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ABSTRACT

This PhD thesis concerns the geochemistry of Zr, Hf and REE in extreme water environments
characterized by a wide spectrum of chemical physical-parameters and compositions. The
investigations were carried out in hypersaline waters covering a wide range of Eh values along
Dead Sea Fault (Israel), in hyperacid waters circulating in Nevado del Ruiz volcano-hydrothermal
system (Colombia) and in CO,-rich waters belonging to the Pantelleria volcano-hydrothermal
system (Italy), including the alkaline lake “Specchio di Venere” formed within a calderic
depression. The wide spectrum of chemical-physical conditions and various water chemical
compositions interacting with different solid phases allowed to depict a scenario where Zr, Hf and
REE are ruled by different processes, filling the still missing geochemical aspects.

The important role of the pH (from 1 to 8.8) and the water chemical composition in regard to the
distribution of Zr, Hf and REE was mainly investigated in the Nevado del Ruiz volcano-
hydrothermal system. The pH rules the precipitation of authigenic Fe-, Al-oxyhydroxides producing
changes in Zr, Hf and REE abundances and strong cerium anomaly. Significant LREE (Light Rare
Earth elements) depletion was found in acidic sulphate waters, where the formation of alunite and
jarosite was recognized. Sub-chondritic Zr/Hf ratios (lower than magmatic local rocks) and
chondritic Y/Ho ratios (close to the local magmatic rocks) are shown in acidic sulphate waters
(1<pH<3.6). Zr/Hf ratio increases as Cl/SOy ratio increases, suggesting a different behaviour of Zr
and Hf as function of complexing ligands in solution. Differently to the acid waters, the same
fractionation of Y-Ho and Zr-Hf was found in near neutral waters where Al-, Fe-oxyhydroxides
were found. The twin pairs show Y/Ho and Zr/Hf ratios increasing towards super-chondritic values
due to the preferential removal of Ho and Hf compared to Y and Zr by Al-, Fe-oxyhydroxides.

Pantelleria hydrothermal waters are dominated by Na and Cl ions with variable HCOj

enrichments due to the interaction with deep-seated CO,. Different behaviour of Zr, Hf and REE



was found in the alkaline lake “Specchio di Venere” with respect to the CO,-rich thermal waters
circulating in the Pantelleria volcano-hydrothermal system. Shale-normalised REE (relative to Post
Archean Australian Shale, PAAS) in CO;-rich waters showed the same pattern increasing along the
REE series, with the elemental speciation dominated by carbonate ligands. Zr, Hf and REE show
higher concentrations in lake “Specchio di Venere” with intermediale REE (MREE) enrichments
and positive Ce anomaly. Similar features (MREE enriched and positive Ce anomaly) were found in
the settling dust and in the Desert Varnish, mainly constituted by Fe-, Mn-oxyhydroxides and clay
minerals. Moreover, Y/Ho and Zr/Hf molar ratios in “Specchio di Venere” lake (35.37 and 76.30,
respectively) show also a Desert Varnish signature. These latter data, coupled with the MREE
enrichments and the presence of Fe-oxyhydroxides and phyllosilicates in the shallowest water layer
of “Specchio di Venere”, testify for an aeolian input from the nearby Sahara desert demonstrating
that Zr, Hf and REE are useful tracers to identify the contribution of atmospheric particle in open
water bodies.

The key role of the Eh values and the water composition towards the distribution of Zr, Hf and
REE was mainly evaluated in waters along the Dead Sea Fault. Here, both cold and hot waters fall
within a wide range of salt contents (from 0.3 to 193.5 g I'") and Eh values (from -400 to 256 mV).
These waters are mainly NaCl dominated with variable enrichments in SO4, HCO3; and Ca due to
water rock-interactions. The investigated waters are oversaturated with respect to carbonate
minerals, Fe-, Mn-oxyhydroxides and pyrite, and always undesaturated in gypsum and halite. The
REE distribution shows MREE enrichments, due to the dissolution of evaporitic minerals
characterized by MREE enrichments. The redox conditions influence the amplitude of Ce and Eu
anomalies. Oxidized waters show negative Ce anomalies related to the oxidative Ce scavenging,
whereas positive Eu anomalies are found in waters characterised by Eh values < -100 mV
consistently with the Eu occurrence as the dissolved Eu". This condition enhances the Eu stability

in dissolved phase relatively to its trivalent neighbours along the REE series. Since dissolved Zr/Hf
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molar ratio is sensitive to the occurrence of solid Fe-oxyhydroxide surfaces where Hf is
preferentially scavenged, redox conditions influence the Zr/Hf signature in these waters despite
neither Zr nor Hf are redox sensitive elements. Therefore, the Zr and Hf in waters oversaturated
with respect to Fe-oxyhydroxides show superchondritic Zr/Hf values due to the preferential Hf
scavenging onto solid surfaces whereas the waters oversaturated relative to pyrite show chondritic

Zr/Hf signatures.
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RIASSUNTO

Questa tesi di dottorato ¢ incentrata sullo studio del comportamento geochimico di Zr, Hf e Terre
Rare in ambienti acquosi estremi, caratterizzati da un ampio spettro di parametri chimico-fisici e di
composizione chimica delle acque. Gli studi sono stati condotti in differenti sistemi naturali ognuno
dei quali aventi delle specifiche caratteristiche: 1) acque ipersaline lungo la faglia del Mar Morto
(Israele) dove esiste un ampio range di valori di Eh, 1i) acque iperacide circolanti nel sistema
vulcanico-idrotermale del Nevado del Ruiz (Colombia) e iii) acque ricche in CO; circolanti nel
sistema vulcanico-idrotermale dell’Isola di Pantelleria, includendo il lago alcalino “Specchio di
Venere”. L’ampio spettro di condizioni chimico-fisiche e la diversa composizione delle acque
interagenti con le fasi solide di diversa natura, hanno permesso di investigare il comportamento
geochimico di Zr, Hf e Terre Rare in fase acquosa, colmando gli aspetti geochimici ancora oggi
mancanti.

L’importante ruolo svolto dal pH (1-8.8) e dalla composizione chimica dell’acqua nei confronti
della distribuzione di Zr, Hf e Terre Rare ¢ stato studiato principalmente nel sistema vulcanico-
idrotermale del Nevado Del Ruiz. Il pH gioca un ruolo fondamentale riguardo alla precipitazione
degli ossidrossidi di ferro e alluminio, inducendo variazioni delle concentrazioni di Zr, Hf e Terre
rare e significative anomalie positive di cerio. Elevati impoverimenti in Terre rare leggere sono stati
riscontrati nelle acque acide solfato dominante dove ¢ stata riconosciuta la formazione di alunite e
jarosite. Le acque solfato acide (1 < pH < 3.6) sono caratterizzate da rapporti di Zr/Hf sub-condritici
(inferiori rispetto alle rocce locali) e rapporti condritici di Y/Ho (simili ai rapporti delle rocce
locali). I rapporti molari di Zr/Hf mostrano valori crescenti al crescere del rapporto Cl/SO4
suggerendo un differente comportamento di Zr e Hf in funzione della loro complessazione ionica al
variare del rapporto dei leganti ionici presenti in soluzione. Differentemente alle acque acide, 1

rapporti di Y/Ho e Zr/Hf nelle acque vicino alla neutralita crescono verso valori sempre piu super-
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condritici, a causa della rimozione preferenziale di Hf e Ho rispetto a Zr e Y da parte degli
ossidrossidi di ferro e alluminio.

Le acque idrotermali di Pantelleria hanno una composizione chimica dominata da Na e Cl, con
concentrazioni variabili di HCOs; dovute all’interazione della CO, (principalmente di origine
magmatica) con le acque del sistema idrotermale. E’ stato riscontrato un differente comportamento
di Zr, Hf e Terre Rare nell’acqua del lago Specchio di Venere rispetto alle acque circolanti nel
sistema idrotermale. Le Terre Rare normalizzate al PAAS (Post Archean Australian Shale)
mostrano degli andamenti progressivamente crescenti dal La al Lu e sono principalmente
complessate dalle specie carbonatiche. Il lago Specchio di Venere comparato con le acque
idrotermali, mostra delle concentrazioni maggiori di Zr, Hf e Terre Rare, con un arricchimento in
Terre rare intermedie e anomalia positiva di Ce. Caratteristiche simili sono state trovate nel Desert
Varnish (fase solida presente in ambienti aridi) costituito principalmente da minerali argillosi e
ossidrossidi di Fe e Mn. I rapporti molari di Y/Ho e Zr/Hf nello Specchio di Venere (35.37 € 76.30,
rispettivamente) sono caratterizzati da valori molto simili a quelli trovati nel Desert Varnish. La
distribuzione del pattern delle Terre Rare, insieme ai rapporti di Y/Ho e Zr/Hf e alla presenza di
fillosilicati e ossidrossidi di Fe nello strato piu superficiale dello Specchio di Venere, testimoniano
I’interazione tra il particolato atmosferico proveniente dal vicino deserto del Sahara e il lago
Specchio di Venere, dimostrando che Zr, Hf e Terre Rare sono degli utili traccianti in grado di
identificare il contributo del particolato atmosferico nei corpi idrici superficiali.

Il ruolo chiave svolto dalle variazioni di Eh nei confronti della distribuzione di Zr, Hf e Terre Rare
¢ stato principalmente valutato nelle acque presenti lungo la faglia del Mar Morto, caratterizzate da
un ampio range di valori di Eh (da -400 a 390 mV) e da un contenuto in sali disciolti tra 0.3 ¢ 193.4
g 1. Le acque hanno contenuti di Na e Cl dominanti con variabili arricchimenti in SO4, HCO; e Ca,
causati dall’interazione delle acque con le rocce locali. Inoltre, le acque sono sovrassature in

minerali carbonatici, pirite e ossidrossidi di Fe e Mn, mentre sono sottosature rispetto a gesso e



alite. Alcune acque mostrano arricchimenti in Terre rare intermedie, principalmente causati dalla
dissoluzione di minerali evaporitici. Le grandi variazioni redox riscontrate in questo sistema
idrotermale sono la causa delle anomalie di Eu e Ce riconosciute nelle acque. Le acque ossidate
mostrano anomalie negative di cerio dovute allo scavenging ossidativo, mentre anomalie positive di
europio sono presenti nelle acque caratterizzate da valori di Eh < -100 mV dovute alla presenza
del’Eu*" in fase disciolta. Queste condizioni estremamente riducenti aumentano la stabilita
dell’Eu”" rispetto agli elementi vicini (con stato di ossidazione 3+) lungo la serie delle Terre Rare.
Il rapporto Zr/Hf ¢ sensibile alla presenza di ossidrossidi di ferro che causano la principale
rimozione di Hf rispetto a Zr sulle superfici dei minerali. Sebbene Zr e Hf non siano elementi
sensibili alle variazioni redox del sistema, il rapporto Zr/Hf ¢ influenzato dalle variazioni di Eh che
inducono variazioni della stabilita degli ossidrossidi di ferro. Pertanto, il rapporto Zr/Hf nelle acque
sovrassature in ossidrossidi di ferro mostrano valori super-condritici causati dalla preferenziale
rimozione di Hf sulle superfici dei solidi, mentre le acque sovrassature in pirite mostrano rapporti

Zr/Hf simili ai valori condritici.
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RESUME

Cette these de doctorat traite du comportement géochimique de Zr, Hf et Terres Rares dans des
environnements aqueux extrémes, caractérisés par une grande variét¢ de parametres chimiques et
physiques et de composition chimique de l'eau. Les études ont ¢té effectuées dans des systemes
naturels différents dont chacun ayant des caractéristiques spécifiques: dans les eaux hyper-salines
long de la faille de la Mer Morte (Israél), caractérisée par une large gamme de valeurs d’Eh, les
eaux hyper-acides qui circulent dans le systétme volcanique hydrothermal du Nevado del Ruiz
(Colombie) et les eaux riches en CO, du systeme volcanique hydrothermal de I'ile de Pantelleria, en
comprenant le lac alcalin “Specchio di Venere “. Le large éventail de conditions physico-chimiques
et la composition différente des eaux en interaction avec les phases solides de nature différente, ont
permis d'étudier Zr, Hf et les Terres rares dans un scénario complet, en mettant en évidence les
aspects géochimiques encore absents pour ce qui concerne le comportement de ces éléments dans la
phase aqueuse.

Le role important joué par le pH (1 a 8.8) et par la composition chimique de 1'eau par apport a la
distribution de Zr, Hf et Terre Rares a ét¢ ¢tudié principalement dans le systéme volcanique
hydrothermal du Nevado del Ruiz. Le pH joue un rdle fondamental en ce qui concerne la
précipitation des oxyhydroxydes de fer et d'aluminium, ce qui induit des variations des
concentrations de Zr, Hf et Terres rares et considérables anomalies positives de cérium. Haute
appauvrissement en Terres Rares 1égéres ont été trouvés dans les eaux acide dominées par le sulfate
ou on a reconnu la formation d’alunite et jarosite. Les eaux sulfates acides (I < pH < 3.6) se
caractérisent par des relations de Zr/Hf sous-condritique (inférieur aux roches locales) et des
relations condritique de Y/Ho (semblables aux valeurs des roches locales). Les rapports molaires de
Zr/Hf augment a 1'augmentation du rapport CI/SO4 en suggérant un comportement différent de Zr et

Hf qui pourrait dépendre de la complexation des ions en solution. Contrairement aux eaux acides,
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les relations de Y/Ho et Zr/Hf dans les eaux proches de la neutralité, augmentent vers des valeurs
super-condritiques, en raison de I'élimination préférentielle par les oxyhydroxydes de fer et
d'aluminium de I'Hf et Ho que de Zr et Y.

Les eaux hydrothermales de Pantelleria ont une composition chimique dominée par Na et Cl, avec
des concentrations variables de HCO; due a l'interaction de CO, (principalement d'origine
magmatique) avec les eaux du systéme hydrothermal. On a constaté un comportement différent de
Zr, Hf et Terres Rares dans 1'eau du lac “Specchio di Venere “ par rapport aux eaux thermales qui
circulent dans le systéeme hydrothermal. Les Terres Rares normalisées a PAAS (Post Archean
Australian Shale) croissent du La au Lu et sont complexées par les espéces carbonatées. Le lac
“Specchio di Venere” comparé aux eaux hydrothermales, montre des concentrations plus ¢levées en
Zr, Hf et de Terres Rares, ainsi qu’un enrichissement de Terres Rares intermédiaires et une
anomalie positive de Ce. Caractéristiques similaires se retrouvent dans le les poudres du Desert
Varnish (phase solide présente dans les environnements arides) composé principalement de
minéraux argileux et oxyhydroxydes de Fe et Mn. Les rapports molaires de Y/Ho et Zr/Hf du
“Specchio di Venere” (respectivement, 35.37 et 76.30) sont proches des valeurs trouvés dans les
poudres du Desert Varnish. Le distribution des Terres Rares, avec les rapports de Y/Ho et Zr/Hf et
la présence de phyllosilicates et oxyhydroxydes de fer dans la couche superficielle du “Specchio di
Venere” montrent ’interaction entre les particules atmosphériques qui provient du désert du Sahara
et le lac “Specchio di Venere”, démontrent que Zr, Hf et terres rares sont de traceur utiles, capables
d'identifier la contribution des particules atmosphériques dans les bassins.

Le role crucial joué par les changements de Eh par apport a la distribution de Zr, Hf et Terres
Rares a été évalué principalement dans les eaux étudiées le long la faille de la Mer Morte. Ces eaux
sont caractérisées par une large gamme de contenu en sel (de 0.3 4 193.4 g I'") et de valeurs de Eh
(de -400 a 390 mV). Les eaux sont caractérisées principalement par le contenu de Na et Cl

dominants avec enrichissement variable dans SO4, HCOj3 et Ca, provoqués par l'interaction de 1'eau
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avec les roches locales. Les eaux sont sursaturées en minéraux carbonatés, pyrite et oxyhydroxydes
de Fe et Mn, tandis que toujours soussaturées en gypse et halite. Certaines eaux montrent des
enrichissements en Terres Rares intermédiaire, principalement causés par la dissolution des
minéraux €vaporitiques. Les grandes variations redox observées dans ce systeme hydrothermal sont
la cause des anomalies de Eu et Ce reconnues dans les eaux. Les eaux oxydés montrent des
anomalies négatives de cérium en raison du scavenging oxydatif, tandis que des anomalies positives
de I'europium sont présents dans les eaux caractérisées par des valeurs de Eh <-100mV en raison de
la présence du Eu”® " dans la phase dissoute. Ces conditions extrémement réductrices augmentent la
stabilité du Eu”" par rapport aux éléments proches (a 1'état d'oxydation 3+) tous le long de la série
des Terres Rares. Le rapport Zr/Hf est sensible a la présence d'hydroxydes de fer qui provoquent
I'enlévement principal de Hf par rapport a Zr sur les surfaces des minéraux. Bien que Zr et Hf ne
sont pas de ¢léments sensibles aux variations redox du systeéme, le rapport Zr/Hf est influencée par
les changements de Eh qui induisent des changements dans la stabilité¢ des oxyhydroxydes de fer.
En conséquence, le rapport Zr/Hf dans les eaux sursaturées d'oxyhydroxydes de fer présentent des
valeurs sur-condritiques provoqués par l'élimination préférentielle de Hf sur les surfaces des
solides, tandis que les eaux sursaturées de pyrite montrent des rapports Zr/Hf semblables aux

valeurs conditriques.
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PREFACE

This PhD thesis concerns the geochemistry of Zr, Hf and REE never studied in extreme
environments, in order to evaluate the main processes involving these elements in hyperacid,
hypersaline and lake systems. This thesis consists of an introduction presented in Chapter I; the
description of the investigated areas in Chapter II; materials and methods in Chapter III; results,
discussions and conclusions of each case of study are presented from Chapters IV to VI. The
general conclusions regarding the geochemistry of Zr, Hf and REE are presented in Chapter 7.
Chapter 8 is an additional study concerning the chemical and isotopic composition of dissolved
gases in waters along Dead Sea Fault area. The aim of this last study is to characterise the source of
volatiles (carbon dioxide and helium) and to investigate their relationship with the main tectonic
framework. The paragraphs “Introduction” and “Materials and methods” related to this last study
are included in Chapter VIII. The references relative to the chapters are in Chapter [X.

The case studies presented in this work are the results, discussions and conclusions of the articles
prepared by the author of the thesis. The articles are already published, accepted or under review in

international journals. The papers already published are also included in the appendix (Chapter X).
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CHAPTER 1

INTRODUCTION

1.1 General aspects and aim of the work

The REE (Rare Earth Elements; lanthanides and yttrium) are resources economically important
with an increasing exploitation due to the continuous using of these metals in the production of
electronic devices. Previously, Zr, Hf and REE were considered immobile, free from geochemical
fractionations during water-rock interaction. Starting from 80’ years, with the improvement of
analythical techniques, the Zr, Hf and REE have been progressively investigated in dissolved phase.
Here, a geochemical behavior of REE controlled by their external electronic configuration rather
than their charge-to-radius ratio was recognised. In the last 30 years, an extensive literature has
been developed about the distribution of REE and the Y/Ho ratios during interaction processes
between different phases while very limited investigations were carried out about the Zr and Hf
geochemistry. The study of Zr and Hf distributions in natural waters started about 20 years ago and
was mainly focused on seawater (Bau et al. 1996; Godfrey et al., 1996; 2008; Firdaus et al., 2011;
Frank, 2011).

A special attention was focused on the capability of the REE to provide insights into
geochemical processes occurring in natural environments (Bau, 1996; 1999; Bau and Dulski, 1999;
Fulignati et al., 1999; Wood et al., 2003 and references therein; Censi et al., 2007; Piper and Bau,
2013; Censi et al., 2014; 2015; Inguaggiato et al., 2015). The Zr, Hf and REE behaviour in
geothermal fluids depends from their chemical-physical characters, rock-water interactions, the
deposition of authigenic minerals and speciation (Wood, 1990a; 2003; Lewis et al., 1997, 1998;
Gammons et al., 2005; Bao et al., 2008; Peiffer et al., 2011; Varekamp et al., 2015). The input of
atmospheric fallout was recognized as responsible for the mobilization of the REE and the changes

of seawater composition (Greaves et al., 1994; 1999), mainly in an epicontinental basin like the
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Mediterranean Sea. Here, the effects of the dissolution of atmospheric fallout influence the
dissolved REE distribution along the water column (Greaves et al., 1991; Censi et al., 2004; 2007),
whereas Zr and Hf behaviour is not known.

The geothermal waters with very acidic pH values have higher contents of REE dissolved in
waters up to 10* times compared to seawater. The REE contents in hydrothermal waters change as
function of pH values increasing as the acidity of solution increases, independently from the
temperature and the type of local rock (Michard, 1989). The geothermal systems are characterized
by a large variety of REE patterns. In particular, the acid sulphate waters have high REE contents
sometimes with Light Rare Earth Elements (LREE) strongly depleted with respect to the local rocks
(Wood, 2003 and references therein). During the mixing between reduced fluids discharged from
the hydrothermal vent at the marine floor and oxidized seawater, the REE are scavenged by the
formation of Fe and Mn oxyhydroxides (Bau, 1999, Wood et al., 2003 and references therein).

The knowledge of the REE behaviour in alkaline lakes is limited (Johannesson and Lyons, 1994)
and only few studies have been carried out on acid volcanic lakes (Ayers, 2012; Varekamp, 2015
and references therein) whereas the dissolved Zr and Hf geochemistry under these conditions is
unknown.

The concentration of total dissolved REE in near neutral pH waters and in seawater is low and
their dissolved species are dominated by carbonate complexes (Luo and Byrne, 2004) whereas the
latter species and hydroxides could be considered negligible in acidic waters. In seawater, the shale-
normalized REE patterns progressively increase along the REE series showing negative Ce
anomalies consistently with the oxidative scavenging of CeO, (Censi et al., 2007; Seto et al., 2008;
Piper et al., 2013 and references therein).

Recent studies investigated isovalent elements Zr-Hf, Y-Ho in waters and their fractionation in
processes involving solid phases (Godfrey et al., 2008; Firdaus et al., 2011; Frank 2011; Schmidt et
al., 2014). A different behaviour of Y-Ho and Zr-Hf geochemical twins has been evidenced in
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aqueous solution in contrast to the negligible fractionation of Y-Ho and Zr-Hf occurring at high
temperature in pure silicate melts, where the processes are mainly controlled by the ion charge and
radius (Bau, 1996). Y/Ho and Zr/Hf ratios in aqueous solutions deviate from the chondritic ratio,
due to the fractionation processes ruled by the electronic configurations of elements (Bau, 1996). In
seawater, the continental material has been recognised as the main source of Zr and Hf. A larger
removal of Hf with respect to Zr was found in seawater, due to the different sorption of these
elements onto Fe-, Mn-oxyhydroxides (Godfrey et al., 1996; 2008; Firdaus et al., 2011; Frank et al.
2011; Schmidt et al., 2014). In the water column of the Pacific Ocean, the Zr/Hf molar ratio ranges
from 100 to 600 (Firdaus et al., 2011), whereas in Atlantic coastal waters Zr/Hf molar ratio spans
between 100 and 200 (Godfrey et al., 1996; 2009). Censi et al., (2014) investigated the sediments
collected from deep-sea brines in the eastern part of Mediterranean Sea basin, showing sub-
chondritic Y/Ho and Zr/Hf ratios in authigenc carbonates and lack of Zr/Hf fractionation during
halite precipitation. In the last years, the scientific community focused the attention through the Zr-
Hf and Nb-Ta (geochemical pairs) in the ocean, recognizing them as a useful geochemical tool for
tracing water masses in the ocean (Bau, 1996; Firdaus et al., 2011; Frank, 2011). However, the
behaviour of Zr and Hf has never been studied in extreme environments: strong acidic waters linked
to volcanic system, lakes where the interaction between the water body and the atmospheric fallout
contribution from the nearby desert occurs and waters characterized by high TDS values and very
low Eh values.

