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Stéphanie Motré, Pascal Morin, Christophe Mourtel, David M’Räıhi, Christophe Muller,
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participé à nos travaux.

L’aide apportée par Marc Joye lors de l’assemblage de ce mémoire est considérable.
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et corrigée).]
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[Accepté à PKC’05.]

David Naccache, Phong Q. Nguy˜̂en, Michael Tunstall, Claire Whelan

Statistics and Secret Leakage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546
[ACM Transactions on Embedded Computing Systems, vol. 3, No. 3, pp. 492–508, 2004. et Y. Frankel, Ed.,
Financial Cryptography 2000, vol. 1962 of Lecture Notes in Computer Science, pp. 157–173, Springer-Verlag,
2001.]
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1 Avant Propos

En entrant progressivement dans l’ère de l’information, les sociétés avancées se trouvent
confrontées à un paradoxe : l’accroissement de leur puissance d’une part, en raison de l’aug-
mentation de la valeur conférée à l’information, et l’apparition de vulnérabilités nouvelles
d’autre part, en raison de leur dépendance croissante à l’égard des systèmes informatiques.

Le développement des attaques informatiques et la vulgarisation des techniques de pi-
ratage conduisent à s’interroger sur la menace qui pèse désormais sur les sociétés avancées ;
au point de se demander si une nouvelle forme de guerre pourrait se développer dans ces
sociétés d’une nouvelle génération. La cryptographie est un important rempart contre de
telles menaces.

Les pages suivantes explorent un minuscule bout de la jungle de la cryptologie moderne.

Dans l’avant propos de son « Dictionnaire Commenté des Expressions Latines », Or-
lando de Rudder écrivait : « ... cet ouvrage est né de la rêverie, de la rêverie au sens
étymologique, c’est-à-dire de la promenade. L’écolier que je fus aimait les dictionnaires,
mais il ne les consultait pas. Il essayait cependant, il tentait de s’appliquer, de ne pas
se laisser distraire, de chercher un mot précis. Mais bien vite, un autre mot l’arrêtait,
l’intéressait, le retenait, à moins que ce ne fût une planche ou une carte géographique. Ces
vagabondages m’amenaient évidemment à oublier ce que je cherchais au départ. De plus, la
proximité alphabétique de termes divers appartenant à des domaines différents produisait
souvent de curieuses associations d’idées.

Le dictionnaire Universel de Pierre Larousse comprenait des citations et des locutions
latines. Le Petit Larousse, quant à lui, les réunit dans ses fameuses « pages roses » . Ces
phrases, pour la plupart, furent retrouvées ensuite dans les versions d’école. Comme pour
les mots que reliait entre eux un ordre arbitraire, j’appris à utiliser ces expressions dans
un contexte différent de celui de leur origine, à créer, encore une fois, des associations
d’idées. Cet usage, parfois agaçant, des citations, je l’appris encore plus tard, n’est que
l’applications rhétorique.

Comme un contrepoint de mes rêveries anciennes, les phrases, bribes et fragments que
j’explicitais et commentais en faisant ce livre m’orientèrent souvent vers d’autres citations,
d’autres fragments, me dirigèrent insidieusement vers de nouvelles pistes. De nouveaux
horizons s’ouvraient sans cesses. Il a bien fallu s’arrêter sinon cet ouvrage n’aurait pas eu
de fin.

Ainsi tout est fait pour que le lecteur vagabonde et retrouve cette impression vertigi-
neuse que tant et tant de gamins ont éprouvée en subvertissant par distraction l’usage des
dictionnaires. En n’allant jamais droit au but, en se laissant guider par le hasard des mots,
par les rencontres étranges que produit l’ordre alphabétique, ils découvraient ainsi ce qu’on
n’oublie jamais : la vraie culture, c’est à dire le plaisir. »

Les années passant – et les volumes gris-rouges de Lecture Notes in Computer Science
remplaçant les dictionnaires – c’est avec plaisir que j’offre au lecteur une invitation à une
promenade dans le monde la sécurité informatique.
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Ce document constitue le dossier d’habilitation à diriger des recherches soumis à l’Uni-
versité Paris vii. Il est constitué :

1. d’un chapitre de synthèse (en français) de mes résultats.

2. d’une liste de publications, brevets d’invention et comités de programmes de conférences
scientifiques.

3. d’un curriculum vitæ.

4. d’une section détaillant les missions d’encadrement scientifique et industriel (celles en
cours et celles assurées par le passé).

5. d’un ensemble d’annexes qui sont la copie in extenso de mes articles (en anglais). Leur
mise en page a pu être légèrement modifiée dans un but purement éditorial et complétée
par une courte note préliminaire rappelant leur mode de publication. Les bibliographies
des annexes n’ont pas été fusionnées afin d’en faciliter la consultation.

On pourra se référer à la table des matières située en début de ce document ainsi qu’aux
plans arborescents qui suivent.

Mes travaux concernent essentiellement la cryptographie et la cryptanalyse. Le do-
maine de la clé publique (chiffrement et signature) représente une part importante de mes
recherches et sera donc un thème essentiel de ce mémoire. J’ai également contribué aux
thèmes des protocoles, de l’accélération de calculs, des mécanismes d’exécution sécurisée
et à la sécurité embarquée.



5

�������

���	
����� ����
���������

�����������

����������� !�"�#"�#

$��%#�&����!��'������
�� ������ �(�� �)**+

,����-�� �.�� � ������ 
%#�"/&%�. 0���"����1223

4��"��.�� � ������ 5�
6
��
71228

5 �9��!�#�"��������� 
�#������� :5,:;;:122*

5""�#����� �<�#�� =� ���� :>�
7?1221

6� �������&�����%#�
"������������

0���"����=2)
5#��%���"��

!� �122@
$
�
A
�
122B

"��''���� �

���#������� 

5""�#����� �;/�����&C"������ 0D1222

�� 
$75%������-�!E

0���"����122@

�
>F7>122@

�  �-���� 
5 �9(G�

0���"����122H

5 �9(G�
%���!� ������

����!��� 5�
6
��
71223

�����"�#��

5��������""���� "���� !� � ?
�
)***

I�9��"���������'� "��� E (G
�
1222

I�9��'��#��#�"����� ��!��� �5:
$,7)**)

;''F� &#� �:75/���� ������ <5(G,)**)

7�"���$�#������ �'
0##����"&���-�

(���� �

��� ������

���#������� 

0��J
!�9� ��!��"�� �E 5���"����1222

>9� ��� ������ 5�
6
��
7)**1

�� 
;77%��������!E 0���"����122+

5#��� ���-����:KL� 75�
1223

����-��

?���'�.�!&#� �����
��%������&#� ���:75 5���"����)***

?���'�.�!&#� �����
��%������&#� ���:75:�-�����! (G

�
)**B

C �-����#��!!� ��"����� ����
��)**)

/&�#��� ����������
�.���"��� ������-�#� ���
$�''��&I�##�� 5���"����)**+

�  �-���� 
6� ��� ���� ������ ?

�
)**1

7�� � �� �����"��! ?
�
)***

�!� ��'�"���� 

>��(�#� ����#������
���� 

(��%#��� MNF NOPQRS �(�� �)**@

5��"�����&�""�#�������� �-���%#�E 0���"����122B

����������

����
�� �#���

TU
VWXU
�YZ�[

\VW����]��̂_̀ a��XU
��̀

bWcZ��
W_̀ a��XU
�YZ�

dZ
��[eee

fZ�U��[U
��̀

g]�
��̀ ]̂dc
�[

bWcZ��
WTU
W������



6

�������

���	
�����

�������������

�����������

����������

������� ���!����
��"���#�"!����������� $�%&'(()

�����*��#�!����*

+,&-./*+0/�12��� ,*�
&���-���3�� /"������� %4&5%*���*��6��#�

!��##����*�

707 584'((9

8+/�/: ;488%4<===

������*�"���

 ����*������

#���������

������*�"�����#>8/3���#�?� 
��  �*� ������<=='

/6�����*��*�8�����/����*�
#��������������� *�2�����@"������AB*� �CB� �

,*�����!������#>8/��  �*�

�>D-&,'(((

6�E�<==F

>8/G�""���*'(((

%8&>'(((

%$/-H%<==<

��!������#>8/�!���*�*� -H�'(((

,*2"�* ���*�������* 
���#�!�!����� �E8'((<

-��I�!��A����� �*����:��C 4���!����<==)

8�!������*�"�����#
J�**���1+�"�A�1>�2�*

4���!����<===

 �!��##����*� ;�3����!C��*-H�8K'
4���!����<===

 ������!�"�� L� �*��#�!����*

$�����!�**���A�*������
���J�M2*��2�����*-H�N O�8�'(()

P*"����� �#�� 5���18�������
�*��!��� 8->�'((Q

������*�"�����#�
R���1H*�3"� ��% �*��#�!����*
-����!�"�#4���!����L(F �&1>8/<==)

ST
UVWT
�XY�Z

[UV����\��]̂ _̀��WT
��_

aVbY��
V̂_̀��WT
�XY�

cY
��Zddd

eY�T��ZT
��_

f\�
��_\]cb
�Z

aVbY��
VST
V������

�������

���	
�����

��
����
�����

���������� !"!�#$������%

&��"�%�'(����!)$��!��
 !�$#!������ *+,-./.

0��1!2!�!�������(
"!�#$������%

3�$�1,(��)��*�#"$�!�
4�$���'-..5

,���!�6�$��1!%$#�(78#79 :1!&!���2��-..5

;<$�����% �((��!���!''!% ��%=>?@

A����BC��C !)�#�')��D!�%���
;E-..F

G������H��IJKL����
��K

,��))$���!!D�'$������(
M�$�!�N%$��D!�%�'�!%� 3,*-../

,O!P*���!)���2*� !A�%! 
��M� $'��,���1#!��)

Q�R���
�JKL����
����

S�
���TTT

U�������
��K

VH�
��KHISR
��

Q�R���
���
�������



7

�������

���	
�����

��
����
�����

������������������
���

������
��������
����

 !"#$%!&%'%()*%+

,%'-& !.(/%0%01$)
&10*2%3 ()1"()*%4 !"%$%!&%
52.1$ (/0+

6789::9

;-$1+05$(9::9

<**2%(=%$ " &5( 1!+($5(%. %+
"1$,<>4&1!+($5 !%''%= &%+676879::9

?$5' !.41""()*%4 !"%$%!&%
0%01$)&10*2%3 ()5.5 !+(

&100-! &5( 1!676789::@

 !(%$"5&%A100%405&/ !%
7-(4B4*5+(%5((5&C+D (/E<F<676879::9

&1!" !%0%!('%*$1&%++-+
A1D(1G +%0H%'5I$1.$50

7A;89::J

%I$ !(9::J

K�
���LLL

M>#01M'%2576<NO
P
Q-+/

R%>1!'%9::J

S%DT1$C? 0%+9::J

G%$8* %.%29::J

6!(P
A%$52'?$ H-!%9::J

S5(-$%9::J

U5&(+

?/%V5+/ !.(1!I1+(

6$ +/? 0%+9::J

W5C25!'?$ H-!%

<250%'5? 0%+8(5$

?$ F522%)A%$52'

85!>5(%171-!()? 0%+

S,7A5!'%2+H25'

'1&(1$5(

8 .!5(-$%+!-0#$ X-%+%(

*$%-=%+N' =-2.5( 1!!-22%Y
&$)*(5!52)+%Y

'#"%!+%%(1-( 2+
52.1$ (/0 X-%+;S8?Z[[\

]�������
���

�̂�
�����K�
��

������
���
�������



8

�������

���	
�����

��
����
�����

������������������
���

������
��������
����

 �
���!!!

"�������
���

#$%&'()$*&+,-./*$'0-*$1.

23334,-$(5667

#89:2;5667

<=>5667

?,@@A,3BA-'$(C,-.5667

3D$(-$%&'566E

F(G'(AH&B*,C.,1A0-+*CCAB
BA*@*)A'(%(D$@,1.IJ

#F3;KLLL

MN;OPQ
R
5LS*T$,AU(VA$V,AG

(U9D..,*W.:;8#X;5667

O+A;($-A$A$8&&$AC',-AY.
MD,1A'(<*DB'8''*-@.

2;;3KLLK

:;?KLLQ

AZ$,C'KLLQ

(DV$*)A.-(BBA-',U.

-+*&,'$A.1AB,V$A.-(BBA-',U.
4(T,BAOA$/,C*B;A-D$,'%2333Z$A..

B,V$A.-(BBA-',U.

;ABA-'A1#(C'$,TD',(C.'(
#$%&'()$*&+%[($B1;-,AC',U,-KLLE

;ABA-'A1#(C'$,TD',(C.'(
2CU($/*',(C;A-D$,'%[($B1;-,AC',U,-KLLE

;ABA-'A1#(C'$,TD',(C.'(
#$%&'()$*&+,-
2/&BA/AC'*',(C.[($B1;-,AC',U,-KLL7

;ABA-'A1#(C'$,TD',(C.'(
;(U'G*$A3C),CAA$,C)[($B1;-,AC',U,-KLL7

\��
����� �
��

Z]#KLLK;&$,C)A$ Â$B*)
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2 Synthèse

Le manuscrit est organisé en quatre sections thématiques :

2.1 Cryptographie Asymétrique

Chiffrement Asymétrique : La cryptographie a pour but d’assurer la sécurité des
données, en les chiffrant afin de les rendre incompréhensibles sans l’usage d’une clé de
déchiffrement. Pendant longtemps, la cryptographie a reposé sur l’usage d’une clé secrète,
qui devait être partagée par l’émetteur et le récepteur.

En 1976, Diffie et Hellman suggérèrent la possibilité d’assurer la confidentialité sans re-
courir à un secret partagé, au moyen d’une clé connue de tous. Cette idée a profondément
transformé la cryptographie. Aujourd’hui, des systèmes de chiffrement à clé publique sont
couramment utilisés par les internautes et le domaine continue à connâıtre un développement
académique et commercial fulgurant.

FKLIIUp

FOp SXE�

FOp VHF�

PHVVDJH

DOJRULWKPH GH�
FKLIIUHPHQW

DOJRULWKPH GH�
GpFKLIIUHPHQW

Résultats : Alors que d’après Bruce Schneier : « prospects for creating radically new and
different public-key cryptography algorithms seem dim », nous avons réussi à mettre au
point deux nouveaux algorithmes de chiffrement à clé publique [11, 12] (Il est possible qu’un
algorithme similaire à [12] ait été publié dans un article en Japonais signé par Masakatu
Morii et Masao Kasahara (1988), article que nous n’avons pas réussi à nous procurer).
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– [12] décrit un nouvel algorithme de chiffrement à clé publique où le chiffré est obtenu
en multipliant les clés publiques indexées par les bits du texte clair. Le texte clair
est récupéré en élevant le chiffré à une puissance secrète modulo un grand nombre
premier et en décomposant le résultat en facteurs premiers dans Z.

L’opération de chiffrement demande quatre multiplications par octet et le déchiffrement
consomme approximativement autant de ressources que le calcul d’une signature rsa.

– [11] décrit un nouvel algorithme de chiffrement à clé publique basé sur la difficulté
de calculer des racines de résidus de haut degré modulo un produit de deux grands
nombres premiers. Nous présentons deux versions de l’algorithme, une probabiliste et
une déterministe. La version déterministe est d’un vrai intérêt pratique : le chiffrement
demande une seule exponentiation modulaire (exposant de 160 bits, module de 768
bits). Le déchiffrement peut être optimisé afin de consommer moins de ressources
que celles nécessaires à deux déchiffrements rsa. Même si la méthode présentée dans
[12] est plus lente que le rsa, le nouvel algorithme est raisonnablement compétitif
et a plusieurs applications spécifiques. La version probabiliste est un algorithme de
chiffrement homomorphique dont le taux d’expansion est bien meilleur que tous les
algorithmes de chiffrement homomorphique connus avant la parution de cet article
(le schéma de Pascal Paillier, paru depuis, est une permutation). L’algorithme est
sémantiquement sûr, en admettant que distinguer des résidus de haut degré par
rapport à certains modules soit difficile.

Nos travaux ont aussi visé à améliorer des systèmes existants [10] ou à les attaquer [8] :

– À Eurocrypt 1998, Tatsuaki Okamoto et Shigenori Uchiyama ont présenté un algo-
rithme de chiffrement à clé publique dont la sécurité équivaut à la factorisation de
n = p2q ; en termes de charge calculatoire de déchiffrement, l’algorithme est approxi-
mativement équivalent au rsa et demande O(log3 n) opérations élémentaires. Dans
[10] nous proposons une légère modification de l’algorithme réduisant sa complexité
à O(log2 n) tout en maintenant son équivalence au problème de la factorisation.

– pkcs, qui signifie Public-Key Cryptography Standards est un corpus de spécifications
couvrant le chiffrement rsa, l’échange de clé à la Diffie-Hellman, le chiffrement basé
sur l’utilisation de mots de passe et d’autres fonctions cryptographiques. Historique-
ment, pkcs fut développé par les Laboratoires rsa, Apple, Digital, Lotus, Microsoft,
le mit, Northern Telecom, Novell et Sun.

Dans la collection pkcs, pkcs#1 v1.5 décrit une méthode particulière de chiffrement
rsa appelée rsaEncryption. Les données traitées par rsaEncryption sont d’abord
chiffrées de manière conventionnelle avec une clé choisie aléatoirement, qui est elle-
même chiffrée par rsa en utilisant la clé publique du destinataire.

L’attaque de Daniel Bleichenbacher est une attaque à chiffré choisi adaptative contre
pkcs#1 v1.5. Elle permet de retrouver un texte clair arbitraire à partir du déchiffre-
ment d’une centaine de milliers de textes chiffrés. Bien que les modèles d’attaque ac-
tive soient généralement d’un intérêt essentiellement théorique (les attaques à chiffré
choisi présupposent que l’attaquant a accès à un oracle de déchiffrement), l’attaque
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de Bleichenbacher utilise un oracle qui détecte seulement la conformité du chiffré avec
la norme de formatage1 pkcs#1 v1.5. Autrement dit, l’oracle répond « oui » si au
chiffré correspond un clair dont le format est conforme à pkcs#1 v1.5, et « non »
dans le cas contraire. C’est une hypothèse réaliste dans la pratique : de nombreux
serveurs vérifiaient en effet qu’un chiffré était pkcs#1 v1.5-conforme et renvoyaient
un message d’erreur dans le cas contraire. En conséquence, la norme pkcs#1 v1.5
fut remplacée par la version 2.0. Dans cette nouvelle norme, la méthode de chiffre-
ment utilisée est l’algorithme oaep, développé par Mihir Bellare et Phil Rogaway.
oaep est sémantiquement sûr dans le modèle de l’oracle aléatoire contre les attaques
à chiffré choisi adaptatives.

Dans [8] nous montrons qu’une attaque à texte clair choisi suffit à casser pkcs#1
v1.5. La technique mise en oeuvre permet à un attaquant de retrouver efficacement
le texte clair à condition que ce dernier se termine par un nombre suffisant de zéros.
Ces attaques ne requièrent qu’un nombre limité de chiffrés (typiquement moins de
dix) de ce même texte clair. Notre article a accéléré le remplacement de pkcs#1
v1.5 par la norme pkcs#1 v2.0

La technique employée est d’un intérêt dépassant l’application à pkcs#1 v1.5 car
elle permet d’étendre l’attaque à petit exposent de Don Coppersmith à certaines
combinaisons de paramètres, autrement inaccessibles.

Une recherche sur Internet2 remonte 140 références à ce travail.

– Dans [9], nous proposons une primitive nouvelle permettant de simplifier considérable-
ment les infrastructures à clé publique. Plus précisément, nous montrons qu’une
même fonction de formatage peut servir, sans perte de sécurité, à la fois pour la signa-
ture numérique et pour le chiffrement à clé publique. Le procédé usuel utilisé lors du
chiffrement rsa consiste à appliquer une fonction de formatage au message et élever
le résultat à l’exposant public du destinataire. Telle est par exemple la procédure
de chiffrement utilisée par oaep. De même, la manière usuelle de signer avec rsa
consiste à appliquer une fonction de formatage au message puis d’élever le résultat
à l’exposant privé. Telle est par exemple la procédure de signature utilisée par pss.
Habituellement, le module de signature est différent du module de chiffrement mais
[9] se donne pour but de simplifier cette manière de faire. D’abord nous montrons
que pss peut aussi être utilisé en tant que schéma de chiffrement sémantiquement sûr
contre des attaques adaptatives à chiffré choisi dans le modèle de l’oracle aléatoire.
Il s’ensuit que pss peut être utilisé indifféremment pour le chiffrement et/ou pour
la signature. De plus, nous montrons que pss permet d’utiliser de manière sûre les
mêmes clés à la fois pour la signature et pour le chiffrement rsa. Plus généralement,
nous établissons qu’un tel usage peut s’étendre à toute permutation à sens unique à
brèche dissimulée à domaine partiel3. L’impact pratique de ce résultat est important

1 ≡ padding standard
2 http ://www.google.de/search ?q=Naccache+"1.5"+PKCS
3 ≡ partial-domain trapdoor one-way function
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car cette observation permet de simplifier considérablement les schémas de gestion
de clés des infrastructures à clé publique.

Signatures Numériques : Une signature numérique est un nombre associé à un mes-
sage. Les signatures assurent la sécurité en permettant au destinataire de répondre aux
interrogations suivantes :

– Le message est-il intact ? A-t-il été modifié depuis sa signature ?

– Le message est-il authentique ? A-t-il été réellement signé par le signataire déclaré ?

VLJQDWXUH

FOp VHF�

FOp SXE�

PHVVDJH

DOJRULWKPH
GH�

VLJQDWXUH

DOJRULWKPH
GH�

YpULILFDWLRQ

GpFLVLRQ
�YUDL�IDX[�

Le moyen le plus ancien permettant de vérifier l’identité d’un interlocuteur est le mot de
passe que l’on révèle pendant la communication. Bien entendu, cette méthode nécessite un
canal inviolable (empêchant tout prélèvement de signaux) dont la cryptographie suppose
l’inexistence4. Ainsi, la crainte des écoutes malveillantes a façonné au fil des décennies
une multitude de protocoles d’authentification dont la sécurité repose sur l’usage d’une
fonction à sens unique f(x) empêchant le calcul d’un secret à partir d’un défi d et d’une
réponse-témoin r :

vérifieur [génère un aléa d] voici le défi d, pouvez-vous m’envoyer f(d, s) ?
prouveur [calcule r ← f(d, s)] r
vérifieur [vérifie que f(d, s) = r] bien.

4 Notons toutefois qu’un modèle alternatif, la cryptographie quantique, s’inscrit dans une réalité où des canaux
empêchant le prélèvement de signaux existent.
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Malheureusement, l’authentification, qui convient parfaitement à deux partenaires, de-
vient ingérable lorsque le nombre de vérifieurs augmente : afin de garantir qu’un interlo-
cuteur malhonnête ne puisse trahir le prouveur et divulguer s à l’ennemi, il est nécessaire
d’attribuer un secret différent à chaque couple prouveur-vérifieur.

La solution, permettant d’éviter à la fois la prolifération des secrets et les collabora-
tions vérifieur-ennemi, provient du concept de cryptographie à clé publique de Diffie et
Hellman, où l’information est répartie de façon inégale : n’étant pas capable d’en usurper
le comportement, le vérifieur ignore le secret du prouveur tout en étant capable de le re-
connâıtre en utilisant un défi « non-destructif » qui ne forcera pas le prouveur à révéler
s. Ainsi, on désignera par le terme identification les méthodes permettant de reconnâıtre
un partenaire en le confrontant à un problème que tout un chacun peut générer sans pour
autant résoudre.

vérification A prouve à B la connaissance d’un secret
authentification B vérifie A

mais C 6= B ne peut pas prouver qu’il est A
identification B authentifie A

mais même B ne peut pas prouver qu’il est A
signature B identifie A

mais B peut même pas prouver à lui-même qu’il est A

Un protocole d’identification rudimentaire s’obtient à l’aide de deux dictionnaires que
l’on notera par la langue d’arrivée afin de les manipuler comme des fonctions5 :

– un dictionnaire Anglais-Français (Fr), mis à la disposition de tous.

– un dictionnaire Français-Anglais (An), donné exclusivement au prouveur.

vérifieur [ouvre Fr aléatoirement : Fr(cat) = chat] traduisez « chat » svp.
prouveur [calcule An(chat) = cat] « cat »
vérifieur [vérifie cette réponse] bien.

Dans ce protocole (dit à divulgation nulle), l’éditeur des dictionnaires est une autorité
(supposée intègre) délivrant les dispositifs de vérification (Fr, clé publique) et d’identifica-
tion (An, clé secrète) qui définissent une fonction à brèche dissimulée6 ou (par observation
extérieure du protocole) un langage défini par l’ensemble des couples :

L = {x ∈ français, {x, An(x)}}
Le bon sens exigeant que le protocole identifie le prouveur lorsque ce dernier possède

An, on admettra que tous les mots apparaissant dans Fr se retrouvent également dans An.
Cette exigence de complétude peut sembler triviale mais elle est nécessaire afin de lier la
sécurité du protocole à un problème supposé difficile7. A l’inverse, il est important d’évaluer
le nombre de couples n’existant pas dans An et Fr et aboutissant à une acceptation. Par
exemple, le vérifieur peut décider d’accepter « lovf » comme réponse à « amour » en

5 par exemple, Fr(good) = bon.
6 ≡ trapdoor function
7 ici, l’inversion du dictionnaire : reclassement lexicographique de tous les mots de Fr afin d’obtenir An.
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supposant n’avoir pu entendre correctement la réponse du prouveur. Nous dirons qu’un
protocole contenant peu (ou pas) de court-circuits de ce type est bien-fondé.

Il est tentant de penser qu’à chaque conversation, le vérifieur (et l’ennemi qui espionne
le dialogue) apprennent un fragment du dictionnaire secret An (le couple de mots mis en
oeuvre). Curieusement, cette intuition est fausse et malgré l’impression qu’une partie de An
se perd à chaque session, nous verrons que An ne se dégrade pas et qu’à moins de voler An
(que l’autorité divulgue exclusivement au prouveur) ou d’inverser Fr (on admettra qu’une
telle attaque par la force brute ne peut s’effectuer en un temps raisonnable), l’attaquant
devra compter exclusivement sur sa chance en espérant qu’un couple de mots préparé
d’avance sera demandé lors de la prochaine session (probabilité proche de zéro).

Il a été vite remarqué que l’enregistrement d’une session d’identification (trace) ne
peut être retenu comme preuve du déroulement réel de la communication. Considérons,
par exemple, la trace suivante :

client Je suis votre client.
banquier pouvez-vous traduire le mot « kingdom » ?
client « royaume », puis-je retirer mille euro ?
banquier bien.

Possédant Fr, le banquier peut parfaitement simuler une telle trace en puisant dans
son dictionnaire un couple de mots qui sera présenté dans l’ordre sur la bande d’enregis-
trement (Le mot anglais sera alors choisi d’avance et sa traduction présentée comme le «
défi » lancé au client). Ainsi, tout arbitrage deviendra impossible car le protocole semblera
parfaitement respecté par les deux interlocuteurs8. Mais si la trace d’une preuve à divulga-
tion nulle ne diffère pas d’une simulation produite sans connaissance du secret, il s’ensuit
que l’espionnage n’apprendra rien sur le secret9.

Malheureusement, en transformant le protocole pour permettre à un juge de se pro-
noncer sur l’authenticité des traces, on détruit la propriété de divulgation nulle car un
observateur extérieur (précisément le juge !) peut distinguer le résultat d’une simulation
(appelée ici forge ou contrefaçon) et la trace d’une vraie communication (signature).

Pour transformer le protocole précédent en un algorithme de signature, distribuons des
dictionnaires Français-Français notés Id aux deux partenaires et modifions les règles de
l’interaction :

8 est-ce le client qui a retiré l’argent ou le banquier qui a effectué un faux débit ?
9 en d’autres termes, l’ennemi n’a nulle utilité à espionner ce qu’il peut simuler tranquillement chez lui.
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client je suis votre client
banquier que voulez-vous faire ?
client calcule p = f(« verser 1000 euro sur le compte x ») et ` = f(p)

ouvre Id en page p, et lit le mot, e.g. « livre », se trouvant en ligne `
cherche ce mot dans An.
je veux « verser 1000 euro sur le compte x », ma signature est « book ».

banquier recalcule p et `.
retrouve dans Id le mot « livre » qu’il compare au résultat de Fr(book)
comme les deux mots cöıncident, il conclut à la validité de la signature
bien

En cas de litige, il est facile de se prononcer sur l’authenticité de la signature car le
vérifieur (banquier) et l’attaquant, coincés entre l’inversion du dictionnaire et la recherche
de collisions10, ne peuvent signer sans le secret An. La signature consiste donc en l’ajout
d’informations permettant de décider si la communication a effectivement eu lieu mais
en ce faisant, la signature révélera un fragment d’information inutilisable sur An (qui est
précisément ce qui permettra au juge de distinguer entre une signature et une forge).

Il est intéressant de noter que plusieurs auteurs ont suggéré d’augmenter la sécurité des
procédés d’identification en itérant un protocole t fois et en acceptant le prouveur seulement
si toutes les épreuves ont réussi. Dans ce cas, la probabilité que l’attaquant puisse tricher
sans connâıtre le secret décrôıt exponentiellement avec t.

Une seconde variante, qui permet de réduire le nombre de sessions (et donc d’augmenter
l’efficacité du protocole en économisant t−1 phases de présentation), est la preuve parallèle
où le vérifieur envoie t défis dont les réponses-témoin sont expédiées par lots.

vérifieur pouvez-vous traduire les mots {garçon, vert, point} ?
prouveur {boy, green, dot}
vérifieur bien.

Pour une raison très subtile, ce protocole, dit à divulgation inutilisable, n’est plus à
divulgation nulle car si le vérifieur décide de choisir pour défis t mots consécutifs dans Id,
l’interaction devient insimulable à cause de la dépendance entre les questions.

Considérons cette trace :
vérifieur pouvez-vous traduire les mots {poterie, poterne, potiche} ?
prouveur « pottery, postern, large vase »
vérifieur bien.

Ici le simulateur doit choisir trois mots consécutifs et les traduire en anglais ; or en ce
faisant, il devient impossible de les traduire (on ne peut traduire n’importe quel mot sans
posséder An) mais si le simulateur cède sur ce point (afin de pouvoir traduire), sa sortie
ne ressemblera plus du tout à une vraie trace.

Résultats : Nos travaux dans le domaine de la signature numérique ont visé à créer
de nouvelles méthodes de signature [15, 17, 18], prouver la sécurité de systèmes existants

10 deux phrases telles que : phrase1 6= phrase2 et f(phrase1) = f(phrase2).
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[21] ou la réfuter [23, 24, 25, 26, 27]. Aussi, nous proposons des nouveaux types de si-
gnatures résistant aux vols répétés de clés [16] ou permettant d’étendre la bande passante
d’algorithmes de formatage à capacité limitée, sans perte de sécurité [19] :

– Soit P = [k]G le résultat de la multiplication sur une courbe elliptique d’un point
(public) G par un secret k. P est obtenu en utilisant l’algorithme du « carré et
multiplier », devenu « doubler et additionner » sur la courbe. Nous montrons dans
[27] qu’un adversaire capable d’accéder à la représentation projective de P pourrait
apprendre des informations sur k. Un tel accès pourrait résulter d’une mauvaise
programmation qui n’efface pas de manière appropriée la coordonnée Z de P de
la mémoire de l’ordinateur, ou d’une stratégie de calcul consistant à déléguer au
monde extérieur la conversion projective ½ affine de P . Plus généralement, notre
analyse montre que le choix d’une représentation particulière de points sur une courbe
elliptique peut parfois révéler de l’information sur les logarithmes discrets de ces
points. Il convient donc de ne pas assimiler aveuglement les courbes elliptiques à
des groupes génériques lors de preuves de sécurité. L’enseignement pratique de cet
article est la nécessité impérieuse d’effacer proprement Z en fin de calcul ou, à défaut,
brouiller P avant son envoi au monde extérieur.

– Les normes de signature iso 9796-1 et iso 9796-2 étaient, jusqu’à la publication de
[25], déployées dans de très nombreuses applications. [25] montrant que les signatures
numériques calculées selon ces normes peuvent être contrefaites, iso a retiré (annulé)
la norme iso 9796-1 et corrigé (réédité) la norme iso 9796-2. Suite à notre travail
rsa Data Security a publié un Bulletin de crise (fait relativement rare car depuis sa
création, rsa n’a publié que treize Bulletins11).

Notre contrefaçon est une variante sophistiquée de l’attaque de Yvo Desmedt et
Andrew Odlyzko où l’opposant obtient les signatures des messages

m1, . . . , mτ−1

et exhibe la signature d’un mτ qui n’a jamais été soumis au signataire. Nous sup-
posons que tous les messages sont formatés à l’aide d’une fonction de formatage µ
avant d’être signés.

Avant d’interagir avec le signataire, l’attaquant sélectionne τ valeurs lisses de µ(mi)
(un entier est `-lisse si aucun de ses facteurs premiers ne dépasse `). L’attaquant
exprime µ(mτ ) comme le produit modulaire d’un sous-ensemble de ces messages
lisses. La signature de mτ découle alors des propriétés homomorphiques de rsa.

Dans notre article, une méthode de formatage qui diffère d’iso 9796-1 d’un seul bit
a été cassée (expérimentalement). Peu après la publication de [25], des chercheurs
d’ibm Research ont modifié notre méthode afin d’attaquer la norme avec le bit qui
nous manquait. Un article commun a été signé par les deux équipes et un autre avec
Yvo Desmedt et Andrew Odlyzko [61].

11 « . . .rsa Laboratories publishes short bulletins about topical issues of cryptographic concern. The aim is both
to update the general cryptographic community on recent and important news and also to brief rsa Security
customers and licensees about relevant technical issues . . . »
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Une recherche sur Internet12 remonte près de 280 références à ce travail.
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Abstract
A weakness has been found in the ISO 9796 signa-

ture standard using RSA™. The padding method

proposed by the standard is the origin of the prob-

lem and will require probable changes in ISO 9796

parts 1 and 2. This weakness was discovered by

Gemplus’ cryptography division and the ENS and

UCL cryptography groups while implementing the

standard. A paper reporting the problem will be pre-

sented at Crypto ’99 but information can readily be

obtained on RSA Data Security’s and ISO’s web

sites. Not all implementations are at risk as some

protocol specifics may protect applications from the

weakness; no attack has been conducted on real

transactions. ISO is actively working on this secu-

rity issue and should come up soon with a new solu-

tion. The attack’s authors will provide all necessary

assistance to ISO in this task. This process is nor-

mal and shows how open security standards are im-

proved day after day by the iterative contribution of

all experts around the world. When a weakness is

found standards are corrected and improved to be-

come more resistant. Security standards relying on

secrecy (security by obscurity) cannot be scrutinized

by the open expert community and be improved by

this process. It is also important to notice that secu-

rity is relative regarding time and what is secure to-

day may need to be improved tomorrow.

Introduction
This document discusses a recently discovered at-

tack on several digital signature padding schemes.

The attack is applicable in different ways to each of

the schemes. We emphasize here that the attack

does not threaten the use of the RSA algorithm in

digital signatures. It does not recover the private

key and is less effective than a factoring attack ex-

cept in special circumstances. Whether one can re-

cover the private key for Rabin or Williams signa-

tures is still under investigation. Rather, the attack

is based upon the way messages are formatted and

hashed before they are signed. The attack is par-

ticularly potent in certain signature schemes where

signature verification also recovers the message.

In a recently released paper [1], J-S. Coron, D.

Naccache, and J. Stern announce a practical way of

forging signatures that are based upon ISO 9796-2

and a format that differs in only one bit from ISO

9796-1, as well as theoretical observations on PKCS

#1 v2.0 (which is the same signature scheme as in

PKCS #1 v1.5), ECASH™, SSL-3.02 and ANSI

X9.31. We emphasize again that the observations

on these four formats are theoretical only and do

not threaten in any way the security of products

using PKCS #1 v2.0, ECASH, SSL-3.02 and ANSI

X9.31 or, in general, signature schemes specified in

these standards. Actually, Coron et. al. consider that

the extremely negligible impact of the new attack

on PKCS #1 v2.0, SSL-3.02 and ANSI X9.31

should be regarded as a very positive indicator of

their sound design rationale and increase the public’s

confidence in those designs. The attack on PKCS

– De nombreuses applications pratiques nécessitent la vérification de larges ensembles
de signatures. Ainsi il est parfois avantageux d’effectuer la vérification simultanée
de collections de signature au lieu de vérifier ces signatures individuellement. La
vérification simultanée, appelée vérification par lot doit être mathématiquement équiva-
lente au procédé de vérification séquentiel.

A Eurocrypt 1998, Mihir Bellare et alii ont présenté une stratégie très efficace de
vérification par lots pour rsa. Nous avons trouvé une faille dans cette méthode et
l’avons réparée dans [23].

– Dans [18] nous partons à la recherche d’une méthode de signature numérique où la
somme des tailles du message et de sa signature est aussi petite que possible.

La motivation de cette quête est une demande de la part de plusieurs opérateurs pos-
taux intéressés par des algorithmes produisant des signatures de taille suffisamment
petite pour être imprimées sur des enveloppes sous le forme de codes-barres.

Alors qu’il existe plusieurs algorithmes de signature permettant d’emballer une partie
du message signé dans sa signature (algorithmes à recouvrement de message), la

12 http ://www.google.de/search ?q=Naccache+9796+ISO
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sécurité de ces algorithmes n’est pas formellement établie. [18] propose des variantes
de dsa et d’ecdsa permettant un recouvrement partiel de message : la signature est
jointe au message tronqué dont les octets manquants sont retrouvés par l’algorithme
de vérification. Il n’empêche que la signature authentifie le message dans sa totalité et
la construction bénéficie d’une preuve rigoureuse de sécurité dans le modèle de l’oracle
aléatoire. Des optimisations poussées peuvent même réduire la taille de l’information
transmise à 26 octets, pour un niveau de sécurité de 280.

– Souvent, des quantités massives de signatures doivent être distribuées sur des sup-
ports passifs et bon marché (par exemple, en papier). Ceci est typiquement le cas
des billets de banque, badges, cartes d’identité, permis de conduire ou passeports.
Alors que le coût du remplacement à large échelle de tels documents est prohibitif,
l’on peut raisonnablement supposer qu’une mise à jour de l’équipement de vérification
(par exemple, des terminaux des postes-frontières) est exceptionnellement acceptable.

Or, nous avons observé en [22] qu’un malfaiteur utilisant des moyens de coercition
(par exemple, un ravisseur) peut forcer les autorités à révéler les clés de signature
de l’infrastructure et entreprendre l’émission des signatures indistingables de celles
émises par l’autorité.

La solution présentée dans [16] résiste contre de telles attaques jusqu’a un certain
point : après le vol, l’autorité peut restreindre les critères de vérification de la si-
gnature (par une mise à jour exceptionnelle de l’équipement de vérification) d’une
manière telle que les signatures légitimes, calculées avant l’attaque, deviendront fa-
cilement et publiquement distingables des signatures plus récentes, calculées par le
malfaiteur à l’aide de la clé-leurre dérobée .

Il va sans dire que nous supposons qu’à tout moment l’algorithme de vérification est
connu de l’attaquant.

– [17] décrit une alternative simple à la méthodologie de signature dite « hacher
puis signer ». Le nouveau concept, auquel nous avons donné le nom de « signatures
jumelles », consiste à signer le même message deux fois à l’aide d’un algorithme de
signature probabiliste. Ainsi, nous prouvons que :

1. Aucun algorithme générique n’est capable de forger une signature dsa jumelle.
Notons que même si le modèle générique offre des garanties de sécurité moins fortes
que les réductions calculatoires dans le modèle standard, l’existence d’une telle
preuve est un argument très favorable supportant le bien-fondé de la construction
analysée.

2. Dans le modèle standard la difficulté de résoudre le problème du rsa-flexible est
équivalente à la difficulté de produire des contrefaçons existentielles (même sous
des attaques à message choisi adaptatif) d’une version jumelle d’un algorithme de
signature proposé par Rosario Gennaro, Shai Halevi et Tal Rabin.

– Une fonction de formatage fixe concatène au message m une constante P . Une signa-
ture rsa est alors obtenue en calculant (P |m)d mod N où d est l’exposant privé et
N le module.
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A Crypto 1985, Wiebren de Jonge et David Chaum ont montré que la taille de P doit
être au moins le tiers de celle de N (i.e., la configuration |P | < |N |/3 n’est pas sûre).
La borne du tiers a été améliorée à Eurocrypt 1997 par Marc Girault et Jean-François
Misarsky qui ont montré que la taille de P doit être au moins la moitié de celle de
N (i.e., la configuration |P | < |N |/2 n’est pas sûre) mais la sécurité des fonctions
de formatage fixes restait inconnue pour |P | > |N |/2. Dans [26] nous améliorons la
borne à nouveau en montrant que la taille de P doit être supérieure aux deux-tiers
de la taille de N , i.e. nous établissons l’insécurité de la configuration |P | < 2|N |/3.

Rien n’est connu au-delà de cette borne. Pourtant, nous pensons que la piste la plus
probable permettant de passer outre la barre des deux-tiers passera par la résolution
de l’équation décrite dans notre note co-signée avec Benne de Weger [72]. Nous offrons
500$ à quiconque produira une contrefaçon où |P | ≥ 3|N |/4.

– Dans [19] nous mettons au point une fonction de formatage permettant de signer
des messages de taille arbitraire étant donnée une fonction de formatage permettant
de signer des messages de taille fixe. La contribution principale de cet article (et de
[69]) est de focaliser de manière précise le problème de la conception des fonctions
de formatage pour rsa – en montrant que la difficulté n’est pas de concevoir une
fonction de formatage capable de traiter des messages de taille illimitée mais bien de
trouver une fonction de formatage capable de traiter des messages de taille limitée
(ce qui reste un problème ouvert dans le modèle standard).

– Dans [24] nous exhibons une attaque contre un schéma de signature proposé par
trois chercheurs d’ibm Research (Rosario Gennaro, Shai Halevi et Tal Rabin). Les
concepteurs basent la sécurité de leur système sur deux conjectures : l’hypothèse rsa-
forte et l’existence de fonctions de hachage indivisibles13 (nous référons le lecteur à
[24] pour une définition précise de cette notion). Alors que les auteurs conjecturent
un niveau de sécurité exponentiel en la taille de sortie de la fonction de hachage, nous
exhibons une attaque sous-exponentielle.

De plus, dans la mesure où la nouvelle attaque est optimale, la taille de la fonction
de hachage peut être déterminée avec précision. En particulier, pour un niveau de
sécurité équivalent à un rsa 1024 bits, il s’avère que l’on doit utiliser un haché
d’approximativement 1024 bits, et non 512, comme suggéré par les concepteurs du
système.

– Un obstacle prohibitif auquel font face des utilisateurs de cryptosystèmes à courbes
elliptiques est la difficulté de calculer la cardinalité des courbes. Malgré des avancées
constantes dans ce domaine, le comptage de points reste une opération complexe et
gourmande en ressources. [15] montre que le comptage de points peut être évité au
prix d’un ralentissement du protocole de signature. Ce ralentissement est relativement
important (typiquement par un facteur de ∼= 500) mais notre article montre que
l’existence de méthodes de signature sûres à base de courbes elliptiques n’est pas
conditionnée par la capacité à compter des points.

13 ≡ division-intractable hash-functions
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– A Eurocrypt 2003, Dan Boneh et alii ont présenté une nouvelle primitive cryptogra-
phique appelée signature agrégée. Une signature agrégée a la propriété suivante : étant
données k signatures de messages distincts provenant de k utilisateurs différents, il
est possible d’agréger (compresser) toutes ces signatures en une seule signature.

En appliquant ce concept aux signatures chiffrées vérifiables (nous référons le lecteur
à [21] pour plus de détails sur cette notion), Boneh et al introduisent une nouvelle
hypothèse de complexité à laquelle ils donnent le nom de Problème d’Extraction de
k-Éléments Agrégés.

Nous montrons dans [21] que le Problème d’Extraction de k-Éléments Agrégés n’est
rien d’autre qu’un Problème de Diffie-Hellman Calculatoire, autrement reformulé.

Protocoles Le terme « protocole » désigne des procédés d’échange de données (souvent
à plusieurs passes) permettant d’atteindre un but précis (paiement, identification, vote
électronique etc.). Il ne s’agit pas d’un thème bien défini mais dans les conférences de
cryptologie il est coutume de regrouper dans une même session les articles concernant de
telles fonctionnalités. Approche que nous suivons ici.

Résultats : Nos travaux ont visé à exploiter une faille dans les règles de conversion
applicables à l’euro [33], prévenir le vol de clés gsm [38], accélérer la personnalisation de
cartes rsa [39] et . . . attaquer un protocole d’identification présenté dans notre thèse [46].
Nous décrivons également une méthode permettant de détecter la copie illicite de certaines
fonctions cryptographiques [34].

– L’euro a été introduit le premier Janvier 1999 comme monnaie officielle de qua-
torze pays Européens. Durant la période de transition, les règles de conversion entre
l’euro et les monnaies nationales étaient fondamentalement différentes des règles de
conversion monétaire habituelles car – par la loi – il était interdit de faire payer une
commission lors de la conversion entre euro et monnaies nationales (le but de cette
loi était de ne pas dissuader les utilisateurs d’adopter l’euro). Nous avons remarqué
que cela créait un nouveau terrain de jeu où un bénéfice pouvait être engrangé des
règles de conversion monétaire de l’Union Européenne.

[33] décrit la fraude ainsi qu’une réparation des règles. Dans la solution proposée,
les acteurs engagés dans une conversion de devises ne peuvent prédire si l’arrondi
aboutira en un gain ou en une perte. Ceci diminue la différence statistique entre un
montant en monnaie nationale et son équivalent-euro, lorsque le nombre des transac-
tions augmente.

– Considérons le scénario suivant : une société distribue un logiciel qui permet d’écouter
des morceaux de musique. Elle distribue par ailleurs des morceaux de musique. Ces
morceaux sont chiffrés à l’aide d’un algorithme de chiffrement dont la clé secrète
est connue. Le logiciel est constitué de deux parties, l’une permettant la lecture
proprement dite du morceau et l’autre effectuant le chiffrement ou le déchiffrement
des morceaux. Admettons que l’on soit capable de marquer la partie qui effectue
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le chiffrement et le déchiffrement. Un utilisateur qui obtient le logiciel illégalement
aura le choix entre garder cette partie et être en infraction avec la législation ou bien
supprimer cette partie.

En outre, il va exister de la musique (personnelle ou piratée) qui ne sera pas chiffrée,
par contre, toute la musique distribuée officiellement par la société sera chiffrée. Cela
signifie qu’un utilisateur ne voulant pas risquer de se trouver en infraction devra
choisir entre obtenir un logiciel officiel pour écouter tous les morceaux de musique ou
bien se contenter d’écouter des morceaux de musique piratés. On peut éventuellement
aller plus loin en admettant qu’un lecteur avec l’interface de déchiffrement ne peut
pas lire de la musique non-chiffrée.

On réalise ainsi ce que souhaiteraient obtenir la plupart des distributeurs de mu-
sique à l’heure actuelle, à savoir, totalement isoler le monde des pirates de celui des
utilisateurs légaux, en empêchant tout transfert entre l’un et l’autre.

[34] décrit une méthode permettant de marquer des copies d’algorithmes fonction-
nellement équivalents. Les algorithmes contiennent des marques d’identification dont
l’emplacement est connu à l’attaquant. Par opposition à toutes les autres construc-
tions que nous connaissons, la nouvelle technique ne repose pas sur l’hypothèse de
marquage (l’hypothèse de marquage veut que l’attaquant ne sache pas distinguer les
bits faisant partie du contenu protégé des bits constituant la marque d’identifica-
tion). Ainsi, notre procédé assure que chaque copie est soit traçable soit tellement
endommagée qu’il devient impossible de la sauvegarder en un espace polynomial, ou
l’exécuter en un temps polynomial.

Même si la technique utilise rsa comme brique de base, elle est particulièrement
applicable à des chiffreurs par bloc tels que SkipJack, rc4, gost 28147–89, gsm a5,
comp128, tia cave ou d’autres algorithmes propriétaires distribués à des partenaires
potentiellement indignes de confiance.

– [46] présente une attaque contre un protocole à divulgation nulle présenté dans notre
thèse de doctorat. L’attaque permet à un adversaire de passer toujours l’épreuve
d’identification en un temps polynomial et sans connâıtre la clé privée.

– [38] apporte une contremesure technique au risque de vol de clés dans une usine de
personnalisation de cartes à puce. Notre protocole est une alternative non-interactive
aux protocoles d’échange de clés authentifiés et son exécution résulte en une situation
où même le fabriquant de la carte ne peut apprendre la valeur des clés secrètes que la
carte échange avec son propriétaire. Nous prouvons la sécurité de ce protocole dans
le modèle de l’oracle aléatoire.

– [39] décrit une nouvelle méthode permettant de générer des clés rsa. Par opposition
à la procédure habituelle, ici la génération de clés se déroule en deux étapes. Une
première étape a lieu avant que la carte soit mise en marche et avant que ses pa-
ramètres soient connus. La seconde phase se déroule une fois les paramètres connus.
Cette seconde phase est conçue pour être extrêmement rapide.
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– Dans [70] nous décrivons un protocole permettant de déléguer de manière sûre le
couplage de points sur une courbe elliptique. Nous montrons comment un disposi-
tif limité en ressources (typiquement, une carte à puce) peut déléguer le calcul du
couplage e(A, B) à un dispositif plus puissant (par exemple, un ordinateur) d’une
manière telle que :

1. le dispositif puissant n’apprendra rien sur les points couplés (A et B), ni sur le
résultat du couplage e(A,B),

2. le dispositif limité en ressources s’assurera que le dispositif puissant n’a pas triché.

La sécurité de notre protocole est inconditionnelle.

Accélération ou Simplification de Calculs Un sujet abordé largement lors de notre
thèse de doctorat [54] est l’accélération ou la simplification de calculs cryptographiques. Il
s’agit d’une préoccupation (obsession ?) permanente de l’industrie de la carte où chaque
cycle machine et chaque octet de mémoire vive comptent.

Résultats : Nos travaux permettent de personnaliser des cartes rsa à une vitesse double
[28], adapter des algorithmes consommateurs d’aléas à l’absence de générateurs de nombres
aléatoires [36]14, accélérer le calcul md mod p de quelques pourcentages en substituant d
par un exposant équivalent mais plus rapide [29] et accélérer le calcul d’exponentielles
modulaires lorsque celles-ci sont calculées par lots [32] :

– Les premiers sûrs sont des nombres premiers de la forme p = 2q +1 où q est premier.
[28] décrit une méthode simple permettant de doubler la vitesse de génération de
premiers sûrs lorsqu’un grand nombre de modules rsa composés de premiers sûrs
doit être généré.

– [36] présente une méthode permettant de générer des signatures nécessitant des
nombres aléatoires dans des environnements dépourvus de sources aléatoires ou lors-
qu’il y a lieu de suspecter que la source aléatoire est de piètre qualité.

Par opposition à toutes les méthodes connues de génération de pseudo-aléas, qui
supposent que le générateur est une machine d’état, ici le signataire est un auto-
mate dépourvu de mémoire qui reçoit un message, émet sa signature et retourne
précisément à son état initial. Le lecteur aura compris que l’astuce consiste à dériver
la variabilité nécessaire du . . . message signé lui-même. Ainsi, notre technique conver-
tit de manière formelle des signatures probabilistes en des signatures déterministes.

– [29] présente une méthode permettant d’améliorer les performances du calcul d’ex-
ponentielles modulaires.

Partant de l’observation que le remplacement d’un exposant rsa d par d′ = d +
kφ(n) n’a aucun impact arithmétique mais affecte le temps de calcul, nous cherchons

14 Critique du magazine Dr. Dobb’s : «. . . This excellent paper offers a rigorous security analysis. . . »
(http ://www.ddj.com/topics/security/papers)
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a déterminer le k diminuant le plus possible notre charge de travail. Une analyse
statistique fine, vérifiée par des simulations intensives, confirme une amélioration du
temps de calcul de 9,3% pour le « carré et multiplier » et de 4,3% pour l’algorithme
du chiffre binaire signé.

La propriété la plus attractive de notre méthode est le fait que dans la majorité des
cas, des boites noires d’exponentiation préexistantes peuvent être accélérées par un
simple précalcul externe, effectué une fois pour toutes lors de l’installation de la clé.

– La génération de signatures basées sur le problème du logarithme discret demande
le calcul de la quantité r = gk mod p où k est aléatoire. [32] présente une stratégie
de calcul applicable au cas où plusieurs tels r-s doivent être calculés simultanément.
Notre méthode n’impose aucune relation entre les exposants k qui peuvent être par-
faitement aléatoires et offre un éventail de compromis temps-mémoire.

L’algorithme est plus lent que la stratégie de Brickell-Gordon-McCurley-Wilson, mais
en contrepartie consomme moins d’espace mémoire.

2.2 Mécanismes d’Exécution Sécurisée

Java : Java a changé la façon de concevoir l’informatique professionnelle. Il est devenu le
langage de programmation de référence dans une multitude d’applications : programmes
de sécurité réseau, traitement de l’image et du multimédia, toile côté client et serveur, ou
encore systèmes d’information qui régissent le cœur de l’entreprise. À la différence de nom-
breux autres langages, les programmes Java sont compilés vers un assembleur intermédiaire
appelé bytecode. Le bytecode peut ainsi être exécuté par n’importe quel terminal muni d’un
interpréteur Java, communément appelé machine virtuelle.

L’inférence de types est une technique d’analyse du comportement de programmes. Il
s’agit d’un procédé statique, c’est-à-dire ne nécessitant pas l’exécution du programme ana-
lysé. L’algorithme d’inférence attribue à chaque composant du programme une propriété
appelée type, le type d’un composant étant déduit des types des sous-composants qui le
constituent selon des règles prédéterminées. Si ce processus réussit, le type attribué au pro-
gramme entier (dit point fixe) peut être vu comme une description de son comportement,
et fournit donc des garanties concernant son exécution. La garantie la plus élémentaire est
l’absence de dysfonctionnements ; cependant, on peut concevoir des systèmes de types plus
ambitieux capables de fournir des garanties de sécurité.

Si le processus d’inférence échoue, aucune garantie ne peut être fournie, ce qui signifie
souvent (mais pas forcement !) qu’une fois exécuté le programme violera la politique de
sécurité de la plateforme. Les programmes pour lesquels l’inférence échoue sont dits mal-
formés. Le sous-ensemble des programmes mal-formés violant la politique de sécurité est
constitué de programmes hostiles.
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Afin de permettre aux cartes Java de détecter les programmes mal-formés (et donc les
programmes hostiles) une inférence doit avoir lieu à bord ; ce qui pose un défi technique dans
la mesure où les algorithmes d’inférence sont souvent gourmands en mémoire, une ressource
sévèrement rationnée à bord. L’algorithme d’inférence spécifié par Sun Microsystems utilise
M×S variables où M est la mémoire utilisée par le code vérifié et S le nombre d’instructions
de saut dans ce code mais d’autres approches plus économiques existent.

Résultats : Nos travaux ont visé à réduire ce M × S de diverses manières :

– Dans [5] nous présentons un protocole où la carte sous-traite au monde extérieur (sup-
posé riche en ressources mais potentiellement indigne de confiance) la sauvegarde des
données intermédiaires nécessaires à l’inférence. L’économie de mémoire est obte-
nue au prix de quelques transmissions mais celles-ci restent parfaitement tolérables,
comme le confirment nos expériences pratiques.

Le principe est le suivant : durant l’exécution de l’algorithme de vérification, les
trames de mémoire15 utilisées par le vérifieur sont macées et exportées vers le termi-
nal. Le terminal retournera ces trames au vérifieur sur requête. Ainsi, des terminaux
indignes de confiance peuvent être utilisés sans crainte par des dispositifs embarqués
pauvres en mémoire afin de sauvegarder les données de calcul intermédiaires.

Le protocole a été porté avec succès sur des cartes Java d’ibm jcop20 et jcop30
Java, à l’aide de l’outil de développement jcop d’ibm.

– Une seconde solution [6] troque mémoire contre calcul grâce à un algorithme capable
de vérifier les types de sous-ensembles de variables. Ainsi, en exécutant cet algorithme
` fois nous arrivons à diviser la consommation de mémoire par ` au prix de ` fois plus
de vérifications. Le gain expérimental moyen est de l’ordre de 40%.

15 ≡ memory frame
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– La troisième stratégie [7] consiste à repousser la vérification de variables jusqu’aux
premiers blocs d’instructions les utilisant. Le gain expérimental moyen est de l’ordre
de 80% mais l’algorithme est lent et relativement complexe à programmer.

Autres résultats :

– [37] présente une puce sécurisée d’un type nouveau. Par opposition à une carte à
puce usuelle qui embarque son programme dans une mémoire morte (rom), le nou-
veau dispositif utilise les terminaux avec lesquels il entre en contact comme sources
d’instructions exécutables. La protection contre des instructions malveillantes est
donc essentielle. Ainsi, l’article se focalise autour de cette menace et des stratégies
permettant de la contrer.

Les avantages apportées par la nouvelle architecture sont très nombreux : la fabri-
cation de cartes à puce n’est plus sujette à des délais de masquage, la réparation de
bogues devient immédiate (une mise à jour des terminaux) et n’implique pas le retrait
de cartes de la circulation. De plus, la taille du code exécutable, désormais localisé
dans les terminaux, n’est plus un facteur limitant, ce point étant prépondérant étant
donné l’accroissement continu de la complexité du code embarqué à bord des cartes.

Après avoir décrit le jeu d’instructions de la machine, nous introduisons deux va-
riantes du dispositif : la première est une architecture orientée clé publique qui re-
pose sur un nouvel algorithme de vérification de signatures rsa par lot. Cette variante
présente une faible complexité de communication au prix d’une charge de calcul ac-
crue. La seconde architecture est orientée clé secrète et repose sur de simples macs
et des fonctions de hachage. Cette seconde variante, plus rapide, requiert plus de
communications.

– Enfin, un quatrième travail [4] vise à créer des applets capables de duper un utilisateur
en simulant des sessions ssl. La technique consiste à afficher en surimpression sur
l’écran de la victime un faux cadenas fermé, faisant ainsi croire à une session sécurisée
alors qu’il n’en est rien.

Nos applets malicieuses profitent des fonctionnalités graphiques sophistiquées du lan-
gage Java afin de rectifier la zone du cadenas et recouvrir la barre d’adresse avec un
faux nom de domaine portant le préfixe https.

L’attaque a été testée avec succès sur le Navigator de Netscape et l’Internet Explorer
de Microsoft. Le degré de nouveauté de cette attaque n’est pas clair dans la mesure où
des résultats similaires (mais non identiques) ont été atteints par d’autres techniques.
Il n’empêche que notre stratégie est plus simple que celles publiées auparavant et ne
demande que l’inclusion d’une applet dans la fenêtre du site de l’attaquant. Quoi
qu’il en soit, nous pensons que la dissection de notre code et sa compréhension ont
une valeur pédagogique et illustrative en soi.

Les applets d’attaque sont disponibles en ligne à :

http://www.ensta.fr/~lefranc/test
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2.3 Sécurité Embarquée

Les cartes modernes doivent embarquer des algorithmes de plus en plus sophistiqués
(vérification de bytecode, biométrie, cryptographie à clé publique, ramasses-miettes, etc.)
tout en résistant à une longue liste d’attaques physiques (mesure de temps ou de consom-
mation de courant, capture de rayonnement électromagnétique, injection de fautes etc.).
Ce thème est vaste et fait appel à l’électronique, aux mathématiques, à l’informatique et
à la physique.

HIIHW�GH�GLIIpUHQWV�SRLGV�GH�+DPPLQJV
VXU�OD�FRQVRPPDWLRQ�GH�FRXUDQW�G¶XQH
FDUWH�j�SXFH�
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Résultats : Un premier article présente une méthode permettant de mettre en évidence
des corrélations entre les secrets manipulés par un système et les signaux qui en émanent
[40]. Les trois autres articles sont des survols pédagogiques de l’état de l’art (attaques par
injection de fautes [60], attaques par espionnage de canaux collatéraux [57] et sécurité des
terminaux mobiles [59]).

Le sujet étant à forte orientation industrielle, plusieurs de nos idées n’ont pas été écrites
sous la forme d’articles mais de brevets d’invention. Citons par exemple une protection
contre l’espionnage électromagnétique consistant à mélanger de la poudre de ferrite avec
la résine utilisée lors de l’encartage (afin de créer autour du composant une mini cage de
Faraday) ou une protection contre la fuite d’informations par découplage photoélectrique :

La société Photonic Power Systems commercialise des dels (800 nm) et des cellules
photovoltäıques miniatures (pcc-6e), qu’il est possible de souder face-à-face à l’intérieur
d’une carte pcmcia.

L’efficacité de conversion énergétique du pcc-6e (notée 1
r
) étant ∼ 40%, il devient pos-

sible d’alimenter la del par une source externe à la carte et alimenter le microprocesseur
par la sortie de la cellule photovoltäıque, l’isolant ainsi du monde extérieur. En utilisant
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une micro-capacité (e.g. 10 pF) et deux amplificateurs on multipliera la consommation

par 2(r+1−p)
r+rp

où p est le ratio entre le niveau de consommation maximal et minimal du
microprocesseur durant un cycle. Pour une valeur typique de r = 2 nous obtenons une
augmentation théorique de la consommation de ∼ 85% ce qui est excessif pour des ap-
plications pratiques mais non démesuré. D’autres obstacles techniques (miniaturisation et
problèmes de dissipation d’énergie) doivent par contre être surmontés.

– L’effet de fautes sur des systèmes électroniques a été étudié depuis les années 1970.
A l’époque, il a été remarqué que des particules radioactives provoquaient des er-
reurs dans des composants électroniques. Cela a motivé des recherches dans le but de
comprendre précisément l’effet des particules chargées sur le silicium. Le problème
inquiétait particulièrement l’industrie aérospatiale qui craignait des dysfonctionne-
ment à bord d’appareils embarqués volant dans les couches hautes de l’atmosphère,
où des particules chargées abondent.

Depuis lors, divers mécanismes d’injection et de propagation de fautes ont été décou-
verts et étudiés. [60] explique les différentes méthodes qui peuvent être utilisées afin
d’exploiter de manière malveillante des fautes dans des systèmes électroniques. Nous
expliquerons différents mécanismes d’attaque et détaillons les contre-mesures per-
mettant de se prémunir contre de telles attaques.

Une application pratique de ces techniques est donnée dans [68].

– En sus de ses hypothèses de complexité habituelles, la cryptographie suppose de
manière implicite que l’information secrète peut être protégée de manière physique
quelque part. Or, comme il est facile d’imaginer, les dispositifs physiques sont loin
d’être parfaits et l’information fuit à travers divers canaux.

[40] donne une définition rigoureuse de l’immunité à la fuite d’information et présente
une collection de tests permettant la détection de telles fuites. Dans ces tests, un échec
indiquera l’existence probable de corrélation entre les émanations provenant d’un
circuit électronique et les secrets qu’il manipule. Le test donnera aussi une estimation
de la probabilité de fuite. Un succès ne réfutera pas l’existence d’émanations mais
indiquera au testeur qu’une corrélation significative entre les secrets manipulés et les
émanations n’a pu être exhibée au vu des signaux mesurés.

– [59] est un survol pédagogique des menaces pesant sur le monde de l’électronique
embarquée.

2.4 Autres Travaux

Nous conclurons l’annexe par des travaux inclassables dans les catégories précédentes.
Il s’agit de deux algorithmes de chiffrement symétrique : shacal [42] et xmx [43], d’une
correction du test Universel de Maurer [49], d’un système de reconnaissance d’empreintes
digitales [47], d’une attaque chimique sur des claviers [48], d’un problème nouveau [71], de
la première généralisation de cryptographie visuelle à la couleur [55], d’un nouveau code
correcteur d’erreurs [65] et d’un algorithme de génération de permutations [52] présenté
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dans un colloque en 1989 (en présence de Paul Erdős) mais jamais publié sous la forme
d’un article.

– Le projet nessie16 de la Commission Européenne avait pour objet l’évaluation de la
sécurité d’algorithmes cryptographiques.
Les algorithmes cryptographiques sont les équivalents numériques des cadenas, sceaux,
tampons et documents d’identité. Ils sont essentiels à la protection des transactions
électroniques, aux cartes à puce, au commerce électronique, aux services de confiance
et à l’administration numérique (e-government).
En septembre 2000, les cryptologues de plus de dix pays ont soumis à nessie 42
algorithmes cryptographiques. Puis, des chercheurs externes et internes au projet
nessie ont tenté d’attaquer ces algorithmes afin d’y trouver des failles de sécurité.
Suite à ces évaluations, la liste initiale a été réduite à 24 algorithmes, puis à 12,
répartis en diverses catégories. nessie a recommandé les algorithmes survivants à di-
vers organismes de normalisation tels que l’iso, l’ieee ou l’ietf (Internet Engineering
Task Force).
Le chiffreur par blocs shacal-2 [42], inventé par Helena Handschuh et l’auteur est
le seul gagnant de la catégorie des chiffreurs symétriques de 256 bits.
Un des concurrents de shacal-2 était le célèbre algorithme rc6 de rsa Data Security
(non sélectionné).
L’avis officiel du comité d’experts sur les algorithmes retenus est : « No weaknesses
have been identified in any of these algorithms. We believe that many of these algo-
rithms present a significant improvement in the state of the art. »
Les performances de shacal sont 2800 cycles par chiffrement de bloc (de 20 octets),
2330 cycles par déchiffrement de bloc et 3200 cycles pour une mise à clé de 64 octets.
Des mesures de temps sur un pc à base d’amd k6 cadencé à 233 MHz sont données
dans l’article : un million de chiffrements shacal demandera approximativement
douze secondes, un million de déchiffrements dix secondes et un million de mises à
clé quatorze secondes.

Une recherche sur Internet17 remonte près de 490 références à ce travail.

– [43] présente xmx, un algorithme de chiffrement à bloc spécifiquement conçu pour des
environnements disposant de librairies à clé publique ou de coprocesseurs arithmé-
tiques. xmx, qui n’a pas de S-bôıtes, utilise seulement des multiplications modulaires
et des ou-exclusifs. Deux formules suffisent à décrire l’algorithme qui offre une grande
variété de compromis temps-mémoire (nombre de tours/taille de clés, pour un niveau
de sécurité donné).

Dans la pratique xmx s’avère compacte et rapide : 136 octets de code et un débit de
121 kilo-bits/seconde ont été obtenus à bord d’un composant Siemens sle44cr80s
cadencé à 5 MHz.

16 New European Schemes for Signatures, Integrity and Encryption, 2000-2003.
17 http ://www.google.de/search ?q=NESSIE+SHACAL
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xmx a été moins chanceux que shacal : La sécurité de l’algorithme a été dégradée
dans un article intitulé « Multiplicative Differentials », publié dans les actes du
colloque Fast Software Encryption18. Mais xmx peut être réparé assez facilement.

– Le test universel d’Ueli Maurer est une procédure de vérification de sources aléatoires
très populaire. Le test est très simple (quelques lignes de Java) et flexible (l’opérateur
peut choisir entre une grande variété de combinaisons de paramètres). La procédure
a été conçue pour détecter une très large gamme de défauts statistiques.

Malgré le fait que le test est basé sur des fondations probabilistes solides, une de ses
composantes cruciales, utilise l’approximation heuristique :

c(L,K) ∼= 0, 7− 0, 8

L
+ (1.6 +

12, 8

L
)K−4/L

Dans [49] nous calculons la valeur précise de c(L,K) et montrons que l’erreur due à
l’approximation heuristique peut rendre le test 2,67 fois plus permissif que ce qui est
théoriquement admissible19.

De plus, nous établissons une nouvelle relation asymptotique entre le paramètre du
test et l’entropie de la source testée.

– Soit n un module rsa et soient P,Q ∈ (Z/nZ)[X]. [71] explore le problème suivant :
Étant donnés Q et Q(P ), trouver P . Nous clarifions les connections entre ce problème
et rsa et dérivons de ce problème deux preuves à divulgation nulle.

– Dans [64] nous explorons des identités du type :

∀n ∈ N (n + 3)!6 − 66 =
n∑

k=1

η(k)k!6

où
η(k) = 66 − 26 + 512640k + 2629824k2 + 8356896k3 + 18433200k4 + 29970360k5 + 37226532k6

+36123318k7 + 27764691k8 + 17032860k9 + 8361804k10 + 3277998k11 + 1018815k12

+247716k13 + 46095k14 + 6336k15 + 606k16 + 36k17 + k18

ou

n∑

k=1

(
k3 + 11k2 + 3k − 1310

343

)
7k+2k! = 7n(n + 1)!

(
49n2 + 497n− 293

)
+ 293

ou encore

n∑

k=1

(
(5k + 1)(5k)7 − 7304007

)
5k−1k! = 5n(n + 1)!σ(5n)− σ(0)

18 Nikita Borisov, Monica Chew, Robert Johnson, David Wagner, Multiplicative Differentials, Fast Software En-
cryption, 9th International Workshop, fse 2002, Lecture Notes in Computer Science vol. 2365, Springer-Verlag,
pp. 17 - 33, 2002.

19 Ueli Maurer : « I have now glanced through the paper. I think it is a very valuable contribution to the field of
statistical testing, filling gaps in my (perhaps too sketchy) paper. »
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avec

σ(n) = −1227623− 4643n + 40497n2 − 7753n3 + 707n4 − 23n5 − 3n6 + n7

– [47] présente une carte à mémoire extrêmement économique capable de reconnâıtre
l’empreinte digitale de son utilisateur. Le protocole est basé sur l’idée suivante : la
carte contient l’empreinte digitale de l’utilisateur dans laquelle des minuties aléatoires
ont été ajoutées au moment de la délivrance (nous notons cette empreinte brouillée
par t). La carte contient également une châıne binaire w qui encode lesquelles des mi-
nuties dans t appartiennent effectivement au titulaire de la carte. Lorsqu’une session
d’identification débute, la carte envoie t au terminal qui, à l’aide des informations
arrivant du scanner, détermine lesquelles des minuties dans t sont vraies et lesquelles
sont fausses. Le terminal forme alors un candidat w′ et l’envoie à la carte. Il ne reste
plus à la carte qu’à vérifier que le poids de Hamming de w ⊕ w′ est inférieur à un
seuil de tolérance d.

Il s’ensuit que la carte doit seulement embarquer des moyens de sauvegarde de
données passives, une porte logique (ou exclusif), un registre à décalage, un compteur
et un comparateur (moins de 40 portes logiques).

– [48] présente une attaque sur des claviers.

L’attaque consiste à déposer sur chaque touche une petite quantité de sel ionique
(e.g. un peu de NaCl sur la touche 0, un peu de KCl sur la touche 1, LiCl sur le 2,
SrCl2 sur le 3, BaCl2 sur le 4, CaCl2 sur le 5...). Dès que l’utilisateur touche le clavier
pour saisir une information les sels se mélangent et laissent le clavier dans un état
qui, une fois analysé, révélera de l’information sur les données saisies. L’évaluation
de la perte d’entropie due à la trace chimique est un exercice intéressant d’analyse
combinatoire.

Sous l’hypothèse que des spectromètres de masse puissent révéler avec précision la
nature du mélange chimique résultant de l’activité de l’utilisateur, nous montrons
que l’attaque révélera en règle générale des mots de passe décimaux de modeste
taille. L’attaque peut s’appliquer à des codes d’ouverture de portes, des numéros de
téléphone composés à partir de chambres d’hôtel, des claviers d’ordinateurs ou même
des distributeurs de billets électroniques.

Nous n’avons pas mis en oeuvre la partie chimique de l’attaque mais des spécialistes
de la spectrométrie de masse nous ont confirmé sa parfaite faisabilité.

– Dans un célèbre article intitulé visual cryptography, Moni Naor et Adi Shamir in-
troduisirent une méthode de partage de secrets par laquelle k utilisateurs parmi n
retrouvent une image secrete en superposant k transparents.

Dans [55] nous généralisons cette technique à des images en couleur.

– [52] décrit un algorithme de génération de permutations. L’algorithme est une simple
curiosité combinatoire, sans applications particulières.

– [65] décrit une nouveau code correcteur d’erreurs basé sur l’arithmétique modulaire.
Nous comparons la performance de notre code avec le code de Reed-Muller et mon-
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trons que notre code est plus efficace que Reed-Muller pour des messages longs et
peu bruités.

L’annexe sera clôturée par le travail d’analyse de mots cachés, présenté récemment à la
session informelle d’Eurocrypt 2004.

[13, 14, 20, 22, 30, 31, 35, 41, 44, 45, 50, 51, 52, 53], résumés dans notre thèse de
doctorat [54] ne font pas partie de ce mémoire.

Notons enfin que depuis la soutenance de notre thèse [22] a fait l’objet de nombreuses
citations (livres, articles, toile) et fut le point de départ d’une série d’articles et de doctorats
sur l’anonymat révocable.

L’article décrit une nouvelle stratégie de fraude par laquelle la majorité des systèmes
de paiement anonyme connus à l’époque pouvaient être détournés par des malfaiteurs.

Une recherche sur Internet20 remonte plus de 400 références à ce travail.

2.5 Récapitulatif

ouvrages collectifs 3

conférences internationales à comité de lecture 33

articles parus dans des journaux à comité de lecture 10

lettres 2

chapitres de livres 1

citations CiteSeer 117

20 http ://www.google.de/search ?q=Naccache+Solms
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3   Publications, Brevets, Comités de Programme 
 
Brevets 
 

Les inventions ayant fait l'objet de dépôts multiples (e.g. aux USA, en 
Asie, en Europe et en France) sont référencées ensemble. 
 

La quasi-totalité des brevets concerne des techniques de protection de 
systèmes d'information.  
 
1. David Naccache, EP 0 515 956 A1, Apparatus and method for modulo computation. 
 
2. David Naccache, Patrice Fremanteau, US 5,434,917 = EP 0 583 709 B1, Unforgeable 
identification device, identification device reader and method of identification. 
 
3. David Naccache, WO 92/14318 = US 5,502,764 = EP 0 502 559 A3, Method, identification 
device and verification device for identification and/or performing digital signature. 
 
 4. David Naccache, EP 0 578 059 B1, Method for executing number-theoretic cryptographic 
and/or error-correcting protocols. 
 
5. David Naccache, EP 0 577 000 B1, Method for performing public-key cryptography. 
 
6. David Naccache, US 5,452,357 = WO 92/13321 = EP 0 567 474 B1, Method and apparatus for 
access control and/or identification = PL 168163, Spósob kontroli dostępu i/lub identyfikacji.  
 
7. David Naccache, Eric Diehl, US 5,461,675, Apparatus and method for access control = JP 6-
197341 = EP 0 588 184 B1, Method for access control. 
 
8. David Naccache, Patrice Fremanteau, Wolfgang Hartnack, US 5,654,891, Method and 
apparatus for controlling and/or limiting speed excess by drivers = EP 0 588 049 B1, Method 
and apparatus for controlling speed excess of a moving object. 
 
9. David Naccache, WO 93/20503, Method and apparatus for modulo computation. 
 
10. David Naccache, Etienne Cochon, Michel Poivet, Albert Dörner, Adrian Robinson, 
Christopher Clarke, Andrew Bower, US 5,555,305 = WO 93/07716 = WO 93/07717 = WO 
93/07718, Method and apparatus for secure transmission of video signals. 
 
11. David Naccache, Patrice Fremanteau, Wolfgang Hartnack, EP 0 583 723 A1 = EP 0 583 526 
A1, Card, card reader and method for protocol selection. 
 
12. David Naccache, WO 93/09620 = US 5,479,511, Method, sender apparatus and receiver 
apparatus for modulo operation. 
 
13. David Naccache, David M'Raïhi, US 5,414,772, System for improving the digital signature 
algorithm. 
 
14. David Naccache, David M'Raïhi, US 5,347,581, Verification process for a communication 
system. = EP 0 643 513 A2, Procédé de vérification de signatures pour un système de 
communications = JP 7-312592 . 
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15. David Naccache, David M’Raïhi, EP 0 656 710 A1 = FR 2 713 419 A1 = FR 2 713 420 A1, 
Procédé de génération de signatures DSA avec des appareils portables à bas coûts. = US 
5,625,695, Process for generating DSA signatures with low-cost portable apparatuses. 
 
16. David Naccache, David M’Raïhi, WO 96/20461 = US 6,226,382 B1, Method for 
implementing a private key communication protocol between two processing devices. = FR 2 
728 981 A1, Procédé pour la mise en oeuvre d'un protocole de communication à clé privée 
entre deux dispositifs de traitement. 
 
17. David Naccache, David M’Raïhi, Jacques Stern, Serge Vaudenay, US 5,946,397, Method of 
cryptography with public key based on the discrete logarithm = FR 2 739 469 A1, Procédé de 
cryptographie à clé publique basé sur le logarithme discret. = WO 97/13342 Public key 
cryptography process based on the discrete logarithm. 
 
18. David Naccache, David M’Raïhi, WO 97/47110 = CA 2,257,907 = US 6,549,791 B1, Public key 
cryptography method. = FR 2 734 679 A1, Procédé de cryptographie à clé publique basé sur le 
logarithme discret. 
 
19. David Naccache, David M’Raïhi, WO 96/33567, Process for generating electronic 
signatures, in particular for smart cards = FR 2 733 378 A1 Procédé de génération de signatures 
numériques de messages = FR 2 733 379 A1 Procédé de génération de signatures électroniques, 
notamment pour cartes à puce. = US 5,910,989, Method for the generation of electronic 
signatures in particular for smart cards. 
 
20. Jacques Stern, Françoise Lévy-dit-Vehel, David Naccache, WO 98/23061, Method for 
signing and/or authenticating electronic messages. = FR 2 756 122, Procédé de signature et/ou 
d'authentification de messages électroniques. 
 
21. David Naccache, Françoise Lévy-dit-Vehel, Jacques Stern, FR 2 759 806, Système 
cryptographique comprenant un système de chiffrement et déchiffrement et un système de 
séquestre de clés, et les appareils et dispositifs associés. = WO 98/37662, Cryptographic 
system comprising a ciphering and deciphering system and a key escrow system and 
associated appliances and devices. 
 
22. Françoise Lévy-dit-Vehel, David Naccache, David M’Raïhi, FR 2 763 194 Générateur 
pseudo-aléatoire basé sur une fonction de hachage pour systèmes cryptographiques 
nécessitant le tirage d'aléas. = WO 98/51038 Pseudo-random generator based on a hash coding 
function for cryptographic systems requiring random drawing. 
 
23. David Naccache, Nathalie Fëyt, Olivier Benoît, WO 99/49416 Device for hiding operations 
performed in a microprocessor card. = FR 2 776 410 Dispositifs pour masquer les opérations 
effectuées dans une carte à microprocesseur. 
 
24. David Naccache, Jean-Sébastien Coron, WO 00/10284 Method for testing a random 
number source and electronic devices comprising said method. = FR 2782401 Procédé de test 
de source de nombre aléatoire et dispositifs électroniques comprenant ce procédé. 
 
25. David Naccache, Philippe Anguita, WO 00/23866 Electronic component for masking 
execution of instructions or data manipulation = FR 2784763 Composant électronique et 
procédé pour masquer l'exécution d'instructions ou la manipulation de données. 
 
26. David Naccache, Jean-Sébastien Coron, Nathalie Fëyt, Olivier Benoît, WO 00/49765, 
Method for countermeasure in an electronic component using a secret key algorithm, = FR 2 
789 776 A1, Procédé de contre-mesure dans un composant électronique mettant en oeuvre un 
algorithme de cryptographie à clé publique. 
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27. David Naccache, Pierre Girard, Ludovic Rousseau,  WO 00/54155 Method for monitoring a 
program flow,  FR 2 790 844 Procédé et dispositif de surveillance du déroulement d'un 
programme, dispositif programme permettant la surveillance de son programme. 
 
28. David Naccache, WO 00/68901 Countermeasure method in an electronic component using 
a dynamic secret key cryptographic algorithm. = FR 2 793 571 Procédé de contre-mesure dans 
un composant électronique mettant en oeuvre un algorithme de cryptographie à clé secrète et 
dynamique. 
 
29. David Naccache, Jean-Sébastien Coron, WO 01/06350 A1, Method for improving a random 
number generator to make it more resistant against attacks by current measuring. = FR 2 796 
477 A1, Procédé d'amélioration d'un générateur aléatoire en vue de le rendre résistant contre 
les attaques par mesure de courant. 
 
30. David Naccache, Jacques Stern, Jean-Sébastien Coron, WO 01/10078 A1, Signature schemes 
based on discrete logarithm with partial or total message recovery. = FR 2 797 127 A1, Schémas 
de signature à base de logarithme discret avec reconstitution partielle ou totale du message. 
 
31. David Naccache, Pascal Paillier, WO 02/27500 A1= US 2002/0174309 A1, Protection against 
abusive use of a statement in a storage unit. = FR 2 814 557, Protection contre l'exploitation 
abusive d'une instruction dans une mémoire. 
 
32. David Naccache, Nora Dabbous, US 2003 0103625 A1, Method for calculating 
cryptographic key check data.= WO 01/82525, method for calculating a cryptographic key 
control datum = FR 2 808 145 Procédé de calcul d'une donnée de contrôle. 
 
33. David Naccache, Nora Dabbous, FR 2 806 660, Procédé d'inscription d'une séquence de 
caractères et support comportant une inscription obtenue selon le procédé. 
 
34. David Naccache, Pascal Paillier, Jacques Stern, FR 2 807 248, Procédé de signatures 
numériques probabilistes. = US 2001/0056537, Probabilistic digital signature method = WO 
01/74009 A1, Method for probabilistic digital signatures. 
 
35. David Naccache, Christophe Tymen, WO 01/97009 A1, Method for cryptographic 
calculation comprising a modular exponentiation routine = FR 2 810 178, Procédé de calcul 
cryptographique comportant une routine d'exponentiation modulaire. 
 
36. David Naccache, Christophe Bidan, Pierre Girard, Pascal Guterman, Ludovic Rousseau, 
FR 2 810 481, Contrôle d'accès à un moyen de traitement de données = US 2003/0188170 A1 = 
WO 01/99064 A1, Access control to data processing means. 
 
37. David Naccache, Nora Dabbous, WO 01/84491 A2, Countermeasure method in a 
microcircuit therefor and smart card comprising said microcircuit. = FR 2 808 360, Procédé de 
contre mesure dans un microcircuit mettant en oeuvre le procédé et carte à puce comportant 
ledit microcircuit. 
 
38. David Naccache, Christophe Tymen, David Pointcheval, WO 02/45338 A1, Multiple-level 
electronic signature method = FR 2817 422, Procédé de signature électronique à niveaux 
multiples. 
 
39. David Naccache, Jean-Sébastien Coron, US 2003/0165238 A1, A method for encoding long 
messages for electronic signature schemes based on RSA. = WO 02/28010 A1 Method for 
encoding long messages for RSA electronic signature schemes. = FR 2 814 619, Procédé 
d'encodage de messages longs [pour] schémas de signature électronique à base de RSA. 
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40. David Naccache, Jean-Sébastien Coron, WO 02/28011 A1 = US 2002/0188850 A1, Method 
for accelerated transmission of electronic signature = FR 2 814 620 A1, Procédé de transmission 
de signature électronique. 
 
41. David Naccache, Serge Lefranc, WO 02/23313 A1, Countermeasure method for improving 
security of transactions in a network = FR 2 814 306, Procédé de contre-mesures pour 
améliorer la sécurité de transactions dans un réseau. 
 
42. David Naccache, WO 02/31631 A1 = US 2003/0191967 A1, Method for protection against 
fraud in a network by icon selection = FR 2 815 204, Procédé de protection contre la fraude 
dans un réseau par choix d'une icône. 
 
43. David Naccache, Matthieu Vavassori, WO 02/056174 A2, Method for managing computer 
applications by the operating by the operating system of a multi-application computer 
system. = FR 2 819 602 A1, Procédé de gestion d'applications informatiques par le système 
d'exploitation d'un système informatique multi-applications. 
 
44. David Naccache, Christophe Tymen, WO 02/065271 A1, Method for multiplying two 
binary numbers. = FR 2 820 851, Méthode pour multiplier deux nombres entiers. 
 
45. David Naccache, Pascal Paillier, Helena Handschuh, Christophe Tymen, WO 02/065413 
A1, Identification module provided with a secure authentication code. = FR 2 820 916, Module 
d'identification pourvu d'un code d'authentification sécurisé. 
 
46. David Naccache, Frédéric Amiel FR 2 818 846, Procédé de contre mesure dans un 
composant électronique mettant en oeuvre un algorithme de cryptographie. 
 
47. David Naccache, David Pointcheval, Benoît Chevallier-Mames, FR 2 831 364, Procédé et 
dispositif de vérification de données signées par groupe et application pour la transmission 
de données depuis une mémoire annexe. 
 
48. David Naccache, Marc Joye, Stéphanie Porte, WO 03/036865, Method and device for 
verifying possession of a confidential information without communicating same, based on a 
so-called zero knowledge process. = FR 2 830 147, Procédé et dispositif de la vérification de la 
détention d'une donnée confidentielle sans communication de celle-ci, selon un processus dit 
de "à divulgation nulle". 
 
49. David Naccache, David Pointcheval, Helena Handschuh, WO 03/071735, Cryptographic 
method using a data flow symmetrical cryptographic algorithm and use in a smart-card. = FR 
2 836 311, Procédé de cryptographie utilisant un algorithme cryptographique symétrique par 
flot et application à une carte à puce. 
 
50. David Naccache, Jean-Sébastien Coron, WO 03/021864, Method of reducing the size of an 
RSA or Rabin signature. = FR 2829 333, Procédé de réduction de la taille d'une signature RSA 
ou Rabin. 
 
51. David Naccache, Jean-Sébastien Coron, FR 2 832 821, Procédé de vérification de codes pour 
microcircuits à ressources limitées. 
 
52. David Naccache, Marc Joye, Jean-Sébastien Coron, Pascal Paillier, FR 28 42967, Procédé de 
chiffrement de données, système cryptographique et composant associés.  
 
53. David Naccache, Claude Barral, Jean-Sébastien Coron, Cedric Cardonnel, FR 03 06789, 
Procédé et dispositif d'identification biométrique adaptés à la vérification sur cartes à puce. 
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54. David Naccache, Pascal Paillier, FR 04 01943, Support de mémorisation facilitant la saisie 
de caractères sur un combine de télephonie portable. 
 
55. David Naccache, FR 04 02006, Procédé, support d'authentification, et dispositif 
perfectionnés pour la sécurisation d'un accès à un équipement. 
 
56. David Naccache, Pascal Paillier, Benoît Chevallier-Mames, FR 04 50553, Procédé 
d'authentification dynamique de programmes par un objet portable électronique. 
 
 57. David Naccache, Jean-Sébastien Coron, Benoît Chevallier-Mames, Marc Chancerel, FR 04 
06542, Procédé de réalisation d'une opération de couplage sur une courbe elliptique, par un 
système comprenant une carte à puce et un lecteur de carte. 
 
58. David Naccache, Jean-Sébastien Coron, Éric Brier, Cédric Cardonnel, FR 04 05236, Procédé 
de chiffrement de données numérique, procédé de masquage d'une empreinte biométrique, et 
application à la sécurisation d'un document de sécurité. 
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Publications 
 
Edition d’Actes de Conférences 
 
1. Public Key Cryptography, Practice and Theory in Public Key Cryptosystems, ISBN 3-540-
43168-3, David Naccache et Pascal Paillier, Eds., vol. 2274 of Lecture Notes in 
Computer Science, Springer-Verlag, 2002. Volume de 396 pages. 
 

2. Topics in Cryptology, CT-RSA 2001, ISBN 3-540-41898-9, David Naccache, Ed., vol. 2020 
of Lecture Notes in Computer Science, Springer-Verlag, 2001. Volume de 471 pages. 
 

3. Cryptographic Hardware and Embedded Systems, ISBN 3-540-42521-7, Çetin Koç, David 
Naccache, et Christof Paar, Eds., vol. 2162 of Lecture Notes in Computer Science, 
Springer-Verlag, 2001. Volume de 425 pages. 
 

 
 
Sécurité Java et Sûreté de Machines Virtuelles Embarquées 
 
4. Cut-&-paste attacks with JAVA, par Serge Lefranc et David Naccache, In P.J. Lee and 
C.H. Lim, Eds., Information Security and Cryptology - ICISC 2002, vol. 2587 of Lecture 
Notes in Computer Science, pp. 1-15, Springer-Verlag, 2003 
 

5. Trading-off type-inference memory complexity against communication, par Konstantin 
Hyppönen, David Naccache, Alexei Tchoulkine et Elena Trichina, In S. Qing, D. 
Gollmann, and J. Zhou, Eds., Information and Communications Security (ICICS 2003), 
vol. 2836 of Lecture Notes in Computer Science, pp. 60-71, Springer-Verlag, 2003 
 

6. Applet verification strategies for RAM-constrained devices, par Nils Maltesson, David 
Naccache, Elena Trichina et Christophe Tymen, In P.J. Lee and C.H. Lim, Eds., 
Information Security and Cryptology - ICISC 2002, vol. 2587 of Lecture Notes in 
Computer Science, pp. 118-137, Springer-Verlag, 2003  
 

7. Reducing the memory complexity of type-inference algorithms, par David Naccache, 
Alexei Tchoulkine, Christophe Tymen et Elena Trichina In R.H. Deng, S. Qing, F. 
Bao, and J. Zhou, Eds., Information and Communications Security, vol. 2513 of 
Lecture Notes in Computer Science, pp. 109-121, Springer-Verlag, 2002 présenté 
également à Eurosmart 2002, French Riviera, France, September 19-20, 2002. 
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Chiffrement à Clé Publique 
 
8. New attacks on PKCS#1 v1.5 encryption, par Jean-Sébastien Coron, Marc Joye, David 
Naccache, et Pascal Paillier In B. Preneel, Ed., Advances in Cryptology - 
Eurocrypt'2000, vol. 1807 of Lecture Notes in Computer Science, pp. 369-381, 
Springer-Verlag, 2000  
 

9. Universal padding schemes for RSA, par Jean-Sébastien Coron, Marc Joye, David 
Naccache, et Pascal Paillier In M. Yung, Ed., Advances in Cryptology - Crypto'2002, 
vol. 2442 of Lecture Notes in Computer Science, pp. 226-241, Springer-Verlag, 2002  
 

10. Accelerating Okamoto-Uchiyama's public-key cryptosystem, par Jean-Sébastien Coron, 
David Naccache, et Pascal Paillier Electronics Letters, 35(4):291-292, 1999  
 

11. A new public key cryptosystem based on higher residues, par David Naccache et 
Jacques Stern In 5th ACM Conference on Computer and Communications Security, 
pp. 59-66, ACM Press, 1998  
 

12. A new public-key cryptosystem, par David Naccache et Jacques Stern In W. Fumy, 
Ed., Advances in Cryptology - Eurocrypt'97, vol. 1233 of Lecture Notes in Computer 
Science, pp. 27-36, Springer-Verlag, 1997  
 

13. Why you cannot even hope to use Gröbner bases in public-key cryptography? An open 
letter to a scientist who failed and a challenge to those who have not yet failed, par B. 
Barkee, Deh Cac Can (publication anonyme: Deh Cac Can = Naccache D. lu à 
rebours), J. Ecks, T. Moriarty, et R. F. Ree Journal of Symbolic Computation 18(6):497-
501, 1994 
 

Conception de Signatures Numériques 
 
14. Can DSA be improved? Complexity trade-offs with the digital signature standard, par 
David Naccache, David M'Raïhi, Serge Vaudenay, et Dan Raphaeli In A. De Santis, 
Ed., Advances in Cryptology - Eurocrypt'94, vol. 950 of Lecture Notes in Computer 
Science, pp. 77-85, Springer-Verlag, 1995 paru aussi sous le titre Couponing scheme 
reduces computational power requirements for DSS signatures, par David M'Raïhi et David 
Naccache, In CardTech/SecurTech, pp. 99-104, Rockville, MD, USA, 1994, CTST Inc.  
 

15. ECC: do we need to count?, par Jean-Sébastien Coron, Helena Handschuh, et David 
Naccache In K.Y. Lam and E. Okamoto, Eds., Advances in Cryptology -Asiacrypt'99, 
vol. 1716 of Lecture Notes in Computer Science, pp. 122-134, Springer-Verlag, 1999  
 

16. Monotone signatures, par David Naccache, David Pointcheval, et Christophe 
Tymen In P.F. Syverson, Ed., Financial Cryptography (FC 2001), vol. 2339 of Lecture 
Notes in Computer Science, pp. 305-318, Springer-Verlag, 2002  
 

17. Twin signatures: An alternative to the hash-and-sign paradigm par David Naccache, 
David Pointcheval, et Jacques Stern In P. Samarati, Ed., 8th ACM Conference on 
Computer and Communications Security, pp. 20-27, ACM Press, 2001 
 

18. Signing on a postcard, par David Naccache et Jacques Stern In Y. Frankel, Ed., 
Financial Cryptography (FC 2000), vol. 1962 of Lecture Notes in Computer Science, 
pp. 121-135, Springer-Verlag, 2001  
 

19. From fixed-length to arbitrary-length RSA padding schemes, par Jean-Sébastien Coron, 
François Koeune, et David Naccache In T. Okamoto, Ed., Advances in Cryptology - 
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Asiacrypt'2000, vol. 1976 of Lecture Notes in Computer Science, pp. 90-96, Springer-
Verlag, 2000  
 

20. Can OSS be repaired? Proposal for a new practical signature scheme, par David 
Naccache, In T. Helleseth, Ed., Advances in Cryptology - Eurocrypt'93, vol. 765 of 
Lecture Notes in Computer Science, pp. 233-239, Springer-Verlag, 1994 
 

21. Boneh et al.'s k-element aggregate extraction assumption is equivalent to Diffie-Hellman 
assumption, par Jean-Sébastien Coron et David Naccache, In C.-S. Laih, Ed., Advances 
in Cryptology - Asiacrypt 2003, vol. 2894 of Lecture Notes in Computer Science, pp. 
392-397, Springer-Verlag, 2003 
 
Contrefaçon de Signatures Numériques 
 
22. On blind signatures and perfect crimes, par Sebastiaan von Solms et David 
Naccache, Computers & Security, vol. 11, no. 6, pp. 581-583, 1992. 
 

23. On the security of RSA screening, par Jean-Sébastien Coron et David Naccache In H. 
Imai and Y. Zheng, Eds., Public Key Cryptography (PKC '99), vol. 1560 of Lecture 
Notes in Computer Science, pp. 197-203, Springer-Verlag, 1999  
 

24. Security analysis of the Gennaro-Halevi-Rabin signature scheme, par Jean-Sébastien 
Coron et David Naccache In B. Preneel, Ed., Advances in Cryptology - 
Eurocrypt'2000, vol. 1807 of Lecture Notes in Computer Science, pp. 91-101, 
Springer-Verlag, 2000  
 

25. On the security of RSA padding, par Jean-Sébastien Coron, David Naccache, et Julien 
P. Stern In M. Wiener, Ed., Advances in Cryptology - Crypto'99, vol. 1666 of Lecture 
Notes in Computer Science, pp. 1-18, Springer-Verlag, 1999 paru aussi sous le titre  
Recent results on signature forgery, par Robert D. Silverman et David Naccache RSA 
Laboratories Bulletin, 11, April 1999, version abrégée: Padding attacks on RSA, par 
David Naccache Information Security Technical Report, 4(4):28-33, 1999, article sur 
l'état de l'art:  Security of digital signature standards: The state of the art, par David 
Naccache In S.-P. Shieh, Ed., 2nd International Workshop for Asian Public Key 
Infrastructures, pp. 159-163, Taipei, Taiwan, October 30-November 1, 2002  
 

26. Cryptanalysis of RSA signatures with fixed-pattern padding par Éric Brier, Christophe 
Clavier, Jean-Sébastien Coron, et David Naccache In J. Killian, Ed., Advances in 
Cryptology - Crypto'2001, vol. 2139 of Lecture Notes in Computer Science, pp. 433-
439, Springer-Verlag, 2001 
 

27. Projective Coordinates Leak, par David Naccache, Nigel Smart et Jacques Stern. 
Report 2003/191, Cryptology ePrint Archive. et Advances in Cryptology - Eurocrypt 
2004, pp. 257-267. Springer Verlag, April 2004. Volume 3027. Interlaken, Suisse, 2-6 
mai, 2004. 
 
Implémentations Efficaces, Techniques de Calcul Rapide 
 
28. Double-speed safe prime generation, par David Naccache, Report 2003/175, 
Cryptology ePrint Archive, August 2003 
 

29. How to improve an exponentiation black-box, par Gérard D. Cohen, Antoine Lobstein, 
David Naccache, et Gilles Zémor In K. Nyberg, Ed., Advances in Cryptology - 
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Eurocrypt'98, vol. 1403 of Lecture Notes in Computer Science, pp. 211-220, Springer-
Verlag, 1998  
 

30. A new modulo computation algorithm, par David Naccache et Halim M'silti, 
Recherche Opérationelle – Operations Research (RAIRO-OR), vol. 24, no. 3, pp. 307-313, 
1990. 
 

31. Accelerating Wilson's promality test, par David Naccache et Michael Donio,  Revue 
Technique de Thomson CSF, vol. 23, no. 3, pp. 595-599, 1991. 
 

32. Batch exponentiation: a fast DLP-based signature generation strategy, par David 
M'Raïhi et David Naccache In 3rd ACM Conference on Computer and 
Communications Security, pp. 58-61, ACM Press, 1996 
 
Protocoles et Applications 
 
33. Asymmetric currency rounding, par David M'Raïhi, David Naccache, et Michael 
Tunstall In Y. Frankel, Ed., Financial Cryptography (FC 2000), vol. 1962 of Lecture 
Notes in Computer Science, pp. 192-201, Springer-Verlag, 2001  
 

34. How to copyright a function?, par David Naccache, Adi Shamir, et Julien P. Stern In 
H. Imai and Y. Zheng, Eds., Public Key Cryptography (PKC '99), vol. 1560 of Lecture 
Notes in Computer Science, pp. 188-196, Springer-Verlag, 1999  
 

35. A Montgomery suitable Fiat-Shamir-like authentication scheme, par David Naccache, 
Advances in Cryptology, Proceedings of Eurocrypt'92, Lecture Notes in Computer 
Science 658, Springer-Verlag, pp. 488-491, 1993. Paru aussi sous le titre: Montgomery-
suitable cryptosystems, par David Naccache et David M'Raïhi, In G. Cohen, S. Litsyn, 
A. Lobstein, and G. Zémor, Eds., Algebraic Coding, vol. 781 of Lecture Notes in 
Computer Science, pp. 75-81, Springer-Verlag, 1994, voir aussi: Can Montgomery 
parasites be avoided? A design methodology based on key and cryptosystem modifications, 
par David Naccache, David M'Raïhi, et Dan Raphaeli, Designs, Codes and 
Cryptography, 5(1):73-80, 1995  
 

36. Computational alternatives to random number generators, par David M'Raïhi, David 
Naccache, David Pointcheval, et Serge Vaudenay In S. Tavares and H. Meijer, Eds., 
Selected Areas in Cryptography (SAC '98), vol. 1556 of Lecture Notes in Computer 
Science, pp. 72-80, Springer-Verlag, 1999 
 
Cartes à Puce 
 
37. How to Disembed a Program, par Benoît Chevallier-Mames, David Naccache, Pascal 
Paillier et David Pointcheval, In Marc Joye and Jean-Jacques Quisquater Eds. 
Cryptographic Hardware and Embedded Systems - CHES 2004: 6th International 
Workshop. vol. 3156 of Lecture Notes in Computer Science, pp. 72-80, Springer-
Verlag, pp. 441-454. Version étendue : Report 2004/138, Cryptology ePrint Archive. 
 

38. Secure chipcard personalization or how to fool malicious insiders, par Helena 
Handschuh, Pascal Paillier, David Naccache, et Christophe Tymen In P. Honeyman, 
Ed., Fifth Smart Card Research and Advanced Application Conference (CARDIS 2002), 
pp. 41-50, USENIX Association, 2002  
 

39. Off-line/on-line generation of RSA keys with smart cards, par Nathalie Feyt, Marc Joye, 
David Naccache, et Pascal Paillier In S.-P. Shieh, Ed., 2nd International Workshop for 
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Asian Public Key Infrastructures, pp. 153-158, Taipei, Taiwan, October 30-November 
1, 2002  
 

40. Statistics and secret leakage, par Jean-Sébastien Coron, Paul Kocher, et David 
Naccache In Y. Frankel, Ed., Financial Cryptography (FC 2000), vol. 1962 of Lecture 
Notes in Computer Science, pp. 157-173, Springer-Verlag, 2001. Version définitive à 
ACM Transactions on Embedded Computing Systems (Volume 3,  No. 3), pp. 492-508, 
2004. 
 

41. Cryptographic smart-cards, par David Naccache et David M'Raïhi IEEE Micro, 
16(3):14-24, 1996. Exposé invité à Eurocrypt 1995 (absent des actes). Paru aussi sous 
le titre: Arithmetic co-processors for public-key cryptography: The state of the art, par David 
Naccache et David M'Raïhi In P.H. Hartel, P. Paradinas, and J.-J. Quisquater, Eds., 
Second Smart Card Research and Applications Conference (CARDIS '96), pp. 39-58, 
Amsterdam, The Nederlands, September 16-18, 1996. Présenté en Italien, Coprocessori 
aritmetici per crittografia a chiave pubblica, lors du colloque FUB à Rome du 11 au 12 
septembre 1996. Version Japonaise dans Nikkei Electronics, no. 672, pp. 95-110: 
 

 �� � � ��� �� �� � �	 
 �����������������������

 
Chiffrement Symétrique 
 
42. SHACAL, par Helena Handschuh et David Naccache In B. Preneel, Ed., First Open 
NESSIE Workshop, Leuven, Belgium, November 13-14, 2000  
 

43. XMX: A firmware-oriented block cipher based on modular multiplications, par David 
M'Raïhi, David Naccache, Jacques Stern, et Serge Vaudenay In E. Biham, Ed., Fast 
Software Encryption, vol. 1267 of Lecture Notes in Computer Science, pp. 166-171, 
Springer-Verlag, 1997 
 
Identification / Biométrie 
 
44. Unless modified Fiat-Shamir is insecure, par David Naccache, Proceedings of the 3rd 
Symposium on State and Progress of Research in Cryptography: SPRC '93, Fondazione 
Ugo Bordoni, Ed. William Wolfowicz, Rome, Italie, pp. 172-180, 1993. 
 

45. Are crypto-accelerators really inevitable? 20-bit zero-knowledge in less than a second on 
simple 8-bit microcontrollers, par David Naccache, David M'Raïhi, William Wolfowicz, 
et Adina di Porto In L. C. Guillou and J.-J. Quisquater, Eds., Advances in Cryptology 
- Eurocrypt'95, vol. 921 of Lecture Notes in Computer Science, pp. 404-409, Springer-
Verlag, 1995 
 

46. Cryptanalysis of a Zero-Knowledge Identification Protocol of Eurocrypt'95, par Jean-
Sébastien Coron et David Naccache, Topics in Cryptology – CT-RSA 2004, The 
Cryptographers' Track at the RSA Conference 2004, San Francisco, USA, 23-27 février, 
2004, Springer-Verlag, Lecture Notes in Computer Science, Volume 2964, 2004, pp. 
157-162  
 

47. Externalized Fingerprint Matching, par Claude Barral, Jean-Sébastien Coron et 
David Naccache, à paraître, International Conference on Biometrics Authentication, 
15 au 17 juillet, 2004, Hong-Kong, Chine. Report 2004/021, Cryptology ePrint 
Archive. 
 



 43

Mathématiques / Autres 
 
48. Chemické Komibinatorické Útoky na Klávesnice, par Éric Brier, David Naccache et 
Pascal Paillier. 5-th Information Security Summit 2004, 26 au 27 mai, 2004, Prague, 
République Tchèque. Actes édités par Tates International SRO (ISBN 80-86813-00-2), 
pp. 124-140. Aussi (version anglaise) Chemical Combinatorial Attacks on Keyboards, 
Report 2003/217, Cryptology ePrint Archive. 
 

49. An accurate evaluation of Maurer's universal test, par Jean-Sébastien Coron et David 
Naccache In S. Tavares and H. Meijer, Eds., Selected Areas in Cryptography (SAC'98), 
vol. 1556 of Lecture Notes in Computer Science, pp. 57-71, Springer-Verlag, 1999  
 

50. On the generation of permutations, par David Naccache, The South-African 
Computer Journal - Suid Afrikaanse Rekenaar-tydskrif, no. 2, pp. 12-15, 1990. 
 

51. A note about Σkmk!, par David Naccache, The Pentagon, vol. 49, no.2, pp. 10-15, 
1990. 
 

52. Proposal for a recurrent denumeration of all the permutations on any set of mutually 
disjoint elements, par David Naccache, Scientific program and abstracts of the joint 
French-Israeli binational symposium on Combinatorics & Algorithms, Ministry of 
Science and Development - National Council for Research and Development, 14-17 
novembre 1989. 
 

53. Binary-to-decimal conversion based on the divisibility of 255 by 5, par Benjamin Arazi 
et David Naccache, Electronics Letters, vol 28. no. 23, 1992. 
 

54. Signatures numériques et preuves à divulgation nulle, cryptanalyse, défense et outils 
algorithmiques, par David Naccache, Thèse de doctorat, École Nationale Supérieure 
des Télécommunications, Paris, France, mai 1995  
 

La thèse s'interesse à la conception de nouveaux systèmes sûrs (cartes à puce, 
réseaux) ainsi qu'à des failles de sécurité concrètes dans des systèmes existants. 
 

Jury composé de MM. Jacques Stern (École Normale Supérieure, Président), Whitfield 
Diffie (Sun Microsystems, USA), Jean-Jacques Quisquater (Université Catholique de Louvain, 
Belgique), Thomas Beth (Universität Karlsruhe, Allemagne), Paul Camion (INRIA), Gérard 
Cohen (École Nationale Supérieure des Télécommunications, Directeur), Yvo Desmedt 
(Florida State University, USA), Birgit Pfitzmann (Universität Hildesheim, Allemagne) et Moti 
Yung (Columbia University, USA).  
 

55. Colourful cryptography, par David Naccache, In French Israeli Workshop on 
Coding and Information Theory, Ministry of science and the arts - Ministère des 
affaires étrangères, December 8, 1994 
 

56. Invité à plusieurs reprises à faire des présentations générales sur la sécurité 
informatique (e.g. membre du Distinguished Cryptographers' Panel de la conférence 
RSA1, sélectionné meilleur orateur au colloque Cryptographic Security Aspects of Smart 
Cards & Internet2, prix de la Conférence Public Key Solutions 1995 etc. 

                                                 
1 4 novembre 2003 à Amsterdam 
2 25 au 28 avril 2000 à Amsterdam 
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Science Populaire - État de l'Art 
 
57. How to explain side-channel leakage to your kids?, par David Naccache et Michael 
Tunstall In Ç. Koç et C. Paar, Eds., Cryptographic Hardware and Embedded Systems 
- CHES 2000, volume 1965 of Lecture Notes in Computer Science, pp. 229-230, 
Springer-Verlag, 2000.  
 

58. GOST 34.10: a brief overview of Russia's DSA, par Markus Michels, David Naccache et 
Holger Petersen Computers & Security, 15(8):725-732, 1996 
 

59. Chapitre dans le livre Network Security: Current status and Future Directions édité 
par Christos Douligeris et Dimitrios Serpanos, IEEE Press. Le chapitre, Mobile Terminal 
Security, est co-signé par Olivier Benoît, Fabienne Cathala, Nora Dabbous, Laurent 
Gauteron, Pierre Girard, Helena Handschuh, David Naccache et Claire Whelan. 
 

60. The Sorcerer Apprentice’s Guide to Fault Attacks, Hagai Bar-El, Hamid Choukri, 
David Naccache, Michael Tunstall et Claire Whelan. Actes de DSN'04, Workshop on 
Fault Diagnosis and Tolerance in Cryptography, Florence, Italie, 30 juin 2004. Pages 
330-342. Cryptology ePrint Archive, Report 2004/100. Aussi, How to explain fault 
attacks to your kids, par David Naccache In U. Schulte, Ed., ISSE 2002, on CD-ROM, Paris, 
France, October 2-4, 2002.  
 

Travaux en Cours (Non Encore Publiés) 
 
61. Cryptanalysis of ISO/IEC 9796-1 par Don Coppersmith, Jean-Sébastien Coron, 
François Grieu, Shai Halevi, Charanjit Jutla, David Naccache et Julien Stern, soumis 
au Journal of Cryptology et Index Calculation Attacks on RSA Signature and Encryption 
accepté à Designs Codes & Cryptography par Jean-Sébastien Coron, Yvo Desmedt, 
David Naccache, Andrew Odlyzko et Julien P. Stern (versions définitives de (25)) 
 

62. Provable Side-Channel Security Through Secret Updates, Article invité à paraître dans 
les actes du colloque NATO ARW « Security and Embedded Systems » qui se tiendra à 
Patras, Grèce du 22 au 26 Août 2005, par David Naccache, Christophe Tymen et 
Claire Whelan. 
 

63. Improving the Security of Traveller Cheques, par Eric Brier, Cédric Cardonnel et 
David Naccache. 
 

64. Identités Arithmétiques Liées à des Équations Différentielles Dans Z[X], par Paul 
Camion et David Naccache. 
 

65. A New Correcting Code Based on Modular Arithmetic, par Jean-Sébastien Coron et 
David Naccache. 
 

66. Security Flaws in Memory Caching Protocols, par Jacques Fournier et David 
Naccache. 
 

67 . Quatre volumes de 350 pages chacun, chez World Scientific (NJ, USA) : 
 

Vol. 1: Selected Contributions to Cryptography 
Vol. 2: Selected Contributions to Information Security 
Vol. 3: Selected Contributions to Cryptographic Implementations 
Vol. 4: Selected Contributions to Software Engineering 
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Co-signés avec Marc Joye. Projet accepté par l’éditeur. Le contenu du premier 
volume est prêt. 

 
 

        
 

 

68. Experimenting with Faults, Lattices and the DSA, à paraître, PKC 2005, par David 
Naccache, Phong Q. Nguyên, Michael Tunstall et Claire Whelan. 
 

69. From Fixed-Length to Arbitrary-Length RSA Padding Schemes Revisited, à paraître, PKC 

2005, par Julien Cathalo, Jean-Sébastien Coron et David Naccache. 
 

70. Secure Delegation of Elliptic-Curve Pairing, par Benoît Chevallier-Mames, Jean-
Sébastien Coron et David Naccache. 
 

71. The Polynomial Composition Problem in (Z/nZ)[X], Report 2004/224, Cryptology 
ePrint Archive, par Marc Joye, David Naccache et Stéphanie Porte. 
 

72. A Diophantine System Arising from Cryptography, Note diffusée le 30/08/2004 à la 
liste nmbrthry@listserv.nodak.edu  (théorie des nombres), David Naccache et  Benne 
de Weger. 
 

73. HOTP: An HMAC-based One Time Password Algorithm, « Internet Draft » soumis à 
l’IETF le 17 octobre 2004,  (draft-ietf-oath-hmac-otp-00.txt), David M’Raïhi, Mihir 
Bellare, Frank Hoornaert, David Naccache, Ohad Ranen 
 
 

mailto:nmbrthry@listserv.nodak.edu
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Comités de Programme de Conférences Scientifiques 
 
First Information Security Practice and Experience Conference (ISPEC), 11-14 avril 
2005, Singapour. 
 

The 8-th Information Security Conference (ISC 05), 20-23 septembre 2005, Singapour. 
 

Communications and Multimedia Security (CMS 2000). Klagenfurt, Autriche, 18-19 
septembre 2000.  
 

European Symposium on Research in Computer Security (ESORICS 2002). Zürich, 
Suisse, 14 au 16 octobre, 2002.  
 

Secure Networking - CQRE (Secure)'99. Dusseldörf, Allemagne, 30 novembre au 2 
décembre, 1999.  
 

ACM Conference on Computer and Communications Security (ACM CCS '98). San 
Francisco, Californie, USA, 3 au 5 novembre, 1998. 
 

ACM Conference on Computer and Communications Security Industry Track (ACM 

CCS '05). Alexandria, Virginie, USA, 7 au 11 novembre, 2005. 
 

IFIP Conference on Integrity and Internal Control in Information Systems (IICIS 2003). 
Lausanne, Suisse, 13 au 14 novembre, 2003.  
 

Australasian Conference on Information Security and Privacy (ACISP 2003). 
Wollongong, Australie, 9 au 11 juillet, 2003.  
 

First Workshop on Fault Diagnosis and Tolerance in Cryptography, FDTC 04, dans DSN 
04, Florence, Italie, 30 juin 2004. 
 

Second Workshop on Fault Diagnosis and Tolerance in Cryptography, FDTC 05 dans 
CHES 05, Edinburgh, Grande Bretagne, 29 août au premier septembre 2005. 
 

ACM International Conference on Information Security (InfoSecu’04), Shanghai, 
Chine, 14 au 15 novembre, 2004  
 

Financial Cryptography. Key West, Floride, USA, 9 au 12 février, 2004.  
 

Communication Security at Globecom 2003. San Francisco, Californie, USA, 1 au 5 
décembre, 2003.  
 

RSA Conference 2001 (CT-RSA 2001). San Francisco, Californie, USA, 8 au 12 avril, 2001.   
 

Membre du Comité de Pilotage (steering committee) du Cryptographer's Track  de la 
RSA Conference en 2001 et 2002. 
 

International Workshop for Applied PKI : 
 
IWAP 2005   Singapour   21-23/09/2005 
IWAP 2004   Fukuoka, Japon  03-05/10/2004 
 
 

Applied Cryptography and Network Security: 
 
ACNS 2004 Yellow Mountain, Chine 08-11/06/2004 
ACNS 2003 Kunming, Chine          16-19/10/2003 
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International Conference on Information Security and Cryptology: 
 
ICISC 2004   Séoul, Corée 02-03/12/2004 
ICISC 2003   Séoul, Corée 27-28/11/2003 
ICISC 2002   Séoul, Corée 28-29/11/2002 
ICISC 2001   Séoul, Corée 06-07/12/2001 
 
International Conference on Information and Communications Security: 
 
ICICS 2003 Huhehaote City, Chine 10-13/10/2003 
ICICS 2002 Singapour 09-12/12/2002 
ICICS 2001 Xian, Chine            13-16/11/2001 
 
Crypto 2005 Santa Barbara, CA, USA 14-18/08/2005 
Crypto 2002 Santa Barbara, CA, USA 18-22/08/2002 
Crypto 1997 Santa Barbara, CA, USA 17-21/08/1997 
 
Eurocrypt 2001 Innsbruck, Autriche 06-10/05/2001 
Eurocrypt 1997 Constance, Allemagne 11-15/05/1997 
Eurocrypt 1996 Saragosse, Espagne   12-16/05/1996 
Eurocrypt 1994 Perugia, Italie      09-12/05/1994 
 
International Workshop on Practice and Theory in Public Key Cryptography3: 
 
PKC 2005 Les Diablerets, Suisse 23-26/01/2005 
PKC 2002 Paris, France 12-14/02/2002 
PKC 2001 Cheju Island, Corée     13-15/02/2001 
PKC 2000 Melbourne, Australie    18-20/01/2000 
 
Cryptographic Hardware and Embedded Systems: 
 
CHES 2005 Edinburgh, Ecosse 29/08/2005-01/09/2005 
CHES 2002 San Francisco, CA, USA 14-16/08/2002 
CHES 2001 Paris, France 13-16/05/2001 
 
« Lecteur externe »4 et « président de session » pour le compte de nombreuses autres 
conférences. 
 
Lecteur pour le compte d’ IEEE Micro, Cryptologia, Electronic Letters, The Journal of 
Cryptology, Designs Codes and Cryptography, International Journal on Computers 
and Applications, Computers and Electrical Engineering Journal (Elsevier), Springer 
International Journal of Information Security, ACM TECS (Transactions on Embedded 
Computing Systems), Proceedings of the IEEE etc. 
 
Membre de l'Advisory Board de l'Encyclopedia of Cryptography and Security 
publiée par Kluwer Academic. En charge de huit rubriques relatives aux « security 
implementation aspects and smart cards ». 
                                                 
3 Membre du Comité de Pilotage (steering committee) de la conférence de 1999 à ce jour. 
4 i.e. non-membre du comité de programme. 
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Expresses its Recognition to

KLUWER ACADEMIC PUBLISHERS

David Naccache

for his contribution to the Encyclopedia of Cryptography and Security and

for his scientific contributions to the fields of cryptography and

theoretical computer science. 

Jennifer Evans
Publishing Manager, Engineering and Computer Science
Kluwer Academic Publishers

February 10, 2004,

 
 

Correcteur avant parution des ouvrages suivants: 
 
La Science du Secret, par Jacques Stern (Odile Jacob). 
 

Wireless Privacy, en préparation, par Simson L. Garfinkel, (MIT Press). 
 

Handbook of Information Security, en préparation, par Hossein Bidgoli, (Wiley & 
Sons). 
 

Handbook of Applied Cryptography par Menezes, van Oorschot et Vanstone, (CRC 
Press). 
 
Affilié aux associations scientifiques suivantes: 
 
International Association for Cryptologic Research 
 

Institute of Electrical and Electronics Engineers 
 

Association for Computing Machinery 
 

South-African Mathematical Society 
 

New York Academy of Science 
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David Naccache 

 52 rue Letort, 75018, Paris 
 david.naccache@gemplus.com 
 06.16.59.83.49 

 
37 ans, célibataire, sans enfants. 
 
Formation 
 
1995 Doctorat, Spécialité Informatique et Réseaux 

École Nationale Supérieure des Télécommunications, Paris 
 
« Signatures Numériques et Preuves à Divulgation Nulle, Cryptanalyse, Défense et Outils 
Algorithmiques ». 
 
Mention Très Honorable Avec Les Félicitations Du Jury. 
 
1990 Ingénieur des Média et Architecture de la Communication,  

Université Panthéon-Assas, Paris II 
 
Mention Très Bien. 
 
1990 Diplôme d'Etudes Approfondies,  Université Paris VI. 
 
«  Langages, Algorithmes et Programmation » 
 
1987 Diplôme d'Etudes Universitaires Générales, Sciences des Structures et de la 
Matière, Centre Scientifique et Polytechnique, Université Paris XIII. 
 
Parcours Professionnel 
 
1993 à présent         Gemplus International. 
 

1993 Ingénieur Expert en Cryptologie. 
1999 Responsable du Groupe Sécurité et Cryptologie. 
2001  Directeur du Département Technologies de Sécurité. 
2002 à présent :  

Directeur du Centre de Recherche Appliquée et Sécurité. 
Vice-Président, Technologies de Sécurité et Gestion des Risques. 
Vice-Président, Recherche et Innovation (Gemplus n’a pas de CTO). 

 
Rôle et Contributions : 
 
   Stratégie et Support : 

Analyse des enjeux technologiques auxquels l'entreprise est confrontée et leur 
traduction en opportunités et risques (concurrentiels, industriels et financiers). 
Elaboration de recommandations et de scenarii de décision pour le Comité Exécutif. 

 

Expertise lors d'opérations de fusion-acquisition.  
 

Pré- et post-vente pour de grands comptes stratégiques. 
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Représentation de Gemplus auprès de divers organismes. 
 
   Management : 

Montage et direction opérationnelle complète du Centre de Recherche 
Appliquée et Sécurité en France et à Singapour (70 ingénieurs, cf. section 5). 
 

Création, management et fermeture (en 2001) des succursales du Centre à 
Montréal et Bangalore et aide au démarrage d'un Centre de conception de circuits 
intégrés à Rome. 
 

Négociation annuelle du budget du Centre, plannings, synthèse d'indicateurs 
de productivité, gestion des variations d'effectifs (embauches et plans sociaux), 
transferts de technologie, motivation des équipes, cadrage périodique de la stratégie 
de recherche avec les Divisions Commerciales. Alignement des projets de recherche 
avec les besoins du marché (analyse de la valeur). 
 

Supervision de l'exécution de tous les projets de recherche de l’entreprise 
ainsi que de tous les développements concernant la sécurité (organisation du travail, 
coordination de tâches, animation de réunions, contrôle et reporting). Coaching de 
jeunes prometteurs dans le cadre d'un programme interne. 
 
   Technique :  

Catalyseur technique interne, lancement de coopérations industrielles et 
académiques, participation aux travaux de recherche et développement, conception 
d'architectures et d'attaques de cartes et systèmes. Audits.  
 
 
 1992-1993  Philips Télécommunications Radioélectriques et Téléphoniques. 
 (aujourd'hui Oberthur). Division Smart-Cards & Systems. 
 

Réécriture du code embarqué dans les clés des décodeurs Canal Plus et 
participation à la conception: 

 
- de la première carte à cryptographie à clé publique de Philips (la carte DX). 
- des librairies cryptographiques non-embarquées. 
- et des premières générations de cartes GSM. 

 
1990-1992 Thomson Consumer Electronics (aujourd'hui Thomson Multimedia). 
Laboratoire Européen de Recherche en Électronique Avancée. 
 

Diverses contributions à la conception du décodeur Videocrypt, le système de 
contrôle d'accès audiovisuel de Sky Channel et de BBC Select (écriture de code 
embarqué, conception d'un moteur matériel de déchiffrement de trames MPEG etc). 
 
Missions d'Expertise 
 
Expert Commis (inscrit sur liste d’épreuve, spécialité E-01.03 Télécommunications et 
réseaux) par le Tribunal de Grande Instance de Paris 
 

- Cabinet de Monsieur Etienne Apaire.  
Analyse de cartes SIM (trafic de stupéfiants), 1999. 

 

- Cabinet de Madame Marie-Antoinette Houyvet 
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Analyse d'Équipement Informatique (terrorisme), 2004. 
 

- Douzaine de prestations de serment en tant qu'expert traducteur-interprète 
non-inscrit (Anglais et Italien courants). 
 
1999  Ministère de l'Économie des Finances, Membre de la Commission 
Thématique II du Réseau National de Recherche en Télécommunications: Traitement 
du Signal et Circuits Intégrés Associés. 
 
2000 Ministère de la Recherche, Membre du Comité Scientifique de l'Action 
Concertée Incitative en Cryptologie (13 membres). 
 
2003  European Telecommunications Standards Institute,  

Expert pour les questions relatives à la sécurité des signatures numériques 
mobiles (STF 221). 
 
2004 Science Foundation Ireland. Basic Research Grants Programme,  

Expert Reviewer. 
 
2004 Ministère des Affaire Economiques Néerlandais et Netherlands Organisation 
for Scientific Research (NWO). Technology Foundation STW. 
 Research Program Expert Reviewer 
 
2004 Programme de Développement des Nations Unis en Chine (United Nations 
Development Programme in China),  

Senior Technical Adviser. 
 
2001 Florida State University,  

Membre de l'Advisory Board du Security and Assurance in Information 
Technology Laboratory. 
 
Travaux, Conseils Industriels, Enseignement 
 
60 publications techniques, 36 comités de programmes, 58 brevets. cf. section 3. 
 

- Inforange Ltd., Distinguished Technical Adviser to the Board. 
 

- Cryptolog International, Member of the Scientific Advisory Committee. 
 

- Onets Internet & Wireless Security China, Chairman of the Scientific Board. 
 

- Membre du Comité Stratégique du Réseau d'Excellence (NOE) ECRYPT de la 
Commission Européenne. 

 

- Invitations aux conseils d’Itran, Cassis International, Discretix et Innovacard 
déclinées par manque de temps ou par souci de non-concurrence. 
 

Cinq co-encadrements de doctorats, dix jurys de doctorats, deux comités 
d'encadrement (doctorats belges), huit thèses en cours de co-encadrement et cinq en 
association. Membre du jury d'Admission du concours de Directeurs de Recherche 
de l'INRIA (2003). Professeur honoraire de la Beijing Jiaotong University. Visiting 
Professor à la Royal Holloway University of London, Bedford New College (poste 
honoraire, sans charge d’enseignement), Membre d’honneur du Group de Recherche 
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en Cryptologie de l’Université Catholique de Louvain (Belgique). Erdős deux (via 
Andrew Odlyzko). 
 

Chargé d'enseignement vacataire au DESS « Audit et Expertise en 
Informatique et Techniques Numériques » (Université Panthéon-Assas Paris II, 1996-
2005). 
 

Enseignement en École d'Ingénieurs IMAC et au Civil Service College de 
Singapour. 

 
Autres Éléments d'Information 
 
Service National effectué en 1985, 11e Régiment d'Artillerie (Offenburg, Allemagne). 
 

Insigne (argent) des donneurs de sang bénévoles, insigne (vermeil) de l'association à 
but non-lucratif (loi 1901) La Courtoisie Française (aide aux aveugles). 
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5  Encadrement Scientifique et Industriel  
 
Jurys de Thèse 
 
Légende:  

 membre du jury de thèse 
 co-encadrement scientifique du doctorant 
 membre du comité d'encadrement (doctorats belges) 

 
Historique 
 
Jean-Sébastien Coron, Cryptanalyses et preuves de sécurité de schémas à clé publique , 
École Polytechnique et École Normale Supérieure (Ulm), directeur professeur 
Jacques Stern, 16 mai 2001. 
 
Christophe Tymen, Les algorithmes basés sur le logarithme discret en cryptologie , École 
Polytechnique, directeur professeur Jacques Stern, 22 septembre 2003. 
 
Pascal Paillier, Cryptographie à clé publique basée sur la résiduosité de degré composite , 
École Nationale Supérieure des Télécommunications, directeur professeur Gérard 
Cohen, 24 septembre 1999. 
 
Helena Handschuh, Cryptanalyse et sécurité des algorithmes à clé secrète , École 
Nationale Supérieure des Télécommunications, directeur professeur Gérard Cohen, 
24 septembre 1999. 
 
David M'Raïhi, Argent électronique et contrôle de l'anonymat , Université Paris VII, 
Denis Diderot et École Normale Supérieure (Ulm), directeur professeur Jacques 
Stern, 14 juin 1999. 
 
Nicolas Courtois, La sécurité des primitives cryptographiques basées sur des problèmes 
algébriques multivariables: MQ, IP, MinRank, HFE , Université Paris VI, Jussieu, directeur 
professeur Sami Harari, 25 septembre 2001. 
 
Jean-François Koeune, Careful design and integration of cryptographic primitives with 
contributions to timing attack, padding schemes and random number generators , 
Université Catholique de Louvain (Belgique), directeur professeur Jean-Jacques 
Quisquater, 30 avril 2001. 
 
Julien Stern, Contribution à une théorie de la protection de l'information , Université Paris 
XI (Paris-Sud Orsay), directeurs professeurs Jean-Jacques Quisquater et Miklós 
Santha, 23 mars 2001. 
 
Marc Joye, Security analysis of RSA-type cryptosystems , Université Catholique de 
Louvain (Belgique), directeur professeur Jean-Jacques Quisquater, 14 octobre 1997. 
 
François-Xavier Standaert, Secure and efficient use of reconfigurable devices in symmetric 
cryptography , Université Catholique de Louvain (Belgique), directeur professeur 
Jean-Jacques Quisquater, 14 mai 2004. 
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Doctorants Basés au Centre que Je Dirige  
 
Éric Brier, Théorie des nombres (courbes hyperelliptiques), directeur professeur François 
Morain, École Polytechnique. Soutenance prévue en 2006. 
 
Benoît Chevallier-Mames, Aspects théoriques et pratiques de la cryptographie à clef 
publique, directeur professeur David Pointcheval, École Normale Supérieure Ulm, 
Soutenance prévue en 2007. 
 
Jacques Fournier, Conception et attaques de processeurs asynchrones sécurisés, directeur 
professeur Simon Moore, University of Cambridge, Grande-Bretagne, Soutenance 
prévue en 2006. 
 
Michael Tunstall, Attaques par injection de fautes physiques dans des microcircuits, 
directeur professeur Chris Mitchell, Royal Holloway University, Londres, Grande-
Bretagne, Soutenance prévue en 2006. 
 
Antoine Galland, Contrôle des ressources dans les cartes à microprocesseur, directeur 
professeur Bertil Folliot, LIP6, Université Paris VI, Soutenance prévue en 2005. 
 
Stéphane Bonnet, Une approche modèle pour la personnalisation de logiciels, directeur 
professeur Jean-Marc Geib, LIFL, Université de Lille, Soutenance prévue en 2005. 
 
Pascal Guterman, Traitement du signal, outils algorithmiques, directeur professeur 
Antoine Llebaria, Université Aix-Marseille I, Soutenance prévue en 2005. 
 
Hamid Choukri, Rétro-ingénierie (reverse-engineering) de composants sécurisés, directeur 
professeur Pascal Fouillat, Université Bordeaux I, Soutenance prévue en 2005. 
 
Claude Barral, Biométrie et cartes à puce, directeur professeur Serge Vaudenay, École 
Polytechnique Fédérale de Lausanne, Suisse, Soutenance prévue en 2007. 
 
Julien Brouchier, Sécurité logicielle, directeur professeur Serge Vaudenay, École 
Polytechnique Fédérale de Lausanne, Suisse, Soutenance prévue en 2007. 
 
Doctorants Basés en Université (Thèses en Association avec le Centre) 
 
Damien Deville, CamilleRT : un système d’exploitation temps réel extensible pour cartes à 
microprocesseur, LIFL, Université de Lille, directeur professeur Vincent Cordonnier. 
Soutenance le 15 décembre 2004.  
 
Michaël Hauspie, Gestion de services dans les réseaux ad hoc sans fil, LIFL, Université de 
Lille, directeur professeur David Simplot-Ryl. 
 
Alexandre Courbot, Adaptabilité et modularité de système d'exploitation Java pour objets 
portables sécurisés, LIFL, Université de Lille, directeur professeur David Simplot-Ryl. 
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Julien Cathalo, Zero-knowledge identification schemes: security proofs, practical security, 
modes of operation and smart card implementations , Université Catholique de Louvain 
(Belgique), directeur professeur Jean-Jacques Quisquater. 
 
Claire Whelan, Attaques sur systèmes embarqués (cartes) par canaux cachés , Dublin City 
University, directeur professeur Michael Scott. 
 
Kevin Marquet, JITS, un système d’exploitation adaptable aux systèmes embarqués, LIFL, 
Université de Lille, directeur professeur David Simplot-Ryl.  
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Quelques Stages de Troisième Cycle Encadrés (Liste Incomplète) 
 
Jean-Sébastien Coron   

DEA Algorithmique, Filière Complexité, Codage et Cryptographie, ENS Ulm 
Évaluation Précise du Test Universel de Maurer 

 
Thomas Pornin5 
 DEA Algorithmique, Filière Complexité, Codage et Cryptographie, ENS Ulm 

Construction de Signatures Numériques à Partir du Schéma Naccache-Stern 
 
Florence Quès    

DEA Cryptographie, Codage, Calcul, Université de Limoges 
Étude Théorique et Pratique de Divers Tests d’Aléas 

 
Cyril Brunie    

DEA Cryptographie, Codage, Calcul, Université de Limoges 
Implémentation de la Norme de Formatage ISO 9796-1 

 
Christophe Tymen   

École Polytechnique et troisième année ENST 
Stratégies d’Exponentiation Modulaire 

 
Nils Maltesson   

M. Sc. Université de Lund, Suède 
Applet Verification Strategies for RAM Constrained Devices 

 
Michael Tunstall   

B.Sc. Royal Holloway, Université de Londres, Grande-Bretagne 
Power Attacks on Smart Cards 

 
Antonio Valverde-Garcia  

Troisième année ENST 
Techniques d’Optimisation de Code pour Cartes-à-Puce 

 
Holger Petersen    

Doctorant visiteur, Université de Chemnitz, Allemagne 
Application des Sacs-à-Dos Multiplicatifs aux Signatures Numériques 

 
Markus Michels   

Doctorant visiteur, Université de Chemnitz, Allemagne 
Étude de GOST, Norme de Signature Soviétique 

 
Michel Gostiaux   

Troisième année ENSTA 
Signature par Courbes Elliptiques sur Microcontrôleur 

 
Pascal Paillier    

Troisième année ENST 
Partage de Secrets, Cryptographie à Clé Publique  

                                                 
5 Stage portant sur deux sujets différents, le second étant encadré par un autre membre du 
Centre. 
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Enseignement 
 
1996-2005 Chargé de l'enseignement du cours de Sécurité des Systèmes Enfouis du 
DESS Audit et Expertise en Informatique et Techniques Numériques (Université Panthéon-
Assas Paris II, http://www.u-paris2.fr/eln). 

 
Description du DESS : La Nouvelle Économie, par les problèmes spécifiques qu'elle 
pose, nécessite l'acquisition d'une triple compétence, en informatique, en droit et en 
économie. Fort de ce constat, le DESS Audit et Expertise en Informatique et Techniques 
Numériques offre une formation ouverte tant aux juristes et économistes qu'aux 
informaticiens et ingénieurs.  

 
En effet, les juristes et les économistes y acquièrent le savoir technique 

indispensable à la pleine compréhension des nouvelles technologies et des systèmes 
d'information. Les informaticiens, quant à eux, sont sensibilisés aux principaux 
aspects économiques et juridiques de la conduite de projets informatiques.  
 

L'ambition majeure de ce troisième cycle est de proposer aux professionnels 
des nouvelles technologies des personnes rapidement opérationnelles au regard du 
triptyque : informatique, juridique et économique.  
 
Description du cours dispensé : Neuf séances de trois heures suivies d'un examen : 
 

• Bases de la sécurité informatique, texte clair, texte chiffré (cryptogramme), 
signatures numériques. Protocoles de sécurité: vote électronique, argent 
électronique, engagement6, génération équitable d'aléas7, authentification. 

 
• Cryptographie à clef publique: notions de base de théorie des nombres, 

factorisation, logarithmes discrets, RSA, Diffie-Hellman. Chiffrement par blocs 
et hachage: DES, réseaux de Feistel, AES, modes de chiffrement, fonctions de 
hachage (propriétés, SHA-1). Notions de cryptanalyse : l'idée sous-jacente à la 
cryptanalyse différentielle. 

 
• Logiciels et applications pratiques: SSL, SSH, S/MIME, IPSEC (VPN), PGP. Cassage 

du chiffrement DVD, protection de logiciels contre la copie illicite et techniques 
de déplombage. Attaques par débordement de tampons8, injections SQL, virus 
et vers. 
 

• Sécurité des systèmes embarqués: attaques physiques de cartes à puce (FIB, 
PICA, retro-ingénierie), attaques par canaux collatéraux (temps, consommation 
de courant, rayonnement électromagnétique). Sécurité Java et attaques sur 
machines virtuelles. Protection des signaux de télévision à péage, sécurité des 
réseaux sans fil (WLAN) et des communications GSM. 

 

                                                 
6 = bit commitment 
7 = fair coin tossing 
8 = buffer overflows 

http://www.u-paris2.fr/eln
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• Aspects légaux de la sécurité informatique: Loi Godfrain (88-19 du 5 janvier 
1988) relative à la fraude informatique, Décret d'application de l'article 1316-4 
du C. CIV relatif à la signature électronique, Directive Européenne sur le 
commerce électronique, Loi de réglementation des télécommunications (96-
659 du 26 juillet 1996) sur l'utilisation de moyens de chiffrement, 
Conservation des fichiers logs (principes relatifs à la disponibilité des 
données essentielles au maintien de l'ordre public). Atteintes aux systèmes de 
traitement automatisé des données (infractions du Nouveau Code Pénal). 
Projet de loi sur la sécurité quotidienne (dispositions visant les contrefaçons 
de cartes de paiement, dispositions modifiant le code monétaire et financier). 
Projet de loi pour la confiance dans l'Économie numérique. Domaines dans 
lesquels une législation est inexistante ou floue : e.g. pourriel9 etc. 
 

• Examen. 
 
1993-1994 Chargé de l'enseignement de l' UV INF303 de la troisième année de la 
Formation d'Ingénieurs IMAC (Université Panthéon-Assas Paris II). Présentation des 
algorithmes principaux de différents domaines: compression, codes correcteurs 
d'erreurs, stockage, traitement des images, reconnaissance de formes et systèmes 
multimédia (24 heures). 
 
11/2002  Cours de sécurité informatique au Civil Service College de Singapour, 
institut de formation continue de fonctionnaires de l'État de Singapour10. Parmi les 
fonctionnaires présents au cours était Dr. Ho Peng Kee, Senior Minister of State for 
Ministry of Home Affairs.  
 
En projet pour 2005 : 

Master « Mécanismes Economiques et Complexité », École des Mines 
de Paris. Cours de vingt heures  sur les mécanismes de sécurité et de régulation. Les 
mécanismes d’enchères combinatoires, les mécanismes véraces et leur 
approximation. Les modèles économiques basés sur les mécanismes. Applications à 
la sécurité, à la gestion  des droits numériques, au marquage des données et à la 
régulation. 
 

                                                 
9 = spams 
10 "The Civil Service College is the learning institution for public officers. The College is committed to 
ensure the continuing availability and development of superior Public Sector leadership. Its mission is 
to shape the public service into one of the best in the world - capable, innovative, and forward looking." 
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Le Centre de Recherche Appliquée en Sécurité 

 
Gemplus International SA est leader mondial de l'industrie de la carte à 

puce en termes de chiffre d'affaires et de volumes de production11. 
 

Gemplus représente 30% du marché mondial de la carte et compte 
5,440 employés (juin 2004) répartis entre 19 sites de production, sept centres 
de R&D et cinquante bureaux de vente dans 37 pays. La société - qui a livré à 
ce jour plus de cinq milliards de cartes, dispose de la plus grande équipe de 
recherche et développement du secteur. 
 

Le Centre que je dirige (70 ingénieurs) regroupe deux Départements: le 
Département de Technologies de Sécurité (STD) et le Laboratoire de Recherche 
Logicielle (GSL). 
 

A ce jour, le Centre a livré aux Divisions Commerciales de l’entreprise 
plus de 700 composants logiciels et matériels (librairies en C, Java, assembleur 
schémas électroniques, FPGAs, lecteurs…). 

 
Les chercheurs du Centre ont signé 353 publications scientifiques12, 

déposé près de 200 brevets et siégé dans 95 comités de programme.  
 

Le graphique suivant montre l'évolution des effectifs du Centre. 
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11 Source 2003: Gartner-Dataquest, Frost & Sullivan, Datamonitor. 
12 Disponibles sur: http://www.gemplus.com/smart/rd/publications/index.html 
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Organisation 
 
 

Assistante Assistante

Assistante STD/CRY

STD/CSG/TLA

STD/CSG/CHA

STD/CSG/SKA

STD/CSG/PKA

STD/CSG/PSA

Card Security Group

STD/ISG/CCT

STD/ISG/SWS

STD/ISG/OCS

STD/ISG/CAT

Information Security Group Risk Management Group Gemplus Software Labs

Applied Research & Security Centre

Sandrine Lassus Cécile Mathieu

Claudine Campolunghi David Naccache

Assia Tria

Jean-François Dhem

Sébastien Petit

Nathalie Feyt

Olivier Benoît

Philippe Proust

Corinne Teri

Béatrice Péirani

Pierre Girard

Helena Handschuh

Bruno Rouchouze Marie-Pierre Malherbe Louis Grégoire

David Naccache

 
Le Groupe Sécurité Cartes (STD/CSG)  

 
STD/CSG est spécialisé dans la sécurité matérielle (hardware et  firmware). 

 
L'expertise de ce groupe couvre la sécurité des composants (chimie, 

microscopie électronique, attaques par FIB etc.), la conception de microcircuits 
sécurisés, le codage d'algorithmes cryptographiques et la sûreté des couches 
natives de systèmes d'exploitation embarqués. 
 

STD/CSG a pour mission d'examiner toute technique d'attaque physique 
applicable au monde embarqué (téléphones portables, ordinateurs de poche, 
cartes à puce, clés USB etc) et déployer des contre-mesures adaptées à ces 
menaces. 
 

STD/CSG se subdivise ainsi: 
 

 L'Équipe de Sécurité Silicium (CSG/TLA) évalue la sécurité des 
composants proposés par les différents fondeurs. L'équipe tient à jour une 
base de données (à notre connaissance, unique au monde) cataloguant les 
forces et faiblesses de chaque composant. 
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Pour ce faire, l’équipe utilise une panoplie d’outils avances de rétro-
ingénierie : FIB (station à focalisation d'ions), PICA (Picosecond imaging circuit 
analysis) et microscopie électronique. 
 

 L'Équipe de Sécurité Matérielle (CSG/CHA) se spécialise dans l'étude 
des architectures matérielles pour la cryptographie et l’évaluation de leurs 
performances (rapidité, flexibilité, consommation, surface). 
 

L'équipe améliore des processeurs par l'ajout d'instructions spécialisées 
ou par l’ajout de co-processeurs cryptographiques. 
 

 L'Équipe de Cryptographie Conventionnelle (CSG/SKA) développe 
des librairies de cryptographie symétrique (e.g. DES, AES, algorithmes A3A8 
d'authentification pour les cartes GSM etc.), audite les couches basses des 
systèmes d'exploitation et forme les développeurs à la sécurité des systèmes 
embarqués. 
 

 L'Équipe Cryptographie à Clef Publique (CSG/PKA) développe des 
librairies de cryptographie à clef publique (essentiellement RSA et courbes 
elliptiques - Il s'agit aussi bien de librairies embarquées que de librairies non-
embarquées).  
 

 L'Équipe Sécurité Physique (CSG/PSA) est en charge de l'anticipation 
de toutes les formes possibles d'attaques non-invasives. En particulier, 
l'équipe s'intéresse à l'exploitation des canaux collatéraux (side channel attacks) 
et aux attaques par injection de fautes. L'équipe assure une veille continue 
afin d'identifier la genèse de nouvelles menaces et développe les outils de 
traitement du signal nécessaires à l'évaluation de plates-formes embarquées. 
 
Le Groupe Sécurité de l'Information (STD/ISG)  

 
STD/ISG est spécialisé dans la sécurité logicielle. Ce groupe s'intéresse à 

la sécurité des systèmes ouverts, à la sécurité des réseaux sans fil (802.11), aux 
infrastructures à clé publique et au large spectre des attaques informatiques : 
virus, vers, injections SQL, débordement de tampons etc. 
 

Le groupe a pour mission d'entreprendre l'étude de toute menace 
logicielle applicable aux produits de l’entreprise, et d’imaginer des contre-
mesures pour parer à ces menaces. 
 

STD/ISG se subdivise comme suit: 
 

 L'Équipe Critères Communs (ISG/CCT) co-ordonne l'ensemble des 
programmes Critères Communs et évaluations FIPS 140 de l'entreprise. 
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ISG/CCT écrit et maintient les documents nécessaires à la réussite des 
certifications, définit les Cibles de Sécurité (ST) les plus appropriées et gère 
l'interaction entre les Divisions Commerciales, les centres d'évaluation et les 
centres de certification. 
 

 L'Équipe Sécurité des Systèmes Ouverts (ISG/OCS) développe et 
audite des machines virtuelles et des composants de sécurité Java tels que les 
pares-feu (firewalls) d'applets ou les vérifieurs de bytecode. 
 

L’équipe s'intéresse aussi à la détection de flux illégaux d'information, 
à la définition et à l'application de politiques de sécurité, aux stratégies 
d'interprétation défensive et aux mécanismes de confinement de processus. 
 

 L'Équipe Sécurité des Applications (ISG/CAT) évalue la sécurité de 
systèmes complets (analyses de spécifications et audits de code d'applets). 
 

 L'Équipe Sécurité Logicielle (ISG/SWS) aide à la définition de PKIs et 
d'architectures logicielles et audite leurs spécifications et codes sources. 
L’équipe édite divers manuels de sécurité et assure les formations associées 
afin d'améliorer le savoir-faire des développeurs en sécurité logicielle. 
 

 L'Équipe de Cryptologie (STD/CRY) partage son temps entre 
recherche avancée en cryptologie et des tâches de programmation nécessitant 
un savoir-faire mathématique très spécialisé (théorie des nombres, 
statistiques, etc). 
 

Les membres de cette équipe, basée à Issy-les-Moulineaux, sont tous 
titulaires de doctorats en cryptologie. 
 
Le Groupe de Gestion de Risque (STD/RMG)  

 
STD/RMG est responsable de la stratégie de l’entreprise en matière de 

sécurité des produits. 
 

Le groupe surveille constamment les forces et faiblesses du Centre et 
compare son potentiel aux impératifs commerciaux et aux orientations 
stratégiques de l'entreprise. 
 

Le groupe résume, d’après les informations techniques récoltées auprès 
des équipes, les risques correspondant à différents choix. STD/RMG coordonne 
également la gestion de crises et assure la fonction de dispatcher de tâches de 
développement. 
 
Le Laboratoire de Recherche Logicielle (GSL)  
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Ce groupe développe des technologies d'avant garde à l'horizon de 
trois à cinq ans. Les résultats de ces recherches sont livrés sous la forme de 
prototypes ou modules logiciels. 
 

En particulier, le Laboratoire concentre ses efforts sur: 
 

 Les plates-formes embarquées avancées : ce thème couvre toutes les 
activités de recherche pouvant résulter en des améliorations majeures des 
systèmes d’exploitation embarqués. Les recherches incluent la mise au point 
de nouvelles plates-formes Java optimisées ainsi que des outils permettant 
l'administration de cartes à distance et leur personnalisation. 
 

 La biométrie : Une équipe dédiée développe des cartes biométriques 
et met au point des nouvelles méthodes de compression de données 
biométriques et de reconnaissance d'empreintes digitales. 
 
Equipe TLA CAT GSL SKA OCS RMG 
Effectifs 2 4 18 6 9 5 
 

Equipe PSA SWS PKA CRY CHA CCT 
Effectifs 9 3 7 4 2 4 
 

Publications scientifiques du Centre par année : 
 

9
6 7 5

8

47
51 50 51 51

23

0

10

20

30

40

50

60

23 en Août 2004
(chiffre partiel)

1
9
9
4

1
9
9
5

1
9
9
6

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

2
0
0
1

2
0
0
2

2
0
0
3

2
0
0
4



 64

 
Dossier de Presse 
 
Articles strictement ciblés sur l'activité du Centre de Recherche que je dirige : 
 
Le Monde : « … Gemplus possède une des meilleures équipes de cryptologie 
au monde… » 
 

04/11/2002 
 
La Tribune : « … l'entreprise française leader mondial de la carte à puce, 
Gemplus, par ailleurs fort avancée en matière de sécurisation des données 
(cryptologie)… » 
 

30/12/2002 
 
La Tribune : « … Gemplus, fleuron de la cryptographie national… » 
 

07/04/2003 
 
La Tribune : «... leader dans la cryptographie et la sécurité des réseaux... » 
 

03/03/2004 
 
L'Express : «... pour son avance en matière de cryptologie... » 
 

19/12/2002 
 
Challenges : «... Gemplus développe ... des recherches avancées dans ... le 
chiffrement. » 
 

24/06/2004 
 
Proposition de loi no. 261, du 10 avril 2003, enregistrée à la Présidence du 
Sénat le 16 avril 2003. 
 
Le Centre y est implicitement associé à : « ... l'avenir de l'industrie française de 
la cryptologie... » et à « ... l'avenir de la maîtrise et du développement en 
France des technologies de la cryptographie... » 
 
Livre : « Les Batailles Secrètes de la Science et de la Technologie » par Nicolas 
Moinet, Ed. Lavauzelle (2003): « ... Gemplus est bien connue […] non 
seulement parce qu'elle est leader mondial de la carte a puce mais aussi parce 
qu'elle participe à des réunions scientifiques de haut niveau. Ainsi lors du 
Workshop on Cryptographic Hardware and Embedded Systems ... se 
trouvaient parmi les personnalités annoncées aussi biens des experts de 
grands groupes américains que le spécialiste de la NSA, Brian Snow, ou David 
Naccache de la société française Gemplus. Et il est fort probable qu'une partie 
de l'assistance suivit avec intérêt l'exposé de ce dernier... » 
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Reportage Télévisé, France 5 : Jean-Louis Cros (Journaliste CNDP): « ... la 
société Gemplus fait partie des meilleures équipes mondiales en matière de 
sécurité et de cryptologie... » 
 

21/05/2003 
 
Le Monde : Article sur Helena Handschuh, employée au Centre: « Une tête 
chercheuse en cryptographie ». 
 

21/03/2001 
 
Avis du cabinet d’analystes financiers AOF sur la valeur Gemplus : 
 
« Les points forts de la valeur 
 

1. Le groupe devrait profiter du redressement graduel du marché des télé-
communications, l'activité qui génère les marges les plus importantes. 
2.  Gemplus dispose d'un réel savoir-faire en matière de cryptage. 
3. Les mesures de restructuration engagées par le groupe devraient porter 
leurs fruits en 2004. 
4. Gemplus dispose d'une trésorerie importante, sécurisante dans le contexte 
actuel. » 
 

01/10/2004 
 
Le Prix RSA est attribué à un seul récipiendaire par an et par catégorie : 
Mathematics, Public Policy et Industry. La remise du prix Industry au Centre a 
eu lieu en 2001 lors d'une conférence internationale à San Francisco, en 
présence de 5.000 participants13. 
 

2001 Industry Award

PRESENTED WITH APPRECIATION
BY GEMPLUS' PRESIDENT AND CHIEF EXECUTIVE OFFICER TO

UPON YOUR DEPARTMENT'S OUTSTANDING ACHIEVEMENT OF
WINNING THE

 

                                                 
13 http://www.rsasecurity.com/company/news/releases/pr.asp?doc_id=900 
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Les Trophées Sesames : « …As a part of the CARTES & IT SECURITY, Exhibitions & 
Conferences, the SESAMES Awards have become the unchallenged innovation 
and application label, and a global standard for card manufacturers and 
related industries. This competition is open to CARTES & IT SECURITY trade show 
exhibitors, as well as to those involved in the industry internationally: 
manufacturers, users, integrators and developers. The SESAMES Awards will be 
given out by a jury made up of international experts in the markets 
concerned… » 
 

126 innovations ont été soumises au jury 2004 pour neuf trophées14. Le 
Centre a emporté deux de ces neuf trophées (« Best Software » et « Best 
Mobile Application »). L’application BioEasy est celle décrite dans notre 
article [47] et dans la demande de brevet FR 04 05236. 

 

 

                                                 
14 « hardware », « software », « e-transactions », « healthcare »,  « IT security », « transport », 
« banking », « mobile » et « loyalty ». 
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AWARD

PRESENTED

BY GEMPLUS' PRESIDENT AND CHIEF EXECUTIVE OFFICER TO

ON THE OCCASSION OF YOUR WINNING OF THE

David Naccache

THROUGH YOUR CONTRIBUTION TO THE

APDU-TLS RESEARCH PROJECT

CHARLES COPIN

PRESIDENT

SESAMES AWARDS COMMITTEE

SOPHIE LUBERT

GENERAL COMMISSIONER

CARTES & IT SECURITY 2004 

“...As a part of the CARTES & IT SECURITY, exhibitions and conferences, the
SESAMES AWARDS have become the unchallenged innovation and application label,
and a global standard for card manufacturers and related industries..................

The best mobile application will be rewarded, it must be innovative, nearly
user-ready, and able to meet market demand.......................................................

Gemplus’ APDU-TLS fulfils the security needs for the communication between a
smart card and a PC where the data is subject to attacks from the PC world. Based
on the TLS protocol, APDU-TLS sets up a secure end-to-end communication
between a smart card and a terminal in the Internet environment...”.......................

Alex J. Mandl

PRESIDENT AND CEO
GEMPLUS INTERNATIONAL SA

 

AWARD

PRESENTED

BY GEMPLUS' PRESIDENT AND CHIEF EXECUTIVE OFFICER TO

ON THE OCCASSION OF YOUR WINNING OF THE

David Naccache

THROUGH YOUR CONTRIBUTION TO THE BIOEASY RESEARCH PROJECT

Alex J. Mandl

PRESIDENT AND CEO

GEMPLUS INTERNATIONAL SA

CHARLES COPIN

PRESIDENT

SESAMES AWARDS COMMITTEE

SOPHIE LUBERT

GENERAL COMMISSIONER

CARTES & IT SECURITY 2004

       “...As a part of the CARTES & IT SECURITY, exhibitions and conferences, the
SESAMES AWARDS have become the unchallenged innovation and application label,
and a global standard for card manufacturers and related industries....................

     Best Software: This Category aims to promote a sector that lies upstream
of the market: software released or officially announced between July 1, 2003
and November 4, 2004, which can be an operating system, multiapplication,
software for access management, algorithm, programming system, card
management system, test or audit tool...................................................................

     BioEasy from Gemplus introduces a new concept for highly secure
biometrics verification on a smart card. It provides a unique alternative to match-
on-card that allows fast and easy biometrics authentication on the smart card,
without compromising security or memory space.  Live Demo: A real time
“BioEasy verification-on-card” in less than 80 milliseconds.”.................................
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Articles de presse concernant des travaux conduits à titre privé (mai 2004) :  
 
Le Monde : « Des Cryptologues Déchiffrent un Terme Censuré Dans un 
« Mémo » Adressé par la CIA à George Bush ». 
 

 
The New York Times : « Researchers Develop Techniques To Being Blacked-
Out Words To Light ». 
 

 
Nature : « US Intelligence Exposed as Student Decodes Iraq Memo ». 
 

 
The International Herald Tribune : « Censoring: You Can Write But Can't 
Hide ». 
 

 
Facts : « Nachhilfe für die CIA » 
 

 
The Irish Times : « Code Cracker Triumphs in Battle of Wits » 
 

 
The Washington Post : « Disappearing Ink ». 
 

 
Oakland Tribune, San Mateo County Times, Tri Valley Herald et Alameda 
Times Star : « Computers Can Show Blacked-Out Words » 
 

 
NRC Handelsblad : « Informatici ontcijferen geheime documenten » 
 

 
Der Spiegel : « Informatiker knacken zensierte Geheimdokumente » 
 

 
Heise Online : « Kryptologen enthüllen Regierungsgeheimnisse » 
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Abstract. This paper describes a new public-key cryptosystem based on the hardness of computing
higher residues modulo a composite RSA integer. We introduce two versions of our scheme, one
deterministic and the other probabilistic. The deterministic version is practically oriented: encryption
amounts to a single exponentiation w.r.t. a modulus with at least 768 bits and a 160-bit exponent.
Decryption can be suitably optimized so as to become less demanding than a couple RSA decryptions.
Although slower than RSA, the new scheme is still reasonably competitive and has several specific
applications. The probabilistic version exhibits an homomorphic encryption scheme whose expansion
rate is much better than previously proposed such systems. Furthermore, it has semantic security,
relative to the hardness of computing higher residues for suitable moduli.

1 Introduction

It is striking to observe that two decades after the discovery of public-key cryptography,
the cryptographer’s toolbox still contains very few asymmetric encryption schemes. Con-
sequently, the search for new public-key mechanisms remains a major challenge. The quest
appears sometimes hopeless as new schemes are immediately broken or, if they survive, are
compared with RSA, which is obviously elegant, simple and efficient.

Similar investigations have been relatively successful in the related setting of identifi-
cation, where a user attempts to convince another entity of his identity by means of an
on-line communication. For example, there have been several attempts to build identifi-
cation protocols based on simple operations (see [33, 35, 36, 26]). Although the question
of devising new public-key cryptosystems appears much more difficult (since it deals with
trapdoor functions rather than simple one-way functions), we feel that research in this
direction is still in order: simple yet efficient constructions may have been overlooked.

The scheme that we propose in the present paper uses an RSA integer n which is a
product of two primes p and q, as usual. However, it is quite different from RSA in many
respects:

1. it encrypts messages by exponentiating them with respect to a fixed base rather than
by raising them to a fixed power
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2. it uses a different “trapdoor” for decryption
3. its strength is not directly related to the strength of RSA
4. it exhibits further “algebraic” properties that may prove useful in some applications.

We briefly comment on those differences. The first one may offer a competitive advantage
in environments where a large amount of memory is available: such environments allow
impressive speed-ups in exponentiations that do not have analogous counterparts in RSA-
like operations. The second is of obvious interest in view of the fact quoted above that
there are very few public-key cryptosystems available. Without going into technical details
at this point, let us simply mention that the new trapdoor is obtained by injecting small
prime factors in p−1 and q−1. In order to understand what the third difference is, we note
that, if the modulus n can be factored, then both RSA and the proposed cryptosystem are
broken. However, it is an open problem whether or not RSA is “equivalent” to factoring,
which would mean that breaking RSA allows to factor. For this reason, the hypothesis
that RSA is secure has become an assumption of its own, formally stronger than factoring.
Our cryptosystem is related to another hypothesis, also formally stronger than factoring
and known as the higher residuosity assumption. This may help to understand how these
various hypotheses are related. Finally, we will explain the algebraic property of our scheme
(called the homomorphic property) by means of an example: suppose that one wishes to
withdraw a small amount u from the balance m of some account; assume further that
the balance is given in encrypted form E(m) and that the clerk performing the operation
does not have access to decryption. The cryptosystem that we propose simply solves the
problem by computing E(m)/E(u) mod n, which turns out to be the encryption of the
new balance m− u.

The ability to perform algebraic operations such as additions or substractions by playing
only with the cryptograms has potential applications in several contexts. We quote a few:

1. in election schemes, it provides a tool to obtain the tally without decrypting the indi-
vidual votes (see [4])

2. in the area of watermarking, it allows to add a mark to previously encrypted data (as
explained in [25]).

Still, in these contexts, it is often needed to encrypt data taken from a small set S (e.g.
0/1 votes) and it is well known that deterministic cryptosystems, such as RSA, fail here:
in order to decrypt E(a), one can simply compare the ciphertext with the encryptions of
all members of S and thus find the correct value of a. In order to overcome the difficulty,
one has to use probabilistic encryption, where each plaintext has many corresponding
ciphertexts, depending on some additional random parameter chosen at encryption time.
Such a scheme should make it impossible to distinguish encryptions of distinct values,
even if these are restricted to range over a set with only two elements. This very strong
requirement has been termed semantic security ([12]). As a further difference with RSA,
the cryptosystem introduced in this paper, has a very natural probabilistic version, with
proven semantic security.

The probabilistic homomorphic encryption schemes proposed so far suffer from a serious
drawback: they have very poor bandwith. Typically, they need something like one kilobit
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to encrypt just a few bits, which is a quite severe expansion rate. This may be acceptable
for election schemes but definitely hampers other applications. The main achievement of
the present paper is to reach a significant bandwith, while keeping the other properties,
including semantic security.

Before we turn to the more technical developments of our paper, it is in order to compare
it with earlier work: it is indeed the case that the question of finding trapdoors for the
discrete logarithm problem has been the subject of many papers. At this point, it is fair
to mention that the probabilistic cryptosystem that we propose is actually quite close to
the most general case of the homomorphic encryption schemes introduced by Benaloh in
his Ph-D thesis [4]. Still, both in this thesis and in the related work ([5, 6, 7]), the security
and potential applications are only investigated in a setting where the bandwith remains
small. A more recent paper by Park and Won (see [24])describes a related probabilistic
cryptosystem using a trapdoor based on injecting a single power of a small odd integer
into p− 1 or q − 1 and proves its security with respect to an ad hoc statement. Thus, our
paper offers the first thorough discussion of the security of a probabilistic homomorphic
encryption scheme with significant bandwith. After the completion of the present work,
we have been informed that another homomorphic probabilistic encryption scheme, using
moduli n of the form p2q, where p and q are primes, had been found by Okamoto and
Uchiyama (see [22]), achieving an expansion rate similar to ours. Finally, it should be
emphasized that the deterministic version of our scheme is not simply a twist that fixes
the random string in the probabilistic version: considering its practicality, we believe that,
even if it is not intended to be a direct competitor to RSA, it enters the very limited list
of efficient public-key cryptosystems.

The paper is organized as follows: in the next two sections, we successively describe
the deterministic and the probabilistic version of our scheme, the former with a practical
approach, the latter in a more complexity-theoretic spirit. We then discuss applications
and end up with a challenge for the research community.

2 The Deterministic Version

As was just mentioned, our approach to the deterministic scheme is practically oriented: we
discuss system set-up and key-generation, encryption and decryption, with performances
in mind. We also carry on a security analysis at the informal level and we derive minimal
sugested parameters.

2.1 System Set-Up and Key Generation

The scheme that we propose in the present paper can be described as follows: let σ be
a squarefree odd B-smooth integer, where B is small integer and let n = pq be an RSA
modulus such that σ divides φ(n) and is prime to φ(n)/σ. Typically, we think of B as
being a 10 bit integer and we consider n to be at least 768 bits long. Let g be an element
whose multiplicative order modulo n is a large multiple of σ. Publish n, g and keep p, q
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and optionally σ secret. A message m smaller than σ is encrypted by gm mod n; decryption
is performed using the prime factors of σ as will be seen in the next subsection.

Generation of the modulus appears rather straightforward: pick a family pi of k small
odd distinct primes, with k even. Set u =

∏k/2
i=1 pi, v =

∏k
k/2+1 pi and σ = uv =

∏k
i=1 pi.

Pick two large primes a and b such that both p = 2au + 1 and q = 2bv + 1 are prime and
let n = pq.

However, this generation is lengthy especially when the size of the modulus grows: a
has to be chosen in the appropriate range and tested for primality as well as p = 2au + 1
until both tests succeed simultaneously. This might be a bit time-consuming. Instead, we
suggest to generate a, b, u and v first (independently of any primality requirements on p
and q) and use a couple of 24-bit ”tuning primes” p′ and q′ (not used in the encryption
process) such that p = 2aup′ + 1 and q = 2bvq′ + 1 are primes. To avoid interferences with
the encryption mechanics, we recommend to make sure that gcd(p′q′, σ) = 1 and p′ 6= q′.
In practice, such an approach is only 9% slower than equivalent-size RSA key-generation.

To select g, one can choose it at random and check whether or it has order φ(n)/4.
The main point is to ensure that g is not a pi-th power, for each i ≤ k by testing that

g
φ(n)
pi 6= 1 mod n. The success probability is:

π =
k∏

i=1

(1− 1

pi

), whose logarithm is: ln(π) ' −
k∑

i=1

1

pi

If the pis are the first k primes, this in turn can be estimated as − ln ln k and results in the
quite acceptable overall probability of π ∼= 1/ ln k. Another method consists in choosing, for
each index i ≤ k, a random gi until it is not a pi-th power. With overwhelming probability
g =

∏k
i=1 g

σ/pi

i has order ≥ φ(n)/4.

2.2 Encryption and Decryption

Encryption consists in a single modular exponentiation: a message m smaller that σ is
encrypted by gm mod n. Note that it does not require knowledge of σ. A lower bound
(preferably a power of two) is enough but it is unclear how important for the security
of the scheme is keeping σ secret. However, if one chooses to keep σ secret, necessary
precautions (similar to these applied to Rabin’s scheme [31] or Shamir’s RSA for paranoids
[34]) should be enforced for not being used as an oracle1.

Also, there is actually no reason why the pis should be prime. Everything goes through,
mutatis mutandis, as soon as the pis are mutually prime. Thus, for example, they can be
chosen as prime powers, which is a way to increase the variability of the scheme.

1 For example, an attacker having access to a decryption box can decrypt gm mod n for some m > σ and get
m mod σ. This discloses (by subtraction) a multiple of σ and σ can then be found by a few repeated trials and
gcds. To prevent such an action, the decryption box cannot only re-encrypt and check against the ciphertext
received, as this allows a search by dichotomy. It should first check that the cleartext is in the appropriate range,
e.g. < 2t with 2t < m, re-encrypt it and then check that it matches up with the original ciphertext before letting
anything out.
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Decryption is based on the chinese remainder theorem. Let pi, 1 ≤ i ≤ k, be the prime
factors of σ. The algorithm computes the value mi of m modulo each pi and gets the
result by chinese remaindering, following an idea which goes back to the Pohlig-Hellman
paper [27]. In order to find mi, given the ciphertext c = gm mod n, the algorithm computes

ci = c
φ(n)
pi mod n, which is exactly g

miφ(n)

pi mod n. This follows from the following easy
computations, where yi stands for m−mi

pi
:

ci = c
φ(n)
pi = g

mφ(n)
pi = g

(mi+yipi)φ(n)

pi

= g
miφ(n)

pi gyiφ(n) = g
miφ(n)

pi mod n

By comparing this result with all possible powers g
jφ(n)

pi , it finds out the correct value of

mi. In other words, one loops for j = 0 to pi − 1 until ci = g
jφ(n)

pi mod n.

The cleartext m can therefore be computed by the following procedure:

for i = 1 to k

{
let ci = cφ(n)/pi mod n

for j = 0 to pi − 1

{if ci == gjφ(n)/pi mod n let mi = j}
}

x = ChineseRemainder({mi}, {pi})
The basic operation used by this (non-optimized) algorithm is a modular exponentiation

of complexity log3(n), repeated less than:

k pk < log(n) pk
∼= log(n) k log(k) < log2(n) log log(n)

times. Decryption therefore takes log5(n) log log(n) bit operations.
This is clearly worse than the log3(n) complexity of RSA but encryption can be opti-

mized if a table stores all possible values of t[i, j] = g
jφ(n)

pi , for 1 ≤ i ≤ k and 1 ≤ j ≤ i: the

value mi of the cleartext m modulo pi is found by table look-up, once c
φ(n)
pi mod n has been

computed. It is not really necessary to store all g
jφ(n)

pi . Any hash function that distinguishes

g
jφ(n)

pi from g
j′φ(n)

pi , for j 6= j′ will do and, in practical terms, a few bytes will be enough, for
example approximately 2|pi| bits from each t[i, j]. It is even possible to use hash functions

that do not discriminate values of g
jφ(n)

pi : the proper one is spotted by considering, by table

look-up hashes of g
2`jφ(n)

pi , for ` = 1, 2, · · · until there is no ambiguity. This can be very
efficiently implemented by storing hash values in increasing order w.r.t. ` and one single
bit might be enough.
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2.3 A Toy Example

– key generation for k = 6

p = 21211 = 2× 101× 3× 5× 7 + 1,

q = 928643 = 2× 191× 11× 13× 17 + 1,

n = 21211× 928643 = 19697446673 and g = 131 yield the table:

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

j = 0 0001 0001 0001 0001 0001 0001

j = 1 1966 6544 1967 6273 6043 0372

j = 2 9560 3339 4968 7876 4792 7757

j = 3 9400 1765 8720 0262 3397

j = 4 5479 6701 7994 0136 0702

j = 5 6488 8651 6291 4586

j = 6 2782 4691 0677 8135

j = 7 9489 1890 3902

j = 8 8537 6878 5930

j = 9 2312 2571 6399

j = 10 7707 7180 6592

j = 11 8291 9771

j = 12 0678 0609

j = 13 7337

j = 14 6892

j = 15 3370

j = 16 3489

where entry {i, j} contains gjφ(n)/pi mod n mod 10000.
– encryption of m = 202

c = gm mod n = 131202 mod 19697446673 = 519690214

– decryption

by exponentiation, we retrieve:

c
φ(n)
p1 mod n mod 10000 = 1966

c
φ(n)
p2 mod n mod 10000 = 3339

c
φ(n)
p3 mod n mod 10000 = 2782

c
φ(n)
p4 mod n mod 10000 = 7994

c
φ(n)
p5 mod n mod 10000 = 1890

c
φ(n)
p6 mod n mod 10000 = 3370

wherefrom, by table lookup:

m mod 3 = table(1966) = 1

m mod 5 = table(3339) = 2

m mod 7 = table(2782) = 6

m mod 11 = table(7994) = 4

m mod 13 = table(1890) = 7

m mod 17 = table(3370) = 15

and by Chinese remaindering: m = 202.
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2.4 Suggested Parameters and Security Analysis

We suggest to take σ > 2160 and we consider |n| = 768 bits as a minimum size for the
modulus.

