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Résumé 
La technique de Georadar (GPR) est actuellement largement utilisée comme une 

technique non-destructive de sondage et d'imagerie dans plusieurs applications du génie civil 

qui concernent principalement: l’inspection des structures et des matériaux de construction, la 

cartographie des réseaux enterrés et des cavités, la caractérisation des fondations souterraines 

et du sol ainsi que l'estimation de la teneur en eau volumique du sous-sol. Le radar GPR est 

une technique en continuelle évolution en raison de l'intégration toujours plus poussée des 

équipements électroniques, des performances des calculateurs numériques, et des traitements 

avancés du signal. La promotion de cette technologie repose sur le développement de 

nouvelles configurations de systèmes et d'outils de traitement des données en vue de 

l'interprétation des images du sous-sol. Dans ce contexte, les travaux de cette thèse présentent 

tout d'abord le système GPR ULB (Ultra large bande) à double polarisation couplé au sol, 

lequel a été développé récemment au laboratoire. Par la suite, les traitements des données ont 

été focalisés sur le développement d'outils d'analyse en vue d’obtenir, à partir des images 

brutes (Bscans), des images plus facilement lisibles par l'utilisateur. Il s’agit d'améliorer 

l'interprétation des données GPR, en particulier dans le cadre de la détection de canalisations 

urbaines et la caractérisation des sols. Les moyens de traitement utilisés concernent au cours 

d’une étape de prétraitement l’élimination du clutter en utilisant des adaptations et des 

extensions d’algorithmes fondés sur les techniques PCA et ICA. Par la suite, une technique de 

traitement d'image ‘’template matching” est proposée pour faciliter la détection d’hyperbole 

dans une image Bscan. La diversité de polarisation est abordée dans le but de fournir des 

informations supplémentaires pour la détection d'objets diélectriques et des discontinuités du 

sous-sol. Les performances de nos outils d'analyse sont évaluées sur de données synthétiques 

(simulations 3D FDTD) et des données de mesures obtenues dans des environnements 

contrôlés. Pour cela, nous avons considéré différentes configurations de polarisation et des 

objets à caractéristiques diélectriques variées. Le potentiel de discrimination des cibles a été 

quantifié en utilisant le critère statistique fondé sur les courbes ROC. 
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Abstract 
The Ground Penetrating Radar technique (GPR) is now widely used as a non destructive 

probing and imaging tool in several civil engineering applications mainly concerning the 

inspection of construction materials and structures, the mapping of underground utilities and 

voids, the characterization of sub-structures, the foundations and soil and estimation of sub-

surface volumetric moisture content. GPR belongs to a continuously innovative field due to 

electronic integration, high-performance computing, and advanced signal processing. The 

promotion of this technology relies on the development of new system configurations and 

data processing tools for the interpretation of sub-surface images. In this context, the work 

presents first the dual polarization UWB ground coupled GPR system which has been 

developed recently. Then, the data processing has focalized on the development of analysis 

tools to transform the raw images in a more user-readable image in order to improve the GPR 

data interpretation especially within the scope of detection of urban pipes and soil 

characterization. The data processing concern clutter removal using some adaptation and 

extension of the PCA and ICA algorithms. Afterwards, a template matching image processing 

technique is presented to help the detection of hyperbola within GPR raw B-scan images. The 

dual polarization is finally shown to bring additional information and to improve the detection 

of buried dielectric objects or any dielectric contrasts within the subsurface. The performance 

of the tested data processing and the influence of the polarization diversity are illustrated 

using synthetic data (3D FDTD simulations) and field data in controlled environments. 

Different polarization configurations and dielectric characteristics of objects have been 

considered. The potential for target discrimination has been quantified using statistical criteria 

such as ROC. 
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Glossary 
  

BSS Blind source separation 

CMP Common midpoint 

ECG Electrocardiogram scan 

EIG Eigenvalue decomposition 

EM Electromagnetic 

FA Factor analysis 

FDTD Finite Difference Time Domain 

FOM Fixed offset method 

FR4 Flame Resistant 4 

GPR Ground Penetrating Radar 

ICA Independent component analysis 

ICs Independent Components 

IF Intermediate Filter 

IFFT Inverse Fast Fourier Transform 

ML Maximum Likehood 

MST Mean (or median) subtraction technique 

PCA Principal component analysis 

PCs Principal Components 

PSCNR Peak signal to Clutter and Noise Ratio 

PSCR Peak signal to clutter ratio 

PVC Polyvinyl chloride 

RCS Radar cross section 

ROC Receiver operating characteristic 

SCNR Signal to Clutter and Noise Ratio 

SCR Signal to Clutter ratio 

SFCW Stepped-frequency continuous wave 

SMA Sub-Miniature version A 

SNR Signal to noise ratio 

SVD Singular Value Decomposition 

SW Scattering width 

TE Transverse Electric 
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TM Transverse Magnetic 

UWB Ultra Wide Band 

VNA Vector Network Analyzers 

WARR Wide-angle reflection and refraction 

WGN White Gaussian Noise 

 

  



9 

 

Table of contents 

Résumé ...................................................................................................................................... 2 

Remerciements ......................................................................................................................... 3 

Abstract ..................................................................................................................................... 6 

Glossary ..................................................................................................................................... 7 

Introduction ................................................................................................................. 13 

Chapter 1: Background of the ground penetrating radar technology and its 

applications for civil engineering purposes .............................................................. 17 

Résumé .................................................................................................................................... 17 

I. Introduction ......................................................................................................................... 19 

II. Basics of the GPR measurement technique .................................................................... 19 

II.1. GPR technologies................................................................................................................... 21 

II.2. Bandwidth and depth resolution ............................................................................................ 21 

II.3. Exciting pulse shape .............................................................................................................. 22 

II.4. Antennas in GPR.................................................................................................................... 23 

II.5. The radar range equation ....................................................................................................... 24 

III. GPR surveys ..................................................................................................................... 25 

III.1. Plane reflector ....................................................................................................................... 27 

III.2. Target reflection (Hyperbolic signature) .............................................................................. 28 

IV. EM wave propagation in civil engineering materials ................................................... 29 

IV.1. Maxwell's equations ............................................................................................................. 29 

IV.2. Complex conductivity and permittivity ................................................................................ 30 

IV.3. The wave propagation equation............................................................................................ 31 

IV.4. Dielectric characteristics of materials .................................................................................. 32 

IV.5. Polarization mechanisms of dielectric materials .................................................................. 34 

IV.6. Mixing models ...................................................................................................................... 35 

V. Waves polarization ............................................................................................................ 36 

VI. Processing GPR data ....................................................................................................... 37 

VII. Applications of GPR surveys in civil engineering ....................................................... 39 

VIII. Challenges in the detection and characterization of utilities .................................... 39 

IX. Conclusion ........................................................................................................................ 41 

Bibliography ........................................................................................................................... 42 

List of figures and tables ........................................................................................................ 48 

Chapter 2: Ground-coupled GPR system and experimental test sites .................. 49 

Résumé .................................................................................................................................... 49 



10 

 

I. Introduction ......................................................................................................................... 51 

II. GPR SFCW system ........................................................................................................... 51 

II.1. Overview ................................................................................................................................ 51 

II.2. Antenna geometry and design ................................................................................................ 52 

II.3. Parametric study..................................................................................................................... 55 

II.4. Tx and Rx Antenna configurations for GPR survey .............................................................. 55 

II.5. Acquisition system ................................................................................................................. 57 

III. Test Sites ........................................................................................................................... 58 

III.1. Sand boxes ............................................................................................................................ 58 

III.2. Embankment near the IFSTTAR building ............................................................................ 59 

III.3. The urban test-site Sense-City .............................................................................................. 60 

IV. Conclusion ........................................................................................................................ 62 

Bibliography ........................................................................................................................... 63 

List of figures and tables ........................................................................................................ 64 

Chapter 3: Evaluation of statistical-based clutter reduction techniques for the 

pre-processing of ground-coupled GPR images ....................................................... 65 

Résumé .................................................................................................................................... 65 

I. Introduction ......................................................................................................................... 67 

II. Existing clutter reduction techniques .............................................................................. 68 

III. Principal Component Analysis (PCA) ........................................................................... 77 

III.1. Introduction .......................................................................................................................... 77 

III.2. Algorithm ............................................................................................................................. 78 
III.2.1. Matrix Decomposition ................................................................................................................... 78 
III.2.2. Clutter reduction using PCA .......................................................................................................... 79 

III.3. Improved clutter reduction technique using PCA................................................................. 81 
III.3.1. Problem overview .......................................................................................................................... 81 
III.3.2. Principle and illustration for modified PCA .................................................................................. 81 
III.3.3. Application to the data ................................................................................................................... 82 

IV. Independent component Analysis (ICA) ........................................................................ 84 

IV.1. Introduction .......................................................................................................................... 84 

IV.2. Application strategies for ICA ............................................................................................. 84 

IV.3. Algorithm ............................................................................................................................. 86 

IV.3.1. Preprocessing ................................................................................................................................. 86 
IV.3.2. The FastICA algorithm .................................................................................................................. 87 
IV.3.3. Independence estimation ............................................................................................................... 88 
IV.3.4. ICs selection .................................................................................................................................. 89 

IV.4. ICA applied to GPR data ...................................................................................................... 90 

V. Performance assessment of the clutter reduction techniques ....................................... 91 

V.1. Introduction ........................................................................................................................... 91 

V.2. Assessment criteria ................................................................................................................ 92 
V.2.1. Qualitative comparison ................................................................................................................... 92 
V.2.2. Signal to Clutter plus Noise Ratio (SCNR) .................................................................................... 92 



11 

 

V.2.3. ROC curves ..................................................................................................................................... 93 

V.3. Results on the simulated data set ........................................................................................... 95 
V.3.1. Data set ........................................................................................................................................... 95 
V.3.2. Results ............................................................................................................................................ 97 

V.4. Results on the field data set ................................................................................................. 108 
V.4.1. Data set ......................................................................................................................................... 108 
V.4.2. Results .......................................................................................................................................... 108 

VI. Conclusion ...................................................................................................................... 114 

Bibliography ......................................................................................................................... 116 

List of figures and tables ...................................................................................................... 121 

Chapter 4: Hyperbola fitting and template matching for target detection within 

GPR Bscan images .................................................................................................... 125 

Résumé .................................................................................................................................. 125 

I. Introduction ....................................................................................................................... 127 

II. Ray-path model ............................................................................................................... 127 

III. Template matching ........................................................................................................ 129 

IV. Hyperbola extraction and fitting .................................................................................. 130 

V. Validation on numerical results ..................................................................................... 131 

VI. Conclusion ...................................................................................................................... 133 

Bibliography ......................................................................................................................... 134 

List of figures and tables ...................................................................................................... 136 

Chapter 5: Contribution of polarization diversity to target detection ................ 137 

Résumé .................................................................................................................................. 137 

I. Introduction ....................................................................................................................... 139 

II. Previous studies ............................................................................................................... 140 

III. Multi-configuration for data acquisition ..................................................................... 142 

IV. Analytical scattering model for cylindrical targets..................................................... 143 

IV.1. Modeling Techniques ......................................................................................................... 143 

IV.2. Hypothesis .......................................................................................................................... 144 

IV.3. Parametric study ................................................................................................................. 145 

IV.4. Scattering width (SW) ........................................................................................................ 148 

V. FDTD simulation results ................................................................................................. 149 

V.1. Geometries modeled ............................................................................................................ 149 

V.2. Results ................................................................................................................................. 151 

VI. Experimental results ...................................................................................................... 160 

VII. Conclusion ..................................................................................................................... 165 



12 

 

Bibliography ......................................................................................................................... 167 

List of figures and tables ...................................................................................................... 170 

Conclusion and perspectives .................................................................................... 173 

Appendix .................................................................................................................... 177 

Appendix A: Fresnel scattering equations ......................................................................... 178 

Appendix B: Scattering from a cylindrical infinite pipe .................................................. 179 

I. Case of a TM
Z
 polarization (E in z direction)............................................................. 179 

I.1. Case of a perfectly conductive cylinder ................................................................................ 180 

I.2. Case of a dielectric cylinder .................................................................................................. 180 

II. Case of a TE
Z
 polarization (H in z direction) ............................................................... 182 

II.1. Case of a perfectly conductive cylinder ............................................................................... 183 

II.2. Case of a dielectric cylinder ................................................................................................. 183 

Appendix C: ICA algorithm ................................................................................................ 185 

 

 

 

 

 

 

 



13 

 

Introduction
1
 

I. Background and objectives 

The aim of the presented study is to develop measurement methods and data processing 

tools for the application of ultra wide band (UWB) ([0.3;4] GHz) ground penetrating radar 

(GPR) to survey civil engineering structures, and more specifically to detect small urban 

utilities, cracks, damages and discontinuities in civil engineering structures. GPR system is a 

non-destructive technique used in the measurement of electromagnetic waves that has been 

scattered by subsurface discontinuities. The use of ultra wide band allows to obtain a trade-off 

between time resolution and penetration depth. Research studies aim to obtain quantitative 

information and data interpretation relative to the subsurface of civil engineering structures. 

GPR is a promising technology being commercialized and constant innovative developments 

are made by researchers. 

The two institutes IFSTTAR and Cerema have been participating for about 20 years to 

the development and research on the application of GPR systems to geophysical surveys and 

then, to the survey of civil engineering structures, e.g., X. Dérobert [1], C. Fauchard [2], D. 

Leparoux [3], F. Sagnard [4], J-M. Simonin [5], F. Liu [6], C. LeBastard [7], M. Adous [8], 

K. Chahine [9], Among others, past studies have focused on the use of UWB to measure thin 

pavement thickness, the detection of cracks and pipes, dielectric characterization of civil 

engineering materials (e.g., Adous [8]), data processing methods for improving the time 

resolution of GPR (LeBastard, 2007) and their extension to dispersive materials (Chahine, 

2010), etc. The most recent work deals with the water content and the water gradient 

estimations within concrete with specific GPR configuration (Xiaoting, 2015 [10]). 

GPR performance for target detection and characterization imposes to overcome several 

problems such as:  

- The degree of heterogeneities and the multi-layer subsurface structure: the multilayered 

composition of civil structures with a variety of dielectric characteristics such as soils, 

concrete, asphalt… and the presence of air gaps, small debris, and gravels… , results in 

complex GPR images with large magnitude echoes overlapping target echo (i.e.: the clutter or 

horizontal echoes, and discontinuity echoes). The suppression of these echoes appears as a 

first step before any further data processing for interpretation. In this work, algorithms have 

been selected to suppress horizontal echoes and have been evaluated on numerical and 

experimental data in chapter 3. 

- The presence of humidity in outdoor ground structures due to weather conditions. The 

humidity affects in a significant way the effective permittivity of the soil and the attenuation 

of EM waves, making GPR measurements much more difficult to interpret.  

- The EM field scattering from subsurface targets: the difficulty encountered here is that 

the scattering is mostly related to the low dielectric contrast between the buried dielectric 

target and the media, and to the incident EM field properties (magnitude, angle of incidence, 

                                                 
1
 References cited in the introduction are included in chapter 1 bibliography 
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phase, and polarization). A preliminary study has been made on the polarization effect as a 

solution in the detection of low contrasts (chapter 5). Analyses of experimental and numerical 

data have been made.  

- In this work, we favored the evaluation of a newly developed bowtie antenna described 

in chapter 2. The antenna was developed by F. Sagnard before the beginning of the thesis. It 

has the advantage of being compact in size (size of an A4 sheet) compared to other UWB 

antennas. Also, using such antennas gives the benefits of flexibility (antennas relative 

orientation) in extracting information related to the polarization diversity.  

The final step in GPR processing consists in image processing techniques for the 

detection of objects (chapter 4), and afterwards their classification using inversion and 

migration to extract information about the nature, position, depth and shape of each target. 

 

II. Chapter content 

This thesis can be divided into three main parts: the first part constitutes chapters 1 and 2. 

They contain definitions and small portions of work, which contribute directly or indirectly to 

the developed work in chapters 3 and 5. The second part represented by chapters 3 and 4, 

focuses on data processing, for the suppression of clutter and unwanted echoes present in the 

GPR images and obscuring target response, and for later the detection of hyperbolic 

signatures. As for the third part studied in chapter 5, it is dedicated to extracting the features 

of applying multi-polarization surveys on GPR cylindrical targets.  

For this aim, the first chapter introduces the definition of an UWB GPR system, its 

operation and functionality, and the technologies required and used by such system. However, 

the detection of buried targets is a complex and hard process, and much pre-processing and 

understanding of the media properties and physical phenomenon is needed before any 

analysis. Thus, the presentation pursued by an explanation of the different surveys used for 

sweeping the sub-surface; the ground media dielectric properties, especially the materials 

present in civil engineering structures; EM wave propagation; medium velocity estimation; 

some signal pre-processing techniques, and the challenges encountered in this application. 

Much work is done in the field of processing GPR data for civil engineering applications in 

Europe and published continuously with the COST Action and the EGU community; the work 

concerns the characterization of subsurface dielectric properties in geophysical applications, 

the detection of urban utilities in civil structures, the detection of cracks in transportation 

infrastructures, etc.  

Chapter 2 describes the bi-static UWB GPR system used system and its radiation 

characteristics. GPR system uses ground-coupled radar configuration and is made of two 

bowtie-slot antennas, developed at Ifsttar by F. Sagnard [11], connected to a Step-Frequency 

Continuous Wave (SFCW) generator. In addition, the evaluation test sites are described in 

detail in this chapter: they include two sand box, the clay/silt heterogeneous ground around 

the Ifsttar building, and the urban controlled test site (mini sense-city). The probed tests have 

similar natures to civil engineering structures and with different medium dielectric properties, 

compaction, water content, and degree of heterogeneities (their dimensions and space 
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distribution). Those characteristics influence in a significant way on GPR signatures and 

detection and introduce a large diversity for experimental results.  

Chapter 3 defines the clutter as an unwanted signal composed of the superposition of the 

ground surface reflection, antennas coupling signal and reflection of the heterogeneities 

present in the subsurface. A review of some existing clutter reduction techniques is presented 

then a detailed description of two statistical clutter reduction techniques (PCA Principal 

Component Analysis and ICA Independent Component Analysis) is presented for the 

suppression of shallow and deep targets (with and without clutter overlap). Those techniques 

are not well compared in literature for shallow and deep objects, however they seems to give 

good performance and well adapted to the application under scope with no prior knowledge of 

the sub-surface and target signatures. The performance of each technique is compared to the 

conventional mean subtraction technique and evaluated on different type of targets and at 

different depths. The simulation environment is considered homogeneous, however the field 

test environment is heterogeneous. 

Chapter 4 explicates the equations and the geometry of the propagation path of EM 

waves between the transmitter and the receiver, and then it uses the template matching 

algorithm developed by F. Sagnard et al. [12], and the linear least-square fitting to detect 

hyperbolas presented in the Bscan image for later identification according to the ray-path 

model. The identification allowed us to extract the buried target parameters: position, depth 

and radius. It is also demonstrated with a numerical example. 

Chapter 5 discusses how changes in the orientation of the antennas (transmitter and 

receiver) could affect the amplitude, the arrival time and the form of collected signatures. The 

orientation of the antennas relative to each other and relative to the target (explicitly to the 

direction of movement) is used to define many possible configurations and each configuration 

of the antennas defines a particular polarization. The chapter begins with a general illustration 

of the work developed in the literature on polarization diversity effect on the detection of 

pipes and cracks, and then we study this effect for cylindrical shaped targets with small size 

compared to the wavelength; the study is made according to an analytical model and through 

experimental and simulated data. The analytical model used is based on the method of Mie, 

using an incident plane wave and Maxwell equations to compute the dispersion of waves 

refracted and reflected on an infinite cylinder. While the measurement data are performed at 

various sites and in correspondence with the simulation data, they were used to validate the 

results of the analytical study. 
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Chapter 1: Background of the ground 

penetrating radar technology and its 

applications for civil engineering purposes 

 

Résumé  

Ce chapitre introduit les notions nécessaires à la compréhension des différents chapitres 

de ce travail. Ainsi, sont présentés le principe de fonctionnement du système GPR, des 

notions de base sur la propagation des ondes électromagnétiques, ainsi que leur interaction 

avec les propriétés diélectriques des matériaux à ausculter, quelques notions de base sur le 

rayonnement des antennes utilisées et leurs caractéristiques de polarisation et enfin, la 

formation des images radar à analyser. Dans le cadre de l’application, les éléments à détecter 

dans l’image radar correspondent à des hyperboles de réflexions sur des cibles ponctuelles.  

Le travail présenté dans ce document se focalise sur la détection de petites cibles 

urbaines enfouies, en exploitant un nouveau système de radar géophysique ultra large bande 

(ULB) couplé au sol, et qui est présenté au chapitre 2. Les besoins de l’application nécessitent 

de détecter des cibles peu profondes et de petites tailles par rapport à la longueur d’onde. 

Dans l’image radar Bscan, la signature de la cible, i.e. une hyperbole, est masquée 

partiellement par un signal parasite dominant, i.e.  le clutter de sol. Pour améliorer la détection 

et l’identification des cibles, deux solutions sont explorées dans les chapitres 3 et 5. Une 

première solution concerne l'élimination du signal de clutter en utilisant des techniques 

statistiques de traitement du signal; trois techniques de traitement sont sélectionnées et 

comparées au chapitre 3. Au chapitre 4, la détection des hyperboles des cibles est réalisée en 

utilisant un algorithme de type "template matching". Enfin, le chapitre 5 propose d’exploiter 

la diversité de polarisation du système radar pour l'amélioration de la détection du signal cible 

à travers différentes simulations et les données. 
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I. Introduction 

The Ground Penetrating Radar (GPR) is a non destructive measurement technique which 

has been developed in the early 20
th

 century. It is based on the propagation, reflection and 

scattering of electromagnetic waves within a medium containing dielectric discontinuities. 

The ultra wide frequency band (UWB) of the excitation signal, that has usually the shape of a 

pulse, positions the GPR as a high time resolution imaging technique of the near subsurface of 

soils or of man-made structures. The frequency range of the radio waves generally extends 

from 100 MHz to 4 GHz. The operating principle is simple, but as the subsurface is usually 

made of several components randomly distributed and of different sizes, the image obtained is 

hardly directly interpreted by the user without some prior training. Among the main 

parameters involved in the GPR imaging techniques, the frequency band determines the 

physical phenomena that sustain the wave propagation within the structure. There exist two 

fundamental types of characterization associated with GPR imaging: the soil structure, and the 

buried objects. The range of applications of the GPR technique is very wide: archaeological, 

geological, environmental, civil engineering, military (mines)… 

In order to interpret GPR images of civil engineering structures, that concern the main 

application of this thesis, we propose in this chapter to detail the electromagnetic physical 

principles, the operational conditions, the dielectric characteristics of civil engineering 

materials, and the main signal processing techniques that can be used to extract quantitative 

information from GPR images.      

II. Basics of the GPR measurement technique 

GPR technology is a special kind of radar devoted to the detection, and the location of 

buried objects and structures within subsurface. Data interpretation is not straightforward and 

requires the supervising of skilled operators.  

The primary components of a GPR system are illustrated in Figure 1.1 (a). A GPR device 

is basically composed of shielded transmitting (Tx) and receiving (Rx) antennas (bistatic 

system) which are linked to a control unit including a source generator, a data acquisition and 

a display unit.  

GPR antennas are designed for either “air-launched” or “ground-coupled” operation. The 

“air-launched” radar is designed to be suspended above the probed subsurface with an air gap 

(~30-50 cm), thus allowing to collect measurements data on large distances at high speed, 

under the far field assumption.  The ground-coupled radar is designed to be in direct contact 

with the material surface with no air gap. The air-launched radar suffers from a strong 

amplitude reflection at the medium surface which may reduce the SNR of the deep echoes. 

For the ground-launched radar, the small air-gap allows a better antenna impedance matching 

with the probed medium that allows a better power penetration and thus a deeper sounding. 

As a counterpart, the data interpretation is more complex owing to EM wave interaction at 

near-field and to likely signals overlapping. Both radars operate in a wide range of central 

frequencies from 100 MHz to 4 GHz. The central frequency should be matched to the 

application, and first of all, to the expected depth of the target considering the attenuation 
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characteristics of the soil. The “ground-coupled” GPR has been selected in this work to obtain 

lower surface reflection, in the detection of utilities at several depths. 

The linear displacement of the radar system allows to collect vertical signal traces 

(Ascans) at sampled distances as a function of time or frequency, thus jointly producing a 

Bscan image (or radargram), as shown on Figure 1.1 (b). Thus, GPR insures the imaging of 

the subsurface without intrusion. A synthetic Bscan issued from 3D FDTD simulations (using 

the commercial software EMPIRE XPU) is illustrated in Figure 1.1 (b) in the case of a 

metallic cylindrical pipe buried in a soil with a real permittivity of 3.5 (conductivity 0.01S.m
-

1
) at a depth of 160 mm using a GPR system made of two bowtie slot antennas in the end fire 

configuration. The excitation signal is the first derivative of the Gaussian function with 

duration of 0.5 ns, and a spectrum centered at 1 GHz. In the Bscan, three main signal 

components can be distinguished: the direct air-wave (at 2.5 ns) with a weak amplitude, the 

ground wave and the reflection at the interface visualized as a horizontal band with a high 

amplitude (at 3.36 ns), and the hyperbola signature due to the wave scattering over the pipe 

along the scanning direction (apex at 4.58 ns). By considering a time zero at 1.1 ns calculated 

according to section VI, the hyperbola arrival time is calculated to 3.4 ns and the surface 

reflection time is 2.1 ns. These times can be visualized in the Bscan such as: 2.1+1.1=3.2 ns 

~3.36 ns and 3.4+1.1= 4.5 ns ~4.58 ns. 

In general, the horizontal band corresponds to wave phenomena at the air-soil interface, 

(reflection, scattering, and antenna coupling) that is called clutter because it does not contain 

information about the subsurface; the clutter has to be eliminated to retrieve the target 

hyperbolic signatures (chapter 2). Hyperbolic signatures are fitted using the least-square 

criterion; they serve in the extraction of targets information, by comparing observed arrival 

times with the calculated times and by extracting hyperbolic parameters (see chapter 4).  

 

Figure 1.1: GPR principles: a) Scheme of a ground-coupled GPR system on a soil including a buried metallic 

pipe at a 160 mm depth; b) Synthetic Bscan (FDTD simulations) corresponds to the buried metallic pipe.  
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II.1. GPR technologies  

The two major technologies associated with GPR systems are the short-pulse radar and 

the stepped-frequency continuous wave (SFCW) radar. Commercial radars are mostly impulse 

radars and provide data in the time domain. SFCW radars are tailored to provide complex data 

in the frequency domain, some companies affords the users a specific tool to visualize the 

SFCW in the time data domain as for the short-pulse radars. 

The impulse technique was first manufactured in the mid-70s and keeps to exist in 

mainly commercial GPR systems because the hardware technology required is simpler and 

the electronic components were lower-cost. The impulse technique allows a real time 

visualization of the data in the time domain. The central frequency and the bandwidth of 

commercial devices have continuously increased in the past, enabling better resolution with 

depth. However, the dynamic range of the receiver (oscilloscope) rarely exceeds 70 dB. As a 

comparison, SFCW radar needs a frequency synthesizer with a high stability to step through a 

range of frequencies equally spaced by an interval   . At each frequency, the amplitude and 

phase of the received signal are compared with the transmitted signal. The inverse Fourier 

transform enables the visualization of data in the time domain. Nowadays, this technology is 

more easily affordable and powerful and fast digital signal processing technologies have been 

introduced.  

In this work, the SFCW radar has been preferred because of its higher range resolution 

(larger bandwidth compared to short-pulse radar), its better sensitivity (narrow instantaneous 

bandwidth), and the possibility to obtain a higher power per frequency (S/N higher). The 

novel portable Vector Network Analyzers (VNA) can have a dynamic range reaching 90 dB 

(for the portable VNA Anritsu MS2026B). The main disadvantage of the SFCW GPR is the 

acquisition time, because this radar has to step through a large number of frequencies for each 

trace acquisition. Afterwards, an IFFT (Inverse Fast Fourier Transform) has to be performed 

to transform the data in the time domain.  

II.2. Bandwidth and depth resolution   

As, the GPR system used mainly in this work is a SFCW radar made of UWB (Ultra 

Wide Band) slot bowtie antennas, it appears necessary to define the term UWB in this 

context. The term UWB is generally used in wireless communications and air radar systems, 

and there is no specific definition for GPR systems. It is commonly accepted that the 

following fractional bandwidth BWf  is larger than 120% to define UWB system: 

 max min max min

max min

2
:

2
BW c

c

f f f fB
f where f

f f f

 
  


 (1-1) 

Where minf  and maxf  are the low and high cut frequencies at -10 dB. 

Considering the operating frequency band [0.46; 4] GHz of the bowtie slot antenna used 

the fractional bandwidth is estimated to         , a significative value higher than the 

one recommended in UWB wireless communications (bandwidth > 20% of the center 

frequency).  
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The bandwidth of the antennas plays a critical role in the GPR performance because it 

influences the vertical depth resolution. The choice of the frequency range is usually a trade-

off between the resolution capability (implying large bandwidth and high frequencies) and the 

penetration of EM waves into the soil (implying low frequencies). The depth (vertical) 

resolution V  [13] is closely related to the radar operational bandwidth BW such as: 

BW

v
V




2
 (1-2) 

Where v  is the velocity of the electromagnetic signal in the medium and c the velocity in 

the air ( 18 .10.3  smc ). ε is defined as the relative complex permittivity and μ the relative 

complex permeability ( 10   ). Assuming that    is the real relative permittivity of the soil 

and that the conductivity ).( 1mS  is negligible, the expression of the velocity in the medium 

can be simplified to:  

'

cc
v   (1-3) 

Considering the operating frequency range of the bowtie antennas, i.e. [0.46, 4] GHz and 

a conventional dry soil characterized by     , the vertical resolution is estimated to    

      . 

II.3. Exciting pulse shape 

The basic pulse signal used is the Gaussian monocycle that is the first derivative of the 

Gaussian function. The advantage of this shape is that it can be generated by electronic 

equipments and it can be described analytically in both time and frequency domains. 

Moreover, there exist analytical relations between the frequency peak and the signal 

bandwidth. This signal has been used as the excitation pulse of the transmitting antenna in the 

FDTD simulations and also in the data processing of the SFCW measurements. The pulse 

shows two amplitude oscillations and its deformation or sign inversion can be easily observed 

in radargrams. The Gaussian pulse ( )S t  is given by [14] [15]:  

2 2 2( ) exp( )S t a A t a t    (1-4) 

Where   is the pulse amplitude, and   the shape factor that determines the slope of the 

Gaussian pulse. In this work, we have considered the constant shape factor    
 

   
. 

The spectral response of the Gaussian monocycle is given by [16]: 

)
4

exp(
2

)(
2

2

aa

Aj
S


   (1-5) 

Where 12 j  and 2 f   is the frequency pulsation. The pulse spectrum is 

characterized by its peak frequency and its bandwidth at -3dB such as: 
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Where 0T  is defined as the pulse duration. It must be noticed that the -3dB bandwidth is 

roughly equal to 115% of the pulse center frequency 0f .  

As an illustration, two monocycles associated with different central (peak) frequencies 

0f  at 500 MHz and 1 GHz have been plotted in Figure 1.2a and b in the temporal and 

frequency domains, The parameters of these pulses are the following: if MHzf 5000  : 

2 ; 0.32To ns ns  , and if GHzf 10  : 1 ; 0.16To ns ns  . 

 
Figure 1.2: GPR wavelet defined as the first derivative of Gaussian pulse in (Top) time domain, and in 

(Bottom), frequency domain. 

