
HAL Id: tel-01358409
https://theses.hal.science/tel-01358409v1

Submitted on 5 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The OpenFlow rules placement problem : a black box
approach

Xuan-Nam Nguyen

To cite this version:
Xuan-Nam Nguyen. The OpenFlow rules placement problem : a black box approach. Other [cs.OH].
Université Nice Sophia Antipolis, 2016. English. �NNT : 2016NICE4012�. �tel-01358409�

https://theses.hal.science/tel-01358409v1
https://hal.archives-ouvertes.fr

UNIVERSITÉ NICE - SOPHIA ANTIPOLIS

ÉCOLE DOCTORALE STIC
SCIENCES ET TECHNOLOGIES DE L’INFORMATION

ET DE LA COMMUNICATION

T H È S E
pour l’obtention du grade de

Docteur en Sciences
de l’Université de Nice - Sophia Antipolis

Mention : Informatique

Présentée et soutenue par
Xuan Nam NGUYEN

The OpenFlow Rules Placement Problem:
a Black Box approach

Thèse dirigée par Thierry TURLETTI et Walid DABBOUS

Inria, France

Jury :
Rapporteurs : Giuseppe BIANCHI University of Rome Tor Vergata

Steve UHLIG Queen Mary University of London
Directeurs : Thierry TURLETTI Inria

Walid DABBOUS Inria
Examinateurs : Mathieu BOUET Thales

Laurent VANBEVER ETH Zurich
Président : Guillaume URVOY-KELLER University of Nice Sophia Antipolis

silici
Texte tapé à la machine
Soutenue le 22 avril 2016

Acknowledgements

This thesis summarizes my research results during my Ph.D. study at the research
team DIANA, Inria, France from 2012 to 2016.

Firstly, I would like to express my sincere gratitude to my advisor Dr. Thierry
TURLETTI and Dr. Walid DABBOUS for their belief, patience, motivation, vision,
and immense knowledge. Their guidance helped me to pass difficult moments of the
research. It is my great pleasure to be their student.

Besides my advisors, I would like to thank Dr. Damien SAUCEZ, Dr. Chadi
BARAKAT, and Dr. Truong Khoa PHAN for their brilliant ideas, discussions,
valuable comments. They look like mentors, friends than professors, and I learned a
lot from them.

I thank my DIANA fellow labmates, my co-authors, my collagues at Aalto
University, and my friends for the time we were working together, for exchanges of
knowledge, skills and for unfogettable moments we had in four years.

I recognize that this research would not have been possible without the financial
support from Inria, the Nice Sophia Antipolis University, and I would like to express
my gratitude to those agencies.

Last but not the least, I would like to thank my parents, my sisters, and my
fiance Huong, for their sacrifice and unconditional support during these years. They
have cherished with me every great moment and been beside me whenever I needed
them.

The OpenFlow Rules Placement Problem: a Black Box approach

Abstract: The massive number of connected devices combined with an ever
increasing volume of data traffic push network operators to their limit by limiting
their profitability. Software-Defined Networking (SDN), which decouples network
control logics from forwarding devices, has been proposed to tackle this problem. An
important part of the SDN concepts is implemented by the OpenFlow protocol that
abstracts network communications as flows and processes them using a prioritized list
of matching-actions rules on the network forwarding elements. While the abstraction
offered by OpenFlow allows to implement a large panel of applications, it raises the
new problem of how to define the rules and where to place them in the network
while respecting all technical and administrative requirements, which we refer as
the OpenFlow Rules Placement Problem (ORPP).

In this thesis, we focus on the ORPP, and propose a black box abstraction that
can hide the complexity of rules management. First, we formalize that problem,
classify, and discuss existing solutions. We discover that most of the solutions enforce
the routing policy when placing rules, which is not memory efficient in some cases.
Second, by trading routing for better resource efficiency, we propose OFFICER
and aOFFICER, two complementary rules placement frameworks that select and
place OpenFlow rules satisfying policies and network constraints, while minimizing
overheads. The main idea of OFFICER and aOFFICER is to install rules on efficient
paths for important, large flows, and let other flows follow default, less appropriate
paths. On one hand, OFFICER is designed based on optimization techniques to
solve the offline ORPP, in which the set of flows is assumed known and stable in a
period. On the other hand, aOFFICER uses adaptive control techniques to cope
with the online ORPP, where the set of flows is unknown and varies over time. These
proposals are evaluated and compared extensively to existing solutions in realistic
scenarios. Finally, we study a use case of the black box abstraction, in which we
target to improve the performance of content delivery services in cellular networks.

Keywords: Software-Defined Networking, OpenFlow, Rules Placement, Con-
tent Placement, Optimization

Contents

1 Introduction 1
1.1 Problem Statement and Motivation 1
1.2 Example Scenarios . 4
1.3 Research Methodology . 7
1.4 Thesis Outline . 7
1.5 Publications . 9

2 Preliminaries 11
2.1 Linear Programming . 11
2.2 Greedy Algorithms . 12
2.3 Exponentially Weighted Moving Average Model 13
2.4 Increase/Decrease Algorithms . 14

3 Literature Review 17
3.1 Introduction . 17
3.2 OpenFlow Rules Placement Problem 18

3.2.1 Problem Formalization . 18
3.2.2 Challenges . 20

3.3 Efficient Memory Management . 21
3.3.1 Eviction . 22
3.3.2 Compression . 24
3.3.3 Split and Distribution . 28

3.4 Reducing Signaling Overhead . 32
3.4.1 Reactive and Proactive Rules Placement 33
3.4.2 Delegating Functions to OpenFlow switches 34

3.5 Conclusion . 35

4 Offline Rules Placement in OpenFlow Networks 37
4.1 Introduction . 37
4.2 General Model to Allocate Rules in OpenFlow 40
4.3 Rule Allocation Under Memory Constraints 43

4.3.1 Minimizing Memory Usage 44
4.3.2 Maximizing Traffic Satisfaction 44
4.3.3 Heuristic . 45

4.4 Evaluation . 48
4.4.1 Methodology . 49
4.4.2 Results . 51

4.5 Discussion . 53
4.5.1 Routing Policy . 53
4.5.2 Rule Aggregation . 53

iv Contents

4.5.3 Multipath . 53
4.5.4 Related Work . 54

4.6 Conclusion . 55

5 Adaptive Rules Placement in OpenFlow Networks 57
5.1 Introduction . 57
5.2 aOFFICER: Adaptive OpenFlow Rules Placement 59

5.2.1 Objectives . 59
5.2.2 Design . 60
5.2.3 Adaptive Threshold . 61

5.3 Evaluation . 66
5.3.1 Setup . 66
5.3.2 Adaptive Threshold . 69
5.3.3 Adaptive Timeout and Deflection Technique 73

5.4 Conclusion . 77

6 Use Case: Improving Content Delivery in LTEs 79
6.1 Introduction . 79
6.2 Background . 81
6.3 LTE In-network Caching Architecture 81

6.3.1 Multi-level Caching Scheme 82
6.3.2 Enabling Backhaul Caching with OpenFlow 83

6.4 Content Allocation Model . 83
6.4.1 Content Allocation Problem Approximation 86

6.5 Evaluation . 87
6.5.1 Simulation Setup . 87
6.5.2 Benefits of Caching at Different Levels 89
6.5.3 Impact of Several Levels Caching 92
6.5.4 Advantages of Using Opportunistic Caching for Networks with

Loss . 93
6.6 Related Work . 94
6.7 Conclusion . 95

7 Conclusions and Future Work 97
7.1 Conclusions . 97
7.2 Future Work . 99

7.2.1 Robust and Fault Tolerant Rules Placement 99
7.2.2 Impact of Default Devices . 99
7.2.3 Multilevel Table Rules Placement 99
7.2.4 Network Function Virtualization 100

Bibliography 101

Contents v

Acronym

CDF Cumulative Distribution Function

PDF Probability Mass Function

IP Internet Protocol

ISP Internet Service Provider

ILP Integer Linear Programming

MILP Mixed Integer Linear Programing

MPLS Multi-protocol Label Switching

OSPF Open Shortest Path First

ECMP Equal Cost Multi-Path

QoS Quality of Service

SDN Software-Defined Networking

TCAM Ternary Content Addressable Memory

TE Traffic Engineering

WAN Wide Area Network

ORPP OpenFlow Rules Placement Problem

LTE Long-Term Evolution

CCN Content-Centric Networking

ICN Information-Centric Networking

ASIC Application-specific Integrated Circuit

LRU Least Recently Used

Glossary

Access control rule Rule having actions field drop/permit packets.
Commodity switch OpenFlow switch that stores rules in TCAM.
Default devices Devices (e.g., software OpenFlow switches)

that store rules in non-TCAM (e.g., RAM),
used to process non matching packets.

