
HAL Id: tel-01358280
https://theses.hal.science/tel-01358280v1
Submitted on 31 Aug 2016 (v1), last revised 1 Sep 2016 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Blackbox Behavioural Identification of Discrete Event
Systems by Interpreted Petri Nets

Jérémie Saives

To cite this version:
Jérémie Saives. Blackbox Behavioural Identification of Discrete Event Systems by Interpreted Petri
Nets. Automatic. Université Paris-Saclay, 2016. English. �NNT : 2016SACLN018�. �tel-01358280v1�

https://theses.hal.science/tel-01358280v1
https://hal.archives-ouvertes.fr

NNT : 2016S

B

Ide

Thèse prés

Compositi

M. Basile Fra
M. Lopez Lu
M. Alla Hass
M. Riera Ber
M. Lesage Je
M. Faraut Gr

SACLN018

D

Science

Sp

Blackbox

entification

entée et sou

ion du Jury

ancesco
uis Ernesto
sane
rnard
ean-Jacques
regory

T
DE L’U

p

s et Techn

pécialité E

M

x Behavio

Comporte

utenue à Cac

y :

Professeur, U
Professeur, C
Professeur, G
Professeur, U
Professeur, E
MdC, ENS C

THESE
UNIVER
préparée

ÉCOLE D
nologies d

lectroniqu

Monsieu

ural Iden
 Inter

mentale “B
par Résea

chan, le 30 j

Univ. di Salern
Cinvestav Gua
GIPSA-Lab, Fr
URCA-CReST
ENS Cachan –
Cachan – LUR

DE DO
RSITE P
e à l’EN

DOCTORA
de l'Inform

ue, Electro

Par

ur Jérém

ntification
rpreted Pe

Boîte-noire
aux de Petr

juin 2016.

no, Italy
adalajara, Mex
rance

TIC, France
– LURPA, Fra
RPA, France

OCTORA
PARIS-S
NS Cach

ALE N° 5
mation et d

otechnique

mie SAIV

n of Discre
etri Nets

” des Systè
ri Interprét

Rapporte
xico Rapporte

Président
Examinat

ance Directeur
Co-encad

AT
SACLA
han

580
e la Comm

e, Automa

ES

ete Event

èmes à Evén
tés

ur
ur
t
teur
r de thèse
drant

AY,

munication

atique

t Systems

nements D

n

by

iscrets

Université P
Espace Techn
Route de l’Or

Paris-Saclay
nologique / Im
rme aux Meris

mmeuble Disco
siers RD 128 /

overy
91190 Saint-A

Aubin, France

"The world is full of obvious things which nobody by any chance ever observes."
-Sherlock Holmes-

Sir Arthur Conan Doyle, The Hound of the Baskervilles

Acknowledgments

During these last three years, I was a member of the world of research, developping
contributions and pushing further away the limits of science. When I came to ENS
Cachan seven years ago, I had teaching as sole purpose; I hope now that I can combine
teaching and research in my future career.

Retrospectively, this thesis is an experience to be proud of, and I am grateful to the
people who made it possible. Notably, I want to thank first Jean-Jacques Lesage, who
took me under his wing in the last years. His teachings and advice helped me become a
better scientist. To complete the team, Gregory Faraut was always available to cheer
me up, discuss ideas and help me proof test some of them. I wish him an accomplished
scientific career. I would also like to thank Jean-Marc Roussel for bringing me to the
field of discrete automatic, being actually the first milestone who led to this thesis.

Joyful was the ending, and I would like to thank my jury for reviewing this work.
Francesco Basile came all the way from Italia, and I thank him for his enthusiasm
regarding DES identification. Ernesto Lopez-Mellado provided helpful advice for the
formalization, and I thank him also for inviting me to Mexico two years ago. Finally,
Hassane Alla and Bernard Riera showed as well a lot of interest, and I thank them
for their sympathy.

Escaping the routine was made possible by colleagues, PhD and Master students,
friends and geeks alike. I thank all the LURPA for the environment, and the good mood.

Resting now on the shoulders of my coffee-mate Laureen, the CIVIL is a wonderful
committee which makes everyone feel integrated, and the hard days easier. I’m happy to
have directed it, see it now in good hands, and thank all its members, past and present.

Especially Julien, my dear neighbour from Office 18, who supports my rantings and
my cats. Lorène and Fabien, who arrived with me, and with whom I shared the difficulty
of writing. But also Matthias, Kevin, Sylvain and all the younglings.

My roommate, Blandine, who shared a sinusoidal mood with me during this last
year. My former roomate, Benjamin, who came from far away to see my defence.

It is said that being a teacher in a classroom is like being an actor on stage. I
thank the LiKa, my improv team, among which I developped acting skills and gained
confidence. To Marc, Simon, Pat, Mathilde, and a lot of others I might forget.

Ending these acknowledgements could only be done by thanking my parents for their
continuous support, and I am afraid there is not enough space here to be exhaustive.

Cachan, July 2016

Contents

Table of contents iii

List of figures vii

List of tables xiii

Introduction 1

1 Identification of Discrete Event Systems 5
1.1 Background on Discrete Event Systems 5

1.1.1 Definition . 5
1.1.2 Reactive DES and event generators 7
1.1.3 Formalism: Classical models . 8

1.2 Identification of a DES: Problem Statement 14
1.2.1 Systems of Interest . 15
1.2.2 Incompleteness of the observation 19
1.2.3 Problem Statement . 21
1.2.4 Identification for reverse engineering 21

1.3 Identification in the literature . 22
1.3.1 Origin: early computer science approaches 22
1.3.2 Identification by Automata . 23
1.3.3 Identification by Petri Nets . 27

1.4 Conclusions and positioning . 39

2 Blackbox behavioural identification of a reactive automated system 41
2.1 Two behaviours: Observable and Unobservable 41

2.1.1 Event types . 41
2.1.2 Framework of the method . 43
2.1.3 Illustrative example: Sorting system 44

2.2 Identification of the observable behaviour 45
2.2.1 Building output firing functions 45
2.2.2 Construction of the transitions and observable places 48
2.2.3 Determination of the firing sequence 51

2.3 Inference of the unobservable behaviour 51
2.3.1 Finding Causal and Concurrent Transitions 52

iii

CONTENTS

2.3.2 Computing unobservable places 54
2.3.3 Verification of the net . 56

2.4 Discussion and proposed improvements 56
2.4.1 Scalability and concurrency . 57
2.4.2 Limits of the unobservable behaviour discovery 58

3 Scalability of the observable behaviour construction 61
3.1 Illustrative system: the MSS . 61

3.1.1 Presentation . 61
3.1.2 Data collection . 63

3.2 Resynchronization of asynchronous events in concurrent systems and con-
sequences . 64

3.3 Filtering of the causality matrix . 67
3.3.1 Design of the filter . 67
3.3.2 Application . 71

3.4 Transitions reduction . 73
3.4.1 Replacement of spurious transitions 73
3.4.2 Application . 79

3.5 Conclusions . 84

4 Discovery of the unobservable behaviour 85
4.1 Problem statement . 85
4.2 Theoretical background . 86

4.2.1 From the firing sequence to admissible places 86
4.2.2 Complexity of finding admissible places 90
4.2.3 Intermediate conclusions . 93

4.3 Assessing the quality of a net . 94
4.3.1 Quality metrics . 95
4.3.2 Importance of understandability 97

4.4 Discovery in practice . 100
4.4.1 Partitioning of the search space 100
4.4.2 Exploration strategy . 103
4.4.3 Stopping criterion . 104
4.4.4 Algorithmic application . 105

4.5 Extensions . 106
4.5.1 Implicit places and consequences 107
4.5.2 Reduction of the algorithmic cost 109

4.6 Practical examples . 112
4.6.1 Unobservable behaviour only . 112
4.6.2 Complete approach . 114

4.7 Discussion . 118

iv

CONTENTS

4.8 Conclusion . 120

5 Automated partitioning for distributed identification 123
5.1 Statement of the partitioning problem 123

5.1.1 Objective of the partitioning . 123
5.1.2 Related work . 127
5.1.3 Mapping I/Os and observable fragments 130
5.1.4 Final formulation . 134

5.2 Partitioning by agglomerative hierarchical clustering 138
5.2.1 Similarity and affinity of subsystems 138
5.2.2 Limited clustering . 142
5.2.3 Results and interpretation . 144

5.3 Conclusion . 149

Conclusion and outlooks 153

Bibliography 157

A Assessing the quality of an identified Petri net 173
A.1 Precision . 173
A.2 Complexity metrics . 175

A.2.1 Structural Complexity . 176
A.2.2 Dynamic Complexity . 178

B Proofs 181

v

CONTENTS

vi

List of Figures

1.1 Overview of a closed-loop logical system, with its inputs U, its outputs
Y, and its state variables X . 6

1.2 [Cassandras and Lafortune, 2008] An example of a state trajectory of a
DES. 7

1.3 A spontaneous event generator (a). A closed-loop system consisting in
two reactive systems, interacting through their I/Os (b) 8

1.4 A closed-loop system consisting in two reactive systems, seen as an event
generator . 8

1.5 An example of a DFA . 10
1.6 An example of a PN . 12
1.7 An example of an IPN . 14
1.8 The cyclic behaviour of a Programmable Logic Controller, including the

passive observation . 16
1.9 An observation of the process controlled illustrating the functioning of

the PLC . 17
1.10 An illustration of the synchronization effect. 18
1.11 An illustration of a delayed output event 19
1.12 [Roth et al., 2009a] Evolution of the number of observed words of length

n over production cycles h . 20
1.13 [Roth, 2010] Observed languages over a hundred production cycles 20
1.14 [Prähofer et al., 2014] Left: A flow chart of a function block of the PLC,

with the paths numbered. Right: A trace and its representation as a FSM 24
1.15 [Klein, 2005](a) The identified NDAAO after the treatment of the se-

quences; (b) The simplified model after merging of equivalent states . . . 25
1.16 From [Hiraishi, 1992]: (a)The finite acceptor and (b) the PN deduced

from it. 27
1.17 Illustration of a region, and its elementary net equivalent 29
1.18 [Giua and Seatzu, 2005] Two free-labelled, generalized nets identified from

solving ILP . 30
1.19 [Cabasino et al., 2014](a)Nominal net; (b) Faulty net with two silent

transitions . 31
1.20 The matrix B and the Petri net computed from Seq 32

vii

LIST OF FIGURES

1.21 [Van der Aalst, 2013a] Positioning of the three main types of process
mining: discovery, conformance and enhancement 33

1.22 [Van der Aalst et al., 2004] The net mined by the α-algorithm from the
log {ABCD,ACBD,AED} . 35

1.23 [Meda-Campana and Lopez-Mellado, 2001] 6 nets incrementally com-
puted from the observed output sequences 36

1.24 [Estrada-Vargas et al., 2014](a) Basic identified model; (b) Model after
merging; (c) Model after concurrency simplification; (d) IPN model with
observable places . 38

1.25 Left: Unobservable part (machine behaviour). Right: Observable part
(signals) . 39

2.1 Data collection, then construction of an IPN in two steps 44
2.2 Illustrative example: a package sorting system 44
2.3 Matrices computed for the sorting system. Left: Direct Causality Matrix,

Right: Indirect Context Matrix . 47
2.4 Elementary observable fragments constructed from the firing functions . 49
2.5 Example of the creation of a new transition, by choosing the right input

conditions . 49
2.6 Example of the creation of a new transition, based on a simultaneous

output events observation . 50
2.7 Result of the first step for the sorting system: the observable part 50
2.8 Structures that represent ta < tb: a) shows a causal relationship whereas

b) shows a concurrent relationship . 52
2.9 a)Choice and b)parallelism after the firing of tk 55
2.10 The non-observable part of the IPN computed for the sorting system . . 55
2.11 (a) The unobservable part, corrected by the token-flow equation; (b) The

final IPN with both interpretation layers 57
2.12 (a) The observable part of the net; (b) The net identified ; (c) A net that

satisfies the problem . 59
2.13 A non free choice net with two memory places 59

3.1 A picture of the MSS in the LURPA, and of the workpieces (gears and
bearings) processed. 62

3.2 Scheme of the MSS, decomposed in 4 stations and 11 subsystems 62
3.3 Observed language of the MSS over 20 production cycles, for n = 1, 2 . . 63
3.4 Two concurrent processes observed asynchronously 64
3.5 Two concurrent processes spuriously observed synchronously 65
3.6 (a) Observable part identified for two concurrent processes with spurious

transitions (b) Simplified desirable model 66
3.7 MSS transition occurences . 66
3.8 Principle of the filter: put zeros in cells corresponding to noisy observations 67

viii

LIST OF FIGURES

3.9 Result of the Filter on the DCM of the MSS. Grey cells correspond to
validated non-empty cells, and black cells to noise. 71

3.10 Efficacity of the filter: better denoising for column sums close to one. . . 72
3.11 Principle of the reduction: remove transitions and replace in S 73
3.12 Increase of the permissivity of transitions by OEFF labelling 74
3.13 Example of an observable fragment, with t1 reducible by [t4, t5]. 75
3.14 An observable fragment; only the unrelated input events are shown in the

firing functions . 76
3.15 Non-unicity of minimal reductions illustrated by t5 78
3.16 Observable Behaviour of the MSS pre-reduction: one single spaghetti

fragment . 82
3.17 The result of the reduction for the MSS: 30 observable places and 101

transitions. 13 observable fragments and 24 isolated transitions 83
3.18 Observed language of the MSS expressed on the transitions, for n = 1, 2, 3 84

4.1 An unobservable PN built from S using mutual dependencies. 88
4.2 A PN structure composed of two places pij and pji for Σi = {t1i , . . . , tmi },

Σj = {t1j , . . . , tnj }. t1i is the first transition fired. 89
4.3 Two net solutions, built with different sets of admissible places 91
4.4 Visualisation of the complexity of the problem 94
4.5 A system consisting of two chariots and a gripper 97
4.6 Observable part of the system. 5 outputs and 9 observable transitions . . 98
4.7 (a) A simple solution, with a lot of exceeding language ; (b) A complex

solution, with no exceeding language up to n = 6 99
4.8 Visual representation of the partition of (2T − {∅})2

6∩. 102
4.9 Size of the cell Dδ of the search space depending on δ, plotted for different

values of |T |. Y scale is logarithmic. 104
4.10 The chariots example: (a)Observable part; (b)Initial net for the explo-

ration; (c)Net identified at the end of the limited exploration; (d)Net
identified by a full exploration . 106

4.11 An example of a net (a), after deletion of implicit places (b) 107
4.12 Results of the identification of Example 4.7 108
4.13 Vertical propagation of the domination relationship 111
4.14 Example 4.9: (a) Net discovered for D2; (b) Net discovered for D3 113
4.15 Example 4.10: the initial marking is unreachable after any firing. 113
4.16 Example 4.11; there are two backward loops in the main process t0 −→ t1114
4.17 Example 4.12: 5 fully concurrent processes, synchronized by m 114
4.18 Example 4.13: (a)Observable part; (b)Solution D2; (c)Solution D4 115
4.19 Extended chariots example, with its observable behaviour 115
4.20 The resulting net after the exploration of D2. 116
4.21 A representation of the counter of the second conveyor, using self-loops . 117

ix

LIST OF FIGURES

4.22 Monolithic IPN model obtained after the exploration of δ = 2. 5 tran-
sitions and two fragments remain unconnected to the remainder of the
net . 121

5.1 Principle of the distributed approach, based on a partition of the system. 124
5.2 Identified net for SUBk consisting in either 1 output or 1 input 126
5.3 Shape of the Pareto frontier of optimal solutions of the cover problem . . 126
5.4 (a) The NDAAO and (b) the IPN built from SUBk = {u1, Y1} 128
5.5 Overview of the partitioning approach from [Schneider, 2014] 129
5.6 Mapping of an observable fragment and isolated transitions on the differ-

ent I/O sets . 131
5.7 Sharing a connected input between two fragments and two isolated tran-

sitions. 132
5.8 Possible unobservable behaviour for a Type 2 Block 134
5.9 Location of the blocks on the MSS . 134
5.10 Overview of the distributed approach, partitioning taking place after the

construction of the observable model . 135
5.11 The 21 blocks computed for the MSS . 137
5.12 Similarity table and Affinity graph deduced for Example 5.4 139
5.13 (a) Evolution of the affinity graph along the clustering; (b) Hierarchical

representation . 141
5.14 Successive affinity graphs, first run of the clustering, with |T |Lim = 9 . . 145
5.15 Successive affinity graphs, second run of the clustering, with |T |Lim = 18 146
5.16 Location of the six computed subsystems on the MSS, |T |Lim = 18 146
5.17 Location of the six computed subsystems on the MSS, tLim = 20s 147
5.18 Succesive affinity graphs computed for the MSS, tLim = 20s 148
5.19 Evaluation of different partitions computed with the clustering approach 149
5.20 IPN identified for SSY S1, biggest subsystem of the MSS 150
5.21 IPNs identified for the remaining subsystems of the MSS 151
Fr.1 Principe du filtre : Annuler les cases de la matrice correspondant à des

observations parasites . 169
Fr.2 Principe de la réduction : Suppresion des transitions, et remplacement

dans S . 169
Fr.3 Motif projeté caractérisant une mutuelle dépendance, et places associées . 170
Fr.4 Deux RdPI identifiés pour le même système : (a) est simple, mais génère

plus de langage excédentaire que (b) . 170
Fr.5 Exemple de l’approche par clustering : Evolution d’un graphe d’affinité

(a), et construction de la hiérarchie (b) 171
Fr.6 Localisation des six sous-systèmes obtenus par time-clustering sur la MSS,

tLim = 20s . 172

x

LIST OF FIGURES

A.1 First row: N identified for S, and its exceeding language; Second row: N’
identified for S’, and its exceeding language 174

A.2 The net N identified and its exceeding language according to Definition A.2175
A.3 (a) A simple solution, with a lot of exceeding language ; (b) A complex

solution, with no exceeding language up to n = 6 176
A.4 Reachability graphs of the nets of Figure A.3 180

xi

LIST OF FIGURES

xii

List of Tables

1.1 Similarity between closed-loop systems and IPN 40

2.1 Elementary description of the first event vectors 45
2.2 Firing functions computed for the sorting system 48
2.3 Translation into the firing sequence of the first vectors of E 51

3.1 DCM of two concurrent processes . 65
3.2 Non empty cells of the column DCMi,1Y 04_0 67

4.1 Evaluation of the precision and simplicity metrics on the discovered nets
for the chariots. 117

4.2 Evaluation of the simplicity metrics on the discovered nets for the MSS. . 118

A.1 Comparison of structural complexity metrics on Example 4.5 178
A.2 Comparison of dynamic complexity metrics on Example 4.5 180

xiii

LIST OF TABLES

xiv

Introduction

System modelling has become a preponderant task in engineering, namely in the field of
automatic control, where models are extensively used to find optimal control laws. Iden-
tification consists in building a mathematical model of a system from its observation;
namely, parametric identification is widely spread to build models of continuous-time
systems described by differential equations. However, Discrete Event Systems (DES),
described by state-based models whose evolutions are triggered by events, are often
modelled from expert knowledge only. DES identification has received more and more
interest over the last decade. The objective of this thesis is to contribute to its develop-
ment, in order to make identification a viable alternative to expert modelling.

Identification is an experimental approach by nature, requiring to observe a real
system during its operation. The experimental setup implies physical and technological
constraints, which must be taken into account by identification algorithms. Namely,
the nature of the input/outputs, the cyclicity of the controller or the impossibility to
achieve complete observation are challenges to be accepted. Another challenge is to
develop scalable algorithms, in order to deal with systems of realistic sizes, despite the
state-space explosion issue quite usual for concurrent DES.

Models are designed for a purpose, be it either simulation, performance evalua-
tion, control, diagnosis, dysfunctional analysis... Identified models should be designed
likewise, and identification algorithms concieved for a given purpose. Model-based
fault diagnosis has been the key motivation for a series of theses ([Klein, 2005][Roth,
2010][Schneider, 2014]). The resulting models, automata, are especially efficient for
diagnosis. However, they lack the semantics to offer an explicit vision of complex be-
haviours such as concurrency, or input/output causalities. This thesis is thus dedicated
to reverse-engineering. The aim is to produce compact models, easily readable, in order
for an engineer to understand the operations performed by the system.

The focus of this thesis is set on closed-loop systems consisting in a plant and a con-
troller. Sensors and actuators of the plant are respectively the logical inputs and outputs
of the controller, typically a Programmable Logic Controller (PLC). These controllers
are widely used in manufacturing systems for their robustness to hostile environments,
and their reactivity to sensor events. In this thesis, the identification is blackbox, i.e.
no knowledge about the internal variables of the system is available, and passive, i.e.
the observed data consists only in the values of the inputs/outputs, recorded during the
operation of the system.

The behaviour of the system can be split into an observable part, observed through

1

Introduction

the direct causal input/output evolutions of the DES, and an unobservable part, in
which are agregated memory effects, timed behaviours or sequential evolutions of the
internal state variables of the system. Interpreted Petri Nets (IPN) offer the semantics
to visualize both parts in a single graphical model. For reverse engineering, these models
should be compact and as simple as possible.

To achieve this goal, an approach in two steps was proposed in a previous the-
sis [Estrada-Vargas, 2013]. The observable, then unobservable parts of the model are
built successively. The first step is performing, building fragments expressing the in-
put/output causalities. These fragments are then connected in the second step by adding
the unobservable part, leading to a monolithic model. The method was succesfully ap-
plied to small systems, but several difficulties appeared when bigger, concurrent systems
are considered. Direct causalities on one hand, and concurrency in the unobservable be-
haviour on the other hand, become harder to discover.

The contributions of this thesis aim therefore at improving the scalability of the
approach, and are the following:

• Improve the monolithic approach by:

– Limiting the effects of concurrency in the construction of the observable part.

– Developping a new approach for the discovery of the unobservable part.

• Propose a distributed approach, to split the system into subsystems when mono-
lithic models become too big to be apprehended or computed.

This document is organized as follows:
Chapter 1 presents the formalisms used through the thesis, namely IPNs, the systems

considered, and the problems and challenges related to DES identification. A review of
the state of the art is proposed, from the first techniques of computer science to the
DES-related works of the last years.

Chapter 2 resumes the approach in two steps developed in [Estrada-Vargas, 2013],
in which the remainder of the thesis takes its roots. The construction of the observable
behaviour, based on a probabilistic framework, and the discovery of the unobservable
behaviour, based on numerous rules, are successively exposed and illustrated. The new
challenges offered by concurrency to both steps are exposed; these challenges are taken
up by the contributions presented in this thesis.

Chapter 3 develops the improvement of the observable step towards more scalability.
An absorbing filter is designed to get rid of spurious correlations between inputs and
outputs, observed due to the concurrency of the system coupled with the synchronization
of the controller, and falsely interpreted as causalities. Irrelevant transitions created by
the same phenomenon are filtered and reduced as well. A real system available at the
LURPA is introduced in this chapter. Its reasonable size (73 I/Os) makes it a good
illustration of the scalability improvements presented throughout in this thesis.

2

Chapter 4 presents the new, generic approach developped to enhance the unobserv-
able discovery. A single theorem is required to characterize all unobservable places of
the identified model, and ensure its fitness, as the observed behaviour is fully repro-
duced. Due to state-space explosion, a heuristic is proposed to perform the discovery in
practice. This heuristic is designed to reduce the structural complexity of the resulting
model, desirable quality of a model dedicated to reverse-engineering.

Finally, Chapter 5 proposes a distributed approach, to be employed when monolithic
models become too big to be computed, and hard to understand on top of it. The
distribution occurs after the computation of the observable behaviour; the observable
fragments are used as an initial partitioning of the system, and a hierarchical clustering
algorithm is proposed. The fragments are merged while ensuring that the resulting
subsystems are satisfyingly modelled, until a computation time threshold is reached.
The result is a set of distributed models, easier to compute, and easier to read due to
their reduced size, thus fitting the objective.

3

Introduction

4

Chapter

1
Identification of Discrete Event

Systems

Introduction

The research presented in this thesis deals with Identification of Discrete Event
Systems, i.e. the construction of mathematical models from observed data, collected
during the operation of the real system. The aim of this research is more specifically to
provide compact models exhibiting the reactive behaviour of the observed system.

First, Discrete Event Systems are defined in Section 1.1, and the modelling for-
malisms are recalled. Then, the systems of interest, with their technological constraints,
are presented, leading to the statement of the problem dealt with in this thesis (Sec-
tion 1.2). Numerous works dealing with Discret Event Systems Identification are then
reviewed in Section 1.3. Finally, Section 1.4 concludes on the choice of model adapted
to the objective, and presents the contributions of this thesis.

1.1 Background on Discrete Event Systems

1.1.1 Definition

First, an informal description of the behaviour of systems is given. Generically
speaking, a dynamical system can be associated to input variables U = {u1, u2, . . . , u|U|}
and output variables Y = {y1, y2, . . . , y|Y|}. Input variables are stimuli that provoke a
response through the output variables.

The output variables might depend only on the values of the input variables, i.e.
∀j, yj = f(u1, . . . , u|U|)). Namely, continuous-time systems are often described by or-
dinary differential equations (y = f(x, x′, x′′, . . .). Most systems can not be modelled
so simply. Pushing a light switch might turn a lightbulb on, or off, depending on the
previous state of the lightbulb. Such systems possess therefore one, or multiple state
variables, X = {x1, x2, . . . , x|X|}, that describe the system at a given moment. For in-
stance, the lightbulb can be described by a logical variable x1 which is 1 (0) when the
light is on (off). Figure 1.1 gives a generic overview of a system consisting in a plant

5

Chapter 1. Identification of Discrete Event Systems

and a controller, where the value of the outputs Y depends also on the state variables X.
The evolution of the system is now state-dependant: for the same input, the outcome
depends on the state. The state of the system is also updated depending on the input,
which leads to the two following equations valid for any system:{

∀j, yj = f(u1, . . . , u|U|, x1, . . . , x|X|)

∀k, x̂k = g(x1, . . . , x|X|, u1, . . . , u|U|)

where x̂k represents the future of the state variable xk. For instance, if xk is a continuous
time-dependant variable, x̂k is its derivative. The second equation describes the state
evolution of the system.

Plant

Controller

State variables
behaviour

Combinational
behaviour Outputs

𝕐𝕏

Inputs
𝕌

Figure 1.1: Overview of a closed-loop logical system, with its inputs U, its outputs Y,
and its state variables X

The interest is now set on a specific class of systems implying state variables: Discrete
Event Systems. The definition of this class of systems follows:

Definition 1.1 (Discrete Event System [Cassandras and Lafortune, 2008]). A Discrete
Event System (DES) is a discrete-state, event-driven system; that is, its state evolution
depends entirely on the occurrence of asynchronous discrete events over time.

The system is described by a set of states X = {s1, s2, . . . }. Each state corresponds
to a unique combination of values for the internal variables X = {x1, x2, . . . xX}. For
instance, a single lightbulb is described by one logical state variable, and has two states.
A couple of lightbulbs are described by two logical state variables, and the resulting
system has four states.

The inputs of the systems are discrete events, denoted ei, which are occuring instan-
taneously, and asynchrounously. The state evolution function becomes:

∀k,X(k + 1) = g(X(k), ei)

A state trajectory is a succession of states reached by the system when a succession
of events is given, as illustrated by Figure 1.2. In this system described by 6 states,

6

1.1. Background on Discrete Event Systems

occurence of event e1 at time t1 causes a state evolution from state s2 to state s5, i.e.
X(2) = g(X(1), e1).

Figure 1.2: [Cassandras and Lafortune, 2008] An example of a state trajectory of a DES.

1.1.2 Reactive DES and event generators

The evolution of a DES is described by state trajectories, associated to event se-
quences. A DES can therefore be seen as a spontaneous event generator : the DES follows
a state trajectory, and generates the events corresponding to said trajectory. The DES
presented in Figure 1.2 generated successively e1, e2, e3, e4, e5, e6 and e7 while following
the trajectory (s2, s5, s4, s1, s3, s4, s6). Viewed as an event generator (Figure 1.3(a)), the
DES does not interact with its environment.

However, some systems receive events generated by the environment, the internal
state is updated according to the state transition function, and actions are performed by
the system, transforming the environment.Such systems are called reactive. A reactive
system always maintains an interaction with its environment, to react accordingly to
inputs. DES might be reactive, in which case an adequate model must express in its
semantics the reactions of the outputs of the system to the stimuli of the inputs.

As introduction to the remainder of this thesis, consider a closed-loop system con-
sisting of a controller and a process (Figure 1.3(b)). The controller is a reactive DES,
since it receives input signals from the physical sensors of the process and delivers orders
(output signals) to the physical actuators of the process. The reactive behaviour is the
triggering of outputs depending on both the inputs and the state variables. On the
other hand, the plant is also a reactive DES, although the reactions are slower, due to
mechanical movements, instead of just computation durations. Inputs (resp. outputs)
of the plant are outputs (resp. inputs) of the controller.

7

Chapter 1. Identification of Discrete Event Systems

Generated events
e1 e2 e3 ...

(a) Event Generator

Inputs � Outputs �

(b) Two reactive systems
in interaction

Controller

Process

State variables �
DES

ei

Figure 1.3: A spontaneous event generator (a). A closed-loop system consisting in two
reactive systems, interacting through their I/Os (b)

Given a reactive DES, input and output signals are its external behaviour, i.e. the
way the DES interacts with its external environment. On the other hand, the state
variables and the state evolution function represent its internal behaviour, which is not
accessible to an external observer. Since only the external behaviour is accessible to an
external observer, a reactive system is often perceived as an event generator (Figure 1.4):
the variations of input and output signals become events. A reactive DES can be
interpreted as an event generator, while the reverse is not always true.

Inputs � Outputs �

Controller

Process

State variables �
Generated events
e1 e2 e3 ...

Figure 1.4: A closed-loop system consisting in two reactive systems, seen as an event
generator

1.1.3 Formalism: Classical models

Modelling a system consists in designing its internal behaviour. The formalisms used
for DES are briefly recalled in this section.

8

1.1. Background on Discrete Event Systems

1.1.3.1 Languages and finite-state automata

When the DES is perceived as an event generator, its external behaviour is a set of
strings of events e1e2e3 . . . , specifying in which order the events occur during the life
of the system. A formal way of studying such a behaviour is by interpreting it as a
language.

First, the set of all events that can be generated by the system is denoted E =

{e1, e2, . . . }, and is analogous to the alphabet of a language. Then a language is formally
defined over E:

Definition 1.2 (Language [Cassandras and Lafortune, 2008]). A language defined over
an event set E is a set of finite-length strings formed from events in E.

A language might contain the empty word, denoted ε. A language is possibly infinite.
For a string s, if there exists (u, v) such that s = u.v, u is called a prefix of s. A language
L is prefix-closed if, given any string s ∈ L, all prefixes of s also belong to L. If a string is
generated by a DES, then all prefixes have also been generated; DES are often modelled
by prefix-closed languages.

An automaton is a state-machine capable of representing languages, and is a formal-
ism widely used to represent the possible states X and the state transition function of
a DES. Formally:

Definition 1.3 (Deterministic Finite-State Automaton (DFA)[Cassandras and Lafor-
tune, 2008]). A Deterministic Finite-State Automaton, denoted by G, is a six-tuple
G = (X,E, f,Γ, x0, Xm) where:

• X is the finite set of states

• E is the finite set of events associated with G

• f : X × E → X is the transition function:f(x, e) = y means that there is a
transition labeled by event e from state x to state y; in general, f is a partial
function on its domain.

• Γ : X → 2E is the active event function (or feasible event function); Γ(x) is the
set of all events e for which f(x, e) is defined and it is called the active event set
(or feasible event set) of G at x

• x0 is the initial state

• Xm ⊆ X is the set of marked states.

The hypothesis of determinism can be lifted by replacing the output domain of f by
2X , in which case, the machine is a simple Finite-State Automaton or Machine (FSM). If
the initial and marked states are not given, the machine is called a Transition system. An
example of a DFA is shown in Figure 1.5; it is defined on the event set E = {e1, . . . e9},

9

Chapter 1. Identification of Discrete Event Systems

and the states X = {X0, . . . X11}. Xm = {X1, X4, X5, X9, X10}. Notice that all
states from X3 to X11 represent concurrency between the executions of the strings e4e5

and e6e7, which can be interleaved in every possible way. Concurrency is not explicit in
the structure of the automaton, as every interleaving is represented by a different path,
multiplying the number of states and transitions.

𝑒1

𝑒2
𝑒9

𝑒3

𝑒4

𝑒4

𝑒4

𝑒6

𝑒6

𝑒6 𝑒5

𝑒5

𝑒5 𝑒7

𝑒7

𝑒7

𝑒8

X0 X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X11

Figure 1.5: An example of a DFA

DFAs are able to generate languages, defined as following:

Definition 1.4 ([Cassandras and Lafortune, 2008]). The language generated by G =

(X,E, f,Γ, x0, Xm) is:
L(G) := {s ∈ E∗ : f(x0, s) ∈ X}

The language marked by G is:

Lm(G) := {s ∈ L(G) : f(x0, s) ∈ Xm}

E∗ is the Kleene-closure of the set of events E, i.e. the infinite set of all possible
finite-strings of elements of E (including the empty string ε). f here is the extended
version of the transition function f : X × E∗ → X. The language generated by the net
is the set of all strings generated when following all paths starting in the initial state;
the marked language is a restriction to paths ending in a marked state.

Additional semantics are required to differenciate inputs and outputs of a reactive
DES. Moore ([Moore, 1956]) and Mealy ([Mealy, 1955]) machines offer this level of
interpretation. Two event sets are considered: Σ as the set of input events, and Λ as
the set of output events.

Definition 1.5. A Moore machine is a DFA with the following modifications:

• the transition function only considers input events f : X × Σ→ X

• g : X → Λ is an output function mapping each state to an output symbol.

A Mealy machine is a DFA with the following modification:

• the transition function f : X × Σ → X × Λ additionally maps output symbols to
the transitions

10

1.1. Background on Discrete Event Systems

Each Moore machine can be converted to an equivalent Mealy machine (and recip-
rocally). As pointed out in [Cassandras and Lafortune, 2008], the couple input/output
associated to a transition in a Mealy machine can be considered as a single event. Mealy
machines can therefore be reduced to DFAs with event sets built on input/output cou-
ples; all properties of DFAs are valid for Mealy machines as well. The external behaviour
of a DES modelled by a Mealy machine is therefore a string s = (ie1, oe1)(ie2, oe2)(ie3, oe3) . . . ,
where each input symbol is associated to an output symbol. The event set becomes
E = {(iei, oej), iei ∈ Σ, oej ∈ Λ}.

1.1.3.2 Petri Nets

Petri Nets (PNs) have been developped in the 70s, following the first investigations
by Carl Adam Petri in his thesis [Petri, 1962]. They are especially useful to compactly
represent dynamic, concurrent and undeterministic systems. They form with automata
the main formalisms used for DES modeling. An advantage of PNs is their linear
representation, which enables the use of linear algebra methods to verify properties of
the nets.

Definition 1.6 (Petri Net structure). A generalized Petri Net structure G is a bipartite
digraph represented by the 5-tuple G = (P, T, I, O) where: P = {p1, p2, . . . , p|P |} and
T = {t1, t2, . . . , t|T |} are finite sets of vertices named places and transitions respectively;
I(O) : P × T → N is a function representing the edges going from places to transitions
(from transitions to places), and associating a weight (or multiplicity) to each edge.

I(pi, tj) = 0 means that the edge pi → tj does not exist. If the destination of
I(O) is restricted to {0, 1}, the structure is called ordinary. For a place pi, the set of
pre(post)-transitions {tj ∈ T, I(O)(pi, tj) = 1} will be written •pi(p

•
i). Its in-degree

(resp. out-degree) is the number of pre(post)-transitions: •pi (resp. p•i). The degree δ
is the sum of in- and out- degrees.

Definition 1.7 (Linear representation). A Petri Net structure is represented by its
incidence matrix: C = C+ − C−, where C− = [c−ij]; c

−
ij = I(pi, tj) and C+ = [c+

ij];
c+
ij = O(pi, tj) are respectively the pre-incidence and post-incidence matrices, also often
noted Pre and Post .

The structure is the static part of the net, where the transitions represent the events
driving the system, and the places the conditions under which these events can occur.
To describe the dynamic part, the notions of marking and firing are introduced.

Definition 1.8 (Marking). A marking function M : P → N represents the number of
tokens residing inside each place; it is usually expressed as a |P |-entry vector. N is the
set of nonnegative integers. If N is replaced by {0, 1}, there is at most one token residing
in any place, and the net is 1-bounded.

Definition 1.9 (Petri Net system). A Petri Net system or Petri Net (PN) is the pair
N = (G,M0), where G is a PN structure and M0 is an initial marking.

11

Chapter 1. Identification of Discrete Event Systems

A marking M represents a state of the system. In a Petri Net system, the state
evolution is driven by the firing of transitions, given that the marking enables said firing.
An example of a PN is shown in Figure 1.6, with T = {t1, . . . , t9}, P = {P0, . . . , P8},
and M0 = t

[
100000000

]
.

𝑡1
𝑡2

𝑡3

𝑡9

𝑡4
𝑡8

𝑡6

𝑡5

𝑡7

P0

P1
P2

P3

P4

P5

P6

P7

P8

Figure 1.6: An example of a PN

Definition 1.10 (Enabled transitions and firing). In a PN system, a transition tj is
enabled at marking Mk if ∀pi ∈ P,Mk(pi) ≥ I(pi, tj), written Mk

tj−→; an enabled
transition tj can be fired reaching a new marking Mk+1, written Mk

tj−→ Mk+1. It can
be computed using the PN state equation: Mk+1 = Mk + C.υk where uk(j) = 1; υk(i) =

0, i 6= j.

If multiple transitions are enabled in a given marking Mk, any can be fired, but only
one is actually fired, hence the possibility of modeling undeterminism. For instance, in
Figure 1.6, t1 is the only transition enabled at the initial marking. Then, after its firing
t2 and t3 are enabled. Notice the representation of the concurrency after the firing of t3;
the firings of t5t7 and t6t8 are explicitly concurrent in this model.

The PN state equation, analogously to the state transition function of DFAs, can be
extended to firing sequences instead of single firings.

Definition 1.11 (Firing Sequence). If M0
t1−→ M1

t2−→ M2
t3−→ . . .

tk−→ Mk, then
σ = t1t2t3 . . . tk is a firing sequence leading to marking Mk, and written M0

σ−→ Mk. It
can be computed using the PN state equation: Mk+1 = M0 +C.Υ where Υ(j) is equal to
the number of firings of tj in S.

If a single transition firing is equivalent to an event generated by the net, a firing
sequence is equivalent to a word. Different languages have been defined for Petri Nets
([Jantzen, 1987]), depending on markings or deadlocks; only the most generic, P-type
language is recalled here:

Definition 1.12 (Language generated by a PN). The language generated by a PN
(G,M0) is the set of all firing sequences σ enabled from the initial marking M0. The
alphabet associated to this language is the set of transitions of the net, i.e. L(G,M0) =

{σ ∈ T ∗,M0
σ−→}.

12

1.1. Background on Discrete Event Systems

Definition 1.13 (Reachability set). The reachability set of a PN is the set of all pos-
sible reachable markings from M0 firing only enabled transitions; this set is denoted by
R(G,M0).

The reachability set can be represented as a reachability graph, each marking corre-
sponding to a node, and a transition firing to an edge. The language generated by the
reachability graph viewed as a state machine is the language generated by the PN. For
instance, the reachability graph of the net of Figure 1.6 is isomorphic to the automaton
depicted in Figure 1.5.

However, the languages defined up to now assume a bijection between the alphabet
and the set of transitions (i.e. each transition name is a symbol). Labelled Petri Nets
are defined without this assumption, and use a labelling function instead:

Definition 1.14 (Labelling function). Let E be a set of symbols. A labelling function
is a function λ : T → E, and a Labelled Petri Net is a PN coupled with a labelling
function. Its language becomes:

L(G,M0) = {λ(σ) ∈ E∗,M0
σ−→}

If λ is a bijection (i.e. an event can not be associated to multiple transitions), the
language is called free. Otherwise, if the empty-word ε is not used, the language is called
λ-free; otherwise, it is called arbitrary.

LPNs offer the possibility to add input information to the transitions. To model
reactive systems, it remains to add also output information, namely to places. This is
the purpose of Interpreted Petri Nets [David and Alla, 1994]:

Definition 1.15 (Interpreted Petri Nets). An Interpreted Petri Net system (IPN) Q,
Q = (G,M0,U,Σ, λ,Y, ϕ), is based on an ordinary PN system (G,M0) to which are
added:

• U = {u1, u2, . . . , u|U|} the known input alphabet

• Σ = {↑ ui, ↓ ui | ui ∈ U} the set of events.

• λ : T → {0, 1} the labelling function of transitions.
∀ti ∈ T, λ(ti) = Fi(U) •Gi(Σ) where:

– Fi : U→ {0, 1} is a boolean function depicting the conditions on the levels of
the inputs to fire ti

– Gi : Σ → {0, 1} is a boolean function depicting the conditions on the input
events to fire ti

λ(ti) = 1 iff Fi(U) = 1 ∧Gi(Σ) = 1

• Y = {y1, y2, . . . , y|Y|} the known output alphabet

13

Chapter 1. Identification of Discrete Event Systems

• ϕ : R(G,M0)→ {0, 1}|Y| the output function that returns the value of the outputs
given a marking of the net.

Notice that Gi can contain multiple input events, which is suitable for adaptation
to technology, as will be shown in Section 1.2. In the framework of Interpreted Petri
Nets, the firing of a transition is no longer autonomous, but constrained by its labelling
function. A transition tj is fired when the following conditions are verified:

• tj is enabled (by the marking)

• λ(tj) = 1 (both Fi and Gi are True)

The output function can be restricted to ϕ : P → (Y)∪ε, i.e. outputs are associated
to places instead of markings and a place can be associated to only one output. Places
associated to an output are called measurable or observable, while places associated to
ε, i.e. no output, are called non measurable/unobservable. The set of places P is then
partitionned into two sets of observable and unobservable places, P = PObs ∪ PUnobs.

An example of IPN is shown in Figure 1.7; it is the net of Figure 1.6 with an
additional layer of interpretation. Three observable places have been linked to the
outputs Y = {Y 1, Y 2, Y 3}, all other places are unobservable. Various event and level
conditions on the inputs U = {u0, . . . , u4} are assigned to the transitions, t5 and t6

namely have both, whereas t7 and t8 have none (i.e ε for no event required, and (= 1)

for a condition always true).

𝑡1: ↓ 𝑢0
𝑡2: ↑ 𝑢1

Y1

𝑡3: ↑ 𝑢2. ↑ 𝑢1 • (𝑢3 = 0)

𝑡9: ↓ 𝑢1

𝑡4: ↑ 𝑢3 • (𝑢4 = 0)

𝑡8: (𝑢1 = 0
∧ 𝑢2 = 0)

𝑡6: ↑ 𝑢4 • (𝑢3 = 0)

Y2

Y3

𝑡5: 𝜀 • (= 1)

𝑡7: 𝜀 • (= 1)

Figure 1.7: An example of an IPN

1.2 Identification of a DES: Problem Statement

System identification consists in building a mathematical model of the behaviour of a
system from a finite observation of said system. On the opposite of manual design based
on expert knowledge, an identification approach is experimental; the system is observed
during its operation, and a model is built with the objective of fitting the observation
as well as possible, according to an approximation criterion.

In continuous system identification, the problem consists in choosing a model class,
and adjust the parameters to best fit the observed data, in which case it is parametric.
For instance, record the rotation speed of a motor who is delivered a step of tension, and

14

1.2. Identification of a DES: Problem Statement

choose a first order model, whose parameters are the amplification factor and the time-
constant. The task consists in choosing the best combination of the two parameters,
such that the response output of the model best fits the real response, according to the
Least Squares Estimator.

Regarding DES, the task of identification consists in building a model of both the
internal and external behaviours, i.e. the state space, state evolution function and
output function, based on the observation of the I/O signals only. If information on the
structure of the internal behaviour is known, the identification is whitebox. When only
the external behaviour is accessible, the identification is blackbox.

System identification is a method widely spread in the context of continuous-time
systems; however, most DES models are still manually built by experts. Numerous
methods and guidelines for efficient modelling have been proposed in the literature ([Gi-
rault and Valk, 2003]). The aim of this thesis is instead to contribute to the development
of identification methods. The focus is set on reactive DES, under blackbox hypothesis.

1.2.1 Systems of Interest

In this section, the systems of interest of the whole thesis are described. Namely, the
technology of the components and the experimental conditions are constraints that are
to be considered by any identification algorithm.

We are interested in real closed-loop systems, consisting in a controller and a process
(Figure 1.3). The point of view of the controller is adopted. The sensors (optical,
inductive, switches, . . .) deliver input signals U, and the controller delivers output
signals Y to actuators (pneumatic or hydraulic actuators, contactors, . . .). All these
signals are logical: their values are either 0 or 1.

The aim is to discover the relationships between the controller and its environment, so
we have no interest in isolating the controller from the process. Therefore the observation
is passive. In an active identification approach, outputs of the controller could be forced
to see the reaction of the system; without strong safety constraints, this could result in
component damage.

The controller can be assumed deterministic, since it is programmed to always act
the same way in the same conditions. The process is however non-deterministic, due
to numerous mechanical or physical factors. If two cylinders start their extension si-
multaneously, the order of the respective ends of their extensions might vary, depending
on fluid pressure, gripping, mechanical defects,. . . The system as a whole is therefore
non-deterministic.

The focus is set on Industrial Programmable Logic Controllers (PLC), which are
widely used in manufacturing industries. Architecture and programming of these specific
controllers are extensively detailed in the [IEC 61131-1..IEC 61131-8, 2010] norm. The
main characteristic of these controllers is the cyclicity of their behaviour, as recalled in
Figure 1.8. A PLC cycle typically lasts a few milliseconds. It consists in three successive

15

Chapter 1. Identification of Discrete Event Systems

actions:

Input reading (I) The controller gets the values of the inputs stored in the input
modules, i.e. the statuses of the sensors of the process. These logical informations
are stored in the variable table of the controller, and left unchanged until the next
reading.

Program Execution (PEX) The implemented program is executed one time. The
values of all internal variables and outputs are computed and stored in the variable
table.

Output Writing (O) The values of output variables stored in the variable table are
sent to the actuators of the process via the output modules. They are left un-
changed until the next writing.

Figure 1.8: The cyclic behaviour of a Programmable Logic Controller, including the
passive observation

The controller can be described as a sequential system. It is in a given state X(k)

at every cycle k. The state is updated, and outputs are generated at every cycle of the
controller, using the state evolution function and output functions:

∀k

{
X(k + 1) = g(X(k), U(k + 1))

Y (k + 1) = f(X(k + 1), U(k + 1))

Due to the blackbox approach, the states X(k) are unknown a priori. To observe
the system, an experimental, non invasive protocol is required to record the values of
the input and output signals. Such a protocol is proposed in [Roth et al., 2010b]. The
observation is conducted at the end of the program execution. The values of all external
variables, i.e. inputs and outputs, are sent via a UDP connexion to an external computer.
Therefore, an observation is performed during each cycle of the system; it consists in
the input values read at the start of the cycle, and the output values computed at the
end of the program execution. Formally, given a cycle k, an observation w(k) is a vector

16

1.2. Identification of a DES: Problem Statement

defined by:

w(k) ∈ {0, 1}1×(|U|+|Y|);w(k) = t[u1(k), . . . u|U|(k), y1(k), . . . y|Y|(k)]

with ui(k) (resp. yj(k)) the value of the input ui (resp. output yj) in the cycle k.
The succession of all observed vectors w(1)w(2) . . . w(k) . . . is an observed vector

sequence w. From two successive observations, an event vector E(k) is computed to
represent the elementary changes of inputs and outputs that occurred during the two
observations. Formally, E(k) = w(k + 1)− w(k), with:

Ei(k) =


1 if a rising edge of i/o i occurred

−1 if a falling edge of i/o i occurred

0 if the value of i/o i is unchanged

If ∀i, Ei(k) = 0, nothing occurred, denoted [ε]. The succession of all event vectors
E(1)E(2) . . . E(k) . . . is an event vector sequence E.

To better understand the constraints and the computation of the observed sequences,
have a look at the evolution in chronogram (a) of Figure 1.9, based on an observed
sequence w(a). The program ensures that the output y1 (y2) has the same value as the
input u1 (u2). Initially, all inputs and outputs are 0. u1 is set during the first PLC
cycle, but its value is not read until the input reading step of the second cycle. During
the PEX step of the second cycle, the program updates the value of y1 in its variable
table since u1 has changed, leading to the set of y1 during the output writing step. Same
behaviour for u2 and y2 during the third cycle.