II.4. Antennas in GPR 

The antennas are designed to radiate and receive an electromagnetic signal. Both 

antennas are usually identical. In the case of a time domain radar, the emitted pulse is 

supposed to radiate a reasonable copy of the exciting pulse in section II.3. The antenna and 

the soil govern the shape of the exciting pulse in both the time and the frequency domains. 

The principal antenna types used in GPR are the loaded and the folded dipoles, horns, bowtie 

antennas, logarithmic spiral antennas, Vivaldi antennas, slot antennas…. In general, antennas 

transmit linear polarized signals such as encountered in most commercial GPR systems.  

The antenna geometry depends on the frequency, the physical size, the portability and the 

application. The impedance and the antenna radiation pattern (i.e. current distribution) 

become strongly influenced by the dielectric characteristics of the ground as the antenna gets 

closer to the soil surface i.e. in the near-field zone. The antenna footprint, which indicates the 

shape and the size of the spot illuminated by the antenna on a plane, has a large influence on 

the imaging capability of the radar; sensitivity and target localization can be then improved 

when the size of the antenna footprint is close to those of the targets [17] [18]. The footprint 

-3 -2 -1 0 1 2 3

x 10
-9

-1

-0.5

0

0.5

1

Time [ns]

A
m

p
li

tu
d

e

 

 

fo = 1 GHz; To = 1 ns

fo = 500 MHz; To = 2 ns

0 1 2 3 4 5 6 7

x 10
9

0

0.2

0.4

0.6

0.8

1

Frequency [GHz]

A
m

p
li

tu
d

e

 

 

fo = 1GHz

fo = 500 MHz

3dB1/√2
0.55GHz

1.1GHz

1ns

2ns



24 

 

dimensions (relative to the medium plane Oxy) for a dipole antenna are given by Annan’s 

equation such as [19] (Figure 1.3):  

4 ' 1

2

x
y

y
z






  


 


 
(1-7) 

Where /v T v f    is the electromagnetic wavelength.  

 
Figure 1.3: Footprint of an elliptical illuminated surface as function of the depth x. 

When the footprint is too large it gives rise to a surface clutter as the spot illuminated on 

the ground is larger than what is really needed (larger footprint for air-launched radars). Thus, 

an optimal footprint is important to improve target localization. Fortunately, for GPR 

applications the antenna radiation pattern is preferentially directed into a medium with higher 

dielectric permittivity ' , thus leading to a narrower beam lobe with the energy focusing in the 

direction of interest.  

II.5. The radar range equation 

The magnitude of the signal on the reception antenna (Rx) depends on several 

parameters. All these parameters are considered in the radar range equation which expresses 

the power received at the receiving antenna RP  as a function of the power supplied at the 

transmitting antenna TP  such as [20] (see figure 1.4): 
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Where  TTTG  ,  is the transmitting antenna gain,  RReRA  ,  is the receiving effective 

surface, 1r  is the distance from transmitter to the reflecting (point) target, 2r  is the distance 

from the reflecting (point) target to the receiver and   is the scattering radar cross section 

(RCS) of the target. The effective surface depends on the square of the wavelength: 
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DGAeR   (1-9) 

Where   ,G  is the antenna gain,   ,D  the antenna directivity and  the aperture 

efficiency. 
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Figure 1.4: Target geometry for the radar range problem in the bi-static configuration. 

III. GPR surveys 

The ground-coupled GPR is usually moved at a constant speed along the y-axis in a 

straight line, i.e. the scanning direction as shown on Figure 1.3. Commercial GPR systems use 

a coded wheel to record time data at regular distance intervals. At each distance sample, a 

single waveform ( , , )i is z y t  called an Ascan (or a vertical trace) is recorded (see Figure 1.1 

(b)). The vertical variable is the time which is related to the depth by the wave velocity along 

the propagation path. The gather of a set of Ascans forms a 2D amplitude image ( , , )ib z y t , 

called a Bscan, that represents a vertical slice in the ground. The time axis or the related depth 

axis is usually pointed downwards. Because of the large beam radiating patterns in 

transmission and reception, a dielectric discontinuity of small extent in the ground is viewed 

as a hyperbola in the image. In the presence of different discontinuities or objects, hyperbolic 

signatures bring information relative to their dielectric contrast with the ground, their 

polarization/depolarization relative to their orientation relative to the incident electric field. 

Afterwards, when moving the GPR system over a regular grid in the z-y plane, a 3D data set 

( , , )c z y t  can be recorded that is called a Cscan.  

The imaging of the subsurface by the GPR technique relies on three major survey types:  

-The first type is called the common midpoint (CMP) survey, in which both the 

transmitter and receiver antennas are moved apart from each other at a constant spatial 

increment (see Figure 1.5 (a)).  

-The second survey type is the wide-angle reflection and refraction (WARR) where the 

transmitting antenna is kept at a fixed location while the receiving antenna is moved away 

from the transmitter at a constant spatial increment called the antenna offset (see Figure 1.5 

(b)). The main difference between both surveys is that in the WARR survey the reflection 

point moves along the reflector. This is why WARR measurements are conducted over either 

horizontally reflectors, or slightly sloping reflectors or homogeneous ground material (along 

the scanning direction).  
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-The third survey type is conducted by keeping a fixed transmitter–receiver antenna 

offset and moving both antennas at a constant spatial increment over the survey area that is 

called profiling (see Figure 1.5 (c)). This survey is also called the fixed offset method (FOM).  

The CMP and WARR surveys are normally used to estimate the subsurface velocity 

structure in a multilayered ground by analyzing both the shape and the slope of time-offset 

curves. This analysis supposes to define a time zero that corresponds to the direct air wave 

associated with the coupling between both antennas. In the ground, the inverse slope of the 

time-offset relationship gives the average ground wave velocity between the minimum and 

maximum antenna offsets.  

Since air and ground wave travel directly between the transmitting and the receiving 

antenna, there exists a linear relationship between the travel time t  of each wave and the 

antennas offset with the constant of proportionality v/1  such as /t A v . Where   is a 

constant of proportionality. 8 13.10 .m sv c    for an air wave, and / ' ( " ')v c      

for the ground wave. The air wave arrival time is usually used as a reference to define the 

time zero (see time zero correction in section VI). 

In the far-field zone, the paths of EM waves at high frequencies can be modeled by rays. 

This approach allows to obtain first estimates of real permittivities from the arrival times. In 

GPR, we distinguished two types of reflectors in a soil: a plane layer and a target reflector. 

Figure 1.5: GPR survey types: a) CMP survey, b) WARR survey, c) FOM survey on horizontal reflector d) 

FOM survey on target. 
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III.1. Plane reflector 

Plane reflectors are encountered in a multilayer structure with dielectric contrast between 

layers such as presented in Figure 1.6(a). The several wave curves are produced generally in a 

WARR survey when the antenna offset is increased such as reported in Figure 1.6 (b). The 

different layers can be observed on the experimental radargram of Figure 1.6 (c) in the case of 

a sand box filled with 48 cm depth of non compacted sand. The GPR system is a SFCW radar 

composed of a pair of bowtie slot antennas, and the spectrum of the first derivative of a 

Gaussian pulse (centered at 1 GHz) has been multiplied to the frequency data to obtain the 

radargram. We observe several multi-reflections. 

The antenna lateral dimension (SR) with the small offset appears non-negligible 

compared to the depth d. The latter dimensions are given by      
         

 
 for later use in 

the calculation.  

The Dix’s equation [21] takes account of the Euclidean distance          and 

allows to express the relationship between the arrival time t , the reflector depth d  and the 

velocity v  (see Figure 1.6 (a)) such as: 

  

   

  

 
  

  
   (1-10) 

The latter equation allows to analyze the radargram displayed of Figure 1.6(c) and 

particularly to estimate the velocity in the medium (sand).  

In the case of a planar multilayered medium, the velocity within each layer can be 

calculated from the root mean square velocity (    ) using the velocity/time spectrum 

analysis [22] [23]. The mean square velocity estimated in layer n is given by: 

     
   

   
    

 
   

  
 (1-11) 

   is the instantaneous velocity at the     layer,    is the total cumulative propagation 

time and     is the propagation time within the    layer.  

The instantaneous velocity    is then calculated in a recursive-iterative way according to 

the following equation: 

    
       

             
     

       
 (1-12) 

In the case of a single layer (see Figure 1.6 (a)), the time/velocity spectrum gives the 

results of Figure 1.6 (d)), where the velocity energy peaks can be visualized at each time 

interval. The analysis of those hyperbolas to extract velocity at each layer is a very hard task, 

because of the overlapping between echoes and because of the complexity of multi-reflections 

within a multilayered medium.  
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Figure 1.6: a) Ray-path model for a horizontal reflector in the WARR survey, b) Samples of waves curves 

obtained from a WARR/CMP survey, c) Experimental Bscan in the broadside configuration on a 48 cm thick 

sandy ground with d) Computed time-velocity spectrum and  e) Computed time-epsilon spectrum. 

III.2. Target reflection (Hyperbolic signature) 

This section recalls the simplified modeling of the EM scattering by a canonical target 

which is buried in a soil at depth d. As a canonical target, we consider an infinite cylinder, 

with its axis along the z direction according to Figure 1.3. The resulting Bscan image using 

the FOM survey shows a hyperbolic signature.  

An analytical model based on the ray-tracing hypothesis [24] allows to follow the wave 

path between the transmitter and the receiver. Using the Pythagorean theorem, the ray path 

shows a hyperbola shape         where the wave arrival time    is linked to the linear 

displacement     of the radar system (see figure 1.7 (a)). Considering the offset between the 

antennas and their lateral dimension, namely the parameter    defined in section III.1, the 

generalized hyperbola equation depends on five parameters (SR, y0, d, R, v) such as: 

 
        
        

              
                   

              

                   
              

  (1-13) 

                             (1-14) 

The top of the hyperbola, namely the apex, corresponds to the shortest distance and time 

delay between the target and the radar system (when the target is below the midpoint between 

both antennas). The apex time is calculated using the above equation when             

          . It must be underlined that in the ray path modeling, the reference time is taken 

where waves are emitted at the air-sol interface, thus a time zero correction has to be applied 
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in experimental and synthetic Bscans. This modeling will be used for hyperbola fitting using 

the least square criterion.   

Figure 1.7 (b) shows the modeled hyperbola signatures of a metal cylinder probed with a 

bowtie slot antenna for different                     on the soil with relative 

permittivities 4 and 9. For this antenna, SR equals to 422 mm in the endfire configuration and 

to 291 mm in the broadside configuration. Generally, we observe that the slope of the 

hyperbola is higher when waves propagate in a lower velocity soil, i.e., higher real 

permittivity. And that larger distance SR implies delayed apex arrival time and flatter 

hyperbolas signatures. 

 

Figure 1.7: (a) Ray-tracing Pythagorean model associated with the (b) hyperbola signatures generated by the 

radar displacement. 

IV. EM wave propagation in civil engineering materials 

IV.1. Maxwell's equations 

The electromagnetic signal detected by the receiving antenna is the result of propagation, 

reflection, diffraction and scattering phenomena that are governed by Maxwell’s equations. A 

good understanding of the physics of high-frequency electromagnetic wave propagation and 

particularly in a lossy dielectric material is necessary. Civil engineering materials and soils 

can be considered as absorbing and dispersive (lossy) dielectric media, and they are generally 

non magnetic (permeability 0  ). Maxwell’s equations describe the wave propagation in 

such medium such as: 
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 (1-15) 

 

Where E  is the electric field strength (V/m), D the electric flux density, J  the electric 

current density (A/m
2
), B  the magnetic flux density (Wb/m

2
), and H the magnetic field 

strength (A/m).  
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When an electromagnetic wave propagates through a medium, the electric field causes 

electric charges to move. There exist conduction and displacement currents. The conduction 

currents are associated with the moving of free charges (i.e. electrons) in the medium that 

induces heat when collision occurs with stationary molecules. The displacement currents (i.e. 

polarization) occur when a charge can only move along a constrained distance. 

In the frequency domain, both equations can be rewritten such as: 

 EjHtor

HjEtor











 (1-16) 

Where   and   are associated with the electric conductivity and the dielectric 

permittivity.  They are in general complex and frequency dependent parameters.  

IV.2. Complex conductivity and permittivity 

"'  j  : The complex conductivity includes an in-phase (real) component and an 

out-of-phase (imaginary) component. The conductivity describes generally the ability of a 

medium to conduct the electric current. The imaginary part is a measure of the polarization 

due to the surface density and the storage of electrical charge; it is usually negligible at radar 

frequencies and in dielectric grounds. The real part is a measure of how strongly a material 

supports the flow of an electrical current: it is considered as a frequency independent constant 

and can be divided into two parts, surface conductivity and fluid conductivity [25].  

"'  j  : The complex (relative) permittivity contains an in-phase (real) and an out-

of-phase component. The real part of the permittivity describes the energy transfer by the 

current displacement and is the measure of the ability of the medium to be polarized under the 

incident field. At high frequency, the dipoles cannot follow the fast oscillation of the electric 

field, and the polarization will be out of phase, that causes a relaxation phenomenon. The 

imaginary part is directly related to the dispersion and losses of electric energy within the 

material due to polarization phenomenon and cannot be generally neglected at radar 

frequencies. It is directly proportional to the conductivity       
 

 
  and may be negligible for 

lossless media, i.e.              and                are zero. In practice, a few dielectric 

media with low conductivity or low-losses, like air, sand and dry concrete, are considered as 

lossless materials at GPR frequency bandwidths. By contrast, the high conductivity of clay, 

wet concrete and salt water contribute to enhance the imaginary part of the permittivity and, 

and thus, to the attenuation of EM waves. 

The complex effective permittivity expresses the total loss and energy storage effects 

within the material such as follows [26]: 
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' je  (1-17) 

The ratio of the imaginary part onto the real part of the complex permittivity is defined 

by the “loss tangent” as:  
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






   (1-18) 

The influence of the imaginary part of the conductivity can be usually neglected with 

respect to the influence of the real part of the permittivity. Thus, the conductivity of the 

medium is reduced to the conductivity in the static case (DC): 






"
'  (1-19) 

The conductivity and the permittivity write now as follows: 
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 (1-20) 

Earth materials are considered to be low-loss dielectric if the moisture content is not too 

high, thus having a small loss tangent such as: 

  1tan
2
  (1-21) 

IV.3. The wave propagation equation 

The general solution of a harmonic plane wave that propagates in the x direction is: 

                    (1-22) 

The complex wavenumber k  of a plane wave propagating in the x direction can be 

separated into real and imaginary parts such as:  

        (1-23) 

Thus, the plane wave can be written as: 

                          (1-24) 

The real part  (Np/m) contributes to the attenuation of the wave, and the imaginary part 

          is the phase shift (time delay). They are expressed in [26] respectively such as:  

    
  

 
     

 

  
 
 

    

 
 

 (1-25) 

    
  

 
     

 

  
 
 

    

   

                  (1-26) 

 

The attenuation depends on the angular frequency, the conductivity and the permittivity. 

The attenuation  (Np/m) can be expressed in dB/m using the relation  686.8'  [27]. In 

Figure 1.8, the attenuation for several permittivities in an infinite medium is expressed as 

function of the depth at the frequency 1GHz. 
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Figure 1.8: Variations of the attenuation                   with regards to the depth within three different 

media with ε = 3.5; 9; and 15; σ = 0.01 S/m and f=1 GHz. 

IV.4. Dielectric characteristics of materials 

Table 1.1 gives the dielectric permittivity and conductivity values for the different 

materials encountered in civil engineering structures [28]. They may have large range of 

variations within the GPR frequency bandwidth, mainly because of the presence of moisture. 

Asphalts [29] and the geographical origin of some constituents (granite, gravel) influence the 

dielectric permittivity values within a given frequency range; therefore it is impossible to have 

precise values for the dielectric parameters. Consequently, for each measurement site, the 

dielectric characteristics of the subsurface have to be estimated and compared to the tables in 

the literature before applying any signal processing algorithm. The values in table 1.1 have 

been collected from different references and help us to find a prospect for the range of 

material permittivities. Curtis, e.g., [27], has provided a lot of dielectric data on natural soils 

over a large frequency range. 

It must be underlined that the medium where waves propagate acts as a low pass filter in 

such a way that it shifts the spectrum to lower frequencies and thus, modifies the shape of the 

transmitted radar impulse as a function of the medium’s electromagnetic properties.  

The volumetric water content plays a significant role in varying the dielectric permittivity 

of the soil made of several components (aggregates, voids, bound and free water). The 

presence of moisture in a soil increase its effective dielectric permittivity, because water 

shows a higher real permittivity (~80 at 20°C) than the permittivity of common minerals 

(from 3 to 7) that composes the soil. Hence, waves propagating through wet soils have a 

higher attenuation and dispersion (less depth penetration especially at high frequencies) and a 

higher dielectric permittivity (a decrease in wave’s velocity) that induces a delayed time 

response.  

The loss mechanism in a soil is highly dependent on water content: above frequency 0.5 

GHz, the energy absorbed by the water present in soil pores rises with the frequency, and at 

14.6 GHz (10°C), a maximum of absorption is reached [30]. Water is made of dipole 

molecules that polarize when excited by a high frequency electric field. Additional 

complexities are caused by bound water and temperature effects. Thus, in a soil, the effective 

complex permittivity is usually introduced by a frequency dependent model (Cole-Cole and 

Debye models). 
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Material type 

Real part of the dielectric relative 

permittivity 

Real part of the electric conductivity 

(S/m) at ~20°C 

Value and 
Frequency 

and reference 
Value reference 

Air ~1 ~ 8*10
-15 

[31] 

Sand/wet sand 3-6/10-30 100MHz [32] 10
-4 
10

-1
 [32], [27] 

Clay/wet clay 2-6/1540 100MHz [33] 2*10
-3 
2 [17], [27] 

Silt/wet silt 5-8/1530 100MHz [33] 10
-3 
 10

-1
 [34] 

Gravel 47 0.4-1GHz [35] 10
-4
 10

-2
 [17] 

Cement 45 0.4-1GHz [35] 10
-4 
10

-1
 [17] 

Concrete 810 0.4-1GHz [35] 10
-3 
 10

-2
 [32] 

Asphalt 48 0.4-1GHz [35] 10
-2 
 10

-1
 [17] 

Granite 515 100MHz [32] 10
-5
 10

-3
 [32] 

Teflon 1.8 10GHz [36] 10
-17
 10

-15
 [37] 

Water 80 100MHz [33] 
0.01

 
(drinkable water) 

4.8 (sea water) 
[38] 

Wood 1.826 2.45GHz [39]  10
-14

 [40] 

PVC 4-5 10MHz [41] 10
-14

 [41] 

Graphite 

(carbon) 
512 1MHz [42] 2*10

5
 [42] 

Table 1.1: Dielectric characteristics of main materials encountered in civil engineering structures (ε’ and σ).  

 

 

Figure 1.9: Relative complex permittivity of water according to the Debye’s model, a) Real part (related to 

energy transfer) and b) Imaginary part (related to attenuation).  

As an illustration, the frequency variations of the relative real and imaginary 

permittivities of a pure and polluted water have been plotted in Figure 1.9, using the Debye 

model with the following parameters: static permittivities [78.52; 73.38], high frequency 
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permittivities [5.43; 1.14] and relaxation times [9.45; 10.21] for pure and polluted water 

respectively (different parameters can be found in [30]). Thus, the behavior of waves in 

humid soils is very dependent on the wave frequency. Soil conductivity is also quite affected 

by water absorption that is dependent on the temperature and the frequency [43] [44]. 

IV.5. Polarization mechanisms of dielectric materials  

The frequency dependence of the dielectric response of materials is tightly linked to the 

polarization mechanisms under the excitation of an electromagnetic wave. This polarization 

involves four basic mechanisms [45]:  

 

The electronic or atomic polarization:  

This polarization is due to changes in the electron cloud around the atomic center under 

the effect of an exterior electric field. Electrons cloud is distorted and deformed because of 

electrons low masses relatively to the frequency power; this distortion varies for different 

frequencies levels, and persists for frequencies between 10
13

~10
15

Hz. 

The ionic polarization: 

This type of polarization involves the displacement process (a stretch or compression 

between negative and positive ions depending on the electric field direction) of atoms inside 

the same molecule under the effect of an exterior electric field. Atomic mass is much higher 

than electrons mass, therefore the resonant frequencies are between 10
9
~10

12
Hz depending on 

materials. 

The dipolar or orientation polarization:  

Here, the polarization is at higher mass level and happens at frequencies below 10
9
Hz. It 

is mainly due to the orientation (moment) of molecular dipoles relatively to the electric field; 

the electric field rotates the molecular dipoles of materials. This type of polarization is 

influenced by the thermal variation. As a result of a thermal motion the molecular quantities 

are randomly arranged and the net sum of all molecular polarization becomes zero. 

The interfacial of space charge polarization:  

The interfacial polarization occurs when charge carriers migrate under the effect of 

external electric field and are restricted in their movements by local electrical potential (like 

metal electrodes in a capacitor, or like boundaries in heterogeneous mediums). This results in 

a distortion of the total electric field. These effects are very dependent on the materials and 

are important at relatively low frequencies ~1 kHz. 

 

The GPR UWB signals with the bandwidth [0.1; 10] GHz, are mostly affected by both 

the ionic and the dipolar polarization mechanisms. 
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IV.6. Mixing models 

There are number of empirical mixing models that provide the dielectric permittivity of 

soils made of several components (air, water, dielectrics...) [8] [46] [47].  

Two main classes are distinguished here: models depending on volumetric contents of 

components, and frequency dependent models considering relaxation phenomena.  

 

Non frequency dependent models: 

 Topp’s model (1980) is the simpler and an empirical model that describes the 

dielectric response of a quasi homogeneous soil in the presence of water. The model is 

inappropriate for clays and organic rich soils, but it agrees reasonably well for sandy 

and loamy soils over a wide range of water content (5-50%) in the frequency band [10 

MHz; 1 GHz].  

 The complex refractive index model (CRIM) is valid for a more wide variety of soils. 

It consists in linking the dielectric permittivity of the soil to the permittivities of the 

constituents and their volumetric fractions V in a restricted frequency bandwidth. A 

parameter a has been added to consider the wave orientation relative to the granular 

shapes (sphere, cylinder, spheroid) of the main constituents. The relation associated 

with the CRIM model is as follows: 

         
 

 

   

               
 

 
 (1-27) 

 Effective medium theories (EMT) describe the macroscopic dielectric properties of 

composite materials by using a phenomenological mixing approach that gives a direct 

physical interpretation of the topology. These theories do not use the entire geometry 

of the soil, but a little piece of the studied sample or the induced field that constitutes a 

representative elementary volume. The different effective medium theories mainly 

differ by the way they account for the EM interactions between heterogeneities that do 

not exist explicitly in the elementary cell but are used for the modeling. Among them, 

the most well-known models are the Bruggeman-Hanaï-Sen (1981) model and the 

Maxwell-Garnett model [48]. 

Frequency dependent models: 

 The Debye model [49] associated with a uniform material describes its dielectric 

response as a function of the relaxation time   and static parameters conductivity and 

real permittivities at frequency 0 and infinite (   and    respectively). The relation is 

expressed as follows: 

                   
     
     

  
 

 
 (1-28) 

Where the term  
 

 
 can be negligible for a low conductive media at high frequencies. 
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The Debye's model states that the relaxation time depends on both the molecular size and 

the viscosity of the liquid. Further modifications were introduced in the literature [50] like 

the Cole-Cole (1941) model [51], and the Davidson-Cole (1951) model. 

 Jonscher model provides a general modeling of the multi-constituent material which 

respects the causality principle as for the Debye model. Compared to the others, 

Jonscher model requires a fewer parameters, and has been known to describe the 

propagation within absorbing and attenuating media, namely the Q-constant medium. 

It has been used to model the propagation of GPR pulse within soils mostly, e.g., 

Chahine et al. [9]. 

V. Waves polarization 

The polarization of an electromagnetic wave is usually described in terms of the 

orientation of the electric field vector E. The antenna polarization is assumed to be constant 

within the main lobe of the radiation pattern. In common GPR systems, the antenna 

polarization is linear (the amplitude of E oscillates in a single direction), that has been 

assumed for the bowtie slot antenna used in the SFCW radar. In a GPR survey, the orientation 

of both transmitting and receiving antennas relatively to the direction of the radar 

displacement determines the mode of polarization TE or TM (details in chapter 5). 

Commercial GPR systems generally use wide band dipoles which are oriented such that the 

electric field is perpendicular to the survey line (TM mode). In GPR, two main depolarization 

phenomena are induced by dielectric discontinuities: planar interfaces, or buried objects. 

Concerning objects, the wave interaction (ray path approach) can be explicitly described by 

analytical formulas only in the case of canonical objects (infinite long cylinders, spheres…). 

 

Depolarization by planar interfaces: 

The basic geometry considers that the soil (medium) is modeled as the superposition of 

planar homogeneous layers (multilayered medium) and is excited by an incident plane wave. 

Studies mentioned in [52] highlights the fact that the planar interfaces induce depolarization 

effects in both modes TE and TM if only the incident field is not perfectly perpendicular to 

the planar surface (angle of incidence different from 0) and also when the planar surface is 

rough. Refraction and reflection phenomena on planar interfaces are analytically described by 

the Fresnel equations [53] [54] in Appendix A, and by the Snell-Descartes ray laws [55]. 

Scattering by canonical objects: 

The detection and characterization of canonical targets, e.g., pipes modeled as infinite 

cylinders, is one of the main concerns of our work. The scattering by such objects at GPR 

frequencies has been developed analytically in [56] [17] and experimentally by many authors 

(chapter 5, section 2). The latter studies showed that the polarization of backscattered echoes 

is very dependent at first on the ratio between the target diameter and the wavelength, and 

secondly on the dielectric contrast between the target and the surrounding medium.  
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A parametric study of the scattering responses of dielectric and metallic targets has been 

made using a modified version of the implemented analytical model in the Matlab software 

done by [57] (Appendix B and chapter 5). The modified version includes an additional 

implementation of the polarization TE, and frequency dependence in the calculation.  

VI. Processing GPR data 

In GPR, the raw data can be easily displayed in real time on a computer. Basic 

processing is required for the initial data interpretation. Generally, a gain correction is 

performed as a function of the time to compensate for amplitude attenuation as a function of 

depth and to highlight deeper image features. However, the data interpretation may become 

difficult over a complex medium made of heterogeneous materials and several objects. Within 

this context, the data processing to be undertaken depends on the application under scope and 

the parameter to estimate. Nowadays, users are not only interested in object location and 

velocity analysis but also on estimating quantitative information (geometry, depth, 

dimensions, dielectric characteristics, and orientation) associated with targets. The processing 

usually performed for GPR raw data includes the following steps [32]: 

Time-zero correction (static shift): in a GPR survey, the first waveform which arrives at 

the receiver is the air wave. In general, there is a delay in the time of arrival for the first 

waveform in air due to several reasons: generation of the time signal, delay introduced by the 

electronic unit, the antenna, delay of the cable connection, etc. Therefore, the time-zero must 

be associated with depth zero, and a time offset has to be removed from all traces. The time 

zero is calculated by subtracting the theoretical direct air wave time                  from the 

simulated/measured time      in a CMP profile [58].  

                            (1-29) 

Background removal: the background signal is an unwanted signal that is repetitive and 

produces a coherent banding effect, parallel to the surface wave, and across the image. As 

illustrated in Fig. 1.1b, this includes the direct-air wave and the ground-bounce signal. For 

ground-coupled configuration, these signals may overlap with the target signal and thus 

disturbs the estimation of the parameters attached to the target. Some background removal 

techniques are tested in chapter 3. 

Gain: gain correction is used to compensate for amplitude decay with depth in the GPR 

image; early signals have greater amplitude than the late signals because of smaller 

attenuation. Losses are caused by geometric spreading as well as intrinsic attenuation in the 

ground material. Various time-variable gain functions may be applied: linear, exponential, 

spherical, AGC (automatic gain control). The most commonly applied is AGC that is a time-

varying gain that runs on a window of selected length along each trace, point by point, by 

finding the average amplitude over the length of the sliding window. A gain function is then 

applied such that the average at each point is made constant along the trace. However, we 

have remarked in practice that a simple linear time varying function (expressed in dB/m) is 

the best solution with experimental data. 
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Topographic correction: this pre-processing technique consists in applying a time shift 

to each individual trace to compensate for some elevation variations along the recorded GPR 

line. 

Frequency filtering: it is a way of removing unwanted high and/or low frequencies in 

order to ease the data interpretation of GPR images. A combination of a low-pass and high-

pass filtering can be achieved with a band-pass filter, where the filter retains all frequencies in 

the pass band, but removes the high and low frequencies outside the pass band. 

Frequency apodisation: The SFCW provides data in the frequency domain, from which 

the time data can be reconstructed by IFFT. To reduce the level of side lobes in the time 

domain, the fall of the frequency bandwidth, i.e. the transition vs. frequency between the pass 

band and the stop band of the spectrum is smoothed by an apodisation window (Hanning 

window in general). This step is also combined with zero-padding technique to increase the 

time resolution at the IFFT step.  

Migration: the goal is to reconstruct the geometrically radar reflectivity distribution of 

the subsurface in a radargram. Migration is a spatial deconvolution process aiming at the 

removal of the transmitter and receiver directionality to focalize the energy (association of the 

energy of wavelets) on the reflecting object. An estimation of the velocity of the underground 

structure is necessary before migration. The background velocity can also be adjusted 

iteratively to optimize the radargram. There exist different migration algorithms: reverse time 

migration, Kirchhoff migration, matched filter migration, eccentricity migration, F-K based 

migration. 

F-K (Frequency-wavenumber) filters: FK can suppress specific artifacts related to 

slanted layered underground discontinuities, because different (right and left dips) dip angles 

are transformed into positive and negative wave-numbers, and therefore can be separated. 

Wavelet transform (WT): WT is used to extract the instantaneous parameters 

(amplitude, phase and frequency) of the echoes contaminated by noise, by comparing time 

and frequency wavelet transformed responses, it acts as the Hilbert transform that compares 

real and imaginary part of signal. WT of time signal can also be linked to WT of frequency 

signal as function of the Hilbert transform. In [59], the estimated parameters are used to 

obtain more information about the noise and the attenuation. 

 

In this work, the following data pre-processing techniques have been used to improve the 

quality of the Rx data and to contribute to ease the data interpretation at some extent: time-

zero correction and filtering are applied directly in the frequency domain to Rx signals. 

Afterwards, the background removal techniques presented in chapter 3 have been performed 

in the temporal domain, using an inverse Fast Fourier transform (IFFT) and a frequency 

domain zero padding to increase the time resolution. The main signal processing techniques 

reported in chapter 3 consists in evaluating clutter removal techniques, such as PCA and ICA, 

for objects in the ground-coupled radar configuration. 
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VII. Applications of GPR surveys in civil engineering 

Civil engineering structures are generally made of different materials including concrete, 

natural soils and bituminous materials. These materials are involved in a wide variety of civil 

engineering structures such as transportation infrastructures (i.e., road pavements, bridges, 

and railway tunnels), urban buildings, nuclear structures, hydraulic generation facilities, 

embankments, dams, breakwater, foundations, etc.  

GPR surveys have been widely used in civil engineering to obtain either qualitative or 

quantitative information about the subsurface [60]. The information and the applications of 

GPR survey vary according to the material and the dimension of the object to probe. In 

geophysics, GPR survey is used to determine rock region limits, to detect voids, e.g., karsts, 

to perform vertical profiling and characterize soil materials [61] (including the determination 

of soil water content), ice profiling [62], water and minerals mapping. For pavement, GPR 

survey is mainly devoted to layer thickness estimation [63], the mapping of debonding areas 

[64], the estimation of the depth of visible cracks (superficial) and the location of embedded 

cracks [64]. For concrete [65], GPR surveys extend to the mapping and the location of 

reinforcement bars, i.e., metal elements in concretes structures, and eventually the corrosion 

of the latter [66], and the estimation of water content within the concrete [67].  