This PhD research investigated the geochemistry of Zr, Hf and REE in waters circulating within
the Nevado del Ruiz (Colombia) and Pantelleria (Italy) volcano-hydrothermal systems, in the
alkaline lake formed in the calderic depression of Pantelleria volcanic island and in the hypersaline
waters with variable Eh values collected along the Dead Sea Fault (Israel). These natural systems
were considered as natural laboratories for better understanding the processes involving the
elements previous mentioned within a wide range of pH, Eh, TDS and water chemical composition.
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In particular the attention was focused on:

1. The geochemistry of Zr, Hf and REE in waters of Nevado del Ruiz, covering a range of
pH from 1 to 8.8; with special attention on the acid sulphate-chlorine waters with pH
included between 1 and 3.6.

2. The geochemistry of Zr, Hf and REE in CO»-rich waters of Pantelleria Island, covering a
range of pH from 6 to 9; with special attention on the source of Zr, Hf and REE in the
alkaline lake “Specchio di Venere”.

3. The geochemistry of Zr, Hf and REE in waters circulating along the Dead Sea fault area;
with special attention on the different Zr and Hf affinity with respect to the authigenic

mineral surfaces in waters covering a wide range of Eh and TDS values.

1.2 The aqueous geochemistry of REE

Lanthanides are a group of 15 elements belonging to the f-block, usually split in 3 groups: light
(La, Ce, Pr, Nd, (Pm)), middle (Sm, Eu, Gd, Tb, Dy) and heavy (Ho, Er, Tm, Yb Lu). Promethium
(Pm) is a radioactive lanthanide outside the focus of this study. The external electronic
configuration changes from La to Lu with the filling of inner 4f orbitals giving to these elements
quite similar chemical properties. However, the progressive filling of 4f orbitals closest to the
nucleus induces a phenomenon well known as “Lanthanide Contraction”, consisting in the
progressive decrease of ionic radius increasing the atomic number (Shannon, 1976). In natural
waters, the lanthanides are predominant in solution with the trivalent oxidation state, whereas
tetravalent cerium and bivalent europium occur in oxidized condition and extreme reduced
condition, respectively. Although Y has not f-electrons it is included with the HREE, because it is
characterized by similar ionic radius and the same oxidation state (+3) compared to Ho. Sometimes
some REE normalized pattern or sequences of distribution coefficients of REE can be splitted into
four different curves called tetrads explained according to the Refined Spin Pairing energy theory

(Reisfeld and Jorgensen, 1977; Jorgensen, 1979 and cited references).
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The REE form strong complexes with different inorganic ligands: carbonate, hydroxide, sulphate,
fluorine, chlorine and phosphate (Wood et al., 2003 and references therein). Only a small
percentage of REE is in solution as free hydrated ions (REE*"), due to the high stability constant of
REE with inorganic ligands (Wood, 1990; Millero, 1992; Luo and Byrne, 2004). The REE-
complexes and their abundances depend on the stability constant of the complexes and to the
relative concentration of anion ligands in solution. The stability constants of the trivalent REE
complexes with carbonate, fluoride, phosphate and hydroxide, increase along the REE series, while
the stability constants of REE-complexes with chloride decrease along the REE series (Fig. 1.1)
(Wood, 1990; Millero, 1992; Luo and Byrne, 2004). In particular the chloride ligand forms weak
complexes with REE at temperatures lower than 200°C, whereas the stability of REE-chloride
complex increase with the temperature (Wood et al., 2003 and references therein). The constants of
REE complexes with SO,* ligands do not change in a wide range, showing an almost flat
distribution and a slight bulge effect (Millero, 1992; Johannesson et al., 1996). The REE in water
with near-neutral pH (including seawater) are mainly dominated by carbonate complexes
[REE(CO3)]" and [REE(COs),] ~, while in strong acidic waters the role of carbonates ligands is
negligible (Byrne et al., 2002).

Having the same charge and very similar ionic radius (1.019 and 1.015 A, respectively), Y and Ho
behave similarly during primary processes. As a consequence their Y/Ho signature in rocks is close
to the chondritic value (52; Jochum et al., 1988). On the contrary, this signature deviates from this
value during secondary processes involving aqueous solutions.

During the solidification of pure silicate melt, these elements are CHArge and RAdius Controlled
(CHARAC) showing smooth normalized patterns mainly due to the lanthanide contraction. Often
REE show irregular normalized patterns during the solidification of highly evolved magmas (>70%
Si0;) and in aqueous solution, indicating that the distribution of REE does not depend only by
charge and 1onic radius but other processes influence the REE distribution (Bau, 1996).
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Fig. 1.1 - Stability complexes for the formation of lanthanides complexes (Millero, 1992)

1.3 The normalization of REE

All the elements are characterized by Oddo Harkins effect in which the cosmic abundances of odd
atomic numbered elements is lower with respect to the neighbour even elements. The REE are an
excellent example of elements affected by the Oddo Harkins effect. If the REE abundance is plotted
versus the atomic number, the Oddo Harkins effect is shown. The common way to avoid this effect
is to normalize the REE to natural materials. The standard materials most widely used are: Post
Archean Australian Shale (PAAS), Upper Continental Crust (UCC) and average chondrite (Piper et

al., 2013 and references therein). The UCC and PAAS show a similar distribution of REE

-8-



CHAPTER 1

Introduction

decreasing along the REE series. On the contrary, the distribution of REE in the average chondrite
is different with respect to the UCC and PAAS, showing lower REE concentration up to 2 orders of
magnitude. Moreover, PAAS and UCC have higher LREE/MREE and LREE/HREE ratios with
respect to average chondhrite. The normalization of REE is used to compare REE patterns in order
to evaluate processes involving different phases generating fractionation of REE. In the last years,
the REE dissolved in volcano-hydrothermal fluids began to be normalized to the local rocks in
order to evaluate processes of water-rock interactions between fluids and hosting rocks (Varekamp

et al., 2015 end references therein).

100 T
10 A
—
é . e=0=Chondrite

& =@=PAAS
M
m “H=UCC
(a7

0.1 A

0 . O 1 T T T T T T T T T T T T T T 1

Y La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

Fig. 1.2 — The distribution of REE (ppm) in Chondrite, PAAS and UCC (Data from: Taylor and Mclennan 1985; 1995;
McDonough and Sun 1995).

1.4 The aqueous geochemistry of zirconium and hafnium
Zirconium and Hafnium are transition metals belonging to the d-block of the periodic tables.

These elements are characterized by the same oxidation state (4+) and similar ionic radius (Zr 0.84
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and Hf 0.83 A). The knowledge of Zr and Hf in solution is poor compared to the REE. In near-
neutral waters, the complexation of these elements is dominated by hydroxyl groups Zr(OH)s,
Hf(OH)4, Zr(OH)s, Hf(OH)s  (Byrne, 2002). Moreover, Zr(OH)4 and Hf(OH)s™ complexes are the
species dominated in near-neutral waters (Censi et al., 2014 and references thereis), even if Zr-, Hf-
complexes with fluoride and chloride ligands (Pershina et al., 2002; Monroy et al., 2010) could be
stable in hydrothermal environment. However, there is a paucity of knowledge about Zr and Hf
complexes in extreme environments with hyperacid pH where the relative abundance of major
anion ligands complexing the metals is completely different with respect to the common natural
seawater and continental waters.

During the solidification of pure silicate melt, Zr and Hf are controlled by charge and radius as Y
and Ho. Zr/Hf ratios are quite constant in rock with Si0,<70%, with near-chondritic ratio (=73;
Jochum et al., 1986), while in aqueous solution and their precipitated super-chondritic ratios have
been found (Firdaus et al., 2011). In solid-liquid processes, the ionic radius and charge are not the
only responsible of Zr-Hf fractionation, showing non-CHARAC behaviour (Bau, 1996) due to the

different metal complexation.
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CHAPTER 2

INVESTIGATED AREAS AND BACKGROUND INFORMATION

2.1 Nevado del Ruiz
Nevado de Ruiz (NDR) is one of the active volcanoes belonging to the great chain of the Andes
(located a few km west of Bogota), connected with the active subduction of Nazca Plate below the

South American plate.

Atlantic Ocean

South American Plate

Pacific
Ocean

Nazca Plate

Fig. 2.1 — Location map of Nevado del Ruiz volcano. Active subduction of Nazca Plate below the South American
plate, generating the volcanism along the chain of the Andes.

NDR is located at the intersection between the regional fault system with N-S direction and the
Palestina fault system oriented NE-SW. The last plinian eruption occurred in 1985, generating a
huge lahar that buried Armero town killing approximately 23,000 people. The NDR volcano is a
large edifice mainly built up during three major phases over the past 600,000 to 1,200,000 years,
with a summit elevation of 5,389 m (Forero et al., 2011 and references therein). The volcanic

complex is mainly made of andesitic lava, whereas pyroclastic deposits belonging to the last
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eruptive phase overlay the lava flows. This volcanic system is characterized by calc-alkaline rocks
ranging from andesitic to dacitic in composition with quite constant distribution of REE, Zr and Hf
in different magmatic suites (Borrero et al., 2009). Fig. 1 shows the REE distribution of average
local rocks (Borrero et al.,, 2009 and references therein) normalized to chondrite, displaying a
decreasing pattern from La to Lu and the lack of europium anomaly (Borrero et al., 2009 and
reference therein). Borrero et alii don’t show different trend for different magmatic suites, affirming
that the evolution of magma is mainly controlled by the fractional crystallization without
recognizing other processes.

The NDR rocks have quite constant Y/Ho and Zr/Hf molar ratios of 58.3 and 66.8 respectively
(Borrero et al, 2009 and reference therein), falling in the field of processes controlled mainly by

charge and radius (Bau, 1996).

1,E+03 1

1,E+02 1

1,LE+01 -

REE (Average Local Rock)/ REE (Chondrite)

l,E+OO T T T T T T T T T T T T T T T
La Ce Pr Nd Sm Eu Gd Tb Dy Y Ho Er Tm Yb Lu

Fig. 2.2 - Chondrite-normalized REE patterns in average local rock (Borrero et al., 2009).
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2.2 Pantelleria Island
Pantelleria Island (83 km?) is an active volcano rising 836 m above sea level, located in the Strait
of Sicily between Sicily and Africa. The latter is characterized by trans-tensional rift (northwest-

southeast) with a thickness of the thinned crust reaching 16 km along the rift axis.
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Fig. 2.3 — Location map of Pantelleria volcanic island. Main tectonic features of Strait of Sicily (Esperanga e Crisci
1993).

The outcropping rocks in Pantelleria mainly consist of trachyte and pantellerite (peralkaline
rhyolites), whereas in the northwest part of the island alkali basalt and hawaiite occur, representing
only the 6% of the total. The local rocks are characterized by a compositional gap of about 13% of
Si0; between basaltic rocks and trachyte. Moreover, trachyte and pantellerite have a peralkalinity
index >1 (White et al., 2009). Basaltic lavas are characterized by 20-30 vol.% of crystals, trachyte
lavas have 30-40 vol.% of crystals, while pantellerite consist of 5-25 vol.% of crystals. Forty rock
samples were studied by White et alii (2009), showing a decreasing distribution of REE normalized

to chondrite from La to Lu. Moreover, the REE concentrations increase with the evolution of the
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rocks, showing positive anomaly of Eu in the basaltic rocks, negative to positive Eu anomaly in
trachyte lavas and negative anomaly of Eu in pantellerite lavas and Tuffs. Y/Ho and Zr/Hf display

quite constant molar ratios around 49 and 80 respectively, showing chondritic values.

B i BEEEE 1 cycle (410 ka) 4) lava ) fall deposis
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Fig. 2.4 — Geologic map of Pantelleria volcanic island (Orsi, 2003).

The most recent eruptive activities were at the end of 19™ century (in the years 1831, 1845, 1846,
1863 and 1891) at about 3-4km offshore to the NW coast of the island. The volcano-tectonic
features of the island include caldera collapses and resurgence inside the youngest caldera. The
oldest caldera (“La vecchia caldera”) is dated at 114 ka, while the youngest (“Monastero caldera”)
is related to the eruption of the Green Tuff (50 ka). Inside the “Monastero caldera” resurgence has
taken place with uplifting and tilting of the “Montagna Grande” block, through a simple shearing
mechanism. Intra-calderic activity in the last 45 ka (Mahood and Hildreth, 1986; Civetta et al.,
1988) and geophysical data (Mattia et al., 2007) indicates the presence of an active magma chamber

at crustal depth.
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Currently, the volcanic activity is limited to gas emissions at or below boiling temperature in
Favare, Cuddia Di Mida and M. Gibele area (south-central of island). Thermal waters CO;-enriched
located along the coast in the northwest and southwest areas (Dongarra et al., 1983) and other
thermal springs and anomalous degassing areas situated along the shoreline of the "Specchio di
Venere" lake (Favara et al., 2001; Aiuppa et al., 2007). Water temperatures range from 20 to 90°C
with pH values from 6.1 to 9.3 (Dongarra et al., 1983; Parello et al., 2000). The anion chemical
composition of the waters is chloride dominated, whereas many thermal waters are rich in
carbonatic species due to the interaction with CO, discharged from the magmatic system (Parello et
al., 2000). The scenario mentioned above suggests that the water circulating in Pantelleria Island
represents a mixing between CO;-rich thermal water, seawater and meteoric water recharge.
“Specchio di Venere” Lake is a saline endorheic basin formed within a calderic depression called
“Caldera Cinque Denti”, fed by several thermal springs and meteoric water. Aiuppa et alii (2007)
excluded any direct implication of seawater in the lake, highlighting intermittent stratification of the
lake. Such stratification is unstable and of short duration (generally a few days) and changes of
meteorological conditions (rain and/or wind) are able to mix the lake water, which is only 13m deep
(Aiuppa et al., 2007). The existence of reducing conditions at the water-sediment interface at the
bottom of the lake was recognized (Aiuppa et al., 2007), while isotopic analysis (8D; §'°0) in

"Specchio di Venere" lake evidenced the evaporation of water body (Dongarra et al., 1983).
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Fig. 2.5 - Photo representing an overview of “Specchio di Venere” alkaline lake.

2.3 Dead Sea Fault area
The investigated area of the Dead Sea Transform (DST) is the northern part of the Syrian-Red
Sea-East-Africa transform (e.g. Garfunkel, 1981). The transform itself is the boundary between the

Arabian plate in the east and the African plate in the west.
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Tectonic elements (left) and shaded relief of the topography (right) of the Dead Sea Transform.
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Fig. 2.6 — Tectonic map on the left and relief map on the right concerning Dead Sea Fault system. Map taken from:
http://woodshole.er.usgs.gov/project-pages/dead_sea/tectonic.html.

The crustal part consists of an old crystalline basement (more than 580 Ma old) underlying thick
sedimentary rock sequences (Garfunkel, 1988; Ginzburg and Gvirtzman, 1979). Only in the
southernmost area, close to Eilat, the absence of sedimentary rocks leads to the outcropping of the
crystalline basement (Rybakov and Segev, 2004). The sedimentary sequences consist of carbonates,
sandstones, clays and evaporates, whereas magmatic rocks occur in the northern part of the
investigated area, close to lake Kinneret, (e.g. Weinstein, 2000; Lustrino and Wilson, 2007).

The whole geological structure can be divided into three main areas. The northern area is built of
Miocene-Quaternary volcanics and continental sediments belonging to the Tiberias Group in the

eastern part of the investigated area (near the Golan Heights) while the western part (adjacent to the
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Galilee Mountains) is built mostly of carbonate sequences of Judea, Mt. Scopus and Avdat groups.
The central part of the studied area is from the Lake Kinneret to the southern Dead Sea. It is limited
in the west by the eastern Judea Mountains whereas the eastern limit is represented by the
escarpment formed by the Transform faults. The down most part of this area is composed of
evaporitic and alluvium sequences belonging to the Dead Sea Group (Zak, 1967). The third part of
the studied area, extending between the Dead Sea and the Gulf of Eilat, is mostly a low area filled
by thick alluvium deposits. This southern part is limited between Precambrian crystalline rocks
covered by sandstones both forming the Edom mountains at East and the carbonate sequences of the
Judea Group outcropping in the Negev area in the west.

Broad changes of the crust-mantle boundary (Moho) were suggested in the studied area with a
progressive deepening of the Moho from NW to SE from about 25 to 35 km depth (Segev et al.,
2006; Mechie et al., 2013). Along the rift system, geophysical indications provide evidences of a
Mantle uprising in northernmost area (about 30 km depth) relative to the Eilat region where it
should occur at about 35 km.

The Dead Sea is a terminal lake located in the northern part of the Dead Sea rift valley [Katz and
Starinsky, 2009]. Therefore, its water level is influenced by the balance between the evaporation
and the input of river and groundwaters from the surroundings area. In 1979, the evolution of the
composition of the Dead Sea water attained its current status following the progressive growth of
salinity caused by the negative water balance between input and output in the basin (Lensky et al.,
2005, and references therein). Since then, halite crystals have been observed in shallow waters
(Steinhorn et al., 1983) and widespread halite crystallisation began around 1982 (Herut et al., 1998,

and references therein).
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Fig. 2.7 — Photo representing an overview of Dead Sea.
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3.1 Sampling and analytical methods

Temperature, pH, Eh and electrical conductivity of waters were measured in the field with an
ORION 250+meter. The water samples collected to determine major cations and trace elements
were filtered through 0.45um MILIPORE cellulose acetate filters into 250ml Nalgene bottles and
acidified in the field with ultrapure HNOs. The water samples to determine major anions were
filtered with 0.45um filters in the field into LDPE plastic bottle. The major elements were analysed
by Dionex ICS 1100 chromatograph. A Dionex CS-12A column was used for cations (Na, K, Mg
and Ca) and a Dionex AS14A column for anions (F, Cl, and SO4). Alkalinity was determined in the
field by titration with HCI 0.1M. Trace elements including also REE, Zr and Hf, were analysed by
Q-ICP-MS (Agilent 7500ce) equipped with a Micromist nebulizer, a Scott double pass spray
chamber, a three-channel peristaltic pump, an auto sampler (ASX-500, Cetac) and a Octopole
Reaction System (ORS) for removing interferences of polyatomic masses and isobaric isotopes. The
mass spectrometer was calibrated with a multi-element standard solution, daily prepared and diluted
10 times to obtain a curve with 11 calibration points. The sensitivity variations were monitored
using 'Rh, ""In, "°Re at a final concentration of 8 pg/l for each as internal standards added
directly online by an appropriate device that mix internal standard solution to the sample just before
the nebulizer. Sixty seconds rinse using 0.5% HCI and 2% of HNOj solution plus 60-s rinse using
2% of HNOj; solution reduced memory interferences between samples. The precision of analysis
was checked by running 5 replicates of every standard and sample, it was always within £10%.
Data accuracy was evaluated analysing standard reference materials (Spectrapure Standards SW1

and 2, SLRS4, NIST 1643e, Environment Canada TM 24.3 and TM 61.2) for each analytical
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session and error for each element was <15%. Fe, Al with high concentrations (> 1mg/l) and Si
were analysed by ICP-OES Horiba Ultima 2 at wavelength of 259.940 nm, 396.152 nm and
251.611 nm respectively.

REE, Zr and Hf were analyzed without preconcentration technique in Nevado del Ruiz waters,
whilel liter of sample water for each sampling point was collected along Dead Sea Fault and
Pantelleria island, in order to preconcentrate REE, Zr and Hf (see the detailed method in the
following section) The sample water was filtered through 0.45um MILIPORE cellulose acetate
filters, stored in Nalgene bottles and acidified with S5ml of ultrapure solution of HNO3, to attain pH=
2.

Scanning Electronic Microscopy (SEM) observations and Energy Dispersive X-RAY Spectra
(EDS) were carried out on the suspended particular matter (SPM) collected during the filtration
from the investigated waters, in order to get information about the nature of suspended solids. The
filters with the SPM were assembled on the alluminium stub and coated with gold. The analisys
were performed with LEO 440 SEM equipped with an EDS system OXFORD ISIS Link and Si (Li)

PENTAFET.

3.2 Method to determine Zr, Hf and REE in Dead Sea Fault and Pantelleria waters

The samples collected to determine REE, Zr and Hf in Dead Sea Fault and Pantelleria waters were
treated in laboratory following the method described by Raso et alii (2013). In each water sample (1
liter) 1 mg of Fe was added and subsequently ammonia ultrapure solution to attain a pH between 8.0
and 8.5, in order to precipitate REE onto solid Fe(OH)s. The treated solution was agitated for 3
hours and after 48 hours the solution was filtered onto Millipore membranes with 0.45 pm porosity
to collect the solid precipitated. The next step was to dissolve the Fe(OH); onto the filter in 5 ml of
6M HCI ultrapure solution. The last step was to dilute the solution 1:5 with ultrapure water to allow

the introduction of the sample in ICP-MS. The iron concentration was analysed by ICP-OES for
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each solution to check the recovery of the added iron.

3.3 Speciation calculations and saturation indexes
The Saturation Indexes (SI) and the aqueous speciation of elements were calculated using
PHREEQC software package (version 3.0.6; Parkhurst and Appelo, 2010). The simulations were

carried out using the database LLNL.

3.4 Equation to determine anomalies of REE

Anomalies of Cerium and Europium in waters were calculated with respect to the neighboring
elements normalized to the reference matherial, using the equation proposed by Alibo and Nozaki
(1999):

REE./REE,*=2%(REE)/[(REE)s. HREE)y+1]

(REE), is the concentration of the element chosen to calculate the anomaly, while (REE),.; and

(REE)n+1 represent the previous and the subsequent element along the REE series, respectively.
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CHAPTER 4
GEOCHEMISTRY OF Zr, HF AND REE IN A WIDE RANGE OF
PH AND WATER COMPOSITION: THE NEVADO DEL RUIZ

VOLCANO-HYDROTHERMAL SYSTEM (COLOMBIA)

4.1 RESULTS

4.1.1 General aspects

Hot and cold waters were collected in the area close to NDR volcano in November 2013 (Fig.
4.1). NDR waters cover a wide spectrum of pH, ranging from 1 to 8.8. Temperature ranges from 6.8
to 79.5 °C, electrical conductivity values span from 0.2 to 33.5 mS/cm and Eh values range between
-31 and +325.4 mV (Tab. 4.1). The acidity recorded in the investigated waters is due to the
interaction of magmatic gases, such as HCI, SO, and their dissolution and dissociation in
groundwater (Giggenbach et al., 1990).

HROW

T5R0W TS 200"W TEIE0W

Fig. 4.1 - Location map of sampled waters.
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Fig. 4.2 - Triangular plot of major anions dissolved in water.

According to the pH, the waters were classified in two groups: Group 1 (near neutral-to-neutral) is
characterized by pH values ranging between 5.9 and 8.8, Group 2 (acidic) has pH values between
1.0 and 3.6. Considering the major anions contents, the groups were further subdivided. Group la
with the highest amount in HCOs, Group 1b with chloride dominant composition. The fluids
belonging to Group 2 are acid sulphate waters with composition plotting near the SO, corner in the
ternary anion diagram (Fig. 4.2). The latter group can be subdivided according to the CI content:
Group 2a with lower CI/SO4 ratios (< 0.13) and Group 2b with higher CI/SO4 ratios (> 0.32).

Fe and Al contents are several orders of magnitude higher (up to 4.14 and 30.23 mmol/l
respectively) in Group 2 compared to Group 1 (up to 2.85%10™ and 5.44*10* mmol/l respectively).