I OPEX I OPEX I OPEX I OPEX I OPEX

y2

y1

u1 read

u2 read

u1 true

u2 true

(a)

0

1

Input reading Program
EXecution

Output writing

Figure 1.9: An observation of the process controlled illustrating the functioning of the
PLC

The observed vector sequence w(a) and the event vector sequence E(a) are then:

w(a) =

u1

u2

y1

y2


0

0

0

0




1

0

1

0




1

1

1

1




1

1

1

1




0

1

0

1

E(a) =


1

0

1

0




0

1

0

1




0

0

0

0



−1

0

−1

0


17

Chapter 1. Identification of Discrete Event Systems

E(a) = [↑ u1 ↑ y1]; [↑ u2 ↑ y2]; [ε]; [↓ u1 ↓ y1]

However, the phase of input reading occurs only once per cycle. Two asynchronous
input changes can be perceived as synchronous, as illustrated by chronogram (b) of
Figure 1.10, based on the following vector sequence w(b) and event vector sequence E(b):

w(b) =

u1

u2

y1

y2


0

0

0

0




0

0

0

0




1

1

1

1




1

1

1

1




0

1

0

1

E(b) =


0

0

0

0




1

1

1

1




0

0

0

0



−1

0

−1

0


E(b) = [ε]; [↑ u1 ↑ u2 ↑ y1 ↑ y2]; [ε]; [↓ u1 ↓ y1]

I OPEX I OPEX I OPEX I OPEX I OPEX

y2

y1

u1 read

u2 read

u1 true

u2 true

0

1

(b)

Figure 1.10: An illustration of the synchronization effect.

Generically speaking, multiple inputs and outputs can change between two observa-
tions; hence the introduction of event vectors instead of using single events. It is possible
to create an alphabet by using the event vectors as symbols; the event vector sequence
becomes a string of the language, and classical DES theory applies then.

Finally, PLC often include timers, or memory variables, which are unknown in a
blackbox approach. Therefore, input events often occur without any output change in
the same cycle, having a delayed action on the outputs. Similarly, the delayed ouput can
occur without any concurring input event. An instance is proposed in the chronogramm
of Figure 1.11; one PLC cycle is blank before the output reacts to the input event, the
event vector sequence being:

E(c) = [↑ u1]; [ε]; [↑ y1]; [↓ u1 ↓ y1]

To sum things up, an observation is a sequence of vectors, and multiple values (in-
diferrentially inputs or outputs) can change between two vectors. Due to the syn-
chronisation of the controller, input and output events observed simultaneously might
nevertheless not be related.

18

1.2. Identification of a DES: Problem Statement

I OPEX I OPEX I OPEX I OPEX I OPEX

y1

u1 read

u1 true

0

1

(c)

Figure 1.11: An illustration of a delayed output event

1.2.2 Incompleteness of the observation

Generically speaking, the more data on the system is available, the closer to reality
the model built on this data is. If the observation was infinite, then all possible be-
haviours could have been observed. However, massive concurrency of systems hinders
this possibility as shown in [Roth et al., 2009a][Roth, 2010].

The DES is therein considered as an event generator, hence has an output alphabet
Ω. Each different observed vector w(k) is a letter of this alphabet. The system is
observed during p production cycles (observed vector sequences w1, . . . wp, of respective
length l1, . . . , lp), and the set of observed words of length q is introduced:

Definition 1.16. [Roth et al., 2009a] The observed words of length q are denoted as:

W q
Obs =

p⋃
i=1

(

li−q+1⋃
k=1

(wi(k), wi(k + 1), . . . , wi(k + q − 1))

Then, the behaviour of the system is defined by its observed language of length n,
i.e. the language containing all observed words of length up to n:

Definition 1.17. [Roth et al., 2009a] The observed language of length n is

LnObs =
n⋃
i=1

W i
Obs

By observing more production cycles, new words are observed, and the sizes of the
observed languages LnObs grow with the duration of the observation. For systems with
low concurrency, it is possible to observe an asymptote, since the ordering of the output
events remains the same during multiple observations of the same processing. On the
contrary, highly concurrent systems exhibit lots of possible orderings of events; the
number of observed words keeps raising with the duration of observation, as illustrated
in Figure 1.12.

For low values of n, it is possible to make the assumption that every word that could
be emitted by the system was observed, but not for higher values of n. An example of

19

Chapter 1. Identification of Discrete Event Systems

Figure 1.12: [Roth et al., 2009a] Evolution of the number of observed words of length n
over production cycles h

a real system (described in [Roth, 2010]) whose convergence is valid only for n = 1 over
a hundred production cycles is presented in Figure 1.13.

Figure 1.13: [Roth, 2010] Observed languages over a hundred production cycles

Reasonably, the hypothesis is therefore made that the observation, being finite, is
always incomplete. The belonging of a non-observed word to the original language of
the system is undecidable. Therefore, no counter-examples can be used in the context
of identification of real systems. This caracteristic is highly important, as some related
works are based instead on the design and use of counter-examples ([Giua and Seatzu,
2005][Cabasino et al., 2015]). The authors of [Basile et al., 2016c] notably propose to
compute timed counter-examples from observed timed sequences, assuming that lower
and upper bounds of execution times are known; they are however unavailable in our
blackbox approach.

20

1.2. Identification of a DES: Problem Statement

1.2.3 Problem Statement

The following constraints and hypotheses on the systems of interest have been ex-
hibited in the previous section:

• Logical input and output signals

• Multiple input-output change between two observations

• Inputs might have delayed actions on outputs

• The couple controller/process is non deterministic

• The system can exhibit massive concurrency

• The identification is blackbox, and passive

• No knowledge of counter-examples

We wish to build, from a vector sequence w observed under the above conditions,
a model that non only reproduces w, but also exhibits the reactive behaviour of the
system in its structure. The main problem of this thesis is stated:

Problem Statement Consider a logical closed-loop system controlled by a PLC.
Identify, from an observed vector sequence w, a model that exhibits the reactive behaviour
and reproduces w.

In this problem, no explicit representation of time is required in the model; timed
phenomena are present, but the identification of time bounds and their explicit addition
in the model are not required. Cyclicity is not required as well; observations do not
require to start and end at the same point.

An additional objective is to get an understandable, compact behavioural model, to
satisfy a goal of reverse engineering as presented in next section.

1.2.4 Identification for reverse engineering

Reverse engineering is defined in [Chikofsky and Cross II, 1990] as the process of an-
alyzing a subject system to identify the systems components and their interrelationships
and create representations of the system in another form or at a higher level of abstrac-
tion. Identification is a natural method to obtain these representations of the system.
Instead of formulating theoretical models, they are constructed from the observation of
the real system in its environment.

Potential applications are certification, reimplementation, or debug. In the latter
case, an example is [Prähofer et al., 2013], where the authors are interested in the
reverse engineering of the program of the PLC. The behaviour called reactive in this
article is a change of the path followed by the program depending on the inputs values.
The idea is to obtain a model of the paths followed, for analysis and visualization.

21

Chapter 1. Identification of Discrete Event Systems

For a reactive DES, a good reverse-engineered model should provide insight on the
characteristics of the system, such as concurrency, non-determinism or input/output
causalities. These caracteristics should be readable in the model, and easily understand-
able by an engineer. Readable models will facilitate the job of program certification, or
reimplementation in a controller.

The choice of the model class should therefore be conditionned by the purpose de-
served by the model. Hence, the upcoming literature review exhibitis different methods
and models, and discusses their adequation to reverse-engineering. The choice of IPNs
as a satisfying model class ensues from this review.

1.3 Identification in the literature

1.3.1 Origin: early computer science approaches

1.3.1.1 Language inference

The problem of DES identification can be retraced to the 60s, and the beginning of
artificial intelligence, that motivated the study of language identification [Gold, 1967],
also called language inference [Angluin, 1982]. An accurate history is presented in these
two surveys on identification: [Estrada-Vargas et al., 2010] and [Cabasino et al., 2015].

The idea of [Gold, 1967] is to present information, as a set of strings s1, s2, . . . ,
to a learner which has to guess the language L; this is quite similar to the observation
obtained from a DES (as event generator), where the identification algorithm plays the
role of learner. The language L is said identifiable in the limit, if after some time, the
learner always guesses the correct language. Two ways of presenting information are
considered: either a text containing every string from L (hypothesis of full knowledge
of the language), or an informant, which has absolute knowledge on the membership of
strings si to L.

This notion of informant, oracle, or teacher was explored in [Angluin, 1987], where
the learner can submit queries to the teacher, which can also exhibit counter-examples
(strings not belonging to the language). The learning algorithm L∗ proposed is able to
build a deterministic finite-state acceptor (i.e. a DFA) from the information given by
the teacher. Full knowledge of the language is a recurrent characteristic of language
inference methods, which is not accessible in the case of DES identification.

Angluin’s L∗ algorithm is still used in recent works in the field of computer science,
such as [Shahbaz and Groz, 2009], where the complexity of the processing of counterex-
amples is reduced.

1.3.1.2 Moore and Mealy machines

Other methods have focused on the inference of Moore or Mealy machines from
input/output sequences.

In [Kella, 1971], a Mealy machine with n + 1 states is built from one input/output

22

1.3. Identification in the literature

event sequence of length n: (i1, o1)(i2, o2). . . (in, on). The problem is then to find all
possible reduced machines by state merging operations. The resulting machines are not
’completely specified’, in that they exhibit exceeding behaviour.

[Gill, 1966], then [Heun and Vairavan, 1976] have invested required properties of a set
of finite input/output strings in order to be realizable by Mealy machines. [Gill, 1966]
characterizes compatibility, extended by [Heun and Vairavan, 1976] into consistency. An
algorithm constructing the Mealy machine is provided as well.

In [Biermann, 1972], the maximal number of states of the Mealy machine to be
identified is set. The input/output pairs of the sequence are incrementally dealt with,
and guesses consistent with the sequence are made on the structure. If no machine can
reproduce the behaviour, the procedure is repeated with an increased number of states.
Consequently, the final solution has the fewer states of all machines whose behaviour
comprises the sample set (i.e. is minimal).

The same author has also investigated non deterministic Moore machines in [Bier-
mann and Feldman, 1972]. A set of i/o sequences is given, where the output is only
emitted with the last symbol of the sequence; these sequences are assumed to start from
the same initial state. An initial machine is contructed as a tree, then reduced by state
merging rules.

Finally, [Veelenturf, 1978] has proposed an iterative algorithm to successively build
Mealy machines from a set of observed input/output sequences, such that the behaviour
of each machine is included in the result of the previous iteration. New machines are built
by adding transition and/or states to the previous one. The sequences are always treated
as a whole, contrary to [Biermann, 1972] that deals incrementally with input/output
pairs.

The same author has proposed a learning algorithm to identify a Moore machine
in [Veelenturf, 1981]. The algorithm guesses structural properties, detects eventual
contradictions with the observed i/o sequences, and corrects by removing transition.
The inferred automata is minimal.

In all these methods, the notion of input/output is not exploited; the couple (ik, ok)

is interpreted as a symbol. Namely, all the algorithms discovering Mealy machines could
be applied on problems without interpretation; they are not specific to represent reactive
behaviour.

After this short historical tour, recent approaches in the field of Discrete Event
Systems are presented.

1.3.2 Identification by Automata

1.3.2.1 Identification of closed-loop processes

These approaches consider systems close to the ones presented in Section 1.2.1.
A whitebox approach for PLC-controlled processes is presented in [Prähofer et al.,

2014]. An observation consists in recording the inputs, outputs and taking snapshots of

23

Chapter 1. Identification of Discrete Event Systems

the program state, from which the path followed by the program in a functional block in
a given cycle is deduced (Figure 1.14). Knowledge of the internal state of the controller
is therefore known. An FSM is built from these traces, to which are ultimately added
time windows. The FSM is a high-level model, representing paths, but the low-level
relations of inputs and outputs are not considered.

Figure 1.14: [Prähofer et al., 2014] Left: A flow chart of a function block of the PLC,
with the paths numbered. Right: A trace and its representation as a FSM

Identification of PLC-controlled processes have been considered in a series of works.
[Klein, 2005][Roth, 2010][Schneider et al., 2012]. The methods proposed in these works
have been conceived for fault diagnosis applications. In [Klein, 2005], the identified mod-
els are Non Deterministic Autonomous Automata with Outputs (NDAAO). Formally:

Definition 1.18 ([Klein, 2005]NDAAO). A non-deterministic autonomous automaton
with output, is a five-tuple NDAAO = (X,Ω, fnd, λ, x0) where X is the finite set of
states, Ω is the finite set of output symbols, fnd : X → 2X is the non-deterministic
transition relation, x0 ∈ X is the initial state, and Λ : X → Ω is the output function.

In the proposed identification approach, the closed-loop system is considered as an
event generator; the choice has been made to build a model that can spontaneously
generate events as well. The transition relation is not conditionned by events, hence
the autonomy of the model. When a state is reached after a firing, an element of the
output alphabet is emitted (as in a Moore machine). Since the observation of the system
consists in vectors w(k) (see Section 1.2.1), each different observed vector is mapped to
an output symbol. Thus, the model can generate output sequences homogeneous to the
observed vectors.

An example of the identification procedure is given below, for a plant with two inputs
and one output. Notice that the observed sequences start and end with the same vector,
which assumes cyclicity of the process observed, an hypothesis not made in our problem.

24

1.3. Identification in the literature

The observed data is:

σ1 =

0

0

0


A

0

1

0


B

1

1

1


C

0

1

1


D

0

0

1


E

0

0

0


A

σ2 =

0

0

0


A

0

1

1


D

0

1

0


B

1

1

1


C

0

1

1


D

0

0

0


A

1

1

1


C

0

0

0


A

A length parameter k is fixed to transform the observed strings into sequences of sub-
strings of length k. Hence, for k = 2:

σ2
1 = ((A,A)(A,B)(B,C)(C,D)(D,E)(E,A)(A,A))

σ2
2 = ((A,A)(A,D)(D,B)(B,C)(C,D)(D,A)(A,C)(C,A)(A,A))

Each substring is associated to one state of the identified NDAAO (Figure 1.15(a)).
Then, each state is renamed with the last letter of the asociated substring, and equivalent
states are merged (two states being equivalent if they have the same output letter, and
the same set of post states). Consistently with the hypothesis of cyclicity, the first and
last states are considered equivalent as well. The result is presented in Figure 1.15(b).

(a) (b)

Figure 1.15: [Klein, 2005](a) The identified NDAAO after the treatment of the sequences;
(b) The simplified model after merging of equivalent states

Such models have been used for fault diagnosis in [Roth et al., 2009b]. The idea is to
test, during the execution of the process, whether the i/o behaviour is reproducible by
the automaton, and compute the residuals, i.e. differences between the observed and the
repoducible behaviour. Notice that the inputs and outputs are however undifferentiated,
which is fine for fault diagnosis approaches, but not for reverse-engineering.

The parameter k must be finely tuned. It was proven in [Klein, 2005] that for all
k, Lk+1

Obs = Lk+1
Iden, i.e. the identified automaton reproduces all and only all substrings of

length k + 1 observed in the sequences σi. From a diagnosis point of view, the higher
k, the less faults will be missed. In addition, it was proven in [Roth, 2010] that if
Lk+1
Orig = Lk+1

Obs , then L
k+n
Orig ⊂ Lk+n

Iden, i.e. if it can be assumed that all words of length k+1

have been observed, then the identified net can reproduce every string from the original
behaviour. For diagnosis, this corresponds to a minimization of false alerts. The choice
of k is therefore based on the convergence of the size of observed languages, such as
presented in Section 1.2.2.

The method was then extended to include timed transitions [Schneider et al., 2012],
and to distributed identification of automata networks ([Roth et al., 2009a]). The prob-

25

Chapter 1. Identification of Discrete Event Systems

lem of partitioning of a system for distributed identification will be reviewed in Chap-
ter 5.

An approach similar to [Schneider et al., 2012] was proposed in [Maier, 2014], with
similar hypotheses. An event is a vector of I/Os who are not differentiated, automata
with timed transitions are identified, and the model is to be used for diagnosis. [Schnei-
der et al., 2012] first computes the logical structure of the automaton, then adds time
intervals to transitions, when [Maier, 2014] computes a timed prefix tree, then merges
equivalent states (approach similar to [Biermann and Feldman, 1972]).

1.3.2.2 Miscellaneous

The following approaches are disconnected from the physical inputs and outputs of
a real system, but propose original methods for identifying automata.

[Aguilar, 2011] proposed to use evolutionary computing to identify a Mealy machine.
During the evolution of the population, the best candidates are those who can reproduce
all presented i/o sequences, and eventually have the smallest set of states. Since the
approach is a metaheuristic, there is no guarantee that the best models reproduce the
sequences.

Active identification methods have been considered to identify timed automata. The
authors of [Grinchtein et al., 2005] use a teacher and a learner, which can be assimilated
to active identification, therefore hard to reproduce on real systems. A very similar
approach was developped later in [Jarvis, 2010] where a variant of Angluin’s L∗ algorithm
is designed. The result is not a timed automata, but a Mealy machine where i/os are
timelines, called Timed Event Systems. The method seems adapted for deterministic
systems only, as the timelines are defined by single values instead of intervals.

The work presented in [Saives and Faraut, 2014] takes place in a different context,
which is Activity Discovery of inhabitants in Smart Homes. Data mining approaches
are used to build an Extended Finite Automaton (an automaton with guards and vari-
ables) from a set of observed sensor events. The resulting model is an automaton that
represents the sequences of events mirroring the frequent habits of the inhabitant. The
method was extended in [Saives et al., 2015b] to include a diagnosis method, to detect
deviations in the behaviour of the inhabitants. The method is unapplicable to reactive
systems, since only sensor events are considered. Besides, sequence mining approaches
are statistical approaches which extract relations between the events in sequences. Even
if most of the behaviour contained in the sequence w is reproducible, any data mining
approach can not guarantee fitness, i.e. that the whole sequence is firable.

1.3.2.3 Positioning on identification by Automata

The huge drawback of automata for our reverse-engineering problem is their simplic-
ity: impossible to represent compactly concurrent phenomena. Nevertheless, in cases
where the model is not destined to be read by human operators, for instance diagnosis,

26

1.3. Identification in the literature

simplicity of automata makes them good models, who can be computed and manipulated
at low cost.

1.3.3 Identification by Petri Nets

One of the first works in PN identification is [Hiraishi, 1992]. The method firstly
builds a DFA with one final state from a set of sequences, then builds a PN whose
language is equal to the one of the DFA.

Consider the set of sequences {ε, abdcefij, abdecfij, adbcefgh, adebcfgh}. The iden-
tified DFA is shown in Figure 1.16(a). States s0 to s7 are created with abdcefij, then
s8 with abdecfij, then s9 with adbcefgh and finally s10 and s11 with adebcfgh.

a
s0 X11

b

b

b

d

d

e

e

e c

c

f

g h

j i

s1

s2

s3

s4

s5 s6

s7

s8 s9

s10

s11

𝑎

𝑏 𝑐

𝑒 𝑑

𝑓

𝑔

𝑖

ℎ

𝑗

(a) (b)

Figure 1.16: From [Hiraishi, 1992]: (a)The finite acceptor and (b) the PN deduced from
it.

Then, one transition is created for each event, and language dependencies Ldep are
constructed from the DFA:

Ldep =

{(h, a), (j, a), (a, b), (a, d), (b, c), (d, c), (d, e), (c, f), (e, f), (f, i), (f, g), (i, j), (g, h)}

These dependencies are homogeneous to strings of length 2. Transition dependencies are
built from the DFA. If two transitions have been consecutively observed in both orders,
they are therefore considered independent (concurrent).

D−(t) = {t′, (t′, t) ∈ Ldep ∧ (t, t′) 6∈ Ldep}
D+(t) = {t”, (t, t”) ∈ Ldep ∧ (t”, t) 6∈ Ldep}

Then one place is created for each dependency, leading to the PN of Figure 1.16(b). Its
language is equal to the language of the DFA of Figure 1.16(a).

This method is not applicable without the hypothesis of cyclicity, or if an event
occurs twice in the same observed sequence. This approach requires the building of an
intermediate DFA, hence of a language, which notably includes exceeding strings (for
instance, adbecfij). This first step is homogenous to numerous approaches presented in
the previous section.

Recent PN identification approaches can be split in two classes: the ones homogenous
to the second step of [Hiraishi, 1992], which aim at building a net from a complete

27

Chapter 1. Identification of Discrete Event Systems

description of its behaviour (given as a language or a transition system), and the ones
who build nets directly from an incomplete collection of observed sequences.

1.3.3.1 Building PN from completely observed languages

The problem of building a net from a language has received some attention in the
literature. The approaches presented here however deviate from identification as pre-
sented in Section 1.2, as there is no experimental background; however they are perfectly
adapted for building nets from specifications given as languages.

The problem here consists in creating a PN from a given original language L. A
very good review of this problem can be found in [Cabasino et al., 2015], where the
authors distinguish two problems. They call net synthesis the problem of building a
Petri net N such that L = L(N), whereas the problem of identification aims for an
inclusion L ⊆ L(N). This section presents results related to the first case, in which a
full set of counter-examples is available, since every string not belonging to the original
language must be forbidden in the net. Recall that counter-examples are never available
in identification of real systems.

Region theory

Region theory has been developped in order to synthesize a Petri Net N from a
specification given as a DFA, such that the reachability graph of N is isomorphic to the
original DFA, hence no exceeding language is generated by the net. Extensive details on
research in this field can be found in a recently published book [Badouel et al., 2015].

Polynomial algorithms exist to solve this problem for bounded Petri Nets [Badouel
et al., 1995]. However, the same problem for the specific subclass of Elementary Nets is
proven to be NP-complete [Badouel et al., 1997]. An Elementary Net is a 1-bounded PN,
the marking being defined as a subset of the places. Additionally, it can neither contain
self-loops, nor duplicate places, nor duplicate transitions, nor isolated transitions.

The idea of the synthesis [Desel and Reisig, 1996] is to compute regions from the
DFA, and associate a place to each of these regions.

Definition 1.19 (Region). A region of a DFA is a subset of its states r ⊂ S such that
each event e ∈ E verifies exactly one of the three mutually exclusive conditions:

• e enters r, i.e. ∀(s, s′), s e−→ s′ ⇒ (s 6∈ r ∧ s′ ∈ r)

• e exits r, i.e. ∀(s, s′), s e−→ s′ ⇒ (s ∈ r ∧ s′ 6∈ r)

• e crosses no border,i.e. ∀(s, s′), s e−→ s′ ⇒ (s ∈ r ⇔ s′ ∈ r)

Figure 1.17 illustrates this notion: r = {s1, s2, s3} is a region; b enters r, c exits r,
and a, d do not cross the border. Verifying if a subset of states is a region can be done
in polynomial time, but finding all regions in a given graph is NP-complete. Once a
region is found, it is associated to a place whose pre-transitions are the events entering
the region, and post-transitions the events exiting the region.

28

1.3. Identification in the literature

b
s1

a

d

a

d

a

d d

b c

c
s2

s3

b c

Figure 1.17: Illustration of a region, and its elementary net equivalent

Resolution by Integer Linear Programming

While region theory takes a transition system as input, the studies presented in this
section directly consider languages.

Given a finite, prefix-closed language L, and introducing k as the maximal length
of the strings in L, the authors of [Giua and Seatzu, 2005] consider a synthesis prob-
lem: building a PN (N,M0) whose generated language up to length k is exactly L

(Lk(N,M0) = L). The method proposed by the authors consists in solving an In-
teger Linear Program (ILP) to find the incidence matrices (Pre,Post) and the initial
marking(M0) of the net; the number of places m is fixed, and the net being free-labelled,
the n transitions are already known. The set of positive samples and inferred counter-
examples are respectively E and D:

E = {(σ, tj)|σ ∈ L, |σ| < k, σtj ∈ L}

D = {(σ, tj)|σ ∈ L, |σ| < k, σtj 6∈ L}

A linear characterization is then provided:

G(E ,D)
∆
=



M0 + Post.−→σ − Pre.(−→σ +−→εj) ≥
−→
0 ,∀(σ, tj) ∈ E

−KSσ,j +M0 + Post.−→σ − Pre.(−→σ +−→εj) ≤ −
−→
1m,∀(σ, tj) ∈ D

t−→1 Sσ,j ≤ m− 1,∀(σ, tj) ∈ D
M0 ∈ Nm

Pre, Post ∈ Nm×n

Sσ,j ∈ {0, 1}m

And the solution can be computed by solving the following ILP, where f(M0, P re, Post)

is a cost function to minimize. For instance, t−→1m.M0 + t−→1m.(Pre+Post)
−→
1m to minimize

29

Chapter 1. Identification of Discrete Event Systems

the sum of tokens and weights of edges.{
minf(M0, P re, Post)

s.t.G(E ,D)

For instance, given L = {t1, t1t1, t1t2, t1t1t2, t1t2t1}, the identified net is presented
in Figure 1.18(a). By adding a marking constraint m1 + m2 = const, the net of Fig-
ure 1.18(b) is obtained. Notice that the second net verifies Lk(N,M0) = L, but possesses
exceeding language since Lk+1(N,M0) 6= ∅.

Figure 1.18: [Giua and Seatzu, 2005] Two free-labelled, generalized nets identified from
solving ILP

The knowledge of the number of places is reduced to the knowledge of an upper
bound in [Cabasino et al., 2007], and an extension of the procedure to λ-free nets is also
proposed (i.e. nets whose events can label multiple transitions). In these approaches,
the language is assumed to be completely known, making the construction and use of
counterexamples D possible. These counterexamples are not available in our hypotheses
due to the incompleteness of the observation, as shown in Section 1.2.2. Besides, inputs
or outputs are unrelated to events.

1.3.3.2 Building PN from incomplete observation

In this section, different methods using one (a set of) observed sequence(s), and
assuming incomplete observation, are reviewed. A set of sequences can be interpreted
as an observed language L, the aim being then to build a net N such that L ⊆ L(N).

Resolution by Integer Linear Programming

This principle, firstly used in [Giua and Seatzu, 2005] with complete languages, has
then been used in numerous works.

Instead of considering full knowledge of the language in the beginning of the proce-
dure, the authors of [Dotoli et al., 2008] propose an incremental approach, where an ILP
is solved after each new observation. An observation consists in recording an event and
the markings of places, so knowledge on the structure is already accessible. A new λ-free
PN is computed after each observation. However, the longer the observation, the harder
it is to solve the ILP due to the increase of the maximal length of the language (the
complexity of the resolution being exponential with the number of variables, dependant

30

1.3. Identification in the literature

on k). Besides, the idea of iteratively computing a model is questionable; whichever the
use of the model, it can be computed offline, with access to the whole data record.

Similarly, a theoretical approach of active identification based on ILP resolution is
proposed in [Basile et al., 2012]. Events labelling transitions are split into controllable
and uncontrollable events, the idea being to send controllable events (i.e. fire controllable
transitions) and observe the response of the systems in terms of uncontrollable events.
The obervation is stopped when cycles are detected, and an ILP is solved thereafter to
infer a net structure consistent with the response.

The addition of time has been considered in [Basile et al., 2011] where Determin-
istic Timed PN are built, the transitions being assigned a fixed firing time value. An
extension to time intervals was later proposed in [Basile et al., 2016c], where Timed PN
are identified. The knowledge of upper and lower bounds on the time intervals helps
designing timed counterexamples to include in the ILP. An extension to labelled Timed
PN was also proposed in [Basile et al., 2016b].

In the presented approaches, PN identification is always coupled to fault diagnosis
purposes [Fanti and Seatzu, 2008]. A series of extensions have been considered to add
faulty behaviour to an already known nominal PN. These whitebox approaches proceed
by adding faulty, silent (ε-labelled) transitions to a nominal model, thus extending the
previous results to arbitrary PNs. The authors of [Dotoli et al., 2010] use an incremental
approach, and assume the knowledge of the markings; the authors of [Cabasino et al.,
2014] assume the knowledge of both the nominal and the faulty behaviours of the system
as languages; finally, the authors of [Basile et al., 2015] add time to the identified faulty
transitions (extended to labelled Timed PN in [Basile et al., 2016a]). An example
from [Cabasino et al., 2014] is presented in Figure 1.19; the nominal language was
L = {ε, t1, t1t2, t1t2t3}, and the faulty language of length 4 is LF4 = L∪ {t1t2t2, t1t2t2t2}.

(a) (b)

Figure 1.19: [Cabasino et al., 2014](a)Nominal net; (b) Faulty net with two silent tran-
sitions

Identification of ordinary and stochastic nets

A theoretical approach to build a PN from a sequence of events is proposed in [Ould
El Medhi et al., 2006]. The events are not related to a real system. The idea is to
build a direct event propagation matrix B from an observed sequence of events, such
that Bij = 1 iff ei and ej were observed consecutively in that order in the sequence. For
instance, given Seq = e1e2e1e3e4e1, the matrix B of Figure 1.20 is built:

31

Chapter 1. Identification of Discrete Event Systems

𝑒1

𝑒3

𝑒2

𝑒4

B =

0 1 0 1
1 0 0 0
1 0 0 0
0 0 1 0

Figure 1.20: The matrix B and the Petri net computed from Seq

Then, for each column j of B, a place pj is created such that •pj = ej and Bij 6=
0 ⇒ ei ∈ p•j . The net of Figure 1.20 is obtained by this construction. Additional
rules are given in [Lefebvre and Leclerq, 2011] to merge places with the same output,
duplicate transitions and compute an initial marking. A learning algorithm based on
Neural Networks was also proposed in [Ould El Medhi et al., 2006] to find PNs with a
minimal number of places.

An inherent hypothesis of this work is that all causalities, as in succession of re-
lated events, were observed. Besides, the use of only sequential relationships forbids
the discovery of concurrency and of long-term dependencies. The proposed method was
extended to stochastic models in [Lefebvre and Leclerq, 2011], in a context of fault diag-
nosis; faulty transitions are identified and associated with exponential time distributions,
whereas normal distributions are associated to nominal transitions.

The sequentiality rule used in the approach building the nominal model is close to
rules defined and used in the α-alogrithm [Van der Aalst et al., 2004], which is the
pioneer algorithm of the field of Process Mining, detailled thereafter.

Process Mining approaches

Huge business processes generate flows and flows of data, which are recorded in
databases of event logs. More and more events are recorded providing detailed infor-
mation about the history of processes. Despite the omnipresence of event data, most
organizations diagnose problems based on fiction rather than facts . Process mining is
an emerging discipline providing comprehensive sets of tools to provide fact-based insights
and to support process improvements. This new discipline builds on process model-driven
approaches and data mining.([Van der Aalst, 2013a]). Unlike real systems, the logs are
passive recordings of activities, exhibiting absolutely no reactive behaviour.

As presented in Figure 1.21, Process mining approaches are used for three main
applications. Discovery methods produce models from event logs without apriori infor-
mation. Conformance methods compare an event log to an existing process model, to
detect, locate and explain deviations. Finally, enhancement consists in improving ex-
isting models by using information recorded in an event log. While conformance issues
would be related to fault diagnosis for DES, enhancement and discovery can respectively
be seen as whitebox and blackbox identification approaches.

32

1.3. Identification in the literature

Figure 1.21: [Van der Aalst, 2013a] Positioning of the three main types of process mining:
discovery, conformance and enhancement

Notable examples of business processes are insurance agencies, banks, hospitals, man-
ufacturers, government agencies, municipalities, . . . The interested reader is refered to
the reference book [Van der Aalst, 2011b] for further information. In this section, only
some discovery methods are presented.

The first algorithm introduced for process (or workflow) mining is the α algorithm
[Van der Aalst et al., 2004]. To model the processes, the specific subclass of workflow
nets is considered:

Definition 1.20 (Workflow nets). A workflow net is a Petri net N = (P, T,W) with
the following three additional properties:

1. Object creation: P contains a place i such that •i = ∅

2. Object completion: P contains a place o such that o• = ∅

3. N̂ = (P, T ∪ t̂,W), where •t̂ = o and t̂• = i is strongly connected

Initially, only the input place is marked. This definition is extended to sound work-
flow nets (SW-nets):

Definition 1.21 (Sound Workflow nets). A workflow net N = (P, T,W) is sound iff
the following properties are verified:

1. N is 1-bounded

2. Proper completion: if o is marked, then it is the only place marked

3. Option to complete: the marking of the output place is always reachable from any
reachable marking

4. No dead transitions

The idea of the algorithm is to discover relationships between the activities recorded
in the log, based on their order in the log.

33

Chapter 1. Identification of Discrete Event Systems

Definition 1.22 (Relationships between activities). Consider two activities A and B. :

1. B directly follows A, written A > B, iff AB is observed in the log

2. A directly causes B, written A → B, iff A > B and B 6> A

3. A and B are indifferent, written A # B, iff A6>B and B 6> A

4. A and B are parallel, written A ‖ B, iff A > B and B > A

For instance, consider the log L = {ABCD,ACBD,AED}, on the activity set
T = {A,B,C,D,E}. It comes A → B, A → C, A → E, B → D, C → D, E → D, and
B ‖ C. The definition of the parallel relationship implies completeness of the log, since
two parallel activities must have been sequentially observed in both orders.

The α-algorithm extracts these relations from the log, and computes a set X of
relationships between activities sets:

X = {(A,B) ∈ 2T × 2T |∀A∈A,∀B∈B, A→ B ∧ ∀A1,A2∈A2 , A1#A2 ∧ ∀B1,B2∈B2 , B1#B2}

The construction of X runs in exponential time with the number of activities. Then,
the set Y of the maximal relationships from X is computed, and is translated into places.
The application of α to L leads to the following construction:

T = {A,B,C,D,E} the set of activities

Ti = {A} the set of initial activities

To = {D} the set of final activities

X = {({A}, {B}), ({A}, {C}), ({A}, {E}), ({B}, {D}),
({C}, {D}), ({E}, {D}), ({A}, {B,E}), ({A}, {C,E}),
({B,E}, {D}), ({C,E}, {D})} the set of relationships

Y = {({A}, {B,E}), ({A}, {C,E}), ({B,E}, {D}), ({C,E}, {D})} the maximal set

P = {i, o, p({A}, {B,E}), p({A}, {C,E}),
p({B,E}, {D}), p({C,E}, {D})} the set of places

W = {(i, A), (A, p({A}, {B,E})), (p({A}, {B,E}), B), . . . } the set of edges

The resulting net is presented in Figure 1.22.
Numerous extensions to α have been proposed through the years, some being sum-

marized in [Van Dongen et al., 2009]. Like α, some rule-based approaches have been
developped to deal with different classes of nets (for instance non free-choice nets with
α++ [Wen et al., 2007] or T-invariants discovery [Tapia-Flores et al., 2014], block-
structured workflow nets [Leemans et al., 2013], . . .). Other approaches took inspira-
tion in languages, proposing learning [Esparza et al., 2010], region-based [Bergenthum
et al., 2007], or partial-order based [Lorenz et al., 2007] algorithms. Heuristics have also
been proposed [Van der Aalst et al., 2005], as well as probabilistic models to deal with
incomplete logs ([Van Hee et al., 2011],[Leemans et al., 2014]).

34

1.3. Identification in the literature

Figure 1.22: [Van der Aalst et al., 2004] The net mined by the α-algorithm from the log
{ABCD,ACBD,AED}

Most, if not all of these algorithms, are available in ProM1, an open-source framework
for implementing process mining tools.

Finally, this tour of PN identification is concluded by the section closest to the
hypotheses set in Section 1.2, where IPNs are identified from input/output sequences.

Identification of Interpreted Petri Nets

Historically, the first approach identifying Interpreted Petri Nets from a sequence
is the one presented in [Meda-Campana, 2002]. The procedure proceeds in two steps
([Meda et al., 1998] and [Meda-Campana and Lopez-Mellado, 2001]): first it computes
the observable places, such that there exists exactly one place for each output signal; then
the non observable places of the net are inferred from T-semiflows. A T-semiflow is a
firing sequence σ such thatM σ−→M . Considering that only some places are observable,
the notion of T-semiflow is reduced to m-words. A m-word is a firing sequence σ such
that MObs

σ−→MObs, where MObs is the restriction of the marking to observable places.

To understand the method, it is illustrated on the following example extracted from
[Meda-Campana and Lopez-Mellado, 2001]. The system considered has 7 outputs, and
the first observed output vectors are:

w =



0

0

0

0

0

0

0





1

0

0

0

0

0

0





0

0

0

0

0

0

0





0

1

0

0

0

0

0





0

0

0

0

0

0

0





0

0

0

1

0

0

0


. . .

The idea is to discover cycles within w. The approach is incremental, as w will be
read, and the net updated every time a new cycle is discovered. Here, for the first cycle

1http://www.processmining.org/prom/start

35

Chapter 1. Identification of Discrete Event Systems

detected:

w(1) = w(3) = t
[
0 0 0 0 0 0 0

]
Cycle discovered

•p1(o1) = t1, p1(o1)• = t2 Building transitions

m1 = t1t2 A m-word is computed

W1 = m1 A T-semiflow is inferred

The resulting net is presented in Figure 1.23(a). Then, a new cycle is discovered from
w(3) = w(5), a new m-word m2 = t3t4 is computed, and the T-semiflow W1 is extended
to W1 = m1m2; the resulting net can be seen in Figure 1.23(b). Same for m-word
m3 = t7t11, which leads to the net in Figure 1.23(c). The observation of m-word m4 =

t8t9t10t13 leads to W1 = m1m2m3m4 and the net of Figure 1.23(d). m1 is then observed
again, then m5 = t5t6. A new T-semiflow W5 = m1m5 is inferred, leading to the net of
Figure 1.23(e). Finally, the observation of m6 = t7t8t9t11 leads to modifications of the
net visible in Figure 1.23(f): dependency [t6, t7], concurrency of t8 and t11. The rules
behind the modifications are detailed in [Meda-Campana and Lopez-Mellado, 2001].

𝒑𝟏 𝑡7

𝑡11 𝑡12

𝑡10 𝑡13

𝑡6 𝑡5

𝑡3 𝑡4

𝑡2 𝑡1

𝑡8 𝑡9

𝒑𝟐

𝒑𝟑 𝒑𝟓

𝒑𝟒

𝒑𝟔

𝒑𝟕

𝒑𝟏 𝑡7

𝑡11 𝑡12

𝑡10 𝑡13

𝑡3 𝑡4

𝑡2 𝑡1

𝑡8 𝑡9

𝒑𝟐

𝒑𝟓

𝒑𝟒

𝒑𝟔

𝒑𝟕

𝒑𝟏 𝑡7

𝑡11 𝑡12

𝑡10 𝑡13

𝑡6 𝑡5

𝑡3 𝑡4

𝑡2 𝑡1

𝑡8 𝑡9

𝒑𝟐

𝒑𝟑 𝒑𝟓

𝒑𝟒

𝒑𝟔

𝒑𝟕

𝒑𝟏 𝑡7

𝑡11

𝑡3 𝑡4

𝑡2 𝑡1
𝒑𝟐

𝒑𝟓

𝒑𝟏

𝑡2 𝑡1

𝒑𝟏

𝑡3 𝑡4

𝑡2 𝑡1
𝒑𝟐

𝑊1 = 𝑚1 𝑊1 = 𝑚1𝑚2

𝑊1 = 𝑚1𝑚2𝑚3 𝑊1 = 𝑚1𝑚2𝑚3𝑚4

𝑊1 = 𝑚1𝑚2𝑚3𝑚4
𝑊5 = 𝑚1𝑚5

𝑊1 = 𝑚1𝑚2𝑚3𝑚4
𝑊5 = 𝑚1𝑚5
concurrent= [[𝑡8, 𝑡12],[𝑡9, 𝑡11]]

(a)

(c)

(e)

(b)

(f)

(d)

Figure 1.23: [Meda-Campana and Lopez-Mellado, 2001] 6 nets incrementally computed
from the observed output sequences

Notice that the approach only considers output signals. The function λ associating
input conditions to transitions is not computed, so this approach is not sufficient enough
to express the whole behaviour of a reactive DES. However, the identification algorithm
runs in polynomial time with the length and the number of observed m-words, which is
a good quality.

A similar approach is presented in [Estrada-Vargas et al., 2014], where inputs and
outputs are both considered. This approach computes first the unobservable places by

36

1.3. Identification in the literature

inferring input event cycles, then adds the observable places. It is illustrated by the
following example: a system with three binary inputs {a, b, c} and four binary outputs
{A,B,C,D}. The system is represented by the vector t

[
a b c | A B C D

]
,

and the observed vector sequences are:

Notice that all sequences are supposed to start from the same vector. Then, only the
inputs are considered for the events building, From w1 is computed an event sequence
τ1 = e1e2, such that λ(e1) = a_1 and λ(e2) = ε. Indeed, only the rising edge of a was
observed on the inputs between w1(1) and w1(2), and no input event between w1(2) and
w1(3). The three observed vector sequences become:

τ1 = e1e2

τ2 = e1e3e4e5e6

τ3 = e1e3e5e4e6

with

λ(e1) = a_1, λ(e2) = ε, λ(e3) = b_1c_1, λ(e4) = b_0, λ(e5) = c_0, λ(e6) = a_0

A parameter κ homogoneous to the parameter k of [Klein, 2005] is introduced (the works
also share the hypothesis of sequences starting from the same vector). Similarly, κ deter-
mines the length of substrings to be considered, and is a parameter to be tuned regarding
the completeness of the observation, for accuracy purposes (see Section 1.3.2.1). The
substrings of length κ are here associated to transitions instead of states.

For κ = 2, the following substrings are computed:

τ 2
1 = εe1, e1e2

τ 2
2 = εe1, e1e3, e3e4, e4e5, e5e6

τ 2
3 = εe1, e1e3, e3e5, e5e4, e4e6

From these substrings is computed the net of Figure 1.24(a). Notice that two transitions
have been created for events e4, e5 and e6. Since t6 and t9 are labelled by the same event
and share the same future (post-place), they are merged (Figure 1.24(b)). The Petri Net
looks heavily like an automaton, the concurrency between e4 and e5 being separated.
Since the substrings e4e5 and e5e4 have both been observed, concurrency is inferred in
the next step, leading to the net of Figure 1.24(c).

Finally, interpretation is added by replacing the events by the labelling function
λ, adding the observable places and removing the implicit unobservable places. The

37

Chapter 1. Identification of Discrete Event Systems

(a) (b)

(c) (d)

Figure 1.24: [Estrada-Vargas et al., 2014](a) Basic identified model; (b) Model after
merging; (c) Model after concurrency simplification; (d) IPN model with observable
places

final result is the net of Figure 1.24(d). The construction of the net, except for the
concurrency simplification, runs in polynomial time with the length and number of
observed sequences. However, to conclude that n transitions are conccurent, and procede
to a simplification, it must be checked that n! paths representing all permutations are
present. Therefore, exhibiting concurrency is hard (exponential complexity), and the
condition is often not verified (due to the incompleteness of the observed data). The
IPNs offer a good reading of the reactive behaviour, but are most often state-machines
and do not compactly represent concurrency.

The discovery and explicit representation of concurrency is often troublesome. Some
recent works identifying IPNs in the context of closed-loop reactive systems suffer from
the same problem.

Namely, the authors of [Ladiges et al., 2015] use exactly the same method as the
authors of [Lefebvre and Leclerq, 2011] to compute first the unobservable places of the
net, called machine behaviour. Then, the signal part, i.e. the observable places, is
added, and consists in a couple of places corresponding respectively to the high and low
levels of a sensor. The resulting net is called Machine-State Petri Net. An example of a
MSPN is given in Figure 1.25.

The approach has the same drawbacks as [Lefebvre and Leclerq, 2011], such as the
lack of explicit concurrency in the model. Besides, there is also no distinction between
input and output signals, as transition are labelled with signal events related to events
associated to observable places.

In an approach very similar to [Estrada-Vargas et al., 2014], an incremental IPN iden-
tification approach is proposed in [Munoz et al., 2014], with an extension to stochastic-
time IPNs. The algorithm identifying the structure is essentially the same, without the

38

1.4. Conclusions and positioning

Figure 1.25: Left: Unobservable part (machine behaviour). Right: Observable part
(signals)

steps of model simplification. Namely, the PNs identified are state-machines, and no
procedure is proposed to deal with concurrency. Besides, the notion of observable places
is missing; each place is assigned an output vector instead, degrading the understand-
ability.

Finally, [Estrada-Vargas et al., 2015] proposed a method computing firstly compact
observable models, and then inferring unobservable places. The models are easily read-
able and explicit the reactive behaviour and concurrency. Since the contributions of
this thesis are based on the method proposed in this work, it is extensively detailed in
Chapter 2.

1.4 Conclusions and positioning

The identification problem stated in Section 1.2 deals with closed-loop logical sys-
tems. The technology of the PLC makes the observation of simultaneous input and
output events possible, meaning that events are replaced by event vectors. Further-
more, counter-examples are unavailable when a real system is observed, namely when
the system observed is highly concurrent. These hypotheses differ from those made in
most of the related works. Namely, some language, region based or synthesis methods
are impossible to use in our context due to the hypothesis of incompleteness and the
lack of counterexamples; active or whitebox approaches are also set aside.

Regarding the resulting model, finite automata lack the semantics to represent con-
currency, even in the form of Mealy or Moore machines. To model a non deterministic
system, which exhibits concurrency, Petri Nets have the adapted semantics.

Process mining approaches are restrictive in the subclass of nets considered (fixed
starting and ending activities), and do not consider inputs and outputs, therefore are
inadapted to represent reactive behaviour. Using Interpreted Petri Nets is however
appropriate to model the reactive behaviour, as the input conditions added to the tran-

39

Chapter 1. Identification of Discrete Event Systems

sitions are expressively the cause of the outputs associated to places. Table 1.4 resumes
the similarity between IPNs and the reactive closed-loop systems which are of interest
in this thesis.

Closed-loop DES IPN
State variables X P
State of cycle k X(k) Mk

State evolution
function

X(k + 1) = g(U(k), X(k))

Mk+1 = Mk + C.ti

if Mk(Pj, ti) ≥ I(Pj, ti)∀Pj ∈ P
and λtj(k) = 1

Output function Y (k) = g(U(k), X(k)) Y (k) = ϕ(Mk)

Table 1.1: Similarity between closed-loop systems and IPN

The chosen model class is introduced in the problem of this thesis:
(Reformulated) Problem Statement Consider a logical closed-loop system con-

trolled by a PLC, under the hypotheses of Section 1.2. Identify, from an observed vector
sequence w, an IPN that exhibits the reactive behaviour and reproduces w.

An approach satisfying the problem must be appropriate for blackbox, passive identi-
fication, and take into account the logical I/Os, the technology of the PLC (cyclicity and
synchronization), and can not use counter-examples due to the incompleteness of the
observation. A previous method was developed in [Estrada-Vargas et al., 2015], where
all these hypotheses are respected, and the resulting models are satisfyingly compact and
expressive for reverse-engineering. The present thesis is based on these results; they are
therefore resumed in next chapter. Some challenges regarding scalability or genericity
of the approach will be pointed out, leading to the development of the contributions of
this thesis in the following chapters.

40

Chapter

2
Blackbox behavioural identification

of a reactive automated system

Introduction

The problem of identification of a reactive DES has been formulated in section 1.2.
Previous inquiries([Estrada-Vargas et al., 2015]) have led to the design of a method in
two steps to build an Interpreted Petri Net from the observation of the system during
its functioning. The aim of this chapter is to recall and illustrate this method, not only
to show its relevance, but also to point out difficulties that will be alleviated by the
contributions of this thesis. Section 2.1 presents the motivation for the design of the
method, based on the observed vector sequence. Section 2.2 presents the computation of
the observable behaviour, and Section 2.3 the rule-based inference of the unobservable
behaviour.

2.1 Two behaviours: Observable and Unobservable

2.1.1 Event types

A system with m logical inputs and n logical outputs is considered. The starting
point of the method is a sequence of observed vectors w. ∀k, w(k) ∈ {0, 1}n+m,1 , each
row of w representing the level of the input/output at the end of the PLC cycle k.
Formally,

w(k) =

U(k)

−
Y (k)

 with U(k) =


u1(k)

u2(k)

. . .

um(k)

 and Y (k) =


y1(k)

y2(k)

. . .

yn(k)


Then, the event vector sequence E is computed from w as ∀k,E(k) = w(k+1)−w(k)

(Section 1.2.1). Similarly, ∀k,E(k) ∈ {−1, 0, 1}n+m,1, each row of E representing events
associated to inputs and outputs. The rows of E are split into elementary input events

41

Chapter 2. Blackbox behavioural identification of a reactive automated system

IE{1...m} and elementary output events OE{1...n}. Formally,

E(k) =

 IE(k)

−
OE(k)

 with IE(k) =


IE1(k)

IE2(k)

. . .

IEm(k)

 and OE(k) =


OE1(k)

OE2(k)

. . .

