,∇δu〉

−bξ〈tr{δQQ1 +Q2δQ}
Id

9
,∇δu〉

=0

−cξ〈δQtr{Q2
1}(Q2 +

Id

2
),∇δu〉

− cξ〈Q2tr{δQδQ1 +Q2δQ}(Q2 +
Id

2
),∇δu〉+ Lξ〈∆δQ δQ,∇δu〉+ Lξ〈∆Q2δQ,∇δu〉

+Lξ〈∆δQQ2,∇δu〉
A4

+Lξ〈∆δQ
2

,∇δu〉
C4

+2aξ〈δQtr{Q2
1},∇δu〉 − 2bξ〈δQtr{Q3

1},∇δu〉

+2bξ〈δQ
2

tr{Q1}tr{Q2
1},∇δu〉

=0

+2cξ〈δQtr{Q2
1}2,∇δu〉+ 2aξ〈Q2tr{δQQ1},∇δu〉

− 2bξ〈Q2tr{δQQ2
1},∇δu〉+2bξ〈Q2

2
tr{δQ}tr{Q2

1},∇δu〉
=0

+2cξ〈Q2tr{δQQ1}tr{Q2
1},∇δu〉

+ 2aξ〈Q2tr{Q2δQ},∇δu〉 − 2bξ〈Q2tr{Q2(Q1δQ+ δQQ2 )},∇δu〉

+2bξ〈Q2tr{Q2

2
}tr{δQQ1 +Q2δQ},∇δu〉

=0

+2cξ〈Q2tr{Q2δQ}tr{Q2
1},∇δu〉

+ 2cξ〈Q2tr{Q2
2}tr{δQQ1 +Q2δQ},∇δu〉 − 2Lξ〈δQtr{δQ∆δQ},∇δu〉

− 2Lξ〈δQtr{δQ∆Q2},∇δu〉 − 2Lξ〈δQtr{Q2∆δQ},∇δu〉

− 2Lξ〈Q2tr{δQ∆δQ},∇δu〉−2Lξ〈 Id
2

tr{δQ∆δQ},∇δu〉
=0

−2Lξ〈δQtr{Q2∆Q2},∇δu〉

− 2Lξ〈Q2tr{δQ∆Q2},∇δu〉−2Lξ〈 Id
2

tr{δQ∆Q2},∇δu〉
=0

−2Lξ〈Q2tr{Q2∆δQ},∇δu〉
E2

−2Lξ〈 Id
2

tr{Q2∆δQ},∇δu〉
=0

+L〈∇δQ�∇Q1,∇δu〉+ L〈∇Q2 �∇δQ1,∇δu〉

+L〈 Id
2

tr{δQQ1},∇δu〉
=0

+L〈 Id
2

tr{Q2δQ},∇δu〉
=0

+La〈δQQ1,∇δu〉

− Lb〈δQ(Q2
1 − tr{Q2

1}
Id

2
),∇δu〉+ Lc〈δQQ1tr{Q2

1},∇δu〉

+ a〈Q2δQ,∇δu〉 − b〈Q2(Q1δQ+ δQQ2 ),∇δu〉+ b〈Q2tr{δQQ1 +Q2δQ}
Id

2
,∇δu〉

+ c〈Q2δQtr{Q2
1},∇δu〉+c〈Q2

2tr{δQQ1 +Q2δQ},∇δu〉
F1

− a〈Q1δQ,∇δu〉+ b〈(Q2
1 − tr{Q2

1}
Id

2
)δQ,∇δu〉 − c〈Q1tr{Q2

1}δQ,∇δu〉

− a〈δQQ2,∇δu〉+ b〈(Q1δQ+ δQQ2 )Q2,∇δu〉

− b〈tr{δQQ1 +Q2δQ}
Id

2
Q2,∇δu〉 − c〈δQtr{Q2

1}Q2,∇δu〉

−c〈Q2tr{δQQ1 +Q2δQ}Q2,∇δu〉
F2

−L〈δQ∆δQ,∇δu〉−L〈Q2∆δQ,∇δu〉
B3
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− L〈δQ∆Q2,∇δu〉+ L〈∆δQδQ,∇δu〉+L〈∆δQQ2,∇δu〉
B4

+ L〈∆Q2δQ,∇δu〉 − 〈u2 · ∇δu, δu〉 − 〈δu · ∇u1, δu〉.

Denoting
Φ(t) := 1/(2λ)‖δu(t)‖2

Ḣ−1/2 + L‖∇δQ(t)‖2
Ḣ−1/2

we will aim to show that Φ satisfies the inequality

Φ′(t) ≤ χ(t)µ(Φ(t)), (7.38)

where µ is an Osgood modulus of continuity (see [7], Definition 3.1), given by

µ(r) := r + r ln
(

1 + e+
1

r

)
+ r ln

(
1 + e+

1

r

)
ln ln

(
1 + e+

1

r

)
. (7.39)

with χ ∈ L1
loc apriori. We are going to find a double-logarithmic estimate, hence thanks to the

Osgood Lemma (see [7], Lemma 3.4) and since Φ(0) is null, we get that Φ ≡ 0, which yields the
uniqueness of the solution for system (7.5).

First, let us observe following simplifications of (7.37):

0 = C1 + C2 + C3 + C4 = D1 +D2 = F1 + F2.

The key method we use to obtain the desired estimates is the para-differential calculus decompo-
sition summarized in the following:

Remark 7.4.7. Let q be an integer, and A, B be d×d matrices whose components are homogeneous
temperate distributions. We are going to use the following notation:

J 1
q (A,B) :=

∑
|q−q′|≤5[∆̇q, Ṡq′−1A]∆̇q′B, J 3

q (A,B) := Ṡq−1A∆̇qB,

J 2
q (A,B) :=

∑
|q−q′|≤5(Ṡq′−1A−Ṡq−1A)∆̇q∆̇q′B, J 4

q (A,B) :=
∑

q′≥q−5 ∆̇q(∆̇q′A Ṡq′+2B).

Than we can decompose the product AB as follows

∆̇q(AB) = J 1
q (A,B) + J 2

q (A,B) + J 3
q (A,B) + J 4

q (A,B) (7.40)

for any integer q.

Moreover from now on we will use the notation . as follows: for any non-negative real numbers
a and b, we denote a . b if and only if there exists a positive constant C (independent of a and b)
such that a ≤ Cb.

Estimate of A1 +A2 +A3 +A4

Let us begin analyzing the terms A1, A2, A3 and A4 of (7.37). First, we observe that

A2 = −Lξ
∑
q∈Z

2−q〈∆̇q(Q2δD), ∆̇q∆δQ〉L2
x

= −Lξ
∑
q∈Z

2−q
4∑
i=1

〈J iq (Q2, δD), ∆̇q∆δQ〉L2
x
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Now, when i = 1, we have

2−q〈J 1
q (Q2, δD), ∆̇q∆δQ〉L2

x
=

∑
|q−q′|≤5

2−q〈[∆̇q, Ṡq′−1Q2]∆̇q′δD, ∆̇q∆δQ〉L2
x

.
∑

|q−q′|≤5

2−q‖[∆̇q, Ṡq′−1Q2]∆̇q′δD‖L2
x
‖∆̇q∆δQ‖L2

x

.
∑

|q−q′|≤5

2−2q‖Ṡq′−1∇Q2‖L4
x
‖∆̇q′δD‖L4

x
‖∆̇q∆δQ‖L2

x

.
∑

|q−q′|≤5

2−q‖Ṡq′−1∇Q2‖
1
2

L2
x
‖Ṡq′−1∆Q2‖

1
2

L2
x
‖∆̇q′δu‖L4

x
‖∆̇q∆δQ‖L2

x

.
∑

|q−q′|≤5

‖∇Q2‖
1
2

L2
x
‖∆Q2‖

1
2

L2
x
‖∆̇q′δu‖L2

x
2−

q
2 ‖∆̇q∆δQ‖L2

x
,

(7.41)

for every q ∈ Z. Hence, we get

−Lξ
∑
q∈Z

2−q〈J 1
q (Q2, δD), ∆̇q∆δQ〉L2

x
. ‖∇Q2‖

1
2

L2
x
‖∆Q2‖

1
2

L2
x
‖δu‖L2

x
‖∆δQ‖

Ḣ−
1
2

. ‖∇Q2‖
1
2

L2
x
‖∆Q2‖

1
2

L2
x
‖δu‖

1
2

Ḣ−
1
2
‖∇δu‖

1
2

Ḣ−
1
2
‖∆δQ‖

Ḣ−
1
2

. ‖∇Q2‖2L2
x
‖∆Q2‖2L2

x
‖δu‖2

Ḣ−
1
2

+ Cν‖∇δu‖2
Ḣ−

1
2

+ CΓ,L‖∆δQ‖2
Ḣ−

1
2
,

(7.42)

where we have used the following interpolation inequality:

‖δu‖L2
x
≤ ‖δu‖

1
2

Ḣ−
1
2
‖δu‖

1
2

Ḣ
1
2

= ‖δu‖
1
2

Ḣ−
1
2
‖∇δu‖

1
2

Ḣ−
1
2
.

When i = 2, the following inequalities are fulfilled:

2−q〈J 2
q (Q2, δD), ∆̇q∆δQ〉L2

x
=

∑
|q−q′|≤5

2−q〈(Ṡq′−1Q2 − Ṡq−1Q2)∆̇q∆̇q′δD, ∆̇q∆δQ〉L2
x

.
∑

|q−q′|≤5

2−q‖(Ṡq′−1Q2 − Ṡq−1Q2)‖L∞x ‖∆̇q∆̇q′δD‖L2
x
‖∆̇q∆δQ‖L2

x

.
∑

|q−q′|≤5

2−2q‖(Ṡq′−1∆Q2 − Ṡq−1∆Q2)‖L2
x
‖∆̇q∆̇q′δD‖L2

x
‖∆̇q∆δQ‖L2

x

.
∑

|q−q′|≤5

2−2q‖∆Q2‖L2
x
‖∆̇q′δD‖L2

x
‖∆̇q∆δQ‖L2

x

.
∑

|q−q′|≤5

2−
q′
2 ‖∆̇q′δu‖L2

x
2−

q
2 ‖∆̇q∆δQ‖L2

x
‖∆Q2‖L2

x
,

(7.43)

for any q ∈ Z. Thus, it turns out that

− Lξ
∑
q∈Z

2−q〈J 2
q (Q2, δD), ∆̇q∆δQ〉L2

x
. ‖∆Q2‖2L2

x
‖δu‖2

Ḣ−
1
2

+ CΓ,L‖∆δQ‖2
Ḣ−

1
2

(7.44)
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The term corresponding to i = 3 cannot be estimated as before. We will see that this challenging
term will be simplified. Finally, when i = 4, we have

2−q〈J 4
q (Q2, δD), ∆̇q∆δQ〉L2

x
= L2−q

∑
q−q′≤5

〈∆̇q

[
∆̇q′Q2Ṡq′+2δD

]
, ∆̇q∆δQ〉L2

x

. 2−q
∑

q−q′≤5

‖∆̇q′Q2‖L∞x ‖Ṡq′+2δD‖L2
x
‖∆̇q∆δQ‖L2

x

. 2−q
∑

q−q′≤5

2−q
′‖∆̇q′∆Q2‖L2

x
‖Ṡq′+2δD‖L2

x
2q‖∆̇q∇δQ‖L2

x

.
∑

q−q′≤5

2
q−q′

2 ‖∆̇q′∆Q2‖L2
x
2−

q′+2
2 ‖Ṡq′+2δD‖L2

x
2−

q
2 ‖∆̇q∇δQ‖L2

x

. ‖∆Q2‖L2
x
2−

q
2 ‖∆̇q∇δQ‖L2

x

∑
q−q′≤5

2
q−q′

2 2−
q′+2

2 ‖Ṡq′+2δD‖L2
x
,

(7.45)

for any q ∈ Z. Hence,

−Lξ
∑
q∈Z

2−q〈J 4
q (Q2, δD), ∆̇q∆δQ〉L2

x

. ‖∆Q2‖L2
x

∑
q∈Z

2−
q
2 ‖∆̇q∇δQ‖L2

x

∑
q′∈Z

2
q−q′

2 1(−∞,5](q − q′)2−
q′+2

2 ‖Ṡq′+2δD‖L2
x

. ‖∆Q2‖L2
x
‖∇δQ‖

Ḣ−
1
2

(∑
q∈Z

∣∣∑
q′∈Z

2q−q
′
1(−∞,5](q − q′)2−

q′+2
2 ‖Ṡq′+2δD‖L2

x

∣∣2) 1
2
,

and by convolution (∑
q∈Z

∣∣∑
q′∈Z

2q−q
′
1(−∞,5](q − q′)2−

q′+2
2 ‖Ṡq′+2δD‖L2

x

∣∣2) 1
2

. (
∑
q≤5

2q)
(∑
q∈Z

2−q‖ṠqδD‖2L2
x

) 1
2 )

. ‖∇δu‖
Ḣ−

1
2
,

so that

−Lξ
∑
q∈Z

2−q〈J 4
q (Q2, δD), ∆̇q∆δQ〉L2

x
. ‖∆Q2‖L2

x
‖∇δQ‖

Ḣ−
1
2
‖∇δu‖

Ḣ−
1
2

. ‖∆Q2‖2L2
x
‖∇δQ‖2

Ḣ−
1
2

+ Cν‖∇δu‖2
Ḣ−

1
2
.

(7.46)

Summarizing, it remains to control

A1 +A3 +A4 − Lξ
∑
q∈Z

2−q〈J 3
q (Q2, δD), ∆̇q∆δQ〉L2

x
.

Now, observing that

A1 = −Lξ
∑
q∈Z

2−q〈∆̇q(δDQ2), ∆̇q∆δQ〉L2
x

= −Lξ
∑
q∈Z

2−q〈∆̇q
t(δDQ2), ∆̇q

t∆δQ〉L2
x
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= −Lξ
∑
q∈Z

2−q〈∆̇q(Q2δD), ∆̇q∆δQ〉L2
x

= A2,

we estimate A1 with the previous inequalities, so that it remains to control

A3 +A4 − 2Lξ
∑
q∈Z

2−qJ 3
q (Q2, δD) = A3 +A4−

−2Lξ
∑
q∈Z

2−q
ˆ
R2

tr
{
Ṡq−1Q2 ∆̇qδD∆̇q∆δQ

}
.

Now, let us consider A3 = Lξ〈Q2∆δQ,∇δu〉. We proceed along the lines used before, namely we
use the decomposition given by (7.40):

A3 = Lξ
∑
q∈Z

2−q〈∆̇q(Q2∆δQ), ∆̇q∇δu〉L2
x

= Lξ
∑
q∈Z

2−q
4∑
i=1

〈J iq (Q2, ∆δQ), ∆̇q∇δu〉L2
x
.

When i = 1, proceeding as for (7.41), we have

2−q〈J 1
q (Q2, ∆δQ), ∆̇q∇δu〉L2

x

. ‖∇Q2‖
1
2

L2
x
‖∆Q2‖

1
2

L2
x

∑
|q−q′|≤5

‖∆̇q′∇δQ‖L2
x
2−

q
2 ‖∆̇q∇δu‖L2

x
,

thus, considering the sum over q ∈ Z as in (7.42), we deduce that

Lξ
∑
q∈Z

2−q〈J 1
q (Q2, ∆δQ), ∆̇q∇δu〉L2

x
. ‖∇Q2‖2L2

x
‖∆Q2‖2L2

x
‖∇δQ‖2

Ḣ−
1
2
+

+Cν‖∇δu‖2
Ḣ−

1
2

+ CΓ,L‖∆δQ‖2
Ḣ−

1
2
.

(7.47)

Proceeding as for proving (7.43), when i = 2, we get

2−q〈J 2
q (Q2, ∆δQ), ∆̇q∇δu〉L2

x
.

∑
|q−q′|≤5

2−
q
2 ‖∆̇q′δu‖L2

x
2−

q
2 ‖∆̇q∆δQ‖L2

x
‖∆Q2‖L2

x

for every q ∈ Z. Thus, as in (7.44), it turns out that

Lξ
∑
q∈Z

2−q〈J 2
q (Q2, ∆δQ), ∆̇q∇δu〉L2

x
. ‖∆Q2‖2L2

x
‖δu‖2

Ḣ−
1
2

+ CΓ,L‖∆δQ‖2
Ḣ−

1
2

(7.48)

Finally, with the same strategy as for (7.45), we observe that

2−q〈J 4
q (Q2, ∆δQ), ∆̇q∇δu〉L2

x

. ‖∆Q2‖L2
x
2−q‖∆̇qδu‖2L2

x

∑
q−q′≤5

2
q−q′

2 2−
q′+2

2 ‖Ṡq′+2∆δQ‖L2
x
,

hence, as for (7.46), we obtain

Lξ
∑
q∈Z

2−q〈J 4
q (Q2, ∆δQ), ∆̇q∇δu〉L2

x
. ‖∆Q2‖L2

x
‖δu‖

Ḣ−
1
2
‖∆δQ‖

Ḣ−
1
2

. ‖∆Q2‖2L2
x
‖δu‖2

Ḣ−
1
2

+ CΓ,L‖∆δQ‖2
Ḣ−

1
2
.

(7.49)
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Summarizing all the previous considerations, we note that it remains to control

A4 + Lξ
∑
q∈Z

2−q
[
〈J 3

q (Q2, ∆δQ), ∆̇q∇δu〉L2
x
− 2

ˆ
R2

tr
{
Ṡq−1Q2 ∆̇qδD∆̇q∆δQ

}]
=

= A4 + Lξ
∑
q∈Z

2−q
ˆ
R2

[
tr{Ṡq−1Q2 ∆̇q∆δQ∆̇q∇δu} − 2tr

{
Ṡq−1Q2 ∆̇qδD∆̇q∆δQ

}]
.

We handle the last term A4 arguing as for A3, since A4 is given by

Lξ〈∆̇q(∆δQQ2), ∆̇q∇δu〉
Ḣ−

1
2

= Lξ〈∆̇q(Q2∆δQ), t∆̇q∇δu〉
Ḣ−

1
2

= Lξ
∑
q∈Z

2−q
4∑
i=1

〈J iq (Q2, ∆δQ), ∆̇q
t∇δu〉L2

x
.

The terms related to i = 1, 2, 4 are estimated similarily as A3. Hence it remains to evaluate

Lξ
∑
q∈Z

2−q
{
〈J 3

q (Q2, ∆δQ), ∆̇q
t∇δu〉L2

x
+

+

ˆ
R2

[
tr{Ṡq−1Q2 ∆̇q∆δQ∆̇q∇δu} − 2tr

{
Ṡq−1Q2 ∆̇qδD∆̇q∆δQ

}]}
=

= 2Lξ
∑
q∈Z

2−q
ˆ
R2

[
tr{Ṡq−1Q2 ∆̇q∆δQ∆̇qδD} − tr

{
Ṡq−1Q2 ∆̇qδD∆̇q∆δQ

}]
= 0,

which is a null series since the trace acts on symmetric matrices, so that we can permute their
order.

Estimate of B1 + B2 + B3 + B4

Now we want to estimate B1 + B2 + B3 + B4, namely

−L〈δΩQ2 −Q2δΩ,∆δQ〉
Ḣ−

1
2
− L〈Q2∆δQ−∆δQQ2,∇δu〉

Ḣ−
1
2
.

First let us consider

B2 = L〈Q2δΩ,∆δQ〉
Ḣ−

1
2

= L
∑
q∈Z

2−q〈∆̇q(δΩQ2), ∆̇q∆δQ〉L2
x

= L
∑
q∈Z

2−q
4∑
i=1

〈J iq (Q2, δΩ), ∆̇q∆δQ〉L2
x
.

Proceeding exactly as for proving (7.42), (7.44) and (7.46), with δΩ instead of δD, the following
estimates are obtained:

L
∑
q∈Z

2−q〈J 1
q (Q2, δΩ), ∆̇q∆δQ〉L2

x
. ‖∇Q2‖2L2

x
‖∆Q2‖2L2

x
‖δu‖2

Ḣ−
1
2
+

+Cν‖∇δu‖2
Ḣ−

1
2

+ CΓ,L‖∆δQ‖2
Ḣ−

1
2
,

L
∑
q∈Z

2−q〈J 2
q (Q2, δΩ), ∆̇q∆δQ〉L2

x
. ‖∆Q2‖2L2

x
‖δu‖2

Ḣ−
1
2

+ CΓ,L‖∆δQ‖2
Ḣ−

1
2
,
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and
L
∑
q∈Z

2−q〈J 4
q (Q2, δΩ), ∆̇q∆δQ〉L2

x
. ‖∆Q2‖2L2

x
‖∇δQ‖2

Ḣ−
1
2

+ Cν‖∇δu‖2
Ḣ−

1
2
.

Now observing that

B1 = −L〈δΩQ2,∆δQ〉
Ḣ−

1
2

= −L〈t(δΩQ2), t∆δQ〉
Ḣ−

1
2

= L〈Q2δΩ,∆δQ〉
Ḣ−

1
2

= B2,

it remains to control

B3 + B4 + 2L
∑
q∈Z

2−q〈J 3
q (Q2, δΩ), ∆̇q∆δQ〉L2

x

= B3 + B4 + 2L
∑
q∈Z

2−q
ˆ
R2

tr{Ṡq−1Q2∆̇qδΩ∆̇q∆δQ}.

Now, we turn to B3:

−B3 = L〈Q2∆δQ,∇δu〉
Ḣ−

1
2

= L
∑
q∈Z

2−q〈∆̇q(Q2∆δQ), ∆̇q∇δu〉L2
x

= L
∑
q∈Z

2−q
4∑
i=1

〈J iq (Q2, ∆δQ), ∆̇q∇δu〉L2
x
.

We remark that B3 = −A3/ξ, hence the terms related to i = 1, 2, 4 are estimated as in (7.47),
(7.48) and (7.49). Thus it remains to control

B4 + L
∑
q∈Z

2−q
[
〈J 3

q (Q2, ∆δQ), ∆̇q∇δu〉L2
x

+ 2

ˆ
R2

tr{Ṡq−1Q2∆̇qδΩ∆̇q∆δQ}
]

=

= B4 + L
∑
q∈Z

2−q
ˆ
R2

[
tr{Ṡq−1Q2∆̇q∆δQ∆̇q∇δu}+ 2tr{Ṡq−1Q2∆̇qδΩ∆̇q∆δQ}

]
.

Observing that B4 = −A4/ξ we argue as for B3, hence it remains to evaluate

L
∑
q∈Z

2−q
{
〈J 3

q (Q2, ∆δQ)∆̇q
t∇δu〉L2

x
+

+

ˆ
R2

[
tr{Ṡq−1Q2∆̇q∆δQ∆̇q∇δu}+ 2tr{Ṡq−1Q2∆̇qδΩ∆̇q∆δQ}

]}
=

= 2L
∑
q∈Z

2−q
ˆ
R2

[
tr{Ṡq−1Q2∆̇q∆δQ∆̇qδΩ}+ tr{Ṡq−1Q2∆̇qδΩ∆̇q∆δQ}

]
= 0,

where for the cancellation we used that Ṡq−1Q2 and ∆̇q∆δQ are symmetric while ∆̇qδΩ is skew-
symmetric.

One-logarithmic Estimates

In this subsection, we evaluate the terms of (7.37) which are related to the single-logarithmic term
of the equality (7.38).

Estimate of 〈δQtr{Q2∇u2},∆δQ〉. Let us fix a positive real number N > 0 and split the considered
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term into two parts, the high and the low frequencies:

〈δQtr{Q2∇u2},∆δQ〉
Ḣ−

1
2

= 〈δQtr{(ṠNQ2)∇u2},∆δQ〉
Ḣ−

1
2

+ 〈δQtr{(
∑
q≥N

∆̇qQ2)∇u2},∆δQ〉
Ḣ−

1
2
.

At first we deal with the low frequencies, observing that

〈δQtr{(ṠNQ2)∇u2},∆δQ〉
Ḣ−

1
2
. ‖δQtr{(ṠNQ2)∇u2}‖

Ḣ−
1
2
‖∆δQ‖

Ḣ−
1
2

. ‖δQ‖
Ḣ

1
2
‖(ṠNQ2)∇u2‖L2

x
‖∆δQ‖

Ḣ−
1
2

. ‖∇δQ‖
Ḣ−

1
2
‖ṠNQ2‖L∞x ‖∇u2‖L2

x
‖∆δQ‖

Ḣ−
1
2
,

hence, by Theorem 7.4.5, we get

〈δQtr{(ṠNQ2)∇u2},∆δQ〉
Ḣ−

1
2

. ‖∇δQ‖
Ḣ−

1
2
(‖Q2‖L2

x
+
√
N‖∇Q2‖L2

x
)‖∇u2‖L2

x
‖∆δQ‖

Ḣ−
1
2

. (1 +N)‖∇δQ‖2
Ḣ−

1
2
‖(Q2, ∇Q2)‖2L2

x
‖∇u2‖2L2

x
+ CΓ‖∆δQ‖2

Ḣ−
1
2
.

For the high frequencies, we proceed as follows:

〈δQtr{(
∑
q≥N

∆̇qQ2)∇u2},∆δQ〉
Ḣ−

1
2
. ‖δQtr{(

∑
q≥N

∆̇qQ2)∇u2}‖
Ḣ−

1
2
‖∆δQ‖

Ḣ−
1
2

. ‖δQ‖
Ḣ

3
4
‖(
∑
q≥N

∆̇qQ2)∇u2‖
Ḣ−

1
4
‖∆δQ‖

Ḣ−
1
2

. ‖(Q1, Q2)‖
1
4

L2
x
‖∇(Q1, Q2)‖

3
4

L2
x
‖
∑
q≥N

∆̇qQ2‖
Ḣ

3
4
‖∇u2‖L2

x
‖∆δQ‖

Ḣ−
1
2

. ‖(Q1, Q2)‖
1
4

L2
x
‖∇(Q1, Q2)‖

3
4

L2
x
(
∑
q≥N

2
3
4
q‖∆̇qQ2‖L2

x
)‖∇u2‖L2

x
‖∆δQ‖

Ḣ−
1
2

. ‖(Q1, Q2)‖
1
4

L2
x
‖∇(Q1, Q2)‖

3
4

L2
x
(
∑
q≥N

2−
q
4 ‖∆̇q∇Q2‖L2

x
)‖∇u2‖L2

x
‖∆δQ‖

Ḣ−
1
2

. ‖(Q1, Q2)‖
1
4

L2
x
‖∇(Q1, Q2)‖

3
4

L2
x
(
∑
q≥N

2−
q
4 )‖∇Q2‖L2

x
‖∇u2‖L2

x
‖∆δQ‖

Ḣ−
1
2

. 2−
N
4 ‖(Q1, Q2)‖

1
4

L2
x
‖∇(Q1, Q2)‖

3
4

L2
x
‖∇Q2‖L2

x
‖∇u2‖L2

x
‖∆δQ‖

Ḣ−
1
2
.

Now, fixing t > 0 arbitrary, and taking N = N(t) := dln(1 + e + 1/Φ(t))e > 0, where d·e is the
ceiling function, we get

〈δQ(t)tr{Q2(t)∇u2(t)},∆δQ(t)〉
Ḣ−

1
2

. ‖(Q2, ∇Q2)(t)‖2L2
x
‖∇u2(t)‖2L2

x
Φ(t) ln

(
1 + e+

1

Φ(t)

)
+

+ ‖(Q1, Q2)(t)‖
1
2

L2
x
‖∇(Q1, Q2)(t)‖

3
2

L2
x
‖∇Q2(t)‖2L2

x
‖∇u2(t)‖2L2

x
Φ(t) + CΓ‖∆δQ(t)‖2

Ḣ−
1
2
.
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Thus we have obtained a one-logarithmic term of (7.38). Similarly, we can handle the estimate of
the following elements:

+2Lξ〈δQ tr(δQ∇δu),∆δQ〉
Ḣ−

1
2

+ 2Lξ〈δQ tr(δQ∇u2),∆δQ〉
Ḣ−

1
2
+

+2Lξ〈δQ tr(Q2∇δu),∆δQ〉
Ḣ−

1
2

+ 2Lξ〈Q2 tr(δQ∇δu),∆δQ〉
Ḣ−

1
2
+

+2Lξ〈Q2 tr(δQ∇u2),∆δQ〉
Ḣ−

1
2
− 2Lξ〈δQtr{δQ∆δQ},∇δu〉

Ḣ−
1
2
−

−2Lξ〈δQtr{δQ∆Q2},∇δu〉
Ḣ−

1
2
− 2Lξ〈δQtr{Q2∆δQ},∇δu〉

Ḣ−
1
2
−

−2Lξ〈Q2tr{δQ∆δQ},∇δu〉
Ḣ−

1
2
− 2Lξ〈δQtr{Q2∆Q2},∇δu〉

Ḣ−
1
2
−

−2Lξ〈Q2tr{δQ∆Q2},∇δu〉
Ḣ−

1
2
.

Double-Logarithmic Estimates

In this subsection, we perform the most challenging estimate. Now, we want to control E1 + E2,
namely

E1 + E2 = 2Lξ
(
〈Q2tr{Q2∇δu}, ∆δQ〉

Ḣ−
1
2
− 〈Q2tr{Q2∆δQ}, ∇δu〉

Ḣ−
1
2

)
= 2Lξ

∑
q∈Z

2−q
ˆ
R2

tr
{

∆̇q(Q2tr{Q2∇δu}) ∆̇q∆δQ− ∆̇q(Q2tr{Q2∆δQ}) ∆̇q∇δu
}

= 2Lξ
4∑
i=1

∑
q∈Z

2−q
ˆ
R2

tr
{
J iq (Q2, tr{Q2∇δu} Id) ∆̇q∆δQ−J iq (Q2, tr{Q2∆δQ} Id) ∆̇q∇δu

}
.

(7.50)
We we will see that there are elements inside this decomposition that generate the double-logarithmic
term in (7.38). We proceed by considering the indexes i = 1, 2, 3, 4, step by step.

Estimate of J 1
q . We start with the term of (7.50) related to i = 1, passing trough the following

decomposition:

4∑
j=1

∑
|q−q′|≤5

ˆ
R2

tr
{(

[∆̇q, Ṡq′−1Q2]tr{J jq′(Q2, ∇δu)} Id
)

∆̇q∆δQ−

−
(
[∆̇q, Ṡq′−1Q2]tr{J jq′(Q2, ∆δQ)} Id

)
∆̇q∇δu

}
.

(7.51)

When j = 1, we have

I1
1 (q, q′, q′′) :=

ˆ
R2

{(
[∆̇q, Ṡq′−1Q2]tr{[∆̇q′ , Ṡq′′−1Q2]∆̇q′′∇δu)} Id

)
∆̇q∆δQ+

−
(

[∆̇q, Ṡq′−1Q2]tr{[∆̇q′ , Ṡq′′−1Q2]∆̇q′′∆δQ)} Id
)

∆̇q∇δu
}

. 2−q‖Ṡq′−1∇Q2‖L∞x 2−q
′‖Ṡq′′−1∇Q2‖L∞x ‖∆̇q′′(∇δu, ∆δQ)‖L2

x
‖∆̇q(∇δu, ∆δQ)‖L2

x

. 2−q−q
′
2
q′
2 ‖Ṡq′−1∇Q2‖L4

x
2
q′′
2 ‖Ṡq′′−1∇Q2‖L4

x
2q
′′
×

×‖∆̇q′′(δu, ∇δQ)‖L2
x
2q‖∆̇q(δu, ∇δQ)‖L2

x
,



7.4. THE UNIQUENESS OF WEAK SOLUTIONS 161

which yields

I1
1 (q, q′, q′′) . 2

3q′′
2
− q
′

2 ‖∇Q2‖L2
x
‖∆Q2‖L2

x
‖∆̇q′′(δu, ∇δQ)‖L2

x
‖∆̇q(δu, ∇δQ)‖L2

x
. (7.52)

Hence, taking the sum, we deduce that

2Lξ
∑
q∈Z

∑
|q−q′|≤5

∑
|q′−q′′|≤5

2−qI1
1 (q, q′, q′′) .

.
∑
q∈Z

∑
|q−q′|≤5

∑
|q′−q′′|≤5

2−q2
3q′′

2
− q
′

2 ‖∇Q2‖L2
x
‖∆Q2‖L2

x
×

×‖∆̇q′′(δu, ∇δQ)‖L2
x
‖∆̇q(δu, ∇δQ)‖L2

x

. ‖∇Q2‖L2
x
‖∆Q2‖L2

x

∑
q∈Z

∑
|q−q′′|≤10

‖∆̇q′′(δu, ∇δQ)‖L2
x
‖∆̇q(δu, ∇δQ)‖L2

x

. ‖∇Q2‖L2
x
‖∆Q2‖L2

x
‖(δu, ∇δQ)‖2L2

x

. ‖∇Q2‖L2
x
‖∆Q2‖L2

x
‖(δu, ∇δQ)‖

Ḣ−
1
2
‖(∇δu, ∆δQ)‖

Ḣ−
1
2

. ‖∇Q2‖2L2
x
‖∆Q2‖2L2

x
‖(δu, ∇δQ)‖2

Ḣ−
1
2

+ Cν‖∇δu‖2
Ḣ−

1
2

+ CΓ,L‖∆δQ‖2
Ḣ−

1
2
.

(7.53)

Now, when j = 2 in (7.51), we remark that

I1
2 (q, q′, q′′) :=ˆ
R2

tr
{(

[∆̇q, Ṡq′−1Q2]tr{(Ṡq′′−1Q2 − Ṡq′−1Q2) ∆̇q′∆̇q′′∇δu)} Id
)

∆̇q∆δQ+

+
(

[∆̇q, Ṡq′−1Q2]tr{(Ṡq′′−1Q2 − Ṡq′−1Q2) ∆̇q′∆̇q′′∆δQ)} Id
)

∆̇q∇δu
}

. 2−q‖Ṡq′−1∇Q2‖L∞x ‖Ṡq′′−1Q2 − Ṡq′−1Q2‖L∞x ×
×‖∆̇q∆̇q′′(∇δu, ∆δQ)‖L2

x
‖∆̇q(∇δu, ∆δQ)‖L2

x

. 2−q‖Ṡq′−1∇Q2‖L∞x 2−q
′‖Ṡq′′−1∇Q2 − Ṡq′−1∇Q2‖L∞x ×
×‖∆̇q′′(∇δu, ∆δQ)‖L2

x
‖∆̇q(∇δu, ∆δQ)‖L2

x

. 2−q−q
′
2
q′
2 ‖Ṡq′−1∇Q2‖L4

x
2
q′′
2 ‖Ṡq′′−1∇Q2‖L4

x
×

×2q
′′‖∆̇q′′(δu, ∇δQ)‖L2

x
2q‖∆̇q(δu, ∇δQ)‖L2

x

. 2
3q′′

2
− q
′

2 ‖∇Q2‖L2
x
‖∆Q2‖L2

x
‖∆̇q′′(δu, ∇δQ)‖L2

x
‖∆̇q(δu, ∇δQ)‖L2

x
,

which is equivalent to (7.52). Hence, proceeding as in (7.53), we get

2Lξ
∑
q∈Z

∑
|q−q′|≤5
|q′−q′′|≤5

2−qI1
2 (q, q′, q′′) . ‖∇Q2‖2L2

x
‖∆Q2‖2L2

x
‖(δu, ∇δQ)‖2

Ḣ−
1
2

+Cν‖∇δu‖2
Ḣ−

1
2

+ CΓ,L‖∆δQ‖2
Ḣ−

1
2
.
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Concerning the term of (7.51) related to j = 4, we have

I1
4 (q, q′, q′′) :=

ˆ
R2

tr
{(

[∆̇q, Ṡq′−1Q2]tr{∆̇q′( ∆̇q′′Q2Ṡq′′+2∇δu )} Id
)

∆̇q∆δQ−

−
(

[∆̇q, Ṡq′−1Q2]tr{∆̇q′( ∆̇q′′Q2Ṡq′′+2∆δQ )} Id
)

∆̇q∇δu
}

. 2−q‖Ṡq′−1∇Q2‖L∞x ‖∆̇q( ∆̇q′′Q2Ṡq′′+2∇δu, ∆̇q′′Q2Ṡq′′+2∆δQ )‖L2
x
‖∆̇q(∇δu, ∆δQ)‖L2

x

. 2−q‖Ṡq′−1∇Q2‖L∞x 2q×

×‖∆̇q( ∆̇q′′Q2Ṡq′′+2∇δu, ∆̇q′′Q2Ṡq′′+2∆δQ )‖L1
x
‖∆̇q(∇δu, ∆δQ)‖L2

x

. ‖Ṡq′−1∇Q2‖L∞x ‖∆̇q′′Q2‖L2
x
‖Ṡq′′+2(∇δu, ∆δQ)‖L2

x
‖∆̇q(∇δu, ∆δQ)‖L2

x

. ‖Ṡq′−1∇Q2‖L∞x 2−2q′′‖∆̇q′′∆Q2‖L2
x
‖Ṡq′′+2(∇δu, ∆δQ)‖L2

x
‖∆̇q(∇δu, ∆δQ)‖L2

x

. 2−2q′′2q
′‖Ṡq′−1∇Q2‖L2

x
‖∆̇q′′∆Q2‖L2

x
2q
′′‖Ṡq′′+2(δu, ∇δQ)‖L2

x
‖∆̇q(∇δu, ∆δQ)‖L2

x

. 2q
′−q′′‖∇Q2‖L2

x
‖∆Q2‖L2

x
‖Ṡq′′+2(δu, ∇δQ)‖L2

x
‖∆̇q(∇δu, ∆δQ)‖L2

x

(7.54)

Hence

2Lξ
∑
q∈Z

∑
|q−q′|≤5

∑
q′′≥q′−5

2−qI1
4 (q, q′, q′′) .

. ‖∇Q2‖L2
x
‖∆Q2‖L2

x

∑
q∈Z

2−
q
2 ‖∆̇q(∇δu, ∆δQ)‖L2

x
×

×
∑

[q−q′|≤5

2
q′−q

2

∑
q′′≥q′−5

2
q′−q′′

2 2−
q′′
2 ‖Ṡq′′+2(δu, ∇δQ)‖L2

x

. ‖∇Q2‖L2
x
‖∆Q2‖L2

x

∑
q∈Z

2−
q
2 ‖∆̇q(∇δu, ∆δQ)‖L2

x
×

×
∑

q′′≥q−10

2
q−q′′

2 2−
q′′
2 ‖Ṡq′′+2(δu, ∇δQ)‖L2

x
(7.55)

. ‖∇Q2‖L2
x
‖∆Q2‖L2

x
‖(∇δu, ∆δQ)‖

Ḣ−
1
2
×

×
[∑
q∈Z

∣∣∣ ∑
q−q′′≤10

2
q−q′′

2 2−
q′′+2

2 ‖Ṡq′′+2(δu, ∇δQ)‖L2
x

∣∣∣2] 1
2

. ‖∇Q2‖L2
x
‖∆Q2‖L2

x
‖(∇δu, ∆δQ)‖

Ḣ−
1
2

( ∑
q≤10

2
q
2

)(∑
q∈Z

2−q‖Ṡq(δu, ∇δQ)‖2L2
x

) 1
2

. ‖∇Q2‖L2
x
‖∆Q2‖L2

x
‖(∇δu, ∆δQ)‖

Ḣ−
1
2
‖(δu, ∇δQ)‖

Ḣ−
1
2

. ‖∇Q2‖2L2
x
‖∆Q2‖2L2

x
‖(δu, ∇δQ)‖2

Ḣ−
1
2

+ Cν‖∇δu‖2
Ḣ−

1
2

+ CΓ,L‖∆δQ‖2
Ḣ−

1
2
.

Concerning (7.51), it remains to control the term related to j = 3. We fix 0 < ε ≤ 5/6 and we
consider the low frequencies q ≤ N , for some suitable positive N ≥ 1 (so that 1 +

√
N < 2

√
N):

I1
3 (q, q′) :=

ˆ
R2

tr
{(

[∆̇q, Ṡq′−1Q2]tr{Ṡq′−1Q2 ∆̇q′∇δu} Id
)

∆̇q∆δQ−

−
(

[∆̇q, Ṡq′−1Q2]tr{Ṡq′−1Q2 ∆̇q′∆δQ} Id
)

∆̇q∇δu
}

. 2−q‖Ṡq′−1∇Q2‖
L

2
ε
x

‖Ṡq′−1Q2 ∆̇q′∇δu, Ṡq′−1Q2 ∆̇q′∆δQ‖
L

2
1−ε
x

‖∆̇q(∇δu, ∆δQ)‖L2
x
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. ‖Ṡq′−1∇Q2‖
L

2
ε
x

‖Ṡq′−1Q2‖L∞x 2−q‖∆̇q′(∇δu, ∆δQ )‖
L

2
1−ε
x

‖∆̇q(∇δu, ∆δQ )‖L2
x
.

Thanks to Theorem 7.4.5, we get

‖Ṡq′−1Q2‖L∞x . (1 +
√
q′ − 1)‖(Q2, ∇Q2)‖L2

x

. (1 +
√
N)‖(Q2, ∇Q2)‖L2

x
.
√
N‖(Q2, ∇Q2)‖L2

x
,

hence I1
3 (q, q′) is bounded by

I1
3 (q, q′) .

√
N‖(Q2, ∇Q2)‖

L
2
ε
x

‖(Q2, ∇Q2)‖L2
x
‖∆̇q′( δu, ∇δQ )‖

L
2

1−ε
x

‖∆̇q(∇δu, ∆δQ )‖L2
x
. (7.56)

Now, we will need the following inequality, which will finally lead to the delicate double-logarithmic
estimate:

‖(Q2, ∇Q2)‖
L

2
ε
x

≤ C√
ε
‖(Q2, ∇Q2)‖εL2

x
‖(∇Q2, ∆Q2)‖1−ε

L2
x
,

This is a consequence of Lemma 7.4.6, imposing p = 1/ε, where C is a positive constant independent
of ε and Q2. We will see that the double-logarithmic term comes out of a suitable choice of ε in
terms of N . Again, using Lemma 7.4.6 we have

‖∆̇q′( δu, ∇δQ )‖
L

2
1−ε
x

≤ C

1− ε
‖∆̇q′( δu, ∇δQ )‖1−ε

L2
x
‖∆̇q′(∇δu, ∆δQ )‖εL2

x

≤ 6C‖∆̇q′( δu, ∇δQ )‖1−ε
L2
x
‖∆̇q′(∇δu, ∆δQ )‖εL2

x
,

since ε ≤ 5/6. Hence (7.56) becomes

I1
3 (q, q′) .

√
N

ε
‖(Q2, ∇Q2)‖1+ε

L2
x
‖(∇Q2, ∆Q2)‖1−ε

L2
x
×

×‖∆̇q′( δu, ∇δQ )‖1−ε
L2
x
‖∆̇q′(∇δu, ∆δQ )‖εL2

x
‖∆̇q(∇δu, ∆δQ )‖L2

x
,

(7.57)

thus, since ab ≤ a2/(1−ε) + b2/(1+ε), we deduce

I1
3 (q, q′) .

(N
ε

) 1
1−ε ‖(Q2, ∇Q2)‖

2(1+ε)
1−ε

L2
x
‖(∇Q2, ∆Q2)‖2L2

x
‖∆̇q′( δu, ∇δQ )‖2L2

x
+

+ min{Cν , CΓ}‖∆̇q′(∇δu, ∆δQ )‖
2ε

1+ε

L2
x
‖∆̇q(∇δu, ∆δQ )‖

2
1+ε

L2
x

.
(N
ε

) 1
1−ε ‖(Q2, ∇Q2)‖

2(1+ε)
1−ε

L2
x
‖(∇Q2, ∆Q2)‖2L2

x
‖∆̇q′( δu, ∇δQ )‖2L2

x
+

+ min{Cν , CΓ}
(
‖∆̇q′(∇δu, ∆δQ )‖2L2

x
+ ‖∆̇q(∇δu, ∆δQ )‖2L2

x

)
.

Imposing ε = (1 + lnN)−1 and observing that 1
1−ε = 1 + 1/ lnN

N
1

1−ε = N N
1

lnN = eN, ε−
1

1−ε = ε−1ε−
ε

1−ε = (1 + lnN)e
ε

1−ε ln 1
ε . (1 + lnN),

we obtain:

I1
3 (q, q′) . N(1 + lnN) max

{
‖(Q2, ∇Q2)‖6L2

x
, 1
}
‖(∇Q2, ∆Q2)‖2L2

x
‖∆̇q′( δu, ∇δQ )‖2L2

x
+
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+ min
{
Cν , CΓ,L

}(
‖∆̇q′(∇δu, ∆δQ )‖2L2

x
+ ‖∆̇q(∇δu, ∆δQ )‖2L2

x

)
,

which yields∑
q≤N

∑
|q−q′|≤5

2−qI1
3 (q, q′)

. N(1 + lnN) max
{
‖(Q2, ∇Q2)‖6L2

x
, 1
}
‖(∇Q2, ∆Q2)‖2L2

x
‖( δu, ∇δQ )‖2

Ḣ−
1
2
+

+ Cν‖∇δu‖2
Ḣ−

1
2

+ CΓ,L‖∆δQ‖2
Ḣ−

1
2
.

For the high frequencies, namely for q > N ≥ 1, we proceed as follows:

I1
3 (q, q′) . 2−q‖Ṡq′−1∇Q2‖L∞x ×

×‖Ṡq′−1Q2 ∆̇q′∇δu, Ṡq′−1Q2 ∆̇q′∆δQ‖L2
x
‖∆̇q(∇δu, ∆δQ)‖L2

x

. 2−q(1 +
√
q′)‖(∇Q2, ∆Q2)‖L2

x
‖Ṡq′−1Q2‖L∞x ×

×‖∆̇q′(∇δu, ∆δQ )‖L2
x
‖∆̇q(∇δu, ∆δQ )‖L2

x

. 2−q(1 +
√
q′)2‖(∇Q2, ∆Q2)‖L2

x
‖(Q2, ∇Q2)‖L2

x
×

×‖∆̇q′(∇δu, ∆δQ )‖L2
x
‖∆̇q(∇δu, ∆δQ )‖L2

x

. q′‖(∇Q2, ∆Q2)‖L2
x
‖(Q2, ∇Q2)‖L2

x
‖∆̇q′(∇δu, ∆δQ )‖L2

x
‖∆̇q( δu, ∇δQ )‖L2

x
,

which implies∑
q>N

∑
|q−q′|≤5

2−qI1
3 (q, q′) .

.
∑
q>N

∑
|q−q′|≤5

2−2qq′‖(∇Q2, ∆Q2)‖L2
x
‖(Q2, ∇Q2)‖L2

x
×

×‖∆̇q′(∇δu, ∆δQ )‖L2
x
‖∆̇q( δu, ∇δQ )‖L2

x

. ‖(∇Q2, ∆Q2)‖L2
x
‖(Q2, ∇Q2)‖L2

x
×

×‖( δu, ∇δQ )‖L2
x
‖(∇δu, ∆δQ )‖

Ḣ−
1
2

∑
q>N

∑
|q−q′|≤5

2−
3
2
q+ 1

2
q′q′

. 2−
N
2 ‖(∇Q2, ∆Q2)‖L2

x
‖(Q2, ∇Q2)‖L2

x
‖( δu, ∇δQ )‖L2

x
‖(∇δu, ∆δQ )‖

Ḣ−
1
2
.

Summarizing, we get∑
q∈Z

∑
|q−q′|≤5

2−qI1
3 (q, q′)

. N(1 + lnN) max
{
‖(Q2, ∇Q2)‖6L2

x
, 1
}
‖(∇Q2, ∆Q2)‖2L2

x
‖( δu, ∇δQ )‖2

Ḣ−
1
2
+

+ 2−N‖(∇Q2, ∆Q2)‖2L2
x
‖(Q2, ∇Q2)‖2L2

x
‖(u1, u2, ∇Q1, ∇Q2)‖2L2

x
+

+ Cν‖∇δu‖2
Ḣ−

1
2

+ CΓ,L‖∆δQ‖2
Ḣ−

1
2
.