The water groups have different mineral saturation state (Tab. 4.2). Group 1 waters are
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oversaturated with respect to iron and aluminium oxyhydroxides, while the waters of Group 2 are
undersaturated with respect to those minerals. SEM-EDS analyses of SPM show amorphous silica
in all the investigated waters, sometimes silica sphere probably encrusting organic matter (Fig
4.3b). Moreover, different solid phases were found in the groups of waters classified previously: in
Group la Fe-, Al-oxyhydroxides encrusting amorphous silica are present (Fig. 4.3a); in Group 2a

waters Fe-Al-Ca solid phases (probably sulphates) onto amorphous silica are recognised (Figg.

4.3c; 4.3d).
Group Sample Name (01&) pH (Ifg/r;:in) (El‘ll) Na K Mg Ca | F Cl SO, HCO;| Al Fe Si

Agua Hedionda 139 59 0.4 170 | 0.48 0.07 1.07 0.76 (0.0l 0.05 1.01 2.30 |[0.0007 0.0005 1.64
Rio Molinos 159 8.8 0.5 - 2.04 020 0.62 1.43]0.02 1.43 1.80 1.20 |0.0005 0.0003 1.15

Group 1 |Nereidas 50.4 6.1 2.0 96 | 5.35 0.45 1.95 3.25 10.00 0.62 3.10 9.40 [0.0008 0.0004| 3.06
Botero Londono 79.5 1.7 6.8 -31 |27.06 2.10 026 120 |0.10 284 0.68 1.40 [0.0353 0.0098| 2.78
Termal La Gruta 33.5 1.6 8.7 236 |14.06 1.41 590 442|147 145 369 - 11.09 0.53 2.94
Hotel 1 59.8 1.4 170 271 12093 1.79 9.23 6.03 [2.09 20.8 52.1 - 12.00 1.28 3.67
Hotel 2 62.6 1.4 103 115 |21.47 193 972 639 |2.07 219 562 - 1241  1.30 3.75
Agua caliente 593 1.0 333 325 11499 578 7.76 6.15 [3.10 357 110.2 - 30.23 4.14 2.58

Group 2 |Quebrada La Gruta | 153 2.1 3.0 207 | 476  0.86 2.08 1.52 [0.55 4.93 12.6 - 313 0.28 1.53
Agua Blanca 29.1 3.3 2.5 205 | 1.81 026 2.16 10.38|0.22 139 16.1 - 1.86  0.27 2.03
Rio Lagunillias 6.8 3.6 0.2 171 [ 0.16  0.03 028 0.41 [0.01 0.09 1.40 - 026  0.07 0.55
Rio Guali 72 3.5 1.2 - 1.06 0.16 123 268 (0.13 0.76 5.77 - 0.83 0.14 1.64
Rio Azufrado 16.0 3.4 1.8 190 [ 459 039 463 6.62 [0.19 1.54 16.1 - 1.50 035 2.56
FT Gauli 592 2.8 3.5 246 | 1.81 028 2.89 8.67 [0.31 1.30 15.7 - 1.78  0.02 3.25

Tab. 4.1 - Chemical composition of the studied waters expressed in mmol/I.

Group Sample Name Goethite = Hematite  Gibbsite = Boehmite
FeOOH Fe203 Al(OH)3  AIO(OH)

Agua Hedionda 0.02 0.99 0.80 0.92

Group 1 |Rio Molinos 3.66 8.27 0.48 0.61

Nereidas 0.14 1.38 1.59 1.91

Botero Londono 5.90 13.0 0.89 1.32

Termal La Gruta -6.57 -12.2 -3.97 -3.76

Hotel 1 -7.07 -13.0 -4.62 -4.26

Hotel 2 -6.22 -11.3 -4.60 -6.22

Agua caliente -7.04 -12.9 -5.50 -5.14

Group 2 |Quebrada La Gruta -8.25 -15.6 -5.83 -5.70

Agua Blanca -6.57 -12.2 -3.97 -3.76

Rio Lagunillias -5.08 -9.20 -2.24 -2.18

Rio Guali -6.87 -12.8 -4.64 -4.57

Rio Azufrado -7.69 -14.4 -5.26 -5.13

FT Gauli -8.83 -16.5 -4.83 -4.47

Tab. 4.2 - Saturation indexes of studied waters.
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Al-, Fe-oxyhydroxides encrusti
amorphous silica

Silica sphere probably B e 2 i ;
encrusting biological matter : Fe (partfallygCa) ich solids (probably
. T sulphatés) onto ‘amorphous silica

Fe-, Al-rich solids (probably
sulphates) onto amorphous silica

30 pm

Fig. 4.3 - SEM-EDS observations of SPMshowing: in Group la Al-, Fe- oxyhydroxides encrusting amorphous silica

(a); in Group 2a, silica sphere probably encrusting biologicalmatter (b), Fe (partially Ca) rich solids (probably
sulphates) onto amorphous silica (¢), Fe-, Al-, rich solids.

The isosol diagram (log-log compositional plot) was used to evaluate the degree of rock
dissolution. This diagram allows to evaluate if the chemical composition of waters is a reflection of
the rocks (near-congruent dissolution, under hyperacid conditions) and the possible removal of

elements by precipitation of secondary minerals (Taran et al., 2008; Colvin et al. 2013; Varekamp
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2015 and references therein). The hyperacid waters of Group 2 fall between the isosol lines
indicating the dissolution of about 5 to 10 g of rock (Fig. 4.4). The Group 2b waters show to be
close to congruent dissolution of the average local rock, for all elements with the exception of Si
that is depleted in all samples (Fig. 4.4), probably due to the precipitation of silica minerals. The
major elements of Group 2a deviate from the isosol line, with the exception of Mg and Ca that fall
close to the 5 - 10 grams of rock dissolution line (Fig. 4.4). Strong depletions of Fe, Al, K and
minor depletion of Na (Fig. 4.4) suggest the precipitation of alunite [(K,Na)Al3(SO4)2(OH)e)] and
jarosite [(K, Na)Fes;(SO4),(OH)s], typical minerals precipitating in hyperacid hydrothermal systems
(Taran et al. 2008; Varekamp et al., 2009; Colvin et al., 2013). The waters of Group 1 don’t reflect
the composition of the average local rock, showing the strong depletions in Fe and Al (Fig. 5),
particularly in Group la waters, where the near-neutral pH allows the precipitation of iron and

aluminium oxyhydroxides.

0 e K Negare 3
& Agua Hedionda
GI'OU.p la- & RioMolinos
10° -

8 Nereidas
Group 1b+ 9 Botero Londono
0 Agua Blanca

10* 4

8 g Rio Lagunillas
.9 ﬂQ Group 2a+ 8 Rio Guali

8 Rio Azufrado

O parm

ELEMENT IN WATLER (ppm)

10" 4 |3 FTGauli
@ Termal Gruta
A o a @ Hotel 1
T 2b- e
100 o O Group 2b Hotel 2
& @ Agua Caliente
¢ © Quebrada Gruta
10! - 1 0g rock/I
- 5g rock/l
= lg rock/l
102 Q Q
10* 10° 10°

ELEMENT IN ROCK (ppm)

Fig. 4.4 - Isosol diagramis a log-log compositional plot, with the average volcanic rock composition versus thewater
composition. Isosol lines represent the equal amount of rock dissolved for the element considered. The plot shows the
near-congruent dissolution of Group 2b (acid waters) and the depletion in K, Na, Fe, Al, in Group 2a (acid waters). The
Group 2 shows a rock dissolution ranging between 5 and 10 g/l. Group 1 (near-neutral pH) is strongly depleted in Fe,
Al reflecting the precipitation of Fe, Al- oxyhydroxides. (probably sulphates) onto amorphous silica (d).
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4.1.2 REE, Zr and Hf

The total amount of REE in NDR waters ranges between 0.8 and 6722 nmol/l (Tab. 4.3). We
found an inverse correlation between the total amount of REE and pH values (Fig. 4.5): higher REE
contents are recognised in Group 2 (lower pH values) with respect to Group 1 (higher pH values).
Great differences in XREE are found between the subgroups la and 1b with Botero Londono
sample (Group 1b) displaying a higher value with respect to the waters of Group 1a (Fig. 4.5). The
correlation between XREE and pH values suggests that rock dissolution is occurring more
completely under acidic conditions, particularly Group 2b waters showing near-congruent

dissolution of up to 10 grams of rock per liter (Fig. 4.5).

4 -
3 .
" =-0.53x+4.30
M2 - Y 2=
5 R*=0.81
=
o0 1 -
o)
—
0 .
O
-1 T T T T T T T T 1
0 1 2 3 4 5 6 7 8 9

Fig. 4.5 - Variations of total REE dissolved in water as a function of pH. Symbols as in Fig. 4.2.

Considering the constant distribution of REE in the magmatic rocks of NDR, the studied waters
were normalised to the average local rock (Borrero et al., 2009 and reference therein) evaluating

processes of water-rock interaction in the hydrothermal system. The rock normalized REE patterns
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differ among the various water groups (Fig. 4.6). Group 1a show patterns increasing from La to Lu,
a positive Eu anomaly and negative Ce anomaly (Fig. 7). The Botero Londono water (Group 1b)
shows a slight decrease from La to Lu (Fig. 4.6). The Group 2b waters show a flat pattern, whereas
the waters of Group 2a are characterised by anomalous shape of pattern strongly depleted in LREE

compared to the Middle Rare Earth Elements (MREE) and Heavy Rare Earth Elements (HREE)

(Fig. 4.6).
Group Sample Y La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Zr Hf
Agua Hedionda |0.52 0.04 0.07 0.013 0.051 0.005 0.017 0.020 0.002 0.025 0.007 0.017 0.005 0.034 0.008 1.30 0.013
Rio Molinos 0.17 0.02 0.008 0.006 0.029 0.007 0.017 0.009 0.002 0.014 0.003 0.01 0.003 0.008 0.003 5.31 0.057
Group 1 |Nereidas 1.13 0.04 0.07 0.012 0.074 0.015 0.037 0.045 0.005 0.042 0.009 0.03 0.008 0.054 0.012 0.70 0.007

Botero Londono |524 11.1 192 185 595 0.99 031 089 0.11 048 0.09 025 0.04 021 0.03 221 0.03
Termal Gruta 642 512 1102 142 545 103 245 89.23 11.8 588 11.6 323 436 268 396 21.7 046
Hotel 1 465 560 1034 119 429 779 19.6 7130 9.07 465 939 258 352 21.6 3.16 852 0.24
Hotel 2 483 565 1050 121 439 79.2 20.0 7037 9.15 472 957 264 370 223 3.19 147 0.33
Agua Caliente 914 1419 2575 269 944 177 438 153 19.1 91.7 17.7 476 645 383 562 351 0.90
Group 2 |Quebrada Gruta | 147 145 303 352 131 247 589 213 274 143 275 850 1.04 6.41 095 27.7 056

Agua Blanca 629 204 108 228 177 636 19.0 81.6 12.83 64.6 11.7 284 326 175 234 3.01 028
Rio Lagunillas 49.7 938 285 481 235 6.01 1.17 7.00 1.02 504 1.04 259 035 193 030 048 0.10
Rio Guali 204 222 655 120 662 20.6 425 249 356 193 390 103 129 7.53 1.06 217 0.10
Rio Azufrado 565 888 426 101 949 496 134 652 983 521 104 274 352 205 299 3.65 024
FT Gauli 599 9.60 479 11.0 99.7 397 9.61 558 9.09 50.6 10.70 282 3.72 213 3.12 0.74 0.09

Tab. 4.3 - REE, Zr and Hf dissolved in waters expressed in nmol/l.
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Fig. 4.6 - Average local rock-normalized REE patterns dissolved in water.

The amount of Y and Ho dissolved in waters range from 0.17 to 914 nmol I"" and from 0.003 to
17.7 nmol 1" respectively. Y/Ho molar ratios range between 47.8 and 127, with values changing
from chondritic to superchondritic in acidic waters and in near-neutral waters respectively (Fig.
4.7).

The Zr concentration ranges from 0.48 to 35.1 nmol I"' with Hf from 0.007 to 0.90 nmol I"". Zr/Hf

molar ratios are within the range between 4.7 and 104, showing sub-chondritic values in acidic
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waters and super-chondritic values in near-neutral waters (Fig. 4.7). Y/Ho and Zr/Hf ratios show
simultaneous changes in the waters of Group 1, whereas different behaviour was recognised in

acidic waters of Group 2 (Fig. 4.7).
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Fig. 4.7 - Zr/Hf and Y/Ho (molar ratios). Symbols as in Fig. 4.2, blue circle represent Y/Ho and Zr/Hf (molar ratios) in
average local rock.

4.2 DISCUSSION

4.2.1 REE behaviour

The compositional variation of REE is mainly due to 4 processes: (i) the composition of the rocks
interacting with water (dissolution of glass and minerals), (ii) the anionic composition of the waters
determining the different complexation of REE, (iii) the incorporation into secondary minerals as
function of the chemical-physical property of the waters and (iv) adsorption processes onto newly

formed phases at higher pH (oxyhydroxide of Fe, Al, and Mn).
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In NDR waters, the REE are strongly released by the rocks into acidic waters (Group 2) The pH
controls the precipitation of new solid phases, inducing sorption and desorption of REE. The
significant positive correlations between the total amount of REE and Fe or Al dissolved in waters
(Fig. 4.8) shows the simultaneous variation of these elements, with the involvement of Fe and Al
controlling the abundance of REE dissolved in water. Strong processes of scavenging occur during
the co-precipitation and/or adsorption onto the surface of oxide and oxyhydroxide of Fe, Al, and

Mn (Censi et al., 2007; Bau and Koschinsky, 2009).
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Fig. 4.8 - Total amount of REE versus Fe, Al dissolved in waters. Symbols as in Fig. 4.2
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REE-complexes play a role together with other geochemical processes during the fractionation of
REE (Lewis et al., 1998). The very low pH of the studied waters (Group 2) suggests that all the
inorganic carbon dissolved occurs mainly as dissolved CO;; consequently, carbonate complexes are
negligible in these acidic solutions. However, [REE(CO3)]" and [REE(CO3),] play a role in the
waters belonging to Group 1, as they are the only ones with higher amount of carbonate species
(HCOs™ and/or C032') dissolved in solution.

The assessment of water-rock interaction processes is evaluated by the patterns of REE dissolved
in waters normalised to the average local rock (Fig. 4.6). In the acidic solutions of Group 2, the
speciation of REE is ruled by complexes with SO4*, Fand CI’, according to the relative abundance
of anions dissolved in waters (Lewis et al., 1998). The Group 2b is the only one with flat patterns
suggesting that source rocks mainly control the REE distribution, without processes changing the
REE distribution in waters (Fig. 4.6). In Group 2a, the REE-patterns normalised to average local
rock (Fig. 4.6) are characterised by strong LREE depletion. A similar shape of pattern with LREE
depletion was already observed in other acid-sulphate waters from Waiotapu (New Zealand),
Copahue volcano (Argentina), Santa Ana (El Salvador), Kawah Then Crater Lake (Indonesia) and
Kutomintar and Sinarka volcanoes (Kawah Ijen) (Takano et al., 2004; Wood, 2006; Varekamp et
al., 2009; Colvin et al., 2013; Kalacheva et al., 2015). Strong REE fractionation occurs during the
hydrothermal alteration in very low pH waters with high SO4> contents, showing higher LREE
contents in alunitic advanced argillic altereted rocks compared to the unalterated volcanic rocks
(Hikov, 2011). The alteration minerals play an important role taking up the REE from the aqueous
solution and/or releasing the elements, as a function of the chemical physical condition of the
system that determins the stability of the solid phases. In particular, the precipitation of alunite-
jarosite, was considered responsible of the LREE depletion in the acid-sulphate waters being the
solid phases enriched in LREE (Ayers, 2012; Varekamp, 2015 and references therein). In the isosol

-33-



CHAPTER 4
Geochemistry of Zr, Hf and REE in a wide range of pH and water composition: The Nevado del Ruiz volcano-hydrothermal system

(Colombia)

diagram, Group 2a waters show depletions in K, Fe, Al, Na pointing to alunite and jarosite
precipitation (Fig. 4.4). Moreover, Al-, Fe- sulphates were found by SEM-EDS analysis as SPM
(Fig. 4.3c, 4.3d). Coupling these information about the chemical propriety of waters and the nature
of SPM, the depletion of LREE Group 2a, can be justified by the precipitation of Al-, Fe- sulphates
as alunite and jarosite.

REE-patterns (Group 1a) normalised to average local rocks (Fig. 4.6) show a progressive increase
from La to Lu according to the stability constant of [REE(CO3)]" characterised by a progressive
increase along the REE series (Wood et al., 1990; Millero et al. 1992). Botero Londono (Group 1b)
is the only water with chloride-dominated composition. Considering the stability constant of
[REECI]*" (Wood et al., 1990), the different pattern (Botero Londono) compared to other groups of
samples is due to REE-chloride complexes stability constant, characterised by the same trend
recognised for Botero Londono with a shight pattern decreasing along the REE series.

The precipitation of solid phases involving Fe, Al at circum-neutral pH conditions changes the
abundance and the distribution of REE in water. Cerium and europium differ from the other REE
for being redox sensitive elements. Cerium is removed from waters during neutralisation as CeO;
and/or from precipation of Fe, Mn and Al oxyhydroxides in river waters and marine environment
(Elderfield et al., 1990; Goldstein and Jacobsten, 1988; Seto et al., 2008). The Ce and Eu anomalies
vary with pH (Fig. 4.9). In particular, the waters with pH<3.6 (Group 2) have no significant Ce and
Eu anomalies, whereas the waters with pH>5.9 (except Botero Londono sample) show strong
negative anomalies of Ce and strong positive anomalies of Eu. The Ce anomaly can be explained
considering the enhanced removal of Ce with respect to La and Pr, during the processes of co-
precipitation and/or adsorption onto the surface of authigenic minerals (Al-, Fe oxyhydroxides).

Ce has a different behaviour in Botero Londono sample compared to the other samples of Group

1, not showing strong Cerium anomaly (Fig. 4.9a). The main differences of Botero Londono water
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compared to the other waters belonging of Group 1 are the higher ionic strength and the lower Eh
value. These differences could limit the precipitation of Al-, Fe-oxyhydroxide allowing higher
amounts of Al and Fe dissolved in water. Moreover, SEM-EDS observations of SPM (Botero
Londono) do not show the presence of Al-, Fe-oxyhydroxide solid phases.

Almost all the investigated waters are characterised by a small anomaly of Europium (Fig. 4.9b),
except for the waters of Group 1 where a strong positive anomaly (1.22-7.43) occurs, suggesting
additional processes that fractionate the REE. The strong positive Eu anomaly found in the water of
Group la could be justified by the slow interaction of waters with Eu enriched plagioclase, as
already recognized in other hydrothermal systems (Wood et al., 2003 and references therein;

Varekamp et al., 2009; Peiffer et al., 2011)
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Fig. 4.9 - Variations of total REE dissolved in water as a function of pH. Symbols as in Fig. 4.2.

4.2.2  The behaviour of twin pairs (Y-Ho,; Zr-Hf)

The decoupling of Y-Ho and Zr-Hf in seawater indicated that these elements are not controlled
only by charge and ionic radius (Bau, 1996; Godfrey et al., 1996). The behaviour of Zr and Hf in
natural waters is limited to the neutral-basic environments (mainly sea water), where super-
chondritic Zr/Hf ratio was recognised (Firdaus et al. 2011; Schmidt et al. 2014). The inorganic
speciation of Zr and Hf in water with circum-neutral pH is dominated by hydroxyl groups (Zr(OH)s
, Hf(OH)s", Zr(OH)4, Hf(OH)4), whereas Y and Ho are mainly complexed by carbonate species

(Byrne 2002). The different charge of metal complexes determines the adsorption behaviour onto
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the solid surfaces (Koscinsky and Hein, 2003). Bau and Kochinsky (2009) show that the Y/Ho ratio
in marine Fe-Mn hydroxydes is significantly lower than seawater, suggesting an enhanced
scavenging of Ho with respect to Y in the Fe-Mn crusts. Recently, Schmidt et al. (2014)
investigating the fractionation of Zr-Hf between seawater and Fe-Mn crusts, showed that Zr/Hf
ratio is lower in the Fe—Mn oxyhydroxides compared to seawater. These studies indicate that both
Hf and Ho are more easily removed than Zr and Y during the formation of marine Fe-Mn
oxyhydroxides and that the geochemical behaviour of these twin pairs is not simply ruled by charge
and 1onic radius.

The near neutral-to-neutral waters of Group 1 have higher values of Y/Ho and Zr/Hf ratios with
respect to the acidic waters and the average local rock (Fig. 4.7). The twin pairs fractionation in
Group 1 is due to the formation of the observed authigenic solid phases (Fe-, Al-oxyhydroxides)
stable at neutral pH. The preferential removal of Ho and Hf with respect to Y and Zr is attributed to
the enhanced scavenging during the co-precipitation onto the surfaces of Fe, Al oxyhydroxides
(Bau, 1999; Bau and Dulski, 1999; Bao et al., 2006; Censi et al., 2007; Feng et al., 2010, Schmidt et
al. 2014). However, in Botero Londono water (Group 1b), Y-Ho and Zr-Hf do not significantly
fractionate and Ce anomaly is negligible (Fig. 4.9a), in agreement with the limited Fe, Al
oxyhydroxides formation. Our data show that Y-Ho and Zr-Hf are removed from the hydrothermal
system by Fe-, Al-oxyhydroxides precipitating in water with circum-neutral pH.

In Group 2 (acidic waters), Y-Ho and Zr-Hf twin pairs are characterised by a different behaviour.
Y/Ho ratios are close to the average local rock, showing the negligible fractionation of these
1sovalent elements, while Zr/Hf ratios are sub-chondritic. The behaviour of Zr and Hf in extreme
acidic environments has not been studied yet. Only few studies were carried out on the speciation of
Zr and Hf with fluoride and chloride ligands, but not in water with very high sulphate contents
(Pershina et al., 2002; Monroy-Guzman et al., 2010). Molecular dynamic calculation (Pershina et
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al., 2002) indicated that in chloride media, chloride complexes are enhanced for Hf with respect to
Zr, independently of pH. In Group 2 waters Zr and Hf are decoupled indicating that the
geochemical twin is not controlled only by ionic radius and charge. Figure 4.10 shows that Zr/Hf
ratio increases as Cl/SOyratio increases highlighting a different behaviour of isovalent elements as a
function of anion contents (Cl and SO,). The Zr-Hf fractionation observed in this acidic
environment may result from different stability constants of Zr and Hf complexes with Cl and SO4

ligands that in turn determine the relative abundance of these metals in hyper-acid waters.
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Fig. 4.10 - Zr/Hf versus C1/SO.(molar ratios) in acidic waters (Group 2). Symbols as in Fig. 4.2.

4.3 CONCLUDING REMARKS

The thermal fluids circulating in NDR system have a variety of major chemical composition and
cover a wide range of pH values from 1 to 8.8. The concentrations of REE and their patterns
normalised to the average local rock change as function of processes occurring in the shallower

and/or deep system. The major anions play an important role on the distribution of REE driven by
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complexation, whereas the pH values rule the precipitation of solid phases, also fractionating the
REE. Negative cerium anomaly in water with near-neutral pH underscores the importance of
authigenic minerals (Fe-, Al-oxyhydroxides) on the fractionation of REE, indicating a different
behaviour of Ce with respect to the neighbouring elements. Moreover, the precipitation of alunite
and jarosite strongly fractionate the REE distribution in Group 2b, depleting the LREE in the
aqueous phase.