Default path Sequence of nodes from an ingress switch to
the default devices, formed by default rules.

Default rule Lowest priority rule, matching all the packets.
Elephant flow Flow that sends many packets or bytes.
Endpoint Policy Policy that defines the endpoints for each flow

(e.g., egress links, gateways, firewalls).
Exact-matching rule Rule that does not contain ternary elements

(∗) in its matching pattern.
Flow table hit A flow is processed by a non-default rule.
Flow table miss A flow is processed by the default rule.
Flow table List of prioritized rules on the switch.
Flow A sequence of packets that have common

header fields (e.g., destination IP address).
Forwarding rule Rule having the actions field forwarding pack-

ets to an interface.
Mouse flow Flow that sends few packets or bytes.
Routing policy Policy that specifies the path that the flow

must follow.
Rule space Set of all possible rules for selection.
Rules placement A configuration that indicates which rules are

placed on which switch.
Rule An instruction for the OpenFlow switch speci-

fying how to process the packets.
Wildcard rule Rule that contains ternary elements (∗) in its

matching pattern.

Chapter 1

Introduction

Contents
1.1 Problem Statement and Motivation 1
1.2 Example Scenarios . 4
1.3 Research Methodology . 7
1.4 Thesis Outline . 7
1.5 Publications . 9

1.1 Problem Statement and Motivation

Nowadays, the Internet is an integral part of our modern life, and it has revolutionized
the way we communicate. Due to technology advances, more people can access
to the Internet using cheaper, more portable, more powerful devices (e.g., mobile
phones, tablets, laptops). In recent years, the number of Internet-connected devices
and the traffic volume have increased dramatically. Facebook, the most popular
social network, has reached one billion users in a single day [Fac]. According to a
Cisco’s report [Cis15], the number of Internet connected devices was nearly two per
capita in 2014, and will be three per capita in 2019. Furthermore, the annual global
traffic has increased five times in the past five years (2009-2014), will surpass the
zettabyte (1021 bytes) in 2016 and two zettabytes in 2019. Also, the video streaming
traffic (e.g., Video-on-Demand, IPTV) accounts for 64% of all Internet traffic in
2014, and that portion will be 80% in 2019.

To keep pace with increasing demands, Internet Services Providers (ISP) often
have to upgrade and reconfigure the network, e.g., buying and configuring new net-
work devices. Normally, operators often have to transform high-level policies (e.g.,
the firewall policy, the routing policy) into low-level, vendor-specific configuration
commands for each device, while manually adapting them to cope with network
changes. However, this process is complicated, error-prone and time-consuming
because of a large number of diverse network devices, such as switches, routers, mid-
dleboxes. Automatic reconfiguration does not exist in current networks [KREV+15].
The primary reason for this inconvenience is the vertical integrated, tightly coupled
architecture of network devices and the proprietary software controlling them. With
this architecture, the network devices are closed boxes, which are hard for operators
to innovate. If operators want a new feature, they often have to wait until next

2 Chapter 1. Introduction

Controller Platform

Network applications

Southbound API (e.g.
OpenFlow)

Northbound API

Data forwarding elements (e.g. OpenFlow switches)

Figure 1.1: SDN architecture

device life cycles or firmware releases from vendors. This inconvenience may slow
down the operators’ development plans and incur high management costs.

To accelerate the innovation process, the operators need more flexibility to
control, to customize network devices. To that goal, Software-Defined Networking
(SDN) [NMN+14, XWF+15, KREV+15] advocates the separation between forward-
ing devices (the data plane) and the network control logic (the control plane). There
exists similar ideas that did not succeed in the past, for example, in Active Net-
working [TSS+97]. However, by appearing at the intersection of ideas, technology
maturity and future needs, SDN offers a new potential approach to many existing
and new network problems [NMN+14].

Fig. 1.1 shows the SDN architecture. The separation of the control plane and
the data plane is realized by a well-defined southbound application programming
interface (API). In SDN, network control logic is implemented in an entity, called the
controller. The controller is logically centralized but can be physically distributed
for scalability. Also, a switch may have multiple controllers for fault tolerance and
robustness. Via the southbound API, the controller directly manages the state of
forwarding devices to respond to a wide range of network events, for example, when
a link is congested, the controller reroutes active flows using this link to other paths.
Furthermore, the controller exposes high level northbound APIs for operators to
implement high level policies (e.g. firewall, load balancing). With this architecture,
SDN promises to reduce costs and to simplify network management thanks to
commodity, open forwarding hardwares, and high level management interfaces.

OpenFlow [MAB+08a] is the most popular implementation of the SDN south-
bound API [NMN+14, XWF+15, KREV+15, JKM+13, KSP+14]. Although Open-
Flow starts as academic experiments, it is receiving much attention from both
academic and industry. Many vendors have supported OpenFlow in their commer-
cial products [NMN+14]. As an example, Google is using OpenFlow in its WAN for
traffic engineering applications [JKM+13]. Open Network Foundation [Fou13], an

1.1. Problem Statement and Motivation 3

Forward to port A

Modify header fields

Drop

IP src/dst , port

number, VLAN

MATCHING ACTIONS COUNTERS

OPENFLOW

SWITCH

Packets, Bytes, Duration

Flow Table 1 Flow Table N

CONTROLLER

APPLICATION

Northbound API

OpenFlow Protocol

Traffic

Firewall
Learning

Switch

Load

Balancing

Topology

Manager

Device

Manager
Statistics

Figure 1.2: OpenFlow Architecture [NMN+14]

industrial-driven organization including the biggest operators (e.g., Google, Face-
book, Yahoo, Microsoft) is improving the OpenFlow specification [Ope15b], and
promoting OpenFlow as the standard southbound API of SDN.

The architecture of OpenFlow is depicted in Fig. 1.2. Forwarding devices are
called OpenFlow switches, and all forwarding decisions are flow-based instead of
destination-based like in traditional routers. An OpenFlow switch consists of flow
tables, each containing a prioritized list of rules that determine how packets are
processed by the switch.1 A rule consists of three main components: a matching
pattern, an actions field and a counter. Generally, a matching pattern is a sequence
of 0− 1 bits and “don’t care" (denoted as ∗) bits, that forms a predicate for packet
meta-information (e.g., src_ip = 10.0.0.∗). All packets making true the matching
pattern predicate are said to belong to the same flow.

The actions field specifies the actions applying to every packet of the correspond-
ing flow, e.g., forwarding, dropping, or rewriting the packets. Finally, the counter
records the number of processed packets (i.e., that made the predicate hold true)
along with the lifetime of this rule. As a packet may match multiple matching
patterns of different rules, each rule is associated with a priority number. Only the
rule with the highest priority number that matches the packet is considered to take
actions on it. The prioritization of rules permits constructing default actions that
can be applied on packets only if no other rule can be used. Examples of default
actions are dropping packets, or forwarding to a default interface. For efficiency
and flexibility reasons, the latest versions of OpenFlow [Ope15b] support pipeline
processing where a packet might be processed by several rules from different flow
tables.

The behavior of an OpenFlow switch strongly depends on the set of rules it
holds. With appropriate rules, an OpenFlow switch can act like a Layer-2 switch, a
router, or a middlebox. Also, many network applications can be implemented using

1We follow the OpenFlow model terminology where a packet consists of any piece of information
traveling through the network and a switch stands for any device processing such a packet.

4 Chapter 1. Introduction

OpenFlow, e.g., monitoring, accounting, traffic shaping, routing, access control,
and load balancing [MAB+08a]. To implement these applications and operators
policies, it is important to select and install corresponding rules on each OpenFlow
switch. However, most of popular controller platforms [GKP+08, Flo15, Eri13]
still force operators to manage their network at the level of individual switches, by
selecting and installing rules to satisfy network constraints and policies [KLRW13].
Installing inappropriate rules may lead to frequently usages of default actions (e.g.,
forwarding to the controller), that may overload the controller and degrade network
performance, such as packet latency.

Beyond flow abstraction provided by OpenFlow, our motivation is to raise the
network abstraction towards a higher one: the black box. Using the black box
abstraction, operators do not need to care about the complexity and diversity
of underlying networks, and how to manage resources efficiently. Furthermore,
operators can focus on specifying high level policies, which will be automatically
compiled into appropriate OpenFlow rules.