For urban applications, GPR is used for the mapping of buried urban utilities (cables and 

pipes) [68] [64]. In particular, cables and pipes are always present in urban areas and their 

number and concentration increase dramatically in new structures. Thus, damages during 

digging can occur to those objects and there is a need to use accurate non-destructive 

techniques to locate urban utilities. GPR systems have been widely used in mining and 

numerous data processing have been developed that could be useful for civil engineering 

applications.  

In practice, nor the position neither the direction of the cylinder are known before the 

survey. Therefore, a general survey is performed in two orthogonal directions. The size of 

buried objects investigated varies from a few to several tens of centimeters, and the depth 

from five centimeters to the range of one or two meters. Nevertheless, the range of the 

reachable depth by a GPR system depends on many factors such as the central frequency, the 

two-way travel path attenuation, the radar cross-section of the targets or discontinuities 

(which in turn depends on the size of the target and the dielectric contrast with the 

surrounding material) and the dielectric characteristics of the probed materials.  

VIII. Challenges in the detection and characterization of utilities 

The problems of urban utilities detection is treated internationally (largely in UK) [64] 

[69]. Much development and new methods are published continuously in Europe in this field 

within the COST Action Tu1208 [64] [70] and for concrete material characterization with the 

RILEM union [65]. In Europe, many utilities have been installed a few hundred years ago and 

they play an essential role in the development of urban life. Utilities are lines for telephones, 

natural gas, fiber optics, electric grids, traffic lights, waste water pipes… Actually, we do not 

dispose any mapping and characteristics of all buried utilities, i.e., location, geometry, type 

and function, because they are often been buried by different firms without consultations and 
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development plan. To prevent damage to them and the surrounding environment, the GPR 

technology appears a good candidate to insure the mapping. The performance of GPR 

technique has to be validated in this complex environment made of trenches, excavated soil, 

soil structure rebuilt, and buried objects of different dimensions and dielectric characteristics. 

In this context, this work focuses on the detection of small urban utilities with 

dimensions less than ten centimeters. We considered targets (cylindrical and rectangular 

shapes) with very small dimensions compared to the wavelength (0.3λ to 1.5λ), and with 

different natures: metallic, PVC (plastic), air-filled (gases) PVC, and water-filled PVC 

(liquids). Small targets have less scattering signal amplitudes, and have a size comparable to 

the wavelength, which can result in a depolarization effect on the scattered waves. 

Within this context, there are many challenging situations with hardly detectable cases. 

Among others, the challenge is the detection of shallow targets with regards to the material 

wavelength. This implies some challenging advancement in enhancing the target signals by 

either removing the background signal or/and by using the polarization diversity. It is then 

proposed to especially contribute to the following items to ease the detection and the 

characterization of targets: 

- In chapter 3, some statistical background reduction techniques are proposed to 

overcome the effect of the overlapping between the clutter and the target signals, and 

also to contribute to mitigate the influence of both the heterogeneous nature of 

medium and the roughness of the ground surface for different dielectric contrasts. 

- In chapter 4, the detection of target hyperbolas with a small lateral dimension and 

various dielectric contrasts with regards to the surrounding soil at several depths: a 

few image processing techniques have been evaluated and the template matching 

appears promising. 

- In chapter 5, multi-polarization surveys are opposed to the depolarization effects of 

waves on small targets, like phase and amplitude inversions. Consequently 

polarization effects are described in details, and can be used in an advantageous way 

to obtain information about the buried targets by comparing multi-configurations 

responses. 

The main advantage of using an UWB impulse system relies on the trade-off between 

time-space resolution and penetration depth to extract enough quantitative and accurate 

information about the buried targets. However such system has some drawbacks especially in 

image migration [71], in radar range characterization [72], and on the degree of the impulse 

side lobes generated by the antennas, because they can obscure target shallow response with 

the clutter and might degrade the resolution between two close targets, thus a window 

(rectangular i.e. Hanning [73] [7] or triangular i.e. Bartlett [74]) can be used before the IFFT 

to reduce the side lobes on the receiver side, nonetheless on the transmitter side they are very 

dependent on the antenna structure. 

Varying dielectric characteristics and water content depending on the area in the structure 

and the time (weather and age of the structure) is one of the often encountered problems in 

civil engineering. Consequently, wave velocity inside the structure may change from one area 

to another although being made of the same material. A velocity estimation algorithm has to 
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be applied before any data processing, because the velocity is used in the calculation of all 

arrival times and in later processing for information extraction. Nevertheless, the velocity 

analysis leads to an estimated value in complex civil engineering structures and this latter step 

is essential for each survey. 

The different data and image processing techniques have been applied on synthetic and 

experimental data. The synthetic data have been obtained from simulations relying on the 

modeling of the GPR system (the SFCW radar composed of the bowtie-slot antennas) using 

the Empire XPU commercial software. This tool is based on the 3D-FDTD approach to solve 

differential Maxwell’s equations and provides fast simulations in dielectric materials as 

compared to other modeling tools; moreover, it provides more accurate results for curved 

structures (PGA Perfect Geometry Approximation algorithm).  

A qualitative and quantitative technique for evaluating and comparing different images is 

one of the hardest challenges encountered in this work, because of the lack of reference 

signatures and prior knowledge of the subsurface ground composition. 

At last, other challenges are encountered in GPR imaging such as: the design of the GPR 

equipments by means of studying the antennas limitations on the impedance adaptation, the 

field patterns, the operating bandwidth and the efficiency; the radio-system limitations on the 

pulses quality, calibration, sampling resolution, temperature variations and dynamic range; the 

near field effect that distorts responses of shallow object with an overlapping soil surface 

reflection; the time consumption for high spatial resolution and multi-polarization surveys; 

and real time processing of data. 

IX. Conclusion 

The chapter 1 has introduced GPR operating systems, GPR surveys and applications in 

civil engineering structures. The basics definitions and techniques that are required to the 

understanding of the different chapters in this work have been presented.  

The scope in this work concerns the detection of small urban utilities using a new UWB 

ground-coupled radar system that is presented in chapter 2. This application is challenging 

because the aim is to detect shallow and small targets within a Bscan with a dominant 

overlapping clutter. Thus, a first step in this work is the elimination of the soil surface 

reflection using statistical techniques to enhance the target signals; three techniques have been 

selected and compared in chapter 3. Later, the locations of targets reflections, hyperbolas, 

have been performed using an extended template matching algorithm. Finally, the 

enhancement of target signal is extended to polarization diversity in chapter 5 throughout 

different simulations and test data. 
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Chapter 2: Ground-coupled GPR system 

and experimental test sites 

 

Résumé  

Ce chapitre présente le matériel expérimental qui a été utilisé tout au long de cette thèse. 

Il intègre premièrement le système radar de sol, qui a été conçu et développé depuis environ 

cinq ans à l'IFSTTAR. Le radar est un système bi-statique composé de deux antennes papillon 

ultra large bande en émission et en réception. Selon le chapitre 1, la configuration de couplage 

au sol a été sélectionnée pour améliorer le rendement des antennes et renforcer la dynamique 

des signaux rétrodiffusés sur les cibles enfouies dans le sol. Les caractéristiques des antennes, 

leur géométrie et leur disposition géométrique sont brièvement présentées. Des études 

antérieures ont permis d’optimiser le blindage des antennes.  

Le système d'acquisition des données est basé sur la technologie de génération d’ondes 

continue avec sauts de fréquences. Un analyseur de réseau  vectoriel (VNA) permet de 

scanner la bande passante de 0.05 à 4 GHz. La transformée de Fourier inverse permet de 

synthétiser les données temporelles, qui sont comparées avec données simulées aux chapitres 

3 et 5. 

La deuxième partie de ce chapitre présente brièvement les sites-tests expérimentaux sur 

lesquels les données radar ont été recueillies. Il comprend deux bacs à sable sec (intérieur et 

extérieur), un remblai extérieur en terrain limoneux-calcaire, et un site d'essai urbain 

extérieur. Des essais préliminaires ont été effectués pour caractériser la permittivité 

diélectrique de chaque site de test. Ces caractéristiques sont ensuite utilisées comme 

paramètres d’entrée pour générer des données simulées et faciliter des comparaisons 

ultérieures entre données de simulation et données expérimentales. 
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I. Introduction 

This chapter presents the experimental equipment which has been used throughout this 

thesis. First, the bi-static GPR system has been designed and developed for about five years at 

IFSTTAR. It is based on two UWB bow-tie slot antennas. According to chapter 1, the ground-

coupled GPR system has been selected to improve the energy coupling with the ground and to 

enhance the scattered signals from embedded targets. At first, some characteristics of the 

antennas, geometry and design of the GPR system, are briefly presented. The shielding of the 

antennas has been optimized according to previous studies.  

The data acquisition system is based on the step-frequency continuous wave technology 

(SFCW). A vector network analyzer (VNA) enables to scan the [0.05;4] GHz frequency 

bandwidth. An IFFT applied on the frequency data after preprocessing algorithms allows to 

synthesize the time data which can be further compared with the FDTD simulated dataset.  

The second part of this chapter briefly presents the experimental test-sites where radar 

data have been collected. It includes an indoor sandy test-site, an outdoor sandy test-site, a silt 

outdoor test-site and an outdoor urban test-site in the sense-city mini-city. Preliminary 

measurements have been performed to characterize the dielectric permittivity of the soil in 

each test-site and to use it as an input parameter for generating the simulated data set.   

II. GPR SFCW system 

II.1. Overview  

Antennas that are commonly used in commercial ground coupled GPRs are generally 

wide band planar antennas whose frequency band is centered at a frequency between 100 and 

1500 MHz. Usually, the same antenna geometry is used in transmission and reception to form 

a bistatic system. The frequency band defined depends on the size of the target to be detected 

and on the soil attenuation. Radio frequencies, from 10 to 250 MHz [1], are best suited for 

applications requiring deep penetration capability (i.e. geological [2], geohydrological [3] and 

stratigraphic surveys, deep pipes and bedrock detection [4]). Microwave frequencies, i.e., 300 

MHz up to 4GHz [5], are better suited for applications requiring refined time resolution and 

accurate spatial detection i.e. demining and civil engineering applications cited in chapter 1 

(concrete inspection, locating rebar, road mapping, utility and void detection, bridge 

maintenance, and quality assessment of precast structures).  

It is unlikely that a single antenna can cover a wide range of applications. That is why 

GPR manufacturers propose a range of antennas that can be used with a single control unit. 

The pair of antennas can be separate or not in a module and they are usually shielded; the 

offset between antennas are defined in order to obtain the overlap of the main radiating lobes 

of both transmitting and receiving antennas. The antennas are generally dipoles, bowties and 

horns. These antennas have usually a limited bandwidth, low directivity and a linear 

polarization. To enhance the bandwidth, resistive loading has been commonly used [6] 

(introduced by Wu and King 1965) although it decreases the antenna efficiency. Recently, 
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micro-strip patch antennas have allowed the design of many types of geometries with 

advantages such as low-cost, light weight, and ease of fabrication. 

The measurements performed in this work have essentially been made with a SFCW 

GPR system made of a pair of bowtie slot antennas previously designed in our laboratory [7]. 

Thus, it appears important to present the characteristics of these antennas as in this case the 

GPR can be entirely modeled using the FDTD approach and the synthetic data will serve as a 

reference for comparison with experimental results performed on the several test sites.   

II.2. Antenna geometry and design 

The bowtie slot antenna designed in our laboratory and visualized in Figure 2.1(a) is 

dedicated to radiate very close (a few cm) to a soil surface in an UWB and at the lowest 

possible low frequencies. Thus, its overall dimensions have been defined to fit less than a A4 

paper size ( mmW
s

4.190  and mmL
s

2.332 ) using the planar technology based on a single-

sided FR4 substrate ( mmh 5.1 ; 01.0tan;4.4'  
r

; 35 m copper-clad). In air, the 

bandwidth which is defined by the return loss dBfS
dB

10)(
11

 , ranges from 460 MHz to 

beyond 4 GHz in air and on a standard soil material ( 5.5' 
s
 ;

1.01.0  mS
s

 , elevation 1 cm). 

All the antenna design has been made using full-wave 3D FDTD simulations under the 

commercial software EMPIRE XPU with the aim of studying the radiating properties of the 

bowtie slot antenna in the presence of several soils. 

The antenna is made of two rounded slot triangles ( mmW 59.86
1
  and mmL 47.276

1
 , 

radii 
1r  and mmr 20

2
 ) fed by a tapered CPW line with length mmW

f
02.67 . It is fed in 

port 1 from a SMA (subminiature version A) connector, which is connected to a 50 CPW 

(coplanar waveguide) line with mma 4.0  and mmb 8.2 . The antenna feed line is tapered 

for impedance matching with dimensions at the feed-point mma 84.1'  and mmb 50.2'  [7]. 

To reduce significantly reflections from the upper environment and the coupling effect 

between the transmitting and the receiving units, a partial conductive shield included in a 

rectangular box (362×231 mm
2
) is used, it is coated internally with a conductive sheet and 

filled with a layered absorbing material [7], as shown on Figure 2.2. In practice, the radar 

absorbing foam is a three thick-layered absorbing material (HPS 125 distributed by 

EUROMC) with a total height of 68 mm. 

 

The surface current distribution     on the antenna at 450 MHz is displayed in Figure 

2.1(b); the main direction of the electric field appears parallel to the antenna shortest axis that 

explains the origin of the linear polarization of the antennas. Thus, two perpendicular planes 

of polarization TM and TE, represented in Figure 2.1(c) at 450 MHz, on a soil with    

                  , will be used during the measurements to excite specific dielectric 

contrasts or targets in the subsurface. In the TE mode, nulls of radiation at the antenna mid-

axis are observed. Moreover, we visualize the computed radiation patterns (        ) in the 

far field zone and in the air are presented in Figure 2.3 for a shielded bowtie slot antenna at 

four frequencies 0.45, 0.8, 1 and 2 GHz in both planes TM (Φ = 0) and TE (Φ = 90°). It must 
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be underlined that the backward radiation into the ground that corresponds to the bottom half 

plane of the antenna is situated in the range [90°:0°:90°] in Figure 2.3. In the E-plane (TM 

mode), the component     appears dominant and consequently the component     can be 

assumed negligible. In air, without shielding, the maximum gain reached is 5.4 dB at 0.8 

GHz. In the H-plane (TE mode), a lower amplitude difference between both E-components is 

observed at frequencies 0.8 and 1 GHz within the angle ranges [30°;70°] and [110°;150°]. In 

both planes a maximum gain close to 4.2 dB is observed at 0.8 and 1 GHz. In the direction 

180°, it is noticed an attenuation above 20 dB for the main components in both planes.   

 

Comparing to the literature, this bowtie-slot antenna shows the best compromise with 

bandwidth and size as compared to existing bowtie antennas. However, it shows limited gain 

factor and thus the overall radiated energy is lower compared to other GPR antennas. The low 

directivity of the antenna is partly mitigated by the influence of the ground, which acts as a 

lens to focus the radiation pattern downward. 

 

 

Figure 2.1: (a) Bowtie-slot Antenna dimensions (in mm), and (b) Surface current distribution and (c) radiation 

patterns in the TE and TM planes at 450 MHz (on the courtesy of F. Sagnard [7]) 
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Figure 2.2: Cavity-backed shielded antenna. 

 

Figure 2.3: Theoretical logarithmic radiation patterns of the shielded bowtie slot antennas at frequencies 0.45, 

0.8, 1 and 2 GHz (on the courtesy of F. Sagnard [7]). 
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II.3. Parametric study 

The amplitude variation of the reflection coefficient )(
11

dBS  as function of the frequency 

allows highlighting the bandwidth of the antenna; it is usually defined at -10 dB as shown on 

figure 2.4(a) [7]. Above a soil the response of the shielded antenna is shifted towards the 

lower frequencies; the first frequency associated with dBdBS 10)(
11

 is then shifted from 

0.469 to 0.287 GHz. In general, we have observed that the shielding smoothes the 
11

S  
amplitude. In the presence of a conventional soil, the )(

11
dBS

 
amplitude associated with the 

shielded antenna decreases significantly as compared to the case in air at frequencies higher 

than 0.840 GHz. Moreover, the first resonant peak remains almost at the same position. Thus, 

a satisfactory antenna matching with the soil has been obtained.  

First experiments have been made on both dry sand and slightly wet pure sand 

originating from the Seine valley in France [7]. The dry sand has been deposited in a large 

box (height 740 mm, length 2 m, and width 1 m) inside our laboratory, and the slightly wet 

sand test-site (480 mm in depth) corresponds to the playground for children in the public 

garden Perichaux (Paris 15). Both sands have not been compacted. From Figure 2.4 (b), it has 

been observed that the lower frequency corresponding to dBS 10
11

  is estimated to 292 

MHz; it appears identical for both sand materials. However, the outdoor sand introduces rapid 

fading to the return loss 
11

S within the frequency band 1.36 and 3.07 GHz as compared to the 

indoor sand. 

 

Figure 2.4: a) Simulated S11 for shielded and unshielded antenna, on soil and in air, b) S11 records over dry and 

wet uncompacted natural sand; see the test-sites in section III.1 (on the courtesy of F. Sagnard [7]). 

II.4. Tx and Rx Antenna configurations for GPR survey 

The radar system is made of a pair of transmitting (Tx) and receiving (Rx) shielded 

triangle bow-tie slot antennas that are positioned on the ground (the elevation is estimated to 

cmh 1 in the simulations). The generating and recording polarizations depend on the antenna 

orientations that are not only based on their position relative to each other but also to their 

orientation relative to the survey line direction (and buried target orientation). Three main 

configurations can been considered: the endfire configuration (TM polarization, see Figure 

2.5a) where the antennas are aligned along their larger dimension, the broadside configuration 

(TE polarization, see Figure 2.5b) where the antennas face each other symmetrically along 
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their larger dimension, and the cross-polarization configuration (see Figure 2.5c) where the 

antennas are oriented at 90° to each other with two orientation possibilities for the 

transmitting-receiving system. It must be underlined that TE and TM polarizations of the slot 

antennas are oriented perpendicularly as compared to the orientation of non slot dipole 

antennas (see details in chapter 5). 

 

 

Figure 2.5: Tx and Rx antenna configurations (a) Endfire configuration (TM mode) (b) Broadside configuration 

(TE mode) and (c) Crossed antenna configuration. 

 

In the end-fire and broadside antenna configurations, the offset value between antennas 

results from a trade-off between a low strength for the direct path signal and the best possible 

strength of the useful signal from either buried object or dielectric interface. Using FDTD 

simulations under EMPIRE, the offset has been varied in the range [0; 160] mm to provide 

WARR profiles in both configurations on a soil with dielectric characteristics (   

                  ), see figure 2.6 [7]. The frequency variations of )(21 fS  magnitude 

highlight the higher coupling effect between both antennas around 12 dB for frequencies 

below 1.5 GHz (figure 2.6). It appears that a higher coupling effect at a given offset 

particularly below 1 GHz is observed in the broadside configuration that can be explained by 

the lower lateral dimension of each antenna in this configuration. Thus, to obtain a compact 

system with a reduced coupling at lower frequencies, the antenna offset has been set to 60 

mm. 
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Figure 2.6: Simulated S21 versus frequency with variable antennas offsets [0; 160] mm in both configurations 

(on the courtesy of F. Sagnard [7]). a) endfire configuration, b) broadside configuration. 

 

II.5. Acquisition system 

a) Step-frequency radar system 

Measurements with the pair of shielded bowtie slot antennas have been made in the 

frequency range [0.05;4] GHz with a portable VNA (Vector Network Analyzer) ANRITSU 

MS 2026B. The IF (Intermediate Filter) frequency filter defining the frequency resolution has 

been defined between 5 kHz and 10 kHz. The bandwidth is made of 1601 frequency samples. 

Each antenna acts as a module and has its own shield. A full two ports calibration has been 

made with two 2 m length radiofrequency cables. The offset between antennas has been 

maintained at 60 mm and the system has been moved manually along a survey line with a 

distance step of 40 mm. The complex transmission coefficients )(
~

21 fS  measured in the 

frequency band [0.05; 4] GHz is recorded and will serve to obtain the radargram (Bscan).  

A synthetic pulse used in the FDTD simulations under EMPIRE has been introduced in 

the experimental data to compare measurement and simulated data. The fundamental pulse 

used, that serves as a current excitation of the transmitting antenna in FDTD simulations, is 

the first derivative of the Gaussian function, with duration 0.5 ns corresponding to 98% of the 

total energy (t0=0.33 ns).  Thus, a frequency apodisation associated with each offset has been 

made to smoothly extend the signal bandwidth from 4 to 9 GHz with zero padding. The 

impulse signal is multiplied by the measured 21

~
S , to further calculate the inverse Fourier 

transform (IFFT) and obtain time data (figure 2.7) [7]. The calibration of the time zero in the 

measurements has been made using the theoretical air wave time arrival (time reference at the 

soil surface to compare with ray path models). 
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Figure 2.7: Three-steps process to synthesize the data in the time domain and to ease the comparison with the 

simulated data set (on the courtesy of F. Sagnard [7]). 

 

b) Time domain GSSI systems 

The laboratory GeoEND (Department GERS) at IFSTTAR-Nantes has been using for 

several years the GSSI radar equipments attached to the SIR 3000. The SIR 3000 can been 

equipped with three pairs of antennas with different size, which the central frequencies f0 are: 

500, 900 and 1600 MHz. The antenna module have the following dimensions: at 500 MHz 
23733 cm , at 900 MHz 23318 cm  and at 1500 MHz 21510 cm . In these time domain GPRs, 

the bandwidth of the excitation signal roughly reaches the value of the central frequency f0. 

III. Test Sites  

The probing the subsurface using the SFCW GPR system has been performed on three 

test-sites in the open air. These test-sites are partially controlled environments as the layered 

subsurface structure is known within 60 cm depth, however their dielectric characteristics 

have been estimated during the measurements. These test-sites that include buried canonical 

objects, pipes and blades, have served to evaluate the experimental system and to compare 

field data to numerical data.  

III.1. Sand boxes 

The first two test-sites are made of pure sand from the Seine valley (France). The first 

test-site is indoor and consists in a box filled with dry and non compacted sand with 
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dimensions:  depth 740 mm, length 2 m, and width 1 m. It has been first installed at Ifsttar-

Paris in 2012. The sand box has served to characterize the bowtie slot antenna radiation 

properties in the frequency domain using a VNA (see Figure 2.8 (b)). The real permittivity of 

the sand has been estimated to 3.5. 

 

Figure 2.8: a) Indoor test-site made of dry sand within a box of dimension            , b) 

S11Comparison between bowtie antennas (1 and 2). 

 

The second test-site is an outdoor sand box (figure 2.9), which is located in the public 

children playground at a park of Paris 15
th

 district. The sand with a thickness of 48 cm was 

not compacted and slightly humid; its real permittivity has been estimated close to 5.5 

according to the WARR profile in figure 2.9b [8]. 

 

Figure 2.9: a) Outdoor test-site made of wet sand with layered subsurface structure, b) corresponding WARR 

profile for soil permittivity characterization in the broadside configuration. 

Sand is the most common material on the earth’s surface; it is easy to handle and to bury 

objects. 

III.2. Embankment near the IFSTTAR building 

The outdoor embankment is situated near the IFSTTAR building in Marne-La-Vallée, 

along the “boulevard Newton”. The soil is wet after a rainy day and seems to contain 

compacted clay and silt materials. It includes small stones and debris that are at the origin of 
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heterogeneities. According to Figure 2.10b, the real permittivity has been measured with a 

cylindrical coaxial cell [9] filled with a small soil sample. The permittivity was found equal to 

15 at the central frequency of 1 GHz on the first day and to 5 after a two-days sunny period of 

time. 

 

Figure 2.10: a) Outdoor clay/silt embankment near IFSTTAR building, b) Clay/silt ground permittivity as 

function of the frequency. 

III.3. The urban test-site Sense-City  

The urban test-site takes part of the scale model Sense-City, which is an equipment of 

excellence for the future national investment program in the period 2015-2019 and is 

supported by University Paris-Est (Marne-La-Vallée, France) [10]. It is a realistic mini-city 

demonstrator in the open air that is made of urban innovations focused on instrumented 

habitat and intelligent road. A first preliminary version has been built in 2015 for test 

measurements such as visualized in Figure 2.11a, and a larger test-site will be built at the end 

of 2016 on a nearby area.  

At present, the test-site includes some surface and subsurface urban facilities. For 

example, a part of the test site presented in Figure 2.11 is made of a circular stretch of road 

where ten aligned utilities (pipes and blades) dielectric or conductive have been buried at 

depths ranging from 14.5 to 64.5 cm and separated by 70 cm offset. The PVC pipes can be 

filled with a liquid to bring an additional dielectric parameter in the site. The multilayered 

structure of the soil has quite different values of real permittivities ranging from 4 to 35. The 

test-site Sense-City offers the opportunity to study, in a controlled environment, the capability 

of the GPR technology to display and detect underground urban facilities [11]. 

The WARR profile in Figure 2.12a has been measured with the bowtie slot antennas; it is 

found very complicated to analyze it, owing to the high density of adjacent curves, due to the 

superposition echoes from many shallow layers with low permittivity contrast.  

The soil characterization has been performed using the Fixed Offset Method (FOM) in a 

single profile within a target-free area at the central frequency 900 MHz using the GSSI SIR 

3000 GPR system. The raw radargram (without time zero correction and clutter removal) 

presented in Figure 2.12b shows a layered soil with four layers corresponding to asphalt (layer 
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1), aggregate cement (layer 2), a natural soil (layer 3), and a wetter natural soil (layer 4) 

below the geotextile. Within layer 3, an additional sub-layer, namely layer 3b on the Bscan in 

Fig 2.12b, is the result of the compaction of the natural soil. Providing a prior knowledge on 

the thickness h  for each layer at the construction phase, the real permittivities for each layer 

can be estimated according to the arrival times.  

 

Figure 2.11: a) Urban test-site and the trenches where urban facilities were buried, b) structure of the pipe zone 

c) Layered structure depths of the urban test-site (on the courtesy of F. Sagnard [7]). 

 

Figure 2.12: Experimental radargram over a target-free area of the urban test-site. a) WARR profile measured 

by the SFCW radar coupled with the bowtie antennas in the broadside configuration, b) FOM profile measured 

by the commercial SIR 3000 radar system (linear gain and low and high pass filters applied) at 900 MHz (F. 

Sagnard et al. [11]). 
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IV. Conclusion 

This chapter presents the experimental equipments used in the several test sites. The 

laboratory made bi-static GPR system is based on two UWB bow-tie slot antennas with an A4 

size. The ground-coupled radar configuration enables better energy coupling to the ground 

and larger SNR of the target signals.  

The data acquisition system uses a VNA, which allows the scanning the [0.05;4] GHz 

frequency bandwidth with the step frequency technique.  The performing of an IFFT along a 

frequency apodisation allows to synthesize experimental time data to be compared with the 

simulated data sets.  

The field data have been collected over four experimental test-sites, one indoor test-site 

and three outdoor test-sites. Three test-sites are devoted to the probing of a quasi 

homogeneous soil, while the fourth one represents an urban test-site. Preliminary tests have 

been performed to characterize the dielectric permittivity on each test-site to use it as an input 

parameters for generating synthetic data sets under 3D FDTD simulations.   
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Chapter 3: Evaluation of statistical-based 

clutter reduction techniques for the pre-

processing of ground-coupled GPR images 

 

Résumé  

Ce chapitre définit le 'clutter' comme un signal parasite composé de la superposition du 

signal réfléchi à la surface du sol, du signal de couplage dans l’air et dans le sol entre les 

antennes et des signaux de réflexion/diffraction induits par les hétérogénéités présentes dans 

le sous-sol. Dans le cas du radar couplé au sol, le signal de clutter chevauche dans les 

domaines temporel et fréquentiel, les signaux utiles provenant des réflexions sur des objets 

enfouis dans le sous-sol. La suppression du clutter, sujet de ce chapitre, s’avère une première 

étape essentielle à l’interprétation qualitative et à l’exploitation des images en vue d’extraire 

des informations associées aux objets enfouis dans les ouvrages du génie civil.  

Tout d’abord, une revue bibliographique des techniques de réduction du clutter utilisées 

dans la littérature pour diverses applications, (localisation de mines dans le sol, imagerie à 

travers les murs) a été conduite. Parmi les techniques répertoriées, les méthodes d’Analyse en 

Composantes Principales (ACP) et d’Analyse en Composantes Indépendantes (ACI) ont été 

sélectionnées, car leur principe de fonctionnement permet potentiellement une utilisation dans 

de nombreuses configurations radar et de profondeurs de cibles. Ces deux techniques sont 

détaillées ainsi que leur application spécifique au filtrage du clutter radar. Nous proposons en 

particulier une adaptation de la méthode ACP pour rendre cette méthode indépendante des 

variations de RCS (radar cross section) des cibles le long d’un profil Bscan.  

Les performances des méthodes de filtrage du clutter radar sont ensuite évaluées sur des 

données de simulations FDTD et de mesures réalisées sur les sites test présentés au chapitre 2. 

Dans cette évaluation, la technique de soustraction de la moyenne ou de la médiane sert de 

méthode de référence car elle est largement utilisée par la communauté scientifique GPR.  

Les performances des méthodes sont établies quantitativement à partir des courbes ROC 

(ces dernières permettent d’identifier les méthodes capables d’atteindre le meilleur 

compromis entre bonne détection et fausse alarme), et le rapport d’énergie SCNR (rapport 

signal sur clutter+bruit). L’analyse qualitative des résultats repose sur l’examen de l’image 

Bscan et d’un signal Ascan associé à l’apex d’une hyperbole.  

Les résultats d’évaluation ont montré dans le cas de cibles peu profondes, la supériorité 

de la méthode ACP, et dans le cas de cibles dont la profondeur d’enfouissement est supérieure 

ou égale à une longueur d’onde, celle de la méthode ACI. Cependant, la technique de 

référence par soustraction de la moyenne ou médiane s’avère la technique la plus robuste lors 

de l’étude paramétrique associée aux géométries variées de sol et objets lors des simulations 

et des expérimentations.   
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I. Introduction 

A GPR system delivers an electromagnetic wave that propagates into the ground. The 

measure of the reflected echoes allows detecting dielectric contrasts. The moving of the 

system along a linear scanning direction allows to image the sub-surface to form Bscan 

images. Dielectric targets with a small lateral extension induce defocusing hyperbolae that are 

noticeable. The problem of the detection and the classification of buried targets is important 

and challenging as targets are usually blurred by a set of unwanted signals (the clutter) which 

are uncorrelated to the target signals but overlap in time and frequency [1] [2]. The clutter 

leads to reduced detection possibilities in GPR images, as it appears difficult to distinguish 

between both signals and clutter without applying proper signal processing techniques, and 

particularly when the target is small, shallow, and low-contrasted with the surrounding soil. 

GPR performance highly depends on the ability to successfully differentiate the target signal 

from the clutter. 

 

The clutter must be distinguished from noise       , as noise is random in nature and 

generally differs spectrally from the target response. The noise is usually assumed to originate 

from electronics and as such, it is modeled by a zero-mean white additive gaussian signal 

(White Gaussian Noise, WGN). 

 

The clutter in experimental GPR signals is usually made of three components (see Figure 3.1): 

- The cross-talk or direct coupling (cross-coupling) between the transmitting and the 

receiving antennas        in air and in the soil (antenna ringing, cable reflections…) 

- The reflection        from the air-ground interface (ground bounce)  

- The scattered signals          from other objects, discontinuities and inhomogeneities 

(tree roots, air gaps, stones…) within the soil.  

The similarity between all these unwanted signals is that they may spread over the whole 

Bscan image and on the same time intervals, whereas target response exists on a limited 

image zone of the Bscan with varying time intervals. 

