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ABSTRACT 

This PhD thesis concerns the geochemistry of Zr, Hf and REE in extreme water environments 

characterized by a wide spectrum of chemical physical-parameters and compositions. The 

investigations were carried out in hypersaline waters covering a wide range of Eh values along 

Dead Sea Fault (Israel), in hyperacid waters circulating in Nevado del Ruiz volcano-hydrothermal 

system (Colombia) and in CO2-rich waters belonging to the Pantelleria volcano-hydrothermal 

system (Italy), including the alkaline lake “Specchio di Venere” formed within a calderic 

depression. The wide spectrum of chemical-physical conditions and various water chemical 

compositions interacting with different solid phases allowed to depict a scenario where Zr, Hf and 

REE are ruled by different processes, filling the still missing geochemical aspects.  

The important role of the pH (from 1 to 8.8) and the water chemical composition in regard to the 

distribution of Zr, Hf and REE was mainly investigated in the Nevado del Ruiz volcano-

hydrothermal system. The pH rules the precipitation of authigenic Fe-, Al-oxyhydroxides producing 

changes in Zr, Hf and REE abundances and strong cerium anomaly. Significant LREE (Light Rare 

Earth elements) depletion was found in acidic sulphate waters, where the formation of alunite and 

jarosite was recognized. Sub-chondritic Zr/Hf ratios (lower than magmatic local rocks) and 

chondritic Y/Ho ratios (close to the local magmatic rocks) are shown in acidic sulphate waters 

(1<pH<3.6). Zr/Hf ratio increases as Cl/SO4 ratio increases, suggesting a different behaviour of Zr 

and Hf as function of complexing ligands in solution. Differently to the acid waters, the same 

fractionation of Y-Ho and Zr-Hf was found in near neutral waters where Al-, Fe-oxyhydroxides 

were found. The twin pairs show Y/Ho and Zr/Hf ratios increasing towards super-chondritic values 

due to the preferential removal of Ho and Hf compared to Y and Zr by Al-, Fe-oxyhydroxides. 

Pantelleria hydrothermal waters are dominated by Na and Cl ions with variable HCO3
-
 

enrichments due to the interaction with deep-seated CO2. Different behaviour of Zr, Hf and REE 
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was found in the alkaline lake “Specchio di Venere” with respect to the CO2-rich thermal waters 

circulating in the Pantelleria volcano-hydrothermal system. Shale-normalised REE (relative to Post 

Archean Australian Shale, PAAS) in CO2-rich waters showed the same pattern increasing along the 

REE series, with the elemental speciation dominated by carbonate ligands. Zr, Hf and REE show 

higher concentrations in lake “Specchio di Venere” with intermediale REE (MREE) enrichments 

and positive Ce anomaly. Similar features (MREE enriched and positive Ce anomaly) were found in 

the settling dust and in the Desert Varnish, mainly constituted by Fe-, Mn-oxyhydroxides and clay 

minerals. Moreover, Y/Ho and Zr/Hf molar ratios in “Specchio di Venere” lake (35.37 and 76.30, 

respectively) show also a Desert Varnish signature. These latter data, coupled with the MREE 

enrichments and the presence of Fe-oxyhydroxides and phyllosilicates in the shallowest water layer 

of “Specchio di Venere”, testify for an aeolian input from the nearby Sahara desert demonstrating 

that Zr, Hf and REE are useful tracers to identify the contribution of atmospheric particle in open 

water bodies. 

The key role of the Eh values and the water composition towards the distribution of Zr, Hf and 

REE was mainly evaluated in waters along the Dead Sea Fault. Here, both cold and hot waters fall 

within a wide range of salt contents (from 0.3 to 193.5 g l-1) and Eh values (from -400 to 256 mV). 

These waters are mainly NaCl dominated with variable enrichments in SO4, HCO3 and Ca due to 

water rock-interactions. The investigated waters are oversaturated with respect to carbonate 

minerals, Fe-, Mn-oxyhydroxides and pyrite, and always undesaturated in gypsum and halite. The 

REE distribution shows MREE enrichments, due to the dissolution of evaporitic minerals 

characterized by MREE enrichments. The redox conditions influence the amplitude of Ce and Eu 

anomalies. Oxidized waters show negative Ce anomalies related to the oxidative Ce scavenging, 

whereas positive Eu anomalies are found in waters characterised by Eh values < -100 mV 

consistently with the Eu occurrence as the dissolved Eu2+. This condition enhances the Eu stability 

in dissolved phase relatively to its trivalent neighbours along the REE series. Since dissolved Zr/Hf 
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molar ratio is sensitive to the occurrence of solid Fe-oxyhydroxide surfaces where Hf is 

preferentially scavenged, redox conditions influence the Zr/Hf signature in these waters despite 

neither Zr nor Hf are redox sensitive elements. Therefore, the Zr and Hf in waters oversaturated 

with respect to Fe-oxyhydroxides show superchondritic Zr/Hf values due to the preferential Hf 

scavenging onto solid surfaces whereas the waters oversaturated relative to pyrite show chondritic 

Zr/Hf signatures.  
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RIASSUNTO 

Questa tesi di dottorato è incentrata sullo studio del comportamento geochimico di Zr, Hf e Terre 

Rare in ambienti acquosi estremi, caratterizzati da un ampio spettro di parametri chimico-fisici e di 

composizione chimica delle acque. Gli studi sono stati condotti in differenti sistemi naturali ognuno 

dei quali aventi delle specifiche caratteristiche: i) acque ipersaline lungo la faglia del Mar Morto 

(Israele) dove esiste un ampio range di valori di Eh, ii) acque iperacide circolanti nel sistema 

vulcanico-idrotermale del Nevado del Ruiz (Colombia) e iii) acque ricche in CO2 circolanti nel 

sistema vulcanico-idrotermale dell’Isola di Pantelleria, includendo il lago alcalino “Specchio di 

Venere”. L’ampio spettro di condizioni chimico-fisiche e la diversa composizione delle acque 

interagenti con le fasi solide di diversa natura, hanno permesso di investigare il comportamento 

geochimico di Zr, Hf e Terre Rare in fase acquosa, colmando gli aspetti geochimici ancora oggi 

mancanti. 

L’importante ruolo svolto dal pH (1-8.8) e dalla composizione chimica dell’acqua nei confronti 

della distribuzione di Zr, Hf e Terre Rare è stato studiato principalmente nel sistema vulcanico-

idrotermale del Nevado Del Ruiz. Il pH gioca un ruolo fondamentale riguardo alla precipitazione 

degli ossidrossidi di ferro e alluminio, inducendo variazioni delle concentrazioni di Zr, Hf e Terre 

rare e significative anomalie positive di cerio. Elevati impoverimenti in Terre rare leggere sono stati 

riscontrati nelle acque acide solfato dominante dove è stata riconosciuta la formazione di alunite e 

jarosite. Le acque solfato acide (1 < pH < 3.6) sono caratterizzate da rapporti di Zr/Hf sub-condritici 

(inferiori rispetto alle rocce locali) e rapporti condritici di Y/Ho (simili ai rapporti delle rocce 

locali). I rapporti molari di Zr/Hf mostrano valori crescenti al crescere del rapporto Cl/SO4 

suggerendo un differente comportamento di Zr e Hf in funzione della loro complessazione ionica al 

variare del rapporto dei leganti ionici presenti in soluzione. Differentemente alle acque acide, i 

rapporti di Y/Ho e Zr/Hf nelle acque vicino alla neutralità crescono verso valori sempre più super-
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condritici, a causa della rimozione preferenziale di Hf e Ho rispetto a Zr e Y da parte degli 

ossidrossidi di ferro e alluminio. 

Le acque idrotermali di Pantelleria hanno una composizione chimica dominata da Na e Cl, con 

concentrazioni variabili di HCO3 dovute all’interazione della CO2 (principalmente di origine 

magmatica) con le acque del sistema idrotermale. E’ stato riscontrato un differente comportamento 

di Zr, Hf e Terre Rare nell’acqua del lago Specchio di Venere rispetto alle acque circolanti nel 

sistema idrotermale. Le Terre Rare normalizzate al PAAS (Post Archean Australian Shale) 

mostrano degli andamenti progressivamente crescenti dal La al Lu e sono principalmente 

complessate dalle specie carbonatiche. Il lago Specchio di Venere comparato con le acque 

idrotermali, mostra delle concentrazioni maggiori di Zr, Hf e Terre Rare, con un arricchimento in 

Terre rare intermedie e anomalia positiva di Ce. Caratteristiche simili sono state trovate nel Desert 

Varnish (fase solida presente in ambienti aridi) costituito principalmente da minerali argillosi e 

ossidrossidi di Fe e Mn. I rapporti molari di Y/Ho e Zr/Hf nello Specchio di Venere (35.37 e 76.30, 

rispettivamente) sono caratterizzati da valori molto simili a quelli trovati nel Desert Varnish. La 

distribuzione del pattern delle Terre Rare, insieme ai rapporti di Y/Ho e Zr/Hf e alla presenza di 

fillosilicati e ossidrossidi di Fe nello strato più superficiale dello Specchio di Venere, testimoniano 

l’interazione tra il particolato atmosferico proveniente dal vicino deserto del Sahara e il lago 

Specchio di Venere, dimostrando che Zr, Hf e Terre Rare sono degli utili traccianti in grado di 

identificare il contributo del particolato atmosferico nei corpi idrici superficiali. 

Il ruolo chiave svolto dalle variazioni di Eh nei confronti della distribuzione di Zr, Hf e Terre Rare 

è stato principalmente valutato nelle acque presenti lungo la faglia del Mar Morto, caratterizzate da 

un ampio range di valori di Eh (da -400 a 390 mV) e da un contenuto in sali disciolti tra 0.3 e 193.4 

g l-1. Le acque hanno contenuti di Na e Cl dominanti con variabili arricchimenti in SO4, HCO3 e Ca, 

causati dall’interazione delle acque con le rocce locali. Inoltre, le acque sono sovrassature in 

minerali carbonatici, pirite e ossidrossidi di Fe e Mn, mentre sono sottosature rispetto a gesso e 
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alite. Alcune acque mostrano arricchimenti in Terre rare intermedie, principalmente causati dalla 

dissoluzione di minerali evaporitici. Le grandi variazioni redox riscontrate in questo sistema 

idrotermale sono la causa delle anomalie di Eu e Ce riconosciute nelle acque. Le acque ossidate 

mostrano anomalie negative di cerio dovute allo scavenging ossidativo, mentre anomalie positive di 

europio sono presenti nelle acque caratterizzate da valori di Eh < -100 mV dovute alla presenza 

dell’Eu2+ in fase disciolta. Queste condizioni estremamente riducenti aumentano la stabilità 

dell’Eu2+ rispetto agli elementi vicini  (con stato di ossidazione 3+) lungo la serie delle Terre Rare. 

Il rapporto Zr/Hf è sensibile alla presenza di ossidrossidi di ferro che causano la principale 

rimozione di Hf rispetto a Zr sulle superfici dei minerali. Sebbene Zr e Hf non siano elementi 

sensibili alle variazioni redox del sistema, il rapporto Zr/Hf è influenzato dalle variazioni di Eh che 

inducono variazioni della stabilità degli ossidrossidi di ferro. Pertanto, il rapporto Zr/Hf nelle acque 

sovrassature in ossidrossidi di ferro mostrano valori super-condritici causati dalla preferenziale 

rimozione di Hf sulle superfici dei solidi, mentre le acque sovrassature in pirite mostrano rapporti 

Zr/Hf simili ai valori condritici. 
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RÉSUMÉ 

Cette thèse de doctorat traite du comportement géochimique de Zr, Hf et Terres Rares dans des 

environnements aqueux extrêmes, caractérisés par une grande variété de paramètres chimiques et 

physiques et de composition chimique de l'eau. Les études ont été effectuées dans des systèmes 

naturels différents dont chacun ayant des caractéristiques spécifiques: dans les eaux hyper-salines 

long de la faille de la Mer Morte (Israël), caractérisée par une large gamme de valeurs d’Eh, les 

eaux hyper-acides qui circulent dans le système volcanique hydrothermal du Nevado del Ruiz 

(Colombie) et les eaux riches en CO2 du système volcanique hydrothermal de l'île de Pantelleria, en 

comprenant le lac alcalin “Specchio di Venere “. Le large éventail de conditions physico-chimiques 

et la composition différente des eaux en interaction avec les phases solides de nature différente, ont 

permis d'étudier Zr, Hf et les Terres rares dans un scénario complet, en mettant en évidence les 

aspects géochimiques encore absents pour ce qui concerne le comportement de ces éléments dans la 

phase aqueuse. 

Le rôle important joué par le pH (1 à 8.8) et par la composition chimique de l'eau par apport à la 

distribution de Zr, Hf et Terre Rares a été étudié principalement dans le système volcanique 

hydrothermal du Nevado del Ruiz. Le pH joue un rôle fondamental en ce qui concerne la 

précipitation des oxyhydroxydes de fer et d'aluminium, ce qui induit des variations des 

concentrations de Zr, Hf et Terres rares et considérables anomalies positives de cérium. Haute 

appauvrissement en Terres Rares légères ont été trouvés dans les eaux acide dominées par le sulfate 

où on a reconnu la formation d’alunite et jarosite. Les eaux sulfates acides (1 < pH < 3.6) se 

caractérisent par des relations de Zr/Hf sous-condritique (inférieur aux roches locales) et des 

relations condritique de Y/Ho (semblables aux valeurs des roches locales). Les rapports molaires de 

Zr/Hf augment à l'augmentation du rapport Cl/SO4 en suggérant un comportement différent de Zr et 

Hf qui pourrait dépendre de la complexation des ions en solution. Contrairement aux eaux acides, 
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les relations de Y/Ho et Zr/Hf dans les eaux proches de la neutralité, augmentent vers des valeurs 

super-condritiques, en raison de l'élimination préférentielle par les oxyhydroxydes de fer et 

d'aluminium de l'Hf et Ho que de Zr et Y.  

Les eaux hydrothermales de Pantelleria ont une composition chimique dominée par Na et Cl, avec 

des concentrations variables de HCO3 due à l'interaction de CO2 (principalement d'origine 

magmatique) avec les eaux du système hydrothermal. On a constaté un comportement différent de 

Zr, Hf et Terres Rares dans l'eau du lac “Specchio di Venere “ par rapport aux eaux thermales qui 

circulent dans le système hydrothermal. Les Terres Rares normalisées à PAAS (Post Archean 

Australian Shale) croissent du La au Lu et sont complexées par les espèces carbonatées. Le lac 

“Specchio di Venere” comparé aux eaux hydrothermales, montre des concentrations plus élevées en 

Zr, Hf et de Terres Rares, ainsi qu’un enrichissement de Terres Rares intermédiaires et une 

anomalie positive de Ce. Caractéristiques similaires se retrouvent dans le les poudres du Desert 

Varnish (phase solide présente dans les environnements arides) composé principalement de 

minéraux argileux et oxyhydroxydes de Fe et Mn. Les rapports molaires de Y/Ho et Zr/Hf du 

“Specchio di Venere” (respectivement, 35.37 et 76.30) sont proches des valeurs trouvés dans les 

poudres du Desert Varnish. Le distribution des Terres Rares, avec les rapports de Y/Ho et Zr/Hf et 

la présence de phyllosilicates et oxyhydroxydes de fer dans la couche superficielle du “Specchio di 

Venere” montrent l’interaction entre les particules atmosphériques qui provient du désert du Sahara 

et le lac “Specchio di Venere”, démontrent que Zr, Hf et terres rares sont de traceur utiles, capables 

d'identifier la contribution des particules atmosphériques dans les bassins.  

Le rôle crucial joué par les changements de Eh par apport à la distribution de Zr, Hf et Terres 

Rares a été évalué principalement dans les eaux étudiées le long la faille de la Mer Morte. Ces eaux 

sont caractérisées par une large gamme de contenu en sel (de 0.3 à 193.4 g l-1) et de valeurs de Eh 

(de -400 à 390 mV). Les eaux sont caractérisées principalement par le contenu de Na et Cl 

dominants avec enrichissement variable dans SO4, HCO3 et Ca, provoqués par l'interaction de l'eau 
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avec les roches locales. Les eaux sont sursaturées en minéraux carbonatés, pyrite et oxyhydroxydes 

de Fe et Mn, tandis que toujours soussaturées en gypse et halite. Certaines eaux montrent des 

enrichissements en Terres Rares intermédiaire, principalement causés par la dissolution des 

minéraux évaporitiques. Les grandes variations redox observées dans ce système hydrothermal sont 

la cause des anomalies de Eu et Ce reconnues dans les eaux. Les eaux oxydés montrent des 

anomalies négatives de cérium en raison du scavenging oxydatif, tandis que des anomalies positives 

de l'europium sont présents dans les eaux caractérisées par des valeurs de Eh <-100mV en raison de 

la présence du Eu2 + dans la phase dissoute. Ces conditions extrêmement réductrices augmentent la 

stabilité du Eu2+ par rapport aux éléments proches (à l'état d'oxydation 3+) tous le long de la série 

des Terres Rares. Le rapport Zr/Hf est sensible à la présence d'hydroxydes de fer qui provoquent 

l'enlèvement principal de Hf par rapport à Zr sur les surfaces des minéraux. Bien que Zr et Hf ne 

sont pas de éléments sensibles aux variations redox du système, le rapport Zr/Hf est influencée par 

les changements de Eh qui induisent des changements dans la stabilité des oxyhydroxydes de fer. 

En conséquence, le rapport Zr/Hf dans les eaux sursaturées d'oxyhydroxydes de fer présentent des 

valeurs sur-condritiques provoqués par l'élimination préférentielle de Hf sur les surfaces des 

solides, tandis que les eaux sursaturées de pyrite montrent des rapports Zr/Hf semblables aux 

valeurs conditriques. 
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PREFACE 

This PhD thesis concerns the geochemistry of Zr, Hf and REE never studied in extreme 

environments, in order to evaluate the main processes involving these elements in hyperacid, 

hypersaline and lake systems. This thesis consists of an introduction presented in Chapter I; the 

description of the investigated areas in Chapter II; materials and methods in Chapter III; results, 

discussions and conclusions of each case of study are presented from Chapters IV to VI. The 

general conclusions regarding the geochemistry of Zr, Hf and REE are presented in Chapter 7. 

Chapter 8 is an additional study concerning the chemical and isotopic composition of dissolved 

gases in waters along Dead Sea Fault area. The aim of this last study is to characterise the source of 

volatiles (carbon dioxide and helium) and to investigate their relationship with the main tectonic 

framework. The paragraphs “Introduction” and “Materials and methods” related to this last study 

are included in Chapter VIII. The references relative to the chapters are in Chapter IX.  

The case studies presented in this work are the results, discussions and conclusions of the articles 

prepared by the author of the thesis. The articles are already published, accepted or under review in 

international journals. The papers already published are also included in the appendix (Chapter X).  
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CHAPTER 1  

INTRODUCTION 

1.1 General aspects and aim of the work 

The REE (Rare Earth Elements; lanthanides and yttrium) are resources economically important 

with an increasing exploitation due to the continuous using of these metals in the production of 

electronic devices. Previously, Zr, Hf and REE were considered immobile, free from geochemical 

fractionations during water-rock interaction. Starting from 80’ years, with the improvement of 

analythical techniques, the Zr, Hf and REE have been progressively investigated in dissolved phase. 

Here, a geochemical behavior of REE controlled by their external electronic configuration rather 

than their charge-to-radius ratio was recognised. In the last 30 years, an extensive literature has 

been developed about the distribution of REE and the Y/Ho ratios during interaction processes 

between different phases while very limited investigations were carried out about the Zr and Hf 

geochemistry. The study of Zr and Hf distributions in natural waters started about 20 years ago and 

was mainly focused on seawater (Bau et al. 1996; Godfrey et al., 1996; 2008; Firdaus et al., 2011; 

Frank, 2011). 

A special attention was focused on the capability of the REE to provide insights into 

geochemical processes occurring in natural environments (Bau, 1996; 1999; Bau and Dulski, 1999; 

Fulignati et al., 1999; Wood et al., 2003 and references therein; Censi et al., 2007; Piper and Bau, 

2013; Censi et al., 2014; 2015; Inguaggiato et al., 2015). The Zr, Hf and REE behaviour in 

geothermal fluids depends from their chemical-physical characters, rock-water interactions, the 

deposition of authigenic minerals and speciation (Wood, 1990a; 2003; Lewis et al., 1997, 1998; 

Gammons et al., 2005; Bao et al., 2008; Peiffer et al., 2011; Varekamp et al., 2015). The input of 

atmospheric fallout was recognized as responsible for the mobilization of the REE and the changes 

of seawater composition (Greaves et al., 1994; 1999), mainly in an epicontinental basin like the 
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Mediterranean Sea. Here, the effects of the dissolution of atmospheric fallout influence the 

dissolved REE distribution along the water column (Greaves et al., 1991; Censi et al., 2004; 2007), 

whereas Zr and Hf behaviour is not known.  