OEn(k)


For each input ui ∈ U, two elementary input events exist: its rising edge noted ui_1

or ↑ ui, and its falling edge noted ui_0 or ↓ ui. Given k, a 1-cell of IE(k) corresponds
to the rising edge of the corresponding input (IEi(k) = 1 ⇔ ui_1), whereas a (-1)-cell
corresponds to its falling edge(IEi(k) = −1⇔ ui_0). A null cell means that the input
has not changed between the two successive observations w(k+1) and w(k), i.e. between
the two cycles of the controller. The same definitions stand for output events OEi(k)

and outputs yi ∈ Y. Recall that multiple cells can be non-zero in each E(k), due to the
technology.

Depending on the values of IE(k) and OE(k), there are four different possibilities
for E(k), which can be interpreted according to the technology of the PLC:

Type1. IE(k) 6= 0 ∧OE(k) 6= 0 At least one input change has probably directly caused
at least one output change. This reactive behaviour is observed in the same PLC
cycle.

Type2. IE(k) = 0 ∧OE(k) 6= 0 An output change is observed despite the lack of input
change. The controller has reached a state X(k), where the current input levels
enabled the output change.

Type3. IE(k) 6= 0 ∧OE(k) = 0 Two possibilities:

• a)X(k) 6= X(k−1). The input change has provoked a non-observable change
in the state variables.

• b)X(k) = X(k − 1). The input change is irrelevant for the controller in its
current state.

Type4. IE(k) = 0 ∧OE(k) = 0 Two possibilities:

• a)X(k) 6= X(k − 1). The controller follows autonomously a state trajectory
without input or output changes

• b)X(k) = X(k − 1). The controller remains in a stable state.

Type1 is the behaviour closest to DES theory: an input event has caused an output
event. The causality extracted is associated as an event to a transition in the IPN.

Type2 represents on the other hand causalities of input levels on outputs. The input
event that put the controller in the state trajectory provoking the output event occurred

42

2.1. Two behaviours: Observable and Unobservable

some cycles ago. The level of the causal input however remains until the output change.
This causality is associated as a level condition associated to a transition.

Type3.a is an input change that changed at least one of the state variables of the
controller, typically counters or memories. However, these variables being unknown, it
is impossible to compute precisely such an internal evolution. By studying the context
of the input firing, it might however be possible to infer the state evolution. In this
case, since no output event occurred, unobservable places represent the states reached.
Type4.a represent also internal state evolutions, without input changes, such as timers.

Finally, there is nothing to be guessed for Types3.b and 4.b, since nothing happened
in the controlled. Furthermore, Type4 evolutions are not even recorded, since nothing
was observed on the I/O signals (w(k + 1) = w(k), or equivalently E(k) = 0).

Type1 and 2 represent observable behaviour; whereas types3a and 4a represent unob-
servable behaviour. The first one is expressed by observable transitions, labelled by the
event and conditions on the inputs, connected to observable places, labelled by the out-
puts. The second one is represented by unobservable places, agregating the evolutions
of unknown state variables, and connecting the transitions.

2.1.2 Framework of the method

From the distinction between observable and unobservable behaviour pointed in the
last section, the proposed method consists firstly in building the whole observable be-
haviour, then to infer unobservable state evolutions. The framework is presented in
Figure 2.1. In short:

• The sequence w is built from one (or multiple) observation(s) of the system, long
enough to have observed some production cycles. As presented in Section 1.2.2,
the observation remains however incomplete, and it is not required to observe all
possible interleavings of concurrent subprocesses. (First box of Figure 2.1)

• The observable parts of the PN, i.e. transitions and observable places, are built.
Firstly, the sequence w is analyzed to build causality matrices, from which the
input causes of output events are extracted, and formalized as output firing func-
tions. Then, one observable place is created for each output, and transitions are
built to represent the output events; they are labelled with the consistent output
firing functions. At the end of this step, all transitions and observable places are
computed. Finally, the sequence w is projected on the just computed transitions,
and translated into a firing sequence S. (Second box of Figure 2.1, detailed in
Section 2.2)

• It remains to infer and add the unobservable places of the identified PN, such
that the sequence S becomes firable. Causal and concurrency relations are defined
on transitions, and decided according to rules. These relations are associated to
unobservable PN fragments, that are added to the net. The structure is then

43

Chapter 2. Blackbox behavioural identification of a reactive automated system

verified by the token flow, and corrected if required. (Third box of Figure 2.1,
detailed in Section 2.3)

Observed I/O vectors
sequence w

𝑤 =

0
0
⋮
0
0
⋮
0

0
0
⋮
1
1
⋮
0

1
0
⋮
1
1
⋮
1

…

0
1
⋮
0
0
⋮
0

Inputs

Outputs

Observable part :
IPN expressing I/O causality

t7t3

t1 t5

t2 t6

t4

B

A+

A- C

𝜆(𝑡𝑖) = 𝐹𝑖(𝕌) • 𝐺𝑖(Σ)

Unobservable part :
PN ensuring the firing of S

Inputs

Outputs

𝕌

𝕐

Controller

Plant

Reactive system

Identification of observable
reactive behaviour

Inference of unobservable
internal evolutions

Projection of w

t7t3

t1 t5

t2 t6

t4

B

A+

A- C

𝑆 = 𝑡1𝑡2𝑡3𝑡4𝑡1𝑡2𝑡4𝑡3𝑡5…

Firing sequence S

𝕌

𝕐

Observation and blackbox data collection

Figure 2.1: Data collection, then construction of an IPN in two steps

Before entering into details of each step, an example is presented, on which each step
of the method will be applied.

2.1.3 Illustrative example: Sorting system

This example is extracted from [Estrada-Vargas et al., 2015]. The considered system
consists in 4 outputs and 9 inputs, and is designed to sort parcels depending on their
size (Figure 2.2). When a parcel arrives on conveyor 1, its height is detected by either
k1 (small parcel) or k2 (big parcel). The small (resp. big) parcel is then pushed by the
double-acting cylinder A, who can be extended by A+ and retracted by A-, in front of
the single-acting cylinder B (resp. C) that pushes it on conveyor 2 (resp. 3). A new
parcel may arrive and be detected while another one is being treated by B or C. The
inputs a0,a1,a2 are three proximity sensors detecting the position of cylinder A. The
same goes for inputs b0,b1 (resp. c0,c1) and cylinder B (resp. C).

Figure 2.2: Illustrative example: a package sorting system

44

2.2. Identification of the observable behaviour

The observation was conducted during the treatment of 20 parcels, the first vectors
of the observed sequence w are shown below, corresponding to the arrival and sorting
of a small parcel, as well as the first vectors of the event sequence E computed from w.
The elementary events deduced from E are presented in Table 2.1.

k1

k2

a0

a1

a2

b0

b1

c0

c1

A+

A−
B

C

w =

w(1)

0

0

1

0

0

1

0

1

0

0

0

0

0



w(2)

1

0

1

0

0

1

0

1

0

1

0

0

0



w(3)

1

0

0

0

0

1

0

1

0

1

0

0

0



w(4)

0

0

0

0

0

1

0

1

0

1

0

0

0



w(5)

0

0

0

1

0

1

0

1

0

0

1

1

0



w(6)

0

0

0

1

0

0

0

1

0

0

1

1

0



w(7)

0

0

0

0

0

0

0

1

0

0

1

1

0



w(8)

0

0

0

0

0

0

1

1

0

0

1

0

0



E =

E(1)

1

0

0

0

0

0

0

0

0

1

0

0

0



E(2)

0

0

-1
0

0

0

0

0

0

0

0

0

0



E(3)

-1
0

0

0

0

0

0

0

0

0

0

0

0



E(4)

0

0

0

1

0

0

0

0

0

-1
1

1

0



E(5)

0

0

0

0

0

-1
0

0

0

0

0

0

0



E(6)

0

0

0

-1
0

0

0

0

0

0

0

0

0



E(7)

0

0

0

0

0

0

1

0

0

0

0

-1
0



2.2 Identification of the observable behaviour

2.2.1 Building output firing functions

The first step in the building of the observable behaviour consists in finding direct
causalities linking inputs and output events, which are the conditions and events who
label the transitions in the identified IPN.

Each occurence of an elementary output event OEj was caused either by one or
several input events occurring in the same PLC cycle (Type1), and by a condition
expressed on the levels of the inputs observed in the same cycle (Type2). The firing
function of the output event is defined accordingly by combining the two origins:

Definition 2.1 (Output Event Firing Function (OEFF)). An output event firing func-

Event vector Elementary Input Events Elementary output events
E(1) IE(1) =↑ k1 OE(1) = ↑ (A−)
E(2) IE(2) =↓ a0 OE(2) = ε
E(3) IE(3) =↓ k1 OE(3) = ε
E(4) IE(4) =↑ a1 OE(4) = ↓ (A−)∧ ↑ (A+)∧ ↑ B
E(5) IE(5) =↓ b0 OE(5) = ε
E(6) IE(6) =↓ a1 OE(6) = ε
E(7) IE(7) =↓ b1 OE(7) = ↓ B

Table 2.1: Elementary description of the first event vectors

45

Chapter 2. Blackbox behavioural identification of a reactive automated system

tion χ states necessary and sufficient conditions for the occurence of the output event
OEj. It is defined as:

χ(OEj) = G(OEj) • F (OEj)

where G : OE → 2IE and F : OE → 2U are functions on respectively the input events
and the input levels that express the necessary and sufficient conditions to trigger the
output event OEj.

Some inputs are observed in the same cycle as OEj, but might nevertheless not be a
cause; this fact happens often in systems exhibiting massive concurrency. To compute
G(OEj), the causes have to be extracted from all the observations of OEj. The Direct
Causality Matrix (DCM) is introduced for that purpose: it stores frequency informations
of all elementary input events that occured simultaneously with OEj. This information
can be interpreted as a probability:

DCMij(IEi, OEj) =
#(OEj ∧ IEi)

#(OEj)
= Prob(IEi|OEj)

where #(OEj∧IEi) is the number of PLC cycles in which OEj and IEi occur simultane-
ously (therefore are observed in the same event vector). The value of DCMij naturally
represents the probability that IEi is a necessary condition of OEj.

Similarly, the Indirect Context Matrix (ICM) is introducted to store the frequencies
of input levels present when OEi occurred:

ICM2i,j(ui = 1, OEj) =
#(OEj ∧ ui = 1)

#(OEj)
= Prob(ui = 1|OEj)

ICM2i+1,j(ui = 0, OEj) =
#(OEj ∧ ui = 0)

#(OEj)
= Prob(ui = 0|OEj)

Naturally, ICM2i,j + ICM2i+1,j = 1. The resulting matrices for the sorting system are
presented in Figure 2.3; there are 8 columns for the 8 elementary output events (|Y| = 4),
and 18 rows for the 18 elementary input events in the DCM, 18 possible input levels in
the ICM (|U| = 9).

When taking a closer look at the DCM, interesting values can be extracted. Namely,
one can see (1) that Prob(a1_1|B_1) = 1, which means that a1_1 is an input event
always present when output event B_1 occurred, hence a necessary condition. Notice
that no other input event was observed with B_1, hence a1_1 is a necessary and
sufficient condition, so G(B_1) = a1_1. Event conditions can be more complex (2), as
Prob(a1_1|A + _0) + Prob(a2_1|A + _0) = 1, which means that A + _0 is provoked
either by a1_1 or a2_1, so G(A+ _0) = a1_1⊕ a2_1.

The generic idea for computing the OEFF χ of an output event OEj is therefore to
seek probabilities equal to 1 in the columns of the matrices, to have the certainty that
a necessary condition is discovered. Regarding the event part, G(OEj) is computed as

46

2.2. Identification of the observable behaviour

1 2

3

Figure 2.3: Matrices computed for the sorting system. Left: Direct Causality Matrix,
Right: Indirect Context Matrix

a conjunction of event disjunctions:

G(OEj) =
∏
k

DisjEk

where DisjEk =
⊕

i IEi involves elementary input events whose probabilities sum to 1,
i.e.

∀i,DCMij 6= 0∑
i

DCMij = 1

The hypothesis is made that two distinct input events which can cause the firing of
OEj do not occur together, which explains the exclusive OR in the disjunction. Each
disjunction is a necessary condition for the triggering of the output event, and their
conjuction becomes a necessary and sufficient condition. This hypothesis was made to
avoid using the inclusion-exclusion principle, and therefore having to count all possible
simultaneous input event occurrences. This hypothesis is realistic when considering real
systems. The only case observed on a real system implies an input dedicated to safety:
the cause of the output event was either a functional input event, or a safety input event
(like an emergency stop button). It can occur that the safety is triggered simultaneously
with the functional input, but this remains a scarce behaviour.

A similar approach is conducted to compute the level part. Have a look at the column
B_1 of the ICM. Everytime B_1 occurred, the system was in the same state, input wise
(k1.k2.a0.a1.a2.b0.b1.c0.c1) This information is correct, but useless, since the values of
most sensors are irrelevant to the status of B, and do not have a direct influence on
it. Therefore, only inputs whose associated events were at least observed once with the
output event are considered influent. The function F (OEj) is therefore computed as a
conjuction of level disjunctions:

F (OEj) =
∏
k

DisjLk

47

Chapter 2. Blackbox behavioural identification of a reactive automated system

where DisjLk =
⊕

i ui with
∀i,DCMij 6= 0∑
i

ICMij = 1

For instance, when looking at A + _1 (3), non-zero entries in the DCM are k1_1,
k2_1, a0_1, b0_1, c0_1; in the ICM, Pr(k1 = 1|A + _1) + Pr(k2 = 1|A + _1) =

1,Pr(a0 = 1|A + _1) = 1,Pr(b0 = 1|A + _1) = 1 and Pr(c0 = 1|A + _1) = 1, so the
computed level function is G(A+_0) = (k1 = 1⊕k1 = 2)∧(a0 = 1)∧(b0 = 1)∧(c0 = 1).
The computed OEFFs for the example are summed up in Table 2.2.

OEj G(OEj) F (OEj)
A+_1 ε ((k1⊕ k2) ∧ a0 ∧ b0 ∧ c0)
A+_0 a1_1⊕ a2_1 (=1)
A-_1 a1_1⊕ a2_1 (=1)
A-_0 a0_1 (=1)
B_1 a1_1 (=1)
B_0 b1_1 (=1)
C_1 a2_1 (=1)
C_0 c1_1 (=1)

Table 2.2: Firing functions computed for the sorting system

It is possible that some inputs do not appear in the computed OEFFs, which means
that their events or levels could not be causally connected to an output. In which case,
a set of unassigned inputs D is created. In the case of the sorting system, D = ∅.

The problem of finding firing functions consists, for each column in the DCM, in
choosing the k non-zero cells, and find in these k cells all possible combinations that
sum to 1. To find all combinations, all subsets must be tested, hence 2k. Since there
are at most m inputs, hence 2m input events or levels, the complexity of finding firing
functions is at worst O(4m). In practice, in sequential systems, the number of inputs
simultaneously observed with a given output event remains low; however, it can reach
untractable values when systems grow bigger and exhibit more concurrency.

2.2.2 Construction of the transitions and observable places

From the OEFFs computed in Table 2.2, elementary IPN fragments are easily created.
One observable place is attributed to each output yj, then one pre-transition is created,
labelled with χ(↑ yj), and one post-transition is created, labelled with χ(↓ yj). In the
case of a non-assigned input ud ∈ D, two isolated transitions, labelled with ↑ ud and
↓ ud are created. The result for the sorting system is presented in Figure 2.4.

However, recall that multiple output events can occur in the same vector. In that
case, a single transition, generating the observed output events alltogether must be
created, and labelled with a firing function consistent with the OEFFs of all observed
output events. Therefore, for each observed vector E(k) such that there is at least one

48

2.2. Identification of the observable behaviour

Figure 2.4: Elementary observable fragments constructed from the firing functions

elementary output event (OE(k) 6= 0):

1. Consider all elementary output events OEj occurring in OE(k)

2. For each OEj, consider G(OEj)

3. Find in each disjunction of G(OEj) the input event IEj which occured in IE(k)

4. Build G =
∏

j IEj, where IEj are the input events chosen for all observed output
events OEj.

5. Repeat the procedure to build F =
∏

j uj, where uj are the input levels chosen for
all observed output events OEj

6. Create a transition, if not already existant, labelled by G • F , and adequately
connected to the observable places related to all OEj.

Two event vectors from the sorting system are considered to illustrate this construc-
tion. Consider E(1) in Table 2.1, verifying IE(1) =↑ k1 and OE(1) =↑ (A+). From
χ(↑ A+) in Table 2.2, there is only one disjunction to be considered (k1 ⊕ k2), from
which the first term is chosen. A transition is created as pre-transition of the observable
place A+, and labelled with (ε) • (k1 ∧ a0 ∧ b0 ∧ c0). This is illustrated in Figure 2.5.

A

)1_21_1(1 aa 

A

)1_21_1(1 aa 
B

1_11 a

AB

A

(=1)  (a1_1)

)000)21((cbakk

A

A

(k1  a0  b0  c0)  ()

t2

(t2) = (=1)(a1_1)

(t1) = (k1  a0  b0  c0)  ()

IE(1) = {k1_1} OE(1) = {A+_1}

I(2) = k1  a0  b0 c0

IE(4) = {a1_1} OE(4) = {A+_0, A_1, B_1}

I(5) = a1  b0 c0

Figure 2.5: Example of the creation of a new transition, by choosing the right input
conditions

49

Chapter 2. Blackbox behavioural identification of a reactive automated system

Consider now E(4), where OE(4) =↓ (A+)∧ ↑ (A−)∧ ↑ B, and IE(4) =↑ a1. The
event ↑ a1 is chosen in the disjunctions of G(↓ A+) and G(↑ A−). A transition is
created with A+ as pre-places and A− and B as post-places, labelled with ↑ a1. This
is illustrated in Figure 2.6.

A

)1_21_1(1 aa 

A

)1_21_1(1 aa 
B

1_11 a

AB

A

(=1)  (a1_1)

)000)21((cbakk

A

A

(k1  a0  b0  c0)  ()

t2

(t2) = (=1)(a1_1)

(t1) = (k1  a0  b0  c0)  ()

IE(1) = {k1_1} OE(1) = {A+_1}

I(2) = k1  a0  b0 c0

IE(4) = {a1_1} OE(4) = {A+_0, A_1, B_1}

I(5) = a1  b0 c0

Figure 2.6: Example of the creation of a new transition, based on a simultaneous output
events observation

Notice that some Event vectors such as E(2) or E(3) do not have elementary output
events; since the associated elementary input events do not belong to D, no transition
is created. The behaviour expressed by these events is not represented in the observable
part of the IPN. Indeed, these are sensor events who do not provoke a reaction of the
controller; they do not belong to the reactive behaviour of the system, and are therefore
not represented in the model, leading to a more compact model. The net computed is
shown in Figure 2.7. Notice that a single connected fragment was built in this case; in
the generic case, multiple more or less connected fragments and isolated transitions are
built.

Figure 2.7: Result of the first step for the sorting system: the observable part

It is worth noting that at least one transition is created for each different output
vector OEj observed. For highly concurrent systems, due to the synchronisation of the
controller, it is not uncommon to observe in the same event vector multiple output
events who belong to concurrent subprocesses, and are therefore unrelated. A transition
is created nevertheless in such a case. Suppose there are n concurrent subprocesses, each
consisting of 1 output, such that any combinations of output events is possible. There
are

∑n
k=1C

k
n2k potential transitions to build, if every combination is observed. Most of

50

2.3. Inference of the unobservable behaviour

these transitions are meaningless, and degrade the compacity and understandability of
the net.

2.2.3 Determination of the firing sequence

E is then projected on the freshly built transitions and converted into a firing se-
quence S. See Table 2.3

Event Elementary Elementary Equivalent
vector input events output events transition
E(1) IE(1) =↑ k1 OE(1) = ↑ (A−) t1
E(2) IE(2) =↓ a0 OE(2) = ε
E(3) IE(3) =↓ k1 OE(3) = ε
E(4) IE(4) =↑ a1 OE(4) = ↓ (A−)∧ ↑ (A+)∧ ↑ B t2
E(5) IE(5) =↓ b0 OE(5) = ε
E(6) IE(6) =↓ a1 OE(6) = ε
E(7) IE(7) =↓ b1 OE(7) = ↓ B t3

Table 2.3: Translation into the firing sequence of the first vectors of E

This operation can be conducted simultaneously with the construction of transitions;
E is parsed, the transitions are created if required at every new event vector, and S is
updated on the fly. The full firing sequence computed is:

S =t1t2t3t4 t1t2t4t3 t5t6t7t4 t1t2t3t4 t5t6t7t4 t1t2t3t4 t1t2t3t4 t5t6t7t4 t5t6t7t4 t1t2t3t4

t5t6t7t4 t5t6t7t4 t5t6t7t4 t5t6t7t4 t5t6t7t4 t1t2t3t4 t1t2t3t4 t1t2t3t4 t1t2t4t3 t1t2t3t4

At the end of this step, the observable behaviour is completely identified. All ob-
servable places and transitions are built, the labelling of the transitions expresses the
reactive behaviour, the model is compact, and the observed behaviour is expressed as a
firing sequence S.

2.3 Inference of the unobservable behaviour

It remains to infer unobservable places to express the internal, non-observable dy-
namics of the system (Type3.a). To keep the model compact, the idea is not to ex-
tensively detail each internal evolution, which would require the creation of additional
transitions, but instead to agregate the evolutions into unobservable places. The places
act as connectors that connect the observable fragments, in order to express the whole
behaviour of the system and be able to fire the sequence S.

Given an observable IPN GObs = (PObs, T, IObs, OObs), and a transition sequence
S = t1t2 · · · ∈ T ∗, the aim is to build an ordinary PN GNobs = (PNobs, T, INobs, ONobs)

with an initial marking M0 such that (G = GObs ∪GNobs,M0) is a complete IPN model
reproducing S, and 1-bounded.

The 1-boundedness condition ensures that the marking of the observable places re-

51

Chapter 2. Blackbox behavioural identification of a reactive automated system

mains binary, to adequately model the binary status of the associated outputs. Only
one sequence S, often very long, without knowledge of cycles, is available. No counter-
examples can be used (due to the incompleteness of the observation).

2.3.1 Finding Causal and Concurrent Transitions

The approach proposed is to infer relationships between transitions observed con-
sequently in S. Namely, suppose that tatb is a substring of S. Two possibilities can
explain this observation. The firing of ta might be a requirement for the firing of tb,
in which case the relationship is causal. Otherwise, ta and tb might belong to different,
concurrent subprocesses, and the firing of one does not affect the other. In this case, the
relationship is concurrent, and tbta might also be a substring of S. Figure 2.8 illustrates
these two possibilities.

Figure 2.8: Structures that represent ta < tb: a) shows a causal relationship whereas b)
shows a concurrent relationship

A few definitions are introduced to formalize this idea:

Definition 2.2 (Consecutive Observation). Let Seq ⊆ T ×T be the relation that defines
transitions observed consecutively in S.

Seq = {(ti, tj+1)|1 ≤ j ≤ |S| − 1}.

If (ta, tb) ∈ Seq, it is denoted ta < tb. If tatbta (or tbtatb) is a substring of S, then (ta, tb)

are said to be in a two-cycle (cycle of length two) TC.

For instance, the firing sequence of Section 2.2.3 S = t1t2t3t4 t1t2t4t3 t5t6t7t4 t1t2t3t4

t5t6 . . . leads to:

Seq = {(t1, t2), (t2, t3), (t3, t4), (t4, t1), (t2, t4), (t4, t3),

(t3, t5), (t5, t6), (t6, t7), (t7, t4), (t4, t5), (t3, t1)}

No transitions are in a two-cycle.

Definition 2.3 (Causal and Concurrent transitions). Each couple (ta, tb) ∈ Seq is either
a causal relationship, in which case there exist a place between ta and tb, or a concurrent
relationship, in which case there can not exist a place between them.

These definitions are homogeneous to the ones used in rule-based approaches for
Process Mining, namely the α-algorithm. All the remaining developments are focused

52

2.3. Inference of the unobservable behaviour

on determining for each couple in Seq which relationship to choose. The notion of
systematic precedence is introduced.

Definition 2.4 (Systematic precedence). A transition ta is preceded systematically by
tb, denoted tb∠ta, iff tb is always observed betweeen two occurrences of ta in S. By
convention, tb∠tb if tb was observed at least twice in S. The Systematical Precedence
Set of a transition tb is the set of all transitions systematically preceding tb, hence the
transitions which must be fired to re-enable the firing of tb. SP (tb) = {ta|ta∠tb}.

From S are computed the following SP sets:

SP (t1) = SP (t2) = {t1, t2, t3, t4}, SP (t3) = {t1, t2, t3}
SP (t4) = {t4}, SP (t5) = SP (t6) = SP (t7) = {t4, t5, t6, t7}

2.3.1.1 Causal relationship

The idea behind a SP set is that if a transition systematically precedes another
one, there must exist an oriented path in the Petri net connecting the two transitions.
Besides, if the two transitions have been consecutively observed in S, then there must
exist a place between the two transitions. Transitions in a two-cycle notably verify this
property. The propositions and proofs can be found in [Estrada-Vargas et al., 2015].
Here is only recalled the caracterization of causal transitions:

Definition 2.5 (Causal transitions). The causal relationship set CausalR is defined as:

CausalR = {(ta, tb)|((ta < tb) ∧ (ta∠tb)) ∨ (ta, tb) ∈ TC}

From Seq and the SPs computed for the sorting system, the causal set is computed:

CausalR = {(t1, t2), (t2, t3), (t4, t1), (t2, t4),

(t5, t6), (t6, t7), (t7, t4), (t4, t5), (t3, t1)}

Namely, (t3, t4), (t4, t3) and (t3, t5) were not classified as causal transitions. It remains
to prove they are concurrent.

2.3.1.2 Concurrent relationship

Concurrent transitions imply that the firing of one does not affect the firing of the
other. If two transitions (ta, tb) are concurrent, there exists no place between them,
which also suggests that their firing can occur in any order. Allegedly, the substrings
tatb and tbta may occur in the firing sequence S. A first characterization emerges:

Definition 2.6 (Concurrent transitions). The set of all pairs of concurrent transitions
is called ConcR = {(ta, tb)|ta ‖ tb}

Proposition 2.1. Let ta, tb be two transitions which have been observed consecutively
in a complete sequence S in both orders, i.e. (ta, tb), (tb, ta) ∈ Seq2. Then (ta, tb) 6∈
CausalR and (tb, ta) 6∈ CausalR if, and only if ta ‖ tb

53

Chapter 2. Blackbox behavioural identification of a reactive automated system

However, due to the incompleteness of the observation, the two transitions can be
concurrent without both substrings being present in S. Notice that only substrings of
length 2 are considered to define the Seq set, hence all relationships. Therefore, if a
convergence of the observed language size for length n = 2 is detected, as defined in
Section 1.2.2, this proposition could be used. Notice however that this is not the case
in Figure 1.13. In S, the new substring t3, t1 was observed in the few last vectors, which
means that no convergence was achieved as well.

To circumvent this issue of incompleteness, a few rules have been proposed to char-
acterize concurrent transitions. For instance, transitions ta and tb might belong to
concurrent threads, synchronized by a transition tk. The following rules ensues:

Proposition 2.2. Let ta and tb be two transitions that have been observed consecutively
in both orders. If:

1. ta 6∈ SP (tb) and tb 6∈ SP (ta) (Sequentially Independent)

2. ∃tk such that ta ∈ SP (tk) and tb ∈ SP (tk)

Then ta ‖ tb

This rule notably rules (t3, t4) as concurrent, since (t3, t4) ∈ SP (t1)2. The other rules
and the proofs can be found in [Estrada-Vargas et al., 2015].

After the application of the rules to the sorting system, it comes:

CausalR = {(t1, t2), (t2, t3), (t4, t1), (t2, t4), (t5, t6), (t6, t7), (t7, t4), (t4, t5), (t3, t1)}
ConcR = {(t3, t4), (t4, t3)}
Seq′R = SeqR− (CausalR ∪ ConcR) = {(t3, t5)}

There remains a relation that could not be decided, despite the use of multiple rules.
A good quality of the rules is that their computation runs in polynomial time with the
number of transitions and the length of the sequence. From the computed relations, the
unobservable places can now be inferred.

2.3.2 Computing unobservable places

Each causal relation discovered must lead to the addition of a place between the
two transitions concerned. However, a transition might be involved in multiple causal
relations. Suppose that (tk, tai) and (tk, taj) are both causal relations. There are two
cases:

• tai and taj are not concurrent and have not been observed consecutively. This
is a case of choice, and one place is created for both relations, illustrated by
Figure 2.9a).

• tai and taj are concurrent or have been observed consecutively. This is a case of
concurrency, and one place is created for each relation, illustrated by Figure 2.9.

54

2.3. Inference of the unobservable behaviour

Figure 2.9: a)Choice and b)parallelism after the firing of tk

So, if the first case occurs, places [tk, tai] and [tk, taj] are merged into one choice place
[tk, taitaj]. This operation is a merging of post-transitions. Similarly, [tki, tai] and [tkj, tai]

can be merged into [tkitkj, tai], in a merging operation of pre-transitions.
The unobservable part of the net is therefore built:

1. Create 1 unobservable place per causal relationship. In the case of a non-empty
Seq′ set, which means that some pairs could not be classified, they are assumed
to be causal for now.

2. Compute the post-merging operation

3. Compute the pre-merging operation

The initial marking is then computed by reverse playing the sequence S in the PN
structure:

• If output places are marked, the tokens are removed

• A token is added in each unmarked input place

Notice that this procedure only computes an initial markingM0, but does not guarantee
that S is firable in (N,M0). The result of the unobservable behaviour for the sorting
system is presented in Figure 2.10. Notice the capture of the concurrency between
transitions t3 and t4.

Figure 2.10: The non-observable part of the IPN computed for the sorting system

55

Chapter 2. Blackbox behavioural identification of a reactive automated system

2.3.3 Verification of the net

This model might however not exactly reproduce S, namely because some relations
in Seq′ might have been uncorrectly determined. It remains to remove places or arcs
that restrict too much the behaviour of the net. Namely, by trying to replay S =

t1t2t3t4 t1t2t4t3 t5t6t7t4 t1 . . . in the net of Figure 2.10, it occurs that that last firing of
t1 can not be executed, due to a missing token in p3.

To verify the net, the token-flow equation is considered.

Proposition 2.3. If the IPN model is correct, every non-observable place p must fulfill
the token-flow equation: ∑

ti∈ •p

Occ(ti) =
∑
ti∈p•

Occ(ti)± 1

where Occ is a function returning the number of firings of a transition (ti) in the given
firing sequence S.

The equality ensues from the 1-boundedness condition on the net, and the ±1 is
required in case the final marking reached after the firing of S is not the initial one. In
the case the equality is not respected, a correction rule is proposed:

Proposition 2.4 (Correction rule). If a place does not satisfy the token flow equa-
tion, arcs relating transitions which are not in CausalR are removed. If there are not
CausalR represented, the place is simply deleted

For the sorting system, Occ(t1) = 12, Occ(t2) = 11, Occ(t3) = 11, Occ(t4) = 20,
Occ(t5) = 9, Occ(t6) = 9, Occ(t7) = 9. The token-flow equation is not verified for place
p3, as (Occ(t3) = 11) 6= (Occ(t1) + Occ(t5) = 21)± 1. Since (t3, t5) ∈ Seq′, this relation
was misinterpreted as causal; the edge between p3 and t5 is removed. The transitions
are actually concurrent, and the observation is incomplete. With this correction, S
becomes firable. The corrected net is shown in Figure 2.11(a), and the final IPN with
both behaviours is shown in Figure 2.11(b).

2.4 Discussion and proposed improvements

The proposed method builds an IPN from a sequence w observed issued of the
observation of a real closed-loop system with logical inputs and outputs.

The first step of the method extracts the reactive behaviour, i.e. the direct re-
lationships between elementary input and output events, and translate them into the
observable part of the Petri Net. The reactive behaviour is directly readable from the
net. Apart from the computation of the firing functions, the procedure runs in polyno-
mial time with the size of the system (number of inputs and outputs), and the length of
the observed sequence w. The difficulty of computing the firing functions is theoretically

56

2.4. Discussion and proposed improvements

(a) (b)

Figure 2.11: (a) The unobservable part, corrected by the token-flow equation; (b) The
final IPN with both interpretation layers

exponential with the number of inputs, but remains tractable for systems exhibiting low
concurrency.

The second step of the method infers unobservable places to complete the net and
assemble the observable fragments. Relationships between transitions are extracted
from the firing sequence S, based on numerous rules. Unobservable places are built on
these relationships, and the resulting net is verified. This rule-based approach has the
advantage of polynomial complexity with the number of transitions and the length of the
firing sequence S. The final model is compact models, exhibits concurrency, and huge
state-machine-like IPNs are avoided (like the one proposed in [Estrada-Vargas et al.,
2014]).

The method is adapted to our technological hypotheses, and produces a satisfying
result to reverse-engineer a closed-loop DES. There are nevertheless two major directions
for improvements: scalability for massively concurrent systems, and robustness of the
unobservable behaviour inference.

2.4.1 Scalability and concurrency

As pointed out in Section 2.2, a first difficulty resides in the computation of the
OEFFs. Given an output OEj and n input events, suppose the following DCM column:
DCM1j = 0.95, DCM2j = 0.05, and ∀i ∈ J3, nK, DCM3j = 0.01. Such an observation
means that IE1 is the main cause for the output event OEj, but is sometimes replaced
by a scarce cause IE2 (typically, a security in a system which is not triggered in every
production cycle). All other inputs are unrelated, but sometimes observed together with
OEj due to concurrency and synchronization by the controller.

In this case, there are 1 + C5
n−2 combinations of input events such that the sum of

their probabilities equals 1. 2n combinations must be studied, even if most of these
combinations are irrelevant. This is an issue to be dealt with in order to improve the
scalability of the method on one hand, and the quality of the identified model on the
other hand.

57

Chapter 2. Blackbox behavioural identification of a reactive automated system

Another issue is the spurious synchronization of unrelated output events, that pro-
vokes an increase in the number of transitions and destroys the understandability of
the net. To improve the scalability of the method and the quality of the model, the
meaningless transitions should be detected and removed.

Chapter 3 proposes improvements to take into account the synchronization effect of
the controller, and improve the scalability of the method. Understandable observable
models can be built efficiently for concurrent systems of reasonable size.

Ultimately, when the system becomes massive enough such that a monolithic model,
even simplified, becomes hard to understand, a partitioning of the system into subsys-
tems of smaller size has to be considered. A solution to the task of automatic parti-
tioning is presented in Chapter 5, and leads to distributed models, less costly and more
understandable than the monolithic one.

2.4.2 Limits of the unobservable behaviour discovery

As was already seen in section 2.3, the use of numerous rules does not guarantee
that every case is decidable. Namely, no rule was satisfying to decide whether (t3, t5)

were concurrent or causal. No proof for the computation of the initial marking was also
presented, and the verification procedure only verifies occurrences of transitions, but not
that S was indeed firable.

In some cases places can not even be found, as in the following example.

Example 2.1. Consider a system with two inputs (u1, u2) and two outputs (Y1, Y2).
The observable part of the net is in Figure 2.12(a); it consists in two fragments, and
two isolated transitions, since u2 could not be related to any output, for a total of 6
transitions.

The firing sequence is:

t1t2t1t2t3t4t5t1t2t6t1t2t1t2t3t4t5t1t2t6t1t2t1t2t3t4t5t6t1t2t1t2t1t2t3t4t5t1t2

t6t1t2t1t2t3t4t5t6t1t2t1t2t1t2t3t4t5t1t2t6t1t2t1t2t3t4t5t1t2t6t1t2t1t2t3t4t5t6 . . .

from which the Seq set is computed:

Seq = {(t1, t2)(t2, t1)(t2, t3)(t3, t4)(t4, t5)(t5, t1)(t2, t6)(t6, t1)(t5, t6)}

In this case, no couple can be decided concurrent by using the proposed rules. Conse-
quently, all couples are supposed causal. Since (t2, t3), (t2, t6) ∈ CausalR2, and t3 6‖ t6, a
place [t2, t3t6] is created, but deleted by the token-flow verification (Occ(t3)=Occ(t6)=20;
Occ(t2)=60). The resulting net is in Figure 2.12(b). S is reproducible, but there are still
sink and source transitions.

An actual solution that reproduces S is the net of Figure 2.12(c). A place such as
[t2t5, t1t3] can never be computed by the proposed rules since (t5, t3) was never observed,
and does not belong to Seq.

58

2.4. Discussion and proposed improvements

𝑡1: (= 1) 𝑡2: (= 1) Y1

𝑡4: (= 1) 𝑡6: ↑ 𝑢1

𝑡5: ↓ 𝑢2 𝑡3: ↑ 𝑢2

Y2

𝑡1 𝑡2 Y1

𝑡4 𝑡6

𝑡5

𝑡3

Y2

𝑡1 𝑡2

Y1

𝑡4

𝑡6

𝑡5

Y2

𝑡3

(a) (b) (c)

Figure 2.12: (a) The observable part of the net; (b) The net identified ; (c) A net that
satisfies the problem

Inferring places using only the Seq set naturally excludes places working as memories
by definition. Have a look at the net of Figure 2.13. Transitions t1 and t4 can never
occur sequentially, since t3 will always be fired inbetween. The place connecting these
two transitions can not be inferred with the current method.

Figure 2.13: A non free choice net with two memory places

The proposed approach can be improved towards more genericity. Chapter 4 pro-
poses a new approach in that direction, based on the use of projections, to infer the
unobservable places. Only one dependency relation is defined on transitions, and the
genericity of the approach is proven in a single theorem.

59

Chapter 2. Blackbox behavioural identification of a reactive automated system

60

Chapter

3
Scalability of the observable

behaviour construction

Introduction

This chapter proposes two approaches to improve the scalability of the construction
of the observable part of the IPN. Firstly, the system (MSS) used as illustrative exam-
ple through the whole thesis is introduced in section 3.1. Notably, it exhibits enough
concurrency to provoke a degradation of the observable part, both in calculus cost and
quality of the model. These issues are notably due to the synchronization of the PLC,
as exposed in Section 3.2. The first proposition is a filter of the direct causality matrix
based on the boolean absorption identity, exposed in Section 3.3; its result is the abil-
ity to compute all firing functions, and improve their quality as well. Then, the second
proposition is the removal of spurious transitions, replaced by equivalent firings, exposed
in Section 3.4. Both methods are tested and validated on the MSS.

3.1 Illustrative system: the MSS

3.1.1 Presentation

The Mechatronics Standard System (MSS)(Figure 3.1) is a real-world laboratory
manufacturing system developed by Bosch, available on the experimental platform of
the LURPA (ENS Cachan, France). The purpose of this system is to sort workpieces
according to material and presence of a bearing. Workpieces of plastic, brass and steel
are treated. The system is decomposed into 4 stations, displayed in Figure 3.2.

The workpieces are introduced in the Lift of the Feeder station (1). When the process
is started, the pieces are brought to the height of the Pusher, which makes them to fall
in the Chute. They are stored in the Chute until the chariot of the Testing station (2)
comes to get the workpieces one at a time. The workpiece is carried under the sensors
of the Sensor array, where material and presence of a bearing are detected and recorded.
Then the workpiece is carried to the chariot of the Processing station (3) by a gripper.
The In-press is used to put a bearing in an empty gear, and the Out-press to extract a

61

Chapter 3. Scalability of the observable behaviour construction

HCI

Process

Remote I/O
modules

Single PLC

Figure 3.1: A picture of the MSS in the LURPA, and of the workpieces (gears and
bearings) processed.

Lift
Pusher

Chute Transport

Sensors

Transport Storage

Gripper

IN
Press

OUT
Press

Gripper

Station 1 :
Feeder

Station 2 :
Testing

Station 3 :
Processing

Station 4 :
Storage

4 sensors
3 actuators

3 sens.
2 act. 3 sens.

2 act. 4 sens.
1 act.

3 sens. 2 act. 4 sens. 4 act.

5 sens.
3 act.

5 sens.
3 act.

4 sens.
2 act.

5 sens.
3 act.

4sens.
3 act.

Figure 3.2: Scheme of the MSS, decomposed in 4 stations and 11 subsystems

bearing. Finally, the workpiece is caught by the Rotary gripper of the Storage station
(4) and given to the feeder who sorts it according to its material.

The interest of this chain is the exhaustivity of the technologies used for the various
sensors and actuators. Among the sensors, there are optical, inductive, capacitive or
mechanical detectors as well as reed or cylinder switches. The actuators are electronic
relays to aliment electrical-powered devices such as motors or magnets, and valves to
aliment pneumatic-powered devices such as cylinders. All these components have binary
values.

There are 43 sensors and 30 actuators relevant to the processing of the workpieces,
all other inputs or outputs being lights or buttons to be used by an operator. The
repartition of these 73 components is explicited in Figure 3.2. The first number in the
labelling of an I/O determines to which station it belongs (1xxx belongs to station 1).

The control of the chain is realized by a single PLC, who communicates with the
remote I/O modules through Modbus TCP via Ethernet. The deported modules can

62

3.1. Illustrative system: the MSS

be seen under the boards in the picture of Figure 3.1. There is one module dedicated
to inputs, and one module dedicated to outputs for each station (an additional output
module is available in the second section). The duration of a PLC cycle lasts around
5ms.

Even though each workpiece is sequentially treated by each station, many workpieces
are treated simultaneously in the whole chain, namely during a continuous production
phase. This chain exhibits therefore massive concurrency, and the behaviours of the
different stations are often interleaved. For instance, outputs from different stations
can be updated in the same PLC cycle, even though they are unrelated. Also, the
chain exhibits choices with shared ressources. Namely, the chariot of the third station is
sollicited by the two grippers and the two presses. This chain is therefore representative
of reactive industrial DES, controlled by a PLC and exhibiting multiple simultaneous
processes, hence high concurrency.

3.1.2 Data collection

The system was observed during 20 production cycles. Each production cycle lasts
around 8 minutes. It consists in processing three tables of eight gears. The gear ma-
terials, and the presence of bearings are random in each table. The recipe used in the
third station depends on the material: bearings are removed from brass gears, put in
steel gears, and removed then put in plastic gears.

Twenty I/O vector sequences are recorded and are concatenated, leading to an ob-
served sequence of length |w| = 63797 vectors. The event vector sequence E(k) =

w(k + 1) − w(k) is computed as well, and the observed languages are computed ac-
cording to definitions presented in Section 1.2.2 from the event vector sequence. The
resulting growths of LnObs are plotted in Figure 3.3 for n = 1, 2.

Figure 3.3: Observed language of the MSS over 20 production cycles, for n = 1, 2

63

Chapter 3. Scalability of the observable behaviour construction

Convergence is not achieved even for n = 1. It means that new event vectors E(k)

keep being observed, even after a long observation time. An explanation to the contin-
uous observation of new event vectors is the combination of the massive concurrency of
the system and the synchronous reading/writing cycle of the controller.

3.2 Resynchronization of asynchronous events in concurrent
systems and consequences

A very simple example is used here for illustration. Two concurrent subsystems are
considered: u1 is an input that causes y1, and u2 is an input that causes y2. The two
processes are fully independent; the rising and falling edges of u1 and u2 can occur at any
time. A chronogram corresponding to the most common case is given in Figure 3.4. The
first two rows are the true values of the inputs; the second two rows are the values known
by the controller, only updated during an input reading phase. Due to the observation
protocol, the read values are recorded in the event vectors; the true values of the inputs
remain unknown. In this case, the duration between the real occurences of input events
was longer than the duration of a cycle; the two elementary input events were read in
different PLC cycles. u1 and u2 are observed asynchronoulsy and the resulting event
vector is:

E = [↑ u1 ↑ y1]; [↑ u2 ↑ y2]; [ε]; [↓ u1 ↓ y1]

I OPEX I OPEX I OPEX I OPEX I OPEX

y2

y1

u1 read

u2 read

u1 true

u2 true

0

1

Figure 3.4: Two concurrent processes observed asynchronously

However, the duration between u1 and u2 might be shorter, and the two real ele-
mentary events might occur between two input reading phases. This case is illustrated
in Figure 3.5. Even though the real events are asynchronous, they are read in the same
cycle, and spuriously perceived as synchronous. The resulting event vector is:

E = [↑ u1 ↑ u2 ↑ y1 ↑ y2]; [ε]; [↓ u1 ↓ u2 ↓ y1 ↓ y2]; [ε]

The second case occurs less often than the first one. The controller cycle lasts
between 5 and 15ms, which is a short time window within which the elementary events
must occur. However, when size and concurrency of the system increase, this case

64

3.2. Resynchronization of asynchronous events in concurrent systems and
consequences

I OPEX I OPEX I OPEX I OPEX I OPEX

y2

y1

u1 read

u2 read

u1 true

u2 true

0

1

Figure 3.5: Two concurrent processes spuriously observed synchronously

becomes more and more common. New observations of spuriously synchronized events
keep happening, as shown by the language growth for n = 1 in Figure 3.3. In this
very simple case, four additional event vectors can be observed: [↑ u1 ↑ u2 ↑ y1 ↑ y2],
[↑ u1 ↓ u2 ↑ y1 ↓ y2], [↓ u1 ↑ u2 ↓ y1 ↑ y2] and [↓ u1 ↓ u2 ↓ y1 ↓ y2]. Suppose now that n
similar concurrent processes are considered, and 2n event vectors can be observed.

When a new event vector E(k) is observed, two effects might happen, depending on
the content of E(k):

IE(k) 6= 0 ∧OE(k) 6= 0 At least one input event is observed with at least one output
event. Corresponding cases in the DCM see their values increased (Section 2.2.1)

|OE(k)| > 1 At least two outputs event were observed. A transition is created to rep-
resent the corresponding output events and connect the corresponding observable
places (Section 2.2.2)

Suppose that in the previous case, the processes are observed synchronously only 4
in 100 times, uniformly between the four possible cases. The resulting net is presented
in Figure 3.6(a) and the DCM in Table 3.1. In the DCM, the direct causalities can still
be discovered, but other cases are no longer zero. In the net, transitions t5, t6, t7, t8 are
created, but their occurrences are scarcer. Firing t5 is equivalent as firing t1 and t3. Net
(b) is obtained after getting rid of these scarce transitions.

↑ Y1 ↓ Y1 ↑ Y2 ↓ Y2

↑ u1 1 0 0.02 0.02
↓ u1 0 1 0.02 0.02
↑ u2 0.02 0.02 1 0
↓ u2 0.02 0.02 0 1

Table 3.1: DCM of two concurrent processes

We now consider the case of the MSS, with observation of Figure 3.3. There are
43 inputs and 30 outputs, leading to a DCM of size 86 × 60. The mean number of
non-zero cells is 9.15 per column, maxing out at 29. 85% of these cells are lower than

65

Chapter 3. Scalability of the observable behaviour construction

𝑡1: ↑ 𝑢1 𝑡2: ↓ 𝑢1 𝒀𝟏

𝒀𝟐 𝑡4 : ↓ 𝑢2 𝑡3: ↑ 𝑢2

𝑡5: ↑ 𝑢1 ↑ 𝑢2 𝑡8: ↓ 𝑢1 ↓ 𝑢2
𝑡6:
↓ 𝑢1
↑ 𝑢2

𝑡7:
↑ 𝑢1
↓ 𝑢2

𝑡1: ↑ 𝑢1 𝑡2: ↓ 𝑢1 𝒀𝟏

𝒀𝟐 𝑡4 : ↓ 𝑢2 𝑡3: ↑ 𝑢2

(a) (b)

Figure 3.6: (a) Observable part identified for two concurrent processes with spurious
transitions (b) Simplified desirable model

1%, meaning there are a lot of spurious, noisy observations, to be distinguished from
true causes. Recall that the complexity of finding an OEFF is O(2c), where c is the
number of non-empty cells of the column. Only 50 of the 60 OEFFs could be computed
(25 outputs) on a laptop.

Regarding the transitions, 402 transitions are built based on the observation (of the
25 computable outputs). The frequencies of the transitions, numbered in the chrono-
logical order of their first firing, are plotted in Figure 3.7. The last transitions are very
unfrequent, and due to spurious synchronizations. Namely, 126 (31%) transitions have
been fired only once; i.e. correspond to a combination of output events observed only
once, and 278 (69%) have been fired less than 20 times (the number of executions of the
process). These transitions spoil the understandability of the model.

Figure 3.7: MSS transition occurences

Two improvements are therefore proposed. The causality matrix is first filtered to get
rid of noisy I/O correlations and ease the computation of OEFF in Section 3.3. Then,
unfrequent spurious transitions are reduced in Section 3.4, to ease the construction and

66

3.3. Filtering of the causality matrix

the understanding of the observable fragments.

3.3 Filtering of the causality matrix

The objective of the filter is summarized in Figure 3.8: given an output event OEj,
for each input event IEi simultaneously observed, i.e. DCMi,j 6= 0, decide whether IEi
is a potential cause, or is instead a noisy correlation due to a synchronization of the
controller. In the latter case, the value of DCMi,j is set to zero.

