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Résumé

Dans le cadre de cette theése, on s’intéresse a la dynamique de quelques fluides complexes. D’une
part on étudie la dynamique des cristaux liquides nématiques, en utilisant les modeles proposés par

e Ericksen et Leslie,
e Beris et Edwards,
e Qian et Sheng.

D’autre part, on analyse un fluide complexe dont la dynamique dépend de la température et qui
est modélisée par

e le systeme de Boussinesq.

Les cristaux liquides sont des matériaux avec une phase de la matiere intermédiaire entre les
liquides et les solides qui sont des phases plus connues. Dans cette these, on s’intéresse a 1’étude du
probleme de Cauchy associé a chaque systeme modélisant leurs hydrodynamiques. Tout d’abord
on obtient des résultats d’existence et d’unicité de solutions faibles ou classiques, solutions qui sont
globales en temps. Ensuite, on analyse la propagation de la régularité des données initiales pour
ces solutions.

Le cadre fonctionnel adopté pour les données initiales est celui des espaces de Besov homogenes,
généralisant des classes d’espaces mieux connues : les espaces de Soboloev homogenes et les espaces
de Holder.

Le systéeme Ericksen-Leslie est considéré dans la version simplifiée proposée par F. Lin et C.
Liu, version qui préserve les principales difficultés du systeme initial. On étudie ce probleme en
dimension supérieure ou égale a deux. On considere le systeme dans le cas inhomogene, c’est-a-
dire avec une densité variable. De plus, on s’intéresse au cas d’une densité de faible régularité qui
est autorisée a présenter des discontinuités. Donc, le résultat que ’on démontre peut étre mis en
relation avec la dynamique des mélanges de nématiques non miscibles. On démontre ’existence
globale en temps de solutions faibles de régularité invariante par changement d’échelle, en supposant
une condition de petitesse sur les données initiales dans des espaces de Besov critiques. On démontre
aussi 'unicité de ces solutions si de plus on suppose une condition supplémentaire de régularité
pour les données initiales.

Le systeme Beris-Edwards est analysé dans le cas bidimensionnel. On obtient ’existence et
I’unicité de solutions faibles globales en temps, lorsque les données initiales sont dans des espaces de
Sobolev spécifiques (sans condition de petitesse). Le niveau de régularité de ces espaces fonctionnels
est adapté pour bien définir les solutions faibles. L’unicité est une question délicate et demande
une estimation doublement logarithmique pour une norme sur la différence entre deux solutions
dans un espace de Banach convenable. Le lemme d’Osgood permet alors de conclure a 'unicité de
la solution. On obtient également un résultat de propagation de régularité d’indice positif.

Afin de prendre en compte 'inertie des molécules, on considere aussi le modele proposé par
Qian et Sheng, et on étudie le cas de la dimension supérieure ou égale a deux. Ce systéme montre
une caractéristique structurale spécifique, plus précisément la présence d’un terme inertiel, ce qui
génere des difficultés significatives. On démontre l'existence d’'une fonctionnelle de Lyapunov et



I'existence et I'unicité de solutions classiques globales en temps, en considérant des données initiales
petites.

Enfin, on analyse le systeme de Boussinesq et on montre 'existence et 1'unicité de solutions
globales en temps. On considere la viscosité en fonction de la température en supposant simplement
que la température initiale soit bornée, tandis que la vitesse initiale est dans des espaces de Besov
avec indice de régularité critique. Les données initiales ont une composante verticale grande et
satisfont a une condition de petitesse spécifique sur les composantes horizontales: elles doivent étre
exponentiellement petites par rapport a la composante verticale.

Mots clés: Cristaux liquides nématiques, systeme Ericksen-Leslie, systéme Beris-Edwards,
systeme Qian-Sheng, systeme Boussinesq, densité variable, viscosité variable, théorie de Littlewood-
Paley, espaces de Besov, analyse harmonique, inégalités logarithmiques, régularisation du noyau de
la chaleur.



Abstract

The present thesis is devoted to the dynamics of specific complex fluids. On the one hand we study
the dynamics of the so-called nematic liquid crystals, through the models proposed by

e FEricksen and Leslie,
e Beris and Edwards,
e Qian and Sheng.

On the other hand we analyze the dynamics of a temperature-dependent complex fluid, whose
dynamics is governed by

e the Boussinesq system.

Nematic liquid crystals are materials exhibiting a state of matter between an ordinary fluid
and a solid. In this thesis we are interested in studying the Cauchy problem associated to each
system modelling their hydrodynamics. At first, we establish some well-posedness results, such as
existence and uniqueness of global-in-time weak or classical solutions. Moreover we also analyze
some dynamical behaviours of these solutions, such as propagations of both higher and lower
regularities.

The general framework for the initial data is that of Besov spaces, which extend the most widely
known classes of Sobolev and Hoélder spaces.

The Ericksen-Leslie system is studied in a simplified form proposed by F. Lin and C. Liu,
which retains the main difficulties of the original one. We consider both a two-dimensional and a
three-dimensional space-domain. We assume the density to be no constant, i.e. the inhomogeneous
case, moreover we allow it to present discontinuities along an interface so that we can describe a
mixture of liquid crystal materials with different densities. We prove the existence of global-in-time
weak solutions under smallness conditions on the initial data in critical homogeneous Besov spaces.
These solutions are invariant under the scaling behaviour of the system. We also show that the
uniqueness holds under a tiny extra-regularity for the initial data.

The Beris-Edwards system is analyzed in a two-dimensional space-domain. We achieve existence
and uniqueness of global-in-time weak solutions when the initial data belongs to specific Sobolev
spaces (without any smallness condition). The regularity of these functional spaces is suitable in
order to well define a weak solution. We achieve the uniqueness result through a specific analysis,
controlling the norm of the difference between to weak solutions and performing a delicate double-
logarithmic estimate. Then, the uniqueness holds thanks to the Osgood lemma. We also achieve a
result about regularity propagation.

The Qian-Sheng model is analyzed in a space-domain with dimension greater or equal than two.
In this case, we emphasize some important characteristics of the system, especially the presence of
an inertial term, which generates significant difficulties. We perform the existence of a Lyapunov
functional and the existence and uniqueness of classical solutions under a smallness condition for
the initial data.

Finally we deal with the well-posedness of the Boussinesq system. We prove the existence of
global-in-time weak solutions when the space-domain has a dimension greater or equal than two.
We deal with the case of a viscosity dependent on the temperature. The initial temperature is just
supposed to be bounded, while the initial velocity belongs to some critical Besov Space. The initial
data have a large vertical component while the horizontal components fulfil a specific smallness
conditions: they are exponentially smaller than the vertical component.



Keywords: Nematic liquid crystal, Ericksen-Leslie system, Beris-Edwards system, Qian-Sheng
system, Boussinesq system, variable viscosity, Littlewood-Paley theory, Besov spaces, harmonic
analysis, logarithmic estimates, regularizing effects for the heat kernel.
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Dynamics of liquid crystals






Chapter 1

Introduction (Version Francaise)

Le principal objet de cette these est I’étude de plusieurs équations aux dérivées partielles provenant
de la dynamique des cristaux liquides de type nématique. Plus précisément, on montre que les
systemes d’Ericksen-Leslie, Beris-Edwards et Qian-Sheng sont bien posés et on étudie la propagation
des régularités des solutions associées.

On renvoie le lecteur au prochain chapitre pour la dérivation de ces systemes et une introduction
avec plus d’explications. Dans ce chapitre, on donne une présentation générale des résultats obtenus.
En premier lieu, on s’intéresse au probleme de Cauchy associé a chacun des systemes considérés,
pour des conditions initiales convenables, c’est-a-dire prises dans des espaces fonctionnels bien
choisis, de sorte que le modele présente aussi un intérét physique. Par exemple, dans le cas du
systeme Ericksen-Leslie, le résultat que ’on démontre peut étre mis en relation avec la dynamique
des mélanges de nématiques non miscibles.

On considere a la fois le cas bidimensionnel et le cas N-dimensionnel, pour N > 3. D’une
part, on montre I’existence et I'unicité de solutions dans le cas N-dimensionnel, en utilisant prin-
cipalement des outils d’analyse harmonique. D’autre part, on démontre 'existence et l'unicité
de solutions faibles ou classiques dans le cas bidimensionnel, au moyen cette fois ci d’estimations
d’énergies, d’analyse de Fourier, et du calcul para-différentiel.

On étudie aussi la propagation des régularités, principalement dans le systéme proposé par
Beris-Edwards. Ici, les méthodes employées sont principalement des techniques issues de I’analyse
de Fourier et des estimations de type logarithmique.

On commence la présentation par celle du modele d’Ericksen-Leslie.

1.1 Résultats pour le systeme d’Ericksen-Leslie

Durant les années 50-60, J.L. Ericksen [41] et F. Leslie [69] ont développé la théorie la plus
répandue jusqu’a aujourd’hui pour la modélisation de la dynamique des cristaux liquides du type
nématique. Ils ont considéré que les molécules ont une orientation locale, ce qui est représenté
mathématiquement par des fonctions prenant leurs valeurs dans ’espace des directors, c’est-a-dire
dans la sphere unité. Leur évolution dans le temps est représentée par une équation dont les in-
connues sont des champs de vecteurs unitaires d qui sont transportés et tournés par un champ
de vitesse u. La vitesse du centre de gravité des molécules satisfait un systéme de Navier-Stokes
incompressible couplé a un tenseur de contraintes généré par la présence des directors.

3



4 CHAPTER 1. INTRODUCTION (VERSION FRANCAISE)

On considere la version simplifiée du systéeme Ericksen-Leslie proposée par F. Lin |74}75,80]:

Op +div (pu) =0 R, x RV,

A (pu) + div(pu ® u) — Au+ VII = —div(Vd ® Vd) Ry x RY,

divu =0 R, x RN, (1)
Ord+u-Vd— Ad = |Vd|*d Ry x RN, '
|d =1 R, x RV,

(u, p; d)jt=0 = (uo, po, do) RY.

\

C’est un systéme couplé entre les équations de Navier-Stokes (inhomogenes et incompressibles) et
le flot de la chaleur harmonique sur la sphere transporté par la vitesse u. On rappelle que les
fonctions considérées sont définies par :

p=p(t,z) € Ry désigne la densité,
u=u(t,z) € RY représente le champ de vitesse,
M=T1(t,z) eR est la pression,
d=d(t,z) € SNt est le director,

chacune dépendant de la variable de temps t € R et de la variable d’espace € RV. On considere
’espace entier RV comme domaine pour la variable z, pour une dimension N quelconque supérieure
ou égale a deux. Le symbole Vd ® Vd désigne la matrice de taille N x N dont la coordonnée en
position (i, j) est donnée par :

(Vd © Vd)w = 8Zd . 8]d == dk,idk,j’

pouri,j=1,...,N.
Il est important d’observer que F. Lin a proposé ce systeme simplifié pour un fluide homogene,

c’est-a-dire pour une densité constante. La version inhomogene que ’on consideére ici est intéressante
en particulier pour modéliser un mélange de cristaux liquides de densités différentes.

1.1.1 Enoncés des principaux résultats

Avant d’énoncer notre principal résultat dont on donne la preuve dans le chapitre [5] il nous faut
décrire les espaces fonctionnels dans lesquels nos données initiales sont définies. Notre intérét est
d’imposer une faible régularité sur la densité initiale py, de sorte que l'on puisse autoriser des
discontinuités. On la suppose donc simplement bornée :

po € L=°(RN).

Maintenant, on peut remarquer que le systéme ((1.1)) a une propriété en commun avec les équations
de Navier-Stokes classiques. Précisément, si (p, u, d) satisfait (1.1)) pour les conditions initiales
(po, uo, dp), alors pour tout A positif, les fonctions

(p, u, d)a(t,z) = (p(t, z), Mu(N’t, \x), d(N\*t, Ax))

sont aussi solutions, mais pour les conditions initiales (po(Az), Aug(Ax), dop(Az)). Ainsi, une car-
actéristique importante du systeme ([1.1)) est que le gradient du director Vd et la vitesse v ont un
changement d’échelle équivalent. Il est donc naturel de prendre ug et Vdy dans le méme espace
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fonctionnel.

De plus, d’autres heuristiques (que I'on détaille dans le chapitre [5)) suggerent que les espaces
fonctionnels les plus adaptés pour (ug, Vdy) sont les espaces de Besov homogénes avec un indice
de régularité critique. Plus précisément, on suppose

(u(), Vd()) S B;r.

pour des indices p,r € [1,00] convenables et un indice de régularité s € R critique. Ces espaces
fonctionnels sont définis grace a la théorie de Littlewood-Paley (on renvoie le lecteur & la section [5.3]
pour une description complete). Il est peut-étre intéressant de remarquer que les espaces de Besov
homogenes généralisent des classes d’espaces mieux connues: les espaces de Soboloev homogenes
et les espaces de Holder. Cette généralisation se voit a travers les relations

58 TS S0 ~No
B2’2:H, BOO,OO:C 3

pour s € Ry et 0 € Ry \ Z.
Notre résultat principal a propos du modele Ericksen-Leslie peut étre résumé par 1’énoncé
suivant :

Théoréme 1.1.1. Supposons que les données initiales (po, ug, Vdy) remplissent la condition de
petitesse :

1
= =1+l oy + Idol oy, <o,
Po Lge By Byr

pour une constante ¢y suffisamment petite, avec 1 < p < N et 1 <r < oo, alors le systéme (1.1
admet des solutions faibles globales en temps. Si de plus on suppose une condition supplémentaire
de régularité sur (ug, Vdy), précisément

N1
(uo, Vo) € By, (1.2)

pour un petit € positif, alors une telle solution est unique.

Dans I’énoncé ci-dessus, il n’y a pas d’information sur l’espace fonctionnel dans lequel vivent
nos solutions faibles. Par souci de clarté, on renvoie ce type d’informations au chapitre [bl ainsi
qu’un énoncé plus détaillé du Theoréeme [1.1.1] Toutefois, on peut anticiper le fait que les espaces
fonctionnels dans lesquels on va chercher nos solutions faibles sont de deux types : si les données
initiales sont assez lisses, on considere des espaces du type Lebesgue L% (0,T'; L% (RN )), pour de
bons choix de ¢; et g2 dépendant de r, tandis que si les données initiales manquent de régularité,
I’espace fonctionnel est celui de Serrin, qui sont des espaces anisotropes de Lebesgue avec des poids
en temps.

De plus, il est important de mentionner que la condition supplémentaire de régularité que
l’on impose dans 1’énoncé du théoréme joue un role crucial dans la preuve d’unicité. En
effet, on travaille sur la preuve d’unicité en reformulant le systeme dans les coordonnées de
Lagrange, suivant I’approche de Danchin et Mucha dans [27] pour les équations de Navier-Stokes
inhomogenes. Plus précisément, la régularité supplémentaire dont on dispose maintenant sur le
champ de la vitesse permet de construire ’application de flot ¥ (¢, x), i.e.

Y(t,z) =2 +/0 u(s, (s, x))ds.

L’existence d’une telle application est due a la régularité du type Lipschitz que le champ de vitesse u
possede, grace a I’hypothese supplémentaire sur les données initiales. Les coordonnées de Lagrange
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simplifient en un sens notre probleme, assurant que la densité p est constante dans les variables
lagrangiennes, puisque qu’elle est régie par I’équation de transport.

1.2 Résultats pour le systeme de Beris-Edwards

Cette these est aussi dévouée au probleme de Cauchy relié au systéme de Beris-Ewards. On prend
pour domaine I'espace R? tout entier, de sorte que ’hydrodynamique des matériaux nématiques
est décrite par

0Q+u-VQ+ S(Vu, Q) = H(Q) R, x R?
Ou+u-Vu—vAu+ VII = div{r + 0} Ry x R?, (13)
divu =0 Ry x R?, .
(u, Q)t=0 = 0= (uo, Qo) R?.

Ici @ = Q(t,z) est le de Gennes tenseur (section , u = u(t,x) € R3 représente le champ de
vitesse, II = II(¢,z) € R désigne la pression, le tout dépendant des variables de temps t € R et
d’espace = € R2.

H(Q) est défini par

H(Q)=LAQ —aQ+b <Q2 — tr{QQ}I;) — cQtr{Q?*},

avec a, b et ¢ des constants qui dépendent du matériau. C’est un tenseur dépendant de @) et de
son gradient, représentant la contribution de I’énergie élastique et de 1’énergie de “bulk”. Enfin,
T et o sont respectivement les parties symétriques et antisymétriques du tenseur des contraintes
additionnel, dont la formule est décrite par

ri= —€(Q+ T H(Q) — EH(Q)(Q+ 31d) +26(Q + 5 14)QH(Q) ~ LVQ® VQ,
7= QHQ) - H(Q)Q = @, H(Q))

Le terme S(Vu, Q) tient compte du fait que les molécules sont transportées, tournées et alignées
par le flot et est défini par:

S(Vu, Q) = (EA+Q)(Q + %m) Q4 %Id)(fA _ Q)20+ %Id)tr(QVu),

avec A = (Vu +'Vu)/2 et Q = (Vu — *'Vu)/2. Le parametre £ est une constante spécifique aux
cristaux liquides. D’ordinaire, il prend des valeurs petites, on peut donc négliger sa contribution.
Dans cette situation, le systéme (1.3 se présente sous la forme suivante :

Q—92Q + QQ —TL2AQ =-T'(aQ— b(Q*— tr{Q*} ) + ctr{Q*} Q)R x R?,
Ou+u - Vu — vAu + VII = Ldiv {QAQ — AQQ — VQ ® VQ} R, x R?,
divu =0 R, x R?,
(u, @)t=0 = (uo, Qo) R2,

(1.4)

ou le point désigne la dérivée matérielle 9 + v - V et VQ ® V@Q est un tenseur 3 x 3, dont la
composante (7, j) est donnée par

(VQ o VQ)i; = tr{0;Q0;Q} = 0;Qap0;jQugs-
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Ensuite on divise notre étude en deux sous-cas :

e le cas corotationnel, quand £ est nul,
e le cas général, lorsque ¢ est positif (ou nul).

On démontre I'existence et 1'unicité de solutions faibles aussi bien pour £ nul que pour & non nul,
ainsi que des résultats de propagation de régularité pour le cas corotationnel. Afin de comprendre
le cadre fonctionnel dans lequel chercher nos solutions faibles, il peut étre intéressant de remarquer
que le champ de vitesse u et le gradient du tenseur d’ordre V(@ ont le méme changement d’échelle,
ce qui est similaire & 'un des systemes Ericksen-Leslie. Si (u, @) est une solution de avec les
conditions initiales (ug, Qp), alors

(u, Q)A(t, ) == Mu(N2t, Ax), Q(N\%t, Ax)), A >0,

est toujours une solution pour un systéme avec une densité de “bulk” rééchelonnée, avec cette fois-ci
pour données initiales (Aug(Ax), Qo(Ax)). Dans le cas nématique uni-axial, ce comportement peut
étre vu comme une conséquence de celui du systeme Ericksen-Leslie. En effet, le tenseur d’ordre Q
prend ici la forme

Q) = 5 (d(t,2) @ d(t,2) ~ ),
de sorte que le “scaling behaviour” de @ se déduit de celui du champ des directors

dy(t,z) == d(\t, \x), A > 0.

1.2.1 Enoncés des principaux résultats
Le cas corotationnel

D’apres les remarques précédentes, il est naturel de prendre nos données initiales ug et VQo dans
le méme espace fonctionnel. De plus, puisqu’on travaille en dimension deux d’espace, les solutions
faibles les plus adaptées sont celles de Leray. Alors, on prend les données initiales dans des espaces
de Sobolev, c’est-a-dire

(uo, Qo) € L*(R?) x H'(R?).

Notre résultat d’existence et d’unicité peut étre énoncé comme suit :

Théoréme 1.2.1. Supposons (ug, Qo) dans L*(R?) x H'(R?) et supposons que le paramétre &
soit nul. Alors le systeme (1.4]) admet une unique solution faible (u, Q), globale en temps, et qui
satisfait

u € L>®(0,T; L*(R?)) N L*(0, T; H'(R?)),

Qe C(Ry,HY(R?) nL*0,T, H*(R?)), (1.5)

pour tout réel positif T.

Le principal intérét du Théoreme [1.2.1| concerne 'unicité, puisque 'existence a été traitée par
Paicu et Zarnescu dans [99]. Cependant, on étudie aussi cette question d’existence, mais avec une
approche différente de la leur : on utilise une méthode entre le schéma de Friedrichs et le théroreme
de point fixe de Schaefer.

Les principales difficultés qui apparaissent lors de la preuve d’unicité de la solution pour le
systeme sont liées a I’équation de la quantité de mouvement. On peut essentiellement imaginer
le systéeme comme un systeme de Navier-Stokes fortement perturbé. Pour les équations de Navier-
Stokes classiques, il est bien connu que l'unicité des solutions faibles en dimension deux découle
d’arguments plutot standards, tandis qu’il s’agit d’un probléme ouvert majeur en dimension trois.
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Les systemes étendus que l'on traite se situent dans une position intermédiaire, puisque la
perturbation produite par la présence du tenseur des contraintes additionnel entraine de réelles
difficultés techniques liées surtout au manque du controle d’un nombre suffisant de dérivées sur
la vitesse u. Une fagon plutot classique de gérer ce probleme est d’utiliser une norme faible pour
estimer la différence entre deux solutions, c’est-a-dire une norme définie sur des espaces moins
réguliers que ceux contenant les solutions. Cette approche a déja été utilisée dans le contexte
Navier-Stoke classique, dans [48] et [8§].

Dans notre cas, pour des raisons techniques, on considére un espace de Sobolev homogene
d’indice négatif, précisément H /2. Le fait que la donnée initiale de la différence des deux solutions
soit zéro (i.e. (du, 6Q)i=0 = 0) nous aide a controler la différence dans un espace homogene de
faible régularité. Pour controler les termes non linéaires on utilise une loi qui montre que le produit
est un opérateur borné opérant sur les espaces suivants :

HS(R2) % Ht(RZ) N Hs+t—%(R2)’

pour tout réel s et t, avec |s|, [t| < 1 et tels que s + t est strictement positif. Il faut alors
remarquer que le fait d’évaluer la différence a un niveau de régularité s = 0, c’est-a-dire dans
L?(R?), permettrait seulement d’établir un résultat d’unicité “weak-strong”, comme dans [99]. En
se placant dans un espace de Sobolev avec un indice négatif, H* avec s € (—1,0), on peut montrer
I'unicité de solutions faibles. On s’attend & avoir une preuve similaire dans n’importe quel H*® avec
s € (—1,0), et notre choix s = —1/2 est juste pour la clarté de la présentation.

Dans la preuve d’unicité, notre but principal est d’obtenir une inégalité de type Gronwall. En
effet, I'unicité se réduit alors a une estimation du type suivant :

O'(t) < x(t)(t),

ol () est la norme de la différence entre deux solutions, et x est & priori dans L} (R ).

D’autres difficultés propres a ce systéeme viennent s’ajouter. Celles-ci sont de deux types :

e controler les termes avec les dérivées maximales, c’est-a-dire les dérivées les plus grandes en u
qui apparaissent dans ’équation de @), et les dérivées les plus grandes en ) qui apparaissent
dans I’équation de u,

e controler les grandes puissances de Q, comme par exemple Qtr{Q@?} dans I’énergie de “bulk”.

On traite la premiere difficulté en prenant en compte les caractéristiques spécifiques du systéme, qui
permettent d’éliminer les termes les plus compliqués. En ce qui concerne la seconde, on la contourne
par des arguments d’analyse harmonique, qui meénent a 'inégalité de Gronwall mentionnée plus
haut.

Un autre résultat important de cette these dans le cas corotationnel, est un résultat de propa-
gation de régularité. On prend notre donnée initiale dans un espace de Sobolev inhomogene, avec
un indice de régularité positif, i.e

(uo, VQo) € H*(R?), avec s> 0.

Ensuite, on étudie la propagation de la norme homogene de Sobolev H*. La premiére étape est
assez classique, on considére des estimations d’énergie dans les espaces H®. Toutefois, le fait de
considérer s > 0 enleve une caractéristique importante du systeme : on ne peut plus éliminer les
termes les plus difficiles. Ainsi, on doit controler tous les termes, mais en le faisant, un premier
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probléme apparait : il faut controler la norme L>°(R?) de la solution (u, VQ). Une facon habituelle
de gérer ce probleme est d’utiliser les inclusions de Sobolev classiques

H*(R?) < L*(R?),

mais celui-ci impose un indice de régularité s > 1, de sorte qu’en procédant de cette fagon, on
s’attend a propager seulement les hautes régularités, comme dans [99]. Ce probleéme est résolu en
controlant différemment les hautes fréquences des basses fréquences de notre solution. On localise
la transformée de Fourier de notre solution sur une boule d’un rayon convenable N, en utilisant
une fonction de “cut-off”. Ensuite, d’une part, on contrdle la norme L*°(R?) de notre solution
localisée sur les basses fréquences pour I'inégalité de Bernstein, et d’autre part, on estime les hautes
fréquences en utilisant le fait que les solutions ont une régularité convenable. Enfin, en faisant un
choix approprié de N, la propagation des régularités se réduit a une estimation logarithmique

@'(t) < x(H) @) (1+na (1)),

olt ®(t) désigne la norme H* de notre solution et x est a priori dans L} (Ry). Cette estimation
conduit & un controle & croissance doublement exponentielle en temps de ®(¢). Notre résultat de
propagation s’énonce alors:

Théoréme 1.2.2. Si & est nul et (ug, Qo) est dans H*(R?) x H*T1(R?), pour un réel positif s,
alors la solution donnée par le Théoréme satisfait

u € L0, T; H*(R))NL(0, T; H*TH(R?)),
Q € C(Ry, H*TH(R*)NL*(0, T, H*F*(R?)).

Le cas général

Dans le cas général, i.e. lorsque le parametre £ est supposé positif ou nul, on montre I'existence et
I'unicité de solutions faibles. Ceci est résumé dans 1’énoncé suivant :

Théoréme 1.2.3. Supposons que (ug, Qo) soit dans L*(R?) x H'(R?) et que ¢ soit positif. Alors
le systéme (1.3) admet une unique solution faible (u,Q), globale en temps et qui satisfait

we L=(0,T; L*(R?) N L*(0,T; H' (R?)),
Qe C(R,,HY(R?)) N L*0,T, H*(R?)),

pour tout T positif.

Malgré la simplicité de ’énoncé, la preuve met en jeu une analyse profonde, notamment des
termes qui apparaissent lorsque £ est non nul.

Remarquons que dans ce cas aussi, le principal résultat du Théoreme [4.2.3|réside dans 'unicité,
la preuve de l'existence étant une révision des arguments de [98].

La présence des termes relatifs a £ accroit les principales difficultés associés a 'unicité des
solutions pour les systemes . Par exemple, on doit controler les puissances les plus hautes
de @ qui interagissent avec u, comme Qtr{Vu@}. Méme si on procede de la méme maniére que
dans le cas corotationnel, en utilisant la norme faible H~1/2 pour estimer la différence entre deux
solutions faibles, nous allons aboutir a une estimation du type double-logarithmique, qui conduit
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a I'unicité a I’aide du lemme d’Osgood. En effet, 'unicité se réduit a une estimation du type :

(1) < X(t)@(t)(l—Hn (1+6+11>1t)> +In <1+e+(1>1t))lnln (1+6+<I>Et))>’
1

ot ®(t) désigne les normes H de nos solutions et x est a priori dans L; .(R). La preuve se base
sur une technique spécifique d’analyse harmonique, localisant la transformée de Fourier de notre
solution dans une boule de rayon N et en estimant séparément les basses fréquences des hautes
fréquences.

Dans ces estimations, on utilise des inclusions de Sobolev bien choisies, et on écrit explicitement
les constantes associées a chacune d’entre eux. Ensuite, une relation spécifique mettant en jeu ces
constantes, le rayon N, et ®(t) permet enfin d’obtenir ’estimation double-logarithmique attendue.

—-1/2

1.3 Résultats pour le systeme de Qian-Sheng

Les derniers résultats de cette these relatifs a la dynamique des cristaux liquides concernent
Iexistence et 'unicité de solutions pour le modele proposé par Qian et Sheng, dans un espace
a d dimensions, pour d = 2, 3.

du+u-Vu+ Vp=div{c+ o'} R, x R?,

divu =0 Ry x R?, 16)
JQ+M1(Q—[QvQ])—AQZ—ﬁaa%BJerA Ry x RY, &
(u, Q)t=0 = (uo, Qo) RY.

Ici, les fonctions sont les mémes que dans le systeme de Beris-Edwards : u € R? est le champ de
vitesse, Q € R est le tenseur de de Gennes, le scalaire p désigne la pression, A est la partie
symétrique de Vu, et ) est la partie antisymétrique de Vu. On va définir la densité de 1’énergie
de “bulk” ¥p(Q) dans , alors que les tenseurs des contraintes o et o’ dans et .
Toutes ces fonctions dépendent des variables de temps t € R, et d’espace = € R?.

La nouveauté la plus importante dans ce modele est la contribution d’inertie J¢) dans I'équation
du tenseur de de Gennes (). Ce terme apparait en considérant la contribution de 1’énergie cinétique
rotationnelle, précisément

J o
IQF

D’ordinaire, cette densité est négligeable, puisque la densité d’inertie J prend généralement de tres
petites valeurs. Prendre en considération ce terme rend le systeme plus difficile & traiter
en comparaison au modele proposé par Beris et Edwards. En effet, ’équation de ) devient une
équation du type hyperbolique, alors que celle qui apparait quand J = 0 est de type parabolique.
Ainsi, on ne peut espérer aucun effet régularisant pour le tenseur Q.

Notre premier résultat concerne le comportement dissipatif relatif au systeme ([1.6). On démontre
Pexistence d’une fonctionnelle de Lyapunov E(t) = E(u(t),Q(t)), qui correspond & ’énergie totale
du matériel. L’énoncé est le suivant :

Théoréme 1.3.1. Supposant quelques restrictions sur les coefficients de viscosité (voir Théoréme

, le systéme (1.6) admet la fonctionnelle de Lyapunov suivante :

. 1
B() = [ 5 (1 + 7108 + 5IVQF +v6(@)
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avec Yp(Q), la densité d’énergie de “bulk” donnée par (3.25)).

Notre second résultat concerne l’existence et I'unicité de solutions classiques pour le systeme
. On travaille dans des espaces de Sobolev H S(}Rd), pour s suffisamment grand. Notre résultat
s’énonce ainsi :

Théoréme 1.3.2. Supposons (ug, Qo) : RY — R4 x R¥*? dans H*(RY) x H5TH(R?) avec s supérieur
a d/2. Supposant quelques restrictions sur les coefficients de viscosité (voir Théoréme , et
supposant que les normes des données initiales ||vgllgs et ||Qol|gs+1 soient assez petites, alors il

existe une unique solution forte (v, Q) du systéme (1.6). Cette solution est globale en temps et
satisfait

u € L®(Ry; H*(RY)) N L2 (Ry; HH(RY)),
Qe L®Ry; HTY(RY)  avec Q € L®(Ry; H*(RY)).

1.4 Résultats pour le systeme de Boussinesq

Bien que les résultats que nous ayons exposés jusqu’a présent concernent la dynamique des cristaux
liquides, dans cette thése on considére aussi le systéme de Boussinesq. Dans le chapitre[9] on étudie
I’évolution d’un fluide dont la viscosité dépend de la température et I’hydrodynamique est modélisée
par le systéme suivant

040 + div (fu) = 0 R, x R,

Ou+u-Vu —div(v(0)D(u)) + VII =0 Ry x RY 7
divu =0 Ry x RY, .
(u, 0) =0 = (a, 6) RY,

ou d,0,u, Il et M désignent respectivement la dimension, la température, la vitesse, la pression et
le tenseur de déformation donné par D(u) := (Vu + *Vu)/2.

Ce systeme est un couplage entre une équation de transport qui gouverne l’évolution de la
température et les équations de Navier-Stokes homogenes qui modélisent la vitesse du fluide. Notons
qu’il s’agit ici d’'un cas spécifique du systéme de Boussinesq général ou la viscosité v(6) dépend de
la température (on renvoie le lecteur au chapitre @D pour plus de détails). Ce cas particulier nous
permet de décrire quelques phénomenes géophysiques, notamment lorsque la viscosité du fluide a
tendance a décroitre quand sa température augmente.

En suivant I’approche utilisée pour le systeme de Ericksen-Leslie, on considere une température
initiale qui peut présenter des discontinuités, de sorte qu’on puisse modéliser un mélange entre des
fluides non miscibles et de températures différentes.

Notre résultat principal concerne 'existence globale en temps des solutions faibles du systeme
sous certaines conditions naturelles sur les données initiales. Avant d’énoncer le résultat, on
rappelle brievement quelques propriétés de ce systeme.

Comme le systeme de Navier-Stokes classique, le systeme admet un changement d’échelle
particulier : si (u(t, z), 6(t, x)) est solution de de donnée initiale (@(x), f(x)), alors les fonc-
tions suivantes

(u, O)x(t, ) :== (Au(N?t, Ax),0(\°t, Ax)), A >0
sont encore solutions de (1.7) de données initiales (A@(Az), A\d(x)).
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Par conséquent, il est assez naturel de considérer des données initiales dans des espaces de
Banach de normes invariantes par ce changement d’échelle. En premier lieu, on exige seulement
que 0 soit bornée, i.e.

6 € L>=(RY),
ce qui permet a la température de présenter des discontinuités. Ensuite, on considere une vitesse
initiale appartenant a un espace de Besov homogene avec un indice de régularité critique, i.e.
.4 g d
up € Bp, (RY),

pour des valeurs appropriées p,r € [1, o0].
Sous une hypothese spécifique de petitesse sur les données initiales, plus précisément, en sup-
posant que

_h _d
ni= (v = Uoo + @) _ioa) exp {ela®l 4 } (1.8)
By P By, P
soit suffisamment petit, ou @ := (al,... ,ad—l) sont les composantes horizontales de la vitesse et

¢ sa composante verticale, on démontre 'existence globale en temps des solutions faibles pour

le systeme . De , on voit que la viscosité est supposée proche d’une constante positive,
qu’on impose égal & 1 par souci de clarté. De plus, la composante verticale @¢ peut étre large si la
fluctuation de la viscosité v(fy) — 1 et les composantes horizontales @" sont suffisamment petites
(exponentiellement petites par rapport & a?).

Ce type de condition initiale a déja été considéré dans la littérature, par example dans [60] et [30]
dans le cadre du systeme de Navier-Stokes inhomogene.

Les méthodes utilisées dans la preuve de I'existence des solutions faibles pour le systéme
sont similaires a celles qu’on utilise pour le systeme de Ericksen-Leslie, en considérant une car-
actérisation particuliere des espaces de Besov homogenes et le théoreme maximale de régularité
pour le noyau de la chaleur. Cependant, il y a quelques difficultés spécifiques du systeme :

e l'anisotropie sur la condition de petitesse des données initiales exige de nouvelles méthodes
afin de controler les normes des solutions,

e la basse régularité sur la viscosité diminue le nombre de dérivés qu’on peut controler sur la
vitesse u.

Da a Panisotropie sur la condition de petitesse , les composantes horizontales u" et la
composante verticale u¢ de la vitesse doivent étre estimées séparément. La structure algébrique du
systeme de Navier-Stokes joue un role important dans nos estimations.

En utilisant la condition de divergence nulle sur la vitesse et la structure algébrique des termes
non-linéaires, on observe que I’équation sur la composante verticale est du type parabolique-linéaire
ou les coefficients dépendent des composantes horizontales. Pour cette raison, on n’impose pas de
condition de petitesse sur a¢.

Ensuite, on étudie ’équation sur les composantes horizontales en analysant deux types de termes
non-linéaires : d’une part les termes bilinéaires sur les composantes horizontales et, d’autre part,les
interactions entre les composantes horizontales et verticales. A cause de la non-linéarité, une
condition de petitesse sur les composantes horizontales de la vitesse initiale est nécessaire pour
résoudre I’équation globalement en temps. De plus, la contribution donnée par la composante
verticale conduit a une amplification exponentielle de cette condition de petitesse, donc I’estimation
qu’on obtient est de la méme structure que 7 donnée par (|1.8)).
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Enfin, la condition de basse régularité sur la température initiale implique une basse régularité
aussi sur v(f), c’est pour cela que le terme div (v(#)M) doit étre vu au sens des distributions.
Ainsi, en écrivant I’équation sur u sous forme intégrale, le terme précédent devient

/0 divS(t — s)((v(6) — 1)M)(s)ds,

ou S(-) est le semi-groupe de la chaleur. Pour cela, on a besoin de l'effet régularisant du noyau de
la chaleur pour controler la vitesse u. C’est pour cette heuristique que le théoreme de régularité
maximale de la chaleur permet d’estimer seulement u et Vu dans des espaces de Lebesgue du type
L%(0,T; L% (R%)), tandis que Au prend un sens simplement distributionnel.

Notre résultat principal s’énonce alors :

Théoréme 1.4.1. Soit (0, @) dans L>=(R?) x Bg,/rp_l(Rd) avec p dans (1,d) et r dans (1,00). Si
on suppose T dua
mi= (v = Voo + 181y, g) exp {erlla|_, g } < co

p,r p,T
pour une petite constante positive cy, alors le systéme (1.7) admet une solution faible globale en

temps. De plus, on obtient les estimations suivantes :
(", VuM)[lx < Cin,  [|(u?, V)| < C2||ﬂd||3g71 +Cs,
p,T

pour certaines constantes positives C1, Cy et Cs, et ot X est un espace de Banach approprié (voir
9.1.4).

L’espace fonctionnel X est un espace du type Lebesgue & poids en temps (on renvoie le lecteur
au chapitre [9 Théoréme et Théoréme pour une description détaillée).
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Chapter 2

Introduction

2.1 The Discovery of Liquid crystals

Generally, the physical state of a material can be determined by the motion degree of freedom about
its molecules. Certainly, anyone knows the three most widespread physical states of matter, namely
solid, liquid and gas. If the movement degree of freedom is almost zero, namely the forces which act
on the molecules do not allow any kind of movement, forcing the material structure to be confined
in a specific order, then we are classifying a solid material. If such degree still preserves a strong
intermolecular force but it is not able to restrict the molecules to lie on a regular organization,
then we are considering a fluid state of matter. Finally in the gas phase the forces and the distance
between the molecules are weak and large respectively, so that the material is not confined and it
is able to extend its volume.

However this classification is not quite accurate. Indeed some organic materials do not exhibit
a single transition from solid to liquid, but rather several intermediate transitions involving new
phases. At lower temperatures these materials become solid, while at higher temperatures they
become isotropic liquids. However, when cooling down, we encounter phase transitions to the liquid
crystalline forms, often referred to as mesophases, or also mesomorphic phases (mesomhorphic: of
intermediate form). Materials exhibiting this type of intermediate state of matter are called Liquid
Crystals.

Liquid crystals were discovered in 1888, when the Austrian botanist Reinitzer [102], working in
the Institute of Plant Physiology at the University of Prague, observed a particular phenomena.
He was performing experiments on cholesteryl benzoate, a cholesterol based compound, in order to
establish the correct formula and molecular weight of cholesterol. Trying to precisely determine the
melting point (an important indicator of the purity of a substance), he heated up the temperature
and observed that the material became a cloudy liquid at 145.5°C while at 178.5°C the cloudiness
suddenly disappeared and the substance turned into a clear liquid. As a first deduction, Reinitzer
believed that this phenomena was due to impurities in the material, however further purifications
did not change this particular behavior property. He was reporting what now we denote a cholesteric
liquid crystal (or chiral nematic liquid crystal).

Astonished by his discovery, Reinitzer sent two samples and a letter to the German physicist
Otto Lehmann, an expert in crystal optics. Reinitzer believed that his observation had some
relations with the research of the physicist. Eventually, Lehmann [65] determined that the cloudy
liquid had a specific type of molecular order while the transparent liquid at higher temperature had
the characteristic isotropic state of all common liquids. He finally realized that the cloudy liquid
was a new state of matter and he called it liquid crystal, since it retained properties of both liquids
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and solids. Nowadays such term is commonly used.

An other relevant contribution in the liquid crystal study was given by Vorlander in 1907 [111].
He was able to derive the rule of the most extended molecular shape of material presenting at least
two melting points: the constitutive molecules must present a rod-like structure. Such discovery
was to be of great importance in order to develop the mathematical theory modelling liquid crystal
also from a geometrical point of view.

2.2 Meshophases of liquid crystals

Some liquid crystal materials can present a considerable range of mesophases. This phenomena
is known as polymorphism. In the 1922, Friedel [46] classified different liquid crystal mesophases
into three main categories: nematic, smectic and cholesteric. In this sections we present the main
features for each of them, referring the reader to [107] and [33] for more details.

2.2.1 Nematic liquid crystal

The nematic liquid crystal mesophase is mainly characterized by molecules which present an align-
ment along a privileged direction, as shown in Figure Commonly, this direction is called the
anisotropic axis. In this mesophase, the molecules do not have a specific long-range positional
distribution. Indeed the center of mass of the molecules
can freely translate, as in a common isotropic fluid. Most
of nematic liquid crystals are uniazial, namely one can
observe a rotational symmetry along the anisotropic axis.
However some liquid crystals are biaxial, meaning that
in addition the molecules orient along a secondary axes.

The word nematic derives from the Greek vnua
(Greek: nema), which means thread. Indeed, in a ne-
matic sample, one can often observe thread-like defects,
namely lines of singularity in the alignment of the con-
stituent molecules.

We present now a short history about the development of nematic liquid crystals. For more de-
tails we refer the reader to [107]. The first nematic-type liquid crystal was discovered by Gatterman
and Ritschke [49] in the 1890. They synthesized the so called p-azozyanisole (PAA), a material
which does not naturally occur. In the 1969 Kelker and Scheurle [64] successfully managed to syn-
thesize the 4-methoxybenzylidene-4’-butylane (MBBA). It was the first nematic exhibiting stability
under a room temperature, however, despite this interesting property, such material was not consid-
ered suitable for applications. In the 1973 Gray and collaborators [51] [52] obtained a nematic-type
material, useful to display technological purposes, that is the 4-pentyl-4’-cyanobiphenyl(5CB).

The reader should keep in mind that the main results of this thesis concern the dynamics of
nematic-type liquid crystals, which are the most interesting from an applicative point of view.
Indeed, nowadays, the most of displays and monitors are often composed by a mixture of nematic
materials.

Figure 2.1: A schematic represen-
tation of nematic molecules.

2.2.2 Smectic liquid crystal

In this phase, molecules show a degree of translational order which is not present in the nematic.
In the smectic state, the molecules maintain the general orientational order of nematics, but also
tend to align themselves in layers or planes as depicted in Figure Since smectics are more
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Figure 2.2: The smectic state of liquid crystal: starting from the left-hand side, smectic A, smectic
C and semctic C* mesophases, respectively.

ordered than nematics, usually this mesophase occurs at a lower temperature with respect to the
ones of materials exhibiting a nematic state.

The word smectic derives from the Greek word ounvyupa, namely soap. Indeed each layer can
slide over another one, thus smectic liquid crystals present some mechanical properties which are
common in soaps.

The smectic mesophases can also be classified into three main categories, as illustrated in
Figure 2.2} smectic A, smectic C, smectic C*.

When smectic A mesophase occurs, the constituent molecules have a stratified positional order
and, on average, an orientation along the layer normal (left-hand image of Figure . In each
layers, the centres of gravity present no long-range order, which means that every stratification
dynamics is that of a two-dimensional isotropic liquid. This lamellar-type alignment was detected
by several macroscopic effects, some of them known since the beginning of the 20th century, for

instance by Friedel and Grandjean in [46}[47./50].

The smectic C mesophase preserves the layer-type alignment of smectic A materials, however
the preferred axis is tilted away from the layer-normal (see the image in the middle of Figure .
As a consequence the material is optically biaxial. The angle between the orientation and the layer
normal is commonly called the smectic C tilt angle or smectic cone angle and it usually depends
on temperature.

The Smectic C* phase, also called chiral smectic C, exhibits the same layer-type alignment and
orientation of smectic C, expect that the two-dimensional stratifications evolve in an helical con-
figuration, proceeding along the layer normal, as shown on the right-hand side image of Figure [2.2
This phase can occur when the constitutive molecules are enantiomorphic, namely the mirror im-
age cannot be reoriented so as to appear identical to the starting structure. The first compound
fulfilling these specifications was synthesized by Liébert, Strzelecki and Keller and is known by
the acronym DOBAMBC, which stands for (S)-(-)-p’-decylozybenzylidene p’-amino 2-methylbutyl
c.

Up to now, smectic liquid crystal have received few attentions for application, neverthless
smectic C* materials exhibit a spontaneous polarization, a property which is not present in the
other mesophases. Such feature is due to the material’s ferroelectricity, as explained by P. Oswald
and P. Pieranski in and it has recently attracted interest for displays technology.
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2.2.3 Cholesteric

The cholesteric meshopase, also called chiral nematic, exhibits properties similar to the nematic
one, except for a particular helical structure: the constitutive molecules distribute themselves into
two-dimensional nematic like layers, whose orientations twist along a continuous helical pattern,
as shown in Figure[2.3] This helical structure is due to the chiral characteristic of the constituent
molecules, namely their mirror image has an identical
composition which can not be superposed to the starting
configuration.

An important parameter of cholesteric liquid crystal is
the so called pitch of cholesteric. It is determined mea-
suring the distance between two nematic-type layers,
once the axis of orientation rotates through a full cir-
cle. The periodicity lenght of the cholesteric is half of
this distance, because, on average, the molecules have
a lack of polarity, so there is no physical difference be- Figure 2.3: the helical structure of
tween a molecule in a certain configuration and the same a chiral liquid crystal.

rotated of 180°.

The constituent molecules of cholesterics can twist both with a left-hand or right-hand side,
however at a given fixed temperature, a sample of such material produces helical structure always
in the same sense. Anyway there exists cholesterics that change the orientation of the helix by
modifying the temperature, as explained in [33].

Many cholesteric liquid crystals derive from cholesterol (which is not a liquid crystal), so that
the name. However, as exposed by Collings in |21, some cholesterics have no correlation with
cholesterol, thus the second denomination chiral nematic.

2.2.4 Some examples

Some liquid crystal materials can show several type of mesophases, a phenomena called polymor-
phism, and the phase transitions mainly depend on temperature. We present here a phase diagram,
taken from [107], pag. 7. We can observe the phase transitions of three different types of liquid
crystals: PAA, cholesteryl myristate and 10S5.

PAA
solid | nematic i isotropic liquid g
| I o
118°C 135.5°C
cholesteryl myristate
solid | smecticA | cholesteric | isotropic liquid g
I [ | g
71°C 81°C 86.5°C
10s5
solid | smectic C | smectic A | nematic | isotropic liquid

| 1 1 l >T
60°C 63°C 80°C 86°C



Chapter 3

Dynamic theory of nematics

One of the main purposes of this thesis is to give a contribution to the dynamic theory of nematic
liquid crystals. At first, it seems convenient to recall the most widespread theories modelling the
time-evolution of nematics, namely the Ericksen-Leslie theory, the Beris-Edwards theory and the
Qian-Sheng theory. These theories provided specific partial differential equations, which are the
basis of our research.

In this chapter we are going to present an overview concerning the development of these models.
Once this background will be completed, we will state the results concerning the contribution of
this thesis, whose proofs will be postponed to the next sections.

3.1 The fluid behaviour

Before starting with the presentation of the cited theories modelling the nematic hydrodynamics,
it is perhaps interesting to mention that all of them can be seen as generalizations of the more
widespread Navier-Stokes dynamical theory for an usual isotropic fluid.

In nematic liquid crystals, the center of mass of each constituent molecule has a freely degree
of translation, as a common particle in an isotropic liquid. This allows us to introduce a natural
continuum variable describing the dynamic of liquid crystal, namely the velocity field u(t,x), at a
position z and for a fixed time t. We should interpret u(t, x) as in the case of an usual homogeneous
fluid, so that we can already present two balance laws: the conservation of mass and the balance of
linear momentum. If our material occupies a three dimensional volume U = U(t) with boundary
OU = 90U (t) at a time ¢, then the two conservation laws are given by

- t = 1
& [ ot =o (3.1)

p(t, x)u(t,x)dx = /

Up(t, x)F(t,x)d:E+/ odv, (3.2)

dt Ju oU

respectively, where the scalar p stands for mass-density of the nematic material, F' is the external
body force per unit mass and o is the surface force per unit area. The first equation tells us that
the mass of the volume U is conserved for any time ¢, while the second one states that the time
rate of change of linear momentum of our nematic is equal to the total acting force.

We are going to assume our nematic liquid crystal to be incompressible, that is every subsection
of our material does not change volume under the pressure of the flow. This feature can be expressed
as a free divergence condition on the velocity field u. Indeed, assuming the velocity field to be

19
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smooth enough, we can construct the so-called velocity flow ¥ (t,x), determined by

{atw@,x) =u(t,¥(t,x)) (t,2)€[0,T) x U,
Y(0,z) =z x € Uo,

a well-posed system, thanks to the Cauchy-Lipschitz theorem. Here Uy stands for the initial
volume-configuration of the material, so that, the evolutionary trajectory of a particle x € Uy in
the material is given by the time-dependent function ¢ — (¢, z). Then, for any positive time ¢,
the volume U(t), corresponds to the set of every (¢, x), such that the related particle = belongs
to Ug. Now, the incompressibility condition can be formulated in integral form as follows

m) = | = / L =mva)

for any sub-volume Vg of Uy, where m is the usual Lebesgue measure on R and V(t) is the
configuration of the volume Vj) at a time ¢, that is V(t) = ¢ (¢, V). Thanks to a standard change
of variables x = 9 (t,y), we formulate both the left and right-hand sides as integrals on the domain
Vo, i.e.

/ de= [ |det Jo(t,y)ldy,
Vo Vo

where J stands for the Jacobian matrix of ). Thus, from the arbitrariness of Vj, the flow 1) must
satisfy
| det Jo(t,y)| = det Jo(t,y) =1

at every point y in Vj and for every time ¢, where the modulus is negligible because of the continuity
of the Jacobian and the initial condition det J¢(0,-) = 1. Deriving in time and thanks to some
easy calculations, the incompressibility condition assumes the form

0= 0¢det JY(t,y) = [det J?j)(t,y)}tr{Vu} = divu,

namely a free divergence condition on the velocity field w.

Now, we want to reformulate the two balance laws (3.1)) and (3.2) in point form. The conser-
vation law for mass (3.1) in point form can be easily achieved through the Reynolds’ transport
theorem. Indeed, by the change of variables x = 1 (t,y), (3.1 becomes

d d
0= 5 [ pttade = G [ pttwle)] det e,
dt U(t) dt UO
Now, recalling that det Ji(t,y) = 1 and passing the time-derivative under the integral sign,
d
=% mwmwwz/
Up U(t)
Thanks to the arbitrariness of U = U(t) (that is the arbitrariness of Uy), we achieve

0 {@p—i—u . Vp] (t,z)dz.

Op(t, ) +u(t,z) - Vp(t,z) =0, (3.3)

so that, the conservation of mass in point form corresponds to the well-known transport equation.

Now, we take care of the balance of angular momentum. Denoting by v the normal to the
boundary OU(t), one can show by the usual tetrahedron argument (see for instance [38], section
1.6.1) that the i-th component o; of the surface force can be expressed in terms of the so-called
total stress tensor o;j;, i.e.
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3
g; = E Uijyj-
j=1

Thus the balance law of linear momentum (3.2)), the Reynolds’ theorem and the Green’s theorem

lead to
d

— [ pudx = / O(pu) + div(pu @ u) dx = / pF + divode,
dt Jy U U

where u® u stands for the quadratic tensor defined by (u®wu);; = u;u;. Writing this result in point
form and recalling the transport equation (3.3), we obtain the more familiar momentum equation

p(Oru+u - Vu) = pF +divo. (3.4)

In the forthcoming sections we are going to establish an explicit formula for the total stress tensor
for a nematic liquid crystal, however for the sake of completeness, let us present the isotropic form
of this tensor, known as the Cauchy stress tensor:

0ij = 0ijp + 1A, (3.5)

where p stands for the pressure of the fluid, J;; is the Kronecker delta, y is the viscosity of the fluid
and finally A is the rate of strain tensor whose formula is given by

Aij:( 2 2

Replacing the Cauchy stress tensor (3.5)) into the linear momentum equation (3.4)), the dynamic of
a liquid crystal in an isotropic state can be modelled by

Vu + tVu> Ui+
ij

p(Oru+u-Vu) — pAu+ Vp = pF,

which is the widely-known Navier-Stokes equation. It is perhaps interesting to remark that in this
case the total stress tensor is affected by friction forces. One can neglect this contribution
when the viscosity is small enough. In this case the Cauchy stress tensor corresponds to o;; = —d;;p,
so that the momentum equation reads as

p(8ru+u - Vu) + Vp = pF,

namely the well-known Euler equations. In the next section we will see the difference between the
total stress tensor for nematics and the Cauchy stress tensor for the Navier-Stokes and Euler equa-
tions. The anisotropic orientations of the constituent molecules contribute to the linear momentum
equation by an additional forcing term. This term corresponds to an additional stress tensor which
depends on the variations of the molecular alignment.

3.2 The Ericksen-Leslie theory

3.2.1 Development of the theory

Usually a dynamical theory for a complex fluid should take inspiration by the related static one.
Thus the early static theory for nematics proposed by Oseen [93,/94] in the 1925 and Zocher [119]
in the 1927 should be considered as the starting point for the Ericksen-Leslie development. Their
approach was of great importance for Franck [45], indeed, making use of their ideas, he performed a
complete static theory for nematics in the 1958, theory based on the so called Oseen-Frank energy
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Figure 3.1: A schematic representation of a nematic liquid crystal. The unit vector d describes the
average alignment of the molecules

density. An explicit formula of this energy will be exposed in section [3.2.2] since it plays a main
role for the formulation of the Ericksen-Leslie system.

The first formulation of a constitutive theory for the liquid crystals dynamics dates back to the
works of Anzelius [@] in 1931, however the first widely accepted model was made by Ericksen [40] in
the 1961. Ericksen performed some balance laws in order to extend the static theory of nematics to
their dynamical behaviour. Thus, in the 1966 and in the 1968 , Leslie proceeded to generalise
his approach, successfully obtaining some constitutive equations in order to model the dynamic
evolution of nematic liquid crystal. This led to one of the most widespread and useful theory
describing the dynamics of these materials, namely the well-celebrated Ericksen-Leslie theory.

Starting from these works, the interest for the dynamical behaviour of nematics increased, for
instance in the 1979 Leslie reviewed his theory and gave some impression of the type of problem
arising, while de Gennes and Prost investigated examples and applications for such materials.

In the 1992, Leslie proceeded to reformulate constitutive equations for the Ericksen-Leslie
theory, passing through a more comprehensible approach, well exposed also in the Stewart’s work
. Taking inspiration by this two works, we now present a derivation of the Ericksen-Leslie
theory, arising to constitutive equations for nematic materials.

3.2.2 The Oseen-Frank energy density

In this section we present the so-called Oseen-Frank energy density and we proceed similarly as to
the approach proposed by Frank in [45].

As already explained in the previous chapter, a nematic liquid crystal is characterized by con-
stituent rod-like molecules which tend to align each other along a privileged direction. Then it is
natural to represent such orientation through a unit vector d, called the director, as depicted in
figure Figure We recall that, on average, the molecules have a lack of polarity, thus the vector
d and —d are equivalent in the sense that the sign has no physical meaning.

We consider the three dimensional Euclidian space R® and we denote by = = (1, o2, x3) the
coordinates with respect to the canonical basis. If our nematic occupies a smooth domain U into
R3, the mean alignment at a point ¢ in U is

d=d(¢) eR3 with |d(¢)]* =1.

Once the sign of the director d is chosen, we introduce in ¢ a local right-handed Cartesian coor-
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dinate system y := (y1, y2, y3) as depicted in figure Fig-
ure imposing ys parallel to d(¢). Moreover we as-
sume that our nematic liquid crystal is uniaxial, thus the
y1 and yo axis can be freely chosen in the plain perpen-
dicular to d(¢). Then the transformed coordinates y are
determined via rotation and translation as follows:

2 3
yi =Y Rij(zj — ), (3.6)
Figure 3.2: A local Cartesian co- j=1
ordinate system with y3 parallel to

the director. for any ¢ = 1,2 and 3, where R is a suitable 3 x 3-rotation

matrix. We denote by d the director d with respect to
the new coordinates y, so that its formula is given by

3 3
di(y) = ZRz‘jdj(l‘) = Z Rijd;j(¢ + "Ry),
i=1 i=1
where 'R is the transposed (and thus the inverse) matrix of R.

Since d(0) (namely d(¢)) is parallel to the ys-axis, then the gradient of d in the origin (namely
in ¢) reads as follows

G0.(0) 55(0) 52(0)

Oy1 0y2 Oys
V,d(0) = %(0) %(0) ggg(()) (3.7)
0 0 0

and the six components of curvature at the point { are given by

<m> 94(0) t (n) —5%(0) ) (m) —54(0) s
s = — - s f— — N 5 = == - 9 .
$2 5% (0) ta 5L(0) b 9% (0)

which stand for the splay, the twist and the bend, respectively, as illustrated in Figure |3.3

Now, as explained by Andrienko in [5], the Gibbs free energy density wp of a liquid crystal can
be written taking in consideration six curvature strains:

6 6
wp = Z kia; + % Z kijaia;
where k; and k;; = kj; are curvature elastilc constants,lénd where the terms a; are defined by
ay = s, ag = tQ, as ‘= bl, aq ‘= —tl, as 1= S9 and ag = b2.
Since we are considering uniaxial nematics, then the energy density must be invariant under a
rotation around the axis y3. Thanks to this feature, considering for instance a rotation about 7/2

and one about 7/4, we achieve some constrictions on the curvature elastic constants, so that our
energy density reads as follows:

k k
wp = ki1(s1+ s2) + ko(t1 +t2) + %(81 + 82)2 + 2(151 + t2)2+

2
k33 o | 19
7(61 + b3) + k12(s1 + s2)(t1 + t2) — (koo + koa)(s152 + tit2).

Further material considerations, as the absence of polarity, the absence of enantiomorphysm, yield
k1, ko and k2 to be null, while some specifics of the curvatures (postponed in the appendix |10.1])

_l’_
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(a) (b) (c)

Figure 3.3: The three distinct curvature strains of a nematic liquid crystal: (a) splay, (b) twist and
(c) bend.

allow the Oseen-Frank energy density to be formulated depending on the director field d and its
gradient, i.e.

wp(d, Vd) = ki

i vd)? + %Q(d rotd)2+@|dmotd|2+
k22 + ka4 (39)

{tr{Vd*} — (divd)*},

which is the Oseen-Frank energy density in its widespread form. As already pointed out, the
first three terms represent splay, twist and bend respectively, while the last one is known as the
saddle-splay term and it can be rewritten in a divergence form as follows:

od; 0d;  0d; 0d;
>

2V (diod)2
tr{(Vd)"} — (divd)” = 92, 0w " 9w 0,

ij=
.00 0%d; 0 od; 0%d;
B ”221 o, [aj] % } - a@ngdj - ach [Gei] + djaxing
73 3 3 9 8d
= x[ } Za—[ 94 } —d1v{d-Vd— (divd)d},
i=1 ' j= 1 j=1

thus it acts as a surface-energy contribution. We conclude this section with the total elastic free
energy of a nematic occupying a three dimensional domain U:

[ or(a0). va0)c = [ Bhamd(©))? + 22d(0) - rot )P+
U
/6‘33 k22 + ]{724

— 1d(¢ ¢) Arot d(¢)|* + {tr{Vd(¢)*} — (divd(¢))*}dC.

3.2.3 The balance laws

We now come back to the dynamic description of a nematic liquid crystal and this section is devoted
to the derivation of the so-called Ericksen-Leslie equations. We mainly follow the structure proposed
by Stewart in [107], and we refer the reader to the exhaustive review of Leslie [71] for more details
concerning the physical assumptions.

We start the description of a nematic liquid crystal dynamics introducing a new continuum
variable: the local angular velocity w(t,z), which corresponds, on average, to the angular velocity
of the constituent molecules at a position x and time ¢. Then, since director d is a unit vector field,
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it fulfils:

d=wAd, (3.10)

where the superposed dot is an abbreviation for the material time derivative Dy
d = Did = 0yd +u - Vd.

It is perhaps worth remarking that the local angular velocity does not correspond to the classical
angular velocity for an isotropic fluid, also known as vorticity, whose formula is (rotu)/2. In
a nematic liquid crystal this kinematic parameter is referred as regional angular velocity, and it
describes the local spinning motion of the material near some point. Furthermore the difference w

between these continuum variables 1
wi=w— §r0tu (3.11)
is called the relative angular momentum.

After the mass conservation law and the balance of linear momentum, the third law in the
continuum theory of nematics liquid crystal is given by the conservation of the angular momentum,

which reads as follows:

plx ANu)dx = /

p(:p/\F—l—K)dx—i—/ (x Ao+ 1)dv. (3.12)
U

dt Ju U

Here K is the external body moment per unit mass and [ is the surface moment per unit area,
while F'is the external body force per unit mass introduced in (3.2)). Several terms related to the
relative angular momentum w and the director d are intrinsically hidden inside the above equation.

It is perhaps worth remarking that in this formulation we have not taken in consideration the
so called director inertial density, a material parameter which is usually negligible in the most of
nematics. However, in this thesis we will also investigate the no-null inertial case, whose presence
changes the internal structure of the constitutive equations (see section .

Now we handle with the balance law of the angular momentum. Using the notation of the
Levi-Civita symbols, (3.12]) becomes

d
/ peijkacjukd:p:/ peijkijk+pKidx+/ €ijkT;0% + ldv. (3.13)
dt U U oUu

As for the surface force for unit area, the external body moment per unit mass [ can be rewritten
in tensor form through l; = [;;v;, where [;; is the so called couple stress tensor and we recall that
v is the normal to the boundary OU. Similarly oy, = o, 1. Moreover, observing that
Di(eijpzjur) = €ijpdjur + €T ly = €jKUjUk + €5jkT Uk = €;j,T;U,
where we have used &; = 0y + us0y,x; = uj, we can rewrite (3.13) as follows:
/ peijkxjukdx = / peijkriFy + pK;dx + / (eijka:jakp),p + l;;,dx
U U U
= / peijkt;Fi + pKidz + / €ijkOkj + €ijkTjOkp,p + lijjda.
U U

Reorganizing the above equality we get

/Ueijkxj ( pu — pFy — Okp,p )dx = /U (pKi + €0k + lz‘j,j)d$7

=0



26 CHAPTER 3. DYNAMIC THEORY OF NEMATICS

where the left-hand side is null thanks to the linear momentum equation (3.4)). Finally, from the
arbitrariness of U the angular momentum equation in point form reads as follows:

pK; + €ijkOjk + lij; = 0. (3.14)

If the external body moment K and the couple stress tensor [ are null, then the momentum
equation determines the total stress tensor o to exactly corresponds to the Cauchy stress tensor
(3.5)), reducing our dynamical system to the classical Navier-Stokes equations.

Now, we want to express both the total stress tensor ¢ and the couple stress tensor [ in terms
of the nematic continuum variables, the director d and the velocity field u. In order to do that, we
need to introduce the so-called Ericksen work postulate.

3.2.4 The general Ericksen-Leslie equations

It is useful to introduce some terminology and some kinematic quantities. We have already defined
rate of strain tensor A as the symmetric tensor of the velocity gradient. Then we denote by €2 the
so called wvorticity tensor, which corresponds to the skew-adjoint tensor of the velocity gradient,

that is: .
Q= w. (3.15)

Always following the structure of [107] and [67], we consider the vector field .4 given by
N = wAd,

where we recall that w stands for the relative angular velocity (3.11]). Now, recalling that 2Qv =
(rotu) A v for any vector v, then we can reformulate the vector field .4 as

,/V:w/\d—%(rotu)/\d:d—ﬂd,

where we have also used equality . Following the terminology of Truesdell and Noll [110], .4
stands for the co-rotational time flux of the director d. The co-rotational time flux .4 gives an
important contribution into the total stress tensor . More precisely it plays an important role in
the so called Leslie stress tensor, and for specific information on this point the reader is referred to
the appendix.

In order to achieve an explicit formulation of the total and couple stress tensors, Ericksen [40,41]
and Leslie [67] introduced a work postulate. It states as follows:
the rate at which forces and moments do work on a volume of nematic goes into
changes in either the above stored energy or the kinetic energy, or is lost in viscous
dissipation.
Then, their work postulate is expressed as follows:

/ p(F-u+K-w)dx—|—/ (c-u+l-w)dv= Dgt (;p|ul2+wp)dx+/ Ddx, (3.16)
U U U U

where wg is the Oseen-Frank energy density and D is the rate of viscous dissipation per
unit volume, also known as dissipation function. Thanks to this postulate and several structural
remarks (postponed in the appendix), one can finally achieve the sequent formulation for the total
stress tensor o and the couple stress tensor [

Owp .
oij = —poij — o, ~di; + 0ij,
5
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Owp

li': s ds ’
7S B

where & stands for the Leslie stress tensor also called wviscous stress, whose formula is
Oij = OzlAlkdkdldidj + Oézdit/% + 043</1€dj + 044141']' + @5deikdk + OéﬁdiAjk-dk-. (3.17)

Here, the coefficients a1, ...ag are known as the Leslie viscosity coefficients. The reader should
observe that if the Oseen-Frank energy wr(d, Vd) is null (as in the case of a constant director d)
and the viscous stress reduces to a4 A, then the relative total stress tensor o corresponds to the
Cauchy stress tensor , while the couple stress [ vanishes. This is the case of an isotropic liquid
crystal which dynamics is governed by the Navier-Stokes equations.

Taking into account the above expressions into and , we can finally perform the widely
celebrated Ericksen-Leslie equations, which reads as follows

Op+u-Vp=0,
p(Ou+u-Vu) =divo,

divu =0, (3.18)
dA(g+h)=0,
\ ‘d‘Q =1
where g = —y1.4" — y9An, with ~1 and o parameters dependent on the viscosity coefficients, and
with h as the molecular field
. 8’U)F 6wF
h= — = —.
div { avd } ad

3.2.5 A useful simplification

The Ericksen-Leslie equations are particularly complicated as they contain a large number
of terms, so there are few mathematical studies of the full systems (for more details see chapter [5)).
Nevertheless the main mathematical difficulties are still present in the following simplified model,
a version of which was originally proposed by Fanghua Lin around the 1990 in [74,(75,80]:

Op + div (pu) =0

p(Opu +u - Vu) — vAu+ Vp = —Adiv(Vd © Vd)

divu = 0 (3.19)
Oyd +u-Vd —vyAd = ~|Vd|*d

jd| =1

This is a strongly coupled system between the inhomonegenous and incompressible Navier-Stokes
equation and the transported heat flow of harmonic maps into sphere. We recall that here the
continuum variables are denoted as follows:

p = p(t,z) € Ry denotes the density, u = u(t, z) € R> represents the velocity field,
p=p(t,z) € R is the pressure and d = d(t,z) € S? is the director,

all depending on the time variable ¢t € R, and on the space variables € R3. The symbol Vd® Vd
is a tensor whose components are given by

(Vd® Vd)ij = 0id - 9;d, (3.20)
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while S? is the two-dimensional unit-sphere in R3.

The general Ericksen-Leslie equations and the above system have a strong interconnec-
tion. For instance we can consider a simplified version of the Oseen-Frank energy (3.9)), imposing
the three coefficients k11, koo, k33 to coincide to a positive constant A whose value depends on
the material, and assuming the remaining coefficient ko4 to be null. Under this assumptions the
Oseen-Frank energy density assumes the usual form of an elastic-type energy density

A A
wp(Vd) = Sdijdij = 5|Vd\2. (3.21)

In this case, the steady-state formulation of the general system (3.18]) and its simplified version
(3.19) coincide (where with steady-state we mean the absence of fluid motion, imposing the velocity
field to be null u = 0). Indeed, the angular momentum equation of (3.18]) becomes

d/\(—fyldt—i-)\Ad):O,

that is
—v1ds + AAd + Bd = 0,

where the scalar § is the Lagrangian multiplier due to the constraint |d| = 1. Its value can be
calculated multiplying the above equation by d, i.e.

d
B = %EW — AAd - d = —Adyjjdy, = —A(dyjdi) ; + M jdi; = A VA, (3.22)
where in the last equality we have used 2dj, ;d, = 9;|d|> = 0. Imposing v = A/y1, we deduce
that the director equations of the general and the simplified Ericksen-Leslie systems are equivalent,
namely they read as follows:

Ord — yAd = v|Vd|?d.

It is perhaps interesting remarking that if we also assume the director d to not depend on time,
which means d to be a stationary solution, the above angular momentum coincides with

—Ad = |Vd|?d,

namely the harmonic map into the sphere whose solutions are minimizers of the elastic energy

/ vap,
U

for a domain U and suitable boundary conditions, under the restriction d to returns value into the
sphere, i.e. |d| = 1.

However, in general it is not natural to have a flow of liquid crystals for which there is no motion
in the fluid itself, i.e. w is null. Thus, it is of major interest taking in consideration the action of
the velocity field u. In this case, the simplified Ericksen-Leslie system arises from additional
conditions on the Leslie viscosity: we always assume the Oseen-Frank energy to read as the elastic
energy (3.21) and we also impose a1, ag, as, as and g to be null in the viscous stress tensor &
. This yields the viscous stress ¢ to be equal to a4 A, so that the balance of linear momentum
reads as follows

p(Ou +u - Vu) = dive = —Vp + Adiv{Vd ® Vd} + %Au.
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)
i

Figure 3.4: Pair of point defects, called Boojums in a nematic ﬁlm[ﬂ

Finally, Fanghua Lin [77] neglected the action of the vortex stretching term —{d to the co-
rotational time flux .4, simplifying .#" as the material derivative of the director

N =d.
Hence, the balance of angular momentum in the Ericksen-Leslie system (3.18) is equivalent to
— A 4+ AAd + Bd = —y1d + ANAd + Bd = 0, (3.23)

with 8 always the Lagrangian multiplier related to the restriction |d] = 1. Observing that the
dot-product between the director d and its material derivative is null
- 1D
- =d-d= 1P| =0,
2 Dt 4
we can compute the value of 8 proceeding as in (3.22)), i.e. 8 = A|Vd|%2. Then equation (3.23)
becomes
Y1 (0d + u- Vd) — AAd = | Vd|*d,

namely the balance of angular momentum of the simplified system ([3.19)).

The simplified system (3.19)) is more handy than the original equations, yet it exhibits the
main analytic challenges, as we will see in one of the main contributions of this thesis concerning
a well-posedness result for this simplified version of Ericksen-Leslie.

3.3 The Beris-Edwards dynamic theory

In the previous chapter we have seen that the nematic phase is most naturally described by a
director field d which returns value into the sphere. Moreover we have already remarked that the
constituent molecules present a lack of polarity, on average, so that there is no physical difference
between d and its opposite —d. This sign arbitrariness makes the Ericksen-Leslie theory presenting
some deficiency on modelling some physical phenomena, especially the so-called defects.

Defects are among one of the most important visual patterns associated with nematic liquid
crystals. Polarized light microscopy techniques are the simplest way to observe these physical
phenomena, thanks to sudden and localised changes in the intensity of the light, as illustrated in
Figure 3.4

If defects occur in a nematic material, it means that the director d is not a smooth function in

'Oleg Lavrentovich, Liquid Crystal Institute, Kent State University
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[

Figure 3.5: On the left-hand side a point disclination occurs around the molecular-orientation lines.
On the right-hand side the choice of a direction generates a discontinuity on the director field as
in the case of a line disclination.

space, and it presents discontinuities along the associated patterns. These discontinuities can be
located at a point, a line or on a surface.

The most common defects are the point and the lines defects, known as disclinations (from the
Frank terminology disinclinations [45]). Nevertheless, some liquid crystal samples may contain
surface defects, known as sheet defects, which are physically unstable since they tend to smear out
into continuously distorted regions of finite thicknesses, called walls. For more details concerning
defects we refer the reader to the book by the Gennes and Prost [33].

For instance, a first deficiency that occurs in the director model is that of considering a point
disinclination (see for instance [9]), as illustrated in figure Figure The choice of a sign for
the director d can generate discontinuities which have a no-physical relation with defects. Indeed
figure Figure is an example of a non-orientable field which is continuous in every point except
on the defect. Thus, the natural idea of defining defects as discontinuities of the director field is
not completely well-posed.

We present now an alternative approach describing the nematic dynamics, which also removes
the orientation problem described above. This approach is based on the concept of order tensor,
introduced by de Gennes [31}33], in order to phrase a Landau-Ginzburg-type theory for nematic
materials.

3.3.1 The de Gennes order tensor

Let us assume that our nematic material lies on a three-dimensional domain U at a time ¢. For
any position z in U, instead of considering an exact direction on the sphere S?, we establish the
probability that the director field d(t,z) belongs to some measurable subset A of the sphere, as
depicted in Figure Then, we introduce a continuously distributed probability P = P; , on S?,
driven by a density f through

P = [ se)anp) = [ ape)
PecA A
where A is a Lebesgue measurable set on the unit sphere.

As always, we assume the constituent molecules to be unpolar on average. Then, the no-physical
difference between the extremities can be expressed as a symmetric constriction on the probability:
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Figure 3.6: Instead of fixing a precise position into the sphere, the de Gennes theory considers the
probability of the director to belong to a set A

for any measurable subset 4. Note that because of this symmetry, the first momentum of the

probability P vanishes:
/ Pdf(P)=0.
Pes?

Thus the first nontrivial information comes from the second order momentum M, which is believed
to be the most important contribution to the energy ,

M = P ® Pdf(P) = (/PGSQ P,-def(P)) € Ms(R),

pes? i,j=1,2,3
where M3(R) denotes the 3 x 3 matrices with real coefficients. It yields a symmetric matrix M
with trace trM = 1.
In the presence of an isotropic liquid, the orientation of the molecules is uniform in every

direction, hence in this case the probability Py is given by

Po(A) = ﬁ /P _ ),

so that the corresponding second momentum tensor M is exactly Id /3. We denote by @ the
difference between a general M and M

Q:M_3:/JJES2 {P@P—%d]df(P)v

obtaining a tensor which is known as the de Gennes order parameter tensor or simply the order
tensor. Thus we can interpret ( as a deviation of the second moment tensor from its isotropic
value.

From the definition, it is clear that the order parameter tensor takes value in the space of
three-dimensional matrices which are traceless and symmetric

s = {QeMy(®R), Q="Q u{Q}=0}.
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This is a five-dimensional Hilbert space, equipped with the inner-product induced by M3(R):
(@, Q)Sé:s) = QijQsi = QijQyy = 11{QQ},

for any tensors @ and Q in .

The order tensor @ is the new continuum variable modelling the nematic dynamics, replacing
the director d. Then, it is perhaps important to recall its dependence on time and space @ = Q(t, ).

An order tensor (Q can describe three different types of structure, thanks to its eigenvalues:

(1) If @ admits three equal eigenvalues, namely @ is null, then the resulting material is an
isotropic fluid.

(77) If @ admits two equal eigenvalues, then the material is optically uniaxial with the distin-
guished eigen-direction as optic axis.

(797) If Q admits three distinct eigenvalues, then the material is biaxial.

The uniaxial order tensor () is the most common in nematic materials. Moreover a polar decom-
position leads these tensors to be expressed as follows:

I
Q:s(d@dfgd» with |d| = 1, (3.24)

where d is exactly the director of the Ericksen-Leslie theory. Here the scalar quantity s is a measure
of the degree of alignment of molecules.

We remark that the choice of (3.24]) as new continuum variable allows us to overcome the defect-
representation difficulty presented in Figure [3.5] Indeed, now the point disclination can easily be
described as discontinuity of the order tensor parameter associated do the director d.

As already pointed out in the introduction, most of nematic liquid crystals are uniaxial. Nev-
erthless some of them are biaxial, presenting an additional orientation along a secondary axes. In
this case the order tensor @ is of type (7ii) and can be expressed as

Id Id
Q:31<d®d—§)+82(m®m—§), with |d|=1, |m|=1 and s1 # s2.

The parameters s; and s2 are not null, while d and m are two distinct eigenvectors with eigenvalues
(251 — s2)/3 and (2s2 — s1)/3, respectively. Finally, the third eigenvalue is given by —(s1 + s2)/3.

De Gennes proposed two free-energy types governing nematic materials. The first one is a
Landau-type potential, the bulk energy, a polynomial in the invariants of the order tensor @), which
dictates the preferred phase of the material. The second contribution is given by an elastic free-
energy density in the form of a quadratic expression in the gradient of @), describing any distortion
of the structure of the material. The following sections describe the components of these energies.