The geothermal waters with very acidic pH values have higher contents of REE dissolved in 

waters up to 104 times compared to seawater. The REE contents in hydrothermal waters change as 

function of pH values increasing as the acidity of solution increases, independently from the 

temperature and the type of local rock (Michard, 1989). The geothermal systems are characterized 

by a large variety of REE patterns. In particular, the acid sulphate waters have high REE contents 

sometimes with Light Rare Earth Elements (LREE) strongly depleted with respect to the local rocks 

(Wood, 2003 and references therein). During the mixing between reduced fluids discharged from 

the hydrothermal vent at the marine floor and oxidized seawater, the REE are scavenged by the 

formation of Fe and Mn oxyhydroxides (Bau, 1999, Wood et al., 2003 and references therein).  

The knowledge of the REE behaviour in alkaline lakes is limited (Johannesson and Lyons, 1994) 

and only few studies have been carried out on acid volcanic lakes (Ayers, 2012; Varekamp, 2015 

and references therein) whereas the dissolved Zr and Hf geochemistry under these conditions is 

unknown.  

The concentration of total dissolved REE in near neutral pH waters and in seawater is low and 

their dissolved species are dominated by carbonate complexes (Luo and Byrne, 2004) whereas the 

latter species and hydroxides could be considered negligible in acidic waters. In seawater, the shale-

normalized REE patterns progressively increase along the REE series showing negative Ce 

anomalies consistently with the oxidative scavenging of CeO2
 (Censi et al., 2007; Seto et al., 2008; 

Piper et al., 2013 and references therein).  

Recent studies investigated isovalent elements Zr-Hf, Y-Ho in waters and their fractionation in 

processes involving solid phases (Godfrey et al., 2008; Firdaus et al., 2011; Frank 2011; Schmidt et 

al., 2014). A different behaviour of Y-Ho and Zr-Hf geochemical twins has been evidenced in 
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aqueous solution in contrast to the negligible fractionation of Y-Ho and Zr-Hf occurring at high 

temperature in pure silicate melts, where the processes are mainly controlled by the ion charge and 

radius (Bau, 1996). Y/Ho and Zr/Hf ratios in aqueous solutions deviate from the chondritic ratio, 

due to the fractionation processes ruled by the electronic configurations of elements (Bau, 1996). In 

seawater, the continental material has been recognised as the main source of Zr and Hf. A larger 

removal of Hf with respect to Zr was found in seawater, due to the different sorption of these 

elements onto Fe-, Mn-oxyhydroxides (Godfrey et al., 1996; 2008; Firdaus et al., 2011; Frank et al. 

2011; Schmidt et al., 2014). In the water column of the Pacific Ocean, the Zr/Hf molar ratio ranges 

from 100 to 600 (Firdaus et al., 2011), whereas in Atlantic coastal waters Zr/Hf molar ratio spans 

between 100 and 200 (Godfrey et al., 1996; 2009). Censi et al., (2014) investigated the sediments 

collected from deep-sea brines in the eastern part of Mediterranean Sea basin, showing sub-

chondritic Y/Ho and Zr/Hf ratios in authigenc carbonates and lack of Zr/Hf fractionation during 

halite precipitation. In the last years, the scientific community focused the attention through the Zr-

Hf and Nb-Ta (geochemical pairs) in the ocean, recognizing them as a useful geochemical tool for 

tracing water masses in the ocean (Bau, 1996; Firdaus et al., 2011; Frank, 2011). However, the 

behaviour of Zr and Hf has never been studied in extreme environments: strong acidic waters linked 

to volcanic system, lakes where the interaction between the water body and the atmospheric fallout 

contribution from the nearby desert occurs and waters characterized by high TDS values and very 

low Eh values.  

This PhD research investigated the geochemistry of Zr, Hf and REE in waters circulating within 

the Nevado del Ruiz (Colombia) and Pantelleria (Italy) volcano-hydrothermal systems, in the 

alkaline lake formed in the calderic depression of Pantelleria volcanic island and in the hypersaline 

waters with variable Eh values collected along the Dead Sea Fault (Israel). These natural systems 

were considered as natural laboratories for better understanding the processes involving the 

elements previous mentioned within a wide range of pH, Eh, TDS and water chemical composition. 
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In particular the attention was focused on: 

1. The geochemistry of Zr, Hf and REE in waters of Nevado del Ruiz, covering a range of 

pH from 1 to 8.8; with special attention on the acid sulphate-chlorine waters with pH 

included between 1 and 3.6. 

2. The geochemistry of Zr, Hf and REE in CO2-rich waters of Pantelleria Island, covering a 

range of pH from 6 to 9; with special attention on the source of Zr, Hf and REE in the 

alkaline lake “Specchio di Venere”. 

3. The geochemistry of Zr, Hf and REE in waters circulating along the Dead Sea fault area; 

with special attention on the different Zr and Hf affinity with respect to the authigenic 

mineral surfaces in waters covering a wide range of Eh and TDS values. 

1.2 The aqueous geochemistry of REE 

Lanthanides are a group of 15 elements belonging to the f-block, usually split in 3 groups: light 

(La, Ce, Pr, Nd, (Pm)), middle (Sm, Eu, Gd, Tb, Dy) and heavy (Ho, Er, Tm, Yb Lu). Promethium 

(Pm) is a radioactive lanthanide outside the focus of this study. The external electronic 

configuration changes from La to Lu with the filling of inner 4f orbitals giving to these elements 

quite similar chemical properties. However, the progressive filling of 4f orbitals closest to the 

nucleus induces a phenomenon well known as “Lanthanide Contraction”, consisting in the 

progressive decrease of ionic radius increasing the atomic number (Shannon, 1976). In natural 

waters, the lanthanides are predominant in solution with the trivalent oxidation state, whereas 

tetravalent cerium and bivalent europium occur in oxidized condition and extreme reduced 

condition, respectively. Although Y has not f-electrons it is included with the HREE, because it is 

characterized by similar ionic radius and the same oxidation state (+3) compared to Ho. Sometimes 

some REE normalized pattern or sequences of distribution coefficients of REE can be splitted into 

four different curves called tetrads explained according to the Refined Spin Pairing energy theory 

(Reisfeld and Jorgensen, 1977; Jorgensen, 1979 and cited references).  
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The REE form strong complexes with different inorganic ligands: carbonate, hydroxide, sulphate, 

fluorine, chlorine and phosphate (Wood et al., 2003 and references therein). Only a small 

percentage of REE is in solution as free hydrated ions (REE3+), due to the high stability constant of 

REE with inorganic ligands (Wood, 1990; Millero, 1992; Luo and Byrne, 2004). The REE-

complexes and their abundances depend on the stability constant of the complexes and to the 

relative concentration of anion ligands in solution. The stability constants of the trivalent REE 

complexes with carbonate, fluoride, phosphate and hydroxide, increase along the REE series, while 

the stability constants of REE-complexes with chloride decrease along the REE series (Fig. 1.1) 

(Wood, 1990; Millero, 1992; Luo and Byrne, 2004). In particular the chloride ligand forms weak 

complexes with REE at temperatures lower than 200°C, whereas the stability of REE-chloride 

complex increase with the temperature (Wood et al., 2003 and references therein). The constants of 

REE complexes with SO4
2- ligands do not change in a wide range, showing an almost flat 

distribution and a slight bulge effect (Millero, 1992; Johannesson et al., 1996). The REE in water 

with near-neutral pH (including seawater) are mainly dominated by carbonate complexes 

[REE(CO3)]+ and [REE(CO3)2]
 -, while in strong acidic waters the role of carbonates ligands is 

negligible (Byrne et al., 2002).  

Having the same charge and very similar ionic radius (1.019 and 1.015 Å, respectively), Y and Ho 

behave similarly during primary processes. As a consequence their Y/Ho signature in rocks is close 

to the chondritic value (52; Jochum et al., 1988). On the contrary, this signature deviates from this 

value during secondary processes involving aqueous solutions. 

During the solidification of pure silicate melt, these elements are CHArge and RAdius Controlled 

(CHARAC) showing smooth normalized patterns mainly due to the lanthanide contraction. Often 

REE show irregular normalized patterns during the solidification of highly evolved magmas (>70% 

SiO2) and in aqueous solution, indicating that the distribution of REE does not depend only by 

charge and ionic radius but other processes influence the REE distribution (Bau, 1996).  
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and Hf 0.83 Å). The knowledge of Zr and Hf in solution is poor compared to the REE. In near-

neutral waters, the complexation of these elements is dominated by hydroxyl groups Zr(OH)4, 

Hf(OH)4, Zr(OH)5
-, Hf(OH)5

- (Byrne, 2002). Moreover, Zr(OH)4 and Hf(OH)5
- complexes are the 

species dominated in near-neutral waters (Censi et al., 2014 and references thereis), even if Zr-, Hf-

complexes with fluoride and chloride ligands (Pershina et al., 2002; Monroy et al., 2010) could be 

stable in hydrothermal environment. However, there is a paucity of knowledge about Zr and Hf 

complexes in extreme environments with hyperacid pH where the relative abundance of major 

anion ligands complexing the metals is completely different with respect to the common natural 

seawater and continental waters. 

During the solidification of pure silicate melt, Zr and Hf are controlled by charge and radius as Y 

and Ho. Zr/Hf ratios are quite constant in rock with SiO2<70%, with near-chondritic ratio (≈73; 

Jochum et al., 1986), while in aqueous solution and their precipitated super-chondritic ratios have 

been found (Firdaus et al., 2011). In solid-liquid processes, the ionic radius and charge are not the 

only responsible of Zr-Hf fractionation, showing non-CHARAC behaviour (Bau, 1996) due to the 

different metal complexation. 
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Currently, the volcanic activity is limited to gas emissions at or below boiling temperature in 

Favare, Cuddia Di Mida and M. Gibele area (south-central of island). Thermal waters CO2-enriched 

located along the coast in the northwest and southwest areas (Dongarrà et al., 1983) and other 

thermal springs and anomalous degassing areas situated along the shoreline of the "Specchio di 

Venere" lake (Favara et al., 2001; Aiuppa et al., 2007). Water temperatures range from 20 to 90°C 

with pH values from 6.1 to 9.3 (Dongarrà et al., 1983; Parello et al., 2000). The anion chemical 

composition of the waters is chloride dominated, whereas many thermal waters are rich in 

carbonatic species due to the interaction with CO2 discharged from the magmatic system (Parello et 

al., 2000). The scenario mentioned above suggests that the water circulating in Pantelleria Island 

represents a mixing between CO2-rich thermal water, seawater and meteoric water recharge.  

“Specchio di Venere” Lake is a saline endorheic basin formed within a calderic depression called 

“Caldera Cinque Denti”, fed by several thermal springs and meteoric water. Aiuppa et alii (2007) 

excluded any direct implication of seawater in the lake, highlighting intermittent stratification of the 

lake. Such stratification is unstable and of short duration (generally a few days) and changes of 

meteorological conditions (rain and/or wind) are able to mix the lake water, which is only 13m deep 

(Aiuppa et al., 2007). The existence of reducing conditions at the water-sediment interface at the 

bottom of the lake was recognized (Aiuppa et al., 2007), while isotopic analysis (δD; δ18O) in 

"Specchio di Venere" lake evidenced the evaporation of water body (Dongarrà et al., 1983).  
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Galilee Mountains) is built mostly of carbonate sequences of Judea, Mt. Scopus and Avdat groups. 

The central part of the studied area is from the Lake Kinneret to the southern Dead Sea. It is limited 

in the west by the eastern Judea Mountains whereas the eastern limit is represented by the 

escarpment formed by the Transform faults. The down most part of this area is composed of 

evaporitic and alluvium sequences belonging to the Dead Sea Group (Zak, 1967). The third part of 

the studied area, extending between the Dead Sea and the Gulf of Eilat, is mostly a low area filled 

by thick alluvium deposits. This southern part is limited between Precambrian crystalline rocks 

covered by sandstones both forming the Edom mountains at East and the carbonate sequences of the 

Judea Group outcropping in the Negev area in the west. 

Broad changes of the crust-mantle boundary (Moho) were suggested in the studied area with a 

progressive deepening of the Moho from NW to SE from about 25 to 35 km depth (Segev et al., 

2006; Mechie et al., 2013). Along the rift system, geophysical indications provide evidences of a 

Mantle uprising in northernmost area (about 30 km depth) relative to the Eilat region where it 

should occur at about 35 km. 

The Dead Sea is a terminal lake located in the northern part of the Dead Sea rift valley [Katz and 

Starinsky, 2009]. Therefore, its water level is influenced by the balance between the evaporation 

and the input of river and groundwaters from the surroundings area. In 1979, the evolution of the 

composition of the Dead Sea water attained its current status following the progressive growth of 

salinity caused by the negative water balance between input and output in the basin (Lensky et al., 

2005, and references therein). Since then, halite crystals have been observed in shallow waters 

(Steinhorn et al., 1983) and widespread halite crystallisation began around 1982 (Herut et al., 1998, 

and references therein).  
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CHAPTER 3  

MATERIALS AND METHODS 

3.1 Sampling and analytical methods 

Temperature, pH, Eh and electrical conductivity of waters were measured in the field with an 

ORION 250+meter. The water samples collected to determine major cations and trace elements 

were filtered through 0.45µm MILIPORE cellulose acetate filters into 250ml Nalgene bottles and 

acidified in the field with ultrapure HNO3. The water samples to determine major anions were 

filtered with 0.45µm filters in the field into LDPE plastic bottle. The major elements were analysed 

by Dionex ICS 1100 chromatograph. A Dionex CS-12A column was used for cations (Na, K, Mg 

and Ca) and a Dionex AS14A column for anions (F, Cl, and SO4). Alkalinity was determined in the 

field by titration with HCl 0.1M. Trace elements including also REE, Zr and Hf, were analysed by 

Q-ICP-MS (Agilent 7500ce) equipped with a Micromist nebulizer, a Scott double pass spray 

chamber, a three-channel peristaltic pump, an auto sampler (ASX-500, Cetac) and a Octopole 

Reaction System (ORS) for removing interferences of polyatomic masses and isobaric isotopes. The 

mass spectrometer was calibrated with a multi-element standard solution, daily prepared and diluted 

10 times to obtain a curve with 11 calibration points. The sensitivity variations were monitored 

using 103Rh, 115In, 185Re at a final concentration of 8 µg/l for each as internal standards added 

directly online by an appropriate device that mix internal standard solution to the sample just before 

the nebulizer. Sixty seconds rinse using 0.5% HCl and 2% of HNO3 solution plus 60-s rinse using 

2% of HNO3 solution reduced memory interferences between samples. The precision of analysis 

was checked by running 5 replicates of every standard and sample, it was always within ±10%. 

Data accuracy was evaluated analysing standard reference materials (Spectrapure Standards SW1 

and 2, SLRS4, NIST 1643e, Environment Canada TM 24.3 and TM 61.2) for each analytical 
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session and error for each element was <15%. Fe, Al with high concentrations (> 1mg/l) and Si 

were analysed by ICP-OES Horiba Ultima 2 at wavelength of 259.940 nm, 396.152 nm and 

251.611 nm respectively. 

REE, Zr and Hf were analyzed without preconcentration technique in Nevado del Ruiz waters, 

while1 liter of sample water for each sampling point was collected along Dead Sea Fault and 

Pantelleria island, in order to preconcentrate REE, Zr and Hf (see the detailed method in the 

following section) The sample water was filtered through 0.45µm MILIPORE cellulose acetate 

filters, stored in Nalgene bottles and acidified with 5ml of ultrapure solution of HNO3, to attain pH≈ 

2.  

Scanning Electronic Microscopy (SEM) observations and Energy Dispersive X-RAY Spectra 

(EDS) were carried out on the suspended particular matter (SPM) collected during the filtration 

from the investigated waters, in order to get information about the nature of suspended solids. The 

filters with the SPM were assembled on the alluminium stub and coated with gold. The analisys 

were performed with LEO 440 SEM equipped with an EDS system OXFORD ISIS Link and Si (Li) 

PENTAFET. 

3.2 Method to determine Zr, Hf and REE in Dead Sea Fault and Pantelleria waters 

The samples collected to determine REE, Zr and Hf in Dead Sea Fault and Pantelleria waters were 

treated in laboratory following the method described by Raso et alii (2013). In each water sample (1 

liter) 1 mg of Fe was added and subsequently ammonia ultrapure solution to attain a pH between 8.0 

and 8.5, in order to precipitate REE onto solid Fe(OH)3. The treated solution was agitated for 3 

hours and after 48 hours the solution was filtered onto Millipore membranes with 0.45 µm porosity 

to collect the solid precipitated. The next step was to dissolve the Fe(OH)3 onto the filter in 5 ml of 

6M HCl ultrapure solution. The last step was to dilute the solution 1:5 with ultrapure water to allow 

the introduction of the sample in ICP-MS. The iron concentration was analysed by ICP-OES for 
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each solution to check the recovery of the added iron. 

3.3 Speciation calculations and saturation indexes 

The Saturation Indexes (SI) and the aqueous speciation of elements were calculated using 

PHREEQC software package (version 3.0.6; Parkhurst and Appelo, 2010). The simulations were 

carried out using the database LLNL.  

3.4  Equation to determine anomalies of REE 

Anomalies of Cerium and Europium in waters were calculated with respect to the neighboring 

elements normalized to the reference matherial, using the equation proposed by Alibo and Nozaki 

(1999):  

REEn/REEn*=2×(REE)n/[(REE)n-1+(REE)n+1] 

(REE)n is the concentration of the element chosen to calculate the anomaly, while (REE)n-1 and 

(REE)n+1 represent the previous and the subsequent element along the REE series, respectively. 
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CHAPTER 4  

GEOCHEMISTRY OF Zr, HF AND REE IN A WIDE RANGE OF 

PH AND WATER COMPOSITION: THE NEVADO DEL RUIZ 

VOLCANO-HYDROTHERMAL SYSTEM (COLOMBIA) 

4.1 RESULTS 

4.1.1 General aspects 

Hot and cold waters were collected in the area close to NDR volcano in November 2013 (Fig. 

4.1). NDR waters cover a wide spectrum of pH, ranging from 1 to 8.8. Temperature ranges from 6.8 

to 79.5 °C, electrical conductivity values span from 0.2 to 33.5 mS/cm and Eh values range between             

-31 and +325.4 mV (Tab. 4.1). The acidity recorded in the investigated waters is due to the 

interaction of magmatic gases, such as HCl, SO2, and their dissolution and dissociation in 

groundwater (Giggenbach et al., 1990). 

 

Fig. 4.1 - Location map of sampled waters. 
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oversaturated with respect to iron and aluminium oxyhydroxides, while the waters of Group 2 are 

undersaturated with respect to those minerals. SEM-EDS analyses of SPM show amorphous silica 

in all the investigated waters, sometimes silica sphere probably encrusting organic matter (Fig 

4.3b). Moreover, different solid phases were found in the groups of waters classified previously: in 

Group 1a Fe-, Al-oxyhydroxides encrusting amorphous silica are present (Fig. 4.3a); in Group 2a 

waters Fe-Al-Ca solid phases (probably sulphates) onto amorphous silica are recognised (Figg. 

4.3c; 4.3d). 

 

Tab. 4.1 - Chemical composition of the studied waters expressed in mmol/l. 

 

 

Tab. 4.2 - Saturation indexes of studied waters. 