(7.58)

Choosing N = N(t) := dln(1 + e + 1/Φ(t))e (thus ε < 1/(1 + ln ln{1 + e}) < 5/6) where with d·e
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we denote the ceiling function, relation (7.58) implies∑
q∈Z

∑
|q−q′|≤5

2−qI3
1 (q, q′) . max

{
‖(Q2, ∇Q2)‖6L2

x
, 1
}
×

×‖(∇Q2, ∆Q2)‖2L2
x
‖( δu, ∇δQ )‖2

Ḣ−
1
2

ln
(
e+

1

Φ(t)

)(
1 + ln ln

(
e+

1

Φ(t)

))
+

+ ‖(∇Q2, ∆Q2)‖2L2
x
‖(Q2, ∇Q2)‖2L2

x
‖(u1, u2, ∇Q1, ∇Q2)‖2L2

x
+

+ Φ(t) + Cν‖∇δu‖2
Ḣ−

1
2

+ CΓ,L‖∆δQ‖2
Ḣ−

1
2
. (7.59)

Estimate of J 2
q Now, we handle the term of (7.50) related to i = 2, namely

4∑
j=1

∑
|q−q′|≤5

ˆ
R2

tr
{

( Ṡq′−1Q2 − Ṡq−1Q2 )tr{∆̇qJ jq′(Q2, ∇δu)}∆̇q∆δQ+

( Ṡq′−1Q2 − Ṡq−1Q2 )tr{∆̇qJ jq′(Q2, ∆δQ)}∆̇q∇δu
}
.

(7.60)

When j = 1, we have

I2
1 (q, q′, q′′) :=

ˆ
R2

tr
{

( Ṡq′−1Q2 − Ṡq−1Q2 )tr{∆̇q

(
[∆̇q′ , Ṡq′′−1Q2]∆̇q′′∇δu

)
}∆̇q∆δQ+

− ( Ṡq′−1Q2 − Ṡq−1Q2 )tr{∆̇q

(
[∆̇q′ , Ṡq′′−1Q2]∆̇q′′∆δQ

)
}∆̇q∇δu

}
. ‖Ṡq′−1Q2 − Ṡq−1Q2‖L∞x ×

×‖∆̇q

(
[∆̇q′ , Ṡq′′−1Q2]∆̇q′′(∇δu, ∆δQ)

)
‖L2

x
‖∆̇q(∇δu, ∆δQ)‖L2

x

. 2−
q
2 ‖Ṡq′−1∇Q2 − Ṡq−1∇Q2‖L4

x
2
q
2×

×‖∆̇q

(
[∆̇q′ , Ṡq′′−1Q2]∆̇q′′(∇δu, ∆δQ)

)
‖
L

4
3
x

‖∆̇q(∇δu, ∆δQ)‖L2
x

. ‖∇Q2‖L4
x
2−q

′‖Ṡq′′−1∇Q2‖L4
x
‖∆̇q′′(∇δu, ∆δQ)‖L2

x
‖∆̇q(∇δu, ∆δQ)‖L2

x

. 2−q
′+q′′+q‖∇Q2‖L2

x
‖∆Q2‖L2

x
‖∆̇q′′(δu, ∇δQ)‖L2

x
‖∆̇q(δu, ∇δQ)‖L2

x
.

Since |q − q′| ≤ 5 and |q′ − q′′| ≤ 5 then −q′ + q′′ + q ' 3q′′/2− q′/2, so that the last inequality is
equivalent to (7.52). Hence, proceeding as in (7.53), we get

2Lξ
∑
q∈Z

∑
|q−q′|≤5
|q′−q′′|≤5

2−qI2
1 (q, q′, q′′) . ‖∇Q2‖2L2

x
‖∆Q2‖2L2

x
‖(δu, ∇δQ)‖2

Ḣ−
1
2

+Cν‖∇δu‖2
Ḣ−

1
2

+ CΓ,L‖∆δQ‖2
Ḣ−

1
2
.

When j = 2, we observe that

I2
2 (q, q′, q′′) :=ˆ

R2

tr
{

( Ṡq′−1Q2 − Ṡq−1Q2 )tr{ (Ṡq′′−1Q2 − Ṡq′−1Q2)∆̇q′∆̇q′′∇δu }∆̇q∆δQ+

− ( Ṡq′−1Q2 − Ṡq−1Q2 )tr{(Ṡq′′−1Q2 − Ṡq′−1Q2)∆̇q′∆̇q′′∆δQ }∆̇q∇δu
}

. ‖Ṡq′−1Q2 − Ṡq−1Q2‖L∞x ‖Ṡq′′−1Q2 − Ṡq′−1Q2‖L∞x ×
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×‖∆̇q′∆̇q′′(∇δu, ∆δQ)‖L2
x
‖L2

x
‖∆̇q(∇δu, ∆δQ)‖L2

x

. 2−
q+q′

2 ‖Ṡq′−1∇Q2 − Ṡq−1∇Q2‖L4
x
‖Ṡq′′−1∇Q2 − Ṡq′−1∇Q2‖L4

x
×

×‖∆̇q′′(∇δu, ∆δQ)‖L2
x
‖∆̇q(∇δu, ∆δQ)‖L2

x

. 2
q′
2

+ q
2 ‖∇Q2‖2L4

x
‖∆̇q′′(δu, ∇δQ)‖L2

x
‖∆̇q(δu, ∆δQ)‖L2

x

. 2
q′
2

+ q
2 ‖∇Q2‖L2

x
‖∆Q2‖L2

x
‖∆̇q′(δu, ∇δQ)‖L2

x
‖∆̇q(δu, ∇δQ)‖L2

x
.

Since |q − q′| ≤ 5 and |q′ − q′′| ≤ 5 then q′/2 + q/2 ' 3q′′/2 − q′/2, so that the last inequality is
equivalent to (7.52). Hence, proceeding as in (7.53), we get

2Lξ
∑
q∈Z

∑
|q−q′|≤5
|q′−q′′|≤5

2−qI2
2 (q, q′, q′′) . ‖∇Q2‖2L2

x
‖∆Q2‖2L2

x
‖(δu, ∇δQ)‖2

Ḣ−
1
2

+Cν‖∇δu‖2
Ḣ−

1
2

+ CΓ,L‖∆δQ‖2
Ḣ−

1
2
.

When j = 4:

I2
4 (q, q′, q′′) :=

ˆ
R2

{
( Ṡq′−1Q2 − Ṡq−1Q2 )tr{ ∆̇q′( ∆̇q′′Q2Ṡq′′+2∇δu ) }∆̇q∆δQ+

− ( Ṡq′−1Q2 − Ṡq−1Q2 )tr{ ∆̇q′( ∆̇q′′Q2Ṡq′′+2∆δQ ) }∆̇q∇δu
}

. ‖Ṡq′−1Q2 − Ṡq−1Q2‖L∞x ‖∆̇q′( ∆̇q′′Q2Ṡq′′+2(∇δu, ∆δQ ) )‖L2
x
‖∆̇q(∇δu, ∆δQ)‖L2

x

. 2q
′‖Ṡq′−1∇Q2 − Ṡq−1∇Q2‖L2

x
×

×‖∆̇q′( ∆̇q′′Q2Ṡq′′+2(∇δu, ∆δQ ) )‖L1
x
‖∆̇q(∇δu, ∆δQ)‖L2

x

. 2q
′−q′′‖∇Q2‖L2

x
‖∆̇q′′∆Q2‖L2

x
‖Ṡq′′+2(δu, ∇δQ)‖L2

x
‖∆̇q(∇δu, ∆δQ)‖L2

x

. 2q
′−q′′‖∇Q2‖L2

x
‖∆Q2‖L2

x
‖Ṡq′′+2(δu, ∇δQ)‖L2

x
‖∆̇q(∇δu, ∆δQ)‖L2

x
,

which is equivalent to the last inequality of (7.54). Thus, arguing as in (7.55), we deduce

2Lξ
∑
q∈Z

∑
|q−q′|≤5
q′′≥q′−5

2−qI2
4 (q, q′, q′′) . ‖∇Q2‖2L2

x
‖∆Q2‖2L2

x
‖(δu, ∇δQ)‖2

Ḣ−
1
2

+Cν‖∇δu‖2
Ḣ−

1
2

+ CΓ,L‖∆δQ‖2
Ḣ−

1
2
.

When j = 3 we fix a real number N > 1 and we consider the low frequencies q′ ≤ N as follows

I2
3 (q, q′) :=

ˆ
R2

tr
{

( Ṡq′−1Q2 − Ṡq−1Q2 )tr{ ∆̇q( Ṡq′−1Q2 ∆̇q′∇δu ) }∆̇q∆δQ+

− ( Ṡq′−1Q2 − Ṡq−1Q2 )tr{ ∆̇q( Ṡq′−1Q2 ∆̇q′∆δQ )}∆̇q∇δu
}

. ‖Ṡq′−1Q2 − Ṡq−1Q2‖L∞x ‖∆̇q( Ṡq′−1Q2 ∆̇q′(∇δu, ∆δQ) ) }‖L2
x
‖∆̇q(∇δu, ∆δQ)‖L2

x

. 2−q‖Ṡq′−1∆Q2 − Ṡq−1∆Q2‖L2
x
‖Ṡq′−1Q2‖L∞x ‖∆̇q′(∇δu, ∆δQ )‖L2

x
‖∆̇q(∇δu, ∆δQ )‖L2

x

. ‖Ṡq′−1∆Q2 − Ṡq−1∆Q2‖L2
x
‖Ṡq′−1Q2‖L∞x ‖∆̇q′(∇δu, ∆δQ )‖L2

x
‖∆̇q( δu, ∇δQ )‖L2

x
.

(7.61)
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If q′ ≤ 1 then ‖Ṡq′−1Q2‖L∞x . 2
q′
2 ‖Ṡq′−1Q2‖L2

x
≤ ‖Q2‖L2

x
, while if 1 < q′ ≤ N we have

‖Ṡq′−1Q2‖L∞x . (‖Q2‖L2
x

+
√
q′ − 1‖∇Q2‖L2

x
) . (‖Q2‖L2

x
+
√
N‖∇Q2‖L2

x
),

thanks to Theorem 7.4.5. Therefore, we deduce that

I2
3 (q, q′) . ‖∆Q2‖L2

x
(‖Q2‖L2

x
+
√
N‖∇Q2‖L2

x
)‖∆̇q′(∇δu, ∆δQ )‖L2

x
‖∆̇q( δu, ∇δQ )‖L2

x

. (1 +N)‖∆Q2‖2L2
x
‖(Q2, ∇Q2)‖2L2

x
‖∆̇q( δu, ∇δQ )‖2L2

x

+ Cν‖∆̇q′∇δu‖2L2
x

+ CΓ,L‖∆̇q′∆δQ‖2L2
x
.

Hence ∑
q′≤N

∑
|q′−q|≤5

2−qI2
3 (q, q′) . (1 +N)‖∆Q2‖2L2

x
‖(Q2, ∇Q2)‖2L2

x
‖( δu, ∇δQ )‖2

Ḣ−
1
2
+

+ Cν‖∇δu‖2
Ḣ−

1
2

+ CΓ,L‖∆δQ‖2
Ḣ−

1
2
.

(7.62)

For the high frequencies q′ > N we get,

I2
3 (q, q′)

. ‖Ṡq′−1Q2 − Ṡq−1Q2‖L∞x ‖∆̇q( Ṡq′−1Q2 ∆̇q′(∇δu, ∆δQ) ) }‖L2
x
‖∆̇q(∇δu, ∆δQ)‖L2

x

. 2−q‖Ṡq′−1∆Q2 − Ṡq−1∆Q2‖L2
x
‖Ṡq′−1Q2‖L∞x ‖∆̇q′(∇δu, ∆δQ )‖L2

x
‖∆̇q(∇δu, ∆δQ )‖L2

x

. 2
q′−q

2 ‖∆Q2‖L2
x
(1 +

√
q′ − 1)‖(Q2, ∇Q2)‖L2

x
‖∆̇q′( δu, ∇δQ )‖L2

x
‖(∇δu, ∆δQ )‖

Ḣ−
1
2

. (1 +
√
q′ − 1)‖∆Q2‖L2

x
‖(Q2, ∇Q2)‖L2

x
‖( δu, δQ )‖L2

x
‖(∇δu, ∆δQ )‖

Ḣ−
1
2
,

(7.63)

therefore∑
q′>N

∑
|q−q′|≤5

2−qI2
3 (q, q′) . 2−N‖∆Q2‖L2

x
‖∇Q2‖L2

x
‖( δu, δQ )‖L2

x
‖(∇δu, ∆δQ )‖

Ḣ−
1
2

. 2−2N‖∆Q2‖2L2
x
‖∇Q2‖2L2

x
‖( δu, δQ )‖2L2

x
+ Cν‖∇δu‖2

Ḣ−
1
2

+ CΓ,L‖∆δQ‖2
Ḣ−

1
2
.

(7.64)

Summarizing (7.62) and (7.64), we get∑
q′∈Z

∑
|q′−q|≤5

2−qI2
3 (q, q′) . (1 +N)‖∆Q2‖2L2

x
‖(Q2, ∇Q2)‖2L2

x
‖( δu, ∇δQ )‖2

Ḣ−
1
2
+

+ 2−2N‖∆Q2‖2L2
x
‖∇Q2‖2L2

x
‖( δu, δQ )‖2L2

x
+ Cν‖∇δu‖2

Ḣ−
1
2

+ CΓ,L‖∆δQ‖2
Ḣ−

1
2
.

(7.65)

Now we define N := dln{e+ 1/Φ(t)}/2e, obtaining∑
q∈Z

∑
|q′−q|≤5

2−qI2
3 (q, q′) .

‖∆Q2(t)‖2L2
x
‖(Q2, ∇Q2)(t)‖2L2

x
‖( δu, ∇δQ(t) )‖2

Ḣ−
1
2

+ Cν‖∇δu(t)‖2
Ḣ−

1
2
+

+ CΓ,L‖∆δQ(t)‖2
Ḣ−

1
2

+ ‖∆Q2(t)‖2L2
x
‖∇Q2(t)‖2L2

x
‖( δu, δQ )(t)‖2L2

x

(
1 + ln

(
e+

1

Φ(t)

))
.

(7.66)
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Estimate of J 3
q Now, let us deal with the term of (7.50) related to i = 3, namely

ˆ
R2

tr
{
Ṡq−1Q2tr{∆̇q(Q2∇δu)}∆̇q∆δQ− Ṡq−1Q2]tr{∆̇q(Q2∆δQ)}∆̇q∇δu

}
=

=

4∑
j=1

ˆ
R2

tr
{
Ṡq−1Q2tr{J jq′(Q2, ∇δu)}∆̇q∆δQ− Ṡq−1Q2tr{J jq′(Q2, ∆δQ)}∆̇q∇δu

}
.

(7.67)

Let us consider j = 1 and define

I3
1 (q, q′) :=

ˆ
R2

tr
{
Ṡq−1Q2tr{[∆̇q, Ṡq′−1Q2]∆̇q′∇δu)}∆̇q∆δQ−

− Ṡq−1Q2tr{[∆̇q, Ṡq′−1Q2]∆̇q′∆δQ)}∆̇q∇δu
}
.

We proceed as for proving (7.57): we fix a positive real ε ∈ (0, 5/6] and we consider the low
frequencies q ≤ N , for a suitable positive N ≥ 1.

I3
1 (q, q′) =

ˆ
R2

tr
{
Ṡq−1Q2tr{[∆̇q, Ṡq′−1Q2] ∆̇q′∇δu}∆̇q∆δQ

− Ṡq−1Q2tr{[∆̇q, Ṡq′−1Q2] ∆̇q′∆δQ}∆̇q∇δu
}

. 2−q
′‖Ṡq−1Q2‖L∞x ‖Ṡq′−1∇Q2‖

L
2
ε
x

‖∆̇q′(∇δu, ∆δQ )‖
L

2
1−ε
x

‖∆̇q(∇δu, ∆δQ )‖L2
x

. (1 +
√
N)2q−q

′‖(Q2, ∇Q2)‖L2
x
‖Ṡq′−1∇Q2‖

L
2
ε
x

×

×‖∆̇q′( δu, ∇δQ )‖
L

2
1−ε
x

‖∆̇q(∇δu, ∆δQ )‖L2
x

.

√
N

ε
‖(Q2, ∇Q2)‖L2

x
‖Ṡq′−1∇Q2‖εL2

x
‖Ṡq′−1∆Q2‖1−εL2

x
×

×‖∆̇q′( δu, ∇δQ )‖1−ε
L2
x
‖∆̇q′(∇δu, ∆δQ )‖εL2

x
‖∆̇q(∇δu, ∆δQ )‖L2

x
,

which is equivalent to the last inequality of (7.57). Hence, arguing as for proving (7.59), we get∑
q∈Z

∑
|q−q′|≤5

2−qI3
1 (q, q′) .

. max
{
‖(Q2, ∇Q2)‖6L2

x
, 1
}
×

×‖(∇Q2, ∆Q2)‖2L2
x
‖( δu, ∇δQ )‖2

Ḣ−
1
2

ln
(

1 + e+
1

Φ(t)

)(
1 + ln ln

(
1 + e+

1

Φ(t)

))
+

+ ‖(∇Q2, ∆Q2)‖2L2
x
‖(Q2, ∇Q2)‖2L2

x
‖(u1, u2, ∇Q1, ∇Q2)‖2L2

x
Φ(t)

+ Cν‖∇δu‖2
Ḣ−

1
2

+ CΓ,L‖∆δQ‖2
Ḣ−

1
2
,

Further on, when j = 2 in (7.67), let us consider the low frequencies q ≤ N :

I3
2 (q, q′) :=

ˆ
R2

tr
{
Ṡq−1Q2tr{(Ṡq′−1Q2 − Ṡq−1Q2) ∆̇q∆̇q′∇δu)}∆̇q∆δQ+

− Ṡq−1Q2tr{(Ṡq′−1Q2 − Ṡq−1Q2) ∆̇q′∆̇q′∆δQ)}∆̇q∇δu
}

. ‖Ṡq−1Q2‖L∞x ‖Ṡq′−1Q2 − Ṡq−1Q2‖L∞x ‖∆̇q∆̇q′(∇δu, ∆δQ )‖L2
x
‖∆̇q(∇δu, ∆δQ )‖L2

x
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. ‖Ṡq−1Q2‖L∞x ‖Ṡq′−1∆Q2 − Ṡq−1∆Q2‖L2
x
‖∆̇q′(∇δu, ∆δQ )‖L2

x
‖∆̇q( δu, ∇δQ )‖L2

x
,

which is as the last inequalities of (7.61) (recalling that q ∼ q′). Moreover for the high frequencies
q > N

I3
2 (q, q′)

. ‖Ṡq−1Q2‖L∞x ‖Ṡq′−1Q2 − Ṡq−1Q2‖L∞x ‖∆̇q∆̇q′(∇δu, ∆δQ )‖L2
x
‖∆̇q(∇δu, ∆δQ )‖L2

x

. (1 +
√
q − 1)‖(Q2, ∇Q2)‖L2

x
2−q‖Ṡq′−1∆Q2 − Ṡq−1∆Q2‖L2

x
×

×‖∆̇q(∇δu, ∆δQ )‖L2
x
‖∆̇q(∇δu, ∆δQ )‖L2

x

. (1 +
√
q − 1)‖∆Q2‖L2

x
‖(Q2, ∇Q2)‖L2

x
‖( δu, ∇δQ )‖L2

x
‖(∇δu, ∆δQ )‖

Ḣ−
1
2
,

which is the equivalent to the last inequality (7.63). Hence, arguing as for proving (7.66), we get∑
q∈Z

∑
|q′−q|≤5

2−qI3
2 (q, q′) . ‖∆Q2(t)‖2L2

x
‖(Q2, ∇Q2)(t)‖2L2

x
×

×‖( δu, ∇δQ(t) )‖2
Ḣ−

1
2

+ Cν‖∇δu(t)‖2
Ḣ−

1
2

+ CΓ,L‖∆δQ(t)‖2
Ḣ−

1
2
+

+ ‖∆Q2(t)‖2L2
x
‖∇Q2(t)‖2L2

x
‖( δu, δQ )(t)‖2L2

x
Φ(t)

(
1 + ln

(
1 + e+

1

Φ(t)

))
.

Now, when j = 3 in (7.67), we observe that

I3
3 (q) :=

ˆ
R2

{
tr{ Ṡq−1Q2∆̇q∇δu }tr{ Ṡq−1Q2∆̇q∆δQ }

− tr{ Ṡq−1Q2∆̇q∆δQ }tr{ Ṡq−1Q2∆̇q∇δu }
}

= 0,

for any q ∈ Z. Thus it remains to control the j = 4 term, namely

I3
4 (q, q′) :=

ˆ
R2

{
Ṡq−1Q2tr{(∆̇q( ∆̇q′Q2Ṡq′+2∇δu ) }∆̇q∆δQ

− Ṡq−1Q2tr{(∆̇q( ∆̇q′Q2Ṡq′+2∆δQ ) }∆̇q∇δu
}

. ‖Ṡq−1Q2‖L∞x ‖∆̇q( ∆̇q′Q2Ṡq′+2(∇δu, ∆δQ) )‖L2
x
‖∆̇q(∇δu, ∆δQ)‖L2

x
.

At first let us consider the low frequencies q ≤ N , with N > 1:

I3
4 (q, q′) . (1 +

√
N)‖(Q2, ∇Q2)‖L2

x
‖∆̇q′Q2‖L∞x ×

×‖Ṡq′+2(∇δu, ∆δQ)‖L2
x
‖∆̇q(∇δu, ∆δQ)‖L2

x

. (1 +
√
N)‖(Q2, ∇Q2)‖L2

x
2−q

′‖∆̇q′∆Q2‖L2
x
‖Ṡq′+2(∇δu, ∆δQ)‖L2

x
‖∆̇q(∇δu, ∆δQ)‖L2

x

. (1 +
√
N)‖∇Q2‖L2

x
‖∆̇q′∆Q2‖L2

x
‖Ṡq′+2(δu, ∇δQ)‖L2

x
‖∆̇q(∇δu, ∆δQ)‖L2

x

. (1 +
√
N)2

q′
2 ‖∇Q2‖L2

x
‖∆̇q′∆Q2‖L2

x
‖(δu, ∇δQ)‖

Ḣ−
1
2
‖∆̇q(∇δu, ∆δQ)‖L2

x
,
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which yields∑
q≤N

∑
q′≥q−5

2−qI3
4 (q, q′)

. (1 +
√
N)‖(Q2, ∇Q2)‖L2

x
‖(δu, ∇δQ)‖

Ḣ−
1
2
×

×
∑
q≤N

∑
q′≥q−5

2
q′
2
−q‖∆̇q′∆Q2‖L2

x
‖∆̇q(∇δu, ∆δQ)‖L2

x

. (1 +
√
N)‖(Q2, ∇Q2)‖L2

x
‖(δu, ∇δQ)‖

Ḣ−
1
2
×

×
∑
q∈Z

2−
q
2 ‖∆̇q(∇δu, ∆δQ)‖L2

x

∑
q′≥q−5

2
q′−q

2 ‖∆̇q′∆Q2‖L2
x

. (1 +
√
N)‖(Q2, ∇Q2)‖L2

x
‖(δu, ∇δQ)‖

Ḣ−
1
2
×

×
(∑
q′∈Z

∣∣∣∑
q∈Z

2
q−q′

2 1(−∞,5](q − q′)‖∆̇q∆Q2‖L2
x

∣∣∣2) 1
2 ‖(∇δu, ∆δQ)‖

Ḣ−
1
2
,

thus by convolution∑
q≤N

∑
q′≥q−5

2−qI3
4 (q, q′)

. (1 +
√
N)‖(Q2, ∇Q2)‖L2

x
‖∆Q2‖L2

x
‖(δu, ∇δQ)‖

Ḣ−
1
2
‖(∇δu, ∆δQ)‖

Ḣ−
1
2

. (1 +N)‖(Q2, ∇Q2)‖2L2
x
‖∆Q2‖2L2

x
‖(δu, ∇δQ)‖2

Ḣ−
1
2

+ Cν‖∇δu‖2
Ḣ−

1
2

+ CΓ,L‖∆δQ‖2
Ḣ−

1
2
.

For the high frequencies, q > N ,∑
q≥N

∑
q′≥q−5

2−qI3
2 (q, q′) .

∑
q≥N

∑
q′≥q−5

2−q(1 +
√
q − 1)‖Ṡq−1(Q2, ∇Q2)‖L2

x
×

×‖∆̇q′Q2‖L∞x ‖Ṡq′+2(∇δu, ∆δQ)‖L2
x
‖∆̇q(∇δu, ∆δQ)‖L2

x

. ‖(Q2, ∇Q2)‖L2
x
‖(∇δu, ∆δQ)‖L2

x
×

×
∑
q≥N

2−
q
2 (1 +

√
q)

∑
q′≥q−5

2
q′−q

2 ‖∆̇q′∇Q2‖L2
x
2−

q′
2 ‖Ṡq′+2(∇δu, ∆δQ)‖L2

x

. ‖(Q2, ∇Q2)‖L2
x
‖(∇δu, ∆δQ)‖L2

x
‖(∇δu, ∆δQ)‖

Ḣ−
1
2
×

×2−
N
2
(∑
q∈Z

∣∣ ∑
q′≥q−5

2
q′−q

2 ‖∆̇q′∇Q2‖L2
x

∣∣2) 1
2 ,

so that, by convolution∑
q≥N

∑
q′≥q−5

2−qI3
2 (q, q′)

. 2−N‖(Q2, ∇Q2)‖L2
x
‖∇Q2‖L2

x
‖(∇δu, ∆δQ)‖L2

x
‖(∇δu, ∆δQ)‖

Ḣ−
1
2
.
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Summarizing, we get∑
q∈Z

∑
q′≥q−5

2−qI3
2 (q, q′) . (1 +N)‖(Q2, ∇Q2)‖2L2

x
‖∆Q2‖2L2

x
‖(δu, ∇δQ)‖2

Ḣ−
1
2
+

+ Cν‖∇δu‖2
Ḣ−

1
2

+ CΓ,L‖∆δQ‖2
Ḣ−

1
2
+

+ 2−2N‖(Q2, ∇Q2)‖2L2
x
‖∇Q2‖2L2

x
‖(∇δu, ∆δQ)‖2L2

x
,

which is similar to (7.65), hence we can conclude as in (7.66).

Estimate of J 4
q Now, we handle the last term of (7.50), which is related to i = 4, namely

∑
q′≥q−5

ˆ
R2

tr
{

∆̇q

[
∆̇q′Q2tr{Ṡq′+2(Q2∇δu)}

]
∆̇q∆δQ−

− ∆̇q

[
∆̇q′Q2tr{Ṡq′+2(Q2∆δQ)}

]
∆̇q∇δu

}
=

∑
q′≤q−5

∑
q′′≤q′+1

ˆ
R2

tr
{

∆̇q

[
∆̇q′Q2tr{∆̇q′(Q2∇δu)}

]
∆̇q∆δQ

− ∆̇q

[
∆̇q′Q2tr{∆̇q′(Q2∆δQ)}

]
∆̇q∇δu

}
=

4∑
j=1

∑
q′≤q−5

∑
q′′≤q′+1

ˆ
R2

tr
{

∆̇q

[
∆̇q′Q2tr{J jq′′(Q2, ∇δu)}

]
∆̇q∆δQ−

− ∆̇q

[
∆̇q′Q2tr{J jq′′(Q2, ∆δQ)}

]
∆̇q∇δu

}
. (7.68)

First, we consider the term related to j = 1, that is

I4
1 (q, q′, q′′, q′′′) :=

ˆ
R2

tr
{

∆̇q

[
∆̇q′Q2tr{[∆̇q′′ , Ṡq′′′−1Q2] ∆̇q′′′∇δu}

]
∆̇q∆δQ+

− ∆̇q

[
∆̇q′Q2tr{[∆̇q′′ , Ṡq′′′−1Q2] ∆̇q′′∆δQ}

]
∆̇q∇δu

}
. ‖∆̇q

[
∆̇q′Q2tr{[∆̇q′′ , Sq′′′−1Q2] ∆̇q′′′(∇δu, ∆δQ) }

]
‖L2

x
‖∆̇q(∇δu, ∆δQ)‖L2

x

. 2q‖∆̇q

[
∆̇q′Q2tr{[∆̇q′′ , Sq′′′−1Q2] ∆̇q′′′(∇δu, ∆δQ) }

]
‖L1

x
‖∆̇q(∇δu, ∆δQ)‖L2

x

. 2q−q
′′‖∆̇q′Q2‖L∞x ‖Ṡq′′′−1∇Q2‖L2

x
‖∆̇q′′′(∇δu, ∆δQ)‖L2

x
‖∆̇q(∇δu, ∆δQ)‖L2

x

. 2q−q
′−q′′‖∆̇q′∆Q2‖L2

x
‖Ṡq′′′−1∇Q2‖L2

x
‖∆̇q′′′(∇δu, ∆δQ)‖L2

x
‖∆̇q(∇δu, ∆δQ)‖L2

x

. 2q−q
′−q′′+q′′′‖∆Q2‖L2

x
‖∇Q2‖L2

x
‖∆̇q′′′(δu, ∇δQ)‖L2

x
‖∆̇q(∇δu, ∆δQ)‖L2

x
.

(7.69)

Hence, taking the sum in q, q′, q′′ and q′′′ (and observing that |q′′ − q′′′| ≤ 5), we get∑
q∈Z

∑
q′≥q−5

∑
q′′≤q′+1

∑
|q′′′−q′′|≤5

2−qI4
1 (q, q′, q′′, q′′′) .

. ‖∇Q2‖L2
x
‖(∇δu, ∆δQ)‖

Ḣ−
1
2

∑
q, q′, q′′

2
q
2
−q′‖∆̇q′∆Q2‖L2

x
‖∆̇q′′(δu, ∇δQ)‖L2

x

. ‖∇Q2‖L2
x
‖(∇δu, ∆δQ)‖

Ḣ−
1
2
×

×
∑
q∈Z

2
q
2

∑
q′≥q−5

2−q
′ ∑
q′′≤q′+1

2
q′′
2 ‖∆̇q′∆Q2‖L2

x
2−

q′′
2 ‖∆̇q′′(δu, ∇δQ)‖L2

x

. ‖∇Q2‖L2
x
‖(∇δu, ∆δQ)‖

Ḣ−
1
2
×
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×
∑
q′′∈Z

2−
q′′
2 ‖∆̇q′′(δu, ∇δQ)‖L2

x

∑
q′≥q′′+1

2
q′′
2
−q′‖∆̇q′∆Q2‖L2

x

∑
q≤q′+5

2
q
2

. ‖∇Q2‖L2
x
‖(∇δu, ∆δQ)‖

Ḣ−
1
2
×

×
∑
q′′∈Z

2−
q′′
2 ‖∆̇q′′(δu, ∇δQ)‖L2

x

∑
q′≥q′′+1

2
q′′
2
− q
′

2 ‖∆̇q′∆Q2‖L2
x

. ‖∇Q2‖L2
x
‖(∇δu, ∆δQ)‖

Ḣ−
1
2
‖(δu, ∇δQ)‖

Ḣ−
1
2

( ∑
q′′∈Z

∣∣∣ ∑
q′≥q′′+1

2
q′′
2
− q
′

2 ‖∆̇q′∆Q2‖L2
x

∣∣∣2 ) 1
2

. ‖∇Q2‖L2
x
‖∆Q2‖L2

x
‖(∇δu, ∆δQ)‖

Ḣ−
1
2
‖(δu, ∇δQ)‖

Ḣ−
1
2

. ‖∇Q2‖2L2
x
‖∆Q2‖2L2

x
‖(δu, ∇δQ)‖2

Ḣ−
1
2

+ Cν‖∇δu‖2
Ḣ−

1
2

+ CΓ,L‖∆δQ‖2
Ḣ−

1
2
. (7.70)

When j = 2 in (7.68), we observe that

I4
2 (q, q′, q′′, q′′′) :=

ˆ
R2

tr
{

∆̇q

[
∆̇q′Q2tr{(Ṡq′′′−1Q2 − Ṡq′′−1Q2) ∆̇q′′∆̇q′′′∇δu}

]
∆̇q∆δQ−

− ∆̇q

[
∆̇q′Q2tr{(Ṡq′′′−1Q2 − Ṡq′′−1Q2) ∆̇q′′∆̇q′′′∆δQ}

]
∆̇q∇δu

}
. ‖∆̇q

[
∆̇q′Q2tr{(Ṡq′′′−1Q2 − Ṡq′′−1Q2) ∆̇q′′∆̇q′′′(∇δu, ∆δQ) }

]
‖L2

x
‖∆̇q(∇δu, ∆δQ)‖L2

x

. 2q‖∆̇q

[
∆̇q′Q2tr{(Ṡq′′′−1Q2 − Ṡq′′−1Q2) ∆̇q′′∆̇q′′′(∇δu, ∆δQ) }

]
‖L1

x
×

×‖∆̇q(∇δu, ∆δQ)‖L2
x

. 2q‖∆̇q′Q2‖L∞x ‖(Ṡq′′′−1Q2 − Ṡq′′−1Q2)‖L2
x
×

×‖∆̇q′′∆̇q′′′(∇δu, ∆δQ)‖L2
x
‖∆̇q(∇δu, ∆δQ)‖L2

x

. 2q−q
′−q′′‖∆̇q′∆Q2‖L2

x
‖(Ṡq′′′−1∇Q2 − Ṡq′′−1∇Q2)‖L2

x
×

×‖∆̇q′′(∇δu, ∆δQ)‖L2
x
‖∆̇q(∇δu, ∆δQ)‖L2

x

. 2q−q
′‖∆̇q′∆Q2‖L2

x
‖∇Q2‖L2

x
‖∆̇q′′(δu, ∇δQ)‖L2

x
‖∆̇q(∇δu, ∆δQ)‖L2

x
,

which is equivalent to the last inequality of (7.69) (since |q′′ − q′′′| ≤ 5). Hence, arguing as for
proving (7.70), the following estimate holds:∑

q∈Z

∑
q′≥q−5

∑
q′′≤q′+1

∑
|q′′′−q′′|≤5

2−qI4
2 (q, q′, q′′, q′′′) .

. ‖∇Q2‖2L2
x
‖∆Q2‖2L2

x
‖(δu, ∇δQ)‖2

Ḣ−
1
2

+ Cν‖∇δu‖2
Ḣ−

1
2

+ CΓ,L‖∆δQ‖2
Ḣ−

1
2
.

Now, let us analyze the term in (7.68) related to j = 3. Assuming q′′ ≤ N for a suitable positive
N , we get

I4
3 (q, q′, q′′) :=

ˆ
R2

tr
{

∆̇q

[
∆̇q′Q2tr{Ṡq′′−1Q2∆̇q′′∇δu}

]
∆̇q∆δQ−

∆̇q

[
∆̇q′Q2tr{Ṡq′′−1Q2∆̇q′′∆δQ}

]
∆̇q∇δu

}
. ‖∆̇q

[
∆̇q′Q2tr{Ṡq′′−1Q2 ∆̇q′′(∇δu, ∆δQ)}

]
‖L2

x
‖∆̇q(∇δu, ∆δQ)‖L2

x

. 2q‖∆̇q

[
∆̇q′Q2tr{Ṡq′′−1Q2 ∆̇q′′(∇δu, ∆δQ)}

]
‖L1

x
‖∆̇q(∇δu, ∆δQ)‖L2

x

. 2q‖∆̇q′Q2‖L2
x
‖Ṡq′′−1Q2‖L∞x ‖∆̇q′′(∇δu, ∆δQ)‖L2

x
‖∆̇q(∇δu, ∆δQ)‖L2

x
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. 2q‖∆̇q′Q2‖L2
x
(1 +

√
N)‖(Q2, ∇Q2)‖L2

x
‖∆̇q′′(∇δu, ∆δQ)‖L2

x
‖∆̇q(∇δu, ∆δQ)‖L2

x

. (1 +
√
N)2

3q
2

+ 3q′′
2
−2q′‖∆̇q′∆Q2‖L2

x
‖(Q2, ∇Q2)‖L2

x
×

×2−
q′′
2 ‖∆̇q′′(∇δu, ∆δQ)‖L2

x
‖(∇δu, ∆δQ)‖

Ḣ−
1
2

Hence ∑
q′′≤N

∑
q′≥q′′−1

∑
q≤q′+5

2−qI4
3 (q, q′, q′′) . (1 +

√
N)‖(Q2, ∇Q2)‖L2

x
‖(∇δu,∆δQ)‖

Ḣ−
1
2
×

×
∑
q′′≤N

2−
q′′
2 ‖∆̇q′′(δu,∇δQ)‖L2

x

∑
q′≥q′′−1

2
3q′′

2
−2q′‖∆̇q′∆Q2‖L2

x

∑
q≤q′+5

2
q
2

. (1 +
√
N)‖(Q2, ∇Q2)‖L2

x
‖(∇δu, ∆δQ)‖

Ḣ−
1
2
×

×
∑
q′′≤N

2−
q′′
2 ‖∆̇q′′(δu, ∇δQ)‖L2

x

∑
q′≥q′′−1

2
3q′′

2
− 3q′

2 ‖∆̇q′∆Q2‖L2
x

. (1 +
√
N)‖(Q2, ∇Q2)‖L2

x
‖(∇δu, ∆δQ)‖

Ḣ−
1
2
×

×‖(δu, ∇δQ)‖
Ḣ−

1
2

( ∑
q′′∈Z

∣∣∣ ∑
q′≥q′′−1

2
3
2
q′′− 3

2
q′‖∆̇q′∆Q2‖L2

x

∣∣∣2) 1
2

. (1 +
√
N)‖(Q2, ∇Q2)‖L2

x
‖∆Q2‖L2

x
‖(∇δu, ∆δQ)‖

Ḣ−
1
2
‖(δu, ∇δQ)‖

Ḣ−
1
2
.

Considering the high frequencies q′′ > N

I4
3 (q, q′, q′′) . ‖∆̇q

[
∆̇q′Q2tr{Ṡq′′Q2 ∆̇q′′(∇δu, ∆δQ)}

]
‖L2

x
‖∆̇q(∇δu, ∆δQ)‖L2

x

. 2q‖∆̇q

[
∆̇q′Q2tr{Ṡq′′Q2 ∆̇q′′(∇δu, ∆δQ)}

]
‖L1

x
‖∆̇q(δu, ∇δQ)‖L2

x

. 2q‖∆̇q′Q2‖L2
x
‖Ṡq′′Q2‖L∞x ‖∆̇q′′(∇δu, ∆δQ)‖L2

x
‖∆̇q(∇δu, ∆δQ)‖L2

x

. 2
3q
2
−2q′‖∆̇q′∆Q2‖L2

x
(1 +

√
q′′)‖(Q2, ∇Q2)‖L2

x
×

×2q
′′‖∆̇q′′(δu, ∇δQ)‖L2

x
2−

q
2 ‖∆̇q(∇δu, ∆δQ)‖L2

x

. (1 +
√
q′′)2

3q
2

+q′′−2q′‖∆Q2‖L2
x
‖(Q2, ∇Q2)‖L2

x
‖(δu, ∇δQ)‖L2

x
‖(∇δu, ∆δQ)‖

Ḣ−
1
2
,

which implies ∑
q′′>N

∑
q′≥q′′−1

∑
q≤q′+5

2−qI4
3 (q, q′, q′′) .

. ‖∆Q2‖L2
x
‖(Q2, ∇Q2)‖L2

x
‖(∇δu, ∆δQ)‖

Ḣ−
1
2
‖(δu, ∇δQ)‖L2

x
×

×
∑
q′′>N

(1 +
√
q′′)2q

′′ ∑
q′≥q′′−1

2−2q′
∑

q≤q′+5

2
q
2

. ‖∆Q2‖L2
x
‖(Q2, ∇Q2)‖L2

x
‖∆δQ‖

Ḣ−
1
2
‖(δu, ∇δQ)‖L2

x
×

×
∑
q′′>N

(1 +
√
q′′)2q

′′ ∑
q′≥q′′−1

2−2q′+ q′
2

. ‖∆Q2‖L2
x
‖(Q2, ∇Q2)‖L2

x
‖(∇δu, ∆δQ)‖

Ḣ−
1
2
‖(δu, ∇δQ)‖L2

x
×

×
∑
q′′>N

(1 +
√
q′′)2−

q′′
2
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. ‖∆Q2‖L2
x
‖(Q2, ∇Q2)‖L2

x
‖(∇δu, ∆δQ)‖

Ḣ−
1
2
‖(δu, ∇δQ)‖L2

x
2−

N
2 ,

Summarizing the last inequalities we obtain an estimate similar to (7.65), so that we can conclude
arguing as in (7.66). Finally, it remains to examine when j = 4, as last term. Let us define

I4
4 (q, q′, q′′, q′′′) :=

ˆ
R2

tr
{

∆̇q

[
∆̇q′Q2tr{∆̇q′′( ∆̇q′′′Q2 Ṡq′′′+2∇δu )}

]
∆̇q∆δQ+

− ∆̇q

[
∆̇q′Q2tr{∆̇q′′( ∆̇q′′′Q2 Ṡq′′′+2∆δQ )}

]
∆̇q∇δu

}
. ‖∆̇q

[
∆̇q′Q2tr{∆̇q′′ [ ∆̇q′′′Q2 Ṡq′′′+2(∇δu, ∆δQ) ] }

]
‖L2

x
‖∆̇q(∇δu, ∆δQ)‖L2

x

. 2q‖∆̇q

[
∆̇q′Q2tr{∆̇q′′ [ ∆̇q′′′Q2 Ṡq′′′+2(∇δu, ∆δQ) ] }

]
‖L1

x
‖∆̇q(∇δu, ∆δQ)‖L2

x

. 2q‖∆̇q′Q2‖L2
x
‖∆̇q′′ [ ∆̇q′′′Q2 Ṡq′′′+2(∇δu, ∆δQ) ]‖L2

x
‖∆̇q(∇δu, ∆δQ)‖L2

x

. 2q+q
′′‖∆̇q′Q2‖L2

x
‖∆̇q′′ [ ∆̇q′′′Q2 Ṡq′′′+2(∇δu, ∆δQ) ]‖L1

x
‖∆̇q(∇δu, ∆δQ)‖L2

x

. 2q+q
′′‖∆̇q′∆Q2‖L2

x
‖∆̇q′′′Q2‖L2

x
‖Ṡq′′′+2(∇δu, ∆δQ)‖L2

x
‖∆̇q(∇δu, ∆δQ)‖L2

x

. 2q−q
′+q′′−q′′′‖∆̇q′∇Q2‖L2

x
‖∆̇q′′′∆Q2‖L2

x
‖Ṡq′′′+2(δu, ∇δQ)‖L2

x
‖∆̇q(∇δu, ∆δQ)‖L2

x
.

Hence, taking the sum in q, q′, q′′ and q′′′, we get∑
q∈Z

∑
q′≥q−5

∑
q′′≤q′−1

∑
q′′′≥q′′+5

2−qI4
4 (q, q′, q′′, q′′′) .

. ‖(∇δu, ∆δQ)‖
Ḣ−

1
2
‖∇Q2‖L2

x
×

×
∑
q∈Z

∑
q′≥q−5

∑
q′′≤q′−1

∑
q′′′≥q′′+5

2
q
2
−q′+q′′−q′′′‖∆̇q′′′∆Q2‖L2

x
‖Ṡq′′′+2(δu, ∇δQ)‖L2

x

. ‖(∇δu, ∆δQ)‖
Ḣ−

1
2
‖∇Q2‖L2

x
×

×
∑
q′′′∈Z

∑
q′′≤q′′′−5

2q
′′−q′′′‖∆̇q′′′∆Q2‖L2

x
‖Ṡq′′′+2(δu, ∇δQ)‖L2

x

∑
q′≥q′′+1

2−q
′ ∑
q≤q′+5

2
q
2

. ‖(∇δu, ∆δQ)‖
Ḣ−

1
2
‖∇Q2‖L2

x
×

×
∑
q′′′∈Z

∑
q′′≤q′′′−5

2q
′′−q′′′‖∆̇q′′′∆Q2‖L2

x
‖Ṡq′′′+2(δu, ∇δQ)‖L2

x

∑
q′≥q′′+1

2−
q′
2

. ‖(∇δu, ∆δQ)‖
Ḣ−

1
2
‖∇Q2‖L2

x
×

×
∑
q′′′∈Z

∑
q′′≤q′′′−5

2
q′′−q′′′

2 ‖∆̇q′′′∆Q2‖L2
x
2−

q′′′
2 ‖Ṡq′′′+2(δu, ∇δQ)‖L2

x

. ‖(∇δu, ∆δQ)‖
Ḣ−

1
2
‖∇Q2‖L2

x

∑
q′′′∈Z

‖∆̇q′′′∆Q2‖L2
x
2−

q′′′
2 ‖Ṡq′′′+2(δu, ∇δQ)‖L2

x

. ‖(∇δu, ∆δQ)‖
Ḣ−

1
2
‖∇Q2‖L2

x
‖∆Q2‖L2

x
‖(δu, ∇δQ)‖

Ḣ−
1
2

. ‖∇Q2‖2L2
x
‖∆Q2‖2L2

x
‖(δu, ∇δQ)‖2

Ḣ−
1
2

+ Cν‖∇δu‖2
Ḣ−

1
2

+ CΓ,L‖∆δQ‖2
Ḣ−

1
2

and this concludes the estimates of the term E1 + E2.

Remaining Terms

For the sake of completeness, now we analyze all the remaining terms. However we point out that
they are going to be estimates using simply just Proposition 7.4.4, hence they are not a challenging
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drawback. For instance, let us observe that

L〈(ξδD + δΩ)δQ,∆δQ〉
Ḣ−

1
2
+ L〈(ξD2 + Ω2)δQ,∆δQ〉

Ḣ−
1
2
+ L〈δQ(ξδD + δΩ),∆δQ〉

Ḣ−
1
2
+

+L〈δQ(ξD2 + Ω2),∆δQ〉
Ḣ−

1
2
. ‖δQ‖

Ḣ
1
2
‖∇(u1, u2)‖L2

x
‖∆δQ‖

Ḣ−
1
2
. ‖∇δQ‖

Ḣ−
1
2
×

×‖∇(u1, u2)‖L2
x
‖∆δQ‖

Ḣ−
1
2
. ‖∇(u1, u2)‖2L2

x
‖∇δQ‖2

Ḣ−
1
2

+ CΓ,L‖∆δQ‖2
Ḣ−

1
2
.

Moreover LaΓ〈δQ, ∆δQ〉Ḣ−1/2 . ‖δQ‖2
Ḣ−1/2 + CΓ,L‖∆δQ‖2Ḣ−1/2 and

LbΓ〈Q1δQ+ δQQ2, ∆δQ〉
Ḣ−

1
2

. ‖Q1δQ+ δQQ2‖
Ḣ−

1
2
‖∆Q‖

Ḣ−
1
2
. ‖(Q1, Q2)‖L2

x
‖δQ‖

Ḣ
1
2
‖∆δQ‖

Ḣ−
1
2

. ‖(Q1, Q2)‖L2
x
‖∇δQ‖

Ḣ−
1
2
‖∆δQ‖

Ḣ−
1
2
. ‖(Q1, Q2)‖2L2

x
‖∇δQ‖2

Ḣ−
1
2

+ CΓ,L‖∆δQ‖2
Ḣ−

1
2
.