3.3.2 The bulk free energy

The bulk free energy, also known as the Landau-de Gennes thermotropic energy [92], is a potential
function describing which state the liquid crystal tends to be in, i.e. uniaxial, biaxial, or isotropic.
The isotropic state Q = 0 should be minimizer at high temperature, while at low temperature there
should appear uniaxial minimizers.
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Up to fourth order, the most general form of the energy density is

¥n(Q) = S1QP - 3er{Q®) + SIQI (3.25)

where a,b and ¢ are temperature and material dependent constants.

It is perhaps important to remark that this is a truncated Taylor expansion on @ = 0 [104].
Indeed the fourth order is the lowest that is suitable to describe a phase transition. Indeed it allows
the free-energy density to have two distinct minima (for more details we refer the reader to [106]).

In order to have the bulk energy bounded from below, ¢ needs to be a positive constant.
Moreover, for an uniaxial nematic, the order tensor assumes the form , thus by a direct
calculation tr{@3} = 2s%/9 which is positive assuming s > 0. By contrast, if the molecules are
aligned on average perpendicular to the axis of symmetry then tr{@3} is negative. In order to
distinguish those two states b needs to be different from zero. Finally the constant a does not
present a structural restriction.

3.3.3 The elastic free energy

The elastic energy density of a liquid crystal corresponds to the induced energy which occurs when
distorting the order tensor in space. It is commonly taken to depend on ) and its gradient VQ.
Moreover, as explained in [92], this energy must remain unchanged if we apply a rotation or a
translation to the material. Thus, the second order elastic energy can involve only four invariant
terms, that is

IVQP? = Qup.iQopir |divQ|]* = QuiiQajjr  QaijQajis QijQapiQas.j»

and commonly it assumes the following form

L Ly .. L L
(@, VQ) = HVQP + Fdiv QP + T QaijQaji + 5 Qi QasiQapj-  (3:26)

with L1, Lo, L3 and L, material-dependent constants, typically very small compared with the bulk
constants a, b and c.

Usually, the constant L, is taken equal to zero, since it may cause the elastic energy to be not
bounded from below (see for instance [8]), so that . is often written in the following form:

L Ly, .. L
e(@Q, VQ) = T [VQP + T [div QI + 7 Qi jQuji

However, the L-term is necessary to distinguish splay and bend deformations [106], performing
the full anisotropy characteristics of the Oseen-Frank energy density (3.9).

3.3.4 The Beris-Edwards system

There exist several models which describe the dynamics of liquid crystals making use of the Q
order tensor. A comparison of these models can be found in [105] and in this section we present
the so-called Beris-Edwards system.

This model was presented by Beris and Edwards in 1994 and it has been largely adopted in
literature both for numerical and analytical studies ( [1,35,54]). Their theory is derived formulating
on a macroscopic scale the Poisson-bracket method, as extensively exposed in their book [12].
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There is a strictly correlation between this model and the Ericksen-Leslie one: if we assume the
order tensor to be uniaxial as in (3.24)), the Beris-Edwards system coincides with the Ericksen-Leslie
system.

The system models the evolution of liquid crystal molecules together with the underlying flow,
through a parabolic-type system coupling an incompressible Navier-Stokes system with a nonlinear
convection-diffusion system. The local orientation of the molecules is described through the order
tensor (). The evolution of the @’s is driven by the free energy of the molecules as well as the
transport, distortion and alignment effects caused by the flow. The flow field u satisfies a forced
incompressible Navier-Stokes system, with the forcing provided by the additional, non-Newtonian
stress caused by the molecules orientations, thus expressed in terms of Q.

The evolution of @) is given by:

hQ+u-VQ—S(Vu,Q) =TH(Q), (3.27)

with I' a material-dependent positive constant. For a nonnegative velocity field u, the molecules
are transported by the flow (as indicated by the convective derivative 0y + u - V) as well as being
tumbled and aligned by the flow, fact described by the term

S(Vu,Q) = (EA+Q)(Q + %Id) +(Q + éld)(&A - Q) —2¢Q+ éld)tr(QVu), (3.28)

where A = (Vu+'Vu)/2 is the rate of strain tensor and Q = (Vu —*Vu)/2 is the vorticity tensor.
The constant ¢ is specific to the liquid crystal material and measures the ratio between the tumbling
and the aligning effect that shear flow would exert over the liquid crystal director.

We also denote by H, the ()-dependent tensor

Wp(Q) . Q)] . 9e(Q S 00e(Q
90 + div N0 } with [d N0 ] Z&,a anﬁ)

where 1) and v, are the bulk and elastic energy densities, formulated in (3.25)) and (3.26]) respec-

tively, and denoting with £ the projection onto the space of trace-free matrices.

H(Q) =L

In this thesis we consider the most widespread elastic energy density, that is

ve(VQ) = ZIVaP, (3.29)

imposing L := L1, and neglecting the other elastic coefficients Lo, L3 and Ls. Hence H can be
explicitly formulated as follows:

H(Q)=LAQ —aQ +b <Q2 — tr{QQ}I§1> — eQtr{Q?}. (3.30)

The vector field w satisfies the forced incompressible Navier-Stokes system

Ou+u-Vu—vAu+ Vp = Adiv{T + ¢}
divu =0
where v, A\ > 0 with A\ measuring the ratio of the elastic effects (produced by the liquid crystal

molecules) to that of the diffusive effects. The forcing is provided by the additional stress caused
by the presence of the liquid crystal molecules, more specifically we have the symmetric part 7 of
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the additional stress tensor:
ri=—¢(Q+ %Id)H(Q) —¢H(Q)(Q + é[d) +26(Q + %Id)QH(Q) ~LVQ o VQ,
where the tensor VQ © V(@ is defined as
(VQ O VQ)ij := Qap,iQap,; = tr{0:Q0;Q}.
Moreover the antisymmetric part o of the stress tensor is given by
0:=QH(Q) - H(Q)Q = [Q, H(Q)].

Summarizing, the Beris-Edwards equations read as follows

%Q+u-VQ - S(Vu,Q) — TLAQ = —aQ + b(Q* — tr{Q}4) — cQur{Q},
du+u-Vu—vAu+ Vp = Miv{QH(Q) — H(Q)Q}+

35

(3.31)

(3.32)

+adiv{ — €(Q+ 5 H(Q) - €H@Q)(Q+ %) +26(Q + B)ur{QH(Q)} - LVQ® VQ},

divu = 0.

(3.33)
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3.4 The Qian-Sheng dynamic theory

We have seen that both Ericksen-Leslie (3.18)) and Beris-Edwards describe the continuum
theory of nematic through a strongly coupled system between two parabolic-type equations. In the
FEricksen-Leslie case, this structure is more clear when the simplified version occurs. However
this intrinsic characteristic is achieved neglecting a physical contribution, namely the inertia of the
constituent molecules.

Let us come back to the work postulate (3.16)) proposed by Ericksen and Leslie:

D

/p(F~u+K-w)da:+/ (o-u+l-w)dv=— <1p\u]2+wp>dx+/7)da:,
U ou Dt Jy \2 U

The law explains how the rate at which force and moments do work is stored in the total-material
energy or is lost in viscous dissipation. However, the above total energy considers only the kinetic
and the Oseen-Frank energies contribution, meaning that we have neglected the action of the

rotational kinetic energy
J : 9
R
U

Here J stands for the moment of inertial density. In most circumstances the rotational kinetic
energy is negligible, imposing J to vanish, nevertheless it can play a non-trivial role when the
anisotropic axis of the constituent molecules is subject to large accelerations. In this situation, the
work-postulated must take in consideration the inertial contribution (see [70]) as follows:

/p(F.u—i-K-w)d:c—i-/ (a.u+l~w)dV:2 <1p\u|2+Jd]2+wF>dx+/Ddx.
U ouU Dt Jy \2 U

In this case Ericksen-Leslie system becomes

Op+u-Vp=0,
p(Ou+u-Vu) =divo,
divu =0,

dA (Jd+§+h) =0,
\|d‘2:17

hence the angular momentum equation change from a parabolic to a hyperbolic-type equation.

One of the main results of this thesis concerns the contribution of the inertial term, in the
setting of the order parameter tensor. We proceed considering an alternative formalism to the one
of Beris and Edwards. Indeed, in the 1998 Qian and Sheng [101] arrived at a system of evolution
equations for both the velocity field and the order tensor field, taking inspiration with the analogy
to the balance laws of Ericksen and Leslie.

The governing momentum and order evolution equations are
U; = 3j(—p5ji + 04 + U}i),
with the free-divergence condition divu = uy, = 0, and

JQij = hij + Wi — Aij — €.
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Here, the distortion stress tensor ¢ is given by

e
0ji = —m———Qas,i (3.34)
T 0(Qapg)
with 1. stands for the elastic energy
L 2
$e(VQ) = 5 IVQP. (3.35)
Moreover, the elastic molecular tensor h is defined as
8¢B 8¢e
hi; == — +0
700, T T o(Qu)

Furthermore the viscous stress ¢’ and the viscous molecular field i’ are given by

oij + = P1QijQue Ak + BaAij + BsQuAlj + BeQjt Au
1
+ §M2L/%j — 1 QuNy + 1 QjN;, (3.36)

1
h’/L] = — =

2M2Az‘j — p1Nyj

where (1, 84, 5, 36, 11 and po are viscosity coefficients. A is the rate of strain tensor (Vu+'Vu)/2
and ./ is the time rate of change of Q);; with respect to the background fluid angular velocity,
whose formula is

N =Q—-0Q +Q%,
where € is the vorticity tensor. The Qian and Sheng equations in a no-index form reads as follows:
Byu+u-Vu— B Au+Vp =div{ - VQ ® VQ + 51Qtr{QA}+
+65AQ + BsQA} + div{5(Q — [2, Q) + m[Q, (@ — [, Q)I},
divu =0,
JQ+m(Q - [9,Q) - AQ = —L%E + 24,

(3.37)
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Chapter 4

Contributions of the thesis

The present thesis is mainly devoted to the analysis of several partial differential equations arising
from the dynamics of nematic liquid crystals. More precisely, we perform some well-posedness
results and dynamic behaviours for the simplified Ericksen-Leslie system , the Beris-Edwards
model and the Qian-Sheng system , which we have introduced in the previous chapter.

In this chapter, we present an exhaustive overview about the achieved results. First, it is worth
mentioning that one of the main contributions of this thesis concerns the study of the Cauchy
problem associated to each system, up to suitable initial data. These initial data belong to suitable
functional spaces, the properties of which make each model interesting also from a physical point
of view. In the Ericksen-Leslie case, for instance, we consider an initial density that can present
discontinuities along an interface, thus our result can be related to the dynamics of immiscible-
nematics mixture.

This thesis studies the dynamics of nematic materials which occupy a two-dimensional or an
N-dimensional space-domain, where IV is an integer greater than three. More precisely we consider
the Beris-Edwards system in the two-dimensional whole space, while the Ericksen-Leslie and the
Qian-Sheng system are defined in the N-dimensional whole space.

On the one hand, we prove existence and uniqueness of weak or classical solutions in the two-
dimensional case, making use of energy estimates, Fourier analysis and the paradifferential calculus.
On the other, we prove well-posedness results in the N-dimensional framework, mainly adopting
tools of harmonic analysis.

The thesis is interested also to the propagation of regularity for the initial data, especially under
the dynamics proposed by Beris and Edwards. Here, we mainly use techniques which are mostly
based on Fourier analysis and logarithmic-type estimates.

Let us briefly describe the structure of this chapter. In the next section we begin our presenta-
tion, starting from the Ericksen-Leslie model for nematics. In section[4.2] we take into consideration
the dynamics proposed by Beris and Edwards. Here we separately consider two cases, on the one
hand we analyze the general system, on the other we take into consideration a simplified version,
the co-rotational system, which retains the main features of the original one. Finally, in section
we present the results concerning the Qian-Sheng model.

4.1 Contribution to the Ericksen-Leslie theory

As already exposed in the introduction, in the 50s and 60s, J.L. Ericksen [41] and F. Leslie [69]
developed the most widely accepted model describing the dynamics of nematic liquid crystals. The

39
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rod-like molecules have a local orientation, fact modelled mathematically through functions taking
values into the space of directors that is the unit sphere. Their time evolution is described by an
equation for unit-length vector fields d that are transported and rotated by a velocity field u. The
velocity of the centers of masses of the molecules obeys an incompressible Navier-Stokes system
with an additional stress tensor generated by the presence of the directors.

We consider the simplified version of the Ericksen-Leslie system introduced in section

Oyp +div (pu) =0 R, x RV,

O (pu) + div(pu ® u) — Au+ VII = —div(Vd ©® Vd) Ry x RN,

divu =0 R, x RN, (41)
Ord+u-Vd— Ad = |Vd*d R, x RV, '
ld| =1 R, x RV,

(u, p; d) =0 = (uo, po, do) RN.

This is a strongly coupled system between the inhomonegenous and incompressible Navier-Stokes
equation and the transported heat flow of harmonic maps into sphere. We recall that the continuum
variables are defined as follows:

p=p(t,z) € Ry denotes the density,

u=u(t,z) € RN represents the velocity field,
II=TI(t,z) € R is the pressure,
d=d(t,z) € SY!is the director,

all depending on the time variable ¢ € R, and on the space variables € RY. We consider the
whole space RN as space-domain, with a general dimension N greater or equal to two. The symbol
Vd ® Vd denotes the N x N matrix whose (i, j)-th entry is given by

(Vd © Vd)lj = Old . a]d = dkz,idk,j7

fori,j =1,..., N. The positive constants v, A and  introduced in section has been imposed
equal to 1, for the sake of simplicity.

It is perhaps important to remark that the simplified system proposed by F. Lin is for homoge-
nous fluids, that is with constant density. The inhomogeneous version we consider here is relevant
particularly for modelling a mixture of liquid crystals with different densities. Most importantly,
perhaps it also allows to give an interpretation of defect patterns as discontinuities in the density.
This defect interpretation is not new in literature, for instance we cite [34] of De Matteis and Virga,
despite it concerns a density-dependent kortweg fluid. Our main contribution is to prove a well-
posedness result that allows for the existence of these discontinuities, since we deal with densities
that are only bounded.

4.1.1 Statement of the main results

In order to announce our main result whose proof is given in chapter [5] it is perhaps important to
define the functional spaces where our initial data are defined.

Our interest is to impose a regularity on the initial density pg as low as possible, so that we can
allow discontinuities along an interface. Thus our initial density is only assumed to be bounded
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po € L=(RY).

Now, we can remark that the liquid crystal system (4.1) has a scaling property, like the classical
Navier-Stokes equations. Namely, if (p, u, d) solves (4.1) with initial data (po, uo, do), then for
every positive A, the functions

(p, u, d)a(t,x) = (p(t, z), Mu(N’t, \x), d(N\*t, Ax))

also provide a solution but with initial data (po(Az), Adug(Ax), do(Ax). Thus, an important feature
of system is that of the gradient of the director field Vd and the velocity field « have an
equivalent “scaling behaviour”. Then, it is natural to consider ug and Vdy into the same functional
framework.

Moreover, other heuristics (extensively exposed in chapter [5)) suggest that the most suitable
functional spaces for (ug, Vdp) are that of homogeneous Besov spaces with a critical index of
regularity. More precisely, we assume

('LL(), Vdo) S B;,r‘

for suitable integrability indexes p, r in [1, co] and a critical regularity index s in R. These functional
spaces are defined through the so-called Littlewood-Paley theory (we refer the reader to section
for a complete description). It is perhaps interesting to remark that the homogeneous Besov
spaces extend the most widely known classes of homogeneous Sobolev and Hélder spaces, through
the relations ) ) ) )
B34, = H?, BZ, o = C7,

for any s € R and for any o € R \ Z.

Then, our main results concerning the Ericksen-Leslie dynamic theory can be summarized in
the following statement:

Theorem 4.1.1. Let us assume that the initial data (po, wo, Vdy) fulfil the smallness condition
1

I~
Po

for a small enough positive constant cy, with 1 < p < N and 1 < r < oo, then system (4.1)) admits
weak solutions. If moreover we assume an extra tiny regularity on (ug, Vdy), namely

+ [luoll | v
BP

ot HVdOH N, < co,
L DT B

. ﬂ—l-{-e
(uo,Vdo) € Bylr (4.2)

for a small positive €, then such solutions are unique.

In the above statement, there is no information about the functional space where our weak
solutions live. Specific information and an extended version of Theorem are postponed to
chapter [5] for the sake of simplicity. Nevertheless, we anticipate that the functional setting where
to look for weak solutions are of two types: if the initial data are smooth enough, we consider
Lebesgue-type spaces L (0,T; L%(RY)), for suitable r-dependent indexes ¢; and ¢, while if the
initial data exhibit low regularity, the functional space is that of the Serrin’s weighted in time class.

Moreover, it is perhaps worth mentioning that the extra regularity we impose in Theorem
plays a major part in proving the uniqueness result. Indeed, we handle the uniqueness
part reformulating system in Lagrangian coordinates, following the approach of Danchin and
Mucha in [27] for the inhomogeneous Navier-Stokes equations. More precisely, the extra regularity
allows to construct the flow map (¢, z), i.e.

Y(t,x) == +/O u(s, (s, x))ds,.
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The existence of such map is due to the Lipschitz space-regularity the velocity field u achieves,
thanks to the extra condition on the initial data. The Lagrangian coordinates simplify in some way
our problem, granting the density p to be constant, since it is governed by a transport equation.

4.2 Contribution to the Beris-Edwards theory

This thesis is also devoted to the Cauchy problem associated to the Beris-Edwards system. We
consider the two dimensional whole space R? as space-domain, so that the hydrodynamics of nematic
materials is described by

Q+u-VQ+ S(Vu, Q) = H(Q) R, x R?,

Owu+u - Vu — vAu + VII = div{r + o} R, x R?, (4.3)
divu =0 R4 x R?, '
(u, Q)t=0 = 0 = (uo, Qo) R?,

Here @ = Q(t,z) is the order tensor introduced in section m u = u(t,r) € R? represents the
velocity field, IT = TI(¢,z) € R stands for the pressure, everything depending on time ¢t € R, and
space x € R?.

H(Q) has been defined in (3.30)), it is a tensor dependent on @ and V@, and it is a forcing
term related to the contribution given by the elastic and the bulk energies. Finally, 7 and o are
the symmetric and antisymmetric part of the additional stress tensor respectively, whose formula

has been proposed in (3.31)) and (3.32)).

It is perhaps interesting to remark that one can assume the system to have a three-dimensional
target despite the two-dimensional domain. This situation occurs when physically there is no
dependence on one of the three spacial directions.

As expressed in definition (3.28)), the term S(Vu, @}) depends also on a parameter . This is
a constant specific to the liquid crystal material. Usually £ assumes small values, thus one can
neglect its contribution. In this situation, system (4.3|) reads as follows:

Q—QQ + QN —TL2AQ = —T(aQ- b(Q*— tr{Q*}Y) + ctr{Q?}Q) Ry x R?,

Biu +u - Vu — vAu + VI = Ldiv {QAQ — AQQ — VQ & VQ} R, x R2, )
dive =0 R+ x R?, '
(U, Q)t:O = (Uo, QO) RQ?

where the superposed dot is the material derivative d; +u-V and VQ ® V() is a 2 x 2-tensor, whose
(i,7)-th component is given by

(VQ 0 VQ)ij = tr{0;Q0;Q} = 0iQ0p0jQup-
We divide our study into two subcases:
e the corotational case, when € is null,
e the general case, when ¢ is positive (or null).

We prove existence and uniqueness of weak solutions both for ¢ different and equal to zero and we
also prove a result about regularity propagation for the cororational case.
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In order to understand the functional framework where to look for weak solutions, it is perhaps
interesting to remark that the velocity field u and the gradient of the order tensor VQ have the
same scaling behaviour, which is similar to the one of the Ericksen-Leslie system . If (u, Q)
is solution for with initial data (ug, Q), then

(u, Q)a(t, ) := Mu(Nt, Ax), Q(N\%t, Ax)), A >0,

is still solution with new initial data (Aug(Az), Qo(Az)). In the uniaxial nematic case, this scaling
behaviour can be seen as a consequence of the Ericksen-Leslie’s one. Indeed, here the order tensor
() assumes the form

Qt,z) = s(d(t, 2) @ d(t, z) — L;)

so that the scaling behaviour of () turns out from the director field ones:
dy(t,x) := d(\*t, \x), A>0.

4.2.1 Statement of the main results
The corotational case

According to the previous considerations, it is natural to take our initial data ug and VQq in the
same functional space. Moreover, since we consider a two-dimensional space-domain, the more
suitable type of weak solutions are the Leray’s ones. Then the initial data are taken in Sobolev
functional spaces, that is

(uo, Qo) € L*(R?) x H'(R?).

Our well-posedness result can be summarized in the following theorem.

Theorem 4.2.1. Assume that (ug, Qo) belongs to L?(R?)x H'(R?) and let us suppose the parameter
& to be null. Then system admits an unique weak solution (u,Q), which is global in time and
it satisfies

u € L™®(0,T; L*(R?)) N L*(0, T; H'(R?)),

Qe C(Ry, HY(R?) N L*0,T, H*(R?)), (4:5)

for any positive real time T .

We remark that, although the solution (u, VQ) is defined globally in time, the L?(R?)-norm
(respectively H'(R?)-norm) is only locally bounded (respectively L? (R )). In the usual Navier-
Stokes equations, classical energy estimates for Leray’s weak solutions allow a global in time L?-
integrability for the H'-norm of u and a global in time bound for the L?(R?)-norm. In the Beris-
Edwards system we lose this feature and this is mainly due to a structural difficulty.

The order tensor equation is driven by the variational derivative of the bulk energy density

Yp(Q), up to projection to the set of null trace matrices, that is

oy (Q)
oQ

When applying a classical energy estimate, the bulk energy occurs as additional term to the solu-
tion’s norms. If the bulk energy could only interact as a positive term, then we would achieve the
classical global control in time, however we can only expect the bulk density to be bounded from
below (imposing the constant ¢ > 0). This also requires to estimate the bulk energy contribution,
however we will see that the best control one can achieve has an exponential grow in time.

<z

= —F<aQ— b(Q*— tr{QQ}%) + ctr{Qz}Q>-
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The main contribution of Theorem is about uniqueness, as the existence part was dealt
by Paicu and Zarnescu in [99]. Nevertheless we approach also to the existence part with a different
method to the author’s ones: we make use of a coupled technique between the Friedrichs scheme
and the Schaefer’s fixed point theorem.

The main difficulties associated with treating the uniqueness of solutions for systems are
related to the presence of the momentum equation. One can essentially think of the system as a
highly non-trivial perturbation of the Navier-Stokes equations. It is known that for Navier-Stokes
alone, the uniqueness of weak solutions in dimension two can be achieved through rather standard
arguments, while in three dimension it is a major open problem.

The extended systems that we deal with have an intermediary position, as the perturbation
produced by the presence of the additional stress-tensor generates significant technical difficulties
related in the first place to the weak norms available for the u term. A rather common way of
dealing with this issue is by using a weak norm for estimating the difference between the two weak
solutions, a norm that is below the natural spaces in which the weak solutions are defined. This
approach was used before in the context of the usual Navier-Stokes system in [48] and [88]

In our case for technical convenience we use a homogeneous Sobolev space, namely H~1/2.
The fact that the initial data for the difference is zero (i.e. (du, dQ);=o = 0) helps in controlling
the difference in such a low regularity space. Moreover, one of the main reasons for choosing the
homogeneous setting is a specific product law which shows that the product is a bounded operator
acting in the following spaces:

HS(RZ) % Ht(RQ) N H5+t7%(R2),

for any real s and ¢ with |s|, [t| < 1 such that s+t is positive. It is worth remarking that evaluating
the difference at regularity level s = 0 i.e. in L?(R?), would only allow to prove a weak-strong
uniqueness result, along the lines of [99]. Working in a negative Sobolev space, H* with s € (—1,0)
allows to capture the uniqueness of weak solutions. We expect that a similar proof would work in
any H*® with s € (—1,0) and our choice s = —1/2 is just for convenience.

In the uniqueness proof, our main work is to obtain a Gronwall-type inequality. Indeed the
uniqueness reduces to an estimate of the following type:

() < x(1)2(1),
where ®(t) is the norm of the difference between two solutions and y is a-priori in L} (R,).

loc

In addition there are some difficulties that are specific to this system. These are of two different
types, being related to:

e Controlling the “extraneous” maximal derivatives: that is the highest derivatives in u that
appear in the ) equation and the highest derivatives in @ that appear in the u equation,

e Controlling the high powers of @, such as Qtr{Q?} in the bulk energy contribution.

The first difficulty is dealt with by taking into account the specific feature of the coupling that allows
for the cancellation of the worst terms, when considering certain physically meaningful combination
of terms. For what concerns the second difficulty, this is overcome by delicate harmonic analysis
arguments leading to the usual Gronwall inequality mentioned before.

Another important contribution of this thesis in the corotational setting is a result about regu-
larity propagation. We consider our initial data to belong to a nonhomogenous Sobolev space with
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positive index of regularity, i.e.
(uo, VQo) € H*(R?), with s> 0.

Then we study the propagation of the homogeneous Sobolev norm H*. The first step is rather
standard, namely we consider an H*-energy estimate. However, considering s > 0 leads to losing
an important structural feature of the system, namely the cancellation of the worst terms. Thus,
it is necessary to make a control for each of them, but doing that, a first problem appears: the
control of the L>(R%)-norm for the solution (u, VQ). A rather common way of dealing with this
problem is by using a classical Sobolev embedding

H*(R?) < L*(R?),

but this requires an index of regularity s > 1, so that proceeding along this line, we can expect to
propagate only higher regularities, in the same line of [99]. This difficulty is dealt with separately
controlling the high and the low frequencies of our solution. We localise the Fourier transform
of our solution into a ball with a suitable radius IV, making use of a cut-off function. Then on
the one-hand we control the L>(R?)-norm of our solution localised in the low frequencies, and on
the other-hand we estimate the higher ones. Then, choosing a suitable radius N, the regularity
propagation reduces to a delicate one-logarithmic estimate

(1) < x(H) @) (1 + I d (1)),

where ®(t) stands for the F/*-norms of our solution and  is apriori in L}, (R ). This estimate leads
to a double-exponential control of the growth-in-time of ®(¢). Then our regularity-propagations
result reads as follows:

Theorem 4.2.2. If ¢ is null and (ug, Qo) belongs to H*(R?) x H5TY(R?), for a positive real s,
then the solution given by Theorem [{.2.1] fulfils

u € L0, T; H*(R)NLA(0, T; H*TH(R?)),
Q € C(Ry, H*H(R?))NL*(0,T, H*H2(R?)).

The general case

In the general framework, i.e. when the parameter ¢ is assumed to be greater or equal to zero, we
performed existence and uniqueness of weak solutions. This result can be resumed in the following
statement:

Theorem 4.2.3. Assume that (ug, Qo) belongs to L*(R?) x H'(R?) and let the parameter & be
positive. Then system (4.3) admits an unique weak solution (u,Q), which is global in time and it
satisfies

u e L™(0,T; L*(R?) N L*(0, T; H'(R?)),
Qe C(Ry,HY(R?) NnL*0,T, H*(R?)),

for any positive real time T .

Despite the simplicity of the statement, the proof requires a deep analysis with a specific study
of the terms appearing when £ is not null.
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Let us remark that also in this case the main contribution of Theorem is about uniqueness,
as the existence part is just a fairly straightforward revisit of the arguments in [98].

The presence of the £-terms increases the main difficulties associated with treating the unique-
ness of solutions for systems . For instance we have to control the high powers of () interacting
with u such as Qtr{Vu@}. Although we proceed along the same line of the corotational case, by
using the weak norm HY2 for estimating the difference between the two weak solutions, now our
main goal is to obtain a delicate-double logarithmic estimate that leads to the Osgood lemma.
Indeed the uniqueness reduces to an estimate of the following type:

' (t) < X(t)(l[)(t)(l +In (1 +e+ %) +In (1 +e+ (th)) Inln (1 +e+ <I>:t)>)
where ®(t) stands for the H~'/%norms of our solution and y is apriori in L}, (R ). The proof is
based on a specific harmonic technique, localising the Fourier transform of our solution with a ball
of radius N and separately estimating both the low frequencies and the high frequencies.
In these estimates, we make use of suitable Sobolev embeddings and we explicitly write the
constant of embedding for each of them. Then, a specific relation between these constants, the
radius N and ®(¢) finally allows to achieve the cited double-logarithmic estimate.

4.3 Contribution to the Qian-Sheng theory

As a last contribution to the dynamics of liquid crystals, this thesis is also devoted to the well-
posedness of the Qian-Sheng system in a d-dimensional setting, for d = 2, 3.

du+u-Vu+ Vp=div{c + o'} Ry x R?,

divu =0 R, x RY, 16)
O+ mQ - [2Q) — AQ = L5 4 A By xR &
(u, Q)t=0 = (uo, Qo) R<.

Here, the continuum variables are the same of the Beris-Edwards system: u € R? is the velocity
field, Q@ € R%9 is the order tensor, the scalar p stands for the pressure, A is the rate of strain
tensor and (2 is the vorticity tensor. The bulk energy density ¥5(Q) has been defined in ,
while the stress tensor ¢ and ¢’ are in and . Everything depends on the time variable
t € Ry and the space variables = € R

It is worth recalling that the most important novelty in this model is the inertial contribution
J Q in the order tensor equation. This term comes from when considering the contribution of the
rotational kinetic energy density, namely

J o
ZIQF

Usually this energy density is negligible, since the inertial density J commonly assumes very tiny
values. Taking into consideration this term makes system more challenging than the model
proposed by Beris and Edwards. Indeed the order tensor equation becomes a hyperbolic-type
equation, in contrast to the parabolic one occurring when J = 0. Thus, we can not expect any
kind of reqularizing effects for the order tensor Q.

Our first result concerns a dissipative behaviour related to system . More precisely we
prove the existence of a Lyapunov functional E(t) = E(u(t),Q(t)), which correspond to the total
energy of the material, that is the kinetic energy, the bulk energy and the rotational kinetic energy.
The statement reads as follows
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Theorem 4.3.1. Under some restriction on the viscosity coefficients (see Theorem , system
(4.6) admits the following Lyapunov functional:

. 1
B = [ 5 (1 + 7108 + 5IVQF +v6(@)

with ¥p(Q), the bulk energy density (3.25).

Considering smooth solutions, we prove that the time derivative of E does not assume positive
value:

d
&E(t) <0, for any te€R,.

It is worth remarking that we can not construct weak solutions making use of this Lyapunov
functional, as in the case of Beris-Edwards. This is due to the hyperbolic structure of the order
tensor equation, which does not allow regularizing effects on ). More precisely the highest number
of derivative in Q we can control in L?(R?) is one, namely | VQ|| 2(ré)- This leads to some difficulties
when constructing weak solutions, mainly due to the nonlinear forcing term

(VQ ®VQ)ij = 0;Qap0;Qas,

in the stress tensor o. Indeed, the most common way to construct weak solutions is by a com-
pactness method, so that this nonlinear term should present some troubles when considering its
weak-limit convergence.

Then, our second result concerns the existence and uniqueness of classical solutions for system
(4.6). We work in a H*(R?%)-Sobolev spaces, for a sufficient large positive s. Our statement reads
as follows:

Theorem 4.3.2. Let us assume (ug, Qo) : R? = R x R™*? to belong to H*(RY) x H5TH(R?) with
s greater than d/2. Up to suitable conditions on the viscosity coefficients (see Theorem) and
supposing the initial norms ||uo|| s and ||Qol| gs+1 to be small enough, then there exists an unique

solution (v, Q) of system (4.6)). This solution is global in time and it fulfils

u € L¥(Ry; H*(RY)) N L*(Ry; HH(RY)),
Q e L®Ry; HTHRY))  with Q € L™ (R, ; H¥(RY)).

In the existence part, thanks to a Friedrichs-type scheme, we construct approximate solutions
which satisfy uniform estimates. These estimate turn out from a rather standard H®-energy control
of the equations.

The reader should observe that in the above theorem, we impose a smallness condition on the
initial data (ug, Qo) also in the two-dimensional setting d = 2. It is known that in the simplest
case of the Navier-Stokes equations, existence and uniqueness of classical and weak solutions are
achieved for any initial data, while in the case of a three dimensional setting it is still a major
problem. Our system has an intermediate difficulty, because of the presence of the forcing terms
related to the order tensor Q. In a L?(R?)-energy level these terms are handled by specific features
of the coupling which allow their cancellation. However, in a H®-setting this characteristic is lost
and we need to estimate each forcing term related to the stress tensors.

Our main work on proving the existence of classical solutions is to obtain an uniform estimate
for our approximate solutions, that is

D' (t) + U(t) < CP(t)¥(¢), (4.7)
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where C' is a suitable positive constant, ® is the bounded in time H?*-norms of our solution and W
is the integrable in time H*-norms. Then, a rather standard argument (see Lemma allows to
propagate the smallness condition on the initial data (i.e. on ®(0)). This leads the right-hand side
of the above equation to be absorbed by the left-hand side, which allow to have an uniform control
of the norms. Then we can construct our classical solution, through a compactness method.

The uniqueness of our solutions is proven evaluating the difference between two solutions at a
regularity level s = 0, i.e. in L?(R?). Our work is mainly to obtain an estimate that leads to the
Gronwall lemma. Here the main difficulties are handled taking into account a specific feature of the
coupling system related to the difference of the two solutions. This feature allows the cancellation
of the worst term when considering certain physically meaningful combinations.

4.4 Contribution to the Boussinesq theory

Although this introduction and the main results we have exposed until now concern the dynamics
of liquid crystals, this thesis is also devoted to the so-called Boussinesq system. In chapter [9] we
study the evolution of a fluid presenting a temperature-dependent viscosity, the hydrodynamics of
which is modelled by the following system:

0¢0 + div (fu) =0 R, x R%

O +u-Vu —div(v(0)D(u)) +VII =0 R, x R? (48)
divu =0 Ry x RY, .
(, ) =0 = (3, 0) R,

where d is the dimension, 6 is the temperature, u stands for the velocity, II is the pressure and
finally D(u) is the rate of strain tensor D(u) := (Vu + *Vu)/2, all depending on the time variable
t € R, and on the space variables = € R,

This is a strongly coupled system between a transport equation, governing the evolution of the
temperature, and the homogeneous Navier-Stokes equations modelling the velocity of the fluid.
The temperature-dependent viscosity v(#) leads to a specific sub-case of the general Boussinesq
system (we refer the reader to chapter |§| for more details). This condition allows us to to describe
several geophysical phenomena, for instance it is well known that the viscosity of a fluids tends to
decrease (or, alternatively, its fluidity tends to increase) as its temperature increases.

Moreover, following the approach used for the Ericksen-Lelie system, our interest is to consider
an initial temperature with discontinuities along an interface, so that our model assumes also a
physical meaning when describing a mixture of immiscible fluids with different temperatures.

Our main result concerns the existence of global weak solutions for system (4.8) under specific
and natural conditions on the initial data. Before stating our main result, let us briefly describe

some features of system (4.8]).

As the classical Navier-Stokes equations, system 1’ admits a particular scaling behaviour: if
(u(t, ), 6(t, x)) solves (4.8)) with initial data (u(x), 6(x)), then the following rescaled functions

(u, O)A(t, ) := (Mu(N2t, Ax), 0(\°t, \x)), A>0

are still solutions of (4.8) with (A#(\x), A(z)) as new initial data. Then, it is natural to consider
initial data in Banach spaces whose norms are invariant under the above scaling behaviour. First
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we assume 6 only to be bounded, that is
0 € L>(RY),
whose low regularity allows the initial temperature to present discontinuities. Then, we consider
an initial velocity in an homogeneous Besov space with critical index of regularity, i.e.
d

L4
uy € BE, (RY),

for suitable p and r in [1, o0].
We prove the existence of weak solutions for system (4.8]) under a specific smallness condition
on the initial data, that is when

_h —d
ni= (v = oo + 18" _ypa) exp {erla®]*,, . } (4.9)
By P By, P
is assumed to be sufficiently small, where @" := (al,... ,ﬂd_l) are the horizontal coordinates of the

velocity field, while 4 stands for the vertical one. Let us analyse this type of smallness condition.
First the viscosity is supposed close to a positive constant, and we impose it equal to 1 for the sake
of simplicity. Moreover the initial velocity field can present a large vertical component ¢, if the
initial fluctuation of the viscosity v(fp) — 1 and the horizontal components of the initial velocity
@ are small enough (exponentially small when compared to the vertical component @%). This
fact is described by the exponential term in , which can assume large values, multiplied by a
small enough quantity in order to have 1 small enough. This type of initial condition is not new in
literature, for instance we cite [60] and [30], devoted to the well-posedness of the inhomogeneous
Navier-Stokes equations.

When proving the existence of weak solutions, we follow an approach similar to the one used for
the Ericksen-Leslie system, considering a useful characterization of the homogeneous Besov spaces
and the maximal regularity theorem for the heat kernel. Nevertheless, there are some difficulties
that are specific to system :

e the anisotropic smallness condition, which requires some particular new ideas and technical
tools when controlling the norms of our solutions,

e the low regularity of the viscosity, which decreases the maximal number of derivative on u we
can control.

The anisotropic smallness condition requires to separately estimate the horizontal coordinates
u" and the vertical coordinate u? of the velocity field. At first, it is worth remarking that the
algebraical structure of the Navier-Stokes system plays a main role when propagating the bound
for the norms of our solutions.

Using the divergence free condition and the special algebraical structure of the non-linear term, we
notice that the equation on the vertical component is a linear parabolic equation whose coefficients
depends on the horizontal components. This yields the vertical component to not require any type
of smallness condition on a¢.

As second step, we analyse the equation on the horizontal coordinates together with the underlying
non-linear terms. These are of two types: on the one hand there are bilinear terms in the horizontal
coordinates, on the other hand there are coupling terms as interactions between the horizontal
components and the vertical one. Because of this non-linearity, it is necessary a smallness condition
on the horizontal coordinates of the velocity field in order to solve the equation. Moreover, the
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contribution given by the vertical coordinate leads to an exponential amplification of this smallness
condition, so that the bound we achieve has the same structure of 7 in (4.9).

Now, the assumption on the initial temperature does not allow () to exhibit enough regu-
larity in order to read div (v(#)M) in a strong sense. Then, writing the equation on w in a mild
formulation, the previous term leads to

/0 divS(t — s)(((0) — 1)M)(s)ds,

where S is the heat kernel. This means that we already need a regularizing effect of the heat
kernel when controlling the velocity field u. Because of this heuristics we deduce that the maximal
regularity theorem permits an estimate only of u and Vu in a L9 (0, T; L%(R%))-Lebesgue space,
while Awu assumes only a distributional sense.

Our main result concerning the Boussinesq theorem can be summarized in the following state-
ment:

Theorem 4.4.1. Let us assume our initial data (0, @) to belong to L>(RY) x Bgép_l(Rd) with p
in (1,d) and r in (1,00). Supposing

ni= (v = Uoo + @ _ioa) exp{ella®l™, 4} <
Bpr P By, P
for a small positive constant cy, then system (4.8)) admits a weak solutions which is global in time.
Moreover, denoting by X the Banach space where the components of the velocity field live, we have
the following control:
(", VuM)llz < Cin, I, Vu)|lx < Coll@?|l 4, +Cs,
p,T

for some suitable positive constants Cv, Co and Cs.

The functional framework X where we look for our solutions is a Lebesgue-type functional space
with specific weight-in-time (we refer the reader to chapter [9) Theorem and Theorem
for a complete description).



Chapter 5

Ericksen-Leslie system

In this chapter we present the results of the following manuscript:
F. De Anna, Global solvability of the inhomogeneous Ericksen-Leslie system with only bounded
density, submitted (2015)

5.1 Introduction and main results

In the 50s and 60s, J.L. Ericksen [41] and F. Leslie [69] developed the most widely accepted model
describing the dynamics of nematic liquid crystals. This is a material exhibiting a state of matter
between the ordinary isotropic liquids and the solids. Its main characteristic feature is that the
rod-like molecules have a local orientation, fact modelled mathematically through functions taking
values into the space of “directors” that is the unit sphere. Their time evolution is described by
an equation for unit-length vector fields that are transported and rotated by a velocity field. The
velocity of the centers of masses of the molecules obeys an incompressible Navier-Stokes system
with an additional stress tensor generated by the presence of the directors.

The equations are particularly complicated as they contain a large number of terms, so there
are few mathematical studies of the full systems (for more details see next section). Nevertheless
the main mathematical difficulties are still present in the following simplified model in the whole
space, a version of which was originally proposed by F. Lin in [74.(75]80]:

Op + div (pu) =0 R, x RN,

I (pu) + div(pu ® u) — vAu+ VII = —Adiv(Vd ® Vd) Ry x RV,

divu =0 R, x RV, (5.1)
Od+u - Vd —yAd = v|Vd|*d Ry x RN, '
d| =1 R, x RV,

(u, p; d)jt=0 = (uo; po, do) RY.

This is a strongly coupled system between the inhomonegenous and incompressible Navier-Stokes
equation and the transported heat flow of harmonic maps into sphere. Here

p = p(t,xz) € Ry denotes the density, u = u(t,z) € RY represents the velocity field,
IT = II(t,z) € R is the pressure and d = d(t,z) € SV ! is the director

all depending on the time variable t+ € R, and on the space variables z € RV, with N > 2.
The symbol Vd ® Vd denotes the N x N matrix whose (i, j)-th entry is given by 0;d - 0;d, for

o1



52 CHAPTER 5. ERICKSEN-LESLIE SYSTEM

1,7 =1,...,N. The positive constants v, A and ~ stand for the viscosity, the competition between
kinetic energy and potential energy and respectively the microscopic elastic relaxation time for the
molecular orientation field.

Let us note that the original Ericksen-Leslie as well as the simplification proposed by F. Lin
are for homogenous fluids. The inhomogeneous version we consider here is relevant particularly for
modelling a mixture of liquid crystals with different densities. Most importantly perhaps it also
allows to give an interpretation of defect patterns as discontinuities in the density and our main
contribution is to prove a well-posedness result that allows for the existence of these discontinuities,
since we deal with densities that are only bounded.

A presentation of the previous literature is provided in the next subsection, while the last
subsection of the introduction contains a non-technical exposition of the main results.

5.1.1 A short review of some results on the nematic liquid crystal theory

We present here a short (and of course incomplete) overview of the literature, referring the reader
to the recent review of F. Lin and C. Wang [82] for more details on current developments in the
hydrodynamics of nematic liquid crystals.

The well-posedness of the general Ericksen-Leslie equations was studied by Fanghua Lin and
Chun Liu in [79] where they proved the existence of weak and strong solutions under certain specific
restrictions. The results were further improved by Wu, Xu and Liu in [117].

The homogeneous version of system was introduced by Fanghua Lin (see [74}75,80]) as a
simplification (see the appendix in [77]) of the Ericksen-Leslie equations. The simplified system
is simpler than the original Ericksen-Leslie equations, yet it exhibits the main analytic challenges
of the original system.

The homogeneous case

In |77] F. Lin and C. Liu proposed the homogeneous version of the system (5.1)), in which they
replaced the most challenging term |Vd|?d with one given by f(d) = VF(d). Their motivation

was to simplify the nonlinear term |Vd|?d in the director equation, the term which encodes the
constraint d € S¥~1. This corresponds to a Ginzburg-Landau type of penalisation for the unit-
length constraint, by setting for instance F(d) = % where € is a positive small parameter.
They studied the wellposedness of the system, establishing the following basic energy law:

1d

5@ Q(IIUH2 +A|Vd|? + 2AF(d))da = — /Q(VHVUH2 +Ay[|Ad — f(d)]*)da.

Then, with a modified Galerkin method, they were able to prove the existence of a weak solution.
They also obtained uniqueness in the two dimensional case and, for large enough viscosity, also in
the three dimensional case. Furthermore they proved a stability result for the equilibria.

Later, in |78] F. Lin and C. Liu obtained a partial regularity result for the system, showing that a
suitable weak solution has the potentially singular set of one-dimensional Hausdorff measure zero
in space-time.

Afterwards, the more challenging case when one keeps the d|Vd|? term, and works with unit-length
vector fields d, was first considered in F. Lin, J. Lin and C. Wang in [76]. They assumed two-
dimensional domains, but allowed for the director to take values in 3D that is in S?. They proved
both interior and boundary regularity theorems under a smallness condition, which allowed to
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obtain the existence of global weak solutions on a bounded smooth domain. Such solutions were
shown to be smooth except possibly for a finite set of times.

More recently, in [83], F. Lin and C. Wang established the existence of a global in time weak
solution for the homogeneous version of , in the three dimensional setting. In here the initial
condition ug was taken to satisfy the natural assumptions, namely free divergence and in L?(£2, R3),
while the initial director field dy was assumed to be in H!(Q,R3). However, they made a special
restriction on dy by assuming that dy has a positive vertical component d3(z) > 0, for a.e z € Q.

In [81] F. Lin and C. Wang developed some uniqueness results. In the two dimensional case they
proved that uniqueness holds provided that u belongs to the classical energy space L{°L2 N L?H}

, the gradient of the pressure VII is in Lf/ ’LY3 and the director field d is in LPH! N L7H2.
In the three dimensional case they proved a similar result under stronger assumptions, namely
we LPL2NL2HINC([0,T), L), e LY2LY? and d € L2HL 0 C([0,T), WhN), where H! and

WLN denote the classical homogeneous Sobolev spaces on RV,

Recently, Hieber, Nesensohn, Priiss and Schade [55] proposed an alternative approach, namely to
consider the system as a quasilinear parabolic equation, proving the existence and uniqueness of
strong solutions on a maximal time interval. They also showed that the equilibria are normally
stable, i.e. for an initial data close to equilibria, there exists a global solution which converges
exponentially in time to an equilibrium. Moreover they proved the analytic regularity of their
solutions.

The inhomogeneous case

In [63], Jiang and Tan considered the system on a three dimensional bounded domain with
f(d) = VF(d) instead of |Vd|?d. They derived the global existence of weak solutions assuming
that the boundary is smooth enough, and a specific relation between the initial density and the
initial velocity holds, namely ug = 0 whenever pg = 0 and |ug|?/po € L*(£2).

In [118], Zhou, Fan and Nakamura established an existence and uniqueness result for the two
dimensional inhomogeneous system on a smooth bounded domain, for arbitrary initial velocity
ug and small Vdy in L? and initial density po- We emphasise that in here the initial density pg was
assumed to be sufficiently smooth, namely in W17 (Q), with r € (2, 00).

In |72], J. Li considered the system (5.1)) on a bounded domain €2 in two or three dimension, with
Dirichlet boundary conditions. Assuming regularity on the initial density, namely py € H(Q), Li
proved the existence of a unique global strong solution provided the data are small in the L2-setting.

In the compressible case results were obtained in [114], by D. Wang and Yu, and also [61] by
F. Jiang, S. Jiang and D. Wang.

Statement of the main results

At first, let us observe that system contains(formally imposing the molecular orientation field
to be constant) the incompressible inhomogeneous Navier-Stokes equations, thus we cannot expect
to obtain better results than those of this sub-system. We mention the paper of Huang, Paicu, and
Zhang |60] where the authors established the existence and uniqueness of solutions in the whole
space as well as the paper of Danchin and Zhang [30] where similar results are obtained in the
half-space setting. In this work we aim to extend their results to the liquid crystal framework.
We immediately observe that the presence of the additional equations, for the director field,
requires a significant update of the strategy used in the inhomogeneous Navier-Stokes setting.
Indeed now we consider a coupled system between the inhomogeneous Navier-Stokes equation
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and the director field equation. The directory field equation is not only a classical parabolic-type
equation (which could be dealt with as in [60] and [30]), but it is a transported heat flow of harmonic
maps into the sphere, namely d solves a parabolic-type equation and is constrained to belong to
SN=1. This restriction generates a challenging nonlinear term, namely |Vd|?d, which is known to
be capable of generating finite-time singularities (for the equation where u = 0).

For instance, although it is natural to assume that v and Vd belong to the same functional space
( because of their scaling, see Renrmwkbelow)7 the presence of such a nonlinear term will require
additional control on Vd. Moreover this term will also generate difficulties when we will construct
approximate solutions (see for instance Remark . Another significant challenge, specific to the
system, and which is not present in the inhomogeneous Navier-Stokes equation, will appear in the
proof of the uniqueness result. Here we will use a non-standard Lagrangian formulation, in which
we will formally take the d and Vd as independent unknowns, see the beginning of Section [5.6

There is no loss of generality in taking the constant viscosity v = 1 in . Similarily we
impose the constants A and « to be 1, for the convenience of the reader. Thanks to the properties
of the transport equation, for smooth enough u we have that if pg > 0 then this will hold for all
times and thus we can define a := 1/p — 1 and reformulate the system as

Opa + div (au) =0 R, x RV,
dutu-Vu+ (1+a){VII- Au} = —(1+ a)div(Vd © Vd) Ry x RY,

divu =0 R, x RN, (5.2)
Od+u-Vd— Ad = |Vd*d R, x RN, '
d| =1 R, x RV,

(u, @, d)1=o = (uo, ao, do) RY,

\

Remark 5.1.1. The liquid crystal system (5.2) has a scaling property, like the classical Navier-
Stokes. Namely, if (a, u, d, VII) solves (5.2|) with initial data (ag, ug, do), then for every positive
A, the functions

(a, u, d, VII)y := (a(\%t, Ax), Au(N\2t, Ax), d(N%t, Az), N2VII(A\%t, Ax))

also provide a solution but with initial data (ap(Ax), Aug(Ax), do(Ax)).

It is thus natural to consider the initial data in a Banach space which has a norm invariant
under the previous scaling. Moreover, we note that Vdy has the same scaling as ug, thus it is natural
to take them in the same functional space. An example of scaling-invariant space is (ag, wo, Vdy) €

L x B,],YT/p_l X B;Y,(p_l, where B;)Y,{p_l stands for the homogeneous Besov space (see the next section
for more details and for the definition of Besov spaces).

We are going to consider an initial data of this type and we note that the case of bounded density
allows discontinuities along an interface. This is important from a physical point of view as it can
describe a mizture of liquid crystal materials with different densities and it is also relevant to defect
patterns, when interpreting defects as discontinuities in density.

In this work we will consider initial data of the following type:

N

L1
ag € L, (ug, Vdo) € Bf,  with do:RY =S¥~ and divug =0, (5.3)

where Bg /p ~1is the critical homogeneous Besov space, with indexes 1 < r < ocoand 1 < p < N.
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From now on we suppose that our initial data verifies the following smallness condition:

1= llaol e + [luoll 5y +[[Vdo| x -, < co, (5.4)
B B

p,r p,r

where ¢g is a positive constant, small enough.

Remark 5.1.2. We will be be working with weak solutions, as these are the only ones compatible
with the initial density being only L™°.

However, let us note that our weak solutions are constructed in critical scaling invariant spaces
which is the classical framework for strong solutions for classical Navier-Stokes system.

In our situation the smallness conditions on the initial data are natural as one can check in the
papers ([26], [60] and [100]), concerning the inhomogeneous Navier-Stokes equations. Indeed this
case is unlike the Leray solutions for the homogeneous Navier-Stokes system in the 2D or 3D situ-
ation where no smallness conditions is required on the weak solution but the solution is constructed
in the L2 setting which is the space of the conserved energy.

Our main results (Theorem Theorem Theorem and Theorem [5.2.7]) can be suma-

rized in the following statement:

Theorem 5.1.3. Let us assume that the initial data (ag, ug, Vdp) fulfil the smallness condition
(5.4), with 1 < p < N and 1 < r < oo, then system (5.2) admits weak solutions. If moreover we
assume an extra tiny regularity on (ug, Vdy), namely

N
(uo, Vo) € BYr (5.5)

then such solutions are unique.

Let us now briefly describe the structure of this work. In the next section we state the tech-
nical versions of the previously mentioned result. In section [5.3] we briefly recall some properties
and characterizations of Besov spaces, and prove in detail some technical Lemmas and Theorems

concerning the regularizing effects of the heat kernel.
In the section we prove the existence of solutions for system ([5.2) with initial data more

regular than in . Such results will play an important role in the proofs of our main results,
both for the existence part (with regularized initial data), and the uniqueness part (allowing to
reformulate in Lagrangian coordinates). Section is devoted to the proof of the existence
part, split into two cases, namely Theorem and Theorem Regularizing the initial data
we construct a sequence of approximate solutions and we pass to the limit thanks to some uniform
estimates.

In section [5.6] and section [5.7] we present the uniqueness results. We impose a little bit more
regularity on the initial data, which allows us to obtain the Lagrangian coordinates. Thus, we
are able to prove the uniqueness of the solution for system on a small initial time-interval.
Then we conclude by a bootstrap method, obtaining the uniqueness in two different cases, namely
Theorem [5.2.6] and [5.2.7] Finally in section [5.8] we prove, for the convenience of the reader, some
technical results which are useful in the main proofs.

5.2 Main results

As in the case of the inhomogeneous Navier-Stokes equation, we can not assume u with a better
regularity than L%Bg ,(p + (see [7] for a complete explanation of such space). Hence, the product
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aAuy, between L2° and BZJ,\,[ Zp ~! assumes a distributional sense only if p < N, where uy, is the free
solution of the heat equation with ug as initial datum. This explains the restriction for p. If the
index r is supposed to be equal to 1 then we expect to obtain a velocity field to be in L Lip,
(where L}Lip, stands for L'(Ry, Lip(RY))) which is very useful to solve the transport equation
on the density by Lagrangian coordinates. Our condition r > 1 is general enough to include the
case of non-Lipschitz velocity field.

Before introducing our main Theorems, let us explain the meaning of weak solution for system

62

Definition 5.2.1. (a, u, d) is a weak solution of (5.2)) if |d| =1 almost everywhere and

> for any test function ¢ € C°(Ry x RN) the following equalities are well-defined and fulfilled:

/ a(t,z) (Orp(t,x) + ult,z) - Vo(t, z)) dtdx + / ap(x)(0,2)dx =0
Ry xRN

RN
/ u- Ve =0.
RN

> for any vector valued function ® = (®q,...,®y) € CX(Ry x RY) the following identities are
well-defined and satisfied:

/ u- 0P — {u-vu+(1+a)[VH—Au+div{Vd@w}}}~<I>+/ up - ®(0,-) =0,
R4 xRN RN

/ d-&tq)—{u-Vd—Ad—]Vd|2d}-<1>+/ do - ©(0,-) = 0.
Ry xRN RN

The functional framework: the smooth case

The maximal regularity Theorem (see Theorem [5.3.2)) and the characterization of the homogeneous
Besov spaces (see Theorem [5.3.11)) play an important role for the study of (5.2), since we can
reformulate the second and the third equations of ([5.2)) in the following integral form:

t
u(t) = ePug + / e(t*S)A{ —u-Vu— (1+a)VIL+ aAu — (1 + a)div(Vd ® Vd) }(s)ds,
0
¢
d(t) = e®dy + / e(t_s)A{ —u-Vd+ |Vd|*d}(s)ds.
0

It is reasonable to suppose the solution having the same regularity as for the linear heat equation
given by the heat kernel convoluted with the initial data. Moreover, due to the low regularity of
the initial density, which is supposed to be a general bounded function, the transport equation
on the density forces us to suppose a only bounded. Finally, the classical maximal regularizing
effect for heat kernel (see Theorem suggests us to look for a solution in a LiL% setting.
Now in the simpler case where u just solves the heat equation with initial data ug, having Aw in
L7 LY is equivalent to ug € Bé\f /971 on the condition N /qg—1=2—2/r (see Corollary
From the immersion B]]X /p ey Bé\f / 1 for every q > p, we understand that this strategy requires
p < Nr/(3r — 2). Furthermore, since the velocity field v may be seen as solution of the Stokes

System
Ou — Au+ VII = —u - Vu + a(Au — VII) — div{Vd © Vd}, divu =0,
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it turns out that

1B, V2u, VID| 179 S HUOIIBg_l + [[(w- Vu, aAu, aVIL (14 a)div{Vd © Vd})| 1;14,
q,r

where we have applied the characterization of the homogeneous Besov Space (Corollary
and the Maximal-Regularity Theorem (Theorem . Here the first relation we expect between
the regularities of u and d, namely u - Vu = div(u ® u), Au and div{Vd ® Vd} to be in the same
L7 LY space. Thus, according to the previous remark, it is natural to look for a solution such that
u and Vd fulfill the same functional properties and this explains why we suppose Vdy and wug
belonging to the same critical Besov space Bo/P ™.

ging p jXs
According to the above heuristics, imposing ¢ = Nr/(3r — 2), we aim to find a solution in the
following space: a, d € LS, and (u, Vd, VII) € X, 1, where

3Nr

SN Nr
Xy = { (u, Vd,VII) with Vde Lg’TLgT*Q’ (u, Vd) € L%TL:;fl’
~ B Nr
V(u, Vd) € I¥FLT N L{LEY, (V2w VPd, VIT) € LypLi " ).

We also define the following norm

||(u, Cdv CII)H:{T,T = || ;dH SN ” v (Uv Cd)” ST H v (Ua Cd)” Nr
L3rL3 = Lt L2000
L2rL;t Ly L3m2

and impose X, = X, . Thus, our first result reads as follows:
Theorem 5.2.2. Let 1 <r <2 andp € (1, Nr/(3r —2)]. Suppose that the initial data (ap, uo, do)
are determined by (5.3). There exists a positive constant ¢y such that, if

1= llaol e + lluoll 5y + [[Vdol| x, < co,
By By
is fulfilled, then there exists a global weak solution (a, u, d, VII) of (5.2), such that (u, Vd, VII) €
X, (u, Vd) € LFLY and a, d € LgS,. Furthermore ||a||ze < ||aol|lre and the following inequality
18 satisfied:

[(u, Vd, VID)|x, + [|(u; V)| 2100 < 1- (5.6)

Remark 5.2.3. In this first theorem we have supposed the constriction 1 < r < 2. To explain
this condition, we anticipate that the proof will be based on an iterate scheme which includes the
following one:

Od" — Ad" = |Vd " Pdr Tt — T Ve

The condition (u", Vd")y C X, is not enough to easily control the LS -norm of (d")n (moreover
the structure of the iterate scheme doesn’t yields d™ =1 almost everywhere). Thus, we have added
the condition (u™, Vd™)y C LZL which requires (ug, Vdy) € BO_O%2 We conjecture that such
restriction is not necessary, however we have imposed it to simplify the proof for the reader. Indeed
the case r > 2 is treated in our second result, Theorem |5.2.4)

The functional framework: the general case

As we have already pointed out, the choice of a L} LI functional setting requires the condition
p < Nr/(3r —2). The more general case 1 < p < N can be handled by the addiction of a



58 CHAPTER 5. ERICKSEN-LESLIE SYSTEM

weight in time. Indeed the simpler case where u just solves the heat equation with initial data wug,

5N/p1—1

having ug € B,/ for some p; € [p, N) and 7 € [r, 0] is equivalent to impose t1/2B=N/p1) Ay in

L™ (R4, dt/t). Hence, with similar heuristics proposed in the first case, adding such weights in time,
we aim to find a solution in the following functional space: a, d € LS and (u, Vd, VII) € 9,7,
where 9,7 =, 7(p1, p2, p3) is the set of (u, Vd, VII) such that

{ﬂl (u, Vd) € LIP3, t72(u, Vd) € L{°LPS,  t¥Vd € LI, t4Vd € LPL3,
r3
'V (u, Vd) € L LR, %V (u, Vd) € LLP?2, %3V (u, Vd) € L L2 ,
pP3
71V (u, Vd) € LPL2 ,  t*1(V3u, V3d, VII) € L7 LR, t°2(V2u, V3d, VII) € LT LR }

where we have fixed max{p, Nr/(2r — 1)} < p1 < N, Nr/(r —1) < ps < oo and ps such that
1/p1 = 1/p2 + 1/ps. Furthermore, the weight in time exponents are defined by

a1::%(3_%)_%%7 51:%(2_%)_%3 71 :%(1_%)_2%17 72::%< _%)7
042325(3—171)—;7 /823:%52—1)2]\7))7 . ’735:%?—%%;—27” ’74325(1—371)7
53525 3/ T 2 543:5 s )

We also denote by [|(u, d, VII)|ly, , the following norm:

79, V)32 + 1929 (1 VD gz + 9 (w, V)|, s+

T
F I, VA gy 10 (1, T g0 + 102, V)0 + 1679l 3+

T x

V] oy + 167 (0, VID| o+ [1£92(V20, V3, VID)| 1 oo
T -z x x

and impose ), := 9, . Hence our second and more general result concerning the existence of a
solution reads as follows:

Theorem 5.2.4. Let 1 < r < 0o and p € (1, N). Suppose that the initial data (ag, ug, dy) are
determined by (5.3). There exists a positive constant ¢y such that, if

1 = |laollLee + lluoll ~_, +[[Vdol| ~_, < co,
B.P B

p,T p,7T
is fulfilled, then there exists a global weak-solution (a, u, d) of (5.2)), such that (a, d) € Lg%, and
(u, Vd, VII) belongs to Q. Furthermore |la||ree < |laol|ree, [d(t,x)] = 1 for almost every (t,x) €
Ry x RN and the following inequality is satisfied:

[(u, Vd, VII)|lg, < 7.

Uniqueness

In order to recover the uniqueness of the constructed global weak-solutions, we need to add an
extra regularity on the initial data for the velocity field and the director field. Namely we add to

(5.3) the following hypotheses
. %—H—a
(UO, Vdo) € Bpﬂa ,
for a sufficient small positive constant €. With this extra-regularity, we are able to obtain the
velocity field u to be in L}, Lip,. This allows us to reformulate system (5.1) in Lagrangian

t,loc
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coordinates. Such coordinates simplify in some way our problem, granting the density a to be
constant, since it is governed by a transport equation. Therefore, we proceed in the same line
of [60], proving the uniqueness of the constructed solutions for a initial time interval. Thus we
conclude by a bootstrap method in order to recover the global uniqueness.

First, let us introduce the functional frameworks. Fixing the value of € in (0, 1) and assuming the
constriction r < 2/(2 — €), we define the following space:

__3Nr 2
X = {(u, VA, VI) with VdeLI"L;" 7", V(u, Vd) € L L,
__Nr __Nr
V(u, Vd) € LILE Y, (Vu, V3d, VII) € LILY 972 L.

Remark 5.2.5. Let us immediately remark that for r < 2/(2 —¢) we get Nr/((3 —e)r —2) > N.
Thus, it will be possible to apply the Sobolev inequality in order to get the velocity field to be Lipschitz
i space, which plays an important role, as we have already mentioned.

The first uniqueness result of this article reads as follows:

Theorem 5.2.6. Let ¢ be a positive constant in (0,1). Suppose that the hypotheses of Theorem
are satisfied with r < 2/(2—¢) and let (a, u, d) be the solution generated. Let us assume that

(uo, Vdy) also belongs to B]]\\[f,/ﬁ_lﬁ, then we have (u, Vd, VII) € X2 with

1w, Vd, VI [xz S [[(uo, Vo)l , 5 1. + [[Vdo|

N _ 1,2,
. 1+35
p,r Epv’r

and the uniqueness holds in this functional framework.

As we have already exposed, the results of Theorem [5.2.2] and [5.2.6] require the constriction 1 <
p < Nr/(3r —2). Here, the existence and the uniqueness hold in a setting of type L} L%. However,
to recover the uniqueness for the general case 1 < p < N, we need again to add a weight in time.
More precisely, fixing ¢ € (N, N/(1 —¢)), g3 > Nr/((1 — ¢)r — 1) and imposing g2 such that
1/q1 = 1/q2 + 1/q3, we define the space:

2)1&;,T = gji,T(qlv qz, Q3) = {(U, Vd, VH) with t,ﬁ (U, Vd) € L%TL?,
2 (u, Vd) € LLS, t5Vd e L7L3, tiVd e LEL3, P1V(u, Vd) € L7 L%,
95V (u, Vd) € LPL,  t°1(V2u, V3d, VII) € L¥ LY,  °5(V?u, V3d, VII) € Lngl},

where the exponents of the weights in time are defined by

wimj-E-c)-d F=ie-E-g-f w=hi-E-o-4
a%z?(?)*%*€)*;i SZ?(2*%*€>, ’}/525( 7‘]7578)’
ii=a(l-gg =) -5 Mi=a(l-5—9)

Therefore, our main uniqueness result reads as follows:

Theorem 5.2.7. Let us assume that the hypotheses of Theorem |5.2.4) are satisfied and suppose
also that (ug, Vdy) € BIJDYT/ZFHE for a positive € bounded by min{1/r, 1 —1/r, N/p —1}. Then the
solution (a, u, d) determined by Theorem fulfills also (u, Vd, VII) € YS and we have

[ (u, Vd, VID)[lps < |[(uo, Vdo)

N _ .
) 1+4e

BP”"



60 CHAPTER 5. ERICKSEN-LESLIE SYSTEM

Moreover, such solution is unique in this functional framework.

Remark 5.2.8. Let us observe that if (a, u, d, VII) is a weak solution of (5.2)), then, w := (|d|> —
1)/2 is a weak solution of the following heat equation with a linear perturbation and with null initial
datum:

Ow+u-Vw+ |Vd*w - Aw=0 R, xRV,
w =20 RV,

Since the unique solution of such system is w = 0, then the condition |d(t,z)| = 1 almost everywhere,
is already determined by the fourth equation of (5.2). Hence, from here on, (5.2)) is going to be
analyzed without |d| = 1 which is already given by the remaining equations of the system. Such

feature is not preserved by the approximate systems (5.13) and (5.14) of (5.2), hence in the third

section we cannot utilize |d™(t,z)| = 1 almost everywhere.

5.3 Preliminaries

This section is devoted to the study of several regularizing effects for the heat kernel, which will
be useful for the proof of the main theorems. At first step let us recall the well-known Hardy-
Littlewood-Sobolev inequality (see [7]. Theorem 1.7).

Theorem 5.3.1 (Hardy-Littlewood-Sobolev inequality). Let f belongs to L, with 1 < p < oo,
a €]0, N[ and suppose r €]0, 00| satisfies

ooy !
p N r
Then
|- 7%« felLl,
and there exists a positive constant C' such that
-7 £l < Clflle

A direct consequence is the following corollary (see [66], Theorem 2.4)

Corollary 5.3.1.1. Let f belongs to L%, with 1 < p < N and let (v/—A)~! be the Riesz potential,

defined by
1

(VB) = P ().
Then (vV—A)"1 is a bounded operator from L% to LE" with p* = pN/(N — p)

Let us now enunciate the well-known LPL9-Maximal Regularity Theorem, whose proof is available
in [66].

Theorem 5.3.2 (Maximal L} L% regularity for the heat kernel). Let T' € (0,00], 1 < p,q < oo and
f € LP,T;LL). Let the operator A be defined by

t
AL, ) = /0 Aelt=92 £ (5 )ds.

Then A is a bounded operator from LP(0,T; L) to LP(0,T; L%).
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Lemma 5.3.3. Let T € (0,00], 1 < r1, 10 < 00, q1 € [1,00] and q2 € [q1, 00|, such that

N /1 1 1

f(f - f) <. (5.7)
2

Let the operator B be defined by

t
:/ Vell=9A 1 (s, )ds.
0

Then, we have that B is a bounded operator from L™ (0,T; LE) with values to L™ (0,T; LE), if the
following equality is fulfilled:

qr Q2
Proof. At first let us observe that, if K denotes the heat kernel, than for all 1 < A\ < oo we have

=_ 4+ —. (5.8)

1 N(l 1>_1 1
2 T2

T1 2

IVEK(, )l = = . 7 (L) (5.9)

ti >\’+2

Observe that, for every t € R,

t t t
| [ 9et 8 (s)ds < [ IVK(E =55 1G5 s < [ IVE (= 5)]g0 £6) s
0 0 0

with 1/G+ 1/q1 = 1/g2 + 1. Thus, by (5.9), we obtain

N ( 11 )7 1
IBf@)llzee = [Tory(s)lsl *\™ =) 2w Lo y(s)l1F(9)ll o] ()
and by virtue of Theorem [5.3.1] we conclude the proof of Lemma [5.3.3 O
Moreover we have also

Lemma 5.3.4. B is a bounded operator from L"(0,T;L%) to L™(0,T;LE"), for any T > 0, with
1<p< N and p* =pN/(N —p).

Proof. 1t is a direct consequence of Theorem [5.3.2] and Corollary [5.3.1.1] observing that

/Ae” VER)LRf(s)ds

where R is the Riesz transform Rf = \/% f=F *1(2"2—‘ f), which is a bounded operator from LZ
to Li for any ¢ € (1, 00). O

Lemma 5.3.5. Let T € (0,00], 1 < r1, 70 < 00, q1 € [1,00]| and g2 € [q1, 00|, such that

N/1 o1
(— - —) <1 (5.10)
2\q1 @

Let f € LIPLY and let the operator C be defined by

Cf(t,-) = /Ot e(t*S)Af(s, )ds,
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Then, C is a bounded operator from L™ (0,T; L) with values to L™ (0,T; L¥), where

1+N(1 1)—1+1 (5.11)

St = ) )
Proof. The proof is basically equivalent to the previous one, observing that

1
1K)y = = 1K1 ) |y (5.12)
t2z N

for every 1 < A < o0. O

The next Theorem is a variation of Theorem for functions which belong to some LY L-space,
up to a weight in time. Its proof has already been presented in [60] by Lemma 3.1.

Theorem 5.3.6. Let T €]0,¢], 1 < 7,q < o0 and o € (0,1 — 1/7). Let the operator A be
defined as in Theorem|5.3.9. Suppose that t* f(t) belongs to L™(0,T; LZ). Then t*Af(t) belongs to
L7(0,T; L) and there exists C > 0 such that

1E*Af Ol ro,r02) < ClE*F Ol r0,7;09)-

The next two Lemmas are a particular case of Lemma, and Lemma therefore the proof
is postponed to section [5.8

Lemma 5.3.7. Let the operator C be defined as in Lemma . Consider T € (0,00], 1 < 7 < 00,
and moreover suppose that q, ¢ satisfy N/2 < q< N, N < §<oo. Let o, v and 7 be defined by

1 N 1
oz::f(?)——)—%, v =

N 1 1 N
2 q T

(1—g)— and *‘y:zi(l—g).

| =

If t*f(t) belongs to L7(0,T;L%) then t'Cf(t) belongs to L7(0,T;LL). Furthermore there exists a
constant C = C(q,q,7) > 0 such that

1€ rorerty < OO o710

Moreover, if 7 > 2 and N7/(2F — 2) < q, then t7Cf(t) belongs to L%’Lg and there exists a positive
constant C = C(q, q,7) such that

ICF ) oo ra < CE"F Bl g 22

Lemma 5.3.8. Let the operators B be defined as in Lemma. Consider T € (0,00], 1 < 7 < o0,
and moreover suppose that g, q satisfy N/2 < q < N and ¢ < q such that 1/q—1/q <1/N. Let o
be defined as in Lemma[5.3.7 and B and B be defined by

| N 1
B::§(2—E) and ﬁ:zi(l—

==

N
q

)_

If t* f(t) belongs to L.LE then t°Bf(t) belongs to Ll}Lg and there exists a positive constant C' =
C(q,q,7) such that

17 BF @O 1z pa < Ol (O g -

Moreover, if T > 2, N7/(2Fr —2) < q and § < Nr then tBBf(t) belongs to LE}OLg and there exists a
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positive constant C = C(q,q,T) such that
IE7BF ) 1o < ClS ()l s ra-

For the main properties of homogeneous Besov Spaces we refer to |7]. However, let us briefly recall
the definition and two important results which characterize such spaces in relation to the heat
kernel.

Definition 5.3.9. Let x be a smooth nonincreasing radial function which has support in B(0,4/3)
and such that x =1 on B(0,1). Imposing ¢,4(§) := x(£2797Y) — x(£279) for every q € Z, we define
the homogeneous Lettlewood-Paley dyadic block A, by

Agu = FH(pFu),
where u is a temperate distribution and F is the Fourier transform on RN .

The homogeneous Besov Space is defined as follows:

Definition 5.3.10. For any s € R and (p,r) € [1,<]?, let us define Bfw as the set of tempered
distribution f such that

15y, = 1290 Ag fll 2 i 2y
and for all smooth compactly supported function 6 on RN we have

lim O(AD)f =0 in L®(RY).
A—400
Theorem 5.3.11 (Characterization of Homogeneous Besov Spaces). Let s be a negative real number
and (p,7) € [1,00]%. u belongs to By . if and only if e'®u belongs to LY for almost every t € R
and it
£75 [|etul|y € L7 (Ras ).

Moreover, there exists a positive constant C' such that

1 N
o llulls;, < HHt 2¢! U’

< Cllull ps -
ity 0,

An immediate consequence is the following Corollary:

._2
Corollary 5.3.11.1. Let p € [1,00] and r € [1,00). u belongs to By if and only if e"u € L} L%.
Moreover, there exists a positive constant C' such that

1
o lull 2 < e ul <Cllull 2 -
p,r

P
LTI
p,T

Theorem 5.3.12. Let 1 < p; < pys < oo and 1 <7y <ry9 < oo. Then for any real number s, the

—N(1/p1—1/p2)

space B; is continuously embedded in By, ry .

1,71

5.4 Smooth initial data

In order to prove Theorem [5.2.2] and Theorem [5.2.4] in this section we are going to establish the
global existence of a solution for system (|5.2)), considering more regular initial data. More precisely
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we are going to consider an initial Lipschitz density and moreover we suppose the initial velocity
and the initial director field with a little bit more regularity with respect to the one of Theorem

[.29 and Theorem [5.2.4

Proposition 5.4.1. Lete € (0, 1), r € (1,2/(2—¢)], p€ (1, Nr/(3r—2)]. Suppose that the initial
condition is fulfilled and moreover Vay € LY and (ug, Vdoy) € Bgr/p_lﬂ. If the smallness
condition holds, then admits a global weak-solution (a, u, d) such that (a, d) € L5, Va
belongs to LY. L, (u, Vd, VII) belongs to X, N XS and (u, Vd) belongs to L?L°, with

tloc™x

1(u, Vd, VID [z, + [[(u, VA)|[ 2000 S 7
I(u, Vd, VIl < [I(uo, Vdo)||  x_1p. + IVdol x5,
B,P B.P 3

p,r D,T

Proof. The mainly idea is to proceed by an iterate scheme with a similar approach as the one
proposed by Danchin and Mucha in [30]. We solve a sequence of linear systems which comes
from and we prove that their solutions converge to the one we are looking for. We set
(a®, u°, vd®, VII?) = (0,0,0,0) and we solve inductively the following two systems:

oa™ +u"t-Va" =0 Ry xRV,
0 RN (5.13)
Alp=g = 0 )
opd™ — Ad" = |Vd 1 2dn—t — . vart Ry x RY,
O™ +u"t -V — Au" + VII" = F? R, x RN, (5.14)
divu™ =0 R, x RN, '
(un7dn)|t=0 = (UOJ dO) RNv
where F" is defined by:
F" = (1+ a")div(Vd" © Vd") + o™ (Au""! — VII" ). (5.15)

The global existence and uniqueness of a solution to ([5.13)) is standard, since u" ! belongs to
Lllocﬁip and so it is possible to construct the Lagrangian coordinates. Furthermore,

la™ Iz, < llaollzz= (5.16)

and .
IVa" ()l < Vol exp { [ 190" 5) 155} (5.17)

0

are fulfilled for every natural number n. For system (5.14)) we apply Proposition We have
already pointed out in Remark [5.2.8| that ([5.14) does not yield |d"| = 1 almost everywhere, while

such constriction is given by the fourth equation of (5.2]).

Let us prove by induction that the following inequalities are satisfied for every n € N:

J0* s, < (1+ e, (5.18)

[(u®, Vd*, VII") ||z, + [[(u", Vd*)[[ 2100 S 0, (5.19)

where C' is a positive constant. We consider initially system (5.14) and we want to estimate d".
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By the mild formulation for the heat equation, we obtain that

d™(t) = e®dy + /Ot e R VA v/ (e A v/ L L L T TS P (5.20)
Hence, we deduce

t
1" ()| Lee < [ldo]l oo +/O " ()l VA" (3) g + IVA" ™ () [ ge | d™ () | gedls
<A [0 M 2 VA" 2 ge + IV ()70 1" (5) [ 50 ds (5.21)

t
<1iCn+ /O IVd"(5) |2 [[d"(5) | e ds.