Group Sample Name 
T 

(°C) 
pH 

Cond 

(mS/cm) 

Eh 

(mV) 
Na K Mg Ca F Cl SO4 HCO3 Al Fe Si 

  Agua Hedionda 13.9 5.9 0.4 170 0.48 0.07 1.07 0.76 0.01 0.05 1.01 2.30 0.0007 0.0005 1.64 

  Rio Molinos 15.9 8.8 0.5 - 2.04 0.20 0.62 1.43 0.02 1.43 1.80 1.20 0.0005 0.0003 1.15 

Group 1 Nereidas 50.4 6.1 2.0 96 5.35 0.45 1.95 3.25 0.00 0.62 3.10 9.40 0.0008 0.0004 3.06 

  Botero Londono 79.5 7.7 6.8 -31 27.06 2.10 0.26 1.20 0.10 28.4 0.68 1.40 0.0353 0.0098 2.78 

  Termal La Gruta 33.5 1.6 8.7 236 14.06 1.41 5.90 4.42 1.47 14.5 36.9 - 11.09 0.53 2.94 

  Hotel 1 59.8 1.4 17.0 271 20.93 1.79 9.23 6.03 2.09 20.8 52.1 - 12.00 1.28 3.67 

  Hotel 2 62.6 1.4 10.3 115 21.47 1.93 9.72 6.39 2.07 21.9 56.2 - 12.41 1.30 3.75 

  Agua caliente 59.3 1.0 33.3 325 14.99 5.78 7.76 6.15 3.10 35.7 110.2 - 30.23 4.14 2.58 

Group 2 Quebrada La Gruta 15.3 2.1 3.0 207 4.76 0.86 2.08 1.52 0.55 4.93 12.6 - 3.13 0.28 1.53 

  Agua Blanca 29.1 3.3 2.5 205 1.81 0.26 2.16 10.38 0.22 1.39 16.1 - 1.86 0.27 2.03 

  Rio Lagunillias 6.8 3.6 0.2 171 0.16 0.03 0.28 0.41 0.01 0.09 1.40 - 0.26 0.07 0.55 

  Rio Guali 7.2 3.5 1.2 - 1.06 0.16 1.23 2.68 0.13 0.76 5.77 - 0.83 0.14 1.64 

  Rio Azufrado 16.0 3.4 1.8 190 4.59 0.39 4.63 6.62 0.19 1.54 16.1 - 1.50 0.35 2.56 

  FT Gauli 59.2 2.8 3.5 246 1.81 0.28 2.89 8.67 0.31 1.30 15.7 - 1.78 0.02 3.25 

 

Group Sample Name 
Goethite 

FeOOH 

Hematite   

Fe2O3 

Gibbsite   

Al(OH)3 

Boehmite 

AlO(OH)   

  Agua Hedionda 0.02 0.99 0.80 0.92 

Group 1 Rio Molinos 3.66 8.27 0.48 0.61 

  Nereidas 0.14 1.38 1.59 1.91 

  Botero Londono 5.90 13.0 0.89 1.32 

  Termal La Gruta -6.57 -12.2 -3.97 -3.76 

  Hotel 1 -7.07 -13.0 -4.62 -4.26 

  Hotel 2 -6.22 -11.3 -4.60 -6.22 

  Agua caliente -7.04 -12.9 -5.50 -5.14 

Group 2 Quebrada La Gruta -8.25 -15.6 -5.83 -5.70 

  Agua Blanca -6.57 -12.2 -3.97 -3.76 

  Rio Lagunillias -5.08 -9.20 -2.24 -2.18 

  Rio Guali -6.87 -12.8 -4.64 -4.57 

  Rio Azufrado -7.69 -14.4 -5.26 -5.13 

  FT Gauli -8.83 -16.5 -4.83 -4.47 

 















  
               


             



           



























































































CHAPTER 4 

Geochemistry of Zr, Hf and REE in a wide range of pH and water composition: The Nevado del Ruiz volcano-hydrothermal system 

(Colombia)  

 

- 27 - 

2015 and references therein). The hyperacid waters of Group 2 fall between the isosol lines 

indicating the dissolution of about 5 to 10 g of rock (Fig. 4.4). The Group 2b waters show to be 

close to congruent dissolution of the average local rock, for all elements with the exception of Si 

that is depleted in all samples (Fig. 4.4), probably due to the precipitation of silica minerals. The 

major elements of Group 2a deviate from the isosol line, with the exception of Mg and Ca that fall 

close to the 5 - 10 grams of rock dissolution line (Fig. 4.4). Strong depletions of Fe, Al, K and 

minor depletion of Na (Fig. 4.4) suggest the precipitation of alunite [(K,Na)Al3(SO4)2(OH)6)] and 

jarosite [(K, Na)Fe3(SO4)2(OH)6], typical minerals precipitating in hyperacid hydrothermal systems 

(Taran et al. 2008; Varekamp et al., 2009; Colvin et al., 2013). The waters of Group 1 don’t reflect 

the composition of the average local rock, showing the strong depletions in Fe and Al (Fig. 5), 

particularly in Group 1a waters, where the near-neutral pH allows the precipitation of iron and 

aluminium oxyhydroxides.  

 

Fig. 4.4 - Isosol diagramis a log-log compositional plot, with the average volcanic rock composition versus thewater 
composition. Isosol lines represent the equal amount of rock dissolved for the element considered. The plot shows the 
near-congruent dissolution of Group 2b (acid waters) and the depletion in K, Na, Fe, Al, in Group 2a (acid waters). The 
Group 2 shows a rock dissolution ranging between 5 and 10 g/l. Group 1 (near-neutral pH) is strongly depleted in Fe, 
Al reflecting the precipitation of Fe, Al- oxyhydroxides. (probably sulphates) onto amorphous silica (d). 
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4.1.2 REE, Zr and Hf 

The total amount of REE in NDR waters ranges between 0.8 and 6722 nmol/l (Tab. 4.3). We 

found an inverse correlation between the total amount of REE and pH values (Fig. 4.5): higher REE 

contents are recognised in Group 2 (lower pH values) with respect to Group 1 (higher pH values). 

Great differences in ΣREE are found between the subgroups 1a and 1b with Botero Londono 

sample (Group 1b) displaying a higher value with respect to the waters of Group 1a (Fig. 4.5). The 

correlation between ΣREE and pH values suggests that rock dissolution is occurring more 

completely under acidic conditions, particularly Group 2b waters showing near-congruent 

dissolution of up to 10 grams of rock per liter (Fig. 4.5). 

 

Fig. 4.5 - Variations of total REE dissolved in water as a function of pH. Symbols as in Fig. 4.2. 

Considering the constant distribution of REE in the magmatic rocks of NDR, the studied waters 

were normalised to the average local rock (Borrero et al., 2009 and reference therein) evaluating 

processes of water-rock interaction in the hydrothermal system. The rock normalized REE patterns 
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differ among the various water groups (Fig. 4.6). Group 1a show patterns increasing from La to Lu, 

a positive Eu anomaly and negative Ce anomaly (Fig. 7). The Botero Londono water (Group 1b) 

shows a slight decrease from La to Lu (Fig. 4.6). The Group 2b waters show a flat pattern, whereas 

the waters of Group 2a are characterised by anomalous shape of pattern strongly depleted in LREE 

compared to the Middle Rare Earth Elements (MREE) and Heavy Rare Earth Elements (HREE) 

(Fig. 4.6). 

 

Tab. 4.3 - REE, Zr and Hf dissolved in waters expressed in nmol/l.  

 

Group Sample Y  La  Ce  Pr  Nd  Sm  Eu  Gd  Tb  Dy  Ho  Er  Tm  Yb  Lu  Zr Hf 

  Agua Hedionda 0.52 0.04 0.07 0.013 0.051 0.005 0.017 0.020 0.002 0.025 0.007 0.017 0.005 0.034 0.008 1.30 0.013 

  Rio Molinos 0.17 0.02 0.008 0.006 0.029 0.007 0.017 0.009 0.002 0.014 0.003 0.01 0.003 0.008 0.003 5.31 0.057 

Group 1 Nereidas 1.13 0.04 0.07 0.012 0.074 0.015 0.037 0.045 0.005 0.042 0.009 0.03 0.008 0.054 0.012 0.70 0.007 

  Botero Londono 5.24 11.1 19.2 1.85 5.95 0.99 0.31 0.89 0.11 0.48 0.09 0.25 0.04 0.21 0.03 2.21 0.03 

  Termal Gruta 642 512 1102 142 545 103 24.5 89.23 11.8 58.8 11.6 32.3 4.36 26.8 3.96 21.7 0.46 

  Hotel 1 465 560 1034 119 429 77.9 19.6 71.30 9.07 46.5 9.39 25.8 3.52 21.6 3.16 8.52 0.24 

  Hotel 2 483 565 1050 121 439 79.2 20.0 70.37 9.15 47.2 9.57 26.4 3.70 22.3 3.19 14.7 0.33 

  Agua Caliente 914 1419 2575 269 944 177 43.8 153 19.1 91.7 17.7 47.6 6.45 38.3 5.62 35.1 0.90 

Group 2 Quebrada Gruta 147 145 303 35.2 131 24.7 5.89 21.3 2.74 14.3 2.75 8.50 1.04 6.41 0.95 27.7 0.56 

  Agua Blanca 629 20.4 108 22.8 177 63.6 19.0 81.6 12.83 64.6 11.7 28.4 3.26 17.5 2.34 3.01 0.28 

  Rio Lagunillas 49.7 9.38 28.5 4.81 23.5 6.01 1.17 7.00 1.02 5.04 1.04 2.59 0.35 1.93 0.30 0.48 0.10 

  Rio Guali 204 22.2 65.5 12.0 66.2 20.6 4.25 24.9 3.56 19.3 3.90 10.3 1.29 7.53 1.06 2.17 0.10 

  Rio Azufrado 565 8.88 42.6 10.1 94.9 49.6 13.4 65.2 9.83 52.1 10.4 27.4 3.52 20.5 2.99 3.65 0.24 

  FT Gauli 599 9.60 47.9 11.0 99.7 39.7 9.61 55.8 9.09 50.6 10.70 28.2 3.72 21.3 3.12 0.74 0.09 
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Fig. 4.6 - Average local rock-normalized REE patterns dissolved in water. 

The amount of Y and Ho dissolved in waters range from 0.17 to 914 nmol l-1 and from 0.003 to 

17.7 nmol l-1 respectively. Y/Ho molar ratios range between 47.8 and 127, with values changing 

from chondritic to superchondritic in acidic waters and in near-neutral waters respectively (Fig. 

4.7). 

The Zr concentration ranges from 0.48 to 35.1 nmol l-1 with Hf from 0.007 to 0.90 nmol l-1. Zr/Hf 

molar ratios are within the range between 4.7 and 104, showing sub-chondritic values in acidic 
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REE-complexes play a role together with other geochemical processes during the fractionation of 

REE (Lewis et al., 1998). The very low pH of the studied waters (Group 2) suggests that all the 

inorganic carbon dissolved occurs mainly as dissolved CO2; consequently, carbonate complexes are 

negligible in these acidic solutions. However, [REE(CO3)]+ and [REE(CO3)2]
- play a role in the 

waters belonging to Group 1, as they are the only ones with higher amount of carbonate species 

(HCO3
- and/or CO3

2-) dissolved in solution.  

The assessment of water-rock interaction processes is evaluated by the patterns of REE dissolved 

in waters normalised to the average local rock (Fig. 4.6). In the acidic solutions of Group 2, the 

speciation of REE is ruled by complexes with SO4
2-, F- and Cl-, according to the relative abundance 

of anions dissolved in waters (Lewis et al., 1998). The Group 2b is the only one with flat patterns 

suggesting that source rocks mainly control the REE distribution, without processes changing the 

REE distribution in waters (Fig. 4.6). In Group 2a, the REE-patterns normalised to average local 

rock (Fig. 4.6) are characterised by strong LREE depletion. A similar shape of pattern with LREE 

depletion was already observed in other acid-sulphate waters from Waiotapu (New Zealand), 

Copahue volcano (Argentina), Santa Ana (El Salvador), Kawah Ihen Crater Lake (Indonesia) and 

Kutomintar and Sinarka volcanoes (Kawah Ijen) (Takano et al., 2004; Wood, 2006; Varekamp et 

al., 2009; Colvin et al., 2013; Kalacheva et al., 2015). Strong REE fractionation occurs during the 

hydrothermal alteration in very low pH waters with high SO4
2- contents, showing higher LREE 

contents in alunitic advanced argillic altereted rocks compared to the unalterated volcanic rocks 

(Hikov, 2011). The alteration minerals play an important role taking up the REE from the aqueous 

solution and/or releasing the elements, as a function of the chemical physical condition of the 

system that determins the stability of the solid phases. In particular, the precipitation of alunite-

jarosite, was considered responsible of the LREE depletion in the acid-sulphate waters being the 

solid phases enriched in LREE (Ayers, 2012; Varekamp, 2015 and references therein). In the isosol 
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diagram, Group 2a waters show depletions in K, Fe, Al, Na pointing to alunite and jarosite 

precipitation (Fig. 4.4). Moreover, Al-, Fe- sulphates were found by SEM-EDS analysis as SPM 

(Fig. 4.3c, 4.3d). Coupling these information about the chemical propriety of waters and the nature 

of SPM, the depletion of LREE Group 2a, can be justified by the precipitation of Al-, Fe- sulphates 

as  alunite and jarosite. 

REE-patterns (Group 1a) normalised to average local rocks (Fig. 4.6) show a progressive increase 

from La to Lu according to the stability constant of [REE(CO3)]+ characterised by a progressive 

increase along the REE series (Wood et al., 1990; Millero et al. 1992). Botero Londono (Group 1b) 

is the only water with chloride-dominated composition. Considering the stability constant of 

[REECl]2+ (Wood et al., 1990), the different pattern (Botero Londono) compared to other groups of 

samples is due to REE-chloride complexes stability constant, characterised by the same trend 

recognised for Botero Londono with a shight pattern decreasing along the REE series.  

The precipitation of solid phases involving Fe, Al at circum-neutral pH conditions changes the 

abundance and the distribution of REE in water. Cerium and europium differ from the other REE 

for being redox sensitive elements. Cerium is removed from waters during neutralisation as CeO2 

and/or from precipation of Fe, Mn and Al oxyhydroxides in river waters and marine environment 

(Elderfield et al., 1990; Goldstein and Jacobsten, 1988; Seto et al., 2008). The Ce and Eu anomalies 

vary with pH (Fig. 4.9). In particular, the waters with pH<3.6 (Group 2) have no significant Ce and 

Eu anomalies, whereas the waters with pH>5.9 (except Botero Londono sample) show strong 

negative anomalies of Ce and strong positive anomalies of Eu. The Ce anomaly can be explained 

considering the enhanced removal of Ce with respect to La and Pr, during the processes of co-

precipitation and/or adsorption onto the surface of authigenic minerals (Al-, Fe oxyhydroxides).  

Ce has a different behaviour in Botero Londono sample compared to the other samples of Group 

1, not showing strong Cerium anomaly (Fig. 4.9a). The main differences of Botero Londono water 
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compared to the other waters belonging of Group 1 are the higher ionic strength and the lower Eh 

value. These differences could limit the precipitation of Al-, Fe-oxyhydroxide allowing higher 

amounts of Al and Fe dissolved in water. Moreover, SEM-EDS observations of SPM (Botero 

Londono) do not show the presence of Al-, Fe-oxyhydroxide solid phases.  

Almost all the investigated waters are characterised by a small anomaly of Europium (Fig. 4.9b), 

except for the waters of Group 1 where a strong positive anomaly (1.22-7.43) occurs, suggesting 

additional processes that fractionate the REE. The strong positive Eu anomaly found in the water of 

Group 1a could be justified by the slow interaction of waters with Eu enriched plagioclase, as 

already recognized in other hydrothermal systems (Wood et al., 2003 and references therein; 

Varekamp et al., 2009; Peiffer et al., 2011) 
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the solid surfaces (Koscinsky and Hein, 2003). Bau and Kochinsky (2009) show that the Y/Ho ratio 

in marine Fe-Mn hydroxydes is significantly lower than seawater, suggesting an enhanced 

scavenging of Ho with respect to Y in the Fe-Mn crusts. Recently, Schmidt et al. (2014) 

investigating the fractionation of Zr-Hf between seawater and Fe-Mn crusts, showed that Zr/Hf 

ratio is lower in the Fe–Mn oxyhydroxides compared to seawater. These studies indicate that both 

Hf and Ho are more easily removed than Zr and Y during the formation of marine Fe–Mn 

oxyhydroxides and that the geochemical behaviour of these twin pairs is not simply ruled by charge 

and ionic radius. 

The near neutral-to-neutral waters of Group 1 have higher values of Y/Ho and Zr/Hf ratios with 

respect to the acidic waters and the average local rock (Fig. 4.7). The twin pairs fractionation in 

Group 1 is due to the formation of the observed authigenic solid phases (Fe-, Al-oxyhydroxides) 

stable at neutral pH. The preferential removal of Ho and Hf with respect to Y and Zr is attributed to 

the enhanced scavenging during the co-precipitation onto the surfaces of Fe, Al oxyhydroxides 

(Bau, 1999; Bau and Dulski, 1999; Bao et al., 2006; Censi et al., 2007; Feng et al., 2010, Schmidt et 

al. 2014). However, in Botero Londono water (Group 1b), Y-Ho and Zr-Hf do not significantly 

fractionate and Ce anomaly is negligible (Fig. 4.9a), in agreement with the limited Fe, Al 

oxyhydroxides formation. Our data show that Y-Ho and Zr-Hf are removed from the hydrothermal 

system by Fe-, Al-oxyhydroxides precipitating in water with circum-neutral pH. 

In Group 2 (acidic waters), Y-Ho and Zr-Hf twin pairs are characterised by a different behaviour. 

Y/Ho ratios are close to the average local rock, showing the negligible fractionation of these 

isovalent elements, while Zr/Hf ratios are sub-chondritic. The behaviour of Zr and Hf in extreme 

acidic environments has not been studied yet. Only few studies were carried out on the speciation of 

Zr and Hf with fluoride and chloride ligands, but not in water with very high sulphate contents 

(Pershina et al., 2002; Monroy-Guzman et al., 2010). Molecular dynamic calculation (Pershina et 
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al., 2002) indicated that in chloride media, chloride complexes are enhanced for Hf with respect to 

Zr, independently of pH. In Group 2 waters Zr and Hf are decoupled indicating that the 

geochemical twin is not controlled only by ionic radius and charge. Figure 4.10 shows that Zr/Hf 

ratio increases as Cl/SO4 ratio increases highlighting a different behaviour of isovalent elements as a 

function of anion contents (Cl and SO4). The Zr-Hf fractionation observed in this acidic 

environment may result from different stability constants of Zr and Hf complexes with Cl and SO4 

ligands that in turn determine the relative abundance of these metals in hyper-acid waters.  

 

Fig. 4.10 - Zr/Hf versus Cl/SO4 (molar ratios) in acidic waters (Group 2). Symbols as in Fig. 4.2. 

4.3 CONCLUDING REMARKS 

The thermal fluids circulating in NDR system have a variety of major chemical composition and 

cover a wide range of pH values from 1 to 8.8. The concentrations of REE and their patterns 

normalised to the average local rock change as function of processes occurring in the shallower 

and/or deep system. The major anions play an important role on the distribution of REE driven by 
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complexation, whereas the pH values rule the precipitation of solid phases, also fractionating the 

REE. Negative cerium anomaly in water with near-neutral pH underscores the importance of 

authigenic minerals (Fe-, Al-oxyhydroxides) on the fractionation of REE, indicating a different 

behaviour of Ce with respect to the neighbouring elements. Moreover, the precipitation of alunite 

and jarosite strongly fractionate the REE distribution in Group 2b, depleting the LREE in the 

aqueous phase. 

For the first time, Y-Ho and Zr-Hf behaviour was studied simultaneously in a wide range of pH 

and chemical composition of major anions. The precipitation of Al-, Fe-oxyhydroxides occurs when 

pH values are close to neutrality fractionating Y-Ho and Zr-Hf, with a preferential Ho and Hf 

removal. A different behaviour of Y-Ho and Zr-Hf was identified in acidic sulphate waters with 

different content of chloride. Y/Ho displays chondritic ratios, showing a negligible fractionation 

compared to the local rock, whereas Zr/Hf ratios are sub-chondritic, increasing as Cl/SO4 ratios 

increase. This evidence suggests a different stability of chemical complexes of Zr and Hf with Cl 

and SO4 ligands, leading to sub-chondritic Zr/Hf ratios in strong acid environments. 
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CHAPTER 5  

Zr-Hf AND REE SIGNATURES DISCRIMINATING THE EFFECT 

OF ATMOSPHERIC FALLOUT FROM THE HYDROTHERMAL 

INPUT IN VOLCANIC LAKE WATERS 

5.1 RESULTS 

5.1.1 General aspects 

The water samples were collected in Pantelleria from springs, wells and lake “Specchio di 

Venere” (Fig. 5.1). The chemical physical parameters and the major element concentrations of the 

investigated waters are reported in table 5.1. Temperature ranges between 26.8 and 54.6 °C, Eh 

values are spanning from -245 to 161 mV, pH values range between 6.0 and 9.1 and electrical 

conductivity values increase from 2 to 35 mS/cm.  
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Fig. 5.1 – Location map of sampled waters. 

In the anion triangular plot (Fig. 5.2a), waters fall along the line connecting the seawater 

composition and the alkalinity vertex, suggesting a mixing process between seawater and water 

enriched with CO2. The waters from the top and the bottom of the lake show the same anionic 

composition. The cation triangular plot displays waters falling close to the Na-K vertex (Na is the 

dominant cation) with a low dispersion of samples towards the Mg, Ca vertices, whereas waters 

from the top and the bottom of the lake show quite constant cations composition (Fig. 5.2b).  
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Tab. 5.1 - Chemical composition of cold and thermal waters. The chemical composition of major ions is expressed in 
mmol l-1, while dissolved gases are expressed in cc l-1 (STP). 