Furthermore, by a direct computation, we get

LcΓ〈δQtr{Q2
1},∆δQ〉Ḣ− 1

2
+ LcΓ〈Q2tr{Q1δQ+ δQQ2},∆δQ〉

Ḣ−
1
2

. ‖(Q2
1, Q

2
2)‖L2

x
‖δQ‖

Ḣ
1
2
‖∆δQ‖

Ḣ−
1
2
. ‖(Q1, Q2)‖2L4

x
‖∇δQ‖

Ḣ−
1
2
‖∆δQ‖

Ḣ−
1
2

. ‖(Q1, Q2)‖2L2
x
‖∇(Q1, Q2)‖2L2

x
‖∇δQ‖2

Ḣ−
1
2

+ CΓ,L‖∆δQ‖2
Ḣ−

1
2

and

L〈δu · ∇Q1, ∆δQ〉
Ḣ−

1
2

+ L〈u2 · ∇δQ, ∆δQ〉
Ḣ−

1
2

. ‖(u2,∇Q1)‖
Ḣ

3
4
‖(δu, ∇δQ)‖

Ḣ−
1
4
‖∆δQ‖

Ḣ−
1
2

. ‖(u2,∇Q1)‖
1
4

L2
x
‖(∇u2,∆Q1)‖

3
4

L2
x
‖(δu, ∇δQ)‖

3
4

Ḣ−
1
2
‖(∆δu, ∆δQ)‖

1
4

Ḣ−
1
2
‖∆δQ‖

Ḣ−
1
2

. ‖(u2,∇Q1)‖
2
3

L2
x
‖(∇u2,∆Q1)‖2L2

x
‖(δu, ∇δQ)‖2

Ḣ−
1
2

+ Cν‖∇δu‖2
Ḣ−

1
2

+ CΓ,L‖∆δQ‖2
Ḣ−

1
2
.

Moreover aξ〈δQQ1, ∇δu〉Ḣ−1/2 . ‖δQ‖Ḣ1/2‖Q1‖L2‖∇δu‖Ḣ−1/2 . ‖Q1‖2L2‖∇δQ‖2Ḣ−1/2+Cν‖∇δu‖2Ḣ−1/2 ,

bξ〈δQ(Q2
1 − tr{Q2

1}
Id

2
), ∇δu〉

Ḣ−
1
2

. ‖δQ‖
Ḣ

1
2
‖Q2

1‖L2
x
‖∇δu‖

Ḣ−
1
2

. ‖∇δQ‖
Ḣ−

1
2
‖Q1‖2L4

x
‖∇δu‖

Ḣ−
1
2

. ‖∇δQ‖
Ḣ−

1
2
‖Q1‖L2

x
‖∇Q1‖L2

x
‖∇δu‖

Ḣ−
1
2

. ‖Q1‖2L2
x
‖∇Q1‖2L2

x
‖∇δQ‖2

Ḣ−
1
2

+ Cν‖∇δu‖2
Ḣ−

1
2

and

cξ〈δQtr(Q2
1)Q1, ∇δu〉

Ḣ−
1
2
. ‖δQ‖

Ḣ
1
2
‖Q2

1‖L2
x
‖Q1‖L∞‖∇δu‖

Ḣ−
1
2

. ‖Q1‖2L2
x
‖∇Q1‖2L2

x
‖Q1‖2H2‖∇δQ‖2

Ḣ−
1
2

+ Cν‖∇δu‖2
Ḣ−

1
2
.
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Now, aξ〈(Q2 + Id /2)δQ,∇δu〉Ḣ−1/2 . (‖Q2‖2L2
x

+ 1)‖∇δQ‖2
Ḣ−1/2 + Cν‖∇δu‖2Ḣ−1/2 and

bξ〈(Q2 +
Id

2
)(Q1δQ+ δQQ2), ∇δu〉

Ḣ−
1
2
− bξ〈Q2tr{Q1δQ+ δQQ2}, ∇δu〉

Ḣ−
1
2
.

. (‖Q2‖L∞x + 1)‖(Q1, Q2)‖L2
x
‖δQ‖

Ḣ
1
2
‖∇δu‖

Ḣ−
1
2
. (‖Q2‖H2 + 1)‖(Q1, Q2)‖L2

x
×

×‖∇δQ‖
Ḣ−

1
2
‖∇δu‖

Ḣ−
1
2
. (‖Q2‖H2 + 1)2‖(Q1, Q2)‖2L2

x
‖∇δQ‖2

Ḣ−
1
2

+ Cν‖∇δu‖2
Ḣ−

1
2
.

Equivalently, we get

cξ〈(Q2 +
Id

2
)δQtr{Q2

1}, ∇δu〉Ḣ− 1
2

+ cξ〈(Q2 +
Id

2
)Q2tr{δQQ1 +Q2δQ}, ∇δu〉

Ḣ−
1
2
.

. ‖Q2‖L∞‖(Q2
1, Q

2
2)‖L2

x
‖δQ‖

Ḣ
1
2
‖∇δu‖

Ḣ−
1
2

. ‖Q2‖H2‖(Q1, Q2)‖2L4
x
‖∇δQ‖

Ḣ
1
2
‖∇δu‖

Ḣ−
1
2

. ‖Q2‖2H2‖(Q1, Q2)‖2L2
x
‖∇(Q1, Q2)‖2L2

x
‖∇δQ‖2

Ḣ−
1
2

+ Cν‖∇δu‖2
Ḣ−

1
2

and moreover

Lξ〈δQ∆δQ, ∇δu〉
Ḣ−

1
2

+ Lξ〈δQ∆Q2,∇δu〉
Ḣ−

1
2
. ‖δQ‖

Ḣ
1
2
‖∆(Q1, Q2)‖L2

x
‖∇δu‖

Ḣ−
1
2

. ‖∆(Q1, Q2)‖2L2
x
‖∇δQ‖2

Ḣ−
1
2

+ Cν‖∇δu‖2
Ḣ−

1
2
.

We can similarly control the terms from −aξ〈Q1δQ,∇δu〉Ḣ−1/2 to Lξ〈∆Q2, δQ, ∇δ〉Ḣ−1/2 in (7.37),
proceeding as in the previous estimates. Furthermore

2aξ〈δQtr{Q2
1}, ∇δu〉Ḣ− 1

2
+ 2aξ〈Q2tr{δQQ1}, ∇δu〉

Ḣ−
1
2

+ 2aξ〈Q2tr{Q2δQ}, ∇δu〉
Ḣ−

1
2

. ‖δQ‖
Ḣ

1
2
‖(Q2

1, Q
2
2)‖L2

x
‖∇δu‖

Ḣ−
1
2

. ‖(Q1, Q2)‖2L2
x
‖∇(Q1, Q2)‖2L2

x
‖∇δQ‖2

Ḣ−
1
2

+ Cν‖∇δu‖2
Ḣ−

1
2
,

2bξ〈δQtr{Q3
1}, ∇δu〉Ḣ− 1

2
+ 2bξ〈Q2tr{δQQ2

2}, ∇δu〉Ḣ− 1
2
+

+ 2bξ〈Q2tr{Q2(δQQ1 +Q2δQ)}, ∇δu〉
Ḣ−

1
2

. ‖(Q1, Q2)‖2L2
x
‖∇(Q1, Q2)‖2L2

x
‖(Q1, Q2)‖2H2‖∇δQ‖2

Ḣ−
1
2

+ Cν‖∇δu‖2
Ḣ−

1
2

and also

2cξ〈δQtr{Q2
1}2, ∇δu〉Ḣ− 1

2
+ 2cξ〈Q2tr{δQQ1 +Q2δQ}tr{Q2

1}, ∇δu〉Ḣ− 1
2
+

+ 2cξ〈Q2tr{Q2
2}tr{δQQ1 +Q2δQ}, ∇δu〉

Ḣ−
1
2
. ‖(Q4

1, Q
4
2)‖L2

x
‖δQ‖

Ḣ
1
2
‖∇δu‖

Ḣ−
1
2

. ‖(Q1, Q2)‖4L8
x
‖∇δQ‖

Ḣ−
1
2
‖∇δu‖

Ḣ−
1
2

. ‖(Q1, Q2)‖L2
x
‖∇(Q1, Q2)‖3L2

x
‖∇δQ‖

Ḣ−
1
2
‖∇δu‖

Ḣ−
1
2

. ‖(Q1, Q2)‖2L2
x
‖∇(Q1, Q2)‖6L2

x
‖∇δQ‖2

Ḣ−
1
2

+ Cν‖∇δu‖2
Ḣ−

1
2
.

Furthermore, we observe that

2Lξ〈δQtr{δQ∆δQ}, ∇δu〉
Ḣ−

1
2

+ 2Lξ〈δQtr{δQ∆Q2}, ∇δu〉
Ḣ−

1
2
+
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+ 2Lξ〈δQtr{Q2∆δQ}, ∇δu〉
Ḣ−

1
2

+ 2Lξ〈Q2tr{δQ∆δQ}, ∇δu〉
Ḣ−

1
2
+

+ 2Lξ〈δQtr{Q2∆Q2}, ∇δu〉
Ḣ−

1
2

+ 2Lξ〈Q2tr{δQ∆Q2}, ∇δu〉
Ḣ−

1
2

. ‖δQ‖
Ḣ

1
2
‖∆(Q1, Q2)‖L2

x
‖(Q1, Q2)‖L∞x ‖∇δu‖Ḣ− 1

2

. ‖∆(Q1, Q2)‖2L2
x
‖(Q1, Q2)‖2H2‖∇δQ‖2

Ḣ−
1
2

+ Cν‖∇δu‖2
Ḣ−

1
2

and

L〈∇δQ�∇Q1, ∇δu〉
Ḣ−

1
2

+ L〈∇Q2 �∇δQ, ∇δu〉
Ḣ−

1
2

. ‖∇δQ‖
Ḣ−

1
4
‖∇(Q1, Q2)‖

Ḣ
3
4
‖∇δu‖

Ḣ−
1
2

. ‖∇δQ‖
3
4

Ḣ−
1
2
‖∇δQ‖

1
4

Ḣ
1
2
‖∇(Q1, Q2)‖

1
4

L2‖∆(Q1, Q2)‖
3
4

L2‖∇δu‖
Ḣ−

1
2

. ‖∇δQ‖
3
4

Ḣ−
1
2
‖∆δQ‖

1
4

Ḣ−
1
2
‖∇(Q1, Q2)‖

1
4

L2‖∆(Q1, Q2)‖
3
4

L2‖∇δu‖
Ḣ−

1
2

. ‖∇(Q1, Q2)‖
2
3

L2‖∆(Q1, Q2)‖2L2‖∇δQ‖2
Ḣ−

1
2

+ CΓ,L‖∆δQ‖2
Ḣ−

1
2

+ Cν‖∇δu‖2
Ḣ−

1
2
.

Moreover

La〈δQQ1, ∇δu〉
Ḣ−

1
2

+ a〈Q2δQ, ∇δu〉
Ḣ−

1
2
−

− a〈Q1δQ, ∇δu〉
Ḣ−

1
2
. ‖δQ‖

Ḣ
1
2
‖(Q1, Q2)‖L2‖∇δu‖

Ḣ−
1
2

. ‖∇δQ‖
Ḣ−

1
2
‖(Q1, Q2)‖L2‖∇δu‖

Ḣ−
1
2
. ‖∇δQ‖2

Ḣ−
1
2
‖(Q1, Q2)‖2L2 + Cν‖∇δu‖2

Ḣ−
1
2
,

−Lb〈δQ(Q2
1 − tr{Q2

1}
Id

3
), ∇δu〉

Ḣ−
1
2

+ b〈(Q2
1 − tr{Q2

1}
Id

3
)δQ, ∇δu〉

Ḣ−
1
2
−

−−b〈Q2(Q1δQ+ δQQ2 − tr{Q1δQ+ δQQ2}
Id

3
), ∇δu〉

Ḣ−
1
2
−

− b〈(Q1δQ+ δQQ2 − tr{Q1δQ+ δQQ2}
Id

3
)δQ, ∇δu〉

Ḣ−
1
2

. ‖δQ‖
Ḣ−

1
2
‖(Q2

1, Q
2
2)‖L2‖∇δu‖

Ḣ−
1
2

. ‖δQ‖
Ḣ

1
2
‖(Q1, Q2)‖2L4‖∇δu‖

Ḣ−
1
2

. ‖∇δQ‖
Ḣ−

1
2
‖(Q1, Q2)‖L2‖∇(Q1, Q2)‖L2‖∇δu‖

Ḣ−
1
2

. ‖∇δQ‖2
Ḣ−

1
2
‖(Q1, Q2)‖2L2‖∇(Q1, Q2)‖2L2 + Cν‖∇δu‖2

Ḣ−
1
2
,

and

Lc〈δQQ1tr{Q2
1}, ∇δu〉Ḣ− 1

2
+ c〈Q2δQtr{Q2

1}, ∇δu〉Ḣ− 1
2
−

− c〈Q1δQtr{Q2
1}, ∇δu〉Ḣ− 1

2
− c〈δQQ2tr{Q2

1}, ∇δu〉Ḣ− 1
2

. ‖δQ‖
Ḣ

1
2
‖(Q1, Q2)‖L∞x ‖(Q

2
1, Q

2
2)‖L2

x
‖∇δu‖

Ḣ−
1
2

. ‖∇δQ‖
Ḣ−

1
2
‖(Q1, Q2)‖H2‖(Q1, Q2)‖2L4

x
‖∇δu‖

Ḣ−
1
2

. ‖∇δQ‖2
Ḣ−

1
2
‖(Q1, Q2)‖2H2‖(Q1, Q2)‖2L2‖∇(Q1, Q2)‖2L2 + Cν‖∇δu‖2

Ḣ−
1
2
.
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Finally

〈u2 · ∇δu, δu〉
Ḣ−

1
2

= −〈u2 ⊗ δu,∇δu〉
Ḣ−

1
2
. ‖u2‖

Ḣ
1
2
‖δu‖L2‖∇δu‖

Ḣ−
1
2

. ‖u2‖
1
2

L2‖∇u2‖
1
2

L2‖δu‖
1
2

Ḣ−
1
2
‖∇δu‖

3
2

Ḣ−
1
2
. ‖u2‖2L2‖∇u2‖2L2‖δu‖2

Ḣ−
1
2

+ Cν‖∇δu‖2
Ḣ−

1
2

and

〈δu · ∇u1, δu〉
Ḣ−

1
2
. ‖δu‖

Ḣ
1
2
‖∇u1‖L2

x
‖δu‖

Ḣ−
1
2
. Cν‖∇δu‖2

Ḣ−
1
2

+ ‖∇u1‖2L2
x
‖δu‖2

Ḣ−
1
2
.

Conclusion

Recalling (7.37) and summarizing all the the previous estimates, we conclude that there exists a
function χ which belongs to L1

loc(R+) such that

d

dt
Φ(t) + ν‖∇δu‖2

Ḣ−
1
2

+ ΓL2‖∆δQ‖2
Ḣ−

1
2
. χ(t)µ(Φ(t)) + cν‖∇δu‖2

Ḣ−
1
2

+ CΓ,L‖∆δQ‖2
Ḣ−

1
2

where µ is the Osgood modulus of continuity defined in (7.39). Hence, choosing CΓ,L and Cν
small enough from the beginning, we can absorb the last two terms on the right-hand side by the
left-hand side, obtaining (7.38). We deduce that Φ ≡ 0, thanks to the Osgood Lemma and the null
initial data Φ(0) = 0. Thus, (δu,∇δQ) is identically zero and δQ as well, since δQ(t) decades to 0
at infinity for almost every t.

7.5 Thecnical results

Proposition 7.5.1. Let (Q(n), un) be a smooth solution of (7.23) in dimension d = 2 or d = 3,
with restriction (7.2), and smooth initial data (Q̄(x), ū(x)), that decays fast enough at infinity so
that we can integrate by parts in space (for any t ≥ 0) without boundary terms. We assume that
|ξ| < ξ0 where ξ0 is an explicitly computable constant, scale invariant, depending on a, b, c, d,Γ, ν, λ.

For (Q̄, ū) ∈ H1 × L2,we have

‖Q(n)(t, ·)‖H1 ≤ C1 + C̄1e
C̄1t‖Q̄‖H1 , ∀t ≥ 0 (7.71)

with C1, C̄1 depending on (a, b, c, d,Γ, L, ν, Q̄, ū). Moreover

‖un(t, ·)‖2L2 + ν

ˆ t

0
‖∇un‖2L2 ≤ C1 (7.72)

Proof. We denote:

Xn
αβ

def
= L∆Q

(n)
αβ − cQ

(n)
αβ tr((Q(n))2), α, β = 1, 2, 3. (7.73)

Multiplying the first equation in (7.23) by −λH̄n and the second one by un,taking the trace
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and integrating over Rd, we get

d

dt

ˆ
Rd

1

2
|un|2 +

Lλ

2
|∇Q(n)|2 + λ

(a
2
|Q(n)|2 − b

3
tr(Q(n))3 +

c

4
|Q(n)|4

)
dx

+ ν‖∇un‖2L2 + ΓλL2‖∆Q(n)‖2L2

+ Γλc2‖Jn(Q(n)tr{Q(n))})‖2L2 − 2cLΓλ

ˆ
Rd

∆Q
(n)
αβQ

(n)
αβ tr{(Q(n))2}dx+ a2Γλ‖Q(n)‖2L2

+ b2Γλ

ˆ
Rd

tr
{
Jn
(
(Q(n))2 − tr{(Q(n))2}

d

)2}
dx

+ ε

ˆ
Rd
|Rεu∇Q(n)|3dx+ ε

ˆ
Rd
|Rε∇un|4dx

≤ 2aΓλ

ˆ
Rd

tr{XnQ(n)}dx︸ ︷︷ ︸
def
= In

−2bΓλ

ˆ
Rd

tr{Xn(Q(n))2}dx︸ ︷︷ ︸
def
= Jn

+ 2abΓλ

ˆ
Rd

tr{(Q(n))3}dx+ λ

ˆ
Rd
Jn

(
Rεu

n · ∇Q(n)
αβ

)
Jn

(
bQ(n)

αγQ
(n)
γβ − cQ

(n)
αβ

∣∣Q(n)
∣∣2)dx︸ ︷︷ ︸

def
= II

+ λ

ˆ
Rd
Jn

(
−RεΩ(n)

αγQ
(n)
γβ +Q(n)

αγRεΩ
(n)
γβ

)
Jn

(
bQ

(n)
αδ Q

(n)
δβ − cQ

(n)
αβ

∣∣Q(n)
∣∣2) dx

(7.74)

Integrating by parts we have:

−2cLΓλ

ˆ
Rd

∆Q
(n)
αβQ

(n)
αβ tr{(Q(n))2}dx = 2cLΓλ

ˆ
Rd
Q

(n)
αβ,kQ

(n)
αβ,ktr{(Q

(n))2}dx

+2cLΓλ

ˆ
Rd
Q

(n)
αβ,kQ

(n)
αβ ∂k

(
tr{(Q(n))2}

)
dx = 2cLΓλ

ˆ
Rd
|∇Q(n)|2tr{(Q(n))2}) dx

+cLΓλ

ˆ
Rd
|∇
(

tr{(Q(n))2}
)
|2 dx ≥ 0 (7.75)

(where for the last inequality we used the assumption (7.2) and L,Γ, λ > 0). One can easily see
that

In = −L
2
‖∇Q(n)‖2L2 − c‖Q(n)‖4L4 (7.76)

and moreover

λ

ˆ
Rd
Jn

(
−RεΩ(n)

αγQ
(n)
γβ +Q(n)

αγRεΩ
(n)
γβ

)
Jn

(
bQ

(n)
αδ Q

(n)
δβ − cQ

(n)
αβ

∣∣Q(n)
∣∣2) dx ≤

≤ ε

2

ˆ
Rd
|Rε∇un|4 dx+ C(ε)

ˆ
Rd
|Q(n)|4 dx+

Γc2

2

ˆ
Rd
|Jn(Q(n)|Q(n)|2)|2 dx

On the other hand, for any ε > 0 and C̃ = C̃(ε, c) an explicitly computable constant, we have:

Jn = L

ˆ
Rd
Q

(n)
αβ,kkQ

(n)
αγQ

(n)
γβ dx− c

ˆ
Rd

tr{(Q(n))2}tr{(Q)(n))3}dx

≤ −L
ˆ
Rd
Q

(n)
αβ,kQ

(n)
αγ,kQ

(n)
γβ dx− L

ˆ
Rd
Q

(n)
αβ,kQ

(n)
αγQ

(n)
γβ,kdx
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+

ˆ
Rd

tr{(Q(n))2}

(
C̃

ε
tr{(Q(n))2}+ εtr2{(Q(n))2}

)
dx

≤ Lε
ˆ
Rd
|∇Q(n)|2tr{(Q(n))2}dx+

C̃

ε
‖∇Q(n)‖2L2

+

ˆ
Rd

tr{(Q(n))2}

(
C̃

ε
tr{(Q(n))2}+ εtr2{(Q(n))2}

)
dx

Using the last four relations in (7.74) and considering (7.25) we obtain:

d

dt

ˆ
Rd

1

2
|un|2 +

Lλ

2
|∇Q(n)|2 + λ

(a
2
|Q(n)|2 − b

3
tr(Q(n))3 +

c

4
|Q(n)|4

)
dx

+ν‖∇un‖2L2 + ΓλL2‖∆Q(n)‖2L2

+
Γλc2

2
‖Jn(Q(n)tr{Q(n))})‖2L2 + a2Γλ‖Q(n)‖2L2 + 2cLΓλ

ˆ
Rd
|∇Q(n)|2tr{(Q(n))2}dx

+cLΓλ

ˆ
Rd
|∇
(

tr{(Q(n))2}
)
|2dx+

ε

2

ˆ
Rd
|Rεun · ∇Q(n)|3dx+

ε

2

ˆ
Rd
|∇Rεun|4dx

≤ 2|a|Γλ(
L

2
‖∇Q(n)‖2L2 + c‖Q(n)‖4L4)

+2|b|ΓλLε
ˆ
Rd
|∇Q(n)|2tr{(Q(n))2}dx+ 2|b|ΓλC̃

ε
‖∇Q(n)‖2L2

+2|b|Γλ
ˆ
Rd

tr{(Q(n))2}

(
C̃

ε
tr{(Q(n))2}+ εtr2{(Q(n))2}

)
dx

+2|ab|Γλ(ε‖Q(n)‖2L2 + (C(ε) +
C̃

ε
)‖Q(n)‖4L4)

Taking ε small enough we can absorb all the terms with an ε coefficient on the right into the
left hand side, and we are left with

d

dt

ˆ
Rd

1

2
|un|2 +

Lλ

2
|∇Q(n)|2 + λ

(a
2
|Q(n)|2 − b

3
tr(Q(n))3 +

c

4
|Q(n)|4

)
dx

+ν‖∇un‖2L2 + ΓλL2‖∆Q(n)‖2L2 +
Γλc2

2
‖Jn(Q(n)tr{Q(n))})‖2L2 + Γλa2‖Q(n)‖2L2

+2cLΓλ

ˆ
Rd
|∇Q(n)|2tr{(Q(n))2}dx+ cLΓλ

ˆ
Rd
|∇
(

tr{(Q(n))2}
)
|2dx

≤ C̄
(
‖∇Q(n)‖2L2 + ‖Q(n)‖4L4

)
with C̄ = C̄(a, b, c).

The last relation is not yet enough because there are no positive terms. However, let us note that,
if a > 0 we obtain the a-priori estimates by using the inequality tr{(Q(n))3} ≤ 3

8 tr{(Q
(n))2)} +

tr{(Q(n))2}2. If a ≤ 0 we have to estimate separately ‖Q(n)‖L2 and this asks for a smallness
condition for ξ. Indeed, proceeding as for proving (7.21), we get

d

dt

[ ˆ
Rd

1

2
|un|2 +

Lλ

2
|∇Q(n)|2 + λ

(a
2
|Q(n)|2 − b

3
tr(Q(n))3 +

c

4
|Q(n)|4

)
dx+M‖Q‖2L2

]
+ν‖∇un‖2L2 + ΓλL2‖∆Q(n)‖2L2 +

Γλc2

2
‖Jn(Q(n)tr{Q(n))})‖2L2 + a2‖Q(n)‖2L2



7.5. THECNICAL RESULTS 181

+2cLΓλ

ˆ
Rd
|∇Q(n)|2tr{(Q(n))2}dx+ cLΓλ

ˆ
Rd
|∇
(

tr{(Q(n))2}
)
|2dx

+
ε

2

ˆ
Rd
|Rεun · ∇Q(n)|3dx+

ε

2

ˆ
Rd
|∇Rεun|4dx ≤ C̄

(
‖∇Q(n)‖2L2 + ‖Q(n)‖4L4

)
+

MC(d)ε

ˆ
Rd
|∇un|2dx+

M |ξ|2

ε

ˆ
Rd
|Q(n)|2 + |Jn(Q(n)tr{(Q(n))2}|2dx

+MĈ

ˆ
Rd
|Q(n)|2 + |Q(n)|4dx

We chose ε small enough so that MC(d)ε < ν. Finally we make the assumption that |ξ| is small
enough, depending on a, b, c, d, ν so that

M |ξ|2

ε
≤ Γλc2.

Then taking into account that

M

2
tr{(Q(n))2}+

c

8
tr2{(Q(n))2} ≤ (M +

a

2
)tr{(Q(n))2} − b

3
tr{(Q(n))3}+

c

4
tr2{(Q(n))2}

we obtain the claimed relation (7.71).
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Chapter 8

Qian-Sheng system

The results of this chapter originate from a joint work with A. Zarnescu, and they will appear in
a forthcoming manuscript, the title of which is strong global solutions for the inertial Qian-Sheng
model of liquid crystal.

8.1 Introduction

The main aim of this article is to study a system describing the hydrodynamics of nematic liquid
crystals in the Q-tensor framework [87, 92]. There exists several such models and we will consider
the one proposed by T. Qian and P. Sheng in [101]. As most tensorial models, this one provides an
extension of the classical Ericksen-Leslie model [69], in particular capturing the biaxial alignment
of the molecules, a feature not available in the classical Ericksen-Leslie theory.

Our main interest in this model is due to the fact that it incorporates systematically a cer-
tain term that models inertial effects. Details about this will be provided in the Physical aspects
subsection, below.

The inertial term is usually neglected on physical grounds, a fact that is also convenient math-
ematically since keeping it generates considerable analytical and numerical challenges. From a
mathematical point of view the system couples a forced incompressible Navier-Stokes system mod-
elling the flow with a hyperbolic convection-diffusion system for matrix-valued functions that model
the evolution of the orientations of the nematic molecules. The inertial term is responsible for the
hyperbolic character of the equation describing the orientation of the molecules.

In order to clearly show the system it is convenient to introduce some terminology. The local
orientation of the molecules is described through a function Q taking values from Ω ⊂ Rd, into the
set of the so-called d-dimensional Q-tensors, that is

S
(d)
0 :=

{
Q ∈Md×d;Qij = Qji, tr(Q) = 0, i, j = 1, . . . , d

}
The evolution of the Q′s is driven by the free energy of the molecules, as well as the transport,
distortion and alignment effects caused by the flow.

The velocity of the centres of masses of molecules obeys a forced incompressible Navier-Stokes
system, with an additional stress tensor, a forcing term modelling the effect that the interaction
of the molecules has on the dynamics of their centres of masses. Explicitly the equations, in

183
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non-dimensional form, are:

v̇ +∇p− β4

2
∆v =∇ ·

(
−∇Q�∇Q+ β1Qtr{QA}+ β5AQ+ β6QA

)
+∇ ·

(
µ2

2
(Q̇− [Ω, Q]) + µ1

[
Q, (Q̇− [Ω, Q])

]) (8.1)

JQ̈+ µ1Q̇ = ∆Q− aQ+ b(Q2 − 1

d
|Q|2)− cQ|Q|2 +

µ2

2
A+ µ1[Ω, Q] (8.2)

where ḟ = (∂t + v · ∇)f denotes a material derivative and [A,B] := AB − BA. Furthermore
(∇Q�∇Q)ij := tr(∂iQ∂jQ) and |Q| =

√
tr(Q2).

The physical relevance of the equation and their meaning is provided in the next subsection,
which can be skipped without impeding on the understanding of the remaining mathematical
aspects of the paper.

8.1.1 Physical aspects

The velocity v is a free-divergence vector field, satisfying a convection-diffusion equation, with
forcing provided by the pressure p, the distortion stress σ and the viscous stress σ′ (here and in
the following we use the Einstein summation convention, of summation over repeated indices):

v̇i = ∂j(−pδji + σji + σ′ji), (8.3)

∂kvk = 0. (8.4)

where p is the pressure. Here, the distortion stress σ is given by

σji := − ∂F

∂(∂jQαβ)
∂iQαβ

where we use the simplest form of the Landau-de Gennes free energy density

F [Q] :=
L

2
|∇Q|2 + ψB(Q)

modelling the spatial variations through the L
2 |∇Q|

2 term with the nematic ordering enforced
through the “bulk term” taken to be of the standard form [87,92]

ψB(Q) =
a

2
tr{Q2} − b

3
tr{Q3}+

c

4
tr2{Q2}.

The viscous stress σ′ is given by:

σ′ij := β1QijQlkAlk + β4Aij + β5QilAlj + β6QjlAli

+
1

2
µ2Nij − µ1QilNlj + µ1QjlNli,

where β1, β4, β5, β6, µ1 and µ2 are viscosity coefficients satisfying the Parodi-type relation

β6 − β5 = µ2
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the A stands for the rate of strain tensor

Aij :=
vi,j + vj,i

2
,

i.e. the symmetric part of the velocity gradient, while N is the co-rotational time flux of Q, whose
(i, j)-th component is formulated as follows

Nij :=
(
Q̇− ω ∧Q+Q ∧ ω

)
ij

= ∂tQij + vk∂kQij − εiklωkQlj − εjklωkQil.

N represents the time rate of change of Qij with respect to the background fluid angular velocity
ω = 1

2∇∧ v. Moreover, one can reformulate N making use of the vorticity tensor Ω

Ωij :=
vi,j − vj,i

2
.

Indeed, one can check that

Nij =
(
Q̇− [Ω, Q]

)
ij

= Q̇ij − ΩilQlj +QilΩlj ,

since we have ω ∧ u = Ωu, for any d-dimensional vector u. For a common physical example, the
MBBA material, we have the following relations between the coefficients [108]:

µ2

µ1
∼ −1.92,

β1

µ1
∼ 0.17,

β4

µ1
∼ 0.7,

β5

µ1
∼ 0.7,

β6

µ1
∼ −0.79 (8.5)

Furthermore, because the coefficient β4 corresponds to the standard Newtonian stress tensor we
can assume

β4 > 0 (8.6)

which fixes the signs for all the viscosities.

The evolution of the order tensor Q is driven by

JQ̈ij = hij + h′ij − λδij − εijkλk. (8.7)

where εijk, the Levi-Civita symbol. The elastic molecular field h is

hij := − ∂F

∂Qij
+ ∂k

∂F

∂(∂kQij)

and the viscous molecular field h′ is given by:

h′ij := −1

2
µ2Aij − µ1Nij ,

The λ, λk are Lagrange multiplier enforcing the tracelessness and symmetry of the tensor.

The J in (8.7) stands for the inertial density and it is taken to be greater than 0. This is
consistent with the fact that J has the same sign as the inertia in the Leslie-Ericksen type of model
(see Appendix B in [101]) where it is assumed to be positive (see for instance the assumption that
J.L. Ericksen makes in [39]).
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8.1.2 Main results

As first result we show that system (8.3)-(8.7) admits a a Lyapunov functional, up to some relations
on the viscosity coefficients. This is a functional exhibiting the free energy due to the director field,
the kinetic energy of the fluid and the rotational kinetic energy of the director field.

Theorem 8.1.1. Let us assume that the viscosity coefficients fulfils β5 + β6 = 0, and β1, µ1 ≥ 0.
Let us also assume that β4 > |µ2|/2 and µ1 > |µ2|/2. Then system (8.3)-(8.7) has a Lyapunov
functional:

E(t) :=

ˆ
Rd

(1

2
|v|2 +

J

2
|Q̇|2 + F [Q]

)
with F [Q] = |∇Q|2

2 + ψB(Q), the Landau-de Gennes energy density. More precisely, if (v, Q) is a
smooth solution such that

v ∈ L∞(0, T ;L2(Rd)) ∩ L2(0, T ;H1(Rd)),
Q ∈ L∞(0, T ;H1(Rd)) with Q̇ ∈ L∞(0, T ;L2(Rd)),

then, for all t < T , the following dissipative relation is satisfied:

d

dt
E(t) +

ˆ
Rd
|∇v|2 +

ˆ
Rd
|N |2 +

ˆ
Rd

tr{QA}2 ≤ 0. (8.8)

Let us remark that our restriction on the viscosity coefficients β1, µ1, β5 and β6 are not un-
natural, as one can check in the MBBA example (8.5). The proof of Theorem 8.1.1 presents some
difficulties that are specific to this system, such as controlling the “extraneous” maximal deriva-
tives, i.e. the highest derivatives in v that appear in the Q equation and the highest derivatives
in Q that appear in the v equation. We mainly handle this difficulties by taking into account the
specific feature of the coupling that allows for the cancellation of the worst terms, when considering
certain physically meaningful combination of terms.

It is worth to observe that despite this apriori estimate, one can not expect to construct weak so-
lutions making use of this energy relation. Indeed, the most common approach in order to construct
weak-solutions is making use of a compactness method for a sequence of approximated solutions.
As in the classical Navier-Stokes equation, the main difficulties are related to the nonlinear terms.
For instance, in system (8.3)-(8.7) the stress tensor σij presents the nonlinear term

(∇Q�∇Q)ij := Qαβ,iQαβ,j =
1

2

∂|∇Q|2

∂Qαβ,i
Qαβ,j (8.9)

Now, the highest number of derivatives of Q that relation (8.8) allows us to control is one, more
precisely we can control ∇Q in L2(0, T ;L2(Rd)), for any positive time T . Then, the convergence
we can expect for a sequence of approximation for ∇Q is only a weak convergence. Thus we can
not control the convergence of the product (8.9).

One should keep in mind that a positive inertial density J leads the order tensor equation to be
hyperbolic, in contrast to the parabolic structure that occurs when J is neglected. In the parabolic
setting one can make use of regularizing effects, achieving a control of two derivatives of Q (i.e.
∆Q in L2(0, T ;L2(Rd)), which certainly allows to control the limit of a product as in (8.9). This
feature is lost when J is positive, so that constructing weak solutions can not be achieved through
a compactness method based on estimate (8.8).

Our second result concerns the existence and uniqueness of strong solutions for system (8.3)-
(8.7), for a general dimension d ≥ 2 (which assumes a physical interest when d = 2, 3). We assume
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the initial data (v0, Q0) in a Sobolev space Hs with s > d/2, supposing also a smallness condition
on their norms. Moreover, we consider the bulk energy ψB(Q) in its quartic form:

ψB(Q) =
a

2
Q− b

3
tr{Q3}+

c

4
Q|Q|2, (8.10)

with a, b and c real constants. Then, our second result state as follows

Theorem 8.1.2. Let us assume (v0, Q0) : Rd → Rd × Rd×d to belong to Hs(Rd)×Hs+1(Rd) with

d ≥ 2 and s > d/2. If the constant a fulfills a > |µ2|2
4β4

and moreover

η0 := ‖v0‖Hs(Rd) + ‖Q0‖Hs+1(Rd)

is small enough, then there exists a unique classical solution (v, Q) of (8.3)-(8.7), which is global
in time and fulfills

v ∈ L∞(R+;Hs(Rd)) ∩ L2(R+;Hs+1(Rd)),
Q ∈ L∞(R+;Hs+1(Rd)) with Q̇ ∈ L∞(R+;Hs(Rd)).

(8.11)

Moreover, there exists a positive constant C (not dependent on the solution) such that

‖v‖L∞(R+;Hs(Rd)) + ‖∇v‖L2(R+;Hs+1(Rd)) + ‖Q‖L∞(R+;Hs+1(Rd)) + ‖Q‖L2(R+;Hs+1(Rd))+

+ ‖Q̇‖L∞(R+;Hs(Rd)) + ‖Q̇‖L2(R+;Hs(Rd)) ≤ Cη0.

The main difficulties associated with treating system (8.3)-(8.7) on the one-hand are related to
the presence of the forcing term of the Navier-Stokes part, on the other-hand they derive from the
inertial term in the Q-equation. One can essentially think of the system as a highly non-trivial
perturbation of a Navier-Stokes system. It is known that for Navier-Stokes alone the existence
and uniqueness of classical and weak solutions in 2D can be achieved through rather standard
arguments, while in 3D (or in a higher dimension) it is still a major open problem. The extended
system we deal with has an intermediary position, as the perturbation produced by the presence of
the additional stress-tensor generates significant technical difficulties, related in the first place to
the highest derivatives in Q that appear in the u-equation. Moreover, such difficulty is accentuated
by the inertial term in the hyperbolic order equation, which does not allow any kind of regularity
effects for Q.

The proof of the existence part in theorem 8.1.2 is based on a rather common compactness
method. First we construct a sequence of approximate solutions that are global in time, making
use of a Friedrichs-type scheme. Then we pass to the limit, performing some uniform estimates
in a Hs(Rd)-setting. Despite this standard idea, some specific difficulties occur. For instance, the
Hs(R2) norm does not allow the cancellation of the “worst” terms, so we can not proceed as in the
proof of (8.8). This difficulty is partially dealt with by reformulating the inner product of Hs(R2)
as follows: 〈ω1, ω2〉L2(Rd) + 〈ω1, ω2〉Ḣs(Rd) =

ˆ
Rdξ

(
1 + |ξ|2s

)
ω̂1(ξ)ω̂2(ξ)dξ,

where Ḣs(Rd) stands for the homogeneous Sobolev space with index s. It is straightforward that
this inner product generates the same topology in Hs(R2) with respect to the common one, given
by

〈ω1, ω2〉Hs(Rd) =

ˆ
Rdξ

(
1 + |ξ|

)2s
ω̂1(ξ)ω̂2(ξ)dξ.

Making use of this approach, one essentially reduces the control of the worst terms only in Ḣs(R2),
where useful commutator estimates hold.

Our main work on proving the existence of classical solutions is to obtain an uniform estimate
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for our approximate solutions, that is

Φ′(t) + Ψ(t) ≤ CΦ(t)Ψ(t), (8.12)

where C is a suitable positive constant, Φ is the bounded in time Hs-norms of our solution and Ψ
is the integrable in time Hs-norms. Then, a rather standard argument (see Lemma 8.5.1) allows to
propagate the smallness condition on the initial data (i.e. on Φ(0)). This leads the right-hand side
of the above equation to be absorbed by the left-hand side, achieving the cited uniform estimates.
Finally we construct our classical solution, through a compactness method.

The uniqueness of our solutions is proven evaluating the difference between two solutions at a
regularity level s = 0, i.e. in L2(R2). Our work is mainly to obtain an estimate that leads to the
Gronwall lemma. Here the main difficulties are handled taking into account a specific feature of the
coupling system related to the difference of the two solutions. This feature allows the cancellation
of the worst term when considering certain physically meaningful combination of terms.

It is perhaps interesting to remark that in Theorem 8.1.1 we do not consider a positive constant
c in the bulk energy density ψB(Q). Usually, this is a necessary condition in order to have ψB(Q)
bounded from below in S0, however we do not need this restriction on c mainly because we are
dealing with a smallness condition on the initial data. This smallness property is preserved by
our solutions, so that one can heuristically thing that ψB(·) take in consideration Q-tensors whose
components belong to a bounded domain in Hs(R2). Thus, in this functional framework, ψB is
still bounded from below. Moreover, Theorem 8.1.1 requires the constant a to be positive. A first
reason for this restriction releases again in the smallness condition, since a is the constant related
to the lower power of Q, which in this contest has the same behaviour of ψB(Q). Nevertheless the
main reason for the positivity of a concerns a technical part on proving (8.12), that is the time
boundary and L2-integrability for the Hs-norm of Q.

8.1.3 The singular potential

Ball and Majumdar [8] introduced the bulk component of the internal energy functional by means
of a singular functional ψB = ψB(Q) that blows up when at least one of the eigenvalues of Q
approaches the limiting values 1 − 1

d respectively 1
d . In particular, the boundedness of the free

energy enforces the boundedness of Q in L∞. Specifically, we set

ψB(Q) = f(Q)−G(Q) for Q ∈ Rd×dsym,0,

where

f(Q) =

{
infρ∈AQ

´
Sd−1 ρ(p) log(ρ(p)) dp ifλi[Q] ∈ (1/d, 1− 1/d), i = 1, . . . , d,

∞ otherwise,

AQ =
{
ρ : S2 → [0,∞)

∣∣∣ ρ ∈ L1(Sd−1),

ˆ
Sd−1

ρ(p) dp = 1;Q =

ˆ
Sd−1

(
p⊗ p− I

d

)
ρ(p) dp

}
.

The function f is the singular component of the bulk potential. In here singular refers to the fact
that the domain is not the whole space (while inside the domain the function is in fact smooth).
The function f enjoys the following properties that can easily be deduced from [8, Section 3, Prop.
1]:

• f : Rd×dsym,0 → [−K,∞] is convex and lower semi-continuous, with K ≥ 0.
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• The domain of f ,

D[f ] = {Q ∈ Rd×dsym,0 | f(Q) <∞} = {Q ∈ Rd×dsym,0 | λi[Q] ∈ (−1/d, 1− 1

d
)}, (8.13)

is an open convex subset of Rd×dsym,0.

• f is smooth in D[f ].

Organization
This work is organised as follows: in the next section we prove Theorem 8.1.1 in the simplest

case of every viscosity coefficients null while in section 8.3 we prove Theorem 8.1.1 in its general
form. In Section 8.4 we present some apriori estimates that exhibit in a simple setting a number
of cancellations that are later-on crucial for proving Theorem 8.1.2 in section 8.5.

8.2 Explicit equation and conservation laws for the inviscid model

In this section we consider the system (8.3),(8.4),(8.7) with the viscous contributions h′ = 0, σ′ = 0.
Then the equations (8.3), (8.7) become:

v̇ +∇p = −∇ · (∇Q�∇Q) (8.14)

JQ̈ = ∆Q−L
∂ψB
∂Q

(8.15)

with L denoting the projection onto the space of trace-free matrices, hence

L
∂ψB(Q)

∂Q
=
∂ψB(Q)

∂Q
− 1

d
t

(
∂ψB(Q)

∂Q

)
Id

Lemma 8.2.1. Let (v,Q) be a smooth solution of (8.14),(8.4), (8.15) in the whole space Rd, and
decaying sufficiently fast at infinity. Then:

ˆ
Rd

|v|2

2
(t, x) +

J

2
|Q̇|2(t, x) +

1

2
|∇Q|2(t, x) + ψB(Q(t, x)) dx =

ˆ
Rd

|v|2

2
(0, x) +

J

2
|Q̇|2(0, x) +

1

2
|∇Q|2(0, x) + ψB(Q(0, x))dx

(8.16)

Proof. We multiply the equation (8.14) by vi integrate over the space and by parts and add to it
the equation (8.15) multiplied by Q̇ij , integrated over the space and by parts to obtain:

d

dt

ˆ
Rd

1

2

(
|v|2 + J |Q̇|2

)
=

ˆ
Rd
Qkl,jQkl,ivi,j +

(
∆Qij −L

∂ψB
∂Q ij

)(
∂tQij + v · ∇Qij

)
dx

=

ˆ
Rd
Qkl,jQkl,ivi,j −∆QijvkQij,k dx︸ ︷︷ ︸

:=I1

−
ˆ
Rd
∂tQij,kQij,k︸ ︷︷ ︸

:=I2

−
ˆ
Rd
∂tQij

∂ψB
∂Q ij

dx︸ ︷︷ ︸
:=I3

−
ˆ
Rd
v · ∇Qij

∂ψB
∂Q ij︸ ︷︷ ︸

:=I4

(8.17)

We see that I1 = I4 = 0 hence we are left with the claimed conservation law (8.16).
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8.3 Explicit equations and conservation laws for the viscous mod-
els

In this case we have the explicit equations:

v̇ +∇p− β4

2
∆v =∇ ·

(
−∇Q�∇Q+ β1Qtr{QA}+ β5AQ+ β6QA

)
+∇ ·

(
µ2

2
(Q̇− [Ω, Q]) + µ1

[
Q, (Q̇− [Ω, Q])

]) (8.18)

JQ̈+ µ1Q̇ = ∆Q−L
∂ψB
∂Q
− µ2

2
A+ µ1[Ω, Q] (8.19)

where we denoted [A,B] := AB − BA with L again denoting the projection onto the space of
trace-free matrices, hence

L
∂ψB(Q)

∂Q
=
∂ψB(Q)

∂Q
− Id

d
tr

(
∂ψB(Q)

∂Q

)
Remark 8.3.1. Let us clarify that if M(x) is a d×d-matrix, then ∇·M stands for the vector field
(Mij,j)i=1...,d.

Proof of Theorem 8.1.1. We multiply the equation (8.14) by vi integrate over the space and by
parts and add to it the equation (8.15) multiplied by Q̇ij , integrated over the space and by parts
to obtain:

d

dt

ˆ
Rd

1

2

(
|v|2 + J |Q̇|2

)
dx = −

ˆ
Rd
Qkl,jQkl,ivi,j −

(
∆Qij + L

∂ψB
∂Q ij

)
(∂tQij + v · ∇Qij) dx

−
ˆ
Rd
σ′jivi,j dx+

ˆ
Rd
h′ijQ̇ij dx

= −
ˆ
Rd
Qkl,jQkl,ivi,j −∆QijvkQij,k dx︸ ︷︷ ︸

:=I1

−
ˆ
Rd
∂tQij,kQij,k︸ ︷︷ ︸

:=I2

−
ˆ
Rd
∂tQij

∂ψB
∂Q ij

dx︸ ︷︷ ︸
:=I3

−
ˆ
Rd
v · ∇Qij

∂ψB
∂Q ij︸ ︷︷ ︸

:=I4

− β1

ˆ
Rd
QjiQlkAlkvi,j dx− β4

ˆ
Rd
Ajivi,j dx

− β5

ˆ
Rd
QjlAlivi,j dx− β6

ˆ
Rd
QilAljvi,j dx

− 1

2
µ2

ˆ
Rd

(
Q̇ji − ΩjkQki +QjkΩki

)
vi,j dx

+ µ1

ˆ
Rd

(
QjlQ̇li − Q̇jlQli

)
vi,jdx

− µ1

ˆ
Rd

(Qjl[Ω, Q]li − [Ω, Q]jlQli) vi,j dx

− 1

2
µ2

ˆ
Rd
AijQ̇ij − µ1

ˆ
Rd

(
Q̇ij − ΩikQkj +QikΩkj

)
Q̇ij dx
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which implies

d

dt

ˆ
Rd

1

2

(
|v|2 + J |Q̇|2 +

1

2
|∇Q|2

)
+ ψB(Q) dx+

β4

2

ˆ
Rd
|∇v|2 dx+ µ1

ˆ
Rd
|Q̇|2 dx

= −β1

ˆ
Rd
QjiQlkAlkvi,j dx− β5

ˆ
Rd
QjlAlivi,j dx− β6

ˆ
Rd
QilAljvi,j dx

− 1

2
µ2

ˆ
Rd

(
Q̇ji − ΩjkQki +QjkΩki

)
vi,j +

1

2
µ2

ˆ
Rd
AijQ̇ij

+ µ1

ˆ
Rd

(
QjlQ̇li − Q̇jlQli

)
vi,jdx+ µ1

ˆ
Rd

(ΩikQkj −QikΩkj) Q̇ij dx

− µ1

ˆ
Rd

(Qjl[Ω, Q]li − [Ω, Q]jlQli) vi,j dx dx

Now we analyse each term on the right-hand side of the equality, and we will repeatedly use that
vi,j = Aij + Ωij and moreover that tr{BC} is null for any B symmetric and C skew-adjoint. We
begin with

−β1

ˆ
Rd
QjiQlkAlkvi,j = −β1

ˆ
Rd
QjiQlkAlkAij − β1

ˆ
Rd
QjiQlkAlkΩij

= −β1

ˆ
Rd

tr{QA}2 − β1

ˆ
Rd

tr{QΩ}tr{QA}

= −β1

ˆ
Rd

tr{QA}2,

observing that tr{QΩ} is null. Now we deal with

−β5

ˆ
Rd
QjlAlivi,j dx− β6

ˆ
Rd
QilAljvi,j dx+

µ2

2

ˆ
Rd

(
ΩjkQki −QjkΩki

)
vi,j dx =

= −β5

ˆ
Rd

tr{QA∇v} − β6

ˆ
Rd

tr{AQ∇v}+
µ2

2

ˆ
Rd

tr{(ΩQ−QΩ)∇v}

= −β5

ˆ
Rd

tr{(QA+AQ)∇u} − (β6 − β5)

ˆ
Rd

tr{AQ∇v}+
µ2

2

ˆ
Rd

tr{(ΩQ−QΩ)A}

= −β5

ˆ
Rd

tr{(QA+AQ)A} − µ2

ˆ
Rd

tr{AQA} − µ2

ˆ
Rd

tr{AQΩ}+ µ2

ˆ
Rd

tr{ΩQA}

= −(2β5 + µ2)

ˆ
Rd

tr{AQA} = −
ˆ
Rd

(β5 + β6)tr{AQA} − µ2

ˆ
Rd

tr{[Ω, Q]A}.