The basic model of an Ascan signal        is made of the superposition of four 

components as follows: 

                                    (3-1) 

Where        represents the target signal. Besides, the principle of superposition that 

sustains the latter data model assumes a weak electromagnetic interaction between the 

contributors. This latter assumption may fail for shallow-buried target, because the scattering 

process over the target may modify the clutter signal and vice versa.  
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Figure 3.1: Typical GPR transmitter - receiver configuration model for target detection. 

 

Generally, the direct coupling        between the antennas and the surface echoes       , 

arises earlier than the other signals and appears much stronger than the reflecting signal 

induced by a buried dielectric target. Both components, generally quasi-stationary (in time 

and space along the Bscan) are easier to distinguish and eliminate. Signals sc(t,x) resulting 

from inhomogeneities within the soil, give incoherent clutter that is a more difficult to 

eliminate. 

Preprocessing techniques appear necessary to improve and ease the qualitative 

interpretation of GPR data. The main purposes of preprocessing techniques are signal 

conditioning and data correction before applying any further processing method [3] [4]. 

Clutter reduction is one of the most important preprocessing steps. Many clutter reduction 

techniques are proposed in the literature, and this is currently an active research topic because 

of the complex nature of the clutter. 

This chapter describes briefly a few well-known clutter reduction techniques. The two 

statistical-based techniques, i.e., ICA (independent component analysis) and PCA (principal 

component analysis), have been assessed on simulated and experimental GPR data sets and 

have been compared with the well-known mean-subtraction technique. 

II. Existing clutter reduction techniques  

The main developments associated with clutter reduction have been made in the field of 

mine detection and identification using a GPR system [5] [6]. Clutter reduction techniques 

have been extended to the detection of damages and utilities in civil engineering structures, 

and to thru-the-wall imaging [7]. Actually, there exists a large variety of mines (dielectric or 

conductive), which are shallowly buried into the ground. A discontinuous subsurface 

distribution and a rough soil surface can lead to a non-stationary ground clutter. Nowadays, as 

mines encountered are often dielectric, shallow and small, their detection has required 

developing of a wide variety of signal processing techniques to extract information among 

unwanted signals. 
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This section proposes to present the existing clutter reduction techniques for civil 

engineering purposes into three main classes [8], and to give details relatively to their 

operating domains. 

 

1. Background subtraction techniques  

This family of techniques is the simplest one and is generally used in the time domain. It 

is assumed that the ground reflection is stationary along the scanning distance, and occurs 

earlier than the target reflection, i.e., it does not overlap with the target signal in the time 

domain. These techniques have to be used with cautious and are inappropriate when the 

targets are very shallow. They include early time gating, and mean (or median) subtraction 

technique (MST) [9]. Some authors use either predefined or reference background signatures 

for subtraction [10], [11], the scaling and the time shift of the reference signal can be tuned to 

Ascan signal. But prior information is not always available in civil engineering applications, 

and supposes a manual operation to this aim.  

 

The mean subtraction technique is the most technique used. Here, the mean signal is 

supposed to estimate the clutter to be filtered out. This technique is suited for removing steady 

clutter and high frequency noise from data. It includes the following three approaches: 

1. Mean subtraction calculated across all traces: The simplest process estimates the 

background signal as the average or median value across all N traces (B-scan). This 

approach assumes that the ground has steady dielectric permittivity and that the ground 

surface is constant along the scanning direction. Accordingly, it is adapted only to a 

tightly controlled, homogeneous environment with a smooth surface [12]. 

2. Mean subtraction with a reference background signal: the reference background is usually 

calculated either in the absence of a target [13] or over the part of the Bscan image which 

is assumed target-free. Then the reference signal is subtracted from a current A-scan. The 

window must be wide enough to make an accurate estimate, with a low variance, in a 

narrow window enough to avoid introducing effects from the nearest target response. This 

approach is better suited than the first one when the target is shallow, because in the first 

approach the calculated mean value is affected by objects reflection, leading to an artifact 

in the image after the subtraction.  

3. Mean subtraction over a moving window: the background signal is estimated as the 

average of surrounding A-scans along a moving window [9]. However, the window must 

be wide enough to make an accurate estimate, with a low variance, while narrow window 

enough to avoid introducing effects from the changes in the local background 

characteristics. This approach is suited for deep targets and when slight variation occurs in 

the properties of the ground surface along the scanning direction that causes the clutter to 

be no longer uniform on the entire image. Two problems arise in this approach: the first 

relies on the selection of the appropriate window to obtain accurate results, and the second 

is related to a shallow object that disturbs the calculation of the mean value.  
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Consequently, we consider that the second approach is best suited to study both shallow 

and deep buried targets. Moreover, the median value subtraction technique can be used 

instead of the mean value technique. The median subtraction is better suited for spike removal 

and serves as a de-spiking or clean-up filter. However, both mean and median subtraction 

techniques are ineffective in the presence of spatially unsteady clutter (owing to rough surface 

and/or non homogeneous soil) because they are based on an estimation of a single value; used 

for the subtraction of an unsteady clutter. Inaccurate background estimation may affect the 

accuracy of any further target characterization.  

 

2. Classification-based techniques  

These techniques rely on clutter parameterization or statistics. As opposed to the 

background subtraction technique, the classification-based approaches rely on the form of the 

clutter model (unsteady form) as well as on the hypothesis that sustains its statistic features 

from Bscan measurements. These techniques are: Prony-based algorithms (linear combination 

of damped sinusoids) [14], the SVD (Singular Value Decomposition) related techniques [15] 

[16] [17], the information theoretic criterion [18], the adaptive Linear Prediction (LP) theory 

[19], the Sliding-Window Space-Frequency Matrices [20], the wavelet packet decomposition 

[21] [22], subspace decomposition techniques [23] [24], and compressive sensing (CS) 

methods [25]. 

a. Model-based techniques: Prony method is among the signal processing methods that uses 

a parametric modeling of the target signal as a reference. The method relies on the 

decomposing the GPR traces in the frequency domain into the sum of damped 

exponentials. Firstly, it separates the clutter that it supposes to have  high resonant energy 

poles, then it determines the damped function for the reference target signal plus a delay 

function, and it separates by iterations the measured target from clutter residuals, by 

estimating the corresponding complex parameters using the lest square error (LSE) 

criterion. There are three major limitations: unknown number of resonant poles, the noise 

level, and the influence of non-resonant signals. TLS-Prony and LCTLS-Prony methods 

have been introduced later to improve the robustness against the noise. The method 

showed very good results in [14] on rough and heterogeneous grounds according to ROC 

curves.  

b. Statistical-based techniques [15] [16] [17]:  These methods allow Blind Source Separation 

(BSS) between the clutter and the target signals. They include the SVD (Singular Value 

Decomposition), the Principal Component Analysis PCA, and the Independent 

Component Analysis ICA). These methods rely on different statistical properties sustained 

by the clutter and the target signals. They have been selected in sections III and IV of this 

chapter owing to their expected performance in estimating and detecting the clutter. PCA 

relies on the decorrelation and energy separation between the clutter and the target, while 

ICA only relies on the statistical independency between the latter signals.   

c. Other related works to SVD are the Information Theoretic Criterion (ITC) (it is used along 

with the SVD technique to improve the detection capabilities of the latter), the factor 
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analysis [26], and more recently the 2D-PCA [27]. The latter technique is based on the 

spatial averaging process over a number of Bscan images before applying 1D-PCA (or 

PCA by extension). 

d. The linear prediction technique assumes that the clutter signature can be predicted in the 

frequency domain as the parametric modeling of adjacent Ascans with a few coefficients. 

The estimation of the coefficients of the clutter model is made adaptive to the height 

variation of the antenna above the ground (a variable time shift) and to the movement 

along the scanning direction. The coefficients are calculated using the Maximum 

Likehood (ML) method [19] then used for locating the target along the scanning direction. 

The processing is made in the frequency domain to gain further advantage of splitting the 

analysis into frequency subbands. 

e. Sliding-Window Space-Frequency Matrices in [20] decompose the Bscan in the time 

domain according to a sliding window along the scanning direction. Later, each sub-Bscan 

is processed using the matrix decomposition algorithm SVD in the frequency and time 

domains to separate the clutter from the target. The first windows of the Bscan contain 

only clutter information, therefore they are used to extract the clutter components, and 

these window are compared to other windows components to consider rough clutter 

variation and finally subtract them from the entire Bscan. It shows very effective results 

on rough clutter, on mid-depth embedded targets (partial overlapping) and in 

homogeneous ground. 

f. The Wavelet Packet Decomposition (WPD) in [21] [22] is a time-space segmentation. 

This technique allows the segmentation of the locations in the Bscan image with 

embedded anomalies (targets and discontinuities), and to separate them from the locations 

without anomalies, using a background signal model estimated from a homogeneous area. 

It applies the Translation Invariant Wavelet Decomposition (TIWPD) algorithm, based on 

the entropy in a moving window, to detect anomalies. It was tested on very shallow targets 

(0.5 cm to 4 cm) [21] [22], and showed better performance than the MST. As a 

counterpart, any soil heterogeneity can be detected as a potential target. 

g. Many subspace decomposition techniques are described in the literature [23] [24]. In most 

cases, they are combined to either a matched filter or to a polynomial estimation algorithm 

to obtain the full suppression of the non-stationary clutter. 

h. The Compressive Sensing (CS) technique in [25] is based on a reconstruction scheme in 

the frequency domain. It reconstructs a sparse signal from a few numbers of linear 

measures at each position, for different frequencies. It is assumed that the ground clutter 

signatures are similar at different frequencies while the target signatures are not. Therefore 

this similarity is used with the Maximum Likelihood (ML) criterion to estimate the time 

shift, and to obtain a clutter model at each position for later subtraction. It has shown good 

detection for shallow and deep targets in a homogeneous ground. 
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3. Filtering techniques 

This class of techniques consists in using various filtering techniques in the frequency, 

the time or the space domain [28]. Lot of techniques and combinations of them exist in the 

literature; they cannot all be cited here. Among others, this section introduces the 

decorrelation and symmetry filtering algorithm [29], Digital filtering [30], Time-Frequency 

Separation technique (TFS) [31] [32] [33], and the Kalman filter [34] [12].  

a. The symmetric filtering (SF) algorithm [29] assumes that the clutter and anomalies are 

spatially asymmetric features while pipes and mines have symmetrical shapes along the 

scanning direction in the Bscan images; thus, the SF algorithm aims at filtering 

asymmetric spatial responses. It uses median and mean subtraction before applying SF to 

remove the smooth clutter. Then, it locates the symmetry points through the detection of 

the max (apex) for each target. The detection results were very efficient for shallow 

objects. 

b. Digital filtering (DF) in [30] operates in the frequency domain to deal with shallow 

targets, for which clutter and target signatures overlap in the time domain. As a matter of 

fact, it is only relevant for clutter and target whose spectra do not overlap to each other in 

the frequency domain. The technique requires to determine the cutoff frequency of both 

spectra (for clutter and target), in order to define the resulting frequency filter. This 

method is conditioned by the lateral extension of the target signature that must be small 

compared to Bscan width. 

c. Time Frequency Separation (TFS) transforms in [32] [33] are time-frequency analyses 

that allow separating clutter and target signals in the time-frequency plane. The clutter and 

the target signal are expected to not overlap simultaneously in the time and the frequency 

domains (they show slight different spectra and arrival times). For example in [31], they 

separate the hyperbola from the clutter reflection by using a Blind Source Separation 

(BSS) algorithm; it is based on the analysis of the correlation between observed Ascans in 

the Time-frequency plane. It calculates the cross Time-Frequency Distribution (TFD) 

function on the time-frequency plane, and interprets the obtained TFD to extract 

corresponding cutting edges. It is well adapted to the analysis of non-stationary data and 

showed very good suppression of rough clutter and shallow targets.  

d. Kalman filter is one of the most frequently used methods for filtering slowly non 

stationary signals in various applications. In [12], it is applied for removing the noise and 

the clutter. It decomposes the Bscan into non-overlapping horizontal bands with constant 

height (opposed to other techniques, vertical bands) before applying the Kalman filtering 

algorithm that tries to separate the two models: target-free model, and target-present 

model. The Kalman filter technique is computationally expensive and supposes that the 

target is contained in one band and that the noise have Gaussian distribution. 

e. Physical-based modeling: the work developed in [35] combined three techniques for 

clutter reduction: linear transfer function, the Green function and a phase shift migration. 

They show good performance on shallow targets.   
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4. Synthesis 

This section proposes to synthesize the existing clutter reduction techniques, in order to 

help to select the best matched techniques to the scope of the given application. The two next 

tables collect the main characteristics of the existing methods and their conditions of 

assessment which can be deduced from the literature review.  

The main conditions of assessments of the existing techniques are resumed in Table 3.1. 

Within the scope of the application of this thesis, we are looking for the methods which show 

performance to detect small and shallow buried targets. Besides, for the sake of the various 

tests on simulated and experimental data, the method is expected to detect with equivalent 

success rates the targets with various RCS (radar cross section) (strong RCS on metallic 

target, smaller RCS on dielectric target). The first is intended to provide a large modification 

of the antenna scattering at near field compared to dielectric target; then, the clutter may 

strongly change along the scanning direction, especially at the apex of the hyperbola. Thus, 

among different criteria, we put emphasis on the following considerations:  

- The depth of the targets relatively to     , the wavelength within the embedded 

materials; the latter depends on the dielectric permittivity of the subsurface and on the 

center frequency of the radar pulse. The ratio in Table 3.1 is a rough average of many 

evaluated cases in each technique at different depths, different frequencies and 

different media. The ratio depth/λmat gives an idea about the depth of the buried target. 

- It is worth mentioning that, in case of multiple buried targets into the subsurface, the 

overlapping of echoes in time depends, not only on depth (arrival times), but also on 

the antennas beam pattern, and consequently on the dimensions and the types of the 

antennas used. 

- The heterogeneous/homogeneous nature of the subsurface, the surface roughness of 

the ground (rough/smooth) and the RCS of the target may influence the stationnarity 

of the clutter along the scanning direction.  

For the processing point of view, Table 3.2 gives the main features of the existing clutter 

removal techniques. The selected methods must cope with the case of overlapping echoes in 

either the frequency or in the time domain, and the case of slowly varying clutter along the 

scanning direction (equivalent to a non-stationary signal). The selected methods are intended 

to exploit relevant and realistic assumptions on the data, and to make the clutter removal 

processing semi-automatic or fully unsupervised (i.e., to minimize the manual operation as 

much as possible). 

It is worth mentioning that this work is mostly devoted to the detection of small targets 

that implies the detection of the scattering hyperbola on 2D images. Another criterion will be 

required to deal with the applications for which the targets have larger spatial extension, like 

for example the detection of debonding areas within pavement structures.  

Within this context, it is then proposed to further study the two statistical-based data 

decomposition techniques to remove the clutter from the data, namely the Principal 

Component Analysis (PCA) and the Independent Component Analysis (ICA). Both will be 

compared to the conventional mean subtraction technique MST (or background removal). 
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PCA and ICA are multivariable and statistical techniques aiming at reducing the data 

dimensionality. 

Basically, PCA (resp. ICA) relies on the small correlation magnitude (resp. 

independency) between the clutter and the target signal. PCA uses the second order statistics 

to perform the correlation analysis, whereas ICA requires higher order statistics (fourth 

moment). As opposed to ICA, the conventional PCA is sensitive to the energy ratio between 

the clutter and the target signals along the scanning direction. Both techniques use limited 

prior information on the data. The statistical properties of both methods are expected to not be 

influenced by the overlapping between the two signals, i.e. the depth of the target, and by the 

likely variations of the clutter along the scanning direction. 

Besides, PCA and ICA have been partially tested and compared for targets at various 

depths and for heterogeneous subsurface. 
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Evaluated on: 

 

     

    
 

Shallow/Deep  

targets 

Surface 

roughness 

Heterogeneous/Homogeneous 

subsurface  

MST 
All 

depths 

Shallow+/Deep 

+ 
Rough-/smooth+ Heterogeneous-/Homogeneous+ 

Time gating N.A. Deep + Rough+/smooth+ Heterogeneous-/Homogeneous+ 

Predefined 

background 
0.93 

Shallow-/Deep 

+ 
Rough-/smooth+ Homogeneous+ 

Prony methods 0.46 
Shallow+/Deep 

+ 
Rough+/smooth+ Heterogeneous+/Homogeneous+ 

SVD/PCA 

literature 
N.A. Deep + Rough-/smooth+ Homogeneous+ 

ICA literature N.A. Deep + Rough+/smooth+ Homogeneous+ 

Evaluated PCA 
0.43 

1.56 

Shallow+/Deep 

+ 
Rough+/smooth+ Heterogeneous+/Homogeneous+ 

Evaluated ICA 
0.43 

1.56 

Shallow-/Deep 

+ 
Rough+/smooth+ Heterogeneous-/Homogeneous+ 

LP theory N.A. Shallow+ Rough+/smooth+ Heterogeneous+/Homogeneous+ 

Sliding-

Window 

Space-Freq  

0.5 

1.5 

Shallow+/Deep 

+ 
Rough+/smooth+ Homogeneous+ 

WPD 

Space-Time 

0.32 

0.67 
Shallow+ smooth+ Homogeneous+ 

subspace 

decomposition  

0.75 

3 

Shallow+/Deep 

+ 
Rough+/smooth+ Homogeneous+ 

CS 
0.31 

2.33 

Shallow+/Deep 

+ 
Rough+/smooth+ Homogeneous+ 

SF 0.32 
Shallow+/Deep 

+ 
Rough+/smooth+ Heterogeneous+/Homogeneous+ 

DF 
0.31 

0.62 
Shallow+ Rough+/smooth+ Homogeneous+ 

TFS 
0.37 

1.87 

Shallow+/Deep 

+ 
Rough+/smooth+ Homogeneous+ 

Kalman filter N.A. Deep + Rough+/smooth+ Homogeneous+ 

Table 3.1: Conditions of assessment of the existing clutter removal methods. The colored methods are detailed 

in the two next sections; and the ones in purple are evaluated within the scope of our application in section 5. 

The ones in black are a complete state-of-the-art; the +/- symbols indicate if the methods reach good/bad 

performance on specified conditions (shallow or deeply buried target, strong or small surface roughness). 
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Processing 

Characteristics: 

 

1D/2D
2
 

 

Filtering statistics  Supervised 

/Automatic 

Prior  

Knowledge 

MST 1D - + A No 

Time gating 1D + - S No 

Predefined 

background 
1D - - A Yes 

Prony methods 1D - + A Yes 

SVD/PCA 

literature 
1D - + S No 

ICA literature 1D - + A No 

Evaluated PCA 1D - + S No 

Evaluated ICA 1D - + A No 

Linear prediction 

theory 
1D + + A Yes 

Sliding-Window 

Space-Frequency  
2D + + S No 

WPD 

Space-Time 
2D + + A Yes 

subspace 

decomposition  
1D + + S No 

CS 2D + + A No 

SF 1D + - A No 

DF 2D + + A Yes 

TFS 2D + + S No 

Kalman filter 1D + + A No 

Table 3.2: Main features and characteristics of the existing clutter removal techniques. The colored methods are 

detailed in the two next sections; and the ones in purple are evaluated within the scope of our application in 

section 5. The ones in black are a complete state-of-the-art.  

 

                                                 
2
 1D: temporal, frequency or spatial method; 2D: time-frequency, time-space or frequency-

space method 
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III. Principal Component Analysis (PCA) 

III.1. Introduction 

Principal component analysis (PCA) is a multivariate technique analysis based on the 

second-order statistics that analyzes a data set in which the data are described by several inter-

correlated dependent variables [36]. PCA is a way of identifying patterns in data, and 

expressing the data in such a way as to highlight their similarities and differences.  

The algorithm aims at decomposing the components of the input data on a set of 

orthogonal basis vectors, into uncorrelated components namely the Principal Components, 

PCs. PCs with the largest eigenvalues come first and contribute the most to the variations of 

the data set, as opposed to the smallest eigenvalues. As a result, PCA allows to express the 

original data set in another domain by means of linear transformation. However, it appears 

difficult to assign any physical meaning to the individual components (PCs). The PCs are 

decorrelated and represent a linear combination of dependent and independent variables from 

the original data set.  

PCA applications mainly concern data compression, noise filtering, signal restoration, 

face recognition and other image processing [36] [37]. PCA has been used on GPR data for 

clutter reduction purposes. 

Assuming that the radargram (Bscan) is made of N vectors M×1 (Ascans) issued from 

the radar displacement along the scanning direction, forming the data matrix X(M×N) (where 

N<M), the PCA algorithm is given in the following linear transformation: 

     (3-2) 

Where Y has the same dimension as X, but is formed from fewer components. The data 

contained in X represent the combination of the target signal, the clutter and the noise. It can 

represent the GPR data in either the time or the frequency domain. PCA (as in ICA later on) 

technique aims at transforming the matrix X containing the sum of responses, into a matrix Y 

containing only the desired target signal.  

PCA (and ICA) is a technique of array processing and data analysis that will consider 

matrix X as the only input without any prior knowledge of the target and clutter signatures. 

PCA separates data based on correlation between adjacent Ascans (probably strongly 

correlated), this correlation measures the degree of similarity between two adjacent points, 

and thus a high correlation means that clutter is more likely in this region because it has less 

time variance between the Ascans. The final set of data Y ought to be mutually uncorrelated 

and gaussianly distributed. 

As detailed in the next section, the PCA algorithm is composed of three steps: the 

decomposition of the data, the selection of the principal components using the selection 

criteria and finally, the back projection to the initial space (linear transformation) with the 

clutter removed and an improved SNR. Before performing PCA, the raw data in matrix X are 

normalized to zero mean along each Ascan as follows: 
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 (3-3) 

Where     denotes the     time sample in the    measurement (Ascan).  

III.2. Algorithm 

III.2.1. Matrix Decomposition  

The PCA algorithm can be performed directly on the raw data, i.e., the rectangular M×N 

matrix X, or on the associated covariance M×M matrix. Thus, the two decomposition 

approaches are then the singular value decomposition (SVD) and the eigenvalue 

decomposition (EIG), respectively [27] [34].  

a) Eigen value decomposition (EIG)  

The covariance matrix CX (M × M) of the raw data X is defined as follows (case of real data): 

   
 

   
    (3-4) 

It expresses the correlation characteristics between each pair of A-scans, i.e., the degree 

of statistical similarity; high magnitude value indicates a strong mutual correlation while a 

zero value indicates completely uncorrelated data.  

Two cases emerge for the covariance matrix decomposition: the right covariance matrix 

X
T
X and the left covariance matrix XX

T
. In this work we are interested in the right covariance 

matrix X
T
X that gives the correlation between different Ascans vectors and not the correlation 

between different time vectors. It must be underlined that the normalization M-1 is generally 

used (instead of the full number of samples M) to afford unbiased estimates of covariance. 

The covariance matrix CX is then decomposed [38] into its eigenvalues and eigenvectors 

as follows:  

        (3-5) 

V is an orthogonal matrix (V
T
V = I) with size N×N whose columns are the eigenvectors. 

D is the diagonal matrix with size N×N which contains N non negative eigenvalues   . In 

practice, the eigenvalues and the corresponding eigenvectors are sorted afterwards in 

decreasing magnitude order. 

b) Singular Value Decomposition (SVD)  

The SVD decomposition [39] which is applied on the M × N dimensional raw matrix X 

matrix is known to be faster than the Eigen decomposition of the associated covariance 

matrix. Within this decomposition, the PCs are automatically ordered according to their 

magnitude. Then, the matrix X is decomposed into a product of three matrices as follows: 

       (3-6) 

 

Where U is an orthogonal matrix of size M×N whose columns are the left eigenvectors of 

the covariance matrix XX
T
, S is a diagonal matrix of size N×N containing the singular values 

of the matrix X (i.e., the square roots of the right eigenvalues of the covariance matrix X
T
X) 
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and V is an orthogonal matrix of size N×N whose columns are the right eigenvectors of the 

covariance matrix X
T
X.  

Compared to the Eigen decomposition, it can be shown that     , and the singular 

values are the square roots of the eigenvalues of the covariance matrix, i.e.     

                                                 (3-7) 

However from equation (3-5) we have:  

        (3-8) 

Hence the result D = S
2      

                                 1 ≤ j ≤ N (3-9) 

N.B: Contrarily to the Eigen decomposition, it must be underlined that the covariance 

matrix used in the SVD algorithm has not been normalized. 

c) Data reconstruction using PCA  

The final step in PCA algorithm consists in removing the components that contains the 

clutter signal. By considering the SVD approach, (Both decomposition approaches led us to 

the same final result) the selection process chooses a specific number of eigenvectors to 

construct the reduced matrix vectors Ȗ (respectively Ṽ for the Eigen decomposition). Then 

project the data X on the new orthogonal matrix Ȗ to obtain matrix Y containing the sum of 

the selected PCs: 

Y = Ȗ
T
X (3-10) 

Next the algorithm projects the reduced data on the initial data base, using the inverse
3
 of Ȗ

T
. 

XO = ÛY (3-11) 

Where Xo represents the reconstructed data of the selected information (eigen images).  

III.2.2. Clutter reduction using PCA  

The amount of information contained in each eigenvector    of matrix U (respectively    

of matrix V) is directly proportional to the corresponding singular value    from matrix S 

(respectively eigenvalue    from matrix D). And the singular values can be sorted in 

descending order according to their magnitude and the corresponding eigenvectors in matrices 

U and V reordered in the same way (e.g., Figure 3.9i (top)). 

The surface reflects most of the energy along the scanning direction and then contributes 

the most to the image components. Thus, the PCs selection process assumes that the clutter 

has the largest eigenvalues throughout the data, i.e., the obtained matrix X0, is composed by 

the eigenvalues attached to the target signal and those of the noise, which are the smallest.  

 The indexes k1 and k2 allow to distinguish between the three categories of components 

(clutter, target and noise). Then, the data matrix X can be then re-formulated with the help of 

the matrix decomposition according to: 

                                                 
3
 This equality is true because U is an orthogonal matrix, and it verifies:        
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 (3-12) 

rgta et noiseClutterX X X X    (3-13) 

 

k1 and k2 are usually fixed according to some heuristic rules: 

1. After ordering, the last singular values within the rank [k2+1, N] are considered as 

noise and do not contribute to the information contained in the data. k2 is usually fixed 

such that the sum over the singular values from 1 to k2 reaches 90% (energy 

percentage) of the total sum of all the singular values (99% in [15]). As a result, the 

synthesized data is expressed with the two first terms in eq. (3-12) and show an 

improved SNR.  

2. The clutter or non-target related signals are usually contained in the first k1 singular 

vectors because of their high energy (as in [20]); k1 is usually equal to one for a real 

signal and can be equal to two for some limited cases. 

 

The clutter-free dataset is then synthesized by projecting the remainder of the main 

components (the interval [k1, k2] of the indexed principal components) as follows:  





2

1 1

k

ki

T
iiio vsuX  (3-14) 

N.B: In the literature, some authors visualize the eigenimages individually, i.e., the matrix   

    
 for each PCs, and selected manually some of them [28]. To this aim, the line of U

T
 which 

represents the desired PC rank is multiplied by the matrix X. Every part of the original signal 

   in eq. (3-12) can be represented as a weighted superposition of eigenimages.  

In Section V, the PCA technique is assessed for clutter removal on the entire Bscan. For 

example, Figures 3.12 to 3.14 feature the case for which the clutter has the highest energy 

throughout the image, and then most of the information corresponding to the clutter is 

contained in the first principal component. However for Figures 3.2 and 3.9, the hyperbola 

representing the target signal shows higher energy than the clutter.  PCA is not efficient in 

that latter case because some parts of the clutter is still merged with the second PC containing 

the hyperbola response. 

In the literature, most cases rely on the first scenario when the clutter shows the largest 

energy. Then, PCA allows to eliminate the clutter components and to reduce the noise by 

filtering out the components with the largest and smallest energy. The results in [28] for 

example, show that the clutter is removed without affecting the signature of the mines. In 

many articles as in [16] and [40], PCA was applied to GPR images for the detection of land 

mines and it has showed good results without deforming the data, the clutter was removed 

without affecting the signature of the mines.  
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III.3. Improved clutter reduction technique using PCA  

III.3.1. Problem overview 

Conventional PCA enables a simple and fast implementation for clutter reduction.  But, 

as pointed out in the previous section, some shortcomings may arise when the clutter does not 

have the highest energy within the Bscan image.  

This is especially sensitive when PCA is performed on a window where the target signal 

is stronger than the clutter, e.g., when the target depicts a strong RCS, (that means metallic 

target or high contrasted dielectric target, e.g., PVC pipe filled in with water). Another 

difficulty may arise when PCA is applied within highly scattering background. Multiple 

targets or multiple echoes (owing to many interfaces) make more difficult the interpretation of 

the eigenvalue distribution and the set of the ad hoc threshold, i.e., the index rank k1 and k2 in 

PCA algorithm. As a tip, it is then recommended to limit the time window to the two-first 

arrivals; this requires to manually tune the time gating by an operator.   

To mitigate the latter shortcomings encountered in the case of low clutter magnitude, a 

modified version of PCA has been introduced in section III.3.2.  

III.3.2. Principle and illustration for modified PCA  

The proposed technique is applied on a Bscan with only a single embedded target; an 

illustration is shown on Figure 3.2 for the case of the metallic infinite pipe at a depth of 160 

mm and a radius of 12 mm of section V.3. For the sake of the illustration, the Bscan is 

manually decomposed into three smaller parts along the scanning direction. i.e., the apex 

zone, the left and the right zones apart the apex. PCA is performed on each Bscan zones 

separately:  

- In the apex region, the energy attached to the hyperbola, i.e., the target, is larger than the 

clutter energy;  thus, the clutter signal is contained in the second PC, and the clutter- free 

signal is synthesized by discarding the second PC as follows: 

1 2

11 2

k k
T T

o i i i i i i

i i k

X u s v u s v
  

    (3-15) 

- In the zones aside the apex, the clutter recovers the larger energy compared to the  

hyperbola amplitudes, as sustained by the conventional PCA technique; thus clutter 

energy is contained in the first PCs, and the following clutter-free signal is synthesized as 

expected: 





2

1 1

k

ki

T
iiio vsuX  (3-16) 

- The final Bscan is shown on Figure 3.2 by putting the three results side by side. 

As shown on Figure 3.2, the reduction of the clutter along the scanning direction is 

improved. But some spatial discontinuities have been introduced at the cutting zones. This 

technique is then capable of improving the detection but must be used with caution for any 

further data analysis based on the signal amplitude.  
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In Figure 3.2, the application of the modified PCA requires a manual separation of the 

raw Bscan image into three different regions, for distinguishing between the apex and the two 

aside zones. In practice, parameters n1 and n2 determine the limits of the latter zones. They 

have been manually set in Figure 3.2. 

 

Figure 3.2: Illustration of the proposed modification for PCA. Top (from left to right): PCs distribution, raw 

Bscan, and the processed Bscan by the conventional PCA; middle top (from left to right): n1 first Ascans, apex 

zone from  n1+1 to n2 Ascans,  N-n2+1 last Ascans; middle bottom: the processed Ascans by the modified PCA; 

bottom: Bscan reconstruction. 

III.3.3. Application to the data 

The latter technique has been applied to numerical and experimental data sets in sections 

V. 3 and V.4 respectively. As in Figure 3.2, the parameters n1 and n2 have been manually 

selected for each Bscan to distinguish between the apex area and the two zones aside.  

As a counterpart, the following algorithm has been proposed to automatically decide 

whether to apply the conventional PCA or the modified PCA on the raw image. Basically, it 

takes into account the following 2 criteria:  

- Firstly, the clutter is assumed to always come first in the arrival time and before the target 

signal anyway. This latter characteristic is expected to remain steady along the scanning 
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direction within a certain variation time interval, which can be determined from the data. The 

algorithm compares which of the two following components comes first in time: 

, 2 , 1

1, 1 1, 1
_ _

1 argmax argmax 2
M n M n

ij ij
t ti j n i j

Apex region Aside region

t x x t
   


   

        
   

   (3-17) 

The function argmax mathematically represents the time picking process on the magnitude of 

the signals.  