To realize the blackbox abstraction, it is important to study and propose solu-
tions for the problem of selecting and distributing OpenFlow rules, referred as the
OpenFlow Rules Placement Problem (ORPP). This problem is not trivial, because in
production networks, many rules are required and available for selection [MYSG12],
but only a limited amount of resources, and in particular memory [SCF+12], is
available on OpenFlow switches. Also, the ORPP is NP-hard in general, as we show
in Chapter 4. Despite its complexity, solving this problem is essential to realize the
black box abstraction.

1.2 Example Scenarios

In the following, we describe two representative scenarios, that motivate why Open-
Flow is needed and why ORPP is challenging.

Access Control As a part of endpoint policy, the firewall policy is critical to the
network security. Most of firewall policies can be defined as a list of prioritized
access control rules, that specify which flows are authorized and where. OpenFlow is
a potential candidate to implement access control applications, because it supports
flexible matching patterns and multiple actions.

Ideally, all access control rules should be placed on the ingress switches to filter
unwanted network traffic. However, the switch memory constraints prohibit placing
all rules in ingress switches. An alternative solution is to put all rules in the software
switches having large memory capacity (e.g. RAM), and to direct all traffic to them.
However, software switches are generally slower than hardware-accelerated switches
(e.g. using TCAM), because of high lookup delay. Therefore, a solution is required
to select and distribute rules over all the switches such that the semantic of the
original access control list is preserved, and resource constraints are satisfied.

Fig. 1.3 shows an example of access control rules placement. The firewall policy

1.2. Example Scenarios 5

R3

R1

R2

F1

F2

E1
2

1

3

Block traffic to 10.0.0.1 or
to port 22 or from 10.0.0.2

Switch Memory Capacity = 3

R1

RD1

RD1

RD2

Rule Match Action
R1
R2
R3

RD1

dst_ip=10.0.0.1 Drop
dst_port=22 Drop

src_ip=10.0.0.2 Drop
* To Switch 2

RD2 * E1

Figure 1.3: An example of access control rules placement. The firewall policy is
compiled into a list of rules R1, R2, R3 for blocking matching packets, and two
default rules RD1, RD2 for forwarding non-matching packets towards the endpoint
E. These rules are distributed on several switches to ensure that flows F1 and F2
pass through all rules R1, R2, R3 to enforce the firewall policy.

6 Chapter 1. Introduction

R3

R4

R1
R2

F1
F2 E2

E1
2

1

3

F1 exits at E1
F2 exits at E2

Rule Match Action
R1
R2
R3
R4

F1 To Switch 2
F2 To Switch 3
F1 To E1
F2 To E2

Figure 1.4: An example of forwarding rules placement. Forwarding rules are installed
on appropriate paths to make sure that the endpoint policy is satisfied. Rules R1, R3
(resp. R2, R4) are installed on switches 1, 2 (resp. 1, 3) to route F1 (resp. F2)
towards its endpoint E1 (E2).

must be enforced on all flows originated from switch 1 and 3. A solution is to use
rules R1, R2, R3 for blocking matching packets, and use the default rules RD1, RD2
for forwarding non-matching packets towards endpoint E. Then, these rules are
distributed on the switches, according to the memory capacity, to enforce the firewall
policy on all flows.

Traffic engineering The role of the network is to deliver packets towards their
destinations and to satisfy the operator’s requirements (e.g., low latency, low loss
rate). OpenFlow allows defining rules matching any type of packets and forwarding
them on any paths, which promises to support a wide range of policies.

Normally, the forwarding rules matching the packets should be placed on the
shortest paths from their sources to their endpoints, to satisfy traffic engineering
goals (e.g., delay, throughput). However, due to switch memory limitations, all
required rules may not be fit into the shortest paths. Therefore, it is important to
select and install forwarding rules on the appropriate paths, to satisfy requirements.

An example of forwarding rules placement is shown in Fig. 1.4. Both flows
F1, F2 must be forwarded to their corresponding endpoint E1, E2. To that aim, a
solution is to install forwarding rules R1, R3 (resp. R2, R4) on switches 1, 2 (resp.
1, 3) to route F1 (resp. F2) towards its endpoint E1 (resp. E2).

1.3. Research Methodology 7

1.3 Research Methodology

Our motivation is to realize the black box abstraction using OpenFlow. To that aim,
it is important to understand the ORPP, what are its challenges and existing ap-
proaches. Even there are some OpenFlow surveys [XWF+15, KREV+15, NMN+14],
but none of them formalizes and discusses that problem comprehensively. There-
fore, we first propose a formalization for the problem, classify and discuss existing
solutions to find new insights and new potential approaches.

After finding a new potential approach, we use it to address two instances of the
problem: (i) the offline ORPP, in which the set of traffic flows is known and stable
in a period, and (ii) the online ORPP, in which the set of flows is unknown and
varies over time. Each assumption allows to apply well-known techniques to solve
them. More precisely, we apply optimization techniques for the first instance, and
adaptive control techniques for the second one.

For both instances, our goal is to design algorithms that generate rules satisfying
policies, network constraints (e.g., memory, bandwidth) while reducing the costs, in
terms of the signaling load and default load.2 On one hand, reducing the signaling
load allows the controller to handle more devices and to process requests faster. On
the other hand, reducing the default load also improves the network performance.
For example, software switches’s processing introduces a higher delay than ASIC
processing. By reducing the load on these devices (i.e., the default load), the total
network delay can be improved.

To evaluate and to compare our proposals to existing solutions, we implement
numerical and packet-level simulators using Python. Python is used because of its
simplicity, and that it supports network simulation libraries (e.g., NetworkX [Net15],
FNSS [SCP13]). Our experiments are performed on cluster platforms such as
INRIA NEF [INR15], that allow performing simulations with many configurations
simultaneously. Both real and synthetic inputs (e.g., topologies and packet traces)
are considered. The outputs are analyzed using Pandas [Pan] and visualized using
Matplotlib [Mat]. Beside simulations, some of our proposals (e.g., Wrapper [NST13b,
NST13a]) are verified on emulators (e.g., Mininet [LHM10]) and on a commodity
OpenFlow switch (Pronto 3290 [PRO15]).

1.4 Thesis Outline

In the following, we summarize the content of each chapter and the obtained results.
In Chapter 2, we present the basic preliminaries used in this thesis. This chapter

includes Linear Programming to model optimization problems, Greedy heuristics to
find approximate solutions, Exponentially Weighted Moving Average (EWMA) to
model and predict future means of a variable, and Increase/Decrease algorithms to
adapt a parameter.

2load on the default devices (e.g., software OpenFlow switches) that are used to process non-
matching packets.

8 Chapter 1. Introduction

In Chapter 3, we present background related to the fundamental problem of
how to select rules and their locations such that network constraints and policies
are respected, referred as the OpenFlow Rules Placement Problem (ORPP). First,
we formalize that problem, and identify two main challenges, including resource
limitations and the signaling overhead. Second, we classify, and discuss pros and
cons of existing solutions extensively. In the best of our knowledge, this is the first
survey focusing on the ORPP.

In Chapter 4, we analyze and demonstrate a limitation of existing solutions. To
satisfy endpoint policy, most of existing solutions [KHK13, KLRW13] place rules to
enforce flows following the shortest paths. This constraint is sometimes necessary
to meet the traffic engineering goals (e.g., low latency). However, in some cases,
strictly enforcing this constraint may lead to unfeasible rules placement due to
resource constraints (e.g., switch memory). Also, we believe that with the blackbox
abstraction, operators do not need to care about the path selection, and can delegate
the decision for the controller. Therefore, we propose to trade routing for better
resource efficiency, to increase the number of possible paths for rules placement. This
approach comes the fact that flows may follow a longer path, but it is compensated
by better resource utilization.

Using the new approach, we study the offline ORPP, in which the set of flows is
known and stable in the considered period. First, we propose a heuristic that selects
the paths consuming less memory, called the deflection technique. Second, we prove
that the offline ORPP is NP-Hard and formalize it as an Integer Linear Programming
(ILP). That model supports various objective functions, and includes necessary
constraints such as memory, endpoint policies, bandwidth constraints. Optimal
rules can be found by solving that ILP using LP solvers, such as CPLEX [IBM].
A Greedy heuristic, called OFFICER, is designed to find rules in polynomial time
complexity for the problem instance with large inputs, e.g., large number of flows.
We then perform numerical simulations in realistic scenarios, to compare OFFICER
to the optimum and a random rules placement solution.