 

Fig. 5.2 – a) Triangular plot of major anions dissolved in waters. b) Triangular plot of major cations dissolved in waters. 

SAMPLE DATE 
T 

(°C) 
pH 

Cond. 
(mS/cm) 

Eh 
(mV) 

Na K Mg Ca F Cl Br SO4 Alkalinity O2 N2 CO2 

Daietti 29/05/13 26.8 6.0 2.02 161.5 13.10 0.68 1.50 0.77 0.06 9.40 0.01 0.78 6.10 1.7 9.6 258.3 

Cala tramontana 28/05/13 29.4 8.5 4.26 8.1 34.01 1.02 1.10 0.44 0.42 27.22 0.06 1.32 7.00 3.2 12.6 5.3 

Buvira Gadir 28/05/13 34.4 7.8 12.74 6.5 117.77 3.81 4.25 1.78 0.52 103.60 0.19 4.02 18.20 2.5 11.3 16.3 

Buvira Rizzo 29/05/13 33.9 7.0 13.95 96.4 127.15 3.82 7.05 1.85 2.01 96.98 0.10 3.72 41.20 1.0 7.6 3.1 

Polla 3 29/05/13 54.6 6.4 15.75 -107.6 136.26 4.17 4.31 2.12 0.57 122.73 0.22 4.21 21.35 0.1 4.9 356.8 

Gadir 28/05/13 53.8 6.32 16 7 139.38 4.34 6.21 2.06 0.67 125.32 0.18 4.99 19.20 0.9 4.5 309.7 

La Vela 29/05/13 48.3 6.5 34 17 326.26 10.51 12.87 4.32 0.23 340.43 0.46 10.02 9.50 1.9 12.2 119.2 

Lake (-30 cm) 03/07/14 27.2 8.97 35.1 21.5 351.86 11.56 8.00 0.65 0.64 288.73 0.43 12.61 56.50 4.4 10.4 3.1 

Lake (-13 m) 03/07/14 26.8 8.96 35.2 -245 349.80 11.45 7.82 0.40 0.54 284.71 0.39 12.50 56.50 - - - 
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vertex with the ASSW, showing the CO2-water interaction in different proportion.  

 

Fig. 5.4 - Triangular plot, relative abundance of CO2, N2 and O2 dissolved in waters. The ASSW (air saturated 
seawater) values is reported for comparison. The dashed line represents the theoretical mixing between air dominated 
system and CO2-rich fluids. 

Results of PHREEQC simulation showed waters from wells and springs are oversaturated in 

comparison with carbonate minerals and Fe oxyhydroxides, except for Daietti well, which is under-

saturated in carbonate minerals and Polla 3 that is under-saturated with respect to Fe 

oxyhydroxides. Furthermore, the investigated waters are constantly saturated in amorphous silica. 

Further investigations were carried out with SEM-EDS analysis onto the nature of SPM (Fig. 5.5a) 

from lake water and Polla 3 (thermal-spring feeding the lake). Amorphous silica was recognized in 

Polla 3 sample (Fig. 5f.5), whereas phyllosilicates (Fig. 5.5c-e) and Fe oxyhydroxides were 

recognized as SPM (Fig. 5.5b-d) in shallowest water layer of the lake.  
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The REE-patterns display HREE enrichments with (LREE/HREE)N ratios ranging from 0.05 to 

0.36, whereas (MREE/HREE)N ratios change between 0.22 and 1.53 (Fig. 5.7). MREE enrichments 

were recognized in water samples from “Specchio di Venere” lake, which are the only samples with 

(MREE/HREE)N ratios >1 (Fig. 5.7).  

 

Fig. 5.7 - (LREE/HREE)N vs. (MREE/HREE)N showing values <1, except lake waters characterized by 
(MREE/HREE)N ratios >1. The seawater is reported for comparison. 

The amount of Y and Ho dissolved in waters changes from 0.97 and 5.64 nmol l-1 and from 0.024 

to 0.15 nmol l-1 respectively, with Y/Ho molar ratios ranging between 35.37 and 77.91. The amount 

of Zr and Hf dissolved in waters range from 0.62 to 23.13 nmol l-1 and from 0.003 and 0.30 nmol l-1 

respectively, with Zr/Hf ratios included between 76.30 and 298.72. The highest amounts of Y, Ho, 

Zr and Hf were found in lake waters without significant differences between shallow and deep 

samples, characterized respectively by the lower Y/Ho and Zr/Hf ratios of 35.37 and 76.30. 
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5.2 Discussions 

5.2.1 Aqueous speciation 

Experimental measurements and theoretical computation were carried out to estimate the 

complexation constant of REE with inorganic ligands (Millero et al., 1992; Wood et al., 1990). 

Carbonate ligands with respect to chloride and sulphate show a progressive increase of the REE-

complexes stability constant from light to heavy REE. REE complex constants with carbonate 

ligands are higher respect to the weak chloride complexes (Wood et al., 1990 and references 

therein). Moreover, Millero (1992) shows that the dominant complexes in seawater are carbonates 

ligands, with a secondary role for chloride complexes in seawater. Negrél et alii (2010) calculated 

the dissolved REE speciation in Na-HCO3 bearing fluids of the Massif Central, recognizing HCO3
- 

and particularly CO3
-2 as the main ligands of REE complexes. The REE aqueous speciation 

calculated by PHREEQC indicates that the free ions (REE+3) are always a minority percentage 

compared to the REE-complexes (Fig. 8). The results show the main role played by carbonate 

complexes [REE(CO3)2]
- and [REECO3]

+, whereas [REEF]+2 became significant in water with 

higher fluorine contents: Gadir, La Vela and Polla 3 (Fig. 5.8). The [REECl]+2 and [REESO4]
+ are 

negligible with respect to the others complexes. Moreover, the speciation of the lake water from the 

top and the bottom do not show significant differences and [REE(CO3)2]
- reaches its almost totality 

in “Specchio di Venere” lake with pH 9.0 (Fig. 5.8). 
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REE with the waters circulating in Pantelleria. The investigated waters display REE-patterns with 

the same trend of the average Strait of Sicily seawater, whereas the REE amount dissolved in 

Pantelleria waters is about 1 order of magnitude higher with respect to seawater (Fig. 5.6). This 

evidence indicates that the marine contamination is not able to change significantly the REE 

distribution in the studied waters. The main processes responsible of REE distribution in water are 

therefore: the interaction with the hosting rocks, the precipitation of authigenic minerals and the 

REE complexation as function of the anionic composition.  

In order to compare the waters with the host rocks, REE concentrations of the local magmatic 

rocks (White et al., 2009) were normalized to the PAAS. The normalized patterns of local rocks are 

flat in shape, showing positive Eu anomalies in basalts and occasionally in trachytes. In more 

evolved tuffs and pantellerites, Eu anomalies became negative as the result of fractional 

crystallization of an alkali feldspar-rich assemblage (White et al., 2009). The positive Eu anomalies 

observed in the studied waters (Fig. 5.9) are the consequence of the interaction process between the 

water circulating in the hydrothermal system within the less evolved rocks. Since pantellerite is 

formed after the fractional crystallization of feldspar-rich assemblages from the trachyte magma, 

the presence and the amplitude of Eu anomaly can be considered as a geochemical tracer of the 

water-rock interaction with the less evolved rocks, the only one with positive Eu anomaly.  
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Fig. 5.9 - No correlation was found between Eu and Ce anomalies, showing a different chemical behaviour. Positive Eu 
anomalies identify the interaction of waters with the less evolved hosting rocks.  

Choi and co-workers (2009) investigated the REE in CO2-rich waters in the Kangwon district 

(South Korea) showing HREE enrichments respect to LREE in the Na-HCO3 water type. Moreover, 

they studied the distribution of REE in carbonate minerals precipitated by the same waters, without 

finding significant changes in the REE distribution between the residual waters obtained after the 

filtration of solid phases and the original waters. The precipitation of carbonate solid phases occurs 

in Pantelleria waters (as suggested by PHREEQC calculation) but it should change only the REE 

amount dissolved in water and not their distribution. The explanation of the lack of REE 

fractionation during the precipitation of carbonates has been attributed to the main complexation of 

REE with carbonate ligands causing the preferential co-precipitation with carbonates, resulting in 

HREE enrichment compared to LREE, both in water and in the precipitated carbonates (Feng et al., 

2014 and references therein; Choi et al., 2009). The distribution of REE in the investigated waters is 

the result of carbonate-REE complexation driving the REE distribution in CO2-rich water. This 

effect is consistent with the progressively increasing shale-normalised REE patterns along the 

element series. 
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5.2.3 Ce anomaly 

Cerium differs from the REE being sensitive to the change of redox conditions. This element in 

oxidizing environment is easily removed from the solution as CeO2 and/or by adsorption onto Mn, 

and Fe oxyhydroxide, as recognized in several environments and laboratory experiment (Bau, 1999; 

Seto et al., 2008; Bau and Koschinsky, 2009 and references therein). Figure 5.10 shows the inverse 

trend between Ce anomaly and Eh values. Almost all waters are saturated or oversaturated 

compared to Fe-oxydroxydes, except Polla 3, where lower pH (6.4) and Eh (-107 mV) values were 

measured. Polla 3 shows a positive anomaly of Ce (1.3), in agreement with the lack of Fe minerals 

stability, as shown by PHREEQC simulation. Buvira Rizzo is the only sample water showing a 

different behaviour of Ce with respect to water; positive Cerium anomaly and positive Eh value 

occur (Fig. 5.10). Buvira Rizzo is an unexploited old hand-dug well of 3 meters deep, where a high 

amount of organic matter was recognized (D’Alessandro personal communication). Cerium 

concentration in water could be controlled by the amount of Dissolved Organic Carbon (DOC). 

When DOC was higher than 10 mg l-1, no negative Ce anomaly was recognized (Seto et al., 2008 

and references therein). Moreover, higher amount of organic compounds could enhance the stability 

of Fe in the dissolved phase, increasing the Ce concentration in waters and justifying the positive 

Ce anomaly in Buvira Rizzo water.  

Strong positive Ce anomaly was found in lake water, showing a different behaviour compared to 

the hydrothermal waters. Considering that Ce is enriched in Desert Varnish, the addition of Ce is 

justified by the contribution of atmospheric fallout from the nearby Sahara Desert. 
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Fig. 5.10 - Ce/Ce* displays to be function of the Eh values, showing negative anomalies increasing the Eh values. 
Buvira Rizzo sample has an anomalous behaviour, probably due to the higher organic carbon concentration that 
enhanced the stability of Ce in the dissolved phase. The highest values of Ce anomalies are caused by the interaction of 
water with the atmospheric fallout enriched in Ce. 

5.2.4  Y/Ho and Zr/Hf fractionation in spring and wells 

The investigated waters should have Y/Ho and Zr/Hf molar ratios close to the hosting rocks, 49 

and 80 respectively (White et al., 2009). The Y/Ho and Zr/Hf ratios found in the investigated 

springs and wells show values far from the local rock, suggesting the occurrence of processes 

partitioning these couples of elements (Fig. 5.11). Assuming that these elements are released into 

waters with Y/Ho and Zr/Hf ratios close to the source rocks, secondary processes (as scavenging 

into and/or onto the secondary minerals) would explain the fractionation of the twin pairs in the 

investigated waters. The processes responsible of fractionating Zr-Hf pairs are not well known and 

up to this day no experiment was carried out in laboratory. On the contrary, when compared  to the 

Y and Ho, Zr and Hf are not complexed by carbonate species. Byrne (2002) shows that Zr and Hf 

are mainly complexed by hydroxyl groups in the pH range between 6 and 8: Zr, Hf(OH)4 and Zr, 
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Hf(OH)5
-. Qu and co-authors (2009) have recognized the fractionation of Y and Ho during the 

precipitation of calcite and aragonite with enhanced removal of Ho respect to Y, due to the different 

electronic configuration of these elements. Moreover, several studies have shown the ability of Fe-

Mn oxyhydroxides precipitation to fractionate Y-Ho and Zr-Hf. Inguaggiato et alii (2015) 

investigated Y/Ho and Zr/Hf ratios in Nevado del Ruiz volcanic waters (Colombia), showing super-

chondritic values in waters with pH from 6 to 8.8, where the precipitation of Fe and Al 

oxyhydroxides occurs. Schmidt and co-authors (2014) investigated Zr/Hf ratios in seawater 

hydrogenetic ferromanganese crusts, showing strong enrichment compared to the average crust and 

highlighting an enhanced Hf removal respect to Zr. Moreover, the preferential removal of Hf with 

respect to Zr in SiO2 solid phase was found (Firdaus et al., 2011 and references therein). 

Particularly, Censi and co-authors (2015) investigated a microsystem occurring in the south-western 

sector of “Specchio di Venere” lake, identifying higher surface-reactivity of Hf than Zr in siliceous 

stromatolies and microbial mats.  

PHREEQC calculations revealed that the investigated waters are oversaturated in Fe-Al 

oxyhydroxides, carbonate minerals and saturated amorphous SiO2. Moreover, amorphous SiO2 was 

found in Polla 3 thermal spring by SEM-EDS analysis. Considering the geochemical processes 

above mentioned, the precipitation of authigenic minerals and consequently the interaction between 

the elements dissolved in waters and the solid phases can be considered the process responsible to 

decouple Y/Ho and Zr/Hf ratios in spring and wells showing higher values (up to 298) than in the 

source rocks. 
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Fig. 5.11 - Changes of Y/Ho and Zr/Hf molar ratios in waters. The coloured band in the graph represents the range of 
Y/Ho and Zr/Hf ratios in Desert Varnish (Thiagarajan et al., 2004). 

5.2.5 The source of REE, Zr and Hf in “Specchio di Venere” 

The main problem concerning the anomalous behaviour of REE, Zr and Hf in water lake is to 

understand which is the main process controlling the geochemistry of REE, Zr and Hf in Specchio 

di Venere water lake. 

The geochemistry of REE, Zr and Hf in alkaline lakes is poorly documented. Johannesson and 

Lyons (1994) investigated the Mono lake water recognizing a pattern increasing from La to Lu, 

highlighting the importance of carbonate complexes for the REE distribution.  

The atmospheric fallout delivered by Sahara Desert (North Africa) inevitably involves Pantelleria 

Island, located 70 km at east from the Tunisian coast. The open water body of “Specchio di Venere” 

lake shows MREE enrichment not recognized in the other waters collected from springs and wells 
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in Pantelleria Island (Fig. 5.6). In particular, the lake water body has REE amounts higher compared 

to the other waters, including Polla 3 thermal spring feeding the water lake along the shoreline. This 

evidence suggests an external process adding REE to the lake water, increasing the relative 

abundance of MREE with respect to LREE and HREE. 

Several studies have been carried out in order to evaluate the role of the atmospheric fallout in 

REE composition of seawater. Influence of aeolian dust from the Asian continent affects the 

composition of REE in western Pacific Ocean (Greaves et al., 1999). Graves and co-authors (1991) 

showed higher REE concentrations in Mediterranean Seawater with respect to the Atlantic Ocean, 

suggesting the aeolian dust as REE source (Greaves et al., 1991 and references therein). Moreover, 

the Mediterranean outflow was recognized to produce anomalies in the Atlantic seawater by mixing 

of different seawater masses (Greaves et al., 1991).  

In arid environments, the formation of the Desert Varnish, mainly composed of clay minerals and 

Fe–Mn oxyhydroxides coatings, occurs onto the rock surfaces (Thiagarajan and Lee, 2004; 

Goldshmidt et al. 2014). The Desert Varnish is characterized by a REE-pattern similar to the 

settling dust proposed as source material (Fig. 5.12) (Goldshmidt et al., 2014 and references 

therein). Moreover, the solid phases above mentioned are enriched in REE (especially MREE), 

showing a pattern similar to that recognized in the “Specchio di Venere” lake, characterized by 

MREE/HREE >1 (Fig. 5.12). Greaves and co-authors (1994) carried out a laboratory experiment 

evaluating the dissolution effect of marine Aerosol of Saharian origin into shallow seawater 

collected in the Indian Ocean, showing a higher solubility of MREE into seawater respect to LREE 

and HREE.  

Y/Ho and Zr/Hf ratios in “Specchio di Venere” lake are close to the values recognized in the 

Desert Varnish (averages Y/Ho and Zr/Hf ratios 38.00 and 73.37, respectively). The reducing 

condition and the higher pH of lake water compared to seawater, certainly enhances the dissolution 

of the Fe-oxyhydroxides coating the Saharian fallout. Considering the evidences shown in this 
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different regions of the world. The last evidence of the behaviour of REE in CO2-rich waters allows 

to give shape to an hypothesis on the REE distribution in natural system in carbon storage 

reservoirs. Positive and negative Ce anomalies were recognized as a function of the redox 

conditions. The negative anomalies are due to the co-precipitation onto the surface of the Fe-

oxhydroxides in water with positive Eh values. The positive Eu anomaly proved to be a useful tool 

in the evaluation of the water-rock interaction with less evolved hosting rocks, also characterized by 

positive Eu anomaly. Y/Ho and Zr/Hf in springs and wells show higher ratios compared to the local 

rock, evidencing fractionation processes in the aqueous system. The decoupling of these elements is 

due to the different affinity to the secondary solid phases occurring in waters (carbonate minerals, 

Fe oxydroxydes and amorphous Silica). 

REE, Zr and Hf in the “Specchio di Venere” lake have the highest concentrations recognized in 

Pantelleria hydrothermal system. Similar distribution of REE normalized to PAAS were found in 

both the top and the bottom of the lake, showing a shape of pattern comparable to that identified in 

the Desert Varnish and the settling dust, with MREE enrichment and positive Ce anomaly. 

Moreover, Y/Ho and Zr/Hf ratios in lake water show values comparable to those found in the 

Desert Varnish. REE coupled with the Y/Ho and Zr/Hf ratios showed to be useful geochemical 

tracers to identify the atmospheric particulate contribution to water body. 
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CHAPTER 6  

GEOCHEMISTRY OF Zr, Hf AND REE IN A WIDE SPECTRUM 

OF Eh AND WATER COMPOSITION: THE CASE OF THE DEAD 

SEA FAULT SYSTEM (ISRAEL) 

6.1 RESULTS  

6.1.1 General aspects 

Samples of several natural waters were collected along the Lake Kinneret – Jordan Valley – Dead 

Sea rift area. Sampling sites are located at Banias springs, in the Golan Heights, Hamei Teveria 

spring along the western shores of the lake Kinneret, the shallow water of lake Kinneret, Zukim and 

Qedem springs and Ein Gedi thermal water collected from the well located in the local spas along 

the western shore of Dead Sea. Yishai spring water was collected in a little pool close to the Dead 

Sea shoreline between Ein Gedi and Qedem. Hamei Yoav and Hamei Gaash waters come from the 

western plan of Israel along the Mediterranean coast. Qetura and Ya’Alon are samples coming from 

the southern Israel and were collected from wells. Sample collection was carried out during May 

2013, March 2014 and May 2015. The location of collection sites is reported in Fig. 6.1.  

The chemical-physical parameters and major elements concentrations of the studied waters are 

reported in Table 6.1. Water temperature ranges between 14.6 and 57.2 °C and pH values range 

from 5.4 to 8.5. The total dissolved salts (TDS) and the Eh values cover a wide range from 0.3 to 

193.5 g l-1 and -400 to 390 mV, respectively. Sample waters are characterized by a wide spectrum 

of major elements composition due to the mixing between meteoric water and ancient brines 

interacting with local rocks, as found by previous studies (Moller et al., 2007 and references 

therein).  
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Fig. 6.1 - Location of sampling sites. 
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Tab. 6.1 - Chemical composition of the studied waters expressed in mmol/l.  

The anion triangular plot shows water compositions falling along the imaginary line jointing the 

Cl and HCO3 vertices, probably representing the mixing between brines and meteoric waters 

interacting with carbonate rocks (Fig. 6.2a). A group of waters (Ya’alon 1a, Ya’alon 6, Qetura 5 e 

Qetura 115) is characterized by a relative enrichment in SO4
2- compared to the other waters, 

showing in the triangular plot a deviation of the samples toward the SO4 vertex (Fig. 6.2a). The 

cation triangular plot shows waters falling close to the Na-K corner with a slight dispersion toward 

both the Ca, Mg corners (Fig. 6.2b). The water with Ca dominated composition is Banias, while the 

waters with relative high Ca contents are the samples characterized by relative high SO4 contents. 

The enrichment of Ca and SO4 is justified by the dissolution of gypsum, while the waters with high 

Na-Cl contents are ancient brines or meteoric water dissolving halite (Moller et al., 2007 and 

references therein). 