- Secondly, energy criterion enables to verify that the time picking has selected useful signals, 

namely the clutter or the target signals, and no signals issued from heterogeneities and having 

lower energy. To this aim, the sum of squared amplitudes of the picked times t1 and t2 along 

the Bscan are compared as follows: 

1, 2 2, 1
2 2

1, 1 2, 1_ _

1 2
i t j n i t j n

ij ij

i t j n i t jApex region Aside region

E x x E
   

   


   

     
   

   (3-18) 

The synoptic of the PCA algorithms is shown on Figure 3.3 The conventional PCA is 

applied whenever: {t1≈(t2±4
) and E1≈(E2±

)}, or {t1≈ (t2±) and E1<<E2}, or t1<(t2±). 

The improved PCA is applied whenever {t1≈ (t2±) and E1>E2} or t1>t2. 

 

Figure 3.3: Synoptic for applying PCA and modified PCA on the data. 

                                                 
4
  is defined around 0.4 ns proportionally to the clutter roughness (elevation). 

5
 is proportional to the heterogeneities energy, it represents any energy less than 1% of the clutter energy. 
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IV. Independent component Analysis (ICA) 

IV.1. Introduction 

The previous section has shown that the PCA technique is based on the removal of the 

second order correlation between Ascans in the input data. Uncorrelatedness in itself can be 

not sufficient to separate the clutter from the target, especially if the gaussian assumption does 

not hold for the components of the data model. ICA is expected to mitigate the latter 

shortcomings by accounting for higher order statistical dependencies. This gives a wider 

usage for ICA and better performance are intended for clutter reduction. In addition, ICA 

divides original dataset into statistically independent components ICs, and assumes that the 

original sources are statistically independent.  

Independent Component Analysis (ICA) is a method for finding the set of original data 

from their mixtures, without knowing the mixing process. Basically, it is assumed that the 

data matrix X is generated from the source matrix S through a linear process. The general 

mixing data model for ICA is then written as follows: 

X SA  (3-19) 

Where X= (x1, x2,…, xN)  is the same matrix as for  PCA processing, S = (s1, s2,…, sN2) is 

the M  N2 source matrix (N2 ≤ N), and A is the N2  N mixing matrix. Each column xi of the 

Bscan is a linear combination of the sources S. 

The goal is to estimate the unknown matrices S and A from the data X with a few 

assumptions. Thus, ICA has been used as a blind source/signal separation (BSS) technique 

[41]. The term ‘blind’ stresses the fact that the mixing structure and the sources are both 

unknown. ICA has been used in many applications in a variety of fields: acoustical signal 

processing, biomedical signal processing like the Magneto encephalography (MEG) [17] and 

the electrocardiogram scan (ECG) [42], feature extraction and noise reduction in image 

processing [43], in telecommunication for separating mobile user signal from interfering of 

other users in CDMA (Code Division Multiple Access) [17], in face recognition [44], and for 

blind deconvolution to separate radar emitted wavelet from the reflectivity series [45].  

Both techniques PCA and ICA attempt to project the data and identify the sources of 

interest and discarding the others, they both have been widely used in the literature for clutter 

reduction in GPR images without a deep comparison of their capabilities. The goal in using 

ICA on ground-coupled GPR data is to separate the sources into three classes, namely the 

clutter signal, the target signal which forms an hyperbola within the Bscan, and the additive 

noise, in order to provide a clutter-free Bscan image with reinforced signal-to-noise ratio.  

IV.2. Application strategies for ICA 

The three following schemes are reported in the literature for applying ICA to GPR data 

analysis. They depend on the scope of application, the prior information on the data model 

which is accounted for in the data processing and the assumptions that sustain the data 

structure.  

1. Repetitive measurements for signal reinforcement: assuming the data model is composed 

of two components, i.e., the useful signal with additive noise, ICA is applied to repetitive 
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Ascans measurements at the same position. This induces a high redundancy in the data, 

which can be used to improve the separation between the signal and the noise. This 

strategy has been successfully applied to ECG (Electrocardiograms) scans. But, the data 

acquisition with such a measurement process is time consuming for GPR data collection 

since the measurements have to be repeated many times at each antennas position. Then, 

there is a great interest to find better ways to apply ICA to GPR data. 

2. ICA with reference measurements: assuming prior information on the data model, i.e., the 

amount of components especially, specific experimental conditions enable the sequential 

measurements of some components (at least one) of the data model individually. This 

strategy is usually applied from the time domain in different ways.  First, ICA is applied 

to a set of two Ascans (or Bscans), one containing only clutter with additive noise, and the 

other containing the target and the clutter information with additive noise. The two 

obtained ICs correspond to the two independent components. The selection of the ICs 

whose time of arrival comes at first allows selecting the clutter, while the second time of 

arrival signal corresponds to the target. In [15], the author used a clutter model from a 

target-free area, applied PCA as a whitening process to uncorrelate the matrices (clutter 

matrix and target matrix) and remove their noise, and finally suppressing the clutter from 

the signal observation by using ICA with the likelihood estimation. The author in [46] 

used a simulated clutter signal as a reference instead. In [47], X-T Li et al introduced 

another strategy to process air-coupled GPR data with ICA for estimating time delays of 

echoes and measuring the pavement thickness. This strategy requires the prior 

measurements of each component of the data model individually; the authors then record 

three different Ascans, one for the GPR data over the subsurface, another for the noise 

only (by directing the antenna to the sky) and the third one was the clutter with additive 

noise. The latter strategy implies strong assumption on the experimental conditions, which 

are hardly met in GPR radar configuration.  

3. Data driven technique: this strategy consists in the direct application of ICA on data; the 

conventional mixing model for ICA is used as data model with no additive prior 

information on the amount of ICs. Within the scope of GPR application, ICA is then 

directly applied to the raw Bscan data by considering all Ascans at each position as the 

input matrix for the ICA algorithm, i.e., N vectors corresponding to the number of Ascans 

along the scanning direction. Each Ascan is a combination of N2 sources, i.e., the target 

embedded into the ground. In [48], J. Liu et al presented a modified ICA-based method, 

which combined the selection of ICs with a Non-Homogeneous Detector (NHD). It is 

applied to the detection of non-metallic mines from Bscan data, and it showed better 

performance compared to PCA and the mean removal techniques. The authors in [7] 

selected the same number of ICs as for the number of Ascans, and compared to other 

processing techniques, i.e., Factor analysis FA, SVD, and PCA. They obtained the 

successful detection of metal and Teflon targets with ICA, while the other methods 

detected metal targets only. The authors in [49] selected a fixed amount of ICs from ICA, 

namely N=12. In [50], the latter techniques are successively applied on data: MST (Mean 

subtraction) algorithm is performed first and removed most of the ground bounce, PCA 
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and ICA are then applied to remove all residual of the clutter and the noise to improve the 

SNR. 

4. Processing domains:  it is worth mentioning that ICA can be performed on Ascan GPR 

data in either the frequency or the time domain. Both domains are corresponding to each 

other by dual transformation, i.e., Fourier transform, and then the data processing in both 

domains is expected to provide the same performance. Two dimensional Bscan data afford 

more possibilities and ask about the best domain to perform the data processing. For 

example, the authors in [51] provided a comparative study of frequency-domain and time-

domain based ICA for clutter reduction and non-metallic landmine detection. The 

experimental results indicate very different extracted ICs and may depend on the family of 

ICA algorithm too. For example, the conventional Bscan is called time-time processing 

while the transpose Bscan matrix relies on time-spatial processing. The application of ICA 

to the two latter data structure sustains different assumptions on the sources vectors of the 

data model; this is time independence of time signals and spatial independence of time 

signals, respectively. According to [51], the first ICs which are obtained from the time-

spatial data structure show strong landmine signatures. However, the authors do not give 

enough details on the use of ICA from complex frequency data. 

In the following, the third solution, namely, the data driven strategy, has been preferred 

for practical consideration. This consists in processing the Bscans data directly without 

reference models; it uses only the data processed in the time domain as in [52].  

 

ICA has been extended in [53] [54] to complex data. But this extension on complex data 

has never been used in a GPR application and it might be a good perspective for improving 

ICA. This is especially needed when performing ICA on the data in the frequency domain 

after the Fourier transform of time data. Then, some adaptation is required to measure the 

independency between complex data at each frequency.  

IV.3. Algorithm 

The ICA is performed firstly by formulating a contrast function which measures the 

gaussianity, and then maximizing the latter function with regards to some optimization 

algorithm. At first, to make the algorithm quickly converging, some preprocessing is required.  

IV.3.1. Preprocessing 

For applying ICA algorithm, it is worth mentioning that the data matrix X(M×N) is 

transposed (X = X
T
) such as X(N×M) to adapt the software implementation. Thus, the data 

model can be written as: 

X
T
 = A

T
S

T
 (3-20) 

The preprocessing consists in the two following two steps: 

1. Data centering: this step consists in subtracting the mean value ‘m’ from each Ascan 

measurement (vector)    in matrix X to obtain zero-mean variables. This implies that the 

estimated sources    of matrix S are zero-mean; therefore after estimating the mixing 
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matrix A with the centered data, the mean of S is estimated by applying A
−1

×m, and added 

back to the estimated data matrix S. 

2. Whitening step: this step aims at removing the correlation between the components in the 

data matrix X, and normalizing the variance. The covariance matrix of the whitened data Y 

is equal to the identity matrix I as follows: 

         (3-21) 

The whitening process represents a linear change of coordinate of the mixed data. Once 

the sources are found in this "whitened" coordinate frame by the ICA algorithm, the sources 

can be easily projected back into the original coordinate frame. Whitening process is done by 

applying a whitening matrix transformation B of size M×M to the data matrix X. 

        (3-22) 

The conventional method for whitening a matrix consists in using the left eigenvalue 

decomposition of the covariance matrix X, such as U is an orthogonal matrix: 

              (3-23) 

Whitening matrix B is expressed as a function of eigenvectors matrix and eigenvalue matrix: 

              Or               (3-24) 

And it is easy to verify that [Appendix C1]: 

         (3-25) 

Thus, the whitening process can be seen as the transformation of the mixing matrix A into a 

new orthogonal one Ã: 

              

      
(3-26) 

The whitening step is known to reduce the number of parameters to estimate and to 

improve the convergence of the ICA algorithm.  

IV.3.2. The FastICA algorithm 

In the data model defined in section IV.1, both the source matrix S and the mixing matrix 

A are unknown. The main computational issue in the ICA process is the estimation of the 

mixing matrix A, so that the ICs, i.e. the source matrix S  can be obtained as follows: 

       (3-27) 

Therefore, the ICA decomposition of matrix X can be obtained by finding a full rank 

separating linear transformation matrix W=A
-1 such that the output signal matrix can be 

defined by Ŝ = WX where Ŝ is an estimation of the sources.  

Matrix W must be chosen in a way to maximize the independency between the ICs. In the 

next section, we describe the measure of non-gaussianity and the associate contrast function. 

Many algorithms are proposed in the literature to maximize these contrast functions, e.g., 

FastICA algorithm or Fixed-Point ICA [55], RobustICA, information maximization 

(Infomax), temporal decorrelation source separation (TDSEP) and Joint Approximate 

Diagonalization of Eigen-matrices (JADE). Among others, the FastICA is an efficient and 

popular ICA algorithm introduced by Aapo Hyvärinen [56]. FastICA is based on the gradient-
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descent scheme for finding a maximum of the non-gaussianity of     in [Appendix C3]. It 

can achieve faster learning and more reliability than the “neural on-line learning” method 

[57]. The two steps of the algorithm are described in [Appendix C3], namely the deflationary 

orthogonalization and the symmetric orthogonalization steps. 

The measure of non-gaussianity is made according to several parameters described in the 

book by Hyvärinen [58]: kurtosis, negentropy, minimization of mutual information and 

maximum likelihood estimation. Among them, the kurtosis and negentropy have been 

selected. 

IV.3.3. Independence estimation 

This section introduces the relationship between non-gaussianity and independency, and 

the two most used criteria to measure the non gaussianity, namely kurtosis and negentropy. 

Mutual information and maximum likelihood information criteria have been used by others. 

 

1. Relationships between non-gaussianity and independence 

According to the data model, the ICA decomposition of matrix X consists in finding a 

full rank linear transformation W, such that the output signal matrix is an estimation of the 

source matrix ˆ WS X . The estimated matrix Ŝ  would correspond to the true source matrix S, 

if W is either the inverse or the Moore-Penrose pseudo inverse of the mixing matrix A. 

Otherwise, the output matrix is a linear combination of the sources, i.e., the weighted sum of 

the sources.  

According to the central limit theorem, the sum of independent identically distributed 

random variables has a finite variance, and is approximately normally distributed, i.e. 

gaussian distribution. As a result, the statistical characteristic of the output matrix would be 

more gaussian than any of the sources.  

Thus, the matrix W is calculated by converging the output matrix Ŝ to be as independent 

as possible, i.e., maximizing the non-gaussianity between the ICs. As introduced later on, the 

contrast function G is required to measure the latter independency between components.   

2. Kurtosis 

Kurtosis is the simplest method to measure the non-gaussianity of a variable   , it is 

based on the calculation of the fourth-order moment    such as: 

              
         

     (3-28) 

In the case of a gaussian random variable, the kurtosis reduces to zero. For most non-

gaussian random variables, the kurtosis can be either positive (super-gaussian, spiky form) or 

negative (sub-gaussian, flat form). 

In practice, the estimation of kurtosis from data may be not a robust measure of non-

gaussianity in some cases, e.g., when data include outlier, that means erroneous or irrelevant 

data which show large differences with the average trend [58]. The latter discrepancy may be 

solved by using the negentropy method.  
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3. Negentropy 

In information theory, negentropy is based on the differential entropy, the more random 

or unpredictable the variable is, the larger is the entropy. A fundamental result of information 

theory is that a gaussian variable has the largest entropy among all random variables of equal 

variance. This means that entropy could be used as a measure of non-gaussianity, entropy is 

small for distributions that are concentrated on certain values.  

Negentropy J for a data vector y of random values is defined as the difference between 

the entropy of gaussian variables (with the same covariance matrix as for the input data y) and 

the entropy of the input data y: 

          
    (3-29) 

Negentropy is non-negative and higher for non-gaussian variables. The random variable 

y is assumed to be of zero mean (centered) and unit variance (whitened).  

The advantage of using negentropy as a measure of non-gaussianity is that it is well 

justified by statistical theory. As a counterpart, negentropy is computationally difficult to 

calculate. Therefore, some approximations of negentropy have been introduced in the 

literature; the most used was defined by Hyvärinen [58] as follows: 

                           
 
 (3-30) 

 

4. Contrast functions 

In the latter relation, the contrast function G is some non-quadratic function that must 

help to optimize the performance of the ICA algorithm and to obtain a robust estimator for the 

independent components. The following contrast functions G are conventionally used in ICA 

algorithms: 

       
 

  
                                                         (3-31) 

                                                     (3-32) 

       
 

 
                                           (3-33) 

  is a general purpose function,   is used when the data are highly super-gaussian, and 

   is similar to kurtosis and is used when data include sub-gaussian ICs;  owing to its 

polynomial form,    is preferred when fast and simple calculations are required [57]. 

IV.3.4. ICs selection 

One of the main difficulties for ICA relies on the selection of ICs. Some authors [27] 

[49], select the ICs by visualizing each associated Bscan image; but this is not possible when 

we have more than 20 ICs. The most appropriate approach would require the automatic 

selection of ICS thanks to an ad hoc criterion.  

According to the section IV.3.3, the automatic selection of ICs can be based on the 

measure of the gaussianity.  The ICs with high non-gaussian characteristics carry the object 

information (super-gaussian structure) while the ICs with high gaussian characteristics carry 
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clutter information (sub-gaussian and gaussian structures) and non-target information (noise 

interferences) [51].  

              
        

       (3-34) 

In practice, selecting the ICs with the kurtosis beyond a certain threshold will provide the 

data that should contain the object information while the ICs with low values carry clutter 

information and noise [52] (see Figure 3.4).  

 

Figure 3.4: Influence of the kurtosis on the shape of PDF. 

 

IV.4. ICA applied to GPR data 

Preliminary tests have shown that only the third application scheme for ICA (as 

described in section IV.2) provides reliable performance in most cases, while the two others 

deliver versatile results. As a reminder, for the third scheme, ICA is applied directly to the 

real data matrix X forming the Bscan image. It is composed of N Ascan of Mx1 vector, each 

vector corresponding to a position of the antenna along the scanning direction and is 

presented as the function of time. For ICA, the number of Ascans must be at least equal to the 

number of sources (echoes) to be extracted, i.e,  N>N2. Each Ascan is then a combination of 

the N2 sources; therefore FastICA will generate N2 ICs without any prior knowledge on the 

clutter. Next step is to select the most non-Gaussian ICs, and reproject them using the 

calculated mixing matrix A to reconstruct the image. The obtained ICs with high non-gaussian 

structure carry the object information while the ICs with high gaussian structure carry clutter 

information. Using the normalized kurtosis, we select the ICs which kurtosis is higher than a 

certain positive threshold, and we provide the data which contain neither the clutter nor noise, 

(see Figure 3.9(i) (bottom)).  

 

To illustrate the capability of ICA in separating sources, we consider a simulated ground-

coupled GPR signal using GPRmax with one embedded target at 25 mm. Two Ascans 

responses are considered; the first one is for the clutter alone shown in Figure 3.5(a), by 

considering the measurement position far away from the target location, while the second 

Ascans corresponds to the location above the target, namely the apex. For the latter case, the 

target response is overlapping and masked by the high amplitude of the clutter signal as 

shown in Figure 3.5(b). The two sources which are identified by ICA are shown in Figures 

3.5(c) and 3.5(d); they represent the clutter and the target responses, respectively. Thus ICA is 

able to separate the clutter from the overlapping target response; ICA is also able to recover 
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the true time location of the target and the initial amplitude of ~300, i.e., the target without 

any distortion. 

 

Figure 3.5: Simple ICA-BSS separation test on simulated Ascan with an SNR of 30 dB. a) target-free Ascan, b) 

simulated Ascan over the target (apex region), c) Extracted clutter response using ICA, d) Extracted target 

response using ICA. 

V. Performance assessment of the clutter reduction techniques 

V.1. Introduction  

This section presents the methodology and the results to assess the performance of the 

clutter reduction techniques which are presented in this chapter, namely, PCA in section III, 

ICA in section IV and the mean subtraction technique (MST) in section II. The performance 

has been established on both simulation and measurement data sets, which are presented in 

section V.3 and V. 4, respectively.  

The clutter signals can disturb the detection of the target signals. According to chapter 1, 

the level of disturbance depends on the following experimental factors: the depth of the target, 

the radar cross-section of the target (which also depends on the shape of the target and on the 

dielectric contrast between the target and the surrounding medium), and the antenna 

polarization. Within this scope, metallic and dielectric targets have been considered at 
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different depths for both data sets, and the two ground-coupled radar configurations have been 

used, namely broadside and endfire.  

The methodology for the performance assessment includes qualitative comparison 

between Bscan images and also the quantitative evaluation using the criteria to be presented 

in section V.2, i.e., Signal to Clutter plus Noise Ratio and the Receiver operating 

characteristic (ROC) curves. Alternative criteria have been used by others, e.g., the mean 

structural similarity index in [38]. All the reduction techniques are processed on amplitude 

data in sections V.3 and V.4, i.e. real data.  

V.2. Assessment criteria 

V.2.1. Qualitative comparison  

The visual comparison between the reconstructed clutter-free image and the raw image 

provides a first qualitative assessment of the clutter reduction techniques. In particular, the 

attention is paid to the spatial coherency of the main image features in the processed Bscan 

images along the scanning direction. The hyperbola of the target should be then clearly visible 

within the Bscan and the clutter may be greatly attenuated all along the scanning direction.  

Within this scope, the most difficult situation for the clutter reduction technique relies on 

the Ascan data at the apex, for which the target and the clutter are the closest in time of arrival 

(they are likely to overlap), and may show the largest energy ratio. As for Figure 3.5 in 

section IV.4, the visual comparison between the raw Ascan and the processed Ascan serves as 

a benchmark test: the clutter should have been correctly attenuated while keeping the target 

signal unchanged in time location, in shape and in amplitude.  

V.2.2. Signal to Clutter plus Noise Ratio (SCNR) 

The first method to quantitatively compare the performance of the clutter reduction 

techniques is to calculate the SNR-like ratio (signal to noise ratio) from the processed Bscan 

images.  

According to the literature, different terms exist for describing the same mathematical 

definition, namely SNR in [27], SCR (Signal to Clutter ratio) in [59], or SCNR (Signal to 

Clutter and Noise Ratio). The ratio is defined hereafter as the average energy of the 

reconstructed clutter-free image, namely ‘f’ which represents the expected target image, 

divided by the average energy contained in the “noise” image. The latter is obtained by 

subtracting the raw image, namely ‘g’, to the processed image, ‘f’.  
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The “noise” image then includes the clutter and the additive noise. Then, it seems more 

suitable to use the term of SCR or SCNR, the first having a widespread use in the literature. In 

practice, the clutter reduction techniques do not provide a perfect target reconstruction image. 

As a result, ‘f’ does not represent a perfect clutter-and-noise-free image and the quantity ‘g-f’ 

a perfect target-free image neither.  
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The alternative solution in [7] uses the peak signal to clutter ratio (PSCR), which consists 

in considering the ratio between the maximum of the processed image (instead of the average 

energy as for SNR) and the power of the “noise”.  
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Both ratio values tend to infinity for identical images and provide small values for large 

difference between images. Besides, they depend on the efficiency of the clutter reduction 

techniques and also on the energy ratio between the target and the clutter. As a result, both 

ratio values are intended to afford a limited sensitivity and to be not accurate enough for the 

performance assessment of the clutter reduction algorithms. Therefore, the following ROC 

(receiver operating characteristics) measurement is introduced to overcome the latter 

shortcomings. 

 

V.2.3. ROC curves  

1. Background 

The receiver operating characteristics (ROC) graph is introduced to quantitatively 

evaluate the clutter reduction techniques. ROC methodology has been introduced in the early 

80’s and has become a conventional technique for performance assessment within the image 

processing community [60] [61] and especially, for the evaluation of image segmentation. It 

has been used by many authors for evaluating the clutter reduction techniques in GPR images, 

e.g., [12] [14] [34].  

ROC graphs are calculated by comparing pixel to pixel the two following binary images: 

the reference image, containing only the desired information to extract, and the assessment 

image, containing the binary transformation of the data processed by the method to be 

evaluated for a varying threshold S.  

When comparing the two binary images with respect to the pixel, the following four 

categories of pixel appear: the True Positives pixels (TP) match in the reference image and the 

assessment image and point correct detection, the False Positive pixels (FP) are target pixels 

missing in the assessment image compared to the reference image, the False Negative pixels 

(FN) are detected in the assessment image but do not exist in the reference image and 

introduce false detection, and the True Negative pixels (TN) do not exist in both segmented 

images.  

The ROC curves plot the TP rate with regards to the FP rate for different values of the 

threshold S which takes K values within the range [0; max(|gij|)]. The variation of the 

threshold gives K points on the ROC curve.  

Where:  

- TP rate: is the number of true positive detection vs. the total number of positive in the 

reference image. 
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- FP rate: is the number of false negative detection vs. the total number of negative in 

the reference image. 

 

2. Analysis of ROC curves 

On the ROC curve, the best performance corresponds to the left top corner of the graph, 

which represents the highest TP rate and the lowest FP rate at the same time. In practice, four 

different situations may be obtained as shown on Figure 3.6 (a):  ROC curve labeled A shows 

a low FP rate with a medium TP rate, C label reaches a high TP rate with a larger FP rate as 

before, B is the trade-off between the two latter cases A and C, and D represents the worst 

case among the three latter cases. It is also common to use the area under the ROC curve 

(AUC) that expresses the performance for the goodness of the ROC curve [60]. 

The construction of the two segmented images, namely the reference and the assessment 

images, is the backbone of this evaluation. Both are obtained by image segmentation. They 

have been established for each simulated and experimental Bscan images. 

3. Reference image 

Within the scope of the application, the reference image corresponds to the skeleton of 

the hyperbola, representing the signal scattered over the target to be detected along the 

scanning direction. To this aim, the user selects the pixels, from highest data amplitude, which 

are believed to belong to the hyperbola. The low signal to noise ratio makes difficult the pixel 

selection at the extremities of the hyperbola. This selection is harder when both the clutter and 

target signals overlap; therefore the time pointing can be executed on any of the clutter 

reduced images (for example Figure 3.12 (e)). 

In fact, we have chosen to include in the reference image the first negative and the first 

positive half-cycles of the primary target signal amplitude. The reference image then appears 

with two successive hyperbolas, as shown in Figure 3.6(c), Late hyperbola signals due to 

multiple scattering (between the target and the soil surface for example) are ignored in the 

reference image.  

4. Segmentation of the assessment image  

The assessment image is the processed Bscan image. It is composed of the hyperbola, the 

residual clutter and some artifacts. As for the reference image, the positive and negative half-

cycles of the hyperbola signal amplitude are recorded. 

Within the scope of ROC curves, the assessment images are automatically segmented by 

setting a varying threshold S, which takes K values within the range [0; max (|gi,j|)] (see 

Figure 3.6 (f, g, and h) for k ={40,100 and 250} respectively)    
            

   
 . In practice, the 

ROC curves are calculated from 500 different K values. For each point of the ROC curve, the 

segmented image is compared to the reference image.   
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Figure 3.6: Theoretical and experimental ROC images: a) ROC curves, potentially optimal classifiers [60], b) 

Raw Bscan with a visual hyperbola fitting, c) Reference image obtained by inserting the fitted hyperbola in (b) 

into a null Bscan matrix having same dimensions as the raw image, d) Bscan treated with ICA technique, e) 

corresponding ROC curve for ICA, f) segmented ICA image with threshold k=40, TP rate = 0.7872 , FP rate = 

0.0513, g) segmented ICA image with threshold k=100, TP rate = 0.4468, FP rate = 0.0165, h) segmented ICA 

image with threshold k=250, TP rate = 0.1489, FP rate = 0.0027. 

V.3. Results on the simulated data set  

V.3.1. Data set  

Ground-coupled synthetic GPR data have been obtained from 3D full-wave FDTD 

simulations using the commercial software Empire, e.g., Figures 3.7 and 3.8.  

According to chapter 2, the broadside (TE mode) and endfire (TM mode) antenna 

configurations have been considered for polarization diversity purpose to probe the medium 

with either a dielectric or a conductive pipe, respectively. For both polarization 

configurations, the center-to-center distances between antennas are Yc = 291 mm  and Yc = 

422 mm, respectively.  

The target is a pipe with 12 mm radius; it is located at abscissa 500 mm and buried at 

different depths from the surface, namely, 60, 110,160 and 240 mm. For the sake of 

generality, the latter depths are converted to wavelength assuming the soil permittivity ' 3.5   

at the central frequency 1 GHz: 0.37 ,0.7 ,    and 1.5 , respectively. The target is buried in 

either a one-layer soil ( ' 3.5  , and 10.01 .S m  ) as shown on Figure 3.7, or in a two-layer soil 
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( 5.5'

1  , 9'

2  , and 1

2,1 .01.0  mS ) with a 70 mm thick top layer, as depicted on Figure 3.8. 

The soil medium is homogeneous and includes some attenuation owing to the soil 

conductivity.  

The simulated radar Ascans are calculated every 40 mm along the Oy axis in the range 

[0; 1000] mm. The soil surface is roughless. According to chap. 1, the excitation current has 

the shape of the first derivative of the Gaussian function with duration of 0.5 ns.  

The reference time for measuring the propagation delay in the soil, namely the time zero 

as defined in chapter 1, is the sum of the excitation signal departure time (0.3ns) and the 

propagation delay between the transmitting and receiving antennas in air (estimated around 

0.8ns), that results to a total time zero estimated to 1.1ns for the broadside configuration. It is 

obtained by subtracting the calculated direct wave arrival time from the measured time on the 

Bscan. 

Two sets of simulated data have been performed and compared according to both the 

depth and the nature of the target: a first data set with shallow target implies overlapping time 

responses between the clutter and the echo from the target, and the second dataset with deeper 

target insures that the two latter echoes are resolved in time. For each simulation presented, 

the processed Bscan images resulted from each clutter reduction technique are showed, with 

the SCNR value, the associated ROC curve and the processed Ascan data associated with the 

apex location. The color scale in the images was properly chosen to enhance the visual 

detection of targets before and after the processing. 

 

Figure 3.7: Experimental configuration for the FDTD simulations of GPR radar data with one layer soil model 

including a buried pipe; (top): broadside configuration (TE polarization); (bottom): endfire configuration (TM 

polarization). 
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Figure 3.8: Experimental configuration for the FDTD simulations of GPR radar data with Two-layered soil 

model including a buried pipe; (top): broadside configuration (TE polarization); (bottom): endfire configuration 

(TM polarization). 

 

V.3.2. Results  

In this section, the clutter reduction techniques are performed on simulated data. Among 

others, three depths are selected (160,110 et 60 mm) with the two polarization configurations. 

To ease the data interpretation, the results focus on the simulations with one-layer medium 

only.  

1. Display format 

The results shown on Figures 3.9 to 3.14 gather 8 Bscans. The first correspond to the raw 

data (a), and the seven next Bscans (b-h) represent the processed images by the different 

clutter reduction techniques: four MST-based techniques, two PCA-based techniques, and 

then the ICA-based technique. In frame (a), the reference image, i.e., the segmented 

hyperbola, has been superimposed on the raw Bscan. Raw Ascans and processed Ascans that 

correspond to the apex location of the target hyperbola are shown in the frame (j). It shows 

the time signatures delivered by each of the clutter reduction technique. It is expected to 

reproduce the target signal while attenuating the early signal containing the clutter.  

The ROC curves are shown in frame (k). As a reminder, the ROC curve associated to the 

best clutter technique goes the closest to the top left corner. Qualitatively, any valuable 

technique should provide the ROC curve above the one obtained from the raw data. Below 

this limit, the processing would deteriorate the signal. 
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The top MST technique in frames (j-k) corresponds to the best performance MST-based 

technique among the three ones shown on the frames (b-d). Meanwhile, the frame (i) shows 

the distribution of the singular values from PCA (by descending order), and the selected 

strongest ICs from ICA. 

For data interpretation, the Bscan data provide some basic information for qualitative 

comparison; in particular, they allow to point out the areas where the clutter reduction 

techniques do not work and to identify some artifacts, e.g., some horizontal signal throughout 

the Bscan. 

SCNR and PSCNR ratios provide a global performance criterion: the highest value 

allows to select the best clutter reduction technique. Among the 7 Bscans, the ratios allow a 

coarse separation between the good clutter reduction technique and the others. But, among the 

satisfactory ones, the latter ratios are not sensitive enough to select the best one. 

Finally, the data interpretation of the Ascans allows putting forward the technique which 

enables to accurately retrieve the target signal (with a few distortion, attenuation and time 

shift), while attenuating at the same time the leading part of the Ascan signal containing the 

clutter. The time which is indicated in the frame (j) corresponds to the amplitude peak of the 

first negative half-cycle target wavelet. However, the interpretations of the Ascan data are 

likely to be harder for shallower targets.  

According to the assumptions applied on the medium (homogeneous soil and roughless 

surface), the simulations provide a uniform clutter, i.e., it does not change along the scanning 

direction. In this situation, the conventional subtraction techniques (mean or median 

subtraction techniques) are expected to provide the best performance for the deepest targets. 