In reality, flows are often unknown and hard to predict accurately [BAAZ11].
Therefore, the solutions proposed in Chapter 4 can not be directly applied when
flows are unknown. In Chapter 5, we study the online ORPP, in which the set of
flows is unknown and varies over time. To solve this problem, existing controller
platforms [Flo15, GKP+08, Eri13] treat all flows equally and place rules reactively.
However, this approach has several cons. First, it incurs a high signaling load, a
high latency due to many flows. Second, rules for large flows may not be installed
because resources are already occupied by other flows. As consequences, policies
can be violated, and network performance are degraded.

We argue that in case of resource limitations (e.g., switch memory), only rules
for important, large flows should be installed. To that goal, we propose aOFFICER,
an adaptive rules placement framework, that can detect candidate flows and install
rules for them on efficient paths. Furthermore, aOFFICER can adapt the parameter
automatically to respond to fluctuations in flow demands. Our simulation results in
realistic scenarios confirm that aOFFICER can reduce costs and does not introduce

1.5. Publications 9

large signaling overhead, compared to existing solutions.
With the black box abstraction, operators can implement high level, flexible

endpoint policies using OpenFlow, thanks to algorithms OFFICER and aOFFICER
proposed in Chapter 4 and 5. In Chapter 6, we exploit a use case of the black box
abstraction, in which we improve the performance of content delivery services in
cellular networks.

Nowadays, traffic from content delivery services will continue to grow in coming
years, which increases CAPEX and OPEX of network management significantly.
OpenFlow is a potential approach to address this problem. First, OpenFlow can
enable in-network caching functionalities (e.g., using our technical solution [NST13b,
NST13a]), so caches can be deployed everywhere in the network. Second, we propose
a novel caching framework, named Arothron. The main idea is to split the cache
storage on each node into two parts: one uses opportunistic caching, and the other
uses preset caching. On one hand, opportunistic caches, which store and replace
contents using the LRU mechanism, can absorb short term fluctuations in content
demands. On the other hand, preset caches, which store popular contents, can satisfy
long term content demands with high cache hit ratios. To decide which content is
stored in which preset cache, a Mixed Linear Integer Programming and a Greedy
heuristic are used. With extensive simulations in realistic scenarios, we show that
network performances are better if each storage unit combines both opportunistic
and preset caching, compared to using only opportunistic caching or using only
preset caching. Second, we observe that the optimal ratio between the opportunistic
and the preset cache on each node is not the same, and it depends on the node
location.

Finally, in Chapter 7, we summarize the content of the thesis, and discuss
potential research directions.

1.5 Publications

The complete list of my publications is the following.
International Journals
[WNTS16] M. Wetterwald, X.N. Nguyen, T. Turletti, and D. Saucez, “SDN

for Public Safety Networks”, under submission, 2016
[NSBT15b] X.N. Nguyen, D. Saucez, C. Barakat and T. Turletti, “Rules

Placement Problem in OpenFlow Networks: a Survey”, IEEE Communica-
tions Surveys and Tutorials, October 2015 (Impact Factor: 6.490)

[NMN+14] BAA Nunes, M. Mendonca, X.N. Nguyen, K. Obraczka, T. Turletti,
“A Survey of Software-Defined Networking: Past, Present, and Future
of Programmable Networks”, IEEE Communications Surveys and Tutorials,
February 2014 (Impact Factor: 6.490)

International Conferences, Workshops
[KNS+15] M. Kimmerlin, X.N. Nguyen, D. Saucez, J. Costa-Requena and

T. Turletti, “Arothron: a Versatile Caching Framework for LTE”, under

10 Chapter 1. Introduction

submission, 2015
[NSBT15a]X.N. Nguyen, D. Saucez, C. Barakat and T. Turletti, “OFFICER:

A general Optimization Framework for OpenFlow Rule Allocation and
Endpoint Policy Enforcement”, IEEE INFOCOM 2015, Hongkong, China, April
2015 (acceptance ratio: 19%)

[NSBT14] X.N. Nguyen, D. Saucez, C. Barakat and T. Turletti, “Optimizing
rules placement in OpenFlow networks: trading routing for better effi-
ciency”, ACM HotSDN 2014, Chicago, United States, August 2014 (acceptance
ratio: 28.9%)

[NST13a] X.N. Nguyen, D. Saucez and T. Turletti, “Efficient caching in
Content-Centric Networks using OpenFlow”, IEEE INFOCOM 2013 Work-
shop Proceedings, Turin, Italy, April 2013 (acceptance ratio: 14.3%)

Research Reports
[NST13b] X.N. Nguyen, D. Saucez and T. Turletti, “Providing CCN func-

tionalities over OpenFlow switches”, INRIA Research Report 00920554, 2013
[Ngu12]X.N. Nguyen, “Software Defined Networking in Wireless Mesh

Networks”, Master Ubinet Thesis, University of Nice Sophia Antipolis, 2012

Chapter 2

Preliminaries

Contents
2.1 Linear Programming . 11
2.2 Greedy Algorithms . 12
2.3 Exponentially Weighted Moving Average Model 13
2.4 Increase/Decrease Algorithms 14

In this chapter, we present some preliminaries that we use throughout this thesis.

2.1 Linear Programming

Linear Programming (LP) is a general method to model and to achieve the best
outcomes of many combinatorial problems [Sch86, Chv83], such as the 0-1 Knapsack
problem. Given a set of items with different weights and values, the motivation of
the 0-1 Knapsack problem is to find which item should be selected, such that the
total weight is less than or equal to a given limit, and the total value is as large as
possible.

LP is widely applied to various domains, such as business, economic, engineering.
LP has proved its useful in modeling and solving diverse types of problems (e.g.,
planning, scheduling, assignment).

Basically, a LP is composed of a linear objective function, a set of linear inequality
constraints formalized by variables (i.e., the problem outputs) and parameters (i.e.,
the problem inputs). The objective function represents the optimization target, and
it can be written in terms of minimizing or maximizing, e.g., minimizing memory
consumption, maximizing user satisfaction. If the goal is just to find feasible solutions
satisfying constraints, the objective function can be omitted. Normally, a LP is
expressed as:

max{cTx : Ax ≤ b;x ≥ 0} (2.1)

In Eq. 2.1, x represents the vector of variables, b, c are vectors of coefficients, A
is matrix of coefficients, and (.)T is the matrix transpose function.

If some variables in x are integrals, the LP is called a Mixed Integer Linear
Programming (MILP). if all variables in x are integrals, the LP is called an Integer

12 Chapter 2. Preliminaries

Linear Programming (ILP). For example, the 0-1 Knapsack problem mentioned
above can be represented as the following ILP:

max{
n∑

i=1
vixi :

n∑
i=1

wixi ≤W ;xi ∈ {0; 1}} (2.2)

In Eq. 2.2, W is the weight limit; vi, wi are the value and the weight of item i; x is
the binary variable that indicates if item i is selected (xi = 1) or not (xi = 0).

The problem in the form 2.1 is called the primal problem, and there exists a
dual problem:

min{bT y : AT y ≥ c; y ≥ 0} (2.3)

The objective of dual problem, at any feasible solution, is always greater than
the primal’s objective function, at any feasible solution. Furthermore, if the primal
problem has an optimal solution x∗, then its dual has an optimal solution y∗, such
that:

cTx∗ = bT y∗ (2.4)

These above properties are often used to find bounds for the objective function.
In some cases, bounds are also used as a stopping condition for solving algorithms.

Due to its wide applications, many methods have been proposed to solve LP,
such as cutting plane, brand and bound, column generation, and row genera-
tion [Sch86, Chv83]. These methods are usually implemented in LP solvers (e.g.,
CPLEX [IBM], GLPK [GNU13]), which can find exact and approximate solutions
for the problem. A brief view of popular solvers can be found in [CCK+10]. In our
study, we use CPLEX [IBM] because it outperforms other open-source solvers in
many cases [MT13], and it is free for academic use.

In this thesis, we apply LP to model OpenFlow Rules Placement Problem as an
ILP (Chapter 4) and the content placement problem as a MILP (Chapter 6). These
LPs are then implemented on CPLEX to find the optimal placements for rules and
contents.

2.2 Greedy Algorithms

In general, most of placement problems are NP-Hard, which means that there is no
known polynomial-complexity algorithms to find the optimal solutions. Therefore,
using LP solvers for large problem instances (e.g., large number of variables, large
number of constraints) is not practical due to a large execution time.