Applying the Gronwall inequality and by the induction hypotheses, we obtain ([5.18). We want now
to estimate Vd™ and u". From ([5.20) we get

t
Vd'(t) = eAVdy + / et=IAT Lyt vdn Tt 4 (VdT2d ) (s)ds (5.22)
0

First, let us estimate Vd" in L?TLiNT/(3T_2). By Corollary [5.3.11.1] and Lemma |5.3.3) with r; =
6r/5, ro = 3r, 1 = 3Nr/(6r —5) and g2 = 3Nr/(3r — 2) which verify (5.7) and (5.8), namely

N(l 1) 1 1<1 q 1+N(1 1) 5+1 1 1+1 (5.23)
(- )==—-—<=- and —H+"—"(——"N=—4+-—-—=—+— )
2\ 2 2r 2 o 2 g 6r 2 2r 2 ry
we get

N ||Vd Y| sy S 1) (5.24)

mn i < n—1 n—1
Y e (e [

Moreover, applying Corollary [5.3.11.1] Lemma Lemma Lemma and Theorem
we obtain

IVd"|| 210 + [[VA"| Nr Tt ||V2d"H Nr_ + ||V2d”H Nr_ + ||V3d"\| Neo S
Lth 2 r—1 2 2r—1
L, L?L, LT LTL

20— rp3r=2
T
< n—1 2 mn—1 n—1 n—1
< HVdoHBﬁerHu HL%TL;E IV=d HL?,LE% +[[Vu HL?%%HW HL%,,L;%JF (5.25)
2 mn—1 n n n—1(2 n
IV V0 W IV g IV

We have used Lemma with r; = r, 7o = 2r (respectively ro = 2), ¢ = Nr/(3r — 2) and
g2 = Nr/(r — 1) (respectively go = 00), which fulfill the conditions (5.10) and (5.11]), namely

N 1 1 1 N 1 1 3 1 .
5(a—g)zl—§<1 (resp. 5(;—5)25—;<181ncer<2),
1 N, 1 1 1 1 N 1 1 3 1

Moreover, (N7/(3r —2))* = Nr/(2(r — 1)) for Lemma and the constants of Lemma are
determined by r1 = r, g1 = Nr/(3r—2), ry = 2r and g2 = Nr/(2r — 1) which satisfy the conditions
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(5.7) and (5.8)), that is

N, 1 1

TE-0)-

@ g2
The hypotheses for n — 1 allows us to absorb all the terms on the right-hand side of
with index n by the left-hand side (for  small enough). Hence, is true at least for the terms
related to d. Now, let us estimate the remaining terms. By the Mild formulation for the Stokes
equation, we get

1+N( 1 _1+1 1 1+1
2 @’ r 2 2r 2y

1
2r

| =

t
u(t) = ePug + / e(t*S)A]P’{ — " VU (s) + F™(s) }ds (5.26)
0

where P is the well known Leray projector. Moreover, applying div to the second equation of ,
we get —AI" = {—u""! . Vu" + F"}, which yields

VIl ”:RR-{— “—1-vu"+F"} (5.27)
where R is the Riesz transform (see Lemma . Since P and R are bounded operators from L
to LP, for every 1 < p < oo, applying Corollary m 5.3.11.1] Lemma[5.3.3] Lemma [5.3.4] Lemma [5.3.5
(with the constants r1, 2, ¢1 and ¢y as in ) and Theorem we deduce that

IVl g ANV e g+ I, VI,
’ bk o (5.28)
HUOH Ay [l 1H e [V v HE e <?7HW"H e F ).
p{’v‘ L%TL;_l L%TL:?T_l LT L:):ST 27" 1

As in the previous estimates, the term of index n in the right-hand side can be absorbed by the
left-hand side, obtaining finally (5.19)).

Now, let us observe that HVd"H AN < HVdoH Nz, for every n € N. Indeed, by induction
TL —e)r—

p’r

and recalling the Mild formulatlon of d" , we get

IVl sy SIVdoll i + 1" V)
e)yr—2 p B3

Nr HVd”*1 I
L3rL3-

3Nr
L%’I‘L;_l L§TLI(375)7‘72

S Vol x 1y

3
pr

where we have used Corollary |5.3.11.1}and Lemma with r; = 6r/5, 1"2 = 3r, @1 =3Nr/((6—
e)r —5) and g2 = 3N7/((3 — &)r — 2) which verify (5.7) and (5.8), as in . Thus, in the same

line of (5.25) we get

V2dn + || V2d" S hverc < ||Vd +
| HL?%EL;;O | HLerf*N I I . L |Vdol| er Lte
+ w7 n || V2| _F Ve 1|| || Vd | Ny +
2 7”*1 2TL9527 (2 LQTLT71
H ;2dn 1” ” ;dnH NT HdnHL,‘?" H Vd"™ 1”2 3Nr ” ;dnH 3Nr__ .
(2 5) r—T1 »T TL B—e)r—2 LgTLz(B—E)T—Q

Here, we have used Theorem and Lemma withry =7, 1 = Nr/((3 —¢)r —2), ro =2r
(respectively 1"2 =2/(2—¢)) and g2 = Nr/((2 —e)r — 1) (respectively g2 = 00), which satisfy the
conditions and ( ., namely

N, 1 1 1 1 1

5

) < ( N(l 1) 3—¢ 1<1‘ < 2
— Y — ) = - — — — resp. —(— — —) = - — — simce r
o @ 2 22 P\ T 2 r 2 2—¢

);
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1+N(1 1) 1+1 1+1( 1+N(1 1) 1+2—5 1 1)
— ——— ) ==+ —= — (resp. —+ —(———) == -+ —
o2 @ 2 2r () o2 @ 2 2 T2
Furthermore, in the same line of ([5.28]), we get
IIVU"H ne AV 2+ [[(VAS, VI e S
o LFF Lo L
-1
<l PR B L
+77|!V(U”,Vd” I Hl| (Ve VITY e
L(2 6)7‘ 1 L{LBES—E)T—Q
Summarizing the previous consideration, we get by induction
[(u", Vd", VII") [z < | (uo, Vdo)l! N ot HVdoH?’ Xoarge T eN. (5.29)

p’r

At last, arguing as in the proof of (5.29 -, we get also the followmg mequahty

Hw"n i ave + [V, VA e ve (VP VIT)|
L 3r—2 L275L2 4 eLSr 2

‘ (5.30)
< N (uo, Vdo)HBN g S0+ [[(uo, Vdo)|| | -

b, p T
Here, we need Lemma with r1 = 4r/(4 —¢), 1o = 4r/(2 —¢), @ = Nr/(3r —2) and ¢ =
Nr/(r — 1), which fulfill the conditions (5.10]) and (5.11]), namely

N(l 1) 1 1<1 q 1+N(1 1) 4—€+1 1 1+2—6 1+1
_—— — = _—— an _— _—— — = _—— = = —_—
2'¢1 @ 2r mno2'¢ @ 4r 2r 4r Ty’
We need also Lemma with r; = 4r/( e), q1 = Nr/(3r —2), 79 = 4r/(2 —¢) and ¢2 =
Nr/(2r — 1), which satlsfy the conditions and (.8),

N 1 1

3G -2 -

q1 Qg2
Now we claim that, for every T' > 0, d" is a Cauchy sequence in LFL°, (u", Vd", VII,)y is
a Cauchy sequence in X, r and (u", Vd")y is a Cauchy sequence in L2L%°. Denoting du™ :=
urtl —yn, Sam = o™t — a, §d” = dvH — 47, STI7 =TI — 117, we define

1 N, 1 1 4—¢c 1 1 1 2—-¢ 1 1

< d = )= S o= — 4=
an +2(q1 qg) & T2y a2t Taty

1
2r

N | =

SU™(T) := [10d" || Lo + [[(6u”, VEd™ VOII")||x, 1 + [[(6u”, VEd™)|| 2 o

We want to prove that ) dU™(T) is finite. First, let us consider da", which is solution of the
following system

Oba™ +u" - Véa" = —su""1Va" Ry x RV,
5 —0 RN (5.31)
alt 0 .
Using standard estimates for the transport equation, we obtain that
! 1 1
[6a™ ()| Lee S/ [6u" " (s)llze= [Va"™ (s)l|zge < [[0u™ || L2 (0,8:250) I Vaol| e
0 (5.32)

t
cexp { / |Vu"(s) | =ds} < C(T)SU™ ()] Vao] ze,
0
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for every t € (0,T), where C(T) := Tz exp {T%(||(u0,vd0)||BN/p—l+s + HVdOHi;N/p_HE)}. Consid-
p,T DT

ering dd"™ we observe that it is solution of

sd  —0 RN (5.33)

{ 96d™ — Asd™ = SH™ R, x RV,
|t=0

where

SH™ := —ou" 1 - Vd" —u" - Véd" ! + Véd" ' & Vd"d"+
+Vd" oV d" + Vd T o VT éd".

Thus [|6d" (t) | zee < [0H" ||y pee S Mll (0w, Vd" )| 2 oo + n?[[0d" (t)]| L5 Lo, Which yields

16d™ || Leo oo S mOU™H(T). (5.34)

Arguing exactly as in the proof of inequality (5.24]) and (5.25)), we obtain

[Vod™|  sne + |VOd™ |12 00 + VA no + || VZ6d" ve || VZ6d" Nr_+
L3r3r=2 T L2rp;t Lzrpz=t L;Lgvfl)
+|V38d™| e SNOGH™| 6. sne +[|[VSH"|  ne Sn(6U™T) + U™ H(T)).

L; 91637“—2 L%TL;?T_Q L; i’?r—Q

In order to conclude our estimate we have to bound the terms related to du™, which is solution of

Opdu™ +u" - Voum 4 sunl - Vu — Adu™ 4+ V" = §F" Ry x RV,

divéu™ =0 R, x RN, (5.35)
6U’|r;:0 = O RN;

where §F™ := F"t! — [ First, let us observe that

IVou|| - e VOl e A [0 e A [0 2 pee
L Le"™ Lr 20" LELL e

3r—2
T

H[(V2ou", Vo) e Sp(lou Y| e +(IVOUR] | we )+ IOFT e
3r—2 -1 2r—1
Lt Ly" L2TL] L2TLz" L7,

THT T T ~HT

Hence, denoting by G™ := div(Vd" ® Vd”), we have that

|0 F™|] Neo S ”5&"((1”, Au'™, VH")H e+ |[6G™| Nr_+
LnLim 2 LnL3m 2 LyLim—2
+nll(Asu™t, VeI )| Nr_.

3r—2
L5 L3

~: ), and recalling (5.30) and (5.32)),

%rLgr—l

Since [|6G™]|  wr S(IVId*|  ne + (V"
LyLim =2 LZrLg~! L
mn < n n n n n
5771, gy S WG, A VI e 160713+ 607D

4—e 7 3r—2
x LT Lx T x

S C(M)|Vaollig 18U | a2 + 6U™(T)n.
T
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Summarizing the previous considerations and supposing 7 small enough, we obtain

OU™(T) S noU™ " H(T) + C(T) [ Vaollee |80 4z 1

We claim that there exists C'(7") > 0 and K (7") > 0 such that, for all ¢ € [0,7], and for all n € N

(5.36)

" 2 ex t
SU™(t) < C(T)n p{K(T)ﬁ}- (5.37)

We are going to prove it by induction and the base case is trivial, since it is sufficient to find C'(T") >
0 such that, for all ¢ € [0, T], 6U%(t) < C(T). Then it is fulfilled §U°(t) < C(T) exp {K(T)t/\/11},
for all K(T') > 0 and for all ¢ € [0,T]. Passing trough the induction hypotheses and by , we
have that there exists C' > 0 such that, for all ¢ € [0, 7]

SU™ (1) < CloU" (1) + O Vol 60 2,

< 0[770(T)777%1 exp {K(T)\;ﬁ}Jr
_ n—1 t 4r S ﬁ
4 O(T)|Vao| 2= C(T)y " (/0 exp{gK(T)\/ﬁ}ds) ]
~ 5487 _ t
< C(vae(r) + i (T));n;_;0(T>0(T>||Vao||Loo)nz exp {K(T) 72}

Choosing K (T') > 0 big enough and supposing 1 small enough, we can assume

&(vie(r) + C(T)C(T)||Vao ) < C(T),

which finally yields (5.36). It is now immediate to conclude that (d")y, (V(u", Vd") )y and more-
over (u", Vd", VII")y are Cauchy sequences in LFL°, L%Lgo and X, 7, respectively. Furthermore,
resuming , we deduce that (a")y is a Cauchy sequence in LFLS°. Granted with these con-
vergence results and recalling the inequalities , and we conclude that the limit
(a, u, Vd, VII) fulfills the property of the Proposition.

Finally, recalling that, for every positive integer n, (a™, u™, d") is solution of and ,
passing through the limit, we deduce that (a, u, d) is solution of with (ag, ug, dp) as initial
data, and this completes the proof of Proposition [5.4.1 O

Proposition 5.4.2. Let r € (1,00), p € (1, N). Suppose that the initial data fulfill and
moreover Vag € LY and (ug, Vdy) € B;ﬂp_lﬁ with ¢ < min{l/r,1 — 1/r,N/p — 1}. If the
smallness condition holds, then there exists a global weak-solution (a, u, d) with the same
property of Theorem m Moreover Va € LS LS, (u, Vd, VII) belongs to Q= and

t,loc T »

I, V, VID)lg: < [I(uo, Vo)|| ... (5.39)

BPJ

Remark 5.4.3. The condition (5.38|) ensures the wvelocity field to be in L;locﬁipm. Indeed, a
classical Gagliardo-Niremberg interpolation inequality

_ Nagi + q1g3 1 1
0 0
IVl < Hfuigs IV f 110 = 1,

= = €
_ q193—Ngs
Nqi +2q1g3 — Ngz 1+ N
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allows us to obtain the following estimate for every positive T':
190 VDl e S 16, 00 (107t V) + 18592 0, V) < o0

As already mentioned, such condition permits the existence of the flow for the velocity field, hence
we can reformulate system (5.1)) trough Lagrangian coordinates (see Section 6). Adding a weight
in time, we can increase the time integrability by

1695 (Y, V2d) | parpoe S TR (uy VA) || 2 g9 + [TV (u V)| 2 g < 00,

observing that af — 7 is positive. These estimates are going to be useful to prove the uniqueness

for the solution of (5.1)) in the Y, NY: functional framework.

Proof of Proposition|5.4.42 Proceeding with the same strategy of Proposition [5.4.1} we consider the
sequence of solutions for the systems (5.13]) and (5.14). We claim by induction that such solutions
belong to the same space of Theorem [5.2.4] and moreover that

I, V", VI |y, < n. (5.39)

At first, let us observe that [|e!®dy|| e < ||do||zee < 1. Furthermore let us recall the Mild formula-
tions

t
d"(t) = e dy + / IR LTA T 2dn — "t VA (s)ds, (5.40)
0

by Lemma [5.8.3] with 7 =r, g =p3/2 > Nr/(2r —2) and 0 =2y, =1 — N/p3 — 1/r,

1

t 1
[ Ollzzs < 1+ ColMar V@) Ol [T @l ()

for every t € R,, where C, is a suitable positive constant. Thus, by the induction hypotheses and
the Gronwall inequality, we deduce

()l <2711+ Co?) exp {2 O} < G, (5.41)

where C, is a suitable positive constant which dependents only by r. Furthermore, using standard
estimates for the transport equation, we have [[a" | re < [lag||re and for all ¢ > 0,

t
IVa" Oz, < Vel exp { [ 1907 (9)1ze0s}. (5.42)

First, let us remark that, by Theorem [5.3.11] and Theorem [5.3.12
HtmetA(u(b vdU)HL%TLZ3 + Ht’ﬁetA(uO? Vd0)|’Lf°L£3 + Ht’BGtAVdoHL?TLipl—i—
—|—||t74€tAVd0H 3p; + ||t61V€tA(UO, Vdo)HL%rng + ||t62V€tA(uO, Vdo)HL?ong—F

L° Ly
+Ht53V€tA(UQ, Vdy) ps + "t54V€tA(uO, Vdyp) ps + HtalVQGtA(UO, Vdo)”L?rLgri-

HL%TL IIL?OL

T2 g, Vo)l ggm S luo Vo)l 5+ o v
> LyLy ~ ) 3533,,« 1m3335—1,r 103522,T 1OB§"T 103511’T1
S (w0, Veo)ll xS

b,
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We claim now that 7' Vd" belongs to L2 L2, 72Vd" to L°LE t13Vd" to L¥ L and t#Vd" to
L°L3P' - At first, denoting by T := V(|Vd" 1 |2d® — ! - Vd"!), we have that t**T™ belongs
to L?"LE', thanks to the induction hypotheses and . Moreover, applying Lemma with
F=2r,q:=p1 > Nr/(2r—1) = Nr/(2F —2), G := p3 > Nr/(r —1) > N and the same Lemma
with ¢ := p; and ¢ := 3p; > 3Nr/(2r — 1) > N, we finally obtain

685 e s 12 e s+ 15T g0 HIOT e S04 T e (5.43)

oo

Similarly, by Lemma with ¢ := p; € (N/2,N) and q := po (respectively g := p3/2), so that
1/¢g—1/G=1/p3 < (r —1)/Nr < 1/N (respectively 1/¢ —1/G < (2r —1)/Nr —2(r — 1)/Nr =
1/Nr < 1/N), we deduce that

|2 d" | v oo + (£ V2| oo 2 + Htﬂi”vzd”HL?TL:Tg + ||tﬂ4v2dn||LtwL? S0+ T e

(5.44)
Finally, by Theorem with 7 := 2r (respectively 7 := r), a := «a; (respectively o := ag) and
q ‘= p1, it turns out

[T | v o+ 1E2 V2| gy g S 4 £ T e o1 + 92T gy 1 (5.45)

Summarizing (5.43)), (5.44)), (5.45)), developing the right-hand side related to 7™ by

PP S L i 1P e e 170 R L A PO 2 L e PP e

X||t74Vdn||L?oL§p1 + Ht“un‘llngrLgs ’|tﬁ2v2dn_1”L§°L£2 + ||tﬁlvun_1”L§TL£3Htwv‘in_lnLgOLﬁ?
and by

L%TLipl ||t’Y3 Vdn_l ||L%TL2PI X

X”tMVdnHL?oLgm + Htmun_lHLer’f ||tﬁlv2dn_1||L§TL£2 + ||tﬁlvun_1||L$TL£2 ||t71Vdn_1HLf"L§3

[E2 T o S Ht“Vd”_lHLgrLgﬁ||tﬁlv2d"_1||LgrL§2 + [[evdr |

we can absorb the terms with index n by the left-hand side of (5.43)), (5.44) and (5.45)), thus it
results that ([5.39) is true at least for the terms related to d.

Now, let us take the velocity field into account. At first, we recall that «" fulfills
t
u"(t) = ePug + / eU=IAPL o1 VU (s) + F(s) }ds, (5.46)
0

with F" = (1+a™)div(Vd" © Vd") 4+ a™(Au""! — VII""!). Arguing as for (5.43), (5.44) we obtain
[E7 ™| por pos + [[€720" || poo s + ||t51VUnHL§TL£2 + ||t'32vunHL§°L’;2+
+ ||t53VU””L§rL:73 + ||tB4VU"HL§°L? S0 O F | o + ([t VU o
(5.47)

Proceeding as for (5.45)) and recalling that VII" = RR - { — VU + F ”}, we have also

Htoq (v2un7 an)HLfTLgl + Htaz (V2un, VHH)HL{L? <n+ HtaanHL%TLgl—*—

+ ||t0‘1un—1 . VU"H o P14 Hta2Fn” p1 ||ta2un_1 . VU”H " (548)
L2mLy LiL; L
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Thus, developing the terms related to F™ by

1L F™ | e pn A+ 622 F | 1 S (1 + llaollzgo ) 167 V2% | o 22 [0 V2 A" || e s+

~

+llaollzee (I[#2* (Au"=1 VI | oo+ (872 (Au” =, VITTY) [ o1

and summarizing ([5.47)) and (5.48]), we can absorb the terms with index n by the left-hand side, so
that (5.39)) is fulfilled for all the indexes n € N.

Moreover, applying Lemma to (5.40) and (5.46)), with 7 := 2r of ¢ := p; and § := oo, we get
also

11 1 —
[£27 2 (u, V")l ar oo + (182 (", VA")l|1goree S+ [ (T F* 0™ Vu) || or g S e

Now, we claim by induction that (u", Vd", VII") belongs to 2)5 and moreover

[(u", Vd"*, VII")|lgz < [l(uo, Vdo)HB%_Hav (5.49)

b,

for every n € N (uniformly). Recalling (5.40) and (5.46) and thanks to Lemma with 7 := 2r,
g=p1 € (N7/(2Fr —2),N), G=q3 > Nr/((1 —e)r —1) > N (sincee <1—1/r) or § =3¢; > 3N,

e O [P e [RES

S ”(u(b VdO)H N1 + Htal (Tn> B, u vun)HL%fL??

b,

for every n € N. Hence, since ||(u", Vd", VII")||y, < 7, we deduce the following uniformly estimate:
055, V) gpegss + 1659 o + 10V g S0 (550

We still proceed by induction and the base case (0, 0, 0) € 2% is trivial. Now, let us assume

that (u"~1, Vd"~1, VII"!) belongs to 9:. At first, since (ug, Vdp) € Bé\;’/gﬁflﬁ, V(ug, Vdp) €

Bg{gf_2+€ and V2(ug, Vdy) € Bﬁ{grl_gﬁ, by Theorem [5.3.11| we get that the conditions for u and

Vd determined by )5 are satisfied by etAug and e!2Vdy. Now, arguing as for proving (5.43) and

(5.47), by Lemma with 7:=2r, g :=q € (N,N/(1 —¢)) and ¢ :=q3 > q or q := 3q1 > q, we
obtain that

||t7f(un’ Vdn)HLf’“Li?’ + ||t7§(un’ Vdn)HLgOLg?’ + Ht%e‘VdnH
+ [V ||, o 30 S |l(uo, Vdo)
£ x

_.|_

Lrpii
Iy + 85T FP ™ V)| ey
B, ’

(5.51)

Moreover by Lemma with 7 := 2r, ¢ := ¢ and G := ¢, so that 1/¢ —1/g=1/q3 < 1/N, we

have
[#75 (", V™) e pa2 + 172V (W, V") || oo o2 S
S l(uo, Vo) | yye + (T, F u ™ VU)o
B x

p,r

(5.52)

Finally, by Theorem with 7 := 2r (respectively 7 := r) and « := aj (respectively a := a3),



5.4. SMOOTH INITIAL DATA 73

we get

[£5 (V2" VP V)| e pan + 892 (V2" V2d" VI ||y < (o, Vdo)l| ot
T T Bp,r
(5.53)

Thus, summarizing (5.51)), (5.52)), (5.53]) we develop the terms on the right-hand sides as follows

T R (A ARVl JVLO ([P Tt 7 Lol (R
XHtﬂ§V2dn_1||Lf°L12 4+ Hﬂg_evdn_lnngiﬂ ||7§“ri—evdn—1||L?0L§cq1 HmivdnHL;’OLiq1+
+”t’yfi€un71HLfTLg3 HtﬁSVanflquLg? + ”tﬁfVUnleLfTL? ”t'YSﬁVdnleLrLZQ"‘
T g 22 s+ T g [V
thMVd”HL?QLipI + Ht’Ylu"—lHL%TLgs HtﬁlV?d"_lHLgrL? + Hﬁqu”—l”L%Tng X
X”t%Vdn_lHLgrLgS + 1+ HaOHLg")||t61v2dn||Lt2TL22 [£7275Vd" || poo pas +
ol (15 (A= VI 2o+ 6952, VI ).

Thus, recalling , we can absorb all the terms with index n by the left-hand side of ,

and , finally obtaining , thanks to the induction hypotheses.

Now let us observe that, by Remark for every T > 0 there exists C' (T') > 0 such that
IVu"| 1 oo < C(TD) I (w0, Vdo)l| 5.
p,T
To conclude the proof we want to show that (a”, d", u")y is a Cauchy sequence in the considered

spaces. The strategy is similar to the last part of Theorem Denoting du™ := u"*t — u™ and
so on for dd", da™ and S1I", for all T > 0 we define

1
oU™(T) = |[(6u”, Véd"™, VII")|ly, » + [|6d"|[Lgo nge + [[E2 00" || Lgo g
We want to prove that ) _dU"(T) is finite. Let us consider da™ which is solution of
dpda™ +u™ - Véa" = —0u""'Va" in Ry x RY  with dajj_o =0 in RY.

By standard estimates for the transport equation and by (5.42), we obtain

n ! n— n ~ r 1 2 n—
da™ )z < /0 0= (5)l| e | Va (s) | e dls < C(T) /0 —ds) 150" g [ Vaollage. (5.54)
S

where C(T) = exp{C(T)||(uo, Vdo)|| yn/p-1+< }. Considering 6d", we recall that is solution of
Op6d™ — ASd™ = SH™ in Ry x RY, 8dfi_y=0 in RV,

with §H™ = —6u"1 - Vd" — "1 - V§d" 1 + Vid" ! © Vd"d" + Vd" ! © Véd"1d" + Vd" ! &
Vd*~15d™. Hence, by Lemma with o = 2y, and ¢ = p3/2, we get

[6d" ()| e < ||8271<51LI’”‘||U(0 s S néUH(T) + 1]|6d" | g e
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for every t € (0, 7). Taking the sup on ¢t € (0,7'), we obtain
16d" | L ree S mOU™H(T). (5.55)
Moreover, recalling that du™ is solution of
Apou™ — Adu™ + VOII" = §F"™ — u™ - Vou" — 6u™ 1 - V™, divéu™ =0, (5uﬁ:0 =0,
where the explicit formula of § F™ is

SF" = §a™(div{Vd" ® Vd"} + Au"—VII") 4 (1 4+ o div{Véd" © Vd"+
+ V"™ © Vid"} + a"(Adu" Tt — VeI ),

which yields that

(6w, V", VoI ||y, + [[t20u" | s < [[£°1(VSH", SF™, " - Vou", 0u"~" - Tu")| 2y

+[[t2(VSH™, SF™, u™ - Véu™, du" " - V)|l S (U N(T) 4 6U™(T) + [[6a" || 1se. ).
(5.56)
Summarizing ([5.55) and (5.56), it turns out that

SU™(T) S ndU" ™ H(T) +l|8a"|| e 122
and thanks to ([5.54)), we finally obtain
_ 1
SU™(T) < ndU"H(T) + C(T)Ts |50 | 3 I Vaol| e

Such inequality is strictly similar to (5.36]), hence we can conclude the proof of the proposition
arguing exactly as in the last part of the proof of proposition [5.4.1 O

5.5 Existence of a Global Solution

Let us now tackle the proof to the existence part of our main results, namely Theorem and
Theorem [5.2.4] Thanks to the dyadic partition we regularize the initial velocity ug and the initial
molecular orientation dg, while we regularize the initial density ag by a family of mollificators. The
key is to use the existence results and the estimates of the previous section, constructing a family
of solutions for with the regularized initial data. Due to the low regularity of ag, it is not
possible to prove the strong convergence of such approximate solutions. Hence, we shall focus on
a compactness method, along the same line of [30] and [60].

Let (xn)n be a family of mollifiers, we define ag, = x» * ag, for every n € N. ag,, belongs to
W4 and its L2°-norm is bounded by ||ao|| Lee. Moreover, (ap,,)n weak™ converges to ag up to a
subsequence (which we still denote by (ag.,)n). Since dg belongs to L, which is a subset of B

T 00,007

and ug belongs to B,],Y Zp _1, we cut the low and the high frequencies in the following way:

Uon = Z AkU,Q, dom = Z Akdo

|k|<n |k|<n

Each term dp ,, belongs to L7° with norm bounded by 1. Moreover v, and Vdy , belong to B;,l for
every real number s. In addition, the smallness condition (5.4)) is still valid for (agn, uon, Vdon).
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Proof of Theorem[5.2.3. As already pointed out, ug, and Vdp, belong to B;l, for every real
number s, in particular for s = N/p —1 and s = N/p+ 1. The hypotheses of Proposition are
fulfilled, hence it determines (u", d", a™) solution of (5.2)) with wg, do, and ag,, as initial data.

Furthermore we get the following uniform estimates for the norms of such solutions:
H(un’ va", vH”)”xr rg n

for every n € N. By these inequalities and the momentum equation of , (Opu")y is a bounded
sequence in L”{Liw/ =2 and (0,d™)n is a bounded sequence in L;’Liw @r=2) Thus, applying
Ascoli-Arzela Theorem, we conclude that there exists a subsequence of (u", d", ™)y (which we
still denote by (u”, d", a")n) and some (u, d, a, VII) with a, d € L, and (u, Vd, VII) € X, such
that
(a", d") — (a, d) weak *in L73,
3Nr Nr

vd" — Vd weakly in L3 LY =2, L L;~', L2L,

Nr
—1
’

_Nr_
V(u", Vd") — V(u, Vd) weakly in L7 LZ~", LT L~

with in addition N

V(Vu", II") — V(Vu, II)  weakly in LT LY 2

and
Nr _ =
T r—1 €

u" —u  strongly in Ly, oloc
for all positive € small enough. The last strongly convergence is due to an interpolation result,
observing that, for every T' > 0, the sequence (u,, — etAuO,n)N is uniformly bounded and equicontin-
uous in C([O,T],Livr/(3r_2)) and moreover (e®uq )y converges to e'®ug strongly in L;Livr/(r_l)
(since (ug,n)n converges to ug strongly in BI]X /Tﬁl). We deduce that v - Vd" and u" - Vu" converge
to u - Vd and u - Vu respectively. Then, it is sufficient to prove that a™(Au™ + VII") converge to
a(Au + VII) in the distributional sense, in order to conclude that (u, d, a) is a solution for
with initial data (ug, do, ag). Toward this, we shall follow [30] and [60], proving that (a™)y strongly

converges to a in Lj? (R4 x RN ) for any m < oo. thanks to the transport equation of (5.2)) we have
d(a™)? +u™ - V(a™)? =0,

which yields
Ow+u-w=0,

where w is the weak * limit of ((a")?)n (up to a subsequence). Moreover, by a mollifying method
as that in [37], we infer that
ora? + div(ua®) = 0.

Thus
{at(az —w) +div{u(a? —w)} =0 Ry xR¥Y

(a? = w)l=o =0,

and from the uniqueness of the transport equation (see [37]) we conclude that a? —w = 0 almost
everywhere. We deduce that (||a"||12(q))n converges to |al|z2(q), for every € bounded subset of
R, x RY hence (a")y strongly converges to a in L?(Q2). By interpolation, we deduce that (a™)y
strongly converges to a in L (R; x R™) for any m < oo and this completes the proof to the

loc
existence part of Theorem [5.2.2 O
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Proof of Theorem [5.2.7). We proceed along the same line of the previous proof, using Proposition
instead of Proposition We get the following uniform estimates for the sequence of the
approximate solutions:

H(unv Vdn? VH”)H@T 5 UE

Since agr’ = (1/2(3 — N/p1) — 1/r)r' <(1 — 1/r)r’ = 1, (V2u™, VII")y = (22t (V2" VII")y
is uniformly bounded in L7 L%, where 71 belongs to (1,7/(1 + agr)) and T > 0. Similarly
(Vu™,V2d")y and (u", Vd")y are uniformly bounded in L?LE? and L7PLY respectively, where
T2 belongs to (1,2r/(1+4 312r) ) and 73 € (1, 2r/(14~12r) ). It is not restrictive to choose 72 and 73
such that 1/74 := 1/75 + 1/73 is less than 1. Hence (9;u™)y is uniformly bounded in L™(0,T; L")
which yields that (u” —e"ug )y is uniformly bounded and equicontinuous in C'([0, 77, L}'). More-
over (etA’U,(),n)N converges to e"®ug in L™ (0, T; LP?). Hence, by Ascola-Arzela Theorem, we conclude
that, up to extraction, the sequence (u", d", o™, VII")y converges to some (u, d, a, VII)y such that

a, d belong to L5 and (u, Vd, VII) € 9,. The convergence is in the following sense:

(a", d") — (a, d) weak *in Ly5,.,
Vvd"' — Vd weakly in L7 L3,
V(u", Vd") = V(u, Vd) weakly in Lj3 L2,

with in addition
V(Vu", II") = V(Vu, IT)  weakly in L}} L

t,loc

and

n : T3 p3—¢€
u" — u  strongly in Lt,loch,loc’

for all positive € small enough. Finally we can repeat the argument at the end of the proof of
Theorem concluding the existence part of Theorem [5.2.4 O

5.6 Lagrangian Coordinates

The uniqueness result is basically based on the Lagrangian coordinates concept. The key is to
rewrite system under such coordinates, obtaining a new formulation which allows the unique-
ness in the functional framework of the main Theorems. This strategy has already been treated
by Danchin and Mucha in [27] on a subfamily of , namely the incompressible Navier-Stokes
equations with variable density in the whole space. We claim to extend it to the general simplified
Ericksen-Leslie system. Before going on, in this section we recall some mainly results concerning
the Lagrangian coordinates.

Let T € (0, 00], we consider a vector field u in LITEipz. The flow X of u is defined as the solution
of the following ordinary differential equation:

{@X(ty) =u(t, X(t,y)) (ty) € Ry xR",
X(0,y) =1y y € R™,

The unique solution is granted by Cauchy-Lipschitz Theorem. Defining v(t,y)= u(t, X (t,y)) we
get the following relation between the Eulerian coordinates x and the Lagrangian coordinates y:

t
r=X(ty) =y +/ (s, y)ds.
0

Furthermore, fixing ' € R, let X = X (¢, t,z) be the unique solution of
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X tx) =ult,X(t' t,x)) (t,z)e (t',00) x R",
Xt t,x)=x y € R™.

Then Y = Y(t,x) = X(—t,0,2) is the inverse map of X. Setting D := 'V, we get A(t,y) :=
(D, X)"Yt,y) = D, Y (t, X (t,y)) and moreover

t
A -1z < | Dol
0

Assuming that u has L%/Jipm—norm small enough, we obtain that the right-hand side of the previous
inequality is less than 1. Thus A(¢,y) is determined by

Altay) = DY (1. X(t9) = (4+(D, X (9) 1) = 30 (04 [ Dyotsuaas)”

k=—o00

Furthermore

(Vau)(t, X(t,y)) = "A(t,y)Vyo(t,y), (diveu)(t, X(t,y)) = div, {A(t, y)v(t, y)},
Setting b(t,y) := a(t, X (t,y)), P(t,y) := II(¢t, X (t,y)) and moreover

w(t,y) :=dt, X(t,y),  h(t,y) = (Ved)(t, X(t,y)), (5.57)
system becomes
(9,0 =0 R, x RV,
O — (1 + b)div,{ ATAV, 0} + LAV, P = —(1 + b)div,{ Ah® h} R4 x RV,
Ow — tA: Vh = |h|?w R, x RV,
div(tAv) =0 R, x RV,
h=1'AV,w Ry x RV,
(v,b,w)‘tzo = (uo, ao, do) RY,

which is the Lagrangian formulation. Moreover, taking the derivative in = to the third equation of
5.2

.2 OVd+u-V3d+Vu-Vd— AVd = 2Vd - Vid + |Vd|*Vd,

thus, h is solution of

oth + ("AV,v) - Vyh — div, (A"AV,h) = 2h - Vyhw + |h?h.

5.7 Uniqueness

This section is devoted to the proof of Theorem and Theorem Fori=1,2, let (u;, d;, a;)
be two solutions of satisfying the condition of Theorem Let X; be the flow generated
by w;, for i = 1,2, and (v;, w;, b;) the Lagrangian formulations of the solutions. At first, let us
observe that by = by = ag, thus setting dv := v — v9, dw := w1 —ws and §P := P; — P, we observe
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that (dv, dw dh, 6 P) is solution for

0p6v — Av + VP = ag(Adv — VIP) +0f1 +6f2 +6f3 Ry x RY,
0w = 0 fy + 5 f5 R, x RY,
Oi6h — AS6h = 6fg + 5 f7 + 0 fs R, x RY, (5.58)
div{év} = dg R, x RY, '
0409 = 6R R, x RN,
| (60, 6w, h);—o = (0,0,0) RV,
where
§f1:= (1 +ap)[(Id —"A3)VSP — AV Py,
§fa = (1 +ag)div{(A2'Ay —1d)Vév + (Ax ' Ay — A LAV},
6 f3 := (1+ ag)div{dA(hy ® hg) + A1(6h ® hg) + Ay (k1 ® 6h)},
§f4 = 0h - howsy + hy - Shwy + |hy|*dw,
6fs5:='6A: Vho+ tA; : Vih,
and

§fe = —"0AVuvy - hy — "A1Vév - hy — "A1Vvy - 6h,
8 fr == div{(A2"Ay — Id)VSh + (A2 " Ay — A1 " A1)V },
0fs :=26h-Vhows + 2hy - VOhwy + hy1 - Vhidw,
6g:= (Id—"Ag) : Vv + '6A : Vo,
OR = 8t[(1d —Ag)év] — O [5A1)1].

In what follows, we will use repeatedly the following identity:

/de (X X dmes ). (5.59)

k>10<j<k

t
:/Dvi(r), for i=1, 2.
0

5.7.1 TUniqueness: the smooth case

with

Let us assume that 1 < p < Nr/(3r—2),e € (0,1] and r € (1,2/(2—¢). We suppose our initial data

(up, Vdp) to be in Bg{p_lﬁ N B;,Yfp_l and we want to prove that the solution for , given by
Theorem [5.2.2] is unique. First, let us observe that our solution belongs to the functional framework
of Theorem thanks to proposition Now, let us tackle the proof of the uniqueness. We
need the following Lemma

Lemma 5.7.1. Let T > 0 and let us assume that f, Vg, and R belong to L LNT/(ST 2 Then

ow—Av+VP=f (0,T) xRN,
dive =g¢ (0,7) x RV,
Org =divR (0,T) x RN,
V=0 =0 RY,
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admits a unique solution such that

ol e+ lollzae +190) e #1900 xe +
2rr; L322 a2y

1@, V2o, VIDI xS, Ve B e
Lr.L;" L r

T T

Proof. Applying —div to the first equation, we get
—AP =div{R - f — Vg},

which yields VP = RR - {R — f — Vg}. Hence, |[VP| s < |R, f, Vgl/1e, for every q € (1,00).
Moreover, v is determined by

o(t) = /0 =98 T P)(s)ds,

thus by Lemmas and Theorem we obtain the required estimate. O

Thus, recalling system (5.58]), we get

”Mmﬂff’i + 160l 22 Lo + ”W””LQTTL% + |!V5v||L2T 2 + 100l 22 Lo+
+ ||(8¢0v, V26v, VOII ve S |[(8f1, 8fa, 8f3, Vg, 0R Ne
(0% )||L}L§TTZ I )IIUTLEW

where we have also used that [|bg||zec = ||aol/zee < 7. Furthermore by the second equation of (5.58)),
we get dw € L%’Liwm(r*l) and
16| xe S [(0f1, 6f5)
L¥L

N
30r—1) I LQ(T—Tl) !
T HT T

and by Theorem [5.3.2] Lemmas and we get

[0R]l  xo + ORI ane +[10hll 12 L0 + [[VOR] e +
L%«TL;71 L%TL3T72 T x L%r 1;27“71
HIVOR| e V2SR e S (85, 0f7, Sf) e
L%J'LJE(T_I) L;L£T72 Lg“ ;37“72
Summarizing the previous inequality, we need to control the right-hand side of
<
(60,31 0P+ 1000 e, 4106 e &
S N(0f1, 6.2, 0f3, 6f6, 0f6 67, 0fs, Vog, 0R)| — we +[[(6fa, VOS5, 0f6)l  _no_.
LipLs"™ 2=

We are going to estimate each of these terms step by step. Moreover, in what follows we will use
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that
1(V?0i, V2hi, VPl 1y 1y S (V20i, V2hi, VB ve A+ [[(V20;, V2hi, VB[ e
LTTngS_E)T_Q L%Lgr72
< 00,
l l T s < ) ) T 3 3 T
HV(U“ hz)”L% LT < ||V(Um hl)HL%fo.iVi_l + HV(U“ hl)HL%rngQfgﬁ < 00,
) < ) .
VA ey S IVl + 1A e, < oo
fori=1,2.

Bounds for § f;. From the definition of J f1, we readily get

e VPl ey,

1Al e, S U= Asllogorz=IVOPI o + 16A]
LrL LyL g

x T Lz

where Nr/(2r — 2) is the Lebesgue exponent in the critical Sobolev embedding
1. Nr _Nr__
Wx’3r72 oy L;(T_l) .
Consequently, because T' < 1, recalling (5.59)), we obtain

0 f1ll e S[Vuo| 2 ||[VOP N+ || V25| N | VP Nr_.
LyL3 =2 LI L LrL32 Lop 2 Lr 32

x x Tt

Thus there exists a continuous function ¢ — x1(¢), which goes to 0 for ¢ — 0 and

8RN ey ST 00, 30, VP, .- (5.60)

Bounds for 6 fo. From the definition of § f and observing that As tAs — Ay tA] = §AT Ay + A1 15 A,

we deduce that
< t t 00 T 00 2
H‘5f2”y A S IV(A42 A2)HL%‘>L§’HV&}HL; et (42" Azl pseree + 1)[IV 5UHLTL3§7_TQ+

T T

64l e
LOO

T ~HT

(IVAsllzory + IV ALz lIVorll 2, +IIVOAN e, (| Asll g rge+
T

T T

+ ||A1HL%°L%°)||VUIHL%%€ LAl e ([ Az]ogprge + 1Al 25 250 IV01 |l g 1y

g Ly Lz

Hence, there exists a continuous function ¢ — y2(¢) which goes to 0 for t — 0, such that

16.f2
Ly

ET 5 XQ(T)H((SU’ oh, V(SP)H%«,T' (5.61)
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Bounds for § f3 From the definition of § f3 we get

<
HéngLTTL;”%? N
HVMHL%% L%OL%HVhl”L%Lglol”LZTTL%JF

x

e bl o+ 64

x Ly Ly

+ IV AL e IVOR] e Bo]
L LEL

TTL3r71

e +HVA1||L5.9L5||5h||L2 N thHLQT N+

rerl erl

T T L T Lz

+ HAlHL%OL;OHV5h||L%TL§§I1 ||h2||L2TT o+ HAlHL%OL%OH&hHLzTrL%HVhQHL?TrLg]TleJF
+ HVAlHL%OLg.VHVMHLQTTLE%I thHL%TL;ENTTI + HVAIHL%OLQH(ShHLQTTLE% Hh1HL2TTL£Nﬁr+

+ HAIHL%OL%OHV(WLHL%TLQ%th”L?TL 1\lr1 + ||A1”L%OL20H6hHL%TLZTJVTq||Vh1”L2T Nr

T T—2
T~z T~z

Hence, there exists y3(t) such that

H5f3||LT v S x3(T)[[(6v, 0h, VOP)||x, ;- (5.62)
T

3r—2
T

Bounds for § f¢ From the definition of § fg we get

<
1576l gy SIS I90al g, el v+

T

2ry,

+!!A1\|L%°Lg°||V5U\|L2T erHh2HL2TT 2 +HA1HL39L30HV01||LT

2r— r—
TLa: x

o]
L27L
Thus
H5f6||LT ve S X6(T)||(0v, 6h, VIP)|x

3r—2 T
Tl

(5.63)

for an opportune continuous function y7(¢) which goes to 0 when ¢t — 0.

Bounds for § fz. From the definition of ¢ f7 we have

1ofzll o
L

TL37‘72
THx
< ||VA2||L%OL¥\|A2||L%OL?Hv&hHL L% + (HAQtAz”L%OLgo + 1)\|v25h||LTL3%+
7 T

T -

%(HAlHL%OLgO + ||A2HL$L%O)”V}L1HL72%LOO+

(VAL oy + IVAll o ) IVRa]| 2+
L2 Lo

T

+ [|[VOA|
LFL

+ (|6 Al
LPL;

+ (|64
LF

_Nr__
2(r—1)
a3y (||A1HL%°L;° + HA?HL%"L%"”Whl”LTTLg,

which yields that there exists a continuous function y7(¢) > 0, with x7(0) = 0, such that

107l
Ly

ET S X7(T>H(6U’ oh, vap)”%r,T' (5.64)
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Bounds for § fs. From the definition of d fg we get

. <
A L el ceaze+

Nr
e
T T

Nr
2r—1
x

[Vha||
2L

+Hh1”L2TTL£NTEHV6hHL2r 2o el oz + Rl - oo IVRallpzepyeflowl] e

TLQ: T - T L

which yields that there exists a continuous function xs(t) > 0, with xs(0) = 0, such that

675 e, S xo(T){ (60, b, VOP e + 10 3 (5.65)
T T

Lé’)r LIQ(T*I)

Bounds for Vég. By the definition of dg we get

HV59HU N SJHVA2HL%°LQ’HV5UHLT N +HId—A2HL%°Lg°HV25UHLTL3%j+

TLET——f TL12<T71> 7Ly
2
+ ||V5A”L%OL35V%2||V”1||L%% N + ”M”L%OL;«]TV%U”V vill s -

We deduce that there exists a continuous function x,(t) with x4(0) = 0 such that

3r—2
T

HWQHU e S xg(D)l|(0v, 6h, VEP)|x, ;- (5.66)
T

Bounds for §R. From the definition of R we have

r—
xT

H(SRHL} e Ht 11 = Asllog pellOrovl] - oaee, +

<
SIVel e 0, s

rr 2r—1
x

V00 e bl s+ BOA e ooy

T

Thus, there exists a continuous function yg(¢) with xz(0) = 0 such that

1R e S X(D){ (60, 6h, V6P, 1+ 1060 e b (5.67)
LTTL r LTT r

T T

Bounds for ¢ fy. From the definition of é f it follows

x

||5f4HL1 iy SR, s ll(has R, - s sl oot
T

(r—1) L%ng_ 2L,

2
g ool e

Therefore, we obtain

I6£4l S a0, h, VOP) g, p + 0wl _ne | (5.68)
L%ﬂ LI (r—1)

Nr
Ly Y %Ls

Bounds for ¢ f5. From the definition of d f5 it follows

1—1
2(r—1) . +t ”A1||L%°Lg° HV(ShHL;Lg(f"vjl)

x T Hx z

10fsll —  we SSA[l ne [[Vhel 2
L rer2trY L{~*
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Therefore, we obtain

2<ITVI1) N X5(T)”(6U’ oh, V(SP)er,T' (5.69)
L;

1651l
Ly

Summarizing (5.60)), (5.61)), (5.62)), (5.63)), (5.64), (5.65)), (5.66)), (5.67)), (5.68]) and (5.69)), we deduce
that there exists a continuous function x(t) = >, x;(¢) which assume 0 for ¢ = 0, such that

<
(50,50, 6P+ 10001, 16y S

SXO{ 160, 00, 5P g+ 0000l ey + 0l e

I3 %OLZQ(T_U

which yields the uniqueness of the solution to ([5.2)) on a sufficiently small interval. Then uniqueness
part can be completed by a bootstrap method.

5.7.2 Uniqueness: the general case

Now let us consider the general case 1 < p < N, ¢ € (0,min{l/r, 1 — 1/r, N/p — 1}] and our

initial data (ug, Vdp) in B;,Y/pilﬁ ﬂB;,Y/pil. We want to prove that the solution for , given by
Theorem is unique. Let us observe that our solution belongs to the functional framework of
Theorem[5.2.6] thanks to proposition[5.4.2l We also recall Remark [5.4.3|for the Lispschitz-estimates
and suppose 1" < 1. In order to prove the uniqueness we need the following Lemma

Lemma 5.7.2. Let o, B4, 75 and p1, p2, p3 be defined by Theorem|5.2.4), fori =1,2 andj = 1,2, 3.
Ift f, t*1Vg and t** R belong to L%’"Lfﬂl, then

ov—Av+VP=f (0,T) xRV,

divve =g (0,T) x RV,
O0ig =divR (0,7) x RV,
U|t:0 =0 RN»

has a unique solution such that

1000l 30 + 120l 0+ 10700 g + 69 e + 1650l e+ 570
+ HtBQUHL%OL? + ([t (v, V2o, VP)”HTTL? S 1t (f, Vg, R)”L%IL?
Proof. The proof is basically equivalent to the one of Lemma [5.7.1 O

By (5.58]) and the previous Lemma, it follows that

||7561V5U||L?FT'L52 + ||7562V5U||L39L52 + 18700l 2r pps + [[7200]| poo pps + ||t736,UHL%TLiP1+

+ [t 60| ; oo 3e1 + [t (Drd0, V25, V(SP)HL%TLZH St (0 f1, df2, 6 f3, Vg, 5R)||L2TTLP1,
T L T x

where we have also used that |bo|zee = |lag|lree < 1. Furthermore, by the second equation of
(5.58) we get t“16w € LFLY', where pf = p1N/(N — p1) is the Lebesgue exponent in the critical
Sobolev embedding

Wher oy LP1
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Moreover
e 80l ot S 16 85, -
By Theorem Lemma [5.3.7) and Lemma [5.3.8] we get
||t715h||L%TL53 + ||t’Y25h’||L%OL£3 + ||t’Y35h||L%rLip1 + ||t745h‘||L%oLipl+
+ HtﬂlVMLHL?TTLQ? + Ht’82V5hHL%oL£2 + Ht"‘1V25hHL2TTL§1 S [t (0 fss S f7, 5f8)HL%}TL£1'
Summarizing the last inequalities, we deduce that we have to control the right-hand side of
|8, 8h, V6P, , + 120480 ] e s+ [ 0l] oy < 49 (51, 8o, Vof) ey +
T Hx

o . (5.71)
+ [t (0 fs, 0.7, 0fs, Vog, SR)| parpor + 1t (0.fa, 05)

”LlTL’ﬁ'
Let us now estimate the right-hand side of (5.71]) term by term.

Remark 5.7.3. In what follows, we will use repeatedly the following estimates:

U <t for t<T <1,
IVOA| o S HV25UHL1TL£1 S ”talVQCSUHL?TTLgl,

10A[| oo g2 S VOV L1 2 S ||t'81V5U||L2TTL§2-
Moreover, if we consider p3 = oo we get also the following estimate
1_1 1
15 bl e + 1 Rl ez < oo
Bounds for t*1§ f1. From the definition of d f1, we readily get

606 A S 110 = Aalageaz |6 V0P gy + 1841 16 VPl
where p; = p1N/(N — p1) is the Lebesgue exponent in the critical Sobolev embedding
Whet ey B
Consequently, recalling and observing that LY < L' N L', we obtain
15 ez S 15Vl g e 1 V0P e + 1960l 10 1 VP TP
for 6 determined by 1/N =0/p1 + (1 — 6)/q1. We get
€4 Al zerm S

S HtaTVWHL?TTLgO||ta1V5PHL2TTL§1 + ||V25U”L1TL§1Htalvpni%rﬁ;l [tV P| ;Tngla

e P T e i s

< 15 V0| 10 1 VP e + T 4949200 1

Thus there exists a continuous function ¢ — x1(¢), which goes to 0 for ¢ — 0 and

168 il g iz < X1(T) (80, b, V5P, (5.72)
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Bounds for t“1§ f. From the definition of § fo and observing that A tAs—A; tA1 = A As+A 16 A,
we deduce

18940 fall p2r o S HV(A2tAz)HLgngL.VHthMHLQTTLQI + (142" Azl g g + D121 V260] pr o +
+ ||6A||L%OL£I(HVA2HL§S’L§EV IV AL e L) 18TV 01 | p2r poo +

IVOA oo on ([ A2ll g e + | ALl Lge oo ) 1 Vur [ p2r poo+

HI0AN .t (1A2llzgzee + | Aslzgezee) 8% VP0ul| 2

Lyt

Again by LY < LE' N L' and the critical Sobolev embedding, there exists a continuous function
t — x2(t) which goes to 0 for ¢ — 0, such that

1646 fell e S x2(T)]| (B0, Sk, VISP, 1. (5.73)

Bounds for t*14 f3 From the definition of d f3 we get
11 1
18940 f3ll p2r pon S IVOA oo pon 82720 b || 2 poe [[£2 ha [l Lo o+
+ ||5A”L%OL5’{ (HtBIVhluLQTTLZQ Htwhl”L%"Lfﬁ + Htﬂlv}ZlHL%’“LgQ Ht’bthL,‘}oL?)—’_
+ ||VA1HL3,°L;VHtﬂlV(ShHLg;L’;? 1872 hall pee 25 + IV Al e Ly [[£7 6| p2r 22 Htﬁ2h2”Li}oL§3+
+ (1A g 150 187 VSR L2 2 (102 B2l o ps + 1Al g0 150 (187 0RI| 20 125 1672 V Pz | o 2+
+ HVAIHLOTOLQ’|‘tﬂ1V5h||L%TL§2”twhlnL%"LQS + HVAlHL%OLgDV||75715h||L2TrL§;2Ht[bthL;OLiﬁL
+ ||A1HL%°Lg°Htﬁlsth”LQTTLi?HtwthLgngS + ||Al||L%°L§°HtvléhHLQT*Lf;;3 ||75BZVh1||L§9L7;2
Hence, arguing exactly as for (5.72)) and (5.73]), there exists x3(t) such that

1696 fall e S xa(D)]| B, Sk, VISP, 1. (5.74)

Bounds for t*1§ fg From the definition of d fg we get
1606 sl g S 167 6AN e 22 1TVl 0 e 1672 Bl 20+
+ | Aullzge rge 107 V80l 2 22 1872 b2 | o ps + At Lo pge [#%2 V0 || p2r o2 1002 0R]| oo 23,

Thus
168 foll a1 S x6(T) (60, Oh, VOP)lg, 1. (5.75)
for an opportune continuous function x¢(¢) which goes to 0 when ¢ — 0.
Bounds for t*14 f7. From the definition of  f7 we have
1494 11l

S ||VA2HL§9LIIV”AQHL‘)T"L;;O||ta1V5hHL%rLz’f + (142" Azl pgerge + 1)[[t*1 V28hl| 2 o0 +

104N ot 19 A, An)lageny 15Tl g+

+ ||5A||L%OL5{ ([ Aullzge rge + [[A2llge pge) 1% V2 Ra || par 1
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which yields that there exists a continuous function x7(¢) > 0, with x7(0) = 0, such that
1140 f7ll p2r o < X7 (T (6v, 5h, VP, - (5.76)
Bounds for t*1§ fg. From the definition of J fg we get
[£%40 foll porpm < HtﬂléhHL%"L’f’ ||tB2Vh2||Lg9L§2 lwallLgeLee + ||tﬂ2hl||L%°L§3 Ht51V5h||L2T,-L§2x

_1_ 1 1
><||w2HL°T°L2°+||tﬂ2h1‘|L°T°L§3HtBQVthL%OL’;?Ht 2 2THL%75—W25WHL$L30
T

For &€ small enough, that is,
160 fsl sz S xo(T){ (B0, 8k, VOP)Ily, 1+ 14300 Lgene |- (5.77)
Bounds for t*1Vdg. By the definition of §g we get
184V ogll par o S HVA2HL;9L§Hth(;UHLQTTLZI + || 1d _AQHL%OL%’Htalv25vHL2TTL£1+
+ VoA oo ||taiVU1”L§TLgo + ||5A||L%OL§I ||75a1V2U1”L2TTL;V-
We deduce that there exists a continuous function x,(¢) with x4(0) = 0 such that
[#1 Vo9l p2r o < xg(T)][(60, 6h, VOP) |y, - (5.78)
Bounds for t**0R. From the definition of §R we have
£V SR 2 21 S (1872 V02| o 2 [£7 60 p2r s + [11d — Al g0 150 [£% 8300 | 2y 1 +
+ HtﬁlV&)HL?TTLi2 17201 oo s + ”5AHL2TTL5§ [£% Oon || p2r v
Thus, there exists a continuous function yg(¢) with xz(0) = 0 such that

[E1OR| Lo pm S XR(T){H(M Sh, VOP)|ly,  + [t 0r0vl| oy } (5.79)
Bounds for t*1§ f4. From the definition of d fy it follows
||ta15f4||L%L§f S VSR o 2 1E72 (B, ha)ll oo p2s | (i wo) | Lgerge + 167 8h par prax
O (s ho)ll oo g0 |01, 02l ngpre + 160l g 1672 (s o)l oo 9/, )2 e+
g it el
Therefore, we obtain
12654l , ot S xa (TG, 5, V6Pl 1+ 17260 i }- (5.80)
Bounds for t"6 f5. By definition

€005511, ot S 17641 o

S #9200 par o [V hall g oo + 1ALl 20 100 8% V20| 27 21

Vholl s pee + 11| L2y 0 [t VO

«
2r 7 P1
LiT Ly
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hence

555, i S X506, 5h. VoP) . (5.81)

with x5 as the previous functions.

Summarizing points (5.72), (5.73), (5.74), (5.75), (5.76), (5.77), (5.78), (5.79), (5.80) and (5.81)),

we finally obtain

(80, 81, V6Pl + 11050 e o1 + |00z S
, T Lz L Ly
XD I(00. 80, T3Py, + 1478l + 14 16131}

where x stands for ), x;. Thus, for T sufficiently small, the left-hand side has to be 0. This
proves the uniqueness at least in small time interval. Then uniqueness part can be completed by a
bootstrap method. This concludes the proof of Theorem [5.2.6

5.8 Estimates

Lemma 5.8.1. Let the operator C be defined as in Lemma . Consider T € (0,00], € > 0 small
enough, 1 < T < oo, and moreover suppose that q, q satisfy N/2 < ¢ < N/(1 —¢), max{N,q} <
G < oo. Let of, ¥¢ and A° be defined by

1 N 1
B-F -7 o=

of = L N
C2 q T q

N

(1-=-¢)—

If t°° f(t) belongs to L7(0,T;LY) then t7°Cf(t) belongs to L™(0,T;L%). Furthermore there exist
C. =C.(q,q,7) > 0 such that

1°CFON oz < Cl™ F Ol 0iras. (5.82)

Moreover, if ¥ > 2 and NT/(2F — 2) < q, then °Cf(t) belongs to L°(0,T; LY) and there exists a
positive constant C. = C¢(q,q,T) such that

1E7CF O oo .03y < Clt™ F Ol 0,129 (5.83)

Proof. Recalling ((5.12) we have

9 49

. t 1
0l 5 [ —y MOl
t—s|2 a

Defining F(s) := ||s°‘5f(s)||Lg, by a change of variable s = t7 and because v — o +1 = (1/q —
1/G)N/2, we get that

1
£ HCf(t)Hng/ O F(tr)dr.
0 o FGE-3)

Applying Minkowski inequality, we deduce that

: ! 1 : ;
||t Cf(t)”Lng 5/ - 7@ ( F(tT)"'dt) dr,
0 ‘1 0

E(l_l)
_ T‘ 2\q  §
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which yields

1
e 1 _ e 1 e
|WCﬂwgg5/, p7 AT Ol oz
1

0 _T‘%(%%

Thus, because (1/¢ —1/§)N/2 <1 and 0 < 1/2(3 — N/q —¢) < 1, we obtain inequality (5.82).
On the other hand, observing that

t
;) F(s)ds < </0

|t—s]%(é_<?

t:yssias tfysflsiasfl

T e
N (1 1) dS) i ||ta f(t)HL'F(O,T;Lg)'
|t — 3]7(5_3)7"

t
Oles 0l S [

By a change of variable s = t7 and because 37" — o7 — (1/q — 1/¢)N7 /2 + 1 = 0, we obtain

1

E 1 TmafT 7 o
tRCF ()]l o S (/O 1 1)_/017) 12 f O 70,7201y
| T

1— 7—|%(6‘E

Since ¢ > N7 /(27 — 2) yields (1/¢—1/G)N/2 < 1/7 and ¢ < N/(1 —¢) implies a°7 < 1, we obtain
(5.83)), which completes the proof of the Lemma.
O

Lemma 5.8.2. Let the operators B be defined as in Lemma[5.3.3 Consider T € (0,00], € > 0
small enough, 1 <1 < oo, and moreover suppose that q, q satisfy N/2 < ¢ < N/(1—¢) and ¢ < ¢
such that 1/q —1/q < 1/N. Let of be defined as in Lemma and (¢ and [5° be defined by

[

(2_5_5) and ﬁ5:22(1—];[—5)—1.

7

Fr o=

N

If t°° f(t) belongs to L7(0,T; L) then t%° Bf(t) belongs to L™(0,T; LL) and there exists a positive
constant C. = C:(q,q,T) such that

Htﬁst(t)HLF(O,T;LZ) < Ot f () £ (o,7522)- (5.84)

Moreover, if ¥ > 2, N7/(2F — 2) < q and § < Nr then t°"Bf(t) belongs to L>(0,T; L) and there

exists a positive constant C. = C.(q,q,7) such that
17 Bf () oo .02y < Cellt™ F()Ir0,751)- (5.85)

Proof. At first, recalling (5.9)), we get that

t
tﬂwwmgﬁ/
0

PEEACETIRS ‘

Defining F(s) := [s* f(s)||za, by a change of variable s = ¢7 and because 3 — a® +1 = 1/2 +
(1/¢g —1/q)N/2, we get that

1
& 1 1S54
B S [ . 0 P(tr)dr,
01—
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Applying Minkowski inequality, we deduce that

. 1 1 s [T N
1t BE(t)]] 1y < / e ( / F(tT)Tdt) dr, (5.86)
£ 0 | 0

which yields

(i-9)+3

Because 0 < (1/¢—1/q)N/2+1/2 <1 and 0 < 1/2(3 - N/q—¢) < 1, we deduce inequality (5.84)).
For the second inequality, proceeding in a similar way of the previous Lemma, we obtain that

1
e 1 _ e 1 €
17 BF @ 72 5/ ~ @ Trdr |t f @)l pro.riz9)-
O N—-r7l2

8 Cereen NP
B0l < { | s e @ o

Sy%(r%)w
By a change of variable s = ¢7 and because 7 — a7 — (1/q—1/q) N7 /2—7'/2+1 = 0, we obtain

1 —afr i
e T af
B ()| < (/ — 1/d7> 16 £l Lo 7sne) -
0 |1—T|?( 75)1“ +57

q 2

<

Since by the hypotheses we can deduce o7 < 1 and (1/q—1/q) N7 /247 /2 < 1 then there exists
C. > 0 such that

167 Bf @)l o028y < CellE™ f@)llror,)
O]

Lemma 5.8.3. Let 1 <7 < o0, ¢ > N7/(2Fr —2) and 0 := 1 — N/(2q) — 1/7. Let us suppose
that t° f belongs to L (0,T; LL) with T € (0,00]. Then Cf belongs to L>=(0,T; LS°) and for every
te(0,7)

ICfDlee < Crlls” fll L (0,451.9)

where Cyr is a positive constant dependent only by T.
Proof. Recalling (5.12) we get
t
ICfOliz < [y
0
for every t € (0,7'), where F(s) = 57| f(s)|zsc. By the change of variable s = ¢ 7 we obtain

! 1 1-N1_, ! 1 1
ICF)rge < ; —7 Ftn)t 2a "ds= ; ﬁF(tT)tfds.

1 —7|2ar° 1—7|2a7°

Hence, by Holder inequality, it follows

ICF®)]lnee < (/01 ulyglr'dT):’(/ol ]F(t7)|rtd7->i.
5
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Since ¥ N/(2q) < 1, we finally get

1 1
el < Cr( [ IF@Itar)" = Cols Flurosssy
]

Finally we enunciate the following Lemma, which proof is basically equivalent to the previous one.

Lemma 5.8.4. Let 2 <7 < o0, q> Nr/(FT—2) and 0 := (1 —N/q)1/2 —1/F. Let us suppose that
t7 f belongs to L7(0,T; LL) with T € (0,00]. Then Bf and t~/2Cf belong to L>(0,T; L) and for
every t € (0,T)

_1 -
[Bf(t), t2Cf(t)llLge < Crlls” fllzr(o.:L9)

where Cy 1s a positive constant dependent only by 7.

5.9 Technical Results for the Heat and Stokes equations

We consider the following system, composed by an Heat equation and a free Stokes equation with
a linear perturbation:

du+v-Vu—Au+ VII = f; R+XRN,

Oyd — Ad = fo R, x RN, (5.87)
divu =0 R, x RV, '
(U, d)\t:O = (Uo, dO) RN7

where dg € L3° and (ug, Vdo) belongs to B;’,Y/pil with 1 < p < N and 1 < r < co. Propositions
m and Proposition concern the existence of a solution (u, d, VII), which belong to X, r
and ), respectively. For p less than (or equal to) the critical exponent Nr/(3r —2) we can solve
our system in a functional framework based only on some regularizing effects for the heat kernel in
LPL? spaces. However, if p exceeds this critical value, in order to handle this less of regularity we
have the add a weight in time.

Proposition [5.4.1| requires the following result:

Proposition 5.9.1. Let 1 < r <2 and 1 < p < Nr/(3r —2). Suppose that f1, V fa belong to
L%Liv3/(3r—2), foe LLL® ﬂLTTLiW/Z(Tfl), V fa belongs to LgT/E)LiNT/(&*Q). Assume that v belongs
to L%”Liw/(r_l) and its norm is small enough. Let us assume that dy takes value in SN~ ugy, Vdy

belong to Bg,{pfl and condition (5.4)) is satisfied. Then there exists (u, d, VII) solution of (5.87)
such that d belongs to L L, (u, Vd, VII) belongs to X, and (u, Vd) belongs to L2L°.

x

Proof. The case of the simple heat equation in d is provided by the Mild formulation, namely
t
d(t) = e®doy + / et =B o (s)ds = etBdy + Cfo(t). (5.88)
0

We immediately get d € L L3 and its norm is bounded by ||do|| e + fot | f2(s)|| oo ds. Moreover,

by Corollary |5.3.11.1) because Vdy € BZJX ,{p 1o BJ:/%ZT—U ors We deduce that etAVdy belongs

L%TL;]EVT/(T_U. the integral part VCfa(t) = CVfa(t) is handled by Lemma with r = r,

r9 =2r 1 = Nr/(3r —2) and g2 = Nr/(r — 1). Similarly, because V2dy belongs to B;/%?Qr—l)gr N
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B;f%?%—z),r’ we get Ve!AVd, € L%’”LiVT/QT_IﬂLTTLiW/(%_m and by Lemmal5.3.3| we obtain BV fs €

L%’”Liw/%_l N L’"TLiW/(%_m. Observing also that B;,\%T_l is embedded in B;]\Z,T/z?)r_z),?’r, again by
Corollary we get that e!®Vdy belongs to LST”LiNT/ Gr=2) " The same property is fulfilled
by Bfs = CV/fs, using Lemma with 7 = 6r/5 and ¢ = 3Nr/(6r — 5). At last, since
Vidy € BN §(3T 9),r W€ deduce again by Corollary|5.3.11.1{that V2e!2Vd, belongs to L7 LNT/(?’T 2)
while the same result is allowed for AV fa by Theorem [5.3.2} Hence, (u, Vd VII) belongs to er
at least for the terms related to d. Furthermore, since Vdy belongs to B (here the necessary
condition r < 2) we get e!2Vdy € L2 L and by Lemmaw1th re=r, 1"2 =2, ¢1=Nr/(r—1)
and ¢o = oo, we deduce that Bfs belongs to L%L;o, that is Vd € L%Lg"

Concerning the Stokes equation with the v-linear perturbation the mainly idea is to use the Fixed-
Point Theorem on the space %T,T determined by

X7 = { (u, VII) such that (u, d, VII) € X, 7}.

Indeed, let (w;, VF;) belong to inT, for i = 1,2, and let us define

t
ui(t) == e®ug + /0 e(t_s)A{ —v-Vw; — VP + fi(s)}ds, (5.89)

VII; .= —RR - {v - Vw; +f1},

then we have (u;, VP;) € %T,T, by the same techniques used for d. Moreover, subtracting in i,
ou :=uy — ug, OVII := VII; — VIls, dw := w; —wy and VP := VP, — VP,, we get

1(6u, 0VID| 3, . S HU”L%!L;NTTI 10w, 6P)| %, ,

Thus, by the Fixed-Point Theorem, on the condition ||v|| 12

(u, d, VII) solution for (5.87), with the properties described by the statement. This concludes the
proof of Proposition [5.9.1] O

~Nr/(r—1) small enough, there exists

Now we extend the range of r to (1, o0) and we consider an index of integrability p greater than
the critical Nr/(3r —2). As already mentioned, here the addition of a weight in time is necessary.
The following result is used in proposition [5.4.2

Proposition 5.9.2. Let 1 < r < oo and Nr/(3r —2) < p < N. Recalling the notation of Theorem
let us suppose that t1(f1, V fa) belongs to LA LE' and t27 fy belongs to L%ng/Z. Assume
that t7* € L2T7"L§3 and its norm is small enough. Let dy and ug be defined as in Proposition .
Then there exists (u, d, VII) € 9.1 solution of (5.87)), with d € LFL.

Proof. The proof is basically equivalent to the one of Proposition At first, by (5.88]) and

Lemma [5.8.3] we get
ldllzgeree S lldollzge + Ht2%f2||

T I

Recalling Theorem [5.3.11} by Vd, € Bé\;/gﬁ L v2d, e Bg/gf " and V3dy € B]\i/gﬁ ' we get that
t1etAVdy € LA LE tP1Ve!AVdy € L2 LE? and tM1e!AVd, € L27“LP1 Similarly #7 tAVdO € LXLE
and we get also 2 VetAVdo € LP LY. Because Vdy € BY/Gp 1) U we get 12etAVd, € L%TLip ! and

3p1,2r
71!V dy belongs to L L.
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Using Lemma and Lemma [5.8.2) with £ = 0, ¢ = p1, § = p2, § = p3 or ¢ = 3p1, we deduce the
previous results for CV fy instead of e!®Vdy (observing also that VC = B and V2C = A). Thus Vd
fulfils all the condition imposed by ), 7.
To conclude the proof, we use the Fixed-Point Theorem. Denoting Y/},T the set composed by the
couples (u, VII) such that (u, d, VII) belongs to 9, 7, we consider (w;, VF;) € f/,ﬂ,T, for i =1,2.
Thus, defining (u;, VII;) by (5.89), we have

1, 395, , S 1670l ol Gy 5P,

T

hence there exists (u, d, VII) € 9, 7 solution of (5.87)), and this concludes the proof. O



Chapter 6

Corotational Beris-Edwards model

In this chapter we present the results of the following manuscript:
F. De Anna, A Global 2D well-posedness result on the order tensor liquid crystal theory, submitted
(2015)

The reader should consider the results achieved in this chapter as an introduction to the ones
of chapter [/ where we study the general Beris-Edwards system. The complexity of the general
system requires a very deep analysis, making use of particular structural features. In this chapter,
the difficulties coming from the corotational Beris-Edwards system are more handleable, then they
should make the reader familiar with some specifics of the system, which will be useful when
considering the general model in Chapter

6.1 Introduction and main results

The theory of liquid crystal materials has attracted much attention over the recent decades. Gen-
erally, the physical state of a material can be determined by the motion degree of freedom about
its molecules. Certainly, the widespread physical states of matter are the solid, the liquid and
the gas ones. If the movement degree of freedom is almost zero, namely the forces which act on
the molecules don’t allow any kind of movement, forcing the material structure to be confined in
a specific order, then we are classifying a solid material. If such degree still preserves a strong
intermolecular force but it is not able to restrict the molecules to lie on a regular organization,
then we are considering a fluid state of matter. Finally in the gas phase the forces and the distance
between the molecules are weak and large respectively, so that the material is not confined and it
is able to extend its volume.

However, some materials possess some common liquid features as well as some solid properties,
namely the liquid crystals. As the name suggests, a liquid crystal is a compound of fluid molecules,
which has a state of matter between the ordinary liquid one and the crystal solid one. The molecules
have not a positional order but they assume an orientation which can be modified by the velocity
flow. At the same time a variation of the alignment can induce a velocity field as well. In a common
liquid (more correctly an isotropic liquid) if we consider the orientation of a single molecule then we
should see the random variation of its position. Nevertheless, in a crystal liquid, we see an amount
of orientational order.

It is well-documented that liquid crystals have been well-known for more than a century, however
they have received a growth in popularity and much study only in recent decades, since they have
attracted more attention thanks to their potential applications (see for instance [90]).

93
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Commonly, in literature the liquid crystals are categorized by three sub-families, namely the ne-
matics, the cholesterics and the smectics. On a nematic liquid crystal, the molecules have the same
alignment with a preferred direction, however their positions are not correlated. On a cholesteric
liquid crystal we have a foliation of the material where, on each plaque, the molecules orient
themselves along the same direction (which can depend on the foliation). As in the nematic case, a
cholesteric liquid crystal doesn’t require any kind of relation between the positions of the molecules.
At last, on a smectic liquid crystal we have still a privileged direction for all the molecules, as in
the nematic case, however the position of them is bonded by a stratification. In addition to the
orientational ordering, the molecules lie in layers.

6.1.1 The Order Tensor Theory

A first mathematical approach to model the generic liquid crystals was proposed by Ericksen [41]
and Leslie [69] over the period of 1958 through 1968. Even if they presented a system which has been
extensively studied in literature, for instance in [79] and |117], several mathematical challenges and
difficulties reside in such model. Hence, in 1994, Baris and Edwards [12] proposed an alternative
approach based on the concept of order Q-tensor, that one can find also in physical literature, for
example [35] and [109]. The reader can find an exhaustive introduction to the Q-tensor Theory
in a recent paper of Mottram and Newton [92], however we present here some hints in order to
introduce the Q-tensor system.

Let us assume that our material lies on a domain Q of R3. A first natural strategy to model the
molecules orientation is to introduce a vector field d, the so called director field (see for instance [80],
which returns value on S?, the boundary of the unit sphere on R®. Here d(t, ) is a specific vector
for any fixed time and for any x € Q. Instead of considering a precise vector d(t,z) on S?, an
alternative approach is to establish the probability that this vector belongs to some measurable
subset A C S%. Therefore we introduce a continuously distributed measure P on S?, driven by a
density p

P = [ oPaop)= [ app).

PeA

We supposed the molecules to be unpolar, so that there is no difference between the extremities
of them, so mathematically the probability P(.A) is always equal to P(—.A), which yields that the
first order momentum vanishes:
/ p(P)do = 0.
Pes?

Now considering the second order momentum tensor, given by

e [ porar)= ([ prwr) e

Pes? 1,j=1,2,3

where M3(R) denotes the 3 x 3 matrices with real coefficients, we observe that M is a symmetric
matrix and it has trace trM = 1.

In the presence of an isotropic liquid, the orientation of the molecules is uniform in every direction,
hence in this case the probability Py is given by

Po(A) = /P _ do(P)

so that the corresponding second order momentum M is exactly Id /3. We denote by @ the
difference between a general M and My obtaining a tensor which is known as the de Gennes order
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parameter tensor. Roughly speaking, () interprets the deviation between a general liquid crystal
and an isotropic one. From the definition, it is straightforward that @ is a symmetric tensor and
moreover it has null trace. If Q) assumes the form sy (d®d—1d /3), where sy is a suitable constant,
then the system which models the liquid crystal (and we are going to present) reduces to the
widespread Ericksen-Leslie system (see for instance [12]).

6.1.2 The Q-Tensor System

The present work is devoted to the global solvability issue for the following system as an evolutionary
model for the liquid crystal hydrodynamics:

hQ+u-VQ—QQ +QQ=TH(Q) R, x R?,
Ou~+u-Vu—vAu+ VII = Ldiv{ QAQ — AQQR - VQOVQ } R, x R? (P)
divu =0 R, x RZ,
(u, @)t=0 = (uo, Qo) R?,

Here Q = Q(t,z) € M3(R) denotes the order tensor, u = u(t, ) € R? represents the velocity field,
IT = TI(¢, z) € R stands for the pressure, everything depending on the time variable ¢ € R and on
the space variable 2 € R%. The symbol VQ ® V@ denotes the 3 x 3 matrix whose (4, j)-th entry is
given by tr(9;Q 0;Q), for i, j =1, 2, 3. Moreover I', v and L are three positive constants.

The left hand side of the order tensor equation is composed by a classical transport time derivative
while, defining 2 as the antisymmetric matrix Q := (Vu — *Vu)1/2, QQ — QQ is an Oldroyd time
derivative and describes how the flow gradient rotates and stretches the order parameter. On the
right-hand-side, H(Q) denotes

H(Q) = ~aQ +5(Q ~ n(Q?) ) — ctr(@)Q +LAQ,

P(Q)

and P is the so called Landau-de Gennes thermotropic forces (more precisely it is a truncated
taylor expansion about the original one, see for instance [104]). Here a, b and ¢ are real constant,
and from here on we are going to assume c to be positive.

In reality, (P) is a simplification of a more general system. More precisely, fixing a real £ € [0, 1],
we consider

0Q+u-VQ —S(Vu,Q) =TH(Q) R, x R?,
ou+u-Vu—vAu+ VII =div{r + o} Ry x R?, P
divau = 0 R, x RZ, (Fe)
(u, Q)t=0 = (uo, Qo) R?,

where S(Vu, Q) stands for

5(@.Vu) = €D+ 0)(Q+ ) + (Q+ ) €D~ )~ 2(Q + % )x(QVu)

with D := (Vu+*Vu)1/2. Moreover 7 and o are the symmetric and antisymmetric part of the the
additional stress tensor respectively, namely

ri= EQ+ SHQ) ~EHQQ + )
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F26(Q + $)H{QH(Q)} - L{VQ O VQ + Q).
7= QH(Q) - HQ)Q.