The results on metallic and deepest targets are presented first. 

 

2. Conductive pipe 

Considering a conductive pipe probed in the end-fire configuration (TM mode as shown 

on Figure 3.7.b) at depth 160 mm (i.e., about one wavelength), the raw Bscan in Figure 3.9(a) 

shows that both the clutter and the hyperbola are separated in time. The clutter arrival time is 

3.4 ns (positive half-cycle waveform) and the first hyperbola diffraction apex arrival time is 

estimated at 4.3 ns (negative half-cycle waveform). According to Figures 3.9 (b-h), the third 

MST technique (i.e., MST with clutter reference), the median subtraction technique and ICA 

succeed in suppressing the clutter all along the Bscan without any artifacts and any distortion 

on the hyperbola envelope. Four techniques, namely, the conventional and the moving MST, 

the conventional and the modified PCA techniques, introduce an horizontal artifact 

throughout the whole Bscan at different time locations. In addition, the conventional PCA 

shows unreliable results in the surrounding of the target location.  

The good performance obtained by ICA and the third MST techniques is confirmed by 

the high SCNR values and on the ROC curves in figure 3.9(j), since the ROC curves is the 

closest to the top left corner. At the opposite, the conventional PCA depicts the worst 

performance: the corresponding ROC curve is located below the one obtained with raw data, 

and the SCNR value is negative. 
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In addition, the processed Ascan signals on Figure 3.9(j) corresponding to the apex of the 

hyperbola show that the conventional PCA provided an inverted, shifted and attenuated target 

signature compared to the raw data. The modified PCA preserved the target signal with a little 

change in amplitude only; but at the same time, it does not suppress the clutter within the time 

interval [3-4] ns. ICA provided a reliable target signature while lowering more significantly 

the clutter component in the range [3-4] ns. 

As a summary, ICA affords better results than PCA in removing the clutter as stated by 

the higher SCNR/PSCNR, the ROC curves and the processed Ascans. Although this 

experimental configuration is close to the ideal situation, i.e., no overlapping between the 

clutter and the target time signatures, all the clutter reduction techniques are (surprisingly) far 

to provide similar performance. The MST with a reference target-free signal provides better 

performance than the two other MST, meaning that the clutter signature can be better 

estimated from a target-free Bscan region than by any averaging over the entire Bscan. 

Besides, the median filter is found more robust to the latter overlapping between clutter and 

target signatures than the conventional mean filter. 

 

The conductive pipe has now been buried at the depth 110 mm, i.e. 3/4 of the wavelength 

within the soil material. As shown on the raw Bscan in Figure 3.10(a), the clutter and the 

target time signatures overlap to each other: the arrival times of the clutter and the target at the 

apex are 3.4 ns and 3.9 ns, respectively. According to Figures 3.10 (b-h), the modified PCA 

becomes more efficient in removing the clutter than ICA, the latter introducing a horizontal 

artifact with small amplitude. The MST with clutter-free reference and the median subtraction 

technique are still the best clutter reduction techniques.  

The ROC curves in Figure 3.10(k) also lead to the same conclusion. The ROC curve 

associated with PCA is still below the one provided from the raw data. The largest SCNR and 

PSCNR levels are obtained by the third MST, the median-based MST, the modified PCA and 

ICA. 

Ascan data in Figure 3.10(j) show that amplitudes are nearly recovered in all techniques 

with little variations, but there is a little shift in the hyperbola apex for the modified PCA 

technique. Only ICA, the median and the thirst MST strongly reduce the amplitude of the first 

positive half-cycle alternation of the clutter signal within the time interval [3 3.5] ns. As a 

partial conclusion, the modified PCA globally reaches close performance to the third MST in 

removing the clutter signal. But locally, especially in the apex region, ICA and the third MST 

remain the best technique.  

For the last simulation, the metal pipe is buried at a very shallow depth of 60 mm, about 

one third of the wavelength. The result in Figure 3.11(a) shows that the clutter is strongly 

overlapping with the hyperbola time signature. As opposed to the two first simulations, PCA 

affords better result than both the modified PCA and the ICA techniques as shown on the 

ROC curves Figure 3.11(k). The conventional PCA reduces partially the clutter with some 

remaining distortion on the hyperbola shape as before. The conventional MST, PCA-based 

and ICA introduces an artifact as a horizontal band at various time.  
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ROC curves in figure 3.11(k) show that MST and median techniques afford the best 

performance, followed by PCA. However, this can be mitigated because the ROC curve 

associated with the raw data is partially above the one provided by PCA. According to the 

same criteria, the modified PCA and ICA are worthless in this situation.   

Compared to the two first cases, the main observation is that the performance by ICA has 

degraded a lot and ICA only partially removes the clutter. As a potential explanation, the 

closeness of the target to the surface seems to challenge the statistical independency (between 

the clutter and the target signals) that relies on ICA. 

Figure 3.11(j) shows the different processed Ascans at the apex of the hyperbola (i.e., y = 

500). ICA is shown to be inefficient because the resulting signal unexpectedly looks like to 

the raw data. The amplitude peak on the PCA and the modified PCA techniques did not match 

to the one of the raw data. According to the location of the amplitude peak, the best result 

seems to be provided by the Top MST and the median technique; as a counterpart, both 

methods provide a  larger amplitude than the raw data; it is believed that the lower amplitude 

of the raw data is the result of destructive interference between the clutter and the target 

signatures.  

The broadside antenna configuration is considered in Figure 3.12 to obtain the TE mode. 

For this polarization, it has been shown in chapter 5 that the time clutter signature spreads 

over a larger time because of multiple reflections. To illustrate the influence of the 

polarization on the clutter reduction technique, we have selected the configuration with the 

same metallic pipe buried at a depth of 110 mm. As shown on Figure 3.12(a), the hyperbola is 

blurred by the overlapping of multiple clutter reflections. From the ROC curves and the 

different processed Bscans, the median and the third MST technique seem to give the best 

performance for reducing the clutter, followed by PCA; ICA provides the worst performance. 

The result on Ascans is made difficult to interpret because of multiple overlapping signals.  

 

3. Dielectric cylinder  

The influence of the dielectric characteristic of the target on the clutter reduction 

technique is illustrated on Figures 3.13 and 3.14, with the dielectric ( 3pvc  ) PVC pipe buried 

at 110 mm in depth and probed in the TM and TE polarizations, respectively. The raw Bscans 

are shown in Figures 3.13(a) and 3.14(a). The hyperbola associated with the target signal is 

masked by the strength of the clutter signal; the apex of the hyperbolas is located at 4.1 ns and 

3.7 ns in TM and TE polarizations, respectively. The PVC pipe has a smaller radar-cross-

section compared to the metallic pipe; as a result, the peak of the Ascan amplitude on the 

frame (j) is about ten times smaller than the one previously obtained on the metallic pipe. We 

observe that the third mean subtraction technique, the median subtraction technique and PCA 

succeed in reducing significantly the clutter. The conventional MST, PCA and ICA introduce 

a horizontal artifact. As opposed to the case with metallic pipe, PCA provides better 

performance than the modified PCA. It is worth noticing that raw data from the broadside 

configuration are harder to interpret, and the target signal is even more blurred by the clutter. 

Nevertheless, the clutter reduction techniques succeed in detecting the hyperbola with 
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different success rates. It seems that the less the hyperbola is visible on the Bscan data, the 

less ICA and the modified PCA enables to separate the hyperbola from the clutter and the 

more PCA enables to enhance the hyperbola. However, it appears from ROC curves plotted in 

Figures 3.13(k) and 3.14(k) that all the methods afford better performance than the one 

provided from the raw data. Among them, PCA and the MST afford the best performance in 

clutter removal. The Ascan in Figure 3.14(j) shows the large difference in amplitude between 

raw data and the processed data by the different clutter reduction techniques.  
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Figure 3.9: Simulated Bscans over a metal pipe buried at 160mm depth in a one-layer homogeneous medium, 

with antennas in the endfire configuration (TM). (a) Raw data (b) MST across all traces (c) Moving window 

MST (d) MST with target-free reference (e) Median MST (f) PCA (g) modified PCA (h) ICA (i) (Top) 

Eigenvalues amplitude against the order number plot, with best exponential fitting at y =1.5*(exp(-x/1.91)) (i) 

(Bottom) kurtosis of ICs plot (j) Ascans (k) ROC, (top MST
6
 is (d)). 

                                                 
6
 Top MST: represents the MST with the best performance for clutter reduction. 
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Figure 3.10: Simulated Bscans over a metal pipe buried at 110mm depth in a one-layer homogeneous medium, 

with antennas in the endfire configuration (TM). (a) Raw data (b) MST across all traces (c) Moving window 

MST (d) MST with target-free reference (e) Median MST (f) PCA (g) modified PCA (h) ICA (i) (Top) 

Eigenvalues amplitude against the order number plot, with best exponential fitting at y =1.64*(exp(-x/1.7)) (i) 

(Bottom) kurtosis of ICs plot (j) Ascans (k) ROC, (top MST is (d)). 
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Figure 3.11: Simulated Bscans over a metal pipe buried at 60mm depth in a one-layer homogeneous medium, 

with antennas in the endfire configuration (TM). (a) Raw data (b) MST across all traces (c) Moving window 

MST (d) MST using target-free reference (e) Median MST (f) PCA (g) modified PCA (h) ICA (i) (Top) 

Eigenvalues amplitude against the order number plot, with best exponential fitting at y =0.93*(exp(-x/2.3)) (i) 

(Bottom) kurtosis of ICs plot (j) Ascans (k) ROC, (top MST is (d)). 
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Figure 3.12: Simulated Bscans over a metal pipe buried at 110mm depth in a one-layer homogeneous medium, 

with antennas in the broadside configuration (TE). (a) Raw data (b) MST across all traces (c) Moving window 

MST (d) MST over target-free traces (e) Median MST (f) PCA (g) modified PCA (h) ICA (i) (Top) Eigenvalues 

amplitude against the order number plot, with best exponential fitting at y =0.94*(exp(-x/1.5)) (i) (Bottom) 

kurtosis of ICs plot (j) Ascans (k) ROC, (top MST is (d)). 
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Figure 3.13: Simulated Bscans over a PVC pipe (ε=3) buried at 110mm depth in a one-layer homogeneous 

medium, with antennas in the endfire configuration (TM). (a) Raw data (b) MST across all traces (c) Moving 

window MST (d) MST over target-free traces (e) Median MST (f) PCA (g) modified PCA (h) ICA (i) (Top) 

Eigenvalues amplitude against the order number plot, with best exponential fitting at y =0.8*(exp(-x/0.42)) (i) 

(Bottom) kurtosis of ICs plot (j) Ascans (k) ROC, (top MST is (d)). 
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Figure 3.14: Simulated Bscans over a PVC pipe (ε=3) buried at 110mm depth in a one-layer homogeneous 

medium, with antennas in the broadside configuration (TE). (a) Raw data (b) MST across all traces (c) Moving 

window MST (d) MST over target-free traces (e) Median MST (f) PCA (g) modified PCA (h) ICA (i) (Top) 

Eigenvalues amplitude against the order number plot, with best exponential fitting at y =0.9*(exp(-x/0.26)) (i) 

(Bottom) kurtosis of ICs plot (j) Ascans (k) ROC, (top MST is (d)). 
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V.4. Results on the field data set  

V.4.1. Data set  

The field data set is composed of measurements performed with the UWB ground-

coupled radar over the outdoor sandy box at the public garden Perichaux, Paris 15
th

 district, as 

presented in chapter 2. The soil moisture was depending on the weather condition; we paid 

attention to collect the data under similar weather conditions. The soil heterogeneity was 

revealed a posteriori from the radar data. In fact, the sandy box is composed of different 

layers which provide several echoes on the Bscan images. The first layer (48 cm depth) is the 

thickest and its dielectric permittivity has been estimated to 3.5 according to work in [62]. The 

estimated arrival time is quoted on the latter figures and corresponds to the calculated arrival 

time in addition to the time zero of ~2.3 ns. Time zero has been estimated according to the 

travel time of the direct air-wave.  

Most of the Bscan data were collected over two canonical objects, i.e. pipes with 

different radiuses, buried at a depth of ~160 mm and at two locations along the scanning 

direction., i.e., ~500 mm and ~1200 mm. The following pipes were successively considered: 

metal pipe, air-filled PVC pipe and water-filled PVC pipe.  

Each Bscan is composed of 45 Ascans which were collected with a 40 mm uniform 

spatial sampling and covers the distance [0; 1760] mm. In the processing, the Bscans are split 

into two images corresponding to the scanning distances [0, 1000] mm and [760, 1760] mm, 

respectively. Each reduced image in size contains a Bscan with a single target. Both 

polarizations TM and TE were recorded for each target. 

Measurements have been qualitatively compared with simulations. The format of the 

results and the methodology for the data interpretation are the same as in the simulations in 

section V.3. Then, for each experimental configuration, the processed Bscan images resulting 

from each clutter reduction technique are showed, with the associated SCNR values, the 

associated ROC curves and the Ascans corresponding to the apex location. The color scale in 

the images was properly chosen to enhance the visual detection of targets before and after the 

processing. 

V.4.2. Results  

Experimental tests were conducted to verify the performance of the clutter reduction 

techniques on field data. Different radiuses have been used for each pipe. Owing to the soil 

heterogeneity, the data include some interference scattered all over the image. The processing 

results are evaluated firstly over the whole image and then over a limited time area in the 

image corresponding to the hyperbola response. 

In the first measurement campaign, a 12 mm radius air-filled PVC pipe was buried within 

the sand at the depth 160 mm and has been probed with the ground-coupled GPR using the 

broadside configuration. The raw Bscan in Figure 3.15(a) shows the apex of the target 

hyperbola at the abscissa 500 mm. The slight vertical variations of the clutter signal along the 

scanning direction indicates the significant influence of the soil roughness. The echoes 

beyond 7 ns which are due to the layered structure of the sand material do not seem to overlap 

with the target signal. With a differential time shift of about 1 ns on the Ascan in Figure 

3.15(j), the clutter and the target signals only slightly overlap on each other. 
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Owing to several features in the processed images, the best clutter reduction techniques 

can be hardly selected from the Bscans on Figures 3.15(b-h). Concerning the ROC curves on 

Figure 3.15(k), we remark that the FP rate does not reach zero because the hyperbola 

amplitude appears lower than the components not containing target information. Compared to 

the results on the simulated data in Figure 3.14, the clutter reduction techniques provide 

poorer performance in overall because the ROC curves are further from the top left corner. 

Only the median subtraction technique, PCA and the modified PCA provide better 

performance than the one obtained on the raw data. For ICA, more ICs have been considered 

compared to the simulated data set; but ICA depicts the worst performance. As a partial 

conclusion, PCA is recommended for clutter reduction in this case, as already observed for 

the similar simulated case in Figure 3.14.  

The several echoes from deeper stratification of the medium are questioning and may 

disturb the performance of the clutter reduction techniques. The clutter reduction techniques 

have been then performed on Figure 3.16 on a reduced time window [4; 6.3] ns where the two 

useful signals are localized. It is observed that such a processing has not improved the 

performance by ICA. It is difficult once again to select the best other techniques with regards 

to the Bscans on Figure 3.16(b-h). The reduction of the time interval has improved the ROC 

curves time as shown on Figure 3.16(k), but has also provided closer performance between 

most of the techniques. In this situation, the median value subtraction shortly appears as the 

best candidate for clutter removal. 

 

In the second measurement campaign, a 5 mm radius metal pipe has been buried at 160 

mm in depth and approximately localized at abscissa 450 mm. It has been probed with the 

end-fire configuration instead. This result has to be compared with the simulations shown on 

Figure 3.9. From Figure 3.17(a), we remark that the clutter slightly overlaps with the 

hyperbola response. The hyperbola signature is characterized by higher amplitude as 

compared to other signals owing to the stronger RCS of the metal pipe.  

According to the processed Bscans in Figures 3.17(b-h), ICA successfully reduces the 

clutter. Moreover, it is noticeable that ICA strongly removes most of the multiple reflections 

occurring at late time delays (beyond 6.5 ns), as opposed to the third MST and the modified 

PCA techniques. As a counterpart, ICA also removes some of the hyperbola edges. The two 

PCA-based clutter reduction techniques imperfectly reduce the clutter at the apex.  

According to the ROC curves in Figure 3.17(k), the clutter reduction techniques afford 

better performance than the one provided from the raw data. Among others, ICA affords the 

best performance followed by the median subtraction technique. On the Ascans in Figure 

3.17(j), it is worth noticing that ICA and the MST-based techniques reduce the amplitude of 

both the early signals (containing the clutter) and the late signals (containing multiple echoes)  

By focusing the processing on the reduced time window [3.8; 6.5] ns on Figure 3.18, the 

superiority of ICA in removing the clutter is no longer lasting. The shortcomings of each 

technique are then more clearly visible on the processed Bscans. According to the ROC 
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curves, the median value subtraction and the first MST take over ICA and afford the best 

performance. 

 

 

Figure 3.15: Experimental Bscans over a PVC pipe (ε=3) buried at 160mm in depth within sand with the 

antennas in the broadside configuration (TE). (a) Raw data (b) MST across all traces (c) Moving window MST 

(d) MST over target-free traces (e) Median MST (f) PCA (g) modified PCA (h) ICA (i) (Top) Eigenvalues 

amplitude against the order number plot, with best exponential fitting at y =0.06*(exp(-x/0.9)) (i) (Bottom) 

kurtosis of ICs plot (j) Ascans (k) ROC, (top MST is (c) based on ROC). 
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Figure 3.16: Processing results of the data on Fig. 3.15 over a reduced time window, [4; 6.3] ns. (a) Raw data 

(b) MST across all traces (c) Moving window MST (d) MST over target-free traces (e) Median MST (f) PCA (g) 

modified PCA (h) ICA (i) (Top) Eigenvalues amplitude against the order number, with best exponential fitting at 

y=0.018*(exp(-x/0.61)) (i) (Bottom) kurtosis of ICs plot (j) Ascans (k) ROC, (top MST is (d)). 
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Figure 3.17: Experimental Bscans over a metal pipe buried at 160mm in depth within sand with the antennas in 

the endfire configuration (TM).  (a) Raw data (b) MST across all traces (c) Moving window MST (d) MST over 

target-free traces (e) Median MST (f) PCA (g) modified PCA (h) ICA (i) (Top) Eigenvalues amplitude against 

the order number plot, with best exponential fitting at y =0.03*(exp(-x/2.5)) (i) (Bottom) kurtosis of ICs plot (j) 

Ascans (k) ROC, (top MST is (b)). 
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Figure 3.18: Processing results of the data on Fig. 3.17 over a reduced time window [3.8; 6.5] ns. (a) Raw data 

(b) MST across all traces (c) Moving window MST (d) MST over target-free traces (e) Median MST (f) PCA (g) 

modified PCA (h) ICA (i) (Top) Eigenvalues amplitude against the order number, with best exponential fitting at 

y =0.021*(exp(-x/2.28)) (i) (Bottom) kurtosis of ICs plot (j) Ascans (k) ROC, (top MST is (b)). 
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VI. Conclusion 

In this chapter, we have presented the application of some pre-processing techniques, 

namely PCA, ICA, mean and median subtraction techniques, for reducing the clutter and 

unwanted signals in ground-coupled GPR images. As a result, these techniques are expected 

to improve the detection of either dielectric or conductive targets embedded into the 

subsurface, including small defaults in civil engineering structures.   

Firstly, simplified scenarios have been considered in the simulations and in the 

experimental test-site. The medium has been supposed to include a single pipe buried in either 

a two-layered or a one-layered media. The above selected results have been originated from 

the one-layer case, two-layered results are evaluated as well, but they are not showed here. 

The performance of the clutter reduction techniques have been assessed from full-wave 

FDTD simulated data set and field data set on a specific test-site, using visual evaluation of 

the processed Ascans and Bscans, and also using some global quantitative criteria such as 

ROC curves, SCNR and PSCNR values. The widespread conventional background removal 

techniques, i.e., mean-based subtraction techniques, were used as a benchmark for assessing 

the performance of statistical-based techniques, namely, PCA and ICA. 

The performance has been found different according to the depth of the target and to the 

polarization. Considering numerical and field data sets, we have noticed that in the case of 

shallow targets for which the depth is smaller than one wavelength (the clutter and the target 

time signatures overlap with each other), PCA appears to be more efficient than ICA. At the 

opposite, ICA appears to be more efficient than PCA for a deep target (the clutter and the 

target time signatures do not overlap with each other). In both cases however, the 

conventional background removal technique (MST) often overcome the performance of the 

statistical-based clutter reduction techniques. Among them, the third MST variant is the best 

but requires a reference target-free signal (from either the Bscan or a specific measurement). 

The median subtraction technique is shown to be quite robust to all experimental conditions.  

The behavior of ICA is questioning because it is opposed to the performance evaluation 

which has been reported in the literature. Within the scope of the application, the ICA 

technique assumes that the clutter is statistically independent of the target signal, because the 

clutter signal exists whether the targets are present or not. However, for shallow targets, the 

EM wave interaction at near field makes the clutter signal becoming slightly dependent of the 

underlying targets. Therefore the ICA technique might not provide the correct ICs for shallow 

targets.  

Another questioning limitation concerns the reliability of the performance assessment for 

shallow targets. It was assumed in section V.2.3 that the building of the reference image was 

not influenced by the depth of the target. This assumption can be hardly verified from data. 

Thus, it is recommended for shallow targets to only use a qualitative assessment of clutter 

reduction techniques. In particular, it is suggested to check the processed Bscans by a careful 

visual image analysis and to pay attention to the spatial coherency of the detected image 

features along the scanning direction. It is also suggested to check on the Ascan data that the 
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early part of the signal containing the clutter is effectively attenuated as expected by the 

clutter reduction technique.  

Concerning the field data set, the limitation of the time window (i.e., the time horizon) 

would be worth to avoid the spurious signals due to multiple reflection and scattering on deep 

heterogeneities that make the data processing more difficult to handle. Mostly, the 

improvement has concerned the performance of the conventional background removal 

techniques, which then take over the statistical-based techniques. As a counterpart, such a 

time gating requires a manual intervention of the operator to adjust both the location and the 

duration of the time window to the useful signals. 

Some improvement has been proposed for PCA to handle the varying clutter to target 

signal energy ratio along the scanning direction. The improvement consists in decomposing 

the entire Bscan into sub-Bscans based on the energy ratio. This makes PCA independent of 

the target RCS and to detect indifferently metal or dielectric targets. It seems also to give PCA 

the ability of separating deeper targets. Further improvement would concern the full 

automation of the modified PCA. 

According to the evaluations in this chapter, PCA is then found better adapted than ICA 

for reducing the clutter in ground coupled GPR images as opposed to the literature review. 

Table 3.3 resumes the obtained results for each technique as function of the energy levels and 

the overlap between the clutter and the hyperbola. Working perspectives aim at testing the 

clutter reduction techniques for the identification of several targets in Bscan images. 

Moreover, it would be worth to extend the performance assessment to some of the clutter 

reduction techniques which have been reported in the literature review to achieve good 

performance on shallow targets. According to section II, it would concern among others the 

Time Frequency Separation technique, the Wavelet Packet Decomposition technique and the 

Compressive Sensing techniques. Finally, the influence of the polarization will be studied in 

next chapter in order to obtain the response of the target as a function of the polarization. 

 

Image holds: 

 

No-overlap C&H 

EC>EH 

No-overlap C&H 

EC<EH 

Overlap C&H 

EC>EH 

Overlap C&H 

EC<EH 

MST-Mean + + + - + - 

MST-Median + + + + + + + + 

PCA  + - - - + + + 

Modified PCA + + + + + 

ICA + + + - - - - - 

Table 3.3: Results-summary for the evaluated clutter reduction techniques. The techniques are resumed as 

function of the energy levels (EC and EH) and the overlap between the clutter, namely C, and the hyperbola, 

namely H. The +/- symbols indicate if the methods can/can't reduce the clutter (with different degree of 

reduction).  
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Chapter 4: Hyperbola fitting and template 

matching for target detection within GPR 

Bscan images 

 

Résumé  

La détection automatique des signatures hyperboliques des objets enfouis permet de 

réduire les facteurs humains dans l'extraction des données quantitatives à partir des images 

Bscans. Un algorithme de détection “template matching” a été sélectionné pour être appliqué 

à la localisation des signatures de tuyaux cylindriques enfouis dans un sol. L’algorithme 

consiste à saisir une fenêtre sur une position (i,j) du Bscan et la superposer avec une image de 

référence (Template) afin de calculer une distance euclidienne ; l’amplitude de cette distance 

calculée détermine des minimums locaux (m,n) qui servent à définir la zone où existe une 

hyperbole dans le Bscan.  

Une fois la position de l’hyperbole déterminée, les données relatives à cette région sont 

analysées pour extraire les paramètres d’un modèle analytique de l’hyperbole. Cette 

extraction s’effectue au moyen de la théorie des moindres carrés non-linéaires et concerne les 

caractéristiques du tuyau enfoui et du sol (position, profondeur, rayon et permittivité réelle). 

L'algorithme a été mis en œuvre et évalué sur des données numériques puis sur des 

données expérimentales.  
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I. Introduction  

The reflection of EM waves on buried targets exhibits hyperbolic signatures on Bscan 

images, as showed in chapter 1. In this chapter, the analysis of hyperbola signatures is 

proposed in order to extract quantitative information about buried targets associated with their 

location, depth and dimension, and also the wave velocity of the subsurface. The estimation of 

such information has been performed using an analytical parameterized hyperbola model. 

The analysis of a given hyperbola has been performed in two steps: hyperbola detection 

and hyperbola fitting. The detection/segmentation of hyperbolas can be performed by a wide 

range of techniques according to the literature: Hough transforms [1], cross-correlation [2], 

machine learning algorithms [3] [4], hyperbola flattering transform [5], template matching [6] 

and many others like neural networks classification, wavelet transform, and pattern 

recognition introduced in this thesis [7].  

This chapter describes the technique developed in parallel to this work for hyperbola 

detection based on the template matching algorithm. This technique allows to further extract 

the hyperbola data for the fitting of the curve according to the least square criterion. The 

application of the template matching algorithm to Bscan images originates from [8] and the 

basics and applications of that technique in image processing are detailed in [9]. The 

algorithm uses a hyperbola template as the reference that is swept over the entire Bscan image 

to find the best location matching. The template matching has been successfully applied in 

different domains such as in the detection of road signs [10].  

II. Ray-path model 

The ray-path model describes the two-way travel time by the EM waves between an 

emitter and a receiver belonging to a ground-coupled GPR [11]. It is assumed that a 

cylindrical target is buried in a homogeneous soil as showed on Figure 4.1. The travel time    

as function of the antenna position    (blue path) is expressed according to Pythagorean 

theorem, as follows: 

 
        
        

              
                   

              

                   
              

  (4-1) 

 

Where            are the unknown constants, and    
         

 
  is a known constant 

representing the center-to-center antenna distance. Equations in (4-1) expressed in chapter 1 

(eq. 1-13), describe the reflected path which has traveled between the emitter Tx and the 

target and between the target and the receiver Rx. The total travel time for the     position 

   is the sum of both paths such as: 

                             (4-2) 

             
                       

                  (4-3) 
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             (4-4) 

 

At the apex of the hyperbola, Tx and Rx are just above the target leading to the path in 

red (Figure 4.1) . When                                    , the travel time is given by: 

                       (4-5) 

                         (4-6) 

               
 
       (4-7) 

Considering that the velocity   is estimated according to the time/velocity spectrum 

analysis (chapter 1), and that the apex coordinate, position and arrival time 

                            are obtained from the detection algorithm in section III and IV; 

the corresponding depth value   is calculated according to Eq. (4-7).  

Then, by substituting the expression of   in eq. (4-7) to eq. (4-4), and using the samples 

   and    from a first hyperbola analysis (section IV), the radius R can be numerically 

estimated according to eq. (4-4). The radius R can be solved with the Matlab ‘solve’ function. 

Thus, the target parameters (position   , depth   and radius  ) are obtained by 

combining three techniques: detection, definition of a ray-path model, and a non linear and 

constraint fitting. 

 

Particular approximations: 

A usual approximation considers the case of a target located in the far-field zone of the 

pair of antennas [12], [13]. In such a case, the antennas are considered having a small lateral 

dimension (SR) and a small offset relatively to the depth d, meaning that       (mono-static 

system L1=L2). Therefore Eq. (4-4) can be simplified in the following hyperbolic form: 

                
             (4-8) 

 
    

  
 
 
 

         
  
 
 
 
 
  

  
 
  

 
 
 

  
      

 
   

     (4-9) 

-The term    
      

 
   (respectively         

  

 
): compared with the fitting 

expression (4-12) can serve to estimate the radius    
          

 
. 

-The term 
 

 
     : can serve to calculate the velocity (if the velocity is not known). 
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When the aim is only the detection of the position and the depth of small targets [14], the 

cylinder is considered as a point in space with radius R=0, plus a negligible     eq. (4-9) can 

be simplified according to the following hyperbolic form: 

 
  

 

         
  

  
 
  

 
 
 

           
     (4-10) 

 

It is worth noticing that the conventional approximations in the literature are not matched 

to a large lateral dimension of the antennas, and to shallow targets case, e.g., Yc is larger than 

d, as shown on Figure 4.2. Then, nor the mono-static approximation (meaning L1=L2, 

           in the above equations), nor the point-like scatterer (R = 0 in the above 

equations) can be applied. 

 

 

Figure 4.1: Geometry for the ray path model for a cylindrical target. 

 

III. Template matching  

This section reports the work in [8], which has been conducted by Ifsttar colleagues in 

parallel to this work. Main results are presented here. 

The aim in the algorithm is the detection of the hyperbolas positions in a Bscan image for 

later extraction. Template matching algorithm is performed with 2 images: a template image 

used as a reference for the hyperbola shape and the Bscan Raw image. 

The algorithm relies on the choice of the template image that must be chosen carefully. 

The template image (matrix t) is predefined according to the different hyperbola shapes 

observed in the Bscan. Therefore an interpretation on different types of target signatures is 

made before selecting the best candidate from the dataset to be used as a template. In general 

the conductive pipes show strongest reflection than dielectric pipes, thus such a signature has 

been used as a template.  
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Preprocessing algorithms (time zero correction, and noise filtering) have been 

preliminary applied on the raw Bscan image before applying the following algorithm; the 

clutter is removed using the suited technique according to chapter 3 to obtain a matrix  . 

The template image has a smaller dimension than the raw Bscan, and its area is 

proportional to the area occupied by one hyperbola close to the apex. The template is 

translated on all possible pixels position       on the Bscan, and the corresponding Euclidian 

distance is calculated for each position (matrix E) defined as follows: 

                             
 

  

 (4-11) 

 

For each position        of the Euclidian distance map, the calculated value represents 

the sum of all superposed pixels       of the translated template t on the Bscan image g; the 

superposition is produced by the subtraction pixel to pixel the shifted template image from the 

entire Bscan. 

The local minimums values of E (maximum of resemblance between g and t) correspond 

to positions                 on the Bscan; these positions serve in positioning the 

presence of the hyperbola in a precise region of the Bscan according to the template window 

size. In the next step, the latter region is used for extracting a hyperbola curve. 

IV. Hyperbola extraction and fitting  

This section is associated with the extraction and the fitting of the hyperbola curve in 

each location of the template inside the Bscan.  

An interactive program [11] allows to select the hyperbola amplitude, on either the upper 

or the lower half zone inside the template position. The curve points associated with the first 

arrival times of a hyperbola can correspond to a maximum or a minimum amplitude. Because 

higher order reflections in a pattern may produce a stronger amplitude as compared to the 

amplitude of the first reflection, an interactive program is necessary to select the hyperbola 

curve either on the upper or the lower half zone of the template position. Thus, starting from 

the middle point, close points belonging to the hyperbola curve on the left and on the right 

legs are step by step extracted (pixel by pixel). The number of points to select on each 

hyperbola leg can be preliminary defined, usually 3 points have been considered. 