Hence, such term is null if we assume β5 +β6 = 0. The contribution of the remaining terms related
to µ2 is null, indeed

−1

2
µ2

ˆ
Rd
Q̇jivi,j +

1

2
µ2

ˆ
Rd
AijQ̇ij = −µ2

2

ˆ
Rd

tr{Q̇∇v}+
µ2

2

ˆ
Rd

tr{AQ̇}

= −µ2

2

ˆ
Rd

tr{Q̇A} − µ2

2

ˆ
Rd

tr{Q̇Ω}︸ ︷︷ ︸
=0

−µ2

2

ˆ
Rd

tr{AQ̇} = −µ2

ˆ
Rd

tr{AQ̇}.

Now, let us carry out of the µ1-terms: first

+µ1

ˆ
Rd

(
QilQ̇lj − Q̇ilQlj

)
vi,jdx+ µ1

ˆ
Rd

(ΩikQkj −QikΩkj) Q̇ij dx =
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= µ1

ˆ
Rd

tr{(QQ̇−QQ̇)A}︸ ︷︷ ︸
=0

+µ1

ˆ
Rd

tr{(QQ̇− Q̇Q)Ω}+ µ1

ˆ
Rd

tr{(ΩQ−QΩ)Q̇} =

= 2µ1

ˆ
Rd

tr{[Ω, Q]Q̇},

and moreover

−µ1

ˆ
Rd

(Qjl[Ω, Q]li − [Ω, Q]ilQlj) vi,j = −µ1

ˆ
Rd

tr
{

(Q[Ω, Q]− [Ω, Q]Q}Ω
}

=

−µ1

ˆ
Rd

tr
{

(ΩQ−QΩ)[Ω, Q]
}

= −µ1

ˆ
Rd
|[Ω, Q]|2.

Thus, summarizing all the previous equalities, we get

d

dt

ˆ
Rd

1

2

(
|v|2 + J |Q̇|2 + |∇Q|2

)
+ ψB(Q)dx+

β4

2

ˆ
Rd
|∇v|2dx+ µ1

ˆ
Rd
|Q̇|2dx+

+β1

ˆ
Rd

tr{QA}2dx+ µ1

ˆ
Rd
|[Ω, Q]|2dx− 2µ1

ˆ
Rd

tr{[Ω, Q]Q̇}dx+ µ2

ˆ
Rd

tr{N A} = 0,

which can finally be simplify as follows:

d

dt

ˆ
Rd

1

2

(
|v|2 + J |Q̇|2 + |∇Q|2

)
+ ψB(Q) dx+

β4

2

ˆ
Rd
|∇v|2 dx+

+ β1

ˆ
Rd

tr{QA}2dx+ µ1

ˆ
Rd
|Q̇− [Ω, Q]|2dx+ µ2

ˆ
Rd

tr{N A} = 0.

Then, recalling that the definition of the co-rotational time flux is N = Q̇− [Ω, Q], we deduce

d

dt

ˆ
Rd

1

2

(
|v|2 + J |Q̇|2 + |∇Q|2

)
+ ψB(Q) dx+

+
β4

2

ˆ
Rd
|∇v|2 dx+ β1

ˆ
Rd

tr{QA}2dx+ µ1

ˆ
Rd
|N |2dx = −+ µ2

ˆ
Rd

tr{N A}.

Recalling that β4 > |µ2|/2 and β1 > µ2/2, we finally obtain

d

dt

ˆ
Rd

1

2

(
|v|2 + J |Q̇|2 + |∇Q|2

)
+ ψB(Q) dx+

+

ˆ
Rd
|∇v|2 dx+

ˆ
Rd

tr{QA}2dx+

ˆ
Rd
|N |2dx ≤ 0,

and this concludes the proof of Theorem 8.1.1.

8.4 Commutator and a-priori estimates

In this paragraph we first state a useful commutator estimate, which plays a major role in the proof
of Theorem 8.1.1. We start clarifying some notations: we denote by (

√
−∆)s the operator given

by
(
√
−∆)sf := F−1

(
|ξ|sf̂(ξ)

)
,



8.4. COMMUTATOR AND A-PRIORI ESTIMATES 193

and by [(
√
−∆)s, f · ∇]g] the commutator operator

[(
√
−∆)s, f · ∇]g] := (

√
−∆)s

(
f · ∇g

)
− f · ∇(

√
−∆)sg,

for any suitable vector field f and function g. Then the commutator estimate reads as follows:

Lemma 8.4.1. Let d ≥ 2, f be a d-dimensional vector field whose component are in Ḣs+1(Rd)
and and g be a Sobolev function in Ḣs(Rd), with s > d/2. There exist a positive constant C that
does not depend on f and g, such that

‖[(
√
−∆)s, f · ∇]g]‖L2(Rd) ≤ C‖∇f‖Ḣs(Rd)‖g‖Ḣs(Rd).

For the proof of Lemma 8.4.1 we refer the reader to [43], Theorem 1.2.
Now we perform some a-priori estimates, for system (8.1)-(8.2). In the next section, when we will

prove the existence of classical solutions, we will make use of similar estimates when constructing
approximate solutions. The purpose of the next proposition is to propose these inequalities, for the
original system, in order to make the reader familiar with this approach and to present important
simplifications related to the coupled equations.

Before starting, let us clarify that from here on, we consider an inhomogeneous Sobolev space
Hs(Rd) with s > d/2, equipped with the inner product

〈u, v〉Hs = 〈u, v〉L2
x

+ 〈u, v〉Ḣs , where L2
x = L2(Rd), Ḣs = Ḣs(Rd) and Ḣs = Ḣs(Rd).

Moreover, for any positive real functions a(t) and b(t), we will write a . b if there exists a positive
constant C which does not depend on a and b, such that a(t) ≤ Cb(t), for any t.

Proposition 8.4.2. Let (v, Q) be a smooth solution of system (8.1)-(8.2), which fulfills

v ∈ L∞(R+, H
s(Rd)) ∩ L2(R+, H

s+1(Rd)),
Q ∈ L∞(R+, H

s+1(Rd)) ∩ L2(R+, H
s+1(Rd)),

Q̇ ∈ L∞(R+, H
s(Rd)) ∩ L2(R+, H

s(Rd)),

with s > d/2. Let us assume that the constant a in the bulk energy ψB(Q) (8.10) is positive and

greater than |µ2|2
4β4

. Then the following inequality is satisfied

‖v(t)‖2Hs(Rd) + ‖Q(t)‖2Hs+1(Rd) + ‖Q(t)‖2Hs(Rd)+

+

ˆ t

0

{
‖v(s)‖2Hs+1(Rd) + ‖Q(s)‖2Hs+1(Rd) + ‖Q(s)‖2Hs(Rd)

}
ds

.
ˆ t

0

(
‖v(s)‖2Hs(Rd) + ‖Q(s)‖2Hs+1(Rd) + ‖Q(s)‖2Hs(Rd)

)
×

×
(
‖v(s)‖2Hs+1(Rd) + ‖Q(s)‖2Hs+1(Rd) + ‖Q(s)‖2Hs(Rd)

)
ds.

(8.20)

Proof. Before starting, let us clarify that we denote by c, cµ1 , cβ4 and ca are small positive real
constants, whose value will be determined in the end of the proof.

We begin taking the Hs-product between the momentum equation (8.1) and v, that is

1

2

d

dt
‖v‖2Hs + β4‖∇v‖2Hs = −〈v · ∇v, v〉Hs + 〈∇Q�∇Q, ∇v〉Hs+

+ β1〈tr{AQ}Q, ∇v〉Hs − β5〈QA, ∇v〉Hs − β6〈AQ, ∇v〉Hs+

− µ2

2
〈Q̇− [Ω, Q], ∇v〉Hs + µ1〈[Q, Q̇], ∇v〉Hs − µ1〈[Q, [Q, Ω]], ∇v〉Hs

(8.21)
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Now we analyze each term on the right-hand side of the above equality. First, let us observe that

〈v · ∇v, v〉Hs = 〈v · ∇v, v〉L2
x︸ ︷︷ ︸

=0

+〈v · ∇v, v〉Ḣs .

Since s > d/2, then L∞(Rd) is continuously embedded in Hs+1(Rd), and by a classical Gagliardo-
Niremberg inequality we have ‖v‖L∞(Rd) . ‖v‖θL2(Rd)

‖∇v‖1−θ
Ḣs(Rd)

, with θ := d/(2s + 2). Hence the

second term on the right-hand side of the above equality can be estimated as follows:

|〈v · ∇v, v〉Ḣs | = |〈v ⊗ v, ∇v〉Ḣs |
≤ ‖v‖L∞x ‖v‖Ḣs‖∇v‖Ḣs

. ‖v‖θL2
x
‖∇v‖1−θ

Ḣs
‖v‖Ḣs‖∇v‖Ḣs ,

which yields
|〈v · ∇v, v〉Ḣs | . ‖v‖θL2

x
‖v‖Ḣs‖∇v‖2−θ

Ḣs

. ‖v‖θL2
x
‖v‖1−θ

Ḣs
‖v‖θ

Ḣs‖∇v‖2−θHs

. ‖v‖Hs‖v‖θ
Ḣs‖∇v‖2−θHs .

(8.22)

Since s > d/2 ≥ 1 then ‖v‖θ
Ḣs = ‖∇v‖θ

Ḣs−1 ≤ ‖∇v‖θHs , thus

|〈v · ∇v, v〉Ḣs | ≤ ‖v‖Hs‖∇v‖2Hs . ‖∇u‖2Hs‖v‖2Hs + cβ4‖∇v‖2Hs . (8.23)

Now, the second term on the right-hand side of (8.21) is

〈∇Q�∇Q, ∇v〉Hs = 〈∇Q�∇Q, ∇v〉L2
x

+ 〈∇Q�∇Q, ∇v〉Ḣs .

We will see that 〈∇Q�∇Q, ∇v〉L2
x

is going to be simplified, while

〈∇Q�∇Q, ∇v〉Ḣs ≤ ‖∇Q‖L∞x ‖∇Q‖Ḣs‖∇v‖Ḣs . ‖∇Q‖2Hs‖∇v‖2Hs + cβ4‖∇v‖2Hs .

Finally, the remaining terms on the right-hand side of (8.21) are controlled as follows:

β1〈tr{AQ}Q, ∇v〉Hs ≤ ‖A‖Hs‖Q‖2Hs‖∇v‖Hs . ‖∇v‖2Hs‖Q‖2Hs ,

β5〈QA, ∇v〉Hs + β6〈AQ, ∇v〉Hs ≤ ‖A‖Hs‖Q‖Hs‖∇v‖Hs . ‖∇v‖2Hs‖Q‖2Hs + cβ4‖∇v‖2Hs ,

µ2

2
〈[Ω, Q], ∇v〉Hs . ‖Q‖Hs‖∇v‖2Hs . ‖∇v‖2Hs‖Q‖2Hs + cβ4‖∇v‖2Hs ,

µ1〈[Q, Q̇], ∇v〉Hs . ‖Q‖Hs‖Q̇‖Hs‖∇v‖Hs . ‖∇v‖2Hs‖Q‖2Hs + cµ1‖Q̇‖2Hs ,

µ1〈[Q, [Ω, Q]], ∇v〉Hs . ‖Q‖2Hs‖∇v‖2Hs .

Thus, summarizing the previous estimates together with (8.21), we get

d

dt
‖v‖2Hs + β4‖∇v‖2Hs +

µ2

2
〈Q̇,∇v〉Hs − 〈∇Q�∇Q, ∇v〉L2

x

. ‖∇v‖2Hs

(
‖v‖2Hs + ‖∇Q‖2Hs + ‖Q‖2Hs

)
+ cµ1‖Q̇‖2Hs + cβ4‖∇v‖2Hs .

(8.24)

Now, let us take the Hs-inner product between the order equation (8.2) and Q̇:

J〈Q̈, Q̇〉Hs + µ1‖Q̇‖2Hs − µ1〈[Ω, Q], Q̇〉Hs +
1

2

d

dt
‖∇Q‖2Hs − 〈∆Q, v · ∇Q〉Hs =

= −a〈Q Q̇〉Hs + b〈Q2, Q̇〉Hs − c〈Qtr{Q2}, Q̇〉Hs − µ2

2
〈A, Q̇〉Hs .

(8.25)
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We begin, observing that the first term on the left-hand side fulfills

J〈Q̈, Q̇〉Hs =
J

2

d

dt
‖Q̇‖2Hs + 〈v · ∇Q, Q̇〉Hs

where we have also

〈v · ∇Q̇, Q̇〉Hs = 〈v · ∇Q̇, Q̇〉L2
x︸ ︷︷ ︸

=0

+〈v · ∇Q̇, Q̇〉Ḣs

= 〈[(
√
−∆)s, v · ∇]Q̇, (

√
−∆)sQ̇〉L2 + 〈v · ∇(

√
−∆)sQ̇, (

√
−∆)sQ̇〉L2︸ ︷︷ ︸

=0

.

Hence, applying the commutator estimate given by Lemma 8.4.1, we deduce that

〈v · ∇Q̇, Q̇〉Hs . ‖∇v‖Ḣs‖Q̇‖2Hs . ‖∇v‖2Hs‖Q̇‖2Hs + cµ1‖Q̇‖2Hs . (8.26)

Now, we keep estimating the terms in (8.25). At first

µ1〈[Ω, Q], Q̇〉Hs . ‖∇v‖Hs‖Q‖Hs‖Q̇‖Hs . ‖∇v‖2Hs‖Q‖2Hs + cµ1‖Q̇‖2Hs . (8.27)

Moreover, we split 〈∆Q, v · ∇Q〉Hs into 〈∆Q, v · ∇Q〉L2
x

+ 〈∆Q, v · ∇Q〉Ḣs and we rewrite the

Ḣs-term as follows

〈∆Q, v · ∇Q〉Ḣs = 〈(
√
−∆)sQαβ,ii, (

√
−∆)svjQαβ,j〉L2

x
=

− 〈(
√
−∆)sQαβ,i, (

√
−∆)svj,iQαβ,j〉L2

x
− 〈(
√
−∆)sQαβ,i, (

√
−∆)svjQαβ,ij〉L2

x
=: J1 + J2,

where we have used the index summation convention, namely if there are repeated indexes then
they are under summation. Now, recalling that Hs is an algebra for s > d/2, we handle J1 by

|J1| ≤ ‖Qαβ,i‖Ḣs‖vj,iQαβ,j‖Ḣs

≤ ‖Qαβ,i‖Hs‖vj,iQαβ,j‖Hs . ‖∇Q‖2
Ḣs‖∇v‖Ḣs . ‖∇Q‖2Hs‖∇Q‖2Hs + cβ4‖∇v‖2Hs ,

and, recalling the commutator estimate given by Lemma 8.4.1, J2 is estimated by

J2 = −〈(
√
−∆)sQ,i, [(

√
−∆)s, v · ∇]Q,i〉L2

x
− 〈(
√
−∆)sQ,i, v · ∇(

√
−∆)sQ,i〉L2

x︸ ︷︷ ︸
=0

. ‖∇Q‖Ḣs‖[(
√
−∆)s, v · ∇]Q,i‖L2

x
. ‖∇Q‖2

Ḣs‖∇v‖Ḣs . ‖∇Q‖2Hs‖∇Q‖2Hs + cβ4‖∇v‖2Hs .

Summarizing, we deduce that

〈∆Q, v · ∇Q〉Ḣs ≤ |J1|+ |J2| . ‖∇Q‖2Hs‖∇Q‖2Hs + cβ4‖∇v‖2Hs . (8.28)

We keep going on, estimating the term on the right-hand side of equality (8.25). At first, we have

−a〈Q̇, Q〉Hs = −a d

dt
‖Q‖2Hs − a〈v · ∇Q, Q〉Hs ,

with −a〈v · ∇Q, Q〉Hs . ‖v‖Hs‖∇Q‖Hs‖Q‖Hs . ‖Q‖2Hs‖v‖2Hs + c‖∇Q‖2Hs ,

furthermore
b〈Q̇, Q2〉Hs . ‖Q̇‖Hs‖Q‖2Hs . ‖Q‖2Hs‖Q‖2Hs + cµ1‖Q̇‖Hs

and finally
−c〈Q̇, Qtr{Q2}〉Hs . ‖Q̇‖Hs‖Q‖3Hs ≤ ‖Q‖2Hs

(
‖Q̇‖2Hs + ‖Q‖2Hs

)
.

Thus, summarizing all the previous considerations, equality (8.25) yields

1

2

d

dt

[
J‖Q̇‖2Hs + ‖∇Q‖2Hs + a‖Q‖2Hs

]
+ µ1‖Q̇‖2Hs − 〈v · ∇Q, ∆Q〉L2

x
− µ2

2
〈A, Q̇〉Hs

.
(
‖Q‖2Hs +‖∇Q‖2Hs +‖∇v‖2Hs

)(
‖Q̇‖2Hs + ‖Q‖2Hs + ‖∇Q‖2Hs

)
+ cβ4‖∇v‖2Hs + cµ1‖Q̇‖2Hs .

(8.29)

Now, let us consider the Hs-inner product between the order tensor equation (8.2) and Q/2, namely
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J

2
〈Q̈, Q〉Hs +

µ1

2
〈Q̇, Q〉Hs − µ1

2
〈[Ω, Q], Q〉Hs + ‖∇Q‖2Hs + a‖Q‖2Hs =

= b〈Q2, Q〉Hs − c〈QtrQ2, Q〉Hs +
µ2

2
〈A, Q〉Hs .

(8.30)

We analyze 〈Q̈, Q〉Hs in the left-hand side of the above equation, first splitting it into 〈Q̈, Q〉Hs =
〈Q̈, Q〉L2

x
+ 〈Q̈, Q〉Ḣs . then controlling the L2

x-inner product by

〈Q̈, Q〉L2
x

= 〈∂tQ̇, Q〉L2
x

+ 〈v · ∇Q̇, Q〉L2
x

=
d

dt
〈Q̇, Q〉L2

x
− 〈Q̇, ∂tQ〉L2

x
− 〈Q̇, v · ∇Q〉L2

x
=

d

dt
〈Q̇, Q〉L2

x
− ‖Q̇‖2L2

x
.

Moreover, we handle the Ḣs-product 〈Q̈, Q〉Ḣs = 〈∂tQ̇, Q〉Ḣs + 〈v · ∇Q̇, Q〉Ḣs , first observing that

J

2
〈∂tQ̇, Q〉Ḣs =

J

2

d

dt
〈Q̇, Q〉Ḣs −

J

2
〈Q̇, ∂tQ〉Ḣs

and then observing that

〈v · ∇Q̇, Q〉Ḣs = 〈(
√
−∆)sv · ∇Q̇, (

√
−∆)sQ〉L2

x

= 〈[(
√
−∆)s, v · ∇]Q̇, (

√
−∆)sQ〉L2

x
+ 〈(
√
−∆)sQ̇, v · ∇(

√
−∆)sQ〉L2

x

= 〈[(
√
−∆)s, v · ∇]Q̇, (

√
−∆)sQ〉L2

x
−

− 〈(
√
−∆)sQ̇, [(

√
−∆)s, v · ∇]Q〉L2

x
− 〈Q̇, v · ∇Q〉Ḣs .

(8.31)

Summarizing, we get that the Ḣs-product 〈Q̈, Q〉Ḣs fulfills

J

2
〈Q̈,Q〉Ḣs =

J

2

d

dt
〈Q̇, Q〉Ḣs −

J

2
‖Q̇‖2Hs+

+
J

2
〈[(
√
−∆)s, v · ∇]Q̇, (

√
−∆)sQ〉L2

x
− J

2
〈(
√
−∆)sQ̇, [(

√
−∆)s, v · ∇]Q〉L2

x
,

(8.32)

and moreover, the commutator estimate of Lemma 8.4.1 allows us to control the last two terms by

J

2
〈[(
√
−∆)s, v · ∇]Q̇, (

√
−∆)sQ〉L2

x
− J

2
〈(
√
−∆)sQ̇, [(

√
−∆)s, v · ∇]Q〉L2

x

. ‖∇v‖Ḣs‖Q̇‖Ḣs‖Q‖Ḣs . ‖∇v‖2Hs‖Q‖2Hs + cµ1‖Q̇‖2Hs .
(8.33)

A further development in (8.32) releases in d
dt〈Q̇, Q〉Hs , since this term can be rewritten as follows:

J

2

d

dt
〈Q̇, Q〉Hs =

J

4

d

dt

[
‖Q̇+Q‖2Hs − ‖Q̇‖2Hs − ‖Q‖2Hs

]
. (8.34)

Now, we come back to equality (8.30), and we proceed estimating the remaining terms. First,

µ1

2
〈Q̇, Q〉Hs =

µ1

2
〈∂tQ, Q〉Hs +

µ1

2
〈v · ∇Q, Q〉Hs =

µ1

4

d

dt
‖Q‖2Hs +

µ1

2
〈v · ∇Q, Q〉Hs ,

where we can easily handle the term 〈v · ∇Q, Q〉Hs , since Hs is an algebra, that is

µ1

2
〈v · ∇Q, Q〉Hs . ‖v‖Hs‖∇Q‖Hs‖Q‖Hs . ‖Q‖2Hs‖v‖2Hs + c‖∇Q‖2Hs .

Similarly, we get also
µ1

2
〈[Ω, Q], Q〉Hs . ‖∇v‖Hs‖Q‖2Hs . ‖Q‖2Hs‖Q‖2Hs + cβ4‖∇v‖2Hs ,

b〈Q2, Q〉Hs . ‖Q‖3Hs . ‖Q‖2Hs‖Q‖2Hs + ca‖Q‖2Hs ,

c〈QtrQ2, Q〉Hs . ‖Q‖2Hs‖Q‖2Hs .

It remains to control the µ2-term in (8.30), that is µ2〈A, Q〉Hs/2. We fix a positive constant ε in
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(0, 1) small enough, and we estimate this term as follows:

µ2

2
〈A, Q〉Hs ≤ |µ2|

2
‖∇v‖Hs‖Q‖Hs ≤ |µ2|2

8a(1− ε)
‖∇v‖2Hs + a(1− ε)‖Q‖2Hs .

Then, summarizing all the previous considerations, equality (8.30) yields

d

dt

[J
4
‖Q̇+Q‖2Hs −

J

4
‖Q̇‖2Hs +

µ1 − J
4
‖Q‖2Hs

]
− J

2
‖Q̇‖2Hs + aε‖Q‖2Hs−

− µ2

8a(1− ε)
‖∇v‖2Hs + ‖∇Q‖2Hs .

(
‖∇v‖2Hs + ‖Q‖2Hs

)(
‖Q‖2Hs + ‖v‖2Hs

)
+

+cβ4‖∇v‖2Hs + cµ1‖Q̇‖2Hs + ca‖Q‖2Hs + c‖∇Q‖2Hs .

(8.35)

We finally take the sum between (8.24), (8.29) and (8.35). Together, the three inequalities lead to

d

dt

[1

2
‖v‖2Hs +

J

4
‖Q+ Q̇‖2Hs +

J

4
‖Q̇‖2Hs +

(
a− J

4

)
‖Q‖2Hs + ‖∇Q‖2Hs

]
+

+
(β4

2
− |µ2|2

8(1− ε)a
)
‖∇v‖2Hs +

(
µ1 −

J

2

)
‖Q̇‖2Hs + aε‖Q‖2Hs + ‖∇Q‖2Hs−

−〈∇Q�∇Q, ∇v〉L2
x
− 〈v · ∇Q, ∆Q〉L2

x
≤ C

(
cβ4‖∇v‖2Hs + cµ1‖Q̇‖2Hs + ca‖Q‖2Hs + c‖∇Q‖2Hs

)
+

+C
(
‖∇v‖2Hs + ‖Q̇‖2Hs + ‖Q‖2Hs + ‖∇Q‖2Hs

)(
‖v‖2Hs + ‖Q‖2Hs + ‖Q̇‖2Hs + ‖∇Q‖2Hs

)
,

,

(8.36)
For a suitable positive constant C. Now, observing that

〈∇Q�∇Q, ∇v〉L2
x

+ 〈v · ∇Q, ∆Q〉L2
x

= 0,

imposing ε small enough in order to have β4

2 > |µ2|2
8(1−ε)a and assuming c, cβ4 , cµ1 and ca small enough,

inequality (8.36) yields (8.20). This concludes the proof of the proposition.

8.5 Classical solutions

This section is devoted to the proof of Theorem 8.1.2, namely we prove the existence and uniqueness
of strong solutions for system (8.1)-(8.2), for small initial data. We split the proof into two parts,
one concerning the existence of solutions and the other one about their uniqueness.

The existence is based on a Friedrichs’s type scheme which allows to construct approximate
solutions. we then proceed performing uniform estimates, with the same approach of Proposition
8.4.2.

The uniqueness is achieved controlling the difference of two solutions in an L2
x-framework.

Proof of Theorem 8.1.2. Existence part: In order to construct global strong solutions, we use the
classical Friedrichs’s scheme and we perform similar estimates to the ones of the previous section.
Let us first introduce some notation. We define the mollifying operator Jn trough Fourier transform,
that is ˆJnf(ξ) := Ĵnf(ξ) := 1{2−n≤|ξ|≤2n}f̂(ξ).

Then, we consider the following approximate momentum equation
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Jnv̇
(n) +

β4

2
∆Jnv

(n) = −∇ · P
{
Jn
(
∇JnQ(n) �∇JnQ(n)

)}
+

+∇ · P
{
β1Jn

(
JnQ

(n)tr{Jn(JnQ
(n)JnA

(n))
)
+β5Jn

(
JnA

(n)JnQ
(n)
)
+β6Jn

(
JnQ

(n)JnA
(n)
)}

+∇ · P
{ µ2

2

(
Q̇(n)−Jn[JnΩ(n), JnQ

(n)]
)

+ µ1Jn
[
JnQ

(n), (JnQ̇
(n)−Jn[JnΩ(n), JnQ

(n)]
) }

,

where P denotes the Leray projector onto divergence-free vector fields and where we have used the
abuse of notation

ḟ (n) := ∂tf
(n) + Jn(Jnv

(n) · ∇Jnf (n)) 6= ∂tf
(n) + Jnv

(n) · ∇Jnf (n).

We impose also the free divergence condition div v(n) = 0. Moreover, the approximate order tensor
equation reads as

JJnQ̈
(n) + µ1JnQ̇

(n) = ∆JnQ
(n) − aJnQ(n) + bJn(JnQ

(n)JnQ
(n))

− btr
{
Jn(JnQ

(n)JnQ
(n))
} Id

3
+ cJn

(
JnQ

(n)tr{Jn(JnQ
(n)JnQ

(n))}
)

+
µ2

2
JnA

(n).

The system above, with the initial data (v(n), Q(n))t=0 = Jn(v0, Q0), can be regarded as an ordinary
differential equation in L2(Rd) verifying the conditions of the Cauchy-Lipschitz theorem. Thus it ad-
mits a unique maximal solution (v(n), Q(n)) in C1([0, Tn), L2(Rd)). As we have (PJn)2 = PJn and
J2
n = Jn, the pair (Jnv

(n), JnQ
(n)) is also a solution of the previous system. Hence, by uniqueness

we get that (Jnv
(n), JnQ

(n)) = (v(n), Q(n)), moreover (v(n), Q(n)) belongs to C1([0, Tn), H∞(Rd))
and it satisfies

v̇(n) +
β4

2
∆v(n) = −∇ · P

{
Jn
(
∇Q(n) �∇Q(n)

)}
+

+∇ · P
{
β1Jn

(
Q(n)tr{Jn(Q(n)A(n))

)
+ β5Jn

(
A(n)Q(n)

)
+ β6Jn

(
Q(n)A(n)

)}
+

+∇ · P
{ µ2

2

(
Q̇(n) − Jn[Ω(n), Q(n)]

)
+ µ1Jn

[
Q(n), (Q̇(n) − Jn[Ω(n), Q(n)]

) }
,

JQ̈(n) + µ1Q̇
(n) = ∆Q(n) − aQ(n) + bJn(Q(n)Q(n))

− btr
{
Jn(Q(n)Q(n))

} Id

3
+ cJn

(
Q(n)tr{Jn(Q(n)Q(n))}

)
+
µ2

2
A(n),

(v(n), Q(n))t=0 = Jn(v0, Q0).

(8.37)

We claim that for any n ∈ N the maximal time Tn = +∞ and moreover that there exists a positive
constant C, which does not depend on n, such that

‖v(n)‖L∞(R+;Hs(Rd)) + ‖∇v(n)‖L2(R+;Hs+1(Rd)) + ‖Q(n)‖L∞(R+;Hs+1(Rd))+

+ ‖Q(n)‖L2(R+;Hs+1(Rd)) + ‖Q̇(n)‖L∞(R+;Hs(Rd)) + ‖Q̇(n)‖L2(R+;Hs(Rd)) ≤ Cη0.
(8.38)

We begin taking the Hs-product between the momentum equation and v(n), that is

1

2

d

dt
‖v(n)‖2Hs + β4‖∇v(n)‖2Hs = −〈Jn(v(n) · ∇v(n)), v(n)〉Hs + 〈Jn(∇Q(n) �∇Q(n)), ∇v(n)〉Hs

+ β1〈t{Jn(A(n)Q(n))}Q(n), ∇v(n)〉Hs − β5〈Q(n)A(n), ∇v(n)〉Hs−

− β6〈A(n)Q(n), ∇v(n)〉Hs − µ2

2
〈Q̇(n) − Jn[Ω(n), Q(n)], ∇v(n)〉Hs+

+ µ1〈Jn[Q(n), Q̇(n)], ∇v(n)〉Hs − µ1〈Jn[Q(n), Jn[Q(n), Ω(n)]], ∇v(n)〉Hs .
(8.39)

We start analysing 〈Jn(v(n) · ∇v(n)), v(n)〉Hs on the right-hand side. First we can rewrite it as

〈Jn(v(n) · ∇v(n)), v(n)〉Hs = 〈v(n) · ∇v(n), Jnv
(n)〉Hs = −〈v(n) ⊗ v(n), ∇v(n)〉Hs
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then, proceeding as for proving (8.22) and (8.23), we deduce

|〈Jn(v(n) · ∇v(n)), v(n)〉Hs | = |〈v(n) · ∇v(n), Jnv
(n)〉Hs |

= |〈v(n) · ∇v(n), v(n)〉Hs |
. ‖∇v(n)‖2Hs‖v(n)‖2Hs + cβ4‖∇v(n)‖2Hs .

Now, the second term on the right-hand side of (8.39) is

〈Jn(∇Q(n) �∇Q(n)), ∇v(n)〉Hs = 〈∇Q(n) �∇Q(n), ∇v(n)〉L2
x

+ 〈∇Q(n) �∇Q(n), ∇v(n)〉Ḣs .

We will see that 〈∇Q(n) �∇Q(n), ∇v(n)〉L2
x

is going to be simplified, while

|〈∇Q(n) �Q(n), ∇v(n)〉Ḣs | . ‖∇Q(n)‖L∞x ‖∇Q
(n)‖Ḣs‖∇v(n)‖Ḣs

. ‖∇Q(n)‖2Hs‖∇Q(n)‖2Hs + cβ4‖∇v(n)‖2Hs .

The remaining term on the right-hand side of (8.39) are handled as follows:

β1〈tr{Jn(A(n)Q(n))}Q(n), ∇v(n)〉Hs . ‖Jn(A(n)Q(n))‖Hs‖Q(n)‖Hs‖∇v(n)‖Hs

. ‖A(n)‖Hs‖Q(n)‖2Hs‖∇v(n)‖Hs . ‖∇v(n)‖2Hs‖Q(n)‖2Hs ,

β5〈Q(n)A(n), ∇v(n)〉Hs + β6〈A(n)Q(n), ∇v(n)〉Hs . ‖A(n)‖Hs‖Q(n)‖Hs‖∇v(n)‖Hs

. ‖∇v(n)‖2Hs‖Q(n)‖2Hs + cβ4‖∇v(n)‖2Hs ,

µ2

2
〈Jn[Ω(n), Q(n)], ∇v(n)〉Hs =

µ2

2
〈[Ω(n), Q(n)], ∇v(n)〉Hs

. ‖Q(n)‖Hs‖∇v(n)‖2Hs

. ‖∇v(n)‖2Hs‖Q(n)‖2Hs + cβ4‖∇v(n)‖2Hs ,

µ1〈Jn[Q(n), Q̇(n)], ∇v(n)〉Hs = µ1〈[Q(n), Q̇(n)], ∇v(n)〉Hs

. ‖Q(n)‖Hs‖Q̇(n)‖Hs‖∇v(n)‖Hs

. ‖∇v(n)‖2Hs‖Q(n)‖2Hs + cµ1‖Q̇(n)‖2Hs

and finally
µ1〈Jn[Q(n), Jn[Ω(n), Q(n)]], ∇v(n)〉Hs . ‖Q(n)‖2Hs‖∇v(n)‖2Hs .

Thus, summarizing the previous estimates together with (8.39), we get

d

dt

[
‖v(n)‖2Hs

]
+ β4‖∇v(n)‖2Hs +

µ2

2
〈Q̇(n),∇v(n)〉Hs − 〈∇Q(n) �∇Q(n), ∇v(n)〉L2

x
.

. ‖∇v(n)‖2Hs

(
‖v(n)‖2Hs + ‖∇Q(n)‖2Hs + ‖Q(n)‖2Hs

)
+ cµ1‖Q̇(n)‖2Hs + cβ4‖∇v(n)‖2Hs .

(8.40)

Now, let us take in consideration the Hs-inner product between the order tensor equation and Q̇(n):

J〈Q̈(n), Q̇(n)〉Hs + µ1‖Q̇(n)‖2Hs − µ1〈[Ω(n), Q(n)], Q̇(n)〉Hs +
1

2

d

dt
‖∇Q(n)‖2Hs−

−〈∆Q(n), v(n) · ∇Q(n)〉Hs = a〈Q(n) Q̇(n)〉Hs + b〈(Q(n))2, Q̇(n)〉Hs−

−c〈Q(n)tr{(Q(n))2}, Q̇(n)〉Hs +
µ2

2
〈A(n), Q̇(n)〉Hs .

(8.41)

The first term on the left-hand side fulfills
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J〈Q̈(n), Q̇(n)〉Hs = J〈∂tQ̇(n), Q̇(n)〉Hs + J〈Jn(v(n) · ∇Q̇(n)), Q̇(n)〉Hs

=
J

2

d

dt
‖Q̇(n)‖2Hs + J〈v(n) · ∇Q̇(n), JnQ̇

(n)〉Hs

=
J

2

d

dt
‖Q̇(n)‖2Hs + J〈v(n) · ∇Q̇(n), Q̇(n)〉Hs .

Moreover, proceeding as for proving (8.26) and (8.27), we get

J〈v(n) · ∇Q̇(n), Q̇(n)〉Hs + µ1〈Jn[Ω(n), Q(n)], Q̇(n)〉Hs . ‖∇v(n)‖2Hs‖ ˙Q(n)‖2Hs + cµ1‖ ˙Q(n)‖2Hs ,

where we have used

µ1〈Jn[Ω(n), Q(n)], Q̇(n)〉Hs = µ1〈[Ω(n), Q(n)], JnQ̇
(n)〉Hs = µ1〈[Ω(n), Q(n)], Q̇(n)〉Hs .

Now, as for proving (8.28), we have

〈∆Q(n), Jn(v(n) · ∇Q(n))〉Ḣs = 〈∆Q(n), v(n) · ∇Q(n)〉Ḣs

. ‖∇Q(n)‖2Hs‖∇Q(n)‖2Hs + cβ4‖∇v(n)‖2Hs ,

while
−a〈Q(n), Q̇(n)〉Hs = −a

(
〈Q(n), ∂tQ

(n)〉Hs + 〈Q(n), Jn(v(n) · ∇Q(n))〉Hs

)
= −a‖Q(n)‖2Hs − a〈Q(n), v(n) · ∇Q(n)〉Hs ,

with
−a〈Q(n), v(n) · ∇Q(n)〉Hs . ‖Q(n)‖2Hs‖v(n)‖2Hs + c‖∇Q(n)‖2Hs .

Finally

b〈Jn(Q(n)Q(n)), Q̇(n)〉Hs = b〈(Q(n))2, Q̇(n)〉Hs . ‖Q(n)‖2Hs‖Q(n)‖2Hs + cµ1‖Q̇(n)‖2Hs

− c〈Q(n)tr{Jn(Q(n)Q(n))}, Q̇(n)〉Hs . ‖Q(n)‖2Hs‖Q(n)‖2Hs .

Summarizing the above considerations, equality (8.41) leads to

1

2

d

dt

[
J‖ ˙Q(n)‖2Hs + ‖∇Q(n)‖2Hs + a‖Q(n)‖2Hs

]
+ µ1‖ ˙Q(n)‖2Hs − 〈v(n) · ∇Q(n), ∆Q(n)〉L2

x
−

− µ2

2
〈A(n), Q̇(n)〉Hs .

(
‖Q(n)‖2Hs + ‖∇Q(n)‖2Hs + ‖∇Q(n)‖2Hs

)
×

×
(
‖ ˙Q(n)‖2Hs + ‖Q(n)‖2Hs + ‖∇Q(n)‖2Hs

)
+ cβ4‖∇v(n)‖2Hs + cµ1‖ ˙Q(n)‖2Hs .

(8.42)

Now, let us consider the Hs-inner product between the order tensor equation and Q(n)/2:

J

2
〈Q̈(n), Q(n)〉Hs +

µ1

2
〈Q̇(n), Q(n)〉Hs − µ1

2
〈[Ω(n), Q(n)], Q(n)〉Hs+

+‖∇Q(n)‖2Hs + a‖Q(n)‖2Hs = b〈(Q(n))2, Q(n)〉Hs−

−c〈Q(n)tr(Q(n))2, Q(n)〉Hs +
µ2

4
〈A(n), Q(n)〉Hs .

(8.43)

We proceed as in the proof of Proposition 8.4.2, first by

〈Q̈(n), Q(n)〉Hs = 〈Q̈(n), Q(n)〉L2
x

+ 〈Q̈(n), Q(n)〉Ḣs ,

then 〈Q̈(n), Q(n)〉L2
x

= 〈∂tQ̇(n), Q(n)〉L2
x

+ 〈Jn(v(n) · ∇ ˙Q(n)), Q(n)〉L2
x

= 〈∂tQ̇(n), Q(n)〉L2
x

+ 〈v(n) · ∇ ˙Q(n), Q(n)〉L2
x

= ∂t〈Q̇(n), Q(n)〉L2
x
− 〈Q̇(n), ∂tQ

(n)〉L2
x
− 〈Q̇(n), v(n) · ∇Q(n)〉L2

x

= ∂t〈Q̇(n), Q(n)〉L2
x
− ‖Q̇(n)‖2L2

x
.

Moreover
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〈∂tQ̇(n), Q(n)〉Ḣs =
d

dt
〈Q̇(n), Q(n)〉Ḣs − 〈Q̇(n), ∂tQ

(n)〉Ḣs

and
〈Jn(v(n) · ∇Q̇(n)), Q(n)〉Ḣs = 〈v(n) · ∇Q̇(n), JnQ

(n)〉Ḣs = 〈v(n) · ∇Q̇(n), Q(n)〉Ḣs ,

so that, proceeding as in (8.31), (8.32), (8.33) and (8.34), we get

J

2
〈Q̈(n), Q(n)〉Ḣs −

J

4

d

dt

[
‖Q̇(n) +Q(n)‖2Hs − ‖Q̇(n)‖2Hs − ‖Q(n)‖2Hs

]
. ‖∇v(n)‖2Hs‖Q(n)‖2Hs + cµ1‖Q̇(n)‖2Hs .

Now µ1

2
〈Q̇(n), Q(n)〉Hs =

µ1

2
〈∂tQ(n), Q(n)〉Hs +

µ1

2
〈Jn(v(n) · ∇Q(n)), Q(n)〉Hs

=
µ1

4

d

dt
‖Q(n)‖2Hs +

µ1

2
〈v(n) · ∇Q(n), Q(n)〉Hs ,

with µ1

2
〈v(n) · ∇Q(n), Q(n)〉Hs . ‖Q(n)‖2Hs‖v(n)‖2Hs + c‖∇Q(n)‖2Hs .

Then

µ1

2
〈Jn[Ω(n), Q(n)], Q(n)〉Hs . ‖∇v(n)‖Hs‖Q(n)‖2Hs . ‖Q(n)‖2Hs‖Q(n)‖2Hs + cβ4‖∇v(n)‖2Hs ,

b〈Jn(Q(n)Q(n)) , Q(n)〉Hs = b〈Q(n)Q(n), Q(n)〉Hs

. ‖Q(n)‖3Hs . ‖Q(n)‖2Hs‖Q(n)‖2Hs + ca‖Q(n)‖2Hs ,

c〈Q(n)tr{Jn(Q(n)Q(n))}, Q(n)〉Hs . ‖Q(n)‖2Hs‖Jn(Q(n)Q(n))‖Hs

. ‖Q(n)‖2Hs‖Q(n)Q(n)‖Hs

. ‖Q(n)‖2Hs‖Q(n)‖2Hs

and finally

µ2

2
〈A(n), Q(n)〉Hs ≤ µ2

2
‖∇v(n)‖Hs‖Q(n)‖Hs ≤ |µ2|2

8a(1− ε)
‖∇v(n)‖2Hs + a(1− ε)‖Q(n)‖2Hs .

Then, summarizing the previous considerations together with (8.43), we get

d

dt

[J
4
‖Q̇(n) +Q(n)‖2Hs −

J

4
‖Q̇(n)‖2Hs +

µ1 − J
4
‖Q(n)‖2Hs

]
− J

2
‖Q̇(n)‖2Hs + aε‖Q(n)‖2Hs−

− µ2

8a(1− ε)
‖∇v(n)‖2Hs + ‖∇Q(n)‖2Hs .

(
‖∇v(n)‖2Hs + ‖Q(n)‖2Hs

)(
‖Q(n)‖2Hs + ‖v(n)‖2Hs

)
+

+cβ4‖∇v(n)‖2Hs + cµ1‖ ˙Q(n)‖2Hs + ca‖Q(n)‖2Hs + c‖∇Q(n)‖2Hs .

(8.44)

Finally, taking the sum between (8.40), (8.42) and (8.44) and assuming cβ4 , cµ1 , c and ca small
enough, we get

d

dt

[1

2
‖v(n)‖2Hs +

J

4
‖Q(n) + Q̇(n)‖2Hs +

J

4
‖Q̇(n)‖2Hs +

(
a− J

4

)
‖Q(n)‖2Hs + ‖∇Q(n)‖2Hs

]
+
(
β4 −

|µ2|2

8(1− ε)a
)
‖∇v(n)‖2Hs +

(
µ1 −

J

2

)
‖Q̇(n)‖2Hs + aε‖Q(n)‖2Hs + ‖∇Q(n)‖2Hs .

.
(
‖∇v(n)‖2Hs + ‖Q̇(n)‖2Hs + ‖Q(n)‖2Hs + ‖∇Q(n)‖2Hs

)
×

×
(
‖v(n)‖2Hs + ‖Q(n)‖2Hs + ‖ ˙Q(n)‖2Hs + ‖∇Q(n)‖2Hs

)
,

(8.45)
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where we have used

〈Jn(∇Q(n) �∇Q(n)), ∇v(n)〉L2
x

+ 〈Jn(v(n) · ∇Q(n)), ∆Q(n)〉L2
x

= 0.

Now, let us define the functions x(t) and y(t) by

x(t) := ‖∇v(n)‖2Hs + ‖Q̇(n)‖2Hs + ‖Q(n)‖2Hs + ‖∇Q(n)‖2Hs ,

y(t) := ‖v(n)‖2Hs + ‖Q(n)‖2Hs + ‖ ˙Q(n)‖2Hs + ‖∇Q(n)‖2Hs .
(8.46)

We make use of the following lemma:

Lemma 8.5.1. Let y be a positive function in W 1,1
loc (R+) and x a almost everywhere positive

function in L1
loc(R+). Let us assume that

y′(t) + x(t) ≤ y(t)x(t), (8.47)

for almost every t in R+. If we assume the initial datum y(0) = y0 ≥ 0 small enough, then y and
x belong to L∞(R+) and L1(R+) respectively, and moreover

‖y‖L∞(R+) + ‖x‖L1(R+) ≤ y0.

Proof. Assuming y0 ≤ 1/4, we define T > 0 as the sup of t > 0 such that y(t) ≤ 1/2. Then , for
every t ∈ [0, T ] we get

y′(t) +
3

4
x(t) ≤ 0,

then, integrating from 0 to T , we deduce

y(T ) +
3

4

ˆ T

0
x(t) ≤ y0 ≤

1

2
.

This yields that T = +∞ and that

‖y‖L∞(R+) + ‖x‖L1(R+) ≤ y0.

With this Lemma we can finally achieve a global-in-time bound for the norms of our solutions.
Recalling the definition (8.46), Lemma (8.5.1) yields

sup
t∈R+

{
‖v(n)(t)‖2Hs + ‖Q(n)(t)‖2Hs + ‖ ˙Q(n)(t)‖2Hs + ‖∇Q(n)(t)‖2Hs

}
+

+

ˆ
R+

{
‖∇v(n)(t)‖2Hs + ‖Q̇(n)(t)‖2Hs + ‖Q(n)(t)‖2Hs + ‖∇Q(n)(t)‖2Hs

}
dt

. ‖v0‖2Hs + ‖Q0‖2Hs + ‖Q̇0‖2Hs + ‖∇Q0‖2Hs .