Here £ is a molecular parameter which describes the rapport between the tumbling and aligning
effect that a shear flow exert over the liquid crystal directors. From here on, we are going to
consider the simplest case & = 0, which leads to system .

Before going on, let us recall what we mean by a weak solution of system .

Definition 6.1.1. Let Qo and ug be a 3x 3 matriz a 3-vector respectively, whose components belong
to L?(R?). We say that (u, Q) is a weak solution for if u belongs to LS, (Ry, L2)NLE (Ry, HY),
Q belongs to C(Ry, HY) N L2 (R4, H?) and is fulfilled in the distributional sense.

6.1.3 Some Developments in the order tensor Theory

Although the Q-tensor theory has received more attention in several disciplines as Physics [90],
numerical analysis [86], mathematical analysis [92], the solvability study of the related system has
not received numerous investigations, yet. We recall here some recent results.

in [113], D. Wang, X. Xu and C. Yu developed the existence and long time dynamics of globally
defined weak solution. In their paper, system is considered in the compressible and inhomoge-
neous setting, the fluid density p not necessarily constant, described by a transport equation, and
moreover a pressure dependent on p.

In [42] J. Fahn and T. Ozawa proved some regularity criteria for a local strong solution of system
(2)-

In [99], M. Paicu and A. Zarnescu first showed the existence of a Lyapunov functional for system
. Then they proved the existence of a weak solution thanks to a Friedrichs scheme. They also
showed the propagation of higher regularity, namely H*(R?) x H*3(R?) for (u, Q), with s > 1. At
last they established an uniqueness result on the condition that one of the two considered solutions
is a strong-solution, that is they proved the so-called weak-strong uniqueness.

In [98] M. Paicu and A. Zarnescu proved existence of weak solutions for system (P) when ¢ is a
general value of [0, ] for some 0 < & < 1.

In [53] F. G. Guillén-Gonzalez and L. A. Rodriquez-Bellido established the existence and uniqueness
of a local in time weak solution on a bounded domain. They also gave a regularity criterion which
yields such solutions to be global in time. Moreover they proved the global existence and uniqueness
of strong solutions provided a viscosity large enough.

In [54] F. G. Guillén-Gonzalez and L. A. Rodriquez-Bellido proved the existence of global in time

weak-solutions, an uniqueness criteria and a mximum principle for (). They also established the
traceless and symmetry for @), for any weak solution.

6.1.4 Main Results

Article [99] is probably one of the best-known research interesting the solvability of , globally
in time and in the whole space. Nevertheless they results can be improved and this work is mainly
devoted to this purpose.

First Paicu and Zarnescu proved an uniqueness result on the condition that at least one of the
considered solutions is a strong solution. This is due to the necessity to control (u(t), VQ(t))
in L>°(R?), which leads to control (u(t), VQ(t)) in H*(R?) with s > 1, thanks to the Sobolev
Embedding H*(R?) < L*(R?). Assuming s > 1, they imposed one of the two solutions to be a
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classical solution. Their approach is to estimate the difference between two solutions in the same
functional space the solutions belong to, i.e. in an L?*(R?)-setting.

In this work, we improve their result making use of a strategy which is inspired by [48] and [88].
Indeed, since the difference between two solutions has null initial datum, then it is possible to
estimate such difference in a functional space with a lower regularity than the one related to the
existence part, namely in an H~/?(R?)-functional framework. We will see that this allows us to
avoid the problem of controlling the L (R?) norm, so that we are able to prove the following result:

Theorem 6.1.2. Let us assume that system admits two weak solutions (u;, Q;), 1 =1, 2, in
the sense of of definition|6.1.1. Then such solutions are equal, (u1, Q1) = (u2, Q2).

The second (and last) gap concerns the propagation of regularity. Paicu and Zarnescu consider
initial data (ug, Qo) in H*(R?) x H'T$(R?), with s greater than 1. Then, they are able to prove
that such high-regularity is preserved by the related solution of . Denoting by

F&) = @, +IVQWIG.,  9(t) = [Vu®)F. + 1AQW)IF.,

the major part of their proof releases on the Osgood lemma, applied on an inequality of the following
type:

% (t)+g(t) < Cf(t)In{e+ f(t)}, teRy,

for a suitable positive constant C. However such estimate requires again to control the norm
l(u(t), VQ(t))||z= by |[(u(t), VQ(t))| s, and this is true only if s is greater than 1. We fix such
lack, namely we extend the propagation for 0 < s, passing through an alternative approach. Indeed
we control the L>-norm by a different method (see Lemma |6.7.2] and (6.38])). Thus, our second
result reads as follows:

Theorem 6.1.3. Assume that (ug, Qo) belongs to H*(R?) x H'*5(R?), with 0 < s. Then, the
solution (u, Q) given by Theorem Sulfills

(’LL, VQ) € L?,(l)ocHs(RQ) N L?,IOCHS+1(R2)'
Now, we have also chosen to perform an existence result, for the sake of completeness, although
it was proven by Paicu and Zarnescu. Nevertheless, here we use an alternative approach. Indeed
in [99], the authors utilize a Friedrichs scheme, regularizing every equation of , while our
method is based on a coupled technique between the Friedrichs scheme and the Schaefer’s fixed
point theorem, regularizing only the momentum equation of . This method is inspired by [77],
where F. Lin use a modified Galerkin method coupled with the Schauder fixed point theorem, in
the proof of an existence result. Then our last result reads as follows:

Theorem 6.1.4. Assume that (ug, Qo) belongs to L*(R?) x H(R?), then system admits a
global in time weak solution (u, Q), in the sense of definition |6.1.1]

Let us briefly describe the structure of this chapter: in the next section we recall some classical
tools which are useful for our proofs, in section [6.3] we deal with Theorem the existence of
weak solutions, in section and we establish Theorem [6.1.2] i.e. such solutions are unique,
and finally in section we deal with Theorem , proving the propagation of regularities. We
put forward in section some technical details, for the sake of simplicity.



98 CHAPTER 6. COROTATIONAL BERIS-EDWARDS MODEL

6.2 Preliminaries and Notations

In this section we illustrate some widely recognized mathematical tools and moreover we report
some notations which are going to be extensively utilized in this research.

6.2.1 Sobolev and Besov Spaces

First, let us introduce the spaces we are going to work with (we refer the reader to [7] for an
exhaustive study and more details) . We recall the well-known definition of Homogeneous Sobolev
space H® and Non-Homogeneous Sobolev Space H*:

Definition 6.2.1. Let s € R, the Homogeneous Sobolev Space H® (also denoted H*(R?)) is the
space of tempered distributions u € .7 over R?, the Fourier transform of which belongs to L}OC(RZ)
and it fulfills

Il = [l la(€) P < o

Moreover u belongs to the Non-Homogeneous Sobolev Space H® (or H*(R?)) if i € L? (R?) and

loc
= [ (14 €DP1a(@) P < o

H?* is an Hilbert space for any real s, while H® requires s < d/2, otherwise it is Pre-Hilbert. Their
inner products are

(o oyme = [+ EDPHOTENE and (o) = [P a7,

respectively. Even if such dot-products are the most common ones, from here on we are going
to use the ones related to the Besov Spaces (at least for the homogeneous case). Hence, first we
need to define them. In order to do that, it is fundamental to introduce the Dyadic Partition. Let
X = x(§) be a smooth function whose support is inside the the ball [£| < 1. Let us assume that x
is identically equal to 1 in [£| < 3/4, then, imposing ¢4(£) := x(£27771) — x(£279) for any ¢ € Z,
we define the Homogeneous Litlewood-Paley Block Aq by

Af = F Yo, f) €7, forany fe. .

Moreover we denote by Sj the operator Zq<j_1 Aq, for any j € Z. We can now present the
definition of Homogeneous Besov Space

Definition 6.2.2. For any s € R and (p,7) € [1,]?, we define B;T as the set of tempered
distribution f such that

1Ay, = 129020 N2l 2y

and for all smooth compactly supported function @ on R? we have

lim O(AD)f =0 in L>(R?).

A—400

It is straightforward that the space BS,Q and H* coincides for any real s, and their norms are
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equivalent, so we will use the following abuse of notation from here on:

(u, v) s = (u, v)Bgz = ZQQqs<Aqu7 Aq”>L§7
7 qEZL

where (-, )2 is the common inner product of L2 := L?(R?).

A profitable feature of the Homogeneous Besov space with negative index s is the following one
(see Proposition 2.33 of [7])

Proposition 6.2.3. Let s <0 and 1 < p,r < oco. Then u belongs to B;T

if and only if
(2911Syullzz) o € L' (2.
Moreover there exists two positive constant cs and Cg such that

colullg, < 118 gullg) epllir ) < Colluls, -

6.2.2 Homogeneous Paradifferential Calculus

In this subsection we give some hints about how the product acts between H® and H!, for some
appropriate real s and t. We present several tools which will play a major part in all our proofs.
First, let us begin with the following Theorem, whose proof is put forward in the appendix:

Theorem 6.2.4. Let s and t be two real numbers such that |s| and |t| belong to [0,1). Let us
assume that s+t is positive, then for every a € H® and for every b € Ht, the product ab belongs to
H*+'=1 and there exists a positive constant (not dependent on a and b) such that

labll grose—1 < Cllall gs 16l e

One of the main reasons we should consider the Besov formulation 3572 of the homogeneous Sobolev
space H® is the so-called Bony decomposition:

fg="Tsg+Tyh+ R(f, g), with Tpg:=Y Sy 1fAsg and R(f, g):= > AifAig
qEL q€Z,|l|<1

This decomposition is quite helpful when analizying Aq( fg) for some integer ¢. In order to deal the
most challenging terms, in this work we will make use of a reformulation of the Bony decomposition.
We present it in its matrix form. Let ¢ be an integer, and A, B be N x N matrices, whose
components are homogeneous temperate distributions, we denote by

JNA,B) = Zlq_q/|§5[Aq, Sy _1AJA, B, J2(A, B) := S;_1AAB,
ij(Aa B) = Z|q—q/|§5(5’q/*1‘4 - Sq—lA)Aqu/Bv jq4(A7 B) = quzq—E) Aq(Aq’A Sq/+2B)a
then the following product law for AB, is satisfied: o1
A¢(AB) = J} (A, B) + JX(A, B) + T}(A, B) + T} (A, B), (6.2)

for any integer gq.
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6.2.3 The Frobenius Norm

Before beginning with the proofs of our main results, let us give the following remark:

Remark 6.2.5. The most common inner product defined on M3(R) (the 3 x 3 real matrices) is
determined by:

3
A-B=> AiBij=t{'AB},  forany A, Be M;s(R).
ij=1

Hence, if at least one of the two matrices is symmetric, for instance A, then we obtain
A- B =tr{AB}, (6.3)
which determines the well-known Frobenius norm of a matriz |A| := \/m Since any solution
(u, Q) for fulfills
Q(t,x) € Sy := {A € M3R), tr{A} =0 and ‘A= A},
for almost every (t,x) € Ry xR? (see [99] and [54)]), then from here on we will repeatedly use .

Moreover, we will use the symbol < (instead of <) which is defined as follows: for any non-negative
real numbers a and b, a < b if and only if there exists a positive constant C' (not dependent on a
and b) such that a < C'b.

6.3 Weak Solutions

This section deals with the existence of weak solutions for in the sense of definition As
we have already explained, we are going to proceed with a coupled method between the Friedrichs
scheme and the Schaefer’s Theorem. Hence, before going on, let us recall the widely recognized
Schaefer’s fixed point Theorem

Theorem 6.3.1. Let ¥ be a continuous and compact mapping of a Banach Space X into itself,
such that the set {x € X : © = AWz for some 0 < X\ < 1} is bounded. Then T has a fixed point.

First, we introduce one of the key ingredients of our proofs, namely the mollifying operator J,
defined by
FUE) =1 y(€)  for € B2,

which erases the high and the low frequencies.
We claim the existence and uniqueness of a solution for the following system

5Q + (Juu-VQ) = Ju0Q + QJ,Q = TH(Q) 0,7) x R2,
o+ JyP(Jou - Vu) — vAu = LJ,Pdiv{ QAQ — AQQ —VQ ®VQ } [0,T) x R?, )
divu =0 0,7)xR2 "
(U, Q)t:() = (UOJ QO) sz
where P stands for the Leray projector operator, which is determined by
FIPINO = F(&) - o o F(€),  for fe(2)? with 1<p<oo,

€] le]
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and T is a positive real number. It is well known that P is a bounded operator of (L})? into itself
when p € (1, 00).
Remark 6.3.2. We say (u, Q) is a weak solution of the problem , provided that

uwe C([0,T],L2) N L*0,T; H'), Q € C([0,T]; HY) N L?(0,T; H?)
and is valid in the distributional sense.

The following proposition plays a major part in our main proof, since it allows us to control the
LE-norm of Q only by Q.

Proposition 6.3.3. Suppose thatu € C([0,T], L2)NL2(0,T; H) and moreover that Q € C([0,T], H')N
L?(0,T; H?) is a weak solution of

MQ+u-VQ—-QQ+QAU-TLAQ =TP(Q) in [0,T)x R? and  Qi—o= Qo€ H'.

Then, for every 2 < q < 0o, the following estimate is fulfilled

Qs +a [ {QUPHE VR Pdr < | Qollm exp{Ce),

for a suitable positive constant C dependent only on q, I', a, b and c.

Proof. Fixing p € (1,00), We multiply both left and right-hand side by 2pQ tr{@Q?}?~!, we take the
trace and we integrate in R?, obtaining that

Sl — T2Lp(QHIr QY AQM) 12 =
=2y [ Q) PQ( )t )

for almost every ¢ € (0,T), where we have used divu = 0 and tr{QQQ — QQ?} = 0 . First,
analyzing the second term on the left-hand side, integrating by parts, we determine the following
identity:

—(2pQu{Q*}" ™1, AQ) 2 =

2

21p—1 N2 Tl 02V ir ,
> [ [ Q@Y {0 + 2 [ 2lr{QPpr{Q0Q)

i=1

2 / tr{Q2LVQI + 4p(p — 1) / (@2 2Vt {Q2)]2 > 0,
R2 R2

which allows us to obtain
IR, 20 [ QP IVQE T [ 2pe(@herl PQt)Q(t ) Y
Now, we deal with the right-hand side by a direct computation, observing that
[ @y aP@aide =1 [ [ @ +bu(@) @’} - cun(@?y

2 c 2(p+1 2
S Q1% - SIQIEE ) S IQII%,,
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where we have used the following feature about a symmetric matrix with null trace:

| / (@ e @Y < <IQIEEED, + L1QI%,.

for a positive real €, small enough. Indeed, if Q) has A1, A1, and —A; — Ao as eigenvalues, we achieve
that tr{Q3} = =3\ 2(\1 + A2) and tr{Q?*} = 2(A\} + A3 + A1 )\2), hence

1
tr{Q}] < eXEAS + - + A3+ 20 ko)
1 1
SeOT+ A3+ Ah)’ + - + A3+ Aha) S etr{QF + —tr{Q%}.

Therefore, we deduce that
| / r{Q2P (@) < / (@) 4 L / w{Q*)". (6.4)
R2 RN g JRN

Summarizing the previous consideration, we get 54 L1Q(t )||L2p <11Q®)|* 1200 50 that the statement
is proved, thanks to the Gronwall’s inequality. O

Now, let us focus on one of the main theorems of this section, which reads as follows:

Theorem 6.3.4. Let n be a positive integer and assume that (ug, Qo) belongs to L2 x H}. Then,
system (Py,)) admits a unique local weak solution.

Proof. The key method of the proof relies on the Schauder’s Theorem. We define the compact
operator ¥ from C([0,T],L2)?> N L?(0,T; H')? to itself as follows: (¥(u), Q) =: (@, Q) is the
unique weak solution (in the sense of remark |6.3.2)) of the following Cauchy problem:

0,Q + (Jou -VQ) — 1,00 + QJ,Q =TH(Q) [0,T) x R2,
Oyt + JpP(Jnti - VJuit) — vAG = LJ,Pdiv{ QAQ — AQQ —VQ O VQ } [0,T) x R?,
diva=0 [0,T) x R?,
(@, Q)t=0 = (uo, Qo) R?.

We claim that the hypotheses of the Schauder’s Theorem are fulfilled, namely ¥ is a compact
mapping of X := C([0,T], L2) N L?(0,T; H') into itself, and the set
{u=A¥(u) for some 0 <\ <1}

is bounded. First we deal with the compactness of ¥. Considering a bounded family F of X, we
claim that the closure of ¥(F) is compact in X. If we prove that W(F) is an uniformly bounded
and equicontinuous family of C([0,7]; L2) and moreover that { ¥(u)(¢) with ¢t € [0,T] and u € F}
is a compact set of L2, then the result is at least valid as ¥ mapping of X into C([0, 7], L?), thanks
to the Arzela-Ascoli Theorem. Multiplying the first equation by Q@ — AQ and integrating in R?, we
get

33 [IVQIE: +1QIE;| + TLUVQIE; +18Ql1%) = [ [n{(790 - 07,040} -
— tr{(Jyu- VQ)AQ}| - TL /R |a6{QAQ} —b1r{Q?AQ) + ctr{QAQMHQ? |+

0 [ [atr(@) - br(Q?) +eu(@p ],
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almost everywhere in (0,7"), which allows us to achieve

d
G lIVQWIE: +1QWI5:] + TL(IVQIE; +1AQI5:) <

I'L
< Co(1+ () I3,) (IR®IE: + 1R %5 + IVQIE,) + 1 1AQMIE,

where C), is a positive constant dependent on n. Therefore, thanks to Proposition [6.3.3] we realize
that the family composed by @ = Q(u) as u ranges on F is a bounded family in C([0,T]; H') N
L?(0,T; H?). Now, multiplying the second equation by @ we get the following equality:

1d

35l TOIE: + VIV, =L [ 6{(YQ© YQ+QAQ - AQ@)Va)(t )tz = F(1),

for almost every t € (0,7). Thus it turns out that

d, _ _ _
E@IL +vIVa@IlZ; < 1FO] < IVQILIVallzs + QN2 1Al L [Vl e

< Cu(lQIZs + IVQI32) 1AQWIIE; + 155V 2.

(6.5)

where C,, > 0 depends on n. Here, we have used the feature J,4 = 4, which comes from the
uniqueness of the solution for the second equation, so that ||Vil|pe < Cypl|Vi| 2. Summarizing
the previous considerations and thanks to the Gonwall’s inequality we discover that ¥(F) is a
bounded family in X, so in C([0,T], L?). Moreover, from and the previous result, it turns
out that |F'(t)| is bounded on [0, 7], uniformly in v € F. Hence ¥(F) is an equicontinuous family
of C([0,T]; L?). Finally, because J,i = @, we get that { U(u)(t) witht € [0,T] and u € F} is
a subset of a bounded L2-family composed by functions with Fourier-transform supported in the
anulus C(1/n,n), which is a compact family of L2. Summarizing all the previous consideration, we
get that W(F) is compact in C([0, 7], L2) thanks to the Arzela-Ascoli Theorem.

It remains to prove that W(F) is compact in L2(0,T; H'), so that ¥ is a compact mapping of X
into itself. Since J,¥(u(t)) = V(u(t)) for every u € F and t € (0,T), the precompactness of ¥(F)
in L2(0,T; H') is equivalent to the precompactness of W(F) in L2((0,T) x R?). Recalling that
WU (F) is precompact in C([0,T], L2) which is embedded in L?((0,T) x R?) (for T finite), then we
determine the result, so that, in conclusion ¥ is a compact operator from X to itself.

Now, we deal with the Schaefer’s Theorem hypotheses, namely the set

{u=A¥(u) for some X € (0,1)}
is a bounded family of X. First, we point out that if u = A\W¥(u), then the couple (u, @) is a solution
for

0Q + AJpu - VQ — \,0Q + \QJ,Q =TH(Q) [0,T) x R2,
o+ Jp,P(Jpu - VJou) — vAu = LJ,Pdiv{ QAQ — AQQ —VQ O VQ } [0,T) x R2,
divu=0 [0,T) x R2,
(u, Q)t=0 = (uo, Qo) R2.

We multiply the first equation by @ — AQ), the second equation by wu, we integrate everything in
R? and we sum the results, obtaining:

d
3 L1Ql% + IVQIT: + llulli | + TLIVQIIZ: + TLIAQ|Z: + [ VullZe =
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MJnt - VQ, Q = AQ) 12 + MJu0Q — Q1,2 Q — AQ) 2 + T(P(Q), Q — AQ) 12—
— (T Vgu, Viu) 12 + LQAQ — AQQ, Vyu) 2 + L(VQ © VQ, Vuu) 2.

According to ||Jpul||pee + [|[VIpul||pe < Cpllul|z2, up to a positive constant C,, dependent on n, it
is not computationally demanding to achieve the following estimate:

d
3 | 1QIZ: +IVQIIZ: + ||UH%gJ +TL|AQIIZ, + vIIVul7, <
1%

100

'L

< CallVQIZ: [ 1QI3 + IV QI3 + lull3: | + o

IVul2 + T2 1AQI2.

Now, we recall that V@ is in bounded in L?(0, T, L2) thanks to Propositionm (imposing ¢ = 2).
Therefore, thanks to the Gronwall’s inequality, we detect the following estimate:

1QN T 0.7:22) + IV@I e 0.1:22) + 1l oo 0,7:22)+
cT
AR 2(0.12) + VUl 20 722) S Nl (w0, Qo, VQo)| 2 e 10l

so that, the family {u = A¥(u) for some 0 < A < 1} is bounded in X. Hence, applying the
Schaefer’s fixed point Theorem, we conclude that there exists a fixed point for ¥, namely there
exists a weak solution (u, @) (in the sense of remark [6.3.2)) for the system (P,)). O

Remark 6.3.5. In the previous proof T' has only to be bounded, and it has no correlation with the
initial data, so that the solution (u™, Q™) of system (B, given by Proposition m it should be
supposed to belong to

C(RJ” Li) N L%oc(RJr’ Hl) X C(R+’ Hl) N leoc(R+7 H2)
We are now able to prove our main existence result, namely Theorem

Proof of Theorem [6.1.7) Let us fix a positive real 7' and let (u™, Q™) be the solution of given
by Proposition for any positive integer n. We analyse such solutions in order to develop
some n-uniform bound for their norms, which will allow us to apply some classical methods about
compactness and weakly convergence.

We multiply the first equation of by Q" — LAQ™, the second one by u", we integrate in R?
and finally we sum the results, obtaining the following identity

d
g Lz + 19" 2 +FL||VQ"II%§] +v|[Vu"| 2 + TLIVQ"|| 2 + TL?|AQ" 12 =

= —(un - VQn, Qn)rz +L{u" - VQ", AQ") 2 +(Q"Q" — Q"Q", Q™) 2 —
=0 B =0

—L(Q"Q" — Q"Q", AQ™) 12 +T(P(Q"™), Q") 2 — TL(P(Q"), AQ™) 12— o0
A
—(u"- V", u")  —L{QTAQ" — AQ"Q", Vu) 1z —L(div{VQ" © VQ"}, u") 2 .
=0 AA BB

First, let us observe that A+ AA = 0 thanks to Lemma Moreover (u"-VQ", Q") 2 and (u"-
Vu', u™) rz are null , because of the divergence-free condition of u™, while (Q"Q" — Q"Q", AQ™) L2
is zero since Q" is symmetric. Furthermore B + BB = 0 since the following identity is satisfied:

tr{u" - VQ" AQ"} = div{VQ" © VQ"} - u" — div{u" (|1 Q"2 + [0:Q" )}
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Recalling (6.4) with p = 1, it turns out that
T(P(O" n < n|2 E n |4 < n|2
(P@Q"), Q") 2 S IQ"I[7z — S1Q"I2s < 1Q" 172,
while, by a direct computation and thanks to Proposition we deduce

TL(P(Q™), AQ™) 2 S VQ"™ 72 + Q"1 761AQ" |2
SIVQ"IIZ2 + 1Qoll% € + Cr.ol| AQ™ |17,

where C' is positive real constant, not dependent on n and Cr; > 0 is a suitable small enough
constant which will allow to absorb ||AQ”||%% by the left-hand side of (6.6). Thus, summarizing
the previous considerations, we get

d
T2 + Q7172 + TLIVQ" ;| + vl Va2 + TL2IAQ"E; S
S 1@z + IVQ™I72 + 1 Qoll G2,
which yields

[(u", @™, VQ")| 0,12y + [(VU"s AQ™) r20,1:12) S

) . (6.7)
S (uollzz + [|Qollrz + [Qoll71) exp{Ct},

for a suitable positive constant C, independent on n.

Thanks to the previous control, we carry out to pass to the limit as n goes to 400, and we claim
to found a weak solution for system . We fix at first a bounded domain € of R?, with a smooth
enough boundary. At first we claim that (Q")y is a Cauchy sequence in C([0,7T], L%(Q2)), and the
major part of the proof releases in the Arzela-Ascoli Theorem. We have already proven that (Q™)n
is bounded in such space, moreover, since Q" (t) belongs to H'(Q) which is compactly embedded in
L%(9), we get that {Q"(¢) : n € Nand t € [0,T]} is a compact set of L?(Q2). Moreover, observing
that

10:Q" |20y < 1wl za IVQ™ |zs + VU™ |2 Q" | ee + [P(Q")I 2

1 1 1 1
< a2 19 2, IV Q 12 I AQVIE, + Va1 Q" = + 1Q7 1z + 1Q" 24 + Q" 13-

Therefore, it turns out that (3;Q™)y is an uniformly bounded sequence in L(0,T; L2) which yields
that (Q™)y is uniformly equicontinuous in C([0,77], L2), so that, applying the Arzela-Ascoli The-
orem, there exists Q € C([0,7T], L2) such that Q™ strongly converges to @, up to a subsequence.

Moreover, thanks to (6.7), we also obtain that VQ and AQ belong to L°(0, T; L2) and L?(0,T; L?)
respectively, and we have:

vQ" ~VQ  w-L*0,T;L?)  and AQ" —~ AQ  w— L*0,T;L3?),

up to a subsequence. Now, let us fix a bounded smooth domain 2 of R2. Then VQ"(t) weakly
converges to VQ(t) in H'(€2), for almost every ¢ € (0,T), up to a subsequence, so that, from the
compact embedding H'(Q) << L?(2), we deduce that VQ"(t) strongly converges to VQ(t) in
L?(9), for almost every t € (0,T). Moreover |VQ" — V@Q||r2(q) belongs to L>°(0,7') and its norm
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is uniformly bounded in n. Hence applying the dominated convergence Theorem, we get

T T
lim [ [VQ (1) - VQ(1)[3dt = /0 Tim [[VQ" (1) ~ VQ(1)[2dt = 0

n—oo 0

namely VQ" strongly converges to VQ in L?(0,T; L?(£2)). Since VQ" is bounded in the Lebesgue-
space L?(0,T; L%) (from the embedding H! — LS) we get also that VQ™ weakly converges to VQ
in w— L2(0,T; LY), so that VQ" strongly converges to VQ in L?(0,T; L*(Q2)) by interpolation.
This range of convergences shows that VQ © VQ and QAQ — AQ are the limits of VQ" & VQ"
and Q"AQ" — AQ"Q", as n goes to infinity, respectively in L'(0,T; L*(Q)) and L'(0,T; LY3()).
The strongly convergence of P(Q") to P(Q) in L?(0,T; L?(f2)) is straightforward, while, with a
similar strategy, we are able to prove the existence of u € L>(0,T;L2) with Vu € L?(0,T; L3)
such that u" strongly converges to w in L2(0,7;L*(Q))) and Vu" weakly converges to Vu in
L%(0,T; L?(2)) (everything up to a subsequence). Hence u™ - Vu™ and Q"Q" — Q"Q" weakly
converges in L'(0,T; L*3(Q)) to u - Vu and QQ—Q respectively. Finally u” - VQ™ strongly
converges to u - VQ in LY(0,T; L*(Q)).

Now, J,,¢ strongly converges to ¢ in L>°(0,T’; L%, for any ¢ € ®((0,T)xQ ) and for any 1<p<oo.
Considering all the previous convergences and since (u”, Q™) is a weak solution of , namely

[ oy [ wtawwoy+ [ eter-vaneys
[ eteer g =1 [1 [ e

for every N x N-matrix ¥ with coefficients in D([0,7) x 2) and

//RN Oy — / ug - (0 //]RN -Vu") PJM[)_V/ /RN A =

) / / Q"AQ" — AQ'Q" — VQ" © VQ"] - PI,V,
0 RN

for any N-vector ¢ with coefficients in ©([0,T") x ), we pass through the limit as n goes to oo,

obtaining
_/OT/RN tr{Q@t\If}—/RN tr{Qo\I'(O,-)}+/OT/RN tr{(u-VQ)W}i+

[ etee-qom=r [* [ utm@w
[ wow= [ oo+ [ v pew [ wau=

_ —L/O /RN[QAQ—AQQ—VQQVQ] PV,

and

From the arbitrariness of T and €2, we finally achieve that (u, @) is a weak solution for in the
sense of definition G111 O
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6.4 The Difference Between Two Solutions

This section is devoted to an important remark which plays a major part in our uniqueness result.
We deal with the difference between two weak solutions (u;, Q;), i = 1,2, of in the sense of
definition Denoting by (du, 6Q)) the difference between the first and the second one, we claim
that such element belongs to a lower regular space than the one the solutions belong to.

Proposition 6.4.1. For any finite positive T', ou and VoQ belong to L>(0,T; I-'[*l/Q).
Remark 6.4.2. In virtue of Proposition and since (Véu, ASQ) belongs to L?L2 then
(Véu, ASQ) € L*(0,T; H™/?),

for any finite positive T', thanks to a classical real interpolation method:

=

1 2
IVoull, -y S IVoull? _glIVoullzz S lloull ;g + [[Voulrg,

=

1AdQI 3 S I1AQIS _, HMQHLz SIIVOQ -y +11A0Q] 2.

H77 H™3
Proof of Proposition [6-/.1 Fixing T > 0 we are going to prove that du belongs to the space
L>®(0,T; H-/?) and 6Q belongs to L>(0,T; H'/?). We denote by fi and fo

fi:=—u1-VQi +u2-VQ2 + N1Q1 — Q2@ — Q11 + Q222 +

b Id
r{ 3(@F - @ - {01 - Q35 ) — et QD@ + etr{@3)Q2 |,

fo =P —div{us ® ug — ug @ ug} + Ldiv{ Q1AQ1 — Q2AQ2—
—AQ1Q1 + AQ2Q2 — VQ1 ©VQ1 + VQ2 © VQ2 },

respectively. Then d@Q and du are weak solutions of the following Cauchy Problems:
0:0Q —TLASQ +TadQ = f; and 0;0u — vASu = fo in [0,7) x R?,

with null initial data. By the classical Theory of Evolutionary Parabolic Equation, it is sufficient to
prove that f; and f> belong to L2(0, T’ H_1/2) and L?(0,T; H‘3/2) respectively in order to obtain

1(0u, VoQ)| S Al

Ly Il

Loo(0,T:H %) L2(0,T;H L2073y

and conclude the proof. We start by fi and Theorem [6.2.4] plays a major part. For any i = 1, 2,
we get

i - 9Qill -y S il 3 19 @ellz2 < Il 22 [ V] izuvczz-um e 1'0.T),

196 Qill, -y < IVl 2@l 3 < sznmHanLQchzlnLQ e 12(0.7),
121,y S 1Qil,3 1Rl S 1@l IV QL2 € L2(0,7),
@@l < 12 @il < V@il 2 il e L(0,T).

Then, summarizing the previous estimates, we deduce that f; belongs to L2(0,T; H~/2). Now, let
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us handle the terms of fo:
[div{w @uitl] 5 S llui @will o1 S wall g luill 2
1 1
< lluil 22 IV uil 22 lluill 22 € L*(0, T),
[div{QiAQi}| -5 S QiAQ| 3 S 1Qill 1 [AQ]I 2

1 1
S 1Qill2 IV Q2 IAQill 2 € L2(0,T),

[div{VQi © VQi}l| , s SIIVQi @ VQill .1 SIVQill ;1 IVQill 2

H™ % ~
1 1
< IVQilE 1A IV Qilliz € 40, T),

which finally implies that fo belongs to L2(0,T; H 7%) This concludes the proof of Proposition
6.4.1] O

6.5 Uniqueness

In this section we present our first original result. We are going to prove Theorem [6.1.2] namely
the uniqueness of the weak solutions, given by Theorem We implement the uniqueness result
of Paicu and Zarnescu in [99], concerning the weak-strong uniqueness. Indeed the authors suppose
that at least one of the solutions is a classical solution. The leading cause of such restriction
relies on the choice to control the difference between two solutions in an L2-setting. However, this
requires to estimate the L3°-norm of one of the solutions, ||(u, VQ)| s, for instance by a Sobolev
embedding, therefore the necessity to put (u(t), VQ(t)) in some H® with s > 1, for any real .

In this article we overcome this drawback, performing the uniqueness of weak solutions, thanks to an
alternative approach which is inspired by [48] and [88]. The main idea is to evaluate the difference
between two weak solutions in a functional space which is less regular than L2. Considering two
weak solutions (u1, VQ1) and (uz, VQ2), we define (du, JQ)) as the difference between the first one
and the second one. It is straightforward that such difference is a weak solution for the following
System:

00Q + du - VQ1 + uz - VOQ — §S(Vu, Q) —TLASQ =T P(Q) R, x R?
O0u + du - Vuy + ug - Vou — vAdu + VOII = Ldiv { OQAQ1+

+Q2A6Q — AdQQ1 — AQ20Q — ViQ ©®VQ1 —VQ2 © VQ } Ry x R?, (6P)
divéu =0 R, x R?,
L (0u, 6Q)i=0 = (0, 0) R2,

where we have also defined
02 :=Q —Qg, OI:=1I1) — Iy, 6P(Q):= P(Q1) — P(Q2).
and moreover

05(Q, Vu) :=Q1Q1 — Q121 + N2Q2 — Q209 = §QIN — §Q0Q + 02Q2 — Q2002 + Q20Q — JQs.

—-1/2

Recalling the previous subsection, we take the H -inner product between the first equation of
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(0P) and —LA6Q and moreover we consider the scalar product in H~Y/2 between the second one
and du:

drl 2 2 2 2 2 _
& [§||5UHH,% + L”V5Q||H,% + V||V5UHH,% +I'L ||A5Q||H,% =
= LT(3P(Q), ASQ) ,,_y — L{Su - VQ1,26Q) .y + Lluz - V6Q, ASQ) ) +
+ L{5S(Q, Vu), A6Q) ) — L{V3Q © VQ1,Véu) .y + L(VQ> ® V6Q, Vu) . ) — (6.8)
— (u- Vuy,0u) ) — (ug - Vou,6u) .y + LIGQASQ — A6QSQ, Véu) .y +
+ L{Q2A0Q — A6QQa, Vdu) .y + LISQAQs — AQ20Q, Viu) . 4.

Denoting by ®(t) = 1[|du(t) + L||VéQ(t)]|2 , we claim that

H 2

[N

2
12
d

&q)(t) < x(t)®(t), for almost every ¢ e Ry,

where y > 0 belongs to Llloc(RJ,_). Hence, uniqueness holds thanks to the Gronwall Lemma and
since ®(0) is null. Thus, we need to analyze every term of the right-hand side of . From here

on Cr r and C, are suitable positive constants which will be determined in the end of the proof.

Simpler Terms

First, we begin evaluating every term which is handleable by Theorem
Estimate of I'L{§ P(Q), A6Q>H7%

From the definition of §P(Q), and since tr{ AQ} is null, we need to control
PLSP(Q), A0Q) = ~TLa|[VAQI? _, +TIHEQ Q1 + @20Q, A6Q)

~TLe(6Qtr{Q1}, A6Q) , 3 — PLe(tr{6Q Q1 + Q20Q }Q1, Q) 4.

We overcome the second term in the right hand-side of the equality as follows:

TLb(6Q Q1+ Q20Q, A6Q) .1 S 10Q 1 [(Qr, Q2)l[2[|AQ| 3
S HV(SQH;,% (@1, @2)|7: + CP,LHA(SQHZ,%-

Furthermore, we observe that

PLe(0Qur{QT}, A6Q) 3 S 16QI 3 1QTN 2 126Q1 -y S IVEQI| -3 1Qu1[74 126Q] 4
SIVOQI -y Q|2 IV Q12 186Q]
S IVOQIE Q1172 IV@Q1lIZ; + Cr.ollAsQ%

and moreover

ILc(tr{ 0Q Q1 + Q20Q }Q1,AdQ) . 1

H™ 2
S10Q1,5 (@1 P2z + N1Q2li@illlz2 ) 140QI -y
S IVOQIl, -3 1@, Q)74 1A0QI1 -y
S IV8QI . 1 11Q1, @212V (@1 @2)l22125Q)

S ”V5Q||Z,% 1(Q1, Q2)II721IV(Q1, Q2)lI72 + CF,LHA(SQHZ,%-
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Finally, summarizing the previous inequality, we get

TLEP(Q), A6Q) -y S IVQI%_, Q1 Q)I72IV(Q1. @2)l172 + CrrllAsQl?

Estimate of L(du - VQ1, A5Q>H

1
2

3 1 1
L{Su- VQ1, A0Q), 3 S 6ul,1 V@l 31 A6Q1 -y < Isull’ _, IV6ulls | V@, x
3 2
NAQIE185Q1 -y < CrrllASQIE_, + CullVaul?,_y + V@il IAQi3: I6ul?,

Estimate of L{us - V@, A5Q>H‘%

L{ug - VOQ, A6Q) .1 < |luall 3 [IVEQ 3 [AQ] -

5
HU2HL2HVWHLQHWQH“ 1HMQH4 |

M

S CF,LHA(;QHZ_% + ||U2”23||VU2||L3HVCSQHZ_%

Estimate of L(6Q0$2 — 6Q5Q), A(SQ)H%

L{6Qd2 - 6Q0Q, A6Q) , 10Q 1 10922 [AQ[ 3

1V, u2>uL;Han||§.{_% +CralasQl?

1
2

AR AN

_1
2

Estimate of L(Q20Q — 6Q2, A5Q>H

L{€20Q — 6QQ, A0Q) 1 S Q2|22 110Q1 1 186Q 1
S HVW”%gHVfSQHZ,% + CF,LHAfSQHir%

~

Estimate of L(ViQ © VQ1, V(Su)H_ 1

2

L{V6Q O VQ1,Viu) . 1 SIVQ , 1 [IVQill 5 Voul,

_1 -1
2 H

3
= ||V5Q||2,% ||A5Q||;.r% Hle”}ig||AQ1||2926HV5UHH—%

2
< CF,LHA5Q||2,% + CVHV&U”Z,% + ||VQ1H23HAQlﬂigHWQHZ,%

Estimate of L(VQ2 ® ViQ, V&u)H_ 1

2

LVQ2 ©VoQ, Vou) . 1 SIIVQ| , 1V Q2 5[ Voul -

H™1

1
2

3 1
SI95QI1° 1A%, 19l £, 1AQa] zgnvaun,-{_%
g
< CrllAQIE _y + ClIVoul’ _y + IV Qall s 1AQa: VSR _,

Estimate of (du - Vuq, 5U>H‘%

(8w, 8u) -y S oul g IVusllzlloul, -y S CullT8ul?_y + Vil loul?,

I~
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Estimate of (us - Vou, 5u)H

_1
2

(g - Vou,0u) -y 5 lloull [Vl zelloull,

1 1
2 2

1
2

1 < C,||Voul?
H™ 2 ~ o

2 2
+ [ Vuslf3a lull?,

Estimate of L{(6QAIQ — AdQIQ, Viu)

Nl

H,

L{OQAQ — ASQ6Q, Viu) . 1 S [|A(Q1, Q)12 IVQI| 1 [[Voull 3
H™ 2 H™ 2 H™ 2
SRIFA

AQu QI IVIQIE,y +ClToull?, .

Estimate of L(0QAQ2 — AQ20Q, Viu)

L1
H™ 2

LOQAQ: — AQ20Q, Vou) s < [[AQ2l12[VOQ 3 [Voull
S 1AQaIIZ [VOQIF, -y + Cul|Vaull?,

1.
2

The Residual Terms
Now we deal with the terms in the right-hand side of which we have not evaluated yet, namely
L{62Q2 — Q2092 A(SQ)H_% + L{Q2AQ — AdQQq, V&u)H_;. (6.9)

2
Here, the difference between the two solutions appears with the higher derivative-order, more

precisely the inner product is driven by Véu (i.e. 6Q) and AJQ. This clearly generates a drawback
if we want to analyze every remaining term, proceeding as the previous estimates. Let us remark
that if we consider the L2-inner product instead of the H~120ne, then this last sum is null,
thanks to Lemma However the H 1/ 2_setting force us to analyze such sum, and we overcome

the described obstacle, first considering the equivalence between H~1/2 and BQ_ ;/ 2, and moreover
thanks to decomposition (6.1)), namely

qu(A’ B) = Zlq—q’ISB[Aq’ Sq’—lA]Aq/Ba qu(AaB) = .qflAAqB’

qu(A, B) = Z|q—q’|§5(s’ql*1A - SqflA)Aqu/Ba \7q4(A? B) = Zq’Zq—E) Aq(Aq’A Sq/+2B)a

with A (AB) = qu (A,B) + qu(A, B) + jq3(A, B) + jq4(A, B), for any integer q.
First, let us begin with

L(59Q2,86Q) .,y = > 2 LA (69Q2), A, AQ) 12
qEZ

4
=3 3 27L(TH0Q, Q2), AgASQ) .

q€Z i=1

First we separately study the case ¢ = 1,2,4. The term related to ¢ = 3 is the challenging one and
we are not able to evaluate it. However, we will see how such term is going to be erased. Let us
begin with ¢ = 1 then

I} =271 (09, Q2), AgASQ) 2 = L270 Y ([Ag, Sy1Q2] Ay 60, AgASQ) 1
lg—q'|<5
S Y 27[Ag Sy-1Qe] Ay 2]l A AGQ 2

lg—q'|<5
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Hence, applying the commutator estimate (see Lemma 2.97 in [7]) we get

I, S Y. 278y VQalall Ay 692 1 | A A6Q 12

lg—q'|<5
. 1 PO g
< Y S aVQulE 11 AQal 227 1A, 5l s27H|A,A5Q 2
lg—q'|<5
1 1 g
< Y IVQuE 1AQu L 1A dul 12241 A,A5Q 2.
lg—q'|<5

which finally yields

1 1
I, < IVQ2l| 72 1AQal 7 [[0ull L2 | A0Q -1
1 1 1 1
SIVQall7 1AQslE; I5ull® _, I96ul  1A5Q 3.
that is

LY 2797 (09, Q2),A,86Q) 12 <
q€Z (6.10)
S HVQzH%gHAQﬂ\%gHdUHZ, + CVHV&L”Z,% +Cr, \A5Q”Z,%-

1
2
Now, let us handle the case i = 2. We argue as before:

Ig = 27qL<\7q2(6Q7 Q2)7AQA5Q>L%
=L271 Z ((Sg—1Q2 — Sq—1Q2) AgA 60, AgASQ) 2

lg—q'|<5

S27Y(Sy-1Qa — Sq1Q2) 125 180 Ay 6 2| Ag ASQ 12,
so that, observing that Sy 1 Q2 — S;—1Q2 fulfills
15—1Q2 — Sg-1Qallzee < 27%[Sy—18Q2 — S41AQa| Lo S 2719y -1AQ2 — S4-1AQs | 12,

then we obtain

L2527 3 (I(Sy-10Q2 = 5m18Q0)l1 52 180y 00 12 14,86Q 12
la—q'|<5
S22 N AQs]I 2l Ay 9 2 | A ASQ) 12

lg—q'|<5

< N 2 EAgdul a2 2| AA0Q 12 | AQ2 £z

la—q'|<5
Thus, it turns out that

LY 27T7 09, Q2), A86Q) 12 S 1IAQa]IZa 16wl 4 + CrolAsQ) -, (6.11)
q€Z
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Now, we take into consideration the case ¢ = 4. Here we will use a convolution method and the
Young inequality, since the sum in ¢’ is not finite. Then, let us observe that

Ty =2 1L(J} (09, Q2), AgASQ) 2 = L277 > (AyQaS5y420Q, AjASQ) 2

q—q'<5

52_(1 Z ||Aqu2HL§°HSq’JrQ(SQHL%HAqAéQHLg

q—q'<5
Observing that

1Ay Q2llzee S 271 AgQallre S 277 |Ay AQa|| 2,
1AGA0Q] 2 S 29| AgVEQ 12,

it turns out

T S270 > 277 Ay AQa 12 1Sy 4+20Q 1227 AgVEQ| 12

q—q'<5
—_J . 1o . .
Y 2%HAq'AQzHLg?’%IISq'+259HLg2’%HAqWQHLg
q—q'<5
SNAQl2V8QN oy D 27" 984200

q—q'<5

Then, by convolution, the Young inequality and Proposition [6.2.3] we finally obtain

LY 27 UT/ (09, Q2), AgASQ) 12 S I1AQa]| 2 VEQ| 4 IV6ull
q€Z (6.12)
S 1AQa[E IVOQIE _y + CullVaull%,

1
2

Summarizing (6.10)), (6.11) and (6.12) and recalling the definition of J; (69, Q2), we finally get

L(59Q2, ASQ) , 3 — > 275102 A Q2, Ay A6Q) 1

q€Z

1
2
Sx1®+ Cu||V5U||iI_% + CF,LHA(SQHE_%,

where Y1 belongs to L}, .(R;). Hence, we need to analyze
LY 2798, 160 AyQa, AgASQ) 12
qEZ
and this term is going to disappear by a simplification.
Now we handle the term <Q2(5Q,A5Q)H7 1 of . Observing that it can be rewritten as
<t(Q259),tA5Q>H7%, that is *<6QQ2,A5Q>H7

obtaining

L{0920Q2 — Q209, A6Q) -

1 then we proceed as in the previous estimates,

— ) 278G 160 AyQa — AyQa Sg-109, AyASQ) 12
q€Z (6.13)
SX®+Col|Voull’ _y + Cr.o]|A0QI 4,

1
2
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so that it remains to control

LY 2798, 160 AyQ — AyQs Sy 169, AyASQ) 2. (6.14)
qEZ

of and we use again decomposition (6.1]) as follows

1
2

Now, we focus on L(Q2A0Q, Véu)H

L(Q2A8Q, Vou) .y = LY 271(Ay(Q2A5Q), AViu) 2

q€Z
4
=LY ) 27 UTHQ2, ASQ), AgViu) 2
q€Z i=1

As before, we estimate the terms related to ¢ = 1,2, 4 while when ¢ = 3 the associated term is going
to be erased. When ¢ = 1 we get

L27UJ} Q2. ASQ), AgVou) s =L Y~ 279[A,, Sy_1Qa] Ay ASQ, AgViu) 2
lg—q'|<5

S Y 2Ry Sy 1Qe Ay ASQl 2 | A Voull
lg—q'|<5
SO 278y 1V Qallra Ay AdQ| 14 | Ay Vbul 2
lg—q'|<5

) FR 1 .
Y 27|5¢ 1V Q2|72 15y -1 8Q2| 72 | Ay VOQ L4 | A Voul| 2
lg—q'|<5

1 1 g
< D> IVQ2llZ2 [[AQ2|7 [[Ag VR 12272 | AgViul| 12
lg—q'|<5

Hence, taking the sum as q € Z,
. 1 1
LY 27T Qe A6Q). A, V5u) 1z < IVQell2 |AQa] 2, [ V6Q] 12 [ Vou]
qE€Z
1
S IIVQzHLz!\AQ2||L2||V5QH2 y [ASQI _y IVoull ;4

:
< IV QI IAQuIE, IVSQI, + CIVoul?, , + CrladQl?, ,

We evaluate the term related to i = 2 as follows:

“UTHQa, DOQ), ANV [z = L27U((Sy-1Q2 — S4-1Q2) AgAy AGQ, Ay Vou) 12

S D 2 (Sy-1Q2 — Sg-1Q2) | L 1A Ay AQlI 12| AgViul| 2,
lg—q’'|<5
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so that
L27UTHQ2, ASQ),AgViu) s
S D 2MI(Sy1AQ — 5-1AQ2) |12 1A Ay ASQ 1211 A Vul| 12

lg—q'|<5

S S 28, 1 AQul 2 14,80Q) 12 1A, Voul 1
lg—q'|<5

S > 28| Agdull 227 2| AgAGQ 2 | AQa e
lg—q'|<5

Thus, taking the sum in ¢, it turns out that

LY 2 UTF(Q2, A6Q), AgVou) a2 < [|AQaI[7; 10ull®, _y + CrrllA6Q%

q€Z

At last, when i = 4,

TUTH Q2 ASQ),AVOu) 12 = L2771 Y (AyQ2Sy4286Q, AgVu)rn

q—q'<5
S22 ) 1Ay Qe [ Sy+2A6Ql 2 | Ay Voul 2
q—q'<5
$279 > 277 Ap AQa| 211Gy +2286Q) 1227 Agdul 2
q—q'<5

a=d | _d+2 - _4q,
S D 27 [[ApAQallr227 2 [[SyraAdQl 1227 2 | Agdull

q—q'<5

SNAQ:lalldul -y > 2" 2_7”5 r+280Q |12

q q'<5

Hence, by convolution, the Young inequalities and Proposition we obtain

Y27 UTH (@2, 86Q), AgVdu) 1z S (|1AQol| L 16ull 3 [ASQIL -
qEZ

< 18Qs |2, 0ul?,

Since <A5QQ2,V6U>H% = ("(AJQQ>), tV(Su) 1= <Q2A5Q,tV(5u> .1, then we proceed as for
estimating (Q2AdQ), V5U>H§ , o that we obtam the following control

L{Q2A6Q — ASQQ2, Vou) . —L) 2798, 1Q2 AgAQ — AgASQ Sq1Q209, AgVu)
€L (6.15)
Sx2®+ C’u||V5UH12L-I_% + CF,L||A5QH12L-I_%

where x2 belongs to L}, .(Ry). Now, the term we need to erase is

LY 2798, 1Q2 AgASQ — AgASQ Sy 1Q20Q, AgVu) . (6.16)

q€Z
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Thus, summing (6.14]) and (6.16|), we obtain

L Z 27q{<sq_1Q2Aq(SQ — AqéQ Sq—lQQv AAQ5Q>L%+
qEZ

T (841Q2AAIQ — AABQ Sy 1Q2, VU3 },

which is a series with every coefficients null, thanks to Lemma [6.7.1] In virtue of this last result,

recalling (6.13)) and (6.15]), we finally obtain
L{6Q2Q2 — Q2042 A6Q>H‘% + L(Q2A0Q — AdQQq, V5u>H_ 1

2

SXE+C|Voul? ) + CrolAsQ? .

Conclusion

Recalling and summarizing all the estimate of the previous two sub-sections, we conclude that
there exists a function y which belongs to Li (R, ) such that

loc

d 2 2 2 < 2 2
S0(1) +v|Vaul? ) +TL2IASQIE ) S (D) + ClIVoul® , + Cr|AsQI2

for almost every ¢ € Ry. Thus, choosing Cr, 1, and C, small enough, we absorb the last two terms
in the right-hand side by the left-hand side, finally obtaining

drl 1
S [SIou@I?,y + LIV, ] S x[5lsu@I2, + ZIvsQ@I?, ]

Since the initial datum is null and thanks to the Gronwall inequality, we deduce that (du, VéQ) =0

which yields (du, Q) = 0, since 6Q(t) decades to 0 at infinity for almost every t. Hence, we have
finally achieved the uniqueness of the weak solution for system .

6.6 Regularity Propagation

We now handle the propagation of low regularity, namely we prove Theorem [6.1.3

Proof of Theorem[6.1.3, Let us consider the following sequence of system:

Q" + Jp P (Jou"V I, Q") — Ju P (T, Q" Q) +
+ JnP(JnQ"Jn Q") —TLAJ, Q™ = P*(Q™) Ry xR?
ou™ + JnP(Jnu”VJnu”) —vAJu" =

B,
= TLAvJ, P, Q" AT, Q" — AJpQ Q" — VJQ" © VJaQ"} Ry x R2, (Fn)
divu™ =0 R, x R2
(u™, @")ji=0 = (uo, Qo) R2,

where

PUQ™) = —adnQ" + b (Ja@"Tn@") — tr{Jn(JnQ”JnQ")}%} T QM I (Jn Q" Ta Q™))
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Moreover we recall that .J, is the regularizing operator defined by
Jnf(€) =11 y(©)F(€)

and P stands for the Leray projector. The Friedrichs scheme related to is not much different
to the —one, however here the Q-tensor equation has been regularized, as well. System
has been utilized in [99] and the authors have proven the existence of a strong solution (u”, Q")
which converges to a weak solution for , as n goes to co (up to a subsequence). Thanks to our
uniqueness result, Theorem [6.1.2] we deduce that such solution is exactly the one determined by
Theorem and it is unique. Hence, instead of proceeding by a priori estimate (as in [99]), we
formalize our proof, evaluating directly the —scheme. We will establish some estimates, which
are uniformly in n, which yields that the weak-solution of fulfills them as well. This is only a
strategy in order to formalize the a priori-estimate, while the major part of our proof releases on
the inequalities we are going to proof.

Since (Jpu", JoQ") = (u", Q") (by uniqueness), then (u”(t),Q"(t)) belongs to H'** x H*** for
almost every ¢ € Ry and for every n € N. We apply A, to the first and the second equations of
, then we apply (-, Aqu™) 2 to the first one and —L(-, AjAQ™) 2 to the second one, obtaining
the following identity:
dr . . ) .
T [IIAqunlliz + LIAVQ 72| + vIIA V"7 + TL2 | A AQ"
= (A (AQ"Q" — Q"AQ™), AgVu) 2 — (Ay(u™ - Vu™), Agu™) 2+
+{A8(VQ" © VQ™), AgVu") 12 + LAy (u" - VQ"), AgAQ™) 2+
+ LA (2"Q" — Q"2"), AjAQ™) 12 — LIAP™(Q"), A AQ") 2.

Multiplying both left-hand and the right-hand sides by 22¢° and taking the sum as ¢ € Z we obtain

d n n n n

Sl + LIVQE, | + vV, + TLAQYE,

— L<AQnQn _ QnAQn, vun>Hs _ <un . vun’ Uﬂ)Hs + L<in o in’ vun>Hs+ (6.17)
+ L{u" - VQ", AQ") s + LIV'Q" — Q"Q", AQ"™) . — LIP™(Q"), AQ") ..

The key part of our proof relies on the Osgood inequality, therefore we need to estimate all the
terms of the right-hand side of (6.17)). First, let us proceed estimating the easier terms.

Estimate of (u™ - Vu",u") .

We begin with (Ag(u" - Vu™), Aqu™) 2, with g € Z. Passing through the Bony decomposition

(Ag(u™ - Vu", Agu") 2 =

2 2
= > O ATpou™ + ATomud, A2+ > (AR}, du™), Agu™)

lg—q'|<5 i=1 q¢>q—5 i=1

~~ ~\~

Aq B,

We handle the term A, as follows:

~

lg—q’'|<5

Ays Y (IS aw el Ay Tulge + 1S 2 Vur e [ Agu | g2 |11 Aqu I
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S > (IS au i NAgVur e + 27 | Sy oo | A gl || Agu | 2

~Y
lg—q’'|<5

< Y (ISl Ay Vurlze + 18 v o=l Ay Tur | 2| | Agu ] 2
lg—q'|<5

Sl |Agu™ze Y Ay V| e,

lg—q'|<5

so that, multiplying by 22*¢ and taking the sum as q € Z,

S22, S u e 30 {2 WA e D 1AVt } S uee e |

q€Z q€Z la—q'|<5
(6.18)
The control of B, relies on convolution and the Young inequality, indeed
By S Y IAgsau™ | Ay Vil 2 Agu™l 2 S lu” |z [Agu™ll 2 Y 1Ay Va2,
q'>q—-5 q9'>q—5
[fI<1
hence
S 208, < Ju e 3o {2 NA W e 3 1Ay Vurp )
qeZ q€Z q'>q—5
<l S {2 Agu e 30 207020 Ay V|2 }
q€Z q'2q—5
< ol e 32 {22 A g2 37 2071 g5 — oy .
q€Z q'EL
where (b, )z belongs to [%(Z). Thus, we obtain
D228y < | e ] s V" | e (6.19)
q€EZ
thanks to the Young inequality. Finally, summarizing (6.18) and (6.19)), we obtain
(W' Vu ut) g =22 (A (u” - V), Agu™) po S e | s |V | - (6.20)

qE€Z

Estimate of (u™ - VQ™, AQ") .

Arguing exactly as for proving (6.20]), we obtain

(W - VQ", AQ") o = Y 2 (Ag(u" - VQ", AgAQ") 2 S Ul 1= IV Q™ | o | AQ™ | o (6.21)

qEZ

Estimate of (VQ" © VQ", Vu") ;.

We keep on our control, evaluating the term <Aq(VQ”®VQ”), Aun">L2, with g € Z. The explicit



6.6. REGULARITY PROPAGATION 119

integral formula of such term is the following one:

2 2 3
/R 2 > A (tr{0:Q0kQ} ) Agdrull = /R 2 >3 A0iQ 0kQTy 1A Opu}
i,k=1

ik=1jl=1

2 3
= /]R D D AdlThgn0kQl; + To.ap 0:Q5 1Ak + /R > AROQ, Q) AD]
ik=17,l=1 1,k,5,0

Cq of

where we have used the Bony decomposition again. First, let us observe that

CoS D 8 1VQ < 1Ay VQ 2| Ag V™| 2
lg—q'|<5

SIVQ =l AVu 2 Y 1A VQ" Iz,

lg—q'|<5

which yields

> 2%, S IVQ = Yo 20 {14, Vel Y I8¢ VQ e |

q€Z €L lg—q'|<5 (6.22)
S IVQ |z [[Vu™| s IV Q™ | s

Moreover, considering D, we get

Dy S D IArVQ = Ay VQ [ 2 Ag V| 2

q¢'>q—5
[1]<5

SIVQ™ L=l AVulz Y 1Ay VQ" 12,

q'>q-5

so that, proceeding as in the proof of (6.19),

> 200, S[VQ e Y {2714,V 12 Y- 20024y V Q" 12}

4€Z €L qez (6.23)
S IV e IVu™| g [IVQ™ | s

thanks to the Young inequality. Thus, summarizing (6.22)) and (6.23), we achieve

D 22%(A(VQ" © VQM), AVu) 2 S VQ" |1 VU | 4 IVQ" | g (6.24)
q€Z

Estimate of (AQ"Q" — Q"AQ", Vu") ;.

Now, we carry out of (AQ"Q"™ — Q"AQ", Vu") ;.. This is the first non trivial term to evaluate.
We choose to use the decomposition , presented in the preliminaries, instead of the classical
Bony decomposition (which we have used until now). We will remark the presence of a term inside
such decomposition, which is hard to control. However we will see that such drawback is going to
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be erased. Let us begin controlling (Q"AQ", Vu™) ;.:

(QAQ", Vi), = 320 (A,(Q"AQ"), AVu") 2

q€EZ
4 . .
- Z Z 2205 (TUQ", AQ™), AgVu™) 2.
q€Z i=1
where qu has been defined by (6.1)), for i = 1,...,4. When i = 1, we point out that
(7@, AQ™), AgVuM) 2 = > ([Ay, Sy 1QAGAQ", AVu)

lg—q'|<5

< S 2 Sy VQ | | Ay AQM |2 | Ag V| 2
lg—q'|<5

SIVQ e Y 1Ay VQ™ |12llAgVul| 2.
lg—q'|<5

which yields

> 2257 HQ™, AQ™), AgVur) 2 S IVQ |1 IVQ™ | o V™ | e (6.25)
qEZ

On the other hand, for i = 2, we proceed as follows:

<jq2(Q”, AQ™), AVu™) 2 = Z (Sy—1Q™ — S4—1Q™) A A, AQ™, AjVu™) 12

lg—q'|<5

S D 1801Q" = S 1Q e |1 AgAg AQM 2| Ag V" 12
lg—q'|<5

S D 18y aVQ" = S aVQ 1 [AgVQ™ | 12| Ag V| 2
lg—q'|<5

SIVQ" Iz lAgVQ™ |2 [ AgVu | 2,

which yields

D 2(THQ" AQY), AgVu) 2 S IVQ = IV Q™ | IV - (6.26)

q€EZ

The case 7 = 4 is handled as follows:

(THQ™, AQ™), AgVum) 2 = Y (Ag[AyQ Sy +2AQ"), AgVu™)

q'>q-5

S Y 1A Q 2| Sy2AQ | | Ag VU 2
q'>q-5

S Y 1A VQ 1218y 42 VQ | oe [ Ag V| 2
q'>q-5

SIVQ Ir=lAVu™lz D AyVQ™| L.

q'>q-5
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Therefore, multiplying by 22¢° and taking the sum as g € Z,

222115<L7(14(Qn7 AQ"), Aqvun>L2 5

qEZ

< |IVQ™ || L Z (2QS||AqvunHL2 Z Q(qiq/)sl(foo,fj)(q _ q/)2q/sHAq’inHL2)

q€Z qEL

/ P 24 2
< ||VQ”||Loo||Vu”||HS{ 3y ( S ol sy (g —¢)2e SHAq/VQ"Hm) }
qEZ q'€Z
so that, by convolution and the Young inequality

D 2(THQ" AQY), AgVu) 2 S IVQ = IV e [VQ™ - (6.27)

qEZ

It remains to control the term related to Jq?’, namely

D 22 THQM, AQM), AUl e =) 227(S, Q" AAQ™, AgVuT) 12 (6.28)

q€Z qEZL

As already remarked in the beginning, such term presents some difficulties. For instance, fixing
q € Z in the sum, the more natural estimate is the following one:

(Sg-1Q"AAQ™, AgVu") 12 < [|54-1Q" 12| Ag AQ" || 2| Ag Vur" | 2.

The presence of the low frequencies Sq_1 in the first norm doesn’t permit to transport a gradient
to Q", so the best expectation is the following one:

D 22%(8, 1Q " AAQ", AVl 12 S Q| oo | AQ™ | s I VU | -
qEZ

Of course such inequality is not useful for our purpose, i.e. an Osgood type inequality. For example
there isn’t a term that appears in the time derivative of the left-hand side of (6.17). Even if there
exists a way to overcome such challenging evaluation, we will see that (6.28) is going to be erased.

Now, let us keep on our control. We have to examine (AQ" Q", Vu") .. Observing that an
equivalent formulation is (Q"AQ", *Vu") ;. (Q™ and AQ™ are symmetric matrices) we recompute
the previous inequality (with *Vu instead of Vu), so that

Z Z 22qs<jqi<Qn, AQ”), Aqtvun>L2 g HVQ”HLOOHVu””HSHVQ””HS (6.29)

q€Z i=1,2,4
As before, jq3 is an inflexible term, so that, recalling (6.28)), we need to erase what follows:

Z 22(]8{<Sq_1QnAqAQn’Aqvun>L2 — <Sq_1 QnAqAQna Aqtvun>L2 } =
q€Z (6.30)

— Z 2%205(S, 1Q"ALAQ" — AJAQ"S,—1Q", AVu™) s,
qE€Z

Estimate of (Q"Q™ — Q"Q", AQ™) ;.
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Now, let us continue estimating (Q"Q" — Q"Q", AQ") ;.. The strategy as the same organization
of the previous evaluation. We begin analyzing ( Q"Q", AQ") ;.

4
(QUQ", AQ™) . = 29 (A(QQM), AgAQ™) 2 =) ) 22(THQ"™, Q") AJAQ™) 2.
q€Z q€Z i=1

First, considering ¢+ = 1 and ¢q € Z, we get
<‘-7q1(Qn7 Qn)? AQAQn>L2 = Z <[AQ7 Sq’—lQn]Aq’an AqACQn)LQ
la—q'|<5

< ST 278y VQ e | Ag V|21 A AQ™ | 12

lg—q'|<5

SIVQ™ L= AVQ 112 Y Ay V| e,
lg—q'|<5

therefore, taking the sum as q € Z,

D 2P(THQ™, ), AgAQ™) 12 S IVQ™ | Lo VQ™ | gy V™| - (6.31)

qEZ

By a similar method as for proving (6.31]) or (6.26]), the case i = 2 produces

. 14
> 2IHQ Q) AgAQM) 12 S IVQIE<IVQ™ I, + 15511V u" 1
qE€Z

while, for i = 4, we get

(THQ™ M), AgAQ™ 2 = Y (Ag[Ay Q" Sy 420", AgAQ™) 12

q'>q-5

S D 1A Q™2 1Sy 2 L | A AQ™ |2
q'>q-5

S D AGVQ 2]l Sg2u™l e | AgAQ™ | 12
q'>q-5

Sl 1AAQ L2 Y 1Ay VQ™ |2

q'>q—5
Thus, multiplying by 229° and taking the sum as ¢ € Z, we realize that

> 22 (FHQ, QM) AgAQM) 2

qEZ

Sl D2 (2718,AQ" 22 D7 2071 e (a = 4)2 1A, VQ" 12

q€Z q'EL

< e 18Q . [ 32 (302000 ey a — 412714 V@ 12) ]

q€Z €7

[SIE

so that, passing through the Young inequality,

D 22(THQ™, ), AgAQ™) 12 S [[u | oo | AQ™ g+ IV Q™| - (6.32)
qEZL
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As the reader has already understood, the challenging term is the one related to jq3, that is
D 2(THQ, M), AgAQT) 2 =D 227, 1Q", A", Ay AQ") 1 (6.33)
q€Z qEZL

As (6.30)), we are not capable to control it, so we claim that such obstacle is going to be simplified.
Going on, we observe that (Q"Q", AQ"),. can be reformulated as (Q"Q", AQ") ., which we
have just analyzed. Hence we need to control (6.33|) twice, that is

D 222(S, QA AgAQT) 2 =D 22 (S 1Q A — Ay2,S,1Q7, AJAQT) 12, (6.34)
q€Z qEZ

The Simplification

Recalling (6.30) and (6.34)), we have not evaluated
> 22 { (S, 1Q"AAQT-AAQ S 1Q", AVl o+

q€Z

+(Sgm1Q" Ay — Ay02,8,-1Q™, AyAQ™) 12 },
yet. However, this is a series whose coefficients are null, thanks to Theorem [6.7.1 Hence, we have
overcome all the previous lacks, so that the following inequality is fulfilled:

(AQ"Q" = Q"AQ", Vu") . —(2"Q" — Q"Q", AQ") s S

6.35
< (™, Q) (T, AQ) o, QI e D)

Estimate of (P(Q"), AQ"™) s

Finally, the last term to estimate is (P(Q"), AQ™) ;.. Such evaluation is not a problematic, however
it is computationally demanding, therefore we put forward in section the proof of the following
inequality:

(PQ"), AQ") o S (L +11Q"]| 2 + 1Q" 172) IV Q" 1., (6.36)

where we remind that H? is a non-homogeneous Sobolev Space.

The Final Step

Summarizing the equality (6.17)) and the inequalities (6.20)), (6.21f), (6.24), (6.35) and (6.36)), we
deduce

d n n n n
= 1+ LIV QI | + vV, + TLAQ %, <
S, V=l ", V) gl V) rase + (L4 1Q" a2 + Q" ) I VQ" ..

We define ®(t) := [[u™||%,, + [|[VQ"|*

(6.37)

and U(t) == ||[Vu"|?, + HAQ”H%S, so that (6.37) yields

S

() + (1) S (" (1), VQ" ()l Looll(u™(£), VR ()| gall (™ (8), VQ™ ()| grvs+
+ (14 1Q O g + 1Q™ (D)1 F2) (D).
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Then, fixing a positive integer N = N(t), we apply Lemmam obtaining

o+ LI, VO 2+ VN (", V@) i + 27w, VO™l o

<@, VO I (s VQU)ll s + (1 + Q" |12 + 1Q"[72) @
(6.38)
For simplicity, let us define

fr= 1", V"7 + 1+ Q" 2 + 1Q" 72, f2 = lI(u”, VQ)IIF,
hence ((6.38)) implies
() + V() < C{AE) D) + N o) (1) + 27| (u”, VQ )()] 1P (1) }, (6.39)
for a positive constant C'. Now, choosing N () to be a positive integer which fulfills
1 1
it turns out from ((6.39))
1 1
(1) + U(1) < CLA) (1) + HOBO)( logy{2+4C + D)} + 1)} + 50 (1),
so that, finally, increasing the value of C, we obtain
O'(t) + U (t) < C(fi(t) + fo(t)) D(t) loga{2 + 4C + 2(1)}, (6.40)
which yields
C
< —

~ In2
By integrating this differential inequality, we obtain

@' (t) (f1(t) + fo(1)) (2 4+ 4C + @(1)) In{2 + 4C + @(t)}.
2+4C + B(t) < (24 4C + @(0))e><p{% Jo (fL(s)+f2(s))ds}
Recalling the definition of ®, f; and fa, we obtain

(™, V™) ()], <
< (2+4C + ||(ug VQO)HQ' )exp{& JoUlu™(5), VQ™ ()12 o +1+1Q™ ()| 2 +I1Q™ (5) 12,2 )ds}
— Y Hs J
so that, thanks to Proposition [6.8.1
eCT

1™, VO™ (0%, < (2+4C + [ (ug, VQu)|%.)C (Il Hmllz)eT

for some suitable positive constants C' and C. Moreover, integrating (6.40) in time, we get

[ veis <o+ [ (10 + Bo)e0 082+ 10 + 00}
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that is

t
/ |, YY), dr < (0, YQ0) 2. + C /0 ™, V)2 + 1+ Q" a2+

Q" 2} (1)dT | (w", VQ™)(2) |7, loga {2 + 4C + [|(u”, VQ™)(1)]17.}
< [[(uo, VQo)|%. + C(t: lluoll 2, 1Qoll ) I (u”, VQ™)(#)[1F;. loga{2 +4C + [|(u, VQ™)(1)[I7.},

where C(t, |luo| 2, [|Qollz1) is a suitable positive constant, given by Proposition Since such
estimates are umform in n, we pass to the limit as n goes to 0o, obtaining

. VQE . <
< (2 +4C + ||(U07 VQO)HZ S)G(HQOH}H+Hu0||L%)eCT’

and

T
/0 1(u, V) () Faadr < [l(u0, VQo)IIF. + Ot [luollzz, [|Qo] 1)<

cT

«(2 440 + | (uo, VQo)|3,) (190l )<

~ C
<logy {2+ 4C + (2 + 4C + (g, VQo) [2,)C (190l uolz)<”

where (u, @) is solution of with (up, Qo) as initial data. This concludes the proof of Theorem
613). 0

6.7 Thecnincal tools

Lemma 6.7.1. Let Q1 and Q2 be two 3x3 symmetric matrices with entries in H*(R?). Assume that
u is a 3-vector with components in H*(R?) and let 2 be the 3 x 3 matriz defined by 1/2(Vu—*Vu).
Then the following identity is satisfied:

[, 11002 - @201} + [ (20102~ 218@)Vu} =0
Proof. By a direct computation
/ ({(QQs — Qu)AQ,) = / [r{0Q:AQ1} — tr{Q:0AQ1 }] = / [r{QQ2AQ1 ) -
R2 R2 R2
— tr{AQ1'QQ,}] = 2/ tr{QQ2AQ1} = / tr{VuQ2AQ1 — "Vu@Q2AQ1} =
- /R {(Q1AQs — AQIQ2) V),

which concludes the proof of the Lemma. O

Lemma 6.7.2. Let f be a function in H N Ht5 with s > 0. Then, there exists C > 0 such that
1l < C(IF Iz + VNIl + 27N f | gass),

for any positive integer N.



126 CHAPTER 6. COROTATIONAL BERIS-EDWARDS MODEL

Proof. Let us fix N > 0. Then f = Syy1f + (Id —Sy,1)f fulfills

1o < 1Sn1fll + 1) Agfllzee < 30 I8¢l + Y 1Agfllze -

q>N q<N q>N

A B

First, let us analyze A:

N N
D 1A f e =D A NIz + Y 1 Ag SNl S 290 A0 iz + D 27 Agfll 2

q<N q<0 q=1 <0 g=1
SY A 2 + VNIl S IFllzz + VN[ £l -
q<0

Finally, from the definition of B

Z ”AquLOO = Z Qq”AquH = Z 2_8(1261(14_5)||AquL2 S 2_N8||f||H1+sa

>N >N >N

which concludes the proof of the lemma. O

Proof. proof of Theorem At first we identify the Sobolev Spaces H* and H* with the Besov

Spaces 3572 and Béz respectively. We claim that ab belongs to BSEFN/ % and

Jabll -2 < Clallsg, 1015,

for a suitable positive constant.

We decompose the product ab through the Bony decomposition, namely ab = T,b + Tya + R(a,b),
where

T,b:= E Aqa Sq_lb, Tya = Z Sq_la Aqb, R(a, b) := E Aqa Aq+yb.
q€L q€Z ‘q|€Z
v|<1

For any q € Z, we have

2016+ (A Tub, AgTha) 2 S

S Y 2 Agall 227 S bl + S 296D Syral 27| A 2,
lg—q’'|<5 lg—q’'|<5

so that we determine the following feature

|(Tab, Tyl ey < (b, Tha)l| oy
B272 B2,1
S llallgg M0l oy + llall sy bl , < llall g, 1005,

00,2 00,2

where we have used the embedding Bg 9 Bgo_QN / 2, for any o € R and Proposition [6.2.3

In order to conclude the proof, we have to handle the rest R(a, b). By a direct computation, for
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any q € Z,

2(t—|—s)q”Aq}%(a7 b)HLl < Z 2(q_q’)(s+t)2q’sHAq,aHL22(q’+I/)tHAq/_H/aH[;,

q'>q-5
lv|<1

so that, thanks to the Young inequality, we deduce

1B(a, D) oremyy S IR b)l| gy S Nl g, Nl 5,
2,2
where we have used the embedding Bﬁt — B;;t_N/ * and moreover that > 4<s 24(+1) is finite,
since s + t is positive. ]

6.8 A bound for the Friedrichs scheme

This section is devoted to a specific bound for the norms of the solutions of system This result
has already been presented in [99]. We propose here the proof for the sake of completeness.

Proposition 6.8.1. Let (u", Q™) be a solution for system with initial data (ug, Qo) € L2 x H'.
Then

Q" VQ™, u™) | Foo 0,112y + IAQ™, VU 1320712 S (1Qll s + llwollz2) ™ (6.41)

Proof. We multiply the fist equation by Q™ — LAQ", while the momentum equation by «" and we
integrate everything in R?, obtaining

d n n n n n n n
7 1917z + LIVQ™ 17z + lu"l175] + vIIVu™ 7z + TLIVQ™ 7z + 1AQ" 73 + cllQ"II1zs =
= —allQ"|[7z + (@), Q") 1z + aLl|VQ"™ |72 — bL((Q™)?, AQ™) 12 + cL(Q"tr{(Q™)*}, AQ™) 2.