 

Group
Sample Name

T 

(°C)
pH

TDS 

(g l-1)

Eh 

(mV)
Na K Mg Ca F Cl SO4

Alkal

inity

Banias 14.6 7.6 0.3 256 0.24 0.02 0.22 1.39 0.004 0.26 0.13 3.00

Kinneret 25.0 8.5 0.7 192 5.28 0.18 1.34 1.19 0.02 6.73 0.53 3.40

Group 1 Ein Gedi (David) 27.7 7.5 0.5 185 2.09 0.08 1.20 1.47 0.02 2.43 0.35 4.40

Ya'alon 6 40.0 6.9 1.4 -100 7.20 0.22 3.33 3.67 0.06 11.57 2.62 5.00

Qetura 5 33.7 6.9 1.8 -15 10.18 0.35 3.68 5.08 0.05 15.83 4.02 4.40

Qetura 115 33.2 6.9 2.1 61 10.39 0.33 4.94 5.59 0.12 13.16 7.29 5.00

Hammei Teveria 57.2 6.0 29.8 -248 303.44 9.13 26.39 86.69 0.38 483.83 7.84 2.30

Hamei Gaash 24.5 7.2 25.6 -276 366.37 4.97 20.77 9.36 0.23 435.16 1.47 6.60

Ya'alon 1A 33.3 6.9 1.9 -323 10.94 0.60 4.00 4.67 0.08 13.74 5.53 5.10

Group 2 Hamei Yoav 39.4 7.0 2.9 -380 35.40 0.53 2.60 2.97 0.04 41.39 0.23 6.20

Qedem 44.3 5.4 178.9 -272 1119.12 97.45 718.63 296.58 1.45 3276.22 8.67 1.50

Ein Gedi (SPA) 41.4 5.8 138.1 -402 1096.89 59.13 427.25 217.56 - 2492.49 13.70 2.30

Yishai Spring 35.0 5.6 193.5 -378 2396.57 58.12 384.78 108.30 - 3330.68 29.57 4.60



CHAPTER 6  

Geochemistry of Zr, Hf and REE in a wide spectrum of Eh and water composition: The case of the Dead Sea Fault system (Israel) 

 

- 62 - 

 

Fig. 6.2 - a) Triangular plot of major anions dissolved in water. The red arrow indicates SO4 enrichments probably due 
to the gypsum dissolution. b) Triangular plot of major cation dissolved in water. The red arrow indicates Ca 

enrichments probably due to the gypsum dissolution. 

The saturation indexes of minerals were calculated by PHREEQC software using the LLNL 

database. The solid phases considered are Fe-oxyhydroxides, carbonate minerals, gypsum, pyrite, 

halite (Tab. 6.2). The waters were classified according to their saturation indexes with respect to Fe-

bearing minerals and to Eh values. According to this approach, two different water groups were 

identified: Group 1 saturated or oversaturated with respect to Fe-oxyhydroxide with Eh values 

ranging between -100 and 256 mV; Group 2 oversaturated with respect to pyrite with Eh values 

lower than -100 mV. Sometimes, both Group 1 and Group 2 are saturated or oversaturated with 
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respect to dolomite and calcite whereas the studied waters are always undersaturated with respect to 

gypsum and halite. 

 

Tab. 6.2 - Saturation indexes of studied waters. 

Scanning electron microscopy (SEM) observations carried out on SPM from the studied waters 

show lithic fragments, crystals and apparently amorphous or cryptocrystalline materials. SEM-EDS 

analyses revealed Mn and Fe oxyhydroxides sometimes couple to calcite and/or dolomite in Group 

1 and pyrite in Group 2 (Fig. 6.3).  

Group Sample Name Fe-oxyhydroxide pyrite dolomite calcite gypsum halite

Banias 3.80 -116.60 0.40 0.00 -2.60 -8.80

Kinneret 0.50 -73.74 -3.20 -1.50 -2.20 -6.10

Group 1 Ein Gedi (David) 5.10 -94.66 1.60 0.30 -2.20 -7.00

Ya'alon 6 -0.40 -19.49 1.50 0.20 -1.20 -5.80

Qetura 5 -0.10 -37.38 1.20 0.10 -1.00 -5.50

Qetura 115 1.00 -54.09 1.30 0.10 -0.80 -5.60

Hammei Teveria -4.18 7.20 -0.70 -0.80 -9.00 -1.43

Hamei Gaash -4.69 4.80 2.04 0.23 -24.47 -2.72

Ya'alon 1A -4.50 7.00 0.80 -0.20 -12.00 -5.50

Group 2 Hamei Yoav -2.95 4.58 1.57 0.18 -21.00 -4.61

Qedem -8.05 3.50 -1.80 -1.00 -19.00 -1.40

Ein Gedi (SPA) -6.91 5.50 -0.50 -1.00 -16.00 -1.50

Yishai Spring -9.03 2.61 -0.09 -0.97 -32.75 -1.03
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Fig. 6.5 - Relative abundances (percentage) of the REE complexes in the investigated waters.  

The total REE contents range from 19.1 to 2977.8 pmol l-1 (Tab. 6.3). Fig. 6.6 shows the shale-

normalized REE patterns, relative to PAAS (Post Archean Australian Shale; Taylor and McLennan, 

1995). Group 1 waters show patterns slightly increasing along the REE series and medium REE 
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(MREE) enriched at Qetura 5, Qetura 115, Ya’alon 6 and in Lake Kinneret. Moreover, negative Ce 

anomalies are found in almost all waters belonging to Group 1. Group 2 waters show shale-like 

patterns with slight MREE enrichments centered on Gd or Eu whereas a strong MREE enrichment 

and lack of Eu anomalies in Ya’alon 1a water. Moreover, Group 2 is characterized by strong Eu 

anomalies and no Ce anomalies.  

 

Tab. 6.3 - REE, Zr and Hf dissolved in waters expressed in pmol l-1. 

Group Sample Name Zr Hf Y La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

Banias 38.45 0.25 6.19 7.04 2.69 0.38 1.37 0.32 0.10 0.40 0.05 0.21 0.05 0.13 0.02 0.13 0.02

Kinneret 154.51 1.22 13.35 16.37 20.59 1.53 6.38 1.29 0.33 1.61 - 0.93 0.15 0.55 - 0.50 0.07

Group 1 Ein Gedi (David) 11.26 0.11 31.38 43.64 37.31 2.66 5.92 1.99 0.66 2.69 0.44 2.05 0.42 1.49 0.30 2.61 0.46

Ya'alon 6 955.24 10.03 324.13 294.95 613.71 72.01 271.70 56.61 13.02 55.83 8.18 36.71 6.33 19.15 2.55 16.33 2.23

Qetura 5 55.80 0.50 1066.06 132.01 116.66 19.43 167.77 75.98 23.16 118.24 16.43 78.22 13.86 30.48 2.66 14.30 2.34

Qetura 115 33.22 0.29 42.62 57.30 63.50 3.37 7.59 2.08 0.64 3.25 0.57 2.14 0.60 1.88 0.25 1.85 0.23

Hammei Teveria 375.26 4.23 24.00 26.11 32.81 1.85 6.08 1.21 1.22 1.82 0.19 1.05 0.19 0.81 0.10 1.03 0.21

Hamei Gaash 134.05 1.63 176.67 157.80 300.50 33.35 133.76 29.59 22.62 28.66 4.22 19.29 3.74 11.00 2.36 18.89 4.34

Ya'alon 1A 18.99 0.22 34.00 61.70 77.44 3.74 8.68 1.99 0.64 3.08 0.43 2.02 0.42 1.20 0.17 0.92 0.11

Group 2 Hamei Yoav 99.02 1.45 114.09 200.82 243.35 20.80 78.57 16.73 22.76 16.74 2.39 11.83 2.05 6.87 1.72 18.36 3.83

Qedem 439.58 6.16 545.09 369.68 538.47 58.27 225.88 43.50 11.19 54.14 6.76 37.15 7.91 22.80 2.88 19.18 2.89

Ein Gedi (SPA) 126.06 1.40 18.61 20.65 27.47 1.75 6.35 1.13 0.55 1.67 0.16 0.85 0.15 0.58 0.07 0.54 0.10

Yishai Spring 711.52 7.87 694.09 469.34 898.83 105.95 414.48 84.18 33.20 89.91 13.07 69.62 15.07 38.65 5.89 38.86 6.69
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6.2.2 Yttrium and Holmium 

Differently from the Zr and Hf behaviour during dissolved complexation, the Y and Ho dissolved 

species always show the same ionic charge if formed with the same ligand (i.e. [(Y,Ho)CO3]
+, 

[(Y,Ho)(CO3)2]
-, [(Y,Ho)Cl]2+, [(Y,Ho)F]2+ (Fig. 6.5). Therefore, the Y–Ho decoupling observed in 

almost all of the Group 1 and 2 waters (Fig. 6.4) cannot be driven by electrostatic considerations, 

probably depending from the different covalent character of the dissolved Y and Ho complexes 

(Bau, 1996). This suggestion is confirmed by the preferential Ho scavenging onto Fe oxyhydroxide 

relative to Y (Bau, 1999). At the same time, laboratory experiments on CaCO3 crystallisation (both 

calcite and aragonite) indicate the preferential incorporation of Ho into CaCO3 relative to Y (Qu et 

al., 2009). These results were confirmed by Tanaka et al. (2004, 2008) recognizing a preferential Y 

enrichment relative to Ho in the dissolved phase during calcite crystallisation that was interpreted as 

a Ho–CO3 and Y–CO3 bonding difference in carbonate minerals.  

6.2.3 REE distribution 

Fig. 5 shows that the most abundant REE species in Group 1 are [REECO3]
+ and [REE(CO3)2]

-

according with the increasing stability of the REE constant complexes with carbonate ligands 

(Millero 1992; Luo and Byrne 2004).  The patterns increasing from La to Lu show similarity with 

the REE distribution found in natural waters characterized by the REE-complexation with carbonate 

ligands (Millero, 1992). MREE enrichments of shale-normalised patterns in Qetura 5, Qetura 115, 

Ya’alon 1a and Ya’alon 6 waters (Fig. 6.6) agree with the dissolution of MREE-enriched minerals 

as gypsum (Toulkeridis et al., 1998 and references therein) as confirmed by the distribution of these 

waters in Fig. 2. The water of lake Kinneret is also characterized by MREE enrichments, whereas 

the lack of relative high Ca and SO4 contents does not allow explaining the MREE enrichments 

with the dissolution of gypsum. On the other hand, the MREE enrichment in the Lake Kinneret can 

be induced by the MREE release from Fe-oxyhydroxides (Bau, 1999). The latter represent the 

coating of atmospheric fallout particles from desert environments (Thiagarajan and Aeolus-Lee, 
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2004; Goldsmith et al., 2014) and are delivered to the shallowest water layer of the lake Kinneret 

with an annual flux close to 70 g m-2 (Ganor et al., 2003). As a consequence, we propose that the 

MREE delivery to the water lake is due to the leaching of atmospheric particles. 

The slight MREE enrichments showed in shale-normalised REE patterns of Group-2 waters is 

consistent with their interactions with evaporates minerals occurring in aquifers. This hypothesis is 

corroborated by the distribution of these samples that are clustered close to alkali and chloride ion 

corners. Moreover, the limited studies focused on the REE distribution in salt minerals concur to 

indicate that these minerals are enriched in MREE (Yui et al., 1998; Theofilos et al., 1998). 

Ce and Eu are redox sensitive elements, with multiple oxidation states. Ce has 3+ and 4+ 

oxidation states and Eu has 2+ and 3+ oxidation states. In studied samples, Ce and Eu anomalies 

cover a wide range of values from 0.3 to 0.97 and from 1.09 to 6.29, respectively. Fig. 6.9 shows 

different distribution of Eu and Ce anomalies in Group 1 and 2 according to their different redox 

conditions. Group 1 waters with higher Eh values show negligible Ce (Ce/Ce*≈1) and positive Eu 

anomalies up to 6.29. Group 2 waters with low Eh values show negative Ce anomalies and 

negligible Eu anomalies close to 1 (Eu/Eu*≈1). Eu/Eu*>1 values in Group 2 waters agree with the 

Eu speciation as Eu2+ suggested by PHREEQC model calculations and is consistent with the larger 

Eu2+ stability in aqueous phase relative to its neighbours Sm3+ and Gd3+ (Bau, 1991; Bau and 

Moller, 1993). In Group 1, the negative Ce anomalies are in agreement with the Ce scavenging as 

CeO2 under oxidizing conditions and/or the Ce(IV) removal onto Fe-oxyhydroxides (Koschinsky 

and Hein, 2003, Seto et al., 2008). On the other hand, waters characterized by strong negative Eh 

values (Group 2) do not show significant Ce anomalies being this element retained in dissolved 

phase as Ce3+ coherently with the other REE.  
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values in oxidizing waters. A very interesting point of this study is that the dissolved REE 

speciation cannot simply explain the observed distribution in natural waters and the solid-liquid 

processes play a key role on the geochemical behaviour of these elements.  
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CHAPTER 7  

GENERAL CONCLUSIONS 

The findings of the present study represent the most comprehensive recognition of the Zr and Hf 

geochemistry in natural non-marine waters. This thesis added new knowledge about the mobility of 

REE and the less known Zr and Hf, implementing the state of the art about the processes involving 

these elements in the geochemical spheres. Specifically, the behaviour of Zr, Hf and REE was 

studied in hyperacid, hypersaline, CO2-rich waters and the alkaline lake “Specchio di Venere” in 

hydrothermal systems. This study permitted to know the behaviour of theses elements under 

different chemical-physical conditions (pH, Eh and TDS) and various water compositions 

determining different ion speciation and minerals stability.  

A very interesting point is that the ion speciation of Zr, Hf and REE in solution is not always 

sufficient to explain the distribution of these elements. The precipitation and the dissolution of solid 

phases are responsible of changing the distribution of these elements, even if most of the near-

naeutral waters investigated in this thesis are characterized by REE patterns increasing from La to 

Lu in according to the distribution of REE-complexes with carbonate ligands (as recognized in 

previous studies). The acidic sulphates waters characterized by the precipitation of Alunite and 

Jarosite show a strong LREE depletion. When the precipitation of these minerals does not occur, the 

acidic sulphate waters show the same REE-pattern found in the average local rock. Alunite and 

Jarosite rule the distribution of REE in deep and/or shallow hydrothermal system changing the 

distribution of REE in water. The REE in waters along Dead Sea Fault show MREE enrichmens 

mostly in waters with relative high Ca and SO4 concentrations. The interactions between waters and 

MREE-enriched salt minerals (mainly gypsum) are responsible of MREE enrichments in dissolved 

phase. In the natural waters, changing of pH and Eh conditions induce variations of Ce and Eu 

anomalies, due to the different behaviour of these elements with respect to the neighbour elements 
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along the REE series. 

The geochemistry of Zr and Hf is poorly known, except in seawater where the major parts of the 

studies were carried out. The paucity of experiments in laboratory and the lack of a complete set of 

Zr, Hf constant complexes have made the study of Zr-Hf behaviour in natural environments 

difficult. The behaviour of Zr and Hf was studied simultaneously with the better known Y and Ho. 

In sulphate acidic waters, Zr/Hf ratios are very low down to 4.7, while quite constant Y/Ho ratio 

(close to the local rock value) indicates the lack of decoupling. Zr/Hf ratio increases as Cl/SO4 ratio 

increases. The formation of Zr-, Hf-complexes characterized by different affinity with Cl and SO4 

ligands could justify the low Zr/Hf values found in acidic waters (1< pH <3.6), where the role of the 

Zr-, Hf-complexes with hydroxyl groups is negligible. Further investigations in laboratory could 

confirm this different behaviour of Zr and Hf with Cl and SO4 ligands under acidic conditions.  

Zr/Hf and Y/Ho ratios in near-neutral pH waters change from near-chondritic to super-chondritic. 

Generally, the precipitation of authigenic solid phases fractionates Y-Ho and Zr-Hf pairs, with a 

preferential Ho and Hf removal. Zr/Hf ratios show a strong dependence with respect to the Eh 

values, due to the different stability of Fe-bearing minerals sensitive to the redox condition of the 

system. Particularly, the precipitation of Fe-oxyhydroxides removes preferentially Hf with respect 

to Zr due to the adsorption onto the solid surfaces, influencing the dissolved Zr/Hf signature. On the 

contrary, Zr/Hf ratios are near-chondritic for very low Eh values when pyrite is oversaturated, 

suggesting limited Zr-Hf decoupling  

One important finding of this thesis is the capability of Zr, Hf and REE as potential tracers of the 

interaction process between open water bodies and atmospheric fallout. The interaction of 

atmospheric fallout from the nearby Sahara Desert with the water of the lake “Specchio di Venere” 

is able to change the distribution of Zr, Hf and REE compared to the hydrothermal water feeding 

the lake.  

Increasing the knowledge of Zr, Hf and REE geochemistry, these elements can be further 
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exploited in the near future as tracers of the solid-liquid processes occurring in deep and/or shallow 

natural systems. 
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CHAPTER 8  

GEOCHEMICAL CHARACTERISATION OF GASES ALONG 

THE DEAD SEA RIFT: EVIDENCES OF MANTLE-CO2 

DEGASSING 

ABSTRACT 

The Dead Sea fault where a lateral displacement between the African and Arabian plates occurs is 

characterized by anomalous heat flux in the Israeli area close to the border with Syria and Jordan. 

The concentration of He and CO2, and isotopic composition of He and total dissolved inorganic 

carbon were studied in cold and thermal waters collected along the Dead Sea Transform, in order to 

investigate the source of volatiles and their relationship with the tectonic framework of the Dead 

Sea Fault. The waters with higher temperature (up to 57.2 °C) are characterized by higher amounts 

of CO2 and helium (up to 55.72 and 1.91*10-2 cc l-1, respectively). Helium isotopic data (R/Ra from 

0.11 to 2.14) and 4He/20Ne ratios (0.41-106.86) show the presence of deep-deriving fluids 

consisting of a variable mixture of mantle and crust end-members, with the former reaching up to 

35%. Carbon isotope signature of total dissolved carbon from hot waters falls within the range of 

magmatic values, suggesting the delivery of deep-seated CO2. The geographical distribution of 

helium isotopic data and isotopic carbon (CO2) values coupled with (CO2/
3He ratios) indicate a 

larger contribution of mantle-derived fluids affecting the northern part of the investigated area, 

where the waters reach the highest temperature.  

These evidences suggest the occurrence of a favourable tectonic framework, including a Moho 

discontinuity up-rise and/or the presence of a deep fault system coupled with the recent magmatic 

activity recognised in the northern part of Israel.  
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8.1 INTRODUCTION 

The Lake Kinneret-Jordan Valley-Dead Sea area is a complex geodynamic system where a lateral 

left motion of up to 105 km along the contact between the Arabian and African tectonic plates 

generated the Dead Sea Transform (DST) fault system (Garfunkel et al., 1981). This fault has been 

defined as a branch of the Red Sea Rift. The Red Sea area is divided in 3 Zones: the northern part 

representing the late stage of the continental rift, the central part considered a transitional zone and 

the southern rift area where active seafloor spreading occurs (Lazar et al., 2012 and references 

therein).  

The DST, whose activity started during early Neogene (≈20Ma), consists of a series of faults 

going from the northern part of the Red Sea to the East Anatolian fault (EAF). The EAF runs from 

the end of DST until it reaches the North Anatolian Fault (NAF). Several depression zones (pull 

apart basins) filled by thick sedimentary sequences (Garfunkel et al., 1981) occur along the whole 

DST. Among them, the Dead Sea and the Sea of Galilee are included in the investigated area. 

The topography of the Moho below the DST is asymmetric, its depth increasing from ≈26 to ≈39 

km moving from west (Mediterranean Sea) to east (Desert Group et al., 2004). Moreover, a 3D 

model of the DST zone shows that the depth of the Moho also decreases from ≈35 to ≈ 25km going 

from South to North, reaching the shallowest point in the northern part of Israel (Segev et al., 2006). 

Simultaneously with the formation of the rift, the investigated area experienced volcanic activity 

(Weinberger et al., 2003). In the northeastern part of Israel near the Sea of Galilee, there is evidence 

of volcanism, which produced several volcanic products like lava flows and dykes. The dating of 

the rocks testifies the presence of magmatic activity in this area from middle Miocene up to at least 

0.1 Ma (Mor, 1993; Weinstein, 2000).  

Several authors carried out studies to evaluate the geothermal heat flux in Israel, estimating an 

average value around 40-45 mW/m2. Two anomalous heat flux zones have been identified close to 

the Sea of Galilee and in the Gulf of Elat characterized respectively by 70 and 65 mW/m2 (Shalev et 
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al., 2008; Shalev et al., 2013). The anomalous heat flux zones are characterized by a shallower 

sismogenic zones. The large heat flux anomaly makes Northern Israel a promising area for 

geothermal energy exploitation (Roded et al., 2013).  