For the first time, Y-Ho and Zr-Hf behaviour was studied simultaneously in a wide range of pH
and chemical composition of major anions. The precipitation of Al-, Fe-oxyhydroxides occurs when
pH values are close to neutrality fractionating Y-Ho and Zr-Hf, with a preferential Ho and Hf
removal. A different behaviour of Y-Ho and Zr-Hf was identified in acidic sulphate waters with
different content of chloride. Y/Ho displays chondritic ratios, showing a negligible fractionation
compared to the local rock, whereas Zr/Hf ratios are sub-chondritic, increasing as Cl/SOj4 ratios
increase. This evidence suggests a different stability of chemical complexes of Zr and Hf with Cl

and SOy ligands, leading to sub-chondritic Zr/Hf ratios in strong acid environments.
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CHAPTER 5

Zr-Hf AND REE SIGNATURES DISCRIMINATING THE EFFECT

OF ATMOSPHERIC FALLOUT FROM THE HYDROTHERMAL

INPUT IN VOLCANIC LAKE WATERS

5.1 RESULTS

5.1.1 General aspects

The water samples were collected in Pantelleria from springs, wells and lake “Specchio di
Venere” (Fig. 5.1). The chemical physical parameters and the major element concentrations of the
investigated waters are reported in table 5.1. Temperature ranges between 26.8 and 54.6 °C, Eh
values are spanning from -245 to 161 mV, pH values range between 6.0 and 9.1 and electrical

conductivity values increase from 2 to 35 mS/cm.

- 40 -



CHAPTER 5

Zr-Hf and REE signatures discriminating the effect of atmospheric fallout from the hydrothermal input in volcanic lake waters

Tonian

Sea
~1
~ =~
~ ~
~ ~
~ ™~
~ ~
N
Pantell
0,=A_2 km \. e eqa Lake samples
& . :
™~ Fault ""\ \'\
Volcano tectonic 3 N
= collapse structure { ’ ~

~—— Eruptive fracture -ar
<« Cinque Denti Caldera rim

«— La Vecchia Caldera rim

Fig. 5.1 — Location map of sampled waters.

In the anion triangular plot (Fig. 5.2a), waters fall along the line connecting the seawater
composition and the alkalinity vertex, suggesting a mixing process between seawater and water
enriched with CO,. The waters from the top and the bottom of the lake show the same anionic
composition. The cation triangular plot displays waters falling close to the Na-K vertex (Na is the
dominant cation) with a low dispersion of samples towards the Mg, Ca vertices, whereas waters

from the top and the bottom of the lake show quite constant cations composition (Fig. 5.2b).
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T Cond. Eh
SAMPLE DATE pH (mS/em) (mV)

©C) Na K Mg Ca F Cl  Br SO, Alkalinity| 0, N, CO,

Daietti 29/05/13 26.8 6.0 2.02 161.5 [ 13.10 0.68 1.50 0.77 0.06 9.40 0.01 0.78 6.10 1.7 9.6 2583
Cala tramontana | 28/05/13 29.4 8.5 4.26 8.1 |3401 1.02 1.10 044 042 2722 0.06 1.32 7.00 32 126 53
Buvira Gadir 28/05/13 344 7.8 12.74 6.5 [117.77 3.81 425 1.78 0.52 103.60 0.19 4.02 18.20 25 113 163
Buvira Rizzo 29/05/13 339 7.0 13.95 96.4 |127.15 3.82 7.05 1.85 201 9698 0.10 3.72 41.20 1.0 7.6 3.1

Polla 3 29/05/13 546 6.4 15.75 -107.6(136.26 4.17 431 212 0.57 12273 022 421 21.35 0.1 49 3568
Gadir 28/05/13 53.8 6.32 16 7 13938 434 621 206 0.67 12532 0.18 4.99 19.20 09 45 3097
La Vela 29/05/13 483 6.5 34 17 |326.26 10.51 12.87 4.32 0.23 340.43 0.46 10.02 9.50 1.9 122 1192

Lake (-30 cm) 03/07/14 272 897 351 21.5 |351.86 11.56 8.00 0.65 0.64 288.73 043 12.61 56.50 44 104 3.1
Lake (-13 m) 03/07/14 26.8 896 352 -245 [349.80 1145 7.82 0.40 0.54 284.71 0.39 12.50 56.50 - - -

Tab. 5.1 - Chemical composition of cold and thermal waters. The chemical composition of major ions is expressed in
mmol I"', while dissolved gases are expressed in cc "' (STP).
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Fig. 5.2 — a) Triangular plot of major anions dissolved in waters. b) Triangular plot of major cations dissolved in waters.
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The Na-Cl binary graph (Fig. 5.3) shows that almost all samples are characterized by Na/Cl molar
ratios higher compared to the same ratio in seawater. The excess of Na is due to the interaction

process of water with the Na-alkaline hosting rocks (Dongarra et al., 1983).
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Fig. 5.3 - The binary graph (Na vs. Cl) shows higher Na/Cl molar ratios with respect to the Na/Cl molar ratio in
seawater (dashed line). Na enrichments in waters are due to the water-rock interaction with the Na-alkaline hosting
rock.

The chemical composition of the elements, pH and electrical conductibility do not show
significant difference between the sample water collected in the shallowest part and at the bottom of
“Specchio di Venere” lake, whereas Eh values are characterized by a variation from -31.5 (top) to -
245 mV (bottom). Moreover, the chemical-physical parameters of the water and the major elements
have a quite constant concentration along the water column (Jacome Paz M., personal
communication).

CO, dissolved in water ranges between 3 and 357 cc 1" (Tab. 5.1), with values several orders of
magnitude higher with respect to the Air Saturated Sea Water (ASSW-0.24 cc 1! of CO»).

Triangular plot CO,-N»-O; (Fig. 5.4) displays waters aligned along the line connecting the CO,
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vertex with the ASSW, showing the CO,-water interaction in different proportion.
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Fig. 5.4 - Triangular plot, relative abundance of CO2, N2 and O2 dissolved in waters. The ASSW (air saturated
seawater) values is reported for comparison. The dashed line represents the theoretical mixing between air dominated
system and CO2-rich fluids.

Results of PHREEQC simulation showed waters from wells and springs are oversaturated in
comparison with carbonate minerals and Fe oxyhydroxides, except for Daietti well, which is under-
saturated in carbonate minerals and Polla 3 that is under-saturated with respect to Fe
oxyhydroxides. Furthermore, the investigated waters are constantly saturated in amorphous silica.
Further investigations were carried out with SEM-EDS analysis onto the nature of SPM (Fig. 5.5a)
from lake water and Polla 3 (thermal-spring feeding the lake). Amorphous silica was recognized in
Polla 3 sample (Fig. 5f.5), whereas phyllosilicates (Fig. 5.5c-e¢) and Fe oxyhydroxides were

recognized as SPM (Fig. 5.5b-d) in shallowest water layer of the lake.
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10 um
ENETEERGRL

Fig. 5.5 - Nature of suspended particulates in “Specchio di Venere” lake water and Polla 3 thermal-spring feeding the
lake [a]. Fe-oxyhydroxides [b] and phyllosilicates [c] from the shallowest water layer, as recognised by X-ray spectra
[d] and [e], respectively. On the contrary, suspended particulates from the hydrothermal Polla 3 mainly consist of
amorphous silica [f] as indicated by the reported x-ray maps for oxygen and silicon.

5.1.2 REE, Zr and Hf

The total amount of REE ranges between 2.77 and 12.07 nmol 1", with the highest value found in
lake waters (Tab. 5.2). A strong relation between the total REE dissolved in water and the pH
values was recognized in several aqueous environments, highlighting the important role of pH for
the REE mobility, able to increase the total REE concentration (Lewis et al., 1998; Michard et al.,
1989; Inguaggiato et al., 2015). In the investigated waters, the relation between REE and pH values
is not well evidenced. The total REE content is not significantly correlated to the TDS, showing that

the REE concentration in the investigated waters is not related to the salinity. The lack of a clear
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relationship between the concentration of REE and the chemical-physical parameters was already

recognized in CO,-rich waters (pH 6-7) investigated in the Massif Central (France) (Négrel et al.,

2000).

SAMPLE Y La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Zr Hf
Daietti 2667.31 334.69 179.70 63.52 218.74 58.71 2399 94.83 19.48 12544 3485 116.86 17.98 12245 19.80| 1205.88 7.31
Cala tramontana | 1806.65 299.29 47440 69.39 22296 5323 17.68 70.77 14.61 79.52 24.03 79.18 11.99 7894 12.37| 3989.37 33.62
Buvira Gadir 2608.51 521.84 799.41 114.54 39239 93.06 25.13 13232 2435 16994 42.06 137.19 21.58 149.30 24.75| 833.01 4.34
Buvira Rizzo 965.87 27832 816.68 5990 20246 51.14 2251 81.85 14.61 9425 21.63 69.11 10.79 69.88 11.88] 1205.88 9.24
Polla 3 1999.75 325.46 810.19 73.71 24524 6621 2494 107.72 27.87 168.37 4488 136.63 23.26 177.37 29.70| 2192.50 8.40
Gadir 237597 21522 287.23 48.65 160.88 46.86 18.00 76.77 22.53 129.63 38.74 123.07 19.18 149.06 24.25| 2510.41 8.40
La Vela 4556.57 189.82 265.25 3558 124.59 38.51 1436 8340 2491 186.25 58.48 229.41 33.56 231.13 36.38| 619.75 3.17
Lake (-30 cm) 5640.42 454.63 2289.34 157.11 595.07 617.38 186.09 760.43 126.29 614.18 155.04 205.05 30.67 203.73 31.03]23130.31 300.17
Lake (-13 m) 5228.43 421.17 2197.13 149.18 584.75 603.97 183.21 739.58 12291 594.63 147.82 232.52 29.98 212.81 30.14]22150.34 290.27

Tab. 5.2 REE, Zr and Hf dissolved in waters expressed in pmol 1.

REE normalized to Post Archean Australian Shale (PAAS) show patterns increasing along the

REE series (Fig. 5.6). Ce and Eu anomalies were recognized in the investigated waters with Ce/Ce*

values from 0.27 to 1.98 and Eu/Eu* values from 0.95 to 1.53. The water samples collected from

the top and the bottom of “Specchio di Venere” lake show REE-patterns with a concave shape

facing downward and quite constant REE distribution (Fig. 5.6).

1.E-03 o= Average Sea water  e@=(ala tramontana
< Lake (Top) &= Buvira Gadir
&=Lake (bottom) ex=Buvira Rizzo
- 1.E-04 1 *Dale.ttl e=m Polla 3
j:: o= Gadir La Vela
[aB}
. 6 © 0 0 o 0
o 1.E-05 A
\/\
o~
=
s
LUV 1.E-06 A
=a)
a2
i &
1.LE-07 {1 € & <
&
&
1.E-08 T T T T T T T T T T T T T "
La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

Fig. 5.6 - REE dissolved in waters normalised to the PAAS. The average seawater (Censi et al., 2007) was plotted for

comparison.
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The REE-patterns display HREE enrichments with (LREE/HREE)y ratios ranging from 0.05 to
0.36, whereas (MREE/HREE)y ratios change between 0.22 and 1.53 (Fig. 5.7). MREE enrichments
were recognized in water samples from “Specchio di Venere” lake, which are the only samples with

(MREE/HREE)y ratios >1 (Fig. 5.7).
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Fig. 5.7 - (LREE/HREE)y vs. (MREE/HREE)y showing values <I, except lake waters characterized by
(MREE/HREE)yratios >1. The seawater is reported for comparison.

The amount of Y and Ho dissolved in waters changes from 0.97 and 5.64 nmol "' and from 0.024
to 0.15 nmol I"' respectively, with Y/Ho molar ratios ranging between 35.37 and 77.91. The amount
of Zr and Hf dissolved in waters range from 0.62 to 23.13 nmol I"' and from 0.003 and 0.30 nmol I
respectively, with Zr/Hf ratios included between 76.30 and 298.72. The highest amounts of Y, Ho,
Zr and Hf were found in lake waters without significant differences between shallow and deep

samples, characterized respectively by the lower Y/Ho and Zr/Hf ratios of 35.37 and 76.30.
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5.2 Discussions

5.2.1 Aqueous speciation

Experimental measurements and theoretical computation were carried out to estimate the
complexation constant of REE with inorganic ligands (Millero et al., 1992; Wood et al., 1990).
Carbonate ligands with respect to chloride and sulphate show a progressive increase of the REE-
complexes stability constant from light to heavy REE. REE complex constants with carbonate
ligands are higher respect to the weak chloride complexes (Wood et al., 1990 and references
therein). Moreover, Millero (1992) shows that the dominant complexes in seawater are carbonates
ligands, with a secondary role for chloride complexes in seawater. Negrél et alii (2010) calculated
the dissolved REE speciation in Na-HCOj3 bearing fluids of the Massif Central, recognizing HCOs’
and particularly COs” as the main ligands of REE complexes. The REE aqueous speciation
calculated by PHREEQC indicates that the free ions (REE™) are always a minority percentage
compared to the REE-complexes (Fig. 8). The results show the main role played by carbonate
complexes [REE(COs),]” and [REECO;]", whereas [REEF]™ became significant in water with
higher fluorine contents: Gadir, La Vela and Polla 3 (Fig. 5.8). The [REECI]™ and [REESO4]" are
negligible with respect to the others complexes. Moreover, the speciation of the lake water from the
top and the bottom do not show significant differences and [REE(COs),] reaches its almost totality

in “Specchio di Venere” lake with pH 9.0 (Fig. 5.8).
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Fig. 5.8 - Relative abundance (percentage) of the REE complexes in the investigated waters. REE aqueous speciation
was performed with Phreeqc software (LLNL database).

5.2.2 REE behaviour in springs and wells

The distribution of REE in waters circulating in Pantelleria Island is the result of the mixture in
different proportion between a marine component, CO,-rich fluids and meteoric water; as already
recognized studying the major elements (Dongarra et al., 1983; Azzaro et al., 1983). The water
samples from springs and wells are characterized by similar patterns with the exception of Ce and
Eu, suggesting one or more geochemical processes in common. REE dissolved in the seawater of

the Strait of Sicily (Censi et al., 2004) were normalized to the PAAS to compare the distribution of
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REE with the waters circulating in Pantelleria. The investigated waters display REE-patterns with
the same trend of the average Strait of Sicily seawater, whereas the REE amount dissolved in
Pantelleria waters 1s about 1 order of magnitude higher with respect to seawater (Fig. 5.6). This
evidence indicates that the marine contamination is not able to change significantly the REE
distribution in the studied waters. The main processes responsible of REE distribution in water are
therefore: the interaction with the hosting rocks, the precipitation of authigenic minerals and the
REE complexation as function of the anionic composition.

In order to compare the waters with the host rocks, REE concentrations of the local magmatic
rocks (White et al., 2009) were normalized to the PAAS. The normalized patterns of local rocks are
flat in shape, showing positive Eu anomalies in basalts and occasionally in trachytes. In more
evolved tuffs and pantellerites, Eu anomalies became negative as the result of fractional
crystallization of an alkali feldspar-rich assemblage (White et al., 2009). The positive Eu anomalies
observed in the studied waters (Fig. 5.9) are the consequence of the interaction process between the
water circulating in the hydrothermal system within the less evolved rocks. Since pantellerite is
formed after the fractional crystallization of feldspar-rich assemblages from the trachyte magma,
the presence and the amplitude of Eu anomaly can be considered as a geochemical tracer of the

water-rock interaction with the less evolved rocks, the only one with positive Eu anomaly.
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Fig. 5.9 - No correlation was found between Eu and Ce anomalies, showing a different chemical behaviour. Positive Eu
anomalies identify the interaction of waters with the less evolved hosting rocks.

Choi and co-workers (2009) investigated the REE in COs-rich waters in the Kangwon district
(South Korea) showing HREE enrichments respect to LREE in the Na-HCO; water type. Moreover,
they studied the distribution of REE in carbonate minerals precipitated by the same waters, without
finding significant changes in the REE distribution between the residual waters obtained after the
filtration of solid phases and the original waters. The precipitation of carbonate solid phases occurs
in Pantelleria waters (as suggested by PHREEQC calculation) but it should change only the REE
amount dissolved in water and not their distribution. The explanation of the lack of REE
fractionation during the precipitation of carbonates has been attributed to the main complexation of
REE with carbonate ligands causing the preferential co-precipitation with carbonates, resulting in
HREE enrichment compared to LREE, both in water and in the precipitated carbonates (Feng et al.,
2014 and references therein; Choi et al., 2009). The distribution of REE in the investigated waters is
the result of carbonate-REE complexation driving the REE distribution in CO,-rich water. This
effect is consistent with the progressively increasing shale-normalised REE patterns along the

element series.
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5.2.3 Ceanomaly

Cerium differs from the REE being sensitive to the change of redox conditions. This element in
oxidizing environment is easily removed from the solution as CeO, and/or by adsorption onto Mn,
and Fe oxyhydroxide, as recognized in several environments and laboratory experiment (Bau, 1999;
Seto et al., 2008; Bau and Koschinsky, 2009 and references therein). Figure 5.10 shows the inverse
trend between Ce anomaly and Eh values. Almost all waters are saturated or oversaturated
compared to Fe-oxydroxydes, except Polla 3, where lower pH (6.4) and Eh (-107 mV) values were
measured. Polla 3 shows a positive anomaly of Ce (1.3), in agreement with the lack of Fe minerals
stability, as shown by PHREEQC simulation. Buvira Rizzo is the only sample water showing a
different behaviour of Ce with respect to water; positive Cerium anomaly and positive Eh value
occur (Fig. 5.10). Buvira Rizzo is an unexploited old hand-dug well of 3 meters deep, where a high
amount of organic matter was recognized (D’Alessandro personal communication). Cerium
concentration in water could be controlled by the amount of Dissolved Organic Carbon (DOC).
When DOC was higher than 10 mg "', no negative Ce anomaly was recognized (Seto et al., 2008
and references therein). Moreover, higher amount of organic compounds could enhance the stability
of Fe in the dissolved phase, increasing the Ce concentration in waters and justifying the positive
Ce anomaly in Buvira Rizzo water.

Strong positive Ce anomaly was found in lake water, showing a different behaviour compared to
the hydrothermal waters. Considering that Ce is enriched in Desert Varnish, the addition of Ce is

justified by the contribution of atmospheric fallout from the nearby Sahara Desert.
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Fig. 5.10 - Ce/Ce* displays to be function of the Eh values, showing negative anomalies increasing the Eh values.
Buvira Rizzo sample has an anomalous behaviour, probably due to the higher organic carbon concentration that
enhanced the stability of Ce in the dissolved phase. The highest values of Ce anomalies are caused by the interaction of
water with the atmospheric fallout enriched in Ce.

5.2.4  Y/Ho and Zr/Hf fractionation in spring and wells

The investigated waters should have Y/Ho and Zr/Hf molar ratios close to the hosting rocks, 49
and 80 respectively (White et al., 2009). The Y/Ho and Zr/Hf ratios found in the investigated
springs and wells show values far from the local rock, suggesting the occurrence of processes
partitioning these couples of elements (Fig. 5.11). Assuming that these elements are released into
waters with Y/Ho and Zr/Hf ratios close to the source rocks, secondary processes (as scavenging
into and/or onto the secondary minerals) would explain the fractionation of the twin pairs in the
investigated waters. The processes responsible of fractionating Zr-Hf pairs are not well known and
up to this day no experiment was carried out in laboratory. On the contrary, when compared to the
Y and Ho, Zr and Hf are not complexed by carbonate species. Byrne (2002) shows that Zr and Hf
are mainly complexed by hydroxyl groups in the pH range between 6 and 8: Zr, Hf(OH)4 and Zr,
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Hf(OH)s". Qu and co-authors (2009) have recognized the fractionation of Y and Ho during the
precipitation of calcite and aragonite with enhanced removal of Ho respect to Y, due to the different
electronic configuration of these elements. Moreover, several studies have shown the ability of Fe-
Mn oxyhydroxides precipitation to fractionate Y-Ho and Zr-Hf. Inguaggiato et alii (2015)
investigated Y/Ho and Zr/Hf ratios in Nevado del Ruiz volcanic waters (Colombia), showing super-
chondritic values in waters with pH from 6 to 8.8, where the precipitation of Fe and Al
oxyhydroxides occurs. Schmidt and co-authors (2014) investigated Zr/Hf ratios in seawater
hydrogenetic ferromanganese crusts, showing strong enrichment compared to the average crust and
highlighting an enhanced Hf removal respect to Zr. Moreover, the preferential removal of Hf with
respect to Zr in SiO; solid phase was found (Firdaus et al., 2011 and references therein).
Particularly, Censi and co-authors (2015) investigated a microsystem occurring in the south-western
sector of “Specchio di Venere” lake, identifying higher surface-reactivity of Hf than Zr in siliceous
stromatolies and microbial mats.

PHREEQC calculations revealed that the investigated waters are oversaturated in Fe-Al
oxyhydroxides, carbonate minerals and saturated amorphous SiO,. Moreover, amorphous SiO, was
found in Polla 3 thermal spring by SEM-EDS analysis. Considering the geochemical processes
above mentioned, the precipitation of authigenic minerals and consequently the interaction between
the elements dissolved in waters and the solid phases can be considered the process responsible to
decouple Y/Ho and Zr/Hf ratios in spring and wells showing higher values (up to 298) than in the

source rocks.
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Fig. 5.11 - Changes of Y/Ho and Zr/Hf molar ratios in waters. The coloured band in the graph represents the range of
Y/Ho and Zr/Hf ratios in Desert Varnish (Thiagarajan et al., 2004).

5.2.5 The source of REE, Zr and Hf in “Specchio di Venere”

The main problem concerning the anomalous behaviour of REE, Zr and Hf in water lake is to
understand which is the main process controlling the geochemistry of REE, Zr and Hf in Specchio
di Venere water lake.

The geochemistry of REE, Zr and Hf in alkaline lakes is poorly documented. Johannesson and
Lyons (1994) investigated the Mono lake water recognizing a pattern increasing from La to Lu,
highlighting the importance of carbonate complexes for the REE distribution.

The atmospheric fallout delivered by Sahara Desert (North Africa) inevitably involves Pantelleria
Island, located 70 km at east from the Tunisian coast. The open water body of “Specchio di Venere”

lake shows MREE enrichment not recognized in the other waters collected from springs and wells
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in Pantelleria Island (Fig. 5.6). In particular, the lake water body has REE amounts higher compared
to the other waters, including Polla 3 thermal spring feeding the water lake along the shoreline. This
evidence suggests an external process adding REE to the lake water, increasing the relative
abundance of MREE with respect to LREE and HREE.

Several studies have been carried out in order to evaluate the role of the atmospheric fallout in
REE composition of seawater. Influence of aeolian dust from the Asian continent affects the
composition of REE in western Pacific Ocean (Greaves et al., 1999). Graves and co-authors (1991)
showed higher REE concentrations in Mediterranean Seawater with respect to the Atlantic Ocean,
suggesting the acolian dust as REE source (Greaves et al., 1991 and references therein). Moreover,
the Mediterranean outflow was recognized to produce anomalies in the Atlantic seawater by mixing
of different seawater masses (Greaves et al., 1991).

In arid environments, the formation of the Desert Varnish, mainly composed of clay minerals and
Fe-Mn oxyhydroxides coatings, occurs onto the rock surfaces (Thiagarajan and Lee, 2004;
Goldshmidt et al. 2014). The Desert Varnish is characterized by a REE-pattern similar to the
settling dust proposed as source material (Fig. 5.12) (Goldshmidt et al., 2014 and references
therein). Moreover, the solid phases above mentioned are enriched in REE (especially MREE),
showing a pattern similar to that recognized in the “Specchio di Venere” lake, characterized by
MREE/HREE >1 (Fig. 5.12). Greaves and co-authors (1994) carried out a laboratory experiment
evaluating the dissolution effect of marine Aerosol of Saharian origin into shallow seawater
collected in the Indian Ocean, showing a higher solubility of MREE into seawater respect to LREE
and HREE.