If the factorization of n is found, then a and b become known as well as φ(n). The
scheme is therefore broken. However, the scheme does not appear to be provably equivalent
to factoring. Rather, it is related to the question of having oracles that decide whether or
not a random number x is a pi-th power modulo n, for i = 1, . . . , k. This is known as the
higher residuosity problem and is currently considered unfeasible. Formal equivalence of
this problem and the probabilistic version of our encryption scheme will be proved in the
next session. Considering the basic deterministic version, we have no formal proof but we
haven’t found any plausible line of attack either. Also, the efficient factoring methods such
as the quadratic sieve (QS) or the number field sieve (NFS) do not appear to take any
advantage from the side information that u (resp. v) divides p− 1 (resp. q− 1). The same
is true of simpler methods like Pollard’s p− 1 since we have ensured that neither p− 1 nor
q − 1 is smooth. Finally, elliptic curve weaponry [18] will not pull-out factors of n in the
range considered. Note that the requested size of n (768 bits or more) makes factoring n a
very hard task anyway.

We now turn the size of σ. In order to avoid the computation of discrete logarithms
by the baby step-giant step method, we have to make σ large enough. As already stated,
2160 is a minimum. This can be achieved for example by making σ a permutation of the
first 30 odd primes, which yields σ ' 2160.45. Alternatively, one one can choose a sequence
of 16 primes with 10 bits. Since there are 75 such primes, this leads to a ∼= 53-bit entropy.
Adding prime powers, as stated above, will further increase these figures.

There is a further difficulty, when σ is known. Note that

4ab =
φ(n)∏k
i=1 pi

=
n− p− q + 1

σ

hence 4ab differs from n
σ

only by ε = −p+q−1
σ

. The numerator is of size |n|/2, hence, if
it does not exceed the denominator by a fairly large number of bits, the value of ab is
basically known and decryption can be performed.

When the exact splitting of the factors of σ into u and v are known as well, the previous
analysis can be pushed further. Reducing the relation n = (2au + 1)(2bv + 1) modulo u,
we find that n = 2bv + 1 mod u and we can calculate d = b mod u. Similarly, we learn
c = a mod v. We let a = rv + c and b = su+ d, with r, s unknown and, using the fact that
σ = uv, we obtain:

n = (2rvu + 2cu + 1)(2suv + 2dv + 1) =

4rsσ2 + 2σ[r(2dv + 1) + s(2cu + 1)] + (2cu + 1)(2dv + 1)

which is of the form

n = 4rsσ2 + 2σ(αr + βs) + γ
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with known α, β and γ. Reducing modulo σ2, this provides the value δ of αr + βs mod σ.
At this point, our analysis becomes quite technical and the reader may skip the following
and jump to the conclusion that n >> σ4.

For the interested reader, we note that the pair (r, s) lies in the two-dimensional lattice
L defined by

L = {(x, y)|αx + βy = δ mod σ}
This lattice has determinant σ. Also, it is easily seen that α and β are bounded by 2σ and
γ by 4σ2. From this we get

rs ≤ n

4σ2
≤ rs + r + s + 1 = (r + 1)(s + 1)

Thus, the pair (r, s) is very close to the boundary of the curve C with equation xy = n
4σ2 .

More precisely, the distance between the pair (r, s) and the curve does not exceed
√

2.
This defines a geometric area A that includes (r, s). Now, key generation usually induces
constraints that limit the possible range of the parameters. For this reason, it is appropriate
to replace C by the line x + y =

√
n

2σ
in order to estimate the size of A. This leads to an

approximation which is O(
√

n
σ

). The number of lattice points from L in this area is, in turn,

measured by the ratio between the size of A and the determinant, which is
√

n
σ2 . It is safe

to ensure that this set is beyond exhaustive search, which we express by n >> σ4.
Note that the ratio |n|/|σ| is the expansion rate of the encryption, where |n| denotes,

as usual, the size of n in bits. It is of course desirable to make this rate as low as possible.
On the other hand, as a consequence of the above remarks, we see that |n|

4
− |σ| should

be large. Asymptotically, this is achieved as soon as we fix an expansion rate which is
> 4. For real-size parameters, we suggest to respect the heuristic bound |n|

4
− σ ≥ 128,

which is consistent with our minimal parameters. Larger parameters allow a slightly better
expansion rate.

2.5 Performances

Despite its expansion rate, the new cryptosystem is quite efficient: encryption requires the
elevation of a constant 768-bit number to a 160-bit power. Several batch ([21, 23]) and
pre-processing ([2]) techniques can speed-up such computations, which might be a small
advantage over RSA.

Decryption is slightly more awkward since k exponentiations are needed. But this num-
ber can be reduced in a few ways:

Firstly, while computing cφ(n)/pi mod n for each i, it is possible to first store c′ =
c4ab mod n and raise c′ to the successive powers σ/pi so that (besides the first one), the
remaining exponentiations involve 160-bit powers. One can further, in the square-and-
multiply algorithm, share the “square” part of the various exponentiations. A careful
bookkeeping of the number of modular multiplications obtained by setting |n| = 768 and
choosing sixteen 10-bit primes pi, shows that the total number of modular multiplications
decreases to 2352: 912 for the computation of c′ and 1440 for the rest Actually, the “mul-
tiply” part can be somehow amortized as well: we refer to [21] for a proper description of
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such an optimized exponentiation strategy. The resulting computing load is less than what
is needed for a couple of RSA decryptions with a similar modulus.

Unfortunately, there is a drawback in reducing the value of k: in the 30-prime variant it
is necessary to store 1718 different t[i, j] hash values. Hashing on two bytes seems enough
and results in an overall memory requirement of four kilobytes. In the 16-prime variant,
hash values of 3 bytes are necessary and the table size becomes ∼= 100 kilobytes. As observed
at the end of section 2.2, the hash table can be drastically reduced at the cost of a minute
computation overhead.

Another speed-up can be obtained by separately performing decryption modulo p and
q so as to take advantage of smaller operand sizes. This alone, divides the decryption
workfactor by four.

Finally, decryption is inherently parallel and naturally adapted to array processors since
each mi can be computed independently of all the others.

2.6 Implementation

The new scheme (768-bit n, k = 30) was actually implemented on a 68HC05-based
ST16CF54 smart-card (4,096 EEPROM bytes, 16,384 ROM bytes and 352 RAM bytes).
The public key is only 96-byte long and as in most smart-card implementations, n’s stor-
age is avoided by a command that re-computes the modulus from its factors upon request
(re-computation and transmission take 10 ms). For further space optimization g’s first 91
bytes are the byte-reversed binary complement of n’s last 91 bytes. Decryption (a 4,119-
byte routine) takes 3,912 ms. Benchmarks were done with a 5 MHz oscillator and ISO
7816-3 T=0 transmission at 115,200 bauds.

3 The Probabilistic Version

3.1 The Setting

We now turn to the probabilistic version of the scheme. As already explained, we adopt
a more complexity-oriented approach and, for example, we view B as bounded by a
polynomial in log n. The probabilistic version replaces the ciphertext gm mod n by c =
xσgm mod n, where x is chosen at random among positive integers < n. Decryption re-
mains identical. This is due to the fact that the effect of multiplying by xσ is cancelled by
raising the ciphertext to the various powers φ(n)

pi
, as performed by the decryption algorithm.

Note that this version requires σ to be public.
The resulting scheme is homomorphic, which means that

E(m + m′ mod σ) = E(m)E(m′) mod n

Probabilistic homomorphic encryption has received a lot of applications, both practi-
cally and theoretically oriented. To name a few, we quote the early work of Benaloh on
election schemes ([4]) and the area of zero-knowledge proofs for NP (see [13, 3]). Known
such schemes are the Quadratic Residuosity schemes of Goldwasser and Micali ([12]) which
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encrypts only one bit and its extensions to higher residues modulo a single prime (see [4]),
which encrypts a few bits. As already explained in section 1, these schemes suffer from a
serious drawback: a complexity theoretic analysis has to view the cleartext as logarithmic
in the size of of ciphertext. In other words, the expansion rate, i.e. the ratio between the
length of the ciphertext and the length of the cleartext is huge. In our proposal, this ratio is
exactly |n|

|σ| . Note that that our assumption that σ is B-smooth, for some small B, does not

preclude a linear ratio. The maximum size of σ is
∑

p<B log p, where p ranges over primes
and it is known that θ(B) =

∑
p<B ln p ' B. Thus, even if B is logarithmic in n, there are

enough primes to make |σ| a linear proportion of |n|. This is a definite improvement over
previous homomorphic schemes. Note however that, following the comments in section 2.4,
it is safe to take |σ|

|n| < 1/4.

3.2 A Complexity Theoretic Approach

We already observed that the security of our proposal is related to the question of dis-
tinguishing higher residues modulo n, that is integers of the form xp mod n, when p is a
prime divisor of φ(n). In the rest of this section, we want to clarify this relationship in
the asymptotic setting of complexity theory. In view of the remarks just made, we find it
convenient to assume that the ratio |σ|

|n| has a fixed value α < 1/4. We also fix a polyno-

mial B in log n. The parameters which are of interest to us are pairs (n, σ) such that σ
is squarefree, odd and B-smooth, n is a product of two primes p, q, σ is a divisor of φ(n)

prime to φ(n)/σ and |σ|
|n| = α. We call any integer n that appears as first coordinate of such

a pair (B, α)-dense. Distinguishing higher residues is usually considered difficult (see [4]).
We conjecture that this remains true when n varies over (B,α)-dense integers. Towards
a more precise statement, let Rp(y, n) be one if y is a p-th residue modulo n and zero
otherwise. Define a higher residue oracle to be a probabilistic polynomial time algorithm
A which takes as input a triple (n, y, p) and returns a bit A(n, y, p) such that the following
holds:
There exists a polynomial Q in |n| such that, for infinitely many values of |n|, one can find
a prime p(|n|) < B, with:

Pr{A(n, y, p) = Rp(y, n)} ≥ 1− 1

p
+

1

Q

where the probability is taken over the random tosses of A and its inputs, conditionnally
to the event that n is (B, α)-dense and p is a divisor of φ(n).

Our Intractability Hypothesis is that there is no higher residue oracle. The constant
1 − 1

p
comes from the obvious stategy for approximating Rp which consists in constantly

outputting zero. This strategy is successful for a proportion 1− 1
p

of the inputs.

3.3 A Security Proof

The security of probabilistic encryption scheme has been investigated in [12]. In this paper,
the authors introduced the notion of semantic security: given two messages m0 and m1, a
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message distinguisher is a probabilistic polynomial time algorithm D, which distinguishes
encryptions of m0 from encryptions of m1. More, accurately, it outputs a bit D(n, σ, g, y)
in such a way that, setting

θi = Pr{D(n, σ, g, y) = 1|y ∈ E(mi)}
where E(mi) is the set of encryptions of mi, the following holds:
There exists a polynomial Q in |n| such that, for infinitely many values of |n|, |θ0−θ1| ≥ 1

Q

Semantic security is the assertion that there is no pair of polynomial time algorithms
F , D such that F produces two messages for which D is a message distinguisher.

Theorem 1. Assume that no higher residue oracle exists. Then, the probabilitic version
of the encryption scheme has semantic security.

The proof of this result uses the hybrid technique for which we refer to [11]. It is technical
in character and we have chosen to only include a sketch it in an appendix to the present
paper.

4 Applications and Variants

Even if we do not expect large scale replacement of RSA by our scheme, we feel that
the latter is worth some academic interest. Especially, we believe that it opens up new
applications. We have not yet fully investigated those potential applications but we give
some suggestions below.

4.1 Traceability

Our proposal could offer some help in the management of key escrowing services. Consider
the variant of the Diffie-Hellman key exchange protocol, where a composite modulus n is
used. Such a variant has been studied by various researchers including Mc Curley in [20],
where it is shown that some specific choices lead to a scheme that is at least as difficult
as factoring. Assume further that the modulus n and the base for exponentiations g are
chosen as described in section 1. It has been proposed (see e.g [14]) that g and n could
be defined by some kind of TTP (Trusted Third Party). Now, the user’s public key y and
his secret key x are related by y = gx mod n. It is conceivable to leave the choice of x
to the user with the provision that x mod σ = ID, where ID is the identity of the user.
This can be checked by the TTP upon registration of the key. Thus, we have reached a
situation where the identity is embedded in the public key through a trapdoor, although
the actual key is not. One should not however overestimate the resulting functionality. It
could be useful in scenarios where traceability is made possible via escrowing but where
confidentiality cannot be broken even with the help of the escrowing services. Alternatively,
it might be used to split traceability and secret key recovery between key escrows. Note
that the above proposal requests that σ is made public: as already observed, this does not
seem to endanger the scheme.
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4.2 Variants of the Scheme

As is often the case, one can design numerous variants of the basic scheme. We will mention
two because of their potential applications.

Use of moduli with three prime factors As for RSA, it is possible to embed three prime
factors p, q, r in the modulus in place of two. The construction is straightforward: the small
odd primes pi are split into three groups thus yielding, by multiplication, three integers
u, v, w. The three primes are then sought among integers of the form 2au + 1 (resp.
2bv + 1, resp. 2cw + 1). It seems possible to keep the minimum size of n to 768 bits, which
allows a, b, c to be around 200 bits. Following an idea of Maurer and Yacobi ([19]), we
can then have a complete trapdoor for the discrete logarithm with base g: once the σ part
has been computed, there remains to compute the logarithm modulo a, b and c, which is
not immediate but well within the reach of current technology, since these numbers are
200 bit integers. Again, the variant could prove useful in key escrowing scenarios of, say,
Diffie-Hellman keys, where it might be desirable to have a lengthy recovery of the secret
key for consumer’s protection.

Multiplicative encryption In this variant, σ is made public and encryption applies to mes-
sages of length k, m =

∑k
i=1 mi2

i−1. In order to encrypt m, one computes e =
∏k

i=1 pmi
i

and apply probabilistic encryption to e. Of course, the bandwith of this variant is very low:
using a 768 bit modulus n and choosing the first 30 odd primes for pis, we obtain a 30 bit
input and a 768 bit output. Allowing a larger input has drastic consequences in terms of
the size of n. The value of σ is close to 2560 when the first k primes are used with k = 80
but reaches 2998.4 for k = 128 and 21309 for k = 160. Using the heuristic bound mentioned
in section 2.4, we get for the length of n something beyond 5000 bits if k is 160. This goes
down to 2400 bits when k = 80.

As a result, the variant just decribed is not really practical and there is little chance that
it can ever be adopted as an actual encryption scheme. On the other hand, the ciphertext
c(m) can be used in an encryption scheme à la El Gamal. The modulus is not prime since
it is an RSA modulus, but it makes no difference on the user’s size. From h = c(m), he
can manufacture a public key y with a corresponding matching secret key x of his choice
y = hx mod n The resulting cryptosystem allows ciphertext traceability in the sense of
Desmedt (see [9]). Our proposal enables to trace ciphertexts by a technique similar to the
one used by Desmedt, but decreases the size of the modulus from something like 10000 bits
to 2500 bits. The tracing algorithm goes as follows: extract from an El Gamal encryption
the part u = hr mod n and apply the decryption algorithm, treating u as a ciphertext.
The decryption algorithm will basically find the original message m, which provides the
identity of the user and from which h was built. Several errors may occur due to the fact
that r might have some of the pis as divisors: the corresponding decrypted values of mi will
be set to 1, regardless of their original values. The correct value can be found if a sample of
ciphertexts are available or, alternatively, if an error-correction capacity has been added to
m. Such an error-correction mechanism is highly advisable anyway in view of the attacks
against software key escrow reported in [15].
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Note that, one can further reduce the size of the exponent. This is because 40 bits may
be considered enough for tracing purposes. The value of σ goes down to approximately 2233

and 1088 bits becomes an acceptable minimum length for the modulus.

5 Challenge

It is a tradition in the cryptographic community to offer cash rewards for successful crypt-
analysis. More than a simple motivation means, such rewards also express the designers’
confidence in their own schemes. As an incentive to the analysis of the new scheme, we
therefore offer $ |n| to whoever will decrypt:

c = 13370fe62d81fde356d1842fd7e5fc1ae5b9b449

bdd00866597e61af4fb0d939283b04d3bb73f91f

0d9d61eb0014690e567ab89aa8df4a9164cd4c6e

6df80806c7cdceda5cfda97bf7c42cc702512a49

dd196c8746c0e2ef36ca2aee21d4a36a16

g = 0b9cf6a789959ed4f36b701a5065154f7f4f1517

6d731b4897875d26a9e24415e111479050894ba7

c532ada1903c63a84ef7edc29c208a8ddd3fb5f7

d43727b730f20d8e12c17cd5cf9ab4358147cb62

a9fb8878bf15204e444ba6ade613274316

n = 1459b9617b8a9df6bd54341307f1256dafa241bd

65b96ed14078e80dc6116001b83c5f88c7bbcb0b

db237daac2e76df5b415d089baa0fd078516e60e

2cdda7c26b858777604c5fbd19f0711bc75ce00a

5c37e2790b0d9d0ff9625c5ab9c7511d16

where k = 30 (pi is the i-th odd prime) and the message is ascii-encoded. The challenger
should be the first to decrypt at least 50% of c and publish the cryptanalysis method but
the authors are ready to carefully evaluate ad valorem any feedback they get.
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Appendix: Sketch of the Security Proof.

We show that any message distinguisher can be turned into an algorithm that recognizes
higher residues. We let D be a distinguisher for two messages m0 and m1 and start from
the fact that, keeping the above notations, θ0 and θ1 are significantly distinct. We next use
the hybrid technique for which we refer to [11], pp.91–93. Hybrids consist of a sequence of
random variables Yi, 0 ≤ i ≤ k, such that

1. Extreme hybrids collide with E(m0) and E(m1) respectively.
2. Random values of each hybrid can be produced by a probabilistic polynomial time

algorithm.
3. There are only polynomially many hybrids.

In such a situation, [11] shows that D distinguishes two neighbouring hybrids. Our hybrids
are formed by considering a message µi, such that

µi = m0 mod pj for j > i and

µi = m1 mod pj for j ≤ i

and letting Yi to be uniformly distributed over the set E(µi) of encryptions of µi. It is
easily seen that conditions 1, 2 and 3 are satisfied. Thus, for some index i, D significantly
distinguishes Yi and Yi−1. Set µ = µi, p = pi and let µj, 1 ≤ j ≤ p, be the unique message
such that

µj = µ mod p` for ` 6= i and µj = j mod p

We note that, both mi and mi−1 appear among the µjs and we show that D cannot
distinguish encryptions of any two of the µjs. This will yield the desired contradiction.

Let
πj = Pr{D(n, σ, g, y) = 1|y ∈ E(µj)}

and assume that some πi significantly exceeds the other ones. In other words, πi ≥
supj 6=i πj + 1

Q
for some polynomial Q and infinitely many values of |n|. We show how
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to predict p-th residuosity: given z, we run D over a large sample N of inputs (n, σ, y)
where y = xσz`σ/pgµi , with x > n and ` ≤ p chosen at random, and we average the out-
puts. Now, if z is a p-th residue, then y simply varies over E(µi), whereas, if z is not a
p-th residue, y randomly varies over the union of all E(µj)s. Thus, in the first case, the

average is close to πi, whereas, in the second case, it is approximately
Pp

j=1 πj

p
. It is easily

seen that the difference is bounded from below by p−1
p

1
Q

. Using the law of large numbers,
this is enough to make the proper decision on the p-th residuosity, with probability as close
to 1 as we wish, by using only polynomially large samples. This finishes the proof. ut
Remarks.
1. Turning the previous sketch into a complete proof involves a technical but rather long
write-up: especially, a precise version of the law of large numbers has to be made explicit,

e.g. by using the Chebishev inequality. Also, the values of πi and
Pp

j=1 πj

p
are not known

a priori and should be approximated as well using the law of large numbers. We urge the
interested reader to consult [11] for similar proofs.
2. The higher residuosity oracle that was built in the proof for the sake of contradiction
uses inputs σ and g on top of n, y and p. Actually, one can check that everything goes
through, mutatis mutandis, if σ is replaced by σ =

∏
p<B p. Thus σ is not really needed.

As for g, as seen in section 2.1, it can be chosen at random: a proper choice will be spotted
by sampling the corresponding oracle and checking its correctness.
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Abstract. This paper describes a new public-key cryptosystem where the ciphertext is obtained by
multiplying the public-keys indexed by the message bits and the cleartext is recovered by factoring
the ciphertext raised to a secret power.

Encryption requires four multiplications/byte and decryption is roughly equivalent to the generation
of an RSA signature.

1 Introduction

It is striking to observe that two decades after the discovery of public-key cryptography,
the cryptographer’s toolbox contains only a dozen of asymmetric encryption schemes. This
rarity and the fact that today’s most popular schemes had so far defied all complexity
classification attempts strongly motivates the design of new asymmetric cryptosystems.

Interestingly, the cryptographic community has been relatively more successful in the
related field of identification, where a user attempts to convince another entity of his
identity by means of an on-line communication. For example, there have been several
attempts to build identification protocols based on simple operations (see [19, 21, 22, 16]).
Although the devising of new public key cryptosystems appears much more difficult (since
it deals with trapdoor functions rather than simple one-way functions) we feel that research
in this direction is still in order: simple yet efficient constructions may have been overlooked
and, in a way, the present paper is an example of such a situation.

As observed by [18], most asymmetric encryption schemes present the following common
design morphology:

• Start with an intractable problem P and find an easy instance P [easy] ∈ P which should
be solvable in polynomial space and time.

• Shuffle or scramble P [easy] until the resulting problem P [shuffle] does not resemble P [easy]
any more and becomes indistinguishable from P .

• Publish P [shuffle] and describe how it should be used for encryption. The information s by
the means of which P [shuffle] is reduced to P [easy] is kept as a secret trapdoor.
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• Construct the cryptosystem in such a way that decryption is essentially different for the
cryptanalyst and the legitimate receiver. Whilst the former must solve P [shuffle], the latter
may use s and solve only P [easy].

Roughly at the same time when RSA was discovered [17], knapsack encryption was
introduced by Merkle and Hellman [11]. It used the knapsack problem where P [easy] was
superincreasing and shuffling was a linear operation modulo some large integer. As is well
known, the knapsack cryptosystem was broken by Shamir. A variant of the knapsack system
was proposed by Chor and Rivest [4] where shuffling was more elaborate since it was based
on computing discrete logarithms in finite fields. Later on, building on Chor and Rivest’s
work, Lenstra [10] introduced the powerline system which, instead of computing logarithms,
used directly the multiplicative structure of the field. For the sake of accurate paternity
respect, let us stress that the construction presented in this paper uses a multiplicative
version of the basic (additive) knapsack problem by combining two old, and once well-
known, techniques: the multiplicative Merkle-Hellman knapsack [11] and Pohlig-Hellman’s
secret-key cryptosystem [15]. The new scheme therefore relates to Merkle-Hellman’s cryp-
tosystem very much the same way as the powerline system is related to the Chor-Rivest
scheme. Actually, we were not aware of [10] and it is through a note by Paul Camion [3]
that we understood that we had found a missing species.

The scheme presented in this article is based on the following problem:
P : given p, c and a set {vi}, find a binary vector x such that

c =
n∏

i=0

vxi
i mod p

It is easy to observe that if the vi-s are relatively prime and much smaller than p, P
can be solved in polynomial time by factoring c:

P [easy] is an instance of P where p >
n∏

i=0

vi and gcd (vi, vj) = 1 for i 6= j.

The scrambled P [shuffle] is obtained by extracting a secret (s-th) modular root of each
vi in P [easy]. By raising a product of such roots to the s-th power, each vi shrinks back to
its original size and x can be found by factoring.

The following sections describe how to use P for public-key encryption.

2 The New Scheme

Let p be a large public prime and denote by n the largest integer such that:

p >

n∏
i=0

pi where pi is the i-th prime (start from p0 = 2)

The secret-key s < p − 1 is a random integer such that gcd(p − 1, s) = 1 and the
public-keys are the n + 1 roots generated à la Pohlig-Hellman [15]:



88 David Naccache and Jacques Stern

vi = s
√

pi mod p

m =
n∑

i=0

2imi ∈M is encrypted as c =
n∏

i=0

vmi
i mod p and recovered by:

m =
n∑

i=0

2i

pi − 1
×


 gcd(pi, c

s mod p)− 1



Naturally, as in all knapsack-type systems, the vis can be permuted and re-indexed for
increased security.

2.1 A Small Example

• key generation for n = 7

The prime p = 9700247 > 2 × 3 × 5 × 7 × 11 × 13 × 17 × 19 and the secret s = 5642069
yield the v-list:

v0 = s
√

2 mod p = 8567078

v1 = s
√

3 mod p = 5509479

v2 = s
√

5 mod p = 2006538

v3 = s
√

7 mod p = 4340987

v4 = s
√

11 mod p = 8643477

v5 = s
√

13 mod p = 6404090

v6 = s
√

17 mod p = 1424105

v7 = s
√

19 mod p = 7671241

• encryption of m = 202 = 110010102

c = v1
7 × v1

6 × v0
5 × v0

4 × v1
3 × v0

2 × v1
1 × v0

0 mod p = 7202882

• decryption

By exponentiation, we retrieve:

cs mod p = 72028825642069 mod 9700247 = 6783

whereby:

6783 = 191 × 171 × 130 × 110 × 71 × 50 × 31 × 20 → m = 110010102

• information rate

The information rate of our scheme (number of cleartext bits packed into each ciphertext
bit) is sub-optimal since, in this example:

I = log (m) / log (c) =
8

24
' 33.33% < 1
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2.2 p as a Function of n

Evaluating the growth of p and n is important for comparing and understanding the charac-
teristics on the new scheme since message-space mainly depends on n while computational
complexity is proportional to the square of p’s size.

Lemma 1. Asymptotically:

p eli(n) ∼ n! logn(n) where li(n) =

∫ n

2

dx

log(x)
∼ n

log(n)

whereas interpolation for 128 ≤ n ≤ 418 and 989 < log p < 4096 yields:

|1000 log p + 144525− n (8062.11 + 6.74 n) + 4.26337 (n/10)3 | < 1012

The following table summarises the relation between p and n for five frequent sizes of
p:

size of p n pn M size of the v-list I
512 bits 74 379 75 bits 4,800 bytes 14.6 %
640 bits 88 461 89 bits 7,120 bytes 13.9 %
768 bits 103 569 104 bits 9,984 bytes 13.5 %

1,024 bits 130 739 131 bits 16,768 bytes 12.8 %
2,048 bits 232 1471 233 bits 59,648 bytes 11.4 %

Although, as explained in the next sub-section, the first three instances (512, 640 and
768) are only given for illustrative purpose.

2.3 The Size of p

M must be sufficiently large (we recommend at least n ≥ 160) to prevent birthday-search
[20] through two lists of 2n/2 elements to find a couple of sets such that:

∏

i∈set[1]

vi =

 ∏

i∈set[2]

vi


−1

c mod p

M and I can be increased by combining the following strategies:

• Represent m in a non-binary base (m =
n∑

i=0

rimi, 0 ≤ mi < r) and let

p >

n∏
i=0

pr−1
i

Encryption and decryption become:

c =
n∏

i=0

vmi
i mod p and m =

n∑
i=0

ri

log (pi)
× log gcd(pr−1

i , cs mod p)



90 David Naccache and Jacques Stern

size of p n pn r M size of the v-list I
1,024 bits 74 379 3 119 bits 9,600 bytes 11.6 %
2,048 bits 130 739 3 208 bits 33,536 bytes 10.2 %
2,048 bits 93 491 4 188 bits 24,064 bytes 9.2 %
2,048 bits 47 223 8 144 bits 12,288 bytes 7.0 %
2,048 bits 39 173 10 133 bits 10,240 bytes 6.5 %

• Let p <
n∏

i=0

pi but restrict
n∑

i=0

mi = w so that ∀m ∈M,
n∏

i=0

pmi
i < p.

This variant implies a non-standard coding (constant-weight messages are rather suited
to random-challenge identification and less for encryption) but results in drastically
smaller v-lists:

size of p n pn w M size of the v-list I
512 bits 131 743 55 125 bits 8,448 bytes 24.4 %
512 bits 271 1747 47 176 bits 17,408 bytes 34.4 %
768 bits 199 1223 76 187 bits 19,200 bytes 24.3 %
768 bits 274 1777 71 222 bits 26,400 bytes 28.9 %

1,024 bits 419 2903 89 308 bits 53,760 bytes 30.1 %
1,024 bits 479 3413 87 323 bits 61,440 bytes 31.5 %

Note that it is also possible to require that
n∑

i=0

mi ≤ w but this complicates coding and

has a very limited effect on I.

2.4 The Arithmetic Properties of p

The mulipliticative property of the Legendre symbol yields:

∏
i∈A

(−1)mi =

 c

p


 where A = {0 ≤ i ≤ n, pi ∈ NQRp}

Even if the leakage of the bit:

b =
∑
i∈A

mi mod 2

is not serious in itself, it may become dangerous in some specific scenari; typically, if the
same m is sent to several users, relations of the form

bj =
∑

i∈set[j]

mi mod 2

can be collected and m reconstructed by linear algebra.
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A trivial countermeasure would be to restrict pi ∈ QRp (in this case, s can also be
even)1 but one may proceed in a more elegant way by specifying p0 = 2 ∈ NQRp and
simila similibus curantur, let

m0 =
∑

i∈A−{0}
mi mod 2

cancel b.
Other small factors of p− 1 produce similar phenomena. If q is such a factor, then, by

raising the ciphertext to the power (p−1)/q, one ends up with an element of a multiplicative
sub-group of order q. Since q is small, discrete logarithms can be computed in this sub-
group and yield a linear equation modulo q where the message bits are the unknowns.
Leakage through other factors of p− 1 is avoided by using a safe prime i.e. a prime p such
that (p− 1)/2 is prime as well.

3 Some Applications

3.1 Processing Encrypted Data

A major weakness of software encryption is that while being processed, data are in a vul-
nerable state. For being modified, information must be deciphered and re-encrypted again.
Unfortunately, while in clear, secrets are exposed to a wide gamut of threats ranging from
scanning by hostile TSR-programs to interception in residual electromagnetic radiation.

The new cryptosystem seems interesting for processing encrypted data as it allows to
modify (only) mk by multiplying (or dividing) c by vk. If mk = 1, an additional multipli-
cation by vk is likely to have no effect on the cleartext2 but if mk = 0, modular division
(by vk) will destroy the whole plaintext.

3.2 Incremental Encryption

Similarly, the sender can pre-encrypt a chunk of m and complete c later. This feature can
be used in group-encryption protocols where each participant adds an encrypted chunk
to a common ciphertext without gaining knowledge about the chucks encrypted by his
peers (again, each chunk should be sufficiently big to avoid exhaustive search and properly
protected against modular division).

When protection against active attacks is needed (that is, when the peers are malicious
active adversaries), this feature can be inhibited by using a part of m as a (sufficiently
big) CRC or by pre-encrypting m with a conventional block-cipher keyed with some public
constant.
1 There are exactly 54 one-byte primes, 43 nine-bit primes and 75 ten-bit primes. If one has to discard half of them,

and if one wants to have a sub-minimal 160-bit message space, 50 of the primes will be eleven-bit numbers and
key generation will only be possible in the lucky event where the quadratic residues have an uneven distribution
and concentrate on small values.

2 The probability that pk

nQ
i=0

pmi
i < p is very close to one if m is uniformly distributed.
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3.3 Batch Encryption

Surprisingly, encrypting a pair of random message-blocks (here m[1] and m[2]) requires
only 75% of the multiplications needed for two sequential encryptions (i = 1, 2):

c[i] = encrypt(m[i]⊕m[1] ∧m[2]) × encrypt(m[1] ∧m[2]) mod p

Although this strategy can be generalised to more than two blocks by building an
intersection tree, accurate evaluation indicates that bookkeeping quickly costs the gain.

4 Implementation

In order to fit into a 68HC05-based ST16CF54 smart-card (4,096 EEPROM bytes, 16,384
ROM bytes and 352 RAM bytes), key storage was replaced by a command that re-computes
the v-list upon request (re-computation and transmission take 310 ms per vi but have to
be done only once after reset). The p-list is compressed into a string of 48 bytes (in our
implementation, n = 74) which k-th bit equals one if and only if k is prime. pi is extracted
by scanning this string until i ones were read (pi is then the value of the scan-counter). To
speed-up decryption (215 ms plus 33 ms for DES pre-encryption), our 824-byte program
uses a composite p (four 256-bit factors) and sub-contracts all base-conversion operations
(r = 3) to the smart-card reader. Benchmarks were done with a 5 MHz oscillator and ISO
7816-3 T=0 transmission at 115,200 bauds.

As strange as it may appear, the PC encrypts RSA-compatible ciphertexts without
using a public exponent. Publishing e = 1/s mod φ(p) will make the computation of the
v-list public but result in a standard RSA with a particular message format.

Although we see no immediate objection to restrict s to 160 bits, we recommend to avoid
doing so before a reasonable scrutiny period (in particular, using a short s with a composite
p seems related to [24, 23]) and enforce, in general, the following recommendations:

• As for any block cipher, too short messages (≤ 64 bits) should not be encrypted, unless
concatenated to an appropriate randomiser [6].

• As for RSA and DSA [9], correct implementation must hide the correlation between
processing time and the weights of m and s.

• To avoid oracle attacks [1], we recommend to reject all decrypted messages that, when
re-encrypted by the receiver do not re-yield c.

• Since the p-list is not necessary for encryption, we recommend to keep it secret in prac-
tice but assume its knowledge as a weakened target for the sake of academic research.

Unlike RSA, our scheme is not patented; hardware and software implementing the
cryptosystem can therefore be freely used and disseminated.

5 Challenge

It is a tradition in the cryptographic community to offer cash rewards for successful crypt-
analysis. More than a simple motivation means, such rewards also express the designers’
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confidence in their own schemes. As an incentive to the analysis of the new scheme, we
therefore offer (as a souvenir from Eurocrypt’97) DM 1024 to whoever will decrypt:

c = 9D581F9E996C5D0878DC92BF5D5A8D2177B8B853E6697007

47D2C1411FAC6346045C76596193DE57A3996F04395E7BD44780

157CE4497E506DA61F09B73BAF3286272AC1625A5D989749BD38

46B634819BD26DF278CF6CD9157B891C629D3ECB49CB6E18D57E

4D9D4B70DA14738E1654F7466B48A0FCF96E0A7CBEF7A7A05DDA16

p = EB17673456CF46F2F819B1FB5B15D330FCF1BB063E6C5DBB

A2A675D1639F0AF897C6CF04B3DEE33EBA5795C4A2E7EEF7CD28

5721B97F184159987F91DDC9C8270E5D36B2562F23B3881DD795

FB53634679944F3F11027B1D90BB8D3767151069626420E64E02

029BE0FA5ECEFC6987C72C10451CC033FFD77A78E8B8B2A6062316

where r = 4, n = 74 and the coding convention is space = 0, a = 1, b = 2, · · · , z = 26.
The challenger should be the first to decrypt at least 50% of c (the v-list is available by
email) and publish the cryptanalysis method which must be different than computing the
discrete logarithm of one of the vi-s but the authors are ready to carefully evaluate ad
valorem any feedback they get.

6 Further Research

Since a first (informal) presentation of the scheme, several researchers began to investigate
its different aspects and compare its features to RSA [5, 12, 2].

Elliptic curving the scheme is still an open problem (since elliptic curves are Abelian
groups and not Euclidean domains, gcds can not be computed). Provable security, strategies
for reducing the size of the public-key or signing with the scheme are also important for
increasing the practical usefulness of the new cryptosystem.

A general knapsack taxonomy also seems in order. The idea of multiplicative knapsack
is roughly 20 years old and was first proposed in the open literature by Merkle and Hellman
[11] in their original paper. As, observed by Desmedt in his 1986 survey [7], encryption in
the multiplicative Merkle-Hellman knapsack is actually additive. It is in fact the decryption
which is multiplicative. The scheme presented here is in this respect thoroughly multiplica-
tive. It should also be noted that Merkle-Hellman’s knapsack was (partially) cryptanalyzed
in by Odlyzko [13] but all our attempts to extend this attack to the new scheme failed.

As a final conclusion, although our scheme seems practical and simple, it can hardly
compete with RSA on concrete commercial platforms as its public keys are typically eighty
times bigger than RSA ones. Nevertheless, the new concept appears to be a promising
starting-point for improvements and further research.
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Abstract. In Eurocrypt’98, Okamoto and Uchiyama presented a public-key cryptosystem as secure
as factoring n = p2q; in terms of decryption complexity, the scheme is basically equivalent to RSA and
requires O(log3 n) bit operations. In this note we point-out that a slight morphological modification in
the scheme’s structure that lower the decryption complexity to O(log2 n) while preserving equivalence
to factoring.

1 Okamoto-Uchiyama’s Cryptosystem

In Eurocrypt’98, Okamoto and Uchiyama proposed a new public-key cryptosystem (OU)
based on the ability of computing discrete logarithms in a particular subgroup. Namely, if
p is a large prime and γp ⊂ Z∗p2 is

γp = {x < p2 | x = 1 mod p} ,

then γp has a group structure with respect to the multiplication modulo p2 and ]γp = p.
The function log(.) : γp −→ Zp which associates (x − 1)/p to x is clearly well-defined on
γp and presents interesting homomorphic properties. In particular,

∀x, y ∈ γp log(xy mod p2) = log(x) + log(y) mod p

whereby, as a straightforward generalization,

∀g ∈ γp,m ∈ Zp log(gm mod p2) = m log(g) mod p .

Key Setup. Generate two k-bit primes p and q (typically 3k = 1023) and set n = p2q.
Randomly select and publish a number g < n such that

gp = gp−1 mod p2
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is of order p in Z∗p2 and keep gp secret (note that gp ∈ γp). Similarly, choose g′ < n at
random and publish

h = g′n mod n .

The triple {n, g, h} forms the public key. The secret key is {p, q}.
Encryption. Pick r < n uniformly at random and encrypt the (k − 1)-bit message m by:

c = gmhr mod n .

Decryption. Proceed as follows:

1. c′ = cp−1 mod p2 = gm(p−1)g′nr(p−1) = gm
p mod p2,

2. m = log(c′) log(gp)
−1 mod p.

We refer the reader to [1] for a thorough description of the scheme. Although provably
equivalent to factoring [2] as far as chosen-plaintext attacks are concerned, the scheme
suffers from the fact that ciphertexts are about three times longer than plaintexts. Note
that step 1 of the decryption process requires O(k3) bit operations.

2 The Proposed Variant

As pointed-out by Paillier [3] OU’s trapdoor is inherently new in the sense that it pro-
foundly differs from RSA and Diffie-Hellman. It makes no doubt that this technique could
be declined in various ways for designing new public-key cryptosystems in near future.

In order to reduce OU’s complexity to O(k2) while preserving equivalence to factoring,
we select a p such that p− 1 has a large (160-bit) prime factor t, let p− 1 = tu and modify
the scheme’s specifications as follows:

Randomly select a number g < n such that

gp = gp−1 mod p2

is of order p in Z∗p2 , compute G = gu mod n and keep gp secret. Similarly, choose g′ < n at
random and publish

H = g′nu
mod n .

The triple {n,G, H} forms the public key. The secret key is {p, q}.
Encryption. Pick r < n uniformly at random and encrypt the (k − 1)-bit message m by:

c = GmHr mod n .

Decryption. Proceed as follows:
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1. c′ = ct mod p2 = gm(p−1)g′nr(p−1) = gm
p mod p2,

2. m = log(c′) log(gp)
−1 mod p.

The cubic-complexity has thus been replaced by a quadratic-complexity (here t has
a fixed size), equivalence to factoring is easily derived from the original security proof
included in [1].
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Abstract. A common practice to encrypt with RSA is to first apply a padding scheme to the message
and then to exponentiate the result with the public exponent; an example of this is OAEP. Similarly,
the usual way of signing with RSA is to apply some padding scheme and then to exponentiate
the result with the private exponent, as for example in PSS. Usually, the RSA modulus used for
encrypting is different from the one used for signing. The goal of this paper is to simplify this common
setting. First, we show that PSS can also be used for encryption, and gives an encryption scheme
semantically secure against adaptive chosen-ciphertext attacks, in the random oracle model. As a
result, PSS can be used indifferently for encryption or signature. Moreover, we show that PSS allows
to safely use the same RSA key-pairs for both encryption and signature, in a concurrent manner.
More generally, we show that using PSS the same set of keys can be used for both encryption and
signature for any trapdoor partial-domain one-way permutation. The practical consequences of our
result are important: PKIs and public-key implementations can be significantly simplified.

1 Introduction

A very common practice for encrypting a message m with RSA is to first apply a padding
scheme µ, then raise µ(m) to the public exponent e. The ciphertext c is then:

c = µ(m)e mod N

Similarly, for signing a message m, the common practice consists again in first applying
a padding scheme µ′ then raising µ′(m) to the private exponent d. The signature s is then:

s = µ′(m)d mod N

For various reasons, it would be desirable to use the same padding scheme µ(m) for en-
cryption and for signature: in this case, only one padding scheme needs to be implemented.
Of course, the resulting padding scheme µ(m) should be provably secure for encryption
and for signing. We say that a padding scheme is universal if it satisfies this property.

The strongest public-key encryption security notion was defined in [15] as indistin-
guishability under an adaptive chosen ciphertext attack. An adversary should not be able
to distinguish between the encryption of two plaintexts, even if he can obtain the decryp-
tion of ciphertexts of his choice. For digital signature schemes, the strongest security notion
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was defined by Goldwasser, Micali and Rivest in [10], as existential unforgeability under an
adaptive chosen message attack. This notion captures the property that an adversary can-
not produce a valid signature, even after obtaining the signatures of (polynomially many)
messages of his choice.

In this paper, we show that the padding scheme PSS [4], which is originally a provably
secure padding scheme for producing signatures, can also be used as a provably secure
encryption scheme. More precisely, we show that PSS offers indistinguishability under an
adaptive chosen ciphertext attack, in the random oracle model, under the partial-domain
one-wayness of the underlying permutation. Partial-domain one-wayness, introduced in [9],
is a formally stronger assumption than one-wayness. However, for RSA, partial-domain one-
wayness is equivalent to (full domain) one-wayness and therefore RSA-PSS encryption is
provably secure under the sole assumption that RSA is one-way.

Generally, in a given application, the RSA modulus used for encrypting is different
from the RSA modulus used for signing; our setting (and real-world PKIs) would be further
simplified if one could use the same set of keys for both encryption and signature (see [11]).
In this paper, we show that using PSS, the same keys can be safely used for encryption
and for signature.

2 Public-Key Encryption

A public-key encryption scheme is a triple of algorithms (K, E ,D) where:

- K is a probabilistic key generation algorithm which returns random pairs of public
and secret keys (pk , sk) depending on some security parameter k,

- E is a probabilistic encryption algorithm which takes as input a public key pk and a
plaintext M ∈ M, runs on a random tape r ∈ R and returns a ciphertext c. M and R
stand for spaces in which messages and random strings are chosen respectively,

- D is a deterministic decryption algorithm which, given as input a secret key sk and a
ciphertext c, returns the corresponding plaintext M , or Reject.

The strongest security notion for public-key encryption is the aforementioned notion of
indistinguishability under an adaptive chosen ciphertext attack. An adversary should not
be able to distinguish between the encryption of two plaintexts, even if he can obtain the
decryption of ciphertexts of his choice. The attack scenario is the following:

1. The adversary A receives the public key pk with (pk , sk) ← K(1κ).
2. A makes decryption queries for ciphertexts y of his choice.
3. A chooses two messages M0 and M1 of identical length, and receives the encryption c

of Mb for a random unknown bit b.
4. A continues to make decryption queries. The only restriction is that the adversary

cannot request the decryption of c.
5. A outputs a bit b′, representing its “guess” on b.

The adversary’s advantage is then defined as:

Adv(A) = |2 · Pr[b′ = b]− 1|



100 Jean-Sébastien Coron et alii.

An encryption scheme is said to be secure against adaptive chosen ciphertext attack (and
denoted IND-CCA2) if the advantage of any polynomial-time bounded adversary is a negligible
function of the security parameter. Usually, schemes are proven to be IND-CCA2 secure by
exhibiting a polynomial reduction: if some adversary can break the IND-CCA2 security of
the system, then the same adversary can be invoked (polynomially many times) to solve a
related hard problem.

The random oracle model, introduced by Bellare and Rogaway in [2], is a theoretical
framework in which any hash function is seen as an oracle which outputs a random value for
each new query. Actually, a security proof in the random oracle model does not necessarily
imply that a scheme is secure in the real world (see [7]). Nevertheless, it seems to be a good
engineering principle to design a scheme so that it is provably secure in the random oracle
model. Many encryption and signature schemes were proven to be secure in the random
oracle model.

3 Encrypting with PSS-R

In this section we prove that given any trapdoor partially one-way permutation f , the
encryption scheme defined by first applying PSS with message recovery (denoted PSS-R)
and encrypting the result with f achieves the strongest security level for an encryption
scheme, in the random oracle model.

3.1 The PSS-R Padding Scheme

PSS-R, defined in [4], is parameterized by the integers k, k0 and k1 and uses two hash
functions:

H : {0, 1}k−k1 → {0, 1}k1 and G : {0, 1}k1 → {0, 1}k−k1

PSS-R takes as input a (k − k0 − k1)-bit message M and a k0-bit random integer r. As
illustrated in figure 1, PSS-R outputs:

µ(M, r) = ω||s
where ‖ stands for concatenation, ω = H(M ||r) and s = G(ω) ⊕ (M‖r). Actually, in [4],
M‖r is used as the argument to H and r‖M is used as the mask to xor with G(ω). Here
for simplicity we use M‖r in both places, but the same results apply either way.

3.2 The PSS-E Encryption Scheme

The new encryption scheme (K, E ,D), that we denote PSS-E, is based on µ and a k-bit
trapdoor permutation f .

- K generates the public key f and the secret key f−1.
- E(M, r): given a message M ∈ {0, 1}k−k0−k1 and a random r ∈ {0, 1}k0 , the encryption

algorithm outputs the ciphertext:

c = f(µ(M, r))
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Fig. 1. The PSS-R padding scheme

- D(c): the decryption algorithm recovers (ω, s) = f−1(c) and then M‖r = G(ω)⊕ s. If
ω = H(M ||r), the algorithm returns M , otherwise it returns Reject.

3.3 The Underlying Problem

The security of PSS-E is based on the difficulty of inverting f without knowing f−1. As
in [9], we use two additional related problems: the partial-domain one-wayness and the set
partial-domain one-wayness of f :

- (τ, ε)-one-wayness of f , means that for any adversary A who wishes to recover the
full pre-image (ω, s) of f(ω, s) in time less than τ , A’s success probability Succow(A) is
upper-bounded by ε:

Succow(A) = Pr
ω,s

[A(f(ω, s)) = (ω, s)] < ε

- (τ, ε)-partial-domain one-wayness of f , means that for any adversary A who
wishes to recover the partial pre-image ω of f(ω, s) in time less than τ , A’s success prob-
ability Succpd−ow(A) is upper-bounded by ε:

Succpd−ow(A) = Pr
ω,s

[A(f(ω, s)) = ω] < ε

- (`, τ, ε)-set partial-domain one-wayness of f , means that for any adversary A
who wishes to output a set of ` elements which contains the partial pre-image ω of f(ω, s),
in time less than τ , A’s success probability Succs−pd−ow(A) is upper-bounded by ε:

Succs−pd−ow(A) = Pr
ω,s

[ω ∈ A(f(ω, s))] < ε
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As in [9], we denote by Succow(τ), (resp. Succpd−ow(τ) and Succs−pd−ow(`, τ)) the maximal
probability Succow(A), (resp. Succpd−ow(A) and Succs−pd−ow(A)), over all adversaries whose
running times are less than τ . For any τ and ` ≥ 1, we have:

Succs−pd−ow(`, τ) ≥ Succpd−ow(τ) ≥ Succow(τ)

Moreover, by randomly selecting any element in the set returned by the adversary against
the set partial-domain one-wayness, one can break the partial-domain one-wayness with
probability 1/`, which gives:

Succpd−ow(τ) ≥ Succs−pd−ow(`, τ)/` (1)

We will see in Section 5 that for RSA, the three problems are polynomially equivalent.

3.4 Security of PSS-E

The following theorem shows that PSS-E is semantically secure under adaptive chosen
ciphertext attacks, in the random oracle model, assuming that the underlying permutation
is partially one-way.

Theorem 1. Let A be a CCA2-adversary against the semantic security of PSS-E (K, E ,D),
with advantage ε and running time t, making qD, qH and qG queries to the decryption oracle
and the hash functions H and G, respectively. Then:

Succpd−ow(t′) ≥ 1

qH + qG

· (ε− qH2−k0 − qD2−k1
)

where t′ ≤ t + qH · Tf , and Tf denotes the time complexity of f .

The theorem follows from inequality (1) and the following lemma:

Lemma 1. Using the notations introduced in theorem 1, we have:

Succs−pd−ow(qH + qG, t′) ≥ ε− qH · 2−k0 − qD · 2−k1 (2)

Proof. We describe a reduction B which using A, constructs an adversary against the set
partial-domain one-wayness of f . We start with a top-level description of the reduction
and then show how to simulate the random oracles G, H and the decryption oracle D.
Eventually we compute the success probability of B.

Top-level description of the reduction B:
1. B is given a function f and c∗ = f(ω∗, s∗), for a random ω∗ and s∗. B’s goal is to

output a list which contains the partial pre-image ω∗ of c∗.
2. B runs A with f and gets {M0,M1}. It chooses a random bit b and gives c∗ as a

ciphertext for Mb. B simulates the decryption oracle H, D and G as described below.
3. B receives from A the answer b′ and outputs the list of queries asked to G.
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Simulation of the random oracles G, H and D.
The simulation of G and H is very simple: a random answer is returned for each new

query of G and H. Moreover, when ω is the answer of a query to H, we simulate a query
for ω to G, so that G(ω) is defined.

On query c to the decryption oracle, the reduction B looks at each query M ′||r′ to H
and computes:

ω′ = H(M ′||r′) and s′ = G(ω′)⊕ (M ′‖r′)
Then if c = f(ω′, s′) the reduction B returns M ′. Otherwise, the reduction outputs Reject.

Analysis:
Since c∗ = f(ω∗, s∗) is the ciphertext corresponding to Mb, we have the following

constraint for the random oracles G and H:

H(Mb‖r∗) = ω∗ and G(ω∗) = s∗ ⊕ (Mb‖r∗) (3)

We denote by AskG the event: “ω∗ has been asked to G” and by AskH the event: “there
exists M ′ such that M ′||r∗ has been queried to H”.

If ω∗ was never queried to G, then G(ω∗) is undefined and r∗ is then a uniformly
distributed random variable. Therefore the probability that there exists M ′ such that
(M ′, r∗) has been asked to H is at most qH · 2−k0 . This gives:

Pr[AskH|¬AskG] ≤ qH · 2−k0 (4)

Our simulation of D can only fail by rejecting a valid ciphertext. We denote by DBad
this event. Letting c = f(ω, s) be the ciphertext queried to D and

M‖r = G(ω)⊕ s

we reject a valid ciphertext if H(M ||r) = ω while M ||r was never queried to H. However, if
M‖r was never queried to H, then H(M‖r) is randomly defined. Namely if the decryption
query occured before c∗ was sent to the adversary, then constraint (3) does not apply and
H(M‖r) is randomly defined. Otherwise, if the decryption query occured after c∗ was sent
to the adversary, then c 6= c∗ implies (M, r) 6= (Mb, r

∗) and H(M‖r) is still randomly
defined. In both cases the probability that H(M, r) = ω is then 2−k1 , which gives:

Pr[DBad] ≤ qD · 2−k1 (5)

Let us denote by Bad the event: “ω∗ has been queried to G or (M ′, r∗) has been queried
to H for some M ′ or the simulation of D has failed”. Formally:

Bad = AskG ∨ AskH ∨ DBad (6)

Let us denote by S the event: “the adversary outputs the correct value for b, i.e., b = b′”.
Conditioned on ¬Bad, our simulations of G,H and D are independent of b, and therefore
A’s view is independent of b as well. This gives:

Pr[S|¬Bad] =
1

2
(7)
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Moreover, conditioned on ¬Bad, the adversary’s view is the same as when interacting with
(perfect) random and decryption oracles, which gives:

Pr[S ∧ ¬Bad] ≥ 1

2
+

ε

2
− Pr[Bad] (8)

From (7) we obtain

Pr[S ∧ ¬Bad] = Pr[S|¬Bad] · Pr[¬Bad] =
1

2
(1− Pr[Bad])

which gives using (8):
Pr[Bad] ≥ ε (9)

From (6) we have:

Pr[Bad] ≤ Pr[AskG ∨ AskH] + Pr[DBad]

≤ Pr[AskG] + Pr[AskH ∧ ¬AskG] + Pr[DBad]

≤ Pr[AskG] + Pr[AskH|¬AskG] + Pr[DBad]

which yields using (4), (5) and (9):

Pr[AskG] ≥ ε− qH · 2−k0 − qD · 2−k1

and hence (2) holds. This terminates the proof of lemma 1. ut

4 Signing and Encrypting with the Same Public-Key

In this section we show that when using PSS, the same public key can be used for encryption
and signature in a concurrent manner. For RSA, this means that the same pair (N, e) can
be used for both operations. In other words, when Alice sends a message to Bob, she
encrypts it using Bob’s public key (N, e); Bob decrypts it using the corresponding private
key (N, d). To sign a message M , Bob will use the same private key (N, d). As usual,
anybody can verify Bob’s signature using his public pair (N, e).

Although provably secure (as we will see hereafter), this is contrary to the folklore
recommendation that signature and encryption keys should be distinct. This recommen-
dation may prove useful is some cases; this is particularly true when a flaw has been found
in the encryption scheme or in the signature scheme. In our case, we will prove that when
using the PSS-R padding scheme, a decryption oracle does not help the attacker in forging
signatures, and a signing oracle does not help the attacker in gaining information about
the plaintext corresponding to a ciphertext.

Nevertheless, we advise to be very careful when implementing systems using the same
keys for encrypting and signing. For example, if there are some implementation errors in
a decryption server (see for example [13]), then an attacker could use this server to create
forgeries.
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4.1 Signature Schemes and Their Security

Definition 1 (signature scheme). A signature scheme (Gen, Sign, Verify) is defined as
follows:

- The key generation algorithm Gen is a probabilistic algorithm which given 1k, outputs
a pair of matching public and private keys, (pk, sk).

- The signing algorithm Sign takes the message M to be signed, the public key pk and
the private key sk, and returns a signature x = Signsk(M). The signing algorithm may be
probabilistic.

- The verification algorithm Verify takes a message M , a candidate signature x′ and
pk. It returns a bit Verifypk(M, x′), equal to one if the signature is accepted, and zero
otherwise. We require that if x ← Signsk(M), then Verifypk(M, x) = 1.

In the existential unforgeability under an adaptive chosen message attack scenario, the
forger can dynamically obtain signatures of messages of his choice and attempts to output a
valid forgery. A valid forgery is a message/signature pair (M, x) such that Verifypk(M, x) =
1 whereas the signature of M was never requested by the forger.

4.2 The PSS-ES Encryption and Signature Scheme

The PSS-ES encryption and signature scheme (K, E ,D,S,V) is based on PSS-R and a
k-bit trapdoor permutation f . As for the PSS-R signature scheme, the signature scheme in
PSS-ES is with message recovery: this means that the message is recovered when verifying
the signature. In this case, only messages of fixed length k − k0 − k1 can be signed. To
sign messages M of arbitrary length, it suffices to apply a collision-free hash function to
M prior to signing.

- K generates the public key f and the secret key f−1.
- E(M, r): given a message M ∈ {0, 1}k−k0−k1 and a random value r ∈ {0, 1}k0 , the

encryption algorithm computes the ciphertext:

c = f(µ(M, r))

- D(c): the encryption algorithm recovers (ω, s) = f−1(c) and computes

M‖r = G(ω)⊕ s

If ω = H(M ||r), the algorithm returns M , otherwise it returns Reject.
- S(M, r): given a message M ∈ {0, 1}k−k0−k1 and a random value r ∈ {0, 1}k0 , the

signing algorithm computes the signature:

σ = f−1(µ(M, r))

- V(σ): given the signature σ, the verification algorithm recovers (ω, s) = f(σ) and
computes:

M‖r = G(ω)⊕ s

If ω = H(M‖r), the algorithm accepts the signature and returns M . Otherwise, the algo-
rithm returns Reject.
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4.3 Semantic Security

We must ensure that an adversary is still unable to distinguish between the encryption
of two messages, even if he can obtain the decryption of ciphertexts of his choice, and
the signature of messages of his choice. The attack scenario is consequently the same as
previously, except that the adversary can also obtain the signature of messages he wants.

The following theorem, whose proof is given in Appendix A, shows that PSS-ES is
semantically secure under adaptive chosen ciphertext attacks, in the random oracle model,
assuming that the underlying permutation is partial domain one-way.

Theorem 2. Let A be an adversary against the semantic security of PSS-ES, with success
probability ε and running time t, making qD, qsig, qH and qG queries to the decryption oracle,
the signing oracle, and the hash functions H and G, respectively. Then, Succpd−ow(t′) is
greater than:

1

qH + qG + qsig

(
ε− (qH + qsig) · 2−k0 − qD2−k1 − (qH + qsig)

2 · 2−k1
)

where t′ ≤ t + (qH + qsig) · Tf , and Tf denotes the time complexity of f .

4.4 Unforgeability

For signature schemes, the strongest security notion is the previously introduced existential
unforgeability under an adaptive chosen message attack. An attacker cannot produce a
valid signature, even after obtaining the signature of (polynomially many) messages of his
choice. Here the adversary can also also obtain the decryption of ciphertexts of his choice
under the same public-key. Consequently, the attack scenario is the following:

1. The adversary A receives the public key pk with (pk , sk) ← K(1κ).
2. A makes signature queries for messages M of his choice. Additionally, he makes de-

cryption queries for ciphertexts y of his choice.
3. A outputs the signature of a message M ′ which was not queried for signature before.

An encryption-signature scheme is said to be secure against chosen-message attacks if
for any polynomial-time bounded adversary, the probability to output a forgery is negligi-
ble.

The following theorem shows that PSS-ES is secure against an adaptive chosen message
attack. The proof is similar to the security proof of PSS [4] and is given in Appendix B.

Theorem 3. Let A be an adversary against the unforgeability of PSS-ES, with success
probability ε and running time t, making qD, qsig, qH and qG queries to the decryption
oracle, the signing oracle, and the hash oracles H and G, respectively. Then Succow(t′) is
greater than:

1

qH

(
ε− ((qH + qsig)

2 + qD + 1) · 2−k1
)

(10)

where t′ ≤ t + (qH + qsig) · Tf , and Tf denotes the time complexity of f .
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5 Application to RSA

5.1 The RSA Cryptosystem

The RSA cryptosystem, invented by Rivest, Shamir and Adleman [16], is the most widely
used cryptosystem today. In this section, we show that by virtue of RSA’s homomorphic
properties, the partial-domain one-wayness of RSA is equivalent to the one-wayness of
RSA. This enables to prove that the encryption scheme RSA-PSS-E and the encryption and
signature scheme RSA-PSS-ES are semantically secure against chosen ciphertext attacks,
in the random oracle model, assuming that inverting RSA is hard.

Definition 2 (The RSA Primitive). The RSA primitive is a family of trapdoor permu-
tations, specified by:

- The RSA generator RSA, which on input 1k, randomly selects two distinct k/2-bit
primes p and q and computes the modulus N = p · q. It randomly picks an encryption
exponent e ∈ Z∗φ(N), computes the corresponding decryption exponent d = e−1 mod φ(N)

and returns (N, e, d).
- The encryption function f : Z∗N → Z∗N defined by f(x) = xe mod N .
- The decryption function f−1 : Z∗N → Z∗N defined by f−1(y) = yd mod N .

In the following, we state our result in terms of the RSA primitive with a randomly
chosen public exponent. The same results apply to the common practice of choosing a
small public exponent. Actually, using Coppersmith’s algorithm [8] as in [17] for OAEP
[3], it would be possible to obtain tigther bounds for a small public exponent.

5.2 Partial-Domain One-Wayness of RSA

The following lemma shows that the partial-domain one-wayness of RSA is equivalent to
the one-wayness of RSA. This is a generalization of the result that appears in [9] for OAEP
and in [5] for SAEP+, wherein the size of the partial pre-image is always greater than half
the size of the modulus. [9] relies upon lattice reduction techniques for lattices of dimension
2. Here the partial pre-image can be smaller than half the size of the modulus (e.g a 160-bit
pre-image for a 1024-bit modulus), so we must consider lattices of higher dimension. The
extension was announced in [9] and [5], even if the proper estimates were not worked out.

The technique goes as follows. Given y = xe mod N , we must find x. We obtain the
least significant bits of x · αi mod N for random integers αi ∈ ZN , by querying for the
partial pre-image of yi = y · (αi)

e mod N . Finding x from the least significant bits of the
x ·αi mod N is a Hidden Number Problem modulo N . We use an algorithm similar to [6]
to efficiently recover x.

Lemma 2. Let A be an algorithm that on input y, outputs a q-set containing the k1 most
significant bits of yd mod N , within time bound t, with probability ε, where 2k−1 ≤ N < 2k,
k1 ≥ 64 and k/(k1)

2 ≤ 2−6. Then there exists an algorithm B that solves the RSA problem
with success probability ε′ within time bound t′, where:

ε′ ≥ ε · (εn−1 − 2−k/8) (11)
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t′ ≤ n · t + qn · poly(k)

n =

⌈
5k

4k1

⌉

Proof. Algorithm B receives y as input and must output yd mod N . It generates the
integers αi ∈ ZN at random for 1 ≤ i ≤ n − 1, where n is an integer which will be
determined later.

Let y0 = y and yi = y · (αi)
e mod N for 1 ≤ i ≤ n− 1. We write for 0 ≤ i ≤ n− 1:

(yi)
d = ωi · 2k−k1 + si mod N

where 0 ≤ si < 2k−k1 . Letting k2 = k − k1, we obtain for 1 ≤ i ≤ n− 1:

αi · (ω0 · 2k2 + s0) = ωi · 2k2 + si mod N

Therefore letting ci = 2k2 · (αi · ω0 − ωi) mod N , we obtain the following system of n− 1
equations in the n unknown si:

S : si − αi · s0 = ci mod N for 1 ≤ i ≤ n− 1 (12)

The following lemma, whose proof is given in appendix C, shows that given the ci and
αi, the si can be recovered in time polynomial in k. We denote by:

‖x‖∞ = max |xi|
the infinite norm of vector x.

Lemma 3. If the previous set S of equations has a solution s = (s0, . . . , sn−1) such that
‖s‖∞ < 2k2, then for all values of α, except a fraction:

2n·(k2+n+2)

Nn−1
(13)

of them, this solution is unique and can be computed in time polynomial in n and in the
size of N .

Consequently, algorithm B runs n times algorithm A with input yi. It obtains n sets of
q integers, each set containing ωi. Then it applies qn times the algorithm of lemma 3, one
execution of the algorithm enabling to recover the si, with probability:

ε′ ≥ ε ·
(

εn−1 − 2n·(k2+n+2)

Nn−1

)

In appendix D we show that taking n = d5k/(4k1)e we obtain:

2n·(k2+n+2)

Nn−1
≤ 2−k/8 (14)

which gives (11). ut
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5.3 RSA-PSS-E and RSA-PSS-ES

The RSA-PSS-E encryption scheme (K, E ,D) based on the PSS-R padding µ with param-
eters k, k0, and k1 is defined as follows:

- K generates a (k + 1)-bit RSA modulus and exponents e and d. The public key is
(N, e) and the private key is (N, d).

- E(M, r): given a message M ∈ {0, 1}k−k0−k1 and a random r ∈ {0, 1}k0 , the encryption
algorithm outputs the ciphertext:

c = (µ(M, r))e mod N

- D(c): the decryption algorithm recovers x = cd mod N . It returns Reject if the most
significant bit of x is not zero. It writes x as 0‖ω‖s where ω is a k1-bit string and s is a
k − k1 bit string. It writes M‖r = G(ω) ⊕ s. If ω = H(M ||r), the algorithm returns M ,
otherwise it returns Reject.

The RSA-PSS-ES encryption and signature scheme (K, E ,D,S,V) is defined as follows:

- K, E(M, r) and D(c) are identical to RSA-PSS-E.
- S(M, r): given a message M ∈ {0, 1}k−k0−k1 and a random value r ∈ {0, 1}k0 , the

signing algorithm computes the signature:

σ = µ(M, r)d mod N

- V(σ): given the signature σ, the verification algorithm recovers x = σe mod N . It
returns Reject if the most significant bit of x is not zero. It writes x as 0‖ω‖s where ω is a
k1-bit string and s is a k − k1 bit string. It writes M‖r = G(ω) ⊕ s. If ω = H(M ||r), the
algorithm accepts the signature and returns M , otherwise it returns Reject.

5.4 Security of RSA-PSS-E and RSA-PSS-ES

Combining lemma 1 and lemma 2, we obtain the following theorem which shows that the
encryption scheme RSA-PSS-E is provably secure in the random oracle model, assuming
that inverting RSA is hard.

Theorem 4. Let A be a CCA2-adversary against the semantic security of the RSA-PSS-E
scheme (K, E ,D), with advantage ε and running time t, making qD, qH and qG queries to
the decryption oracle and the hash function H and G, respectively. We assume that k1 ≥ 64
and k/(k1)

2 ≤ 2−6. Then we can invert RSA with probability ε′ greater than:

ε′ ≥ (
ε− qH · 2−k0 − qD2−k1

)n − 2−k/8

within time bound t′ ≤ n · t + (qH + qG)n · poly(k) + n · qH · O(k3), where n = d5k/(4k1)e.
We obtain a similar theorem for the semantic security of the RSA-PSS-ES encryption

and signature scheme (from Lemma 2 and Lemma 4 in appendix A).
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Theorem 5. Let A be a CCA2-adversary against the semantic security of the RSA-PSS-
ES scheme (K, E ,D,S,V), with advantage ε and running time t, making qD, qsig, qH and
qG queries to the decryption oracle, the signing oracle and the hash function H and G,
respectively. Provided that k1 ≥ 64 and k/(k1)

2 ≤ 2−6, RSA can be inverted with probability
ε′ greater than:

ε′ ≥ (
ε− (qH + qsig) · 2−k0 − (qD + (qH + qsig)

2) · 2−k1
)n − 2−k/8

within time bound t′ ≤ n · t + (qH + qG + qsig)
n · poly(k), where n = d5k/(4k1)e.

For the unforgeability of the RSA-PSS-ES encryption and signature scheme, we obtain
a better security bound than the general result of Theorem 3, by relying upon the homo-
morphic properties of RSA. The proof of the following theorem is similar to the security
proof of PSS in [4] and is given in appendix E.

Theorem 6. Let A be an adversary against the unforgeability of the PSS-ES scheme
(K, E ,D,S,V), with success probability ε and running time t, making qD, qsig, qH and
qG queries to the decryption oracle, the signing oracle, and the hash functions H and G,
respectively. Then RSA can be inverted with probability ε′ greater than:

ε′ ≥ ε− (
(qH + qsig)

2 + qD + 1
) · (2−k0 + 2−k1) (15)

within time bound t′ ≤ t + (qH + qsig) · O(k3).

Note that as for OAEP [9], the security proof for encrypting with PSS is far from being
tight. This means that it does not provide a meaningful security result for a moderate
size modulus (e.g., 1024 bits). For the security proof to be meaningful in practice, we
recommend to take k1 ≥ k/2 and to use a larger modulus (e.g., 2048 bits).

6 Conclusion

In all existing PKIs different padding formats are used for encrypting and signing; moreover,
it is recommended to use different keys for encrypting and signing. In this paper we have
proved that the PSS padding scheme used in PKCS#1 v.2.1 [14] and IEEE P1363 [12]
can be safely used for encryption as well. We have also proved that the same key pair can
be safely used for both signature and encryption. The practical consequences of this are
significant: besides halving the number of keys in security systems and simplifying their
architecture, our observation allows resource-constrained devices such as smart cards to
use the same code for implementing both signature and encryption.
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A Proof of Theorem 2

The theorem follows from inequality (1) and the following lemma.

Lemma 4. Let A be an adversary against the semantic security of PSS-ES, with success
probability ε and running time t, making qD, qsig, qH and qG queries to the decryption
oracle, the signing oracle, and the hash functions H and G, respectively. Then, the success
probability Succs−pd−ow(qG, t′) is greater than:

ε− (qH + qsig) · 2−k0 − qD2−k1 − (qH + qsig)
2 · 2−k1

where t′ ≤ t + (qH + qsig) · Tf , and Tf denotes the time complexity of f .
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Proof. The proof is very similar to the proof of lemma 1. The top-level description of
the reduction B is the same and the simulation of the decryption oracle is the same.
However, oracles H and G are simulated differently. Instead of simulating H and G so that
µ(M, r) = y is a random integer, we simulate H and G so that µ(M, r) = f(x) for a known
random x, which allows to answer the signature query for M .

Simulation of oracles G and H and signing oracle:

When receiving the query M‖r to H, we generate a random x ∈ {0, 1}k and compute
y = f(x). We denote y = ω‖s. If ω never appeared before, we let G(ω) = s ⊕ (M‖r) and
return ω, otherwise we abort.

When receiving a query ω for G, if G(ω) has already been defined, we return G(ω),
otherwise we return a random (k − k1)-bit integer.

When we receive a signature query for M , we generate a random k0-bit integer r. If
M‖r was queried to H before, we know ω, s, y and x such that:

H(M‖r) = ω and G(ω) = s⊕ (M‖r) and y = f(x) = ω‖s

so we return the corresponding signature x. If M‖r was never queried before, we simulate
an H-query for M‖r as previously: we pick a random x ∈ {0, 1}k and compute y = f(x).
We denote y = ω‖s. If ω never appeared before, we let H(M‖r) = ω, G(ω) = s ⊕ (M‖r)
and return the signature x, otherwise we abort.

Analysis

As in lemma 1, we denote by AskG the event: “ω∗ has been asked to G” and by AskH the
event: “there exists M ′ such that M ′||r∗ has been queried to H”; we denote by DBad the
event: “a valid ciphertext has been rejected by our simulation of the decryption oracle D”.
Moreover, we denote by SBad the event: “the reduction aborts when answering a H-oracle
query or a signature query”. As previously, we have:

Pr[AskH|¬AskG] ≤ (qH + qsig) · 2−k0

and

Pr[DBad] ≤ qD · 2−k1

When answering an H-oracle query or a signature query, the integer ω which is generated
is uniformly distributed because f is a permutation. Moreover, at most qH + qsig values
of ω can appear during the reduction. Therefore the probability that the reduction aborts
when answering an H-oracle query or a signature query is at most (qH + qsig) · 2−k1 , which
gives:

Pr[SBad] ≤ (qH + qsig)
2 · 2−k1

We denote by Bad the event:

Bad = AskG ∨ AskH ∨ DBad ∨ SBad
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Let S denote the event: “the adversary outputs the correct value for b, i.e. b = b′”. Condi-
tioned on ¬Bad, our simulation of oracles G,H, D and of the signing oracle are independent
of b, and therefore the adversary’s view is independent of b. This gives:

Pr[S|¬Bad] =
1

2
(16)

Moreover, conditioned on ¬Bad, the adversary’s view is the same as when interacting with
(perfect) random oracles, decryption oracle and signing oracle, which gives:

Pr[S ∧ ¬Bad] ≥ 1

2
+

ε

2
− Pr[Bad] (17)

which yields as in Lemma 1:

Pr[Bad] ≥ ε (18)

and eventually:

Pr[AskG] ≥ ε− (qH + qsig) · 2−k0 − qD · 2−k1 − (qH + qsig)
2 · 2−k1

B Proof of Theorem 3

From A we construct an algorithm B, which receives as input c and outputs η such that
c = f(η).

Top-level description of the reduction B:
1. B is given a function f and c = f(η), for a random integer η.
2. B selects uniformly at random an integer j ∈ [1, qH ].
3. B runs A with f . It simulates the decryption oracle, the signing oracle and random

oracles H and G as described below. B maintains a counter i for the i-th query Mi‖ri to
H. The oracles H and G are simulated in such a way that if i = j then µ(Mi‖ri) = c.

4. B receives from A a forgery σ. Letting M and r be the corresponding message and
random, if (M, r) = (Mj, rj) then f(σ) = µ(Mj‖rj) = c and B outputs σ.

Simulation of the oracles G, H, D and signing oracle:
When receiving the i-th query Mi‖ri to H, we distinguish two cases: if i 6= j, we

generate a random xi ∈ {0, 1}k and compute yi = f(xi). If i = j, we let yi = c. In both
cases we denote yi = ωi‖si. If ωi never appeared before, we let G(ωi) = si ⊕ (Mi‖ri) and
return ωi, otherwise we abort.

When receiving a query ω for G, if G(ω) has already been defined, we return G(ω),
otherwise we return a random (k − k1)-bit integer.

When we receive a signature query for M , we generate a random k0-bit integer r. If
M‖r was queried to H before, we have M‖r = Mi‖ri for some i. If i 6= j, we have:

H(Mi‖ri) = ωi, G(ωi) = si ⊕ (Mi‖ri) and yi = ωi‖si = f(xi)
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so we return the corresponding signature xi, otherwise we abort. If M‖r was never queried
before, we simulate an H-query for M‖r as previously: we generate a random x ∈ {0, 1}k

and compute y = f(x). We denote y = ω‖s. If ω never appeared before, we let H(M‖r) = ω
and G(ω) = s⊕ (M‖r) and return the signature x, otherwise we abort.

The simulation of the decryption oracle is identical to that of Lemma 1.

Analysis:
Let σ be the forgery sent by the adversary. If ω was not queried to G, we simulate

a query to G as previously. Let ω‖s = f(σ) and M‖r = G(ω) ⊕ s. If M‖r was never
queried to H, then H(M‖r) is undefined because there was no signature query for M ;
the probability that H(M‖r) = ω is then 2−k1 . Otherwise, let (M, r) = (Mi, ri) be the
corresponding query to H. If i = j, then µ(Mj, rj) = c = f(σ) and B succeeds in inverting
f .

Conditioned on i = j, our simulation of H and the signing oracle are perfect, unless
some ω appears twice, which happens with probability less than (qH + qsig)

2 · 2−k1 . As in
lemma 1, our simulation of D fails with probability less than qD · 2−k1 . Consequently, the
reduction B succeeds with probability greater than:

1

qH

· (ε− 2−k1 − (qH + qsig)
2 · 2−k1 − qD · 2−k1

)

which gives (10).

C Proof of Lemma 3

Let b1, . . . , bd ∈ Zn be linearly independent vectors. A lattice L spanned by the vectors
(b1, . . . , bd) is the set of all integer linear combinations of b1, . . . , bd. The integer d is called
the rank of the lattice. We say that the lattice is of full rank if n = d. We denote by ‖L‖∞
the infinite norm of the shortest non-zero vector of L.

Given α = (α1, . . . , αn−1) ∈ (ZN)n−1, consider the set:

L(α) = {s = (s0, . . . , sn−1) ∈ Zn|si − αi · s0 = 0 mod N for all 1 ≤ i ≤ n− 1}

The set L is a full rank lattice spanned by the n vectors:

(1, α1, . . . , αn−1), (0, N, 0, . . . , 0), · · · , (0, . . . , 0, N) (19)

The proof of lemma 3 is based on the following three lemmata:

Lemma 5. The probability over α ∈ Zn−1
N that ‖L(α)‖∞ < C is less than

(3C)n

Nn−1
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Proof. To each L(α) such that ‖L(α)‖∞ < C we can associate a shortest vector b(α) such
that ‖b(α)‖∞ < C. There are at most (2C + 1)n such vectors.

Let b0 be the first component of b(α). If b0 = 0 mod N , then all the components of
b(α) are equal to zero modulo N . This gives ‖b(α)‖∞ ≥ N , and the first vector in (19) is
shorter for ‖‖∞ than b(α). Therefore b0 6= 0 mod N .

If b0 is invertible modulo N , this uniquely determines α. Otherwise, let p and q be the
prime factors of N . If b0 = 0 mod p, then b0 6= 0 mod q and this uniquely determines α
modulo q, so there are at most pn−1 possible values for α. Moreover, all the components of
b(α) are equal to 0 modulo p, and for any C the number of such vectors b(α) is at most:

(
2 ·

⌊
C

p

⌋
+ 1

)n

− 1 ≤
(

3C

p

)n

which corresponds to at most:

(
3C

p

)n

· pn−1 =
(3C)n

p

possible values for α. The same holds if b0 = 0 mod q. Therefore there are at most:

(2C + 1)n + (3C)n ·
(

1

p
+

1

q

)
≤ (3C)n

vectors α such that ‖L(α)‖∞ < C. ut

Lemma 6. If ‖L(α)‖∞ ≥ 2 · B, then the solution s of the system S with ‖s‖∞ < B is
unique and is equal to T −P , where T = (0, c1, . . . , cn−1) and P is the closest vector to T
for ‖‖∞.

Proof. Let s′ be another solution of S with ‖s′‖∞ < B. Then s−s′ ∈ L(α) and ‖s−s′‖∞ <
2 ·B which gives s = s′ since ‖L(α)‖∞ ≥ 2 ·B

Let s′ = T − P where P ∈ L(α) is a closest vector to T for ‖‖∞. Since T − s is a
vector of L(α), we have:

‖s′‖∞ = ‖T − P ‖∞ ≤ ‖T − (T − s)‖∞ = ‖s‖∞
‖s′ − s‖∞ ≤ ‖s′‖∞ + ‖s‖∞ ≤ 2‖s‖∞ < 2 ·B

and so s′ = s. ut

Lemma 7. Let (b1, . . . , bn) be a basis of a lattice L ⊂ Zn such that ‖L‖∞ ≥ B · (1 +√
n · 2n/2) and T a vector which distance to L for ‖‖∞ is strictly less than B. There exists

a polynomial-time algorithm taking as input (b1, . . . , bn) and T and outputting a closest
vector P ∈ L to T for ‖‖∞.
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Proof. The proof is based on the following theorem:

Theorem 7 (Babai [1]). There exists a polynomial time algorithm which, given a basis
(b1, . . . , bn) of a lattice L ⊂ Zn, approximates the closest vector problem for the Euclidean
norm to a factor 2n/2.

Let P ′ be the vector obtained by running Babai’s algorithm on (b1, . . . , bn) and T . Let
P a closest vector to T for ‖‖∞. We show that P ′ = P .

Letting P ′′ be a closest vector to T for the Euclidean norm, we have:

‖T − P ′‖ ≤ 2n/2‖T − P ′′‖

Moreover, since P ′′ is a closest vector to T for ‖‖, we have:

‖T − P ′′‖ ≤ ‖T − P ‖

The distance of T to L for ‖‖∞ is strictly less than B, therefore:

‖T − P ‖∞ < B

This gives:

‖T − P ′‖∞ ≤ ‖T − P ′‖ ≤ 2n/2‖T − P ‖ ≤ √
n · 2n/2‖T − P ‖∞ < B

√
n · 2n/2

and eventually

‖P − P ′‖∞ ≤ ‖P − T ‖∞ + ‖T − P ′‖∞ < B(1 +
√

n · 2n/2)

and so P = P ′. ut

Resuming the proof of lemma 3, we take B = 2k2 and C = 2k2(1 +
√

n · 2n/2). We
consider the lattices L(α) such that ‖L(α)‖∞ ≥ C. From lemma 5, and using:

3C ≤ 2k2+n+2

the proportion of lattices L(α) such that ‖L(α)‖∞ < C is smaller than:

2n·(k2+n+2)

Nn−1

From lemma 6 the solution s of the system S with ‖s‖∞ < 2k2 is unique and equal to
T −P , where T = (0, c1, . . . , cn−1) and P is the closest vector to T for ‖‖∞. From lemma
7, and using the basis (19) for L(α), we can compute P in time polynomial in n and in
the size of N .
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D Proof of Inequality (14)

We assume that:
k1 ≥ 64 and k ≤ 2−6 · (k1)

2 (20)

We have:

2n·(k2+n+2)

Nn−1
≤ 2n·(k−k1+n+2)−(n−1)·(k−1)

≤ 2n·(−k1+n+3)+k−1

Letting f(x) = x·(−k1+x+3)+k−1, we have f ′(x) = −k1+2·x+3. For 0 ≤ x ≤ 5k/(4k1)+1
and using (20), we obtain f ′(x) ≤ 0. We take:

n =

⌈
5k

4k1

⌉

f is then a decreasing function for 0 ≤ x ≤ n, therefore:

f

(
5k

4k1

)
≥ f(n)

which yields using (20):
f(n) ≤ −k/8

from which we obtain inequality (14).

E Proof of Theorem 6

The proof is similar to the security proof of PSS in [4]. The only difference is that we
simulate a decryption oracle as in theorem 3. This adds an error probability of qD · 2−k1 .
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Abstract. This paper introduces two new attacks on pkcs#1 v1.5, an rsa-based encryption stan-
dard proposed by RSA Laboratories. As opposed to Bleichenbacher’s attack, our attacks are chosen-
plaintext only, i.e. they do not make use of a decryption oracle. The first attack applies to small
public exponents and shows that a plaintext ending by sufficiently many zeroes can be recovered ef-
ficiently when two or more ciphertexts corresponding to the same plaintext are available. We believe
the technique we employ to be of independent interest, as it extends Coppersmith’s low-exponent
attack to certain length parameters. Our second attack is applicable to arbitrary public exponents,
provided that most message bits are zeroes. It seems to constitute the first chosen-plaintext attack
on an rsa-based encryption standard that yields to practical results for any public exponent.

1 Introduction

pkcs stands for Public-Key Cryptography Standards. It is a large corpus of specifications
covering rsa encryption [13], Diffie-Hellman key agreement, password-based encryption,
syntax (extended-certificates, cryptographic messages, private-key information and certi-
fication requests) and selected attributes. Historically, pkcs was developed by RSA Lab-
oratories, Apple, Digital, Lotus, Microsoft, MIT, Northern Telecom, Novell and Sun. The
standards have been regularly updated since. Today, pkcs has become a part of several
standards and of a wide range of security products including Internet Privacy-Enhanced
Mail.

Amongst the pkcs collection, pkcs#1 v1.5 describes a particular encoding method
for rsa encryption called rsaEncryption. In essence, the enveloped data is first encrypted
under a randomly chosen key K using a symmetric block-cipher (e.g. a triple des in cbc
mode) then K is rsa-encrypted with the recipient’s public key.

In 1998, Bleichenbacher [2] published an adaptive chosen-ciphertext attack against
pkcs#1 v1.5 capable of recovering arbitrary plaintexts from a few hundreds of thou-
sands of ciphertexts. Although active adversary models are generally viewed as theoretical
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issues,1 Bleichenbacher’s attack makes use of an oracle that only detects conformance with
respect to the padding format, a real-life assumption leading to a practical threat. pkcs#1
was subsequently updated in the release 2.0 [15] and patches were issued to users wishing
to continue using the old version of the standard.

Independently, there exist several well-known chosen-plaintext attacks on rsa-based
encryption schemes [8, 5]. These typically enable an attacker to decrypt ciphertexts at
moderate cost without requiring to factor the public modulus. The most powerful crypt-
analytic tool applicable to low exponent rsa is probably the one based on a theorem due
to Coppersmith [6]. As a matter of fact, one major purpose of imposing a partially ran-
dom padding form to messages, besides attempting to achieve a proper security level such
as indistinguishability, is to render the whole encryption scheme resistant against such
attacks.

This paper shows that, despite these efforts, chosen-plaintext attacks are actually suf-
ficient to break pkcs#1 v1.5 even in cases when Coppersmith’s attack does not apply.
We introduce new cryptanalytic techniques allowing an attacker to retrieve plaintexts be-
longing to a certain category, namely messages ending by a required minimum number
of zeroes. The first attack requires two or more ciphertexts corresponding to the same
plaintext. Although specific, our attacks only require a very small amount of ciphertexts
(say ten of them), are completely independent from the public modulus given its size and,
moreover, are fully practical for usual modulus sizes.

The rest of this paper is divided as follows. Section 2 introduces a new low-exponent
attack for which we provide a comparison with Coppersmith’s attack in Section 3. Sec-
tion 4 shows how to deal with arbitrary public exponents while staying within the chosen-
plaintext attack model. Counter-measures are discussed in Section 5. For completeness,
Appendix reports practical experiments of our technique performed on 1024-bit cipher-
texts.

2 Our Low-Exponent Chosen-Plaintext Attack

We briefly recall the pkcs#1 v1.5 encoding procedure [14]. Let {n, e} be an rsa public
key and d be the corresponding secret key. Denoting by k the byte-length of n, we have
28(k−1) ≤ n < 28k. A message m of size |m| bytes with |m| ≤ k−11 is encrypted as follows.
A padding r′ consisting of k− 3−|m| ≥ 8 nonzero bytes is generated at random. Then the
message m gets transformed into:

pkcs(m, r′) = 000216‖r′‖0016‖m,

and encrypted to form the ciphertext:

c = pkcs(m, r′)e mod n .

1 Chosen-ciphertext attacks require the strong assumption that the adversary has a complete access to a decryption
oracle.
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Letting r = (000216‖r′), we can write pkcs(m, r′) = r 2β + m with β = 8|m|+ 8. Now
assume that m has its least Z significant bits equal to zero. Hence, we can write m = m̄ 2Z

and subsequently:

pkcs(m, r′) = 2Z(r 2β−Z + m̄) .

From two encryptions of the same message m, (i.e. ci = [2Z(ri2
β−Z + m̄)]e mod n for

i = 1, 2), the attacker evaluates:

∆ :=
c1 − c2

2eZ 2β−Z
mod n ≡

(r1 − r2)
[∑e−1

j=0(r1 2β−Z + m̄)e−1−j(r2 2β−Z + m̄)j
]

(mod n)

︸ ︷︷ ︸ ︸ ︷︷ ︸
:= v := ω

(1)

The attack consists in the following: assuming that r1 > r2 and the number of zeroes Z
to be large enough so that 0 < ω v < n, relation (1) holds over the integers, and ω = r1−r2

must divide ∆. Therefore, by extracting the small factors of ∆ one expects to reconstruct a
candidate for ω. The correct guess for ω will lead to the message m using the low-exponent
attack described in [7].

Letting R the bit-size of random r′ (the standard specifies R ≥ 64), M the bit size of
m̄, and N the bit size of modulus n, the condition w · v < n is satisfied whenever:

eR + (e− 1)× (M + 10) < N . (2)

With N = R + M + Z + 24, equation (2) is equivalent to:

(e− 1)R + (e− 2)M + 10e− 34 < Z .

2.1 Determining the Factors of ∆ Smaller Than a Bound B

The first step of our attack consists in computing a set D of divisors of ∆ by extracting
the primes P = {p1, . . . , pi} that divide ∆ and are smaller than a bound B. If all the prime
factors of ω are smaller than B (in this case, ω is said to be B-smooth), then ω ∈ D. Since
only a partial factorization of ∆ is required, only factoring methods which complexity relies
on the size of the prime factors are of interest here. We briefly recall four of these: trial
division, Pollard’s ρ method, p−1 method and Lenstra’s elliptic curve method (ECM) and
express for each method the asymptotic complexity C(p) of extracting a factor p from a
number n.

Trial division method: Trial division by primes smaller than a bound B demands a
complexity of p + log n for extracting p.
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Pollard’s ρ-method [4]: Let p be a factor of n. Pollard’s ρ-method consists in iterating a
polynomial with integer coefficients f (that is, computing f(x) mod n, f(f(x)) mod n,
and so on) until a collision modulo p is found (i.e. x ≡ x′ (mod p)). Then with high
probability gcd(x − x′(mod n), n) yields p. The complexity of extracting a factor p is
O(
√

p). In practice, prime factors up to approximately 60 bits can be extracted in
reasonable time (less than a few hours on a workstation).

p − 1 method: If p − 1 is B-smooth then p − 1 divides the product `(B) of all primes
smaller than B. Since ap−1 mod p = 1, we have a`(B) mod p = 1 and thus gcd(a`(B) −
1 mod n, n) gives p.

Lenstra’s elliptic curve method (ECM) [11]: ECM is a generalization of the p − 1
factoring method. Briefly, a point P of a random elliptic curve E modulo n is generated.
If #E/(p) (i.e. the order of the curve modulo p) is B-smooth, then [`(B)]P = O, the
point at infinity. This means that an illegal inversion modulo n has occurred and p
is revealed. ECM extracts a factor p of n in exp((

√
2 + o(1))

√
log p log log p) expected

running time. In practice, prime factors up to 80 bits can be pulled out in reasonable
time (less than a few hours on a workstation).

Traditionally, ψ(x, y) denotes the number of integers z ≤ x such that z is smooth with
respect to the bound y. The theorem that follows gives an estimate for ψ(x, y).

Theorem 1 ([9]). For any non-negative real u, we have:

lim
x→∞

ψ(x, x1/u)/x = ρ(u) ,

where ρ(u) is the so-called Dickman’s function and is defined as:

ρ(t) =





1 if 0 ≤ t < 1

ρ(n)−
∫ t

n

ρ(v − 1)

v
dv if n ≤ t < n + 1

.

Theorem 1 shows that a uniformly distributed random integer z between 1 and x is
x1/u-smooth with probability ρ(u). However, the integers referred to in the sequel are not
uniformly distributed. Consequently, the probability and complexity estimates must be
considered to be heuristic.

The probability that ω is B-smooth is approximately ρ(R/ log2 B). Thus using two
ciphertexts, the probability of finding all factors of ω is ρ(R/ log2 B). When using k cipher-
texts, k×(k−1)/2 paired combinations can be obtained. Assuming statistical independence
between the factorization of the corresponding w, approximately

k =
√

2/ρ(R/ log2 B)

ciphertexts are required to compute the factorization of at least one ω in complexity:

C(B)/ρ(R/ log2 B) .
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In practice, a factorization algorithm starts with trial division up to some bound B′ (we
took B′ = 15000), then Pollard’s ρ-method and the p−1 method are applied, and eventually
the ECM. In Table 1 we give the running times obtained on a Pentium 233-MHz to extract
a prime factor of size L bits with the ECM, using the arithmetic library MIRACL [12].

L 32 40 48 56 64 72

time in seconds 6 15 50 90 291 730

Table 1. Running times for extracting a prime factor of L bits using the ECM.

This clearly shows that for R ≤ 72, the factors of ω can be recovered efficiently. For
R > 72 we estimate in Table 2 the execution time and the number of required ciphertexts,
when only factors up to 72 bits are to be extracted.

L 128 160 192 224 256

time in seconds 1719 3440 7654 19010 51127

number of ciphertexts 3 4 5 8 12

Table 2. Running time and approximate number of ciphertexts needed to factorize of at least one ω.

2.2 Identifying the Candidates for ω

From the previous section we obtain a set of primes P = {p1, . . . , pi} dividing ∆, such that
the primes dividing ω are in P . From P we derive a set D = {∆j} of divisors of ∆, which
contains ω. Denoting by d(k) the number of divisors of an integer k, the following theorem
[10] provides an estimate of the number of divisors of a random integer. We say that an
arithmetical function f(k) is of the average order of g(k) if

f(1) + f(2) + . . . + f(k) ∼ g(1) + . . . + g(k) .

We state:

Theorem 2. The average order of d(k) is log k. More precisely, we have:

d(1) + d(2) + · · ·+ d(k) = k log k + (2γ − 1)k + O(
√

k) ,

where γ is Euler-Mascheroni’s constant.

Theorem 2 shows that if ∆ was uniformly distributed between 1 and n then its number
of divisors and consequently the average number of candidates for ω would be roughly
log n. Since ∆ is not uniformly distributed this only provides an heuristic argument to
show that the average number of candidates for ω should be polynomially bounded by
log n.

In practice, not all divisors ∆j need to be tested since only divisors of length close to
or smaller than R are likely to be equal to ω. Moreover, from Eq. (1) and letting m̄2 =
r2 2β−Z + m̄, we have:
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∆ = ω

e−1∑
j=0

(ω 2β−Z + m̄2)
e−1−j m̄j

2

= ω

e−1∑
j=0

e−1−j∑

k=0

(
e− 1− j

k

)
(ω 2β−Z)e−1−j−k m̄j+k

2

= ω

e−1∑

h=0

[
h∑

i=0

(
e− 1− i

h− i

)]
(ω 2β−Z)e−1−h m̄h

2 ,

whence, noting that
∑h

i=0

(
e−1−i

h−i

)
≡ 0 (mod e) for 1 ≤ h ≤ e− 1,

∆ ≡ ω (ω 2β−Z)e−1 (mod e) .

In particular, when e is prime, this simplifies to

∆ ≡ ωe 2(β−Z)(e−1) ≡ ω (mod e) .

This means that only a ∆j satisfying ∆ ≡ ∆j (∆j 2β−Z)e−1 (mod e) (or ∆ ≡ ∆j (mod e)
if e is prime) is a valid candidate for ω.

2.3 Recovering m Using the Low-Exponent RSA with Related Messages
Attack

The low-exponent attack on rsa with related messages described in [7] consists in the
following: assume that two messages m1, m2 verify a known polynomial relation P of the
form

m2 = P(m1) with P ∈ Zn[z] and deg(P) = δ ,

and suppose further that the two corresponding ciphertexts c1 and c2 are known. Then
z = m1 is a common root of polynomials Q1,Q2 ∈ Zn[z] given by

Q1(z) = ze − c1 and Q2(z) = (P(z))e − c2 ,

so that with high probability one recovers m1 by

gcd(Q1,Q2) = z −m1 (mod n) .

From the previous section we obtain a set of divisors ∆j of ∆, among which one is equal
to ω. Letting m1 = pkcs(m, r1) and m2 = pkcs(m, r2) we have:

c1 = me
1 (mod n), c2 = me

2 (mod n), and m2 = m1 − 2β ω .

For a divisor ∆j of ∆, the attacker computes:



124 Jean-Sébastien Coron et alii.

Rj(z) = gcd(ze − c1, (z − 2β∆j)
e − c2) .

If ∆j = ω then, with high probability, Rj(z) = z −m1 (mod n), which yields the value of
message m, as announced.

3 Comparison with Coppersmith’s Attacks on Low-exponent
RSA

Coppersmith’s method is based on the following theorem [6]:

Theorem 3 (Coppersmith). Let P ∈ Zn[x] be a univariate polynomial of degree δ
modulo an integer n of unknown factorization. Let X be the bound on the desired solution.
If X < 1

2
n1/δ−ε, one can find all integers x0 with P(x0) = 0 (mod n) and |x0| ≤ X in

time polynomial in (log n, δ, 1/ε).

Corollary 1 (Coppersmith). Under the same hypothesis and provided that X < n1/δ,
one can find all integers x0 such that P(x0) = 0 (mod n) and |x0| ≤ X in time polynomial
in (log n, δ)

Theorem 3 applies in the following situations:

Stereotyped messages: Assume that the plaintext m consists of a known part B = 2kb
and an unknown part x. The ciphertext is c = me = (B+x)e (mod n). Using Theorem 3
with the polynomial P(x) = (B + x)e − c, one can recover x from c if |x| < n1/e.

Random padding: Assume that two messages m and m′ satisfy an affine relation m′ =
m + r with a small but unknown r. From the rsa-encryptions of the two messages:

c = me mod n and c′ = (m + r)e mod n ,

we eliminate m from the two above equations by taking their resultant, which gives
a univariate polynomial in r modulo n of degree e2. Thus, if |r| < n1/e2

, r can be
recovered, wherefrom we derive m as in Section 2.3.

In our case of interest, for a message ending with Z zeroes, the stereotyped messages
attack works for e(M + R) < N and the random padding attack works for e2R < N .
Neglecting constant terms, our method of Section 2 is effective for

eR + (e− 1)M < N .

Consequently, as illustrated in Figure 1, for e = 3, our method improves Coppersmith’s
method whenever





N

e2
<R<

N

e
and

N

e
−R <M<

N

e− 1
− e

e− 1
R

.
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M

R

N

N/3

N/3 N/2 N

N/9

(1)

(2)

(3)

Fig. 1. Domains of validity for e = 3 of Coppersmith’s stereotyped attack (1), Coppersmith’s random padding
attack (2) and our attack (3).

4 A Chosen Plaintext Attack for Arbitrary Exponents

4.1 Description

In this section we describe a chosen plaintext attack against pkcs#1 v1.5 encryption for
an arbitrary exponent e. The attack makes use of a known flaw in ElGamal encryption [3]
and works for very short messages only. As in Section 2 we only consider messages ending
by Z zeroes:

m = m̄‖0 . . . 02 .

For a random r′ consisting of nonzero bytes, the message m is transformed using
pkcs#1 v1.5 into:

pkcs(m, r′) = 000216‖r′‖0016‖m̄‖0 . . . 02

and encrypted into c = pkcs(m, r′)e mod n. Letting x = 000216‖r′‖0016‖m̄, we can write

pkcs(m, r′) = x 2Z .

We define y = c/2eZ = xe (mod n), M the bit-size of m̄, and X the bit-size of x. Hence,
we have X = M + R + 10. Assuming that x = x1 x2 where x1 and x2 are integers smaller
than a bound B, we construct the table:
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y

ie
mod n for i = 1, . . . , B

and for each j = 0, . . . , B we check whether je mod n belongs to the table, in which case
we have y/ie = je mod n. Hence, from {i, j} we recover x = i·j, which leads to the message
m.

4.2 Analysis

The attack requiresO(
B(log n)((log n)3+log B)

)
operations. Let φ(x, y) denote the number

of integers v < x such that v can be written as v = v1 v2 with v1 < y and v2 < y. The
following theorem gives a lower bound for φ(x, y).

Theorem 4. For x →∞ and 1/2 < α < 1,

lim inf φ(x, xα)/x ≥ log
α

1− α
. (3)

Proof. For y > d√xe, we note:

T (x, y) = {v < x, such that v is y-smooth and not dx/ye-smooth} .

Any integer v ∈ T (x, y) has a prime factor p standing between dx/ye and y, and so v = p r
with p < y and r < y. Consequently,

φ(x, y) ≥ #T (x, y) . (4)

From Theorem 1 and ρ(t) = 1− log t for 1 ≤ t ≤ 2, we have:

lim
x→∞

#T (x, xα)/x = log
α

1− α
,

which, using Eq. (4) gives (3). ut

Since x is not uniformly distributed between zero and 2X , Theorem 4 only provides a
heuristic argument to show that when taking B = 2αX with α > 1/2, then with probability
greater than

log
α

1− α
,

the attack recovers x in complexity 2αX+o(1).

Thus, an eight-bit message encrypted with pkcs#1 v1.5 with a 64-bit random padding
string can be recovered with probability' 0.16 in time and space complexity approximately
244 (with α = 0.54).
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5 Experiments and Countermeasures

A number of counter-measures against Bleichenbacher’s attack are listed on RSA Labo-
ratories’ web site (http://www.rsa.com/rsalabs/). A first recommendation is a rigorous
format check of all decrypted messages. This has no effect on our attack since we never
ask the legitimate receiver to decrypt anything. A second quick fix consists in asking the
sender to demonstrate knowledge of m to the recipient which is done by disclosing some
additional piece of information. This also has no effect on our attack. The same is true for
the third correction, where a hash value is incorporated in m, if the hash value occupies
the most significant part of the plaintext i.e.

pkcs(m, r′) = 000216‖r′‖0016‖ SHA(m)‖m .

A good way to thwart our attack is to limit Z. This can be very simply achieved by
forcing a constant pattern τ in pkcs(m, r′):

pkcs(m, r′) = 000216‖r′‖0016‖m‖τ .

This presents the advantage of preserving compatibility with pkcs#1 v1.5 and being
very simple to implement. Unfortunately, the resulting format is insufficiently protected
against [2]. Instead, we suggest to use:

pkcs(m, r′) = 000216‖r′‖0016‖m‖ SHA(m, r′) ,

which appears to be an acceptable short-term choice (r′ was added in the hash function
to better resist [2] at virtually no additional cost). For long-term permanent solutions, we
recommend OAEP (pkcs#1 v2.0) [1].

6 Extensions and Conclusions

We proposed two new chosen-plaintext attacks on the pkcs#1 v1.5 encryption standard.
The first attack applies to small public exponents and shows how messages ending by
sufficiently many zeroes can be recovered from the ciphertexts corresponding to the same
plaintext. It is worth seeing our technique as a cryptanalytic tool of independent interest,
which provides an extension of Coppersmith’s low-exponent attack. Our second attack,
although remaining of exponential complexity in a strict sense, shows how to extend the
weakness to any public exponent in a practical way.

The attacks can, of course, be generalized in several ways. For instance, one can show
that the padding format:

µ(m1,m2, r
′) = 000216‖m1‖r′‖0016‖m2

(where the plaintext m = m1‖m2 is spread between two different locations), is equally
vulnerable to the new attack: re-defining r′′ = m1‖r′, we can run the attack (as is) on
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pkcs(m, r′′) and notice that the size of ω will still be R′ given that the most significant
part of r′′ is always constant.

We believe that such examples illustrate the risk induced by the choice of ad hoc low-cost
treatments as message paddings, and highlights the need for carefully scrutinized encryp-
tion designs, strongly motivating (once again) the search for provably secure encryption
schemes.
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A A Full-Scale 1024-Bit Attack

To confirm the validity of our attack, we experimented it on RSA Laboratories’ official
1024-bit challenge RSA-309 for the public exponent e = 3. As a proof of proper generation
r′1 and r′2 were chosen to be RSA-100 mod 2128 and RSA-110 mod 2128. The parameters are
N = 1024, M = 280, R = 128, Z = 592 and β = 880. Note that since R > N/9 and
R + M > N/3, Coppersmith’s attack on low-exponent rsa does not apply here.
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n = RSA-309

= bdd14965 645e9e42 e7f658c6 fc3e4c73 c69dc246 451c714e b182305b 0fd6ed47

d84bc9a6 10172fb5 6dae2f89 fa40e7c9 521ec3f9 7ea12ff7 c3248181 ceba33b5

5212378b 579ae662 7bcc0821 30955234 e5b26a3e 425bc125 4326173d 5f4e25a6

d2e172fe 62d81ced 2c9f362b 982f3065 0881ce46 b7d52f14 885eecf9 03076ca5

r′1 = RSA-100 mod 2128

= f66489d1 55dc0b77 1c7a50ef 7c5e58fb

r′2 = RSA-110 mod 2128

= e2a5a57d e621eec5 b14ff581 a6368e9b

m = m̄ 2Z
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µ1 = pkcs(m, r′1)

= 0002f664 89d155dc 0b771c7a 50ef7c5e 58fb0049 276d2061 20636970 68657274

6578742c 20706c65 61736520 62726561 6b206d65 20210000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

µ2 = pkcs(m, r′2)

0002e2a5 a57de621 eec5b14f f581a636 8e9b0049 276d2061 20636970 68657274

6578742c 20706c65 61736520 62726561 6b206d65 20210000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

c1 = µ3
1 mod n

= 2c488b6f cf2e3d4c 01b82776 64790af0 d78f82fd 4605fda2 76b9356d 80e82cfb

8737340f 5a7091b0 38c4bb41 ae6462d9 f751766c c343c87b 54397ca2 647d6a81

3609d876 f29554e0 9efcbf2d b49d8300 5fce9ea8 80fd9cf2 476fbab0 257f1462

d295a4cb 5468bb86 b3151a49 14e51ed1 7cbc083c 9ae0b4da 9c2a7de0 079df4a0

c2 = µ3
2 mod n

= 829da9a7 af2c61ed 7bb16f94 7cb90aa7 df8b99df c06017d7 3afc80fd 64494abb

3c1cb8db 1167eccd d1b6d09e 8ca5a98c c5e19620 b6313eef 495169d7 9ed9a2b1

cb393e7d 45bea586 49e20986 9a2399f7 f70dd819 90183e1a 3c6a971a 33497e57

f0ad9fb9 0c7d331e 7108d661 4c487a85 36cf7750 060811d8 70b8a040 e0c39999
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Using the ECM it took a few hours on a single workstation to find that:

∆ = p5
1 ×

10∏
i=2

pi

where all the pi are primes. Amongst the 3072 = 6 × 29 possible divisors only 663 cor-
responded to 128-bit candidates {∆1, ∆2, . . . , ∆663} where the ∆i are in decreasing order.
Then we computed:

Rj(z) = gcd(ze − c1, (z − 2β∆j)
e − c2) for 1 ≤ j ≤ 663 .

For j 6= 25, Rj(z) = 1 and for j = 25 we obtained:

R25(z) = z −m1 .

One can check that:

∆25 = w = p5
1 p2 p3 p4 p5 p8 ,

and

m1 = µ1 = pkcs(m, r′1) .

∆ = 00000001 fa75bf4e 390bdf4b 7a0524e0 b9ebed20 5758be2e f1685067 1de199af

0f8714f7 077a6c47 6870ea6d 2de9e7fb 3c40b8d2 017c0197 f9533ed1 f4fe3eab

836b6242 aa03181a 56a78001 7c164f7a c54ecfa7 73583ad8 ffeb3a78 eb8bcbe2

8869da15 60be7922 699dc29a 52038f7b 83e73d4e 7082700d 85d3a720

p1 = 00000002, p2 = 00000007, p3 = 00000035, p4 = 000000c5, p5 = 4330e379

p6 = 548063d7, p7 = 001ebf96 ff071021, p8 = 0000021b ac4d83ae 7dedba55

p9 = 0000128a ec52c6ec 096996bf

p10 = 00000022 e3b1a6b0 13829b67 f604074a 5a1135b3 45be0835 ea407ed7 8138a27a

112e78c8 131f3bc3 b6d17dc0 e8a905f1 ca4b6aff 680bc58c 4962309d c7aaccad

2116235c b0d6803e e0a58ca7 55cbea23 e936f189 a76dfbeb

∆25 = 13bee453 6fba1cb1 6b2a5b6d d627ca60

R25(z) = z −m1

m1/2
Z mod 2M
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Abstract. Denoting by P = [k]G the elliptic-curve double-and-add multiplication of a public base
point G by a secret k, we show that allowing an adversary access to the projective representation
of P , obtained using a particular double and add method, may result in information being revealed
about k.

Such access might be granted to an adversary by a poor software implementation that does not erase
the Z coordinate of P from the computer’s memory or by a computationally-constrained secure token
that sub-contracts the affine conversion of P to the external world.

From a wider perspective, our result proves that the choice of representation of elliptic curve points
can reveal information about their underlying discrete logarithms, hence casting potential doubt on
the appropriateness of blindly modelling elliptic-curves as generic groups.

As a conclusion, our result underlines the necessity to sanitize Z after the affine conversion or,
alternatively, randomize P before releasing it out.

1 Introduction

There are various systems of projective coordinates that are used in conjunction with
elliptic curves: the usual (classical) system replaces the affine coordinates (x, y) by any
triple (X,Y, Z) = (λx, λy, λ), where λ 6= 0 is an element of the base field.

From such a (X,Y, Z), the affine coordinates are computed back as

(
x =

X

Z
, y =

Y

Z

)
= Affine(X,Y, Z)

A variant of the above, often called Jacobian Projective coordinates, replaces the affine
coordinates (x, y) by any triple (λ2x, λ3y, λ), where λ is a non zero element of the base
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field. From (X, Y, Z), the affine coordinates are computed as
(

x =
X

Z2
, y =

Y

Z3

)
= Affine(X, Y, Z)

These coordinates are widely used in practice, see for example [1] and [4].

This paper explores the following question:

Denoting by P = [k]G the elliptic-curve multiplication of a public base point G by a
secret k, does the projective representation of P result in information being revealed about
k?

From a practical perspective access to P ’s Z coordinate might stem from a poor soft-
ware implementation that does not erase the Z coordinate of P from the computer’s
memory or caused by a computationally-constrained secure token that sub-contracts the
affine conversion of P to the external world.

We show that information may leaks-out and analyse the leakage in two different set-
tings: Diffie-Hellman key exchange and Schnorr signatures.

Moreover, our paper seems to indicate that point representation matters: The generic
group model is often used to model elliptic curve protocols, see [2], [10], [11]. In this model
one assumes that the representation of the group elements gives no benefit to an adversary.
This approach allows cryptographic schemes built from elliptic curves to be supported by
some form of provable security. However, it has some pitfalls. In [11], it was shown that
using encodings which do not adequately distinguish an elliptic curve from its opposite,
as done in ECDSA, open the way to potential flaws in the security proofs. In this paper
we show that using projective coordinates to represent elliptic curve points rather than
affine coordinates may leak some information to an attacker. Thus, we can conclude that
modelling elliptic curves as generic groups is not appropriate in this case, so that the
generic model methodology only applies under the assumption that affine points are made
available to an external viewer/adversary of the protocol.

We note that our results imply that projective coordinates should be used with care
when they could be made available to an adversary. Our results do not however imply that
using projective coordinates for internal calculations has any security implications.

2 Elliptic Curve Addition Formulae

In the following, we will restrict our attention to elliptic curves over fields of large prime
characteristic. We will also focus on projective coordinates of the second kind (the situation
being quite similar mutatis mutandis, in the other cases).

In our prime field case, the reduced equation of the curve C is:

y2 = x3 + ax + b mod p

Jacobian projective coordinates yield the equation:

Y 2 = X3 + aXZ4 + bZ6 mod p
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Projective coordinates allow a smooth representation of the infinity point O on the curve:
(0, 1, 0) in the first system, (1, 1, 0) in the other. They also provide division-free formulae
for addition and doubling.

Standard (affine) addition of two distinct elliptic curve points, (x0, y0) and (x1, y1) yields
(x2, y2), with:

x2 =

(
y1 − y0

x1 − x0

)2

− x0 − x1

Note that x1 − x0 equals:
X1

Z2
1

− X0

Z2
0

=
W

(Z0Z1)2

where W is X1Z
2
0 − X0Z

2
1 . From this it readily follows, that (WZ0Z1)

2x2 is a polyno-
mial in X0, Y0, Z0, X1, Y1, Z1, since the further factors coming from Z0 and Z1 cancel the
denominators for x0 and x1.

The affine coordinate y2 is given by:

y2 = −y0 +

(
y1 − y0

x1 − x0

)
(x0 − x2)

Expanding in projective coordinates yields a denominator equal to W 3Z3
0Z

3
1 .

Thus, (WZ0Z1)
3y2 is a polynomial in X0, Y0, Z0, X1, Z1. Finally, we see that setting:

Z2 = WZ0Z1

we can obtain division-free formulae. Such formulae are given in [4] and [1], and we simply
reproduce them here:

U0 ← X0Z
2
1 , S0 ← Y0Z

3
1 , U1 ← X1Z

2
0 , S1 ← Y1Z

3
0 ,

W ← U0 − U1, R ← S0 − S1, T ← U0 + U1, M ← S0 + S1,
Z2 ← WZ0Z1, X2 ← R2 − TW 2, V ← TW 2 − 2X2, 2Y2 ← V R−MW 3.

There is a similar analysis for doubling; again, we simply provide the corresponding for-
mulae:

M ← 3X2
1 + aZ4

1 , Z2 ← 2Y1Z1, S ← 4X1Y
2
1 ,

X2 ← M2 − 2S, T ← 8Y 4
1 , Y2 ← M(S −X2)− T.

3 The Attack

Throughout this section we let G be an element of prime order r on an elliptic curve C
over a prime field, given by its regular coordinates (xG, yG). Let k be a secret scalar and
define P = [k]G. Let (X,Y, Z) be Jacobian projective coordinates for P , computed by the
formulae introduced in Section 2, when the standard double-and-add algorithm is used.
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3.1 Grabbing a Few Bits of k

Let t be a small integer and guess the last t bits of k. Once this is done, it is possible
to compute a set of candidates for the coordinates of the sequence of intermediate values
handled by the double-and-add algorithm while processing k’s t trailing bits (appearing at
the end of the algorithm). This is achieved by ‘reversing’ computations: reversing doubling
is halving, i.e. by reversing the formulae for doubling ; reversing an addition amounts to
subtracting G. Thus, we obtain a set of sequences,

{s1, s2, . . . , sm} where sj = {M (j)
0 99K M

(j)
1 99K · · · 99K M

(j)
` }

of intermediate points, with M
(j)
` = P . Let Mi = (xi, yi) in affine coordinates. The cor-

responding projective coordinates which occur we denote by (Xi, Yi, Zi). There are two
cases:

– When the step Mi 99K Mi+1 is an addition, we have

Zi+1 = (Xi − xGZ2
i )Zi which yields

Zi+1

Z3
i

= (xi − xG)

Here, we need to compute a cubic root to get Zi from Zi+1. This is impossible in some
cases when p ≡ 1 mod 3, and when possible, it leads to one of three possible Zi values.
When p ≡ 2 mod 3 taking the cubic root is always possible and leads to a unique value
of Zi. In either case once a set of possible values of Zi are determined from Zi+1 we can
obtain Xi and Yi.

– When the step Mi 99K Mi+1 is a doubling, we have

Zi+1 = 2YiZi which yields
Zi+1

Z4
i

= 2yi

Here, we need to compute a fourth root to get Zi from Zi+1, which is impossible in
some cases. Assume for example that p ≡ 3 mod 4. Then extracting a fourth root is
possible for one half of the inputs and, when possible, yields two values. When p ≡ 1
mod 4 then this is possible in around one quarter of all cases and yields four values.

We can now take advantage of the above observation to learn a few bits of k.

More precisely, we observe that, with probability at least 1/2, one can spot values of k
for which the least significant trailing bit is one. Suppose we consider such a k and make
the wrong guess that the last bit is zero. This means that the final operation M`−1 99K M`

is a doubling. The error can be spotted when the value

Z`

2y`−1

is not a fourth power, which happens with probability at most 1/2. We can then iterate
this to (potentially) obtain a few further bits of k. In the case of the least significant bit
being zero a similar analysis can be performed.
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3.2 Applicability to Different Coordinate Systems

Consider Jacobian projective coordinates:

(X,Y ) 7→ (λ2X, λ3Y, λZ),

over a field Fq of characteristic q > 3. For a point P = (x, y) ∈ C(Fq) let SP denote the set
of all equivalent projective representations

SP = {(λ2x, λ3y, λ) : λ ∈ F∗q}.
The standard addition formulae for computing P + Q, for a fixed value of Q (by fixed we
mean a fixed projective representation of Q, including an affine representation of Q) gives
a map

ΨP,P+Q : SP −→ SP+Q.

The doubling formulae for Jacobian projective coordinates also gives us a map

ΨP,[2]P : SP −→ S[2]P .

The crucial observations from the previous subsection are summarized in the following
Lemma

Lemma 1. The following holds, for Jacobian projective coordinates in large prime char-
acteristics:

If q ≡ 1 mod 3 then ΨP,P+Q is a 3 Ã 1 map.
If q ≡ 2 mod 3 then ΨP,P+Q is a 1 Ã 1 map.
If q ≡ 1 mod 4 then ΨP,[2]P is a 4 Ã 1 map.
If q ≡ 3 mod 4 then ΨP,[2]P is a 2 Ã 1 map.

Note: It is easy given an element in the image of either ΨP,P+Q or ΨP,[2]P to determine
whether it has pre-images, and if so to compute all of them.

The attack is then simply to consider when a point could have arisen from an application
of ΨP,P+Q or ΨP,[2]P and if so to compute all the pre-images and then recurse. The precise
tests one applies at different points will depend on the precise exponentiation algorithm
implemented by the attacked device, a subject we shall return to in a moment.

For the sake of completeness we present in the following lemmata similar results for
other characteristics and other forms of projective representation. We concentrate on the
most common and the most used coordinate systems and keep the same conventions and
notation as above:

Lemma 2. The following holds, for classical projective coordinates on elliptic curves over
fields of large prime characteristic:

If q ≡ 1 mod 4 then ΨP,P+Q is a 4 Ã 1 map.
If q ≡ 3 mod 4 then ΨP,P+Q is a 2 Ã 1 map.
If q ≡ 1 mod 3 then ΨP,[2]P is a 6 Ã 1 map.
If q ≡ 2 mod 3 then ΨP,[2]P is a 2 Ã 1 map.
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parameters and keys
An elliptic-curve C
G ∈R C of order r

A collision-resistant hash-function H : {0, 1}∗ −→ Z?
r

Private x ∈R Z?
r

Public Q ← [x]G

signature generation
Pick k ∈R Z?

r

Compute (PX , PY , PZ) ← [k]G = DoubleAdd(k, G)

d ← k − x×H(m,PX , PY , PZ) mod r

If d = 0 or H(m,PX , PY , PZ) = 0 resume signature generation

Output {PX , PY , PZ , d} as the signature of m

signature verification
P ← [d]G + [H(m,PX , PY , PZ)]Q

If P 6= Affine((PX , PY , PZ)) or d 6∈ Z?
r output invalid

else output valid

Fig. 1. Division-Free Projective Schnorr Signatures

Lemma 3. The following holds, for Jacobian projective coordinates on elliptic curves over
fields of characteristic two:

If q ≡ 1 mod 3 then ΨP,P+Q is a 3 Ã 1 map.
If q ≡ 2 mod 3 then ΨP,P+Q is a 1 Ã 1 map.

∀q ΨP,[2]P is a 1 Ã 1 map.

Lemma 4. The following holds, for López-Dahab projective coordinates [6] on elliptic
curves over fields of characteristic two:

If q ≡ 1 mod 3 then ΨP,[2]P is a 3 Ã 1 map.
If q ≡ 2 mod 3 then ΨP,[2]P is a 1 Ã 1 map.

∀q ΨP,P+Q is a 1 Ã 1 map.

4 Application: Breaking Projective Schnorr Signatures

Assume now that one wishes to use the protocol described in Figure 1, mimicking Schnorr’s
basic construction [12]. The algorithm is a natural division-free version of Schnorr’s original
scheme, and might hence appear both safe and computationally attractive.

It should be stressed that while we are not aware of any suggestion to use this variant
in practice it is still not evident, at a first glance, why this algorithm could be insecure.
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We show how to attack this scheme using the observations from the previous subsection.
This is based on recent work by Howgrave-Graham, Smart [3], Nguy˜̂en and Shparlinski [7].

From a sample of N signatures, the attacker obtains around N
22t signatures for which

he knows that the t low order bits of the hidden nonce k are ones. Next, for each such k,
he considers the relation:

d + xH(m,PX , PY , PZ) = k mod r

Using the information he has, the attacker rewrites the above as:

d− (2t − 1) + xH(m,PX , PY , PZ) = k − (2t − 1) mod r

Dividing by 2t, he gets a final relation:

a + bx = u mod r

where a, b are known but x is unknown as well as u. Still the attacker knows that u is
small (≤ r

2t ). When the attacker has n ≈ N
22t such relations, he writes

a + bx = u mod r

and considers the lattice L = (b)⊥, consisting of all integer vectors orthogonal to b and
applies lattice reduction. Let Λ be an element of L with small Euclidean norm. We have:

Λ(a) = Λ(u) mod r

Now, the norm of the right-hand side is bounded by ||Λ||||u||, which is ≤ ||Λ|| r
2t

√
n. The

order of ||Λ|| is r
1
n and, for n large enough and t not too small, this estimate provides a

bound for the right-hand side < r/2. Thus, the modular equations are actual equations
over the integers:

Λ(a) mod r = Λ(u)

The attacker can hope for at most n− 1 such relations, since L has dimension n− 1. This
defines u up to the addition of an element from a one-dimensional lattice. The correct
value is presumably the element in this set closest to the origin. Once u has been found,
the value of x follows.

Lattice reduction experiments reported in [7] show that, with elliptic curves of standard
dimensions, the attack will succeed as soon as t reaches 5 digits. The deep analysis of
Nguy˜̂en and Shparlinski, shows that the significant theoretical bound is related to

√
log r.

5 Practical Experiments

The double-and-add exponentiation’s case is the simplest to analyse: given the projective
representation of the result P , we can try and ‘unwind’ the algorithm with respect to the
fixed point G.



138 David Naccache et alii.

parameters
Input k ∈ Z?

r, G ∈ C
Output P ← [k]G

algorithm DoubleAdd(k, G)
P ←O
for j = `− 1 downto 0:

P ← [2]P

if kj = 1 then P ←P + G

return(P )

Fig. 2. Double-and-Add Exponentiation

In other words, we can check whether there is a value P ′ such that

ΨP ′,P ′+G(P ′) = P

and if so compute all the pre-images P ′. Then for all pre-images P ′ we can check whether
this was the result of a point doubling. We also need to check whether P itself was the
output of a point doubling. This results in a backtracking style algorithm which investigates
all possible execution paths through the algorithm.

There are two factors at work here. For each testing of whether ΨP,P+G (resp. ΨP,[2]P )
was applied we have a representation-dependent probability of p (from the above lemmata),
this acts in the attacker’s favour. However, each success for this test yields 1/p pre-images,
which increases the attacker’s workload. The result is that, while practical, the attack
against the double-and-add algorithm is not as efficient as one might initially hope.

We ran one thousand experiments in each prime characteristic modulo 12. Table 1
presents the success of determining the parity of the secret exponent. One should interpret
the entries in the table as follows: For example with q ≡ 5 (mod 12), we found that in
71 percent of all cases in which k was even we where able to determine this using the
above backtracking algorithm. This means that in these cases the execution path which
started with assuming P was the output of a point addition was eventually determined to
be invalid.

Table 1. Probability of Determining the Secret’s Parity Using Double-and-Add Exponentiation

q mod 12 1 5 7 11

Pr[parity determined|k even] 0.98 0.71 0.80 0.50
Pr[parity determined|k odd] 0.95 0.74 0.50 0.47

Pr[parity determined] 0.96 0.72 0.65 0.48
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parameters
Input k ∈ Z?

r, G ∈ C
Output P ← [k]G

precomputation
G1←G

G2← [2]G

for j = 1 to 2r−2 − 1:

G2j+1←G2j−1 + G2

P ←Gk`−1

exponent encoding
set k =

∑`−1
i=0 ki2

ei

with ei+1 − ei ≥ r and ki ∈ {±1,±3, . . . ,±2r−1 − 1}
algorithm SlidingWindow(k, G)

for j = `− 2 downto 0:

P ← [2ej+1−ej ]P

if `j > 0 then P ←P + Gkj
else P ←P + G−kj

P ← [2e0 ]P

return(P )

Fig. 3. Signed Sliding Window Exponentiation

Only in the cases q ≡ 1 mod 12 and q ≡ 7 mod 12 did we have any success in
determining the value of the secret exponent modulo 8 precisely (around 50 percent of the
time when q ≡ 1 mod 12 and 8 percent of the time when q ≡ 7 mod 12).

We did a similar experiment using the signed sliding window method, with a window
width of 5 (see also Algorithm IV.7 of [1]) assuming that the pre-computed table of multi-
ples of the base point is known to the attacker. In this case we had a much lower probability
of determining the parity, but could still determine the value of the exponent modulo 32
in a significant number of cases (Table 2).

Table 2. Probability of Determining the Secret’s Parity Using Signed Sliding Window Exponentiation

q mod 12 1 5 7 11

Pr[parity determined|k even] 0.86 0.00 0.05 0.00
Pr[parity determined|k odd] 0.81 0.75 0.49 0.53

Pr[parity determined] 0.81 0.37 0.27 0.26

Pr[k mod 32 determined] 0.42 0.01 0.01 0.00
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Note that this means that if q ≡ 1 mod 12 then we will be successful in determining the
full private key for the division free signature algorithm of Section 4 using lattice reduction.

6 Thwarting The Attack

There is a simple trick that avoids the attacks described in the previous sections. It consists
in randomly replacing the output (X,Y, Z) of the computation by (X, εY, εZ), with ε = ±1.
This makes it impossible for an attacker to spot projective coordinates, which cannot be
obtained by squaring. It should be underlined that this countermeasure (that we regard
as a challenge for the research community) thwarts our specific attack but does not lend
itself to a formal security proof. Note, such a defence only appears to need to be done at
the end of the computation as our attack model assume the attacker does not obtain any
intermediate points from the multiplication algorithm.

A more drastic method replaces (X,Y, Z) by (λ2x, λ3y, λ), where λ is randomly chosen
among the non zero elements of the base field (with ordinary projective coordinates, one
uses (λx, λy, λ)). This method provides a randomly chosen set of projective coordinates for
the result and, therefore, cannot leak additional information.

With this new protection, the division-free signature scheme of Section 4 can be shown
to be secure in the random oracle model, against adaptive attackers trying to achieve
existential forgery. We outline the proof. As usual (see [9]), one uses the attacker to solve
the discrete logarithm problem (here, on C). The public key of the scheme is set to Q, the
curve element for which we want to compute the discrete logarithm in base G. Signature
queries are answered by randomly creating P = [d]G + [h]Q, picking random projective
coordinates for P , say (X, Y, Z) and setting the hash value of {m,X, Y, Z} as any element
= h mod r. Thus fed, the attacker should create a forged message signature pair, with
significant probability. We let m be the corresponding message and {X,Y, Z, d} be the
signature. With significant probability, {m,X, Y, Z} is queried from the random oracle.
Replaying the attack with a different answer modulo r to this question, one gets, with
significant probability, another forgery {m,X, Y, Z, d′}, with h replaced by h′. From the
relation

[d]G + [h]Q = [d′]G + [h′]Q

one finally derives the discrete logarithm of Q.
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6. J. López and R. Dahab, Improved algorithms for elliptic curve arithmetic in GF (2n), In Selected Areas in
Cryptography - sac’98, Springer-Verlag LNCS 1556, pp. 201–212, 1999.

7. P. Nguy˜̂en and I. Shparlinski, The Insecurity of the Digital Signature Algorithm with Partially Known
Nonces, In Journal of Cryptology, vol. 15, pp. 151–176, 2002.

8. P. Nguy˜̂en and J. Stern, The hardness of the subset sum problem and its cryptographic implications, In
Advances in Cryptology crypto’99, Santa Barbara, Lectures Notes in Computer Science 1666, pp. 31–46,
Springer-Verlag, 1999.

9. D. Pointcheval and J. Stern, Security Arguments for Digital Signatures and Blind Signatures, In Journal of
Cryptology, vol. 13, pp. 361–396, 2000.

10. N. P. Smart, The Exact Security of ECIES in the Generic Group Model In B. Honary (Ed.), Cryptography
and Coding 8-th IMA International Conference Cirencester, LNCS 2260, Springer Verlag, pp. 73–84, 2001.

11. J. Stern, D. Pointcheval, J. Malone-Lee and N. P. Smart, Flaws in Applying Proof Methodologies to Signature
Schemes, In Advances in Cryptology crypto’02, Santa Barbara, Lectures Notes in Computer Science 2442,
pp. 93–110, Springer-Verlag, 2002.

12. C. P. Schnorr, Efficient Signature Generation by Smart Cards, In Journal of Cryptology, vol. 4, pp. 161–174,
1991.

13. U.S. Department of Commerce, National Institute of Standards and Technology. Digital Signature Standard.
Federal Information Processing Standard Publication 186, 1994.



On the Security of RSA Padding

[M. Wiener, Ed., Advances in Cryptology – CRYPTO 1999, vol. 1666 of Lecture Notes in
Computer Science, pp. 1–18, Springer-Verlag, 1999.]
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1 École Normale Supérieure
45 rue d’Ulm, 75005 Paris, France

coron@clipper.ens.fr
2 Gemplus Card International

34 rue Guynemer, 92447 Issy-les-Moulineaux, France
{jean-sebastien.coron, david.naccache}@gemplus.com

3 UCL Crypto Group
Bâtiment Maxwell, Place du Levant 3, 1348 Louvain-la-Neuve, Belgique

stern@dice.ucl.ac.be
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Abstract. This paper presents a new signature forgery strategy.
The attack is a sophisticated variant of Desmedt-Odlyzko’s method [11] where the attacker obtains
the signatures of m1, . . . , mτ−1 and exhibits the signature of an mτ which was never submitted to
the signer; we assume that all messages are padded by a redundancy function µ before being signed.
Before interacting with the signer, the attacker selects τ smooth1 µ(mi)-values and expresses µ(mτ )
as a multiplicative combination of the padded strings µ(m1), . . . , µ(mτ−1). The signature of mτ is
then forged using the homomorphic property of RSA.
A padding format that differs from iso 9796-1 by one single bit was broken experimentally (we
emphasize that we could not extend our attack to iso 9796-1); for iso 9796-2 the attack is more
demanding but still much more efficient than collision-search or factoring.
For din ni-17.4, pkcs #1 v2.0 and ssl-3.02, the attack is only theoretical since it only applies to
specific moduli and happens to be less efficient than factoring; therefore, the attack does not endanger
any of these standards.

1 Introduction

At a recent count (http://www.rsa.com), over 300 million RSA-enabled products had
been shipped worldwide. This popularity, and the ongoing standardizations of signature
and encryption formats [2, 13, 20, 21, 22, 36] highlight the need to challenge claims that
such standards eradicate RSA’s multiplicative properties.

Exponentiation is homomorphic and RSA-based protocols are traditionally protected
against chosen-plaintext forgeries [9, 11, 35] by using a padding (or redundancy) function
µ to make sure that:

RSA(µ(x))× RSA(µ(y)) 6= RSA(µ(x× y)) mod n

1 an integer is `-smooth if it has no bigger factors than `.
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In general, µ(x) hashes x and concatenates its digest to pre-defined strings; in some
cases, substitution and permutation are used as well.

While most padding schemes gain progressive recognition as time goes by, several spe-
cific results exist: a few functions were broken by ad-hoc analysis ([16, 24] showed, for
instance, that homomorphic dependencies can still appear in µ(m) = a×m + b) while at
the other extreme, assuming that the underlying building-blocks are ideal, some functions
[5, 6] are provably secure in the random oracle model.

The contribution of this paper is that the complexity of forging chosen message-signature
pairs is sometimes much lower than that of breaking RSA ◦ µ by frontal attacks (factor-
ing and collision-search). The strategy introduced in this article does not challenge RSA’s
traditional security assumptions; instead, it seeks for multiplicative relations using the ex-
pected smoothness of moderate-size integers (the technique is similar in this respect to
the quadratic sieve [33], the number field sieve [32] and the index-calculus method for
computing discrete logarithm [1]).

As usual, our playground will be a setting in which the attacker A and the signer S
interact as follows:

– A asks S to provide the signatures of τ−1 chosen messages (τ being polylogarithmically-
bounded in n). S will, of course, correctly pad all the plaintexts before raising them to
his secret power d.

– After the query phase and some post-processing, A must exhibit the signature of at
least one message (mτ ) which has never been submitted to S.

Previous Work: Misarsky’s PKC’98 invited survey [30] is probably the best documented
reference on multiplicative RSA forgeries. Davida’s observation [9] is the basis of most
RSA forgery techniques. [16, 24] forge signatures that are similar to pkcs #1 v2.0 but
do not produce their necessary SHA/MD5 digests [31, 34]. [15] analyzes the security of
RSA signatures in an interactive context. Michels et al. [28] create relations between the
exponents of de Jonge-Chaum and Boyd’s schemes; their technique extends to blind-RSA
but does not apply to any of the padding schemes attacked in this paper. Baudron and
Stern [4] apply lattice reduction to analyze the security of RSA ◦ µ in a security-proof
perspective.

A Desmedt-Odlyzko variant [11] applicable to padded RSA signatures is sketched in
section 3.5 of [30]. It consists in factoring µ(mτ ) into small primes and obtaining the e-th
roots of these primes from multiplicative combinations of signatures of messages which
µ(mi)-values are smooth. The signature of mτ is forged by multiplying the e-th roots of
the factors of µ(mτ ). The complexity of this attack depends on the size of µ and not on the
size of n; the approach is thus inapplicable to padding formats having the modulus’ size
(e.g. iso 9796-2). In this paper we extend this strategy to padding schemes for which a
linear combination of n and the padded value is small; when applied to William’s scheme
our attack allows to factor n.
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2 A General Outline

Let {n, e} be an RSA public key and d be the corresponding secret key. Although in this
paper µ will alternatively denote iso 9796-2, pkcs #1 v2.0, ansi x9.31, ssl-3.02 or
an iso 9796-1 variant denoted F , we will start by describing our attack in a simpler
scenario where µ is SHA-1 or MD5 (in other words, messages will only be hashed before
being exponentiated); the attack will be later adapted to the different padding standards
mentioned above.

The outline of our idea is the following: since µ(m) is rather short (128 or 160 bits), the
probability that µ(m) is `-smooth (for a reasonably small `) is small but non-negligible;
consequently, if A can obtain the signatures of chosen smooth µ(mi)-values, then he could
look for a message mτ such that µ(mτ ) has no bigger factors than pk (the k-th prime) and
construct µ(mτ )

d mod n as a multiplicative combination of the signatures of the chosen
plaintexts m1, . . . ,mτ−1.

The difficulty of finding `-smooth digests is a function of ` and the size of µ(m). Defining
ψ(x, y) = #{v < x, such that v is y-smooth}, it is known [12, 14, 19] that, for large x, the
ratio ψ(x, t

√
x)/x is equivalent to Dickman’s function defined by:

ρ(t) =





1 if 0 ≤ t ≤ 1

ρ(n)−
∫ t

n

ρ(v − 1)

v
dv if n ≤ t ≤ n + 1

ρ(t) is thus an approximation of the probability that a u-bit number is 2u/t-smooth;
since ρ(t) is somewhat cumbersome to compute, we refer the reader to appendix A for a
lookup table.

Before we proceed, let us illustrate the concerned orders of magnitude. Referring to
appendix A, we see that the probability that SHA/MD5 digests are 224-smooth is rather
high (∼= 2−19, 2−13); this means that finding smooth digests would be practically feasible.
This was confirmed by extensive simulations as illustrated by:

MD5(message 30854339 successfully forged) =
955dd317dd4715d26465081e4bfac00016 =

214 × 3× 53 × 13× 227× 1499× 1789× 2441× 4673× 4691× 9109× 8377619

Several heuristics can, of course, accelerate the search: in our experiments, we factored
only digests beginning or ending by a few zeroes; the optimal number of zeroes being
a function of the running times of the attacker’s hashing and factorization algorithms
(parallelization is also possible).

In any case, denoting by L the size of the digest and by F (L) the factoring cost, the
complexity of finding pk-smooth digests is:
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CL,k = O(
F (L)

ρ(L/ log2(pk))
) = O(

kL log2(pk)

ρ(L/ log2(pk))
) = O(

kL log2(k ln k)

ρ(L/ log2(k ln k))
)

this is justified by the fact that pk-smooth L-bit digests are expected only once per
1/ρ(L/ log2(pk)) and that the most straightforward way to factor L is k trial divisions by
the first primes (where each division costs L log2(pi) bit-operations).

These formulae should, however, be handled with extreme caution for the following
reasons:

– Although in complexity terms L can be analyzed as a variable, one should constantly
keep in mind that L is a fixed value because the output size of specific hash functions
is not extensible.

– Trial division is definitely not the best candidate for F (L). In practice, our program
used the following strategy to detect the small factors of µ(m): since very small divisors
are very common, it is worthwhile attempting trial and error division up to pi

∼= 2048
before applying a primality test to µ(m) (the candidate is of course rejected if the test
fails). As a next step, trial and error division by primes smaller than 15, 000 is performed
and the resulting number is handed-over to Pollard-Brent’s algorithm [7] which is very
good at finding small factors. Since it costs O(

√
pi) to pull-out pi using Pollard-Brent’s

method we can further bound F (L) by L
√

pk to obtain:

CL,k = O(
L
√

k ln k

ρ(L/ log2(k ln k))
)

3 The Attack

The attack applies to RSA and Williams’ scheme [37]; we assume that the reader is familiar
with RSA but briefly recall Williams’ scheme, denoting by J(x), the Jacobi symbol of x
with respect to n.

In Williams’ scheme µ(m) = 6 mod 16 and:

p = 3 mod 8 e = 2
q = 7 mod 8 d = (n− p− q + 5)/8

Before signing, S must check that J(µ(m)) = 1. If J(µ(m)) = −1, µ(m) is replaced by
µ(m)/2 to guarantee that J(µ(m)) = 1 since J(2) = −1.

A signature s is valid if w = s2 mod n is such that:

µ(m)
?
=





w if w = 6 mod 8
2w if w = 3 mod 8
n− w if w = 7 mod 8
2(n− w) if w = 2 mod 8
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3.1 Finding Homomorphic Dependencies

The attack’s details slightly differ between the RSA and Williams’ scheme. For RSA, τ −1
chosen signatures will yield an additional µ(mτ )

d mod n while in Williams’ case, τ chosen
signatures will factor n. All chosen messages have the property that there exists a linear
combination of µ(mi) and n such that:

ai × n− bi × µ(mi) is pk-smooth

where bi is pk-smooth as well.
It follows that µ(mi) is the modular product of small primes:

µ(mi) =
k∏

j=1

p
vi,j

j mod n for 1 ≤ i ≤ τ

Let us associate to each µ(mi) a k-dimensional vector V i with coordinates vi,j taken
modulo the public exponent e:

µ(mi) 7−→ V i = {vi,1 mod e, . . . , vi,k mod e}
We can now express, by Gaussian elimination, one of these vectors (re-indexed as V τ )

as a linear combination of the others:

V τ =
τ−1∑
i=1

βiV i mod e, with βi ∈ Ze (1)

From equation (1) we get:

vτ,j =
τ−1∑
i=1

βivi,j − γj × e for all 1 ≤ j ≤ k

and denoting x =
k∏

j=1

p
−γj

j :

µ(mτ ) = xe ×
τ−1∏
i=1

µ(mi)
βi mod n

For RSA, the forger will submit the τ − 1 first messages to S and forge the signature
of mτ by:

µ(mτ )
d = x×

τ−1∏
i=1

(
µ(mi)

d
)βi

mod n

In Williams’ case, the signature of mτ will be computed from the other signatures using
equation (2) if J(x) = 1, using the fact that:

u = x2d mod n =

{
x if x is a square modulo n

−x if not.
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µ(mτ )
d = ±x×

τ−1∏
i=1

(
µ(mi)

d
)βi

mod n (2)

If J(x) = −1, then u2 = x2 mod n and (u−x)(u+x) = 0 mod n. Since J(x) = − J(u)
we have x 6= ±u mod n and GCD(u−x, n) will factor n. A can thus submit the τ messages
to S, recover u, factor n and sign any message.

3.2 Expected Complexity

It remains, however, to estimate τ as a function of k:
• In the most simple setting e is prime and the set of vectors with k coordinates over Ze

is a k-dimensional linear space; τ = k + 1 vectors are consequently sufficient to guarantee
that (at least) one of the vectors can be expressed as a linear combination (easily found
by Gaussian elimination) of the other vectors.

• When e is the r-th power of a prime p, τ = k +1 vectors are again sufficient to ensure
that (at least) one vector can be expressed as a linear combination of the others. Using the
p-adic expansion of the vectors’ coefficients and Gaussian elimination on k + 1 vectors, we
can write one of the vectors as a linear combination of the others.

• Finally, the previous argument can be extended to the most general case:

e =
ω∏

i=1

pri
i

where it appears that τ = 1 + ωk = O(k log e) vectors are sufficient to guarantee that (at
least) one vector is a linear combination of the others; modulo each of the pri

i , the attacker
can find a set Ti of (ω − 1)k + 1 vectors, each of which can be expressed by Gaussian
elimination as a linear combination of k other vectors. Intersecting the Ti and using Chinese
remaindering, one gets that (at least) one vector must be a linear combination of the others
modulo e.

The overall complexity of our attack can therefore be bounded by:

C ′
L,k = O(τCL,k) = O(

Lk log e
√

k ln k

ρ(L/ log2(k ln k))
)

and the attacker can optimize his resources by operating at a k where C ′
L,k is minimal.

Space complexity (dominated by the Gaussian elimination) is O(k2 log3 e).

4 Analyzing Different Signature Formats

4.1 The Security of iso/iec-9796-1-Like Signatures

iso/iec-9796-1 [21] was published in 1991 by ISO as the first international standard for
digital signatures. It specifies padding formats applicable to algorithms providing message
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recovery (algorithms are not explicit but map r bits to r bits). iso 9796-1 is not hashing-
based and there are apparently no attacks [16, 18] other than factoring on this scheme ([30]:
“...iso 9796-1 remains beyond the reach of all multiplicative attacks known today...”). The
scheme is used to sign messages of limited length and works as follows when n and m are
respectively N = 2γ + 1 and γ-bit numbers and γ = 4` is a multiple of eight.

Define by a · b the concatenation of a and b, let ωi be the i-th nibble of m and denote
by s(x) the hexadecimal substitution table2:

x = 0 1 2 3 4 5 6 7 8 9 A B C D E F

s(x) = E 3 5 8 9 4 2 F 0 D B 6 7 A C 1

Letting s̄(x) force the most significant bit in s(x) to 1 and s̃(x) complement the least
significant bit of s(x), iso 9796-1 specifies:

µ(m) = s̄(ω`−1) ·s̃(ω`−2) ·ω`−1 ·ω`−2 ·
s(ω`−3) ·s(ω`−4) ·ω`−3 ·ω`−4 ·
. . .
s(ω3) ·s(ω2) ·ω3 ·ω2 ·
s(ω1) ·s(ω0) ·ω0 ·616

The attack that we are about to describe applies to a slight variant of iso 9796-1 where
s̃(x) is replaced by s(x); this variant (denoted F) differs from iso 9796-1 by one single
bit.

Let aj denote nibbles and consider messages of the form:

mi = a6 · a5 · a4 · a3 · a2 · a1 · 6616·
a6 · a5 · a4 · a3 · a2 · a1 · 6616·
. . .
a6 · a5 · a4 · a3 · a2 · a1 · 6616

which F -padding is:

µ(mi) = s̄(a6) ·s(a5) ·a6 ·a5 · s(a4) ·s(a3) ·a4 ·a3 ·
s(a2) ·s(a1) ·a2 ·a1 · 216 ·216 ·616 ·616 ·
. . .
s(a6) ·s(a5) ·a6 ·a5 · s(a4) ·s(a3) ·a4 ·a3 ·
s(a2) ·s(a1) ·a2 ·a1 · 216 ·216 ·616 ·616

Restricting the choice of a6 to the (eight) nibbles for which s = s̄, we can generate 223

numbers of the form µ(mi) = x × Γ23 where x is the 8-byte number s(a6) · s(a5) · a6 · a5 ·
s(a4) · s(a3) · a4 · a3 · s(a2) · s(a1) · a2 · a1 · 226616 and:

Γ23 =

γ/32−1∑
i=0

264i

2 actually, the bits of s(x) are respectively x3 ⊕ x1 ⊕ x0, x3 ⊕ x2 ⊕ x0, x3 ⊕ x2 ⊕ x1 and x2 ⊕ x1 ⊕ x0 but this has
no importance in our analysis.



On the Security of RSA Padding 149

Section 3 could thus apply (treat Γ23 as an extra pi) as soon as the expectation of
pk-smooth x-values reaches k + 1:

k + 1 ∼ 223 × ρ

(
64

log2(k ln k)

)
(3)

Using k = 3000 we forged thousands of 1024-bit F -signatures in less than a day on a
Pentium-PC (an example is given in appendix C). The attack is applicable to any (64 ×
c + 1)-bit modulus and its complexity is independent of c ∈ N (once computed, the same
x-strings work with any such n).

k # of pk-smooth x-values (amongst 223) forgeries

345 346 1

500 799 298

1000 3203 2202

1500 6198 4697

2000 9344 7343

2500 12555 10054

3000 15830 12829

Table 1. Experimental F-forgeries for 64-bit x-values, prime e.

The attack is equally applicable to 32, 48, 80, 96 or 112-bit x-strings (which yield 7, 15,
31, 39 and 47-bit plaintext spaces); a combined attack, mixing x-strings of different types
is also possible (this has the drawback of adding the unknowns Γ7, Γ15, . . . but improves
the probability of finding pk-smooth x-strings). Long plain-English messages ending by
the letter f can be forged using a more technical approach sketched in appendix B (6616
represents the ASCII character f). Note, as a mere curiosity, a slight (∼= 11%) experimental
deviation from formula (3) due to the non-uniform distribution of the x-strings (which
most and least significant bits can never be long sequences of zeroes). Finally, since the
powers of 2 and Γ23 are identical, one can use k chosen messages instead of k + 1, packing
p1 = 2 and pk+1 = Γ23 into the updated unknown p1 = 2Γ23.

Non-impact on iso 9796-1: The authors could not extend the attack to iso 9796-1 and
it would be wrong to state that iso 9796-1 is broken.

Note: When we first looked into the standard, we did not notice s̃ and we are grateful to
Peter Landrock and Jørgen Brandt for drawing our attention to that. It appears from our
discussions with iso/jtc1/sc27 that s̃ (the alteration that codes the message-border) has
also been introduced to prevent arithmetic operations on µ(m); further information on iso
9796-1 and our attack on F will be soon posted on http://www.iso.ch/jtc1/sc27.

4.2 The Security of iso 9796-2 Signatures

iso 9796-2 is a generic padding standard allowing total or partial message recovery.
Hash-functions of different sizes are acceptable and parameter L (in the standard kh) is
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consequently a variable. Section 5, note 4 of [22] recommends 64 ≤ L ≤ 80 for total
recovery (typically an iso 10118-2 [23]) and 128 ≤ L ≤ 160 for partial recovery.

Partial message recovery. For simplicity, assume that N , L and the size of m are
all multiples of eight and that the hash function is known to both parties. The message
m = m[1] ·m[2] is separated into two parts where m[1] consists of the N − L − 16 most
significant bits of m and m[2] of all the remaining bits of m. The padding function is:

µ(m) = 6A16 ·m[1] · HASH(m) · BC16
and m[2] is transmitted in clear.

Dividing (6A16 + 1)× 2N by n we obtain:

(6A16 + 1)× 2N = i× n + r with r < n < 2N

n′ = i× n = 6A16 × 2N + (2N − r) = 6A16 · n′[1] · n′[0]

where n′ is N + 7 bits long and n′[1] is N − L− 16 bits long.

Setting m[1] = n′[1] we get:

t = i× n− µ(m)× 28 = n′[0]− HASH(m) · BC0016
where the size of t is less than L + 16 bits.

The forger can thus modify m[2] (and therefore HASH(m)) until he gets a set of mes-
sages which t-values are pk-smooth and express one such µ(mτ ) as a multiplicative combi-
nation of the others.

Note that the attack is again independent of the size of n (forging 1024-bit signatures is
not harder than forging 512-bit ones) but, unlike our F -attack, forged messages are specific
to a given n and can not be recycled when attacking different moduli.

To optimize efforts, A must use the k minimizing C ′
L+16,k.

Although the optimal time complexities for L = 160 and L = 128 are lower than the
birthday complexities of SHA and MD5 we consider that L = 160 implementations are
still reasonably secure.

L = kh optimal log2 k log2 time log2 space

128 18 54 36

160 20 61 40

Table 2. Attacks on iso 9796-2, small public exponent.
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Total message recovery. Assuming again that the hash function is known to both
parties, that N and L are multiples of eight and that the size of m is N −L− 16, function
µ is:

µ(m) = 4A16 ·m · HASH(m) · BC16
Let us separate m = m[1] · m[0] into two parts where m[0] consists of the ` least

significant bits of m and m[1] of all the remaining bits of m and compute, as in the
previous case, an i such that:

n′ = i× n = 4A16 · n′[1] · n′[0]

where n′[0] is (L + ` + 16)-bits long and n′[1] · n′[0] is N -bits long.
Setting m[1] = n′[1] we get:

t = i× n− µ(m)× 28 = n′[0]−m[0] · HASH(m) · BC0016
where the size of t is less than L + ` + 16 bits.

A will thus modify m[0] (and therefore HASH(m)) as needed and conclude the attack
as in the partial recovery case. ` must be tuned to expect just enough pk-smooth t-values
with a reasonably high probability i.e.:

k ∼ 2` × ρ

(
L + ` + 16

log2(k ln k)

)

The complexities summarized in the following table (a few PC-weeks for kh = 64) seem
to suggest a revision of this standard.

L = kh optimal log2 k log2 time log2 space `

64 15 47 30 32

80 17 51 34 34

Table 2 (continued). Attacks on iso 9796-2, small public exponent.

Note that our attack would have applied as well to:

µ(m) = 4A16 · HASH(m) ·m · BC16
In which case take n′ = i× n such that n′ mod 256 = BC16 and use m to replicate the

least significant bits of n′; subtraction will then yield a moderate size integer times of a
power of two.

An elegant protection against our attack is described in [13] (its security is basically
comparable to that of pkcs #1 v2.0, discussed later on in this paper); a second efficient
solution, suggested by Jean-Jacques Quisquater in the rump session of crypto’97 is:

µ(m) = 4A16 · (m⊕ HASH(m)) · HASH(m) · BC16
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4.3 Analyzing pkcs #1 v2.0, ssl-3.02 and ansi x9.31

This section describes theoretical attacks on pkcs #1 v2.0, ssl-3.02 and ansi x9.31 which
are better than the birthday-paradox. Since our observations are not general (for they ap-
ply to moduli of the form n = 2k ± c) and more demanding than factorization, they do
not endanger current implementations of these standards. It appears that n = 2k± c offers
regular 1024-bit RSA security as far as c is not much smaller than 2500, and square-free
c-values as small as 400 bits may even be used [25]. In general (n > 2512) such moduli
appear to offer regular security as long as log2(c)

∼= log2(n)/2 and c is square-free [26].
Although particular, n = 2k± c has been advocated by a number of cryptographers for

it allows trial and error divisions to be avoided. For instance, the informative annex of iso
9796-1 recommends “...some forms of the modulus (n = 2k±c) [that] simplify the modulo
reduction and need less table storage.”. Note however, that even in our worst scenario, iso
9796-1’s particular form is still secure: for 1024-bit moduli, iso 9796-1 recommends a
767-bit c whereas our attack will require a 400-bit c. The reader is referred to section
14.3.4 of [27] for further references on n = 2k ± c.

Assume that we are given a 1024-bit n = 2k − c, where ` = log2(c)
∼= 400 and c is

square-free; we start by analyzing ssl-3.02 where:

µ(m) = 000116 · FFFF16 . . . FFFF16 · 0016 · SHA(m) ·MD5(m)

n−215×µ(m) is an `-bit number on which we conduct an iso 9796-2-like attack which
expected complexity is C ′

`,k.
The characteristics of the attack are summarized in table 3 which should be compared

to the birthday paradox (2144 time, negligible space) and the hardness of factorization
({time, space} denote the base-two logarithms of the time and space complexities of the
attacks):

log2 n ` optimal log2 k our attack factorization

606 303 28 {84, 56} {68, 41}
640 320 29 {87, 58} {70, 42}
768 384 33 {97, 66} {75, 45}

1024 400 34 {99, 68} {86, 50}
1024 512 39 {115, 78} {86, 50}

Table 3. Estimates for ssl 3.02, small public exponent.

The phenomenon also scales-down to pkcs #1 v2.0 where:

µ(m) = 000116 · FFFF16 . . . FFFF16 · 0016 · cSHA · SHA(m)
µ(m) = 000116 · FFFF16 . . . FFFF16 · 0016 · cMD5 ·MD5(m)

cSHA = 3021300906052B0E03021A0500041416
cMD5 = 3020300C06082A864886F70D02050500041016
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log2 n ` optimal log2 k our attack factorization

512 256 23 {77, 46} {64, 39}
548 274 27 {80, 54} {66, 40}

Table 4. Estimates for pkcs #1 v2.0 and ansi x9.31, small public exponent.

and:
These figures appear roughly equivalent to a birthday-attack on SHA, even for rather

small (550-bit) moduli. Note that the attack applies to n = 2k + c by computing n− 214×
µ(m).

Note : In a recent correspondence, Burt Kaliski informed us that Ron Rivest de-
veloped in 1991 a forgery strategy which is a simple case of the one described in this
paper; the design of pkcs #1 v1.5 took this into account, but Ron’s observation was
never published. Further information on our attack will appear soon in an RSA bulletin
http://www.rsa.com/rsalabs/.

A similar analysis where the prescribed moduli begin by 6BBBBB . . .16 is applicable to
ansi x9.31 (yielding exactly the same complexities as for pkcs #1 v2.0) where:

µ(m) = 6B16 · BBBB16 . . . BBBB16 · BA16 · SHA(m) · 33CC16
ansi x9.31 recommends to avoid n = 2k ± c. If one strictly follows the standard

n = 6BBBBB . . .16 can not occur (the standard requires a bit length which is a multiple of
eight) but one could in theory work with 2µ(m) instead of µ(m).

Finally, we will consider a theoretical setting in which an authority certifies moduli
generated by users who wish to join a network; naturally, users never reveal their secret
keys but using storage optimizations as a pretext, the authority implements an ID-based
scheme where different random looking bits (registration ID, account numbers etc) are
forced into the most significant bits of each n [26]. Users generate moduli having the
prescribed patterns they receive.

If the authority can find two small constants {u, v} such that:

log2(u× n− v × µ(m)) ∼= η for a moderate η (4)

then our attack would extend to moduli which are not necessarily of the form 2k ± c. To
do so, oversimplify the setting to µ(m) = (2w− 1) · f(m) and n = n[1] ·n[0] where n[0] has
the size of f(m) and substitute these definitions in equation (4):

log2(u× (n[1] · n[0])− v × ((2w − 1) · f(m))) ∼= η

since the authority has no control over f(m), the best thing to do would be to request that
u× n[1] = v × (2w − 1) which results in an η ∼= log2(f(m)) + log2(max{u, v}).

The authority can thus prescribe moduli which most significant bits are vi×(2w−1)/ui

where ui are moderate-size factors of 2w − 1. Such factors look random and should not
raise the user’s suspicion.
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We can therefore conclude that although practically safe, the use of authority-specified
moduli in fixed-pattern padding contexts might be an interesting theoretical playground.

5 Conclusion and Further Research

Although the analysis presented in this paper indicates a weakness in iso 9796-2 when
kh
∼= 64, products using this standard should not be systematically withdrawn; a few prod-

uct analyzes reveal that system-level specifications (message contents, insufficient access
to S etc.) frequently make real-life attacks harder than expected.

It seems reasonable (although we can not base our belief on formal grounds) that good
message recovery padding schemes should be usable for encryption as well; we motivate
this recommendation by the functional similarity between RSA encryption and message
recovery.

Full-domain-hash offers the best possible protection against our attack and we advocate
its systematic use whenever possible. If impossible, it seems appropriate to link L and N
since for a fixed L there is necessarily a point (birthday) above which increasing N will
slow-down the legitimate parties without improving security.

We also recommend four research directions:

– An integer is {a, pk}-semismooth [3] if each of its prime factors is smaller than a and
all but one are smaller than pk. A well known-strategy (called the large prime variant)
consists of searching, using the birthday paradox, {a, pk}-semismooth {µ(x), µ(y)} pairs
having an identical large prime factor (e.g. 80-bits long); the ratio µ(x)/µ(y) mod n
can then be used as one pk-smooth input in the Gaussian elimination.

– It might be interesting to find out if our F -attack could handle s̃ by using a different
Γ :

Γ = ∆ · 00000000000116 · 00000000000116 · · · 00000000000116
In which case x-values should end by the pattern 226616, be pk-smooth and such that
x′ = x/∆ is a valid message header. Note that different ∆-values might be mixed in the
same attack, using a large prime variant where the different Γ -values are eliminated by
modular division.

– Although we have no specific instances for the moment, one could also try to combine
our technique with [4] to speed-up forgery in specific situations.

– Finally, it appears that incomplete ad-hoc analyzes of hash-functions (building digests
with u prescribed bits in less than 2u operations) could be the source of new problems
in badly designed padding schemes.
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APPENDIX A

The following (redundant) look-up table lists ρ for the various smoothness and digest-
size values concerned by this paper; ρ(136/24), the probability that a 136-bit number has
no prime factors larger than 224 is 2−14.2:

− log2 ρ↘ 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72
32 1.7 0.9 0.5 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

48 4.4 2.7 1.7 1.1 0.8 0.5 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

64 7.7 5.0 3.4 2.4 1.7 1.2 0.9 0.7 0.5 0.3 0.2 0.0 0.0 0.0 0.0

80 11.5 7.7 5.4 3.9 2.9 2.2 1.7 1.3 1.0 0.8 0.6 0.5 0.4 0.3 0.2

96 15.6 10.7 7.7 5.7 4.4 3.4 2.7 2.1 1.7 1.4 1.1 0.9 0.8 0.6 0.5

112 20.1 13.9 10.2 7.7 5.9 4.7 3.8 3.1 2.5 2.1 1.7 1.4 1.2 1.0 0.8

128 24.9 17.4 12.8 9.8 7.7 6.1 5.0 4.1 3.4 2.8 2.4 2.0 1.7 1.4 1.2

136 27.4 19.2 14.2 10.9 8.6 6.9 5.6 4.6 3.9 3.2 2.8 2.3 2.0 1.7 1.5

144 29.9 21.1 15.6 12.0 9.5 7.7 6.3 5.2 4.4 3.7 3.1 2.7 2.3 2.0 1.7

152 32.4 22.9 17.1 13.2 10.5 8.5 7.0 5.8 4.9 4.1 3.5 3.0 2.6 2.3 2.0

160 35.1 24.9 18.6 14.4 11.5 9.3 7.7 6.4 5.4 4.6 3.9 3.4 2.9 2.6 2.2

168 37.9 26.9 20.1 15.6 12.5 10.2 8.4 7.0 5.9 5.1 4.4 3.8 3.3 2.9 2.5

176 40.6 28.9 21.7 16.9 13.5 11.0 9.1 7.7 6.5 5.6 4.8 4.2 3.6 3.2 2.8

400 129. 95.2 73.9 59.2 49.0 41.5 35.1 30.2 26.5 23.1 20.8 18.5 16.7 15.1 13.7

512 179. 133 104 84.0 69.8 59.0 50.8 44.0 38.8 34.1 30.6 27.2 24.9 22.5 20.6

The table uses the exact formula (section 2) for t ≤ 10 and de Bruijn’s approximation
[8] for t > 10:

ρ(t) ∼= (2πt)−1/2 exp
(
γ − tζ +

∫ ζ

0

es − 1

s
ds

)
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where ζ is the positive solution of eζ − 1 = tζ and γ is Euler-Mascheroni’s constant.

APPENDIX B

The attack’s time-consuming part is the exhaustive-search of k appropriate x-strings; there-
fore, when one wants the x-strings to be 256-bits long, the increase in k makes the attack
impractical.

To overcome this problem, we suggest the following: as a first step, collect the signatures
corresponding to moderate-size pk-smooth x-strings (which are relatively easy to find) and
extract from their appropriate multiplicative combinations the e-th roots of the k first
primes. Then, exhaustive-search two plain-English 128-bit messages {m,m′} ending by the
letter f such that µ(m)/Γ and µ(m′)/Γ are both pk-smooth, with:

Γ = 2256(c−1) + . . . + 2256 + 1

for a (256 × c + 1)-bit modulus. Since we only need two such numbers, the overall
workload is very tolerable. Next, submit m to S and divide its signature by the e-th roots
of its small prime factors to recover Γ d mod n. Using Γ d mod n and the e-th roots of the
k first primes we can now forge, by multiplication, the signature of m′.

APPENDIX C

This appendix contains an F forgery that works with any 1025-bit modulus; to fit into
the appendix, the example was computed for e = 3 but forgeries for other public exponents
are as easy to obtain.

step 1: Select any 1025-bit RSA modulus, generate d = 3−1 mod φ(n), let µ = F and
form the 180 messages:

mi = (256× message[i]16 + 102)×
11∑

j=0

232j

where message[i] denotes the elements of the following table:
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00014E 008C87 00D1E8 01364B 0194D8 01C764 021864 03442F 0399FB 048D9E 073284 0863DE 09CCE8

0A132E 0A2143 0BD886 0C364A 0C368C 0C6BCF 0D3AC1 0D5C02 0EA131 0F3D68 0F9931 31826A 31BE81

31ED6B 31FCD0 320B25 32B659 332D04 3334D8 33EAFC 33EB1D 343B49 353D02 35454C 35A1A9 36189E

362C79 365174 3743AB 3765F6 37C1E2 3924AC 3998A8 3AF8A7 3B6900 3B9EEB 3BC1FF 3DE2DE 3E51BE

3E8191 3F49F3 3F69AC 4099D9 40BF29 41C36C 41D8C0 424EE8 435DB7 446DC1 4499CC 44AA20 44EE53

4510E8 459041 45A464 45AA03 460B80 4771E7 486B6A 499D40 4A5CF8 4AC449 4ADA0A 4B87A8 4C06A1

4C5C17 4D4685 4E39EA 4EB6B6 4F8464 716729 71C7D3 71FA22 722209 72DBF1 7619AB 765082 767C39

76885C 78F5F3 79E412 79FAD6 7CD0ED 7D0ABA 7DBA1D 7DE6A5 7E06A2 7EA5F2 7EC1ED 7EEC78 90BB4B

90DE38 9139D7 934C2C 9366C5 941809 941BFB 947EB4 94DB29 952D45 9745BD 978897 97A589 9827AF

984FAC 9A193D 9A83E2 9B74E3 9BEAE9 9C704F 9DBA98 9F9337 A00D15 A02E3D A10370 A429A6 A4DADD

A4F689 A5485D A6D728 A76B0F A7B249 A87DF3 A95438 A96AA4 AB1A82 AD06A8 AEA0D0 AEB113 D076C5

D13F0E D18262 D1B0A7 D35504 D3D9D4 D3DEE4 D4F71B D91C0B D96865 DA3F44 DB76A8 DE2528 DE31DD

DE46B8 DE687D DEB8C8 DF24C3 DFDFCF DFF19A E12FAA E1DD15 E27EC1 E39C56 E40007 E58CC8 E63CE0

E6596C E7831E E796FB E7E80C E85927 E89243 E912B4 E9BFFF EA0DFC EACF65 EB29FA

step 2: construct the message m′ = EE7E8E6616 ×
∑11

j=0 232j and obtain from the signer

the 180 signatures si = µ(mi)
d mod n.

step 3: the signature of m′ is:

µ(m′)d =
345∏
i=0

p
−gamma[i]
i

180∏
i=1

sbeta[i]i mod n

where pi denotes the i-th prime (with p0 = Γ23) and beta[i] denotes the elements of
the following table:

1 2 1 2 2 2 2 1 2 2 2 1 1 2 2 2 1 1 2 1 2 2 2 2 2 1 1 2 1 1 2 1 1 2 1 1

1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 2 1 1 2 1 2 1 1 2 2 1 1 1 1 2 1 1 2 1

1 1 1 1 2 2 1 2 1 2 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 2

1 1 1 2 2 2 2 1 2 2 1 1 2 2 2 2 1 1 2 1 2 2 2 2 1 1 1 2 1 1 2 1 1 1 1 2

2 1 1 1 1 2 2 1 2 2 1 1 2 2 2 1 2 1 2 2 2 1 2 1 2 2 1 2 1 2 2 1 1 2 1 1

gamma[i] represents the hexadecimal values:

57 57 68 33 27 18 16 13 10 0F 0E 0B 09 09 0D 05 0B 07 04 08 07 07 07 09 0A 03 07

04 05 05 03 04 03 01 02 03 04 03 01 03 03 03 02 06 03 03 04 06 02 04 04 02 02 03

02 04 04 03 04 01 04 03 02 03 02 01 02 02 01 03 01 01 01 01 03 03 01 03 02 02 01

04 02 04 02 02 01 02 01 01 01 03 03 01 02 01 01 00 03 02 03 01 01 02 01 02 02 03

03 04 03 03 02 03 01 02 03 02 01 03 02 02 01 01 00 02 01 01 03 01 01 01 01 01 02

00 02 00 00 01 02 01 01 01 00 01 01 00 01 01 02 02 01 01 01 00 01 00 01 01 04 02

02 02 01 02 02 01 02 01 02 00 01 00 02 01 02 02 00 01 02 01 01 01 02 01 01 01 02

01 00 01 01 00 00 01 02 00 01 00 01 01 00 01 00 01 02 02 01 01 02 00 00 02 01 02

02 01 00 00 01 00 01 00 01 00 02 00 00 00 01 01 00 00 01 01 00 00 00 01 00 00 00

00 00 00 01 01 00 00 01 02 01 01 01 00 01 02 01 01 01 02 00 00 00 01 01 00 01 00

00 00 02 02 01 00 01 02 00 01 00 01 02 00 01 00 00 01 00 01 01 01 00 01 01 00 01

01 01 01 00 00 01 01 00 00 01 01 00 01 01 00 00 01 00 00 00 01 01 02 02 01 01 00

00 01 02 01 02 00 01 01 00 01 00 00 00 00 00 00 01 00 00 01 02 01
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Abstract. We describe two different attacks against the ISO/IEC 9796-1 signature standard for
RSA and Rabin. Both attacks consist in an existential forgery under a chosen-message attack: the
attacker asks for the signature of some messages of his choice, and is then able to produce the
signature of a message that was never signed by the legitimate signer. The first attack is a variant of
Desmedt and Odlyzko’s attack and requires a few hundreds of signatures. The second attack is more
powerful and requires only three signatures.

1 Introduction

A digital signature of a message is a bit string dependent on some secret known only to
the signer, and on the message being signed. A digital signature must be verifiable by a
third party without knowing the signer’s secret. A signature scheme is generally based on
a public-key cryptosystem. A private and public key pair is generated by the user, who
publishes the public-key while the private-key remains secret. The private key is used to
generate a signature of a given message, and the public key is used to verify the signature
of a message.