At first, recalling that ¢ > 0 and integrating by part, we get

n|2 |2
2Pl <o

LIQH{(Q ) AQ )z = —L [ 1VQ"Per{(Q")) —eL

RZ

This yields that

d
3 QI + ZIVQ Tz + u”72] + vIVu"lzz + TLIVQ™ Tz + TLY|AQ" 2+

n2 |2
vet, [ V@@ +er [ WIGE oy,

< —allQ™[[72 + aL|VQ"™|17: + er L AQ™7: + b((Q™)? Q") 1z — bL((Q")*, AQ") 12

Assuming cr j, small enough, we can absorb cr LHAQ"H%Q by the left-hand side. Moreover, still



128 CHAPTER 6. COROTATIONAL BERIS-EDWARDS MODEL

integrating by part
BL(Q")?, AQ") 12 = —bLQM?, AQY), / Ztr{ (G:Q"2Q™)

n 2 n
< 505 | V@ Pe{@) + Cl@ ;.

for a suitable positive constant C. Finally, proceeding as for proving (6.4) when p = 1, we get

100

n\2 n n n
D@ Q"2 < 1= Q" + =172,

Summarizing, we finally deduce
d
T [1Q"I72 + LIVQ™ 7z + lu"72] + vl Vu"|7z + TLIVQ™ |7, + FL2||AQ"II%3+
ol

+cL/ VO Pt {(QM?} + ¢ /‘ +cHQ"H‘ig
< HQ"HL;; +IVQ .

which yields (6.41]). O

6.9 Estimate

The purpose of this section is to estimate (P(Q"), AQ™) ;. In order to facilitate the reader, we
are not going to indicate the index n, from here on. We have to examine

(P(Q), AQ) 7. = (—aQ +b[Q° tT{Q2} ] ctr{Q*}Q, AQ) .
= (—aQ + Q" — CtT{Q2}Qa AQ) s
where (tr{Q?}1d, AQ) . = 0 since AQ has null trace. It is trivial that
—(aQ, AQ) g S IVQl - (6.42)
Now, let us consider b(Q?, AQ) j7s- By definition we have

Q% AQ) e = b 2°°(A,[Q%), AAQ)
qE€Z
=0y 2°P[2(AT5Q, AyAQ) 12 + (AR(Q, Q), AjAQ) ]
acr Aq B,

We concentrate on Ay, getting

A< Y0 18¢0-1QA0 QI llAgAQl e S NQlE=AVQlz Y 1A¢VQI Lz,

lg—q'|<5 lg—q'|<5

so that
by 224y < 11Ql= IV Q. (6.43)

qE€Z
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Now, analyzing B,, we observe that

Bi< Y 1ArQA QN2 A0AQN L2 S QL 1AgVQIlL2 Y 277 Ay VQ| e,
q'>q—5 q'>q-5
[71<1

so that

by 2B, S|Ql~b)_2%[AVQ 2 Y 2TV 5y(a - O A VQ L2

q€Z q€Z q€Z
Thus, by convolution and young inequality b} ., 220, < ||Q||L=||VQ|%. and, recalling (6.43),
b(Q% AQ) e SIIQN L= VO .- (6.44)

Now, it remains to examine c¢(Qtr{Q?}, AQ) j7s- The procedure is quietly similar to the previous
one. At first we use the Bony decomposition as follows:

(Qtr{Q%}, AQ) . = Y 22T (A,(Qtr{Q}), AAQ) 2

qEZ
= 3022 (A To(r{Q%1d), AAQ) 12 + (A Tirige10Qs AeAQ) 12 +
qEZ Ay A,
+ (A, R(Q.6r{Q% 1d), A,AQ)y: |
Cq

First, we concentrate on Ay, the more computationally demanding term, obtaining

Ag < D 18y-1QA (r{Q%} 1) 12 AgAQI 2 S 1IQNIL> D 1A¢ (@712l AgAQ] 12
l[g—q'|<5 l[q—q'|<5
SRl Y [2\\Aq'TQQ\\L2\\AqAQ!!L2+HAq'R(Q,Q)HmHAqAQHLz

q—q'|<5
[ | Iy 1, ¢

The term I, is the simpler one, indeed

L S ) 18¢1QA0 QU2 A0AQlL: SR~ Y 1A¢QlL2[1AAQ 2,

lg’—q"|<5 lg’—q"|<5
so that
YRl > Ly SQUT=Y_ > > 1ApQlrllAAQ] 12
q€”Z l[g—q'|<5 q€Z [q—q'|<5 |¢'—q"|<5

SIQUE=DY" Y 1ApVQIL AVl S IR~ IVQI ..

q€Z |q—q"|<10

We overcome the term 11, , as follows:
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Hyq S1AAQI: Y 1A¢Qlrll Ay Q] =
q//Zq/_5
ll<1

SIRQIUz=14VQl2 > 277 [ApVQ| 12,

q"2q'=5
so that
dollQle DY Iy SIQIE= D 22I|AVQl2 Y > 277 ApVQ| 2
q€Z l[a—¢'|<5 q€Z l[g—¢'|1<5¢">q' =5
SIQUF< D 22ANVQl e Y 2020 AL VQ| 1o,
q€Z q"”">q—10

so that, by convolution and Young inequality 3 o7 |Q| o > 1y <5 Tgq S Q13 |VQ|| z75- Sum-
marizing the previous inequalities, we get Y., 22 A, < [|Q[2=||VQ||% .. In order to examine B,

it is sufficient to observe that

22BN 0% N ISy (01{Q* ) Ay Qll 12 A AQ| 2

qEZ

q€Z q€Z lg—q’'|<5
SNQ% > 22" > AyVQI 2l AVQ 12 S Q7= IVQI%.
q€Z lg—q'1<5

It remains indeed C,, which is straightforward, indeed

2P, S 22 Y | ArQA(QY)2 1 AAQ 2
q€Z q€Z q'>q-5
<1

SIQIT= D 27ANVQl e Y 20DV AVQ| e,

q€Z q'>q-5

thus, by convolution and the Young inequality, - .7 2205C, < 1QI2 < IVQ|%,.. Summarizing, we

finally get c(Qtr{Q?}, AQ) z. S |Q|I5=|VQ|?%, and recalling (6.42)-(6.44)), we finally obtain
(P(Q),AQ) . S A+ 11Qlz + [QNZ=)IVQIF. £ 1+ 1Qllxz + QI VR,

where the last inequality is due to the embedding H?(R?) — L>°(R?). Hence, inequality (6.36)) is
proven.



Chapter 7

General Beris-Edwards system

In this chapter we present the results of the following paper:
F. De Anna, A. Zarnescu (accepted), Uniqueness of weak solutions of the full coupled Navier-Stokes
and Q-tensor system in 2D, Comm. Math. Sci., (2016)

7.1 Introduction

The main aim of this work is to prove the uniqueness of weak solutions for a type of coupled
Navier-Stokes and Q-tensor systems proposed in [12] and studied numerically and analytically
in [1,135,/54,/58,98]. This type of system models nematic liquid crystals and provides in a certain
sense an extension of the classical Ericksen-Leslie model [35], whose uniqueness of weak-solutions
was proved in [115]. In the remainder of this introduction we will briefly present the equations and
we state our main result.

The system models the evolution of liquid crystal molecules together with the underlying flow,
through a parabolic-type system coupling an incompressible Navier-Stokes system with a nonlinear
convection-diffusion system. The local orientation of the molecules is described through a function
Q taking values from Ry x Q C Ry x R%d = 2,3 into the set of so-called d-dimensional Q-tensors
that is

S0 et {Q e MY Q= Qi tr(Q) = 0,4, =1, d}

(the most relevant physical situations being d = 2,3). The evolution of the @’s is driven by a
gradient flow of the free energy of the molecules as well as the transport, distortion and alignment
effects caused by the flow. The flow field u : R, x © — R? satisfies a forced incompressible Navier-
Stokes system, with the forcing provided by the additional, non-Newtonian stress caused by the
molecules orientations, thus expressed in terms of Q. We restrict ourselves to the case Q = R? and
work with non-dimensional quantities. The evolution of @) is given by:

8Q +u-VQ — S(Vu,Q) = —r%g‘"
with I' > 0. Here
FAQ) = [ 5190 + (5(@) - 31x(@) + (@) ()

is the free energy of the liquid crystal molecules and %]5 denotes the variational derivative. The

L,a,b,c constants are specific to the material with:

L>0anda,b,cecR,c>0 (7.2)

131
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If u = 0 the Q-tensor equation would simply be a gradient flow of the free energy. For u # 0 the
molecules are transported by the flow (as indicated by the convective derivative 9; + u - V) as well
as being tumbled and aligned by the flow, fact described by the term

S(Vu, Q) = (€D +2)(Q + 1d) +(Q + Id)(fD ) —26(Q+ Id)tr(QVU) (7.3)

where D := 3 (Vu+'Vu) and Q := § (Vu — *Vu) are, respectively, the symmetric part and the
antisymmetric part, of the velocity gradient matrix Vu. The constant £ is specific to the liquid
crystal material.

The flow satisfies the forced Navier-Stokes system:
Ou+u-Vu=vAu+ Vp+ Mdiv{r + o}
divu =0
where v, A\ > 0 with A\ measuring the ratio of the elastic effects (produced by the liquid crystal
molecules) to that of the diffusive effects. The forcing is provided by the additional stress caused

by the presence of the liquid crystal molecules, more specifically we have the symmetric part of the
additional stress tensor:

. —[ g(Q+ SId)H — €H(Q + Id)+2§(Q+ Id)QH LVQ@VQ]

and the antisymmetric part:

c:=QH - HQ
where we denoted
OF 2
H = 90 = LAQ — aQ + b[Q* — (Q )Id] — cQtr(Q%) (7.4)
Summarising we have the coupled system:
tr(Q?)

XQ+u-VQ —S(Vu,Q) = '(LAQ — aQ + b[Q* — y Id) — cQtr(Q%))

Opu+ (u- V)u = vAu+ Vp+ AV - (QH — HQ) + AV - [ 5(@ + Id)H— 5

—EH(Q+ Id)+2§(Q+ Id)QH LVQ@VQ}
divu =0

where I', L,v,c > 0, a,b € R. Let us observe that this is a slight extension of the system considered
in [98], where A = 1. However, this does not create any major difficulties compared to equations
in [98] but it is more relevant from a physical point of view.

The main result of this work is the uniqueness of weak solutions, which are defined in a rather
standard manner:

Definition 7.1.1. A pair (Q,u) is called a weak solution of the system , subject to initial data
Q0,2) = Q(z) € H'(R% S\, w(0,2) = u(z) € L2(R?), diva =0 in D'(R%) (7.6)

if @ € L (Ry; HY N L2 (R H?), w € LS (Ry; L) N LY (Ry; HY) and for every compactly

supported p € C*([0,00) x RY; S(d)) Y € C®([0,00) x R% RY) with diviy = 0 we have

/ (—Q-0p —TLAQ - ) — Q - uVypdrdt—
Rd
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—/OO/ (§D+Q)(Q+%Id)wp+(Q+%Id)(§D—Q)-wdmdt—
0 R4

- /00/ 26(Q + lfd)tr(QVu) ~dxdt = Q(z) - (0, ) do+
0 R4 d R4
> 2 tT(Qz) 2
-l-F/O /Rd{—aQ—i-b[Q —Tld]—cQtr(Q )}'godxdt (7.7)
and
/00/ —ud) — uqugOahg + vVuVy dtde —/ u(x)y(0,z) dx
0 JRd R4

= LA/O /Rd Q'yé,aQ'yé,ﬁqpa,ﬁ - QavAQ76¢a,ﬁ + AQa'vaﬁwa,B dz dt+

o0 Ja )
+ gA/O /Rd (Qm + d”) Hogtha s + Hor <Q75 T Zf) e gdadt—

0o S

— 26\ /O /R (Qas + #)ngﬂwlgwaﬁ dz dt. (7.8)

We can now state our main result, which is the existence and uniqueness of weak solutions:

Theorem 7.1.2. Let d = 2,3 and take
Q0,2) = Q(z) € H*R% SY),  w(0,2) = u(z) € L2RY), diva =0 in D'(RY)
Then system (7.5) admits a global weak solution. Moreover if d = 2, then uniqueness holds.

Remark 7.1.3. With minor modifications to the proof, that are left to the interested reader, the
result also holds when the system is 2D in the domain but 3D in the target, which physically
corresponds to a situation where there is no dependence in one of the three spatial directions.

The main part of the theorem is about uniqueness, as the existence part is just a fairly straight-
forward revisit of the arguments in [98]. The main difficulties associated with treating the system
are related to the presence of the Navier-Stokes part. One can essentially think of the system
as a highly non-trivial perturbation of a Navier-Stokes system. It is known that for Navier-Stokes
alone the uniqueness of weak solutions in 2D can be achieved through rather standard arguments,
while in 3D it is a major open problem.

The extended system that we deal with has an intermediary position, as the perturbation
produced by the presence of the additional stress-tensor generates significant technical difficulties
related in the first place to the weak norms available for the u term. A rather common way of
dealing with this issue is by using a weak norm for estimating the difference between the two weak
solutions, a norm that is below the natural spaces in which the weak solutions are defined. This
approach was used before in the context of the related Leslie-Ericksen model 73] as well as for the
usual Navier-Stokes system in [48] and [88].

In our case, for technical convenience we use a homogeneous Sobolev space, namely .
The fact that the initial data for the difference is zero (i.e. (du, dQ)i=o0 = 0) helps in controlling
the difference in such a low regularity space. However, one of the main reasons for chosing the
homogeneous setting is a specific product law, see Proposition [7.4.4] in section The mentioned
theorem shows that the product is a bounded operator from H*(R?) x H'(R?) into H*~1(R?),
for any [s|, [t| < 1 such that s+t is positive. We note that evaluating the difference at regularity
level s = 0 i.e. in L%, would only allow to prove a weak-strong uniqueness result, along the lines
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of [99]. Working in a negative Sobolev space, H® with s € (—1,0) allows to capture the uniqueness
of weak solutions. We expect that a similar proof would work in any H® with s € (—1,0) and our
choice s = —% is just for convenience.

Our main work is to obtain the delicate double-logarithmic type estimates that lead to an
Osgood lemma, a generalization of the Gronwall inequality (see [7], Lemma 3.4). Indeed the
uniqueness reduces to an estimate of the following type:

B/(t) < X(t){‘l)(t) + ®(t)In (1 +e+ <I>1t)) + ®(t) In (1 +e+ ‘1>1t)> Inln (1 +e+ <I>1t)>}’

where ®(t) is the norm of the difference between two solutions and x is apriori in L}

loc®
In addition to these there are some difficulties that are specific to this system. These are of two
different types, being related to:

e controlling the “extraneous” maximal derivatives: that is the highest derivatives in u that
appear in the @ equation and the highest derivatives in () that appear in the u equation,

e controlling the high powers of Q , such as Qtr(Q?) in particular those that interact with u
terms (such as Qtr(QVu)).

The first difficulty is dealt with by taking into account the specific feature of the coupling
that allows for the cancellation of the worst terms, when considering certain physically meaningful
combinations of terms. This feature is explored in the next section where we revisit and revise
the existence proof from [98]. In what concerns the second difficulty, this is overcome by delicate
harmonic analysis arguments leading to the double logarithmic estimates mentioned before.

The work is organised as follows: in the next section we revisit the existence arguments done in
cite [98], providing a slight adaptation to our case and a minor correction to one of the estimates
used there. The main benefit of this section is that it exhibits in a simple setting a number of
cancellations that are later-on crucial for the uniqueness argument. In the third section we start by
introducing a number of technical harmonic analysis tools related to the Littlewood-Paley theory
and then use them in the proof of our main result. Some standard but perhaps less-known tools,
toghether with some more technical estimate are postponed in section

Notations and conventions

Let S(()d) C M%*? denote the space of Q-tensors in dimension d, i.e.

502 {@ €M™ 0y = Qutr@ = 0,ij =1.....a}

We use the Einstein summation convention, that is we assume summation over repeated indices.

We define the Frobenius norm of a matrix |Q)| def V1rQ? = /QapQas and define Sobolev spaces

of Q-tensors in terms of this norm. For instance H'(RY, S(()d)) e {Q: R — S(()d), Jra IVQ(2) > +

|Q(x)|2 dx < oo} where |VQ]2(33) def Qap~(1)Qap~(x) with Qag def 0yQap- For A,B € S((]d) we
denote A : B = tr(AB), |A| = \/tr(A2) and ||(4, B)|lx = ||Allx + ||B||x, for any suitable Banach

space X. We also denote (2,3 def % (Opua — Oatg),Uq,B def Oguq and (VQ © VQ)ij = QapiQas,;-
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7.2 The energy decay, apriori estimates and scaling

In the absence of the flow, when v = 0 in the equations , the free energy is a Lyapunov
functional of the system. If u # 0 we still have a Lyapunov functional for but this time one
that includes the kinetic energy of the system. These estimates provide as usually the basis for
obtaining apriori estimates for the system. The propositions in this section show this and their
proofs follow closely the ones of the similar propositions in [98] where they were done for the case
A = 1. The reason for including them is to display in relatively simple setting the cancellations
that will appear again in the proof of the uniqueness theorem but in a much more complicated
framework. We have:

Proposition 7.2.1. The system (7.5 has a Lyapunov functional:

dﬁfl 2 Q 2
E(t) = 2/]Rd |ul (t,x)dx—i—/Rd 5 VQ|*(t, z)dz )

2 [ @) - 2@ (1,2)) + 1 (Q2t, )

Ifd = 2,3 and (Q, u) is a smooth solution of such that Q € L>(0,T; H'(RY))NL?(0,T; H*(R?))
and u € L>(0,T; L*(R%)) N L2(0, T; HY(R?)) then, for all t < T, we have:

iE(zﬁ) =— 1// |Vul|? d
dt R4
(7.10)

2
- m/ tr (LAQ —aQ +b[Q% — tr(gz)m} - cQtr(Q2)> dz < 0
R4

Proof. We multiply the first equation in to the right by —A\H, take the trace, integrate over
R? and by parts and sum with the second equation multiplied by v and integrated over R¢ and by
parts (let us observe that because of our assumptions on ¢ and u we do not have boundary terms,
when integrating by parts). We obtain:

4
dt

—l—u/ |Vu|?dz + F)\/ tr (LAQL —aQ +b[Q
R4 R4

[ 3l + S IT0R + MG u(Q?) - J6r(@) + §u*(QP)d
Rd

4
2 tr(Q?)
d

2
Id] — cQtr(Q2)> dz

Oa
= )\/Rd u- VQaﬁ <_CLQa,8 + b[Qa'yQ»}/B — jﬁtr(QQ)] _ CQaﬁtr(QQ))> da

%gﬁz

da
0 [ 00,Q5 5 Q) (~0Qus + HQus sy — Q)] - cQupta(@) ) o

defrr

5a 5
—A¢ / (Quy + =77) DyHapdz =X / Doy (Qyp + ~77) Hapdz
R4 R4

def def
=N =J2
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da
12NE / (Qus + —dﬂ ) Hoptr(QVu)dz + LA / Uy Qapy AQupd
]Rd R‘i

d;fJS d:ef./4
LA

LA
—5 | Uay@ypAQupdr +—- / Uy,a@ysAQapde
2 Rd 2 R4

def def
=B =C

L) L)\
+/ Qavuv,ﬁAQaﬁd‘T—/ QarupAQapd
2 Rd 2 R4

C B

+LA/dQ76,aQ76,ﬁua,/de —L)\/d QQ,YAQ.yguaﬁdl‘
R R

Caa Elee

o
+LA / AQayQyptia,pdr +A / (Qary + =) Hoptia sl
Rd R4

d:efBB d:ef\j’:71

5 da
+AE / Hor (Qyp + 22) g pdx =206 / (Qup + LV ug str(QH)dx
Rd d ]Rd d

EITs EITs
=—LA /Rd UayQrpAQusdr +LA /]Rd Uy, Q3 AQupdx
28 2C
—LA /]R’i QaryAQ~puq gdxr +LA /Rd AQ o Qpuapdr =0
cc BB

(7.11)

where Z = 0 (since V- u = 0), ZZ = 0 (since Qqp = Qo) and for the second equality we used

/ u’yQa,B,'yAQa,de +/ Q'yé,aQ75,ﬂua,,8dx = / u’yQaBn/AQaﬁdJ:
R4 R4 R4
A AA

1
- / @r.a@ysppuady — / @r6.08Qqs,pUadr = / | 5@1880y68Uaadr =0
R R R

together with Qna = Hoa = ta,q =0, J3 = JJ3 and
1 1
TN+ Te= . iQa'yuw,BHaﬁ + iQa'yuB,wHaﬂdx
R

1 1 2
+/ *UOKNQ,Y[;HQ@ + *u%angﬂagdx + / DogHpdx
Rd 2 2 d Rd

1 1
B /Rd §(Qa7u%b’Ha,@ + Uy,aQypHag) + 5 (QarytupyHap + tanQypHap)dz

1
+o / (ta,p + upa) Hapdz = / HpaQaytiy,p + QraHapusyde
R4 R4
2

+d/ U gHopdr = TT1+ T T 2.
Rd
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Finally, the last equality in (7.11]) is a consequence of the straightforward identities 28 + BB =
2C+CC =0. O

It can be easily checked that the system has a scaling, namely we have:

Lemma 7.2.2. Let (Q,u,p) be a solution of . Then letting

us(t,2) & su(dw, 6%),  Qs(t,x) L Q(62,6%), ps(t,x) X 8%p(6w, 6) (7.12)

we have that (Qs,us, ps) satisfy with F(Q) = —aQ + b[Q? — L?Q)Id] — eQtr(Q?) replaced by
F5(Qs) = 62 [—aQ(; +b[(Qs)? — LJQ‘S) - CQ(;tT’(Q(;)Q] We note that, in dimension two, the space
H'(R?) x L*(R?) is invariant by the scaling.

In the following we assume that there exists a smooth solution of ([7.5)) and obtain estimates on
the behaviour of various norms.

Proposition 7.2.3. Let (Q,u) be a smooth solution of in dimension d = 2 or d = 3, with
restriction (7.2)), and smooth initial data (Q(z),u(z)), that decays fast enough at infinity so that
we can integrate by parts in space (for any t > 0) without boundary terms. We assume that |£| < &
where &y is an explicitly computable constant, scale invariant, depending on a,b,c,d,T',v, A.

For (Q,u) € H' x L2, we have

1Qt, )l < Cr + Cre| Q| g, VE > 0 (7.13)

with C1,Cy depending on (a,b,c,d,T, L,v,Q,u). Moreover

t
HMa»ﬁg+uAnvmﬁgscL (7.14)

Proof. We denote:

def
Xog T LAQas — cQaptr(Q?), a, 8 =1,2,3.

Then equation ([7.10]) becomes:

d
2O+ v[|Vul2s + TAL®[AQ|72 + TAC|QEs
CHAY

— chrA/ AQasQuptr(Q*)dx + a*TA||Q|%, + bQF)\/ tr <Q2 — ) dz

Rd : Rd d (7.15)

<2aT\ | tr(XQ)dz —2bI'\ [ tr(XQ?)dx +2abTA [ tr(Q3)da.
R4 R4 R4
N—_————
défI d;fj

Integrating by parts we have:
—2¢LTA / AQapQuptr(Q*)dr = 2¢LT A / Qop kQopitr(Q*)dx
R4 R4
+2¢LT\ /R ) Qap kQapli (tr(Q%)) dz

= 2¢LT'\ / IVQ|*tr(Q*)dx + cLT'A / IV (tr(Q?)) |*dz >0 (7.16)
]Rd Rd
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(where for the last inequality we used the assumption ([7.2)) and L,T"; A > 0). One can easily see
that

L
= [VQl — QI (717)
On the other hand, for any € > 0 and C' = C(e, ¢) an explicitly computable constant, we have:

J = L/ Qaﬁ,kk@av@wﬁd‘T - c/ tr(Q2)tI‘(Q3)d:L‘ < _L/ QaB,kQa%kQ’yﬁdx
R4 R4 Rd

L /Rd Qup k Qo Qrppda + /Rd tr(Q?) (ftr(QQ) + 5tr2(Q2)> da
< Le [ 1VQPu(@)ds + SIValE; + [ 6@ (ftr(@2> + 6tr2(Q2)> dr
Rd N Rd

Using the last three relations in ([7.15]) we obtain:

d
G EO +vIIVuli; + TAL?AQ(L; + TAIQ s + a’TAIQIIZ;

+2¢LT'\ / IVQ|*tr(Q*)dx + c¢LT'A / IV (t(@Q%)) |*da
Rd Rd

L
< 20allAFIVQIE + Q) + 2rALe [ | 1VQP(@)da
¢ ¢
—I—2|b\F)\;||VQ||%2 + 2|b|F)\/ tr(Q?) <€tr(Q2) + 5tr2(Q2)> dz
2 é 4
+2abDAEQIZ, + Cl@lE)

Taking € small enough we can absorb all the terms with an epsilon coefficient on the right into
the left hand side, and we are left with

d
7 B®) + v Vulgz + TAL?[AQIIZ; + PAC|QIILs

+TAG?(|Q72 + 2¢LTA / IVQ|*tr(Q*)dx (7.18)
Rd
LT /R IV (#(QY) Pz < 0 (IVQIE, + @l )

with C' = C(a, b, c).

The last relation is not yet enough because the @) terms without derivatives in E(t) are not
summing to a positive number. However, let us note that, if a > 0 we obtain the a-priori estimates
by using the inequality tr(Q3) < 3tr(Q%) +tr(Q*)%. If a < 0 we have to estimate separately Q12
and this ask for a smallness condition for &.

We need to control in some sense low frequencies of (). To this end, we multiply the first
equation in (7.5) by @, take the trace, integrate over R% and by parts and we obtain:

lg 2 _ _ 2 i 2
22 /Rd QP(t.2)de = 1 L/RdNQ\ d a/Rd|Q(w)| da+
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+b/Rd tr(Q)da — C/Rd \Q|4dx> n /Rd r(QQ? — QNQ)dx

défl_

5 5 bt
+§é#%ﬂ@w+§%Qw+(Qm+jﬂ%ﬂ%ﬁ 2(Qus + ") Qustr(QVu)d

dﬁfzz

Recalling that @ is symmetric we have Z = 0. Also:
1
|II| = |2§H /Rd aDagQag + DOWQ,YBQIQQ — QagQagtr(QVu)dm]

<c@ [ dvapars [ Lgop+jepas
Thus we get:
/ Q?dz < C(d)e / |Vul|*dz + ’562 /Rd|Q|2+ |Q|6dx+é/Rd QP +1Q|*'dz  (7.19)
with €' = C(a,b) > 0. Let us observe now that there exists M = M (a, b, ¢) large enough, so that
S + So(Q7) < (M + $)r(@?) — 21x(@¥) + S6(@?) (7.20)

for any @ € Sp. Multiplying the equation (7.19) by M and adding to (7.18]) we obtain:

d
a(E(t) + M|QlI72) + v[IVulZs + TAL[|AQ(7: + TAC(Q s + a®[QlI72
+2cLTA / IVQ*tr(Q?)dx + ¢LT'\ / IV (t(Q%)) |*dz

R4 R4

3 (7.21)
< (IVQI, + @lL) + MC(@e | [Vufas

MI¢[? ’
SMEE T o v g0+ 010 [ 102 + 1
€ R4 R¢

We chose e small enough so that MC(d)e < v. Finally we make the assumption that |£| is small

enough, depending on a, b, c,d, v so that %5‘2 < T'\c. Then taking into account equation ([7.20))
we obtain the claimed relation (7.13)). O

We note that the & small hypothesis is necessary because we are in infinite domain, for example,
in the periodic domain, we can add a constant to the functional and get the apriori LP estimates
without any smallness condition on &.

7.3 The existence of weak solutions

The next proposition follows closely the similar result in [98] where it was done for A = 1. The
purpose for including it here is to provide an alternative approximation system thus correcting the
proof in [98] and also to show how the cancellations that appeared previously in the derivation of
the energy law still survive at the approximate level but with some differences, phenomenon which
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will appear in a much more complex setting in the proof of uniqueness in the next section.

Proposition 7.3.1. For d = 2,3 there exists a weak solution (Q,u) of the system (7.5)) subject
to initial conditions (7.6)). The solution (Q,u) is such that Q € LS (Ry; HY) N LY (Ry; H?) and
we L (Ry; L) N L2 (Ry; HY).

loc loc
Proof. As first step of the construction of weak solutions for the system ([7.5)) we construct for any
fixed € > 0 a global weak solution

Q€ € LZOSC(R—HHl) n L2 (R+7H2)7 Ue € L?(?C(R-HLQ) N LIQOC(R-l-aHl)

loc

for the modified system obtained by mollifying the coefficients of the equation for the () tensor
and by adding to the equation of the velocity a regularizing term. This term is needed in order to
estimate some "bad” terms which does not disappear in an energy estimate. For the simplicity of
the notations, we drop the indices € and we denote the solution (Q.,u:) by (Q,u).

Q + (Ru)VQ — ((Re(€D +0)(Q + 41d))

~((@+ J1d)R(eD - 0))

+2¢((Q + §1a)tr(QVR.) ) = TH

Biu + (Row)Vu — vAu + Vp = —PR, (Zimzl VQim (Rett - V Qi) \REuVQD
+£PV - R. <v35u\v35u12> — AV - R€< (Q + 1d) H) —¢PV-R. (H (Q + 1d) )

2V - R, ((Q +114) (QH)) — LAR.(V - tr(VQVQ))

+LAPV - R, (Qé@ —AQQ)
(Q7 u)|t=0 = (R€Q7 Reﬂ)

where R is the convolution operator with the kernel e =%y (e~1.).
In order to construct the global weak solution for this system, we use the classical Friedrich’s
scheme. We define the mollifying operator

Taf(6) Y Liy-neie<any F(€).

We consider the approximating system:

8,0 + J,, (REJnu"VJnQ(”)> —J, ((§JnR€D(”) T RQM)(J,QM) + 51d)>
—J ((JnQ(") + 11d)(€J, R.D™ — JnREQ("))>

2600 ((Jn Q™) + Cllld)tr(JnQ(”)VJnRsu(”))? —TA™

o™ + P (P I Ru"VPJu™) — vAPJu™ =

ePJnRE<2;fm1 V5Qu (Redu - V1Q4 ) |R5Jnu”VJnQ(")|>

Im

(7.22)
+ePV - J,R. <VR€Jnu(”) VR J,u™ |2>

—\PV - Jn< (J,Q™ + L1d) Eﬂn)) — XPVY - T, <H<n> (J.QM™ + L1d) )

+2XEPV - J,, <(JnQ(”) + L1d) (JnQ(”)ET(”))> — LAPJL(V - tr(J, QY J,QM))
+LAPV - Jp, (J,QMWAT, QM — AJ,Q™ J,QM)
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where P denotes the Leray projector onto divergence-free vector fields, M is a positive constant, and
HM % 1 Ag QU — aJ, QM + bJ,[(J,Q™ J,QM) — wﬂﬂ,&] (J Qn)’J QM } )

We take as initial data (J,R.Q, J, R:1).

The system above can be regarded as an ordinary differential equation in L? verifying the con-
ditions of the Cauchy-Lipschitz theorem. Thus it admits a unique maximal solution (Q(”),u(”)) €
CY ([0, Ty,); L2(R% R4 x L2(RY, R?)). As we have (P.J,,)? = P.J, and J? = J, the pair (J,Q™, P.J,u(™)
is also a solution of (7.22). By uniqueness we have (J.Q™, PJu™) = (Q, u™) hence (QM, u(™) €
CY([0,T;,), H®) and (Q™, u(™) satisfy the system:

(

Q™ + J, (Rgu”VQ(”)> —Jn ((ERED(”) + ROQM)(QM + 5Id))
~Jn ((QW + 11d)(¢R. D" R.Q™ >) + 28T ((Qw 5zd>tr(¢g<n>mgun)) —TH®
ou™ + PJp(RuVu'™) — vAu™ =

—ePJ, ( OIS vJoli) ( Rou” - VQZ(:Q) | R Q™) |>

4PV - J,R. (VRau(") IV Rou™ y?) (7.23)
—XEPV - Jn< (Q™ + L1d) ﬁ<n>> — MNPV - J, (Fﬂn) (Q™ + L11d) )

+2XEPY - T, ((Q(”) + 11d) (QWH™)

—LAPJ(V - t2(VQMVQM)) + LAPV - J,, (QMWAQM™ — AQM Q™)

where

n)n)
7™ = LAQ™ — aQ™ 4 b1,[(QMQM™) — tr(‘]"(Qd QD pa) - e (@©IQM).

The initial data is (J,Q, J,u). We recall now a few properties of .J,, :

Lemma 7.3.2. The operators P and J, are selfadjoint in L?>. Moreover J, and PJ, are also
idempotent and J, commutes with distributional derivatives.

We proceed in a manner analogous to the proof of Proposition [7.2.1] and multiply the first
equation in by —AH™ take the trace, integrate over R% and by parts, and add to the
second equation multiplied by u(™. Let us observe that almost all the cancellations in the proof of
hold, except for a few terms that need to be estimated separately. We also have some more
new terms that we added in the regularization, terms that control the ones which do not cancel.
Thus we have:

d [ 1 ne LA G m)pe (n)|2 (M3 . C1 o)
@i a2 IV AGIR™I - tr(Q )P+ 1M de

Y0

2

wo [ vt [l (28 - aQ® 4 o2
R4 Rd

_tl"((QB(")) )Id —cQ ‘Q ‘ )r

+¢ / |R.uvVQ™3dx + & / |R.Vu"|*dx <
R4 R4
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n (”) n (n) (n) n)|2
< )\/Rd Jo (Beum - vQU)) 1o (bQE) QS - Q) |Q™[*) dz
+)\/RdJ ( RAMQY + QRO ) (waS Q5 — @\ |Q™)] ) (7.24)
hence :

A [ LA o omye @ nme b nmys
1 Rd2|“| + 5 VR +AGGIQ™? — Str(@™)
+C\Q(n)!4)dx+V/ \Vu”\zdx+F)\/ LQyAQ(N)|2dx+p/\a2/ 10 2dz
4 R4 Rd Rd

R4 Rd

+e / |R.uvVQ™Pdz + ¢ / |R.Vu"|*dz < 2T'Ac / LAQ™ - QM |Q™|2dx
R4 R4 R4

—2T'A / LAQ™ - (—aQ™ + b,
Rd

(n)
—2F)\/ QMM . (aQ(") —bJ, [(Q(n))2 — U(%l)?[d]) da
R4
|

+A /RdJn (Rew-9QY)) Jn (WAL - QU™

-~

defrr

F 2
+0/I&VWWQWPM+c/ﬁUM@WQWWﬁM+C/IQWWM
Rd 8 Rd ]R’i

We have that

n n n n n n)|2
17 = /Rd (Rgu .vcg;g) In (ngQQgﬁ) —eQUQ™)] )dx

4 1
< 4 - n, (n)2
= (rc2 * 4C(b2,d,r)> /Rd |[Feu™ - VO™ da

C@,d,T), . re? o
+ CAD) g, + Sﬂm@mwmm

/ IR - VQ™ Pz + C(e, 0%, 2, d,T) Z |Reu” - VQ!™ |da
R¢ I,m=1

M2, 2,d,T Ic? N
+ AR D oot + 25 [ 1@ P)Pds

< 5/ |REu”-VQ(”)|3dx+Cl(s,62,c2,d,F)/ " 2dz
2 R4 Rd

C(b%,d,T)
2

+Calebed.T) [ VQU e+ Q).

re? (n) 1~ (n) (212
=3 RdUn(Q Q™))" dx (7.25)
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Using the fact that Z < 0 and the estimate for ZZ shown before, we replace in ([7.24)) and obtain:

E‘Q(n)|4)dx

d 1 LA b
Sl P+ VP AGIQMP — S (@) +

& Rd 3
—H// |Vu"|2dx+F)\/ L2|AQ(")]2dx—|—€/ |R5u"-vc2<">3dx+5/ |VR.u"[*dz
R4 R4 2 R4 2 R4

< / QWP 4 Q™) |t + C / VQ™ 2 + O(e) / ™ Pda.
Rd R4 Rd

This estimate does not readily provide bounds on Q™ because the term %|Q(™|? — %tr(Q(”))3 +
§|Q(")\4 could be negative. In order to obtain H' estimates we proceed as in the proof of Proposi-
tion We put the proof in the chapter by Proposition We can continue to proceed
as in the proof of Proposition [7.2.3] and in fact in this case because of the first two regularizing
terms on the right hand side of the u" equation in (|7.23]) we do not need the £ small assumption.
These estimates allow us to conclude that T;, = oo and we also get the following apriori bounds:

sup |VR-u"||za(0,7;14), sup [[Reu" - VQ(H)‘|L3(O,T;L3) < C(e)
n n
sup HQ(n)||L2(0,T;H2)OL°°(0,T;H1) < 00, (7.26)
n
sup [|[u” || Loo (0,7:22)nL2 (0,1 H1) < 09,
n

for any T' < co. By the bounds which can be obtained by using the equation on 8t(Q(”),u”) in

some LS (H ~N) for large enough N, we get, by classical local compactness Aubin-Lions lemma,

on a subsequence, that:

Q™ — @ in L*(0,T; H?) and Q™ — Q in L*(0,T; H2.?), V6 > 0
QM (t) = Q(t) in H' for all t € Ry
u™ — win L?(0,T; H') and u™ — w in L?(0,T; H}7%), V6 > 0

loc

u"(t) = u(t) in L% for all t € Ry
Thus we can pass to the limit and obtain a weak solution of the approximating system:
01Q® + RaurVQE- (€RDF + R7)(QE + 11d)) + ((QV) + LId)(€RD" — R.AY))
—25((Q<€> + %Id)tr(Q(E)VUED — TH®
O + PRV = ~ePR. (Sf 10y VQim (Bott- VQi) RV Q)
+ePV - R, <R5VU|REVu|2> — NPV - R€< (Q® + L1d) H)
—APV - R, <H (Q® + 11d) ) +2XPV - R, <(Q<€> +3)(QYH?)
—LXP(V - RAr(VQ® @ VQ©))) + LAPV - R. (QPIAQE) — AQEIQ®) + vAws

\

(7.27)
where we recall that H = LAQ(E_) —aQ® +b[(Q¥))? — w&i] —cQBtr((Q)?). The initial
data for the limit system is (R.Q, R-u).

One can easily see that the solutions of ((7.27]) are smooth, first by obtaining C'*° regularity for
the first ) equations, by bootstrapping the regularity improvement provided by the linear heat
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equation, and then the regularity for the u equation, by bootstrapping the regularity improvement
provided by a linear advection equation. For this system we can proceed as in the case of apriori
estimates and obtain the same estimates, independent of € because the solutions are smooth and
all the cancellations that were used in the apriori estimates also hold here. In particular we obtain:

sup HQ(E)||L°°(O,T;H1)OL2(0,T;H2) < o0,
© . (7.28)
sup ||u ||Loo(0,T;L2)mL2(0,T;H1) <0
€

for any T' < oo. Taking into account those bounds and also the bounds which can be obtained
by using the equation on 9;(Q°,u?) in some L (H~™) for large enough N, we get, by classical

loc
local compactness Aubin-Lions lemma and by weak convergence arguments, that there exists a

Qe LX(Ri;HYNLE (Ry;H?) and au € LS (Ry; L2) N LY (Ry; HY) so that, on a subsequence,

loc loc
we have:
Q¥ —~ Qin L*(0,T; H?) and Q©) — Q in L*(0,T; H?-%), V6 > 0

loc

Q¥ (t) = Q(t) in H' for all t € Ry
u® — win L2(0,T; H) and vf — w in L(0,T; H-.%),¥6 > 0

loc

uf(t) — u(t) in L? for all t € Ry

(7.29)

These convergences allow us to the pass to the limit in the weak solutions of the system ([7.27)) to
obtain a weak solution of ([7.5)), namely (7.7]), (7.8]). Of all the terms there is only one type that is
slightly difficult to treat in passing to the limit, namely:

> AN E) () e ) x
L/O /Rd 95 (Q&%AQW - Ang)Qw) Vodazdt _—L/0 /Rd (QEW)AQW ~AQE Q > o pdadt.

Taking into account that v is compactly supported and the convergences (|7.29)) one can easily pass
to the limit the terms wa,BQ&? and ¢a75Q£fﬁ) strongly in L2(0,T; L?). Relations (7.29)) give that
AQ’}’B’ AQ,(%) converges weakly in L?(0,T; L?). Thus we get convergence to the limit term

L/O /I‘%d aﬁ(Qa'YAQ’yﬂ)wadxdt — L/g e 6ﬂ(AQm)Qw)¢admdt

T T
——L [ [ (8Qp)0aQu)ndt + L [ [ (AQu)(0510Q )it

Using also the uniform bound of ¢||R.usVQ*||3, it is easy to check that e [ |R.ufVQ®|*VQ* -
R:Pydzdt converges to zero. A similar result holds for the e-term ePV - (R.Vu|R:Vul|?). O

7.4 The uniqueness of weak solutions

We start with a number of technical tools that are crucial for our proof.

7.4.1 Littlewood-Paley theory

We define C to be the ring of center 0, of small radius 1/2 and great radius 2. There exist two
nonnegative radial functions x and ¢ belonging respectively to D(B(0,1)) and to D(C) so that

O+ p27%) =1,V € R? (7.30)

q>0
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Ip—al =5 = Supp (277:) N Supp p(277:) = 0. (7.31)
For instance, one can take y € D(B(0,1)) such that x =1 on B(0,1/2) and take

o(§) = x(§/2) — x(&).

Then, we are able to define the Littlewood-Paley decomposition. Let us denote by F the Fourier
transform on R%. Let h, h, A, S, (¢ € Z) be defined as follows:

h = f_lgo and h= .7:_1)(,
Agu=F Y p(279) Fu) = 29¢ / h(2%y)u(z — y)dy,

Squ = F (0(279€) Fu) = 204 / R(2%y)ux — y)dy.

We recall that for two appropriately smooth functions a and b we have the Bony’s paraproduct
decomposition [13]: . ' ‘
ab=Tyb+ Tya + R(a,b)

where

T,b= E Sq,laAqb, Tya = Z S’q,leqa, and R(a b) E Aququ
qEZ qEZ q€Z,
1€{0,£1}

Then We have . . . . . . . . . . ~
Ag(ab) = ATob+ AjTya + AyR(a,b) = A Tub + A R(a,b),

where R(a,b) = Tya + R(a,b) = > ez Sy+2bA,a. Moreover:

= > Ay(Sy10dgb)+ > Ay(SyiabAga)

lg"—ql<5 q¢>q—5
= Z [Aq, Sq/_la]Aq/b—f— Z Sq/_laAqu/b—f— Z Aq(Sq/+2bAq/a)
la’—q|<5 la’—q|<5 q'>q—5
= > [Ag SpaalAgb+ D (Syo1a—S_1a)AgAgb (7.32)
lg’—q|<5 lg’—q|<5
+ Z Aq(S’q/+QbAq/a)+ Z Sq,laAqu/b
9'>q=5 la’—q<5

=8,-1aAzb

In terms of this decomposition we can express the Sobolev norm of an element v in the (nonhomo-
geneous!) space H® as:

. . 1 2
lallre = (1S0ul22 + 3 22 ) Aqul|32) "
qeN

These are a particular case of the general nonhomogeneous Besov spaces B for s € R,p,r €

[1,00]? consisting of all tempered distributions u such that:

P"”’

[ullB;,, { H(HSOUHLP + ZQEN 2rqs||AqU”Lp) if r < oo
DT

max(||Soul| zr, sup ey 29° |Agullze) if r= o0
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which reduces to the nonhomogeneous Sobolev space H® for p =r = 2.
Similarly we also have the norm of the homogenous Sobolev spaces H?®:

lall e = (37 22| Aqul|22)

qEZ

]? consisting of all the homogeneous

and the homogenous Besov spaces B;’T for s e R,p,r € [1,00
tempered distributions u such that:

def{ 1 ez 27 | Aqull})

[l %
ull s = :
Bp.r supgez 29°(| Aqul| e if r =00

ifr < oo

which reduces to the homogeneous Sobolev space H* for p = r = 2.
Let us note that the homogeneous Besov spaces have somewhat better product rules, and this
specificity encoded in Proposition [7.4.4] will be very useful in our subsequent estimates.
Furthermore we will need the following characterisation of the homogeneous norms, in terms of
operators S'qu:

Lemma 7.4.1. [ Prop. 2.33], [7] Let s <0 and p,r € [1, oc]?. A tempered distribution u belongs
to By . if and only if: '
2)Squllr)gez € 1"

and for some constant C' depending only on the dimension d we have:

— : 1
I ull gy, < @™ ISyllzn)olle < O+ 7D ull,

|s
We will use the following well-known estimates:

Lemma 7.4.2. ( (18], [19])
(i) (Bernstein inequalities)

21V ullp < Cllullp,¥1 < p < oo
lAgullzp < 27AVulp < ClAullz, Y1 < p < 00
(ii) (Bernstein inequalities)
1Agullpy < 296~ Agullg, forb>a>1
HSquHLg < 2d(%*%)qH5’quHLg, forb>a>1
(ii) (commutator estimate)
IAg, ulvll e < C279[Vul g [[v]lg (7.33)

with % = % + % The constant C' depends only on the function ¢ used in defining Aq but not on

p,7,Ss.

Proof. For the commutator estimate we begin by writing

[Ag, ulv(z) = Ag(uv)(2) — u(z)Agu(z) = 2 / h(2%y) (u(z — y) — u(z))v(z — y)dy
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— 94d /Rd /01 ;_{h@qy)u(m —Ty)v(z — y)dy}dT
1

B _qu/o /Rd h(2%y)y - Vu(z — ty)v(z — y)dydr

=20 [ [ hanl) e — 7)ot~ yyavar,

where h(y) := yh(y) € S(RM? and hy(y) := Ah(\y). Using the Cauchy-Schwartz inequality and a
change of variables, we get

s

@ <2 [ ([ vt —mliay) ar( [ it i)

< [[ (Pt wiban) ([ olte i)

P

! VNI *1’ r z =~ s
_ 9—¢ 24T T . s
270 [ (B 9l @) dr (<ol o)

Taking the LP norm in the x variable, using the Cauchy-Schwartz inequality in the = variable and
convolution estimates we obtain

‘E2‘JT*1 ’

”mmﬂﬂmﬁ2wﬂfw i vaamf

Y H (|B2q| % \vy%(x)) Z‘

o
B h 1 r P ~ s B
< oo [P gl ar ) ¢ 0 1

L3

~ b

U[hgar—llfs . e

<2 q/o ——a drlIVullzgllhaall 1ol g
o~ - 4

< 27| hg-all full ool 71 [Vl 0]l s -

Now, since
Vil s = / 90l (27 1) [dr = / )y = 1,
R4 R4

we finally obtain
. _ ~ P ~ P ~ _
ITAg, wlvllge < 279Al 7, 1Al 72 IVl Ly ol = P12 27 1Vl Ly ([0l g

so the constant in the inequality is C' = ||A||;1 and it does not depend on p,r, s. O

We will also make use of a Bernstein-type inequality evolving the operator Sq.

Lemma 7.4.3. there exist two positive constants ¢ and C such that
6H(Sq - Sq’)uHL‘; < 2_qH<Sq - Sq’)quLi < éH(*gq - Sq’)uHL27V1 <p = oo,

for any integers q and q' with |q — ¢'| <5.
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Proof. First, we consider new localizer functions as follows:

Pq(§) = Z ©i(€) and x(§) := {quﬁéq(f) if £#0,

1 herwi
lq—71<10 otherwise,

so that (7.30) and ([7.31)) are satisfied with ¢ and x instead of ¢ and y. Then defining the new

homogeneous dyadic block Aq in the same line of Aq, we have

By =8p)u=5 3 A8, 8p)w) = 55 (8, — 8w

lg—7]<10

Then the inequality turns out from (i) of Lemma |7.4.2) making use of Aq instead of A,. O]

Now, we prove an useful product law between homogeneous Sobolev which will play a main role
in our estimates.

Proposition 7.4.4. Let s and t be two real numbers such that |s| and |t| belong to [0,d/2). Let us
assume that s +t is positive, then for every a € H*(R?) and for every b € HY(R?), the product ab
belongs to H5Y=42 and there exists a positive constant (not dependent by a and b) such that

labllgres1-a2 < Cllall g ol

Proof. At first we identify the Sobolev Spaces H® and H' with the Besov Spaces 35’72 and 3572

respectively. We claim that ab belongs to B;Etid/ % and

oty <l g, I,
for a suitable positive constant.
We decompose the product ab through the Bony decomposition, namely ab = T,b + Tya + R(a,b),
where

T,b:= Z Aqa Sq_lb, Tya = Z S'q_la Aqb, R(a, b) = Z Aqa Aq+yb.
qEZ q€Z ‘q|€Z
v|<1

For any q € Z, we have

2(5+9)|| (A, Tub, AyTha)|| 2 S
< Y 27 Agal 22 DS bl + D 277D a1 27| Agb 2

~Y
lg—q’'|<5 lg—q'|<5
hence

(Tab, Toa)l| g < (Tub, Tya)|l .0 g
2.2 2,1

S g 101 g + el g 100, 5 ol 100,

/

where we have used the embedding B‘z’,2 — Bg;Qd 2, for any ¢ € R and moreover the following
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norm-equivalence i o
lullpz .~ 271 Squllrp)eezllinzy,  w € By,

for any 1 < p,r < oo and ¢ < 0.
In order to conclude the proof, we have to handle the rest R(a,b). By a direct computation, for
any q € Z,

2(t+s)qHAqR(avb)||L}E < E ( Q(qfq/)(sH)Qq’sHAq,a”L%Q(q’w)tHAq,JrVaHL?E7
q¢>q-5
lv|<1

so that, thanks to the Young inequality, we deduce

20, )] g IR D 5 el Il
where we have used the embedding Bﬁt — B;Et_d/ ? and moreover > 4<s 21(5+) < o since s + ¢
is positive. ]

Let us finally present two specific Sobolev inequalities. The first one allows a bound for the
L*-norm of the low frequencies of a suitable function, while the second one is interpolation-type
inequality. The explicit formula of the constants of embedding will play a key role when establishing
the delicate double-logarithmic inequality.

Proposition 7.4.5. Let N be a positive real number and f a function in H*. Then Sy f belongs
to LY and

1SN flizee S I fllee + VNIV Fllzz S 1+ VNI, V)l Lz

Proof. We split Sy f into two parts, namely Sy f = >4<0 A f + D 0<q<N A,f. First we observe

that
1Y " Agfllize <D 1A e D27 Af e S (D 29) 1 fllz2-

q<0 q<0 q<0 q<0

Similarly, considering the second term, we get

1> Adflize < Y0 Al S D0 2904 f e

0<g<N 0<g<N 0<g<N
1 1
A 3 A 2
S S 1A S (X 1) (X IANAR)T S VNIl
0<g<N 0<g<N 0<g<N
which concludes the proof of the Theorem. O

The following Lemma plays a main role in the uniqueness result of Theorem[7.1.2] more precisely
inequality (7.34]) is the key for the double-logarithmic estimate.

Lemma 7.4.6. There exists a positive constant C such that for any p € [1,00) the following
inequality is satisfied:

1 1—1
1 ll2ne2) < VB a1V F1| o (7.34)

Proof. The proof of this lemma was presented in [96] (lemma 4.3) and we report it here, for the
sake of simplicity. thanks to Sobolev embeddings, we have

1 fll2r @2y < C\/ﬁ||f”H1—%(R2)' (7.35)
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Moreover, since H'~'/P(R?) is an interpolation space between L?(R?) and H'(R?), the following
inequality is satisfied:

1 1—1
”f”Hk%(RQ) < Hf”zQ(RQ)va||L2(I]7R2)7

which leads to ([7.34)), together with ((7.35]). O

7.4.2 The proof of the uniqueness

In this section we provide the proof of the uniqueness result for the weak solutions of system (|7
The main idea is to evaluate the dlfference between two weak solutions in a functional space Wthh is
less regular than L2 such as 2. Such strategy is not new in literature, for instance we recall |4§]
and [88]. We now provide the uniqueness part of the proof of Theorem

Proof. Let us consider two weak solutions (u1, Q1) and (ug2, Q2) of system (7.5). We denote
du := u1 —ug and 0Q := Q1 — Q2 while 65(Q, Vu) stands for S(Q1, Vu1) —S(Q2, Vuz). Similarly,
we define 0H(Q), 0F(Q), 07 and do. Thus (du, 0Q) is a weak solution of

0:0Q — LASQ = 6S(Q,Vu) +T6H(Q) — du-VQ1 —uz - VéQ R, x R?,
Opou — Adu + VIl = Ldiv{dT + do} — ou - Vuy — ug - Viu R, x R?,
divou =0 R, x R2,
(6w, 0Q)i=o = (0, 0) R2.

(7.36)

First, let us explicitly state 65(Q, Vu), 0F(Q), 67 and do in terms of Q) and du, namely:

85(Q,Vu) = 4+(£6D + 62)6Q + (£6D + 6Q)( Q2 + % )+ (€D3 + 22)0Q + dQ(£6D — 6Q)+

+( Q2+ E )(E0D — 6Q) + 6Q(ED2 — Q2) — 2£0Q tr(dQVou) — 2£6Q tr(6QVuz)+

~ 260Q t(Q2V6u) — 26( Qs + 5 )r(BQVu) — 26Q tr(QaVus)

—26(Qa + %)tr@QVuz) 9e(Qa 4 %)’CT(Q2V(5u)7

SF(Q) = ~adQ +b(Qi0Q +3QQ2) ~ bir{HQQ: +QadQ} -~
— [0Qu{Q1} + Qatr{6QQ1 + Q200Q}]
SH(Q) = 6F(Q) + LASQ.

0T = —§6Q F(Q1) — §( Q2 + E JOF(Q) — LEQ AGQ — LEGQ AQ2 — LE( Q2 + E )AIQ+

—EF(Q1)0Q — SOF(Q)( Q2 + % ) — LEASQOQ — LEAQ26Q — LEASQ( Qo + E )+

2
+266Qtr{Q1 F(Q1)} + 26Q2tr{6QF(Q1) } +
+ 26Qatr{Q20F(Q)} + 2LESQtr{QASQ} + 2LESQtr{SQAQ2} + 2LESQtr{QaASQ}+

+2LE( Qs + % Jer{0QAGQY + 2LESQt{QaAQs} + 2LE( Qs + % Jr{0QAQs}+
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+2LE( Q2 + % )tr{Q2A5Q} — LVSQ & VQ, — LVQs & V6Q—

~ L {QQ1} — Ly tr{Q0Q)

b0 = 0QF(Q1) + Q20F(Q) — F(Q1)0Q — 0F(Q)Q2 + LIQAIQ + LQ2AQ + LIQAQ-
— LASQSQ — LAQ20Q — LASQQ2

Taking the inner product in H =2 of the first equation with —LAAJQ and adding to it the scalar
product in H~1/2 of the second one by %&L we get:
d

2 2 Z 2 2 2 _
[ oul?,_y + LIV6QIZ | + Ivoul?,_, + TI2AsQI? , =

— LU(E6D + 692)5Q, ASQ) —LE(SD Qo, ASQ) —L{5Q Qa, ASQ) Lg( D As0)
A B

C1

@ ASQ) ~L{(£Ds + 22)5Q, ASQ) — L(SQ(E5D — 59), ASQ) —L&E(Q26D, A5Q)

As

Dl

FL(Qu00, A3Q) ~ L&’ A6Q) +L(%, A6Q) ~L(FQEDs — 02), ASQ)

B c2 DQ
+ 2LE(0Q tr(0QVu), AdQ) + 2LE(SQ tr(6QVuz), AdQ) + 2LE(6Q tr(Q2Viu), AdQ)
+ 2LE(Q2 tr(6QVou), AdQ) +2L§<%tr(5QV6u), AOQ) +2LE(0Q tr(Q2Vuz), AdQ)
=0

+ 2LE(Q2 tr(6QVusg), AdQ) +2L5<%tr(5QVu2), AOQ) +2LE(Q2tr(Q2Viu), AdQ)
&

=0
+2L§<%tr(Q2V5u), ASQ) +Lal'(0Q, AdQ) — LIT{Q15Q + 6QQa, AJQ)
=0

+ LD (tr{6QQ; + QQ(SQ}%, ASQ) +Lcl (6Qtr{Q3}, ASQ)

- LT (Qutr{5QQs + QaiQ}, AGQ) + Lifu- Vs, AKQ)

¥ Lius - V6Q, ASQ) — a (6QO1, Vou) + bE(6QQ2, Véu) — be(5Qtr (Ql) ,Vou) (7.37)
- c5<6cztr<@%>@1, Viu) — ag{(Qa + & )3Q, Viu)

FOE((Qa 2 )(@iQ +5QQs), V6u> - b£<ftr{5QQ1 T Q20Q}, Vau)

—b£<tr{5QQ1 + Q25Q}§, Viu) —c€{( Q2 e )5Qtr{Q1} Vou)
:0
— c£{( Q2 + )tar{5QQ1 + Q20Q}, Véu) + LE(GQASQ, Viu) + LE(GQAQ2, Viu)
A6Q

+L£<Q2A5Q, Vou) +LE(=5F, Vi) —ag(Q10Q, Vou)
As

Cs
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FOE(QF — r{ Q3 ) )5, V) — ce(QRr{ QF }5Q, Vou) — a€(5Q(@a + ), Viu)

FOE((QIIQ +5QQ2)(Qa+ ), Vou) — BE(IH{5QQ1 +Q23Q) 2, Vi)

—bE(tr{0QQ + Q25Q}§, Vou) —c£(6Qtr{Q?}( Q2 + ; ), Vou)

=0
— c&(Qatr{6Q5Q1 + Q20Q}( Q2 + — ld 5 )» Vou) + LE(ASQ 6Q, Vou) + LE(AQ20Q, Vou)
AQ

+LE(AIQQ2, Viu) +L§<7 V5u> +2a£(6Qtr{ Q3}, Véu) — 2b6(5Qtr{ Q3}, Véu)
Ay

C4

+2b§(?tr{ Q1 1tr{Q3}, Vou) +2¢£(6Qtr{ Q3}2, Véu) + 2a£(Qatr{0QQ1 }, Viu)

=0

— 266 {Qatr{6QQ?}, Vou) +Qb§(—tr{5Q}tr{Q1} Vou) +2c£(Qatr{dQQ: }tr{Q?}, Viu)
=0

+ 2a£(Q2tr{Q20Q}, Véu) — 206 (Q2tr{Q2( Q10Q + IQQ2 )}, Viu)
+255<Q2tr{%}tr{5QQ1 + Q20Q}, Vou) +2¢£(Qatr{Q20Q1tr{Q3}, Véu)

=0
+ 2¢€(Qatr{Q31tr{0QQ1 + Q26Q}, Vou) — 2LE(SQtr{6QASQ}, Vu)
— 2LE(SQtr{6QAQ1}, Viu) — 2LE(BQtr{QaAQ}, Viu)

— 2LE(Qatr{6QASQY, Viu) —2L§(%tr{5QA6Q}, Vou) —2LE(5Qtr{Q2AQs}, Viu)
=0

— 2L8(Q2tr{0QAQ2}, Viu) —2L§<%tr{5QAQ2}7 Viu) —2LE(Qatr{Q2A6Q}, Viu)

Ea

=0

72L§<%tr{Q2A5Q}, Véu) +L(VQ © VQ1, Vou) + L(VQs ® VQ1, Véu)
=0

+L<%tr{5QQ1}, Viu) +L(%tr{Q25Q}, Vou) +La(6QQ1, Viu)
=0 =0

— IH{Q(QS — (@3} ), Vou) + Lel6QQitr{Q3), Viu)

+ CL<Q2(5Q, V(5U> — b<Q2( QléQ + (5QQ2 ), V(5U> + b<Q2tI‘{5QQ1 + QQdQ}%, V5u>
+¢(Q20Qtr{Q1}, Vou) +c(Q3tr{6QQ1 + Q20Q}, Viu)

Fi
~ (@16, Vu) + b{( @3 — tr{QF) 5 )6Q. Vu)  c{Qitr{Q116@, Vou)
—a(0QQ2, Viu) + b{(Q10Q + 6QQ2)Q2, Viu)
~ b{ir{5Q@1 + @20Q) 5 Qa, Viu) — c(5Qir{Q3}Qz, Vou)
—e{Qatr{5QQ: + @20Q) Q2. Viu) ~ LITQATQ, Viu) ~L(Q206@, Vou)

Fa B3
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— L{6QAQ2, Viu) + L{AIQIQ, Viu) +L{AIQQ2, Viu)
By

+ L(AQ20Q, Viou) — (uz - Vou,ou) — (0u - Vuy, ou).

Denoting
®(t) == 1/ 2N |0u(t)[[% /2 + LIVOQ)F-1/
we will aim to show that ® satisfies the inequality

O'(t) < x(H)u( (1)), (7.38)

where 4 is an Osgood modulus of continuity (see [7], Definition 3.1), given by

u(r):==r+rin <1+6+%) +rln (1—1—6—1—%)111111 (1+e+%>. (7.39)

with x € Llloc apriori. We are going to find a double-logarithmic estimate, hence thanks to the
Osgood Lemma (see [7], Lemma 3.4) and since ®(0) is null, we get that ® = 0, which yields the
uniqueness of the solution for system ([7.5]).

First, let us observe following simplifications of ([7.37]):
0=C1+Co+C3+C4y =D+ Dy =F + Fo.

The key method we use to obtain the desired estimates is the para-differential calculus decompo-
sition summarized in the following;:

Remark 7.4.7. Let q be an integer, and A, B be dx d matrices whose components are homogeneous
temperate distributions. We are going to use the following notation:

THA, B) =Y, _yi<slBg, Sy-14]1Ay B, J3(A,B) == S;1AAB,
ij(A» B) 5:Z\q_q'|g5(Sq’flA_SqflA)Aqu’Ba jq4("4’ B) ::ZQ’Zq—B Aq(Aq’f‘hS.Yq’HB)-
Than we can decompose the product AB as follows
Ay(AB) = J; (A, B) + J;}(A, B) + T} (A, B) + 7/ (4, B) (7.40)

for any integer q.

Moreover from now on we will use the notation < as follows: for any non-negative real numbers
a and b, we denote a < b if and only if there exists a positive constant C' (independent of a and b)
such that a < Cb.

Estimate of A; + Ay + A3 + Ay

Let us begin analyzing the terms Ay, As, A3 and A4 of (7.37). First, we observe that

4
Ay = —LEY 279A(Q20D), AyASQ) 12 = —LED 279> (Ti(Qa, 6D), AgASQ) 12

qEZL qEZ i=1
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Now, when 7 = 1, we have

27T} (Q2, D), AgA6Q) 2 = Y 27U([Ag, Sy—1Q2]Ay6D, AgASQ) 12

lg—q'|<5
S Y 27[Ay Sy 1QaAy6D| 12| AA5Q) 12
la—q'|<5
S Y 278y VQal s Ay SD g1 A,A0Q) 12 -
lg—q'|<5 '
) 1, 1 .
S Y 27081 VQ2 2 1Sy —18Q2 25 1Ay bul 1 | Ay ASQ 12
la—q'|<5
1 1 .
S D IVQAEIAQeF 1Ay bul 2272 [ AgASQ) 1z,
la—q'|<5
for every g € Z. Hence, we get
. 1 1
—LEY 27T} (Q2, 6D), AgASQ) 12 S IVQ2l1 2, IAQ2 17, [10ull 2 [ ASQIL
qEZ
1 1 1 1 7.42
< IVQaE; 1AQalE Iull2 _ IV6ull?_, [185Q1 (r42)
< 19QuI 1AQal 15ul?,_, +CullVaul? _, + Cr | ASQIE, .
where we have used the following interpolation inequality:
1 1 1 1
lullzz < 6wl loul®, = oul2 , |Voul? .
When ¢ = 2, the following inequalities are fulfilled:
27UT2(Q2, 6D), AgASQ) 12 = Z 279((Sy-1Q2 — Sq-1Q2)AgAy 6D, AgASQ) 12
lg—q'|<5
S D 278y 1Q2 = Sg-1Q2) 10| Ag Ay 6Dl 12| Ag ASQ 2
la—q'|<5
S Y 27P(Sy-18Q — S1AQ2) ) 12 180 Ay 5D 121 A ASQ 2 (7.43)
la—q'|<5
S Y 27%AQ 2 |Ay8D| 12 Ag AR L2
la—q'|<5
S D0 2 EAgdulla2 HIAASQl 2 AQl 2
la—q'|<5
for any ¢ € Z. Thus, it turns out that
— L&Y 27 UTF(Q2, 0D), AgASQ) 2 S 11AQ2|I7; 10ull® _y + CrollA6Q% (7.44)

qEZL
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The term corresponding to ¢ = 3 cannot be estimated as before. We will see that this challenging
term will be simplified. Finally, when ¢ = 4, we have

“UTHQ2, D), AgASQ) 2 = L277 > (Ag[AgQ2Sy426D], AgASQ) 12
q—q'<5
S27f Z 1Ay Q2llzee || Sq+20D 12 | AgASQ) | 12
q—q'<5
S27f Z 2‘q'HAq/AQaHLgIIS'qf+2<5DHLg2qHAqWQHL;
(7.45)
q—q’<5
< > 2% 1A, AQQHLQT*HSMaDHLﬂ 2|AgVOQl| 2
q—q'<5
<||AQ2HL22_§HA VoQ .z Z 23" 2_7”Sq+25DHL2a
q—q'<5

for any ¢ € Z. Hence,

—L§Y 27 UTNQ2, 6D), AgASQ) 2

qEZ
_a, a—d’ _d+2,
SHAQ2HL§Z2 2||AqV5QHLgZ2 2 1(coop) (@ —q')27 2 [|Sy420D]| 12
qE€Z q' €L
’ 1
—d _gt2 - 2
S 18R IV6Ql -y (D130 277 1 womyla = 1275 | Sye20D 12 [*)
q€Z q'€Z

and by convolution

’ . 1
(T2 1 (a2 5 18 120D ]2 )

q€Z Q'€

1
SO 2%(22—(1”5(150“%%) ) S IVoull, g,

q<5 qE€Z

so that

~LEY 27T} (Qn, 6D), AgA0Q) 1 < 1AQ2] 12 V0@, -y V6wl -
€L (7.46)
S1AQ:|7:1V8QI% 4 + Cul Voul?

Summarizing, it remains to control

AL+ Az + Ay — LEY 27T (Q2, 6D), AgA6Q) 12

q€Z

Now, observing that

= —L&Y 27UA(0DQ2), AyASQ) 12 = —LEY 27 UA(6DQ2), A ASQ) 12

qEL qEZL
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= —L§ZQ UAG(Q20D), A A5Q>L2 As,

qEZ

we estimate Ay with the previous inequalities, so that it remains to control

As + Ay — 2L Y 279T3(Q2, 6D) = Az + Ay—

qEZ

—2L) 274 / tr{S,_1Q2 A dDAASQ}.

qEZ

Now, let us consider A3z = L{(Q2A6Q, Vou). We proceed along the lines used before, namely we
use the decomposition given by ((7.40):

4 . .
LEY 279 (T,(Qa, A6Q), AyViu) 12

qEZ i=1

As = L&Y " 27UA(Q2A6Q), AgViu) 2 =

qEZ

When ¢ = 1, proceeding as for (7.41)), we have
27T} (Q2, A6Q), AgVdu) 2
1 1 . .
SIVQAZAQa017, Y 1Ay VeQl 227 2|AgVéul 2,

la—q'|<5
thus, considering the sum over g € Z as in ([7.42)), we deduce that
e 2 UT Q2 A0Q), AgVau) 2 S IVQa 2 [AQIEL IVSQI?, , +
(7.47)

qEZ
+COIIVoul® 4 + CrollASQIP ;-

Proceeding as for proving ((7.43), when ¢ = 2, we get
27UT2(Q2, ASQ), AViouy 2 S D 272 | Agdul| 227 2| AgAQ| 12| AQ2] 12

lg—q'|<5
for every q € Z. Thus, as in ([7.44)), it turns out that
LEY 21T (Q2, AGQ), AgViu) 2 < AQa] T2 lldull? _y + CrrlAsQ% (7.48)

qEZ
Finally, with the same strategy as for ([7.45)), we observe that

_q<\7q4(Q2a A(SQ), AqVCSU)L?E
. 7 4o .
S1AQalz 2 IAGulZy 3 27727 1S4280Q 1z,

q—q'<5
hence, as for ((7.46)), we obtain
LEY 27UTH Q2 AOQ), AgVu) 1z S (IAQs|| 3 ]10ul| 4 [|A6Q -
(7.49)

qEZ
S1AQall7 6ull?, _y + cr,LnAaQn;,%
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Summarizing all the previous considerations, we note that it remains to control

A+ LEY 27 [<jq3(Q2, AS6Q), A Viu) s — 2 /]R {8110 AqéDAqAéQ}} -

q€Z

— A LeY 2 /R (80102 8,604, V6u} — 260{8,1@2 ASDA,AGQ}].

qEZ
We handle the last term A4 arguing as for A3, since A4 is given by
LE(AL(ASQQo), Aqv5u>H,% = LE(A(QaA0Q), tAqv(su}H,%
4
=LY 271> (TH(Q2, ASQ), AfVou)rs
qEZ 1=1

The terms related to i = 1,2, 4 are estimated similarily as A3. Hence it remains to evaluate

ey 2—‘1{ (T3(Qa2, AGQ), At Vsu) 12+

qEZ

+ /R ) [tr{Sy—1Q2 AgASQA,Viu} — 2tr{Sy_1Q> AqapAqMQ}]} =

— 26y 27 / {5,102 A, A6QA,6D} — tr{S$,-1Q2 A,0DA,A6Q}] =0

q€Z

which is a null series since the trace acts on symmetric matrices, so that we can permute their
order.

Estimate of By + By + B3 + By
Now we want to estimate By + B + Bs + B4, namely

—L{002Q2 — Q2092 A6Q>H7% — L{(Q2A6Q — AdQQ2, V6U>H*%'
First let us consider

By = L(Q209, A6Q)

=LY 27 9A(69Q2), AjASQ) 2 =LY "2~ qz (THQ2, 09), AgASQ) 12

qE€Z qEZ =1

Proceeding exactly as for proving (7.42)), ((7.44)) and ([7.46)), with §Q2 instead of 6D, the following
estimates are obtained:

LY 277} (Q2, 09), A80Q) 12 < VQ2ll 72| AQaIZ; 16ul®

qEZ
—i—C,,HV(SuHi.{% + C’RLHAdQIIE%,

LY 27UT7(Q2, 69), AgA6Q) 2 S AQall7: loull®, _y + CrLlA6QI7 _,
qE€Z
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and
LY 27 U4TNQs, 09), AgASQ) 12 S I|AQalI7, HWQHE,% + CuHWuHZ,%

qEL

Now observing that

By = ~L(6QQ, A6Q) 1 = ~L{(62Q2)."AQ) . = L(Q289, A6Q) 1 = Bs,

it remains to control
Bs+ By + 2L 27UJT3(Q2,69), AgASQ) 2
qe’Z

=Bs+By+2L) 27° / tr{S;-1Q2A,60A,A5Q}.
RQ

qeZ

Now, we turn to Bs:

—B3 = L(Q286Q, Véu) .y = LY 27(Ag(Q2A6Q), AgVu) 2

qEZ
4
=LY 279 (T}(Qa ASQ), AgVou)rs.
qE€Z i=1

We remark that By = —A3/&, hence the terms related to i = 1,2,4 are estimated as in (7.47)),
(7.48) and ([7.49). Thus it remains to control

Bi+ LY 27T} Q2 AOQ), AgViu) 2 +2 /R ) tr{Sy—1Q2A,0QA,A6Q}] =

qEZ

—B+1Y 2 / 10801028, A0QA,Vou} + 26r{5, 1Q2A,004,A0Q}].
R

qEZ
Observing that By = —A4/¢ we argue as for Bs, hence it remains to evaluate

LY 27T (Qa, AGQ)A, Vi) 13+

qeZ
+ / [tr{Sy—1Q2A,A0QA,Viu} +2tr{Sq_1Q2AqéQAqA6Q}]} =
R2
=2L) 27 q/ [tr{Sq—1Q2A;ASQA N} + tr{S;_1Q2A,0QA,A6Q}] =0,
qeZ

where for the cancellation we used that Sq_ng and AqA(SQ are symmetric while Aq(SQ is skew-
symmetric.

One-logarithmic Estimates

In this subsection, we evaluate the terms of (7.37)) which are related to the single-logarithmic term
of the equality ((7.38)).

Estimate of (6Qtr{Q2Vua}, AdQ). Let us fix a positive real number N > 0 and split the considered
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term into two parts, the high and the low frequencies:

(0Qtr{Q@2Vua}, AGQ) . 1
= (6Qtr{(SnQ2)Vuy}, AGQ) -y + (6Qtr{(>_ AyQ2)Vus}, NOQ) -

q=N
At first we deal with the low frequencies, observing that

(0Qtr{(SnQ2)Vuz}, A6Q) .1 < 0Qtr{(SnQ2)Vuz} .4 126Q] .y
S H5QHH% H(SNQ2)VUQHL§.”A‘SQHH—%

< IV6Q -3 188 @s 2z Vsl 12| A6Q -y

hence, by Theorem we get

(6Qtr{(SnQ2)Vuy}, AGQ) -3
S IVoQN -1 (1Q2llrz + \/NHVQZHL?D)”VUZHLiHA‘SQHHf%
S +N)HV6Q||2_%H(Q2, VQo)l[72Vusl72 + CFHA(SQHZ_%'

For the high frequencies, we proceed as follows:

BQU{(Y 8yQ2)Vua}, A0Q) < 10Qur{(Y] Ag@a)Vus} |, 5 185Q 4

q>N =N

<15Q1 3103 A,Qo) Vsl 1A5Q1

q>N

1 3 .
S Q1 @5 IVQ1, Q2)lIf 1 D AgQell s IVuzl 2]1A6Q) .y

q>N

1 3 3 .
<@ @)1 19(@1, Q211123 281A,Qa 1 12) [ Versll 21 A5Q1 -y

q>N

1 3 .
<@ @IEIVQ1 Q)12 (3 2 1A, VQa | 12) [ Va2 126Q)

q>N

<@ @I IV@Q1 @)1 (3 2 HIVQal 2 Vuall 2 1A5Q1

q>N

1 3
1@, Q)1 1V(Q1, Q)11 VQellzz [ Vuzllzz [1A5Q)

_N
4

<2

Now, fixing ¢ > 0 arbitrary, and taking N = N(¢) := [In(1 + e+ 1/®(¢))] > 0, where [-] is the
ceiling function, we get

(0Q(t)tr{Q2(t)Vua(t)}, A5Q(t)>H*%
S Q2. V)OI IVua0)F2(0) n (14 € + 55) +

@1 Q)N V(@1, Q)02 19Qa(1) 35 Vs (1) 3, 2(1) + CrllAsQ(0) P,
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Thus we have obtained a one-logarithmic term of (7.38)). Similarly, we can handle the estimate of
the following elements:

+2L¢E
+2L¢
+2LE(Qa tr(5QVua), ASQ) .,
—2LE(0Qtr{0QAQ2}, Viu) 4
—2LE(Qatr{6QAQ}, Viu)

6Q tr(5QVSu), ASQ) 3 )
0Q tr(QaViu), A Q>H—% + 2LE(Q2 tr(dQVou), AdQ) .
— 2LE(Qr{SQASQY, Viu)

)

)

( +2LE(0Q 1(0QVus), ASQ) .
( (

+ o+

w\»—t

H™

_1—
2

m

—

(
— 2LE(5Qtr{QaASQY, Véu
— 2LE{0Qr{Q2AQ2}, Viu) .1 —

—2LE(Qatr{6QAQ5}, Vou) . 1.

H 2

[N
w\»—-

H™

o1
H™ 2

Double-Logarithmic Estimates

In this subsection, we perform the most challenging estimate. Now, we want to control & + &,
namely

&1+ & = 2LE((Qutr{QaV0u}, A6Q) .y — (Qatr{Q2AdQ}, Vou) . )

=2L¢Y 279 / tr{ Ag(Qatr{Q2Véu}) AjASQ — Ay(Qatr{Q2A0Q}) AyVéu }

qEZ

=92L¢ Z Z 274 / tr{ T (Q2, tr{Q2Vou} 1d) AjASQ — T (Q2, tr{Q2A6Q} 1d) A Viu}.
1=1 q€Z
(7.50)
We we will see that there are elements inside this decomposition that generate the double-logarithmic

term in ([7.38). We proceed by considering the indexes i = 1,2, 3,4, step by step.