Thus, by classical compactness, weak convergence arguments and thanks to the Aubin-Lions
lemma, there exists

Q ∈ L∞t Hs+1 ∩ L2
tH

s+1, v ∈ L∞t Hs ∩ L2
tH

s+1, and ω ∈ L∞t Hs ∩ L2
tH

s,
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such that, up to a subsequence, we have the following convergences

Q(n) → Q strong in L∞t,locH
s+1−µ
loc

Q̇(n) → ω strong in L∞t,locH
s−µ
loc

v(n) → v strong in L∞t,locH
s−µ
loc

∇v(n) ⇀ ∇v weak in L2
tH

s

for a suitable small positive constant µ. Moreover, given a bounded domain Ω, Hs−µ(Ω) is an
algebra, then Jn(v(n) · ∇Q(n)) strongly converges to v · ∇Q in L∞t,locH

s−µ, as n diverges, with also
v · ∇Q ∈ L∞t Hs. Furthermore

∂tQ = lim
n→∞

∂tQ
(n) = lim

n→∞

(
Q̇(n) − v(n) · ∇Q(n)

)
= ω − v · ∇Q ∈ L∞t Hs,

where the limits are considered in the distributional sense. Then, we deduce ∂tQ ∈ L∞t H
s and

ω = Q̇ ∈ L∞t Hs. Finally, the tensor order equation yields

J∂tQ̇
(n) = −JJn(v(n) · ∇Q̇(n))− µ1Q̇

(n) + µ1Jn[Ω(n), Q(n)] + ∆Q(n) + µ2A
(n)−

−aQ(n) + b
(
Jn(Q(n)Q(n)) + tr{(Q(n)Q(n))} Id

3

)
− cJn(Q(n)tr{Jn(Q(n)Q(n))},

hence, observing that

‖Jn(v(n) · ∇Q̇(n))‖Hs−1(Ω) . ‖v(n) · ∇Q̇(n)‖Hs−1(Ω)

. ‖∇ · { v(n) ⊗ Q̇(n)}‖Hs−1(Ω)

. ‖v(n) ⊗ Q̇(n)‖Hs(Ω) . ‖v(n)‖Hs(Ω)‖Q̇(n)‖Hs(Ω),

then ∂tQ̇
(n) belongs to L1

t,locH
s−1, with uniformly in n bounded seminorms. Thus

∂tQ̇
(n) ⇀ ∂tQ̇ weakly in L1

t,locH
s−1,

up to a subsequence. Moreover, since Jn(v(n) ⊗ Q̇(n)) weakly converges to v ⊗ Q̇ in L1
t,locH

s, then

Jn(v(n) · ∇Q̇(n)) weakly converges to v · ∇Q̇ in L1
t,locH

s. Then, summarizing we deduce that Q̈(n)

weakly converges to Q̈ in L1
t,locH

s.

These convergences allow us to pass to the limit in the classical solutions of (8.37), deducing that
(u, Q) is classical solution of system (8.18) and (8.19).

Uniqueness part: We now perform the uniqueness of these solutions. Let us consider (u1, Q1)
and (u2, Q2) to be strong solutions with same initial data. From here on we will use the following
notation:

δQ := Q1 −Q2, δQ̇ := Q̇1 − Q̇2, δv := v1 − v2.

we begin the proof considering the difference between the angular momentum equations of the two
solutions, namely

J(δQ̇)t + v1 · ∇δQ̇+ δv · ∇Q̇2 + µ1δQ̇ = ∆δQ− aδQ+ b
[
Q1δQ+ δQQ2+

+tr{Q1δQ+ δQQ2}
Id

3

]
− cδQtr{Q2

1} − cQ2tr{δQQ2} − cQ2tr{Q2δQ}+

µ2δQ+ µ1[Ω1, δQ] + µ2[δΩ, Q2].

We multiply both the left and right-hand sides by δQ̇, integrating over Rd,
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d

dt

[J
2
‖δQ̇‖2L2

x
+ ‖∇δQ‖2L2

x
+
a

2
‖δQ‖2L2

x

]
+ µ1‖δQ̇‖2L2

x
= 〈∆δQ, v1 · ∇δQ〉L2

x
+

+〈∆δQ, δv · ∇Q2〉L2
x
− 〈v1 · ∇δQ̇, δQ̇〉L2

x
− 〈δv · ∇Q̇2, δQ̇〉L2

x
−

−a〈δQ, v1 · ∇δQ+ δv · ∇Q2〉L2
x

+ b〈Q1δQ+ δQQ2, δQ̇〉L2
x
−

−c〈δQtr{Q2
1}+Q2tr{δQQ2}+Q2tr{Q2δQ}, δQ̇〉L2

x
+

+〈δA, δQ̇〉L2
x

+ µ1〈[Ω1, δQ] + [δΩ, Q2], δQ̇〉L2
x
.

(8.48)

We perform now estimates for each term on the right-hand side. First we remark that

〈∆δQ, v1 · ∇δQ〉L2
x

= 〈δQαβ, jj , (v1)iδQαβ,i〉L2
x

= −〈δQαβ, j , (v1)i,jδQαβ,i〉L2
x
−〈δQαβ, j , (v1)iδQαβ,ij〉L2

x︸ ︷︷ ︸
=0

, (8.49)

where in the second inequality we have integrated by part. Then we obtain

〈∆δQ, v1 · ∇δQ〉L2
x
. ‖∇δQ‖L2

x
‖δQ‖L2

x
‖∇v1‖L∞x . ‖∇v1‖Hs

(
‖∇δQ‖2L2

x
+ ‖δQ‖2L2

x

)
,

Similarly, we can proceed integrating by part also for the second term, namely

〈∆δQ, δv · ∇Q2〉L2
x

= 〈δQαβ,jj , δvi · (Q2)αβ, i〉L2
x

= −〈δQαβ,j , δvi,j · (Q2)αβ, i〉L2
x︸ ︷︷ ︸

A

−〈δQαβ,j , δvi · (Q2)αβ, ij〉L2
x︸ ︷︷ ︸

B

.

Fist, we control A by a classical estimate:

A . ‖∇δQ‖L2
x
‖∇δv‖L2

x
‖∇Q2‖L∞x . ‖∇Q2‖2Hs‖∇δQ‖2L2

x
+ cβ4‖∇δv‖2L2

x
.

The term B requires a deepest analysis. First, we define the parameter θ in (0, 1/2] as the minimum
between 1/2 and s − d/2. Thus, since ∆Q2 belongs to L2(R+, H

s−1(Rd)), then it belongs also to
L2(R+, H

θ+d/2−1(Rd)). Then we will make use of the following Sobolev embeddings:

Hs−1(Rd) ↪→ Hθ+d/2−1(Rd) ↪→ L
d

1−θ (Rd),

H1(Rd) ↪→ L2(Rd) ∩ Ld(Rd) ↪→ L
2d

d−2(1−θ) (Rd).
(8.50)

Then B is bounded by

B . ‖∇δQ‖L2
x
‖δv‖

L

2d
d−2(1−θ)
x

‖∆Q2‖
L

d
1−θ
x

. ‖∇δQ‖L2
x
‖δv‖H1‖∆Q2‖

Hθ+ d
2−1

. ‖∇δQ‖L2
x
‖δv‖L2‖∆Q2‖Hs−1 + ‖δQ‖L2

x
‖∇δv‖L2‖∆Q2‖Hs−1

. ‖∇Q2‖2Hs

(
‖∇δQ‖2L2

x
+ ‖δv‖2L2

x

)
+ cβ4‖∇δv‖L2

x
+ c‖∇δQ‖L2

x
.

Summarizing, the second term is estimated as follows:

〈∆δQ, δv · ∇Q2〉L2
x
. ‖∇Q2‖2Hs

(
‖∇δQ‖2L2

x
+ ‖∇δQ‖2L2

x
+ ‖δv‖2L2

x

)
+ cβ4‖∇δv‖L2

x
+ c‖∇δQ‖L2

x
.

Now, let us observe that 〈u1 · ∇δQ̇, δQ̇〉L2
x

= 0 because of the free divergence condition of u1.
Moreover, always recalling the embeddings (8.50), we have

〈δv · ∇Q̇2, δQ̇〉L2
x
. ‖δv‖

L

2d
d−2(1−θ)
x

‖∇Q̇2‖
L

d
1−θ
x

‖δQ‖L2
x
. ‖δv‖H1‖∇Q̇2‖Hs−1‖δQ‖L2

x

. ‖Q̇2‖Hs‖δv‖L2‖δQ‖L2
x

+ ‖Q̇2‖Hs‖∇δv‖L2‖δQ‖L2
x
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. ‖Q̇2‖2Hs

(
‖δv‖2L2

x
+ ‖δQ‖2L2

x

)
+ cβx‖∇δv‖L2

x
+ cµ1‖δQ̇‖L2

x
.

The remaining terms can easily controlled by the Hölder inequality and the Sobolev embedding
Hs(Rd) ↪→ L∞(Rd). First the terms related to the parameter a fulfil

〈δQ, v1 · ∇δQ〉L2
x
. ‖δQ‖L2

x
‖v1‖L∞‖∇δQ‖L2

x
. ‖v1‖Hs

(
‖δQ‖2L2

x
+ ‖∇δQ‖2L2

x

)
,

〈δQ, δv · ∇Q2〉L2
x
. ‖δQ‖L2

x
‖δv‖L2

x
‖∇Q2‖L∞x . ‖∇Q2‖Hs

(
‖δQ‖2L2

x
+ ‖δv‖2L2

x

)
,

the term related to b can be bounded by

〈Q1δQ+ δQQ2, δQ̇〉L2
x
. ‖(Q1, Q2)‖L∞x ‖δQ‖L2

x
‖δQ̇‖L2

x

. ‖(Q1, Q2)‖2Hs‖δQ‖2L2
x

+ cµ1‖δQ̇‖2L2
x

and finally the one multiplied by c is estimated by

〈δQtr{Q2
1}+Q2tr{δQQ2}+Q2tr{Q2δQ}, δQ̇〉L2

x
. ‖(Q1, Q2)‖2Hs

(
‖δQ‖2L2

x
+ ‖δQ̇‖2L2

x

)
.

It remains to control the terms concerning µ1 and µ2 which can be handled through

〈δA, δQ̇〉L2
x
. ‖δA‖L2

x
‖δQ̇‖L2

x
. ‖δQ̇‖2L2

x
+ cβ4‖∇δv‖L2

x

and

〈[Ω1, δQ] + [δΩ, Q2], δQ̇〉L2
x
.
(
‖∇v1‖2Hs + ‖Q1‖2Hs

)(
‖δQ‖2L2

x
‖δQ̇‖2L2

x

)
+

+cµ1‖δQ̇‖2L2
x

+ cβ4‖∇δv‖2L2
x
.

Summarizing all the previous estimates together with equality (8.48), we obtain

d

dt

[J
2
‖δQ̇‖2L2

x
+ ‖∇δQ‖2L2

x
+
a

2
‖δQ‖2L2

x

]
+ µ1‖δQ̇‖2L2

x
.
(

1 + ‖Q2‖2Hs + ‖∇v1‖2Hs+

+‖∇Q2‖2Hs + ‖Q1‖2Hs

)(
‖δv‖2L2

x
+ ‖δQ̇‖2L2

x
+ ‖δQ‖2L2

x
+ ‖∇δQ‖2L2

x

)
+

+cβ4‖∇δv‖2L2
x

+ cµ1‖δQ̇‖L2
x
.

(8.51)

Now let us take in consideration the difference between the momentum equations of the two solu-
tions, namely

∂tδv + v1 · ∇δv + δv · ∇v2 −
β4

2
∆δv = −∇ ·

{
∇δQ�∇Q1 +∇Q2 �∇δQ

}
−

−β1∇ ·
{

tr{δQA1}Q1 + tr{Q2δA}Q1 + tr{Q2A2}δQ
}

+ β5∇ ·
{
A1δQ+ δAQ2

}
+

+β6∇ ·
{
δQA1 +Q2δA

}
+
µ2

2
∇ ·
{
δQ̇− [δΩ, Q1]− [Ω2, δQ]

}
+

+µ1∇ ·
{

[δQ, (Q̇1 − [Ω1, Q1])] + [Q2, (δQ̇− [δΩ, Q1]− [Ω2, δQ])]
}
.

(8.52)

We proceed as before, multiplying both the left and right-hand sides by δu and integrating every-
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thing over Rd, obtaining

1

2

d

dt
‖δv‖2L2

x
+
β4

2
‖∇δv‖2L2

x
= 〈∇δQ�∇Q1 +∇Q2 �∇δQ, ∇δv〉L2

x
+

+β1〈tr{δQA1}Q1 + tr{Q2A2}δQ, ∇δv〉L2
x

+ β1〈tr{Q2δA}Q1, ∇δu〉L2
x
−

−β5〈A1δQ+ δAQ2, ∇δv〉L2
x
− β6〈δQA1 +Q2δA, ∇δv〉L2

x
− µ2

2
〈δQ̇, ∇δv〉L2

x
+

+
µ2

2
〈[δΩ, Q1] + [Ω2, δQ], ∇δv〉L2

x
− µ1〈[δQ, Q̇1], ∇δv〉L2

x
− µ1〈[Q2, δQ̇], ∇δv〉L2

x
−

−µ1〈[Q2, [δΩ, Q1] + [Ω2, δQ]], ∇δv〉L2
x
− 〈v1 · ∇δv, δv〉L2

x
− 〈δv · ∇v2, δv〉L2

x
,

(8.53)

then we proceed estimating each term on the right-hand side. At first, we have

〈∇δQ�∇Q1 +∇Q2 �∇δQ, ∇δv〉L2
x
.
(
‖∇Q1‖L∞x + ‖∇Q2‖L∞x

)
‖∇δQ‖L2

x
‖∇δv‖L2

x

.
(
‖∇Q1‖2Hs + ‖∇Q2‖2Hs

)
‖∇δQ‖2L2

x
+ cβ4‖∇δv‖2L2

x
,

while the terms concerning β1 are handled by

〈tr{δQA1}Q1 + tr{Q2A2}δQ, ∇δv〉L2
x
.

.
(
‖∇u1‖L∞‖Q1‖L∞x + ‖∇u2‖L∞‖Q2‖L∞x

)
‖δQ‖L2

x
‖∇δv‖L2

x

.
(
‖∇v1‖2Hs‖Q1‖2Hs + ‖∇v2‖2Hs‖Q2‖2Hs

)
‖δQ‖L2

x
+ cβ4‖∇δv‖2L2

x
,

and

〈tr{Q2δA}Q1, ∇δv〉L2
x
. ‖Q1‖L∞x ‖Q2‖L∞x ‖∇δv‖

2
L2
x
. ‖Q1‖Hs‖Q2‖Hs‖∇δv‖2L2

x
.

Now, we bound the terms related to β5 and β6 as follows:

〈A1δQ+ δAQ2, ∇δv〉L2
x
. ‖∇v1‖L∞‖δQ‖L2

x
‖∇δv‖L2

x
+ ‖Q2‖L∞‖∇δv‖2L2

x

. ‖∇v1‖2Hs‖δQ‖2L2
x

+
(
cβ4 + ‖Q2‖Hs

)
‖∇δv‖2L2

x
,

〈δQA1 +Q2δA, ∇δv〉L2
x
. ‖δQ‖L2

x
‖∇v1‖L∞x ‖∇δv‖L2

x
+ ‖Q2‖L∞x ‖∇δv‖

2
L2
x

. ‖∇v1‖2Hs‖δQ‖2L2
x

+
(
cβ4 + ‖Q2‖Hs

)
‖∇δv‖2L2

x
.

Now, keep proceeding on, we bound the terms on µ2 by 〈δQ̇, ∇δv〉L2
x
. ‖δQ̇‖L2

x
+ cβ4‖∇δv‖2L2

x
,

〈[δΩ, Q1] + [Ω2, δQ], ∇δv〉L2
x
. ‖Q1‖L∞x ‖∇δv‖

2
L2
x

+ ‖∇v2‖L∞x ‖δQ‖L2
x
‖∇δv‖L2

x

. ‖∇v2‖2L∞x ‖δQ‖
2
L2
x

+
(
cβ4 + ‖Q1‖L∞x

)
‖∇δv‖2L2

x
,

while the terms on µ1 can be handled by

〈[δQ, Q̇1], ∇δv〉L2
x
. ‖δQ‖L2

x
‖Q̇1‖L∞x ‖∇δv‖L2

x
. ‖Q̇1‖2Hs‖δQ‖2L2

x
+ cβ4‖∇δv‖2L2

x
,

〈[Q2, δQ̇], ∇δu〉L2
x
. ‖Q2‖L∞x ‖δQ̇‖L2

x
‖∇δv‖L2

x
. ‖Q2‖2Hs‖δQ̇‖2L2

x
+ cβ4‖∇δv‖2L2

x
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and also

〈[Q2, [δΩ, Q1] + [Ω2, δQ]], ∇δu〉L2
x

. ‖Q2‖L∞x ‖Q1‖L∞x ‖∇δv‖
2
L2
x

+ ‖Q2‖L∞x ‖∇v2‖L∞x ‖δQ‖L2
x
‖∇δv‖L2

x

. ‖Q2‖2Hs
x
‖∇v2‖2Hs

x
‖δQ‖2L2

x
+
(
cβ4 + ‖Q2‖Hs

x
‖Q1‖Hs

x

)
‖∇δv‖2L2

x
.

Finally, let us remark that 〈v1 · ∇δv, δv〉L2
x

= 0 and

〈δv · ∇v2, δv〉L2
x
. ‖∇v2‖L∞x ‖δv‖

2
L2
x
. ‖∇v2‖Hs‖δv‖2L2

x
.

Thus, summarizing all the previous estimates and taking in consideration (8.52), we get

1

2

d

dt
‖δv‖2L2

x
+
β4

2
‖∇δv‖2L2

x
.
{

1 + ‖∇v2‖Hs + ‖∇v1‖2Hs + ‖∇v2‖2Hs + ‖∇Q1‖2Hs

+‖∇Q2‖2Hs + ‖∇v1‖2Hs‖Q1‖2Hs + ‖∇v2‖2Hs‖Q2‖2Hs + ‖Q̇1‖2Hs

}{
‖δv‖2L2

x
+ ‖∇δQ‖2L2

x

+ ‖δQ‖2L2
x

+ ‖δ̇Q‖2L2
x

}
+
{
cβ4 + ‖Q2‖Hs

x
‖Q1‖Hs

x
+ ‖Q1‖Hs

x
+ ‖Q2‖Hs

x

}
‖∇δv‖2L2

x

(8.54)

Now, defining the functions Ψ = Ψ(t) and f = f(t) by

Ψ :=
1

2
‖δv‖2L2

x
+
J

2
‖δQ̇‖2L2

x
+ ‖∇δQ‖2L2

x
+
a

2
‖δQ‖2L2

x

f :=
{

1 + ‖Q1‖2Hs‖∇v2‖Hs + ‖∇v1‖2Hs + ‖∇v2‖2Hs + ‖∇Q1‖2Hs

+ ‖∇Q2‖2Hs + ‖∇v1‖2Hs‖Q1‖2Hs + ‖∇v2‖2Hs‖Q2‖2Hs + ‖Q̇1‖2Hs

}
,

and observing that f ∈ L1
loc(R+), we finally take the sum between (8.51) and (8.54), achieving

d

dt
Ψ + µ1‖δ̇Q‖L2

x
+
β4

2
‖∇δv‖L2

x
. fΨ + cµ1‖δQ̇‖L2

x
+

+
{
cβ4 + ‖Q2‖Hs

x
‖Q1‖Hs

x
+ ‖Q1‖Hs

x
+ ‖Q2‖Hs

x

}
‖∇δv‖2L2

x
.

Hence, assuming cβ4 , cµ1 and the initial data small enough, we can absorb by the left-hand side
the terms related to ‖δQ̇‖L2

x
and ‖∇δv‖L2

x
on the right-hand side, so that the following inequality

is fulfilled:
d

dt
Ψ . fΨ.

Then, since Ψ(0) = 0, the Gronwall’s inequality yields Ψ to be constantly null, especially

δv = v1 − v2 = 0 and δQ = Q1 −Q2 = 0. (8.55)

This concludes the proof of Theorem 8.1.2.
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Chapter 9

A well-posedness result

In this chapter we present the results of the following manuscript:

F. De Anna (accepted), Global weak solutions for Boussinesq system with temperature dependent
viscosity and bounded temperature, Adv Differential Equ., (2016)

9.1 Introduction

The general Boussinesq system turns out from a first approximation of a coupling system related
to the Navier-Stokes and the thermodynamic equations. In such approximation, if we consider the
structural coefficients to be constant, as for example the viscosity, we obtain a system between
two parabolic equations with linear second order operators. Nevertheless, several fluids cannot be
modelled in this way, for instance if we want to study the plasma evolution. Hence it should be
necessary to consider a class of quasilinear parabolic systems coming from the general Boussinesq
one. This work is devoted to the global existence of solutions for the Cauchy problem related to
one of these models, namely:

∂tθ + div (θu) = 0 R+ × Rd,
∂tu+ u · ∇u− div (ν(θ)D(u)) +∇Π = 0 R+ × Rd,
div u = 0 R+ × Rd,
(u, θ)|t=0 = (ū, θ̄) Rd,

(9.1)

where D(u) is defined by ∇u + t∇u. Here θ, u = (u1, . . . , ud) and Π stand for the temperature,
velocity field and pressure of the fluid respectively, depending on the time variable t ∈ R+ =
[0,+∞) and on the space variables x ∈ Rd. We denote by uh := (u1, . . . , ud−1) the horizontal
coordinates of the velocity field, while ud is the vertical coordinate. Furthermore ν(·) stands for
the viscosity coefficient, which is a smooth positive function on R+. Such system is useful as a
model to describe many geophysical phenomena, like, for example, a composed obtained by mixing
several incompressible immiscible fluids. Indeed the temperature fulfills a transport equation, while
the velocity flow verifies a Navier-Stokes type equation which describes the fluids evolution. We
consider here the case where the viscosity depends on the temperature, which allows to characterize
the immiscibility hypotheses.
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Some Developments in the Boussinesq System

The general Boussinesq system, derived in [91], assumes the following form:
∂tθ + div (θu)−∆ϕ(θ) + |D|sθ = 0 R+ × Rd,
∂tu+ u · ∇u− div (ν(θ)D(u)) +∇Π = F (θ) R+ × Rd,
div u = 0 R+ × Rd,
(u, θ)|t=0 = (ū, θ̄) Rd,

(9.2)

An exhaustive mathematical justification of such system as a model of stratified fluids (as atmo-
sphere or oceans) is given by Danchin and He in [25]. We present here a short (and of course
incomplete) overview concerning some well-posedness results.

Provided by some technical hypotheses, in [36] Dı́az and Galiano established the global existence of
weak solution for system 9.2 when s = 0. Moreover they achieved the uniqueness of such solutions
in a two dimensional domain, assuming the viscosity ν to be constant.

In [56] Hmidi and Keraani study system (9.2) in a two dimensional setting, when the parameter s
is null, ϕ(θ) = θ and F (θ) stands for a Buoyancy force, more precisely they considered F (θ) = θe2,
with e2 the classical element of the canonical basis of R2. They proved the global existence of
weak solutions when both the initial data belong to L2(R2). Furthermore, they established the
uniqueness of such solutions under an extra regularity on the initial data, namely Hr(R2), for
r > 0.

In [112] Wang and Zhang considered system (9.2) with Buoyancy force and constant viscosity, when
the temperature θ satisfies

∂tθ + div (θu)− div(k∇θ) = 0,

where k stands for the thermal diffusivity, which also depends on the temperature. They proved
existence and uniqueness of global solutions when the initial data belong to Hr(R2), for r > 0.

In [17] Chae considered system (9.2) in two dimension, with constant viscosity and when ϕ(θ) is
equal to θ or 0. In this case the author established the existence of smooth solutions.

System (9.2) has also given interest in the Euler equation framework, when the viscosity ν is
supposed to be null. In this direction, Hmidi, Keerani and Rousset [57] developed the existence
and uniqueness of a solutions when s = 1, provided that the initial velocity belongs to Ḃ1

∞,1 ∩ Ẇ
1,p
x

while the initial temperature lives in Ḃ0
∞,1 ∩ L

p
x.

In [2] Abidi and Hmidi performed an existence and uniqueness result for system (9.2) in two
dimension, when ϕ ≡ 0, s = 0 and the force F (θ) = θe2. Here, the initial velocity is supposed in
L2
x ∩ Ḃ−1

∞,1 and the temperature belongs to Ḃ0
2,1.

In [29] Paicu and Danchin considered the case of constant viscosity. Given a force F (θ) = θe2,
imposing s = 2 and φ = θ, the authors performed a global existence result for system (9.2), on the
condition that the initial data are of Yudovich’s type, namely the initial temperature is in L2

x∩Ḃ−1
p,1 ,

the initial velocity is in L2
x and the initial vorticity ∂1ū2 − ∂2ū1 is bounded and belongs to some

Lebesgue space Lrx with r ≥ 2.

We mention that the case of a no-constant viscosity has also been treated in the study of the
inhomogeneous incompressible Navier-Stokes equation with variable viscosity

∂tρ+ div (ρu) = 0 R+ × Rd,
∂t(ρu) + div{ρu⊗ u} − div (η(ρ)D(u)) +∇Π = f R+ × Rd,
div u = 0 R+ × Rd,
(u, ρ)|t=0 = (ū, ρ̄) Rd.

(9.3)
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In [3] Abidi and Paicu analysed the global well-posedness of (9.3) in certain critical Besov spaces
provided that the initial velocity is small enough and the initial density is strictly close to a positive
constant.

In [4] Abidi and Zhang established the existence and uniqueness of global solutions for system (9.3),
on the condition that the initial velocity belongs to H−2δ ∩ H1, for some δ ∈ (0, 1/2), the initial
density lives in L2

x ∩ Ẇ
1,r
x , with r ∈ (2, 2/(1− 2δ) ), and ρ̄− 1 belongs to L2

x.

We finally mention that in [59] Huang and Paicu investigated the time decay behavior of weak
solutions for (9.3) in a two dimensional setting.

In this chapter we are going to study the global existence of solutions for the system (9.1) assuming
standard and natural conditions on the initial data: the initial temperature is only assumed to be
bounded and the initial velocity field is supposed to belong to certain critical homogeneous Besov
space. More precisely we consider

θ̄ ∈ L∞x and ū ∈ Ḃ
d
p
−1

p,r with r ∈ (1,∞) and p ∈ (1, d). (9.4)

Remark 9.1.1. As the classical Navier-Stokes equation, system (9.1) has also a scaling property,
more precisely if (θ, u,Π) is a solution then, for all λ > 0,

(θ(λ2t, λ x), λ u(λ2t, λ x), λ2 Π(λ2t, λ x))

is also solution of (9.1), with initial data (θ̄(λx), λ ū(λx)). Hence it is natural to consider the
initial data in a Banach space with a norm which is invariant under the previous scaling, as for

instance L∞x × Ḃ
d/p−1
p,r . Let us remark that this initial data type allows θ to include discontinuities

along an interface, an important physical case as a model that describes a mixture of fluids with
different temperatures.

From here on we suppose the viscosity ν to be a bounded smooth function, close enough to a
positive constant µ, which we assume to be 1 for the sake of simplicity. Then, we assume the
following small condition for the initial data to be fulfilled:

η :=
(
‖ν − 1‖∞ + ‖ūh‖

Ḃ
−1+ d

p
p,r

)
exp

{
cr‖ūd‖4r

Ḃ
−1+ d

p
p,r

}
≤ c0. (9.5)

where c0 and cr are two suitable positive constants. This type of initial condition is not new
in literature, for instance we cite [60], where Huang, Paicu and Zhang studied an incompressible
inhomogeneous fluid in the whole space with viscosity dependent on the density, and moreover [30],
where Danchin and Zhang examined the same fluid typology, in the half-space setting.

Before enunciating our main results, let us recall the definition of weak solution for system (9.1):

Definition 9.1.2. We call (θ, u, Π) a global weak solution of (9.1) if

(i) for any test function ϕ ∈ D(R+ × Rd), the following identities are well-defined and fulfilled:

ˆ
R+

ˆ
Rd
{θ (∂tϕ+ u · ∇ϕ)}(t, x)dx dt+

ˆ
Rd
θ̄(x)ϕ(0, x)dx = 0,

ˆ
R+

ˆ
Rd
{u · ∇ϕ}(t, x)dx dt = 0,
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(ii) for any vector valued function Φ = (Φ1, . . . ,Φd) ∈ D(R+ × Rd)d the following equality is
well-defined and satisfied:

ˆ
R+

ˆ
Rd
{u ·∂tΦ− (u ·∇u) ·Φ− ν(θ)D(u) ·∇Φ + Π div Φ}(t, x)dx dt+

ˆ
Rd
ū(x) ·Φ(0, x)dx = 0,

The smooth case

Some regularizing effects for the heat kernel (Theorem 9.2.2), and a useful characterization of the
homogeneous Besov Spaces (Theorem 9.2.7 and Corollary 9.2.7.1) play a key role in our proof.
Indeed, we can reformulate the momentum equation of (9.1) in the following integral form:

u(t) = et∆ū+

ˆ t

0
e(t−s)∆{− u · ∇u+∇Π

}
(s)ds+

ˆ t

0
div e(t−s)∆{((ν(θ)− 1

)
D(u)

}
(s)ds. (9.6)

Thus, it is reasonable to assume the velocity u having the same regularity of the convolution
between the heat kernel and the initial datum ū. The Maximal Regularity Theorem suggests us to
look for a solution in a Lr̄tL

q
x functional framework. Now, in the simpler case where u just solves

the heat equation with initial datum ū, having ∇u in some Lr̄tL
q
x is equivalent to ū ∈ Ḃd/q−1

q,r̄ on the

condition N/q − 1 = 1 − 2/r̄. From the immersion Ḃ
d/p−1
p,r ↪→ Ḃ

d/q−1
q,r̄ , for every q̄ ≥ p and r̄ ≥ r,

we deduce that this strategy requires p ≤ dr/(2r− 1). Then, according to the above heuristics, our
first result reads as follows:

Theorem 9.1.3. Let r ∈ (1,∞) and p ∈ (1, dr/(2r−1)). Suppose that the initial data (θ̄, ū) belongs

to L∞x × Ḃ
d/p−1
p,r . There exist two positive constants c0, cr such that, if the smallness condition (9.5)

is fulfilled, then there exists a global weak solution (θ, u, Π) of (9.1), in the sense of definition 9.1.2
such that

u ∈ L2r
t L

dr
r−1
x , ∇u ∈ L2r

t L
dr

2r−1
x ∩ LrtL

dr
2(r−1)
x and Π ∈ LrtL

dr
2(r−1)
x .

Furthermore, the following inequalities are satisfied:

‖∇uh‖
L2r
t L

dr
2r−1
x

+ ‖∇uh‖
LrtL

dr
2(r−1)
x

+ ‖uh‖
L2r
t L

dr
r−1
x

≤ C1η,

‖∇ud‖
L2r
t L

dr
2r−1
x

+ ‖∇ud‖
LrtL

dr
2(r−1)
x

+ ‖ud‖
L2r
t L

dr
r−1
x

≤ C2‖ūd‖
Ḃ
d
p−1

p,r

+ C3,

‖Π‖
LrtL

dr
2(r−1)
x

≤ C4η, ‖θ‖L∞t,x ≤ ‖θ̄‖L∞x .

for some positive constants C1, C2, C3 and C4.

The general case

As we have already pointed out, the choice of a Lr̄tL
q
x functional setting requires the condition

p < dr/(2r − 1). The remaining case dr/(2r − 1) ≤ p < d can be handled by the addiction of a
weight in time. Indeed, in the simpler case where u just solves the heat equation with initial datum

ū, having u in some Ḃ
d/p3−1
p3,r̄ for some p3 ∈ (dr/(r−1),∞) is equivalent to t1/2(1−d/p3)−1/r̄)u ∈ Lr̄tL

p3
x .

In the same line having ∇ū in a suitable Besov space Ḃ
d/p2−1
p2,r̄ is equivalent to have t1/2(2−d/p3)−1/r̄)u

in Lr̄tL
p2
x . Hence, reformulating the smallness condition (9.5) by

η :=
(
‖ν − 1‖∞ + ‖ūh‖

Ḃ
−1+ d

p
p,r

)
exp

{
cr‖ūd‖2r

Ḃ
−1+ d

p
p,r

}
≤ c0, (9.7)
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with similar heuristics proposed in the first case, our second results reads as follows:

Theorem 9.1.4. Let p, r be two real numbers in (2d/3, d) and (1,∞) respectively, such that

2

3

d

p
− d

6p
<

1

2
− 1

2r
,

1

r
<

1

3

(d
p
− 1
)
,

1

r
<

4

3
− d

p
. (9.8)

Let us define p2 := 3pd/(2p+ d) and p3 := 3p∗/2 = 3pd/(2d− 2p), so that 1/p = 1/p2 + 1/p3 and

α :=
1

2

(
3− d

p1

)
− 1

r
, β :=

1

2

(
2− d

p2

)
− 1

2r
, γ1 :=

1

2

(
1− d

p3

)
− 1

2r
, γ2 :=

1

2

(
1− d

p3

)
.

There exist two positive constants c0 and cr such that, if the smallness condition (9.7) is fulfilled,
then there exists a global weak solution (θ, u,Π) of (9.1), in the sense of definition 9.1.2 such that

tγ1u ∈ L2r
t L

p3
x , tγ2u ∈ L∞t Lp3

x tβ∇u ∈ L2r
t L

p2
x tαΠ ∈ LrtLp

∗
x .

Furthermore, the following inequalities are satisfied:

‖tα∇uh‖
L2r
t L

p∗
x

+ ‖tβ∇uh‖L2r
t L

p2
x

+ ‖tγ1uh‖L2r
t L

p3
x

+ ‖tγ2uh‖L∞t Lp3x ≤ C1η,

‖tα∇ud‖
L2r
t L

p∗
x

+ ‖tβ∇ud‖L2r
t L

p2
x

+ ‖tγ1ud‖L2r
t L

p3
x

+ ‖tγ2ud‖L∞t Lp3x ≤ C2‖ūd‖
Ḃ
d
p−1

p,r

+ C3

‖tαΠ‖
LrtL

p∗
x
≤ C4η, ‖θ‖L∞t,x ≤ ‖θ̄‖L∞x .

(9.9)

for some positive constants C1, C2 and C3.

Remark 9.1.5. We remark that the conditions on p and r in Theorem 9.1.4 are not restrictive.

Indeed, we can always embed Ḃ
d/p−1
p,r into Ḃ

d/q−1
q,r with q ≥ p which satisfies q ∈ (2d/3, d) (see

Theorem 9.2.8). Moreover Ḃ
d/p−1
p,r is embedded in Ḃ

d/p−1
p,r̃ , with r̃ ≥ r, then there is no lost of

generality assuming the inequalities (9.8).

Let us briefly describe the organization of this chapter. In the second section we recall some
technical Lemmas concerning the regularizing effects for the heat kernel, as the Maximal regularity
Theorem, which will play an important role in the main proofs. We also mention some results
regarding the characterization of the homogeneous Besov Spaces. In the third section we prove
the existence of solutions for (9.1), with stronger conditions on the initial data with respect to the
ones of Theorem 9.1.3. In the fourth section we regularize our initial data and, using the results of
the third section together with a compactness argument, we conclude the proof of Theorem 9.1.3.
In the fifth and sixth sections we perform the proof of Theorem 9.1.4, proceeding with a similar
structure of the third and fourth sections.

Remark 9.1.6. In order to obtain the uniqueness about the solution of (9.1), the more suitable
strategy is to reformulate our system by Lagrangian coordinates, following for example [60], [30]
and [28]. The existence of such coordinates can be achieved supposing the velocity field with Lipschitz
space condition, more precisely claiming that u belongs to L1

loc(R+;Lipx), or equivalently ∇u ∈
L1
loc(R+;L∞x ). If we want to obtain this condition without controlling two derivatives of u (in the

same line of the existence part) and then without using Sobolev embedding, we need to bound terms
like ˆ t

0
∆e(t−s)∆{((ν(θ)− 1

)
∇u
}

(s)ds (9.10)

in some Ls(0, T ;L∞x ) space, with s > 1. Unfortunately this is not allowed by the Maximal Regularity
Theorem 9.2.2 for the heat kernel, because of the critical exponents of this spaces. Then, we need



216 CHAPTER 9. A WELL-POSEDNESS RESULT

to impose an extra regularity for the initial temperature, as ∇θ̄ ∈ Ll1x , for an opportune l1, in order
to obtain ∇θ in L1

loc(R+;Ll1x ) and then to split (9.10) into

ˆ t

0
div e(t−s)∆{ν ′(θ)∇θ · ∇u}(s)ds+

ˆ t

0
div e(t−s)∆{(ν(θ)− 1

)
∇2u

}
(s)ds. (9.11)

Hence we need to control the norm of ∇2u in some Lr1(0, T ;Ll2x ), with r1 > 1 and also l2 > d
in order to fulfill the Morrey Theorem’s hypotheses. It is necessary to do that starting from the
approximate systems of the third section, however the only way to control two derivatives of the
approximate solutions with some inequalities independent by the indexes n ∈ N and ε > 0 (present in
the extra term of the perturbed transport equation) is to impose ∇θ̄ ∈ Ll1x with l1 > d. We conjecture
that this is not the optimal condition for the initial data in order to obtain the uniqueness, indeed,

inspired by [3], we claim that, supposing ∇θ̄ ∈ Ldx and ū ∈ Ḃ
−1+ d

p

p,1 , it is possible to prove the
uniqueness with the velocity field into the space

L∞t Ḃ
−1+ d

p

p,1 ∩ L1
t Ḃ

1+ d
p

p,1 .

However this needs to change the structure of the existence part, more precisely to change the
functional space where we are looking for a solution. Since in our Theorem we suppose only the
initial temperature to be bounded, then we have decided to devote this paper only to the existence
part of a global weak solution for system (9.1).

9.2 Preliminaries

The purpose of this section is to present some lemmas concerning the regularizing effects for the
heat kernel, which will be useful for the next sections. At first step let us recall the well-known
Hardy-Littlewood-Sobolev inequality, whose proof is available in [7], Theorem 1.7.

Theorem 9.2.1 (Hardy-Littlewood-Sobolev inequality). Let f belongs to Lpx, with 1 < p < ∞,
α ∈]0, d[ and suppose that r ∈]0,∞[ satisfies 1/p + α/d = 1 + 1/r. Then | · |−α ∗ f belongs to Lrx
and there exists a positive constant C such that ‖| · |−α ∗ f‖Lrx ≤ C ‖f‖Lpx.

From this Theorem we can infer the following corollary.

Corollary 9.2.1.1. Let f belongs to Lpx, with 1 < p < d and let (
√
−∆)−1 be the Riesz potential,

defined by (
√
−∆)−1f(ξ) := F−1(f̂(ξ)/|ξ|). Then (

√
−∆)−1f belongs to L

dp/(d−p)
x and there exists

a positive constant C such that ‖(
√
−∆)−1f‖

L
pd/(d−p)
x

≤ C‖f‖Lpx.

Proof. From the equality (
√
−∆)−1f(x) = c(| · |−d+1 ∗ f)(x), for almost every x ∈ Rd and for

an appropriate constant c, the theorem is a direct consequence of Theorem 9.2.1, considering
α = d− 1.

One of the key ingredients used in the proof of Theorem (9.1.3) is the maximal regularity Theorem
for the heat kernel. We recall here the statement (see [66], theorem 7.3).

Theorem 9.2.2 (Maximal Lp(Lq) regularity for the heat kernel). Let T ∈]0,∞], 1 < p, q <∞ and
f ∈ Lp(0, T ;Lqx). Let the operator A be defined by

Af(t, ·) :=

ˆ t

0
∆e(t−s)∆f(s, ·)ds.
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Then A is a bounded operator from Lp(0, T ;Lqx) to Lp(0, T ;Lqx).

If instead of ∆ on the definition of the operator A we consider ∇ (the operator B of Lemmas 9.2.4
and 9.2.5 ) or even without derivatives (the operator C of Lemma 9.2.6), then we can obtain similar
results with respect to the maximal regularity Theorem, using a direct computation. We present
here the proofs. At first step let us recall two useful identities:

Remark 9.2.3. Let us denote by K the heat kernel, defined by K(t, x) = e−|x|
2/(4t)/(2πt)d/2, then

‖K(t, ·)‖Lqx = ‖K(1, ·)‖Lqx/t
d/(2q′), for all 1 ≤ q <∞. Moreover considering the gradient of the heat

kernel, Ω(t, x) := ∇K(t, x) = −xK(t, x)/(2t), we have ‖Ω(t, ·)‖Lqx = ‖Ω(1, ·)‖Lqx/|t|
d/(2q′)+1/2.

Let us denote by R := t(R1, . . . , Rd), where Rj is the Riesz transform over Rd, defined by

Rjf := F−1

(
−i ξj
|ξ|
f̂

)
.

we recall that Rj is a bounded operator from Lqx to itself, for every 1 < q < ∞ (for more details
we refer to [66]).

Lemma 9.2.4. Let T ∈ ]0,∞] and f ∈ Lr(0, T ;Lpx), with 1 < p < d and 1 < r < ∞. Let the
operator B be defined by

Bf(t, ·) :=

ˆ t

0
∇e(t−s)∆f(s, ·)ds,

Then B is a bounded operator from Lr(0, T ;Lpx) to Lr(0, T ;L
dp
d−p
x ).

Proof. From corollary 9.2.1.1 we have that, for almost every s ∈ (0, T ),

(√
−∆

)−1
f(s) ∈ L

dp
d−p
x .

Then, reformulating B by

Bf(t, ·) = −
ˆ t

0
∆e(t−s)∆R

(√
−∆

)−1
f(s, ·)ds,

we deduce, by theorem 9.2.2, that Bf ∈ Lr(0, T ;L
dp
d−p
x ) and

‖Bf ‖
Lr(0,T ;L

dp
d−p
x )

≤ C1

∥∥R(
√
−∆)−1f

∥∥
Lr(0,T ;L

dp
d−p
x )

≤ C2 ‖ f ‖Lr(0,T ;Lpx) ,

for some positive constants C1 and C2.

Lemma 9.2.5. Let T ∈ ]0,∞] and f ∈ Lr(0, T ;Lpx), with 1 < r < ∞ and p ∈ [1, dr
r−1 ]. Let

the operator B be defined as in Lemma 9.2.4. Then, we have that B is a bounded operator from
Lr(0, T ;Lpx) with values to L2r(0, T ;Lqx), where 1/q := 1/p− (r − 1)/(dr).

Proof. Observe that, for every t ∈ R+,

∥∥ˆ t

0
∇e(t−s)∆f(s)ds

∥∥
Lqx
≤
ˆ t

0
‖Ω(t− s, ·) ∗ f(s, ·) ‖Lqxds ≤

ˆ t

0
‖Ω(t− s)‖

Lq̃x
‖ f(s) ‖Lpxds,



218 CHAPTER 9. A WELL-POSEDNESS RESULT

with 1/q̃ + 1/p = 1/q + 1 or equivalently q̃′ = dr/(r − 1). Recalling Remark 9.2.3, we obtain

∥∥ˆ t

0
∇e(t−s)∆f(s)ds

∥∥
Lqx
≤ C

ˆ t

0

‖ f(s) ‖Lpx
|t− s|

2r−1
2r

ds ≤ C
ˆ
R

‖ f(s) ‖Lpx
|t− s|

2r−1
2r

1(0,T )(s)ds.

Since by Theorem 9.2.1

| · |−
2r−1

2r ∗ ‖f(·)1(0,T )(·)‖Lpx ∈ L
2r
t ,

then there exists C̃ > 0 such that

‖Bf ‖L2r(0,T ;Lqx) ≤ C
∥∥ | · |− 2r−1

2r ∗ ‖f(·)1(0,T )(·)‖Lpx
∥∥
L2r
t
≤ C̃‖ f ‖Lr(0,T ;Lpx)

Lemma 9.2.6. Let T ∈ ]0,∞], r ∈ (1,∞) and p ∈ (1, dr
2r−1). Let the operator C be defined by

Cf(t, ·) :=

ˆ t

0
e(t−s)∆f(s, ·)ds,

Then, C is a bounded operator from Lr(0, T ;Lpx) to L2r(0, T ;Lqx), where 1/q := 1/p− (2r − 1)/dr.

Proof. For every t ∈ R+, notice that

∥∥ˆ t

0
e(t−s)∆f(s)ds

∥∥
Lqx
≤
ˆ t

0
‖K(t− s, ·) ∗ f(s, ·) ‖Lqxds ≤

ˆ t

0
‖K(t− s)‖

Lq̃x
‖ f(s) ‖Lpxds,

with 1/q̃ + 1/p = 1/q + 1, that is q̃′ = dr/(2r − 1). Recalling Remark 9.2.3, we get

∥∥ˆ t

0
e(t−s)∆f(s)ds

∥∥
Lqx
≤
ˆ t

0

‖ f(s) ‖Lpx
|t− s|

2r−1
2r

ds ≤
ˆ
R

‖ f(s) ‖Lpx
|t− s|

2r−1
2r

1(0,T )(s)ds.

Since by Theorem 9.2.1

| · |−
2r−1

2r ∗ ‖f(·)1(0,T )(·)‖Lpx ∈ L
2r
t ,

then there exists C̃ > 0 such that

‖ Cf ‖L2r(0,T ;Lqx) ≤
∥∥ | · |− 2r−1

2r ∗ ‖f(·)1(0,T )(·)‖Lpx
∥∥
L2r
t
≤ C̃‖ f ‖Lr(0,T ;Lpx).

For the definition and the main properties of homogeneous Besov Spaces we refer to [7]. However
let us briefly recall two results which characterize these spaces in relation to the heat kernel.

Theorem 9.2.7 (Characterization of Homogeneous Besov Spaces). Let s be a negative real number
and (p, r) ∈ [1,∞]2. u belongs to Ḃs

p,r(Rd) if and only if et∆u belongs to Lpx for almost every t ∈ R+

and

t−
s
2

∥∥et∆u∥∥
Lpx
∈ Lr

(
R+;

dt

t

)
.

Moreover, there exists a positive constant C such that

1

C
‖u‖Ḃsp,r(Rd) ≤

∥∥∥∥∥∥∥t− s2 et∆u∥∥∥Lpx
∥∥∥∥
Lr(R+; dt

t
)

≤ C ‖u‖Ḃsp,r(Rd) .
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Then, imposing the index s equal to −2
r , the following Corollary is satisfied:

Corollary 9.2.7.1. Let p ∈ [1,∞] and r ∈ [1,∞). u belongs to Ḃ
− 2
r

p,r (Rd) if and only if et∆u ∈ LrtL
p
x.

Moreover, there exists a positive constant C such that

1

C
‖u‖

Ḃ
− 1

2r
p,r (Rd)

≤
∥∥et∆u∥∥

LrtL
p
x
≤ C ‖u‖

Ḃ
− 1

2r
p,r (Rd)

.

Finally, let us state an embedding theorem for homogeneous Besov spaces, whose proof can be
found in [7] Proposition 2.20.

Theorem 9.2.8. Let 1 ≤ p1 ≤ p2 ≤ ∞ and 1 ≤ r1 ≤ r2 ≤ ∞. Then for any real number s, the

space Ḃs
p1,r1(Rd) is continuously embedded in Ḃ

s−d
(

1
p1
− 1
p2

)
p2,r2 (Rd).

9.3 Existence of solutions for smooth initial data

In this section, by Proposition 9.3.2 and Theorem 9.3.3, we prove the existence of weak solutions
for system (9.1), assuming a tiny extra regularity for the initial data. The proofs proceed in the
same line of [30] and [26], however the novelty is to consider also an extra-term −µ∆, with µ > 0,
in the transport equation. This perturbation is motivated by the necessity to control the norm
of the gradient of the approximate temperature, even without a space-Lipschitz condition on the
approximate velocity field. Obviously this control depends on µ. Hence we consider the following
approximation of (9.1).