Direct Causality Matrix (DCM)

Y1 Y1 … Yn Yn

u1 1.000 0.101 0.540 0.000

u1 0.000 0.010 0.001 0.004

… …

um 0.024 0.023 0.460 0.005

um 0.012 0.150 0.002 0.002

Filtered DCM (F-DCM)

Y1 Y1 … Yn Yn

u1 1.000 0 0.540 0.000

u1 0.000 0 0 0.004

… …

um 0 0.023 0.460 0.005

um 0 0.150 0 0.002

Figure 3.8: Principle of the filter: put zeros in cells corresponding to noisy observations

3.3.1 Design of the filter

A first idea is to set a threshold, for instance each cell whose value is lower than 0.05
is nullified. However, the risk is high to get rid of a scarce, but true cause by using a
frequency criterion. For instance, consider the output event 1Y04_0 of the MSS, which
is the end of the extension of a cylinder. Its corresponding DCM column is presented in
Table 3.2. Only the 28 non-empty cells are represented.

1B06_1 1S10_1 2B11_0 2B11_1 2B12_0 2B12_1 2B15_1
0,937 0,063 0,001 0,002 0,001 0,009 0,001

2B17_1 2S06_1 2S07_0 2S07_1 2S10_0 2S10_1 3B06_1
0,004 0,001 0,002 0,001 0,001 0,001 0,001

3B07_0 3B07_1 3B10_0 3B11_1 3B13_1 3B16_0 4B07_0
0,001 0,001 0,001 0,001 0,001 0,001 0,002

4B10_0 4B11_0 4B12_1 4B13_0 4B14_1 4B15_0 4B16_0
0,002 0,002 0,002 0,001 0,001 0,001 0,003

Table 3.2: Non empty cells of the column DCMi,1Y 04_0

The main cause seems to be 1B06_1, and a more unfrequent one is 1S10_1. Phys-
ically, the main cause is the switch at the end position of the cylinder, whereas the
secondary is the end position of another cylinder working in the same area, i.e. it is

67

Chapter 3. Scalability of the observable behaviour construction

due to a security constraint. The expected event part of the OEFF is G(1Y 04_0) =

1B06_1 ⊕ 1S10_1. If the threshhold is set higher than 0.063, the secondary cause is
lost, and the discovered OEFF is G(1Y 04_0) = ε. It is impossible to choose a threshold
a priori.

The proposed filter is therefore not based on frequencies, but is purely logical, based
on the absorption identity in Boolean algebras:

a+ a.b = a

The idea is to look for prime implicants of the output events, expressed as a Boolean
formula. Input events who are prime implicants are conserved, whereas other are nulli-
fied.

Definition 3.1 ([Goldsmith et al., 2008]). An implicant of a Boolean formula ϕ is a
monomial C such that C → ϕ is valid. A monomial C is a prime implicant of ϕ if and
only if C is an implicant of ϕ and for every proper subset S ⊂ C it holds that S is not
an implicant of ϕ.

To build the Boolean formula, let OEi be the output event of interest, and consider
the set of input event vectors observed simultaneously Sim(OEi) = {IE(k)|OEi ∈
OE(k) ∧ IE(k) 6= 0}. The events are assimilated to boolean variables (1 if the event is
present, 0 if it is not). A conjunction of input events is built for each observation where
OEi is present. The formula is then built by taking the disjunction of all observations.
If OEi is observed alone at least once, then OEi = 1.

OEi =
∑
k

OEi∈OE(k)

(
∏
j

IEj(k)6=0

IEj)

The output event is expressed as a Boolean formula in the disjunctive normal form
(DNF), where the monomials are input events conjunctions. The obtained formula
is monotone, as it does not contain negations. For monotone formula, the minimum
equivalent DNF is unique and is the disjunction of all prime implicants. It is shown
in [Goldsmith et al., 2008] that the function which on input ϕ, a monotone formula,
outputs the smallest DNF for ϕ, is in output-polynomial time if and only if P = NP.
The problem of finding all prime implicants is therefore not simple.

The implicants can be simplified into prime implicants by using the absorption iden-
tity. It is illustrated on the following example.

Example 3.1. Suppose the following observation for output event OEi (#Occ repre-
senting the number of occurences of each event vector, for a total number of 100 obser-

68

3.3. Filtering of the causality matrix

vations): 
IE1 ∧ IE2 ∧OEi (#Occ = 41)

IE1 ∧ IE3 ∧ IE5 ∧OEi (#Occ = 8)

IE4 ∧OEi (#Occ = 45)

IE4 ∧ IE5 ∧OEi (#Occ = 6)

Sim(OEi) has four members, whose disjunction builds the Boolean formula:

OEi = IE1.IE2 + IE1.IE3.IE5 + IE4 + IE4.IE5

The fourth term is absorbed by the third one, resulting in the minimal disjunctive form:

OEi = IE1.IE2 + IE1.IE3.IE5 + IE4

In this example, IE5 is absorbed by IE4, IE4 being sufficient to cause OEi. IE4

seems to be the true cause in the fourth conjunction, because it appeared alone in the
third one. IE5 is therefore interpreted as noisy: it is most likely an unrelated input
event that was synchronized with IE4.

IE5 can not be a sufficient condition of OEi. We therefore make the additional
assumption that if an input event is ruled once as noisy regarding a given output event,
it is also noisy in all the cases it was observed simultaneously with said output event.
This is a realistic assumption for industrial systems: a noisy input IE5 might have been
the cause of another output event occuring simultaneously with OEi. Consequently,
regarding the DCM, a zero is put in the cell DCMIE5,OEi

, and IE5 is removed totally
from the updated formula:

OEi = IE1.IE2 + IE1.IE3 + IE4

To apply the filter, the sets Sim(OEi) must additionally be computed from the
event vector sequence E. This set is partitioned into subsets Sim(OEi, n) to introduce
n as the number of simultaneously observed input events. Finally, N = max(n) is the
maximal number of input events observed simultaneously with OEi. In the worst case,
N = 2|U|. The filter is described by Algorithm 3.1. The idea is to decide for each input
event whether it might be a valid cause (IEV al) or if it is noisy (IENoisy). Input events
observed alone are decided valid, and input events who are absorbed by them are ruled
noisy. If input events remain unsorted, the procedure is repeated for 2-uples of input
events, then 3-uples . . . until all events are classified.

Proposition 3.1. Algorithm 3.1 terminates and runs in O(N.|Sim(OEi)|)

Proof. The highest value that n can take is N . In this ultimate loop, lines 6-10 rule every
remaining input event as valid. Lines 11-17 are not applied, and IEUndecided becomes
empty at line 18, ensuring an exit of the while loop and termination of the algorithm.

Loops 6-10 and 11-17 are executed at worst |Sim(OEi, n)|(|Sim(OEi, n+ 1)|) times.

69

Chapter 3. Scalability of the observable behaviour construction

Algorithm 3.1 Filter of a column of the DCM
Require: Sim(OEi) = {Sim(OEi, 1), Sim(OEi, 2), . . . Sim(OEi, N)}
Ensure: IENoisy
1: IEUndecided ← Sim(OEi)
2: IEV al ← ∅
3: IENoisy ← ∅
4: n =1
5: while IEUndecided 6= ∅ do
6: for Observation ∈ Sim(OEi, n) | Observation ∩ IEUndecided 6= ∅ do
7: {Input events in this observation are not decided yet}
8: IEV al ← IEV al∪ (Observation ∩ IEUndecided)
9: {Unsorted input events whose observation matches k are decided valid.}

10: end for
11: for Observation’ ∈ Sim(OEi, n+ 1) do
12: {Checking for noise in observations of bigger size using absorption}
13: if Observation’ ∩ IEV al 6= ∅ then
14: IENoisy ← IENoisy∪ (Observation’ - IEV al)
15: {Absorbed input events are noisy}
16: end if
17: end for
18: IEUndecided ← IEUndecided − IEV al − IENoisy
19: n ← n + 1
20: end while

At worst, |Sim(OEi, n)| = |Sim(OEi)|, therefore the loops run in O(|Sim(OEi)|). Fi-
nally, the while loop is executed at most N times. Algorithm 3.1 runs at worst in
O(N.|Sim(OEi)|).

Recall that in a real system, the dynamics of the process is quite slow (compared
to the reactivity of the controller), and simultaneous inputs do not occur so often.
Typically, N=3 for the MSS. |Sim(OEi)| remains of reasonable size as well, and is
bounded by the length of the observed event sequence |E|. Algorithm 3.1 can therefore
be applied efficiently.

Example 3.2 (Example 3.1 cont.). For n = 1, IE4 is decided valid, since it is observed
alone in the third observation. Consequently, IE5, never observed alone, is absorbed by
IE4 in the fourth observation, and decided noisy. IE1, IE2 and IE3 are not decided
yet. For n = 2, they are validated due to the first and second observation, and all input
events are sorted.

Consequently the DCM becomes :

IE1 IE2 IE3 IE4 IE5

0.49 0.41 0.08 0.51 0.14
→

IE1 IE2 IE3 IE4 IE5

0.49 0.41 0.08 0.51 0

The event part of the firing function is:

G(OEi) = (IE1 ⊕ IE4).(IE2 ⊕ IE3 ⊕ IE4)

70

3.3. Filtering of the causality matrix

We made the hypothesis (Chapter 2) that two input events in a disjunction do not occur
together, hence IE4.(IE1 + IE2 + IE3) = 0. By developping the event part under this
hypothesis, the Boolean formula is rediscovered using exclusive ORs:

G(OEi) = IE1.IE2 ⊕ IE1.IE3 ⊕ IE4

3.3.2 Application

The filter is applied to the DCM of the MSS; the filtered DCM (size 86×60) is shown
in Figure 3.9. 49.5% of the non-zero cells are ruled as noisy; the mean number of non-
zero celles is now 5.25 per column, maxing out at 21. For instance, 26 of the 28 cells
of the column corresponding to the output event 1Y04_0 are noisy; only 1B06_1 and
1S10_1 remain, as expected. Besides, the denoising is validated by the fact that the
noisy input events actually belong to different stations, and were not related to 1Y04_0.

Output events Station 1 Station 2 Station 3 Station 4

Input
 events
Station 1

Station 2

Station 3

Station 4

1Y04_0 3Y13_0

Figure 3.9: Result of the Filter on the DCM of the MSS. Grey cells correspond to
validated non-empty cells, and black cells to noise.

All OEFFs of the MSS can be computed. It can be seen that some columns are well
denoised, whereas some columns remain unchanged. Figure 3.10 exhibits a correlation
between the sum of the columns and its denoising. Each dot represents an output event
of the MSS (60 in total).

71

Chapter 3. Scalability of the observable behaviour construction

If the sum of the cells is greater than 1, at least one causal disjunction is likely to be
discovered. The filter is efficient, getting rid of all the noise.

If the sum of the cells is lower than 1, necessarily the output event was observed
alone at least once; it is impossible to find a direct cause anyway. However, the closer
to one the sum is, the better the denoising is: a sum close to, but lower than 1 means
that some input events form a sufficient but not necessary cause, i.e. the disjunction is
not complete. These input events still absorb some noise.

Finally, for very low values of the sum, the denoising is ineffective. All values in the
cells are low, so it is highly probable that all observations are noisy, but it can not be
decided.

Figure 3.10: Efficacity of the filter: better denoising for column sums close to one.

In the intermediate case (sum lower than 1, but not close to 0), the denoising remains
interesting, even though the event part of the OEFF is ε, because it is helpful in building
the level part. Recall that to build the disjunctions in the level part F of the OEFF,
only input levels, whose corresponding cells in the DCM are non-empty, are considered.
Discarding noisy input events in the DCM therefore implies discarding irrelevant input
levels to build the level part.

Example 3.3. The output 3Y13_0 of the MSS is considered. The sum of its DCM
column is 0.563. Its firing function without denoising is:

F (3Y 13_0) =(1B06⊕ 1B06).(2B21⊕ 2B21).(4B11⊕ 4B11).

(4B10⊕ 4B11⊕ 3B06⊕ 3B11⊕ 2B17⊕ 1B06⊕ 1S10).

(4B10⊕ 4B10).(4S07⊕ 4S07).(4S06⊕ 4B10⊕ 1B06⊕ 1S10)

With denoising, 35% of the 19 non empty celled are reduced to 0. The level part of the
firing function is reduced to:

F (3Y 13_0) = (4S07⊕ 4S07)

72

3.4. Transitions reduction

To conclude, the filtering brings two improvements to the computation of the OEFF.
First, the computability of the event part of an OEFF, exponential in number of non-
empty cells of the column, is increased by reducing the number of non-empty cells.
The filter is only inefficient when the event part is mandatory ε, in which case the
calculation is not required. In this case, the quality of the level part is still increased
and more relevant, as noisy input levels are discarded as well.

3.4 Transitions reduction

The reduction method proposed in this section takes place after the building of the
observable part. The objective of the reduction is to remove unfrequent transitions
from the net, corresponding to spurious synchronizations of output events. Their occur-
rences in the firing sequence S must be replaced by equivalent firings, as presented in
Figure 3.11.

Observable fragments

t3

t1

t5

t2

t6

𝑆 = 𝑡1𝑡2𝑡3𝑡4𝑡5𝑡6𝑡7𝑡8𝑡9𝑡3𝑡4𝑡7𝑡10𝑡11𝑡12…

Firing sequence S

t4
t7

t8

t9

t10

t11

t12

t13

t14Y1 Y2

Y3 Y4

Y6

Y5

Obs. Fragments reduced

t3

t1

t5

t2

t6

𝑆′ = 𝑡1𝑡2𝑡3𝑡4𝑡5𝑡6𝑡7𝑡8 𝑡9
{𝑡1,𝑡2}

𝑡3𝑡4𝑡7 𝑡10
{𝑡5,𝑡6,𝑡8}

𝑡11𝑡12

Modified f.sequence S’

t4
t7

t8

t9

t10

t11

t12

t13

t14Y1 Y2

Y3 Y4

Y6

Y5

Figure 3.11: Principle of the reduction: remove transitions and replace in S

Beforehand, a slight change is brought to the building of transitions. Given a combi-
nation of output events, instead of creating a transition for each observed combination
of consistent input events, a single transition is created, labelled by the combination of
the OEFFs of the output events. This is illustrated by Figure 3.12. A direct consequence
is the increase of permissivity of the model (since not all combinations allowed by the
OEFF are observed, but allowed in the model). Here, the combination IE2 • u4 was
never observed, but is allowed by the more compact model.

This change decreases the structural complexity of the net by reducing its sheer size,
but increases the complexity of the interpretation layer of the net.

3.4.1 Replacement of spurious transitions

Net reductions methods are used to simplify structure and markings of nets while
conserving dynamical properties such as liveness or boundedness. Such reductions are
developped to ease model analysis, by discarding details unrequired for analysis.

73

Chapter 3. Scalability of the observable behaviour construction

OEFF(OE)=(IE1 ⊕ IE2) • (u3 ⊕ u4)

𝒀𝟏

𝐼𝐸1 • 𝑢3 𝐼𝐸1 • 𝑢4 𝐼𝐸2 • 𝑢3
(𝐼𝐸1 ⊕ 𝐼𝐸2)
• (𝑢3⊕𝑢4)

𝒀𝟏

Figure 3.12: Increase of the permissivity of transitions by OEFF labelling

The reduction rule φT is proposed in [Desel and Esparza, 1995], based on a linear
characterization of reducible transitions:

Definition 3.2. Let G = (P, T, C) be a net structure. A transition t ∈ T is a nonnega-
tive linearly dependant transition if there exists a vector Λ ∈ Q|T | such that:

Λ(t) = 0

C.Λ = C.t

Λ ≥ 0

Proposition 3.2 ([Desel and Esparza, 1995] Reduction rule φT). Let G = (P, T, C) be
a net structure. If |T | ≥ 2, if there are no isolated transitions, and if t is a nonnegative
linearly dependant transition, then t can be removed, forming a reduced net G′. The
following equivalency stands:

Gis well-formed⇔ G′is well-formed

This rule requires first no isolated transitions; isolated transitions correspond to zero-
columns in the incidence matrix, and can therefore be deleted. In our case, only the
observable behaviour is built yet, isolated transitions are created and labelled with unre-
lated input eventsD. These transitions are connected in the second step by unobservable
places, and can therefore not be removed.

The characterization of [Desel and Esparza, 1995] provides a set of transitions, such
that their firing is structurally equivalent to the one of the reduced transition. However,
in the case of IPNs, the equivalency, in addition to being structural, must also be verified
in terms of interpretation, as shown in the next example:

Example 3.4. Consider the net of Figure 3.13 (observable part only). Using the linear
characterization, the vectors [t2, t3] and [t4, t5] are structurally equivalent to t1. However,
firing t4t5 leads to the generation of output events {↓ Y1, ↑ Y3}, whereas firing t2t3

generates {↓ Y1, ↑ Y2, ↓ Y2 ↑ Y3}. Only [t4, t5] generates the same output events as t1.
Besides, it is impossible to observe in the same event vector both the rising and the
falling edge of an output, meaning that [t2, t3] is definitely not an acceptable solution.

The reduction rule is therefore extended by taking interpretation into account. First,
the relevant interpretation of a transition is defined. Notice that in the previous example,

74

3.4. Transitions reduction

𝑡2

𝒀𝟏

𝒀𝟐

𝒀𝟑

𝑡3

𝑡5

𝑡1
𝑡4

Figure 3.13: Example of an observable fragment, with t1 reducible by [t4, t5].

only output events were considered. A transition t is fired only if the input events in λ(t)

occur, and output events are generated according to marking changes in the connected
observable places. When a transition is fired, its interpretation consists in three parts:
(1) the output events generated; (2) the causal input events, belonging to the OEFFs
of the output events; (3) unrelated input events, not issued from the OEFFs but from
D. D is the set of input events that have not been causally associated to any output
event, i.e. that do not appear in any firing function (See page 48). The causal input
events (2) are a necessary and sufficient condition of the occurrence of output events
(1). Whenever an output event (1) occurs, its causal input events are always present as
well. Output events (1) and unrelated input events (3) are sufficient for the search of
reductions.

Definition 3.3. Let t ∈ T be a transition. The reduced interpretation of t, denoted
RI(t) is defined as :

RI(t) = {↓ ϕ(•t)}︸ ︷︷ ︸
(1)

∪{↑ ϕ(t•)}︸ ︷︷ ︸
(2)

∪{λ(t) ∩D}︸ ︷︷ ︸
(3)

(1) (resp (2)) is the set of falling (resp rising) edges of outputs associated to the ob-
servable pre-places (resp post-places) of t. (3) is the set of input events associated to
unrelated inputs in the firing function of t.

The elementary events associated to a transition t are events that were observed
during the same controller cycle (in the same event vector). It is impossible for the
controller to change twice the status of an output in the same cycle. The sets ϕ(•t) and
ϕ(t•) are necessarily disjoint. Notice also that two transitions can not have the same
RI, resulting from the permissivity increase: transitions with the same RI have been
merged under a more permissive labelling.

Example 3.5. Consider the transition t1 in the observable fragment of Figure 3.14.
{↓ ϕ(•t1)} = {↓ Y 1}, {↑ ϕ(t1•)} = {↑ Y 2} and {λ(t1) ∩D} = {↑ u1}. The RI sets are

75

Chapter 3. Scalability of the observable behaviour construction

the following :
RI(t1) = {↓ Y 1, ↑ Y 2, ↑ u1}
RI(t2) = {↑ Y 2}
RI(t3) = {↓ Y 1}
RI(t4) = {↑ u1}
RI(t5) = {↓ Y 1, ↑ Y 2, ↑ Y 3 ↑ u1}
RI(t6) = {↑ Y 3}

𝑡1: ↑ 𝑢1 𝑡2

𝒀𝟏

𝒀𝟐

𝑡4 : ↑ 𝑢1

𝑡3

𝒀𝟑

𝑡6 𝑡5: ↑ 𝑢1

Figure 3.14: An observable fragment; only the unrelated input events are shown in the
firing functions

If the behaviour of a transition, in terms of interpretation, is equivalent to the suc-
cessive firings of multiple other transitions, such a transition could be replaced by said
successive firing. For instance, should there be a token in Y 1, firing t1 in Figure 3.14 has
the same outcome as firing successively t2,t3 and t4, in any order. Indeed, the resulting
marking would be the same (Y 2 marked), and the generated associated events are the
same (RI(t1) = RI(t2) ∪RI(t3) ∪RI(t4)).

This consideration leads to the notion of reducibility, as the behaviour expressed by
t1 already exists in the net, and t1 could be replaced.

Definition 3.4. Let t ∈ T be a transition. t is said to be reducible if

∃{t1, . . . , tn} ∈ 2T−{t}, n ≥ 2,


RI(t) =

n⋃
i=1

RI(ti)

∀(i, j), i 6= j, RI(ti) ∩RI(tj) = ∅

The set {ti}1≤i≤n is called a reduction of t. Red(t) designs the set of all reductions of t

Remark 3.1. A few comments on this definition:

• A transition for which no reduction exists is called irreducible

• Transitions verifying |RI|=1 are irreducible

• All transitions in a reduction {ti} are necessarily different, due to the disjunction
of the RI(ti) sets.

76

3.4. Transitions reduction

• For each event e ∈ RI(t), given a reduction {ti} of t, there exists exactly one
transition ti ∈ {ti} such that e ∈ RI(ti). The sets RI(ti) are a partitioning of
RI(t)

In Figure 3.14, {t2, t3, t4} is the only reduction for t1. t5 is reducible as well, by
{t1, t6}. All other transitions are irreducible.

Transitions such as t1 and t5 are typically created when a spurious synchronized
reading occurs. The firing conditions of t2, t3, t4 were simultaneously enabled during
two input readings, leading to the simultaneous occurrence of their consequential output
events (or unrelated input event for t4). Notice that {t1, t6} is a reduction of t5, but t1
is itself reducible, therefore {t2, t3, t4, t6} is a reduction of t5 as well:

Proposition 3.3. Let {t1, t2, . . . tn} be a reduction of t and {t11, t12, . . . , t1m} a reduction
of t1. Then, {t11, t12, . . . , t1m, t2, . . . tn} is also a reduction of t.

Proof. {t11, t12, . . . , t1m} is a reduction of t1, therefore RI(t1) =
⋃m
j=1 RI(t1j). Hence:

RI({t11, t12, . . . , t1m, t2, . . . tn}) = (
m⋃
j=1

RI(t1j)) ∪ (
n⋃
i=2

RI(ti))

= RI(t1) ∪ (
n⋃
i=2

RI(ti))

= RI(t)

Besides, ∀ 1 ≤ j ≤ m,RI(t1j) ⊂ RI(t1) and ∀ 2 ≤ i ≤ n,RI(t1) ∩RI(ti) = ∅.
Hence, ∀ 1 ≤ j ≤ m,∀ 2 ≤ i ≤ n,RI(t1j) ∩RI(ti) = ∅
{t11, t12, . . . , t1m, t2, . . . tn} is indeed a reduction of t.

It is possible to extend reductions, until irreducible reductions are reached, i.e. re-
ductions who consist only in irreducible transitions. Each extension adds at least one
transition to the reduction. However, recall that spurious transitions are associated to
synchronizations of concurrent processes by the controller, and are unfrequent. Synchro-
nizing two concurrent processes is a rare event, synchronizing three is even less probable,
etc... Irreducible reductions are maximal in number of transitions, as they can not be
further extended. Instead, minimal reductions are more relevant, as they represent a
minimal number of processes synchronized.

Definition 3.5. A minimal reduction of a transition t is a reduction {ti}1≤i≤n ∈ Red(t),
of size n, such that:

∀{tj} ∈ Red(t), |{tj}| ≥ n

Remark 3.2. Minimal reductions are not unique. Consider the net of Figure 3.15. Two
reductions exist for t5: {t1, t3} and {t2, t4}. Both are minimal, equivalent, and can be
chosen as reductions for t5.

77

Chapter 3. Scalability of the observable behaviour construction

𝑡4: ↑ 𝑢2 𝑡2: ↑ 𝑢1

𝒀𝟏 𝒀𝟐

𝑡3: ↑ 𝑢2

𝒀𝟑

𝑡1: ↑ 𝑢1

𝑡5: ↑ 𝑢1 ↑ 𝑢2

Figure 3.15: Non-unicity of minimal reductions illustrated by t5

For now, reducible transitions have been defined by equivalency of interpretation.
This definition is more restrictive than the linear caracterization of [Desel and Esparza,
1995], which is a consequency of Definition 3.4:

Proposition 3.4. Let N = (PObs, T, C) be the net structure, t ∈ T a reducible transition,
and {ti}1≤i≤n ∈ Red(t) a reduction of t. Define

Λ : tj ∈ T →

{
1 if tj ∈ {ti}1≤i≤n

0 otherwise

Then (1) Λ(t) = 0, (2) Λ ≥ 0, (3) C.Λ = C.t

Proof. (1) and (2) are straightforward.
Let m = |PObs| = |Y| be the number of outputs. For each j ∈ J1,mK, (C.Λ)j can take

three values: 1 if output event ↑ Yj occurs, -1 if ↓ Yj occurs, and 0 if no event occurs.
Λ is built on a reduction of t, such that RI({ti}) = RI(t), hence the output events are
the same, and C.Λ = C.t.

When removing a reducible transition, its firings in S must be replaced; minimal
reductions offer an adapted set of transitions for replacement. It remains to prove that
the replacement is possible.

Proposition 3.5. Let {ti}1≤i≤n be a reduction of t. Then, there exists a firing sequence
σ, containing exactly one firing of each transition of {ti}, that always results in the same
marking evolution as the firing of t, i.e.:

∃σ = t1t2 . . . tn | ∀(M,M ′),M
t−→M ′ ⇐⇒M

σ−→M ′

σ is called a replacement for t

The proof is in Appendix B. If a transition t is reducible, then its occurences in
the observed firing sequence S can be replaced by the firing sequence σ, which is be-
haviourally equivalent. σ is however not unique. In fact, t can be subsituted by every
permutation of σ.

Proposition 3.6. Let {ti}1≤i≤n be a reduction of t, and σ one replacement. Then, any
permutation σ′ of σ is also a replacement for t.

78

3.4. Transitions reduction

Proof. Any permutation being a composition of elementary transpositions, it is sufficient
to prove that σ′ is a replacement for t when it is obtained by an elementary transposition
from σ. An elementary transposition is the exchange of two successive transitions in σ.
Let σ = . . . titj . . . be a replacement and suppose that σ′ = . . . tjti . . . can not be fired.
It means that in σ, the firing of ti is required to enable tj. Hence there exists a place p
such that ti ∈ •p and tj ∈ p•.This place is observable, hence corresponds to an output
event Yp. The firing of ti and tj hence correspond to the events ↑ Yp and ↓ Yp. σ being
a replacement for t {↑ Yp, ↓ Yp} ⊂ RI(t). However, ϕ(•t) ∩ ϕ(t•) = ∅, so ↑ Yp and ↓ Yp
can not both belong to RI(t), hence a contradiction. Necessarily, σ′ is firable.

If a spurious transition is removed, it expressed a synchronization of concurrent
processes. The ordering of the processes is therefore not relevant, and any permutation
can be chosen as replacement in S.

In the observable net, transitions are classified into reducible and irreducible transi-
tions. However, not every reducible transition should be actually reduced, as synchro-
nizations are not all spurious. We suppose here that the number of similar executions
of the process performed during the observation is known, called #Exec. For instance,
data was recorded for the MSS during 20 production cycles of 24 gears each, hence
#Exec=20. If no knowledge on the observation is known, #Exec=1.

Consider now a reducible transition; the existence of such a transition might have
been caused by a spurious synchronized reading. Occurences of such spurious readings
are scarce. If the associated events did not occur together at least once per execution, it
is reasonable to assume that their simultaneous occurence was caused by a synchronized
reading. The rule for removal of a transition is therefore the following:

Reduction rule Let t be a transition, and S be the observed firing sequence. If t is
reducible (Def 3.4), and the number of occurences of t in S is lower than #Exec, then:

• t is removed from the net

• Every occurrence of t in S is replaced by any permutation (Prop 3.6) of a replace-
ment σ (Prop 3.5) built on a minimal reduction of t (Def 3.5).

The modified firing sequence S is firable in the resulting simplified net (Prop 3.4).

3.4.2 Application

The hardest part of the reduction procedure is to actually find a reduction of a given
transition, if it exists. Formally, given t, the aim is to find a set of transitions {ti} such
that the RI(ti) are a partition of RI(t). Recall that given an event set RI, there exists
at most one transition tj such that RI(tj) = RI. The maximal number of possible sets
{ti} is therefore given by the Bell number, expressing the number of partitions of a set
of size |RI(t)|:

B|RI(t)| =

|RI(t)|∑
k=1

S(|RI(t)|, k)

79

Chapter 3. Scalability of the observable behaviour construction

where S(|RI(t)|, k) is the Stirling number of the second kind:

S(|RI(t)|, k) =
1

k!

k∑
j=0

(−1)k−jCj
kj
|RI(t)|

Even though the number of partitions is theoretically huge, a reduction can in practice
be computed. First, the maximal value of |RI(t)| is never so high. Recall that |RI(t)|
mirrors the number of output events (and unrelated input events) that occurred in the
same event vector, i.e. whose causes occurred within the duration of a controller cycle
(max 15ms). Typically, for the MSS, max(|RI(t)|) = 5. Since B5 = 52, reductions are
perfectly computable. Second, even if |RI(t)| rises, the aim is set on minimal reductions,
i.e. partitions with a minimal number of transitions. In most cases, testing all partitions
is not required. It is sufficient to test size2 partitions, then size3 partitions, . . . , until a
solution is reached.

The full reduction procedure is described by Algorithm 3.2. The transitions are
treated by decreasing sizes of RI(t). The notation TN designs the set of transitions t
verifying |RI(t)| = N .

Algorithm 3.2 Reduction
Require: Observable net (PObs, T, C), S,#Exec
Ensure: Reduced net
1: N = maxt(|RI(t)|)
2: while N ≥ 2 do
3: for t ∈ TN do
4: {Take a transition t}
5: if Count(T, S) ≤ #Exec then
6: {If it is unfrequent enough}
7: Compute {ti} minimal reduction of t
8: if {ti} exists then
9: Remove t from T

10: Replace t by σ = t1t2 . . . tn in S
11: end if
12: end if
13: N ← N - 1
14: end for
15: end while

The condition in the While loop is always reached, and transitions belonging to T1

are irreducible by nature, hence do not required to be studied by Algorithm 3.2. The
hardest step is at line 7, theoretically running at worst in O(B(N)).

Example 3.6 (Example 3.5 cont.). The following occurences are introduced: #t1 =

8; #t2 = 15; #t3 = 15; #t4 = 15; #t5 = 4; #t6 = 16, and #Exec = 10. The reduction
starts at N = 4 = |RI(t5)|. A minimal replacement of t5 is {t1, t6}. Therefore, t5 is
deleted and replaced in S by σ = t1t6. The new occurrences are #t1 = 12 and #t6 = 16.

80

3.4. Transitions reduction

When the reduction moves on to N = 3 = |RI(t1)|, t1 is no longer unfrequent, and is
kept. All other transitions are irreducible.

The reduction procedure is now applied to the MSS. All calculations have been run
on a laptop (Intel® Core™ i5-3380M CPU @ 2.90GHz x4, 8Go RAM) from the data
presented in Section 3.1. The models are generated with Graphviz1, an open-source
graph visualization software. Observable places are white, and labelled with the name
of the associated output, while unobservable places are grey. If a place is initially
marked, it is double-circled. The transitions are the rectangles, labelled on two rows:
the first row is the event part F of the firing function, while the second is the level part
G. These level parts are sometimes extensive, and are reduced to their first disjunction
in the presented graphs for the sake of readability.

Before any improvement, only 25 outputs could be considered, and 402 transitions
were built. The 5 remaining outputs (such as 1Y04_0) could not be computed because
too many noisy input events were present. After the application of the filter and the
permissivity increase, all 30 outputs of the MSS can be studied, and 295 transitions are
built. The construction of this first observable model took 12s.

Figure 3.16 presents the observable model before the reduction. 29 of the 295 transi-
tions are isolated, and the remainder of the transitions connect all the observable places,
forming a huge spaghetti-like, unreadable fragment. Each observable place is connected
in average to 23 transitions, maxing out at 48 for output 1Y06. This output is the relay
of a magnet of the pusher station, actively sollicited during the arrival of new pieces in
the chain. Due to its intense activity, it is often observed with other outputs.

After the application of the procedure for #Exec = 20, 101 transitions remain. The
observable fragments remaining are shown in Figure 3.17. 24 isolated transitions remain
(the 5 transitions who were labelled with two events have been reduced), and the huge
observable fragment is split into 13 fragments. Places are connected in average to 2.56
transitions, maxing out at 8 (always 1Y06). 9 of the 13 fragments possess only one
place, and the biggest fragment consists in 8 places. This observable behaviour is much
more understandable. Consider the top fragment of Figure 3.17: it consists mostly in
outputs of the third station (labelled 3xxx), connected with some outputs of the second
and the fourth, who are at the border of the third station. Likewise, the second biggest
fragment consists mostly in outputs of the first station. The reduction took 3s, hence
the full computation of the observable behaviour took 15s.

1http://graphviz.org

81

Chapter 3. Scalability of the observable behaviour construction

Figure 3.16: Observable Behaviour of the MSS pre-reduction: one single spaghetti frag-
ment

82

3.4. Transitions reduction

Figure 3.17: The result of the reduction for the MSS: 30 observable places and 101
transitions. 13 observable fragments and 24 isolated transitions

83

Chapter 3. Scalability of the observable behaviour construction

Recall Figure 3.3, where no convergence in the language observed of the MSS was
found, even for n = 1. This issue was attributed to spurious synchronized readings.
They are now taken into account in the discovery of the observable behaviour, and the
observable model is corrected accordingly. The language growth curves are plotted again
for the corrected model in Figure 3.18, for n = 1, 2, 3, this time based on words observed
in the corrected firing sequence. Convergence is observed for n = 1, hence the correction
is efficient.

The divergence still observed for n ≥ 2 are due to the massive concurrency of the
system. All length-2 interleavings have not been observed; Proposition 2.1 can not apply,
and a rule-based approach will be incomplete. A new approach is therefore proposed in
next chapter to deal with the unobservable discovery.

Figure 3.18: Observed language of the MSS expressed on the transitions, for n = 1, 2, 3

3.5 Conclusions

It has been shown in this chapter that the method proposed in Chapter 2 did not
scale well. Massive concurrent systems are observed with spurious synchronizations from
the controller, which hindered the application of the previous method. This chapter
proposed two improvements to limit the noise induced by these synchronizations. A
filter is developped to improve the computation of the OEFFs, both in quality of the
result and calculus cost. Spurious transitions are also detected and reduced, leading to
a simpler observable part.

It remains to add the unobservable behaviour to this simplified observable part,
which is the purpose of next chapter.

84

Chapter

4
Discovery of the unobservable

behaviour

Introduction

This chapter proposes a new approach to discover the unobservable behaviour of the
system, and express it as unobservable places. This approach is robust to concurrency,
despite the incompleteness of the observation. Firstly, the discovery problem is settled
and the hypotheses precised in Section 4.1. The theoretical results characterizing unob-
servable places are given in Section 4.2. Then, since the solution is not unique, quality
criteria are introduced in Section 4.3 to choose a model adequate for reverse-engineering.
Based on these criteria, Section 4.4 presents a heuristic to conduct the discovery and
achieve good models. Section 4.5 proposes some extensions to the main contribution,
while Section 4.6 illustrates its efficiency with examples. Finally, Section 4.7 proposes a
more accurate comparison to other similar approaches.

4.1 Problem statement

The observable part of the model GObs = {PObs, T, IObs, OObs} and the firing se-
quence S are the input data. To obtain a full Petri Net structure, unobservable places
remain to be added with their edges to connect the transitions and an initial marking
must be inferred, to ensure that the structure can reproduce the observed sequence. The
inference problem is defined as follows:

Unobservable Behaviour Inference Problem
Given a set of transitions T = {t1, . . . , tn} and S ∈ T ∗ a finite observed sequence,

compute a Petri Net structure GUnobs = {PUnobs, T, IUnobs, OUnobs} and an initial mark-
ing M0 such that S is firable in (GUnobs,M0), and verifiying the following assumptions:

1. GUnobs is ordinary

2. (GUnobs,M0) is 1-bounded

85

Chapter 4. Discovery of the unobservable behaviour

3. There are no silent transitions, i.e. transitions labelled with an event not appearing
in the sequence S

4. GUnobs is a free-labelled Petri Net, i.e. two transitions of T can not have the same
label

5. GUnobs is selfloop-free

The first four assumptions are consequences of the set of transitions being built by
the observable behaviour discovery step. The transitions are associated with events,
therefore can not be silent; observable places are associated with binary outputs, hence
having multiple tokens residing in one place is forbidden. The fifth assumption is a
working hypothesis. It is also worth noting that the number of places |PUnobs| is unknown
a priori.

Notice that the observable places do not intervene in the formulation of the inference
problem, as only the transitions and the firing sequence are required. The upcoming
approach proposed to solve it aims at being generic, therefore the theoretical concepts
behind the resolution do not require the observable places. They will instead be required
in the practical application, to build the complete IPN G by merging GObs and GUnobs.

4.2 Theoretical background

When the inference problem is stated for a given set of transitions T and a sequence
S, an "empty" net with neither places (P = ∅) nor edges, but only the transitions T , is
generated, the observable places being set aside for now. This net is a solution and is
the starting point of the inference procedure. To solve the problem, one should aim at
adding places to such a net, with their edges, which are admissible:

Definition 4.1. Let N = (({P, T, I, O},M0) be a PN solution of the inference problem.
Let N ′ = ({P ′, T, I ′, O′},M ′

0) be a PN constructed from N by adding a place p with
its edges i[T] and o[T] and its initial marking mp, i.e. :

P ′ = P ∪ {p}

I(O)′ =

[
I(O)

i(o)[T]

]

M ′
0 =

[
M0

mp

]

Then p is said to be an admissible place if, and only if N ′ is also a solution.

4.2.1 From the firing sequence to admissible places

The main operator used in the procedure is the projecting operator, or projector,
whose definition is recalled below from [Mazurkiewicz, 1995]:

86

4.2. Theoretical background

Definition 4.2. Let Σ and Σp be two alphabets such that Σp ⊆ Σ; and S ∈ Σ∗ a firing
sequence. The projector ΠΣp is defined by:

ΠΣp(S) =


ε, if S = ε

ΠΣp(a)t, if S = at, t ∈ Σp

ΠΣp(a), if S = at, t 6∈ Σp

ΠΣp(S) is called the projection of S on Σp

Let S ∈ T ∗ be a firing sequence, (Σi,Σj) ∈ (2T −{∅})2 be two non-empty subalpha-
bets of T such that Σi ∩ Σj = ∅, and ΠΣi∪Σj

the projector on Σi ∪ Σj, written Π for
simplification. Then, the generic form of the result of the projection is:

Π(S) = σ1
i σ

1
jσ

2
i σ

2
j . . . if Π(S)1 ∈ Σi

Π(S) = σ1
jσ

1
i σ

2
jσ

2
i . . . if Π(S)1 ∈ Σj

where σki ∈ Σ+
i is a finite nonempty sequence of transitions from Σi (same for σlj ∈ Σ+

j).

Example 4.1. Consider the following sequence S and the alphabets Σ1 = {t1} and
Σ2 = {t2, t3}.

Π(S) = t1 t2 t3 t1 t4 t2 t1 t2 t3 t1 t2 t4 t1 t3 t2 t1

It comes:
Π(S) = t1︸︷︷︸

σ1
1

t2 t3︸ ︷︷ ︸
σ1
2

t1︸︷︷︸
σ2
1

t4 t2︸︷︷︸
...

t1 t2 t3 t1 t2 t4 t1 t3 t2 t1

For different alphabets Σ1 = {t1} and Σ3 = {t3, t4}:

Π(S) = t1︸︷︷︸
σ1
1

t2 t3︸︷︷︸
σ1
3

t1︸︷︷︸
σ2
1

t4︸︷︷︸
...

t2 t1 t2 t3 t1 t2 t4 t1 t3 t2 t1

For the second case, notice that each subsequence σk1 or σk3 consists in only one
firing. It can be inferred from such a firing sequence that the firing of t1 always requires
the firing of either t3 or t4 to be enabled again; the reverse can be inferred as well.
To discover such relations between transition sets, the interest lies in the length of the
subsequences computed from the projection.

Definition 4.3. Let Π(S) = σ1
i σ

1
jσ

2
i σ

2
j . . . be the result of the projection of S on Σi∪Σj.

If, ∀k > 0,∀l > 0, |σki | = |σlj| = 1, the alphabets Σi and Σj are said to be mutually
dependant, written Σi � Σj.

The set of mutual dependencies is denoted {�} = {(Σi,Σj)|Σi � Σj}

Proposition 4.1. Mutual dependency is a reflexive and symetric relation.

The proof is straightforward.
Since each of the σki is a subsequence of length 1, it contains only 1 transition ti ∈ Σi

and can therefore be assimilated as σki = tki ∈ Σ1
i . The mutual dependancy of two

87

Chapter 4. Discovery of the unobservable behaviour

alphabets Σi and Σj ensure that the projection of the sequence exhibits a strict firing
alternance between transitions of both sets. Mutual dependency is a generalization of
the notion of Systematic Precedence, from Definition 2.4, to sets of transitions. Namely,
if |Σi| = |Σj| = 1,

(ti � tj)⇔ (ti ∈ SP (tj) ∧ tj ∈ SP (ti))

When a mutual dependency exists, it can be associated to a PN structure fragment
involving two places, as illustrated by the following example:

Example 4.2 (Example 4.1 cont.). The projection on {t1} ∪ {t3, t4} reveals a mutual
dependency. t1 is required to fire either t3 or t4, a place p1 is created such that •p1 = {t1}
and p•1 = {t3, t4} to express this dependency. Similarly, t3 or t4 is required to fire t1; a
place p2 is created such that •p2 = {t3, t4} and p•2 = {t1}. The first transition fired in S
being t1, p2 is given a token as initial marking, to enable t1.

Similarly, it can be seen that {t1}� {t2}. Two places p3 and p4 are added to express
this dependency. The resulting net can be seen in Figure 4.1. Notice that this net
reproduces S, and is a solution. The concurrency between two processes synchronized by
t1 is easily captured.

𝑡1

𝑡2

𝑡3

𝑡4
𝑝1

𝑝2

𝑝3

𝑝4

Figure 4.1: An unobservable PN built from S using mutual dependencies.

The previous example exhibits two cases of unobservable places which could be cre-
ated from mutual dependencies. This can be generalized:

Definition 4.4. Let Σi and Σj be two mutually dependent alphabets. The mutual de-
pendency is associated to two places pij and pji, defined as following:

•pij = Σi; p
•
ij = Σj;

{
M0(pij) = 0 if Π(S)1 ∈ Σi

M0(pij) = 1 if Π(S)1 ∈ Σj

•pji = Σj; p
•
ji = Σi;

{
M0(pji) = 0 if Π(S)1 ∈ Σj

M0(pji) = 1 if Π(S)1 ∈ Σi

The two places associated to Σi � Σj are shown in Figure 4.2.
Example 4.1 suggests that a net solution can be built from iteratively adding unob-

servable places associated to mutual dependencies. This result is shown in the following
theorem, which is the main theoretical result [Saives et al., 2015a]:

88

4.2. Theoretical background

𝑡𝑖
1

𝑡𝑖
𝑚

𝑡𝑗
1

𝑡𝑗
𝑛

𝑝𝑖𝑗 𝑝𝑗𝑖

...

...

...

...

...

Σ𝑖

Σ𝑗

Figure 4.2: A PN structure composed of two places pij and pji for Σi = {t1i , . . . , tmi },
Σj = {t1j , . . . , tnj }. t1i is the first transition fired.

Theorem 1. Let S ∈ T ∗ be a firing sequence, and (G,M0) a 1-bounded Petri Net such
that S ∈ L(G,M0). Let Σi and Σj be two alphabets in (2T − {∅}) ensuring Σi ∩Σj = ∅,
and Π the projector on Σi ∪ Σj. If Σi � Σj, i.e.

Π(S) = t1i t
1
j t

2
i t

2
j . . .

or
Π(S) = t1j t

1
i t

2
j t

2
i . . .

Then the net G′ defined by the addition of places pij and pji to G is 1-bounded and
S ∈ L(G′,M0). In other words, places pij and pji associated to the mutual dependency
are admissible.

Proof. Suppose that Π(S)1 ∈ Σj (i.e. the first case, the reasoning being the same in the
other case).

1-boundedness:

G is 1-bounded. It remains to prove that the places places pij and pji are 1-
bounded. They verify •pji = p•ij, •pij = p•ji, and M0(pij) +M0(pji) = 1. It ensures
that ∀M ∈ R(G′,M0),M(pij) +M(pji) = 1, therefore G′ is 1-bounded.

S ∈ L(G′,M0):

Suppose that S /∈ L(G′,M0), and let t be the first transition that can not be fired.
Since the transitions in T − (Σi∪Σj) have the same pre- and post-places in G′ and
in G, and t is firable in G, t must belong to Σi ∪ Σj. Suppose that t ∈ Σj (same
reasoning for t ∈ Σi). Then pji is the only new place in •t that can prevent t from
firing, thus must be empty when t should be fired. Let k be an integer such that
Π(S)2k−1 = t. Then, when Π(S)2k−2 ∈ Σi was fired, pji was filled with a token.
Since no other transition in Σj was fired between Π(S)2k−2 and Π(S)2k−1, pji still
contains a token when t should be fired, leading to a contradiction. Therefore,
S ∈ L(G′,M0).

89

Chapter 4. Discovery of the unobservable behaviour

Whenever a mutual dependency is discovered between two sets of transitions, two
places (Figure 4.2) with associated unweighted edges are admissible for the inference
problem: they ensure the 1-boundedness of the resulting net, and that the firing sequence
is still firable. Transitions are not duplicated nor created, and the condition Σi∩Σj = ∅
ensures that no selfloops are created. Therefore, Theorem 1 provides a single rule that
characterizes couples of admissible places.

Given a set of mutual dependencies {�}, it is converted into a set of pairs of admis-
sible places by Theorem 1. Any combination of these pairs is a solution. Theoretically,
if the knowledge of mutual dependencies is complete, say |{�}| = n, then all solutions
are known: they are the combinations of the pairs of admissible places associated to
{�}, building 2n net solutions. Some solutions have isolated transitions, the number of
connected solutions is naturally lower than that number. The multiplicity of solutions
is illustrated by the following example:

Example 4.3. Let T = {t0, t1, t2, t3, t4, t5, t6, t7} be the alphabet, and S = t6t1t7t4 t6t1t7t4

t6t1t2t4 t6t0t7t3 t6t0t2t3 t6t0t2t3 t6t0t7t3 t6t0t7t5t4 t6t0t7t3 t6t0t5t2t4 t6t0t5t7t4 t6t1t7 be
the observed sequence. All mutual dependencies discoverable in this sequence are the
following:
{t6} �

1
{t2, t7}, {t6} �

2
{t0, t1}, {t6} �

3
{t3, t4}, {t5} �

4
{t1, t4}, {t0} �

5
{t3, t5},

{t2, t7} �
6
{t0, t1}, {t2, t7} �

7
{t3, t4}, {t0, t4} �

8
{t5, t6}, {t3, t4} �

9
{t0, t1},{t6} �

10

{t1, t3, t5}. There are 10 mutual dependencies. Each of the 210 combinations leads to a
different net, which is a solution. For instance, two nets are presented in Figure 4.3;
net (a) is build on dependencies {1,2,3,4,5} and net (b) on dependencies {2,3,4,5,6,7}.
Implicit places1 have been removed in both nets.

Finally, in this case, any proper superset of {2,3,4,5,6,7} leads, after deletion of
implicit places, to net(b). Namely, it means that net (a) can be transformed into net (b)
by adding dependencies {6,7} to {1,2,3,4,5}.

However, to formulate the problem as choosing a set of places from all possible
combinations, the knowledge of the mutual dependencies {�} is required. A look at
the complexity of finding mutual dependencies, and converting them into places, is
required beforehand.