Estimate of qu. We start with the term of (7.50) related to i = 1, passing trough the following
decomposition:

/ tr{([Ag, Sy_1Qaltr{T(Q2, Vou)} 1d) A,A6Q—
Ro (751)

'1<5

— ([Ag, Sy—1Qa)tr{ T3 (Q2, A6Q)}1d) AjViu }.
When 5 =1, we have
Tt ) = [ { (180 Sy1Qulirlldy . 5p1Quld, Vi) 1) 4,000+
2
- ([Aq, Sw_1Qa)tr{[Ay, Spr_1Qa] Ay ASQ)} Id>AqV5u}
S 278y 1 Va2 1Sy 1 Vsl 1= | Agr (Vou, ASQ)| 12| Ag(VSu, AGQ)I] 12

N 2—<1—q'2%||S’q’*1vQ2||L;§2q7 ||S’q”fva2||L%2q”><
x| Agr (81, V6Q) | 1227 Ag (5u, V6Q)| 12,
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which yields

q

Ti(¢.q',q") S2°% %HVQ2||L2HAQ2HL2HA n(Su, V8Q)| 22 [ Ag(du, VEQ)]I L2 (7.52)

Hence, taking the sum, we deduce that

206y > Y 27T{(q,d.d") S

9€Z |q—q'|<5 |¢'—q"|<5
_ga3d”
SN Y 272 T E|VQa 2l AQs| 2
9€Z |q—q'|<5 |¢'—q""|<5

|| Agr (S, VEQ)| 12| Ag(u, V5Q)|| 2
SIVQall2AQ2lr2 Y D 1Ag(du, VOQ)| 12 | Ag(du, V5Q)| 12

9€Z |g—q"|<10
SIVQ2l 2| AQ2| 2 [|(9u, VOQ)| 7
S IVQ2ll 2 [AQ2 2 (| (0u, VOQ) -1 I(Vou, AdQ)] 3
< IV Q272 1AQ2[72]I(du, VCSQ)HE_% + Cu||V5UH12L-I_% + CF,LHA(;QHJZL-I_%-

(7.53)

Now, when j = 2 in ([7.51)), we remark that

Ty(a.q.q") ==
/ tI‘ Aq, Sq’—lQ?]tr{(Sq”—lQQ — Sq’—lQQ) Aq/Aq//V5u)} Id) AqA6Q+
Ro

+ (1Ag Sy a@Qaltr{(Sy1Qz = Sy 1Q2) Ay A AdQ)}1d ) A, Vou}
S 2798y -1V QallLee 1S -1Q2 — Syr—1Q2| 2o %
<[ AgAgr (Vou, ASQ)| 2 |Ag (Vou, ASQ)]| 2
<2798y -1V Qo 127 1Sy -1V Q2 — Sy—1V Qo 100 ¢
<[ A ~<V6u ASQ) |22 [ Ag(Vu, A6Q)| 12
< 27025 S, VQall 142 1Sy 1V Qa1
%27 (| Agr (5u, VOQ)| 1229 Ag(du, VEQ)]| 2

3 1" / . .
<275 Y| VQal L2 [|AQ2 12| Ay (6u, VOQ)| 22 | Ag(u, VQ)]| 2,

~

which is equivalent to (7.52]). Hence, proceeding as in ([7.53)), we get

2EY Y 2'T(a.d ") S IVQ2lfz A2 22l (Gu. VEQ)IZ _y
q€Z |qg—q'|<5
Iq/_q//‘és

+C,||Véu|?
H 2
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Concerning the term of ([7.51)) related to j = 4, we have

Ti(¢, 4, q") == / tr{ ([Aqa S’q’leﬂtr{Aq’(Aq”Q2Sq”+ZV5U)}Id>AqA5Q—

Ro
- ([Aq, S’q/_lQQ]tr{Aq/( Aq//QQSq//+2A(SQ )} Id ) AQV(SU}

S 278y 1V Q2 rge [ Ag(Agr QaSyry2Vou, AgrQaSymaAQ) | 1211 A (Vou, ASQ)| 2

§;2_qHS¢,1VNQQHL§2qx

L ) . ) . 7.54
X"Aq(Aq//QQSq//_i_QV(;U, Aq”QZSq”—I—QA(SQ)HL}EHAQ(Véuv A(SQ)HLQQD ( )
S 18y -1VQ2llnee [Agr Q2| L2 1S +2(Vou, AdQ)|[ L2 [|Ag(Viu, AdQ)| L2
S 1Se-1VQallLee 27 | A AQall 12 || Sy 2 (Vou, ASQ) | 2 |Ag(Vou, ASQ)|| 12
S 27227 1Sy VQall 2 | Ay AQa 1227 || Syr42(0u, VIQ)|I 12 | Ag(Vou, ASQ)| 12
S 277 VQal 12 [ AQa | 12 || Sqrra(Su, VOQ) | 12 | Ag(Viu, ASQ)|l 2
Hence
206 Y > 279T4g,¢d") S
q€Z |q—q'|<5 ¢">q'—5
SIVQallr2[[AQ2 12 22—%\\Aq(vau, ASQ)|| 2%
qEZ
< Y2t ) 22T 1S (0u, VEQ) | 1s
l[q—¢'|<5 q">q' -5
SIVQall 2 1AQall 2 Y 27 2| Ay (Vou, ASQ)| 12 x
q€EZ
<y 27227 T ||Sa(0u, VOQ) 12 (7.55)
q"">q-10

S V@22 1AQal 2 [[(Vou, AdQ)] -y

IS | X 2 G Vi)

q€Z q—q"<10

[NIE

]

S 1V Qellzz 18Qs 22 (Vou, 26Q) -y (D 28) (- 27718, 0u, VoQ) |13, )*

q<10 qEZL

S IVQalliz [AQzl 12 (Vou, A6Q)|| -y II(Bu, VoQ) )
S IVQallZ; AQa 221G, VQ)IZ _y + CullVoulls _y + Cr o A0QI ;.

Concerning ([7.51)), it remains to control the term related to j = 3. We fix 0 < ¢ < 5/6 and we
consider the low frequencies ¢ < N, for some suitable positive N > 1 (so that 1 + VN < 2v/N ):

T3(q,q) ::/R tr{ ([Aq, Sy—1Qa)tr{Sy_1Q2 Ay Véu} Id) A AQ—

- ([Aq, Sy—1Qaltr{Sy_1Qo Aq,AaQ}Id) AqV(Su}
S 2_q\\5q'—1VQ2HL§ 15g—1Q2 Ay Vou, Sy_1Q2 Aq'MQHL%E |A(Vou, ASQ)|| 12
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S1Sy-1VQell 2 157-1Qalle=2 1Ay (Vou, A6Q)]| 2 |Ag(Vou, ASQ)] 2.

Thanks to Theorem [7.4.5] we get

1Sy-1Q2llzee S (1 +Vd — D|[(Q2, VQ2) 22
S (1 +VN)[(Q2, VQ2)lr2 VN|[(Q2, VQ2)llr2,

hence Z3(q,q') is bounded by
Z3(0,4) S VNIIQ2, VQ2)I| 211(Q2, VQ2)llzl| Ay (u, va@)HLl%HAq(v&u, ASQ)I 2+ (7.56)

Now, we will need the following inequality, which will finally lead to the delicate double-logarithmic
estimate:

[(Q2; VQ2)H 2 ||(Q2, VQ2)|17:2 1(VQ2, AQ2)II157,

=V
This is a consequence of Lemma imposing p = 1/e, where C'is a positive constant independent
of ¢ and (2. We will see that the double-logarithmic term comes out of a suitable choice of ¢ in
terms of N. Again, using Lemma we have

|Ag (0u, VOQ)I 2. <—||A (8, V3Q )| 1 Ag (Vou, AGQ)I7s

< 6011 Ay (du, VOQ)13°l1Ay (Vou, A6Q)| 7z,

since € < 5/6. Hence (7.56|) becomes

T3(a:d) Sy~ N (@2, vQu) M I(VQ2, AQ2)lI5"
<[ Ag (8u, VOQ )2 1Ag (Vou, AGQ)|7: | Ag(Vou, ASQ)| 12,

(7.57)

thus, since ab < a2/(17¢) 4 p2/(1+9)  we deduce

2(1+z~:)

N\ = .
T3(0.4) S (=) 7 1@2 VO (V2 AQa) 22114y (Su, VoQ)F+

+min{C,, Cr}||Ay(Véu, A(SQ)H“EHA (Vou, AéQ)W”

2(1+s)

N\ 1= .
S () 7@z VR I(VQs, AQ2) 2 1Ay (3u, VOQ) 35+
+min{Cy, Cr} (1A, (Vou, A6Q)|3; + |4 Vou, ASQ)|: ).

Imposing € = (1 4+ In N)~! and observing that -~ =1+41/InN

1

]\/'i:]\f]\/'ﬁ:e]\/'7 e 1-¢ :6715_1%5:(14-111]\7)61

ni
€

< (1+1InN),

we obtain:

Z3(g,¢") S N(1+In N)max {[(Q2, VQ2) |12, 1}HI(VQ2, AQ2)|[72[|A¢ (du, VOQ)[|72+



164 CHAPTER 7. GENERAL BERIS-EDWARDS SYSTEM

+ min {cy, CRL} (||Aq,( Vu, A6Q) |2, + [|Ay( Véu, A(SQ)H%%),

which yields
> > Y'hiled)
a=N|g—q'|<5
S N(1+1In N)max {[|(Q2, VQ2)|172, 1}I(VQ2, AQ2)[7:1I( v, V5Q)H2_%+
+ Col[Voull% _, + Cr.o]|AsQI% _, .

For the high frequencies, namely for ¢ > N > 1, we proceed as follows:

T3(q,4") < 27918y -1V Qal| L= x
x[|Sy—1Q2 Ay Véu, Sy 1Q2 Ay AdQ|| 2| Ag( Vu, A6Q)||12
S 271+ V@) [(VQ2, AQ2)l| 1218y —1Q2 £ x
<||Ag (Vou, A5Q) |12 | Ag( Vou, ASQ)|| 12
S 271+ V@) (VQ2, AQ2) |12 (Q2, VQ2)ll 12 x
<||Ag (Vou, ASQ)|| 2 | Ag(Vou, ASQ)|| 12
S 4 I(VQ2, AQ2)| L21[(Q2, VQo)ll 22 | Ay (Vou, ASQ )| 2| Ag(Su, VEQ)] L2,

which implies
YooY 27ad) S
>N [g—¢'|<5

S D 272(VQ2 AQ) 12 (@2 V)12 x

>N [g—q'|<5
x| Ag (Vou, 25Q) | 12| Ag(Su, VSQ) |12
S (VQ2, AQ2) 12 [[(Q2, VQ2)|lp2 x
<[I(du, VOQ) |2l (Vou, ASQ)|| 4 > Y 27avraly

>N [g—q'|<5

1(VQ2, AQ2)I|2([(Q2, VQ2) |12 [ (du, VOQ)| 12 [[(Viu, AdQ)

<272 [
~Y H 2

Summarizing, we get

> > 2T(a.d)

q€Z |g—q'|<5
SN+ N)max {[[(Qz, VQ2)l72: 1}I(VQ2, AQs)I7z 1 (5u, VOQ)IE 1+ (755
+ 27V (VQ2, AQ)IIZ: 1(Q2, VQ2)IIZ2 I (w1, w2, VQ1, VQ2)75+
+ G| Voul’ _y +Cr o] AsQI%

Choosing N = N(t) := [In(1 + e+ 1/®(¢))] (thus e < 1/(1 +Inln{l 4+ e}) < 5/6) where with [-]



7.4. THE UNIQUENESS OF WEAK SOLUTIONS 165

we denote the ceiling function, relation ([7.58|) implies

> > 27T (g,q) S max {[[(Qa, VQ2)l[§2, 1} x
q€Z |q—q'|<5
) 2 R 1
(V@ AQ)IE: I (u, VEQ)I2 _y n e+ (I)(t))<1+lnln (e+ <I>(t)))+
11(VQ2 AQ2)I22 (@2 VQ) 22 l(ur, o, VQ1, V)2 +
+ O(t) +Cvaau||§.r% +CF,LHA5Q||27%. (7.59)

Estimate of ij Now, we handle the term of ([7.50) related to ¢ = 2, namely

4
S5 [ e (81Qa = $i1Qu (AT @, VEuIA,AIQ+

i=1lg~q'|<5 (7.60)

(Sy—1Q2 = Sg-1Q2)tr{A T} (Q2, ASQ)}A,Viu }.

When j = 1, we have

(g, ¢, q") == /

tr{( Sq/,1Q2 — Sq,1Q2 )tr{Aq( [Aq/, Sq//,lQQ}Aq//V(Su ) }AQA(SQ—I—
Ro
— (8y1Q2 = 8,-1Q2) (A ([Ag, Sy 1QalAg AGQ ) A Vu }

5 ||Sq’—1Q2 - SqleZHLgOX

<Ay ([Ag, Sgr—1Qa)Agr (Vou, ASQ) )| 2| Ag(Vu, A5Q)| 12
S 27218y -1V Qs — Sy 1V Q[ 1227 x

<[ Aq([Ags Syr—1Q2] Ay (Vou, ASQ)) HL% 1Ag(Vou, AsQ)| 12

S IVQallra2 1S —1VQall 4| Agr (VSu, ASQ)| 12| Ag(Vou, ASQ)| 2
S 270NV Qa2 |AQa 12 | A gy (5u, VEQ) || 12]|Aq(5u, VOQ)|| 12

Since |¢ — ¢'| <5 and |¢’ — ¢"| <5 then —¢' + ¢" + ¢ ~ 3¢"/2 — ¢'/2, so that the last inequality is
equivalent to ((7.52]). Hence, proceeding as in ([7.53)), we get

206Y Y 279T(q,dq") S IV Qell2 1AQ: 72 [|(du, VSQ)
q€Z |q—q'|<5
lg’—q"1<5

I3

+Cu[|[Vaull” ) + CrrllA6Q% .
When j = 2, we observe that
73(q,4,q") =

/ tl“{( Sq/,1Q2 — Sq,1Q2 )tr{ (Sq//,lQQ — S’q/,]_QQ)Aq/Aq//V(sU }AqA5Q+
Ro

_ (Sq,_1Q2 — Sq—lQ? )tr{(Squ_lQQ — Sq’—lQQ)AqlAq”A(SQ }AqV&L}
S 18¢—1Q2 — Sq-1Q2ll 20| Sgr—1Q2 — Sy—1Qa | 20 x
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<||Ag Agr (Vou, ASQ)| 12| 12 | Ag(Vu, ASQ)| 2
<2758y 1VQ2 — 841 V@Qall 4|81V Q2 — Sy 1V Qa1 ¢
x||Agr (Véu, ASQ)|| 2 | A (Vou, ASQ)|l 12

/

S 25 3||VQa 74| Ay (Su, VOQ)| 12| Ag(du, AGQ)| L2

q

S 2713 VQ2l 12 1AQa |21 Ay (Su, VEQ)II 2 1A (8u, VOQ)| 12-

Since |¢ — ¢'| < 5 and |¢' — ¢"| < 5 then ¢'/2 + q/2 ~ 3¢" /2 — ¢’ /2, so that the last inequality is
equivalent to ((7.52)). Hence, proceeding as in ([7.53)), we get

2LEY Y 230, ") S IVQ2lfa AQ2] 72| (Gu. VEQ)IZ _y
9€Z |q—q'|<5
lg'—q"1<5
+Cy\|vau||§r% + CF,LHMQHZ%.
When j = 4:
IZ((L q/7 q//) = / {( Sq’—1Q2 — Sq—lQQ )tr{ Aq’(Aq”QQSq"-‘rQV&U’) }AgAéQ"‘
Ro

~ (851Q2 = S41Q2)r{ Ay (A Q2 1585Q) AV |
S 1Sy -1Q2 = Sg-1Qa|l e [|Ag (Agr Q2Syn12(Vou, ASQ)) | 12| Ag(Vou, ASQ)| 12
S 2718y 1V Q2 — S4-1V Q|12 %
<Ay (AgrQaSyria(Vou, ASQ)) |11 Ag(Vou, ASQ)]|z2
<271 IV Q2 12| Agr AQa | 12 |1 Sy 42(6u, VEQ) | 12| Ag(Vu, ASQ)| 12
S 2777 |VQal 12 [ AQa | 2 1S 120, VOQ)| 12 |Ag(Vou, A6Q)| e,

which is equivalent to the last inequality of (7.54]). Thus, arguing as in ([7.55)), we deduce

206 > 27973(q,dq") S IVQ2l72 1AQ2| 72 | (6u, ViQ)
q€Z |q—q'|<5
q”quff)

[
H™ 2

+Cu[Voull? _y + Cr.ollASQI -

When j = 3 we fix a real number N > 1 and we consider the low frequencies ¢’ < N as follows
T(q,q) == / tr{( S'qr,lQQ - S’q_lQQ )tr{ Aq( S"q/,lQQ Aq/V(Su) }AqA5Q+
Ro

— (Sy-1Q2 = $4-1Q2)tr{ Ag(Sy-1Q2 Ay AOQ )} A, Vou
S 18-1Q2 = Sg-1Qa| 1o [|Ag (Sy—1Q2 Ay (Vou, ASQ)) Hi 2 [ Ag( Vou, AdQ)| 2
S 2798y —1AQs — S 1AQa| 12| Sy—1Q2l L | Ag ( Vo, ASQ) || 12| Ag( Viu, ASQ)| 12
S 1Sy—1AQ2 — Sy 1AQ2|l 12 1Sy —1Q2 | | Ag (Vou, A6Q) |12 [|Ag(6u, V5Q)] |12

(7.61)
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If ¢ <1 then ||S’q’—1Q2HLg° < 2%H5q’—1Q2||L§ < [|Q2| 12, while if 1 < ¢" < N we have
1Sy-1Q2llzs S (1Q2122 + V&' = 1IVQ2ll12) S (1Q2llz2 + VNIVQ2l 2),
thanks to Theorem [7.4.5] Therefore, we deduce that

1AQ21 22 (|1Q2l 2 + VNIVQ2 £2) Ay (Vou, A6Q)|| 12| Aq(Su, V5Q )|z
(1+ N)[|AQ2|17:2[1(Q2, VQ2)l[72[1Aq(du, V5Q)| 172
+ CollAy Véull7z + Cr L] Ay A6QI72-

73(q,¢)

IZANRZA

Hence

Z Z 27973(q.¢) S (1 + N)||AQ2H%3”(Q2, VQz)”%g”(fSU, V(SQ)”Z,_%JF
9'<N |¢'—q|<5 (7.62)
+ Cu||V5U||2_% + CF,LHA(SQHZ_%-

For the high frequencies ¢ > N we get,

73(q.q")

< 180 -1Q2 = S51Qall e 1 Ag(Sy-1Q2 Ay (Vou, A3Q)) Y22 | Ay Vou, ASQ) s

S 2795y 1AQ2 — 54 1AQa|| 2[5y 1Q2 e[| Ay (Vou, AGQ)| L2 [|Ag( Vou, ASQ)| L2 (7.63)
<27 AQel 2 (1 + V& — DI(Q2, VQu) 121 Ay (50, V6Q) |12l Vou, ASQ)]

S U+ VE = DAQslI2 (@2, VQ2)I2ll(u, 5Q)|r2ll( Vou, Q)| 4,

therefore
Yo Y 275 d) S 27 VIAQ 2 lIVQallLa | (Fus 6Q) 12l Vou, ASQ)| -y
¢'>N |q—q'|<5 (7.64)

S 27| AQa 175 IVQ2lIZ: 1(0u, 0Q)IIT, + CullVoul 4 + Cr.ollA6QIP _, -

Summarizing (7.62)) and ([7.64]), we get

S Y 20 S (14 M) AQul (@ VI (6u QI+
9'€Z|q'—q|<5 (7.65)
+ 27| AQ2 721V Q272 11(0u, 6Q)7z + CullVaul?, _y + Cr.o]ASQI7 4.

Now we define N := [In{e + 1/®(¢)} /2], obtaining

> Y 27T5(g,4) S

q€Z |¢'—q|<5
1AQ2(1)[1Z211(Q2, VQ2) (1) Z:1I( 6u, VOQ(2) )qu_% + CVIIWU(t)IIiI_% + (7.66)

+ CraAQUIE_y +IAQu(OIE IV Q0315 53 (1+1n (e+ 5) )



168 CHAPTER 7. GENERAL BERIS-EDWARDS SYSTEM

Estimate of qu Now, let us deal with the term of ([7.50) related to ¢ = 3, namely

/R tr{ Sy 1Qaotr{A(Q2Viu) }A,ASQ — Su1Qa)tr{Ay(Q2A0Q)}A,Véu } =

1 | | . | . (7.67)
-3 /R tr{ S4-1Qotr{T3(Qa, VOuLALA6Q — 54 1Qatr{ T (Q2, ASQ)}A,Vou .
j=17%a

Let us consider j = 1 and define

I3 (q,q) ::/]R tr{Sq,ngtr{[Aq,S’q/,lQQ]Aq/VcSu)}AquQ—
— 8,01Qatr{[A,, Sq/_le]Aq/A(SQ)}AqV&u}.

We proceed as for proving ([7.57): we fix a positive real ¢ € (0,5/6] and we consider the low
frequencies ¢ < N, for a suitable positive N > 1.

I (q,q) :/R tr{sq—lQﬁl"{[Aq» Sy—1Q2] Ay Vou A A6Q
2

— S41Qatr{[Ay, Sy 1Qa] Ay AQEA, VU |

< Q_q/\\sq—1Q2!!Lg°qu'—vazHLg 1Ay (Véu, MQ)HL%E |Aq(Vou, ASQ)| 12

S (L4 V2T [(Qa, VQo)ll12 1Sy -1V Qo]
<NAg (3u, VOQ)I 2, 18g(Vou, ASQ)|I1z

| 2x
L

N : . .
S Q2 VQ2)ll12 1Sy -1V Q2ll7 IS —18Qa|| 5"
<[[Ag (8u, VOQ) I 12 I1Ag (Vou, A6Q)|72 | Ag( Vou, ASQ)| 2,

which is equivalent to the last inequality of (7.57)). Hence, arguing as for proving (|7.59)), we get

> Y 27T a.d) S

q€Z |g—q'|<5
< max {[(Qz, VQ)[[%:. 1}
<[[(VQa2, AQ2)|%2|( 6u, VIQ)|2 1 In (1 +e+ i) (1+Inln (1 +e+ L))Jr
Srellzgliton i 0 (1)
+I(VQ2, AQ2)(I7211(Q2, VQ2) |72 [I(ur, ua, VQ1, VQ2)||72 (1)
+ Cu||V5U||2_% + CF,LHA(SQHZ_%»

Further on, when j = 2 in (7.67)), let us consider the low frequencies ¢ < N:
I%(q, q/) = / tr{Sq_ngtr{(Sql_ng — Sq_lQQ) Aqu/V5u)}AqA(5Q+
Ro

— S4-1Qatr{(Sy1Q2 — $-1Q2) Ay Ay AIQ)}A, Vou}
S 199-1Q2llLee 1Sy —1Q2 — Sy-1Qall Lo | AgA g (Vou, ASQ )| 12 [ Ag(Vu, ASQ)|| 2
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S 1Sg-1Q2ll 12 1Sy —1AQ2 — Sq—1AQ2 |12 | Ay (Vou, ASQ)| 12| Ag(du, VQ)|| 12,

which is as the last inequalities of (recalling that ¢ ~ ¢’). Moreover for the high frequencies
q>N
Z3(g,4")
S 186-1Q2ll e 1S9 -1Q2 — S4-1Qall 2 | Ag Ay (Vou, ASQ)| 2| Ag(Vou, ASQ)] 12
S (1+ V= 1D)[[(Q2 VQ2)ll12271Sy—1AQ2 — Sq-1AQa]| 12 x
<1 Ag(Vou, ASQ)| 12| Ag( Vou, A6Q)| 12
< U+ VA D AQelli2 (@2 V@Q2)llz2 (8, V6Q) |12 | Vou, AGQ)

HHf% )
which is the equivalent to the last inequality (7.63|). Hence, arguing as for proving ([7.66[), we get
ST 2 THaq) S IAQu)2: (@ TQ)(B)2: ¢

q€Z |q'—q|<5
x[|(du, VoQ(t) )IIZ,% + Cu||Vou(t)][",

[\

1
2

2
+ CF,L||A5Q(75)||H,%+

— T

18Qa(0) B IVQa(0) 2 (5, 5Q)(B)2 @) (1+1n (14 e+ 7)),

o(t)
Now, when j = 3 in ([7.67]), we observe that

T3q) = /R [0 8,1 @24,V6u }ir{ 5,128,060}
— tr{ S, 1Q2AgAGQ Ytr{ S, 1Q2A,Viu }} —0,

for any ¢ € Z. Thus it remains to control the j = 4 term, namely
I3 (g, q) = /]R {Sq_ngtr{(Aq( AyQaSy+2Vou) JALASQ
2

— S 1Qatr{(Ag( Ay @28, 4206Q) }Aqvau}
S 185-1Q2 e 1Ay (Ag Q2S5 12 (Vou, ASQ) )| 12| Ag(Vou, A6Q)| 12

At first let us consider the low frequencies ¢ < N, with N > 1:

THg,¢") S (1+ VN)[[(Q2, VQ2)l| 12| Ay Qall o0 %

% || Sy 2(Vou, ASQ)| L2 [|Ag (Vou, ASQ)]| 12
S A+ VN)[(Q2, VQ2) 22 7 |Ag AQa| 12 | Sgr12(Vou, ASQ)[|12[1Ag (Vou, A5Q)| 12
S 1+ VN)IVQ2 2 1Ay AQa| 12 | Syrv2(Su, VOQ)| 12 1 Ag(Vou, ASQ)|l 2

S L+ V)27 [VQa| 2]l Ay AQalI 2 [|(5u, VOQ)I| 4 1A (Vou, ASQ)| L2,

I,
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which yields
> 29T, q)
q<N ¢'>q—5
S (L+VN)[(Q2, VQ2)ll 12l (5, Vo) -1 %
>0 2E Y AGAQ 12 | Ay (Viu, ASQ)|l 12
q<N ¢'>q—5
S 1+ VN)(Q2, VQ2)ll221(u, V5Q)| b
<Y 275 Ag(Vou, ASQ)| 12
q€Z q'>q—5
S (1+VN)|[(Q, VQ2)||L§H(5U7 VoQ)| -y x
(z \22 oo (0 — €)1 AAQ2 12

q'€L q€Z

Iz

) wan, Q).

2

thus by convolution
> Y 27Tg.q)
q<N ¢'2q—-5
S (L+VN)[(Q2: VQ2) 2 [AQ2l |2 (S, VEQ)| 3 1(VEu, ASQ)| -y
S (14 N)[[(Q2: VQ2)IIZ: [AQaIZ; [1(0u, VEQ)IE
+CVHV5UHZ,% + CF,LHAdQHZ,%

For the high frequencies, ¢ > N,

S 27 (q.d) S D 271+ Vg — DISg-1(Q2, VQ2)ll12x
q>N q'>q—5 q>N ¢'>q-5

<[|Ag Qall 2o 1Sy +2(Vou, AdQ)| r2]|Ag(Vou, ASQ)| 12
< (Q2, VQ2) | 21l(Vou, A5Q)HL2X

Sty S 2 AV Qall 2% 1Sy e (Vou, ASQ)Ip

q>N q'>q-5

S 1(Q2, V@2l 12 |(Vou, AdQ)|| 2 [|(VEu, ASQ)| 1 x

XQ_%(Z’ Z Q%HA(;’VC%”L%F)%,
q€Z q'>q—5
so that, by convolution

> Y 27Te.q)

q>N q'>q-5

< 27V(Q2, VQ2)lI 1211V Q2 £2 [ (Vou, A6Q)| 2 [[(Vou, ASQ)| 4
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Summarizing, we get

S Y 2T 0.d) £ (1 N)(Qa. V)31 AQel 3 (6, VIQIP,_y+

q€Z q'>q—5
+ Cu||V5U||2_% + C’F,LHACSQHZ_%JF

+272(Q2, VQ2)II72 IV Q2ll7 | (Vou, ASQ)II7,,

which is similar to ([7.65]), hence we can conclude as in (7.66]).
Estimate of jq4 Now, we handle the last term of ([7.50)), which is related to i = 4, namely

> / tr{ Ay [ Ay Qatr{Sy12(Q2Vou)} |AjASQ—

q'>q—5

— Ag[ Ay Qatr{Sy12(Q2A6Q)} JA Véu}
= > > /tr{A [AyQatr{A,(Q2Véu)} |A,A0Q

q¢'<q—5 ¢"'<q¢'+1
A [A /Qgtr{Aq/(QgAéQ)}]AqV(;u}
4
=22 2 / tr{Ag [ Ay Qutr{ T2 (Qz, Véu)} |A,A6Q—
J=1¢'<q—5 ¢"'<q¢'+1

= Ag[AyQatr{T2/(Qa, AGQ)}] AV} (7.68)

First, we consider the term related to 5 = 1, that is

Ti(¢, 44", q") '—/

[l A8y Quir{[An Syr1Qa) Ay Vou} A, 800+
.

— Ay [ Ay Qatr{[Agr, Syr1Qa) Ay ASQY | A, Vou }
SIAG[ Ay Qatr{[Agr, Syr—1Qa] Ay (Vou, ASQ) } |12 Ag(Vou, ASQ)| 12
S 29 A [ Ay Qatr{[Agr, Syr_1Q2) Ay (Vou, A6Q) ][I [1Ag(Vou, A6Q)]| 2
< 27| Ay Qall e | Sy 1V Qa2 [ g (V6u, 26Q) 1211 Ay (Vou, ASQ)]| 12
2T Ay AQs | 12 | Sy 1V Qs 12| Ay (V6u, AGQ) | 12| Ag(Viu, ASQ)] 12
< 2970~ AQo | 12 | VQsll 12 [ A g (Bu, VQ) | 21| Ag(Vou, ASQ)]| 1.

(7.69)

"

Hence, taking the sum in ¢, ¢/, ¢” and ¢ (and observing that |¢” — ¢"'| < 5), we get

Yo Y > 2Te.d. " d") S

q€Z q'>2q-5 q"<q'+1 |¢""'—¢"|<5

SIVQ:2l2(Vou, ASQ) -y Y 2577 Ay AQal 13 | Agr (5u, VQ)|| 12
q q,q9"

S V@2 12 [[(Vou, AdQ)],

. 1
?
XZQE Z o—d Z 27HAq/AQQHLEQ_qTHAqu((Su, VoQ)| 2
q€Z  q'>q—5 q"<q'+1
S IVQallr2l[(Vou, AdQ)| 3
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x Y 27T | Ag(0u, VoQ)lr: D> 27T T AgAQallr: Y 28

q"€Z 7>q"+1 q<q'+5

SIVQillz2 (Yo, ASQ)]| .y =
<3 27T A (0u, VEQ) 2 Y. 2T F Ay AQa e
q”GZ qIZqH_j'_l

” o NS
S IV Qallzz V0w, A3Q) ],y 10u, ToQ) (32| 32 2% 1Ay AQsll| )*
q”EZ q/Zq/l+1

S V@2l 2 1AQ2 | 12 [[(Vou, AdQ)| 1 [I(du, ViQ)
S IVQ2lZ:1AQ2 172 1(6u, VQ)

I3

2y + CulIVaul_y + CrallASQI, . (7.70

When j = 2 in (7.68)), we observe that

I%(Qa d.q", q'”) = /R tr{ Aq [ Aq/tar{(Sq/u,lQQ — Sqllleg) AqqumV5u} ] AQA(SQ -
2

— Ag[AyQatr{(Syr1Qz = Sy 1Q2) Ap Ay ASQY A Viu |
S A [ Ay Qatr{(Sym1Q2 — Sgr—1Q2) Agn Agn (Vu, A6Q) } ][I 12[|A¢(Vou, ASQ)| 12
S 2)1A¢ [ Ay Qatr{(Sym—1Q2 — Sgr—1Q2) Agn Agn (Vou, A6Q) } ]| 11 x

< || Ag(Viu, ASQ)| 12

S 29| Ay Qall oo [|(Sgrr—1Q2 — Sgr1Q2) | 12 %

x| Agr Agn (Vou, ASQ)| 2| Ay (Vou, ASQ)]| 2
S 27 Ay AQs | 2 (S -1V Q2 — Sqr—1VQ2) | 12

<[|Agr (Véu, ASQ)|| 2 | Ag(Vou, ASQ)| L2
<2977 Ay AQall 12|V Qall 2 1A g (6u, VOQ)| 12 |Ag (Vou, ASQ)| e,

which is equivalent to the last inequality of (7.69)) (since |¢” — ¢"’| < 5). Hence, arguing as for
proving ([7.70]), the following estimate holds:

Z Z Z Z 27q1—§1<q7q/7q//’q///) <

q€Z q'>q-5 q¢"<q'+1 |¢"""—q"|<5
< IVQalIZ: 1 AQ2 2 1 (B, VQ)IZ _y + CullVoul ) + Cror

2
A6QI .

Now, let us analyze the term in (7.68) related to j7 = 3. Assuming ¢ < N for a suitable positive
N, we get

73(q,¢, q") ::/]R tr{Aq[Aq/tar{S //_1Q2Aq//V6u}}AqA5Q—
2
Aq[Aq/QQtI’{S //71Q2Aq//A(5Q}] AqV(S’U,}
S A [AgQatr{Syr—1Qa Agr (Vou, ASQ)} |12 ]| Ag(Vou, ASQ)]| 2

S 29| Ag [ Ay Qatr{Ser—1Q2 Ay (Vu, ASQ)} Il11 [ Ag(Vou, AdQ)| 12
< 29| Ay Qal 121 Syr—1Qa Loe | A (VOu, ASQ) |2 | Ag(Vu, ASQ)| 2
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S 2 Ay Qall 2 (L + VN)([(Q2. VQ2)l 2 l1Ag (Vou, ASQ)| 12| Ag(Vou, ASQ)]IL2

S (4 VNRENT A, AQullz2 Q2 V@Q)lz
2 Ay (Vou, ASQ)] 12 | (Vou, ASQ)| -

~

Hence

(1 + VN)[(Q2, VQ2)ll2 [ (Vou, A6Q)| 3 =

oY > 297Te.d.d) S

q"<N ¢'>q"-1 q<q'+5

< 2 E AVl Y 2 A AQly Y 2
q<q'+5

q"<N q'2q"-1

S A+ VN)(Q2, VQ2)|l12[(Véu, ASQ)| -1 %
S sg" _3q
<D 2EAp(u VaQ) i Yo 2F T ArAQa
q/>q”71
w5, (X | 3 2 A, AQ | )
q"€Z  ¢'>q"—1

S L+ VN) Q2. VQ2) 221 AQ2lI 2 (Vou, ASQ) -y | (6u, VEQ)I|

¢'<N

S A+ VN)(Q2 VQ2)ll2 (Vou, ASQ)| 3 x

=

Considering the high frequencies ¢ > N
Z3(0:4,4") S 1Ag[ Ay Qatr{Sy Q2 Agr(Vou, ASQ)} ][22 | Ag(Vou, AGQ) 12

< 2 Ag[ Ay Qatr{SyrQa Agr (Vou, A6Q)} I 2l|Ag(6u, VEQ)| 12

< 27 Ay Qall 1211907 Q2 oo | A (Vu, ASQ)| 21| Ag(Vou, ASQ)||2

3 / .
<272 AyAQa| 2 (1 + Va)(Q2, VQ2)] 12
27| Agr (S, VOQ)|| 1227 2| Ag(Vou, ASQ)| L2

3 1"_o
S+ VaN27 2 AQa| 2 (Q2, VQ2)ll2 [l (0w, VEQ) |12 (Vou, ASQ)][, )

which implies

Yood Y 27Te.dd) S

q">N ¢'>q"—-1 ¢<q'+5

S 1AQa | 2 [[(Q2, VQ2)| 2 [I(Vu, AdQ)| -3 [1(du, VEQ)| 2 %

DN ERVED A N i N &

q’'>N q>q"—1 q<q¢'+5

S 1AQ2| 2 [[(Q2, VQ2)||L3||A5Q|| -_l||(5u VoQ) ||z

DIENIELD MERE

q//>N />q// 1
S 1AQ2ll 2 [[(Q2, VQ2)l 2 |(Vou, AdQ)| 1 1(5u, VOQ)|| L2 x

x> (1++/g")2

q">N
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_N
S AQ2lr2[[(Q2, VQ2)[I 12 |(Vou, AdQ) -1 [I(6u, VoQ)|[r227,

Summarizing the last inequalities we obtain an estimate similar to (7.65]), so that we can conclude
arguing as in (7.66]). Finally, it remains to examine when j = 4, as last term. Let us define

Iﬁ(q, qu q/17 q///) pp— \/Ié tr{ Aq [ Aq/QQtI‘{Aq//( Aq’”QQ Sq///+2v5’u, )} :| AqA(SQ —+
2

-4, [ Aq’QQtr{Aq“( Aq/”Q2 Sq’”+2A5Q )}] A Véu }
SNAG[ Ay Qatr{Ag [ Agn Q2 Sy ya(Vou, ASQ) ]}l 121l Ag(Viu, ASQ)| 12
S 29| A[ Ay Qatr{Agy [ AgnQa Sy ia(Vou, ASQ) 1} |11 1Ay (Vou, ASQ)|I1z
< 29 Ay Qall 2 1Ag [ Agn Q2 Sy 2(Vou, ASQ) ]2 [ Ag(Vou, ASQ)||Lz2
S 27| Ay Qa2 |1 Agr [ Ag Q2 Sy 12(Vou, A6Q) |11 [|Ag(Vou, ASQ)| 2
S 27 Ay AQa 12 | Ay Qall 12 1S +2(Vou, ASQ)| 12 [|Ag(Vou, ASQ)l|2
S 207 ALV Qo 2 | Ay AQa 2 | Sy 4o (1, VQ) | 12 [ Ag(Viu, ASQ)]| 2.

Hence, taking the sum in ¢, ¢/, ¢ and ¢, we get

S D 27Te.d . d"d") S

qu q/Zq_5 q//Sq/_l qIIIZq//+5
S 1(Vou, AdQ)| -1 [[VQa| L2 %
g_ ! //_ 111 . .
SN ST ST 28 A AQa 2 || Sqrri2 (Ou, VOQ)] |2
q€Z q'>q—5 q"<q'—1 q"">q"+5

S (Vou, AdQ)|[ -1 [V Qa2 x

H™ 2
DN 2T A AQa| 2 IS 2 (u, VEQ) 2 Y 27T D 23
q///eZ qIISqIII_5 quqll+1 q§q1+5
S I(Vou, AdQ)| -3 V@2l 2
. . /
x> 2 AW AQs| 2| Sy (Ou, Q)L D 272
q/IIEZ qIISq///75 qlzq//+1

S [(Vou, AdQ)| -3 IVQ2ll 2 %
q/// "

J"— . L
x> 27 A AQe) a2 T [I1Symia(u, VEQ) Lz

q/// EZ qllgq/ll_B

S(Vou, ASQ) -3 IV Qz2llz D 1AgwAQuall 227 || Syrry2(Su, VQ)]| 12
qINGZ

< 180, AQ) ;-3 IV Qall 221185 22 |5, T5Q) -
< IVl 1A |12, (0w, VOQ)I2_y + CulIVaul?,_, +Cr 1] AR,

1
2

and this concludes the estimates of the term &; + &.

Remaining Terms

For the sake of completeness, now we analyze all the remaining terms. However we point out that
they are going to be estimates using simply just Proposition [7.4.4] hence they are not a challenging



7.4. THE UNIQUENESS OF WEAK SOLUTIONS 175

drawback. For instance, let us observe that

L{(€6D + 692)0Q, A6Q) .y + L{(EDs + 02)3Q, AJQ) .3+ LIGQEOD + 62), ASQ) . 3+
+LQ(ED2 +€22), A0Q) 1 S0Q 3 IV (w1, u2)[| L2 [[ASQN -1 S TVQI 3

<[V (ur, u2) 121 26Q -y S 11V (ua, w2)ll72 IVEQI% ) + Cr.ollASQIF .

1 X

Moreover LaD(6Q, ASQ) ;-1 S I6QI%,_, 2 + Cr.L[ASQI?,, , and

LID(Q10Q +0QQ2, AQ)
< 1@1Q +6QQal, 4 1AQI, 1 < 1(Q1. Q)22 16QIl 3 185Q
< Q1 Q212 VORI, 1A6QI -y < (@1, Q)2 IV6QI2 _y + Crr

2
\A5Q”H7%-

Furthermore, by a direct computation, we get

LD (0Qu{Q3}, AJQ) ) + Lel(Qatr{Q10Q + 6QQa}, A6Q)

<@ @2 15Q1 3 185Q1 3 S Q1. @ISR, 3 1A5Q1,

S (@1, Q)72 1V(Q1, Q)17 IVOQI7 4 + Crol|AsQI7% _,

and

L{ou - VQu, AGQ) .y + Llus - VOQ, A6Q) . 4

S Iusz, VQI)HH% [ (du, v(sQ)HH—%{ HA‘SQHH—%

1 3 3
S (w2, VO, (Vuz, AQu)l| 1[I (0w, VOQ)IIZ -

1
|(Adu, ASQ)IIE_, 1A6Q)

2
< l(uz, VU2 (Y2, AQ)|2, 5w, VOQ)I _y + CullVaull?_y + Crr|ASQIE, .

Nl

Moreover a&(0QQ1, Vou) /o S 16Q /2 1@l 2 Voull oo S 1Q1II721IVEQNT, - o +Col [ Voul|

2
H-1/2 H-1/2°

E(QQE — @) ), Vou),
< 10Q1 3 1QR 12 1 Voull
SIVoQI 3 1117411V oull
S IVEQl 311l [V Qull 2 Vaull
S QulIZ IVQuIZ IVOQIE, 4 + CollVoul?

and

c£(0Qtr(Q1)Q1, Vou) .1 < 116Q 1 107 22| Qull e VO]
SNQuL IV Q13- IVOQIE, _y + CullVaull? .
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Now, ag((Q2 +1d/2)6Q, Vou) gy—1/2 < ([Q2ll72 + DIVIQI, _, . + Col[Voul%,_, , and

E((Qa + ) (QuIQ +6QQa), Vou)y — BE(@r{Q10Q +5Q@s}, Vou) <
s (HQ2||L°° + 1@ @)l 10Q1 3 1V3ull -y S (1Qzll 2 + 1)1(Q1, Q2)llrz *

<|IVoQl 3 IVoull 3 < (1Q2llm= + 1)?(Q1, Qz)IILzIIWQII2 y T ClIVoul?,_y

Equivalently, we get

£<(Q2+ )5Qtr{Q1} Vou) .4 +C€<(Q2+ )tar{5QQ1 +Q20Q}, Vou) . 1 S
S ||Q2”L°°||(Q1a QD2 16Q1 3 IIVoul 3
S 1Qz2)l 2 1(Qr, Q2)II74IVQIl 3 Voul|

S 1Q2ll7 (@1, Q)72 1IV(Q1, Q)1 IVOQIE _y + CullVoull®,

o=

and moreover

LE(BQASQ, Vou) , y + LEGDQAQ2, Vou) 3 < 5Q 3 [1AQ1, Q)2 Vaull,
<1AQ1, QI IVIQIE,_y +ClIVul?,
We can similarly control the terms from —a&(Q10Q, Véu) ;—1/2 to LE(AQ2,0Q, V) jy—1/2 in (7.37)),
proceeding as in the previous estimates. Furthermore
20 (5QUr{Q3}, Vou) 1 + 20€(Qatr{5QQ1}, Vou)
<16Q1 4 Q3. QD2 IVoull,_,
1@, QI IV(@1, QI3 IV6QIE, ) +CulIvaul?, .

1 + 2a§<Q2tI‘{Q25Q}, V5U>H7%

206(3Qtr{Q1}, Vou) .y + 266(Qatr{3QQ3}, Véu) 4+
+ 266 (Q2tr{Q2(0QQ1 + Q20Q)}, Vou) . 1

2

<@ QI3 19(@1, @)I13: 1@, @)1 V6QI% _, + .l Vaul?,_,
and also

2¢£(0Qu{QT}?, Vou) .y + 2c€(Qatr{6QQ1 + Q20Q}tr{QT}, Vou) . 4 +
+26(Qatr{Q3}tr{0QQ1 + Q20Q}, Vou) . 1 < 1(Q1, Q3)llz2 16Q| 3 [IVoul|
S Q1 @)L IVQll g IVoull

S @1y Q)2 IV(Q1, Q)12 1V6Q| 3 IV6ul

S (@1, Q)NI721IV(Q1, Q)IZIIVOQIF, ) + CullVoull?,

H,,

Furthermore, we observe that

2LE(IQUr{0QAQ}, Viu) .y +2LE(BQr{§QAQs}, Vou) .y +
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+ 2LE(0Qr{Q2A0Q}, Viu) 4 + 2LE(Qatr{6QAQY, Viu) -
+ 2LE(0Qtr{QaAQa}, Vou) .y + 2LE(Qotr{§QAQs}, Viu)
S 0QI 1 1A (@, @)l 2 [1(Q1, Q)L l[Vul 1

S 1A(Q1 QN2 1(Q1, Q)I72(IVoQI7% _y +Cul Voul?,

+

(S Nl

and

L(V3Q © VQu, Véu) .y + L(VQs © V6Q, Vou) .y
SIVEQ , 1 IV(Q1, Q) 3 [Voul

S IIWQH“ 1 ||V5Q||4 3 V(@1 Qz)HLzHA(Ql, Qz)HLzl\WUIIHr

S HWQHEI mmmrﬁ 9 Q1 QIE1AQ1, @) IV6ull,y

2

S IV(Q, Q2)||L2||A(Q17 Qz)H%zHVCSQHZ_% + CF,LHMQIIZ_% + CVIIWHIIE_%
Moreover

La<(5QQ1, V(5U>H,% + CL<Q25Q, Véu)Hf%—
—a(@Q10Q, Vou) . 1 S [10Q0 1 11(Q1, Q2)l2lIVoul

SIIVOQ -1 (@1, Q2)HL2HV5UHH 3 SIVEQIP, ,;H(Ql, Q)72 + CollVoull®

~ID(EQQR — (@AY, Vu) g + H(@3 — tr{QR) §)6Q, Viu) s~
—b{Qa(@15Q + 3QQs — t{Qu0Q + 60} ), Vo), -

~H{(Q10Q +0QQs — tr{Q1IQ + 3QQ2} $)6Q. Viu)

< @, @, Q2>HL2HV6uHH,,

< 16@1,3 (@1, @)1 Vull,

SIVEQ 1 (@1, @)= V(Q1, Q2)ll2IVoull s

< 19017411, @a)I2:19(Q1, Qs + CIVSul?, .

1
2

and

Le(6QQq1tr{Q3}, Vou), + ¢{Q26Qtr{Q3}, Vou) 3~
= {Q1oQtr{Q1}, Vou) ;) — c(0QQotr{QT}, Vou)
S16QI 3 1(Q1, Q2)llzeel1(QF, @)l z2lIVoul 3
SIVoQ -3 1(Q1, Q2)lla2ll(Q1, Q2)II74IVoul 4

S IVoQIE _, (@1, QI3 11(Q1, Q2)IIZ1V(@1, Q2)lIZ + Cul| Voull? )
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Finally
(ug - V&u,5u>H_% = —(ug ® du, Vdu)H_% < HU/QHH% H5U||L2||V5U||H—§
< llFalVualaldull?_y 196ul? < ol VealBalsul?,_y +CollVaul?
and
(G- Y, 8u) g < 100l |V gz 6wl -y S CITOuIR, _y + Ve 15l .
Conclusion

Recalling (7.37)) and summarizing all the the previous estimates, we conclude that there exists a
function y which belongs to Li, (R ) such that

d
(1) +v|Voul?_, +TL*|ASQI

dt S x@®u(@(t) + cuHWullz

1 1 +CF,L”A5Q||2_%

where p is the Osgood modulus of continuity defined in . Hence, choosing Cr  and C,
small enough from the beginning, we can absorb the last two terms on the right-hand side by the
left-hand side, obtaining . We deduce that ® = 0, thanks to the Osgood Lemma and the null
initial data ®(0) = 0. Thus, (0u, V0Q) is identically zero and 6@ as well, since dQ(t) decades to 0
at infinity for almost every t.

O]

7.5 Thecnical results

Proposition 7.5.1. Let (Q(”),u") be a smooth solution of in dimension d = 2 or d = 3,
with restriction (7.2), and smooth initial data (Q(z),u(x)), that decays fast enough at infinity so
that we can integrate by parts in space (for any t > 0) without boundary terms. We assume that
|€] < & where & is an explicitly computable constant, scale invariant, depending on a,b,c,d, T, v, \.

For (Q,u) € H' x L?,we have
1QM™ (t, )1 < C1 + Cre“r|| Q| 1, ¥t > 0 (7.71)

with C1,Cy depending on (a,b,c,d,T, L,v,Q,u). Moreover

t
N+ v [V e < O (7.72)
0
Proof. We denote:
X3 € LAQY) — QU r((QM)?), a, 5 =1,2.3. (7.73)

Multiplying the first equation in (7.23) by —AH" and the second one by u" taking the trace
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and integrating over Rd, we get

E|Q(”)|4)d:n

1 L
=[P+ QI 4 AR — (@) + ¢

a Rd 2
+ ||V |32 + DAL AQM™I2,

+ TAG )T (@M e {QU)})[|22 — 2¢LT A / AQQMtr{(Q™)?}dx + a?TA|Q™)2,

L BPTA /R {2 Q) - ol@ 2y g,

be / (RAVQ™[Pdz + / |R6Vu"|4d:c
R4 R4

tr{(Q

(7.74)
< 2al'A / tr{ X" Q™ }dx —200'\ / tr{ X"(QM) %} da
R4 Rd

def, def
=1y =Tn

n n (n) n) (1) ()| ~(n)|2
+ 2abT'A /Rd o {(Q™)*}dx + A/Rd Jo (Beu -9 Q) 1o (bQE) QL) - @) |Q™[?) da

~~

defrr

+)\/RdJ(RQ")Q +QMRQ")> (bQ Q) - Q;‘B\Q(”)\Z)daz

Integrating by parts we have:
_9¢LTA / AQMQMtr{(Q™)2}dx = 2cLTA / Q@) tr{(Q™)?}d
+2cLF)\/ Q1) oy (tr{( ") }) dac—QCLF)\/ IVQ™ 2er{(Q™)2}) dar
Rd
+eLTA / v (@)} Pz =0 (7.75)
R4
(where for the last inequality we used the assumption ([7.2) and L,I"; A\ > 0). One can easily see

that I
T = =5 1VQ™ 172 — el Q™ |14 (7.76)

and moreover

)\/J(RQ(”Q + QRO ) (Q Q5 — |Q(”|>dm§

—2/ |BeVu| dz + Oe) /\Q Wz + 1o /u (QMIQ™M )2 da

On the other hand, for any & > 0 and C' = C(e, ¢) an explicitly computable constant, we have:
Jn =1L / QU@ Q) dr — /R tr{(Q)*}ur{(Q)™) }dx

<-L / Qa[)’,chw kaﬁ da — / Qaﬁ v Qwﬁ dz
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< 1e [ [9QUP(@ s + CIv U,
Rd €
+/Rd Q") (SWQ(")V} + etr2{<Q<n>>2}> o

Using the last four relations in ([7.74)) and considering (7.25)) we obtain:

d
dt R4

S+ QP £ AW - 2@ + 1@ ) da

| Tu B + PALZAQY

CAc?
2

eLTA / v (tr{(Q(”))2}> 2da + < / IRou™ - VQ™3da + < / IVR.u"[*dz
R4 2 R4 2 R4

+=5— 172 @QMtr{QU) DI + a®TAIQ™ |7 + 2¢LTA /R VQMPE{(Q™)?}dx

L n
< 20aTAGIVQ™IZ: + e Q™1)

C
2IEALE [ [9Q0 Per{(Q))da + 2iEAT [V
R4

2T [ tr{(Q™)%} Qtr{(Q(”))Z}+€tr2{(Q(”))2} dz
R4 g

o | O

+2|abPAENQ™ 172 + (C(e) + )IQ™ |1 74)

Taking ¢ small enough we can absorb all the terms with an € coefficient on the right into the
left hand side, and we are left with

d L e LA Camz oy (Gomi2 _ P omys L Cinma

% L3R+ TR+ AGIWE - Zr(@ ) + §1Q7 ) as
LAc?

+V||Vu" |2, + DAL |AQ™ |12, + - [7(QMtr{Q) 1|2, + TAa*[ Q™ |12,

+2¢LTA / IVQ™ 26 {(Q™)?}dx + cLTA / v (6 {(Q™)}) Pde
R R
< C (IVQ™12: + 1Q™1l34)

with C = C(a, b, c).

The last relation is not yet enough because there are no positive terms. However, let us note that,
if @ > 0 we obtain the a-priori estimates by using the inequality tr{(Q™)*} < 2tr{(Q™)?)} +
tr{(QM)2}2. If & < 0 we have to estimate separately ||Q"],> and this asks for a smallness
condition for . Indeed, proceeding as for proving , we get

d Lone LA Grmiz oy (Ciome _ benmys L Clom 2
dt[/Rd2|u| + 5 VR P+ AGIQ™ - 3tr(@™) + 1@ ) de + M| Qll7:]

r'Ac?
+[| V[T + TALZAQ™ 72 + =17 (Q e {QM™) )72 + a?| Q™72
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4+2¢LTA / VO™ [2t:{(Q™)2}dz + LT\ / v (tr{(Q<”>)2}) 2dz

R R
45 [ R QP+ 5 [ [VRaM s <€ (IVQUIE: + QL) +

2 Rd 2 Rd
2
mce [ vaas+ 2L [ 100+, @) Pas
R 3 R4
+MC [ QP+ QM s
R

We chose ¢ small enough so that M C(d)e < v. Finally we make the assumption that |£] is small
enough, depending on a, b, ¢, d, v so that

2
]Mf’ < TA.

Then taking into account that

%tr{(Q(W} + gtrQ{(Q“‘))?} < (M + g)tr{(Q("))Q} - gtr{(Q(”))S} + Zt@{(Q(n)y}

we obtain the claimed relation ([7.71)). O
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Chapter 8
Qian-Sheng system

The results of this chapter originate from a joint work with A. Zarnescu, and they will appear in
a forthcoming manuscript, the title of which is strong global solutions for the inertial Qian-Sheng
model of liquid crystal.

8.1 Introduction

The main aim of this article is to study a system describing the hydrodynamics of nematic liquid
crystals in the Q-tensor framework [87,92]. There exists several such models and we will consider
the one proposed by T. Qian and P. Sheng in [101]. As most tensorial models, this one provides an
extension of the classical Ericksen-Leslie model [69], in particular capturing the biaxial alignment
of the molecules, a feature not available in the classical Ericksen-Leslie theory.

Our main interest in this model is due to the fact that it incorporates systematically a cer-
tain term that models inertial effects. Details about this will be provided in the Physical aspects
subsection, below.

The inertial term is usually neglected on physical grounds, a fact that is also convenient math-
ematically since keeping it generates considerable analytical and numerical challenges. From a
mathematical point of view the system couples a forced incompressible Navier-Stokes system mod-
elling the flow with a hyperbolic convection-diffusion system for matrix-valued functions that model
the evolution of the orientations of the nematic molecules. The inertial term is responsible for the
hyperbolic character of the equation describing the orientation of the molecules.

In order to clearly show the system it is convenient to introduce some terminology. The local
orientation of the molecules is described through a function @ taking values from Q C R¢, into the
set of the so-called d-dimensional ()-tensors, that is

S(()d) = {Q e M Qi = Qi tr(Q) = 0,i,j=1,... ’d}

The evolution of the @’s is driven by the free energy of the molecules, as well as the transport,
distortion and alignment effects caused by the flow.

The velocity of the centres of masses of molecules obeys a forced incompressible Navier-Stokes
system, with an additional stress tensor, a forcing term modelling the effect that the interaction
of the molecules has on the dynamics of their centres of masses. Explicitly the equations, in

183
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non-dimensional form, are:

v+ Vp — %Av =V ( -VQ o VQ + /Qtr{QA} + 35AQ + B@QA)

(8.1)
9 (20 0.0)+m Q@ 2.0)])
13+ = AQ - aQ+ M@ — L10P) — QIQP + A+ [0.Q 52)

where f = (8; + v - V)f denotes a material derivative and [A, B] := AB — BA. Furthermore
(VQ © VQ)Z] = tI‘(@Qan) and ‘Q’ = \/tr(QQ).

The physical relevance of the equation and their meaning is provided in the next subsection,
which can be skipped without impeding on the understanding of the remaining mathematical
aspects of the paper.

8.1.1 Physical aspects

The velocity v is a free-divergence vector field, satisfying a convection-diffusion equation, with
forcing provided by the pressure p, the distortion stress o and the viscous stress ¢’ (here and in
the following we use the Einstein summation convention, of summation over repeated indices):

0; = 0j(—pdji + oji + 0}5), (8.3)
Oy, = 0. (8.4)
where p is the pressure. Here, the distortion stress o is given by
OF
0j; = ————0;Q
T 00,Qes)

where we use the simplest form of the Landau-de Gennes free energy density

Z1Q) = HIVaQP + ¥s(Q)

modelling the spatial variations through the %|VQ]2 term with the nematic ordering enforced
through the “bulk term” taken to be of the standard form [87,92]

a b c
YB(Q) = 5'“{@2} - gtr{Qs} + ztr2{Q2}.
The viscous stress ¢’ is given by:

oij = P1QijQue Ak + BaAij + BsQuAlj + BoQji Au
1
+ 5#2%;’ — mQuN; + Q1 N;,

where 1, B4, 85, 86, 1 and po are viscosity coefficients satisfying the Parodi-type relation

Be — Bs = pi2
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the A stands for the rate of strain tensor

Vi U5

Az’j = 5 R

i.e. the symmetric part of the velocity gradient, while .4 is the co-rotational time flux of ), whose
(i,7)-th component is formulated as follows

N = (Q—wAQ+QA w)ij = 01Qij + Ok Qij — €irwiQlj — €jrwrQil-

A represents the time rate of change of @);; with respect to the background fluid angular velocity
w= %V A v. Moreover, one can reformulate .4/~ making use of the vorticity tensor {2

Vij — Vji
Qij = T

Indeed, one can check that

Nij=(Q — [2,Ql),, = Qij — Qi + Qush,

since we have w A u = Qu, for any d-dimensional vector u. For a common physical example, the
MBBA material, we have the following relations between the coefficients [108§]:

B2 10980 Loar Bt o755 L0705 o9 (8.5)

221 221 H1 H1 H1

Furthermore, because the coefficient 84 corresponds to the standard Newtonian stress tensor we
can assume

Ba>0 (8.6)

which fixes the signs for all the viscosities.

The evolution of the order tensor () is driven by
JQ” = hij + h;] — )\513 — eijk)‘k~ (87)
where €;;;, the Levi-Civita symbol. The elastic molecular field £ is

o7, 07
0Qi; ka(ainj)

and the viscous molecular field A’ is given by:

hij =

1
St2Aij — p N,

[

The A, A\ are Lagrange multiplier enforcing the tracelessness and symmetry of the tensor.

The J in stands for the inertial density and it is taken to be greater than 0. This is
consistent with the fact that J has the same sign as the inertia in the Leslie-Ericksen type of model
(see Appendix B in [101]) where it is assumed to be positive (see for instance the assumption that
J.L. Ericksen makes in [39]).
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8.1.2 Main results

As first result we show that system ({8.3))-(8.7) admits a a Lyapunov functional, up to some relations
on the viscosity coefficients. This is a functional exhibiting the free energy due to the director field,
the kinetic energy of the fluid and the rotational kinetic energy of the director field.

Theorem 8.1.1. Let us assume that the viscosity coefficients fulfils Bs + 56 =0, and B, p1 > 0.
Let us also assume that By > |p2|/2 and py > |pa|/2. Then system (8.3)-(8.7) has a Lyapunov

functional: . ;
B0 [ (30 +3107 +71)

with F[Q] = WQ' +9¥p(Q), the Landau-de Gennes energy density. More precisely, if (v, Q) is a
smooth solution such that

v € L=(0,T; L*(R) N L*(0,T; H' (RY)),
Q € L>(0,T; HY(RY) with Q € L>®(0,T; L*(RY)),

then, for all t < T, the following dissipative relation is satisfied:

d
S B+ /Rd |W|2+/Rd |¢/V|2+/Rd tr{QAY <0, (8.9)

Let us remark that our restriction on the viscosity coefficients 81, u1, 85 and [g are not un-
natural, as one can check in the MBBA example . The proof of Theorem presents some
difficulties that are specific to this system, such as controlling the “extraneous” maximal deriva-
tives, i.e. the highest derivatives in v that appear in the ) equation and the highest derivatives
in @ that appear in the v equation. We mainly handle this difficulties by taking into account the
specific feature of the coupling that allows for the cancellation of the worst terms, when considering
certain physically meaningful combination of terms.

It is worth to observe that despite this apriori estimate, one can not expect to construct weak so-
lutions making use of this energy relation. Indeed, the most common approach in order to construct
weak-solutions is making use of a compactness method for a sequence of approximated solutions.
As in the classical Navier-Stokes equation, the main difficulties are related to the nonlinear terms.
For instance, in system — the stress tensor o;; presents the nonlinear term

10IVQP
2 aQa 7,

Now, the highest number of derivatives of () that relation allows us to control is one, more
precisely we can control VQ in L2(0,T; L?(R%)), for any positive time T'. Then, the convergence
we can expect for a sequence of approximation for V(@ is only a weak convergence. Thus we can
not control the convergence of the product .

One should keep in mind that a positive inertial density J leads the order tensor equation to be
hyperbolic, in contrast to the parabolic structure that occurs when J is neglected. In the parabolic
setting one can make use of regularizing effects, achieving a control of two derivatives of @ (i.e.
AQ in L*(0,T; L?(R?)), which certainly allows to control the limit of a product as in (8.9). This
feature is lost when J is positive, so that constructing weak solutions can not be achieved through
a compactness method based on estimate .

(VQOVQ)ij == Qap,iRQasj = =5~ Qas,; (8.9)

Our second result concerns the existence and uniqueness of strong solutions for system ([8.3])-
(8.7, for a general dimension d > 2 (which assumes a physical interest when d = 2,3). We assume
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the initial data (vg, Qo) in a Sobolev space H® with s > d/2, supposing also a smallness condition
on their norms. Moreover, we consider the bulk energy ¢5(Q) in its quartic form:

vn(Q) = 5Q - $6{Q% + SQIQP (5.10)

with a, b and c real constants. Then, our second result state as follows

Theorem 8.1.2. Let us assume (vg, Qo) : R4 — R? x R4 to belong to H*(RY) x H*1(RY) with
2
d>2 and s > d/2. If the constant a fulfills a > % and moreover

1o = ||voll s ray + |Qoll frs+1(may
is small enough, then there exists a unique classical solution (v, Q) of (8.3)-(8.7)), which is global
in time and fulfills

v e L®(Rys HY(RY) 0 L2(Rys H (RY)),

Q € L®Ry; B*HRY))  with O € L®(Ry; HY(RY)). (8.11)

Moreover, there exists a positive constant C (not dependent on the solution) such that

V] oo (R s hrs may) + VOl 2y s +1 may) + 1@l Loy s +1 (RaY) + QN L2y s r5+1 (REY) T+

+ “Q"LOO(R+;HS(Rd)) + HQHLQ(R+;HS(Rd)) < Cnp.

The main difficulties associated with treating system — on the one-hand are related to
the presence of the forcing term of the Navier-Stokes part, on the other-hand they derive from the
inertial term in the @-equation. One can essentially think of the system as a highly non-trivial
perturbation of a Navier-Stokes system. It is known that for Navier-Stokes alone the existence
and uniqueness of classical and weak solutions in 2D can be achieved through rather standard
arguments, while in 3D (or in a higher dimension) it is still a major open problem. The extended
system we deal with has an intermediary position, as the perturbation produced by the presence of
the additional stress-tensor generates significant technical difficulties, related in the first place to
the highest derivatives in () that appear in the u-equation. Moreover, such difficulty is accentuated
by the inertial term in the hyperbolic order equation, which does not allow any kind of regularity
effects for Q.

The proof of the existence part in theorem is based on a rather common compactness
method. First we construct a sequence of approximate solutions that are global in time, making
use of a Friedrichs-type scheme. Then we pass to the limit, performing some uniform estimates
ina H S(Rd)—setting. Despite this standard idea, some specific difficulties occur. For instance, the
H*(R?) norm does not allow the cancellation of the “worst” terms, so we can not proceed as in the
proof of . This difficulty is partially dealt with by reformulating the inner product of H*(R?)

as follows: N R
(Wi, wa) p2(ray + (W1, W2) frs(ray = /Rd (1+[€12*) @ (&)@a(€)dE,
3

where H $(R%) stands for the homogeneous Sobolev space with index s. It is straightforward that
this inner product generates the same topology in H*(R?) with respect to the common one, given

by
2s . -
gy = [ (14 16D o1 (€)an()de.
£
Making use of this approach, one essentially reduces the control of the worst terms only in H*(R?),
where useful commutator estimates hold.

Our main work on proving the existence of classical solutions is to obtain an uniform estimate
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for our approximate solutions, that is
O (1) + U(t) < CP(t)V (), (8.12)

where C' is a suitable positive constant, ® is the bounded in time H*-norms of our solution and W¥
is the integrable in time H*-norms. Then, a rather standard argument (see Lemma allows to
propagate the smallness condition on the initial data (i.e. on ®(0)). This leads the right-hand side
of the above equation to be absorbed by the left-hand side, achieving the cited uniform estimates.
Finally we construct our classical solution, through a compactness method.

The uniqueness of our solutions is proven evaluating the difference between two solutions at a
regularity level s = 0, i.e. in L?(R?). Our work is mainly to obtain an estimate that leads to the
Gronwall lemma. Here the main difficulties are handled taking into account a specific feature of the
coupling system related to the difference of the two solutions. This feature allows the cancellation
of the worst term when considering certain physically meaningful combination of terms.

It is perhaps interesting to remark that in Theorem we do not consider a positive constant
¢ in the bulk energy density ¢5(Q). Usually, this is a necessary condition in order to have ¥ p(Q)
bounded from below in Sy, however we do not need this restriction on ¢ mainly because we are
dealing with a smallness condition on the initial data. This smallness property is preserved by
our solutions, so that one can heuristically thing that 1 (-) take in consideration Q-tensors whose
components belong to a bounded domain in H*(R?). Thus, in this functional framework, v is
still bounded from below. Moreover, Theorem [8.1.1] requires the constant a to be positive. A first
reason for this restriction releases again in the smallness condition, since a is the constant related
to the lower power of @), which in this contest has the same behaviour of ¥5(Q). Nevertheless the
main reason for the positivity of a concerns a technical part on proving , that is the time
boundary and L2-integrability for the H*-norm of Q.

8.1.3 The singular potential

Ball and Majumdar [8] introduced the bulk component of the internal energy functional by means
of a singular functional ¢p = ¥p(Q) that blows up when at least one of the eigenvalues of @
approaches the limiting values 1 — é respectively é. In particular, the boundedness of the free
energy enforces the boundedness of ) in L*°. Specifically, we set

Y(Q) = f(Q) — G(Q) for Qe REX?
where

infpca, Jsa-1 p(P)log(p(p)) dp ifN[Q] € (1/d,1—1/d),i=1,...,d,
00 otherwise,

f(Q)—{

Ag={p:8* > [0,00) | pe L}(sY), /Sd1 p(p) dp = 1;Q = /Sd1 (Pep- g)p(p) ap .

The function f is the singular component of the bulk potential. In here singular refers to the fact
that the domain is not the whole space (while inside the domain the function is in fact smooth).
The function f enjoys the following properties that can easily be deduced from [8| Section 3, Prop.
1]:

o f: ngxrffo — [ K, 0] is convex and lower semi-continuous, with K > 0.
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e The domain of f,

DIf) = @ € REly | £(Q) < o0} = {Q € RGy | M@l € (-1/d1- )}, (8.13)

dxd

is an open convex subset of Rimo-
b

e f is smooth in DI[f].

Organization

This work is organised as follows: in the next section we prove Theorem in the simplest
case of every viscosity coefficients null while in section we prove Theorem [8.1.1] in its general
form. In Section we present some apriori estimates that exhibit in a simple setting a number
of cancellations that are later-on crucial for proving Theorem [8.1.2] in section

8.2 Explicit equation and conservation laws for the inviscid model

In this section we consider the system (8.3)),(8.4]) , with the viscous contributions ' = 0, o/ = 0.
Then the equations (8.3)), (8.7) become:

b+ Vp=-V-(VQoVQ) (8.14)
JO = AQ — z%ﬁf (8.15)

with .Z denoting the projection onto the space of trace-free matrices, hence

00s(Q) _ 0vn(@ 1. (95(Q)
5 o@) 1 (B> 0

Dg =

0Q aQ oQ
Lemma 8.2.1. Let (v, Q) be a smooth solution of (8.14),(8.4), (8.15)) in the whole space R?, and
decaying sufficiently fast at infinity. Then:

2
/ @(t,m + %l@\%m + %lvcz\?(t,w +9p(Q(t x)) do =
R (8.16)

[of? S\ 2 1 2
[, 15000+ 510P0.2) + 5 [VQR(0.2) + 6(Q(0. 2))dz
Rd

Proof. We multiply the equation (8.14) by v; integrate over the space and by parts and add to it
the equation ({8.15) multiplied by Q;;, integrated over the space and by parts to obtain:

d [ 1. 512) _ Owr s 5 ] 5 g
% §(|U‘ + J|Q’ ) = /Rd leJle,z'Uz,] + (AQU _g 8@ ij> <ath] +v VQU) dzx
=/ Qr1,jQri,ivij — AQujviQij ke dfﬂ—/ 0 Qij kQij i
R4 R4
(8.17)
=9 =9
(91#3 / awB
Qi dr— [ v-VQij
/ ! ! aQ i R4 ’ 8Q ij
::,ﬂ4

We see that &) = .#; = 0 hence we are left with the claimed conservation law ({8.16]). O
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8.3 Explicit equations and conservation laws for the viscous mod-
els

In this case we have the explicit equations:

i+ Vp- Dav=y ( VQOVQ + BIQU{QA} + 55AQ + ﬁeQA>

(8.18)
v (2@- 0.0+ @@ 2.0)])
JO + 11Q = _ % _ M2
mQ =AQ - 0 2 A+ m[Q, Q) (8.19)

where we denoted [A, B] := AB — BA with £ again denoting the projection onto the space of
trace-free matrices, hence

OUB(Q) _0vs(Q) 1d (0V5(Q)
Q) 0Q d Q)
Remark 8.3.1. Let us clarify that if M () is a d x d-matriz, then V- M stands for the vector field
(Mij5)i=1....d-

Proof of Theorem [8.1.1. We multiply the equation (8.14) by v; integrate over the space and by
parts and add to it the equation (8.15) multiplied by Q;;, integrated over the space and by parts
to obtain:

i
dt

0Vp

(’U|2—|—J’Q| / Qri,jQriivij — (AQZJ—i—.,SfaQ ;

_ /Rd U;i’l)@j dx + /]Rd h;jQ” dx
— /d Qrt,j Qr1,ivij — AQijvrQij e dx — /d 01Qij 1k Qij k
R R

=9 =S

0 0
/ 9,Qs; (f; da —/Rdv VO, 523
i 1J

) (atQij +v- VQZ]) dx

=
- 51/ QjiQuiAikvij dor — /3’4/ Ajivij dx
Rd R4

- 55/ Q1 Ayv;j dx — 56/ Qi Aijv; jdx
R4 R4
— }MQ ) Qﬂ — ijQki + ijQki Ui j dx
277 Jr
+ / (leQli — leQli) v; jdw
]Rd
— /Rd (Qil€2, Qlii — [, QljQui) vij dx

1 . . .
- 2#2/ Ai;Qij — / (Qij — Qi Qrj + Qz’kaj) Qij dx
Rd Rd
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which implies

d

1 | 3 :
L Lo+ 7108 + Livep) +vs(@de + / Vo2 do + m/ QP du
dt Rd2 2 2 Rd Rd

= —/31/ Qi QuiAikvi j dx—ﬁs/ Q1A 5 dw—ﬁﬁ/ Qi Ajv; jdx
Rd Rd Rd

1 . 1 )
M2 /Rd <jS — Qi Qpi + ijQki) Vig 5 /Rd AijQij
+ 1 / (leQli - Qﬂsz‘)U@',deU + 1 / (QurQrj — Qix;j) Qij da
Rd Rd

— 1 /Rd (Qul, Qlii — [, QljQui) vi; dx dx

Now we analyse each term on the right-hand side of the equality, and we will repeatedly use that
v;; = Ajj + Q;; and moreover that tr{ BC'} is null for any B symmetric and C' skew-adjoint. We
begin with

—p1 /Rd Qi QuAivi; = — 1 /Rd Q;iQue A Aij — B /Rd Qi Qui A1k
= =p [ QAP -5 [ u{eu{Qa)
= _ A2
5 [ r{Qay,
observing that tr{QQ} is null. Now we deal with
—Bs /]Rd Q1 Avi 5 dx — B /]Rd Qi Ayvi; dx + % /Rd (QkQri — Qi) vij dv =
_ H2 _
— B /R r{QAVY) — /R r{AQVe) + /R {920 ~ @)V}
— 55 [ (@4 +AQ)Vu} — (B~ ) | wx(4QVe} + 4 [ x((0Q - Qe)4)
Rd Rd Rd
= —Pfs /]Rd tr{(QA + AQ)A} — uo /]Rd tr{ AQA} — po /Rd tr{ AQQ} + o /Rd tr{QQA}
— (25 pa) [ 0{AQA} =~ [ (65 + Bopr{AQ4} — [ tr{(22 QJA}
Rd R Rd

Hence, such term is null if we assume 85 4+ 8 = 0. The contribution of the remaining terms related
to peo is null, indeed

1 : 1 : : .
—Sl2 / Qjivij + 512 / AijQi = —"2 | w{Qv} + 2 / tr{AQ}
2 R 2 R4 2 Jpa 2 Jga

R
_ M2 Ay M2 0y M2 N — — :
=% | tr{QA 5 /Rd tr{ Q0 5 /]Rd tr{AQ} = —pu2 /Rd tr{AQ}.
—_—

=0

Now, let us carry out of the ui-terms: first

+i /Rd <QilQlj - QilQlj)Ui,de + m/ (e Qrj — Qi) Qij daz =

Rd
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= m / {(Q0 — QQ)A} 1 / r{(Q0 — QQ)2} + / w{(2Q - QQ)Q) =
R R Rd

=0

=2 [ (2. Q)
and moreover
— 1 /Rd Q[ Qi — [, QlaQuj) vij = —m /Rd tr{(Q[, Q] — [, QIQ}N} =
—n [ e{(0Q - Q). @} = —m [ ll2. QP

Thus, summarizing all the previous equalities, we get
4
dt

48 [ r(QAYds [ 19 QPde 2 [ r((2QIQ)s 4 g [ A} =0,
R4 R4 R4 R4

[ 5 0B + T10P +19QP) + on(@da+ 5 [ [Vodat g [ |0Pda

which can finally be simplify as follows:

d 1 .
— (m?+ﬂQF+¢VQF)+¢g@gdx+/ |Vol? dz+
dt R4 2
0 [ QAP+ [ |0~ [.QPdr i [ x{ra) =0,
Rd Rd Rd
Then, recalling that the definition of the co-rotational time flux is A4 = Q — [Q, Q], we deduce

d 1 .
| S (WP + IR +VQP) + ¢5(Q) do+
dt R4 2
+ﬁ{/\Vv%m+ﬁ{/tﬁQAP®H4q/‘pﬂ%x:—+yz/tﬂﬂﬁﬂ
2 Rd Rd Rd R4

Recalling that 84 > |u2|/2 and 81 > ua/2, we finally obtain

d Lo 52 2

— [ 5P+ IR +[VQP) +vp(Q) do+

dt Rd 2

—|—/ ]Vv|2da:+/ tr{QA}2d:c+/ | |2dx <0,
R4 R4 Rd

and this concludes the proof of Theorem O

8.4 Commutator and a-priori estimates

In this paragraph we first state a useful commutator estimate, which plays a major role in the proof
of Theorem We start clarifying some notations: we denote by (v/—A)® the operator given

by (TR = Z (P F©),
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and by [(vV—A)%, f - V]g| the commutator operator
[(V=2)*, f- Vgl = (V=A)*(f - Vg) = f- V(V-A)g,
for any suitable vector field f and function g. Then the commutator estimate reads as follows:

Lemma 8.4.1. Let d > 2, f be a d-dimensional vector field whose component are in HS‘H(Rd)
and and g be a Sobolev function in H*(RY), with s > d/2. There exist a positive constant C that
does not depend on f and g, such that

IV =2)% f - Vgl 2@y < CIV Il s may 191 175 may-

For the proof of Lemma we refer the reader to [43], Theorem 1.2.

Now we perform some a-priori estimates, for system —. In the next section, when we will
prove the existence of classical solutions, we will make use of similar estimates when constructing
approximate solutions. The purpose of the next proposition is to propose these inequalities, for the
original system, in order to make the reader familiar with this approach and to present important
simplifications related to the coupled equations.

Before starting, let us clarify that from here on, we consider an inhomogeneous Sobolev space
H*(R?) with s > d/2, equipped with the inner product

(u, vygs = (u, V)2 + (u, v) s, where L2 =IL*RY), H*=H*R?Y and H®= H%R).

Moreover, for any positive real functions a(t) and b(t), we will write a < b if there exists a positive
constant C' which does not depend on a and b, such that a(t) < Cb(t), for any t.