∂tθ + div (θu)− µ∆u = 0 R+ × Rd,
∂tu+ u · ∇u− div (ν(θ)D(u)) +∇Π = 0 R+ × Rd,
div u = 0 R+ × Rd,
(u, θ)|t=0 = (ū, θ̄) Rd,

(9.12)

Remark 9.3.1. Since div u = 0, we observe that the momentum equation of system (9.12) can be
reformulated as follows{

∂tu
h −∆uh +∇hΠ = −ud ∂duh − uh · ∇uh + div

{
(ν(θ)− 1)D(u)h

}
R+ × Rd,

∂tu
d −∆ud + ∂dΠ = −∇hud · uh + uddivhuh + div

{
(ν(θ)− 1)D(u)d

}
R+ × Rd,

where D(u)h := ∇uh + t∇hu and D(u)d := ∂du+∇ud.

First, let us prove the existence of weak solutions for system (9.12).

Proposition 9.3.2. Let 1 < r < ∞ and p ∈ (1, dr/(2r − 1)). Suppose that θ̄ belongs to L∞x and

ū belongs to Ḃ
d/p−1
p,r ∩ Ḃd/p−1+ε

p,r with ε < min{1/(2r), 1 − 1/r, 2(d/p − 2 + 1/r)}. If the smallness
condition (9.5) holds, then there exists a global weak solution (θ, u,Π) of (9.12) such that

u ∈ L2r
t L

dr
r−1
x , ∇u ∈ L2r

t L
dr

2r−1
x ∩ LrtL

dr
2(r−1)
x , and Π ∈ LrtL

dr
2(r−1)
x .
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Furthermore, the following inequalities are satisfied:

‖∇uh‖
LrtL

dr
2(r−1)
x

+ ‖∇uh‖
L2r
t L

dr
2r−1
x

+ ‖uh‖
L2r
t L

dr
r−1
x

≤ C1η,

‖∇ud‖
LrtL

dr
2(r−1)
x

+ ‖∇ud‖
L2r
t L

dr
2r−1
x

+ ‖ud‖
L2r
t L

dr
r−1
x

≤ C2‖ūd‖
Ḃ
d
p−1

p,r

+ C3

‖Π‖
LrtL

dr
2(r−1)
x

≤ C4η, ‖θ‖L∞t,x ≤ ‖θ̄‖L∞x .

(9.13)

for some suitable positive constants C1, C2, C3 and C4 which are independent by µ and ε.

Proof. First, recalling remark 9.3.1, we linearise system (9.12) as follows: we impose (θ0, u0,Π0) =
(0, 0, 0) and we consider{

∂tθn+1 − µ∆θn+1 + div(θn+1un) = 0 R+ × Rd,
θn|t=0 = θ̄ Rd,

(9.14)


∂tun+1 −∆un+1 +∇Πn+1 = gn+1 + div

{
(ν(θn+1)− 1)D(un)

}
R+ × Rd,

div un+1 = 0 R+ × Rd,
un+1|t=0 = ū Rd,

(9.15)

for all n ∈ N, where gn+1 is a d-dimensional vector field, defined by

gn+1 := −
(

udn ∂du
h
n+1 + uhn · ∇uhn

∇hudn · uhn+1 − udndivhuhn+1

)
=:

(
ghn+1

gdn+1

)
. (9.16)

Moreover we denote by D(un)h := ∇uhn + t∇hun and by D(un)d := ∂dun +∇udn. For all n ∈ N, the
global existence of a weak solution (θn+1, un+1,Πn+1) of (9.14) and (9.15) is proved by induction,

using Theorem 9.7.5. Thanks to this result, we have that un+1 belongs to L2r
t L

dr/(r−1)
x , ∇un+1

belongs to L2r
t L

dr/(2r−1)
x ∩ LrtL

dr/(2r−2)
x , θn+1 to L∞t,x and Πn+1 to LrtL

dr/(2r−2)
x .

Step 1: estimates not dependent on ε and µ. First, the Maximal Principle for parabolic
equation implies, ‖θn‖L∞t,x ≤ ‖θ̄‖L∞x , for any positive integer n. Now, we want to prove that

‖∇uhn‖
LrtL

dr
2(r−1)
x

+ ‖∇uhn‖
L2r
t L

dr
2r−1
x

+ ‖uhn‖
L2r
t L

dr
r−1
x

≤ C1η,

‖∇udn‖
LrtL

dr
2(r−1)
x

+ ‖∇udn‖
L2r
t L

dr
2r−1
x

+ ‖udn‖
L2r
t L

dr
r−1
x

≤ C2‖ūd‖
Ḃ
d
p−1

p,r

+ C3,
(9.17)

for any n ∈ N and for some suitable positive constants C1, C2 and C3. First we will show by
induction that, if η is small enough then

‖∇uhn‖
L2r
t L

dr
2r−1
x

+ ‖uhn‖
L2r
t L

dr
r−1
x

≤ C̄1η̃,

‖∇udn‖
L2r
t L

dr
2r−1
x

+ ‖udn‖
L2r
t L

dr
r−1
x

≤ C̄2‖ūd‖
Ḃ
d
p−1

p,r

+ C̄3,
(9.18)

for all n ∈ N and for some appropriate positive constant C̄1, C̄2, C̄3, where η̃ ≤ η is defined by

η̃ :=
(
‖ν − 1‖∞ + ‖ūh‖

Ḃ
−1+ d

p
p,r

)
exp

{cr
2
‖ūd‖4r

Ḃ
−1+ d

p
p,r

}
. (9.19)
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Let λ be a positive real number, and let un+1,λ, ∇un+1,λ and Πn+1,λ be defined by

(un+1,λ, ∇un+1,λ, Πn+1,λ)(t) := hn,λ(0, t)(un+1, ∇un+1, Πn+1)(t), (9.20)

where, for all 0 ≤ s < t <∞,

hn,λ(s, t) := exp
{
− λ
ˆ t

s
‖udn(τ)‖2r

L
dr
r−1
x

dτ − λ
ˆ t

s
‖∇udn(τ)‖2r

L
dr

2r−1
x

dτ
}
. (9.21)

Writing un+1 in mild formulation, we get

un+1(t) = et∆ū︸︷︷︸
uL

+

ˆ t

0
e(t−s)∆Pgn+1(s)ds︸ ︷︷ ︸

F 1
n+1(t)

+

ˆ t

0
∇e(t−s)∆R ·R · {(ν(θn+1)− 1)D(un)}(s)ds︸ ︷︷ ︸

F 2
n+1(t)

+

+

ˆ t

0
div e(t−s)∆{(ν(θn+1)− 1)D(un)}(s)ds︸ ︷︷ ︸

F 3
n+1(t)

,

(9.22)
where R := ∇/

√
−∆ is the Riesz transform (R· := div/

√
−∆) and P := I + RR· is the Leray

projection operator, which are bounded operators from Lqx to Lqx for any q ∈ (1,∞). Thus

un+1,λ(t) = hn,λ(0, t)uL(t)︸ ︷︷ ︸
uL,λ(t)

+

ˆ t

0
hn,λ(s, t)e(t−s)∆Pgn+1,λ(s)ds︸ ︷︷ ︸

F 1
n+1,λ(t)

+ hn,λ(0, t)F2(t)︸ ︷︷ ︸
F 2
n+1,λ(t)

+ hn,λ(0, t)F3(t)︸ ︷︷ ︸
F 3
n+1,λ(t)

,

(9.23)

where gn+1,λ(t) = gn+1(t)hn,λ(0, t). First, we want to estimate ∇uhn+1,λ in L2r
t L

dr/(2r−1)
x and uhn+1,λ

in L2r
t L

dr/(r−1)
x . We begin observing that, by Corollary 9.2.7.1 and Theorem 9.2.8,

‖uhL,λ‖
L2r
t L

dr
r−1
x

+ ‖∇uhL,λ‖
L2r
t L

dr
2r−1
x

≤ ‖uhL‖
L2r
t L

dr
r−1
x

+ ‖∇uhL‖
L2r
t L

dr
2r−1
x

≤ C‖ ūh ‖
Ḃ
d
p−1

p,r

, (9.24)

for a suitable positive constant C. Furhtermore, by the definition of gn+1 and by Lemma 9.7.1,
Lemma 9.7.2, Lemma 9.2.5 and Lemma 9.2.6, we obtain

‖F 1,h
n+1,λ‖

L2r
t L

dr
r−1
x

+ ‖∇F 1,h
n+1,λ‖

L2r
t L

dr
2r−1
x

≤ C
{ 1

λ
1
4r

‖udn ‖
1
2

L2r
t L

dr
r−1
x

‖∇uhn+1,λ ‖
L2r
t L

dr
2r−1
x

+

+ ‖uhn ‖
L2r
t L

dr
r−1
x

‖∇uhn ‖
L2r
t L

dr
2r−1
x

+
1

λ
1
4r

‖∇udn ‖
1
2

L2r
t L

dr
2r−1
x

‖uhn+1,λ ‖
L2r
t L

dr
r−1
x

}
.

(9.25)

Furthermore, by Corollary 9.2.1.1 and Theorem 9.2.2 we also obtain

‖F 2,h
n+1,λ + F 3,h

n+1,λ‖
L2r
t L

dr
r−1
x

= ‖
ˆ t

0
∆e(t−s)∆PR · (

√
−∆)−1{(ν(θn+1)− 1)D(un)}(s)ds ‖

L2r
t L

dr
r−1
x

≤ C‖ (
√
−∆)−1(ν(θn+1)− 1)D(un)‖

L2r
t L

dr
r−1
x

≤ C‖ ν − 1 ‖∞‖∇un ‖
L2r
t L

dr
2r−1
x

.

(9.26)
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Similarly, recalling Theorem 9.2.2, we deduce that

‖∇F 2,h
n+1,λ +∇F 3,h

n+1,λ‖
L2r
t L

dr
2r−1
x

= ‖
ˆ t

0
∆e(t−s)∆RPR · {(ν(θn+1)− 1)D(un)}(s)ds ‖

L2r
t L

dr
2r−1
x

≤ ‖{(ν(θn+1)− 1)D(un)}‖
L2r
t L

dr
2r−1
x

≤ C‖ν − 1‖∞‖∇un ‖
L2r
t L

dr
2r−1
x

.

(9.27)
Summarizing (9.24), (9.25), (9.26) and (9.27), we deduce that there exists a positive constant C
such that, for all n ∈ N

‖∇uhn+1,λ‖
L2r
t L

dr
2r−1
x

+ ‖uhn+1,λ‖
L2r
t L

dr
r−1
x

≤ C
{
‖ ūh ‖

Ḃ
d
p−1

p,r

+
1

λ
1
4r

(
‖udn ‖

1
2

L2r
t L

dr
r−1
x

‖∇uhn+1,λ ‖
L2r
t L

dr
2r−1
x

+

+ ‖∇udn ‖
1
2

L2r
t L

dr
2r−1
x

‖uhn+1,λ ‖
L2r
t L

dr
r−1
x

)
+ ‖uhn ‖

L2r
t L

dr
r−1
x

‖∇uhn ‖
L2r
t L

dr
2r−1
x

+ ‖ν − 1‖∞‖∇un ‖
L2r
t L

dr
2r−1
x

}
.

(9.28)

Recalling the induction hypotheses (9.18), we fix a positive λ such that

C
1

λ
1
4r

(
C̄2‖ūd‖

Ḃ
−1+ d

p
p,r

+ C̄3

) 1
2

=
1

4
( namely λ := (4C)4r(C̄2‖ūd‖

Ḃ
d
p−1

p,r

+ C̄3)2r ), (9.29)

so that we can absorb all the terms on the right-hands side of (9.28) with index n + 1 by the
left-hand side, obtaining

‖∇uhn+1,λ‖
L2r
t L

dr
2r−1
x

+ ‖uhn+1,λ‖
L2r
t L

dr
r−1
x

≤

≤ 2C(‖ūh‖
Ḃ
d
p−1

p,r

+ C̄2
1 η̃

2 + ‖ν − 1‖L∞x (C̄1η̃ + C̄2‖ūd‖
Ḃ
d
p−1

p,r

+ C̄3)),
(9.30)

thanks to the induction hypotheses (9.18). Now we reformulate (9.30) without the index λ on the
left-hand side:

‖∇uhn+1‖
L2r
t L

dr
2r−1
x

+ ‖uhn+1‖
L2r
t L

dr
r−1
x

≤ sup
t∈R+

hn,λ(0, t)−1
(
‖∇uhn+1,λ‖

L2r
t L

dr
2r−1
x

+ ‖uhn+1,λ‖
L2r
t L

dr
r−1
x

)
≤ exp

{
λ( C̄2‖ūd‖

Ḃ
−1+ d

p
p,r

+ C̄3)2r
}(
‖∇uhn+1,λ‖

L2r
t L

dr
2r−1
x

+ ‖uhn+1,λ‖
L2r
t L

dr
r−1
x

)
,

thanks to the second inequality of (9.18). Hence, recalling (9.29) and (9.30), we obtain the following
inequality

‖∇uhn+1‖
L2r
t L

dr
2r−1
x

+ ‖uhn+1‖
L2r
t L

dr
r−1
x

≤ exp
{

24r−1(4C)4r( C̄4r
2 ‖ūd‖4r

Ḃ
d
p−1

p,r

+ C̄4r
3 )
}
×

×2C(‖ūh‖
Ḃ
d
p−1

p,r

+ C̄2
1 η̃

2 + ‖ν − 1‖L∞x (C̄1η̃ + C̄2‖ūd‖
Ḃ
d
p−1

p,r

+ C̄3)).

Assuming that cr of (9.5) fulfills cr ≥ 1 and cr/4 ≥ 24r−1(4C)4rC̄4r
2 , we get that the right-hand
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side of the previous inequality is bounded by

2C exp
{

24r−1(4C)4rC4r
3 +

cr
4
‖ūd‖4r

Ḃ
d
p−1

p,r

}
(‖ūh‖

Ḃ
d
p−1

p,r

+ C̄2
1 η̃

2 + ‖ν − 1‖L∞x (C̄1η̃ + C̄2‖ūd‖
Ḃ
d
p−1

p,r

+C̄3)) ≤ 2C exp
{

24r−1(4C)4rC4r
3

}
(1 + (C̄2

1 + C̄1)η̃ + C̄2 + C̄3)η̃,

where we have used ‖ν−1‖∞‖ūd‖Ḃd/p−1
p,r

≤ ‖ν−1‖∞ exp{‖ūd‖4r
Ḃ
d/p−1
p,r

/(4r)}. Imposing C̄1 big enough

and η small enough in order to have

exp
{

24r−1(4C)4rC̄4r
3

}
2C(1 + C̄2 + C̄3) <

C̄1

2
and exp

{
24r−1(4C)4rC̄4r

3

}
(C̄1 + 1)η̃ ≤ 1

2
,

we finally obtain that the first equation of (9.18) is true for any n ∈ N. Now we deal with the
second equation of (9.18) and we still proceed by induction. Recalling (9.22) and proceeding in a
similarly way as done in the previous estimates, the following inequality is satisfied:

‖∇udn+1‖
L2r
t L

dr
2r−1
x

+ ‖udn+1‖
L2r
t L

dr
r−1
x

≤ C
{
‖ūd‖

Ḃ
−1+ 1

p
p,r

+ ‖gn+1‖
LrtL

dr
3r−2
x

+ ‖ν − 1‖∞‖∇un‖
L2r
t L

dr
2r−1
x

}
,

for a suitable positive constant C. Hence, by the definition (9.16) of gn+1, we deduce that

‖∇udn+1‖
L2r
t L

dr
2r−1
x

+ ‖udn+1‖
L2r
t L

dr
r−1
x

≤ C
{
‖ūd‖

Ḃ
d
p−1

p,r

+ ‖uhn‖
L2r
t L

dr
r−1
x

‖∇uhn‖
L2r
t L

dr
2r−1
x

+ ‖uhn+1‖
L2r
t L

dr
r−1
x

‖∇udn‖
L2r
t L

dr
2r−1
x

+ ‖udn‖
L2r
t L

dr
r−1
x

‖∇uhn+1‖
L2r
t L

dr
2r−1
x

+ ‖ν − 1‖∞
(
‖∇uhn‖

L2r
t L

dr
2r−1
x

+ ‖∇udn‖
L2r
t L

dr
2r−1
x

)}
,

so that, thanks to the induction hypotheses and the previous estimates, we bound the right hand-
side by

(C + C̄1C̄2η̃ + ‖ν − 1‖∞C̄2 )‖ūd‖
Ḃ
d
p−1

p,r

+ (C̄1C̄3 + C̄2
1 η̃ + ‖ν − 1‖∞(C̄1 + C̄2))η̃.

Finally, imposing C < C̄2 and η small enough in order to fulfill C + ( C̄1C̄2 + C̄2 )η ≤ C̄2 and
moreover (C̄1C̄3 + C̄2

1η + η(C̄1 + C̄2

)
)η ≤ C̄3, then the second inequality of (9.18) is satisfied for

any n ∈ N. Now, let us prove by induction that there exist three positive constants C̃1, C̃2 and C̃3,
such that

‖∇uhn+1‖
LrtL

dr
2(r−1)
x

≤ C̃1η and ‖∇udn+1‖
LrtL

dr
2(r−1)
x

≤ C̃2‖ūd‖
Ḃ
d
p−1

p,r

+ C̃3, (9.31)

for any positive integer n. Recalling the mild formulation 9.22 of un+1, Lemma 9.2.7.1, Corollary
9.2.7.1 and Theorem 9.2.8, it turns out that

‖∇uhL‖
LrtL

dr
2(r−1)
x

+ ‖∇F 1,h
n+1‖

LrtL

dr
2(r−1)
x

≤ C
(
‖ūh‖

Ḃ
d
p−1

p,r

+ ‖gn+1‖
LrtL

dr
3r−2
x

)
, (9.32)

while Theorem 9.2.2 implies

‖∇F 2,h
n+1 +∇F 3,h

n+1‖
LrtL

dr
2(r−1)
x

≤ ‖ν − 1‖∞‖∇un‖
LrtL

dr
2(r−1)
x

. (9.33)
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By the definition of gn+1 (9.16), its LrtL
dr/(3r−2)
x -norm is bounded by

‖udn‖
L2r
t L

dr
r−1
x

‖∇uhn+1‖
L2r
t L

dr
2r−1
x

+ ‖uhn‖
L2r
t L

dr
r−1
x

‖∇uhn‖
L2r
t L

dr
2r−1
x

+ ‖uhn+1‖
L2r
t L

dr
r−1
x

‖∇udn‖
L2r
t L

dr
2r−1
x

Hence, thanks to the uniform estimates given by (9.18), we obtain

‖gn+1‖
LrtL

dr
3r−2
x

≤
(
C̄1η̃ + C̄3

)
C̄1η̃ + C̄1C̄2‖ūd‖

Ḃ
−1+ d

p
p,r

η̃ ≤
(
C̄1η̃ + C̄3 + C̄2

)
C̄1η, (9.34)

Furthermore, by the induction hypotheses (9.31), we remark that

‖ν − 1‖∞‖∇un‖
LrtL

dr
2(r−1)
x

≤ ‖ν − 1‖∞C̃1η + C̃2η̃ + ‖ν − 1‖∞C̃3. (9.35)

Thus, summarizing (9.32), (9.33), (9.34) and (9.35), we finally obtain

‖∇uhn+1‖
LrtL

dr
2(r−1)
x

≤ C
{
‖ūh‖

Ḃ
−1+ d

p
p,r

+
(
C̄1η̃+C̄3+C̄2

)
C̄1η+‖ν−1‖∞C̃1η+C̃2η̃+‖ν−1‖∞C̃3

}
, (9.36)

hence, imposing C̃1 > C
(
1 + C̄1C̄3 + C̄1C̄2 + C̃2 + C̃3

)
and assuming η small enough, we get that

the first inequality of (9.31) is true for any positive integer n. Now, proceeding as to prove (9.36),
we get

‖∇udn+1‖
LrtL

dr
2(r−1)
x

≤ C
{
‖ūd‖

Ḃ
−1+ d

p
p,r

+
(
C̄1η̃ + C̄3 + C̄2

)
C̄1η + ‖ν − 1‖∞C̃1η + C̃2η̃ + ‖ν − 1‖∞C̃3

}
.

Hence, imposing C̃2 > C, C̃3 > 0 such that C{(C̄1η̃ + C̄3 + C̄2)C̄1η + ‖ν − 1‖∞C̃1η + C̃2η̃} < C̃3

and assuming η small enough, we finally establish that also the second inequality of (9.31) is true
for any n ∈ N.

Now, denoting C1 := C̄1 + C̃1, C2 := C̄2 + C̃2, C3 := C̄3 + C̃3 and summarizing (9.18) and
(9.31), we finally obtain (9.17). To conclude this first step we observe that Πn+1 is determined by

Πn+1 := − (−∆)−
1
2 R · gn+1 −R ·R · {(ν(θn+1)− 1)∇un}, (9.37)

so that, thanks to Corollary 9.2.1.1 and (9.34), we deduce that

‖Πn+1‖
LrtL

Nr
2(r−1)

≤ C(‖gn+1‖
LrtL

Nr
3r−2)
x

+ ‖ν − 1‖L∞x ‖∇un‖
LrtL

Nr
2(r−1)
x

) ≤ C4η, (9.38)

for any n ∈ N and for a suitable positive constant C4.

Step 2: ε-dependent estimates. As second step, we are going to establish some ε-dependent
estimates which are useful for the third step, where we will prove that (θn, un, Πn) is a Cauchy
sequence in a suitable space. Defining r̄ := 2r/(2 − εr) > r, then we still have p < dr̄/(2r̄ − 1) =

2dr/((4 + ε)r − 2), since ε is bounded by 2(d/p − 2 + 1/r). Since Ḃ
d/p−1
p,r ↪→ Ḃ

d/p−1
p,r̄ , then there

exists a positive constant C such that

η̄ :=
(
‖ν − 1‖∞ + ‖ūh‖

Ḃ
d
p−1

p,r̄

)
exp

{
cr‖ūd‖4r

Ḃ
d
p−1

p,r̄

}
≤ Cη.
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Hence, arguing exactly as for proving (9.17) with r̄ instead of r, we get also

‖∇uhn‖
L2r̄
t L

dr̄
2r̄−1
x

+ ‖uhn‖
L2r̄
t L

dr̄
r̄−1
x

≤ C1η̄,

‖∇udn‖
L2r̄
t L

dr
2r̄−1
x

+ ‖udn‖
L2r̄
t L

dr̄
r̄−1
x

≤ C2‖ūd‖
Ḃ
d
p−1

p,r̄

+ C3.
(9.39)

First, we want to show by induction that there exists a positive constant C̄5 such that

‖un‖
L2r̄
t L

dr̄
r̄(1−ε)−1
x

+ ‖∇un‖
L2r̄
t L

dr̄
(2−ε)r̄−1
x

≤ C̄5‖ū‖
Ḃ
d
p−1+ε

p,r̄

. (9.40)

Let us remark that these norms are well defined, since r̄(1−ε)−1 > 0 (from ε < 1−1/r < 1−1/r̄).
Recalling the mild formulation of un+1 (9.22), Corollary 9.2.7.1 and Theorem 9.2.8 yield

‖uL‖
L2r̄
t L

dr̄
r̄(1−ε)−1
x

+ ‖∇uL‖
L2r̄
t L

dr̄
(2−ε)r̄−1
x

≤ C‖ū‖
Ḃ
d
p−1+ε

p,r̄

,

for a suitable positive constant C. Moreover, thanks to Lemma 9.2.5 and Lemma 9.2.6, we get

‖F 1
n+1‖

L2r̄
t L

dr̄
r̄(1−ε)−1
x

+ ‖∇F 1
n+1‖

L2r̄
t L

dr̄
(2−ε)r̄−1
x

≤ C‖gn+1‖
Lr̄tL

dr̄
(3−ε)r̄−2
x

.

From the definition of gn+1 (9.16) and the estimates (9.39), we get

‖gn+1‖
Lr̄tL

dr̄
(3−ε)r̄−2
x

≤ C1η̄
(
‖udn‖

L2r̄
t L

dr̄
r̄(1−ε)−1
x

+ ‖udn+1‖
L2r̄
t L

dr̄
r̄(1−ε)−1
x

+

+ ‖∇udn‖
L2r̄
t L

dr̄
(2−ε)r̄−1
x

+ ‖∇udn+1‖
L2r̄
t L

dr̄
(2−ε)r̄−1
x

)
,

so that, by the induction hypotheses (9.40), we have the following bound

‖gn+1‖
Lr̄tL

dr̄
(3−ε)r̄−2
x

≤ C1η̄
(
‖un+1‖

L2r̄
t L

dr̄
r̄(1−ε)−1
x

+ ‖∇un+1‖
L2r̄
t L

dr̄
(2−ε)r̄−1
x

)
+ C1η̄‖ū‖

Ḃ
d
p−1+ε

p,r̄

.

Moreover, thanks to Lemma 9.2.6 and Theorem 9.2.2, we get

‖F 2
n+1 + F 3

n+1‖
L2r̄
t L

dr̄
r̄(1−ε)−1
x

+ ‖∇F 2
n+1 +∇F 3

n+1‖
L2r̄
t L

dr̄
(2−ε)r̄−1
x

≤ C‖ν − 1‖L∞x ‖∇u
n‖

L2r̄
t L

dr̄
(2−ε)r̄−1
x

.

Summarizing the previous estimates and absorbing the terms with indexes n+ 1 on the right side
by the left-hand side, we get that there exists a positive constant C such that

‖un+1‖
L2r̄
t L

dr̄
r̄(1−ε)−1
x

+ ‖∇un+1‖
L2r̄
t L

dr̄
(2−ε)r̄−1
x

≤ (C(1 + C1η̄) + C̄5C1η̄)‖ū‖
Ḃ
d
p−1+ε

p,r

,

thus (9.40) is true for any positive integer n, assuming C̄5 > 2C and η̄ small enough. Now recalling
that r̄ = 2r/(2− εr), (9.40) can be reformulated by

‖un‖
L

4r
2−εr
t L

2dr
(2−ε)r−2
x

+ ‖∇un‖
L

4r
2−εr
t L

2dr
(4−ε)r−2
x

≤ C̄5‖ū‖
Ḃ
d
p−1+ε

p,r̄

≤ C5‖ū‖
Ḃ
d
p−1+ε

p,r̄

, (9.41)

for a suitable positive constant C5.
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Now we want to prove the existence of a positive constant C6 such that

‖un‖
L

4r
2−εr
t L

dr
r−1
x

+‖un‖
L2r
t L

2dr
(2−ε)r−2
x

+‖∇un‖
L

4r
2−εr
t L

dr
2r−1
x

+‖∇un‖
L2r
t L

2dr
(4−ε)r−2
x

≤ C6‖ū‖
Ḃ
d
p−1+ ε

2
p,r

. (9.42)

Let us remark that such spaces are well defined, since 2−εr > 0 (from ε < 2/r) and (2−ε)r−2 > 0
(from ε/2 < ε < 1 − 1/r). Proceeding exactly as for proving (9.40), with r instead of r̄ and ε/2
instead of ε, we get

‖un‖
L2r
t L

2dr
(2−ε)r−2
x

+ ‖∇un‖
L2r
t L

2dr
(4−ε)r−2
x

≤ C̄6‖ū‖
Ḃ
d
p−1+ ε

2
p,r̄

, (9.43)

for a suitable positive constant C̄6. Furthermore, recalling the mild formulation of un+1 (9.22),
Corollary 9.2.7.1 and Theorem 9.2.8 implies

‖uL‖
L

4r
2−εr
t L

dr
r−1
x

+ ‖∇uL‖
L

4r
2−εr
t L

dr
2r−1
x

+ ≤ C‖ū‖
Ḃ
d
p−1+ ε

2
p,r

,

for a suitable positive constant C. Thanks to Lemma 9.2.5 and Lemma 9.2.6, we obtain

‖F 1
n+1‖

L
4r

2−εr
t L

dr
r−1
x

+ ‖∇F 1
n+1‖

L
4r

2−εr
t L

dr
2r−1
x

+ ≤ C‖gn+1‖
L

2r
2−εr
t L

dr
3r−2
x

.

From the definition of gn+1 (9.16) and the estimates (9.17), we get that

‖gn+1‖
L

r
1−εr
t L

dr
3r−2
x

≤ C1η
(
‖udn‖

L
4r

2−εr
t L

dr
r−1
x

+ ‖udn+1‖
L

4r
2−εr
t L

dr
r−1
x

+

+ ‖∇udn‖
L

4r
2−εr
t L

dr
2r−1
x

+ ‖∇udn+1‖
L

4r
2−εr
t L

dr
2r−1
x

)
,

so that, by the induction hypotheses of (9.42), we have the following bound

‖gn+1‖
L

r
1−εr
t L

dr
3r−2
x

≤ C1η
(
‖un+1‖

L
4r

2−εr
t L

dr
r−1
x

+ ‖∇un+1‖
L

4r
2−εr
t L

dr
2r−1
x

)
+ C1η‖ū‖

Ḃ
d
p−1+ ε

2
p,r

.

Finally, thanks to Lemma 9.2.4 and Lemma 9.2.5, we get

‖F 2
n+1 + F 3

n+1‖
L

4r
2−εr
t L

dr
r−1
x

+ ‖∇F 2
n+1 +∇F 3

n+1‖
L

4r
2−εr
t L

dr
2r−1
x

≤ C‖ν − 1‖L∞‖∇un‖
L

4r
2−εr
t L

dr
2r−1
x

.

Summarizing the previous estimates and absorbing the terms with indexes n+ 1 on the right side
by the left-hand side, we get that there exists a positive constant C such that

‖un+1‖
L

4r
2−εr
t L

dr
r−1
x

+ ‖∇un+1‖
L

4r
2−εr
t L

dr
2r−1
x

≤ (C(1 + C1η̄) + C6C1η̄)‖ū‖
Ḃ
d
p−1+ ε

2
p,r

. (9.44)

Thus, recalling (9.43) and (9.44), we get that (9.42) is true for any n ∈ N, with C6 > C̄6 + 2C and
η small enough.

Step 3. µ-dependent estimates and convergence of the series. We denote by δun :=
un+1−un by δνn := ν(θn+1)−ν(θn) and by δθn := θn+1−θn, for every positive integer n. Moreover,
fixing λ > 0, we define

δUn,λ(T ) := ‖δun,λ‖
L2r(0,T ;L

dr
r−1
x )

+ ‖δun,λ‖
L2r(0,T ;L

2dr
(2−ε)r−2
x )

+ ‖∇δun,λ‖
L2r(0,T ;L

dr
2r−1
x )

+ ‖∇δun,λ‖
L2r(0,T ;L

2dr
(4−ε)r−2
x )

,
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where, recalling (9.21), δun,λ(t) := δun(t)hn,λ(0, t). We want to prove that the series
∑

n∈N δUn(T )
is finite. Denoting by δgn := gn+1 − gn, δDn := D(un+1) − D(un), then, thanks to the equality
(9.22), we can formulate δun,λ = fn,1 + fn,2 + fn,3, where

fn,1 := hn,λ(0, t)

ˆ t

0
e(t−s)∆Pδgn(s)ds,

fn,2 := hn,λ(0, t)

ˆ t

0

[
∇e(t−s)∆R ·R · {(ν(θn)− 1)δDn−1}+

+ div e(t−s)∆{(ν(θn)− 1)δDn−1}
]
(s)ds,

fn,3 := hn,λ(0, t)
( ˆ t

0
∇e(t−s)∆R ·R · {δνnD(un)}(s)ds

+ hn,λ(0, t)

ˆ t

0
div e(t−s)∆{δνnD(un)}(s)ds

)
.

(9.45)

At first step let us estimate

‖fn,1‖
L2r(0,T ;L

dr
r−1
x )

+ ‖fn,1‖
L2r(0,T ;L

2dr
(2−ε)r−2
x )

+ ‖∇fn,1‖
L2r(0,T ;L

dr
2r−1
x )

+ ‖∇fn,1‖
L2r(0,T ;L

2dr
(4−ε)r−2
x )

.

Observing that

δgn = −

 udn∂dδu
h
n + δudn∂du

h
n + δuhn−1 · ∇uhn + uhn−1 · ∇δuhn−1

∇hudn · δuhn +∇hδudn · uhn − udndivhδuhn − δudn−1divhuhn

 ,

then, by Lemma 9.7.1 and Lemma 9.7.2, we obtain

‖fn,1‖
L2r(0,T ;L

dr
r−1
x )

+ ‖∇fn,1‖
L2r(0,T ;L

dr
2r−1
x )

≤

≤ C
{

1

λ
1
4r

(
‖udn‖

1
2

L2r
t L

dr
r−1
x

‖∂dδuhn,λ‖
L2r(0,T ;L

dr
2r−1
x )

+ ‖∇hudn‖
1
2

L2r
t L

dr
2r−1
x

‖δuhn,λ‖
L2r(0,T ;L

dr
r−1
x )

+

+ ‖udn‖
1
2

L2r
t L

dr
r−1
x

‖∇hδuhn,λ‖
L2r(0,T ;L

dr
2r−1
x )

)
+ ‖δudn,λ‖

L2r(0,T ;L
dr
r−1
x )
‖∂duhn‖

L2r
t L

dr
2r−1
x

+

+ ‖δuhn−1,λ‖
L2r(0,T ;L

dr
r−1
x )
‖∇uhn‖

L2r
t L

dr
2r−1
x

+ ‖uhn−1‖
L2r
t L

dr
r−1
x

‖∇δuhn−1,λ‖
L2r(0,T ;L

dr
2r−1
x )

+

+ ‖∇hδudn,λ‖
L2r(0,T ;L

dr
2r−1
x )

‖uhn‖
L2r
t L

dr
r−1
x

+ ‖δudn−1,λ‖
L2r(0,T ;L

dr
r−1
x )
‖∇huhn‖

L2r
t L

dr
2r−1
x

}
.

The above inequality together wit (9.17) and (9.29) yield

‖fn,1‖
L2r(0,T ;L

dr
r−1
x )

+ ‖∇fn,1‖
L2r(0,T ;L

dr
2r−1
x )

≤ 1

4
‖∇δuhn,λ‖

L2r(0,T ;L
dr

2r−1
x )

+ CC̄1η̃‖δudn,λ‖
L2r(0,T ;L

dr
r−1
x )

+

+ CC̄1C̃rη
(
‖δuhn−1,λ‖

L2r(0,T ;L
dr
r−1
x )

+ ‖∇δuhn−1‖
L2r(0,T ;L

dr
2r−1
x )

)
+

1

4
‖δuhn,λ‖

L2r(0,T ;L
dr
r−1
x )

+

+ CC̄1η̃‖∇hδudn,λ‖
L2r(0,T ;L

dr
2r−1
x )

+
1

4
‖∇hδuhn,λ‖

L2r(0,T ;L
dr

2r−1
x )

+ CC̄1C̃rη‖δudn−1,λ‖
L2r(0,T ;L

dr
r−1
x )

.
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Assuming η small enough, the previous inequality yields

‖fn,1‖
L2r(0,T ;L

dr
r−1
x )

+ ‖∇fn,1‖
L2r(0,T ;L

dr
2r−1
x )

≤ 1

4

{
‖δun,λ‖

L2r(0,T ;L
dr
r−1
x )

+

+ ‖δun−1,λ‖
L2r(0,T ;L

dr
r−1
x )

+ ‖∇δun,λ‖
L2r(0,T ;L

dr
2r−1
x )

+ ‖∇δun−1,λ‖
L2r(0,T ;L

dr
2r−1
x )

} (9.46)

Now, let us estimate fn,1 and ∇fn,1 in L2r(0, T ;L
2dr/((2−ε)r−2)
x ) and L2r(0, T ;L

2dr/((4−ε)r−2)
x ) re-

spectively. Thanks to Lemma 9.7.1 and 9.7.2, the following inequality is satisfied:

‖fn,1‖
L2r(0,T ;L

2dr
(2−ε)r−2
x )

+ ‖∇fn,1‖
L2r(0,T ;L

2dr
(4−ε)r−2
x )

≤

≤ C
{

1

λ
1
4r

(
‖udn‖

1
2

L2r
t L

dr
r−1
x

‖∂dδuhn,λ‖
L2r(0,T ;L

2dr
(4−ε)r−2
x )

+ ‖∇hudn‖
1
2

L2r
t L

dr
2r−1
x

‖δuhn,λ‖
L2r(0,T ;L

2dr
(2−ε)r−2
x )

+

+ ‖udn‖
1
2

L2r
t L

dr
r−1
x

‖∇hδuhn,λ‖
L2r(0,T ;L

2dr
(4−ε)r−2
x )

)
+ ‖δudn,λ‖

L2r(0,T ;L

2dr
(2−ε)r−2
x )

‖∂duhn‖
L2r
t L

dr
2r−1
x

+

+ ‖δuhn−1,λ‖
L2r(0,T ;L

2dr
(2−ε)r−2
x )

‖∇uhn‖
L2r
t L

dr
2r−1
x

+ ‖uhn−1‖
L2r
t L

dr
r−1
x

‖∇δuhn−1,λ‖
L2r(0,T ;L

2dr
(4−ε)r−2
x )

+

+ ‖∇hδudn,λ‖
L2r(0,T ;L

2dr
(4−ε)r−2
x )

‖uhn‖
L2r
t L

dr
r−1
x

+ ‖δudn−1,λ‖
L2r(0,T ;L

2dr
(2−ε)r−2
x )

‖∇huhn‖
L2r
t L

dr
2r−1
x

}
.

Hence, (9.17), (9.29) and the smallness condition on η imply that

‖fn,1‖
L2r(0,T ;L

2dr
(2−ε)r−2
x )

+ ‖∇fn,1‖
L2r(0,T ;L

2dr
(4−ε)r−2
x )

≤ 1

4

{
‖δun,λ‖

L2r(0,T ;L

2dr
(2−ε)r−2
x )

+

+ ‖δun−1,λ‖
L2r(0,T ;L

2dr
(2−ε)r−2
x )

+ ‖∇δun,λ‖
L2r(0,T ;L

2dr
(4−ε)r−2
x )

+ ‖∇δun−1,λ‖
L2r(0,T ;L

2dr
(4−ε)r−2
x )

}
.

(9.47)
Thus, summarizing (9.46) and (9.47), we obtain

‖fn,1‖
L2r(0,T ;L

dr
r−1
x )

+ ‖fn,1‖
L2r(0,T ;L

2dr
(2−ε)r−2
x )

+ ‖∇fn,1‖
L2r(0,T ;L

dr
2r−1
x )

+ ‖∇fn,1‖
L2r(0,T ;L

2dr
(4−ε)r−2
x )

≤ 1

4
δUn,λ(T ) +

1

4
δUn−1,λ(T ).

(9.48)

Now, we want to estimate fn,2 in L2r(0, T ;L
dr/(r−1)
x )∩L2r(0, T ;L

2dr/((2−ε)r−2)
x ) and moreover ∇fn,2

in L2r(0, T ;L
dr/(2r−1)
x )∩L2r(0, T ;L

2dr/((4−ε)r−2)
x ). From Lemma 9.2.5 and Theorem 9.2.2 we obtain

‖fn,2‖
L2r(0,T ;L

dr
r−1
x )

+ ‖fn,2‖
L2r(0,T ;L

2dr
(2−ε)r−2
x )

+ ‖∇fn,2‖
L2r(0,T ;L

dr
2r−1
x )

+ ‖∇fn,2‖
L2r(0,T ;L

2dr
(4−ε)r−2
x )

≤

≤ C‖ν − 1‖∞
(
‖∇δun−1‖

L2r(0,T ;L
dr

2r−1
x )

+ ‖∇δun−1‖
L2r(0,T ;L

2dr
(4−ε)r−2
x )

)
≤ C̃rη

(
‖∇δun−1,λ‖

L2r(0,T ;L
dr

2r−1
x )

+ ‖∇δun−1,λ‖
L2r(0,T ;L

2dr
(4−ε)r−2
x )

)
,
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hence, we deduce that

‖fn,2‖
L2r(0,T ;L

dr
r−1
x )

+ ‖fn,2‖
L2r(0,T ;L

2dr
(2−ε)r−2
x )

+ ‖∇fn,2‖
L2r(0,T ;L

dr
2r−1
x )

+

+ ‖∇fn,2‖
L2r(0,T ;L

2dr
(4−ε)r−2
x )

≤ C̄rηδUn−1,λ(T ).
(9.49)

Now we deal with fn,3 and ∇fn,3. At first, since v ∈ C∞(R) and ‖θn‖L∞t,x ≤ ‖θ̄‖L∞x , then there

exists c̃ > 0 (dependent on ‖θ̄‖L∞x )) such that ‖δνn(t)‖L∞x ≤ c̃‖δθn(t)‖L∞x , for almost every t ∈ R+.
Moreover, by Lemma 9.2.4 and Theorem 9.2.2, we have

‖fn,3‖
L2r(0,T ;L

dr
r−1
x )

+ ‖fn,3‖
L2r(0,T ;L

2dr
(2−ε)r−2
x )

+ ‖∇fn,3‖
L2r(0,T ;L

dr
2r−1
x )

+

+ ‖∇fn,2‖
L2r(0,T ;L

2dr
(4−ε)r−2
x )

≤ C
{
‖δνnD(un)‖

L2r(0,T ;L
dr

2r−1
x )

+ ‖δνnD(un)‖
L2r(0,T ;L

2dr
(4−ε)r−2
x )

}
.

Thus, recalling (9.41) and (9.42), we finally obtain

‖fn,3‖
L2r(0,T ;L

dr
r−1
x )

+ ‖fn,3‖
L2r(0,T ;L

2dr
(2−ε)r−2
x )

+ ‖∇fn,3‖
L2r(0,T ;L

dr
2r−1
x )

+ ‖∇fn,3‖
L2r(0,T ;L

2dr
(4−ε)r−2
x )

≤ 2Cc̃‖δθn‖
L

4
ε (0,T ;L∞x )

{
‖∇un‖

L
4r

2−εr
t L

dr
2r−1
x

+ ‖∇un‖
L

4r
2−εr
t L

2dr
(4−ε)r−2
x

}
≤ Ĉ1(ū)‖δθn‖

L
4
ε (0,T ;L∞x )

,

(9.50)
where Ĉ1(ū) := 2Cc̃(C5‖ū‖Ḃd/p−1+ε

p,r
+ C6‖ū‖Ḃd/p−1+ε/2

p,r
). Now, let us observe that δθn is the weak

solution of {
∂tδθn − µ∆δθn = −div( δθnun )− div( δun−1θn ) R+ × Rd,
δθn |t=0 = 0 Rd,

which implies

δθn(t) = −
ˆ t

0
div eµ(t−s)∆δθn(s)un(s)ds−

ˆ t

0
div eµ(t−s)∆δun−1(s)θn(s)ds. (9.51)

By Remark 9.2.3 we deduce then

‖δθn(t)‖L∞x ≤
ˆ t

0

‖δθn(s)un(s)‖
L

2dr
(2−ε)r−2
x

|µ(t− s)|1−
1
2r
− ε

4

ds+

ˆ t

0

‖δun−1(s)θn(s)‖
L

2dr
(2−ε)r−2
x

|µ(t− s)|1−
1
2r
− ε

4

ds,

hence, defining α := (1− 1/(2r)− ε/4)(2r)′ < 1, ‖δθn(t)‖2rL∞x is bounded by

22r−1

( ˆ t

0

1

|µ(t− s)|α
ds

)2r−1{ ˆ t

0
‖δθn(s)‖2rL∞x ‖un(s)‖2rLq∗x ds+

ˆ t

0
‖θ̄‖2rL∞x ‖δun−1(s)‖2rLq∗x ds

}
.

Then, using the Gronwall inequality, we have

‖δθn(t)‖2rL∞x

≤
(
2

(1− α)t1−α

µα
)2r−1‖θ̄‖2rL∞x

ˆ t

0
‖δun−1(s)‖2r

L

2dr
(2−ε)r−2
x

ds exp
{ ˆ t

0
‖un(s)‖2r

L

2dr
(2−ε)r−2
x

ds
}
,
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which yields ‖δθn(t)‖L∞x ≤ χ(t)δUn−1(t), where χ is an increasing function defined by

χ(t) :=
(
2

(1− α)t1−α

µα
)1− 1

2r exp
{ 1

2r
C6‖ū‖

Ḃ
d
p−1+ ε

2
p,r

}
.

Hence, Recalling (9.50), we deduce that

‖fn,3‖
L2r(0,T ;L

dr
r−1
x )

+ ‖fn,3‖
L2r(0,T ;L

2dr
(2−ε)r−2
x )

+ ‖∇fn,3‖
L2r(0,T ;L

2dr
(4−ε)r−2
x )

+ ‖∇fn,3‖
L2r(0,T ;L

dr
2r−1
x )

≤ Ĉ1(ū)χ(T )‖δUn−1‖
L

4
ε (0,T )

.
(9.52)

Summarizing (9.48), (9.49) and (9.52) we finally deduce that

δUn,λ(T ) ≤
(1

3
+

4

3
C̃rη

)
δUn−1,λ(T ) +

4

3
Ĉ1(ū)χ(T )‖δUn−1‖

L
4
ε (0,T )

, (9.53)

Supposing η small enough, we can assume µ̃ := (1/3 + 4C̃rη/3) < 1. Thus, fixing T > 0 and
denoting by CT the constant 4C̄1(ū)χ(T ) exp{λ(C̄2‖ūd‖

Ḃ
d
p−1

p,r

+ C̄3)}/3, we get

δUn,λ(t) ≤ µ̃ δUn−1,λ(t) + CT ‖δUn−1,λ‖
L

4
ε (0,t)

,

for all t ∈ [0, T ], where we have used that χ is an increasing function. Now, let us prove by induction
that there exists C = C(T ) > 0 and K = K(T ) > 0 such that

δUn,λ(t) ≤ Cµ̃
n
2 exp

{
K

t√
µ̃

}
, (9.54)

for all t ∈ [0, T ] and for all n ∈ N. The base case is trivial, since it is sufficient to find C = C(T ) > 0
such that δU0,λ(t) ≤ C, for all t ∈ [0, T ]. Then δU0,λ(t) ≤ C exp{Kt/µ̃}, for all K > 0. Passing to
the induction, we have

δUn+1,λ(t)

≤ µ̃δUn−1,λ(t) + CT ‖δUn−1,λ‖
L

4
ε (0,t)

≤
√
µ̃Cµ̃

n+1
2 + CTCµ̃

n
2

(ˆ t

0
exp

{4

ε
K

s√
η̄

}
ds
) ε

4

≤
(√

µ̃+
( ε

4K

) 4
ε µ̃

ε
8
− 1

2CT
)
Cµ̃

n+1
2 exp

{
K

t√
η̄

}
.