The first realization of digital signatures was based on the RSA cryptosystem, invented
in 1977 by Rivest, Shamir and Adleman [13], which is to now the most widely used public-
key cryptosystem. In this scheme, the public key is a composite integer N and a public
exponent e, and the secret key is a private exponent d such that ed = 1 mod φ(N). To sign
a message m, the signer first applies some encoding function µ that maps m into a number
smaller than N , and then raises µ(m) to the private exponent d modulo N . The signature
is then s = µ(m)d mod N . The signature is verified by checking that se = µ(m) mod N ,
where e is the public exponent.

A signature scheme is said to be secure if it is infeasible to produce a valid signature
of a message without knowing the private key. This task should remain infeasible even if
the attacker can obtain the signature of any message of his choice. This security notion
was formalized by Goldwasser, Micali and Rivest in [6] and called existential unforgeability
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under an adaptive chosen message attack. It is the strongest security notion for a signature
scheme and it is now considered as the standard security notion for signature schemes.

The iso/iec 9796-1 standard [8] was published in 1991 by ISO as the first international
standard for digital signatures. It specifies some encoding function µ (among other things).
For many years, the standard was believed to be secure, as no attack better than factoring
the modulus N was known; see [5] for the rationale behind the design of iso/iec 9796-1,
and [12] for a survey on RSA-based digital signatures.

In this paper, we describe two different attacks against the ISO/IEC 9796-1 signature
standard. Each of the two attacks constitutes existential forgery under a chosen-message
attack: the attacker asks for the signature of some messages of his choice, and is then able
to produce the signature of a message that was never signed by the owner of the private key.
The first attack [1], designed by Coppersmith, Halevi and Jutla, appeared as a research
contribution to P1363. It is a variant of an attack, published at Crypto ’99 by Coron,
Naccache and Stern [2], against a slightly modified variant of the iso/iec 9796-1 standard.
Those attacks are a variant of Desmedt and Odlyzko’s attack against RSA and require
a few hundred signatures. The second attack was published by Grieu at Eurocrypt 2000
[7] and uses a different technique; it is more powerful as it requires only three signatures.
After the publication of those attacks, the iso/iec 9796-1 standard has been withdrawn.

2 RSA and Rabin Signature Schemes

2.1 The RSA Signature Scheme

In this section, we briefly recall the RSA signature scheme, based on the RSA cryptosys-
tem. The user generates two random primes p and q of approximately the same size, and
computes the modulus N = p · q. He randomly picks an encryption exponent e ∈ Z∗φ(N)

and computes the corresponding decryption exponent d such that e · d = 1 mod φ(N).
Alternatively, the user can select a small exponent e such as e = 3 or e = 216 + 1. The
public-key is then (N, e) and the private key is (N, d). The RSA signature scheme is spec-
ified by an encoding function µ, which takes as input a message m and returns an integer
modulo N , denoted µ(m). Below we sometime call µ(m) “the redundant message” (since µ
would typically add some redundancy). The signature of a message m is then:

s = µ(m)d mod N

The signature is verified by checking that

µ(m)
?
= se mod N

2.2 The Rabin Signature scheme

We recall the Rabin-Williams signature scheme [11]. It uses an encoding function µ(m)
such that for all m, µ(m) = 6 mod 16.
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Key generation: on input 1k, generate two k/2-bit primes p and q such that p = 3 mod 8
and q = 7 mod 8. The public key is N = p · q and the private key is d = (N −p− q +5)/8.

Signature generation: compute the Jacobi symbol J =
(

µ(m)
N

)
. The signature of m is

then s = min(σ,N − σ), where:

σ =

{
µ(m)d mod N if J = 1
(µ(m)/2)d mod N otherwise

Signature verification: compute ω = s2 mod N and check that:

µ(m)
?
=





ω if ω = 6 mod 8
2 · ω if ω = 3 mod 8
N − ω if ω = 7 mod 8
2 · (N − ω) if ω = 2 mod 8

In appendix A, we recall some simple facts about the Jacobi symbol, which enable to
show that signature verification works. In particular, the fact that

(
2
N

)
= −1 ensures that

either µ(m) or µ(m)/2 has Jacobi symbol equal to 1.

3 Desmedt and Odlyzko’s Attack

This attack [3] applies to the RSA and Rabin signature schemes and provides an existential
forgery against a chosen-message attack.

1. Select a bound y and let L = (p1, . . . , p`) be the list of primes smaller than y.
2. Find at least ` + 1 messages mi such that each µ(mi) is the product of primes in L.
3. Express one µ(mj) as a multiplicative combination of the other µ(mi), by solving a

linear system given by the exponent vectors of the µ(mi) with respect to the primes in
L.

4. Ask for the signature of the mi for i 6= j and forge the signature of mj.

The attack complexity depends on the length of L and on the difficulty of finding at
step 2 enough µ(mi) which are the product of primes in L. Generally, the attack applies
only if µ(m) is small; otherwise, the probability that µ(m) is the product of small primes
only is too small.

3.1 The Desmedt and Odlyzko Attack for RSA with Prime e

In the following, we describe the attack in more detail. First, we focus on RSA, that is we
have gcd(e, φ(N)) = 1, and assume that e is a prime integer. We let τ be the number of
messages mi obtained at step 2. We say that an integer is B-smooth if all its prime factors
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are smaller than B. The integers µ(mi) obtained at step 2 are therefore y-smooth and we
can write for all messages mi, 1 ≤ i ≤ τ :

µ(mi) =
k∏

j=1

p
vi,j

j (1)

Step 3 works as follows. To each µ(mi) we associate the `-dimensional vector of the expo-
nents modulo e:

Vi = (vi,1 mod e, . . . , vi,` mod e)

The set of all `-dimensional vectors modulo e form a linear space of dimension `. Therefore,
if τ ≥ `+1, one can express one vector, say Vτ , as a linear combination of the others modulo
e, using Gaussian elimination:

V τ =
τ−1∑
i=1

βiV i + Γ · e (2)

for some Γ = (γ1, . . . , γk). Denoting

δ =
∏̀
j=1

p
γj

j (3)

one obtains from (6) and (7) that µ(mτ ) is a multiplicative combination of the other µ(mi):

µ(mτ ) = δe ·
τ−1∏
i=1

µ(mi)
βi (4)

Then, at step 4, the attacker will ask for the signature of the τ − 1 first messages mi and
forge the signature of mτ using:

µ(mτ )
d = δ ·

τ−1∏
i=1

(
µ(mi)

d
)βi

mod N (5)

The attack’s complexity depends on ` and on the probability that the integers µ(mi) are
y-smooth. We define ψ(x, y) = #{v ≤ x, such that v is y-smooth}. It is known [4] that,
for large x, the ratio ψ(x, t

√
x)/x is equivalent to Dickman’s function defined by :

ρ(t) =





1 if 0 ≤ t ≤ 1

ρ(n)−
∫ t

n

ρ(v − 1)

v
dv if n ≤ t ≤ n + 1

ρ(t) is thus an approximation of the probability that a u-bit number is 2u/t-smooth; the
following table gives the numerical value of ρ(t) (on a logarithmic scale) for 1 ≤ t ≤ 10.



Cryptanalysis of ISO/IEC 9796-1 163

t 1 2 3 4 5 6 7 8 9 10

− log2 ρ(t) 0 1.7 4.4 7.7 11.5 15.6 20.1 24.9 29.9 35.1

Table 1. The value of Dickman’s function.

In the following, we provide an asymptotic analysis of the algorithm’s complexity, based
on the assumption that the integers µ(m) are uniformly distributed between zero and some
given bound x. Letting β be a constant and letting:

y = Lx[β] = exp
(
β ·

√
log x log log x

)

one obtains [4] that, for large x, the probability that an integer uniformly distributed
between one and x is Lx[β]-smooth is:

ψ(x, y)

x
= Lx

[
− 1

2β
+ o(1)

]

Therefore, we have to generate on average Lx[1/(2β) + o(1)] integers µ(m) before we can
find one which is y-smooth.

Using the ECM factorization algorithm [10], a prime factor p of an integer n can be
found in time Lp[

√
2+o(1)]. A y-smooth integer can thus be factored in time Ly[

√
2+o(1)] =

Lx[o(1)]. The complexity of finding a random integer in [0, x] which is y-smooth using the
ECM is thus Lx [1/(2β) + o(1)]. Moreover, the number τ of integers which are necessary
to find a vector which is a linear combination of the others is ` + 1 ≤ y. Therefore, one
must solve a system with r = Lx[β + o(1)] equations in r = Lx[β + o(1)] unknowns. Using
Lanzos’ iterative algorithm [9], the time required to solve such system is O(r2) and the
space required is roughly O(r).

To summarize, the time required to obtain the Lx[β + o(1)] equations is asymptotically
Lx [β + 1/(2β) + o(1)] and the system is solved in time Lx[2β +o(1)]. The total complexity
is minimal by taking β = 1/

√
2. We obtain a time complexity

Lx[
√

2 + o(1)]

and space complexity:

Lx

[√
2

2
+ o(1)

]

This complexity is sub-exponential in the size of the integers µ(m). Therefore, without any
modification, the attack will be practical only if µ(m) is small. In particular, when µ(m)
is about the same size as the modulus N , the complexity of the attack is no better than
factoring N .
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3.2 Extension to Any Exponent ≥ 3

When e is prime, the set of `-dimensional vectors modulo e is a `-dimensional linear space;
τ = ` + 1 vectors are consequently sufficient to guarantee that (at least) one of the vectors
can be expressed as a linear combination of the others.

If we assume that e is the r-th power of a prime p, then τ = ` + 1 are again sufficient
to ensure that (at least) one vector can be expressed as a linear combination of the others.
Using the p-adic expansion of the vector coefficients and Gaussian elimination on ` + 1
vectors, one can write one of the vectors as a linear combination of the others.

Finally, in the general case, writing e =
∏ω

i=1 pri
i , then τ = 1+ω · ` vectors are sufficient

to guarantee that (at least) one vector is a linear combination of the others. Namely, for
each of the pri

i , using the previous argument one can find a set Ti of (ω − 1)` + 1 vectors,
each of which can be expressed by Gaussian elimination as a linear combination of ` other
vectors. Intersecting the Ti and using Chinese remaindering, one gets that (at least) one
vector must be a linear combination of the others modulo e. We obtain the same asymptotic
complexity as previously.

3.3 Extension to Rabin Signatures

Previously, we assumed that e is invertible modulo φ(n). This is no longer the case for
Rabin signatures, where e = 2. We modify the attack as follows:

For each message mi at step 2, we replace µ(mi) by µ(mi)/2 if
(

µ(mi)
N

)
= −1. The

attack continues without modification until equation (9), which gives:

µ(mτ )
d = δ2·d ·

τ−1∏
i=1

(
µ(mi)

d
)βi

mod N (6)

We distinguish two cases: if the integer δ given by equation (8) is such that
(

δ
N

)
= 1, then

using lemma 2 we obtain that δ2d = ±δ mod N , which gives:

µ(mτ )
d = ±δ ·

τ−1∏
i=1

(
µ(mi)

d
)βi

mod N

instead of equation (10). This shows that, as previously, one can forge the signature of mτ

using the signatures of m1, . . . ,mτ−1.

Otherwise, if
(

δ
N

)
= −1, then we see from equation (6) that we can compute from the

signatures of the τ messages m1, . . . , mτ the integer:

u = δ2d mod N

From lemma 2 we have that u2 = δ2 mod N , which gives (u−δ)(u+δ) = 0 mod N . Since
u is a square, we have that

(
u
N

)
= 1, which shows that we cannot have δ = ±u mod N .

Therefore, gcd(u± δ,N) must disclose the factorization of N .
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3.4 Practical Experiments

We have implemented the previous attack, using Shoup’s NTL library [14]. Instead of
computing µ(mi) for some particular function µ, we have generated a sequence of random
integers xi uniformly distributed between zero and x = 2a, for various integers a. Our goal
was to express one xi as a multiplicative combination of the others modulo some given
RSA-modulus N , using the previous attack.

Let ` be, as before, the number of primes in the list L, and let p` be the `-th prime.
We have that p` ' ` log `. Then, the probability that a random xi is p`-smooth can be
approximated by:

α = ρ

(
a log 2

log(` log `)

)

We have to generate on the average 1/α integers xi in order to find one that is p`-smooth,
and we need ` + 1 such p`-smooth integers. Therefore, we need to generate on the average
`/α integers xi.

Using the NTL library, we observed that the time required to perform brute-force
division by the first ` primes on a given integer xi is linear in ` · a; we obtained the
following running time tu per integer xi, on a 733 MHz PC, in seconds units:

tu(a, `) = 5 · 10−9 · ` · a
so that we can estimate the total running time as a function of k, in seconds units:

t(a, `) = 5 · 10−9 · a · `2

ρ
(

a log 2
log(` log `)

) (7)

We chose the number of primes ` so as to minimize the total running time. We found
that the matrix solving step took a negligible amount of time. The result of practical
experiments, and theoretical estimates based on (7) are summarized in table 2. They show
that when the size of the xi is less than approximately 80 bits, the attack is feasible, but
for larger sizes (more than 128 bits) it quickly becomes impractical. Note however that the
attack’s first step (finding smooth integers) is fully parallelizable.

Size # primes ` Running time log2 number of xi Estimated time Estimated log2 number of xi

48 bits 250 8 s 17 14 s 18
64 bits 700 9 min 21 15 min 22
80 bits 2000 5 hours 25 11 hours 25
96 bits 5000 - - 14 days 29
128 bits 20000 - - 22 years 35
160 bits 150000 - - 6500 years 41

Table 2. Running time, observed (on a 733MHz PC) and estimated, for various sizes of xi, with the log2 total
number of xi to generate in order to find one that is a multiplicative combination of the others.
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4 The ISO/IEC 9796-1 Signature Standard

The iso/iec 9796-1 standard [8] was published in 1991 by ISO as the first international
standard for digital signatures. It specifies (among other things) an encoding function
µ

ISO
for messages than are shorter than half the modulus size. The encoding function

µ
ISO

embeds the message m itself in the integer µ(m) (with some additional redundancy).
Thus it “message recovery”, which means that the message is recovered when verifying the
signature.

For simplicity, we restrict ourselves to moduli of size k = 16·z+1 bits and to messages of
size 8z bits, for some integer z. We denote by mi the i’th 4-bit nibble of m, for 0 ≤ i ≤ 2z−1.
In this case, the encoding function – denoted µ

ISO
– is defined as follows:

µ
ISO

(m) = s̄(m2z−1) s̃(m2z−2) m2z−1 m2z−2

s(m2z−3) s(m2z−4) m2z−3 m2z−4

· · ·
s(m3) s(m2) m3 m2

s(m1) s(m0) m0 6

The permutation s(x) in defined as:

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

s(x) E 3 5 8 9 4 2 F 0 D B 6 7 A C 1

s̃(x) denotes the nibble s(x) with the least significant bit flipped (i.e., s̃(x) = s(x)⊕ 1),
and s̄(x) is the result of setting the most significant bit of s(x) to ‘1’, that is, s̄(x) =
1000 OR s(x).

5 Attack Against Modified ISO/IEC 9796-1

First, we describe an attack against a slight variant of iso/iec 9796-1, in which the encoding
function is modified by one single bit. This attack was published at Crypto ’99 by Coron,
Naccache and Stern [2].

We consider a modified iso/iec 9796-1, in which the function s̃(x) which appears in
the definition of µ(m) is replaced by s(x). We obtain the following modified encoding :

µ′(m) = s̄(m2z−1) s(m2z−2) m2z−1 m2z−2

s(m2z−3) s(m2z−4) m2z−3 m2z−4

· · ·
s(m3) s(m2) m3 m2

s(m1) s(m0) m0 6

We assume that the modulus size k is such that k = 1 mod 64 and let k = 64 · u + 1.
We consider a message m of size 32 · u = 8 · z bits, consisting in u times the same 32-bit
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pattern:

m = a6 a5 a4 a3 a2 a1 6616
a6 a5 a4 a3 a2 a1 6616
. . .
a6 a5 a4 a3 a2 a1 6616

where a1, . . . , a6 are 4-bit nibbles. Its modified padding is given by:

µ′(m) = s̄(a6) s(a5) a6 a5 s(a4) s(a3) a4 a3

s(a2) s(a1) a2 a1 216 216 616 616
. . .
s(a6) s(a5) a6 a5 s(a4) s(a3) a4 a3

s(a2) s(a1) a2 a1 216 216 616 616

We restrict the choice of a6 to the eight nibbles for which s = s̄, so that the structure of
µ′(mi) is fully periodic. This enables us to write µ′(m) as:

µ′(m) = Γ · x (8)

where x is a 64-bit integer, a concatenation of the following nibbles:

x = s(a6) s(a5) a6 a5 s(a4) s(a3) a4 a3 s(a2) s(a1) a2 a1 226616

and the constant Γ is given by:

Γ =
u−1∑
i=0

264·i

The factorization given by (8) writes µ′(m) as the product of a constant Γ by some small
integer x. This enables us to apply Desmedt and Odlyzko’s attack described in section 3.
The only modification consists in including the constant Γ in the list L of small primes,
so as to write:

µ(mi) = Γ ·
∏̀
j=1

p
vi,j

j mod N for 1 ≤ i ≤ τ

Then, to each µ(mi) we associate a ` + 1-dimensional vector Vi = (1, vi,1, . . . , vi,`), instead
of (vi,1, . . . , vi,`), and the attack carries out as described in section 3.

We see in table 2 that for 64-bit integers, the attack demands the generation of approx-
imately 222 integers, and takes only a few minutes on a single PC (running at 733MHz).
There are 223 possible values for x, so the attack against modified ISO/IEC 9796-1 is likely
to work in practice. This is confirmed by experiments performed in [2], in which an example
of forgery is given using only 181 messages.
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6 Attack Against the Full ISO/IEC 9796-1

The actual encoding function that is used in the ISO/IEC 9796-1 standard is slightly
different than the function µ′ above. Namely, for these parameters, the difference between
µ′(m) and µ

ISO
(m) is that the lowest bit in the second-most-significant nibble of µ

ISO
(m)

is flipped.

One can see that we cannot simply represent the encoding µ
ISO

(m) as a product Γ · x
with Γ, x as above. Hence the attack must be modified to apply to this encoding function.
The extension of the previous attack to the full iso/iec 9796-1 was done by Coppersmith,
Halevi and Jutla [1].

6.1 Modifying the Attack

The modified attack is similar to the attack described in the previous section, except that
it uses a slightly different structure for Γ and x. In the previous attack, the constant Γ
consisted of several ones that were separated by as many zeroes as there are bits in x. In
the modified attack, we again have a constant Γ which consists of a few ones separated by
many zeroes, but this time there are fewer separating zeroes.

We start with an example. Consider a 64-bit integer x, which is represented as four 16-
bit words x = abcd (so a is the most-significant word of x, b is the second-most-significant,
etc.). Also, consider the 112-bit constant Γ = 1001001, where again each digit represents
a 16-bit word. Now consider what happens when we multiply Γ · x. We have

Γ · x = a b c d
· 1 0 0 1 0 0 1

a b c d
a b c d

a b c d
a b c e b c e b c d

where e = a+d (assuming that no carry is generated in the addition a+d). Notice that the
16-bit d appears only as the least-significant word of the result, and the 16-bit a appears
only as the most-significant word of the result. It is therefore possible to arrange it so that
the form of the words a, d be different than the form of the words b, c and e, and this could
match the different forms of the least- and most-significant words in the encoded message
µ

ISO
(m).

More precisely, we consider three types of 16-bit words. For a 16-bit word x, we say
that:

– x is a valid low word if it has the form x = s(u) s(v) v 6, for some two nibbles u, v.
– x is a valid middle word if it has the form x = s(u) s(v) u v, for some two nibbles u, v.
– x is a valid high word if it has the form x = s̄(u) s̃(v) u v, for some two nibbles u, v.

We note that there are exactly 256 valid low words, 256 valid middle words, and 256 valid
high words (since in each case we can arbitrarily choose the nibbles u, v).
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In the example above, we needed a to be a valid high word, d to be a valid low word,
b and c to be valid middle words, and we also needed e = a + d to be a valid middle word.
We note the following:

– There are 64 pairs x, y such that x is a valid high word, y is a valid low word, and
z = x + y is a valid middle word (this is what we needed for the example above). We
call such a pair (x, y) a high-low pair. The 64 high-low pairs are listed in Appendix B.

– There are 84 pairs x, y such that x is a valid high word, y is a valid middle word, and
z = x + y is a valid middle word. We call such a pair (x, y) a high-mid pair.

– There are 150 pairs x, y such that x is a valid middle word, y is a valid low word, and
z = x + y is a valid middle word. We call such a pair (x, y) a mid-low pair.

– There are 468 pairs x, y such that x is a valid middle word, y is a valid middle word,
and z = x + y is also a valid middle word. We call such a pair (x, y) a mid-mid pair.

We are now ready to present the attack. For clarity of presentation we start by presenting
the attack for the special cases where the modulus size is 1024+1 bits and 2048+1 bits.
We later describe the general case.

6.2 1024+1 Bit Moduli

When the modulus size is k = 1025 bits, we need to encode the messages as 1024-bit
integers with the high bit set to one. The attack proceeds similarly to the above example:
we consider 64-bit integers x = abcd, where a is a valid high-word, d is a valid low-word,
and b, c and e = a + d are valid middle words. There are 64 choices for the high-low pair
(a, d) and 256 choices for each of b, c, so there are total of 222 integers x of the right form.
We then set

Γ1024 =
20∑
i=0

248i = 1 001 001 . . . 001 216︸ ︷︷ ︸
1 followed by 20 repetitions of 001 (base 216)

This gives us
M = Γ1024 · x = a bce bce . . . bce︸ ︷︷ ︸

20 repetitions

bcd

which is a valid encoding of some message M = µ
ISO

(m), because of the way in which x
was chosen. We can see that the attack applies more generally to moduli of size 48 · t + 65,
for any integer t.

With a 64-bit integer x, the attack’s complexity is the same as previously. The only
difference is that there are now 222 possible values for x instead of 223. In appendix C, we
provide an example of a forgery using 273 messages.

6.3 2048+1 Bit Moduli

When the modulus size is k = 2049 bits, we need to encode messages as 2048-bit integers
with the high bit set to one. Here we need to modify the attack a little bit, by changing
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the length of x and the amount of “overlap” that is used in the product Γ · x. Specifically,
we can work with 128-bit integers x, with x = abcdefgh, where a is a valid high-word, h is
a valid low-word, and b, c, d, e, f, g and also i = a+ g and j = b+h are valid middle-words,
as exemplified:

Γ · x = a b c d e f g h
· 1 0 0 0 0 0 1 0 0 0 0 0 1

a b c d e f g h
a b c d e f g h

a b c d e f g h
a b c d e f i j c d e f i j c d e f g h

This gives us 84 choices for the high-mid pair (a, g), 150 choices for the mid-low pair (b, h)
and 256 choices for each of c, d, e, f , so we have total of more than 245 choices for x. We
set

Γ2048 =
20∑
i=0

296i = 1 000001 . . . 000001︸ ︷︷ ︸
20 repetitions

216

and so we get

M = Γ2048 · x = ab cdefij . . . cdefij︸ ︷︷ ︸
20 repetitions

cdefgh

which is again a valid encoding.

We see in table 2 that for a 128-bit integer x, we have to generate 235 integers x
(therefore the 245 possible choices for x are more than enough) and the attack’s estimated
running time on a single PC, running at 733MHz, is 22 years. (Projecting using Moore’s
Law, by 2010 this task should take less than a year on a single PC.)

6.4 The General Case

For a modulus whose size is 16z + 1 bits (for an even z), we need to encode messages as
16z-bit integers, which means that the encodings should have z 16-bit words. We write the
integer z as z = α ·m + β, where α, β,m are all integers with α, β ≥ 1 and m ≥ 2. For
reasons that will soon become clear, we try to get α+β as small as possible, while making
sure that α− β is at least 2 or 3.

The attack then works with integers x of α + β 16-bit words (which is why we want
to minimize α + β), and use the “overlap” of β words in the product Γ · x. If we denote
γ = α+β, then we have x = aγ . . . a1, where aγ is a valid high-word, a1 is a valid low-word,
and the other ai’s are valid middle words (and we also need some of the sums to be valid
middle words). We then set

Γ16z =
m−1∑
i=0

216αi = 1 0 .. 0 1 0 .. 0 1 . . . 0 .. 0 1︸ ︷︷ ︸
m−1 repetitions of 0..01 (α−1 0′s followed by 1)
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When we multiply Γ16z · x we get

Γ16z · x = aγ .. aα+1 aα .. aβ .. a1

. . . 0 1 0 .. 0 1 0 .. 0 1
aγ .. aα+1 aα .. aβ .. a1

aγ .. aα+1 aα .. aβ .. a1

. . . aβ .. a1

hence we also need the sums (aγ +aβ), . . . , (aα+2+a2), (aα+1+a1) to be valid middle words.
If β = 1 (as in the case of 1025-bit moduli above), we have 64 choices for the high-low

pair (aγ, a1) and 256 choices for each of the other ai’s, so we get total of 64 · 256α−1 choices
for x.

If β ≥ 2 (as in the case of 2049-bit moduli above), we have 84 choices for the high-mid
pair (aγ, aβ), 150 choices for the mid-low pair (aα+1, a1), 468 choices for each of the mid-mid
pairs (aγ−1, aβ−1) . . . (aα+2, a2). Thus the total number of choices for x is 84 · 150 · 468β−2 ·
256α−β. (This is the reason for which we want α− β to be at least 2 or 3.) For the attack
to be successful, we should set the parameters α, β so that there are enough smooth x’s to
guarantee the “homomorphic dependencies” that we need.

As another example for the general case, consider 768 + 1 -bit moduli. We need to
encode the messages as 768-bit integers, or 768/16 = 48 words. We can write 48 = 5 ·9+3,
so we have α = 5, β = 3. Hence we work with x’s of 5 + 3 = 8 words (128 bits) and use
an overlap of 3 words. For this case we have 84 · 150 · 468 · 2562 > 238 choices for x. Using
table 2, we see that the attack has the same complexity as for the (2048 + 1)-bit moduli.

6.5 Possible Extensions

The attack that we described above was intended to work against moduli of size 16z + 1
bits for an even integer z, but there are a few straightforward ways to extend the attack
to handle other moduli sizes. For example, for a modulus of size 16z-bits (with z even), we
should encode messages as integers with 16z−1 bits, which we can view as z-word integers
with the highest bit set to zero and the second-highest bit set to one. To handle these
integers, we re-define a valid high-word as a 16-bit word of the form x = ŝ(u) s̃(v) u v, for
some two nibbles u, v, where ŝ(u) is the nibble s(u) with the highest bit set to zero and the
second-highest bit set to one. Although we did not check this, we suspect that the modified
definition of a valid high-word will not significantly change the number of high-low and
high-mid pairs, so the complexity of an attack against 16z-bit moduli should be roughly
the same as that of an attack against moduli of 16z + 1 bits.

Another extension of the attack is to consider also the cases where there are some carry
bits between the nibbles in the computation of Γ · x. For example, for the case of β ≥ 2
(see Section 6.4) we can have carry bits between the “overlap” words in the multiplication
without affecting the attack. We estimate that considering these carry bits can increase
the number of possible x’s by about a factor of 2β−1 (since we can have x’s that cause any
pattern of carry bits inside a string of length β nibbles).
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Yet another plausible extension is to handle the case where not only the first and last
words of the encoding have different formats, but also one other word in the middle. This
is the case, for example, when we encode a message m of length less than half the size of
the modulus. In that case, the form of the highest word would be x = s̄(u) s(v) u v, the
form of the lowest word would be x = s̄(u) s(v) v 6, and there would be one other word
somewhere in the middle of the form x = s(u) s̃(v) u v. In this case we may be able to
modify Γ a little, so that the spacing of the ones is not equal throughout the number. For
example, if we have x = abcd and Γ = 10010001, we get

Γ · x = a b c d
· 1 0 0 1 0 0 0 1

a b c d
a b c d

a b c d
a b c e b c d a b c d

Now notice that the word e only appears once in the middle, and so we can arrange it so
that it would have a different form than the other words. This technique can potentially
be used to find more forgeries, or to reduce the complexity of the attack against certain
moduli-lengths.

7 Second Attack Against ISO/IEC 9796-1

7.1 Introduction

At Eurocrypt 2002, Grieu [7] presented a more efficient attack against iso/iec 9796-1. The
attack comprises of finding pairs of message (m,m′) such that:

µ(m)

µ(m′)
=

a

b

for some given small integers a, b. One obtains two such pairs of messages, (m1,m
′
1) and

(m2,m
′
2), and then using

µ(m1) · µ(m′
2) = µ(m′

1) · µ(m2)

it is possible to express the signature of m1 as a function of the signatures of the three
other messages.

We restrict the attack and the description of iso/iec 9796-1 to moduli of size k where
k mod 16 ∈ {0,±1,±2}, and to messages of size z = b(k + 2)/16c bytes, the maximum
allowed message size. (Note that the attacks described in sections 5 and 6 were restricted
to the case k ≡ 1 mod 16.)

With these restrictions, the construction of the redundant message µ(m) amounts to
the local transformation of each byte mi of the message m by an injection Fi, yielding the
redundant message

µ(m) = Fz(mz) ‖ Fz−1(mz−1) ‖ .. ‖ F2(m2) ‖ F1(m1)
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with the injections Fi transforming an individual byte mi of two 4 bit digits x ‖ y as defined
by

F1(x ‖ y) = s(x) ‖ s(y) ‖ y ‖ [6]4
Fi(x ‖ y) = s(x) ‖ s(y) ‖ x ‖ y for 1 < i < z
Fz(x ‖ y) = [1]1 ‖ [s(x)]

k+2 mod 16
‖ s(y)⊕ 1 ‖ x ‖ y

(9)

where [w]i denotes the least significant i bits of w (so [w]i ≡ w mod 2i), and s(x) is the
permutation defined in section 4. As we said above, the attack consists of selecting two
small positive integers a, b and search for message pairs A, B that yield redundant messages
satisfying

µ(A)

µ(B)
=

a

b
(10)

7.2 Choosing the Ratio a/b

The encoding function µ imposes some restrictions on the ratio a/b that can be used for
this attack. First, we can restrict our choice of a, b to a < b, since the ratios a/b and b/a
correspond to the same message pairs (in reverse order). Similarly, we can restrict ourselves
to relatively prime a, b. Also, since µ(A) and µ(B) are strings of equal length with the most
significant bit set to one, we must have b < 2a. Next, we observe that Equation (10) can
be written as

µ(B) · a = µ(A) · b,
and since the encoding µ dictates that µ(B) mod 16 = µ(A) mod 16 = 6, it follows that
we must have 6a ≡ 6b mod 16, or in other words a ≡ b mod 8. Finally, in the attack below
it will be convenient to assume that a ≥ 9. Thus, in the following we restrict our choice
of the ratio a/b to co-prime integers a, b with 9 ≤ a < b < 2a and a ≡ b mod 8. Some
examples of ratios a/b satisfying these requirements are 9/17, 11/19, and 13/21.

7.3 Making the Search Manageable

Consider a hypothetical message pair A, B satisfying (10). Since the fraction a/b is chosen
to be irreducible, then denoting W = gcd(µ(A), µ(B)) we have

µ(A) = a ·W and µ(B) = b ·W (11)

We break up A, B into z bytes. We notice that our choice 9 ≤ a < b, in conjunction
with the restriction we put on k mod 16, implies W < 216z. Thus, we can similarly break
up W into z 16-bit strings

A = az ‖ az−1 ‖ .. ‖ a2 ‖ a1 (ai < 28)
B = bz ‖ bz−1 ‖ .. ‖ b2 ‖ b1 (bi < 28)
W = wz ‖ wz−1 ‖ .. ‖ w2 ‖ w1 (wi < 216)

We break up each of the two multiplications appearing in (11) into z multiply and add
steps operating on each of the wi, performed from right to left, with z− 1 steps generating
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an overflow to the next step, and a last step producing the remaining left (k+2 mod 16)+13
bits. We define the overflows

ā0 = āz = 0 b̄0 = b̄z = 0
āi = b(awi + āi−1)/2

16c b̄i = b(bwi + b̄i−1)/2
16c for 1 ≤ i < z

(12)

The notations above can be pictorially described as follows:

overflows : āz−1 āz−2 .. ā1 0 overflows : b̄z−1 b̄z−2 .. b̄1 0
wz wz−1 .. w2 w1 wz wz−1 .. w2 w1

× a × b
= F (az) F (az−1) .. F (a2) F (a1) = F (bz) F (bz−1) .. F (b2) F (b1)

Using these notations, we can transform (11) into the equivalent

Fi(ai) = awi + āi−1 mod 216 Fi(bi) = bwi + b̄i−1 mod 216 for 1 ≤ i < z
Fi(az) = awz + āz−1 Fz(bz) = bwz + b̄z−1

(13)

The search for message pairs A, B satisfying (10) is equivalent to the search of wi, ai, bi,
āi, b̄i satisfying (12) and (13). This is z smaller problems, linked together by the overflows
āi, b̄i.

7.4 Reducing Overflows āi, b̄i to One Link li

Definition (12) of the overflows āi, b̄i implies, by induction

āi =

⌊
a [W ]16i

216i

⌋
and b̄i =

⌊
b [W ]16i

216i

⌋
for 1 ≤ i < z (14)

Since 0 ≤ [W ]16i < 216i we have

0 ≤ āi < a and 0 ≤ b̄i < b (15)

We also observe that āi/b̄i is roughly equal to the ratio a/b, more precisely equation
(14) implies successively

a
[W ]16i

216i
− 1 < āi ≤ a

[W ]16i

216i
and b

[W ]16i

216i
− 1 < b̄i ≤ b

[W ]16i

216i

āi

a
≤ [W ]16i

216i
<

āi + 1

a
and

b̄i

b
≤ [W ]16i

216i
<

b̄i + 1

b

a
b̄i

b
− 1 < āi < a

b̄i + 1

b
and b

āi

a
− 1 < b̄i < b

āi + 1

a

so, as consequence of their definition, the āi, b̄i must satisfy

−a < ab̄i − bāi < b (16)
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For a given b̄i with 0 ≤ b̄i < b, one or two āi are solutions of (16): ba b̄i/bc, and
ba b̄i/bc+ 1 if and only if a b̄i mod b > b− a.

It is handy to group āi, b̄i into a single link defined as

li = āi + b̄i + 1 with 1 ≤ li < a + b (17)

so we can rearrange (16) into

āi =

⌊
a li

a + b

⌋
and b̄i =

⌊
b li

a + b

⌋
(18)

7.5 Turning the Problem Into a Graph Traversal

For 1 ≤ i ≤ z, we define a set of triples Ti as

Ti = {(li, wi, li−1) | ∃(ai, bi, āi, b̄i, āi−1, b̄i−1) satisfying (12), (13), (15), (17), (18)}

We consider a layered graph, where the vertices in the i’th layer are all the elements of
Ti, and there is an edge between the two vertices (li, w, li−1) ∈ Ti and (l′i−1, w

′, l′i−2) ∈ Ti−1

if and only if li−1 = l′i−1. Solving (10) is equivalent to finding a connected path from an
element of T1 to an element of Tz. If this can be achieved, a suitable W is obtained by
concatenating the wi in the path, and µ(A), µ(B) follow from (11).

7.6 Building and Traversing the Graph

The graph can be explored in either direction with about equal ease, we describe the right
to left procedure. Initially we start with the only link l0 = 1. At step i = 1 and growing,
for each of the link at the previous step, we vary bi in range [0, . . . , 28 − 1] and directly
compute

wi =

(
Fi(bi)−

⌊
b li−1

a + b

⌋)
b−1 mod 216 (19)

Using an inverted table of Fi we can determine in one lookup if there exist an ai such that

Fi(ai) = a wi +

⌊
a li−1

a + b

⌋
mod 216 (20)

and in that case we record the new triple (li, wi, li−1) with the new link

li =

⌊
a wi +

⌊
a li−1

a+b

⌋

216

⌋
+

⌊
b wi +

⌊
b li−1

a+b

⌋

216

⌋
+ 1 (21)

We repeat this process until a step has failed to produce any link, or we reach i = z
where we need to modify (19), (20), (21) by replacing the term 216 by 2(k+2 mod 16)+13, and
reject nodes where lz 6= 1.
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Fig. 1. Graph of solutions of (10) for k = 256 and a/b = 11/19

If we produce a link in the last step i = z, we can obtain a solution to (10) by back-
tracking any path followed, and the resulting graph covers all the solutions.

Exploration for the simplest ratio 9/17 stops on the first step, but 11/19 is more fruitful.
For example, for modulus size k = 256, and restricting to nodes belonging to a solution,
we can draw the graph in figure 1.

Using this graph to produce solutions to (10) is simple: message pairs are obtained
by choosing a path between terminal nodes, and collecting the message bytes ai (resp. bi)
shown above (resp. below) the nodes1. For example, if we follow the bottom link, the graph
gives the messages:

A=85f27d64ef64ef64ef64ef64ef152c07

B=14ba7bf39df39df39df39df39d6ad958

and the redundant messages:

µ(A)=458515f2fa7d2964c1ef2964c1ef2964c1ef2964c1ef2964c1ef3415572cef76

µ(B)=78146bbaf67b18f3da9d18f3da9d18f3da9d18f3da9d18f3da9d2b6aadd94086

with indeed µ(A)/µ(B) = 11/19.

By following the upper link, we can compute another message pair C, D with the same
ratio µ(C)/µ(D), as:

C=85f27d64acf27d64acf27d64acf23c6d

D=14ba7bf3e3ba7bf3e3ba7bf3e3ba670e

which gives:

µ(C)=458515f2fA7d2964b7ac15f2fA7d2964b7ac15f2fA7d2964b7ac15f2873c2ad6

µ(D)=78146bbaf67b18f3c8e36bbaf67b18f3c8e36bbaf67b18f3c8e36bba2f67ece6

1 For the sake of convenience we have shown the bytes ai, bi of messages A, B instead of the triples (li, wi, li−1).
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7.7 Existential Forgery from the Signature of Three Chosen Messages

By selecting a ratio a/b and finding two messages pairs A, B and C, D solutions of (10),
we can now construct four messages A, B, C, D as exemplified in the previous section such
that:

µ(A) · µ(D) = µ(B) · µ(C) (22)

In the RSA case, this enables us to express the signature of A as a function of the other
signatures:

µ(A)d =
µ(B)d · µ(C)d

µ(D)d
mod N

In Rabin’s case, we must distinguish two cases. The first case is when we have:
(

µ(A)

N

)
=

(
µ(D)

N

)
= −

(
µ(B)

N

)
= −

(
µ(C)

N

)

We can assume without loss of generality that:
(

µ(A)

N

)
=

(
µ(D)

N

)
= 1

Then we can write:

µ(A) · µ(D) = 22 · µ(B)

2
· µ(C)

2
mod N

and denoting by σA, σB, σC , σD the signatures of messages A,B, C, D, we obtain:

σA · σD = 22d · σB · σC mod N

Therefore, from the four signatures we obtain the value of 22d mod N . As explained in
section 3.3, since

(
2
N

)
= −1, this allows to recover the factorization of N . Note that this

can only happen if the ratio a/b is such that
(

a
N

)
= − (

b
N

)
.

Otherwise, one obtains the following relation between the four signatures:

σA · σD = σB · σC mod N

which enables to forge one signature knowing the three others.

7.8 Reducing the Number of Required Signatures for Small e

Assume that we can find two messages A, B, solution of

µ(A)

µ(B)
=

ae

be
with a 6= b (23)

for some known integers a, b. For the RSA case, we can then forge the signature of A given
the signature of B:

µ(A)d =
a

b
· µ(B)d mod N
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For the Rabin case, we can either forge the signature of A given the signature of B if(
a
N

)
=

(
b
N

)
, or factor N given the two signatures if

(
a
N

)
= − (

b
N

)
.

An example with e = 2 and k = 512 with the ratio 192/252 is the following message
pair:

A=ECE8F706C09CA276A3FC8F00803C821D90A3C03222C37DE26F5C3FD37A886FE4

B=CA969C94FA0B801DDEEA0C22932D80570F95A9C767D27FA8F06A56E7371B16DF

An example for e = 3 with k = 510 and ratio 493/573 is:

A=C6C058A3239EE6D5ED2C4D17588B02B884A30D92B5D414DDB4B5A6DA58B6901B

B=20768B854644F693DB1508DE0124B4457CD7261DF699F422D9634D5E4D5781A4

8 Conclusion

We have shown two different attacks against the ISO/IEC 9796-1 signature standard. The
first attack is based on Desmedt and Odlyzko’s attack and produces a forgery with a few
hundred messages. The second attack is based on a graph traversal and constructs two
messages pairs whose expansion are in a common ratio; this allows to produce a forgery
from only three messages.
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A Background on Legendre and Jacobi Symbol

The Legendre symbol relative to an odd prime p is defined by:

(
x

p

)
=





1 if x 6= 0 mod p and x is a square modulo p
0 if x = 0 mod p
−1 otherwise.

We have the following lemma [11]:

Lemma 1. Let p 6= 2 be a prime. For any integer x,
(

x

p

)
= x

p−1
2 mod p

The Jacobi symbol relative to an odd integer n =
∏

pei
i is defined from Legendre symbols

as follows: (x

n

)
=

∏ (
x

pi

)ei

The Jacobi symbol can be computed without knowing the factorization of n; we refer to
[15] for a detailed study. The following lemma enables to show that signature verification
of Rabin-Williams signature scheme works.

Lemma 2. Let N be an RSA-modulus with p = 3 mod 8 and q = 7 mod 8. Then
(

2
N

)
=

−1 and
(−1

N

)
= 1. Let d = (N−p−q+5)/8. Then for any integer x such that

(
x
N

)
= 1, we

have that x2d = x mod N if x is a square modulo N , and x2d = −x mod N otherwise.

B Useful Pairs for the Attack from Section 6

We provide in table 3 the list of high-low pairs (x, y) of 16-bit words, together with their
sum z = x + y. Recall that a high-low pair (x, y) is such that x is a valid high word, y is
a valid low word, and z = x + y is a valid middle word. All the constants in the table are
given in hexadecimal (base-16) representation.

C A Concrete iso/iec 9796-1 Forgery using the Attack from
Section 6

The forgery is given for a 1025-bit modulus with e = 3. Let us denote the 112-bit constant
Γ = 1001001, where each digit represents a 16-bit word.

Step 1 :. For 1 ≤ i ≤ 273, we let xi = (ai bi ci di) be an integer such that

ai = s̄(ui,1) s̃(ui,2) ui,1 ui,2

bi = s(ui,3) s(ui,4) ui,3 ui,4

ci = s(ui,5) s(ui,6) ui,5 ui,6

di = s(ui,7) s(ui,8) ui,8 6



180 Don Coppersmith et alii.

x = 8f30 af60 8f80 bfa0 afd0 b211 d221 9241 c251 d291 92f1 a462

y = 0316 4316 4316 2266 1316 0d96 1ce6 1d96 0d96 2ce6 1ce6 3ba6

z = 9246 f276 d296 e206 c2e6 bfa7 ef07 afd7 cfe7 ff77 afd7 e008

x = a4d2 94f2 d923 9943 8983 99f3 8834 a864 8884 b8a4 a8d4 8585

y = 4ba6 3ba6 2456 4456 2456 5316 1316 5316 5316 3266 2316 6086

z = f078 d098 fd79 dd99 add9 ed09 9b4a fb7a db9a eb0a cbea e60b

x = 95f5 d326 9346 8386 93f6 ae67 aed7 9ef7 8138 8138 9148 b1a8

y = 6086 2456 4456 2456 5316 3ba6 4ba6 3ba6 2ba6 6ad6 3ba6 4ad6

z = f67b f77c d79c a7dc e70c ea0d fa7d da9d acde ec0e ccee fc7e

x = a1d8 cc59 8c89 ba1a 8a3a 9a4a 8a8a caea c75b c7eb 97fb b61c

y = 1ad6 2526 2526 4456 5456 2456 4456 2316 1ba6 0ba6 1ba6 1f76

z = bcae f17f b1af fe70 de90 bea0 cee0 ee00 e301 d391 b3a1 d592

x = a66c 96fc bb1d 8b3d 9b4d 8b8d bbad 9bfd cd5e cdee 9dfe b01f

y = 1f76 4e06 2ce6 1d96 2d96 6ce6 1ce6 2ce6 1ba6 0ba6 1ba6 4456

z = c5e2 e502 e803 a8d3 c8e3 f873 d893 c8e3 e904 d994 b9a4 f475

x = 803f 904f 808f c0ef

y = 5456 2456 4456 2316

z = d495 b4a5 c4e5 e405

Table 3. High-Low Pairs (x, y) and their sum z = x + y

where v[i] = ui,1 ui,2 ui,3 ui,4 ui,5 ui,6 ui,7 ui,8 is given in Table 4. We obtain Mi = Γ ·xi, which
is a valid encoding for a message mi, such that Mi = µ(mi).

Step 2 : Obtain the 272 signatures si = µ
ISO

(mi)
d mod N for 1 ≤ i ≤ 272.

Step 3 : The signature of m273 is given by:

µ(m273)
d = Γ−139

587∏
i=1

p
−g[i]
i

272∏
i=1

sb[i]i mod N, (24)

where pi is the i-th prime, and the b[i]’s and g[i]’s are given in Table 5.
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v[1..273] =

113C2789 2103E5FE 213488FE 215041FE 21A1F6FE 23979965 23A9DF65 26013565 26182D65 261B3865

26235B65 26729D65 26EB1465 30157C81 3038C281 304D5B81 30CF6581 34045BF1 340AC4F1 34596BF1

34B660F1 34E1B0F1 34FF49F1 3814BA6A 38585D6A 3873976A 38A9396A 38E2F86A 38EEE56A 385192BD

3854A9BD 3882F7BD 389E88BD 38BB52BD 3A16E425 3A3C6125 3A797525 3A9B4E25 3AB30125 3ABFBC25

3AD30A25 3D12D3F9 3D6C4AF9 3D8AF3F9 3D91E4F9 3D9E3BF9 3DD521F9 3DE363F9 3DEDAFF9 3F09D025

3F198D25 3F3DFC25 3FCE9B25 410AB2F9 4122BDF9 412F08F9 413EDBF9 41C584F9 41EE50F9 41F296F9

4345DC55 43486155 4372C655 43793F55 4385E655 43EE7B55 4617F255 4627D755 463CF255 4665D455

468AA555 46DB9055 484B4E1A 488ED71A 48E4B91A 48EE6D1A 4A55A165 4A6F6565 4A77DA65 4A905D65

4AC74265 4AEE8465 4D069469 4D147369 4D31AB69 4D420C69 4D499369 4D532169 4D56A869 4D758769

4D84EE69 4DD22969 4F2BF565 4F2C2665 4F758F65 4FA5A565 4FD7BD65 51C43089 51DA7A89 51E7E789

590CC262 59733762 59F54062 5B07E9FA 5B9EFDFA 5BBC4BFA 5BDC93FA 5BFCCEFA 5E062FFA 5E157DFA

5E4550FA 5E7CB6FA 5E963AFA 5ED3F8FA 6015AF51 60326151 60372751 604F6B51 60708951 607F0B51

60931F51 60D7FF51 6297391A 6486D321 6496D721 64F0D121 6758901A 675ED11A 67F7F31A 6C3FB8F7

6C9916F7 6CAA47F7 6CD886F7 806BD551 806F2D51 80A83051 831D3465 833A6E65 837B2565 837F0865

83B16265 83DA9C65 840FAF21 84149621 84704721 84802A21 84A25A21 84F1E221 84FDA321 858D66B8

85EB0BB8 861A4765 8634B865 866AB865 868D6165 86AC2F65 891EF962 89220762 892C2662 893ABD62

8950EA62 89CFD062 89DA4562 8A049B55 8A27EF55 8A32DF55 8A489755 8A523055 8A7F9955 8AB3CA55

8AD3AD55 8AF88555 8DA35BBE 8DC6B0BE 8DDAC3BE 8F1F7855 8F5F5F55 8FC42755 8FEC2655 913BD36E

9158BF6E 9199DF6E 91B4856E 91D1546E 91E5696E A0B92266 A0BA2B66 A4401E16 A4DFFF16 A4ED5A16

A4F64416 A8668A5D AD0C6EFE AD8124FE ADB3D7FE ADC5A6FE ADDAF5FE D00806F1 D07D68F1 D0D26DF1

D0DDC2F1 D20C395A D25CE85A D278785A D2B6C25A D2BF0D5A D2E44D5A D400B761 D41E1961 D4732D61

D494FC61 D4A85061 D79B1B5A D79FAA5A D801D7FD D815D2FD D868D1FD D8F292FD EA43E961 EA485761

EA4E1261 EB355C8A EB37F78A EB73DA8A EED7308A EEDBF58A EEE9118A EF784561 EF7CB861 EF8FDE61

F10F04FE F146DAFE F18C0CFE F196ACFE F1B831FE F1CFA5FE F1D371FE F269861A F26A251A F28A8D1A

F32E2E21 F3369421 F3EB6821 F52952B8 F55C47B8 F5CC08B8 F6202521 F64ABA21 F6683921 F684CE21

F6DE0521 F6F67621 F7BDBD1A F7D0F01A F7D2411A F7F60F1A FB6E9AFA FBA2B8FA FBF809FA FC8BA450

FCBC2050 FCD65150 FCEFE550 FD705E6E FDBACE6E FDE3756E FE0395FA FE0F38FA FE0FABFA FE2ECFFA

FE56C3FA FE9C2EFA FEEFA7FA

Table 4. A table of v[i] = ui,1 ui,2 ui,3 ui,4 ui,5 ui,6 ui,7 ui,8

b[1..272] =

2 2 1 2 1 2 2 2 2 1 2 2 2 1 1 1 2 1 2 1 1 2 2 1 1 1

2 2 2 1 2 1 1 2 2 1 2 1 1 2 1 2 2 2 1 2 2 2 2 1 2 2

1 2 1 1 1 2 2 1 1 2 1 2 2 2 2 1 2 1 2 2 2 2 2 1 1 1

1 1 1 1 2 1 1 2 1 2 2 2 1 2 1 1 1 2 1 1 2 1 2 2 2 1

1 1 2 1 1 2 1 1 2 2 1 1 2 1 1 1 2 1 2 2 2 2 2 1 2 2

1 2 2 2 1 1 2 2 1 2 1 1 1 1 2 2 2 2 1 1 2 2 1 2 1 2

2 2 2 1 1 2 1 2 2 2 1 1 1 1 1 2 2 1 1 1 2 1 2 2 2 2

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 1 2 1 2 2

2 1 2 1 2 2 2 1 2 1 1 2 1 1 2 2 2 1 2 2 2 2 2 1 2 2

2 1 2 2 2 1 1 2 2 2 1 1 1 2 2 1 2 2 1 2 1 2 1 1 1 2

2 1 1 1 1 1 1 1 2 1 2 2

g[1..272] =

8B 89 4F 3D 20 25 1D 14 14 13 11 0F 10 0B 0D 0B 0A 0B 07 08

09 07 0B 08 0B 07 05 04 08 08 05 04 08 01 07 04 07 04 02 04

0A 05 07 07 06 05 05 04 03 05 03 04 05 04 03 04 05 05 03 04

02 03 03 02 02 02 02 02 03 02 02 02 02 01 01 02 04 05 02 02

06 04 02 01 01 04 01 02 02 01 04 03 02 02 01 02 01 02 03 02

00 02 02 02 03 02 01 01 02 03 04 03 02 02 02 02 02 01 01 02

02 05 00 00 01 01 03 01 02 02 00 01 01 02 01 00 02 03 02 01

02 02 01 01 02 02 01 02 01 03 01 00 01 01 02 01 01 02 00 02

02 00 02 00 02 01 02 01 03 01 01 01 01 03 02 00 01 01 02 02

00 01 02 01 00 01 01 01 01 01 01 01 02 01 01 01 02 01 03 02

02 01 01 01 03 03 01 00 00 01 01 02 01 01 01 01 02 02 02 01

02 01 00 01 01 00 01 02 01 02 00 01 01 02 00 04 02 01 01 01

00 02 00 01 00 00 01 00 01 00 01 01 00 00 01 00 03 00 01 00

02 03 02 01 01 01 01 01 00 02 01 02 00 00 02 02 00 01 00 01

02 02 02 01 00 01 01 02 00 02 01 02 00 01 00 00 02 01 01 01

01 01 00 01 00 01 01 02 00 01 02 00 01 03 02 00 00 02 00 01

01 00 02 00 00 00 01 00 01 01 00 01 00 01 01 00 02 01 01 00

02 00 00 00 01 01 01 02 01 01 00 00 00 00 01 01 01 00 01 01

02 02 01 01 01 01 01 00 00 01 00 00 00 01 01 01 01 00 01 00

00 01 00 00 00 02 02 00 01 00 00 00 01 01 00 00 00 02 02 00

00 00 00 01 00 00 01 00 00 00 01 01 01 00 01 02 00 01 00 00

01 01 01 01 00 01 01 01 00 00 01 01 00 00 01 00 01 00 01 01

01 00 01 00 01 00 02 00 01 00 01 00 02 01 00 00 01 00 00 00

00 00 02 01 00 00 00 01 00 00 00 00 00 00 03 00 00 01 00 00

00 01 00 00 01 02 00 00 01 00 02 00 00 00 00 02 00 01 00 00

00 00 00 00 01 01 01 00 00 01 02 00 00 00 00 01 00 00 01 00

00 00 00 00 01 01 00 01 00 00 00 01 00 01 00 00 00 01 00 00

01 01 00 00 00 00 00 01 00 01 01 00 00 01 00 01 00 00 00 00

01 01 02 00 00 00 00 01 00 00 00 01 00 01 01 00 00 00 01 00

01 00 00 01 00 02 00

Table 5. The exponents b[i] and g[i] from Equation (24)
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Abstract. At Crypto ’85, Desmedt and Odlyzko described a chosen-ciphertext attack against plain
RSA encryption. The technique can also be applied to RSA signatures and enables an existential
forgery under a chosen-message attack. The potential of this attack remained untapped until a twitch
in the technique made it effective against two very popular RSA signature standards, namely iso/iec
9796-1 and iso/iec 9796-2. Following these attacks iso/iec 9796-1 was withdrawn and iso/iec 9796-2
amended. In this paper, we explain in detail Desmedt and Odlyzko’s attack as well as its application
to the cryptanalysis of iso/iec 9796-2.

1 Introduction

RSA was invented in 1977 by Rivest, Shamir and Adleman [13], and is now the most widely
used public-key cryptosytem. RSA can be used for both encryption and signature.

A chosen-ciphertext attack against plain RSA encryption was described at Crypto ’85
by Desmedt and Odlyzko [4]. In the plain RSA encryption scheme, a message m is simply
encrypted as :

c = me mod N

where N is the RSA modulus and e is the public exponent. Informally, during a chosen-
ciphertext attack, an attacker may obtain the decryption of any ciphertext of his choice;
the attacker’s goal being to decrypt (or to recover some information about) some given
ciphertext. However, Desmedt and Odlyzko’s attack did not seem to threaten real-world
RSA encryption standards, because in practice, the message m is generally encoded as
µ(m) before being encrypted :

c = µ(m)e mod N

where µ is some (probabilistic) algorithm.
As noted in [11], Desmedt and Odlyzko’s attack can also be applied to RSA signatures.

Recall that the RSA signature of a message m is defined as:

s = µ(m)d mod N
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where µ(m) is an encoding function and d the private exponent. As we will see below,
Desmedt and Odlyzko’s attack on RSA signatures only applies if the encoding function
µ(m) produces integers much smaller than N . In this case, one obtains an existential forgery
under a chosen-message attack. In this setting, the attacker can ask for the signature of any
message of his choice, and his goal is to forge the signature for some (possibly meaningless)
message which was not signed before.

At Crypto ’99 [3], Coron, Naccache and Stern published an attack against the iso/iec
9796-2 RSA signature standard [7] and a slight variant of the iso/iec 9796-1 signature
standard [6]. Both attacks were an adaptation of Desmedt and Odlyzko’s attack, which
could not be applied directly since for both standards µ(m) happened to be as big as N .
Shortly after, the attack was extended to the real iso/iec 9796-1 standard by Coppersmith,
Halevi and Jutla [2]. Following this final blow iso/iec 9796-1 was withdrawn and iso/iec
9796-2 amended.

This paper is organized as follows: we first recall the definition of the RSA cryptosys-
tem. Then we describe Desmedt and Odlyzko’s attack against plain RSA encryption, and
eventually its application to the cryptanalysis of the iso/iec 9796-2 standard.

2 The RSA Cryptosystem

The first instance of public-key encryption and digital signatures was invented in 1977 by
Rivest, Shamir and Adleman [13]:

Definition 1 (The RSA Primitive). The RSA primitive is a family of trapdoor permu-
tations, specified by:

– The RSA generator RSA, which on input 1k, randomly selects two distinct k/2-bit
primes p and q and computes the modulus N = p× q. It randomly picks an encryption
exponent e ∈ Z∗φ(N), computes the corresponding decryption exponent d = e−1 mod φ(N)

and returns (N, e, d);
– The function f : Z∗N → Z∗N defined by f(x) = xe mod N ;
– The inverse function f−1 : Z∗N → Z∗N defined by f−1(y) = yd mod N .

2.1 The RSA Encryption Scheme

The standard practice for encrypting a message m with RSA is to first apply an encoding
scheme µ and raise µ(m) to the public exponent e. The algorithm µ is generally chosen to
be probabilistic. The ciphertext c is then

c = µ(m)e mod N .

where (N, e) is the public-key. Decryption simply consists in using the private key d to
compute :

µ(m) = ce mod N .

and recover m from µ(m).
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2.2 The RSA Signature Scheme

As previously, the public-key is (N, e) and the private key is d. The RSA signature scheme
is specified by an encoding function µ, which takes as input a message m and returns an
integer modulo N , denoted µ(m). The signature of a message m is then:

s = µ(m)d mod N

The signature s is verified by checking that :

µ(m)
?
= se mod N

3 Attack on RSA Encryption

In [4], Desmedt and Odlyzko describe a chosen-ciphertext attack against plain RSA encryp-
tion. Recall that for plain RSA encryption, a message m is directly encrypted as c = me

mod N . The attack’s setting is the following :

1. The attacker receives the public-key (N, e).
2. The attacker can ask for the decryption of any ciphertext of his choice, i.e. he submits x

and receives m = xd mod N for any x of his choice. The number of decryption queries
is unlimited.

3. Upon receiving a challenge ciphertext c, the attacker’s ability to make decryption queries
ceases. The attacker must now output cd mod N .

Desmedt and Odlyzko’s attack works as follows. After receiving the public-key (step
1), we ask for the decryption xd mod N of all integers x ∈ S = S1 ∪ S2, where:

S1 = {p : p ≤ LN [α], p is prime}

S2 = {b
√

Nc+ 1, b
√

Nc+ 2, . . . , b
√

Nc+ bLN [α]c}
where α > 0 is some fixed parameter and the function LN [α] is defined as :

LN [α] = exp
(
α ·

√
log N log log N

)

Once we have obtained xd mod N for all x ∈ S (step 2), we receive the challenge ci-
phertext c. We must now output cd mod N , without using the decrypting facility anymore
(step 3). The basic idea is to find a representation:

c = ye
∏
x∈S

xax mod N (1)

for some integers ax and y, since then :

cd = y
∏
x∈S

(xd)ax mod N



Index Calculation Attacks 185

where y and all the xd are known.
To obtain the representation (1), we proceed in two steps. In the first step we find some

integer y and primes qi ≤ LN [2α] such that:

c = ye

h∏
i=1

qi mod N (2)

To obtain the representation (2), we chose a random y, compute :

b = c · y−e mod N

and check whether b factors into primes q ≤ LN [2α]. We use the following theorem [1] to
estimate the average number of y values before such factorization is obtained.

Theorem 1. Let x be an integer and let Lx[β] = exp
(
β · √log x log log x

)
. Let z be an

integer randomly distributed between zero and xγ for some γ > 0. Then for large x, the
probability that all the prime factors of z are lesser than Lx[β] is given by :

Lx

[
− γ

2β
+ o(1)

]

Taking γ = 1 and β = 2α, it appears that we need to generate on average LN [1/(4α)+
o(1)] values of y before such a factorization is obtained. Moreover, for each y, it takes
LN [o(1)] bit operations to test whether such a factorization exists, using Lenstra’s elliptic
curve factorization algorithm [10]. Therefore this stage is expected to take time LN [1/(4α)+
o(1)]. Although Lenstra’s algorithm is asymptotically faster, it may be more efficient in
practice to use trial division, for small enough prime factors.

Once a factorization of the form (2) is obtained, we proceed to the second step, in which
we represent each of the at most O(log(N)) = LN [o(1)] primes q = qi ≤ LN [2α] in the
form:

q =
∏
x∈S

xux mod N (3)

where only O(log N) of the ux are non-zero (possibly negative). Once such a representation
is obtained for each q, we quickly obtain (1).

To see how to represent a prime q ≤ LN [2α] in the form (3), let :

m =

⌊√
N

q

⌋
(4)

and determine those integers among :

m + 1,m + 2, . . . ,m + bLN [β]c
that are divisible solely by primes p ≤ LN [α], for some β > 0. Using the previous theorem,
we expect to find LN [β−1/(4α)+o(1)] such integers, and finding them will take LN [β+o(1)]
bit operations if we employ Lenstra’s factorization algorithm.
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We next consider two cases. If α ≥ 1
2
, we take β = 1

4α
+ δ for any δ > 0. We then have

LN [δ + o(1)] integers m + j, 1 ≤ j ≤ LN [β], all of whose prime factors are ≤ LN [α]. For
each such integer and any i such that 1 ≤ i ≤ LN [1/(4α)] ≤ LN [α], we write :

q(m + j)(k + i) = t mod N (5)

where k = b√Nc. Using equation (4) and the corresponding bounds for q, j and i, we
obtain that :

t mod N ≤ N
1
2
+o(1)

Therefore, if the integers t factor like random integers of the same size, we will find LN [δ +
o(1)] integers t that factor into primes ≤ LN [α], and any single one will yield a factorization
of the form (3), which gives the desired result. Since the testing of each t takes LN [o(1)]
bit operations, this stage requires LN [β + o(1)] bit operations, and since this holds for all
δ > 0, we conclude that for α ≥ 1

2
, this stage can be carried out in LN [1/(4α) + o(1)] bit

operations.
It remains to consider the case α < 1

2
. Here we take β = 1

2α
− α + δ. We expect to find

LN [β − 1/(4α) + o(1)] = LN [1/(4α)− α + δ + o(1)] values of m + j, 1 ≤ j ≤ LN [β], which
factor into primes ≤ LN [α], and it takes LN [β + o(1)] bit operations to find them. For each
one and for 1 ≤ i ≤ LN [α], we test whether the t defined by (5) is composed of primes
≤ LN [α]. We expect to find LN [δ + o(1)] of them. Letting δ → 0, we obtain that this case
takes LN [1/(2α)− α + o(1)] bit operations.

We thus conclude that if the attacker can obtain decryptions of LN [α] chosen ciphertexts
he will be able to decrypt any individual ciphertext in LN [1/(4α)+ o(1)] bit operations for
α ≥ 1

2
and in LN [1/(2α) − α + o(1)] bit operations for 0 < α ≤ 1

2
. For α = 1

2
both steps

require LN [1/2 + o(1)] operations.
Therefore, Desmedt and Odlyzko’s attack is asymptotically faster than the quadratic-

sieve factorization algorithm [12], which requires LN [1 + o(1)] steps to recover the factor-
ization of N . However, the attack is asymptotically slower than the general number field
sieve algorithm [9] which appeared later, whose complexity to factor N is given by :

exp
(
(c + o(1))(log N)1/3(log log N)2/3

)

for some constant c ' 1.9.
Given that in practice RSA encryption schemes use an encoding function µ(m), the

attack did not appear directly applicable to real-world standards. The situation nonetheless
proved very different for RSA signature schemes, as explained in the next sections.

4 Attack on RSA Signatures

The previously described attack against RSA encryption can be easily adapted to RSA
signatures to provide an existential forgery under a chosen-message attack, as shown in
[11]. The outline of such a scenario is the following :

1. Select a bound y and let S = (p1, . . . , p`) be the list of primes smaller than y.
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2. Find at least ` + 1 messages mi such that each µ(mi) is the product of primes in S.

3. Express one µ(mj) as a multiplicative combination of the other µ(mi), by solving a
linear system given by the exponent vectors of the µ(mi) with respect to the primes in
S.

4. Ask for the signature of the mi for i 6= j and forge the signature of mj.

The attack’s complexity depends on the cardinality of S and on the difficulty of finding
at step (2) enough µ(mi) values which are the product of primes in S. Generally, the attack
would apply only when µ(m) is small; otherwise, the probability that µ(m) has only small
prime factors is too small.

In the following, we describe the attack in more detail. First, we assume that e is a
prime integer. We let τ be the number of messages mi obtained at step (2). We say that an
integer is B-smooth if all its prime factors are smaller than B. The integers µ(mi) obtained
at step (2) are therefore y-smooth and we can write for all messages mi, 1 ≤ i ≤ τ :

µ(mi) =
∏̀
j=1

p
vi,j

j (6)

Step (3) works as follows : to each µ(mi) we associate the `-dimensional vector of the
exponents modulo e :

Vi = (vi,1 mod e, . . . , vi,` mod e)

The set of all `-dimensional vectors modulo e forms a linear space of dimension `. Therefore,
if τ ≥ `+1, one can express one vector, say Vτ , as a linear combination of the others modulo
e, using Gaussian elimination:

V τ =
τ−1∑
i=1

βiV i + Γ · e (7)

for some Γ = (γ1, . . . , γ`). Denoting

δ =
∏̀
j=1

p
γj

j (8)

one obtains from (6) and (7) that µ(mτ ) is a multiplicative combination of the other µ(mi):

µ(mτ ) = δe ·
τ−1∏
i=1

µ(mi)
βi (9)

Then, at step (4), the attacker will ask for the signature of the τ − 1 first messages mi and
forge the signature of mτ using:

µ(mτ )
d = δ ·

τ−1∏
i=1

(
µ(mi)

d
)βi

mod N (10)
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The attack’s complexity depends on ` and on the probability that the integers µ(mi) are
y-smooth. We define ψ(x, y) = #{v ≤ x, such that v is y-smooth}. It is known [5] that,
for large x, the ratio ψ(x, t

√
x)/x is equivalent to Dickman’s function defined by :

ρ(t) =





1 if 0 ≤ t ≤ 1

ρ(n)−
∫ t

n

ρ(v − 1)

v
dv if n ≤ t ≤ n + 1

ρ(t) is thus an approximation of the probability that a u-bit number is 2u/t-smooth; table
1 gives the numerical value of ρ(t) (on a logarithmic scale) for 1 ≤ t ≤ 10.

t 1 2 3 4 5 6 7 8 9 10

− log2 ρ(t) 0 1.7 4.4 7.7 11.5 15.6 20.1 24.9 29.9 35.1

Table 1. The value of Dickman’s function.

In the following, we provide an asymptotic analysis of the algorithm’s complexity, based
on the assumption that the integers µ(m) are uniformly distributed between zero and some
given bound x. Letting β be a constant and letting:

y = Lx[β] = exp
(
β ·

√
log x log log x

)

one obtains from theorem 1 that, for large x, the probability that an integer uniformly
distributed between one and x is Lx[β]-smooth is:

ψ(x, y)

x
= Lx

[
− 1

2β
+ o(1)

]

Therefore, we have to generate on the average Lx[1/(2β) + o(1)] integers µ(m) before we
can find one which is y-smooth.

Using the ECM factorization algorithm [10], a prime factor p of an integer n can be
found in time Lp[

√
2+o(1)]. A y-smooth integer can thus be factored in time Ly[

√
2+o(1)] =

Lx[o(1)]. The complexity of finding a random integer in [0, x] which is y-smooth using the
ECM is thus Lx [1/(2β) + o(1)]. Moreover, the number τ of integers which are necessary
to find a vector which is a linear combination of the others is ` + 1 ≤ y. Therefore, one
must solve a system with r = Lx[β + o(1)] equations in r = Lx[β + o(1)] unknowns. Using
Lanzos’ iterative algorithm [8], the time required to solve such system is O(r2) and space
is roughly O(r).

To summarize, the time required to obtain the Lx[β + o(1)] equations is asymptotically
Lx [β + 1/(2β) + o(1)] and the system is solved in time Lx[2β +o(1)]. The total complexity
is minimized by taking β = 1/

√
2. We obtain a time complexity of :

Lx[
√

2 + o(1)]
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and a space complexity of :

Lx

[√
2

2
+ o(1)

]

where x is a bound on µ(m).

This complexity is sub-exponential in the size of the integers µ(m). Therefore, without
any modification, the attack will be practical only if µ(m) is small. In particular, when
µ(m) is about the size of N , the attack’s complexity is worse than factoring N . Note that
the attack can easily be extended to any exponent e, and also to Rabin signatures (see [3]).

In table 2, we give the values of the functions Lx[
√

2] et Lx[
√

2/2] corresponding to the
attack’s time complexity and space complexities, as a function of the size |x| of the integer
µ(mi). This table should be handled with care: being just an approximation of the attack’s
practical complexity, the attack may demand more time in practice. The table suggests
that the attack can be practical when the size of µ(m) is smaller than 128 bits, but the
attack becomes quickly impractical for larger values of |x|.

|x| log2 time log2 space

64 26 13

99 35 18

119 39 20

139 43 22

144 44 22

176 49 25

200 53 27

256 62 31

368 77 39

Table 2. The Attack’s Complexity.

5 The Security of iso/iec 9796-2 Signatures

iso/iec 9796-2 [7] is an encoding standard allowing total or partial message recovery.
The standard uses a hash-function HASH during the message formatting process. Let us
denote by kh the output size of the hash function. Hash-functions of different sizes are
acceptable. Section 5, note 4 of [7] recommended (before the standard’s correction by ISO
following the attack described in this paper) 64 ≤ kh ≤ 80 for total message recovery and
128 ≤ kh ≤ 160 for partial message recovery.

For iso/iec 9796-2 , the encoding function µ(m) has the same size as N . Therefore,
Desmedt and Odlyzko’s attack can not apply directly here. Our technique will consist in
generating messages mi such that a linear combination ti of µ(mi) and N is much smaller
than N . Then, the attack will be applied to the integers ti instead of µ(mi).
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5.1 Partial Message Recovery

For simplicity, assume that k (the size of the modulus N), kh and the size of m are all
multiples of eight and that the hash function is known to both parties. The message m
is separated into two parts m = m[1]‖m[2] where m[1] consists of the k − kh − 16 most
significant bits of m and m[2] of all the remaining bits of m. The padding function is :

µ(m) = 6A16‖m[1]‖HASH(m)‖BC16

and m[2] is transmitted in clear.
Dividing (6A16 + 1) · 2k by N we obtain :

(6A16 + 1) · 2k = i ·N + r with 0 ≤ r < N < 2k

Defining N ′ = i ·N we get :

N ′ = 6A16 · 2k + (2k − r)

Therefore, we can write N ′ as :

N ′ = 6A16‖N ′[1]‖N ′[0]

where the N ′[1] block is k − kh − 16 bits long, the same bit-size as m[1]. Then, one can
take m[1] = N ′[1], and letting :

t = 28 · µ(m)− i ·N

we obtain that :

t = (6A16‖m[1]‖HASH(m)‖BC0016)− (6A16‖N ′[1]‖N ′[0])

t = (HASH(m)‖BC0016)−N ′[0]

where the size of t is less than kh + 16 bits.
The attacker modifies m[2] (and therefore HASH(m)) until he finds sufficiently many

integers t which are the product of small primes. Then since t = 28 ·µ(m) mod N , one can
apply Desmedt and Odlyzko attack’s described in section 4 to the integers t (the factor
28 can be added to the set S). The attack’s complexity is independent of the size of N ; it
only depends on the hash size kh. From table 2, we derive table 3 expressing the attack’s
complexity, as a function of the hash size. For example, for kh = 128, the size of t is 144
bits and from table 2, we obtain that time complexity is roughly 244. Again, recall that this
is only an estimate, and that practical complexity may be much higher. Nevertheless the
table suggests that the attack may be practical for kh = 128, but will be more demanding
for kh = 160. Note that the following complexities are much smaller than the complexities
obtained in [3]. This is due to the fact that we have obtained a smaller complexity in
section 4.
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kh log2 time log2 space

128 44 22

160 49 25

Table 3. Attack’s Complexity with Partial Message Recovery

5.2 Full Message Recovery

Assuming again that the hash function is known to both parties, that k and kh are multiples
of eight and that the size of m is k − kh − 16, the encoding function µ is then defined as :

µ(m) = 4A16‖m‖HASH(m)‖BC16
Let us separate m = m[1]‖m[0] into two parts where m[0] consists of the ∆ least significant
bits of m and m[1] of all the remaining bits of m and compute, as in the previous case, an
integer i such that :

N ′ = i ·N = 4A16‖N ′[1]‖N ′[0]

where N ′[0] is (kh + ∆ + 16)-bit long and N ′[1]‖N ′[0] is k-bit long.
Setting m[1] = N ′[1] we get :

t = 28 · µ(m)−N ′ = (m[0]‖HASH(m)‖BC0016)−N ′[0]

where the size of t is less than kh + ∆ + 16 bits.
The attacker will thus modify m[0] (and therefore HASH(m)) as needed and conclude

the attack as in the partial recovery case. As shown in section 4, the number of t-values
necessary to forge a signature is roughly Lx[

√
2+o(1)], where x is a bound on t. Therefore,

the parameter ∆ must be tuned so that 2∆ ' Lx[
√

2]. From table 2, we obtain the attack
complexities summarized in table 4, as a function of the hash size. For example, for kh = 64,
we take ∆ = 39 bits and the size of t is then 64 + 39 + 16 = 119 bits and table 2 shows
that the time complexity is roughly 239. This shows that the attack may be practical for
kh = 64. This actually led ISO to edit a revision of the iso/iec 9796-2 standard.

kh ∆ log2 time log2 space

64 39 39 20

80 43 43 22

128 53 53 27

Table 4. Attack Complexity with Full Message Recovery

6 Conclusion

In this paper we explained in detail Desmedt and Odlyzko’s attack and illustrated its poten-
tial by exhibiting a design flaw in the iso/iec 9796-2 signature standard. The publication
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of this attack drove ISO to correct and re-edit iso/iec 9796-2. A more elaborate variant
(not described in this paper) [2, 3] led to the complete withdrawal of another signature
standard, the iso/iec 9796-1 standard.
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Abstract. Since many applications require the verification of large sets of signatures, it is sometimes
advantageous to perform a simultaneous verification instead of checking each signature individually.
The simultaneous processing, called batching, must be provably equivalent to the sequential verifi-
cation of all signatures.
In eurocrypt’98, Bellare et al. [1] presented a fast RSA batch verification scheme, called screening.
Here we successfully attack this algorithm by forcing it to accept a false signature and repair it by
implementing an additional test.

1 Introduction

Many industrial applications require the verification of large sets of signatures. For example,
real-time applications such as web-servers or toll-highway gates must verify many coins in
a short time-frame. A well-known speed-up strategy is batching, a probabilistic test that
verifies the correctness of n signatures much faster than n sequential verifications. Batching
is probabilistic in the sense that if (at least) one signature is false, the algorithm rejects
the whole set with high probability but always accepts sets of correct signatures.

A new batching strategy suggested in [1] (called screening) provides faster verification
at the cost of weaker guarantees. Just as batching, screening fails with high probability if
one of the signatures was never produced by the signer, but might succeed if the signer
signed all the signatures in the past, although one of them has since been modified.

1.1 Batch Verification

Let R be a boolean relation taking as input an instance I and outputting a bit (meaning
true or false). For example, R can be RSA’s verification algorithm [8] where R(x, y) =
1 ⇐⇒ x ≡ ye mod N .

A batch instance for R (a sequence {I1, . . . , In} of instances of R) is said to be correct
if R(Ii) = 1 for all i = 1, . . . , n and incorrect otherwise (i.e. there exists an i ∈ {1, . . . , n}
such that R(Ii) = 0).

A batch verifier V for R is a probabilistic algorithm that takes as input a batch instance
X = {I1, . . . , In} and a security parameter ` and satisfies the two following properties:
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1. If X is correct then V outputs 1.
2. If X is incorrect then the probability that V outputs 1 is at most 2−`.

If at least one Ii is incorrect, the verifier must reject X with probability greater than
1− 2−`. In practice, ` should be greater than 64, reducing the error probability to 2−64.

1.2 Signature Screening

A signature scheme consists of three components:

1. A probabilistic key generation algorithm generate(1k)
R→ {P, S}, where P is the public

key and S the secret key.
2. A private signature algorithm signS(M) → x where M is the message and x the signa-

ture.
3. A public verification algorithm verifyP (M, x) → {0, 1}.

verifyP (M, x) = 1 ⇐⇒ x = signS(M)

A weaker notion of batch verification, called screening is introduced in [1].
A batch instance for signature verification consists of a sequence:

B =
{{M1, x1}, . . . , {Mn, xn}

}

where xi is a purported signature of Mi with respect to some public key P .
A screening test screen is a probabilistic algorithm that takes as input a batch instance

and outputs a bit. It must satisfy the two following properties:

1. Validity: correct signatures are always accepted:

verifyP ({Mi, xi}) = 1 for all i = 1, . . . , n implies screenP (B) = 1

2. Security: if a message Mi ∈ B was never signed by signS, B will be rejected with high
probability.

2 RSA Signature Screening

Bellare et al.’s screening algorithm for hash-then-decrypt RSA signatures proceeds as fol-
lows:

The public key is {N, e} and the secret key is d, where N is an RSA modulus, e ∈ Z∗ϕ(N)

an encryption exponent and d the corresponding decryption exponent: ed ≡ 1 mod ϕ(N).
Let H be a public hash function.

The signature algorithm is:

sign{N,d}(M) = H(M)d mod N

and the corresponding verification algorithm is:
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verify{N,e}(M, x) = 1 ⇐⇒ xe ≡ H(M) mod N

The security of this scheme was studied in [2], where it was shown that H should ideally
hash strings uniformly into Z∗N . This was called the full domain hash scheme (FDH).

FDH-RSA screening [1] is very simple, given N , e, an oracle access to the hash function
H and:

{{M1, x1}, . . . , {Mn, xn}
}

with xi ∈ Z∗N
the screener outputs 1 if (

∏n
i=1 xi)

e ≡ ∏n
i=1 H(Mi) mod N and 0 otherwise.

The test is efficient as it requires n hashings, 2n multiplications and a single exponen-
tiation, instead of n hashings and n exponentiations for the sequential verification of all
signatures.

3 The Attack

The flaw in this screening protocol is based on Davida’s homomorphic attack [4] and
reminds the Fiat-Shamir implementation detail pointed-out in [6]. By repeating a data
element a certain number of times, we compensate the forgery’s effect and force the verifier
to accept an instance containing a piece of data that was never signed. The attack is
illustrated for e = 3 but could work with any reasonably small exponent (although less
secure, small exponents are often used to speed-up RSA verifications).

Let M1 6= M2 be two messages and x1 = signS(M1) which implies:

x3
1 ≡ H(M1) mod N

Let B′ be the batch instance:

B′ =
{
(M1, x1H(M2) mod N}, {M2, 1}, {M2, 1}, {M2, 1}}

Then screenP (B′) = 1 although M2 was never signed.
An attacker A may thus produce a batch instance which contains a forgery (a message

that was never signed by the signer) that gets undetected by the verifier. In the next section
we explain how to prevent this attack and correct the scheme’s security proof.

4 Preventing the Attack

To prevent the attack the verifier must check that no message appears more than once in
the batch. This can be done in O(n log n) and suffices to reject B′ where {M2, 1} appeared
three times. Note that making the comparison only on xi will not be a satisfactory repair.

The following corrects the security proof given in [1] and shows that screening plus
message comparisons is provably secure unless inverting RSA is easy. Since the security of
screening is based on the hardness of RSA, we recall the formalization given in [2].
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The security of RSA is quantified as a trapdoor permutation f . The RSAe function
f : Z∗N → Z∗N is defined by:

f(x) = xe mod N

which inverse f−1 is:

f−1(y) = yd mod N

where N is a k-bit modulus, product of two (k/2)-bit primes, e the public exponent and d
the secret exponent.

RSAe is said to be (t, ε)-secure if an attacker, given a randomly chosen y ∈ Z∗N and a
limited running time t(k), succeeds in finding f−1(y) with probability at most ε(k).

The following theorem states that if RSAe is secure, then an adversary can not produce
an acceptable FDH-RSA screening instance that contains a message that was never signed
by the signer. The proof assumes the random oracle model where the hash function is seen
as an oracle giving a truly random value for each new query. If the same query is asked
twice, the answers are of course identical.

Theorem 1. Assume that RSAe is (t′, ε′)-secure. LetA be an adversary who after a chosen
message attack on the FDH-RSA signature scheme, outputs a batch instance with n distinct
messages, in which at least one message was never signed. Assume that in the chosen
message attack A makes qs FDH signature queries and qh hash queries and suppose that
the total running time of A is at most t(k) = t′(k) − Ω(k3) × (n + qs + qh). Then the
probability that the FDH-RSA signature screening test accepts the batch instance is at
most ε(k) = ε′(k)× (n + qs + qh).

Proof. The proof is easily derived from [1]; the only correction consists in ensuring that
the equation:

ym ×
n∏

i=1,i6=m

yMi
≡

n∏
i=1

xe
i mod N

can be solved for ym = yMm . Namely that if all the messages Mi in the batch instance are
distinct, the term yMm differs from the other terms yMi

with overwhelming probability and
we get:

ym =

∏n
i=1 xe

i∏n
i=1,i6=m yMi

mod N

ut

5 Conclusion and Further Research

We have presented a succesful attack against Bellare et al.’s eurocrypt’98 screening
algorithm and a repair that makes it provably secure against signature forgery.
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Alternative repair strategies such as the splitting of the batch instance into buckets
also seem possible although their implementation seems to require more delicate security
adjustments.

Note that the repaired algorithm does not formally respect the validity principle stated
in section 1.2 as the batch instance:

{{M, H(M)d mod N}, {M, H(M)d mod N}}

will be rejected (as M appears more than once) although M was correctly signed. This
is easily fixed by deleting from the batch instance all identical signatures except one.

Finally, it is interesting to observe that the requirement that each element must appear
only once is probably too restrictive (this point should, however, be carefully investigated
!) as the attack does not seem to apply when the number of identical messages is not
congruent to zero modulo e; extending the proof to this case does not seem trivial at a first
glance.

Screening DSA-like signatures is a challenging problem: in eurocrypt’94, Naccache
et al. [7] presented a candidate (cf. appendix A) which did not appear in the proceedings
but seems to be a promising starting point [5].
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APPENDIX A

(FROM EUROCRYPT ’94’s PRE-PROCEEDINGS)

The signature collection protocol is:
for i = 1 to n
• The signer picks ki ∈R Zq and sends λi = gki mod p,
• The verifier replies with an e-bit message randomizer bi,
• and the signer sends:

si =
SHA(mi|bi) + xλi

ki

mod q

The batch verification criterion (with cut-&-choose in case of failure) is:

n∏
i=1

λi = g
Pn

i=1 wiSHA(mi|bi)y
Pn

i=1 wiλi mod p where wi =
1

si

mod q

This scheme is essentially as fast as a single DSA verification (3(n − 1)|q| ∼= 480n
modular multiplications are saved). Its security was assumed to result from the following
argumentation: assume that j − 1 messages were signed and denote:

α =

j−1∏
i=1

λi mod p

β = g
Pj−1

i=1 wiSHA(mi|bi)y
Pj−1

i=1 wiλi mod p

γ =
αλj

β
mod p

If at this point a cheater can produce a λj such that he can later solve (by some
algorithm C(α, β, λj,mj, bj, p, q, g, y) = sj the equation:

γsj = gSHA(mj |bj)yλj mod p (1)

then he can pick, by his own means, any random couple {b1, b2}, find

C(α, β, λj,mj, bi, p, q, g, y) = sj,i

for i = 1, 2 and compute directly:

x′ =
SHA(mj|b1)sj,2 − SHA(mj|b2)sj,1

λj(sj,1 − sj2)
mod q

which satisfies gx′ = y mod p and breaks DSA.
This is proved by dividing formula 1 for i = 1 by formula 1 for i = 2, extracting γ

from the resulting equality and replacing it back in formula 1 for i = 1 which becomes
gx′ = y mod p.
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Abstract. We investigate the problem of signing short messages using a scheme that minimizes the
total length of the original message and the appended signature. This line of research was motivated
by several postal services interested by stamping machines capable of producing digital signatures.
Although several message recovery schemes exist, their security is questionable. This paper proposes
variants of DSA and ECDSA allowing partial recovery: the signature is appended to a truncated
message and the discarded bytes are recovered by the verification algorithm. Still, the signature
authenticates the whole message. Our scheme has some form of provable security, based on the
random oracle model. Using further optimizations we can lower the scheme’s overhead to 26 bytes
for a 2−80 security level, compared to forty bytes for DSA or ECDSA and 128 bytes 1024-bit RSA.

1 Introduction

Twenty years or so after the discovery of public key cryptography and digital signatures,
the world appears ready for their large-scale deployment. Several signature schemes have
been designed by the research community, either based on the celebrated RSA algorithm
or on the discrete logarithm problem modulo a prime or over an elliptic curve. Standards
have been crafted. Security proofs, notably using the so-called random oracle model have
been proposed. Surprisingly, there still remain specific needs that appear in relation with
some trading scenarii and which are not properly served by the current technology.

In some situations, it is desirable to use very short signatures; more accurately, one
wishes to minimize the total length of the original message and the appended signature.
In some respect, this is very similar to the problem one faces while trying to sign on
a postcard without sacrificing too much of the (already limited) space available for the
text. This analogy is not fortuitous: the motivation for short signatures has arisen from
the needs of various postal services, which are currently investigating the possibility of
integrating digital signatures into stamping machines. The space limitation here comes
from the combined abilities of low-cost barcode printing machines and optical readers.
Every byte one can save is of importance and the overhead of 128 bytes, implied by standard
RSA signatures is not always acceptable. Even the forty byte overhead associated with DSA
is hard to cope with using traditional (1-D) barcode technology.
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1.1 1-D Barcodes

Barcodes are alternating patterns of light and dark that encode specific information chunks.
When scanned, barcodes can be converted back into the original string of text. Most
barcodes consist of patterns of rectangles although some of the newer standards use other
shapes. Barcodes can be scanned on the fly with little or no error under less than ideal
conditions (e.g. folded or damaged postage items). The scanners that read barcodes emit a
laser beam of a specific frequency that works by distinguishing the edges within a symbol
allowing them to be scanned omnidirectionally. Each symbology (type of barcode) has
unique start and stop bars (or some other unique pattern) that allows the scanner to
discriminate between symbologies without human intervention. Most systems sacrifice one
or more CRC digits to insure accuracy when scanned. Typical barcodes (such as Postnet,
UPC, EAN, JAN, Bookland, ISSN or Code 39) have a capacity of a few bytes, normally
up to thirty characters. A typical 1-D barcode is shown in figure 1.

Figure 1 : 1-D barcode. Figure 2 : 2-D barcode.

Amongst the extensive bibliography about the 1-D barcodes available on-line, we par-
ticularly recommend [3]’s FAQ.

1.2 2-D Barcodes

More sophisticated standards exist. These are based on two dimensional symbologies. Or-
dinary barcode is vertically redundant, meaning that the same information is repeated
vertically. The heights of the bars can thus be truncated without any information loss.
However, the vertical redundancy allows a symbol with printing defects, such as spots or
voids to still be read. The higher the bars are, bigger is the probability that at least one
path (horizontal section along the barcode) is still readable. A two dimensional (2-D) code
stores information along the height as well as the length of the symbol (in fact, all hu-
man alphabets are 2-D codes). Since both dimensions contain information, at least some
of the vertical redundancy is lost and error-correction techniques must be used to prevent
misreads and produce acceptable read rates.

2-D code systems (for instance the PDF417 standard shown in figure 2) have become
more feasible with the increased use of moving beam laser scanners and CCD (charge cou-
pled device) scanners. The 2-D symbol can be read with hand held moving beam scanners
by sweeping the horizontal beam down the symbol.

Initially, 2-D symbologies were first applied to unit-dose packages in the healthcare
industry. These packages were small and had little room to place a barcode. The electronics
industry also showed an early interest in very high density barcodes and 2-D symbologies
since free space on electronics assemblies was scarce.
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There are well over twenty different 2-D symbologies available today. Some look like
multiple lines of barcodes stacked on top of each other and others resemble a honeycomb
like-matrix. The reader can get a better idea of this diversity by consulting [2]. The capacity
of 2-D codes varies typically between a few hundreds to a couple of thousands of bytes.

1.3 Internet Postage

More recently, the ability to encode a portable database has made 2-D symbologies at-
tractive in postal applications: one example is storing name, address and demographic
information on direct mail business reply cards. A good direct mail response is often less
than two percent. If the return card is only coded with a serial number, the few replies
must be checked against a very large database, perhaps millions of names. This can be
quite expensive in computer time. If all the important information is printed in 2-D code
at the time the mailing label is printed, there is very little additional cost, and a potential
for great savings when the cards are returned. Similar savings can occur in field service
applications where servicing data is stored in a 2-D symbol on equipment. The field engi-
neer uses a portable reader to get the information rather than dialing up the home office’s
computer.

Figure 3 : Internet Postage.

In 1998, The United States Postal Service (USPS) introduced a new form of postage :
Internet postage. Internet Postage is a combination of human-readable information and
a 2-D barcode. To help the post office protect against fraud, the 2-D barcode contains
information about the mail piece including the destination zip code, amount of postage
applied, date and time the envelope was posted and a digital signature so that the post
office can validate the authenticity of the postage.

Several companies are certified to distribute Internet postage (e.g. Stamps.com, Pitney
Bowes etc.) and in practice, such operators run postage servers that communicate with
the USPS. When customers log on such a server, they can print Internet postage directly
onto envelopes and labels (stickers) using an ordinary laser or inkjet printer. A typical final
result is shown in figure 3.
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1.4 Short Signatures

Although message recovery techniques seem to solve the signature size problem, they still
suffer from several drawbacks. Firstly, they usually deal with messages of fixed length and
it is unclear how to extend them when the message exceeds some given size. For example,
the Nyberg-Rueppel scheme described in [8] applied to “redundant” messages of twenty
bytes. This presumably means ten bytes for the message and ten for the redundancy but
what if the message happens to be fourteen bytes long? Secondly, their security is not well
understood. This is even an understatement: recently, a flaw has been found in the iso/iec
9796-1/2 standards (see [7, 6]). While completing this paper, we have been informed that
Abe and Okamoto had independently investigated the matter and proposed a message
recovery scheme proven secure in the random oracle model (see [1]). Still, they do not
address the format question.

In this paper, we propose variants of DSA and ECDSA allowing partial recovery. The
signature is appended to a truncated message and the discarded bytes are recovered by the
verification algorithm. Still, the signature (which somewhat behaves as an error-correcting
code) authenticates the whole message. Furthermore, we offer some form of proof for our
scheme, based on the random oracle model. More accurately, the proof applies to a version
of the scheme that slightly departs from the DSA/ECDSA design. Should closer compati-
bility with the standard be desired, one has to go over to a weaker security model (namely
the so-called generic model). Still, this model gives strong evidence that the scheme’s design
is indeed sound.

Our scheme allows to recover ten bytes of the message with a security level 2−80. This
reduces the overhead of DSA/ECDSA signatures to thirty bytes. Further optimizations
lower this figure to 26 bytes while keeping the same security level. They use several tricks
such as transmitting additional bytes of the message as a subliminal part of the signature
or slightly truncating the signature. This is traded-off against heavy (but still perfectly ac-
ceptable) preprocessing during signature generation and a slight increase of the verification
time.

This paper focuses on signatures, not on certificates. We are perfectly aware that many
trading scenarii will require appending a certificate to the signature and that the resulting
overhead should be considered. For this reason, the size of the public key matters and the
choice of elliptic curve signatures has been advocated in this context. Accordingly, we have
chosen to describe our results in the elliptic curve setting. However, it is only the shorter
length of the public key that makes EC signatures more attractive in terms of size. If the
public key is known to the verifier, then, ordinary DL signatures such as DSA are strictly
equivalent (as far as size is concerned) to their EC analogs. In particular all our techniques
go through, mutatis mutandis, when ordinary DL signatures are considered and the same
optimizations in size that we suggest for EC signatures will equally apply to DL ones.

We close this introduction by briefly describing the organization of the paper: we first
review the random oracle model and explain what kind of security it may provide; then,
we introduce our partial recovery scheme and assess its soundness. Finally, we describe
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two possible optimizations and evaluate their cost in terms of memory requirement and
computing time.

2 The Random Oracle Model

2.1 The Basic Paradigm

The random oracle paradigm was introduced by Bellare and Rogaway in [4] as a practical
tool to check the validity of cryptographic designs. It has been used successfully by Bellare
and Rogaway ([5]) in connection with RSA signatures and by Pointcheval and Stern ([13])
to prove the security of El Gamal signatures. The model replaces hash functions by truly
random objects and provides probabilistic security proofs for the resulting schemes, showing
that attacks against these can be turned into efficient solutions of well-known mathematical
problems such as factoring, the discrete logarithm problem or the ECDL problem.

Although the random oracle model is both efficient and useful, it has received a lot
of criticism. It is absolutely true that proofs in the random oracle model are not proofs:
they are simply a design validation methodology capable of spotting defective or erroneous
designs when they fail. Besides, we will freely use the random oracle model in the context
of DSA-like signatures. As is known, DSA uses for the generation of each signature a
randomly chosen one-time key-pair {u, v}, with v = gu mod p (with standard notations)
and derives a part of the signature c by considering v as an integer and reducing it modulo
r. Similarly, ECDSA generates a random one-time key-pair {u, V } (where V is a point on
the elliptic curve defined by V = u.G), encodes V as an integer i and computes c = i mod r,
where r is the order of G. As usual, the curve and the base point G are elements of the
key. To provide proofs or spot design errors, we will replace the function v −→ c, and
similarly the function V −→ c by a random function R with range [0, r − 1[. Practically,
this can be achieved by hashing the encoding of v or V using a standard hash function
such as SHA-1 [11]. Still, we do not necessarily suggest to hash the encoding. Of course
this can be criticized in an even stronger way than the original paradigm underlying the
random oracle model. For example, in DSA, we know that if v1, v2 are given, and if c1, c2

are their corresponding outputs, then v1 + v2 mod p is exactly (v1 mod p) + (v2 mod p) or
(v1 mod p) + (v2 mod p)− p and therefore produces either the output c1 + c2 or c1 + c2− 1
since r divides p − 1. Thus, the function v −→ c is by no means random. Still, we note
that it seems very difficult to control the value of v since it is produced by exponentiation
and, accordingly, it is very difficult to distinguish c from an output drawn by a random
function R. For this reason, we believe that random oracle proofs are still significant. In
the next paragraph we give further arguments in support of the random oracle model by
relating our approach to the so-called generic algorithms used by Shoup ([14]).

2.2 A Note on Generic Algorithms

A generic algorithm is an algorithm that uses a group structure but can only handle the
group elements by either calling arguments passed to the algorithm or by applying the
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group operations to previously accessed elements. The concept has been introduced by
Nechaev ([10]) and has been successfully applied by Shoup ([14]) to the discrete logarithm
problem and the Diffie-Hellman problem. Basically, it rules out techniques that would take
advantage of the actual representation of the group elements. Typically, methods such as
the Index-calculus, which try to factor elements of the group into small prime factors do
not fall under the scope of generic algorithms. Similarly, any method that would process
in any way the coordinates of an elliptic curve point would be beyond reach of generic
algorithms. The interesting point is that no such method is known.

The concept of a generic algorithm is not easy to explain and we give our own definition,
which is inspired by [14] while not being exactly similar. Any group element V receives a
name V̂ . The mapping that assigns a name to an element is random and the algorithm
can only access group elements by invoking their names. To compute V + V ′ (or V − V ′),
the algorithm submits V̂ and V̂ ′ to a random oracle that returns a name for V + V ′ (or
V − V ′). In such a model, the only way to compute an analog of the various functions
R(V ) introduced in the previous section, is to use the random name V̂ . In other words, by
considering that R(V ) is a random function, we are simply working in the generic model
using R(V ) in place of V̂ . In essence, the mechanism is similar to the manipulation of data
(V ,V ′) using pointers (V̂ ,V̂ ′) and functions (+,−).

3 The Partial Recovery Scheme

3.1 Nyberg-Rueppel signatures

We say that a signature scheme allows message recovery if the message m is a deterministic
function of the signature. Such signatures make it possible to avoid sending the message
together with the signature. However, one should be very careful since such schemes are
inherently subject to forgeries. In other words, some redundancy should be added to the
message.

A DSA-like signature with message recovery has been considered by Nyberg and Ruep-
pel ([12], hereafter NR) and an ECDSA variant of this scheme, included in [8], is described
in figure 4.

In the above, f is a message with appendix. It simply means that it has an adequate
redundancy. The encoding mentioned in step 3 of figure 4 is defined in the standard. Its
particular format is not important to us. Applying a hash function to this encoding consists
of replacing step 3 by: “3. encode-and-hash V as an integer i”.

Modified that way, the scheme can be proven secure in the random oracle model, with
arguments very close to those used in the sequel. We will not undertake this task as we feel
that NR signatures are not flexible enough for our purposes. Assuming that f consists of
ten message bytes and ten redundancy bytes, NR is perfectly suitable for messages shorter
than ten bytes but leaves unanswered the question of dealing with messages of, say, fifteen
bytes.
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Signature
1. generate a random key-pair {u, V }
2. form f from m by adding the proper redundancy
3. encode V as an integer i
4. c ← i + f mod r
5. if c = 0 go to step 1
6. d ← u− sc mod r
7. output the pair {c, d} as the signature

Verification
1. input a signature {c, d}
2. if c 6∈ [1, r − 1] or d 6∈ [1, r − 1], output invalid and stop
3. P ← d.G + c.W
4. if P = O, output invalid and stop
5. encode P as an integer i
6. f ← c− i mod r
7. if the redundancy of f is incorrect output invalid and stop
8. output valid and the underlying message m

Figure 4 : Nyberg-Rueppel signatures (outline).

3.2 An ECDSA Variant with Partial Recovery

There are numerous ways to modify the NR design in order to achieve partial message
recovery. In this section, we propose a possible choice that is as close as possible to the
original ECDSA. A similar construction, that we omit, applies to the regular DSA.

Our proposal allows to sign a message m = m1||m2, where || denotes concatenation and
to only transmit m2 together with the signature. The partial message recovery concept is, of
course, not new; the RSA-oriented iso 9796-2 standard [9] specifies explicitly two recovery
modes (total and partial) but to the best of our knowledge, this notion was never extended
to the DLP context. We propose to sign m, using the algorithm described in figure 5 where
H denotes any standard hash function such as SHA-1.

Note that we do not necessarily advocate our encode-and-hash paradigm. Replacing
encode-and-hash by encode in the above yields a scheme that is more closely modeled
after ECDSA. Still, even if it remains significant, the security proof has a weaker status as
explained in section 2.

3.3 Security Proof

We use the random oracle model to provide evidence in favor of the security of the new
scheme. We will thus assume that the function R(V ) which encodes the point V as an
integer i and computes i mod r is random. Finally, we will assume that the probability ε
that a random element f of [0, r−1] has the expected redundancy is very small. Basically, we
want to show that an adversary who can forge a message/signature pair with probability



206 David Naccache and Jacques Stern

Signature
1. generate a random key pair {u, V }
2. form f1 from m1 by adding the proper redundancy
3. encode-and-hash V as an integer i
4. c ← i + f1 mod r
5. if c = 0 go to step 1
6. f2 ← H(m2), d ← u−1(f2 + sc) mod r
7. if d = 0 go to step 1
8. output the pair {c, d} as the signature

Verification
1. input a signature {c, d} and a partial message m2

2. if c 6∈ [1, r − 1] or d 6∈ [1, r − 1], output invalid and stop
3. f2 ← H(m2), h ← d−1 mod r, h1 ← f2h mod r
4. h2 ← ch mod r, P ← h1.G + h2.W
5. if P = O output invalid and stop
6. encode-and-hash P as an integer i
7. f1 ← c− i mod r
8. if the redundancy of f1 is incorrect output invalid and stop
9. output valid and the underlying message m1

Figure 5 : Partial recovery signatures (outline).

ε + α significantly above ε can be used to solve the ECDL problem with non-negligible
probability. This is along the lines of [13]. However, we will not be careful about the
security estimates for we only wish to support the correctness of our design.

Referring to the scheme described in figure 5, we let A be an attacker able to forge a
pair consisting of a message m = m1||m2 and a signature {c, d} with a success probability
≥ ε+α. We consider the queries asked to the oracles as ordered lists and let j and k be the
respective indices corresponding to the time when P and m2 are respectively queried from
the R-oracle and the H-oracle, during the computation of A. If j or k does not exist, we
set j = ∞ or k = ∞. Similarly, we let δ be the truth-value of the statement “P is queried
before m2”, where the truth value is one if neither question is asked.

By standard arguments from [13], we see that there is a set of triples A such that:

i) A has probability ≥ α/2

ii) For any {j, k, δ} the conditional success probability of A when P is queried at j, H
queried at k and the statement “P is queried before m2” has value δ is ≥ ε + α/2.

We first claim that no triple {j, k, δ} in A can have an infinite value. Assume that
j = ∞. Checking the signature precisely corresponds to computing i = R(P ) mod r and
verifying that c− i mod r has the proper redundancy. Now, if R is controlled by a random
oracle, and if P has not been queried during the computation performed by A, then, R(P )
can be any value and the test will fail with probability 1− ε. From this, we may infer that



Signing on a Postcard 207

the conditional success probability corresponding to the triple cannot be ≥ ε + α/2. We
turn to the case k = ∞. If the value of H at m2 has not been queried by A during its
computation, then, it is only computed at the verification step and, again, with probability
≥ 1− ε, the resulting value of P differs from values queried to the R-oracle.

We now apply the forking lemma from [13] by playing the attacker a first time and
generating a replay attack as explained below. Note that, with probability ≥ α/2, the
triple {j, k, δ} corresponding to the first execution belongs to A, in which case neither j
nor k is infinite.

We now distinguish two cases depending on the value of δ :

• If δ = 0, then m2 is queried before P . We apply the forking technique at P and
obtain, by a replay attack, another signature pair m′ = m′

1||m′
2, {c′, d′}. From the fact that

both computations are similar until P is queried we infer that m′
2 = m2 and that

P = h1.G + h2.W = h′1.G + h′2.W

Equivalently
(f2d

−1).G + (cd−1).W = (f ′2d
′−1

).G + (c′d′−1
).W

From the first equality, we obtain f2 = f ′2 and from the second

f2(d
′ − d).G = (c′d− cd′).W

This discloses the secret logarithm of W in base G unless cd′ − c′d vanishes, in which case
f2(d− d′) also vanishes. Observe that f2 which has been queried from H is non zero with
overwhelming probability. Thus, the secret key has been found, except if d = d′. Since d is
non zero, this implies c = c′, which reads i + f1 = i′ + f ′1, where i and i′ are the respective
answers of the R-oracle to the P question. Due to the redundancy of f ′, this can only
happen with probability ≤ ε. Since the conditional probability of success at {j, k, δ} is
≥ ε + α/2, the replay discloses the discrete logarithm of the public key with probability
≥ α/2 (once we know that {j, k, δ} lies in A).

• If δ = 1 we fork at the point where m2 is queried. We obtain a second message-
signature pair m′ = m′

1||m′
2, {c′, d′} and, this time, we note that i = i′, since the answer of

the R-oracle to the P query is similar and, again, that

P = h1.G + h2.W = h′1.G + h′2.W

We get
(f2d

′ − f ′2d).G = (c′d− cd′).W

From this, we can compute the discrete logarithm of W in base G unless c′d − cd′ and
f2d

′− f ′2d both vanish modulo r. To complete the security proof as above, we only have to
see that this exceptional case can only happen with probability ≤ ε. Indeed, if it actually
happens, we have

c′d = cd′ mod r
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f2d
′ = f ′2d mod r

from which we get
f2cd

′ = f2c
′d = f ′2cd mod r

and, since d is not zero
f2c

′ = f ′2c mod r

which gives
f2(f

′
1 + i) = f ′2(f1 + i) mod r

and, finally, taking into account the fact that f2, queried from R, is non zero with over-
whelming probability

f ′1 = f ′2f
−1
2 (f1 + i)− i mod r

Since f ′2 is randomly chosen by the H-oracle, f ′1 has the requested redundancy with prob-
ability ≤ ε. This completes the proof.

3.4 Adaptive Attacks

In the previous proof, we have considered the case of an attacker forging a message-
signature pair from scratch. In more elaborate scenarii an attacker may adaptively request
signatures corresponding to messages of his choice. In other words, the attacker, modeled as
a machine, interacts with the legitimate signer by submitting messages that are computed
according to its program.

We show how to modify the security proof that was just given to cover the adaptive case.
We have to explain how to turn the attacker into a machine that discloses the logarithm
of a given element W in base G. Basically, we wish to use the attacker in the same way
and apply the forking technique. The main difficulty comes from the fact that we have to
mimic the signer’s action without knowing the secret key.

To simulate the signer when he has to output the signature of a message m = m1||m2,
we pick the signature {c, d} at random, query the H-oracle at m2 and compute the point

V = (f2d
−1).G + (cd−1).W

with f2 = H(m2). Next, we “force” the R-oracle to adopt c at its value at V . Since c has
been chosen randomly, this does not produce any noticeable difference unless the same
V is forced to two different values. It can be checked that this happens with negligible
probability.

3.5 Practical Consequences

Thus, we have shown, in the random oracle model, that an attacker can be turned into
an algorithm that solves the ECDL problem. This establishes the soundness of the new
design, provided that the probability ε attached to the redundancy is small enough. From
a practical standpoint, the only attack suggested by the above analysis consists in picking
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the signature {c, d} at random, generating a message m2, computing the hash value f2 =
H(m2) and applying the message recovery algorithm, hoping that the resulting value of f1,
computed at step 7 has the correct redundancy. This strategy succeeds with a probability
≤ ε. Note that we have not used any assumption on the format of the redundancy, which
can simply consist of a requested number of fixed leading or trailing bytes. Since the security
level required for signatures is about 280, we recommend to take ε ≤ 2−80. When signing
messages with ` bytes, ` ≥ 10, the new design allows to only append to the signature {c, d}
a part of the message m2 which is `−10 bytes long. The rest of the message m1 is recovered
by the verification algorithm.

4 Bandwidth Optimizations

We now investigate possible optimizations of our scheme that allow to save a few extra
bytes. We use two different tricks:

1. transmitting additional message bytes as a subliminal part of the signature, by suitably
choosing the random part during signature generation.

2. truncating the signature, leaving completion to be performed during the verification
phase.

Of course, both suggestions increase the time complexity of the generation (in the first
case) or verification (in the second case) phases. For this reason, we cannot expect to gain
too many bytes per trick. Still, we show that it is quite reasonable to squeeze three bytes
out of the first trick by using some form of preprocessing and one extra byte from the
second.

There are many ways in which the above ideas can be applied; bytes of the message can
be embedded into c, d or i. Similarly, either c or d can be truncated. We will only cover
the case where i is used to convey subliminal information and d is truncated. The rest is
left to the reader.

4.1 Packing Bytes Into i

Assume that one wishes to embed ` bytes of m in i, where ` is a small integer. For example,
assume that we try to stuff these bytes into the trailing part of i. One would then repeat
the first steps of the signature generation algorithm until a correct value of i appears, i.e.
an i whose trailing bytes match the given ` bytes of the message. Clearly, this is possible
only if ` is small and yields the scheme presented in figure 6 that allows to sign a message
m = m1||m2, where m1 has 10 + ` bytes and to only transmit m2. The security proof of
section 3.3 goes through, word for word, for the modified scheme.

Note that preprocessing appears very helpful here. Basically, one should store pairs
{u, i} and access these pairs by the value of i mod 28`. Signature generation might fail if
the table’s list of elements is empty at some ` byte location. Thus, it is important to keep
a sufficiently large number τ of elements for each ` byte values and to refresh the table
regularly.
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Signature
1. generate a random key pair {u, V }
2. discard the ` trailing bits of m1

3. form f1 from the result m′
1 by adding the proper redundancy

4. encode-and-hash V as an integer i
5. c ← i + f1 mod r
6. if c = 0 or i 6= m1 mod 28` go to step 1
7. f2 ← H(m2), d ← u−1(f2 + sc) mod r
8. if d = 0 go to step 1
9. output the pair {c, d} as the signature

Verification
1. input a signature {c, d} and a partial message m2

2. if c 6∈ [1, r − 1] or d 6∈ [1, r − 1], output invalid and stop
3. f2 ← H(m2), h ← d−1 mod r, h1 ← f2h mod r
4. h2 ← ch mod r , P ← h1.G + h2.W
5. if P = O, output invalid and stop
6. encode-and-hash P as an integer i
7. f1 ← c− i mod r
8. if the redundancy of f1 is incorrect output invalid and stop
9. append to m′

1 the ` trailing bytes of i
10. output valid and the underlying message m1

Figure 6 : The Optimized Variant (Outline).

The size of the table is ' 40τ28` bytes; ` = 3 corresponds to 640τ Mbytes which is quite
acceptable; ` = 4 goes up to 160τ Gbytes, which appears too much. Note that ` is not
necessarily an integer: bytes can be cut into nibbles and ` = 3.5 could also be considered
(10τ Gbytes).

4.2 Truncating d

We now turn to the second optimization suggested above. It consists in truncating k signa-
ture bytes. For example, one could omit the k trailing (or leading) bytes of c. This basically
means issuing 28k candidate signatures. The correct signature is spotted at signature veri-
fication: only the correct choice is accepted by the verification algorithm.

It is easily seen that the security of the truncated signature is closely related to the
security of the original scheme. An attacker able to forge a truncated signature will com-
plete his forgery to an actual signature by using the verification algorithm. Thus, the only
difference is the verifier’s workload.

At first glance, it seems that, in order to check truncated signatures, the verifier will have
to verify 28k signatures, which appears prohibitive even for k = 1. However, optimizations
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are possible since the various elliptic curve points that the verifier should compute are

P = h1.G + h2.W

where only h2 = cd−1 mod r depends on c. Let c0 be the completion of the truncated value
of c by zeros. Writing P as

Pj = h1.G + c0d
−1.W + jd−1.W

we see that the verification algorithm can be organized as follows:

1. Z ← d−1.W
2. P ← P0 + c0.Z
3. while a correct signature has not been found P ← P + Z

Considering that c, d are 160 bit integers and that a standard double-and-add algorithm
is used, one can estimate the number of elliptic curve operations needed to compute P0 as
close to 240. Z and P0 can be simultaneously computed in about 320 additions by sharing
the “double” part. Finally, step 3 is expected to require 128 extra additions. For k = 1,
the overhead does not exceed the verification time of a regular signature.

There is a trick which slightly improves performances: instead of using the signature
{c, d}, one can use {h2, d}, with h2 = cd−1 mod h. Truncating h2 yields slightly better
computational estimates.

5 Conclusion

We have shown how to minimize the overall length of an elliptic curve signature i.e. the
sum of the lengths of the signature itself and of the message (or part of the message) that
has to be sent together with the signature. Up to thirteen message bytes can be recovered
in a secure way from a signature and an additional one-byte saving on the signature itself
can be obtained.

The proposed schemes have been validated by a proof in the random oracle model
and can therefore be considered sound. All our schemes have ordinary discrete logarithm
analogs.
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Abstract. In many real-life situations, massive quantities of signatures have to be issued on cheap
passive supports (e.g. paper-based) such as bank-notes, badges, ID cards, driving licenses or passports
(hereafter IDs); while large-scale ID replacements are costly and prohibitive, one may reasonably
assume that the updating of verification equipment (e.g. off-line border checkpoints or mobile patrol
units) is exceptionally acceptable.
In such a context, an attacker using coercive means (e.g. kidnapping) can force the system authorities
to reveal the infrastructure’s secret signature keys and start issuing signatures that are indistinguish-
able from those issued by the authority.
The solution presented in this paper withstands such attacks up to a certain point: after the theft,
the authority restricts the verification criteria (by an exceptional verification equipment update) in
such a way that the genuine signatures issued before the attack become easily distinguishable from
the fresher signatures issued by the attacker.
Needless to say, we assume that at any point in time the verification algorithm is entirely known to
the attacker.

1 Introduction

In settings where passive (paper-based) bank notes, passports or ID cards are massively
delivered to users, document security specialists (e.g. [22]) distinguish between two different
threats:

– duplication, which consists in copying information from a genuine document into a new
physical support (the copy). By analogy to the double-spending problem met in e-cash
schemes and software copyright protection, it seems impossible to prevent duplication
without relying on specific physical assumptions, simply because symbols are inherently
copyable. This difficulty explains why duplication is mainly fought by optical means such
as holograms, iridescent printing (different colors being displayed at different angles of
observation), luminescent effects (the emission of radiation by an atom in the course
of a transition from a higher to a lower state of energy, which is typically achieved
by submitting the ID to ultraviolet excitation) or standard document security features
such as planchettes, fibers and thread.
In the last decade, chip-based IDs appeared (e.g. Venezuela’s driving license). Again,
these are based on the assumption that appropriately designed microchips can reason-
ably withstand malicious cloning attempts.
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– forgery, which assumes that attackers have successfully passed the physical barrier and
are now able to reproduce documents using exactly the same materials and production
techniques used to create the original. Note that although forgers may copy any existing
ID, they can still fail in creating new contents ex nihilo if the ID happens to rely on
logical protections such as MACs or signatures.

It seems very hard to quantify or compare the security of physical anti-duplication
technologies; partially because the effectiveness of such solutions frequently relies on their
secrecy, let alone the wide diversity of physical technologies mixed in one specific protection.
By opposition, the protection of digital assets against alteration is much better understood
and can be easily used to fight forgery.

As is obvious, if the authority’s signature or MAC keys are compromised (e.g. by theft,
cryptanalysis or coercion) forgery becomes possible, and the whole system collapses. Theft
can be easily prevented by physically protecting the production facility or better more,
by having data signed in protected remote locations and by exchanging information and
signatures through a properly protected logical channel.

This is however not sufficient to resist coercion, a scenario in which the attacker uses
a threat (e.g. a kidnapping) to force the authorities to publish the signature keys (e.g. in
a newspaper [21]). The attacker can then check in vitro the correctness of the revealed
keys, stop coercing and start issuing fake IDs that are indistinguishable from the genuine
ones. The attack can also be motivated by the sole intention to cause losses (global ID
replacement).

Large scale ID replacement is, of course, a radical solution but it may both entail
prohibitive costs and require a transition period during which intruders can still sneak
through the borders. A second solution consists in performing systematic on-line verifica-
tions to make sure that all controlled IDs are actually listed somewhere, but this might be
cumbersome in decentralized or poorly networked infrastructures.

As mentioned in the abstract, the problem is, of course, not limited to IDs. Bank notes,
public-key directories and any other passive supports carrying signatures or MACs are all
equally concerned.

Several authors formalized similar concerns [9] and solutions based on pro-active key
updates [8] which, although very efficient in on-line contexts (e.g. Internet), do not suit our
passive (non-intelligent) IDs; others share the key between n individuals amongst which
a quorum of k is necessary to sign [10, 19]. This does not seem to solve the fundamental
coercion problem either, since the forger can force the authority to instruct k of the share-
holders to reveal their secrets, or coerce k share-holders directly.

2 The Idea and a Few Definitions

The proposed solution targets the attacker’s ability to ascertain the correctness of the
stolen keys; this is achieved by updating the verification algorithm V so as to distinguish
the fake (new) signatures from the genuine (old) ones. We denote by {V1, . . . ,Vn} the
successive updates of V in a system designed to withstand at most n coercions.
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In our system, the authority’s (genuine) signatures are designed to:

– remain forward compatible i.e. be valid for all the verification algorithms Vi to come.
– remain computationally indistinguishable from the signatures generated by the i-th

attacker until the disclosure of Vi+1.

The technique is thus analogous to the strategy of national banks who implement several
(secret) security features in their bank notes. As forgeries appear, the banks examine the
fakes and publicize some of the secret features to stop the circulation of forgeries.

Our construction relies on the following definitions:

Definition 1 (Monotone Predicates). Let V1(x), . . . ,Vn(x) be n predicates. The set
{Vi(x)} is monotone if

∀i < n, Vi+1(x) ⇒ Vi(x)

Example 1. The set of predicates:

V1(x)
def
= x ∈ IR

V2(x)
def
= x ∈ IN

V3(x)
def
= x is prime

V4(x)
def
= x is a strong prime

is monotone since
V4(x) ⇒ V3(x) ⇒ V2(x) ⇒ V1(x).

Definition 2 (Signature Schemes). A signature scheme is a collection of three sub-
algorithms {G,S,V},
– a probabilistic key-generation algorithm G, which produces a pair of related public and

secret keys, on input a security parameter k: {v, s} = G(1k), where v and s respectively
denote the public and secret keys used by V and S, the verification and the signature
algorithms (see below).

– a possibly probabilistic signature algorithm S, which produces a signature, given a secret
key and a message: σ = S(s; m).

– a verification algorithm, which checks whether the given signature is correct relatively
to the message and the public key: V(v; m,σ) ∈ {true, false}. It must satisfy

(σ = S(s; m)) ⇒ (V(v; m,σ) = true) .

Definition 3 (Monotone Signature Schemes). A monotone signature scheme (MSS)
is the following generalization of definition 2,

– a probabilistic key-generation algorithm G, which produces a list of public and secret
keys, on input two security parameters k and n:

{v1, . . . , vn, s1, . . . , sn} = G(1k, 1n),

where {vi} and {si} respectively denote the public and secret keys used by the Vj and S.
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– a possibly probabilistic signature algorithm S, which produces a signature, given the list
of the n secret keys and a message: σ = S(s1, . . . , sn; m).

– a list of monotone verification algorithms Vj which check whether the given signature is
correct, relatively to the message and the list of public keys:

Vj(v1, . . . , vj; m,σ) ∈ {true, false}.
In other words, we require the three following properties.

1. completeness :

σ = S(s1, . . . , sn; m) ⇒ ∀j ≤ n, Vj(v1, . . . , vj; m,σ) = true.

2. soundness : for any adversary A which does not know sj+1, the probability, over his in-
ternal random coins, to produce an accepted message-signature pair {m,σ} is negligible

Pr[Vj+1(v1, . . . , vj+1; m,σ) = true (m,σ) = A] is negligible.

3. Indistinguishability : for any index j ≤ n, there exists a simulator Sj such that the
distributions of S(s1, . . . , sn; x) and Sj(s1, . . . , sj; x), for the internal random coins of
the algorithms, are indistinguishable by opponents who do not possess {sj+1, . . . , sn}.
We now categorize the opponents that MSSs will withstand. In essence we consider two

types of attackers: immediate and delayed. Both are going to coerce the signer, get some
of his secrets, check their validity (as much as possible, i.e. with respect to the currently
enforced public-key {v1, . . . , vj}) and start forging.

Definition 4 (Immediate Attackers). Immediate attackers forge signatures using the
obtained secret keys {s1, . . . , sj}, but stop their activity as soon as the new verification
algorithm Vj+1(v1, . . . , vj+1; ·, ·) is published.

The next section will be devoted to the study of the long-term validity of such forgeries,
produced before Vj+1(v1, . . . , vj+1; ·, ·) is known.

Definition 5 (Delayed Attackers). Delayed attackers wait until a new verification al-
gorithm Vj+1(v1, . . . , vj+1; ·, ·) is published and use both the obtained secret keys {s1, · · · , sj}
and the new verification rules to compute their forgeries.

The global picture is presented on figure 1.

3 Immediate Attacks and Symmetric Monotone Signatures

As one may suspect, immediate attackers are the easiest to deal with. In theory, the sit-
uation does not even call for the use of asymmetric primitives. It suffices to add secret
information to m or σ (e.g. using a subliminal channel as suggested by [20]) but unless se-
cret keys are shared with the verifiers, which is not the case in our setting, the information
rate is very low (narrow-band subliminal channel).
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– key generation: the authority gets {v1, . . . , vn, s1, . . . , sn} = G(1k, 1n)
– keys: the authority keeps {s1, . . . , sn} secret

and publishes {v1, . . . , vj} for some j < n
– signature generation: the authority runs S(s1, . . . , sn; m) to sign m
– coercion

• start
• the authority reveals, to the attackers, the signature algorithm,

together with the secret keys {s1, · · · , sj}
• stop

– immediate attackers try to issue signatures using only {s1, · · · , sj} and Vj

– authority updates Vj to Vj+1 and informs the verifiers
– delayed attackers try to issue signatures using {s1, · · · , sj}, Vj and Vj+1

Fig. 1. Coercion Model

Better results are obtained by adding to σ some hidden randomness. In other words, the
actually signed message will be µ(m, r) where µ is a padding function and r a randomly-
looking (pseudo-random) bit string. The expression randomly-looking translates the fact
that r embeds information which is meaningful to who knows how to interpret it :

let r =< r1 . . . rn >∈ {0, 1}n

and

{
ri = fki

({rλ}λ∈E′) for all i ∈ E ⊆ {1, . . . , n},
ri ∈R {0, 1} for all i 6∈ E,

where E and E ′ are two disjoint subsets of {1, . . . , n}; {fi} is a family of pseudo-random
functions returning one bit; and the values {ki}, for i ∈ E, are auxiliary secret keys. More
concretely, the set E ′ contains the indices of the bits used for generating redundancy, and
the set E contains the indices of the redundancy bits.

The signer knows s as well as the complete collection of auxiliary secrets {ki}. To issue
an ID containing m, he generates a randomly looking r (which satisfies the required secret
redundancy) and a signature σ of µ(m, r). The ID contains {m, r, σ}.

The verifier knows v and the values of some ki, for i ∈ F ⊆ E. Upon presentation of
the ID, he verifies the redundancy of r with respect to the ki values that he knows. If this
succeeds, he proceeds and verifies σ.

After coercion, the attacker obtains s and the ki for i ∈ G with, at least, F ⊆ G (recall
that the attacker verifies the validity of the produced signatures before stopping coercion).
As long as G 6= E, the verification algorithm can be fixed and the system saved.

After revealing H (strictly bigger than G) and the ki, for i ∈ H, signatures are consid-
ered valid if and only if all the ri for i ∈ H are correct. Given the unpredictable nature of
the {ri} for i ∈ H\G (and well-chosen functions {fi}), the forged signatures are accepted
with probability smaller then ε = 2−c where c = #(H\G). If c is sufficiently large, ε is
negligible and the forgeries are almost certainly spotted.

Figure 2 describes this protocol that we call symmetric MSS, since it relies on auxiliary
secrets, eventually revealed to the verifiers. More formally, the verification algorithm VF
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Initialization

{G,S,V}, signature scheme
{fk}, pseudo-random family of functions

Key generation

Generation of {s, v} with G
select two disjoint subsets E and E′ of {1, . . . , n}
∀i ∈ E, ki ∈R {0, 1}128
Public: v and E′, and some F ⊂ E

(which determines the degree of verification)
Private: s, E and the ki

Signature

∀i 6∈ E, ri ∈R {0, 1}
∀i ∈ E, ri = fki({rλ}λ∈E′) ∈ {0, 1}
h = H(m‖r) and σ = S(s; h)

Verification of {m, r, σ} for F ⊆ E

make sure that for all i ∈ F , ri = fki({rλ}λ∈E′)
compute h = H(m‖r) and check that V(v; h, σ) = true

Fig. 2. Symmetric Monotone Signature Scheme

checks the validity of the signature σ, but furthermore checks the redundancy of all the
bits indexed by F . We can state the following theorem.

Theorem 1. Let {G,S,V} be a signature scheme transformed into a symmetric MSS as
suggested in figure 2.

– The signatures issued by the authority leak no information on the subset E;
– Assume that an attacker manages to obtain s, and then the ki for i ∈ G ⊇ F . Let

H ⊆ E be such that G is strictly included in H. Let us denote by c the cardinality of
H\G. The signatures issued by an attacker knowing G will be accepted with respect to
H with probability smaller than 2−c.

Proof. First assume that fk(.) = f(k, .), where f is, in the first part of the proof, modeled
by a random oracle which outputs one bit to each query:

– The ri are all random for i 6∈ E, by construction, as well as for i ∈ E because of the
randomness of f . Therefore, the signatures do not reveal any information on E (other
than the fact that F ⊆ E).

– By virtue of this indistinguishability property for E in {1, . . . , n}, the attacker can not
know if G is the entire set E. Assume that this is not the case and G is strictly included
in E. Define H as an intermediate subset, G ⊂ H ⊆ E, and let c denote the cardinality
of H\G. Since f is a random oracle, without knowing the kj for j ∈ H\G, the attacker
can not produce the valid rj bits without a bias. Therefore the probability to produce
a valid forgery is smaller than 2−c.

Now, if by replacing f (secret random oracle [13]) by the family fk, the attacker manages
to produce valid signatures with probability larger than 2−c + α, then the attacker can be
used as distinguisher between the family of functions {fk} and a perfectly random function
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with an advantage α, which contradicts the assumption that {fk} is a family of pseudo-
random functions. ut

Given the symmetric nature of the auxiliary secrets (except the unique asymmetric
private key revealed immediately after an attack), it is clear that this process can not
withstand delayed attacks. Actually, the information owned by the verifier after the up-
date is sufficient for producing valid forgeries. We therefore focus the coming section on
asymmetric MSS that can thwart delayed attacks.

4 Delayed Attacks and Asymmetric Monotone Signatures

4.1 Simple Concatenation

A trivial example of asymmetric MSS can be obtained by concatenating signatures:

– Let {G,S,V} be a signature scheme and denote by ` the size of each signature;
– The concatenated signature of m over the set E ⊆ {1, . . . , n}, is the tuple:

S ′ ({si}i∈E; m) = σ = {σ1, . . . , σn}
where σi =

{S(si; m) if i ∈ E, using the secret key si

ρi ∈R {0, 1}` if i 6∈ E

– Verification consists in evaluating the predicate:

V ′F ({vi}i∈F ; m,σ) = ∧i∈FV(vi; m,σi),

where the set F ⊆ E determines the degree of verification.

However, for E not to be detectable, the two following distributions must be indistinguish-
able, for any pair {s,m} of secret key and message:

δ0 = {ρ ∈R {0, 1}`}
δ1(s,m) = {S(s, m)}

This latter distribution is over the internal random coins used in the probabilistic signature
process. Thus, not all signature algorithms lead themselves to such a construction. For
instance, the concatenation of RSA [17] signatures does not yield an asymmetric MSS,
because of the deterministic nature of σ as a function of m (unless one uses a probabilistic
padding scheme such as pss [3] or pkcs#1 v 2.0, the distribution δ1(s,m) contains only
one point, by opposition to the uniform distribution δ0.)

On the other hand, if the distribution of signatures is indistinguishable from the uniform
distribution, a mix between random numbers and signatures of m will resist coercion up
to a certain point. We formalize this in the following theorem.

Theorem 2. Let {G,S,V} be a signature scheme for which the distribution δ1(s,m) is
indistinguishable (for any pair {s,m}) from the uniform distribution. Let {G ′,S ′,V ′} be
the concatenated version of {G,S,V}.
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– The signatures produced by the authority do not reveal any information on the subset
E;

– Consider an attacker A who got hold of the si for i ∈ G ⊇ F . Let H ⊆ E be such that
G is strictly included in H, whose associated verification keys have been published. If
A can produce a forgery for {G ′,S ′,V ′} with respect to H then he is able to produce a
forgery for {G,S,V}.
A second disadvantage of RSA is the size of σ (recall that we actually talk about n

such signatures). A more compact alternative is Schnorr’s signature. The next paragraph
describes a concatenated signature based on this scheme.

4.2 Concatenation of Schnorr’s Signatures

We recall the description of the Schnorr’s scheme [18]:

– An authority generates a (k1 bit) prime p such that p − 1 has a large prime factor q
of k2 bits. The authority also generates an element g of Z?

p of order q and publishes a
hash function H which outputs are in Zq;

– G(p, q, g) returns x ∈R Z?
q and y = gx mod p;

– S(x; m) = {e, s} where t ∈R Z?
q, r = gt mod p, e = H(m, r) and s = t− ex mod q;

– V(y; m, e, s) = (H(m, gsye mod p)
?
= e).

This scheme is provably secure in the random oracle model [16]. More precisely, it with-
stands existential forgeries even against adaptive chosen-message attacks [7]. Moreover,
δ1(x,m) = {S(x,m)} = {{e, s} ∈R Zq × Zq} is indistinguishable from a uniform distribu-
tion, when y is unknown.

Remark 1. We insist on the format of the Schnorr’s signature. Indeed, sometimes one
outputs {r, s} as the signature, instead of {e, s}. We use this latter for two reasons:

– Because of the shorter size of the resulting signature. Note that in elliptic curve settings,
this is irrelevant, since both representations are as short.

– For the randomly-looking property of the pair {e, s}. Indeed, to distinguish a list of
actual signatures {{ei, si}}, for a given pair of keys {x, y}, from a list of truly random
pairs, one has to find this common y, which can not be found without the ri (hidden
in the query asked to H). But with the ri, one could easily compute ei = H(m, ri) and
(ri/g

si)1/ei . This latter value would be a constant: y.

By virtue of theorem 2, we can construct a concatenated variant that is as secure as the
initial scheme, that is, existentially unforgeable against adaptive chosen-message attacks.
Figure 3 describes such a variant.

The resulting MSS outputs 2nk2 bit signatures, and since usually k2
∼= 160, this would

amount to 320n bits in practice. Note that efficient batch algorithms for generating and
verifying multiple Schnorr’s signatures may considerably improve the parties’ workloads
[12, 1, 11].
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Initialization

p, q, g and H as in Schnorr’s scheme

Key generation

Select a subset E of {1, . . . , n}
∀i ∈ E, let xi ∈ Z?

q and yi = gxi mod p
Private: E and the xi for i ∈ E
Public: some F ⊂ E, and yi for i ∈ F

Signature

∀i ∈ E, σi = {ei, si} = S(xi; m)
∀i 6∈ E, σi = {ei, si} ∈R Zq × Z?

q

let σ = {σ1, . . . , σn}
Verification of {m, σ} for F ⊆ E

∀i ∈ F , H(m, gsiyi
ei mod p)

?
= ei

Fig. 3. Concatenated Schnorr’s Signatures

4.3 Introducing Degrees of Freedom

Instead of concatenating signatures and random values, the asymmetric MSS described in
this section relies on hidden relations between the different parts of the signature that give
additional degrees of freedom to the signer. It’s main advantage over concatenation is a
substantial improvement in signature size (50%).

The Okamoto-Schnorr Signature. The new scheme is based on Okamoto’s variant
of Schnorr’s scheme [15]. The mechanism relies on the representation problem [4], and is
recalled in figure 4.

Initialization

p, q and H as in Schnorr’s scheme
g1, . . . , gn ∈ Z?

p of order q

Key generation

Private: x1, . . . , xn ∈ Z?
q

Public: y = gx1
1 × . . .× gxn

n mod p

Signature

t1, . . . , tn ∈ Z?
q and r = gt1

1 × . . .× gtn
n mod p

e = H(m, r) then for i = 1, . . . , n, si = ti − exi mod q
S(x1, . . . , xn; m) = (e, s1, . . . , sn)

Verification

H(m, gs1
1 × . . .× gsn

n × ye mod p)
?
= e

Fig. 4. Okamoto–Schnorr Signatures

General outline. The main idea is to impose and keep secret relations between the gi.
For simplicity, suppose that n = 2. Instead of choosing g1 and g2 at random, we choose g2

as before, but set g1 = ga
2 mod p and y = gx

2 mod p, where a is a secret element of Z?
q, and
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thus x = ax1 +x2 mod q (with the notations of the figure 4). Then we keep the verification
condition

H(m, gs1
1 gs2

2 ye)
?
= e (1)

But now, we can choose s1 as we want (e.g. at random), as well as a random t, compute
r = gt

2 mod p, e = H(m, r) and then we want

gs2
2 = ry−eg−s1

1 = gt
2g
−ex
2 g−as1

2 = gt−ex−as1
2 mod p.

Therefore, s2 = t − ex − as1 mod q provides a valid signature. As the signer can choose
s1 arbitrarily (even after having chosen t), we say that he gets an additional degree of
freedom. This signature will still satisfy the verification formula (1), and will be indistin-
guishable from a classical Okamoto-Schnorr signature. Furthermore, instead of choosing s1

at random, we may choose it to be randomly-looking. Explicitly, we may set s1 = fk(m‖r)
where fk is a pseudo-random function and k an auxiliary secret. When coerced, the signer
reveals x1 and x2, but keeps a and k secret. The attacker is thus capable of forging signa-
tures satisfying formula (1). Then, the signer publishes an additional verification condition,

namely s1
?
= fk(m‖r). ¿From that moment, in order to forge valid signatures, the attacker

must compute a from ga
2 , or equivalently, find a discrete logarithm in Z?

p.
This idea can be generalized to any arbitrary n. We set an i in {2, · · · , n− 1}, and for

j = 1, · · · , i − 1, we impose gj = gai
i mod p, where the ai are kept secret, and therefore

y = gxi
i × . . .× gxn

n mod p for some tuple {xi, . . . , xn}. To produce a signature, we proceed
as follows: set r = gti

i · · · gtn
n mod p, for random tj. The signer has i− 1 degrees of freedom,

that is, he can set, for all j < i, sj = fkj
(m‖r). In addition, to be compatible with the

verification condition
H(m, gs1

1 × . . .× gsn
n × ye mod p)

?
= e, (2)

we set si = ti − exi − a1s1 − · · · − ai−1si−1 mod q, and sk = tk − exk mod q for k > i.
Trivially, the verification formula (2) still works for this signature generation:

gs1
1 × . . .× gsn

n × ye = ga1s1
i × . . .× g

ai−1si−1

i × gsi
i ×

k=n∏

k=i+1

gsk
k × ye

= g
a1s1+...+ai−1si−1

i × g
ti−exi−a1s1−···−ai−1si−1

i ×
k=n∏

k=i+1

gtk−exk
k × ye

= gti−exi
i ×

k=n∏

k=i+1

gtk−exk
k × ye =

k=n∏

k=i

gtk−exk
k ×

k=n∏

k=i

gexk
k =

k=n∏

k=i

gtk
k = r mod p.

But now, we can disclose some partial secrets ki and ai to an attacker, and then add
new verification conditions as shown in the case n = 2.

As a last generalization, we suppress the special role played by the first i indices in the
previous construction, and hide the indices of the generators for which one knows some
relations. That means that we can apply a secret permutation P to the indices, imposing
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Initialization

p, q and H as in Schnorr’s scheme.
fk(.) = H(k, .), a family of random functions

Key generation

Choose a permutation P of {1, 2, . . . , n}
Choose i < n, the degree of freedom
Set E = P ({1, · · · , i− 1})
Choose F ⊂ E
Choose xi, . . . , xn ∈R Z?

q

Choose aP (1), . . . , aP (i−1) ∈R Z?
q

Choose kP (1), . . . , kP (i−1) random keys
Choose gP (i), gP (i+1), . . . , gP (n) ∈R Z?

p of order q

Set gP (j) = g
aP (j)
P (i) mod p for j = 1, . . . , i− 1

Set y = gxi
P (i) × . . .× gxn

P (n) mod p

Private: P , {aj , kj}j∈E and xi, . . . , xn

Public: y, gj for j = 1, . . . , n,
F and kj for j ∈ F

Signature generation

Pick ti, . . . , tn ∈R Z?
q

Set r = gti
P (i) × . . .× gtn

P (n) mod p

e = H(m, r)
Set, for j = 1, . . . , i− 1, sP (j) = fkP (j)(m‖r)
Set sP (i) = ti − exi − aP (1)sP (1) − . . .− aP (i−1)sP (i−1) mod q
Set, for j = i + 1, . . . , n, sP (j) = tj − exj mod q
σ = (e, s1, . . . , sn)

Verification of (m, σ) for F ⊆ E

H(m, gs1
1 × . . .× gsn

n × ye mod p)
?
= e.

∀j ∈ F, sj
?
= fkj (m‖r)

Fig. 5. Okamoto–Schnorr Signatures with i− 1 Degrees of Freedom

that gP (j) = g
aP (j)

P (i) for 1 ≤ j ≤ i−1. The signature generation remains the same, except that

the sets {1, · · · , i−1}, {i} and {i+1, · · · , n} are replaced respectively by P 〈{1, · · · , i−1}〉,
{P (i)} and P 〈{i + 1, · · · , n}〉.

Formal description of the scheme. The complete protocol is described in figure 5. The
validity of this new scheme comes from the fact the

gs1
1 × . . .× gsn

n × ye = g
sP (1)

P (1) × . . .× g
sP (n)

P (n) × ye mod p.

After the first coercion takes place, the signer reveals x1, · · · , xn, for some randomly
chosen x1, . . . , xi−1 thanks to the aj’s. He also reveals a set G, which necessarily satisfies
F ⊆ G ⊆ E, and the values aj and kj for j ∈ G. The point is that G strictly includes
the indices possibly known from previous attacks (and thus included in the current public
key). If such a G, strictly included in E, exists, the signer can withstand the attack. When
the choice of such a G is impossible, the system finally collapses. Note that for the first
attack, it is possible to choose F = ∅.

After the attack, the signer publishes an additional verification condition,

sκ
?
= fkκ(m‖r),
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where κ ∈ E\G. The forgery of valid signatures will require knowing aκ. For an attacker,
this implies determining aκ from gaκ

P (i), and the difficulty of this problem is equivalent to
the security of the initial scheme.

Security. We can claim the following security result.

Theorem 3. Consider the Okamoto-Schnorr signature scheme with i−1 degrees of freedom
of figure 5, in the random oracle model.

– The signatures produced by the authority do not reveal any information on the subset
E;

– Consider an attacker A knowing a representation of y, k < i relations between the gj

and k secret keys kj. If, after revealing one more ki, A can still produce a signature
accepted by the new verification algorithm, then A can compute discrete logarithms.

Proof. We assume H to behave like a random oracle. For the first part of the theorem,
using classical simulation techniques ([6, 16]), we can prove that there exists a simulator
that does not know any secret value, but which is able to generate signatures that are
indistinguishable from the true signatures, thanks to the random oracles simulation (for
H but also the fk’s). This simulator proceeds as follows: it chooses e, then the sj’s, and
computes the correct value of r. Finally, it sets H(m, r) = e, and when a kκ is revealed, it
sets fkκ(m‖r) = sκ.

Consequently, no information on E or the ai’s leaks from the signatures produced by
the scheme.

For the second part, assume that an attacker knows a representation of y in the base
gj. Assume also that he knows k values P (j), the associated aP (j), and k + 1 elements kj.
Let i0 be the index of the last verification condition disclosed by the signer. Producing
valid signatures is now equivalent to finding an α such that gi0 = gα

P (i), and if A succeeds
in doing so with a non-negligible probability, then it can be used as an oracle to solve the
discrete logarithm problem. ut

Efficiency. This technique offers several advantages compared to concatenation:

– Signature generation requires n− i + 1 exponentiations, this parameter depends on the
number of coercions that the system has to withstand.

– Verification requires the same number of exponentiations as the concatenated Schnorr
variant.

– The size of a signature is (n + 1)160 bits, instead of 320n bits

Roughly speaking, most characteristics are improved by a factor of two, which represents
a significant improvement.

5 Conclusion

We proposed new signature mechanisms that tolerate, up to a certain point, secret disclo-
sure under constraint. More precisely, we introduced symmetric and asymmetric monotone
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signatures to thwart different types of attacks. The asymmetric monotone scheme offers the
broadest protection for the signer. We gave a practical example of such a scheme, based on
the Okamoto-Schnorr signature. The new scheme, called Okamoto-Schnorr with i degrees
of freedom, is provably secure against adaptive chosen-message attacks. We believe that
the proposed solution can be practically deployed at the scale of a country.

References

1. M. Bellare, J. A. Garay, T. Rabin, Fast Batch verification for modular exponentiation and digital signatures,
Advances in Cryptology eurocrypt’98, Springer-Verlag, LNCS 1403, pp. 236–250, 1998.

2. M. Bellare, P. Rogaway, Random oracles are practical: a paradigm for designing efficient protocols, Proceedings
of the 1-st ACM conference on computer and communications security, pp. 62–73, 1993.

3. M. Bellare, P. Rogaway, The exact security of digital signatures - How to sign with RSA and Rabin, Advances
in Cryptology eurocrypt’96, Springer-Verlag, LNCS 1070, pp. 399–416, 1996.

4. S. Brands, An efficient off-line electronic cash system based on the representation problem, Technical report,
CWI (Centrum voor Wiskunde en Informatica), 1993.
Also available on-line : http://www.cwi.nl/cwi/publications CS-R9323.

5. T. El Gamal, A public key cryptosystem and a signature scheme based on discrete logarithms, IEEE Transac-
tions on Information Theory, vol. IT–31, no. 4, pp. 469–472, 1985.

6. U. Feige, A. Fiat, A. Shamir, Zero-knowledge proofs of identity, Journal of Cryptology, vol. 1, no. 2, pp. 77-95,
1988.

7. S. Goldwasser, S. Micali, R. Rivest, A Digital signature scheme secure against adaptative chosen-message
attacks, SIAM journal of computing, vol. 17, pp. 281–308, 1988.

8. A. Herzberg, S. Jarecki, H. Krawczyk, M. Yung, Proactive secret sharing, or: how to cope with perpetual
leakage, Advances in Cryptology crypto’95, Springer-Verlag, LNCS 963, pp. 339–352, 1995.

9. M. Jakobsson, M. Yung, Revokable and versatile electronic money, Proceedings of the 3-rd ACM conference
on computer and communications security, pp. 76–87, 1996.

10. C. Li, T. Hwang, M. Lee, (t, n)-threshold signature schemes based on discrete logarithm. Advances in Cryp-
tology eurocrypt’94, Springer-Verlag, LNCS 950, pp. 191–200, 1995.
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13. D. M’räıhi, D. Naccache, D. Pointcheval, S. Vaudenay, Computational alternatives to random number genera-
tors, Proceedings of the fifth annual workshop on selected areas in cryptography, LNCS 1556, pp. 72–80, 1998.
Springer-Verlag.

14. NIST, Digital Signature Standard (DSS), Federal Information Processing Standards Publication 186, 1994.
15. T. Okamoto, Provably secure and practical identification schemes and corresponding signature schemes, Ad-

vances in Cryptology crypto’92, Springer-Verlag, LNCS 740, pp. 31–53, 1992.
16. D. Pointcheval, J. Stern, Security arguments for digital signatures and blind signatures, Journal of Cryptology,

vol. 13, no. 3, pp. 361–396, 2000.
17. R. Rivest, A. Shamir, L. Adleman, Method for obtaining digital signatures and public key cryptosystems,

Communications of the ACM, vol. 21, pp. 120–126, 1978.
18. C. Schnorr, Efficient signature generation by smart cards, Journal of Cryptology, vol. 4, no. 3, pp. 161-174,

1991.
19. V. Shoup, Practical threshold signatures, Technical report, IBM Research, June 1999. Report RZ 3121.
20. G. Simmons, The subliminal channel and digital signatures, Advances in Cryptology eurocrypt’84, Springer-

Verlag, LNCS 209, pp. 364–378, 1985.
21. S. von Solms, D. Naccache, On blind signatures and perfect crimes, Computers & Security, vol.11, pp. 581–

583,1992
22. R. L. Van Renesse, Optical document security, Artech House Optoelectronics Library, 2-nd edition, 1998.



Twin Signatures: An Alternative to the

Hash-and-Sign Paradigm

[P. Samarati, Ed., 8th ACM Conference on Computer and Communications Security, pp.
20–27, ACM Press, 2001.]

David Naccache1, David Pointcheval2, and Jacques Stern2

1 Gemplus Card International
34 rue Guynemer, Issy-les-Moulineaux, F-92447, France

david.naccache@gemplus.com
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Abstract. This paper introduces a simple alternative to the hash-and-sign paradigm called twin-
ning. A twin signature is obtained by signing twice the same short message by a probabilistic signature
scheme. Analysis of the concept in different settings yields the following results:
– We prove that no generic algorithm can efficiently forge a twin DSA signature. Although generic

algorithms offer a less stringent form of security than computational reductions in the standard
model, such successful proofs still produce positive evidence in favor of the correctness of the
new paradigm.

– We prove in the standard model an equivalence between the hardness of producing existential
forgeries (even under adaptively chosen message attacks) of a twin version of a signature scheme
proposed by Gennaro, Halevi and Rabin and the Flexible RSA Problem.

We consequently regard twinning as an interesting alternative to hash functions for eradicating
existential forgery in signature schemes.

1 Introduction

The well-known hash and sign paradigm has two distinct goals: increasing performance by
reducing the size of the signed message and improving security by preventing existential
forgeries. As a corollary, hashing remains mandatory even for short messages.

From the conceptual standpoint, the use of hash functions comes at the cost of extra
assumptions such as the conjecture that for all practical purposes, concrete functions can
be identified with ideal black boxes [3] or that under certain circumstances (black box
groups [16, 23]) a new group element must necessarily come from the addition of two
already known elements. In some settings [12] both models are even used simultaneously.

This paper investigates a simple substitute to hashing that we call twinning. A twin
signature is obtained by signing twice the same (short) raw message by a probabilistic
signature scheme.

We believe that this simple paradigm is powerful enough to eradicate existential forgery
in a variety of contexts. To support this claim, we show that no generic algorithm can
efficiently forge a twin DSA signature and prove that for a twin variant of a signature
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scheme proposed by Gennaro, Halevi and Rabin [10] (hereafter GHR) existential forgery,
even under an adaptively chosen-message attack, is equivalent to the Flexible RSA Problem
[8] in the standard model.

Before we proceed, let us stress that although the generic model in which we analyze
DSA offers a somehow weaker form of security than the reductions that we apply to GHR
in the standard model, it still provides evidence that twinning may indeed have a beneficial
effect on security.

2 Generic Algorithms

Generic algorithms, as introduced by Nechaev [16] and Shoup [23], encompass group al-
gorithms that do not exploit any special property of the encodings of group elements
other than the property that each group element is encoded by a unique string. Typi-
cally, algorithms like Pollard’s ρ algorithm [20] fall under the scope of this formalism while
index-calculus methods do not.

2.1 The Framework

Recall that any Abelian finite group Γ is isomorphic to a product of cyclic groups of the
form Zpk , where p is a prime and the group law is additive. Such groups will be called
standard Abelian groups. An encoding of a standard group Γ is an injective map from Γ
into a set of bit strings S.

We give some examples: consider the multiplicative group of invertible elements modulo
some prime q. This group is cyclic and isomorphic to the standard additive group Γ = Zq−1.
Given a generator g, an encoding σ is obtained by computing the binary representation σ(x)
of gx mod q. The same construction applies when one considers a multiplicative subgroup
of prime order r. Similarly, let E be the group of points of some non-singular elliptic
curve over a finite field F , then E is either isomorphic to a (standard) cyclic group Γ or
else is isomorphic to a product of two cyclic groups Zd1 × Zd2 . In the first case, given a
generator G of E, an encoding is obtained by computing σ(x) = x.G, where x.G denotes
the scalar multiplication of G by the integer x and providing coordinates for σ(x). The same
construction applies when E is replaced by one of its multiplicative subgroups of prime
order r. Note that the encoding set appears much larger than the group size, but compact
encodings using only one coordinate and a sign bit ±1 exist and for such encodings, the
image of σ is included in the binary expansions of integers < tr for some small integer t,
provided that r is close enough to the size of the underlying field F . This is exactly what
is recommended for cryptographic applications [11].

A generic algorithm A over a standard Abelian group Γ is a probabilistic algorithm
that takes as input an encoding list {σ(x1), · · · , σ(xk)}, where each xi is in Γ . While it
executes, the algorithm may consult an oracle for further encodings. Oracle calls consist of
triples {i, j, ε}, where i and j are indices of the encoding list and ε is ±. The oracle returns
the string σ(xi±xj), according to the value of ε and this bit-string is appended to the list,
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unless it was already present. In other words, A cannot access an element of Γ directly
but only through its name σ(x) and the oracle provides names for the sum or difference
of two elements addressed by their respective names. Note however that A may access the
list at any time. In many cases, A takes as input a pair {σ(1), σ(x)}. Probabilities related
to such algorithms are computed with respect to the internal coin tosses of A as well as
the random choices of σ and x.

The following theorem appears in [23]:

Theorem 1. Let Γ be a standard cyclic group of order N and let p be the largest prime
divisor of N . Let S be a set of cardinality at least N . Let A be a generic algorithm over
Γ that makes at most n queries to the oracle. If x ∈ Γ and an encoding σ are chosen at
random, then the probability that A returns x on input {σ(1), σ(x)} is O(n2/p).

We refer to [23] for a proof. However, we will need, as an ingredient for our own proofs,
the probabilistic model used by Shoup. We develop the model in the special case where N
is a prime number r, which is of interest to us.

Basically, we would like to identify the probabilistic space consisting of σ and x with the
space Sn×Γ . Given an element {z1, · · · , zn, y} of this space, z1 and z2 are used as σ(1) and
σ(x), the successive zi are used in sequence to answer the oracle queries and the unique
value y from Γ serves as x. However, this interpretation may yield inconsistencies as it
does not take care of possible collisions between oracle queries. To overcome the difficulty,
Shoup defines, along with the execution of A, a sequence of linear polynomials Fi(X), with
coefficients modulo r. Polynomials F1 and F2 are respectively set to F1 = 1 and F2 = X
and the definition of polynomial F` is related to the `-th query {i, j, ε}: F` = Fi±Fj, where
the sign ± is chosen according to ε. If F` is already listed as a previous polynomial Fh,
then F` is marked and A is fed with the answer of the oracle at the h-th query. Otherwise,
z` is returned by the oracle. Once A has come to a stop, the value of x is set to y.

It is easy to check that the behavior of the algorithm which plays with the polynomials
Fi is exactly similar to the behavior of the regular algorithm, if we require that y is not a
root of any polynomial Fi − Fj, where i, j range over indices of unmarked polynomials. A
sequence {z1, · · · , zn, y} for which this requirement is met is called a safe sequence. Shoup
shows that, for any {z1, · · · , zn}, the set of y such that {z1, · · · , zn, y} is not safe has prob-
ability O(n2/r). From a safe sequence, one can define x as y and σ as any encoding which
satisfies σ(Fi(y)) = zi, for all unmarked Fi. This correspondence preserves probabilities.
However, it does not completely cover the sample space {σ, x} since executions such that
Fi(x) = Fj(x), for some indices i, j, such that Fi and Fj are not identical are omitted.
To conclude the proof of the above theorem in the special case where N is a prime num-
ber r, we simply note that the output of a computation corresponding to a safe sequence
{z1, · · · , zn, y} does not depend on y. Hence it is equal to y with only minute probability.

2.2 Digital Signatures Over Generic Groups

We now explain how generic algorithms can deal with attacks against DSA-like signature
schemes [9, 22, 17, 11]. We do this by defining a generic version of DSA that we call GDSA.
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Parameters for the signature include a standard cyclic group of prime order r together with
an encoding σ. The signer also uses as a secret key/public key pair {x, σ(x)}. Note that we
have chosen to describe signature generation as a regular rather than generic algorithm,
using a full description of σ. To sign a message m, 1 < m < r the algorithm executes the
following steps:

1. Generate a random number u, 1 ≤ u < r.

2. Compute c ← σ(u) mod r. If c = 0 go to step 1.

3. Compute d ← u−1(m + xc) mod r. If d = 0 go to step 1.

4. Output the pair {c, d} as the signature of m.

The verifier, on the other hand, is generic:

1. If c 6∈ [1, r − 1] or d 6∈ [1, r − 1], output invalid and stop.

2. Compute h ← d−1 mod r, h1 ← hm mod r and h2 ← hc mod r.

3. Obtain σ(h1 + h2x) from the oracle and compute c′ ← σ(h1 + h2x) mod r.

4. If c 6= c′ output invalid and stop otherwise output valid and stop.

The reader may wonder how to obtain the value of σ requested at step 3. This is simply
achieved by mimicking the usual double-and-add algorithm and asking the appropriate
queries to the oracle. This yields σ(h1) and σ(h2x). A final call to the oracle completes the
task.

A generic algorithm A can also perform forgery attacks against a signature scheme.
This is defined by the ability of A to return on input {σ(1), σ(x)} a triple {m, c, d} ∈ Γ 3

for which the verifier outputs valid. Here we assume that both algorithms are performed
at a stretch, keeping the same encoding list.

To deal with adaptive attacks one endows A with another oracle, called the signing
oracle. To query this oracle, the algorithm provides an element m ∈ Γ . The signing oracle
returns a valid signature {c, d} of m. Success of A is defined by its ability to produce a
valid triple {m̃, c̃, d̃}, such that m̃ has not been queried during the attack.

3 The Security of Twin Generic DSA

3.1 A Theoretical Result

The above definitions extend to the case of twin signatures, by requesting the attacker A
to output an m and two distinct pairs {c, d} ∈ Γ 2, {c′, d′} ∈ Γ 2. Success is granted as soon
as the verifying algorithm outputs valid for both triples.1

We prove the following:

1 using [15] the simultaneous square-and-multiply generation or verification of two DSA signatures is only 17%
slower than the generation or verification of a single signature.
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Theorem 2. Let Γ be a standard cyclic group of prime order r. Let S be a set of cardinality
at least r, included in the set of binary representations of integers < tr, for some t. Let A
be a generic algorithm over Γ that makes at most n queries to the oracle. If x ∈ Γ and an
encoding σ are chosen at random, then the probability that A returns a message m together
with two distinct GDSA signatures of m on input {σ(1), σ(x)} is O(tn2/r).

Proof. We cover the non adaptive case and tackle the more general case after the proof.
We use the probabilistic model developed in section 2.1. Let A be a generic attacker able
to forge some m and two distinct signatures {c, d} and {c′, d′}. We assume that, once
these outputs have been produced, A goes on checking both signatures; we estimate the
probability that both are valid.

We restrict our attention to behaviors of the full algorithm corresponding to safe se-
quences {z1, · · · , zn, y}. By this, we discard a set of executions of probability O(n2/r). We
let P be the polynomial (md−1) + (cd−1)X and Q be the polynomial (md′−1) + (c′d′−1)X.

– We first consider the case where either P or Q does not appear in the Fi list before
the signatures are produced. If this happens for P , then P is included in the Fi list at
signature verification and the corresponding answer of the oracle is a random number
zi. Unless zi = c mod r, which is true with probability at most t/r, the signature is
invalid. A similar bound holds for Q.

– We now assume that both P and Q appear in the Fi list before A outputs its signatures.
We let i denote the first index such that Fi = P and j the first index such that Fj = Q.
Note that both Fi and Fj are unmarked (as defined in section 2.1). If i = j, then we
obtain that md−1 = md′−1 and cd−1 = c′d′−1. From this, it follows that c = c′, d = d′

and the signatures are not distinct.
– We are left with the case where i 6= j. We let Ωi,j, i < j, be the set of safe sequences

producing two signatures such that the polynomials P , Q, defined as above appear for
the first time before the algorithm outputs the signatures, as Fi and Fj. We consider a
fixed value w for {z1, · · · , zj−1} and let ŵ be the set of safe sequences extending w. We
note that Fi and Fj are defined from w and we write Fi = a+bX, Fj = a′+b′X. We claim
that Ωi,j∩ŵ has probability ≤ t/r. To show this, observe that one of the signatures that
the algorithm outputs is necessarily of the form {c, d}, with c = zi mod r, c = db mod r
and m = da mod r. Now, the other signature is {c′, d′} and since m is already defined
we get d′ = ma′−1 mod r and c′ = b′d′ mod r. This in turn defines zj mod r within
a subset of at most t elements. From this, the required bound follows and, from the
bound, we infer that the probability of Ωi,j is at most t/r.

Summing up, we have bounded the probability that a safe sequence produces an exe-
cution of A outputting two valid signatures by O(tn2/r). This finishes the proof. ut

In the proof, we considered the case of an attacker forging a message-signature pair
from scratch. A more elaborate scenario corresponds to an attacker who can adaptively
request twin signatures corresponding to messages of his choice. In other words, the attacker
interacts with the legitimate signer by submitting messages selected by its program.



Twin Signatures 231

We show how to modify the security proof that was just given to cover the adaptive
case. We assume that each time it requests a signature the attacker A immediately verifies
the received signature. We also assume that the verification algorithm is normalized in such
a way that, when verifying a signature {c, d} of a message m, it asks for σ((md−1)+(cd−1)x)
after a fixed number of queries, say q. We now explain how to simulate signature generation:
as before, we restrict our attention to behaviors of the algorithm corresponding to safe
sequences {z1, · · · , zn, y}. When the (twin) signature of m is requested at a time of the
computation when the encoding list contains i elements, one picks zi+q and zi+2q and
manufactures the two signatures as follows:

1. Let c ← zi+q mod r, pick d at random.
2. Let c′ ← zi+2q mod r, pick d′ at random.
3. Output {c, d} and {c′, d′} as the first and second signatures.

While verifying both signatures, A will receive zi+q as σ((md−1)+(cd−1)x) and zi+2q as
σ((md′−1)+(c′d′−1)x) unless Fi+q or Fi+2q appears earlier in the Fi list. Due to the random-
ness of d and d′, this happens with very small probability bounded by n/r. Altogether, the
simulation is spotted with probability O(n2/r) which does not affect the O(tn2/r) bound
for the probability of successful forgery.

3.2 Practical Meaning of the Result

We have shown that, in the setting of generic algorithms, existential forgery against twin
GDSA has a minute success probability. Of course this does not tell anything on the
security of actual twin DSA. Still, we believe that our proof has some practical meaning.
The analogy with hash functions and the random oracle model [3] is inspiring: researchers
and practitioners are aware that proofs in the random oracle model are not proofs but a
mean to spot design flaws and validate schemes that are supported by such proofs. Still, all
standard signature schemes that have been proposed use specific functions which are not
random by definition; our proofs seem to indicate that if existential forgery against twin
DSA is possible, it will require to dig into structural properties of the encoding function.
This is of some help for the design of actual schemes: for example, the twin DSA described
in Appendix A allows signature with message recovery without hashing and without any
form of redundancy, while keeping some form of provable security. This might be considered
a more attractive approach than [18] or [1], the former being based on redundancy and the
latter on random oracles. We believe that twin DSA is even more convincing in the setting
of elliptic curves, where there are no known ways of taking any advantage of the encoding
function.

4 An RSA-based Twinning in the Standard Model

The twin signature scheme described in this section belongs to the (very) short list of
efficient schemes provably secure in the standard model: producing existential forgeries
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even under an adaptively chosen-message attack is equivalent to solving the Flexible RSA
Problem [8].

Security in the standard model implies no ideal assumptions; in other words we directly
reduce the Flexible RSA Problem to a forgery. As a corollary, we present an efficient and
provably secure signature scheme that does not require any hash function.

Furthermore, the symmetry provided by twinning is much simpler to analyze than
Cramer-Shoup’s proposal [8] which achieves a similar security level with a rather intricate
proof and collision-resistant hash functions.

4.1 Gennaro-Halevi-Rabin Signatures

In [10] Gennaro, Halevi and Rabin present the following signature scheme: Let n be an
`-bit RSA modulus [21], H a hash-function and y ∈ Z?

n. The pair {n, y} is the signer’s
public key, whose secret key is the factorization of n.

– To sign m, the signer hashes e ← H(m) (which is very likely to be co-prime with ϕ(n))
and computes the e-th root of y modulo n using the factorization of n:

σ ← y1/e mod n

– To verify a given {m,σ}, the verifier checks that σH(m) mod n
?
= y.

Security relies on the Strong RSA Assumption. Indeed, if H outputs elements that
contain at least a new prime factor, existential forgery is impossible. Accordingly, Gen-
naro et al. define a new property that H must satisfy to yield secure signatures: division
intractability. Division intractability means that it is computationally impossible to find
a1, . . . , an and b such that H(b) divides the product of all the H(ai). In [10], it is con-
jectured that such functions exist and heuristic conversions from collision-resistant into
division-intractable functions are shown (see also [6]).

Still, security against adaptively chosen-message attacks requires either the random
oracle model or the chameleon property [13] for H. Indeed, some signatures can be pre-
computed, but with specific exponents before outputting y: y = x

Q
i ei mod n for random

primes ei = H(mi, ri).

Using the chameleon property, for the i-th query m to the signing oracle, the simulator
who knows the trapdoor can get an r such that H(mi, ri) = H(m, r) = ei. Then σ =
x
Q

j 6=i ej = y1/ei mod n and the signature therefore consists of the triple {m, r, σ} satisfying

σH(m,r) = y mod n.

Cramer and Shoup [8] also propose schemes based on the Strong RSA Assumption, the
first to be secure in the standard model, but with collision-resistant hash functions; our
twin scheme will be similar but with a nice symmetry in the description (which helps for
the security analysis) and no hash-functions.
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4.2 Preliminaries

We build our scheme in two steps. The first scheme resists existential forgeries when sub-
jected to no-message attacks. Twinning will immune it against adaptive chosen-message
attacks.

Injective Function Into the Prime Integers. Before any description, we will assume
the existence of a function p with the following properties: given a security parameter k
(which will be the size of the signed messages), p maps any string from {0, 1}k into the set
of the prime integers, p is also designed to be easy to compute and injective. A candidate
is proposed and analyzed in Appendix B.

The Flexible RSA Problem and the Strong RSA Assumption. Let us also recall
the Flexible RSA Problem [8]. Given an RSA modulus n and an element y ∈ Z?

n, find any
exponent e > 1, together with an element x such that xe = y mod n.

The Strong RSA Assumption is the conjecture that this problem is intractable for large
moduli. This was first introduced by [2], and then used in many further security analyses
(e.g. [8, 10]).

4.3 A First GHR Variant

The first scheme is very similar to GHR without random oracles but with function p
instead:

– To sign m ∈ {0, 1}k, the signer computes e ← p(m) and the e-th root of y modulo n
using the factorization of n

σ ← y1/e mod n

– To verify a given {m,σ}, the verifier checks that σp(m) mod n
?
= y.

Since p provides a new prime for each new message (injectivity), existential forgery
contradicts the Strong RSA Assumption. However, how can we deal with adaptively chosen-
message attacks without any control over the output of the function p, which is a publicly
defined non-random oracle [3, 4, 19, 5, 10] and not a trapdoor function either [13, 10, 8]?

4.4 The Twin Version

The final scheme is quite simple since it consists in duplicating the previous one: the signer
uses two `-bit RSA moduli n1, n2 and two elements y1, y2 in Z?

n1
and Z?

n2
respectively.

Secret keys are the prime factors of the ni.

– To sign m ∈ {0, 1}k, the signer derives two messages µ1 and µ2 from m, computes
ei ← p(µi) and then computes the ei-th root of yi modulo ni, for i = 1, 2, using the
factorization of the moduli:

{σ1 ← y
1/e1

1 mod n1, σ2 ← y
1/e2

2 mod n2}
– To verify a given {m,σ1, σ2}, the verifier checks that σ

p(µi)
i mod ni

?
= yi, for i = 1, 2.
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4.5 Existential Forgeries

To be qualified as such, an existential forgery must involve a new exponent, either e1 or
e2, which never occurred in the signatures provided by the signing oracle. Let us suggest
the following way to get the µi from m: for a given m ∈ {0, 1}k, one chooses two random
elements a, b ∈ {0, 1}k/2 (we assume k to be even), then µ1 = m⊕(a||b) and µ2 = m⊕(b||a).

Let us show that existential forgery of the twin scheme will lead to a new solution of
the Flexible RSA Problem:

Lemma 1. Let pair e1 and e2 be a given pair of exponents. After q queries to the signing
oracle, the probability that there exist a message m and two values a and b such that both e1

and e2 already occurred in the signatures provided by the signing oracle is less than q2/2k/2.

Proof. Let {mi, ai, bi, σi} denote the answers of the signing oracle. Using the injectivity of
p, the existence of such m, a and b means that there exist indices i and j for which

m⊕ (a||b) = µ1 = µ1,i = mi ⊕ (ai||bi)

m⊕ (b||a) = µ2 = µ2,j = mj ⊕ (bj||aj)

Then

(a||b)⊕ (b||a) = (a⊕ b||a⊕ b) = mi ⊕mj ⊕ (ai ⊕ bj||bi ⊕ aj).

If we split m to two k/2-bit halves, m||m, we get

mi ⊕mj ⊕ ai ⊕ bj = mi ⊕mj ⊕ bi ⊕ aj,

and therefore, for a j > i (the case i > j is similar), the new random elements aj and bj

must satisfy

aj ⊕ bj = mi ⊕mj ⊕mi ⊕mj ⊕ ai ⊕ bi.

Since they are randomly chosen by the signer, the probability that this occurs for some
i < j is less than (j − 1)/2k/2.

Altogether, the probability that for some j there exists some i < j which satisfies the
above equality is less that q2/2 × 2−k/2. By symmetry, we obtain the same result if we
exchange i and j.

The probability that both exponents already appeared is thus smaller than q2/2k/2. ut

To prevent adaptive chosen-message attacks, we won’t need any trapdoor property for
p, or random oracle assumption. We simply give the factorization of one modulus to the
simulator, which can use any pre-computed exponentiation with any new message, as when
chameleon functions are used [10].
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4.6 Adaptively Chosen-Message Attacks

Indeed, to prevent adaptively chosen-message attacks, one just needs to describe a simu-
lator; our simulator works as follows:

– The simulator is first given the moduli n1, n2 and the elements y1 ∈ Z?
n1

, y2 ∈ Z?
n2

,
as well as the factorization of nγ, where γ is randomly chosen in {1, 2}. To simplify
notations we assume that γ = 1.

– The simulator randomly generates q values e2,j ← p(µ2,j), with randomly chosen µ2,j ∈R

{0, 1}k for j = 1, . . . , q and computes

z ← y
Q

j=1,...,q e2,j

2 mod n2.

The new public key for the signature scheme is the following: the moduli n1, n2 with
the elements y1, z in Z?

n1
and Z?

n2
respectively.

– For the j-th signed message m, the simulator first gets (b||a) ← m ⊕ µ2,j. It therefore
computes µ1 ← m⊕ (a||b), and gets µ2 ← µ2,j = m⊕ (b||a).

Then, it knows σ2 = y
Q

i6=j e2,i

2 mod n2, and computes σ1 using the factorization of n1.

Such a simulator can simulate up to q signatures, which leads to the following theorem.

Theorem 3. Consider an adversary against the twin GHR scheme who succeeds in pro-
ducing an existential forgery, with probability greater than ε, after q adaptive queries to
the signing oracle in time t, then the Flexible RSA Problem can be solved with probability
greater than ε′ within a time bound t′, where

ε′ =
1

2

(
ε− q2

2k/2

)
and t′ = t +O(q × `2 × k).