To cope with this limitation, heuristics are used to find near optimal solutions
in acceptable execution time. Starting from a trivial solution, a heuristic tries
to improve the solution in each step, and terminates when the obtained solution
is good enough. There are many popular heuristics, such as Greedy, Simulated
Anneal [Sch86]. Each heuristic and their parameters are implemented and optimized
differently for different problems.

2.3. Exponentially Weighted Moving Average Model 13

To evaluate the performance of a heuristic, the approximation factor (or approx-
imation ratio) p is used. A heuristic is called p-approximation if for any inputs,
heuristic’s objective value over optimum objective value is at least p.

Greedy is a common heuristic, widely used in different domains, for example,
machine learning, artificial intelligence. In ad-hoc mobile networks, Greedy is also
used to route packets with the fewest number of hops and the smallest delay.

Basically, Greedy follows the locally optimal choice in each step with the hope
of finding the global optimum. For example, to find solutions for the 0-1 Knapsack
problem, one possible greedy strategy is that in each step, the unselected item
with maximum value of (vi/wi) is selected. In many problems, Greedy does not
guarantee to find the global optimum, but it can approximate the global optimum
in a reasonable execution time. For example, Greedy has been proven that it is
1/2-approximation for the Knapsack problem [Sch86].

Using Greedy, the solution for small problem instances can be easy and straight-
forward. However, for large problem instances, in some cases, short term decisions
may lead to worst long term outcome.

Basically, a Greedy has the following components:

• A candidate set, from which a solution is created.

• A selection function, which decides how to select the best candidate for a set.

• A feasible function, which checks if a candidate can be selected.

• A stop condition, which indicates when the algorithm should stop.

For example, in Knapsack problem, the candidate set is the set of items. The
selection function picks the largest-value item among available items. After that,
this item is checked by the feasible function (e.g., if its weight < the available
capacity). If the item can be added, it is marked as selected. Then, the same process
is repeated for the rest of items. Finally, Greedy returns the solutions when all
items are verified or the stop condition is satisfied (e.g., if the available capacity <
5% total capacity).

In this thesis, we design our heuristics based on Greedy, to find rules placement
solutions in Chapter 4 and content placement solutions in Chapter 6. The key ideas
of these heuristics are to install rules for the largest flows, or to place the most
popular contents first, since they contribute most to the objective function. The
evaluation results in realistic scenarios confirm the simplicity and the efficiency of
these heuristics, compared to the optimum.

2.3 Exponentially Weighted Moving Average Model

In statistics, a moving average is the average that moves. More precisely, it is a set
of numbers, each corresponding to the average of a subset of a larger data set. A
moving average is commonly used to analyze financial data, such as stock prices,

14 Chapter 2. Preliminaries

to get an overall idea about the trend of the data set. Furthermore, it can smooth
out short-term fluctuations, and forecast long term trends. Mathematically, it can
also be considered as a low pass filter, where high frequencies (e.g., short term
fluctuations) are removed from the original signal.

For example, given a time series D = {1, 3, 2, 3, 4, 5} that represents the price of
a stock in each day. 3-days moving average Si, represents the evolving of the stock
prices, is computed based as the average price of 3 consecutive days:

S1 = (1 + 3 + 2)/3 = 2 (2.5)
S2 = (3 + 2 + 3)/3 = 2.33 (2.6)
S3 = (2 + 3 + 4)/3 = 3 (2.7)
S4 = (3 + 4 + 5)/3 = 4 (2.8)

There are different kinds of moving averages. An Exponential Weighted Moving
Average (EWMA) model [KO90] is a kind of moving average, where the weight factor
of each older datum decreases exponentially with ages. EWMA has an advantage
compared to simple MA, as EWMA remembers a fraction of its history and accounts
them in future values. Given a time series X = {X0, X1, ...}, the EWMA for a time
series X is calculated recursively as the following:

S0 = X0 (2.9)
St+1 = αSt + (1− α)Xt (2.10)

In Eq. 2.10, Xt, St are the variable value, and the EWMA at time t. The
parameter 0 < α ≤ 1 represents the weight contributed of old samples into the
future mean value. Smaller α discounts old samples faster, and highlights the
important of the most recent sample. Higher α indicates slow decay in time series,
in other terms, the time series falls off more slowly. Selecting the right value of α is
a matter of preferences and experiences.

In Chapter 5, we apply the EWMA model to estimate the future mean value for
a time series of binary installation trials (0: fail, 1: success).

2.4 Increase/Decrease Algorithms

The Increase/Decrease (ID) algorithm is a type of feedback control algorithms, best
known for its use in TCP Congestion Avoidance [APB09], to adjust the transmission
rate (window size) of the transmitters.

ID algorithms combines addictive/multiplicative (denoted as A/M) increasing
and addictive/multiplicative decreasing to adjust a parameter, when conditions
are satisfied or periodically. For example, in TCP Congestion Avoidance, AIMD
algorithm is used. More precisely, the transmission rate is addictive increasing (AI)
by a fixed amount for every round trip time. When the congestion (e.g., loss occurs)
is detected, the transmitter decreases the transmission rate by a multiplicative
factor (1/2). Moreover, if multiple flows use AIMD algorithms, they will eventually

2.4. Increase/Decrease Algorithms 15

converge to use an equal amount of link capacity. Other types of ID algorithms,
such as MIMD and AIAD, do not converge for this case.

Basically, an ID algorithm can be expressed as follows:

Wt+1 = M1 ∗Wt +A1 (2.11)
Wt+1 = Wt/M2 −A2 (2.12)

In Eq. 2.11 and 2.12, Wt is the value of the variable at time t, M1, A1,M2, A2 ∈
[0;∞) are constant addictive/multiplicative factors. There values are selected based
on experiences, and they affect to the convergence speed, size of oscillations, and
the possible values of the control parameter. Depending on conditions, increasing
phase (Eq. 2.11) or decreasing phase (Eq. 2.12) is called.

In Chapter 5, we use the MIMD algorithm to adjust the threshold H according
to the average success rate r (estimated using EWMA model) periodically. More
precisely, H is multiplicative increasing when the r < r0 (r0 is an expected value
for r), and multiplicative decreasing when r > r0. The MIMD algorithm is used
because it quickly converges in our scenarios.

Chapter 3

Literature Review

Contents
3.1 Introduction . 17
3.2 OpenFlow Rules Placement Problem 18

3.2.1 Problem Formalization . 18
3.2.2 Challenges . 20

3.3 Efficient Memory Management 21
3.3.1 Eviction . 22
3.3.2 Compression . 24
3.3.3 Split and Distribution . 28

3.4 Reducing Signaling Overhead 32
3.4.1 Reactive and Proactive Rules Placement 33
3.4.2 Delegating Functions to OpenFlow switches 34

3.5 Conclusion . 35

In this chapter, we review the state of the art around the problem of selecting
and distributing OpenFlow rules, which we refer as OpenFlow Rules Placement
Problem. To the best of our knowledge, this is the most comprehensive survey about
the OpenFlow Rules Placement Problem, including a formalization, a classification,
and a discussion of the related work. The remainder of this chapter corresponds to
our publication [NSBT15b].

3.1 Introduction

Computer networks today consist of many heterogeneous devices (e.g., switches,
routers, middleboxes) from different vendors, with a variety of sophisticated and
distributed protocols running on them. Network operators are responsible for
configuring policies to respond to a wide range of network events and applications.
Normally, operators have to manually transform these high level policies into low
level vendor specific instructions, while adjusting them according to changes in
network state. As a result, network management and performance tuning are often
complicated, error-prone and time-consuming. The main reason is the tight coupling
of network devices with the proprietary software controlling them, thus making it
difficult for operators to innovate and specify high-level policies [MAB+08a].

18 Chapter 3. Literature Review

Software-Defined Networking (SDN) advocates the separation between forwarding
devices and the software controlling them in order to break the dependency on a
particular equipment constructor and to simplify network management. In particular,
OpenFlow implements a part of the SDN concept through a simple but powerful
protocol that abstracts network communications in the form of flows to be processed
by intermediate network equipments with a minimum set of primitives [MAB+08a].

OpenFlow offers many new perspectives to network operators and opens a
plethora of research questions such as how to design network programming languages,
obtain robust systems with centralized management, control traffic at the packet
level, perform network virtualization, or even co-exist with traditional network
protocols [FHF+11, VKF12, VWY+13, NMN+14, XWF+15, KREV+15, VCB+15].
For all these questions, finding how to allocate rules such that high-level policies are
satisfied while respecting all the constraints imposed by the network is essential. The
challenge being that while potentially many rules are required for traffic management
purpose [MYSG12], in practice, only a limited amount of resources, and in particular
memory [SCF+12], is available on OpenFlow switches. In this chapter, we survey
the fundamental problem when OpenFlow is used in production networks, that we
refer to it as the OpenFlow Rules Placement Problem. We focus on OpenFlow as it
is the most popular southbound SDN interface that has been deployed in production
networks [JKM+13].