Chosen K > 0 big enough, we finally obtain that (9.54) is true for any positive integer n. Hence,
the series

∑
n∈N δun,λ(T ) is convergent, for any T ∈ R+. This yields that∑

n∈N
δUn(T ) ≤ exp

{
λ
(
C̄2‖ūd‖

Ḃ
−1+ d

p
p,r

+ C̄3

)2r}∑
n∈N

δUn,λ(T ) <∞,

so that (un)N and (∇un)N are Cauchy sequences in L2r(0, T ;L
dr/(r−1)
x ) and L2r(0, T ;L

dr
2r−1
x ) respec-

tively. Furthermore, (θn)N is a Cauchy sequence in L∞( (0, T )×Rd), since the norm ‖δθn‖L∞( (0,T )×Rd)

is bounded by χ(T )δUn−1(T ). Recalling also the definition of δgn (9.16), we get∑
n∈N
‖δgn‖Lr(0,T ;L

dr/(3r−2)
x )

<∞,
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for all T > 0. Thus (gn)N is a Cauchy sequence in Lr(0, T ;L
dr/(3r−2)
x ) and ( (

√
−∆)−1gn)N is a

Cauchy sequence in Lr(0, T ;L
dr/(2r−2)
x ), thanks to Corollary 9.2.1.1. Recalling the mild formulation

(9.45), by Lemma 9.2.4 and Theorem 9.2.2, there exist C > 0 such that

‖∇δun‖
Lr(0,T ;L

dr
2(r−1)
x )

≤ C
{
‖δgn‖

Lr(0,T ;L
dr

3r−2
x )

+ ‖ν − 1‖∞‖∇δun−1‖
Lr(0,T ;L

dr
2(r−1)
x )

+

+ ‖δνn‖L∞( (0,T )×Rd)‖∇un‖
LrtL

dr
2(r−1)
x )

}
,

for all n ∈ N. Hence the series
∑

n∈N ‖∇δun‖Lr(0,T ;L
dr/(2r−2)
x )

is finite, which implies that (∇un)N is a

Cauchy sequence in Lr(0, T ;L
dr/(2r−2)
x ). Finally (Πn)N is a Cauchy sequence in Lr(0, T ;L

dr/(2r−2)
x ),

by (9.37) and this concludes the proof of the Proposition.

Now, let us prove that system (9.1) admits a weak solution, adding a tiny extra regularity to the
initial data.

Theorem 9.3.3. Let 1 < r <∞ and p ∈ (1, dr/(2r − 1)). Suppose that θ̄ belongs to L∞x ∩ L2
x and

ū belongs to Ḃ
d/p−1
p,r ∩ Ḃd/p−1+ε

p,r with ε < min{1/(2r), 1 − 1/r, 2(d/p − 2 + 1/r)}. If (9.5) holds,
then there exists a global weak solution (θ, u,Π) of (9.12) which satisfies the properties of Theorem
9.1.3.

Proof. By Proposition 9.3.2, there exist uµ in L2r
t L

dr/(r−1)
x with ∇uµ in L2r

t L
dr/(2r−1)
x and ∇uµ ∈

LrtL
dr/(2r−2)
x , and also θµ ∈ L∞(R+×Rd), Πµ ∈ LrtL

dr
2(r−1)
x , such that (θµ, uµ, Πµ) is weak solution

of (9.12). Moreover, thanks to (9.13), we have the following weakly convergences:

uµn ⇀ u w − L2r
t L

dr
r−1
x , ∇uµn ⇀ ∇u w − L2r

t L
dr

2r−1
x , ∇uµn ⇀ ∇u w − L2r

t L
dr

2(r−1)
x ,

θµn
∗
⇀ θ w ∗ −L∞t,x, Πµn ⇀ Π w − LrtL

dr
2(r−1)
x ,

for a positive decreasing sequence (µn)N which is convergent to 0. We want to prove that (θ, u,Π) is a

weak solution of (9.1). First let us observe that {uµ |µ > 0} is a compact set on C([0, T ]; Ẇ
−1,dr/(2r−2)
x ),

for all T > 0. Indeed, recalling the momentum equation of (9.12), ∂t(
√
−∆)−1uµ is uniformly

bounded in Lr(0, T ;L
dr/(2r−2)
x ). This yields that {(

√
−∆)−1uµ |µ > 0} is an equicontinuous and

bounded family on C([0, T ], L
dr/(2r−2)
x ). Hence we can assume that (

√
−∆)−1uµn strongly converges

to (
√
−∆)−1u in L∞(0, T ;L

dr/(2r−2)
x ), namely uµn strongly converges to u in L∞(0, T ; Ẇ

−1,dr/(2r−2)
x ).

We recall that (∇uµn)N is a bounded sequence on LrtL
dr/(2r−2)
x , so that (uµn)N is a bounded sequence

on LrtẆ
1,dr/(2r−2)
x . Thus, passing through the following real interpolation[

Ẇ
−1, dr

2(r−1)
x , Ẇ

+1, dr
2(r−1)

x

]
1
2r
,1

= Ḃ
1− 1

r
dr

2(r−1)
,1
,

(see [11], Theorem 6.3.1), and since Ḃ
1− 1

r

dr/(2r−2),1 ↪→ L
dr/(r−1)
x (see [7], Theorem 2.39), we deduce

that,

‖uµn − u‖
L2r(0,T ;L

dr
r−1
x )

≤ C
∥∥∥‖uµn − u‖1− 1

2r

Ẇ
−1, dr

2(r−1)
x

‖uµn − u‖
1
2r

Ẇ
1, dr

2(r−1)
x

∥∥∥
L2r(0,T )

≤ C‖uµn − u‖
1− 1

2r

L∞(0,T ;Ẇ
−1, dr

2(r−1)
x )

‖uµn − u‖
1
2r

L1(0,T ;Ẇ
1, dr

2(r−1)
x )

,
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for all T > 0. This implies that uεn strongly converges to u in L2r
loc(R+;L

dr
r−1
x ), for all T > 0, and

moreover that uµnθµn and uµn · ∇uεn converge to u θ and u · ∇u, respectively, in the distributional
sense. We deduce that θ is a weak solution of

∂tθ + div(θu) = 0 in R+ × Rd, θ|t=0 = θ̄ in Rd. (9.55)

Now, we claim that θµn → θ almost everywhere on R+×Rd, up to a subsequence. Multiplying the
first equation of (9.12) by θ/2 and integrating in [0, t)× Rd we get

‖θµn(t)‖2L2
x

+ µn

ˆ t

0
‖∇θµ(s)‖2L2

x
ds = ‖θ̄‖L2

x
,

which yields ‖θµn‖L2((0,T )×Rd) ≤ T 1/2‖θ̄‖L2
x

for any T > 0. Moreover, multiplying (9.55) by θ and

integrating in [0, t)× Rd, we achieve ‖θ(t)‖L2
x

= ‖θ̄‖L2
x

for any t ∈ (0, T ), hence

lim sup
n→∞

‖θµn‖L∞(0,T ;L2
x) ≤ T

1
2 ‖θ̄‖L2

x
= ‖θ‖L2(0,T ;L2

x).

Thus we can extract a subsequence (which we still call it θµn) such that θµn strongly converges to θ
in L2

loc(R+×Rd). We deduce that θµn converges almost everywhere to θ, up to a subsequence, and
ν(θµn) strongly converges to ν(θ) in Lmloc(R+×Rd), for every 1 ≤ m <∞, thanks to the Dominated
Convergence Theorem. Then ν(θµn)D(uµn) converges to ν(θ)D(u) in the distributional sense.

Summarizing all the previous considerations we finally conclude that (θ, u, Π) is a weak solution
of (9.1) and it satisfies the inequalities given by (9.13).

9.4 Weak solutions: the smooth case

In this section we present the proof of Theorem 9.1.3. Because of the low regularity of the initial
temperature, by the dyadic partition we approximate our initial data and by Theorem 9.3.3 we
construct a sequence of approximate solutions. First, still using the mentioned Theorem, we observe
that such solutions fulfill inequalities which are dependent only on the initial data. Therefore,
using a compactness argument, we establish that the approximate solutions converge, up to a
subsequence, and that the limit is the solution we are looking for.

Proof of Theorem 9.1.3. Recalling the Besov embedding L∞x ↪→ Ḃ0
∞,∞, we define

θ̄n := χn
∑
|j|≤n

∆̇j θ̄ and ūn :=
∑
|j|≤n

∆̇j ū, for every n ∈ N,

where χn ≤ 1 is a cut-off function which has support on the ball B(0, n) ⊂ Rd and χn ≡ 1 in

B(0, n/2). Thus θ̄n ∈ L∞x ∩ L2
x and ūn ∈ Ḃd/p

p,r ∩ Ḃd/p−1+ε
p,r , with ε < min{1/(2r), 1 − 1/r, 2(d/p −

2 + 1/r)}. Then, by Theorem 9.3.3, there exists (θn, un,Πn) weak solution of
∂tθn + div(θnun) = 0 R+ × Rd,
∂tun + un · ∇un − div(ν(θn)D(un)) +∇Πn = 0 R+ × Rd,
div un = 0 R+ × Rd,
(θn, un)t=0 = (θ̄n, ūn) Rd,



9.4. WEAK SOLUTIONS: THE SMOOTH CASE 233

such that θn ∈ L∞(R+×Rd), un ∈ L2r
t L

dr/(r−1)
x , ∇un ∈ L2r

t L
dr/(2r−1)
x ∩LrtL

dr/(2r−2)
x and moreover

Πn ∈ LrtL
dr

2(r−1)
x . Furthermore the following inequalities are satisfied:

‖∇uhn‖
L2r
t L

dr
2(r−1)
x

+ ‖∇uhn‖
L2r
t L

dr
2r−1
x

+ ‖uhn‖
L2r
t L

dr
r−1
x

≤ C1η,

‖∇udn‖
L2r
t L

dr
2(r−1)
x

+ ‖∇udn‖
L2r
t L

dr
2r−1
x

+ ‖udn‖
L2r
t L

dr
r−1
x

≤ C2‖ūd‖
Ḃ
−1+ d

p
p,r

+ C3,

‖Πn‖
LrtL

dr
2(r−1)
x

≤ C4η, ‖θn‖L∞(R+×Rd) ≤ C‖θ̄‖L∞x ,

for all n ∈ N and for some positive constants C1, C2, C3, C4, C5 and C. Then there exists
a subsequence (which we still denote by ( (θn, un,Πn) )N ) and (θ, u, Π) in the same space of
(θn, un,Πn), such that

un ⇀ u w − L2r
t L

dr
r−1
x , ∇un ⇀ ∇u w − L2r

t L
dr

2r−1
x , ∇un ⇀ ∇u w − L2r

t L
dr

2(r−1)
x ,

θn
∗
⇀ θ w∗ − L∞t,x, Πn ⇀ Π w − LrtL

dr
2(r−1)
x .

Moreover, proceeding as in Theorem 9.3.3, un strongly converges to u in L2r
loc,tL

dr/(r−1)
x , so that θ

is weak solution of

∂tθ + div(θu) = 0 in R+ × Rd and θ|t=0 = θ̄ in Rd. (9.56)

Now, we claim that θ2
n
∗
⇀ θ2 in L∞(R+ × Rd). Observing that ‖θ2‖L∞(R+×Rd) ≤ C2‖θ̄‖2L∞x , there

exists ω ∈ L∞t,x such that θ2
n
∗
⇀ ω in L∞t,x, up to a subsequence. Now, let us remark that θ2

n is weak
solution of

∂tθ
2
n + div(θ2

nun) = 0 in R+ × Rd and θ2
n|t=0 = θ̄2 in Rd,

then, passing through the limit as n goes to ∞, we deduce that ω is weak solution of

∂tω + div(ωu) = 0 in R+ × Rd and ω|t=0 = θ̄2 in Rd.

Moreover, multiplying (9.56) by θ, we get

∂tθ
2 + div(θ2u) = 0 in R+ × Rd and θ2

|t=0 = θ̄2 in Rd,

which yields ω = θ2, from the uniqueness of the transport equation. Summarizing the previous
considerations, we deduce that θn → θ s−L2

loc(R+×Rd), so that θn converges to θ almost everywhere
in R+ × Rd up to a subsequence, thus ν(θn) converges to ν(θ) almost everywhere in R+ × Rd. We
conclude that and ν(θn) strongly converges to ν(θn) in Lmloc(R+×Rd), for every m ∈ [1,∞), thanks
to the Dominated Convergence Theorem. Therefore, passing through the limit as n goes to ∞, we
deduce that

div(ν(θn)∇un)→ div(ν(θ)∇u),

in the distributional sense, which allows to conclude that (θ, u,Π) is a weak solution of (9.1).

Remark 9.4.1. If we replace the two first equations of system (9.1) by

∂tθ+ div (θu) + aθ = 0 in R+ ×Rd and ∂tu+ u · ∇u− div (ν(θ)D(u)) +∇Π = aθed in R+ ×Rd,

where ed = t(0, . . . , 1) ∈ Rd and a is a positive real constant, then we can adapt our strategy in order
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to establish the existence of weak solutions for such new system. In the case of the original system,
a term as θed can be assumed only to be bounded both in time and space, hence it does not provide
a time integrability, which is necessary in order to achieve the existence result. However, adding

the damping term aθ to the classical transport equation, and supposing θ̄ to belongs to L
dr/(3r−2)
x ,

then
‖θ(t)‖

L
dr

3r−2
x

≤ ‖θ̄‖
L

dr
3r−2
x

exp
{
− a t

}
,

for every t ∈ R+. Thus θ belongs to LrtL
dr/(3r−2)
x and we can proceed as in the previous proofs,

obtaining a global weak solution (θ, u, Π) which belongs to the space defined by Theorem 9.1.3.
Moreover, increasing η by

η2 :=
(
‖ν − 1‖∞ + ‖ūh‖

Ḃ
−1+ d

p
p,r

+ a‖θ̄‖
L

dr
3r−2

)
exp

{
cr‖ūd‖4r

Ḃ
−1+ d

p
p,r

}
,

the solution (θ, u, Π) fulfills

‖∇uh‖
L2r
t L

dr
2r−1
x

+ ‖∇uh‖
LrtL

dr
2(r−1)
x

+ ‖uh‖
L2r
t L

dr
r−1
x

≤ C1η2,

‖∇ud‖
L2r
t L

dr
2r−1
x

+ ‖∇ud‖
LrtL

dr
2(r−1)
x

‖ud‖
L2r
t L

dr
r−1
x

≤ C2

(
‖ūd‖

Ḃ
−1+ d

p
p,r

+ a‖θ̄‖
L

dr
3r−2

)
+ C3,

‖Π‖
LrtL

dr
2(r−1)
x

≤ C4η2,

for some positive constants C1, C2, C3 and C4.

9.5 The general case: smooth initial data

As preliminary, before starting the proof of Theorem 9.1.4, we enunciate three fundamental Lemma
concerning the regularizing effects of the heat kernel, which will be useful. We recall that B and C
are defined by

Bf(t) :=

ˆ t

0
∇e(t−s)∆f(s)ds, Cf(t) :=

ˆ t

0
e(t−s)∆f(s)ds.

Lemma 9.5.1. Let us assume that p, p3, r, α, γ1, γ2 fulfill the hypotheses of Theorem 9.1.4
and let ε be a non-negative constant bounded by min{1/r, 1 − 1/r, d/p − 1}. If tαf(t) belongs to
L2r/(1−εr)(0, T ;Lpx) then tγ1Cf(t) belongs to L2r/(1−εr)(0, T ;Lp3

x ) and there exists a positive constant
C such that

‖tγ1Cf(t)‖
L

2r
1−εr (0,T ;L

p3
x )
≤ C‖tαf(t)‖

L
2r

1−εr (0,T ;Lpx)
.

Moreover, if ε is null then tγ2Cf(t) belongs to L∞(0, T ;Lp3
x ) and

‖tγ2Cf(t)‖L∞(0,T ;L
p3
x ) ≤ C‖t

αf(t)‖
L

2r
1−εr (0,T ;Lpx)

.

Lemma 9.5.2. Let us assume that p, p2, r, α, β fulfill the hypotheses of Theorem 9.1.4 and let ε be a
non-negative constant bounded by min{1/r, 1−1/r, d/p−1}. If tαf(t) belongs to L2r/(1−εr)(0, T ;Lpx)
then tβBf(t) belongs to L2r/(1−εr)(0, T ;Lp2

x ) and there exists a positive constant C such that

‖tβBf(t)‖
L

2r
1−εr (0,T ;L

p2
x )
≤ C‖tαf(t)‖

L
2r

1−εr (0,T ;Lpx)
.
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Lemma 9.5.3. Let us assume that p, p2, r, α, β, γ1, γ2 fulfill the hypotheses of Theorem 9.1.4
and let ε be a non-negative constant bounded by min{1/r, 1 − 1/r, d/p − 1}. If tβf belongs to
L2r/(1−εr)(0, T ;Lp2

x ) then tγ1Bf(t) belongs to L2r/(1−εr)(0, T ;Lp3
x )

‖tγ1Bf‖
L

2r
1−εr (0,T ;L

p3
x )
≤ C‖tβf‖

L
2r

1−εr (0,T ;L
p2
x )
. (9.57)

Furthermore, if ε = 0 then there exists a positive C such that

‖tγ2Bf‖L∞(0,T ;L
p3
x ) ≤ C‖t

βf‖
L

2r
1−εr (0,T ;L

p2
x )
. (9.58)

The proofs of these lemmas are a direct consequence of Remark 9.2.3. We perform the one of
Lemma 9.5.3, while the others can be achieved thanks to similar procedures.

Proof of Lemma 9.5.3. We begin controlling the L2r/(1−εr)(0, T ;Lp3
x )-norm. First Remark (9.2.3)

yields

‖tγ1Bf(t)‖Lp3x ≤ C
ˆ t

0

tγ1

|t− s|
d
2

(
1
p2
− 1
p3

)
+ 1

2

‖f(s)‖Lp2x ds = C

ˆ 1

0

t
γ1− d2

(
1
p2
− 1
p3

)
+ 1

2
−β

|1− τ |
d
2

(
1
p2
− 1
p3

)
+ 1

2 τβ
F (tτ)dτ,

where F (s) := sβ‖f(s)‖Lp2x . Now, since γ1 − d(1/p2 − 1/p3)/2 + 1/2− β is null, we have

‖tγ1Bf‖
L

2r
1−εr (0,T ;L

p3
x )
≤ C

ˆ 1

0

1

|1− τ |
d
2

(
1
p2
− 1
p3

)
+ 1

2 τβ
‖F (tτ)‖

L
2r

1−εr
t (0,T ;L

p2
x )

dτ

≤ C
ˆ 1

0

1

|1− τ |
d
2

(
1
p2
− 1
p3

)
+ 1

2 τβ+ 1
2r
− ε

2

dτ‖F‖
L

2r
1−εr (0,T ;L

p2
x )
,

thanks to the Minkowski inequality. Thus (9.57) is true, since β + 1/(2r)− ε/2 < 1 and moreover
d(1/p2 − 1/p3)/2 + 1/2 = 2/3− d/(6p) + 1/2 < 1− 1/(2r) < 1. Finally, observing that

‖tγ2Bf(t)‖Lp3x ≤ C
ˆ t

0

tγ2

|t− s|
d
2

(
1
p2
− 1
p3

)
+ 1

2

‖f(s)‖Lp2x ds

≤ C
(ˆ t

0

∣∣∣ tγ2

|t− s|
d
2

(
1
p2
− 1
p3

)
+ 1

2 sβ

∣∣∣(2r)′ds)1− 1
2r ‖F‖L2r(0,T ;L

p2
x ),

we obtain

‖tγ2Bf(t)‖Lp3x ≤ C
(ˆ 1

0

∣∣∣ 1

|1− τ |
d
2

(
1
p2
− 1
p3

)
+ 1

2 τβ

∣∣∣(2r)′dτ)1− 1
2r ‖F‖L2r(0,T ;L

p2
x ),

thanks to the change of variable s = tτ and since (2r)′{γ2−d(1/p2− 1/p3)/2− 1/2−β}+ 1 is null.
Hence (9.58) turns out from {d(1/p2 − 1/p3)/2 + 1/2}(2r)′ < 1 and β(2r)′ < 1.

We present the statement of a modified version of the Maximal Regularity Theorem, whose
proof can be found in [60].

Theorem 9.5.4. Let T ∈]0,∞], 1 < r̄, q < ∞ and α ∈ (0, 1 − 1/r̄). Let the operator A be
defined as in Theorem 9.2.2. Suppose that tαf(t) belongs to Lr̄(0, T ;Lqx). Then tαAf(t) belongs to
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Lr̄(0, T ;Lqx) and there exists C > 0 such that

‖tαAf(t)‖Lr̄(0,T ;Lqx) ≤ C‖tαf(t)‖Lr̄(0,T ;Lqx).

As last part of these preliminaries, we have the following corollary, which will be useful in order
to control the pressure Π.

Corollary 9.5.4.1. Let p ∈ (1, d), r̄ ∈ (1,∞) and α ∈ (0, 1− 1/r̄). If tαf belongs to Lr̄(0, T ;Lpx)

then tαBf belongs to Lr̄(0, T ;Lp
∗
x and there exists a positive constant C (not dependent by f) such

that
‖tαBf(t)‖

L2r(0,T ;Lp
∗
x )
≤ C‖tαf(t)‖L2r(0,T ;Lpx).

Proof. It is sufficient to observe that Bf(t) reads as follows:

Bf(t) = −(
√
−∆)−1R

ˆ t

0
∆e(t−s)∆f(s)ds = −(

√
−∆)−1RAf(t).

Recalling that R is a bounded operator from Lqx to itself for any q ∈ (1,∞) and (
√
−∆)−1 from Lpx

into Lp
∗
x , the lemma is a direct consequence of Theorem 9.5.4.

Proposition 9.5.5. Let p, r, p2, p3 be as in Theorem 9.1.4. Suppose that θ̄ belongs to L∞x and ū

belongs to Ḃ
d/p−1
p,r . If the smallness condition (9.7) holds, then there exists a global weak solution

(θ, u, Π) of (9.12) such that it belongs to the functional framework defined by Theorem 9.1.4 and
moreover it satisfies

‖tβ∇uh‖L2r
t L

p2
x

+ ‖tα∇uh‖
L2r
t L

p∗
x

+ ‖tγ1uh‖L2r
t L

p3
x

+ ‖tγ2uh‖L∞t Lp3x ≤ C1η,

‖tβ∇ud‖L2r
t L

p2
x

+ ‖tα∇ud‖
L2r
t L

p∗
x

+ ‖tγ1ud‖L2r
t L

p3
x

+ ‖tγ2ud‖L∞t Lp3x ≤ C2‖ūd‖
Ḃ
d
p−1

p,r

+ C3

‖tαΠ‖
L2r
t L

p∗
x
≤ C4η, ‖θ‖L∞t,x ≤ ‖θ̄‖L∞x .

(9.59)

for some positive constants C1, C2 and C3.

Proof. We proceed as in the proof of Proposition 9.3.2, considering the sequence of solutions for
systems (9.14) and (9.15). We claim that such solutions belong to the same functional space defined
in Theorem 9.1.4 and moreover that:

‖tβ∇uhn‖L2r
t L

p2
x

+ ‖tγ1uhn‖L2r
t L

p3
x

+ ‖tγ2uhn‖L∞t Lp3x ≤ C1η,

‖tβ∇udn‖L2r
t L

p2
x

+ ‖tγ1udn‖L2r
t L

p3
x

+ ‖tγ2udn‖L∞t Lp3x ≤ C2‖ūd‖
Ḃ
d
p−1

p,r

+ C3,
(9.60)

for some suitable positive constants C1, C2 and C3, and for any positive integer n.

Step 1: estimates not dependent on ε and µ. First, the maximal principle for parabolic
equation implies that ‖θn‖L∞t,x is bounded by ‖θ̄‖L∞x . Now, we want to prove by induction that

‖tβ∇uhn‖L2r
t L

p2
x

+ ‖tγ1uhn‖L2r
t L

p3
x

+ ‖tγ2uhn‖L∞t Lp3x ≤
C1

2
η̃ ≤ C1

2
η,

‖tβ∇udn‖L2r
t L

p2
x

+ ‖tγ1udn‖L2r
t L

p3
x

+ ‖tγ2udn‖L∞t Lp3x ≤
C2

2
‖ūd‖

Ḃ
d
p−1

p,r

+
C3

2
,

(9.61)
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for some positive constant C1, C2 and C3, where η̃ is defined by

η̃ := (‖ūh‖
Ḃ
d
p−1

p,r

+ ‖θ̄‖L∞x + ‖ν − 1‖∞) exp
{cr

2
‖ūd‖2r

Ḃ
d
p−1

p,r

}
< η.

We begin with the horizontal component uhn. Let λ be a positive real number, and let un+1,λ,
∇un+1,λ and Πn+1,λ be defined by

(un+1,λ, ∇un+1,λ, Πn+1,λ)(t) := hn,λ(0, t)(un+1, ∇un+1, Πn+1)(t), (9.62)

where, for all 0 ≤ s < t <∞,

hn,λ(s, t) := exp
{
− λ
ˆ t

s
t2rγ1‖udn(τ)‖2r

L
p3
x

dτ − λ
ˆ t

s
t2rβ‖∇udn(τ)‖2r

L
p2
x

dτ
}
. (9.63)

Decomposing un+1,λ as in (9.23), un+1,λ = uL+F 1
n+1,λ+F 2

n+1,λ+F 3
n+1,λ, the first estimate is given

by Theorem 9.2.7 and Theorem 9.2.8:

‖tβ∇uhL,λ‖L2r
t L

p2
x

+ ‖tγ1uhL,λ‖L2r
t L

p3
x

+ ‖tγ2uhL,λ‖L∞t Lp3x ≤ ‖t
β∇uhL,λ‖L2r

t L
p2
x

+

+ ‖tγ1uhL,λ‖L∞t Lp3x + ‖tγ2uhL,λ‖L∞t Lp3x ≤ C‖ū
h‖
Ḃ
d
p−1

p,r

,
(9.64)

for a positive constant C. Moreover, recalling the definition (9.16) of gn+1, we get

‖tβ∇F 1,h
n+1,λ‖L2r

t L
p2
x

+ ‖tγ1F 1,h
n+1,λ‖L2r

t L
p3
x

+ ‖tγ2F 1,h
n+1,λ‖L∞t Lp3x ≤ C

{ 1

λ
1
2r

‖tβ∇uhn+1,λ‖L2r
t L

p2
x

+

+ ‖tγ2uhn‖L∞t Lp3x ‖t
β∇uhn‖L2r

t L
p2
x

+
1

λ
1
2r

‖tγ1uhn+1,λ‖L2r
t L

p3
x

}
.

(9.65)

thanks to Lemma 9.5.1, Lemma 9.5.2, Lemma 9.7.3 and Lemma 9.7.4. Moreover,

‖tγ1F 2,h
n+1,λ‖L2r

t L
p3
x

+ ‖tγ2F 2,h
n+1,λ‖L∞t Lp3x + ‖tγ1F 3,h

n+1,λ‖L2r
t L

p3
x

+ ‖tγ2F 3,h
n+1,λ‖L∞t Lp3x ≤

≤ C‖tβ(ν(θn+1)− 1)D(un)‖L2r
t L

p2
x
≤ C‖ν − 1‖∞‖tβ∇un‖L2r

t L
p2
x

(9.66)

by Lemma 9.5.2 and Lemma 9.5.3. Finally, Theorem 9.5.4 yields

‖tβ∇F 2,h
n+1,λ‖L2r

t L
p2
x

+ ‖tβ∇F 3,h
n+1,λ‖L2r

t L
p2
x
≤ C‖ν − 1‖∞‖tβ∇un‖L2r

t L
p2
x
. (9.67)

Summarizing (9.64), (9.65), (9.66) and (9.67), we deduce that

‖tβ∇uhn+1, λ‖L2r
t L

p2
x

+ ‖tγ1uhn+1, λ‖L2r
t L

p3
x

+ ‖tγ2uhn+1, λ‖L∞t Lp3x ≤

≤ C
{
‖ūh‖

Ḃ
d
p−1

p,r

+
1

λ
1
2r

‖tβ∇uhn+1,λ‖L2r
t L

p2
x

+ ‖tγ2uhn‖L∞t Lp3x ‖t
β∇uhn‖L2r

t L
p2
x

+

+
1

λ
1
2r

‖tγ1uhn+1,λ‖L2r
t L

p3
x

+ ‖ν − 1‖∞‖tβ∇un‖L2r
t L

p2
x

}
,

(9.68)

for a suitable positive constant C. Setting λ := (2C)2r, we can absorb the terms with index n+ 1
on the right-hand side by the the left-hand side, hence there exists a positive constant C̃ such that

‖tβ∇uhn+1, λ‖L2r
t L

p2
x

+‖tγ1uhn+1, λ‖L2r
t L

p3
x

+ ‖tγ2uhn+1, λ‖L∞t Lp3x ≤
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≤ C̃
{
‖ūh‖

Ḃ
d
p−1

p,r

+
C2

1

4
η̃2 + ‖ν − 1‖∞(

C1

2
η̃ +

C2

2
‖ūd‖

Ḃ
d
p−1

p,r

+
C3

2
)
}
.

Then we deduce that

‖tβ∇uhn+1‖L2r
t L

p2
x

+ ‖tγ1uhn+1‖L2r
t L

p3
x

+ ‖tγ2uhn+1‖L∞t Lp3x ≤

≤ C̃ sup
t∈(0,∞)

hn,λ(0, t)−1
{
‖ūh‖

Ḃ
d
p−1

p,r

+
C2

1

4
η̃2 + ‖ν − 1‖∞(C̄1η̃ +

C2

2
‖ūd‖

Ḃ
d
p−1

p,r

+
C3

2
)
}

≤ C̃ exp
{

(2C)2r(
C2

2
‖ūd‖

Ḃ
d
p−1

p,r

+
C3

2
)2r
}{

1 + (
C2

1

4
+
C1

2
)η̃ +

C2

2
+
C3

2

}
η̃.

Imposing C1 big enough and η̃ small enough in order to have

C̃ exp
{

(2C)2r(
C2

2
‖ūd‖

Ḃ
d
p−1

p,r

+
C3

2
)2r
}{

1 + (
C2

1

4
+
C1

2
)η̃ +

C2

2
+
C3

2

}
≤ C1

2
η̃,

we finally deduce that the first inequality of (9.61) is true for any positive integer n. Now, let
us handle the vertical component udn. Proceeding as in the proof of (9.68), we obtain that the
following inequality is satisfied:

‖tβ∇udn+1‖L2r
t L

p2
x

+ ‖tγ1udn+1‖L2r
t L

p3
x

+ ‖tγ2udn+1‖L∞t Lp3x ≤

≤ C
{
‖ūd‖

Ḃ
d
p−1

p,r

+ ‖tαgn+1‖L2r
t L

p
x

+ ‖ν − 1‖∞‖tβ∇un‖L2r
t L

p2
x

}
,

for a suitable positive constant C, where gn+1 is defined by (9.16). Recalling that α = β + γ1 and
1/p = 1/p2 + 1/p3 we get

‖tβ∇udn+1‖L2r
t L

p2
x

+ ‖tγ1udn+1‖L2r
t L

p3
x

+ ‖tγ2udn+1‖L∞t Lp3x ≤ C
{
‖ūd‖

Ḃ
d
p−1

p,r

+

+‖tγ2uhn‖L∞t Lp3x ‖t
β∇uhn‖L2r

t L
p2
x

+ ‖tγ2uhn+1‖L∞t Lp3x ‖t
β∇udn‖L2r

t L
p2
x

+

+ ‖tγ2uhn‖L∞t Lp3x ‖t
β∇udn+1‖L2r

t L
p2
x

+ ‖ν − 1‖∞‖tβ∇un‖L2r
t L

p2
x

}
,

which yields that

‖tβ∇udn+1‖L2r
t L

p2
x

+ ‖tγ1udn+1‖L2r
t L

p3
x

+ ‖tγ2udn+1‖L∞t Lp3x ≤

≤ C(1 +
C1C2

4
η̃)‖ūd‖

Ḃ
d
p−1

p,r

+ C(
C1C3

4
+
C2

1

4
η̃ + ‖ν − 1‖∞(

C1

2
+
C2

2
))η̃.

Hence the second inequality of (9.61) is true for any positive integer n if we assume C̄2 big enough
and η small enough in order to have

C(1 +
C1C2

4
η̃) <

C2

2
and C(

C1C3

2
+
C2

1

4
η + η(

C1

2
+
C2

2
))η ≤ C3

2
.

Proceeding again by induction, we claim that

‖tα∇uhn‖L2r
t L

p∗
x
≤ C1

2
η and ‖tα∇udn‖L2r

t L
p∗
x
≤ C2

2
‖ūd‖

Ḃ
d
p−1

p,r

+
C3

2
, (9.69)



9.5. THE GENERAL CASE: SMOOTH INITIAL DATA 239

for any positive integer n. First, we remark that ∇uL can be rewritten in the following form
∇uL = −(

√
−∆)−1R∆uL. Hence, recalling that (

√
−∆)−1 is a bounded operator from Lpx into

Lp
∗
x and R is a bounded operator from Lqx into itself, for any q ∈ (1,∞), there exist two positive

constants C and C̃ such that

‖tα∇uL‖L2r
t L

p∗
x
≤ C̃‖tα∆uL‖L2r

t L
p
x
≤ C‖ū‖

Ḃ
d
p−1

p,r

, (9.70)

thanks to Theorem 9.2.7. Moreover Theorem 9.5.4 and Corollary 9.5.4.1 imply

‖tα(∇F 2
n+1 +∇F 3

n+1)‖
L2r
t L

p∗
x
≤ Cη‖tα∇un‖L2r

t L
p∗
x
, ‖tα∇F 1

n+1‖L2r
t L

p∗
x
≤ C‖tαgn+1‖L2r

t L
p
x
≤ Cη.

Assuming η small enough we get that (9.69) is true for any n ∈ N. Finally, recalling that Πn+1 is
determined by

Πn+1 = (−∆)−1R · gn+1 −R ·R · {(ν(θn+1)− 1)∇un},

we get ‖tαΠn+1‖L2r
t L

p∗
x
≤ C

{
‖tαgn+1‖L2r

t L
p
x

+ ‖ν − 1‖∞‖tβ∇un‖L2r
t L

p2
x

}
≤ C4η,

for a suitable positive constant C4 and for any positive integer n.

Step 2: ε-dependent estimates. As second step, we establish some ε-dependent estimates
which will be useful in order to show that (θn, un, Πn)N is a Cauchy sequence in a suitable functional
space. First, we claim that

‖tγ1un,λ‖
L

2r
1−εr
t L

p3
x

+ ‖tβ∇un,λ‖
L

2r
1−εr
t L

p2
x

≤ C̄4‖ū‖
Ḃ
d
p−1+ε

p,r

, (9.71)

where un,λ(t) = un(t)h(0, t), with h defined by (9.63). Recalling the characterization of the ho-
mogenous Besov spaces given by Theorem 9.2.7 and the embedding of Theorem 9.2.8, we get

‖tγ1uL‖
L

2r
1−εr
t L

p3
x

+ ‖tβ∇uL‖
L

2r
1−εr
t L

p2
x

≤ C‖ū‖
Ḃ
d
p−1+ε

p,r

, (9.72)

for a suitable C > 0. Furthermore, Lemma 9.7.3 and Lemma 9.7.4 yields

‖tγ1F 1
n+1,λ‖

L
2r

1−εr
t L

p3
x

+ ‖tβ∇F 1
n+1,λ‖

L
2r

1−εr
t L

p2
x

≤ C̄
{ 1

λ
1
2r

‖tβ∇uhn+1,λ‖
L

2r
1−εr
t L

p2
x

+ ‖tγ2uhn‖L∞t Lp3x ‖t
β∇uhn,λ‖

L
2r

1−εr
t L

p2
x

+ ‖tγ2uhn+1‖L∞t Lp3x ‖t
β∇udn,λ‖

L
2r

1−εr
t L

p2
x

+ ‖tγ2uhn‖L∞t Lp3x ‖t
β∇udn+1,λ‖

L
2r

1−εr
t L

p2
x

}
,

for a positive constant C̄. Imposing λ := (2C̄)2r, we deduce that

‖tγ1F 1
n+1,λ‖

L
2r

1−εr
t L

p3
x

+ ‖tβ∇F 1
n+1,λ‖

L
2r

1−εr
t L

p2
x

≤ 1

2
‖tβ∇uhn+1,λ‖

L
2r

1−εr
t L

p2
x

+

+ C̄C1η‖tβ∇uhn,λ‖
L

2r
1−εr
t L

p2
x

+ C̄C1η‖tβ∇udn,λ‖
L

2r
1−εr
t L

p2
x

+ C̄C1η‖tβ∇udn+1,λ‖
L

2r
1−εr
t L

p2
x

.
(9.73)

Moreover, Theorem 9.5.4 and Lemma 9.5.3 imply

‖tγ1(F 2
n+1,λ + F 3

n+1,λ)‖
L

2r
1−εr
t L

p3
x

+ ‖tβ∇(F 2
n+1,λ + F 3

n+1,λ)‖
L

2r
1−εr
t L

p2
x

≤

≤ ‖tγ1(F 2
n+1 + F 3

n+1)‖
L

2r
1−εr
t L

p3
x

+ ‖tβ∇(F 2
n+1 + F 3

n+1)‖
L

2r
1−εr
t L

p2
x

≤ C‖ν − 1‖∞‖tβ∇un‖
L

2r
1−εr
t L

p2
x

≤ C̃η‖tβ∇un,λ‖
L

2r
1−εr
t L

p2
x

,

(9.74)
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assuming Cr in the definition of η big enough. Summarizing (9.72), (9.73) and (9.74), there exists
a positive constant C such that

‖tγ1un+1,λ‖
L

2r
1−εr
t L

p3
x

+ ‖tβ∇un+1,λ‖
L

2r
1−εr
t L

p2
x

≤ CC̄4η‖ū‖
Ḃ
d
p−1

p,r +ε
,

so that (9.71) is true for any positive integer n. Finally, multiplying both the left and right-hand
sides of (9.71) by supt∈R h

−1(0, t), we get

‖tγ1un‖
L

2r
1−εr
t L

p3
x

+ ‖tβ∇un‖
L

2r
1−εr
t L

p2
x

≤ C5‖ū‖
Ḃ
d
p−1+ε

p,r

exp
{
C6‖ūd‖2r

Ḃ
d
p−1

p,r

}
, (9.75)

for two suitable positive constants C5 and C6.

Step 3. µ-dependent estimates and convergence of the series. We proceed as in the
third step of Theorem 9.3.3, denoting δun := un+1−un, δνn := ν(θn+1)−ν(θn) and δθn := θn+1−θn.
We define

δUn,λ(T ) := ‖tγ1δun,λ‖L2r(0,T ;L
p3
x ) + ‖tγ2δun,λ‖L∞(0,T ;L

p3
x ) + ‖tβ∇δun,λ‖L2r(0,T ;L

p2
x ),

where δun,λ(t) := δun(t)hn,λ(0, t). We claim that the series
∑

n∈N δUn(T ) is convergent. First, we
split δun into δun,λ = fn,1 + fn,2 + fn,3, where fn,i is defined by (9.45), for i = 1, 2, 3. We begin
estimating fn,1. Lemma 9.7.3 and Lemma 9.7.4 yield that

‖tγ1δfn,1‖L2r(0,T ;L
p3
x ) + ‖tγ2δfn,1‖L∞(0,T ;L

p3
x ) + ‖tβ∇δfn,1‖L2r(0,T ;L

p2
x ) ≤

≤ C
{ 1

λ
1
2r

(
‖tβ∂dδuhn,λ‖L2r(0,T ;L

p2
x ) + ‖tγ1δuhn,λ‖L2r(0,T ;L

p3
x ) + ‖tβ∇hδuhn,λ‖L2r(0,T ;L

p2
x )

)
+

+ ‖tγ2δudn,λ‖L∞(0,T ;L
p3
x )‖t

β∂du
h
n‖L2r

t L
p2
x

+ ‖tγ2δuhn−1,λ‖L∞(0,T ;L
p3
x )‖t

β∇uhn‖L2r
t L

p2
x

+

+ ‖tγ2uhn−1‖L2r
t L

p3
x
‖tβ∇δuhn−1,λ‖L2r(0,T ;L

p2
x ) + ‖tβ∇hδudn,λ‖L2r(0,T ;L

p2
x )‖t

γ2uhn‖L∞t Lp3x +

+ ‖tγ2δudn−1,λ‖L∞(0,T ;L
p3
x )‖t

β∇huhn‖L2r
t L

p2
x

}
.

which yields,

‖tγ1δfn,1‖L2r(0,T ;L
p3
x ) + ‖tγ2δfn,1‖L∞(0,T ;L

p3
x )+

+ ‖tβ∇δfn,1‖L2r(0,T ;L
p2
x ) ≤

1

4

(
δUn,λ(T ) + δUn−1,λ(T )

)
,

(9.76)

assuming η small enough. Now, we carry out the estimate of fn,2. Lemma 9.5.1 and Theorem 9.5.4
imply

‖tγ1δfn,2‖L2r(0,T ;L
p3
x ) + ‖tγ2δfn,2‖L∞(0,T ;L

p3
x ) + ‖tβ∇δfn,2‖L2r(0,T ;L

p2
x ) ≤

≤ C‖ν − 1‖∞‖tβ∇δun−1‖L2r(0,T ;L
p2
x ) ≤ C̃rη‖t

β∇δun−1,λ‖L2r(0,T ;L
p2
x ),

hence, we deduce that

‖tγ1δfn,2‖L2r(0,T ;L
p3
x ) + ‖tγ2δfn,2‖L∞(0,T ;L

p3
x ) + ‖tβ∇δfn,2‖L2r(0,T ;L

p2
x ) ≤ C̄rηδUn−1,λ(T ). (9.77)

Now we deal with fn,3. Thanks to Lemma 9.5.3 and Theorem 9.5.4, we have

‖tγ1δfn,3‖L2r(0,T ;L
p3
x ) + ‖tγ2δfn,3‖L∞(0,T ;L

p3
x ) + ‖tβ∇δfn,3‖L2r(0,T ;L

p2
x ) ≤

≤ ‖tβδνnD(un)‖L2r(0,T ;L
p2
x ) ≤ C‖δνn‖L 2

ε (0,T ;L∞x )
‖tβ∇un‖L2r(0,T ;L

p2
x ) ≤ Ĉ1(ū)‖δθn‖

L
2
ε (0,T ;L∞x )

(9.78)
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where Ĉ1(ū) is a positive constant which depends on ‖ū‖
Ḃ
d/p−1+ε
p,r

. Now, recalling that δθn is

determined by (9.51), we get

‖δθn(t)‖L∞x ≤
ˆ t

0

sγ1‖δθn(s)un(s)‖Lp3x
sγ1 |µ(t− s)|

d
2

1
p3

+ 1
2

ds+

ˆ t

0

sγ1‖δun−1(s)θn(s)‖Lp3x
sγ1 |µ(t− s)|

d
2

1
p3

+ 1
2

ds,

hence, defining α := (d/(2p3) + 1/2)(2r)′ < 1, ‖δθn(t)‖2rL∞x is bounded by

22r−1
(ˆ t

0

1

sγ1(2r)′ |µ(t− s)|α
ds
)2r−1{ˆ t

0
‖δθn(s)‖2rL∞x s

2rγ1‖un(s)‖2r
L
p3
x

ds+

+

ˆ t

0
‖θ̄‖2rL∞x s

2rγ1‖δun−1(s)‖2r
L
p3
x

ds
}
.

Then, using the Gronwall inequality, we have

‖δθn(t)‖2rL∞x ≤ Ĉ2(t)‖θ̄‖2rL∞x

ˆ t

0
s2rγ1‖δun−1(s)‖2r

L
p3
x

ds exp
{ˆ t

0
s2rγ1‖un(s)‖2r

L
p3
x

ds
}
,

which yields ‖δθn(t)‖L∞x ≤ χ(t)δUn−1(t), where χ is an increasing function. Hence, Recalling (9.78),
we deduce that

‖tγ1δfn,3‖L2r(0,T ;L
p3
x ) + ‖tγ2δfn,3‖L∞(0,T ;L

p3
x )

+ ‖tβ∇δfn,3‖L2r(0,T ;L
p2
x ) ≤ Ĉ1(ū)χ(T )‖δUn−1‖

L
4
ε (0,T )

.

Summarizing the last inequality with (9.76) and (9.77), we finally deduce that

δUn,λ(T ) ≤
(1

3
+

4

3
C̃rη

)
δUn−1,λ(T ) +

4

3
Ĉ1(ū)χ(T )‖δUn−1‖

L
2
ε (0,T )

,

which is equivalent to to (9.53). Thus we can conclude proceeding as in the last part of Theorem
9.3.3.

Now, we show that system (9.1) admits a weak solution, adding a tiny extra regularity to the
initial data.

Theorem 9.5.6. Let us assume that the hypotheses of Theorem 9.1.4 are fulfilled. Suppose that θ̄

belongs to L2
x∩L∞x and ū belongs to Ḃ

d/p−1
p,r ∩ Ḃd/p−1+ε

p,r with ε < min{1/(2r), 1−1/(2r), d/p−1}. If
the smallness condition (9.7) holds then there exists a global weak solution (θ, u,Π) of (9.12) which
satisfies the properties of Theorem 9.1.4.

Proof. By Proposition 9.5.5, there exists (θµ, uµ, Πµ), solution of (9.12), such that tγ1uµ belongs

to L2r
t L

p3
x , tγ2uµ belongs to L∞t L

p3
x , tβ∇uµ lives in L2r

t L
p2
x , tα∇uµ in L2r

t L
p∗
x , θµ in L∞t,x and tαΠµ in

L2r
t L

p∗
x . Then, thanks to inequalities (9.13), there exists (θ, u, Π) in the same space of (θµ, uµ, Πµ),

such that

tγ1uµn ⇀ tγ1u w − L2r
t L

p3
x , tγ2uµn ⇀ tγ2u w − L∞t L

p3
x , tβ∇uµn ⇀ tβ∇u w − L2r

t L
p2
x ,

tα∇uµn ⇀ tα∇u w − L2r
t L

p∗
x , θµn

∗
⇀ θ w ∗ −L∞t,x, tαΠµn ⇀ tαΠ w − L2r

t L
p∗
x ,

for a positive decreasing sequence (µn)N convergent to 0. We claim that (θ, u,Π) is a weak so-
lution of (9.1). First, we show that uµn strongly converges to u in Lτ3(0, T ;Lp3

x ), up to a sub-
sequence, with a suitable τ3 > 1. We proceed establishing that {uµ − uL |µ > 0} is a compact
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set in C([0, T ]; Ẇ−1,p∗
x ), for all T > 0. Applying (

√
−∆)−1 to the momentum equation of (9.12),

we observe that tα∂t(
√
−∆)−1uµ is uniformly bounded in L2r(0, T ;Lp

∗
x ). Hence, observing that

α(2r)′ < 1, we get

‖∂t(
√
−∆)−1uµ‖L1(0,T ;Lp

∗
x )
≤ T 1−α(2r)′

1− α(2r)′
‖tα∂t(

√
−∆)−1uµ‖L2r(0,TLp

∗
x )

Thus {(
√
−∆)−1(uµ − uL) |µ > 0} is an equicontinuous and bounded family of C([0, T ], Lp

∗
x ),

namely it is a compact family. Then we can extract a subsequence (which we still denote by uµn)

such that (
√
−∆)−1(uµn − uL) strongly converges to (

√
−∆)−1(u − uL) in L∞(0, T ;Lp

∗
x ), that is

uµn − uL strongly converges to u − uL in L∞(0, T ; Ẇ−1,p∗
x ). Now, passing through the following

real interpolation [
Ẇ−1,p∗
x , Ẇ 1,p∗

x

]
µ,1

= Ḃ
d
p∗−

d
p3

p∗,1 ↪→ Lp3
x ,

with µ := (d/p∗− d/p3) + 1/2 < 1 (see [11], Theorem 6.3.1 and [7], Theorem 2.39), we deduce that

‖uµn − u‖Lτ (0,T ;L
p3
x ) ≤ C

∥∥∥‖uµn − u‖1−µẆ−1,p∗
x

‖uµn − u‖
µ

Ẇ 1,p∗
x

∥∥∥
Lτ (0,T )

≤ C‖uµn − u‖
1−µ
L∞(0,T ;Ẇ−1,p∗

x )
‖t−α‖µ

L
2rτ

2r−τ (0,T )
‖tα∇(uµn − u)‖µ

L2r(0,T ;Lp
∗
x )
,

for all T > 0, where we have considered τ ∈ (1, 2r/(1 + 2αr)) so that α2rτ/(2r− τ) < 1. Moreover,
we choose τ such that there exist τ2 in (1, 2r/(1 + 2βr)) and τ3 in (1, 2r/(1 + 2γ1r)) which fulfill
1/τ3 + 1/τ2 = 1/τ1. Let us remark that the norms

‖uµn‖Lτ3 (0,T ;L
p3
x ) ≤ ‖t

γ1‖
L

2rτ3
2r−τ3 (0,T )

‖tγ1uµn‖L2r
t L

p3
x
<∞,

‖∇uµn‖Lτ2 (0,T ;L
p2
x ) ≤ ‖t

β‖
L

2rτ2
2r−τ2 (0,T )

‖tβuµn‖L2r
t L

p2
x
<∞,

that is they are uniformly bounded in n. Now, we consider τ < σ < τ3 strictly closed to τ3 so that
it still fulfills 1/σ + 1/τ2 > 1. Then the following interpolation inequality

‖uµn − u‖Lσ(0,T ;L
p3
x ) ≤ ‖uµn − u‖

τ3−σ
τ−τ3
Lτ (0,T ;L

p3
x )
‖uµn − u‖

σ−τ3
τ−τ3
Lτ3 (0,T ;L

p3
x )
,

which converges to 0 as n goes to ∞, so that uµn strongly converges to u in Lσloc(R+;Lp3
x ). This

yields that uµnθµn and uµn · ∇uµn converge to u θ and u · ∇u, respectively, in the distributional
sense. We deduce that θ is weak solution of

∂tθ + div(θu) = 0 in R+ × Rd, θ|t=0 = θ̄ in Rd.