As one may note the above bounds are almost optimal since ε′ ∼= ε/2 and t′ ∼= 2t. Indeed,
the time needed to produce an existential forgery after q signature queries is already in
O(q × (|n1|2 + |n2|2)k). To evaluate the success probability, q is less than say 240, but k
may be taken greater than 160 bits (and even much more).

To conclude the proof, one just needs to address the random choice of γ. As we have
seen in Lemma 1, with probability greater than ε − q2/2k/2, one of the exponents in the
forgery never appeared before. Since γ is randomly chosen and the view of the simulation
is perfectly independent of this choice, with probability of one half, e = eγ̄ is new. Let us
follow our assumption that γ = 1, then

se = σe
2 = z = yπ

2 mod n2,

where π =
∏

j=1,...,q e2,j. Since e is new, it is relatively prime with π, and therefore, there
exist u and v such that ue + vπ = 1: let us define x = yu

2sv mod n2,

xe = (yu
2sv)e = yeu

2 sev = y1−vπ
2 sev = y2(y

π
2 )−v(se)v = y2 mod n2.

We obtain an e-th root of the given y2 modulo n2, for a new prime e. ut



236 David Naccache et alii.

5 Conclusion and Further Research

We proposed an alternative to the hash-and-sign paradigm, based on the simple idea of
signing twice identical or related short messages. We believe that our first investigations
show that this is a promising strategy, deserving further study.

A number of interesting questions remain open, in particular can an increase in the
number of signatures (e.g. three instead of two) yield better bounds?

Efficiency is also a frequent concern: can the number of fields in a twin DSA be reduced
from four ({c, d} and {c′, d′}) to three or less?
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A Twin Signatures With Message Recovery

In this appendix, we describe a twin Nyberg-Rueppel scheme [18] which provides message
recovery. Keeping the notations of section 3.1:

1. Generate a random number u, 1 ≤ u < r.
2. Compute c ← σ(u) + m mod r. If c = 0 go to step 1.
3. Compute an integer d ← u− cx mod r.
4. Output the pair {c, d} as the signature.

In the above, f is what is called in [11] a message with appendix. It simply means that it
has an adequate redundancy. The corresponding verification is performed by the following
(generic) steps:

1. If c 6∈ [1, r − 1] or d 6∈ [0, r − 1], output invalid and stop.
2. Obtain σ(d + cx) from the oracle and compute γ ← σ(d + cx) mod r .
3. Check the redundancy of m ← c− γ mod r. If incorrect output invalid and stop; other-

wise output the reconstructed message m, output valid and stop.

In the twin setting, signature generation is alike but is performed twice, so as to output
two distinct signatures. However, no redundancy is needed. The verifier simply checks that
the signatures are distinct and outputs two successive versions of the message, say m and

m′. It returns valid if m
?
= m′ and invalid otherwise. The security proof is sketched here,

we leave the discussion of adaptive attacks to the reader.

We keep the notations and assumptions of section 3 and let A be a generic attacker over
Γ which outputs, on input {σ(1), σ(x)}, two signature pairs {c, d}, {c′, d′} and runs the
verifying algorithm that produces from these signatures two messages m, m′ and checks
whether they are equal. We wish to show that, if x ∈ Γ and an encoding σ are chosen at
random, then the probability that m = m′ is O(tn2/r).

As before, we restrict our attention to behaviors of the full algorithm corresponding
to safe sequences {z1, · · · , zn, y}. We let P , Q be the polynomials d + cX and d′ + c′X.
We first consider the case where either P or Q does not appear in the Fi list before the
signatures are produced. If this happens for P , then, P is included in the Fi list at signature
verification and the corresponding answer of the oracle is a random number zi. Since m is
computed as c−zi mod r, the probability that m = m′ is bounded by t/r. A similar bound
holds for Q.

We now assume that both P and Q appear in the Fi list before A outputs its signatures.
We let i denote the first index such that Fi = P and j the first index such that Fj = Q.
Note that both Fi and Fj are unmarked (as defined in section 2.1). If i = j, then we obtain
that c = c′ and d = d′. From this, it follows that the signatures are not distinct.

As in section 3, we are left with the case where i 6= j and we define Ωi,j, i < j, to be
the set of safe sequences producing two signatures such that the polynomials P , Q, defined
as above appear for the first time before the algorithm outputs the signatures, as Fi and
Fj. We show that, for any fixed value w = {z1, · · · , zj−1}, Ωi,j ∩ ŵ has probability ≤ t/r,
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where ŵ is defined as above. Since we have m = c− zi mod r and m′ = c′ − zj mod r, we
obtain zj = c′ − c + zi mod r, from which the upper bound follows. From this bound, we
obtain that the probability of Ωi,j is at most t/r and, taking the union of the various Ωi,js,
we conclude that the probability to obtain a valid twin signature is at most O(tn2/r).

B The Choice of Function p

B.1 A Candidate

The following is a natural candidate:

p : {0, 1}k →P
m 7→ nextprime(m× 2τ )

where τ is suitably chosen to guarantee the existence of a prime in any set [m× 2τ , (m +
1)× 2τ [, for m < 2k.

Note that the deterministic property of nextprime is not mandatory, one just needs
it to be injective. But then, the preimage must be easily recoverable from the prime: the
exponent is sent as the signature, from which one checks the primality and extracts the
message (message-recovery).

B.2 Analysis

It is clear that any generator of random primes, using m as a seed, can be considered as a
candidate for p. The function proposed above is derived from a technique for accelerating
prime generation called incremental search (e.g. [14], page 148).

1. Input: an odd k-bit number n0 (derived from m)
2. Test the s numbers n0, n0 + 2, . . . , n0 + 2(s− 1) for primality

Under reasonable number-theoretic assumptions, if s = c·ln 2k, the probability of failure
of this technique is smaller than 2e−2c, for large k.

Using our notations, in such a way that there exists at least a prime in any set [m ×
2τ , (m + 1) × 2τ [, but with probability smaller than 2−80, we obtain from above formulae
that c ∼= 40, and 2τ ≥ 40 ln 2k+τ+1. Therefore, a suitable candidate is τ ∼= 5 log2 k, and less
than 20k primality tests have to be performed.

B.3 Extensions

Collision-Resistance: To sign large messages (at the cost of extra assumptions), one can
of course use any collision-resistant hash-function h before signing (using the classical hash-
and-sign technique). Clearly, the new function m 7→ p(h(m)) is not mathematically injec-
tive, but just computationally injective (note that this is equivalent to collision-resistance),
which is enough for the proof.
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Division Intractability: If one wants to improve efficiency, using the division-intractability
conjecture proposed in [10], any function that outputs k-bit strings can be used instead of
p. More precisely :

Definition 1 (Division Intractability).A function H is said (n, ν, τ)-division intractable
if any adversary which runs in time τ cannot find, with probability greater than ν, a set of
elements a1, . . . , an and b such that H(b) divides the product of all the H(ai).

As above, that function p would not be injective, but collision-resistant, is enough to
prove the following :

Theorem 4. Let us consider the twin-GHR signature scheme, where p is any (q, ε, t)-
division-intractable hash function. Let us assume that an adversary A succeeds in produc-
ing an existential forgery under an adaptively chosen-message attack within time t and
with probability greater than ε, after q queries to the signing oracle. Then one can either
contradict the division-intractability assumption or solve the Flexible RSA Problem with
probability greater than ε′ within a time bound t′, where

ε′ =
1

2

(
ε− q2

2k/2

)
and t′ = t +O(q × `2 × k).
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Abstract. A fixed-pattern padding consists in concatenating to the message m a fixed pattern P .
The RSA signature is then obtained by computing (P |m)d mod N where d is the private exponent
and N the modulus. In Eurocrypt ’97, Girault and Misarsky showed that the size of P must be at
least half the size of N (in other words the parameter configurations |P | < |N |/2 are insecure) but
the security of RSA fixed-pattern padding remained unknown for |P | > |N |/2. In this paper we show
that the size of P must be at least two-thirds of the size of N , i.e. we show that |P | < 2|N |/3 is
insecure.

1 Introduction

RSA was invented in 1977 by Rivest, Shamir and Adleman [8], and is now the most widely
used public-key cryptosytem. RSA is commonly used for providing privacy and authenticity
of digital data, and securing web traffic between servers and browsers.

A very common practice for signing with RSA is to first hash the message, add some
padding, and then raise the result to the power of the decryption exponent. This paradigm
is the basis of numerous standards such as PKCS #1 v2.0 [9].

In this paper, we consider RSA signatures with fixed-pattern padding, without using
a hash function. To sign a message m, the signer concatenates a fixed padding P to the
message, and the signature is obtained by computing:

s = (P |m)d mod N

where d is the private exponent and N the modulus.

More generally, we consider RSA signatures in which a simple affine redundancy is
used. To sign a message m, the signer first computes:

R(m) = ω ·m + a where

{
w is the multiplicative redundancy
a is the additive redundancy

(1)
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The signature of m is then:
s = R(m)d mod N

A left-padded redundancy scheme P |m is obtained by taking ω = 1 and a = P ·2`, whereas
a right-padding redundancy scheme m|P is obtained by taking ω = 2` and a = P .

No proof of security is known for RSA signatures with affine redundancy, and several
attacks on such formats have appeared (see [6] for a thorough survey). At Crypto ’85,
De Jonge and Chaum [1] exhibited a multiplicative attack against RSA signatures with
affine redundancy, based on the extended Euclidean algorithm. Their attack applies when
the multiplicative redundancy ω is equal to one and the size of the message is at least
two-thirds of the size of the RSA modulus N .

|message| Â 2

3
|N |

For example, a signature can be forged if one uses the affine redundancy of figure 1.

|N |/3 2|N |/3
←−−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
FF . . . . . . . . . . . . . . . FF16 Message

Fig. 1. Example of an RSA padding forgeable by De Jonge and Chaum’s method where ω = 1 and a =
FF . . . FF 00 . . . 0016

De Jonge and Chaum’s attack was extended by Girault and Misarsky [2] at Eurocrypt
’97, using Okamoto-Shiraishi’s algorithm [7], which is an extension of the extended Eu-
clidean algorithm. They increased the field of application of multiplicative attacks on RSA
signatures with affine redundancy as their attack applies to any value of ω and a, when
the size of the message is at least half the size of the modulus (refer to figure 2 for an
illustration):

|message| Â 1

2
|N |

|N |/2 |N |/2
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
FF . . . . . . . . . . . . . . . . . . . . . . . . . . . FF16 Message

Fig. 2. Example of an RSA padding forgeable by Girault and Misarsky’s method where ω = 1 and a =
FF . . . FF 00 . . . 0016

Girault and Misarsky also extended the multiplicative attacks to RSA signatures with
modular redundancy:

R(m) = ω1 ·m + ω2 · (m mod b) + a (2)
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2|N |/3 |N |/3
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−→
FF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . FF16 Message

Fig. 3. Example of an RSA padding forgeable by our technique where the ω is equal to one and a =
FF . . . FF 00 . . . 0016

where





w1, w2 is the multiplicative redundancy
a is the additive redundancy
b is the modular redundancy

In this case, the size of the message must be at least half the size of the modulus plus
the size of the modular redundancy.

Finally, Girault and Misarsky’s attack was extended by Misarsky [5] at Crypto ’97 to
a redundancy function in which the message m and the modular redundancy m mod b can
be split into different parts, using the LLL algorithm [4]. The attack applies when the
size of the message is at least half the size of the modulus plus the size of the modular
redundancy.

In this paper, we extend Girault and Misarsky’s attack against RSA signatures with
affine redundancy to messages of size as small as one third of the size of the modulus, as
illustrated in figure 3.

|message| Â 1

3
|N |

As Girault and Misarsky’s attack, our attack applies for any w and a and runs in polynomial
time. However, our attack is existential only, as we cannot choose the message the signature
of which we forge, whereas Girault and Misarsky’s attack is selective: they can choose the
message which signature is forged.

2 The New Attack

In this section we extend Girault and Misarsky’s multiplicative attack on RSA signatures
with affine redundancy, to messages of size as small as one third of the size of N . A
multiplicative attack is an attack in which the redundancy function of a message can be
expressed as a multiplicative combination of the redundancy functions of other messages.
So we look for four distinct messages m1, m2, m3 and m4, each as small as one third of the
size of the modulus, such that:

R(m1) ·R(m2) = R(m3) ·R(m4) mod N (3)

Then, using the signatures of m2, m3 and m4, one can forge the signature of m1 by:

R(m1)
d =

R(m3)
d ·R(m4)

d

R(m2)d
mod N
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From (3) we obtain:

(ω ·m1 + a) · (ω ·m2 + a) = (ω ·m3 + a) · (ω ·m4 + a) mod N

Denoting P = a/ω mod N , we obtain:

(P + m1) · (P + m2) = (P + m3) · (P + m4) mod N

and letting:
t = m3 y = m2 −m3

x = m1 −m3 z = m4 −m1 −m2 + m3
(4)

we obtain:

((P + t) + x) · ((P + t) + y) = (P + t) · ((P + t) + x + y + z) mod N

which simplifies into:
x · y = (P + t) · z mod N (5)

Our goal is consequently to find four integers x, y, z and t, each as small as one third of
the size of N , satisfying equation (5).

First, we obtain two integers z and u such that

P · z = u mod N with

{−N
1
3 < z < N

1
3

0 < u < 2 ·N 2
3

As noted in [3], this is equivalent to finding a good approximation of the fraction P/N , and
can be done efficiently by developing it in continued fractions, i.e. applying the extended
Euclidean algorithm to P and N . A solution is found such that |z| < Z and 0 < u < U if

Z · U > N , which is the case here with Z = N
1
3 and U = 2 ·N 2

3 .

We then select an integer y such that N
1
3 ≤ y ≤ 2 ·N 1

3 and gcd(y, z) = 1. We find the
non-negative integer t < y such that:

t · z = −u mod y

which is possible since gcd(y, z) = 1. Then we take

x =
u + t · z

y
≤ 4N

1
3

and obtain:
P · z = u = x · y − t · z mod N

which gives equation (5), with x, y, z and t being all smaller than 4 ·N 1
3 . From x, y, z, t

we derive using (4) four messages m1, m2, m3 and m4, each of size one third the size of N :

m1 = x + t m2 = y + t
m3 = t m4 = x + y + z + t

(6)
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Since −N1/3 < z < N1/3 and y ≥ N1/3, we have y + z > 0, which gives using u ≥ 0 :

x + t =
u + t · (y + z)

y
≥ 0

which shows that the four integers m1, m2, m3 and m3 are non-negative, and we have

R(m1) ·R(m2) = R(m3) ·R(m4) mod N

The complexity of our attack is polynomial in the size of N . In appendix we give an
example of such a forgery computed using RSA Laboratories’ official 1024-bits challenge-
modulus RSA-309.

3 Extension to Selective Forgery

The attack of the previous section is only existential: we can not choose the message to be
forged. In this section we show how we can make the forgery selective, but in this case the
attack is no longer polynomial. Let m3 be the message which signature must be forged.
Letting x, y, z and t as in (4), we compute two integers z and u such that

(P + t) · z = u mod N with

{−N
1
3 < z < N

1
3

0 < u < 2 ·N 2
3

We then factor u, and try to write u as the product x · y of two integers of roughly the
same size, so that eventually we have four integers x, y, z, t of size roughly one third of
the size of the modulus, with:

x · y = (P + t) · z mod N

which gives
R(m1) ·R(m2) = R(m3) ·R(m4) mod N

The signature of m3 can now be forged using the signatures of m1, m2 and m4. For a
512-bit modulus the selective forgery attack is truly practical. For a 1024-bit modulus the
attack is more demanding but still feasible.

4 Conclusion

We have extended Girault and Misarsky’s attack on RSA signatures with affine redundancy:
we described a chosen message attack against RSA signatures with affine redundancy for
messages as small as one third of the size of the modulus. Consequently, when using a
fixed padding P |m or m|P , the size of P must be at least two-thirds of the size of N . Our
attack is polynomial in the length of the modulus. It remains an open problem to extend
this attack to even smaller messages (or, equivalently, to bigger fixed-pattern constants):
we do not know if there exists a polynomial time attack against RSA signatures with affine
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redundancy for messages shorter than one third of the size of the modulus. However, we
think that exploring to what extent affine padding is malleable increases our understanding
of RSA’s properties and limitations.

Acknowledgements. We would like to thank Christophe Tymen, Pascal Paillier, Helena
Handschuh and Alexey Kirichenko for helpful discussions and the anonymous referees for
their constructive comments.
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A A Practical Forgery

We describe a practical forgery with ω = 1 and a = 21023−2352, the modulus N being RSA
Laboratories offical challenge RSA-309, which factorisation is still unknown.

N = RSA-309
= bdd14965 645e9e42 e7f658c6 fc3e4c73 c69dc246 451c714e b182305b 0fd6ed47

d84bc9a6 10172fb5 6dae2f89 fa40e7c9 521ec3f9 7ea12ff7 c3248181 ceba33b5

5212378b 579ae662 7bcc0821 30955234 e5b26a3e 425bc125 4326173d 5f4e25a6

d2e172fe 62d81ced 2c9f362b 982f3065 0881ce46 b7d52f14 885eecf9 03076ca5

R(m1) = 7fffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff

ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff

ffffffff ffffffff ffffffff ffffffff ffffffff 00415df4 ca4219b6 ea5fa8e4

e2eabcfc 61348b80 e7ccbac7 3d1f5cc7 249e1519 9412886a f76220c6 d1409cd6

R(m2) = 7fffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff

ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff

ffffffff ffffffff ffffffff ffffffff ffffffff 00127f44 f753253a a0348be7

826e893f 693032db c2194dbb 3b81e1c2 630b66d3 1448a3f4 7fd2d34f b28aefd6

R(m3) = 7fffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff

ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff

ffffffff ffffffff ffffffff ffffffff ffffffff 00781bd4 e0c918a7 308fcff7

8f64044c a35b4937 36cd37d7 93f281b5 fdd0a951 52a0479b 57dd73b2 25b6df85

R(m4) = 7fffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff

ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff

ffffffff ffffffff ffffffff ffffffff ffffffff 000919fd 86e5afce 7fc11c94

0e0827c8 03be05bb 71f8de48 c61d6d5f 0feb036d a1ff2f8b 5f596108 3d142538
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We obtain:
R(m1) ·R(m2) = R(m3) ·R(m4) mod N

where messages m1, m2, m3 and m4 are as small as one third of the size of the modulus.
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Abstract. A fixed-pattern padding consists in concatenating to the message m a fixed pattern p.
The RSA signature is then obtained by computing (p|m)d mod N where d is the private exponent
and N the modulus. In Eurocrypt ’97, Girault and Misarsky showed that the size of p must be at
least half the size of N (in other words the parameter configurations |p| < |N |/21 are insecure) but
the security of RSA fixed-pattern padding remained unknown for |p| > |N |/2. In Crypto’01 Brier,
Clavier, Coron and Naccache showed that the size of p must be at least two-thirds of the size of N ,
i.e. that |p| < 2|N |/3 is insecure. Nothing is know beyond this bound for the time being.

In this note we present what we believe to be the two most likely ways in which 1/4 fixed padding
forgeries might be generated. Unfortunately, we stumble on polynomial equations that we don’t know
how to solve.

1 Background on RSA Fixed Padding

In this note, we consider RSA signatures with fixed-pattern padding, without using a hash
function. To sign a message m, the signer concatenates a fixed padding p to the message,
and the signature is obtained by computing:

s = (p|m)d mod N

where d is the private exponent and N the modulus.
More generally, we consider RSA signatures in which a simple affine redundancy is

used. To sign a message m, the signer first computes:

R(m) = ω ·m + a where

{
w is the multiplicative redundancy
a is the additive redundancy

(1)

The signature of m is then:
s = R(m)d mod N

A left-padded redundancy scheme p|m is obtained by taking ω = 1 and a = p · 2`, whereas
a right-padding redundancy scheme m|p is obtained by taking ω = 2` and a = P .

1 Here |a| stands for the bitsize of a.
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2 Existential Forgery

We look for an existential forgery. That is, we look for a construction leading to a set of
messages m1,m2, . . . , mk such that the signature of one of these messages can be determined
from the signatures of the others. For example, suppose that we can find m1,m2,m3,m4

such that R(m1)R(m2) = R(m3)R(m4) mod N , and that we know the signatures si =
R(mi)

d mod N for i = 2, 3, 4. Then we can compute s1 = R(m1)
d as s3s4s

−1
2 mod N . The

point is that this computation can be done without knowing the private key d.

3 First Attempt

We write n = |N |. We look for an n/4 fixed pattern padding RSA forgery of the form:

(p + x)(p + y)(p + z)(p + w) = (p− x)(p− y)(p− z)(p− w) mod N

(subtracting or a adding a small integer to p will only scramble its less significant part,
hence, all the terms in the above equation represent integers which most significant bits
equal a fixed pattern).

Opening the parentheses and simplifying we get :

p2(x + y + z + w) + xyz + xyw + xzw + yzw = 0 mod N

Hence, writing :

−p2 mod N =
c

a
mod N

where |c| = 3n/4 and |a| = n/4 can be computed as intermediate values appearing in
the extended euclidean algorithm applied to −p2 and N , a forgery is found if we know how
to solve in Z the system :

{
xyz + xyw + xzw + yzw = c
x + y + z + w = a

Which is equivalent to solving:

xyz + (xy + xz + yz)(a− x− y − z) = c (2)

for small {x, y, z}.
It is worthwhile making a couple of comments at this point:

– Assuming that the left-hand side of 2 is a random function mapping triples in [0, 2n/4]3

into [0, 23n/4] a simple counting argument shows that one should normally expect one
small solution to 2. This is confirmed by small-scale simulations on Mathematica for
n/4 = 10.

– One (inefficient) way to exhaust 2 consists in sieving for solutions modulo 2, 3, 5, 7, · · ·
and re-combining the potential solutions using the CRT before testing them back in 2.
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– Another way might be to sieve for solutions modulo increasing powers of a fixed prime
(i.e. a p-adic approach).

– Write
X = x + y, Y = xy, Z = z + w, W = zw.

Then the system becomes {
X + Z = a
ZY + XW = c

and it also follows that {
X2 − 4Y = A2

Z2 − 4W = B2

for some integers A,B. Eliminating Y, Z and W now gives

(a−X)A2 + XB2 = X(a−X)a− 4b,

and we like to view this as an equation in A and B only, with X as a parameter. If
0 < X < a (as we may assume) the equation consists of a positive definite quadratic
form taking a fixed value, and that has a small probability of being solvable, namely
O(1/a). Taken over all X in the range 1 to a you get O(1) solutions. This is a heuristic
argument showing that you may expect one solution.
But when you allow X to be negative or larger than a, the quadratic form becomes
negative definite, and the equation becomes a Pell equation, which may have infinitely
many solutions (apart from special cases). This might serve as an heuristic explana-
tion for the large number of modm solutions that we experimentally observed. Thus it
might be argued that the problem cannot be solved by congruence arguments only.

Note that by defining in 2 :





x + y = α
x + z = β
y + z = γ

we get an alternative equation:

−αβγ +
a

4
(4αγ − (α− β + γ)2) = c

Solving this equation (or the original one in {x, y, z}) will also yield an N/4 forgery. Is
this easier?

4 Second Attempt

Instead of trying to solve over the integers we try to solve modulo n:

(p + w + x)(p + w + y)(p + w + z) = (p + w − x)(p + w − y)(p + w − z) mod n
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Which amounts find small x, y, z, w such that:

(p + w)2(x + y + z) + xzy = 0 mod n

Is this easier? Note that w is necessary: if we force w = 0 an easy argument shows that
the probability that a solution exists is negligible.
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Abstract. A common practice for signing with RSA is to first apply a hash function or a redundancy
function to the message, add some padding and exponentiate the resulting padded message using the
decryption exponent. This is the basis of several existing standards.
In this paper we show how to build a secure padding scheme for signing arbitrarily long messages with
a secure padding scheme for fixed-size messages. This focuses more sharply the question of finding
a secure encoding for RSA signatures, by showing that the difficulty is not in handling messages
of arbitrary length, but rather in finding a secure redundancy function for short messages, which
remains an open problem.

1 Introduction

Since the discovery of public-key cryptography by Diffie and Hellman [4], one of the most
important research topics has been the design of practical and provably secure cryptosys-
tems. A proof of security is usually a computational reduction between breaking the cryp-
tosystem and solving a well established problem such as factoring large integers, computing
the discrete logarithm modulo a prime p or extracting a root modulo a composite integer.
RSA [10] is based on this last problem.

A common practice for signing with RSA is to first apply a hash (or a redundancy)
function to the message m, add some padding and raise the padded message to the de-
cryption exponent. This is the basis of numerous standards such as iso/iec-9796-1 [6],
iso 9796-2 [7] and pkcs#1 v2.0 [8].

Many padding schemes have been designed and many have been broken (see [9] for a
survey). The Full Domain Hash (FDH) scheme and the Probabilistic Signature Scheme
(PSS) [2] were among the first practical and provably secure signature schemes. Those
schemes are provably secure in the random oracle model [1], in which the hash function is
assumed to behave as a truly random function.
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However, security proofs in the random oracle model are not “real” proofs, and can
be only considered as heuristic, since in the real world the random oracle is replaced by
a function which can be computed by all parties. A recent result by Canneti, Goldreich
and Halevi [3] shows that a security proof in the random oracle does not necessarily imply
security in the “real world”.

In this paper we do not model hash functions as random oracles nor assume the ex-
istence of collision-resistant hash-functions. Instead, we assume the existence of a secure
deterministic padding function µ for signing fixed-length message and show how to build a
secure padding scheme for signing arbitrarily long messages. This focuses more sharply the
question of finding a secure encoding for RSA signatures, by showing that the difficulty
is not in handling messages of arbitrary length, but rather in finding a secure redundancy
function for short messages, which remains an open problem.

2 Definitions

2.1 Signature Schemes

The digital signature of a message m is a string which depends on m and on some secret
known only to the signer, in such a way that anyone can check the validity of the signature.
The following definitions are based on [5].

Definition 1 (Signature scheme). A signature scheme is defined by the following:

– The key generation algorithm Generate is a probabilistic algorithm which given 1k, out-
puts a pair of matching public and secret keys, {pk, sk}.

– The signing algorithm Sign takes the message M to be signed and the secret key sk and
returns a signature x = Signsk(M). The signing algorithm may be probabilistic.

– The verification algorithm Verify takes a message M , a candidate signature x′ and the
public key pk. It returns a bit Verifypk(M,x′), equal to 1 if the signature is accepted,

and 0 otherwise. We require that if x ← Signsk(M), then Verifypk(M,x) = 1.

2.2 Security of Signature Schemes

The security of signature schemes was formalized in an asymptotic setting by Goldwasser,
Micali and Rivest [5]. Here we use the definitions of [2] which provide a framework for
the concrete security analysis of digital signatures. Resistance against adaptative chosen-
message attacks is considered: a forger F can dynamically obtain signatures of messages
of its choice and attempts to output a valid forgery. A valid forgery is a message/signature
pair {M,x} such that Verifypk(M,x) = 1 whilst the signature of M was never requested

by F .

Definition 2. A forger F is said to (t, qsig, ε)-break the signature scheme {Generate, Sign,
Verify} if after at most qsig signature queries and t processing time, it outputs a valid forgery
with probability at least ε.

Definition 3. A signature scheme {Generate, Sign, Verify} is (t, qsig, ε)-secure if there is
no forger who (t, qsig, ε)-breaks the scheme.
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2.3 The RSA Cryptosystem

RSA [10] is the most widely used public-key cryptosytem. It may be used to provide both
secrecy and digital signatures.

Definition 4 (The RSA cryptosystem). RSA is a family of trapdoor permutations. It
is specified by:

– The RSA generator RSA, which on input 1k, randomly selects 2 distinct k/2-bit primes
p and q and computes the modulus N = p · q. It randomly picks an encryption exponent
e ∈ Z∗φ(N) and computes the corresponding decryption exponent d such that e · d =

1 mod φ(N). The generator returns {N, e, d}.
– The encryption function f : Z∗N → Z∗N defined by f(x) = xe mod N .
– The decryption function f−1 : Z∗N → Z∗N defined by f−1(y) = yd mod N .

2.4 The Standard RSA Signature Scheme

Let µ be a padding function taking as input a message of size k + 1 bits and returning an
integer of size k bits. We consider in figure 1 the classical RSA signature scheme {Generate,
Sign, Verify} which signs fixed-length k + 1-bits messages.

System parameters
an integer k > 0
a function µ : {0, 1}k+1 → {0, 1}k

Key generation: Generate
{N, e, d} ← RSA(1k)
public key : {N, e}
private key : {N, d}

Signature generation: Sign
y ← µ(m)
return yd mod N

Signature verification: Verify
y ← xe mod N
y′ ← µ(m)
if y = y′ then return 1 else return 0.

Fig. 1. The classical RSA scheme using function µ for signing fixed-length messages.

3 The New Construction

We construct in figure 2 a new signature scheme {Generate’, Sign’, Verify’} using function µ.
The new construction enables to sign messages of size 2a · (k−a) bits where a is comprised
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between 0 and k − 1 and k is the size of the modulus in bits. The maximum length that
can be handled is then 2k−1 bits for a = k − 1 or a = k − 2. The construction can be
recursively iterated to sign messages of arbitrary length. For bit strings m1 and m2, we let
m1||m2 denote the concatenation of m1 and m2.

System parameters
an integer k > 0
an integer a ∈ [0, k − 1]
a function µ : {0, 1}k+1 → {0, 1}k

Key generation: Generate′

{N, e, d} ← RSA(1k)
public key : {N, e}
private key : {N, d}

Signature generation: Sign′

Split the message m into blocks of size k − a bits
such that m = m[1]|| . . . ||m[r].

let α =
r∏

i=1

µ(0||i||m[i]) mod N

where i in 0||i||m[i] is the a-bit string representing i.
let y ← µ(1||α)
return yd mod N

Verification: Verify′

y ← xe mod N

let α =
r∏

i=1

µ(0||i||m[i]) mod N

let y′ ← µ(1||α)
if y = y′ then return 1 else return 0.

Fig. 2. The new construction using function µ for signing long messages.

This construction preserves the resistance against adaptive chosen message attack of
the signature scheme:

Theorem 1. If the signature scheme {Generate, Sign, Verify} is (t, qsig, ε) secure, then the
signature scheme {Generate’, Sign’, Verify’} which signs messages of length 2a · (k− a) bits
is (t′, q′sig, ε

′) secure, where:

t′ = t− 2a · qsig · O(k2) , (1)

q′sig = qsig − 2a+1 , (2)

ε′ = ε . (3)

Proof. Let F ′ be a forger that (t′, q′sig, ε
′)-breaks the signature scheme {Generate’, Sign’,

Verify’} . We construct a forger F that (t, qsig, ε)-breaks the signature scheme {Generate,
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Sign, Verify} using F ′. The forger F has oracle access to a signer S for the signature scheme
{Generate, Sign, Verify} and its goal is to produce a forgery for {Generate, Sign, Verify} .
The forger F will answer the signature queries of F ′ itself.

The forger F is given as input {N, e} where N, e were obtained by running Generate.
It starts running F ′ with the public key {N, e}.

When F ′ asks the signature of the j-th message mj with mj = mj[1]|| . . . ||mj[rj], F
computes:

αj =

rj∏
i=1

µ(0||i||mj[i]) mod N

and requests from S the signature sj = µ(1||αj)
d mod N of the message 1||αj, and returns

sj to F ′. Let q be the total number of signatures requested by F ′.

Eventually F ′ outputs a forgery {m′, s′} for the signature scheme {Generate’, Sign’,
Verify’} with m′ = m′[1]|| . . . ||m′[r′], from which F computes:

α′ =
r′∏

i=1

µ(0||i||m′[i]) mod N

We distinguish two cases:

First case: α′ /∈ {α1, . . . , αq}. In this case F outputs the forgery {1||α′, s′} and halts.
This is a valid forgery for the signature scheme {Generate, Sign, Verify} since s′ = µ(1||α′)d

and the signature of 1||α′ was never asked to the signer S.

Second case: α′ ∈ {α1, . . . , αq}, so there exist c such that α′ = αc. Let denote m = mc,
α = αc and r = rc. We have:

r′∏
i=1

µ(0||i||m′[i]) mod N =
r∏

i=1

µ(0||i||m[i]) mod N (4)

The message m′ is distinct from the message m because the signature of m has been
requested by F ′ whereas the signature of m′ was never requested by F , since m′ is the
message of the forgery. Consequently there exist an integer j such that:

0||j||m′[j] /∈ {0||1||m[1], . . . , 0||r||m[r]} (5)

or
0||j||m[j] /∈ {0||1||m′[1], . . . , 0||r′||m′[r′]} (6)

We assume that condition (5) is satisfied (condition (6) leads to the same result). In this
case F asks S for the signatures x′i of the messages 0||i||m′[i] for i ∈ [1, r′] and i 6= j, and
the signatures xi of the messages 0||i||m[i] for i ∈ [1, r]. Since from (4):

µ(0||j||m′[j]) =
( ∏

i

µ(0||i||m[i]
)( ∏

i6=j

µ(0||j||m′[j])
)−1

mod N
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the forger F can compute the signature of 0||j||m′[j] from the other signatures:

x′j = µ(0||j||m′[j])d =
( ∏

i

xi

)( ∏

i6=j

x′j
)−1

mod N

and F finally outputs the forgery {0||j||m′[j], x′j}. This is a valid forgery for the signature
scheme {Generate, Sign, Verify} since the signature of 0||j||m′[j] was never asked from the
signer S.

We assume that µ can be computed in time linear in k, as is the case for most padding
functions. The running time of F is then the running time of F ′ plus the time necessary
for the multiplications modulo N , which is quadratic.

ut
Note that qsig must me greater than 2a+1 so that equation (2) holds. The security

reduction is tight: the probability of success of F is exactly the probability of success of
F ′.

4 Conclusion and Further Research

We have reduced the problem of designing a secure deterministic general-purpose RSA pad-
ding scheme to the problem of designing a one block secure padding scheme, by providing
an efficient and secure tool to extend the latter into the former. As stated previously, this
focuses more sharply the question of finding a secure encoding for RSA signatures, by
showing that the difficulty is not in handling messages of arbitrary length, but rather in
finding a secure redundancy function for short messages, which remains an open problem.

Our construction assumes that the padding function µ takes as input messages larger
than the modulus; padding schemes such as ISO/IEC 9697-1 are consequently uncovered.
A possible line of research could be a construction similar to ours, using a small (1024-bit)
inner modulus and a larger (2048-bit) outer modulus.
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[Accepté à PKC’05.]
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Abstract. To sign with RSA, one usually encodes the message m as µ(m) and then raises the result
to the private exponent modulo N . In Asiacrypt 2000, Coron et al. showed how to build a secure RSA
encoding scheme µ′(m) for signing arbitrarily long messages from a secure encoding scheme µ(m)
capable of handling only fixed-size messages, without making any additional assumptions. However,
their construction required that the input size of µ be larger than the modulus size. In this paper
we present a construction for which the input size of µ does not have to be larger than N . Our
construction shows that the difficulty in building a secure encoding for RSA signatures is not in
handling messages of arbitrary length, but rather in finding a secure encoding function for short
messages, which remains an open problem in the standard model.

1 Introduction

A common practice for signing with RSA is to first apply some encoding function µ to the
message m, and then raise the result to the signature exponent modulo N . This is the basis
of numerous standards such as iso/iec-9796-1 [7], iso 9796-2 [8] and pkcs#1 v2.0 [11].

For digital signature schemes, the strongest security notion was defined by Goldwasser,
Micali and Rivest in [6], as existential unforgeability under an adaptive chosen message
attack. This notion captures the property that an attacker cannot produce a valid signature,
even after obtaining the signature of (polynomially many) messages of his choice.

Many RSA encoding schemes have been designed and many have been broken (see [9]
for a survey). The Full Domain Hash (FDH) scheme and the Probabilistic Signature Scheme
(PSS) [3] were among the first practical and provably secure RSA signature schemes. Those
schemes are provably secure in the random oracle model [2], wherein the hash function is
assumed to behave as a truly random function. However, security proofs in the random
oracle model are not “real” proofs, and can be only considered as heuristic, since in the
real world random oracles are necessarily replaced by functions which can be computed
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by all parties. A famous result by Canneti, Goldreich and Halevi [4] shows that a security
proof in the random oracle model does not necessarily imply security in the “real world”.

In this paper, we focus on the problem of finding a secure encoding scheme for arbitrarily
long messages, given a secure encoding scheme for fixed-size messages. It is well known that
this can be done using a collision-resistant hash function H : {0, 1}∗ → {0, 1}` for both
signing and verifying, where ` is the input size of µ(m). A standard argument shows that if
the original signature scheme is secure against existential forgery under a chosen-message
attack, then so is the signature scheme with the hash.

In Asiacrypt 2000, Coron, Koeune and Naccache [5] showed that for RSA signatures,
the same result can be obtained without assuming the existence of collision-resistant hash-
functions. Namely, they construct an encoding scheme µ′(m) for messages in {0, 1}∗, given
an encoding scheme µ(m) for messages of fixed-size. They show that if RSA signature with
µ(m) is secure against existential forgery under a chosen-message attack (in the standard
model), then so is RSA with µ′(m) for messages of arbitrary size, without any additional
assumptions.

However, their construction requires that the input size ` of µ(m) be larger than the size
of N (hereafter denoted k). Several standards (for example the ISO/IEC 9697-1 standard
[7]) fail to comply with this property. The authors left as an open problem the case ` ≤ k.

In this paper, we solve this open problem and provide a construction for any input
size `. A variant of this problem was already solved by Arboit and Robert in [1], who
proposed a construction similar to [5] that works for any `, but at the cost of a new
security assumption, namely the division intractability of the encoding function µ(m). The
advantage of our construction is that we do not make any additional assumptions, namely
if RSA signature with µ(m) is secure against existential forgery under a chosen-message
attack, then so is RSA with µ′(m) for messages of arbitrary size. As is the case for the
constructions in [5] and [1], a practical advantage of our construction is that it allows to
perform some pre-computations on partially received messages, e.g. on IP packets which
are typically received in random order.

We believe that our result focuses more sharply the question of finding a secure encoding
for RSA signatures, by showing that the difficulty is not in handling messages of arbitrary
length, but rather in finding a securing encoding for short messages, which remains an
open problem in the standard model.

2 Definitions

2.1 Signature Schemes

The digital signature of a message m is a string that depends on m and on some secret
known only to the signer, in such a way that anyone can check the validity of the signature.
The following definitions are based on [6].

Definition 1 (Signature scheme). A signature scheme is defined by the following:
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– The key generation algorithm Generate is a probabilistic algorithm which given 1k, out-
puts a pair of matching public and secret keys, (pk, sk).

– The signing algorithm Sign takes the message M to be signed and the secret key sk and
returns a signature x = Signsk(M). The signing algorithm may be probabilistic.

– The verification algorithm Verify takes a message M , a candidate signature x′ and the
public key pk. It returns a bit Verifypk(M, x′), equal to one if the signature is accepted,

and zero otherwise. We require that if x ← Signsk(M), then Verifypk(M, x) = 1.

2.2 Security of Signature Schemes

The security of signature schemes was formalized in an asymptotic setting by Goldwasser,
Micali and Rivest [6]. Here we use the definitions of [3] which provide a framework for the
concrete security analysis of digital signatures. Resistance against adaptive chosen-message
attacks is considered: a forger F can dynamically obtain signatures of messages of its choice
and attempt to output a valid forgery. A valid forgery is a message/signature pair (M, x)
such that Verifypk(M,x) = 1 whilst the signature of M was never requested by F .

Definition 2. A forger F is said to (t, qsig, ε)-break the signature scheme (Generate, Sign,
Verify) if after at most qsig(k) signature queries and t(k) processing time, it outputs a valid
forgery with probability at least ε(k) for any k > 0.

Definition 3. A signature scheme (Generate, Sign, Verify) is (t, qsig, ε)-secure if there is
no forger who (t, qsig, ε)-breaks the scheme.

2.3 The RSA Primitive

RSA [10] is the most widely used public-key cryptosystem. It can be used to provide both
encryption schemes and digital signatures.

Definition 4 (The RSA cryptosystem). RSA is a family of trapdoor permutations. It
is specified by:

– The RSA generator RSA, which on input 1k, randomly selects two distinct k/2-bit
primes p and q and computes the modulus N = p · q. It randomly picks an encryption
exponent e ∈ Z∗φ(N) and computes the corresponding decryption exponent d such that

e · d = 1 mod φ(N). The generator returns {N, e, d}.
– The encryption function f : Z∗N → Z∗N defined by f(x) = xe mod N .

– The decryption function f−1 : Z∗N → Z∗N defined by f−1(y) = yd mod N .

2.4 RSA Encoding and Signature

Let µ be a encoding function taking as input a message of size ` bits and returning a k-bit
integer. We consider in figure 1 the classical RSA signature scheme which signs fixed-length
`-bits messages.
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System parameters
- two integers k > 0 and ` > 0
- a function µ : {0, 1}` → {0, 1}k

Key generation: Generate
- (N, e, d) ← RSA(1k)
- public key : (N, e)
- private key : (N, d)

Signature generation: Sign
- let y ← µ(m)
- return yd mod N

Signature verification: Verify
- let y ← xe mod N
- let y′ ← µ(m)
- if y = y′ then return one else return zero.

Fig. 1. The Classical RSA Paradigm: Using µ for Signing Fixed-Length Messages.

3 The Coron-Koeune-Naccache Construction

We recall in figure 2 the construction proposed in [5]. It assumes that the encoding function
µ can handle inputs of size k + 1 where k is the size of the modulus and allows to sign
2a · (k − a) bit messages where 0 ≤ a ≤ k − 1. The construction can be recursively
iterated to sign messages of arbitrary length. Throughout this paper, m1||m2 will denote
the concatenation of m1 and m2.

It is shown in [5] that the scheme described in figure 2 is secure against existential
forgery under a chosen message attack :

Theorem 1. If the signature scheme (Generate, Sign, Verify) is (t, qsig, ε) secure, then
the signature scheme (Generate*, Sign*, Verify*) which signs 2a · (k − a) bit messages is
(t∗, q∗sig, ε

∗) secure, where:

t∗(k) = t(k)− 2a · qsig(k) · O(k2) , (1)

q∗sig(k) = qsig(k)− 2a+1 , (2)

ε∗(k) = ε(k) . (3)

4 Bimodular Encoding

We describe in figure 3 our new signature scheme (Generate’, Sign’, Verify’) based on a
function µ wherein the input size ` is not necessarily larger than k. Our construction uses
the same encoding function µ with two distinct moduli N1 and N2 of sizes k1 and k2 bits,
respectively. For the sake of clarity and since encoding functions take the modulus as a
parameter, we will write µi when µ is used with modulus Ni. We denote by `1, `2 the input
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System parameters
- two integers k > 0 and a ∈ [0, k − 1]
- a function µ : {0, 1}k+1 → {0, 1}k

Key generation: Generate∗

- (N, e, d) ← RSA(1k)
- public key : (N, e)
- private key : (N, d)

Signature generation: Sign∗

- Split the message m into (k − a)-bit blocks
such that m = m[1]|| . . . ||m[r].

- let α =
r∏

i=1

µ(0||i||m[i]) mod N

where i in 0||i||m[i] is an a-bit string representing i.
- let y ← µ(1||α)
- return yd mod N

Verification: Verify∗

- let y ← xe mod N

- let α =
r∏

i=1

µ(0||i||m[i]) mod N

- let y′ ← µ(1||α)
- if y = y′ then return one else return zero.

Fig. 2. Coron-Koeune-Naccache Encoding of Arbitrary Length Messages.

sizes of µ1, µ2 respectively, as a function of the parameters k1, k2. Our construction requires
that `2 ≥ k1.

Our construction enables to sign 2a · (`1 − a) bit messages where 0 ≤ a ≤ `1 − 1. The
maximum length that can be handled by the new construction is 2`1−1 bits for a = `1 − 1
or a = `1 − 2 and, as in [5], the construction can be recursively iterated so as to sign
arbitrarily long messages.

A possible realization example is the following: assume that we are given an encoding
function µ that takes as input k/2-bit messages and outputs k-bit strings, for signing with a
k-bit RSA modulus. If we take for example k1 = 1024, k2 = 2048 and a = 24, then messages
of size up to 224 ·488 ' 8.2 ·109 bits can be signed. First, one applies the encoding function
µ1 : {0, 1}512 → {0, 1}1024 to the 224 blocks of 488 bits; then one multiplies together the
resulting 1024-bit integers modulo N1 and obtains a 1024-bit integer which is finally signed
using the encoding function µ2 : {0, 1}1024 → {0, 1}2048 modulo N2. Notice that d1 is not
used for signing and e1 is not needed for the verification either; thus (e1, d1) is to be deleted
after the generation of N1.

The following theorem states that this construction preserves the resistance against
chosen message attacks of the original signature scheme:
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System parameters
- two positive integers k1, k2 such that k2 > k1

- an integer a ∈ [0, k1 − 1]
- two functions µi : {0, 1}`i → {0, 1}ki for i = 1, 2

such that `2 ≥ k1.

Key generation: Generate′

- (N1, e1, d1) ← RSA(1k1)
- (N2, e2, d2) ← RSA(1k2)
- public key : (N1, N2, e2)
- private key : (N1, N2, d2)

Signature generation: Sign′

- Split the message m into (`1 − a)-bit blocks
such that m = m[1]|| . . . ||m[r].

- let α =
r∏

i=1

µ1(i||m[i]) mod N1

where i in i||m[i] is an a-bit string representing i.
- let y ← µ2(α)
- return yd2 mod N2

Verification: Verify′

- y ← xe2 mod N2

- let α =
r∏

i=1

µ1(i||m[i]) mod N1

- let y′ ← µ2(α)
- if y = y′ then return one else return zero.

Fig. 3. Bimodular Encoding of Arbitrary Length Messages.

Theorem 2. If the signature scheme (Generate, Sign, Verify) is (t, qsig, ε) secure, then the
signature scheme (Generate’, Sign’, Verify’) which signs 2a ·(`1−a) bit messages is (t′, q′sig, ε

′)
secure, where:

t′(k1, k2) = t(k1)− 2a · q′sig(k1, k2) · O(k2
3) , (4)

q′sig(k1, k2) = qsig(k1)− 2a+1 , (5)

ε′(k1, k2) = 2 · ε(k1) . (6)

Proof. Without loss of generality, we can assume that t(k) and qsig(k) are increasing func-
tions of k, and that ε(k) is a decreasing function of k.

Let F ′ be a forger that breaks the signature scheme (Generate’, Sign’, Verify’) for the
parameters (k1, k2). We construct a forger F1 for the signature scheme (Generate, Sign,
Verify) for the parameter k = k1 and a forger F2 for same signature scheme with parameter
k = k2. When the same property holds for both F1 and F2, we write this property for a
generic forger F . The forger F will run F ′ in order to produce a forgery; it will answer
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the signature queries of F ′ by itself. F has access to a signing oracle S for (Generate, Sign,
Verify) .

First, we pick a random bit b. If b = 1, we construct a forger F1 for the parameter
k = k1. If b = 0, we construct a forger F2 for the parameter k = k2.

F is first given as input (N, e) where N, e were obtained by running Generate for the
parameter k defined previously. The forger F then starts running F ′ with the public key
(N1, N2, e2), where N1, N2, e2 are defined as follows :

If b = 1, the forger F1 sets N1 ← N , e1 ← e and runs RSA(1k2) to obtain (N2, e2, d2).
Otherwise (if b = 0) the forger F2 sets N2 ← N , e2 ← e and runs RSA(1k1) to obtain
(N1, e1, d1).

We observe that the view of the forger F ′ in independent of the bit b, since in both
cases the moduli N1 and N2 are generated using RSA(1k1) and RSA(1k2), either by F
itself or through (N, e) given as input to F .

When F ′ asks the signature of the j-th message mj with mj = mj[1]|| . . . ||mj[rj], F
computes:

αj =

rj∏
i=1

µ1(i||mj[i]) mod N1

If b = 0 then F2 requests the signature sj of αj from S. If b = 1 then F1 can compute
sj = µ2(αj)

d2 mod N2 directly since it knows d2. Let q′sig be the total number of signatures
requested by F ′.

Eventually F ′ outputs a forgery (m′, s′) for the signature scheme (Generate’, Sign’,
Verify’) with m′ = m′[1]|| . . . ||m′[r′], from which F computes:

α′ =
r′∏

i=1

µ1(i||m′[i]) mod N1 (7)

We denote by β the probability that α′ /∈ {α1, . . . , αq}. Note that since the view of F ′ is
independent of b, this event is independent of b as well. We distinguish three cases:

First case: α′ /∈ {α1, . . . , αq} and b = 0. From the remark above, this happens with
probability β/2. In which case F2 outputs the forgery (α′, s′) and halts. This is a valid
forgery for the signature scheme (Generate, Sign, Verify) since s′ = µ2(α

′)d2 mod N2 and
the signature of α′ was never asked to the signing oracle S.

Second case: α′ ∈ {α1, . . . , αq} and b = 1. This happens with probability (1 − β)/2.
Let c be such that α = αc. We write m = mc, α = αc and r = rc, which gives using (7) :

r′∏
i=1

µ1(i||m′[i]) mod N1 =
r∏

i=1

µ1(i||m[i]) mod N1 (8)

We show that the previous equation leads to a multiplicative forgery for the modulus
N1 = N , which enables F1 to compute a forgery.

First, the message m′ must be distinct from m because the signature of m has been
requested by F ′ whereas the signature of m′ was never requested by F , since m′ is the
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message for which a forgery was obtained. Consequently there exists an integer j such that
either :

j||m′[j] /∈ {1||m[1], . . . , r||m[r]} (9)

or :

j||m[j] /∈ {1||m′[1], . . . , r′||m′[r′]} (10)

We assume that condition (9) is satisfied (condition (10) leads to the same result). Therefore
from (8) we can write :

µ(j||m′[j]) =
( ∏

i

µ(i||m[i]
)( ∏

i 6=j

µ(i||m′[i])
)−1

mod N1 (11)

F1 asks the signing oracle S for the signatures xi of the messages i||m[i], 1 ≤ i ≤ r, and
for the signatures x′i of the messages i||m′[i], 1 ≤ i ≤ r′, i 6= j. Using (11), F1 can compute
the signature of j||m′[j] from the other signatures :

x′j = µ(j||m′[j])d1 =
( ∏

i

xi

)(∏

i 6=j

x′i
)−1

mod N1

and F1 finally outputs the forgery (j||m′[j], x′j). This is a valid forgery for the signature
scheme (Generate, Sign, Verify) since the signature of j||m′[j] was never asked to the signing
oracle.

Third case: α′ /∈ {α1, . . . , αq} and b = 1, or α′ ∈ {α1, . . . , αq} and b = 0. In this case,
F fails. This happens with probability 1/2.

To summarize, from a forger F ′ that breaks the signature scheme (Generate’, Sign’,
Verify’) with probability ε′ for the parameters (k1, k2), we construct a forger F that breaks
the signature scheme (Generate, Sign, Verify) with probability ε′ ·β/2 for the parameter k2,
and with probability ε′ · (1− β)/2 for the parameter k1, for some (unknown) β. Therefore,
if we assume that the signature scheme (Generate, Sign, Verify) cannot be broken in time
t(k) with probability greater than ε(k) for all k, we must have :

ε′(k1, k2) · β/2 ≤ ε(k2)

and

ε′(k1, k2) · (1− β)/2 ≤ ε(k1)

which implies using ε(k2) ≤ ε(k1) that :

ε′(k1, k2) ≤ 2 · ε(k1)

which gives (6).

In the following, we assume that the time required to compute µ for the parameter k is
O(k2), as is usually the case for most encoding schemes. If b = 0, then for each of the q′sig
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queries of F ′, the forger F2 makes at most 2a multiplications modulo N1 and one query to
S. Thus F2 runs in time

t(k2) ≤ t′(k1, k2) + q′sig · 2a · O(k1
2) (12)

If b = 1 then for each query of F ′, the forger F1 makes at most 2a multiplications modulo
N1 and one exponentiation modulo N2. After it has received the forgery, it makes at most
2a+1 multiplications modulo N1 to compute its own forgery. Thus F1 runs in time :

t(k1) ≤ t′(k1, k2) + q′sig · 2a · O(k2
3) (13)

From inequalities (12) and (13), and using t(k1) ≤ t(k2), we obtain(4).
Finally, the forger F2 makes at most q′sig queries to the signing oracle, and the forger

F1 makes at most 2a+1 queries to the signing oracle. This gives qsig(k2) ≤ q′sig(k1, k2) and
qsig(k1) ≤ 2a+1. Using qsig(k1) ≤ qsig(k2), we obtain

qsig(k1) ≤ 2a+1 + q′sig(k1, k2),

which gives (5). ut

5 Conclusion

In this paper, we showed how to construct a secure RSA encoding scheme for signing
arbitrarily long messages, given any secure encoding scheme for signing fixed-size messages.
This solves a problem left open by Coron et al. in [5]. We believe that our work focuses the
question of finding a secure encoding for RSA signatures, by showing that the difficulty in
building secure encoding schemes for RSA is not in handling messages of arbitrary length,
but rather in finding a secure redundancy function for short messages, which remains an
open problem in the standard model.
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Abstract. We exhibit an attack against a signature scheme recently proposed by Gennaro, Halevi
and Rabin [9]. The scheme’s security is based on two assumptions namely the strong RSA assumption
and the existence of a division-intractable hash-function. For the latter, the authors conjectured a
security level exponential in the hash-function’s digest size whereas our attack is sub-exponential
with respect to the digest size. Moreover, since the new attack is optimal, the length of the hash
function can now be rigorously fixed. In particular, to get a security level equivalent to 1024-bit RSA,
one should use a digest size of approximately 1024 bits instead of the 512 bits suggested in [9].

1 Introduction

This paper analyses the security of a signature scheme presented by Gennaro, Halevi and
Rabin at Eurocrypt’99 [9]. The concerned scheme (hereafter GHR) uses a standard (public)
RSA modulus n and a random public base s. To sign a message m, the signer computes
the e-th root modulo n of s with e = H(m) where H is a hash function. A signature σ is
verified with σH(m) = s mod n.

The scheme is proven to be existentially unforgeable under chosen message attacks un-
der two assumptions: the strong RSA assumption and the existence of division-intractable
hash-functions. The originality of the construction lies in the fact that security can be
proven without using the random oracle model [3].

In this paper we focus on the second assumption, i.e. the existence of division-intractable
hash-functions. Briefly, a hash function is division-intractable if it is computationally in-
feasible to exhibit a hash value that divides the product of other hash values. Assimilating
the hash function to a random oracle, it is conjectured [9] based on numerical experiments
that the number of k-bits digests needed to find one that divides the product of the others
is approximately 2k/8. Here we show that the number of necessary hash-values is actually
subexponential in k, namely exp((

√
2 log 2/2 + ◦(1))

√
k log k).

The paper is organised as follows. We briefly start by recalling the GHR scheme and
its related security assumptions. Then we describe our attack, evaluate its asymptotical
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complexity and, by extrapolating from running times observed for small digest sizes, esti-
mate the practical complexity of our attack. We also show that the attack is asymptotically
optimal and estimate from a simple heuristic model the minimal complexity of finding a
hash value that divides the product of the others.

2 The Gennaro-Halevi-Rabin Signature Scheme

2.1 Construction

The GHR scheme is a hash-and-sign scheme that shares some similarities with the standard
RSA signature scheme:

Key Generation: Generate a RSA modulus n = p · q, product of two primes p and q
of about the same length and a random element s ∈ Z∗n. The public key is (n, s) and the
private key is (p, q).

Signature Generation: To sign a message m, compute an odd exponent e = H(m). The
signature σ is:

σ = se−1 mod φ(n) mod n

where φ(n) = (p− 1)(q − 1) is Euler’s function.

Signature Verification: Check that:

σH(m) = s mod n

2.2 GHR’s Security Proof

The originality of the GHR signature scheme lies in the fact that its security can be proven
without using the random oracle model. In the random oracle model, the hash function
is seen as an oracle which outputs a random value for each new query. Instead, the hash
function must satisfy some well defined computational assumptions [9]. In particular, it is
assumed that the hash function family is division-intractable.

Definition 1 (Division intractability [9]). A hashing family H is division intractable
if finding h ∈ H and distinct inputs X1, . . . Xn,Y such that h(Y ) divides the product of the
h(Xi) values is computationally infeasible.

The GHR signature scheme is proven to be existentially unforgeable under an adaptive
chosen message attack, assuming the strong RSA conjecture.

Conjecture 1 (Strong-RSA [2]). Given a randomly chosen RSA modulus n and a random
s ∈ Z∗n, it is infeasible to find a pair (e, r) with e > 1 such that re = s mod n.
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An opponent willing to forge a signature without solving the strong-RSA problem can
try to find messages m,m1, . . . ,mr such that H(m) divides the least common multiple of
H(m1), . . . , H(mr). In this case, we say that a division-collision for H was exhibited. Using
Euclid’s algorithm the opponent can obtain a1, . . . , ar, k such that:

a1

H(m1)
+ . . . +

ar

H(mr)
=

1

lcm(H(m1), . . . , H(mr))
=

1

k ·H(m)

and forge the signature σ of m from the signatures σi of messages mi by:

σ =
( r∏

i=1

σai
i

)k
mod n

If H is division-intractable then it is infeasible for a polynomially bounded attacker to find
a division collision for a hash function in H. In particular, a random oracle is shown to be
division-intractable in [9].

A natural question that arises is the complexity of finding a division collision, if one
assumes that the hash function behaves as a random oracle, i.e. outputs a random integer
for each new query. This question will condition the choice of the signature scheme’s pa-
rameters. [9] conjectures (based on numerical experiments) a security level exponential in
the length of the hash function, namely that the number of hash calls necessary to obtain a
division-collision is asymptotically 2k/8 where k is the digest size. To get equivalent security
to a 1024-bit RSA, [9] suggests to use 512-bit digests. In the next section, we exhibit a
sub-exponential forgery and study its consequences for the recommended digest size.

3 A Sub-Exponential Attack

The outline of our attack is the following: we first look among many digests to find a
smooth one, i.e. a hash value that factors into moderate-size primes pi. Then for each of
the pi we look for a hash value divisible by pi, so that the smooth hash value divides the
least common multiple of the other hash values.

3.1 Background on Smooth Numbers

Let y be a positive integer. We say that an integer z is y-smooth if each prime dividing
z is ≤ y. An integer z is y-powersmooth if all primes powers dividing z are ≤ y. Letting
ψ(x, y) denote the number of integers 1 ≤ z ≤ x such that z is y-smooth, the following
theorem gives an estimate of the density of smooth numbers [5]:

Theorem 1. If ε is an arbitrary positive constant, then uniformly for x ≥ 10 and y ≥
(log x)1+ε,

ψ(x, y) = xu−u+◦(u) as x →∞
where u = (log x)/(log y).
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In particular, setting y = Lx[β] = exp
(
(β + ◦(1))

√
log x log log x

)
, the probability that

a random integer between one and x is Lx[β]-smooth is:

ψ(x, y)

x
= Lx[− 1

2β
]

The proportion of squarefree integers is asymptotically 6/π2 [10]. Letting ψ1(x, y) denote
the number of squarefree integers 1 ≤ z ≤ x such that z is y-smooth, theorem 3 in [10]
implies that the same proportion holds for y-smooth numbers:

ψ1(x, y) ∼ 6

π2
ψ(x, y) (1)

under the growing condition:

log y

log log x
→∞, (x →∞)

A squarefree y-smooth integer is y-powersmooth, so letting ψ′(x, y) denote the number of
integers 1 ≤ z ≤ x such that z is y-powersmooth, we have for all x, y > 0:

ψ1(x, y) ≤ ψ′(x, y) ≤ ψ(x, y)

which using (1) shows that for y = Lx[β], the probability that a random integer between
one and x is y-powersmooth is:

ψ′(x, y)

x
= Lx[− 1

2β
]

3.2 The Attack

In the following we assimilate the hash function to a random oracle which outputs random
integers between one and x. Given a set S of random integers, we say that (e, e1, . . . , er)
is a division-collision for S if e, e1, . . . , er ∈ S and e divides the least common multiple of
e1, . . . , er.

Theorem 2. Let S = {e1, . . . , ev} be a set of v random integers uniformly distributed
between one and x. If v = Lx[

√
2/2] then there exist a probabilistic Turing machine which

outputs a division-collision for S in time Lx[
√

2/2] with non-negligible probability.

Proof. Using the following algorithm with β =
√

2/2, a division-collision is found in time
Lx[
√

2/2] with non-negligible probability.

An algorithm finding a division-collision:

Input: a set S = {e1, . . . , ev} of v = Lx[
√

2/2] random integers between one and x.
Output: a division-collision for S.
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Step 1: Look for a powersmooth ek ∈ S with respect to y = Lx[β], using Pollard-Brent’s
Method [4] or Lenstra’s Elliptic Curve Method (ECM) [11] to obtain:

ek =
r∏

i=1

pαi
i with pi

αi ≤ y for 1 ≤ i ≤ r (2)

Step 2: For each prime factor pi look for eji
∈ S with ji 6= k such that eji

= 0 mod pαi
i ,

whereby:
ek| lcm

(
ej1 , . . . , ejr

)

Pollard-Brent’s method finds a factor p of n in O(
√

p) expected running time, whereas

the ECM extracts a factor p of n in Lp[
√

2] expected running time. Using Pollard-Brent’s
method at step 1, an Lx[β]-powersmooth H(m) is found in expected Lx[1/(2β)] ·Lx[β/2]=
Lx[1/(2β) +β/2] time. Using the ECM an Lx[β]-powersmooth H(m) is found in Lx[1/(2β)]·
Lx[◦(1)] = Lx[1/(2β)] operations. Since pαi

i ≤ y, the second stage requires less than y =
Lx[β] operations.

The overall complexity of the algorithm is thus minimal for β = 1 when using Pollard-
Brent’s method, resulting in a time complexity of Lx[1]. The ECM’s minimum complexity
occurs for β =

√
2/2 giving a time complexity of Lx[

√
2/2]. ut

Moreover, the following theorem shows that the previous algorithm is optimal.

Theorem 3. Let S = {e1, . . . , ev} be a set of v random integers uniformly distributed
between one and x. If v = Lx[α] with α <

√
2/2, then the probability that one integer in S

divides the least common multiple of the others is negligible.

Proof. See appendix .

Consequently, assuming that the hash function behaves as a random oracle, the number
of hash values necessary to exhibit a division-collision with non-negligible probability is
asymptotically Lx[

√
2/2] and this can be done in time Lx[

√
2/2].

3.3 The Attack’s Practical Running Time

Using the ECM, the attack has an expected time complexity of:

Lx[
√

2/2] = exp
(
(

√
2

2
+ ◦(1))

√
log x log log x

)
(3)

It appears difficult to give an accurate formula for the attack’s practical running time
since one would have to know the precise value of the term ◦(1) in equation (3). However,
extrapolating from (3) and the running times observed for small hash sizes, we can estimate
the time complexity for larger hash sizes.

We have experimented the attack on a Pentium 200 MHz for hash sizes of 128, 160, and
192 bits, using the MIRACL library [12]. In table 1 we summarize the observed running
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digest size in bits time complexity in seconds log2 complexity

128 3.5 · 102 36

160 3.6 · 103 39

192 2.1 · 104 42

Table 1. Experimental running times in seconds and log2 complexity (number of operations) of the attack for
various digest sizes.

time in seconds and the logarithm in base 2 of the number of operations (assuming that
the Pentium 200 MHz performs 200 · 106 operations per second).

Assuming that the complexity of the attack (number of operations) can be expressed
as C · exp(

√
2/2

√
log x log log x), the experimental complexity for a 192-bits hash size gives

C = 6.1 · 104, from which we derive in table 2 the estimated complexity for larger hash
sizes. The estimate may be rather imprecise and only provides an order of magnitude of
the attack’s complexity. However, the results summarized in table 2 suggest that in order
to reach a security level equivalent to 1024-bit RSA, digests should also be approximately
1024-bit long. Finally, we describe in the full version of the paper [6] a slightly better attack
for the particular hash function suggested in [9].

digest size log2 complexity (number of operations)

256 47

512 62

640 69

768 75

1024 86

Table 2. Estimated log2 complexity (number of operations) of the attack for various digest sizes.

4 Minimal Number of Hash Calls Necessary to Obtain a
Division-Collision

In the previous section we have estimated the time complexity of the attack using the ECM,
from its asymptotic running time (3) and the observed running times for small hash sizes.
Consequently, our estimate depends on the practical implementations of the hash function
and the ECM. However theorem 3 shows that there is a lower bound on the number of hash
calls necessary to mount the attack: asymptotically the number of hash calls must be at
least Lx[

√
2/2] so that with non-negligible probability there exist a division-collision (i.e.

one hash value divides the least common multiple of the others). In this section we obtain
heuristically a more precise estimate of the minimal number of hash calls necessary to have
a division-collision with given probability. As in the previous section we assume that the
hash function behaves as a random oracle, i.e. it outputs a random integer for each new
query. Consequently the problem is the following: given a set S of v random integers in
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{1, . . . , x}, what is the probability P (x, v) that one integer in S divides the least common
multiple of the others ?

4.1 A Heuristic Model

The probability P (x, v) can be derived from a simple heuristic model called random bi-
section. In this model, the relative length of the first prime factor of a random number is
obtained asymptotically by choosing a random λ uniformly in [0, 1], and then proceeding
recursively with a random integer of relative size 1− λ. This model is used in [1] to com-
pute a recurrence for F (α) = ρ(1/α), the asymptotic probability that all prime factors of
a random x are smaller than xα. In the above formula ρ is Dickman’s rho function defined
for real t ≥ 0 by the relation [7]:

ρ(t) =





1 if 0 ≤ t ≤ 1

ρ(n)−
∫ t

n

ρ(w − 1)

w
dw if n ≤ t ≤ n + 1 for n ∈ N

(4)

For an xα-smooth integer x, the relative length λ chosen by random bisection is smaller
than α, and the remaining integer of relative size 1 − λ is also xα-smooth. Consequently,
we obtain equation (5) from which we derive (4).

F (α) =

∫ α

0

F (
α

1− λ
)dλ (5)

Let Q(x, v) denote the probability that a random integer z comprised between one
and x divides the least common multiple of v other random integers in {1, . . . , x}. Let
X = log2 x and V = log2 v. Let p be a prime factor of z of relative size λ (i.e. p = xλ). The
probability that p divides a random integer in {1, . . . , x} is roughly 1/p. Consequently, the
probability P that p divides the least common multiple of v random integers in {1, . . . , x}
is roughly:

P = 1− (1− 1

p
)v ' 1− exp(

−v

p
) for large p

If λ ≤ V/X, then p ≤ v and we take P = 1. Otherwise if λ ≥ V/X then p ≥ v and we take
P = v/p. Consequently, we obtain:

Q(x, v) =





1 if x ≤ v

∫ V
X

0

Q(x1−λ, v)dλ +

∫ 1

V
X

Q(x1−λ, v)
v

xλ
if x > v

Letting S(α, V ) = Q(vα, v), we have:

S(α, V ) =





1 if α ≤ 1

1

α

∫ 1

0

S(α− s, V )ds +
1

α

∫ α

1

S(α− s, V )2V (1−s)ds if α > 1
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We obtain:

∂2S

∂α2
(α, V ) = −V log 2

α
S(α− 1, V )− (

1

α
+ V log 2)

∂S

∂α
(α, V ) (6)

S(α, V ) for α ≥ 0 is thus defined as the solution with continuous derivative of the delay
differential equation (6) with initial condition S(α, V ) = 1 for 0 ≤ α ≤ 1.

A division-collision occurs if at least one integer divides the least common multiple
of the others. We assume those events to be statistically independent. Consequently, we
obtain:

P (x, v) ' 1−
(
1− S(

X

V
, V )

)v

(7)

4.2 Numerical Experiments

integer size 16 32 48 64 80 96

number of integers (experiments) 5 25 170 590 2601 7823

log2 number of integers (experiments) 2.3 4.6 7.4 9.2 11.3 12.9

log2 number of integers (model) 2.0 4.7 7.0 9.1 10.9 12.6

Table 3. Number of random integers required to obtain a division-collision with probability 1% as a function of
their size (numerical experiments and heuristic model).

We performed numerical experiments to estimate the number of k-bit integers required
so that a division-collision appears with good probability. We considered bit-lengths be-
tween k = 16 to k = 96 in increments of 16, and as in [9] for each bit length we performed
200 experiments in which we counted how many random integers were chosen until one
divides the least common multiple of the others. As in [9], we took the second smallest
result of the 200 experiments as an estimate of the number of integers required so that a
division-collision appears with probability 1%. The results are summarized in table 3.

integer size in bits log2 number of integers

128 15.6

256 25.6

512 40.6

640 46.8

768 52.4

1024 63.2

1280 72.1

Table 4. log2 number of random integers required to obtain a division-collision with probability 1% as a function
of their size.

The function S(α, V ) can be computed by numerical integration from (6) and S(α, V ) =
1 for 0 ≤ α ≤ 1. We used Runge-Kutta method of order 4 to solve the differential equation



276 Jean-Sébastien Coron and David Naccache

(6). We summarize in table 3 the log2 number of k-bit integers required to obtain a division-
collision with probability 1% for k = 16 to k = 96, from the heuristic model. We see that
the values predicted by the model are close to the experimental values. In table 4 we use
the model to estimate the number of k-bit integers required to obtain a division-collision
with probability 1% for large values of k. As in section 3.3 we see that in order to get a
security level of a 1024-bits RSA, one should use a hash function of size approximately
1024 bits.

5 Conclusion

We have analysed the security of the Gennaro-Halevi-Rabin signature scheme of Euro-
crypt’99. In particular, we exhibited a sub-exponential attack that forces to increase the
security parameters beyond 512 or 642 bits up to approximately 1024 bits in order to get
a security level equivalent to 1024-bits RSA. Another variant of the scheme described in
[9] consists in generating prime digests only, by performing primality tests on the digests
until a prime is obtained. In this case, a division-collision is equivalent to a collision in
the hash function, but the signature scheme becomes less attractive from a computational
standpoint.
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A Proof of Theorem 3

Proof. Let S = {e1, . . . , ev} with v = Lx[α] and α <
√

2/2 be a set of v random integers
uniformly distributed between one and x. Denote by P (x, v) the probability that one
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integer in S divides the least common multiple of the others and by B the event in which
e1 divides the least common multiple of {e2, . . . , ev}. The proof’s outline is the following:
we consider the possible smoothness degrees of e1 and compute the probability of B for
each smoothness degree. Then we show that Pr[B] is smaller than Lx[−

√
2/2+ ε] for ε > 0

and conclude that P (x, v) is negligible.

The possible smoothness degrees of e1 are denoted:

• Sm: e1 is Lx[
√

2/2]-smooth. This happens with probability

Pr[Sm] = Lx[−
√

2/2]

and consequently:
Pr[B ∧ Sm] = O(Lx[−

√
2/2]) (8)

• Sm(γ, ε): e1 is Lx[γ + ε]-smooth without being Lx[γ] smooth, for
√

2/2 < γ <
√

2 and
ε > 0. This happens with probability:

Pr[Sm(γ, ε)] = Lx[
−1

2 · (γ + ε)
]− Lx[

−1

2 · γ ] = Lx[
−1

2 · (γ + ε)
] (9)

In this case, e1 contains a prime factor greater than Lx[γ], which appears in the factor-
ization of another ei with probabilityO(Lx[−γ]). Consequently e1 divides the least common
multiple of {e2, . . . , ev} with probability:

Pr[B|Sm(γ, ε)] = O(Lx[α− γ])

With (9) and γ + 1
2(γ+ε)

≥ √
2− ε for all γ > 0, we get:

Pr[B ∧ Sm(γ, ε)] = O(Lx[−
√

2

2
+ ε]) (10)

• ¬Sm: e1 is not Lx[
√

2]-smooth. Consequently e1 contains a factor greater than Lx[
√

2]
and thus:

Pr[B ∧ ¬Sm] = O(Lx[α−
√

2]) = O(Lx[−
√

2

2
]) (11)

Partitioning the segment [
√

2/2,
√

2] into segments [γ, γ + ε] and using equations (8),
(10) and (11), we get:

Pr[B] = O(Lx[−
√

2

2
+ ε])

Since α <
√

2/2 we can choose ε > 0 such that
√

2/2− α− ε = δ > 0 and obtain:

P (x, v) = O(Lx[α−
√

2/2 + ε]) = O(Lx[−δ])

which shows that P (x, v) is negligible. ut
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Abstract. A prohibitive barrier faced by elliptic curve users is the difficulty of computing the curves’
cardinalities. Despite recent theoretical breakthroughs, point counting still remains very cumbersome
and intensively time consuming.
In this paper we show that point counting can be avoided at the cost of a protocol slow-down.
This slow-down factor is quite important (typically ∼= 500) but proves that the existence of secure
elliptic-curve signatures is not necessarily conditioned by point counting.

1 Introduction

Point counting is the most complex part of elliptic-curve cryptography which, despite
constant improvements, still remains time-consuming and cumbersome (we refer the reader
to [3, 4, 8, 9, 13, 14, 15, 11, 17, 20, 21] for a comprehensive bibliography about cardinality
counting).

Elliptic-curve cryptosystems that would not require point counting are thus theoreti-
cally interesting, although, having taken the decision to design such a scheme, one must
overcome three technical difficulties:

– If the number of points on the curve (#C) is unknown to the participants, the protocol
must never involve q, the large prime factor of #C. This excludes the computation of
modular inverses modulo q by the signer and the verifier (recall that DSA signatures
involve s = (m + xr)/k mod q and verifications require 1/s mod q).

– Being unknown, #C may be accidentally smooth enough to be vulnerable to Pohlig-
Hellman attack [18]. An attacker could then undertake the point counting avoided by
the designer, factor #C and break-down the Discrete Logarithm Problem’s complexity
into the much easier tasks of solving DLPs in the various subgroups that correspond to
the factors of #C.

– Finally, even if #C has a large prime factor q, the choice of the group generator G (e.g.
ECDSA’s exponentiation base) may still yield a small subgroup vulnerable to discrete
logarithm extraction.
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Sections 2, 3 and 4 will develop separately each of these issues which will be assembled
as a consistent, point-counting-free cryptosystem in section 5. By easing considerably key-
generation, our protocol will extend the key-range of elliptic-curve cryptosystems and open
new research perspectives.

2 Poupard-Stern’s q-Free DSA

In Eurocrypt’98, Poupard and Stern [19] presented a DSA-like scheme that combines DLP-
based provable security, short identity-based keys, very low transmission overhead and min-
imal on-line computations. By opposition to other Schnorr-like schemes, Poupard-Stern’s
protocol uses the order of the multiplicative group q only for system setup (figure 1).

System parameters
primes p and q such that q|(p− 1)
g ∈ Z/pZ of order q
a hash function h : {0, 1}∗ → Z/qZ

Key generation
secret : x ∈R Z/qZ
public : y = g−x mod p

Signature
pick a large random k
r = gk mod p
s = k + x× h(m, r)
signature: {r, s}

Verification

check that r
?
= gsyh(m,r) mod p

Fig. 1. Poupard-Stern signatures.

We refer the reader to [19] for a precise definition of the system parameters (e.g. the size
of k), a formal security proof and a description of the scheme’s implementation trade-offs.

Elliptic-curve generalization is straightforward: let p be the size of the underlying field
(or ring) on which the curve is defined (a prime, an RSA modulus or 2n); when p is a
prime or an RSA modulus the equation of the curve C, characterized by a and b, is given
by y2 = x3 +ax+ b; the curve will be defined by y2 +xy = x3 +ax+ b when the underlying
field is GF(2n). In the elliptic curve Pourpard-Stern signature scheme, p − 1 and q are
respectively replaced by #C and one of its large prime factors (figure 2).

Poupard and Stern’s security proof can be extended, mutatis mutandis, to the elliptic-
curve variant; the proof can be consulted in the appendix.
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System parameters
a prime q
an elliptic curve C such that q|#C
G ∈ C of order q
a hash function h : {0, 1}∗ → Z/qZ

Key generation
secret: x ∈R Z/qZ
public: Y = −xG

Signature
pick a large random k
R = kG = (xR, yR)
s = k + x× h(m,xR)
signature: {xR, s}

Verification
compute R′ = sG + h(m,xR)Y = (xR′ , yR′)

check that xR
?
= xR′

Fig. 2. Elliptic-curve Poupard-Stern signatures.

We will now suppress from the above protocol the last references to q; care should be
taken to underline that we do not claim yet that the resulting protocol (figure 3) is secure.

3 The Expected Smoothness of #C
As an inescapable consequence of our modification, #C may now be smooth enough to be
at Pohlig-Hellman’s reach. An attacker could then perform the point counting, factor #C
and reduce the DLP’s complexity into the much easier tasks of solving DLPs in the various
subgroups that correspond to the different factors of #C. Moreover, even if #C has a large
prime factor it may still be divisible by a product π of small primes, allowing the adversary
to find a portion of the secret key (x mod π) using Pohlig-Hellman. Using Hasse’s theorem,
we set L = log2bp + 1 − 2

√
pc and deliberately accept that only ` bits of the L-bit secret

key will actually remain unknown to the attacker.
We consider that a curve is weak if all the factors of #C are smaller than 2` (i.e. #C is

2`-smooth) where ` is a security parameter. The odds of such an event are analyzed in this
section under the assumption that #C is uniformly distributed over [p+1−2

√
p, p+1+2

√
p].

Defining ψ(x, y) = #{n < x, such that n is y-smooth}, it is known [5, 6, 7] that, for
large x, the ratio:

ψ(x, t
√

x)

x
is equivalent to Dickman’s function defined by:
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System parameters
a random elliptic curve C
G ∈R C
a hash function h : {0, 1}∗ → {0, 1}L

Key generation
secret: x ∈R {0, 1}L

public: Y = −xG

Processing
pick a large random k
R = kG = (xR, yR)
s = k + x× h(m,xR)
output: {xR, s}

Verification
compute R′ = sG + h(m,xR)Y = (xR′ , yR′)

check that xR
?
= xR′

Fig. 3. q-free EC variant of Poupard-Stern’s protocol.

ρ(t) =





1 if 0 ≤ t ≤ 1

ρ(n)−
∫ t

n

ρ(v − 1)

v
dv if n ≤ t ≤ n + 1

ρ(t) is thus an approximation of the probability that a ` × t-bit number is 2`-smooth;
table 1 summarizes the value of ρ for 2 ≤ t ≤ 10.

t 2 3 4 5 6 7 8 9 10

ρ(t) 3.07e-1 4.86e-2 4.91e-3 3.54e-4 1.96e-5 8.75e-7 3.23e-8 1.02e-9 2.79e-11

Table 1. ρ(t) for 2 ≤ t ≤ 10.

Since ρ(t) is not easy to compute, we will use throughout this paper the exact formula
for t ≤ 10 and de Bruijn’s asymptotic approximation [1, 2] for t > 10:

ρ(t) ∼= (2πt)−1/2 exp
(
γ − tζ +

∫ ζ

0

es − 1

s
ds

)

where ζ is the positive solution of eζ − 1 = tζ and γ is Euler-Mascheroni’s constant.
Table 1 shows that the proportion of weak curves is too high for immediate use: values

of t, such as 2 and 3, which would respectively yield 320 and 480-bit field size for ` = 160,
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correspond to a percentage of 0.3 and 0.05 weak curves. In section 5, we will propose a
signature strategy that decreases exponentially these probabilities.

As pointed out earlier, the above assumes that #C is distributed uniformly over [p +
1− 2

√
p, p + 1 + 2

√
p]. A more accurate result, valid for prime p, was proved by Lenstra in

[12]:

Theorem 1. Denoting by #’ the number of isomorphism classes of elliptic curves, and
∆(S) = #′{elliptic curves E over Fp such that #E ∈ S ⊂ N} there exist effectively com-
putable positive constants c1, c2 such that for each prime p > 3, the following holds:

• if for all s ∈ S, |s− (p + 1)| ≤ 2
√

p then ∆(S) ≤ c1#S
√

p(log p)(log log p)2

• if for all s ∈ S, |s− (p + 1)| ≤ √
p then ∆(S) ≥ c2

√
p(#S − 2)/ log p

Since all classes have a number of representatives which is roughly p, Lenstra’s theorem
basically claims that by taking a curve at random, the probability τS that its cardinality
lies in S satisfies the inequality:

c3

log p
≤ τS

πS

≤ c4(log p)(log log p)2

where πS denotes the probability of picking an element of S at random in the interval[
p−√p, p +

√
p
]
. The theorem indicates that (at least if p is prime) when C is random, the

proportion of weak-curves respects Dickman’s estimate. We consider this as heuristically
satisfactory for further build-up.

4 The Expected Order of the Generator G

Even when #C has an prime factor larger than ` bits, G could still yield a small subgroup,
which would again weaken the scheme.

We refer the reader to [16] for the following theorem:

Theorem 2. The set of points of an elliptic curve is an abelian group which is either a
cyclic group or the product of two cyclic groups.

Let q be a large prime factor of r = #C of multiplicity 1.

– Assume that C is a cyclic abelian group, isomorphic to Z/rZ, with generator g ∈ C.
The order d of a random G = gα is given by d = r/ gcd(r, α). Therefore q does not
divide d if and only if α is a multiple of q. The probability that the order of a random
G is not divisible by q is thus 1/q.

– Assume that C is the product of two cyclic abelian groups, then C is isomorphic to some
product Z/r1Z × Z/r2Z where r2 divides r1 and r1r2 = r. For a large prime factor q
of r (with multiplicity 1), q divides r1 but not r2. Therefore q divides the order of an
element of the curve if and only if q divides the order of this element with respect to
Z/r1Z. This leads back to the first case, and the probability that the order of a random
G is not divisible by q is 1/q again.

In both cases, the probability that a random choice for G yields a small subgroup is
negligible.
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5 The New Scheme

The new protocol iterates the signature on a few curves in order to reduce (below an
ε = 2−`/2) the probability that all curves will be smooth (figure 4):

System parameters
σ random elliptic curves C1, . . . , Cσ

σ random points G1, . . . , Gσ such that Gi ∈ Ci

a hash function h : {0, 1}∗ → {0, 1}L

Key generation
secret: σ random integers xi ∈R {0, 1}L

public: σ points Yi = −xiGi such that Yi ∈ Ci

Signature
for i = 1 to σ

pick a large random ki

compute Ri = kiGi ∈ Ci = (xRi
, yRi

)
compute si = ki + xi × h(m,xRi

)
signature: {{xR1 , s1}, . . . , {xRσ , sσ}}

Verification
for i = 1 to σ

Compute R′
i = siGi + h(m,xRi

)Yi = (xR′i , yR′i)

Check that xR′i
?
= xRi

Fig. 4. q-free elliptic-curve Poupard-Stern signatures.

The number of necessary iterations σ is given by:

ρ(|p|/`)σ ≤ ε ⇒ σ =

⌈
`

2 log ρ(|p|/`)
⌉

and is summarized in table 2 for ` = 160.
The slow-down factor γ between the elliptic curve Poupard-Stern signature scheme and

the new scheme (signature generation times) is due to the iteration of the signature on
σ curves and the increased complexity of point operations over bigger underlying fields.
Since the time complexity of elliptic curve scalar multiplication is in O(|p|3), γ is basically
given by:

γ = σ ×
( |p|

`

)3

The slow-down factor is summarized in table 2 for ` = 160.
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# of iterations σ size of p slow-down # of iterations σ size of p slow-down

20 460 bits 474 10 654 bits 683

19 471 bits 486 9 693 bits 732

18 484 bits 499 8 740 bits 791

17 497 bits 509 7 798 bits 868

16 513 bits 526 6 873 bits 977

15 529 bits 542 5 973 bits 1125

14 548 bits 562 4 1115 bits 1352

13 570 bits 588 3 1337 bits 1746

12 594 bits 613 2 1757 bits 2646

11 622 bits 645 1 2800 bits 5355

Table 2. Protocol trade-offs for ` = 160.

Letting alone the factor γ, the verification times of the new scheme are also slower than
usual ECC ones (e.g. ECDSA) because of the additional increase in the size of s due to
the Poupard-Stern construction.

Note that Poupard-Stern’s security proof will still apply to (at least one of) our curves
with probability greater than 1−ε ∼= 1. Surprisingly, instances will be either provably secure
against existential forgery under adaptive chosen message attacks (probability greater than
1−ε) or insecure (probability lower than ε = 2−`/2) without transiting through intermediate
gray areas where security is only conjectured (our ε is, of course, not related to [19]’s one).

Although the security proof has not been extended to the case where all curves have the
same system parameters (identical p, intersection in G), we conjecture that the resulting
scheme (figures 5 and 6) is still secure.

Secret parameters (xi and ki) must however remain distinct for every curve, given the
(deliberately accepted) risk that the DLP might be easy on some of our curves.

It is important to point-out that, due to our probabilistic design, the signer must gener-
ate C1, . . . , Cσ or (at least) make sure that the authority can exhibit a random seed (similar
to the DSA’s certificate of proper key generation) that yields all the curves’ parameters by
hashing.

6 Extensions and Variants

The scheme can be improved in many ways: by hashing xi = h′(x, i) and ki = h′′(k, i) one
can make the economy of σ − 1 secret keys and session randoms; a particularly efficient
variant consists in grouping {R1, . . . , Rσ} in a single digest (figure 7); the scheme can, of
course, be implemented on any group.

Note that when p is an RSA modulus (hereafter n), life becomes much harder for
the attacker who must (in our present state of knowledge) factor n (equivalent to point
counting [10]), compute the orders d1 and d2 of the curve modulo the prime factors of n,
factor d1 and d2 and compute the exact order of G as a multiplicative combination of the
prime factors of d1 and d2.
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System parameters
σ elliptic curves C1, . . . , Cσ intersecting in G
a hash function h : {0, 1}∗ → {0, 1}L

Key generation
secret: σ random integers xi ∈R {0, 1}L

public: σ points Yi = −xiG such that Yi ∈ Ci

Signature
for i = 1 to σ

pick a large random ki

compute Ri = kiG ∈ Ci = (xRi
, yRi

)
compute si = ki + xi × h(m,xRi

)
signature: {{xR1 , s1}, . . . , {xRσ , sσ}}

Verification
for i = 1 to σ

Compute R′
i = siG + h(m,Ri)Yi = (xR′i , yR′i)

Check that xR′i
?
= xRi

Fig. 5. q-free elliptic-curve Poupard-Stern signatures (common G).

The overwhelming security contribution comes from the factorisation of n although
when this calculation comes to an end, the attacker may face a (non-smooth) curve where
the DLP is hard. The attacker’s success chances are consequently reduced to:

ε′ = ρ

( |n|
2`

)2

for one curve and

ε′′ = ε′σ = ρ

( |n|
2`

)2σ

for the σ curves. This indicates an interesting way of squeezing more complexity out of
RSA moduli: since (in our present state of knowledge) smooth curves can not be spotted
without factoring n, the inverse of ε′′ represents a strengthening factor that multiplies1 the
attacker’s effort by a factor depending on |n| and σ (table 3 for ` = 160).
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Fig. 6. System configuration (intersecting curves) for σ = 3.
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A Appendix

Using Poupard and Stern’s notations, the following is a generalization of [19]’s security
proof:

Theorem 3. Assume that kSτ/X and 1/k are negligible. If an existential forgery of the
signature scheme under adaptive chosen message attack has a non-negligible success prob-
ability then the discrete logarithm on elliptic curves can be computed in a time polynomial
in |q|.

The proof is based on the same 3-fork variant of Pointcheval-Stern’s forking lemma.
However, there is a technical difficulty; in the modular case studied by Poupard and Stern,
the authors deal with an RSA modulus n = pq, assuming that g is of order λ(n) =
GCD(p− 1, q − 1). Their proof includes three steps:

1. compute a multiple L of λ(n).
2. factor n, using L and a number-theoretic algorithm due to Miller.
3. finally, use the 3-fork variant of the forking lemma to yield a couple of relations involving

the unknown key s:

αs + β = 0 mod λ(n) and α′s + β′ = 0 mod λ(n)

such that for some polynomial B, which only depends on the machine which presum-
ably performs the existential forgery, GCD(α, α′) ≤ B; from these equations, s can be
computed in polynomial time.

In the elliptic curve case, there is no analog to step 2; which requires a further twist:

1. compute a multiple ρ of the (unknown) order r of G, which is approximately |X|+|k|-bit
long.
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2. use the forking lemma’s 3-fork variant to yield a couple of relations involving s:

αs + β = 0 mod λ(n) and α′s + β′ = 0 mod λ(n)

such that for some polynomial B, which only depends on the machine which presumably
performs the existential forgery, GCD(α, α′) ≤ B. Furthermore, we cancel all primes
smaller than B from ρ. From these relations and ρ, one can compute a substitute to s
which satisfies V = −sG without being in the proper range.

3. Finally, we show that an algorithm which computes a substitute of s and a multiple
of r with significant probability can be turned into an algorithm which computes the
proper value of s:

Lemma 1. An algorithm A which computes with significant probability a fixed-size multi-
ple ρ of the unknown order r of G and a substitute to the secret key s < ρ can be turned
into an algorithm B which computes the proper value of s.

Proof. Let ε be the success probability of A and fix δ = ε/|ρ|. By induction on |ρ|, we show
how to design an algorithm B which discloses the actual key with probability at least δ:
Apply A to V = −sG, where s is in the proper range for keys. A could either output s
with probability δ (in which case the proof is complete) or it outputs a substitute s′ 6= s
with probability bigger than (ρ − 1)δ. In this case, we can consider s′ − s and ρ − s′ + s;
both are multiples of r and one of them (hereafter ρ′) is smaller than ρ/2. Note that A
produces, with probability δ|ρ′| a multiple ρ′ of r. Furthermore, it also produces substitute
keys smaller than ρ′, since one can always replace a substitute s by s mod ρ′; we can thus
apply the inductive hypothesis, which completes the proof. ut
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Abstract. In Eurocrypt 2003, Boneh et al. presented a novel cryptographic primitive called aggre-
gate signatures. An aggregate signature scheme is a digital signature that supports aggregation: i.e.
given k signatures on k distinct messages from k different users it is possible to aggregate all these
signatures into a single short signature.

Applying the above concept to verifiably encrypted signatures, Boneh et al. introduced a new com-
plexity assumption called the k-Element Aggregate Extraction Problem.

In this paper we show that the k-Element Aggregate Extraction Problem is nothing but a Compu-
tational Diffie-Hellman Problem in disguise.

1 Introduction

In Eurocrypt 2003, Boneh, Gentry, Lynn and Shacham [2] introduced the concept of ag-
gregate signatures. An aggregate signature scheme is a digital signature that supports
aggregation: given k signatures on k distinct messages from k different users it is possi-
ble to aggregate all these signatures into a single short signature. This useful primitive
allows to drastically reduce the size of public-key certificates, thereby saving storage and
transmission bandwidth.

Applying the previous construction to verifiably encrypted signatures, Boneh et al.
introduced in [2] a new complexity assumption called the k-Element Aggregate Extraction
Problem (hereafter k-EAEP). In this paper we will prove that k-EAEP is equivalent to the
Computational Diffie Hellman assumption (CDH).

This paper is structured as follows: section 2 recalls Boneh et al.’s setting, section 3
contains [2, 3]’s definition of the k-EAEP and section 4 concludes the paper by proving
the equivalence between k-EAEP and CDH.

2 Verifiable Encrypted Signatures Via Aggregation

We will adopt [2, 3]’s notations and settings, namely:
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Key generation

Pick random x
R← Zp

Compute v ← gx
1

Public : v ∈ G1

Private : x ∈ Zp

Signature
Hash the message M ∈ {0, 1}∗ into h ← h(M) ∈ G2

Compute the signature σ ← hx ∈ G2

Verification of σ (with respect to v and M)
Compute h ← h(M)
Check that e(g1, σ) = e(v, h)

Fig. 1. Boneh, Lynn, Shacham Signatures

– G1 and G2 are two multiplicative cyclic groups of prime order p;
– g1 is a generator of G1 and g2 is a generator of G2;
– ψ is a computable isomorphism from G1 to G2 with ψ(g1) = g2;
– e is a computable bilinear map e : G1 × G2 → GT where GT is multiplicative and of

order p. The map e is:
• Bilinear: for all u ∈ G1, v ∈ G2 and a, b ∈ Z, e(ua, vb) = e(u, v)ab

• Non-degenerate: e(g1, g2) 6= 1
– h : {0, 1}∗ → G2 is a hash function.

2.1 Boneh-Lynn-Shacham Signatures

Figure 1 briefly recalls Boneh, Lynn and Shacham’s signature scheme [1], upon which the
aggregate signatures schemes of [2, 3] are based.

2.2 Aggregate Signatures

Consider now a set of k users using Figure 1’s scheme (each user having a different key pair
bearing an index i) and signing different messages Mi. Aggregation consists in combining
the resulting k signatures {σ1, . . . , σk} into one aggregate signature σ. This is done by
simply computing:

σ ←
k∏

i=1

σi

Aggregate verification is very simple and consists in checking that the Mi are mutually
distinct and ensuring that:

e(g1, σ) =
k∏

i=1

e(vi, hi) where hi = h(Mi)
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This holds because:

e(g1, σ) = e(g1,

k∏
i=1

hxi
i ) =

k∏
i=1

e(g1, hi)
xi =

k∏
i=1

e(gxi
1 , hi) =

k∏
i=1

e(vi, hi)

2.3 Verifiably Encrypted Signatures Via Aggregation

As explained in [2, 3], verifiably encrypted signatures are used in contexts where Alice wants
to show Bob that she has signed a message but does not want Bob to possess her signature
on that message. Alice can achieve this by encrypting her signature using the public key
of a trusted third party (adjudicator, hereafter Carol), and send the resulting ciphertext
to Bob along with a proof that she has given him a valid encryption of her signature. Bob
can verify that Alice has signed the message but cannot deduce any information about her
signature. Later in the protocol, Bob can either obtain the signature from Alice or resort
to the good offices of Carol who can reveal Alice’s signature.

To turn the aggregate signature scheme into a verifiably encrypted signature scheme,
[2, 3] proceed as follows:

– Alice wishes to create a verifiably encrypted signature that Bob will verify, Carol being
the adjudicator. Alice and Carol’s keys are generated as if they were standard signers
participating in the aggregate signature protocol described in the previous subsection.

– Alice creates a signature σ on M under her public key. She then forges a signature σ′

on some random message M ′ under Carol’s public key (we refer the reader to [2, 3]
for more details on the manner in which this existential forgery is produced). She then
combines σ and σ′ obtaining the aggregate ω. The verifiably encrypted signature is
{ω, M ′}.

– Bob validates Alice’s verifiably encrypted signature {ω, M ′} on M by checking that ω
is a valid aggregate signature by Alice on M and by Carol on M ′.

– Carol adjudicates, given a verifiably encrypted signature {ω,M ′} on M by Alice, by
computing the signature σ′ on M ′ and removing σ′ from the aggregate thereby revealing
Alice’s signature σ.

3 The k-Element Aggregate Extraction Problem

As is clear, the security of Boneh et al.’s verifiable encrypted signature scheme depends
on the assumption that given an aggregate signature of k signatures (here k = 2) it is
difficult to extract from it the individual signatures (namely: Alice’s signature on M). This
is formally proved in theorem 3 of [2, 3].

Considering the bilinear aggregate signature scheme on G1 and G2, Boneh et al. assume
that it is difficult to recover the individual signatures σi given the aggregate σ, the public-
keys and the message digests. Actually, [2, 3] assume that it is difficult to recover any
aggregate σ′ of any proper set of the signatures and term this the k-Element Aggregate
Extraction Problem (hereafter k-EAEP).
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More formally, this assumption is defined in [2, 3] as follows: Let G1 and G2 be two
multiplicative cyclic groups of prime order p, with respective generators g1 and g2, a com-
putable isomorphism ψ : G1 → G2 such that g2 = ψ(g1), and a computable bilinear map
e : G1 ×G2 → GT .

Consider a k-user aggregate in this setting. Each user has a private key xi ∈ Zp and a
public key vi = gxi

1 ∈ G1. Each user selects a distinct message Mi ∈ {0, 1}∗ whose digest
is hi ∈ G2 and creates a signature σi = hxi

i ∈ G2. Finally, the signatures are aggregated
yielding:

σ =
k∏

i=1

σi ∈ G2

Let I be the set {1, . . . , k}. Each public-key vi can be expressed as gxi
1 , each digest hi

as gyi
2 , each signature σi as gxiyi

2 and the aggregate signature σ as gz
2 where:

z =
∑
i∈I

xiyi

Definition 1 (k-EAEP). The k-Element Aggregate Extraction Problem is the following:

given the group elements gx1
1 , . . . , gxk

1 , gy1

2 , . . . , gyk
2 and g

P
i∈I xi·yi

2 , output (σ′, I ′) such that

I ′  I and σ′ = g
P

i∈I′ xi·yi

2 .

The advantage of an algorithm E in solving the k-EAEP is defined as:

Adv k-ExtrE
def
= Pr




(I ′  I) ∧ (σ′ = g
P

i∈I′ xiyi

2 ) :

x1, . . . , xk, y1, . . . , yk
R← Zp, σ ← g

P
i∈I xiyi

2 ,

(σ′, I ′) R← E(gx1
1 , . . . , gxk

1 , gy1

2 , . . . , gyk
2 , σ)




wherein the probability is taken over the choices of all xi and yi and the coin tosses of E .

In the following, we define the hardness of the k-EAEP. For simplicity, we use the
asymptotic setting instead of the concrete setting of [2].

Definition 2. The k-Element Aggregate Extraction Problem is said to be hard if no prob-
abilistic polynomial-time algorithm can solve it with non-negligible advantage.

[2, 3] is particularly concerned with the case k = 2 where the aggregate extraction
problem boils down to the following:

Definition 3 (2-EAEP). Given ga
1 , gb

1, gu
2 , gv

2 and gau+bv
2 , output gau

2 .

We refer the reader to [3] for more details on the manner in which this assumption is
used in proving the security of the verifiable encrypted signature scheme.
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4 k-EAEP ⇔ Computational Co-Diffie-Hellman Problem

The Computational co-Diffie-Hellman problem (hereafter co-CDH) is a natural generaliza-
tion to two groups G1 and G2 of the standard Computational Diffie-Hellman problem; it
is defined as follows [2]:

Definition 4 (co-CDH). Given g1, g
a
1 ∈ G1 and h ∈ G2, output ha ∈ G2.

The advantage of an algorithm A in solving co-CDH in groups G1 and G2 is:

Adv co-CDHA
def
= Pr

[
A(g1, g

a
1 , h) = ha : a

R← Zp, h
R← G2

]

The probability is taken over the choice of a, h and A’s coin tosses. Note that when
G1 = G2, this problem reduces to the standard CDH problem.

Definition 5. The Computational co-Diffie-Hellman problem in groups G1 and G2 is said
to be hard if no probabilistic polynomial-time algorithm can solve it with non-negligible
advantage.

The following theorem shows that the k-Element Aggregate Extraction Problem is
equivalent to the Computational co-Diffie-Hellman problem.

Theorem 1. The k-Element Aggregate Extraction Problem is hard if and only if the Com-
putational co-Diffie-Hellman problem is hard.

Proof. It is straightforward to show that an algorithm A solving co-CDH can be used to

solve the k-EAEP. Namely, given the instance gx1
1 , . . . , gxk

1 , gy1

2 , . . . , gyk
2 and g

P
i∈I xi·yi

2 , using
A we obtain σ′ = gx1y1

2 from g1, g
x1
1 , gy1

2 . This gives ({1}, σ′) as a solution to the k-EAEP.

For the converse, we start with k = 2, i.e. an algorithm solving the 2-EAEP and
show how to generalize the method to arbitrary k. Letting g1, g

a
1 , g

u
2 be a given instance of

co-CDH, we must compute ga·u
2 using an algorithm A solving the 2-EAEP. We generate

x
R← Zp and y

R← Zp; one can see that:

(ga
1 , g

a+x
1 , g−u

2 , gu+y
2 , ga·y+u·x+x·y

2 )

is a valid random instance of the 2-EAEP. The instance is valid because:

−a · u + (a + x) · (u + y) = a · y + u · x + x · y
The instance is a random one because ga+x

1 and gu+y
2 are uniformly distributed in G1 and

G2. Moreover, the instance can be computed directly from gu
2 and ga

2 = ψ(ga
1). Therefore,

given as input this instance, the algorithm A outputs g−a·u
2 , from which we compute ga·u

2

and solve the co-CDH problem.

More generally, for k > 2, we generate x2, . . . , xk, y2, . . . , yk
R← Zp; then we generate the

following instance of the k-EAEP:

(ga
1 , g

a+x2
1 , . . . , ga+xk

1 , g
−(k−1)u
2 , gu+y2

2 , . . . , gu+yk
2 , gz

2)
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where

z =
k∑

i=2

a · yi + xi · (u + yi)

As previously, this is a valid random instance of the k-EAEP, which can be computed from
gu
2 and ga

2 = ψ(ga
1). Therefore, given this instance as input, an algorithm A solving k-EAEP

outputs (I ′, σ′). We assume that 1 ∈ I ′, otherwise we can take I ′′ ← I \ I ′ and σ′′ ← gz
2/σ

′.
Letting σ′ = gz′

2 and k′ = |I ′| < k, we have:

z′ = −(k − 1) · a · u +
∑

i∈I′,i>1

(a + xi)(u + yi)

z′ = a · u · (k′ − k) +
∑

i∈I′,i>1

a · yi + xi · (u + yi)

Therefore we can compute:

ga·u
2 =

(
σ′ ·

∏

i∈I′,i>1

(ga
2)
−yi(gu

2 )−xig−xiyi
2

) 1
k′−k

which is the solution of the co-CDH instance.

Therefore, given a polynomial time probabilistic algorithm solving the k-EAEP with
non-negligible advantage, we obtain a polynomial time probabilistic algorithm solving co-
CDH with non-negligible advantage, and conversely, with a tight reduction in both direc-
tions. ut

5 Conclusion

In this paper we showed that the k-element Aggregate Extraction Problem introduced
by Boneh, Gentry, Lynn and Shacham in [2, 3] is equivalent to the Computational Diffie
Hellman Problem.

By shedding light on the connection between Boneh et al.’s verifiable encrypted signa-
ture scheme and the well-researched Computational Diffie-Hellman Problem, we show that
[2, 3] features, not only attractive computational requirements and short signature size,
but also strong security assurances.
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Abstract. We present a cryptanalysis of a zero-knowledge identification protocol introduced by
Naccache et al. at Eurocrypt ’95. Our cryptanalysis enables a polynomial-time attacker to pass the
identification protocol with probability one, without knowing the private key.

1 Introduction

An identification protocol enables a verifier to check that a prover knows the private key
corresponding to a public key associated to its identity. A protocol is zero-knowledge when
the only additional information obtained by the verifier is that the prover knows the corre-
sponding private key [2]. A famous zero-knowledge identification protocol is Fiat-Shamir’s
protocol [1], which is provably secure assuming that factoring is hard. The protocol requires
performing multiplications modulo an RSA modulus.

A space-efficient variant of the Fiat-Shamir identification protocol was introduced by
Naccache [3] and by Shamir [5] at Eurocrypt’ 94. This variant requires only a few bytes
of RAM, even for an RSA modulus of several thousands bits, and is provably as secure as
the original Fiat-Shamir protocol. This variant is particularly interesting when the prover
is implemented in a smart-card, in which the amount of RAM is very limited.

However, the time complexity of the previous variant is still quadratic in the modulus
size, and its implementation on a low-cost smart-card is likely to be inefficient. At Eurocrypt
’95, Naccache et al. introduced another Fiat-Shamir variant [4]. It uses the same idea for
reducing the space-complexity, but the prover’s time complexity is now quasi-linear in the
modulus size (instead of being quadratic). As shown in [4], the new identification protocol
can be executed on a low-cost smart-card in less than a second.

In this paper, we describe a cryptanalysis of one of [4]’s time-efficient variants. Our
cryptanalysis enables a polynomial-time attacker to pass the identification protocol with
probability one, without knowing the private key. We would like to stress that the basic
quasi-linear time protocol introduced by [4] remains secure, since it is in fact equivalent to
standard Fiat-Shamir and hence to factoring.
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2 The Fiat-Shamir Protocol

We briefly recall Fiat-Shamir’s identification protocol [1]. The objective of the prover is to
identify itself to any verifier, by proving knowledge of a secret s corresponding to a public
value v, which is associated to its identity. The protocol is zero-knowledge in that it does
not reveal any additional information about s to the verifier. The security relies on the
hardness of factoring an RSA modulus.

Key Generation: The authority generates a k-bit RSA modulus n = p · q, and an integer
v which is a function of the identity of the prover. Using the factorization of n, it computes
a square root s of v modulo n, i.e. v = s2 mod n. The authority publishes (n, v) and sends
s to the prover.

Identification Protocol:

1. The prover generates a random x ← Zn, and sends z = x2 mod n to the verifier.
2. The verifier sends a random bit b to the prover.
3. If b = 0, the prover sends y = x to the verifier, otherwise it sends y = x · s mod n.
4. The verifier checks that y2 = z · vb mod n.
5. Steps 1-4 are repeated several time to reduce the cheating probability.

3 The Space-Efficient Variant of Fiat-Shamir’s Protocol

Fiat-Shamir’s protocol requires to perform multiplications modulo an RSA modulus n. It
has a quadratic time and linear space complexity. Therefore, the original protocol could
not be implemented on low-cost smart-cards, which in 1994 contained about 40 bytes of
random access memory (RAM). Naccache [3] and Shamir [5] introduced a space-efficient
variant which requires only a few bytes of RAM, even for an RSA modulus of several
thousands bits, and which is provably as secure as the original Fiat-Shamir protocol.

The idea is the following: assume that the prover is required to compute z = x · y
mod n, where x and y are two large numbers which are already stored in the smart-card
(e.g., in its EEPROM1), or whose bytes can be generated on the fly. Then instead of
computing z = x · y mod n, the prover computes

z′ = x · y + r · n

for a random r uniformly distributed in [0, B], for a fixed bound B. The verifier can recover
x · y mod n by reducing z′ modulo n. Moreover, when computing z′, the prover does not
need to store the intermediate result in RAM. Instead, the successive bytes of z′ can be
sent out of the card as soon as they are generated. Therefore, a smart-card implementation
of the prover needs only a few bytes of RAM (see [5] or [3] for more details).

1 The smart-card EEPROM is a re-writable memory, but the operation of writing is about one thousand time
slower than writing into RAM, and can not be used to store fast-changing intermediate data during the execution
of an algorithm.
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As shown in [5], if B is sufficiently large, there is no loss of security in sending z′ instead
of z. Namely, from z one can generate z′′ = z + u · n where u is a random integer in [0, B].
Letting z = x · y − ω · n, we have:

z′′ = x · y + (u− ω) · n
Then, the statistical distance between the distributions induced by z′ and z′′ is equal to the
statistical distance between the uniform distribution in [0, B] and the uniform distribution
in [−ω, B − ω], which is equal to ω/B. Then, assuming that x and y are both in [0, n],
this gives ω ∈ [0, n], and the previous statistical distance is lesser than n/B. Therefore, by
taking a B much larger than n (for example, B = 2k+80, where k is the bit-size of n), the
two distributions are statistically indistinguishable, and any attack against the protocol
using z′ would be as successful against the protocol using z.

The identification protocol is then modified as follows:

Space-Efficient Fiat-Shamir Identification Protocol:

1. The prover generates a random x ← Zn and a random r ∈ [0, B], and sends z = x2+r ·n
to the verifier.

2. The verifier sends a random bit b to the prover.
3. If b = 0, the prover sends y = x to the verifier, otherwise it sends y = x · s + t · n for a

random t ∈ [0, B].
4. The verifier checks that y2 = z · vb mod n.
5. Steps 1-4 are repeated several time to reduce the cheating probability.

4 The Time-Efficient Variant of Fiat-Shamir’s Protocol

The time complexity of the previous variant is still quadratic in the modulus size, and
its implementation on a low-cost smart-card is likely to be inefficient. At Eurocrypt ’95,
Naccache et al. introduced yet another Fiat-Shamir variant [4]. It uses the same idea
as Shamir’s variant for reducing the space-complexity, but the prover’s time complexity
is now quasi-linear in the modulus size (instead of being quadratic). As shown in [4], the
identification protocol can then be executed on a low-cost smart-card in less than a second.

The technique consists in representing the integers modulo a set of ` small primes pi

(usually, one takes the first ` primes). This is called the Residue Number System (RNS)
representation. Letting Π =

∏`
i=1 pi, by virtue of the Chinese Remainder Theorem, any

integer 0 ≤ x < Π is uniquely represented by the vector:

(x mod p1, . . . , x mod p`)

The advantage of this representation is that multiplication is of quasi-linear complexity
(instead of quadratic complexity): if x and y are represented by the vectors (x1, . . . , x`)
and (y1, . . . , y`), then the product z = x · y is represented by:

(x1 · y1 mod p1, . . . , x` · y` mod p`)
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The size ` of the RNS representation is determined so that all integers used in the protocol
are strictly smaller than Π; the bijection between an integer and its modular representation
is then guaranteed by the Chinese Remainder Theorem. The time-efficient variant of the
Fiat-Shamir protocol is the following:

Time-Efficient Variant of the Fiat-Shamir Protocol:

1. The prover generates a random x ∈ [0, n] and a random r ∈ [0, B], and sends z = x2+r·n
to the verifier. The integers x, r and z are represented in RNS.

2. The verifier sends a random bit b to the prover.

3. If b = 0, the prover sends y = x to the verifier, otherwise it sends y = x · s + t · n for a
random t ∈ [0, B]. The integers x, s and t are represented in RNS.

4. The verifier checks that y2 = z · vb mod n.

5. Steps 1-4 are repeated several time to reduce the cheating probability.

The only difference between this time-efficient variant and Shamir’s space-efficient vari-
ant is that integers are represented in RNS. Therefore, from a security standpoint, those
variants are strictly equivalent.

However, another time-efficient variant is introduced in [4], whose goal is to increase
the efficiency of the verifier. The goal of this second variant is to enable the verifier to
check the prover’s answer in linear time when b = 0. In this variant, when b = 0, the prover
also reveals r, which enables the verifier to check that z = x2 + r · n by performing the
computation in the RNS representation (the equality x = x2 + r ·n is checked modulo each
of the primes pi), which takes quasi-linear time instead of quadratic time. More precisely,
this variant is the following:

Second Time-Efficient Variant of the Fiat-Shamir Protocol:

1. The prover generates a random x ∈ [0, n] and a random r ∈ [0, B], and sends z = x2+r·n
to the verifier. The integers x, r and z are represented in RNS.

2. The verifier sends a random bit b to the prover.

3. If b = 0, the prover sends x and r to the verifier, in RNS representation. If b = 1, the
prover sends y = x · s + t · n for a random t ∈ [0, B], where y is represented in RNS.

4. If b = 0, the verifier checks that z = x2 + r · n. The test is performed in the RNS
representation. If b = 1, the verifier checks that y2 = z · v mod n.

5. Steps 1-4 are repeated several time to reduce the cheating probability.

This second time-efficient variant is more efficient for the verifier, because when b = 0,
the check at step 3 is performed in RNS representation, which is of quasi-linear complexity
instead of quadratic complexity. Therefore, the time-complexity of this second time-efficient
variant is expected to be divided by a factor of approximately two.
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5 Cryptanalysis of the Second Time-Efficient Variant of
Eurocrypt ’95

We show that the second time-efficient variant is insecure. We describe an attacker A that
passes the identification protocol with probability one, without knowing the private key s.

The key observation is the following: since for b = 0, the verifier checks that z = x2+r ·n
in the RNS representation, the equality checked by the verifier is actually:

z = x2 + r · n mod Π (1)

Since the attacker can choose x, r ∈ [0, Π] instead of x ∈ [0, n] and r ∈ [0, B], we may have
x2 + r · n > Π, and therefore equation (1) does not necessarily imply that z = x2 + r · n
holds over the integers (or equivalently, that x is a square root of z modulo n).

Moreover, since Π is the product of small primes, it is easy to compute square roots
modulo Π, as opposed to computing square roots modulo n. Therefore, the attacker can
generate an integer z at step 1 so that he is guaranteed to succeed if b = 1. Then if b = 0,
the attacker will also succeed by computing a square root modulo Π, which is easy.

More precisely, at step 1, the attacker generates a random u ∈ Zn and a random
r′ ∈ [0, B], and sends z = (u2/v mod n) + r′ · n to the verifier. Then at step 3, if b = 0,
the attacker generates a random r ∈ [0, Π], and solves:

x2 = z − r · n mod Π

Since Π is the product of small primes, it suffices to take a square root of z− r · n modulo
each of the small primes pi. If z − r · n is not a square modulo a given prime pj, it suffices
to modify the value of r mod pj without changing r mod pi for i 6= j. Eventually the
attacker sends x and r to the verifier in RNS representation, and the attacker is successful
with probability one.

Otherwise, if b = 1, then the attacker sends y = u + t · n for a random t ∈ [0, B], and
the verifier can check that y2 = z · v mod n since u2 = z · v mod n.

Therefore, in both cases, the attacker passes the identification protocol with probability
one, without knowing the private key.

6 Conclusion

We have shown that one of the time-efficient Fiat-Shamir variants introduced at Eurocrypt’
95 by Naccache et al. is insecure. Namely, a polynomial-time attacker can pass the iden-
tification protocol with probability one, without knowing the private key. Consequently,
for practical implementations, we recommend to use [4]’s first time-efficient variant rather
than [4]’s second time-efficient variant, which should be avoided.
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Abstract. The euro was introduced on the first of January 1999 as a common currency in fourteen
European nations. EC regulations are fundamentally different from usual banking practices for they
forbid fees when converting national currencies to euros (fees would otherwise deter users from
adopting the euro); this creates a unique fraud context where money can be made by taking advantage
of the EC’s official rounding rules.

This paper proposes a public-key-based protection against such attacks. In our scheme, the parties
conducting a transaction can not predict whether the rounding will cause loss or gain while the
expected statistical difference between an amount and its euro-equivalent decreases exponentially as
the number of transactions increases.

1 Introduction

Economic and Monetary Union (in short EMU) is a further step in the ongoing process
of European integration. EMU will create an area whose economic potential will sustain
comparison to that of the United States. Given the size of the euro area, the euro is expected
to play an important role as an international currency. As a trade invoicing currency, the
euro will also extend its role way beyond direct trade relations.

Issues related to euro conversion were therefore precisely addressed [3] within the general
framework of the European financial market. A specific directive stating conversion rules for
currencies inside the monetary union was also prepared and issued [1]. The main objective of
this directive is to provide financial institutions with a comprehensive set of rules addressing
all issues related to currency conversions and currency rounding issues. Although great deal
of attention was paid while standardizing the different formulae, the constraint imposed
by the requirement of not introducing conversion fees (a political issue) opens the door to
new fraud strategies.

In the following sections we explore fraud scenarii based on the actual rounding formula
and present efficient counter-measures combining randomness and public-key cryptography.
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2 Currency Conversion

For centuries, currency conversions have been governed by (rounded) affine functions:

f(x) = round

(
x

ρ

)
− κ

In financial terms, κ is the banker’s commission (or exchange fee) expressed in the
target currency, ρ is the conversion rate and the round function is an approximation rule
such that for all x:

∆ =

(
x

ρ
− f(x)

)
> 0

where ∆ represents the agent’s benefit or margin.

At the beginning of 1999, the exchange rates between fourteen European currencies
have been set with respect to the euro (cf. to appendix A) but, being an obstacle to the
euro’s widespread adoption, exchange fees were forbidden (κ = 0) by law. EC regulation
1103/97 specifies that the European-wide legally-binding conversion formula is:

f(x) =

⌊
x

ρ
+

1

2

⌋

This formula can be adjusted for currencies that can be broken up into smaller amounts
e.g. the British Pound can be broken up into 100 pence. Thus the formula becomes:

f(x) =

⌊
100× x

ρ
+

1

2

⌋
× 1

100

As a characteristic example, the conversion of 1000 frf into euros would be done as
follows:

x
FRF

ρ
FRF

=
1000

6.55957
= 152.4490172 . . . 7→ x

EUR
= 152.45EUR

The conversion between two European currencies is somewhat more intricate; the value
of the first currency is converted to scriptural euros, rounded to three decimal places (i.e.
0.1 cent) and then converted into the target currency as illustrated in the next example
where 1000 frf are converted into nlgs:

x
FRF

ρ
FRF

=
1000

6.55957
= 152.4490172 . . . 7→ x

EUR
= 152.449EUR

x
EUR

× ρ
NLG

= 152.449× 2.20371 = 335.9533857 . . . 7→ x
NLG

= 335.95NLG

We refer the reader to [1] for further (mainly legal) details.
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3 Rounding Attacks

Attacks (characterized by a negative ∆) are possible when two different amounts in a given
currency collide into the same value in euros; this is only possible when the smallest sub-
unit of the concerned currency is worth less than one cent; examples are rather common
and easy to construct:

x
PTE

ρ
PTE

=
1100

200.482
= 5.48678 . . . 7→ x

EUR
= 5.49EUR

y
PTE

ρ
PTE

=
1101

200.482
= 5.49176 . . . 7→ y

EUR
= 5.49EUR

The smallest Portuguese unit is the centaro (which only exists for scriptural payments);
as the smallest circulating currency unit is the escudo, it appears in our example that
x

EUR
= y

EUR
although x

PTE
6= y

PTE
.

The attacker can therefore create an escudo ex-nihilo by investing x
PTE

= 1100 and
converting them to x

EUR
= 5.49 using the official conversion rule; then, using the EC’s

formula in the opposite direction, the attacker can convert the x
EUR

back to escudos and
cash 1101 ptes:

x
EUR

× ρ
PTE

= 5.49× 200.482 = 1100.65 7→ x′
PTE

= 1101PTE

Note that although more decimal places can be used, higher precision neither prevents,
nor significantly slows down this potential fraud which becomes particularly relevant when
automated attackers (e.g. home-based PCs) enter the game.

4 Probabilistic Rounding

The most obvious solution to this problem is to charge a minimal amount per transaction,
effectively rounding down on every occasion. This solution would be fine for transactions
that occur occasionally but not for transactions that occur frequently, especially if the
concerned amount is small. The EC have tried to make the Euro as acceptable as possible
and introducing a system that rounds down every transaction is more likely to be viewed
as a means of making some money rather than preventing possible fraud attacks.

The alternative approach chosen in this paper consists of rounding up with a probability
p and down with probability 1 − p, thereby making the rounding unpredictable before
completing the conversion process.

At its most simple this would involve rounding with a 1/2 probability as illustrated in
the following examples:
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x
EUR

= 5.49 eur
↗

probability 1/2

x
PTE

ρ
PTE

=
1100

200.482
= 5.48678 . . .

probability 1/2

↘
x

EUR
= 5.48 eur

and, repeating the process in the opposite direction:

x
PTE

= 1101 pte
↗

probability 1/2

x
EUR

× ρ
PTE

= 5.49× 200.482 = 1100.65
probability 1/2

↘
x

PTE
= 1100 pte

x
PTE

= 1099 pte
↗

probability 1/2

x
EUR

× ρ
PTE

= 5.48× 200.482 = 1098.64
probability 1/2

↘
x

PTE
= 1098 pte

consequently, if numerous transactions are carried out money would be lost as the
expected return, E

PTE
(1100), is smaller than 1100:

E
PTE

(1100) =
1101

4
+

1100

4
+

1099

4
+

1098

4
= 1099.5 < 1100

The opposite problem appears when 1000 esp (where ρ
ESP

= 166.386) are converted
back and forth:
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x
ESP

= 1002
↗

probability 1/4

x
EUR

= 6.02
↗ probability 1/4

probability 1/2 ↘
x

ESP
= 1001

x
ESP

= 1000
xESP = 1000

probability 1/2 ↗
↘ probability 1/4

x
EUR

= 6.01
probability 1/4

↘
x

ESP
= 999

where the expected return is:

E
ESP

(1000) =
999

4
+

1000

4
+

1001

4
+

1002

4
= 1000.5 > 1000

It is thus possible to take advantage of probabilistic rounding as p = 1/2 only slows
the attacker by forcing him to expect less return per transaction, but the system’s overall
behavior remains problematic.

To make x and E(x) equal p should depend on the ratio x/ρ and compensate statistically
the rounded digits.

Denoting by frac(x) = x− bxc the fractional part of x, let:

p(x, ρ) = frac

(
100× frac

(
x

ρ

))
(1)

be the probability of rounding x currencies at rate ρ.

For example, for 1000 pesetas where x
ESP

/ρ
ESP

= 6.0101210 . . ., truncation yields:

p(1000, 166.386) = 0.01210 . . .

and:
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x
ESP

= 1002
↗

probability 0.00778877

x
EUR

= 6.02
↗ probability 0.00431123

probability 0.0121 ↘
x

ESP
= 1001

x
ESP

= 1000
xESP = 1000

probability 0.9879 ↗
↘ probability 0.96794442

x
EUR

= 6.01
probability 0.01995558

↘
x

ESP
= 999

This system has an expected return of:

E
ESP

(1000) = 0.00778877× 1002 + 0.00431123× 1001

0.96794442× 1000 + 0.01995558× 999

= 999.99993319 ∼= 1000

p can be taken to a higher degree of accuracy. If the probabilities are implemented
to the highest possible accuracy degree (i.e. all decimal places, where possible), then the
expected result will be as close to the value used in the first conversion as possible.

Applied to the previous example the fraud expectation is exactly equal to 1000 + 3 ×
10−11 esp. Greater security can only be gained by increasing the accuracy of the exchange
rates themselves.

Let x be an amount in a currency whose rate is ρ and denote by E(x) the fraud
expectation after a currency 7→ euro probabilistic conversion of x.

We can state the following lemma:

Lemma 1. Let x be an amount in a currency which rate is ρ and denote by E(x) the fraud
expectation after a back and forth (currency 7→ euro 7→ currency) probabilistic conversion
of x were p(x, ρ) is determined by formula 1. Then :

E(x) = x

Proof :
Denoting by r(x, ρ) the truncation of x/ρ to a two-digit precision :

r(x, ρ) = b100x

ρ
c × 1

100
,
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we redefine p(x, ρ) = (x/ρ− r(x))× 100 and evaluate E(x) :

E(x) = r(x, ρ)× (1− p) + (r(x, ρ) +
1

100
)× p

= r(x, ρ) +
p

100

= r(x, ρ) +
(x/ρ− r(x, ρ))× 100

100
= r(x, ρ) + x/ρ− r(x, ρ) = x/ρ

and applying the same procedure in the opposite direction we get x back.
Note that since the x/ρ is a rational number, so is the probability p(x, ρ) (say a/b);

consequently there is no need to truncate or approximate p(x, ρ), the coin toss can simply
consist of picking a random number in the interval [0, b− 1] and comparing its value to a.

5 An Asymmetric Solution

Probabilistic rounding requires an impartial random source S, independent of the interact-
ing parties (A and B) and (as is usual in cryptography) the best way of generating trust
consists of giving neither party the opportunity to deviate from the protocol. The solution
is somewhat analogous to [2].

This is hard to achieve with probabilistic rounding, as it is impossible to prove whether
x/ρ was rounded correctly or not. Therefore, when A or B gains money after a few trans-
actions, it can not be proved if this happened by chance or not. Public-key cryptography
can nevertheless serve here, both as S and as a fair rounding proof.

When a transaction is carried out, transaction data are concatenated and signed by A
and B, using a deterministic signature scheme (typically an RSA [4]). The signatures are
then used as randomness source to generate a number 0 ≤ τ ≤ 1 to the same amount of
decimal places as the probability p(x, ρ). If τ ≤ p(x, ρ) then the value at the end of the
transaction is rounded up, otherwise it is rounded down. Denoting by h a one-way function,
the protocol is the following:

– A and B negotiate the transaction details t (including the amount to be converted).
– A sends to B a sufficiently long (160-bit) random challenge rA.
– B sends to A a sufficiently long (160-bit) random challenge rB.
– A and B sign h(t, rA, rB) with their deterministic signature schemes, exchange their

signatures (hereafter sA and sB) and check their mutual correctness.
– τ = sA ⊕ sB is used as explained in the previous section for the rounding operation.

The signatures will convince both parties that once converted, the amount was rounded
fairly and prevent A and B from perturbing the distribution of τ . Furthermore, the usage
of digital signatures permits the resolution of disputes.
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Lighter (symmetric) versions of the protocol can be adapted to settings where non-
repudiation is not a requirement (e.g. the everyday exchange of small amounts) :

– A and B generate two sufficiently long random strings rA and rB and exchange the
hash values cA = h(rA) and cB = h(rB).

– A and B reveal rA and rB and check the correctness of cA and cB.

– τ = rA ⊕ rB is used for the rounding operation.

Finally, note that (as most two-party symmetric e-cash protocols) our symmetric variant
is vulnerable to protocol interrupt attacks. Such attacks consist in abandoning a transaction
(e.g. walk out of the shop) if the rounding does not happen to be in favor of the abandoning
party.

6 Conclusion

This paper presented a counter-measure that prevents a fraud scenario inherent to EC regu-
lation 1103/97. Although current regulations do not present serious problems when applied
occasionally in coin and bank-note conversions, the procedures proposed in this paper is
definitely preferable in large-scale electronic fund transfers where automated attacks could
cause significant losses.
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A Euro Exchange Rates

country symbol currency ρ =currency/euro
Austria ats schilling 13.7603
Belgium bec franc 40.3399
Denmark dkk krona 7.43266
Finland fim mark 5.94575
France frf franc 6.55956
Germany dem mark 1.95587
Greece grd drachma 326.300
Ireland iep punt 0.78786
Italy itl lira 1936.27
Luxemburg luf franc 40.3399
Netherlands nlg guild 2.20374
Portugal pte escudo 200.481
Spain esp peseta 166.388
Sweden sek krona 8.71925

B EC Regulation 1103/97

Article 4.

1. The conversion rates shall be adopted as one euro expressed in terms of each of the
national currencies of the participating Member States. They shall be adopted with six
significant figures.

2. The conversion rates shall not be rounded or truncated when making conversions.
3. The conversion rates shall be used for conversions either way between the euro unit and

the national currency units. Inverse rates derived from the conversion rates shall not
be used.

4. Monetary amounts to be converted from one national currency unit into another shall
first be converted into a monetary amount expressed in the euro unit, which amount
may be rounded to not less than three decimals and shall then be converted into other
national currency unit. No alternative method of calculation may be used unless it
produces the same results.

Article 5.

Monetary amounts to be paid or accounted for when a rounding takes place after a
conversion into the euro unit pursuant to Article 4 shall be rounded up or down to the
nearest cent. Monetary amounts to be paid or accounted for which are converted into
a national currency unit shall be rounded up or down to the nearest sub-unit or in the
absence of a sub-unit to the nearest unit, or according to national law or practice to a
multiple or fraction of the sub-unit or unit of the national currency unit. If the application
of the conversion rate gives a result which is exactly half-way, the sum shall be rounded
up.
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Abstract. This paper introduces a method for tracking different copies of functionally equivalent
algorithms containing identification marks known to the attacker. Unlike all previous solutions, the
new technique does not rely on any marking assumption and leads to a situation where each copy is
either traceable or so severely damaged that it becomes impossible to store in polynomial space or
run in polynomial time.

Although RSA-related, the construction is particularly applicable to confidential block-ciphers such as
SkipJack, RC4, GOST 28147–89, GSM A5, COMP128, TIA CAVE or other proprietary executables
distributed to potentially distrusted users.

1 Introduction

Although software piracy costs $11.2 billion per year [3], impedes job growth and robs
governments millions of dollars in tax revenues, most existing protections still rely on legal
considerations or platform-specific assumptions.

The most common solutions are based on electronic extensions (dongles) containing
memory tables or cheap 4-bit microcontrollers; to rely on these, the protected program
periodically challenges the dongle via to the computer’s parallel port and makes sure that
the retrieved answers are correct. Unfortunately, given enough time, skill and motivation,
it is always possible to disassemble the program, find the dongle calls and remove them
from the code. In some sense, this approach mixes tamper-resistance and steganography.

A somewhat more efficient solution (mostly used in the playstation industry) consists
of executing strategic code fragments in the dongle. As an example, a chess program (ex-
changing with the player a couple of bytes per round) can be executed in the dongle while
less important game parts such as graphics, sounds and keyboard-interfaces can be left
unprotected on a CD, useless for playing without the dongle.
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A third approach consists of dividing the protected media into two partitions: a first
(conventionally formatted) area contains a program called loader while the second, for-
matted in a non-standard way, contains the protected software itself. When the loader is
executed, it reads-out the second partition into the RAM and jumps into it. Since operat-
ing system commands are unable to read the second partition, its contents are somewhat
protected, although patient attackers can still analyze the loader or copy the executable
directly from the RAM.

By analogy to the double-spending problem met in e-cash schemes, it seems impossible
to prevent duplication without relying on specific hardware assumptions, simply because
digital signals are inherently copyable. This difficulty progressively shifted research from
prevention to detection, assuming that the former is achieved by non-technical (legal)
means. In such models, users generally get personalized yet very similar copies of a given
data (referred to as equivalent) where the slight dissimilarities (marks) between copies are
designed to resist collusion, be asymmetric or offer anonymity and other cryptographic
features [5, 10, 11].

It is important to stress that all such systems rely on the hypothesis that the marks are
scattered in a way that makes their location, alteration or destruction infeasible (marking
assumption). In practice, marking heavily depends on the nature of the protected data
and the designer’s imagination [1]. Different strategies are used for source code, images
and texts and vary from fractal coding [2], statistical analysis [14] or stereometric image
recordings [4] to paraphrasing information exchanged between friendly intelligence agencies
[9].

This paper shows that at least as far as functions, algorithms or programs are concerned,
marking assumptions can be replaced by regular complexity ones; consequently, we will
assume that all identification marks (and their positions) are known to the attacker and
try to end-up in a situation where each copy is either traceable or so severely damaged
that it becomes impossible to store in polynomial space or run in polynomial time.

The new construction appears particularly suitable to proprietary cryptosystems such
as SkipJack, RC4, GOST 28147–89, GSM A5, COMP128 or CAVE TIA, distributed to
potentially distrusted users. Although it seems unlikely that an important number (≥ 100)
of copies will be marked in practice, we believe that the new method can be useful in the
following contexts where a few copies are typically distributed :

– Proprietary standardization committees (such as the TIA-AHAG, the GSM consortium
or the DVB group) could distribute different yet equivalent functions to each member-
company. Although such a deployment does not incriminate individuals, it will point
out the company which should be held collectively responsible.

– In an industrial development process, different descriptions of the same function could
be given to each involved department (e.g. software, hardware, integration and test)
and the final client.

Although acceptable, the performances of our solution degrade when the number of
users increases; we therefore encourage researchers and implementers to look for new vari-
ants and improvements of our scheme.
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2 The Formal Framework

The new protocol involves a distributor and several users; the distributor is willing to
give each user a morphologically different, yet functionally equivalent, implementation
of a function. Hereafter, the word function will refer to the mathematical object, while
implementations will represent electronic circuits or programs that compute a function
(more formally, implementations can be looked upon as polynomial circuits that compute
the function).

Definition 1. Let M and L be sets of integers. A distribution of the function f : M→ L
is a set of implementations F such that:

∀F ∈ F , ∀x ∈M f(x) = F [x]

Definition 2. Let M and L be sets of integers. A keyed distribution of the function
f : M→ L is an implementation F and a set of integers K such that:

∀k ∈ K, ∀x ∈M f(x) = F [x, k]

A keyed distribution can be regarded as a monolithic device that behaves like the
function f when fed with a key belonging to K, whereas a distribution is simply a set
of independent software or hardware devices that behave like the function f . Note that
both definitions are equivalent: a keyed distribution is a specific distribution and a keyed
distribution can be constructed from a distribution by collecting all the implementations
and calling the one corresponding to the key; we will therefore use the simpler definition
of keyed distribution.

These definitions do not capture the fact that several implementations might be triv-
ially derived from each other. If, for instance, F [x, k] = kx then it is easy to find an
implementation F ′ such that F ′[x, 2k] = kx. (F ′ can be F [x, 2k]/2). To capture this, we
define an analyzer:

Definition 3. Let {F,K} be a keyed distribution of f . An analyzer Z of this distribution
is an algorithm that takes as input {F,K}, an implementation F ′ of f and tries to find the
key k ∈ K used in F ′. Z may either fail or output k.

In other words, when an opponent receives a legitimate implementation of f keyed with
k and modifies it, the analyzer’s role consists of trying to recover k despite the modifications.
The analyzer consequently behaves as a detective in our construction.

2.1 Adversarial Model

As usual, the adversary’s task consists of forging a new implementation which is unlinkable
to those received legitimately. We distinguish two types of opponents: passive adversaries
which restrict themselves to re-keying existing implementations and active adversaries who
may re-implement the function in any arbitrary way. When distribution is done through
hardware tokens (decoders, PC-cards, smart-cards) where keys are stored in EEPROM
registers or battery-powered RAM cells, passive adversaries are only assumed to change
the register’s contents while active ones may re-design a whole new hardware from scratch.



314 David Naccache et alii.

Definition 4. Let c be a security parameter. A keyed distribution {F,K} for the function
f is c-copyrighted against a passive adversary if given C ⊂ K, |C| < c, finding a k /∈ C
such that {F, k} implements f is computationally hard.1

Definition 5. Let c be a security parameter. A keyed distribution {F,K} with analyzer
Z for f is c-copyrighted against an active adversary if given C ⊂ K, |C| < c, finding an
implementation F ′ of f such that the analyzer Z, given input F ′, outputs either a integer
k in K \ C or fails is computationally hard.

3 The New Primitive

The basic observation behind our construction is that in many public-key cryptosystems,
a given public-key corresponds to infinitely many integers which are homomorphic to the
secret key, and can be used as such.

For instance, using standard notations, it is easy to see that a DSA key x can be
equivalently replaced by any x+kq and an RSA key e can be looked upon as the inverse of
any dk = e−1 mod φ(n) + kφ(n). We intend to use this flexibility to construct equivalent
modular exponentiation copies.

At a first glance it appears impossible to mark an RSA function using the above obser-
vation since given n, e and dk, a user can trivially find φ(n) (hereafter φ) and replace dk by
some other dk′ . Nevertheless, this difficulty can be circumvented if we assume that the ex-
ponentiation is only a building-block of some other primitive (for instance a hash-function)
where e is not necessary.

We start by presenting a solution for two users and prove its correctness; the two-user
case will then be used as a building-block to extend the construction to more users.

When only two users are concerned, a copyrighted hash function can be distributed
and traced as follows:

Distribution: The designer publishes a conventional hash function h and an RSA mod-
ulus n, selects a random d < φ and a couple of random integers {k0, k1}, computes
the quantities di = d + kiφ, keeps {φ, d, k0, k1} secret and discloses the implementation
H[x, i] = h(h(x)di mod n) to user i ∈ {0, 1}.

Tracing: Upon recovery of a copy, the designer analyzes its exponent. If d0 or d1 is found,
the leaker is identified and if a third exponent d′ appears, both users are identified as
a collusion.

4 Analysis

One can easily show that the essential cryptographic properties of the hash function are
preserved and that the distribution is 1-copyrighted against passive adversaries. It seems
difficult to prove resistance against general active adversaries; however, we show that if
such opponents are bound to use circuits performing arithmetic operations modulo n, then
we can exhibit an analyzer that makes our distribution 1-copyrighted.

1 with respect to the parameters of the scheme used to generate K.
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Theorem 1. h and H are equally collision-resistant.

Proof. Assume that a collision {x, y} is found in h; trivially, {x, y} is also a collision
in H; to prove the converse, assume that a collision {x′, y′} is found in H. Then either
h(x′)d = h(y′)d mod n and {x′, y′} is also a collision in h, or h(x′)d 6= h(y′)d mod n and
{h(x)d mod n, h(y)d mod n} is a collision in h. ut

Lemma 1. Finding a multiple of φ(n) is as hard as factoring n.

Proof. This lemma, due to Miller, is proved in [6]. ut
Theorem 2. If factoring is hard, {H, {d0, d1}} is 1-copyrighted against a passive adver-
sary.

Proof. Assume, without loss of generality, that an adversary receives the implementation
H and the key d0. Suppose that he is able to find d′ 6= d0 such that H[., d0] = H[., d′].
Then, d0 − d′ is a multiple of φ(n) and by virtue of Miller’s lemma, n can be factored. ut
Theorem 3. If factoring is hard, then {H, {d0, d1}} is 1-copyrighted against an active
adversary restricted to performing arithmetic operations modulo n.

Proof (Sketch). We show that an active adversary is not more powerful than a passive
one. We build Z as follows: Z first extracts the exponentiation part. He then formally
evaluates the function computed by this part, with respect to its constants {c1, . . . , cw}
and input x, replacing modular operations by regular ones. This yields a rational function
P/Q with variable x and coefficients depending only on {c1, . . . , cw}. He finally evaluates
all these coefficients modulo n. A careful bookkeeping of the non zero monomials shows
that either the adversary has obtained a multiple of φ(n) (and can therefore factor n)
or that P divides Q. This means that the rational function is in fact reduced to a single
monomial, from which we can compute the value of the corresponding exponent and the
security of the construction follows from the security against the passive adversary. ut

Note that resistance against active adversaries is more subtle than our basic design:
assuming that d is much longer than φ, adding random multiples of φ to d will not alter its
most significant bits up to a certain point; consequently, there is a finite number of `-bit
exponents, congruent to d mod φ and having a given bit-pattern (say u) in their most
significant part; the function: h(h(x)di ⊕ u) will thus admit only a finite number of passive
forgeries.

5 Tracing More Users

Extending the previous construction to more users is somewhat more technical; obviously,
one can not simply distribute more than two exponents as this would blind the collusion-
detection mechanism.
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System setup is almost as before: letting t be a security parameter, the designer
publishes a hash function h and t RSA moduli {n1, . . . , nt}, selects t random triples
{d[j] < φj, k[0, j], k[1, j]} and computes the t pairs:

d[i, j] = d[j] + k[i, j]φj for i ∈ {0, 1}
Then, the designer selects, for each user, a t-bit string ω. We will call ω the ID or the

codeword of this user. Each user receives, for each j, one out of the two keys d[0, j], d[1, j]
(he receives d[0, j] if the j-th bit of ω is zero and d[1, j] otherwise). The exact codeword
generation process will be discussed later.

Let s be a security parameter (0 < s ≤ t). The function is now defined as follows: the
input x is hashed and the result h(x) is used to select s keys among the t keys of a user.
For simplicity, let us rename these s keys {a1, . . . , as} for a given user.

We now define H[x] = H[s, x] recursively by:

H[1, x] = h(xa1 mod n1) and

H[j, x] = h(H[j − 1, x]aj mod nj) for j > 1

A simple (and sometimes acceptable) approach would be to distribute copies with
randomly chosen codewords. However, by doing so, logarithmic-size collusions could recover
the exponents with constant probability and forge new implementations; therefore, specific
sets of codewords must be used. Letting C be a coalition of c users provided with codewords
ω[1], . . . , ω[c]. C can not change d[i, j], if and only if all codewords match on their j-th bit.
Hence, the problem to solve boils down to the design of a set of codewords, amongst
which any subset, possibly limited to a given size, has elements which match on enough
positions to enable tracing. This problem was extensively studied in [4] which exhibits a
set of codewords of polylogarithmic (O(log6 t)) length, capable of tracing logarithmic size
coalitions.

While [4]’s hidden constant is rather large, our marks are a totally independent entity
and their size is not related to the size of the function (which is not the case when one
adds marks to an image or a text); hence, only complexity-theoretic considerations (the
hardness of factoring n) may increase the number of symbols in H.

Finally, the new construction allows to adjust the level of security by tuning s accord-
ingly. Although pirates could try to distribute copies with missing exponents in order not
to get traced, such copies become almost unusable even if only a few exponents are omit-
ted. This approach (detecting only copies which are usable enough) is similar to the one
suggested by Pinkas and Naor in [8]. Assuming that m of the exponents are missing and
that each computation requires s exponents out of t, the correct output probability is:

Pr[t,m, s] =
(t− s)!(t−m)!

t! (t−m− s)!

Given Pr[t, m, s]’s quick decay (typically Pr[100, 10, 10] ∼= 3/10) and the fact that re-
peated errors can be detected and traced, it is reasonable to assume that these untraceable
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implementations are not a serious business threat. No one would buy a pirate TV de-
coder displaying only three images out of ten (the perturbation can be further amplified
by CBC, in which case each error will de-synchronize the image decryption until the next
stream-cipher initialization).

6 Applications

Building upon a few well-known results, a variety of traceable primitives can be derived
from H: Feistel ciphers can be copyrighted by using H as a round function, traceable digital
signatures can use H in Rompel’s construction [13] and traceable public-key encryption
can be obtained by using [7] with a composite modulus (e-less RSA) or by post-encrypting
systematically any public-key ciphertext with a watermarked block-cipher keyed with a
public constant. Interactive primitives such as zero-knowledge protocols or blind signatures
can be traced using this same technique.

The construction also gives birth to new fundamental protocols; a web site could, for
example, sell marked copies of a MAC-function and record in a database the user IDs and
their exponents. Since all functions are equivalent, when a user logs-in, he does not need to
disclose his identity; but if an illegitimate copy is discovered, the web owners can look-up
the faulty ID in the database2.

Another application consists of restricting software to registered users. In any scenario
involving communication (file exchange, data modulation, payment, etc), the protected
software must simply encrypt the exchanged data with a copyrighted block-cipher. Assum-
ing that a word processor systematically encrypts its files with a copyrighted block-cipher
(keyed with some public constant), unregistered users face the choice of getting traced or
removing the encryption layer from their copies (the word processor will then be unable
to read files produced by legitimate users and will create files that are unreadable by reg-
istered programs); consequently, users of untraceable (modified) programs are forced to
voluntarily exclude themselves from the legitimate user community.

Finally, our scheme can also be used for TV tracing instead of the usual broadcast
encryption/traitor tracing techniques. In broadcast schemes, the message is usually block-
encrypted, each block being made of a header (which allows each user to recover a random
key) and a ciphertext block (which is the encryption of the data under this random key).
The main advantage of our scheme is its very low communication overhead: the header can
be a simple encryption of the secret key, as all the users receive an equivalent decryption
function. There are, however, several disadvantages: we totally lose control over the access
structure allowed to decrypt. This means that new keys need to be sent to all registered
users from time to time.

Surprisingly, in our setting smart-cards suddenly become a powerful... piracy tool; by
programming one of the Hi into a smart-card, a pirate can manufacture and distribute
executable hardware copies of his function and rely on the card’s tamper-resistance features
to prevent the designer from reading the exponents that identify him.

2 care should be taken not to restrict the MAC’s input space too much as polynomially small I/O spaces could
be published as look-up tables.
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7 Conclusion and Open Questions

We presented a new (public-domain) marking technique which applies to a variety of
functions and relies on regular complexity assumptions; while we need a large amount
of data to personalize an implementation when many users are involved, the construction
is fairly efficient and can be adjusted to variable security levels.

There remains, however, a number of fundamental and practical questions such as the
existence of DLP-based copyright mechanisms or the design of a copyright mechanism that
allows to serve more than two users in a single (non-iterated) function. From a practical
standpoint, it seems easy to compress the set {n1 . . . nt} to only N + t log N bits (this is
done by generating t moduli having identical MSBs). Reducing the size of the exponent
set is an interesting challenge.

References

1. J.-M. Acken, How watermarking adds value to digital content, Communications of the ACM, vol. 41-7, pp.
75-77, 1998.

2. P. Bas, J.-M. Chassery and F. Davoine, Self-similarity based image watermarking, Proceedings of eusipco’98,
Ninth European signal processing conference, European association for signal processing, pp. 2277-2280.

3. The huge costs of software piracy, Computer Fraud and Security Bulletin, 09/1997, Elsevier Science, page 3.
4. D. Boneh and J. Shaw, Collusion-secure fingerprinting for digital data, Advances in cryptology crypto’95,

Springer-Verlag, Lectures notes in computer science 963, pp. 452–465, 1995.
5. B. Chor, A. Fiat and M. Naor, Tracing traitors, Advances in cryptology crypto’94, Springer-Verlag, Lectures

notes in computer science 839, pp. 257–270, 1994.
6. G. Miller, Riemann’s hypothesis and tests for primality, Journal of computer and system sciences, vol. 13, pp.

300–317, 1976.
7. D. Naccache and J. Stern, A new public-key cryptosystem,Advances in cryptology eurocrypt’97, Springer-

Verlag, Lectures notes in computer science 1233, pp. 27–36, 1997.
8. M. Naor and B. Pinkas, Theshold Traitor Tracing, Advances in cryptology crypto’98, Springer-Verlag, Lec-

tures notes in computer science 1462, pp. 502–517, 1998.
9. V. Ostrovsky, The other side of deception, Harper-Collins Publishers, New-York, page 38, 1995.

10. B. Pfitzmann and M. Schunter, Asymmetric fingerprinting, Advances in cryptology eurocrypt’96, Springer-
Verlag, Lectures notes in computer science 1070, pp. 84–95, 1996.

11. B. Pfitzmann and M. Waidner, Anonymous fingerprinting, Advances in cryptology eurocrypt’97, Springer-
Verlag, Lectures notes in computer science 1233, pp. 88–102, 1997.

12. R. Rivest, A. Shamir and L. Adleman, A method for obtaining digital signatures and public-key cryptosystems,
Communications of the ACM, vol. 21-2, pp. 120-126, 1978.

13. J. Rompel, One way functions are necessary and sufficient for secure digital signatures, Proceedings of the
22-nd Annual ACM Symposium on the Theory of Computing, pp. 387–394, 1990.
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Abstract. We present ’malicious insider attacks’ on chip-card personalization processes and sug-
gest an improved way to securely generate secret-keys shared between an issuer and the user’s smart
card. Our procedure which results in a situation where even the card manufacturer producing the
card cannot determine the value of the secret-keys that he personalizes into the card, uses public key
techniques to provide integrity and privacy of the generated keys with respect to the complete initial-
isation chain. Our solution, which provides a non-interactive alternative to authenticated key agree-
ment protocols, achieves provable security in the random oracle model under standard complexity
assumptions. Our mechanism also features a certain genericity and, when coupled to a cryptosystem
with fast encryption like RSA, allows low-cost intrusion-secure secret key generation.

1 Introduction

Tamper-resistant devices like smart-cards are used to store and process secret and per-
sonal data. Examples of applications making extensive use of smart cards include wireless
communication systems such as the Global System for Mobile communications (GSM), or
banking systems using the EMV (Europay, Mastercard and VISA) standard. These appli-
cations share the fact that they use secret key identification or authentication to achieve
security and enable access to services. Thus some unique secret key KI (we will adopt
the notation KI to denote a card’s secret key by analogy with the widely known GSM
terminology) needs to be shared between the issuer (the bank or the telecom operator)
and the smart card. Usually this secret key material is downloaded into the card during
the so-called chip personalization phase, i.e. the initialisation phase during which identical
cards are configured in such a way that each and every of them corresponds to one specific
user.

Usually, the card personalization center either writes secret keys into the cards according
to a list provided by the issuer, or generates the keys itself and downloads them into the
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cards within it’s own premises, and subsequently transmits a list of (encrypted) keys to the
issuer. We refer to these scenarios as typical personalization protocols. In the sequel, we
consider precisely the second scenario (key generation within the manufacturer’s premises)
and show that such a basic personalization procedure is vulnerable to malicious insiders.

We first discuss the potential security flaws in such a process, and then proceed to
present a new personalization protocol in which the manufacturer is able to provide evidence
to the issuer that no one except the issuer himself knows the secrets stored inside the cards.
Thus our new technique provides generally trusted keys for secret key applications.

The rest of the paper is organized as follows. In Section 2, we give an overview of a
typical personalization protocol, and we point out its vulnerability to insider attacks when
appropriate physical site protection measures are not enforced. Section 3 proposes our
new personalization procedure. We provide a thorough security analysis in section 4 and
conclude by a giving practical implementations of our technique in section 5.

2 Personalization Protocols

2.1 The Current Approach: Typical Protocols

Card personalization involves three parties: an issuer (telecommunications operator or
bank), a card manufacturer (who actually personalizes smart cards for the issuer), and
a smart card. Beyond graphical personalization – which may consist in printing the is-
suer’s logo on the card for instance, the manufacturer has to electrically initiate the card
and among such tasks, initialize the files meant to contain the card’s secret key material
KI . In a typical scenario, each and every secret key KI is generated uniformly at random
by a personalization computer (PC) connected to the personalization system (such as a
DataCard 9000 machine). Whenever a card enters the system, a fresh random key KI is
selected by the PC and downloaded into the card’s non-volatile memory.

Simultaneously, the key gets encrypted on the PC, together with the card identifier
Id (which might be some publicly available unique bitstring such as a serial number for
instance) using the issuer’s secret key Ks. Lists of encrypted (KI , Id) pairs are then sent
over an insecure channel to the issuer who decrypts the received files and recovers the pairs
(KI , Id).

Another way to proceed consists in encrypting the generated keys with the issuer’s
authenticated public key in an asymmetric key setting. This way, the issuer is the only
entity able to decrypt the generated files, and the key Ks need not be known at the
manufacturer’s premises.

However, both solutions are vulnerable to insider attacks where a malicious entity
having access to the manufacturer’s premises would get hold of the key. We may think of
a malicious insider as some malevolent employee willing to clone SIM cards or as a hacker
that discretely eavesdrops the computer network from outside the personalization center.
This strongly motivates the search for protocols featuring a guaranteed level of security
against this kind of threat.
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2.2 Security Notions for Card Personalization

Let us examine the setting and determine which security goals are desirable to reach from
the issuer’s standpoint. When the personalization protocol takes place, parties are

– a tamper-resistant secret-less chip-card to be personalized with identifier Id,
– an issuer (supposedly remote),
– a personalization system (PC + DC9000) in which the issuer has no reason to put trust.

Ultimately, the goals the personalization protocol is meant to achieve are the following.
At the end of the process,

1. the card must contain some secret key KI belonging to some fixed key space (we call
this property correctness),

2. the issuer must know the correct pair (Id, KI) (we refer to this property as key integrity),
3. the issuer should be confident that he is the only entity who shares the knowledge of

the (Id, KI) pair with the card (this is defined as key privacy).

Correctness is easily achieved. The question is whether requirements 2 and 3 are actually
achieved by current typical personalization protocols, and the answer is obviously no. The
above protocols do not meet key integrity nor even key privacy. Indeed, the computer, if
handled by a malicious person, may very well generate a given KI and transmit a different
one to the issuer. This can be considered a denial of service attack, as the end-user would
get a non-functional card. Alternatively, the computer might respect the integrity property
by providing the right pair (Id, KI) to the issuer, but reveal this pair to an intruder getting
hold of the PC. In this case, card cloning becomes possible. We call such attacks ’malicious
insider attacks’.

2.3 The Interlock Protocol

One obvious attempt to address this problem consists in executing a key agreement protocol
such as Interlock [4] between the card and the issuer.

Interlock is described as follows. Assuming that two entities A and B, with public-keys
pkA and pkB, want to exchange a secret through an insecure channel, A and B proceed as
follows. First, A and B exchange their public keys through the channel. Then, A (resp. B)
chooses a random rA (resp. rB), and encrypts it with pkB (resp. pkA) to obtain a ciphertext
cA (resp. cB). cA (resp. cB) is a bitstring which can be cut into two equal parts (c1

A, c2
A)

(resp. (c1
B, c2

B)). Thus, A sends c1
A to B, and sends the remaining part c2

A only after having
received c1

B. Finally, B sends c2
B. At the end of the sequence, A and B share the pair

(rA, rB).

Clearly, this protocol thwarts passive man-in-the-middle attacks. However, it is interac-
tive, which represents an unacceptable hurdle in the context of a personalization process.
The only way to achieve an equivalent non-interactive protocol would be to use public-key
certificates and signature verification which calls for far too complex (and heavy) public-key
infrastructures.
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Besides, security requirements explicitly demand resistance against active attacks, where
the attacker may not only eavesdrop exchanged pieces of information but also modify them
in some way, and may impersonate parties as well. Because it does not provide authenti-
cation, Interlock does not resist active attacks.

The contribution of this paper consists in providing a non-interactive alternative to the
Interlock protocol which, in our context, resists active attacks and needs no certificates or
signatures whatsoever.

3 A Provably Secure Card Personalization Protocol

Let us go back to the typical scenario. Obviously, the security breach resides in the possibil-
ity to attack the PC. Thus each and every secret should be generated inside the card itself,
which, by assumption, provides the advantage of being tamper-resistant over an open PC.

3.1 A First Approach

Thus a first idea is to generate the secret key KI inside the card, download the issuer’s
public key into the card, encrypt the generated secret under the public key and output the
result. Next, the encrypted secrets are collected along with the Id’s in a file and sent to the
issuer who decrypts the list with his private key SK and recovers the associated pairs in
clear (alternatively the Id’s could also be encrypted together with the secret KI inside the
card). This protocol is shown in figure 1. The public key of the issuer is noted PK; typically,
one could use stand-alone RSA public key encryption [5] for instance. We suppose the key
pair (PK, SK) is generated once and for all by the issuer himself, and then transmitted to
the personalization center which uses it for a certain period of time.

,VVXHU¶V�IDFLOLWLHV

LVVXHU�SXEOLF�NH\,VVXHU¶V�SXEOLF�NH\

.L�HQFU\SWHG�XQGHU

GDWDEDVH�RI
GHFU\SWHG�.�V

GHFU\SW
DQG�VWRUH

 �.�

0DQXIDFWXUHU¶V�IDFLOLWLHV

JHQHUDWH�UDQGRP�.�
DQG�HQFU\SW�ZLWK

Fig. 1. Secure personalization protocol : first approach
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Unfortunately, this solution is vulnerable to the well-known man-in-the-middle attack.
Suppose the attacker controls the PC again. She is then able to generate her own public
and private RSA key pair and to fool the card by sending to it her own public key. She
recovers the encrypted KI values, decrypts them, and re-encrypts them with the issuer’s
public key. Thus key integrity is preserved, but key privacy is violated. The attack is shown
in figure 2 where the attacker’s public key and private keys are boxed.
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LVVXHU�SXEOLF�NH\

JHQHUDWH�UDQGRP�.�
DQG�HQFU\SW�ZLWK

.L�HQFU\SWHG�XQGHU

GDWDEDVH�RI
GHFU\SWHG�.�V

GHFU\SW
DQG�VWRUH

0DQXIDFWXUHU¶V�IDFLOLWLHV

KDFNHU�SXEOLF�NH\

GHFU\SW

UH�HQFU\SW

 �.�

Fig. 2. Man-in-the-middle attack on key generation process

3.2 Proposed Protocol

Let us now proceed to describe our protocol. The security analysis will be discussed in the
next section. Basically, the personalization process now includes the following steps :

1. the PC transmits the issuer’s public key PK to the card,
2. the card generates a random r, computes KI = H(r, PK) where H is a hash function

such as SHA-1 [7], and memorizes KI in non volatile memory,
3. the card encrypts r as c = EPK(r) where EPK denotes public key encryption under PK,

and outputs c,
4. the PC collects the pair (Id, c) and sends it to the issuer who later decrypts c using SK,

recovers r = DSK(c) and computes KI = H(r, PK).

This protocol is shown in figure 3.

4 Security Analysis

4.1 Main Results

Although looking simple, our protocol achieves a very satisfactory security property, namely
that
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Fig. 3. Provably Secure Card Personalization Protocol

– both key integrity and key privacy are preserved under a passive attack,

– if key privacy is not preserved under an active attack then key integrity cannot be
preserved either.

The proof of that fact is given below. From a practical viewpoint, this means that if an
intruder simply eavesdrops what is transmitted through the PC, our protocol fully reaches
the security goals of section 2.2, namely key integrity and privacy. Additionally, if the
intruder actively operates changes over transmitted data, she is given no other choice than

– either knowing the key KI generated by the card; but then the issuer recovers nothing
else than a faulty key K ′

I 6= KI . Subsequently, the card just cannot work properly
because user authentication will be unsuccessful each time the end user attempts to
access the issuer’s service. The issuer may then recognize the card as a fake or abnormal
one and blacklist it.

– or letting the card generate KI properly and later have normal access to the issuer’s
service; but then, no information whatsoever can be obtained on KI .

In other words, our protocol prevents insiders from cloning normal cards since only
useless cards are exposed to key divulgation. Trying to gain information on the card’s key
simply forbids its future use in normal conditions. We guarantee this under any type of
attacks, be they very sophisticated. The insider is left only with malevolence i.e. the ability
to force the personalization of useless cards. We argue that this scenario is not of interest
to an active adversary. We assess these results without considering collusions in the first
place, and address these further in section 4.5.

4.2 Security Proof Against Passive Insiders

We state, in a somewhat more formal way:
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Theorem 1 (Passive Attacks). Assume that the encryption scheme EPK is deterministic
and one-way under chosen plaintext attacks (OW-CPA). Then no polynomial time attacker
given PK and c = EPK(r) can recover KI = H(r, PK) with non-negligible probability in the
random oracle model.

Proof. We assume the existence of an attacker A with success probability ε and show how
to invert EPK with probability ε′. We build a reduction algorithm B as follows. B is given an
instance c̃ = EPK(r̃) and must return r̃ with non-negligible probability. B randomly selects

K̃I and runs A(PK, c̃).
Now, each time A queries the random oracle H for an input (r, pk), B checks in the

history of queries if (r, pk) was queried by A in the past, in which case the same answer
is returned to A. Otherwise, if pk = PK and EPK(r) = c̃, then B sets r̃ = r and returns

K̃I . If none of these cases occur, B selects h uniformly at random, returns h and updates
the history of queries. Now when A has finished, B checks whether r̃ was initialized during
the game, simply returns r̃ if so or fails otherwise. This completes the description of the
reduction algorithm B.

Since the simulation of H is perfect, it is clear that B is sound. We denote by Ask
the event that A submits r̃ to the simulation of H. Now if Ask never happens, K̃I is a
uniformly distributed random value unknown to A, so

Pr
[
A = K̃I | ¬Ask

]
≤ 1

]H
,

where ]H denotes the number of elements in the output space of H. By assumption,

ε≤ Pr
[
A = K̃I

]

≤ Pr
[
A = K̃I | ¬Ask

]
+ Pr [Ask]

≤ 1

]H
+ Pr [Ask]

which yields

ε′ = Pr [B = r̃]

= Pr [Ask]

≥ ε− 1/]H

Therefore, if ε is non negligible, ε′ is non negligible either. ut

Interestingly, we also get a slightly different result for non deterministic encryption
schemes, i.e. when the protocol relies on a probabilistic encryption function r 7→ EPK(r; u).
We include this result here for the sake of completeness. We state:
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Theorem 2 (Passive Attacks). Assume that the probabilistic encryption scheme EPK is
semantically secure under chosen plaintext attacks (IND-CPA). Then no polynomial time
attacker given PK and c = EPK(r) can recover KI = H(r, PK) with non-negligible probability
in the random oracle model.

Proof. Here again, we assume the existence of the same attacker A with non negligible
success probability ε and show how to distinguish encryptions EPK with non negligible
advantage ε′. The reduction algorithm B = (B1,B2) is as follows. B1 (the find stage)
chooses two distinct messages (r0, r1) uniformly at random and outputs them. Then B2

inputs cb = EPK(rb; u) for a certain bit b and random tape u. B must guess b with non
negligible advantage.

To do this, B2 is designed as follows. B2 randomly selects K̃I and runs A(PK, cb). Each
time A queries the random oracle H for an input (r, pk), B2 checks in the history of queries
if (r, pk) was queried by A in the past, in which case the same answer is returned to A.
Otherwise, if pk = PK and r = rb for b ∈ {0, 1}, then B2 stops and output b. If none of
these cases occur, B selects h uniformly at random, returns h and updates the history of
queries. If A finishes, B stops, chooses β ∈ {0, 1} at random and returns β. This completes
the description of the reduction algorithm B.

The simulation of H is almost perfect. We denote by Good the event that A submits
rb to the simulation of H and by Bad the event that A submits rb to the simulation of H.

Now if neither Good nor Bad ever happens, K̃I is a uniformly distributed random value
unknown to A, so

Pr
[
A = K̃I | ¬(Good ∨ Bad)

]
≤ 1

]H
.

By assumption,

ε≤ Pr
[
A = K̃I

]

≤ Pr
[
A = K̃I | ¬(Good ∨ Bad)

]

+ Pr [Good ∨ Bad]

≤ 1

]H
+ Pr [Good ∨ Bad] .

Since the choice of (r0, r1) is independent fromA’s view, the probability that rb is submitted
by A to the random oracle H is upper bounded by 1/]r. Given that Good and Bad exclude
each other, we get

Pr [Good] = Pr [Good ∨ Bad]− Pr [Bad]

≥ Pr [Good ∨ Bad]− 1

]r
.
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Therefore

1 + ε′

2
= Pr [B = b]

= Pr [Good]

+ Pr [¬(Good ∨ Bad) ∧ β = b]

= Pr [Good] +
1

2
Pr [¬(Good ∨ Bad)]

=
1

2
+ Pr [Good]− 1

2
Pr [Good ∨ Bad]

≥ 1

2
+

1

2
Pr [Good ∨ Bad]− 1

]r

≥ 1

2
+

1

2
(ε− 1

]H
)− 1

]r
,

and finally ε′ ≥ ε− 1/]H − 2/]r as wanted. ut

4.3 Security Proof Against Active Insiders

We now focus on security against active insiders. We have:

Theorem 3 (Active Attacks). Assume the encryption scheme EPK is deterministic and
one-way or probabilistic and semantically secure (under chosen ciphertext attacks). Then
obtaining information about KI requires the attacker to corrupt the value of PK. Then
KI 6= H(r, PK) with overwhelming probability.

Proof. Essentially, we follow the initial work of [6]. Suppose indeed, that the attacker does
not alter the value of PK which is transmitted to the card. Two situations may occur:

1. either the insider corrupts the value of c = EPK(r) by changing it into c′, but this of of
no use whatsoever to her,

2. or she does not corrupt c; in this case, the insider is passive and theorem 1 or 2 applies,
depending on EPK. This means that no information about KI can be obtained.

On the other hand, if the insider controls the PC and cheats on PK, she may recover KI

by submitting another public key PK′ but the issuer then gets a different value H(r, PK) 6=
H(r, PK′) with overwhelming probability. Thus the card will not be functional and no
damage (other than denial of service) will incur to the issuer. This provides evidence that
either the protocol is correct, or the card will not function at all. ut

4.4 Can Denial of Service Be Avoided?

What is desirable is that the protocol would preserve both key integrity and privacy under
any attack circumstances, as this would thwart denial of service attacks discussed above. For
theoretical reasons, however, no protocol can achieve such a better security level without an
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authenticated communication channel between the card and the issuer. The only cheap way
to achieve authentication would consist in masking the issuer’s public key PK into the read
only memory (ROM) of the card. We would then reach both key integrity and privacy in
any case. But we recall that denial of service does not serve the attacker’s interests anyway
because it precisely testifies the presence of an active attack during the personalization
process.

4.5 Collusion Attacks

An intuitive way to break the system would be to envision the collusion between a mali-
cious insider and a malicious issuer. For example, the insider might substitute the genuine
issuer’s public key with the malicious issuer’s public key. In this case, under the unusual
assumption that both issuers use the same operating system on the card, the personalized
cards would work on the malicious issuer’s network whereas they would not work on the
genuine network. Although this scenario theoretically exists, one cannot help wondering
what benefit the malicious issuer could possibly get out of this setting. First, the cards
are shipped to the initially intended recipients or more generally speaking directly to the
user. Thus the malicious issuer will never get hold of the cards. Second, this issuer would
then have cards in the field that can and will be used on his own network, but he could
not plausibly recover any fees associated to this usage. So the users would simply (say) use
wireless communication networks without paying a dime to the malicious operator.

Interestingly, we could also envision attacks combining an active intrusion with a partial
or total access to the issuer’s decryption server. This would allow the attacker to query
the server for r-values of her choice given c, possibly excepting the ones that correspond
to already listed KI ’s (as this could cause some kind of collision detection by the server).
This is exactly a chosen-ciphertext attack scenario and in this case, again, our protocol
remains fully secure in the same sense, provided that the underlying encryption scheme EPK

be OW-CCA or INC-CCA (instead of OW-CPA or IND-CPA). This is easily obtained as a
natural extension of theorems 1 and 2. Then chosen-ciphertext secure encryption schemes
like RSA-OAEP [1] or Cramer-Shoup [2] must be employed.

A denial of service attacker can always interact with the chip-card in such a way that
in the end the card is invalid. But, as stressed before, we assume that this scenario is
not of interest to an active adversary. We also stress the fact that more elaborate attacks
where the complete set of employees of the manufacturer collude against the issuer are
not considered in this paper. As an illustration, these include situations where the card’s
operating system itself is flawed or corrupted and does not fully respect the protocol.

In light of the above discussion, we believe that no other protocol can further enhance
the one we propose in this setting, except if additional key authentication is implemented
in some way or an other.
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5 Practical Examples

5.1 An Example Using Low-Exponent RSA

We recall the protocol steps in this context, taking SHA-1 as an embodiment of H. First,
the issuer generates an RSA key pair (PK, SK) where PK = (n, e) and SK = (n, d) with
n = pq for two large primes p and q, e = 3 for instance and d = e−1 mod (p − 1)(q − 1)
(RSA key generation imposes that gcd((p− 1)(q − 1), e) = 1). The manufacturer is given
n and for each card to be personalized, engages the PC in the following protocol:

1. the PC transmits n to the card with identifier Id,
2. the card selects r uniformly at random and computes KI = SHA-1(r, n),
3. the card computes c = r3 mod n and outputs c,
4. the PC collects the pair (Id, c) and sends it later to the issuer,
5. the issuer recovers r = cd mod n, computes KI = SHA-1(r, n) and stores the pair

(Id, KI).

Note that this is extremely efficient, as the card only performs a couple of modular multi-
plications and a single call to SHA-1. Moreover, we have the following security statement.

Corollary 1 (of theorems 1 and 3). Assuming the random oracle model, under the
RSA assumption, malicious insiders cannot retrieve the secret key KI of a functional card.

5.2 An Example Based on the Diffie-Hellman Problem

It is possible to adapt the above protocol in order to use the Decision Diffie-Hellman (DDH)
as the underlying intractability assumption. This is done by choosing El-Gamal encryption
[3] to instantiate EPK instead of RSA, as follows.