Y/Ho and Zr/Hf ratios in “Specchio di Venere” lake are close to the values recognized in the
Desert Varnish (averages Y/Ho and Zr/Hf ratios 38.00 and 73.37, respectively). The reducing
condition and the higher pH of lake water compared to seawater, certainly enhances the dissolution

of the Fe-oxyhydroxides coating the Saharian fallout. Considering the evidences shown in this

-56-



CHAPTER 5

Zr-Hf and REE signatures discriminating the effect of atmospheric fallout from the hydrothermal input in volcanic lake waters

paragraph, coupled with presence of Fe-oxyhydroxide and phyllosilicates as SPM in the shallowest
water layer (Fig. 5.5), we propose that the dissolution of the atmospheric fallout from the Saharian
Desert surrounding area is responsible for the changing of the chemical composition of water. Such
changes are reflected in the increase of Zr, Hf and REE concentrations, in the formation of a Ce
anomaly, in the “bulge effect” in the REE-pattern and in Y/Ho and Zr/Hf ratios with a Desert
Varnish signature.

@om Average Desert Varnish (Thiagarajan andAeolus Lee, 2004)
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Fig. 5.12 - PAAS-normalised REE in lake waters (from top and bottom), average Desert Varnish and settling dust
(values from: Thiagarajan and Aeolus Lee, 2004; Goldsmith et al., 2014).

5.3 Concluding remarks

The CO,-rich waters in Pantelleria Island have variable REE amounts, whereas similar REE-
patterns normalized to PAAS with HREE enriched compared to the LREE are shown in springs and
wells. The distribution of REE does not depend only on the source rocks, but mainly reflects the

distribution of REE with carbonate complexes, as recognized in others studies carried out in
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different regions of the world. The last evidence of the behaviour of REE in CO;-rich waters allows
to give shape to an hypothesis on the REE distribution in natural system in carbon storage
reservoirs. Positive and negative Ce anomalies were recognized as a function of the redox
conditions. The negative anomalies are due to the co-precipitation onto the surface of the Fe-
oxhydroxides in water with positive Eh values. The positive Eu anomaly proved to be a useful tool
in the evaluation of the water-rock interaction with less evolved hosting rocks, also characterized by
positive Eu anomaly. Y/Ho and Zr/Hf in springs and wells show higher ratios compared to the local
rock, evidencing fractionation processes in the aqueous system. The decoupling of these elements is
due to the different affinity to the secondary solid phases occurring in waters (carbonate minerals,
Fe oxydroxydes and amorphous Silica).

REE, Zr and Hf in the “Specchio di Venere” lake have the highest concentrations recognized in
Pantelleria hydrothermal system. Similar distribution of REE normalized to PAAS were found in
both the top and the bottom of the lake, showing a shape of pattern comparable to that identified in
the Desert Varnish and the settling dust, with MREE enrichment and positive Ce anomaly.
Moreover, Y/Ho and Zr/Hf ratios in lake water show values comparable to those found in the
Desert Varnish. REE coupled with the Y/Ho and Zr/Hf ratios showed to be useful geochemical

tracers to identify the atmospheric particulate contribution to water body.
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CHAPTER 6
GEOCHEMISTRY OF Zr, Hf AND REE IN A WIDE SPECTRUM
OF Eh AND WATER COMPOSITION: THE CASE OF THE DEAD

SEA FAULT SYSTEM (ISRAEL)

6.1 RESULTS

6.1.1 General aspects

Samples of several natural waters were collected along the Lake Kinneret — Jordan Valley — Dead
Sea rift area. Sampling sites are located at Banias springs, in the Golan Heights, Hamei Teveria
spring along the western shores of the lake Kinneret, the shallow water of lake Kinneret, Zukim and
Qedem springs and Ein Gedi thermal water collected from the well located in the local spas along
the western shore of Dead Sea. Yishai spring water was collected in a little pool close to the Dead
Sea shoreline between Ein Gedi and Qedem. Hamei Yoav and Hamei Gaash waters come from the
western plan of Israel along the Mediterranean coast. Qetura and Ya’Alon are samples coming from
the southern Israel and were collected from wells. Sample collection was carried out during May
2013, March 2014 and May 2015. The location of collection sites is reported in Fig. 6.1.

The chemical-physical parameters and major elements concentrations of the studied waters are
reported in Table 6.1. Water temperature ranges between 14.6 and 57.2 °C and pH values range
from 5.4 to 8.5. The total dissolved salts (TDS) and the Eh values cover a wide range from 0.3 to
193.5 g I'" and -400 to 390 mV, respectively. Sample waters are characterized by a wide spectrum
of major elements composition due to the mixing between meteoric water and ancient brines
interacting with local rocks, as found by previous studies (Moller et al., 2007 and references

therein).
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Fig. 6.1 - Location of sampling sites.
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Group Sample Name (OTC) pH (z?i (1]15127) Na K Mg Ca F Cl SO, ?Illl:;l
Banias 146 7.6 0.3 256 0.24 0.02 0.22 1.39 10.004 0.26 0.13  3.00
Kinneret 250 85 0.7 192 5.28 0.18 1.34 1.19 [ 0.02 6.73 0.53 3.40
Group 1 |Ein Gedi (David) [27.7 75 0.5 185 2.09 0.08 1.20 1.47 | 0.02 243 0.35 440
Ya'alon 6 40.0 69 14 -100 7.20 0.22 333 3.67 | 0.06 11.57 262 5.00
Qetura 5 337 69 1.8 -15 10.18 035 3.68 5.08 [ 0.05 1583 4.02 4.40
Qetura 115 332 69 2.1 61 1039 033 494 559 | 012 1316 729 5.00
Hammei Teveria | 57.2 6.0 29.8 -248 | 30344 9.13 2639 86.69 | 0.38 483.83 7.84 230
Hamei Gaash 245 7.2 256 -276 | 366.37 4.97 20.77 936 [ 023 43516 147 6.60
Ya'alon 1A 333 69 19 -323 1094 0.60 4.00 467 | 0.08 13.74 553 5.10
Group 2 |Hamei Yoav 394 7.0 29 -380 | 3540 053 2.60 297 10.04 4139 023 6.20
Qedem 443 54 1789 -272 [1119.12 97.45 718.63 296.58 | 1.45 3276.22 8.67 1.50
Ein Gedi (SPA) |41.4 5.8 138.1 -402 |1096.89 59.13 427.25 217.56 - 249249 13.70 2.30
Yishai Spring 350 5.6 193.5 -378 [2396.57 58.12 384.78 108.30 - 3330.68 29.57 4.60

Tab. 6.1 - Chemical composition of the studied waters expressed in mmol/l.

The anion triangular plot shows water compositions falling along the imaginary line jointing the

Cl and HCOs vertices, probably representing the mixing between brines and meteoric waters

interacting with carbonate rocks (Fig. 6.2a). A group of waters (Ya’alon la, Ya’alon 6, Qetura 5 e

Qetura 115) is characterized by a relative enrichment in SO4* compared to the other waters,

showing in the triangular plot a deviation of the samples toward the SO4 vertex (Fig. 6.2a). The

cation triangular plot shows waters falling close to the Na-K corner with a slight dispersion toward

both the Ca, Mg corners (Fig. 6.2b). The water with Ca dominated composition is Banias, while the

waters with relative high Ca contents are the samples characterized by relative high SO4 contents.

The enrichment of Ca and SOy is justified by the dissolution of gypsum, while the waters with high

Na-Cl contents are ancient brines or meteoric water dissolving halite (Moller et al., 2007 and

references therein).
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Fig. 6.2 - a) Triangular plot of major anions dissolved in water. The red arrow indicates SO4 enrichments probably due
to the gypsum dissolution. b) Triangular plot of major cation dissolved in water. The red arrow indicates Ca
enrichments probably due to the gypsum dissolution.

The saturation indexes of minerals were calculated by PHREEQC software using the LLNL
database. The solid phases considered are Fe-oxyhydroxides, carbonate minerals, gypsum, pyrite,
halite (Tab. 6.2). The waters were classified according to their saturation indexes with respect to Fe-
bearing minerals and to Eh values. According to this approach, two different water groups were
identified: Group 1 saturated or oversaturated with respect to Fe-oxyhydroxide with Eh values
ranging between -100 and 256 mV; Group 2 oversaturated with respect to pyrite with Eh values

lower than -100 mV. Sometimes, both Group 1 and Group 2 are saturated or oversaturated with
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respect to dolomite and calcite whereas the studied waters are always undersaturated with respect to

gypsum and halite.

Group Sample Name | Fe-oxyhydroxide pyrite dolomite calcite gypsum halite
Banias 3.80 -116.60 0.40 0.00 -2.60 -8.80

Kinneret 0.50 -73.74 -3.20 -1.50 -2.20 -6.10

Group 1 |Ein Gedi (David) 5.10 -94.66 1.60 0.30 -2.20 -7.00
Ya'alon 6 -0.40 -19.49 1.50 0.20 -1.20 -5.80

Qetura 5 -0.10 -37.38 1.20 0.10 -1.00 -5.50

Qetura 115 1.00 -54.09 1.30 0.10 -0.80  -5.60

Hammei Teveria -4.18 7.20 -0.70 -0.80 -9.00 -1.43

Hamei Gaash -4.69 4.80 2.04 0.23 -2447 272

Ya'alon 1A -4.50 7.00 0.80 -0.20  -12.00 -5.50

Group 2 |Hamei Yoav -2.95 4.58 1.57 0.18 -21.00 -4.61
Qedem -8.05 3.50 -1.80 -1.00 -19.00  -1.40

Ein Gedi (SPA) -6.91 5.50 -0.50 -1.00  -16.00 -1.50

Yishai Spring -9.03 2.61 -0.09 -0.97 -32.75  -1.03

Tab. 6.2 - Saturation indexes of studied waters.

Scanning electron microscopy (SEM) observations carried out on SPM from the studied waters
show lithic fragments, crystals and apparently amorphous or cryptocrystalline materials. SEM-EDS
analyses revealed Mn and Fe oxyhydroxides sometimes couple to calcite and/or dolomite in Group

1 and pyrite in Group 2 (Fig. 6.3).
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Fig. 6.3 — Carbonate minerals and Fe-, Mn-oxyhydroxides in SPM collected from water of Group 1; Pyrite in SPM
collected from water of Group 2.
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6.1.2 REE, Zr and Hf

Zr and Hf concentrations cover the 11.3-955.2 pmol 1" and 0.3—10 pmol I ranges respectively
(Tab. 6.3). The amount of Y and Ho dissolved in waters range from 6.2 to 1066 pmol 1" and from
0.05 to 15.07, respectively. Zr/Hf and Y/Ho molar ratios change between 68.1-156 and 41.8—134.3,
respectively, from close to chondritic (70.8 = 5.6 and 51.2 &+ 5, respectively; Jochum et al., 1986) to
super-chondritic values. Fig. 6.4 shows that Y/Ho and Zr/Hf ratios change simultaneously in Group
1 towards super-chondritic values, whereas a different behavior was found in Group 2 with Zr/Hf

ratios always close to chondritic values and Y/Ho ratios spanning from chondritic to super-

chondritic.
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Fig. 6.4 - Zr-Hf and Y-Ho molar ratios. The coloured bands indicate the chondritic Y/Ho and Zr/Hf molar ratios.

REE speciation in Groups 1 and 2 show REE-complexes dominated by carbonate and halide
species (Fig. 6.5). On the contrary, Zr and Hf speciation does not change for the range of pH values

recognized in waters from Groups 1 and 2 (Byrne, 2002).
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Fig. 6.5 - Relative abundances (percentage) of the REE complexes in the investigated waters.

The total REE contents range from 19.1 to 2977.8 pmol I"' (Tab. 6.3). Fig. 6.6 shows the shale-

normalized REE patterns, relative to PAAS (Post Archean Australian Shale; Taylor and McLennan,

1995). Group 1 waters show patterns slightly increasing along the REE series and medium REE
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(MREE) enriched at Qetura 5, Qetura 115, Ya’alon 6 and in Lake Kinneret. Moreover, negative Ce

anomalies are found in almost all waters belonging to Group 1. Group 2 waters show shale-like

patterns with slight MREE enrichments centered on Gd or Eu whereas a strong MREE enrichment

and lack of Eu anomalies in Ya’alon la water. Moreover, Group 2 is

anomalies and no Ce anomalies.

characterized by strong Eu

Group Sample Name Zr Hf Y La Ce Pr Nd Sm Eu Gd Th Dy Ho Er Tm Yb Lu
Banias 3845 025 6.19 7.04 2.69 0.38 1.37 032 0.10 040 0.05 021 0.05 0.13 0.02 0.13 0.02

Kinneret 15451 122 13.35 1637 20.59 1.53 638 129 033 1.61 - 093 0.15 055 - 0.50 0.07

Group 1 (Ein Gedi (David) | 1126 0.11 3138 43.64 3731 266 592 199 066 269 044 205 042 149 030 2.61 046
Ya'alon 6 955.24 10.03 324.13 29495 613.71 72.01 271.70 56.61 13.02 5583 8.18 36.71 6.33 19.15 2.55 1633 2.23

Qetura 5 55.80 0.50 1066.06 132.01 116.66 19.43 167.77 7598 23.16 118.24 16.43 7822 13.86 30.48 2.66 14.30 2.34

Qetura 115 3322 0.29 42.62 5730 63.50 3.37 7.59 2.08 0.64 325 057 214 060 1.88 025 1.85 0.23

Hammei Teveria | 375.26 4.23 2400 26.11 32.81 1.85 6.08 121 1.22 1.82 0.19 1.05 0.19 0.81 0.10 1.03 0.21

Hamei Gaash 134.05 1.63 176.67 157.80 300.50 33.35 133.76 29.59 22.62 28.66 422 1929 3.74 11.00 236 18.89 4.34

Ya'alon 1A 18.99 0.22 3400 61.70 77.44 3.74 8.68 199 0.64 3.08 043 202 042 120 0.17 092 0.11

Group 2 [Hamei Yoav 99.02 145 114.09 200.82 24335 20.80 78.57 16.73 22.76 16.74 239 11.83 2.05 6.87 1.72 18.36 3.83
Qedem 439.58 6.16 545.09 369.68 53847 5827 225.88 43.50 11.19 54.14 6.76 37.15 791 22.80 2.88 19.18 2.89

Ein Gedi (SPA) 126.06  1.40 18.61 20.65 2747 175 635 1.3 0.55 1.67 0.16 085 0.15 058 0.07 0.54 0.10

Yishai Spring 711.52  7.87 694.09 469.34 898.83 105.95 414.48 84.18 3320 89.91 13.07 69.62 15.07 38.65 5.89 38.86 6.69

Tab. 6.3 - REE, Zr and Hf dissolved in waters expressed in pmol I"".
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Fig. 6.6 - PAAS-normalized REE patterns dissolved in water.

6.2 DISCUSSION

6.2.1 Zirconium and hafnium

Previous studies carried out on natural waters from the Rift Valley-Dead Sea area (Moller et al.,
2003, 2007; Siebert et al., 2012) did not take in account the Zr and Hf behaviour and considered the
dissolved REE distribution as mainly related to the effects of water-rock interactions in different
aquifers. The latter processes were considered responsible of a wide spectrum of dissolved
compositions under the different thermochemical conditions occurring in the natural waters.

Fig. 6.7 shows that Zr/Hf molar ratios increase as Eh values increase. Group 2 waters have Zr/Hf
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molar ratios quite constant clustered around chondritic value while Group 1 waters have Zr/Hf
ratios directly related to Eh values starting from the chondritic signature. Considering that Zr and
Hf are not redox sensitive elements and their dissolved speciation is not influenced by redox
conditions (Byrne, 2002), the different Zr/Hf ratios found in Group 1 and 2 can be related to the

stability of Fe-bearing minerals (Fig. 6.4).
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Fig. 6.7 - Zr/Hf molar ratios versus Eh values.

Fig. 6.8a shows that Zr/Hf ratio is almost constant around the chondritic signature in Fe-
oxyhydroxide undersaturated Group 1 waters whereas super-chondritic values are observed in
oxidizing Fe-oxyhydroxide oversaturated Group 2 waters. Fig. 6.8b shows progressively decreasing
Zr/Hf values in oxidizing Group 1 waters undersaturated in pyrite and the chondritic signature is
observed in Group 2 waters where the oversaturation in pyrite is attained. These evidences agree
with the larger Hf reactivity relative to Zr onto surfaces of Fe-oxyhydroxides reported by Bau and

Koschinsky (2009) and with the lesser extent of this process onto sulfide surfaces (Kosmulski, 2012
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and cited references). As waters are oversaturated relative to Fe-oxyhydroxides, Hf is preferentially
scavenged therein and dissolved Zr/Hf values progressively increase. On the contrary, under
reducing conditions allowing the stability of pyrite, the findings from Vergouw et al. (1998)
indicate neutral charged pyrite surfaces suggesting a limited interaction with dissolved [Zr(OH)4]°
and [Hf(OH)s] species and therefore a lack of Zr-Hf fractionation induced by the pyrite.
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Fig. 6.8 - a) Zr/Hf molar ratios vs. saturation indexes of Fe-oxyhydroxides. b) Zr/Hf molar ratios vs. saturation indexes
of pyrite.
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6.2.2 Yttrium and Holmium

Differently from the Zr and Hf behaviour during dissolved complexation, the Y and Ho dissolved
species always show the same ionic charge if formed with the same ligand (i.e. [(Y,Ho)COs]",
[(Y,Ho)(COs).T, [(Y,Ho)CI]*", [(Y,Ho)F]*" (Fig. 6.5). Therefore, the Y-Ho decoupling observed in
almost all of the Group 1 and 2 waters (Fig. 6.4) cannot be driven by electrostatic considerations,
probably depending from the different covalent character of the dissolved Y and Ho complexes
(Bau, 1996). This suggestion is confirmed by the preferential Ho scavenging onto Fe oxyhydroxide
relative to Y (Bau, 1999). At the same time, laboratory experiments on CaCOj crystallisation (both
calcite and aragonite) indicate the preferential incorporation of Ho into CaCOj relative to Y (Qu et
al., 2009). These results were confirmed by Tanaka et al. (2004, 2008) recognizing a preferential Y
enrichment relative to Ho in the dissolved phase during calcite crystallisation that was interpreted as

a Ho—COj; and Y—COs bonding difference in carbonate minerals.

6.2.3 REE distribution

Fig. 5 shows that the most abundant REE species in Group 1 are [REECO;] and [REE(CO3),]
according with the increasing stability of the REE constant complexes with carbonate ligands
(Millero 1992; Luo and Byrne 2004). The patterns increasing from La to Lu show similarity with
the REE distribution found in natural waters characterized by the REE-complexation with carbonate
ligands (Millero, 1992). MREE enrichments of shale-normalised patterns in Qetura 5, Qetura 115,
Ya’alon la and Ya’alon 6 waters (Fig. 6.6) agree with the dissolution of MREE-enriched minerals
as gypsum (Toulkeridis et al., 1998 and references therein) as confirmed by the distribution of these
waters in Fig. 2. The water of lake Kinneret is also characterized by MREE enrichments, whereas
the lack of relative high Ca and SO4 contents does not allow explaining the MREE enrichments
with the dissolution of gypsum. On the other hand, the MREE enrichment in the Lake Kinneret can
be induced by the MREE release from Fe-oxyhydroxides (Bau, 1999). The latter represent the

coating of atmospheric fallout particles from desert environments (Thiagarajan and Aeolus-Lee,
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2004; Goldsmith et al., 2014) and are delivered to the shallowest water layer of the lake Kinneret
with an annual flux close to 70 g m™ (Ganor et al., 2003). As a consequence, we propose that the
MREE delivery to the water lake is due to the leaching of atmospheric particles.

The slight MREE enrichments showed in shale-normalised REE patterns of Group-2 waters is
consistent with their interactions with evaporates minerals occurring in aquifers. This hypothesis is
corroborated by the distribution of these samples that are clustered close to alkali and chloride ion
corners. Moreover, the limited studies focused on the REE distribution in salt minerals concur to
indicate that these minerals are enriched in MREE (Yui et al., 1998; Theofilos et al., 1998).

Ce and Eu are redox sensitive elements, with multiple oxidation states. Ce has 3+ and 4+
oxidation states and Eu has 2+ and 3+ oxidation states. In studied samples, Ce and Eu anomalies
cover a wide range of values from 0.3 to 0.97 and from 1.09 to 6.29, respectively. Fig. 6.9 shows
different distribution of Eu and Ce anomalies in Group 1 and 2 according to their different redox
conditions. Group 1 waters with higher Eh values show negligible Ce (Ce/Ce*~1) and positive Eu
anomalies up to 6.29. Group 2 waters with low Eh values show negative Ce anomalies and
negligible Eu anomalies close to 1 (Eu/Eu*~=1). Eu/Eu*>1 values in Group 2 waters agree with the
Eu speciation as Eu®" suggested by PHREEQC model calculations and is consistent with the larger
Eu”" stability in aqueous phase relative to its neighbours Sm®" and Gd*" (Bau, 1991; Bau and
Moller, 1993). In Group 1, the negative Ce anomalies are in agreement with the Ce scavenging as
CeO; under oxidizing conditions and/or the Ce(IV) removal onto Fe-oxyhydroxides (Koschinsky
and Hein, 2003, Seto et al., 2008). On the other hand, waters characterized by strong negative Eh
values (Group 2) do not show significant Ce anomalies being this element retained in dissolved

phase as Ce®" coherently with the other REE.

-72 -



CHAPTER 6

Geochemistry of Zr, Hf and REE in a wide spectrum of Eh and water composition: The case of the Dead Sea Fault system (Israel)

1.2 1
@® GROUP 1
@® GROUP 2
1.0 -
® 6 .
0.8 - ' @
*
Q
% 0.6 ®
3 )
O
0.4 -
O
0.2 -
0.0 : : . . . . ,
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

Eu/Eu*

Fig. 6.9 - Relationship between Eu anomalies and Ce anomalies.

6.3 CONCLUDING REMARKS

The study of Zr, Hf and REE distributions in thermal and natural waters spanning a wide range of
physical-chemical and salt content conditions show a strong dependence of Zr/Hf, Eu/Eu* and
Ce/Ce* from Eh values. The latter parameter allows to group the studied waters according to their
oversaturation relative to Fe-oxyhydroxides (Eh > -100 mV) and pyrite (Eh < -100 mV),
respectively. The deposition of Fe-oxyhydroxides suggested by geochemical modelling involves Hf
fractionation relative to Zr onto solid surfaces influencing the dissolved Zr/Hf signature. At the
same time, the redox conditions are responsible of the aqueous Eu speciation as Eu®" according to
Eh < -100 mV. The latter process enhances the dissolved Eu stability relative to their neighbours
along the REE series and the presence of positive Eu anomalies in these waters. Analogously, the

oxidative Ce scavenging as CeO; onto surfaces of Fe-oxyhydroxides allows negative Ce anomaly
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values in oxidizing waters. A very interesting point of this study is that the dissolved REE
speciation cannot simply explain the observed distribution in natural waters and the solid-liquid

processes play a key role on the geochemical behaviour of these elements.
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GENERAL CONCLUSIONS

The findings of the present study represent the most comprehensive recognition of the Zr and Hf
geochemistry in natural non-marine waters. This thesis added new knowledge about the mobility of
REE and the less known Zr and Hf, implementing the state of the art about the processes involving
these elements in the geochemical spheres. Specifically, the behaviour of Zr, Hf and REE was
studied in hyperacid, hypersaline, CO,-rich waters and the alkaline lake “Specchio di Venere” in
hydrothermal systems. This study permitted to know the behaviour of theses elements under
different chemical-physical conditions (pH, Eh and TDS) and various water compositions
determining different ion speciation and minerals stability.