4.2.2 Complexity of finding admissible places

To discover a mutual dependency, the required inputs are two disjoint non-empty
subsets of T, generically designed as (Σi,Σj). Notice the symmetry in the roles of Σi

and Σj. Therefore, unordered pairs {Σi,Σj} are considered. For the remainder of this

1Implicit places are places whose removal does not alter the reachability graph, see Section 4.5.1 for
more details

90

4.2. Theoretical background

𝑡1

𝑡2

𝑡7
𝑡4

𝑡5

𝑡0 𝑡3

𝑡6

𝑡1

𝑡2

𝑡7
𝑡4

𝑡5

𝑡0 𝑡3

𝑡6

(a) (b)

Figure 4.3: Two net solutions, built with different sets of admissible places

work, the notation (2T − {∅})2
6∩ will design the set of all these unordered pairs:

(2T − {∅})2
6∩ = {{Σi,Σj}|(Σi,Σj) ∈ (2T − {∅})2 ∧ Σi ∩ Σj = ∅}

The problem is to build the set of mutual dependencies {�} ⊆ (2T − {∅})2
6∩. This

is achieved by applying Algorithm 4.1. Given two alphabets {Σi,Σj} ∈ (2T − {∅})2
6∩,

the projected sequence is a sequence of subsequences σki ∈ Σ+
i ,σlj ∈ Σ+

j . The idea of
Algorithm 4.1 is to evaluate the maximal length of these subsequences; if it is one, then
a mutual dependancy between the alphabets is discovered. If a mutual dependancy is
discovered, the first alphabet observed in the projected sequence is returned as well.

Proposition 4.2. Algorithm 4.1 determines if two alphabets Σi and Σj are mutually
dependant according to a sequence S. Let δi (resp δj) be the size of Σi (resp Σj), and
δ = δi + δj. Algorithm 1 runs in O(|S|.δ)

Proof. For each element sk of the sequence S (line 3), at least one test (line 4), and at
most two tests (lines 4 and 15) are run. Verifying the belonging of sk to Σi is at worst
of complexity O(δi); hence, if two tests are run, the loop (3-21) runs at worst in O(δ)

(since all other operations run in O(1)).
Each element of the sequence is studied, hence the loop (3-21) is run |S| times.

Finally, the complexity of Algorithm 4.1 is O(|S|.δ).

Notice that the disjunction of the alphabets implies that δ ≤ |T |. The complexity
in the worst case is O(|T ||S|). Hence applying Algorithm 4.1 is efficient because of its
linear complexity regarding |S| and |T |.

If the result of Algorithm 4.1 is True, two places are added to the net, according to
Algorithm 4.2. The notation δΣi

[T] designs a row vector such that δΣi
[t] = 1 if t ∈ Σi,

0 otherwise.

Proposition 4.3. If the result of Algorithm 4.1 is True, Algorithm 4.2 adds two places
pij and pji with their edges and initial marking, according to Theorem 1. Algorithm 4.2
runs in O(|S||T |).

91

Chapter 4. Discovery of the unobservable behaviour

Algorithm 4.1 Verifying the conditions of Theorem 1
Require: S = s1 . . . s|S| a sequence, {Σi,Σj} two disjoint non-empty subsets of T .
Ensure: Decision for Σi � Σj

1: {This part aims at calculating the maximal length of the subsequences σki , σlj in the
projected sequence. These lengths are memorized in the variables maxi and maxj.
Furthermore, the alphabet to which belongs the first transition is memorized.}

2: maxi = maxj = 0 ; counteri = counterj = 0 ; first = ∅
3: for sk ∈ J1, |S|K do
4: if sk ∈ Σi then
5: if first == ∅ then
6: first← Σi

7: end if
8: if counterj 6= 0 then
9: maxj ← max(maxj, counterj) ; counteri ← 0

10: end if
11: counteri ← counteri + 1
12: else if sk ∈ Σj then
13: if first == ∅ then
14: first← Σj

15: end if
16: if counteri 6= 0 then
17: maxi ← max(maxi, counteri) ; counteri ← 0
18: end if
19: counterj ← counterj + 1
20: end if
21: end for
22: {If the maximal lengths ofmaxi andmaxj are 1, Σi and Σj are mutually dependant}

23: if maxi == 1 ∧maxj == 1 then
24: return True, first
25: else
26: return False
27: end if

Proof. The tests and operations on lines (4,8,10) run in O(1), while operations on
lines(5,6) run in O(|T |). There is a call to Algorithm 4.1 on line 2, hence running
in O(|S||T |). The resulting complexity is the sum, hence O(|S||T |).

Applying both algorithms for a given pair of subalphabets is not costly, which means
that the construction of the net is easy if well-chosen pairs are given. In the generic case,
it remains to evaluate the number of possible pairs. The following proposition evaluates
the size of (2T − {∅})2

6∩, given an alphabet T:

Proposition 4.4. Let Σn be a size n alphabet (n ≥ 2). The number of pairs of disjoint,
non-empty subsets of Σn, noted Pn, is given by the formula:

Pn = 3n−2 +
n−3∑
k=0

3k(2n−k−1 − 1)

92

4.2. Theoretical background

Algorithm 4.2 Adding places if Theorem 1 is satisfied
Require: N = ({P, TObs, I, O},M0) a net satisfying the inference problem for S =

s1 . . . s|S| a sequence, {Σi,Σj} two disjoint subsets of TObs.
Ensure: N ′ a net satisfying the inference problem for S
1: {If a mutual dependancy between Σi and Σj is discovered by Algorithm 4.1, two

places pij and pji are added}
2: MutDep, FirstAlph ← Algorithm 4.1(S,{Σi,Σj})
3: if MutDep == True then
4: P ← P ∪ {pij} ∪ {pji}

5: I ←

 I
−δΣi

(T)
−δΣj

(T)


6: O ←

 O
δΣj

(T)
δΣi

(T)


7: if FirstAlph == Σi then

8: M0 ←

M0

1
0


9: else

10: M0 ←

M0

0
1


11: end if
12: end if

The proof by recurrence is in Appendix B.
Given the size of the transition set |T |, there are roughly |(2T − {∅})2

6∩| ' 3|T | pairs
to be studied. Therefore, a complete study requires to apply Algorithm 4.2 3|T | times,
leading to complexity O(|T ||S|3|T |). This number quickly becomes untractable for rea-
sonable values of |T| (for instance, 30 transitions represent roughly 1014 pairs to study).

4.2.3 Intermediate conclusions

This section gives an important complexity result, illustrated by Figure 4.4:

• Given two disjoint alphabets, finding their relationship and translating it into PN
structure is easy. (Algorithm 4.2, O(|T ||S|))

• However, the number of alphabets to be studied raises exponentially regarding the
number of transitions (' 3|T |)

The main difficulty results therefore in building the set of mutual dependencies {�},
whose size n is apriori unknown. Achieving the completeness of this set requires dealing
with 3|T | cases. The full knowledge should not be achieved; instead, a smaller subset
{�}n′ of size n′ ≤ n can be built. However, only 2n

′ solutions remain (out of the 2n

possible solutions). Therefore {�}n′ should be judiciously elaborated, in order that a

93

Chapter 4. Discovery of the unobservable behaviour

(2T − {∅})2
6∩

(S, T) −→︸︷︷︸
∼3|T |choices

(Σi,Σj) −→︸︷︷︸
Algorithm 4.2
O(δ.|S|)

(N,M0)

Figure 4.4: Visualisation of the complexity of the problem

’good’ solution to the problem remains available. Suppose that this solution requires
k ≤ n′ dependencies to be built. To limit the computational effort, it is better to limit
the size of {�}n′ , so that n′ ' k.

Therefore, given n′ mutual dependencies, instead of having to choose any of the
2n
′ possible solutions, only the solution using all n′ dependencies is studied. If a new

dependency is added, a new net is built using n′ + 1 dependencies. The set of mutual
dependencies {�} can be built iteratively by adding new dependencies, and checking
the quality of the net at every step.

Example 4.4 (Example 4.3 cont.). Net (a) is built from the set {�}5 = {1, 2, 3, 4, 5}.
Now, if dependencies {6,7} are added, net(b) is built from {�}7 = {1, 2, 3, 4, 5, 6, 7}.
Any superset of {�}7 leads to net (b) as well after the deletion of implicit places.

To sum things up, two issues remain to be dealt with:

• What is a ’good’ net?

• How to ensure that the partial set of mutual dependencies {�}n′ leads to a ’good’
net?

Recall that the purpose of the identified net is to be used for reverse-engineering. The
first question leads to the definition of criteria to assess the quality of a net for reverse-
engineering, and is dealt with in Section 4.3. The second question introduces a limited
discovery problem: designing a relevant heuristic to partially explore (2T − {∅})2

6∩ and
build the partial subset of mutual dependencies {�}n′ . The heuristic must naturally be
result-oriented, according to the quality criteria; it is presented in Section 4.4.

4.3 Assessing the quality of a net

Numerous nets are solutions to the inference problem, so "what makes a good iden-
tified model ?". According to [Van der Aalst, 2011b], a good model in process discovery
should balance four quality dimensions: fitness, simplicity, precision and generaliza-
tion. Fitness expresses the ability of the identified model to replroduce the observed
behaviour. Notice that in our approach, any solution must be guaranteed to reproduce
S, hence fitness is guaranteed. Precision and generalization are opposite quality metrics
that qualify the exceeding behaviour, i.e. the behaviour accepted by the net that has not

94

4.3. Assessing the quality of a net

been observed. Finally, simplicity refers to Occam’s Razor, stating that "the simplest
explanation is usually the correct one".

Precision is an unavoidable quality of nets used for fault diagnosis, as minimizing the
exceeding behaviour lowers the number of false alerts ([Roth et al., 2009a]. However, for
reverse engineering models, the model is destined to be read, therefore simplicity takes
the upper hand; a good model is one that is easily understandable.

Two metrics are introduced here for quantifying both the precision and the under-
standability of the net, then an example illustrating the importance of understandability
is presented. Additional reflexions on the choice of metrics are presented in Appendix A.

4.3.1 Quality metrics

4.3.1.1 Precision

Precision qualifies the closeness of the behaviour of the identified net to the behaviour
observed in the sequence. These behaviours are described by languages, respectively
observed in the sequence, and generated by the identified net. Since the observation is
finite, the observed language is necessary finite, whereas the identified language might
be infinite (if the identified net is cyclic). A length parameter n is introduced to allow
the comparison of the two languages.

Definition 4.5. The language of length n generated by a Petri net N , i.e. the set of
words of length n generated by N , or identified language is:

LnId(N) = {w ∈ T ∗| |w| = n ∧ ∃M ′ ∈ R(N), M
w−→M ′}

The language of length n, observed in a firing sequence S, is:

LnObs(S) =
⋃

1≤t≤|S|−n+1

st.st+1 . . . st+n−1

The precision of the identified net is quantified by the size of its exceeding language:

LnExc(N,S) = LnId(N) \ LnObs(S)

Since fitness is guaranteed by the theoretical results, LnObs2(S) ⊆ LnId2(N), therefore
LnExc(N,S) ≥ 0. The lower the size of the exceeding language, the more precise the net.
However, recall the observation curves of Section 1.2.2; for values of n for which the
convergence of the observed language was not observed, it is unreasonable to aim for
perfect precision (LnExc(N,S) = 0, which is the goal of synthesis approaches), since the
observed behaviour is clearly not complete, and no counter-examples are available.

Nevertheless, precision can be maximized in the inference procedure. An interesting
property of the identified nets is that the addition of any place to N reduces the size of
the identified language, as shown in the following propositions. Languages considered
in these propositions are not parametrized by n, potentially infinite: L =

⋃∞
n=0 L

n.

95

Chapter 4. Discovery of the unobservable behaviour

Proposition 4.5. Let N = {(P, T, C),M0} be a PN, and LM0(N) = {S|M0
S−→} the

(infinite) set of sequences firable from the initial marking.
Let N ′ = {(P ′, T, C ′),M ′

0} be a PN constructed from N by adding a place p with its
edges i[T] and o[T], such that cp[T] = o[T]− i[T], and its initial marking mp, i.e. :

P ′ = P ∪ {p}

C ′ =

[
C

cp[T]

]

M ′
0 =

[
M0

mp

]

Then LM ′0(N
′) ⊆ LM0(N)

The proof lies in Appendix B. The result remains identical when taking all marking
into accounts, hence our definition of identified language.

Proposition 4.6. In the same conditions as Proposition 4.5, LId(N ′) ⊆ LId(N), where
LId(N) =

⋃
M∈R(N)

{S|M S−→}

Proof. Let w ∈ L(N ′) be a word firable in N ′. Let M ′ be an accessible marking of N ′

such that M ′ enables w. M ′ being accessible, let σ ∈ T ∗ be a firing sequence such that
M ′

0
σ−→M ′ w−→.

Then σw is a word of LM ′0(N
′), thus of LM0(N) according to Proposition 4.5. σw

being firable in N , there is a marking M ∈ R(N) such that M0
σ−→ M

w−→, and M is
an accessible marking of N that enables w. Therefore w ∈ L(N).

Proposition 4.6 is extremely generic: whatever the place-centered structure added
(weight and number of edges, initial marking), the language generated by the net is re-
duced, or remains identical. It can be applied to the resolution of the inference problem:
the more admissible places are discovered, the smaller the identified language will be.
Consequently:

Proposition 4.7. If all disjoint non-empty subalphabets {Σi,Σj} ∈ (2T − {∅})2
6∩ have

been tested with Algorithm 4.2, then {�} is maximal and the resulting net is the most
precise.

Proof. Each couple of added places reduced the size of the identified language. If all
alphabet couples have been tested, all mutual dependencies have been discovered, and
all possible admissible places have been added to the net. No more places can be added,
therefore its identified language can not be further reduced by the addition of places.
The resulting net is the most precise solution.

Since (2T −{∅})2
6∩ must be fully explored, finding the most precise net requires expo-

nential time regarding transitions. However, optimal precision is not the main quality
criterion, so this is not an issue.

96

4.3. Assessing the quality of a net

4.3.1.2 Understandability and structural complexity

Understandability of the net is related to the difficulty of reading the net, namely pic-
turing the possibilities of token displacements. This difficulty increases with concurrent
transitions and conflict places (who are connected to multiple edges). The Coefficient
of Network Complexity (CNC), originally introduced in ([Pascoe, 1966])is chosen: it is
the ratio edges/nodes of the graph.

Definition 4.6 (adapted from [Pascoe, 1966]). For a Petri net structure G = (P, T,W),
the Coefficient of Network Complexity is defined as:

CNCPN =
|W |

|P |+ |T |

Another valuable property of an identified net is strong connexity. Suppose that the
identified nets consists in multiple components; it is hard to picture all interleavings
being possible due to the full parallelism. Besides, if multiple unconnected components
are identified, they probably belong to different functional subsystems, which could
be identified separately. If the net consists in one strongly connected component, the
concurrency is lessened and the model is easier to understand. Strong connexity is a
good property to aim for in the inference procedure.

4.3.2 Importance of understandability

The balance between precision and understandability is illustrated here by an exam-
ple.

Example 4.5. Consider the system of Figure 4.5.

H

B

Transfer
dock

Unloading
dock

Loading
docks

L1 R1

L2 R2

Grip

press_hpress_b

press_p

l1

r1_h

r1_b

r2l2
start

Figure 4.5: A system consisting of two chariots and a gripper

The middle is the transfer dock, with the start button and the initial position of two
transport chariots (sensors l1 and l2).

97

Chapter 4. Discovery of the unobservable behaviour

The upper chariot can roll right (actuator R1) to reach one of two loading docks (H
and B), sensors r1_h and r1_b indicating its presence. Once charged with the corre-
sponding load (the chariot is equipped with two pressure sensors press_b and press_h
to assess the nature of the load), it goes left (L1) back to the transfer dock.

Meanwhile, the lower chariot rolls left (L2) with a load. When it reaches the unload-
ing dock (l2), a gripper takes the load (Gripper) and deposits it on a pressure plate
(press_p) while the chariot rolls right (R2) back to the transfer dock.

The observable behaviour is the one presented in Figure 4.6. It is associated to a
sequence S of events on the alphabet TObs = {tA, tB, tC , tD, tE, tF , tG, tH , tI}.

Only four types of subsequences have been observed: {σ1 = tAtBtDtEtHtF tI ,

σ2 = tAtDtBtEtHtF tI , σ3 = tAtCtDtF tGtEtI , σ4 = tAtDtCtF tGtEtI} and S = σ1σ2σ3σ4σ1

σ2σ3σ4σ2σ2σ4σ4σ1σ3σ3σ2σ2σ4σ3σ2σ1 (|S| = 147)

𝑡𝐴: ↑ 𝑠𝑡𝑎𝑟𝑡

𝑡𝐵: ↑ 𝑟1_ℎ

𝑡𝐶: ↑ 𝑟1_𝑏

L𝟏

𝑳𝟐

𝑮𝒓𝒊𝒑𝒑𝒆𝒓
𝑡𝐺: ↑ 𝑝𝑟𝑒𝑠𝑠_𝑏

𝑡𝐼: ↑ 𝑙1

𝑹𝟏

𝑡𝐹 : ↑ 𝑝𝑟𝑒𝑠𝑠_𝑝

𝑹𝟐

𝑡𝐸 : ↑ 𝑟2

𝑡𝐷 : ↑ 𝑙2

𝑡𝐻: ↑ 𝑝𝑟𝑒𝑠𝑠_h

Figure 4.6: Observable part of the system. 5 outputs and 9 observable transitions

Two unobservable behaviour solutions are proposed in Figure 4.7, with the evolution
of their exceeding language.

In solution (a), only 4 unobservable places have been added. Parallelism between
the chariot movements is explicit, the succession and causality of actions is easy to
read, namely because the number of additional places and edges remains low. This
solution contains a lot of additional behaviour that was not observed in the sequence S
(for instance, tE could fire before tB or tC), characterized by the exceeding behaviour :
|L2

Exc| = 38.
Solution (b) is much closer to the observation, since |LnExc| = 0 for n ≤ 6. However,

9 unobservable places with 30 edges are added, the resulting net is very complex and
almost unreadable. Furthermore, whereas each place in model (a) can be easily given a
physical interpretation (for instance P5 = upper chariot waiting for a load at dock H),
most of the places of solution (b) are very complex (for instance P13 = lower chariot
returned to the transfer dock OR gripper unloaded of the load, enabling upper chariot
to leave the loading dock OR to reach the transfer dock).

One of the objective of behavioural identification is to aim for an understandable
model, therefore solution (a) is preferable to solution (b); notably, CNC(a) = 1.16,

98

4.3. Assessing the quality of a net

while CNC(b) = 1.82.

𝑡𝐴: ↑ 𝑠𝑡𝑎𝑟𝑡

𝑡𝐵: ↑ 𝑟1_ℎ

𝑡𝐶: ↑ 𝑟1_𝑏

L𝟏

𝑳𝟐

𝑮𝒓𝒊𝒑𝒑𝒆𝒓
𝑡𝐺: ↑ 𝑝𝑟𝑒𝑠𝑠_𝑏

𝑡𝐼: ↑ 𝑙1

𝑹𝟏

𝑡𝐹 : ↑ 𝑝𝑟𝑒𝑠𝑠_𝑝

𝑹𝟐

𝑡𝐸 : ↑ 𝑟2

𝑡𝐷 : ↑ 𝑙2

𝑡𝐻: ↑ 𝑝𝑟𝑒𝑠𝑠_h

(a)

𝑡𝐴: ↑ 𝑠𝑡𝑎𝑟𝑡

𝑡𝐵: ↑ 𝑟1_ℎ

𝑡𝐶: ↑ 𝑟1_𝑏

L𝟏

𝑳𝟐

𝑮𝒓𝒊𝒑𝒑𝒆𝒓
𝑡𝐺: ↑ 𝑝𝑟𝑒𝑠𝑠_𝑏

𝑡𝐼: ↑ 𝑙1

𝑹𝟏

𝑡𝐹 : ↑ 𝑝𝑟𝑒𝑠𝑠_𝑝

𝑹𝟐

𝑡𝐸 : ↑ 𝑟2

𝑡𝐷 : ↑ 𝑙2

𝑡𝐻: ↑ 𝑝𝑟𝑒𝑠𝑠_h

(b)

Figure 4.7: (a) A simple solution, with a lot of exceeding language ; (b) A complex
solution, with no exceeding language up to n = 6

To conclude this section, we consider that a ’good’ net for reverse engineering has
three quality characteristics, who are ordered by importance as following:

1. It is strongly connected

2. It is structurally simple (minimimal CNCPN)

3. It is precise (minimal |LnExc|)

Such a net should be computed at low calculus cost. The heuristic proposed in the next
section therefore is designed to find such nets.

Notice that in the example, the observable behaviour of the system was included
as well. The inference problem was stated without using the observable places, and
solutions are found without them as well. However, they are required to understand the
reactive behaviour, and the model of interest for reverse engineering is the full model, not
just the underlying unobservable part. Therefore, all quality criteria must be evaluated
on the full models.

99

Chapter 4. Discovery of the unobservable behaviour

4.4 Discovery in practice

The problem of building the net is reformulated into a partial exploration issue: test-
ing a limited number of pairs in (2T −{∅})2

6∩, to build the subset of mutual dependencies
{�}n′ , such that the resulting net is of high quality.

Firstly, the search space (2T−{∅})2
6∩ is naturally partitioned into subspaces, using the

sizes of the subalphabets as parameter δ. It is shown how δ is correlated to the structural
complexity of the net. Then, the proposed strategy is to explore the subspaces by rising
values of δ, to limit the complexification of the net. The exploration is stopped when
the net becomes strongly connected.

4.4.1 Partitioning of the search space

An element of the search space (2T − {∅})2
6∩ is an unordered pair {Σi,Σj}. The

respective sizes of the alphabets are denoted δi = |Σi| and δj = |Σj|. Recalling Figure 4.2,
if Σi � Σj, two places pij and pji are added to the net, verifying:

•pij = Σi; p
•
ij = Σj

•pji = Σj; p
•
ji = Σi

Therefore the in-degree of pij is exactly δi, while its out-degree is δj, and reciprocally
for pji. The degree of both places is δ = δi + δj. The number of edges associated to a
place, which is a parameter of the structural complexity of the net, is directly linked to
the sizes of the alphabets. A partition of the search space by the sum of the sizes of the
alphabets (or equivalently, the degree of the places) comes naturally, and equivalence
classes are defined accordingly.

Definition 4.7. Let S1 = {Σ1
i ,Σ

1
j} and S2 = {Σ2

i ,Σ
2
j} be two unordered pairs of subal-

phabets of T. The degree-equivalence relation ⇔δ is defined on (2T −{∅})2
6∩ as following:

(S1 ⇔δ S2)⇔

{
min(|Σ1

i |, |Σ1
j |) = min(|Σ2

i |, |Σ2
j |)

max(|Σ1
i |, |Σ1

j |) = max(|Σ2
i |, |Σ2

j |)

Proposition 4.8. ⇔δ is reflexive, symetric and transitive, hence is an equivalence re-
lation.

The proof is straightforward.
To facilitate the understanding, from now on, the subscript i will always label the

smallest subalphabet (i.e. min(|Σ1
i |, |Σ1

j |) = |Σ1
i |), whereas j labels the biggest subal-

phabet. This labelling is not an issue since the pair of alphabets considered is unordered.
Since ⇔δ is an equivalence relation, equivalence classes can be defined, and form a par-
tition of (2T − {∅})2

6∩.

Definition 4.8. Let (δi, δj) ∈ (N∗)2 be two integers, such that 1 ≤ δi ≤ δj ≤ |T |. The
subset of (2T −{∅})2

6∩ of all unordered pairs of alphabets S = {Σi,Σj} verifying |Σi| = δi

100

4.4. Discovery in practice

and |Σj| = δj is denoted Dδi,δj .

Dδi,δj = {S = {Σi,Σj}||Σi| = δi ∧ |Σj| = δj}

Proposition 4.9. For 1 ≤ δi ≤ δj ≤ |T |, δi + δj ≤ |T |, Dδi,δj defines an equivalence
class on (2T − {∅})2

6∩ for ⇔δ. The set {Dδi,δj |1 ≤ δi ≤ δj ≤ |T |, δi + δj ≤ |T |} is the
quotient set of (2T − {∅})2

6∩ by ⇔δ and realizes a partition, i.e.

(2T − {∅})2
6∩ =

⋃
1≤δi≤δj≤|T |
δi+δj≤|T |

Dδi,δj

The proof is straightforward from the properties of equivalence classes.

Example 4.6. Consider |T | = {t1, t2, t3, t4}. The different cells are:

D1,1 = [{{t1}, {t2}}; {{t1}, {t3}}; {{t1}, {t4}}; {{t2}, {t3}}; {{t2}, {t4}}; {{t3}, {t4}}]
D1,2 = [{{t1}, {t2, t3}}; {{t1}, {t2, t4}}; {{t1}, {t3, t4}}; {{t2}, {t1, t3}};

{{t2}, {t1, t4}}; {{t2}, {t3, t4}}; {{t3}, {t1, t2}}; {{t3}, {t1, t4}};
{{t3}, {t2, t4}}; {{t4}, {t1, t2}}; {{t4}, {t1, t3}}; {{t4}, {t2, t3}}]

D1,3 = [{{t1}, {t2, t3, t4}}; {{t2}, {t1, t3, t4}}; {{t3}, {t1, t2, t4}}; {{t4}, {t1, t2, t3}}]
D2,2 = [{{t1, t2}, {t3, t4}}; {{t1, t3}, {t2, t4}}; {{t1, t4}, {t2, t3}}]

The search space is now partitionned into cells Dδi,δj , whose sizes are easy to estimate:

Proposition 4.10. Let Dδi,δj be a cell of (2T − {∅})2
6∩. Then

|δi| < |δj| ⇒ |Dδi,δj | = Cδi
|T |C

δj
|T |−δi

|δi| = |δj| ⇒ |Dδi,δi | =
1

2
Cδi
|T |C

δi
|T |−δi

where Ck
n = n!

k!(n−k)!
expresses the number of combinations of k elements of a size n set.

Proof. An element of Dδi,δj consists in two disjoints subalphabets of T . If |δi| < |δj|,
there are Cδi

|T | combinations to build the first alphabet of size δi, and C
δj
|T |−δi combinations

of the remaining transitions to build the second alphabet. If |δi| = |δj|, each couple of
alphabet will be counted twice with the first formula, hence the factor 1

2
.

Suppose that δi, δj � |T |, an approximation of the size is |Dδi,δj | = O(|T |δi+δj). The
exploration of a cell for low values of δi, δj runs now in polynomial time regarding the
number of transitions.

The value δ = δi + δj is important, as it is also the degree of places to be added,
i.e. the number of edges that are added to the net with the place. For instance, mutual
dependencies from D1,3 and D2,2 lead to the addition of places with 4 edges in both
cases. Regarding the structural metric CNCPN , this has the same effect on the net
complexity. The study of the two cells has the same outcome on the net complexity,

101

Chapter 4. Discovery of the unobservable behaviour

hence they should not be separated. The search space can be coarsely re-partitionned
by using the degree δ.

Definition 4.9. Let δ ∈ J2, |T |K be a fixed degree. Then the search space Dδ is defined
by:

Dδ =
⋃

1≤δi≤δj≤|T |
δi+δj=δ

Dδi,δj

Equivalently,
Dδ = {(Σi,Σj) ∈ (2T − {∅})2

6∩||Σi|+ |Σj| = δ}

Proposition 4.11. The set {Dδ, 2 ≤ δ ≤ |T |} is the quotient set of (2T − {∅})2
6∩ by ⇔δ

and realizes a partition, i.e.

(2T − {∅})2
6∩ =

⋃
δ∈J2,|T |K

Dδ

The proof is straightforward.
For instance D5 = D1,4∪D2,3, or D8 = D1,7∪D2,6∪D3,5∪D4,4. A visual representation

is given in Figure 4.8; for instance D4 contains all alphabet pairs enabling the discovery
of both 1vs3 (D1,3) and 2vs2 (D2,2) places, whereas D2=D1,1 contains only 1vs1 places.

॰1,1

॰1,2 ॰2,2

॰1,3 ॰2,3 ॰3,3

॰1,4 ॰2,4 ॰3,4 ॰4,4

...

॰
1,
|𝑇|
2

... ॰|𝑇|
2 ,|𝑇|2

…

...

॰1, 𝑇 −3 ॰2, 𝑇 −3 ॰3, 𝑇 −3

॰1, 𝑇 −2 ॰2, 𝑇 −2

॰1, 𝑇 −1
𝛿𝑖

𝛿𝑗

1

1

॰2

॰3

॰4

॰5

॰|𝑇|

Figure 4.8: Visual representation of the partition of (2T − {∅})2
6∩.

δ, sum of the sizes of the alphabets or equivalently degree of the places to be discov-
ered, can be used as a parameter to partition the search space into equivalence classes.

102

4.4. Discovery in practice

The searching strategy has to decide in which order the cells will be studied to discover
places.

4.4.2 Exploration strategy

The very nature of the studied system helps to choose an adequate strategy. A man-
ufacturing system consists mostly of concurrent sequential processes: the operations are
conducted one after another on a component, and the actuators are sollicited one after
the other. A sequential process consists mostly of single-input single-output places, and
is highly deterministic. Even if multiple subprocesses evolve simultaneously, exhibit-
ing concurrency, their individual behaviour remains sequential; they are modelled by
parallel streams of sequential single-input single-output places.

However, some choices can occur within the system. For instance, in Example 4.5,
the first chariot can choose to fetch either a small or a big box. Choices are sparser than
sequentialities in an actual system, and most often involve few inputs/outputs, hence
places related to choices should also involve few transitions in our case. A reasonable
assumption is therefore that the unobservable places verify |•pUnobs|+ |p•Unobs| = δ � |T |.
Consequently, exploring Dδ cells for low values of δ should be sufficient to obtain a good
model of the real system.

Furthermore, recall that under this hypothesis, the size of the cells is estimated
at |Dδ| ∼ |T |δ for δ � |T |. Hence, studying only the cells for low values of delta is
computationally efficient, compared to the full exploration.

Therefore, the proposed strategy is to study Dδ cells by rising values of δ, starting
at δ = 2. D2 provides all purely sequential places; the sequential subprocesses are
completely identified with just the exploration of D2, and concurrency is already explicit.
Then, Dδ provide choice places for δ ≥ 3. If choices are present in the system (due to
production recipes or undeterminism), they are expected to occur for low values of δ.

To corroborate this strategy, have a look at the sizes of the different cells Dδ, plotted
in Figure 4.9 for different values of |T |. The minimal value is always reached for δ = 2.
Given that it represents subalphabets consisting of only one transition, |D2| = 1

2
|T |(|T |−

1). Another simple cell to evaluate is D|T |: there are 2|T | − 1 non-empty subsets of
T , therefore 2|T | − 2 pairs of non-empty subsets of T whose union is T , and finally
|D|T || = 2|T |−1 − 1 ordered pairs.

The size of Dδ always rises until δ ≈ 0.7|T |, and starts to shrink for higher values of δ.
However, the relevance of such high degree places is questionable: they are structurally
hard to understand. Limiting the structural complexity should be more important than
limiting the size of the search space. Therefore only the left side of the curves is of
importance.

103

Chapter 4. Discovery of the unobservable behaviour

Figure 4.9: Size of the cell Dδ of the search space depending on δ, plotted for different
values of |T |. Y scale is logarithmic.

4.4.3 Stopping criterion

Suppose that the full exploration can be achieved, and that the result of the iden-
tification is two or more nets unconnected to each other. They can be considered as
distinct subsystems sharing no relationship towards one another, having fully indepen-
dent behaviours. If the isolation of the system to be identified is done correctly, it can be
assumed that all inputs and outputs are sollicited during an operation, and are therefore
connected in one way or another.

Therefore, a satisfying stopping criterion is to reach a strongly connected model,
which is also a good quality for understandability. If choices are present within the
system, it is likely that the model will not be strongly connected after the exploration of
D2. Some conflicts could be discovered for the low values of δ greater than two, resulting
in strong connexity. Checking strong connexity is effected in polynomial time using
Tarjan’s algorithm [Tarjan, 1972]. As a reminder, the definition of strongly connected
components is recalled here:

Definition 4.10. Let G = (V,E) be a directed graph. Suppose that for each pair of
vertices v, w in G, there exist paths p1 : v ⇒ w and p2 : w ⇒ v (a path p : v ⇒ w in G
is a sequence of vertices and edges leading from v to w). Then G is said to be strongly
connected.

Definition 4.11. Let G = (V,E) be a directed graph. Two vertices v and w are equiv-
alent if there is a closed path p : v ⇒ v which contains w. Let the distinct equivalence
classes under this relation be Vi, let Gi = (Vi, Ei), where Ei = {(v, w) ∈ E|(v, w) ∈
V 2
i }.Then :

(i) Each Gi is strongly connected.
(ii) No Gi is a proper subgraph of a strongly connected subgraph of G.

104

4.4. Discovery in practice

Naturally, this criterion might never be met, either because the real system is truly
composed of independent processes, or because the computation becomes untractable
due to the sheer size of Dδ. A backup threshold is set to ensure the halting.

For instance, if a cell whose size is greater than 1Mio candidates is reached, the
computation is stopped. This can happen for low values of δ when T increases, for
instance, if |T | = 30, |D2,3| ∼ 1Mio. Another possibility is to count time; if no strongly
connected solution is found within the hour, the computation stops.

4.4.4 Algorithmic application

Example 4.5 is used to illustrate the procedure; the observable part NObs is recalled
in Figure 4.10(a). However, recall that Theorem 1 is only applicable to nets who are
already solution of the inference problem; the observable fragments issued of the first
phase are most often not a solution. Namely, tA, tG or tH are source transitions,
breaking the 1-boundedness property.

The first step before starting the exploration consists in completing the observable
part with unobservable places, such that the resulting net N is a solution of the inference
problem. The procedure is the following:

• An observable place is the image of a binary output, that is alternatively set
to zero or one. The firing of pre-transitions (sets) are therefore constrained to
alternate with the firing of post-transitions (resets) in the firing sequence. This
means that any observable place pi,Obs is necessarily an admissible place, and
that {•piObs} � {p•i,Obs}. pi,Obs is already one of the places associated to this
dependency; the reverse place can be added as well. Given pi,Obs, add pi,Unobs such
that •pi,Unobs = •pi,Obs, p•i,Unobs = p•i,Unobs, and M0(pi,Obs) +M0(pi,Unobs) = 1

• A single transition has been observed at least once in the firing sequence, and
represents an input that could not be linked to an output with a direct causality.
At this point, the best to be said about this transition is that it can always fire;
because no mutual dependency with any other transitions has been discovered
yet. Therefore, it must always be enabled and never disabled; this is translated
by a single selfloop place. As soon as the transition will be involved in a mutual
dependency, the selfloop becomes implicit and is removed. Given tj, add pjUnobs

such that •pj,Unobs = {tj}, p•j,Unobs = {tj} and M0(pj,Unobs) = 1

The initial net built for the chariots is in Figure 4.10(b). There are no isolated
transitions, and 5 unobservable places are added.

The proposed heuristic is resumed by Algorithm 4.3, where a cell-size threshold Thr
has been chosen:

After the deletion of implicit places for D2, the net of Figure 4.10(c) is obtained.
It is strongly connected, the discovery is stopped and the procedure achieved. Only
|D2| = 36 pairs were tested, when the full problem had |(2T −{∅})2

6∩| = 9330 pairs, hence

105

Chapter 4. Discovery of the unobservable behaviour

𝑡𝐴: ↑ 𝑠𝑡𝑎𝑟𝑡

𝑡𝐵: ↑ 𝑟1_ℎ

𝑡𝐶: ↑ 𝑟1_𝑏

L𝟏

𝑳𝟐

𝑮𝒓𝒊𝒑𝒑𝒆𝒓
𝑡𝐺: ↑ 𝑝𝑟𝑒𝑠𝑠_𝑏

𝑡𝐼: ↑ 𝑙1

𝑹𝟏

𝑡𝐹 : ↑ 𝑝𝑟𝑒𝑠𝑠_𝑝

𝑹𝟐

𝑡𝐸 : ↑ 𝑟2

𝑡𝐷 : ↑ 𝑙2

𝑡𝐻: ↑ 𝑝𝑟𝑒𝑠𝑠_h

𝑡𝐴: ↑ 𝑠𝑡𝑎𝑟𝑡

𝑡𝐵: ↑ 𝑟1_ℎ

𝑡𝐶: ↑ 𝑟1_𝑏

L𝟏

𝑳𝟐

𝑮𝒓𝒊𝒑𝒑𝒆𝒓
𝑡𝐺: ↑ 𝑝𝑟𝑒𝑠𝑠_𝑏

𝑡𝐼: ↑ 𝑙1

𝑹𝟏

𝑡𝐹 : ↑ 𝑝𝑟𝑒𝑠𝑠_𝑝

𝑹𝟐

𝑡𝐸 : ↑ 𝑟2

𝑡𝐷 : ↑ 𝑙2

𝑡𝐻: ↑ 𝑝𝑟𝑒𝑠𝑠_h

(a) (b)

𝑡𝐴: ↑ 𝑠𝑡𝑎𝑟𝑡

𝑡𝐵: ↑ 𝑟1_ℎ

𝑡𝐶: ↑ 𝑟1_𝑏

L𝟏

𝑳𝟐

𝑮𝒓𝒊𝒑𝒑𝒆𝒓
𝑡𝐺: ↑ 𝑝𝑟𝑒𝑠𝑠_𝑏

𝑡𝐼: ↑ 𝑙1

𝑹𝟏

𝑡𝐹 : ↑ 𝑝𝑟𝑒𝑠𝑠_𝑝

𝑹𝟐

𝑡𝐸 : ↑ 𝑟2

𝑡𝐷 : ↑ 𝑙2

𝑡𝐻: ↑ 𝑝𝑟𝑒𝑠𝑠_h

𝑡𝐴: ↑ 𝑠𝑡𝑎𝑟𝑡

𝑡𝐵: ↑ 𝑟1_ℎ

𝑡𝐶: ↑ 𝑟1_𝑏

L𝟏

𝑳𝟐

𝑮𝒓𝒊𝒑𝒑𝒆𝒓
𝑡𝐺: ↑ 𝑝𝑟𝑒𝑠𝑠_𝑏

𝑡𝐼: ↑ 𝑙1

𝑹𝟏

𝑡𝐹 : ↑ 𝑝𝑟𝑒𝑠𝑠_𝑝

𝑹𝟐

𝑡𝐸 : ↑ 𝑟2

𝑡𝐷 : ↑ 𝑙2

𝑡𝐻: ↑ 𝑝𝑟𝑒𝑠𝑠_h

(c) (d)

Figure 4.10: The chariots example: (a)Observable part; (b)Initial net for the explo-
ration; (c)Net identified at the end of the limited exploration; (d)Net identified by a full
exploration

Algorithm 4.3 Unobservable Behaviour Inference
Require: S = s1 . . . s|S| a sequence, N the first net solution.
Ensure: Final net
1: δ = 2
2: while N is not strongly connected OR |Dδ| ≤ Thr do
3: for (Σi,Σj) ∈ Dδ do
4: if Σi � Σj then
5: Add pij and pji to N
6: end if
7: end for
8: δ ← δ + 1
9: end while

only 0.4% of the search space was explored. The net of Figure 4.10(d) is obtained if
the full exploration is conducted; it is notably harder to understand, even though more
precise.

The proposed heuristic has been designed adequately to find, within reasonable cal-
culus cost, connected simple nets fitting for reverse engineering. Some additional results
are proposed in the upcoming Section 4.5, and additional examples are given in Sec-
tion 4.6 to illustrate the strengths of the method.

4.5 Extensions

This section proposes two reflexions to complement the main contribution: around
implicit places and the further reduction of the search space.

106

4.5. Extensions

4.5.1 Implicit places and consequences

Firstly, theoretical background on implicit places is recalled. They have been exten-
sively studied in [Garcia-Valles and Colom, 1999], from which the following definition is
extracted:

Definition 4.12 ([Garcia-Valles and Colom, 1999]). Let N = (G,M0) be a net system
and N ′ = (G′,M ′

0) the net system N without a place p. p is an implicit place if and only
if L(N) = L(N ′), i.e. the removal of p preserves all firing sequences of N .

t1 t3

t2

P4

P5
P6

P1 P2

P3

t1 t3

t2

P1 P2

P3

(a) (b)

Figure 4.11: An example of a net (a), after deletion of implicit places (b)

An implicit place can be interpreted as a false synchronisation in the net. Look
at place p4 in Figure 4.11. It is filled after the firing of t1, but its post-transition t3

will not be fired until p2 is filled as well. p2 is the actual constraint of synchronisation
for firing t3, unlike p4, which makes the latter implicit from the viewpoint of t3. It is
actually a shortcut for the path p1p2. [Garcia-Valles and Colom, 1999] proposed a linear
programming problem to detect implicit places.

Now, suppose that a sequence S is given, that a net solution N = (G,M0) has been
identified after the exploration of Dδ, and that the study is pursued with Dδ+1. Suppose
that a new couple of places (pij,pji) is discovered in Dδ+1, and added to N , building N ′.
The following can happen:

• L(N ′) = L(N). The two places are implicit, and are the most complex places of
N ′ (degree δ + 1). They will be deleted.

• L(N ′) ⊂ L(N). In this case, the places improve the precision to the net, and will
be kept.

However, in the latter case, some places previously belonging to N might have become
implicit. If the number of such places is low enough, the result of both their deletion
and the addition of (pij,pji) should result in N ′ being still more complex than N . But if
enough low-degree places are removed, the complexity might drop, as presented in the
following example.

107

Chapter 4. Discovery of the unobservable behaviour

Example 4.7. Consider a system composed of five actuators labelled O1 to O5, moving
in the same workspace. The rules implemented in the controller are the following:

• Only one actuator can move at the same time.

• A movement of O1 or O2 is always followed by a movement of O3 or O4.

• O3 and O4 can not move unless O1 or O2 moved first.

The observable part leads to 5 observable fragments, each consisting in one observable
place with one input and one output transition, hence 10 transitions t1 to t10. The firing
sequence is S = t1t2t7t8t1t2t5t6t9t10t3t4t7t8t3t4t7t8t1t2t5t6t9t10t9t10t9t10t3t4t7t8t3t4t5t6t3t4

t7t8t1t2t5t6t1 . . . , |S| = 200. The result of the exploration is presented as three nets in
Figure 4.12, along with a table resuming their properties

𝑡1 𝑡2

O1

𝑡3 𝑡4

O2

𝑡5 𝑡6

O3

𝑡9 𝑡10

O5
𝑡7 𝑡8

O4

D2

𝑡1 𝑡2 O1

𝑡3 𝑡4 O2

𝑡5 𝑡6 O3

𝑡9 𝑡10 O5

𝑡7 𝑡8 O4 P9

P11

P7

P6

P8

P10

𝑡1 𝑡2 O1

𝑡3 𝑡4 O2

𝑡5 𝑡6 O3

𝑡9 𝑡10 O5

𝑡7 𝑡8 O4

D4 D6

Net |P | |W | CNCPN |L2
Exc|

D2 10 20 1 72
D4 11 34 1.62 4
D6 7 20 1.18 0

Figure 4.12: Results of the identification of Example 4.7

The first net is obtained after the exploration of D2. There are five strongly connected
components, hence the exploration is pushed further. The exploration of D3 did not
reveal any place, but the exploration of D4 revealed new places, namely 6 remaining
non observable places after the deletion of implicit places. Since the net is strongly
connected, the inference should stop.

However, pushing the exploration up to D6 leads to the discovery of one place in D3,3,
which makes implicit five places previously discovered in D2,2. This last net is both the
simplest strongly connected assembled net, and the most precise of all. It is obviously
simpler than the second net, although it required more computations to reach.

108

4.5. Extensions

This example illustrates that the simplicity metrics are not monotonous with the
chosen strategy, unlike the precision metric. When the identication is stopped due
to reaching a strongly connected net, it is not guaranteed to be the simplest strongly
connected one.

4.5.2 Reduction of the algorithmic cost

During the exploration of the search space, information can be extracted to avoid
studying irrelevant couples of alphabets. To demonstrate how, a new relationship be-
tween alphabets, the domination, is introduced. This relationship is a weaker form of
the mutual dependency:

Definition 4.13. Let Π(S) = σ1
i σ

1
jσ

2
i σ

2
j . . . be the result of the projection of S on

Σi ∪ Σj. If, ∀l > 0, |σlj| = 1 and ∃k > 0, |σki | > 1, the alphabet Σi is said to dominate
the alphabet Σj, written Σi → Σj.

Σi dominating Σj means that at least once in the projected sequence, two transitions
of Σi have been observed consecutively. One or more transitions might be "missing" in
Σj for the two alphabets to be mutually dependant. See for instance the following
sequence and projections on T = {t1, t2, t3}:

S = t1t2t1t3t1t2t1t2t1t2t1t3t1t3t1t2t1t3t1t3

Πt1,t2(S) = t1t2t1t3t1t2t1t2t1t2t1t3t1t3t1t2t1t3t1t3

Πt1,t3(S) = t1t2t1t3t1t2t1t2t1t2t1t3t1t3t1t2t1t3t1t3

The projection on {t1} ∪ {t2} reveals that {t1} dominates {t2}. There might be
missing a transition that can fill the holes between two successives occurrences of t1; if
such a transition is added to the set {t2} the resulting set might be mutually dependant
of {t1}. A domination is also found of {t1} on {t3}. Since {t1} dominates both {t2}
and {t3}, it is interesting to test {t1} with {t2, t3}; in this case, a mutual dependency is
discovered.

If dominations are discovered, a dominated set can be constructed for the dominant
alphabet:

Definition 4.14. Let Σ be a non-empty alphabet. The set dominated by Σ, written
Dom(Σ) is the set of all alphabets dominated by Σ:

Dom(Σ) = {Σi ∈ (2T − ∅)| Σ→ Σi}

This set can be parametrized by the value of the degree δ :

Domδ(Σ) = {Σi ∈ (2T − ∅)| Σ→ Σi ∧ |Σi|+ |Σ| = δ}

Notice that defining Domδ(Σ) implies that |Σ| ≤ (δ − 1). In the previous example,
Dom2({t1}) = {{t2}, {t3}}. A Domδ(Σ) is constructed during the exploration of Dδ, or

109

Chapter 4. Discovery of the unobservable behaviour

more precisely, during the exploration of D|Σ|,δ−|Σ|, assuming that |Σ| < δ − |Σ|.
The (non-)emptiness of Domδ(Σ) is interesting information, due to the following

proposition:

Proposition 4.12. Let Σi and Σj be two alphabets such that Σi � Σj, and Σ′ a non-
empty strict subalphabet of Σj, i.e. Σ′ ⊂ Σj. Then, Σi dominates Σ′, i.e. Σi → Σ′.

Proof. When projecting the sequence on Σi ∪ Σ′, all ti remain in the projection, but at
least one tj ∈ Σj − Σ′ will be missing. Therefore, at least two consecutives occurences
of ti will be observed, and Σi → Σ′.

Setting |Σi| = δi, |Σi| = δj and δ = δi + δj , Proposition 4.12 states the following:

Σi � Σj ⇒

{
∀δk ∈ Jδi + 1,δ − 1K, Domδk(Σi) 6= ∅
∀δk ∈ Jδj + 1,δ − 1K, Domδk(Σj) 6= ∅

Proposition 4.12 has two consequences:

• If a mutual dependency Σi � Σj is to be discovered for a given degree δ, then
dominations must necessarily be discovered for lower degrees (δk < δ). Candidates
for the mutual dependency with Σi are necessarily unions of elements ofDomδk(Σi)

(same for Σj).

• Given an alphabet Σi, if there exists a value δ ≥ δi + 1 for which Domδ(Σi) is
empty, then there is no need to look for mutual dependencies of degree higher than
δ implying Σi.

Notice however that the reverse of Proposition 4.12 is not true. If Σi dominates all
subsets of Σj, the mutual dependency is not guaranteed.

Consider namely T = {t1, t2, t3, t4} and S = t1 t4 t1 t3 t4 t1 t4 t2 t1 t2 t1 t4 t3 t4 t1 t3 t1 .
For δ = 2, the only relations discovered are {t1} → {t2} and {t1} → {t3}, i.e.
Dom2({t1}) = {{t2}, {t3}}. However, {t1} → {t2, t3} and no mutual dependency can be
found. Hence, the test for mutual dependency must still be run for any candidate.

Dominations are discovered during the exploration of a cell Dδ, and only a subset of
Dδ+1 is consistent with them. The idea is to build this subset of candidates. In the worst
case, the subset of candidates is the whole cell, but most of the time, the Domδ(Σ) sets
are empty or rather small.

Definition 4.15. Let Dδ be an explored cell of the search space, and Σ an alphabet such
that Domδ(Σ) 6= ∅. Then, the set of candidates implying Σ for a research in Dδ+1 is:

Candδ+1(Σ) = {Σ1 ∪ Σ2|(Σ1,Σ2) ∈ (Domδ(Σ))2 ∧ |Σ1 ∩ Σ2| = δ − |Σ| − 1}

Dominations are propaged vertically, as illustrated in Figure 4.13. A direct conse-
quence is that only all Dδi,δi cells must be fully explored.