The issuer chooses an abelian group G, denoted multiplicatively, of large order q, in
which the discrete logarithm is intractable. An elliptic curve defined over a finite field, or
the group of integers modulo a large prime p are examples of such a group. The issuer
then chooses a base g ∈ G, a random integer 1 < x < q, stores SK = x and transmits
PK = (g, gx) := (g, h). The personalization process now works as follows:

1. the PC transmits the issuer’s public-key (g, h) to the card with identifier Id,
2. the card selects r uniformly at random and computes the pair (gr, hr),
3. the card computes KI = SHA-1(hr, g, h), memorizes KI in non-volatile memory and

outputs gr,
4. the PC sends the pair (Id, gr) to the issuer, who later recovers KI by computing KI =

SHA-1((gr)x, g, h).

In this case, we get the following security result.

Corollary 2 (of theorems 2 and 3). Assuming the random oracle model, under the
DDH assumption, malicious insiders cannot retrieve the secret key KI of a functional
card.



330 Helena Handschuh et alii.

6 Conclusion

We have presented a simple provably secure protocol which enables a smart-card manufac-
turer to act as a trusted personalization center without knowing any secret data belonging
to the issuer. The proposed solution does not require a public-key infrastructure, and avoids
all the secret-key management procedures usually required to guarantee the security of the
personalization process.
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Abstract. Standard bodies and organizations are pushing for increasingly larger RSA keys. Today,
RSA keys range from 512 bits to 2048 bits and some bodies envision 4096-bit RSA keys in the near
future.
This paper devises a new methodology for generating RSA keys. Contrary to what is usually done,
the key generation is divided into two phases. The first phase is performed off-line, before the input
parameters are even known. The second phase is performed on-line by the smart card once the input
parameters are known, and is meant to be very fast.
Compared to the fastest reported method ([4]), our solution —or more precisely the on-line phase
thereof, is conceptually more advanced and achieves extreme execution speeds as generating 1024-bit
or 2048-bit RSA keys amounts to practical running times lowered by several orders of magnitude.
Moreover, our technique achieves on-line generation of RSA keys of arbitrary length from a small
set of seeds computed during the off-line phase. Subsequently, in addition to be fast and flexible, our
solution also features attractively low memory requirements.

1 Introduction

Public-key cryptography faces the problem of the authentication of the public keys: How
can we be sure that a pair of public key/user’s identity are matching. A related problem is
how to distribute public keys trustfully. These issues are proved to be the bottleneck for a
wide deployment of public-key systems, such as the RSA cryptosystem [8]. It is here the
Public Key Infrastructures (PKIs) come into play [6]. The idea behind PKI is fairly simple.
It basically consists in producing an analogue of a phone directory. In the ’PKI directory’,
one should be able to find a user (or more generally an application) and the corresponding
public key. Of course, this directory must in some sense be certified. To this purpose, in
addition to the name and the public key, the directory also contains a certificate issued by
a Certification Authority (CA). Furthermore, in order to make the system inter-operable,
each user belongs to a domain and each domain has its own associated certification au-
thority. Then, when the user has to be identified and authenticated, he just produces the
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certificate issued by the CA of his domain. This certificate is a digital signature by the
CA on at least the user’s public key and his identity (along with some other credentials, if
needed).

At present, when smart cards hold public keys, it is common that a companion certifi-
cate is issued by a CA, for each embedded public key. A certificate has a cost, even if the
corresponding public key is never used by the card holder. Moreover, the memory which is
used to store the keys, generated off-board, has to be paid even if the end-user never uses
the public-key functions.

A cheaper solution may be to have an on-board key generation. So, sets of keys will
be generated only if they will be used. A second advantage is that there is more memory
available. Furthermore, we should note that on-board key generation is more secure as the
private keys are only known by the card holder, i.e., the end-user. Although attractive,
this second solution may be too slow for certain applications. The on-board generation of
a complete 2048-bit RSA key takes 30 seconds with the very efficient algorithm of [4], on
average.

This paper is aimed at presenting a mixed off-board/on-board solution. The variable
and time-consuming part is performed off-line: it produces small seeds that are used in
the second, fast, on-line part of the generation of the keys themselves. Moreover, it can
virtually accommodate any RSA bit-length and any public exponent. As a result, we obtain
a fast, flexible, on-board RSA key generation algorithm.

The rest of this paper is organized as follows. In the next section, we introduce the
notations and briefly review the RSA cryptosystem. In Section 3, building on the algorithm
of [3], we present our efficient off-line/on-line key generation algorithm. Finally, we conclude
in Section 4.

2 The RSA Cryptosystem

The RSA cryptosystem [8] is a pair of algorithms: a public algorithm (encryption or signa-
ture verification) and a private algorithm (decryption or signature generation). Its security
relies on the difficulty of integer factorization.

Each user chooses two large primes p and q, and publishes the product N = pq. Next,
he chooses a public exponent e that is relatively prime to (p− 1) and (q − 1). Finally, he
computes the secret exponent d according to

ed ≡ 1 (mod lcm(p− 1, q − 1)) . (1)

The public parameters are (N, e) and the secret parameters are (p, q, d).

To send a message m to Bob, Alice looks to Bob’s public key (e,N) and forms the
ciphertext c = µ(m)e mod N , where µ is an appropriate padding function (e.g., OAEP [1]).
Next, to recover the plaintext m, Bob uses his secret decryption key d to obtain µ(m) =
cd mod N and so m.

This encryption scheme can be converted into a signature scheme. If Bob wants to sign
a message m, he uses his secret key d to compute the signature s = µ(m)d mod N (a valid
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choice for µ is PSS [2]). Next, he sends m and s to Alice. Then Alice can verify that s
corresponds to Bob’s signature on message m by checking whether se ≡ µ(m) (mod N)
where e is the public exponent of Bob.

2.1 General Moduli

RSA moduli are not restricted to products of two large primes. It is for example possible
to work with moduli consisting of 3 or more factors. If N =

∏
i≥2 pi (with pi large primes)

denotes an RSA modulus then public exponent e must be co-prime to λ(N) where λ is the
Carmichæl function and secret exponent d is defined according to ed ≡ 1 (mod λ(N)).

2.2 Chinese Remaindering

It is possible to speed up the private operation (i.e., decryption or signature generation)
through Chinese remaindering [7]: the private operation is carried out modulo each prime
factor of modulus N and these partial results are then recombined. For example, if N = pq,
we set dp = d mod (p− 1), dq = d mod (q − 1) and compute Rp = cdp mod p and Rq =
cdq mod q. Next, letting iq = 1/q mod p, we obtain cd mod N as

CRT(Rp, Rq) = Rq + q[iq(Rp −Rq) mod p] . (2)

This mode of operation is referred to as CRT mode and the secret parameters are

(p, q, dp, dq, iq)

3 Generation of RSA Keys

As briefly mentioned in the previous section, the RSA setup requires the values of public
exponent e and of the key length (i.e., the length of modulus N). We let ` denote the
bit-length of N . Then, on input e and ` (determined by the application), the card must
possess two primes p and q so that

(i) (p− 1) and (q − 1) are co-prime to e, and
(ii) N = pq is exactly an `-bit integer.

The obvious solution is to let the card randomly compute on-board values for p and
q from e and `. The drawback in this approach is the running time; typically, given the
state-of-the-art, a 2048-bit RSA key requires 30 seconds. Another solution consists in pre-
computing values for p and q for various pairs (e, `) and to store those values in eeprom-
like, non volatile memory. The drawback here is either the cost —eeprom-like memory
is expensive— (when there are lots of chosen pairs (e, `)) or the lack of interoperability
(when there are few chosen pairs (e, `)).

In the sequel, we are looking for quick and cheap processes for producing two primes p
and q satisfying Conditions (i) and (ii). To ensure that N = pq is exactly an `-bit integer,
it suffices to choose p ∈ [d2(`−`0)−1/2 e, 2`−`0 − 1

]
and q ∈ [d2`0−1/2 e, 2`0 − 1

]
for some

1 < `0 < `. Indeed, we then have N ≥ min(p) min(q) ≥ 2`−1 and N ≤ max(p) max(q) < 2`,
as required. Consequently, Condition (ii) above reduces to finding primes in a range of the
form

[d2`0−1/2 e, 2`0 − 1
]
.
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3.1 First Solution

A very natural yet cumbersome solution consists in precomputing and writing in the card’s
non-volatile memory a set of integer values {σi} such that for each i, PRNG(σi) yields a prime
number. Here, PRNG denotes a pseudo-random number generator, that is, a deterministic
function that expanses fixed-length integers to bit-streams of desirable length (for instance
1024 bits). Once the card is personalized with its own set of seeds, it simply computes
p = PRNG(σi) whenever the generation of a prime number is required. Each time, a counter
for i is decremented so that the routine will jump one seed ahead in non-volatile memory
at the next execution.

Clearly, the seeds σi should be as short as possible in order to minimize the memory
space needed to store them all in the card. On the other hand, these have to be large
enough to prevent anyone from being able to guess their value and anticipate prime num-
bers the card is meant to generate during its lifetime (as this would lead to a complete
breaking). The on-line phase, i.e., the sequence of computations carried out by the card
when some prime is generated, is trivially simple (one single invocation of PRNG) and can be
extremely fast. There exist, indeed, numerous ways of basing a pseudo-random generator
on a cryptographically secure hash function or block-cipher that achieve highest execution
throughputs. Unfortunately, the off-line phase necessary to precompute the seeds may be
quite long. Indeed, the process of randomly picking some σ such that PRNG(σ) is prime
cannot be much smarter than applying primality tests on PRNG(σ) for random values of σ.
This yields roughly

Prσ [PRNG(σ) prime] ≈ 1

|PRNG| · ln 2
.

Therefore, in the common setting where |PRNG| = 1024, about 709.78 primality tests are
necessary for selecting a single seed, on average. This complexity may be halved down by
forcing PRNG(σ) to be odd for any σ (and we would also have to take into account the
constraint that gcd(p− 1, e) = 1 with respect to the RSA cryptosystem).

3.2 Second Solution

The off-line phase of the previous solution is somewhat time-consuming. This section in-
vestigates how to speed up this phase (at the expense, however, of a slightly slower on-line
phase).

3.2.1 Granularity An efficient prime generation algorithm has been devised in [4]. It
exploits the elementary property that a prime number has no trivial factors. Let Π =∏

pi prime pi be the product of the first small primes. The algorithm of [4] proceeds in two
steps. The first step consists in generating a number relatively prime to Π, say k, and
the second step is, given k, the construction of a prime candidate q satisfying gcd(q, Π) =
gcd(k,Π) = 1. If candidate q is not prime, then k is updated and a new prime candidate
is constructed, and so on. Because candidate q is such that it is already prime to the first
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primes (namely, to Π), the probability that it is prime is high and so few iterations have
to be performed until a prime q is found.

Building on [3], we now present an algorithm that works for any given bit-length `0 for
prime q being generated (the generation of p is similar). We assume that we are given a
lower bound B0 for `0: `0 ≥ B0. For example, one can choose B0 = 256 since a factor smaller
than 256 bits is nowadays considered insecure. We define Π =

∏43
i=1 pi = 2 ·3 · · · 191 < 2256.

(More generally, Π is defined as the largest product of the consecutive first primes so that∏
i pi < 2B0 .) We also define the unique integers v and w satisfying

{
b2`0−1/2c ≤ vΠ < b2`0−1/2c+ Π

2`0 −Π < wΠ ≤ 2`0
(3)

namely, v =
⌈
b2`0−1/2c

Π

⌉
and w =

⌊
2`0

Π

⌋
.

Next, given an element k ∈ ZΠ
∗ (that is, k ∈ {0, . . . , Π − 1} and gcd(k, Π) = 1), we

construct prime candidate q as

q = k + jΠ for some j ∈ [v, w − 1] . (4)

[An efficient way for generating invertible elements in ZΠ
∗ is presented in § 3.2.2; see

Lemma 1.]
As k ∈ ZΠ

∗, it follows that gcd(q,Π) = gcd(k,Π) = 1. Moreover, we have min(q) =
1 + vΠ ≥ d2`0−1/2e and max(q) = (Π − 1) + (w − 1)Π ≤ 2`0 − 1, or equivalently, q ∈[d2`0−1/2e, 2`0 − 1

]
. If the so-obtained q is not prime, we update k as k ← ak (mod Π)

with a ∈ ZΠ
∗. This implies that the updated k also belongs to ZΠ

∗ since ZΠ
∗ is a group.

The usual way to test the primality (or more exactly, the pseudo-primality) of a number
is the Rabin-Miller test. We refer the reader to [5, Chapter 4] for details on Rabin-Miller
test and variants thereof.

A description of our modified algorithm is depicted in Fig. 1. This algorithm outputs
an `0-bit prime q, for any value for `0.

3.2.2 Storage Efficiency A direct application of the previous algorithm (Fig. 1) re-
quires for each RSA key bit-length the storage of k and j in order to re-construct q. A first
improvement consists in constructing j from a short random seed, say 64-bit long, used as
the input of a mask generating function (MGF), rather than randomly choosing j as in
Step 2 of Fig. 1 (a concrete construction of MGF can be found in [2, Appendix A]). Let
σ be a 64-bit random value. Given `0, the values of v and w are computed according to
Eq. (3) and j is defined as MGF1(σ) (mod (w − v)) + v. This simple improvement drasti-
cally reduces the amount of eeprom-like memory ne needed as only the values of σ and k
have to be stored (the value of Π is in code memory).

Further memory can be saved by observing that if k(0) denotes the initial value of
k ∈ ZΠ

∗ then the primes generated by our algorithm have the form

q = af−1k(0) mod Π + jΠ (5)
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Input: parameters `0, e, and

a (of large order) in ZΠ
∗

Output: a prime q ∈ �d2`0−1/2e, 2`0 − 1
�

1. Compute v =
l
b2`0−1/2c

Π

m
and w =

�
2`0

Π

�

2. Randomly choose j ∈R {v, . . . , w − 1} and set l ← jΠ
3. Randomly choose k ∈R ZΠ

∗

4. Set q ← k + l
5. If (q is not prime) or (gcd(e, q − 1) 6= 1) then

(a) Set k ← ak (mod Π)
(b) Go to Step 4

6. Output q

Fig. 1. RSA Prime Generation Algorithm.

where f is the number of failures of the test in Step 4 (Fig. 1). The second observation is
that a value k(0) ∈ ZΠ

∗ can be easily computed from a short random seed using an MGF.
We use the following lemma.

Lemma 1 ([3, Proposition 2]). For all b, c ∈ ZΠ s.t. gcd(b, c, Π) = 1, we have
[
c + b(1− cλ(Π))

] ∈ ZΠ
∗

where λ(Π) denotes the Carmichæl function of Π.

As an immediate corollary, if b ∈ ZΠ
∗ so do (Π− b) and consequently

[
c+ b(cλ(Π)− 1)

]
(mod Π). Therefore, given the random seed σ, we can form k(0) as

k(0) =
[
MGF2(σ) + bMGF3(σ)(MGF2(σ)λ(Π) − 1)

]
(mod Π) (6)

where b is an element of large order in ZΠ
∗ (preferably of order λ(Π)).

The first and second improvements imply that only the value of σ (typically, a 64-bit
value) and the different values of f for desired key lengths need to be stored in eeprom-like
memory. For RSA moduli up to 2048 bits, numerical experiments show that a upper bound
for f is certainly 28 (hence f can be coded on one byte).

For example, in order to be able to produce RSA moduli ranging from 512 to 2048 bits
with a granularity of 32 bits (they are 49 possible such key lengths), a card needs to store
σ (8 bytes) and values for f for primes p and q (2× 49 = 98 bytes), that is, a total of 106
bytes (848 bits) in eeprom-like memory.

A last trick to reduce the needed memory is to write in code-memory several values of
Π (and the corresponding λ(Π)) for different key lengths by noting that a larger value for
Π leads to smaller values for f .

3.2.3 Interoperability We now consider Condition (i), namely we want that RSA
primes p and q verify the relation gcd(p − 1, e) = gcd(q − 1, e) = 1 where e denotes the
public exponent.
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From Eq. (5), we observe that a prime, say q, generated by the algorithm of Fig. 1
satisfies q = af−1k(0) mod Π + jΠ. Hence, provided that e divides Π, we have

q ≡ af−1k(0) (mod e) . (7)

Moreover, assuming that e is prime, the condition gcd(e, q−1) = 1 reduces to gcd(e, q−1) 6=
e ⇐⇒ q 6≡ 1 (mod e). Consequently, if public exponent e is a prime dividing Π then the
condition gcd(e, q − 1) = 1 is fulfilled whenever af−1k(0) 6≡ 1 (mod e). A way to achieve
this consists in choosing a ≡ 1 (mod e) (but of large order as an element of ZΠ

∗) and
to force k(0) so that k(0) 6≡ 1 (mod e). Hence, the resulting prime q satisfies q ≡ k(0) 6≡ 1
(mod e), as desired.

The card does not know a priori the value of exponent e; the value of e is determined
by the application. However, most applications (i.e., > 95%) use for e values in the set
{3, 17, 216 + 1} (notice that all these values are prime). In order to cover the largest set of
applications, we thus choose parameter a such that a ≡ 1 (mod {3, 17, 216 + 1}), include
216 + 1 in the factorization of Π, and force k(0) so that k(0) 6≡ 1 (mod {3, 17, 216 + 1}).
A possible candidate for a is the prime R = 264 − 232 + 1, provided that gcd(Π, R) = 1.
The condition on k(0) can be achieved by Chinese remaindering. More precisely, we need
a value K(0) constructed from random seed σ such that K(0) 6≡ 0, 1 (mod {3, 17, 216 + 1}).
Given σ, we first construct two random integers in the respective ranges [2, 24] and [2, 216],
say κ1 = MGF2′(σ) and κ2 = MGF2′′(σ). Next, by Chinese remaindering (see Eq. (2))
modulo e1 := 17 and e2 := 216 + 1, we compute κ1,2 = κ2 + e2[i1,2(κ1 − κ2) mod e1] where
i1,2 = 1/e2 mod e1. Letting e0 := 3, we compute κ0,1,2 = κ1,2 + e1e2[i12,0(2 − κ1,2) mod e0]
where i12,0 = 1/(e1e2) mod e0. (Observe that κ0,1,2 6≡ 0, 1 (mod {3, 17, 216+1}).) From σ we
construct a random integer in the range [0, π) with π = Π/(e0e1e2), say κπ = MGF2′′′(σ),
and by Chinese remaindering modulo π and e0e1e2, we finally define K(0) as

K(0) = κ0,1,2 + e0e1e2[i012,π(κπ − κ0,1,2) mod π] (8)

where i012,π = 1/(e0e1e2) mod π.
Consequently, we obtain an invertible element modulo Π, k(0), satisfying the condition

of Eq. (7) for e ∈ {3, 17, 216 + 1} as

k(0) =
[
K(0) + bMGF3(σ)(K

λ(Π)
(0) − 1)

]
(mod Π) .

(This has to be compared to Eq. (6).)
It is worthwhile noticing here that for e ∈ {3, 17, 216 + 1} (dividing Π), we have k(0) ≡

K(0) (mod e) since K(0) 6≡ 0 (mod e) by construction.

3.2.4 Off-Line/On-Line Generation The system assumes the knowledge of a lower
bound B0 on the bit-length of the RSA primes being generated and a set E of public
exponents likely be used in the applications. This determines the choice of parameter Π
(and so of λ(Π)). We also need two invertible elements modulo Π, a and b. Finally, we
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assume that we have at disposal a hash function H and a family of mask generating
functions MGFi (one may for example define MGFi(x) as MGF(x‖i)).

For concreteness, suppose that B0 = 256 and E = {e0, e1, e2} with e0 = 3, e1 = 17 and
e2 = 216 + 1. Then we can take Π = (216 + 1) · ∏41

i=1 pi = (216 + 1) · 2 · 3 · · · 179 < 2256.
We choose a = b = 264 − 232 + 1 := R. Note that ei divides Π (for i ∈ {0, 1, 2}) and that
gcd(R, Π) = 1.

There are three algorithms. The first algorithm constructs constrained units; the second,
off-line algorithm constructs values for the third, on-line algorithm generating RSA keys.

With the above system parameters, a possible implementation of the first algorithm is
given below. The input is a string σ given by the calling algorithm.

Input: parameter σ
Output: k ∈ ZΠ

∗

1. Compute κ1 ← MGF2′(σ) (mod (e1 − 3)) + 2
2. Compute κ2 ← MGF2′′(σ) (mod (e2 − 3)) + 2
3. Compute κπ ← MGF2′′′(σ) (mod Π/(e0e1e2))
4. Compute K(0) ← CRT(2, κ1, κ2, κπ) as in Eq. (8)
5. Compute t ← MGF3(σ) (mod ordΠ(R))

6. Output K(0) +
�
K(0) + Rt(K

λ(Π)

(0) − 1)
�

(mod Π)

Fig. 2. Generation of k ∈ ZΠ
∗.

For a given bit-length `0, the next off-line algorithm (Fig. 3) produces c values fz (for
z ∈ {1, . . . , c}) which will be used in the on-line generation `0-bit RSA primes valid with
probability 1 when public exponent e lies in E . Parameter σ0 is a random string, proper to
each card, and stored in eeprom-like memory. A typical length for σ0 is 64 bits.

An RSA application takes on input an RSA key-length ` and a public exponent e. If
` can be written as the sum of two available `0, then the next on-line algorithm (Fig. 4)
is called for each of the two bit-lengths, `0, forming the RSA modulus N = pq, together
with public exponent e. If no such decomposition exists then the off-line algorithm must
be called to generate valid values or an error message must be output.

For security reasons, we insist that a prime can only be used once for a given application.
When it is used, it must be marked as such (e.g., by removing the corresponding entry for
z, fz).

If the so-obtained prime, say q, does not satisfy the mandatory condition gcd(q−1, e) =
1 then another value of z is tested. If there are no longer available values for z then the
off-line algorithm must be called to generate valid values or an error message must be
output.
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Input: parameters `0, σ0, c
Output: fz for z ∈ {1, . . . , c}

1. Compute v ←
l
b2`0−1/2c

Π

m
and w ← �

2`0

Π

�

2. Set z = 1
3. Define σ ← H(σ0, `0, z)
4. Compute j ← MGF1(σ) (mod (w − v)) + v and set l ← jΠ
5. Using the algorithm of Fig. 2, compute k ∈ ZΠ

∗

6. Set fz ← 0 and q ← k + l
7. If (q is not prime) then

(a) Set fz ← fz + 1 and k ← R k (mod Π)
(b) Go to Step 4

8. Output fz

9. If (z < c) then set z ← z + 1 and go to Step 3

Fig. 3. Off-line algorithm.

Input: parameters `0, e and

the list {fz}1≤z≤c, z

Output: a prime q ∈ �d2`0−1/2e, 2`0 − 1
�
s.t.

gcd(q − 1, e) = 1

1. Compute v ←
l
b2`0−1/2c

Π

m
and w ← �

2`0

Π

�

2. Define σ ← H(σ0, `0, z)
3. Compute j ← MGF1(σ) (mod (w − v)) + v and set l ← jΠ
4. Using the algorithm of Fig. 2, compute k ∈ ZΠ

∗

5. Compute k ← Rfz k (mod Π)
6. Set q ← k + l
7. If (gcd(e, q − 1) 6= 1) then

(a) Set z ← z + 1
(b) If (z > c) output ‘‘Error’’; otherwise go to Step 2

8. Output q

Fig. 4. On-line algorithm.
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4 Concluding Remarks

This paper presented a mixed off-line/on-line methodology for the generation of RSA keys,
leading to on-board performances several orders of magnitude faster than state-of-the-art
techniques. Two concrete realizations were proposed. The first solution has a faster on-line
phase (at the expense of a slower off-line phase) and the second solution features a faster
off-line phase. Further, these new fast off-line/on-line key generation algorithms enable
“pay as you go” e-payment functions by reducing the cost of their infrastructure (cost of
certificates and keys in card memory) while keeping the same security level than the one
of classical key generation processes.
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Abstract. In this paper we describe a simple protocol for securely delegating elliptic-curve pairings.
A computationally limited device (typically a smart-card) will delegate the computation of the pairing
e(A, B) to a more powerful device (for example a PC), in such a way that:

1. the powerful device learns nothing about the points being paired (A and B), nor about the
pairing’s result e(A, B),

2. and the limited device is able to detect when the powerful device is cheating.

1 Introduction

Since the discovery of the first practical identity-based cryptosystem based on the elliptic-
curve pairing [1], pairing-based cryptography has become a very active research area. To
date, many pairing-based protocols have been proposed with novel and attractive proper-
ties, for example for key-exchange [5] and digital signatures [3].

The increasing popularity of pairing-based cryptosystems and their foreseeable deploy-
ment in computationally constrained devices such as smart-cards and dongles spurred
recent research in the implementation of pairing (e.g. [7]). Unfortunately, although pair-
ing is a cubic-time operation, pairing implementation attempts in limited devices such as
smart-cards reveal that the embedded code may be slow, resource-consuming and tricky
to program.

Given that several PC-based pairing libraries exist, it seems natural to find-out whether
a smart-card could interact with such packages to privately compute the elliptic-curve
pairing. Note that beyond preserving operands and results from preying eyes, the card
must also ascertain that bogus libraries don’t mislead it into generating wrong results.

In this paper, we propose a simple protocol for the secure delegation of elliptic-curve
pairing. A computationally limited device (for example a smart-card) will delegate the
computation of the elliptic-curve pairing e(A,B) to a more powerful device (for example
a PC), in such a way that:

1. the powerful device learns nothing about the points being paired (A and B) nor about
the pairing’s result e(A,B),
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2. and the limited device is able to detect when the powerful device is cheating.

The limited device will restrict itself to simple curve or field operations. We also describe
efficient variants of our protocol applicable when one of the points A and B or both are
already publicly known.

2 Preliminaries

Our protocol for secure pairing delegation is actually more general than just elliptic-curve
pairing: as most pairing-based cryptosystems, it works for any bilinear map. Therefore,
we briefly review the necessary facts about bilinear maps. We follow the notations of [2],
except that we use the additive notation for the groups G1 and G2. We refer the reader to
[6] for an extensive background on elliptic-curve pairing.

1. G1 and G2 are two (additive) cyclic groups of prime order p;

2. G1 is a generator of G1 and G2 is a generator of G2;

3. ψ is a computable isomorphism from G1 to G2 with ψ(G1) = G2;

4. e is a computable bilinear map e : G1 × G2 → GT ;

5. GT is a multiplicative cyclic group of order p.

A bilinear map is a map e : G1 × G2 → GT with the following properties:

1. Bilinear: for all U ∈ G1, V ∈ G2 and a, b ∈ Z, e(a.U, b.V ) = e(U, V )ab

2. Non-degenerate: e(G1, G2) 6= 1

Note that the previous conditions imply that e(G1, G2) is a generator of GT .

3 Secure Pairing Delegation

In this section, we formalize the security notions for secure pairing delegation. Our setting
is the following: a computationally limited device, called the card and denoted by C, will
delegate the computation of e(A,B) to a more powerful device, called the terminal and
denoted T . Both devices are actually probabilistic polynomial-time Turing machines.

The security notions could be formalized in the general framework of secure multiparty
computation (for standard definitions, see for example [4]). However, we observe that our
setting is much simpler than general secure two-party computation: the terminal has no
secret and outputs nothing; only the terminal can be malicious. Therefore, we say that a
protocol for pairing delegation is secure if it satisfies the three following security notions:

Completeness: after protocol completion with an honest terminal, C obtains e(A,B),
except with negligible probability.

Secrecy: a (possibly cheating) terminal should not learn any information about the
points A and B. Formally, for any malicious T , there exists a simulator S such that for
any A,B, the output of S is computationally indistinguishable from T ’s view:

S
c≡ ViewT (A,B)
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Correctness: C should be able to detect a cheating T , except with negligible proba-
bility. Formally, for any cheating T and for any A,B, C either outputs ⊥ or determines
e(A,B), except with negligible probability.

4 Our Protocol

4.1 Description

In the following, we describe our protocol for securing pairing delegation. C and T are given
as input a description of the groups G1, G2 and GT , and a description of the bilinear map
e : G1 ×G2 → GT . C and T receives the generators G1 and G2; moreover we assume that C
receives e(G1, G2). C is given as input the points A and B and must eventually determine
e(A,B).

1. C generates a random g1 ∈ Zp and a random g2 ∈ Zp, and queries the three following
pairings from T :

α1 = e(A + g1.G1, G2), α2 = e(G1, B + g2.G2)

α3 = e(A + g1.G1, B + g2.G2)

2. C checks that α1, α2, α3 ∈ GT , by checking that (αi)
p = 1 for i = 1, 2, 3. Should this test

fail, C outputs ⊥ and halts.

3. C computes a purported value for e(A,B):

eAB = α−g2

1 · α−g1

2 · α3 · e(G1, G2)
g1g2 (1)

4. C generates four random values a1, r1, a2, r2 ∈ Zp and queries the pairing:

α4 = e(a1.A + r1.G1, a2.B + r2.G2)

5. C computes:

α′4 = (eAB)a1a2 · (α1)
a1r2 · (α2)

a2r1 · e(G1, G2)
r1r2−a1g1r2−a2g2r1 (2)

and checks that α′4 = α4. In this case, C accepts eAB as the genuine value of e(A,B);
otherwise it outputs ⊥.

4.2 Security Proof

The following theorem shows that our protocol is secure:

Theorem 1. The previous protocol is a secure pairing delegation protocol.
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Proof. The completeness property is easily established. From bilinearity:

e(A + g1.G1, B + g2.G2) = e(A,B) · e(A,G2)
g2 · e(G1, B)g1 · e(G1, G2)

g1g2

Then, for an honest T , we have:

α1 = e(A + g1.G1, G2) = e(A,G2) · e(G1, G2)
g1 (3)

α2 = e(G1, B + g2.G2) = e(G1, B) · e(G1, G2)
g2 (4)

α3 = e(A + g1.G1, B + g2.G2) (5)

Combining the four previous equations, we obtain:

α3 = e(A, B) · (α1)
g2 · (α2)

g1 · e(G1, G2)
−g1g2

which, using (1), shows that C computes the correct eAB = e(A,B). Moreover, using:

α4 = e(a1.A + r1.G1, a2.B + r2.G2)

= e(A,B)a1a2 · e(A,G2)
a1r2 · e(G1, B)r1a2 · e(G1, G2)

r1r2

we obtain from equations (3) and (4):

α4 = (eAB)a1a2 · (α1)
a1r2 · (α2)

r1a2e(G1, G2)
r1r2−a1g1r2−a2g2r1

which, using (2), gives α4 = α′4 and shows that C eventually outputs the correct eAB =
e(A,B).

The secrecy property follows from the fact that T receives only random, independently
distributed points in the groups G1 and G2. Therefore, the simulator S simply consists in
running T with randomly generated points. The simulator’s output and T ’s view when
interacting with C are then identically distributed.

The correctness property is established as follows: we show that if the value eAB com-
puted by C at step 3 is unequal to e(A,B), then the element α′4 computed by C at step 5 has
a nearly uniform distribution in GT , independent of T ’s view. Then, the probability that
α4 = α′4 at step 5 will be roughly 1/p. Therefore, C will output ⊥, except with negligible
probability.

We let U = a1.A+ r1.G1 and V = a2.B + r2.G2. Moreover, we let a, b, u, v ∈ Zp be such
that A = a.G1, B = b.G2, U = u.G1, V = v.G2, which gives:

u = a1 · a + r1 (6)

v = a2 · b + r2 (7)

C checks that α1, α2, α3 ∈ GT . Therefore, we must have eAB ∈ GT , and since e(G1, G2) is a
generator of GT , we can let β1, β2, β3 ∈ Zp be such that:

α1 = e(A,G2) · e(G1, G2)
g1+β1 (8)

α2 = e(G1, B) · e(G1, G2)
g2+β2 (9)

eAB = e(A,B) · e(G1, G2)
β3 (10)
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Therefore, the value eAB is correct iff β3 = 0.
From the previous observation, we also have α′4 ∈ GT . Therefore, we can assume that

α4 ∈ GT , since otherwise α′4 6= α4 and C outputs ⊥. Then we can let β4, β
′
4 ∈ Zp be such

that:

α4 = e(U, V ) · e(G1, G2)
β4 (11)

α′4 = e(U, V ) · e(G1, G2)
β′4 (12)

Therefore, C outputs eAB iff β4 = β′4.
In the following, we assume that u 6= 0 and v 6= 0. Since (u, v) is uniformly distributed

in Zp, this happens with probability (1− 1/p)2 ≥ 1− 2/p.
We show that if β3 6= 0, then β′4 has a nearly uniform distribution in Zp, independent

of T ’s view, and therefore β4 = β′4 happens with negligible probability.
From equations (2), (8), (9), (10) and (12), we obtain:

β′4 = a1a2β3 + a1r2β1 + a2r1β2 (13)

T ’s view includes the points A + g1.G1, B + g2.G2, U and V and the group elements
α1, α2, α3 and α4. Therefore, T ’s view is entirely determined by (β1, β2, β3, β4, u, v, r), where
r is the randomness used by T . Moreover, given (β1, β2, β3, β4, u, v, r), the element (a1, a2)
is uniformly distributed over Z2

p.
From equations (6), (7) and (13), we obtain:

β′4 = a1a2(β3 − bβ1 − aβ2) + a1(vβ1) + a2(uβ2)

Lemma 1. Let p be a prime integer and let a, b, c, d ∈ Z such that (a, b, c) 6= (0, 0, 0). Then
the number of solutions (x, y) ∈ Z2

p to the polynomial equation a · xy + b · x + c · y + d = 0
mod p is at most 2p− 1.

Proof. The proof is straightforward and is therefore omitted.

Since u, v 6= 0, then β3 6= 0 implies (β3 − bβ1 − aβ2, vβ1, uβ2) 6= (0, 0, 0). Then using the
previous lemma, for any γ ∈ Zp, the probability over (a1, a2) ∈ Z2

p that β′4 = γ is such that:

Pr[β′4 = γ] ≤ 2p− 1

p2
≤ 2

p

Therefore, if β3 6= 0, the probability that β′4 = β4 is at most 2/p.
Since u = 0 or v = 0 with probability at most 2/p, we conclude that if eAB 6= e(A,B),

then C outputs ⊥, except with probability at most 4/p. ut
Note that the security of the protocol is not based on any computational assumptions;

namely the protocol achieves unconditional security.

4.3 Efficiency

Our protocol requires a total of four scalar multiplications in G1 and four in G2, and a total
of ten exponentiations in GT . Our protocol is actually a one-round protocol since the four
pairing queries can be performed in the same round.



346 Benôıt Chevallier-Mames et alii.

5 Efficient Variants

In this section, we describe more efficient variants of our protocol, when one of the points
A and B or both are already publicly known.

For example, when decrypting a Boneh-Franklin ciphertext [1], the point A is the user’s
private key, and B is some part of the ciphertext. Therefore, B is already publicly known
and does not need to be protected. Moreover, when encrypting with Boneh and Franklin’s
scheme, A is the recipient’s identity, and B is the trusted party’s public-key. Therefore,
both A and B are already publicly known and don’t need to be protected.

When B is publicly known, the definition of the secrecy property is modified by simply
giving B to the simulator. When both A and B are public, the secrecy property is not
necessary anymore.

5.1 Secure Pairing Delegation with Public B

The protocol is the same as the protocol described in the previous section, except that we
can take g2 = 0 since point B does not need to be protected.

1. C generates a random g1 ∈ Zp and queries the three following pairings from T :

α1 = e(A + g1.G1, G2), α2 = e(G1, B), α3 = e(A + g1.G1, B)

2. C checks that α1, α2, α3 ∈ GT , by checking that (αi)
p = 1 for i = 1, 2, 3. Should this test

fail, C outputs ⊥ and halts.

3. C computes a purported value for e(A,B):

eAB = (α2)
−g1 · α3 (14)

4. C generates four random values a1, r1, a2, r2 ∈ Zp and queries the pairing:

α4 = e(a1.A + r1.G1, a2.B + r2.G2)

5. C computes:

α′4 = (eAB)a1a2 · (α1)
a1r2 · (α2)

a2r1 · e(G1, G2)
r1r2−a1g1r2 (15)

and checks that α′4 = α4. In this case, C outputs eAB; otherwise it outputs ⊥.

The protocol is more efficient than the protocol of Section 4 since only three scalar
multiplications in G1 and G2, and eight exponentiations in GT are required.

Theorem 2. The previous protocol with public B is a secure pairing delegation protocol.

Proof. The proof is similar to the proof of theorem 1 and is therefore omitted.
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5.2 Secure Pairing Delegation with Public A and B

The protocol is similar to the previous protocol except that we can also take g1 = 0 since
A does not need to be protected.

1. C queries the three following pairings from T :

α1 = e(A,G2), α2 = e(G1, B), α3 = e(A,B)

2. C checks that α1, α2, α3 ∈ GT , by checking that (αi)
p = 1 for i = 1, 2, 3. Should this test

fail, C outputs ⊥ and halts.

3. C computes a purported value for e(A,B):

eAB = α3

4. C generates four random values a1, r1, a2, r2 ∈ Zp and queries the pairing:

α4 = e(a1.A + r1.G1, a2.B + r2.G2)

5. C computes:
α′4 = (eAB)a1a2 · (α1)

a1r2 · (α2)
a2r1 · e(G1, G2)

r1r2

and checks that α′4 = α4. In this case, C outputs eAB; otherwise it outputs ⊥.

The protocol is more efficient than the protocol of Section 4 since only two scalar
multiplications in G1 and G2, and seven exponentiations in GT are required.

Theorem 3. The previous protocol with public A and B is a secure pairing delegation
protocol.

Proof. The proof is similar to the proof of theorem 1 and is therefore omitted.

6 Conclusion

In this paper we described a simple protocol for secure delegation of elliptic-curve pairing.
Our protocol allows a computationally limited device (for example a smart-card) to delegate
the computation of the pairing e(A,B) to a more powerful device (for example a PC), in
such a way that:

1. the powerful device learns nothing about the points being paired (A and B) nor the
pairing’s result e(A,B),

2. and the limited device is able to detect when the powerful device is cheating.

We have also described more efficient variants of our protocol when one of the points
or both are already known.

Our protocols achieve unconditional security. An interesting research direction would
be to speed-up the protocols by trading-off unconditional security against computational
security.
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Abstract. Safe primes are prime numbers of the form p = 2q + 1 where q is prime. This note intro-
duces a simple method for doubling the speed of safe prime generation. The method is particularly
suited to settings where a large number of RSA moduli must be generated.

1 Introduction

Safe primes are prime numbers of the form p = 2q + 1 where q is prime. Such primes have
various cryptographic advantages, we refer the reader to [1] for further references about
safe primes and their applications.

Given a probabilistic prime generation algorithm A that takes as input a size parameter
k and outputs a random prime 2k−1 < p < 2k with p ≡ 3 mod 4, the straightforward way
to generate a k-bit safe prime consists of calling A with different random seeds until both
p and (p− 1)/2 are prime:

do(p := A(k)) while ((p− 1)/2 is composite)

A well-known result (the prime number theorem [1]), states that the number of primes
not exceeding n is approximately n/ ln n.

Let p(k) be the probability that k-bit odd integer is prime; applying the prime number
theorem, we get:

p(k) ' 1

2k−2

( 2k

k ln 2
− 2k−1

(k − 1) ln 2

)
' 2

k ln 2

Assuming that the time complexity of A (denoted f(k)) depends only on k, the overall
complexity of the straightforward safe prime generation approach is given by:

C(k) =
f(k)

p(k − 1)
' f(k)k ln 2

2

In the following section we will show that this complexity can be divided by a factor of
two.
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2 The New Technique

The idea consists in testing the primality of both 2p + 1 and (p − 1)/2 for every prime
generated by A.

Hence the new algorithm is:

do(p := A(k)) while ((p− 1)/2 and 2p + 1 are composite)

The probability p′(k) that either (p− 1)/2 or 2p + 1 is prime is given by:

p′(k) = 1− (
1− p(k − 1)

)(
1− p(k + 1)

) ' 2p(k)

Hence the overall complexity of this new algorithm is given by:

C ′(k) =
f(k)

p′(k)
=

f(k)k ln 2

4
=

1

2
C(k)

The complexity of safe prime generation is thus divided by two at the cost of generat-
ing primes of size k or k + 1 with equal probability. The generation of RSA moduli of a
prescribed length 2k can thus be efficiently batched (for instance in a smart-card person-
alization facility) by sorting the primes into two separate files (Fk containing k-bit primes
and Fk+1 containing (k + 1)-bit ones). Starting the same generation procedure again for k
and k− 1, we obtain two other files (F ′

k and F ′
k−1) containing k-bit and (k− 1)-bit primes.

2k-bit RSA moduli are then be formed by picking primes in {F ′
k, Fk} or in {F ′

k−1, Fk+1}.
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Abstract. In this paper, we present a simple method for generating random-based signatures when
random number generators are either unavailable or of suspected quality (malicious or accidental).
By opposition to all past state-machine models, we assume that the signer is a memoryless automaton
that starts from some internal state, receives a message, outputs its signature and returns precisely
to the same initial state; therefore, the new technique formally converts randomised signatures into
deterministic ones.
Finally, we show how to translate the random oracle concept required in security proofs into a realistic
set of tamper-resistance assumptions.

1 Introduction

Most digital signature algorithms rely on random sources which stability and quality cru-
cially influence security: a typical example is El-Gamal’s scheme [9] where the secret key
is protected by the collision-freedom of the source.

Although biasing tamper-resistant generators is difficult,1 discrete components can be
easily short-circuited or replaced by fraudulent emulators.

Unfortunately, for pure technological reasons, combining a microcontroller and a noise
generator on the same die is not a trivial engineering exercise and most of today’s smart-
cards do not have real random number generators (traditional substitutes to random
sources are keyed state-machines that receive a query, output a pseudo-random number,
update their internal state and halt until the next query: a typical example is the BBS
generator presented in [4]).

In this paper, we present an alternative approach that converts randomised signature
schemes into deterministic ones: in our construction, the signer is a memoryless automaton

1 such designs are usually buried in the lowest silicon layers and protected by a continuous scanning for sudden
statistical defects, extreme temperatures, unusual voltage levels, clock bursts and physical exposure.
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that starts from some internal state, receives a message, outputs its signature and returns
precisely to the same initial state.

Being very broad, we will illustrate our approach with Schnorr’s signature scheme [20]
before extending the idea to other randomised cryptosystems.

2 Digital Signatures

In eurocrypt’96, Pointcheval and Stern [18] proved the security of an El-Gamal variant
where the hash-function has been replaced by a random oracle. However, since hash func-
tions are fully specified (non-random) objects, the factual significance of this result was
somewhat unclear. The following sections will show how to put this concept to work in
practice.

In short, we follow Pointcheval and Stern’s idea of using random oracles2 but distinguish
two fundamental implementations of such oracles (private and public), depending on their
use.

Recall, pro memoria, that a digital signature scheme is defined by a distribution generate
over a key-space, a (possibly probabilistic) signature algorithm sign depending on a secret
key and a verification algorithm verify depending on the public key (see Goldwasser et al.
[11]).

We also assume that sign has access to a private oracle f (which is a part of its private
key) while verify has access to the public oracle h that commonly formalises the hash
function transforming the signed message into a digest.

Definition 1. Let Σh = (generate, signh, verifyh) denote a signature scheme depending on
a uniformly-distributed random oracle h. Σ is (n, t, ε)-secure against existential-forgery
adaptive-attacks if no probabilistic Turing machine, allowed to make up to n queries to h
and sign can forge, with probability greater than ε and within t state-transitions (time), a
pair {m,σ}, accepted by verify.

More formally, for any (n, t)-limited probabilistic Turing machine A that outputs valid
signatures or fails, we have:

Pr
ω,h

[
Ah,sign(ω) succeeds

]
≤ ε

where ω is the random tape.
Figure 1 presents such a bi-oracle variant of Schnorr’s scheme: h is a public (common)

oracle while f is a secret oracle (looked upon as a part of the signer’s private key); note
that this variant’s verify is strictly identical to Schnorr’s original one.

Definition 2. Let H = (hK)K∈K : A → B be a family of hash-functions, where the key
K follows a distribution K. H is an (n, ε)-pseudo-random hash-family if no probabilistic
Turing machine A can distinguish hK from a random oracle in less than t state-transitions
and n queries, with an advantage greater than ε.

2 although, as showed recently, there is no guarantee that a provably secure scheme in the random oracle model
will still be secure in reality [5].
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System parameters : k, security parameter
α ∈ (Z/pZ)? of order q
p and q primes, q|(p− 1)
h : {0, 1}∗ → Z/qZ

Key generation: generate(1k)
secret: x ∈R Z/qZ and f : {0, 1}∗ → Z/qZ
public: y = αx mod p

Signature generation: sign(m) := {e, s}
u = f(m, p, q, g, y) mod q
r = gu mod p
e = h(m, r) mod q
s = u− xe mod q

Signature verification: verify(m; e, s)
r = gsye mod p
check that e = h(m, r) mod q

Fig. 1. A deterministic variant of Schnorr’s scheme.

In other words, we require that for all n-limited A:

∣∣∣∣Pr
ω,K

[AhK (ω) accepts
]− Pr

ω,h

[Ah(ω) accepts
]∣∣∣∣ ≤ ε

where ω is the random tape and h is a random mapping from A to B.
So far, this criterion has been used in block-cipher design but never in conjunction with

hash functions. Actually, Luby and Rackoff [14] proved that a truly-random 3-round, `-bit
message Feistel-cipher is (n, n2/2`/2)-pseudo-random and safe until n ∼= 2`/4 messages have
been encrypted (this argument was brought as an evidence for DES’ security).

Note that (n, ε)-pseudo-randomness was recently shown to be close to the notion of
n-wise decorrelation bias, investigated by Vaudenay in [22].

This construction can be adapted to pseudo-random hash-functions as follows: we first
show how to construct a pseudo-random hash-function from a huge random string and
then simplify the model by de-randomising the string and shrinking it to what is strictly
necessary for providing provable security. Further reduction will still be possible, at the
cost of additional pseudo-randomness assumptions.

Theorem 1. Let B be the set of `-bit strings and A = B2. Let us define two B-to-B func-
tions, denoted F and G, from an `× 2`+1-bit key K = {F,G}.

Let hK(x, y) = y ⊕G(x⊕ F (y)). The family (hK)K is (n, n2/2`+1)-pseudo-random.

Proof. The considered family is nothing but a truncated two-round Feistel construction
and the proof is adapted from [14, 17] and [16]. The core of the proof consists in finding a
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meaningful lower bound for the probability that n different {xi, yi}’s produce n given zi’s.
More precisely, the ratio between this probability and its value for a truly random function
needs to be greater than 1− ε. Letting T = x⊕ F (y), we have:

Pr[hK(xiyi) = zi; i = 1, . . . , n] ≥ Pr[hK(xiyi) = zi and Ti pairwise different]

≥
(

1

2`

)n (
1− n(n− 1)

2
min
i,j

Pr[Ti = Tj]

)

and for any i 6= j (since xiyi 6= xjyj), we either have yi 6= yj ⇒ Pr[Ti = Tj] = 1/2`, or
yi = yj and xi 6= xj which implies Pr[Ti = Tj] = 1. Consequently:

Pr[hK(xiyi) = zi; i = 1, . . . , n] ≥
(

1

2`

)n (
1− n(n− 1)

2

1

2`

)
⇒ ε =

n2

2`−1
.

Considering a probabilistic distinguisher AO using a random tape ω, we get:

Pr
ω,K

[AhK (ω) accepts] =
∑

accepting
x1y1z1...xnynzn

Pr
ω,K

[x1y1z1 . . . xnynzn]

=
∑
xiyizi

Pr
ω

[xiyizi/xiyi
O→ zi] Pr

K
[hK(xiyi) = zi]

≥ (1− ε)
∑
xiyizi

Pr
ω

[xiyizi/xiyi
O→ zi] Pr

O
[O(xiyi) = zi]

= (1− ε) Pr
ω,O

[AO(ω) accepts]

and
Pr
ω,K

[AhK (ω) accepts]− Pr
ω,O

[AO(ω) accepts] ≥ −ε

which yields an advantage smaller than ε by symmetry (i.e. by considering another distin-
guisher that accepts if and only if A rejects).

Note that this construction can be improved by replacing F by a random linear function:
if K = {a,G} where a is an `-bit string and G an n`-bit string defining a random polynomial
of degree n− 1, we define hK(x) = y ⊕G(x⊕ a× y) where a× y is the product in GF(2`)
(this uses Carter-Wegman’s xor-universal hash function [6]). ut

More practically, we can use standard hash-functions such as:

hK(x) = HMAC-SHA(K,x)

at the cost of adding the function’s pseudo-randomness hypothesis [2, 3] to the (already
assumed) hardness of the discrete logarithm problem.

To adapt random-oracle-secure signatures to every-day’s life, we regard (hK)K as a pseudo-
random keyed hash-family and require an undistinguishability between elements of this
family and random functions. In engineering terms, this precisely corresponds to encapsu-
lating the hash function in a tamper-resistant device.
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Theorem 2. Let H be a (n, ε1)-pseudo-random hash-family. If the signature scheme Σh

is (n, t, ε2)-secure against adaptive-attacks for existential-forgery, where h is a uniformly-
distributed random-oracle, then ΣH is (n, t, ε1 + ε2)-secure as well.

Proof. Let AH,sign be a Turing machine capable of forging signatures for hK with a proba-
bility greater than ε1+ε2. hK is distinguished from h by applyingA and considering whether

it succeeds or fails. Since Ah,sign can not forge signatures with a probability greater than
ε2, the advantage is greater than ε1, which contradicts the hypothesis. ut

3 Implementation

An interesting corollary of theorem 2 is that if n hashings take more than t seconds, then
K can be chosen randomly by a trusted authority, with some temporal validity. In this
setting, long-term signatures become very similar to time-stamping [13, 1].

Another consequence is that random oracle security-proofs are no longer theoretical
arguments with no practical justification as they become, de facto, a step towards practical
and provably-secure schemes using pseudo-random hash families; however, the key has to
remain secret, which forces the implementer to distinguish two types of oracles:

– A public random oracle h, that could be implemented as keyed pseudo-random hash
function protected in a all tamper-resistant devices (signers and verifiers).

– A private random oracle f , which in practice could also be any pseudo-random hash-
function keyed with a secret (unique to each signature device) generated by generate.

An efficient variant of Schnorr’s scheme, provably-secure in the standard model un-
der the tamper-resistance assumption, the existence of one-way functions and the DLP’s
hardness is depicted in figure 2.

The main motivation behind our design is to provide a memoryless pseudo-random
generator, making the dynamic information related to the state of the generator avoidable.
In essence, the advocated methodology is very cheap in terms of entropy as one can re-use
the already existing key-material for generating randomness.

Surprisingly, the security of realistic random-oracle implementations is enhanced by
using intentionally slow devices:

– use a slow implementation (e.g. 0.1 seconds per query) of a (240, 1/2000)-pseudo-random
hash-family.

– consider an attacker having access to 1000 such devices during 2 years (∼= 226 seconds).
– consider Schnorr’s scheme, which is (n, t, 220nt/TDL)-secure in the random oracle model,

where TDL denotes the inherent complexity of the DLP [19].

For example, {|p| = 512, |q| = 256}-discrete logarithms can not be computed in less than
298 seconds (∼= a 10,000-processor machine performing 1,000 modular multiplications per
processor per second, executing Shank’s baby-step giant-step algorithm [21]) and theorem
1 guarantees that within two years, no attacker can succeed an existential-forgery under
an adaptive-attack with probability greater than 1/1000.



356 David M’Räıhi et alii.

System parameters: k, security parameter
α ∈ (Z/pZ)? of order q
p and q primes, q|(p− 1)
(hv)v∈K pseudo-random hash-family
v = secret key (same in all tamper-resistant devices)

Key generation: generate(1k)
secret: x ∈R Z/qZ and z ∈R K
public: y = αx mod p

Signature generation: sign(m) := {e, s}
u = hz(m, p, q, g, y) mod q
r = gu mod p
e = hv(m, r) mod q
s = u− xe mod q

Signature verification: verify(m; e, s)
r = gsye mod p
check that e = hv(m, r) mod q

Fig. 2. A provably-secure deterministic Schnorr variant.

This proves that realistic low-cost implementation and provable security can survive in
harmony. Should a card be compromised, the overall system security will simply become
equivalent to Schnorr’s original scheme.

Finally, we would like to put forward a variant (figure 3) which is not provably secure
but presents the attractive property of being fully deterministic (a given message m, will
always yield the same signature):

Lemma 1. Let {r1, s1} and {r2, s2} be two Schnorr signatures, generated by the same
signer using algorithm 2 then {r1, s1} = {r2, s2} ⇔ m1 = m2.

Proof. If m1 = m2 = m then r1 = r2 = ghz(m) = r mod p, e1 = e2 = hv(m, r) = e mod q
and s1 = hv(m, r)− xe mod q = s2 = s, therefore {r1, s1} = {r2, s2}.

To prove the converse, observe that if r1 = r2 = r then gk1 = gk2 mod p meaning
that k1 = k2 = k. Furthermore, s1 = k − xe1 = k − xe2 = s2 mod q implies that e1 =
hv(m1, r) = hv(m2, r) = e2 mod q; consequently, unless we found a collision, m1 = m2. ut

Industrial motivation: This feature is an cheap protection against direct physical attacks
on the signer’s noise-generator (corrupting the source to obtain twice an identical k).
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System parameters : k, security parameter
α ∈ (Z/pZ)? of order q
p and q prime numbers such that q|(p− 1)
h, hash function

Key generation : generate(1k)
secret: x ∈R Z/qZ
public: y = αx mod p

Signature generation: sign(m) := {e, s}
u = h(x,m, p, q, g, y) mod q
r = gu mod p
e = h(m, r) mod q
s = u− xe mod q

Signature verification: verify(m; e, s)
r = gsye mod p
check that e = h(m, r) mod q

Fig. 3. A practical deterministic Schnorr variant.

4 Deterministic Versions of Other Schemes

The idea described in the previous sections can be trivially applied to other signature
schemes such as [10] or [12]. Suffice it to say that one should replace each session’s random
number by a digest of the keys (secret and public) and the signed message.

Blind signatures [8] (a popular building-block of most e-cash schemes) can be easily
transformed as well: in the usual RSA setting the user computes w = h(k,m, e, n) (where
k is a short secret-key) and sends m′ = wem mod n to the authority who replies with
s′ = wedmd mod n that the user un-blinds by a modular division (s = s′/w = md mod n).

More fundamentally, our technique completely eliminates a well-known attack on McEle-
ice’s cryptosystem [15] where, by asking the sender to re-encrypt logarithmically many
messages, one can filter-out the error vectors (e, chosen randomly by the sender at each
encryption) through simple majority votes.

We refer the reader to section iii.1.4.a.c of [7] for more detailed description of this
attack (that disappears by replacing e by a hash-value of m and the receiver’s public-keys).
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Abstract. In this paper we present a method for improving the performance of RSA-type exponen-
tiations. The scheme is based on the observation that replacing the exponent d by d′ = d + kφ(n)
has no arithmetic impact but results in significant speed-ups when k is properly chosen. Statis-
tical analysis, verified by extensive simulations, confirms a performance improvement of 9.3% for
the square-and-multiply scheme and 4.3% for the signed binary digit algorithm. However, the most
attractive feature of our method seems to be the fact that in most cases, existing exponentiation
black-boxes can be accelerated by simple external one-time pre-computations without any internal
code or hardware modifications.

1 Introduction

RSA-type cryptosystems use two functions:

m 7→me mod n

m 7→md mod n

where n = pq is generally the product of two primes, ed ≡ 1 mod φ(n) and φ(n) is the
Euler totient function. The public exponent can be chosen short (typically e = 3) but the
secret exponent d must not have any particular structure.

The computation of md mod n is cumbersome and any of its speed-up tricks is po-
tentially interesting for actual implementations. The simplest and most popular way to
compute md mod n is the square-and-multiply method which consists of repeated squar-
ings and multiplications by m. It can be summarily described by the following algorithm:

x := 1
for i := 1 to ` do

x := x2 mod n
if a`−i = 1 then x := xm mod n

where d is an `-bit integer with binary representation d =
∑`−1

i=0 ai2
i.
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The complexity of this scheme is:

c(d) = `(d) + αw(d)

where w(d) denotes the Hamming weight of the binary vector [a`−1, · · · , a1, a0] representing
d (the number of ai’s equal to 1) and α represents the cost of a modular multiplication
compared to a modular squaring. For large n, using standard techniques it is asymptotically
considered [8] that α ≈ 2. The cost c(d) therefore represents the squaring-equivalents
needed to complete the exponentiation. Note that in general, φ(n) is of the same order
of magnitude as n, so that when d ranges over the integers 1, 2, . . . , φ(n)− 1, the average
Hamming weight of the binary representation of d is approximately 1

2
log2 n; when α = 2

the average cost is therefore:
c(d) ≈ 2 log2 n.

For the sake of completeness, let us mention that exponentiations are frequently done
separately modulo p and q and re-combined modulo n using the Chinese remainder theorem
[11].

There are several strategies and time-memory trade-offs for lowering the complexity of
the computation of md mod n in different scenarii: one line of research has been to look
for short additions chains [14, 12] which prove to be suited to settings where squarings
are not significantly faster than multiplications. Most methods adapted to the situation
when squarings are faster than multiplications involve redundant binary representations
(RBRs) of the exponent. An RBR of d is a vector [b`−1, · · · , b1, b0] where d =

∑`−1
i=0 bi2

i,
and where the bi’s belong to some enlarged set of integers B ⊃ {0, 1}. Given an RBR of d,
the square-and-multiply algorithm generalises naturally to:

pre-compute the set {mb mod n, b ∈ B}.
x := 1
for i = 1 to ` do

x := x2 mod n
if b`−i 6= 0 then x := xmb`−i mod n

The time complexity of this algorithm is easily shown to be

cB(d) = `(d) + αwB(d) + p(B) (1)

where wB(d) is the Hamming weight of the vector [b`−1, · · · , b1, b0] and p(B) denotes the
number of squaring-equivalents necessary to pre-compute the set {mb mod n, b ∈ B}.

Several choices of B have been put forward and extensively analysed. The set B =
{0, 1,−1} yields the signed digit binary representation of d and appears also useful in
many (non-cryptographic) arithmetic contexts [2, 13]. The sets B′ = {0, 1, 2, 3, · · · , 2r −
1} and B = {−(2r − 1), · · · ,−2,−1, }⋃

B′ yield essentially the q-ary and signed q-ary
representations of d [9]. An improved choice of B consists of the set B = {0, 1, 3, · · · , 2i +
1, · · · , 2r−1} which yields [7]. The set B = {0, 1, 3, 7, · · · , 2i−1, · · · , 2r−1} was considered
in [6] and the set B obtained after a Lempel-Ziv parsing of the binary representation of d
was also considered in the literature [1].
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In this paper we decrease the exponentiation cost by replacing d by d + kφ(n). This
approach, suggested in a sentence1 but never taken-up for study since, will increase the
number ` of squarings but, for properly chosen k, will diminish the number w of multipli-
cations to do more than compensate. Finding the proper k may require a few thousands of
additions but, for RSA-type applications where d is fixed, this needs to be performed only
once. In the next sections, we first apply this idea to the square-and-multiply method. We
then adapt it to its various improvements involving RBRs and discuss its practical aspects.

2 The Binary Case

From now on we write φ for short instead of φ(n). Suppose that we replace d by d + kφ.
The number of squarings increases from ` = `(d) to `(d + kφ) which we can consider
approximately equal to `(kφ) = `(k)+ `(φ). The size of d being most of the time very close
to that of φ, the number of squarings can be considered to be approximately (1+ t)` where
t` = `(k). The idea is to compensate the growth in the number of squarings by decreasing
the number of multiplications, i.e. w(d+kφ). In theory, an extensive computing effort may
be necessary to find the proper k. However this pre-computation needs to be performed
only once per d and, as will appear from the equations to come, happens to be moderate
for nearly-optimal exponents.

We need to study the minimum of w(d + kφ) when k ranges over the set of integers of
length t`. Let us set `′ = (1+ t)` and d′ = d+kφ of minimum binary weight when k ranges
over the integers of length t`.

Let us make the further reasonable assumption (confirmed by field experiments) that
the set of the 2t` binary (1 + t)`-tuples behaves as a set of vectors chosen randomly and
independently among the 2`′ binary vectors of length `′. In this case, the expectation of
the number of vectors of weight u in the set is:

Eu =

(
`′

u

)
× 2t`−`′

and is greater than 1 as long as (
`′

u

)
> 2`. (2)

Letting w′ = infEu≥1 u, the average cost of a raising to the power d′ = d+kφ is therefore
c′ = `′ + αw′. Setting w′ = y`′, we get from (2):

`′H(y) = `,

in other words

H(y) =
1

1 + t

where H(x) = −x log2 x− (1− x) log2(1− x) is the binary entropy function [10].

1 “[11]: let us remark that the exponents d1 and d2 may be chosen to be greater than p− 1 and q − 1.”
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Consequently,

c′/` = (1 + t)

(
1 + αH−1

(
1

1 + t

))
,

the evolution of which as a function of t for α = 2 is depicted in figure 1.

Note that we have:

c′/` =
1

H(y)
(1 + αy)

whence
H(y)

`

∂

∂y
c′ = α− (1 + αy)

H ′(y)

H(y)
,

from which we deduce that the minimum of c′ is obtained when y satisfies

αH(y)− (1 + αy)H ′(y) = 0

which (since H ′(y) = log2((1− y)/y)) boils down to

(1− y)1+α − y = 0. (3)

Summarising, the minimum of c′/` is obtained when

t =
1

H(ζ)
− 1

where ζ is the root belonging to [0, 1/2] of equation (3), which yields, in the asymptotic
case α = 2:

ζ =
3

√√
31
√

3

18
− 1

2
− 3

√√
31
√

3

18
+

1

2
+ 1.

We obtain

t ≈ 0.109.

For this t, the average number of squaring-equivalents diminishes from 2` to 1.813` and
represents a non-negligible speed-up of 9.3%, confirmed by extensive simulations.

3 The Signed Digit Binary Case

A particular redundant binary representation is obtained when B = {−1, 0, 1}. In this
case, the square-and-multiply requires the storing of m−1 mod n.

If d is an integer, a signed digit binary representation of d is of the form

d =
∑

i

bi2
i (4)
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Fig. 1. Evolution of c′/` as a function of t, when k ranges over the integers of size t`.

with bi ∈ B = {−1, 0, 1}. Such a representation is not unique. Any form (4) with a minimal
number wa(d) of nonzero coefficients bi is called minimal and wa(d) is called the arithmetic
weight of d. A minimal representation is generally not unique. However, the representation:

d =
`−1∑
i=0

bi2
i (5)

with bi · bi+1 = 0 for i = 0, 1, . . . , ` − 2, (called nonadjacent form (NAF) of d) is unique,
minimal, exists for all integers, and is easy to compute. If d is `-bit long, then its NAF is
at most (` + 1)-bit long and its average arithmetic weight is `/3 (see [3, 4]), whereas the
average Hamming weight of a binary `-tuple is `/2. The cost (1) of computing md mod n
now becomes

ca(d) = `(d) + αwa(d)

plus an asymptotically negligible extra squaring and the amount of work necessary to pre-
compute m−1. Consequently, the average cost of the scheme using the signed digit binary
representation is essentially `(d) + α`(d)/3 ≈ (1 + α/3) log2 n, instead of `(d) + α`(d)/2 ≈
(1+α/2) log2 n for the binary representation (for α = 2, we get 5

3
log2 n instead of 2 log2 n).

Now suppose that we replace d by d+kφ. We need to study the minimum c′a of ca(d+kφ)
when k ranges over the set of integers of length t`. As before, set `′ = (1+t)` and d′ = d+kφ
of minimum arithmetic weight when k ranges over the integers of length t`.
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Let us make again the assumption that the 2t` vectors representing d+kφ behave like a
set of 2t` vectors chosen randomly and independently amongst ternary nonadjacent vectors
of length `′ = (1 + t)`.

A random ternary nonadjacent vector of length `′ and of Hamming weight u can be
looked upon as a string of `′ − u symbols of the form 0, 10, and −10. Any such vector
can therefore be obtained by first choosing a binary vector of length `′ − u and weight u
and then replacing each 1 symbol by either 10 or −10. Their number equals 2u

(
`′−u

u

)
. The

expectation of the number of ternary nonadjacent vectors of weight u in the set of ternary
nonadjacent vectors representing d + kφ is therefore:

Eu =

(
`′ − u

u

)
× 2t`+u−`′

which is greater than 1 as long as

(
`′ − u

u

)
> 2`−u. (6)

As before, set w′ = infEu≥1 u. The average cost of a raising to the power d′ = d + kφ is
therefore

c′a = `′ + αw′.

Setting w′ = y`′, this time (6) yields:

`′
(

y + (1− y)H

(
y

1− y

))
= `,

in other words

f(y) =
1

1 + t

where

f(y) = y + (1− y)H

(
y

1− y

)
.

We have therefore

c′a = `(1 + t)

(
1 + αf−1

(
1

1 + t

))
.

The evolution of c′a/` as a function of t is represented in figure 2 for α = 2. The
minimum of c′a/` is obtained for t = 0.0497 and the corresponding average number of
squaring-equivalents drops from 1.667 log2 n to 1.595 log2 n which represents a 4.3% time
improvement. Although this appears small, one should keep in mind that there is already
a 5/6 performance ratio between the standard and the signed binary exponentiation algo-
rithms.
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Fig. 2. Evolution of c′a/` as a function of t, when k ranges over the integers of size t`.

4 The Odd-Set Case

A potential drawback of the signed digit binary representation is that its pre-computation
involves a modular division (m−1 mod n). Alternative algorithms avoid this problem by pre-
computing and storing m3 mod n or some other odd powers of m. In other words, the set
B is chosen to be B = {0, 1, 3}. Let us describe the idea by first observing that the square-
and-multiply method computes at step i the number m[a`−1...a`−i] where d =

∑`
i=1 a`−i2

`−i

and [a`−1 . . . a`−i] stands for the binary representation of
∑i

j=1 a`−j2
`−j.

If m3 = m[11] is pre-computed, then computing m[a`−1...a`−i−1a`−i−2] from m[a`−1...a`−i]

requires two squarings and a multiplication if [a`−i−1a`−i−2] equals [11] or [10].

We therefore observe that the number of multiplications necessary in the square-and-
multiply method is the number of nonzero symbols obtained when [a`−1 . . . a0] is parsed
and represented as a string of characters belonging to the alphabet 0, 10, 11. In other words
the number of multiplications equals the Hamming weight of the ternary vector obtained
from [a`−1 . . . a0] by the above parsing. We see easily that the analysis of the behaviour
of the representation of d + kφ obtained in this fashion is exactly the same as that of the
previous sections.

More generally, the odd-set algorithm [7] uses B = {0, 1, 3, 5, · · · , 2r − 1}, and requires
2r−1 pre-computations. Now if [a] is the binary representation of an integer, [b] the binary
representation of an integer of length r and [a][b] their concatenation, then it is easy to check
that computing m[a][b] from m[a] requires r squarings and one multiplication. Therefore, if
we parse the binary representation of an integer as a string of symbols belonging to the
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alphabet A made up of 0 and the binary vectors of length r starting with 1, we see that the
number of necessary multiplications is exactly the weight of the |A|-vector thus obtained.

Now replace d by d + kφ for 0 ≤ k ≤ 2t` and choose d′ of minimum Hamming weight
when represented as a string of elements belonging to A. To evaluate the average weight
of d′ we proceed as in the previous sections. First evaluate the expectation of the number
of |A|-strings of weight u: this is easily seen to be

Eu = 2t` × 2(r−1)u
(

`′−(r−1)u
u

)

2`′ .

Calculations proceed as before: this time we obtain that the average cost of raising to the
power d′ equals

c′r = `(1 + t)

(
1 + αf−1

r

(
1

1 + t

))

with

fr(y) = (r − 1)y + (1− (r − 1)y)H

(
y

1− (r − 1)y

)
.

For r = 3 and α = 2, the evolution of c′r/` as a function of t is represented in figure
3. Since the original average weight is `/(r + 1), the game begins with (r + 3)`/(r + 1)
squaring-equivalents for α = 2 and becomes 1.5` for r = 3; whereas the minimal cost 1.467`
results in a 2.2% speed-up2.

5 Applications and Further Research

In this paper we investigated the impact of replacing an exponent d by a functionally
equivalent d′ = d + kφ(n). This surprisingly simple optimisation, to the best of our knowl-
edge never treated in the literature, appears to offer rather significant performance im-
provements and does not present any real disadvantage (at worst, the exponent size will
increase by a few bits). Moreover, this strategy can be applied to existing black-boxes
(such as compiled arithmetic libraries or cryptographic co-processors) without any modifi-
cation. We performed extensive practical tests on three existing platforms: Mathematica’s
PowerMod[,,] function, BSAFE and the Miracl big number library. In each case we did
not modify the source code and compared the performances of random exponentiations to
those obtained with their optimal equivalents, generated by adding an appropriate mul-
tiple of φ. Mathematica’s PowerMod[,,] became 7.1% faster while Miracl and BSAFE’s
performances improved by 5.4% and 6.9%. Elliptic-curves should feature even better: pro-
jective doubling over GF(2m) requires 5 field squarings and 5 multiplications (4 temporary
variables) and projective addition requires 5 squarings and 15 multiplications (9 temporary
variables); wherefrom an α ≈ 2.33.

An interesting open question consists in optimising the time complexity of random
exponentiation oracles (black-boxes that compute md mod n in a time complexity which

2 when r gets bigger, the exponentiation engine’s performances improve but the speed-up due to our optimisation
strategy decreases.
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Fig. 3. Evolution of c′3/` as a function of t, when k ranges over the integers of size t`.

does not depend on any regular function of d). In this setting, the optimiser only knows the
oracle’s expectation distribution and is allowed to make a polynomial number of queries in
order to find a d′ better than d.
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Abstract. The signature generation phase of most DLP-based signature schemes includes the time-
consuming computation of r = gk mod p where k is random. This paper introduces a new compu-
tational strategy applicable to this context: a batch exponentiation technique which allows the gen-
eration of large sets of exponentials without imposing any bias between the k-s (that is, the signer
can batch-compute the exponentials corresponding to arbitrarily imposed powers – e.g. generated by
a random source). Our method lends itself to a variety of time-memory tradeoffs and features less
storage but more computations than Brickell-Gordon-McCurley-Wilson’s exponentiation algorithm.

1 Introduction

In many DLP-based signature schemes (e.g. [3], [4] or [10]) the signer performs the operation
r = gk mod p where k is random. As the signer is often the “weak party” in the signature
protocol, several authors tried to speed-up exponentiation by pre-computing values [1], [6]
or sub-contracting a part of the exponentiation’s workload to the verifier [7]. Except the
fact that some of these algorithms have been broken [8], [9], extra memory storage, a usual
pre-requisite for implementing such schemes, is frequently an unrealistic assumption.

In this paper we develop a strategy for improving the computation of r: the method
can apply to the batch generation of fixed-g-based signatures without introducing any bias
into the exponents (that is, we assume that the k-s are imposed upon the signer by some
random source). We assume that no pre-computation is allowed other than what is needed
to execute similar size square-& multiply. Note that the idea of batch processing is not new
to cryptography [2].

2 Batch-Exponentiation

The batch exponentiation technique proposed in this paper revolves around the following
observation: since exponents are random, the distribution of ones over different exponents
is expected to feature some matching patterns. Considering this, our strategy consists
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in minimizing the signer’s workload by exponentiating the intersections separately and
resetting the common bits in the initial exponents.

2.1 Parallel Square-&-Multiply (Straightforward)

Let ` be the exponents’ size and α the number of exponentials to be computed. The usual
method to generate the r-s consists in calculating successive squares of g and performing
the multiplications selected by the bits of each ki (about `/2 multiplications).

Let K = {k1 . . . , kα} be a set of random powers1. The corresponding set of exponentials
R = {r1, . . . , rα} where ri = gki mod p can be computed by calculating the successive
squares of g only once. Thus, the total workload mainly stems from the average number of
multiplications, a direct function of the Hamming weight of the elements of K.

The algorithm R ← PSM(K, g, p), of workfactor α( `
2
− 1) + `− 1 uses α + 1 registers:

for i ← 1 to α
{
ri ← 1
}

for j ← 0 to `− 1
{
for i ← 1 to α
{
if ki[j] = 1 then ri ← ri × g mod p
}

g ← g2 mod p
}

return(R = {r1, . . . , rα})

2.2 Exponent Intersection Method

In the remaining of this paper we will focus on the number of multiplications required to
compute R assuming that it is possible to calculate the squares only once using PSM.

Denoting

a =
`−1∑
i=0

ai2
i, b =

`−1∑
i=0

bi2
i

and assuming that ga mod p and gb mod p are to be computed, let c =
∑`−1

i=0 aibi2
i.

If a and b are chosen randomly, one should expect that:

`−1∑
i=0

ai
∼=

`−1∑
i=0

bi
∼= `

2
and

`−1∑
i=0

ci
∼= `

4
.

1 we denote ki =
P`−1

j=0 ki[j]2
j
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Given that:
w(a− c) + w(b− c) + w(c) ≤ w(a) + w(b)

(where w denotes the Hamming weight), our strategy consists in computing:




Ga ← ga⊕c modp
Gb ← gb⊕c modp
Gc ← gc modp

to obtain {
ra ← Ga × Gc mod p = ga mod p
rb ← Gb × Gc mod p = gb mod p

This is illustrated in the following figure where dots on the circles’ arcs represent the
multiplications needed to ”weld” circle pieces (black dot for forming ra and white dot for
forming rb).

DEE�DE D�DE

The average gain is thus α(`/4 − 1) multiplications, which tends to 25% of the total
multiplication effort as α grows, when combined with PSM:

operations simple PSM PSM + exponent intersection
ra `/2− 1 `/2− `/4− 1
rb `/2− 1 `/2− `/4− 1
gc none `/4− 1
multiplication of Gc by Ga and Gb none 2
Total `− 2 3`/4− 1

Table 1. Simple PSM vs. PSM+Intersection (Number of Multiplications)

The expected multiplication workload required to generate R is thus:

α

2
× (

3`

4
− 1)

using four registers of size(p) bits and three exponent registers of size `. We now turn
to an optimization of this strategy.
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2.3 Generalized Intersections

It is natural to explore the generalization of the bit intersection strategy beyond exponent
couples, and see whether the overall number of multiplications can be further decreased.

The algorithm is depicted below for triples:

D�DE�DF�DEF

DF�DEFDE�DEF

DEF

EF�DEF

E�DE�EF�DEF F�DF�EF�DEF

Assuming that the exponent intersection strategy is generalized to sets of u exponents,
it is easy to prove that the multiplication workload per signature is given by:

M(`, u) =
`(2u − 1)

u2u
+ 2u−1 − 1

where the term 2u−1−1 represents the ”welding workload” (indeed, in the diagram one
can see 23−1 − 1 = 3 black dots, 23−1 − 1 = 3 white dots and 23−1 − 1 = 3 grey dots).

We can now amortize the `−1 squares over the u signatures to obtain the total workload
per signature, assuming that the costs of squares and multiplications are equal:

M ′(`, u) =
`(2u − 1)

u2u
+ 2u−1 − 1 +

`− 1

u

The analysis of M ′ for usual exponent lengths yields the integer solutions that minimize
M ′. While memory complexity grows exponentially with u, luckily enough, the optimal u
values for ` = 160, ` = 512 and ` = 1024 happen to be very small (5, 6 and 7 respectively)!

The optimal u-s for various ` values are:



Batch Exponentiation 373

from ` = to ` = use u =
1 2 1
3 8 2
9 29 3

30 88 4
89 254 5

255 694 6
695 1824 7

1825 4653 8
Table 2. Optimal u Values for M ′ as a Function of `

The following plot show M ′(160, u), M ′(256, u), M ′(512, u) and M ′(1024, u).
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800
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The exponentiator can thus proceed as follows:

– given `, lookup the optimal value of u in Table 2, we denote this optimal value by ū.

– split K into α
ū

buckets of ū exponents (we don’t deal with the case α mod ū 6= 0 for
keeping the description simple).

– perform α
ū

PSM sessions, each of which computing 2ū − 1 intersection exponentials.

– Assemble R using the intersection exponentials.

2.4 Performance

The final workload per signature is hence M ′(`, ū), whereas total storage amounts to:

(size(p) + `)(2ū − 1) + size(p) bits (1)
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The term (size(p) + `)(2ū − 1) represents the registers and exponents used for the
intersection to which we add the single ”square register” used by the PSM algorithm.

We can now benchmark the new strategy against the computational and memory re-
quirements of one of the most popular exponentiation strategies used in fixed-g settings,
an algorithm devised by Brickell et al. in [1], popularly known as the BGMW method.

3 Brickell et al.’s Exponentiation

In this section we briefly review the BGMW method. For more details, we refer the reader
to the original paper [1].

A set of integers D is called a basic digit set for base b if any integer can be represented
in base b using digits from the set D [5]. Suppose that we can choose a set M of multipliers
and a parameter h for which

D(M,h) = {mk|m ∈ M, 0 ≤ k ≤ h}
is a basic digit set for base b. Then an n-bit exponent R can be represented as

R =
t−1∑
i=0

dib
i, di = miki ∈ D(M, h)

With this representation of R, gR can be computed by

gR =
t−1∏
i=0

gmikib
i

=
h∏

k=1

(
∏

ki=k

gmib
i

)k =
h∏

k=1

ck
k

Therefore, if we pre-compute and store powers gmbi
for all i < t and m ∈ M , then gR

can be computed in at most t+h−2 multiplications using about t|M | pre-computed values
by the following algorithm:

u ← ∏
ki=h gmib

i

v ← u
for w ← h− 1 downto 1
{
u ← u×∏

ki=w gmib
i

v ← u× v
}

return(v)

It is easily seen that the number of multiplications performed by the above algorithm
is t + h − 2 in the worst case (t − h multiplications for computing products of the form∏

ki=w gmib
i

for w = 1, . . . , h and 2h − 2 multiplications for completing the for-loop) and
b−1

b
t+h−2 on average (for a randomly chosen exponent, t

b
digits are expected to be zero.).

The most obvious example for D is the base b number system (M = {1}, h = b− 1, t =
dlogb(2

n − 1)e). For a 512 bit exponent, the choice of b = 26 minimizes the expected
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number of multiplications. This basic scheme requires 127.8 multiplications on average,
132 in the worst case, and storage for 109 pre-computed values. More convenient choice
of base will be b = 32, since then the digits for the exponent R can be computed without
radix conversion by extracting five bits at a time. With this base, the required number of
multiplications is increased only by one for the average case and remains unchanged for the
worst case. Though the basic scheme is the obvious choice in the case where the storage
available is small, its performance is considerably degraded as storage goes down below
109. This means that the BGMW method does not provide an efficient way to perform the
computation when the storage available is very small.

Brickell et al. also presented several schemes using other number systems to decrease the
number of multiplications requires, of course using more storage for pre-computed values.
One of the extreme examples is to chose the set M as M2 = {m|1 ≤ m < b, ω2(m) =
0 mod 2}, where ωp(m) is the highest power of p dividing m. Then, for 1 ≤ di < b, we
have di = m or 2m for some m ∈ M2 (i.e. h = 2). Thus, gR can be computed in t
multiplications in the worst case and b−1

b
t multiplications on the average, with the storage

of |M2|dlogb(2
n − 1)e values. For examples, taking b = 256 (t = 64, |M2| = 170), we

can achieve an average of 63.75 multiplications with 10880 pre-computed values. The two
tables that Brickell et al. presented at [1] are given in the next section for the purpose of
comparison with our scheme.

4 Comparison

Given that the Brickell et al. express the storage requirements of their scheme as the
number of size(p) registers used by the algorithm, we re-normalise formula (1) (expressed
in bits) to the same unit by dividing it by size(p):

(` + size(p))(2ū − 1)

size(p)
+ 1

Rounding all storage and average workload figures to the closest integer we get:

size(p) {`, ū} storage average workload

512 {160, 5} 42 78
1024 {160, 5} 37 78
2048 {160, 5} 34 78
512 {512, 6} 127 200

1024 {512, 6} 96 200
2048 {512, 6} 80 200

Table 3. The New Scheme’s Performances for 160 and 512-Bit Exponents.

That one can compare to:
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b M h storage average workload

13 {1} 12 45 50
19 {±1} 9 76 43
29 {±1,±2} 9 134 40
36 {±1, 9,±14,±17} 7 219 36
36 M3 3 620 31
64 M2 2 1134 27

128 M3 3 1748 24
256 M2 2 2751 21

Table 4. BGMW Performances for 160-Bit Exponents.

and:

b M h storage average workload

26 {1} 25 109 128
45 {±1} 22 188 112
53 {±1,±2} 17 362 104
67 {±1,±2,±23} 16 512 99
64 M3 3 3096 86

122 M3 3 5402 74
256 M2 2 10880 64

Table 5. BGMW Performances for 512-Bit Exponents

5 Extensions and Open Questions

Several open questions appear interesting to explore at this step:

– For a power k ∈ Zq, find an a such that the Hamming weight of k′ = aq + k is
significatively small. Since computations are done modulo p, this transformation of k
does not have any impact on the result itself but may well reduce workload.

– Find an algorithm such that the construction of the subsets is optimal, that is, the
ordering of the k-s results in as few computations as possible.

– Explore the adaptation of batch exponentiation to high-speed transmission environ-
ments as presented in the appendix. The protocol sub-contracts the squaring effort to
an external distrusted device.

– Devise a batch version of BGMW.
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A Sub-Contracting Squarings to a Distrusted Terminal

When a high-speed communication interface is available (e.g. a PCMCIA card) one can
subcontract the computation of squares to a potentially distrusted device.

The strategy remains the same, grouping the exponents and computing the gk-s as
before, except that square values come from the outside world.

The device wishing to evaluate gk contains a pre-calculated digest h of the set

{g, g2, g4, g8, . . .}

computed using an iterated hash function H:

h = H(. . . H(g4, H(g2, H(g, IV ))) . . .)

Where IV is the hash-function’s initialization vector.

Denoting by Sender the device in charge of squaring and by Receiver the exponentiator,
the protocol is the following:

Sender Receiver

s ← g t ← IV

for i ← 0 to `− 1 for i ← 0 to `− 1
{ {
send s −−−−−−−−−−−−−−−−→ receive s, use it if needed
update s ← s2 mod p update t ← H(s, t)
} }

if h = t validate the result as correct.





Partie III
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Abstract. While bringing considerable flexibility and extending the horizons of mobile computing,
mobile code raises major security issues. Hence, mobile code, such as Java applets, needs to be
analyzed before execution. The byte-code verifier checks low-level security properties that ensure that
the downloaded code cannot bypass the virtual machine’s security mechanisms. One of the statically
ensured properties is type safety. The type-inference phase is the overwhelming resource-consuming
part of the verification process.
This paper addresses the RAM bottleneck met while verifying mobile code in memory-constrained
environments such as smart-cards. We propose to modify classic type-inference in a way that signif-
icantly reduces the memory consumption in the memory-constrained device at the detriment of its
distrusted memory-rich environment.
The outline of our idea is the following, throughout execution, the memory frames used by the verifier
are MAC-ed and exported to the terminal and then retrieved upon request. Hence a distrusted
memory-rich terminal can be safely used for convincing the embedded device that the downloaded
code is secure.
The proposed protocol was implemented on JCOP20 and JCOP30 Java cards using IBM’s JCOP
development tool.

1 Introduction

The Java Card architecture for smart cards [1] allows new applications, called applets, to
be downloaded into smart cards. While general security issues raised by applet download
are well known [9], transferring Java’s safety model into resource-constrained devices such
as smart cards appears to require the devising of delicate security-performance trade-offs.

When a Java class comes from a distrusted source, there are two basic manners to
ensure that no harm will be done by running it.

The first is to interpret the code defensively [2]. A defensive interpreter is a virtual ma-
chine with built-in dynamic runtime verification capabilities. Defensive interpreters have
the advantage of being able to run standard class files resulting from any Java compi-
lation chain but appear to be slow: the security tests performed during interpretation
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slow-down each and every execution of the downloaded code. This renders defensive inter-
preters unattractive for smart cards where resources are severely constrained and where,
in general, applets are downloaded rarely and run frequently.

Another method consists in running the newly downloaded code in a completely pro-
tected environment (sandbox), thereby ensuring that even hostile code will remain harm-
less. In this model, applets are not compiled to machine language, but rather to a virtual-
machine assembly-language called byte-code.

Upon download, the applet’s byte-code is subject to a static analysis called byte-code
verification which purpose is to make sure that the applet’s code is well-typed. This is
necessary to ascertain that the code will not attempt to violate Java’s security policy by
performing ill-typed operations at runtime (e.g. forging object references from integers
or calling directly API private methods). Today’s de facto verification standard is Sun’s
algorithm [7] which has the advantage of being able to verify any class file resulting from
any standard compilation chain. While the time and space complexities of Sun’s algorithm
suit personal computers, the memory complexity of this algorithm appears prohibitive for
smart cards, where RAM is a significant cost-factor.

This limitation gave birth to a number of innovating workarounds:

Leroy [5, 6] devised a verification scheme which memory complexity equals the amount
of RAM necessary to run the verified applet. Leroy’s solution relies on off-card code trans-
formations whose purpose is to facilitate on-card verification by eliminating the memory-
consuming fix-point calculations of Sun’s original algorithm.

Proof carrying code [11] (PCC) is a technique by which a side product of the full
verification, namely, the final type information inferred at the end of the verification process
(fix-point), is sent along with the byte-code to allow a straight-line verification of the applet.
This extra information causes some transmission overhead, but the memory needed to
verify a code becomes essentially equal to the RAM necessary to run it. A PCC off-card
proof-generator is a rather complex software.

Various other ad-hoc memory-optimization techniques exist as well [10, 8].

Our results: The work reported in this paper describes an alternative byte-code verifi-
cation solution. Denoting by Mmax the number of variables claimed by the verified method
and by J the number of jump targets in it, we show how to securely distribute the ver-
ification procedure between the card and the terminal so as to reduce the card’s mem-
ory requirements from O(MmaxJ) to O(J log J + cMmax) where c is a small language-
dependent constant or, when a higher communication burden is tolerable, to a theoretic
O(log J + cMmax).

The rest of the paper is organized as follows: the next section recalls Java’s security
model and Sun’s verification algorithm with a specific focus on its data-flow analysis part.
The subsequent sections describe the new verification protocol, which implementation de-
tails are given in the last section.
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2 Java Security

The Java Virtual Machine (JVM) Specification [7] defines the executable file structure,
called the class file format, to which all Java programs are compiled. In a class file, the
executable code of methods (Java methods are the equivalent of C functions) is found in
code-array structures. The executable code and some method-specific runtime information
(namely, the maximal operand stack size Smax and the number of local variables Lmax

claimed by the method1) constitute a code-attribute. We briefly overview the general stages
that a Java code goes through upon download.

To begin with, the classes of a Java program are translated into independent class
files at compile-time. Upon a load request, a class file is transferred over the network to
its recipient where, at link-time, symbolic references are resolved. Finally, upon method
invocation, the relevant method code is interpreted (run) by the JVM.

Java’s security model is enforced by the class loader restricting what can be loaded, the
class file verifier guaranteeing the safety of the loaded code and the security manager and
access controller restricting library methods calls so as to comply with the security policy.
Class loading and security management are essentially an association of lookup tables and
digital signatures and hence do not pose particular implementation problems. Byte-code
verification, on which we focus this paper, aims at predicting the runtime behavior of a
method precisely enough to guarantee its safety without actually having to run it.

2.1 Byte-Code Verification

Byte-code verification [4] is a link-time phase where the method’s run-time behavior is
proved to be semantically correct.

The byte-code is the executable sequence of bytes of the code-array of a method’s
code-attribute. The byte-code verifier processes units of method-code stored as class file
attributes. An initial byte-code verification pass breaks the byte sequence into successive
instructions, recording the offset (program point) of each instruction. Some static con-
straints are checked to ensure that the byte-code sequence can be interpreted as a valid
sequence of instructions taking the right number of arguments. As this ends normally, the
receiver assumes that the analyzed file complies with the general syntactical description of
the class file format.

Then, a second verification step ascertains that the code will only manipulate values
which types are compatible with Java’s safety rules. This is achieved by a type-based data-
flow analysis which abstractly executes the method’s byte-code, by modelling the effect of
the successive byte-codes on the types of the variables read or written by the code.

The next section explains the semantics of type checking, i.e., the process of verifying
that a given pre-constructed type is correct with respect to a given class file. We explain
why and how such a type can always be constructed and describe the basic idea behind
data-flow analysis.

1 Mmax = Lmax + Smax.
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2.1.1 The Semantics of Type Checking A natural way to analyze the behavior of a
program is to study its effect on the machine’s memory. At runtime, each program point
can be looked upon as a memory instruction frame describing the set of all the runtime
values possibly taken by the JVM’s stack and local variables.

Since run-time information, such as actual input data is unknown before execution
starts, the best an analysis may do is reason about sets of possible computations. An
essential notion used for doing so is the collecting semantics defined in [3] where, instead
of computing on a full semantic domain (values), one computes on a restricted abstract
domain (types).

↑
stack growth

12711

@346

127.55

1113

= values Ã
int

Ljava/lang/String;

FH

FL

int

= types

For reasoning with types, one must precisely classify the information expressed by
types. A natural way to determine how (in)comparable types are is to rank all types in a
lattice L. A brief look at the toy lattice depicted below suffices to find-out that animal is
more general than fly, that int and spider are not comparable and that cat is a specific
animal. Hence, knowing that a variable is designed to safely contain an animal, one can
infer that no harm can occur if during execution this variable would successively contain a
cat, a fly and an insect. However, should the opposite be detected (e.g. an instruction
would attempt to use a variable supposed to contain an animal as if it were a cat) the
program should be rejected as unsafe.

The most general type is called top and denoted >. > represents the potential si-
multaneous presence of all types, i.e. the absence of (specific) information. By definition,
a special null-pointer type (denoted null) terminates the inheritance chain of all object
descendants.

Formally, this defines a pointed complete partial order (CPO) ¹ on the lattice L.

>
↙ ↘

int Object

↓
animal

↙ ↘
cat insect

↓ ↙ ↓ ↘
null spider bee fly

↓ ↓ ↓
null null null

Stack elements and local variable types are hence tuples of elements of L to which one
can apply point-wise ordering.
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L =

>
↙ ↓ ↘

int · · · Object

↙ ↓ ↘
τ1 · · · τk

↙ ↓ ↘ ↙ ↓ ↘
..
. · · ·

..

.
..
. · · ·

..

.
τ··· τ··· τ··· τ···
↓ ↓ ↓ ↓ ↓ ↓

null null null null null null

2.1.2 Abstract Interpretation The verification process described in [7] §4.9, is an
(iterative data-flow analysis) algorithm that attempts to build an abstract description of
the JVM’s memory for each program point. A byte-code is safe if the construction of such
an abstract description succeeds.

Assume, for example, that an iadd is present at some program point. The i in iadd

hints that this instruction operates on integers. iadd’s effect on the JVM is indeed very
simple: the two topmost stack elements are popped, added and the sum is pushed back
into the stack. An abstract interpreter will disregard the arithmetic meaning of iadd and
reason with types: iadd pops two int elements from the stack and pushes back an int.
From an abstract perspective, iadd and isub have identical effects on the JVM.

As an immediate corollary, a valid stack for executing an iadd must have a value which
can be abstracted as int.int.S, where S may contain any sequence of types (which are
irrelevant for the interpretation of our iadd). After executing iadd the stack becomes int.S

Denoting by L the JVM’s local variable area (irrelevant to iadd), the total effect of
iadd’s abstract interpretation on the JVM’s memory can be described by the transition
rule Φ:

iadd : (int.int.S, L) 7→ (int.S, L)

The following table defines the transition rules of seven representative JVM instruc-
tions2.

Instruction Transition rule Φ Security test

iconst[n] (S, L) 7→ (int.S, L) | S |< Smax

iload[n] (S, L) 7→ (int.S, L) n ∈ L, L[n] == int, | S |< Smax

istore[n] (int.S, L) 7→ (S, L{n → int}) n ∈ L
aload[n] (S, L) 7→ (L[n].S, L) n ∈ L, L[n] ¹ Object, | S |< Smax

astore[n] (τ.S, L) 7→ (S, L{n → τ}) n ∈ L, τ ¹ Object

dup (τ.S, L) 7→ (τ.τ.S, L) | S |< Smax

getfield C.f.τ (ref(D).S, L) 7→ (τ.S, L) D ¹ C

For the first instruction of the method, the local variables that represent parameters
are initialized with the types τj indicated by the method’s signature; the stack is empty
(ε) and all other local variables are filled with >s. Hence, the initial frame is set to:

(ε, (this, τ1, . . . , τn−1,>, . . . ,>))

For other instructions, no information regarding the stack or the local variables is available.

2 Note that the test n ∈ L is equivalent to ascertaining that 0 ≤ n ≤ Lmax.



386 Konstantin Hyppönen et alii.

Verifying a method whose body is a straight-line code (no branches), is easy: we sim-
ply iterate the abstract interpreter’ transition function Φ over the successive instructions,
taking the stack and register types after any given instruction as the stack and register
types before the next instruction. The types describing the successive JVM memory-states
produced by the successive instructions are called working frames.

Denoting by in(i) the frame before instruction i and by out(i) the frame after instruction
i, we get the following data-flow equation where evaluation starts from the right:

in(i + 1) ← out(i) ← Φi(in(i))

Branches introduce forks and joins into the method’s flowchart. Let us illustrate these
with the following example:

program point Java code

int m (int q) {
p1 ↪→

int x;

int y;

if (q == 0)

p2 ↪→ { x = 1; ... }
p3 ↪→ else { y = 2; ... }
p4 ↪→

... }

After program point p1 one can infer that variable q has type int. This is denoted
as out(p1) = {q = int, x = >, y = >}. After the if’s then branch, we infer the type
of variable x, i.e., out(p2) = {q = int, x = int, y = >}. After the else, we learn that
out(p3) = {q = int, x = >, y = int}.

However, at p4, nothing can be said about neither x nor y. We hence prudently assume
that in(p4) = {q = int, x = >, y = >} by virtue of the principle that if two execution
paths yield different types for a given variable, only the lesser-information type can serve
for further calculations. In other words, we assume the worst and check that, still, type-
violations will not occur.

Thus, if an instruction i has several predecessors with different exit frames, i’s frame is
computed as the least common ancestor3 (LCA) of all the predecessors’ exit frames:

in(i) = LCA{out(i) | j ∈ Predecessor(i)}.

In our example: in(p4) = {q = int, x = > = LCA(int,>), y = > = LCA(>, int)}.
Finding an assignment of frames to program points which is sufficiently conservative for

all execution paths requires testing them all; this is what the verification algorithm does.
Whenever some in(i) is adjusted, all frames in(j) that depend on in(i) have to be adjusted
too, causing additional iterations until a fix-point is reached (i.e., no more adjustments are
required). The final set of frames is a proof that the verification terminated with success.
In other words, that the byte-code is well-typed.

3 The LCA operation is frequently called unification.
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2.2 Sun’s Type-Inference Algorithm

The algorithm below which summarizes the verification process, is taken from [7]. The
treatment of exceptions (straightforward) is purposely omitted for the sake of clarity.

The initialization phase of the algorithm consists of the following steps:

1. Initialize in(0) ← (ε, (this, τ1, . . . , τn−1,>, . . . ,>)) where (τ1, . . . , τn−1) is the method’s
signature.

2. A ‘changed’ bit is associated to each instruction, all ‘changed’ bits are set to zero except
the first.

Execute the following loop until no more instructions are marked as ‘changed’ (i.e., a
fix-point is reached).

1. Choose a marked instruction i. If there aren’t any, the method is safe (exit). Otherwise,
reset the ‘changed’ bit of the selected instruction.

2. Model the effect of the instruction on in(i) by doing the following:

– If the instruction uses values from the stack, ensure that:
• There are sufficiently many values on the stack, and that
• The topmost stack elements are of types that suit the executed instruction.

Otherwise, verification fails.
– If the instruction uses local variables:

• Ascertain that these local variables are of types that suit the executed instruction.
Otherwise, verification fails.

– If the instruction pushes values onto the stack:
• Ascertain that there is enough room on the stack for the new values. If the new

stack’s height exceeds Smax, verification fails;
• Add the types produced by the instruction to the top of the stack.

– If the instruction modifies local variables, record these new types in out(i).

3. Determine the instructions that can potentially follow instruction i. A successor in-
struction can be one of the following:

– For most instructions, the successor instruction is just the next instruction;
– For a goto, the successor instruction is the goto’s jump target;
– For an if, both the if’s remote jump target and the next instruction are the suc-

cessors;
– return has no successors.
– Verification fails if it is possible to “fall off” the last instruction of the method.

4. Unify out(i) with the in(k)-frame of each successor instruction k.

– If this successor instruction k is visited for the first time,
• record that out(i) calculated in step 2 is now the in(k)-frame of the successor

instruction;
• mark the successor instruction by setting the ‘changed’ bit.

– If the successor instruction has been visited before,
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• Unify out(i) with the successor instruction’s (already present) in(k)-frame and
update: in(k) ← LCA(in(k), out(i)).

• If the unification caused modifications in in(k), mark the successor instruction k
by setting its ‘changed’ bit.

5. Go to step 1.

If the code is safe, the algorithm must exit without reporting a failure.

As one can see, the time complexity of this algorithm is upper-bound by the O(D× I×
J × Lmax), where D is the depth of the type lattice, I is the total number of instructions
and J is the number of jumps in the method.

While from a theoretical standpoint, time complexity can be bounded by a crude upper
bound O(I4)4, practical experiments show that each instruction is usually parsed less than
twice during the verification process.

Space (memory) complexity is much more problematic, since a straightforward coding of
Sun’s algorithm yields an implementation where memory complexity is bound by O(ILmax).
Although this is still polynomial in the size of the downloaded applet, one must not forget
that if Lmax RAM cells are available on board for running applets, applets are likely to use
up all the available memory so as to optimize their functional features, which in turn would
make it impossible to verify these same applets on board. Here again, a straightforward
simplification allows to reduce this memory complexity from O(ILmax) to O(JLmax).

3 Trading-Off On-Board RAM Against Communication

A smart card is nothing but one element in a distributed computing system which, invari-
ably, comprises terminals (also called card readers) that allow cards to communicate with
the outside world.

Given that terminals usually possess much more RAM than cards, it seems natural to
rely on the terminal’s storage capabilities for running the verification algorithm. The sole
challenge being that data stored in the terminal’s RAM can be subject to tampering.

Note that the capacity of working with remote objects (Remote Method Invocation)
would make the implementation of such a concept rather natural in Java5.

3.1 The Data Integrity Mechanism

Our goal being to use of the terminal’s RAM to store the frames created during verification,
the card must embark a mechanism allowing to ascertain that frame data is not modified

4 In the worst case, all instructions are jumps, and each instruction acts on c different variables, i.e., Lmax = c×I,
where c is a language-dependent constant representing the maximal number of variables possibly affected by a
single instruction. Additionally, one may show (stemming from the observation that the definition of a new type
requires at least one new instruction) that D is the maximal amongst the depth of the primitive data part of
the type lattice L (some langauge-dependent constant) and I. This boils down to a crude upper bound O(I4).
Considering that byte-code verification takes place only once upon applet downloading, even a relatively high
computational overload would not be a barrier to running a byte-code verifier on board.

5 However, because of the current limitations of Java Cards, the prototype reported in this paper does not rely
on RMIs.
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without the card’s consent. Luckily, a classic cryptographic primitive called MAC (Message
Authentication Code) [12] does just that.

It is important to stress that most modern cards embark ad hoc cryptographic co-
processors that allow the computation of MACs in a few clock cycles. The on-board oper-
ation of such co-processors is particularly easy through the cryptographic classes and Java
Card’s standard APIs. Finally, the solution that we are about to describe does not impose
upon the terminal any cryptographic computations; and there is no need for the card and
the terminal to share secret keys.

Before verification starts, the card generates an ephemeral MAC key k; this key will be
used only for one method verification. We denote by fk(m) the MAC function, applied to
data m. k should be long enough (typically 160 bits long) to avoid the illicit recycling of
data coming from different runs of the verification algorithm.

The protocol below describes the solution implemented by our prototype. In the coming
paragraphs we use the term working frame, when speaking of in(i+1) ← out(i) ← Φi(in(i)).
In other words, the working frame is the current input frame in(i + 1) of the instruction i
which is just about to be modelled.

For simplicity, we assume that instruction number i is located at offset i. Shouldn’t this
be the case, a simple lookup table A[i], which output represents the real offset of the i-th
instruction, will fix the problem.

The card does not keep the frames of the method’s instructions in its own RAM but
uses the terminal as a repository for storing them. To ascertain data integrity, the card
sends out, along with the data, MACs of the outgoing data. These MACs will subsequently
allow the card to ascertain the integrity of the data retrieved from the terminal (in other
words, the card simply sends MACs to itself via the terminal).

The card associates with each instruction i a counter ci kept in card’s RAM. Each
time that instruction i is rechecked (modelled) during the fix-point computation, its ci is
incremented inside the card. The role of ci is to avoid playback attacks, i.e. the malicious
substitution of type information by an older versions of this type information.

3.2 The New Bytecode Verification Strategy

The initialize step is replaced by repeating the following for 2 ≤ i ≤ I:

1. Form a string representing the initialized (void) type information (frame) Fi for instruc-
tion i.

2. Append to this string a counter ci representing the current number of times that in-
struction i was visited. Start with ci ← 0.

3. Compute ri = fk(unchanged, ci, i, Fi) = fk(unchanged, 0, i, Fi).
4. Send to the terminal {unchanged, Fi, i, ri}.

Complete the initialization step by:

1. Sending to the terminal {changed, F1 ← (ε, (this, τ1, . . . , τn−1,>, . . . ,>)),
1, r1 ← fk(changed, c1 ← 0, 1, F1)},
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2. Initializing an on-board counter τ ← 1.

In all subsequent descriptions check ri means: re-compute ri based on the current i, the
{ci, k} kept in the card and {Fi, changed/unchanged bit} sent back by the terminal and if
the result disagrees with the ri sent back by the terminal, reject the applet.

The main fix-point loop is the following:

1. If τ = 0 accept the applet, else query from the terminal an Fi for an instruction i which
bit is set to changed.
(a) Check if the transition rules allow executing the instruction. In case of failure reject

the applet.
(b) Apply the transition rules to the type information Fi received back from the terminal

and store the result in the working frame.

2. For all potential successors j of the instruction at i:
(a) Query the terminal for {Fj, rj}; check that rj is correct.
(b) Unify the working frame with Fj. If unification fails reject the applet.
(c) If unification yields a frame F ′

j different than Fj then
– increment cj, increment τ
– compute rj = fk(changed, cj, j, F

′
j), and

– send to the terminal {changed, F ′
j , j, rj}.

The terminal can now erase the old values at entry j and replace them by the new
ones.

3. Decrement τ , increment ci, re-compute ri and send {unchanged, Fi, i, ri} to the terminal.
Again, the terminal can now erase the old values at entry i and replace them by the
new ones.

4. Goto 1.

The algorithm that we have just described only requires the storage of I ci-counters.
Since time complexity will never exceed O(I4), any given instruction can never be visited
more than O(I4) times. The counter size can hence be bound by O(log I) thereby resulting
in an overall on-board space complexity of O(I log I + cLmax). where c is a small language-
dependent constant (the cLmax component of the formula simply represents the memory
space necessary for the working frame).

Note that although in our presentation we allotted for clarity a ci per instruction, this
is not actually necessary since the same ci can be shared by every sequence of instructions
into which no jumps are possible; this O(J log J +cLmax) memory complexity optimization
is evident to Java verification practitioners.

3.3 Reducing In-Card Memory to O(log I + cLmax)

By exporting also the ci values to the terminal, we can further reduce card’s memory
requirements to O(log I + cLmax). This is done by implementing the next protocol in which
all the ci values are kept in the terminal.

The card generates a second ephemeral MAC key k′ and stores a single counter t,
initialized to zero.
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– Initialization: The card computes and sends mi ← fk′(i, ci ← 0, t ← 0) to the terminal
for 1 ≤ i ≤ I.

– Read ci: To read a counter ci:

• The card sends a query i to the terminal.
• The terminal returns {ci,mi}.
• The card checks that mi = fk′(i, ci, t) and if this is indeed the case then ci can be

used safely (in case of MAC disagreement the card rejects the applet).

– Increment ci: to increment a counter ci:

1. For j = 1 to I:
• Execute Read cj

• If i = j, the card instructs the terminal to increment ci.
• The card computes mj = fk′(j, cj, t + 1) and sends this updated mj to the

terminal.
2. The card increments t.

The value of t being at most equal to the number of steps executed by the program, t
occupies an O(log I) space (in practice, a 32 bit counter). Note, however, that the amount
of communication and computations is rather important: for every ci update, the terminal
has to send back to the card the values and MACs of all counters associated with the
verified method; the card checks all the MACs, updates them correspondingly, and sends
them back to the terminal.

4 Implementation Details

We implemented algorithm 3.2 as a usual Java Card applet. It is uploaded onto the card and
after initialization, waits a new applet to be received in order to check it for type safety.
Thus, our prototype does not have any access to the Java Card Runtime Environment
(JCRE) structures nor to Installer’s functions and by no means can it access information
about the current contents of the card and packages residing on it. However, the purpose of
our code is to check the type safety of newly uploaded applets. Given that new applets can
make use of packages already existing on board, our verifier should have full information
about the following structures:

– the names of the packages already present on board and classes in these packages;
– methods for resident classes, along with their signatures;
– fields in resident classes and their types.

Since this information cannot be obtained from the card itself, we had to assume that
the newly downloaded applet uses only common framework packages, and pre-embed the
necessary information about these packages into our verifier.

The type lattice information is “derived” by the verifier from the superclass references
and interface references stored in the byte arrays of classes.

The terminal-side applet plays an active role in the verification process; it calls methods
of the card-side applet and sends them all the necessary data.
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4.1 Programming Tools and Libraries

The prototype has been implemented as a “normal” Java Card applet. It enjoys the full
functionality of Sun’s off-card verifier, that we reverse-engineered in the course of this
project using a special application called dump, from the JTrek library [13] originally de-
veloped by Compaq6.

JTrek contains the Trek class library, which allows navigation and manipulation of
Java class files, as well as several applications built around this library; dump being one
such application. dump creates a text file containing requested information for each class
file of the trek (i.e., a path through a list of class files and their objects); in particular,
the generated text file may contain class file’s attributes, instructions, constant pool, and
source statements. All this makes it possible to reconstruct source code from class files.

After decompiling the program class file (and fixing some of JTrek’s bugs in a process)
we obtained, amongst other things:

– Parsers for the Java Card CAP and export files;
– The verifier’s static checks for all JCVM byte codes;
– An abstract interpreter for the methods including the representation of the JCVM

states.

These tools were used to develop the terminal-side verifier applet; and some ideas were
recycled for developing the card-side verifier applet.

For actual applet development we used IBM Zurich Research Laboratory’s JCOP Tools

[14]. This toolbox consists of the JCOP IDE (Integrated Development Environment) and
BugZ, a source-level debugger. Furthermore, shell-like APDU command execution environ-
ment, as well as command-driven CardMan are included for simple card management tasks,
such as listing packages and applets installed on the card, displaying information about
given CAP files, installing applets from an uploaded package, sending arbitrary APDU
commands to the card, etc.

JCOP Tools are shipped with the off-card Application Programming Interface (API).
Using the provided implementations of these APIs, it is possible to develop applications
that can:

– Upload the CAP file onto a card;
– Install the applet on a card;
– Communicate with the card’s applet (i.e., send APDUs to the applet and receive APDUs

from it);
– Delete the applet instance and the package from the card.

Since JCOP Tools can interact with any Java Card inserted into the reader, the avail-
ability of cryptographic functions depends on the card. The kit is shipped with three Java
Cards; all of which support 3DES encryption/decryption, and two support RSA.

Hence, the JCOP Tools provided us with all the necessary features for implementing
both the card-side and the terminal-side parts of our protocol, testing them on virtual as
well as real Java Cards and allowing to benchmark the whole.

6 JTrek is no longer downloadable from its web page.
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4.2 Interaction Between Terminal-Side and Card-Side Applets

The implemented prototype consists of the terminal-side and card-side applets. Both ap-
plets run in parallel.

The verification algorithm is fully deterministic (with the exception of the selection
of a single frame from the set of all frames marked as changed). Since the order in which
marked frames are selected does not affect the final result (i.e., accept or reject the applet),
the terminal-side applet can be “proactive” because it has all necessary information for
running the verification process in parallel with the card7. Using this strategy, we can avoid
all requests from the card to the terminal given that the latter is fully aware of the current
verification state and can hence provide the card-side applet with all required data without
being prompted.

Thus, the only data sent from the card to the terminal are response status and MAC-
ed frames that have to be stored in the terminal. The terminal initiates all verification
steps; it sends the card the results of the modelling of each instruction and the results
of unification of different frames. The card-side applet simply checks that the verification
process advances as it should and updates the instruction counters8.

4.2.1 The Terminal-Side Applet is based on Sun Microsystems’ off-card verifier. The
latter was fully revised and some new functionality added. The communication with the
card-side applet is implemented using IBM JCOP’s API.

The terminal-side applet is in charge of the following tasks:

– Prepare the CAP file components for sending them to the card-side applet. Parse the
CAP file (storing it in the object structure) and check its compliance with Sun’s file
format (structural verification being beyond the scope of our demonstrator, we left this
part off-board for the time being);

– Maintain the storage for frames and their MACs. Exchange frames with the card-side
applet;

– Resolve the problem of finding the LCA of two frames in nontrivial cases (trivial ones
can be dealt with by our card-side applet) and send the result to the card.

4.2.2 The Card-Side Applet:

– Controls the correctness of the verifier’s method calls by the terminal-side applet;
– Checks and applies transition rules (i.e., performs type inference) to individual instruc-

tions.
– Maintains a list of counters ci for all instructions; updates counter values as necessary;
– Executes cryptographic functions;

7 Note that this is not along the general design philosophy of our protocol whereby the terminal needs no other form
of intelligence other than the capacity to receive data, store it and fetch it back upon request. We nonetheless
implemented some extra intelligence in the terminal to speed-up the development of our proof of concept.

8 Again, the previous footnote applies to this simplification as well.
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– Solves the problem Is type A a descendant of type B in the type lattice L? (in other
words, is A ¹ B?) in order to check the result of the unification of two frames sent by
the terminal;

– For instructions invokespecial, invokestatic and invokevirtual, checks arguments
for their type consistency and pushes the returned type onto the operand stack. Sup-
ports calls to all framework methods as well as to methods of the package being currently
verified. The invokeinterface instruction is not yet supported.

– The card-side applet can unify two frames for all types of stack and local variables
except when both types to be unified are references to classes or arrays of references
to classes. In this case, the card-side applet asks the terminal to perform unification,
waits for results, and checks these results before accepting.

5 Conclusion

Our proof-of-concept (not optimized) implementation required 380 Kbytes for the terminal-
side applet source code and 70 Kbyte for the card-side applet source code. With the max-
imum length of method’s byte-code set to 200 bytes and both, Smax and Lmax limited to
20 (the restrictions of the Java Cards shipped with JCOP Tools), one needs 440 bytes of
RAM to run our two-party verification procedure. When the verified byte-code is written
into EEPROM (as is the case in most real-life scenarios), one would need only 240 bytes
of on-board RAM and 8976+ 200 EEPROM bytes.

The natural way to turn our prototype into a full-fledged verifier, is to incorporate it into
the Installer applet, which has already its own representation of the CAP file components.

We do not think that communication overhead is a serious concern. With the advent
of fast card interfaces, such as USB, the transmission’s relative cost is reduced. Typically,
USB tokens can feature various performances ranging from a 1.5 Mb/s (low-speed) to 12
Mb/s (full speed). But even with slower interfaces, such as ISO 7816-3 our prototype still
functions correctly in real-time.
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Abstract. While bringing considerable flexibility and extending the horizons of mobile computing,
mobile code raises major security issues. Hence, mobile code, such as Java applets, needs to be
analyzed before execution. The byte-code verifier checks low-level security properties that ensure that
the downloaded code cannot bypass the virtual machine’s security mechanisms. One of the statically
ensured properties is type safety. The type-inference phase is the overwhelming resource-consuming
part of the verification process.
This paper addresses the RAM bottleneck met while verifying mobile code in memory-constrained
environments such as smart-cards. We propose to modify classic type-inference in a way that signif-
icantly reduces memory consumption.
Our algorithm is inspired by bit-slice data processing and consists in running the verifier on each
variable in turn. In other words, instead of running the fix-point calculation algorithm once on M
variables, we re-launch the algorithm M/` times, verifying each time only ` variables. Parameter `
can then be tuned to suit the RAM resources available on board whereas M/` upper-bounds the
computational effort (expressed in re-runs of the usual fix-point calculation algorithm). The resulting
RAM economy, as experimented on a number of popular applets, is around 40%.

1 Introduction

The Java Card architecture for smart cards [2] allows new applications, called applets,
to be downloaded into smart-cards. While bringing considerable flexibility and extending
the horizons of smart-card usage this post issuance feature raises major security issues.
Upon their loading, malicious applets can try to subvert the JVM’s security in a variety
of ways. For example, they might try to overflow the stack, hoping to modify memory
locations which they are not allowed to access, cast objects inappropriately to corrupt
arbitrary memory areas or even modify other programs (Trojan horse attacks). While the
general security issues raised by applet download are well known [9], transferring Java’s
safety model into resource-constrained devices such as smart-cards appears to require the
devising of delicate security-performance trade-offs.
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When a Java class comes from a distrusted source, there are two basic manners to
ensure that no harm will be done by running it.

The first is to interpret the code defensively [3]. A defensive interpreter is a virtual ma-
chine with built-in dynamic runtime verification capabilities. Defensive interpreters have
the advantage of being able to run standard class files resulting from any Java compilation
chain but appear to be slow: the security tests performed during interpretation slow-down
each and every execution of the downloaded code; as will be seen later, the memory com-
plexity of these tests is not negligible either. This renders defensive interpreters unattractive
for smart-cards where resources are severely constrained and were, in general, applets are
downloaded rarely and run frequently.

Another method consists in running the newly downloaded code in a completely pro-
tected environment (sandbox), thereby ensuring that even hostile code will remain harm-
less. Java’s security model is based on sandboxes. The sandbox is a neutralization layer
preventing direct access to hardware resources. In this model, applets are not compiled to
machine language, but rather to a virtual-machine assembly-language called byte-code.

Upon download, the applet’s byte-code is subject to a static analysis called byte-code
verification which purpose is to make sure that the applet’s code is well-typed. This is
necessary to ascertain that the code will not attempt to violate Java’s security policy by
performing ill-typed operations at runtime (e.g. forging object references from integers
or calling directly API private methods). Today’s de facto verification standard is Sun’s
algorithm [8] which has the advantage of being able to verify any class file resulting from
any standard compilation chain. While the time and space complexities of Sun’s algorithm
suit personal computers, the memory complexity of this algorithm appears prohibitive for
smart-cards, where RAM is a significant cost-factor.

This limitation gave birth to a number of innovating workarounds:

Leroy [6, 7] devised a verification scheme which memory complexity equals the amount
of RAM necessary to run the verified applet. Leroy’s solution relies on off-card code trans-
formations whose purpose is to facilitate on-card verification by eliminating the memory-
consuming fix-point calculations of Sun’s original algorithm.

Proof carrying code [11] (PCC) is a technique by which a side product of the full
verification, namely, the final type information inferred at the end of the verification process
(fix-point), is sent along with the byte-code to allow a straight-line verification of the applet.
This extra information causes some transmission overhead, but the memory needed to
verify a code becomes essentially equal to the RAM necessary to run it. A PCC off-card
proof-generator is a rather complex software.

The work reported in this paper describes two new memory-optimization techniques.

The rest of the paper is organized as follows: the next section recalls Java’s security
model and Sun’s verification algorithm with a specific focus on its data-flow analysis part.
The subsequent sections describe in detail our algorithms, which benchmarks are given in
the last section.
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2 Java Security

The Java Virtual Machine (JVM) Specification [8] defines the executable file structure,
called the class file format, to which all Java programs are compiled. In a class file, the
executable code of methods (Java methods are the equivalent of C functions) is found in
code-array structures. The executable code and some method-specific runtime information
(namely, the maximal operand stack size Smax and the number of local variables Lmax

claimed by the method) constitute a code-attribute. We briefly overview the general stages
that a Java code goes through upon download.

To begin with, the classes of a Java program are translated into independent class
files at compile-time. Upon a load request, a class file is transferred over the network to
its recipient where, at link-time, symbolic references are resolved. Finally, upon method
invocation, the relevant method code is interpreted (run) by the JVM.

Java’s security model is enforced by the class loader restricting what can be loaded, the
class file verifier guaranteeing the safety of the loaded code and the security manager and
access controller restricting library methods calls so as to comply with the security policy.
Class loading and security management are essentially an association of lookup tables and
digital signatures and hence do not pose particular implementation problems. Byte-code
verification, on which we focus this paper, aims at predicting the runtime behavior of a
method precisely enough to guarantee its safety without actually having to run it.

2.1 Bytecode Verification

Byte-code verification [5] is a link-time phase where the method’s run-time behavior is
proved to be semantically correct.

The byte-code (or bytecode) is the executable sequence of bytes of the code-array of
a method’s code-attribute. The byte-code verifier processes units of method-code stored
as class file attributes. An initial byte-code verification pass breaks the byte sequence into
successive instructions, recording the offset (program point) of each instruction. Some static
constraints are checked to ensure that the byte-code sequence can be interpreted as a valid
sequence of instructions taking the right number of arguments.

As this ends normally, the receiver assumes that the analyzed file complies with the
general syntactical description of the class file format.

Then, a second verification step ascertains that the code will only manipulate values
which types are compatible with Java’s safety rules. This is achieved by a type-based data-
flow analysis which abstractly executes the method’s byte-code, by modelling the effect of
the successive byte-codes on the types of the variables read or written by the code.

The next section explains the semantics of type checking, i.e., the process of verifying
that a given pre-constructed type is correct with respect to a given class file. We explain
why and how such a type can always be constructed and describe the basic idea behind
data-flow analysis.

2.1.1 The Semantics of Type Checking A natural way to analyze the behavior of a
program is to study its effect on the machine’s memory. At runtime, each program point
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can be looked upon as a memory instruction frame describing the set of all the runtime
values possibly taken by the JVM’s stack and local variables.

Since run-time information, such as actual input data is unknown before execution
starts, the best an analysis may do is reason about sets of possible computations. An
essential notion used for doing so is the collecting semantics defined in [4] where, instead
of computing on a full semantic domain (values), one computes on a restricted abstract
domain (types).

↑
stack growth
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@346
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= values Ã
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FH
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= types

For reasoning with types, one must precisely classify the information expressed by
types. A natural way to determine how (in)comparable types are is to rank all types in a
lattice L. A brief look at the toy lattice depicted below suffices to find-out that animal is
more general than fly, that int and spider are not comparable and that cat is a specific
animal. Hence, knowing that a variable is designed to safely contain an animal, one can
infer that no harm can occur if during execution this variable would successively contain a
cat, a fly and an insect. However, should the opposite be detected (e.g. an instruction
would attempt to use a variable supposed to contain an animal as if it were a cat) the
program should be rejected as unsafe.

The most general type is called top and denoted >. > represents the potential si-
multaneous presence of all types, i.e. the absence of (specific) information. By definition,
a special null-pointer type (denoted null) terminates the inheritance chain of all object
descendants.

Formally, this defines a pointed complete partial order (CPO) ¹ on the lattice L .

>
↙ ↘

int Object

↓
animal

↙ ↘
cat insect

↓ ↙ ↓ ↘
null spider bee fly

↓ ↓ ↓
null null null

Stack elements and local variable types are hence tuples of elements of L to which one
can apply point-wise ordering.
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L =
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↙ ↓ ↘
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..
. · · ·

..
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..
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..
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τ··· τ··· τ··· τ···
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2.1.2 Abstract Interpretation The verification process described in [8] §4.9, is an
(iterative data-flow analysis) algorithm that attempts to builds an abstract description of
the JVM’s memory for each program point. A byte-code is safe if the construction of such
an abstract description succeeds.

Assume, for example, that an iadd is present at some program point. The i in iadd

hints that this instruction operates on integers. iadd’s effect on the JVM is indeed very
simple: the two topmost stack elements are popped, added and the sum is pushed back
into the stack. An abstract interpreter will disregard the arithmetic meaning of iadd and
reason with types: iadd pops two int elements from the stack and pushes back an int.
From an abstract perspective, iadd and isub have identical effects on the JVM.

As an immediate corollary, a valid stack for executing an iadd must have a value which
can be abstracted as int.int.S, where S may contain any sequence of types (which are
irrelevant for the interpretation of our iadd). After executing iadd the stack becomes int.S

Denoting by L the JVM’s local variable area (irrelevant to iadd), the total effect of
iadd’s abstract interpretation on the JVM’s memory can be described by the transition
rule Φ:

iadd : (int.int.S, L) 7→ (int.S, L)

The following table defines the transition rules of seven representative JVM instruc-
tions.1

Instruction Transition rule Φ Security test

iconst[n] (S, L) 7→ (int.S, L) | S |< Smax

iload[n] (S, L) 7→ (int.S, L) n ∈ L, L[n] == int, | S |< Smax

istore[n] (int.S, L) 7→ (S, L{n → int}) n ∈ L

aload[n] (S, L) 7→ (L[n].S, L) n ∈ L, L[n] ¹ Object, | S |< Smax

astore[n] (τ.S, L) 7→ (S, L{n → τ}) n ∈ L, τ ¹ Object

dup (τ.S, L) 7→ (τ.τ.S, L) | S |< Smax

getfield C.f.τ (ref(D).S, L) 7→ (τ.S, L) D ¹ C

For the first instruction of the method, the local variables that represent parameters
are initialized with the types τj indicated by the method’s signature; the stack is empty
(ε) and all other local variables are filled with >s. Hence, the initial frame is set to:

(ε, (this, τ1, . . . , τn−1,>, . . . ,>))

1 Note that the test n ∈ L is equivalent to ascertaining that 0 ≤ n ≤ Lmax.
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For other instructions, no information regarding the stack or the local variables is available.
Verifying a method whose body is a straight-line code (no branches), is easy: we sim-

ply iterate the abstract interpreter’ transition function Φ over the successive instructions,
taking the stack and register types after any given instruction as the stack and register
types before the next instruction. The types describing the successive JVM memory-states
produced by the successive instructions are called frames.

Denoting by in(i) the frame before instruction i and by out(i) the frame after instruction
i, we get the following data-flow equation where evaluation starts from the right:

in(i + 1) ← out(i) ← Φi(in(i))

Branches introduce forks and joins into the method’s flowchart. Let us illustrate these
with the following example:

program point Java code

int m (int q) {
p1 ↪→

int x;

int y;

if (q == 0)

p2 ↪→ { x = 1; ... }
p3 ↪→ else { y = 2; ... }
p4 ↪→

... }

After program point p1 one can infer that variable q has type int. This is denoted
as out(p1) = {q = int, x = >, y = >}. After the if’s then branch, we infer the type
of variable x, i.e., out(p2) = {q = int, x = int, y = >}. After the else, we learn that
out(p3) = {q = int, x = >, y = int}.

However, at p4, nothing can be said about neither x nor y. We hence prudently assume
that in(p4) = {q = int, x = >, y = >} by virtue of the principle that if two execution
paths yield different types for a given variable, only the lesser-information type can serve
for further calculations. In other words, we assume the worst and check that, still, type-
violations will not occur.

Thus, if an instruction i has several predecessors with different exit frames, i’s frame is
computed as the least common ancestor2 (LCA) of all the predecessors’ exit frames:

in(i) = LCA{out(i) | j ∈ Predecessor(i)}.

In our example:

in(p4) = {q = int, x = > = LCA(int,>), y = > = LCA(>, int)}

Finding an assignment of frames to program points which is sufficiently conservative for
all execution paths requires testing them all; this is what the verification algorithm does.
Whenever some in(i) is adjusted, all frames in(j) that depend on in(i) have to be adjusted

2 The LCA operation is frequently called unification.
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too, causing additional iterations until a fix-point is reached (i.e., no more adjustments are
required). The final set of frames is a proof that the verification terminated with success.
In other words, that the byte-code is well-typed.

2.2 Sun’s Type-Inference Algorithm

The algorithm below which summarizes the verification process, is taken from [8]. The
treatment of exceptions (straightforward) is purposely omitted for the sake of clarity.

The initialization phase of the algorithm consists of the following steps:

1. Initialize in(0) ← (ε, (this, τ1, . . . , τn−1,>, . . . ,>)) where (τ1, . . . , τn−1) is the method’s
signature.

2. A ‘changed‘ bit is associated to each instruction, all ‘changed‘ bits are set to zero except
the first.

Execute the following loop until no more instructions are marked as ‘changed‘ (i.e., a
fix-point is reached).

1. Choose a marked instruction i. If there aren’t any, the method is safe (exit). Otherwise,
reset the ‘changed‘ bit of the selected instruction.

2. Model the effect of the instruction on in(i) by doing the following:

– If the instruction uses values from the stack, ensure that:
• There are sufficiently many values on the stack, and that
• The topmost stack elements are of types that suit the executed instruction.

Otherwise, verification fails.
– If the instruction uses local variables:

• Ascertain that these local variables are of types that suit the executed instruction.
Otherwise, verification fails.

– If the instruction pushes values onto the stack:
• Ascertain that there is enough room on the stack for the new values. If the new

stack’s height exceeds Smax, verification fails;
• Add the types produced by the instruction to the top of the stack.

– If the instruction modifies local variables, record these new types in out(i).

3. Determine the instructions that can potentially follow instruction i. A successor in-
struction can be one of the following:

– For most instructions, the successor instruction is just the next instruction;
– For a goto, the successor instruction is the goto’s jump target;
– For an if, both the if’s remote jump target and the next instruction are the suc-

cessors;
– return has no successors.
– Verification fails if it is possible to ‘fall off‘ the last instruction of the method.

4. Unify out(i) with the in(k)-frame of each successor instruction k.

– If this successor instruction k is visited for the first time,
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• record that out(i) calculated in step 2 is now the in(k)-frame of the successor
instruction;

• mark the successor instruction by setting the ‘changed‘ bit.
– If the successor instruction has been visited before,

• Unify out(i) with the successor instruction’s (already present) in(k)-frame and
update: in(k) ← LCA(in(k), out(i)).

• If the unification caused modifications in in(k), mark the successor instruction k
by setting its ‘changed‘ bit.

5. Go to step 1.

If the code is safe, the algorithm must exit without reporting a failure.

2.3 Basic Blocks and Memory Complexity

As explained above, the data-flow type analysis of a straight-line code consists of simply
applying the transition function to the sequence of instructions i1, i2, . . . , it taking in(ik) ←
out(ik−1). This property can be used for optimizing the algorithm.

Following [1, 10], we call a basic block (B) a straight-line sequence of instructions that
can be entered only at its beginning and exited only at its end. For instance, we identify
in the example below four basic blocks denoted B0,B1,B2 and B3:
Public class Example {

public int cmpz (int a, int b)

{
int c;

if (a==b)

c = a+b;

else

c = a*a;

return c;

}
}

compile−→

Method int cmpz(int,int)

B0 0 iload 1

B0 1 iload 2

B0 2 if cmpne 12

B1 5 iload 1

B1 6 iload 2

B1 7 iadd

B1 8 istore 3

B1 9 goto 16

B2 12 iload 1

B2 13 iload 1

B2 14 imul

B2 15 istore 3

B3 16 iload 3

B3 17 ireturn

In several implementations of Sun’s algorithm, the data-flow equations evolve at the
basic-block-level rather than at the instruction-level. In other words, it suffices to keep
track in permanent memory only the frames in(i) where i is the first instruction of a B
(i.e., a branch target). All other frames within a basic block can be temporarily recomputed
on the fly. By extension, we denote by in(B) and out(B), the frames before and after the
execution of B. The entire program is denoted by P.

Denoting by Nblocks the number of Bs in a method, a straightforward implementation
of Sun’s algorithm allocates Nblocks frames, each of size Lmax + Smax.
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Lmax and Smax are determined by the compiler and appear in the method’s header. This
results in an O((Lmax + Smax) × Nblocks) memory-complexity. In practice, the verification
of moderately complex methods would frequently require a few thousands of bytes.

2.4 The Stack’s Behavior

A property of Java code is that a unique stack height is associated to each program point.
This property is actually verified on the fly during type-inference although it could be
perfectly checked independently of type-inference.

In other words, the computation of stack heights does not require the modeling of the
instructions’ effect on types, but only on the stack-pointer.

Denoting by σi the stack height associated to program point i, this section presents a
simple algorithm for computing {σ0, σ1, . . .} from P

The algorithm uses a table ∆ associating to each instruction a signed integer indicating
the effect of this instruction on the stack’s size:

∆ Instruction ∆ Instruction ∆ Instruction ∆ Instruction

2 iconst[n] 1 sconst[n] 1 bspush 2 bipush

1 aload 1 sload 1 aload[n] 2 iload[n]
-1 aaload 0 iaload -1 astore -2 istore

-1 astrore[n] -2 store[n] -1 pop 1 dup

-1 sadd,smul -2 iadd,imul 0 getfield a 1 getfield i

0 iinc -3 icmp -1 ifne -2 if acmpne

0 goto 0 return 0 athrow 0 arraylength

The information we are looking for is easily obtained by running Sun’s algorithm with
the modeling effect on types turned off, monitoring only the code’s effect on the stack
pointer:

Algorithm PredictStack(P)

– Associate to each program point i a bit changed[i] indicating if this program point
needs to be re-examined; initialize all the changed[i]-bits to zero.

– Set σ0 ← 0; changed[0] ← 1;
– For all exception code entry points3 j, set changed[j] ← 1; σj ← 1;
– While ∃ i such that changed[i] == 1:

• Set changed[i] ← 0;
• α ← σi + ∆(i)
• If α > Smax or α < 0 then report a failure.
• If i is the program’s last instruction and it is possible to fall-off the program’s code

then report a failure.
• For each successor instruction k of i:

∗ If k is visited for the first time then set σk ← α; changed[k] ← 1
∗ If k was visited before and σk 6= α, then report a failure.

– Return {σ0, σ1, . . .}
3 These can be found in method component.exception handlers[j].handler offset fields of Java card *.cap

files.
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3 A Simplified Defensive Virtual Machine Model

We model the JVM by a very basic state-machine. Although over-simplified, our model
suffices for presenting the verification strategies described in this paper.

3.1 Memory Elements

Variables and the stack elements will be denoted:

L = {L[0], . . . , L[Lmax − 1]} and S = {S[0], . . . , S[Smax − 1]}

Since in Java a precise stack height σj is associated with each j we can safely use
a unique memory-space M to identify all memory elements: albeit, the stack machine
can be very easily converted into a full register machine by computing {σ0, σ1, . . .} ←
PredictStack(P) and replacing stack accesses S[σj] by register accesses L[Lmax + σj].

we thus denote Mmax = Lmax + Smax and:

M = {M [0], . . . , M [Mmax − 1]} = {L[0], . . . , L[Lmax − 1], S[0], . . . , S[Smax − 1]}

3.2 Operational Semantics

We assume that each instruction reads and re-writes the entire memory M . In other words,
although in reality only the contents of very few variables will change after the execution
of each byte-code, we regard the byte-code at program point j as a collection of Mmax

functions:

M [i] ← φj,i(M) for 0 ≤ i < Mmax

which collective effect can be modeled as:

M ← {φj,0(M), . . . , φj,Mmax−1(M)} = Φj(M)

Based upon the instruction (j) and the data (M) the machine selects a new j (the
current instruction’s successor) using an additional "next instruction" function θj(M).

Execution halts when θj(M) outputs a special value denoted stop.

Using the above notation, the method’s execution boils-down to setting j ← 0 and
iterating {j, M} ← {θj(M), Φj(M)} while j 6∈ {stop, errorruntime}.

where errorruntime signals an error encountered during the course of execution (such as
a division by zero for instance).
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3.3 Defensive Interpretation

A Defensive JVM associates to each value M [i] a type denoted M̄ [i] ∈ L. In general,
functions and variables operating on types will be distinguished by upper bars (V̄ represents
the type of the value contained in V ).

Given an instruction j, Java’s tying rules express the effect of j on M̄ through a function:

Φ̄j(M̄) : LMmax 7→ {L ∪ errortype}Mmax

where errortype is an error resulting from a violation of Java’s typing rules. By defini-
tion, whenever errortype occurs, execution stops.

The effect of Φ̄j simply shadows that of Φj:

M̄ ← {φ̄j,0(M̄), . . . , φ̄j,Mmax−1(M̄)} = Φ̄j(M̄)

The complete Defensive Java Virtual Machine DJVM(P, input data), can hence be mod-
eled as follows:

– {j, M, M̄} ← {0, input data, signature(P)}
– while (j 6∈ {stop, errorruntime} and errortype 6∈ M̄)

• {j, M, M̄} ← {θj(M), Φj(M), Φ̄j(M̄)}

4 Variable-Wise Verification

Variable-wise verification is inspired by bit-slice data processing and consists in running
the verifier on each variable in turn. In other words, instead of calculating at once the
fix-points of Mmax variables, we launch the algorithm Mmax/` times, verifying each time
only ` variables. Parameter ` can then be tuned to suit the RAM resources available on
board whereas Mmax/` will upper-bound the computational effort expressed in re-runs of
[8].

The advantage of this approach is the possibility to re-use the same tiny RAM space
for the sequential verification of different variables.

4.1 A Toy-Example

Consider the following example where ` = 1, and the operation

M [13] ← M [4] + M [7] (1)

is to be verified.
The operator + (sadd) requires two arguments of type short; we launch the complete

verification process for i ← 0, . . . , Mmax − 1:

– When i 6∈ {4, 7, 13} nothing is done.
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– When i = 4 (i.e. we are verifying M [4]), the algorithm meets expression (1) and only
checks that M̄ [4] is short, assuming that M̄ [7] is short. The operator’s effect on M [13]
is ignored.

– When i reaches 7, the algorithm meets expression (1) again and checks only that M̄ [7]
is short, this time the algorithm assumes that M̄ [4] is short. The operator’s effect on
M [13] is ignored again.

– When i reaches 13, the algorithm meets expression (1) and models its effect only on
M̄ [13] by assigning M̄ [13] ← short.

Hence, in runs 4 and 7 we successively ascertained that no type violations occurred in
the first (M [4], run 4) or the second (M [7], run 7) argument of the operator +, while the
13-th round modeled the effect of sadd on M [13].

Note that the same RAM variable could be used to host, in turn, the type information
associated to M [4], M [7] and M [13].

4.2 The Required Properties

For this to work, each instruction (j) must comply with the following two properties:

1. There exist Mmax − 1 sets of types Tj,0, . . . , Tj,Mmax−1 such that:

∀M̄ ∈ Tj,0 × Tj,1 × . . .× Tj,Mmax−1, errortype 6∈ Φ̄j(M̄)

2. ∀M̄, M̄ ′ ∈ Tj,0 × Tj,1 × . . .× Tj,Mmax−1

∀i, 0 ≤ i < Mmax, M̄ [i] = M̄ ′[i] ⇒ φ̄j,i(M̄) = φ̄j,i(M̄
′)

The first requirement expresses the independence between the types of variables read
by the instruction; this is necessary to verify independently each variable regardless the
types of its neighbors. The second requirement (self-sufficiency) guarantees that the type
of each variable before executing the instruction suffices to precisely determine its type
after the execution of the instruction.

4.3 Bytecode Compliance

We now turn to examine the compliance of a few concrete Java-card [2] byte-codes with
these definitions. The stack elements that our examples will operate on are:

{S[σj], S[σj + 1], S[σj + 2], . . .} =

{M [Lmax + σj],M [Lmax + σj + 1],M [Lmax + σj + 2], . . .}
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4.3.1 Example 1: icmp icmp transforms the types of the four topmost stack elements
from {intH, intL, intH, intL} to {short, undef, undef, undef}.

(1) is fulfilled: the sets from which variable types can be chosen are:

for i 6∈ {0, 1, 2, 3} Tj,Lmax+σj+i = L
Tj,Lmax+σj

= {intH} Tj,Lmax+σj+1 = {intL}
Tj,Lmax+σj+2 = {intH} Tj,Lmax+σj+3 = {intL}

(2) is also fulfilled: the type of each variable after the execution of icmp can be precisely
determined from the variable’s type before executing icmp:

for i 6∈ {0, 1, 2, 3} φ̄j,Lmax+σj+i(M̄) = M̄ [Lmax + σj + i]

φ̄j,Lmax+σj
(M̄) = short φ̄j,Lmax+σj+1(M̄) = undef

φ̄j,Lmax+σj+2(M̄) = undef φ̄j,Lmax+σj+3(M̄) = undef

4.3.2 Example 2: pop pop acts only on the topmost stack element (namely, S[σj] =
M [Lmax + σj]) and transforms its type from any type different than intL to undef.

property (1): Tj,x =

{
L − {intL}
L

for x = Lmax + σj

for x 6= Lmax + σj

property (2): φ̄j,Lmax+σj+i(M̄) =

{
undef

M̄ [Lmax + σj + i]

for i = 0

for i 6= 0

4.3.3 Example 3: dup dup duplicates the topmost stack element S[σj] = M [Lmax +σj].
Property (1) is satisfied (dup can duplicate any type):

Tj,0 × Tj,1 × . . .× Tj,Mmax−1 = LMmax

However, property (2) is clearly violated for Lmax + σj + 1; indeed, an M and an M ′

such that M̄ [Lmax+σj] 6= M̄ ′[Lmax+σj] and M̄ [Lmax+σj +1] = M̄ ′[Lmax+σj +1] = undef,
yield:

φ̄Lmax+σj+1(M̄) = M̄ [Lmax + σj] 6= φ̄Lmax+σj+1(M̄
′) = M̄ ′[Lmax + σj]

Hence, unlike the previous examples, dup does not lend itself to variable-wise verifi-
cation. dup belongs to a small family of byte-codes (namely: dup, dup2, dup x, swap x,
aload, astore and athrow) that ’mix’ or ’cross-contaminate’ the types of the variables
they operate on.

The workaround is simple: before starting verification, parse P. Whenever one of these
problematic instructions is encountered, group all the variables processed by the instruction
into one, bigger, ’extended’ variable. The algorithm performing this packing operation,
Group(P), is described in the next section.
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4.4 Grouping Variables

Grouping transforms the list M = {0, 1, 2, · · · ,Mmax−1} into a list G with a lesser number
of symbols. All G-elements containing equal symbols are to be interpreted as M [i] cells
that must be verified together as their types are inter-dependent.

The algorithm below describes the grouping process. Although in our practical imple-
mentation PredictStack(P) was merged into Group(P)’s main loop (this spares the need to
save σ0, σ1, . . .), PredictStack(P) was moved here into the initialization phase for the sake
of clarity.

Algorithm Group(P)

– Initialize M ← {0, 1, 2, · · · ,Mmax − 1}. For the sake of simplicity, we denote by S[i]
the elements of M that shadow stack cells and by L[i] the elements of M that shadow
local variables4.

– An ‘unseen‘ bit is associated to each instruction. All ‘unseen‘ bits are reset.
– Run PredictStack(P) to compute σ0, σ1, . . .

Iterate the following until no more ‘unseen‘ bits are equal to zero (i.e., all the method’s
byte-codes were processed exactly once):

– Choose an ‘unseen‘ instruction j. If there aren’t any return the list G ← M and exit.
Otherwise, set the ‘unseen‘ bit of the selected instruction.
• if the j-th instruction is a dup, dup2, dup x or swap x then lookup the row `(k) cor-

responding to instruction j. For all non-empty entries in `(k) replace all occurrences
of max{S[σj + `(k)],S[σj + k]} in M by min{S[σj + `(k)], S[σj + k]}.

bytecode ↓ k ½ 4 3 2 1 0 -1 -2 -3 -4 -5 -6 -7

dup x {m = 1, n = 1, 0} `(k) ½ 0
dup x {m = 1, n = 2} `(k) ½ 0 0
dup x {m = 1, n = 3} `(k) ½ 0 0 0
dup x {m = 1, n = 4} `(k) ½ 0 0 0 0
dup x {m = 1, n = 5} `(k) ½ 0 0 0 0 0
dup x {m = 2, n = 5} `(k) ½ 0 0 0 0 0 0
dup x {m = 3, n = 5} `(k) ½ 0 0 0 0 0 0 0
dup x {m = 3, n = 4} `(k) ½ 0 0 0 0 0 0
dup x {m = 2, n = 3} `(k) ½ 0 0 0 0
dup x {m = 4, n = 7} `(k) ½ 0 0 0 0 0 0 0 0 0 0
dup x {m = 4, n = 5} `(k) ½ 0 0 0 0 0 0 0 0
dup x {m = 3, n = 7} `(k) ½ 0 0 0 0 0 0 0 0 0
dup x {m = 2, n = 2, 0} `(k) ½ 0 1
dup x {m = 2, n = 4} `(k) ½ 0 1 0 1
dup x {m = 2, n = 6} `(k) ½ 0 1 0 1 0 1
dup x {m = 4, n = 6} `(k) ½ 0 1 0 1 0 1 0 1
dup x {m = 3, n = 3, 0} `(k) ½ 0 2 1
dup x {m = 3, n = 6} `(k) ½ 0 2 1 0 2 1
dup x {m = 4, n = 8} `(k) ½ 0 3 2 1 0 3 2 1
dup x {m = 4, n = 4, 0} `(k) ½ 0 3 2 1
dup `(k) ½ 0
dup2 `(k) ½ 0 1
swap x {m = 1, n = 1} `(k) ½ 0
swap x {m = 1, n = 2} `(k) ½ 0 0
swap x {m = 2, n = 1} `(k) ½ 0 0
swap x {m = 2, n = 2} `(k) ½ 0 -1

4 i.e. L[i]
def
= M[i] and S[i]

def
= M[i + Lmax].
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• if the j-th instruction is an aload <n>, astore <n>, aload <n>, or
astore <n> then replace all occurrences of max{L[n],S[σj]} in M by min{L[n],
S[σj]}.

• if the j-th instruction is an athrow then replace all occurrences of
max{S[0],S[σj]} in M by min{S[0],S[σj]}.

The process is illustrated below by a toy-example where the character ’ ’ denotes stack
cells used by the program.

stack 7−→
L0 L1 L2 L3 L4 L5 S0 S1 S2 S3 S4 S5

M = 0 1 2 3 4 5 6 7 8 9 10 11

0 sconst 3 M = 0 1 2 3 4 5 6 7 8 9 10 11

1 sconst 5 M = 0 1 2 3 4 5 6 7 8 9 10 11

2 sdiv M = 0 1 2 3 4 5 6 7 8 9 10 11

3 pop M = 0 1 2 3 4 5 6 7 8 9 10 11

4 aload <1> M = 0 1 2 3 4 5 1 7 8 9 10 11

5 aconst null M = 0 1 2 3 4 5 1 7 8 9 10 11

6 aload <2> M = 0 1 2 3 4 5 1 7 2 9 10 11

7 aload <3> M = 0 1 2 3 4 5 1 7 2 3 10 11

8 aconst null M = 0 1 2 3 4 5 1 7 2 3 10 11

9 dup M = 0 1 2 3 4 5 1 7 2 3 10 10

10 swap x m=2,n=1 M = 0 1 2 3 4 5 1 7 2 3 3 3

11 if acmpeq 14 M = 0 1 2 3 4 5 1 7 2 3 3 3

12 sconst 2 M = 0 1 2 3 4 5 1 7 2 3 3 3

13 sstore <3> M = 0 1 2 3 4 5 1 7 2 3 3 3

14 pop2 M = 0 1 2 3 4 5 1 7 2 3 3 3

15 pop2 M = 0 1 2 3 4 5 1 7 2 3 3 3

16 sconst 2 M = 0 1 2 3 4 5 1 7 2 3 3 3

17 sstore 4 M = 0 1 2 3 4 5 1 7 2 3 3 3

18 sconst 3 M = 0 1 2 3 4 5 1 7 2 3 3 3

19 sstore 5 M = 0 1 2 3 4 5 1 7 2 3 3 3

20 return G = 0 1 2 3 4 5 1 7 2 3 3 3

Given that the largest group of variables (those tagged by 3) has four elements (namely
L3, S3, S4 and S5), it appears that the code can be verified with 4-cell frames (instead of
12-cell ones).

Having reduced memory complexity as much as we could, it remains to determine how
many passes are required to verify the code. At a first glance, seven passes will do, namely:

pass 1 L3 S3 S4 S5

pass 2 L2 S2

pass 3 L1 S0

pass 4 L0

pass 5 L4

pass 6 L5

pass 7 S1

However, given that we anyway pay the price of a 4-cell memory complexity, it would
be a pity to re-launch the entire verification process without packing passes 2, 3, 4, 5, 6
and 7 into two additional 4-cell passes. For instance:

pass 1 L3 S3 S4 S5

pass 2 L2 S2 L4 L5

pass 3 L1 S0 L0 S1
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This is realized by the algorithm described in the next section.

4.5 Bin-Packing

Bin-packing is the following NP-complete problem:
Given a set of n positive integers U = {u1, u2, . . . , un} and a positive bound B, divide U

into k disjoint subsets U = U1 ∪ U2∪, . . . ,∪Uk such that:

– The sum of all elements in each subset Ui, denoted
∑

Ui is smaller than B.
– The number of subsets k is minimal.

Although no efficient algorithm can solve this problem exactly, a number of efficient
algorithms that find very good approximate solutions (i.e. k′ u k) exist [15, 16, 17].

Bin-packing (approximation) algorithms come in two flavors: on-line and off-line ones.
On-line algorithms receive the uis one after another and place ui in a subset before getting
ui+1. Although the on-line constraint is irrelevant to our case (we dispose of the entire set
U as Group(P) ends), very simple on-line algorithms [14] computing approximations tighter
than k ≤ k′ ≤ 17

10
k + 2 exist.

First-Fit: places ui in the leftmost Uj that has enough space to accommodate ui. If no
such Uj is found, then a new Uj is opened.

Best-Fit: places ui in the Uj that ui fills-up the best. In other words, ui is added to the
Uj that minimizes B−∑

Uj − ui. In case of tie, the lowest index j is chosen. If no such Uj

is found, then a new Uj is opened.
Refined versions of these algorithms (e.g. Yao’s First-Fit) even find approximations

tighter than k ≤ k′ ≤ 5
3
k + 5.

Off-line algorithms perform much better. Best-fit and First-Fit can be improved by
operating on a sorted U. In other words, the biggest ui is placed first, then the second-
biggest ui is placed etc. The resulting algorithms are called First-Fit-Decreasing and Best-
Fit-Decreasing and yield approximations tighter than k ≤ k′ ≤ 11

9
k + 4.

Note that the implementation of both Best-Fit-Decreasing and First-Fit-Decreasing on 8-
bit micro-controllers are trivial. We denote by {v1, . . . , vk} ← BinPacking(G) the following
algorithm:

– Let ui be the number of occurrences of symbol i in G. Let B = max{ui}. Initialize
N ← G.

– Solve {U1, . . . , Uk} ← BestFitDecreasing(B; {u1, . . . , un})
– For i ← 1 to k:

if uj was placed in Ui then replace all occurrences of j in N by βi = min
uj∈Ui

{j}.
– Let {v1, v2, · · · , vk} be a set of Mmax-bit strings initialized to zero.
– For i ← 1 to k

• w ← 1
• For ` ← 0 to Mmax − 1

if N[`] == βi set vi[`] ← w; set w ← w + 1;
– Return {v1, v2, · · · , vk}
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Hence, the effect of BinPacking on the previous example’s output would be:

P 0 1 2 3 4 5 6 7 8 9 10 11 = M

↓
Group

↓
a collection of 7 variable groups G 0 1 2 3 4 5 1 7 2 3 3 3 = G

↓
BinPacking

↓
a collection of 3 ≤ 7 variable groups N 0 0 2 3 2 2 0 0 2 3 3 3 = N

↙↓↘
U1 U2 U3↓ ↓ ↓
v1 v2 v3

v1 = 1 2 0 0 0 0 3 4 0 0 0 0

v2 = 0 0 1 0 2 3 0 0 4 0 0 0

v3 = 0 0 0 1 0 0 0 0 0 2 3 4

4.6 Putting the Pieces Together

The group-wise verification process GWVer(P, v) mimics very closely Sun’s original algo-
rithm. There are only two fundamental differences between the two algorithms:

– In GWVer(P, v) each frame contains only µ = max(v[i]) memory cells (denoted īn(i) =
{T [0], . . . , T [µ− 1]}) instead of Mmax-cell frames.

– Whenever Sun’s verifier reads or writes a variable M [i] in some in(·), then GWVer(P,
v) substitutes this operation by a reading or a writing into the memory cell T [v[i]− 1]
in īn(i).

Hence, we built a memory interface to Sun’s algorithm so that execution would require
O(µ×Nblocks) memory-complexity instead of a O(Mmax ×Nblocks)

The entire process is summarized in the following schematic:

P↓
Group

↓
a collection of n variable groups G↓

BinPacking

↓
a collection of k ≤ n variable groups U = U1 ∪ U2∪, . . . ∪ Un
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↙ ↓ ↘
U1 · · · Ui · · · Un↓ ↓ ↓
v1 vi vn↓ ↓ ↓

P→ GWVer · · · P→ GWVer · · · P→ GWVer

↓ ↓ ↓
accept/reject accept/reject accept/reject

↘ ↓ ↙
logical and

↓
accept/reject P

To evaluate experimentally the above process, we wrote a simple program that splits
variables into categories for a given *.jca file and counts the number of RAM cells neces-
sary to verify its most greedy method. We used for our estimates the representative Java
card applets from [13]. The detailed outputs of our program are available upon request
from the authors. Results are rather encouraging, the new verification strategy seems to
roughly save 40% of the memory claimed by [8]. Increase in workload is a rough doubling
of verification time (due to more complex bookkeeping and the few inherent extra passes
traded-off against memory consumption).

Applet Sun [8] Group-Wise
NullApp.jca 6 4 = 6× 66%
HelloWorld.jca 40 12 = 40× 30%
JavaLoyalty.jca 48 45 = 48× 93%
Wallet.jca 99 55 = 99× 55%
JavaPurse.jca 480 200 = 480× 41%
Purse.jca 550 350 = 550× 63%
CryptoApplet.jca 4237 2230 = 4237× 52%
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Abstract. In the Java Virtual Machine, the byte-code verifier checks low-level security properties
that ensure that the downloaded code cannot bypass the virtual machine’s security mechanisms.
One of the statically ensured properties is type safety. The type-inference phase is the overwhelming
resource-consuming part of the verification process.

This paper addresses the RAM bottleneck met while verifying mobile code in memory-constrained
environments such as smart-cards. We propose to modify the algorithm in a way that significantly
reduces memory consumption.

1 Introduction

The Java Card architecture for smart cards allows new applications, called applets, to be
downloaded into smart-cards. While bringing considerable flexibility and extending the
horizons of smart-card usage this post issuance feature raises major security issues. Upon
their loading, malicious applets can try to subvert the JVM’s security in a variety of ways.
For example, they might try to overflow the stack, hoping to modify memory locations
which they are not allowed to access, cast objects inappropriately to corrupt arbitrary
memory areas or even modify other programs (Trojan horse attacks). While the general
security issues raised by applet download are well known, transferring Java’s safety model
into resource-constrained devices such as smart-cards appears to require the devising of
delicate security-performance trade-offs.

Upon download, an applet’s byte-code is subject to a static analysis called byte-code
verification which purpose is to make sure that the applet’s code is well-typed. This is
necessary to ascertain that the code will not attempt to violate Java’s security policy by
performing ill-typed operations at runtime (e.g. forging object references from integers
or calling directly API private methods). Today’s de facto verification standard is Sun’s
algorithm [6] which has the advantage of being able to verify any class file resulting from
any standard compilation chain. While the time and space complexities of Sun’s algorithm
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suit personal computers, the memory complexity of this algorithm appears prohibitive for
smart-cards, where RAM is a significant cost-factor.

This limitation gave birth to a number of innovating workarounds [4, 5, 8]. The work
reported in this paper describes a new memory-optimization technique.

The rest of the paper is organized as follows: the next section recalls Java’s security
model and Sun’s verification algorithm with a specific focus on its data-flow analysis part.
The subsequent sections describe in detail our algorithm which benchmarks are given in
the last section.

2 Java Security

The Java Virtual Machine (JVM) Specification [6] defines the executable file structure,
called the class file format, to which all Java programs are compiled. In a class file, the
executable code of methods (Java methods are the equivalent of C functions) is found in
code-array structures. The executable code and some method-specific runtime information
(namely, the maximal operand stack size Smax and the number of local variables Lmax

claimed by the method) constitute a code-attribute. We briefly overview the general stages
that a Java code goes through upon download.

To begin with, the classes of a Java program are translated into independent class
files at compile-time. Upon a load request, a class file is transferred over the network to
its recipient where, at link-time, symbolic references are resolved. Finally, upon method
invocation, the relevant method code is interpreted (run) by the JVM.

2.1 Bytecode Verification

Byte-code verification [3] is a link-time phase where the method’s run-time behavior is
proved to be semantically correct. The byte-code is the executable sequence of bytes of the
code-array of a method’s code-attribute.

As this ends normally, the receiver assumes that the analyzed file complies with the
general syntactical description of the class file format.

Then, a second verification step ascertains that the code will only manipulate values
which types are compatible with Java’s safety rules. This is achieved by a type-based data-
flow analysis which abstractly executes the method’s byte-code, by modeling the effect of
the successive byte-codes on the types of the variables read or written by the code.

The next section explains the semantics of type checking, i.e., the process of verifying
that a given pre-constructed type is correct with respect to a given class file. We explain
why and how such a type can always be constructed and describe the basic idea behind
data-flow analysis.

2.1.1 The Semantics of Type Checking A natural way to analyze the behavior of a
program is to study its effect on the machine’s memory. At runtime, each program point



Reducing Type-Inference Memory Complexity 417

can be looked upon as a memory instruction frame describing the set of all the runtime
values possibly taken by the JVM’s stack and local variables.

Since run-time information, such as actual input data is unknown before execution
starts, the best an analysis may do is reason about sets of possible computations. An
essential notion used for doing so is the collecting semantics defined in [2] where, instead
of computing on a full semantic domain (values), one computes on a restricted abstract
domain (types).

For reasoning with types, one must precisely classify the information expressed by types.
A natural way to determine how (in)comparable types are is to rank all types in a lattice
L.

The most general type is called top and denoted >. > represents the potential simul-
taneous presence of all types, i.e. the absence of (specific) information. By definition, a
special null-pointer type (denoted null) terminates the inheritance chain of all object de-
scendants. Formally, this defines a pointed complete partial order (CPO) ¹ on the lattice
L .

Stack elements and local variable types are hence tuples of elements of L to which one
can apply point-wise ordering.

L =

>
↙ ↓ ↘

int · · · Object

↙ ↓ ↘
τ1 · · · τk

↙ ↓ ↘ ↙ ↓ ↘
..
. · · ·

..

.
..
. · · ·

..

.
τ··· τ··· τ··· τ···
↓ ↓ ↓ ↓ ↓ ↓

null null null null null null

2.1.2 Abstract Interpretation The verification process described in [6] §4.9, is an
(iterative data-flow analysis) algorithm that attempts to builds an abstract description of
the JVM’s memory for each program point. A byte-code is safe if the construction of such
an abstract description succeeds.

Assume, for example, that an iadd is present at some program point. The i in iadd

hints that this instruction operates on integers. iadd’s effect on the JVM is indeed very
simple: the two topmost stack elements are popped, added and the sum is pushed back
into the stack. An abstract interpreter will disregard the arithmetic meaning of iadd and
reason with types: iadd pops two int elements from the stack and pushes back an int.
From an abstract perspective, iadd and isub have identical effects on the JVM.

As an immediate corollary, a valid stack for executing an iadd must have a value which
can be abstracted as int.int.S, where S may contain any sequence of types (which are
irrelevant for the interpretation of our iadd). After executing iadd the stack becomes int.S
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Denoting by L the JVM’s local variable area (irrelevant to iadd), the total effect of
iadd’s abstract interpretation on the JVM’s memory can be described by the transition
rule ϑ:

iadd : (int.int.S, L) 7→ (int.S, L)

The following table defines the transition rules of seven representative JVM instruc-
tions.1

Instruction Transition rule ϑ Security test

iconst[n] (S, L) 7→ (int.S, L) | S |< Smax

iload[n] (S, L) 7→ (int.S, L) n ∈ L, L[n] == int, | S |< Smax

istore[n] (int.S, L) 7→ (S, L{n → int}) n ∈ L
aload[n] (S, L) 7→ (L[n].S, L) n ∈ L, L[n] ¹ Object, | S |< Smax

astore[n] (τ.S, L) 7→ (S, L{n → τ}) n ∈ L, τ ¹ Object

dup (τ.S, L) 7→ (τ.τ.S, L) | S |< Smax

getfield C.f.τ (ref(D).S, L) 7→ (τ.S, L) D ¹ C

For the first instruction of the method, the local variables that represent parameters
are initialized with the types τj indicated by the method’s signature; the stack is empty
(ε) and all other local variables are filled with >s. Hence, the initial frame is set to:

(ε, (this, τ1, . . . , τn−1,>, . . . ,>))

For other instructions, no information regarding the stack or the local variables is available.

Verifying a method whose body is a straight-line code (no branches), is easy: we simply
iterate the abstract interpreter’ transition function ϑ over the successive instructions, taking
the stack and register types after any given instruction as the stack and register types before
the next instruction. The types describing the successive JVM memory-states produced by
the successive instructions are called frames.

Denoting by in(i) the frame before instruction i and by out(i) the frame after instruction
i, we get the following data-flow equation where evaluation starts from the right:

in(i + 1) ← out(i) ← ϑi(in(i))

Branches introduce forks and joins into the method’s flowchart. By extension, if an
instruction i has several predecessors with different exit frames, i’s frame is computed as
the least common ancestor2 (LCA) of all the predecessors’ exit frames:

in(i) = LCA{out(i) | j ∈ Predecessor(i)}.

Finding an assignment of frames to program points which is sufficiently conservative
for all execution paths requires testing them all; this is what the verification algorithm
does. Whenever some in(i) is adjusted, all frames in(j) that depend on in(i) have to be

1 Note that the test n ∈ L is equivalent to ascertaining that 0 ≤ n ≤ Lmax.
2 The LCA operation is frequently called unification.
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adjusted too, causing additional iterations until a fix-point (i.e., no more adjustments are
required) is reached. The final set of frames is a proof that the verification terminated
with success. In other words, that the byte-code is well-typed. We refer the reader to
the verification algorithm described in [6] page 143 (section 4.9.2) which summarizes the
verification process. This algorithm is denoted hereafter Vsun.

2.2 Basic Blocks

As explained above, the data-flow type analysis of a straight-line code consists of simply
applying the transition function to the sequence of instructions i1, i2, ..., it taking in(ik) ←
out(ik−1). This property can be used for optimizing the algorithm.

Following [1, 7], we call a basic block (B) a straight-line sequence of instructions that
can be entered only at its beginning and exited only at its end.

In several implementations of Sun’s algorithm, the data-flow equations evolve at the
basic-block-level rather than at the instruction-level. In other words, it suffices to keep
track in permanent memory only the frames in(`) where ` is the first instruction of a B
(i.e., a branch target). All other frames within a basic block can be temporarily recomputed
on the fly. By extension, we denote by in(B) and out(B), the frames before and after the
execution of B. The entire program is denoted by P.

3 A Memory-Constrained Version of Sun’s Algorithm

Denoting by Nblocks the number of Bs in a method, a straightforward implementation of
Sun’s algorithm allocates Nblocks frames, each of size Lmax + Smax.

Lmax and Smax are determined by the compiler and appear in the method’s header. This
results in an O((Lmax + Smax) × Nblocks) memory-complexity. In practice, the verification
of moderately complex methods would frequently require a few thousands of bytes.

A property of Java code is that a unique stack height is associated to each program
point. This property is actually verified on the fly during type-inference, although it could
be perfectly checked independently of type-inference.

In other words, the computation of stack heights throughout execution does not require
the modelling of the instructions’ effect on types, but only on the stack-pointer.

Denoting by σi the stack height at the beginning of Bi, one can allocate for the stack
only σi RAM cells in in(Bi), knowing for sure that the verifier will never attempt to enter
Bi with more (or less) than σi stack levels.

However, during Bi’s abstract interpretation, the stack may grow higher than σi. To
cope with this, one working buffer of Smax RAM cells is enough. Hence, the total amount
of RAM required for stack manipulations is:

Smax +

Nblocks∑
i=0

σi
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Considering that the stack is normally empty at most jump targets [4], this trivial
optimization turns out to be significant. Taking a ‘moderately complex‘ example from [4]
where Smax = 5, Nblocks = 50 and Lmax = 15, we get a 30% memory saving.

Can this idea be generalized to local variables? In other words, can one exploit the fact
all Bs do not necessarily use all the local variables? In the Toy example below3 the compiler
used three registers, namely, L[1] (parameter n, declared as int), L[2] (variable m) and
L[3] (variable q). Only B1, uses all three local variables (L[1], L[2], L[3]). The three other
blocks use only one variable each: B0 and B3 use only r[2] and B2 uses only L[1]. In the
example Smax = 2.

As mentioned above, a straightforward implementation of Sun’s algorithm would allo-
cate for Toy four RAM contexts, each of size Smax +Lmax = 2+3, i.e. altogether 5×4 = 20
RAM registers. Should we manage to modify Sun’s algorithm so that the frame of each
B would contain only as many registers as local variables used in this block and σi stack
cells, the total memory usage would melt down by 60% to 2 + 1 + 3 + 1 + 1 = 8 RAM
cells. Moreover, can we hope to keep in B’s frame only the stack chunk used effectively in
B? The answer is affirmative, as we will see in sections 4 and 5.

Class Toy extends Object {
int toy (int n) {

int m; int q;

m = 0;

while (n>0) {
n = n-1;

q = 1;

m = m + q;

}
return m;

}
}

compile−→

code L[1] L[2] L[3]
B0

√
B0 0 iconst 0

B0 1 istore 2

B0 3 goto 22

B1
√ √ √

B1 6 iload 1

B1 8 iconst 1

B1 9 isub

B1 10 istore 1

B1 12 iconst 1

B1 13 istore 3

B1 15 iload 2

B1 17 iload 3

B1 19 iadd

B1 20 istore 2

B2
√

B2 22 iload 1

B2 24 ifgt 6

B3
√

B3 27 iload 2

B3 29 ireturn

4 Exploring the Stack’s Behavior

As we saw, a unique stack height is associated to each program point; consequently, a par-
ticular stack height σi is associated to the entry point of each Bi. During the interpretation
of Bi, elements are pushed and popped, causing the stack to vary between two Bi-specific
bounds si and si. Note that 0 ≤ si ≤ σi ≤ si ≤ Smax = max{si}.

This section presents a simple algorithm for computing::

{s0, σ0}, {s1, σ1}, . . .
3 For the sake of simplicity we ignore the this argument.
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from B0,B1, . . .

The algorithm uses a table ∆ associating to each instruction a signed integer indicating
the effect of this instruction on the stack’s size:

∆ Instruction ∆ Instruction ∆ Instruction ∆ Instruction

2 iconst[n] 1 sconst[n] 1 bspush 2 bipush

1 aload 1 sload 1 aload[n] 2 iload[n]
-1 aaload 0 iaload -1 astore -2 istore

-1 astrore[n] -2 store[n] -1 pop 1 dup

-1 sadd,smul -2 iadd,imul 0 getfield a 1 getfield i

0 iinc -3 icmp -1 ifne -2 if acmpne

0 goto 0 return 0 athrow 0 arraylength

The information we are looking for is easily obtained by running Sun’s algorithm with
the modeling effect on types turned off, monitoring only the code’s effect on the stack
pointer.

Algorithm PredictStack(P)

– Associate to each Bi a bit changed[i] indicating if this B needs to be re-examined;
initialize all the changed[i]-bits to zero.

– Set σ0 ← 0; changed[0] ← 1;
– While ∃ Bi such that changed[i] == 1:

• Set si ← σi; α ← σi; changed[i] ← 0;
• Let j1, j2, ..., jt be the successive instructions of Bi.

∗ For m ← 1 to t
· α ← α + ∆(jm)
· If 0 ≤ α ≤ Smax then si ← min(si, α) else report a failure.

∗ If i == Nblocks − 1 and it is possible to ’fall off’ instruction jt then report a
failure.

• For each successor block Bk of Bi :
∗ If Bk is visited for the first time, set σk ← α; changed[k] ← 1
∗ If Bk was visited before and σk 6= α, then report a failure.

– Return {s0, σ0}, {s1, σ1}, . . .

5 Memory-Constrained Local Variable Verification

Definition. The used-frame associated to Bi is a memory space u in(Bi) representing the
stack chunk [si, . . . , σi] and the local variables actually used (read or written to) during
the execution of Bi.

What would happen if one would run Sun’s algorithm while unifying only the memory
elements present in the used-frame of each Bi?

Unfortunately, safety is not preserved, as is obvious from the following example where
the type information assigned to r2 by B0 will never reach B3 (r2 is nonetheless essential
for the abstract interpretation of B3):
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start
↓
B0

uses r1, r2

↙ ↘
B1 B2

uses only r1 uses only r1

↘ ↙
B3

uses r1, r2

↓
exit

In the next section we remedy to this by adapting the algorithm as follows: upon exiting
a current block, we find all the ‘first-hand‘ users for every variable belonging to the current
used-frame, and perform the unification.

By doing so, as a new block is reached (from any of its predecessors), all variables in
its used-frame have been already unified, and we can simply start running a straight-line
abstract interpretation. Let us formalize the solution.

5.1 v-Successor Blocks

We define a notion of the ‘v-successor blocks‘ of a block Bi and describe an algorithm for
determining the v-successor blocks for a given i and v.

Definition. Let Bi be a basic block that uses variable v. Bj is a v-successor block of Bi if:

1. Bj uses (reads or writes) variable v.
2. There is a path from Bi to Bj in the method’s control graph such that after Bi used v

and before Bj used v, no other block on this path used v.