A very interesting point is that the ion speciation of Zr, Hf and REE in solution is not always
sufficient to explain the distribution of these elements. The precipitation and the dissolution of solid
phases are responsible of changing the distribution of these elements, even if most of the near-
naeutral waters investigated in this thesis are characterized by REE patterns increasing from La to
Lu in according to the distribution of REE-complexes with carbonate ligands (as recognized in
previous studies). The acidic sulphates waters characterized by the precipitation of Alunite and
Jarosite show a strong LREE depletion. When the precipitation of these minerals does not occur, the
acidic sulphate waters show the same REE-pattern found in the average local rock. Alunite and
Jarosite rule the distribution of REE in deep and/or shallow hydrothermal system changing the
distribution of REE in water. The REE in waters along Dead Sea Fault show MREE enrichmens
mostly in waters with relative high Ca and SO4 concentrations. The interactions between waters and
MREE-enriched salt minerals (mainly gypsum) are responsible of MREE enrichments in dissolved
phase. In the natural waters, changing of pH and Eh conditions induce variations of Ce and Eu

anomalies, due to the different behaviour of these elements with respect to the neighbour elements
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along the REE series.

The geochemistry of Zr and Hf is poorly known, except in seawater where the major parts of the
studies were carried out. The paucity of experiments in laboratory and the lack of a complete set of
Zr, Hf constant complexes have made the study of Zr-Hf behaviour in natural environments
difficult. The behaviour of Zr and Hf was studied simultaneously with the better known Y and Ho.
In sulphate acidic waters, Zr/Hf ratios are very low down to 4.7, while quite constant Y/Ho ratio
(close to the local rock value) indicates the lack of decoupling. Zr/Hf ratio increases as Cl/SOy ratio
increases. The formation of Zr-, Hf-complexes characterized by different affinity with CI and SO4
ligands could justify the low Zr/Hf values found in acidic waters (1< pH <3.6), where the role of the
Zr-, Hf-=complexes with hydroxyl groups is negligible. Further investigations in laboratory could
confirm this different behaviour of Zr and Hf with Cl and SO4 ligands under acidic conditions.
Zr/Hf and Y/Ho ratios in near-neutral pH waters change from near-chondritic to super-chondritic.
Generally, the precipitation of authigenic solid phases fractionates Y-Ho and Zr-Hf pairs, with a
preferential Ho and Hf removal. Zr/Hf ratios show a strong dependence with respect to the Eh
values, due to the different stability of Fe-bearing minerals sensitive to the redox condition of the
system. Particularly, the precipitation of Fe-oxyhydroxides removes preferentially Hf with respect
to Zr due to the adsorption onto the solid surfaces, influencing the dissolved Zr/Hf signature. On the
contrary, Zr/Hf ratios are near-chondritic for very low Eh values when pyrite is oversaturated,
suggesting limited Zr-Hf decoupling

One important finding of this thesis is the capability of Zr, Hf and REE as potential tracers of the
interaction process between open water bodies and atmospheric fallout. The interaction of
atmospheric fallout from the nearby Sahara Desert with the water of the lake “Specchio di Venere”
is able to change the distribution of Zr, Hf and REE compared to the hydrothermal water feeding
the lake.

Increasing the knowledge of Zr, Hf and REE geochemistry, these elements can be further
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exploited in the near future as tracers of the solid-liquid processes occurring in deep and/or shallow

natural systems.
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CHAPTER 8
GEOCHEMICAL CHARACTERISATION OF GASES ALONG
THE DEAD SEA RIFT: EVIDENCES OF MANTLE-CO,

DEGASSING

ABSTRACT

The Dead Sea fault where a lateral displacement between the African and Arabian plates occurs is
characterized by anomalous heat flux in the Israeli area close to the border with Syria and Jordan.
The concentration of He and CO,, and isotopic composition of He and total dissolved inorganic
carbon were studied in cold and thermal waters collected along the Dead Sea Transform, in order to
investigate the source of volatiles and their relationship with the tectonic framework of the Dead
Sea Fault. The waters with higher temperature (up to 57.2 °C) are characterized by higher amounts
of CO, and helium (up to 55.72 and 1.91*¥107 cc I, respectively). Helium isotopic data (R/Ra from
0.11 to 2.14) and *He/*’Ne ratios (0.41-106.86) show the presence of deep-deriving fluids
consisting of a variable mixture of mantle and crust end-members, with the former reaching up to
35%. Carbon isotope signature of total dissolved carbon from hot waters falls within the range of
magmatic values, suggesting the delivery of deep-seated CO,. The geographical distribution of
helium isotopic data and isotopic carbon (CO,) values coupled with (CO,/*He ratios) indicate a
larger contribution of mantle-derived fluids affecting the northern part of the investigated area,
where the waters reach the highest temperature.

These evidences suggest the occurrence of a favourable tectonic framework, including a Moho
discontinuity up-rise and/or the presence of a deep fault system coupled with the recent magmatic

activity recognised in the northern part of Israel.
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8.1 INTRODUCTION

The Lake Kinneret-Jordan Valley-Dead Sea area is a complex geodynamic system where a lateral
left motion of up to 105 km along the contact between the Arabian and African tectonic plates
generated the Dead Sea Transform (DST) fault system (Garfunkel et al., 1981). This fault has been
defined as a branch of the Red Sea Rift. The Red Sea area is divided in 3 Zones: the northern part
representing the late stage of the continental rift, the central part considered a transitional zone and
the southern rift area where active seafloor spreading occurs (Lazar et al., 2012 and references
therein).

The DST, whose activity started during early Neogene (=20Ma), consists of a series of faults
going from the northern part of the Red Sea to the East Anatolian fault (EAF). The EAF runs from
the end of DST until it reaches the North Anatolian Fault (NAF). Several depression zones (pull
apart basins) filled by thick sedimentary sequences (Garfunkel et al., 1981) occur along the whole
DST. Among them, the Dead Sea and the Sea of Galilee are included in the investigated area.

The topography of the Moho below the DST is asymmetric, its depth increasing from =26 to =39
km moving from west (Mediterranean Sea) to east (Desert Group et al., 2004). Moreover, a 3D
model of the DST zone shows that the depth of the Moho also decreases from =35 to = 25km going
from South to North, reaching the shallowest point in the northern part of Israel (Segev et al., 2006).
Simultaneously with the formation of the rift, the investigated area experienced volcanic activity
(Weinberger et al., 2003). In the northeastern part of Israel near the Sea of Galilee, there is evidence
of volcanism, which produced several volcanic products like lava flows and dykes. The dating of
the rocks testifies the presence of magmatic activity in this area from middle Miocene up to at least
0.1 Ma (Mor, 1993; Weinstein, 2000).

Several authors carried out studies to evaluate the geothermal heat flux in Israel, estimating an
average value around 40-45 mW/m”. Two anomalous heat flux zones have been identified close to

the Sea of Galilee and in the Gulf of Elat characterized respectively by 70 and 65 mW/m? (Shalev et
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al., 2008; Shalev et al., 2013). The anomalous heat flux zones are characterized by a shallower
sismogenic zones. The large heat flux anomaly makes Northern Israel a promising area for
geothermal energy exploitation (Roded et al., 2013).

The chemical and isotopic compositions of dissolved gases (CO, and He) are excellent tools to
study and evaluate interaction processes between deep fluids and hydrothermal waters. In fact, in
geothermal areas deep gases rising towards the surface intercept the shallow aquifers changing their
chemical and physical conditions, i.e.: dissolved gases contents, temperatures and pH values
(Inguaggiato et al., 2011 and references therein). The amount of dissolved gases in the aquifers is
related to the ratio gas-flux/water-flow determining the degree of gas-water interaction processes
(Inguaggiato et al., 2010).

Helium is a chemically inert gas, characterized by negligible isotopic fractionation during gas-
water interaction processes. Therefore the isotopic composition of dissolved helium provides useful
information about its origin and is used as a geochemical tool to investigate the geodynamic context
and evaluate origin and mixing processes of different sources (Sano and Marty, 1985; Hilton et al.,
1993; Shaw et al., 2003; Inguaggiato et al., 2005; Pik and Marty, 2009; Inguaggiato et al., 2010;
D’Alessandro et al., 2014). Considering that the helium can be produced by alpha-decays (‘He) or
trapped during the formation of the earth (*He), its isotope composition is a tool that provides clear
information about the source of ascending fluids. The helium can be used, together with other
geochemical data, to identify areas that may be of interest for geothermal power generation (Du et
al., 2006).

In this work we have investigated the chemical and isotopic compositions of carbon dioxide and
helium in cold and hot waters sampled in the hydrothermal systems along the DST, with the aim to
evaluate the origin of deep and hot fluids reaching the shallow aquifers and the involved
geochemical processes. Furthermore, this study specifically confirms the uprise of mantle helium
through the DST recognized by Torfstein et al. (2013) and displays also a contribution of mantle
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CO, through the same pathway, which, on the contrary, was excluded by previous studies (Torfstein

et al., 2013; Avrahamov et al., 2015).

8.2 MATERIALS AND METHODS

The sampling of discharged fluids was carried-out in April 2013, in March 2014 and in May 2015.
Cold and hot waters (springs, wells and lakes) were collected (Fig. 8.1) in the area to the north of
the DST, specifically: near the Sea of Galilee (Banias, Tabgha, Hamme Teveria, Hamat Gader), in
the west side of the Dead Sea (Qedem, Polla Dead Sea, Zukym, En Gedi, Dead Sea, Eg Doc, En
Gedi Spring, Hammei Yoav, Hammei Gaash) and in the area to the south of Dead Sea (Ya’alon 1la,
Ya’alon 6, Qtura 5, Qtura 115, Timna Mine, Ein Netafim). No fumarolic manifestations were
recognised in these area, while the presence of hydrothermal systems is evidenced by several

thermal waters reaching temperatures up to 57.2°C.
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Fig. 8.1 - Location map of sampled waters along Dead Sea Fault area.

Physical-chemical parameters (temperature, pH, Eh and electrical conductivity) of collected fluids
were measured in the field using portable instruments. Alkalinity was measured in situ by titration
with HC1 0.1N. Dissolved gases were sampled and analysed following the method described by
Capasso and Inguaggiato (1998), based on the equilibrium partition of gas species between a liquid
and a host gas phase (Ar) that is introduced into the sampling vial. One bubbling gas was sampled
using an upside-down funnel submerged in the water connected to a syringe via a teflon tube, and
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stored in glass flasks with two vacuum stopcocks. Gas species (He, O,, N, CH4 and CO;) were
analysed by gas chromatograph (Clarus 500, Perkin Elmer) using Carboxen 1000 columns, two
detectors (HWD and FID) and argon as the carrier gas. Typical uncertainties were within £+ 5%.

The isotopic composition of helium was analysed using the method proposed by Inguaggiato and
Rizzo (2004). The abundance and isotope composition of helium, as well as the “He/*’Ne ratios,
were determined by separately admitting He and Ne into a split flight tube mass spectrometer
(Helix SFT). Helium isotope compositions are given as R/Ra, where R is the (*He/*He) ratio of the
sample and R, is the atmospheric (CHe/*He) ratio (Ra=1.386*10°). Measured values were
corrected for the atmospheric contamination of the sample (Rc/Ra) on the basis of its *He/*’Ne ratio
(Sano and Wakita, 1985). The 8"°C of Total Dissolved Inorganic Carbon (TDIC) of waters
expressed in 6%o vs V-PDB standard (£0.2 %o) and was analysed by Analytical Precision 2003

(AP2003) mass spectrometer following the methodology of Capasso et al. (2005).

8.3 RESULTS AND DISCUSSION
8.3.1 General aspect and dissolved gases

Table 8.1 displays the analytical results of the sampled water. The temperature in Hamat Gader,
Hamme Teveria, Qedem, Polla Dead Sea, En Gedi, Hammei Yoav, Ya’alon la, Ya’alon6, Qtura 5
and Qtura 115 waters was higher (33.2 < T°C < 57.2) compared to Banias, Tabgha, Zukym, Dead
Sea, Eg Doc (Dead Sea), En Gedi Spring, Hammei Gaash, Timna mine and Ein Netafim (14.6 <
T°C < 30).

Our fluids have pH ranging from 5.4 to 7.6 and dissolved CO; contents spanning from 0.28 to
55.75 cc I''. We found that the waters characterised by higher amounts of dissolved CO, have lower
pH values (Tab. 8.1), suggesting that CO, is the main specie responsible of water acidity. The total
salinity (TDS) of the studied waters ranges from 0.27 to 373.30 g/l. The remnants of hypersaline
brines (Klein-Bendavid et al., 2004) and possibly old evaporitic terrains embedded in the sequences

of the investigated aquifers (Moller et al., 2007), are the source of the occasionally very high
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salinity of the sampled waters. The amount of dissolved CO,, CH4, O, N,, and He is between 0.28 —
55.75cc 1", 3.47%10* - 3.45%10" cc 1", 0.01 = 6.70 cc "', 0.27 - 18.71 cc 1" and, 9.18*10°° - 1.9%10’
2 cc I'! respectively. The triangular plots (Fig. 8.2a, b) show a mixture of water interacting with
atmospheric gases and other gases that can be derived from crust, mantle and/or associated to
hydrocarbon reservoir. The CO,-N,-O; triangular plot (Fig. 8.2a) shows that the investigated waters
lie in the area defined by the CO; and N, vertices and the representative point of Air Saturated Sea
Water (ASSW). Such pattern can be considered representative of a mixing process between a CO,-
rich end-member and a shallow air-dominated system. The samples plotting closest to ASSW
display N»/O, ratios similar to the atmospheric value while the samples increasingly enriched in
CO; reveal much higher N,/O; ratios. This indicates that the atmospheric component, derived from
meteoric recharge, was modified by organic and inorganic redox reactions in the subsoil loosing O,.
Based on the dissolved gas composition (CO,-N»-O,) three water groups were identified (Fig. 8.2a).
The first group closer to the CO, end-member characterized by higher gas-water interaction
(Hammei Teveria, Hamat Gader, En Gedi, Qedem), the second group with moderate gas-water
interaction (Polla Dead Sea, Hammei Gaash, Hammei Yoav, Ya’alon 6, Ya’alon la, Qtura 5 and
Qtura 115 and Tabgha) and finally the third group which is close to the ASSW composition
representing the waters almost in equilibrium with atmospheric-air (Banias, Zukym, Dead Sea, Eg
Doc, En Gedi David and Timna Mine). Triangular plot CO,-CHy4-N, (Fig. 8.2b) shows the same
distribution of samples identified with the triangular plot previous mentioned, except two samples

(Hammei Gaash and Hammei Yoav) belonging to the Group 2, with higher CH,4 contents compared

to CO,.
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Fig. 8.2 - a) Triangular plot, relative pressure of CO,, N, and O,. The air values are also reported for comparison; the
straight line represents the theoretical mixing between air dominated system and CO,-rich fluids. b) Triangular plot,
relative pressure of CO,, N, and CH,.

GROUP |SAMPLE DATE |pH T(°C) TDS R/Ra ‘He/Ne R/Rac A% R% M% He H O N CO CH, CO, CO,’He TDIC 4"C(TDIC) L% S% M%
H. Gader (S) 28/04/13[6.7 490 14 214 4366 205 1 64 35 872E-03 - 041 1721 6.26E-04 2.03E-01 55.75 2.15E+09 7.38 9 4 26 70

Group 1 |H- Teveria (8) 28/04/13 [59 572 2976 110 10686 110 0 8 18 1.91E-02 3.00E-04 1.02 888 1.45E-03 4.50E-02 41.12 1.41E+09 3.98 5.9 0o 2 97
Qedem (S) 29/04/13 [5.4 443 17888 0.63 8313 060 0 91 9 OI5E-03 1.69E-02 0.03 2.10 9.02E-04 1.62E-01 31.77 4.16E+09 2.80 -6.69 41 23 36
En Gedi (W) 29/04/13 [5.8 414 138.14 047 7.3 040 4 89 7 9.68E-04 552E-03 0.15 644 6.70E-04 1.85E-01 3036 4.90E+10 3.54 -8.12 59 38 3
Polla Dead Sea (S)  |15/05/15 (5.6 350 1935 058 109 046 26 69 5 887E-05 2.90E-03 0.01 332 187E-05 5.17E-02 870 L22E+11 496  -22.12 4 94 2
Hamei Gaash (W) 16/05/15 (7.2 245 256 034 101 013 28 72 0 828E-05 128E-03 0.17 2.64 - 298E+01 7.40 1.89E+I1 6.90 -5.88 54 45 1
Hamei Yoav (W) 16/05/15 7.0 394 29 054 183 047 16 79 5 4.43E-04 428E-04 0.04 4.39 - 345E+01 9.10 275E+10 657 -5.99 56 38 6

GROUP2 | ¥2" alon 1a (W) 10/03/14 6.9 333 189 011 2714 011 1 99 0 8ISE-03 - 0.11 1871 - - 2312 1.80E+10 6.05 5.1 57 34 9
Ya'alon 6 (W) 10/03/14 |69 40.0 137 026 2149 026 1 96 3 485E-03 - 040 1588 - 2.58E-03 24.99 140E+10 6.02 -7.89 49 40 11
Qtura 5 (W) 10/03/14 [69 337 176 028 452 024 6 91 2 121E03 - 0.11 1870 1.79E-04 1.60E-03 23.11 4.92E+10 534 -7.69 53 43 3
Qtura 115 (W) 10/03/14 [69 332 207 014 672 011 4 95 0 163E-03 - 119 1390 2.38E-05 - 2804 856E+10 6.15 -6.79 58 40 2
Tabgha (S) 17/0515 (7.0 27.5 25 126 1.89 130 15 67 18 431E-04 - 185 1249 3.12E-05 L.11E-02 13.95 1.85E+10 5.67  -18.99 8 84 9
Timna Mine (L) 14/05/15 |74 270 440 063 078 047 37 60 4 3.50E-05 1.65B-02 4.11 7.89 3.07E-05 5.65E-03 039 120E+10 122 371 52 35 13
Dead Sea (L) 29/04/13 [6.0 300 37330 094 047 - 57 38 5 954E-06 1.72E-02 0.16 031 2.15E-04 347E-04 028 237E+10 431 - -
Eg Doc (Dead Sea) (L) [12/03/14 [ 6.0 30.0 347.04 073 043 - 66 33 1 9.I8E-06 897E-04 0.15 027 4.08E-05 5.55E-04 033 348E+10 6.86 - -

GROUP 3 |Zukym (S) 29/04/13 (7.6 266 2.66 099 041 - 71 245 641E-05 - 568 1841 240E-05 828E-04 7.95 9.00E+10 553  -1082 38 60 2
En Gedi Spring () |12/03/14 |75 277 053 047 095 - 30 68 2 154E-04 - 562 1141 2.39E-05 - 486 478E+10 460  -11.08 36 60
Banias (S) 28/04/13 (7.6 146 027 164  1.03 179 28 49 22 1.65E-04 1.08E-02 670 1558 7.36E-05 - 453 121B+10 319  -1202 22 66 13
Ein Netafim (S) 14/0515 (7.5 210 24 016 135 - 20 80 0 140E-04 - - - - - - - - - - - -
H. Gader (B) 2800413 - - - 212 6618 213 - - - 92762 5 562 7844 10 4934 696 2.55E+07 - -

Tab. 8.1 - Total Dissolved Salts (TDS) is expressed in g I"'. Chemical composition of dissolved gases (values expressed
in cc 1! STP), bubbling gases (values of O,, N, and CO, are expressed in % vol, while the values of He, H,, CO, CH,4
are expressed in p.p.m vol). The isotopic composition of C gas (5" *Crpic) is expressed in %o PDB standard. Isotopic
composition of Helium is expressed as R/Ra, *He/*He ratios normalized to the atmospheric ratio (Ra=1.39x10"%).
While, R/Rac represent R/Ra corrected for the atmospheric contamination. Percentage of Radiogenic (R), Magmatic
(M) and Atmospheric (A) represent the contribution of different He source calculated following the description of Sano
et al. (1985) Percentage of Mantle carbon (M), Marine limestone (L) and organic Sediment (S) fields represent the CO,
contribution from different sources calculated following the description of San o and Marty (1995). The kinds of
samples are: Spring (S), Well (W), Lake (L) and Bubbling gas (B).
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The concentrations of He and CO, dissolved in waters increase simultaneously, due to the

interaction with non-atmospheric gases (Fig. 8.3), suggesting a possible common provenance of He

and CO,. With the exception of Dead Sea waters and Timna mine, He and CO, contents are higher

compared to ASSW (He=4.13*10" cc I C0,=0.032 1" - Capasso and Inguaggiato (1998))

highlighting the input of the before mentioned gases, changing the equilibrium with atmospheric-

air, characteristic of most of the natural waters (Fig. 8.3). The lower amount of He in Dead Sea

samples and Timna mine is due to the high

salinity values changing the solubility of gases (salting

out effect) and to the low interaction with non-atmospheric He. In particular, the water belonging to

Group 1, which have the highest CO, contents, are also strongly enriched in He.
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Fig. 8.3 - He vs. CO2 contents (cc I-1 STP) of dissolved gases in the sampled waters. The ASSW values are also

reported for comparison.

Figure 8.4 shows the increase of water temperature respectively with CO;, and helium amounts
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dissolved in water, suggesting input of hot fluids enriched in CO, and helium or deeper and longer
circulation as responsible of higher water temperature. The samples belonging to the Group 1 with
the highest gas content have also the highest measured temperatures. In particular Hammei Teveria
and Hammat Gader, respectively with temperature of 49.0 and 57.2 °C, are located in the northern

part of DST, close to the Sea of Galilee.
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Fig. 8.4 - Changes in *He and CO, dissolved in waters (cc I STP) with respect to the temperature values of the waters
4b) Changes in CO, dissolved in waters (cc I' STP) with respect to the temperature values of the waters.
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8.3.1 Mantle derived helium along Dead Sea Fault

The i1sotopic ratio of helium is an excellent geochemical tool to trace the helium origin, thanks to
the negligible fractionation during gas-water interaction processes. The isotopic compositions of the
helium sources, atmospheric-air, MORB and crust are well known.

The measured R/Ra values span between 0.11 and 2.14 while the *“He/**Ne ratio changes by nearly
3 orders of magnitude (0.41-107). Figure 8.5 shows that our dissolved gases result from a mixing in
different proportions between the radiogenic contribution of the crust, ASW and a MORB-type
mantle end-member. Moreover, the samples belonging to Group 1 have the highest *He/*’Ne
confirming the strong deep gas contribution, whereas the samples with R/Ra values higher than 1

are the only ones located in the northern part of investigated area.
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Fig. 8.5 - RRa values vs. ‘He”’Ne ratios diagram. Air Saturated Water (ASW), Mid-Ocean Ridge Basalts (MORB) and
Radiogenic fields are reported as reference.

Assuming R/Ra and *He/**Ne ratios of 0.02 and 1000, 1 and 0.285, 8 and 1000 for Crust, ASW
and MORB-type mantle respectively, we estimated the mixing proportion using the Sano and

Wakita (1985) equation’s system. The radiogenic crustal source is dominant in most of the
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investigated fluids ranging from about 24 to 99% while the mantle contribution varies from 0 to
35% (Fig. 8.6). Only Dead Sea, Eg Doc (Dead Sea), Zukym, Timna mine display a significant
ASW contribution (57-71%). The possibility of mantle fluids injection in the crust through deep-
rooted tectonic structures has been highlighted by many studies worldwide. Important examples can
be found along the NAF in Turkey (Giilec et al., 2002), the San Andreas Fault in California
(Kulongoski et al., 2013) and the Karakoram Fault (Klemperer et al., 2013). Previous studies have
still shown that also the DST allows the uprise of mantle He both along the same sector considered
in the present study (Torfstein et al., 2013) and in its northern part along the Turkish-Syrian border
(Yuce et al., 2014). The data of these two studies have been also plotted in Fig. 8.5 evidencing
similar mixing pattern between the three end-members along a great part of the DST.