The contributions of this chapter include:

• A generalization of the OpenFlow rules placement problem and an identification
of its main challenges involved.

• A presentation, classification, and comparison of existing solutions proposed
to address the OpenFlow rules placement problem.

This chapter is organized as follows. In Sec. 3.2, we formalize the OpenFlow
rules placement problem, discuss the challenges. We continue with existing ideas
that address the two main challenges of the OpenFlow rules placement problem:
memory limitation in Sec. 3.3, and signaling overhead in Sec. 3.4.

3.2 OpenFlow Rules Placement Problem

3.2.1 Problem Formalization

In the following, we formalize the OpenFlow Rules Placement Problem using the
notations in Table 3.1.

The network is modeled as a directed graph G = (V,E), where V is the set of
nodes and each node v ∈ V can store Cv rules, E is the set of directed links of the
network. O is the set of endpoints where the flow used to exit the network (e.g.,
peering links, gateways, firewalls). A flow can have many endpoints of ∈ O. P is
the set of possible paths that flows can use to reach their endpoints of ∈ O. Each
path p ∈ P , consists of a sequence of nodes v ∈ V . F , R are the set of flows and
rules for selection, respectively.

3.2. OpenFlow Rules Placement Problem 19

Table 3.1: Notations used in this chapter

Notation Definition
V set of OpenFlow nodes
E set of links
O set of endpoints (e.g., peering links)
F set of flows (e.g., source – destination IP flows)
R set of possible rules for selection
T set of time values
FT (v, t) flow tables of node i at time t ∈ T
Cv memory capacity of node v (e.g., in total number of rules)
P set of possible paths to the endpoints (e.g., shortest paths)
m matching pattern field (e.g., srcIP = 10.0.0.∗)
a actions field (e.g., dropping the packets)
q priority number (0 to 65535)
tidle idle timeout (s)
thard hard timeout (s)
EP endpoint policy, defines the endpoint(s) o ∈ O of f ∈ F
RP routing policy, defines the path(s) p ∈ P of f ∈ F

The output of the problem is the content of the flow table of node FT (v, t) =
[r1, r2, ...] ⊂ R, which defines the set of rules required to install node v ∈ V at time
t ∈ T . T = [t1, t2, ...] is the set of the time instants at which FT (v, t) is computed
and remains unchanged during the period [ti, ti+1]. Each rule rj is defined as a
tuple, which contains values for matching pattern m, actions a, priority number q
and timeouts tidle, thard, selected by the solvers.1 The flow table content of all nodes
FT (v, t), ∀v ∈ V at a time t is defined as a rules placement solution. Furthermore,
FT (v, t) changes over time t to adapt with network changes (e.g., topology changes,
traffic fluctuation). In order to construct rules placement, the following inputs are
considered:

• Traffic flows F , which stand for the network traffic. The definition of a flow,
implemented with the matching pattern, depends on the granularity needed to
implement the operator policies. For example, network traffic can be modeled
as the set of Source-Destination (SD) flows, each flow is a sequence of packets
having the same source and destination IP address.

• Policies, which are defined by the operator, can be classified into two cate-
gories: (i) the end-point policy EP : F → O that defines where to ultimately
deliver packets (e.g. the cheapest link) and (ii) the routing policy RP : F → P

that indicates the paths that flows must follow before being delivered (e.g., the
shortest path) [KLRW13]. The definition of these policies is often the result

1We focus on important fields only. The complete list of fields of an OpenFlow rule can be found
in the OpenFlow specifications [Ope15b].

20 Chapter 3. Literature Review

of the combination of objectives such as cost reduction, QoS requirements and
energy efficiency [GMP14, NSBT15a, HLGY14, KLRW13, LLG14].

• Rule space R, which defines the set of all possible rules for selection, depend-
ing on applications. For example, an access control application allows selecting
rules that contain matching m for 5-tuples IP fields (source/destination IP
address, source/destination port number, protocol number) while a load balanc-
ing application requires rules that contain matching m for source/destination
IP address [WBR11]. The combination of fields and values forms a large space
for selection.

• Resource constraints, such as memory, bandwidth, CPU capacity of the
controller and nodes. Rules placement solutions must satisfy these resource
constraints. As an example, the total number of rules on a node should not
exceed the memory capacity of the nodes: |FT (v, t)| ≤ Cv,∀(v, t) ∈ V × T .

There might be a countless number of rules placement possibilities that sat-
isfy the above inputs. Therefore, FT (v, t) is usually selected based on additional
requirements, such as in order to minimize the overall rule space consumption∑

v∈V |FT (v, t)|. Note that in general, the OpenFlow Rules Placement problem is
NP-hard, as we will proof in Chapter 4 by reducing it to the Knapsack problem.

3.2.2 Challenges

Elaborating an efficient rules placement is challenging due to the following reasons.

3.2.2.1 Resource limitations

In most of production environments, a large number of rules is required to support
policies whereas network resources (e.g., memory) are unfortunately limited. For ex-
ample, up to 8 millions of rules are required in typical enterprise networks [YRFW10]
and up to one billion for the task management in the cloud [MYSG12]. According
to Curtis et al. [CMT+11], a Top-of-Rack switch in data centers may need 78,000
rules to accommodate the traffic.

While the number of rules needed can be very large, the memory capacity to
store rules is rather small. Typically, OpenFlow flow tables are implemented using
Ternary Content Addressable Memory (TCAM) on switches to ensure matching
flexibility and high lookup performance. However, TCAM is board-space costly,
is 400 times more expensive and consumes 100 times more power per Mbps than
RAM-based storage [KARW14]. Also, the size of each flow entry is 356 bits [Ope15b],
which is much larger than the 60-bit entries used in conventional switches. As a
consequence, today commercial off-the-shelf switches support only from 2k to 20k
rules [SCF+12], which is several orders of magnitude smaller than the total number
of rules needed to operate networks. Kobayashi et al. [KSP+14] confirm that the
flow table size of commercial switches is an issue when deploying OpenFlow in
production environments.

3.3. Efficient Memory Management 21

Recently, software switches built on commodity servers (e.g., OpenvSwitch
[Ope15c]) are becoming popular. Such switches have large flow table capacity and
can process packets at high rate (e.g., 40 Gbps on a quad-core machine [KARW14]).
However, software switches are more limited in forwarding and lookup rate than
commodity switches [MYSG13] for two main reasons. Firstly, software switches use
general purpose CPU for forwarding, whereas commodity switches use Application-
Specific Integrated Circuits (ASICs) designed for high speed throughput. Secondly,
rules in software switches are stored in the computer Random Access Memory
(RAM), which is cheaper and larger, while rules in commodity switches are stored
in TCAM, which allows faster lookup but has limited size. For example, an 8-core
PC supports forwarding capacities of 4.9 millions packets/s, while modern switches
using TCAMs do forwarding at a rate up to 200 millions packets/s [MNL+10].

To accelerate switching operations in software switches, flow tables can be stored
in CPU caches. Nevertheless, these caches are rather small, which brings the same
problem than with ASICs.

In Sec. 3.3, we extensively survey the techniques proposed in the literature to
cope with the memory limitation in the context of the OpenFlow Rules Placement
Problem.

3.2.2.2 Signaling overhead

Installing or updating rules for flows triggers the exchange of OpenFlow messages.
Inefficient rules placement solutions might also cause frequent flow table misses that
would require the controller to act. While the number of messages per flow is of
the order of magnitude of the network diameter, the overall number of messages
to be exchanged may become large. For instance, in a data center with 100,000
new flows per second [BAM10], at least 14 Gbps of overall control channel traffic is
required [IMS13]. Comparably, in dynamic environments, rules need to be updated
frequently (e.g., routing rules may change every 1.5s to 5s [MYSG12] and forwarding
rules can be updated hundreds times per second [ADRC14]).

In situations with large signaling load, the controller or switches might be
overloaded, resulting in the drop of signaling messages and consequently in potential
policy violations, blackholes, or forwarding loops. High signaling load also impacts
the CAPEX as it implies investment in powerful hardware to support the load.

We discuss rules placement solutions that deal with signaling overhead in Sec. 3.4.