Proposition 8.4.2. Let (v, Q) be a smooth solution of system —, which fulfills
ve Lo(Ry, H'RY) N IX(R,, H(RY),
Q € L®(Ry, H(RY) 0 L2 Ry, H (RY)),
Q€ LRy, H'(RY) N LRy, HY(RY),

with s > d/2. Let us assume that the constant a in the bulk energy ¥p(Q) (8.10) is positive and

greater than %. Then the following inequality is satisfied

(O Ze ey + Qg1 (ray + Q) Fre (o +

t
+/ {IIU(S)H?{M(W) Q) Frov1 (may + IIQ(S)HZs(Rd)}dS
o, (8.20)
S /0 (HU(S)HESW) Q) o1 (may + HQ(S)IIQSW)) x

< (I ty + 1R By gty + Q) 3y ) s

Proof. Before starting, let us clarify that we denote by ¢, ¢,,, cg, and ¢, are small positive real
constants, whose value will be determined in the end of the proof.
We begin taking the H*-product between the momentum equation (8.1)) and v, that is

1d
5&]]0\]%{3 + 54HV1}H%IS =—(v-Vu,v)gs + (VQ ©VQ, Vv)gs+
+ A1(tr{AQ}Q, V) s — B5(QA, Vo) is — B6(AQ, V) s+ (8.21)

- 20— 12 Q) Voo + m{(Q. Q) Vohuze — i ([Q, Q. A, Vo)
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Now we analyze each term on the right-hand side of the above equality. First, let us observe that
(v- Vv, v)gs = (v Vv, v) 2 +(v - Vv, v) 7.
N————
=0

Since s > d/2, then L>®(R%) is continuously embedded in H 5+1(Rd), and by a classical Gagliardo-
Niremberg inequality we have [|v[| o (ra) S HUHLQ(Rd VoL~ i ]Rd , with 6 := d/(2s + 2). Hence the

second term on the right-hand side of the above equality can be estimated as follows:
(v - Vv, v) | = [(v @ v, V) g
< lollzgellvll g Vol -
S o2 IVl 2ol s V0 e

which yields
[4 2—0
[(v -V, v) g S Nllzelloll g Vol

0 2—0
S ol Ga ol ol I V7ol 7 (8.22)
0 —0
< Jollmslloll . IV oll7".

Since s > d/2 > 1 then |[v]|% = ||Vo||% ., < [[Vv|%s, thus

Hs
(v Vv, ) | < ol VollEs S IVullds [vllFs + cal Vo7, (8.23)
Now, the second term on the right-hand side of (8.21) is
(VQoVQ, Vv)gs =(VQ O VQ, Vu)r2 +(VQ © VQ, Vv) 4.

We will see that (VQ ® VQ, Vv)2 is going to be simplified, while

(VQ o VQ, Vo) . < IVQlLe IVQI IVl o S IVQUE IV 07 + co, V0l

Finally, the remaining terms on the right-hand side of are controlled as follows:

Bi(tr{AQ}YQ. Voyus < |Allm= QI Vol S IVl QI

B5(QA, Vo) us + Bs(AQ, Vo) s < | Al 1Qllm=lIVoll s S IVUllZ QN7 + caull Vol

%QQ, Ql, Voyus S IQUIVollEs S IVollfsllQlzs + s llVullds,
p{[Q. QL Vo) e SINQUa QNI Vvl e S IVl F1QNFs + e | QU

pi([Q, [2, Qll, Vo) us QI VlFe-
Thus, summarizing the previous estimates together with , we get
S olBie + BVl + 2240, Vo — (VQ© VQ, Vo)

SIVolEs (vllze +1VQIEs + 1QlFs) + cu IQIE: + cs,lVollF..

(8.24)

Now, let us take the H*-inner product between the order equation (8.2) and Q:

TO, Qe+ @l = (2, Q) Qe+ 5 S IV@U — (AQ, v T Q) =
(8.25)

= ~a(Q Q= + Q% Qe — e(Qur{Q%}, Qe — LA Qe
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We begin, observing that the first term on the left-hand side fulfills
. Jd . .
J(Q, Q)ms = 5&”@”%{3 +(v-VQ, Q)us
where we have also
(v0-VQ, Q)= = (v-VQ, Q)2 +(v-VQ, Q) s

N————
=0

= ((V=2)%,v-VIQ, (V=8)*Q)r2 + (v- V(V=A)°Q, (V-1)°Q) 12 .

=0

Hence, applying the commutator estimate given by Lemma [8.4.1) we deduce that

(v-VQ, Q)= S IVoll e 1QUF S VUl 1QIFs + ¢ Q- (8.26)
Now, we keep estimating the terms in (8.25). At first
pi([2 QL Qs S IVollas | QUasllQNms S Vol QU + e lQUFre- (8.27)

Moreover, we split (AQ, v - VQ)pgs into (AQ, v-VQ)r2 + (AQ, v - VQ) ., and we rewrite the
H?-term as follows
(AQ, v-VQ) e = (V=2)Qap i, (V=D)0jQap,j) 12 =
—((V=D8)Qapir (V-D)v;iQapi) 2 — (V=D)Qapi, (V=2)*0;Qupij) 2 = J1 + T,

where we have used the index summation convention, namely if there are repeated indexes then
they are under summation. Now, recalling that H*® is an algebra for s > d/2, we handle [J; by

|71 < 1Qap.ill grs 107, Qap.jll s
< 1Qagillael1v1iQap il s S IVQUZ NIVl s SUVQIFIVQIES + co,lIVollFe,
and, recalling the commutator estimate given by Lemma [8.4.1] 7> is estimated by

T2 = ~((V=2)Qi, [(V=28)*, v-VIQa)rz — (V=8)'Qi v- V(V=D)* Q)12

=0
SIVQI g lV=2)%, v - VIQullz SIVRIE NVl g S IVRIE:IVQIGs + coulVollFrs-

Summarizing, we deduce that

(AQ, v-VQ) s < || +1T2| S IVQIIFIIVQITr + coulVollFs- (8.28)
We keep going on, estimating the term on the right-hand side of equality (8.25)). At first, we have

. d
~a(Q; Qe = —a QU7 — alv-VQ, Q)us,
ith
A —a{v-VQ, Q)us S v s IVQIaslQlars S 1QIFs 10l + [ VQIFs,
furthermore . . .
(@, Q%) m S QU ael1QII S QU NQNFs + Qs

—(Q, Qtr{Q*N) e S Qa1 QI < QU7 (1QIF= + 1R Fr+)-
Thus, summarizing all the previous considerations, equality (8.25) yields

1d . . L .
5 1 [ 1QIE + IVQIF: + all QU] + mllQle — (v VQ, AQ)rz — THA Qs
< (1QU HIVQIEs +1Volls) (1QNI%E + 1QUEs + IVQIZ:) + s, [VollEe + ¢l Q-

Now, let us consider the H*-inner product between the order tensor equation (8.2)) and @)/2, namely

and finally

(8.29)
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J . )
Q. Qe+ 5@, Qae = 52 Q) Qe + IVQI: + all QI =
= b(Q% Q) — e{QuQ?, Qus + 1A, Q).

We analyze <Q, Q) g in the left-hand side of the above equation, first splitting it into (Q, Q)gs =
(Q, Q)2 +(Q, Q) - then controlling the L2-inner product by

<Q7 62>L92C = <atQ> 62>Lg2C + <U : VQv Q>L%
d . . . d . .
= a(Qa Q)rz — (@, 0Q)r2 —(Q, v-VQ) 2 = &@7 Q)rz — ”QH%&.-

Moreover, we handle the Hs—product <Q Q) s = ((%Q, Q) s + (v- vQ, Q) 75, first observing that

00, Qe = 5 T @ — 510, Q) .

(8.30)

and then observing that

= (V=87 0 V10 (V-2 Quz + (VAP Qv VV-By @z
= ([(V=2)%, v-V]Q, (V=D)*Q) 12— '

—((V=2)°Q, [(V=2)*, v-V]Q) 12 — (@, v- VQ) .
(

Summarizing, we get that the Hs-product (Q), Q) y- fulfills

J . . J -
§<Q7Q> 2dt<Q Q) rs §HQ||HS+ (532)
J . J ) :
+ (V=A% 0 VIR (V=AY Q) — S {(V-A)Q, [(V-A), v - VIQ) 12,
and moreover, the commutator estimate of Lemma allows us to control the last two terms by
J . J )
SR, 0910, (VB Qli ~ HUVAYQ WA v VIR

5 IV 0l s QU g 1@ 7o S IVl T QU s + €y | QU Ty
A further development in releases in %(Q Q) i+, since this term can be rewritten as follows:

5112 2
s s N 834
5 dt<Q Q) s 4 En [||Q+QHH 1QU 7 — 1QlI7:] (8.34)
Now, we come back to equality (8.30) , and we proceed estimating the remaining terms. First,

. d
EHQ Qe = 50Q. Qe + 50 YQ, Qe = B ZIQI + BHo - V@, Qe

where we can easily handle the term (v - VQ, Q)gs, since H® is an algebra, that is

71@ VQ, Que < 0lla IVQIas|Ql s < QU7 I0llFs + ¢l VQIZ.

Similarly, we get also

M1
(2. QL Qn 3 IVl asl|QlFrs S QNFr QN + ca, Vol Frs,

b(Q%, Q) S 1QNEs S NQUZHIQNFS + call QI
c(QerQ*, Q)us S 1IQUE:IIQIE:
It remains to control the po-term in (8.30)), that is pe(A, Q)pgs/2. We fix a positive constant € in
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(0,1) small enough, and we estimate this term as follows:

&A <M v < |,U2|2 Vo2 1— 2
5 (A Qs < == IVl | Qe [Vollgs +a(l —e)||Qgs-

~ 8a(l—¢)

Then, summarizing all the previous considerations, equality (8.30)) yields

drJ, - 2 S A2 p—J 2 JAn2 2
=210+ QUi = S1QI%: + E=1Q1%: | - S1QIE- + alQll-
M2 2 2 < 2 2 2 2 8.35
sart o1 Vel + 19 QU S (IVeli + 1QU ) (NQlE: + ol )+ (839)

+ep, | Voll3s + e QN + call QU + ¢l VQIF-
We finally take the sum between ([8.24)), (8.29) and (8.35]). Together, the three inequalities lead to

drl, ., J A PST I\ioi2 2

s [§||UHH5 + ZHQ + Qll7rs + ZHQHHS +(a— Z)”QHHS + HVQHHSLL

(2 M)vaul%ls (= D) 101 + aQI + IV QI
2 8(1—-¢)a 2

)

~(VQ O VQ, Vo)rz — (v-VQ, AQ) 1z < C(en Vol + | QI + call QU + e VQU: )+

+C (190 + 1@ + 1R + IVQI% ) (ol + Q1 + Q1 + IVQIE.),
8.36
For a suitable positive constant C. Now, observing that ( )

(VQOVQ, V)2 +(v-VQ, AQ) 2 =0,

2
imposing € small enough in order to have %4 > 8(‘{‘1)@ and assuming c, cg,, ¢;, and ¢, small enough,

inequality (8.36)) yields (8.20)). This concludes the proof of the proposition. O

8.5 Classical solutions

This section is devoted to the proof of Theorem [8.1.2] namely we prove the existence and uniqueness
of strong solutions for system ({8.1)-(8.2)), for small initial data. We split the proof into two parts,
one concerning the existence of solutions and the other one about their uniqueness.

The existence is based on a Friedrichs’s type scheme which allows to construct approximate
solutions. we then proceed performing uniform estimates, with the same approach of Proposition
8.4.2)

The uniqueness is achieved controlling the difference of two solutions in an L2-framework.

Proof of Theorem [8.1.3. Existence part: In order to construct global strong solutions, we use the
classical Friedrichs’s scheme and we perform similar estimates to the ones of the previous section.
Let us first introduce some notation. We define the mollifying operator J,, trough Fourier transform,

hat i f Tnf f
that is Inf(&) :=Jnf(§) := 1{2—n§|§|g2n}f(§)'

Then, we consider the following approximate momentum equation



198 CHAPTER 8. QIAN-SHENG SYSTEM

T n)+ﬁ4

ATy = = - P{I(VIQ™ © 7.1,Q") b+
" V'P{Wn( WQU{ I (Ja QU Ty A 455 1 (Ju A 1o Q)+ B (1, Q) 3, A) |
+V - P{ QW= al 19, 1aQ)) + i1 Ju[JaQ, (Jn Q= Ta 1,0, 1,Q))

where P denotes the Leray projector onto divergence-free vector fields and where we have used the
abuse of notation

f(n) — atf(n) + Jn(JnU(n) . anf(n)) - 5tf(n) + Jnv(") . anf(n)

We impose also the free divergence condition div v(™ = 0. Moreover, the approximate order tensor
equation reads as

T I QM + 1 J,Q™ = AJ,Q™ — ], Q™ + b, (J,Q™ 7, Q™)
Id
= btr{Jn (Ju Q1 Q)} 5 + e (J,LQ(”)tr{Jn(JnQ(")JnQ(”) )}) + %JnA(").

The system above, with the initial data (v, Q"™);—¢ = J,,(vo, Qo), can be regarded as an ordinary
differential equation in L?(R%) verifying the conditions of the Cauchy-Lipschitz theorem. Thus it ad-
mits a unique maximal solution (v("), Q™) in C1([0,T"), L*(R%)). As we have (P.J,)? = P.J, and
J2 = J,, the palr (J 0™, J,Q™) is also a solution of the previous system. Hence, by uniqueness
we get that (J,0™, J,Q ")) (™, QM), moreover (v(™, Q™) belongs to C1([0,T™), H>®(R?))
and it satisfies

BA‘A 0 = -7 P{1(VQ™ & vQ™) |+
+V- P{ﬁljn( Dt {Jn(QUAM)) + B, (AQM) + 5T, (M AM) b+
+V.p{ %(Q(m — T2 QM) 4 11, [QM, (QM) — g, [0, QU] }
JO 4 0™ = AQM — a0 + b (QM QM)
0 {(QQ)} S 4 e QUL (QUIQM)T) + 2 40,
(0™, QM)i=o = Ju(v0, Qo).

We claim that for any n € N the maximal time 7™ = +o00 and moreover that there exists a positive
constant C', which does not depend on n, such that

(8.37)

Hv(n)‘|L°°(R+;HS(Rd)) + va(n)HL2(R+;H5+1(Rd)) + ”Q(n)HLC’O(R+;Hs+1(Rd))+ (8.38)
+ ||Q(n)”L2(R+;HS+1(Rd)) + ||Q(n)”L°°(]R+;HS(]Rd)) + ||Q(n)HL2(R+;H5(]Rd)) < Cnp. .
We begin taking the H5-product between the momentum equation and v(™, that is
s[04 Bal Vo e = = (a0 - Vo), ) e + (,(VQ™ © V™), Vo)) g
+ B1{{ T (A QUIQ™, Vo) e — B5(QM A, Vu™) o —
— Bs(AMQM, Vo) . — EQM — 1,12, Q] Vo) e+
+ 1 [Q), QM) Vo) e — i (Jo[QM, 1 [Q™, QM) o) g
We start analysing (J,,(v(™ - Vo), (™) s on the right-hand side. First we can rewrite it e(xésg -39)
(Jp (0™ - Vo™ 0wy g = (™ T g™ g = — (0™ @ o™ Tu™) g
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then, proceeding as for proving (8.22)) and (8.23)), we deduce
(T (0™ - 0™, 0 | = (0™ - T 7,0 g

= [(v™ . ™ M)y |
S IV e o™ 7 + eI Vo™ (1.

Now, the second term on the right-hand side of - is

(7o(VQ™ © VQ™), Vo) . = (VQM © VQ™, Vo) 1z +(VQ™ © VQ™, Vo) .
We will see that (VQ™ @ V™, Vo) 12 is going to be simplified, while
(VQ™ © Q™. Vo) .| £ IVQ™ Il VQ™ Il | V0™ |
SIVRMIFIVQ™ I3 + ca, Vo™ 7.

The remaining term on the right-hand side of (8.39)) are handled as follows:

Bi(tr{Jn(AQU)NIQM™, Vo) s < (| Ta (A QU = 1QU | |V o™ | -
SIAD N 1Q 7 V0™ s < IV 0™ (135 1Q™ |1,

55<Q(n)A(n), Vv(")>Hs + 66<A(")Q(”), Vv(”)>Hs < HA(n)HHS||Q(n)HHSHVU(n)”HS
SNV 1 1QM™ 1Fs + eI Vo™ 13,

P10, @), Vo) e = B0, QUL Tul)
<10 e [

S IV 3 1QM™ s + e, Vo™ |3,
1 {Ja[Q™, QM], Vo) e = 111 ([Q™), QM], Vo) 5.

SR = 1Q™ 1+ Vo™ 4

S IV 3 Q™ 1 + ¢ Q™3

and finally
(@), T [Q, QU] Vo) e S QM |31 Vo™ 3.

Thus, summarizing the previous estimates together with (8.39)), we get
d
0] + B4l + 22100, 7o) — (V1 © VO, Tult) 1 5
SV 3 (0™ 3 + 1V Q™[5 + 1R 1F0) + ¢ QU (17 + € I V0™ [

Now, let us take in consideration the H-inner product between the order tensor equation and Q™

TO™, Qe + Qe — ([0, @], Q) e+ 2 LIVQ -
—(AQM, v . vQM) e = a(Q™ QU s + b((QM)2, QM) s — (8.41)
—e(@ur{(Q™)), Qe + (A, QM)

The first term on the left-hand side fulfills

(8.40)
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J@Q™, QM) = <atc'2<”> Q<”>>H5+J<Jn(v<“>-VQ<”>), Q") s
LI 2 + T QM 1, 4

Qe + T (- VM, QW) ..

2dt
_Jd

T 2dt

Moreover, proceeding as for proving and , we get
T - VQM, QM) s + 1 (Ju[2™, QM) QW) s < IVo 3 |QW 3 + e |QM 13,
where we have used
i ([ Q ] QU = (2", QI JnQ™) s = (2™, Q), Q)i
Now, as for proving , we have
<AQ(H)7 Jn(v(") 'VQ("))>H5 = (AQM, v . VQ(H))HS
SV 3 IV Q™ |3 + Vo™ |[3:,

while .
—a(QM, Q™) = —a(<Q("), 8Q™Y e +(QM, T, (0™ . VQ(”))>HS)
= —al|Q™|%. — a(Q™, (™ . v QM) .
with
~a(Q™, v™ - VQW) e S 1Q s 0™ |3s + el VQM™ 1 Fs.
Finally

b(Jn(QMQM), Q™) s = b((QM)2, Q™) s S NIQ™ 1 1Q ™ 37 + €, 1Q™ 131
= Qe {J(Q™MQM)}, QM) e S IIQM™ 17 1Q™ -
Summarizing the above considerations, equality (8.41)) leads to
2 [T1QU e + 19QU) e + all Q1] + QO e — (o - TQ, AQ() -
= 2040, QM) e < (1Q™ s + IV Q™ 37+ + IV Q™ ) (8.42)
< (11 Fs + QU N3 + IVQ™[37) + eI V0™ s + €y QU3+

Now, let us consider the H*-inner product between the order tensor equation and Q™ /2:

210, Q) + QW Q) L0, Q) Q) et

2 2
HITQUr + all Q™ e = Q)2 Q) - (343
—c<@<”>tr<cz<“>>2, Qg + EHAM, Q) .
We proceed as in the proof of Proposition [8.4.2] first by

(@™, QM) e = <Q<” , QM) 2 +(QM, QM) .,

G, Q) = @O, Q)+ (" VQI), Q)
<atQ Q<”>>L <<”> v, QM)
=0,(Q™, Q™) 12 — (@™, 3,Q™) 12 — (QM, v . VQM)
=@M, QM) 2 — Q™72

Moreover
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(Jp (™ - vQM), Q(n)>HS = (™. v, JnQ(n)>Hs = (o™ . vQM, Q(ﬂ))}.]s7
so that, proceeding as in (8.31)), (8.32)), (8-33) and (B.34)), we get

J n n n 3 (n n

§<Q( 1, QM) . — **[HQ( + QU3 = 1Q™ I — 1Q™ 1]

4 dt
S IV NQM 1 Fs + ¢ 1Q™ -

and

Now 3(n n n n n n n
EHQ™, Qe = BLHOQ™, Qe + EH (0™ - 7QM), Q)
/"L d n n n n
= Q. + B Q). Q)
ith
" B0 9Q), Q) e 5 QI o e + € VR 3.
Then

K n n n n n n n n
S (120, QM) QW) e S IV IQM N7 S IQ™ 15 1Q s + s, VO™ s,

(o (QMQM) , QM) s = (QMQ™, QM) s
SN SHQM™ I3 1Q™ 13 + call @™ e,
A(QMtr{ 1 (QMQM™)}, QM) e < N1Q™ 12| Tn(Q™ Q™) | 1
S1QM 3 1QM™Q™ | 1+
SNQ™ 3 1Q™ 3.
and finally

B2 4 oy < B2 g o oM. <« 2o ) _ Alo®
A, Q) e < IV 1 QV) e < BP0y + (1 = )

Then, summarizing the previous considerations together with (| -, we get
drJ, g, - 1 J, -
S [F10™ + Q3. — THQ™ 3 + O3] = SO + acll Q3. -

Iu n n n n n n
~sat = Vol + 19Q e < (190 + 1Q i ) (1™ e + 1y )+ (8:44)

+064HW(”)H%S + 6 [|QU 13+ + cal| Q|17+ + ¢l VQM™ 3.

Finally, taking the sum between , and (| and assuming cg,, ¢,,, ¢ and ¢, small
enough, we get

d

LI + 1@ + Qe + IO + (o~ DR e + IVQ I

‘,U2| (n) J 3(n) 12 (n)|2 (n)||2
+(Bs — ——)|IVO'"||5s + (1 Q" 7s + ag||Q||5s + VO™ ||7s <
(B 8(1—o)a il 17 + (1 2)” |7 I 7 + || b7 (8.45)

S (V0™ e + 1Q e + 1Q e + 19Q™ 13 )
(e 4+ 1Q I+ 1QU . + 19Q . ),
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where we have used
(Jn(VQM™ © VQM), VoiV) 13 + (T (™ - VQ™), AQ™) 1z = 0.
Now, let us define the functions x(¢) and y(t) by
w(t) = Vo™ |3 + Q™ |3 + ||Q(”)H12qs +VQ™ I3, (8.46)
y(t) = [0 +1Q™ 7 + 10 |3 + IVQ™ |-

We make use of the following lemma:

Lemma 8.5.1. Let y be a positive function in I/I/llocl(R+) and x a almost everywhere positive
function in L} (Ry). Let us assume that

y'(t) +x(t) < y(t)a(t), (8.47)

for almost every t in Ry. If we assume the initial datum y(0) = yo > 0 small enough, then y and
x belong to L°(R,) and L'(R,) respectively, and moreover

[yllzoe @) + 2zl ey < vo-
Proof. Assuming yo < 1/4, we define T' > 0 as the sup of ¢ > 0 such that y(¢) < 1/2. Then , for

every t € [0,T] we get

v+ Sa(t) <0,

then, integrating from 0 to T', we deduce

DN |

T
WT)+5 [ el <w<

This yields that 7" = 400 and that

1Yl oo my) + 12l 1@y < Yoo

With this Lemma we can finally achieve a global-in-time bound for the norms of our solutions.

Recalling the definition (8.46)), Lemma (8.5.1) yields

sup {0 (0) - + Q) ()3 + QU )3 + IVQ® (1)]3- b+

teRy
+ /R {190 @)1 + 10" ) + 1R @I + IVQ™ (1) 13- bat
+
< lvollfs + 11QollZrs + Qo7 + 1V Qoll -

Thus, by classical compactness, weak convergence arguments and thanks to the Aubin-Lions
lemma, there exists

Qe LXH ™ NLZH™, vwe LPH NLIH™, and we L°H N LIH,
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such that, up to a subsequence, we have the following convergences

Q"™ = @ strongin LS, HT'H

t,loc™"loc
Q(n)_> w strong in Lg,olocHlso;M

n) . o) S—p
— v strong in t,locHloc

vol” ~Vy  weak in L?HS

o

for a suitable small positive constant u. Moreover, given a bounded domain Q, H* #(Q) is an
algebra, then J, (v(™ - VQ™) strongly converges to v - VQ in L5, H°™F, as n diverges, with also
v-VQ € L H?®. Furthermore

Q= lim 9,Q"™ = lim (Q<"> ON VQ<">) —w—v-VQ e LOH?,

n—o0

where the limits are considered in the distributional sense. Then, we deduce 0,Q) € L°H*® and
w =@ € L°H?®. Finally, the tensor order equation yields

JoQM = —JJ,(v™ - VO™ — 11Q™ + 11, [, QU] + AQM™ + g A —
Q" 4 b(7,(QMQW) + 1{(QUIQUNIE) — e (@1 QW)
hence, observing that
170 (@™ - VQM) | a1y S [0 - VO™ | ga-1(0y
SV - {o™ @ QMY g1y
S o™ @ Q™| sy S 110 s @) Q™ 15 (92),

then 9,Q(™ belongs to L;l ocH 5=l with uniformly in n bounded seminorms. Thus

9,0™ = 9,0 weakly in L}, H*

t,loc

up to a subsequence. Moreover, since Jn(v(") ® Q(”)) weakly converges to v ® Q in Lg 10cH® 5 then
(0™ VQ(”)) weakly converges to v - VQ in L%l ocH?. Then, summarizing we deduce that QM
weakly converges to Q in Ltl’locHS.

These convergences allow us to pass to the limit in the classical solutions of (8.37)), deducing that
(u, Q) is classical solution of system (8.18)) and (8.19)).

Uniqueness part: We now perform the uniqueness of these solutions. Let us consider (u1, Q1)
and (uz, Q2) to be strong solutions with same initial data. From here on we will use the following

0Q :=Q1—Q2, 6Q:=Q1—Q2, vi=1]—vs.

we begin the proof considering the difference between the angular momentum equations of the two

notation:

solutions, namely
J(6Q): +v1 - VQ + v - VQ2 + 116Q = ASQ — adQ + b[Q16Q + §QQ2+
Id
+tr{Q16Q + 5@@2}3] — cdQtr{Q7} — cQatr{6QQ2} — cQatr{Q20Q}+
p20Q + p1[Q1, 0Q] + p2[082, Q2.
We multiply both the left and right-hand sides by 5@, integrating over Rd,
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drJ oo 2 a 2 5112
= | S16QI: + IV0QIE, + S16QIE: ] +mll0QIy = (AdQ, v1 - VQ)z2 +
+H(ASQ, 6v-VQa) 2 — (v1 - VQ, 6Q) 12 — (60 - VQa2, 6Q) 12—
~aldQ, v1 - VOQ + 60 VQa)z3 + b(@10Q +0QQs, 0Q) 13- (8.48)
—c(0Qtr{Q?} + Qatr{6QQ2} + Q2tr{Q20Q}, 5Q>L§+
+(6A, 0Q) 12 + ([, 0Q] + [69, Qa], 6Q) 2.
We perform now estimates for each term on the right-hand side. First we remark that
(A0Q, v1 - VQ) 2 = (6Qag, jj» (v1)i6Qap,i) 12
= —(0Qap, j, (v1)i,j0Qap,i) 12 —(0Qags, 5, (v1)i6Qap,ij) L2, (8.49)
=0

where in the second inequality we have integrated by part. Then we obtain

(86Q, v1 - V8Q) 13 S IV8QN 12 10Q 2 IV erlza= S V0l (IV6QIE: + 19Q13: ).
Similarly, we can proceed integrating by part also for the second term, namely

(A6Q, 6v-VQ2) 12 = (6Qag,jj, 6vVi - (Q2)ap,i) 12
= —(0Qap.,j, 0Vij - (Q2)ap, i) 12 —(0Qas.j, 0Vi - (Q2)ap,ij) L2

-~

A B

Fist, we control A by a classical estimate:
ASVoQ L2 Vvl 2 IVQ2llre S IVQ2lH:IVOQI7: + cp, Vo7,

The term B requires a deepest analysis. First, we define the parameter ¢ in (0, 1/2] as the minimum
between 1/2 and s — d/2. Thus, since AQs belongs to L2(R., H*~!(R%)), then it belongs also to
L2(R,, HO*4/271(R%)). Then we will make use of the following Sobolev embeddings:

HY(RY) < HOT2-LRY) o 759 (RY),
S (8.50)
H(RY 5 L() 0 LARY) < L7 ().

Then B is bounded by

BS HWQIILgII%H

2y 18Q2l 1, S I90QUL2 150 [AQ2l o4

S HWQIILg||5vHL2HAQ2HHs—1 + H<5Q||LgHWvHLzI!AQzIIHs—1
S IVQalls (1V6QIT: + 10v]172) + ca,lI Vol 2 + el VOQI 2.

Summarizing, the second term is estimated as follows:
(A6Q, 6v-VQ2) 12 S IIVQall7r (IVOQII72 + IVQII72 + [50]72) + ca,lIVovli 2 + ¢l VIQ L2

Now, let us observe that (u; - V60, 5@) rz = 0 because of the free divergence condition of ;.
Moreover, always recalling the embeddings (8.50)), we have

it V@2l 1y 19Ql S 1500 19 el 19Q1

S IleHHsH5vHL2H5QHLg + 11 Q2ll =l V60| £2116@Q 2

(v~ VQ2, 6Q) 12 < 180
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S Q217 (16vlZ2 + 16Q172) + cs, [V 8vllz2 + €, 16Q 2.

The remaining terms can easily controlled by the Holder inequality and the Sobolev embedding
H*(R?%) — L>®(R%). First the terms related to the parameter a fulfil

(0Q,v1-VoQ) 1z S 16Q Lallvillz=[VQll 2 < ol (19QI72 + IV6QI172),
(6Q,0v-VQa) 12 S [16QlI2[160]| 22 [VQallLee S IV Q2llas (10Q172 + [16v]172),
the term related to b can be bounded by
(Q10Q +0QQ2, 6Q) 2 < [1(Q1, Q)L 10Q1 22 110Q] 2
<@, Q)3 15Q12: + ¢ 15QI2

and finally the one multiplied by c is estimated by

(6Qtr{Q7} + Qatr{6QQ2} + Qatr{Q26Q}, 6Q) 12 < (@1, Q2)7r= (19QI72 + 19QI72)-
It remains to control the terms concerning p; and po which can be handled through
(64, 6Q) 12 S [16AlIL2110Q1 2 < 16QI72 + 5,1 V0] 2
and
([, 0Q) + (69, Q2], 6Q) 12 < (IVorllhs + 11Qu1l17+) (16Q172116Q117:) +
+em H(SQ”%% + Cﬁ4||V5UH%§'
Summarizing all the previous estimates together with equality (8.48)), we obtain

d

S (216012, + IVOQIZ, + S16QI2, ] + mlloQIE, < (14 1Qale + Vol +

HIVQallEr + @il ) (1603, + 10Q13; + 16QI3, +1IVaQI3; )+ (&5
e, HV&JHQLEc + ¢ ||5QHL§

Now let us take in consideration the difference between the momentum equations of the two solu-
tions, namely

900 + vy - Vv + dv - Vg — 54A5 {anQVQ1+VQ2@v5Q}
—AV - {tr{5QA1}Q1 + tr{Q20A}Q1 + tT{Q2A2}5Q} + 65V - {AléQ + 6AQ2}+ 552)
+65V - {3QA1 + QA } + E2v - {60 — (00, Q] - (2, 0Q) }+

+V - {[5Q, <Q1—[91,Q1]>J+[@2, (6Q — [62, Q1] - %, 5Q))]}.

We proceed as before, multiplying both the left and right-hand sides by du and integrating every-
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thing over R, obtaining
1d
et V2
2dt =
+61 <tr{(5QA1}Q1 + tr{QQAQ}(SQ, V6U>L§ + 61 <tI‘{Q25A}Q1, V5U>L3—
—B5(A10Q + 6 AQ2, V(51)>L926 — B6(0QA1 + Q20A, V(51)>L926 — %@Q, V5U>L%+ (8.53)
)12

+E2(00, Qu] + [, 0Q), Vav)1z - ([5Q. Qul, V6v) 12 — p([Qa, 0Q), Vv)1z—
—1{[Q2, [0, Q1] + [Qa2, 0Q]], Vv) 2 — (v1 - Vv, dv) 12 — (dv - Vvg, dv) 2,

0] + 2L IVau], = (V0Q © VQ1 +VQs © VoQ. Vv) -+

then we proceed estimating each term on the right-hand side. At first, we have

(V6Q © VQ1 + VQ2 © V0Q, Vouyry S (IVQillez + IVQallz ) IV9QlI 2 V6] 2
S (IVQulE- + 1V Qal: ) IV8QIZ, + ca, V]2,
while the terms concerning (31 are handled by

(tr{5QA} Q1 + tr{Q242}6Q, Vbv) 13 <
S (IVut = 1@z + [ Vuzllzl1Qallzz= ) 19Q1 2 Vo0l 2

S (19013 1@+ 19v2lel1Q2l%: ) 19@Q1 22 + e, Vovll3s
and

(tr{Q204}Q1, Vov) 12 < |Q1llLee | Q2llze Vol T2 S Q1| Q2] = Vo0l

Now, we bound the terms related to 85 and (g as follows:

(A16Q + 6AQ2, Vv 12 S [[Vuill o< [[6Q11 2 V0|2 + Q2] oo [ V60|72
S IVorll7:10Q1172 + (cas + 1Qallar) V60172,

(0QAL + Q204, Vov) 12 < 16Q|| 12 [V || 15 V0| 2 + Q2 e V0|7
S IVoll7: 16Q1172 + (cos + 1Q2ll ) [V 60|72

Now, keep proceeding on, we bound the terms on u by (6Q, Vov)rz < ||5QHL% + ¢5,||Vévl|32,

([0, Q1] + [Q2, 6Q), Vov) 12 S [|QullLge [V Z2 + | Vo2l 6@ 22 [ V0| 2
S IVoallf18QU 72 + (co0 + 1Qullzse) V60125,
while the terms on p; can be handled by

(6@, @1, Vov) 12 S 110Q2 Q1N 1V ovllze S Q11 16QNT + sl VOvIIZ,
([Q2, 6Q), Vou) 1z S 1Qallrge16Q 22 IVovlzs S 11QallF 19QIIT, + ca, Vvl
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and also

<[Q27 [5Q> Ql] + [927 5QH7 VCSU)L%
S ||Q2’|Lg°||@1||L;°HV&)H%g + [|Q2ll e [ V2| Lo |0Q| 2 | VOV | 2

S 1Qa I 1970 5 1Q1% 5 + (e + Qa1 Qu ) 6113
Finally, let us remark that (v1 - Vdv, dv)2 = 0 and
(00 - Tuz, u)zz S IV0alize 0135 S Vw03

Thus, summarizing all the previous estimates and taking in consideration (8.52)), we get

1d
2dt
HIVQall + IV 03 1@ + 190 e @ e + Q13- H 1512, + IV5QI2,

+16QI3 + 15QI3: } + {es. + 1Qallms I Qullms + I1@ulla +11Qalls JIVawl

Ba
H(S’UH%g + 3HV5UH%3 S {1 + [ Vool s + (VoL + (Vo7 + IVQ1|Frs

Now, defining the functions ¥ = ¥(¢) and f = f(t) by
1 I a
W= llovllZ; + S110QIT; + 1V0QIT; + 5 19QIZ
fe= {1 HQulF IV V2l s + (IV01l s + V02l + IVQ1 s

+IVQ2l s + Vorll3s 1Q1 s + [ Voallfre 1Q2 ) s + ”Ql||%15}’
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(8.54)

and observing that f € L} (R,), we finally take the sum between (8.51)) and (8.54)), achieving

loc

d . B .
TV ml8Qlz + Vo0l 2 £ FU+cunll6Ql 2+

dt
o+ {es + 1Qalms 1Qullms + 1@ulla +11Qell JIVaLlZ:.

Hence, assuming cg,, ¢,, and the initial data small enough, we can absorb by the left-hand side
the terms related to [|6Q| 2 and [[Vdv|[z2 on the right-hand side, so that the following inequality

is fulfilled: q
— U < P,

Then, since ¥(0) = 0, the Gronwall’s inequality yields ¥ to be constantly null, especially
51}:1}1—1}2:0 and 5Q:Q1—Q2:0.

This concludes the proof of Theorem [8.1.2

(8.55)
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Chapter 9

A well-posedness result

In this chapter we present the results of the following manuscript:

F. De Anna (accepted), Global weak solutions for Boussinesq system with temperature dependent
viscosity and bounded temperature, Adv Differential Equ., (2016)

9.1 Introduction

The general Boussinesq system turns out from a first approximation of a coupling system related
to the Navier-Stokes and the thermodynamic equations. In such approximation, if we consider the
structural coefficients to be constant, as for example the viscosity, we obtain a system between
two parabolic equations with linear second order operators. Nevertheless, several fluids cannot be
modelled in this way, for instance if we want to study the plasma evolution. Hence it should be
necessary to consider a class of quasilinear parabolic systems coming from the general Boussinesq
one. This work is devoted to the global existence of solutions for the Cauchy problem related to
one of these models, namely:

00 + div (fu) =0 R, x R%,

Ou+u-Vu —div(v(0)D(u)) + VII=0 Ry x RY (9.1)
divu =0 Ry x R, |
(u, ) =0 = (@, 0) R,

where D(u) is defined by Vu + *Vu. Here 6, u = (u!,...,u?) and II stand for the temperature,
velocity field and pressure of the fluid respectively, depending on the time variable ¢ € Ry =
[0, +00) and on the space variables z € RY. We denote by u" := (u!,...,u?"!) the horizontal
coordinates of the velocity field, while u? is the vertical coordinate. Furthermore v/(-) stands for
the viscosity coefficient, which is a smooth positive function on R;. Such system is useful as a
model to describe many geophysical phenomena, like, for example, a composed obtained by mixing
several incompressible immiscible fluids. Indeed the temperature fulfills a transport equation, while
the velocity flow verifies a Navier-Stokes type equation which describes the fluids evolution. We
consider here the case where the viscosity depends on the temperature, which allows to characterize

the immiscibility hypotheses.
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Some Developments in the Boussinesq System

The general Boussinesq system, derived in [91], assumes the following form:

00 + div (Bu) — Ap() + |D|*0 = 0 R, x R?,

O+ u - Vu — div (v(0)D(u)) + VII = F(0) R4 x RY 9.2)
divu=0 R, x R, '
(u, 0)=o = (a, 0) RY,

An exhaustive mathematical justification of such system as a model of stratified fluids (as atmo-
sphere or oceans) is given by Danchin and He in [25]. We present here a short (and of course
incomplete) overview concerning some well-posedness results.
Provided by some technical hypotheses, in [36] Diaz and Galiano established the global existence of
weak solution for system when s = 0. Moreover they achieved the uniqueness of such solutions
in a two dimensional domain, assuming the viscosity v to be constant.
In [56] Hmidi and Keraani study system in a two dimensional setting, when the parameter s
is null, p(f) = 0 and F(#) stands for a Buoyancy force, more precisely they considered F'(6) = fea,
with ey the classical element of the canonical basis of R%2. They proved the global existence of
weak solutions when both the initial data belong to L?(R?). Furthermore, they established the
uniqueness of such solutions under an extra regularity on the initial data, namely H"(R?), for
r > 0.
In [112] Wang and Zhang considered system (9.2]) with Buoyancy force and constant viscosity, when
the temperature 0 satisfies

0¢0 + div (fu) — div(kV0) = 0,

where k stands for the thermal diffusivity, which also depends on the temperature. They proved
existence and uniqueness of global solutions when the initial data belong to H"(R?), for r > 0.

In [17] Chae considered system in two dimension, with constant viscosity and when () is
equal to @ or 0. In this case the author established the existence of smooth solutions.

System has also given interest in the Euler equation framework, when the viscosity v is
supposed to be null. In this direction, Hmidi, Keerani and Rousset [57] developed the existence
and uniqueness of a solutions when s = 1, provided that the initial velocity belongs to 3;0,1 NWLP

while the initial temperature lives in ngl N L.

In [2] Abidi and Hmidi performed an existence and uniqueness result for system in two
dimension, when ¢ =0, s = 0 and the force F(0) = fes. Here, the initial velocity is supposed in
Lin Bo_ofl and the temperature belongs to 33,1'

In [29] Paicu and Danchin considered the case of constant viscosity. Given a force F(0) = fea,
imposing s = 2 and ¢ = 4, the authors performed a global existence result for system , on the
condition that the initial data are of Yudovich’s type, namely the initial temperature is in L2 me_, %,
the initial velocity is in L? and the initial vorticity 9@z — 2% is bounded and belongs to some
Lebesgue space L], with r > 2.

We mention that the case of a no-constant viscosity has also been treated in the study of the
inhomogeneous incompressible Navier-Stokes equation with variable viscosity

Osp + div (pu) =0 R, x R%,
3 (pu) + div{pu ® u} — div (n(p)D(u)) + VIL = f Ry x RY, 9.3)
divu =0 R, x RY, '

(u7 p)|t:0 = (ﬂ, ﬁ) Rd‘
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In [3] Abidi and Paicu analysed the global well-posedness of in certain critical Besov spaces
provided that the initial velocity is small enough and the initial density is strictly close to a positive
constant.

In [4] Abidi and Zhang established the existence and uniqueness of global solutions for system ,
on the condition that the initial velocity belongs to H~2° N H', for some & € (0,1/2), the initial
density lives in L2 N Wa", with r € (2,2/(1 — 28)), and p — 1 belongs to L2.

We finally mention that in [59] Huang and Paicu investigated the time decay behavior of weak
solutions for in a two dimensional setting.

In this chapter we are going to study the global existence of solutions for the system assuming
standard and natural conditions on the initial data: the initial temperature is only assumed to be
bounded and the initial velocity field is supposed to belong to certain critical homogeneous Besov
space. More precisely we consider

_ L4
e Ly and we Bf, with re(l,oo) and pe (1,d). (9.4)

Remark 9.1.1. As the classical Navier-Stokes equation, system (9.1)) has also a scaling property,
more precisely if (0,u,1Il) is a solution then, for all A > 0,

(ON2t, N z), Au(NPt, A x), A2 TI(\*t, A )

is also solution of (9.1), with initial data (§(Az),\u(Ax)). Hence it is natural to consider the
initial data in a Banach space with a norm which is invariant under the previous scaling, as for
instance LY x Bg/f ~'. Let us remark that this initial data type allows 0 to include discontinuities
along an interface, an important physical case as a model that describes a mizture of fluids with

different temperatures.

From here on we suppose the viscosity v to be a bounded smooth function, close enough to a
positive constant p, which we assume to be 1 for the sake of simplicity. Then, we assume the
following small condition for the initial data to be fulfilled:

ni= (v = oo + @ _ioa) exp {ela®l™ 4 } < co. (9.5)
B p B P

b, D,T

where ¢g and ¢, are two suitable positive constants. This type of initial condition is not new
in literature, for instance we cite [60], where Huang, Paicu and Zhang studied an incompressible
inhomogeneous fluid in the whole space with viscosity dependent on the density, and moreover [30],
where Danchin and Zhang examined the same fluid typology, in the half-space setting.

Before enunciating our main results, let us recall the definition of weak solution for system ((9.1)):
Definition 9.1.2. We call (6, u, IT) a global weak solution of (9.1) if

(i) for any test function p € D(Ry x RY), the following identities are well-defined and fulfilled:

/ / {0 (Ovp +u-Vo)}Ht, z)dxdt + / 0(x)p(0,z)dx = 0,
Ry JRE

R4

/]R+ /Rd{“ -Vl (t, z)dzdt =0,
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(i3) for any vector valued function ® = (®q,...,8,) € D(R4 x RY? the following equality is
well-defined and satisfied:

/ / {u-0y® — (u-Vu) - ®—v(0)D(u) - VO +11div @} (¢, z)dx dt—|—/ u(z)-®(0,z)dz =0,
Ry JRR4 Rd

The smooth case

Some regularizing effects for the heat kernel (Theorem [9.2.2)), and a useful characterization of the
homogeneous Besov Spaces (Theorem and Corollary [9.2.7.1) play a key role in our proof.
Indeed, we can reformulate the momentum equation of (9.1 in the following integral form:

t t

u(t) = i+ / =™ — . Vu+ VII}(s)ds + / dive 2L ((v(0) — 1) D(u) }(s)ds. (9.6)
0 0

Thus, it is reasonable to assume the velocity u having the same regularity of the convolution

between the heat kernel and the initial datum «. The Maximal Regularity Theorem suggests us to

look for a solution in a L{L% functional framework. Now, in the simpler case where u just solves
5d/q—1

B¢
q?’r

the heat equation with initial datum @, having Vu in some L} L% is equivalent to u € on the

condition N/q — 1 =1 —2/7. From the immersion B%p_l — Bj/fq_l, for every ¢ > p and 7 > r,
we deduce that this strategy requires p < dr/(2r —1). Then, according to the above heuristics, our
first result reads as follows:

Theorem 9.1.3. Letr € (1,00) andp € (1,dr/(2r—1)). Suppose that the initial data (0, @) belongs
to LY x Bgy/rp 1 There exist two positive constants ¢y, ¢, such that, if the smallness condition (9.5))
is fulfilled, then there exists a global weak solution (0, u, IT) of (9.1)), in the sense of deﬁm’tz’on
such that
dr_ _dr_ _dr dr

we L¥Ly", VueLZLZ'nLIL2Y and e LjLZY.
Furthermore, the following inequalities are satisfied:

IVu"| e VU "] a < C,

L?TL3T71 L{Lf('r—l) LfTL£71

IVud|  a + || VU a4 [ud| dr <CQH’LLdH a4, +Cs,
Loyt rrr2= Lt

p'r
1T ey S O 101, < 110 e

t

for some positive constants Cy, Cy, Cs and Cy.

The general case

As we have already pointed out, the choice of a LTL functional setting requires the condition
p < dr/(2r —1). The remaining case dr/(2r — 1) < p < d can be handled by the addiction of a
weight in time. Indeed, in the simpler case where u just solves the heat equation with initial datum

i, having v in some Bpﬁ?’ for some p3 € (dr/(r—1),0) is equivalent to t1/20=d/ps)=1/T)q € [TLF?.

In the same line having V in a suitable Besov space Bp2/ ];2 is equivalent to have t1/2(2=d/ps)=1/7)y,

in LY LY. Hence, reformulating the smallness condition (9.5]) by

= (= tloo + " __vg) exp{erlal g } < co, (9.7)

p,r pr
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with similar heuristics proposed in the first case, our second results reads as follows:

Theorem 9.1.4. Let p, r be two real numbers in (2d/3, d) and (1,00) respectively, such that

2d d 1 1 1 1,d
< —, =-<z(=-1), =<<z--=. (9.8)
3p 6p 2 2r r 3'p r 3 p

Let us define py := 3pd/(2p + d) and p3 := 3p*/2 = 3pd/(2d — 2p), so that 1/p =1/ps + 1/p3 and

d 1 1 d 1 1 d

1

There exist two positive constants co and ¢, such that, if the smallness condition (9.7) is fulfilled,
then there exists a global weak solution (0,u,II) of (9.1), in the sense of definition[9.1.9 such that

Ty e LILPs, 2w e LPLP tPVu e LILP? t°Il e LYLE .
Furthermore, the following inequalities are satisfied:
h h h h
[t*Vu HLgrLg* + HtﬂVu HL%TL?;2 + [t u HL%TLQC" + ([t u ”LgOL’;3 < Cin,

p,T

L2"LE

[Ty e < Camy [10llge, < 110]] 250

for some positive constants Cy, Co and Cs.

Remark 9.1.5. We remark that the conditions on p and r in Theorem [9.1.4) are not restrictive.
Indeed, we can always embed Bg,/rp_l into B(%q_l with ¢ > p which satisfies q € (2d/3,d) (see
Theorem |9.2.8). Moreover Bg,/rp_l is embedded in Bz,/,;p_l, with 7 > r, then there is no lost of
generality assuming the inequalities .

Let us briefly describe the organization of this chapter. In the second section we recall some
technical Lemmas concerning the regularizing effects for the heat kernel, as the Maximal regularity
Theorem, which will play an important role in the main proofs. We also mention some results
regarding the characterization of the homogeneous Besov Spaces. In the third section we prove
the existence of solutions for (9.1]), with stronger conditions on the initial data with respect to the
ones of Theorem In the fourth section we regularize our initial data and, using the results of
the third section together with a compactness argument, we conclude the proof of Theorem [9.1.3
In the fifth and sixth sections we perform the proof of Theorem proceeding with a similar
structure of the third and fourth sections.

Remark 9.1.6. In order to obtain the uniqueness about the solution of , the more suitable
strategy is to reformulate our system by Lagrangian coordinates, following for example [60], [30]
and [28]. The ezistence of such coordinates can be achieved supposing the velocity field with Lipschitz
space condition, more precisely claiming that u belongs to Llloc(RJ,_;Lipx), or equivalently Vu €
L (Ry; L), If we want to obtain this condition without controlling two derivatives of u (in the

loc
same line of the existence part) and then without using Sobolev embedding, we need to bound terms

like
/ t A=A ((1(0) — 1) Vu ) (s)ds (9.10)
0

in some L*(0,T; LS°) space, with s > 1. Unfortunately this is not allowed by the Mazimal Regularity
Theorem [9.2.2 for the heat kernel, because of the critical exponents of this spaces. Then, we need
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to impose an extra regularity for the initial temperature, as VO € Li}, for an opportune l1, in order
to obtain VO in L} (Ry; L) and then to split (9.10)) into

loc

¢ ¢
/ div e(t_s)A{l/(H)VQ - Vu}(s)ds + / div e(t_s)A{(u(Q) —1)V?u}(s)ds. (9.11)
0 0

Hence we need to control the norm of V2u in some L™ (0,T;L2), with 1 > 1 and also ly > d
in order to fulfill the Morrey Theorem’s hypotheses. It is mecessary to do that starting from the
approrimate systems of the third section, however the only way to control two derivatives of the
approximate solutions with some inequalities independent by the indexesn € N ande > 0 (present in
the extra term of the perturbed transport equation) is to impose VO € L' with 1y > d. We conjecture
that this is mot the optimal condition for the initial data in order to obtain the uniqueness, indeed,
inspired by [3], we claim that, supposing VO & Lg and u € B;i+%, it is possible to prove the
uniqueness with the velocity field into the space

~1+4 144

"NL!B

LB 1

p,1

However this needs to change the structure of the existence part, more precisely to change the
functional space where we are looking for a solution. Since in our Theorem we suppose only the
initial temperature to be bounded, then we have decided to devote this paper only to the existence
part of a global weak solution for system .

9.2 Preliminaries

The purpose of this section is to present some lemmas concerning the regularizing effects for the
heat kernel, which will be useful for the next sections. At first step let us recall the well-known
Hardy-Littlewood-Sobolev inequality, whose proof is available in 7], Theorem 1.7.

Theorem 9.2.1 (Hardy-Littlewood-Sobolev inequality). Let f belongs to L%, with 1 < p < oo,
a €]0,d[ and suppose that r €]0,00[ satisfies 1/p + a/d =1+ 1/r. Then |- |~ * f belongs to L,
and there exists a positive constant C' such that ||| - | * fll . < C||f|lze-

From this Theorem we can infer the following corollary.

Corollary 9.2.1.1. Let f belongs to L%, with 1 < p < d and let (v/—A)~! be the Riesz potential,

defined by (V=DA)"1f(€) := FL(F(€)/I€]). Then (V=2A)"1f belongs to L) and there exists
a positive constant C' such that H(\/—A)*lfHLpd/(d_p) <O|fllge-

Proof. From the equality (vV—=A)"1f(z) = ¢(| - |7% x f)(x), for almost every z € R? and for
an appropriate constant ¢, the theorem is a direct consequence of Theorem [9.2.1] considering
a=d-—1. O

One of the key ingredients used in the proof of Theorem (9.1.3)) is the maximal regularity Theorem
for the heat kernel. We recall here the statement (see [66], theorem 7.3).

Theorem 9.2.2 (Maximal LP(L?) regularity for the heat kernel). Let T €]0, 0], 1 < p,q < 0o and
f e LP,T;LL). Let the operator A be defined by

t
Af(t,) = /0 Aelt=92 £ (5 ) ds.
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Then A is a bounded operator from LP(0,T;L%) to LP(0,T; LE).

If instead of A on the definition of the operator A we consider V (the operator B of Lemmas
and ) or even without derivatives (the operator C' of Lemma, then we can obtain similar
results with respect to the maximal regularity Theorem, using a direct computation. We present
here the proofs. At first step let us recall two useful identities:

Remark 9.2.3. Let us denote by K the heat kernel, defined by K(t,z) = e~ 1#I*/(4) /(2x)3/2 then
K (¢, )l pe = IIK (1, -)HLg/td/(Qq/), for all1 < q < co. Moreover considering the gradient of the heat
kernel, Q(t,z) :== VK (t,z) = —xK(t,v)/(2t), we have |[Q(t,-)||Ls = [|Q(, -)\|Lg/|t|d/(2q/)+1/2.

Let us denote by R :='(Ry,..., Rq), where R; is the Riesz transform over R?, defined by

PR
Rif =7 <2£\>

we recall that R; is a bounded operator from Lf to itself, for every 1 < g < oo (for more details
we refer to [66]).

Lemma 9.2.4. Let T €]0,00] and f € L"(0,T;L%), with 1 < p < d and 1 < r < co. Let the
operator B be defined by
/ Ve (t—s Af )

Then B is a bounded operator from L"(0,T; L%) to L"(0,T; Ld ”)

Proof. From corollary [9.2.1.1) we have that, for almost every s € (0,7,

(V=R) " f(s) € LE 7.

Then, reformulating B by

Bf(t,:) = — /Ot AeTIAR(V=A) " f(s,)ds,

dp
we deduce, by theorem [9.2.2, that Bf € L"(0,T; Ly ") and

1Bl o < ClHR fH dap < C2||f||Lr(0,T;Lg)>
Lr(0,13L57) Lr(0,T5Lg ")
for some positive constants C; and Cs. ]

Lemma 9.2.5. Let T €]0,00] and f € L"(0,T;L%), with 1 < r < oo and p € [1,-4]. Let

P r—1

the operator B be defined as in Lemma[9.2.] Then, we have that B is a bounded operator from
L"(0,T; L) with values to L*"(0,T; L), where 1/q :=1/p — (r — 1)/(dr).

Proof. Observe that, for every t € Ry,

t t t
| [ 9et2p(s)as g < [ 1005w ) Ligds < [ 190 = 5] 19 szt
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with 1/¢+1/p = 1/q+ 1 or equivalently ¢’ = dr/(r — 1). Recalling Remark we obtain

| f(s HL | f(s) e
H/ V@t SAf d HLq SC ‘t—s|27“2r1 C/ ‘t—8|22r1 1(0,T)(3>d3'
Since by Theorem [9.2.1
_2r—1
1772 = If ) Lomy (e € L
then there exists C' > 0 such that

2r—

1B llerozizey < ClL - 17750 * £ ()L Miezllor < CUF oz

Lemma 9.2.6. Let T €]0,00], r € (1,00) and p € (1, 55 ). Let the operator C be defined by

t
Cr(t) = [ I8 (s, s,
0
Then, C is a bounded operator from L™(0,T; L) to L*"(0,T; L), where 1/q :=1/p — (2r — 1)/dr.
Proof. For every t € Ry, notice that
t A t
I [ et poas g < [ s 500 g < [ 1= 951706 g,

with 1/¢+1/p = 1/q+ 1, that is ¢ = dr/(2r — 1). Recalling Remark we get

b s b Nl I f(s) Il
H/o et )Af(s)dSHLg S/o |2TL1ds§/R|2TL11(07T)(s)ds.

t—s| 2 t—s| 2

Since by Theorem [9.2.1
_2r—1 -
1772 = 1 F ) Loy ()llze € L7,
then there exists C' > 0 such that
_2r—1 ~
1Cf Nerorizay < || 11777 = Hf(')l(o,T)(')HL’;HLf* < C|[ flro,r;Le)-
O

For the definition and the main properties of homogeneous Besov Spaces we refer to [7]. However
let us briefly recall two results which characterize these spaces in relation to the heat kernel.

Theorem 9.2.7 (Characterizatiox} of Homogeneous Besov Spaces). Let s be a negative real number
and (p,r) € [1,00]%. u belongs to B;"T(Rd) if and only if e"®u belongs to LY for almost everyt € R,
and

S dt
£78 [|etul| € L7 (Rus ).

Moreover, there exists a positive constant C such that

1 N
CHUHB;T(RCZ)SHHt fett| SOl -
el L™ (Ry5 )
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Then, imposing the index s equal to —%, the following Corollary is satisfied:

._2
Corollary 9.2.7.1. Letp € [1,00] andr € [1,00). u belongs to By, (R?) if and only if e!u € L} L%.
Moreover, there exists a positive constant C such that

< Cfull

L .
By, 7" (RY)

1 tA
ol HUHB;S%(W) <[l ull 1y
Finally, let us state an embedding theorem for homogeneous Besov spaces, whose proof can be
found in [7] Proposition 2.20.

Theorem 9.2.8. Let 1 < p; < py < oo and 1l <r; < ry < oo. Then for any real number s, the

. Ls—d( 2 —L
space BS . (RY) is continuously embedded in B;MQ(“ p2)(]Rd).

9.3 Existence of solutions for smooth initial data

In this section, by Proposition and Theorem [9.3.3 we prove the existence of weak solutions
for system , assuming a tiny extra regularity for the initial data. The proofs proceed in the
same line of [30] and [26], however the novelty is to consider also an extra-term —uA, with p > 0,
in the transport equation. This perturbation is motivated by the necessity to control the norm
of the gradient of the approximate temperature, even without a space-Lipschitz condition on the
approximate velocity field. Obviously this control depends on u. Hence we consider the following

approximation of (9.1)).

00 + div (fu) — pAu =0 R, x R,

O+ - Vu —div (v(0)D(u)) + VII =0 Ry x R (9.12)
divu =0 Ry x RY, '
(u, 0)1=0 = (a, 0) R?,

Remark 9.3.1. Since divu = 0, we observe that the momentum equation of system (9.12)) can be
reformulated as follows

pul — Au + VI = —ud 9qul — " - Vul + div{(v() — 1)D(v)"} R4 x RY,
Oud — Aud + 911 = —Vhud - ul + wddiviau® + div{(v() — 1)D(u)?} Ry x RY,

where D(u)h := Vul + V' and D(u)? := 0% + Vul.
First, let us prove the existence of weak solutions for system ((9.12)).

Proposition 9.3.2. Let 1 < r < oo and p € (1,dr/(2r — 1)). Suppose that 6 belongs to L° and
u belongs to Bg,/rp_l N B%«p_lﬁ with e < min{1/(2r),1 —1/r,2(d/p — 2+ 1/r)}. If the smallness
condition (9.5)) holds, then there exists a global weak solution (0,u,II) of (9.12) such that

dr dr dr dr

we L'Ly "', Vue LI NLiL;"", and TeLiL;" ",
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Furthermore, the following inequalities are satisfied:

”vuh” dr + HvuhH dr + ”uhH dr < Cln,
Ly LZ"L Lz

L20=0 =t Lyt
IVulll w Ve ae el a < Coll@?| 4, +Cs (9.13)
L:LIQ(rfl) L%r[]%ﬁ L%’I‘LF 1?,7‘ .

LZQ(T_l)

| e < Camy [10lnge, < (10 Lge-
¢
for some suitable positive constants C1, Co, C5 and Cyq which are independent by p and €.

Proof. First, recalling remark we linearise system (9.12)) as follows: we impose (6o, ug, Ily) =
(0,0,0) and we consider

8t0n+1 — MA9n+1 + diV(9n+]_Un) =0 R+ X Rd, (9 14)
0n|t=0 = é Rda '
8tun+1 - Aun+1 + VHn+1 = gn+1 + diV{(V(@n_H) — 1)D(un)} R+ X Rd,
div, =0 R, x R?, (9.15)
Upt1)t=0 = U R%,
for all n € N, where ¢g,,+1 is a d-dimensional vector field, defined by
d h h h h
— [ unOatyyy + Uy Vuy > —. <9n+1> 9.16
it (vhu% ‘ UZ+1 - ui‘idivhuzﬂ . 924-1 . (9.16)

Moreover we denote by D(u,)" := Vul +*V"u,, and by D(u,)? := 04u, + Vul. For all n € N, the
global existence of a weak solution (6,41, Uup+1,p4+1) of and is proved by induction,
using Theorem m Thanks to this result, we have that u,4+1 belongs to L%’”Lgr/ (r_l), V41
belongs to L LYV A L7 La /%) 16,1 to L3S, and TL,1q to LjLa/®™2),

STEP 1: ESTIMATES NOT DEPENDENT ON & AND p. First, the Maximal Principle for parabolic
equation implies, |[0p[[Lg < [|0][ g, for any positive integer n. Now, we want to prove that

h
2 + Hun”LfTL;d—Tl < C1n,

V! . Vaul
| un||L§L12<5771) + || unHL?"L

(9.17)

IVugll  _ae +IVugll e gl e < Cofla?] g, +C,
TLQ(T—I) L?T‘L Lfr BP

2r—1 L;71

tHx x p,T

for any n € N and for some suitable positive constants C7, Cy and Cs. First we will show by
induction that, if 1 is small enough then

< C’lﬁv

3

h h

IVunll ,, gter +lumll oo
£ he £ b o ) (9.18)

ar < Col|u|]  a_; + Cs,

. B,

d d
IV, oty + I,

for all n € N and for some appropriate positive constant Cy, Cy, C3, where 7 < 7 is defined by

_ ) Cry
= (v = Ul + ||uh||371+%)exp{§r||ud| ) (9.19)

d
=14+ 2
P
b7 Bp,r
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Let A be a positive real number, and let w11\, Vu,4qx and 11,1 \ be defined by

(un-l-l,)\a Vun-‘y—l,/\7 Hn+1,)\)(t) = hn,)\(07t)(un+1v VunJrla HnJrl)(t)v (920)

where, for all 0 < s < t < 00,
‘ d 2 ¢ d 2
ha(s,1) = exp { —A/ (P g dr —)\/ [V (DI dr ). (9.21)
s L;~ s L;"~

Writing uy,41 in mild formulation, we get

t t
Uny1(t) = ePu+ /0 e=92Pg, 1 (s)ds + /O Ve 2R . R {(v(Ons1) — 1)D(un)}(s)ds +

ur,
Fly (1) F2,,()
t
+ / div e 92 (1(0,11) — 1) D(uy)}(s)ds,
0
FS+1(t)

(9.22)
where R := V/v/—A is the Riesz transform (R- := div/y/—A) and P := I + RR- is the Leray
projection operator, which are bounded operators from L% to L% for any q € (1,00). Thus

t
Un 17 (1) = B a (0, t)ur(t) + / B (5, )2 Pg,, 11 5 (s)ds + B A (0, ) Fa(t)
e — 0 e Y

ur,A(?) ) F2 @

n+1,A
+ hy (0, ) F3(1),
—_——

3
Fn+1 A (t)

(9.23)

dr/(2r—1)

where gn41.1(t) = gn+1(t)hnr(0,t). First, we want to estimate Vu/ ni1 i L Ly and u”

in L2"Ldr/ =D We begin observing that, by Corollary [9.2.7.1{ and Theorem

h h h —h
oyt IV e S e IV e SN g (04)

t z t x t z t T b,T

n+1,\

for a suitable positive constant C. Furhtermore, by the definition of g,4+; and by Lemma

Lemma [9.7.2] Lemma [9.2.5] and Lemma [9.2.6] we obtain

1,h 1,h h
”Fn+1 Al L2 2 +Han+1 )\H 2;}7“1 < C{ - || Un”2 dr, | Vg g, . gl +
t Lz 4r Lt L - Lt Lz
L (9.25)
h h d |2
+ [lup, ”LfTL;“dTTl | Vg, ||L%TL3% + /\rlr | Vg, || TLQdT | un+1 N 2TL5TT1 }-

Furthermore, by Corollary [9.2.1.1)and Theorem [9.2.2] we also obtain

IFia+ Fofiall e :H/O AIBPR - (V=A) T (1(0n41) = DD (un)}(s)ds || e

27‘L;71 L27‘LT‘*1
< O (V=2)" (v (lns1) — 1)D(“")HL2TL ar. < Cllv =1l Vun, H 2

t

(9.26)
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Similarly, recalling Theorem we deduce that

h h s
IVE2E + VES L e —H/"Aef BRPR- {((011) — DD(u)})ds | ae
L2 L27L2
<) = DDE e < Ol = Ul Tl
L2732
(9.27)

Summarizing (9.24)), (9.25)), (9.26) and (9.27), we deduce that there exists a positive constant C
such that, for all n € N

h h
HVU"H’AHL%L;‘% + HU"H’AHL?LfTTl
1 1
<C{ a4, +—(||ud? . || Vu ar_+
fa™ |l i A%(Il nHLTLLIH n+1)\H L2
P (9.28)
+ || Vg, ||? . lu r
IVL1E, e Nl )
h h
ST Y P PR TN L
Recalling the induction hypotheses (9.18]), we fix a positive A such that
1 /- Nz 1 _ _
C—(Colla®)l g +C5)" =5 (mamely Xi= (40" (Colla?]l 4, +Co™),  (9.29)
\ir By, ” 4 By

so that we can absorb all the terms on the right-hands side of (9.28)) with index n + 1 by the
left-hand side, obtaining

b7 + gl porp i <

< 20(||la" HBg_l + O + ||y — 1|52 (Crij + Co|a || -y +C3)),
p,T

7“

||VUZ+1,,\H
(9.30)

thanks to the induction hypotheses (9.18). Now we reformulate (9.30) without the index A on the
left-hand side:

h h h
IVl e+l o < 500 bna @07 (190l e+l )
= \1-d h
<ep (M Collal i+ 07 IVl Lo+l | ),
By, L¥L] L¥L;

thanks to the second inequality of ([9.18)). Hence, recalling (9.29)) and (9.30]), we obtain the following
inequality

h h 4r— 1 4r Ar ddr ~4r
r r <
HvunHHLngj + [ty Lo exp {2V 1(4C)" (O ||a ||BM + i) x
ch(uuhn 4 1+C +|\y—1||Loo(cm+02||ud|| a 1+03))

Assuming that ¢, of (9.5) fulfills ¢, > 1 and c¢,/4 > 24 ~1(4C)* C4", we get that the right-hand
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side of the previous inequality is bounded by

2C exp {2771 (4C)7C5" + H dl!;,,l}(llﬂhllB%_l +CHP + v = 1| Lg= (Crip + C2HﬂdHBg_1
p,T p,T p,T

+C3)) < 2Cexp {27 1(4C)" 05"} (14 (CF + C)ii + Co + Cs3)i,

where we have used ||v— 1||oo||ud|| i/p1 <|lv— 1Hooexp{\|ud||4 a/p- ./ (4r)}. Tmposing C big enough

and 7 small enough in order to have

exp {271 4C) " CFT 20(1 + Cy + C3) < % and exp {21 (40)"CE Y (Cy + 1)7 <

l\)\r—t

we finally obtain that the first equation of (9.18) is true for any n € N. Now we deal with the
second equation of (9.18)) and we still proceed by induction. Recalling (9.22)) and proceeding in a
similarly way as done in the previous estimates, the following inequality is satisfied:

d
IVl oty + il o
sc{uudu g ol e = el Vel e
p'r tz L?TLZT

for a suitable positive constant C. Hence, by the definition (9.16) of g,+1, we deduce that

d d d h
e s Ui P st . e
bl e IV e Hwnﬂnmz%

z t x

+||u—1uoo(||wnu Qgr1+||wn|| Lle)L

T

so that, thanks to the induction hypotheses and the previous estimates, we bound the right hand-
side by

(C+C1Coi + [V = UocCo) @], a_, + (C1C3 + CFij + ||v = |oo(Cr + C2))ij.

d_
;5’
Finally, imposing C' < C3 and 7 small enough in order to fulfill C' + (C’lég —|— Cg )n < Oy and
moreover (C1Cs + Cin + n(Cy + C2))n < Cj, then the second inequality of ( is satisfied for

any n € N. Now, let us prove by induction that there exist three positive Constants C’l, Cy and Cs,
such that

IVupall  ae <Cipand [[Vugoll e < Colladl] 4, +Cs, (9.31)
’I‘L2(T71) L%”LIQ(T*U B;?,r

tHx

for any positive integer n. Recalling the mild formulation of un41, Lemma [9.2.7.1] Corollary
and Theorem [9.2.8] it turns out that

vl . vELh . h . 9.32
| UL|‘L{L§(;1771)+|| o |l ILQ?(;QU C([la™| :T1+Ilgn+1ll LST%)’ (9.32)

while Theorem [9.2.2] implies

3,h
. <|lv-— .. .
IVER A VEL] e <= Ul Vunll e (9.33)
t x t T
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By the definition of g,+1 (9.16)), its L;"Lﬁr/ ®r=2)_norm is bounded by

dr HVU%H 9 dr

d h h h h
i 9l e+ IV, e Wi,

TL;_I rL%T—l 2 LQ?T‘—I L£_1 tTLQ?T‘i_I
Hence, thanks to the uniform estimates given by (9.18)), we obtain
. < (Ciii+ C3)Chip + C1Co||a? 7 < (Ciii +C3 +C3)C .
llgn+1||L{L£WL_Z < (G177 + C3)Chij + C1Co || ||B;,1.+%77 < (Cii + C5 + o) Cr, (9.34)
Furthermore, by the induction hypotheses (9.31)), we remark that
v = ool Funll e < b = TaoCrn + Coif + v = 1. (9.:35)
Ly~

Thus, summarizing (9.32)), (9.33)), (9.34) and (9.35]), we finally obtain

LY por

HVUZHHL ar SC{\|ahHB_1+g+(Olﬁ+03+02)éln+||V*1Hooém+éz77+||V*1||ooé3}7 (9.36)
t

hence, imposing C’l > C’(l +C1C5+ C1Cy + C’g + C’g) and assuming 7 small enough, we get that
the first inequality of (9.31]) is true for any positive integer n. Now, proceeding as to prove (9.36)),
we get,

Vsl e < C{llﬂdllB_1+g +(C17 + C3 + Co) Cin + ||V = L ooCrn + Cof + [V — 1| C3
LiL;"~ p,r
Hence, imposing Cy > C, C3 > 0 such that C{(C17 + Cs + Co)C1n + ||v — 1]|cC1n + Cofj} < C3
and assuming 7 small enough, we finally establish that also the second inequality of (9.31)) is true
for any n € N.

Now, denoting C; = Cy + C’l, Cy = Cy + C’g, C3 == Cs + C’g and summarizing (9.18]) and
(19.31)), we finally obtain (9.17). To conclude this first step we observe that I, ;; is determined by

i1 = —(~A) 2R goi1 — R- R {(v(0ps1) — 1)V}, (9.37)

so that, thanks to Corollary (9.2.1.1| and (9.34)), we deduce that

Mniall | ooy < Clllgniall e+ Iy = UiVl one ) < Can, (9.38)
LT‘

’{LQ(T—I) tLgr L{L,f(r_l)

for any n € N and for a suitable positive constant Cjy.

STEP 2: e-DEPENDENT ESTIMATES. As second step, we are going to establish some e-dependent
estimates which are useful for the third step, where we will prove that (6™, v", II") is a Cauchy
sequence in a suitable space. Defining 7 := 2r/(2 — er) > r, then we still have p < dr/(2F — 1) =
2dr/((4 + ¢)r — 2), since ¢ is bounded by 2(d/p — 2 + 1/r). Since B%np_l — B;l/fp_l, then there
exists a positive constant C' such that

A= (I = oo+ 8" _a ) exp {erlal ¥y, } < On.
DT P,
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Hence, arguing exactly as for proving (9.17)) with 7 instead of r, we get also

i o i (9.39)
IVudll e A lulll e < Collu?| 4, + Cs.
L2 L?L B

h h _
; ;<
IVl e i, < Co

T

2r—1 r—1 4
T T— P
L; x D,

First, we want to show by induction that there exists a positive constant C5 such that

[unll A+ [V e < Cslal |
L?fL;;(l—s)—l LQfL:gQ—s)r—l B

e (940)

p,T

Let us remark that these norms are well defined, since 7(1—¢)—1 > 0 (frome < 1—1/r < 1-1/7).
Recalling the mild formulation of w1 (9.22), Corollary [9.2.7.1) and Theorem yield

Jurll __ar 4 [[Vur ar__ < Clall
LfFL;(17€)71 L?FL:£27E)T71 B

%714»57
p.7

for a suitable positive constant C. Moreover, thanks to Lemma [9.2.5/ and Lemma [9.2.6] we get

F! . VF! . <C ..
| "H"Lg@;“fg)*l +IVE Al . fjﬁ < ||gn+1||Ler<ng)rM

From the definition of g,,41 (9.16]) and the estimates (9.39)), we get

7 < n d T . L
lgnsal] e Chiy( ||un||L$FL;(155>71 + HU"HHL?LJ“EE)”

J ) d )
+ HVunHL%fofg;ﬁl + HVU”HHLFLW

so that, by the induction hypotheses (9.40)), we have the following bound

tLa(c37s)F72 L;( —e)—1 L?;L£275)r

lgniall o < Cp(fluniall e A+ [[Vun )+ Cunlal
T Lt’V‘

Moreover, thanks to Lemma [9.2.6| and Theorem [9.2.2] we get

IE20+ Fol a4 VB2 A VERL w < Clv— 1]V
L%TL::( e)—1 L?r (2—e)r—1 L

T .
orr (2—e)7—1
i "Ly

Summarizing the previous estimates and absorbing the terms with indexes n 4+ 1 on the right side
by the left-hand side, we get that there exists a positive constant C' such that

[unall __ar + [[Vuna ez < (C(L+ 1)+ CsCrip)llal  a_y,.,
L%FLITU_E)_I L%;LZ(Q—E)T—I B;ﬁr

thus (9.40)) is true for any positive integer n, assuming Cs > 2C and 7 small enough. Now recalling
that 7 = 2r/(2 — er), (9.40) can be reformulated by

(9.41)

—1+

7

< —~ —
”unHLE%Lf}STT_Q + HVUNHLE%LZM_QE%’;_Q = C5HU’HB —1+e

4oy S Cs||all .4
p, pr

]

for a suitable positive constant Cj.
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Now we want to prove the existence of a positive constant Cg such that

[ e

2—e)r—2 L?—ETLZT‘— L2 L 4—e)r—2

x T + T ; La r

dr +Hu1q,|| ( 2dr +||VU7L|| 4r dr1+||VUn|| ( 2dr <06Hu|| d 1+s- (942)
TL

Let us remark that such spaces are well defined, since 2—er > 0 (from e < 2/r) and (2—¢e)r—2 >0
(from €/2 < e < 1 —1/r). Proceeding exactly as for proving (9.40]), with r instead of 7 and ¢/2
instead of €, we get

2ar  + || V| 2r < Cglltt]] a_
L?TL$(27€>T72 L?TLZ(47£)7‘72 B;;;?,'F

[l (9.43)

for a suitable positive constant Cg. Furthermore, recalling the mild formulation of wu,,1 (9.22),
Corollary and Theorem implies

lurl ELLTd—Tl + HVULHLt 3’;TL2‘17T+ < Cl|lu| dT 145

for a suitable positive constant C'. Thanks to Lemma and Lemma [9.2.6, we obtain

[ e

T z T

From the definition of g,,+1 (9.16)) and the estimates (9.17)), we get that

ey SO oo+ Nkl e e+

T
I—¢ L3r72 —1

T
t x t z

d
FIVUN e, e + IV
t

):

dr
2 E’I‘L2’I‘ I

so that, by the induction hypotheses of (9.42)), we have the following bound

e < Cin( ”u"“HszQ ar + ||Vun+1|| Qﬁrl) + Cin|lal| Jraws
t T t I p
Finally, thanks to Lemma and Lemma [9.2.5, we get
|Fzsy + Fagall ja ar +|[VEY + VF, +1H e < Cllv = 1|z Vu e
Lt er Lac a: x

Summarizing the previous estimates and absorbing the terms with indexes n 4+ 1 on the right side
by the left-hand side, we get that there exists a positive constant C' such that

||un+1HL?%L;dTTI +||vun+1HL?%L3ﬁ—:I (C(A+ Cin) + CsCrmllal e (9.44)

Thus, recalling (9.43]) and (9.44)), we get that is true for any n € N, with Cg > Cg + 2C and
1 small enough.

STEP 3. u-DEPENDENT ESTIMATES AND CONVERGENCE OF THE SERIES. We denote by du, :=
Up41—Up DY OV 1= V(0p11)—v(0,) and by 86, := 0,41 — 0, for every positive integer n. Moreover,
fixing A > 0, we define

(SUn /\(T) = o+ H(sun)\H o
) L2r(07T;L£—1 ) ’ LQT(O,T;L1(27€)T72 )

+[[Voun, i+ |[Vouy o

|| n, ”L2T(O,T,L3T—_I) || n, ||L27‘(OTL(4 e)r— 2)
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where, recalling (9.21)), 6up (1) := dun(t)hp,(0,1). We want to prove that the series ) 0U,(T)
is finite. Denoting by g5 := gn+1 — gn, 0Dpn := D(upt1) — D(uy,), then, thanks to the equality

(9.22), we can formulate du, x = fn,1 + fn2 + fn3, where
t
fn1 = hn)\(O,t)/ e(tfs)AIP’égn(s)ds,
0

frg = hnx(0,1) /0 t (Ve AR . R - {(v(6n) — 1)0Dp_1}+
+dive 2 (v(0,) — 1)6Dp_1}] (s)ds, (9.45)

faz = hux(0,)( /O t Vell™AR . R {61, D(uy)}(s)ds

+ 7 x(0,1) /0 div el 2 {51, D(un)} (s)ds).