The first time arrival in the selected window corresponding to the hyperbola apex is 

selected, coordinated as           .  

Afterwards, the hyperbola pixels are fitted by the following hyperbola equation: 

       
 

  
 

       
 

  
   (4-12) 

The best fit with regards to the least-square criterion allows estimating the hyperbola 

coefficients (a, b, yo  and b) [15] [16]. The latter are compared to the ray model equations in 
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(4-4), (4-9) or (4-10) to extract information about the soil velocity and about the target depth 

and radius (   represents the target position). 

 

V. Validation on numerical results 

Considering the end-fire configuration, Accordingly, the dataset (Figure 4.2(b)) is 

obtained by FDTD simulations over 3 buried pipes (conductor, dielectric with ε’=9, and air-

filled pipe) with different radiuses (32 mm, 22 mm, and 11 mm respectively) in a 

homogeneous soil (  
                      ) at several depths (168 mm, 79 mm and 

148 mm respectively).  

The modeled antennas are two blade printed dipoles antennas described in [17] as shown 

in Figure 4.2(a). The simulated Bscan includes the scattering from three targets visualized by 

three hyperbolas on Figure 4.2(c); the clutter has been removed with the median subtraction 

technique. The first two hyperbolas appear clearly; however the third one is overlapped and 

has a very small magnitude, and is thus hardly detectable. 

 

The dataset matrix in Figure 4.2(c) is transformed into a pixel matrix as visualized on 

Figure 4.3(c). The resulted Bscan is processed with the template matching algorithm to extract 

visible hyperbola responses. The template image is chosen the same for the three pipes; it is 

associated with the conductor pipe response, because it has the largest magnitude.  The 

template image has the dimension of 189×7 pixels as shown on Figure 4.3(a). According to 

the Euclidian distance map in Figure 4.3(b), two local minimums are present corresponding to 

the visible hyperbolas; with coordinates                            . Two 

windows that well correspond to the hyperbolas positions in the Bscan image has been 

selected (Figure 4.3(c)). 

In each window, the hyperbola coefficients (a, b, t0 and y0) are extracted (Figure 4.3 (d)) 

and used with the ray-path model for calculating the target parameters. The obtained 

parameters for each target are respectively: (y1= -188 mm, d1= 157 mm and R1= 25 mm to 35 

mm) and (y2= 113 mm, d2= 90 mm and R2= 25 mm to 35 mm). 

We observe in Table 4.1 that the pipe position and the depth estimations are very similar 

to the theoretical ones; however the radius estimation is very hard when the antenna 

dimensions are very large compared to the radius. A higher resolution extraction and fitting 

algorithm must be employed to obtain more accurate results and valid radius estimation. 
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Figure 4.2: a) Blade dipole geometry, b) Geometry model used for simulation in the end-fire antenna 

configuration with 3 buried pipes, c) computed Bscan image after clutter removal by the median subtraction 

technique (on the courtesy of F. Sagnard [8]). 

 

Figure 4.3: Illustration for template matching algorithm (on the courtesy of F. Sagnard [8]), a) template image, 

b) Euclidian distance map, c) Extracted hyperbola Positions using template matching, d) Fitting curves.  
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t d y0 ε’ R 

Cylinder n°1  

(1
st
 minimum)  

2.94 ns 150 mm -188.3 mm 3.93 30 

Error %  
 

10% 1.8% 12% N.A 

Cylinder n°2 

(1
st
 minimum by 

extrapolation)  

2.11 ns 80.6 mm 113.9 mm 2.99 30 

Error % 
 

2% 0.9% 14.6% N.A 

Table 4.1: Estimated target parameters and the corresponding uncertainty error, according to the ray-path model. 

VI. Conclusion 

This chapter introduced the use of the template matching technique to detect targets 

within Bscan images. The matching algorithm uses a predefined signature of targets to 

construct a matching instance image, later it detects the minimum of the Euclidian distance 

based on the instance image. Detected location is used to extract hyperbola points, which will 

be used to calculate the target parameters (position, depth and shape) according to the ray-

path model. 

The first evaluation of this technique was performed on cylindrical shaped targets buried 

within an homogeneous medium. The matching algorithm shows very good results for 

detecting non-overlapped target with large magnitude. However for target with small 

dielectric contrast with the ground, the hyperbola signature is very weak, and the matching 

algorithm cannot detect the signature. Further tests in [8] have been performed on field data 

with similar conclusion. 

Much improvement can be proposed, especially for noisy images with low magnitude 

signatures, and in the detection of shallow targets.  
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Chapter 5: Contribution of polarization 

diversity to target detection 

 

Résumé  

Ce chapitre aborde l’influence de l’orientation des antennes (émettrice et réceptrice) sur 

les caractéristiques d’amplitude, de temps d'arrivée et de forme des échos radar sur des cibles 

enfouies. Il débute par une revue bibliographique sur l’effet de la diversité de polarisation sur 

la détection des cibles enfouies. Ensuite, nous étudions cet effet sur des cibles cylindriques de 

très faibles dimensions à travers une étude analytique et à partir des données simulées et 

expérimentales. 

L’orientation des antennes l’une par rapport à l’autre et relativement à la cible permet de 

définir de nombreuses configurations de mesures possibles. Cependant, deux configurations 

sont prises en compte: “broadside”  et “end-fire”. Ce sont les deux configurations co-

polarisées, car les champs électriques des deux antennes (Tx et Rx) sont parallèles entre eux. 

Les configurations de polarisation croisée demandent une étude approfondie.  

Deux polarisations de base sont étudiées analytiquement: la première avec un champ 

électrique E perpendiculaire (mode TE) à l’orientation de l’axe du cylindre de la cible et la 

seconde avec le champ parallèle (mode TM) à l’axe du cylindre. La configuration des 

antennes définit une polarisation particulière qui peut être exprimée en fonction de ces deux 

polarisations de base. L'étude analytique utilisée est basée sur un modèle d'analyse via la 

méthode de Mie, en utilisant une onde incidente plane et les équations de Maxwell, Hankel et 

Bessel pour calculer la dispersion des ondes réfractées et réfléchies sur un cylindre infini. Des 

mesures GPR ont été réalisées sur des sites différents et en correspondance avec les données 

de simulation; elles ont servi à valider les résultats de l’étude analytique. 

Les résultats finaux montrent que les cibles métalliques sont détectées dans les deux 

polarisations TE et TM; néanmoins la polarisation TM montre des échos d’amplitude plus 

élevée et des Bscans plus simples à interpréter. Toutefois, pour les cibles diélectriques nous 

remarquons deux cas: les cibles de diélectriques avec une permittivité réelle plus élevée que la 

permittivité du sol, présentent plus de dispersion en polarisation TM, alors que les cibles de 

faible permittivité ont montré un comportement différent avec une préférence pour la 

polarisation TE. Ce comportement montre que le balayage du GPR en multi-polarisation peut 

être très utile pour détecter et qualifier la nature des tuyaux enterrés et le contenu des fractures 

dans un sol. 
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I. Introduction  

The polarization, which governs the vector nature of electromagnetic fields, is a 

fundamental property of propagation. It expresses the change of the field strength (E or H) in 

the plane perpendicular to the direction of the wave propagation, Balanis 1989 [1].  

The interaction of electromagnetic waves with a target produces scattering and reflection 

that are at the origin of the depolarization effect that changes the amplitude and the phase of 

the excitation field. The depolarization effect can serve to discriminate several targets. A 

target made of a given medium properties and having a given orientation relative to the 

electric field direction has a specific scattering/reflection response in a polarization mode, that 

may improve its discrimination.  

The data collection of multi-component, in particular the polarization diversity, allows to 

obtain the received EM field in different planes. The benefits are the visibility of the targets in 

some configuration more significantly than others, such as detailed in Roberts 1994 [2] and 

Daniels 1996 [3]. As a consequence, the polarization diversity is expected to improve the 

extraction of information, and within the scope of this work, to improve the capability to 

detect and to characterize shallow targets.  

Conventional GPR systems are bistatic and use linearly polarized antennas. A few 

systems enable GPR surveys with a data collection of different polarizations simultaneously, 

[4].  Most of the GPR surveys are conducted with conventional systems, thus requiring a 

manual switching between the different antenna configurations to collect diversely polarized 

data. Within this scope, GPR surveys are usually carried out for convenience in a single 

polarization configuration, mainly the TM polarization. 

The last difficulty is to handle the UWB characteristics of the GPR signal. We do not 

deal with pure and completely polarized waves as for monochromatic waves, but partially 

polarized waves (mostly because the propagation in the medium, the antennas and the target 

characteristics are not steady in both phase and amplitude over the whole bandwidth). 

Specific polarization features have been then introduced in the literature, e.g., coherency 

matrix, polarization degree. Nevertheless, the measured polarization is assumed to be 

dominated by the polarization characteristics of the wave at the central frequency of the GPR 

pulse (in the results presented f0=1 GHz). 

In GPR, a buried cylinder is an important model in civil engineering as it may represent a 

pipe, a cable or a bar. The model of a thin surface is also used as a canonical target to 

represent a fracture or a planar discontinuity. The present study is carried out to investigate 

the several effects induced by the interaction of a buried infinite cylinder in a medium to 

further facilitate target recognition or classification. Particularly, how the changes in antennas 

orientations may affect the amplitude, the arrival time and the shape of received signatures. In 

this chapter GPR polarization has been studied in several approaches: 

- Analytically by using the Mie theory and the decomposition of a plane wave into cylindrical 

waves. 
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- Numerically by modeling and simulating the GPR system with a pair of antennas (bowtie 

slot and blade dipoles) using the 3D FDTD approach under the software EMPIRE. 

- Experimentally by acquiring GPR profiles on the test-sites. 

The results of these approaches have been qualitatively analyzed from plots and then 

compared to each other. 

II. Previous studies 

Polarization studies in GPR dating back to the 1970s, studied the response of buried 

cylinders. The scattering problem is solved using different methods that depend on the size of 

the target relative to the wavelength. The analytical scattering modeling of the 

electromagnetic scattering by canonical targets was an intensive research interest that has 

been treated in different fields such as remote sensing and light propagation [5]. This problem 

is considered since the beginning of the twentieth century. Analytical models that usually 

consider an excitation by a plane wave are chosen to provide more insight into the scattering 

interactions than numerical models. The main canonical objects are spheres, and cylinders [6]. 

In most electromagnetic scattering applications, the scattered field is generally measured in 

the far field. The basis of the Mie (1908) and cylinder theories is actually matched to the near 

field scattering, thus the far field solution is obtained by limiting value considerations of the 

near field formulas. However, the near field solution plays an important role for both ground-

coupled GPR configuration and shallow buried targets as encountered in humanitarian 

demining, namely UXO [7], and civil engineering. 

The solution of the scattering of electromagnetic waves by a sphere (Mie or Lorenz-Mie 

theory) and their extensions, e.g. the scattering by a layered sphere, the multiple scattering 

Mie solution (GMM) or the generalized Lorenz-Mie theory for an incident Gaussian beam 

(GLMT), are widely used for this purpose.      

If the length of the cylindrical scattering structures is much larger than the diameter, the 

infinite cylinder approximation can be applied. The first exact solutions of Maxwell’s 

equations were presented by Lord Rayleigh (1918). Analogous to the Mie solution, a various 

number of extensions exist for the infinite cylinder scattering theory [8], which include 

layered cylinder, multiple cylinders and Gaussian beam solutions [9]. 

Some studies extract a scattering matrix formed by the S parameters in different 

polarizations. Higgins et al. [10] used a full polarimetric system and swept each position in 

different polarizations for UXO (Unexploded Ordnance) mines-like object detection. They 

calculated two criteria, namely, ELF (Estimated Linearly Factor) and DEN (angle density), 

for the classification of UXO types. These criteria are expressed as function of all S 

parameters in 4 polarizations (two cross- and two co-polarizations). Also in [11], the authors 

propose an analysis of the scattering matrix for plastic anti-personal landmines with different 

orientations relatively to the antennas. The target features are then extracted from the 

eigenvalue of the scattering matrix as function of the frequency. And Villela et al. [12], 

studied the properties of the scattering matrix obtained from different polarizations to extract 

buried pipe properties. 
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For the application of GPR to civil engineering, the study of polarization effect on the 

detection of targets mainly concern cylinders and fractures. A synthesis of previous works is 

presented hereafter. 

Concerning cylinders, a detailed parameter analysis (depth, permittivity of the 

background material, radius-to-wavelength ratio) has been proposed in the case of infinite 

length by Radzevicius et al. (2000) [13] using cylindrical wave decomposition based on 

Hankel and Bessel functions. The scattering properties have been studied in the far-field zone, 

in terms of the scattering width, and in both the TE and TM polarizations. The authors state 

that the TM polarization is preferred for the detection of a conductive cylinder, while the TE 

polarization is generally preferred for a dielectric cylinder. However, in the case of a 

dielectric pipe, this is the dielectric contrast between the soil and the pipe that governs the 

depolarization effect in the TE or TM polarization. The authors have observed that cross-

polarized antennas appear more suitable for clutter reduction when a strong depolarization is 

induced by pipes. The work of Paulus et al. (2001) [14] deals with numerical results (Green’s 

tensor) associated with the 2D distribution of the scattered field by a dielectric cylinder at 

optical frequencies in the presence of a stratified medium. It has been observed that in a 

homogeneous medium stationary waves are created in the backward direction in both 

polarizations (p-polarization=TE polarization, and s-polarization=TM polarization), but in the 

forward direction a maximum of magnitude can be observed inside the cylinder for the s-

polarization and on the left and right sides of the cylinder for the p-polarization. The s-

polarization appears to induce a greater scattering cross-section as well as in a 2 layered 

medium in the configuration proposed (real permittivity of the cylinder higher than in the 

medium). Capizzi et al. (2008) [15] have presented experimental polarized survey issued from 

buried conductive and dielectric pipes which are either thin or large compared to the 

minimum wavelength. The conclusion is that the TM polarization is preferred for a 

conductive pipe, and the TE polarization is best suited for a PVC pipe in a medium. 

Moreover, they have observed that a small cylinder diameter produces a higher depolarization 

effect. The authors have also studied azimuthal targets, and applied Alford’s operator to 

estimate their strike direction. Roberts et al. (2009) [16] and Naser et al. (2010) [17] 

experimentally studied the detection of pipes with varying depth, diameter and filling for the 

two main polarizations on specific test sites. A full-resolution technique has been studied by 

Roberts and al. to improve the S/N ratio and improve the ability to distinguish pipes in 

crowded utility trenches. Böniger et al. (2012) [18] have demonstrated in a field test the 

potential of considering and analyzing polarization phenomena in 3D GPR data for pipes with 

different orientations (parallel and perpendicular to system displacement). They have 

introduced and used an attribute-based processing flow to enhance the structural and physical 

characteristics of targets. The attributes are calculated from dual-polarization data. Liu and al. 

(2014) [19] have designed a GPR system made of a pair of linear dual-polarization antennas 

(Vivaldi) at the reception and a circularly polarized antenna (spiral) at the transmission. The 

receiving antennas can work simultaneously. The GPR system acquires data in the frequency 

domain, using a VNA in the UWB [10 MHz; 4 GHz]. Finally, they evaluated the system on 
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small size metallic wires buried with different orientations. Moreover, Moreover, polarization 

studies have been the topic of many PhD theses such as in [20] [21] [22].  

 

Concerning fractures, Tsoflias et al. (2004) [23] evaluated polarization properties (E-pol 

and H-pol) on the detection of vertical fractures, they observed a phase lead when the E field 

is oriented orthogonal to the plane of the fracture, which allowed them to locate the fracture 

and extract its azimuth. Seren et al. (2012) [24] surveyed the test field in a direction 

perpendicular to the visible fractures on the ground surface by referencing Tsoflias work. 

Perll (2013) [25] studied the influence of cross-polarization in addition to the latter co-

polarizations for the detection of fractured rocks and corresponding contaminants fluid flows, 

and used the summation of cross- and co-polarized components to increase the accuracy of 

the detection. In general oblique polarization relatively to the fractures leads to more accurate 

detection.  

 

Most multi-polarization studies have shown an improved capability in target detection 

and classification (for pipes and cracks). And a polarization is declared preferential depending 

on the evaluated targets EM nature and orientation relatively to the electric field. However, by 

recording scattering in many polarizations with a smaller step size, more information and 

features about the target geometry and nature can be obtained: Roberts et al. [16] compare the 

benefits between high-resolution surveys and multi-polarizations surveys. High resolution is 

employed by sweeping more dense survey points, and two orthogonal polarizations are 

considered. The tests were evaluated on a ground containing pipes in different directions and 

dielectric natures. They found that applying a dense resolution is more benefit than using two 

polarizations, because not all pipes were visible in both polarizations and high resolution 

gives a more visible hyperbola queues, consequently better migration. The main drawbacks 

are time consumption in survey acquisition and in signal processing. In [26] Marchesini et al. 

also compared dense spatial sampling to polarization, but for cracks and ground fractures. 

They condition the capture of full resolution by having profile spacing at least equal to the 

quarter wavelength of the dominant center frequency. They observed that polarization alone 

gives some blurred and missed detections, and recommended to use the polarization in 

parallel with a high spatial sampling step size. 

III. Multi-configuration for data acquisition  

Supposing that both receiving and transmitting antennas are located in a separate box, 

measurements can be performed by manually switching the Tx and Rx antennas in different 

reciprocal orientations to each other. A configuration is ‘co-polarized’ when both antennas are 

oriented in the same direction (resp. their corresponding electric fields are parallel), whereas it 

is ‘cross-polarized’ when the antennas are perpendicular to each other (resp. their 

corresponding electric fields are orthogonal). i.e.: Feng et al. [4] and Liang et al. [27], 

described two sets of polarization: co-polarimetric and cross-polarimetric and each 

polarization is swept in two orthogonal directions.  
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Cross-polarized configurations are rarely used. For example, Li et al. [28], state that the 

cross polarization did not give any additional useful information for all pipe types, whereas 

Radzevicius et al. [13] observe that cross-polarized antennas appear more suitable for clutter 

reduction when strong depolarization is induced by pipes. Therefore cross-polarization can be 

useful in the rare cases where the depolarization well matches to the receiver antenna 

orientation.  

A co-polarized configuration may be parallel, if the antennas are oriented parallel to the 

line of data collection; or perpendicular, if the antennas are perpendicular to the acquisition 

line. A co-polarized dipole configuration is called endfire when the two antennas are aligned 

along their larger dimension, whereas it is called broadside (or mirror) when they are parallel. 

In most cases, GPR surveys are made only in the broadside configurations.  

Thus, there exist six possible configurations as visualized in Figure 5.1:  

 

Figure 5.1: Antenna configurations for collecting GPR data with full polarization diversity; the four co-

polarized (resp. two cross-polarized) antenna configurations are represented on the left (resp. on the right); 

because of antenna dimension, the offset can be different from one configuration to one another; in practice, 

GPR data collection are usually limited to the two co-polarized configurations: broadside-perpendicular and 

endfire-parallel.  

N.B: This work considers three configurations: broadside-perpendicular (namely broadside), 

endfire-parallel (namely endfire) and cross case 2. 

IV. Analytical scattering model for cylindrical targets  

IV.1. Modeling Techniques  

Cylindrical targets are part of the canonical objects in electromagnetism. They have 

motivated many authors in the past, e.g., Schuster [29] and Wait [30], to achieve analytical 

models for studying the scattering of planes waves from an infinite cylinder. Many methods 

exist in the literature to solve the corresponding EM scattering problem. Among others, the 

Geometrical Optics (GO) method (or Ray Optics), Geometrical Theory of Diffraction (GTD), 

and the Physical Theory of Diffraction (PTD) are used to achieve analytical modeling for the 

scattering of EM waves from both smooth surfaces and objects which diameter d is larger 

than the wavelength d/λ >>1. They are generally used for modeling the propagation of light 

[29]. 

At the opposite, the Rayleigh scattering  (RS) theory is devoted to model the EM 

scattering from small particles compared to the wavelength d/λ <<1, like solids, gases and 
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liquids particles [5]. For small to large objects which dimensions are close to the wavelength 

d/λ ≈1 and have canonical shapes like spheres or cylinders, the exact EM scattering solution 

can be found using the Mie scattering (MS) method; it solves Maxwell equations in 

cylindrical coordinate to calculate the electric and magnetic field inside and outside the 

corresponding object. Other different analytical studies for the scattering from cylinders can 

be found in [31] [32]. 

As opposed to the latter, the Finite-Difference Time-Domain (FDTD) method is a 

numerical method which is used to handle the scattering of EM waves over non canonical 

objects, heterogeneous media, rough surfaces and complex structures.  

The ratio between the wavelength and the radius of the target is an important parameter 

to consider in polarization study.  When radius size is much larger than the wavelength, the 

target will appear as a plane surface to the small wavelength and there will be no 

depolarization on a planar surface at normal incidence (Balanis book). In the opposite case, 

the scattered waves will have different properties from the incident waves (outside and inside 

the cylinder) and a strong depolarization may be expected. 

 

In general for civil engineering structures, the cylindrical pipes have a fixed geometry 

and the size may be smaller or larger than the wavelength. This section deals with small 

radius cylindrical pipes, which have radius between 12 mm and 32 mm. Considering the 

central frequency of the radar pulse to be 1 GHz and the medium permittivity between 3.5 and 

9, the pipe diameters range from                    , and the most appropriate analytical 

method to consider is the MS method. However one of the pipes used in experimental results 

has a radius of 5 mm, the diameter                           and the Mie method may not be 

appropriate to calculate the corresponding scattering. 

The EM scattering over embedded cracks is also considered. Cracks are modeled by 

planar surfaces like metallic strips (vertical cracks) or plates (horizontal cracks or debonding). 

Analytical studies are showed in Balanis [1] (Part 11.3) using the Physical Optics technique. 

The modeling is much more complex than for the cylindrical target because of the edge 

effects. Balanis showed large difference in the Scattering Width SW (to be defined in section 

IV.4) patterns between polarization TM and TE as function of the observation angle. Because 

of this complexity, the FDTD is usually more appropriate for simulating it through software 

tools. For example, Diamanti et al. [33] used FDTD to simulate the GPR signatures of opened 

vertical cracks within pavement.  

IV.2. Hypothesis  

The plane wave is one of the simplest mathematical forms to compute for EM waves, it 

can be considered when the target is in the far field region of the source. The following 

analysis is based on a simple case of plane incident wave to distinguish polarization effects, 

and it does not consider the radiation pattern of the antennas. 

We aim at calculating the total and the scattered field in both modes TM and TE, for 

conductor and dielectric infinite cylindrical pipes. Scattering properties are described using 

Bessel and Hankel functions of the MS technique, the fields are calculated inside and outside 



145 

 

the cylinder. When working with cylindrical forms, it is most desirable to transform the 

rectilinear axis bases into cylindrical coordinates. And we assume that all fields are time-

harmonic: oscillating with a single frequency that can be expressed by             . 

We also consider an ideal homogenous lossless, non dispersive and isotropic medium. 

Let x be the vertical axis going in the ground, y the horizontal axis as the direction of the radar 

displacement and z the horizontal axis in the direction of the long axis of the pipe. The 

cylindrical pipes are, oriented along z axis, having an infinite length, and with radius a < λmat. 

We assume that the gap between the emitter and the receiver is small compared to the depth 

of the target, thus transmitter and receiver are approximated at the same position and the 

scattering is referred to backscattering with an angle of 180°, (normal incidence in the +x 

direction) when the source is directly above the target. For the case of oblique incidence or for 

more details on the analytical model, readers are referred to Balanis Book [1].  

Using the above hypothesis, the analytical model is presented in Appendix B. These 

equations (i.e. for TM mode see equations B-14, B-19, B-21 and B-25) confirm that the 

scattered field depends not only on the EM properties of the host medium and the cylinder, 

but also on the frequency (related to β) and on the radius a. In addition, the equations will be 

dependent on an angle of incidence θ if an oblique incidence is considered [1].  

IV.3. Parametric study 

The scattered field is evaluated in a homogeneous soil with different electric 

permittivities, different monochromatic frequencies and different pipes radii. For a medium 

with permittivity of 3.5, a pipe radius of 0.075λ (12 mm) and a frequency of 1GHz, the 

computed scattered fields inside and outside of the cylinder are shown on Figure 5.2 in both 

polarizations TM and TE.  

The implemented model is a modified version of the Matlab implementation done by 

Guangran [34]; the modified version includes an extra implementation of the polarizations 

TE, a normalized E field and a frequency dependency in the equations. The field amplitudes 

values are given in dB (20log10). Poynting vector is showed in small black little arrows on the 

images. The following observations can be made: 

 

 For metal targets both polarizations have high scattering, but the TM (E field parallel to 

the pipe axis) polarization got higher scattering in all directions (around -4 dB). 

Comparing TM and TE modes, Figure 5.2 shows low amplitudes (~nulls) of radiations in 

left and right directions of TE polarization and no nulls in TM mode. 

 For dielectric targets, we can distinguish two different cases depending on the targets 

dielectric permittivity with regards to the one of the host medium (smaller or larger). For 

both polarizations, high permittivity dielectric pipes have more scattering and lower 

penetration waves, while low permittivity dielectric pipes have higher penetration and 

absorption, nevertheless:  

1) Dielectrics with low permittivity (ɛ’=1) or high impedance relatively to the 

propagation medium, shows back-scattering magnitude less than -15dB in both 
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TE and TM mode; however, the scattering in TE mode appears more directive 

vertically. Both polarizations have low scattering for this type of pipe, therefore 

they might be better imaged in TE polarization (E field orthogonal to pipe axis), 

as it will be confirmed later in the experimental results. 

2) Dielectrics with high permittivity (ɛ’=9) or low impedance relatively to the 

propagation medium, shows a back-scattering magnitude of -10 to -5 dB in TM 

mode and -15dB in TE mode; therefore, this confirms that dielectrics with a high 

permittivity are better imaged in TM polarization (E field parallel to pipe axis). 

 

Same results as above are obtained for different frequencies ranging from 400MHz to 

4GHz, and for radius lengths smaller than the wavelength (the targets considered are limited 

in size). The significant difference is seen when some changes in the materials properties 

happens on both the medium and the target. 
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Figure 5.2: Computed TM and TE scattered field at 1GHz from infinite cylindrical pipe embedded within a soil 

with real permittivity of 3.5. 
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IV.4. Scattering width (SW) 

The contrast in permittivity and the ratio between the size of the target and the 

wavelength contribute to enhance the radar cross section (RCS) of the target, and the 

magnitude of the target signature as a result (chapter 1). Therefore RCS is a very important 

parameter for characterizing scattering properties. 

Scattering width is defined as the 2D adaptation of the radar cross-section (3D); it is used 

as a measure of the strength of the scattering waves from targets, and is only evaluated in the 

far field. It represents the equivalent area proportional to the apparent size of the target as seen 

by the electromagnetic field (based on the size, the orientation and the shape). Thus, if we 

consider the target in the far field region, the SW is proportional to the scattered field energy 

relatively to the incident field, as follows: 

           
   

    
     

     
      

   
    

     

     
  

Refereeing to Balanis book [1]: 

       
 

 
     

   

  

  

 

 

 

Where   is calculated in Appendix B as the scattering field coefficient. 

 

Fig. 5.3 shows the SW trend with regards to frequency ([0.2:2] GHz) for four increasing 

cylinder radii. Fig. 5.3 confirms that the TM polarization backscattering signal is larger than 

the TE mode for metallic and high real permittivity of cylinders. As opposed to the latter case, 

TE polarization is preferred for low permittivities of cylinders. For a conductive cylinder the 

SW oscillates in the TE polarization and not in the TM polarization, this is due to creeping 

waves that travel around the cylinder in TM polarization (creeping waves are very significant 

for cylindrical shapes), that are absent in the TE polarization (because field E is perpendicular 

to cylinder axis) [35] [36]. This phenomenon can be visualized in the field distribution on the 

surface of the cylinder on figure 5.2. Also, for increasing radius, the diameter become close to 

the wavelength, thus the SW frequency variations depict some fading for both polarizations 

with all pipe types.  
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Figure 5.3: Scattering Width (SW) over a soil with real permittivity of 4 and in the case of: a) a conductive pipe, 

b) Low permittivity dielectric pipe (ɛ’=1), c) High permittivity dielectric pipe (ɛ’=9). TM polarization is drawn 

in filled lines; TE polarization in dashed lines [37]. 

V. FDTD simulation results 

V.1. Geometries modeled 

The SFCW GPR used is made of a pair of bowtie slot antennas (see chapter 2); the 

theoretical study of the radiation pattern of an antenna has highlighted that the electric field 

has a preferred direction in both TM and TE planes. Thus, it must be assumed that the 

radiated field is linearly polarized. This GPR system has been designed and optimized using a 

detailed description of the antennas under a numerical modeling based on the FDTD approach 

using the commercial software Empire. However, the computing time for such GPR 

simulations over a soil including buried objects appears prohibitive (around 2 weeks using a 

CPU i7-950 3.07 GHz).  

Thus, we have replaced the pair of bowtie slot antennas by a pair of more simple non 

shielded planar blade dipoles designed on a FR4 substrate (see Figure 4.2a) with dimensions 

290*56 mm
2
 that have been used in previous experiments [38]. The dipole antenna achieves 

much faster computational time (3 to 4 hours vs 3 to 4 days for a single pipe environment). It 

must be underlined that the polarization of the bowtie slot antenna and the blade antenna are 

perpendicular [39] [40] (figures 5.4 and 5.5). The offset between both types of antennas 
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remains equal to 60 mm, and the elevation above the soil has been fixed to 10 mm. the 

excitation current has the shape of the derivative of the Gaussian function with a time zero 

estimated to 0.3 ns and a duration (99% of the total energy) of 0.5 ns.  

 

The simulated distribution of the electric field for each antenna type in both planes 

parallel and orthogonal (A and B respectively) to antennas long axis is visualized in Figure 

5.4. In figures 5.4 (a) and (c), we observe the field     (y direction for E) for both antennas 

bowtie and dipole respectively. In figures 5.4 (b) and (d), we observe the field     (z 

direction for E) for both antennas bowtie and dipole respectively.  

 

 

Figure 5.4: Distribution of the electric field in both planes parallel and orthogonal to antenna long axis. a)     

for the bowtie-slot antenna, b)     for the bowtie-slot antenna, c)     for the dipole antenna, d)     for the 

dipole antenna.  

 

The comparison of the distribution fields for the bowtie antenna shows higher amplitude 

in plane B for both E field components (Eyx and Ezx), which confirms that dominant E field 

is perpendicular to the long axis of the antenna. Therefore the bowtie-slot antennas in the end-

fire configuration are considered equivalent to the TM mode and in the broadside 

configuration equivalent to the TE mode (Figure 5.5). 

However, higher amplitude is observed for dipole antenna in plane A. Therefore the 

dipole-blade antennas in the end-fire configuration are considered to be equivalent to the TE 

mode; and in the broadside configuration, it is equivalent to the TM mode (Figure 5.5). 
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Figure 5.5: Antenna polarization configurations in case of bowtie-slot and dipole antennas. 

 

V.2. Results 

1. Simulation setup 

FDTD simulations have been conducted using the different polarization configurations 

visualized in Figure 5.5 for the pair of bowtie-slot antennas and the dipoles respectively. The 

excitation is a first gaussian derivative pulse of duration 0.5 ns, with a 3 GHz the frequency 

bandwidth and a center frequency of 1 GHz. Simulation considers a dielectric homogeneous 

medium. The aim is to obtain some simple illustrative responses showing the effect of the 

polarization on target detection and thus, the gain to be expected by using polarization 

diversity. Three pipe dielectric characteristics have been considered to ease the comparison 

with the analytical model: a conductor and two dielectrics with 1'  and 9; they are buried at 

a depth of 160 mm in a ground with real permittivity of 3.5 and conductivity of 0.01S/m. The 

Bscans are showed with and without clutter using the median subtraction technique (because 

the medium is homogeneously modeled) to enhance the hyperbolas signal feature. 