3.3 Efficient Memory Management

As explained in Sec. 3.2.2, all required rules might not fit into the flow table of a switch
because of memory limitations. In this section, we classify the different solutions
proposed in the literature to manage the switch memory into three categories. In
Sec. 3.3.1, we detail solutions relying on eviction techniques. The idea of eviction
is to remove entries from a flow table before installing new entries. Afterwards,
in Sec. 3.3.2, we describe the techniques relying on compression. In OpenFlow,

22 Chapter 3. Literature Review

R1

R2

R3
R4

LRU, FIFO, Timeout Flow Table

New rule

Figure 3.1: An example of eviction. Rule R2 in the flow table is reactively evicted
using replacement algorithms (e.g., LRU, FIFO) when the flow table is full and a
new rule R4 needs to be inserted. R2 can also be proactively evicted using, for
example, a timeout mechanism.

compressing rules corresponds to building flow tables that are as compact as possible
by leveraging redundancy of information between the different rules. Then, in
Sec. 3.3.3, we explain the techniques following the split and distribution concept.
In this case, switches constitute a global distributed system, where switches are
inter-dependent instead of being independent from each other. Finally, we provide in
Table 3.2 a classification of the related work and corresponding memory management
techniques.

3.3.1 Eviction

Because of memory limitation, the flow table of a switch may be filled up quickly in
presence of large number of flows. In this case, eviction mechanisms can be used
to recover the memory occupied by inactive or less important rules to be able to
insert new rules. Fig. 3.1 shows an example where the flow table is full and new
rule R4 needs to be inserted. In this case, rule R2 in the flow table is evicted using
replacement algorithms (e.g., LRU, FIFO). R2 can also be proactively removed
using OpenFlow timeout mechanism.

The main challenge in using eviction is to identify high value rules to keep and
to remove inactive or least used rules.

Existing eviction techniques have been proposed such as Replacement algorithms
(Sec. 3.3.1.1), Flow state-based eviction (Sec. 3.3.1.2) and Timeout mechanisms
(Sec. 3.3.1.3).

3.3.1.1 Replacement algorithms

Well-known caching replacement algorithms such as Least Recent Used (LRU),
First-In First-Out (FIFO) or Random replacement can be implemented directly in
OpenFlow switches. Replacement algorithms are performed based on lifetime and
importance of rules, and is enabled by setting the corresponding flags in OpenFlow
switches configuration. As eviction is an optional feature, some OpenFlow switches
may not support it [Ope15b]. If the corresponding flags are not set and when the

3.3. Efficient Memory Management 23

flow table is full, the switch returns an error message when the controller tries to
insert a rule.

Replacement algorithms can also be implemented by using delete messages
(OFPFC_DELETE). If the flag OFPFF_SEND_FLOW_REM is set when the rule
is installed, the switch returns a message containing the removal reason (e.g., timeout)
and the statistics (e.g., flow duration, number of packets) on rule removal [Ope15b].
From OpenFlow 1.4, the controller can get early warning about the current flow
table occupation, so it can react to avoid flow table being full [KLC+14]. The desired
warning threshold is defined and configured by the controller.

Vishnoi et al. [VPMB14] argue that replacement algorithms are not suitable
for OpenFlow. First, implementing them on the switch side violates one of the
OpenFlow principles, which is to delegate all intelligence to the controller. Second,
implementing them at the controller side is unfeasible because of large signaling
overhead (e.g., large number of statistic collections and delete messages).

Among replacement algorithms, LRU outperforms others and improves flow
table hit ratio, by keeping most recently used rules in flow table, according to
studies [ZGL14, KLC+14]. However, the abundance of mice flows in data center
traffic can cause elephant flows’ rules to be evicted from the flow table [LKA13].
Therefore, in some cases, replacement algorithms need to be designed to favor rules
for important flows.

3.3.1.2 Flow state-based Eviction

In practical, flows vary in duration and size, some flows are much larger and longer
than other flows, according to studies [BAM10, KSG+09]. Flow state information
can be used to evict rules before their actual expiration, as proposed in [ZGL14,
Nev14, KB14]. For example, based on observation of flow packet’s flags (e.g., TCP
FIN flag), the controller can decide to remove the rule used for that flow by sending
delete messages. However, eviction algorithms relying on flow state can be expensive
and laborious to implement, because of large signaling overhead [ZGL14].

3.3.1.3 Timeout mechanisms

Rules in flow tables can also be proactively evicted after a fixed amount of time
(hard_timeout) thard or after some period of inactivity (idle_timeout) tidle using the
timeout mechanism in OpenFlow switches [Ope15b], if these values are set when
the controller installs rules.

Previous controllers have assigned static idle timeout values ranging from 5s in
NOX [GKP+08], to 10s and 60s in DevoFlow [CMT+11]. Zarek et al. [ZGL14] study
different traces from different networks and observe that the optimal idle_timeout
value is 5s for data centers, 9s for enterprise networks, and 11s for core networks.

Flows can vary widely in their duration [BAM10], so setting the same timeout
value for all rules may lead to inefficient memory usage for short lifetime flows. There-
fore, adaptive timeout mechanisms [VPMB14, XZZ+14, KB14, ZFLJ15, WWJ+15]

24 Chapter 3. Literature Review

R2

R3

R1

Flow Table

R23

src_ip = 10.0.0.0/24,
actions=output:2

src_ip = 10.0.1.0/24,
actions=output:2

src_ip = 10.0.0.0/23,
actions=output:2

Figure 3.2: An example of compression. R2 and R3 have the same actions field
and are compressed into a single rule R23 that has matching pattern covering both
matching patterns of R2 and R3. Thus, rule space consumption is reduced while
the original semantic is preserved.

have been proposed. In these studies, the timeout value is chosen and adjusted based
on flow state, controller capacity, current memory utilization, or switch location in
the network. These approaches lead to better memory utilization and do not require
the controller to explicitly delete entries. However, obtaining an accurate knowledge
about flow state is usually expensive as it requires a large signaling overhead to
monitor and collect statistics at high frequency.

In the original scheme of OpenFlow, when a packet matches a rule, the idle
timeout counter of the rule is reset but the gain is limited [XZZ+14]. Therefore,
Xie et al. [XZZ+14] propose that switches should accumulate remaining survival
time from the previous round to the current round, so that the rules with high
matching probability will be kept in the flow table. Considering the observation
that many flows never repeat themselves [BAM10], a small idle timeout value in the
range of 10ms – 100 ms is recommended for better efficiency, instead of using the
current minimum timeout of 1s [Ope15b, VPMB14]. These improvements require
modifications in the implementation of OpenFlow.

All of the above studies advocate using idle timeout mechanism, since using hard
timeout mechanism may cause rules removal during transmission of burst packets
and leads to packet loss, increased latency, or degraded network performance [Nev14].

3.3.2 Compression

Compression (or aggregation) is a technique that reduces the number of required
rules while preserving the original semantics, by using wildcard rules. As a result, an
original list of rules might be replaced by a smaller one that fits the flow table. As
an example in Fig. 3.2, R2 and R3 have the same actions field and are compressed
into a single rule R23 that has matching pattern covering both matching patterns
of R2 and R3. Thus, rule space consumption is reduced while the original semantic
is preserved.

Traditional routing table compression techniques for IP such as ORTC [DKVZ99]
cannot be directly applied to compress OpenFlow rules because of two reasons. First,
OpenFlow switches decide which rule will be used based on rule priority number

3.3. Efficient Memory Management 25

when there are several matching rules. Second, rules may contain multiple actions
and multiple matching conditions, not restricted to IP.

The challenge when using compression is to maintain the original semantics,
keep an appropriate view of flows and achieve the best tradeoff between compression
ratio and computation time. The limitation of this approach is that today not all
the OpenFlow matching fields support the wildcard values (e.g., transportation port
numbers).

In the following, we discuss the compression techniques used for access control
rules in Sec. 3.3.2.1 and forwarding rules in Sec. 3.3.2.2. Compression techniques
may reduce flow visibility and also delay network update; therefore, we discuss its
shortcoming and possible solutions in Sec. 3.3.2.3.

3.3.2.1 Access control rules compression

Most of firewall policies can be defined as a list of prioritized access control rules.
The matching pattern of an access control rule usually contains multiple header fields,
while the action field is a binary decision field that indicates to drop or permit the
packets matching that pattern. Normally, only rules with drop action are considered
in the placement problem since rules with permit action are complementary [ZIL+14].
Because the action field is limited to drop action, access control rules can be
compressed by applying compression techniques on rules matching patterns, to
reduce the number of rules required.