In essence, the v-successors of Bi are the first consumers of the value stored in v by Bi.
The v-successors of Bi can be computed by the following algorithm where 0 ≤ i < Nblocks

and v ∈ u in(Bi):

Algorithm vSuccessors(i, v,P)

– Initialize three Nblocks-bit arrays marked, visited and found, to zero.
– marked[i] ← 1
– While ∃ k such that marked[k] == 1,

• marked[k] ← 0
• For all successors Bj of Bk for which visited[j] == 0

∗ If Bj uses variable v then found[j] ← 1 else marked[j] ← 1
∗ visited[j] ← 1

– Return the bit array found.

found is such that found[j] == 1 iff Bj is a v-successor of Bi.
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5.2 Putting the Pieces Together

We now present our new verification algorithm, denoted Vnew. For convenience, we intro-
duce a universal type, denoted by ⊥, which represents the lowest possible node in L. We
denote by B−1 an empty block which does not contain any instructions. B−1’s used-frame
contains by convention all the local variables and all the stack elements. B−1’s abstract
interpretation is defined by out(−1) ← in(−1). The successor of B−1 is B0.

Vnew uses two Nblocks + 1-bit arrays changed frame and changed block , which indices
run from −1 to Nblocks − 1.

The initialization phase of the algorithm consists of the following steps.

1. Initialize the used-frame u in[−1] of B−1 by setting the local variables in u in[−1] that
correspond to the method’s parameters to the types declared by the method’s signature.
Initialize all other local variables in u in[−1] to >. Initialize the stack elements in
u in[−1] to >.

2. Run algorithm PredictStack(P) to compute:

{s0, σ0}, {s1, σ1}, . . . , {sNblocks−1, σNblocks−1}

3. For i ← 0, · · · , Nblocks-1
(a) build u in[i].

(b) initialize all variables in u in[i] to ⊥.

4. Set the arrays changed frame and changed block to zero.

5. Mark block B−1 by setting changed frame[−1] and changed block[−1] to one.

Next we execute the following loop, until array changed block is entirely equal to zero.

1. Select an index i such that changed block[i] == 1 and set changed block[i] ← 0.

2. Model the effect of Bi’s execution on the used-frame u in[i]. Let u out[i] denote the
resulting frame.

3. If the modeling exits without a failure, for every variable v in u out[i] do:

(a) Determine the v-successors of Bi by running algorithm vSuccessors(i, v,P).

(b) For each v-successor Bk of Bi,

i. unify variable v in u in[k] with variable v in u out[i],
ii. if the type of v in u in[k] has changed,

– set changed frame[k] ← 1
– for all blocks Bj with j 6= i belonging to any path from block Bi to block Bk,

set changed frame[j] ← 1.

4. For each successor Bj of Bi, if changed frame[j] == 1, set changed block[j] ← 1. If
this is the first time Bj is visited, set changed block[j] ← 1.

5. Set changed frame[i] ← 0.

6. Go to step 1.
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5.3 Equivalence of Vnew and Vsun

In this section, we prove that a program is accepted by Vsun if and only if it is accepted by
Vnew.

We first need to introduce some definitions. We denote by P a program, involving N
basic blocks B0, . . . ,BN−1. Let S = (i1, . . . , ik, . . .) be a sequence of integers. We say that
S is an admissible execution for (P,Vsun) (resp. for (P,Vnew)) if

– there exists an integer n such that for 1 ≤ j ≤ n, all the ij are in {0, . . . , N − 1}.
– the successive verification of the blocks Bi1 , . . . ,Bin is a possible order of execution of
Vsun (resp. Vnew) when verifying P.

Let M denote the maximal size of the stack during the execution of P, added to the
number of local variables used by P. Given an admissible execution (ij)j≥1 of (P,Vsun), we
define Fi1,...,ik(Vsun) the M×N -tuple of types corresponding to the frames at the beginning
of the blocks in Vsun, resulting from the successive verification of the blocks Bi1 , . . . ,Bik .
Similarly, we denote by F i1,...,ik(Vnew) (resp. F i1,...,ik

(Vnew)) the M×N -tuple of types corre-
sponding to the frames at the beginning of the blocks in Vnew, resulting from the successive
verification of the blocks Bi1 , . . . ,Bik , where the variables missing are arbitrarily set to >
(resp. to ⊥).

We now define a modification of the algorithm Vsun, which we denote by V ′sun. V ′sun is
defined exactly as Vsun in paragraph 4.9.2. of [6], except that step 4 is replaced by the
following step 4’:

4’. Unify out(i) with the in(·)-frame of each successor Bj.

– If Bj is visited for the first time,

• record that out(i) calculated in steps 2 and 3 is now the in(·)-frame of Bj;
• mark the successor instruction by setting the ‘changed‘ bit.

– If Bj has been visited before,

• Determine the set Vj of all the variables and all the stack elements v such that there
exists a block Bk (possibly Bj itself) using v reachable from Bj.

• Unify out(i) with the successor instruction’s in(j)-frame and update : in(j) ←
LCA(in(j), out(i)).

• If the unification caused modifications in in(j) of at least one variable or stack
element belonging to Vj, mark Bj by setting its ‘changed‘ bit.

Basically, V ′sun marks as ’changed’ only the successor blocks where the unification has
affected the type of a variable which could be used later on in the execution flow. If the
unification has affected only the type of variables that cannot be used later, the ’changed’
bit is not set.

Under these notations, we have the following lemma:

Lemma 1. If a program is accepted by V ′sun, then it is accepted by Vsun.
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Proof. Let P be a program accepted by V ′sun, and consider the the block-frames in(i) when
V ′sun stops, along with an admissible execution S = (i1, . . . , ik) leading to this state. As
S is an admissible execution for (P,Vsun) one can execute Vsun starting from this point,
setting all the ’changed’ bits initially to one. From the definition of V ′sun, it is clear that
a ‘changed’ bit is re-set to one during this execution of Vsun iff a variable v in in(i) has
been altered by a unification with out(j), and v is never used in any block reachable from
Bi. Consequently, the only modifications that occur in the block-frames concern unused
variables, and thus cannot cause any verification failure. Thus, Vsun reaches a fix-point. ut

The role played by V ′sun in the proof stems from the following lemma:

Lemma 2. Let S = (i1, . . . , ik, . . .) be an admissible execution of (P,V ′sun). Then

1. S is an admissible execution of (P,Vnew).
2. For all k ≥ 1,

F i1,...,ik(Vnew) º Fi1,...,ik(V ′sun) .

Proof. The second part of the lemma is a trivial consequence of the first. For the first
statement, we proceed by induction on the number of steps of the verification.

Initialization Both for Vnew and V ′sun, the block to be verified after B0 can be any
successor of B0.

Propagation Let us assume that (i1, . . . , in) is an admissible execution for (P,V ′sun),
and let us consider that we have verified the blocks Bi1 , . . . ,Bin following V ′sun. We denote
by j1, . . . , jl the indices of the blocks marked as ’changed’ at that point, just before the
execution of step 4 for block Bin . We denote by k1, . . . km the indices of the blocks that are
newly marked as ’changed’ after the execution of step 4 for the block Bin . As (i1, . . . , in) has
length n, it is an admissible execution for (P,Vnew). For the same reason, (i1, . . . , in−1, ja) is
an admissible execution for (P,Vnew), for all 1 ≤ a ≤ l. Consequently, after having verified
Bi1 , . . . ,Bin by running Vnew, the bits changed block[j1], . . . , changed block[jl] are set to
one. It remains to show that this is also the case for

changed block[k1], . . . , changed block[km]

We must distinguish two cases: if it is the first time Bk1 has been visited in the execution
of V ′sun, then it is also the case in Vnew, and thus, changed block[k1] will be set to one in
Vnew. Otherwise, as Bk1 is newly marked as ’changed’ in V ′sun, there exists a variable (or a
stack element) v such that

u out(in)v Â u in(k1)v

in V ′sun. Let us assume now that all the Bi1 , . . . ,Bin do not read nor write v. Then in(k1)v and
out(in)v should be equal, which is impossible. Consequently, there exists some 1 ≤ b ≤ n
such that v is read or written by Bib . Let us consider the greatest possible b. According to
the definition of V ′sun, Bk1 necessarily belongs to a path from Bib to a v-successors of Bib .
Thus, in Vnew, changed frame[k1] = 1, which implies that changed block[k1] will be set
to one at this point of the execution of Vnew. ut
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Let us consider another modification of Vsun, denoted by V ′′sun, which executes like Vsun,
except that when choosing a new block to verify, V ′′sun does not limits its choice to the blocks
marked as changed, but chooses any possible block (obviously, V ′′sun does not necessarily
terminate).

Lemma 3. Let P be a program accepted by Vsun.

For all admissible executions (i1, . . . , ik, . . .) for (P,Vnew), there exists an admissible
execution for (P,V ′′sun), (j1, . . . , jl), such that

F i1,...,ik
(Vnew) ¹ Fj1,...,jl

(V ′′sun) .

Proof. We proceed by induction on k. Let us assume that Vnew has run through (i1, . . . , ik),
and let us consider an admissible execution (j1, . . . , jl) for V ′′sun as stated. At that point,
Vnew sets to one several new changed frame[ki], and modifies the corresponding frames
u in[ki], i = 1, . . . , m. For each of these ki, let us denote by pi a path from Bik to Bki

. Then
it is clear that for all admissible ik+1,

F i1,...,ik,ik+1
(Vnew) ¹ Fj1,...,jl,ik,p1,...,pm(V ′′sun) ,

which concludes the proof. ut
Proposition 1. A program P is accepted by Vsun iff it is accepted by Vnew.

Proof. It is clear that the stack verification and the ‘fall off’ test work identically for Vsun

and Vnew. We thus concentrate only on the type inference verification.

Let P be a program rejected by Vsun. Then from Lemma 1, P is rejected by V ′sun. Let us
denote by (i1, . . . , ik) the admissible execution for (P,V ′sun) which has led to the beginning of
the verification of the block Bik+1

where the failure occurred. From Lemma 2, (i1, . . . , ik+1)
is an admissible execution of Vnew. Furthermore, (i1, . . . , ik) is also an admissible execution
of Vnew, and at this point, the frame-set in Vnew is higher than the frame-set in V ′sun. This
implies that Vnew will return a failure after verifying Bik+1

.

Conversely, let P be a program accepted by Vsun. First, it is clear that V ′′sun will never
return a failure when verifying P: V ′′sun simply verifies additional blocks without modifying
their frame-set. Let us assume that the verification of P by Vnew returns a failure, and let
us consider the execution path for (P,Vnew), (i1, . . . , ik), which has led to the beginning of
the verification of the block ik+1 where the failure occurred. Let us consider an admissible
execution for V ′′sun, as in Lemma 3, denoted by (j1, . . . , jl). Now, we arbitrarily force V ′′sun to
start verifying the block ik+1. At this point, the frame-set in V ′′sun is higher than the frame-
set in Vnew, which implies that V ′′sun should return a failure after having verified block Bik+1

,
which contradicts our assumption. ut

6 Practical Benchmarks

Although we did not implement a complete memory-constrained verifier, we wrote a simple
software that builds the used-frames for a given *.jca file and counts the number of RAM
cells necessary to verify its most greedy method.

We added two further optimizations to our software:
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– In many cases the types used and produced by a byte-code are unique and fully deter-
mined by the byte-code itself. Typically, an iload requires the n-th local variable to be
int and int only. Local variable n can hence be omitted from the frame whenever it is
being read by an iload before being used by any other byte-code. Indeed, unification
of this variable (within this block) is useless, given that its type can be nothing but
int. A similar optimization applies to stack elements.

– A second optimization consists in identifying in each frame the variables and stack
elements which are overwritten before even being read. This means that the old values
(and types) of these variables are discarded. Hence, there is no need to keep track of
such variables in the corresponding block-frames.

We used for our benchmarks the representative Java card applets from [10]. Results are
rather encouraging, the new verification strategy seems to save on the average 80% of the
memory claimed by [6]. Increase in workload (i.e., a number of extra unifications) has not
been explored as yet.

Applet Sun’s Verifier [6] Memory-Constrained Verification gain

NullApp.jca 6 words 3 words 50%

HelloWorld.jca 40 words 6 words 85%

JavaLoyalty.jca 48 words 13 words 73%

Wallet.jca 99 words 16 words 84%

JavaPurse.jca 480 words 41 words 91%

Purse.jca 550 words 39 words 93%

CryptoApplet.jca 4237 words 281 words 93%
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Abstract. This paper presents the theoretical blueprint of a new secure token called the External-
ized Microprocessor (XµP). Unlike a smart-card, the XµP contains no ROM at all.

While exporting all the device’s executable code to potentially untrustworthy terminals poses formidable
security problems, the advantages of ROM-less secure tokens are numerous: chip masking time disap-
pears, bug patching becomes a mere terminal update and hence does not imply any roll-out of cards
in the field. Most importantly, code size ceases to be a limiting factor. This is particularly significant
given the steady increase in on-board software complexity.

After describing the machine’s instruction-set we will introduce two XµP variants. The first design is a
public-key oriented architecture which relies on a new RSA screening scheme and features a relatively
low communication overhead at the cost of computational complexity, whereas the second variant is
secret-key oriented and relies on simple MACs and hash functions but requires more communication.

For each of these two designs, we propose two protocols that execute and dynamically authenticate
arbitrary programs. We also provide a strong security model for these protocols and prove their
security under appropriate complexity assumptions.

1 Introduction

The idea of inserting a chip into a plastic card is as old as public-key cryptography. The
first patents are now 25 years old but mass applications emerged only a decade ago because
of limitations in the storage and processing capacities of circuit technology. More recently
new silicon geometries and cryptographic processing refinements led the industry to new
generations of cards and more complex applications such as multi-applicative cards [11].

Over the last decade, there has been an increasing demand for more and more complex
smart-cards from national administrations, telephone operators and banks. Complexity
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grew to the point where current cards are nothing but miniature computers embarking a
linker, a loader, a Java virtual machine, remote method invocation modules, a bytecode
verifier, an applet firewall, a garbage collector, cryptographic libraries, a complex protocol
stack plus numerous other clumsy OS components.

This paper ambitions to propose a disruptive secure-token model that tames this complex-
ity explosion in a flexible and secure manner.

From a theoretical standpoint, we look back to von Neumann’s computing model wherein
a processing unit operates on volatile and nonvolatile memories, generates random num-
bers, exchanges data via a communication tape and receives instructions from a program
memory. We revisit this model by alleviating the integrity assumption on the executed pro-
gram, explicitly allowing malevolent and arbitrary modifications of its contents. Assuming
a cryptographic key is stored in nonvolatile memory, the property we achieve is that no
chosen-program attack can actually infer information on this key or modify its value: only
authentic programs, the ones written by the genuine issuer of the architecture, may do so.

Quite customizable and generic in several ways, our execution protocols are directly appli-
cable to the context of a ROM-less smart card (called the Externalized Microprocessor or
XµP) interacting with a powerful terminal (Externalized Terminal or XT). The XµP exe-
cutes and dynamically authenticates external programs of arbitrary size without intricate
code-caching mechanisms. This approach not only simplifies current smart-card-based ap-
plications but also presents immense advantages over state-of-the-art technologies on the
security marketplace.

1.1 What Is a Smart-Card?

The physical support of a conventional smart-card is a plastic rectangle printed with infor-
mation concerning the application or the issuer, as well as readable information about the
card holder (for instance, a validity date or a photograph). This support can also carry a
magnetic stripe or a bar-code.

ISO Standard 7816 specifies that the micromodule must contain an array of eight contacts
but only six of these are actually connected to the chip, which is usually not visible. The
contacts are assigned to power supplies (Vcc and Vpp), ground, clock, reset and a serial data
communication link commonly called I/O. ISO is currently considering various requests for
re-specification of the contacts; notably for dual USB/7816 support.

While for the time being card CPUs are mainly 8 or 16-bit microcontrollers1 new 32-bit
devices have recently become available.

From a functional standpoint a smart card is a miniature computer. A small on-board
RAM serves as a temporary storage of calculation results and the card’s microprocessor
executes a program etched into the card’s ROM at the mask-producing stage. This program
cannot be modified or read-back in any way.

For storing user-specific data individual to each card, cards contain EEPROM (Electrically
Erasable and Programmable ROM) or flash memory, which can be written and erased

1 The most common cores are Motorola’s 68HC05 and Intel’s 80C51.
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hundreds of thousands of times. Java cards even allow the import of executable programs
(applets) into their nonvolatile memory according to the card holder’s needs.

Finally, the card contains a communication port (serial via an asynchronous link) for
exchanging data and control information with the external world. A common bit rate is
9,600 bits per second, but much faster ISO-compliant throughputs are commonly used
(from 19,200 up to 115,200 bits per second). The advent of USB cards opens new horizons
and allows data throughput to easily reach one megabit per second.

chip chip=+

+

Fig. 1. Smart-Card Manufacturing

To prevent information probing, all these elements are packed into one single chip. If this is
not done, the wires linking the system components to each another could become potential
passive or active penetration routes [18]. The different steps of smart card manufacturing
are shown in Figure 1: wire bonding (chip + micromodule) and potting (chip + micromod-
ule + plastic).

The authors believe that the first smart-card architects did not really brave the wrath of
engineering optimal secure portable devices but rather chose the easiest short-term solution:
that of physically hardening architectures that proved useful in coffee machines or toys.

It seems that both the industry and the research community accepted this endocode2 (em-
bedded code) paradigm as a truth in itself, which corollary was that subsequent endeavors
were mostly devoted to improve the performance of this existing architecture3 instead of
looking for alternative ways for securely executing embedded code.

1.2 Alternative Designs?

A card never comes alone, it always interacts with an application that implements the
’terminal part’ of the protocol. It follows that no matter what application we talk about,

2 ενδoν = within (endon).
3 Throughout the past decade, the name of the game was larger RAM, ROM and EEPROM capacities, faster

coprocessors, lower current consumption, better resistance to side-channel attacks...
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terminals ’know’ what functions the cards they must interact with implement. For instance
a mobile phone contains the terminal part of the GSM application, ATMs implement the
terminal part of the payment application and the same is true for health, gaming, IT
security, identity or transport applications.

Some of this century’s best discoveries were creative and determined efforts to answer
”What if...?” questions. What if people could fly? What if electrical energy could be har-
nessed to produce light? What if there was an easily accessible, international communica-
tion and information network? The answers have resulted in permanent changes: air travel,
light bulbs, the Internet. These discoveries have rendered their less effective counterparts
to relative extinction from use: gone is the stagecoach, gas lighting, and multi-volume
hardbound encyclopedias. These improvements remind us of the research community’s op-
tion and ability to experiment, re-mold, re-think, and imagine. In that spirit, this article
submits a new question:

Given that terminals ’know’ what functions the cards they must interact with
implement, what if terminals could completely contain or help execute a card’s
code? And if so, could this be done securely and efficiently?

In this paper we answer the above question by providing the theoretical blueprint of a new
secure token called the Externalized Microprocessor (XµP) which, unlike a smart-card,
contains no ROM at all.

While exporting all the device’s executable code to potentially untrustworthy terminals
poses formidable security problems, the advantages of ROM-less secure tokens are numer-
ous: chip masking time disappears, bug patching becomes a mere terminal update and
hence does not imply any roll-out of cards in the field. Most importantly, code size ceases
to be a limiting factor.

In a nutshell one can compare today’s smart cards to Christopher Columbus’ caravels
that carried all the necessary food, weapons and navigation equipment (ROM) on board
whereas the XµP architecture (ectocode4) introduced in this paper is analogous to mod-
ern submarines who rely on regular high sea rendezvous and get goods and ammunitions
delivered while on assignment.

A basic DSP board XµP prototype is currently under development.

1.3 Outline of Our Work

In Section 2, we progressively refine the machine’s architecture. Sections 3 and 5 provide
efficient architecture designs for the XµP relying on RSA. Section 3 introduces a rigorous
adversarial model and assesses the security of our execution protocols in it, under adequate
complexity assumptions. Section 8 introduces an alternative design based on ephemeral
MACs instead of RSA. Further sections extend the instruction set in several directions

4 εκτoς = outside (ectos).
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by introducing powerful instructions while maintaining security. Section 12 provides an
implementation of RC4 that illustrates the computational power of our secure platform.
Sections 13 and 14 consider various engineering issues related to prototyping the XµP.

2 The XµP’s Architecture and Instruction Set xjvml

We model the XµP’s executable program P as a sequence of instructions:

1 : INS1

2 : INS2
...
` : INS`

located at addresses i ∈ 1, · · · , ` off-board.

These instructions are in essence similar to instruction codes executed by any traditional
microprocessor. Although the XµP’s instruction-set can be similar to that of a 68HC05 or
a MIX processor [15], we have chosen to model it as a jvml0-like machine [22], extending
this language into xjvml as follows. xjvml is a basic virtual processor operating on a
volatile memory ram, a non-volatile memory nvm, classical I/O ports denoted IO (for
data) and XIO (for instructions), an internal random number generator denoted RNG and
an operand stack st, in which we distinguish

– transfer instructions: load x pushes the current value of ram[x] (i.e. the memory
cell at immediate address x in ram) onto the operand stack. store x pops the top value
off the operand stack and stores it at address x in ram. Similarly, load IO captures the
value presented at the I/O port and pushes it onto the operand stack whereas store

IO pops the top value off the operand stack and sends it to the external world. load
RNG generates a random number and pushes it onto the operand stack (the instruc-
tion store RNG does not exist). getstatic pushes nvm[x] onto the operand stack and
putstatic x pops the top value off the operand stack and stores it into the nonvolatile
memory at address x;

– arithmetic and logical operations: inc increments the value on the top of the
operand stack. pop pops the top of the operand stack. push0 pushes the integer zero
onto the operand stack. xor pops the two topmost values of the operand stack, exclusive-
ors them and pushes the result onto the operand stack. dec’s effect on the topmost stack
element is the exact opposite of inc. mul pops the two topmost values off the operand
stack, multiplies them and pushes the result (two values representing the result’s MSB
and LSB parts) onto the operand stack;

– control flow instructions: letting 1 ≤ L ≤ ` be an instruction’s index, goto L
is a simple jump to program address L. Instruction if L pops the top value off the
operand stack and either falls through when that value is the integer zero or jumps to
L otherwise. The halt instruction halts execution.



How to Disembed a Program? 433

Note that no program memory appears in our architecture: instructions are simply sent to
the microprocessor which executes them in real time. To this end, a program counter i is
maintained by the XµP: i is set to 1 upon reset and is updated by instructions themselves.
Most of them simply increment i ← i+1 but control flow instructions may set i to arbitrary
values in the range [1, `]. To request instruction INSi, the XµP simply sends i to the XT
and receives INSi via the specifically dedicated communication port XIO. A toy example
of program written in xjvml is given on Figure 2.

I/ORNG

ST (Stack)

getstatic x

putstatic x

load  x

store x

load  IO

store IO
load RNG

push0

add

inc

xor

mul

...

RAM NVM

load     IO
load    17
xor
load    RNG
add
if         end
goto   loop

push0
inc
store  IO
halt

loop:

end:

Fig. 2. An Example of Program in xjvml

Denoting by memory the memory space formed by nvm, ram and st altogether5, the
dynamic semantics of our instruction-set are given in Figure 3 (note that there are no rules
for halt as execution stops when a halt is reached).

It is implicitly understood that instructions that read the contents of the stack may throw
an interrupt if the stack is empty (i.e. s = 0) or contains insufficient data (e.g. when
executing an xor while s = 1). The following subsections progressively refine the XµP’s
architecture by presenting successive versions of the machine and explaining the rationale
behind each refinement.

2.1 Step 1: The Open XµP

We assume that the program’s author deposits in each untrustworthy Externalized Termi-
nal (XT) the ectocode:

5 In other words, memory = {ram, st,nvm}.
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INSi effect on i effect on ram effect on st effect on s

inc i ← (i + 1) none st[s] ← (st[s] + 1) none

dec i ← (i + 1) none st[s] ← (st[s]− 1) none

pop i ← (i + 1) none st[s] ← undef s ← (s− 1)

push0 i ← (i + 1) none st[s + 1] ← 0 s ← (s + 1)

load x i ← (i + 1) none st[s + 1] ← ram[x] s ← (s + 1)

load IO i ← (i + 1) none st[s + 1] ← IO s ← (s + 1)

load RNG i ← (i + 1) none st[s + 1] ← RNG s ← (s + 1)

store x i ← (i + 1) ram[x] ← st[s] st[s] ← undef s ← (s− 1)

store IO i ← (i + 1) IO ← st[s] st[s] ← undef s ← (s− 1)

if L if st[s] = 0 then i ← (i + 1) none st[s] ← undef s ← (s− 1)
if st[s] 6= 0 then i ← L

goto L i ← L none none none

xor i ← (i + 1) none st[s− 1] ← st[s− 1]⊕ st[s] s ← (s− 1)
st[s] ← undef

mul i ← (i + 1) none α
def
= st[s− 1]× st[s] none

st[s− 1] ← α mod 256
st[s] ← α div 256

effect on nvm

getstatic x i ← (i + 1) none st[s + 1] ← nvm[x] s ← (s + 1)

putstatic x i ← (i + 1) nvm[x] ← st[s] st[s] ← undef s ← (s− 1)

Fig. 3. Instruction Set xjvml

1 : INS1

2 : INS2
...
` : INS`

The Open XµP is very simple: as execution starts the device resets its program counter
(i ← 1) and requires ectoinstruction 1 from the XT. The Open XµP executes INS1, updates
its internal state, determines the next program counter value and repeats this process
while INSi 6= halt. This is nothing but the usual way in which microprocessors execute
code stored in external ROMs.

The protocol is formally described on Figure 4 (note that executing INSi updates i).

0. The XµP initializes i ← 1
1. The XµP queries from the XT ectoinstruction number i
2. The XT sends INSi to the XµP
3. The XµP executes INSi

4. goto step 1.

Fig. 4. The Open XµP (Insecure)

As is obvious, the Open XµP lends itself to a variety of attacks. Typically, an opponent
could pull-out the contents of the XµP’s NVM by sending to the machine the sequence of
instructions:



How to Disembed a Program? 435

1 : getstatic 1
2 : store IO
3 : getstatic 2
4 : store IO
5 : getstatic 3
6 : store IO
...

instead of the legitimate ectoprogram crafted by the XµP’s designer (we call such illegit-
imate sequences of instructions xenoprograms6). It follows that the ectocode executed by
the machine must be authenticated in some way.

2.2 Step 2: The Authenticated XµP

To ascertain that the ectoinstructions executed by the device are indeed those crafted by
the code’s author we refine the previous design by associating to each ectoinstruction a
digital signature. The program’s author generates a public and private RSA signature key-
pair {N, e, d} and burns {N, e} into the Authenticated XµP. The ectocode is enhanced with
signatures as follows:

1 : σ1 : INS1

2 : σ2 : INS2
...
` : σ` : INS`

where σi = µ(i, INSi)
d mod N and µ is an RSA padding function7.

The protocol is enhanced as follows:

0. The XµP initializes i ← 1
1. The XµP queries from the XT ectoinstruction number i
2. The XT sends {INSi, σi} to the XµP
3. The XµP

(a) ascertains that σe
i = µ(i, INSi) mod N

(b) executes INSi

4. goto step 1.

Fig. 5. The Authenticated XµP (Insecure and Inefficient)

While the Authenticated XµP prevents an opponent from feeding the device with xenoin-
structions, an attacker could still mix legitimate ectoinstructions belonging to different

6 ξενoς = foreign (xenos).
7 Note that if a message-recovery padding scheme is used, XT storage can be reduced: upon reset the XT can

sequentially verify all the σi, extract the INSi and reconstruct the executable part of the ectocode.
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ectoprograms. In other words, one could successfully replace the 14th opcode of a GSM
ectoprogram by the 14th opcode of a Banking ectoprogram.

To avoid this code mixture attack we slightly twitch the design by burning a unique program
identifier ID into the device; the existence of ID in the XµP enables the execution of the
ectoprogram which ’name’ is ID. ID is included in each σi (i.e. σi = µ(ID, i, INSi)

d mod N).
IDs are either sequentially generated by the programmer or uniquely produced by hashing
the ectoprogram.

2.3 Step 3: The Screening XµP

Although RSA signature verification can be relatively easy, verifying an RSA signature per
ectoinstruction is resource-consuming. To overcome this difficulty, we resort to the screen-
ing technique devised by Bellare, Garay and Rabin in [4]. Unlike verification, screening
ascertains that a batch of messages has been signed instead of checking that each and
every signature in the batch is individually correct.

More technically, the RSA-screening algorithm proposed in [4] works as follows, assuming
that µ = h is a full domain hash function: given a list of message-signature pairs {mi, σi =
h(mi)

d mod N}, one screens this list by simply checking that

(
t∏

i=1

σi

)e

=
t∏

i=1

h(mi) mod N and i 6= j ⇔ mi 6= mj .

At a first glance, this primitive seems to perfectly suit the code externalization problem
where one does not necessarily need to ascertain that all the signatures are individually
correct, but rather control that all the ectocode ({INSi, σi}) seen by the XµP has indeed
been signed by the program’s author at some point in time.

Unfortunately the restriction i 6= j ⇔ mi 6= mj has a very important drawback as loops
are extremely frequent in executable code (in other words, the XµP may repeatedly require
the same {INSi, σi} while executing a given ectoprogram)8. To overcome this limitation,
we propose a new screening variant where, instead of checking that each message appears
only once in the list, the screener controls that the number of elements in the list is smaller
than e i.e. : (

t∏
i=1

σi

)e

=
t∏

i=1

h(mi) mod N and t < e .

This screening scheme is referred to as µ-RSA. The security of µ-RSA for µ = h where h is
a full domain hash function, is guaranteed in the random oracle model [6] by the following
theorem:

8 Historically, [4] proposed only the criterion (
Q

σi)
e =

Q
h(mi) mod N . This version was broken by Coron and

Naccache in [14]. Bellare et alii subsequently repaired the scheme but the fix introduced the restriction that any
message can appear at most once in the list.
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Theorem 1. Let (N, e) be an RSA public key where e is a prime number. If a forger F can
produce a list of t < e messages {m1, . . . ,mt} and σ < N such that σe =

∏t
i=1 h(mi) mod N

while the signature of at least one of m1, . . . , mt was not given to F , then F can be used
to efficiently extract e-th roots modulo N .

The theorem applies in both the passive and the active setting: in the former case, F is
given the list {m1, . . . ,mt} as well as the signatures of some of them. In the latter, F is
allowed to query a signing oracle and may choose the mi-values. We refer the reader to
Appendix A for a proof of Theorem 1 and detailed security reductions.

Noting that e = 216 +1 seems to be a comfortable choice for e here, we devise the protocol
shown in Figure 6.

0. The XµP receives and checks ID and initializes i ← 1
1. The XµP

(a) sets t ← 1
(b) sets ν ← 1

2. The XT sets σ ← 1
3. The XµP queries from the XT ectoinstruction number i
4. The XT

(a) updates σ ← σ × σi mod N
(b) sends INSi to the XµP

5. The XµP updates ν ← ν × µ(ID, i, INSi) mod N
6. If t = e or INSi = halt then the XµP

(a) queries from the XT the current value of σ
(b) halts execution if ν 6= σe mod N (cheating XT)
(c) executes INSi

(d) goto step 1
7. The XµP

(a) executes INSi

(b) increments t ← t + 1
(c) goto step 3.

Fig. 6. The Basic Screening XµP (Insecure)

As one can see, two events can trigger a verification (steps 6a and 6b): the execution of e−1
ectoinstructions (in which case the verification allows to reset the counter t to 1) or the
ectoprogram’s completion (halt). For the sake of conciseness we will denote by CheckOut
the test performed in steps 6a and 6b. Namely CheckOut is the XµP-triggered operation
consisting in querying from the XT the current value of σ, ascertaining that ν = σe mod N
and halting execution in case of mismatch. We plot this behavior also on Figure 7.
Unfortunately, this protocol is vulnerable: again, an attacker may feed the device with
misbehaving xenocode (e.g. the hostile xenocode presented in Section 2.1) crafted so as
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(t=e)

(halt)

Fig. 7. An Example of Program Execution with the Basic Screening XµP: black dots represent instructions and
arrows stand for control flow transitions. Verifications are depicted by small circles around instructions while the
event triggering the CheckOut is mentioned within parenthesis.

to never trigger a CheckOut. In other words, as far as the xenocode comprises less than
e instructions and never halts the attacker can freely read-out secrets from the NVM or
even update the NVM at wish (for instance, illegally credit the balance of an e-Purse).

It follows that the execution of ectoinstructions that have an irreversible effect on the
device’s NVM or on the external world must be preceded by a CheckOut so as to validate
the genuineness of the entire list of ectoinstructions executed so far.

For this reason we single-out the very few ectoinstructions that send signals out of the XµP
(typically the ectoinstruction commanding a data I/O port to toggle) and those ectoin-
structions that modify the state of the XµP’s non-volatile memory (typically the latching
of the control bit that triggers EEPROM update or erasure). These ectoinstructions will
be called security-critical in the following sections and are defined as follows:

Definition 1. An ectoinstruction is security-critical if it might trigger the emission of an
electrical signal to the external world or if it causes a modification of the microprocessor’s
internal nonvolatile memory. We denote by S the set of security-critical ectoinstructions.

In our model S = {putstatic x, store IO}. We can now twitch the protocol as depicted
in Figure 8.

We plot an illustration of this protocol on Figure 9.

Unfortunately, the Screening XµP lends itself to a subtle attack that exploits i as a side
channel. In the example below k denotes the NVM address of a secret key byte u = nvm[k]:
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0. The XµP receives and checks ID and initializes i ← 1
1. The XµP

(a) sets t ← 1
(b) sets ν ← 1

2. The XT sets σ ← 1
3. The XµP queries from the XT ectoinstruction number i
4. The XT

(a) updates σ ← σ × σi mod N
(b) sends INSi to the XµP

5. The XµP updates ν ← ν × µ(ID, i, INSi) mod N
6. if t = e or INSi ∈ S then the XµP

(a) CheckOut
(b) executes INSi

(c) goto step 1
7. The XµP

(a) executes INSi

(b) increments t ← t + 1
(c) goto step 3.

Fig. 8. The Screening XµP (Insecure)

(t=e)

(halt)

(if L1)

(if L3)

(store IO)

(putstatic 67)

Fig. 9. An Example of Program Execution with the Screening XµP: grey dots now represent security-critical
instructions. Verifications are still depicted by small circles around instructions.
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1 : getstatic k
2 : if 1000
3 : dec

4 : if 1001
5 : dec

6 : if 1002
7 : dec

8 : if 1003
...

The Screening XµP will require from the XT a continuous sequence of xenoinstructions
followed by a sudden request of xenoinstruction INS1000+u :

INS1, INS2, . . . , INSu−1, INSu, INS1000+u, . . .

u = nvm[k] has hence leaked-out.

Before presenting a solution that eliminates the i side-channel, let us precisely formalize the
problem: an ectoinstruction is called leaky if it might cause a physically observable variable
(e.g. the program counter) to take one of several possible values, depending on the data
(ram, nvm or st element) handled by the ectoinstruction. The opposite notion is data
indistinguishability that characterizes those ectoinstructions for which the processed data
have no influence whatsoever on environmental variables. Executing a xor, typically, does
not reveal information (about the two topmost stack elements) which could be monitored
from the outside of the XµP while, on the contrary, the division ectoopcode div is leaky. div
can be misused to scan secret data as follows: use the unknown variable as a denominator
and monitor the occurrence of a ’division by zero’ interrupt (when the XµP branches to an
interrupt routine it requires from the XT some address different from i+1). The attacker can
hence decrement the unknown variable until the interrupt is thrown, and count the number
of decrements. Note, however, that div only leaks information about its denominator and
remains data-indistinguishable with respect to the numerator. div has no effect on s.

INSi effect on i effect on ram effect on st

div if st[s] 6= 0 then i ← (i + 1) none α ← st[s− 1] div st[s]
if st[s] = 0 then i ← InterruptAddr β ← st[s− 1] mod st[s]

st[s− 1] ← α, st[s] ← β

As the execution of leaky ectoinstructions may reveal information about internal program
variables, they fall under the definition of security-criticality and we therefore include them
in S. In our ectoinstruction-set (as defined so far), only if L and div are leaky:

S = {putstatic x, store IO, if L, div} .
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2.4 Step 4: The Opaque XµP

To deal with information leakage through if L, one has several options: the most evi-
dent of which consists in simply triggering a CheckOut whenever the XµP encounters any
ectoinstruction of S (Figure 10).

0. The XµP receives and checks ID and initializes i ← 1
1. The XµP

(a) sets t ← 1
(b) sets ν ← 1

2. The XT sets σ ← 1
3. The XµP queries from the XT ectoinstruction number i
4. The XT

(a) updates σ ← σ × σi mod N
(b) sends INSi to the XµP

5. The XµP updates ν ← ν × µ(ID, i, INSi) mod N
6. if t = e or INSi ∈ S then the XµP

(a) CheckOut
(b) executes INSi

(c) goto step 1
7. The XµP

(a) executes INSi

(b) increments t ← t + 1
(c) goto step 3.

Fig. 10. The Opaque XµP (Secure But Suboptimal)

We plot an illustration of this protocol on Figure 11.

As one can easily imagine, ifs constitute the basic ingredient of while and for assertions
which are extremely common in executable code. Moreover, in many cases, whiles and
fors are even nested or interwoven. It follows that the Opaque XµP would incessantly
trigger the relatively expensive9 CheckOut step. This is clearly an overkill: in many cases
ifs can be safely performed on non secret data dependent10 variables (for instance the
variable that counts 16 rounds during a DES computation).

Efficiency can be improved by adding two popular 80C51 assembly opcodes to the XµP’s
ectoinstruction-set: move x, #c and djnz x, L (the acronym djnz stands for Decrement
and Jump if Non Zero) which dynamic semantics are11:

9 While the execution of a regular ectoinstruction demands only one modular multiplication, the execution of an
INSi ∈ S requires the transmission of an RSA signature (e.g. 1024 bits) and an exponentiation (e.g. to the
power e = 216 + 1) in the XµP.

10 Read: non-((secret-data)-dependent).
11 #c represents the constant value c. For instance move x, #15 stores the value 15 in ram[x].
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(t=e)

(halt)

(if L1)

(if L3)

(store IO)

(putstatic 67)

Fig. 11. An Example of Program Execution with the Opaque XµP: if instructions are now considered as being
security-critical and trigger a CheckOut upon execution.

INSi effect on i effect on ram effect on st effect on s

djnz x, L if ram[x] 6= 0 then i ← L ram[x] ← ram[x]− 1 none none
if ram[x] = 0 then i ← (i + 1)

move x, #c i ← (i + 1) ram[x] ← #c none none

Fig. 12. Dynamic Semantics of djnz and move

It suffices now to create a small array (denoted sram, the ’s’ standing for ’secure’) where
the XµP will authorize only the two operations move and djnz (in other words any ectoin-
struction other than move and djnz attempting to modify the sram will cause execution to
halt). The sram can hence serve to host all the non data-dependent loop counters without
triggering a CheckOut:

S = {putstatic x, store IO, if L, djnzx6∈sramx, L, div} .

This optimization is nothing but an information-flow watchdog that enforces a very prim-
itive security policy inside the XµP. Having illustrated our purpose, we now backtrack
and remove move and djnz from the ectoinstruction-set and devote the following section
to refine and analyse different security policies for reducing the number of CheckOut calls
caused by S as much as possible.

3 Internal Security Policies: Protocol 1

In the next refinement of our architecture a privacy bit is associated to each of the XµP’s
RAM, NVM and stack cells. We denote by ϕ(ram[j]) the privacy bit associated to ram[j],
by ϕ(nvm[j]) the privacy bit associated to nvm[j] and by ϕ(st[j]) the privacy bit associated
to st[j]. NVM privacy bits are nonvolatile. For the sake of conciseness we denote by Φ the
privacy bit space Φ = ϕ(memory).
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Informally speaking, the privacy bit’s goal is to prevent the external world from probing
secret data handled by the XµP. RAM privacy bits are initialized to zero upon reset, NVM
privacy bits are set to zero or one by the XµP’s issuer at the production stage. Privacy bits
of released stack elements are automatically reset to zero and ϕ(RNG) is always stuck to
one by definition.

We also introduce simple rules by which the privacy bits of new variables abide (evolve as a
function of prior ϕ values). Transfer ectoinstructions from ram (load) or nvm (getstatic)
to st, pushing a memory variable onto the stack, also copy this variable’s privacy bit into
the privacy bit of the topmost stack element ϕ(st[s]). Similarly, transfer ectoinstructions
from stack to ram and nvm cells (store, putstatic) transfer privacy bits as well. By
default, load IO sets ϕ(st[s]) to zero (i.e. any external data fed into the XµP is considered
as publicly observable by opponents and hence non-private) and store IO simply resets
ϕ(st[s]) when returning a data to the external world.

The rule we apply to arithmetical or logical ectoinstructions (and more generally to any
ectoinstruction that pops stacked data and/or pushes computation results onto the stack)
is privacy-conservative; viz. the output privacy bits are all set to zero if and only if all
input privacy bits were zero (otherwise they are all set to one). In other words, as soon as
private data enter a computation all output data are tagged as private. As each and every
computation is carried out on the stack, it suffices to enforce this rule over the privacy bit
subspace ϕ(st). This rule is easily hardwired as a simple boolean “or” for binary (two
parameter) ectoinstructions; of course, unary ectoinstructions such as inc or dec leave
ϕ(st[s]) unchanged. For the sake of clarity, we provide in Figure 13 the dynamic semantics
of ectoinstructions over Φ.

INSi effect on Φ

inc none

dec none

pop ϕ(st[s]) ← 0

push0 ϕ(st[s + 1]) ← 0

load x ϕ(st[s + 1]) ← ϕ(ram[x])

load RNG ϕ(st[s + 1]) ← 1

store x ϕ(ram[x]) ← ϕ(st[s])
ϕ(st[s]) ← 0

load IO ϕ(st[s + 1]) ← 0

store IO ϕ(st[s]) ← 0

if L ϕ(st[s]) ← 0

goto L none

xor ϕ(st[s− 1]) ← ϕ(st[s− 1]) ∨ ϕ(st[s])
ϕ(st[s]) ← 0

mul ϕ(st[s]), ϕ(st[s− 1]) ← ϕ(st[s− 1]) ∨ ϕ(st[s])

div ϕ(st[s]), ϕ(st[s− 1]) ← ϕ(st[s− 1]) ∨ ϕ(st[s])

getstatic x ϕ(st[s + 1]) ← ϕ(nvm[x])

putstatic x ϕ(nvm[x]) ← ϕ(st[s])
ϕ(st[s]) ← 0

Fig. 13. Dynamic Semantics Over Φ



444 Benôıt Chevallier-Mames et alii.

Thus, one observes that whatever the ectoprogram actually computes, each and every
non-private intermediate value ϑ appearing during its execution must depend only on non-
private values stored in NVM and on (observable and hence necessarily non-private) data
provided by the XT through the XµP’s I/O port. Informally, this means that an external
observer could recompute ϑ by herself through a passive observation of ectoinstructions and
data emitted by the XT12, assuming that the XµP’s non-volatile non-private information
is known13.

Based on this property which we call data simulatability, our security policy allows to
process leaky ectoinstructions in different ways depending on whether they are run over
private or non-private data. Typically, executing an if does not provide critical information
if the topmost stack element is non-private because the computation path leading to this
value is simulatable anyway. A CheckOut may not be mandatorily invoked in this case.
Accordingly, outputting a non-private value via a store IO ectoinstruction does not provide
any sensitive information, and a CheckOut can be spared in this case as well.

The case of putstatic happens to be a bit more involved because skipping CheckOuts in
this context gives the ability to freely modify the XµP’s NVM, which can be the source of
attacks. A typical example is an attack by fault injection, in which a malevolent XT would
send to the XµP the xenoinstructions:

1 : push0

2 : putstatic 17
3 : halt

where data element nvm[17] is a private DES key byte. Letting the XµP execute this
xenocode will partially nullify this key and will thereby allow Differential Fault Analysis [2]
to infer the remaining key bits. The fact that data written in NVM is non-private is
irrelevant here, because other DFA attacks also apply when storing a private data [3].
This example tells us to require a CheckOut when the NVM cell to be modified is marked
as private. But what if the destination is non-private? Well, this depends on the notion
captured by what we called privacy in the first place. Assume that we apply the security
policy given by Figure 14.

INSi Trigger CheckOut if:

if L ϕ(st[s]) = 1

div ϕ(st[s]) = 1

store IO ϕ(st[s]) = 1

putstatic x ϕ(nvm[x]) = 1

Fig. 14. Read and Write Policy

12 ϑ’s dataflow graph can be easily isolated amongst the stream of ectoinstructions and symbolically executed to
retrieve the current value of ϑ.

13 If this is not the case, a xenoprogram disclosing this nvm information can be easily written by the attacker.
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By virtue of this policy, replacing a non-private NVM data field does not trigger a CheckOut.
This means that all non-private NVM objects are left freely accessible to the external world
for both reading and writing. This implements a read and write policy which might be
desirable for objects such as cookies (stored in the device by applications for future use).
On the contrary, certain publicly readable objects must not be freely rewritable e.g. the
balance of an e-purse, an RSA public key14 and so forth. In which case we enforce the read
only policy shown on Figure 15.

INSi Trigger CheckOut if:

if L ϕ(st[s]) = 1

div ϕ(st[s]) = 1

store IO ϕ(st[s]) = 1

putstatic x always

Fig. 15. Read-Only Policy

To abstract away the security policy, we introduce the boolean predicate

Alert : S × Φ 7→ {True, False}
Alert(INS, Φ) evaluates as True when a CheckOut is to be invoked, e.g. following one of the
two mechanisms above. We hence twitch our protocol as shown on Figure 16.

4 The declassify and if phi Ectoinstructions

As discussed above, the internal security policy preserves privacy in the sense that any
intermediate variable ϑ depending on a private variable ϑ′ will be automatically tagged as
private. Under many circumstances, final computation results returned by the ectoprogram
need to be declassified i.e. have their privacy bit reset to zero. A typical example is an AES
computation: some publicly known plaintext is given to the XµP. The machine encrypts it
under a key stored in NVM and marked as private. Because every single variable containing
ciphertext bits is a function of all key bits, all the final ciphertext bits will be eventually
tagged as private. Outputting or manipulating the ciphertext will hence provoke potentially
unnecessary CheckOuts despite the fact that in most protocols and applications ciphertexts
are usually looked upon as public data. The same observation applies to public-key signa-
tures, MACs and more generally to any private cryptographic computation which output
is public15.

To allow the programmer easy data declassification, we introduce a specific ectoinstruction
that we call declassify. This ectoinstruction simply resets the privacy bit ϕ(st[s]) of the
topmost stack element regardless st[s]’s value. declassify’s dynamic semantics are given
in Figure 18.

14 Forcing an RSA e to one would allow to trivially bypass signature verification.
15 Note that MACs and ciphertexts are not necessarily systematically public, a MAC can for instance serve to

generate a secret session key.
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0. The XµP receives and checks ID and initializes i ← 1
1. The XµP

(a) sets t ← 1
(b) sets ν ← 1

2. The XT sets σ ← 1
3. The XµP queries from the XT ectoinstruction number i
4. The XT

(a) updates σ ← σ × σi mod N
(b) sends INSi to the XµP

5. The XµP updates ν ← ν × µ(ID, i, INSi) mod N
6. if t = e or (INSi ∈ S and Alert(INSi, Φ)) then the XµP

(a) CheckOut
(b) executes INSi

(c) goto step 1
7. The XµP

(a) executes INSi

(b) increments t ← t + 1
(c) goto step 3.

Fig. 16. Enforcing a Security Policy: Protocol 1

(t=e)

(halt)

(if L1)

(if L3)

(store IO)

(putstatic 67)

non-private

non-private

Fig. 17. An Example of Program Execution with Protocol 1: small squares around security-critical instructions
denote useless signature verifications saved thanks to the internal security policy.

INSi effect on i effect on memory effect on Φ effect on s

declassify i ← (i + 1) none ϕ(st[s]) ← 0 none

Fig. 18. Ectoinstruction declassify
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Of course, declassify is security-critical because a malevolent XT could simply send the
xenoprogram

1 : getstatic 17
2 : declassify

3 : store IO

to the XµP (where 17 is, again, the address of some private NVM data), thereby breaching
privacy16. We subsequently enrich S with declassify and upgrade the internal security
policy to trigger a CheckOut whenever the XµP executes this ectoinstruction on a private
variable. When the topmost stack element is not tagged as private declassify has no
effect whatsoever (except incrementing i) and is thus unnecessary to CheckOut. Alert is
redefined as on Figure 19.

INSi Trigger CheckOut if:

if L ϕ(st[s]) = 1

div ϕ(st[s]) = 1

store IO ϕ(st[s]) = 1

putstatic x always

declassify ϕ(st[s]) = 1

or

INSi Trigger CheckOut if:

if L ϕ(st[s]) = 1

div ϕ(st[s]) = 1

store IO ϕ(st[s]) = 1

putstatic x ϕ(nvm[x]) = 1

declassify ϕ(st[s]) = 1

Fig. 19. Security Policies (Including declassify)

In the same spirit, programmers may find it handy to dispose of an ectoinstruction that
tests privacy bits. The ability to distinguish between private and non-private variables
provides a way of treating arbitrary variables in a generic way while relying later on an
easy switch between separate ectocode sequences devoted to private or non-private cases.
To this end, we add to the ectoinstruction-set the ectoinstruction if phi L whose dynamic
semantics are given in Figure 20.
In other words, if phi L is similar to if L except that the branch is conditioned by the
event ϕ(st[s]) = 1 instead of st[s] = 0. It is worthwhile to note that if phi L needs not
be included into S because the fact that the program counter jumps to L or i+ 1 does not
reveal any information whatsoever about the stacked value other than its privacy status17.

16 Recall that store IO does not trigger a CheckOut when executed on non-private data.
17 This raises an interesting theoretical question: does a multi-level machine where each ϕ(memory[i]) also admits

an upper order privacy bit ϕ(ϕ(memory[i])) makes sense from a security standpoint? Here ϕ(ϕ(memory[i])) =
1 captures a meta-secrecy (’no comment’) notion indicating that the machine would even refuse disclos-
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INSi effect on i effect on memory effect on st and Φ effect on s

if phi L if ϕ(st[s]) = 0 then i ← (i + 1) none st[s] ← undef s ← (s− 1)
if ϕ(st[s]) = 1 then i ← L ϕ(st[s]) ← 0

Fig. 20. Ectoinstruction if phi

Interestingly, the ectoinstructions declassify and if phi L are powerful enough to allow
any computation over privacy bits themselves. For instance, the programmer may need
(for some obscure reason) to compute C ← A + B where ϕ(C) ← ϕ(A) ⊕ ϕ(B). This
is not immediate because executing an add would compute A + B but the privacy bit of
the result would be ϕ(A) ∨ ϕ(B). As an illustration, we show how to emulate such an
ectoinstruction (add mem-xor phi) using declassify and if phi. Input variables A and
B are stored in ram[a] and ram[b] and remain unmodified throughout the computation,
while the output C is stored at address ram[c]:

add mem-xor phi:

1 : load a
2 : if phi L2

L1 :

3 : load a
4 : load b
5 : add

6 : goto end

L2 :

7 : load b
8 : if phi L3

9 : goto L1

L3 :

10 : load a
11 : load b
12 : add

13 : declassify

end :

14 : store c

Any other computation over privacy bits is theoretically (and practically) doable (e.g. im-
plementing the other boolean operators is left as an exercise to the reader).

ing if the variable memory[i] is private or not. While the concept can be generalized to higher degrees
(e.g. ϕ(ϕ(. . . ϕ(memory[i]) . . . ) its practical significance, applications and semantics seem to deserve clearer
definitions and further research.
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5 Authenticating Ectocode Sections: Protocol 2

Following the classical definition of [1, 19], we call a basic block a straight-line sequence
of instructions that can be entered only at its beginning and exited only at its end. The
set of basic blocks of a program P is usually given under the form of a graph CFG(P )
and computed by the means of control flow analysis techniques [20, 19]. In such a graph,
vertices are basic blocks and edges symbolize control flow dependencies: B0 → B1 means
that the last instruction of B0 may handover control to the first instruction of B1. In
our ectoinstruction-set, basic blocks admit at most two sons with respect to control flow
dependance; a block has two sons if and only if its last ectoinstruction is an if i.e. either
an if L or an if phi L. When B0 → B1, B0 ⇒ B1 means that B0 has no son but B1 (but
B1 may have other fathers than B0). In this section we define a slightly different notion
that we call ectocode sections.

Informally, an ectocode section is a maximal collection of basic blocks B1 ⇒ B2 · · · ⇒ B`

such that no ectoinstruction of S ∪ {halt} appears in the blocks except, possibly, as
the last ectoinstruction of B`. The section is then denoted by S = 〈B1, . . . , B`〉. In an
ectocode section, very much like in a basic block, the control flow must be deterministic
i.e. be independent of program variables; thus a section may contain several cascading goto

ectoinstructions but no data-dependant branches. Ectocode sections, unlike basic blocks,
may share ectoinstructions; yet they have a natural graph structure induced by CFG(P ) –
which we do not need in the sequel. It is known that computing a program’s basic blocks
can be done in almost-linear time [20] and it is easily seen that the same holds for ectocode
sections. Here is a sketchy way of computing the set Sec(P ) of ectocode sections of an
ectoprogram P :

– compute the graph CFG(P ) and associate a section to each and every basic block i.e. set

Sec(P ) = Vertices (CFG(P )) ,

– recursively apply the following rules to all elements of Sec(P ):

• if S = 〈B1, . . . , B`〉 and S′ = 〈B′1, . . . , B′`′〉 are such that B` ⇒ B′1 in CFG(P ) then
unify S and S′ into S = 〈B1, . . . , B`, B

′
1, . . . , B

′
`′〉,

• if section S = 〈B1, . . . , B`〉 is such that Bi contains INS ∈ S ∪ {halt}, split S into
two sections S′ and S′′ with S′ = 〈B1, . . . , Bi−1, B

′
i〉 and S′′ = 〈B′′i , Bi+1, . . . , B`〉 where

(B′i, B
′′
i ) is a split of block Bi such that B′i ends with INS.

For instance, we identify in the toy example given at Figure 21 four sections denoted
S0, S1, S2 and S3. Note that sections S1 and S2 have ectoinstructions in common. Ectocode
sections are displayed as a graph to depict control flow dependance between them.

Given that an ectocode section can be regarded as one monolithic composite macro-
ectoinstruction, and that they can be computed at compile time, signatures can certify
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Code

load  10
load  11
mult    
store IO
push0   
dec     
xor     
goto  L3

L6:        
load  11
add     
goto  L7

L3:        
inc     
goto  L4

L7:        
store 11
halt    

L4:        
load  12
xor     
if  L6  
load  10
add     
goto  L3

Basic Blocks

load  10
load  11
mult    
store IO
push0   
dec     
xor     
goto  L3

L3:        
inc     
goto  L4

L6:        
load  11
add     
goto  L7

L7:        
store 11
halt    

L4:        
load  12
xor     
if  L6  

load  10
add     
goto  L3

Code Sections

(section 0)

load  10
load  11
mult    
store IO

(section 1)

push0   
dec     
xor     
goto  L3

L3:        
inc     
goto  L4

L4:        
load  12
xor     
if  L6  

(section 2)

load  10
add     
goto  L3

L3:        
inc     
goto  L4

L4:        
load  12
xor     
if  L6  

(section 3)

L6:        
load  11
add     
goto  L7

L7:        
store 11
halt    

Fig. 21. Example of Determining Code Sections in a Program.
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ectocode sections rather than individual ectoinstructions. In other words, a single signa-
ture per section suffices (note again that sections that comprise ectoinstructions belonging
to S are chopped at these ectoinstructions).

The signature of an ectocode section S starting at address i is:

σi = µ(ID, i, h)d mod N with h = H(INS1, . . . , INSk) ,

where INS1, . . . , INSk are the successive ectoinstructions of S. Here, H is a hash function
defined by

H(x1, . . . , xj) = F (xj, F (xj−1, F (. . . , F (x2, F (x1, IV )) . . . )

where F (x, y) is H’s compression function and IV an initialization constant18.

The last ectoinstruction INSk is:

1. either an element of S in which case its execution might trigger a CheckOut or not
according to the security policy Alert(INSk, Φ),

2. or if phi, which does not cause a CheckOut,
3. halt which aborts execution.

We summarize the new protocol in Figure 22.

This protocol presents the advantage of being far less time consuming, because the number
of CheckOuts (and updates of ν) is considerably reduced. The formats under which an
ectocode can be stored in the XT are diverse. The simplest of these consists in representing
P as the list of all its signed ectocode sections

P = (ID, (1 : σ1 : S1), . . . , (k : σk : Sk)) .

Whatever the file format used in conjunction with our protocol is, the term authenticated
ectoprogram designates an ectoprogram augmented with its signature material Σ(P ) =
{σi}i. Thus, our protocol actually executes authenticated ectoprograms. An ectoprogram
is converted into an authenticated executable file via a specific compilation phase involving
both code processing and signature generations.

6 Security Analysis

What we are after in this section is a formal proof that our protocols 1 and 2 are secure.
The security proof shall have two ingredients: a well-defined security model – describing
an adversary’s goals and resources – and a reduction to some complexity-theoretic hard
problem. As a first investigation, we focus on the protocol of Section 3 in which all ectoin-
structions are signed separately. The same results will apply mutatis mutandis to the more
advanced protocol utilizing signed ectocode sections. We first discuss the security model.

18 Iterated hashing has a crucial importance here: iterated hashing allows to pipeline ectoinstructions one by one
and thereby allow their on-the-fly hashing and execution. In other words, one does not need to bufferize (cache)
an entire section in the XµP first and execute it next: ectoinstructions arrive one after the other, get hashed and
executed.
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0. The XµP receives and checks ID and initializes i ← 1
1. The XµP

(a) sets t ← 1 (t now counts code sections)
(b) sets ν ← 1

2. The XT sets σ ← 1
3. The XµP

(a) sets h ← IV
(b) queries the code section starting at address i

4. The XT
(a) updates σ ← σ × σi mod N
(b) sets j = 1

5. The XT
(a) sends INSi

j to the XµP
(b) increments j ← j + 1

6. The XµP
(a) receives INSi

j,
(b) updates h ← F (INSi

j, h)
7. If INSi

j ∈ S and (Alert(INSi
j, Φ) or t = e) the XµP

(a) sets ν = ν × µ(ID, i, h) mod N
(b) CheckOut
(c) executes INSi

j

(d) goto step 1
8. Else if INSi

j ∈ S then the XµP
(a) sets ν = ν × µ(ID, i, h) mod N
(b) increments t ← t + 1
(c) executes INSi

j

(d) goto step 3
9. Else the XµP

(a) executes INSi
j

(b) increments j ← j + 1
(c) goto step 5.

Fig. 22. Ectocode Authentication at Ectocode Section Level: Protocol 2
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(t=e)

(halt)

(if L1)

(if_phi L3)

(store IO)

(putstatic 67)

non-private

Fig. 23. An Example of Program Execution with Protocol 2: instructions are grouped into code sections at the
end of which a CheckOut may or may not be performed.

6.1 The Security Model

We assume the existence of three parties in the game:

– an ectocode issuer CI that compiles xjvml ectoprograms into authenticated executable
files with the help of the signing key {d,N},

– an XµP that follows the communication protocol of Section 3 and containing the verifi-
cation key {e,N} matching {d,N}. The XµP also possesses some cryptographic private
key material k stored in its NVM,

– an attacker A willing to access k using means that will be explained later.

We do not have to include XTs in our model because in fine an XT has no particular role
in the security model: it contains no cryptographic keys and merely forwards ectoprograms
from the CI to the XµP. When the CI sporadically issues compiled ectoprograms, down-
loading these into XTs can be seen as an act of publication. Alternately, we could include
XTs in our model and view A as a malevolent XT.

6.1.1 The Adversary’s Resources: Parties behave as follows. The CI crafts polynomi-
ally many authenticated ectoprograms of polynomially bounded size and publishes them.
We assume no interaction between the CI and A. Then A and the XµP engage in the
protocol and A attempts to make the XµP execute a sequence of xenoinstructions (i.e. a
sequence not originally issued by the CI).

6.1.2 The Adversary’s Goal: The adversary’s goal might depend on the role played by
the XµP’s cryptographic key k. Of course, inferring information about k – worse, recovering
k completely – comes immediately to one’s mind, but there could also be weaker (somewhat
easier or more subtle) ways of misusing k. For instance if k is a symmetric encryption key,
A might try to decrypt ciphertexts encrypted under k. Similarly, if k is a signature key, A
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could attempt to rely on the protocol engaged with the XµP to help forging signatures in
a way or another. More exotically, the adversary could try to hijack the key k e.g. use it as
an AES key whereas k was intended to be used as an RSA key. A’s goal in this case is a bit
more intricate to capture19. Hence we do not prohibit that kind of scenario in our security
model. Third, the adversary may attempt to modify k, thereby opening the door to fault
attacks. To cope with all these subtleties at once and abstract away the cryptographic
nature of k, we rely on the notion of data-flow dependance [19], starting by introducing
the notions our security model will be based upon.

Key-dependent Executions. Considering an authenticated ectoprogram P , we respec-
tively denote nvm-In(P ) and In(P ) the sets of input state variables and input variables
of P ; assuming that the stack and the RAM in the XµP are empty when P starts be-
ing executed, nvm-In(P ) only contains non-volatile variables and In(P ) contains variables
provided via the external data port (load IO). Similarly, nvm-Out(P ) and Out(P ) respec-
tively denote the sets of non-volatile variables written by P and output variables returned
through the data port by P . It might be the case that the sets of effectively read or written
variables of P vary depending on executions, especially when the control flow graph of P
is data-dependent. In this case, we can only apply these definitions to a specific execution

[P ] = P (In,nvm-In, RNG)

of P , where In is the input tape (IO) of [P ], nvm-In is the XµP’s non-volatile memory and
RNG stands for the random tape output by the XµP’s Random Number Generator20. The
sets nvm-In([P ]), In([P ]), nvm-Out([P ]), Out([P ]) and RNG([P ]) are then naturally defined
as the subsets of corresponding variable types that are induced by the execution [P ].

We identify k as the set of NVM private variables containing the secret key bits. Because
our xjvml language does not admit branches to addresses obtained from computations21,
there exists a natural bijective mapping between NVM variables and their addresses22; we
assume that the memory locations of variables in k are publicly known. An execution [P ]
is said to be key-independent if k ∩ nvm-In([P ]) = ∅ and k ∩ nvm-Out([P ]) = ∅.
Let ϑ, ϑ′ be variables of [P ]. We denote by ϑ 4θ ϑ′ the data-flow dependence relation [19],
meaning that the value written at time θ = 1, . . . , Time([P ]) in ϑ by [P ] is computed as a
function fϑ,θ of ϑ′, and possibly of other variables. By extension of notations, we denote
nvm-In(ϑ, θ) ⊆ nvm-In([P ]) and In(ϑ, θ) ⊆ In([P ]) the sets of state and input variables
ϑ′ such that ϑ 4θ ϑ′ and ϑ = fϑ,θ (In(ϑ, θ),nvm-In(ϑ, θ)). In a similar way, we denote by
nvm-Out(ϑ, θ) ⊆ nvm-Out([P ]) and Out(ϑ, θ) ⊆ Out([P ]) the sets of written state and
output variables ϑ′ such that ϑ′ 4θ ϑ.

Extension to Probabilistic Variables. A program variable is probabilistic when it
is data-flow dependent of a value read on the RNG. It may be the case that the attacker A
19 To understand the danger here, consider a key used in a 10 round AES. If the device accepts to use the same

key for a 12 round AES, an external observer can mount an attack on a 12 − 10 = 2 round AES.
20 [P ] is commonly referred to as the running code or trace of P .
21 Only branches and jumps to hard-coded addresses are made possible in our programming language.
22 This strong property makes pointer analysis vacuous in xjvml and conceptually eases our investigation.
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attempts to collect information about the random tape of the program through probabilistic
variables. A typical case is when the program implements a probabilistic signature scheme
e.g. DSA. When (with obvious notations) the signatures parts r = gh mod p mod q and
s = (x · r + SHA-1(m))/h mod q have been sent to the external world by a genuine DSA
program, an attacker could try to inject extra instructions into the XµP before letting
the program reach its final halt instruction, so that the random value h (or a piece of
it) is returned to A via the I/O port. The secret key x is then easily extracted from the
knowledge of m, q, r, s and h. Of course, the DSA program itself could be written in such a
way that the internal value of h is erased before the signature (r, s) is returned: since every
part of the signature depends on the private key (x here), the signature is tagged as private
and putting in onto the I/O port (store IO) will trigger a signature verification, thereby
validating the program and also the erasure of h. Nevertheless, it might be the case that
cautious erasures be impossible before returning values to the external world, especially
when the program implements a 3-pass cryptographic protocol for instance. It appears, as
a consequence, that the random values used by the program need to be considered as a
part of the private key material k. As said above, this is done by letting ϕ(RNG) take the
constant value 1 so that each and every probabilistic variable will be tagged as private due
to the privacy-conservative rule applied to computations. Theoretically, we should then
slightly adapt our definition of key-independence above to take the privacy of the random
tape into account. For the sake of clarity, though, we simply include all RNG values into
the cryptographic material k and maintain our definition as previously discussed for more
readability23. It is only a matter of form, and this choice does not affect the security proof
whatsoever.

Critical ectoinstructions. A variable ϑ of [P ] is externally visible when it is pro-
cessed by an ectoinstruction that returns its value to the external world or reveals some
information about it: these ectoinstructions are exactly the ones identified as elements of
S \ {putstatic}. Denoting by Vis([P ]) the set of externally visible variables of [P ], we say
that [P ] is a key extractor when

k ∩
⋃

ϑ∈Vis([P ])
1≤θ≤Time([P ])

nvm-In(ϑ, θ) 6= ∅ ,

and that P is a key modifier if

k ∩ nvm-Out([P ]) 6= ∅ .

Moreover, during the execution [P ], one of the two definitions (or none) is reached first. This
happens when some ectoinstruction in S\{putstatic} is executed on a variable depending
on k or when executing a putstatic on a variable belonging to k. The first ectoinstruction
INSc executed by [P ] that classifies [P ] into either category is called critical. Given that

23 i.e. we redefine the set of private variables as k = k ∪ RNG.
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the critical ectoinstruction is unique or does not exist, it follows that key extraction or
modification are mutually exclusive properties.

Partial executions. While the XµP is executing some ectoprogram P with identity
IDP , nothing refrains an attacker from suddenly disconnecting the XµP’s power supply,
thus causing a disruption in the execution of P . This event is assumed to reset all volatile
variables of P , as well as the XµP’s security buffers ν and h. In this case the ectoprogram P ′

having been executed (the one seen by the XµP) is a partial execution of P and we denote
this partial ordering over ectoprogram executions by [P ′] v [P ] (note that IDP ′ = IDP ). It is
understood here that the two executions [P ′] and [P ] are run on the same input data, state
variables and random tape. Having [P ′] v [P ] means that in two parallel universes where
[P ′] and [P ] are running under the same given tapes, everything remains identical until [P ′]
is completed. When [P ′] 6v [P ], there must exist at least one ectoinstruction index i such
that the i-th ectoinstruction INSi executed24 by [P ′] differs from the i-th ectoinstruction
executed by [P ]. The set of all ectoinstructions of [P ′] satisfying this property is denoted
Diff([P ′] , [P ]). The first ectoinstruction of Diff([P ′] , [P ]) being executed in [P ′], i.e. the
one with smallest index, is denoted INS6= and is called the differentiating ectoinstruction
of [P ′] with respect to [P ]. In the general case when P and P ′ are two arbitrary authenti-
cated programs, we define Diff([P ′] , [P ]) as before if IDP ′ = IDP and Diff([P ′] , [P ]) = [P ′]
otherwise. This notion is easily extended when [P ] 6v [P1] , . . . , [P`] by having INS 6= de-
fined as the first ectoinstruction among ∩1≤j≤`Diff([P ] , [Pj]) that gets executed by [P ]. For
[P ] 6v [P1] , . . . , [P`], we define the split of [P ] with respect to [P1] , . . . , [P`] as the unique
pair of executions ([P ]− , [P ]+) such that [P ] is the concatenation of [P ]− and [P ]+ and the
first ectoinstruction of [P ]+ is precisely INS 6=.

Free Executions. Although we considered only executions of xjvml ectoprograms so
far, an adversary communicating with the XµP is allowed to transmit a sequence of xenoin-
structions that cannot be viewed as [P ] for any ectoprogram P . Indeed, when a ectoprogram
P is adequately executed by the XµP, the same ectoinstruction INSi (and possibly σi) is
sent each time the device requests the i-th ectoinstruction of P . This may not be the case
for the xenocode sequence transmitted to an XµP under attack. In fact, the adversary may
well benefit from the memoryless behavior of the XµP and even entirely base her strategy
on this constitutional amnesia. We call a sequence ξ of arbitrary xjvml xenoinstructions a
free execution. It is easily seen that the notions of key extraction, key modification, critical
ectoinstruction and differentiating ectoinstruction with respect to a set [P1] , . . . , [P`] of
ectoprogram executions naturally stretch to free executions.

6.1.3 The Attack Scenario The attack is modeled as follows. The CI publishes a col-
lection of valid authenticated ectoprograms P1, . . . , P` totalling at most n ectoinstructions.
Variables in k are marked as private in NVM and all other non-volatile variables are non-
private. The adversary executes Protocol 1 on the XµP with respect to some free execution
ξ and provides input variables In(ξ) of her choosing. The attack succeeds when

24 Note that we rely on the index of INSi, not on its address.
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(a) ξ 6v [P1] , . . . , [P`],
(b) if (ξ−, ξ+) is the split of ξ with respect to [P1] , . . . , [P`] then ξ+ is a key extractor or a

key modifier,
(c) ξ+ is not interrupted by the XµP (cheating terminal) upon the receiving of the crit-

ical xenoinstruction INSc of ξ+ i.e. INSc passes through the security firewall and gets
executed.

We say that A is an (`, n, τ, ε)-attacker if after seeing at most ` authenticated ectopro-
grams P1, . . . , P` totalling at most n ≥ ` ectoinstructions and processing at most τ steps,
Pr[A succeeds] ≥ ε. In this definition, we include in τ the execution time Time(ξ) of ξ,
stipulating by convention that executing each ectoinstruction takes one clock cycle and
that all transmissions (ectoinstruction addresses, ectoinstructions, signatures and IO data)
are instantaneous.

6.2 Security Proof for Protocol 1

We state:

Theorem 2. If the screening scheme µ-RSA is (qk, τ, ε)-secure against existential forgery
under a known message attack, then Protocol 1 of Section 3 is (`, n, τ, ε)-secure for n ≤ qk.

Corollary 1. If µ is a full domain hash function, then Protocol 1 is secure under the RSA
assumption in the random oracle model.

Proof. Monitoring the communications between the adversary and the XµP, we transform
a successful execution ξ into a valid forgery for µ-RSA thereby simulating a forger F . We
first notice that the n signed messages

{(IDj, i(j), INSi(j)) 1 ≤ j ≤ `, 1 ≤ i(j) ≤ Size(Pj)}
harvested by A in P1, . . . , P` are all different, thereby complying with the resources of
F . We wait until the completion of the attack and observe our transcript, proceeding as
follows. When engaging the protocol with the XµP, A had to send some value for ID, which
is recorded. The situation is twofold:

1. either ID corresponds to one of the ectoprograms P1, . . . , P`, say Pm. According to the
conditions for the attack to succeed, we know that there must exist a differentiating
ectoinstruction INS6= in ξ with respect to [Pm]. Let us denote by i 6= the value of i
queried by the XµP right before INS 6= was sent. INS6= splits ξ into (ξ−, ξ+) as defined in
the previous section;

2. or it corresponds to none of them but ID is nevertheless accepted by the XµP (we
implicitly assume that the set of IDs accepted by a given XµP is publicly known). In
this case, we define INS 6= as the first ectoinstruction of ξ and set i6= = 1, ξ− = ∅ and
ξ+ = ξ.

In either case, the following fact holds:
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Lemma 1. CI never signed (ID, i 6=, INS6=).

Besides, following the attack model, ξ+ must contain a critical xenoinstruction INSc which
categorizes ξ+ as a key-extractor or a key-modifier. We know that INSc gets executed by
the XµP with probability at least ε.

Assume that INSc is executed by the XµP. We rewind time to the latest moment when the
XµP resets ν ← 1 before INS 6= is sent by A and concentrate on the partial execution ξ0 of
ξ starting from reset time until INSc is executed. Hence

ξ0 = (INS1, . . . , INSp−1, INSp = INS 6=, INSp+1, . . . , INSu = INSc) ,

where p ≥ 1 and u ≥ p. For r = 1, . . . , u, we denote by addr the value of i queried by the
XµP before the ectoinstruction INSr was transmitted. Now the following fact is a direct
consequence of the definition of a critical ectoinstruction:

Lemma 2. For each and every ectoinstruction INSr, r = 1, . . . , u− 1, either INSr 6∈ S or
INSr ∈ S and Alert(INSr, Φ) = False.

Thus, to construct ξ0, the adversary is left free to use arbitrary combinations of data-in-
distinguishable xjvml ectoinstructions or security-critical instructions which handle non-
private variables. Provided that u < e, the first u−1 ectoinstructions will be executed with-
out triggering a CheckOut. Indeed, having INSr ∈ S and simultaneously Alert(INSr, Φ) =
True would mean that one of the variables of INSr is private, thereby proving a data-flow
dependence between this variable and one of the state variables in k because we assumed
that only these are tagged as private in NVM. Then INSr would be critical by virtue of our
definition and we would get r = u by uniqueness of INSc.

On the other hand, INSc will trigger a signature verification over all the ectoinstructions
(INS1, . . . , INSu) of ξ0. The fact that the XµP accepts executing INSc means that A had to
provide a σ satisfying

σe =
u∏

r=1

µ(ID, addr, INSr) mod N .

Now the right term contains µ(ID, addp, INSp) = µ(ID, i 6=, INS 6=) and from Lemma 1, we
know that µ(ID, i 6=, INS 6=)d mod N is not contained in any of P1, . . . , P`. Consequently, the
set of messages {(ID, addr, INSr)}1≤r≤u and σ constitutes a valid forgery for µ-RSA. When
u ≥ e, a CheckOut is performed after INSe−1 is received by the XµP. In this case, we
must have p ≤ e − 1 for otherwise a CheckOut would have taken place (thereby resetting
ν ← 1) before INS6= is sent, which contradicts the definition of ξ0. Hence, the XµP continues
execution only if A provides a σ such that

σe =
e−1∏
r=1

µ(ID, addr, INSr) mod N ,

and again, µ(ID, i 6=, INS6=) appears in the right term. A valid forgery for µ-RSA is then
given by the set of messages {(ID, addr, INSr)}1≤r≤e−1 and σ. Collecting the forgery can
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actually be done on the fly while the attack is carried out, thus requiring less than τ steps
since Time(ξ) ≤ τ .

Finally, when µ = FDH, outputting a valid forgery is equivalent to extracting e-th roots
modulo N as shown in Appendix A. Then Corollary 1 is proved by invoking Theorem 1. ut

6.3 Security Proof for Protocol 2

We now move on to the (more efficient) Protocol 2 defined in Section 5. The (µ,H)-RSA
screening scheme is defined as in Section 5 with padding function (x, y, z) 7→ µ(x, y, H(z)).
We slightly redefine (`, n, τ, ε)-security as resistance against adversaries that comply with
the attack model of Section 3 and have access to at most ` authenticated ectoprograms
totalling at most n ectocode sections. We state:

Theorem 3. If the screening scheme (µ,H)-RSA is (qk, τ, ε)-secure against existential
forgery under a known message attack, then Protocol 2 is (`, n, τ, ε)-secure for n ≤ qk.

Proof. We adapt the proof of Theorem 2 by considering ectocode sections instead of ectoin-
structions. First, we extend the definition of (static) ectocode sections to free executions,
as follows: given a sequence of ectoinstructions ξ, we partition ξ into intervals of maximal
length ending by an ectoinstruction of S. The ectocode sections of ξ are identified as these
intervals. We further define the differentiating section S6= of ξ with respect to [P ] when
IDξ = IDP and ξ 6v [P ] as the ectocode section of ξ that contains INS 6=. When IDξ 6= IDP ,
S6= is set to the first ectocode section of ξ. The split (ξ−, ξ+) is redefined in a straightforward
manner.

Here again, when Protocol 2 starts, the adversary A has to send some value for ID. If ID
corresponds to Pm for 1 ≤ m ≤ `, the differentiating section S6= in ξ splits ξ into (ξ−, ξ+).
Then i6= denotes the value of i queried by the XµP right before the ectocode section S6= is
transmitted. If ID corresponds to none of P1, . . . , P` then S 6= is the first section of ξ and we
set i6= = 1, ξ− = ∅ and ξ+ = ξ. Again:

Lemma 3. CI never signed (ID, i 6=, S6=).

Moreover, ξ+ must contain a critical xenoinstruction INSc characterizing ξ+ as a key-
extractor or a key-modifier. We define the critical section Sc of ξ+ as the section containing
INSc. By the definition of ectocode sections, Sc ends with INSc since INSc ∈ S. Assuming
that INSc is executed by the XµP, we rewind time to the latest moment where the XµP
resets ν ← 1 before S6= is sent by A and focus on the partial execution ξ0 of ξ starting from
reset time until INSc is executed. Hence

ξ0 = (S1, . . . , Sp−1, Sp = S6=, Sp+1, . . . , Su = Sc) ,

where again p ≥ 1 and u ≥ p. We denote by addr the value of i sent by the XµP to A
before the section Sr is transmitted. We state:

Lemma 4. For each and every ectocode section Sr, r = 1, . . . , u− 1, denoting by INSr the
last ectoinstruction of Sr, either INSr 6∈ S or INSr ∈ S and Alert(INSr, Φ) = False.
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The first min(e− 1, u)− 1 ectocode sections will be executed without triggering a Check-
Out because having INSr ∈ S and Alert(INSr, Φ) = True for r ≤ min(e − 1, u) leads to
INSr = INSu, reductio ad absurdum. But INSmin(e−1,u) must trigger a CheckOut of sections
{S1, . . . , Smin(e−1,u)} of ξ0. Having the XµP executing INSmin(e−1,u) requires that A provided
σ with

σe =

min(e−1,u)∏
r=1

µ(ID, addr, H(Sr)) mod N .

The right term therefore contains µ(ID, addp, H(Sp)) = µ(ID, i 6=, H(S6=)) and by virtue of
Lemma 3, the set of messages {(ID, addr, Sr)}1≤r≤u and σ constitute a valid forgery for
(µ,H)-RSA. ut
When µ(a, b, c) = h(a‖b‖H(c)) and h is seen as a random oracle, a security result similar
to Corollary 1 can be obtained for Protocol 2. However, a bad choice for H could allow
A to easily find collisions in µ via collisions over H. Nevertheless, unforgeability can be
formally proved under the assumption that H is collision-intractable. We refer the reader
to Theorem 6 given in Appendix B. Associating Theorems 3 and 6, we conclude:

Corollary 2. Assume µ(a, b, c) = h(a‖b‖H(c)) where h is a full-domain hash function
seen as a random oracle. Then Protocol 2 is secure under the RSA assumption and the
collision-intractability of H.

6.4 Further Discussions on the Security Model

Key-dependent variables. The notions of key-extraction or key modification may seem
somewhat too strong; according to the XµP’s internal security policy, a ← k ⊕ k is con-
sidered as a private variable if k is private. An adversary successful in exporting a from
the XµP without triggering a CheckOut is then considered as a key extractor even though
no real information about the key k has leaked. Similarly, illegally overwriting an NVM
private variable with a copy of itself (via putstatic) makes the ectoprogram a key modi-
fier although its execution does not really affect the confidentiality of k. We see no simple
means by which our security model would treat these specific cases apart, nor why one
would need to. As mentioned earlier, the security policy is preservative over the privacy
bits of program variables and it is unclear whether weakening this property is feasible, or
even desirable.

What about active attacks? Although RSA-based screening schemes may feature
strong unforgeability under chosen-message attacks (see Appendix A.2 for such a proof
for FDH-RSA), it is easy to see that our protocols cannot resist chosen-message attackers
whatever the security level of the underlying screening scheme happens to be. Indeed,
assuming that the adversary is allowed to query the issuer CI with messages of her choosing,
a trivial attack consists in obtaining the signature:

σ = µ(ID, 1, H(getstatic 17, store IO, halt))d mod N
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where ID is known to be accepted by the XµP and nvm[17] is known to contain a fraction of
the cryptographic key k25. Similarly, the attacker may query the signature of some trivial
key-modifying sequence. Obviously, nothing can be done to resist chosen-message attacks.

Probabilistic Paddings. When strong security against active attacks is desired, RSA-
based signature and screening schemes rely upon probabilistic padding functions such as
PSS or PSS-R [7, 5]. These schemes may then feature an optimally tight security reduction
in the random oracle model (ε′ ≈ ε) and are therefore comparably more secure against
active attacks (ε′ ≈ ε/qc was proven nearly optimal for FDH for instance), while keeping
optimal security ε′ = ε against passive attacks. Given that chosen-message attacks cannot
be avoided in our setting, we see no evident advantage in using a probabilistic padding for
µ.

7 Variants of Our Protocols

Our protocols 1 and 2 are general enough to allow many variations in different directions.
What we describe in this section is a couple of variants. The first one is a variation of
Protocol 1 which lowers the verification cost by relying on Rabin’s signature scheme instead
of RSA. The other is a variant of Protocol 2 and reduces the number of verifications by
memorizing correct sections in cache memory.

7.1 A Variant with Fast Signature Verification

The Principle. As seen in the previous sections, the XµP’s CheckOut procedure is basi-
cally a modular exponentiation to the power e, and a comparison. Because RSA-screening
imposes that at most e − 1 instructions (resp. sections) be repeated, our protocols count
the number of instructions (resp. sections). However, to be applicable to real life programs
that intensively use loops, the public exponent value e must be set to a large enough prime
number. A typical value for e is 216 + 1, meaning that a signature verification is roughly
equivalent to 17 modular multiplications.

Alleviating the restriction on signature screening, we show that e can be set to 2. Not only
is the variant faster (signature verification reduces to a single modular squaring), but also
the security level is improved: RSA-screening is based on the RSA (or root extraction)
problem, while Rabin-screening relies on integer factoring.

The basic principle of the variant consists in keeping a counter u that counts the number
of backward jumps executed since the last CheckOut occurred. Updating u can be easily
hardwired as it amounts to a simple address comparison between the input and output
values of i. Wlog, we may assume that the value of i and u are automatically updated
during the execution of instructions.

25 The halt is even superfluous as the attacker can power off the device right after the store gets executed.
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Concrete protocol with e = 2. The reason for defining u is explained in the following
protocol, which follows from Protocol 1. Here, the program is not stored in the XT as a
collection ({INSi, σi}), but rather as ({INSi, {σi,u}0≤u≤U}) for some parameter U . We recall
that the execution of INSi also updates u.

0. The XµP receives and checks ID and initializes i ← 1
1. The XµP

(a) sets u ← 0
(b) sets ν ← 1

2. The XT sets σ ← 1 and u′ ← 0
3. The XµP queries from the XT ectoinstruction number i
4. The XT

(a) updates σ ← σ × σi,u′ mod N
(b) sends INSi to the XµP

5. The XµP updates ν ← ν × µ(ID, i, INSi, u) mod N
6. The XT updates u′ with the knowledge of INSi

7. if u = U or (INSi ∈ S and Alert(INSi, Φ)) then the XµP
(a) (CheckOut)

queries from the XT the current value of σ
halts execution if ν 6= σ2 mod N (cheating XT)

(b) executes INSi

(c) goto step 1
8. The XµP

(a) executes INSi

(c) goto step 3.

Fig. 24. Rabin-based Variant: Protocol 1.1

The advantages and drawbacks of this protocol are quite clear: on one hand, the program
material Σ(P ) is multiplied in size by a factor nearly U while on the other hand, the
CheckOut stage only requires a single modular multiplication, thereby leading to a 95%
speed-up when compared to Protocol 1 with e = 216 + 1. As usual, the XT is supposed to
have virtually unlimited storage resources.

The security of this variant follows from combining the security proof of Protocol 1 with
the following theorem:

Theorem 4. Let N be an RSA modulus. If a forger F can produce a list of t messages
{m1, . . . , mt} and σ < N such that σ2 =

∏t
i=1 h(mi) mod N while the Rabin signature of

at least one of m1, . . . , mt was not given to F , then F can be used to efficiently factor N .

The proof of Theorem 4 is detailed in Appendix C.
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7.2 A Variant with a Caching Mechanism

Independently of minimizing the cost of a signature verification, one could also want to
reduce the number of signature verifications. Authenticating code sections in Protocol 2
allowed to reduce the number of modifications applied to the verification accumulator
(i.e. the register ν). Here, we come up with a new improvement consisting in remembering
the signature of correct sections.

Informally, we use a cache of sections that were already recognized as valid by the XµP in
the past, and consequently for which future verifications are useless. Better than storing
the whole contents of code sections, we cache hash values of these sections under a collision-
resistant hash function of small output size H160. The protocol also uses a cache memory
cachethat should be of type LIFO (Last In - First Out). We make use of a function
AddInCache allowing to append a data in cache memory26. The size Υof the cache memory
has a direct impact on the efficiency of this variant.

The protocol is then as depicted on Figure 25.
The main advantage of this protocol is that if the cache table is large enough, most of sec-
tions are verified only once, thereby speeding up the execution of very repetitive programs.
Finally, we mention that the table cache could also be stored in nvm in order to memorize
the hash values of already verified sections. In this respect, this table could also be ini-
tialized during the personalization step. This in turn results in that critical (i.e. overused)
functions will not trigger a signature verification when executed.

8 MAC-Based Ectoprogram Authentication

Interestingly, public-key cryptography is not mandatory for implementing the concept de-
scribed in this paper. This section describes a simpler variant based on symmetric cryptog-
raphy. In this section µK(x) denotes a MAC function where K is the key and x the MAC-ed
data. H1 and H2 denote hash functions (e.g. SHA-1) with respective compression functions
H1 and H2 and initialization vectors IV1 and IV2. Finally, ` the number of ectoinstructions
in the ectoprogram P . We assume that ID = H1(P ). The protocol is shown at Figure 26.
In steps -2 and -1 the XµP does two operations:

1. Hash the entire program presented by the XT to ascertain that this program indeed
hashes into the reference digest ID, burned into the device at production time.

2. MAC each and every instruction under an ephemeral key K and send the resulting
MACs to the XT for storage.

8.1 Security Analysis

Following the security model defined in Section 3, the security of Protocol 3 can be formally
assessed. Before assessing the security of our protocol, we define a weak form of forgery for
MAC functions.
26 AddInCache can be implemented in several ways (e.g. with a cycling buffer).



464 Benôıt Chevallier-Mames et alii.

0. The XµP receives and checks ID and initializes i ← 1
1. The XµP

(a) sets t ← 1
(b) sets ν ← 1

2. The XT sets σ ← 1
3. The XµP

(a) sets h ← IV
(b) queries the ectocode section starting at address i

4. The XT
(a) updates σ ← σ × σi mod N
(b) sets j ← 1

5. The XT
(a) sends INSi

j to the XµP
(b) increments j ← j + 1

6. The XµP
(a) receives INSi

j,
(b) updates h ← F (INSi

j, h)
7. if INSi

j /∈ S, then the XµP
(a) executes INSi

j

(b) increments j ← j + 1
(c) goto step 5.

8. The XµP sets ν ← ν × µ(ID, i, h) mod N
9. if ¬Alert(INSi

j, Φ)) then the XµP increments t ← t + 1
10. if t = e or (Alert(INSi

j, Φ)) then the XµP
(a) computes κ ← H160(ν)
(b) if κ /∈ cache, CheckOut
(c) executes INSi

j

(d) AddInCache(κ)
(e) goto step 1

11. The XµP
(a) executes INSi

j

(b) goto step 3

Fig. 25. Variant with Cache Mechanism: Protocol 2.2
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Fig. 26. MAC-Based (Ectoinstruction Level) Protocol: Protocol 3
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Weak Forgeries for Symmetric Signatures. Classical notions of security for sym-
metric signatures are given in Appendix D. Informally, a weak forgery for a given MAC
function µK with respect to a given hash function H is a list M = (m1, . . . , mt) of messages
and a value h such that

H (µK(m1), . . . , µK(mt)) = h

whereas the signature µK(mi) of mi was never given to the forger for at least one value of
i ∈ [1, t]. This security notion comes with different flavors, depending on the attack model,
i.e. whether the forger is allowed to make adaptive signature queries or not. In the sequel,
we only consider the case of passive attacks: the forger F is given a list of message-signature
pairs M0 and attempts to produce (M, h) as above such that M (M0.

It is quite easy to show that a weak forgery is equivalent to a forgery in the random oracle
model that is, when H is seen as a random oracle. The proof of equivalence is omitted here
and left as an exercise for the reader.

More formally, we define a (qk, τ, ε)-weak forger for µK as a probabilistic polynomial-time
Turing machine F such that F returns a weak forgery (M, h) as above with some probability
ε after at most τ elementary steps, given as an input a list M0 of qk message-signature pairs.
The MAC function µK is said to be (qk, τ, ε)-secure against weak forgeries with respect to
H when there is no (qk, τ, ε)-weak forger for µK .

Security Proof for Protocol 3. We recall the attack model of Section 6.3, saying
that Protocol 3 is (`, n, τ, ε)-secure if any adversary A having access to at most ` authentic
programs totalling at most n ectoinstructions and running in at most τ steps succeeds with
probability at most ε. Here yet again, A succeeds when the first ectoinstruction belonging
to S of the given code sequence ξ is accepted and executed by the XµP. We claim:

Theorem 5. If µK is (qk, τ, ε)-secure against weak forgeries with respect to H2, then Pro-
tocol 3 is (`, n, τ, ε)-secure for n ≤ qk under the collision-freeness of H1.

Proof. We transform a successful free execution ξ created by an (`, n, τ, ε)-attacker A into
a weak forgery for µK with respect to H2 or a collision for H1. Before starting, we note that
A is given (after the protocol has executed the preliminary steps) no more than n different
signed messages {(i(j), INSi(j)) 1 ≤ j ≤ `, 1 ≤ i(j) ≤ Size(Pj)}, thereby complying with
the resources of a known-message weak forger for µK .

As in the proofs of previous sections, we launch A and monitor all communications between
A and the XµP. Now, when Protocol 3 starts, the adversary A sends some program P that
hashes into some value ID = H1(P ). ID necessarily corresponds to H1(Pm) for some 1 ≤
m ≤ ` otherwise the attack cannot be successful. The attacker then sends a free execution
ξ to the XµP. Again, there must be a differentiating ectoinstruction INS6= attesting that
ξ 6v [Pm]. Then i6= denotes the value of i queried by the XµP right before the ectoinstruction
INS 6= is sent by A.
We define by E the event according to which the XµP did not send µK(i6=, INS 6=) at step
-1, i.e. the instruction INS6= was not given to the XµP during the preliminary stage. If E is
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false, then the program P contains the instruction INS 6= at address i6= leading to

H1(P ) = H1(. . . , INS6=, . . . ) = ID = H1(Pm) = H1(. . . , INS, . . . ) ,

for some instruction INS 6= INS 6= of Pm. We then stop and output (P, Pm) as a collision
for H1. If E is true, we call INS′ the i6=-th instruction MAC-ed by the XµP at step -1 and
we proceed as follows. We know by definition of the security model that ξ must contain a
critical ectoinstruction INSc ∈ S sent to the XµP after INS 6=. When the attack succeeds, INSc

is executed by the XµP after a CheckOut verification. At the moment of this verification,
the transcript contains the partial execution ξ′ v ξ (all instructions executed until that
point in time). Now when the verification occurs, the XµP compares its digest

ν = H2

(
σ1, . . . , σi6=−1, µK(i6=, INS 6=), . . . , µK(ic, INSc)

)

with the value σ sent by A. Here, the first i 6=−1 instructions are the common instructions
of Pm and ξ. Since the event E is true, the MAC of (i6=, INS6=) was not given to A, so that
(M,σ) with

M =
{
σ1, . . . , σi6=−1, µK(i6=, INS 6=), . . . , µK(ic, INSc)

}

constitutes a valid weak forgery for µK with respect to H2. ut

The very same technique is applicable to the authentication of ectocode sections. In this
case, sections are MAC-ed as

σ = µK(i,H3(Si)) ,

where, as before, H3 is a hash function that processes one by one the ectoinstructions of
Si. The extension of the security proof to this variant is straightforward, and we get the
same security level under the additional assumption that H3 is collision-free.

8.2 Hashing Tree Variant

Even if the exchange of digests can be limited to one digest per ectocode section, before
execution starts, the entire programme must be pipelined into the XµP before execution
starts. This is clumsy and time consuming. Steps -2 and -1 can be eliminated by resorting
to tree hashing. Tree hashing is a well known cryptographic technique allowing to ascertain
that a word belongs to a message which digest value is ID without re-hashing the entire
message.

The technique is illustrated in Appendix C where one can see that:

ID = H(P ) = h1,2,3,4,5,6,7,8 = H(H(h1,2, (H(INS3), h4)), h5,6,7,8)

For the sake of clarity we illustrate the idea with individual instructions rather than with
ectocode sections and denote by ∆i the partial hash values required to reconstruct ID given
INSi (in our example ∆3 = {h4, h1,2, h5,6,7,8}).
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0. The XµP initializes i ← 1
1. The XµP queries from the XT ectoinstruction number i
2. The XT sends the data ∆i and INSi to the XµP
3. The XµP

(a) checks that HashTree(INSi, ∆i) = ID
(b) executes INSi

(c) goto step 1

Fig. 27. Hash-Tree Protocol: Protocol 4

9 The if skip and restart Ectoinstructions

Many cryptographic operations require secret-data-dependent27 ifs. RSA square-&-multiply
is one such typical example where different secret bits trigger different INSi requests.

While several side-channel protection techniques [12] allow an easy XµP implementation of
such routines, it may appear handy to have a specific instruction that allows the program-
mer to disable the execution of a sequence of ectoinstructions but still accumulate them in
ν ← ν × µ(ID, i, INSi) mod N .

We introduce two ectoinstructions called if skip and restart which work as follows.
On executing if skip, the XµP checks the topmost stack element st[s]. If st[s] 6= 0 the
ectoinstruction has no particular effect28. If st[s] = 0 however, the device suspends the
execution of all ectoinstructions following the if skip while maintaining their modular
accumulation in ν until the ectoinstruction restart is encountered. Regular execution
mode is then recovered.

It is easy to see that if skip and restart allow to program data-dependant routines
without explicit branches: instead of executing separate functions and relying on control
switches, the programmer can ordain the ectoprogram to inhibit a fraction of itself depend-
ing on input values (without altering the authentication process though).

From a computational standpoint, control switches and ectocode inhibition have compa-
rable effects and are equivalently powerful. For the programmer, changing from using one
to the other is a mere question of programming habits.

What we want to ascertain, however, is the fact that data-dependent ectocode inhibition
is really data-indistinguishable; in other words, we require that no information about the
(private) topmost stack element should leak out of the device. To illustrate different leakage
hazards, we consider the following ectoprogram where ram[a] and ram[b] are respectively
private and non-private variables:

27 (secret-data)-dependent.
28 Other than i ← (i + 1), st[s] ← undef and s ← (s− 1).
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1 : load a
2 : if skip

3 : load b
4 : inc

5 : store b
6 : push0

7 : restart
...

As is obvious, ram[b] is incremented when ram[a] = 0 and is left unchanged otherwise.
Since ram[b] is non-private, its value before the if skip execution can be retrieved (see
Section 3). Therefore, it suffices to consult the value of ram[b] just after the restart is
executed29 to probe whether ram[a] = 0 or not.

Written variables. This observation tells us to force to one the privacy bit of each
and every variable written by the if skip sequence i.e. by ectoinstructions located after
if skip and before restart. Indeed, one observable effect of executing a sequence of
ectoinstructions is the modifications induced by these in memory variables. We therefore
twitch our if skip mechanism so that ectoinstructions that write variables (store x and
putstatic x) appearing in the if skip sequence (be it executed or not) set ϕ(ram[x]) or
ϕ(nvm[x]) to one.

Security-criticality. Another danger stems from security-criticality: an attacker may
send to the XµP, in the middle of an if skip sequence, a xenocode such as

i : push0

i + 1 : store IO

and inspect what comes-out at the XµP’s IO port. The value zero will appear on the data
port if and only if the sequence is executed. Similarly, and for the same confidentiality
reasons, ectoinstructions that might trigger a CheckOut must be forbidden in an if skip

sequence. We must therefore force the XµP to abort the protocol (returning a ”cheating
terminal” error) if a security-critical ectoinstruction is encountered in an if skip sequence.

Jumps and branches. In the same spirit, an attacker may insert a jump into an if skip

sequence, for instance with the xenoinstructions

i : push0

i + 1 : goto 1

Executing the jump would make the XµP query the contents of address 1, thus revealing
execution. The same holds for if phi. Therefore, branches and jumps must be excluded

29 By sending {load b, store IO} to the XµP.
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from the set of ectoinstructions that the XµP is authorized to legitimately encounter while
treating an if skip sequence.

Stack-based attacks. Another observable witness of executions is their effect on the
stack level. In our toy example, the if skip sequence ends with a push0 ectoinstruction.
As a result, the value zero is pushed onto the stack (and s incremented by one) when
the sequence gets executed, which is not the case when the sequence is not executed. An
attacker willing to probe if ram[a] = 0 can simply send to the XµP, right after restart, a
xenocode that pops off all the stack elements until the stack is emptied, in which case an
interrupt is invoked. A simple count will reveal whether the sequence was executed or not.

At a first glance, the impact of this observation would be twofold. First, the if skip se-
quence designed by the programmer seems to require that the stack level be left unchanged;
we call a sequence of ectoinstructions featuring this property stack-level invariant. Second,
no stack-level variant sequence should be created in an on-the-fly manner by an attacker
while an if skip sequence is being treated. Indeed, adding the xenoinstruction push0 right
before sending restart would render the sequence stack-level variant, thereby leading to
a security breach.

Instead of guarantying that if skip sequences are stack-level invariant, we choose, in order
to thwart stack-related attacks, to introduce a conceptually simpler mechanism that we
describe later.

Interrupt-based attacks. Forcing a CheckOut or writing on the IO port are not the
only ways in which one can breach the confidentiality of an if skip’s input. One may also
provoke dummy interrupts by injecting into the if skip sequence interrupt-generating
xenoinstructions. For instance, the xenocode

i : push0

i + 1 : push0

i + 2 : div

throws in a division-by-zero interrupt when executed. From the above, we know that we
already excluded div given its security-criticality; nevertheless, interrupts can also be gen-
erated by non-security-critical operators such as xor or add. These instructions, indeed,
are fed with the stack’s contents and may well throw an interrupt when the stack is empty
or contains a single element. The attacker may then modify the if skip sequence and send
a series of xors:

i : xor

i + 1 : xor
...

It is easy to see that, whatever the ectocode executed by the XµP is, an attacker can retrieve
the stack level s at any point in time throughout the protocol. In the present attack, the
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attacker recovers the value of s before the if skip is executed, rewinds (reruns) the device,
sends a sequence of s + 1 xors, and waits for the interrupt to occur. The interrupt shows
up when the XµP requests the interrupt address (instead of s + i + 1) from the XT. In our
xjvml language, as defined so far, the ’empty stack’ interrupt is the only one that can be
generated by non-critical ectoinstructions.

Stack-indistinguishability. What we actually require from the if skip and restart

ectoinstructions is the fact that the ectocode sequence that they define, when inhibited, ef-
fectively handles the operand stack the same way they do when executed. In other words,
when the XµP enters an if skip sequence, ectoinstructions will manipulate the stack
regardless their being executed or not. Thus, provoking an ’empty stack’ interrupt is wa-
tertight, because it would occur whatever the mode (skip or execution) the XµP is actually
works in. Additionally, such a mechanism completely alleviates the constraint of having
stack-level invariant if skip sequences as discussed above.

Putting it all together. Taking all the above into account, the simplest way of
implementing the skip mode consists in

– Aborting the protocol (cheating terminal) when a security-critical, branch or jump
ectoinstruction is encountered after an if skip and before a restart.

– Inhibiting memory-writing: a store x ectoinstruction behaves the same way as in exe-
cution mode except that ram[x] is left unchanged and its privacy bit ϕ(ram[x]) reset
to one,

– Letting arithmetical, logical and transfer operators (other than store x) act on the
operand stack exactly the same way they do in execution mode, except that the privacy
bit of all variables pushed onto the stack is automatically set to one.

Finally, note that we do not catalog the ectoinstructions if skip and restart as security-
critical.

10 Indirect Addressing: loadi and storei Ectoinstructions

The xjvml language we have been investigating so far does not allow indirect addressing.
Namely, one cannot transfer from memory to the operand stack (or the other way around)
the contents of a variable whose address is itself a variable. The purpose of this section
is to show how the ectoinstruction set and security policy of the XµP can be extended to
allow indirect addressing.

Description. We denote by loadi x and stori x the indirect versions of ectoinstructions
load x and store x, whose dynamic semantics are defined in Figure 28.
These ectoinstructions are properly executed only when ram[x] contains data compatible
with the format of a memory address (”falling off” ram is not allowed). Therefore, the value
of ram[x] is transparently converted into a valid ram address right before the transfer
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INSi effect on i effect on ram effect on st effect on s

loadi x i ← (i + 1) none st[s + 1] ← ram[ram[x]] s ← (s + 1)

stori x i ← (i + 1) ram[ram[x]] ← st[s] st[s] ← undef s ← (s− 1)

Fig. 28. Dynamic Semantics of Indirect Addressing Transfers loadi and storei

becomes effective: for instance, if |ram| denotes the size of the XµP’s volatile memory
space, the value of ram[x] could be reduced modulo |ram| before transferring data to or
from this address.

Related security policy. Obviously, care must be taken when the contents handled
by a loadi or storei is private. Similarly, privacy must be conserved also when the
address variable ram[x] itself is private. We devise the XµP-internal security policy given
in Figure 29.

INSi effect on Φ

loadi x ϕ(st[s + 1]) ← ϕ(ram[x]) ∨ ϕ(ram[ram[x]])
stori x ϕ(ram[ram[x]]) ← ϕ(st[s]) ∨ ϕ(ram[x])

Fig. 29. Dynamic Semantics of loadi and storei Over Φ

What the security policy we have chosen means is that, for both ectoinstructions, the
privacy bit updated during execution (in ram for stori x, on the stack for loadi x)
depends not only on the privacy of the transferred data but also on the privacy of the
address hosting the data. An illustrative example of this paradigm is the following: Assume
the ectocode works with a non-private S-box S and that at some point the value S[k] is
required, where k is (directly related to) a private key. As S is publicly known, S[k] provides
information about k meaning that S[k] itself has to be treated as a secret data precisely
because of the secrecy of the indirection k. For the same reason, pushing onto the stack an
element of a private table T located at a non-private index j in T , the stacked value T [j]
must be considered private as it obviously reveals information about T .

Security criticality. As loadi and storei operate only on the device’s volatile mem-
ory, they are not considered security-critical. This consideration holds under the hypoth-
esis that memory locations dedicated to specific processing operations (RNG, IO, stack,
. . . ) cannot be accessed via these instructions, which are consequently limited to general-
purpose memory cells.

11 Reading ROM Tables

Reading constant data tables from ROM is a very frequent operation. While the treatment
of this operation is in principle similar to the execution of any other ectoinstruction, here
particular care must be taken to allow the XµP to authenticate the contents of ROM tables
as a proper part of the ectoprogram. We propose two mechanisms for doing so, depending
on the way a given ROM table is accessed.
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11.1 Accessing Privately Located Entries

We assume that the XµP’s ectocode works with an array T of absolute constants so that
during computation, T is accessed at a variable location j. In this respect, we rely on the
indirect addressing mode provided by loadi x as follows. The ectocode writes successively
at consecutive ram addresses the constants T [0], T [1], . . . , T [n] using regular xjvml ec-
toinstructions. Keeping the address addT of T [0] in memory, T [j] is accessed given any j
using loadi x where ram[x] is previously initialized to addT + j. This simple mechanism
is effective whatever the privacy status of j is; its only limitation resides in the size of the
XµP’s volatile memory, i.e. one cannot have n > |ram|.

11.2 Accessing Non-Private Locations

We now turn to the description of a second mechanism by which the ectoprogram can
access the table T without having to store its entire contents in ram. Access to T will only
be possible at non-private, immediate locations.

We extend our ectoinstruction-set to include a specific table-reading operator: the ectoin-
struction push addT, j, where addT is the address of T located in ROM (i.e. in the XT)
and j a constant. The ectoinstruction is implemented as follows (assuming authentication
at the ectoinstruction level):

– The XµP sends i to the XT and gets INSi = push addT,j in response;

– The XµP requests the ROM contents corresponding to (addT , j);

– The XT replies with T [j] and updates

σ ← σ × σ〈push addT ,j〉 mod N or σ ← H(σ, σ〈push addT ,j〉) ,

while the XµP updates

ν ← ν × µ(ID, i, 〈push addT , j〉, T [j]) mod N

or

ν ← H(ν, µK(ID, i, 〈push addT , j〉, T [j]) ,

depending on the chosen execution protocol.

Thus, the contents of T are authenticated by the same technique as for ectoinstructions.
The push addT , j operation never requires to trigger a CheckOut on execution since j
is inherently non-private. Hence we do not add this instruction to S. Note that when
Protocol 3 is implemented, the pre-execution phase has to access T [j] while MAC-ing the
ectoinstruction push addT , j.
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12 A Software Example: Ectoprogramming RC4

12.1 Extra Ectoinstructions

Before giving the ectocode of a very-basic implementation of the RC4 for the XµP, we
introduce a handful of new ectoinstructions that are equivalent in term of security to other
ectoinstructions in our xjvml language. For each of these new ectoinstructions, we give
an ectoinstruction which effect on Φ is equivalent (none of these ectoinstructions affects
ram).

INSi effect on i effect on st effect on s ϕ equivalence

push v i ← (i + 1) st[s + 1] ← v s ← (s + 1) push0

add i ← (i + 1) st[s− 1] ← st[s− 1] + st[s] s ← (s− 1) xor

add256 i ← (i + 1) st[s− 1] ← st[s− 1] + st[s] mod 256 s ← (s− 1) xor

mod i ← (i + 1) st[s− 1] ← st[s] mod st[s− 1] s ← (s− 1) mul

Fig. 30. Some More Ectoinstructions.

We remind that RC4 is a stream cipher devised by RSA Data Security: its specifications
can be found in [25].

12.2 Ectoprogram and Brief Analysis

The ectoprogram works as follows: parts 1, 2 and 3 implement the key schedule whilst
the fourth and last part is dedicated to the encryption function itself. First, LoopA is very
simple: it uses two counters, stored in ram[259] and ram[260]: the first is a value running
down from 256 to 0, while the second runs up from 0 to 256. ram[259] is in fact the loop
index. ram[260] is the value stored in a buffer called rc4state, used for key schedule.
The value is stored from ram[0] to ram[255].

Once the initialization step is done, the ectoprogram uses rc4key (which is supposed to be
stored from nvm[0] to nvm[8], with nvm[0] = 8 corresponding to the key length). It copies
this key rc4key into ram, from ram[300] to ram[307]. Finally, it initializes a certain
number of counters in ram: x = ram[257], y = ram[258], i1 = ram[260], i2 = ram[261],
i = ram[263] are all reset to zero; ram[259] is initialized to 256.

LoopB is the key schedule’s second step:

rc4key[i1] is stored in ram[262]. Then, rc4state[i] is loaded, and

rc4state[i] + rc4key [i1] + i2 mod 256

is computed and stored in ram[261]. Follows the exchange of rc4state[i] and rc4state[i2],
through a temporary memory variable ram[262]. i1 is incremented and taken modulo the
key length stored in ram[264]. Finally, i is incremented and the loop counter (in ram[259])
is decremented. The loop is re-done if this counter is nonzero.

The last part is the stream cipher itself: the ectoprogram loads (from the IO) the length
of the plaintext to encrypt and stores it in ram[259] then it begins a loop as long as the
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Fig. 31. Software Example: Ectoprogramming an RC4
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plaintext to encrypt: It loads x (in ram[257]) and increments it modulo 256. It updates
y (in ram[258]) by adding to it rc4state[x] modulo 256, exchanges rc4state[x] and
rc4state[y], using a temporary variable ram[260], computes

rc4state[x] + rc4state[y] mod 256

and stores this quantity in t = ram[260]. Finally the ectoprogram gets from the IO the
value to encrypt: it just xors this value with rc4state[t], and sends the encrypted byte
to the IO. Finally, it decrements the loop counter, and resumes the loop if needed.

12.3 How many CheckOuts Are Needed?

It appears that the enforcement of the security policy in the above example slows-down
execution only negligibly: indeed, during execution the authors noticed that the XT was
only asked for signatures during the store IO phase.

This drove us to introduce yet another improvement in the device, namely an ectoinstruc-
tion allowing to send not only one value to the IO, but an array. In our case, this would
reduce the number of signature queries from one per byte to just one for the entire message.
This ectoinstruction is described in Figure 32.

INSi effect on i effect on ram effect on st effect on s

export i ← (i + 1) IO ← st[s− 1] st[s− 1] ← undef s ← (s− st[s]− 1)
IO ← st[s− 2] st[s− 2] ← undef

. . . . . .
IO ← st[s− st[s]] st[s− st[s]] ← undef

st[s] ← undef

Fig. 32. Store Large Results on IO.

This instruction, security-critical, would then be treated like a simple store IO, except
that the CheckOut is triggered when one (or more) of the privacy bits

ϕ(st[s]), ϕ(st[s− 1]), . . . , ϕ(st[s− st[s]])

is equal to one i.e.:

st[s]∨
i=0

ϕ(st[s− i]) = 1

13 Deployment Considerations

From a practical engineering perspective, the new architecture is likely to deeply impact the
card industry. Today, this industry’s interests (the endocode i.e. the mask’s contents) are
inherently protected against alien scrutiny by the card’s tamper-resistant features initially
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meant to protect the client’s NVM secrets. By deploying ectocode in terminals, the card
manufacturers’ role is likely to evolve and focus on personalization. The card’s intelligence
being entirely in the terminal, terminal manufacturers will gain independence and face the
usual challenges of the software industry (separation between code and hardware, ectocode
must be protected by obfuscation against reverse-engineering etc).

This section attempts to foresee a few expectable consequences of the concept introduced
in this paper.

13.1 Speed Versus Code Size

A dilemma frequently faced by smart card programmers is that of striking an effective
balance between endocode size and speed. The main cost-factor in on-board ROM is not
storage itself but the physical hardening of this ROM against external attacks. Given that
in the new architecture external (distrusted and hence cheaper) virtually unlimited ROM
can be used to securely store ectocode, ectocode can be optimized for speed. For instance,
one can cheaply unwind (inline) loops or implement algorithms using pre-computed space-
consuming look-up tables instead of performing on-line calculations etc.

13.2 Code Patching

One of the major advantages of the XµP is the fact that a bug in an ectoprogram does not
imply the roll-out of devices in the field but a simple terminal update.

The bug patching mechanism that we propose consists in encoding in ID a backward
compatibility policy signed by the CI that either instructs the XµP to replace its old ID
by a new one and stop accepting older version ectoprograms or allow the execution of
new or the old ectocode (each at a time, i.e. no blending possible). The description of this
mechanism is straightforward and omitted here.

In any case, the race against hackers becomes much easier. In a matter of hours the old
ectocode can be rolled out whereas today, card roll-out can take months or even years.
Patching a future smart card can hence become as easy as patching a PC.

13.3 Code Secrecy

It is a common practice in the telecom Industry to use proprietary A3A8 algorithms [24].
Given that the XT contains the application’s code, our architecture assumes that the
algorithm’s specifications are public.

It should be pointed out that while the practice of keeping algorithms secret does not fall
under the standard setting within which system security is traditionally assessed30, it is
still possible to reach some level of ectocode secrecy by encrypting the XT’s ectocode under
a key (common to all XµPs). Obviously, morphologic information about the algorithm will
leak out to some extent (loop structure etc.) but important elements such as S-box contents

30 Security must stem from the key’s secrecy and not from the algorithm’s confidentiality.
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or the actual type of boolean operators used by the ectocode could remain confidential if
programmed appropriately. Note that compromising one XµP will reveal the ectocode’s
encryption key, but this is no different from the traditional smart-card setting where a
successful attack on one card suffices to reveal the endocode common to all cards. Also, it
should be stressed that compromising the ectocode encryption key does not allow to feed
the XµP with aggressive xenocode (ectocode integrity and ectocode confidentiality being
two different functions). Finally, from a practical standpoint it is expected that current
SIM cards will be progressively replaced by 3G ones on the long run. 3G uses a public
AES-based authentication algorithm (Milenage) which specifications are public [23].

However, from the user’s perspective, the authors consider that the XµP architecture of-
fers much better (yet not perfect) privacy guarantees against back-doors by exposing the
executable ectocode to public scrutiny31. We assume that the mere possibility for a user to
inspect the exchanges between his XµP and the XT offer privacy guarantees that stretch
far beyond those offered by traditional smart-cards.

13.4 Limited Series

Consider a Swede traveling to China and using his card in an ATM there. Using current
technology, a mask deployed in Sweden can contain user instructions32.

If the user card’s were an XµP, Chinese terminals would have to also contain user in-
structions in Swedish (in fact, in any possible language) or, alternatively, user instructions
should have been personalized in the device’s NVM.

13.5 Simplified Stock Management

Given that a GSM XµP and an electronic-purse XµP differ only by a few NVM bytes
(essentially ID), by opposition to smart-cards, XµPs are real commodity products (such as
capacitors, resistors or Pentium processors) which stock management is greatly simplified
and straightforward.

In essence, when a card manufacturer33 finishes the coding of a traditional off-the-shelf
mask (e.g. a SIM card), the card manufacturer buys a few millions of masked chips from
the chip manufacturer34 and constitutes a stock. This stock is an important risk factor as
the card manufacturer must forecast sales with accuracy: a market downturn, a standard
change or unrealistic marketing plans can cause very significant financial losses.

When constituting an XµP stock the risk is greatly reduced. The only important factor
is the card manufacturer’s global sales volume (per NVM size), which is much easier to
forecast than the sales volume per product.

31 We do not get here into the philosophical debate of wether or not the ectocode input into the device is indeed
the one executed by the device.

32 ASCII strings such as ”Insert card” or ”Enter PIN code” in Swedish (≡ ”Stoppa in kortet”, ”Mata in din

personliga kod”).
33 e.g. Gemplus, Oberthur, G&D or Axalto.
34 e.g. Philips, Infineon, ST Microelectronics, Atmel or Samsung.
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For MAC-based XµPs, the manufacturer can even migrate into the device’s ROM the list
{H(Pi)} corresponding to the entire company history: i.e. the hash values of all applications
coded by the manufacturer so far - 160 bits per application. At personalization time, the
manufacturer can simply burn into the device the index i that enables the execution of a
given Pi.

Alternatively, the XT can contain a digital signature on {i,H(Pi)} and the XµP can dis-
pense with the storage of H(Pi).

13.6 Reducing the Number of Cards

Given the very small NVM room needed to store an ID and a public-key, a single XµP can
very easily support several applications provided that the sum of the NVM spaces used
by these applications does not exceed the XµP’s total NVM capacity and that these NVM
spaces are properly firewalled. From the user’s perspective the XµP is tantamount to a key
ring carrying all the secrets (credentials) used by the applications that the user interacts
with but not these applications themselves.

13.7 Faster Prototyping

Note that a PC, a reader and an off–the-shelf application-independent XµP are sufficient
for prototyping applications.

14 Engineering and Implementation Options

A large gamut of trade-offs and variants is possible when implementing the architecture
described in this paper. This section describes a few such options.

14.1 Replacing RSA

Clearly, any signature scheme that admits a screening variant (i.e. a homomorphic prop-
erty) can be used in our protocols. RSA features a low (and customizable) verification
time, but replacing it by EC-based schemes for instance, could present some advantages.

14.2 Speeding the Accumulation With Fixed Padding

Speeding-up the operation ν ← ν × µ(ID, i, h) mod N is crucial for the efficiency of the
protocols proposed in this paper. This paragraph suggests a candidate µ for which the
accumulation operation is particularly fast:

µ(x) = 2κ + h(x) for 2κ < N < 2κ+1 and 2
κ
4 < h(x) < 2

κ
4
+1

Indeed, any attack against this padding function will improve the κ
3

fixed padding bound
described in [10].

The advantage of this padding function is that while the multiplication of two κ-bit integers
requires κ2 operations, multiplying a random ν by µ(x) requires only κ2/4 operations.
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14.3 Using a Smaller e

Implementers wishing to use a smaller e can use several t counters and a hash function
h. Here the idea is that instead of incrementing t, the XµP increments th(i,INSi). Whenever
any of the tj-counters reaches e−1 the XµP triggers a CheckOut. Denoting by λ the size of
h’s digests (in bits), one CheckOut per e× 2λ−1 ectoinstruction queries will be expectedly
triggered, on the average.

14.4 Smart Usage of Security Hardware Features

Most of secure tokens in use today contain hardware-level countermeasures thwarting phys-
ical attacks relying on power analysis or related techniques. As detailed in the past sections,
the XµP essentially runs in two modes, depending on the privacy bit of the current variable
being processed (unless the XµP is parallelized, it is guarantied that only one variable is
processed at a given point in time). When the current variable is non-private, an attacker
is theoretically capable of recovering its value by symbolically executing the transmitted
piece of ectocode related to this variable. Being vacuous, hardware protections shall not
necessarily be operating at that moment. On the contrary, the XµP could (selectively?)
activate these protections whenever a private variable is handled or forecasted to be used
a few cycles later.

14.5 High Speed XIO

A high-speed communication interface is paramount for servicing the extensive information
exchange between the XµP and the XT .

Let |INS| and |i| respectively denote the bitsizes required to encode the ectoinstructions
and their addresses in the XT. A typical example being |INS| = |i| = 32. We denote by
TrT(n) the time required to exchange n bits between the XµP and the XT and by ExT the
average time it takes to execute an instruction35 (latency).

Then, the XµP’s external operating frequency fext is:

fext =
1

TrT(|INS|+ |i|) + ExT
Hz

While the machine is actually run internally at:

fint =
1

ExT
Hz

One can remark that whenever the ectoinstruction is not a test (if L or if phi L) or a
goto, addresses are just incremented by one. It follows that transmission can be significantly
slashed in most cases as the sending of i becomes superfluous. This observation also allows
to parallelize the execution of INSi and the reception of INSi+1 for most ectoinstructions.

35 including the computation of ν ← ν × µ(ID, i, INSi) mod N .
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More specifically, even when INSi is a test the XT can still send to the XµP the ectoin-
struction that would be queried next if the test were negative. Should the test be positive
(miscache) the XµP can simply send a control bit to the XT who will reply with the correct
successor of INSi

36.
Neglecting the miscache bit’s cost, the frequency formula becomes:

fext =
1

(1− p)×max{TrT(|INS|), ExT}+ p×max{TrT(|INS|+ |i|), ExT} Hz

where p is the average proportion of gotos in the code.

For the sake of illustration, we evaluated the above formula for a popular standard, the
Universal Serial Bus (USB). Note that USB is unadapted to our application as this standard
was designed for good bandwidth rather than for good latency.

In USB High Speed mode transfers of 32 bits can be done at 25 Mb/s which corresponds to
780K 32-bit words per second. When servicing our basic protocol, this corresponds approx-
imately to a 32-bit XµP working at 390 KHz; when parallel execution and transmission
take place, one gets a 32-bit machine running at 780 KHz.

An 8-bit USB XµP (where transfers of 8 bits can be done at 6.7 Mb/s), would correspond
to 830K 8-bit words per second. This yields a parallel execution and transmission 8-bit
machine running at 830 KHz.

15 Further Research

The authors believe that the concept introduced in this paper raises a number of prac-
tical and theoretical questions. Amongst these is the safe externalization of Java’s entire
bytecode set, the safe co-operative development of ectocode by competing parties (i.e.
mechanisms for the secure handover of execution from ectoprogram ID1 to ectoprogram
ID2), the devising of faster ectoexecution protocols or the improvement of those described
earlier in this paper.

This paper showed how to provably securely externalize programs from the processor that
runs them. Apart from answering a theoretical question, we believe that our technique
provides the framework of novel practical solutions for real-life applications in the world
of mobile code and cryptography-enabled embedded software.
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36 Note that we have chosen the negative test to be the fast one as tests are mostly used in loops. Hence the
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A Unforgeability of FDH-RSA Screening (Proof of Theorem 1)

We treat separately the case of passive and active attacks.

A.1 Known Message Attacks

In the passive attack model, we consider a forger F allowed to make qh queries to the hash
oracle h and qk known-message queries and outputting a list of t messages (m1, . . . , mt) as
well as σ < N . We assume that with probability at least ε,

σe =
t∏

i=1

h(mi) mod N ,

whereas the signature of at least one of the messages m1, . . . , mt has never been provided
to F , meaning that the e-th root h(mj)

d of h(mj) for some 1 ≤ j ≤ t is unknown to F .
We show how to use this adversary to break RSA. More precisely, we build a reduction R
that uses F to compute the e-th root of an arbitrary y ∈ Z?

N with probability ε′ = ε.

The reduction R works as follows. On input (y, e, N) where e is a prime number, R
invokes F and transmits (e,N) to F . Then R simulates the random oracle h as well as
the signing oracle Sk which returns upon request up to qk message-signature pairs (mi, σi)
with σe

i = h(mi) mod N . These simulations are performed as follows.

Simulation of Sk. Each time F requests a message-signature pair, R chooses (according
to any arbitrary distribution) some message m ∈ {0, 1}? such that m does not appear in
R’s transcript, picks a random r ∈ Z?

N , defines h(m) ← re mod N , updates its transcript
accordingly, and outputs the pair (m, r).

Simulation of h. Whenever F requests h(m) for some m ∈ {0, 1}?, R checks in its
transcript if h(m) is already defined, in which case h(m) is returned. If h(m) is undefined,
R picks a random r ∈ Z?

N , defines h(m) ← rey mod N , updates the transcript and returns
this value to F .

These simulations never fail to respond to F ’s queries and the distributions of answers
are statistically indistinguishable from the ones F expects. After at most qh hash queries
and qk message-signature queries, F outputs (m1, . . . , mt) and σ within some time bound
τ . Then R queries h(mi) for i = 1, . . . , t to its own simulation of h and checks whether
σe =

∏t
i=1 h(mi) mod N .

Extraction of yd. Since each and every message mi ∈ {m1, . . . , mt} has been queried
to the hash oracle (either by F or R), R knows an ri such that h(mi) = re

i y mod N
or h(mi) = re

i mod N . Letting A (respectively B) denote the set of indices i such that
h(mi) = re

i y mod N (resp. h(mi) = re
i mod N), we know that the messages mi for i ∈ B

are among the ones given by R’s simulation of Sk to F throughout the experiment. By
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definition of F , B  {1, . . . , t} and hence |A| 6= 0. Consequently, if the verification succeeds
then

σe =
∏
i∈A

re
i y

∏
i∈B

re
i =

( ∏
1≤i≤t

ri

)e

y|A| mod N ,

meaning that (
σ/

∏
ri

)e

= y|A| mod N .

Since 0 < |A| ≤ t < e and e is prime, there exist integers (α, β) such that α|A| + βe = 1.
Then

y = yα|A|+βe =
((

σ/
∏

ri

)α

yβ
)e

mod N ,

and R returns yd = (σ/
∏

ri)
α yβ mod N with probability one. Summarizing, since F

outputs a valid forgery with probability at least ε within τ steps, our reduction R returns
yd with probability ε′ = ε after at most τ ′ = τ + (qh + qk)O(log3 N) steps.

A.2 Chosen-Message Attacks

In an active adversarial model, the forger F is allowed, in addition to h and Sk, to query
at most qc times a signing oracle Sc for messages of her choosing. Relying on a technique
introduced by Coron [13], we modify the reduction R as follows.

Simulation of h. Whenever F requests h(m) for some m ∈ {0, 1}?, R checks if h(m) is
already defined, in which case h(m) is returned. If h(m) is undefined, R selects a random
bit b ∈ {0, 1} with a certain bias δ, i.e. b is set to zero with probability δ. Then R picks a
random r ∈ Z?

N , memorizes (m, b, r), defines h(m) ← reyb mod N and returns this value
to F .

Simulation of Sk. The simulation of Sk is unchanged: each time F requests a message-
signature pair, R chooses some arbitrary, fresh message m ∈ {0, 1}? and a random r ∈ Z?

N ,
defines h(m) ← re mod N , memorizes (m, 0, r) and outputs the pair (m, r).

Simulation of Sc. When F requests the signature of m ∈ {0, 1}?, R checks in its own
transcript if some value is defined for h(m). If h(m) is undefined,R picks a random r ∈ Z?

N ,
defines h(m) ← re mod N , memorizes (m, 0, r) and returns r. Otherwise the transcript
contains a record (m, b ∈ {0, 1}, r). If b = 0, R returns r. If b = 1, R aborts.

Again, the simulations of h and Sk are perfect. However the simulation of Sc may provoke an
abortion before the game comes to an end. Let us assume that no abortion occurs. After at
most qh hash queries, qk known-message queries and qc chosen-message queries, F outputs
(m1, . . . , mt) and σ within some time bound τ . Then, again, R queries h(m1), . . . , h(mt)
to its own simulation of h and checks if σe =

∏t
i=1 h(mi) mod N .

Extraction of yd. Every message mi ∈ {m1, . . . , mt} corresponds in the transcript to
a pair (bi, ri) such that h(mi) = re

i y
bi mod N . By definition of F , there is at least one
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message mj that was neither output by Sk nor queried to Sc. Suppose that bj = 1 and that
the verification is successful. Then

σe =
∏

re
i y

bi =
(∏

ri

)e

y
P

bi mod N ,

with
∑

bi ≥ bj = 1. Since 0 <
∑

bi ≤ t < e and e is prime, there exist integers (α, β) with
α

∑
bi + βe = 1. Then R returns yd = (σ/

∏
ri)

α yβ mod N with probability one.

Reduction Cost Analysis. Our reduction R succeeds with probability (taken over the
probability spaces of F and R):

ε′ = Pr[F forges ∧ ¬abortion ∧ bj = 1]

= Pr[F forges ∧ ¬abortion] Pr[bj = 1]

= Pr[F forges ¬abortion] Pr[¬abortion] Pr[bj = 1]

= εδqc(1− δ) ,

where the equalities stem from the pairwise independence of the random coins b and their
independence from the forger’s view. The optimal value for δqc(1 − δ) is reached for δ =
1− 1/(qc + 1). Then,

ε′ =
ε

qc

(
1− 1

qc + 1

)qc+1

≥ ε

4qc

for qc ≥ 1 .

The reduction R returns yd or aborts within time bound τ ′ = τ + (qh + qk + qc)O(log3 N)
steps.

B Unforgeability of (FDH, H)-RSA Screening (Proof of
Theorem 6)

Theorem 6. We set µ(a, b, c) = h(a‖b‖H(c)) where h is a full-domain hash function seen
as a random oracle. Then µ-RSA is existentially unforgeable under a known-message attack
assuming that RSA is hard and H is collision-intractable.

Proof. We build a reduction algorithm R that uses an (qh, qk, t, τ, ε)-forger F to compute
the e-th root of y ∈ Z?

N with probability ε′1 and simultaneously a collision of H with
probability ε′2, where ε′1 + ε′2 ≥ ε. The reduction R works as follows. Given (y, e, N), e
prime, R transmits (e,N) to F and simulates the random oracle h and the signing oracle
Sk as follows.

Simulation of Sk. Upon request, R chooses some arbitrary fresh message m = a‖b‖c ∈
{0, 1}?, computes γ = H(c), and makes sure that a‖b‖γ does not appear in the transcript.
If it does, the simulation of Sk is restarted. Otherwise, R picks a random r ∈ Z?

N , defines
h(a‖b‖γ) ← re mod N , memorizes 〈m, a‖b‖γ, r〉 and outputs the pair (m, r).
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Simulation of h. Whenever F requests h(a‖b‖γ) for some triple (a, b, γ) ∈ {0, 1}|a| ×
{0, 1}|b| × Im(H), R checks if h(a‖b‖γ) is already defined, in which case the value defined
is returned to F . Otherwise, R picks a random r ∈ Z?

N , memorizes 〈⊥, a‖b‖γ, r〉, defines
h(a‖b‖γ) ← rey mod N and returns h(a‖b‖γ) to F .

These simulations are perfect. After some time τ , F outputs σ and a t-uple (m1, . . . , mt)
with mi = ai‖bi‖ci. Then R queries h(ai‖bi‖H(ci)) for i = 1, . . . , t to the simulation of h
and tests whether σe =

∏t
i=1 h(ai‖bi‖H(ci)) mod N .

Extraction of yd or extraction of a collision in H. Assume that F outputs
a correct forgery. Then there is for each message mi ∈ {m1, . . . ,mt} at least one record
〈xi, ai‖bi‖H(ci), ri〉 that appears in the transcript where xi ∈ {mi,⊥}. The messages mi

for which xi = mi were given by the simulation of Sk to F during the experiment. Noting
A = {i xi = ⊥}, two cases appear.

|A| 6= 0: then R returns yd = (σ/
∏

ri)
α yβ mod N where α|A|+ βe = 1;

|A| = 0: because at least one message mj = aj‖bj‖cj for j = 1, . . . , t appearing in the
forgery was not output by Sk, we get that the record 〈xj, aj‖bj‖H(cj), rj〉 contains a
message xj = aj‖bj‖c′j featuring H(c′j) = H(cj). R then outputs coll = (cj, c

′
j).

Reduction Cost Analysis. Letting ε′1 = Pr[R outputs yd] and ε′2 = Pr[R outputs coll],
we get

ε′1 = Pr[R outputs yd] = Pr[R outputs yd F forges ∧ |A| 6= 0] Pr[F forges ∧ |A| 6= 0]

+ Pr[R outputs yd ¬ (F forges ∧ |A| 6= 0)] Pr[¬ (F forges ∧ |A| 6= 0)]

≥ Pr[R outputs yd F forges ∧ |A| 6= 0] Pr[F forges ∧ |A| 6= 0]

= 1 · Pr[F forges ∧ |A| 6= 0] ,

and

ε′2 = Pr[R outputs coll] = Pr[R outputs coll F forges ∧ |A| = 0] Pr[F forges ∧ |A| = 0]

+ Pr[R outputs coll ¬ (F forges ∧ |A| = 0)] Pr[¬ (F forges ∧ |A| = 0)]

≥ Pr[R outputs coll F forges ∧ |A| = 0] Pr[F forges ∧ |A| = 0]

= 1 · Pr[F forges ∧ |A| = 0] ,

whereby:

ε′1 + ε′2 ≥ Pr[F forges ∧ |A| 6= 0] + Pr[F forges ∧ |A| = 0] = Pr[F forges] = ε .

The reduction R returns yd or coll in at most τ ′ = τ + (qh + qk)O(log3 N) steps. ut
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C Unforgeability of FDH-Rabin-Screening (Proof of
Theorem 4)

We only consider the case of passive attacks. In the passive attack model, we consider a
forger F allowed to make qh queries to the hash oracle h and qk known-message queries
and outputting a list of t messages (m1, . . . , mt) as well as σ < N . We assume that with
probability at least ε,

σ2 =
t∏

i=1

h(mi) mod N ,

whereas the signature of at least one of the messages m1, . . . , mt has never been provided
to F , meaning that no square root of h(mj) for some 1 ≤ j ≤ t is known to F . We show
how to use this adversary to extract square roots. More precisely, we build a reduction R
that uses F to extract a square root of an arbitrary y ∈ Z?

N with probability ε′ = ε/2.

The reduction R works as follows. On input (y, N), R invokes F and transmits N to
F . Then R simulates the random oracle h as well as the signing oracle Sk which returns
upon request up to qk message-signature pairs (mi, σi) with σ2

i = h(mi) mod N . These
simulations are performed as follows.

Simulation of Sk. Each time F requests a message-signature pair, R chooses (according
to any arbitrary distribution) some message m ∈ {0, 1}? such that m does not appear in
R’s transcript, picks a random r ∈ Z?

N , defines h(m) ← r2 mod N , updates its transcript
accordingly, and outputs the pair (m, r).

Simulation of h. Whenever F requests h(m) for some m ∈ {0, 1}?, R checks in its
transcript if h(m) is already defined, in which case h(m) is returned. If h(m) is undefined,
R picks a random r ∈ Z?

N and a random bit b ∈ {0, 1}, defines h(m) ← r2yb mod N ,
updates the transcript and returns this value to F .

These simulations never fail to respond to F ’s queries and the distributions of answers
are statistically indistinguishable from the ones F expects. After at most qh hash queries
and qk message-signature queries, F outputs (m1, . . . , mt) and σ within some time bound
τ . Then R queries h(mi) for i = 1, . . . , t to its own simulation of h and checks whether
σ2 =

∏t
i=1 h(mi) mod N .

Extraction of a square root of y. Since each and every message mi ∈ {m1, . . . , mt}
has been queried to the hash oracle (either by F or R), R knows an ri such that h(mi) =
r2
i y

bi mod N (if mi was requested to h) or h(mi) = r2
i mod N (if mi was requested to

Sk). Letting A (respectively B) denote the set of indices i such that mi was requested to
h (resp. to Sk), we know that the messages mi for i ∈ B are among the ones given by R’s
simulation of Sk to F throughout the experiment. By definition of F , B  {1, . . . , t} and
hence |A| 6= 0. Consequently, if the verification succeeds then

σ2 =
∏
i∈A

r2
i y

bi

∏
i∈B

r2
i =

( ∏
1≤i≤t

ri

)2

yB mod N ,
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with B =
∑

i∈A bi meaning that
(
σ/

∏
ri

)2

= yB mod N .

Since all bits bi are mutually independent and uniformly distributed over {0, 1}, we have
that B is odd with probability 1/2. When B is odd, there exist integers (α, β) such that
αB + 2β = 1. Then

y = yαB+2β =
((

σ/
∏

ri

)α

yβ
)2

mod N ,

and R returns the root x = (σ/
∏

ri)
α yβ mod N with probability one. Summarizing, since

F outputs a valid forgery with probability at least ε within τ steps, our reduction R
returns x such that x2 = y mod N with probability ε′ = ε/2 after at most τ ′ = τ + (qh +
qk)O(log3 N) steps.

D Security Model for Signatures and MACs

D.1 Signature Schemes

A signature scheme SIG = (SIG.Key, SIG.Sign, SIG.Verify) is defined by the three following
algorithms:

– The key generation algorithm SIG.Key. On input 1k, the algorithm SIG.Key produces a
pair (pk, sk) of matching public (verification) and private (signing) keys.

– The signing algorithm SIG.Sign. Given a message m and a pair of matching public and
private keys (pk, sk), SIG.Sign produces a signature σ. The signing algorithm might be
probabilistic.

– The verification algorithm SIG.Verify. Given a signature σ, a message m and a public
key pk, SIG.Verify tests whether σ is a valid signature of m with respect to pk.

Several security notions have been defined about signature schemes, mainly based on the
seminal work of Goldwasser et al [16, 17]. It is now classical to ask for the impossibility of
existential forgeries, even for adaptive chosen-message adversaries:

– An existential forgery is a new message-signature pair, valid and generated by the
adversary. The corresponding security level is called existential unforgeability (EUF).

– The verification key is public, including to the adversary. But more information may
also be available. The strongest kind of information is definitely formalized by the
adaptive chosen-message attacks (CMA), where the attacker can ask the signer to sign
any message of its choice, in an adaptive way.

As a consequence, we say that a signature scheme is secure if it prevents existential forgeries,
even under under adaptive chosen-message attacks. This is measured by the following
success probability, which should be small, for any adversary A which outputs a new pair
(m,σ), within a reasonable running time and at most qs signature queries to the signature
oracle:

Succeuf−cma
SIG (A, qs) = Pr

[
(pk, sk) ← SIG.Key(1k), (m,σ) ← ASIG.Sign(sk;·)(pk) :

SIG.Verify(pk; m,σ) = 1

]
.
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D.2 Message Authentication Codes

A Message Authentication Code MAC = (MAC.Sign, MAC.Verify) is defined by the two
following algorithms, with a secret key sk uniformly distributed in {0, 1}`:

– The MAC generation algorithm MAC.Sign. Given a message m and secret key sk ∈
{0, 1}`, MAC.Sign produces an authenticator µ. This algorithm might be probabilistic.

– The MAC verification algorithm MAC.Verify. Given an authenticator µ, a message m
and a secret key sk, MAC.Verify tests whether µ has been produced using MAC.Sign on
inputs m and sk.

As for signature schemes, the classical security level for MAC is to prevent existential
forgeries, even for an adversary which has access to the generation and the verification
oracles. This is measured by

Succeuf−cma
MAC (A, qs, qv) = Pr

[
sk

R← {0, 1}`, (m,µ) ← AMAC.Sign(sk;·),MAC.Verify(sk;·,·) :
MAC.Verify(sk; m, µ) = 1

]
,

where the adversary can ask up to qs and qv queries to the generation and verification
oracles MAC.Sign and MAC.Verify respectively. It wins the game if it outputs a new valid
authenticator.
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E Code Certification With a Hash-Tree
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Abstract. This paper describes malicious applets that use Java’s sophisticated graphic features to
rectify the browser’s padlock area and cover the address bar with a false https domain name.

The attack was successfully tested on Netscape’s Navigator and Microsoft’s Internet Explorer; we
consequently recommend to neutralize Java whenever funds or private data transit via these browsers
and patch the flaw in the coming releases.

The degree of novelty of our attack is unclear since similar (yet non-identical) results can be achieved
by spoofing as described in [6]; however our scenario is much simpler to mount as it only demands the
inclusion of an applet in the attacker’s web page. In any case, we believe that the technical dissection
of our malicious Java code has an illustrative value in itself.

1 Introduction

In the past years, ssl [1] has become increasingly popular for protecting information ex-
changed between web stores and Internet users.

ssl features public-key encryption and signature, two cryptographic functions that
require the prior exchange of public keys between the sender and the receiver.

Assuming the security of the underlying algorithms, one must still make sure that
the received public keys actually belong to the entity claiming to possess them. In other
words, after receiving a public key from a site claiming to be http://www.amazon.com, it
still remains to check that the public key indeed belongs to Amazon; this is ascertained
using certificates.

A certificate is a signature of the user’s public-keys, issued by a trusted third party (au-
thority). Besides the public-key, the certificate’s signed field frequently contains additional
data such as the user’s identity (e.g. amazon.com), an algorithm ID (e.g. rsa, dsa, ecdsa
etc.), the key-size and an expiry date. The authority’s public-keys, used for verifying the
certificates, are assumed to be known to everybody.

Besides the site-specific information displayed by a website to a user (contents that one
can trust or not), secure sessions has two visual tell-tale signs:
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– The image of a closed padlock appears in the browser (at the lower left corner of
the browser for Netscape’s Navigator and at the lower right part of the window for
Microsoft’s Internet Explorer).

– A slight change appears in the address bar, where instead of the usual:

http://www.domain-name.com

an additional s (standing for the word secure) can be seen:

https://www.domain-name.com

Figures 1 and 2 illustrate these visual differences (see in Appendix).

In essence, the main indications guaranteeing the session’s security to the user are
visual.

2 The Flaw

To make navigation attractive and user-friendly, browsers progressively evolved to enable
the on-the-fly delivery of images, movies, sounds and music.

This is made possible by the programming language Java. When a user loads an html

page containing an applet (a Java program used in a web page), the browser starts executing
the byte-code of this applet. Unlike most other procedural languages, the compilation of
a Java program does not yield a machine-code executable but a byte-code file that can be
interpreted by any browser implementing a Java Virtual Machine. This approach allows to
reach an unprecedented level of compatibility between different operating systems (which
is, in turn, the reason why Java has become so popular [4, 5, 2]).

A very intriguing feature of applets is their ability to display images beyond the
browser’s bounds, a feature largely exploited by the attacks described in this paper. In
a nutshell, our malicious applet will cover the browser’s padlock area with the image of a
closed padlock and, using the same trick, rectify the address bar’s http to an https). Sev-
eral variants can also be imagined: cover and mimic the genuine navigator menus, modify
the title banners of open windows, display false password entry windows etc.

2.1 Scenario and Novelty

The scenario is easy to imagine: a user, misled by a fake padlock, can, for instance, feed
confidential banking details into a hostile site. The degree of novelty of our attack is
unclear since similar (yet non-identical) results can be achieved by spoofing as described
in [6]; however our scenario is much simpler to mount as it only demands the inclusion of
an applet in the attacker’s web page. In any case, we believe that the technical dissection
of our malicious Java code has an illustrative value in itself.
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3 The Code

This section will explain in detail the structure of applets tailored for two popular browsers:
Netscape’s Navigator et Microsoft’s Internet Explorer (our experiments were conducted
with version 4.0, at least, of each of these browsers, in order to take advantage of Java.
Previous versions of these browsers represent less then 10% of the browsers in the field).

For the sake of clarity we separately analyze the display and positioning parts of the
applets. Explanations refer to Netscape’s applet testN.java; minor modifications suffice
to convert testN.java into a code (testE.java) targeting the Explorer.

3.1 Displaying the Fake Padlock

Image files downloaded from the Internet are usually displayed line after line, at a relatively
slow pace. Such a gradual display is by orders of magnitude slower then the speed at which
the microprocessor updates pixels. The closed padlock must therefore appear as suddenly
as possible so as not to attract the user’s attention.

Luckily, there is a class in Java (MediaTracker) that avoids progressive display. To do
so, we add the image of the padlock to a tracker object with the following command:

MediaTracker tracker = new MediaTracker(this);

image = getImage(getCodeBase(),"PadlockN47.gif");

tracker.addImage(image,0);

We can add as many images as we please to a single media tracker but one must assign
ID numbers to these images. Here we have only one image (PadlockN47.gif shown in
Figure 3) which ID is zero by default.

Figure 3: The fake padlock for Netscape’s Navigator
(image file PadlockN47.gif)

To wait for an image to be loaded completely, we use the following code :

try {tracker.waitForID(0);}

catch(Exception e) {}

This means that if the picture is not fully loaded, the program will throw an exception.
To display the picture we use Java’s standard function:

window1.setBounds(X,Y,imgWidth,imgHeight);

which means that the frame containing the picture should appear at coordinates {X, Y},
be imgWidth pixels wide and imgHeight pixels high.

window1.show(); window1.toFront();
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The show() method makes a window visible and the toFront() method makes sure
that the window will be displayed at the top of the visualization stack.

public void start() {

thread.start();

}

As we want to continuously display the padlock, we instanciate a Thread object that
creates an independent thread. The start() method creates the thread and begins the
display process by invoking the start() method of Thread. The call of start() causes
the call of the applet’s run() method that in turn displays the padlock :

public void run() {

...

window1.getGraphics().drawImage(image,0,0,this);

window1.validate();

}

These lines of code finally make sure that the drawImage() method draws the picture
at the right place, and validate it.

To make the applet fully functional, one can add a function that will check if the victim
has moved the browser and if so redraw the padlock at the right position. We do not detail
this feature here.

3.2 The Padlock’s Position

To paste the padlock at the right position we use Javascript [3] functions which are distinct
for the Navigator and the Explorer. The positioning calculations are done in Javascript
and involve constants representing the coordinates of the padlock area and the dimensions
of the fake padlock. This explains the existence of two different html pages that we analyze
separately. Both can be easily merged into a code that adapts itself to the attacked browser,
but this was avoided to keep the description as simple as possible.

3.2.1 Netscape’s Navigator Two functions of the window method are very useful for
correctly displaying the padlock. The following Javascript code calculates its exact position:

sX = window.screenX;

sY = window.screenY + window.outerHeight - 23;

By default, {0, 0} is the screen’s upper left corner, which is why we subtract the height
of the padlock (23 pixels) from the sum of window.screenY and window.outerHeight.

It remains to hand over the Javascript variables sX and sY to the applet.
The strategy for doing so is the following: we define a one pixel applet so as to remain

quasi-invisible and avoid attracting the user’s attention. The pixel can be hidden completely
by assigning to it a color identical to the background but again, this was avoided to keep
the code simpler. We hand-over the position data using:
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document.write("<APPLET CODE =’testN.class’ HEIGHT=1 WIDTH=1>")

document.write(" <PARAM NAME=’winPosX’ VALUE=’")

document.write( sX +"’>")

document.write(" <PARAM NAME=’winPosY’ VALUE=’")

document.write( sY +"’>")

document.write("</APPLET>")

Back in the Java code, these parameters are received as Strings and converted to
integers as follows:

String x = getParameter("winPosX"); int X = Integer.parseInt(x);

String y = getParameter("winPosY"); int Y = Integer.parseInt(y);

As illustrated in Figure 4, our applet works perfectly when called from the Navigator.
Unless the user purposely dig information in the Navigator’s security menu (Communicator
½ Security Info) the illusion is perfect. We intentionally omitted the https part of the
applet to avoid publishing an off-the-shelf malicious code.

3.2.2 Microsoft’s Internet Explorer The Explorer’s behavior is slightly different.
When an applet is displayed, a warning banner is systematically added to its window. To
overcome this, we design an applet that appears to be behind the browser while actually
being in front of it. This is better understood by having a look at Figures 5 and 6.

Figure 5: The fake padlock for Microsoft Explorer
(image file EvaPeronPadlock.gif)
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A second (more aggressive) approach consists in adding to the html code an instruction
that expands the browser to the entire screen (the warning banner will then disappear). It
is even possible to neutralize the function that allows the user to reduce the browser’s size.

4 Solutions

As our experiments prove, patching and upgrading seems in order. Here are some solutions
one can think of (the list is, of course, far from being exhaustive).

4.0.3 Random Icons During installation, the program picks an icon at random (e.g.
from a database of one million icons) and customizes the padlock area with it. The selected
icon, that the user learns to recognize, can be displayed in green (secure) or red (insecure).
This should be enough to solve the problem, assuming that hostile applets can not read
the selected icon.

4.0.4 Warning Messages Have the system display a warning message whenever the
padlock area is partially or completely covered by another window (e.g. A window has just
covered a security indicator, would you like to proceed?). Note that warnings are necessary
only when open padlocks are covered; warnings due to intentional user actions such as
dragging or resizing can be automatically recognized and avoided.

4.0.5 Display in Priority Whenever a window covers an open padlock, have the open
padlock (handled by the operating system as a privileged icon) systematically appear in
the foreplan. Note that such a radical solution paves the screen with holes and might be
difficult to live with.

4.0.6 Restricted Graphic Functions Allow display only within the browser’s bounds.

4.0.7 Selective Tolerance Determine which application covered the padlock area and
activate any of the previous protections only if the covering application is cataloged by the
system as a priori insecure (e.g. unsigned by a trusted authority, failure to complete an ssl
session etc.).

4.0.8 Cockpit Area Finally, one can completely dissociate the padlocks from the
browsers and display the padlocks, application names and address bars in a special (cock-
pit) area. By design, the operating system will then make sure that no application can
access pixels in the cockpit area.
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A The html page testN.html

<HTML>

<BODY BGCOLOR="#000000">

<BR>

<BR>

<P ALIGN=CENTER><FONT COLOR="#e6e6ff">

<FONT SIZE=5 STYLE="font-size: 20pt">

<B>THIS SITE IS INSECURE</B>

</FONT></FONT></P>

<P ALIGN=CENTER><FONT COLOR="#e6e6ff">

<FONT SIZE=5 STYLE="font-size: 20pt">

<B>(DESPITE THE CLOSED PADLOCK)</B>

</FONT></FONT></P>

<P><SCRIPT>

sX = window.screenX;

sY = window.screenY + window.outerHeight - 23;

document.write("<APPLET CODE =’testN.class’ HEIGHT=1 WIDTH=1>")

document.write(" <PARAM NAME=’winPosX’ VALUE=’")

document.write( sX +"’>")

document.write(" <PARAM NAME=’winPosY’ VALUE=’")

document.write( sY +"’>")

document.write("</APPLET>")

</SCRIPT></P>

</BODY>

</HTML>

The html page testE.html is obtained by changing the definitions of sX and sY to:

sX = window.screenLeft + document.body.offsetWidth - 198;

sY = window.screenTop + document.body.offsetHeight;

and replacing the applet’s name in:

document.write("<APPLET CODE =’testIE.class’ HEIGHT=1 WIDTH=1>")

B The Applet testN.java

import java.awt.*; import java.awt.image.*; import java.applet.*;

public class testN extends Applet implements Runnable {

Window window1;

Image image ;

Thread thread = new Thread(this);

int imgWidth = 24; int imgHeight = 23;
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public void init() {

// We use the MediaTracker function to be sure that

// the padlock will be fully loaded before being displayed

MediaTracker tracker = new MediaTracker(this);

image = getImage(getCodeBase(),"PadlockN47.gif");

tracker.addImage(image,0);

try {tracker.waitForID(0);}

catch(Exception e) {}

String x = getParameter("winPosX"); int X = Integer.parseInt(x);

String y = getParameter("winPosY"); int Y = Integer.parseInt(y);

window1 = new Window(new Frame());

window1.setBounds(X,Y,imgWidth,imgHeight);

window1.show();

window1.toFront();

}

public void start() {

thread.start();

}

public void run() {

// winPosX,Y are parameters that define the position

// of the padlock in the screen

String x = getParameter("winPosX"); int X = Integer.parseInt(x);

String y = getParameter("winPosY"); int Y = Integer.parseInt(y);

window1.setBounds(X,Y,imgWidth,imgHeight);

window1.getGraphics().drawImage(image,0,0,this);

window1.validate();

}

}

The applet testE.java is obtained by replacing the definitions of:

imgWidth and imgHeight by:

int imgWidth = 251; int imgHeight = 357;

and changing the fake padlock file’s name to:

image = getImage(getCodeBase(),"EvaPeronPadlock.gif");
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Figure 1 (1): Potentially insecure session (Netscape’s Navigator)
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Figure 1 (2): Secure session (Netscape’s Navigator)
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Figure 2 (1): Potentially insecure session (Microsoft Explorer)
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Figure 2 (2): Secure session (Microsoft Explorer)
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Figure 4: Fake padlock applet on a Netscape Navigator
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Figure 6: Fake padlock applet on a Microsoft Explorer
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Abstract. The effect of faults on electronic systems has been studied since the 1970s when it was
noticed that radioactive particles caused errors in chips. This led to further research on the effect of
charged particles on silicon, motivated by the aerospace industry who was becoming concerned about
the effect of faults in airborn electronic systems. Since then various mechanisms for fault creation
and propagation have been discovered and researched. This paper covers the various methods that
can be used to induce faults in semiconductors and exploit such errors maliciously. Several examples
of attacks stemming from the exploiting of faults are explained. Finally a series of countermeasures
to thwart these attacks are described.

1 Introduction

One of the first examples of faults being injected into a chip was accidental. It was noticed
that radioactive particles produced by elements naturally present in packaging material [24]
caused faults in chips. Specifically, Uranium-235, Uranium-238 and Thorium-230 residues
present in the packaging decay to Lead-206 while releasing α particles. These particles
create a charge in sensitive chip areas causing bits to flip. Whilst these elements were
only present in two or three parts per million, this concentration was sufficient to affect
chip behavior. Subsequent research included studying and simulating the effects of cosmic
rays on semiconductors [34]. Cosmic rays are very weak at ground level due to the earth’s
atmosphere, but their effect becomes more pronounced in the upper atmosphere and outer
space. This problem is further compounded by the fact that the more RAM a computer has
the higher the chance of a fault occurring. This has provoked a great deal of research by
organizations such as NASA and Boeing. Most of the work on fault resistance was motivated
by this vulnerability to charged particles. Considerable engineering endeavors were devoted
to the ‘hardening’ of electronic devices designed to operate in harsh environments. This
has mainly been done using simulators to model circuits and study the effect of randomly
induced faults. Various fault induction methods have since been discovered but all have in
common similar effects on chips. One such example is the use of a laser to imitate the effect
of charged particles [17]. The different faults that can be produced have been characterized
to enable the design of suitable protections. The first attack that used a fault to derive
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secret information [8] targeted the RSA public-key cryptosystem. Basically, a fault was
introduced to reveal the two secret prime numbers that compromised the RSA system.
This led to similar attacks on other cryptographic algorithms. The countermeasures that
can be used to thwart fault attacks had already been largely defined and successfully
deployed.

This survey is organized as follows: In section 2 the various methods of fault injection
and their effects are described. We then turn to theoretical (section 3) and practical (section
4) attacks. Finally, countermeasures are described in section 5.

2 Methods of Fault Injection

The most common fault injection techniques are:

1. Variations in Supply Voltage during execution may cause a processor to misinterpret or
skip instructions. This method is widely researched and practiced behind closed doors
by the smart-card industry but does not often appear in the open literature.

2. Variations in the External Clock may cause data misread (the circuit tries to read a
value from the data bus before the memory had time to latch out the asked value) or an
instruction miss (the circuit starts executing instruction n+1 before the microprocessor
finished executing instruction n).

3. Temperature: circuit manufacturers define upper and lower temperature thresholds
within which their circuits will function correctly. The goal here is to vary temper-
ature using an alcoholic cooler until the chip exceeds the threshold’s bounds. When
conducting temperature attacks on smart-cards (never documented in the open litera-
ture to the authors’ knowledge) two effects can be obtained: the random modification
of RAM cells due to heating and the exploitation of the fact that read and write tem-
perature thresholds do not coincide in most non-volatile memories ( NVMs). By tuning
the chip’s temperature to a value where write operations work but reads don’t or the
other way around a number of attacks can be mounted (components are classified into
three temperature vulnerability classes which description is beyond the scope of this
survey).

4. White Light: All electric circuits are sensitive to light due to photoelectric effects. The
current induced by photons can be used to induce faults if a circuit is exposed to intense
light for a brief time period. This can be used as an inexpensive means of fault induction
[3]. Gemplus’ white light fault injector is shown in figures 1 and 2.

5. Laser can reproduce a wide variety of faults and can be used to simulate [17] faults
induced by particle accelerators [12, 30]. The effect produced is similar to white light
but the advantage of a laser over white light is directionality that allows to precisely
target a small circuit area. Gemplus’ laser fault injection laboratory is shown in figures
3 and 4.

6. X-rays and ion beams can also used as fault sources (although less common). These
have the advantage of allowing the implementation of fault attacks without necessarily
de-packaging the chip. We recommend [10] as further reading.
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Fig. 1. White Light Fault Injector (View 1)

2.1 The Different Types of Faults

Electronic circuits can be subject to two classes of faults: provisional (transient) and de-
structive (permanent) faults. In a provisional fault, silicon is locally ionized so as to induce
a current that, when strong enough, is falsely interpreted by the circuit as an internal
signal. As ionization ceases so does the induced current (and the resulting faulty signal)
and the chip recovers its normal behavior. By opposition, destructive faults, created by
purposely inflicted defects to the chip’s structure, have a permanent effect. Once inflicted,
such destructions will affect the chip’s behavior permanently.

2.1.1 Provisional Faults (Taxonomy) Provisional faults have reversible effects and
the circuit will recover its original behavior after the system is reset or when the fault’s
stimulus ceases.

– Single Event Upsets (SEUs) are flips in a cell’s logical state to a complementary state.
The transition can be temporary, if the fault is produced in a dynamic system, or
permanent if it appears in a static system. SEU was first noticed during a space mission
in 1975 [14, 28] and stimulated research into the mechanisms by which faults could be
created in chips. SEUs can also manifest themselves as a variation in an analogue signal
such as the supply voltage or the clock signal.
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Fig. 2. White Light Fault Injector (View 2)

– Multiple Event Upsets (MEUs) are a generalization of SEUs. The fault consists of
several SEUs occurring simultaneously. A high integration density is a risk factor that
can provide conditions favorable to the genesis of MEUs.

– Dose Rate Faults [19] are due to several particles whose individual effect is negligible
but whose cumulative effect generates a sufficient disturbance for a fault to appear.

2.1.2 Destructive Faults (Taxonomy)

– Single Event Burnout faults (SEBs) are due a parasitic thyristor being formed in the
MOS power transistors [21, 33]. This can cause thermal runaway in the circuit causing
its destruction.

– Single Event Snap Back faults (SESs) [18] are due to the self-sustained current by the
parasitic bipolar transistor in MOS transistor channel N. This type of fault is not likely
to occur in devices with a low supply voltage.

– Single Event Latch-up faults (SELs) [1, 12] are propagated in an electronic circuit by
the creation of a self-sustained current with the releasing of PNPN parasitic bipolar
transistors in CMOS technology. This can potentially destroy the circuit.

– Total Dose Rate faults [9] are due to a progressive degradation of the electronic circuit
subsequent to exposure to an environment that can cause defects in the circuit [31].

When using fault injection as an attack strategy provisional faults are the method of
choice. These allow for faults under numerous experimental conditions to be attempted
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Fig. 3. Laser Fault Injection Equipment

until the desired effect is achieved. As a side-bonus the system remains functional after the
attack’s completion. By opposition, a destructive fault would (usually) render the target
unusable and will necessitate the manufacturing of a clone.

3 Fault Attacks in Theory

The first academic fault attack paper [8], proposed a number of methods for attacking
public key algorithms. One attack focused on an implementation of RSA using the Chinese
Remainder Theorem (CRT). The attack is very simple as it only requires one fault to be
inserted in order to factor the RSA modulus. Basically the attack works as follows:

3.1 Fault Attack on RSA Signature

Let N = p×q, where p and q are two large prime numbers. Let m ∈ Z∗N be the message to be
signed, d the private key and s the RSA signature. We denote by a and b the pre-computed
values required for use in the CRT, such that:

{
a ≡ 1 (mod p)
a ≡ 0 (mod q)

and

{
b ≡ 0 (mod p)
b ≡ 1 (mod q)

and define:
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Fig. 4. Laser Fault Injection Equipment (Inner View)

dp = d (mod p− 1)
dq = d (mod q − 1)

Using repeated squaring calculate:

sp = mdp (mod p)

sq = mdq (mod q)

The RSA signature s is then obtained by the linear combination s = a × sp + b × sq

(mod N)
The attack is based on being able to obtain two signatures of the same message, where

one signature is correct and the other faulty. By “faulty” we mean that a fault injected
during the computation corrupted either the computation of sp or sq.

Let ŝ = a × sp + b × ŝq (mod N) be the faulty signature (we arbitrarily assume that
the error occurred during the computation of sq but the attack works just as well when sp

is corrupted). Subtraction yields:

∆ = s− ŝ = (a× sp + b× sq)− (a× sp + b× ŝq) = b(sq − ŝq)

Hence, (given that b ≡ 0 (mod p)) one notes that ∆ = b(sq − ŝq) is a multiple of p. A
simple GCD calculation will thus factor N :
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Fig. 5. Single Event Latch-up - Parasitic Transistors T1 and T2.

GCD(∆,N) = p

In summary all that is required to break RSA is one correct signature and one faulty
one. This attack will be successful regardless of the type or number of faults injected during
the process provided that all faults affect the computation of sp or (mutually exclusive or!)
sq.

Although initially theoretical, this attack (implemented in [5]) stimulated the genesis of
a variety of fault attacks against a wide gamut of cryptographic algorithms. The following
subsections describe some more of these attacks.

3.2 Fault Attack on RSA Decryption

Suppose that one bit in the binary representation of d flips from from 1 to 0 or vice versa,
and that this faulty bit position is randomly located. An attacker arbitrarily chooses a
plaintext m and computes the ciphertext c. He then injects a fault during c’s decryption
and gets a faulty plaintext m̂. Assuming that bit d[i] flips to d[i], then division of the faulty
plaintext by the correct one will yield:

m̂

m
=

c2id[i]

c2id[i]
(mod N)

Obviously, if
m̂

m
=

1

c2i (mod N) ⇒ d[i] = 1

and if
m̂

m
= c2i

(mod N) ⇒ d[i] = 0

This process is repeated until enough information is obtained on d. The attack works
if and only if one bit is changed. If for example two bits (i and j) are changed then the
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result will resemble the changing of one bit (k), where the the sign depends on how the bit
is changed:

±2i ± 2j = ±2k

It should be noted that the attack also works for multiple bit errors. The more bits that
are changed the more pronounced the effect becomes. Details and variants can be found in
[6]. This attack can also apply to discrete logarithm based public key cryptosystems such
as DSA.

3.3 Fault Attacks on Key Transfer or NVM

In this scenario [7] a fault is injected during the transfer of secret data from one memory
component to another. Although the attack is applicable to any algorithm let us assume
that a DES key is being transferred from EEPROM to RAM in a smart card. If we change
the value of parts of the key to some fixed value (for example one byte at a time), it
becomes possible to derive the secret key.

We DES-encrypt a message M to obtain a faultless ciphertext C0. Then, during the
key transfer from EEPROM to RAM, one key byte is changed to a fixed known value (00
in our example). The resulting C1 is recorded and the process is repeated by forcing two
bytes to a fixed value, then three bytes, and so on. This continues until the whole key but
one byte has been set, byte by byte, to the fixed value.

This procedure shown in table 1, where Ci represents the ciphertext of an unknown
key with i bytes set to a fixed value . Once this data has been collected it can be used to
derive the DES key.

Table 1. The Biham-Shamir Attack

Input DES Key Output

M → K0 =XX XX XX XX XX XX XX XX → C0

M → K1 =XX XX XX XX XX XX XX 00 → C1

M → K2 =XX XX XX XX XX XX 00 00 → C2

M → K3 =XX XX XX XX XX 00 00 00 → C3

M → K4 =XX XX XX XX 00 00 00 00 → C4

M → K5 =XX XX XX 00 00 00 00 00 → C5

M → K6 =XX XX 00 00 00 00 00 00 → C6

M → K7 =XX 00 00 00 00 00 00 00 → C7

Let Kn represent the original DES key with n bytes replaced with known values. To
find K7 the 128 different possible values for the first byte of the DES key are tried until
one produces the ciphertext C7

1. After this K6 can be found by searching through the 128
different possible values for the second byte, as the first byte will be known. Finding the
entire key will require a search through a key space of 1024 different keys. This attack can
also be used when unknown data is manipulated by an known algorithm.

1 Although a byte is changed only 128 different values are possible as the least significant bit is a parity bit.
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Historical note: An attack similar to [7] was discovered and documented (but never
published) during a code audit in Gemplus back in 1994. The code was that of a smart-
card operating system where a special file contained DES keys saved in records. This OS
featured two commands: erase i, a command that erases the i-th key record and encrypt

i,M a command that outputs the ciphertext of the message M using the key contained in
the i-th record. While invisible for the user, the OS was using the convention that all-zero
keys are free records (an encrypt command on a zero (erased) record would return an
error). The attack here was exploiting the fact that EEPROM could only be erased by
32-block units. In other words, upon an erase, the OS would erase twice four bytes. The
attack consisted of encrypting a message with an unknown key and then instructing the OS
to erase this key but cutting power just after the first 32-bit block’s deletion. The card will
then contain a 56-bit key which rightmost half is zeroed (which is not interpreted by the
OS as an empty key record!). An encryption with this key followed by two 228 exhaustive
search campaigns would have eventually revealed the key.

Since that date, OSs associate a security bit σ to each key. When a user instructs to
delete a key, the σ bit is erased first, thereby recording the information that the key cannot
be used anymore for cryptographic operations. Only then will the OS undertake the task
of erasing the key’s actual bits. Upon reset, the OS ascertains that all σ = 0 keys contain
zero bytes if any nonzero σ = 0 keys are found, the OS simply resumes the deletion of their
bits.

3.4 Fault Attacks on DES

DES is a 16-round secret key algorithm based on a Feistel structure. This attack targets
DES’ fifteenth round. We use a simplified description of the last round (figure 6) to explain
what happens when the fifteenth round does not execute properly2.

The output of the last round can be expressed as:

R16 = S(R15 ⊕K16)⊕ L15

= S(L16 ⊕K16)⊕ L15

If a fault occurs during the execution of the fifteenth round, i.e. R15 is changed into a
faulty R̂15, then:

R̂16 = S(R̂15 ⊕K16)⊕ L15

= S(L̂16 ⊕K16)⊕ L15

If we xor R16 and R̂16 we get:

R16 ⊕ R̂16 = S(L16 ⊕K16)⊕ L15 ⊕ S(L̂16 ⊕K16)⊕ L15

= S(L16 ⊕K16)⊕ S(L̂16 ⊕K16)

2 In figure 6 bit permutations were removed as these do not fundamentally change theory although they somewhat
complicate explanation.
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Fig. 6. Simplified DES Last Round Model.

This gives a relationship where only the value of the sixteenth subkey (K16) is unknown;
all the other variables being given directly as an output of the DES. For each substitution
table used in the last DES round this relationship will be true. An exhaustive search of
the 64 possible values that validate this equation can be conducted for each of the six
bits corresponding to the input of each substitution table. This will give approximately
218 different hypotheses for the last subkey leading to a final exhaustive search through
226 DES keys to find the whole key. In practice, it is simplest to conduct the attack
several times either at different positions in the fifteenth round or with a varying message.
When the lists of possible hypotheses are generated the actual subkey will show up in the
intersection of all the sets of hypotheses. If the difference between the two output values
for a given substitution table (R16 and R̂16) is zero then all the possible values of K15 for
that substitution table will be valid. This means that it is advantageous to induce a fault
as early as possible in the fifteenth round so that the effect of the fault spreads over as
many different substitution tables in the sixteenth round as possible.

3.5 Fault Attacks on Other Algorithm - Further Reading

While the bibliography on the matter would be too voluminous to overview exhaustively,
the authors attract the reader’s attention to a more powerful attack [29] applicable to all
secret key algorithms. Several authors e.g. [13, 11] present fault attacks on AES or RC5
[2]. The details of these are beyond the scope of this article and are presented as further
reading.
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4 Some Experimental Fault Attacks

In a glitch attack, the attacker deliberately generates a malfunction that causes one or more
flip-flops to transition into a wrong state. The aim is usually to replace a single critical
machine instruction with an almost arbitrary one. Glitches can also aim to corrupt data
values as information is transferred between registers and memory [20]. There are three
main techniques for creating fairly reliable malfunctions that affect only a very small num-
ber of machine cycles in smart-card processors. These are clock signal transients, power
supply transients, and external electrical field transients. All three were successfully exper-
imentally implemented by Gemplus. Particularly interesting instructions, that an attacker
might want to target with glitches, are conditional jumps or the test instructions preceding
them. They create a window of vulnerability in the processing stages of many security ap-
plications that often allow the attacker to bypass sophisticated cryptographic barriers by
simply preventing the execution of the code that detects that an authentication attempt
was unsuccessful. Instruction glitches can also be used to extend the runtime of loops, for
instance in serial port output routines, to see more of the memory after output buffer, or
reduce the runtime of loops, thereby transforming an iterated block-cipher into an easy to
break single-round variant [20]. Clock-signal glitches are currently the simplest and most
practical ones. They temporarily increase the clock frequency for one or more half cycles,
such that some flip-flops sample their input before the new state has reached them. Power
analysis was used by this survey’s authors to monitor how far a program has progressed
and launch a fault as the power profile of a specific instruction was recognized. This in turn
can be used to determine when, for example, a branch instruction is about to be taken. A
more rapid clock cycle at this point (a clock glitch) may provide insufficient time for the
processor to write the jump address to the program counter, thereby annulling the branch
operation [25]. A similar clock-glitch attack is also presented in [2]. Because of the different
number of gate delays in various signal paths and the varying parameters of the circuits
on the chip, this affects only some signals, and by varying the precise timing and duration
of the glitch, the CPU can be fooled to execute a number of completely different, wrong
instructions. These will vary from one instance of the chip to another, but can be found
by a systematic search using specialized hardware.