Figure 8.6 shows that higher mantle contribution (18-35%) is mainly found in the northern part of
the DST sector presently studied (Hamat Gader, Hamme Teveria, Banias and Tabgha), while
significantly lower values (0-9%) are found in the central part (Qedem, En Gedi, Dead Sea, Eg Doc
(Dead Sea), Zukym, Polla Dead Sea, Hammei Yoav and Hammei Gaash). In the southern part of
DST investigated area (Ya’alon la, Ya’alon 6, Qtura 5, Qtura 115, Timna Mine, Ein Netafim) the
lowest percentage values of mantle contribution (0-4%) were recognized. The results of our study
confirm the geographical distribution of mantle component, with a decrease of mantle-helium
towards the southern part of the study area, which was previously recognised by Torfstein et al.
(2013). The area with the highest mantle contribution (up to 1/3 of the isotopic budget of dissolved

He) corresponds to the anomalous heat flux area close to the Sea of Galilee.
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Fig. 8.6 - Geographical distribution of mantle source. The percentage of mantle source was calculated using the
equation of Sano and Waikita (1985).

To better constrain the origin of the gases interacting with the water, the CO,/*He ratios was
calculated (Sano and Marty, 1995; Rouwet et al., 2008; Kulongoski et al., 2013). Marty and Jambon
(1987) suggest a CO,/°*He ratio of about 2*10° for fluids discharged from the mantle. On the
contrary, CO,/°He ratios ranging between 10'* and 10" occur in crustal fluids (O’Nions and
Oxburg, 1988). The CO,/ He values of investigated fluids span between 1.41*10° and 1.89%10"
(Fig. 8.7), between the values characteristic of the Mantle and Crust end-members. The R/Ra and
CO,/*He ratios are plotted in the binary graph in order to discern the mantle and crust contribution
of the investigated fluids (Fig. 8.7). The dissolved fluids in the studied waters fall along a
hyperbolic mixing trajectories (Fig. 8.7) between the two end-members, contrarily to Torfstein et al.
(2013) who did not observe the above-mentioned mixing using CO,/*He ratios. In particular,
Hammat Gader and Hammei Teveria (belonging to Group 1) have CO,/°He ratios typical of fluids
with mantle signature.

Thermal waters in the investigated area do not show bubbling gases, except Hamat Gader, which

is characterized by a very low gas flux, strongly suggesting that the aquifer is able to dissolve
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almost totally of deep gases. The CO»/°He ratio of Hamat Gader bubbling gas shows a much lower
value (2.55%107) with respect to the dissolved gases (2.11*10°), evidencing a strong chemical
fractionation process due to the CO;, removal due to dissolution in the water and the virtual
enrichment of helium in the bubbling gases due to the much lower solubility of helium respect to
CO, (Capasso et al., 1997, Giammanco et al., 1998; D’Alessandro et al., 2014). Features of
CO,/*He ratio in Fig. 8.7 are consistent with geographic sample grouping with a larger contribution
of mantle fluids occurring in waters collected in the Northern area, whereas larger crustal

contribution occurs in the sample collected in the central-southern area.
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Fig. 8.7 - CO,/*He plotted vs. R/Ra shows a different proportion of mixing between fluids of crust and mantle origins.
Mid-Ocean Ridge Basalts (MORB) and crust fields are reported as reference. The black circle represents the bubbling
gas collected to H. Gader, showing a fractionation process of CO, and He with respect to the dissolved gases.
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8.3.2 Origin of CO,

The determination of the CO, origin through its C-isotopic composition is not so straightforward
as for helium because of the wide range of sources, sometimes with overlapping isotopic
composition, and to the fact that CO, is more reactive than helium and consequently involved in
many chemical-physical processes that may change its isotopic composition. Nevertheless also the
C-isotopic composition of CO, or total dissolved inorganic carbon (8"°Crpic) gives important
information (Deines et al., 1974; Sano and Marty, 1995; Kulongoski et al., 2013). Marine
limestones, the oxidation of organic carbon from soils and sedimentary rocks and the upper-mantle
degassing are among the main sources of carbon. These carbon sources have distinct 8'°C end-
members, whereby marine limestone has 8'°C close to 0%o, sedimentary organic matter less than -
20%o and upper-mantle degassing ranges between -4 and -9%o (Javoy et al., 1986; Sano and Marty,
1995; Hoefs, 2009 and references therein).

The 8"*Crpic values in our samples display a wide range (between -22.1 and -3.7%o), but while
samples with less than 20 cc/l of dissolved CO, cover the whole range of measured 8"°C values,
waters with higher CO, contents display lower variability (§"°Crpic from -9.0 to -5.1 %o - Fig. 8.8).
The samples of Group 3, except Timna Mine, show 8"°Crpic values typical of aquifers in which
organic soil CO; equilibrates with marine carbonates (Chiodini et al., 2000). Tabgha and Polla Dead
Sea displaying the most negative values probably reflect the addition of CO; deriving from methane
oxidation. This process has been evidenced in other sites of the same area by Avrahamov et al.
(2015). Our study shows that waters with higher dissolved CO; levels (Group 1 waters and part of
the samples of Group 2) are consistent with an upper-mantle isotopic signature suggesting the
addition of deeply derived CO, (Fig. 8.8). While Yuce et al. (2015) whose data display a
distribution comparable to our data (fig. 8.8), also evidenced the contribution of a mantle
component for CO, along the Turkish part of DST, Torfstein et al. (2013) and Avrahamov et al.

(2015) excluded such possibility along the Israeli part.
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Fig. 8.8 - Co-variation of 8"°C (TDIC) and dissolved CO, (cc 1" STP). The arrows indicate the different processes
involving CO; in the investigated waters.

The carbon isotopic composition of COxgs) coupled with CO,/*He ratio, is used to better identify
the origin of CO, (Barry et al., 2013). Three potential end-members which can provide CO, are:
mantle (M) limestone (L) and organic sediments (S). The considered composition for the end-
members are: CO,/’He=2*10" and 8'*C=-6.5%o for Mantle, CO,’He=1*10" for Limestone and
Sediments and 8"°C values of 0 and -30%o, respectively (Sano and Marty, 1995 and references
therein). The 8'°Ccoa vs. CO»/*He graph was initially used to display different fluid contributions
along volcanic arcs (Sano and Marty, 1995) but has been later used also in different geodynamic
settings and also in areas affected by deep-rooted transform faults (Mutlu et al., 2008; Kulongoski
et al.,, 2013; D’Alessandro et al., 2014). To plot our data in such a graph, the carbon isotopic
composition of COys) In equilibrium with the investigated waters was calculated at the outlet

temperature, taking into account: the amount of CO, and HCOs;  dissolved in water, the values of
-94 -



CHAPTER 8

Geochemical characterisation of gases along the Dead Sea Rift: Evidences of mantle-CO, degassing

813CTDIC and the enrichment factor €, (COxdissolved-CO2gas) and €, (COxeas-HCO3") (Zhang et al.,
1995).

Figure 8.9 shows that all the investigated waters fall in the field belonging to the contribution of
the three end-members before mentioned. The waters are characterized by interaction with mantle-
CO; in different proportion, calculated following the equation of Sano and Marty (1995). In
particular, Hamat Gader and Hammei Teveria (belonging to Group 1) located in the northern part of
the investigated area with highest mantle-CO, contribution (97.4 and 70.2%, respectively) and
Qedem to the west of Dead Sea fall in Fig. 8.9 close to the mantle end-member with a significant
mantle-CO; contribution (36.4%). The other water samples located in the southern part of the
studied area show a shift towards the organic and limestone end-members, with a lower mantle-CO,
component ranging from 1.2 to 11.1. In particular, the waters of Group 3 (En Gedi Spring, Banias

and Zukym) and Tabgha belonging to Group 1 have prevailingly organic CO, contribution.
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Fig. 8.9 - CO,/*He plotted vs. 8"°Cco, shows a different proportion of CO, mixing between fluids of crust and mantle
origins. Mantle carbon (M), Marine limestone (L) and Organic sediment (S) fields are reported as reference.

Contrarily to the claim of Torfstein et al. (2013) suggesting that CO, is associated to an
atmospheric component, our study affirm that the waters along DST strongly interact with non-
atmospheric CO; as testified by the amount of CO, dissolved in the waters, which is always in
excess with respect to the equilibrium value with the atmosphere, and the isotopic composition of
carbon, previously discussed. Also Avrahamov et al. (2015) exclude that mantle-derived CO; rises
up along the Israeli sector of DST but their paper is focused on the origin of CH4 in the sampled
fluids and does not discuss the origin of CO,. We agree that from their data a contribution of
mantle-CHy is not recognizable but their 613CTDIC and 613Cc02 values are compatible with a mantle
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contribution for COs,.

It is generally assumed that the injection of mantle-He within the crust happens either through
intrusion and consequent degassing of mantle-derived magmas or through diffusion of mantle-fluids
across the ductile mantle-crust boundary (Kennedy and Van Soest, 2007). Both processes could be
invoked at least for the northern sector of the investigated area. But in both cases the injection of
mantle-He cannot happen without the involvement of important quantities of mantle-CO, (Kennedy
and van Soest, 2007). The latter, being more reactive than He, can be involved in many chemico-
physical processes that could significantly change its isotopic composition and the CO,/He ratio.
Such changes may sometimes partially or totally mask its origin, but basing on the present data its

mantle-derivation can be easily recognised.

8.4 IMPLICATIONS

The results of this study improved the knowledge about the origin of fluids interacting with the
aquifers along DST, providing important information about the sources of helium and CO, and the
processes affecting these gases during its path towards the earth’s surface. The up-rise of deep hot
fluids interacting with the shallow aquifer, can be considered responsible of the high temperature of
some water sources along the Dead Sea Transform. Different amount of He and CO, dissolved in
the waters are the result of a different mixing between Mantle and Crustal components, which
reflects different tectonic configurations along DST. Geochemical data agree with the heat flux
reported by Shalev et al. (2008; 2013), showing that higher contents of mantle helium (*He) and
mantle-CO; occur in the northern area, where the highest heat flux of the investigated area was
recognized (70 mW/m?). Similar relationships between heat fluxes and *He/*He in thermal areas
were found by Umeda et al. (2007) in the thermal waters and dissolved gas phase in Kii Peninsula,
Japan. These results suggest that ascending deep fluids enriched in CO;, and helium fuel deep
hydrothermal systems.

As previously shown by Torfstein et al. (2013), the geographical distribution of isotopic values
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(R/Ra) along the DST is in agreement with the different tectonic conditions. In particular, a mantle
up-rise and/or deeper fault systems could justify an easier ascent of mantle fluids with a larger *He
signature in the northern part of the studied area, in agreement with Segev et al. (2006). Moreover,
considering that the last magmatic activity in this area has been dated at 0.1 Ma (Mor, 1993), a
source of *He due to the presence of magma bodies intruded into the crust releasing fluids rich in
mantle-He cannot be excluded. This could also explain the anomalous heat flux recognised by
Shalev et al. (2008) near Galilee Sea. These evidences suggest that in the northern part the fault
system is connected at depth, in particular near Hammei Teveria and Hamat Gader where the
highest proportion of mantle-He and Mantle-CO; are recognized. Finally, the present study remarks
that deep regional transform faults are important pathways for mantle fluids either directly or
through the intrusion of magmatic batches. Examples can be found both in the Middle-east region
(Giilec et al., 2002; Italiano et al., 2013; Torfstein et al., 2013; Yuce et al., 2014) and worldwide

(Kulongoski et al., 2013; Klemperer et al., 2013; D’ Alessandro et al., 2014).

8.5 CONCLUNDING REMARKS

Data of chemical and isotopic composition of He and CO, dissolved in waters were measured to
investigate the origin of fluids interacting with the waters along the DST.

Values of R/Ra coupled with *He/**Ne show a dominant radiogenic component with a
geographical distribution of samples (North-Center-South families) highlighting higher
contributions of mantle-helium in waters located in the northern part of the area, where an
anomalous heat zone has been previously identified.

High CO, amounts dissolved in water are recognized along DST, with maximum values in the
northern part close to the Sea of Galilee (Hammei Teveria and Hamat Gader). Moreover, CO,/°He
ratios coupled to 813C(C02) allowed to discriminate the contribution of different end-members,
showing higher mantle CO, contribution in the northern part of investigated area.

As for other similar tectonic structures around the world, the DST fault system allows the rise of
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fluids of mantle origin. Such uprise is favoured in the northern part of the investigated area where a
shallower Moho discontinuity is present. The contemporaneous presence of the products of recent
magmatic activity in the same area does not allow to discriminate if these mantle fluids derives
from degassing of magma batches intruded in the crust or from diffusion of mantle-fluids across the

ductile mantle-crust boundary.
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The geochemical behaviour of Rare Earth Elements, Zr and Hf was investigated in the thermal waters of Nevado
del Ruiz volcano system. A wide range of pH, between 1.0 and 8.8, characterizes these fluids. The acidic waters are
sulphate dominated with different Cl/SO,4 ratios. The important role of the pH and the ionic complexes for the dis-
tribution of REE, Zr and Hf in the aqueous phase was evidenced. The pH rules the precipitation of authigenic Fe
and Al oxyhydroxides producing changes in REE, Zr, Hf amounts and strong anomalies of Cerium. The precipita-
tion of alunite and jarosite removes LREE from the solution, changing the REE distribution in acidic waters.
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Zirconium Y-Ho and Zr-Hf (twin pairs) have a different behaviour in strong acidic waters with respect to the water with pH
Hafnium near-neutral. Yttrium and Ho behave as Zr and Hf in waters with pH near neutral-to-neutral, showing super-
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chondritic ratios. The twin pairs showed to be sensitive to the co-precipitation and/or adsorption onto the surface
of authigenic particulate (Fe-, Al-oxyhydroxides), suggesting an enhanced scavenging of Ho and Hf with respect
to Y and Zr, leading to superchondritic values. In acidic waters, a different behaviour of twin pairs occurs with
chondritic Y/Ho ratios and sub-chondritic Zr/Hf ratios. For the first time, Zr and Hf were investigated in natural
acidic fluids to understand the behaviour of these elements in extreme acidic conditions and different major
anion chemistry. Zr/Hf molar ratio changes from 4.75 to 49.29 in water with pH < 3.6. In strong acidic waters
the fractionation of Zr and Hf was recognized as function of major anion contents (Cl and SO,4), suggesting the

formation of complexes leading to sub-chondritic Zr/Hf molar ratios.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In the last 30 years, an extensive literature about the distribution of
REE (lanthanides and yttrium) and the Y/Ho ratios during fractionation
processes between different phases was developed (Bau, 1996, 1999;
Bau and Dulski, 1999; Ruberti et al., 2002; Censi et al., 2007, 2014,
2015; Piper and Bau, 2013). The REE abundances provide insight into
water-rock interaction processes. The REE geochemistry in geothermal
fluids is complex and depends on the pH, the stability of solid phases,
the concentrations of anionic ligands complexing the REE and adsorp-
tion of mineral surfaces (Wood, 1990, 2003; Lewis et al., 1997, 1998,
and references therein; Gammons et al., 2005; Bao et al., 2008; Peiffer
et al,, 2011). The concentration of total dissolved REE in near neutral
pH waters and in seawater is low and their dissolved species are domi-
nated by carbonate complexes (Byrne, 2002), whereas in acidic waters

* Corresponding author at: Dipartimento di Scienze della Terra e del Mare, Universita
degli Studi di Palermo, Via Archirafi, 36, 90123 Palermo, Italy.
E-mail address: claudio.inguaggiato@unipa.it (C. Inguaggiato).

http://dx.doi.org/10.1016/j.chemgeo.2015.09.025
0009-2541/© 2015 Elsevier B.V. All rights reserved.

(pH < 3.6) carbonate and hydroxide can be considered negligible. The
geothermal waters with very acidic pH values have higher contents of
REE dissolved in waters up to 10* times compared to seawater (Wood,
2003 and references therein). The REE contents of hydrothermal fluids
usually increase with decreasing pH, independently from the tempera-
ture and the type of local rock (Michard, 1989). During the mixing be-
tween fluids discharged from the hydrothermal vent on the marine
floor and seawater, the REE are scavenged by Fe and Mn oxyhydroxides
(Bau and Dulski, 1999; Wood, 2003 and references therein). The geo-
thermal systems are characterized by a wide variety of REE patterns;
in particular the acid sulphate waters have high REE contents some-
times with Light Rare Earth Elements (LREE) depleted with respect to
the local rock (Wood, 2003 and references therein).

Recent studies investigated isovalent elements Zr-Hf, Y-Ho and
their fractionation during processes involving solid phases. The Y-Ho
and Zr-Hf are characterized by similar ionic radius and by the same
charge + 3 and + 4 respectively. The twin pairs are characterized by
negligible fractionation during processes occurring at high temperature
in silicate melt and are controlled by charge and radius. A different
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behaviour of Y-Ho and Zr-Hf was recognized in processes that take
place in aqueous system, showing values which deviate from the chon-
dritic ratio, due to fractionation processes ruled by the electronic config-
urations of elements (Bau, 1996). In seawater, continental is the main
source of Zr-Hf, showing a larger removal of Hf with respect to Zr, due
to the different sorption of these elements onto Fe and/or Mn
oxyhydroxides (Godfrey et al., 1996; Godfrey and Field, 2008; Firdaus
et al.,, 2011; Frank, 2011; Censi et al., 2015, Schmidt et al., 2014).
Moreover, Zr and Hf form complexes with hydroxyl groups in waters
with pH from near neutral to neutral (Byrne, 2002). However, the frac-
tionation of these elements has never been studied in extreme acidic
environments.

In this research we investigate the behaviour of REE, Zr and Hf in wa-
ters circulating within the Nevado del Ruiz (NDR) volcano-hydrothermal
system. This natural system is considered a laboratory for better under-
standing of the processes involving these elements within a wide spec-
trum of pH values and chemical composition of waters.

2. Geo-lithologic aspects

Nevado del Ruiz is one of the active volcanoes belonging to the great
chain of the Andes (located a few km west of Bogota), connected with
the active subduction of Nazca Plate below the South American plate.
The last plinian eruption occurred in 1985, generating a huge lahar that
buried Armero town killing approximately 23,000 people. The NDR vol-
cano is a large edifice mainly constructed during three major phases over
the past 600 to 1200 ka, with a summit elevation of 5389 m (Forero et al.,
2011 and references therein). The volcanic complex is mainly built by
andesitic lava, whereas pyroclastic deposits belonging to the last erup-
tive phase overlay the lava flows. This volcanic system is characterized
by calc-alkaline rocks ranging from andesitic to dacitic in composition
with quite constant distribution of REE, Zr and Hf in different magmatic
suites (Borrero et al., 2009). Fig. 1 shows the REE distribution of average
local rock normalized to chondrite, displaying a decreasing pattern from
La to Lu and lack of a significant Eu anomaly (Borrero et al., 2009 and ref-
erence therein). Borrero et al. do not show different trends for a range of
magmatic suites, affirming that the evolution of magma is mainly con-
trolled by the fractional crystallization.

The NDR rocks have quite constant Y/Ho and Zr/Hf molar ratios of
58.3 and 66.8 respectively (Borrero et al., 2009 and reference therein),
falling in the field of processes controlled mainly by charge and radius
(Bau, 1996).

3. Materials and methods

Hot and cold waters were collected in the area close to NDR volcano
(Fig. 2). Temperature, pH, Eh and electrical conductivity of waters were
measured in the field with an ORION 250 +. The sample waters collect-
ed to determine major cations and trace elements were filtered through
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Fig. 1. Chondrite-normalized REE patterns in average local rock.

0.45 um MILIPORE cellulose acetate filters into 250 ml Nalgene bottles
and acidified in the field with ultrapure HNOs. The sample waters to de-
termine major anions were filtered with 0.45 um filters in the field into
LDPE plastic bottle. The major elements were analysed by Dionex ICS
1100 chromatograph. A Dionex CS-12A column was used for cations
(Na, K, Mg and Ca) and a Dionex AS14A column for anions (F, Cl, and
S04). Alkalinity was determined in the field by titration with HCl 0.1 M.

Trace elements, including also REE, Zr and Hf, were analysed by Q-
ICP-MS (Agilent 7500ce) equipped with a Micromist nebulizer, a Scott
double pass spray chamber, a three-channel peristaltic pump, an auto
sampler (ASX-500, Cetac) and a Octopole Reaction System (ORS) for re-
moving interferences of polyatomic masses and isobaric isotopes. The
mass spectrometer was calibrated with a multi-element standard
solution, daily prepared and diluted 10 times to obtain a curve with
11 calibration points. The sensitivity variations were monitored using
103Rh, 115In, and '®°Re at a final concentration of 8 pg/1 for each as inter-
nal standards added directly online by an appropriate device that mixes
an internal standard solution to the sample just before the nebulizer.
Sixty second rinse using 0.5% HCI and 2% of HNOs solution plus 60-s
rinse using 2% of HNO3 solution reduced memory interferences be-
tween samples. The precision of analysis was checked by running 5 rep-
licates of every standard and sample, it was always within 4 10%. Data
accuracy was evaluated analysing standard reference materials
(Spectrapure Standards SW1 and 2, SLRS4, NIST 1643e, Environment
Canada TM 24.3 and TM 61.2) for each analytical session and error for
each element was <15%. Fe, Al with high concentrations (>1 mg/1)
and Si were analysed by ICP-OES Horiba Ultima 2 at wavelength of
259.940 nm, 396.152 nm and 251.611 nm respectively.

The saturation indexes (SI) of solid phases and ion speciation were
calculated using Phreeqc software package (version 3.0.6; Parkhurst
and Appelo, 2010). The simulations were carried out using the database
LLNL at the chemical-physical conditions measured in the field.

Scanning Electronic Microscopy (SEM) observations and Energy Dis-
persive X-ray Spectra (EDS) were carried out on the suspended particu-
lar matter (SPM) collected during the filtration from the investigated
waters, in order to get information about the nature of suspended solids.
The filters with the SPM were assembled on the alluminium stub and
coated with gold. The analisys were performed with LEO 440 SEM
equipped with an EDS system OXFORD ISIS Link and Si (Li) PENTAFET.

Anomalies of Cerium and Europium in waters were calculated with
respect to the neighbouring elements normalized to the average local
rock, using the equation proposed by Alibo and Nozaki (1999):

REE,, /REEy* = 2 * (REE), /[(REE),_; + (REE), ]

(REE),, is the concentration of the element chosen to calculate the
anomaly, while (REE), _ ; and (REE),  ; represent the previous and
the subsequent element along the REE series, respectively.

4. Results
4.1. General aspects

NDR waters cover a wide spectrum of pH, ranging from 1 to 8.8.
Temperature ranges from 6.8 to 79.5 °C, electrical conductivity values
span from 0.2 to 33.5 mS/cm and Eh values range between —31 and
+325.4 mV (Table 1). The acidity recorded in the investigated waters
is due to the interaction of magmatic gases, such as HCl, SO, and their
dissolution and dissociation in groundwater (e.g., Giggenbach et al.,
1990). According to the pH, the waters were classified into two groups:
Group 1 (near neutral-to-neutral) is characterized by pH values ranging
between 5.9 and 8.8, Group 2 (acidic) has pH values between 1.0 and
3.6. Considering the major anion contents, the groups were further
subdivided. Group 1a with the highest amount in HCO3, Group 1b
with chloride dominant composition. The fluids belonging to Group 2
are acid sulphate waters with composition plotting near the SO, corner
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Fig. 2. Location map of sampled waters.

in the ternary anion diagram (Fig. 3). The latter group can be subdivided
according to the Cl content: Group 2a with lower Cl/SO4 ratios (<0.13)
and Group 2b with higher Cl/SO4 ratios (>0.32).