Arguing as in the proof of theorem 9.3.3, θµn converges almost everywhere to θ, up to a subsequence,
so that ν(θµn) strongly converges to ν(θ) in Lmloc(R+ × Rd), for every 1 ≤ m < ∞, thanks to the
Dominated Convergence Theorem. Then ν(θµn)D(uµn) converges to ν(θ)D(u) in the distributional
sense.

Summarizing all the previous considerations we finally conclude that (θ, u, Π) is a weak solution
of (9.1) and it satisfies (9.59).
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9.6 Weak solutions: the general case

In this section we present the proof of Theorem (9.1.4). We proceed similarly as in the proof of
Theorem 9.1.3, approximating our initial data by

θ̄n := χn
∑
|j|≤n

∆̇j θ̄ and ūn :=
∑
|j|≤n

∆̇j ū, for every n ∈ N,

where χn ≤ 1 is a cut-off function which has support on the ball B(0, n) ⊂ Rd and χn ≡ 1 in

B(0, n/2). Then θ̄n ∈ L∞x ∩L2
x and ū ∈ Ḃd/p

p,r ∩ Ḃd/p−1+ε
p,r , with ε < min{1/(2r), 1− 1/r, 2(d/p− 2 +

1/r)}. Then, by Theorem 9.5.6, there exists (θn, un,Πn) weak solution of
∂tθn + div(θnun) = 0 R+ × Rd,
∂tun + un · ∇un − div(ν(θn)D(un)) +∇Πn = 0 R+ × Rd,
div un = 0 R+ × Rd,
(θn, un)t=0 = (θ̄n, ūn) Rd,

which belongs to the functional space defined in Theorem 9.1.4 and it fulfills the inequalities (9.9),
uniformly in n ∈ N. Then there exists a subsequence (which we still denote by (θn, un,Πn)N) and
an element (θ, u, Π) in the same space of (θn, un,Πn), such that

tγ1un ⇀ tγ1u w − L2r
t L

p3
x , tγ2un ⇀ tγ2u w − L∞t L

p3
x , tβ∇un ⇀ tβ∇u w − L2r

t L
p2
x ,

tα∇un ⇀ tα∇u w − L2r
t L

p∗
x , θεn

∗
⇀ θ w ∗ −L∞t,x, tαΠn ⇀ tαΠ w − L2r

t L
p∗
x .

In order to complete the proof, we claim that (θ, u, Π) is weak solution of (9.1). We first rewrite
un = t−γ1tγ1un, ∇u = t−βtβ∇u and Πn = t−αtαΠn, so that the Hölder inequality guarantees
that un, ∇un and Πn are uniformly bounded in Lτ3(0, T ;Lp3

x ), Lτ2(0, T ;Lp2
x ) and Lτ1(0, T ;Lp

∗
x )

respectively, with T ∈ (0,∞) and

τ1 ∈
(
1,

2r

1 + 2αr

)
, τ2 ∈

(
1,

2r

1 + 2βr

)
, τ3 ∈

(
1,

2r

1 + 2γ1r

)
, such that

1

τ1
=

1

τ2
+

1

τ3
.

The same properties are preserved by (θ, u, Π). Moreover, arguing as in Theorem 9.5.6, un strongly
converges to u in Lσloc(R+;Lp3

x ), with σ ∈ (τ1, τ3) strictly closed to τ3 so that 1/σ + 1/τ2 > 1. This
yields that un · ∇un and unθn converge to u · ∇u and u θ respectively, in the distributional sense.
Moreover, proceeding as in theorem 9.3.3, θn converges almost everywhere to θ, up to a subsequence,
so that ν(θn) strongly converges to ν(θ) in Lmloc(R+ × Rd), for every 1 ≤ m < ∞, thanks to the
Dominated Convergence Theorem. Then ν(θn)D(un) converges to ν(θ)D(u) in the distributional
sense and this allows us to conclude that (θ, u, Π) is weak solution of (9.1). Finally, passing through
the limit as n goes to ∞, (θ, u, Π) still fulfills inequalities (9.9) and this concludes the proof of the
Theorem.

9.7 Inequalities

In this section we improve Lemma 9.2.5 and Lemma 9.2.6 for a particular choice of the function
f and also with a perturbation of the operators, which is dependent on a parameter λ > 0. This
Lemmas are useful for the Theorem of section 3, more precisely during the proof of the inequalities,
since, for an opportune choice of λ, they permit to “absorb” some uncontrolled terms. Here the
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statements and the proofs.

Lemma 9.7.1. Let 1 < r <∞ and q1, q2 ∈ (1,∞] such that 1/q = 1/q1 + 1/q2 ∈ ((2r − 1)/dr, 1).
Let v ∈ L2r

t L
q1
x and for all λ > 0 let h = hλ be defined by

h(s, t) := exp
{
− λ
ˆ t

s
‖v‖2r

L
q1
x

}
,

for all 0 ≤ s ≤ t <∞ and consider Cλ, the operator defined by

Cλ(f)(t) :=

ˆ t

0
h(s, t)e(t−s)∆f(s)ds.

Then there exists a positive constant Cr, such that

‖Cλ(vω)‖L2r
t L

q3
x
≤ Cr

1

λ
1
4r

‖v‖
1
2

L2r
t L

q1
x
‖ω‖L2r

t L
q2
x
,

where q3 is defined by 1/q3 = 1/q − (2r − 1)/dr.

Proof. Notice that

‖
ˆ t

0
h(s, t)K(t− s) ∗ vω(s)ds ‖Lq3x ≤

ˆ t

0
h(s, t)‖K(t− s) ∗ vω(s)‖Lq3x ds

≤
ˆ t

0
h(s, t)‖K(t− s)‖

Lq̃x
‖vω(s)‖Lqxds,

where 1/q̃′ = 1 − 1/q̃ = 1/q − 1/q3 = (2r − 1)/(dr). By Remark 9.2.3 and Holder inequality, we
obtain

‖C(vω)(t)‖Lqx ≤
ˆ t

0
h(s, t)‖v(s)‖

1
2
Lp1

1

|t− s|
2r−1

2r

‖v(s)‖
1
2
Lp1‖ω(s)‖Lp2x ds

≤
( ˆ t

0
h(s, t)4r‖v(s)‖2r

L
p1
x

ds

) 1
4r
( ˆ

R+

( ‖v(s)‖
1
2
Lq1‖ω(s)‖Lq2x )

4r
4r−1

|t− s|
2r−1

2r
4r

4r−1

ds

)1− 1
4r

.

(9.79)

Since

g :=
(
‖v(·)‖

1
2
Lq1‖ω(·)‖Lq2x

) 4r
4r−1 ∈ L

4r−1
3

t ,

by Hardy-Littlewood-Sobolev inequality,

| · |−
4r−2
4r−1 ∗ g ∈ L

4r−1
2

t ,

and then (
| · |−

4r−2
4r−1 ∗ g

)1− 1
4r ∈ L2r

t .

Moreover there exists C > such that

‖(| · |−
4r−2
4r−1 ∗ g)1− 1

4r ‖L2r
t

= ‖| · |−
4r−2)
4r−1 ∗ g‖1−

1
4r

L
4r−1

2
t

≤ C‖g‖1−
1
4r

L
4r−1

3
t

≤
(ˆ

R+

( ‖v(t)‖
1
2

L
q1
x
‖ω(t)‖Lq2x )

4
3
rdt

) 3
4r
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≤ C‖ ‖v‖
1
2

L
q1
x
‖L4r

t
‖ω‖L2r

t L
q2
x
≤ C‖v‖

1
2

L2r
t L

q1
x
‖ω‖L2r

t L
q2
x
.

Observing that (ˆ t

0
h(s, t)4r‖v(s)‖2r

L
q1
x

ds
) 1

4r ≤
( 1

4rλ

) 1
4r
,

the Lemma is proved.

Lemma 9.7.2. Let 1 < r <∞ , q1 ∈ [1, dr
r−1 ] and v ∈ L2r

t L
q1
x . For all λ > 0 let h = hλ be defined

as in Lemma 9.7.1 and let Bλ the operator defined by

Bλ(f)(t) :=

ˆ t

0
h(s, t)∇e(t−s)∆f(s)ds.

For all q2 ∈ [q′1,∞], there exists a positive constant Cr, such that

‖Bλ(vω)‖L2r
t L

q
x
≤ Cr

1

λ
1
4r

‖v‖
1
2

L2r
t L

p1
x
‖ω‖L2r

t L
p2
x
,

where q is defined by 1/q := 1/q1 + 1/q2 − (r − 1)/dr.

Lemma 9.7.3. Let r ∈ (1,∞), p1 ∈ (d/2, d), p3 > dr/(r−1) and p2 be given by 1/p1+1/p2 = 1/p3.
Let tγ1v ∈ L2r

t L
Lp3
x and tβω ∈ L2r

t L
p2
x . Defining

hλ(s, t) := exp
{
− λ
ˆ t

s
τ2rγ1‖v(τ)‖2r

L
p3
x

dτ − λ
ˆ t

s
τ2rβ‖ω(τ)‖2r

L
p2
x

dτ
}
,

where λ is a positive constant, there exists a positive constant Cr such that

‖tβ1B(vω)λ(t)‖L2r
t L

p2
x
≤ Cr

λ
1
2r

‖tβωλ‖L2r
t L

p2
x
, (9.80)

‖tβ1B(vω)λ(t)‖L2r
t L

p2
x
≤ Cr

λ
1
2r

‖tγ1vλ‖L2r
t L

p3
x
. (9.81)

Proof. Remark 9.2.3 yields that there exists a positive constant C such that

tβ‖B(vω)λ(t)‖Lp2x ≤ C
ˆ t

0

tβ1

|t− s|
d

2p3
+ 1

2 sα2

hλ(s, t)sγ1‖v(s)‖Lp3x s
β1‖ωλ(s)‖Lp2x ds

≤ C
(ˆ t

0
hλ(s, t)2rs2rγ1‖v(s)‖Lp3x ds

) 1
2r
(ˆ t

0

∣∣∣ tβ1

|t− s|
d

2p3
+ 1

2 sα2

F (s)
∣∣∣(2r)′ds) 1

(2r)′
.

(9.82)

Hence, raising to the power of (2r)′ both the left-hand and the right-hand sides, we get

t(2r)
′β1‖B(vω)λ(t)‖(2r)

′

L
p2
x

.
1

λ
(2r)′

2r

ˆ t

0

∣∣∣ tβ1

|t− s|
d

2p3
+ 1

2 sα2

sβ1‖ω(s)‖Lp2x
∣∣∣(2r)′ds

.
1

λ
(2r)′

2r

ˆ 1

0

∣∣∣ tβ1−α2− N
2p3
− 1

2

|1− τ |
d

2p3
+ 1

2 τα2

F (tτ)
∣∣∣(2r)′t dτ,

where F (s) = sβ‖ωλ(s)‖Lp2x . Observing that β − α2 −N/(2p3)− 1/2 = 1/(2r)− 1 = −1/(2r)′, we
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get

t(2r)
′β1‖B(vω)λ(t)‖(2r)

′

L
p2
x

.
1

λ
(2r)′

2r

ˆ 1

0

∣∣∣ 1

|1− τ |
d

2p3
+ 1

2 τα2

F (tτ)
∣∣∣(2r)′ dτ, (9.83)

Hence, applying the L
(2r)/(2r)′

t -norm to both the left and right-hand sides,

‖tβ1B(vω)λ(t)‖(2r)
′

L2r
t L

p2
x

.
1

λ
(2r)′

2r

ˆ 1

0

∣∣∣ 1

|1− τ |
d

2p3
+ 1

2 τα2

∣∣∣(2r)′(ˆ ∞
0

F (tτ)2r dτ
) 1

2r−1
dt

.
1

λ
(2r)′

2r

ˆ 1

0

∣∣∣ 1

|1− τ |
d

2p3
+ 1

2 τα1

∣∣∣(2r)′dτ‖tβωλ‖(2r)′L2r
t L

p2
x
,

thanks to Minkowski inequality. Since α1(2r)′ < 1 and (d/(2p3) + 1/2)(2r)′ < 1 we finally obtain
(9.80). Now, defining F (t) := sγ1‖vλ(s)‖Lp3x , we also have

tβ‖B(vω)λ(t)‖Lp2x

≤ C
( ˆ t

0
hλ(s, t)2rs2rβ‖ω(s)‖Lp2x ds

) 1
2r
(ˆ t

0

∣∣∣ tβ

|t− s|
d

2p3
+ 1

2 sα2

F (s)
∣∣∣(2r)′ds) 1

(2r)′
,

which is equivalent to (9.82). Thus, arguing as for proving (9.80), we also obtain (9.81).

Lemma 9.7.4. Let r ∈ (2,∞), p1 ∈ (dr/(2r− 2), N) and p3 ≥ Nr/(r− 2) such that 1/p1 + 1/p2 =
1/p3. Let hλ, v and ω be defined as in the previous Lemma. Then there exists Cr > 0 such that

‖tγ1C(vω)λ(t)‖L2r
t L

p3
x

+ ‖tγ2C(vω)λ(t)‖L∞t Lp3x ≤
Cr

λ
1
2r

‖tβ1ωλ‖L2r
t L

p2
x
,

‖tγ1C(vω)λ(t)‖L2r
t L

p3
x

+ ‖tγ2C(vω)λ(t)‖L∞t Lp3x ≤
Cr

λ
1
2r

‖tβ1vλ‖L2r
t L

p3
x
.

(9.84)

Proof. We control the L2r
t L

p3
x norm arguing as in previous proof. Indeed we have

t(2r)
′γ1‖C(vω)λ(t)‖(2r)

′

L
p3
x
≤ C 1

λ
(2r)′

2r

ˆ 1

0

∣∣∣ 1

|1− τ |
d

2p2 τα2

F (tτ)
∣∣∣(2r)′ dτ,

where F (s) = sβ‖ωλ‖Lp2x or F (s) = sγ1‖vλ‖Lp3x instead of (9.83). Let us take in consideration the
L∞t L

p3
x norm. With a direct computation we get

‖tγ2C(t)‖Lp3x ≤ C
(ˆ t

0

∣∣∣ tγ2

|t− s|
N

2p2 sα2

∣∣∣r′ds) 1
r′
( ˆ t

0
h(s, t)rsrγ1‖v(s)‖r

L
p3
x
srβ1‖ω(s)‖r

L
p2
x

ds
) 1
r

≤ C
(ˆ 1

0

∣∣∣ tγ2−α2− N
2p2

|1− τ |
N

2p2 τα2

∣∣∣r′t dτ
) 1
r′
(ˆ t

0
h(s, t)rsrγ1‖v(s)‖r

L
p3
x
srβ1‖ω(s)‖r

L
p2
x

ds
) 1
r

Thus, observing that γ2 − α2 − d/(2p2) + 1/r′ = 0, dr′/(2p2) < 1 and α2r
′ < 1, we conclude that

‖tγ2C(t)‖Lp3x ≤ C̄r
(ˆ t

0
hλ(s, t)2rs2rγ1‖v(s)‖Lp3x ds

) 1
2r ‖tβωλ‖L2r

t L
p2
x

and

‖tγ2C(t)‖Lp3x ≤ C̄r
(ˆ t

0
hλ(s, t)2rs2rβ‖ω(s)‖Lp2x ds

) 1
2r ‖tγ1ωλ‖L2r

t L
p3
x
,
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for a suitable positive constant C̄r, which finally yields (9.84).

Theorem 9.7.5. Let r ∈ (1,∞), p ∈ (1, dr/(2r − 1)) and ū ∈ Ḃd/p−1
p,r . Le us suppose that

f1 ∈ (LrtL
dr

3r−2
x )d ∩ (LrtL

p̌
x)d, f2 ∈ (L2r

t L
dr

2r−1
x )d×d ∩ (LrtL

dr
2(r−1)
x )d×d,

Let v belongs to L2r
t L

dr/(r−1)
x with ∇v ∈ L2r

t L
dr

2r−1
x . Then system

∂tu
h + v ∂du

h −∆uh +∇hΠ = fh1 + divfh2 R+ × Rd,
∂tu

d +∇hv · uh − v divhuh −∆ud + ∂dΠ = fd1 + divfd2 R+ × Rd,
divu = 0 R+ × Rd,
u|t=0 = ū Rd,

(9.85)

admits a weak solution (u,Π), such that u belongs to L2r
t L

dr
r−1
x with ∇u in L2r

t L
dr

2r−1
x and Π in

LrtL
dr

2(r−1)
x .

Proof. For all u in L2r
t L

dr/(r−1)
x )d with ∇u ∈ L2r

t L
dr/(2r−1)
x , let g(u) be defined by

g(u) := (−v ∂duh,−∇hv · uh + v divhuh) ∈ LrtL
dr

3r−2
x . (9.86)

Then, the momentum equations of (9.85) reads as follows:

∂tu−∆u+∇Π = g(u) + f1 + divf2 in R+ × Rd, (9.87)

We want to prove the existence of a weak solution for this system, using the Fixed-Point Theorem.
We define the functional space Yr by

Yr :=
{
u ∈ L2r

t L
dr
r−1
x such that ∇u ∈ L2r

t L
dr

2r−1
x

}
,

then, fixing a positive constant λ, we consider the norm ‖ · ‖λ on Yr, defined by

‖u‖λ := ‖u(t)hλ(0, t)‖
L2r
t L

dr
r−1
x

+ ‖∇u(t)hλ(0, t)‖
L2r
t L

dr
2r−1
x

,

where, for all 0 ≤ s ≤ t ≤ ∞,

hλ(s, t) := exp

{
− λ
(ˆ t

s
‖v(τ)‖2r

L
dr
r−1
x

+

ˆ t

s
‖∇v(τ)‖2r

L
dr

2r−1
x

+

ˆ t

s
‖∇v(τ)‖2rLqx

)}
≤ 1. (9.88)

Let Ψ be the operator from Yr to itself, such that, for all ω ∈ Yr, Ψ(ω) is the velocity of the weak
solution of 

∂tu−∆u+∇Π = g(ω) + f1 + divf2 R+ × Rd,
divu = 0 R+ × Rd,
u|t=0 = ū Rd.

Let us prove that, for a good choice of λ, Ψ is a contraction on Yr. First of all, for all ω1, ω2 ∈ Yr,



248 CHAPTER 9. A WELL-POSEDNESS RESULT

the difference δΨ := Ψ(ω1)−Ψ(ω2) is the velocity field of the weak solution of
∂tδΨ−∆δΨ +∇Π = g(δω) R+ × Rd,
div δΨ = 0 R+ × Rd,
δΨ|t=0 = 0 Rd,

where δω := ω1 − ω2. Since the Mild formulation yields

δΨ(t) =

ˆ t

0
e(t−s)∆Pg(δω)(s)ds,

then, by the definition (9.86) of g, Lemma 9.7.1 and Lemma 9.7.2 the following inequality is fulfilled:

‖δΨ‖λ ≤
C

λ4r

{
‖v‖

1
2

L2r
t L

dr
r−1
x

‖δ∇ω(t)h(0, t)‖
L2r
t L

dr
2r−1
x

+ ‖∇v‖
1
2

L2r
t L

dr
2r−1
x

‖δω(t)h(0, t)‖
L2r
t L

dr
r−1
x

}
.

Imposing λ > 0 big enough we finally obtain ‖δΨ‖λ ≤ ‖δω‖λ/2, namely Ψ is a contraction on Yr.
Then, by the Fixed-Point Theorem, there exists a function u in Yr such that, u is the velocity field

of the weak solution (u,Π) of (9.87). Let us remark that ∇u belongs also to LrtL
dr/(2r−2)
x . Indeed

∇u is formulated by

∇u(t) := et∆∇ū+

ˆ t

0
∇e(t−s)∆P (f1(s) + g(u)(s)) ds+

−
ˆ t

0
∆e(t−s)∆RRR ·R · f2(s)ds−

ˆ t

0
∆e(t−s)∆R ·R · f2(s)ds,

then the result holds thanks to Corollary 9.2.7, Lemma 9.2.4 and Theorem 9.2.2. Finally, recalling
that Π is determined by

Π := − (−∆)−
1
2 R · (f1 + g(u))−R ·R · f2,

we deduce that Π belongs to LrtL
dr/(2r−2)
x , by Corollary 9.2.1.1.

Remark 9.7.6. If we add a small extra regularity on ū in Theorem 9.7.5 assuming ū in Ḃ
d/p−1+ε
p,r ,

with ε < min{1/(2r), 1− 1/r, 2(d/p− 2 + 1/r)}, the weak solution (u, Π) fulfills also

u ∈ L2r
t L

2dr
(2−ε)r−2
x ∩ L

4r
2−εr
t L

dr
r−1
x with ∇u ∈ L2r

t L
2dr

(4−ε)r−2
x ∩ L

4r
2−εr
t L

dr
2r−1
x .



Part III

Appendix

249





Chapter 10

Appendix

10.1 Relation between the Oseen-Frank energy density and the
Gibbs free energy density

In section 3.2.2 we showed the explicit formula of the Oseen-Frank energy density, that is

wF (d, ∇d) =
k11

2
(divd)2 +

k22

2
(d · rot d)2 +

k33

2
|d ∧ rot d|2+

+
k22 + k24

2

{
tr{∇d2} − (divd)2

}
.

(10.1)

We justified this expression as a consequence of the Gibbs free energy density

wF =k1(s1 + s2) + k2(t1 + t2) +
k11

2
(s1 + s2)2 +

k22

2
(t1 + t2)2+

+
k33

2
(b21 + b22) + k12(s1 + s2)(t1 + t2)− (k22 + k24)(s1s2 + t1t2),

(10.2)

evolving the six components of curvature (3.8). Now, we want to give an exhaustive proof of the
equivalence between (10.1) and (10.2). First, let us recall that in section 3.2.2 we introduced a
local right-handed Cartesian coordinate system y := (y1, y2, y3), centred at a point ζ, as depicted
in figure Figure 3.2. We also imposed y3 parallel to d(ζ) and we denoted by d̃ the director d under
the new coordinates. From (3.7) and (3.8) we get

divy d̃(0) =
∂d̃1

∂y1
(0) +

∂d̃2

∂y2
(0) = s1 + s2,

d̃(0) · roty d̃(0) =
∂d̃2

∂y1
(0)− ∂d̃1

∂y2
(0) = −(t1 + t2),

|d̃(0) ∧ rotyd̃(0)|2 =

(
∂d̃1

∂y3
(0)

)2

+

(
∂d̃2

∂y3
(0)

)2

= b21 + b22,

(10.3)

with also

[tr{(∇yd̃)2} − (divy d̃)2](0) =
[
2
∂d1

∂y2

∂d2

∂y1
− 2

∂d1

∂y1

∂d2

∂y2

]
(0) = −2(t1t2 + s1s2). (10.4)

Thus (10.1) is satisfied replacing d by d̃ and deriving under the new coordinates (y1, y2, y3). Now,
we claim that the four terms (10.3) and (10.4) does not depend on the considered change of variables,
namely
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divy d̃(0) = divxd(ζ), d̃(0) · roty d̃(0) = d(ζ) · rotx d(ζ),

|d̃(0) ∧ rotyd̃(0)|2 = |d(ζ) ∧ rotxd(ζ)|2, tr{(∇yd̃(0))2} = tr{(∇xd(ζ))2}.
(10.5)

The first equality turns out from

divy d̃(0) =
3∑
i=1

∂d̃i
∂yi

(0) =
3∑

i,j,k

Rij
∂

∂yi

[
dj(ζ + tRy)

]
(0)

=
3∑

i,j,k

Rij
tRki

∂dj
∂xk

(ζ) =
3∑

j,k=1

δjk
∂dj
∂xk

(ζ) = divxd(ζ),

while the second equality is achieved by

d̃(0) · rotyd̃(0) =

3∑
r,k,l=1

( 3∑
s,i,j=1

εsijRsrRik
tRlj

)
dr(ζ)

∂dk
∂xl

(ζ)

=
3∑

r,k,l=1

εrkldr(ζ)
∂dk
∂xl

(ζ) = d(ζ) · rotx d(ζ),

where we have used the following identity

3∑
s,i,j=1

εsijRsrRikRjl = εrkl.

Now, in order to prove the third equality, we make use of the constraint |d| = 1 through

d ∧ rotx d = ∇x(|d|2)− d · ∇xd = −d · ∇xd.

The same identity is satisfied for d̃ in the y-coordinates, hence the third identity is equivalent to

|d̃(0) · ∇yd̃(0)|2 =
3∑
i=1

∣∣∣ 3∑
j=1

d̃j(0)
∂d̃i
∂yj

(0)
∣∣∣2 =

3∑
i=1

∣∣∣ 3∑
j,s,l,k=1

Rjsds(ζ)Rik
tRlj

∂dk
∂xl

(ζ)
∣∣∣2

=

3∑
i=1

∣∣∣ 3∑
s,l,k=1

Rikδlsds(ζ)
∂dk
∂xl

(ζ)
∣∣∣2 =

3∑
i=1

∣∣∣ 3∑
l,k=1

Rikdl(ζ)
∂dk
∂xl

(ζ)
∣∣∣2

=

3∑
i=1

∣∣(R {d(ζ) · ∇d(ζ)}
)
i
|2 =

∣∣R {d(ζ) · ∇d(ζ)}|2 = |d(ζ) · ∇d(ζ)|2.

Lastly, we achieve the fourth identity as follows:

tr{(∇yd̃(0))2} =

3∑
i,j=1

∂d̃i
∂yj

(0)
∂d̃j
∂yi

(0) =
3∑

i,j,k,l,r,s=1

Rij
tRlj

∂dk
∂xl

(ζ)Rjr
tRsi

∂dr
∂xs

(ζ)

=

3∑
k,l,r,s=1

δskδlr
∂dk
∂xl

(ζ)
∂dr
∂xs

(ζ) =

3∑
k,l=1

δskδlr
∂dk
∂xl

(ζ)
∂dl
∂xk

(ζ) = tr{(∇xd(ζ))2}.

Thus, summarizing the above considerations, we can finally conclude that (10.1) and (10.2) stand
for the same energy density.
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10.2 The Oseen-Frank identity

In this section we prove a useful tensor identity for the Oseen-Frank energy density wF (3.9). It
reads as follows: Is := εisl

(
dl
∂wF
∂di

+
∂wF
∂di,j

dl,j +
∂wF
∂dj,i

dj,l

)
= 0, (10.6)

for any s = 1, 2, 3. First, let us remark that from the identity

d ∧ rot d = ∇(d · d)− d · ∇d = −d · ∇d,
wF can be expressed in summation form as follows:

wF (d,∇d) =

=
k11

2
(di,i)

2 +
k22

2

(
diεijknk,j

)2
+
k33

2
djdi,jdkdi,k +

k22 + k24

2

(
di,jdj,i − (di,i)

2
)

=
k11 − k22 − k24

2
(di,i)

2 +
k22

2

(
dk,jdk,j − dk,jdj,k − didjdk,jdk,i

)
+

+
k33

2
djdi,jdkdi,k +

k22 + k24

2
di,jdj,i

=
k11 − k22 − k24

2
(di,i)

2 +
k22

2
di,jdi,j +

k24

2
di,jdj,i +

k33 − k22

2
didjdk,jdk,i.

(10.7)

Thus, we can compute each derivative of wF , obtaining

∂wF
∂di

= (k33 − k22)djdk,jdk,i,

∂wF
∂di,j

= (k11 − k22 − k24)δijdk,k + k22di,j + k24dj,i + (k33 − k22)dkdjdi,k.

Hence, applying this result to (10.6) yields that

Is = εisl

{
(k33 − k22)djdk,jdk,idl +

[
(k11 − k22 − k24)δijdk,kdl,j + k22di,j + k2,4dj,i+

(k33 − k22)dkdjdi,k

]
dl,j +

[
(k11 − k22 − k24)δjidk,kdl,j + k22dj,i + k2,4di,j+

(k33 − k22)dkdidj,k

]
dj,l

}
= (k33 − k22) εisl

[
djdk,jdk,idl + dkdjdi,kdl,j + didkdj,kdj,l

]
︸ ︷︷ ︸

T 1
il

+

(k11 − k22 − k24)dk,keisl

[
dl,i + di,l

]
︸ ︷︷ ︸

T 2
il

+k22εisl

[
di,jdl,j + dj,idj,l

]
︸ ︷︷ ︸

T 3
il

+k24 εisl

[
dj,idl,j + di,jdj,l

]
︸ ︷︷ ︸

T 4
il

.

Each tensor T kil , for k = 1, 2, 3, 4, is symmetric on (i, l), thus we deduce that εislT
k
il is null, for any

s = 1, 2, 3, which yields (10.6).

10.3 Some specifics about the Ericksen-Leslie system

In section 3.2.4 we presented the general Ericksen-Leslie system, deriving its formulation from the
balance of the linear momentum (3.2), the balance of angular momentum (3.12), the conservation
of mass (3.1) and finally the work postulate (3.16). In this section we give some more specifics for
the interested reader.

First, recalling that the tensor formulations of the surface force σi and the surface moment li
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are σijνj and lijνj , with ν the normal to the boundary ∂U , then the work postulate (3.16) becomes

ˆ
U
ρ
(
F · u+K · w

)
dx+

ˆ
∂U

(
σ · u+ l · w

)
dν︸ ︷︷ ︸

I

=
D

Dt

ˆ
U

(1

2
ρ|u|2 + wF

)
dx︸ ︷︷ ︸

II

+

ˆ
U
Ddx. (10.8)

Moreover, thanks to the Green’s theorem, we can develop I into

I =

ˆ
∂U

(
σijui + lijwi

)
νj =

ˆ
U

(
σijui + lijwi

)
,j

dx

=

ˆ
U

(
σij,jui + σijui,j + lij,jwi + lijwi,j

)
dx,

hence, recalling (3.4) and (3.14), we achieve

I =

ˆ
U

(
ρu̇iui − ρFiui + σijui,j − ρKiwi − εijkσjkwi + lijwi,j

)
dx,

while the Reynolds’ transport theorem allows to express II as follows

II =

ˆ
U

( D
Dt

[
ρ
|u|2

2

]
+ ẇF

)
dx =

ˆ
U

(
ρ̇
|u|2

2
+ ρu̇ · u+ ẇF

)
dx =

ˆ
U

(
ρu̇ · u+ ẇF

)
dx.

Substituting the terms I and II and from the arbitrariness of the domain U we can write (10.8)
in point form as follows

σijui,j + lijwi,j − εijkσjkwi = ẇF +D. (10.9)

Now, we analyse the material derivative of the Oseen-Frank energy density ẇF . First, we recall
that from the explicit formula (3.9), wF depends only on d and ∇d. Thus, its material derivative
fulfils

ẇF =
∂wF
∂di

ḋi +
∂wF
∂di,j

D

Dt

[
di,j

]
.

The definition of material derivative implies

D

Dt

[
di,j

]
= ∂tdi,j + uk∂

2
kjdi = ∂j(∂tdi + uk∂kdi)− uk,jdi,k = (ḋi),j − uk,jdi,k,

so that, ẇF is determined by

ẇF =
∂wF
∂di

ḋi +
∂wF
∂di,j

(
(ḋi),j − uk,jdi,k

)
=
∂wF
∂di

εislwsdl +
∂wF
∂di,j

(
εislwsdl

)
,j
− ∂wF
∂di,j

uk,jdi,k

=
∂wF
∂di

εislwsdl +
∂wF
∂di,j

εislws,jdl +
∂wF
∂di,j

εislwsdl,j −
∂wF
∂di,j

uk,jdi,k

= εisl

[
ws

(∂wF
∂di

dl +
∂wF
∂di,j

dl,j

)
+
∂wF
∂di,j

ws,jdl

]
− ∂wF
∂di,j

uk,jdi,k.

Making use of the following identity concerning the material derivative ẇF

Is := εisl

(
dl
∂wF
∂di

+
∂wF
∂di,j

dl,j +
∂wF
∂dj,i

dj,l

)
= 0, (10.10)
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for any s = 1, 2, 3 (see the appendix for more details), we achieve that ẇF can be expressed as
follows

ẇF = εisl

[∂wF
∂di,j

ws,jdl − ws
∂wF
∂dj,i

dj,l

]
− ∂wF
∂di,j

uk,jdi,k.

Then, the balance law (10.9) becomes

σijui,j + lijwi,j − εijkσjkwi = εisl

[∂wF
∂di,j

ws,jdl − ws
∂wF
∂dj,i

dj,l

]
− ∂wF
∂di,j

uk,jdi,k +D,

namely

ui,j

(
σij +

∂wF
∂dk,j

dk,i

)
+ wi,j

(
lij − εislds

∂wF
∂dl,j

)
− wiεisl

(
σsl −

∂wF
∂dk,l

dk,s

)
= D. (10.11)

As exposed by Leslie in [67], the rate of dissipation D is necessarily positive, thus the sign arbi-
trariness of wi, wi,j and ui,j leads to the conclusion that the stress tensor σij and the couple stress
stress lij can be expressed as follows:

σij = −pδij −
∂wF
∂dk,j

dk,i + σ̃ij , (10.12)

lij = εislds
∂wF
∂dl,j

+ l̃ij . (10.13)

Here p is an arbitrary pressure which arises from the incompressibility condition, while σ̃ and l̃ are
dynamic contribution. The tensor σ̃ij is known as the Leslie stress tensor or the viscous stress.
Moreover (10.11) reduces on a constriction for the dynamic contributions, namely

σ̃ijui,j + l̃i,jwi,j + wiεijkσ̃kj = D ≥ 0. (10.14)

The Ericksen-Leslie equations

In order to proceed further, we have to analyse the dynamic contributions σ̃ij and t̃ij to the total
stress tensor σij and the couple stress tensor lij . This contribution is going to be expressed as
relations between the stresses and the dynamic of the material, the so called constitutive relations.

First, we assume that the dynamic contributions can be formulated as functions of the director
d, the gradient of the velocity field ∇u and the local angular velocity of the director w. Then
inequality (10.14) presents a linear term on l̃ij , since there is no dependence on the gradient ∇w.
Assuming sign-arbitrariness of ωi,j , we achieve that there is no dynamic contribution to the couple
stress tensor, that is

l̃ij = 0.

Thus the dynamic contribution reduces to the viscous stress σ̃ij and inequality (10.14) becomes

σ̃ijui,j + wiεijkσ̃kj = D ≥ 0. (10.15)

Now, we also assume the dynamic contributions to be invariant under a rigid body motion,
which leads (see for instance [107]) the viscous stress σ̃i,j to be dependent on d, w and the rate of
strain tensor A, given by (3.15). Further developments allow us to formulate the viscous stress σ̃ij
in its most widely adopted and well known form

σ̃ij = α1Alkdkdldidj + α2diNj + α3Nidj + α4Aij + α5djAikdk + α6diAjkdk. (10.16)
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Here, the coefficients α1, . . . α6 are known as the Leslie viscosity coefficients. Inequality (10.15)
yields the following restriction (see [107], section 4.2.3):

γ1 := α3 − α2 ≥ 0,

α4 ≥ 0,

2α4 + α5 + α6 ≥ 0,

2α1 + 3α4 + 2α5 + 2α6 ≥ 0,

4γ1(2α4 + α5 + α6) ≥ (α2 + α3 + γ2)2.

We are now able to perform the dynamic equations, coming back to the balance laws of linear
momentum (3.4) and angular momentum (3.14). Replacing the total stress tensor σij (10.12) and
the couple stress tensor (10.13), the dynamic equations become

ρ
(
ui,t + ukui,k

)
+∇p = ρFi +

[ ∂wF
∂dk,j

dk,i + σ̃ij

]
,j
, (10.17)

ρKi + εisl

[
σ̃sl +

(
ds
∂wF
∂dl,j

)
,j
− ∂wF
∂dl,j

dk,l

]
= 0. (10.18)

Now, let us remark that

εislσ̃sl = α1εislArkdkdrdsdl︸ ︷︷ ︸
=0

+α2εisldsNl − α3εislNlds + α4εislAsl︸ ︷︷ ︸
=0

+

+ α5εisldlAskdk − α6εisldlAskdk,

hence, denoting with γ1 := α3 − α2, γ2 := α6 − α5 and defining g̃ = −γ1N − γ2An, we get

εislσ̃sl = εisldsg̃l = (d ∧ g̃)i.

Finally, recalling also the identity (10.10), the angular momentum equation (10.18) assumes the
following form

ρKi + εislds

[
g̃l +

(∂wF
∂dl,j

)
,j
− ∂wF

∂dl

]
= 0. (10.19)

If we assume that the external body force K can be expressed as ρK = d∧G, with G the so-called
generalized body force, then (10.18) becomes

εislds

[
Gl + g̃l +

(∂wF
∂dl,j

)
,j
− ∂wF

∂dl

]
= 0,

or in a no-index form

d ∧
[
G+ g̃ + div

{∂wF
∂∇d

}
− ∂wF

∂d

]
= 0.

As suggested by Ericksen [41], it is natural assuming F and G to be produced by gravitational
or electromagnetic fields, however in this thesis we are going to ignore these contributions. Sum-
marizing all the previous considerations, we can finally perform the well-known Ericksen-Leslie
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equations, which reads as follows 

∂tρ+ u · ∇ρ = 0,

ρ
(
∂tu+ u · ∇u

)
= div σ,

div u = 0,

d ∧
(
g̃ + h

)
= 0,

|d|2 = 1

(10.20)

where the total stress tensor σ is given by

σij = −pδij −
∂wF
∂dk,j

dk,i + σ̃ij

with the viscous stress σ̃ determined by (3.17), and also denoting by h the molecular field

h = div
{∂wF
∂∇d

}
− ∂wF

∂d
.

10.4 Uniaxial behaviour of the Qian-Sheng system

In this section we show the main correlation between the Ericksen-Leslie and the Qiang-Sheng
theories. The Ericksen-Leslie system is the most widespread model for the hydrodynamics of
uniaxial nematic materials, while the Qian-Sheng one makes use of the de Gennes order tensor
that also describes the evolution of biaxial nematic liquid crystals. Nevertheless, the Qian-Sheng
model should be seen as an extension of the Ericksen-Leslie one: we are going to prove that if we
restrict the order tensor to be uniaxial, as in (10.22), then the two theories coincide.

We begin our proof showing that the bulk energy ψB(Q) (3.25) is null when the order tensor
Q assumes an uniaxial form.

Lemma 10.4.1. Let Q be an uniaxial order tensor

Q = s
(
d⊗ d− Id

3

)
, such that s =

b±
√
b2 − 24ac

4c
(10.21)

where d is a unit vector in S2 ⊂ R3 and a, b and c are the constants appearing in the bulk energy
density ψB (3.25). Then

L
∂ψB(Q)

∂Q
= aQ− b

(
Q2 − tr{Q2}Id

3

)
+ cQtr{Q2} = 0.

Proof. As Q assumes the uniaxial form (10.21), we have that

Q2 = s2
[
(d⊗ d)(d⊗ d)− 2

3
d⊗ d+

Id

9

]
=
s2

3

(
d⊗ d+

Id

3

)
and tr{Q2} =

2s2

3
.

Thus the projection through L of the variational derivative of ψB(Q) assumes the following form:

L
∂ψB(Q)

∂Q
= as

(
d⊗ d− Id

3

)
− b
[s2

3

(
d⊗ d+

Id

3

)
− 2s2

9
Id
]

+
2cs3

3

(
d⊗ d− Id

3

)
=
(
a− bs

3
+

2cs2

3

)
s
(
d⊗ d− Id

3

)
=

1

3
(3a− bs+ 2cs2)Q

Since the values of s in (10.21) are the zeros of 3a− bs+ 2cs2, then the result follows.
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We are now ready to prove our main result, which reads as follows:

Proposition 10.4.2. Let (u, Q) be a smooth solution of the Qian-Sheng system (3.37) with inertial
density J = 0. Let us assume that the order tensor Q(t, x) is uniaxial at every point x and for any
time t,

Q(t, x) = s
(
d(t, x)⊗ d(t, x)− Id

3

)
. (10.22)

where d(t, x) is a smooth function which returns value into the sphere S2 in R3 and with the constant
s given by

s =
b−
√
b2 − 24ac

4c
.

Then the couple (u, d) is solution of the general Ericksen-Leslie system (3.18), for suitable value
of the Leslie viscosity coefficients.
Proof. We begin analysing the uniaxiality of Q (10.22) together with the order tensor equation

µ1

(
Q̇− [Ω, Q]

)
−∆Q = −L

∂ψB(Q)

∂Q
+ µ2A.

We claim that these lead to the angular momentum equation of the Ericksen-Leslie system

d ∧
(
− γ1N − γ2Ad+ h

)
= 0, (10.23)

for a suitable value of coefficients γ1 and γ2, where we recall that N and h stand for the co-rotational
time flux of d and the molecular field respectively, whose formulas are given by

Ni = ḋi − (Ωd)i = ḋi −
ui,j − uj,i

2
dj , and hi =

(∂wF (d, ∇d)

∂di,j

)
,j
− ∂wF (d,∇d)

∂di
.

For the sake of simplicity, in what follows we consider the simplest form of the Oseen Frank energy
density, that is

wF (d,∇d) = wF (∇d) =
|∇d|2

2
,

so that the elastic field h in (10.23) reads as h = ∆d. In this form, the density wF is of the same
shape with respect to the elastic energy density (3.29) for the de Gennes tensor Q, i.e.

ψe(Q) =
|∇Q|2

2
.

We leave to the interested reader the task of formulating analogous results when the general case
wF and ψe given by (3.9) and (3.26) respectively, occurs.

Lemma 10.4.1 and the uniaxiality of Q (10.21) yield the order tensor equation to read as

µ1

(
Q̇− [Ω, Q]

)
−∆Q = µ2A, (10.24)

that is
µ1s

2
(
ḋ⊗ d+ d⊗ ḋ− [Ω, (d⊗ d)]

)
− s2∆(d⊗ d) = µ2A.

Now, let us remark that for any i, j ∈ {1, 2, 3}

[Ω, (d⊗ d)]ij =
(
Ω(d⊗ d)− (d⊗ d)Ω

)
ij

= (Ωikdk)dj − di(dkΩkj) =
(
d⊗ (Ωd) + (Ωd)⊗ d

)
ij
,

hence
Q̇− [Ω, Q] = s

(
ḋ⊗ d+ d⊗ ḋ− [Ω, (d⊗ d)]

)
= sN ⊗ d+ sd⊗N . (10.25)

Now
∆(d⊗ d)ij = ∆didj + di∆dj + 2di,kdj,k,

So that (10.24) in index form reads as

µ1s
2
(
Nidj + diNj

)
− s2

(
∆didj + di∆dj + 2di,kdj,k

)
= µ2Aij .
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Multiplying both the left-hand and right-hand sides by di and taking the sum in i, we get

µ1s
2
(
Nididj + Nj

)
− s2

(
∆dididj + ∆dj + 2 di,kdi︸ ︷︷ ︸

=0

dj,k
)

= µ2Aijdi,

where we have used di,kdi = ∂k|d|2/2 = 0. Thus (10.24) becomes

µ1s
2N − s2∆d− µ2Ad = −αd

where α = (µ1s
2N − s2∆d) · d. Taking the wedge product between the above equation and d, we

finally obtain (
µ1s

2N − s2∆d− µ2Ad
)
∧ d = 0,

that is the angular momentum equation (10.23), imposing γ1 = µ1 and γ2 = −µ2/s
2.

Now, we handle the linear momentum equation for the velocity field u, that is

ut + u · ∇u− β4

2
∆u+∇p = div

{
−∇Q�∇Q+ β1Qtr{QA}+ β5AQ+ β6QA

}
+

+ div
{µ2

2

(
Q̇− [Ω, Q]

)
+ µ1[Q, Q̇− [Ω, Q]]

}
.

and we claim that under the uniaxial condition (10.22) it corresponds to the linear momentum
equation of the Ericksen-Leslie system (3.18), i.e.

ut + u · ∇u = div σ.

We begin anlysing each stress tensor on the right-hand side, first

(∇Q�∇Q)ij = s2
(
∇(d⊗ d)�∇(d⊗ d)

)
ij

= s2(dαdβ),i(dαdβ),j

= s2dα,idβ dα,jdβ + s2dαdβ,idα,jdβ + s2dα,idβdα,jdβ + s2dα,idβ dαdβ,j

= 2s2dα,i dα,j = s2(∇d�∇d)ij ,

where we have used dα,idα = dβ,idβ = 0. Thus, recalling that the total stress tensor σ (10.12) is
given by

σij = −pδij −
∂wF
∂dk,j

dk,i + σ̃ij = −pδij − (∇d�∇d)ij + σ̃ij ,

it remains to identify the Leslie viscous stress σ̃ (10.16), given by

σ̃ij = α1Alkdkdldidj + α2diNj + α3Nidj + α4Aij + α5djAikdk + α6diAjkdk. (10.26)

First, we observe that

β1Qijtr{QA} = β1s
2
(
didj −

δij
3

)
Alkdldk,

β5(AQ)ij + β6(QA)ij = β5sAikdkdj + β6sAjkdkdi +
β5 + β6

3
sAij ,

moreover, recalling (10.25),

µ2

2

(
Q̇− [Ω, Q]

)
ij

=
µ2

2
s
(
diNj + Nidj

)
,

µ1[Q, Q̇− [Ω, Q]]ij = µ1s
2[d⊗ d, d⊗N + N ⊗ d]ij

= µ1s
2
(
diNj + didkNkdj − diNkdkdj −Nidj

)
= µ1s

2
(
diNj −Nidj

)
,

where we have used d ·N = d · (ḋ − Ωd) = 0. Hence, summarizing the previous considerations,
imposing

α1 := β1s
2, α2 := µ1s

2 + µ2

2 s, α3 := −µ1s
2 + µ2

2 s,

α4 := β4 + β5+β6

3 s, α5 := β5s, α6 := β6s.



and considering the new pressure p̃ = p+ µ2sAd · d/3, u is solution of

ut + u · ∇u = div σ,

which concludes the proof of the Proposition.

Remark 10.4.3. Vice versa, one can show that if (u, d) is solution for the Ericksen-Leslie system
(3.18), then the couple (u, Q), with Q defined by (10.22), is solution of the Qian-Sheng equations.
The proof is equivalent to the one of the above proposition, and it is left to the interested reader.
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