The following figures illustrate different effects that glitches can have. In this experiment
power was dropped from Vcc to 0V during a few nanoseconds. By carefully playing with
the glitch’s parameters (duration, falling edge, amplitude etc.) two types of behavior were
obtained:

– Under a first set of conditions (figure 7), the processor just skipped a number of in-
structions and resumed normal execution several microseconds after the glitch. This
fault allows the selective execution of instructions in a program.

– Under a second set of conditions, not only does the processor skip instructions - but
the value of data manipulated by the processor is also modified in a precise manner.
This is visually reflected in the power curves of figure 8.
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Fig. 7. Instruction Only Glitch Attack.

It should be noted that a third set of conditions was tested in this experiment. Although
the results are not shown here, the outcome was that the value of data could be corrupted
while the interpretation of instructions was left unchanged.

The following two images show glitch injection electronics used in mounting these at-
tacks. The data aquisition board shown in figure 9 was initially developed for performing
differential power analysis. It was then extended to incorprate glitch attacks. The board
accepts a signal from a CLIO reader instructing the aquisition board to apply a lower
voltage to the Vcc for the duration of that signal. The levels of voltage that are applied
during the glitch are controlled via potentiometers configured with a screwdriver.

Figure 10 shows a modified clio reader that can be used to inject a glitch at a specific
point during a command. This setup can be configured via the network to allow for a large
number of glitch configurations to be tested when searching for vulnerablities in new chips.

Glitch attacks have been reported against a number of cryptographic systems. We will
describe here a few such attacks in further detail.

4.1 Glitch Attack on RSA

The GCD attack presented in section 3 was implemented by [5] and others. We also refer
the reader to [6] and [16] who report clock-glitch attacks against RSA and DES.

4.2 Glitch Attack on DES

When we can cause an instruction of our choice to fail, then there are several fairly straight-
forward ways to attack DES. We can remove one of the 8-bit xor operations that are used
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Fig. 8. Instruction and Data Glitch Attack.

to combine the round keys with the inputs to the S-boxes from the last two rounds of the
algorithm, and repeat this for each of these key bytes in turn. The erroneous ciphertext
outputs that we receive as a result of this will each differ from the genuine ciphertext in the
output of usually two, and sometimes three, S-boxes. Using the techniques of differential
cryptanalysis, we obtain about five bits of information about the eight key bits that were
not xor’ed as a result of the induced fault. So, for example, six ciphertexts with faulty last
rounds should leak about thirty key bits, leaving an easy brute-force search [2]. An even
faster attack brutally reduces the number of DES rounds to one or two by corrupting the
appropriate loop variable or conditional jump. As a conclusion, unprotected DES can be
compromised in a variety of ways with somewhere between one and ten faulty ciphertexts.
Analogous attacks on AES were successfully mounted in Gemplus’ laser laboratory.

4.3 Glitch Attack on EEPROM

EPROM stores information as charges in the gate insulator of a MOSFET; charge is
stored on the floating gate of a MOS transistor and the control gate is used to program
the transistor as shown in figure 11. EEPROM transfers electrons by Fowler-Nordheim
tunnelling and program/erase operations are carried out by electrons tunnelling through
the thin oxide. Control gate voltage is high for programming while for erasure the control
gate is grounded and the drain voltage is raised. To read information from a cell, the cell’s
static voltage is compared to a reference detection voltage Vdet (usually Vdet = Vcc/2).

Consequently, if programming is done under the lowest tolerable voltage a lesser amount
of particles will be forced into the cell. Then, if during reading Vcc is increased to the highest
value tolerated by the circuit Vdet is artificially boosted and hence data will be read as zero
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Fig. 9. Data Aquisition Board with CLIO Reader.

regardless it’s actual value. To attack an n byte key one can simply subject the circuit to
n− 1 power glitches to obtain the encryption of a known plaintext under a vulnerable key
of the form:

00 00 . . . 00 00 XX 00 00 . . . 00 00

The attacker will then move the glitch’s position to successively scan the entire key.
This attack was implemented by Gemplus in the late 1990s.

4.4 Analogous Laser Attack on a Data Bus

In a specific smart card chip, a laser impact on the data bus during information transfer has
the effect of reading the value 255 (0xFF) regardless the transferred information’s actual
value. The attack described in the previous subsection could hence be directly re-adapted
in Gemplus’ laser laboratory.

4.5 The Java Sandbox

The Java sandbox is an environment in which applets are run without direct access to the
computer’s resources. The idea being that an applet need not be trusted as it is incapable
of running malicious code. The most common example of Java programs being used is on
the Internet, where an applet is downloaded and executed on a PC to achieve a given effect
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Fig. 10. A Modified CLIO Reader.

on the webpage being observed. A relatively recent paper [15] describes a fault attack on a
PC forcing the Java Virtual Machine to execute arbitrary code. This was done by using a
spotlight to heat up the PC’s RAM to the point where a fault (in this case a bit flip) occurs.
In this case a special applet was loaded into the computer’s memory and the RAM heated
up to the point where some bits would change their value. The expected fault was that
the address of a function a called by the applet would have one bit changed, so that the
address called was a± 2i, where 0 ≤ i ≤ 31 (the computer’s word size). The programmer
arranges to have a function present at that address that will return a variable of a type
that is not expected by the calling function, for example an integer to a pointer. This can
then be used to read/write to arbitrary addresses in the computers memory. One of the
possible uses of such a fault would be to change fields in the Java runtime system’s security
manager to grant the applet illegal rights.

5 Countermeasures

Since the identification of faults as a problem in electronic systems several hardening meth-
ods were deployed. These solutions help circuits to avoid, detect and/or correct faults.
Hardware and software countermeasures will be overviewed separately for the sake of clar-
ity.
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5.1 Hardware Countermeasures

Hardware protections are implemented by the chip manufacturer and can be further sub-
divided into two categories: active and passive protections.

5.1.1 Active Protections:

– Light detectors detect changes in the gradient of light.
– Supply voltage detectors react to abrupt variations in the applied potential and con-

tinuously ascertain that voltage is within the circuit’s tolerance thresholds.
– Frequency detectors impose an interval of operation outside which the electronic circuit

will reset itself.
– Active shields are metal meshes that cover the entire chip and has data passing con-

tinuously in them. If there is a disconnection or modification of this mesh the chip will
not operate anymore. This is primarily a countermeasure against probing, although it
helps protecting against fault injection as it makes the location of specific blocks in a
circuit harder.

– Hardware redundancy:

1. Simple Duplication with Comparison (SDC) is a the duplication of hardware blocks
followed by a test by a comparator. When the two blocks’ results don’t match, an alert
signal is transmitted to a decision block. Two types of reaction can be implemented: a
hardware reset or the activation of an interruption that triggers dedicated countermea-
sures. SDC protects against single focused errors and only permits their detection. A
feedback signal is usually triggered to stop all outgoing data flows.

2. Multiple Duplication with Comparison (MDC): each hardware block is duplicated at
least thrice. The comparator detects any mismatch between results and transmits the
alert signal to the decision block. As previously, two types of reaction can be imple-
mented, a hardware reset or the activation of an interruption. The difference with SDC
being the possibility to correct the fault through a majority vote and correct the out-
going signal.
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Fig. 12. Simple Duplication with Comparison.

3. Simple Duplication with Complementary Redundancy (SDCR) is based on the same
principles as SDC but the two blocks store complemented data. When the result of the
two blocks match, the comparison block transmits an alert to the system that triggers a
hardware reset or an interrupt. SDCR protects against multiple focused errors since it
is difficult to inject two different errors with complementary effects, but (just as SDC)
SDCR only permits error detection.

4. Dynamic Duplication consists of multiple redundancies with a decision module, com-
manding a data switch upon fault detection. The vote block is a switch, which transmits
the correct result as instructed by the comparator. Corrupted blocks are disabled and
their results discarded. This type of implementation permits detection and subsequent
reaction to the detected error [23].

5. Hybrid Duplication is a combination of multiple duplications with complementary re-
dundancy and dynamic duplication. This protects against single and multiple focused
faults, as it is very difficult to inject multiple faults with complementary effects.

– Protection using time redundancy:

1. Simple Time Redundancy with Comparison (STRC) consists of processing each oper-
ation twice and comparing results [4]. This protects against single and multiple time
synchronized errors but is only capable of detecting faults. Reaction is limited to the
discarding of the corrupted results.

2. Multiple Time Redundancy with Comparison is based on the principle used by STRC
but the result is processed more than twice. This detects, reacts and possibly corrects
single and multiple faults.

3. Recomputing with Swapped Operands consists of recomputing results with the operands’
little endian and big endian bits swapped. The result is re-swapped and compared to de-
tect potential faults. This type of protection has the advantage of de-synchronizing two
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Fig. 13. Multiple Duplication with Comparison.

different processes and makes fault attacks very difficult. This countermeasure protects
against single and multiple time synchronized errors.

4. Re-computing with Shifted Operands: [26] operations are recomputed by shifting the
operands by a given number of bits. The result is shifted backwards and compared to
the original one.

5. Re-computing with Duplication with Comparison is a combination of time redundancy
and hardware redundancy. This protects against single, multiple and time synchronized
faults but the time penalty and the increase in block size limit this countermeasure’s
use.

– Protection by Redundancy Mechanisms such as Hamming codes [22], hardwired check-
sums and error correction codes are also used to avoid or detect faults [27]. The typical
example being checksums attached to each machine word in RAM or EEPROM to
ensure integrity.
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5.1.2 Passive Protections: The second class of hardware protection mechanisms con-
sists of passive protections that increase the difficulty of successfully attacking a device.
These protections can be self-activated or managed by the device’s programmer:

– Mechanisms that introduce dummy random cycles during code processing.
– Bus and memory encryption. Let h be a hardwired keyed permutation and f a simple

hardwired block-cipher. Upon power-on, the chip generates an ephemeral key k. When
the microprocessor wishes to write the value m at RAM address i, the system stores
v = fk(m, i) at address hk(i). When the microprocessor requires the contents of address
i, the system recomputes hk(i), fetches v from address hk(i), decrypts m = f−1

k (v, i)
and hands m to the microprocessor. This makes laser or glitch targeting of a specific
memory cell useless as successive computations with identical data use different memory
cells.

– Passive shield: a full metal layer covers some sensitive chip parts, which makes light
or electromagnetic beam attacks more difficult as the shield needs to be removed be-
fore the attack can proceed. This also allows to contain information leakage through
electromagnetic radiations (i.e. thwart some side-channel attacks).

– Unstable internal frequency generators protect against attacks that need to be synchro-
nized with a certain event, as events occur at different moments in different executions.

5.2 Software Countermeasures

Software countermeasures are implemented when hardware countermeasures are insuffi-
cient or as cautious protection against future attack techniques that might defeat present-
generation hardware countermeasures. The advantage of software countermeasures is that
they do not increase the hardware block size, although they do impact the protected func-
tions’ execution time.
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– Checksums can be implemented in software. This is often complementary to hardware
checksums, as software CRCs can be applied to buffers of data (sometimes fragmented
over various physical addresses) rather than machine words.

– Execution Randomization: If the order in which operations in an algorithm are executed
is randomized it becomes difficult to predict what the machine is doing at any given
cycle. For most fault attacks this countermeasure will only slow down a determined
adversary, as eventually a fault will hit the desired instruction. This will however thwart
attacks that require faults in specific places or in a specific order, such as the transferring
of secret data attack described previously.

– Variable redundancy is nothing but SDC in software.

– Execution redundancy is the repeating of algorithms and comparing the results to verify
that the correct result is generated. As SDCR, redundancy is more secure if the second
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Fig. 16. Hybrid Duplication.

calculation is different than the first (for example its inverse3) so that two identical
faults cannot be used at different times.

– Ratification counters and baits: baits are small (< 10 byte) code fragments that perform
an operation and test its result. A typical bait writes, reads and compares data, performs
xors, additions, multiplications and other operations whose results can be easily checked.
When a bait detects an error it increments an NVM counter and when this counter
exceeds a tolerance limit (usually three) the card ceased to function.

In theory all data redundancy method used in hardware can be implemented in soft-
ware. The problem then becomes execution time rather than block size. As some of the
proposed hardware designs become extremely time consuming when imitated by software.
We recommend [32] as further reading

3 Encrypt-decrypt, sign-verify etc.
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6 Conclusion

Various methods for creating faults were presented. Practical applications of these attacks
were presented. These applications included attacks on keys and symmetric and asymmetric
cryptosystems. Finally, hardware and software countermeasures were overviewed. Unfortu-
nately, these countermeasures never come for free and impact the cost of the system being
developed. Also, the resulting system will be slower and may feature an increased block
size. There will always be a tradeoff between cost, efficiency and security, and it will be a
judgement call by designers, developers and users to choose which of these requirements
best suit their needs. There is still much work to be done in this area with the ultimate
goal being an optimal balance between security, efficiency and cost.
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Thèse de doctorat de l’université Bordeaux I, 1990.
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31. B. G. Rax, C. I. Lee, A. H. Johnston and C. E. Barnes. Total dose and proton damage in optocouplers, In
IEEE Transactions on Nuclear Science, vol. 43, pp. 3167-3173, 1996.

32. M. Rebaudengo, M. Sonza Reorda, M. Torchiano and M. Violente. Soft-error Detection Through Software
Fault-Tolerance Techniques, IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems,
November 1-3 1999, Albuquerque, New Mexico (USA), pp. 210-218, 1999.

33. E. G. Stassinopoulos, G.J. Brucker, P. Calvel, A. Baiget, C. Peyrotte and R. Gaillard. Charge generation by
heavy ions in power MOSFETs, burnout space predictions and dynamic SEB sensitivity, In IEEE Transactions
On Nuclear Science, vol. 39, pp. 1704-1711, 1992.

34. J. Ziegler. Effect of Cosmic Rays on Computer Memories, Science , Vol. 206, pp. 776-788, 1979.



534 Hagai Bar-El et alii.

,



Experimenting with Faults, Lattices and the DSA
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Abstract. We present an attack on DSA smart-cards which combines physical fault injection and
the lattice reduction techniques devised in [14, 9]. The experiment allowed us to disclose the card’s
private key.

We employ a particular type of fault attack known as a glitch attack, which will be used to actively
modify the DSA nonce k used for generating the signature. k will be tampered with so that a number
of its least significant bytes will flip to zero. Given the resulting signatures we build a lattice and
then solve the closest vector problem to reveal the private key.

Theoretically, this attack should start finding the secret key when given more than twenty faulty
signatures (this is an information theoretic bound) knowing that one byte of k is zeroed. In practice,
our attack almost achieves this bound by retrieving the key from 27 faulty signatures. The more
bytes of k we can reset, the fewer signatures will be required and the faster the attack will be.

This paper presents the theory, methodology and results of the attack as well as possible counter-
measures.

1 Introduction

Over the past few years fault attacks on electronic chips have been investigated and de-
veloped. The theory developed was used to challenge public key cryptosystems [4] and
symmetric ciphers in both block [3] and stream [8] modes.

The discovery of fault attacks (1970s) was accidental. It was noticed that elements
naturally present in packaging material of semiconductors produced radioactive particles
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which in turn caused errors in chips [11]. These elements, while only present in extremely
minute parts (two or three parts per million), were sufficient to affect the chips’ behaviour,
create a charge in sensitive silicon areas and, as a result, cause bits to flip. Since then var-
ious mechanisms for fault creation and propagation have been discovered and researched.
Diverse research organisations such as the aerospace industry and the security commu-
nity have endeavoured to develop different types of fault injection techniques and devise
corresponding preventative methods. Some of the most popular fault injection techniques
include variations in supply voltage, clock frequency, temperature or the use of white light,
X-ray and ion beams.

The objectives of all these techniques is generally the same: corrupt the chip’s behaviour.
The outcomes have been categorised into two main groups based on the long term effect
that the fault produced. These are known as permanent and transient faults. Permanent
faults, created by purposely inflicted defects to the chip’s structure, have a permanent
effect. Once inflicted, such destructions will affect the chip’s behavior permanently. In a
transient fault, silicon is locally ionized so as to induce a current that, when strong enough,
is falsely interpreted by the circuit as an internal signal. As ionization ceases so does the
induced current (and the resulting faulty signal) and the chip recovers its normal behavior.

Preventive measures come in the form of software and hardware protections (the most
cost-effective solution being usually a combination of both). Current research is also looking
into fault detection where, at stages through the execution of the algorithm, checks are
performed to see whether a fault has been induced [10]. For a survey of the different types
of fault injection techniques and the various software and hardware countermeasures that
exist, we refer the reader to [2].

In this paper we will focus on a type of fault attack known as a glitch attack. Glitch
attacks use transient faults where the attacker deliberately generates a voltage spike that
causes one or more flip-flops to transition into a wrong state. Targets for insertion of such
‘glitches’ are generally machine instructions or data values transferred between registers
and memory. Results can include the replacement of critical machine instructions by almost
arbitrary ones or the corruption of data values.

The strategy presented in this paper is the following: we will use a glitch to reset some of
the bits of the nonce k, used during the generation of DSA signatures. As the attack ceases,
the system will remain fully functional. Then, we will use lattice reduction techniques [13, 9]
to extract the private signature key from the resulting glitched signatures.

The paper is organised as follows: In section 2 we will give a brief description of DSA, we
will also introduce the notations used throughout this paper. An overview of the attack’s
physical and mathematical parts will be given in section 3. In section 4 we will present the
results of our attack while countermeasures will be given in section 5.

1.0.1 Related work: In [1] an attack against DSA is presented by Bao et al., this attack
is radically different from the one presented in this paper and no physical implementation
results are given. This attack was extended in [6] by Dottax. In [7], Knudsen and Giraud
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introduce another fault attack on the DSA. Their attack requires around 2300 signatures
(i.e. 100 times more than the attack presented here). The merits of the present work are
thus twofold: we present a new (i.e. unrelated to [7, 1, 6]) efficient attack and describe
what is, to the authors’ best knowledge, the first (publicly reported) physical experiment
allowing to concretely pull-out DSA keys out of smart-cards.

2 Background

In this section we will give a brief description of the DSA.

2.1 DSA Signature and Verification

The DSA [12] works in a finite abelian group G of prime order q generated by g. System
parameters are {p, q, g}, where p is prime (at least 512 bits), q is a 160-bit prime dividing
p − 1 and g ∈ Z∗p has order q. The private key is an integer α ∈ Z∗q and the public key is
the group element β = gα (mod p).

2.1.1 Signature: To sign a message m, the signer picks a random k < q and computes:

r ← (
gk (mod p)

)
(mod q) and s ← SHA(m) + αr

k
(mod q)

The signature of m is the pair: {r, s}.

2.1.2 Verification: To check {r, s} the verifier ascertains that:

r
?
=

(
gwhβwr (mod p)

)
(mod q) where w ← 1

s
(mod q) and h ← SHA(m)

3 Attack Overview

The attack on DSA proceeds as follows: we first generate several DSA signatures where the
random value generated for k has been modified so that a few of k’s least1 significant bits
are reset2. This faulty k will then be used by the card to generate a DSA signature. Using
lattice reduction, the secret key α can be recovered from a collection of such signatures. In
this section we will detail each of these stages in turn, showing first how we tamper with k in
a closed environment and then how we apply this technique to a complete implementation.

1 It is also possible to run a similar attack by changing the most significant bits of k. This is determined by the
implementation.

2 It would have also been possible to run a similar attack if these bits were set to one.
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3.1 Experimental Conditions

DSA was implemented on a chip known to be vulnerable to Vcc glitches. For testing pur-
poses (closed environment) we used a separate implementation for the generation of k.

A 160-bit nonce is generated and compared to q. If k ≥ q−1 the nonce is discarded and
a new k is generated. This is done in order to ascertain that k is drawn uniformly in Z∗q
(assuming that the source used for generating the nonce is perfect). We present the code
fragment (modified for simplicity) that we used to generate k:

PutModulusInCopro(PrimeQ);

RandomGeneratorStart();

status = 0;

do {
IOpeak();

for (i=0; i<PrimeQ[0]; i++) {
acCoproMessage[i+1] = ReadRandomByte();

}
IOpeak();

acCoproMessage[0] = PrimeQ[0];

LoadDataToCopro(acCoproMessage);

status = 1;

for (j=0; j<(PrimeQ[0]+1); j++) {
if (acCoproResult[j] != acCoproMessage[j]) {

status = 0;

}
}

}
while (status == 0);

RandomGeneratorStop();

Note that IOpeaks3, featured in the above code was also included in the implementation
of DSA. The purpose of this is to be able to easily identify the code sections in which a fault
can be injected to produce the desired effect. This could have been done by monitoring
power consumption but would have greatly increased the complexity of the task.

The tools used to create the glitches can be seen in figure 1 and figure 2. Figure 1 is a
modified CLIO reader which is a specialised high precision reader that allows one glitch to
be introduced following any arbitrarily chosen number of clock cycles after the command

3 The I/O peak is a quick movement on the I/O from one to zero and back again. This is visible on an oscilloscope
but is ignored by the card reader.
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sent to the card. Figure 2 shows the experimental set up of the CLIO reader with the
oscilloscope used during our experiments. A BNC connector is present on the CLIO reader
which allows the I/O to be easily read; another connector produces a signal when a glitch
is applied (in this case used as a trigger). Current is measured using a differential probe
situated on top of the CLIO reader.

Fig. 1. Modified CLIO Reader

3.2 Generating a Faulty k

The command that generated k was attacked in every position between the two IOpeaks
in the code. It was found that the fault did not affect the assignment of k to the RAM
i.e. the instruction acCoproMessage[i+1] = ReadRandomByte(); which always executed
correctly. However, it was possible to change the evaluation of i during the loop. This
enabled us to select the number of least significant bytes to be reset. In theory, this would
produce the desired fault in k with probability q/2160, as if the modified k happens to be
larger than q, it is discarded anyway. In practice this probability is likely to be lower as it
is unusual for a fault to work correctly every time.

An evaluation of a position that resetted the last two bytes was performed. Out of 2000
attempts 857 were corrupted. This is significantly less than what one would expect, as the
theoretical probability is ' 0.77. We expected the practical results to perform worse than
theory due to a slight variation in the amount of time that the smart card takes to arrive
at the position where the data corruption is performed. There are other positions in the
same area that return k values with the same fault, but not as often.
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Fig. 2. Experimental Set Up

3.3 The Attack: Glitching k During DSA Computations

The position found was equated to the generation of k in the command that generates the
DSA signature. This was done by using the last I/O event at the end of the command sent
as a reference point and gave a rough position of where the fault needs to be injected.

As changes in the value of k were not visible in the signature, results would only
be usable with a certain probability. This made the attack more complex, as the subset
signatures having faulty k values had to be guessed amongst those acquired by exhaustive
search.

To be able to identify the correct signatures the I/O and the current consumption
signals were monitored during the attacks. An example of such a monitoring is given in
figure 3. The object of these acquisitions was to measure the time T elapsed between
the end of the command sent to the card and the beginning of the calculation of r. This
can be seen in the current consumption, as the chip will require more energy when the
crypto-coprocessor is ignited.

If we denote by t the time that it takes to reach the start of the calculation of r knowing
that the picked k was smaller that q (i.e. that it was not necessary to restart the picking
process) then, if T = t we know that the command has executed properly and that k was
picked correctly the first time. If T > t then any fault targeting k would be a miss (as k was
regenerated given that the value of k originally produced was greater than q). Signatures
resulting from commands that feature such running times can be discarded as the value
of k will not present any exploitable weaknesses. When T < t we know that the execution
of the code generating k has been cut short, so some of the least significant bytes will be
equal to zero. This allows signatures generated from corrupted k values to be identified a
posteriori.
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Fig. 3. I/O and Current Consumption (Beginning of the Trace of the Command Used to Generate Signatures).

As the position where the fault should be injected was only approximately identified,
glitches were injected in twenty different positions until a position that produced signatures
with the correct characteristics (as described above) was found. The I/O peaks left in the
code were used to confirm these results. Once the correct position identified, more attacks
were conducted at this position to acquire a handful of signatures. From a total of 200
acquisitions 39 signatures where T < t were extracted.

This interpretation had to be done by a combination of the I/O and the current con-
sumption, as after the initial calculation involving k the command no longer takes the
same amount of time. This is because 0 < k ≤ q and therefore k does not have a fixed
size; consequently any calculations k is involved in will not always take the same amount
of time.

3.4 Use of Lattice Reduction to Retrieve α

We now apply the lattice attack of Nguy˜̂en and Shparlinski [14] which recovers the DSA
signer’s private key, when partial information on the nonce k is available, and sufficiently
many DSA signatures are given.

We briefly recall the attack.

For a rational number z and m ≥ 1 we denote by bzcm the unique integer a, 0 ≤ a ≤
m − 1 such that a ≡ z (mod m) (provided that the denominator of z is relatively prime
to m). The symbol |.|q is defined as |z|q = minb∈Z |z − bq| for any real z.
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Assume that we know the ` least significant bits of a nonce k ∈ {0, . . . , q − 1} which
will be used to generate a DSA signature.

That is, we are given an integer a such that 0 ≤ a ≤ 2` − 1 and k − a = 2`b for some
integer b ≥ 0. Given a message µ signed with the nonce k, the congruence

αr ≡ sk − h (mod q),

can be rewritten for s 6= 0 as:

αr2−`s−1 ≡ (a− s−1h)2−` + b (mod q). (1)

Now define the following two elements

t =
⌊
2−`rs−1

⌋
q
,

u =
⌊
2−`(a− s−1)

⌋
q

and remark that both t and u can easily be computed by the attacker from the publicly
known information. Recalling that 0 ≤ b ≤ q/2`, we obtain

0 ≤ bαt− ucq < q/2`.

And therefore:
|αt− u− q/2`+1|q ≤ q/2`+1. (2)

Thus, the attacker knows an integer t and a rational number v = u + q/2`+1 such that :

|αt− v|q ≤ q/2`+1.

In some sense, we know an approximation of αt modulo q. Now, suppose we can repeat
this for many signatures, that is, we know d DSA signatures {ri, si} of hashes hi (where
1 ≤ i ≤ d) such that we know the ` least significant bits of the corresponding nonce ki.
From the previous reasoning, the attacker can compute integers ti and rational numbers vi

such that :
|αti − vi|q ≤ q/2`+1.

The goal of the attacker is to recover the DSA private key α. This problem is very similar
to the so-called hidden number problem introduced by Boneh and Venkatesan in [5]. We
solve the problem by transforming it into a lattice closest vector problem (for background
on lattice theory and its applications to cryptography, we refer the reader [15]).

More precisely, consider the (d + 1)-dimensional lattice L spanned by the rows of the
following matrix: 



q 0 · · · 0 0

0 q
. . .

...
...

...
. . . . . . 0

...
0 . . . 0 q 0
t1 . . . . . . td 1/2`+1




. (3)
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The inequality |vi − αti|q ≤ q/2`+1 implies the existence of an integer ci such that:

|vi − αti − qci| ≤ q/2`+1. (4)

Notice that the row vector c = (αt1 + qc1, . . . , αtd + qcd, α/2`+1) belongs to L, since it
can be obtained by multiplying the last row vector by α and then subtracting appropriate
multiples of the first d row vectors. Since the last coordinate of this vector discloses the
hidden number α, we call c the hidden vector. The hidden vector is very close to the
(publicly known) row vector v = (v1, . . . , vd, 0). By trying to find the closest vector to v in
the lattice L, one can thus hope to find the hidden vector c and therefore the private key
α. The article [14] presents provable attacks of this kind.

In our case, we simply build the previously mentioned lattice and try to solve the
closest vector problem with respect to v, using the so-called embedding technique that
heuristically reduces the lattice closest vector problem to the shortest vector problem (see
[14] for more details).

4 Results

In our experiments, we used NTL’s [17] implementation of Schnorr–Euchner’s BKZ algo-
rithm [16] with block size 20 as our lattice basis reduction algorithm.

To check our results, for any candidate y for the private key α, we checked that β =
gy (mod p). To compute the success rates, we ran the attack 100 times with different
parameters. Results can be seen in the following table.

Table 1. Experimental Attack Success Rates, ` is the Number of Bits Reset and d the Number of Signatures

` ↓, d → 2 3 4 5 6 7 8 10 11 12 22 23 24 25 26 27
1× 8 0% 10% 39% 63% 87% 100%
2× 8 0% 69% 100%
3× 8 0% 69% 100%
4× 8 0% 100%
5× 8 2% 100%
6× 8 0% 100%
7× 8 0% 99%

For a successful attack, the speed at which the private key is retrieved will depend on
the number of bytes reset in k. Naturally, there will be a tradeoff between the fault injection
and the lattice reduction, meaning that when generating signatures with nonces with more
reset bits, the lattice phase of the attack will retrieve the key faster. Conversely if we
generate signatures with nonces having only one or two bytes reset, the lattice reduction
phase will not run as quickly, but the fault injection part of the attack will be much simpler.
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5 Countermeasures

The heart of this attack lies with the ability to induce faults that reset some of k’s bits.
Hence, any strategy allowing to avoid or detect such anomalies will help thwart the attacks
described in this paper. We recommend to used simultaneously the following tricks that
cost very little in terms of code-size and speed:

– Checksums can be implemented in software. This is often complementary to hardware
checksums, as software CRCs can be applied to buffers of data (sometimes fragmented
over various physical addresses) rather than machine words.

– Execution Randomization: If the order in which operations in an algorithm are executed
is randomized it becomes difficult to predict what the machine is doing at any given
cycle. For most fault attacks this countermeasure will only slow down a determined
adversary, as eventually a fault will hit the desired instruction. This will however thwart
attacks that require faults in specific places or in a specific order.

For instance, to copy 256 bytes from buffer a to buffer b, copy

b[f(i)] ← a[f(i)] for i = 0, . . . , 255

where f(i) = (x × (i ⊕ w) + y (mod 256)) ⊕ z and {x, y, z, w} are four random bytes
(x odd) unknown to the attacker.

– Ratification counters and baits: baits are small (< 10 byte) code fragments that perform
an operation and test its result. A typical bait writes, reads and compares data, performs
xors, additions, multiplications and other operations whose results can be easily checked.
When a bait detects an error it increments an NVM counter and when this counter
exceeds a tolerance limit (usually three) the card ceased to function.

– Repeated refreshments: refresh k by generating several nonces and exclusive-or them
with each other, separating each nonce generation from the previous by a random delay.
This forces the attacker to inject multiple faults at randomly shifting time windows in
order to reset specific bits of k.

Finally, it may also be possible to have a real time testing of the random numbers being
generated by the smart card, such as that proposed in the FIPS140-2. However, even if
this is practical it may be of limited use as our attack requires very few signatures to be
successful. Consequently, our attack may well be complete before it gets detected.

6 Conclusion

We described a method for attacking a DSA smart card vulnerable to fault attacks. The
attack consisted of two stages. The first stage dealt with fault injection. The second involved
forming a lattice for the data gathered in the previous stage and solving the closest vector
problem to reveal the secret key.
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The attack was realised in the space of a couple of weeks and was made easier by the
inclusion of peaks on the I/O. This information could have been derived by using power or
electromagnetic analysis to locate the target area, but would have taken significantly longer.
The only power analysis done during this attack was to note when the crypto-coprocessor
started to calculate a modular exponentiation.
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Abstract. In addition to its usual complexity assumptions, cryptography silently assumes that
information can be physically protected in a single location. As one can easily imagine, real-life
devices are not ideal and information may leak through different physical channels.

This paper gives a rigorous definition of leakage immunity and presents several leakage detection tests.
In these tests, failure confirms the probable existence of secret-correlated emanations and indicates
how likely the leakage is. Success does not refute the existence of emanations but indicates that
significant emanations were not detected on the strength of the evidence presented, which of course,
leaves the door open to reconsider the situation if further evidence comes to hand at a later date.

1 Introduction

In addition to its usual complexity postulates, cryptography silently assumes that secrets
can be physically protected in tamper-proof locations.

All cryptographic operations are physical processes where data elements must be rep-
resented by physical quantities in physical structures. These physical quantities must be
stored, sensed and combined by the elementary devices (gates) of any technology out of
which we build tamper-resistant machinery. At any given point in the evolution of a tech-
nology, the smallest logic devices must have a definite physical extent, require a certain
minimum time to perform their function and dissipate a minimal switching energy when
transiting from one state to another.

The physical interpretation of data processing (a discipline named the physics of com-
putational systems [18]) enables fundamental comparisons between computing technologies
and provides physical lower bounds on the area, time and energy required for computa-
tion [2, 10]. In this framework, a corollary of the second law of thermodynamics states
that in order to introduce direction into a transition between states, energy must be lost
irreversibly. A system that conserves energy cannot make a transition to a definite state
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and thus cannot make a decision (compute) ([18], 9.5). In tamper-resistant devices this in-
escapable energy transfer must (at least appear to) be independent of the machine’s secret
parameters.

Despite extensive (and expensive) government-level research over the last forty years,
most tamper resistance references are hardly accessible: tempest’s nacsim 5100a, nato’s
amsg 720b and the sepi proceedings [21, 22] are a few such examples. France’s dissi/scssi
recommendation 400 is public but its six most informative parts are only accessible on a
need-to-know basis.

The rapid development of sophisticated (but often insecure) digital communication
systems have created new academic and commercial interest in tamper resistance. Al-
though the fips 140-1 standard [20] includes physical tamper resistance requirements, new
standards such as Common Criteria [8] are currently being developed to provide a more
comprehensive framework for tamper resistance testing. Several insightful papers about
physical attacks (e.g. [1]) and fault attacks (e.g. [3, 4]) have been written, and these con-
tinue to be subjects of active research. This paper analyzes an area of recent interest –
side-channel attacks – which exploit correlations between secret parameters and variations
in timing [13], power consumption [12], and other emanations from cryptographic devices
to infer secret keys.

This work is organized as follows: we start by introducing a general framework which
is side-channel, algorithm and device-independent; this will yield a formal definition of
leakage immunity (section 2), we will then present a collection of leakage detection tests
(section 3) and experiment their effectiveness with a simple RLC filter (section 4).

2 What Can We Ideally Expect ?

We view the tested hardware as a probabilistic Turing machine H with alphabet Σ, having
a start and a stop state. H operates on the following one-way infinite tapes:

– a private read-only key tape K containing the key material which is the attacker’s
target,

– a public read-only input tape M which in practice contains the machine’s input (pro-
gram, plaintexts to encrypt, messages to sign, ciphertexts to decrypt etc),

– a private read-only noise tape N representing the noise added to the side channel by
the attacker’s measurement equipment and processes,

– a private work tape W containing the device’s work variables,

– a public write-only emanation tape E (representing the side-channel information), and
– a public output tape O containing the hardware’s output (plaintext decrypted or sig-

nature computed by H etc.).

H is finite expected time. i.e. there is a function f such that, on inputs of length n, H’s
expected computation time (number of state transitions elapsed from start to stop) does
not exceed f(n). As is usual, we also assume that there is a polynomial r such that H never
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writes more than r(n) characters (including blanks) on E when the length of M∪K is n.
Actually, the most complete model also includes a private read-only random tape R (the
device’s internal random number generator) used whenever a random number is required
in a computation (e.g. a DSA signature or the generation of a fresh session key).

If H is given an empty W , a noise tape N with η ∈ Σω, an input tape M with µ ∈ Σω,
a random tape R with ρ ∈ Σω and is then run with κ ∈ Σ∗ on K then the contents
of E , denoted Hη,ρ(κ, µ) (interpreted as the device’s emanation, collected during some
particular experiment) is well-defined. If we omit mention of η and ρ then H(κ, µ) (the
expected emanations characterizing a device keyed with κ and µ) is a probability space.
The non-initialized hardware H can thus be seen as a family of probability spaces.

Referring to the usual definition of statistical indistinguishablity ([16], page 70) we
define leakage immunity as follows:

Definition 1. H is leakage-immune if for all distributions {K,M} and {K ′,M ′}, the
distributions H(K, M) and H(K ′,M ′) are statistically indistinguishable.

Although this definition is overly cautious, it seems impossible to come up with a
meaningful alternative that captures the distinction between breaking H in a harmful and
a non-harmful sense (probably because of the imprecise meaning of the word harmful,
which typically becomes clear only after H is broken). This is however, compensated by
the fact that leakage immunity guarantees that no information on κ can be inferred from E ,
whatever the attacker’s strategy is. Needless to say, we know of no system which is secure
in this sense.

In this light, vulnerabilities to timing and power consumption attacks, electromag-
netic monitoring and microprobing are nothing but specific manners of not being leakage-
immune.

Related work: In an independent work Chari et al. formalized a similar definition of
leakage immunity ([5], section 2.1). Actually, after assuming this similar definition the two
contributions differ : Chari et al. describe a provably secure instance whereas we develop
tests capable of detecting secret leakage (cryptophthora) in unknown implementations.

3 What Can We Practically Hope to Achieve ?

Ideally, only a physical in-depth analysis of the device (an a priori test) could rule out
the existence of emanations or quantify the leakage under some assumptions. Such insider
analyses (which should be ideally conducted by the device’s manufacturer) would directly
point to the origins of the leakage, provide an objective evaluation of the device’s limitations
and be more insightful than the black-box tests (also called blind or a posteriori tests)
described hereafter.

It appears quickly that perfect proofs of concept are unavailable for a variety of reasons
such as the limited precision of analog simulators or the extreme complexity of the analyzed
devices (let alone the vendors’ reluctance to reveal design details and the analysis’ financial
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cost). vhdl synthesis provides a powerful capability to optimize designs for gate count or
speed. To achieve this, synthesis tools have built-in timing analyzers that can automati-
cally calculate worst case time delays, setup and hold conditions and use this information
to selectively optimize the circuit where needed. The result is an automatically synthesized
product which gate-level design has been computer generated. In an ideal situation, the
designer should not need to examine this gate-level design (others apparently do that [14]),
but until synthesis tools are more tightly merged with asic layout tools, there is always
some amount of uncertainty (typically around ±4% for products such as Synopsys’ Pow-
erMill and PowerGate) on the device’s spectral and temporal power consumption features.

First generation simulators (∼= 1985) used the digital simulation results to infer the
local capacitance C switched by each switch on each node. The power dissipation was then
approximated by CV 2

ddf where Vdd and f denote the supply voltage and clock frequency ap-
plied to H. Recent packages use gate-level current simulation and recursive device partition
to achieve better precision.

The tests presented in this paper are specifically designed to be cryptosystem and
technology independent and should be soon available as an experimental postlayout library.

3.1 Significance Tests

We are thus obliged to reason with partial information and find reliable black-box tests
that exhibit evidence of leakage; the outcome of such tests may confirm or contradict what
human judgement might lead to expect, but at least, conclusions will be objective and
capable of statistical justification.

Statistics provide procedures for evaluating likelihood, called significance tests. In essence,
given two collections of samples, a significance test evaluates the probability that both sam-
ples could rise by chance from the same parent group. If the test’s answer turns out to
be that the observed results could arise by chance from the same parent source with very
low probability we are justified in concluding that, as this is very unlikely, the two parent
groups are most certainly different. Thus, we judge the parent groups on the basis of our
samples, and indicate the degree of reliability that our results can be applied as general-
izations. If, on the other hand, our calculations indicate that the observed results could be
frequently expected to arise from the same parent group, we could have easily encountered
one of those occasions, so our conclusion would be that a significant difference between
the two samples was not proven (despite the observed difference between the samples).
Further testing might, of course, reveal a genuine difference, so it would be wrong to claim
that our test proved that a significant difference did not exist; rather, we may say that
a significant difference was not demonstrated on the strength of the evidence presented,
which of course, leaves the door open to reconsider the situation if further evidence comes
to hand at a later date. In practice, we would apply about twenty different tests to H (four
of which are described in this paper) and if it passes these satisfactorily, we only consider
it to be possibly-resistant (an experiment can only prove that something actually happens,
but no finite number of trials can ever prove that something will never happen).
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The non-technical reader may prefer this analogy: to challenge the hypothesis that a
lake H contains no fishes (forms of information leakage) an a-priori tester would dive and
inspect each portion of the lake. Although exhausting, such an inspection may definitely
prove that there are no fishes in the lake. An a posteriori tester would rather throw different
hooks into the water hoping that a fish will eventually bite one of them (for one single
captured fish will refute the assumption, thereby making the economy of an underwater
inspection). Failure to find fish proves nothing (e.g. the hooks may simply not be adapted
to the species inhabiting the lake) but comforts the tester’s empirical confidence in the
correctness of his assumption.

Note that a very similar situation occurs in randomness tests [6, 9, 11, 17] where, if a
sequence behaves randomly with respect to the a posteriori tests T1, T2, . . . , Tn one can not
be sure that it will not be rejected by a further test Tn+1; yet, successive tests give more
and more confidence in the randomness of the sequence without any a priori information
about the structure of the random number generator.

3.2 Leakage Detection Tests

We start by transforming H into an experiment c = H(x) where x is the device’s input
(depending on the experiment, x can be a key, a message or the concatenation of both) and
c the corresponding output; we denote by i the experiment’s serial number. The device’s
emanation can be a scalar e[i] (e.g. execution time), an array {e[i, 0], e[i, 1], . . . , e[i, τ − 1]}
(e.g. power consumption) or a table:




e[i, 1, 0] e[i, 1, 1] . . . e[i, 1, τ − 1]
. . . . . . . . . . . .

e[i, `, 0] e[i, `, 1] . . . e[i, `, τ − 1]




representing the simultaneous evolution of ` quantities (e.g. samples or microprobes) during
τ clock cycles. The tests that we are about to describe operate on e[i, . . .] and use (existing)
significance and randomness tests as basic building blocks:

Definition 2. When called with two sufficiently large samples X and Y , a significance
test S(X,Y ) returns a probability α that an observed difference in some feature of X and
Y could rise by chance assuming that X and Y were drawn from the same parent group.
The minimal sample size required to run the test is denoted size(S).

Definition 3. When called with a sufficiently large sample set:

X = {x1, . . . , xn}

where each xi ∈ R is such that 0 ≤ xi ≤ 1, a randomness test R(X) returns a probability
β that some observed feature in X could rise by chance while sampling n times a random
uniform distribution. The minimal sample size required to run the test is denoted size(R).
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Many randomness tests for binary strings exist and can be used in our construction
after straightforward conversion (e.g. replace xi by zero if 0 ≤ xi < 0.5 and by one if
0.5 ≤ xi ≤ 1 etc). The tests mentioned in the following table are more or less standard and
cover a reasonable range of statistical defects; they are easy to implement and sensitive
enough for most practical purposes.

test R notation description
frequency test F-test [11], (page 55) 3.3.2;A
run test R-test [11], (page 60) 3.3.2;G

As for significance tests, we arbitrarily restricted our choice to the three most popular
ones : the distance of means, goodness of fit and sum of ranks. The reader may find the
description of these procedures in most undergraduate textbooks (e.g. [15, 19]) or replace
them by any custom procedure compatible with definition 2 (we will come to that in section
3.4).

test S notation description
distance of means DoM-H-test [19], (pp. 240–242) 7.9
goodness of fit GoF-H-test [19], (pp. 294–295) 9.6
sum of ranks SoR-H-test [19], (pp. 306–308) 10.3

3.3 General Vulnerability to Timing Attacks

This test challenges the claim: 2n execution time measurements are insufficient to distin-
guish H(γ1) from H(γ2) with significant probability.

– Select two inputs γ1 6= γ2 (γj is typically a key, a message or the concatenation of both).
– Select a significance test S (e.g. amongst DoM-H-test, GoF-H-test and SoR-H-test).
– For j = 1 and 2, feed H with γj and perform (under identical experimental conditions)

n ≥ size(S) time measurements, we denote by ej[i] the i-th execution time obtained
using γj.

– Compute:

α = S({e1[1], e1[2], . . . , e1[n]}, {e2[1], e2[2], . . . , e2[n]})
– If α > 1% answer ’possibly‘ else answer ’no‘.

Note: The reader could, of course, question the usefulness of this test for it would suffice
to make sure that e[i] is constant at some early design stage. Unfortunately, engineers
usually build new systems on top of existing black boxes (e.g. compiled operating systems,
commercially available chips etc.) which processing times depend on both γj and other
unpredictable or undocumented parameters. The result is some global execution time dis-
tribution [13] where the contributions of γj and the other parameters are mixed.
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3.4 General Vulnerability to Power Consumption Attacks

This test challenges the claim : 2n power consumption curves (τ -sample long) are insuffi-
cient to distinguish H(γ1) from H(γ2) with significant probability.

– Select two inputs γ1 and γ2 (γj is again a key, a message or the concatenation of both).

– Select a significance test S (e.g. amongst DoM-H-test, GoF-H-test and SoR-H-test)
and a randomness test R (e.g. amongst F-test and R-test).

– For j = 1 and 2, feed H with γj and perform (under identical experimental conditions)
n ≥ size(S) power consumption acquisitions, we assume that each acquisition is τ -
sample long, that τ ≥ size(R) and denote by ej[i, t] the t-th sample of the i-th waveform
obtained using γj.

– For t = 0 to τ − 1 let:

α[t] = S({e1[1, t], e1[2, t], . . . , e1[n, t]}, {e2[1, t], e2[2, t], . . . , e2[n, t]})
– At this step {α[0], α[1], . . . , α[τ − 1]} should be uniformly distributed if H is leakage-

immune; consequently, let:

β = R({α[0], α[1], . . . , α[τ − 1]})
– If β > 1% answer ’possibly‘ else answer ’no‘.

Note: The test’s effectiveness depends on the manner in which S and R handle the random
variables defined by the device’s underlying physics. Since our procedure does not assume
any specific law of physics, inadequate choices of S and R will not result in false evaluations1

but may stubbornly return the answer ’possibly‘ and fail to reflect an existing leakage
(remember, we presume H innocent until proven guilty; failure to ask pertinent questions
will not convict an innocent but may eventually force the detective to free H for lack of
evidence).

At this point, preliminary planning and some hardware insight appear necessary. Figure
A shows a cmos logic inverter. The inverter can be looked upon as a push-pull switch: in
grounded cuts off the top transistor, pulling out high. A high in does the inverse, pulling
out to ground. cmos inverters are the basic building-block of all digital cmos logic, the
logic family that has become dominant in very large scale integrated circuits (vlsi) [23].

Figure A.

1 provided, of course, that the chosen S and R comply with definitions 2 and 3.
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cmos power dissipation has three different origins: the static dissipation due to leakage
current drawn continuously from the power supply, the dynamic dissipation due the charg-
ing and discharging of internal load capacitances (stray) and the short-circuit dissipation
due to transistor switching.

Static dissipation: In theory, unclocked cmos circuits consume no quiescent current
other than the small reverse-bias leakage between diffusion regions and the substrate plus
some sub-threshold conduction (typically 10 nA to 10 µA, depending on the device’s size).
The source-drain diffusions and the n-well diffusion form reverse-biased parasitic diodes
whose leakage contributes to static power dissipation. The quiescent power dissipation per
gate is thus governed by the diode equation:

Pqu = is(e
qV/kT − 1)× Vdd

where is is the reverse saturation current, V the diode voltage, q the electronic charge
(1.6× 10−19 C), k denotes Boltzmann’s constant (1.38× 10−23 J/K) and T is the device’s
temperature.

The total static power dissipation Pst is simply the sum of the individual Pqu contribu-
tions over all the gates composing H and is, at least in theory, independent of γj for large
irregular chips. However, eeprom avalanche injection requires a programming voltage (de-
noted Vpp) which is higher than Vdd. In a smart-card, Vpp is generated by a hybrid circuit
having a specific Pst profile making eeprom operations easy to characterize. Variations in
Pst due to large bus driving were also observed experimentally.

Short-circuit dissipation: During transition from 0 to 1 or vice-versa, the device’s n
and p transistors are on for a short period of time. This results in a short data-dependent
current pulse from Vdd to Vss. The spike also depends on the clock’s rise/fall time and, as
confirmed experimentally with at least one smart-card chip, slow edges can increase the
pulse’s amplitude.

Suggested guideline 1: When tested, H should be clocked with a signal which rise/fall
times are long (unless the device’s detectors forbid or filter such signals).

Assuming that rise and fall times are equal (t↑ = t↓ = tl), that the junctions’ β are
equal2 and that the technology’s Vtp and Vtn are equal (Vt denotes the threshold voltage,
the gate-source voltage at which drain current begins to flow; Vt is typically in the range of
0.5 to 5V in the forward direction), it can be shown that the short-circuit power dissipation
is:

Psc =
β

12
(Vdd − 2Vt)

3 × tlf

Dynamic dissipation: Finally, current is also required to charge and discharge the
internal capacitive loads. Denoting by C the load capacitance and by f the clock frequency,
it is easy to show (under the assumption that tl is much smaller than 1/f) that the dynamic
power dissipation is:

2 note that unlike bipolar β which are unitless, FET β are measured in µA/V2.
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Pdy = CV 2
ddf

As C is increased, Pdy progressively starts to dominate Pst and Psc and a rough frequency
domain analysis performed on a popular chip seems to suggest that Psc

∼= 15%P , Pst < 5%P
and Pdy > 80%P where P = Psc + Pst + Pdy is the device’s total dissipation.

Suggested guideline 2: The definitions of Psc and Pdy imply (and experiments con-
firm) that an important Hamming distance between γ1 and γ2 should increase the test’s
performances.

Selection guidelines for R: As we have just seen, current is required to charge the
internal capacitances during switching. Charging and discharging is not instantaneous (as
a rule of thumb, a capacitor charges or decays to within 1% of its final value in five RC
time constants) and therefore, data-dependent power consumption differences should not
be isolated incidences in sufficiently sampled experiences. The genuine long leakage bursts
will therefore be better discriminated from the random effects of chance3 (false alerts) by
randomness tests that are sensitive to concentrations of abnormally low values. Frequency
tests are fairly good at spotting such defects and should suffice for most applications. The
run test (which reacts to unusually long increasing or decreasing sequences, corresponding
to the gradual charging and discharging of C) tends to give slightly better results. For
technology-specific purposes, Kolmogorov-Smirnov’s test can also be tuned to maximize
sensitivity to known differences with respect to location, dispersion and skewness.

Selection guidelines for S: Since we made no assumption on the physical units or the
range of ej[i, t], our test remains statistically sound even if we replace ej[i, t] by φ(t, ej[i, t])
where φ is an arbitrary function. The test will also remain valid if we replace samples by
groups of samples. For instance, we may replace e by the least-squared:

ēj[i, t] = trend(ej[i, 3t], ej[i, 3t + 1], ej[i, 3t + 2])

and (to better reflect the synchronous nature of H) test ē instead of e. 3t is only a toy
example and acquisition frequencies which are integer multiples of f are good enough for
most evaluations; more accurate results can nevertheless be obtained by deseasonalization:

Suggested guideline 3: Trigger the sampling operation by H’s clock and analyze
samples by groups corresponding to each clock cycle.

Needless to say, φ could degrade or enhance the signals that we want to detect and a
good selection of φ is crucial. This can be achieved by various techniques which are beyond
the scope of this paper (e.g. apply geometric hashing [24] to sample groups corresponding
to different clock cycles and tune feature extraction by simulated annealing).

Finally, the test should never be run in parallel on two devices of the same nominal
type. If this is not respected, manufacturing spread is likely to be detected instead (or
with) the data-dependent leakage by the test.

3 strictly speaking, chance is never a cause, it only refers to a happening which occurs in the (apparent) absence
of a cause.
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(Strongly) suggested guideline 4: Re-key the same device; do not use distinct
devices (of the same nominal type) to collect e1[i, t] and e2[i, t].

3.5 Correlation with the I/O’s Hamming Weight

While in the previous test we analyzed general forms of leakage, here we look for a correla-
tion between e and the device’s I/O. For doing so, we challenge the following claim: power
consumption variations do not increase or decrease with the Hamming weight of H’s input
or output.

– Select k different inputs γ0, . . . , γk−1 such that ~(γi+1) > ~(γi) where ~(x) denotes the
Hamming weight of x.

For instance, if the device’s input is a string of bytes and if it is known that H is an
8-bit machine, the tester may set k = 9 and define γi to be a series of bytes of value
2i − 1. Let σ(~(γj)) denote the standard deviation of {~(γ0), . . . , ~(γk−1)}.

– For j = 0 to k − 1:

key H with γj and perform n power consumption acquisitions, we assume again that
each acquisition is τ -sample long, that τ ≥ size(R) and denote by ej[i, t] the t-th sample
of the i-th waveform obtained using γj.

– Average the power consumption curves:

ēj[t] =
1

n

n−1∑
i=0

ej[i, t]

and compute (the covariance and standard deviations are all taken over the variable j)
for t = 0 to τ − 1:

ρ[t] =
Cov (ēj[t], ~(γj))

σ(ēj[t])σ(~(γj))

– If, indeed, at all points in time there is no direct (negative or positive) correlation
between the average power consumption and the Hamming weights of γj, the hypotheses
ρ[t] = 0 should hold for 0 ≤ t < τ and since the statistic:

z[t] =
ρ[t]
√

k − 2√
1− ρ[t]2

follows a t-distribution with k−2 degrees of freedom, we can compute the probabilities:

α[t] = t-distributionk−2(z[t]) for t = 0, . . . , τ − 1

and make sure that {α[0], α[1], . . . , α[τ − 1]} is uniformly distributed by testing:

β = R({α[0], α[1], . . . , α[τ − 1]})
– If β > 1% answer ’possibly‘ else answer ’no‘.

Note: This test can also be applied to the device’s output by modifying the input arbi-
trarily until an output having a desired weight appears. This limits the test to moderate
word sizes (typically < 32 bits) but appears sufficient in most situations.
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3.6 Correlation Between the Leakage and External Parameters

Although in theory, power consumption increases approximately linearly with the clock’s
frequency (as we have just seen, switching requires current and as frequency increases,
switching becomes more frequent in time), other parameters such as the clock’s shape,
duty cycle, the external temperature or Vdd influence the leakage. The test presented in
this section challenges the claim: leakage is independent of the external parameters applied
to H (such as the clock’s shape, frequency, temperature, Vdd, etc.)

We denote by θ0 and θ1 two different experimental conditions which might be qualitative
(e.g. θ0 is a square clock whereas θ1 is a triangular one) or quantitative (e.g. θ0 means
Vdd = 4V whereas θ1 means Vdd = 5V).

– For u = 0 and 1, subject H to θu and perform v > size(S) times the test described in
section 3.4. Let:

αu[`, 0], . . . , αu[`, τ − 1]

be the probability curve obtained during the `-th experiment under θu.
– Select a significance test S and a randomness test R.
– For t = 0 to τ − 1 let:

a[t] = S({α1[1, t], α1[2, t], . . . , α1[v, t]}, {α2[1, t], α2[2, t], . . . , α2[v, t]})
– At this step {a[0], a[1], . . . , a[τ − 1]} should be uniformly distributed if the leakage is

independent of θ. As for the previous tests, let:

β = R({a[0], a[1], . . . , a[τ − 1]})
– If β > 1% answer ’possibly‘ else answer ’no‘.

Note: Here, success does not imply possible-resistance but indicates that if H leaks, the
leakage (which may be important) does not seem to vary when θ0 is replaced by θ1 (we say
that H is possibly stable).

Finally, in all experiments involving temperature, one should keep in mind that VGS and
β depend on temperature. This causes drifts in output current with changes in ambient
temperature; in addition, the junction’s temperature varies as the load voltage is changed
(because of variation in the transistor’s dissipation), resulting in departure from the FET’s
ideal behavior. Therefore, if we key H with γ1, perform n acquisitions, replace γ1 by γ2 and
perform n new acquisitions, the first (γ1-type) acquisitions will progressively heat H while
the acquisitions performed with γ2 will take place in a thermodynamically stable device
(at some point, H’s temperature will reach an equilibrium that depends on the clock’s
frequency, Vdd and the external temperature). This difference between e1[i, t] and e2[i, t]
can therefore be misinterpreted by the test as a data-dependent one.

Suggested guideline 5: When collecting the power consumption curves, alternate
acquisitions with γ1 and γ2.
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4 What Can We (typically) Get for a Reasonable Price ?

To evaluate our tests, we implemented the following 68HC05-based PIN comparison routine
on a popular smart-card chip:

CLR Result ; Result = 0

LDX #$08 ; for X = 8 downto 1

more LDA k-1,X ; {
EOR m-1,X ; A = k[X-1] xor m[X-1]

ORA Result ; A = A or Result

STA Result ; Result = A

DEX ;

BNE more ; }
SEC ; carry = 1

SBC #$00 ; if (Result==0) then carry = 1 else carry = 0

CLRA ; A = 0

CLR Result ; Result = 0

RTS ; return(carry)

After running the DoM-H-test (appendix A) on the device, we added the RLC filter
drawn in figure B and re-started from scratch.

Figure B.

A (very) long list of defects makes this protection non-ideal and we do not recommend
to adopt it in any practical application (actually, L even acts as an antenna that broadcasts
signals correlated to the power consumption variations). We nevertheless proceeded to use
this filter, which attenuates the input signal by:

ρ(ω) =
1

r + R
×

√
(L + CrR)2ω2 + (r + R− CLrω2)2

to find out to what extent figure B departs from definition 1 (the diode is simply added to
block the inductive kick; something like a 1n4004 is fine for nearly all cases).

Usual smart-card current consumption is roughly 10 mA for Vdd = 5 V, whereby r ∼=
500Ω. Assuming that the resistor added by the attacker is small (R ∼= 10Ω) and using
C = 4.7nF and L = 1µH we get a 27 dB attenuation for f = ω/(2π) = 3.57MHz.
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Figure C shows the card’s average (n = 1000) power consumption curve for k0 =
00...0016 where the eight loop iterations can be easily distinguished.

25 50 75 100 125 150 175
cycles

105

110

115

120

signal

25 50 75 100 125 150 175
cycle

116

118

120

122

124

signal

Figure C. filter 7→ Figure C’.

Figure D shows4 the α curve obtained when applying the DoM-H-test to curves obtained
with k0 and k1 = FF...FF16 (for m = 55...5516 in both cases). The dashed line formed
at the α ∼= 0 level points-out the clock-cycles where the k0 curves could be distinguished
from the k1 ones.
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Figure D. filter 7→ Figure D’.

As expected, a closer look at a problematic clock cycle (155) spotted by the test reveals
a genuine difference between the two curves (figure E).
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Figure E. filter 7→ Figure E’.

Repeating the same experiment with the filtered card, figures C,D,E become C’,D’,E’ (y
axis zoomed when necessary). Surprisingly, it appears that the filter increased the number
of samples in which the test failed ! The explanation of this counter-intuitive observation
is the following : L and C act as energy accumulators and average the power consumption
differences into the future. When a first difference occurs, L and C start averaging it,
thereby contaminating the coming samples. Since our routine repeats the same comparison

4 axes cross at {0,−0.1} to avoid plotting points on the x-axis.
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eight times, the power consumption quickly reaches (for k0 and k1) two different (yet
individually stable) signal levels, detected by test.

More effective power consumption compensators exist. These are based on active com-
ponents (FETs) that dissipate power5 whenever the card does not. The design of such
protections is somewhat technical given the need to eliminate HF peaks (let alone in-
sensitivity to Vdd, clock and temperature variations). Active protections also increase the
circuit’s global power consumption, which might be very problematic in some applications
(e.g. mobile telephony).

Data-related dissipation has specific spectral characteristics and it appears useless to
waste energy in order to overcome variations in frequencies where consumption is data-
independent. For example, rough spectral estimates indicate that only 30 to 40% carefully
triggered (and this is precisely where the difficulty is) extra dissipation might be enough
to complement the data-dependent components in most chips. It is therefore our belief
that the best long-term solutions involve minimizing data dependent side channels and
building cryptography that inherently tolerates some information leakage, as opposed to
the (energy-consuming) solution consisting of brutally flattening the power consumption
curve.
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APPENDIX
THE DIFFERENCE OF MEANS TEST

The DoM-H-test (e.g. [7]) is a significance test returning a probability α that an ob-
served difference in the means of two sample sets X and Y could rise by chance, assuming
that X and Y were drawn from the same parent population.

In other words, the test challenges the hypothesis: µ[X]
?
= µ[Y ] where µ[i] denotes the

mean of set i.

By virtue of the CLT, the experimental averages of X and Y (respectively X̄ and
Ȳ ) are approximately Gaussian, independent, of expectations {µ[X], µ[Y ]} and variances
{σ[X]2/n[X], σ[Y ]2/n[Y ]}; where n[U ] denotes the number of elements in the set U .

We can therefore compute the reduced Gaussian variable:

ε =
X̄ − Ȳ√

s[X]2

n[X]
+ s[Y ]2

n[Y ]

(s[U ] denotes the standard deviation of the set U) and look-up its corresponding value
in the CDF Gaussian table which yields the hypothesis’ significance α representing the
probability that the reduced deviation will equate or exceed in absolute value a given ε.

α 0.000 0.010 0.020 0.030 0.040 0.050 0.060 0.070 0.080 0.090

0.00 ∞ 2.576 2.326 2.170 2.054 1.960 1.881 1.812 1.751 1.695

0.10 1.645 1.598 1.555 1.514 1.476 1.440 1.405 1.327 1.341 1.311

0.20 1.282 1.254 1.227 1.200 1.175 1.150 1.126 1.103 1.080 1.058

0.30 1.036 1.015 0.994 0.974 0.954 0.935 0.915 0.896 0.878 0.860

0.40 0.842 0.824 0.806 0.789 0.772 0.755 0.739 0.722 0.706 0.690

0.50 0.674 0.659 0.643 0.628 0.613 0.598 0.583 0.568 0.553 0.539

0.60 0.524 0.510 0.496 0.482 0.468 0.454 0.440 0.426 0.412 0.399

0.70 0.385 0.372 0.358 0.345 0.332 0.319 0.305 0.292 0.279 0.266

0.80 0.253 0.240 0.228 0.215 0.202 0.189 0.176 0.164 0.151 0.138

0.90 0.126 0.113 0.100 0.088 0.075 0.063 0.050 0.038 0.025 0.013

α is obtained by adding the two numbers appearing in the margins (for instance : for
ε = 1.960 table[ε]=0.000+0.05 = 0.05), except for small values where the following table
should be used:

α 10−3 10−4 10−5 10−6 10−7 10−8 10−9

ε 3.291 3.891 4.417 4.892 5.327 5.731 6.109

PC users may prefer Mathematica’s standard DoM-H-test (Statistics package) or
use α = 2(1-N[CDF[NormalDistribution[0,1],ε]]) instead of the CDF Gaussian table.
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Abstract. This paper will attempt to explain some of the side-channel attack techniques in a fashion
that is easily comprehensible by the layman.
What follows is a presentation of three different attacks (power, timing and fault attacks) that can
be carried out on cryptographic devices such as smart-cards.
For each of the three attacks covered, a puzzle and it‘s solution will be given, which will act as an
analogy to the attack.
How these attacks can be applied to real devices will also be discussed.

1 Timing Attacks

When an algorithm is executed on a device it will take a certain amount of time to complete.
In some instances the amount of time the algorithm takes to execute will vary depending
on the secret information that is normally not available to an external observer. An an-
imated PowerPoint slide-show (game) and it’s winning strategy give an example of how
this technique can be used.

The story was originally told by Eli Biham at the dinner that followed the Ph.D.
defenses of Helena Handschuh and Pascal Paillier.

2 Power Attacks

A cryptographic device will consume a varying amount of current as it executes an al-
gorithm. By making observations one can attempt to deduce information about what is
occuring.

The following is a situation where this technique can be applied: A paparazzi is investi-
gating the lives of a Royal couple. He follows then to a restaurant and then to their home.
He is under the impression that they have had an argument, but as the two are public
figures they will not permit themselves to argue in public.

To simplify the situation we will make the assumption that their home (castle?) consists
of two rooms each with one lightbulb and no other electronic equipment. There are not



Explaining Side-Channel Leakage to Kids 563

any windows or convenient keyholes either and the reporter wishes to find out whether or
not the two are still talking to each other.

As suggested at the beginning of this section the solution revolves around the amount of
current consumed by the two lightbulbs. The reporter needs to find access to the electricity
meter (which in our scenario is outside the Royal property). By looking at the speed that
the disk inside the meter is rotating the reporter is able to determine whether one or two
lights are turned on.

3 Fault Generation

Finally, as an algorithm is being executed by a device it is possible to physically attack
the device to change the output of the algorithm, a potentially strong attack against
cryptographic devices. It is also possible to attack the device in a manner that will change its
behavior, creating other opportunities to attack the device. This as well will be illustrated
using an animated PowerPoint slide-show.
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1 Introduction

The miniaturization of electronics and recent developments in biometric and screen tech-
nologies will permit a pervasive presence of embedded systems. This - and the inclusion
of networking capabilities and IP addresses in many handheld devices - will foster the
widespread deployment of personal mobile equipment.

As mobile devices proliferate and their diversity grows, it is surprising to discover how
few are appropriately secured against the risks associated with potential sensitive date
exposure.

Mobile equipment fulfills a steadily growing variety of functions: holding personal
data, interacting with other devices in local environment, communicating with remote
systems, representing the person by making decisions, and processing data according to
pre-established policies or by means of auto-learning procedures, to name a few.

From a software design perspective, modern mobile devices are real miniature com-
puters embarking advanced software components linker, a loader, a Java virtual machine,
remote method invocation modules, a bytecode verifier, a garbage collector, cryptographic
libraries, a complex protocol stack plus numerous other specialized software and hardware
components (e.g. a digital camera, a biometric sensor, wireless modems etc.).

Consequently, mobile devices need essentially the same types of security measures as
entreprise networks – access control, user authentication, data encryption, a firewall, in-
trusion prevention and protection from malicious code.

However, the fundamental security difference inherent to mobile devices is the lack of
physical access control. Mobile devices are designed for use outside the physical confines
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of the office or factory. Consequently, handheld devices and smart phones are often used
precisely where they’re most vulnerable – in public places, lobbies, taxis, airplanes – where
risks include loss; probing or downloading of data by unauthorized persons; and frequently,
theft and analysis of the device itself. Hence, in addition to logical security measures, mobile
devices must embark protective mechanisms against physical attacks.

Note that inappropriate protection does not endanger only the mobile equipment but
the entire infrastructure: mobile devices are increasingly Internet-connected as salespeople
log on from hotel rooms and as field workers carry handheld devices with wireless net-
working. Of course, Internet activity exposes mobile devices to all the risks faced by an
entreprise network including penetration and theft of important secrets. With fast proces-
sors and large memory, our mobile equipment carries current and critical data that may
lead to financial loss if compromised. But the problem doesn’t end there – these same
devices generally also contain log-on scripts, passwords and user credentials that can be
used to compromise the company network itself [26, 16].

This work attempts to overview these diverse aspects of mobile device security. We will
describe mobile networks’ security (WLAN and WPAN security, GSM and 3GPP security)
and address platform security issues such as bytecode verification for mobile equipment
and protection against viruses and Trojan horses in mobile environment - with a concrete
J2ME implementation example. Finally we will turn to hardware attacks and briefly survey
the physical weaknesses that can be exploited to compromise mobile equipment.

2 WLAN and WPAN Security

When wireless communication protocols where first designed security wasn’t among the
primary goals. Most specifications included an optional basic protection for confidentiality,
but weak algorithms were chosen for integrity and authentication. In the following subsec-
tions we will report security requirements and attacks in wireless local and personal area
networks.

2.1 802.11 and Wi-Fi

The Wi-Fi alliance is a nonprofit international association formed in 1999 to certify inter-
operability of Wireless Local Area Network (WLAN) products based on the IEEE 802.11
specification. Since the first weaknesses in 802.11 communications were discovered, com-
panies that wanted security relied on Virtual Private Networks (VPNs) rather than the
wireless mean’s security features. The Wi-Fi Alliance was concerned that lack of strong
wireless security would hinder the use of Wi-Fi devices. For this reason in April 2003
it published the Wi-Fi Protected Access security requirements based on IEEE enhanced
security draft status at that time [15].
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2.1.1 802.11 Security Features The only security services defined in the 802.11 orig-
inal standard [2] were authentication and encryption. Key distribution had to be managed
by the developer or the user and integrity was included for protection against transmission
errors but not active attacks.

For authentication, Open System Authentication and Shared Key Authentication were
supported. In both cases authentication could be replayed due to the lack of counters in
packet transmission [4]. Moreover, Open System Authentication is a null authentication,
successful whenever the recipient accepts to use this mode for authentication. A challenge
response protocol was executed in Shared Key Authentication, but key distribution was
not defined and the response was calculated based on WEP, the Wired Equivalent Protocol
broken in 2001.

Initially WEP was the only algorithm designed for encryption. It is based on the stream
cipher RC4, which outputs a key sequence given an initialization vector (IV) and a secret
key as input. Ciphertext is obtained as the ex-or of the key sequence and the plaintext.
Two key distribution schemes were defined, but for key mapping the key exchange between
the source and destination station was out of the scope of the specification and when the
default key system is used one out of 4 possible default keys must be chosen, greatly
limiting the key space. In WEP there exists a large class of weak keys for which the first
output bits can be easily determined. Moreover, because of the specific construction of the
WEP key from a secret part and an initialization vector, if the same secret key is used with
numerous different initialization vectors, an attacker can reconstruct the secret key with
minimal effort [11], [32], [31]. Eavesdropping on a communication [6] is possible because
initialization vector update is unspecified and often weak, and because wrap-around is
many times neglected.

For integrity protection, a Checksum Redundancy Check was calculated. However CRCs
don’t allow detection of active attacks as they are non-keyed linear functions. Due to the
weak integrity protection, a station can be thwarted to decrypt messages sent to a victim
and redirect them towards the attacker[4].

2.1.2 802.11i Security Enhancements In the year 2000, the 802.11i Working Group
(WG) was created to enhance 802.11 security. The 802.11i standard was completed in June
2004.

802.11i working group main accomplishments concern the inclusion in the specification
of strong authentication, secure encryption, addition of integrity protection mechanisms
against active attacks and key generation and distribution.

For authentication, 802.11i WG decided to use 802.1x [3], a protocol initially devel-
oped for point to point wired communication but adaptable to wireless transmission as
well. 802.1x defines end-to-end authentication between a station all the way to the authen-
tication server using EAP methods. 802.1x also favors key distribution as after a successful
authentication both ends, the station and the authentication server, share a secret key
called Pairwise Master Key (PMK). Since wireless data exchange takes place between a
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station and an access point, 802.11i requests a 4-way authentication to occur after exe-
cution of the 802.1x protocol to verify the freshness of the communication between the
station and the access point. The transfer of the PMK from the authentication server to
the access point is out of the scope of 802.11i. Nevertheless, 802.11i defines a key hierarchy
to derive encryption and integrity keys from the PMK.

802.11i supports 4 possibilities for encryption, that is no encryption, WEP, TKIP and
CCMP. For each new encryption algorithm supported an integrity function was designed.
When TKIP is chosen, integrity is obtained by using a Message Integrity Check (MIC)
called Michael. CCMP provides simultaneously confidentiality and integrity.

TKIP and its related algorithm Michael were designed to solve problems encountered
in WEP without requiring users to upgrade the hardware that grants them wireless con-
nection. RC4 remains the core of TKIP, but a software modification in WLAN card MAC
sections allows to address WEP weaknesses. Main modifications include use of longer ini-
tialization vectors, IV update on a per-packet basis and modification of the key mixing
function. Michael is known to be vulnerable to brute force attacks, but it is the best com-
promise using legacy hardware. Countermeasures must be accounted for to reduce attacks
on Michael.

CCMP requires a hardware update and should be used for maximum security. It is based
on AES encryption algorithm used in counter mode for encryption. Integrity is provided
by the calculation of a cipher block chaining message authentication code (CBC - MAC).

WPA supports 802.1x and pre-shared key authentication schemes. It supports both
WEP and TKIP for data encryption, together with Michael for data integrity in the latter
case. Key hierarchy is as defined in 802.11i draft 3.0. Wi-Fi Alliance will adopt the 802.11i
final specification as WPA version 2. WPA is both backward and forward compatible: it is
designed to run on existing Wi-Fi devices and should work with WPA2 devices as well.

2.2 802.15.1 and Bluetooth

In 1998, the Bluetooth Special Interest Group and IEEE 802.15.1 working group developed
a technology for Wireless Personal Area Network (WPAN) communications.

The Bluetooth specification security features are based on secret key cryptographic
algorithms. Authentication and encryption algorithms were specified, but no integrity pro-
tection was included.

Key generation functions and a challenge response mechanism for authentication are
based on a 128-bit block cipher called SAFER-SK128. Until today, no weaknesses in SAFER
have been published.

There are two possible ways to calculate the key that will be used by the devices for
authentication, but the specifications state that using a device unit key for authentication
purposes is insecure. A unit key is a semi-permanent key associated to a device, once it is
disclosed device impersonation is possible for the lifetime of the unit key. Authentication
based on device unit key was initially designed for constrained resource devices, and is
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maintained in the current specification for compatibility reasons. The authentication key
should be computed as a combination key, that is a dynamic key whose value is determined
by both peers and whose lifetime is generally shorter than that of a unit key.

Once the 128-bit encryption key is calculated, it is used to seed the stream cipher that
generates the key sequence, with which the transmitted plaintext is ex-ored. Although an
attack described in [13] demonstrates the reduction of the encryption key entropy space,
the pre-computation effort to perform the attack is high enough to consider this attack
of lesser relevance. Weaknesses in the cipher are also mentioned in [17], but the author
himself defines the attacks not of practical relevance.

The main weakness in Bluetooth is in the paring mechanism, that is the procedure
that allows two devices to share a same PIN. All Bluetooth keys, that is the initialization,
authentication and encryption keys, are calculated based on the shared PIN. The PIN
can be retrieved by performing a simple off-line attack and compromising the PIN leads
to breaking Bluetooth’s security. Since the PIN is the only secret in key generation and
since generally 4 digit PIN codes are used, an attacker may find the PIN by recording a
communication and exhaustively testing all 9999 possible PIN values. The attacker will
know he’s found the correct PIN when the calculated text sequence matches the recorded
one.

Bluejacking is a much talked about security breach affecting Bluetooth communica-
tions. It involves sending a victim a message during the pairing phase. If the victim is
thwarted into continuing the data exchange with the attacker until the handshake oper-
ation is concluded, pairing between the two devices will be obtained without the victim
realizing it.

3 GSM and 3GPP Security

The 3rd Generation Partnership Project (3GPP) is a follow-up project of the Global System
for Mobile Communications (GSM). This third generation of mobile networks implements
the UMTS (Universal Mobile Telecommunications System) standard. From a security per-
spective, 3GPP addresses a number of weaknesses and flaws in GSM and adds new features
which allow to secure new services expected to be offered by UMTS networks [40].

3.1 GSM - Global System for Mobile Communications

GSM is one of the most widely used mobile telephone system. As communication with a
mobile phone occurs over a radio link it is susceptible to attacks that passively monitor the
airways (radio paths). The GSM specification addresses three key security requirements:

1. Authentication - To correctly identify the user for billing purposes and prevent fraud-
ulent system use.

2. Confidentiality - To ensure that data (i.e. a conversation or SMS message) transmitted
over the radio path is private.
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3. Anonymity - To protect the caller’s identity and location.

There are three proprietary algorithms used to achieve authentication and confidential-
ity. These are known as A3, A5 and A8. A3 is used to authenticate the SIM (Subscriber
Identity Module)1 for access to the network. A5 and A8 achieve confidentiality by scram-
bling the data sent across the airways. Anonymity is achieved by use of temporary identities
(TMSI).

The process of authentication and confidentiality will now be explained in more detail.
For a detailed account on the implementation of A3/5/8 we refer the reader to [7, 29].

3.1.1 Authentication Authentication is achieved using a basic challenge-response mech-
anism between the SIM and the network. The actual A3 authentication algorithm used is
the choice of the individual GSM network operators, although some parameters (input, out-
put and key length) are specified so that interoperability can be achieved between different
networks.

A3 is implemented in the SIM card and the Authentication Center (AuC) or the Home
Local Register (HLR)2. A3 takes a 128 bit value Ki (subscriber i’s specific authentication
key) and 128 bit RAND random number (challenge sent by the network) as input data.
It produces a 32 bit output value SRES, which is a S igned RESponse to the networks
challenge. The SIM and the network both have knowledge of Ki and the purpose of the
authentication algorithm is for the SIM to prove knowledge of Ki in such a way that Ki
is not disclosed. The SIM must respond correctly to the challenge to be authenticated and
allowed access to the network. The authentication procedure is outlined in the following
steps:

1. The process is initiated by the user wanting to make a call from his mobile (Mobile
Station or MS) or go on standby to receive calls.

2. The Visitor Location Register (VLR)3 establishes the identity of the SIM. This is deter-
mined through a 5 digit temporary identity number known as the Temporary Mobile
Subscriber Identity (TMSI). The TMSI is used in place of the International Mobile
Subscriber Identity (IMSI). The IMSI is a unique number that identifies the subscriber
worldwide. If the IMSI was used then this would enable an adversary to gain informa-
tion about a subscribers details and location. The TMSI is frequently updated (every
time the user moves to a new Location Area (LA) and/or after a certain time period) to
stop an adversary from gaining such information. Note that there are situations where
the IMSI will be used, for example on the first use of the mobile after purchase.

3. The VLR sends a request for authentication to the Home Location Register (HLR).
This request will contain the SIM’s IMSI (as the IMSI and the related TMSI should be
stored in the VLR).

1 The SIM associates the phone with a particular network. It contains the details (Ki and IMSI) necessary to
access a particular account.

2 HLR is a database that resides in a local wireless network. It contains service profiles and checks the identity of
local subscribers.

3 The VLR is a network database that holds information about roaming wireless customers.
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4. The HLR generates a 128 bit random RAND challenge and sends it to the MS via the
VLR.

5. Using Ki (128 bits) which is stored in the HLR and RAND (128 bits), the HLR then
calculates SRESHLR (32 bits) using the A3 authentication algorithm. SRESHLR is
then sent to the VLR.

6. Using Ki (128 bits) which is stored in the SIM and RAND (128 bits) that is received
as a challenge, the SIM calculates SRESSIM (32 bits) using the A3 authentication
algorithm. SRESSIM is then sent to the VLR.

7. If SRESHLR = SRESSIM , then the SIM is authenticated and allowed access to the
network.

8. If SRESHLR 6= SRESSIM , an authentication rejected signal is sent to the SIM and
access to the network is denied.

3.1.2 Confidentiality Once the user has been successfully authenticated to the net-
work, he can make calls and use the services he is subscribed to. It is necessary to encrypt
the data that is transmitted over the airways, so that if it is intercepted, it will not be
intelligible and in effect useless to an adversary.

The algorithm used to encrypt the data to be transmitted is called the ciphering al-
gorithm A5. The key Kc used in this algorithm is generated by the cipher key generation
algorithm A8. In a similar fashion to the A3 authentication algorithm, A8 takes RAND
and Ki and produces a 64 bit output value that is then used as the ciphering key Kc. A5
is a type of stream cipher that is implemented in the mobile station (MS) (as opposed to
the SIM, where A3 and A8 are implemented). It takes Kc as input and produces a key
stream KS as output. The key stream is ex-ored (modulo 2 addition) with the plaintext
Pi, which is organised in 114 bit blocks. The resulting ciphertext block is then transmitted
over the airways 114 bits at a time.

The process of authentication and enciphering is depicted in figure 1.

3.1.3 Limitations/Flaws of GSM A number of weaknesses exist with GSM. One
such flaw lies in the process of authentication. GSM only considers authentication as one
way, i.e. the SIM authenticates itself to the network but the network does not authenticate
itself to the SIM. This oversight enables an adversary to pretend to be a network by setting
up a false base station with the same Mobile Network Code as the subscribers network.
The adversary is thus in a position to engage in illegal interaction with the subscriber.
Additionally the adversary can also partake in a man in the middle attack.

GSM only provides access security; it does not protect against active attacks. To give
a few examples, user traffic and signalling information within the networks is done in clear
text. In other words, except for the radio channel (i.e. the channel between the mobile
equipment and the base station) data and voice encryption is turned off. Thus in particular,
cipher keys and authentication tokens are sent in clear over the network, so that calls can
be intercepted and users or network elements can be impersonated.
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Fig. 1. GSM Authentication and Ciphering

Another weakness with GSM lies in a particular implementation of the A3/A8 authen-
tication4 and cipher key generation algorithm COMP128. COMP128 is a type of keyed
hash function. It takes 128 bit key and 128 bit random number as input (Ki and RAND
as before), and produces a 96 bit digest as output. The first 32 bits are used as a response
(SRES ) back to the network’s request for authentication. The remaining 64 bits are used
as the session key (Kc) for voice encryption using the A5 algorithm. The first main flaw
with COMP128 is that it was a proprietary encryption system developed behind closed
doors. The problem with this kind of approach is that the algorithm is never subject to
public scrutiny and so vulnerabilities and possible design flaws in the protocol are not
given the opportunity to be identified. The proof of this is the fact that COMP128 has
been cryptanalysed and reversed engineered [39]. Since the COMP128 algorithm was ex-
posed a number of weaknesses have been found. One such weakness is that it is susceptible
to a collision attack. This attack plays on a weakness in the second round of the algorithm
that allows using carefully chosen RAND values (approximately 217)5 to determine Ki.

4 A3 and A8 are implemented as one algorithm, namely COMP128.
5 Compared to a brute force attack that requires testing 2128 values for Ki.
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COMP128 is also vulnerable to a type of power analysis attack [18] known as a partition
attack [30]. This type of attack is a form of side channel attack that manipulates infor-
mation that leaks naturally6 from the SIM during its operation. The part of COMP128
that this attack exploits is in the table look up operations. COMP128 consists of 8 rounds,
where each round consists of 5 levels of table look-up. The five look-up operations are
performed modulo 512, 256, 128, 64 and 32 respectively. COMP128 is optimized for 8 bit
processors by operating on one byte at a time. However, in the first look-up operation a
9 bit value is required to be accessed (modulo 512). This requires that the 9 bit value be
split into two 8 bit values. This split can then be identified as a correlation between the
power consumption and the internal instruction that the SIM is performing and effectively
identify a number of key bits. By recursively repeating this process the key Ki can be
reconstructed and recovered. This attack only requires 8 chosen plaintext values (RAND)
and can be performed in a matter of minutes. Once an adversary is in possession of Ki he
is capable of cloning [39] the SIM and can take on a person’s identity and illegally bill his
account.

Some of the flaws just described can be combined to perform an extremely destructive
attack known as over the air cracking. Firstly an adversary imitates a legitimate GSM
network. The mobile phone is paged by its TMSI to establish a radio connection. Once the
connection is established, the attacker sends a request for the IMSI (this is within the right
of a “legitimate” network). The attacker can then keep challenging the MS with carefully
chosen RANDs so as to exploit flaws in the COMP128 algorithm. To each RAND the
mobile phone will respond with a different SRES, which the attacker will collect and store.
This process will be repeated until the attacker has gained enough information to learn
Ki. Now the attacker has Ki and IMSI in their possession. This enables an attacker to
impersonate the user, and make and receive calls and SMS messages in their name. They
can also eavesdrop, since RANDs from the legitimate network to the legitimate user can
be monitored, and thus combined with the known Ki can be used to determine the Kc
used for voice and signaling data encryption. An intelligence expert confirmed that this
procedure was effectively and regularly used by at least one intelligence service during the
past decade.

Last but not least, GSM networks lack the flexibility to quickly upgrade and improve
security elements such as the cryptographic algorithms. For instance, the encryption algo-
rithm A5/3 and the authentication and key generation algorithm GSM-MILENAGE are
already available, but have not been widely deployed yet.

This section mentions the most serious weaknesses with GSM, we refer the reader to
[29, 38] for more details on attacks. These shortcomings have enabled a number of powerful
and successful attacks to be made against GSM. The experience gained from isolating and
rectifying these weaknesses have contributed to the evolution of a more secure mobile
telephone technology 3GPP.

6 Timing, power consumption and electromagnetic emanations are types of side information that leak naturally
form the SIM if proper countermeasures are not implemented.
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3.2 3GPP - 3rd Generation Partnership Project

3GPP specifications address both access security implementing mutual user and network
authentication, and network security with strong user data, voice, and signalling data
encryption and authentication.

3.2.1 Authentication and Key Agreement Protocol The basic building block of
3GPP Security is its authentication and key agreement protocol (AKA) [33, 34]. Improving
over GSM networks, UMTS networks provide over-the-air mutual authentication of the user
to the network and of the network to the user, but also strong data and voice encryption
and signalling data authentication between the mobile equipment and the radio network
controller. In order to achieve these objectives, a similar approach to GSM is adopted.
The telecommunications operator provides the end user with personal security credentials
(i.e. an identity and a secret key), contained in a so-called USIM (User Services Identity
Module), which in most cases takes the form of a smart card inserted into the mobile station
(or MS). This USIM holds in particular a secret key (K) shared with the Authentication
Center AuC of the operator; using this secret key and the AKA protocol, authentication
tokens and encryption keys are derived by the USIM from a random challenge (RAND)
sent by the network to the mobile equipment. Mutual authentication is achieved by a
challenge response protocol in which the USIM receives the authentication token which
allows it to check whether the network is genuine, and has to compute an authentication
response RES (to be compared to the expected value XRES ) for the network to gain
access. The USIM also generates ciphering (CK ) and integrity keys (IK ) and makes them
available to the mobile terminal. In addition, the network has to send a fresh sequence
number (SQN ), which provides evidence that the session keys and authentication tokens
have not been used before and will not be used again. These sequence numbers have to
remain within a certain range from previous sequence numbers in order to be considered
valid. If at some point a sequence number is out of range, a special re-synchronization
procedure enables to securely reset the sequence numbers and to take up new calls. An
authentication management field allows the network to define which algorithms are used in
which security function. Finally, an anonymity key (AK) is optionally used to conceal the
sequence numbers – and therefore the identity of the subscriber – from an opponent. In
figure 2, we provide a graphical overview of the procedure for generating authentication
vectors (AV) in the basic AKA protocol. The example algorithm set for implementing
security functions f1 to f5 in 3GPP networks is called MILENAGE [37].

3.2.2 Network Security Once the user is authenticated to the network and access
security is guaranteed, user data and signalling messages need to be protected in the net-
work. A first phase of encryption and integrity checking is performed between the mobile
terminal and the radio network controller on the radio link up to the security node. En-
cryption and data integrity computations are performed by the mobile equipment itself
using one-time session keys derived by the USIM from the network challenge, UMTS en-
cryption function f8 and integrity function f9, both standardized algorithms based on the
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block cipher KASUMI [35]. The function f8 may be used for encrypting user data as well as
signalling messages between the mobile terminal and the radio network controller, whereas
function f9 is only meant for integrity of signalling messages. In order to avoid the re-use
of keystream and message authentication codes, both f8 and f9 use a time-dependent pa-
rameter COUNT. f8 also takes into account the bearer identity and manages the direction
of the transmission with a DIRECTION field. f9 uses an additional fresh random value
provided by the network to generate each new MAC.

Subsequently, a second phase of message encryption and authentication is provided
directly within the global network between different operators and within the networks of
the operators. A global public key infrastructure allows the Key Administration Center of
each network to generate a public key pair and to store public keys from other networks,
exchanged as part of the roaming agreements. Each Key Administration Center can then
generate shared session keys and distribute these keys to different network entities within
its own network, as well as to the Key Administration Center of another network, which
in turn distributes the same shared session keys to its own network entities. These session
keys are then used with standard symmetric encryption and data authentication algorithms
within the networks.

This feature completes the second evolution with respect to GSM networks, for which no
encryption of signalling messages and user traffic is available. All cryptographic algorithms
mentioned in the context of 3GPP have been evaluated and are publicly available.

4 Mobile Platform Layer Security

Mobile terminals run a variety of operating systems, which, for most of them, are propri-
etary and remain hidden for the end user. In the hight end segment of the terminal market,
the operating systems are no longer buried in the hardware and the consumer can choose
between Symbian, PalmOS and Windows Mobile. However, these so-called smart terminals
represent a small fraction of the deployed equipments. For the vast remaining majority the
only way to download and execute software is to target the mobile edition of the Java Vir-
tual Machine (aka as J2ME/CLDC/MIDP or MIDP for short) that is generally provided.
Consequently, this section is entirely focused on the Java environment for mobile devices.

4.1 Bytecode Verification for Mobile Equipment

The Java architectures for mobile equipments [8] allow new applications, called applets, to
be downloaded into mobile devices. While bringing considerable flexibility and extending
the horizons of mobile equipment usage this post issuance feature raises major security
issues. Upon their loading, malicious applets can try to subvert the Java Virtual Machine’s
(JVM) security in a variety of ways. For example, they might try to overflow the stack,
hoping to modify memory locations which they are not allowed to access, cast objects inap-
propriately to corrupt arbitrary memory areas or even modify other programs (Trojan horse
attacks). While the general security issues raised by applet download are well known [24],
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transferring Java’s safety model into resource-constrained mobile devices such as smart-
cards, handsets or PDAs appears to require the devising of delicate security-performance
trade-offs.

When a Java class comes from a distrusted source, there is a way to ensure that no
harm will be done by running it. The method consists in running the newly downloaded
code in a completely protected environment (sandbox). Java’s security model is based
on sandboxes. The sandbox is a neutralization layer preventing access to unauthorized
resources (hardware and/or software). In this model, applets are not compiled to machine
language, but rather to a virtual-machine assembly-language called byte-code.

In a JVM, the sandbox relies on access control. Nevertheless an ill-formed class file
could be able to bypass it. Therefore, there are two basic manners to check the correctness
of a loaded class file.

The first is to interpret the code defensively [9]. A defensive interpreter is a JVM
with built-in dynamic runtime verification capabilities. Defensive interpreters have the
advantage of being able to run standard class files resulting from any Java compilation
chain but appear to be slow: the security tests performed during interpretation slow-down
each and every execution of the downloaded code and the memory complexity of these
tests is not negligible either. This renders defensive interpreters relatively unattractive for
mobile equipments where resources are severely constrained and where, in general, applets
are downloaded rarely and run frequently.

Another method consists in a static analysis of the applet’s byte-code called byte-code
verification, the purpose of which is to make sure that the applet’s code is well-typed
to detect stack over/underflow, ... This is necessary to ascertain that the code will not
attempt to violate Java’s security policy by performing ill-typed operations at runtime,
or by changing some system data. (e.g. forging object references from integers or calling
directly API private methods). Today’s de facto verification standard is Sun’s algorithm
[22].

In the rest of this section we recall Java’s security model and the cost of running
Sun’s verification, and we briefly overview mobile-equipment-oriented alternatives to Sun’s
algorithm.

4.2 Java Security

The Java Virtual Machine (JVM) Specification [22] defines the executable file structure,
called the class file format, to which all Java programs are compiled. In a class file, the
executable code of methods (Java methods are the equivalent of C functions) is found in
code-array structures. The executable code and some method-specific runtime information
(namely, the maximal operand stack size Smax and the number of local variables Lmax

claimed by the method) constitute a code-attribute. We briefly overview the general stages
that Java code goes through upon download.

To begin with, the classes of a Java program are translated into independent class
files at compile-time. Upon a load request, a class file is transferred over the network to
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its recipient where, at link-time, symbolic references are resolved. Finally, upon method
invocation, the relevant method code is interpreted (run) by the JVM.

Java’s security model is enforced by the class loader restricting what can be loaded, the
class file verifier guaranteeing the safety of the loaded code and the security manager and
access controller restricting library methods calls so as to comply with the security policy.
Class loading and security management are essentially an association of lookup tables and
digital signatures and hence do not pose particular implementation problems. Byte-code
verification, on which we focus this section, aims at predicting the runtime behavior of a
method precisely enough to guarantee its safety without actually having to run it.

4.2.1 Byte-Code Verification Byte-code verification [19] is a load-time phase where
the method’s run-time behavior is proved to be semantically correct.

The byte-code is the executable sequence of bytes of the code-array of a method’s
code-attribute. The byte-code verifier processes units of method-code stored as class file
attributes. An initial byte-code verification pass breaks the byte sequence into successive
instructions, recording the offset (program point) of each instruction. Some static con-
straints are checked to ensure that the byte-code sequence can be interpreted as a valid
sequence of instructions taking the right number of arguments.

As this ends normally, the receiver assumes that the analyzed file complies with the
general syntactical description of the class file format.

Then, a second verification step ascertains that the code will only manipulate values
which types are compatible with Java’s safety rules. This is achieved by a type-based data-
flow analysis which abstractly executes the method’s byte-code, by modelling the effect of
the successive byte-codes on the types of the variables read or written by the code.

4.2.2 The Semantics of Type Checking A natural way to analyze the behavior of a
program is to study its effect on the machine’s memory. At runtime, each program point
can be looked upon as a memory instruction frame describing the set of all the runtime
values possibly taken by the JVM’s stack and local variables.

Since run-time information, such as actual input data is unknown before execution
starts, the best an analysis may do is reason about sets of possible computations. An
essential notion used for doing so is the collecting semantics defined in [10] where, instead
of computing on a full semantic domain (values), one computes on a restricted abstract
domain (types).

For reasoning with types, one must precisely classify the information expressed by
types. A natural way to determine how (in)comparable types are is to rank all types in a
lattice L. A brief look at the toy lattice depicted below suffices to find-out that animal is
more general than fly, that int and spider are not comparable and that cat is a specific
animal. Hence, knowing that a variable is designed to safely contain an animal, one can
infer that no harm can occur if during execution this variable would successively contain a
cat, a fly and an insect. However, should the opposite be detected (e.g. an instruction



Mobile Terminal Security 577

would attempt to use a variable supposed to contain an animal as if it were a cat) the
program should be rejected as unsafe.

The most general type is called top and denoted >. > represents the potential si-
multaneous presence of all types, i.e. the absence of (specific) information. By definition,
a special null-pointer type (denoted null) terminates the inheritance chain of all object
descendants.

Formally, this defines a pointed complete partial order (CPO) ¹ on the lattice L .

>
↙ ↘

int Object

↓ ↓
null animal

↙ ↘
cat insect

↓ ↙ ↓ ↘
null spider bee fly

↓ ↓ ↓
null null null

Stack elements and local variable types are hence tuples of elements of L to which one
can apply point-wise ordering.

The verification process described in [22] §4.9, is an (iterative data-flow analysis) ab-
stract interpretation algorithm that attempts to build an abstract description of the JVM’s
memory for each program point. A byte-code is safe if the construction of such an abstract
description succeeds.

Denoting by Nblocks the number of branches in a method, a straightforward implemen-
tation of [22] §4.9 allocates Nblocks frames, each of size Lmax + Smax.

Lmax and Smax are determined by the compiler and appear in the method’s header. This
results in an O((Lmax + Smax) × Nblocks) memory-complexity. In practice, the verification
of moderately complex methods would frequently require a few thousands of bytes.

4.2.3 Memory Economic Verification Approaches for Mobile Equipments While
the time and space complexities of this algorithm suit personal computers, the memory
complexity of Sun’s algorithm appears unadapted for mobile devices, where RAM is a
significant cost-factor.

This limitation gave birth to a number of innovating workarounds where, in each case,
memory was reduced at the expense of another system resource (transmission, computation
etc.) or by transforming Sun’s standard class file format to render it easier to verify:

– Leroy [20, 21] devised a verification scheme that relies on off-card code transformations
whose purpose is to facilitate on-card verification by eliminating the memory-consuming
fix-point calculations of Sun’s original algorithm.

– Proof carrying code [27] (PCC) is a technique by which a side product of the verification,
namely the final type information inferred at the end of the verification process (fix-
point), is sent along with the byte-code to allow a straight-line verification of the applet.
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This extra information causes some transmission overhead, but the memory needed to
verify a code becomes essentially equal to the RAM necessary to run it. A PCC off-card
proof-generator is a rather complex software.

– Variable-wise verification [23] is a technique where variables are verified in turn rather
than in parallel, re-using the same RAM space. This trades-off computations for mem-
ory.

– Externalization [14] consists in securely exporting intermediate verification variables to
distrusted terminals. This trades-off transmission for memory.

We refer the reader to the bibliography for a more detailed information on these tech-
niques.

4.3 Trojan Horses in Mobile Environment

A Trojan horse is a malevolent piece of code hidden in a program that performs normal
tasks. When started, this program behaves as expected by the user and then stealthily
executes the Trojan horse payload. Popular games and sharewares, especially if they are
downloaded from the Internet are good vectors for Trojan horses.

Worms, which are self-propagating pieces of malicious software who propagate from
one computer to another via a network link, have become very common in the past few
years on PC even if their payloads have often been non-destructive. The first worm for
smart phone showed-up recently targeting Symbian terminals and propagating itself via
Bluetooth links [12]. Java Virtual machines are immune, by design, to this kind of attacks,
so we will only discuss Trojan horses in the following.

The ultimate goal of a Trojan horse can just be a denial of service or a hacker’s demon-
stration of power as in most of currently existing worms and viruses in the PC world.
But some attractive targets can motivate an attacker on a mobile equipment. Nowadays
these devices are fully merged in our life-style and they abound in credentials, personals
information like contacts or to-do lists, let alone our real time position on the earth.

To demonstrate the potential wrongdoing and stealthiness of a Trojan horse we have
implemented a prototype on a mainstream GSM phone. We have taken advantage of the
fact that a java application for the J2ME/CLDC/MIDP environment (a MIDlet) is capable
of taking the full graphic control of the handset screen, i.e. the programmer can control
each and every pixel of the screen surface. The consequence is that a MIDlet can mimic
the look-and-feel of any application including the system ones. In our example, the Trojan
horse is lurking in a popular game called Tic Tac Toe and is aimed at capturing the SIM
card’s PIN that is entered by the user when the phone is switched-on. Figure 3 shows the
general scheme of the attack.

When the game is started for the first time the Trojan horse is activated and simulates
a phone reboot, including the vendor’s logo animation and the PIN entry. This phase is
unlikely to alert the average user that something is going wrong as she’s used to such
reboots due to battery shortage or software instability. The Trojan horse captures the
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user’s PIN and terminates the MIDlet. This first phase is illustrated by the screen shots
in figure 4.

In the subsequent MIDlet launches, the Trojan horse keeps quiet and the user is able
to play with a genuine looking game. Nevertheless, the Trojan horse is still waiting for a
backdoor code that reactivates it in order to display the PIN previously captured as shown
in figure 5.

The lesson learnt from this school case example is that the mobile phone lacks from a
trusted path between the user and the phone operating system both for input and output.
In other words there is no mean for the user to know if she communicates with the operating
system or a malicious software which impersonates it.

One possible solution would be to limit the screen area that a MIDlet can control and
to dedicate the remaining part to the OS that could use it to draw the user’s attention on
the fact that a MIDlet is running. Concerning the input part of the problem a dedicated
key can be pressed before entering the PIN code in order to switch to the Operating System
if it was not the foreground task. The problem with these solutions depicted on figure 6 is
that they restrain further the restricted hardware available for the developers.

5 Hardware Attacks on Mobile Equipments

The term ”hardware attack” encompasses a large variety of threats that exist because of the
physical properties of the device under consideration. As a consequence of this definition
a virtual design is not subject to such attacks and by extension a device physically out of
the attacker’s reach is also safe. By contrast, software attacks are most of the time remote
attacks on a device attached to a network but physically out of the hacker’s reach.

There are different ways to classify hardware attacks, among which is their belonging
to one of the following categories: invasive attacks, fault attacks or side-channel analysis.
A device designed to resist the above listed threats is called ”tamper-resistant”. In other
words, a tamper resistant device will withstand attempts to tamper with the device (recover
information or modify internal data or any characteristics of the device). Another feature
that a device might exhibit is ”tamper-evidence”, signifying that evidence will exist to
prove tampering with the device. At present, the only existent tamper-resistant element in
a handset is the (U)SIM (Universal Subscriber Identity Module), where tamper resistance
is achieved by the appropriate combination of hardware and software protection, counter-
measures and prudent design rules.

The following paragraphs will provide an overview of handset attack targets before
showing how to perform physical attacks and describing what benefits a hacker might
gain.

5.1 Attack Targets

Secret or sensitive data is usually the target of an attack. Secret data is unknown by the
hacker and his primary goal is to retrieve its value. Sensitive data is known by the hacker
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but cannot be modified by him; his primary goal is to modify its value, preferably to replace
it with a value of his choosing. There are currently several targets in mobile equipments.
The most sensitive data elements are the user authentication key (Ki), his identification
number IMSI and the (CHV ) (Card Holder Verification) value. In addition, there are at
least 3 relevant targets in the handset: the SIM-lock mechanism, the IMEI and the software
upgrade. Each of these targets is addressed hereafter.

5.1.1 SIM-Lock SIM-lock is a mechanism commonly used by Mobile Network Opera-
tors (MNOs) to bind subsidized phones to the network [36], at least for a specified period of
time. Such a binding should usually last until the operator’s initial investment has been re-
couped. Nevertheless, if the subscriber wants to use a different network before the specified
period of time is over, he needs to de-SIMlock his mobile. This service is not free, MNOs
usually request around 115 euros to unlock a mobile phone. The very lucrative business
coming from stolen handsets is slightly hindered by the SIM-lock mechanism. Indeed, the
handset must be unlocked prior to usage by its new owner. As it is not illegal to unlock a
phone, some software companies entered this business and provide unlocking software. An
example of such software GUI (Graphic User Interface) can be seen on Figure 7.

5.1.2 IMEI The International Mobile Equipment Identity number is the identity of the
handset. It is a unique number attributed during handset manufacturing and is registered
by the Mobile Network Operator. Thanks to IMEI, Mobile Equipment declared as stolen
can be black-listed by the MNOs. Nevertheless, there is currently no IMEI blacklist at a
worldwide level, stolen phones often leave their original country for less developed countries
where people cannot afford the price of a new handset. To use the handset in the same
country it has been stolen in, the IMEI value can also be changed to an authorized one.
Some countries have voted laws that make IMEI alteration illegal to reduce handset theft.
In parallel, handset manufacturers are working on increasing the IMEI’s security.

5.1.3 Software Versions For a given mobile equipment, multiple software and firmware
versions are available. High end versions usually add extra features and functionalities,
making it lucrative for a hacker to upgrade a software version to a higher one. The upgrade
mechanism is currently slightly protected, against unauthorized access depending on the
handset model.

5.2 Hardware Attacks Description

Currently, handsets are in such a poor security state that they do not withstand basic
reverse engineering weaponry. Moreover, their security mechanism such as the SIMlock,
test/debug mode, IMEI storage and software upgrade are poorly designed and rely on
obscurity rather than strong cryptographic protocols. Breaking these mechanisms does
not yet require use of advanced attack techniques such as hardware attacks, which are at
routinely researched in the industry and university research labs.
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Fortunately, mobile equipment and chipset manufacturers are working hard to cath-up
and improve the overall security level of handsets. As security will increases and software
attacks will become less practical, hardware attacks will rise.

5.2.1 Invasive Attacks Invasive attacks are usually considered as the heaviest class of
attacks in terms of equipment cost, expertise and duration. An invasive attack requires first
of all to ”open” the device. This is not an easy task on a smart card as delicate chemistry
manipulation is needed. On the other hand, on a handset only removal of the plastic
case and eventually a few screws is required. In a smartcard such as a USIM, resistance
against invasive attacks is achieved by embedding the complete system, including the CPU
(Central Processing Unit), memories and peripherals, in a single chip. Moreover, the design
usually includes additional security features such as protection shields, glue logic design,
encryption and scrambling. Such architecture will probably not reach the handset field
because combining different technologies such as a CPU, a large Flash memory and a
RAM (Random Access Memory) memory on the same chip highly increases its cost. In a
regular handset, the SoC (System On Chip) comprising the CPU and some peripherals,
as well as the external memory (usually a flash containing both the operating system and
the users personal data) can be found on same PCB (Printed Circuit Board). With such
architecture, it is currently quite easy to probe the bus between the SoC and the Flash
in order to gain access to all the data accessed by the CPU. This is a straightforward
way gain access to secret information stored in the Flash (IMEI, unblock code). Of course
it will require a little bit of reverse engineering and electronic skills since the data bus
is usually 16 to 32 bits wide and since most of the lines will be buried in the internal
layers of the multi-layer PCB. Another invasive attack consists in de-soldering the Flash
memory chip in order to reprogram it with a flash programming unit or to replace it with
a new Flash. Such an operation is not possible with a regular soldering iron because Flash
memory packaging is usually of TFBGA (Thin & Fine-pitch Ball Grid Array) type. A
printed circuit board from mobile equipment with its Flash memory removed can be seen
Figure 8.a. The backside of a TFBGA Flash memory is shown Figure 8.b. Last but not
least, most handsets provide a JTAG bus or others facilities for debug and test mode. This
is a prime backdoor because with a JTAG cable and a little bit of insider knowledge a
hacker can easily access very sensitive and secret information and do almost whatever he
wants on a handset. There is no such threat on smart-cards since the debug and test mode
is completely wiped-out at the end of the manufacturing process, usually by placing the
corresponding logic on the scribe line of the wafer.

5.2.2 Side-Channel Attacks Side-channel attacks consist in monitoring a device sig-
nal or resource-consumption, usually without physically damaging it. The processing’s
duration, power consumption, electro-magnetic radiations and radio-frequency emission
are typically the signals that might be of interest. Once the signal has been monitored, the
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hacker performs its analysis in order to infer information about a secret data processed
during the acquisition’s period of time. This attack technique may be used to retrieve se-
cret data such as keys. Side-channel analysis is usually performed by multiple executions
of the same process in order to apply statistical analysis. Side-channel attacks have not
proliferated in the handset hacking community yet because there are no secret keys in mo-
bile equipment units. Nevertheless, this threat is growing with the increasing added value
services integrated into handsets and smart-phones, as well as the rise of 3GPP networks.
Indeed, we will soon witness the deployment of Digital Right Management [28] which spec-
ifies use of a DRM agent, content encryption keys and right encryption keys. It is in the
interest of a handset malevolent owner to retrieve these keys in order to distribute pro-
tected content. It is obvious that handset hacking will increase at the same pace as benefits
that can be obtained in return. Side-channel analysis is usually performed by the handset
owner, but with contactless side-channel radiation it is possible to perform an attack on
a nearby handset without the victim’s knowledge. When keys are stored in handsets, a
remote side-channel attack example is a hacker, physically close to his victims, retrieving
authentication keys to bank accounts by means of a radiation sensor.

5.2.3 Fault Attacks Fault attacks are another kind of hardware attack that emerged
recently. This attack relies on a physical perturbation performed by the hacker rather then
simply monitoring a side-channel. The core of the attack lies in the exploitation of the
fault induced at the software level by the physical perturbation. There are many ways to
perform a physical perturbation on an electronic device like a handset, the perturbation
means being for example an electro-magnetic field, a power glitch or a laser beam. The
exploitation technique is also variable and greatly depends on the target, which can be
a cryptographic algorithm that may disclose secret information or an operating system
sensitive process that might enable an unauthorized action such as a Midlet installation.
Once again, the threat is real and will increase depending on the sensitivity of data stored
in mobile equipment. As long as there are financial benefits in hacking a handset, the hacker
will use any means to reach his goal. We refer the reader to [5] for a deeper treatment of
fault attacks.

6 Conclusion

This chapter overviewed security features for the protection of mobile terminals and the
attacks they are vulnerable to.

System architects should keep in mind that threats should be dealt with at the design
level, the implementation level and the application use level. The previous sections provide
examples of efforts made in multiple domains, their success and failure.

A typical security breach example at the design level occurred in the GSM authentica-
tion scheme. The lack of network authentication gave way to the possibility of setting up
rogue base stations. Mutual authentication in 3GPP will eventually solve this problem. A
careful implementation that follows scrupulously security guidelines will reduce the chance
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of faults at the implementation level. To mention a dangerous and widespread attack, lack
of protection against buffer overflows can cause much damage, allowing for example access
to protected memory areas. Application level attacks are probably the most prevalent.
Mobile terminals are often accessed remotely, thereby greatly increasing the possibilities
of runtime attacks. Moreover, users may exploit devices in a way they were not built for.

The large scale distribution of electronic devices and the increasing interaction among
different technologies are not factors that will reduce security threats. Basic security rules
apply to mobile terminals as to all other electronic devices. System security is that of
its weakest link and the confidence in a system improves with the number of audits on
it. Administrators should not rely on a single protection as attacks are multiple and on
multiple levels.
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Fig. 2. Authentication vector generation
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Submission Statement

This submission presents and analyses the block cipher SHACAL, as a submission to NESSIE.
It is based on the hash standard SHA-1 used in encryption mode. We believe the main strength
of this block cipher is its inheritance from the extensive analysis that has been made on the
hash function itself. We state that no hidden weakness has been inserted in this block cipher,
and we believe the design principles to be sound. To the best of our knowledge, SHACAL is
not covered by any patents. We do not intend to apply for any patent covering SHACAL and
undertake to update the NESSIE project whenever necessary.

The estimated computational efficiency of SHACAL is 2800 cycles per 20 byte block encryption,
2330 cycles per 20 byte block decryption and 3200 cycles per 64 byte key setup. Timing
measurements are given for a PC using an AMD K6 processor running at 233 Mhz. One million
SHACAL encryptions take about 12 seconds and one million decryptions take about 10 seconds.
One million key setups take 14 seconds.

The following report analyses the cryptographic hash function SHA in encryption mode. A
detailed analysis is given of the resistance of SHACAL to the most powerful known attacks today.
It is concluded that none of these attacks can be applied successfully in practice to SHACAL.
Breaking SHA in encryption mode requires either an unrealistic amount of computation time
and known/chosen texts, or a major breakthrough in cryptanalysis.

We would like to thank Lars R. Knudsen and Matt J. Robshaw for their extensive security
analysis; without their help this submission would not have been possible.

1 Introduction

In the following we give a brief introduction to the Secure Hash Algorithm (SHA).

Many of the popular hash functions today are based on MD4 [5]. MD4 was built for
fast software implementations on 32-bit machines and has a 128-bit output. Because of
Dobbertin’s work [3, 2] it is no longer recommended to use MD4 for secure hashing, as
collisions has been found in about 220 compression function computations.

In 1991 MD5 was introduced as a strengthened version of MD4. Other variants include
RIPEMD-128, and RIPEMD-160. SHA was published as a FIPS standard in 1993. All



594 Helena Handschuh and David Naccache

these hash functions are based on the design principles of MD4. RIPEMD-128 produces
hash values of 128 bits, RIPEMD-160 and SHA-1 produce 160-bit hash values.

SHA was introduced by the American National Institute for Standards and Technology
in 1993, and is known as SHA-0. In 1995 a minor change to SHA-0 was made, this variant is
known as SHA-1. The standard now includes only SHA-1. Descriptions of both algorithms
follow using the notations below:

symbol meaning
‖ string concatenation.
+ addition modulo 232 of 32 bit words.
ªi (W ) rotate 32 bit word W to the left by i bit positions.
⊕ bitwise exclusive-or.
& bitwise and.
| bitwise or.

To hash a message proceed as follows:

1. Pad the message, such that the length is a multiple which fits the size of the compression
function, see [4].

2. Initialize the chaining variables AA,BB,CC,DD,EE, each of 32 bits, by:

AA ← IV1 ← 0x67452301

BB ← IV2 ← 0xEFCDAB89

CC ← IV3 ← 0x98BADCFE

DD ← IV4 ← 0x10325476

EE ← IV5 ← 0xC3D2E1F0

3. For each 512-bit message block:
(a) Set:

A ← AA
B ← BB
C ← CC
D ←DD
E ← EE

(b) Expand the 512 bits to 2560 bits, cf. infra.

(c) Compress the 2560 bits in a total of 80 steps; each step updates in turn one of the
working variables A,B, C, D and E, as described in section 1.1, below.

(d) Set

AA ← AA + A
BB ← BB + B
CC ← CC + C
DD ←DD + D
EE ← EE + E
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4. Output the digest:

[AA ‖ BB ‖ CC ‖ DD ‖ EE]

1.1 The Compression Function

Denote the 512-bit message by M = [W 0 ‖ W 1 ‖ . . . ‖ W 15], where Wi are 32-bit words.
For SHA-0 the expansion process of 512 to 2560 bits is:

W i ← W i−3 ⊕W i−8 ⊕W i−14 ⊕W i−16, 16 ≤ i ≤ 79. (1)

While in SHA-1 the expansion process is:

W i ←ª1 (W i−3 ⊕W i−8 ⊕W i−14 ⊕W i−16), 16 ≤ i ≤ 79. (2)

These expansions are the only difference between SHA-0 and SHA-1.

Define the following functions.

fZ(X, Y, Z) = (X&Y )|(¬X&Z) (3)

f⊕(X, Y, Z) = X ⊕ Y ⊕ Z (4)

fm(X, Y, Z) = (X&Y )|(X&Z)|(Y &Z) (5)

The above 80 steps are then:

Ai+1 ←W i+ ª5 (Ai) + f i(Bi, C i, Di) + Ei + Ki (6)

Bi+1 ← Ai (7)

Ci+1 ← ª30 (Bi) (8)

Di+1 ← Ci (9)

Ei+1 ←Di (10)

for i = 0 . . . , 79, where:

f i = fZ, 0 ≤ i ≤ 19
f i = f⊕, 20 ≤ i ≤ 39, 60 ≤ i ≤ 79
f i = fm, 40 ≤ i ≤ 59.

The constants Ki are defined as:

K i ← 0x5A827999, 0 ≤ i ≤ 19
K i ← 0x6ED9EBA1, 20 ≤ i ≤ 39
K i ← 0x8F1BBCDC, 40 ≤ i ≤ 59
K i ← 0xCA62C1D6, 60 ≤ i ≤ 79

The output after 80 steps, A80, B80, C80, D80, E80 is then used to update the chaining
variables AA,BB, CC, DD, EE.
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In the following, Round 1 will refer to the first 20 steps, Round 2 to the next 20 steps
and so on.

The best attack known on SHA-0 when used as a hash function is by Chabaud and Joux
[1]. They show that in about 261 evaluations of the compression function it is possible to
find two messages hashing into the same value. A brute-force attack exploiting the birthday
paradox would require about 280 function evaluations. There are no attacks reported on
SHA-1 in the open literature. In the following we shall consider only SHA-1.

1.2 SHACAL or Using SHA in Encryption Mode

SHA was never defined to be used for encryption. However, the compression function can
be used for encryption. Each of the above 80 steps are invertible in the variable A, B, C, D,
and E. Therefore, if one latches a secret key as a message to hash and a plaintext as
an initial value, one gets an invertible function from the compression function (ignoring
of course the final addition with the initial values). This is the encryption mode of SHA
considered in this report. Thus SHACAL is a 160-bit block cipher defined for a 512-bit
secret key. Shorter keys may be used by padding the key with zeroes to a 512-bit string.
However, SHACAL is not intended to be used with keys shorter than 128 bits.

2 Attacking SHA in Encryption Mode

The two best known attacks on systems similar to SHA in encryption mode are linear
cryptanalysis and differential cryptanalysis. There has been a wide range of variants of the
two attacks proposed in the literature but the basic principles are roughly the same. Also,
many other attacks on encryption schemes have been suggested but they are less general
than the two above mentioned ones, and do not apply to encryption schemes in general. In
this report we shall consider only linear cryptanalysis and differential cryptanalysis. These
attacks apply to SHA in encryption mode, but as we shall see, the complexities of attacks
based on there approaches are completely impractical, if possible at all.

SHA uses a mix of two group operations, modular additions modulo 232 and exclusive-
or (bitwise addition modulo 2). If we use the binary representation of words, i.e., A =
aw−12

w−1+· · ·+a12+a0, and similarly for S, the binary representation of the sum Z = A+S
may be obtained by the formulae

zj = aj + sj + σj−1 and σj = ajsj + ajσj−1 + sjσj−1, (11)

where σj−1 denotes the carry bit and σ−1 = 0 (cf. to [6]). These formulae will be used in
the sequel several times.

2.1 Linear Cryptanalysis

Linear cryptanalysis attempts to identify a series of linear approximations Ai to the differ-
ent operational components in a block cipher, be they S-boxes, integer addition, boolean
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operations or whatever. The individual linear approximations are then combined to pro-
vide an approximation for the greater proportion of the encryption routine. The combi-
nation of approximations is by simple bitwise exclusive-or so the final approximation is
A1 ⊕ A2 ⊕ · · · ⊕ An.

If the linear approximations Ai hold with probability pi then we define the bias to be
εi = |pi − 1/2|. Provided εi 6= 0 for each approximation Ai then they are potentially useful
in a range of sophisticated linear cryptanalytic attacks. After combination, the overall
bias of A1 ⊕ A2 ⊕ · · · ⊕ An is typically estimated using the so-called Piling-Up Lemma as
ε = 2n−1

∏n−1
i=0 εi. If the final approximation over the bulk of SHA-1 has bias ε then the data

requirements for an attack are given by c·ε−2 where c is some constant that is dependent on
the exact form of an attack. For the attacks we consider here practical experience suggests
that c ≈ 8, but to be conservative we will assume that c = 1.

We mentioned that we needed an approximation over the greater proportion of the
cipher. Just as in differential cryptanalysis, there are a variety of tricks and techniques
available to the cryptanalyst to gain a few extra steps for free and they potentially allow
the recovery of key material from the outer steps of the cipher at the same time. The number
of outer steps that can be removed in this way is very specific to the approximations being
used and the structure of the cipher. However we will see that the biases are so low with
the linear cryptanalysis of SHA-1 that this level of detail is likely to be more little more
than a distraction.

We will describe our approach. For each of the four rounds we will attempt to iden-
tify the longest perfect linear approximation in SHA-1 and what appear to be its most
useful extensions. We will then make many conservative assumptions and use these ap-
proximations to assess a lower bound on the data requirements in a linear cryptanalytic
attack.

2.1.1 Some Preliminaries In the analysis that follows we will typically only consider
single-bit approximations across the different operations. Practical experience shows that
attempts to use heavier linear approximations very soon run into trouble. While it is
conceivable for some operations that heavier linear approximations will have a larger bias
individually, it is usually much harder to use them as part of an attack and as such they
are typically not useful. We will use the notation ei to denote the single-bit mask used to
form a linear approximation. Thus ei is a 32-bit word that has zeros in all bit positions
except for bit i. We will set the least significant bit position to be bit zero.

In all rounds there are four integer additions. However two of these are with constants;
one is key material the other a round constant. At first it is tempting to ignore these two
additions, but in fact the value of the key material has an important impact on the bias
of the approximation.

Even without this consideration, using linear approximations across two (or more)
successive additions is a complex problem. As an example, we might consider addition
across two integer additions x = (a + b) + c. Consider the first integer addition y = a + b
in isolation. Then the bias for the linear approximations a[i] ⊕ b[i] = y[i] (0 ≤ i ≤ 31)
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is 2−(i+1). If we were then to consider the second integer addition x = y + c we might be
tempted to use the Piling-Up Lemma directly, but that would give us misleading results.

For example, in bit position i = 2, the Piling-Up Lemma would tell us that the ap-
proximation holds with bias 2−3 × 2−3 × 2 = 2−5. But note that the output from one
integer addition is used directly as the input to the second integer addition thus this two
operations are not independent. Instead, if we evaluate the boolean expressions directly
using the least significant three bits of a, b, and c then we find that the bias is in fact 2−3.

In the case of SHA-1 we have an even more complicated situation. We have the following
string of additions that we need to approximate x = (a + b) + k + c where k is a key- (and
round-) dependent constant. The approximation we plan to use is x[i] = a[i]+b[i]+k[i]+c[i]
(0 ≤ i ≤ 31). The bias that is observed will depend on the value of k.

Let us consider a simplified case, x = k + y. Imagine we make the approximation
x[i] = k[i] + y[i] (0 ≤ i ≤ 31), where y[i] is plaintext dependent bit and where k[i] is
a (fixed) key bit. Clearly if we consider only the least significant bit, i = 0, then the
approximation always holds. For bit i = 1, the approximation holds always if k[0] = 0,
but only with probability 0.5, that is bias zero, if k[0] = 1. If we are using bit i ≥ 1 for
the approximation then integers k for which (k & (2i − 1)) = 0 give a maximum bias,
since there will be no carry bits in bit positions lower than i, and the approximation holds
always, see formulae (11). This maximum is less than or equal to 2−2 for any bit position
i > 1. Note that the number of these “weaker” keys that give a maximal bias is dependent
on the bit position i. When i = 2 we have that one in four keys gives the maximal bias. If
i = 30 then we have that only one key in 230 gives this maximal bias. We also note that
some values of k give a zero bias. Namely values of k that satisfy (k & (2i−1)) = 2i−1. For
such values there are no carry bits for positions less than i−1. But since k[i−1] = 1 in this
case, there will be a carry bit in position i if and only if y[i− 1] = 1. If y is allowed to vary
over all values (the approach usually taken in linear cryptanalysis) then the approximation
x[i] = k[i] + y[i] holds with probability 0.5, thus zero bias.

2.1.2 All Rounds The cyclical structure of SHA-1 means that in all four rounds we
can readily identify a family of linear approximations that always hold over four steps. We
use Γ to denote a general pattern of bits to be used in the approximation and xc to denote
the left rotation of a 32-bit word x by c bit positions.
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A B C D E bias

Γ · · · · · · · · · · · ·

x 1
2

· · · Γ · · · · · · · · ·

x 1
2

· · · · · · Γ 30 · · · · · ·

x 1
2

· · · · · · · · · Γ 30 · · ·
x 1

2

· · · · · · · · · · · · Γ 30

This is a “perfect” linear approximation over any four steps of SHA-1. In extending
this approximation we will need to take into account the effects of the different boolean
functions that are used in the different rounds. Our extended linear approximations will
be formed according to these three rationale:

1. When approximating forward one step in any of the rounds, we try to avoid introducing
an approximating bit in word E.

2. We try to use single-bit approximations in each word whenever possible, and we always
try and use the least significant bit of a word.

3. We try and use as many internal cancellations as possible to keep the linear approxi-
mation as simple as possible.

These rationale do not necessarily guarantee that the linear approximations we con-
struct are the best for the cryptanalyst. However they embody well-founded analytic tech-
niques that are very likely to give the best constructable linear approximations.

2.1.3 Rounds 2 and 4 In these rounds the boolean function used to combine the words
is the simple bitwise exclusive-or b⊕c⊕d. This function in fact poses some difficulty to the
cryptanalyst in terms of trying to manage the number of bits used in the approximations.

In Rounds 2 and 4 we can extend the basic “perfect” linear approximation that we have
already shown for all rounds in the following way. This gives a linear approximation that
acts over seven steps and holds with probability one (i.e. the bias is 1/2). In anticipation
of its extension, we set Γ = e0 according to our rationale in the previous section.
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A B C D E bias

e2 · · · · · · · · · · · ·

x 1
2

· · · e2 · · · · · · · · ·
x 1

2

· · · · · · e0 · · · · · ·

x 1
2

· · · · · · · · · e0 · · ·

x 1
2

· · · · · · · · · · · · e0

x 1
2

e0 e27 e30 e0 e0

x 1
2

e0 e27 ⊕ e0 e30 ⊕ e25 e30 ⊕ e0 · · ·

x 1
2

· · · e0 e25 ⊕ e30 e25 ⊕ e30 e30 ⊕ e0

We conjecture that this is the longest “perfect” linear approximation over the steps in
Rounds 2 and 4. If we are to use this in an attack then we will need to extend it. If we
consider the only extension that is possible at the top then we have the following one-step
linear approximation:

A B C D E

e29 e2 e2 e2 e2

x

e2 · · · · · · · · · · · ·

At the foot of the seven-step linear approximation we need to use the following one-step
approximation:

A B C D E

· · · e0 e25 ⊕ e30 e25 ⊕ e30 e30 ⊕ e0

x

e30 ⊕ e0 e27 ⊕ e25 e28 e25 ⊕ e0 e25 ⊕ e0

Using the techniques mentioned in the preliminary section, we estimate that the max-
imum bias for this nine-step linear approximation (taking into account the best possible
value for the key material) is less than 2−2×2−2×2 = 2−3 and more than 2−3×2−3×2 = 2−5.
This bias would apply to one in 232 keys since we require a key condition on the approxi-
mation in step one and a key condition on the approximation in step nine. For roughly one
in 22 keys there will be no bias to this linear approximation. The expected value of the bias
might be expected to lie between 2−3×2−3×2 = 2−5 and 2−4×2−4×2 = 2−7. Experiments
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give that the bias using the best key conditions is around 2−4.0 and that the average bias
over all keys is 2−5.6. For one in four keys there is no bias in the approximation.

We have identified a nine-step linear approximation. To facilitate our overall analysis
we will add a step to this nine-step approximation. We could add a step at the beginning
or at the end. It seems to be easier for the cryptanalyst to add the following one-step
approximation to the beginning of the existing approximation.

A B C D E

e24 ⊕ e2 e29 ⊕ e4 e29 ⊕ e2 e29 ⊕ e2 e29

x

e29 e2 e2 e2 e2

Following our previous methods we will estimate that that maximum bias (under the
most propitious key conditions for the analyst) lies in the range (2−4, 2−7) and that the
average bias lies in the range (2−7, 2−10). For a little over one in four keys there will be no
bias. Experiments demonstrate that the best key values (which occur for one in 229+30+2

random keys) give a bias of 2−5.4 but that the bias for the average key is performing a little
better than expected with a bias of 2−6.7. Since the case of the best key values is so rare,
we propose to use 2−6 as a conservative representative of the bias of this ten-step linear
approximation in Rounds 2 and 4.

2.1.4 Round 1 As in our analysis of Rounds 2 and 4 we consider the best extension to
the basic four-step “perfect” approximation that applies in all rounds. Here the boolean
function is bc⊕ b̄d. There are no perfect approximations across this operation, though there
are several approximations with bias 2−2.

Immediately we can see the following four-step extension to the existing basic linear
approximation:

A B C D E

· · · · · · · · · · · · e0

x 1
4

e0 e27 · · · e0 · · ·

x 1
2

· · · e0 e25 · · · e0

x 1
4

e0 e27 · · · e25 ⊕ e0 · · ·

x 1
2

· · · e0 e25 · · · e25 ⊕ e0

The bias for this extension can be computed as 2−3. In extending further we need to
approximate across the addition operation in a bit position other than the least signif-
icant. We will consider a worst-case scenario for the key values so that the bias of this
approximation is perhaps around 2−2. Of course it can be expected to be much less.
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The following two-step extension allows us to form a ten-step approximation to the
steps in Round 1 that holds with a bias of no more than 2−6 in the best case and in the
range (2−7, 2−8) on average.

A B C D E

· · · e0 e25 · · · e25 ⊕ e0
x

e25 ⊕ e0 e27 ⊕ e20 · · · e0 · · ·

x

· · · e25 ⊕ e0 e25 ⊕ e18 · · · e0

Experiments confirm the ten-step linear approximation. The average bias was 2−7.2 and
with the best key conditions (which hold for one in 225 random keys) the bias over twenty
trials was 2−6.4.

We will conservatively use 2−6 as the estimate for the bias for this ten-step linear
approximation to the steps in Round 1.

2.1.5 Round 3 Once again we consider extensions to the basic linear approximation
that applies in all rounds. Here the boolean function is bc⊕ cd⊕ bd. There are no perfect
approximations across this operation, though there are several approximations with bias
2−2.

Immediately we can see the following four-step extension to the existing basic linear
approximation:

A B C D E

· · · · · · · · · · · · e0

x 1
4

e0 e27 · · · e0 · · ·

x 1
2

· · · e0 e25 · · · e0

x 1
4

e0 e27 · · · e25 · · ·

x 1
2

· · · e0 e25 · · · e25

The bias for this extension can be computed as 2−3. In extending further we need to
approximate across the addition operation in a bit position other than the least significant.
We will consider a worst-case scenario for the key values so that the bias of this approx-
imation is perhaps a little less than 2−2 for this particular integer addition. We of course
expect it to be less.

The following two-step extension allows us to form a ten-step approximation to the
steps in Round 1 that holds with a bias of no more than 2−5 in the best case (for the
analyst) and in the range (2−6, 2−7) on average.
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A B C D E

· · · e0 e25 · · · e25

x

e25 e20 e30 · · · · · ·

x

· · · e25 e18 e30 · · ·

Experiments confirm this ten-step linear approximation and for the best key conditions
(which hold for one in 225 random keys) the bias was 2−5.6 and for the average case the
bias was 2−6.4 on average.

We will conservatively use 2−5 as the estimate for the bias for this ten-step linear
approximation to the steps in Round 3.

2.1.6 Putting Things Together The ten-step linear approximation we identified for
Rounds 2 and 4 is valid over 40 steps of the full SHA-1. Therefore we estimate that in
using this approximation the bias as at most (2−6)4 × 23 = 2−21. This of course is a
highly conservative estimate. Among the many favorable assumptions for the cryptanalyst
is that this ten-step linear approximation can be joined to itself. It cannot. Extending this
approximation in either direction is likely to provide a severe drop in the exploitable bias
of the linear approximation.

For Round 1 we might conservatively estimate that the 20 steps can be approximated
using a linear approximation with bias no more than (2−6)2× 2 = 2−11. Likewise we might
estimate that the 20 steps in Round 3 can be approximated using an approximation with
bias no more than (2−5)2 × 2 = 2−9.

Under the most favorable conditions for the cryptanalyst (conditions that we believe
cannot actually be satisfied) if SHA-1 is to be approximated using a linear approximation
then the bias will be no more than 2−21×2−11×2−9×22 = 2−39. Note that the key conditions
necessary to give the best bias for the approximations in Rounds 1 and 3 hold exceptionally
rarely and so we ignore this case and we deduce that the bias is overwhelmingly likely to
fall beneath 2−40. On the other hand, note that the approximation outlined has a zero-bias
for many keys and so other approximations would have to be used by the analyst in these
cases giving a reduced working bias.

Thus a linear cryptanalytic attack on SHA-1 requiring less than 280 known plaintexts
is exceptionally unlikely.

2.2 Differential Cryptanalysis

Differential cryptanalysis is a chosen plaintext attack where the attacker is allowed to
choose pairs of plaintexts of his liking, and pairs of a predetermined difference. This dif-
ference is often defined as the exclusive-or sum of the two plaintexts. The idea is that the
difference in the plaintexts allows the attacker to probabilisticly determine the difference in
the intermediate ciphertexts of the cipher. If one is able to determine the difference in the
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ciphertexts after the last few rounds of the cipher with a high probability, one can often
make a search for the key (bits) used in the last round. If these key bits can be determined,
the attacker can decrypt all ciphertexts by one round, and repeat the attack on a cipher
one round shorter than the original, which is typically easier than the attack on the full
cipher.

The main tool in differential cryptanalysis is the characteristic and the differential. A
characteristic is a list of the predicted differences in the ciphertexts after each round of
the cipher starting with the plaintext differences, and has a probability connected to it.
Characteristics are typically built from concatenating one-round characteristics. The prob-
ability of a characteristic is then taken as the product of the probabilities of all involved
one-round characteristics. Here one assumes that the involved one-round characteristics
are independent, which is most often not exactly the case, but as often it is a good ap-
proximation. A differential is a collection of characteristics which have identical starting
and ending values. Thus, an s-round differential typically specifies only the difference in
the plaintexts and in the ciphertexts after s rounds. The differences in the intermediate
ciphertexts are allowed to vary. Thus, the probabilities of a differential are in general higher
than for a corresponding characteristic. To enable a successful attack based on differential
cryptanalysis, the existence of good characteristics is a necessity, whereas to prove resis-
tance against the attack, one must ensure that all differentials have a low probability. The
detection of good differentials has proved to be very difficult for most ciphers, and often
one considers only characteristics.

Most often in differential cryptanalysis the definition of difference is defined as the
exclusive-or of the two texts involved in a pair. Also for SHA this seems to be the best and
obvious definition.

2.2.1 Differentials for SHA What makes differential cryptanalysis difficult on SHA is
first, the use of both exclusive-ors and modular additions, a second, the functions fZ, f⊕, fm.

First we consider the relation between exclusive-or differences and integer addition.
Integer addition of a constant word K to the 32-bit words A and B which only differ in
few bits does not necessarily lead to an increase of bit differences in the sums A + S and
B + S. This may be illustrated by the following special case: Suppose the words A and B
only differ in the i-th bit, i < 31. Then it holds that with probability 1

2
, A + S and B + S

also differ in only the i-th bit. Using formulae (11) one sees that A + S and B + S with
probability 1

4
differ in exactly two (consecutive) bits. There is a special and important case

to consider, namely when A and B differ in only the most significant bit, position 31. In
that case A + S and B + S differ also only in the most significant bit.

The functions fZ, f⊕, fm all operate in the bit-by-bit manner. Thus, one can easily find
out how the differences in the outputs of each of the functions behave depending of the
differences of the three inputs. Namely, one can consider three inputs of one bit each and
an output of one bit. Table 1 shows this for all three functions. The notation of the table
is as follows. The first three columns represent the eight possible differences in the one-bit
inputs, x, y, z. The next three columns indicate the differences in the outputs of each of the
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three functions. A ‘0’ denotes that the difference always will be zero, a ‘1’ denotes that the
difference always will be one, and a ‘0/1’ denotes that in half the cases the difference will be
zero and in the other half of the cases the difference will be one. Note that the function f⊕ is
linear in the inputs, i.e. the difference in the outputs can be determined from the differences
in the inputs. However, as we shall see, f⊕ helps to complicate differential cryptanalysis of
SHA.

x y z f⊕ fZ fm
0 0 0 0 0 0
0 0 1 1 0/1 0/1
0 1 0 1 0/1 0/1
0 1 1 0 1 0/1
1 0 0 1 0/1 0/1
1 0 1 0 0/1 0/1
1 1 0 0 0/1 0/1
1 1 1 1 0/1 1

Table 1. Distribution of exclusive-or differences through the f-functions.

In the following we consider some characteristics for all rounds and for each of the three
different rounds.

2.2.2 All Rounds

A B C D E probability

e26 0 0 0 e31

x 1
0 e26 0 0 0

x 1
? 0 e24 0 0

x 1
? ? 0 e24 0

x 1
? ? ? 0 e24

x 1
? ? ? ? 0

Table 2. Five-step characteristic.

The characteristic of Figure 2 holds with probability one over (any) five steps in any of
the four rounds. The question mark (?) indicates an unknown value. Thus, a pair of texts
which differ only in the first words in bit position 26 and in the fifth words in bit position
31, result in texts after five steps which are equal in the fifth words. The difference in the
other words of the texts will depend on the particular round considered and of the texts
involved.

2.2.3 Rounds 1 and 3 First we consider the five step characteristic of the previous
section. With the functions fZ and fm this gives the following characteristic over five steps.



606 Helena Handschuh and David Naccache

A B C D E probability

e26 0 0 0 e31

x 1
0 e26 0 0 0

x 1
2

0 0 e24 0 0

x 1
2

0 0 0 e24 0

x 1
2

0 0 0 0 e24

x 1
2

e24 0 0 0 0

This characteristic can be concatenated with a three-step characteristic in the beginning
and a two-step characteristic at the end, yielding the following ten-step characteristic.

A B C D E probability

0 e1 e26 0 0

x 1
4

0 0 e31 e26 0

x 1
4

0 0 0 e31 e26

x 1
4

e26 0 0 0 e31

x 1
0 e26 0 0 0

x 1
2

0 0 e24 0 0

x 1
2

0 0 0 e24 0

x 1
2

0 0 0 0 e24

x 1
2

e24 0 0 0 0

x 1
2

e29 e24 0 0 0

x 1
4

e2 e29 e22 0 0
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This ten-step characteristic has a probability of 2−13. As is clearly indicated, extending
this characteristic to more steps, e.g., 20, will involve steps with bigger Hamming weights
in the differences in the five words than in the first above 10 steps.

We conjecture that the above is one of the characteristics with the highest probability
over 10 steps, and that any characteristic over 20 steps of Round 1 or Round 3 will have
a probability of less than 2−26.

2.2.4 Rounds 2 and 4 With respect to differential cryptanalysis the function f⊕ used
in Rounds 2 and 4 behaves significantly different from the functions used in Rounds 1 and
3. First note that if we replace all modular additions with exclusive-ors, the steps in Rounds
2 and 4 are linear for exclusive-or differences, in other words, given an input difference one
can with probability one determine the output difference after any number of maximum
20 steps. As indicated above, the mixed use of exclusive-ors and modular additions has
only little effect for pairs of texts with differences of low Hamming weights. Therefore good
characteristics for these steps should have low Hamming weights through as many steps as
possible. Consider first the 5-step characteristic of Table 2. The first four steps will evolve
as follows.

A B C D E probability

e26 0 0 0 e31

x 1
0 e26 0 0 0

x 1
2

e26 0 e24 0 0

x 1
2

e24,31 e26 0 e24 0

x 1
16

e4,24,26,29 e24,31 e24 0 e24

Here we have used the notation ea1,...,ar for ea1 ⊕ · · · ⊕ ear . It can be seen that for this
characteristic the Hamming weights of the differences in the ciphertext words will increase
for subsequent steps. Consider as an alternative the following characteristic.
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A B C D E probability

e1 e3 e1 e11 e1,3,11

x 1
16

e6 e1 e1 e1 e11

x 1
4

e1 e6 e31 e1 e1

x 1
4

e31 e1 e4 e31 e1

x 1
4

e31 e31 e31 e4 e31

x 1
2

e31 e31 e29 e31 e4

x 1
4

e29 e31 e29 e29 e31

x 1
4

e2 e29 e29 e29 e29

x 1
4

e7 e2 e27 e29 e29

x 1
16

e2,12,27 e7 e0 e27 e29

x 1
32

e17,27,29 e2,12,27 e5 e0 e27

This characteristic was found by a computer search. Of all possible input differences
with up to one-bit difference in each of the five input words, totally 335 − 1 character-
istics, the last 9 steps of the above characteristic has the lowest Hamming weights in
the ciphertexts differences of all steps. For this search we replaced modular additions by
exclusive-ors. The nine steps can be concatenated with a one-step characteristic in the
beginning, as shown above. In real SHA the probability of these 10 steps is approximately
2−26, where we have used the above estimates for the behaviour of exclusive-or differences
after modular additions. This may not give a bound for the best characteristics over 10
steps of SHA, but a complete search seems impossible to implement, moreover it gives suf-
ficient evidence to conclude that there are no high probability characteristics over 20 steps
of Rounds 2 and 4. We conjecture that the best such characteristic will have a probability
of less than 2−32.

2.2.5 Putting Things Together Using the estimates for best characteristics for Rounds
1, 2, 3, and 4 of the previous section, we get an estimate of the best characteristic for all
80 steps of SHA, namely 2−26× 2−32× 2−26× 2−32 = 2−116. We stress that this estimate is
highly conservative. First of all, the estimates for each round were conservative, and second,
there is no guarantee that high probability characteristics for each round in isolation, can
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be concatenated to the whole cipher. Therefore we conclude that differential cryptanalysis
of SHA is likely to require an unrealistic amount of chosen texts if it is possible at all.

3 Conclusions

In the previous section we deduced that a linear cryptanalytic attack on SHA-1 as an
encryption function would require at least 280 known plaintexts and that a differential
attack would require at least 2116 chosen plaintexts. Note that we are explicitly considering
constructable linear approximations and differential characteristics. It may well be that
there are other approximations and characteristics over SHA-1 that are not revealed by
this type of analysis. Instead they would have to be searched for using brute-force. Since
there is no known short-cut to such a search this possibility has to be viewed as being so
unlikely as to not merit practical consideration.

Our techniques in constructing the approximations and characteristics were ad hoc, but
based on considerable practical experience. We have been very cautious in our estimates
and feel very confident in asserting that a linear or differential cryptanalytic attack using
less than 280 plaintext blocks is infeasible. We note that at this point a 160-bit block cipher
is beginning to leak plaintext information anyway when used to encrypt this much text
with the same key.

Finally we mention that additional cryptanalytic considerations such as linear hulls,
multiple linear approximations, and various kinds of differentials are unlikely to make
any significant difference to our analysis and estimates. Therefore they make no practical
difference to the conclusion we have already drawn.
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Abstract. This paper presents xmx, a new symmetric block cipher optimized for public-key libraries
and microcontrollers with arithmetic co-processors. xmx has no S-boxes and uses only modular mul-
tiplications and xors. The complete scheme can be described by a couple of compact formulae that
offer several interesting time-space trade-offs (number of rounds/key-size for constant security).

In practice, xmx appears to be tiny and fast: 136 code bytes and a 121 kilo-bits/second throughput
on a Siemens SLE44CR80s smart-card (5 MHz oscillator).

1 Introduction

Since efficiency and flexibility are probably the most appreciated design criteria, block ci-
phers were traditionally optimized for either software (typically SAFER [4]) or hardware
(DES [2]) implementation. More recently, autonomous agents and object-oriented tech-
nologies motivated the design of particularly tiny codes (such as TEA [9], 189 bytes on a
68HC05) and algorithms adapted to particular programming languages such as PERL.

Surprisingly, although an ever-increasing number of applications gain access to arith-
metic co-processors [5] and public-key libraries such as BSAFE, MIRACL, BIGNUM [8]
or ZEN [1], no block cipher was specifically designed to take advantage of such facilities.

This paper presents xmx (xor-multiply-xor), a new symmetric cipher which uses public-
key-like operations as confusion and diffusion means. The scheme does not require S-boxes
or permutation tables, there is virtually no key-schedule and the code itself (when relying
on a co-processor or a library) is extremely compact and easy to describe.

xmx is firmware-suitable and, as such, was specifically designed to take a (carefully
balanced) advantage of hardware and software resources.

2 The Algorithm

2.1 Basic operations

xmx is an iterated cipher, where a keyed primitive f is applied r times to an `-bit cleartext
m and a key k to produce a ciphertext c.
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Definition 1. Let fa,b(m) = (m ◦ a) · b mod n where:

x ◦ y =

{
x⊕ y if x⊕ y < n

x otherwise

and n is an odd modulus.

Property: a ◦ b is equivalent to a ⊕ b in most cases (when n ≤ 2`, and {a, b} is uniformly
distributed, Pr[a ◦ b = a ⊕ b] = n/2`).

Property: For all a and b, a ◦ b ◦ b = a.

f can therefore be used as a simply invertible building-block (a < n implies a ◦ b < n)
in iterated ciphers :

Definition 2. Let n be an `-bit odd modulus, m ∈ Zn and k be the key-array k =
{a1, b1, . . . , ar, br, ar+1} where ai, bi ∈ Z∗n and gcd(bi, n) = 1.

The block-cipher xmx is defined by:

xmx(k, m) = (far,br(far−1,br−1(. . . (fa1,b1(m)) . . .))) ◦ (ar+1)

and:
xmx−1(k, c) = (f−1

a1,b1
(f−1

a2,b2
(. . . (f−1

ar,br
(c ◦ ar+1)) . . .)))

2.2 Symmetry

A crucially practical feature of xmx is the symmetry of encryption and decryption. Using
this property, xmx and xmx−1 can be computed by the same procedure:

Lemma 1.

k−1 = {ar+1, b
−1
r mod n, ar, . . . , b

−1
1 mod n, a1} ⇒ xmx−1(k, x) = xmx(k−1, x) .

Since the storage of k requires (2r +1)` bits, xmx schedules the encryption and decryp-
tion arrays k and k−1 from a single `-bit key s:

k(s) = {s, s, . . . , s, s, s⊕ s−1, s, s−1, . . . , s, s−1}
where k−1(s) = k(s−1).

For a couple of security reasons (explicited infra) s must be generated by the following
procedure (where w(s) denotes the Hamming weight of s):

1. Pick a random s ∈ Z?
n such that `

2
− log2 ` < w(s) < `

2
+ log2 `

2. If gcd(s, n) 6= 1 or `− log2 s ≥ 2 go to 1.
3. output the key-array k(s) = {s, s, . . . , s, s, s⊕ s−1, s, s−1, . . . , s, s−1}

Although equally important, the choice of n is much less restrictive and can be con-
ducted along three engineering criteria: prime moduli will greatly simplify key genera-
tion (gcd(bi, n) = 1 for all i), RSA moduli used by existing applications may appear
attractive for memory management reasons and dense moduli will increase the probability
Pr[a ◦ b = a ⊕ b].

As a general guideline, we recommend to keep n secret in all real-life applications but
assume its knowledge for the sake of academic research.
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3 Security

xmx’s security was evaluated by targeting a weaker scheme (wxmx) where ◦ ∼= ⊕ and
k = (s, s, s, . . . , s, s, . . . , s, s, s).

Using the trick u⊕ v = u + v − 2 (u ∧ v) for eliminating xors and defining:

hi(x) = ((. . . (x⊕ a1) · b1 mod n . . .)⊕ ai−1) · bi−1 mod n

we get by induction:

wxmx(k, x) = b′1 · x + a1 · b′1 . . . + ar+1 − 2 (g1(x) · b′1 + . . . + gr+1(x)) mod n

where b′i = bi · · · br mod n and gi(x) = hi(x) ∧ ai .

Consequently,

wxmx(k, x) = b′1 · x + b− 2 g(x) mod n where b = a1 · b′1 + a2 · b′2 . . . + ar+1

and g(x) = g1(x) · b′1 + g2(x) · b′2 + . . . + gr+1(x) mod n .

3.1 The Number of Rounds

When r = 1, the previous formulae become g2(x) = h2(x) ∧ s and

wxmx(k, x) = ((x⊕ s) · s mod n)⊕ s = x s + s2 + s− 2 (g1(x) s + g2(x)) mod n

Assuming that w(δ) is low, we have (with a significantly high probability):

g1(x + δ) = (x + δ) ∧ s = g1(x) mod n .

Therefore, selecting δ such that s ∧ δ = 0 ⇒ g1(x⊕ δ) = g1(x), we get

wxmx(k, x⊕ δ)− wxmx(k, x) = (x⊕ δ − x) · s −
2 (s ∧ h2(x⊕ δ)− s ∧ h2(x)) mod n .

Plugging δ = 2 and an x such that x ∧ δ = 0 into this equation, we get:

wxmx(k, x⊕ δ)− wxmx(k, x) = 2 (s− s ∧ h2(x + 2) + s ∧ h2(x)) mod n .

Since h2(x) = s · x + s2 − 2 g1(x) mod n (where g1(x) = x ∧ s), it follows that h2(x)
and h2(x + 2) differ only by a few bits. Consequently, information about s leaks out and,
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in particular, long sequences of zeros or ones (with possibly the first and last bits altered)
can be inferred from the difference wxmx(k, x⊕ δ)− wxmx(k, x).

In the more general setting (r > 1), we have

wxmx(k, x⊕ δ)− wxmx(k, x) = (x⊕ δ − x)sr + 2 e(x, δ, s) mod n

where e(x, δ, s) is a linear form with coefficients of the form α ∧ s− β ∧ s.

Defining ∆ = {wxmx(k, x⊕ δ)− wxmx(k, x)}, we get ‖∆‖ < 2rw(s) since ∆ is completely
characterized by s.

The difference will therefore leak again whenever:

2rw(s) < 2` ⇒ r <
`

w(s)
. (1)

3.2 Key-Generation

3.2.1 The weight of s: Since g(x) is a polynomial which coefficients (b′i) are all
bitwise smaller than s, the variety of g(x) is small when w(s) is small. In particular, when
w(s) < 80

r+1
, less than 280 such polynomials exist.

A 240-pair known plaintext attack would therefore extract sr from:

wxmx(k, y)− wxmx(k, x) = (y − x) · sr mod n

using the birthday paradox (the same g(x) should have been used twice). One can even
obtain collisions on g with higher probability by simply choosing pairs of similar plaintexts.
Using [7] (refined in [6]), these attacks require almost no memory.

Since a similar attack holds for s when w(s) is big (x ⊕ y = x + 2 (x ∧ y) − y), w(s)
must be rather close to `/2 and (1) implies that r must at least equal three to avoid the
attack described in section 3.1.

3.2.2 The size of s: Chosen plaintext attacks on wxmx are also possible when s is
too short: if sm < n after r iterations, s can be recovered by encrypting m = 0` since
wxmx(k, 0`) = b− 2 g(x) and g’s coefficients are all bounded by s.

Observing that 0 ≤ wxmx(k, 0`)− sr+1 ≤ s · 2r, we have:

0 ≤ s− r+1
√

wxmx(k, 0`) <
1

r + 1
⇒ s =

⌈
r+1
√

wxmx(k, 0`)
⌉

.

More generally, encrypting short messages with short keys may also reveal s. As an
example, let ` = 256, r = 4, s = 0176|s′ and m = 0176|m′ where s′ and m′ are both 80-bit
long. Since Pr[x ⊕ s = x + s] = (3/4)80 ∼= 2−33 when s is 80-bit long, a gcd between
ciphertexts will recover s faster than exhaustive search.
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3.3 Register Size

Since the complexity of section 3.1’s attack must be at least 280, we have:

√
2r·w(s) > 280

and considering that w(s) ∼= `/2, the product r` must be at least 320.

r = 4 typically requires ` > 80 (brute force resistance implies ` > 80 anyway) but an
inherent 2`/2-complexity attack is still possible since wxmx is a (keyed) permutation over
`-bit numbers, which average cycle length is 2`/2 (given an iteration to the order 2`/2 of
wxmx(k, x), one can find x with significant probability).

` = 160 is enough to thwart these attacks.

4 Implementation

Standard implementations should use xmx with r = 8, ` = 512, n = 2512 − 1 and

k = {s, s, s, s, s, s, s, s, s ⊕ s−1, s, s−1, s, s−1, s, s−1, s, s−1}
while high and very-high security applications should use {r = 12, ` = 768, n = 2786 − 1}
and {r = 16, ` = 1024, n = 21024 − 1}.

A recent prototype on a Siemens SLE44CR80s results in a tiny (136 bytes) and per-
formant code (121 kilo-bits/second throughput with a 5 MHz oscillator) and uses only a
couple of 64-byte buffers.

The algorithm is patent-pending and readers interested in test-patterns or a copy of
the patent application should contact the authors.

5 Further Research

As most block-ciphers xmx can be adapted, modified or improved in a variety of ways:
the round output can be subjected to a constant permutation such as a circular rotation
or the chunk permutation π(ABCD) → BADC where each chunk is 128-bit long (since
π(π(x)) = x, xmx’s symmetry will still be preserved). Other variants replace modular
multiplications by point additions on an elliptic curve (ecxmx) or implement protections
against [3] (taxmx).

It is also possible to define f on two `-bit registers L and R such that:

f(L1, R1) = {L2, R2}
where

L2 = R1 and R2 = L1 ⊕ ((R1 ⊕ k2) · k1 mod n).

and the inverse function is:

R1 = L2, L1 = R2 ⊕ ((R1 ⊕ k2) · k1 mod n) = R2 ⊕ ((L2 ⊕ k2) · k1 mod n)
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Since such designs modify only one register per round we recommend to increase r to
at least twelve and keep generating s with xmx’s original key-generation procedure.

6 Challenge

It is a tradition in the cryptographic community to offer cash rewards for successful crypt-
analysis. More than a simple motivation means, such rewards also express the designers’
confidence in their own schemes. As an incentive to the analysis of the new scheme, we
therefore offer (as a souvenir from FSE’97...) 256 Israeli Shkalim and 80 Agorot (n is the
smallest 256-bit prime starting with 80 ones) to the first person who will degrade s’s
entropy by at least 56 bits in the instance:

r = 8, ` = 256 and n = (280 − 1) · 2176 + 157

but the authors are ready to carefully evaluate and learn from any feedback they get.
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Abstract. Maurer’s universal test is a very common randomness test, capable of detecting a wide
gamut of statistical defects. The algorithm is simple (a few Java code lines), flexible (a variety of
parameter combinations can be chosen by the tester) and fast.
Although the test is based on sound probabilistic grounds, one of its crucial parts uses the heuristic
approximation:

c(L, K) ∼= 0.7− 0.8

L
+ (1.6 +

12.8

L
)K−4/L

In this work we compute the precise value of c(L, K) and show that the inaccuracy due to the
heuristic estimate can make the test 2.67 times more permissive than what is theoretically admitted.
Moreover, we establish a new asymptotic relation between the test parameter and the source’s entropy.

1 Introduction

In statistics, randomness refers to these situations where care is taken to see that each
individual has the same chance of being included in the sample group. In practice, random
sampling is not easy: being after a random sample of people, it’s not good enough to
stand on a street corner and select every fifth person who passes as this would exclude
habitual motorists from the sample; call on 50 homes in different areas, and you may end
up with only housewives’ opinions, their husbands being at work; pin a set of names from
a telephone directory, and you exclude in limine those who do not have a telephone.

Whilst the use of random samples proves helpful in literally thousands of fields, non-
random sampling is fatally disastrous in cryptography. Assessing the randomness of noisy
sources is therefore crucial and a variety of tests for doing so exists. Interestingly, most
if not all such tests revolve around a common skeleton, called the monkey paradigm.
Informally, the idea consists in measuring the expectation at which a monkey playing with
a typewriter would create a meaningful text. Although one can easily conclude that a
complex text (e.g. the IACR’s bylaws) has a negligible monkey probability, a simple word
such as cat is expected to appear more frequently (each ∼= 17, 576 keystrokes) and could
be used as a basic (yet very insufficient) randomness test.
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However, analyzing textual features is much more efficient than pattern-scanning where
inter-pattern information is wasted without being re-cycled for deriving additional mon-
keyness evidence.

Usually, parameters such as the average inter-symbol distance or the length of sequences
containing the complete alphabet are measured in a sample and a parameter is calculated
from the difference between the measure and its corresponding expectation when a monkey,
theorized as a binary symmetric source (BSS), is given control over the keyboard. A BSS
is a random source which outputs statistically independent and symmetrically distributed
binary random variables. Based on the expected distribution of the BSS’ parameter, the
test succeeds or fails.

We refer the reader to [2, 4] for a systematic treatment of randomness tests and focus
the following sections on a particular test, suggested by Maurer in [5].

2 Maurer’s Universal Test

Maurer’s universal test [5] takes as input three integers {L,Q, K} and a (Q+K)×L = N -
bit sample sN = [s1, . . . , sN ] generated by the tested source.

Let B denote the set {0,1}. Denoting by bn(sN) = [sL(n−1)+1, . . . , sLn] the n-th L-bit
block of sN , the test function fTU

: BN → R is defined by:

fTU
(sN) =

1

K

Q+K∑
n=Q+1

log2 An(sN) (1)

where,

An(sN) =





n if ∀i < n, bn−i(s
N) 6= bn(sN)

min{i : i ≥ 1, bn(sN) = bn−i(s
N)} otherwise.

To tune the test’s rejection rate, one must first know the distribution of fTU
(RN), where

RN denotes a sequence of N bits emitted by a BSS. A sample would then be rejected if the
number of standard deviations separating its fTU

from E[fTU
(RN)] exceeds a reasonable

constant1.
For statistically independent random variables the variance of a sum is the sum of

variances but the An-terms in (1) are heavily inter-dependent; consequently, [5] introduces
a corrective factor c(L,K) by which the standard deviation of fTU

is reduced compared to
what it would have been if the An-terms were independent:

Var[fTU
(RN)] = σ2 = c(L,K)2 × Var[log2 An(RN)]

K
(2)

A heuristic estimate of c(L,K) is given for practical purposes in [5]:

1 the precise value of E[fTU (RN )] is computed in [5] and recalled in section 3.3.



618 Jean-Sébastien Coron and David Naccache

c(L, K) ∼= c′(L,K) = 0.7− 0.8

L
+

(
1.6 +

12.8

L

)
K−4/L

In the next section we compute the precise value of c(L,K), under the admissible
assumption that Q → ∞ (in practice, Q should be larger than 10 × 2L); this enables a
much better tuning of the test’s rejection rate (according to [5] the precise computation of
c(L,K) should have required a considerable if not prohibitive computing effort).

3 An Accurate Expression of c(L, K)

3.1 Preliminary Computations

For any set of random variables, we have:

Var[
n∑

i=1

Xi] =
n∑

i=1

Var[Xi] + 2
∑

1≤i<j≤n

Cov[Xi, Xj] (3)

where Cov[Xi, Xj] is the covariance of Xi and Xj:

Cov[X1, X2] = E[X1X2]− E[X1]× E[X2] (4)

Throughout this paper the notation ai = log2 Ai will be extensively used and, unless
specified otherwise, Ai will stand for Ai(R

N).
Formulae (1), (2) and (3) yield:

c(L,K)2 = 1 +
2

K × Var[an]

∑
1≤i<j≤K

Cov[aQ+i, aQ+j]

Assuming that Q → ∞ (in practice, Q > 10× 2L), the covariance of ai and aj is only
a function of k = j − i and by the change of variables k = j − i we get:

c(L,K)2 = 1 +
2

Var[an]
×

K−1∑

k=1

(1− k

K
)× Cov[an, an+k] (5)

whereas (4) yields:

Cov[an, an+k] =
∑
i, j≥1

log2 i log2 j Pr[An+k = j, An = i] − E[an]2 (6)

Considering a source emitting the random variables UN = U1, U2, . . . , UN , and letting
bn = bn(UN), we get:

Pr[An(UN) = i] =
∑

b∈BL

Pr[bn = b, bn−1 6= b, . . . , bn−i+1 6= b, bn−i = b]
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and, when the bn(UN)-blocks are statistically independent and uniformly distributed,

Pr[An(UN) = i] =
∑

b∈BL

Pr[bn = b]2 × (1− Pr[bn = b])i−1

For a BSS we thus have:

Pr[An = i] = 2−L(1− 2−L)i−1 for i ≥ 1

3.2 Expression of Pr[An+k = j, An = i]

Deriving the BSS’ Pr[An+k = j, An = i] for a fixed i ≥ 1 and variable j ≥ 1 is somewhat
more technical and requires the separate analysis of five distinct cases:

• Disjoint blocks 1 ≤ j ≤ k − 1
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Fig. 1. disjoint sequences.

When 1 ≤ j ≤ k − 1, the events 〈An+k = j〉 and 〈An = i〉 are independent, as there is
no overlap between [bn+k−j . . . bn+k] and [bn−i . . . bn] (figure 1); consequently,

Pr[An+k = j, An = i] = Pr[An+k = j]× Pr[An = i]

Pr[An+k = j, An = i] = 2−2L(1− 2−L)i+j−2

• Adjacent blocks j = k
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Fig. 2. adjacent sequences.

Letting b = bn+k = bn = bn−i and letting Ej=k[b] be the event (figure 2):
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Ej=k[b] = Pr[Ej=k[b]] =
{bn+k = b, Pr[bn+k = b]×
bn+k−1 6= b, . . . , bn+1 6= b, Pr[bn+k−1 6= b, . . . , bn+1 6= b]×
bn = b, ⇒ Pr[bn = b]×
bn−1 6= b, . . . , bn−i+1 6= b, Pr[bn−1 6= b, . . . , bn−i+1 6= b]×
bn−i = b} Pr[bn−i = b]

we get,

Pr[Ej=k[b]] = Pr[bn = b]3 × Pr[bn 6= b]k+i−2 = 2−3L(1− 2−L)k+i−2

Pr[An+k = k, An = i] =
∑

b∈BL

Pr[Ej=k[b]]

Pr[An+k = k, An = i] = 2−2L(1− 2−L)i+k−2

• Intersecting blocks k + 1 ≤ j ≤ k + i − 1
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Fig. 3. intersecting sequences.

For k + 1 ≤ j ≤ k + i − 1, the sequence [bn+k−j . . . bn+k] intersects [bn−i . . . bn] as
illustrated in figure 3. Letting b = bn+k = bn+k−j and b′ = bn = bn−i, we get the
following configuration, denoted Ek+1≤j≤k+i−1[b, b

′]:

Ek+1≤j≤k+i−1[b, b
′] = {bn+k = b,

bn+k−1 6= b, . . . , bn+1 6= b,
bn = b′,
bn−1 /∈ {b, b′}, . . . , bn+k−j+1 /∈ {b, b′},
bn+k−j = b,
bn+k−j−1 6= b′, . . . , bn−i+1 6= b′,
bn−i = b′}

whereby:

Pr[An+k = j, An = i] =
∑

b,b′∈BL

b6=b′

Pr[Ek+1≤j≤k+i−1[b, b
′]]
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for Pr[bn = b] = Pr[bn = b′] = 2−L

Pr[bn 6= b] = 1− 2−L

Pr[bn /∈ {b, b′}] = 1− 2× 2−L

and finally:

Pr[An+k = j, An = i] = 2−2L(1− 2−L)i+k−2

(
1− 1

2L − 1

)j−k−1

• The forbidden case j = k + i
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Fig. 4. the forbidden case.

If An = i, An+k can not be equal to k + i, as shown in figure 4.

Pr[An+k = k + i, An = i] = 0

• Inclusive blocks j ≥ k + i + 1
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Fig. 5. inclusive sequences.

For j ≥ k + i + 1, the sequence [bn−i . . . bn] is included in [bn+k−j . . . bn+k]. As depicted
in figure 5, the blocks of [bn+1 . . . bn+k−1] differ from b, those of [bn−i+1 . . . bn−1] differ
from both b and b′ and those of [bn+k−j+1 . . . bn−i−1] differ from b. Letting Ej≥k+i+1[b, b

′]
be the event:
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Ej≥k+i+1[b, b
′] = {bn+k = b,

bn+k−1 6= b, . . . , bn+1 6= b,
bn = b′,
bn−1 /∈ {b, b′}, . . . , bn−i+1 /∈ {b, b′},
bn−i = b′,
bn−i−1 6= b, . . . , bn+k−j+1 6= b,
bn+k−j = b}

Pr[An+k = j, An = i] =
∑

b,b′∈BL

b6=b′

Pr[Ej≥k+i+1[b, b
′]]

we obtain:

Pr[An+k = j, An = i] = 2−2L(1− 2−L)j−2

(
1− 1

2L − 1

)i−1

3.3 Expression of c(L, K)

Let us now define the function:

h(z, k) = (1− z)
∞∑
i=1

log2(i + k)zi−1

For a fixed z, the sequence
{

h(z, k)
}

k∈N
has the inductive property:

h(z, k) = (1− z) log2(k + 1) + z × h(z, k + 1) (7)

Let

u = 1− 2−L and v = 1− 1

2L − 1

The expected value E[fTU
(RN)] of the test parameter fTU

(RN) for a BSS is given by:

E[fTU
(RN)] = E[an] =

∞∑
i=1

log2 i× Pr[An = i] = h(u, 0)

and the variance of an is:

Var[an] = E[(an)2]− (E[an])2

= 2−L

∞∑
i=1

(log2 i)2(1− 2−L)i−1 − h(u, 0)2

From equation (6) and the expressions of Pr[An+k = j, An = i], one can derive the
following expression:
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Cov[an, an+k] = uk

(
h(u, 0)

(
h(v, k)− h(u, k)

)

+2−L

∞∑
i=1

log2 i ui−1vi−1
(
h(u, k + i)− h(v, k + i− 1)

))

and, using equation (5), finally obtain:

c(L,K)2 = 1− 2

Var[an]

(
p(L, 1)− p(L,K)− q(L, 1)− q(L,K)

K

)

where:

p(L,K) = uK−1

∞∑

l=1

F (l, L,K)ul−1 , q(L,K) = uK−1

∞∑

l=1

G(l, L, K)ul−1 ,

F (l, L, K) = u2
(
h(v, l + K − 1)− h(u, l + K)

)(
h(v, 0)− vlh(v, l)

)

+u× h(u, 0)
(
h(u, l + K − 1)− h(v, l + K − 1)

)

and

G(l, L, K) = u
(
h(v, l + K − 1)− h(u, l + K)

)

(
u (l + K)

(
h(v, 0)− vlh(v, l)

)− 2−L

l∑
i=1

i log2 i vi−1

)

+u
(
l + K − 1

)
h(u, 0)

(
h(u, l + K − 1)− h(v, l + K − 1)

)

3.4 Computing c(L, K) in Practice

The functions h(u, k), h(v, k), p(L,K) and q(L, K) are all power series in u or v and
converge rapidly (t = 33× 2L terms are experimentally sufficient).

To speed things further,

{
h(u, k)

}
1≤k≤2t

and
{

h(v, k)
}

1≤k≤2t

could be tabulated to compute c(L,K) in O(2L).
For K ≥ t, we get with an excellent approximation:
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c(L,K)2 ∼= d(L) +
e(L)× 2L

K
(8)

where d(L) = 1− 2
p(L, 1)

Var[an]
and e(L) =

q(L, 1)

Var[an]
× 2−L+1

In most cases approximation (8) is sufficient, as [5] recommends to choose K ≥ 1000×
2L > 33× 2L.

Although rather complicated to prove (ten pages omitted for lack of space), it is inter-
esting to note that asymptotically:

lim
L→∞

(E[fTU
(RN)]− L) = C

4
=

∫ ∞

0

e−ξ log2 ξ dξ = − γ

ln 2
∼= −0.8327462

lim
L→∞

Var[an] =
π2

6 ln2 2
∼= 3.4237147

lim
L→∞

d(L) = 1− 6

π2
∼= 0.3920729

lim
L→∞

e(L) =
2

π2
(4 ln 2− 1) ∼= 0.3592016

Where γ stands for the Euler-Mascheroni constant:

γ = lim
n→∞

(
n∑

k=1

1

k
− ln n)

The distribution of fTU
(RN) can be approximated by the normal distribution of mean

E[fTU
(RN)] and standard deviation:

σ = c(L,K)
√

Var[an]/K (9)

E[fTU
(RN)], Var[an], d(L) and e(L) are listed in table 1 for 3 ≤ L ≤ 16 and L →∞.