Fe and Al contents are several orders of magnitude higher (up to
4.14 and 30.23 mmol/I respectively) in Group 2 compared to Group 1
(up to 2.85 » 10~ % and 5.44 = 10~ mmol/I respectively). The water
groups have different mineral saturation state (Table 2). Group 1 waters
are oversaturated with respect to iron and aluminium oxyhydroxides,
while the waters of Group 2 are undersaturated with respect to those
minerals. SEM-EDS analyses of SPM show amorphous silica in all the
investigated waters, sometimes silica sphere probably encrusting
organic matter (Fig. 4b). Moreover, different solid phases were found
in the groups of waters classified previously: in Group 1a Fe-, Al-
oxyhydroxides encrusting amorphous silica are present (Fig. 4a); in
Group 2a waters Fe-Al-Ca solid phases (probably sulphates) onto
amorphous silica are recognized (Fig. 4c; d).

The isosol diagram (log-log compositional plot) was used to evalu-
ate the degree of rock dissolution. This diagram allows to evaluate if
the chemical composition of waters is a reflection of the rocks (near-
congruent dissolution, under hyperacid conditions) and the possible re-
moval of elements by precipitation of secondary minerals (Taran et al.,
2008; Colvin et al., 2013; Varekamp, 2015 and references therein). The
hyperacid waters of Group 2 fall between the isosol lines indicating
the dissolution of about 5 to 10 g of rock (Fig. 5). The Group 2b waters
show to be close to congruent dissolution of the average local rock, for
all elements with the exception of Si that is depleted in all samples
(Fig. 5), probably due to the precipitation of silica minerals. The major
elements of Group 2a deviate from the isosol line, with the exception
of Mg and Ca that fall close to the 5-10 g of rock dissolution line
(Fig. 5). Strong depletions of Fe, Al, K and minor depletion of Na
(Fig. 5) suggest the precipitation of alunite [(K,Na)Al3(S04)2(OH)g)]
and jarosite [(K, Na)Fe3(SO4),(OH)s], typical minerals precipitating in

Table 1
Chemical composition of the studied waters expressed in mmol/l.
Group Sample name T(°C) pH Cond (mS/cm) Eh(mV) Na K Mg Ca F Cl SO4 HCO; Al Fe Si
Group 1  Agua Hedionda 139 59 0.4 170 048 007 1.07 0.76  0.01 0.05 1.01 230 0.0007 0.0005 1.64
Rio Molinos 159 88 0.5 - 204 020 062 143 002 143 1.80 1.20 0.0005 0.0003 1.15
Nereidas 504 6.1 2.0 96 535 045 1.95 325 000 0.62 3.10 940 0.0008 0.0004 3.06
Botero Londono 795 7.7 6.8 —31 2706 210 026 120 010 284 0.68 140 0.0353 0.0098 2.78
Group 2  Termal La Gruta 335 16 8.7 236  14.06 141 5.90 442 147 145 36.9 - 11.09 053 294
Hotel 1 59.8 14 17.0 271 2093 179 923 6.03 209 208 52.1 - 12.00 128 3.67
Hotel 2 626 14 103 115 2147 193 9.72 639 207 219 56.2 - 1241 130 375
Agua caliente 593 1.0 333 325 1499 578 7.76 6.15 3.10 357 1102 - 30.23 414 258
Quebrada La Gruta 153 21 3.0 207 476 0.86 2.08 152 055 493 12.6 - 3.13 028 153
Agua Blanca 291 33 2.5 205 181 026 216 1038 022 139 16.1 - 1.86 027 2.03
Rio Lagunillias 68 36 0.2 171 0.16 003 028 041 0.01 0.09 1.40 - 0.26 0.07 0.55
Rio Guali 72 35 1.2 - 1.06 0.16 1.23 268 013 0.76 5.77 - 0.83 0.14 1.64
Rio Azufrado 160 34 1.8 190 459 039 463 6.62 019 154 16.1 - 1.50 035 256
FT Gauli 592 28 35 246 1.81 028 289 8.67 031 1.30 15.7 - 1.78 0.02 325
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hyperacid hydrothermal systems (Taran et al., 2008; Varekamp et al.,
2009; Colvin et al., 2013). The waters of Group 1 don't reflect the
composition of the average local rock, showing the strong depletions in
Fe and Al (Fig. 5), particularly in Group 1a waters, where the near-
neutral pH allows the precipitation of iron and aluminium oxyhydroxides.

4.2. REE, Zr and Hf

The total amount of REE in NDR waters ranges between 0.8 and 6722
nmol/l (Table 3). We found an inverse correlation between the total
amount of REE and pH values (Fig. 6): higher REE contents are recog-
nized in Group 2 (lower pH values) with respect to Group 1 (higher
pH values). Great differences in SREE are found between the subgroups
1a and 1b with Botero Londono sample (Group 1b) displaying a higher
value with respect to the waters of Group 1a (Fig. 6). The correlation be-
tween REE and pH values suggests that rock dissolution is occurring
more completely under acidic conditions, particularly Group 2b waters
showing near-congruent dissolution of up to 10 g of rock per litre
(Fig. 5).

Considering the constant distribution of REE in the magmatic rocks
of NDR, the studied waters were normalized to the average local rock
(Borrero et al., 2009 and reference therein) evaluating processes of
water-rock interaction in the hydrothermal system. The rock normal-
ized REE patterns differ among the various water groups (Fig. 7).
Group 1a shows patterns increasing from La to Lu, a positive Eu anomaly
and negative Ce anomaly (Fig. 7). The Botero Londono water (Group 1b)

Table 2
Saturation indexes of studied waters.
Group Sample Name Goethite  Hematite  Gibbsite Boehmite
FeOOH Fe203 AI(OH)3  AIO(OH)
Group1  Agua Hedionda 0.02 0.99 0.80 0.92
Rio Molinos 3.66 8.27 0.48 0.61
Nereidas 0.14 1.38 1.59 191
Botero Londono 5.90 13.0 0.89 1.32
Group 2  Termal La Gruta —6.57 —122 —3.97 —3.76
Hotel 1 —7.07 —13.0 —4.62 —4.26
Hotel 2 —6.22 —11.3 —4.60 —6.22
Agua caliente —7.04 —129 —5.50 —5.14
Quebrada La Gruta —8.25 —15.6 —5.83 —5.70
Agua Blanca —6.57 —12.2 —3.97 —3.76
Rio Lagunillias —5.08 —9.20 —2.24 —2.18
Rio Guali —6.87 —12.8 —4.64 —4.57
Rio Azufrado —7.69 —14.4 —5.26 —5.13
FT Gauli —8.83 —16.5 —4.383 —4.47

shows a slight decrease from La to Lu (Fig. 7). The Group 2b waters show
a flat pattern, whereas the waters of Group 2a are characterized by
anomalous shape of pattern strongly depleted in LREE compared to
the Middle Rare Earth Elements (MREE) and Heavy Rare Earth Elements
(HREE) (Fig. 7).

The amount of Y and Ho dissolved in waters ranges from 0.17 to
914 nmol 17! and from 0.003 to 17.7 nmol 1™ ! respectively. Y/Ho
molar ratios range between 47.8 and 127, with values changing from
chondritic to superchondritic in acidic waters and in near-neutral wa-
ters respectively (Fig. 8).

The Zr concentration ranges from 0.48 to 35.1 nmol I~ ! with Hf from
0.007 to 0.90 nmol I~ . Zr/Hf molar ratios are within the range between
4.7 and 104, showing sub-chondritic values in acidic waters and super-
chondritic values in near-neutral waters (Fig. 8). Y/Ho and Zr/Hf ratios
show simultaneous changes in the waters of Group 1, whereas a differ-
ent behaviour was recognized in acidic waters of Group 2 (Fig. 8).

5. Discussion
5.1. REE behaviour

The compositional variation of REE is mainly due to 4 processes:
(i) the composition of the rocks interacting with water (dissolution of
glass and minerals), (ii) the anionic composition of the waters deter-
mining the different complexation of REE, (iii) the incorporation into
secondary minerals as function of the chemical-physical property of
the waters and (iv) adsorption processes onto newly formed phases at
higher pH (oxyhydroxide of Fe, Al, and Mn).

In NDR waters, the REE are strongly released by the rocks into acidic
waters (Group 2). The pH controls the precipitation of new solid phases,
inducing sorption and desorption of REE. The significant positive correla-
tions between the total amount of REE and Fe or Al dissolved in waters
(Fig. 9) shows the simultaneous variation of these elements, with the in-
volvement of Fe and Al controlling the abundance of REE dissolved in
water. Strong processes of scavenging occur during the co-precipitation
and/or adsorption onto the surface of oxide and oxyhydroxide of Fe, Al,
and Mn (Censi et al., 2007; Bau and Koschinsky, 2009).

REE-complexes play a role together with other geochemical pro-
cesses during the fractionation of REE (Lewis et al., 1998). The very
low pH of the studied waters (Group 2) suggests that all the inorganic
carbon dissolved occurs mainly as dissolved CO-; consequently, carbon-
ate complexes are negligible in these acidic solutions. However,
[REE(CO3)]* and [REE(CO3),] ™ play a role in the waters belonging to
Group 1, as they are the only ones with higher amount of carbonate spe-
cies (HCO3 and/or CO3™) dissolved in solution. The assessment of
water-rock interaction processes is evaluated by the patterns of REE
dissolved in waters normalized to the average local rock (Fig. 7).

In the acidic solutions of Group 2, the speciation of REE is ruled by
complexes with SO3~, F~ and Cl~, according to the relative abundance
of anions dissolved in waters (Lewis et al., 1998). The Group 2b is the
only one with flat patterns suggesting that source rocks mainly control
the REE distribution, without processes changing the REE distribution in
waters (Fig. 8). In Group 2a, the REE-patterns normalized to average
local rock (Fig. 8) are characterized by strong LREE depletion. A similar
shape of pattern with LREE depletion was already observed in other
acid-sulphate waters from Waiotapu (New Zealand), Copahue volcano
(Argentina), Santa Ana (El Salvador), Kawah lhen Crater Lake
(Indonesia) and Kutomintar and Sinarka volcanoes (Kawah Ijen)
(Takano et al., 2004; Wood et al., 2006; Varekamp et al., 2009; Colvin
etal,, 2013; Kalacheva et al., 2015). Strong REE fractionation occurs dur-
ing the hydrothermal alteration in very low pH waters with high SOZ~
contents, showing higher LREE contents in alunitic advanced argillic
alterated rocks compared to the unalterated volcanic rocks (Hikov,
2011). The alteration minerals play an important role taking up the
REE from the aqueous solution and/or releasing the elements, as a func-
tion of the chemical physical condition of the system that determines
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Fig. 4. SEM-EDS observations of SPM showing: in Group 1a Al-, Fe- oxyhydroxides encrusting amorphous silica (a); in Group 24, silica sphere probably encrusting biological matter (b), Fe

(partially Ca) rich solids (probably sulphates) onto amorphous silica (c), Fe-, Al-, rich solids.

the stability of the solid phases. In particular, the precipitation of alu-
nite-jarosite, was considered responsible of the LREE depletion in the
acid-sulphate waters being the solid phases enriched in LREE (Ayers,
2012; Varekamp, 2015 and references therein). In the isosol diagram,
Group 2a waters show depletions in K, Fe, Al, and Na pointing to alunite
and jarosite precipitation (Fig. 5). Moreover, Al- and Fe-sulphates were
found by SEM-EDS analysis as SPM (Fig. 4c, d). Coupling these informa-
tion about the chemical propriety of waters and the nature of SPM, the
depletion of LREE Group 2a, can be justified by the precipitation of Al-
and Fe-sulphates as alunite and jarosite.

REE-patterns (Group 1a) normalized to average local rocks (Fig. 8)
show a progressive increase from La to Lu according to the stability con-
stant of [REE(CO3)]|™" characterized by a progressive increase along the
REE series (Wood, 1990; Millero, 1992). Botero Londono (Group 1b) is
the only water with chloride-dominated composition. Considering the
stability constant of [REECI]>T (Wood, 1990), the different patterns

(Botero Londono) compared to other groups of samples is due to REE-
chloride complex stability constant, characterized by the same trend
recognized for Botero Londono with a shight pattern decreasing along
the REE series.

The precipitation of solid phases involving Fe and Al at circum-
neutral pH conditions changes the abundance and the distribution of
REE in water. Cerium and Europium differ from the other REE for
being redox sensitive elements. Cerium is removed from waters during
neutralization as CeO, and/or from precipitation of Fe, Mn and Al
oxyhydroxides in river waters and marine environment (Goldstein
and Jacobsen, 1988; Elderfield et al., 1990; Seto and Tsaku, 2008). The
Ce and Eu anomalies vary with pH (Fig. 10). In particular, the waters
with pH < 3.6 (Group 2) have no significant Ce and Eu anomalies,
whereas the waters with pH > 5.9 (except Botero Londono sample)
show strong negative anomalies of Ce and strong positive anomalies
of Eu. The Ce anomaly can be explained considering the enhanced


Image of Fig. 4

130

C. Inguaggiato et al. /| Chemical Geology 417 (2015) 125-133

4. Mg K NaCaFe Al i
10 | & | | (; 1 I S|
& Agun Hedionda
fg i Group la- & RioMalinos
= o & Nereidas
2 Group 1b | ¢ Batero Londone
% [@ AguaBlanca
= 10% O Rio Lagunillas
g 8 Group 2a- @ Rio Guali
8 Rio Asufiado
E 10 | L L8 FT Gauli
= ® ‘Termal Gruta
z
m a ® Hotel 1
= ) ; s Group 2b- @ Hotel 2
E 10 4 L ® Agua Caliente
[ @ | @ Cuebrada Gruta
100 4 — ) rock/|
— k|
ﬁ ﬁ —_— ekl
102

10* 10°

10°

ELEMENT IN ROCK (ppm)

Fig. 5. Isosol diagram is a log-log compositional plot, with the average volcanic rock composition versus the water composition. Isosol lines represent the equal amount of rock dissolved for
the element considered. The plot shows the near-congruent dissolution of Group 2b (acid waters) and the depletion in K, Na, Fe, Al, in Group 2a (acid waters). The Group 2 shows a rock
dissolution ranging between 5 and 10 g/I. Group 1 (near-neutral pH) is strongly depleted in Fe, Al reflecting the precipitation of Fe, Al- oxyhydroxides. (probably sulphates) onto amor-

phous silica (d).

removal of Ce with respect to La and Pr, during the processes of co-
precipitation and/or adsorption onto the surface of authigenic minerals
(Al-, Fe oxyhydroxides).

Ce has a different behaviour in Botero Londono sample compared to
the other samples of Group 1, not showing strong Cerium anomaly
(Fig. 10a). The main differences of Botero Londono water compared to
the other waters belonging of Group 1 are the higher ionic strength
and the lower Eh value. These differences could limit the precipitation
of Al-, Fe-oxyhydroxide allowing higher amounts of Al and Fe dissolved
in water. Moreover, SEM-EDS observations of SPM (Botero Londono) do
not show the presence of Al-, Fe-oxyhydroxide solid phases.

Almost all the investigated waters are characterized by a small
anomaly of Europium (Fig. 10b), except for the waters of Group 1
where a strong positive anomaly (1.22-7.43) occurs, suggesting addi-
tional processes that fractionate the REE. The strong positive Eu anom-
aly found in the water of Group 1a could be justified by the slow
interaction of waters with Eu enriched plagioclase, as already recog-
nized in other hydrothermal systems (Wood, 2003 and references
therein; Varekamp et al.,, 2009; Peiffer et al., 2011).

5.2. The behaviour of twin pairs (Y-Ho; Zr-Hf)

The decoupling of Y-Ho and Zr-Hf in seawater indicated that these
elements are not controlled only by charge and ionic radius (Bau,

1996; Godfrey et al., 1996). The behaviour of Zr and Hf in natural waters
is limited to the neutral-basic environments (mainly sea water), where
super-chondritic Zr/Hf ratio was recognized (Firdaus et al., 2011;
Schmidt et al., 2014). The inorganic speciation of Zr and Hf in water
with circum-neutral pH is dominated by hydroxyl groups (Zr(OH)s,
Hf(OH)s, Zr(OH),4, Hf(OH),4), whereas Y and Ho are mainly complexed
by carbonate species (Byrne, 2002). The different charge of metal com-
plexes determines the adsorption behaviour onto the solid surfaces
(Koschinsky and Hein, 2003). Bau and Koschinsky (2009) show that
the Y/Ho ratio in marine Fe-Mn hydroxydes is significantly lower than
seawater, suggesting an enhanced scavenging of Ho with respect to Y
in the Fe-Mn crusts. Recently, Schmidt et al. (2014) investigating the
fractionation of Zr-Hf between seawater and Fe-Mn crusts, showed
that Zr/Hf ratio is lower in the Fe-Mn oxyhydroxides compared to sea-
water. These studies indicate that both Hf and Ho are more easily
removed than Zr and Y during the formation of marine Fe-Mn
oxyhydroxides and that the geochemical behaviour of these twin pairs
is not simply ruled by charge and ionic radius.

The near neutral-to-neutral waters of Group 1 have higher values
of Y/Ho and Zr/Hf ratios with respect to the acidic waters and the
average local rock (Fig. 8). The twin pairs' fractionation in Group 1 is
due to the formation of the observed authigenic solid phases (Fe-, Al-
oxyhydroxides) stable at neutral pH. The preferential removal of Ho
and Hf with respect to Y and Zr is attributed to the enhanced scavenging

Table 3
REE, Zr and Hf dissolved in waters expressed in nmol/I.
Group Sample Y La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Zr Hf
Agua Hedionda 0.52 0.04 0.07 0.013 0.051 0.005 0.017 0.020 0.002 0.025 0007 0.017 0.005 0034 0.008 130 0.013
Rio Molinos 017 0.02 0.008 0.006 0.029 0.007 0.017 0.009 0.002 0.014 0.003 0.01 0.003 0.008 0.003 531 0.057
Nereidas 113  0.04 0.07 0.012 0.074 0.015 0.037 0.045 0.005 0.042 0.009 0.03 0.008 0.054 0.012 0.70 0.007
Group 1  Botero Londono 524  11.1 19.2 1.85 5.95 0.99 0.31 0.89 0.11 0.48 0.09 0.25 0.04 0.21 0.03 221 0.03
Termal Gruta 642 512 1102 142 545 103 245 89.23 11.8 58.8 11.6 323 436 26.8 396 217 0.46
Hotel 1 465 560 1034 119 429 77.9 196 7130 9.07 46.5 9.39 25.8 3.52 21.6 316 852 0.24
Hotel 2 483 565 1050 121 439 79.2 200 7037 9.15 47.2 9.57 26.4 3.70 223 319 147 033
Agua Caliente 914 1419 2575 269 944 177 438 153 19.1 91.7 17.7 47.6 6.45 383 562 35.1 0.90
Quebrada Gruta 147 145 303 35.2 131 24.7 5.89 213 2.74 143 2.75 8.50 1.04 6.41 095 27.7 0.56
Agua Blanca 629 204 108 22.8 177 63.6 19.0 81.6 12.83 64.6 11.7 28.4 3.26 175 234 3,01 0.28
Rio Lagunillas 497 938 28.5 481 23.5 6.01 1.17 7.00 1.02 5.04 1.04 2.59 0.35 1.93 030 048 0.10
Rio Guali 204 222 65.5 12.0 66.2 20.6 425 24.9 3.56 193 3.90 103 1.29 7.53 1.06 217 0.10
Rio Azufrado 565 8.88 42.6 10.1 94.9 49.6 134 65.2 9.83 52.1 104 27.4 3.52 20.5 299 365 0.24
Group 2  FT Gauli 599  9.60 479 11.0 99.7 39.7 9.61 55.8 9.09 50.6 10.70 28.2 3.72 21.3 312 074 0.09
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Fig. 6. Variations of total REE dissolved in water as a function of pH. Symbols as in Fig. 3.

during the co-precipitation onto the surfaces of Fe, Al oxyhydroxides
(Bau, 1999; Bau and Dulski, 1999; Bao et al., 2008; Censi et al., 2007;
Feng, 2010, Schmidt et al., 2014). However, in Botero Londono water
(Group 1b), Y-Ho and Zr-Hf do not significantly fractionate and Ce
anomaly is negligible (Fig. 10a), in agreement with the limited Fe, Al
oxyhydroxide formation. Our data show that Y-Ho and Zr-Hf are re-
moved from the hydrothermal system by Fe-, Al-oxyhydroxides precip-
itating in water with circum-neutral pH.

In Group 2 (acidic waters), Y-Ho and Zr-Hf twin pairs are character-
ized by a different behaviour. Y/Ho ratios are close to the average local
rock, showing the negligible fractionation of these isovalent elements,
while Zr/Hf ratios are sub-chondritic. The behaviour of Zr and Hf in ex-
treme acidic environments has not been studied yet. Only few studies
were carried out on the speciation of Zr and Hf with fluoride and chlo-
ride ligands, but not in water with very high sulphate contents
(Pershina et al,, 2002; Monroy-Guzman et al., 2010). Molecular dynamic
calculation (Pershina et al., 2002) indicated that in chloride media,
chloride complexes are enhanced for Hf with respect to Zr, indepen-
dently of pH. In Group 2 waters Zr and Hf are decoupled indicating
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that the geochemical twin is not controlled only by ionic radius and
charge. Fig. 11 show that Zr/Hf ratio increases as Cl/SO4 ratio increases
highlighting a different behaviour of isovalent elements as a function
of anion contents (Cl and SO,4). The Zr-Hf fractionation observed in
this acidic environment may result from different stability constants of
Zr and Hf complexes with Cl and SO, ligands that in turn determine
the relative abundance of these metals in hyper-acid waters.

6. Concluding remarks
The thermal fluids circulating in NDR system have a variety of major

chemical composition and cover a wide range of pH values from 1 to 8.8.
The concentrations of REE and their patterns normalized to the average
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Fig. 9. Total amount of REE versus Fe, Al dissolved in waters. Symbols as in Fig. 3.
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Fig. 10. a) Relationship between Cerium anomaly and pH values. b) Relationship between
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local rock change as function of processes occurring in the shallower
and/or deep system. The major anions play an important role on the dis-
tribution of REE driven by complexation, whereas the pH values rule the
precipitation of solid phases, also fractionating the REE. Negative cerium
anomaly in water with near-neutral pH underscores the importance of
authigenic minerals (Fe-, Al-oxyhydroxides) on the fractionation
of REE, indicating a different behaviour of Ce with respect to the
neighbouring elements. Moreover, the precipitation of alunite and
jarosite strongly fractionate the REE distribution in Group 2b, depleting
the LREE in the aqueous phase.

For the first time, Y-Ho and Zr-Hf behaviour was studied simulta-
neously in a wide range of pH and chemical composition of major an-
ions. The precipitation of Al-, Fe-oxyhydroxides occurs when pH
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Fig. 11. Zr/Hf versus Cl/SO4 (molar ratios) in acidic waters (Group 2). Symbols as in Fig. 3.

values are close to neutrality fractionating Y-Ho and Zr-Hf, with a pref-
erential Ho and Hf removal. A different behaviour of Y-Ho and Zr-Hf
was identified in acidic sulphate waters with different content of chlo-
ride. Y/Ho displays chondritic ratios, showing a negligible fractionation
compared to the local rock, whereas Zr/Hf ratios are sub-chondritic,
increasing as Cl/SO4 ratios increase. This evidence suggests a different
stability of chemical complexes of Zr and Hf with Cl and SO4 ligands,
leading to sub-chondritic Zr/Hf ratios in strong acid environments.
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