110

4.5. Extensions

Dδi,δi

↓ }Candδi+δi+1(Σi)
Dδi,δi+1

↓
...
↓

Dδi,δj

Figure 4.13: Vertical propagation of the domination relationship

Example 4.8. Look at the following sequence S:

S = t1 t3 t2 t3 t1 t4 t2 t4 t1 t5 t2 t5 t1 t3 t1 t4 t1 t5 t2 t5 t2 t3 t2 t4

Πt1,t2,t3,t4(S) = t1 t3 t2 t3 t1 t4 t2 t4 t1 t5 t2 t5 t1 t3 t1 t4 t1 t5 t2 t5 t2 t3 t2 t4

Πt1,t2,t3,t5(S) = t1 t3 t2 t3 t1 t4 t2 t4 t1 t5 t2 t5 t1 t3 t1 t4 t1 t5 t2 t5 t2 t3 t2 t4

Πt1,t2,t4,t5(S) = t1 t3 t2 t3 t1 t4 t2 t4 t1 t5 t2 t5 t1 t3 t1 t4 t1 t5 t2 t5 t2 t3 t2 t4

For δ ∈ {2, 3}, no mutual dependencies are discovered. When studying δ = 4, only
the following domination relationships can be discovered: {t1, t2} → {t3, t4}, {t1, t2} →
{t3, t5}, {t1, t2} → {t4, t5}, i.e. Dom4({t1, t2}) = {{t3, t4}, {t3, t5}, {t4, t5}}. This hints
that the only candidate for a degree 5 mutual dependency with {t1, t2} is {t3, t4, t5}.
Indeed, the mutual dependency is tested and validated.

Discovering domination relationships is not hard: the projection is executed when
running Algorithm 4.1 for an unordered pair {Σi,Σj}, and the variables maxi and maxj
express the lengths of the longest subsequences belonging to Σ+

i and Σ+
j . If exactly

one of these two variables has 1 for value, then a domination is discovered according to
Definition 4.13. The end of Algorithm 4.1 can be slightly altered to discover domination
relationships, leading to Algorithm 4.4:

Algorithm 4.4 Modification of Algorithm 4.1 : Discover dominations and mutual de-
pendancies
Require: S = s1 . . . s|S| a sequence, (Σi,Σj) two disjoint non-empty subsets of T .
Ensure: Decision for Σi � Σj, Σi → Σj

1: {Lines 1 to 22 are identical to Algorithm 4.1}
23: if maxj == 1 then
24: if maxi == 1 then
25: return True, False {Σi � Σj}
26: else
27: return False, True {Σi → Σj}
28: end if
29: else
30: return False, False
31: end if

Operations in lines (22-27) in Algorithm 4.1 ran in O(1), and operations in lines
(23-33) in Algorithm 4.1 run as well in O(1). Discovering dominations does therefore

111

Chapter 4. Discovery of the unobservable behaviour

not add complexity to the resolution of the problem.

Based on all previous results, Algorithms 4.5 and 4.6 are finally presented: they
describe the exploration of a cell Dδi,δj . In the second, most common case (δi < δj), the
set Candδ(Σi) is generated from Domδ−1(Σi) according to Definition 4.15.

Algorithm 4.5 Exploring Dδi,δj , δ = δi + δj. Case δi = δj,
Require: S = s1 . . . s|S| a sequence, T .
Ensure: Full exploration of Dδi,δi

1: {All possible pairs are tested}
2: for Σi ∈ 2T , |Σi| = δi do
3: for Σj ∈ 2T , |Σj| = δj,Σj ∪ Σi = ∅ do
4: Mut, Dom ← Algorithm 4.4(S,{Σi,Σj})
5: if Mut==True then
6: Apply Algorithm 4.2(S,{Σi,Σj})
7: else if Dom==True then
8: Domδ(Σi)← Domδ(Σi) ∪ Σj

9: end if
10: end for
11: end for

Algorithm 4.6 Exploring Dδi,δj , δ = δi + δj. Case δi < δj,
Require: S = s1 . . . s|S| a sequence, T , exploration of Dδi,δj−1.
Ensure: Reduced exploration of Dδi,δj

1: {Only the candidates are studied}
2: for Σi ∈ 2T , |Σi| = δi do
3: for Σj ∈ Candδ(Σi) do
4: {Lines 4 to 9 identical to Algorithm 4.5}

10: end for
11: end for

Algorithm 4.5 runs in O(|Dδi,δi |), and Algorithm 4.6 runs at worst in O(|Dδi,δj |), but
the number of candidates can however be expected to be very low.

4.6 Practical examples

4.6.1 Unobservable behaviour only

These first examples are only dealing with unobservable behaviour, to show the
kind of Petri net structures that can be discovered with the proposed approach. The
structures presented here are classical difficulties met in the litterature.

Example 4.9 (Memory places). Consider the following sequence: S = t1t3t4t6 t2t3t5t6

t2t3t5t6 t1t3t4t6 t1t3t4t6 t2t3t5t6 . After the exploration of D2, {�} = {{t1}, {t4}};
{{t2}, {t5}}; {{t3}, {t6}}, which leads to net (a) of Figure 4.14. It suggests that three
concurrent processes interleave eachother. The exploration of D3 reveals choices that are

112

4.6. Practical examples

added to the identified net (b). There is in fact only one process who can choose be-
tween two paths, and dependencies {{t1}, {t4}}; {{t2}, {t5}} are kept as memory places.
Memory places are discovered before choices.

𝑡1 𝑡4

𝑡2 𝑡5

𝑡3 𝑡6

𝑡1 𝑡4

𝑡2 𝑡5

𝑡3 𝑡6

(a) (b)

Figure 4.14: Example 4.9: (a) Net discovered for D2; (b) Net discovered for D3

Example 4.10 (Non resetable nets). There is no hypothesis on the reachability of the
initial marking; in this example, the net of Figure 4.15 is identified for δ = 3 from
S = t4t5t6 t1t3t4t6 t0t2t5t6 t1t4t3t6 t0t2t5t6 t1t3t4t6 t0t2t5t6 t0t2t5t6 t0t2t5t6 t0t2t5t6

t0t5t2t6

𝑡1

𝑡3

𝑡0

𝑡2

𝑡5

𝑡6 𝑡4

Figure 4.15: Example 4.10: the initial marking is unreachable after any firing.

Example 4.11 (Nested cycles). Nested cycles, i.e. backward loops in a process, are not
an issue. They always imply choice places, hence require to explore at least up to δ = 3.
The net of Figure 4.16 is identified for δ = 3 from S= t0t2t3t4t5t1t0t2t3t4t5t6t11t12t8t2t3t4t5

t6t7t8t2t3t4t9t10t3t4t5t6t7t8t2t3t4t5t6t7t8t2t3t4t9t10t3t4t9t10t3t4t5t1t0t2t3t4t5t6t11t8t2t3t12t4t9

t10t3t4t5t6t11t8t2t12t3t4t9t10t3t4t9t10t3t4t5t1t0t2t3t4t9t10t3t4t9t10t3t4t5.

As pointed out in the litterature review, rule-based approaches often suffer to find
concurrency in the sequence, whereas the approach proposed here discovers it easily:

Example 4.12 (High concurrency). 5 chariots are considered in parallel. Each chariot
goes right (di) then comes back left (gi). The chariots are synchronized by m. The
observed sequence is

S = md2d4g2d1g4d3g3g1d5g5 md4d3d1g1g4d5g3d2g2g5 md4g4d1d2d3g3g1g2d5g5

md1g1d2d4d5g4g2d3g3g5 md1d4d5g1g4d2d3g3g2g5 md2d4d3g3d5g2g4g5d1g1

md5d2d4d1g4g1g2d3g5g3 md3d2g3d5g5g2d1g1d4g4 md5g5d3d1d2d4g3g4g2g1

113

Chapter 4. Discovery of the unobservable behaviour

𝑡0 𝑡2

𝑡3 𝑡4

𝑡5 𝑡1

𝑡9 𝑡10

𝑡6

𝑡7

𝑡8

𝑡11 𝑡12

Figure 4.16: Example 4.11; there are two backward loops in the main process t0 −→ t1

The sequence is far too short to observe all possible interleavings; nevertheless, the
exploration of D2 is sufficient to obtain the net of Figure 4.17, which perfectly exhibits
the concurrency. Namely, |L2

Exc| = 34; there are missing 34 interleavings of length 2 in
the sequence (such as d1d3, d1d4 or d2d5 . . .).

𝑔1

𝑚

𝑑1

𝑔2 𝑑2

𝑔3 𝑑3

𝑔4 𝑑4

𝑔5 𝑑5

Figure 4.17: Example 4.12: 5 fully concurrent processes, synchronized by m

4.6.2 Complete approach

Examples including observable behaviour are proposed. First, the limiting example
of the end of Chapter 2 is reviewed, to illustrate the improvement over the multiple rules
approach.

4.6.2.1 Example 2.1 cont.

Example 4.13 (Example 2.1 cont.). Looking back at Example 2.1, the initial net for
the discovery is shown in Figure 4.18(a), and the firing sequence is:

S = t1t2t1t2t3t4t5t1t2t6t1t2t1t2t3t4t5t1t2t6t1t2t1t2t3t4t5t6t1t2t1t2t1t2t3t4t5t1t2t6

The study of D2 leads to net (b), where 2 connected components are discovered.

114

4.6. Practical examples

Notice the place between t3 and t6 even though the two transitions were never observed
consecutively. It is required to push the discovery to D4 to discover net (c) with the
choice between t1 and t3.

𝑡1: (= 1) 𝑡2: (= 1) Y1

𝑡4: (= 1) 𝑡6: ↑ 𝑢1

𝑡5: ↓ 𝑢2 𝑡3: ↑ 𝑢2

Y2

𝑡1 𝑡2

Y1

𝑡4

𝑡6

𝑡5

Y2

𝑡3

(a) (b) (c)

𝑡1 𝑡2

Y1

𝑡4

𝑡6

𝑡5

Y2

𝑡3

Figure 4.18: Example 4.13: (a)Observable part; (b)Solution D2; (c)Solution D4

The chariots example is now extended to include different typical behaviours of real
closed-loop systems, and see how they are represented in the model.

4.6.2.2 Extended chariots example

Transfer
dock

Unloading
dock

L2 R2

Grip

r1

r2l2

start

H

B

Loading
docks

R1L1

press_h press_b

l1_h

l1_b

LGrip

lg

conv

Conv2

𝑡11: 𝑐𝑜𝑛𝑣

𝑡12: 𝑐𝑜𝑛𝑣

𝑡1: 𝑠𝑡𝑎𝑟𝑡
𝑡2: 𝑟1_ℎ

𝑡13: 𝑟1_𝑏

L𝟏

𝑡4: (=1) 𝑡6: 𝑟2

𝑹𝟐
𝑳𝟐

𝑡3: 𝑙2

𝑮𝒓𝒊𝒑

𝑡5: (=1) 𝑡9: lg=1

𝑳𝑮𝒓𝒊𝒑

𝑡14:𝑝𝑟𝑒𝑠𝑠_𝑏

𝑡10: 𝑙1

𝑹𝟏
𝑡7:𝑝𝑟𝑒𝑠𝑠_ℎ

𝑡8: lg=1

𝑪𝒐𝒏𝒗𝟐

𝑡16:(=1)𝑡15:(=1)

Figure 4.19: Extended chariots example, with its observable behaviour

Example 4.14. In this example, the future of the box transported by the second chariot
is extended. Once it reaches r2, the gripper handles the box (Grip), waits for 1s after the
Grip, and moves it to the conveyor (LGrip). The chariot waits for 5s before going back

115

Chapter 4. Discovery of the unobservable behaviour

home (R2). After the release of the box, LGrip is stopped, leading to the return of the
gripper to its original position (monostable pre-actionner), and the box is transferred on
an exit conveyor. This conveyor is always running. A sensor (conv) detects the arrival
of the box at the end of the conveyor, hence in the unloading dock. Once three boxes
have been brought to the dock, the second conveyor (Conv2) is activated to evacuate the
boxes. The system is presented in Figure 4.19

There are seven outputs Y = {L1, R1, L2, R2, LGrip, Grip, Conv2 } and ten inputs
U = {l1_h, l1_b, r1, l2, r2, lg, conv, start, press_h, press_b}. Its operation has been
observed during the process of 10 boxes of different sizes. The observable behaviour is
shown as well in Figure 4.19.

One quite connected fragment implies 3 outputs, whereas the four other outputs are
alone. Notice the condition (=1) on t4 and t5, mirroring the fact that the rising edges of
LGrip and R1 are delayed, and not directly caused by an input event. The input conv
has not been connected to any output; two transitions labelled with ↑conv and ↓conv
are created. The observed firing sequence S of length 126 is

S =t1t2t3t4t5t6t7t8t9t10 t1t11t2t12t3t4t6t5t7t8t9t10 t1t3t11t12t2t5t4t6t7t8t9t11t10

t12t15t16t1t13t3t5t8t11t12t9t4t14t6t10 t1t3t13t5t8t9t11t12t14t4t6t10 t1t2t3t4t5t6t7t8t9t10

t1t11t2t12t15t3t16t4t6t5t7t8t9t10 t1t3t11t12t2t5t4t6t7t8t9t11t10

t12t1t13t3t5t8t11t12t9t15t16t4t14t6t10 t1t3t13t5t8t9t11t12t14t4t6t10

.
Algorithm 4.3 is applied, with |T | = 16, which means |(2T − {∅})2

6∩|=21Mio. Firstly,
the 120 cases in D2 are tested, and 31 mutual dependencies are discovered. These
dependencies lead to the addition of 62 places. After the deletion of implicit places,
only 14 unobservable places are kept. The result is presented in Figure 4.20.

𝑡11

𝑡12

𝑡1

𝑡2

𝑡13

L𝟏

𝑡4 𝑡6

𝑹𝟐

𝑳𝟐 𝑡3 𝑮𝒓𝒊𝒑

𝑡5
𝑡9

𝑳𝑮𝒓𝒊𝒑

𝑡14

𝑡10
𝑹𝟏

𝑡7

𝑡8
𝑪𝒐𝒏𝒗𝟐

𝑡16

𝑡15

Figure 4.20: The resulting net after the exploration of D2.

The net consists in two strongly connected components. If the focus is set only on
the biggest connected component, interesting behaviours can be noticed. Even though
(t2, t7) and (t13, t14) were never consecutively observed in the firing sequence, unobserv-
able memory places have been identified. Parallelism between the movements of the

116

4.6. Practical examples

chariots and the gripper is explicit (transitions t1, t3 and t8 having multiple post places;
t10 acting as a synchronization). The timed behaviours are agregated in the unobserv-
able pre-places of t4 and t5. The duration of the stay of the token in the places is not
specified, since it is out of the scope of this work.

The second conveyor is not connected to the main process yet. Its behaviour is
conditionned by a counter. To connect the net, the exploration is pursued. A strongly
connected component is finally reached for δ = 5. For instance, the mutual dependency
{t9, t16}� {t13, t15, t7} is discovered, but it is hard to interprete.

Less than 4% of the search space has been explored after δ = 5. While the precision of
the identified nets naturally always increases, the structural complexity of the identified
nets has risen quickly and the nets are too complicated to be displayed here, their
properties are resumed in Table 4.1.

Net Precision Simplicity
|L2

Exc|
|L2

Obs|
|L3

Exc|
|L3

Obs|
Places Edges CNCPN s.c.

D2 4.13 31.1 20 42 1.17
D3 2.88 12.7 27 63 1.47
D4 1.95 4.48 30 79 1.72
D5 1.48 2.55 36 113 2.17 X

Table 4.1: Evaluation of the precision and simplicity metrics on the discovered nets for
the chariots.

Finding counters is a hard task in a blackbox approach, without the knowledge of
their presence. By locally injecting some knowledge (becoming a greybox approach), a
possible way of representing them in our given class of IPNs is by adding self loops, as
shown in Figure 4.21. Notice that the number of firings of t11/t12 required before firing
t15 is nevertheless not explicited. It can not be inferred by the current method.

𝑡11:𝑐𝑜𝑛𝑣

𝑡12:𝑐𝑜𝑛𝑣

𝑪𝒐𝒏𝒗𝟐

𝑡16:(=1)

𝑡15:(=1)

Figure 4.21: A representation of the counter of the second conveyor, using self-loops

4.6.2.3 MSS chain

Finally, the identification of the MSS chain is ended in this section by adding the
unobservable behaviour to the observable model computed at the end of Chapter 3 (Fig-
ure 3.17). The system consists in 73 I/Os (43 inputs and 30 outputs), and the observed

117

Chapter 4. Discovery of the unobservable behaviour

data consisted in a sequence w of length 63797 I/O vectors. After the computation and
simplification of the observable behaviour, the observable model consists in a net of 30
observable places and 101 transitions. Additionally, the length of the firing sequence is
|S| = 33621. All computations are ran on a laptop (Intel® Core™ i5-3380M CPU @
2.90GHz x4, 8Go RAM); the identification of the observable behaviour took 15s.

There are |T | = 101 transitions. Given the high number of transitions, the search
space is already huge, even for low values of δ. Notably |D2| = 5050, |D3| = 500k, and
|D4| = 28.5Mio. The model for δ = 2 was computed in 5 minutes, for δ = 3 in 1 hour,
and for δ = 4 in 14 days. Strong connexity was finally achieved for δ = 4, and the
properties of the resulting nets are shown in Table 4.2.

Only the model discovered for δ = 2 is shown here, in Figure 4.22, even if not
connected. Only degree 2 places have been added to this net, allowing the discovery
of sequential processes such as the chute. Areas have been expertly delimited from the
labelling of places and transitions to ease the understanding, which is hard when no
clue is given due to the size. One can notice the central position of the conveyor of the
third station, connected to the gripper, the two presses, and the storage station. The
concurrency between these processes can be discovered without trouble.

One input (2B20, inductive sensor of station 2) and one output (2Y04, relay of the
conveyor of station 2) could not be connected. There is no clue as to how the two small
fragments could be connected to the big ones; a connexion is discovered with degree 4
places, but requires two weeks of calculation.

Computing a monolithic model of a concurrent system therefore shows its limits: it is
computationnally expensive, and the resulting model might be hard to understand due
to its size and the lack of demarcation. Demarcations could be automatically inferred
by a Graph Partitioning algorithm applied to the IPN, but the model would still need
being computed.

Net Simplicity
Places Edges CNCPN s.c.

D2 104 297 1.45
D3 115 335 1.55
D4 202 699 2.31 X

Table 4.2: Evaluation of the simplicity metrics on the discovered nets for the MSS.

4.7 Discussion

Regarding previous inquiries dealing with IPN identification, the approach proposed
in this section brings the guarantee of fitness (missing in the previous rule-based ap-
proach [Estrada-Vargas et al., 2015]), and discovers efficiently concurrency (major diffi-
culty of [Meda-Campana, 2002], [Estrada-Vargas et al., 2014] or [Estrada-Vargas et al.,
2015]).

118

4.7. Discussion

Some approaches of the litterature were discarded for identification of real systems
since they did not take the reactive, observable behaviour into account. However, the
formulation of the problem in this section does not imply the observable part. Theo-
rem 1 and the principle of the discovery can be compared more thoroughly to different
approaches solving similar problem.

Regarding language approaches, it is worth noting that our input is a sequence, and
that it is possible to build a language by prefix-closing the sequence:

LObs = {ε, s1, s1s2, s1s2s3, . . . , s1s2 . . . s|S|}

The longest word in this language has length |S|, and language approaches based on ILP
resolution ([Giua and Seatzu, 2005], [Cabasino et al., 2007]) have theorical exponential
complexity regarding this maximal length. Since the length of S reflects the duration of
the observation, it is often big. ILP based approaches are computationnaly too hard for
our problem. Likewise, it is possible to build a sequential automaton like [Kella, 1971],
which has |S| states, and algorithms developped in region theory ([Badouel et al., 2015])
have exponential complexity regarding the number of states.

Besides, language-based approaches aim for maximal precision (even language equal-
ities in synthesis approaches). The nets computed are generalized (weighted edges) and
contain multiple tokens to achieve this goal; concurrent or sequential processes of a real
system are hard to decipher in this class of nets, making the method unfitting for reverse
engineering.

Process mining deals with a very close problem. The different cases present in the log
can be concatenated to form a sequence, where the firings of transitions correspond to
activities. Hence, the approach developped here can also be applied to process mining.
Reversely, abstraction-based approaches from process mining aim at finding relations
between activities in the log, and can therefore also be applied to firing sequences.

However, fitness is a mandatory quality in our problem (the net must be able to
reproduce the sequence), which is not the case in process mining: better have a simpler
model that reproduces 80% of the log than a complex model that reproduces 100%.
(normal behaviour could be defined as the 80% most frequently occuring traces [Van
der Aalst, 2011a]). Therefore, most rule-based approaches (such as α[Van der Aalst
et al., 2004] or α++ [Wen et al., 2007]) do not guarantee fitness, and additional rules
are provided to adapt the model if parts are missing (conformance checking). However,
they often propose polynomial algorithms, mandatory to deal with the sheer number of
activities present in the log.

Typically,in [Tapia-Flores et al., 2014], T-invariants are inferred from the sequence.
The identification is based on rules similar as [Estrada-Vargas et al., 2015], using T-
invariants to distinguish choices and concurrency, and exploitable in polynomial time.
A model adjustment step is required after the identification step, and is mandatory to
verify fitness.

119

Chapter 4. Discovery of the unobservable behaviour

Most recent inquiries in process mining deal with the specific class of block-structured
workflow nets. In [Leemans et al., 2013] is proposed a discovery algorithm (Inductive
miner) running in polynomial time and guaranteeing fitness. However, if the log can
not be represented by this restrictive model class, silent transitions are added to ensure
fitness, which are incompatible with our problem.

The approach proposed in this chapter is therefore located halfway: no language is
required, fitness is guaranteed, and the algorithmic complexity is limited.

4.8 Conclusion

The discovery procedure proposed in this chapter is based on a single, generic carac-
terization of admissible places to add to the net. Compared to rule-based approaches,
the reproducibility of the firing sequence is guaranteed, and compared to language-based
approaches, the emphasis is put more on the readability of the model than on its pre-
cision. Concurrency can easily be discovered; undeterminism and choices require more
computational effort.

The main drawback is the exponential size of the search space; an efficient heuristic
is designed in accordance with the reverse engineering objective, to limit the exploration
and the computation cost. Nevertheless, as shown on the MSS, monolithic models of
big systems are hard to understand due to their sheer size, and are still expensive to
compute (14 days of computation to reach a strongly connected, but uncomprehensible
model). To deal with such systems, distributed identification should be considered, as
shown in next chapter.

120

4.8. Conclusion

Chute
S1

Gripper
S2

Pusher
Lifter
S1

Conveyor
S2

Storage
S4

IN Press
S3 OUT Press

S3

Conveyor
S3

Figure 4.22: Monolithic IPN model obtained after the exploration of δ = 2. 5 transitions
and two fragments remain unconnected to the remainder of the net

121

Chapter 4. Discovery of the unobservable behaviour

122

Chapter

5
Automated partitioning for

distributed identification

Introduction

In this chapter, we wish to improve the scalability of the method even further, by
exploring partitioning approaches instead of computing monolithic models. Monolithic
models are expensive to compute due to the sheer number of transitions, whereas smaller
models are easier to compute. Besides, the partition also provides insight on the decom-
position of the system into subsystems, by splitting and grouping the components.

Instead of considering the problem at the I/O level, the idea is to use the observable
fragments who already provide good insight on related I/Os. The formalization of the
problem is proposed, then a clustering approach is presented to provide good partitioning
solutions. The method is illustrated using the MSS system.

5.1 Statement of the partitioning problem

5.1.1 Objective of the partitioning

As seen in the previous chapter, a monolithic model is expensive to compute, and
hard to read due to its sheer size. Distributing the identification procedure onto sub-
systems helps reducing both the algorithmic cost and the structural complexity. Each
subsystem being smaller than the complete one, the resulting models are easier to com-
pute and to read. The objective is not necessarily to rediscover the monolithic model
by composing the distributed models; from the point of view of an engineer, distributed
models might as well be a good way of getting insight on the system.

Distributed identification consists in splitting the system into subsystems, and run
the identification procedure on each subsystem SUBk, as illustrated by Figure 5.1. The
input of the identification is always an observed vector sequence wk. The vector sequence
w observed on the full system is therefore projected into partial vector sequences wk
corresponding to each SUBk. The projection function is illustrated by the following
example:

123

Chapter 5. Automated partitioning for distributed identification

Example 5.1 ([Schneider and Litz, 2014]Projection function). Let {io1, io2, io3} be the
system, SUB = {io1, io2} the considered subsystem, and the vector sequence w:

w =

0

0

0


0

0

1


1

1

1


1

0

0


Then, the projected vector sequence wSUB is:

wSUB =

0

0

−


1

1

−


1

0

−


The first two vectors of w being identical when considering only the first two I/Os, they
are merged into one in the projected sequence wSUB.

Monolithic identification Distributed identification

𝑖𝑜1
𝑖𝑜2

𝑖𝑜3
𝑖𝑜4

𝑖𝑜5 𝑖𝑜6

𝑖𝑜7
𝑖𝑜8

𝑖𝑜9
𝑖𝑜10

Identification

System

Monolithic IPN

𝑖𝑜1
𝑖𝑜2

𝑖𝑜3
𝑖𝑜4

𝑖𝑜5 𝑖𝑜6

𝑖𝑜7
𝑖𝑜8

𝑖𝑜9
𝑖𝑜10

System

Partitioning

𝑖𝑜1 𝑖𝑜8
𝑖𝑜6

𝑖𝑜3 𝑖𝑜10
𝑖𝑜9
𝑖𝑜7

𝑖𝑜5
𝑖𝑜4
𝑖𝑜2

Id. Id. Id.

N1 N2 N3

𝑆𝑈𝐵1 𝑆𝑈𝐵2 𝑆𝑈𝐵3

Figure 5.1: Principle of the distributed approach, based on a partition of the system.

Using the projection function, any given partition can be used for a distributed ap-
proach, and distributed models can always be computed. Namely, an expert partition
for the MSS system is given in Figure 3.2, where the MSS is decomposed into 11 subsys-
tems, all containing from 5 to 8 I/Os (no overlapping of the 73 I/Os). The identification
procedure was run on each of the eleven subsystems. The calculation took 3m30s (com-
pared to 14 days for the monolithic model), and the average network complexity of the
11 resulting nets is 1.35 (compared to 2.31 for the monolithic model). Two of the eleven
subsystems (Lifter and Transport Station 3) could however not be modelled by strongly

124

5.1. Statement of the partitioning problem

connected nets, hence their might exist a better partition.
Expert partitons are not always available, namely in a blackbox approach. Therefore,

the problem of automatic partitioning is adressed. It consists in building a partition
of the system on the I/O level. An adequate partition ensures that each subsystem
can be identified with qualities relevant to the objective. In [Roth et al., 2010a], the
minimization of the exceeding language is pointed as an objective quality related to
the objective of fault diagnosis. For reverse engineering, each subsystem should be
modelled by a strongly connected IPN, simple to read, and computable in a reasonable
time. Furthermore, the subsystems should regroup I/Os that are functionally related in
the real system; overlapping of systems is allowed, since some I/Os are located at the
interface between two subsystems, and could therefore be shared.

A first formulation of the partitioning problem for reverse engineering is given; since
shared-I/Os are allowed, it is more exactly a cover problem:

Finding a cover Consider a DES consisting in m I/Os {IO1, . . . , IOm}. Compute
an I/O-cover Cover = {SUB1, . . . , SUBN}, with the constraints:

1. ∀i ∈ J1,mK,∃SUBk, IOi ∈ SUBk

2. Each model Nk built on a SUBk is strongly connected

and optimal regarding the two criteria:

1. minimize CNCAvg =
1

N

N∑
k=1

CNC(Nk)

2. minimize N

The first constraint implies that each I/O belongs to at least one subsystem, and
that overlapping is allowed. The second one defines what makes a solution acceptable:
since the criterion chosen to stop the unobservable discovery is the strong connexity of
the identified net, each subsystem must result in a strongly connected identified net as
well.

Numerous covers satisfy these constraints; to choose an adequate partition, optimal
criteria are added. The first one aims for simple nets (see Definition 4.6). However, a
solution optimal regarding this criterion consists in building a bijection between the I/Os
and the subsystems, each subsystem contaning exactly one I/O. Resulting models are
presented in Figure 5.2. Therefore, the second criterion is added to find a compromise
between the size of the distributed models and their simplicity, as minimizing the number
of subsystems implies maximizing the number of I/Os in each subsystem, hence its size.
A solution optimal regarding this second criterion only is the monolothic model, provided
it can be computed.

Since the optimization problem is multicriteria, there is no single solution that simul-
taneously optimizes each objective. Instead, the best solutions form a Pareto frontier,
whose shape is sketched in Figure 5.3. The two extreme points are known: on one hand

125

Chapter 5. Automated partitioning for distributed identification

𝑌𝑖

(=1)

(=1)

↑ 𝑢𝑗

↓ 𝑢𝑗

𝑆𝑈𝐵𝑘 = {𝑌𝑖}
1output

𝑆𝑈𝐵𝑘 = {𝑢𝑗}

1input

Figure 5.2: Identified net for SUBk consisting in either 1 output or 1 input

the solution performing a bijection of subsystems onto I/Os (having an average network
complexity equal to 1, the minimal achievable), and on the other hand the monolithic
solution (only one subsystem). Both these extremes, although Pareto optimal, are not
interesting; the choice of a solution among the possible ones will be discussed later. Ad-
ditionally, notice that the lower the number of subsystems, the more I/Os they contain,
and the bigger the resulting models, implying longer computation durations.

|𝐶𝑜𝑣𝑒𝑟|

𝐶𝑁𝐶𝐴𝑣𝑔 1
1

|𝐼𝑂|

Bijection
Solution

Monolithic
Solution

Increasing
Computation time

Figure 5.3: Shape of the Pareto frontier of optimal solutions of the cover problem

Notice that the number of partitions is not fixed in this problem. Suppose that the
SUBk are disjoint; in this case, the total number of I/O-partitions is given by Bell’s
number:

Bm =
m∑
k=1

S(m, k)

where S(m, k) is the Stirling number of the second kind:

S(m, k) =
1

k!

k∑
j=0

(−1)k−jCj
kj
m

Notably, n = 73 and B73 = 2.15.1077 for the MSS system, which means that it is
impossible to study all possible partitions. Besides, since overlapping of subsystems is
allowed, that number is even higher.

The problem being formulated as an optimization problem, heuristics and optimiza-
tion techniques have been considered to solve it, and reviewed in next section.

126

5.1. Statement of the partitioning problem

5.1.2 Related work

A pioneer approach for automated I/O-partitioning of a DES is proposed in [Roth
et al., 2010a]. It uses simulated annealing as an optimization technique, and is devel-
opped to find concurrent behaviour in the observed sequences, and split the system into
subsystems with minimal internal concurrency. Minimizing internal concurrency limits
the growth of the language with the observations, and enables convergence of LnObs for
higher values of n. Limiting language growth is consistent with the diagnosis purpose,
as a direct consequence is the minimization of false alerts (see Section 1.3.2.1).

The optimization function is designed in that way. H sequences are observed (p ≥ 2),
and |W n,h

Obs,SUBk
| is the number of words of length n observed in all sequences up to

sequence number h, projected on the I/Os of SUBk. Given a partition P , the proposed
optimization function to minimize is :

Jn1 (P) =
1

N

∑
SUBk

H∑
h=2

(
√
h(|W n,h

Obs,SUBk
| − |W n,h−1

Obs,SUBk
|))

For instance, given a SUBk, if all sequences after the first one exhibit no new word of
length n, i.e. all possible interleavings are observed in the first sequence. SUBk exhibits
low concurrenct, and contributes indeed as 0 in the function.

A second optimization function consists in minimizing the average branching degree
(BD) of the resulting models:

J2(P) =
∑
SUBk

BD(NDAAOSUBk
)

where NDAAOSUBk
is the automaton identified for the subsystem SUBk, and

BD(NDAAOSUBk
) =

∑
x∈X

{
0 if |f(x)| ≤ 1

|f(x)| − 1 if |f(x)| > 1

where |f(x)| is the number of transitions leaving state x. Low values of |f(x)| are typical
of sequential systems with few choices and interleavings, hence the branching degree also
depicts the concurrency.

These criteria are oriented towards minimizing the internal concurrency, which is
not mandatory for our problem, as IPN can explicit concurrency while remaining simple
to understand, unlike automata. Besides, since the method developped in this thesis
abstracts concurrency in the firing functions and non observable places, resulting in
compact models. J1 might be a criterion too sensitive, as illustrated by the next example:

Example 5.2. Suppose the H = 3 following event sequences on SUBk = {u1, y1}:

E1 = [↓ u1][↑ u1 ↑ y1][↓ y1][↓ u1][↑ u1]

E2 = [↓ u1][↑ u1 ↑ y1][↓ u1][↓ y1][↑ u1]

E3 = [↓ u1][↑ u1 ↑ y1][↓ u1][↑ u1][↓ y1]

127

Chapter 5. Automated partitioning for distributed identification

For n = 2, J2
1 (SUB) =

√
2.3 +

√
3.2 ' 7.7 and BD = 2; the resulting identified

automaton is shown in Figure 5.4(a). The two I/Os could be discarded as concurrent
and not regrouped. However, notice that input u1 always causes output y1. The IPN
identified for SUB is shown in Figure 5.4(b), and is satisfying regarding simplicity,
therefore the two I/Os should be kept together.

𝑌1

↑ 𝑢1

(=1)

(b) (a)

1

0

0

0

1

1

0

1

0

0

1

0
1

1

↑ 𝑢1

↑ 𝑢1

↓ 𝑢1

↓ 𝑢1

↑ 𝑢1
↑ 𝑦1 ↓ 𝑢1

↓ 𝑦1

↓ 𝑦1

Figure 5.4: (a) The NDAAO and (b) the IPN built from SUBk = {u1, Y1}

Three important points are highlighted by this example:

• Language-based criteria designed to avoid concurrency are too sensitive to inter-
leaving for our method

• Causal I/Os should not be separated

• The roles of inputs and outputs should be differentiated

A direct consequency is that the observable behaviour, already expressing the causalities,
offers a solution to the partitioning problem and provides I/O blocks that should not be
separated. This reflexion leads to the reformulation of the problem in section 5.1.3.

The approach proposed in [Roth et al., 2010a] aims at computing directly a partition.
An extension is proposed in [Schneider and Litz, 2014]. It consists first in computing
numerous acceptable subsets SUBk, then to synthesise a partition from all computed
subsets by solving a Cover Set problem. An overview is shown in Figure 5.5.

Optimal partitioning uses J1 previously introduced as objective function, and pro-
poses a Hill climbing algorithm to build the subsets in OPT.

Causal partitioning is a first heuristic proposed to group I/Os. The idea is to compute
a distance between each I/O pair, then regroup the closest I/Os into subsets. Given H
sequences projected on an I/O pair {io1, io2}, and q ≤ H the number of occurences of
the most frequent sequence, the distance is defined as:

d(io1, io2) = 1− q

H

Notably, d = 0 iff all H projected sequences are identical. Then, fixing a threshold for
the distance dmax, subsets from CAU are build such that ∀(ioi, ioj) ∈ SUB2

k, d(ioi, ioj) ≤
dmax.

128

5.1. Statement of the partitioning problem

Figure 5.5: Overview of the partitioning approach from [Schneider, 2014]

This distance nevertheless also suffers from the same sensitivity problem, exhibited
by Example 5.2. The subsets either from CAU or OPT can break direct causalities
between inputs and outputs by separating them, which makes even the causal approach
unusable in this thesis.

The problem of partitioning has also been considered in the field of Process Mining
(see Section 1.3.3.2), where models are mined from huge flows of data with numerous
possible activities. A Divide-and-Conquer approach is therefore proposed in [Van der
Aalst, 2013b] to ease either conformance checking or process discovery. Regarding the
latter, the principle is to split the set of activities into overlapping subsets, then project
the log onto the subsets to get sublogs, and perform the discovery on each sublog.
Finally, the identified submodels are composed into the full model, i.e. including all
activities.

Splitting the set of activities is perceived as a Graph Partitioning problem in [Car-
mona et al., 2009]. First, a Causality Graph is build, based on the causal relationship:
the activities are the nodes, and two nodes are connected iff one activity causes the
other. Graph partitioning methods can then be used to decompose the graph into sub-
graphs, each subgraph representing a subset of causal activities. The objective is to
minimize the RatioCut, i.e. the number of edges that are cut off to break the graph
into subgraphs. Each subgraph then corresponds to a set of activities. This method
is especially adapted when process mining algorithms exploiting the causal relationship
are used, such as α.

In the context of this thesis, such a method can be applied once the observable
behaviour is discovered, by using the transitions as nodes. It was however shown in
Chapter 2 that the causality relationship is unprecise. Due to massive concurrency
and uncomplete observation of the system, concurrent relationships are hard to infer,
and transition pairs might be mistakenly classified as causal whereas being actually
concurrent. Furthermore, there is no guarantee that the partition formed by any graph
partitioning method leads to strongly connected nets, as imposed in our problem.

129

Chapter 5. Automated partitioning for distributed identification

5.1.3 Mapping I/Os and observable fragments

Since the observable fragments provide the causal I/Os subsets that should not be
separated, the partitioning procedure must be done after the computation of these frag-
ments. The idea is now to split the observable fragments into separate observable models,
on each of which the unobservable discovery is run. They will be called blocks, and the
set of blocks must cover all observable fragments, forming a partition of the observable
model. The number of blocks is apriori unknown. The firing sequence S which comes
along the observable fragments is global, and must remain consistent with each of the
blocks. Therefore the separation of the fragments must not lead to creation, duplication
or removal of transitions. Furthermore, the observable places must remain unique as
well.

The notions to achieve the decomposition into blocks are now introduced.

Definition 5.1. An observable fragment Fi consists in a connected component of the
observable model. It might either contain places and transitions, or be an isolated tran-
sition.

For instance, the observable model of the MSS in Figure 3.17 consists in 37 fragments,
including 24 isolated transitions, and 13 fragments having at least one place.

For the partitioning objective, connected components should not be separated, oth-
erwise direct causalities might be lost. Multiple connected components could however
belong to the same subsystem. Besides, observable places are unique, and transitions
must not be duplicated. Hence, a fragment can not belong to multiple subsystems. The
definitions of blocks, which are models of subsystems, and of a partition ensue:

Definition 5.2. A block Bk is a non-empty set of observable fragments {F1, . . . , F|Bk|}.
An observable partition is a set of disjoint blocks PAR = {B1, . . . , B|PAR|} covering

all observable fragments, i.e.
∀Fi,∃!Bk/Fi ∈ Bk

Before defining the mapping of blocks on I/Os, the classification of I/Os is precised.
D is the set of input events that have not been causally associated to any outputevent,
i.e. that do not appear in any firing function (See page 48)

Definition 5.3. The I/Os are split into the output set Y, and the input set U. The input
set is further divided into D, the set of unassigned inputs, and U\D. An unassigned input
is an input whose events or levels do not appear in any firing function of any output.

Isolated transitions can only be labelled by unassigned input events. However, these
events can be observed with output events as well, meaning that transitions connected
to observable places can be labelled with input events both from D and U\D. If these
observations are not spurious, the transitions remain after the reduction (see Chapter 3),
and the unassigned input can be considered as connected to the simultatneous output.
Likewise, if an isolated transition is labelled by two input events, they can be considered
connected. Therefore, the set D is further divided:

130

5.1. Statement of the partitioning problem

Definition 5.4. An unassigned input uD ∈ D is said connected iff there exists a transi-
tion whose firing function contains uD, and either connected to an observable place, or
labelled by another input event i.e.

∃t ∈ T, uD ∈ λ(t) ∧ ((∃p ∈ •t ∪ t•) ∨ (λ(t)− uD 6= ∅))

The set of connected inputs is noted DConn. Its complementary, the set of solitary inputs,
is noted DSol = D/DConn.

A direct consequence of this definition is that a solitary input is only associated to
two transitions, who are respectively and only labelled by its rising and falling edge.
The mapping of fragments and blocks onto the I/O set is now defined.

Definition 5.5. Let Bk be a block, and Fi an observable fragment. Each place p is
associated to an output ϕ(p), and each transition t to the inputs in its firing function
λ(t). The inputs used in the firing function of a transition t are designed by {λ(t)}.
Two mapping function MapF and MapB are defined as follows, mapping the elements
onto the I/Os:

MapF : Fi −→
⋃
p∈Fi

ϕ(p)
⋃
t∈Fi

{λ(t)} ⊆ (Y ∪ U)

MapB : Bk −→
⋃

Fi∈Bk

MapF (Fi) ⊆ (Y ∪ U)

Affected Inputs 𝕌\D

Outputs 𝕐

Unaffected

 Inputs D

Solitary

𝑫𝑺𝒐𝒍

𝑫𝑪𝒐𝒏𝒏

Connected

Figure 5.6: Mapping of an observable fragment and isolated transitions on the different
I/O sets

The mapping of a fragment is illustrated by Figure 5.6. For instance, F1 being the
left fragment in Figure 5.6, MapF (F1) = {Y1, u1, u2, uD1}. A block is mapped into
an I/O subset; however, starting from said I/O subset, the observable model can be

131

Chapter 5. Automated partitioning for distributed identification

recomputed. To make sure that no transition is altered, the block should be identically
rebuilt. This makes the condition of consistency of a block.

Definition 5.6. A block Bk is consistent if, and only if it is identical to the observable
model built from MapB(Bk)

Naturally, only consistent blocks must be built. A fragment Fi such thatMapF (Fi)∩
D = ∅ is naturally a consistent block (Type 1). Consistency problems occur when
connected inputs (in DConn) are involved in the mapping of fragments, as illustrated by
the next example.

Example 5.3. Consider the four fragments of Figure 5.7, withMapF (F1) = {Y1, u1, uD1},
MapF (F2) = {Y2, u2, uD1},MapF (F3) = MapF (F4) = {uD1}. Consider the block B1

1 =

{F1}. uD1 belongs to MapB(B1
1) and is an unaffected input. During the construction

of the observable model from MapB(B1
1), two transitions corresponding to F3 and F4

will be created. Hence B1
1 is not consistent. However, B2

1 = {F1, F3, F4} is consis-
tent. B2 = {F2, F3, F4} is consistent as well. However, B2

1 and B2 share two frag-
ments, and can not make a partition. The only possible partition is directly the block
Btot = {F1, F2, F3, F4}, which is consistent.

↑ 𝑢1

↓ 𝑢1 ↓ 𝑢𝐷1 ↓ 𝑢1

𝑌1

↑ 𝑢2

↓ 𝑢2 ↓ 𝑢𝐷1 ↓ 𝑢2

𝑌2

↓ 𝑢𝐷1

↑ 𝑢𝐷1

𝑭𝟏 𝑭𝟐

𝑭𝟑

𝑭𝟒

Figure 5.7: Sharing a connected input between two fragments and two isolated transi-
tions.

Consequently, all fragments sharing an input in DConn are regrouped into the same
block (Type 2). Similarly, two isolated transitions sharing a solitary input in DSol are
regrouped in the same block (Type 3). The procedure for building blocks is given by
Algorithm 5.1:

Proposition 5.1. Algorithm 5.1 provides a partition of consistent blocks.

Proof. Three types of blocks are created by the algorithm. Each Type 3 block Bj built
in line 3 consists in a couple of isolated transitions associated to a solitary input uD,
such that MapB(Bj) = uD. Type 2 blocks built in lines 4-11 are mapped to at least
one connected input; said connected inputs do not belong to any other block, avoiding
consistency issues. Finally each Type 1 block built in line 12 is built from an observable
fragment not mapped to any input in D, hence naturally consistent.

132

5.1. Statement of the partitioning problem

Algorithm 5.1 Building blocks and a partition
Require: Fragments Fi, mapping functions MapF ,MapB
Ensure: PAR = {B1, . . . , B|PAR|} a partition of consistent blocks
1: Build a new block for each pair of transitions sharing an input in DSol {Type 3}
2: for Connected input uD ∈ DConn, not treated yet do
3: Find all fragments Fi such that uD ∈MapF (Fi)
4: Build Bj = ∪iFi; uD is treated
5: while there exists u′D ∈MapB(Bj) not treated yet do
6: Find all fragments F ′i such that uD ∈MapF (Fi)
7: Bj ← Bj ∪i F ′i ; u′D is treated {Type 2}
8: end while
9: end for

10: Build a new block for each remaining fragment Fi {Type1}

Besides being composed of consistent blocks, the partition offers also a solution to
the cover problem. Each I/O is attributed to at least one SUBk = MapB(Bk) (only
outputs in Y and unassociated inputs in D can not be shared), and the second constraint
is verified by the following proposition:

Proposition 5.2. Let PAR = {B1, . . . , B|PAR|} be a partition built with Algorithm 5.1.
Then, the discovery of the unobservable behaviour of each block Bj leads to a strongly
connected model.

Proof. Type 1 blocks consist in one connected observable fragment. It is sufficient
to add the unobservable dual places (see Section 4.4.4) to reach a strongly connected
component.

Type 3 blocks consist in two transitions, and are mapped into exactly one input in
DSol. The transitions are connected by two unobservable places, as can be seen in the
right net of Figure 5.2.

Finally, type 2 blocks consist in connected fragments, and isolated transitions, which
share connected inputs in DConn. By adding the dual unobservable places, the con-
nected fragments become strongly connected. Then, all transitions sharing an input in
DConn can be connected by two unobservable places which are consistent with the alter-
nance between rising and falling edges leading to one strongly connected component, as
illustrated in Figure 5.8.

Algorithm 5.1 is applied to the observable behaviour of the MSS. 4 pairs of iso-
lated transitions are regrouped with observable fragments, forming 4 Type 2 blocks
(B4, B8, B11). B13 up to B20 are Type 3 blocks composed of two isolated transitions,
and the remaining fragments build 9 Type 1 blocks, for a total of 21 blocks. The partition
is shown in Figure 5.11; grey circles point the regroupments of Type 2 blocks.

This solution is good regarding the minimization of the average complexity, as
many fragments are very simple to read after the addition of unobservable behaviour
(CNCAvg = 1.18). However, the granularity is a bit too fine, as some subsystems have

133

Chapter 5. Automated partitioning for distributed identification

↑ 𝑢1

↓ 𝑢1 ↓ 𝑢𝐷1 ↓ 𝑢1

𝑌1

↑ 𝑢2

↓ 𝑢2 ↓ 𝑢𝐷1 ↓ 𝑢2

𝑌2

↓ 𝑢𝐷1

↑ 𝑢𝐷1

𝑭𝟏 𝑭𝟐

𝑭𝟑

𝑭𝟒

Figure 5.8: Possible unobservable behaviour for a Type 2 Block

very few outputs or solitary inputs. The physical location of the blocks on the MSS
is represented in Figure 5.9. Overlappings of inputs were not represented for the sake
of readability. Some small blocks are close to one another and should naturally be
regrouped.

𝑩𝟐𝟎

Station 1: Feeder Station 2: Testing Station 3: Processing Station 4: Storage

𝑩𝟏𝟖 𝑩𝟏𝟗 𝑩𝟏𝟕 𝑩𝟏𝟔
𝑩𝟏𝟒 𝑩𝟏𝟓

𝑩𝟏𝟑

𝑩𝟏𝟐 𝑩𝟏𝟏 𝑩𝟏𝟎 𝑩𝟖 𝑩𝟏

𝑩𝟗

𝑩𝟕

𝑩𝟔

𝑩𝟓 𝑩𝟐

𝑩𝟒

𝑩𝟎 𝑩𝟑

Figure 5.9: Location of the blocks on the MSS

5.1.4 Final formulation

The partitioning problem is reformulated now that a block-composed pre-partition
PAR = {B1, . . . , B|PAR|} is computed from the observable behaviour.

The constraints previously defined on I/Os can be reformulated on the blocks. We
aim at finding a repartition of the blocks into subsystems. Each subsystem is a set of
blocks, and each block can only belong to one subsystem (to avoid duplicating transitions
or places). Finally, each subsystem should be identified as a strongly connected IPN
model after the unobservable places are added.

The objective functions remain the same, to ensure each distributed model is bal-
anced between simplicity (minimized with a lot of subsystems) and size (maximized with
the monolithic model).

Finding a partition Consider a set of m blocks {B1, . . . , Bm}. Compute a partition
of N subsystems PAR = {SSY S1, . . . , SSY SN}, with the constraints:

1. ∀i ∈ J1,mK,∃!SSY Sk, Bi ∈ SSY Sk

2. The addition of unobservable behaviour to SSY Sk leads to a strongly connected
net Nk

134

5.1. Statement of the partitioning problem

and optimal regarding the two criteria:

1. minimize CNCAvg =
1

N

N∑
k=1

CNC(Nk)

2. minimize N

A solution to this problem is directly a modelling solution as distributed identi-
fied nets, and a partition of the I/Os is deduced from the subsystems by the mapping
function, solving the initial problem. This new point of view is resumed in Figure 5.10.