The chemical and isotopic compositions of dissolved gases (CO2 and He) are excellent tools to 

study and evaluate interaction processes between deep fluids and hydrothermal waters. In fact, in 

geothermal areas deep gases rising towards the surface intercept the shallow aquifers changing their 

chemical and physical conditions, i.e.: dissolved gases contents, temperatures and pH values 

(Inguaggiato et al., 2011 and references therein). The amount of dissolved gases in the aquifers is 

related to the ratio gas-flux/water-flow determining the degree of gas-water interaction processes 

(Inguaggiato et al., 2010).  

Helium is a chemically inert gas, characterized by negligible isotopic fractionation during gas-

water interaction processes. Therefore the isotopic composition of dissolved helium provides useful 

information about its origin and is used as a geochemical tool to investigate the geodynamic context 

and evaluate origin and mixing processes of different sources (Sano and Marty, 1985; Hilton et al., 

1993; Shaw et al., 2003; Inguaggiato et al., 2005; Pik and Marty, 2009; Inguaggiato et al., 2010; 

D’Alessandro et al., 2014). Considering that the helium can be produced by alpha-decays (4He) or 

trapped during the formation of the earth (3He), its isotope composition is a tool that provides clear 

information about the source of ascending fluids. The helium can be used, together with other 

geochemical data, to identify areas that may be of interest for geothermal power generation (Du et 

al., 2006).  

In this work we have investigated the chemical and isotopic compositions of carbon dioxide and 

helium in cold and hot waters sampled in the hydrothermal systems along the DST, with the aim to 

evaluate the origin of deep and hot fluids reaching the shallow aquifers and the involved 

geochemical processes. Furthermore, this study specifically confirms the uprise of mantle helium 

through the DST recognized by Torfstein et al. (2013) and displays also a contribution of mantle 



CHAPTER 8 

Geochemical characterisation of gases along the Dead Sea Rift: Evidences of mantle-CO2 degassing 

 

- 81 - 

CO2 through the same pathway, which, on the contrary, was excluded by previous studies (Torfstein 

et al., 2013; Avrahamov et al., 2015). 

8.2 MATERIALS AND METHODS 

The sampling of discharged fluids was carried-out in April 2013, in March 2014 and in May 2015. 

Cold and hot waters (springs, wells and lakes) were collected (Fig. 8.1) in the area to the north of 

the DST, specifically: near the Sea of Galilee (Banias, Tabgha, Hamme Teveria, Hamat Gader), in 

the west side of the Dead Sea (Qedem, Polla Dead Sea, Zukym, En Gedi, Dead Sea, Eg Doc, En 

Gedi Spring, Hammei Yoav, Hammei Gaash) and in the area to the south of Dead Sea (Ya’alon 1a, 

Ya’alon 6, Qtura 5, Qtura 115, Timna Mine, Ein Netafim). No fumarolic manifestations were 

recognised in these area, while the presence of hydrothermal systems is evidenced by several 

thermal waters reaching temperatures up to 57.2°C.  
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stored in glass flasks with two vacuum stopcocks. Gas species (He, O2, N2, CH4 and CO2) were 

analysed by gas chromatograph (Clarus 500, Perkin Elmer) using Carboxen 1000 columns, two 

detectors (HWD and FID) and argon as the carrier gas. Typical uncertainties were within ± 5%. 

The isotopic composition of helium was analysed using the method proposed by Inguaggiato and 

Rizzo (2004). The abundance and isotope composition of helium, as well as the 4He/20Ne ratios, 

were determined by separately admitting He and Ne into a split flight tube mass spectrometer 

(Helix SFT). Helium isotope compositions are given as R/RA, where R is the (3He/4He) ratio of the 

sample and RA is the atmospheric (3He/4He) ratio (RA=1.386*10–6). Measured values were 

corrected for the atmospheric contamination of the sample (RC/RA) on the basis of its 4He/20Ne ratio 

(Sano and Wakita, 1985). The δ13C of Total Dissolved Inorganic Carbon (TDIC) of waters 

expressed in δ‰ vs V-PDB standard (±0.2 ‰) and was analysed by Analytical Precision 2003 

(AP2003) mass spectrometer following the methodology of Capasso et al. (2005).  

8.3 RESULTS AND DISCUSSION 

8.3.1 General aspect and dissolved gases 

Table 8.1 displays the analytical results of the sampled water. The temperature in Hamat Gader, 

Hamme Teveria, Qedem, Polla Dead Sea, En Gedi, Hammei Yoav, Ya’alon 1a, Ya’alon6, Qtura 5 

and Qtura 115 waters was higher (33.2 < T°C < 57.2) compared to Banias, Tabgha, Zukym, Dead 

Sea, Eg Doc (Dead Sea), En Gedi Spring, Hammei Gaash, Timna mine and Ein Netafim (14.6 < 

T°C < 30).  

Our fluids have pH ranging from 5.4 to 7.6 and dissolved CO2 contents spanning from 0.28 to 

55.75 cc l-1. We found that the waters characterised by higher amounts of dissolved CO2 have lower 

pH values (Tab. 8.1), suggesting that CO2 is the main specie responsible of water acidity. The total 

salinity (TDS) of the studied waters ranges from 0.27 to 373.30 g/l. The remnants of hypersaline 

brines (Klein-Bendavid et al., 2004) and possibly old evaporitic terrains embedded in the sequences 

of the investigated aquifers (Moller et al., 2007), are the source of the occasionally very high 
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salinity of the sampled waters. The amount of dissolved CO2, CH4, O2, N2, and He is between 0.28 – 

55.75 cc l-1, 3.47*10-4 – 3.45*101 cc l-1, 0.01 – 6.70 cc l-1, 0.27 - 18.71 cc l-1 and, 9.18*10-6 - 1.9*10-

2 cc l-1 respectively. The triangular plots (Fig. 8.2a, b) show a mixture of water interacting with 

atmospheric gases and other gases that can be derived from crust, mantle and/or associated to 

hydrocarbon reservoir. The CO2-N2-O2 triangular plot (Fig. 8.2a) shows that the investigated waters 

lie in the area defined by the CO2 and N2 vertices and the representative point of Air Saturated Sea 

Water (ASSW). Such pattern can be considered representative of a mixing process between a CO2-

rich end-member and a shallow air-dominated system. The samples plotting closest to ASSW 

display N2/O2 ratios similar to the atmospheric value while the samples increasingly enriched in 

CO2 reveal much higher N2/O2 ratios. This indicates that the atmospheric component, derived from 

meteoric recharge, was modified by organic and inorganic redox reactions in the subsoil loosing O2.  

Based on the dissolved gas composition (CO2-N2-O2) three water groups were identified (Fig. 8.2a). 

The first group closer to the CO2 end-member characterized by higher gas-water interaction 

(Hammei Teveria, Hamat Gader, En Gedi, Qedem), the second group with moderate gas-water 

interaction (Polla Dead Sea, Hammei Gaash, Hammei Yoav, Ya’alon 6, Ya’alon 1a, Qtura 5 and 

Qtura 115 and Tabgha) and finally the third group which is close to the ASSW composition 

representing the waters almost in equilibrium with atmospheric-air (Banias, Zukym, Dead Sea, Eg 

Doc, En Gedi David and Timna Mine). Triangular plot CO2-CH4-N2 (Fig. 8.2b) shows the same 

distribution of samples identified with the triangular plot previous mentioned, except two samples 

(Hammei Gaash and Hammei Yoav) belonging to the Group 2, with higher CH4 contents compared 

to CO2.  
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Fig. 8.2 - a) Triangular plot, relative pressure of CO2, N2 and O2. The air values are also reported for comparison; the 
straight line represents the theoretical mixing between air dominated system and CO2-rich fluids. b) Triangular plot, 
relative pressure of CO2, N2 and CH4.  

 

Tab. 8.1 - Total Dissolved Salts (TDS) is expressed in g l-1. Chemical composition of dissolved gases (values expressed 
in cc l-1 STP), bubbling gases (values of O2, N2 and CO2 are expressed in % vol, while the values of He, H2, CO, CH4 
are expressed in p.p.m vol). The isotopic composition of C gas (δ13CTDIC) is expressed in ‰ PDB standard. Isotopic 
composition of Helium is expressed as R/Ra, 3He/4He ratios normalized to the atmospheric ratio (Ra=1.39×10−6). 
While, R/Rac represent R/Ra corrected for the atmospheric contamination. Percentage of Radiogenic (R), Magmatic 
(M) and Atmospheric (A) represent the contribution of different He source calculated following the description of Sano 
et al. (1985) Percentage of Mantle carbon (M), Marine limestone (L) and organic Sediment (S) fields represent the CO2 

contribution from different sources calculated following the description of San o and Marty (1995). The kinds of 
samples are: Spring (S), Well (W), Lake (L) and Bubbling gas (B). 
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GROUP SAMPLE DATE pH T (°C) TDS R/Ra
4
He/
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Ne R/Rac A% R% M% He H2 O2 N2  CO CH4 CO2 CO2/

3
He TDIC δ

13
C (TDIC) L% S% M%

H. Gader (S) 28/04/13 6.7 49.0 1.4 2.14 43.66 2.15 1 64 35 8.72E-03 - 0.41 17.21 6.26E-04 2.03E-01 55.75 2.15E+09 7.38 -9 4 26 70

H. Teveria (S) 28/04/13 5.9 57.2 29.76 1.10 106.86 1.10 0 82 18 1.91E-02 3.00E-04 1.02 8.88 1.45E-03 4.50E-02 41.12 1.41E+09 3.98 -5.9 0 2 97

Qedem (S) 29/04/13 5.4 44.3 178.88 0.63 83.13 0.60 0 91 9 9.15E-03 1.69E-02 0.03 2.10 9.02E-04 1.62E-01 31.77 4.16E+09 2.80 -6.69 41 23 36

En Gedi (W) 29/04/13 5.8 41.4 138.14 0.47 7.13 0.40 4 89 7 9.68E-04 5.52E-03 0.15 6.44 6.70E-04 1.85E-01 30.36 4.90E+10 3.54 -8.12 59 38 3

Polla Dead Sea (S) 15/05/15 5.6 35.0 193.5 0.58 1.09 0.46 26 69 5 8.87E-05 2.90E-03 0.01 3.32 1.87E-05 5.17E-02 8.70 1.22E+11 4.96 -22.12 4 94 2

Hamei Gaash (W) 16/05/15 7.2 24.5 25.6 0.34 1.01 0.13 28 72 0 8.28E-05 1.28E-03 0.17 2.64 - 2.98E+01 7.40 1.89E+11 6.90 -5.88 54 45 1

Hamei Yoav (W) 16/05/15 7.0 39.4 2.9 0.54 1.83 0.47 16 79 5 4.43E-04 4.28E-04 0.04 4.39 - 3.45E+01 9.10 2.75E+10 6.57 -5.99 56 38 6

Ya' alon 1a (W) 10/03/14 6.9 33.3 1.89 0.11 27.14 0.11 1 99 0 8.15E-03 - 0.11 18.71 - - 23.12 1.80E+10 6.05 -5.11 57 34 9

Ya'alon 6 (W) 10/03/14 6.9 40.0 1.37 0.26 21.49 0.26 1 96 3 4.85E-03 - 0.40 15.88 - 2.58E-03 24.99 1.40E+10 6.02 -7.89 49 40 11

Qtura 5 (W) 10/03/14 6.9 33.7 1.76 0.28 4.52 0.24 6 91 2 1.21E-03 - 0.11 18.70 1.79E-04 1.60E-03 23.11 4.92E+10 5.34 -7.69 53 43 3

Qtura 115 (W) 10/03/14 6.9 33.2 2.07 0.14 6.72 0.11 4 95 0 1.63E-03 - 1.19 13.90 2.38E-05 - 28.04 8.56E+10 6.15 -6.79 58 40 2

Tabgha (S) 17/05/15 7.0 27.5 2.5 1.26 1.89 1.30 15 67 18 4.31E-04 - 1.85 12.49 3.12E-05 1.11E-02 13.95 1.85E+10 5.67 -18.99 8 84 9

Timna Mine (L) 14/05/15 7.4 27.0 44.0 0.63 0.78 0.47 37 60 4 3.50E-05 1.65E-02 4.11 7.89 3.07E-05 5.65E-03 0.39 1.20E+10 1.22 -3.71 52 35 13

Dead Sea (L) 29/04/13 6.0 30.0 373.30 0.94 0.47 - 57 38 5 9.54E-06 1.72E-02 0.16 0.31 2.15E-04 3.47E-04 0.28 2.37E+10 4.31 - - - -

Eg Doc (Dead Sea) (L) 12/03/14 6.0 30.0 347.04 0.73 0.43 - 66 33 1 9.18E-06 8.97E-04 0.15 0.27 4.08E-05 5.55E-04 0.33 3.48E+10 6.86 - - - -

Zukym (S) 29/04/13 7.6 26.6 2.66 0.99 0.41 - 71 24 5 6.41E-05 - 5.68 18.41 2.40E-05 8.28E-04 7.95 9.00E+10 5.53 -10.82 38 60 2

En Gedi Spring (S) 12/03/14 7.5 27.7 0.53 0.47 0.95 - 30 68 2 1.54E-04 - 5.62 11.41 2.39E-05 - 4.86 4.78E+10 4.60 -11.08 36 60 4

Banias  (S) 28/04/13 7.6 14.6 0.27 1.64 1.03 1.79 28 49 22 1.65E-04 1.08E-02 6.70 15.58 7.36E-05 - 4.53 1.21E+10 3.19 -12.02 22 66 13

Ein Netafim (S) 14/05/15 7.5 21.0 2.4 0.16 1.35 - 20 80 0 1.40E-04 - - - - - - - - - - - -

H. Gader (B) 28/04/13 - - - 2.12 66.18 2.13 - - - 927.62 5 5.62 78.44 10 4934 6.96 2.55E+07 - - - - -

GROUP 1

GROUP 2

GROUP 3
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The concentrations of He and CO2 dissolved in waters increase simultaneously, due to the 

interaction with non-atmospheric gases (Fig. 8.3), suggesting a possible common provenance of He 

and CO2. With the exception of Dead Sea waters and Timna mine, He and CO2 contents are higher 

compared to ASSW (He=4.13*10-5 cc l-1 CO2=0.032 l-1 - Capasso and Inguaggiato (1998)) 

highlighting the input of the before mentioned gases, changing the equilibrium with atmospheric-

air, characteristic of most of the natural waters (Fig. 8.3). The lower amount of He in Dead Sea 

samples and Timna mine is due to the high salinity values changing the solubility of gases (salting 

out effect) and to the low interaction with non-atmospheric He. In particular, the water belonging to 

Group 1, which have the highest CO2 contents, are also strongly enriched in He.  

 

Fig. 8.3 - He vs. CO2 contents (cc l-1 STP) of dissolved gases in the sampled waters. The ASSW values are also 
reported for comparison. 

Figure 8.4 shows the increase of water temperature respectively with CO2 and helium amounts 
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dissolved in water, suggesting input of hot fluids enriched in CO2 and helium or deeper and longer 

circulation as responsible of higher water temperature. The samples belonging to the Group 1 with 

the highest gas content have also the highest measured temperatures. In particular Hammei Teveria 

and Hammat Gader, respectively with temperature of 49.0 and 57.2 °C, are located in the northern 

part of DST, close to the Sea of Galilee.  
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Fig. 8.4 - Changes in 4He and CO2 dissolved in waters (cc l-1 STP) with respect to the temperature values of the waters 
4b) Changes in CO2 dissolved in waters (cc l-1 STP) with respect to the temperature values of the waters. 
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investigated fluids ranging from about 24 to 99% while the mantle contribution varies from 0 to 

35% (Fig. 8.6). Only Dead Sea, Eg Doc (Dead Sea), Zukym, Timna mine display a significant 

ASW contribution (57-71%). The possibility of mantle fluids injection in the crust through deep-

rooted tectonic structures has been highlighted by many studies worldwide. Important examples can 

be found along the NAF in Turkey (Gülec et al., 2002), the San Andreas Fault in California 

(Kulongoski et al., 2013) and the Karakoram Fault (Klemperer et al., 2013). Previous studies have 

still shown that also the DST allows the uprise of mantle He both along the same sector considered 

in the present study (Torfstein et al., 2013) and in its northern part along the Turkish-Syrian border 

(Yuce et al., 2014). The data of these two studies have been also plotted in Fig. 8.5 evidencing 

similar mixing pattern between the three end-members along a great part of the DST. 

Figure 8.6 shows that higher mantle contribution (18-35%) is mainly found in the northern part of 

the DST sector presently studied (Hamat Gader, Hamme Teveria, Banias and Tabgha), while 

significantly lower values (0-9%) are found in the central part (Qedem, En Gedi, Dead Sea, Eg Doc 

(Dead Sea), Zukym, Polla Dead Sea, Hammei Yoav and Hammei Gaash). In the southern part of 

DST investigated area (Ya’alon 1a, Ya’alon 6, Qtura 5, Qtura 115, Timna Mine, Ein Netafim) the 

lowest percentage values of mantle contribution (0-4%) were recognized. The results of our study 

confirm the geographical distribution of mantle component, with a decrease of mantle-helium 

towards the southern part of the study area, which was previously recognised by Torfstein et al. 

(2013). The area with the highest mantle contribution (up to 1/3 of the isotopic budget of dissolved 

He) corresponds to the anomalous heat flux area close to the Sea of Galilee.  
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Fig. 8.6 - Geographical distribution of mantle source. The percentage of mantle source was calculated using the 
equation of Sano and Waikita (1985).  

To better constrain the origin of the gases interacting with the water, the CO2/
3He ratios was 

calculated (Sano and Marty, 1995; Rouwet et al., 2008; Kulongoski et al., 2013). Marty and Jambon 

(1987) suggest a CO2/
3He ratio of about 2*109 for fluids discharged from the mantle. On the 

contrary, CO2/
3He ratios ranging between 1012 and 1014 occur in crustal fluids (O’Nions and 

Oxburg, 1988). The CO2/
3He values of investigated fluids span between 1.41*109 and 1.89*1011 

(Fig. 8.7), between the values characteristic of the Mantle and Crust end-members. The R/Ra and 

CO2/
3He ratios are plotted in the binary graph in order to discern the mantle and crust contribution 

of the investigated fluids (Fig. 8.7). The dissolved fluids in the studied waters fall along a 

hyperbolic mixing trajectories (Fig. 8.7) between the two end-members, contrarily to Torfstein et al. 

(2013) who did not observe the above-mentioned mixing using CO2/
3He ratios. In particular, 

Hammat Gader and Hammei Teveria (belonging to Group 1) have CO2/
3He ratios typical of fluids 

with mantle signature. 

Thermal waters in the investigated area do not show bubbling gases, except Hamat Gader, which 

is characterized by a very low gas flux, strongly suggesting that the aquifer is able to dissolve 
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8.3.2 Origin of CO2 

The determination of the CO2 origin through its C-isotopic composition is not so straightforward 

as for helium because of the wide range of sources, sometimes with overlapping isotopic 

composition, and to the fact that CO2 is more reactive than helium and consequently involved in 

many chemical-physical processes that may change its isotopic composition. Nevertheless also the 

C-isotopic composition of CO2 or total dissolved inorganic carbon (δ13CTDIC) gives important 

information (Deines et al., 1974; Sano and Marty, 1995; Kulongoski et al., 2013). Marine 

limestones, the oxidation of organic carbon from soils and sedimentary rocks and the upper-mantle 

degassing are among the main sources of carbon. These carbon sources have distinct δ13C end-

members, whereby marine limestone has δ13C close to 0‰, sedimentary organic matter less than -

20‰ and upper-mantle degassing ranges between -4 and -9‰ (Javoy et al., 1986; Sano and Marty, 

1995; Hoefs, 2009 and references therein).  

The δ13CTDIC values in our samples display a wide range (between -22.1 and -3.7‰), but while 

samples with less than 20 cc/l of dissolved CO2 cover the whole range of measured δ13C values, 

waters with higher CO2 contents display lower variability (δ13CTDIC from -9.0 to -5.1 ‰ - Fig. 8.8). 

The samples of Group 3, except Timna Mine, show δ13CTDIC values typical of aquifers in which 

organic soil CO2 equilibrates with marine carbonates (Chiodini et al., 2000). Tabgha and Polla Dead 

Sea displaying the most negative values probably reflect the addition of CO2 deriving from methane 

oxidation. This process has been evidenced in other sites of the same area by Avrahamov et al. 