4 How Accurate is Maurer’s Test?

Let c′(L,K) be Maurer’s approximation for c(L,K), and let σ′ be the standard deviation
calculated under this approximation.

c′(L,K) = 0.7− 0.8

L
+

(
1.6 +

12.8

L

)
K− 4

L (10)

σ′ = c′(L,K)
√

Var[an]/K

Letting y′ be the approximated number of standard deviations away from the mean
allowed for fTU

(sN), a device is rejected if and only if fTU
(sN) < t1 or fTU

(sN) > t2, where
t1 and t2 are defined by:
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L E[fTU (RN )] Var[an] d(L) e(L)

3 2.4016068 1.9013347 0.2732725 0.4890883
4 3.3112247 2.3577369 0.3045101 0.4435381
5 4.2534266 2.7045528 0.3296587 0.4137196
6 5.2177052 2.9540324 0.3489769 0.3941338
7 6.1962507 3.1253919 0.3631815 0.3813210
8 7.1836656 3.2386622 0.3732189 0.3730195
9 8.1764248 3.3112009 0.3800637 0.3677118

10 9.1723243 3.3564569 0.3845867 0.3643695
11 10.1700323 3.3840870 0.3874942 0.3622979
12 11.1687649 3.4006541 0.3893189 0.3610336
13 12.1680703 3.4104380 0.3904405 0.3602731
14 13.1676926 3.4161418 0.3911178 0.3598216
15 14.1674884 3.4194304 0.3915202 0.3595571
16 15.1673788 3.4213083 0.3917561 0.3594040
∞ L− 0.8327462 3.4237147 0.3920729 0.3592016

Table 1. E[fTU (RN )], Var[an], d(L) and e(L) for 3 ≤ L ≤ 16 and L →∞

t1 = E[fTU
(RN)]− y′σ′ and t2 = E[fTU

(RN)] + y′σ′

y′ is chosen such that N (−y′) = ρ′/2, where ρ′ is the approximated rejection rate. N (x) is
the integral of the normal density function [3] defined as:

N (x) =
1√
2π

∫ x

−∞
e−ξ2/2dξ

The actual number of allowed standard deviations is consequently given by y = y′ σ′/σ,
yielding a rejection rate of ρ = 2N (−y) = 2N (−y′ σ′/σ).

The worst and average rationes ρ′/ρ are listed in table 2 for 3 ≤ L ≤ 16 and 1000×2L ≤
K ≤ 4000 × 2L and ρ′ = 0.001 (i.e. y′ = 3.30), as suggested in [5]. Figures show that
the inaccuracy due to (10) can make the test 2.67 times more permissive than what is
theoretically admitted.

The correct thresholds t1 and t2 can now be precisely computed using formulae (8), (9)
and:

t1 = E[fTU
(RN)]− yσ and t2 = E[fTU

(RN)] + yσ

where y is chosen such that N (−y) = ρ/2 and ρ is the rejection rate.

5 The Entropy Conjecture

Maurer’s test parameter is closely related to the source’s per-bit entropy, which measures
the effective key-size of a cryptosystem keyed by the source’s output. [5] gives the following
result, which applies to every binary ergodic stationary source S with finite memory:
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L lim
K→∞

c′(L, K) lim
K→∞

c(L, K) worst ρ′/ρ average ρ′/ρ

3 0.4333333 0.5227547 0.1541921 0.1547350
4 0.5000000 0.5518244 0.3462276 0.3464583
5 0.5400000 0.5741591 0.5058411 0.5097624
6 0.5666667 0.5907426 0.6245271 0.6394724
7 0.5857143 0.6026454 0.7215661 0.7565605
8 0.6000000 0.6109165 0.8118111 0.8775954
9 0.6111111 0.6164930 1.0607613 1.0117992
10 0.6200000 0.6201505 1.2317137 1.1634270
11 0.6272727 0.6224903 1.4245388 1.3337681
12 0.6333333 0.6239543 1.6386583 1.5223726
13 0.6384615 0.6248524 1.8723810 1.7278139
14 0.6428571 0.6253941 2.1234364 1.9481901
15 0.6466667 0.6257157 2.3893840 2.1814850
16 0.6500000 0.6259042 2.6678142 2.4257316

Table 2. A comparison of Maurer’s {c′, ρ′} and the actual {c, ρ} values.

lim
L→∞

E[fTU
(UN

S )]

L
= HS (11)

where HS is the source’s per-bit entropy. Moreover, [5] conjectures that (11) can be further
refined as:

lim
L→∞

[
E[fTU

(UN
S )]− LHS

]
c
= C

4
=

∫ ∞

0

e−ξ log2 ξ dξ = − γ

ln 2
∼= −0.8327462

In this section we show that the conjecture is false and that the correct asymptotic
relation between E[fTU

(UN
S )] and the source’s entropy is:

lim
L→∞

[
E[fTU

(UN
S )]−

L∑
i=1

Fi

]
= C

where Fi is the entropy of the i-th order approximation of the source, and:

lim
L→∞

FL = HS

5.1 Statistical Model for a Random Source

Consider a source S emitting a sequence U1, U2, U3, . . . of binary random variables. S is a
finite memory source if there exists a positive integer M such that the conditional proba-
bility distribution of Un, given U1, . . . , Un−1, only depends on the last M emitted bits:

PUn|U1...Un−1(un|u1 . . . un−1) = PUn|Un−M ...Un−1(un|un−M . . . un−1)
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for n > M and for every binary sequence [u1, . . . , un] ∈ {0, 1}n. The smallest M is
called the memory of the source. The probability distribution of Un is thus determined by
the source’s state Σn = [Un−M , . . . , Un−1] at step n.

The source is stationary if it satisfies:

PUn|Σn(u|σ) = PU1|Σ1(u|σ)

for all n > M , for u ∈ {0, 1} and σ ∈ {0, 1}M .

The state-sequence of a stationary source with memory M forms a finite Markov chain:
the source can be in a finite number (actually 2M) of states σi, 0 ≤ i ≤ 2M − 1, and there
is a set of transition probabilities Pr[σj|σi], expressing the odds that if the system is in
state σi it will next go to state σj. For a general treatment of Markov chains, the reader is
referred to [1].

In the case of a source with memory M , each of the 2M states has at most two successor
states with non-zero probability, depending on whether a zero or a one is emitted. The
transition probabilities are thus determined by the set of conditional probabilities pi =
Pr[1|σi], 0 ≤ i ≤ 2M − 1 of emitting a one from each state σi. The entropy of state σi is
then Hi = H(pi), where H is the binary entropy function:

H(x) = −x log2 x− (1− x) log2(1− x)

For the class of ergodic Markov processes the probabilities Pj(N) of being in state σj

after N emitted bits, approach (as N →∞) an equilibrium Pj which must satisfy the
system of 2M linear equations:





2M−1∑
j=0

Pj = 1

Pj =
2M−1∑
i=0

Pi Pr[σj|σi) for 0 ≤ j ≤ 2M − 2

The source’s entropy is then the average of the entropies Hi (of states σi) weighted by
the state-probabilities Pi:

HS =
∑

i

PiHi (12)

5.2 Asymptotic Relation Between E[fTU
(UN

S )] and HS

The mean of fTU
(UN

S ) for S is given by:

E[fTU
(UN

S )] =
∑
i≥1

Pr[An(UN
S ) = i] log2 i (13)
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with

Pr[An(UN
S ) = i] =

∑

b∈BL

Pr[bn = b, bn−1 6= b, . . . , bn−i+1 6= b, bn−i = b] (14)

Following [6] (theorem 3), the sequences of length L can be looked upon as independent
for a sufficiently large L:

Pr[An(UN
S ) = i] =

∑

b∈BL

Pr[b]2(1− Pr[b])i−1

and

E[fTU
(UN

S )] =
∑

b∈BL

Pr[b]2
∑
i≥1

log2 i (1− Pr[b])i−1

Re-using the function v(r) defined in [5],

v(r) = r

∞∑
i=1

(1− r)i−1 log2 i (15)

we have

E[fTU
(UN

S )] =
∑

b∈BL

Pr[b]v(Pr[b])

wherefrom one can show that,

lim
r→0

[v(r) + log2 r] =

∫ ∞

0

e−ξ log2 ξ dξ
4
= C = − γ

ln 2
∼= −0.8327462 (16)

which yields:

lim
L→∞

[
E[fTU

(UN
S )] +

∑

b∈BL

Pr[b] log2 Pr[b]
]

= C (17)

Let GL be the per-bit entropy of L-bit blocks:

GL = − 1

L

∑

b∈BL

Pr[b] log2 Pr[b]

then,

lim
L→∞

[
E[fTU

(UN
S )]− L×GL

]
= C

Shannon proved ([6], theorem 5) that

lim
L→∞

GL = HS

which implies that:
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lim
L→∞

E[fTU
(UN

S )]

L
= HS

Let Pr[b, j] be the probability of a binary sequence b followed by the bit j ∈ {0, 1} and
Pr[j|b] = Pr[b, j]/ Pr[b] be the conditional probability of bit j after b. Let,

FL = −
∑

b,j

Pr[b, j] log2 Pr[j|b] (18)

where the sum is taken over all sequences b of length L− 1 and j ∈ {0, 1}.
We have:

FL =
∑

b∈BL−1

Pr[b]H(Pr[1|b])

and, by virtue of Shannon’s sixth theorem (op. cit.):

FL = L×GL − (L− 1)GL−1 , GL =
1

L

L∑
i=1

Fi

and

lim
L→∞

FL = HS

wherefrom

lim
L→∞

[
E[fTU

(UN
S )]−

L∑
i=1

Fi

]
= C

5.3 Refuting the Entropy Conjecture

FL is in fact the entropy of the L-th order approximation of S [1, 6]. Under such an
approximation, only the statistics of binary sequences of length L are considered. After a
sequence b of length L− 1 has been emitted, the probability of emitting the bit j ∈ {0, 1}
is Pr[j|b]. The L-th order approximation of a source is thus a binary stationary source with
less than L− 1 bits of memory, as defined in section 5.1. A source with M bits of memory
is then equivalent to its L-th order approximation for L > M , and thus ∀i > M, Fi = HS,
and:

lim
L→∞

[
E[fTU

(UN
S )]−

M∑
i=1

Fi − (L−M)HS

]
= C

For example, considering a BMSp (random binary source which emits ones with prob-
ability p and zeroes with probability 1− p and for which M = 0 and HS = H(p)), we get
the following result given in [5]:
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lim
L→∞

[
E[fTU

(UN
S )]− LH(p)

]
= C

The conjecture is nevertheless refuted by considering an STPp which is a random binary
source where a bit is followed by its complement with probability p. An STPp is thus a
source with one bit of memory and two equally-probable states 0 and 1. It follows (12 and
18) that F1 = H(1/2) = 1, HS = H(p), and:

lim
L→∞

[
E[fTU

(UN
S )]− (L− 1)HS − 1

]
= C

which contradicts Maurer’s (7-years old) entropy conjecture:

lim
L→∞

[
E[fTU

(UN
S )]− LHS

]
c
= C

6 Further Research

Although the universal test is now precisely tuned, a deeper exploration of Maurer’s
paradigm still seems in order: for instance, it is possible to design a c(L,K)-less test by
using a newly-sampled random sequence for each An(sN) (since in this setting the An(sN)
are truly independent, c(L,K) could be replaced by one). Note however that this approach
increases considerably the total length of the random sequence; other theoretically inter-
esting generalizations consist in extending the test to non-binary sources or designing tests
for comparing generators to biased references (non-BSS ones).
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Abstract. Let n be an RSA modulus and let P, Q ∈ (Z/nZ)[X]. This paper explores the following
problem: Given Q and Q(P ), find P . We shed light on the connections between the above problem
and the RSA problem and derive from it new zero-knowledge protocols.

1 Introduction

In this paper we study a new problem, the Polynomial Composition Problem, which can
be stated as follows:

Problem 1 (Polynomial Composition Problem (PCP)). Let P and Q be two poly-
nomials in (Z/nZ)[X] where n is an RSA modulus. Given polynomials Q and S := Q(P ),
find P .

Most public-key cryptographic schemes base their security on the difficulty of solving
a hard mathematical problem. Given that the number of hard problems harnessable to
cryptographic applications is rather limited the investigation of new problems is of central
importance in cryptography. To understand the Polynomial Composition Problem and its
variants, we explore in the following sections the way in which the PCP relates to the
celebrated RSA problem.

The Polynomial Composition Problem in (Z/nZ)[X] does not imply the RSA Problem,
that is, the computation of roots in Z/nZ. Nevertheless, we exhibit a related problem that
we call Reducible Polynomial Composition Problem (RPCP) and prove that RPCP ⇔
RSA. In particular, we prove that when Q(X) = Xq then the PCP is equivalent to the
problem of extracting qth roots in Z/nZ.

These new problems allow to broaden the view of existing cryptographic constructions.
Namely, we describe a general PCP-based zero-knowledge protocol of which the Fiat-
Shamir [3] and the Guillou-Quisquater protocols [4] are particular instances. As will be seen
later, if s denotes the secret, [3] and [4] respectively correspond to the cases Q(X) = vX2

and Q(X) = vXν (ν ≥ 3), with Q(s) = 1.

The rest of this paper is organized as follows: In Section 2, we formally define the
Polynomial Composition Problem and introduce the notations used throughout this paper.
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The hardness of the problem and its comparison with RSA are analyzed in Section 3.
Finally, in Section 4 we show that the PCP allows to generalize several zero-knowledge
protocols.

2 The Polynomial Composition Problem

Throughout this paper p and q denote the degrees of P and Q, respectively. Let

P (X) =

p∑
i=0

uiX
i

where the ui’s denote the unknowns we are looking for. We assume that

Q(Y ) =

q∑
j=0

kjY
j

is known. Hence,

S(X) =

q∑
j=0

kj

(
p∑

i=0

uiX
i

)j

.

If, given polynomials Q′(Y ) := Q(Y ) − k0 and S ′(X) := Q′(P (X)), an attacker can
recover P then the same attacker can also recover P from {Q,S} by first forming poly-
nomials Q′(Y ) = Q(Y ) − k0 and S ′(X) = S(X) − k0. Therefore the problem is reduced
to that of decomposing polynomials where Q has no free term, i.e., Q(Y ) =

∑q
j=1 kjY

j.
Similarly, once this has been done, the attacker can divide Q by a proper constant and
replace one of the coefficients kj by one. Consequently and without loss of generality we
restrict our attention to monic polynomials Q with no free term, that is,

Q(Y ) = Y q + kq−1Y
q−1 + · · ·+ k1Y . (1)

Noting that q = 1 implies that S = Q(P ) = P , we also assume that q ≥ 2.

3 Analyzing the Polynomial Composition Problem

As before, let P (X) =
∑p

i=0 uiX
i and let Q(Y ) = Y q +

∑q−1
j=1 kjY

j. Generalizing Newton’s
binomial formula and letting kq := 1, we get

S(X) =

q∑
j=1

kj

(
p∑

i=0

uiX
i

)j

=

pq∑
t=0

(∑
1≤i0+···+ip≤q

i1+2i2+···+pip=t

ki0+···+ip
(i0+···+ip)!

i0!...ip!
u0

i0 · · · up
ip

)

︸ ︷︷ ︸
:=ct

X t , (2)

where the second sum is extended over all nonnegative integers ij satisfying 1 ≤ ∑p
j=0 ij ≤ q

and
∑p

j=0 j ij = t.
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3.1 RSA Problem ⇒ Polynomial Composition Problem

We define polynomials P0, . . . , Ppq ∈ (Z/nZ)[U0, . . . , Up] as

Pt(U0, . . . , Up) :=
∑

1≤i0+···+ip≤q
i1+2i2+···+pip=t

ki0+···+ip

(i0 + · · ·+ ip)!

i0! . . . ip!
U0

i0 · · ·Up
ip − ct . (3)

Note that Pt(u0, . . . , up) = 0 for all 0 ≤ t ≤ pq.

Proposition 1. For all 0 ≤ r ≤ p, Ppq−r ∈ (Z/nZ)[Up−r, . . . , Up]. Furthermore, for all
1 ≤ r ≤ p, Ppq−r is of degree exactly one in variable Up−r.

Proof. For r = 0, we have Ppq(U0, . . . , Up) = Up
q − cpq. For r = p, the condition Ppq−r ∈

(Z/nZ)[Up−r, . . . , Up] is trivially satisfied.
Fix r in [1, p). By contradiction, suppose that Ppq−r /∈ (Z/nZ)[Up−r, . . . , Up]. So from

Eq. (3), there exists some ij 6= 0 with 0 ≤ j ≤ p − r − 1. Since 1 ≤ i0 + · · · + ip ≤ q,
it follows that i1 + 2i2 + · · · + pip ≤ j · 1 + p · (q − 1) < pq − r; a contradiction because
i1 + 2i2 + · · ·+ pip = pq − r for polynomial Ppq−r.

Moreover, for all 1 ≤ r ≤ p, Ppq−r is of degree one in variable Up−r since we cannot
simultaneously have 1 ≤ ∑p

j=0 ij ≤ q,
∑p

j=0 j ij = pq − r, and ip−r ≥ 2. Indeed, ip−r ≥ 2
implies i1 +2i2 + · · ·+pip ≤ (p−r) ·2+p · (q−2) < pq−r, a contradiction. When ip−r = 1,
i1 + 2i2 + · · · + pip = pq − r if ip = q − 1 and ij = 0 for all 0 ≤ (j 6= p− r) ≤ p− 1. This
implies that the only term in Up−r appearing in polynomial Ppq−r is qUp−r Up

q−1, whatever
the values of variables ki-s are. ut
Corollary 1. If the value of up is known then the Polynomial Composition Problem can
be solved in time O(p).

Proof. Solving for Up−1 the relation Ppq−1(Up−1, up) = 0 (which is a univariate polynomial
of degree exactly one in Up−1 by virtue of the previous proposition), the value of up−1 is
recovered. Next, the root of Ppq−2(Up−2, up−1, up) gives the value of up−2 and so on until
the value of u0 is found.

Note that the running time of the resolution process is O(p) and is thus exponential in
the bit-length of p. ut

This means that for low degree polynomials, the Polynomial Composition Problem in
Z/nZ is easier than the problem of computing qth roots in Z/nZ because if an attacker
is able to compute a qth modular root (i.e., to solve the RSA Problem) then she can find
up from Ppq(up) = up

q − cpq = 0 and then apply the technique explained in the proof of
Corollary 1 to recover up−1, . . . , u0. In other words,

Corollary 2. RSA Problem ⇒ Polynomial Composition Problem. ut
There is a proposition similar to Proposition 1. It says that once u0 is known, u1, . . . , up

can be found successively thanks to polynomials P1, . . . , Pp, respectively.
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Proposition 2. For all 0 ≤ r ≤ p, Pr ∈ (Z/nZ)[U0, . . . , Ur]. Furthermore, for all 1 ≤ r ≤
p, Pr is of degree exactly one in variable Ur.

Proof. We have P0(U0) =
∑q

j=1 kjU0
j − c0.

For r ∈ [1, p], suppose that Pr /∈ (Z/nZ)[U0, . . . , Ur]. Therefore, i1 + 2i2 + · · · + pip ≥
(r + 1) · 1 > r; a contradiction since i1 + 2i2 + · · · + pip = r. Moreover, we can easily see
that Pr(U0, . . . , Ur) = qU q−1

0 Ur +
∑q−1

j=1 kj j U0
j−1Ur +Qr(U0, . . . , Ur−1) for some polynomial

Qr ∈ (Z/nZ)[U0, . . . , Ur−1]. ut

3.2 Reducible Polynomial Composition Problem ⇒ RSA Problem

The Polynomial Composition Problem cannot be equivalent to the RSA Problem. Consider
for example the case p = 2 and q = 3: we have P (X) = u2X

2 + u1X + u0 and Q(X) =
X3 + k2X

2 + k1X, and

S(X) = c6X
6 + c5X

5 + c4X
4 + c3X

3 + c2X
2 + c1X + c0

with





c0 = k1u0 + k2u
2
0 + u3

0 ,

c1 = k1u1 + 2k2u0u1 + 3u2
0u1 ,

c2 = k2u
2
1 + 3u0u

2
1 + k1u2 + 2k2u0u2 + 3u2

0u2 ,

c3 = u3
1 + 2k2u1u2 + 6u0u1u2 ,

c4 = 3u2
1u2 + k2u

2
2 + 3u0u

2
2 ,

c5 = 3u1u
2
2 ,

c6 = u3
2 .

We define the polynomials P0(U0) := k1U0 + k2U
2
0 + U3

0 − c0, P1(U0, U1) := k1U1 +
2k2U0U1 + 3U2

0 U1 − c1, and P5(U1, U2) := 3U1U
2
2 − c5. Now we first compute the resultant

of P0 and P1 with respect to variable U0 and obtain a univariate polynomial in U1, say
R0 = ResU0(P0, P1). Next we compute the resultant of R0 and P5 with respect to variable
U1 and get a univariate polynomial in U2, say R1 = ResU1(R0, P5). After computation, we
get

R1(U2) = 27c3
1U

6
2 + (27c2

1c5k1 − 9c2
1c5k

2
2)U

4
2

+(−4c3
5k

3
1 + c3

5k
2
2b

2 − 18c0c
3
5k1k2 + 4c0c

3
5k

3
2 − 27c2

0c
3
5) .

Since u2 is a root of both R1(U2) and P6(U2), u2 will be a root of their greatest common
divisor in (Z/nZ)[U2], which is given by

(27c2
1c5k1 − 9c2

1c5k
2
2)c6U2

+ (27c3
1c

2
6 − 4c3

5k
3
1 + c3

5k
2
1k

2
2 − 18c0c

3
5k1k2 + 4c0c

3
5k

3
2 − 27c2

0c
3
5) ,

from which we derive the value of u2. Once u2 is known, the values of u1 and u0 trivially
follow by Corollary 1.

We now introduce a harder problem: the Reduced Polynomial Composition Problem in
(Z/nZ)[X].
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Problem 2 (Reduced Polynomial Composition Problem (RPCP)). Let P and Q
be two polynomials in (Z/nZ)[X] where n is an RSA modulus. Given Q and the deg(P )+1
most significant coefficients of S := Q(P ), find P .

Definition 1. When the Polynomial Composition Problem is equivalent to the Reduced
Polynomial Composition Problem, it is said to be reducible.

Equivalently, the Polynomial Composition Problem is reducible when the values of
c0, . . . , cp(q−1)−1 can be derived from cp(q−1), . . . , cpq and k1, . . . , kq−1. This is for example
the case when p = q = 2, that is, when P (X) = u2X

2 + u1X + u0, Q(X) = X2 + k1X, and

S(X) = c4X
4 + c3X

3 + c2X
2 + c1X + c0

with





c0 = k1u0 + u2
0 ,

c1 = k1u1 + 2u0u1 ,

c2 = k1u2 + 2u0u2 + u2
1 ,

c3 = 2u1u2 ,

c4 = u2
2 .

An astute algebraic manipulation yields:

c1 =
4c2c3c4 − c3

3

8c2
4

(mod n) and c0 =
4c2

1c4 − c2
3k

2
1

4c2
3

(mod n) .

If follows that we can omit the first two relations (the information included therein is
anyway contained in the remaining three as we had just shown) and the problem amounts
to solving the Reduced Polynomial Composition Problem:





c2 = k1u2 + 2u0u2 + u2
1 ,

c3 = 2u1u2 ,

c4 = u2
2 .

Theorem 1. Reducible Polynomial Composition Problem ⇒ RSA Problem.

Proof. Assume that we are given an oracle OPCP(k1, . . . , kq−1; c0, . . . , cpq) which on input
polynomials Q(X) = Xq +

∑q−1
j=1 kjX

j and S(X) =
∑pq

t=0 ctX
t returns the polynomial

P (X) =
∑p

i=0 uiX
i such that S(X) = Q(P (X)). When the polynomial composition is

reducible, oracle OPCP can be used to compute a qth root of a given x ∈ Z/nZ, i.e.,
compute a y satisfying yq ≡ x (mod n).

1. choose p + q − 1 random values k1, . . . , kq−1, cp(q−1), . . . , cpq−1 ∈ Z/nZ;
2. compute c0, . . . , cp(q−1)−1;
3. run OPCP(k1, . . . , kq−1; c0, . . . , cpq−1, x);
4. get u0, . . . , up;
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5. set y := up and so yq ≡ x (mod n).

Note that Step 2 can be executed since the composition is supposed to be reducible.
Furthermore, note that the values of cpq−1, . . . , cp(q−1) uniquely determine the values of
up−1, . . . , u0, respectively. Indeed, from Proposition 1,

Ppq−r(Up−r, up−r+1, . . . , up) ∈ (Z/nZ)[Up−r]

is a polynomial of degree exactly one of which up−r is root, for all 1 ≤ r ≤ p. ut

3.3 A Practical Criterion

In this paragraph, we present a simple criterion allowing to decide if a given composition
problem is reducible.

During the proof of Proposition 1, we have shown that there exists a polynomial Qpq−r ∈
(Z/nZ)[Up−r+1, . . . , Up] such that

Ppq−r(Up−r, . . . , Up) = qUp−rUp
q−1 + Qpq−r(Up−r+1, . . . , Up)

for all 1 ≤ r ≤ p. From cpq = (up)
q, we infer:

up−r =
−Qpq−r(up−r+1, . . . , up)

q cpq

up , (1 ≤ r ≤ p) . (4)

Using Eq. (4), for r = 1, . . . , p, we now iteratively compute up−1, . . . , u0 as a polynomial
function in up. We let Υp−r denote this polynomial function, i.e., up−r = Υp−r(up) for
all 1 ≤ r ≤ p. We then respectively replace u0, . . . , up−1 by Υ0(up), . . . , Υp−1(up) in the
expressions of c0, . . . , cpq−p−1. If, for each ci (0 ≤ i ≤ pq − p − 1), the powers of up cancel
thanks to (up)

q−1 = cpq then the problem is reducible.

We illustrate the technique with the example P (X) = u3X
3 + u2X

2 + u1X + u0 and
Q(Y ) = Y 3. Then S(X) =

∑9
t=0 ctX

t with





c0 = u3
0 ,

c1 = 3u2
0u1 ,

c2 = 3u2
0u2 + 3u0u

2
1 ,

c3 = 3u2
0u3 + 6u0u1u2 + u3

1 ,

c4 = 6u0u1u3 + 3u0u
2
2 + 3u2

1u2 ,

c5 = 6u0u2u3 + 3u2
1u3 + 3u1u

2
2 ,

c6 = 3u0u
2
3 + 6u1u2u3 + u3

2 ,

c7 = 3u1u
2
3 + 3u2

2u3 ,

c8 = 3u2u
2
3 ,

c9 = u3
3 .
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From the respective expressions of c8, c7 and c6, we successively find

Υ2(u3) =
c8

3c9

u3 , Υ1(y3) =
3c7c9 − c8

9c2
9

u3 , and

Υ0(u3) =
27c6c

2
9 − 6c8(3c7c9 − c2

8)− c3
8

81c3
9

u3 .

Since c0, . . . , c5 are homogeneous in u0, u1, u2, u3 and of degree three, they can be evaluated
by replacing u0, u1, u2 by Υ0(u3), Υ1(u3), Υ2(u3), respectively, and then replacing (u3)

3 by
c9. Consequently, the composition is reducible: the values of c0, . . . , c5 can be inferred from
c6, . . . , c9 and the problem amounts to computing cubic roots in Z/nZ.

This is not fortuitous and can easily be generalized as follows.

Corollary 3. For Q(Y ) = Y q, the Polynomial Composition Problem in Z/nZ is equivalent
to the RSA Problem, i.e. to the problem of extracting qth roots in Z/nZ.

Proof. From Eq. (2), it follows that S(X) =
∑pq

t=0 ctX
t with

ct =
∑

i0+···+ip=q
i1+2i2+···+pip=t

q!

i0! · · · ip! u0
i0 · · ·up

ip ,

which is homogeneous in u0, . . . , up and of degree i0 + · · · + ip = q. Moreover since by
induction, for 1 ≤ r ≤ p, Υp−r(up) = Kp−r · up for some constant Kp−r, the corollary
follows. ut

4 Cryptographic Applications

4.1 A PCP-Based Zero-Knowledge Protocol

A trusted third party selects and publishes an RSA modulus n. Each prover P chooses two
polynomials P, Q in (Z/nZ)[X] and computes S = Q(P ). {Q,S} is P ’s public key given
to the verifier V so as to ascertain P ’s knowledge of the secret key P .

Execute ` times the following protocol:

• P selects a random r ∈ Z/nZ.

• P evaluates c = S(r) and sends c to V .

• V sends to P a random bit b.

• If b = 0, P reveals t = r and V checks that S(t) = c.

• If b = 1, P reveals t = P (r) and V checks that Q(t) = c.

PCP-Based Protocol.
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4.2 Improvements

Efficiency can be increased by using the following trick:

P chooses ν polynomials P1, . . . , Pν−1, Q in (Z/nZ)[X], with ν ≥ 3. Her secret key
is the set {P1, . . . , Pν−1} while her public key is the set {S0 = Q,S1 = Q(Pν−1), S2 =
Q(Pν−1(Pν−2)), . . . , Sj = Q(Pν−1(. . . (Pν−j))), . . . , Sν−1 = Q(Pν−1(. . . (P1)))}.

The protocol is shown below:

• P selects a random r ∈ Z/nZ
• P evaluates c = Sν−1(r) and sends c to V .

• V sends to P a random integer 0 ≤ b ≤ ν − 1.

• If b = 0, P reveals t = r and V checks that Sν−1(t) = c.

• If b 6= 0, P reveals t = Pb(. . . (P1(r))) and V checks that Sν−b−1(t) = c.

Nested PCP Protocol.

4.3 Relations with Other Zero-Knowledge Protocols

It is interesting to note that our first protocol coincides with the (simplified) Fiat-Shamir
protocol [3] (see also [5, Protocol 10.24]) when P (X) = sX and Q(X) = vX2 where vs2 ≡ 1
(mod n).

The nested variant may be seen as a generalization of the Guillou-Quisquater proto-
col [4] by taking P1(X) = P2(X) = · · · = Pν−1(X) = sX where s is a secret value and
Q(X) = vXν so that vsν ≡ 1 (mod n). Indeed, in this case we have Pν−1(. . . (Pν−j(X))) =
sjX and hence Sj(X) = v1−jXν .

An interesting research direction would be to extend the above protocols to Dixon
polynomials.

5 Conclusion

This paper introduced the Polynomial Composition Problem (PCP) and the related Re-
ducible Polynomial Composition Problem (RPCP). Relations between these two problems
and the RSA Problem were explored and two concrete zero-knowledge protocols were given
as particular instances of PCP-based constructs.
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A Mathematical Background

Let R be an integral domain with quotient field K.

Definition 2. Given two polynomials A,B ∈ R[X], the resultant of A and B, denoted by
Res(A,B), is defined as

Res(A,B) = (am)n (bn)m
∏

1≤i≤m,1≤j≤n

(αi − βj) (5)

if A(X) = am

∏
1≤i≤m(X − αi) and B(X) = bn

∏
1≤j≤n(X − βj) are the decompositions of

A and B in the algebraic closure of K.

From this definition, we see that Res(A,B) = 0 if and only if polynomials A and B
have a common root (in K); hence if and only if A and B have a (non-trivial) common
factor. Equivalently, we have

Res(A,B) = (am)n
∏

1≤i≤m

B(αi) = (bn)m
∏

1≤j≤n

A(βj) .

The resultant Res(A,B) can be evaluated without knowing the decomposition of A and
B. Letting A(X) =

∑
1≤i≤m aiX

i and B(X) =
∑

1≤j≤n bjX
j, we have

Res(A,B) = det




am am−1 . . . a0 0 . . . 0

0 am am−1 . . . a0 . . . 0
...

...
. . . . . . · · · . . .

...

0 0 0 am am−1 . . . a0

bn bn−1 . . . b0 0 . . . 0

0 bn bn−1 . . . b0 . . . 0
...

...
. . . . . . · · · . . .

...

0 0 0 bn bn−1 . . . b0








n rows





m rows

.
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This clearly shows that Res(A, B) ∈ R.

A multivariate polynomial A ∈ R[X1, . . . , Xk] (with k ≥ 2) may be viewed as a
univariate polynomial in R[X1, . . . , Xk−1][Xk]. Consequently, it makes sense to compute
the resultant of two multivariate polynomials with respect to one variable, say Xk. If
A,B ∈ R[X1, . . . , Xk], we let ResXk

(A,B) denote the resultant of A and B with respect
to Xk.

Lemma 1. Let A,B ∈ R[X1, . . . , Xk] (with k ≥ 2). Then (α1, . . . , αk) is a common root
(in K) of A and B if and only if (α1, . . . , αk−1) is a root of ResXk

(A,B).

B Additional Examples

B.1 The case p = 3 and q = 2

Using the previous notations and simplifications, we write P (X) = u3X
3+u2X

2+u1X+u0

and Q(Y ) = Y 2 + k1Y . Expressing the ci’s we get:





c0 = k1u0 + u2
0 ,

c1 = k1u1 + 2u0u1 ,

c2 = u2
1 + k1u2 + 2u0u2 ,

c3 = 2u1u2 + k1u3 + 2u0u3 ,

c4 = u2
2 + 2u1u3 ,

c5 = 2u2u3 ,

c6 = u2
3 .

Now using the criterion of § 3.3, we find u2 = c5
2c6

u3, u1 = V u3, and u0 = −k2
1

4
+ Lu3

with V :=
4c4c6−c25

8c26
and L :=

8c3c26−c5(4c4c6−c25)

16c36
. Hence, we derive:

c2 = c6V
2 + c5L, c1 = 2c6LV , and c0 = −k2

1

4
+ L2c6 .

Being reducible, this proves that solving the PCP for p = 3 and q = 2 amounts to computing
square roots in Z/nZ.

B.2 The case p = 3 and q = 3

We have P (X) = u3X
3 +u2X

2 +u1X +u0 and Q(X) = X3 +k2X
2 +k1X. Defining polyno-

mials Pi as in Eq. (3), we successively compute R0 := ResU0(P0, P1), R1 := ResU1(R0, P7),
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and R2 = ResU2(R1, P8) wherefrom

R2(u3) = 19683c3
1u

18
3 + (−6561c2

1c7k
2
2 + 19683c2

1c7k1)u
16
3

+ (2187c2
1c

2
8k

2
2 − 6561c2

1c
2
8k1)u

13
3

+ (2916c0c
3
7k

3
2 + 729c3

7k
2
1k

2
2 − 13122c0c

3
7k2k1 − 2916c3

7k
3
1

− 19683c3
7c

2
0)u

12
3

+ (−2916c0c
2
7c

2
8k

3
2 − 729c2

8c
2
7k

2
2k

2
1 + 13122c2

8c
2
7c0k2k1 + 2916c2

8c
2
7k

3
1

+ 19683c2
8c

2
7c

2
0)u

9
3

+ (972c4
8c7c0k

3
2 + 243c4

8c7k
2
1k

2
2 − 4374c4

8c7c0k1k2 − 972c4
8c7k

3
1

− 6561c4
8c7c

2
0)u

6
3

+ (−108c6
8c0k

3
2 − 27c6

8k
2
1k

2
2 + 486c6

8c0k1k2 + 108c6
8k

3
1 + 729c6

8c
2
0)u

3
3

= 0 .

So, we obtain the value of u3 by exploiting the additional relation c9 = u3
3 and hence the

values of u2, u1, and u0.
Note that if we choose k1 = k2

2/3 then the terms in u16
3 (= c5

9 u3) and in u13
3 (= c4

9 u3)
disappear and consequently the value of u3 cannot be recovered. In this case, the criterion
shows again that the problem is equivalent to that of computing cubic roots in Z/nZ.
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Abstract. The 9/11 tragedy triggered an increased interest in biometric passports. According to
several sources [2], the electronic ID market is expected to increase by more than 50% per annum
over the three coming years, excluding China.

To cost-effectively address this foreseen explosion, a very inexpensive memory card (phonecard-like
card) capable of performing fingerprint matching is paramount.

This paper presents such a solution. The proposed protocol is based on the following idea: the card
stores the user’s fingerprint information to which random minutiae were added at enrolment time
(we denote this scrambled template by t). The card also stores a binary string w encoding which of
the minutiae in t actually belong to the holder. When an identification session starts, the terminal
reads t from the card and, based upon the incoming scanner data, determines which of the minutiae
in t are genuine. The terminal forms a candidate w′ and sends it to the card. All the card needs to
do is test that the Hamming weight of w ⊕ w′ is smaller than a security threshold d.

It follows that the card only needs to embark passive data storage capabilities, one exclusive-or gate,
a shift register, a counter and a comparator (less than 40 logical gates).

1 Introduction

Since the 9/11 tragedy fingerprints have rallied significant support as the biometric tech-
nology that will probably be most widely used in the future.

The fingerprint’s strength is its acceptance, convenience and reliability. It takes little
time and effort for somebody using a fingerprint identification device to have his or her
fingerprint scanned. Studies have also found that using fingerprints as an identification
means is the least intrusive of all biometric techniques. Verification of fingerprints is also
fast and reliable. Users experience fewer errors in matching when they use fingerprints
versus many other biometric methods. In addition, fingerprint identification devices usually
require very little space on a desktop or in a machine. Several companies have produced
capture units (scanners) smaller than a deck of cards.

Generally, a fingerprint biometric system comprises four main modules:
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– A capture unit, which acquires the raw biometric fingerprint data D of an individual
(typically a bitmap of the finger’s ridges).

– A feature extraction module f in which the acquired biometric data is processed to
extract a feature-set f(D) that models D. Typically f(D) is the position and orientation
of ridge bifurcations and ridge endings in D (points called minutiae, see figures 1 and
2). f(D) is usually obtained after several signal processing steps (Figure 3) consisting
in filtering D, thinning it and extracting minutiae from the thinned image using an
ad-hoc algorithm.

Figure 1. Different Minutia Types

Figure 2. Minutiae in a Fingerprint

From a practical standpoint, a raw D requires 64K bytes1. The complexity of f varies
greatly according the algorithm used. 120 MIPS per fingerprint is a typical benchmark
figure for f . The size of f(D) is typically comprised between 300 and 3000 bytes.

– A matching module µ in which an extracted feature-set f(A) can be compared to
a reference pattern f(B). This comparison process (figure 4) outputs a score 0 ≤
µ(f(A), f(B)) ≤ 1.

1 500 dpi resolution, 256× 256 pixel image 256 grey-scale (i.e. one byte per pixel).
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– A decision-making module in which the user’s claimed identity is either accepted or
rejected based on the matching score: if µ(f(A), f(B)) > α return accept else return
reject. α is an application-dependent security parameter.

%	:����.%� RQH�SL[HO�OLQHV�2ULJLQDO�����.%�
Figure 3. Processing a Fingerprint Bitmap

Figure 4. Fingerprint Matching

Traditionally, the performance of a biometric system is described by the probability
distributions of genuine and impostor matching scores. A genuine matching score is ob-
tained when two feature sets corresponding to the same individual are compared, and an
impostor matching score is obtained when feature sets belonging to two different individ-
uals are compared. When a matching score exceeds α, the two feature sets are declared as
belonging to the same individual; otherwise, they are assumed to belong to two different
individuals.

Thus, there are two types of errors associated with a biometric system:

– A false accept, which occurs when an impostor matching score happens to exceed α.

– A false reject, which occurs when a genuine matching score doesn’t exceed α.
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A Receiver Operating Characteristic (ROC) curve plots the False Reject Rate (FRR
- the percentage of genuine scores that do not exceed α) against the False Accept Rate
(FAR - the percentage of impostor scores that exceed α) for different α values. The α that
best suits a system depends on the nature of the application. In forensic applications, for
example, a low FRR is preferred, while for access to facilities such as nuclear plants, a low
FAR is desired.

2 The Matching Problem

Minutiae matching is certainly the best known and most widely used method for fingerprint
matching. We refer the reader to [3] for a definition of the matching problem that we recall
here:

2.1 Problem Formulation

Let f(D) and f(D′) be the representation of the template and input fingerprint, respec-
tively. Here the representation f is a feature vector (of variable length) whose elements
are the fingerprint minutiae. Each minutia may be described by a number of attributes,
including its location in the fingerprint image, orientation, type (e.g. ridge termination or
ridge bifurcation), a weight based on the quality of the fingerprint image in the neighbor-
hood of the minutia, and so on. Most common minutiae matching algorithms consider each
minutia m as a triplet {x, y, θ} that indicates the x, y minutia location coordinates and the
minutia angle θ:

f(D) = {m1,m2, · · · ,mn } , mi = {xi, yi, θi} , i = 1 · · · , n
f(D′) = {m′

1,m
′
2, · · · ,m′

n′ } , m′
i = {x′i, y′i, θ′i} , i = 1 · · · , n′

where n and n′ denote the number of minutiae in f(D) and f(D′), respectively.

A minutia m′
j ∈ f(D′) and a minutia mi ∈ f(D) are considered matching, if the spatial

distance (sd) between them is smaller than a given tolerance r0 and the direction difference
(dd) between them is smaller than an angular tolerance θ0:

sd(m′
j,mi) =

√
(x′j − xi)2 + (y′j − yi)2 ≤ r0 (1)

and
dd(m′

j,mi) = min(|θ′j − θi|, 360◦ − |θ′j − θi|) ≤ θ0 (2)

Equation (2) takes the minimum of |θ′j−θi| and 360◦−|θ′j−θi| because of the circularity
of angles (the difference between angles of 2◦ and 358◦ is only 4◦). The tolerance boxes (or
hyper-spheres) defined by r0 and θ0 are necessary to compensate for the unavoidable errors
made by feature extraction algorithms and to account for the small plastic distortions that
cause the minutiae positions to change.

Aligning the two fingerprints is a mandatory step in order to maximize the number of
matching minutiae. Correctly aligning two fingerprints requires displacement (in x and y)
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and rotation (θ) to be recovered, and frequently involves other geometrical transformations:

– scale has to be considered when the resolution of the two fingerprints may vary (e.g. the
two fingerprint images have been taken by scanners operating at different resolutions);

– other distortion-tolerant geometrical transformations could be useful to match minutiae
in case one or both of the fingerprints is affected by severe distortions.

In any case, tolerating a higher number of transformations results in additional degrees
of freedom to the minutiae matcher: when a matcher is designed, this issue needs to be
carefully evaluated, as each degree of freedom results in a huge number of new possible
alignments which significantly increases the chance of incorrectly matching two fingerprints
from different fingers.

Let map(.) be the function that maps a minutia m′
j ∈ f(D′) into m′′

j according to a
given geometrical transformation; for example, by considering a displacement of [∆x,∆y]
and a counterclockwise rotation θ around the origin2:

map∆x,∆y,θ(m
′
j) = m′′

j = {x′′j , y′′j , θ′j + θ}
where

[
x′′j
y′′j

]
=

(
cos θ − sin θ
sin θ cos θ

)[
x′j
y′j

]
+

[
∆x
∆y

]

Let ζ(.) be an indicator function that returns 1 when the minutiae m′′
j and mi match

according to Equations (1) and (2):

ζ(m′′
j ,mi) =

{
1 if sd(m′′

j ,mi) ≤ r0 and dd(m′′
j ,mi) ≤ θ0

0 otherwise

The the matching problem can be formulated as:

maximize
∑n

i=1 ζ(map∆x,∆y,θ(m
′
P (i)),mi) (3)

∆x,∆y,θ,P

where P (i) is an unknown function that determines the pairing between f(D) and f(D′)
minutiae; in particular, each minutia has either exactly one mate in the other fingerprint
or has no mate at all:

1. P (i) = j indicates that the mate of the mi ∈ f(D) is m′
j ∈ f(D′)

2. P (i) =⊥ indicates that mi ∈ f(D) has no mate in f(D′)
3. an m′

j ∈ f(D′) such that ∀i = 1, · · · , n P (i) 6= j has no mate in f(D)
4. ∀i = 1, · · · , n ∀k = 1, · · · , n′ ⇒ P (i) 6= P (k) or P (i) = P (k) =⊥ (this requires that

each minutia in f(D′) is associated with at most one minutia in f(D)).

2 The origin is usually selected as the minutiae centroid (i.e. the average point); before the matching step, minutiae
coordinates are adjusted by subtracting the centroid coordinates.
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Note that, in general, P (i) = j does not necessarily mean that minutiae m′
j and mi

match in the sense of Equations (1) and (2) but only that they are the most likely pair
under the current transformation.

Expression (3) requires that the number of minutiae mates be maximized, independently
of how strict these mates are; in other words, if two minutiae comply with Equations (1)
and (2), then their contribution to expression (3) is made independently of their spatial
distance and of their direction difference.

Solving the minutiae matching problem (expression (3)) is trivial when the correct
alignment (∆x,∆y, θ) is known; in fact, the pairing (i.e. the function P ) can be determined
by setting for each i = 1, · · · , n:

– P (i) = j if m′′
j = map∆x,∆y,θ(m

′
j) is closest to mi among the minutiae.

{
m′′

k = map∆x,∆y,θ(m
′
k) | k = 1, · · · , n, ζ(m′′

k,mi) = 1
}

– P (i) =⊥ if ∀k = 1, · · · , n, ζ(map∆x,∆y,θ(m
′
k),mi) = 0

To comply with constraint 4 above, each minutia m′′
j already mated has to be marked,

to avoid mating it twice or more. Figure 5 shows an example of minutiae pairing given a
fingerprint alignment.

To achieve the optimum pairing (according to Equation (3)), a slightly more compli-
cated scheme should be adopted: in fact, in the case when a minutia of f(D′) falls within
the tolerance hyper-sphere of more than one minutia of f(D), the optimum assignment is
that which maximizes the number of mates (refer to Figure 6 for a simple example).

The maximization in (3) can be easily solved if the function P (minutiae correspon-
dence) is known; in this case, the unknown alignment (∆x,∆y, θ) can be determined in
the least square sense. Unfortunately, in practice, neither the alignment parameters nor
the correspondence function P are known and therefore, solving the matching problem is
very hard. A brute force approach, that is, evaluating all the possible solutions (correspon-
dences and alignments) is prohibitive as the number of possible solutions is exponential in
the number of minutiae (the function P is more than a permutation due to the possible ⊥
values). Hence heuristics are used.

In figure 5 minutiae of f(D′) mapped into f(D) coordinates for a given alignment.
Minutiae of f(D) are denoted by ¯s, whereas f(D′) minutiae are denoted by ×s. Note
that f(D′) minutiae are referred to as m′′, because what is shown in the figure is their
mapping into f(D) coordinates. Pairing is performed according to the minimum distance.
The dashed circles indicate the maximum spatial distance. The gray circles denote suc-
cessfully mated minutiae; minutia m1 of f(D) and minutia m′′

3 of f(D′) have no mates,
minutiae m3 and m′′

6 cannot be mated due to their large direction difference.

In figure 6, if m1 were mated with m′′
2 (the closest minutia), m2 would remain unmated;

however, pairing m1 with m′′
1, allows m2 to be mated with m′′

2, thus maximizing Equation
(3).
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Figure 6. Mating with a Second-Closest

3 Fingerprint Match-On-Card

3.1 What Is a Smart-Card?

The physical support of a conventional smart-card is a plastic rectangle printed with infor-
mation concerning the application or the issuer, as well as readable information about the
card holder (for instance, a validity date or a photograph). This support can also carry a
magnetic stripe or a bar-code.

ISO Standard 7816 specifies that the micromodule must contain an array of eight
contacts but only six of these are actually connected to the chip, which is usually not
visible. The contacts are assigned to power supplies (Vcc and Vpp), ground, clock, reset
and a serial data communication link commonly called I/O. ISO is currently considering
various requests for re-specification of the contacts; notably for dual USB/7816 support.

While for the time being card CPUs are mainly 8 or 16-bit microcontrollers3 new 32-bit
devices has recently become available.

From a functional standpoint a smart card is a miniature computer. A small on-board
RAM serves as a temporary storage of calculation results and the card’s microprocessor

3 The most common cores are Motorola’s 68HC05 and Intel’s 80C51.
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executes a program etched into the card’s ROM at the mask-producing stage. This program
cannot be modified or read-back in any way.

For storing user-specific data individual to each card, cards contain EEPROM (Electri-
cally Erasable and Programmable ROM) or flash memory, which can be written and erased
hundreds of thousands of times. Java cards even allow the import of executable programs
(applets) into their nonvolatile memory according to the card holder’s needs.

Finally, the card contains a communication port (serial via an asynchronous link) for
exchanging data and control information with the external world. A common bit rate is
9,600 bits per second, but much faster ISO-compliant throughputs are commonly used
(from 19,200 up to 115,200 bits per second). The advent of USB cards opens new horizons
and allows data throughput to easily reach one megabit per second.

chip chip=+

+

Figure 7. Smart-Card Manufacturing

To prevent information probing, all these elements are packed into one single chip. If
this is not done, the wires linking the system components to each another could become
potential passive or active penetration routes [1]. The different steps of smart card manu-
facturing are shown in figure 7: wire bonding (chip + micromodule) and potting (chip +
micromodule + plastic).

3.2 Biometric Smart-Cards

Biometric smart-cards has the capacity to store a template f(D) in EEPROM and perform
both matching and decision-making when presented with a candidate D′ (or f(D′) if the
algorithm f is public4).

Typically, an accept will ’open’ the card and permit access to some of its EEPROM
files, enable the generation of a digital signature or debit a purse.

It is customary to require that these steps take place in less than a second (convenience).
When coded in a card a matching algorithm would use at least 2,000 bytes of RAM. Code
would usually occupy 2,000 to 12,000 ROM bytes.

4 Most match-on-card algorithms are proprietary but usually available under NDA. The following companies sell,
license or develop match-on-card code: Precise biometrics, Veridicom, Gemplus, Siemens biometrics, Ikendi,
Dermalog, Identix, Fingerprint cards AB.
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Code complexity (matching involves many floating-point trigonometric operations) and
RAM consumption are two decisive cost factors in the design of such solutions.

The following section provides a novel solution to this problem. The solution, called
Externalized Fingerprint Matching, allows to implement µ in simple (microprocessor-less)
memory cards. This is particularly important for addressing cost-effectively very large
markets (e.g. China, 1.3 billion inhabitants) and for deploying disposable biometric IDs
such as visas, hotel room keys or visitor/subcontractor badges.

4 Externalizing the Fingerprint Matching

The new idea consists in adding false minutiae to f(D) and reversing the burden of proof
to have the card challenge the reader to find out, based on the acquisition coming from
the scanner, which minutiae are genuine:

4.1 Enrolment

The enrolment protocol is the following:

1. The issuer extracts f(D), picks a set of random minutiae r and merges it into f(D).
We denote the result of this operation (illustrated in figures 8 and 9) by t = f(D) ∪ r.

!
Figure 8. Fingerprint Scrambling with False Minutiae

⋃
=

Figure 9. Fingerprint Scrambling with False Minutiae
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2. The issuer encodes t as a binary string u where bit ui = 1 if the i-th minutia in t belongs
to f(D) and ui = 0 if the i-th minutia in t belongs to r.

3. The issuer signs, using a public-key signature scheme the data {t, u, d} where d is a
security parameter which choice is discussed below. Let σ be the signature of {t, u, d}.

4. The issuer delivers an identity card containing {t, u, d, σ}. The card allows the free
reading of t and d.

4.2 Identification

The identification protocol is the following:

1. The terminal receives from the scanner a fingerprint candidate D′.
2. The terminal reads t from the card and partitions t (based upon D′) into two sets

t = ttrue ∪ tfalse. The terminal encodes this partition as a binary string u′ where bit
u′i = 1 if the i-th minutia in t belongs to ttrue and u′i = 0 if the i-th minutia in t belongs
to tfalse. The terminal sends u′ to the card.

3. The card computes w = u⊕ u′. If the Hamming weight of w (denoted H(w)) is smaller
than d the card outputs σ and u. At this step the card considers that the presented
finger is legitimate.

4. The terminal verifies σ with respect to the issuer’s public-key and if σ is correct and
H(u⊕ u′) ≤ d then the terminal considers that the scanned finger and the card match
each other and are approved by the issuer.

4.3 Evaluating the Protocol’s FAR

The security of the above protocol is determined as follows.

The correct fingerprint is characterized by the reference vector u whose length is n+m
and whose Hamming weight is n. Since u is unknown to the attacker we assume that it
has a random distribution over the vectors of weight n.

Assume that the Hamming weight of u′, the vector submitted by the attacker, is equal
to n+ k, where k is a non-negative integer. Letting w = u′⊕u we have w = w1 ∨w2 where
w1 = u ∧ ¬u′ and w2 = ¬u ∧ u′. Let i = H(w1).

We have H(u′) = n+ k = H(u) +H(w2)−H(w1), which gives H(w2) = i+ k, whereby
H(w) = H(w1) + H(w2) = 2i + k. Since H(u′) = n + k, the number of possible choices for
w2 is

(
n+k
i+k

)
and the number of possible choices for w1 is

(
m−k

i

)
.

The number of possible u vectors for a given integer i is therefore:

R(n,m, k, i) =

(
n + k

i + k

)
×

(
m− k

i

)

Summing over all possible i, we obtain the probability over u, denoted P (n,m, k) that
the attack succeeds with a candidate u′ of weight n + k:
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P (n,m, k) =

∑(d−k)/2
i=0 R(n,m, k, i)(

m+n
n

)

If k is negative, we obtain the probability:

P (n,m, k) =

∑(d+k)/2
i=0 R′(n, m, k, i)(

m+n
n

)

Where:

R′(n,m, k) =

(
n + k

i

)
×

(
m− k

i− k

)

Eventually, the FAR is the maximum probability, over all possible k, that a candidate
u′ is accepted:

FAR =
m

max
k=−n

P (n, m, k)

Letting FAR = 10−e typical {n,m} values for e = 5 and d = 0 would be:

{6, 17}, {7, 14}, {8, 12}, {9, 11}, {10, 10}, {11, 9}

Variations in d affect the FAR as shown in the graphics below:
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Figure 10. FAR for d = 4.
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Figure 11. FAR for m = n and different d values.

Note that the above calculations rely on the following two assumptions:

Assumption 1. Spatial Uniformity Assumption: The probability to find a minutia
at any given {x, y} coordinate in f(D) is constant.

In other words, the simplified FAR estimate assumes5 that there are no denser or scarcer
areas in f(D) and that minutiae are independent of each other i.e., knowing that a minutia
m exists at a given {x, y} location does not provide any information about the would-be
existence (or type) of minutiae at m’s neighborhood.

Assumption 2. Biometric Scrambling Assumption: There exists an probabilistic
algorithm A taking as input f(D) and outputting a t = f(D) ∪ r such that partitioning t
into the original subsets f(D) and r, even approximately, is intractable.

An alternative fingerprint scrambling model is given in the appendix.

5 Implementation and Applications

The protocol was implemented as a Javacard applet on a Gemplus GemXpresso Pro smart
card using Ikendi Software AG’s minutiae extraction engine.

For the reader terminal emulation, the demonstrator is uses a Pentium III at 500 MHz
and a Gemplus GemPC Touch 430 smart card reader with an embedded fingerprint sensor
(silicon sensor using capacitive technology), shown below.

5 ”... Since u is unknown to the attacker we assume that it has a random distribution over the vectors of weight
n...
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Figure 12. GemXpresso Pro and GemPC Touch 430.

The entire fingerprint matching process takes less than a second. The applet’s size is
about 510 bytes and the card’s processing time is 26 ms, that break-down as follows:

Protocol phase Duration
The terminal asks permission to send u′ 6 ms
The card prepares to receive u′ 8 ms
The terminal sends u′ 6 ms
The card compares u and u′ 4 ms
The card returns true or false 2 ms

5.1 National Identity and Access Control to Facilities

In a typical national ID application, a law enforcement agent using a portable secret-less
biometric reader must ascertain that a physically present individual is associated to a data
string Q. In most cases, Q represents information such as the ID card number, the surname,
given names, nationality, height, place of birth, date of birth, dates of issue and expiry,
color of eyes, residence etc. In the sequel we assume that σ also signs Q

Given that the portable reader is under the agent’s total control (i.e. provides end-to-
end security from the capture unit to the decision taking and display module) the display of
Q on the reader’s screen provides the officer with a binding between the physically present
individual and Q.

Note (as is the case with all other match-on-card protocols) that biometry alone cannot
provide a binding between the ID (physical support) and the individual but only between
Q (the information) and the individual. To provide also a binding between the ID and
the individual the ID must be enriched with active digital signature or zero-knowledge
capabilities.

5.2 Internet Login and On-Line Access

As is the case with passwords and other biometric protocols, one cannot require resistance
against parties who witnessed a successful biometric identification session (or participated
in it). However, we do require that a party who never witnessed a successful session will
be unable to mimic the legitimate user and his card, even under the (very adversarial)
assumption that the attacker managed to steal the user’s ID card.
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Given that the card will only reveal w when the interrogator proves to it that he knows
already an extremely close approximation of w, the thief will not be able to retrieve f(D)
from the ID card 6 and mimic the user’s presence on the other side of the communication
line.

As is the case with passwords and other biometric protocols, a remote user can always
voluntarily ’delegate’ (lend) his D and σ to friends or colleagues. To prevent this and
ascertain that the ID card is physically present at the other side of the line, the ID card
must be enriched with active public-key capabilities. Note that even such a capability will
never ascertain that the user did not voluntarily give the physical ID plus D to the friend
or the colleague.

5.3 Access Control to Card Inner Data or Card Functions

In many settings, one wishes to bind the enabling of an on-card function to the user’s
presence. A typical example is an electronic purse where a debit function is activated only
after successfully recognizing the user’s D. This provides an excellent protection against
card theft and subsequent illegal debit.

Note that unless the capture unit is embedded in the card (such capture units are
marketed by several suppliers today), a user can, again, voluntarily lend his D to a friend
(although in most cases debit operations are done in front of merchants). Other applications
of access control to inner card data consist in accessing private files on a memory stick or
medical data in a health cards.

5.4 Conclusion

The above shows that although extremely economic (from an on-board resource consump-
tion perspective), the protocol presented in this paper provides equivalent functionalities
to other match-on-card techniques in all typical use-cases.
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APPENDIX A
SIMPLIFIED MINUTIAE SCRAMBLING MODEL

In the simplified minutiae scrambling model, we let n be the number of minutiae in
f(D) and k ≤ n be the total number of minutiae in the resulting template t, that is, true
and false minutiae. Again, we let d be a security parameter which choice is discussed below.

Definition 1. A Biometric Scrambling Algorithm is an algorithm taking as input a set
f(D) of n minutiae and outputting a template t and a randomly distributed k-bit string u,
such that the i-th minutia in t belongs to f(D) iff ui = 1.

Assumption 3. Simplified Assumption: There exists an (efficient) Biometric Scram-
bling algorithm A with the following two properties:
- Given f(D) and a t generated by A, one can obtain a u′ such that H(u′ ⊕ u) ≤ d with
probability greater than β.
- Given only t the success probability of an attacker in outputting u′ such that H(u′⊕u) ≤ d
is εguess + negl, where negl is a negligible function of the parameters, and

εguess = 2−k

d∑
i=0

(
k

i

)

A.1. Enrolment

The enrolment protocol is the following:

1. The issuer extracts f(D) and sets t ← {}.
2. The issuer generates a random k-bit string u = u1, . . . , uk.
3. For i = 1 to k:

(a) if ui = 1, the issuer adds to the template t a random (and not already selected)
minutia from f(D).

(b) if ui = 0, the issuer adds to t a random minutia.

4. The issuer signs the data {t, u, d}. Let σ be the signature of {t, u, d}.
5. The issuer delivers an identity card containing {t, u, d, σ}. The card allows the free

reading of t and d.

Identification is identical to 4.2.

A.2. Security

The second property of the Simplified Assumption ensures that the success probability
of an attacker is only negligibly greater than the success probability obtained by just
randomly “guessing” the random string u.

The following theorem proves that the identification protocol is secure under the Sim-
plified Assumption.

Theorem 1. Without the knowledge of f(D) an attacker’s success probability is smaller
than εguess + negl.
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Proof. Assume that an attacker F manages to pass the identification protocol without
knowing f(D), with probability ε′. Then, using F , given a template t, one can obtain
u′ such that H(u′ ⊕ u) ≤ d, without knowing d, with probability ε′. By the Simplified
Assumption, this can only be done with probability lesser than εguess + negl, which gives
ε′ ≤ εguess + negl. ut
A.3. Evaluating the FAR and FRR

The FAR is, by definition, the probability that a wrong fingerprint is declared genuine.
Therefore, the FAR is smaller than the attacker’s success probability :

FAR ≤ 2−k

d∑
i=0

(
k

i

)
+ negl

Neglecting the term negl, the following table lists various {k, d} choices and their corre-
sponding FARs.

− log10(FAR) 2 3 3 4
k 10 20 26 30
d 2 3 5 5

The FRR being the percentage of correct fingerprints that do not pass the identification
algorithm, the FRR is equal to 1−β, where β in the probability introduced in the Simplified
Assumption. 1− β must be small.
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Abstrakt Tento př́ıspěvek ukazuje nový útok na klávesnice.

Útok sestává z položeńı malého množstv́ı iontových soĺı na každou klávesu použ́ıvanou pro zadáváńı
PINů (např. NaCl na klávesu 0, KCl na klávesu 1, LiCl na klávesu 2, SrCl2 na klávesu 3, BaCl2
na klávesu 4, CaCl2 na klávesu 5...). T́ım, jak uživatel zadává sv̊uj PIN, mı́chá soli a zanechává
klavesnici ve stavu, která prozrazuje tajnou informaci. Ukázalo se, že vyhodnocováńı ztráty entropie
na základě chemických stop je zaj́ımavé kombinatorické cvičeńı.

Za předpokladu, že hmotová spektroskopická analýza může přesně odhalit složeńı směsi chemických
látek, vytvořené uživatelem, ukážeme, že tento útok prakticky prozrazuje PIN (pro PINy zapisované
v deśıtkové soustavě a o rozumné délce).

Útok můžeme aplikovat na dveřńı PIN kódy, telefonńı č́ısla volaná z hotelových pokoj̊u, poč́ıtačové
klávesnice nebo dokonce bankomaty.

Ačkoliv chemickou část útoku jsme v praxi neimplementovali, řada specialist̊u na hmotovou spek-
trometrii autor̊um realizovatelnost analýzy potvrdila.

1 Úvod

Tento př́ıspěvek ukazuje nový útok na klávesnice.

Útok sestává z položeńı malého množstv́ı iontových soĺı na každou klávesu použ́ıvanou
pro zadáváńı PINů (např. NaCl na klávesu 0, KCl na klávesu 1, LiCl na klávesu 2, SrCl2
na klávesu 3, BaCl2 na klávesu 4, CaCl2 na klávesu 5...). T́ım jak uživatel zadává sv̊uj
PIN, mı́chá soli a zanechává klavesnici ve stavu, která prozrazuje tajnou informaci.

Tuto prvńı fázi útoku ilustrujeme na př́ıkladu PINu 1592.
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Druhá část útoku se skládá ze źıskáńı vzork̊u z klávesnice a jejich analýzy pomoćı
hmotového spektrometru (např. [1]).

Ve hmotové spektrometrii je analyzovaná substance bombardována paprskem elek-
tron̊u, které maj́ı dostatečnou energii pro fragmentaci molekuly. Pozitivńı fragmenty, které
takto vznikaj́ı (kationty a radikálńı kationy) jsou akcelerovány ve vakuu pomoćı mag-
netického pole a jsou roztř́ıděny na základě jejich poměru hmotnost/náboj. Protože tato
masa iont̊u vytvořených ve hmotovém spektrometru nese positivńı náboj, hodnota m/e
je rovna molekulové hmotnosti fragmentu. Analýza informaćı źıskaných hmotovou spek-
troskopíı zahrnuje znovusložeńı fragment̊u pro zpětné źıskáńı p̊uvodńı molekuly. Schemat-
ická reprezentace hmotového spektrometru je znázorněna na následuj́ıćım obrázku:

Obrázek A.

Velmi ńızké koncentraci analyzovaných molekul je povoleno unikat do ionizačńı ko-
mory (která je pod velmi vysokým vakuem), kde jsou bombardovány vysokoenergetickým
paprskem elektron̊u. Molekuly se rozkládaj́ı do fragment̊u a źıskané pozitivńı ionty jsou
akcelerovány pomoćı nabitého pole do analyzačńı trubice. Cesta nabitých molekul je zah-
nuta použitým magnetickým polem. Ionty maj́ıćı malou hmotu (ńızkou pohybovou energii)
budou pomoćı magnetického pole z velké části odkloněny stranou a střetnou se se stěnou
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analyzátoru. Ionty maj́ıćı správný poměr hmotnost/náboj však z̊ustanou na cestě do an-
alyzátoru a opust́ı trubici štěrbinou a naraźı do kolektoru. To vytvář́ı elektrický proud,
který je zesilován a měřen. Změnou śıly magnetického pole můžeme měnit měřený poměr
hmotnost/náboj.

Výstup z hmotového spektrometru ukazuje graf relativńı intenzity v̊uči poměru hmot-
nost/náboj (m/e). Nejvyšš́ı vrchol ve spektru je nazýván základńı vrchol a všechny ostatńı
jsou označovány relativně v̊uči jeho hodnotě. Vrcholy jsou typicky velice ostré a zař́ızeńı je
zobrazuje jako vertikálńı čáry.

Proces fragmentace využ́ıvá jednoduché a předv́ıdatelné chemické principy a vznikaj́ıćı
ionty budou mı́t formu nejstabilněǰśıch kationt̊u a radikálńıch kationt̊u, které molekula
umı́ vytvářet. Nejvyšš́ı vrchol molekulové hmotnosti pozorovaný ve spektru bude typicky
představovat rodičovskou molekulu bez jednoho elektronu, což nazýváme molekulovým
iontem.

Na základě toho, jaké chemikálie obsahuj́ı jednotlivé klávesy, může útočńık pokračovat
a vyzkoušet kandidáty na PIN jednoho po druhém. Následuj́ıćı kapitola se zaměřuje na
tento třet́ı, kombinatorický aspekt útoku1.

2 Kombinatorická Analýza

Pd
` znač́ıme množinu PINů délky ` z množiny d č́ıslic. Chemická stopa PINu je zobrazeńı,

které přǐrazuje každému č́ıslu množinu jeho předch̊udc̊u na klávesnici. τ(p) znač́ıme chemick-
ou stopu PINu p a definujeme množinu všech stop jako T d

` = τ
(Pd

`

)
.

2.1 Akce Permutaćı

Permutačńı grupa Sd na č́ıslićıch má přirozenou akci a tato akce se rozšǐruje na stopy.
Tř́ıdy rozkladu definujeme následovně:

P̃d
` = Pd

` /Sd and T̃ d
` = T d

` /Sd

Zobrazeńı stop se rozšǐruje na tř́ıdy rozkladu zobrazeńım:

τ̃ : P̃d
` −→ T̃ d

`

Reprezentanti tř́ıd rozkladu v P̃d
` se definuj́ı snadno: jsou to PINy, v nichž je č́ıslice 0

použita před 1, která je použita před 2 atd. Takové PINy nazýváme kanonické PINy.

Kardinalitu P̃d
` , která je rovna počtu kanonických PINů délky ` je možné vypoč́ıtat na

základě následuj́ıćıch tvrzeńı:

Proposition 1. ]P̃d
` je exponenciálńı Bellovo č́ıslo B` jakmile d ≥ `.

1 Muśıme zd̊uraznit, že ačkoliv jsme chemickou část útoku prakticky nevyzkoušeli, řada odborńık̊u na spektometrii
(Henri Boccia, Jorge Davilla atd.) potvrdila autor̊um praktickou realizovatelnost.
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D̊ukaz. Stač́ı ukázat, že existuje bijektivńı zobrazeńı mezi kanonickými PINy a částmi
množiny {1, 2, · · · , `}. Pro spojeńı tř́ıdy rozkladu s kanonickým PINem budeme shluko-
vat pozice, kde č́ıslice maj́ı stejnou hodnotu. Abychom zpětně zobrazili tř́ıdu rzkladu na
kanonický PIN přǐrad́ıme každé tř́ıdě rozkladu hodnotu tak, aby se nové č́ıslice objevily v
rostoućım pořad́ı. ut

Následuj́ıćı definice budou užitečné pro studium množiny T̃ d
` .

Definice 1. Necht’ p je PIN. Signatura č́ıslice δ v p je dána jako (a, b) ∈ N×N, kde a
je počet předch̊udc̊u δ a b je počet jeho následńık̊u.

V následuj́ıćı definici využ́ıváme uspořádáńı na množině N×N. Výběr uspořádáńı neńı
významný, lexikografické uspořádáńı nám bude plně postačovat.

Definice 2. Necht’ p je PIN. Signatura p je uspořádaný seznam signatur č́ıslic p.

Př́ıklad: Signatura p = 47524 je {(2, 4), (3, 3), (4, 2), (4, 4)}. Tato signatura byla spoč́ıtána
následovně: č́ıslice 7 má dva předch̊udce (4 a sama sebe) a čtyři následńıky (sebe, 5, 2 a
4) a proto tedy člen (2, 4) v signatuře. Č́ıslice 5 má tři předch̊udce (4, 7 a sebe) a tři
následńıky (sebe, 2 a 4), proto tedy člen (3, 3) v signatuře. Č́ıslice 2 má čtyři předch̊udce
(4, 7, 5 a sebe) a dva následńıky (sebe a 4), proto tedy člen (4, 2) v signatuře. A nakonec
č́ıslice 4 má čtyři předch̊udce (sebe, 7, 5 a 2) a čtyři následńıky (7, 5, 2 a sebe) a proto
tedy člen (4, 4) v signatuře.

Definice dignatury uvažuje pouze předch̊udce a následńıky a může tedy být přirozeně
rozš́ı̌rena na stopy. Bez d̊ukazu předkládáme následuj́ıćı tvrzeńı:

Proposition 2. Signatura je invariantńı vzhledem k rozkladu grupy Sd. Dále nav́ıc
stopy t1 a t2 maj́ı stejnou signaturu právě když existuje permutace σ ∈ Sd, která

t2 = σ · t1

2.2 Kolik PINů Existuje?

Chtěli bychom vypoč́ıtat počet PINů p takových, že τ(p) = t. Necht’ P je vzorem t̃ ve funkci
τ̃ . V rámci každé tř́ıdy rozkladu ci v P existuje (alespoò) PIN πi, takový že τ(πi) = t.

Necht’ p označuje PIN, pro který t = τ(p). Máme tedy t̃ = τ̃(p̃). Z toho vyplývá, že
existuje index i takový, že p̃ = π̃i, což můžeme vyjádřit jako p = σ · πi.

Převodem do stop źıskáváme:

t = τ(p) = τ(σ · πi) = σ · τ(πi) = σ · t.

Počet PINů p spoòuj́ıćıch τ(p) = t je stejný nebo roven součinu počtu tř́ıd rozkladu ve
vzoru t̃ a počtu permutaćı σ takových, že σ · t = t. Množinu těchto permutaćı nazýváme
stabilizátor t.

Signatura stopy t je uspořádaná množina dvojic celých č́ısel. Tato množina může být
permutována. Stabilizátor této signatury spoč́ıvá v permutaćıch ponechávaj́ıćıch množinu
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uspořádanou. Můžeme dokázat, že stabilizátor stopy a stabilizátor signatury maj́ı stajný
počet prvk̊u. Výhodou je, že nalezeńı stabilizátoru signatury je mnohem snazš́ı, než nalezeńı
stabilizátoru stopy.

3 Vyhodnoceńı Ztráty Entropie

Abychom mohli kvantifikovat množstv́ı tajné informace prozrazené při tomto typu útoku,
označ́ıme pomoćı w(p) množstv́ı PINů q tak, že plat́ı τ(p) = τ(q). Pro každé celé č́ıslo n
potřebujeme vyhodnotit funkci ed

` (n) poč́ıtaj́ıćı počet PINů, které splòuj́ı w(p) = n. To
můžeme učinit na základě pozorováńı provedených v předchoźı sekci.

Krok 1 Vytvořit všechny kanonické PINy rekursivńım zp̊usobem. Funkce, která to
udělá je triviálńı (notace programu Mathematica):

Rec[lst , k , n ] := Module[{i},
If[k == 0, Treat[lst]; Return[]];

For[i = 1, i ≤ n, i++, Rec[Append[lst, i], k - 1, n]];

Rec[Append[lst, n + 1], k - 1, n + 1];

];

Všimněte si, že kdykoliv je vygenerován kanonický PIN, Rec na něj spoušt́ı Treat.

Krok 2 Treat poč́ıtá signaturu kanonického PINu. Proměnná pre obsahuje počet
předch̊udc̊u každé č́ıslice a suc obsahuje počet následńık̊u každé č́ıslice. Pomoćı Transpose
je źıskán počet předch̊udc̊u a následńık̊u každé č́ıslice. Setř́ıděńım tohoto seznamu źıskáme
signaturu PINu:

Treat[lst ] := Module[{t, l, s, i, j},
l = Max[lst];

t = 1;

pre = Table[i, {i, 1, l}];
For[i = 1, i ≤ Length[lst], i++,

t = Max[t, lst[[i]]];

pre[[lst[[i]]]] = t;

];

suc = {};
For[i = 1, i ≤ l, i++,

s = 0;

For[j = 1, j ≤ l, j++, If[pre[[j]] ≥ i, s++]];

AppendTo[suc, s];

];

τ = Sort[Transpose[{pre, suc}]];
AppendTo[types, τ];
];

Krok 3 Pro každou signaturu nyńı můžeme vypoč́ıtat počet odpov́ıdaj́ıćıch kanonických
PINů a vynásobit výsledek kardinalitou stabilizátoru signatury (dané pomoćı AutoSym):
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Nice[lst ] := Sort[({Length[Position[lst, #]], #}) & /@ Union[lst]];

AutoSym[lst ] := Times @@ ((#[[1]]!) & /@ Nice[lst]);

Compute[l , d ] := Module[{ν, σ, nb, z, a, m, n},
(* computing canonical PINs *)

types = {};
Rec[{1}, l - 1, 1];

(* grouping traces *)

ν = Nice[types];

(* computing entropy *)

nb = z = 0;

For[i = 1, i ≤ Length[ν], i++,

σ = AutoSym[ν[[i, 2]]];

a = ν[[i, 1]]*σ;
m = Max @@ ν[[i, 2]];

n = ν[[i, 1]]*(d!/(d - m)!);

nb += n;

z += Log[2, a]*n;

];

Print[N[z/nb, 20], " bits"];

];

Vyhodnoceńım (např. In[1]:= Compute[9,10]) źıskáme:

5.2080553744037319192 bitů

4 Výsledky pro Decimálńı PINy (d = 10)

V této části ukážeme pro 3 ≤ ` ≤ 8 počet PINů maj́ıćı danou hodnotu w a H(Pd
` )

a množstv́ı informace neźıskané pomoćı chemického útoku. Autoři vypoč́ıtali e10
` (n) pro

3 ≤ ` ≤ 12 a všechny hodnoty n, ale tabulky pro ` ≥ 9 jsou př́ılǐs rozsáhlé pro jejich
zveřejněńı zde (68, 122, 226 a 429 nenulových hodnot n pro ` = 9, 10, 11 a 12). Zdrojový
kód pro program Mathematica je k dispozici u autor̊u př́ıspěvku.
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n ` = 3 ` = 4 ` = 5 ` = 6 ` = 7 ` = 8
1 730 5770 45370 337690 2268010 13487050
2 270 1440 15120 120960 967680 7862400
3 2430
4 20520 35280 635040 6713280
5 151650
6 4320 907740
7 5040 4234230
8 360 80640
9 45360 816480

10 7200 57600 655200 6048000
11 332640 5654880
12 1440 110880 181440 5564160
13 1965600
14 846720
15 464400
16 6652800
20 100800
21 3190320
22 990 665280
24 483840
28 423360
30 21600
32 23040 40320 1935360
35 1234800
36 1360800
38 383040
44 332640
47 4263840
48 483840
52 2340 3144960
56 141120 1693440
58 7308000
60 1814400
68 1028160
70 2116800
84 60480

102 73440
108 12960
114 5130
120 201600
128 967680
132 1995840
140 1411200
144 30240 362880
152 191520
198 1140480
240 10800
303 218160
336 1693440
456 1149120
600 72000
720 1209600

2304 483840
2664 319680

Tabulka 2. Hodnoty e10
` (n).

` 3 4 5 6 7 8 9 10 11 12

H(P10
` ) 0.27 0.63 1.15 1.84 2.74 3.86 5.21 6.80 8.62 10.68

Tabulka 3. Hodnoty H(P10
` ).
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4.1 Útok v př́ıpadě limitováńı počtu neúspěšných pokus̊u

PINy jsou obvykle chráněny před náhodným zkoušeńım pomoćı limitováńı počtu neúspěšných
pokus̊u. Poč́ıtadlo poč́ıtá počet neúspěšných zadáńı PINu a zablokuje systém jakmile tento
počet dosáhne prahové hodnoty r. Následuj́ıćı tabulka uvád́ı útočńıkovu pravděpodobnost
úspěchu pro d = 10 jako funkci ` a r.

Typicky v př́ıpadě obyklého bankomatu (` = 4, r = 3) bude útok úspěšný v 98 %
př́ıpad̊u. V př́ıpadě SIM karet pro GSM (kde ` = 8, r = 3) bude útočńıkova pravěpodobnost
úspěchu stále ještě 37 %.

` ½ 3 4 5 6 7 8 9 10 11 12
r = 1 0.865 0.734 0.604 0.469 0.339 0.226 0.137 0.074 0.035 0.014
r = 2 1.000 0.892 0.754 0.600 0.452 0.318 0.204 0.117 0.059 0.025
r = 3 1.000 0.978 0.829 0.671 0.517 0.370 0.242 0.142 0.073 0.032
r = 4 1.000 0.982 0.903 0.742 0.581 0.422 0.280 0.167 0.088 0.040
r = 5 1.000 0.986 0.926 0.804 0.629 0.458 0.305 0.184 0.098 0.045
r = 6 1.000 0.991 0.950 0.836 0.678 0.493 0.330 0.201 0.108 0.050
r = 7 1.000 0.996 0.966 0.868 0.711 0.529 0.355 0.217 0.118 0.055
r = 8 1.000 1.000 0.974 0.899 0.744 0.558 0.380 0.234 0.127 0.060

Tabulka 4. Pravděpodobnosti při poč́ıtáńı neúspěšných pokus̊u d = 10.

5 Protiopatřeńı

Nejefektivněǰśı obranou proti útoku popsaném v tomto př́ıspěvku se zdá být dotyková
obrazovka, kde jsou č́ıslice náhodně rozmı́stěny. Méně technicky efektńı avšak přesto efek-
tivńı protiopatřeńı spoč́ıvá v použit́ı r̊uzných prst̊u pro každou klávesu a nebo stisknut́ım
matoućı sekcence 0123456789876543210 před použit́ım klávesnice ...

Literatura

1. http://chipo.chem.uic.edu/web1/ocol/spec/MS1.htm
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Př́ıloha
Kanonické PINy pro d = 10 a ` = 4
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Colorful Cryptography

- a Purely Physical Secret Sharing Scheme Based on

Chromatic Filters -

[Abstracts of the French-Israeli Workshop on Coding and Information Integrity, Tel Aviv
University, 5-8 décembre, 1994.]
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1 place de Navarre, F-95200, Sarcelles, France

100142.3240@compuserve.com

Abstract. In a recent paper entitled visual cryptography, Naor and Shamir [1] introduced a secret-
sharing technique by the means of which k out of n users can recover a secret by the simple stacking
of k transparencies.

In this article we show how this idea can be further generalized to color images as concretely applied
to the cheap protection of partially transparent smart-cards.

1 Introduction

In Eurocrypt’94, Naor and Shamir presented a new secret sharing scheme based on the
element-wise oring of binary matrices. The basic idea of this method is easily illustrated by
a couple of unintelligible transparencies which superposition results in a coherent image.
We invite the reader to consult [1] for more details about this method and its applications.

2 Additive Color Synthesis

Take a simple crystal prism and have the sun light go through it. You will get a colorful
rainbow similar to the one observed by Isaac Newton over three centuries ago. The six basic
colors that appear in the visual decomposition of (white) light1 are a simple illustration of
the additive synthesis principle.

The discovery of light interference by Thomas Young, established that all colors can be
obtained by mixing various proportions of three primary colors: red, green and blue (RGB).
This basic color synthesis mechanism is currently used by all visualization peripherals such
as computer screens, televisions or overhead projectors. Colors can thus be looked upon
as tri-dimensional vectors and light filtering (materials that moderate the proportion of
certain colors) as simple projection.

The dimension of this model is often brought to two by normalizing R + G + B = 1
but this simplification prevents the modelling of certain physical operations.

1 red, orange, yellow, green, blue and indigo
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3 Chromatic Secret-Sharing

Representing an image pixel by the wave length λp of its color, it is possible to share the
secret color λp between two entities by the following technique:

1. Divide the visible spectrum into c intervals {si}i=1,...,c, assume that λp ∈ sj

2. Generate a random partition of S = {si}i=1,...,c − sj into a couple of subsets S1 and S2.

3. Produce two filters (secret-shares) F1 and F2 that filter respectively the wavelengths S1

and S2

The secret pixel can be recovered by simply superposing the two filters in front of a
white light source as depicted in Figure 1.
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Fig. 1. The recovering of information contained in two adjacent pixels.
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Proposal for a Recurrent Denumeration of All the

Permutations on Any Set of Mutually Disjoint

Elements

[Scientific program and abstracts of the Joint French-Israeli binational symposium on
Combinatorics & Algorithms, Ministry of Science and Development - National Council

for Research and Development, 14-17 novembre 1989.]

David Naccache

Abstract. This note describes the permutation generation algorithm presented by the author at the
Joint French-Israeli binational symposium on Combinatorics & Algorithms in the presence of Paul
Erdős. A formal paper describing this method was never written but the extended abstract appears
in the conference’s proceedings.

1 Description of Basic Objects

We give here without a proof the algorithm for generating the permutations of n elements.
The algorithm handles objects called plaits. A plait is an `× 2` table which first row is a
permutation of ` elements and which subsequent rows are derived from the first row using
a simple iterative process whereby elements move by one position to the left (or the right)
as rows go downwards, except when elements reach the table’s lining (ricochet) in which
case elements stay against the lining for two consecutive rows as shown below:




a↙ b c d e
a↘ c b e d
c a↘ e b d
c e a↘ d b
e c d a↘ b
e d c b a↘
d e b c a↙
d b e a↙ c
b d a↙ e c
b a↙ d c e




The two possible forms of odd-size plaits are shown below (one being simply the vertical
mirror image of the other):
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a b c d e
a c b e d
c a e b d
c e a d b
e c d a b
e d c b a
d e b c a
d b e a c
b d a e c
b a d c e







a b c d e
b a d c e
b d a e c
d b e a c
d e b c a
e d c b a
e c d a b
c e a d b
c a e b d
a c b e d




and there are two possible forms of even-size plaits (in one symbols start moving inwards
and in the other outwards):




a b c d
a c b d
c a d b
c d a b
d c b a
d b c a
b d a c
b a d c







a b c d
b a d c
b d a c
d b c a
d c b a
c d a b
c a d b
a c b d




2 The Algorithm

The algorithm constructs bigger plaits from smaller ones is:

– Let P`−1 be a plait of size `−1. Construct an `× ` table P ′
`−1 by deleting the even rows

from P`−1.

– Append to each of the ` rows of P ′
`−1 the element ` and use the resulting ` strings to

construct ` plaits of size `.

– Repeat the above iteratively for all generated plaits.

We will illustrate the process by constructing all the 5! = 120 permutations of the set

{1, 2, 3, 4, 5}: starting with
(

2 1
1 2

)
and removing the even row we get: ( 2 1 ). Appending 3

we get ( 3 2 1 ) that we use to seed the plait P :

P =




3 2 1
3 1 2
1 3 2
1 2 3
2 1 3
2 3 1


 where removing even rows yields: P ′ =

(
3 2 1
1 3 2
2 1 3

)

appending 4 we get ( 4 3 2 1 ) , ( 4 1 3 2 ) , ( 4 2 1 3 ) that we use to seed the plaits:
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4 3 2 1
4 2 3 1
2 4 1 3
2 1 4 3
1 2 3 4
1 3 2 4
3 1 4 2
3 4 1 2







4 1 3 2
4 3 1 2
3 4 2 1
3 2 4 1
2 3 1 4
2 1 3 4
1 2 4 3
1 4 2 3







4 2 1 3
4 1 2 3
1 4 3 2
1 3 4 2
3 1 2 4
3 2 1 4
2 3 4 1
2 4 3 1




wherefrom:




4 3 2 1
2 4 1 3
1 2 3 4
3 1 4 2







4 1 3 2
3 4 2 1
2 3 1 4
1 2 4 3







4 2 1 3
1 4 3 2
3 1 2 4
2 3 4 1




appending 5 we get:

�
5 4 3 2 1

�
,
�
5 2 4 1 3

�
,
�
5 1 2 3 4

�
,
�
5 3 1 4 2

�
�
5 4 1 3 2

�
,
�
5 3 4 2 1

�
,
�
5 2 3 1 4

�
,
�
5 1 2 4 3

�
�
5 4 2 1 3

�
,
�
5 1 4 3 2

�
,
�
5 3 1 2 4

�
,
�
5 2 3 4 1

�

that we use to seed plaits of size five which rows represent all the permutations of five
elements:

0
BBBBBBBBBBBBBB@

5 4 3 2 1
5 3 4 1 2
3 5 1 4 2
3 1 5 2 4
1 3 2 5 4
1 2 3 4 5
2 1 4 3 5
2 4 1 5 3
4 2 5 1 3
4 5 2 3 1

1
CCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBB@

5 2 4 1 3
5 4 2 3 1
4 5 3 2 1
4 3 5 1 2
3 4 1 5 2
3 1 4 2 5
1 3 2 4 5
1 2 3 5 4
2 1 5 3 4
2 5 1 4 3

1
CCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBB@

5 1 2 3 4
5 2 1 4 3
2 5 4 1 3
2 4 5 3 1
4 2 3 5 1
4 3 2 1 5
3 4 1 2 5
3 1 4 5 2
1 3 5 4 2
1 5 3 2 4

1
CCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBB@

5 3 1 4 2
5 1 3 2 4
1 5 2 3 4
1 2 5 4 3
2 1 4 5 3
2 4 1 3 5
4 2 3 1 5
4 3 2 5 1
3 4 5 2 1
3 5 4 1 2

1
CCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBB@

5 4 1 3 2
5 1 4 2 3
1 5 2 4 3
1 2 5 3 4
2 1 3 5 4
2 3 1 4 5
3 2 4 1 5
3 4 2 5 1
4 3 5 2 1
4 5 3 1 2

1
CCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBB@

5 3 4 2 1
5 4 3 1 2
4 5 1 3 2
4 1 5 2 3
1 4 2 5 3
1 2 4 3 5
2 1 3 4 5
2 3 1 5 4
3 2 5 1 4
3 5 2 4 1

1
CCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBB@

5 2 3 1 4
5 3 2 4 1
3 5 4 2 1
3 4 5 1 2
4 3 1 5 2
4 1 3 2 5
1 4 2 3 5
1 2 4 5 3
2 1 5 4 3
2 5 1 3 4

1
CCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBB@

5 1 2 4 3
5 2 1 3 4
2 5 3 1 4
2 3 5 4 1
3 2 4 5 1
3 4 2 1 5
4 3 1 2 5
4 1 3 5 2
1 4 5 3 2
1 5 4 2 3

1
CCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBB@

5 4 2 1 3
5 2 4 3 1
2 5 3 4 1
2 3 5 1 4
3 2 1 5 4
3 1 2 4 5
1 3 4 2 5
1 4 3 5 2
4 1 5 3 2
4 5 1 2 3

1
CCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBB@

5 1 4 3 2
5 4 1 2 3
4 5 2 1 3
4 2 5 3 1
2 4 3 5 1
2 3 4 1 5
3 2 1 4 5
3 1 2 5 4
1 3 5 2 4
1 5 3 4 2

1
CCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBB@

5 3 1 2 4
5 1 3 4 2
1 5 4 3 2
1 4 5 2 3
4 1 2 5 3
4 2 1 3 5
2 4 3 1 5
2 3 4 5 1
3 2 5 4 1
3 5 2 1 4

1
CCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBB@

5 2 3 4 1
5 3 2 1 4
3 5 1 2 4
3 1 5 4 2
1 3 4 5 2
1 4 3 2 5
4 1 2 3 5
4 2 1 5 3
2 4 5 1 3
2 5 4 3 1

1
CCCCCCCCCCCCCCA
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Résumé. L’opérateur linéaire ∇ : f(X) Ã f(X)−f(X−1) du Z-module Z[X] est utilisé en analyse
combinatoire [1]. Nous montrons comment une identité arithmétique observée dans [3], et dont nous
donnons la preuve conduit à la résolution en P (X) dans Z[X], c dans Z de l’équation différentielle

X P (X) +∇P (X) + c = d(X) (1)

pour tout f(X) de Z[X].

Nous donnons une résolution de (1) et d’autres équations de même nature indépendamment de [3].
Ceci nous conduit à proposer une démonstration et une solution pour une identité arithmétique plus
générale que la première (conjecturée dans [4]) de même que pour d’autres identités de même nature.

1 Introduction

Dans cet article nous explorons des identités combinatoires permettant de dériver des
relations entre sommes de factorielles, puissances de nombres réels et polynômes. À titre
d’exemple, nos techniques permettent de dériver des identités du type :

∀n ∈ N,

(
293−

n∑

k=1

(k3 + 11k2 + 3k − 1310

73
)7k+2k!

)3

= 73n ×
(

2933 −
n∑

k=1

τ(k)k!3

)

τ(k) = 381715264− 604710369k + 377229114k2 − 151301058k3 − 32787864× 7k4

+2829735× 72k5 + 80504× 74k6 + 18864× 74k7 + 234× 75k8 + 76k9

Les notations sont celles de L. Comtet [2].

On note

< X >k=
k−1∏
i=0

(X + i) = X(X + 1) . . . (X + k − 1)
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le polynôme générateur des nombres de Stirling absolus de première espèce [2].

La base {< X >i, i ∈ N} du Z-module Z[X] peut faciliter la résolution d’équations
différentielles en ∇. On constate d’abord que à tout a(T ) de Z[[T ]] correspond un élément
a(∇) qui est un opérateur bien défini sur Z[X] du fait que ∇j < X >i= 0 pour tout j > i.
On voit alors qu’il y a isomorphisme de Z[[T ]] sur l’anneau d’opérateurs Z[[∇]]. Puisque
tout a(Z) de Z[[T ]] est inversible si et seulement si son terme constant est une unité de Z,
il en est alors de même de a(∇) et dans ce cas, l’équation différentielle

a(∇)P (X) = d(X) (2)

où d(X) est donné dans Z[X] a pour solution a−1(∇)d(X).

A titre d’exemple, traitons l’équation différentielle

P (X)− 2P (X − 1) =< X >k

On peut l’écrire

(−I + 2∇)P (X) =< X >k

Par conséquent

P (X) = −(I − 2∇)−1 < X >k= − < X >k −2k < X >k−1 −4k(k − 1) < X >k−2 . . . (3)

Si l’on remplace < X >k dans (3) par un polynôme quelconque d(X) de Z[X] il suffira
d’écrire d(X) dans la base {< X >i, i ∈ N} pour obtenir la solution par (3). Pour
d(X) = X2 par exemple, on obtient

P (X) = −(< X >2 +4X + 8) + X + 2 = −X2 − 4X − 6

2 Polynôme de l’Anneau Z < ∇, XI > Dans (2)

Considérons le cas où l’opérateur est un polynôme de l’anneau non commutatif Z <
∇, XI > dans l’équation (2).

2.1 Unicité en Cas d’Existence

Si l’équation

(∇+ XI)P (X) + c = d(X) (4)

en (P (X), c) ∈ Z[X]×Z pour d(X) donné dans Z[X] a une solution, celle-ci est unique,
car aucun polynôme non nul n’est envoyé sur une constante par ∇+ XI.
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2.2 Existence d’une Solution

Le choix de c permet de résoudre (4) dans le cas où d(X) est réduit à une constante.
Donnons nous pour Pm(X),m ∈ N la suite Xm. On obtient alors

(∇+ XI)Xm = Xm+1 + fm(X) où fm(X) =
m−1∑
i=0

(−1)m+i+1

(
m

i

)
X i

Dès lors (∇+XI){Xm,m ∈ N} forme une base du Z-module XZ[X] ce qui nous assure
qu’il existe une suite de polynômes {Pm(X),m ∈ N}, avec deg Pm(X) = m tels que

∀m ∈ N, (∇+ XI)Pm−1(X) + am = Xm (5)

Nous exhibons cette suite et donnons un algorithme pour la construire.

Nous pouvons énoncer la

Caractéristique 1. L’équation

(∇+ XI)P (X) + c = d(X)

en (P (X), c) ∈ Z[X]×Z a une et une seule solution pour tout d(X) donné dans Z[X].

2.3 L’Identité Publiée au Pentagon

Nous nous intéressons maintenant à une identité, donnée dans preuve, dans la revue
The Pentagon [3].

Caractéristique 2. Pour tous entiers naturels m et n, n ≥ 1, on a

n∑

k=1

kmk! = (n + 1)!Pm−1(n) + am

n∑

k=1

k! + bm (6)

où Pm−1 est un polynôme de degré m− 1 de Z[X], et am et bm des entiers relatifs.

Nous démontrons cette identité dans la prochaine section mais si nous l’admettons, par
différence sur deux valeurs successives de n, on obtient de (6) après division par n!

nm = (n + 1)Pm−1(n)− Pm−1(n− 1) + am (7)

Puisque pour chaque entier naturel m, (7) est vérifiée pour tout entier n et que Pm−1(n)
est un polynôme de n, chaque polynôme Pm−1(X) vérifie bien l’identité polynômiale (5).

Notons que

∀m ∈ N, am = Pm−1(−1)− Pm−1(0)

Ainsi, comme nous le verrons par la suite, am s’avère égal (en valeur absolue) au m-ème
nombre de Uppuluri-Carpenter B±

m. B±
m =

∑n
k=1(−1)kS(n, k), valeur de la m-ème dérivée

en zéro de la fonction
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Ξ(x) = e1+x−ex

est la difference entre le nombre de partitions de l’ensemble {1, 2, . . . , n} en un nombre
pair de classes et le nombre de partitions de l’ensemble {1, 2, . . . , n} en un nombre impair
de classes [5].

2.4 Démonstration Basée Sur la Résolvabilité de l’Équation Différentielle

Soit Pm−1(n) la fonction polynôme donnée par la résolution de (5). Nommons In la
différence entre le membre de gauche et le membre de droite de (6). Notons que si l’on fait
bm = Pm−1(0) alors (6) a un sens pour n = 0 et I0 = 0. Dès lors puisque In− In−1 = 0 pour
tout entier naturel n du fait que Pm−1(X) vérifie (5), la Caractéristique 2 est vérifiée.

3 Démonstration Algorithmique de l’Identité Arithmétique

3.1 Preuve de 6

3.1.1 Une identité annexe : démontrons d’abord la

Caractéristique 3. Pour tous entiers naturels m et n ≥ 1, on a

n∑

k=1

< k >m k! = (n + 1)!Qm−1(n) + um

n∑

k=1

k! + vm (8)

où Qm−1 est un polynôme de degré m− 1 de Z[X] et um et vm des entiers relatifs.

Preuve. L’égalité (8) est vérifiée pour m = 1 avec Q0 = 1, u1 = 0 et v1 = −1. On raisonne
alors par récurrence sur m.

On constate d’abord que

n∑

k=1

< k >m k! +
n∑

k=1

(k + m− 1)! =
n∑

k=1

< k + 1 >m−1 (k + 1)!

en mettant k! en facteur dans le premier membre.

Or pour m ≥ 2, on a

n∑

k=1

(k + m− 1)! = (n + m− 1)! + (n + m− 2)! + . . . + (n + 1)!

+
n∑

k=1

k!− ((m− 1)! + . . . + 1)

= (n + 1)!Rm−2(n) +
n∑

k=1

k!− fm−1
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où l’on voit que Ri(X) est un polynôme de degré i de Z[X], R0 = 1. On note

fm =
m∑

i=1

i!

D’autre part,

n∑

k=1

< k + 1 >m−1 (k + 1)! =
n∑

k=1

< k >m−1 k!

+(n + 1)(n + 2) . . . (n + m− 1)(n + 1)!− (m− 1)!

=
n∑

k=1

< k >m−1 k! + Sm−1(n)(n + 1)!− (m− 1)!

où Sm−1(X) est un polynôme de degré m− 1 de Z[X].

On a donc au total

n∑

k=1

< k >m k! =
n∑

k=1

< k >m−1 k!+(n+1)!(Sm−1(n)−Rm−2(n))−
n∑

k=1

k!+fm−2− (m−2)!

¤

3.1.2 Résolution par Récurrence : on obtient par récurrence sur m :





Qm−1(n) = Sm−1(n)−Rm−2(n) + Qm−2(n)
um = um−1 − 1
vm = vm−1 + fm−2

(9)

Où

Rm(n) = (n + m + 1)m + (n + m)m−1 + . . . + n + 2 + 1

Sm(n) = < n + 1 >m

En particulier

S1 = X + 1 et R0 = 1

Et les valeurs initiales sont

Q0 = 1, u1 = 0, v1 = −1

On a donc um = −m + 1.
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On voit que pour m = 2, par exemple,

n∑

k=1

k(k + 1)k! =
n∑

k=1

kk! + n(n + 1)!−
n∑

k=1

k! = (n + 1)(n + 1)!−
n∑

k=1

k!− 1

3.2 Passage de l’Identité Annexe à Celle du Pentagon

On a dans Z[X] la

Caractéristique 4. Pour tout entier naturel m

Xm =
m∑

j=1

T (m, j) < X >j où T (m, j) = (−1)m+jS(m, j) (10)

et où S(m, j), nombre de Stirling de deuxième espèce, est le nombre de partitions d’un
ensemble de taille m en exactement j classes.

Preuve. La première égalité de (10) peut être écrite et les coefficients T (m, j) sont entiers
car ils déterminent la matrice de passage de la base {Xm,m ∈ N} du Z-module Z[X] à la
base {< X >m,m ∈ N}.

A cette dernière base correspond un opérateur privilégié noté ∇ (voir par exemple [1],
page 64)

∇ : Z[X] → Z[X]
f(X) Ã f(X)− f(X − 1)

On a

∀m ∈ N,∇ < X >m= m < X >m−1

Dès lors

j!T (m, j) = ∇j0m

D’autre part,

∇jXm = (I − E−1)jXm =

j∑
i=0

(−1)i

(
j

i

)
(X − i)m

où

E : Z[X] → Z[X]
f(X) Ã f(X + 1)

Mais on a aussi
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4jXm = (E − I)jXm =

j∑
i=0

(−1)j−i

(
j

i

)
(X + i)m

et 4j0m = j!S(m, j). ¤

3.3 Calcul des Nombres T (m, j) par Récurrence

On peut donc exploiter la récurrence des nombres S(m, j) [2],

S(m, j) = S(m− 1, j − 1) + jS(m− 1, j)

pour obtenir celle des T (m, j)

T (m, j) = T (m− 1, j − 1)− jT (m− 1, j)

avec pour conditions initiales,

T (m, 0) = T (0, j) = 0, pour m, j ≥ 1 et T (0, 0) = 1

3.4 L’Algorithme

On se propose de calculer Pm(X), am, bm pour m = 1, . . . , M .

3.4.1 Précalcul : On calcule T (m, j) pour j, m = 1, . . . , M . Ces valeurs forment un
tableau triangulaire où T (m, j) = 0 pour m < j et T (m, m) = 1. La première colonne a
pour coefficient (−1)m+1 et la récurrence

T (m, j) = T (m− 1, j − 1)− jT (m− 1, j)

produit les autres coefficients.

3.4.2 Calcul : Pour m = 1, . . . , M on calcule (X)m, < X >m, fm =
∑m

j=1 j!, puis

Rm(X) =
m∑

j=1

(X + j + 1)j + 1

en faisant R0(X) = 1.

Ensuite Sm(X) =< X + 1 >m pour obtenir

Qm(X) = Sm(X)−Rm−1(X) + Qm−1(X)

avec la valeur initiale Q0(X) = 1.

On a aussi immédiatement um = −m + 1 et avec la valeur initiale v1 = −1, on a



680 Paul Camion et David Naccache

vm = vm−1 + fm−2

Finalement on obtient

Pm(X) =
m+1∑
j=1

T (m + 1, j)Qj−1(X)

am =
m∑

j=1

T (m, j)uj et bm =
m∑

j=1

T (m, j)vj

3.5 Tableau des Solutions Pour m = 1, . . . , 10

m am bm Pm−1(X)

1 0 −1 1

2 −1 0 X

3 1 2 X2 − 2

4 2 −3 X3 − 3X + 3

5 −9 −4 X4 − 4X2 + 6X + 4

6 9 30 X5 − 5X2 + 10X2 + 5X − 30

7 50 −55 X6 − 6X4 + 15X3 + 4X4 − 66X+55

8 267 −126 X7 − 7X5 + 21X4 − 119X2 + 175X + 126

9 413 1190 X8 − 8X6 + 28X5 − 8X4 − 190X3 + 416X2 + 150X − 1190

10 2180 −3333 X9 − 9X7 + 36X6 − 21X5 − 279X4 + 834X3 − 45X2 − 3273X + 3333

3.5.1 Remarque : On observe sur le tableau que Pm−1(0) = −bm, pour tout m de N,
ce qui fut démontré en 2.4. On le vérifie très simplement dans la présente démonstration
en observant que Qm−1(0) = −vm, pour tout m de N. Cela découle de (9) où l’on voit que

Qm−1(0) = (m− 1)!− fm−1 + Qm−2(0)

4 Résolution Directe

Pour résoudre l’équation (2), on se ramène à la solution en (P (X), c) de Z[X]× Z de

XP (X) +∇P (X) + c =< X >m

La résolution directe présentée ici passe par la solution d’un système linéaire triangu-
laire. Elle ne donne pas une récurrence pour calculer les Pm(X) et am mais fournit un
algorithme pour calculer l’unique solution de (6). Mais elle est clairement transposable à
d’autres problèmes. On voit que l’on peut remplacer ∇ par 4 par exemple dans l’équation
(2) et obtenir une résolution analogue.

Soit

< X + 1 >m−1 +am−3 < X + 1 >m−3 +am−4 < X + 1 >m−4 + . . . + a1 < X + 1 > +a0
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l’écriture de P (X) dans la base {< X + 1 >i, i ∈ N} de Z[X], où l’on note < X + 1 >0

l’unité de Z[X]. Il est certain que XP (X)− < X >m s’écrit

am−3 < X >m−2 +am−4 < X >m−3 + . . . + a0X

puisque ∇P (X) est de degré au plus m− 2.

On a par ailleurs

∇ < X + 1 >k= k < X + 1 >k−1

et par suite

∇j < X + 1 >k= (k)j < X + 1 >k−j

où (k)j = k(k − 1) . . . (k − j + 1).

Si l’on écrit

< X + 1 >k=
k∑

j=0

A(k, j) < X >j

en notant < X >0= 1, on voit que

j!A(k, j) = ∇j < 0 + 1 >k= (k)j(k − j)!

Donc

A(k, j) =
k!

j!
, j = 0, . . . , k,

où 0! = 1.

Par exemple

(X + 1)(X + 2)(X + 3) = X(X + 1)(X + 2) + 3X(X + 1) + 6X + 6

Pour calculer les entiers a0, a1, . . . , am−3, on va alors identifier < X >m −XP (X) soit

−am−3 < X >m−2 −am−4 < X >m−3 − . . .− a2 < X >3 −a1 < X >2 −a0X

avec ∇P (X) + c, ce que l’on écrira
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(m− 1)
m−2∑
j=0

A(m− 2, j) < X >j

+ am−3 (m− 3)
m−4∑
j=0

A(m− 4, j) < X >j

+ am−4 (m− 4)
m−5∑
j=0

A(m− 5, j) < X >j

+ . . .

+ 2a2X + 2a2

+ a1 + c

Un système linéaire triangulaire nous donne alors am−3, . . . , a0 en identifiant successive-
ment les coefficients de < X >m−2, < X >m−3, . . . , X de < X >m −P (X) et de∇P (X)+c.
Finalement on ajuste la constante c pour égaliser les deux termes constants.

4.0.2 Example : m = 4

P (X) =< X + 1 >3 +a1 < X + 1 > +a0

XP (X)− < X >4 = a1 < X >2 +a0X

∇P (X) = 3 < X + 1 >2 +a1

= 3 < X >2 +6X + 6 + a1

D’où a1 = −3, a0 = −6 et c = −(6 + a1) = −3.

Finalement

P (X) = (X + 1)(X + 2)(X + 3)− 3(X + 1)− 6 et c = −3

5 Autres Identités Liées à l’Équation (∇+XI)P (X)+c = d(X)

Caractéristique 5. Il existe un polynôme Pm,t(X) de Z[X] de degré m+ t− 1 et des entiers
relatifs am,t et bm,t tes que la relation

n∑

k=1

km(k + t)! = (n + 1)Rm,t(n) + am,t

n∑

k=1

k! + bm,t (11)

soit vérifiée pour tous entiers naturels m, t et n ≥ 1.
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Ceci se voit par récurrence sur t puis (11) est vraie pour t = 0 et que

n∑

k=1

km+1(k + t− 1)! +
n∑

k=1

tkm(k + t− 1)! =
n∑

k=1

km(k + t)!

De la même façon qu’au paragraphe 2.3 on voit que le polynôme Rm,t(X) et la constante
am,t sont donnés par le couple (P (X), c) solution de

(XI +∇)P (X) + c = Xm(X)t

équation différentielle qui est un cas particulier de (4). On a toujours bm,t = −Rm,t(0)
par l’argument de récurrence sur t.

6 Résolution d’Autres Équations Différentielles

Une technique inspirée de celle proposée à la section 4 permet de résoudre d’autres
équations différentielles.

Considérons par exemple l’équation en P (X) dans Z[X] et c(X) de degré k− 1 au plus
dans Z[X]

XkP (X) +4P (X) + c(X) = d(X) (12)

où d(X) est donné dans Z[X].

Ici aussi, si la résolution est possible lorsqu’on donne à d(X) toute valeur dans une base
de XkZ[X] alors on pourra commodément exhiber une solution pour tout d(X).

Ici on écrira P (X) dans une base de Z[X] privilégiée pour l’opérateur 4, c’est-à-dire
une base {Bm(X),m ∈ N} telle que 4Bm(X) = q(m)Bm−1(X) avec q(m) ∈ Z.

Par exemple Bm(X) = (X)m. Pour d(X) = Xk(X)m−k, on écrira

P (X) = (X)m−k + am−2k−1(X)m−2k−1 + . . . + a1(X)2 + a1X + a0 (13)

Puis pour l’identification des coefficients, XkP (X) sera écrit dans la base {(X)m,m ∈
N} au moyen des relations

∀m ∈ N, Xk(X)m =
m+k∑
j=1

B(m + k, j)(X)j (14)

où

j!B(m + k, j) =

j∑
i=0

(
j

i

)
(−1)i+jik(i)m

Le même argument que celui développé en 2.1 et 2.2 nous assure de l’existence et de
l’unicité de la solution.
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7 Un Énoncé Plus Général d’Existence et d’Unicité

Remplaçons P (X) et d(X) dans l’équation (4) par des fonctions notées P (u) et d(u) de
Z dans Z. On supposera toujours que d(u) est une fonction polynôme et plus précisément
que d(u) est dans Z[u], quant à P (u) ce sera une fonction quelconque de Z dans Z.

On a alors

Caractéristique 6. Soit d(u) donné dans Z[u].
L’équation

(∇+ uI)P (u) + c = d(u)

a une solution unique (P (X), c) où P (u) est une fonction quelconque de Z dans Z et
c ∈ Z. De plus on a P (u) ∈ Z[u].

Preuve. L’existence a été montrée à la section 2.2. S’il y avait deux solutions alors l’équation

(∇+ uI)D(u) = d

aurait une solution (D(u), d) avec D(u) fonction non nulle de Z dans Z et d dans Z.

On pourrait alors écrire pour tout entier naturel n

(n + 1)D(n)−D(n− 1) = d (15)

En particulier d = 2D(1)−D(0).

On voit alors par récurrence que

D(n) = d

(
1

n + 1
+

1

(n + 1)2

+ . . . +
1

(n + 1)i

+ . . . +
1

(n + 1)!

)
+

D(0)

(n + 1)!

Puisque le coefficient de d est une fonction décroissante de n inférieure à un et que
D(n) est entier, alors D(n) est constant pour n assez grand. Ceci contredit (15). ¤

8 Une Nouvelle Identité Arithmétique

L’argument développé au début du paragraphe 2.3 montre que la mise en facteur de n!
est la clé du passage de l’identité arithmétique conjecturée à l’équation (6).

Une autre conjecture, donnée dans [4], est l’identité arithmétique qui généraliserait (6).

Caractéristique 7. On a l’identité

n∑

k=1

km(k!)t = ((n + 1)!)tP (n) +
n∑

k=1

a(k)(k!)t + b (16)

où m, t, n sont des entiers naturals, n ≥ 1 et où b ∈ Z, P (X) et a(X) étant dans Z[X],
deg a(X) ≤ t− 1. Les polynômes P (X), a(X) et l’entier b dépendent des paramètres m et
t.
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8.0.3 Exemples : ∀n ∈ N

(n + 1)!19n11 =
n∑

k=1

µ(k)k!19 et (n + 1)!3(n− 1)16 − 1 =
n∑

k=1

ν(k)k!3

où

µ(k) = 1− 11k + 55k2 − 165k3 + 330k4 − 462k5 + 462k6 − 330k7 + 165k8 − 55k9 + 11k10 + 19k12 + 171k13

+969k14 + 3876k15 + 11628k16 + 27132k17 + 50388k18 + 75582k19 + 92378k20 + 92378k21

+75582k22 + 50388k23 + 27132k24 + 11628k25 + 3876k26 + 969k27 + 171k28 + 19k29 + k30

ν(k) = −65535 + 524275k − 1966005k2 + 4587273k3 − 7454236k4 + 8945196k5 − 8200388k6 + 5858580k7

−3296514k8 + 1465178k9 − 511654k10 + 137982k11 − 27820k12 + 4284k13 − 948k14 + 516k15

−248k16 + 75k17 − 13k18 + k19

ou encore

(n + 3)!6 − 66 =
n∑

k=1

η(k)k!6

où

η(k) = 66 − 26 + 512640k + 2629824k2 + 8356896k3 + 18433200k4 + 29970360k5 + 37226532k6

+36123318k7 + 27764691k8 + 17032860k9 + 8361804k10 + 3277998k11 + 1018815k12

+247716k13 + 46095k14 + 6336k15 + 606k16 + 36k17 + k18

On obtient par différence sur deux valeurs successives de n,

nm(n!)t = ((n + 1)!)tP (n)− (n!)tP (n− 1) + a(n)(n!)t

avec deg a(n) ≤ t− 1.

En divisant par (n!)t, on voit que P (X) doit satisfaire l’équation différentielle

Xm = ((X + 1)tI − I +∇)P (X) + a(X) (17)

que nous savons résoudre car elle est de la même nature que celle donnée en (12). Nous
noterons Pm−t(X) la solution P (X) car c’est un polynôme de degré m − t. Le polynôme
a(t) de degré t− 1 au plus sera noté am,t(X).

Plus précisément, il faudra écrire P (X) de la même façon que (13) mais dans la base
{[X]m,m ∈ N} et remplacer les relations (14) par

∀m ∈ N, ((X + 1)t − 1)[X]m =
m+t∑
j=1

B(m + t, j)[X]j
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8.0.4 Exemple : Nous traitons un exemple facile. Pour m = t = 2, P (X) = 1 et
a(X) = −2X forment une solution de (17). On a b = −1.

Il est donc tout-à-fait intéressant de noter que si pour m et t fixés (16) est vérifié pour
tout entier naturel n avec pour P (n) une fonction quelconque de Z dans Z, alors, par une
propriété à établir de même type que la Caractéristique 5, cette solution P (n) est l’unique
fonction polynôme donnée par la solution de (17).

9 Prolongements

On constate que les démonstrations des identités arithmétiques rencontrées jusqu’ici
reposent sur deux points

1. La possibilité de mise en facteur d’un entier e(n) dans In− In−1. Par exemple e(n) = n!
ou bien e(n) = (n!)t.

2. La résolubilité avec unicité de l’équation différentielle imposée par l’identité arithmétique
conjecturée.

Donnons de nouvelles notations qui nous permettront d’énoncer une autre propriété de
même type.

Soient

(X, d)n = X(X − d) . . . (X − dm + d)

< X, d >m = X(X + d) . . . (X + dm− d)

Clairement {(X, d)m,m ∈ N} et {< X, d >m,m ∈ N} sont des bases du Z-module
Z[X].

Définissons

4d : Z[X] → Z[X]
f(X) Ã f(X + d)− f(X)

et
∇d : Z[X] → Z[X]

f(X) Ã f(X)− f(X − d)

on a

4d(X, d)m = dm(X, d)m−1

∇d < X, d >m = dm < X, d >m−1

Caractéristique 8. On a pour tous entiers naturels d ≥ 1, n ≥ 1, et m

n∑

k=1

dm+k(dk + 1)kmk! = dn+1(n + 1)!Pm,d(dn) + am,d

n∑

k=1

dkk! + bm,d (18)

avec Pm,d(X) ∈ Z[X], deg Pm,d(X) = m et am,d, bm,d ∈ Z.
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Preuve. On peut écrire (18) sous la forme

n∑

k=1

(dk)m(dk + 1)(dk, d)k = (dn + d, d)n+1Pm,d(dn) + am,d

n∑

k=1

(dk, d)k + bm,d

Pour donner un sens à l’identité pour n = 0 il faut ici bm,d = −dPm,d(0).

On obtient par différence sur deux valeurs successives de n

(dn)m(dn + 1)(dn, d)n = (dn + d)(dn, d)nPm,d(dn)− (dn, d)nPm,d(d(n− 1)) + am,d(dn, d)n

Ceci donne l’équation différentielle dans Z[X]

Xm(X + 1) = (X + d)P (X)− Pm,d(X − d) + am,d (19)

Xm(X + 1) = (X + d− 1)P (X) +∇dPm,d(X) + am,d

Ici encore, en donnant à P (X) les valeurs Xk, k ∈ N, le premier membre de (19) passe
par tous les polynômes formant une base de XZ[X]. Ceci nous assure que (19) a bien
une solution pour tout m ∈ N. Le même argument que celui donné en 2.4 démontre la
Caractéristique 8 en nous assurant que bm,d = −dPm,d(0). Un algorithme analogue à celui
présenté à la section 6 permettra la résolution. ¤

9.0.5 Exemples : ∀n ∈ N :

n∑

k=1

(
(5k + 1)(5k)7 − 7304007

)
5k−1k! = 5n(n + 1)!σ(5n)− σ(0)

avec

σ(n) = −1227623− 4643n + 40497n2 − 7753n3 + 707n4 − 23n5 − 3n6 + n7

ou

n∑

k=1

(
k3 + 11k2 + 3k − 1310

343

)
7k+2k! = 7n(n + 1)!

(
49n2 + 497n− 293

)
+ 293

Pour m = d = 2, par exemple, on obtient

P2(X) = X2 − 4 et a2,2 = b2,2 = 8

Le polynôme en k dk + 1 apparaissant dans le premier membre de (18) y est proposé
pour indiquer la nature des identités que l’on peut obtenir. Si l’on remplace ce facteur par
un, par exemple, on obtient pour m = 3

P2,2(X) = X2 −X − 3, a3,2 = 9 et b3,2 = 6
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10 Généralisation

10.1 Énoncé

Théorème 1. Soient φ ∈ Z[X], f : N → N, telle que f(n + 1) = P (n)f(n) où P ∈ Z[X]
est unitaire de degré d supérieur ou égal à un, et inférieur au degré de φ.

Alors pour tout n ∈ N, on a l’identité suivante :

n∑

k=1

φ(k)f(k) = f(n + 1)Qf,φ(n) +
n∑

k=1

af,φ(k)f(k) + bf,φ (20)

avec

bf,φ ∈ Z
Qf,φ(X) ∈ Z[X], af,φ(X) ∈ Z[X]
deg af,φ(X) < d et deg Qf,φ(X) < deg(φ)− d

La preuve se fait en trois parties. On forme d’abord une équation linéaire que doit
vérifier Qf,φ. On montre ensuite l’existence et l’unicité de la solution à une telle équation.
On construit ensuite l’identité.

10.2 Formation de l’Équation Linéaire

Appelons I1 l’identité (20) et formons In − In−1. On obtient l’équation suivante :

φ(n)f(n) = f(n + 1)Qf,φ(n)− f(n)Qf,φ(n− 1) + af,φ(n)f(n)

qui devient, en utilisant la propriété de la récurrence de f :

φ(n) = P (n)Qf,φ(n)−Qf,φ(n− 1) + af,φ(n)

Ce qui donne l’équation polynomiale suivante :

((P (X)− 1)I +∇)Qf,φ(X) + af,φ(X) = φ(X)

avec les conditions sur Qf,φ et af,φ énoncées dans le Théorème 1.

10.3 Résolution de l’Équation ((P (X) − 1)I + ∇)Q(X) + a(X) = φ(X)

On étudie donc l’équation suivante :

((P (X)− 1)I +∇)Q(X) + a(X) = φ(X) (21)

avec les conditions : deg a < deg P
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10.3.1 Unicité de la Solution : Il suffit de montrer que seul le polynôme nul est
solution de :

((P (X)− 1)I +∇)Qf,φ(X) + af,φ(X) = 0

Nous énonçons le théorème suivant :

Théorème 2. Soit P (X) une fonction de N→ Z, telle que lim+∞ |P | = +∞. Une solution
de (6), avec la condition a(X) = ◦(P (X)), est nulle à partir d’un certain rang.

Preuve. On voit qu’une solution vérifierait la récurrence suivante :

f(n) =
f(n− 1)

P (n)
+

b(n)

P (n)

Comme lim+∞ a(n)/P (n) = 0, à partir d’un certain rang n0, on peut assumer que :

|f(n)| = f(n− 1)

P (n)
+ 1

Ce qui, par sommation, donne :

|f(n)| = f(n0)

P (n)P (n− 1) . . . P (n0 + 1)
+

1

P (n)P (n− 1) . . . P (n0 + 2)
+ . . . +

1

P (n)
+ 1

En appliquant le critère de Cauchy à la série définie par le membre droit de cette égalité,
on voit que celle-ci converge. Donc f(n) est bornée, il est ensuite facile de voir que f(n)
tend vers zero. f(n) étant une suite d’entiers tendant vers zéro, elle est nulle à partir d’un
certain rang. ¤

10.3.2 Existence d’une Solution : Soit DP l’opérateur défini par :

DP : Z[X] → XdZ[X]
Q 7→ ((P (X)− 1)I +∇)Q[X]

Théorème 3. Soit P (X) ∈ Z[X], unitaire avec deg P (X) = d. L’opérateur DP de Z[X]
dans XdZ[X] est surjectif.

Preuve. Calculons l’image de la base Xk de Z[X].

DP = P (X)Xk − (X − 1)k = (P (X)− 1)Xk − fk(X)

où

fk(X) =
k−1∑
i=0

(−1)iCi
kX

i

Les DP (Xk) étant chacun de degré k + d, et unitaires, ils forment donc une base du
Z-module XdZ[X]. ¤
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Nous avons donc le théorème d’existence suivant :

Théorème 4. L’équation (21) avec la condition deg a(X) < deg P (X) admet une solution
(Q(X), a(X)).

Preuve. Soit d = deg P (X) et soient :

φ(X) =

deg φ∑
i=0

φiX
i, φ̃(X) =

deg φ∑

i=d

φiX
i, a(X) =

d−1∑
i=0

φiX
i

Alors l’opérateur DP étant surjectif de Z[X] dans XdZ[X], il existe une solution à
DP (Q(X)) = φ̃(X). Soit QP,φ cette solution. Elle vérifie alors :

((P (X)− 1)I +∇)QP,φ(X) + a(X) = φ(X)

Ce qui donne une solution à (21). ¤

10.3.3 Conclusion L’équation polynomiale (21) admet une et unique solution, sous la
condition deg a(X) < deg P (X). Pour l’unicité on est bien dans les conditions d’application
du Théorème 2, car lim+∞ |P | = +∞ et a(X) = ◦(P (X)) car deg a(X) < deg P (X). La
solution étant un polynôme en une indéterminée, celui-ci étant nul pour toutes les valeurs
de n à partir d’un certain rang,, il est donc identiquement nul.

10.4 Preuve de l’Identité

Soit Pf,φ(X) et a(X) une solution de l’équation différentielle (21), construite à partir
de l’identité (20).

Alors, avec une telle solution, on est assuré que, ∀n ∈ N∗, In − In−1 = 0. Il suffit de
prouver que I1 est vérifiée. I1 prend la forme :

φ(1)f(1) = f(2)Qf,φ(1) + af,φ(1)f(1) + bf,φ

Ceci détermine bf,φ, choisi pour rendre I1 vraie. A ce moment là, par récurrence, In est
vraie pour tout n. ¤
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Abstract. We describe a new error-correcting code based on modular arithmetic. We compare the
performance of our code with Reed-Muller codes, and show that our code is more efficient for a
certain set of parameters.

1 Introduction

Error-correcting codes are used to protect information sent over noisy channels against
transmission errors. In this paper, we describe a new error-correcting code based on modular
arithmetic. Our code provides efficient decoding, and has a larger error-correction capacity
than Reed-Muller codes, for a certain set of parameters.

Let m be the n-bit message to encode; we denote by mi the i-th bit of m. We let pi be
the i-th prime, starting with p1 = 2. Let t be the number of errors which can be corrected.
We generate a prime integer p such that:

2 · (pn)2t ≤ p < 4 · (pn)2t (1)

Given m, we generate the following redundancy :

c(m) =
n∏

i=1

pmi
i mod p (2)

The integer c(m) is then encoded using any error-correcting code which can correct up
to t errors. In the following, we use a Reed-Muller and denote by RM(c(m)) the encoding
of c(m). The encoded message E(m) is defined as :

E(m) = m‖RM(c(m))

Where ‖ stands for concatenation. Let E ′(m) be the received encoded message with at
most t errors :

E ′(m) = E(m)⊕ e

= m′‖(RM(c(m))⊕ e′)
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Denoting by H(e) the Hamming weight of e. We have :

H(e) = H(m′ ⊕m) + H(e′) ≤ t

Since c(m) is encoded with a code having correction capacity t, we can recover c(m) from
RM(c(m))⊕ e′. Then from m′ and c(m) compute :

s =
c(m′)
c(m)

mod p

Using (2) the integer s can be written as :

s =
a

b
mod p,





a =
∏

(m′
i=1)∧(mi=0)

pi

b =
∏

(m′
i=0)∧(mi=1)

pi

Note that since H(m′⊕m) ≤ t, we have that a and b are strictly lesser than (pn)t. The
following theorem [1] shows that given s one can recover a and b efficiently. The algorithm
is based on Gauss’ algorithm for finding the shortest vector in a two-dimensional lattice
[2].

Theorem 1. Let a, b ∈ Z such that −A ≤ a ≤ A and 0 < b ≤ B. Let p be some prime
integer such that 2AB < p. Let s = a · b−1 mod p. Then given A, B, s and p, one can
recover a and b in polynomial time.

Taking A = B = (pn)t − 1, we have from (1) that 2AB < p. Moreover, 0 ≤ a ≤ A and
0 < b ≤ B. Therefore, we can recover a and b from s in polynomial time. By testing the
divisibility of a and b by the small primes pi, one can recover m′ ⊕m and eventually m.

2 Performance Analysis

In this section we provide a performance analysis of our code. Since it uses Reed-Muller
code for encoding the redundancy c(m), we first recall Reed-Muller’s parameters.

2.1 Reed-Muller Codes

The Reed-Muller code forms a family of linear codes, determined by two parameters r and
m. The code length is ` = 2m, the dimension k is given by :

k =
r∑

i=0

(
m

i

)

and the minimum distance is d = 2m−r. One can correct up to t = 2m−r−1− 1 errors. Some
examples of (`, k, t) triples are given in table 1. For example, a message of size k = 163
bits can be encoded as a string of length ` = 256 bits, in which up to t = 7 errors can be
corrected.
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` 16 64 128 256 512 2048 8192 32768 131072

k 11 42 99 163 382 1024 5812 9949 65536

t 1 3 3 7 7 31 31 255 255

Table 1. Examples of length `, dimension k, and t errors correction for Reed-Muller code

2.2 Performance of The New Error-Correcting Code

From inequality (1) and using the fact that pn ' n · log n, we obtain the following bit-size
for c(m) :

log2 p ' 2 · t
log 2

log(n log n) (3)

Recall that c(m) is encoded using Reed-Muller. The total length of the encoded message
(`) is thus the sum of m’s bit-length plus the length of RM(c(m)). We provide in table 2
some numerical values. For example, if we want to correct t = 31 errors in a message of size
n = 5812 bits, we obtain using (3) that the bit-size of c(m) is 931 bits. From table 1, we see
that for 31 errors, a 1024 bit-string can be encoded into a 2048-bit codeword. Therefore,
c(m) will be encoded into a 2048-bit codeword and we obtain an encoded message of size
5812+2048 = 7860 bits. This is slightly better than the corresponding 8192-bit Reed-Muller
codeword.

` 638 7860 98304

n 382 5812 65536

c(m) 157 931 9931

RM(c(m)) 256 2048 32768

t 7 31 255

Table 2. Examples of length `, dimension n, and t errors correction for our new code

Table 2 show that for large message size and a small number of errors, our error-
correcting code slightly outperforms Reed-Muller, whereas for smaller message sizes, Reed-
Muller is more efficient. For example, for a message of size n = k = 382 bits, our code gives
a 638-bit codeword whereas a Reed-Muller codeword will only be 512 bits long.

3 Possible Improvements

In this section we describe a possible improvement of our code. The idea consists in gen-
erating a smaller prime p than previously; namely we generate a prime p satisfying :

2u−1 · (pn)t < p ≤ 2u · (pn)t (4)

for some small integer u ≥ 1 (we suggest to take u = 50). For large n and t the size of the
new prime p will be approximately half the size of the prime p generated in the previous
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section. The encoding of m is done as previously but the resulting redundancy c(m) is
approximately twice smaller than that of the previous section. As previously, we have :

s =
a

b
mod p,





a =
∏

(m′
i=1)∧(mi=0)

pi

b =
∏

(m′
i=0)∧(mi=1)

pi
(5)

and since there are at most t errors, we must have :

a · b ≤ (pn)t (6)

The difference with respect to the mechanism described in the previous section is that
we don’t have a fixed bound for a and b anymore; equation (6) only provides a bound for the
product a · b. Therefore, we define a finite sequence (Ai, Bi) of integers such that Ai = 2u·i

and Bi = b(p− 1)/(2 ·Ai)c and Bi > 1. For all i > 0 we have that 2Ai ·Bi < p. Moreover,
From equations (4) and (6) there must be at least one index i such that 0 ≤ a ≤ Ai and
0 < b ≤ Bi. Then using the algorithm of theorem 1, given Ai, Bi, p and s, one can recover
a and b, and eventually recover m. The problem is that (as opposed to the original scheme)
we have no guarantee that such a (a, b) is unique. Namely we could in theory stumble
upon another (a′, b′) satisfying (5) for some index i′ 6= i. We expect this to happen with
negligible probability for large enough u, but this makes the modified code heuristic only.

4 Conclusion

We have described a new error-correcting code. For some set of parameters, our code
is more efficient than Reed-Muller. Note that using Reed-Muller for protecting c(m) is
given for illustrative purposes. An alternative solution would be to transmit m along with
{c(m), c2(m), . . . , ck(m)} (where ci(m) denotes i successive applications of the encoding
function) and replicate 2t + 1 the element ck(m). Upon reception, ck(m) is identified by a
majority vote and then errors are corrected recursively until m is reached.
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Des Cryptologues Déchiffrent un Terme Censuré dans

un « Mémo » Adressé par la CIA à George Bush

[Le Monde, page 22, 8 mai 2004]

Hervé Morin

Un passage recouvert à l’encre noire dans un document récemment diffusé
par la Maison Blanche a été reconstitué. La méthode pourrait être appliquée
à bon nombre d’archives déclassifiées.

Il « s’ennuyait » devant la télévision, le week-end de Pâques, « lorsque le mémo de la
CIA à George Bush a été diffusé », se souvient David Naccache, spécialiste du chiffrement
des données de la société française Gemplus. « J’ai aussitôt téléphoné à Claire Whelan,
une étudiante de la Dublin City University, dont je dirige la thèse, pour lui proposer de
s’attaquer aux passages caviardés », raconte-t-il. Mission accomplie, ou presque.

Le « mémo » en question, adressé le 6 août 2001 par la CIA au président Bush et
intitulé « Ben Laden déterminé à frapper aux USA », venait d’être déclassifié par la
Maison Blanche. Celle-ci voulait prouver que la précision des avertissements des services de
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renseignement n’était pas suffisante pour permettre au président d’empêcher les attaques
du 11 Septembre. Mais cinq passages précisant les sources des renseignement collectés
avaient été recouverts d’encre noire.

Pour le cryptologue David Naccache, ces fragments illisibles étaient autant de chiffons
rouges. Le résultat de ses efforts - « conduits à titre privé », précise-t-il, soucieux de ne
pas impliquer son employeur dans son initiative - a été présenté mardi 4 mai lors de la
conférence Eurocrypt 2004 qui a réuni jusqu’au 6 mai à Interlaken, en Suisse, le gratin de
la cryptographie mondiale. « La démonstration était fort impressionnante », juge Jean-
Jacques Quisquater (université de Louvain-la-Neuve), spécialiste du domaine, qui salue
cette entreprise de « reverse engineering de document censuré ».

David Naccache et son élève ont en effet réussi à découvrir l’un des mots censurés. Le
terme « Egyptian » leur semble le seul possible. Ils veulent peaufiner leur méthode avant
de rendre leur verdict sur un passage plus long, afin de ne pas la discréditer. Et ils ont
carrément jeté l’éponge pour un mot totalement isolé, faute d’indices suffisants.

La technologie employée n’a, à première vue, rien de révolutionnaire. Les deux chercheurs
ont d’abord « redressé » le texte, déformé lors de sa numérisation - l’inclinaison n’était que
de 0,52̊ . Ils ont ensuite utilisé un logiciel de reconnaissance de caractères pour déterminer
la police du texte qui fixe le nombre de signes par unité de longueur. Le simple recours
à un dictionnaire d’anglais permet alors d’établir une liste de mots possibles. « 1 530
correspondaient », indique David Naccache.

Mais l’article « an » précédant le mot mystère impliquait que celui-ci commençait
nécessairement par une voyelle, ce qui a permis de ramener la liste à 346 mots. En français,
un indice fourni par des articles comme « un » ou « une » aurait, de la même façon, permis
de resserrer les recherches. La sélection a aussi été facilitée par le fait que la police de
caractère, l’Arial, est « proportionnelle », c’est-à-dire que la « chasse » des lettres varie.
L’espace occupé par un i diffère de celui pris par un w, ce qui peut donner des indices
supplémentaires, par rapport aux polices dites « monospace », comme le Courrier, souvent
utilisé, où toutes les lettres se valent.

« Parmi les mots ”survivants”, cinq ou six pouvaient faire sens, mais seul Egyptian
correspondait au contexte », indique le cryptologue. Cette dernière étape relève plus de
l’intelligence humaine que de la géométrie du texte. Pour choisir parmi ukrainian, uninvited,
unofficial, incursive, Egyptian, indebted et ugandan, les deux chercheurs se sont appuyés
sur leur bon sens, l’Ouganda et l’Ukraine semblant trop éloignés du théâtre des opérations
pour être retenus, par exemple.

Sans doute l’analyse du « mémo » de la CIA ne dévoile-t-elle qu’un « secret de
polichinelle », reconnâıt David Naccache. Mais la méthode systématise les recherches. Dans
un autre « mémo », elle a révélé que des hélicoptères civils militarisés par les Irakiens
avaient été achetés à la Corée du Sud. Et rien ne s’oppose à l’application automatisée de
cette technique à l’ensemble des documents déclassifiés, dans lesquels elle pourrait mettre
au jour « des mots isolés, voire des groupes de deux ou trois mots ». Avis aux censeurs...
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Researchers Develop Computer Techniques to Bring

Blacked-Out Words to Light

[The New York Times, page C4, 10 mai 2004]

John Markoff

European researchers at a security conference in Switzerland last week demonstrated
computer-based techniques that can identify blacked-out words and phrases in confidential
documents.

The researchers showed their software at the conference, the Eurocrypt, by analyzing
a presidential briefing memorandum released in April to the commission investigating the
Sept. 11 attacks. After analyzing the document, they said they had high confidence the
word ”Egyptian” had been blacked out in a passage describing the source of an intelligence
report stating that Osama Bin Ladin was planning an attack in the United States.

The researchers, David Naccache, the director of an information security lab for Gem-
plus S.A., a Luxembourg-based maker of banking and security cards, and Claire Whelan,
a computer science graduate student at Dublin City University in Ireland, also applied



700 John Markoff

the technique to a confidential Defense Department memorandum on Iraqi military use of
Hughes helicopters.

They said that although the name of a country had been blacked out in that memo-
randum, their software showed that it was highly likely the document named South Korea
as having helped the Iraqis.

The challenge of identifying blacked-out words came to Mr. Naccache as he watched
television news on Easter weekend, he said in a telephone interview last Friday.

”The pictures of the blacked-out words appeared on my screen, and it piqued my interest
as a cryptographer,” he said. He then discussed possible solutions to the problem with Ms.
Whelan, whom he is supervising as a graduate adviser, and she quickly designed a series
of software programs to use in analyzing the documents.

Although Mr. Naccache is the director of Gemplus, a large information security labo-
ratory, he said that the research was done independently from his work there.

The technique he and Ms. Whelan developed involves first using a program to realign the
document, which had been placed on a copying machine at a slight angle. They determined
that the document had been tilted by about half a degree.

By realigning the document it was possible to use another program Ms. Whelan had
written to determine that it had been formatted in the Arial font. Next, they found the
number of pixels that had been blacked out in the sentence: ”An Egyptian Islamic Jihad
(EIJ) operative told an xxxxxxxx service at the same time that Bin Ladin was planning
to exploit the operative’s access to the US to mount a terrorist strike.” They then used
a computer to determine the pixel length of words in the dictionary when written in the
Arial font.

The program rejected all of the words that were not within three pixels of the length
of the word that was probably under the blackened-out area in the document.

The software then reduced the number of possible words to just 7 from 1,530 by using
semantic guidelines, including the grammatical context. The researchers selected the word
”Egyptian” from the seven possible words, rejecting ”Ukrainian” and ”Ugandan,” because
those countries would be less likely to have such information.

After the presentation at Eurocrypt, the researchers discussed possible measures that
government agencies could take to make identifying blacked-out words more difficult, Mr.
Naccache said in the phone interview. One possibility, he said, would be for agencies to
use optical character recognition technology to rescan documents and alter fonts.

In January, the State Department required that its documents use a more modern font,
Times New Roman, instead of Courier, Mr. Naccache said. Because Courier is a monospace
font, in which all letters are of the same width, it is harder to decipher with the computer
technique. There is no indication that the State Department knew that.

Experts on the Freedom of Information Act said they feared the computer technique
might be used as an excuse by government agencies to release even more restricted versions
of documents.
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”They have exposed a technique that may now become less and less useful as a result,”
said Steven Aftergood, a senior research analyst at the Federation of American Scientists, of
the research project. ”We care because there are all kinds of things withheld by government
agencies improperly.”

Egyptian

A decryption of part of a Defense Department memorandum to the White
House about a terrorist attack. A new method recovered the deleted word

”Egyptian.”



Censoring: You Can Write but Can’t Hide

[The International Herald Tribune, page 10, 10 mai 2004]

John Markoff

European researchers at a security conference in Switzerland last week demonstrated
computer-based techniques that can successfully identify blacked-out words and phrases
in confidential documents. The researchers demonstrated their software at the Eurocrypt
conference by analyzing a U.S. presidential briefing memorandum released in April to the
commission investigating the Sept. 11 attacks. After analyzing the document, they said
they had high confidence the word Egyptian had been blacked out in a passage describing
the source of an intelligence report stating that Osama Bin Laden was planning to attack
in the United States.

The researchers are David Naccache, the director of an information security lab for
Gemplus, a European maker of banking and security cards based in Luxembourg, and
Claire Whelan, a computer science graduate student in Ireland.

They also applied the technique to a confidential U.S. Defense Department memo on
Iraqi military use of Hughes helicopters. They said that although the name of a country
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had been blacked out in that memo, their software showed that it was highly likely the
document named South Korea as having helped the Iraqis. The challenge of identifying
blacked-out words came to Naccache as he was watching television on Easter weekend, he
said by telephone Friday.

The pictures of the blacked-out words appeared on my screen and it piqued my interest
as a cryptographer, he said. He then discussed possible solutions to the problem with
Whelan and she quickly designed a series of software programs to use in analyzing the
documents.

Although he is the director of a large information security laboratory, he said the
research had been done independently from his work with Gemplus.

The technique developed by Naccache and Whelan involves first using a program to
realign the document that was placed on a copying machine at a slight angle. They were
able to determine the document had been tilted by about a half a degree.

By realigning the document, it was possible to use another program that Whelan had
written to determine that it was formatted in the Arial font. Next, they found the number
of pixels that had been blacked out in the sentence: An Egyptian Islamic Jihad (EIJ)
operative told an xxxxxxxx service at the same time that Bin Ladin was planning to
exploit the operative’s access to the US to mount a terrorist strike. They then used a
computer to determine the pixel length of words in the dictionary when written in the
Arial font. The program rejected all of the words that were not within three pixels of the
length of the word that was probably underneath the blackened area in the document.

The software then reduced the number from 1,530 possibilities to just seven by using
semantic guidelines. Ultimately, the researchers selected the word Egyptian from the seven
possible words, rejecting Ukrainian and Ugandan, because those countries would be less
likely to have such information.

During a discussion after the presentation at Eurocrypt, Naccache said, the researchers
had discussed possible measures that government agencies could take to make identifying
blacked-out words more difficult. One possibility, he said, would be for agencies to use
optical character recognition technology to re-scan documents and alter fonts.

Naccache also said that this year the U.S. State Department mandated that the use
of a more modern font in its documents, Times New Roman instead of Courier. Because
Courier is a monospace font, in which all letters are of the same width, it was harder to
decipher with the computer technique.

In the United States, experts on the Freedom of Information Act said they feared that
the technique might be used as an excuse by government agencies to release even more
restricted versions of documents. They have exposed a technique that may now become
less and less useful as a result, said Steven Aftergood, an analyst at the Federation of
American Scientists, of the research project. We care because there are all kinds of things
withheld by government agencies improperly.



US Intelligence Exposed as Student Decodes Iraq

Memo

[Nature, vol. 429, page 116, 2004.]

Declan Butler

Erika Check,Washington

Almost three years after President Bush

laid down a policy restricting the use 

of public funds in embryonic stem-cell

research, calls are growing for the White

House to revisit the rules.

On 8 May, Nancy Reagan, former first

lady and an icon of Bush’s Republican

party, spoke publicly for the first time 

of her support for stem-cell research. She

had written letters in favour of it before

but her speech, at a benefit dinner in 

Los Angeles for the Juvenile Diabetes

Research Foundation, is seen by

supporters of the research as a significant

public-relations breakthrough.

Reagan said that she had been moved 

to support research using stem cells

through watching her husband succumb

to Alzheimer’s disease. “Ronnie’s long

journey has finally taken him to a place

where I can no longer reach him,” she

said. “We cannot share the wonderful

memories of our 52 years together, and 

I think that is the hardest part. I am

determined to do whatever I can to save

other families from this pain.”

A few days earlier, on 4 May, the

majority leader in the Senate, Bill Frist

(Republican, Tennessee), said he thought

the time had come to review President

Bush’s policy. The rules let researchers

use public funds to work on embryonic

stem-cell lines only if the lines were

derived before the day the policy was

announced — 9 August 2001.

“Momentum is building in the

research done, and in Congress,” says 

a Republican staff member for the Senate

Committee on Appropriations.

Last month, 206 members of Congress,

including 36 Republicans, sent a letter 

to President Bush asking him to expand

his policy. Among its signatories were

members of Congress who had previously

opposed the research, such as lawmaker

Dana Rohrabacher (Republican,

California). Rohrabacher told reporters

that he had changed his mind after

hearing from patients who hope the

reasearch will help cure their diseases.

A similar letter is circulating in the

Senate, and White House officials have

indicated that the president will meet

with the authors of the House letter.

Although the National Institutes of

Health estimated that researchers would

be able to work on 78 stem-cell lines, fewer

than 20 are actually available today. And

biologists have raised doubts about the

suitability of these for clinical research. �

Declan Butler

Armed with little more than an electronic
dictionary and text-analysis software, Claire
Whelan, a graduate student in computer 
science at Dublin City University in Ireland,
has managed to decrypt words that had been
blotted out from declassified documents to
protect intelligence sources.

She and one of her PhD supervisors,David
Naccache, a cryptographer with Gemplus,
which manufactures banking and security
cards, tackled two high-profile documents.
One was a memo to US President George
Bush that had been declassified in April for an
inquiry into the 11 September 2001 terrorist
attacks. The other was a US Department of
Defense memo about who helped Iraq to 
‘militarize’civilian Hughes helicopters.

It all started when Naccache saw the Bush
memo on television over Easter. “I was
bored, and I was looking for challenges for
Claire to solve. She’s a wild problem solver,
so I thought that with this one I’d get peace
for a week,” Naccache says. Whelan pro-
duced a solution in slightly less than that.

Demasking blotted out words was easy,
Naccache told Nature. “Optical recognition
easily identified the font type — in this case
Arial — and its size,” he says.“Knowing this,
you can estimate the size of the word behind
the blot. Then you just take every word in the
dictionary and calculate whether or not, in
that font, it is the right size to fit in the space,
plus or minus 3 pixels.”

A computerized dictionary search yielded
1,530 candidates for a blotted out word in
this sentence of the Bush memo: “An Egypt-
ian Islamic Jihad (EIJ) operative told an

service at the same time that Bin

Ladin was planning to exploit the operative’s
access to the US to mount a terrorist strike.”A
grammatical analyser yielded just 346 of
these that would make sense in English.

A cursory human scan of the 346 removed
unlikely contenders such as acetose, leaving
just seven possibilities: Ugandan, Ukrainian,
Egyptian, uninvited, incursive, indebted and
unofficial. Egyptian seems most likely, says
Naccache. A similar analysis of the defence
department’s memo identified South Korea 
as the most likely anonymous supplier of
helicopter knowledge to Iraq.

Intelligence experts say the technique is
cause for concern, and that they may think
about changing procedures. One expert adds
that rumour-mongering on probable fits
might engender as much confusion and dam-
age as just releasing the full,unadulterated text.

Naccache accepts the criticism that
although the technique works reasonably well
on single words, the number of candidates for
more than two or three consecutively blotted
out words would severely limit it. Many
declassified documents contain whole 
paragraphs blotted out. “That’s impossible 
to tackle,” he says, adding that, “the most
important conclusion of this work is that 
censoring text by blotting out words and 
re-scanning is not a secure practice”.

Naccache and Whelan presented their
results at Eurocrypt 2004, a meeting of secu-
rity researchers held in Interlaken, Switzer-
land,in early May.They did not present at the
formal sessions, but at a Tuesday evening
informal ‘rump session’, where participants
discuss work in progress. “We came away
with the prize for the best rump-session talk
— a huge cow-bell,”says Naccache. �
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Armed with little more than an electronic dictionary and text-analysis software, Claire
Whelan, a graduate student in computer science at Dublin City University in Ireland,
has managed to decrypt words that had been blotted out from declassified documents to
protect intelligence sources.

She and one of her PhD supervisors, David Naccache, a cryptographer with Gemplus,
which manufactures banking and security cards, tackled two high-profile documents. One
was a memo to US President George Bush that had been declassified in April for an inquiry
into the 11 September 2001 terrorist attacks. The other was a US Department of Defense
memo about who helped Iraq to ’militarize’ civilian Hughes helicopters.

It all started when Naccache saw the Bush memo on television over Easter. ”I was
bored, and I was looking for challenges for Claire to solve. She’s a wild problem solver, so
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I thought that with this one I’d get peace for a week,” Naccache says. Whelan produced a
solution in slightly less than that.

Demasking blotted out words was easy, Naccache told Nature. ”Optical recognition
easily identified the font type – in this case Arial – and its size,” he says.”Knowing this,
you can estimate the size of the word behind the blot. Then you just take every word in
the dictionary and calculate whether or not, in that font, it is the right size to fit in the
space, plus or minus 3 pixels.”

A computerized dictionary search yielded 1,530 candidates for a blotted out word in this
sentence of the Bush memo: ”An Egyptian Islamic Jihad (EIJ) operative told an ¥¥¥¥¥¥¥
service at the same time that Bin Ladin was planning to exploit the operative’s access to
the US to mount a terrorist strike.”A grammatical analyser yielded just 346 of these that
would make sense in English.

A cursory human scan of the 346 removed unlikely contenders such as acetose, leav-
ing just seven possibilities: Ugandan, Ukrainian, Egyptian, uninvited, incursive, indebted
and unofficial. Egyptian seems most likely, says Naccache. A similar analysis of the de-
fence department’s memo identified South Korea as the most likely anonymous supplier of
helicopter knowledge to Iraq.

Intelligence experts say the technique is cause for concern, and that they may think
about changing procedures. One expert adds that rumour-mongering on probable fits might
engender as much confusion and damage as just releasing the full,unadulterated text.

Naccache accepts the criticism that although the technique works reasonably well on
single words, the number of candidates for more than two or three consecutively blotted
out words would severely limit it. Many declassified documents contain whole paragraphs
blotted out. ”That’s impossible to tackle,” he says, adding that, ”the most important
conclusion of this work is that censoring text by blotting out words and re-scanning is not
a secure practice”.

Naccache and Whelan presented their results at Eurocrypt 2004, a meeting of security
researchers held in Interlaken, Switzerland, in early May.They did not present at the formal
sessions, but at a Tuesday evening informal ’rump session’, where participants discuss work
in progress. ”We came away with the prize for the best rump-session talk – a huge cow-bell,”
says Naccache.



Code Cracker Triumphs in Battle of Wits

[The Irish Times, page 17, 27 mai 2004.]

Dick Ahlstrom

A computer scientist at DCU is working out how to make smart cards safer
- with an unexpected spin-off, reports Dick Ahlstrom.

It is a battle of wits with huge rewards for the winner. Crooks are finding new ways
to attack ”smart card” bank and credit-card technology while card manufacturers counter
with increasingly complex defences.

A Dublin City University graduate student is engaged in this battle royal while working
towards a PhD on computer security. Claire Whelan, of DCU’s computer-science depart-
ment, benefits from a research collaboration agreed between the university and Gemplus,
a Luxembourg-based smart-card manufacturer.

It is all about protecting the security systems build in to smart cards, explains Whelan.
”These are plastic cards with an embedded microprocessor.” Examples include the SIM
card in your mobile phone, the next generation of credit cards and, in the future, passports
and driving licences, she says.
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The chips carry highly sensitive coded information of value to thieves, providing a
financial incentive to overcome each new security barrier as it is installed. Whelan is working
on both sides of this fence, trying to crack systems as a way to make them safer.

”We are finding new attacks and defending against them,” she says. ”There are coun-
termeasures, but nothing can guard against them 100 per cent.”

Even so, Whelan must be a formidable investigator, given her recent involvement in a
new method to read blacked-out sections of declassified government documents.

She and Dr David Naccache of Gemplus decoded the hidden words in a memo to
President Bush that was released last month for an inquiry in to September 11th. The pair
also read concealed words in documents from the Hutton Inquiry in to the death of the
UK government scientist Dr David Kelly.

The two devised a way to measure the width of the blacked-out word, first identifying
the font, then measuring the covered word down to a small fraction of a letter width. A
computer interrogates an online dictionary to find words of similar width; then grammatical
analysis rules out most of these. A simple human scan of the remaining candidate words
will reveal the most likely hidden one. The context of the sentence helps this, she says.

The two researchers presented their technique earlier this month at the Eurocrypt 2004
conference, in Switzerland, where they caused quite a stir.

This work is some distance, however, from her real research interests, which relate to
”side channel attacks” on smart cards. The work focuses on the tiny electronic signals given
off by a smart card while it is in operation. ”When smart cards are put in to the reader
they do certain operations,” she says. ”Information leaks naturally from the card. You can
pick this up and find ways to take information from the card.”

They use several techniques, including studying how much power the card uses. ”We
look down at the very low-level operations and try to make a correlation between the power
used by the card and these low-level operations,” she says. If they can make the connection
they can work out the hidden encryption key used to conceal the data, which in turn will
open up whatever details the card holds.

Whelan received a three-year eur60,000 scholarship to pursue the work from the Irish
Research Council for Science, Engineering and Technology. ”I wouldn’t be here if it wasn’t
for them,” she says.
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Word games: Claire Whelan worked out the hidden words in declassified US
documents, above.
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ist es vielleicht das Vertrauen in ein 200
Jahre altes Ritual, das den Patienten so
stark einbezieht wie kaum eine schul-
medizinische Therapie. «Ich habe
nichts dagegen, wenn man die Homöo-
pathie als Superplacebo deutet», sagt
Walach. «Im Moment haben wir nichts
besseres anzubieten.»

Nur ein Placebo? Also doch ab in
den Orkus mit Hahnemann? Das wird
kaum gelingen. Zu viele Ärzte und Pati-
enten schwören auf seine Methode –
der unplausiblen Theorie und den feh-
lenden Belegen zum Trotz. Schliesslich
tut sie gut. Julia Merki ist auf dem Weg
zur Heilung. Melden sich die Kopf-
schmerzen zurück, genügt ein Anruf
bei Marco Righetti, und sie erhält ihr
Sepia-Mittel per Post. 

So wie ihr ergeht es zahlreichen Pa-
tienten. Das zeigen Datenerhebungen
aus der Praxis, so genannte Beobach-
tungsstudien. Warum die Homöopathie
so vielen Leuten hilft, können diese Stu-
dien nicht beantworten. Sie geben auch
keine Auskunft darüber, ob eine Be-
handlung mit Placebo, mit Schulmedi-
zin oder sogar überhaupt keine Behand-
lung das Gleiche bewirkt hätte. 

In den Augen der Homöopathie-An-
hänger sind Beobachtungsstudien trotz-
dem viel wert. «Die homöopathische 
Literatur ist voll mit dramatischen Er-
folgen», sagt Walach. Kürzlich wertete

er die Daten von 933 Patienten aus, die
sich von Homöopathen behandeln lies-
sen. 77 Prozent ging es danach besser.
«Den Patienten ist es doch letztendlich
egal, was ihnen geholfen hat, ob Magie
oder Placebo-Effekte. Hauptsache, sie
sind gesund», sagt Walach.

Auch die Schulmedizin besteht teil-
weise aus reinen Placebos. Immer wie-
der werden Therapien und Eingriffe als
unnütz – jedoch heilsam – entlarvt.
Zum Beispiel die Glomektomie, eine
Operation an der Halsarterie, die früher
bei Asthma-Patienten durchgeführt wur-
de. Vielen Kranken ging es danach bes-
ser, doch der Eingriff konnte nicht Ursa-
che dafür gewesen sein, fand man heraus.

Etwas wurmt die Schulmediziner:
Möglicherweise ist die hahnemannsche
Lehre das bessere Placebo. «Unsere 
Arbeitsweise ist ein ausgezeichneter
Boden für das Vertrauensverhältnis zwi-
schen Arzt und Patienten», sagt Homöo-
path Thurneysen. «Die Patienten fühlen
sich geborgen, sicher, wahrgenommen.»
Vielleicht könnte sich da mancher Schul-
mediziner ein Stück abschneiden. Eines
jedoch sollte kein Arzt mit seinen Pati-
enten besprechen – ob Schulmediziner
oder Homöopath: den Placebo-Effekt.
Der heilsame Glaube an die Behandlung
würde verpuffen. Der Placebo-Effekt, ei-
ne therapeutische Fatamorgana: Will
man ihn fassen, löst er sich auf. 
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Apothekerregale, 2004: «Die Bevölkerung
will Alternativmedizin.»

Homöopathischer Apothekerkasten, 1889:
«Ähnliches wird durch Ähnliches geheilt.»

F
ünf Wochen vor der 9/11-Terrorattacke
landete ein vertrauliches Memo auf
dem Pult des US-Präsidenten George

Bush. «Bin Laden entschlossen, in den USA an-
zugreifen», lautete die Überschrift des Geheim-
dienst-Papiers, das kürzlich vom Weissen Haus
öffentlich gemacht wurde. In der freigegebenen
Version waren einige Wörter geschwärzt. So sol-
len Informanten geschützt werden. Für Krypto-
grafen sind die schwarzen Balken jedoch leicht
zu durchschauen. Das demonstrierte kürzlich
ein französisch-irisches Kryptografen-Team an
einem Forscher-Kongress in Interlaken. 

David Naccache und Claire Whelan nahmen
sich den folgenden Satz aus dem Memo vor:
«Ein ägyptischer, islamischer Dschihad-Kämp-
fer sagte dem XXXXXXXX Geheimdienst, bin
Laden wolle den Zugang des Kämpfers in die
USA nutzen, um einen terroristischen Anschlag
auszuführen.» In weniger als einer Woche und
mit zwei Computer-Programmen entschlüssel-
ten Naccache, Kryptograf bei der französischen
Firma Gemplus, und die Dubliner Studentin
Whelan das geschwärzte Wort. 

Mit einem elektronischen Wörterbuch
suchten sie zuerst all jene Wörter zusammen,
die im verwendeten Schrifttyp exakt so lang
sind wie die geschwärzte Passage. 1530 eng-
lische Wörter passten auf drei Pixel genau in
die Lücke. Diese Wörter liessen sie von einem
Grammatik-Programm mit dem Ausgangssatz
vergleichen. 346 Begriffe kamen danach noch
in Frage. Inhaltlich machten sieben Wörter
davon einigermassen Sinn: ugandischen,
ukrainischen, ägyptischen, uneingeladenen,
invasiven, verschuldeten, inoffiziellen. In den
Textzusammenhang passt ägyptischen am 
besten. Die Quelle der CIA war also wohl der
Kairoer Geheimdienst. «Von offizieller Stelle
wurde uns bestätigt, dass wir damit richtig
liegen», sagt Naccache. Die Methode ist zwar
simpel, kommt aber an ihre Grenzen, wo
mehr als drei Wörter geschwärzt sind. 

Odette Frey

Nachhilfe für 

die CIA
Mit einfachen Computer-
Programmen können zensurierte
Texte dechiffriert werden.

�

Mit einfachen Computer-Programmen können zensurierte Texte dechiffriert
werden.

Fünf Wochen vor der 9/11-Terrorattacke landete ein vertrauliches Memo auf dem Pult
des US-Präsidenten George Bush. « Bin Laden entschlossen, in den USA anzugreifen »,
lautete die Überschrift des Geheimdienst- Papiers, das kürzlich vom Weissen Haus öffentlich
gemacht wurde. In der freigegebenen Version waren einige Wörter geschwärzt. So sollen
Informanten geschützt werden. Für Kryptografen sind die schwarzen Balken jedoch leicht
zu durchschauen. Das demonstrierte kürzlich ein französisch-irisches Kryptografen-Team
an einem Forscher-Kongress in Interlaken.

David Naccache und Claire Whelan nahmen sich den folgenden Satz aus dem Memo
vor: «Ein ägyptischer, islamischer Dschihad-Kämpfer sagte dem ¥¥¥¥¥¥¥ Geheimdi-
enst, bin Laden wolle den Zugang des Kämpfers in die USA nutzen, um einen terror-
istischen Anschlag auszuführen.» In weniger als einer Woche und mit zwei Computer-
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Programmen entschlüsselten Naccache, Kryptograf bei der französischen Firma Gemplus,
und die Dubliner Studentin Whelan das geschwärzte Wort.

Mit einem elektronischen Wörterbuch suchten sie zuerst all jene Wörter zusammen, die
im verwendeten Schrifttyp exakt so lang sind wie die geschwärzte Passage. 1530 englische
Wörter passten auf drei Pixel genau in die Lücke. Diese Wörter liessen sie von einem
Grammatik-Programm mit dem Ausgangssatz vergleichen. 346 Begriffe kamen danach
noch in Frage. Inhaltlich machten sieben Wörter davon einigermassen Sinn: ugandischen,
ukrainischen, ägyptischen, uneingeladenen, invasiven, verschuldeten, inoffiziellen. In den
Textzusammenhang passt ägyptischen am besten. Die Quelle der CIA war also wohl der
Kairoer Geheimdienst. «Von offizieller Stelle wurde uns bestätigt, dass wir damit richtig
liegen», sagt Naccache. Die Methode ist zwar simpel, kommt aber an ihre Grenzen, wo
mehr als drei Wörter geschwärzt sind.



Nachhilfe für die CIA 711

Notes

1. Pour analyser le courriel relatif aux circonstances de la mort de l’expert en armes
biologiques et chimiques Dr. Kelly1 nous avons utilisé une technique plus sophistiquée
basée sur la reconnaissance de bouts de lettres dépassant la zone censurée.

although there is nothing
it is becoming

are some

« Nous écrivons en ce moment une note sur l’Iraq et Al-Qaeda il devient . . . sont
quelques . . .malgré qu’il n’y a rien . . . »

2. Le dessin explicatif du quotidien Le Monde doit être corrigé : nous avons effectué les
mesures comme illustré plus bas, et non aux bords de la tache noire.

1 http://www.the-hutton-inquiry.org.uk/content/cab/cab 11 0077to0078.pdf
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[

Aussi, les mots retrouvés par le programme étaient ukrainian, ugandan (débutant par
des minuscules) et Egyptian (débutant par une majuscule).

3. Nous essayons, par ailleurs, de mettre au point une méthode d’analyse de mots à travers
la tache d’encre2.

L’approche consiste à calculer, pour chaque lettre de l’alphabet et à chaque point de la
tache, le coefficient de corrélation ρ entre le bitmap de la lettre candidate et le niveau
de gris du bitmap de la tache. En toute logique, une lettre identifiée devrait générer
une forte valeur de ρ.

Extrait du fichier com 1 0001to0022.pdf

2 e.g. http://www.the-hutton-inquiry.org.uk/content/com/com 1 0001to0022.pdf
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Rapport sur la Thèse d’Habilitation de David Naccache

Les travaux que David Naccache préesente en vue de sa Thèse d’Habilitation sont consacrés
à trois thèmes relevant de la sécurité de l’information :

1. la cryptographie asymétrique,

2. les mécanismes d’exécution sécurisée,

3. la sécurité embarquée.

Son mémoire contient également un certain nombre de résultats abordant des sujets con-
nexes.

Il n’est guère possible de résumer en quelques lignes le contenu des nombreuses contri-
butions scientifiques réalisées par le candidat. La quantité des résultats obtenus ainsi que
leur très grande qualité sont impressionnantes. De plus ceux-ci révèlent un spectre de
compétences très large. Peu de chercheurs ont la capacité de mâıtriser un domaine aussi
vaste.

David Naccache est l’auteur ou le co-auteur de près de quarante articles scientifiques publiés
depuis la soutenance de sa thèse de doctorat. Quatre articles de synthèse viennent en outre
compléter son mémoire. Il a publié le nombre suivant d’articles dans les conférences fédérées
par l’IACR : Asiacrypt (3), Crypto (3), Eurocrypt (9), CHES (2) PKC (2) and FSE (1) ;
ces conférences sont de niveau international avec comité de lecture et leurs actes sont édités
dans la série Lecture Notes in Computer Science de Springer-Verlag. Il est à noter que les
meilleurs travaux du domaine de la cryptologie figurent traditionnellement dans ces actes.

David Naccache a dirigé trois comités de lecture de conférence internationale d’excellente
réputation. Il est éditeur des actes correspondants publiés dans la séries LNCS. Il a fait
partie de plus de trente comités de lecture de conférences internationales parmi lequelles

1



figurent les conférences les plus renommées en cryptologie (Crypto, CHES, Eurocrypt et
PKC).

David Naccache co-encadre ou a co-encadré scientifiquement dix-sept doctorants, dont
cinq ayant déjà obtenu leur thèse de doctorat. Il a par ailleurs été invité à faire partie de
nombreux jurys de thèse.

A Gemplus International S.A., il a créé et dirige toujours l’un des plus grands centres de
recherche privés du domaine de la sécurité de l’information. Ce centre compte actuellement
70 ingénieurs et chercheurs et possède une réputation internationale excellente. Au-delà de
ses responsabilités de directeur, la participation de David Naccache aux avancées techniques
et scientifiques de la société est primordiale. Il est l’inventeur ou le co-inventeur de 57
inventions ayant fait l’objet d’un brevet.

Les travaux de recherche de David Naccache ainsi que ses publications démontrent à la fois
une extrême créativité et une grande rigueur dans son approche scientifique. Il est en outre
un collaborateur généreux qui n’hésite pas à partager ses idées avec de jeunes chercheurs.
Il possède très clairement la volonté et le talent nécessaires pour guider et former de jeunes
scientifiques et pour leur faire donner le meilleur d’eux-mêmes.

Conclusion Compte-tenu de la grande qualité du travail scientifique de David Naccache
et du fait qu’il a démontré, à maintes reprises, son aptitude à diriger un laboratoire de
recherche, je suis favorable, sans aucune réserve, à la soutenance de cette thèse.

Louvain, le 4 septembre 2004,

Bart Preneel
professeur a la Katholieke Universiteit Leuven, Belgique,
Departement Elektrotechniek-ESAT
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Columbia University in the City of New York  New York, N.Y. 10027

DR. MOTI YUNG Department of Computer Science
VISITING SENIOR RESEARCH FACULTY 450 Computer Science Building
(212) 939-7022 (212) 939-7000

22 October 2004

Habilitation Thesis Committee
for Dr. David Naccache.

Dear Committee:

This letter is a report on the habilitation thesis of Dr. David Naccache (Se’curite’,
Cryptographie: The’orie et Pratique).  I have read the thesis and am familiar with many
of the works of Dr. Naccache. The thesis is a very intensive and extensive coverage of
cryptographic and security research. It represents an amount of work that could have
easily covered two or three habilitation theses of very high quality. Let me therefore say
immediately that this is an exceptionally strong habilitation thesis. It demonstrates very
strong research skills and very strong collaboration and guidance skills (in the works with
young researchers). It manifests the strengths across numerous sub-disciplines of security
research. I am very strongly and without hesitation whatsoever support the acceptance of
the habilitation thesis.

The thesis starts by introducing Dr. Naccache’s c.v. and background, a unique blend of
scientific, industrial, technical and managerial achievements (these achievements are well
known to many in the cryptographic community). This introductory part is followed by
the technical contributions of Dr. Naccache.

The second chapter in about David’s cryptographic work.  The areas that are covered
technically are: public-key ciphers, where new public key schemes, attacks and padding
schemes for the central RSA public key system, and improving performance of another
scheme are presented.  Then, signature schemes are presented, which again include both
cryptanalysis of schemes as well as design of new schemes, and new paradigms in the
area of digital signing.  Then, works on protocols are presented: zero-knowledge
schemes, payment and "copyrighting a function" (a concept I used in my own work on
DRM). The next area is in improved implementations of electronic calculations that are
relevant to cryptography.

Chapter three deals with secure executions which is an area of computer security
research. Securing Java applets and executions in general are most important in the
context of smart card assisted computing. Chapter four then discusses physical security
which is part of crypto-engineering and is an area of current research.  The final chapter
(chapter 5) describes some additional works on various symmetric ciphers and other
works of various recreational cryptographic nature and works on various issues of
general public interest.
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The work of the thesis and the publications associated with it show that Dr. Naccache is a
leading researcher that combines work on design and analysis of cryptographic
mechanisms and protocols (with concentration on smart card research) and innovation
beyond cryptography. His contributions are both on the theoretical side as well as on the
practical side of cryptography and security.  Dr. Naccache also possesses rare skills of
scientific and technical leadership.  Further, he is highly creative and often extends the
horizons of areas of research by conceptualizing and creating various new notions.  His
leadership includes managing a group of scientists and engineers in Gemplus, being a
mentor to members of his group at the company (some of whom are by now world class
researchers who were trained by David), and being able to continue research at the group
in Gemplus while contributing to the company’s success.  His industrial success even at
times when the economy has been really bad for industrial research in general is a great
testimony to his leadership and to the industrial relevance of his work. The level of
conferences where the works have appeared is an equal testimony to the fundamental
contributions of David’s work to cryptography and security. The people he has worked
with who were pursuing a Ph.D. degree while collaborating with him is a testimony to his
readiness to be a supervisor of research and adviser of research students at all levels.

Beyond what is written in the thesis, as a side remark let me say that I have known Dr.
Naccache since the early nineties. I have always been impressed with his creativity and
results and always enjoyed talking to him and realizing his enormous energy and capacity
for generating new ideas. I never worked with him on a joint paper, though he
encouraged members of his group to work with me at times and we collaborated on a
number of issues not leading to a paper publication.  I have thus noticed first hand how
David treats younger people who are at the stage of pursuing a Ph.D. and how he can
serve as a mentor and adviser.

Indeed, Dr. Naccache has published extensively the material in the thesis, and produced
significant works in the areas of cryptographic algorithms and implementations, smart
card engineering, public-key design, side channel and physical security attacks, algebraic
cryptanalysis and cipher design, and Java and execution security. Let me state that his
publication record makes him eligible for a tenured professorship position in a leading
university (in the USA or in Europe).

The works represented by the thesis have been published in the top most conferences and
workshops in cryptography and its specialized areas.  Below, I will only mention a few
selected works that I liked and that demonstrate the importance of his work (with various
coauthors) and how it motivated an influenced others.  David’s initial work on making
cryptographic methods for exponentiation efficient enough for smart cards is very
significant and influential.  His cryptanalysis of the padding methods of RSA encryption
(and his suggestion of alternative secure methods) are crucial in our understanding of the
security of encryption and in the selection of the current practices of RSA encryption.
(Specifically, the work was instrumental in abolishing an old standard for encryption). I
also believe that his work on designing homomorphic encryption and signature schemes
is known and interesting and motivated some of the current state of the art work (like
Paillier scheme). Another area of achievement is his work on side channels where he
demonstrated his deep understanding of smart card technology. Finally, let me say that
his work with Shamir and Julien Stern on fingerprinting a function motivated my own
work on traitor tracing that I published in Eurocrypt a few years ago.



-3-

The above means that the habilitation thesis is exceptionally strong in depth and breadth,
and demonstrates beyond any doubt that the candidate is a mature researcher who can
manage and supervise high quality research work.  It is on the basis of the above that I
enthusiastically recommend that the candidate passes the habilitation.

Sincerely,

Moti Yung
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Résumé. Ce mémoire d’Habilitation à Diriger des Recherches regroupe les travaux
publiés par l’auteur depuis son doctorat ainsi que quelques éléments biographiques. Il s’agit
de 58 brevets d’invention et d’une soixantaine de publications scientifiques en cryptologie,
conception de systèmes, mathématiques, électronique et informatique

Abstract. This Research Supervision Thesis overviews the author’s work since the
defence of his doctorate. Are listed or presented here, along with biographic elements, 58
patent applications and about sixty scientific articles dealing with cryptology, implemen-
tations, mathematics, electronics, and computer science.
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