Monolithic Observable Discovery

Full I/O Set

Y1 Y2

Y4 Y3

Y5 Y6

Y7 Y8

Y10 Y9

Y11

Y12

Y13

Y14

↑ 𝑢𝐷1
↓ 𝑢𝐷1

↑ 𝑢𝐷2
↓ 𝑢𝐷2

↑ 𝑢𝐷3
↓ 𝑢𝐷3

Y1 Y2

Y4 Y3

Y12

Y14

Y6

Y8

Y5

Y7

↑ 𝑢𝐷1
↓ 𝑢𝐷1

Y10 Y9

↑ 𝑢𝐷2
↓ 𝑢𝐷2

Y11 Y13

↑ 𝑢𝐷3
↓ 𝑢𝐷3

Observable
fragments
Clustering

𝕐={Y1,…,Y14} 𝕌={u1,…,u21} D={𝑢𝐷1,…, 𝑢𝐷3}

Unobservable
Discovery

Y1 Y2

Y4 Y3

Y12

Y14

Y10 Y9

↑ 𝑢𝐷2

↓ 𝑢𝐷2

Y11
Y13

↑ 𝑢𝐷3 ↓ 𝑢𝐷3

Y6

Y8
↑ 𝑢𝐷1

↓ 𝑢𝐷1

𝑆𝑆𝑌𝑆1 𝑆𝑆𝑌𝑆2 𝑆𝑆𝑌𝑆3 𝑆𝑆𝑌𝑆4

Figure 5.10: Overview of the distributed approach, partitioning taking place after the
construction of the observable model

It is not a Bin packing problem ([Korf, 2002]), as the subsystems have no fixed
size. This problem can however be viewed as an Exact Set Cover problem ([Knuth,
2000]). Numerous subsystems can be grown out of the blocks Bi. Then, from all the
candidate subsystems, an exact cover of PAR, optimal regarding the criteria, can be
computed, using for instance Knuth’s algorithm ([Knuth, 2000]). However, the number
of subsystems that satisfy the constraints is very high (possibly 2N−1), and the exact set
cover problem is NP-complete, adding therefore another layer of exponential complexity.

Multiple solutions are satisfying this multi-objective optimization problem, and op-
timal solutions form a Pareto Frontier regarding the average structural complexity and

135

Chapter 5. Automated partitioning for distributed identification

the number of subsystems. The extreme solutions are respectively the monolithic model
(SSY S1 = {B1, . . . , Bm}), and the initial set of blocks (∀i, SSY Si = {Bi}).

In the following section, an efficient clustering method is proposed to find ’natural’
partitions, and provide a hierarchy of these partitions. A discussion is conducted on the
balance between size of the subsystems and the computation time; different variations
of the clustering method are proposed depending on the objective of the engineer.

136

5.1. Statement of the partitioning problem

𝑩𝟎

𝑩𝟏 𝑩𝟐 𝑩𝟑 𝑩𝟓 𝑩𝟔 𝑩𝟕

𝑩𝟒

𝑩𝟖 𝑩𝟗 𝑩𝟏𝟎 𝑩𝟏𝟏 𝑩𝟏𝟐

𝑩𝟏𝟑 𝑩𝟏𝟒 𝑩𝟏𝟓 𝑩𝟏𝟔 𝑩𝟏𝟕 𝑩𝟏𝟖 𝑩𝟏𝟗 𝑩𝟐𝟎

Figure 5.11: The 21 blocks computed for the MSS

137

Chapter 5. Automated partitioning for distributed identification

5.2 Partitioning by agglomerative hierarchical clustering

The approach proposed is inspired from hierarchical clustering methods used in data
mining ([Rokach, 2010]). The objective of clustering is to group objects such that objects
in a same group (called a cluster) are more similar than objects belonging to different
clusters. The similarity is evaluated through an appropriate metric, corresponding to a
measure of the ’distance’between a pair of objects.

Hierarchical clustering aims not only at grouping objects into clusters, but also at
providing a hierarchy: a cluster gathers all clusters below it in the hierrachy. Agglom-
erative clustering is a bottom-up methodology: each object starts in its own cluster,
and pairs of clusters are merged while moving up in the hierarchy. The dual top-down
approach is called divisive clustering.

In our problem, the objects are subsystems SSY S1, . . . , SSY SN . Initially, each
subsystem is composed of only one block (SSY Si = {Bi}). An agglomerative clustering
approach is natural to group the blocks, lower the number of subsystems and satisfy
the second objective function. To balance with the first objective function, simplicity
should be implied in the similarity metric, so that blocks leading to the most simple
models are regrouped.

5.2.1 Similarity and affinity of subsystems

First, the notion of similarity between subsystems is introduced:

Definition 5.7. Let SSY Si, SSY Sj be two subsystems. Let Nij be the complete IPN
identified after the addition of unobservable behaviour. The similarity Sim of the two
subsystems is:

Sim(SSY Si, SSY Sj) =

{
CNC(Nij) if Nij is strongly connected

∅ if Nij is not strongly connected

When defined, similarity is an indicator of the closeness of subsystems; a low value
corresponds to a pair of subsystems whose assembled model is simple to read, hence
implying simple operations. The subsystem resulting of the merging of the original pair
satisfies the second constraint of the optimization problem (strong connexity).

In the other case, the similarity is undefined (∅), as the model resulting of the merging
is not strongly connected. Notice that this similarity factor is therefore not a distance.
For instance, given subsystems A,B,C, Sim(A,B) and Sim(B,C) being defined, Sim(A,C)
might be undefined, unsatisfying the triangular inequality. However, Sim(A∪B,C) is
likely to be defined; adequate subsystems might include highly dissimilar subsystems
(A,C) who are both similar to a third one (B).

Whenever two systems are similar, they could be merged, and the resulting net
would satisfy the constraints. However, to fulfill the first objective function (low average
structural complexity), the idea is to merge only the subsystems who are the most

138

5.2. Partitioning by agglomerative hierarchical clustering

similar, such that structural complexity is minimized at each merging. The affinity of a
subsystem is defined as the subsystems it is the most similar to:

Definition 5.8. Let SSY S1, . . . , SSY Sm be m subsystems. The affinity Aff of a sub-
system SSY Si is the set:

Aff(SSY Si) = {SSY Sj|Sim(SSY Si, SSY Sj) = min
k

(Sim(SSY Si, SSY Sk))}

The affinity of a subsystem might be the empty set, a singleton, or composed of
multiple subsystems. An affinity graph is derived from this definition:

Definition 5.9. Let SSY S1, . . . , SSY Sm be m subsystems. The affinity graph A=(V,E)
is a directed graph, where the m vertices V represent the m subsystems and the edges
represent the affinity, i.e.

(Ni, Nj) ∈ E ⇔ SSY Sj ∈ Aff(SSY Si)

Example 5.4. Consider 4 subsystems {1, 2, 3, 4} such that Sim(1, 2) = Sim(1, 3) =

Sim(1, 4) = ∅, Sim(2, 3) = Sim(2, 4) = 1.25 and Sim(3, 4) = 1.15. The corresponding
affinity graph is presented in Figure 5.12: 1 is an isolated node, 2 has two successors,
and finally 3 and 4 are eachothers unique respective affinity, forming a 2-cycle. 2 and 3
should be merged, and the similarity between the resulting subsystem 2,3 and 1 computed,
to decide whether further merging is acceptable.

3 4

2 1

Sim 1 2 3 4

1 - ∅ ∅ ∅

2 ∅ - 1,25 1,25

3 ∅ 1,25 - 1,15

4 ∅ 1,25 1,15 -

Figure 5.12: Similarity table and Affinity graph deduced for Example 5.4

Subsystems to be merged in priority are the length-2 directed cycles in the affinity
net: they involve two subsystems such that each subsystem is the most similar to the
other. The subsystems can be iteratively merged, the similarity recomputed at each
step, until no more merging is possible. The convergence is ensured due to helpful
properties of affinity graphs:

Proposition 5.3. The maximal length of chordless1 directed cycles in an affinity graph
A is 2

Proof. Suppose there exists a chordless directed cycle of length n ≥ 3, let V1, V2, . . . , Vk

be the concerned nodes, such that Vi−1 → Vi → Vi+1 and Vk → V1. Since the edge
1A chordless cycle in a graph is a cycle such that no two vertices of the cycle are connected by an

edge that does not itself belong to the cycle.

139

Chapter 5. Automated partitioning for distributed identification

starting from Vi is oriented towards Vi+1, necessarily

Sim(SSY Si, SSY Si+1) < Sim(SSY Si, SSY Si−1)

otherwise, Vi would point to Vi−1. By repeating for all Vi, it comes

Sim(SSY Sk, SSY S1) < Sim(SSY Sk−1, SSY Sk) < · · · < Sim(SSY S1, SSY S2)

However, this would mean that the edge V1 → V2 should not exist, as the affinity of
SSY S1 can not be SSY S2, hence a contradiction. Necessarily, there can not exist a
chordless cycle of length longer than 2.

Proposition 5.4. There exists a length-2 directed cycle in any strongly connected com-
ponent of A not reduced to a node.

Proof. If said strongly connected component consists in two nodes, it is directly a length-
2 directed cycle. If it consists in three nodes or more, since the component is strongly
connected, each node possesses a path to reach itself back. Let k be the minimal length
of these paths over all nodes. Necessarily there exists a chordless cycle of length k (if
there was a chord, k would be lower). According to the previous Proposition, k=2.

Proposition 5.5. Let A = (V,E) be an affinity graph. There exists a length-2 directed
cycle in A, iff E is not empty

Proof. The implication ⇒ is obvious.
If E is not empty, with the previous Proposition, it remains to prove that there exists

a strongly connected component composed of at least two nodes in the graph. Suppose
there is not, then there exists a node Ni with at least one entering edge, and no leaving
edge. However, the entering edge implies that the set {SSY Sj|Sim(SSY Si, SSY Sj) <

∞} is not empty. Necessarily, the affinity of SSY Si is not the empty set as well, and
Ni must have at least one leaving edge, hence the contradiction.

Cycles can be found as long as there are edges in the affinity graph. The full ag-
glomerative procedure is exposed by Algorithm 5.2. At each step, the affinity graph is
studied; a length-2 directed cycle is picked in each strongly connected component (at
least two nodes) of the graph. The nodes of the cycles are merged and the affinity graph
recomputed. The procedure is repeated until there are no more edges in the graph. In
the worst case, convergence is achieved when there remains exactly one node, which
corresponds to the full system.

The costliest operation is the computation of the affinity graph (lines 2,7), which re-
quires the evaluation of all similarity values. An upper bound of the number of similarity
values to compute during the discovery is given by the following proposition:

Proposition 5.6. Consider a system with n subsystems. To run Algorithm 5.2, the
maximal number of similarity values to compute is (n− 1)2.

140

5.2. Partitioning by agglomerative hierarchical clustering

Algorithm 5.2 Agglomerative clustering of subsystems
Require: Blocks B1, . . . , Bn

Ensure: PAR = {SSY S1, . . . , SSY Sm} a partition.
1: Compute the initial partition PAR = {{B1}, . . . {Bn}}
2: Compute the affinity graph A = (V,E) related to PAR
3: while E 6= ∅ do
4: Pick a length-2 directed cycle (SSY Si, SSY Sj) in each strongly connected com-

ponent of A
5: Merge each pair of subsystems into a new one SSY Sij
6: Update the partition PAR
7: Update the affinity graph
8: end while

Proof. Given the n initial subsystems, there are initially n(n− 1)/2 similarity values to
compute to build the first affinity graph. Then, the worst case is the following: at each
step, only two nodes of the graph are merged. After the first loop, n − 2 subsystems
are unchanged, and one is new, hence n− 2 new similarity values to compute. After the
second loop, it remains n − 3 subsystems are unchanged, hence n − 3 new values, etc.
The total number is therefore:

n(n− 1)

2
+ (n− 2) + (n− 3) + · · ·+ 1 =

n(n− 1)

2
+

(n− 1)(n− 2)

2
= (n− 1)2

Example 5.5 (Example 5.4 cont.). The agglomerative clustering is illustrated by Fig-
ure 5.13. From the similarity table of Figure 5.12, 3-4 is the only strongly connected
component. The nodes are merged, and the similarity recomputed. Sim(1,2) is already
known, Sim(1,3∪4)=∅, and Sim(2,3∪4)=1.3. 2-3∪4 is a new strongly connected com-
ponent, and merged. Finally Sim(1,2∪3∪4)=∅, and there is no more edge in the affinity
graph, stopping the clustering. Figure 5.13(b) shows a hierarchical representation. Each
layer is a solution of the problem, and each layer exhibits a different number of subsys-
tems. The middle layer (1,2,3-4) has three subsystems, whereas the top one (1,2-3-4)
has only two.

3 4

2 1

3-4

2

1

2-3-4

1

1

1

1

2

2

3-4

2-3-4

4 3

(a) (b)

Figure 5.13: (a) Evolution of the affinity graph along the clustering; (b) Hierarchical
representation

141

Chapter 5. Automated partitioning for distributed identification

The main advantage of the approach is to compute a full hierarchy. Suppose that
the expert decides a solution with N ′ subsystems is not distributed enough: it suffices
to go down in the hierarchy to find an already computed solution with more subsystems.
Reversely, if there are too many subsystems, it suffices to go up in the hierarchy to find
a coarser solution.

However, the computation of the full hierarchy is worrisome. First, if there exists a
monolithic, strongly connected model of the full system, then Algorithm 5.2 does not
stop until said model is reached, whereas the whole point of the distributed approach is
to avoid computing the monolithic model.

Furthermore, the update of the affinity graph (line 7 of Algorithm 5.2) implies to
compute similarity values. The only way of deciding that a similarity value is undefined
is by running the full exploration, and concluding at the end that no strongly connected
model exists (Section 4.4.3, a backup threshold was even set to ensure the halting of the
computation). Likewise, the computation of similarities might be expensive: consider
B0 and B4 from Figure 5.11, who respectively have 28 and 22 transitions. Computing
Sim(B0, B4) took 4 hours. To ensure the efficiency of the clustering, a limitation must
be introduced.

5.2.2 Limited clustering

The principle of limited clustering consists in slightly altering the definition of sim-
ilarity, to ease its calculation. Additional rules are introduced to decide quickly if the
similarity is worth computing, or if it is undefined (∅). By increasing the number of
undefined similarities, the number of non-empty affinities drops, and the lack of edges
in the affinity graph (stopping criterion of Algorithm 5.2) is reached after less com-
putations, avoiding convergence to the monolithic model. Two alternate definitions of
similarity are therefore proposed, based on the introduction of thresholds; the remainder
of the clustering approach remains the same. The two propositions are first presented
in this section, then their application is evaluated in the next one.

5.2.2.1 By size of subsystems: |T |-clustering

A first proposition consists in limiting the number of transitions in a given model,
as the complexity of discovering the unobservable behaviour is exponential regarding
the number of transitions. The number of transitions of the full system is known and
fixed. The initial subsystems have been designed in order that each transition belongs
to exactly one subsystem. If the sum of transitions of two subsystems is over a given
threshold, they are then considered dissimilar.

Definition 5.10 (|T |-similarity). Let SSY Si, SSY Sj be two subsystems, having respec-
tively |Ti| and |Tj| transitions, and Nij = (Pij, Tij,Wij) be the complete IPN identified
after the addition of unobservable behaviour (|Tij| = |Ti|+|Tj|) . Let |T |Lim be a maximal

142

5.2. Partitioning by agglomerative hierarchical clustering

number of transitions allowed. The |T |-similarity Sim|T | of the two subsystems is:

Sim|T |(SSY Si, SSY Sj) =


CNC(Nij) if Nij is strongly connected

∅ if Nij is not strongly connected

or |Tij| > |T |Lim

Since the total number of transitions |T | is known and fixed, this threshold can also
be used to control the number of subsystems of the final partition. If the engineer aims
for a solution with N subsystems, by assuming the subsystems have similar sizes, a
threshold can be set at |T |Lim = b|T |/Nc.

Without any apriori, given that the initial number of subsystems n is known, the
engineer can aim for n/2 subsystems, i.e. set the threshold to |T |Lim = b2|T |/nc.
If he/she desires more subsystems, he/she can pick a solution already computed. If
he/she desires less subsystems, he/she can then aim for n/4 subsystems (|T |Lim =

b4|T |/nc), continue the computation from the last solution, and repeat the procedure
until a satisfying solution is reached.

The main advantage of this approach is that the number of subsystems can be
controlled. However, some blocks contain too many transitions (see B0 or B4 of the
MSS), and their similarity values remain undefined until the threshold is high, missing
potentially simple models. Furthermore, the computation time is not controlled, and
some similarity values can be unpredictabily expensive to compute, despite a reasonable
number of transitions.

5.2.2.2 By computation time: time-clustering

To control computation time, it is natural to introduce a computation threshold for
the evaluation of each similarity.

Definition 5.11 (time-similarity). Let SSY Si, SSY Sj be two subsystems, and Nij be
the complete IPN identified after the addition of unobservable behaviour. Let tLim be the
maximal computation time allowed. The time-similarity Simt of the two subsystems is:

Simt(SSY Si, SSY Sj) =


CNC(Nij) if Nij is s.c. and computed in less than tlim

∅ if Nij is not strongly connected

or Nij is not computed in less than tlim

Setting the threshold tlim limits the computation of any similarity value. tlim can
therefore be chosen, based on an upper bound of the number of similarity values to
compute (Proposition 5.6). The engineer can allow a total computation time t; given
n initial subsystems, the threshold can be set at tlim = t/(n − 1)2. This is a lower
threshold, ensuring that the total computation time does not exceed t; the actual value
of the computation time should actually be far lower.

The main advantage of this approach is that a solution is guaranteed to be obtained

143

Chapter 5. Automated partitioning for distributed identification

quickly, as computation time is controlled. Furthermore, all the subsystems are sol-
licited and can be merged, compared to the |T |-threshold. However, there is no explicit
link between the computation time and the number of subsystems reached when the
algorithm terminates. If the number of subsystems is too high, the algorithm can be
restarted by increasing the threshold, but it is impossible to determine which increase
is required.

5.2.2.3 Choosing a limited clustering approach

The approaches are complementary, as the advantages of one are the drawbacks of the
other. In both cases, if the granularity of the system is too coarse (too few subsystems),
previous, finer solutions have already been calculated and are available in the hierarchy.

They could be used depending on the objective of the engineer:

• If he/she has an apriori on the system, regarding the number of subsystems to
discover or their similar sizes, |T |-based clustering seems appropriate, despite com-
putation time. The granularity of the system can be finely tuned.

• If he/she wants to obtain quickly a model to get quick insight, and not update it
afterwards, time-based clustering seems better.

Both procedures are illustrated on the MSS in the next section.

5.2.3 Results and interpretation

As a recall, the MSS consists in 73 I/Os (43 inputs and 30 outputs), and the observed
data consisted in a sequence w of length 63797 I/O vectors. After the computation and
simplification of the observable behaviour, the observable model consists in a net of 30
observable places and 101 transitions. The input of the partitioning are these observable
fragments, which are regrouped in 21 blocks (B0 to B20, shown in Figure 5.11). All
computations are ran on a laptop (Intel® Core™ i5-3380M CPU @ 2.90GHz x4, 8Go
RAM).

5.2.3.1 |T |-clustering

The initial number of subsystems being n = 21, and the total number of transitions
being |T | = 101, a first threshold is set at |T |Lim = b2 × 101/21c = 9. Notice that
B0, B4 and B2 have respectively 28,22 and 8 transitions; they can not be merged with
any other block without exceeding the threshold. The evolution of the affinity graph
throughout the clustering is shown in Figure 5.14.

In the first graph, B0, B4 and B2 are isolated, and there are 4 fragments who exhibit
6 strongly connected components. The length-2 cycles chosen for merging are circled by
dotted lines. Notice that the affinities change during the procedure. For instance, the
affinity of subsystem B8 switched from {B1, B10} to B17 in Step 2, then to ∅ in Step 3.

144

5.2. Partitioning by agglomerative hierarchical clustering

The algorithm stops at the fourth step, where a solution with 9 subsystems is proposed.
The computation time was 25 minutes.

14-15

19-20 1-10

5-11

12-18

7-14-15

13-19-20

1-10 12-18

9-16

9-16-17

0

4

2 12 18

11

10 19

20

13 14 15

3

3

3

5 6

6 13

6

1

8

8

8

7

7

17

Step 3

Step 2

Step 1

16 17 9

0

4

2

5-11 0

4

2

1-10-12-18

9-16-17

8

5-11 0

4

2

3-7-14-15

6-13-19-20

Step 4

Figure 5.14: Successive affinity graphs, first run of the clustering, with |T |Lim = 9

Compared to the solution based on an expert partitioning, this one has fewer sub-
systems (9 against 11), similar average network complexity (1.35 in both cases), and all
models are strongly connected (2 are not in the expert partitioning). This solution is
therefore better in every aspect than the expert one. The clusters are consistent with
the physical subsystems of the chain; for insance, cluster {B6, B13, B19, B20} corresponds
exactly to the input press.

Suppose now that the engineers wants less subsystems. The threshold is doubled,
becoming |T |Lim = 18. B0 and B4 can still not grow. Starting from the last affinity
graph of the first run (Step 4), the clustering is ran a second time, and the successive
graphs are shown in Figure 5.15. Three steps are required to reach a partition in 6
subsystems, and took 50 additional minutes of computation. The structural complexity
naturally degraded to CNCAvg = 1.50.

The interpretation of these subsystems on the MSS is shown in Figure 5.16. The six
subsystems computed after the second run are represented, and the dotted lines show
where to split these subsystems to obtain the 9-subsystems solution computed after the
first run. For instance, SSY S2 is split by the blue dotted line into {B9, B16, B17} and
B8, which were two subsystems of the first solution. SSY S5 has components in Stations

145

Chapter 5. Automated partitioning for distributed identification

Step 4’

1-10-12-18 9-16-17 8

5-11

0

4 2

3-7-14-15

6-13-19-20

1-10-12-18

3-7-14-15

5-11

0

4

2-6-13-19-20

8-9-16-17

Step 5

0 4 2-6-13-19-20 8-9-16-17 5-11 1-3-7-10-12-
14-15-18

Step 6

𝑆𝑆𝑌𝑆1 𝑆𝑆𝑌𝑆2 𝑆𝑆𝑌𝑆3 𝑆𝑆𝑌𝑆5 𝑆𝑆𝑌𝑆4 𝑆𝑆𝑌𝑆6

Figure 5.15: Successive affinity graphs, second run of the clustering, with |T |Lim = 18

1,2, and 4, which makes it a surprising subsystem. It is likely that the part of Station 4
(B1, B10) should be connected to either SSY S2 or SSY S1, but these systems could not
grow due to the limited size. |T |-clustering might not be adapted here, as the initial
blocks have irregular sizes.

Station 1: Feeder Station 2: Testing Station 3: Processing Station 4: Storage

𝑺𝑺𝒀𝑺𝟑

𝑺𝑺𝒀𝑺𝟒

𝑺𝑺𝒀𝑺𝟏

𝑺𝑺𝒀𝑺𝟐 𝑺𝑺𝒀𝑺𝟔

𝑺𝑺𝒀𝑺𝟓

Figure 5.16: Location of the six computed subsystems on the MSS, |T |Lim = 18

5.2.3.2 time-clustering

To set the threshold, we considered maximum 2 hours of computation. Since n=21,
there are at most 400 similarity values to compute, thus resulting in an upper bound
of 18s for tlim, rounded at 20s. In practice, the procedure took 53 minutes to compute.
It required 7 steps to reach an affinity graph with no edges, the resulting graphs are
presented in Figure 5.18. In the first affinity graph, all blocks are connected, unlike |T |-
clustering; B0 and B2, despite their sizes, end up in SSY S1, meaning that this subsystem
can be quickly identified (in less than 20s), even though it contains 40 transitions. Such
a subsystem can not be discovered by |T |-clustering.

The resulting partitioning consists in 6 subsystems, and CNCAvg = 1.383, which
makes it slightly more complex than the expert partition, but for half the number of
subsystems, and with only strongly connected nets. The interpretation on the MSS in
shown in Figure 5.17. The blocks who are physically close to each other are noticeably
regrouped into the same subsystem. Compared to the decomposition of Figure 5.16,

146

5.2. Partitioning by agglomerative hierarchical clustering

𝑺𝑺𝒀𝑺𝟐

𝑺𝑺𝒀𝑺𝟏

𝑺𝑺𝒀𝑺𝟒

𝑺𝑺𝒀𝑺𝟓

𝑺𝑺𝒀𝑺𝟔

𝑺𝑺𝒀𝑺𝟑

Station 1: Feeder Station 2: Testing Station 3: Processing Station 4: Storage

Figure 5.17: Location of the six computed subsystems on the MSS, tLim = 20s

this partition seems even more natural, as the subsystems are not limited in size (and
the initial blocks have irregular sizes).

SSY S1 is specially notable, as it implies outputs from all stations. It represents the
succession of operations a gear always undergoes when it starts to be treated in station 1,
up to its grabbing in section 4. The two presses (SSY S2 and SSY S6) are not always used
(depending on the material), and are therefore independent subsystems (expressing the
recipes imply lots of choices, which increase the structural complexity when represented).
The storage unit (SSY S5) depends likewise on the material. SSY S4 is a subsystem who
aliments the chain with gears, and can naturally be separated from the main process. It
overlaps the testing station, due to a testing cylinder being often operated simultaneously
with a magnet of the feeder. This is probably a spurious correlation, but occuring too
frequently to be removed. Finally, SSY S3 is an assembly of two smaller subsystems:
a part of station 1, and the gripper of station 2. These are subsystems who are often
idle, waiting for a chariot to be available; they can be considered as satellites at the
service of the main process. If the procedure had been stopped at step 6 (Figure 5.18),
subsystems 3 and 1 would be split in two following the dotted line.

As example, the IPN models of the solution obtained by time-clustering are given in
Figures 5.20 and 5.21. When looking at SSY S3, it can be noted that the IPN contains
the two fragments that were not connected in Figure 4.22. Namely, the pre-and post
transitions of 2K04 are connected to unobservable places P67, P70 and P84, which are
all of degree 4. Computing degree 4 is hard for the monolithic model, but not for the
reduced subsystems.

147

Chapter 5. Automated partitioning for distributed identification

14-15 19-20 1-10

5-11

12-18

7-14-15

13-19-20

1-10

5-11

12-18

3-7-14-15 1-10

5-11

12-18 6-13-19-20

16-17

9-16-17

9-16-17
3-7-14-15

1-8-10

5-11

12-18

6-13-19-20

9-16-17

3-7-14-15

2-5-11

12-18 9-16-17
1-8-10

6-13-19-20

3-7-12-14-15-18 0-2-5-11

9-16-17

1-8-10

6-13-19-20

0

0

0

0 0

0

4

2 12 18

11

10 19

20

13 14 15

2

2

2 2 4

4

4

4

4

3

3

4

3

5 6

6 13

6

1

8

8

8

8

7

7

9

Step 4

Step 6

Step 5

Step 7

Step 3

Step 2

Step 1

16 17 9

𝑆𝑆𝑌𝑆1

𝑆𝑆𝑌𝑆2

𝑆𝑆𝑌𝑆3 𝑆𝑆𝑌𝑆5

𝑆𝑆𝑌𝑆4 𝑆𝑆𝑌𝑆6

Figure 5.18: Succesive affinity graphs computed for the MSS, tLim = 20s

148

5.3. Conclusion

By varying the time threshold, the granularity of the partition can be controlled. An
augmentation of the time threshold is correlated with moving from the initial distributed
solution towards the monolithic one, as shown in Figure 5.19. This graph plots different
partitioning solutions regarding the number of subsystems and the average structural
complexity. As reference solutions, the monolithic model (computed in Chapter 4),
the initial block distribution (21 subsystems), and the expert partition (Figure 3.2, 11
subsystems) are plotted. Multiple solutions obtained by time-clustering are given as
well, by varying the threshold. Notice that there is no strict monotony, as the solution
computed for tlim = 10s is strictly worse than tlim = 20s, despite being computed
quicker.

Figure 5.19: Evaluation of different partitions computed with the clustering approach

5.3 Conclusion

This chapter proposed a distributed approach to avoid computing a monolithic
model, who is neither easy to understand, nor costless to compute. The problem has
been set first as an optimization problem to find an adequate cover of the I/Os, such
that the resulting distributed models are simple to understand. Using the observable
fragments, which can be computed with the improvements of Chapter 3, the problem has
been reformulated as a new optimization problem of clustering the fragments, with the
same objective; the I/O cover ensues from the partition. An algorithm inspired from
clustering methods is proposed to agglomerate the fragments into clusters. To avoid
computation issues, it is proposed to limit the growth of the systems either by size or
computation time, leading in reasonable time to simple, distributed models. Due to the
lack of a single objective criterion to assess the quality of the model (such as exceeding
language for fault diagnosis), the choice of the method is left up to the engineer, who
can also control the granularity of the distribution at his taste.

149

Chapter 5. Automated partitioning for distributed identification

Figure 5.20: IPN identified for SSY S1, biggest subsystem of the MSS

150

5.3. Conclusion

Figure 5.21: IPNs identified for the remaining subsystems of the MSS

151

Chapter 5. Automated partitioning for distributed identification

152

Conclusion and outlooks

Discrete Event Systems identification is a young research field; this thesis contributes
to its radiance, with the objective of making identification an experimental, perform-
ing modelling method. A first challenge is the gap between technology and abstract
models: for instance, defining events from input/output signals or including the tech-
nological specificities of the controller in the models. Another challenge is scalability;
realistic systems are composed of dozens or hundreds of I/Os, and often exhibit massive
concurrency, leading to a state-space explosion, common issue when modelling DES.

An approach developed in a previous thesis ([Estrada-Vargas, 2013]) was proposed
to build Interpreted Petri Nets from a sequence of I/O vectors observed during the
operation of a real system. The approach is devoted to closed-loop systems controlled
by a PLC, taking up the first challenge. The resulting model is compact, explicits the
reactive behaviour of the controller through the direct I/O causalities, and agregates
the unobservable state evolutions. It satisfies a reverse-engineering objective. However,
the second challenge is still troublesome for this method. Massive concurrency namely
implies the impossibility of achieving a complete observation, hindering the unobservable
discovery.

This thesis tackles the scalability challenge by proposing three contributions, to
improve the previous inquiries.

Chapter 3 proposed to include another technological specificity of the controller in
the identification procedure, to improve the computation of the observable behaviour.
Synchronization has been identified as critical when dealing with massively concurrent
systems, provoking spurious simultaneous observations of input and output events. A
spurious-concurrency-blocking filter is proposed to separate these observations from ac-
tual I/O causalities. A reduction procedure then detects spurious unfrequent transitions,
removes them from the net and replaces them in the firing sequence by an equivalent set
of firings. This contribution greatly improves the construction of the observable model,
making it compact and easily computable despite the concurrency.

Chapter 4 proposed a new approach to discover the unobservable behaviour, based
on a single theorem. Its strength lies in its genericity, ensuring a net always fitting
the observation, and its ability to easily discover concurrency, despite the uncomplete
observation. However, its weakness is the exponential size of the search space, which is
mitigated in practice by an adapted search heuristic. This contribtion enables the con-
struction of complete, compact, explicit, monolithic IPN models for systems of realistic
sizes. These models might nevertheless remain hard to read due to their sizes.

153

Conclusion and outlooks

Chapter 5 finally proposed a distributed approach to avoid computing a monolithic
model. Using an expert partitioning of the system is possible, but in the extreme case
of a blackbox approach, no partitioning is provided. The task of finding an adequate
partitioning is formulated as a multi-objective optimization problem: the resulting dis-
tributed models offer a compromise between simplicity and size. The filtered observable
behaviour is exploited to provide an initial solution, and a clustering algorithm is pro-
posed to merge the subsystems and find good partitionings, variations of the algorithm
being proposed to the engineer depending on its objective (quick model, or controlled
number of subsystems).

The proposed partitioning approach is promising, since it uses the knowledge ob-
tained from the construction of the observable behaviour. For now, the clustering ap-
proach requires the computation of numerous models; it might be interesting to propose
criteria or objective functions computable from the I/O sequence or the firing sequence
instead, to ease the computation. Another direction could be explored in a greybox
approach, if an expert partitioning is available: said partitioning could be corrected and
improved by the knowledge brought by the observable fragments. Finally, the objective
functions were chosen accordingly to the reverse engineering purpose of the net, and can
be changed to fit a different purpose. Namely, to use the identified Petri Net for fault
diagnosis (see [Basile, 2014]), the function(s) proposed in [Schneider and Litz, 2014]
could be combined with the observable behaviour to obtain distributed nets adapted to
fault diagnosis. For such a purpose, a new heuristic might also be required to discover
the unobservable part.

The approach proposed provides an engineer with one, or multiple, simple, global,
comprehensive model(s) of the system. However, as seen in the development, specific
behaviours remain hard to infer. Specially, temporizations exist in the system, and are
agregated into unobservable places by the current approach. Hence, their representation
in the net is not explicit. Time intervals can be inferred on the fly while building the
PN fragments (like in [Basile et al., 2016c]), or added to the full structure after its
computation (like in [Schneider et al., 2012]). Said intervals could be associated to
places to represent either the duration of activation of an actuator (observable places),
or the waiting time in a state of the controller (unobservable places). However, most
of the intervals inferred do not represent functional temporizations implemented in the
controller, and postprocessing them to extract the true temporizations might be tedious,
if not impossible. Instead, a greybox approach should be promising. The knowledge of
the components involved in a temporization should help its discovery, then explicit
representation in the net.

Likewise, other untimed behaviours such as counters or self-loops, remain hard to in-
fer. Data mining methods could be used to automatically discover patterns symptomatic
of these behaviours in the firing sequence, leading to the definition of new relations, with
their associated unobservable places. However, most of the relations discovered might

154

be irrelevant or redundant. A greybox approach should be considered as well to discover
these specific behaviours. A global approach can be run blackbox, discovering direct I/O
causalities, sequentialities, concurrency and partitioning, then the models can be locally
complemented at the will of the engineer by locally injecting knowledge.

Finally, the reflexion should be prolonged on devoting these reverse-engineered nets
to certification or reimplementation. To certify a system, exhaustive test might be
costly, whereas identification can provide a model whose properties can be verified for
a lower cost, given that the model is guaranteed precise. A first global model can
be obtained through blackbox passive observation, then locally completed by active
identification. Similarly to test approaches, the idea is to force some inputs and observe
the response of some outputs. The identified model can be corrected according to these
new observations. Missing behaviours, notably implemented for safety purposes, can be
observed that way. To avoid any deterioration, active identification should nevertheless
be performed only in greybox, or with a simulated operating part. To extend the purpose
of the identified nets, active greybox identification seems to be the direct follow-up of
passive blackbox identification.

155

Conclusion and outlooks

156

Bibliography

[Aguilar, 2011] Aguilar, J. (2011). The identification of discrete-event dynamic systems
based on the evolutionary programming. International Journal of Knowledge-based
and Intelligent Engineering Systems 15, pages 43–53.

[Angluin, 1982] Angluin, D. (1982). Inference of reversible languages. Journal of the
Association for Computing Machinery, 29(3), pages 741–765.

[Angluin, 1987] Angluin, D. (1987). Learning regular sets from queries and counterex-
amples. Information and Computation 75, pages 87–106.

[Badouel et al., 1995] Badouel, E., Bernardinello, L., and Darondeau, P. (1995). Poly-
nomial algorithms for the synthesis of bounded nets. Lecture Notes in Computer
Science, 915, pages 647–679.

[Badouel et al., 1997] Badouel, E., Bernardinello, L., and Darondeau, P. (1997). The
synthesis problem for elementary net systems is np-complete. Theoretical Computer
Science, 186(12), pages 107–134.

[Badouel et al., 2015] Badouel, E., Bernardinello, L., and Darondeau, P. (2015). Petri
Net Synthesis. Springer-Verlag.

[Basile, 2014] Basile, F. (2014). Overview of fault diagnosis methods based on petri net
models. Proceedings of the IEEE European Control Conference (ECC), Strasbourg,
France, pages 2636–2642.

[Basile et al., 2012] Basile, F., Chiacchio, P., and Coppola, J. (2012). Active identi-
fication of petri nets models. Proceedings of the 11th Workshop on Discrete Event
Systems (WODES12), Guadalajara, Mexico, pages 278–285.

[Basile et al., 2015] Basile, F., Chiacchio, P., and Coppola, J. (2015). Real time identi-
fication of time petri net faulty models. Proceedings of the 2015 IEEE International
Conference on Automation Science and Engineering (CASE), Gothenburg, Sweden,
pages 208–285.

[Basile et al., 2016a] Basile, F., Chiacchio, P., and Coppola, J. (2016a). Faulty model
identification in deterministic labeled time petri nets. Proceedings of the 13th Work-
shop on Discrete Event Systems-WODES 2016, Xi’an, China, pages 486–492.

157

BIBLIOGRAPHY

[Basile et al., 2016b] Basile, F., Chiacchio, P., and Coppola, J. (2016b). Identification of
labeled time petri nets. Proceedings of the 13th Workshop on Discrete Event Systems-
WODES 2016, Xi’an, China, pages 478–485.

[Basile et al., 2016c] Basile, F., Chiacchio, P., and Coppola, J. (2016c). Identification
of time petri nets models. IEEE Transactions on Systems, Man and Cybernetics:
Systems.

[Basile et al., 2011] Basile, F., Chiacchio, P., Coppola, J., and De Tommasi, G. (2011).
Identification of petri nets using timing information. Proceedings of the 3rd Interna-
tional Workshop on Dependable Control of Discrete Systems (DCDS’11), Saarbrücken,
Germany, pages 156–163.

[Bergenthum et al., 2007] Bergenthum, R., Desel, J., Lorenz, R., and Mauser, S. (2007).
Process mining based on regions of languages. Business Process Management, pages
375–383.

[Biermann, 1972] Biermann, A. (1972). On the inference of turing machines from sample
computations. Artificial Intelligence 3, pages 181–198.

[Biermann and Feldman, 1972] Biermann, A. and Feldman, J. (1972). On the sysnthe-
sis of finite-state machines from samples of their behavior. IEEE Transactions on
Computers, Vol. 21, pages 592–597.

[Cabasino et al., 2014] Cabasino, M., Giua, A., Hadjicostis, C., and Seatzu, C. (2014).
Fault model identification and synthesis in petri nets. Discrete Event Dynamic Sys-
tems, pages 1–22.

[Cabasino et al., 2015] Cabasino, M.-P., Darondeau, P., Fanti, M.-P., and Seatzu, C.
(2015). Model identification and synthesis of discrete-event systems. In Contemporary
Issues in System Science and Engineering. IEEE-Wiley.

[Cabasino et al., 2007] Cabasino, M.-P., Giua, A., and Seatzu, C. (2007). Identification
of petri nets from knowledge of their language. Discrete Event Dynamic Systems,
17(4), pages 447–474.

[Carmona et al., 2009] Carmona, J., Cortadella, J., and Kishinevsky, M. (2009). Divide-
and-conquer strategies for process mining. Business Process Management (BPM
2009), LNCS 5701, pages 327–343.

[Cassandras and Lafortune, 2008] Cassandras, C. and Lafortune, S. (2008). Introduc-
tion to Discrete Event Systems, Second Edition. Springer.

[Chikofsky and Cross II, 1990] Chikofsky, E.-J. and Cross II, J.-H. (1990). Reverse en-
gineering and design recovery: A taxonomy. IEEE Software, pages 13–17.

158

BIBLIOGRAPHY

[David and Alla, 1994] David, R. and Alla, H. (1994). Petri nets for modeling of dy-
namic systems- a survey. Automatica Vol.30 No.2, pages 175–202.

[Desel and Esparza, 1995] Desel, J. and Esparza, J. (1995). Free Choice Petri Nets.
Cambridge University Press.

[Desel and Reisig, 1996] Desel, J. and Reisig, W. (1996). The synthesis problem of petri
nets. Acta Informatica 33, pages 297–315.

[Dotoli et al., 2010] Dotoli, M., Fanti, M., Mangini, A., and W.Ukovitch (2010). Identi-
fication of the unobservable behaviour of industrial automation systems by petri nets.
Control Engineering Practice, 9(9), pages 958–966.

[Dotoli et al., 2008] Dotoli, M., Fanti, M., and Mangini, A. M. (2008). Real time identi-
fication of discrete event systems using petri nets. Automatic, 44(5), pages 1209–1219.

[Esparza et al., 2010] Esparza, J., Leucker, M., and Schlund, M. (2010). Learning work-
flow petri nets. Applications and Theory of Petri Nets,LNCS 6128, pages 206–225.

[Estrada-Vargas, 2013] Estrada-Vargas, A. (2013). Black-box identification of automated
discrete event systems. PhD thesis, ENS Cachan, France.

[Estrada-Vargas et al., 2010] Estrada-Vargas, A.-P., Lesage, J.-J., and Lopez-Mellado,
E. (2010). A comparative analysis of recent identification approaches for discrete-
event systems. Mathematical Problems in Engineering, vol. 2010, Article ID 453254,
21 pages.

[Estrada-Vargas et al., 2014] Estrada-Vargas, A.-P., Lesage, J.-J., and Lopez-Mellado,
E. (2014). Input-output identification of controlled discrete manufacturing systems.
International Journal of System Science 45, 3, pages 456–471.

[Estrada-Vargas et al., 2015] Estrada-Vargas, A.-P., Lesage, J.-J., and Lopez-Mellado,
E. (2015). A black-box identification method for automated discrete-event systems.
IEEE Transactions on Automation Science and Engineering, pages 1–16.

[Fanti and Seatzu, 2008] Fanti, M. and Seatzu, C. (2008). Fault diagnosis and identifica-
tion of discrete event systems using petri nets. In Proceedings of the 9th International
Workshop on Discrete Event Systems, Göteborg, Sweden, pages 432–435.

[Garcia-Valles and Colom, 1999] Garcia-Valles, F. and Colom, J.-M. (1999). Implicit
places in net systems. In Proc. of the 8th International Workshop on Petri Nets and
Performance Models, pages 104–113.

[Gill, 1966] Gill, A. (1966). Realization of input-output relations by sequential machines.
Journal of the Association for Computing Machinery,13, pages 33–42.

159

BIBLIOGRAPHY

[Girault and Valk, 2003] Girault, C. and Valk, R. (2003). Petri Nets for Systems Engi-
neering: A Guide to Modeling, Verification, and Applications. Springer-Verlag.

[Giua and Seatzu, 2005] Giua, A. and Seatzu, C. (2005). Identification of free-labeled
petri nets via integer programming. In Proc of the 44th IEEE Conference on Decision
and Control, and the European Control Conference, pages 7639–7644.

[Gold, 1967] Gold, E. M. (1967). Language identification in the limit. Information and
Control, 10, pages 447–474.

[Goldsmith et al., 2008] Goldsmith, J., Hagen, M., and Mundhenk, M. (2008). Com-
plexity of dnf minimization and isomorphism testing for monotone formulas. Infor-
mation and Computation 206, pages 760–775.

[Grinchtein et al., 2005] Grinchtein, O., Jonsson, B., and Leucker, M. (2005). Inference
of timed transition systems. Electronic Notes in Theoretical Computer Science, vol.
138(3), page 87–99.

[Heun and Vairavan, 1976] Heun, K. and Vairavan, K. (1976). The realization of con-
sistent input-output sequences by finite state machines. Information and Control 31,
pages 97–106.

[Hiraishi, 1992] Hiraishi, K. (1992). Construction of a class of safe petri nets by present-
ing firing sequences. Proceedings of the 13th International Conference on Application
and Theory of Petri Nets, vol. 616 of Lectures Notes in Computer Sciences, Sheffield,
UK, pages 244–262.

[IEC 61131-1..IEC 61131-8, 2010] IEC 61131-1..IEC 61131-8 (2000-2010). Pro-
grammable Controllers Part 1 to 8. International Electrotechnical Commission.

[Jantzen, 1987] Jantzen, M. (1987). Language theory of petri nets. Petri Nets: Central
Models and Their Properties, Lecture Notes in Computer Science 254, pages 397–412.

[Jarvis, 2010] Jarvis, D. (2010). An identification technique for timed event sys-
tems. Proceedings of the 10th International Workshop on Discrete Event Systems
(WODES2010), Berlin, Germany, pages 181–186.

[Kella, 1971] Kella, J. (1971). Sequential machine identification. IEEE Transactions on
Computers, pages 332–338.

[Klein, 2005] Klein, S. (2005). Identification of Discrete event systems for fault detection
purposes. PhD thesis.

[Knuth, 2000] Knuth, D. (2000). Dancing links. Millenial Perspectives in Computer
Science, pages 187–214.

160

BIBLIOGRAPHY

[Korf, 2002] Korf, R. (2002). A new algorithm for optimal bin packing. In Eighteenth
national conference on Artificial intelligence, pages 731–736.

[Ladiges et al., 2015] Ladiges, J., Haubeck, C., Fay, A., and Lamersdorf, W. (2015).
Learning behaviour models of discrete event production systems from observing in-
put/output signals. In 15th IFAC/IEEE/IFIP/IFORS Symposium on Information
Control Problems in Manufacturing (INCOM), volume 48 of IFAC-PapersOnLine,
page 1565–1572.

[Lassen and van der Aalst, 2009] Lassen, K. and van der Aalst, W. (2009). Complexity
metrics for workflow nets. Information and Software Technology, 51(3), pages 610–
626.

[Leemans et al., 2013] Leemans, S., D.Fahland, and Van der Aalst, W. (2013). Discov-
ering block-structured process models from event logs. Application and Theory of
Petri Nets and Concurrency, LNCS 7927, pages 311–329.

[Leemans et al., 2014] Leemans, S., D.Fahland, and Van der Aalst, W. (2014). Discov-
ering block-structured process models from incomplete event logs. Application and
Theory of Petri Nets and Concurrency, LNCS 8489, pages 91–110.

[Lefebvre and Leclerq, 2011] Lefebvre, D. and Leclerq, E. (2011). Stochastic petri net
identification for the fault detection and isolation of discrete event systems. IEEE
Transactions on Systems, Man and Cybernetics–Part A: Systems and Humans, Vol
41, No 2, pages 213–225.

[Lorenz et al., 2007] Lorenz, R., Mauser, S., and Juhas, G. (2007). How to synthesize
nets from languages - a survey. In 2007 Winter Simulation Conference, Washington
D.C., pages 637–647.

[Maier, 2014] Maier, A. (2014). Identification of Timed Behavior Models for Diagnosis
in Production Systems. PhD thesis, University of Paderborn, Germany.

[Mazurkiewicz, 1995] Mazurkiewicz, A. (1995). Introduction to trace theory. The Book
of Traces, pages 3–41.

[McCabe, 1976] McCabe, T. (1976). A complexity measure. IEEE Transactions on
Software Engineering (2), pages 308–320.

[Mealy, 1955] Mealy, G. (1955). A method for synthesizing sequential circuits. Bell
System Technical Journal, pages 1045–1079.

[Meda et al., 1998] Meda, M., Ramirez, A., and Malo, A. (1998). Identification in dis-
crete event systems. IEEE Int. Conf. on Systems Man and Cybernetics, San Diego ,
USA, pages 747–745.

161

BIBLIOGRAPHY

[Meda-Campana, 2002] Meda-Campana, M. (2002). On-line Identification of Discrete
Event Systems: Fundamentals and Algorithms for the Synthesis of Petri Net Models.
PhD thesis, Cinvestav Guadalajara, Mexico.

[Meda-Campana and Lopez-Mellado, 2001] Meda-Campana, M. and Lopez-Mellado, E.
(2001). A passive method for on-line identification of discrete event systems. Proceed-
ings of the 40th IEEE Conference on Decision and Control, Orlando, Florida USA,
pages 4990–4995.

[Mendling et al., 2007] Mendling, J., Reijers, H., and Cardoso, J. (2007). What makes
process models understandable ? Lecture Notes in Computer Science Volume 4714,
pages 48–63.

[Moore, 1956] Moore, E. (1956). Gedanken-experiments on sequential machines. Au-
tomata Studies,Annals of Mathematical Studies (Princeton, N.J.: Princeton Univer-
sity Press (34), pages 129–153.

[Munoz et al., 2014] Munoz, D., Correcher, A., Garcia, E., and Morant, F. (2014). Iden-
tification of stochastic timed discrete event systems with st-ipn. Mathematical Prob-
lems in Engineering, vol. 2014, Article ID 835312, 21 pages.

[Ould El Medhi et al., 2006] Ould El Medhi, S., Leclerq, E., and Lefebvre, D. (2006).
Petri nets design and identification for the diagnosis of discrete event systems. 2006
IAR Annual Meeting, Nancy, France.

[Pascoe, 1966] Pascoe, T. L. (1966). Allocation of resources – cpm. Revue Francaise de
Recherche Opérationelle 38, pages 31–38.