(2015). Our study shows that waters with higher dissolved CO2 levels (Group 1 waters and part of 

the samples of Group 2) are consistent with an upper-mantle isotopic signature suggesting the 

addition of deeply derived CO2 (Fig. 8.8). While Yuce et al. (2015) whose data display a 

distribution comparable to our data (fig. 8.8), also evidenced the contribution of a mantle 

component for CO2 along the Turkish part of DST, Torfstein et al. (2013) and Avrahamov et al. 

(2015) excluded such possibility along the Israeli part.  
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Fig. 8.8 - Co-variation of δ13C (TDIC) and dissolved CO2 (cc l-1 STP). The arrows indicate the different processes 
involving CO2 in the investigated waters. 

The carbon isotopic composition of CO2(gas) coupled with CO2/
3He ratio, is used to better identify 

the origin of CO2 (Barry et al., 2013). Three potential end-members which can provide CO2 are: 

mantle (M) limestone (L) and organic sediments (S). The considered composition for the end-

members are: CO2/
3He=2*109 and δ13C=-6.5‰ for Mantle, CO2/

3He=1*1013 for Limestone and 

Sediments and δ13C values of 0 and -30‰, respectively (Sano and Marty, 1995 and references 

therein). The δ13CCO2 vs. CO2/
3He graph was initially used to display different fluid contributions 

along volcanic arcs (Sano and Marty, 1995) but has been later used also in different geodynamic 

settings and also in areas affected by deep-rooted transform faults (Mutlu et al., 2008; Kulongoski 

et al., 2013; D’Alessandro et al., 2014). To plot our data in such a graph, the carbon isotopic 

composition of CO2(gas) in equilibrium with the investigated waters was calculated at the outlet 

temperature, taking into account: the amount of CO2 and HCO3
- dissolved in water, the values of 
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δ
13CTDIC and the enrichment factor εa (CO2dissolved-CO2gas) and εb (CO2(gas)-HCO3

-) (Zhang et al., 

1995). 

Figure 8.9 shows that all the investigated waters fall in the field belonging to the contribution of 

the three end-members before mentioned. The waters are characterized by interaction with mantle-

CO2
 in different proportion, calculated following the equation of Sano and Marty (1995). In 

particular, Hamat Gader and Hammei Teveria (belonging to Group 1) located in the northern part of 

the investigated area with highest mantle-CO2 contribution (97.4 and 70.2%, respectively) and 

Qedem to the west of Dead Sea fall in Fig. 8.9 close to the mantle end-member with a significant 

mantle-CO2 contribution (36.4%). The other water samples located in the southern part of the 

studied area show a shift towards the organic and limestone end-members, with a lower mantle-CO2 

component ranging from 1.2 to 11.1. In particular, the waters of Group 3 (En Gedi Spring, Banias 

and Zukym) and Tabgha belonging to Group 1 have prevailingly organic CO2 contribution.  


















               

          

              





  

                



     


















 


  









CHAPTER 8 

Geochemical characterisation of gases along the Dead Sea Rift: Evidences of mantle-CO2 degassing 

 

- 97 - 

contribution for CO2. 

It is generally assumed that the injection of mantle-He within the crust happens either through 

intrusion and consequent degassing of mantle-derived magmas or through diffusion of mantle-fluids 

across the ductile mantle-crust boundary (Kennedy and Van Soest, 2007). Both processes could be 

invoked at least for the northern sector of the investigated area. But in both cases the injection of 

mantle-He cannot happen without the involvement of important quantities of mantle-CO2 (Kennedy 

and van Soest, 2007). The latter, being more reactive than He, can be involved in many chemico-

physical processes that could significantly change its isotopic composition and the CO2/
3He ratio. 

Such changes may sometimes partially or totally mask its origin, but basing on the present data its 

mantle-derivation can be easily recognised. 

8.4 IMPLICATIONS  

The results of this study improved the knowledge about the origin of fluids interacting with the 

aquifers along DST, providing important information about the sources of helium and CO2 and the 

processes affecting these gases during its path towards the earth’s surface. The up-rise of deep hot 

fluids interacting with the shallow aquifer, can be considered responsible of the high temperature of 

some water sources along the Dead Sea Transform. Different amount of He and CO2 dissolved in 

the waters are the result of a different mixing between Mantle and Crustal components, which 

reflects different tectonic configurations along DST. Geochemical data agree with the heat flux 

reported by Shalev et al. (2008; 2013), showing that higher contents of mantle helium (3He) and 

mantle-CO2 occur in the northern area, where the highest heat flux of the investigated area was 

recognized (70 mW/m2). Similar relationships between heat fluxes and 3He/4He in thermal areas 

were found by Umeda et al. (2007) in the thermal waters and dissolved gas phase in Kii Peninsula, 

Japan. These results suggest that ascending deep fluids enriched in CO2 and helium fuel deep 

hydrothermal systems.  

As previously shown by Torfstein et al. (2013), the geographical distribution of isotopic values 
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(R/Ra) along the DST is in agreement with the different tectonic conditions. In particular, a mantle 

up-rise and/or deeper fault systems could justify an easier ascent of mantle fluids with a larger 3He 

signature in the northern part of the studied area, in agreement with Segev et al. (2006). Moreover, 

considering that the last magmatic activity in this area has been dated at 0.1 Ma (Mor, 1993), a 

source of 3He due to the presence of magma bodies intruded into the crust releasing fluids rich in 

mantle-He cannot be excluded. This could also explain the anomalous heat flux recognised by 

Shalev et al. (2008) near Galilee Sea. These evidences suggest that in the northern part the fault 

system is connected at depth, in particular near Hammei Teveria and Hamat Gader where the 

highest proportion of mantle-He and Mantle-CO2 are recognized. Finally, the present study remarks 

that deep regional transform faults are important pathways for mantle fluids either directly or 

through the intrusion of magmatic batches. Examples can be found both in the Middle-east region 

(Gülec et al., 2002; Italiano et al., 2013; Torfstein et al., 2013; Yuce et al., 2014) and worldwide 

(Kulongoski et al., 2013; Klemperer et al., 2013; D’Alessandro et al., 2014).  

8.5 CONCLUNDING REMARKS 

Data of chemical and isotopic composition of He and CO2 dissolved in waters were measured to 

investigate the origin of fluids interacting with the waters along the DST.  

Values of R/Ra coupled with 4He/20Ne show a dominant radiogenic component with a 

geographical distribution of samples (North-Center-South families) highlighting higher 

contributions of mantle-helium in waters located in the northern part of the area, where an 

anomalous heat zone has been previously identified.  

High CO2 amounts dissolved in water are recognized along DST, with maximum values in the 

northern part close to the Sea of Galilee (Hammei Teveria and Hamat Gader). Moreover, CO2/
3He 

ratios coupled to δ13C(CO2) allowed to discriminate the contribution of different end-members, 

showing higher mantle CO2 contribution in the northern part of investigated area. 

As for other similar tectonic structures around the world, the DST fault system allows the rise of 
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fluids of mantle origin. Such uprise is favoured in the northern part of the investigated area where a 

shallower Moho discontinuity is present. The contemporaneous presence of the products of recent 

magmatic activity in the same area does not allow to discriminate if these mantle fluids derives 

from degassing of magma batches intruded in the crust or from diffusion of mantle-fluids across the 

ductile mantle-crust boundary. 
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The geochemical behaviour of Rare Earth Elements, Zr and Hf was investigated in the thermal waters of Nevado

del Ruiz volcano system.Awide range of pH, between 1.0 and 8.8, characterizes thesefluids. The acidicwaters are

sulphate dominatedwith different Cl/SO4 ratios. The important role of the pH and the ionic complexes for the dis-

tribution of REE, Zr and Hf in the aqueous phase was evidenced. The pH rules the precipitation of authigenic Fe

and Al oxyhydroxides producing changes in REE, Zr, Hf amounts and strong anomalies of Cerium. The precipita-

tion of alunite and jarosite removes LREE from the solution, changing the REE distribution in acidic waters.

Y–Ho and Zr–Hf (twin pairs) have a different behaviour in strong acidicwaters with respect to thewaterwith pH

near-neutral. Yttrium and Ho behave as Zr and Hf in waters with pH near neutral-to-neutral, showing super-

chondritic ratios. The twin pairs showed to be sensitive to the co-precipitation and/or adsorption onto the surface

of authigenic particulate (Fe-, Al-oxyhydroxides), suggesting an enhanced scavenging of Ho and Hf with respect

to Y and Zr, leading to superchondritic values. In acidic waters, a different behaviour of twin pairs occurs with

chondritic Y/Ho ratios and sub-chondritic Zr/Hf ratios. For the first time, Zr and Hf were investigated in natural

acidic fluids to understand the behaviour of these elements in extreme acidic conditions and different major

anion chemistry. Zr/Hf molar ratio changes from 4.75 to 49.29 in water with pH b 3.6. In strong acidic waters

the fractionation of Zr and Hf was recognized as function of major anion contents (Cl and SO4), suggesting the

formation of complexes leading to sub-chondritic Zr/Hf molar ratios.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In the last 30 years, an extensive literature about the distribution of

REE (lanthanides and yttrium) and the Y/Ho ratios during fractionation

processes between different phases was developed (Bau, 1996, 1999;

Bau and Dulski, 1999; Ruberti et al., 2002; Censi et al., 2007, 2014,

2015; Piper and Bau, 2013). The REE abundances provide insight into

water–rock interaction processes. The REE geochemistry in geothermal

fluids is complex and depends on the pH, the stability of solid phases,

the concentrations of anionic ligands complexing the REE and adsorp-

tion of mineral surfaces (Wood, 1990, 2003; Lewis et al., 1997, 1998,

and references therein; Gammons et al., 2005; Bao et al., 2008; Peiffer

et al., 2011). The concentration of total dissolved REE in near neutral

pH waters and in seawater is low and their dissolved species are domi-

nated by carbonate complexes (Byrne, 2002), whereas in acidic waters

(pH b 3.6) carbonate and hydroxide can be considered negligible. The

geothermal waters with very acidic pH values have higher contents of

REE dissolved in waters up to 104 times compared to seawater (Wood,

2003 and references therein). The REE contents of hydrothermal fluids

usually increase with decreasing pH, independently from the tempera-

ture and the type of local rock (Michard, 1989). During the mixing be-

tween fluids discharged from the hydrothermal vent on the marine

floor and seawater, the REE are scavenged by Fe andMn oxyhydroxides

(Bau and Dulski, 1999; Wood, 2003 and references therein). The geo-

thermal systems are characterized by a wide variety of REE patterns;

in particular the acid sulphate waters have high REE contents some-

times with Light Rare Earth Elements (LREE) depleted with respect to

the local rock (Wood, 2003 and references therein).

Recent studies investigated isovalent elements Zr–Hf, Y–Ho and

their fractionation during processes involving solid phases. The Y–Ho

and Zr–Hf are characterized by similar ionic radius and by the same

charge +3 and +4 respectively. The twin pairs are characterized by

negligible fractionation during processes occurring at high temperature

in silicate melt and are controlled by charge and radius. A different
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behaviour of Y–Ho and Zr–Hf was recognized in processes that take

place in aqueous system, showing values which deviate from the chon-

dritic ratio, due to fractionation processes ruled by the electronic config-

urations of elements (Bau, 1996). In seawater, continental is the main

source of Zr–Hf, showing a larger removal of Hf with respect to Zr, due

to the different sorption of these elements onto Fe and/or Mn

oxyhydroxides (Godfrey et al., 1996; Godfrey and Field, 2008; Firdaus

et al., 2011; Frank, 2011; Censi et al., 2015, Schmidt et al., 2014).

Moreover, Zr and Hf form complexes with hydroxyl groups in waters

with pH from near neutral to neutral (Byrne, 2002). However, the frac-

tionation of these elements has never been studied in extreme acidic

environments.

In this research we investigate the behaviour of REE, Zr and Hf in wa-

ters circulatingwithin the Nevado del Ruiz (NDR) volcano–hydrothermal

system. This natural system is considered a laboratory for better under-

standing of the processes involving these elements within a wide spec-

trum of pH values and chemical composition of waters.

2. Geo-lithologic aspects

Nevado del Ruiz is one of the active volcanoes belonging to the great

chain of the Andes (located a few km west of Bogota), connected with

the active subduction of Nazca Plate below the South American plate.

The last plinian eruption occurred in 1985, generating a huge lahar that

buried Armero town killing approximately 23,000 people. The NDR vol-

cano is a large edificemainly constructed during threemajor phases over

thepast 600 to 1200 ka,with a summit elevation of 5389m (Forero et al.,

2011 and references therein). The volcanic complex is mainly built by

andesitic lava, whereas pyroclastic deposits belonging to the last erup-

tive phase overlay the lava flows. This volcanic system is characterized

by calc-alkaline rocks ranging from andesitic to dacitic in composition

with quite constant distribution of REE, Zr and Hf in different magmatic

suites (Borrero et al., 2009). Fig. 1 shows the REE distribution of average

local rock normalized to chondrite, displaying a decreasing pattern from

La to Lu and lack of a significant Eu anomaly (Borrero et al., 2009 and ref-

erence therein). Borrero et al. do not show different trends for a range of

magmatic suites, affirming that the evolution of magma is mainly con-

trolled by the fractional crystallization.

The NDR rocks have quite constant Y/Ho and Zr/Hf molar ratios of

58.3 and 66.8 respectively (Borrero et al., 2009 and reference therein),

falling in the field of processes controlled mainly by charge and radius

(Bau, 1996).

3. Materials and methods

Hot and cold waters were collected in the area close to NDR volcano

(Fig. 2). Temperature, pH, Eh and electrical conductivity of waters were

measured in the field with an ORION 250+. The sample waters collect-

ed to determinemajor cations and trace elementswere filtered through

0.45 μm MILIPORE cellulose acetate filters into 250 ml Nalgene bottles

and acidified in the fieldwith ultrapure HNO3. The samplewaters to de-

termine major anions were filtered with 0.45 μm filters in the field into

LDPE plastic bottle. The major elements were analysed by Dionex ICS

1100 chromatograph. A Dionex CS-12A column was used for cations

(Na, K, Mg and Ca) and a Dionex AS14A column for anions (F, Cl, and

SO4). Alkalinity was determined in the field by titration with HCl 0.1 M.

Trace elements, including also REE, Zr and Hf, were analysed by Q-

ICP-MS (Agilent 7500ce) equipped with a Micromist nebulizer, a Scott

double pass spray chamber, a three-channel peristaltic pump, an auto

sampler (ASX-500, Cetac) and a Octopole Reaction System (ORS) for re-

moving interferences of polyatomic masses and isobaric isotopes. The

mass spectrometer was calibrated with a multi-element standard

solution, daily prepared and diluted 10 times to obtain a curve with

11 calibration points. The sensitivity variations were monitored using
103Rh, 115In, and 185Re at a final concentration of 8 μg/l for each as inter-

nal standards added directly online by an appropriate device that mixes

an internal standard solution to the sample just before the nebulizer.

Sixty second rinse using 0.5% HCl and 2% of HNO3 solution plus 60-s

rinse using 2% of HNO3 solution reduced memory interferences be-

tween samples. The precision of analysis was checked by running 5 rep-

licates of every standard and sample, it was always within ±10%. Data

accuracy was evaluated analysing standard reference materials

(Spectrapure Standards SW1 and 2, SLRS4, NIST 1643e, Environment

Canada TM 24.3 and TM 61.2) for each analytical session and error for

each element was b15%. Fe, Al with high concentrations (N1 mg/l)

and Si were analysed by ICP-OES Horiba Ultima 2 at wavelength of

259.940 nm, 396.152 nm and 251.611 nm respectively.

The saturation indexes (SI) of solid phases and ion speciation were

calculated using Phreeqc software package (version 3.0.6; Parkhurst

and Appelo, 2010). The simulationswere carried out using the database

LLNL at the chemical–physical conditions measured in the field.

Scanning ElectronicMicroscopy (SEM) observations and Energy Dis-

persive X-ray Spectra (EDS) were carried out on the suspended particu-

lar matter (SPM) collected during the filtration from the investigated

waters, in order to get information about the nature of suspended solids.

The filters with the SPM were assembled on the alluminium stub and

coated with gold. The analisys were performed with LEO 440 SEM

equipped with an EDS system OXFORD ISIS Link and Si (Li) PENTAFET.

Anomalies of Cerium and Europium in waters were calculated with

respect to the neighbouring elements normalized to the average local

rock, using the equation proposed by Alibo and Nozaki (1999):

REEn=REEn� ¼ 2 � REEð Þn= REEð Þn−1 þ REEð Þnþ1

� �

(REE)n is the concentration of the element chosen to calculate the

anomaly, while (REE)n − 1 and (REE)n + 1 represent the previous and

the subsequent element along the REE series, respectively.

4. Results

4.1. General aspects

NDR waters cover a wide spectrum of pH, ranging from 1 to 8.8.

Temperature ranges from 6.8 to 79.5 °C, electrical conductivity values

span from 0.2 to 33.5 mS/cm and Eh values range between −31 and

+325.4 mV (Table 1). The acidity recorded in the investigated waters

is due to the interaction of magmatic gases, such as HCl, SO2, and their

dissolution and dissociation in groundwater (e.g., Giggenbach et al.,

1990). According to the pH, the waters were classified into two groups:

Group 1 (near neutral-to-neutral) is characterized by pH values ranging

between 5.9 and 8.8, Group 2 (acidic) has pH values between 1.0 and

3.6. Considering the major anion contents, the groups were further

subdivided. Group 1a with the highest amount in HCO3, Group 1b

with chloride dominant composition. The fluids belonging to Group 2

are acid sulphate waters with composition plotting near the SO4 cornerFig. 1. Chondrite-normalized REE patterns in average local rock.
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in the ternary anion diagram (Fig. 3). The latter group can be subdivided

according to the Cl content: Group 2a with lower Cl/SO4 ratios (b0.13)

and Group 2b with higher Cl/SO4 ratios (N0.32).

Fe and Al contents are several orders of magnitude higher (up to

4.14 and 30.23 mmol/l respectively) in Group 2 compared to Group 1

(up to 2.85 ∗ 10−4 and 5.44 ∗ 10−4 mmol/l respectively). The water

groups have differentmineral saturation state (Table 2). Group 1waters

are oversaturated with respect to iron and aluminium oxyhydroxides,

while the waters of Group 2 are undersaturated with respect to those

minerals. SEM-EDS analyses of SPM show amorphous silica in all the

investigated waters, sometimes silica sphere probably encrusting

organic matter (Fig. 4b). Moreover, different solid phases were found

in the groups of waters classified previously: in Group 1a Fe-, Al-

oxyhydroxides encrusting amorphous silica are present (Fig. 4a); in

Group 2a waters Fe–Al–Ca solid phases (probably sulphates) onto

amorphous silica are recognized (Fig. 4c; d).

The isosol diagram (log-log compositional plot) was used to evalu-

ate the degree of rock dissolution. This diagram allows to evaluate if

the chemical composition of waters is a reflection of the rocks (near-

congruent dissolution, under hyperacid conditions) and the possible re-

moval of elements by precipitation of secondary minerals (Taran et al.,

2008; Colvin et al., 2013; Varekamp, 2015 and references therein). The

hyperacid waters of Group 2 fall between the isosol lines indicating

the dissolution of about 5 to 10 g of rock (Fig. 5). The Group 2b waters

show to be close to congruent dissolution of the average local rock, for

all elements with the exception of Si that is depleted in all samples

(Fig. 5), probably due to the precipitation of silica minerals. The major

elements of Group 2a deviate from the isosol line, with the exception

of Mg and Ca that fall close to the 5–10 g of rock dissolution line

(Fig. 5). Strong depletions of Fe, Al, K and minor depletion of Na

(Fig. 5) suggest the precipitation of alunite [(K,Na)Al3(SO4)2(OH)6)]

and jarosite [(K, Na)Fe3(SO4)2(OH)6], typical minerals precipitating in

Fig. 2. Location map of sampled waters.

Table 1

Chemical composition of the studied waters expressed in mmol/l.