At first step let us estimate
+ IV fnll

[ fnl ar [ fnall 2_2;32_2) + va"’lanr(g T.LQﬁil)

2dr .
L2r(O7T;L;7 ) Lzr(O,T;Lé ;L L2T(O’T;L:§4—s)r—2 )

Observing that
uld0g6ult + suddqul + oul | - Vul +ul - Veul
0gn = —
V"u;f : 5U}ﬁ + Vh(suﬁ . uﬁ — u‘fldivh5uﬁ — 5uﬁ71divhuh

then, by Lemma and Lemma we obtain

Uall e Il e <
P (T S L
S R ey L N L A
Al IV bl IS e
IV e o IOl I

The above inequality together wit (9.17) and (9.29) yield

an,lH dr. , i

L2 (0T;:LE ) L2 (0,T;LE )

1 _

< — V(5u T +CC n 5ud r +
= 4” n’)\HLQT(O,T;Lﬁg’l) 177l "”\HL%(OT-L’L)

- 1
+ CC1Co (|13 P\ Gt I B L7 i+

“UreroLy ) r(0,T;L27 1) 4 L2r(0,T;LE 1)
+ CC17f||[V"6us | th(sun/\H i+ CCLC||6ult_y Al ar
’ L2r(0,T,L5'" 1) 2r(0,T5L2" 1) L2r(0,T;Ly 1)
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Assuming 7 small enough, the previous inequality yields

1
[l e+ [V fnall ar < —{[|6un || ar +
L2 (0TiL5 ) rromLrt) 4 L2 (0, 1L ) (9.46)
+ [ dtp—1. ar + || Vou, ar + | Vou,—1. dr
o ’HLW T5LET) [voun, |L27'(0,T;L;Jﬁ) [Voun-s, |L27'(O,T;L3T—_I)}
. . o L 2dr/((2—e)r—2) o L7 2dr/((4—e)r—2)
Now, let us estimate f,, 1 and V f, 1 in L*"(0,T; Ly ) and L="(0,T; Ly ) re-
spectively. Thanks to Lemma and the following inequality is satisfied:
r IV P <
an,l||L2r(O7T;Lz(2—2Ed)T—2) H fn,1HL2r(O7T;Lz(4—QE%) -
1 1 1
<C (ud2 _ |8g6u” .4Vl || r o+
e Fe P R | R et
1
d||2 hs h d h
+ ||w . || V*ou r >+ ou r Oqu r +
L S eV R e Vg | S
h
+ ([0t All 2dr
L2'r

h h h
P | S U |
+ HV%qu}\H 2 |lu

T, L)

sy

h d
ey 101l

2dr

(0,107 2) gLyt
Hence, (9.17)), (9.29)) and the smallness condition on 1 imply that

1
T + V i < - 6’11/ i +
||fn’1”L2r(07T;L£2—2&:€§T72) || fn’l L2T(0,T;Lg£4725r72) - 4{” n)\HLzT(O,T;LéQ}E%)

+ |62ty — . 4 ||Viu e 4 || Vou,— v .

|| " 17>\||L2T(0,T;L352725%) || n7>\HL2r(07T;Lz§4f2€d)r72) || " 11>\HL2T(0’T;L£4726%)}
(9.47)

Thus, summarizing (9.46)) and (9.47)), we obtain
f ,1 dr —'I_ R dr + v dr
\/r L2 (0,T5Lg ") 7 1HLW(O,ZF;L:ffs’T’Q) | fnJHL?""(o,T;LET—*I)
1 1 (9.48)
+ IV furll oar < =0U\(T) + —0Up—1 2 (T).
LQT(O7T;L1(;475>T72 ) 4 4

Now, we want to estimate f, 2 in L% (0, T; Li’”/(’“‘l)) NL?(0,T; Lidr/((z_a)r_m) and moreover V f;, o
in L?7(0, T} LgT/(%*l)) NL?(0,T; Lidr/((%s)rﬁ)). From Lemma and Theorem we obtain

Jn2 ar + || fa, w4V aw ||V g <

7 L2 (0,T3Lg 1) ||fn2HL?T(O,:F;LGEQEE)T*Q) | waLQ”( TiLET ) I fn’2||L2T(07T;L£4’25)”2)
<Oy - 1HOO<HV6un_1H .+ [|Voun_|| )
L2r (0,150 1) L2r (0,15 L 92
gé(wu_ 4 [ Voun , )
rT] || n—1,\ ’LQT(O,T;LE%I) H n 17>\||L2T(0,T;L£4*25T*2)
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hence, we deduce that

dr +

L2 (0,T:LE )

st < ConUny A(T).
L2r(0,T; L9772

[ fn2]] g+ [zl -+ |V
2 2—g)r—2

r—1

L T(O,T;Lx ) LZT(O,T;LQE —e)r— )

(9.49)

Now we deal with fn 3 and Vf, 3. At first, since v € C®(R) and ||6,]|zec < [|6] e, then there
exists ¢ > 0 (dependent on ||9_||L;o)) such that |61y, (2)[| oo < €[|66,(2)[| o=, for almost every t € Ry.
Moreover, by Lemma and Theorem [9.2.2] we have

an,3HL2T(O7T;L;@~1) + an,3HL2r(07T = + \\an73\|L2T(O’T;L%)+
Lo (0.2 < C{||ovnD( ")”Lw(o,T;Lgrdil) + HaynD(un)”LW(O,T;L;‘l}E%)}'
Thus, recalling and , we finally obtain
o1l + il ’"(o,T;Lf‘Qg’T’“‘Q ! vanﬁ”L” 072 ) Vsl £2r(0,7; L asrs )
= 200”60n||L%(0,T;Lg°){H Vinll ot IVl e b < Gl 1 7
(9.50)

where C (@) := 20¢(Cslull pa/p-1+2 + Collt]| yasp-142/2). Now, let us observe that 66, is the weak
p,T p,T

solution of
{aﬂsen — uASO, = —div(60nup ) — div(Sup_16,) R x RY,

59n|t:0 — 0 Rda

which implies
t t
50, (1) = — / div =250, (5 ) (5)ds — / dive =85y ()0 (s)ds.  (9.51)
0 0

By Remark [9.2.3] we deduce then

L VR L RS O] R
L L

100, ()] o0 S/ — — ds+/ - S ds,

0 |ut—s) T 0 ju(t—s)| "2

hence, defining v := (1 —1/(2r) —e/4)(2r) < 1, H(50n(t)|]%%o is bounded by

. t 1 2r—1
92 1(/0 \M(t—sds> {/ 166,(5) 11750 [t ( Lq*ds+/ 1635 111 (5) | 2 s }.

Then, using the Gronwall inequality, we have

1660 ()75

1—a)t— 2r1 r
e S [ (e O 2 dsesp] [ a7 as,

(2— )
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which yields [[06,,(t)[|z < x(t)6Un—1(t), where x is an increasing function defined by

(1—a)tt—@

x(t) = (2 o

-4 1 _
) e {5 Collall g s )
p,T

Hence, Recalling (9.50]), we deduce that

v+ |V -
”f"’?’”LQT(o,T;L;dﬁ> an’gHL%(o,T;Lf%"*) H fnﬁ”L%(ozm#) (9.52)
+ ”Vf"’?’”LQT(O’T;LgfL) < CL@X(DNOUn—1ll 4, 1y

Summarizing (9.48)), (9.49) and (9.52) we finally deduce that

1 4~ 4 .
SUnA(T) < (5 + 5Cm)8Un-1.a(T) + SCL@NDUn1 3 - (9.53)

Supposing 1 small enough, we can assume g := (1/3 + 4C~'r77/3) < 1. Thus, fixing T" > 0 and
denoting by Cr the constant 4Cy (u)x (T )exp{)\(CgHudH 4+ C3)}/3, we get

pr

(5Un7)\(t) < /léUn_L)\(t) + CTH&UN—L)\HL%(O 5

for all t € [0, T], where we have used that x is an increasing function. Now, let us prove by induction
that there exists C = C(T") > 0 and K = K(T) > 0 such that

SUn(t) < Ci2 xp{K (9.54)

Vil b
for all ¢ € [0,T] and for all n € N. The base case is trivial, since it is sufficient to find C = C(T") > 0

such that 60Uy x(t) < C, for all t € [0,T]. Then 6Up »(t) < Cexp{Kt/ir}, for all K > 0. Passing to
the induction, we have

U412 (1)

N — | _nt1 oy [t 4 s 5
SuéUn_L)\(t)+CTH<5UH_17>\||L% 08 < \/ﬁCu 2 4+ CrCii2 (/0 exp{eK\/ﬁ}ds>

< (Vi+ ()

j57200)Ci"r exp {K

L)
Chosen K > 0 big enough, we finally obtain that (9.54)) is true for any positive integer n. Hence,
the series ) - 6upn A (T) is convergent, for any 7' € Ry. This yields that

S SUL(T) < exp{)\(C_'QHadH o +Cy) }ZaUM

neN neN

dr
so that (u, )y and (Vu,)y are Cauchy sequences in L (0, T; Li’“/(“”) and L?"(0,T; Ly"™") respec-
tively. Furthermore, (,,)y is a Cauchy sequence in L>( (0, T') x R?), since the norm ||66,, | Loo ( (0,7) x R4
is bounded by x(T")dU,—1(T"). Recalling also the definition of dg,, (9.16)), we get

> 10gnll v o,/ 57-2y < 00,
neN
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for all T"> 0. Thus (g,)n is a Cauchy sequence in L"(0,T} Ldr/(3r 2)) and ((v=A)"lgy)n is a
Cauchy sequence in L’“(O T, Ldr/ (2r= 2)), thanks to Corollary 1} Recalling the mild formulation
-, by Lemma and Theorem [9.2.2} m there exist C' > 0 such that

Vou , 50{5 e 4l — 1wV, i
Vtall g O{I e el

e},
LTL2(T 1))

dr/(2r-2), is finite, which implies that (Vu, )y is a

+ 16vn| Loo ((0,1) xray [ Vn |

for all n € N. Hence the series ) -y ||V6un||m(0 o

Cauchy sequence in L"(0, T} pér/er= 2)) Finally (II,, )y is a Cauchy sequence in L"(0, T pir/er= 2))
by (9.37)) and this concludes the proof of the Proposition. ]

Now, let us prove that system (9.1)) admits a weak solution, adding a tiny extra regularity to the
initial data.

Theorem 9.3.3. Let 1 <7 < oo and p € (1,dr/(2r —1)). Suppose that § belongs to L N L2 and
u belongs to Bg,/rp_l N Bg,/rp_lﬁ with e < min{1/(2r),1 —1/r,2(d/p — 2+ 1/r)}. If (9.5) holds,
then there exists a global weak solution (6,u,I1) of (9.12)) which satisfies the properties of Theorem
9. 1.5

Proof. By Proposition there exist u, in L7 Ly with Vu,, in L?" Ly

L;’chlr/(% 2), and also 0, € L®(Ry xRY), TI, € L{L;“‘l), such that (0, u,, I1,) is weak solution
of (9.12)). Moreover, thanks to (9.13)), we have the following weakly convergences:

dr/(r—1) dr/(2r—1)

and Vu, €

dr dr dr
2r 7 r—1 2r 7 2r—1 2r 1 2(r—1)
Uy, —~u w—Li"Ly, Vu,, — Vu w—Ltde , Vuy,, =Vu w—Li"L; ,
T
* 30r—1)
O, =0 wx—L§%, M, -1 w-—LiL;" Y,

for a positive decreasing sequence (i, )y which is convergent to 0. We want to prove that (9 u,Il)is a

weak solution of (9.1]). First let us observe that {u, | # > 0} is a compact set on C ([0 T7;
for all T > 0. Indeed, recalling the momentum equation of (9.12)), dy(v/—A) 1w, is umformly

bounded in L"(0, T} L;‘ﬁ’"/ (2“2)). This yields that {(v/=A)7!u,|p > 0} is an equicontinuous and
bounded family on C([0, 17, ! (ZT_Z))
to (v—A)"tuin L>(0,T; L/ 2)) namely u,,, strongly converges to u in L>(0,T; W,
We recall that (Vu,, )y is a bounded sequence on L{Lgr/ (2r= 2), so that (u,, )n is a bounded sequence

Hence we can assume that (v/ —A)_luun strongly converges

on Lj 1 dr/(2r=2) Thus, passing through the following real interpolation
i ] gty
’ 1 Cment

1
(see [11], Theorem 6.3.1), and since B (2r—

ey pIr/r=1) (see [7], Theorem 2.39), we deduce

dr/(2r—2),1
that,
— P N P
. L2 (O0TL; ) " O R Larty L2 o)1)
T xT
-+ .
S CHuﬂn - UH _1 dr ||u/1fn - u” 1 dr 9

Lo (0,T5W, 20Dy L1(0,T;W, 201

—1 Jdr/(2r— 2))

—1l,dr/(2r— 2))

)
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dr

for all T > 0. This implies that u., strongly converges to u in L (Ry; Ly~ "), for all T > 0, and

loc
moreover that u,, 60, and u,, - Vu., converge to u6 and u- Vu, respectively, in the distributional

sense. We deduce that 6 is a weak solution of

0 +div(fu) =0 in Ry xR%  Gg=0 in R (9.55)

Now, we claim that 6,, — 6 almost everywhere on R x R?, up to a subsequence. Multiplying the
first equation of (9.12)) by /2 and integrating in [0,¢) x R? we get

t
10Oz + 0 [ 198,935 = 18],

which yields [|0,., || 20,1 xre) < T1/2]\9|]L% for any 7" > 0. Moreover, multiplying (9.55)) by 6 and
integrating in [0,) x R%, we achieve 102 = |’§||L§ for any t € (0,7), hence

. 1, =
limsup (|6, | Lo 0.1;22) < T2 102 = 101 22(0,1;12)-
n—oo

Thus we can extract a subsequence (which we still call it 6,,,) such that 6, strongly converges to ¢
in leo SRy x R%). We deduce that 0., converges almost everywhere to 6, up to a subsequence, and
v(0,, ) strongly converges to v(6) in L, (R4 x RY), for every 1 < m < oo, thanks to the Dominated
Convergence Theorem. Then v(6,,)D(u,, ) converges to v(6)D(u) in the distributional sense.

Summarizing all the previous considerations we finally conclude that (6, u, IT) is a weak solution

of (9.1)) and it satisfies the inequalities given by (9.13]). O

9.4 Weak solutions: the smooth case

In this section we present the proof of Theorem [9.1.3] Because of the low regularity of the initial
temperature, by the dyadic partition we approximate our initial data and by Theorem we
construct a sequence of approximate solutions. First, still using the mentioned Theorem, we observe
that such solutions fulfill inequalities which are dependent only on the initial data. Therefore,
using a compactness argument, we establish that the approximate solutions converge, up to a
subsequence, and that the limit is the solution we are looking for.

Proof of Theorem[9.1.3 Recalling the Besov embedding L3° < BY we define

00,007

0p = Xn Z AjH_ and Uy, = Z Aja, for every n €N,

lil<n lil<n

where x, < 1 is a cut-off function which has support on the ball B(0,n) € R? and x,, = 1 in
B(0,n/2). Thus 0, € L= N L2 and @, € BY? N BI/P717 with e < min{1/(2r),1 — 1/r,2(d/p —
2+ 1/r)}. Then, by Theorem there exists (0, up, II,,) weak solution of

040, + div(0,u,) =0 R, x R4,
Oty + Up - Vit — div(v(0,)D(uy)) + VII, =0 R, x R?,
divu, =0 R, x R4,

(9717 un)t:O - (ény an) Rd7
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such that 6,, € L®(Ry x RY), u,, € Lf”Lgr/(T_l), Vu, € L?TLiT/(QT_l) N LgLiT/(QT_Q) and moreover
d

II, € L;L;“fl) . Furthermore the following inequalities are satisfied:

h h h
<
VRl ey ey Wy < Con

d d
”VunHL%TLSg;) + HVU"HL%L%

t L

d ~d
], < OO iy + O

T p,T

HHnHU r s <Can, N10nllpo®, xrey < Cll0]| e,
t

L2

for all n € N and for some positive constants Cq, Cy, C3, C4, C5 and C. Then there exists
a subsequence (which we still denote by ( (0, un,Il,) )y ) and (6, u, II) in the same space of
(0, un, I1,,), such that

_dr_ _dr_ _dr__
Up —=u w—L¥Ly", Vu, = Vu w—L¥L¥', Vu, =~Vu w—L¥L; Y,
dr
O =0 w*— LS, I, =1 w—L{L:" ",
Moreover, proceeding as in Theorem [9.3.3 u,, strongly converges to w in L?gcytLi"/ (T_l), so that 6
is weak solution of
0 +div(fu) =0 in Ry xR’ and f,_g=60 in R~ (9.56)

Now, we claim that §2 = 6% in L® (R, x R%). Observing that ||92||L00(R+ xRy < C?(|0]|2 », there

exists w € Ly, such that 62 A win L7, up to a subsequence. Now, let us remark that 62 is weak

solution of B
0102 +div(02u,) =0 in Ry xR? and 9721“:0 =6 in RY

then, passing through the limit as n goes to oo, we deduce that w is weak solution of
dw +diviwu) =0 in Ry xR? and Wig—p = 6> in R%
Moreover, multiplying by 0, we get
9,0 + div(f*u) =0 in Ry xR? and G‘Qtzo =6> in RY

which yields w = 62, from the uniqueness of the transport equation. Summarizing the previous

considerations, we deduce that 8,, — 6 S—Ll20 ARy xR%), so that 6,, converges to § almost everywhere
in R, x R% up to a subsequence, thus v(6,,) converges to v(f) almost everywhere in R, x R, We
conclude that and v(6,,) strongly converges to v(6,) in L. (R4 x R%), for every m € [1,00), thanks
to the Dominated Convergence Theorem. Therefore, passing through the limit as n goes to oo, we

deduce that
div(v(0y,)Vuy,) — div(v(0)Vu),

in the distributional sense, which allows to conclude that (0, u,II) is a weak solution of (9.1). O
Remark 9.4.1. If we replace the two first equations of system (9.1)) by
00 +div (Bu) +ad =0 in Ry xR and O+ u- Vu — div (v(0)D(u)) + VII = afey in R, x RY,

where eq = ¥(0,...,1) € R? and a is a positive real constant, then we can adapt our strategy in order
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to establish the existence of weak solutions for such new system. In the case of the original system,
a term as feg can be assumed only to be bounded both in time and space, hence it does not provide
a time integrability, which is necessary in order to achieve the existence result. However, adding
the damping term af to the classical transport equation, and supposing 0 to belongs to Lﬁ”(?’“”,

then

16()

Iyt <1 pae, exp { ~at,

for every t € Ry. Thus 6 belongs to L;’L;W(grﬂ) and we can proceed as in the previous proofs,

obtaining a global weak solution (0, u, ITI) which belongs to the space defined by Theorem [9.1.3]
Moreover, increasing n by

3r—2
p,7r D,T

_h o —d||4
= (I = oo + 18 __vog + allfl o, ) o {erllaIV, o }.

the solution (0, u, I1) fulfills

h h h
96t FIVO e I, <

IVul]l o ae HIVUw ) e <O
L%TL27“71 LILQ(T_U L%’V‘L;*l

x x

/N

_d o
), aeg + allf] ae, ) + Cs,
||H||LT i < Cymp,

tHx

for some positive constants Cy, Co, Cs and Cy.

9.5 The general case: smooth initial data

As preliminary, before starting the proof of Theorem we enunciate three fundamental Lemma
concerning the regularizing effects of the heat kernel, which will be useful. We recall that B and C
are defined by

BF(t) = /O CTetIB p(s)ds,  CH(E) = /0 95 (g ds.

Lemma 9.5.1. Let us assume that p, p3, v, «, Y1, Yo fulfill the hypotheses of Theorem (9.1.
and let € be a non-negative constant bounded by min{l/r,1 — 1/r,d/p — 1}. If t*f(t) belongs to
L2/0=e1)(0, T; LB) then t"Cf(t) belongs to L*/(1=7)(0, T; LE*) and there exists a positive constant
C such that

[t CfE)

<clesol

_2r P _2r .
LT-er (0,T;L%3 LT=e7 (0,T;L%)

Moreover, if € is null then t72Cf(t) belongs to L>°(0,T; LE?) and

[E2CF ()l oo 0,578y < CHtaf(t)HLi%(O’T;Lg)-

Lemma 9.5.2. Let us assume that p, ps, r, «, B fulfill the hypotheses of Theorem|9.1.4) and let € be a
non-negative constant bounded by min{1/r,1—1/r,d/p—1}. Ift*f(t) belongs to L*/(1=<)(0, T L)
then tPBf (t) belongs to L*/(1=27)(0,T; L%?) and there exists a positive constant C such that

< Ot f(2)

|| 2r .
LT=¢e7 (0,T;L%)

B
[EBFON, 22 e
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Lemma 9.5.3. Let us assume that p, p2, v, o, B, 71, 72 fulfill the hypotheses of Theorem
and let € be a non-negative constant bounded by min{l/r,1 — 1/r,d/p — 1}. If t°f belongs to
L27/(=er) (0, T; LE?) then t"' Bf(t) belongs to L*/0=27)(0,T; L)

" B
€081, 2 sy < OIS, 2o (9.57)
Furthermore, if € = 0 then there exists a positive C such that
HthfHLOO 0,T;LE3) (9.58)

(0 T;LP2)

The proofs of these lemmas are a direct consequence of Remark We perform the one of
Lemma [9.5.3] while the others can be achieved thanks to similar procedures.

Proof of Lemma[9.5.3 We begin controlling the L?/(*=¢")(0, T; L%*)-norm. First Remark (9.2.3)
yields

t m t”Vl_E(i_i)"'%_ﬁ

ol >|Lmds—c/

[ BF(1)] s < © e
O Jt - s|2 (555

where F(s) := sﬁ|]f(s)||L§2. Now, since 1 — d(1/p2 — 1/p3)/2+ 1/2 — (3 is null, we have

1
1
Ht%BfH SC/ |E(tT)]| 2 dr
coram =y A s oy
1 1
<C dr | F| »
e LW(OTL%

0 |1 — 7—|%(é7%)+%7—6+% 2
thanks to the Minkowski inequality. Thus (9.57) is true, since 8+ 1/(2r) — ¢/2 < 1 and moreover
d(1/ps —1/p3)/2+1/2=2/3 —d/(6p) +1/2 <1—1/(2r) < 1. Finally, observing that

3 72
[ Bf(t)|lps < C

1F ()l z2ds

O |t — S‘d($*5)+z

¢ 172 @r)  \1-%
A e e re e IO B L
0 [t — s|2\p2 p3) T268

we obtain

1 1 (2r)’ 1—5-
||tv28f(t)||L53§C(/0‘ e IS Rl T PPy

rf# s

Py p3/ 2P

thanks to the change of variable s = t7 and since (2r)'{ve —d(1/p2 —1/p3)/2—1/2— 5} +1 is null.
Hence (9.58) turns out from {d(1/p2 — 1/p3)/2 + 1/2}(2r)’ < 1 and B(2r)" < 1. O

We present the statement of a modified version of the Maximal Regularity Theorem, whose
proof can be found in [60].

Theorem 9.5.4. Let T €]0,], 1 < 7,q < o0 and o € (0,1 — 1/7). Let the operator A be
defined as in Theorem |9.2.4 Suppose that t* f(t) belongs to L™(0,T; LE). Then t*Af(t) belongs to
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L7(0,T; LE) and there exists C > 0 such that
[E*Af (Ol Lro,rcy) < ClIE*F Ol L 0,7:L9)-

As last part of these preliminaries, we have the following corollary, which will be useful in order
to control the pressure II.

Corollary 9.5.4.1. Let p € (1,d), 7 € (1,00) and o € (0,1 — 1/7). If t*f belongs to L"(0,T; L%)
then t*Bf belongs to L™(0,T; LY and there ezists a positive constant C' (not dependent by f) such
that

1 BAW o gipopy < OISO 207502

Proof. 1t is sufficient to observe that Bf(t) reads as follows:
t
Bf(t) = —(\/—A)‘lR/ Aet=92 f(5)ds = —(V=A) "' RAF(t).
0

Recalling that R is a bounded operator from L% to itself for any g € (1,00) and (v/—A)~! from L%
into L% |, the lemma is a direct consequence of Theorem ]

Proposition 9.5.5. Let p, r, p2, p3 be as in Theorem . Suppose that § belongs to L and @
belongs to Bg,/,«p_l. If the smallness condition holds, then there exists a global weak solution
(0, u, IT) of such that it belongs to the functional framework defined by Theorem and
moreover it satisfies

h h h h
(687 ez + 18V oy + 16 gz + 02" o0 < O,

17| e poa + VU o0 e + 187 0 e s + 16020 oo s < Colla]l ay +Cs (9.50)
x i Lz t t x BP

b,

[T 2 e < Camy - [16]] 255, < [16]] -
for some positive constants Cy, Cy and Cs.

Proof. We proceed as in the proof of Proposition [9.3.2] considering the sequence of solutions for
systems ((9.14)) and (9.15)). We claim that such solutions belong to the same functional space defined
in Theorem [9.1.4] and moreover that:

_ 9.60
[#9V gz + 17 ke pzs + 1020z < Calla?] g, + i, (9.60)

p,T
for some suitable positive constants C1, Co and C'3, and for any positive integer n.

STEP 1: ESTIMATES NOT DEPENDENT ON £ AND pu. First, the maximal principle for parabolic
equation implies that |6, ||rs is bounded by ||0]|zec. Now, we want to prove by induction that

C C
h h h 1~ 1
165t g oo + 1670 g g+ N2kl e e < 227 < Sl

o d o o _ O Cs (9.61)
7Nl a2 + 187 | 2 p2s + 1872 | o p2s < 1@ HBLl + =
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for some positive constant C1, Co and C'3, where 7] is defined by

d
= (Huhll a_y + 10llzge + v = 1lloo) exp{*llu ||2T <

P”' p

We begin with the horizontal component u”.

V41,2 and I, 41 be defined by

Let A be a positive real number, and let w11,

(UnJrl,)n vun+1,)\7 Hn+1,)\)(t) = hn,)\(oyt)(un+1a vun—i—la Hn-l—l)(t), (962)

where, for all 0 < s <t < 00,

t ¢
hna(s,t) :=exp{ — )\/ 27 |ud (1)||2 pradr — )\/ 28| Vul (1) LdeT} (9.63)

S S

Decomposing 41,5 as in (9.23)), up41,0 = ur, + F! A1 +F? Y —|—Fn+1 y» the first estimate is given
by Theorem and Theorem [9.2.8

h h h h
”t’BvuL,AHLer’;? + [ up Al 2 prs + 1872up Al oo prs < 1t7Vul, Allpzrppe+

h 9.64
1 gz + 120 Al < ClE g (9:64)

pﬂ‘

for a positive constant C'. Moreover, recalling the definition (9.16]) of g,+1, we get

1

1,h 1L,h 1,h h

[PV E Alpzrpee + 18 EF S pae s + (182 F lpeo s < C{A% ||tﬁvun+17AHLgTL52+
'

. (9.65)
+ HtwuZHLf"Lii” Ht’BVUZHLer? + e HﬂluZH,AHLgTL?}'
thanks to Lemma [9.5.1] Lemma [9.5.2] Lemma [9.7.3] and Lemma [0.7.4] Moreover,
| F Alzzrozs + 2 Fy allzgepzs + ”t%FSh +1 )\”LOOLP3 < (9.66)
< CHtﬁ@( Ont1) — 1)D(un)HL§TL§2 § CHV - 1”00”’5'8VU71HL§TL§2 ‘
by Lemma [9.5.2] and Lemma [9.5.3] Finally, Theorem [9.5.4] yields
”tﬁvijl AHLZTL”2 + |t°VF, +1 )\HLzTLp? <Clv - 1||w||tﬁvun||LfTL§2' (9.67)
Summarizing (9.64)), (9.65)), (9.66) and (9.67), we deduce that
[ e + ||ﬂ1“2+1,,\HL?*L§3 + Htwqu—i—l,/\HLfoLg?’ <
< Iy IVl + I s Vet 068

1
+)\L

2r

Ht“uZH’)\HLgTLg:’, + [y — 1”oo”tﬁvunHL§TLﬁ2}7

for a suitable positive constant C. Setting \ := (2C)?", we can absorb the terms with index n + 1
on the right-hand side by the the left-hand side, hence there exists a positive constant C' such that

h h h
HtﬁvunJrl,AHL?Tng_‘_Ht’YlunJrl,/\HL%TLgi” + 1872w 1 Al poe prs <
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c? C1 ., Gy Cs
<Ol o+ 0+ v =G+ s+ )
p'r
Then we deduce that
1675 a2 2 A+ 10 gyl 2 pzs + 87200 4 | e o <
5 h Ct d Cs
<C sup hoa(0,07 I gy + S +ll = UnelCri+ Ll g+ )
t€(0,00) By
Co C'g c? O Cy O3 .
(20)2 (22 |1 2r {1 i, 9 L2 7} .
Comp {20 (Gt g+ S (G Soie G D
Imposing C' big enough and 7 small enough in order to have
~ C C c? c Cy C Cy .
Cexp {(207" (Nl g+ D7 HL+ (G4 i+ 5+ S < T

we finally deduce that the first inequality of (9.61) is true for any positive integer n. Now, let
us handle the vertical component uﬁ. Proceeding as in the proof of (9.68), we obtain that the
following inequality is satisfied:

d d d
||tﬁvun+1”L§TL§2 + ”twun+1||LgrL53 + ||twun+1“LgoL§3 <

< O{I g+ 1z + 17 = ool Founll 22 .
p,T

for a suitable positive constant C, where g1 is defined by (9.16)). Recalling that o = 84 71 and
1/p=1/p2+1/p3 we get

d d d
||t6vun+1”L§TL§2 + |’t%un+1||LgrL§3 + ([ +1HL°°LP3 < C{HU [

p'r

h h h
F[ 2 up [ oo s ||tﬂvun||L$"L§2 + 1872 1 [ oo s ||tﬁvun||L§TL§2 +

+ ”tWUZHLgOL’;S HtBVU;iLH”L?TL? + v - 1HooHt6VUnHL§TL’;2 }v
which yields that

d d d
1875 1l 2 o+ 10 i g2 p2s + 10205 4[| e 25 <

CC CiCs  C3 ¢, C
oy Tt = e+ S

s O+ 4 4

)| dH i1 T O

Hence the second inequality of ([9.61)) is true for any positive integer n if we assume Cs big enough
and 7 small enough in order to have

C1Cy Co CiC3  Cj C1 Oy Cs
c(1 — d C — — 4+ )y < —.
(I+—n <~ and C(— L s 5
Proceeding again by induction, we claim that
C C C
h 1 d 21-d 3
IVl < G and Tl < S g+ (9.69)
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for any positive integer n. First, we remark that Vu; can be rewritten in the following form
Vurp = —(vV=A)"'RAuy. Hence, recalling that (v/—A)~! is a bounded operator from L% into
Lg* and R is a bounded operator from L% into itself, for any ¢ € (1,00), there exist two positive
constants C' and C such that

2V gy < Ol Busllgzrry < Clal s . (9.70)

P,

L2" L%

thanks to Theorem Moreover Theorem and Corollary imply

[t (VE 1+ VEL ) o e < Cpllt* V| [tV Eall 2 < Clltgnatllpzre < O

L2'r LP LQTLg* 9 | L2'r LP

Assuming n small enough we get that is true for any n € N. Finally, recalling that 11,41 is
determined by
pi1 = (=A) 'R gni1 — R R-{(v(0n11) — )Vun},

VOB el e < O{Ignntllzzrrs + v = Uloolt V]| g2 } < Cam,

for a suitable positive constant Cy and for any positive integer n.

STEP 2: e-DEPENDENT ESTIMATES. As second step, we establish some e-dependent estimates
which will be useful in order to show that (6, u,, II,,)y is a Cauchy sequence in a suitable functional
space. First, we claim that

Ht”unxll +Ht5VunAH < Callall a_,.., (9.71)

E'I‘ LPS sr LP2

pT‘

where up \(t) = u,(t)h(0,t), with h defined by (9.63)). Recalling the characterization of the ho-
mogenous Besov spaces given by Theorem and the embedding of Theorem [9.2.8] we get

+ HtﬂVuLH

~
Ht 1uLH 57‘ Lp3 ET‘ LPQ

< Cllul

> .%714»57
D,

(9.72)

for a suitable C' > 0. Furthermore, Lemma and Lemma yields

[t F, +1A|| + |tV E, +1,\H

ET Lpg 1 67‘ LP2

+ [[t2u n||LooLp3Ht5Vun/\H ar

Ht vun+1 )‘H sr LPQ 1 er Liﬂz

2r

sC‘{A

h h
+ ([t +1||LooLpsHt5VunAll e mll oo 125 87 VUi g 5

WLPQ}

for a positive constant C. Imposing ) := (2C)*", we deduce that

Ht'“Fl_H/\H + ||t6VF1+1 >\|| *”tﬁvun-s-l AH 2 ot

—er LPQ

+ ccmntﬂwnﬂ N

ar LP3

srLPQ
+00m||tﬂw Al L +00m\|tﬂw Al L

T T

Moreover, Theorem and Lemma [9.5.3] imply
||75“(F2+1A+F3+1 Vil IOV (Ffpn + Fp )l 2

T—er yp2 —
L, T Ly

< e (Fap + n+1)|| L5 + {1V (Fa +Fg+1)||L1%Lp2 (9.74)

(9.73)

1 ar LPQ
1 L”3

< Cllv = 1|7V | < Cnli Vsl 2,

I LP2



240 CHAPTER 9. A WELL-POSEDNESS RESULT

assuming C, in the definition of 7 big enough. Summarizing (9.72)), (9.73) and (9.74]), there exists
a positive constant C' such that

+ [tV unga| < CCunlla| |

Ht’ﬂun+1 )\H 1 sr LPQ

)

d
E’I’ p. P
L 3 51" +€

so that (9.71)) is true for any positive integer n. Finally, multiplying both the left and right-hand
sides of (9.71)) by sup,cg h™1(0, ), we get

+ HtﬁVunH

17w, H
ET‘ LP3 E?” Lp2

< Gsllall gy exp {Colla’l”s 3, (9.75)

p,r DT

for two suitable positive constants C5 and Cy.

STEP 3. u-DEPENDENT ESTIMATES AND CONVERGENCE OF THE SERIES. We proceed as in the
third step of Theorem denoting duy, := Upt1—Un, OV, = V(Op+1)—v(0,) and 06, := 0,11 —0,,.
We define

(SUn?)\(T) = p ),

where duy, 5(t) := 6un(t)hn2(0,t). We claim that the series ) 0U,(T) is convergent. First, we
split du,, into du, \ = fn1 + fu2 + fn,3, where f,; is defined by (9.45)), for ¢ = 1,2,3. We begin
estimating f,, 1. Lemma and Lemma yield that

18726 fll 20,7y + 18728 il poo o minzay + 1E7V8 frtll por o rne2y <

<C{)\

(Htﬁad(Sun /\HL?T 0,1;L82) T ||t715un )\HL?T (0,1;:LP3) T ”th 5“n AHLZT OTLP2))+

2r

+ ||t’725un,)\“L°°(0,T;Lg3)||t66dun||Lerg2 + ||t725u - , ;L’;S)Ht Vun”LgrLQH‘

+ Htwuﬁ—luLerﬁ?’ ”tﬁV(suzfl,/\HLZT(O,T;LQZ) + Htﬁvhwg,,\HL%(O,T;L?)HthZHLgOL?"‘
10260y Al oo oz, PV 0 22 -

which yields,
Htwéfn,lHL?r(o,T;LgS) + Htw(;fmlHLOO(o,T;Lfﬁ)Jr

, ) (9.76)
+ 17V 6 fall por o, 122y < Z(éUn)\( ) 4 0Un—11(T)),

assuming 7 small enough. Now, we carry out the estimate of f,, 2. Lemma and Theorem
imply

<

=)
<Clv - 1HooHtBV‘sun—IHL?r(o,T;L’;?) < érn"tﬁv‘sun—l,k||L2r(o,T;L§2)a

hence, we deduce that
176 fazll ar 0.2,y + €20 faall o 0. rinzy + 1990l oy < ComdUn 1 A(T). (9.77)
Now we deal with f, 3. Thanks to Lemma and Theorem we have

1870 fr3ll L2r 07228y + 18720 fr 3l oo 0, 7: 128y + ”tﬂVéfn,i’)HLW(O,T;L’;Q) <

< 11800 D) 07222 < CI0Vall, 2 oy 12Tl 22y < Cr(@ 660 2

L3 (0,1;L2) <(0,T5Lge)

(9.78)
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where Cj(@) is a positive constant which depends on |all ga/p-1+=. Now, recalling that &6, is
p,T
determined by (9.51)), we get

t gM156,, t M| u,, 9
H(S@n(t)]LgOS/ ™[00 (5)un (d)HLgsd / 7|0t —1(s) (s)HLg3d87
0 2 0 1

1,1
sMlp(t —s)|27s "2

hence, defining o := (d/(2p3) +1/2)(2r) < 1, Héﬂn(t)H%’éo is bounded by

[t 1
2 1(/0 gri(2r) |M(t —5) / 100 (s H QWIHUn(S)’ Lp3d8+
[ B2 1 9) s}

Then, using the Gronwall inequality, we have

t t
166,(8) |75 < Calt )H9||%§o/ S2m||5un1(S)|Ii%3dse><p{/ 52”1Hun(s)\|i%3ds},
0 0

which yields [|66, ()| e < x(£)0U,—1(t), where x is an increasing function. Hence, Recalling (9.78)),
we deduce that

1876 fn,3ll L2r 0,750y + 1820 sl oo (0,729
+ 17V ol p2r o 12y < C’l(ﬂ)X(T)WUn—lHLg(OT

Summarizing the last inequality with (9.76]) and (9.77)), we finally deduce that

1 4~ 4 .
SUnA(T) < (5 + 5Crm)8Un1.2(T) + SCL@X(T) 6V, 2

3 £(0,1)’

which is equivalent to to (9.53)). Thus we can conclude proceeding as in the last part of Theorem
9.3.3 O

Now, we show that system (9.1)) admits a weak solution, adding a tiny extra regularity to the
initial data.
Theorem 9.5.6. Let us assume that the hypotheses of Theorem are fulfilled. Suppose that 0
belongs to L2NLS° and @ belongs to Bg,/rp_l ﬁBg,/Tp_He with e < min{1/(2r),1—-1/(2r),d/p—1}. If
the smallness condition (9.7)) holds then there exists a global weak solution (6, u,Il) of (9.12) which
satisfies the properties of Theorem [9.1.4]
Proof. By Proposition there exists (0, uy, I1,,), solution of (9.12), such that t"u, belongs
to L2 L, 12u,, belongs to L{°LY, t?Vu,, lives in L2 L2, t*Vu,, in L¥ L , 6, in LgS, and t°TI,, in
L%TLg*. Then, thanks to inequalities (9.13)), there exists (6, u, II) in the same space of (6, u,, I1,,),
such that

M, =ty w— LILE, t2u,, =ty w— LPLY, t*Vu,, —t°Vuw - L?”LQQ,
t°Vuy, —t°Vu w—LFLY ., 0, 20 wx—L%, {11, — t°T1 w— LY LY,

for a positive decreasing sequence (u,)n convergent to 0. We claim that (6, u,II) is a weak so-
lution of (9.1). First, we show that w,, strongly converges to uw in L™(0,T; LE’), up to a sub-
sequence, with a suitable 73 > 1. We proceed establishing that {u, —ur|p > 0} is a compact
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set in C'([0,T7; W;l’p*), for all T > 0. Applying (v/—A)~! to the momentum equation of (9.12)),
we observe that ¢t*0;(v/—A)~!u,, is uniformly bounded in L?"(0,T; L% ). Hence, observing that
a(2r) <1, we get
Ti—a(2r)

||at( vV ) uMHLl(OTLp ) < 1— ( )
Thus {(vV—A)"Y(u, —ur)|p > 0} is an equicontinuous and bounded family of C([0,T], L5,
namely it is a compact family. Then we can extract a subsequence (which we still denote by u,,, )
such that (v—A)"!(u,, — ur) strongly converges to (v/—A)"*(u — ug) in L>(0,T; Lg*), that is
Uy, — ur, strongly converges to u — ur, in L*(0,T} W{l’p*). Now, passing through the following
real interpolation

[t 0p(V=A) "y, lp2r o e

d d

i7—Lp* 1i71.p* _ pr* p3 D3
[M@I ] =B I,

with p:= (d/p* —d/ps) +1/2 < 1 (see [11], Theorem 6.3.1 and |7], Theorem 2.39), we deduce that

[ty = ull L 0,78y < CHH“M —ull, —117 - u”%/j”’* L7(0,T)
< — - Q
< Cllup, — |L°°(0TW‘“’ It HL?%(O,T)Ht Vi = )HLZT 0T’

for all T' > 0, where we have considered 7 € (1,2r/(1+ 2ar)) so that a2r7/(2r —7) < 1. Moreover,
we choose 7 such that there exist 7 in (1,2r/(1 4 28r)) and 73 in (1,27 /(1 + 2vy7)) which fulfill
1/m3+1/m72 = 1/71. Let us remark that the norms

Huun||L73(o,T;L§3) < Ht’YIH 2r73 ”t’hu#nHL%Tng’ < 00,
L T

2r=73(0,T)
B B
IV, || o2 0,152y < I HL 2y (O,T)Ht Wi || p2r 2 < 00,

that is they are uniformly bounded in n. Now, we consider 7 < o < 73 strictly closed to 73 so that
it still fulfills 1/ + 1/75 > 1. Then the following interpolation inequality

T3—0O o—T3

T—T3 T—T3

”uﬂn - U’HL‘T(O,T,Lgd) S Hu,un uHLT OTLPS)HuMn u”LT3 OTLPS)J

which converges to 0 as n goes to oo, so that w,, strongly converges to w in LY (Ry; L5*). This
yields that u,,0,, and u,, - Vu,, converge to uf and wu - Vu, respectively, in the distributional
sense. We deduce that 6 is weak solution of

0 +div(fu) =0 in Ry xR%  Gg=0 in R

Arguing as in the proof of theorem“ 0,,, converges almost everywhere to 6, up to a subsequence,
so that v(6,,,) strongly converges to v(6) in L (R; x RY), for every 1 < m < oo, thanks to the
Dominated Convergence Theorem. Then v(6,,,)D(u,, ) converges to v(#)D(u) in the distributional

sense.

Summarizing all the previous considerations we finally conclude that (6, u, II) is a weak solution

of (9.1)) and it satisfies (9.59)). O



9.6. WEAK SOLUTIONS: THE GENERAL CASE 243

9.6 Weak solutions: the general case

In this section we present the proof of Theorem (9.1.4). We proceed similarly as in the proof of
Theorem approximating our initial data by

O = Xn Z Ajé and Uy, = Z Ajﬂ, for every n € N,
lil<n lil<n

where x, < 1 is a cut-off function which has support on the ball B(0,n) ¢ R? and x,, = 1 in
B(0,n/2). Then 6,, € L N L2 and u € Bg,/rpﬂB%ﬂp_Ha, with & < min{1/(2r),1—1/r,2(d/p—2+
1/r)}. Then, by Theorem there exists (0, un, I1,,) weak solution of

040, + div(0,uy,) = 0 R, x RY
sty + Uy, - Vi, — div(v(60,)D(uy)) + VIL, =0 R, x R?,
divu, =0 R, x R,
(O, Un)i=0 = (On, ) RY,

which belongs to the functional space defined in Theorem and it fulfills the inequalities ([9.9)),
uniformly in n € N. Then there exists a subsequence (which we still denote by (6, un, I, )n) and
an element (60, u, II) in the same space of (6, un,Il,), such that

Ty, — "y w— LR 2w, — 2y w— LPLE, tPVu, = t°Vu w— L7 L,
tOVu, = t°Vu w— L¥LE, 0., S0 wx LS, O, — Tl w— L2 LE
In order to complete the proof, we claim that (6, u, II) is weak solution of . We first rewrite
Up = t NN, Vu = t PPV and II,, = t~*t°Il,, so that the Holder inequality guarantees
that w,, Vu, and II,, are uniformly bounded in L™(0,T; L%*), L™(0,T; L%*) and L™(0,T; Lg*)
respectively, with T € (0, 00) and

2r

2r
1 —1—2047“)’

) 2r 1 1 1
"14 28777

such that — = — + —.

el O e N n T

7'26(1

T3 €

The same properties are preserved by (6, u, IT). Moreover, arguing as in Theorem Uy, strongly
converges to u in LY (Ry; LE?), with o € (71, 73) strictly closed to 73 so that 1/o +1/7m5 > 1. This
yields that u, - Vu, and uy,0, converge to u - Vu and u 6 respectively, in the distributional sense.
Moreover, proceeding as in theorem[9.3.3] 6,, converges almost everywhere to 6, up to a subsequence,
so that v(6,,) strongly converges to v(6) in L (R} x R?), for every 1 < m < oo, thanks to the
Dominated Convergence Theorem. Then v(6,,)D(u,) converges to v(6)D(u) in the distributional
sense and this allows us to conclude that (0, u, II) is weak solution of . Finally, passing through
the limit as n goes to oo, (6, u, II) still fulfills inequalities and this concludes the proof of the

Theorem.

9.7 Inequalities

In this section we improve Lemma [9.2.5] and Lemma [9.2.6] for a particular choice of the function
f and also with a perturbation of the operators, which is dependent on a parameter A > 0. This
Lemmas are useful for the Theorem of section 3, more precisely during the proof of the inequalities,
since, for an opportune choice of A, they permit to “absorb” some uncontrolled terms. Here the
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statements and the proofs.

Lemma 9.7.1. Let 1 <r < oo and q1, ¢2 € (1,00] such that 1/qg=1/q1 +1/q2 € ((2r — 1)/dr,1).
Let v € LI LY and for all A\ > 0 let h = h), be defined by

t
h(s,t) := exp{ — )\/ ||v] %1:1 },

for all0 < s <t < oo and consider Cy, the operator defined by

t
Cx(f)(t) ::/ h(s,t)e(t*S)Af(s)ds.
0
Then there exists a positive constant C.., such that
-
Je(w)lzap < O ol Il
where g3 is defined by 1/q3 =1/q — (2r —1)/dr.
Proof. Notice that
t t
| / h(s,t)K(t — s) * vw(s)ds|[gas < / h(s, 1K (t — s) x vw(s)]|asds
0 0
t
< [ B = 5 o)l s,

where 1/ =1-1/¢=1/qg—1/q3 = (2r — 1)/(dr). By Remark and Holder inequality, we

obtain

1 1
P [o(s)|[ £ou [lw(s) [ 22 ds
— S| 2r

3 _4r 1
' Z% v(s 2 wl S qo ) 4r—1 1—-1;
< (/ h(s,t)A‘Tl\v(s)lizlds) </ Ulo)llzn () lz2) ds) |
0 z -

‘t_s| 2r 4r—1

IC(vw) (#)]| g S/O B(s,8)[0(3)]1 20
(9.79)

Since

4r 4r—1
3

1 pr dr—1
gi= (10O Fa ()l ) " € L7,

by Hardy-Littlewood-Sobolev inequality,

4r—1
2

TR TegeL,?

and then

1

e 1-L
(1175 +g) " ey

Moreover there exists C' > such that

_4r—2 _1 _4r=2) 1L
e e P [ e

Ly

3
-4 1 4 ar
<ol < ([ (ot ol brar)
+

Ly
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1 1
< Clllvl o lzarlwll e paz < Cllvll For o lwll e pao-

Observing that

(/Oth(sat)MH (s)l qlds)‘b < (ﬁ)?

the Lemma is proved. O

Lemma 9.7.2. Let 1 <r < oo, qi € [1,-%] and v € L' LI . For all A\ > 0 let h = hy be defined

»r—1

as in Lemma and let By the operator defined by

t

BA(P) = [ hs, Ve 93 f(s)as

0

For all g2 € [q}, 0], there exists a positive constant Cy, such that
1 1
||B>\(UW)||L§TL3 < CTEHUHE?LQHWHL%’TLQ%

where q is defined by 1/q:=1/q1 +1/q2 — (r — 1)/dr.

Lemma 9.7.3. Letr € (1,00), p1 € (d/2,d), p3 > dr/(r—1) and pa be given by 1/p1+1/ps = 1/ps.
Let t]v € L LE™ and tPw € LI LE?. Defining

t t
ha(s,t) = exp { — A / 72 o) | Zhadr — A / 72 ()2 b,

where X\ is a positive constant, there exists a positive constant C, such that

C

16 Blow)a ()l e g2 < o l1Pnl vy (9.80)
2r

B1 Cr T

16 Blow)a ()l e g2 < 0] e . (9.81)

2r

Proof. Remark yields that there exists a positive constant C such that
th1
t7]|B(vw)a(8) e < C/ ﬁhx(svﬂsmH’U(S)IILgﬁ»SﬁlHwA(S)IIngdS

[t — s Zpg T2 gos

<C /hxst% 2 lo(s HLpst 2T /‘ F(s)
S|2p3+28a2

Hence, raising to the power of (2r)" both the left-hand and the right-hand sides, we get

) (9.82)
2 ds) <21)/ .

(2r)

P
ds

t@”’ﬁl||B<vw>x<t>r|fg£’

P eo(s) | 2o

S|%+§Sa2

51 az— 2p3 -1
(27‘)’ / ‘ F(tr)
A\ 2 |1 |2P3 27-0‘2

where F(s) = SBHwA(s)HLz;z. Observing that § —as — N/(2p3) —1/2=1/(2r) — 1= —1/(2r), we

(2r)
tdr,

N
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get

o 1
tC) By B(ow) A (¢ ()HLp2 S ey /‘ —F(t7)

— 7|20

dr, (9.83)

Hence, applying the LgQr)/ ) _norm to both the left and right-hand sides,

By (2r) 1 @) [ o -\ TT
Ht B(Uw))\(t) HL?‘LI;Q Sj (274) ’ ‘i-i-l ( o F(t']—) d7—> dt
2p3 2 7—042
1 2r) :
drllPwall 3

1— 7|7 2

thanks to Minkowski inequality. Since a1(2r)" < 1 and (d/(2ps3) + 1/2)(2r) < 1 we finally obtain
(9-80). Now, defining F'(t) := s7'[Jvr(s)|rs, we also have
£ B(ow)r (1)l 22

: Lr t t/B (27,,)/ %
< C( / hA(S,t)2rs2rﬁ‘|w(s)HLz;2ds)2 ( / ‘— F(s) ds) g
’ 0 |t —sl|2

d 1
P3 +2 8a2

which is equivalent to (9.82]). Thus, arguing as for proving (9.80)), we also obtain (9.81]). O

Lemma 9.7.4. Letr € (2,00), p1 € (dr/(2r—2),N) and ps > Nr/(r —2) such that 1/p1+1/ps =
1/ps. Let hy, v and w be defined as in the previous Lemma. Then there exists C, > 0 such that

C
IO grszs + IE°CEO gz < el e
2r

(9.84)

C.
Htmc(vw))\(t)”Lf”L? + ||t72c(vw)/\(t)”LgoL§3 < o T ||tﬁ UAHLQTLW’
2r

Proof. We control the L?" L% norm arguing as in previous proof. Indeed we have

T ! 1
12 )'71||C(UW) ()”Lps > (2r)’/ ‘ )

11— 7'|2P2 T2

(2r)
dr,

where F(s) = sﬁ||w,\Hng or F(s) = s7|lvx[|prs instead of (9.83). Let us take in consideration the
L LF? norm. With a direct computation we get

1 1

1 t 1
Wﬂﬂm<0/)dQ(AMMWWMM@W%MMw@T

‘ 2po 80&2

/ ‘ t'YZ a2— 2p2

| 2P2 02

r 1

! L t )
td7'>r (/ h(S,t)TSTWI||U(3)||zp357“51Hw(s)HzmdS)r
0 i P

Thus, observing that vo — as — d/(2p2) + 1/ =0, dr’/(2p2) < 1 and agr’ < 1, we conclude that

t 1
02z < Col [ (s, [0(s)linds) 1l gprgze and

t a1
[E72C (@) ps < ér(/ hA(&t)ZTSZTﬂHW(S)HL’;?dS) QTHt'ylw/\HLerg‘o‘;
0
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for a suitable positive constant C,., which finally yields (9.84)). d

Theorem 9.7.5. Let r € (1,00), p € (1,dr/(2r — 1)) and u € Bg,/rpfl. Le us suppose that

dr

_dr_ _dr _
fre (L) N (L)Y, fo e (L Ly )™ n(LyLs 7)™,

dr

Let v belongs to L%TLgT/(Pl) with Vv € LIFLE~". Then system
Opul 4+ v Oqul — Aul + VMI = I + divfy R, x R?,
dpu? + Vo - uh — v diviu — Aud + 9411 = fi +divfd Ry x RY, (9.85)
dive =0 Ry x RY, '
U|t:0 =1U Rda

dr _dr
admits a weak solution (u,I1), such that u belongs to L?"Ly~" with Vu in L¥Ly"~" and 11 in

dr
LiL;" Y.

Proof. For all u in Lerﬁr/(H))d with Vu € L%TLgT/(zrfl), let g(u) be defined by

dr

g(u) == (—v o, =V - ul + vdiviul) e LT LI 2. (9.86)

Then, the momentum equations of (9.85) reads as follows:
du— Au+ VII=g(u) + f1 +divf, in Ry xRY (9.87)

We want to prove the existence of a weak solution for this system, using the Fixed-Point Theorem.
We define the functional space Y, by

_dr_ _dr_
Y, = {u € L¥L, " suchthat Vue L¥LE }

then, fixing a positive constant A, we consider the norm || - ||, on Y, defined by
[ x = [|u(t) hA((),t)HL?TL;dTTI + || Vu(t) hA(O,t)HL?LgC%,

where, for all 0 < s <t < o0,

t t t
(s, t) ::exp{ —A(/ o), +/ VoI e, +/ IVe(rIs) <1 (9.88)

Let ¥ be the operator from Y, to itself, such that, for all w € Y;,, U(w) is the velocity of the weak

solution of
Ou — Au+ VII = g(w) + fL +divfs Ry x R

divu =0 R, x R4,
U= = U R7.

Let us prove that, for a good choice of A\, ¥ is a contraction on Y,.. First of all, for all wy, wy € Y,
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the difference d¥ := W(w;) — ¥(ws) is the velocity field of the weak solution of

8,55\11 — A0V + VII = g((SW) ]RJ,_ X Rd,
divé¥ =0 R, x RY,
6o =0 R,

where dw := w1 — wo. Since the Mild formulation yields

SU(t) = /0 t =8Py (6w)(s)ds,

then, by the definition ((9.86) of g, Lemma and Lemma the following inequality is fulfilled:

16%[[x <

C 1 1
{07 o 16V0®RODI e + V017 (RO, e}

A% Lrr T Ly L2t Lt

Imposing A > 0 big enough we finally obtain ||[0¥|y < ||0w|/x/2, namely V¥ is a contraction on Y;.
Then, by the Fixed-Point Theorem, there exists a function w in Y, such that, u is the velocity field
of the weak solution (u,II) of (9.87). Let us remark that Vu belongs also to L} L&D Indeed
Vu is formulated by

t
Vu(t) = etAVﬂ+/ Vell=AP (f1(s) + g(u)(s)) ds +
0
t t
— / Ae'"ARRR - R- fa(s)ds — / Ae)AR . R fy(s)ds,
0 0

then the result holds thanks to Corollary [0.2.7, Lemma [0.2.4 and Theorem [9.2.2] Finally, recalling
that II is determined by

1
== (-A) R (fi +g(u) — R R+ fo
we deduce that II belongs to L,’{Lgr/ (QT_Q), by Corollary [9.2.1.1 O

Remark 9.7.6. If we add a small extra regularity on u in Theorem assuming u in Bg/rp_lﬁ,
with e < min{1/(2r),1 —1/r,2(d/p — 2+ 1/r)}, the weak solution (u, II) fulfills also

dr dr

2dr 4r dr_ 2dr 4r
we LMLy " P NLZ T Lyt with Vue LILY " NI L¥ .
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Chapter 10

Appendix

10.1 Relation between the Oseen-Frank energy density and the
Gibbs free energy density

In section we showed the explicit formula of the Oseen-Frank energy density, that is

k k k
wp(d, Vd) = “(d vd)? + ;2(d rotd)2+§\dmotdy2+ oy
k +k '
+ 22 24

{tr{Vd®} — (divd)*}.
We justified this expression as a consequence of the Gibbs free energy density

k k
wp =k1(s1 + s2) + ka(t1 + t2) + %(51 + 82)2 + %(h + t2)2+
(10.2)

k:
53 5 (07 4 B3) + kaa(sa + 32>(t1 +t) — (Koo + ko) (s182 + tits),

evolving the six components of curvature . Now, we want to give an exhaustive proof of the
equivalence between and . First, let us recall that in section we introduced a
local right—handed Cartesian coordinate system y := (y1, y2, ¥3), centred at a point (, as depicted
in figure Figure We also imposed yg parallel to d(¢) and we denoted by d the director d under
the new coordmates From and we get

.= 8d1 dds B
div, d(0) = o0 —(0) + v —(0) = s1 + s2,
~ ~ B adz 8dl _
d(0) - rot, d(0) = oo, 0 D9, (0) = —(t1 + t2), (10.3)
~ 2 ~ 2
- - ddy 0ds
2_ | 991 oa2 2 p2
|d(0) A roty,d(0)]° = (8?13 (0)) + <8y3 (0)) by + b3,

with also
5 .5 ddy Odo 0di Odo
tr{(V,d)2} — (div, d)2](0 [277—2 }0:—2“ . 10.4
[I‘{( Y ) } ( vy ) ]( ) 8y2 8y1 ayl ayQ ( ) ( 1 2+3182) ( )
Thus ((10.1)) is satisfied replacing d by d and deriving under the new coordinates (y1, Y2, y3). Now,
we claim that the four terms ((10.3)) and ((10.4]) does not depend on the considered change of variables,

namely

251
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div, d(0) = div,d(¢), d(0) - rot,, d(0) = d(¢) - rot, d(C),
|d(0) A rotyd(0)[* = |d(¢) Aroted(Q)?,  tr{(V,d(0))?} = tr{(V.d(())*}-

The first equality turns out from

(10.5)

Ay d0) = 3 5,0 = 2 Ry |45(¢ + " Ry) | (0)
=10 ige
}3: 0d; 3 od
= 2 Rz] Ry 8372 (C) j;l 6jk 5 J (C) _ dlvxd@')

while the second equality is achieved by

} N 3 3 ad
d(0) - rot,d(0) = < Z 6s¢szrRiktle)dr(C)aTs(C)
rk,l=1 s,3,j5=1
2 J ad
= D emdr(Q), (Q) = d(€) - rotz d(©),
r.k,l=1

where we have used the following identity
3
Z EsinsrRikle = €rkl-
s,i,7=1
Now, in order to prove the third equality, we make use of the constraint |d| = 1 through
dArotyd=V,(|d?*) —d-V.d=—d-V,d.

The same identity is satisfied for d in the y—coordinates hence the third identity is equivalent to

3 3
(0) - V,d0)F = 3| ‘o) = Y| Y Rk zktleZj’“(of
i=1 j=1 =1 j,s,l,k=1 !
3 3 8dk 33 )
= Z ‘ Z Rikélsd 81‘ ‘ Z ’ Z zkdl ))
=1 sl k=1 t =1 k=1
3
= Z [(R{d(¢) - Vd()}),]> = |R{d(C) - VA({)}? = [d(C) - Vd({)[*.
i—1

Lastly, we achieve the fourth identity as follows:

>, ad > ady, ad
§ : _ E Lt L tp 2T
tI‘{ V d — ayl (O) - -j R Rzg Rl] 01‘1 (g)R]r Rsz 81‘3 (C)
ady, Od ady, , ., 0d, 2
E 0510 g 0510 =t =d .
ol skOlr a (C) Oms = skOlr a (C) 6$k ( ) r{(V (C)) }

Thus, summarizing the above considerations, we can finally conclude that ((10.1)) and (10.2) stand
for the same energy density.
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10.2 The Oseen-Frank identity

In this section we prove a useful tensor identity for the Oseen-Frank energy density wp (3.9). It
8wp 8wp 3wF
T, = ¢ (d— dy . —d-)zo, 10.6
S €isl | i 8dz + adi,j l,j + 6dj,i 7, ( )
for any s = 1,2, 3. First, let us remark that from the identity
dArotd=V(d-d)—d-Vd=—d-Vd,

wg can be expressed in summation form as follows:

reads as follows:

wp(d,Vd) =

F k k koo + k
ki1 — koo — k k

L (dk,jdk,j — dy s — didjdk7jdk7i)+ (107

k koo + k
+ %djdi,jdkdi,k + %di,jdj,i

ki1 — koo — k k k kas — k

= T () g gk = didyd

Thus, we can compute each derivative of wg, obtaining
aale = (k33 - k22)djdk,jdk77j7
8wp
e (k11 — koo — k2a)0ijdk i + koodi j + koad; ;i + (kss — koo)dd;d, k.
Z?]

Hence, applying this result to (10.6) yields that
I, = fisl{(k?)?) — koo)djdy jdyidy + [(ki1 — koo — koa)dsjdy kdyj + koodij + koad; i+
(k33 — k22)dkdjdi,k} dij + [(k11 — ka2 — k2a)8jidy kdyj + kaadji + ko adij+

(k3z — k22)dkdidj,k} dj,z} = (k33 — k22) €1 [djdk,jdk,idl + did;d; kdp ; + didkdj,kdj,l} +

1
Til

(k11 — koo — koa)dy keist [dl,i + dz‘,l} +kaoe€isi [di,jdl,j + dj,idj,l] +ko4 €1 [dj,idl,j + di,jdj,l} .

Each tensor Tﬁ, for k =1,2,3,4, is symmetric on (4,1), thus we deduce that eisszff is null, for any

s =1,2,3, which yields (10.6)).

10.3 Some specifics about the Ericksen-Leslie system

In section we presented the general Ericksen-Leslie system, deriving its formulation from the
balance of the linear momentum , the balance of angular momentum , the conservation
of mass and finally the work postulate . In this section we give some more specifics for
the interested reader.

First, recalling that the tensor formulations of the surface force o; and the surface moment [;
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are o;vj and l;;v;, with v the normal to the boundary oU, then the work postulate (3.16|) becomes

/,o(F.u+K.w)dm+/ (g-u—{—l-w)dy:B <1p\u|2—|—wp)dm—|—/ Ddzx. (10.8)
U ouU Dt Jy \2 U

T IT

Moreover, thanks to the Green’s theorem, we can develop Z into
1= / (O’Z‘jui + lijwi)yj = / (al-jui + lwwz) jdﬂf
ou U ’
= / (0’,‘]‘7]‘% + oijug g+ i jw; + lijwi7]~)dw,

U

hence, recalling (3.4) and ( -, we achieve
1= / (puzuz — pFiui + oijuij — pKiw; — €510 j,w; + lijwi,j)dl',
U

while the Reynolds’ transport theorem allows to express Z7 as follows

II:/U<£t[p|2|2} —i—wp)d:c—/ <p|22+pu u+wp)dx—/U(pu-u+wF>dx.

Substituting the terms Z and ZZ and from the arbitrariness of the domain U we can write ((10.8))
in point form as follows
iU + lijwi,j — E4jk0jkW; = wg + D. (109)

Now, we analyse the material derivative of the Oseen-Frank energy density wpg. First, we recall
that from the explicit formula (3.9), wr depends only on d and Vd. Thus, its material derivative
fulfils

i e

The definition of material derivative implies

Wp =

D .
Ft [dm} = 8td¢,j + uké,ijdi = aj (8td2- + ukakdi) — uk,jdi,k = (di)’j - uk,jdi,ka
so that, wg is determined by

8wF awF

Wp = Td —+ 8d” ((d ) u;wdl k)
_ Owp owp ow
sd S sd dz
= 9d; o €islWsd] + S5 dd; (6 [w Z)J dd; Ulw k
8 Wr 8'wF Bwp awF

wgd, wg._id islWsdy i — ——up id;
8dz — 5 €islWsay + 8d”€zsl s,j a1 1 6d,~,j€”l sQl,j adz‘,j kg Wik

. 8wF 6wF awp awF
= Cisl [w< dd; i+ ad;. dlﬂ) ad”wwd’} B ad”“’“d’k

Making use of the following identity concerning the material derivative wg

6wF awp 8wF
a d;1) = 10.1
50 * o o) =0 (10.10)

L := €5 (dl
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for any s = 1,2,3 (see the appendix for more details), we achieve that wp can be expressed as
follows

owp 8w F owp
w = €451 |:

s.qid —di| — ——up id; k.
8d”w A0 Odj’i j’l} dd; ; i ik
Then, the balance law - becomes

owr owp owp

Tijlij + lijwij — €ijkOjKWi = €isl [8d” wsjd — Y 3d,, Zdy z] 2ds, g jdi g + D,
namely
owp owp Owp _
Ui, j (O’U Ddr, ~—d ,Z) + w; <l — €;51ds adl]) — W€l (051 — 8dk7ldk’s) =D. (10.11)

As exposed by Leslie in [67], the rate of dissipation D is necessarily positive, thus the sign arbi-
trariness of w;, w; ; and u; ; leads to the conclusion that the stress tensor o;; and the couple stress
stress [;; can be expressed as follows:

ow 5
045 = —pdij W’idk,i+0i]‘, (10.12)
3wF ~
lij = €iqds = + ;. 10.13
J €5l adl,j + 7 ( )

Here p is an arbitrary pressure which arises from the incompressibility condition, while & and [ are
dynamic contribution. The tensor o;; is known as the Leslie stress tensor or the wviscous stress.
Moreover ([10.11]) reduces on a constriction for the dynamic contributions, namely

Gijuij + lijwij + wieijpdy; = D > 0. (10.14)

The Ericksen-Leslie equations

In order to proceed further, we have to analyse the dynamic contributions ¢;; and fij to the total
stress tensor o;; and the couple stress tensor [;;. This contribution is going to be expressed as
relations between the stresses and the dynamic of the material, the so called constitutive relations.

First, we assume that the dynamic contributions can be formulated as functions of the director
d, the gradient of the velocity field Vu and the local angular velocity of the director w. Then
inequality presents a linear term on l~ij, since there is no dependence on the gradient Vw.
Assuming sign-arbitrariness of w; j, we achieve that there is no dynamic contribution to the couple
stress tensor, that is
lij = 0.

Thus the dynamic contribution reduces to the viscous stress ¢;; and inequality (10.14]) becomes
OijUi j + Wi€;jk0k; = D > 0. (10.15)

Now, we also assume the dynamic contributions to be invariant under a rigid body motion,
which leads (see for instance [107]) the viscous stress &; ; to be dependent on d, w and the rate of
strain tensor A, given by . Further developments allow us to formulate the viscous stress o;;
in its most widely adopted and well known form

5’1’]’ = alAlkdkdldidj + agdiNj + agNidj + 044Aij + Ozg,deikdk + aﬁdiAjkdk. (10.16)
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Here, the coefficients «q,...ag are known as the Leslie viscosity coefficients. Inequality ((10.15))
yields the following restriction (see [107], section 4.2.3):

Y1 = a3 —ag >0,

ayg > 0,

204 + a5 + ag > 0,

200 + 3ay4 + 2a5 4+ 2a6 > 0,
4v1 (204 + a5 + ag) > (2 + ag + 72)2.

We are now able to perform the dynamic equations, coming back to the balance laws of linear

momentum (3.4)) and angular momentum (3.14)). Replacing the total stress tensor o;; (10.12) and
the couple stress tensor ((10.13]), the dynamic equations become

p(uis + uguig) + Vp = pFy + [SZF. Qi + i ; (10.17)
5J )
) ] ~ 8wF _ 8wp .
pKZ + €isl |:0'sl + (ds%> J 78dl’j dk,l] =0. (1018)

Now, let us remark that

€is10s = 01 €551 Appdpdrdsd) o€ ds Ny — aze; Nids + augeiqAg +
—_———
=0 =0
+ as€igdiAskdy, — aseigdiAgpdy,

hence, denoting with v; := a3 — a9, 72 := ag — a5 and defining § = —v1 N — 12 An, we get
€is10s1 = €isidsgi = (d A g)l

Finally, recalling also the identity (10.10f), the angular momentum equation (({10.18]) assumes the
following form

awp> Bwp} _o
J

K; ist[N ( - — 10.19
P + €5105 | g1 + ad; ( )

od,

If we assume that the external body force K can be expressed as pK = d A G, with G the so-called
generalized body force, then ([10.18]) becomes

=0,

€istds [Gl + g1+ (awF ) ; pr]

adld - 8dl

or in a no-index form 5 5
~ . wr wg
anlc div {51 - 2] =o.
TITI\ovas T ad
As suggested by Ericksen [41], it is natural assuming F' and G to be produced by gravitational
or electromagnetic fields, however in this thesis we are going to ignore these contributions. Sum-

marizing all the previous considerations, we can finally perform the well-known FEricksen-Leslie
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equations, which reads as follows

(O,p+u-Vp=0,

p(Ou+ v - Vu) =divo,

divu =0, (10.20)
dA(g+h)=0,

d]* =1

where the total stress tensor o is given by

Owp

ad d]“—I-UU

0ij = —P0ij —

with the viscous stress & determined by (3.17)), and also denoting by h the molecular field

awF}_aﬂ

h= dv{aw EY

10.4 Uniaxial behaviour of the Qian-Sheng system

In this section we show the main correlation between the Ericksen-Leslie and the Qiang-Sheng
theories. The Ericksen-Leslie system is the most widespread model for the hydrodynamics of
uniazial nematic materials, while the Qian-Sheng one makes use of the de Gennes order tensor
that also describes the evolution of biazial nematic liquid crystals. Nevertheless, the Qian-Sheng
model should be seen as an extension of the Ericksen-Leslie one: we are going to prove that if we
restrict the order tensor to be uniaxial, as in , then the two theories coincide.

We begin our proof showing that the bulk energy ¥ 5(Q) is null when the order tensor
() assumes an uniaxial form.

Lemma 10.4.1. Let QQ be an uniaxial order tensor
b+ Vb2 — 24ac

4c
where d is a unit vector in S* C R3 and a, b and c are the constants appearing in the bulk energy
density ¥ (3.25). Then

8
TZJZJ?BC(QQ) =a@ — < tr{QZ} > + cQtr{Q*} = 0.

Proof. As @ assumes the uniaxial form ([10.21)), we have that

1;1} 82(d®d+ d) and tr{Q2}:2§2.

I
Q= s(d ®d— ?d), such that s = (10.21)

Q2:SQ[(d®d)(d®d)—fd®d+

Thus the projection through . of the variational derivative of ¥5(Q) assumes the following form:

2D faa- ) o[ (1 ) - 2] 2 (0 a- B

= (CL—%S%-Q%) (d@d—%) :é(3a—bs—|—2052)Q

Since the values of s in (10.21]) are the zeros of 3a — bs + 2cs?, then the result follows. O
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We are now ready to prove our main result, which reads as follows:

Proposition 10.4.2. Let (u, Q) be a smooth solution of the Qian-Sheng system (3.37) with inertial
density J = 0. Let us assume that the order tensor Q(t,x) is uniaxial at every point x and for any
time t, Id

Q(t,z) = s<d(t,x) ® d(t,z) E)' (10.22)

where d(t,x) is a smooth function which returns value into the sphere S? in R® and with the constant
s given by b— b2 — 2ac

S=
Then the couple (u, d) is solution of the general Ericksen-Leslie system (3.18)), for suitable value

of the Leslie viscosity coefficients.
Proof. We begin analysing the uniaxiality of @) (10.22)) together with the order tensor equation

(0~ (9. Q) — AQ = —za‘fy A,

We claim that these lead to the angular momentum equation of the Ericksen-Leslie system
dA (=7A —y2Ad+h) =0, (10.23)

for a suitable value of coefficients v and 72, where we recall that .4 and h stand for the co-rotational
time flux of d and the molecular field respectively, whose formulas are given by
6wF (d, Vd) ) _ 8wF(d, Vd)

od; ; j ad; )

_ Uiy — U

N =d; — (Qd); = d; 5

d;, and h,-:(

For the sake of simplicity, in what follows we consider the simplest form of the Oseen Frank energy
density, that is V]2
wr(d,Vd) = wp(Vd) = T

so that the elastic field h in ((10.23)) reads as h = Ad. In this form, the density wg is of the same
shape with respect to the elastic energy density (3.29) for the de Gennes tensor @, i.e.

\V4 2
ve(@) = V2L

We leave to the interested reader the task of formulating analogous results when the general case

wp and e given by (3.9) and (3.26) respectively, occurs.
Lemma [10.4.1] and the uniaxiality of @ (|10.21]) yield the order tensor equation to read as

M182(d®d+d®d— Q, (d®d)]> — 2A(d® d) = ppA.

that is

Now, let us remark that for any ¢,j € {1,2,3}

[, (d®d)]i; = (Ad®d) - (d®d)Q),;
= (Qlkdk)d] — dz(dek]) = (d & (Qd) + (Qd) X d)ij’

hence Q-2 Q =s(dod+dod—[Q,(dod))=s/@d+sd® N. (10.25)

N
ow A(d X d)ij = Adidj + diAdj + Qdiykdjyk,

So that (|10.24)) in index form reads as
,LL182 (,/%dj + dr/fg) — g2 (Adidj + diAdj + Qdi’kdj’k) = ,LLQAZ‘j.
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Multiplying both the left-hand and right-hand sides by d; and taking the sum in ¢, we get

,u152 (e/i/zdzd] + J%) — 82 (Adldzdj + Adj + 2 di,k:di dj7k) = ,LLQAijdi,
=0
where we have used d; yd; = 9g|d|?/2 = 0. Thus (10.24) becomes
2N — $2Ad — ppAd = —ad

where o = (1524 — s2Ad) - d. Taking the wedge product between the above equation and d, we
finally obtain

(,ulsQ,/V — s2Ad — ugAd> ANd =0,

that is the angular momentum equation (10.23)), imposing 1 = p1 and 72 = —pa /s

Now, we handle the linear momentum equation for the velocity field u, that is

we +u- vu_@mwp div{ — VQ © VQ + BiQtr{QA} + B5AQ + BQA}+

2
+div{Z(Q [ Q)) + m[Q. Q- 2 QII}-
and we claim that under the uniaxial condition (|10.22)) it corresponds to the linear momentum
equation of the Ericksen-Leslie system (3.18), i.e.

u +u - Vu = div o.
We begin anlysing each stress tensor on the right-hand side, first
(VQOVQ)y; =5 (V(d©d) 0 V(d@d),; = s*(dadg),i(dadp) ;
= $%da,idg da,jds + $°dadg ida,jds + 5°dg idgda,jdg + 5°dgidg dadps j
= 25%dn i doj = $*(Vd © Vd),j,

where we have used d,;d, = dg;dg = 0. Thus, recalling that the total stress tensor o (10.12) is
given by

ow -
0ij = —poij — Ddr, £ ki + Gij = —pdi; — (Vd © Vd);; + 645,
it remains to identify the Leslie VISCOUS stress & ((10.16|), given by
&ij = OélAlkdkdldidj + Ozgdic/% + Ot3</Vidj + Oé4AZ'j + a5deikdk + Oé6diAjkdk~ (10.26)

First, we observe that

0;
B1Qitr{QA} = 15 (did; — 7)Alkdldka

B5(AQ)ij + Bs(QA)ij = BssAixdrd; + BesAjrdrd; +
moreover, recalling |D
H2

mlQ, Q- [, Q]]ij =ms’ded, de N + 4 @d);j
= 8 (diA; + didpNidj — diMedidj — Nidj) = pis* (diNj — Nidy),

Bs +565Aij7
3

where we have used d - A = d - (d — Qd) = 0. Hence, summarizing the previous considerations,
imposing

aq = p1s%, Qg = p1s® + s, az = —p118° + s,

ag =g+ BHlos oy = fs, ag = Bgs.



and considering the new pressure p = p + p2sAd - d/3, u is solution of
ur +u - Vu = divo,

which concludes the proof of the Proposition. O

Remark 10.4.3. Vice versa, one can show that if (u, d) is solution for the Ericksen-Leslie system
(13.18), then the couple (u, Q), with Q defined by (10.22)), is solution of the Qian-Sheng equations.

The proof is equivalent to the one of the above proposition, and it is left to the interested reader.
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