[Petri, 1962] Petri, C. (1962). Kommunication mit Automaten. PhD thesis.

[Prähofer et al., 2013] Prähofer, H., Schatz, R., and Grimmer, A. (2013). Reverse engi-
neering and visualization of the reactive behavior of plc applications. 11th IEEE In-
ternational Conference on Industrial Informatics (INDIN), Bochum, Germany, pages
564–571.

[Prähofer et al., 2014] Prähofer, H., Schatz, R., and Grimmer, A. (2014). Behavioral
model synthesis of plc programs from execution traces. IEEE Emerging Technology
and Factory Automation (ETFA), Barcelona, Spain, pages 1–6.

[Rauterberg, 1992] Rauterberg, M. (1992). A method of a quantitative measurement of
cognitive complexity. Human-Computer Interaction: Tasks and Organisation., pages
295–307.

[Rokach, 2010] Rokach, L. (2010). A survey of clustering algorithms. Data Mining and
Knowledge Discovery Handbook, pages 269–298.

162

BIBLIOGRAPHY

[Roth, 2010] Roth, M. (2010). Identification and Fault Diagnosis of Industrial Closed-
Loop Discrete Event Systems. PhD thesis.

[Roth et al., 2009a] Roth, M., Lesage, J.-J., and Litz, L. (2009a). Distributed identifica-
tion of concurrent discrete event systems for fault detection purposes. In Proceedings
of the European Control Conference 2090 (ECC 2009), Budapest, Hungary, pages
2590–2595.

[Roth et al., 2009b] Roth, M., Lesage, J.-J., and Litz, L. (2009b). A residual inspired
approach for fault localization in des. In Proceedings of the 2nd IFAC Workshop on
Dependable Control of Discrete Event Systems(DCDS’09),Bari, Italy., pages 347–352.

[Roth et al., 2010a] Roth, M., Lesage, J.-J., and Litz, L. (2010a). Black-box identifi-
cation of discrete event systems with optimal partitioning of concurrent subsystems.
Proc. of the 2010 American Control Conference (ACC), Baltimore, MD, USA, pages
2601–2606.

[Roth et al., 2010b] Roth, M., Lesage, J.-J., and Litz, L. (2010b). Identification of dis-
crete event systems - implementation issues and model completeness. In Proceedings of
the 7th International Conference on Informatics in Control, Automation and Robotics
(ICINCO) Funchal, Portugal.

[Saives and Faraut, 2014] Saives, J. and Faraut, G. (2014). Automated generation of
activities of daily living. In Proceedings of the 12th International Workshop on Discrete
Event Systems-WODES 2014, Paris, France, pages 13–20.

[Saives et al., 2015a] Saives, J., Faraut, G., and Lesage, J.-J. (2015a). Identification of
discrete event systems unobservable behaviour by petri nets using language projec-
tions. In 2015 European Control Conference (ECC).

[Saives et al., 2015b] Saives, J., Pianon, C., and Faraut, G. (2015b). Activity discovery
and detection of behavioral deviations of an inhabitant from binary sensors. IEEE
Transactions on Automation Science and Engineering, 12 (4), pages 1211–1224.

[Schneider, 2014] Schneider, S. (2014). Automatic Modeling and Fault Diagnosis of
Timed Concurrent Discrete Event Systems. PhD thesis, University of Kaiserslautern,
Germany.

[Schneider and Litz, 2014] Schneider, S. and Litz, L. (2014). Automatic partitioning of
des models for distributed fault diagnosis purposes. Proceedings of the 12th Inter-
national Workshop on Discrete Event Systems-WODES 2014, Paris, France, pages
21–26.

[Schneider et al., 2012] Schneider, S., Litz, L., and Lesage, J.-J. (2012). Determination
of timed transitions in identified discrete-event models for fault detection. 51st IEEE
Conference on Decision and Control, Maui, HI, United States, pages 5816–5821.

163

BIBLIOGRAPHY

[Shahbaz and Groz, 2009] Shahbaz, M. and Groz, R. (2009). Inferring mealy machines.
Proceedings of the FM 2009: Formal Methods, Second World Congress, Eindhoven,
The Netherlands, LNCS 5850, pages 207–222.

[Soo and Jung-Mo, 1992] Soo, L. and Jung-Mo, Y. (1992). An empirical study on the
complexity metrics of petri nets. Microelectron. Reliab.,Vol. 32, No. 3, pages 323–329.

[Tapia-Flores et al., 2014] Tapia-Flores, T., Lopez-Mellado, E., Estrada-Vargas, A.-P.,
and Lesage, J.-J. (2014). Petri net discovery of discrete event processes by computing
t-invariants. In 2014 IEEE 19th Conference on Emerging Technologies and Factory
Automation (ETFA).

[Tarjan, 1972] Tarjan, R. E. (1972). Depth-first search and linear graph algorithms.
SIAM Journal on Computing, vol. 1, no 2, pages 146–160.

[Van der Aalst et al., 2005] Van der Aalst, W., Alves de Medeiros, A., and Weijters,
A. (2005). Genetic process mining: An experimental evaluation. Applications and
Theory of Petri Nets, LNCS 3536, pages 48–69.

[Van der Aalst, 2011a] Van der Aalst, W.-M.-P. (2011a). Do petri nets provide the right
representational bias for process mining? In Proc. of the Workshop Applications of
Region Theory 2011, pages 85–94.

[Van der Aalst, 2011b] Van der Aalst, W.-M.-P. (2011b). Process Mining, Discovery,
Conformance and Enhancement of Business Processes. Springer-Verlag Berlin Hei-
delberg.

[Van der Aalst, 2013a] Van der Aalst, W.-M.-P. (2013a). Discovering petri nets from
event logs. Transactions on Petri Nets and Other Models of Concurrency VII, LNCS
7480, pages 372–422.

[Van der Aalst, 2013b] Van der Aalst, W.-M.-P. (2013b). A general divide and conquer
approach for process mining. 2013 Federated Conference on Computer Science and
Information Systems (FedCSIS), Krakow, Poland, pages 1–10.

[Van der Aalst et al., 2004] Van der Aalst, W.-M.-P., Weijters, A.-J.-M.-M., and
Maruster, L. (2004). Workflow mining: Discovering process models from event logs.
IEEE Transactions on Knowledge and Data Engineering, pages 1128–1142.

[Van Dongen et al., 2009] Van Dongen, B., Alves de Medeiros, A., and Wen, L. (2009).
Process mining: Overview and outlook of petri net discovery algorithms. ToPNoC II,
LNCS 5460, pages 225–242.

[Van Hee et al., 2011] Van Hee, K. M., Liu, Z., and Sidorova, N. (2011). Is my event log
complete? — a probabilistic approach to process mining. Fifth International Con-
ference on Research Challenges in Information Science (RCIS), Gosier, Guadeloupe,
pages 1–12.

164

BIBLIOGRAPHY

[Veelenturf, 1978] Veelenturf, L. (1978). Inference of sequential machines from sample
computations. IEEE Transactions on Computers, C-27(2), pages 167–170.

[Veelenturf, 1981] Veelenturf, L. (1981). An automata theoretical approach to develop-
ing learning neural networks. Cybernetics and Systems, 12, pages 179–202.

[Wen et al., 2007] Wen, L., Van der Aalst, W.-M.-P., Wang, J., and Sun, J. (2007).
Mining process models with non-free-choice constructs. Data Mining and Knowledge
Discovery 15(2), pages 145–180.

165

BIBLIOGRAPHY

166

Résumé en langue française

Introduction

L’identification est une méthode de modélisation expérimentale, basée sur l’ obser-
vation des signaux d’un système existant. Pour la classe spécifique des Systèmes à
Evénements Discrets, modélisés par un espace d’état discret et une fonction de tran-
sition sollicitée sur occurrence d’événements discrets et asynchrones, la modélisation
par connaissance est à ce jour la technique la plus répandue. Cette thèse contribue
au développement de l’identification et à son affirmation comme alternative viable à la
modélisation experte.

Dans une optique de rétro-ingénierie, l’identification est adaptée pour fournir des
modèles simples et compréhensibles de systèmes complexes. La classe de modèles
retenues pour la modélisation est celle des Réseaux de Petri Interprétés (RdPI). Ces
modèles permettent de représenter explicitement, grâce à l’interprétation, à la fois les
causalités directes entre entrées et sorties du système, dit comportement observable, et
les évolutions d’état interne, dit comportement non observable.

On s’intéresse ici à des systèmes en boucle fermée, constitués d’un processus manufac-
turier et d’un contrôleur de type Automate Programmable Industriel (API). L’identi-
fication est conduite en boîte-noire, seuls les signaux logiques d’entrées/sorties étant
mesurables, et passive, pour éviter toute détérioration du processus observé.

Quelques challenges majeurs sont à relever. Le caractère expérimental de l’identi-
fication implique la prise en compte de contraintes technologiques, liées à la nature des
signaux d’entrée/sortie ou au fonctionnement du contrôleur. Il est également impossible
d’observer l’intégralité des comportements existants du système bouclé en un temps
fini ; une contrainte physique supplémentaire est donc l’incomplétude de l’observation.
Enfin, la taille des systèmes est un challenge majeur. La taille des espaces d’états
décrivant un SED est souvent sujette à l’explosion combinatoire, notamment lorsque de
nombreux sous-systèmes évoluent en parallélisme total. Ces phénomènes de parallélisme
s’amplifient avec la taille du système, et constituent une limitation à la taille des systèmes
pouvant être modélisés ou identifiés.

Cette thèse s’attaque notamment à ce dernier challenge. Elle s’inscrit dans la con-
tinuité de travaux proposés dans une thèse antérieure ([Estrada-Vargas, 2013]). Dans
ces derniers, une approche en deux temps permet de découvrir successivement les com-
portements observable, puis non observable, d’un SED, et d’en restituer un modèle RdPI
compact et expressif. Cette approche montre ses limites lorsque la taille et la complex-

167

Résumé en langue française

ité du système augmentent. Les contributions présentées dans ce document visent à
repousser ces limites, et sont les suivantes:

• Permettre la construction d’un modèle monolithique en :

– Filtrant et réduisant les effets du parallélisme dans la construction du com-
portement observable

– Proposant une nouvelle approche robuste à la concurrence pour la découverte
du comportement non observable

• Proposer une approche distribuée, par un partitionnement automatique du système
en sous-systèmes de taille réduite.

Passage à l’échelle du comportement observable

La découverte du comportement observable est fondé sur la construction d’une ma-
trice de causalité à partir de la séquence observée w. De relations causales entre les
entrées et les sorties sont découvertes, et traduites en fragments de RdPI ; la séquence
observée w est traduite en une séquence de tir S compatible avec le modèle. L’efficace de
la méthode dépend toutefois de la qualité des données observées. La concurrence mas-
sive d’un système complexe induit une forme de bruit dans les données observées, sous
forme de synchronisations par le contrôleur d’événements indépendants. Ce phénomène
a pour conséquences:

• une hausse du coût de calcul des fonctions de tir exprimant les causalités en-
trées/sorties

• la création de transitions redondantes dans les fragments de RdPI construits.

Conséquemment, deux améliorations visent à améliorer la qualité de l’observation et
à limiter l’impact de la concurrence :

• Figure Fr.1. Un filtre vient détecter et retirer les observations simultanées d’événe-
ments d’entrées et de sorties décorellés. Son principe est basé sur le théorème
d’absorption dans les algèbres booléennes. Tout événement d’entrée, ou combinai-
son d’événements, qui n’est pas une condition suffisante de l’événement de sortie,
est dû à une observation parasite. Les cases de la matrice de causalité correspon-
dant à de telles observations sont annulées. Les effets du filtrage sont alors une
réduction drastique du coût de calcul des fonctions de tir, ainsi qu’une amélioration
de leur qualité.

• Figure Fr.2. Une procédure de réduction vient détecter et retirer les transitions re-
dondantes. Est considérée redondante une transition au nombre d’occurences trop
faible dans la séquence de tir (inférieur au nombre d’exécutions du système durant
l’observation), et qui soit réductible, c’est-à-dire qui puisse être remplacée par un

168

ensemble de transitions équivalentes en terme de comportement. Lorsqu’une tran-
sition est retirée, toutes ses occurrences dans la séquence de tir S sont remplacées

Direct Causality Matrix (DCM)

Y1 Y1 … Yn Yn

u1 1.000 0.101 0.540 0.000

u1 0.000 0.010 0.001 0.004

… …

um 0.024 0.023 0.460 0.005

um 0.012 0.150 0.002 0.002

Filtered DCM (F-DCM)

Y1 Y1 … Yn Yn

u1 1.000 0 0.540 0.000

u1 0.000 0 0 0.004

… …

um 0 0.023 0.460 0.005

um 0 0.150 0 0.002

Figure Fr.1: Principe du filtre : Annuler les cases de la matrice correspondant à des
observations parasites

Observable fragments

t3

t1

t5

t2

t6

𝑆 = 𝑡1𝑡2𝑡3𝑡4𝑡5𝑡6𝑡7𝑡8𝑡9𝑡3𝑡4𝑡7𝑡10𝑡11𝑡12…

Firing sequence S

t4
t7

t8

t9

t10

t11

t12

t13

t14Y1 Y2

Y3 Y4

Y6

Y5

Obs. Fragments reduced

t3

t1

t5

t2

t6

𝑆′ = 𝑡1𝑡2𝑡3𝑡4𝑡5𝑡6𝑡7𝑡8 𝑡9
{𝑡1,𝑡2}

𝑡3𝑡4𝑡7 𝑡10
{𝑡5,𝑡6,𝑡8}

𝑡11𝑡12

Modified f.sequence S’

t4
t7

t8

t9

t10

t11

t12

t13

t14Y1 Y2

Y3 Y4

Y6

Y5

Figure Fr.2: Principe de la réduction : Suppresion des transitions, et remplacement dans
S

Ces améliorations ont été appliquées à un système automatisé présent au LURPA (73
E/S). Grâce à elles, le comportement observable est désormais intégralement identifié
(toutes les fonctions de tir sont calculables), et le nombre de transitions est limité (réduit
de 295 à 101 par la procédure de réduction).

Découverte du comportement non observable

On s’intéresse ici à la découverte de places non observables à partir de la séquence
de tir S, de sorte que le RdPI final puisse la reproduire, et soit sauf.

Par le biais de projections sur sous-alphabets disjoints de l’alphabet complet des
transitions, des motifs tels que celui de la figure Fr.3 sont découverts. La relation de

169

Résumé en langue française

mutuelle dépendance � est ainsi définie sur l’espace des paires d’alphabets disjoints. A
la relation Σi � Σj sont associées les deux places de la figure Fr.3. Si l’on dispose déjà
d’un RdPI solution, l’ajout de ces deux places à celui-ci forme un nouveau RdPI, dont il
est prouvé qu’il est également sauf et reproduit S. A partir d’un réseau initial, on peut
donc itérativement construire des solutions garanties bonnes, en étudiant des projections
et en rajoutant les places associées quand une mutuelle dependance est découverte.

Σi � Σj

Π(S) = t1i t
1
j t

2
i t

2
j t

3
i t

3
j . . .

𝑡𝑖
1

𝑡𝑖
𝑚

𝑡𝑗
1

𝑡𝑗
𝑛

𝑝𝑖𝑗 𝑝𝑗𝑖

...

...

...

...

...

Σ𝑖

Σ𝑗

Figure Fr.3: Motif projeté caractérisant une mutuelle dépendance, et places associées

Néanmoins, étant donné le nombre de transitions |T |, le nombre total de projections
à étudier est approximativement 3|T |. De plus, l’étude de toutes les projections permet
de garantir l’obtention de la solution la plus précise (exhibant le moins de langage
excédentaire), mais souvent au prix de la compréhensibilité du réseau. Les deux modèles
de la Figure Fr.4 ont été identifiés sur le même système et sont tous deux solutions. Le
premier est construit à partir d’une étude limitée des projections, tandis que le second
est construit par une étude complète de l’espace de recherche. Ce dernier possède le
moins de langage excédentaire mais est complexe à comprendre.

𝑡𝐴: ↑ 𝑠𝑡𝑎𝑟𝑡

𝑡𝐵: ↑ 𝑟1_ℎ

𝑡𝐶: ↑ 𝑟1_𝑏

L𝟏

𝑳𝟐

𝑮𝒓𝒊𝒑𝒑𝒆𝒓
𝑡𝐺: ↑ 𝑝𝑟𝑒𝑠𝑠_𝑏

𝑡𝐼: ↑ 𝑙1

𝑹𝟏

𝑡𝐹 : ↑ 𝑝𝑟𝑒𝑠𝑠_𝑝

𝑹𝟐

𝑡𝐸 : ↑ 𝑟2

𝑡𝐷 : ↑ 𝑙2

𝑡𝐻: ↑ 𝑝𝑟𝑒𝑠𝑠_h

𝑡𝐴: ↑ 𝑠𝑡𝑎𝑟𝑡

𝑡𝐵: ↑ 𝑟1_ℎ

𝑡𝐶: ↑ 𝑟1_𝑏

L𝟏

𝑳𝟐

𝑮𝒓𝒊𝒑𝒑𝒆𝒓
𝑡𝐺: ↑ 𝑝𝑟𝑒𝑠𝑠_𝑏

𝑡𝐼: ↑ 𝑙1

𝑹𝟏

𝑡𝐹 : ↑ 𝑝𝑟𝑒𝑠𝑠_𝑝

𝑹𝟐

𝑡𝐸 : ↑ 𝑟2

𝑡𝐷 : ↑ 𝑙2

𝑡𝐻: ↑ 𝑝𝑟𝑒𝑠𝑠_h

(a) (b)

Figure Fr.4: Deux RdPI identifiés pour le même système : (a) est simple, mais génère
plus de langage excédentaire que (b)

Une heuristique est proposée pour atteindre des solutions telles que le réseau (a), en
procédant à une exploration limitée de l’espace de recherche. La taille des alphabets
étant liée au degré des places non observables associées δ, on procède à une étude par
valeurs croissantes de δ. Les séquentialités pures sont découvertes dans un premier
temps (δ = 2), puis les conflits (δ ≥ 3), qu’on suppose de faible degré pour des systèmes
manufacturiers. L’exploration est stoppée quand un réseau fortement connexe est atteint
après l’étude d’une valeur de δ. Les places rajoutées étant de faible degré, le réseau est

170

simple à lire. La taille des espaces d’état restreints est raisonnable, réduisant le coût de
calcul (pour δ << |T |, la taille d’un espace restreint est |T |δ). La méthode proposée
permet ainsi de calculer des modèles monolithiques garantis justes, à temps de calcul
raisonnable.

L’application de cette méthode au système automatisé conduit à la valider, mais
également à montrer que les modèles monolithiques ne sont pas les plus adaptés à la
compréhension des systèmes de taille conséquente, et peuvent devenir coûteux à con-
struire.

Partitionnement automatique pour l’identification distribuée

Il peut être intéressant pour un ingénieur de disposer d’une décomposition en sous-
systèmes du système complet, et d’avoir ainsi un aperçu du fonctionnement de chaque
sous-système. Une approche distribuée est ainsi envisagée, la méthode d’identification
étant applicable à tout sous-système. L’objectif est de trouver une décomposition du
système proposant un compromis entre taille des sous-systèmes et simplicité des RdPI
distribués ; un problème d’optimisation est ainsi formulé.

Pour éviter de séparer des entrées et sorties identifiées causales durant la construc-
tion du comportement observable, ce dernier sert de base à l’approche. Les fragments
observables sont ainsi considérés comme des sous-systèmes élémentaires, formant ainsi
une première solution. Puis, un algorithme de clustering fusionne itérativement les frag-
ments, de façon à augmenter la taille des sous-systèmes et à construire une hiérarchie
ascendante (Figure Fr.5). L’augmentation de la complexité structurelle des sous-réseaux
identifiés est limitée à chaque itération.

3 4

2 1

3-4

2

1

2-3-4

1

1

1

1

2

2

3-4

2-3-4

4 3

(a) (b)

Figure Fr.5: Exemple de l’approche par clustering : Evolution d’un graphe d’affinité
(a), et construction de la hiérarchie (b)

Il est difficile de prévoir le coût de la calcul total, qui peut exploser. Pour limiter ce
dernier, deux limitations sont proposées. Si les fragments initiaux sont de taille similaire,
il est possible de limiter la taille (en nombre de transitions) des modèles identifiés. Sinon,
il est également possible de limiter le temps de calcul alloué au calcul de chaque sous-
modèle. La décomposition identifiée pour un coût de calcul limité à t = 20s sur le
système test est montrée en Figure Fr.6. Les fragments identifiés sont interprétables,
et le partitionnement est cohérent avec la répartition physique des composants dans le

171

Résumé en langue française

système.

𝑺𝑺𝒀𝑺𝟐

𝑺𝑺𝒀𝑺𝟏

𝑺𝑺𝒀𝑺𝟒

𝑺𝑺𝒀𝑺𝟓

𝑺𝑺𝒀𝑺𝟔

𝑺𝑺𝒀𝑺𝟑

Station 1: Feeder Station 2: Testing Station 3: Processing Station 4: Storage

Figure Fr.6: Localisation des six sous-systèmes obtenus par time-clustering sur la MSS,
tLim = 20s

Conclusion

Les apports proposés dans cette thèse permettent d’obtenir des modèles RdPI lisibles
de systèmes, considérés comme complexes par leur taille et leur comportement. Dans
un premier temps, l’approche monolithique est améliorée à la fois par le développe-
ment de techniques de filtrage limitant l’impact de la concurrence, et par une nouvelle
approche de découverte de comportement non observable garantissant la justesse du
modèle identifié. Dans un second temps, une approche de clustering permet le parti-
tionnement automatique du système complexe en sous-systèmes, exploitables par une
approche distribuée.

Pour prolonger ces travaux, une approche boîte grise pourrait être considérée afin de
découvrir des comportements non observables spécifiques (compteurs, boucles,...), par
fouille de données par exemple. Les temporisations fonctionnelles du système pourraient
également être découvertes et représentées dans une telle approche. Dans un contexte
boîte grise, l’identification active peut également être envisagée, permettant de découvrir
des comportements admissibles supplémentaires, la boîte grise permettant de limiter le
risque d’endommagement. Avec ces nouvelles directions, de nouvelles applications aux
modèles identifiés peuvent être envisagées, telles que la certification de systèmes, ou la
réimplémentation de contrôleurs.

172

Appendix

A
Assessing the quality of an identified

Petri net

A.1 Precision

The closeness, in terms of behaviour, of an identified net to an observed firing se-
quence, can be qualified and quantified by using languages. Recall that the observation
is finite and incomplete (Section 1.2.2), whereas the language generated by a net is in-
finite as soon as it exhibits cyclicity. To compare the languages, the length n of words
is considered, and the languages are parametrized by n.

Consider a firing sequence S = s1s2 . . . s|S| and a net N = (G,M0). The definition
of the language generated by N was given by Definition 1.12. With the inclusion of n,
the following languages are firstly considered:

Definition A.1. The language of length n generated by a Petri net N , i.e. the set of
words of length n generated by N , or identified language is:

LnId(N) = {w ∈ T ∗| |w| = n ∧ ∃M ∈ R(N), M0
w−→M}

The language of length n, observed in a firing sequence S, is:

LnObs(S) = {s1s2 . . . sn}

The exceeding language of length n is the difference of these two sets. The exceeding
language of length up to n is therefore:

LnExc(N,S) =
n⋃
i=1

LiId(N) \ LiObs(S)

Following this definition, given an integer n, there is only one word of this length
included in the sequence. It comes that |LnExc(N,S)| = |LnId| − 1. A precise net has few
exceeding language, so aiming for precision means decreasing the size of the identified
language. These definitions are often used in the litterature, but inadapted for systems
exhibiting concurrency, as illustrated by the next example:

173

Appendix A. Assessing the quality of an identified Petri net

Example A.1. Consider two sequences:

S = t2t3t4 t5t1 t2t4t3 t5t1 t3t2t4 t5t1 t3t4t2 t5t1 t4t3t2 t5t1 t4t2t3 t5t1

S ′ = t5t1 t2t3t4 t5t1 t2t4t3 t5t1 t3t2t4 t5t1 t3t4t2 t5t1 t4t3t2 t5t1 t4t2t3

The two sequences represent the same system, but the observation began at different
times of its operation. Let N of Figure A.1 be the identified net for S, while N ′ is the
net identified for S ′.

N exhibits the parallelism observed between transitions t2, t3, t4. However, the ex-
ceeding language LnExc plotted in Figure A.1 is not zero at least for the first values of n.
Given that for small values of n, there is already exceeding behaviour, the model could be
discarded as bad even though it mirrors perfectly the behaviour included in the sequence.

N ′ exhibits the same parallelism, but the exceeding language is equal to zero for n up
to 2, since the initial marking has changed.

𝑡1

𝑡2

𝑡3

𝑡4

𝑡5

𝑡1

𝑡2

𝑡3

𝑡4

𝑡5

Figure A.1: First row: N identified for S, and its exceeding language; Second row: N’
identified for S’, and its exceeding language

Basically, the same net structure exhibiting concurrency can be seen as either precise
or unprecise depending on the initial marking. To better express the closeness of an iden-
tified model to a sequence, namely when parallelism is involved, alternative definitions
are proposed. The identified language accounts for all accessible markings instead of
only the initial one. To be consistent, the observed language is defined by all substrings
of length n, as if a sliding window of length n was moved along the firing sequence.

Definition A.2 (Alternative languages). The language of length n generated by a Petri

174

A.2. Complexity metrics

net N , i.e. the set of words of length n generated by N , or identified language is:

LnId2(N) = {w ∈ T ∗| |w| = n ∧ ∃M ′ ∈ R(N), M
w−→M ′}

The language of length n, observed in a firing sequence S is:

LnObs2(S) =
⋃

1≤t≤|S|−n+1

st.st+1 . . . st+n−1

The definition of exceeding language remains the same.

The results of applying this definition of language to Example A.1 is presented in
Figure A.2. There is no exceeding language for the first values (n=1,2,3); therefore the
identified net can be considered quite fitting the sequence. The size of the exceeding
language increases for higher values of n because the sequence S is short and does not
exhibit that much behaviour.

𝑡1

𝑡2

𝑡3

𝑡4

𝑡5

Figure A.2: The net N identified and its exceeding language according to Definition A.2

Definition A.2 will from now on be the reference for any qualification of the behaviour
of the identified net. If the problem was a pure synthesis problem, the only objective
of any procedure would be to minimize LnExc for all values of n, even nullify LnExc for all
values of n up to a nmax that should be maximal. However, in our reverse-engineering
approach, understandability of the resulting net is also of importance.

A.2 Complexity metrics

A Petri net consists of two parts : a structure G and an initial marking M0. The
structure can be considered as the static part of the net, whereas the initial marking
unlocks dynamical properties of the system, expressed by the reachability graph.

Therefore, different metrics are considered for the structural and the dynamic com-
plexity. They are evaluated on the example presented in the main corpus of the thesis,
recalled here in Figure A.3.

175

Appendix A. Assessing the quality of an identified Petri net

𝑡𝐴: ↑ 𝑠𝑡𝑎𝑟𝑡

𝑡𝐵: ↑ 𝑟1_ℎ

𝑡𝐶: ↑ 𝑟1_𝑏

L𝟏

𝑳𝟐

𝑮𝒓𝒊𝒑𝒑𝒆𝒓
𝑡𝐺: ↑ 𝑝𝑟𝑒𝑠𝑠_𝑏

𝑡𝐼: ↑ 𝑙1

𝑹𝟏

𝑡𝐹 : ↑ 𝑝𝑟𝑒𝑠𝑠_𝑝

𝑹𝟐

𝑡𝐸 : ↑ 𝑟2

𝑡𝐷 : ↑ 𝑙2

𝑡𝐻: ↑ 𝑝𝑟𝑒𝑠𝑠_h

(a)

𝑡𝐴: ↑ 𝑠𝑡𝑎𝑟𝑡

𝑡𝐵: ↑ 𝑟1_ℎ

𝑡𝐶: ↑ 𝑟1_𝑏

L𝟏

𝑳𝟐

𝑮𝒓𝒊𝒑𝒑𝒆𝒓
𝑡𝐺: ↑ 𝑝𝑟𝑒𝑠𝑠_𝑏

𝑡𝐼: ↑ 𝑙1

𝑹𝟏

𝑡𝐹 : ↑ 𝑝𝑟𝑒𝑠𝑠_𝑝

𝑹𝟐

𝑡𝐸 : ↑ 𝑟2

𝑡𝐷 : ↑ 𝑙2

𝑡𝐻: ↑ 𝑝𝑟𝑒𝑠𝑠_h

(b)

Figure A.3: (a) A simple solution, with a lot of exceeding language ; (b) A complex
solution, with no exceeding language up to n = 6

A.2.1 Structural Complexity

Most metrics assessing the structural complexity of a Petri net, or more generally
of an oriented graph, are issued from the field of software engineering. Expressing
fragments of code as an oriented graph is a way of visualizing and controlling the flow
of operations [McCabe, 1976]; a measure of the complexity of the graph is a measure of
the complexity of the associated code, and a way of prediciting where eventual mistakes
can be made.

Let G = (V,E) be an oriented graph, with V the set of nodes and E the set of edges.
Metrics assessing the size of the graph (number of edges |E| and number of nodes |V |)
are too simple to assess the structural complexity of the graph and are left apart

A first simple and elegant metric, called Coefficient of Network Complexity (CNC)
has been introduced by Pascoe ([Pascoe, 1966]): it is the ratio edges/nodes of the graph:

Definition A.3 (Coefficient of Netwotk Complexity). The original definition [Pascoe,
1966] for a graph G = (V,E):

CNC =
|E|
|V |

This definition can be translated to a Petri net structure G = (P, T,W), where P and T
mirror the set of nodes V , and W is the set of edges mirroring E

CNCPN =
|W |

|P |+ |T |

176

A.2. Complexity metrics

CNC expresses the mean number of edges entering a node (or equivalently, the
mean number of edges leaving a node); it does however not make a distinction between
places and transitions. The authors of [Soo and Jung-Mo, 1992] consider the case of
Petri nets only, and propose two additional structural metrics taking into account the
bipartite nature of the graph: the Average Transition Output(ATO) and Average Place
Output(APO)

Definition A.4 (Average Transition and Place Output). Let G = (P, T,W) be a Petri
net structure.

Average Transition Output:

ATO =
1

|T |
∑
t∈T

|t•|

Average Place Output:

APO =
1

|P |
∑
p∈P

|p•|

Given a transition, ATO expresses the mean number of aval places, hence the mean
number of parallel processes that the transition starts. Given a place, APO expresses
the mean number of aval transitions, hence the number of conflictuous processes that the
place enables when filled with a token. Both these metrics express structural complexity.
Furthermore, it can be noted that:∑

t∈T

|t•|+
∑
p∈P

|p•| = |W |

Therefore:
|T |.ATO + |P |.APO = (|P |+ |T |).CNCPN

CNCPN can be considered as the barycenter of both ATO and APO, and is thus a
relevant measure to express the structural complexity as well.

Another widely recognized complexity measure is the cyclomatic complexity, first
introduced by McCabe in [McCabe, 1976]. It represents the number of independant
paths in the graph, and is defined as following:

Definition A.5 (Cyclomatic Complexity). Let G = (E, V) be an oriented graph, and p
its number of strongly connected components. Then the cyclomatic complexity is :

CC = E − V + 2p

Let G = (P, T,W) be a Petri net, and sc its number of strongly connected components.
Then the cyclomatic complexity is :

CCPN = |W | − (|P |+ |T |) + 2.sc

177

Appendix A. Assessing the quality of an identified Petri net

Both CC and CNC involve the number of places, transitions and edges, the main
difference being that CC also involves the number of strongly connected components.
Trying to understand multiple Petri nets as once, namely all possibilities for parallelism
is a complicated task. However, if two processes of a system are totally parallel (i.e.
independant), they can be considered as two subsystems and be identified separately. For
instance in example 4.5, the two chariots can roll independantly, but are synchronised
by the start button: they can hence not be considered as independant subsystems.
Should the transfer dock not exist, they would be fully independant systems, and the
identification procedure could be run separately on each of them.

A reasonable assumption is therefore that the identified model should consist in one
strongly connected net to be relevant. If sc is set up to 1 in CCPN , CNCPN and CCPN
express roughly the same variations. Therefore, CNCPN should be a good enough metric
for the purpose of evaluating the structural complexity of an identified Petri net. This
opinion is for instance shared by the authors of [Mendling et al., 2007], that consider this
metric (called average connector degree) as relevant to relate the understandability of
the net. In the field of cognitive science, the author of [Rauterberg, 1992] has evaluated
that both CNC and CC are relevant to evaluate the complexity of a given task (namely
interacting with a database management system).

Example A.2. Looking back at the two identified nets of Figure A.3. The values of the
different structural metrics presented in this section are given in Table A.1 Indeniably,
whichever the chosen metric, the second net is evaluated more complex than net (a).

Metric Net (a) Net (b)
|T| 9 9
|P| 10 15
|W| 22 42

CNCPN 1.16 1.82
CCPN 5 21
APO 1.1 1.26
ATO 1.1 2.55

Table A.1: Comparison of structural complexity metrics on Example 4.5

A.2.2 Dynamic Complexity

Petri net dynamics are closely related to the language. Given a marking M0 and
a marking M reachable from M0, the number of transitions enabled from M gives the
evolution possibilities of the net state. To have access to the mean number of enabled
transitions, the building of the reachability graph is required:

Definition A.6 (Branching Degree(BD)). Let N = (G,M0) be a Petri net and R(N)=(S,E)
be its reachability graph (with E the set of edges and S the set of states). Then, the

178

A.2. Complexity metrics

Branching Degree defined as following represents the mean number of transitions en-
abled at any state:

BD =
1

|S|
∑
s∈S

outdeg(s) =
|E|
|S|

where outdeg(s) is the out-degree of state s, i.e. the transitions enabled from the marking
M associated to s.

Recall definition A.2 of the language generated by the net. Given a marking M ,
consider the set of words of length n that lead to M . Since BD transitions are enabled
in this state, these words can be prolongated with BD different transitions, leading to
BD words of length n+1 for each word leading toM . This being true for each marking,
each word of length n can roughly create BD words of length n+ 1.

The following approximation can be made : |Ln+1(N)| ' |Ln(N)|.BD; given that
|L1(N)| = |T |, it comes |Ln(N)| ' |T |.BDn−1. This approximation shows that BD is
linked to the language generated by the net. Looking back at example 4.5, the second net
generates less language than the first one. BD(a)=42/21=2, whereas BD(b)=15/12=1.25.
The dynamic is indeed less complex in the second net, but much more difficult to un-
derstand. BD can therefore not be used to assess of the understandability of the net.

BD is basically CNC applied to the reachability graph. Similarly, other structural
metrics can be applied to the reachability graph. For instance, the authors of [Lassen
and van der Aalst, 2009] used the cyclomatic complexity (CC) and concluded as well
that a small reachability graph is not correlated to an understandable net.

To capture the essence of the dynamic of the net, one should be able to picture the
flow of tokens during the execution of a sequence. Therefore, the average number of
tokens can be more representative of the dynamic of a graph; it mirrors the number of
processes simultaneously running.

Definition A.7. Let N = (G,M0) be a Petri net and R(N)=(S,E) be its reachability
graph. The Average Number of Tokens (AToks) in the graph is defined as following:

AToks =
1

|S|
∑
s∈S

 ∑
p∈J1,|P |K

Ms(p)


The authors of [Soo and Jung-Mo, 1992] consider this criterion, with the size of the

reachability graph, as the best metric of dynamic complexity. However, notice that the
solutions of the identification problem are 1-bounded. Since there is at most 1 token in
a place, n tokens in the net represent n concurrent processes that are simultaneously
running. Therefore, AToks represents the mean number of concurrent processes in the
system, hence a difficulty of understanding induced by the complexity of the physical
system, but not by the model.

Example A.3. Looking back at the two identified nets of Figure A.3, their reachability

179

Appendix A. Assessing the quality of an identified Petri net

graphs are given in Figure A.4 The values of the different dynamic metrics presented in
this section are given in Table A.2.

Metric Net (a) Net (b)
|S| 21 12
|E| 42 15

ATok 2.7 4,16
BD 2 1.25
CC 23 5

Table A.2: Comparison of dynamic complexity metrics on Example 4.5

(a) (b)

Figure A.4: Reachability graphs of the nets of Figure A.3

BD and CC applied to the reachability graph assess that net (b) is less complex than
net (a), which is logical given that the second net generates less language that the first
one. However, net (b) is hard to understand, which is mirrored by ATok. Evaluating the
behaviour of the net requires to follow the flow of less tokens in net (a) than in net (b)

Dynamic complexity metrics are related to the inherent complexity of the system,
not of its model representation; whereas structural complexity metrics are related to the
model. Therefore, only a structural complexity metric is kept to assess the understand-
ability of a model. Namely, CNC is chosen.

180

Appendix

B
Proofs

Proposition 3.5 (Chapter 3, Page 78) Let {ti}1≤i≤n be a reduction of t. Then, there
exists a firing sequence σ, containing exactly one firing of each transition of {ti}, that
always results in the same marking evolution as the firing of t, i.e.:

∃σ = t1t2 . . . tn | ∀(M,M ′),M
t−→M ′ ⇐⇒M

σ−→M ′

σ is called a replacement for t

Proof. The equality of the markings reached by firing t or σ is a consequence of Propo-
sition 3.4. It remains to prove firability.

Firability ⇐ Suppose that M σ−→ M ′, and that t is not firable from M . Let p ∈ •t

be a place such that M(p) = 0, forbidding the firing of t. The event ↓ ϕ(p) was
however generated by the firing of σ. Let Mint be a marking such that:

M
σ−−→Mint

σ+−→M ′

with σ − σ+ = σ and Mint(p) = 1. ↓ ϕ(p) is generated by the firing of sigma+.
However, since M(p) = 0, ↑ ϕ(p) must occur in σ−. Consequently, both ↓ ϕ(p)

and ↑ ϕ(p) belong to RI({ti}), which is impossible since both the rising and the
falling edge of an output event can not belong to a RI set. Contradiction reached.
Necessarily, t is firable in M

Firability ⇒ By recursivity. Suppose that M t−→M ′, and that t1 is not firable in M .
Let p ∈ •t1 be a place such that M(p) = 0. ↓ ϕ(p) ∈ RI(t1), and RI(t1) ⊂ RI(t).
Therefore, ↓ ϕ(p) ∈ RI(t), and p ∈ •t. However, M t−→, hence M(p) = 1, and a
contradiction. Necessarily, t1 is firable in M .

Suppose now that M
t1...ti−1−→ M ′′, and that ti is not firable in M ′′. By the same

reasoning, a place p is exhibited such that M ′′(p) = 0, and verifying p ∈ •t,
hence M(p) = 1. p was necessarily emptied by the firing of a transition tj in
{t1, . . . , ti−1}. Therefore, ↓ ϕ(p) ∈ RI(tj). However, ↓ ϕ(p) ∈ RI(ti) as well,

181

Appendix B. Proofs

and by definition of a reduction, RI(tj) ∩ RI(ti) = ∅, hence the contradiction.
Necessarily, ti is firable in M ′′.

Proposition 4.4 (Chapter 4, Page 92) Let Σn be a size n alphabet (n ≥ 2). The
number of couples of disjoint, non-empty subsets of Σn, noted Pn, is given by the formula:

Pn = 3n−2 +
n−3∑
k=0

3k(2n−k−1 − 1)

Proof. The proof is conducted by recurrence
For n = 2, P2 = 30 = 1. There are only two non-empty disjoint subsets of Σ2, both

of size 1; hence only one couple. The formula is true for n = 2

Suppose that Pn is true.
Let Σn+1 be an alphabet of size n+ 1 and tn+1 such that Σn+1 = Σn ∪ {tn+1}, with

Σn a size n alphabet. There are Pn non-empty disjoint subsets of Σn. Let (Σi,Σj) be
one of these couples. By adding tn+1, three non-empty disjoint subsets of Σn+1 can be
built:

• (Σi ∪ {tn+1},Σj)

• (Σi,Σj ∪ {tn+1})

• (Σi,Σj)

For each couple in Σn, three couples in Σn+1 can be built.

It remains to count all couples involving the singleton {tn+1}: ({tn+1},Σ′n), where
Σ′n is a non-empty subset of Σn. Exactly (2n − 1) of these subsets exist. Consequently:

Pn+1 = 3Pn + (2n − 1)

Replacing Pn by its hypothetic expression:

Pn+1 = 3

[
3n−2 +

n−3∑
k=0

3k(2n−k−1 − 1)

]
+ (2n − 1)

i.e.:

Pn+1 = 3n−1 +
n−3∑
k=0

3k+1(2n−k−1 − 1) + (2n − 1)

After reindexing k in the sum:

Pn+1 = 3n−1 +
n−2∑
k=1

3k(2n−k − 1) + (2n − 1)

182

Including (2n − 1) in the sum:

Pn+1 = 3n−1 +
n−2∑
k=0

3k(2n−k − 1)

The formula is proven correct for n+ 1, therefore it is true for all n ≥ 2.

Proposition 4.5(Chapter 4, Page 96) Let N = {(P, T, C),M0} be a PN, and
LM0(N) = {S|M0

S−→} the identified language, i.e. the (infinite) set of sequences firable
from the initial marking. Let N ′ = {(P ′, T, C ′),M ′

0} be a PN constructed from N by
adding a place p with its edges i[T] and o[T], such that cp[T] = o[T]− i[T], and its initial
marking mp, i.e. :

P ′ = P ∪ {p}

C ′ =

[
C

cp[T]

]

M ′
0 =

[
M0

mp

]
Then LM ′0(N

′) ⊆ LM0(N).

Proof. Suppose that LM ′0(N
′) 6⊆ LM0(N).

Then ∃w ∈ LM ′0(N
′), w 6∈ LM0(N). Let w be such a sequence in LM ′0(N

′), w is
not firable in N . Therefore it can be written w = σ1tσ2, (σ1, σ2) ∈ (T ∗)2, with σ1 ∈
LM ′0(N

′) ∩ LM0(N), and t the first transition of w firable in N ′ but not in N .
Let Mσ1 (resp. M ′

σ1
) be the marking reached in N (resp. N ′) after the firing of σ1:

Mσ1 = M0 + Cσ1

M ′
σ1

=

[
M0

mp

]
+

[
C

cp[T]

]
σ1 =

[
Mσ1

mp + cp[T]σ1

]

Hence ∀pk ∈ P,Mσ1 [pk] = M ′
σ1

[pk] (unaffected places keep the same marking).
t is not firable in N from Mσ1 . Necessarily, there exist a place in amount of t,

pt ∈ {pi ∈ P |C[pi, t] < 0}, such that:

Mσ1 [pt] < −C[pt, t]

However, t is firable inN ′ fromM ′
σ1
, hence all places in amount of t, {pi ∈ P ′|C ′[pi, t] <

0} satisfy M ′
σ1

[pi] ≥ −C ′[pi, t], namely :

M ′
σ1

[pt] ≥ −C ′[pt, t]

However pt ∈ P , henceMσ1 [pt] = M ′
σ1

[pt] and C[pt, t] = C ′[pt, t]. The two inequalities
are contradictory. t, then w can not exist, therefore LM ′0(N

′) ⊆ LM0(N).

183

Appendix B. Proofs

184

185

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

Titre : Identification Comportementale Boîte-noire de Systèmes à Evénements Discrets
par Réseaux de Petri Interprétés

Mots clés : Identification, Systèmes à Evénements Discrets, Systèmes réactifs, Réseaux de Petri
Interprétés, Rétro-ingénierie, Partitionnement automatique.

Résumé : Cette thèse contribue à l’identification
de modèles compacts et expressifs de Systèmes
à Evénements Discrets (SED) réactifs, à des fins
de rétro-conception ou de certification.
L’identification est passive, et boîte-noire, la
connaissance se limitant aux signaux
d’entrées/sorties du système. Les Réseaux de
Petri Interprétés (RdPI) permettent de modéliser
à la fois le comportement observable (causalités
entrées/sorties observées directement), et le
comportement non observable du système
(évolutions de variables internes). Cette thèse
vise à identifier des modèles RdPI à partir d’une
séquence observée de vecteurs entrées/sorties.
Notamment, l’enjeu étant de traiter des systèmes
concurrents de taille réaliste, l’approche
développée permet le passage à l’échelle de
résultats précédents.

La construction de la partie observable est
d’abord améliorée par l’ajout d’un filtre. Celui-
ci détecte et supprime les synchronisations
parasites causées par le contrôleur en présence de
systèmes concurrents. Une nouvelle approche est
ensuite proposée pour découvrir la partie non
observable, basée sur l’utilisation de projections,
et garantissant la reproductibilité du
comportement observé malgré la concurrence.
Une heuristique permet de construire un modèle
satisfaisant pour la rétro-ingénierie, à coût de
calcul limité. Enfin, une approche distribuée est
proposée pour réduire davantage le coût de
calcul, en partitionnant automatiquement le
système en sous-systèmes. L’effet cumulatif de
ces contributions est illustré par l’identification
de RdPI sur un système de taille raisonnable,
validant leur efficacité.

Title : Blackbox Behavioural Identification of Discrete Event Systems by Interpreted
Petri Nets

Keywords : Identification, Discrete Event Systems, Reactive systems, Interpreted Petri Nets, Reverse
engineering, Automated partitioning

Abstract : This thesis proposes a method to
identify compact and expressive models of
closed-loop reactive Discrete Event Systems
(DES), for reverse-engineering or certification.
The identification is passive, and blackbox,
accessible knowledge being limited to
input/output signals. Interpreted Petri Nets
(IPN) represent both the observable behaviour
(direct input/output causalities) and the
unobservable behaviour (internal state
evolutions) of the system. This thesis aims at
identifying IPN models from an observed
sequence of I/O vectors. The proposed
contributions extend previous results towards
scalability, to deal with realistic systems who
exhibit concurrency. Firstly, the construction
of the observable part of the IPN is improved

by the addition of a filter limiting the effect of
concurrency. It detects and removes spurious
synchronizations caused by the controller. Then,
a new approach is proposed to improve the
discovery of the unobservable part. It is based
on the use of projections and guarantees the
reproduction of the observed behaviour, despite
concurrency. An efficient heuristic is proposed
to compute a model adapted to reverse-
engineering, limiting the computational cost.
Finally, a distributed approach is proposed to
further reduce the computational cost, by
automatically partitioning the system into
subsystems. The efficiency of the cumulative
effect of these contributions is validated on a
system of realistic size.

	CouvertureDepot2
	Depot2_CoeurRapport
	Table of contents
	List of figures
	List of tables
	Introduction
	Identification of Discrete Event Systems
	Background on Discrete Event Systems
	Definition
	Reactive DES and event generators
	Formalism: Classical models

	Identification of a DES: Problem Statement
	Systems of Interest
	Incompleteness of the observation
	Problem Statement
	Identification for reverse engineering

	Identification in the literature
	Origin: early computer science approaches
	Identification by Automata
	Identification by Petri Nets

	Conclusions and positioning

	Blackbox behavioural identification of a reactive automated system
	Two behaviours: Observable and Unobservable
	Event types
	Framework of the method
	Illustrative example: Sorting system

	Identification of the observable behaviour
	Building output firing functions
	Construction of the transitions and observable places
	Determination of the firing sequence

	Inference of the unobservable behaviour
	Finding Causal and Concurrent Transitions
	Computing unobservable places
	Verification of the net

	Discussion and proposed improvements
	Scalability and concurrency
	Limits of the unobservable behaviour discovery

	Scalability of the observable behaviour construction
	Illustrative system: the MSS
	Presentation
	Data collection

	Resynchronization of asynchronous events in concurrent systems and consequences
	Filtering of the causality matrix
	Design of the filter
	Application

	Transitions reduction
	Replacement of spurious transitions
	Application

	Conclusions

	Discovery of the unobservable behaviour
	Problem statement
	Theoretical background
	From the firing sequence to admissible places
	Complexity of finding admissible places
	Intermediate conclusions

	Assessing the quality of a net
	Quality metrics
	Importance of understandability

	Discovery in practice
	Partitioning of the search space
	Exploration strategy
	Stopping criterion
	Algorithmic application

	Extensions
	Implicit places and consequences
	Reduction of the algorithmic cost

	Practical examples
	Unobservable behaviour only
	Complete approach

	Discussion
	Conclusion

	Automated partitioning for distributed identification
	Statement of the partitioning problem
	Objective of the partitioning
	Related work
	Mapping I/Os and observable fragments
	Final formulation

	Partitioning by agglomerative hierarchical clustering
	Similarity and affinity of subsystems
	Limited clustering
	Results and interpretation

	Conclusion

	Conclusion and outlooks
	Bibliography
	Assessing the quality of an identified Petri net
	Precision
	Complexity metrics
	Structural Complexity
	Dynamic Complexity

	Proofs

	QuatriemeImpression