Group Sample name T (°C) pH Cond (mS/cm) Eh (mV) Na K Mg Ca F Cl SO4 HCO3 Al Fe Si

Group 1 Agua Hedionda 13.9 5.9 0.4 170 0.48 0.07 1.07 0.76 0.01 0.05 1.01 2.30 0.0007 0.0005 1.64

Rio Molinos 15.9 8.8 0.5 – 2.04 0.20 0.62 1.43 0.02 1.43 1.80 1.20 0.0005 0.0003 1.15

Nereidas 50.4 6.1 2.0 96 5.35 0.45 1.95 3.25 0.00 0.62 3.10 9.40 0.0008 0.0004 3.06

Botero Londono 79.5 7.7 6.8 −31 27.06 2.10 0.26 1.20 0.10 28.4 0.68 1.40 0.0353 0.0098 2.78

Group 2 Termal La Gruta 33.5 1.6 8.7 236 14.06 1.41 5.90 4.42 1.47 14.5 36.9 – 11.09 0.53 2.94

Hotel 1 59.8 1.4 17.0 271 20.93 1.79 9.23 6.03 2.09 20.8 52.1 – 12.00 1.28 3.67

Hotel 2 62.6 1.4 10.3 115 21.47 1.93 9.72 6.39 2.07 21.9 56.2 – 12.41 1.30 3.75

Agua caliente 59.3 1.0 33.3 325 14.99 5.78 7.76 6.15 3.10 35.7 110.2 – 30.23 4.14 2.58

Quebrada La Gruta 15.3 2.1 3.0 207 4.76 0.86 2.08 1.52 0.55 4.93 12.6 – 3.13 0.28 1.53

Agua Blanca 29.1 3.3 2.5 205 1.81 0.26 2.16 10.38 0.22 1.39 16.1 – 1.86 0.27 2.03

Rio Lagunillias 6.8 3.6 0.2 171 0.16 0.03 0.28 0.41 0.01 0.09 1.40 – 0.26 0.07 0.55

Rio Guali 7.2 3.5 1.2 – 1.06 0.16 1.23 2.68 0.13 0.76 5.77 – 0.83 0.14 1.64

Rio Azufrado 16.0 3.4 1.8 190 4.59 0.39 4.63 6.62 0.19 1.54 16.1 – 1.50 0.35 2.56

FT Gauli 59.2 2.8 3.5 246 1.81 0.28 2.89 8.67 0.31 1.30 15.7 – 1.78 0.02 3.25
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hyperacid hydrothermal systems (Taran et al., 2008; Varekamp et al.,

2009; Colvin et al., 2013). The waters of Group 1 don't reflect the

composition of the average local rock, showing the strong depletions in

Fe and Al (Fig. 5), particularly in Group 1a waters, where the near-

neutral pHallows the precipitation of iron and aluminiumoxyhydroxides.

4.2. REE, Zr and Hf

The total amount of REE inNDRwaters ranges between 0.8 and 6722

nmol/l (Table 3). We found an inverse correlation between the total

amount of REE and pH values (Fig. 6): higher REE contents are recog-

nized in Group 2 (lower pH values) with respect to Group 1 (higher

pH values). Great differences in ΣREE are found between the subgroups

1a and 1b with Botero Londono sample (Group 1b) displaying a higher

valuewith respect to thewaters of Group 1a (Fig. 6). The correlation be-

tween ΣREE and pH values suggests that rock dissolution is occurring

more completely under acidic conditions, particularly Group 2b waters

showing near-congruent dissolution of up to 10 g of rock per litre

(Fig. 5).

Considering the constant distribution of REE in the magmatic rocks

of NDR, the studied waters were normalized to the average local rock

(Borrero et al., 2009 and reference therein) evaluating processes of

water–rock interaction in the hydrothermal system. The rock normal-

ized REE patterns differ among the various water groups (Fig. 7).

Group 1a shows patterns increasing from La to Lu, a positive Eu anomaly

and negative Ce anomaly (Fig. 7). The Botero Londonowater (Group 1b)

shows a slight decrease from La to Lu (Fig. 7). TheGroup 2bwaters show

a flat pattern, whereas the waters of Group 2a are characterized by

anomalous shape of pattern strongly depleted in LREE compared to

theMiddle Rare Earth Elements (MREE) andHeavy Rare Earth Elements

(HREE) (Fig. 7).

The amount of Y and Ho dissolved in waters ranges from 0.17 to

914 nmol l−1 and from 0.003 to 17.7 nmol l−1 respectively. Y/Ho

molar ratios range between 47.8 and 127, with values changing from

chondritic to superchondritic in acidic waters and in near-neutral wa-

ters respectively (Fig. 8).

The Zr concentration ranges from0.48 to 35.1 nmol l−1withHf from

0.007 to 0.90 nmol l−1. Zr/Hf molar ratios are within the range between

4.7 and 104, showing sub-chondritic values in acidic waters and super-

chondritic values in near-neutral waters (Fig. 8). Y/Ho and Zr/Hf ratios

show simultaneous changes in the waters of Group 1, whereas a differ-

ent behaviour was recognized in acidic waters of Group 2 (Fig. 8).

5. Discussion

5.1. REE behaviour

The compositional variation of REE is mainly due to 4 processes:

(i) the composition of the rocks interacting with water (dissolution of

glass and minerals), (ii) the anionic composition of the waters deter-

mining the different complexation of REE, (iii) the incorporation into

secondary minerals as function of the chemical-physical property of

the waters and (iv) adsorption processes onto newly formed phases at

higher pH (oxyhydroxide of Fe, Al, and Mn).

In NDR waters, the REE are strongly released by the rocks into acidic

waters (Group 2). The pH controls the precipitation of new solid phases,

inducing sorption and desorption of REE. The significant positive correla-

tions between the total amount of REE and Fe or Al dissolved in waters

(Fig. 9) shows the simultaneous variation of these elements, with the in-

volvement of Fe and Al controlling the abundance of REE dissolved in

water. Strong processes of scavenging occur during the co-precipitation

and/or adsorption onto the surface of oxide and oxyhydroxide of Fe, Al,

and Mn (Censi et al., 2007; Bau and Koschinsky, 2009).

REE-complexes play a role together with other geochemical pro-

cesses during the fractionation of REE (Lewis et al., 1998). The very

low pH of the studied waters (Group 2) suggests that all the inorganic

carbon dissolved occursmainly as dissolved CO2; consequently, carbon-

ate complexes are negligible in these acidic solutions. However,

[REE(CO3)]+ and [REE(CO3)2]
− play a role in the waters belonging to

Group 1, as they are the only oneswith higher amount of carbonate spe-

cies (HCO3
− and/or CO3

2−) dissolved in solution. The assessment of

water–rock interaction processes is evaluated by the patterns of REE

dissolved in waters normalized to the average local rock (Fig. 7).

In the acidic solutions of Group 2, the speciation of REE is ruled by

complexes with SO4
2−, F− and Cl−, according to the relative abundance

of anions dissolved in waters (Lewis et al., 1998). The Group 2b is the

only one with flat patterns suggesting that source rocks mainly control

the REE distribution,without processes changing the REE distribution in

waters (Fig. 8). In Group 2a, the REE-patterns normalized to average

local rock (Fig. 8) are characterized by strong LREE depletion. A similar

shape of pattern with LREE depletion was already observed in other

acid-sulphate waters from Waiotapu (New Zealand), Copahue volcano

(Argentina), Santa Ana (El Salvador), Kawah Ihen Crater Lake

(Indonesia) and Kutomintar and Sinarka volcanoes (Kawah Ijen)

(Takano et al., 2004; Wood et al., 2006; Varekamp et al., 2009; Colvin

et al., 2013; Kalacheva et al., 2015). Strong REE fractionation occurs dur-

ing the hydrothermal alteration in very low pH waters with high SO4
2−

contents, showing higher LREE contents in alunitic advanced argillic

alterated rocks compared to the unalterated volcanic rocks (Hikov,

2011). The alteration minerals play an important role taking up the

REE from the aqueous solution and/or releasing the elements, as a func-

tion of the chemical physical condition of the system that determines

Fig. 3. Triangular plot of major anions dissolved in water.

Table 2

Saturation indexes of studied waters.

Group Sample Name
Goethite

FeOOH

Hematite

Fe2O3

Gibbsite

Al(OH)3

Boehmite

AlO(OH)

Group 1 Agua Hedionda 0.02 0.99 0.80 0.92

Rio Molinos 3.66 8.27 0.48 0.61

Nereidas 0.14 1.38 1.59 1.91

Botero Londono 5.90 13.0 0.89 1.32

Group 2 Termal La Gruta −6.57 −12.2 −3.97 −3.76

Hotel 1 −7.07 −13.0 −4.62 −4.26

Hotel 2 −6.22 −11.3 −4.60 −6.22

Agua caliente −7.04 −12.9 −5.50 −5.14

Quebrada La Gruta −8.25 −15.6 −5.83 −5.70

Agua Blanca −6.57 −12.2 −3.97 −3.76

Rio Lagunillias −5.08 −9.20 −2.24 −2.18

Rio Guali −6.87 −12.8 −4.64 −4.57

Rio Azufrado −7.69 −14.4 −5.26 −5.13

FT Gauli −8.83 −16.5 −4.83 −4.47
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the stability of the solid phases. In particular, the precipitation of alu-

nite–jarosite, was considered responsible of the LREE depletion in the

acid–sulphate waters being the solid phases enriched in LREE (Ayers,

2012; Varekamp, 2015 and references therein). In the isosol diagram,

Group 2awaters show depletions in K, Fe, Al, and Na pointing to alunite

and jarosite precipitation (Fig. 5). Moreover, Al- and Fe-sulphates were

found by SEM-EDS analysis as SPM (Fig. 4c, d). Coupling these informa-

tion about the chemical propriety of waters and the nature of SPM, the

depletion of LREE Group 2a, can be justified by the precipitation of Al-

and Fe-sulphates as alunite and jarosite.

REE-patterns (Group 1a) normalized to average local rocks (Fig. 8)

show a progressive increase from La to Lu according to the stability con-

stant of [REE(CO3)]+ characterized by a progressive increase along the

REE series (Wood, 1990; Millero, 1992). Botero Londono (Group 1b) is

the only water with chloride-dominated composition. Considering the

stability constant of [REECl]2+ (Wood, 1990), the different patterns

(Botero Londono) compared to other groups of samples is due to REE-

chloride complex stability constant, characterized by the same trend

recognized for Botero Londono with a shight pattern decreasing along

the REE series.

The precipitation of solid phases involving Fe and Al at circum-

neutral pH conditions changes the abundance and the distribution of

REE in water. Cerium and Europium differ from the other REE for

being redox sensitive elements. Cerium is removed from waters during

neutralization as CeO2 and/or from precipitation of Fe, Mn and Al

oxyhydroxides in river waters and marine environment (Goldstein

and Jacobsen, 1988; Elderfield et al., 1990; Seto and Tsaku, 2008). The

Ce and Eu anomalies vary with pH (Fig. 10). In particular, the waters

with pH b 3.6 (Group 2) have no significant Ce and Eu anomalies,

whereas the waters with pH N 5.9 (except Botero Londono sample)

show strong negative anomalies of Ce and strong positive anomalies

of Eu. The Ce anomaly can be explained considering the enhanced

Fig. 4. SEM-EDS observations of SPM showing: in Group 1a Al-, Fe- oxyhydroxides encrusting amorphous silica (a); in Group 2a, silica sphere probably encrusting biological matter (b), Fe

(partially Ca) rich solids (probably sulphates) onto amorphous silica (c), Fe-, Al-, rich solids.
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removal of Ce with respect to La and Pr, during the processes of co-

precipitation and/or adsorption onto the surface of authigenic minerals

(Al-, Fe oxyhydroxides).

Ce has a different behaviour in Botero Londono sample compared to

the other samples of Group 1, not showing strong Cerium anomaly

(Fig. 10a). The main differences of Botero Londono water compared to

the other waters belonging of Group 1 are the higher ionic strength

and the lower Eh value. These differences could limit the precipitation

of Al-, Fe-oxyhydroxide allowing higher amounts of Al and Fe dissolved

inwater. Moreover, SEM-EDS observations of SPM (Botero Londono) do

not show the presence of Al-, Fe-oxyhydroxide solid phases.

Almost all the investigated waters are characterized by a small

anomaly of Europium (Fig. 10b), except for the waters of Group 1

where a strong positive anomaly (1.22–7.43) occurs, suggesting addi-

tional processes that fractionate the REE. The strong positive Eu anom-

aly found in the water of Group 1a could be justified by the slow

interaction of waters with Eu enriched plagioclase, as already recog-

nized in other hydrothermal systems (Wood, 2003 and references

therein; Varekamp et al., 2009; Peiffer et al., 2011).

5.2. The behaviour of twin pairs (Y-Ho; Zr–Hf)

The decoupling of Y–Ho and Zr–Hf in seawater indicated that these

elements are not controlled only by charge and ionic radius (Bau,

1996; Godfrey et al., 1996). The behaviour of Zr and Hf in natural waters

is limited to the neutral-basic environments (mainly sea water), where

super-chondritic Zr/Hf ratio was recognized (Firdaus et al., 2011;

Schmidt et al., 2014). The inorganic speciation of Zr and Hf in water

with circum-neutral pH is dominated by hydroxyl groups (Zr(OH)5
−,

Hf(OH)5
−, Zr(OH)4, Hf(OH)4), whereas Y and Ho are mainly complexed

by carbonate species (Byrne, 2002). The different charge of metal com-

plexes determines the adsorption behaviour onto the solid surfaces

(Koschinsky and Hein, 2003). Bau and Koschinsky (2009) show that

the Y/Ho ratio in marine Fe–Mn hydroxydes is significantly lower than

seawater, suggesting an enhanced scavenging of Ho with respect to Y

in the Fe–Mn crusts. Recently, Schmidt et al. (2014) investigating the

fractionation of Zr–Hf between seawater and Fe–Mn crusts, showed

that Zr/Hf ratio is lower in the Fe–Mn oxyhydroxides compared to sea-

water. These studies indicate that both Hf and Ho are more easily

removed than Zr and Y during the formation of marine Fe–Mn

oxyhydroxides and that the geochemical behaviour of these twin pairs

is not simply ruled by charge and ionic radius.

The near neutral-to-neutral waters of Group 1 have higher values

of Y/Ho and Zr/Hf ratios with respect to the acidic waters and the

average local rock (Fig. 8). The twin pairs' fractionation in Group 1 is

due to the formation of the observed authigenic solid phases (Fe-, Al-

oxyhydroxides) stable at neutral pH. The preferential removal of Ho

andHfwith respect to Y and Zr is attributed to the enhanced scavenging

Fig. 5. Isosol diagram is a log-log compositional plot, with the average volcanic rock composition versus thewater composition. Isosol lines represent the equal amount of rock dissolved for

the element considered. The plot shows the near-congruent dissolution of Group 2b (acid waters) and the depletion in K, Na, Fe, Al, in Group 2a (acid waters). The Group 2 shows a rock

dissolution ranging between 5 and 10 g/l. Group 1 (near-neutral pH) is strongly depleted in Fe, Al reflecting the precipitation of Fe, Al- oxyhydroxides. (probably sulphates) onto amor-

phous silica (d).

Table 3

REE, Zr and Hf dissolved in waters expressed in nmol/l.

Group Sample Y La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Zr Hf

Group 1

Agua Hedionda 0.52 0.04 0.07 0.013 0.051 0.005 0.017 0.020 0.002 0.025 0.007 0.017 0.005 0.034 0.008 1.30 0.013

Rio Molinos 0.17 0.02 0.008 0.006 0.029 0.007 0.017 0.009 0.002 0.014 0.003 0.01 0.003 0.008 0.003 5.31 0.057

Nereidas 1.13 0.04 0.07 0.012 0.074 0.015 0.037 0.045 0.005 0.042 0.009 0.03 0.008 0.054 0.012 0.70 0.007

Botero Londono 5.24 11.1 19.2 1.85 5.95 0.99 0.31 0.89 0.11 0.48 0.09 0.25 0.04 0.21 0.03 2.21 0.03

Group 2

Termal Gruta 642 512 1102 142 545 103 24.5 89.23 11.8 58.8 11.6 32.3 4.36 26.8 3.96 21.7 0.46

Hotel 1 465 560 1034 119 429 77.9 19.6 71.30 9.07 46.5 9.39 25.8 3.52 21.6 3.16 8.52 0.24

Hotel 2 483 565 1050 121 439 79.2 20.0 70.37 9.15 47.2 9.57 26.4 3.70 22.3 3.19 14.7 0.33

Agua Caliente 914 1419 2575 269 944 177 43.8 153 19.1 91.7 17.7 47.6 6.45 38.3 5.62 35.1 0.90

Quebrada Gruta 147 145 303 35.2 131 24.7 5.89 21.3 2.74 14.3 2.75 8.50 1.04 6.41 0.95 27.7 0.56

Agua Blanca 629 20.4 108 22.8 177 63.6 19.0 81.6 12.83 64.6 11.7 28.4 3.26 17.5 2.34 3.01 0.28

Rio Lagunillas 49.7 9.38 28.5 4.81 23.5 6.01 1.17 7.00 1.02 5.04 1.04 2.59 0.35 1.93 0.30 0.48 0.10

Rio Guali 204 22.2 65.5 12.0 66.2 20.6 4.25 24.9 3.56 19.3 3.90 10.3 1.29 7.53 1.06 2.17 0.10

Rio Azufrado 565 8.88 42.6 10.1 94.9 49.6 13.4 65.2 9.83 52.1 10.4 27.4 3.52 20.5 2.99 3.65 0.24

FT Gauli 599 9.60 47.9 11.0 99.7 39.7 9.61 55.8 9.09 50.6 10.70 28.2 3.72 21.3 3.12 0.74 0.09
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during the co-precipitation onto the surfaces of Fe, Al oxyhydroxides

(Bau, 1999; Bau and Dulski, 1999; Bao et al., 2008; Censi et al., 2007;

Feng, 2010, Schmidt et al., 2014). However, in Botero Londono water

(Group 1b), Y–Ho and Zr–Hf do not significantly fractionate and Ce

anomaly is negligible (Fig. 10a), in agreement with the limited Fe, Al

oxyhydroxide formation. Our data show that Y–Ho and Zr–Hf are re-

moved from the hydrothermal system by Fe-, Al-oxyhydroxides precip-

itating in water with circum-neutral pH.

In Group 2 (acidic waters), Y–Ho and Zr–Hf twin pairs are character-

ized by a different behaviour. Y/Ho ratios are close to the average local

rock, showing the negligible fractionation of these isovalent elements,

while Zr/Hf ratios are sub-chondritic. The behaviour of Zr and Hf in ex-

treme acidic environments has not been studied yet. Only few studies

were carried out on the speciation of Zr and Hf with fluoride and chlo-

ride ligands, but not in water with very high sulphate contents

(Pershina et al., 2002;Monroy-Guzmanet al., 2010).Molecular dynamic

calculation (Pershina et al., 2002) indicated that in chloride media,

chloride complexes are enhanced for Hf with respect to Zr, indepen-

dently of pH. In Group 2 waters Zr and Hf are decoupled indicating

that the geochemical twin is not controlled only by ionic radius and

charge. Fig. 11 show that Zr/Hf ratio increases as Cl/SO4 ratio increases

highlighting a different behaviour of isovalent elements as a function

of anion contents (Cl and SO4). The Zr-Hf fractionation observed in

this acidic environment may result from different stability constants of

Zr and Hf complexes with Cl and SO4 ligands that in turn determine

the relative abundance of these metals in hyper-acid waters.

6. Concluding remarks

The thermal fluids circulating in NDR system have a variety of major

chemical composition and cover awide range of pH values from1 to 8.8.

The concentrations of REE and their patterns normalized to the average

Fig. 6. Variations of total REE dissolved in water as a function of pH. Symbols as in Fig. 3.

Fig. 7. Average local rock-normalized REE patterns dissolved in water.

Fig. 8. Zr/Hf and Y/Ho (molar ratios). Symbols as in Fig. 3, blue circle represent Y/Ho and

Zr/Hf (molar ratios) in average local rock. (For interpretation of the references to color

in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Total amount of REE versus Fe, Al dissolved in waters. Symbols as in Fig. 3.
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local rock change as function of processes occurring in the shallower

and/or deep system. Themajor anions play an important role on the dis-

tribution of REE driven by complexation,whereas the pH values rule the

precipitation of solid phases, also fractionating the REE. Negative cerium

anomaly in water with near-neutral pH underscores the importance of

authigenic minerals (Fe-, Al-oxyhydroxides) on the fractionation

of REE, indicating a different behaviour of Ce with respect to the

neighbouring elements. Moreover, the precipitation of alunite and

jarosite strongly fractionate the REE distribution in Group 2b, depleting

the LREE in the aqueous phase.

For the first time, Y–Ho and Zr–Hf behaviour was studied simulta-

neously in a wide range of pH and chemical composition of major an-

ions. The precipitation of Al-, Fe-oxyhydroxides occurs when pH

values are close to neutrality fractionating Y–Ho and Zr–Hf, with a pref-

erential Ho and Hf removal. A different behaviour of Y–Ho and Zr–Hf

was identified in acidic sulphate waters with different content of chlo-

ride. Y/Ho displays chondritic ratios, showing a negligible fractionation

compared to the local rock, whereas Zr/Hf ratios are sub-chondritic,

increasing as Cl/SO4 ratios increase. This evidence suggests a different

stability of chemical complexes of Zr and Hf with Cl and SO4 ligands,

leading to sub-chondritic Zr/Hf ratios in strong acid environments.
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