 

2. Results with dipole antennas 

The first comparison is performed using dipole antennas probing infinite pipes with 

radius of 32 mm (conductor, air-filled pipe and dielectric-filled pipe with ɛ’=9). Thus, at the 

central frequency of the excitation pulse 1 GHz, the ratio 2R / mat is 0.4.  
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Figures 5.6 and 5.7 show the data with and without the clutter respectively. They 

illustrates that with the broadside antenna configuration corresponding to a dominant TM 

mode, larger amplitudes are reached with a conductor pipe and with a dielectric pipe having 

permittivity 9'  (0.6 and 0.4 respectively) as compared to the endfire antenna configuration 

(0.3 and 0.15 respectively). However, in the case of a dielectric pipe with permittivity 1'  

both configurations leads to the same maximum amplitude value evaluated to 0.1. 

 The results obtained are very close to the analytical model results, which state that the 

TM polarization is preferred for a metallic pipe and for a dielectric pipe with permittivity 

higher than the soil; in the case of a dielectric pipe with permittivity lower than the 

permittivity of the soil the TE and TM polarizations highlights similar amplitudes.  

One cross-polarization configuration is showed on the third column of Figure 5.6 and 

5.7. Compared to co-polarized configurations, much lower amplitudes are observed for 

hyperbolas and clutter responses whatever the pipe types. In addition to that, the hyperbola 

signature appears asymmetrical, because the propagation time on the emitter side is different 

from the propagation time on the receiver side (rectangular shape antenna, different width 

length        ).  

 

3. Results with bowtie-slot antennas 

Simulations have been performed using bowtie-slot antennas and smaller pipes of radius 

12 mm (as for the field data set and the analytical model 2 / 0.15matR   )  embedded within 

the same material as above. Bowtie-slot antennas dominant field polarization is orthogonal to 

dipole antennas as showed in previous section. Therefore corresponding dominant field TM 

and TE are inverted compared to the dipole antennas for the two configurations. Figures 5.9 

and 5.10 show that in the endfire configuration, that corresponds to a dominant TM mode, 

larger amplitudes are observed with the metal pipe and the dielectric pipe having a real 

permittivity 9'  (0.17 and 0.06 respectively, at the apex) compared to the broadside 

configuration (0.05 and 0.02 respectively). However, in the case of a dielectric pipe with 

permittivity 1'  both configurations leads to the same maximum amplitude value of 0.02. 

These polarization preferences for each type of pipe are similar to the results obtained for 

dipole antenna and in the analytical model. 

 

Figure 5.10 shows the Ascans at the apex position corresponding to the Bscan in Figure 

5.8. In the TM configuration, the Ascan signals are shifted 0.3 ns to the left, to compensate for 

the larger antennas dimensions in the TM configuration, and to superpose clutter responses in 

both configurations.  
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4. Discussion 

In the above simulations, the hyperbola signature seems very different from one 

configuration to one another. First, because antennas are rectangular shaped instead of a being 

squared, and then, the arrival time of echoes is affected by the relative antenna dimensions 

differences. 

Another major difference is the presence of two echoes in the broadside configuration. 

Broadside configuration favors multiple reflections or signal called reverberation, and we 

suppose here that it is the result of noise produced from ‘ringing antennae’ when spaced too 

closely [41].  

A change in the signal polarity of the echoes is observed from positive to negative (red 

and blue hyperbolas) or vise-versa according to the contrast in permittivity at the impact 

interface (figures 5.7 and 5.9). Positive polarity is observed for positive reflection coefficient, 

i.e.: meaning a lower velocity to higher velocity transition, e.g. air-filled pipe in the TE 

polarization. It can be inferred from Fresnel equations in Appendix A. Negative polarity 

occurs for negative reflection coefficient, as for water-filled pipe in the TE polarization. 

Another polarity change takes place at the interface air-soil and can be seen on the clutter 

response of dipole antenna (i.e. negative cycle before the positive figure 5.6). Also a polarity 

change may happen relatively to the reception antenna orientation. Consequently analyzing 

wave’s polarity at different interfaces may give useful information about the permittivity 

contrast. 

Consequently, according to the analytical model and the numerical models with the 

bowtie and the dipole antennas, TM and TE polarizations enable to distinguish the metal and 

the high permittivity (relatively to the soil permittivity) dielectric targets from the low 

permittivity dielectric targets. Afterwards, the polarity changes within the observed echo 

allow distinguishing metallic from high permittivity dielectric targets. 

Also the reversed results for both polarization between dipole antennas and bowtie 

antennas confirms the orthogonality of their dominant field directions studied in V.1.  

We must also note that time zero was not corrected in the entire simulations and 

measurements setups presented in this chapter, because the interest in this chapter is only to 

visualize the hyperbolas without fitting. 

  

5. Azimuthal pipe rotation 

The pipe of radius 32 mm has now been shifted to the angle θ relatively to the z axis. The 

dipole antennas are chosen (because their modeling is faster) to observe the effect of the 

relative angle between the cylinder axis and antennas axis in both configurations (i.e. [13]). 

Figure 5.11 shows that for both configurations, the hyperbola gets more stretched and has an 

increased amplitude as the angle rises from zero to 75° because the pipe surface within the 

antenna pattern appears larger.  
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Figure 5.6: Computed raw Bscans with the dipole antennas over three types of infinite pipe. 
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Figure 5.7: Computed Bscans with the dipole antennas over three types of infinite pipe, after clutter reduction 

with the median subtraction technique. 
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Figure 5.8: Computed raw Bscans with the bowtie-slot antennas over three kinds of infinite pipe. 
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Figure 5.9: Computed Bscans with the bowtie-slot antennas over three kinds of infinite pipe after clutter 

reduction with the median subtraction technique. 
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Figure 5.10: Extracted Ascans from the Bscans in figure 5.8 at the apex position. 
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Angle: 
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Figure 5.11: Computed raw Bscans with varying angle between the dipole antenna and the pipe axis. 
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VI. Experimental results 

Field data are collected with the ground–coupled SFCW radar on two test-sites: the 

outdoor test-site in section and the urban test-site using the bowtie-slot antennas. The complex 

transmission coefficients S21 have been measured with the vector network analyzer configured 

as described in chapter 2. The radargrams are shown with and without clutter. 

 

A. Outdoor sand box 

In general, a couple of canonical dielectric or conductive objects (pipe or strip) have been 

studied in this survey. The objects, separated by a distance of 700 mm, have been buried at a 

depth close to 160 mm and at positions 500 and 1200 mm respectively. The position yi 

corresponds to the center of the radar system in the direction of the survey.  

Geometry 1 

At first, an air-filled pipe with a 12 mm radius and a thin horizontal conductive strip 

(dimensions 2mm*10mm) buried at a depth of 160 mm (figure 5.12). According to chapter 2, 

the real permittivity of the sand has been estimated to 5.5. The Bscans in both polarization 

configurations and visualized in figure 5.13, highlight that the hyperbola associated with the 

metal strip appears visible in both polarizations; however, its amplitude appears more 

important in the endfire configuration (TM). The air-filled pipe is only detectable in the 

broadside configuration (TE).  

 

Figure 5.12: Measurement Setup corresponding to Figure 5.13. 
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Figure 5.13: Experimental Bscan over an air-filled pipe and a horizontal metal strip within a sandy ground;  a) 

Broadside configuration (TE), b) Endfire configuration(TM); top) Raw data, Bottom) clutter suppressed data. 

Geometry 2 

The air-filled PVC buried pipe (lower permittivity relatively to the soil) is now replaced 

by a water-filled pipe (higher permittivity relatively to the soil), and the metal strip is now 

oriented vertically. Figure 5.15 shows that the metal strip is no longer detected in the 

broadside configuration (TE), and the water filled PVC pipe is only detected in the endfire 

configuration (TM). 

 

 

Figure 5.14: Measurement Setup corresponding to Figure 5.15. 
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Figure 5.15: Experimental Bscan over a water-filled pipe and a vertical metal strip within a sandy ground;  a) 

Broadside configuration(TE), b) Endfire configuration(TM); top) Raw data, Bottom) clutter suppressed data. 

Geometry 3 

The next shows the experimental Bscans over smaller targets, i.e., a 8 mm radius PVC 

pipe (with no gap) and a 5mm radius cylindrical metal pipe, they are buried at a depth of 160 

mm. In Fig. 5.17, the PVC pipe is detected in the broadside configuration (TE), while the 

metal pipe is detected in the endfire configuration (TM) and hardly detectable in the broadside 

configuration (TE) (like the vertical metal strip in figure 5.15).  

 

Figure 5.16: Measurement Setup corresponding to Figure 5.17. 
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Figure 5.17: Experimental Bscan over a nylon pipe and a metal cylindrical pipe within a sandy ground;  a) 

Broadside configuration(TE), b) Endfire configuration(TM); top) Raw data, Bottom) clutter suppressed data. 

 

Discussion 

Associated with the above three geometries, the results showed that metallic targets seem 

to be detected in both TE and TM configurations. Nevertheless, the TM polarization gives 

higher scattering magnitude. And when it comes to very tiny targets, below 5 mm (5 mm for 

the current GPR system, and in the sand ground environment), the TE polarization fails in 

detecting the buried target. We then found the same observation as for the simulations and for 

the analytical model: the metallic pipes show higher scattering magnitude in the TM 

configuration. 

For dielectrics targets with higher permittivity than the soil, the behavior is close to the 

one for metallic targets and the same as it was observed in the FDTD simulations and the 

analytical model. For example, water content pipe are better detected in the TM polarization 

(because water conductivity is higher of other dielectric materials).  

As opposed to previous cases, lower permittivity targets than the soil are better detected 

in the TE polarization, where the field E is orthogonal to pipe axis. This conclusion is not 

clearly seen in both analytical and simulation models, the models forecast similar amplitudes 

on both polarizations for low permittivity pipes. 

 

B. Outdoor urban test-site (Sense-city) 

The experimental profiles presented here concern the pipe zone of the test site Sense-City 

whose cross-section is visualized in Figure 5.18. All the dielectric pipes are air-filled. The 



164 

 

surveys have been acquired using the SFCW radar (bowtie antennas) system with a step 

distance of 40 mm in both configurations (broadside and endfire). A linear time gain has been 

applied to better visualize the hyperbola responses. The spectrum of a synthetic pulse (first 

Gaussian derivative) centered at the frequency 900 MHz has been multiplied to the frequency 

data in both polarizations to obtain the displayed time responses.  

The radargrams on Figures 5.19 (bottom) and 5.20 (a) show that the air-filled pipes at 

depth 30 cm in T4 and at depth 10 in T2, have a detectable hyperbola signature in the 

broadside polarization only. However, the signature of trench T1 is not easily detectable, 

certainly because the distance step is not small enough. 

Afterwards, measurements in the endfire configuration have been made in two sequences 

that induce a vertical discontinuity in the radargram. In general, we remark that all the 

hyperbolas appear strongly attenuated.  

Thereafter, water has been put into the PVC pipe of trench T5, and a radar profile has 

been obtained using the SIR 3000 system at the frequency 900 MHz. From Figure 5.20(b) we 

observe that pipe in T5 appears visible. Thus it will be interesting to insert in the future a 

dielectric liquid in the PVC pipes to study its polarization as a function of the orientation of 

the main electric field on this complex site. 

 

Figure 5.18: Cross-section of the pipe zone including the pipe positions and depths estimated during the site 

construction (on the courtesy of F. Sagnard [42]) 
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Figure 5.19: Bowtie antenna at 900 MHz in the broadside configuration, all pipes are air-filled. (top) raw data 

(Bottom) clutter suppressed data. (on the courtesy of F. Sagnard [42]) 

 

 

Figure 5.20: a) Clutter-free data with the bowtie antenna at 900 MHz in the endfire configuration, all pipes are 

air-filled, b) Raw data with the SIR3000 radar at 900 MHz, and pipes are air-filled except T5 water-filled. (on 

the courtesy of F. Sagnard [42]) 

VII. Conclusion 

In this chapter, the interest in the use of polarization diversity in GPR has been presented. 

The polarization is based on the vector nature of electromagnetic waves. The influence of 

polarization has been shown theoretically and experimentally on canonical objects (pipes and 

strips). Multi-polarization survey is an opportunity for acquiring more information on the 

shape, orientation and nature of the embedded objects in the subsurface. The direction of 

measurement can strongly influence the resulting image, and in some cases buried objects can 
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be totally missed if the depolarization is not detected by the receiving antenna. According to 

the Sto es‘s matrix, a polarized component is presented with two orthogonal polarizations, 

which traditionally are expressed in terms of linearly polarized basis vectors. In GPR, the 

main problem in using the Sto es’s matrix algorithm is the lateral dimensions of the antennas 

which have often dipole shape and thus not similar in the two main polarization directions. 

Thus, corrections and calibration have to be brought to calculate the degree of polarization.  

The objects mainly studied in this work are dielectric and conductive pipes. We have 

observed that the most visible hyperbolas are formed by conductive pipes in the TM 

polarization. For dielectric pipes, if their real permittivity is higher than that of the soil, the 

same phenomenon occurs; if it is lower the TE polarization must be used (Summary in Table 

5.1). Moreover, linear objects with the major axis in the direction of travel of the antenna 

produce linear features on a radar profile but do not produce hyperbolas, and we have noticed 

that other interception angles produce distorted hyperbolas.  

A certain form of polarization diversity has been exploited, however full antennas 

configurations have not been exploited, thus three configurations out of six (section III) have 

been studied and compared to the literature. The results validate the literature conclusions and 

confirm the utility of multi-polarizations surveys for identifying the nature, the orientation and 

the content (liquids, gazes, solids …) of the buried urban utilities; by using three 

configurations representing the possible polarizations (TM, TE and cross).  

 

Pipe type: 

TM polarization 

(Endfire configuration 

with the bowtie-slot 

antennas) 

TE polarization 

(Broadside configuration 

with the bowtie-slot 

antennas) 

Cross-

polarization 

(or cross-

configuration) 

Metallic + + + + - 

High 

dielectric 

(ɛ’> ɛ’medium) 

+  + + - + - 

Low 

dielectric 

(ɛ’< ɛ’medium) 

+ - + + + - 

Table 5.1: Summary for the detection quality over different buried pipe natures and under different electric field 

polarizations. The +/- symbols indicate the good/bad detection quality. 
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Conclusion and perspectives 

A. Conclusion 

In this thesis, the general background on GPR systems and GPR survey operations was 

first presented in the introduction. Then, the work focused on the reduction of clutter and 

unwanted signals in GPR Bscan images using different statistical-based techniques. ROC 

curves enable to perform the qualitative assessment of the different clutter reduction 

techniques on simulated and experimental data with various conditions, i.e., deep and shallow 

targets, homogeneous and heterogeneous grounds. Next, the algorithm to detect target 

hyperbolas is presented and used in chapter 4. Finally, the polarization diversity is explored in 

the last chapter for the detection of buried targets. Throughout the work, the results are based 

on both simulated data and experimental Bscan data using two antennas (Blade-dipole and 

Bowtie-slot) operated in three antenna configurations (broadside, endfire and cross-

polarization). 

 

Two statistically-based clutter reduction techniques, namely, PCA and ICA, are studied 

in chapter 3. These techniques are mainly used for demining applications, and have never 

been rigorously compared on a large data base with various target depths, layered soils and 

different antenna configurations. They do not require prior knowledge about either the 

subsurface mapping or the targets and the clutter signatures. Then, they have been selected for 

clutter reduction in Bscan GPR images over civil engineering structures.  

The latter clutter reduction techniques are evaluated qualitatively and compared to the 

conventional mean and median subtraction techniques (MST). The results showed that all 

techniques give versatile results, and the results were dependent on two criteria: the overlap of 

the target signature with the clutter and on the energy of the clutter compared to the target 

energy. Among them, the median subtraction technique gives the more reliable result in any 

condition.  

For shallow buried targets, i.e., the clutter and the target signals overlap, the PCA 

suppressed the clutter while ICA introduces a distortion in the Bscan image. When the target 

is deeper buried and the target signal does not overlap with the clutter signal, the ICA 

mitigates the influence of the clutter as well as PCA without distorting the echoes. However, 

in most cases, PCA showed better performance over ICA, as opposed to the literature. The 

main limitation of PCA intervenes when the target echo has higher energy than the clutter; in 

this case, the principal components associated to the clutter echo are not well separated. 

Consequently, an improvement for PCA has been developed for high RCS targets. The 

modified PCA algorithm decomposes the Bscan into 3 sub-Bscans based on an energy ratio 

criterion between the clutter and the target signatures, then, it suppresses the clutter separately 

in each sub-Bscan. The proposed improvement showed very promising results. However, the 

decomposition into sub-Bscans in the PCA algorithm remains manually performed, and some 

automatization of the method has to be proposed as a working perspective. 
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Chapter 5 detailed the polarization mechanisms with the expectation to improve the 

detection of buried targets in raw Bscan images. The influence of polarization is illustrated on 

some examples of buried canonical targets with different EM properties and orientations. 

Assuming a plane wave with normal incidence to the ground surface, an analytical model is 

described for the case of buried cylindrical shaped objects under both TE and TM polarized 

electric fields. We compared the experimental and the simulated data with the analytical data 

to conclude about the utilities of multi-polarization GPR surveys for civil engineering 

applications. In practice, the used antennas show a dominant TM or TE mode, instead of a 

pure TE or TM mode as it is assumed for the analytical model.  

Polarization is proved to be meaningful for extracting additional information about the 

nature (electrical properties) and the orientation of buried objects. The results show a 

preference for the TE polarization for the case of dielectric pipes with low permittivity 

contrast relatively to the soil permittivity; otherwise the TM polarization is preferred. 

Therefore, the multi-polarization appears very promising when dealing with dielectric targets. 

Besides, we did not find that the cross-polarization was the best radar configurations for 

distinguishing between the target and the clutter as it is stated in the literature. 

 

Finally, two main conclusions can be drawn in the presented work: the first deals with 

the clutter removal in GPR images, and the second one shows the importance of multi-

polarization. After many experimental and numerical evaluations, the best clutter removal 

technique was found to be the median subtraction technique, and next comes the PCA 

technique. PCA seems better matched when it comes to rough surfaces and heterogeneous 

mediums. The multi-polarization GPR surveys was found meaningful for detecting small RCS 

buried targets, including both dielectric targets with low dielectric contrast compared to the 

surrounding ground and small metallic targets (~ 5 mm radius). 

 

B. Perspectives 

According to the application under scope and the difficulties encountered in this work, 

the following perspectives are proposed as a future work: 

 

1-The work which was carried in this PhD was performed on canonical targets to model 

urban utilities. Thus, the first perspective to this work would be to extend the study to cracks 

and discontinuities with various shapes. A first experimental test on cracks is evaluated in the 

sand field (using the bowtie antenna) and modeled with rectangular objects. It has revealed 

the very low radar signatures for both polarizations. Therefore, for cracks, we propose to 

further explore the multi-polarization radar survey with a dense spatial radar data collection, 

namely, a small sampling step between Ascans. 
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2- The method proposed in section III.3.2 of chapter 3 may be further automatized by 

either scanning the Bscan image by a sliding window or by automatically selecting the width 

of the sub-Bscan window, namely, the parameters n1 and n2 of Figure 3.2. Besides, PCA will 

be tested on Bscan images with more than one target: the work can be extended to multi-

target images, where multi-hyperbolas are observed and the extraction of different hyperbolas 

with different energy levels will surely require the use of the modified PCA. In this case the 

lateral resolution of GPR plays a very important role. 

 

3- The determination of the reference image is one of the main difficulties encountered in 

this work for evaluating the clutter reduction techniques, because we have no prior knowledge 

about subsurface mapping and target signatures. In the near future, we then propose to study 

different construction methods to obtain a reliable reference image. 

 

4- The work in chapter 5 has enlightened the need for some pre-processing to better 

exploit ground-coupled GPR data with polarization diversity. In fact, the lateral dimension of 

the GPR antennas implies some modifications when switching one polarization to one 

another. Some phase shifting is then required to compensate for different zero-offset between 

antennas configurations. An additional resampling is required on simulated data because the 

FDTD provides the data on different spatial grid mesh. 

 

5-Future measurement campaigns may concern the future sense-city urban test-site which 

the construction is planned in 2016. 
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Appendix A: Fresnel scattering equations  

Considering an EM wave reaches at a dielectric interface, its energy will be decomposed 

into two parts, the transmitted part onto the next medium, and the reflected part in the same 

medium (figure A.1). Any EM wave can be expressed as a combination of the parallel and the 

normal vectors. For a given plan incident wave with incident angle    Fresnel equations 

showed below describe waves behavior at the interface. 

   
   

 

   
 

 

      
      

     
            

      

           
   

 

   
 

 

      
      

     
            

      

 

   
   

 

   
 

 
     

            
      

     
            

      

           
   

 

   
 

 
     

            
      

     
            

      

 

Where   is the transmission coefficient,   is the reflection coefficient,   is the normal 

polarization (TE),   is the parallel polarization (TM),    is the transmitted field,    is the 

incident field,    is the reflected field,    is the incident angle,    is the refraction angle, and 

    
         

 are the effective permittivity of mediums 1 and 2 respectively. 

Fresnel coefficients are dependent the angle of incidence and on the materials dielectric 

properties on both sides of the surface, for a GPR application, the coefficients are not only 

dependent on the ground properties but also on the air varying conditions: humidity and 

temperature. Ground dielectric properties (parameter    ) are variable in function of the 

frequency, consequently deferent frequencies produces different coefficient and refraction. 

We must note that antennas does not emit plane waves, nevertheless plane waves are a 

preliminary study, and useful to extract a first conclusion on the behavior of EM waves. It is a 

simple modeling  to understand the behavior of more complexes environments. 

Figure A.1: EM wave breakdown on the impact with planar surface. 
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Appendix B: Scattering from a cylindrical infinite 

pipe 

I. Case of a TM
Z
 polarization (E in z direction) 

 

Figure B.1 

The electric incident field can be written as: 

  
       

          
         

  
     

  
     

(B-1) 

And can also be expressed as an infinite sum of the Bessel function: 

  
                 

   

  

    

 (B-2) 

By using Maxwell’s Faraday equation: 

     
 

   
     (B-3) 

We obtain: 

  
     (B-4) 

  
   

    

    
              

   

  

    

 (B-5) 

  
   

     

   
      

         

  

    

 (B-6) 

Incident wave impacts cylinder surface and creates scattering waves, therefore the total field 

  
  at each point of space is expressed as: 
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Where   
  is the scattered field, such as: 
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   represents an unknown coefficient, and   
        represents the Hankel function of the 

second kind of order n. 
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I.1. Case of a perfectly conductive cylinder 

For a perfectly conductive cylinder with     , and by applying boundary condition for 

the total field we calculate the unknown coefficient   . Inside the cylinder the total field is 

zero: 

  
                  (B-10) 

At boundary the tangential fields are continuous in space and time, thus the tangential 

component z of the total electric field is zero on the cylinder surface is: 
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Thus,  
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And    can be calculated as    throw Maxwell’s Faraday equation: 

     
 

   
     (B-16) 

 

I.2. Case of a dielectric cylinder 

For a dielectric cylinder with an electric relative permittivity    and relative 

permeability     , one part of the incident electromagnetic field will refract through the 

cylinder, and the other part will reflect at the surface of the cylinder. The continuity of the 

tangential fields   
  and   

  at the cylinder boundary gives: 

  
                   

                 (B-17) 
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Where fields E and H scattered inside the cylinder (ρ < a) are: 
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And fields E and H scattered outside the cylinder (ρ > a) are:  
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           represent unknown coefficients, by replacing (B-19) and (B-22) in equation (B-

17); and (B-20) and (B-24) in (B-18), we obtain two equations for calculating the two 

unknown coefficients: 
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 : Medium impedance 

  : Cylinder impedance 

We obtain: 
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II. Case of a TE
Z
 polarization (H in z direction) 

 

Figure B.2 

For TE
z
 polarization, the magnetic field H is in z direction, such as: 
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By using Maxwell’s Faraday equation: 
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We obtain: 
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Incident wave impacts cylinder surface and creates scattering waves, therefore the total fields 

  
        

  at each point of space are expressed as: 
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With the scattered fields: 
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And the total fields: 
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II.1. Case of a perfectly conductive cylinder 

For a perfectly conductive cylinder with, and by applying boundary condition for the 

total field we calculate the unknown coefficient   . Inside the cylinder the total field is zero: 

  
                  (B-40) 

At boundary the field is continuous, thus the tangential component   
  of the total field is 

zero on the cylinder surface: 
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Thus,  
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II.2. Case of a dielectric cylinder 

For a dielectric cylinder with an electric relative permittivity    and a relative 

permeability     . The continuity of the tangential fields   
  and   

  at the cylinder 

boundary gives: 
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Where tangential fields E and H scattered inside the cylinder (ρ < a) are: 
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And fields E and H scattered outside the cylinder (ρ > a) are:  

  
               

           

  

    

 (B-50) 

  
                          

   
         

  

    

 (B-51) 

  
     

    

   
        

    
        

  

    

 (B-52) 

  
     

    

   
        

            
             

  

    

 (B-53) 

           represent unknown coefficients, by replacing (B-48) and (B-51) in equation (B-47); 

and (B-49) and (B-53) in (B-46), we obtain two equations for calculating the two unknown 

coefficients: 
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 : Medium impedance 

  : Cylinder impedance 

We obtain: 
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Appendix C: ICA algorithm 

 

C1. Whitening proof 

Let: 

            (C-1) 

We have: 

                            (C-2) 

                          (C-3) 

                                       (C-4) 

                           
 

    

  (C-5) 

 

 

C2. Gaussianity and independence 

1. According to the ICA data model, in order to estimate the independent components, a 

vector y defined by iy Wx  is introduced, where W is a matrix to be determined. If W is 

the inverse of A (or Moore-Penrose pseudo inverse of A if y and xi do not have the same 

dimension), then y would actually equal to si.  

Or we have 
T T

i i i i iy W x W As   

To obtain independent original sources we have to find  W  such that )(tyi  is “least” 

Gaussian. Means that     is the sum of many   , thus    is more gaussian than any of   . 

Maximizing the non-gaussianity of T

i i iy W x  will produce an estimation of the 

independent component: ii ys ˆ   

N.B: We can’t say the inverse, that     is the sum of many    , so    is more gaussian 

than any of    because the    are not independent. 

 

2. Note that there is a condition for ICA algorithm to work, that the gaussian variables are 

forbidden for the ICs, meaning we must have no gaussian sources in order to be able to 

estimate the ICs, because the transformation of any gaussian variable by the orthogonal 

mixing matrix A, will result into exactly the same gaussian variable, so as if we did no 

transformation. (Actually, if only one IC is gaussian the ICA algorithm will be able to 

estimate the ICs) 
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C3. FastICA algorithm  

1. The one-unit algorithm 

By unit we refer to one vector of the weight matrix W. The FastICA finds the unit vector 

w such that the projection     maximizes nongaussianity, by measure of the approximated 

negentropy       . The variance of      must be of unity, but since the data X are whitened 

this mean constraining the norm of w to be unity. 

The basic form of the one-unit FastICA algorithm is shown as follows: 

1. Choose an initial random weight vector w (with unity variance). 

2. Let                           

3. Let   
  

    
 

4. If not converged, go back to 2. 

The algorithm above estimates just one of the independent components (ICs), by 

estimating one corresponding weight vector from the weight matrix, so it is called one-unit 

algorithm. Next we will see how to estimate all ICs or all sources in our signal. 

Note that: 

 convergence means that the old and new values of w (w and w
+
) points in the same 

direction, i.e. their dot-product are almost equal to 1, w and –w are considered the same cause 

ICA cannot determine the sign of the vector. In step three we normalize to keep the variance 

of the projection     equal to unity. The optimization (minimization or maximization) of any 

contrast function in step 2 (we used G1) enables the estimation of the mixing matrix. 

Afterwards, the sources can be estimated, and the equality in step two comes from calculation 

the maxima of the approximation of the Negentropy of     are obtained at certain optimum 

of          .  

Equality 2 approximation: 

According to the Kuhn-Tucker conditions (Luenberger, 1969), the optima of 

          under the constraint                   are obtained at points where: 

                (C-6) 

We solve this equation by Newton’s method. Denoting the function on the left-hand side 

of the eq. above by F, we obtain its Jacobian matrix       as: 

                         (C-7) 

To simplify the inversion of this matrix, we decide to approximate the first term, since 

the data is sphered, a reasonable approximation seems to be: 

                                              (C-8) 
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Thus the Jacobian matrix becomes diagonal, and can easily be inverted. Thus we obtain 

the following approximative Newton iteration: 

                                      (C-9) 

This algorithm can be further simplified by multiplying both sides by             . 

This gives, after algebraic simplification, the second FastICA iteration.  

 

2. Several units algorithms: Deflationary orthogonalization and Symmetric 

orthogonalization 

To estimate all the ICs or all N sources, we need to run the one-unit algorithm using 

several units to estimate the N weighting vectors            (N is the number of ICs to 

estimate). But since w is chosen randomly, to prevent different vectors    to converge for the 

same maxima, we must decorrelate the outputs    
   after every iteration, a simple way is 

orthogonalization. Here comes the choice between two versions of algorithms to estimate the 

remaining ICs: Deflationary orthogonalization and Symmetric orthogonalization. 

In deflationary orthogonalization, we have to estimate p ICs, such that one IC is 

estimated at a time. When the estimation of the weighted vector      is obtained, the vector is 

then orthogonalized with all previously estimated weight vectors      (     ), by 

calculating the projections   
        and subtracting them from the current vector        

     
         

   
   , and then normalize            

   . The basic algorithm is shown as 

below: 

1. Center the data to make its mean zero and whiten the data to give X. 

2. Choose the number of ICs to estimate: N. 

3. Choose vector      randomly of length M. 

4. Let           
            

       

5. Do the orthogonalization             
         

   
    

6. Let              

7. If      has not converged, go back to 4 

8. Set p = p+1, If      go back to 3 

 

Differently, in symmetric orthogonalization, all sources are recovered simultaneously. It 

treats all vectors as a matrix and orthogonalizes them at once so no sources are privileged 

over others. Each weight vector      is estimated independently and then the resulting matrix 

              is orthogonalized by using the matrix square root               . 

The basic algorithm is shown as below:  

1. Center the data to make its mean zero and whiten the data to give X. 
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2. Choose the number of ICs to estimate: N 

3. 
Choose N initial values of unit norm for            

4. Orthogonalize the matrix as               and normalize it            

5. Let           
            

       for every Nj ,,2,1  . 

6. Do a symmetric orthogonalization of the matrix W by               

7. Check the convergence:       
     If not, go back to 5  

In step 4 we can replace                    by            
 

 
  

 

 
     to 

simplify calculations. And W is normalized to keep the variance of the projection     equal 

to unity since the whitened data X is of variance unity.  

 

N.B:      is replaced by      for complex data. 

We must note also that two ambiguities result from ICA algorithm. First ambiguity is 

that we cannot find out the variance value of each IC, because both S and A are unknown, any 

scalar multiplier in one of the sources could always be cancelled by dividing the 

corresponding column of the mixing matrix A, so the best solution for this ambiguity is to 

assume that each IC is of unity variance. Second ambiguity is after retrieving the ICs, we 

cannot know in which order the sources were (in the measured signal) so a rotation matrix 

must be introduced, but this ambiguity does not affect our application in clutter removing, 

because we are not interested in the order, we only want to eliminate some sources and then 

reconstruct the signal by projecting the chosen sources back on the mixing matrix. 

 

 

 

 