To that aim, rule matching patterns are represented in a bit array and organized
in a multidimensional space [KHK13, KLRW13], where each dimension represents
a header field (e.g., IP source address). Afterwards, heuristics such as Greedy are
applied on this data structure to compute optimized wildcard rules. For example,
two rules with matching m1 = 000 and m2 = 010 can be replaced by a wildcard rule
with m = 0 ∗ 1.

Matching patterns usually have dependency relationships. For example, packets
matching m1 = 000 also match m2 = 00∗, therefore m2 depends on m1. When
rules with these matching patterns are placed, the conflict between them needs to
be resolved. An approach for compression and resolving conflicts is to build a rule
dependency graph [KARW14, ZIL+14], where each node represents a rule and a
directed edge represents the dependency between them. Analyzing this graph makes
it possible to compute optimized wildcard rules and to extract the dependency
constraints to fetch for their optimization placement model.

The network usually has a network-wide blacklisting policy shared by multiple
users, for example, packets from a same IP address are dropped. Therefore, rules
across different access control lists from different users can also be merged to
further reduce the rule space required [ZIL+14]. Also, traditional techniques exist
to compress access control rules on a single switch [ACJ+07, LMT10, MLT12].

26 Chapter 3. Literature Review

3.3.2.2 Forwarding rules compression

In OpenFlow networks, forwarding rules can be installed to satisfy endpoint and
routing policies. A naive approach is to place exact forwarding rules for each flow on
the chosen path. However, this can lead to huge memory consumption in presence of
large number of flows. Therefore, compression can be applied to reduce the number
of rules to install.

Matching pattern of forwarding rules are usually simpler than access control
rules, but they have a larger palette of actions (e.g., bounded by the number of
switch ports) and they outnumber access control rules by far [BM14]. In addition,
forwarding rules compression has stricter time constraints than access control rules
compression when it comes to satisfying fast rerouting in case of failure.

OpenFlow forwarding rules can be interpreted as logical expressions [BM14],
for example, (’11*’, 2) represents for rules matching prefix ’11*’ and the action
field is to forward to port 2. Normally, rules with same forwarding behavior are
compressed into one wildcard rule. Also, it is important to resolve conflicts between
rules, for example, by assigning higher priority for rule (’11*’, 3) to avoid wrong
forwarding caused by rule (’1**’, 2). To compress and to resolve conflicts, the
Expresso heuristic [BM14] borrowed from logical minimization can be applied to
obtain an equivalent sets with a smaller size, which represents corresponding rules.
Another approach is to compress forwarding rules based on source, destination using
the heuristic MINNIE proposed in [RHC+15].

The routing policy plays an important role in applying compression techniques,
as it decides the paths where forwarding rules are placed to direct flows towards
their endpoints. Single path routing has been widely used because of its simplicity,
however, it is insufficient to satisfy QoS requirement, such as throughput [HLGY14].
Hence the adoption of multipath routing. Normally, forwarding rules are duplicated
on each path to route flows towards their destinations. By choosing appropriate
flow paths such that they transit on the same set of switches, forwarding rules
on these switches can be compressed [HLGY14]. For example, flow F uses path
P1 = (S1, S2, S3) and P2 = (S3, S2, S4) that have Switch S2 in common. On the
latter switch, two rules that forward F to S3, S4 can be compressed into one rule
match(F) → select(S3, S4). Also, forwarding rules may contain the same source
(e.g., ingress port), that can also be compressed [WWJ+15].

Generally, OpenFlow switches have a default rule with the lowest priority that
matches all flows. Forwarding rules can also be compressed with the default rule if
they have the same actions (e.g., forwarding with the same interface) [NSBT15a].
Also, forwarding paths for flows can be chosen such that they leverage the default
rules as much as possible. In this way, flows can be delivered to their destinations
with the minimum number of forwarding rules.

Even though the actions field of a rule may contain several actions (e.g., encap-
sulate, then forward), the number of combinations of actions is much less than the
number of rules and can thus be represented with few bits (e.g., 6 bits) [CSS10].
Several studies [CSS10, IMS13] propose to encode the actions for all intermediate

3.3. Efficient Memory Management 27

nodes in a list. This list is added to the header of each packet (e.g., using VLAN
field [IMS13]) by the ingress switch. Afterwards, each intermediate node identifies
its actions in the list (e.g., using pop VLAN action) and executes them. Finally,
the egress switch recovers the original packet and forwards it to the destination.
This idea is similar to IP source routing [Pos81]. This approach allows decreasing
significantly the number of forwarding rules in the core nodes, but at the same time,
it increases the packet size headers of all packets.

3.3.2.3 Shortcomings of the Compression approach

The compression approach reduces the number of required rules, but it makes flows
less visible since the wildcard rule is not used for a single flow and consequently,
the controller cannot control a flow (e.g., monitoring, rate limitation) without
impacting other flows. In many applications, one rule is required for each flow
to ensure flow visibility and controllability [JLG+14]. Moreover, finding a rule
placement with high compression ratio may require high computation time [LYL14].
Studies [CMT+11, IMS13] point out several insights to address these shortcomings.

First, in many scenarios, full control and visibility over all flows is not the
right goal as only some important, significant flows need full control [CMT+11].
For example, load balancing requires handling long lived, high throughput flows.
According to traffic analysis studies [BAM10], only a few percentages of flows (called
elephant flows), send a large number of bytes and the rest of flows, send a small
number of bytes. Therefore, wildcard rules [CMT+11] or default rules [NSBT15a]
can be used to handle these flows locally on switches and dedicated rules are installed
for elephant flows. In this manner, the number of rules required can be reduced,
since according to the flow size distribution [BAM10], the number of elephant flows
is much smaller than the number of other kinds of flows.

Second, even if each flow requires full control, usually only one exact-matching
rule for the flow in the network is needed [IMS13], and on the rest of the flow path
wildcard rules are used to handle it. In [IMS13], a solution is proposed to install
an exact forwarding rule for the flow at the first switch, which usually consists
in a software switch with a high capacity flow table. At intermediate switches,
forwarding rules that have the same output actions can be compressed into one
rule [CSS10, IMS13]. Other solutions [NHL+13, ADRC14] leverage exact-matching
tables (e.g., MAC forwarding tables), beside the wildcard matching flow tables in
switches. More precisely, the network is divided into two domains: one where flows
are controlled through wildcard rules and the other with exact-matching rules in
these tables. The controller computes and defines the best tuning point (i.e., where
the flow starts to use exact-matching rules) per flow basis.

Above solutions can reduce the number of forwarding rules while preserving exact
matching rules for flow management (e.g., monitoring, rate limitation). However,
the first hop switch is required to have high capacity and to perform intensive
computations (e.g., packets header changes), which incurs performance penalty.

Compression also incurs computational overhead and slows down the network

28 Chapter 3. Literature Review

R1 R2 R3 R4

R1
R2 R4

R3
Switch 1

Switch 2
Software

Switch

F

Figure 3.3: An example of distribution approach. The list of access control rules
R1, R2, R3, R4 is split and distributed, according to the device capacity and such
that every flow in F passes through all the rules in the list.

configuration update. Moreover, during the updating time, forwarding errors such
as reachability failures and loops are susceptible to occur [LYL14]. Therefore, to be
efficient, compression algorithms must achieve a trade-off between compression ratio
and update time. In general, most of compressed rules do not change during the
update process, so, the designed algorithm only needs to identify and re-compress
the affected rules. An example of such an algorithm is iFFTA [LYL14].

3.3.3 Split and Distribution

In general, a single switch does not have sufficient TCAM to store all rules. Therefore,
the set of rules is usually split and distributed over the network in a way that satisfies
policies. As shown in Fig. 3.3, the list of access control rules R1, R2, R3, R4 is split
and distributed on the switches, according to the device capacity and such that
every flow F passes through all the rules in the list.

The common approach to distribute rules is to formalize an optimization model
that decides which rules are placed on which node, such that policy constraints,
memory constraints, and rule dependency constraints are satisfied. The objec-
tive functions are flexible and depend on applications, such as to minimize the
total number of rules needed [KLRW13, KHK13, ZIL+14], to minimize energy con-
sumption [GMP14], or to maximize traffic satisfaction [NSBT15a]. Since the rules
placement problem is NP-hard in most of the cases, these studies also propose
heuristics to obtain near optimal rules placement solutions.

We first show in Sec. 3.3.3.1 the different options to distribute rules over a network
composed of multiple commodity OpenFlow switches built around TCAM-based
flow tables. Finally, in Sec. 3.3.3.2 we present how elementary network functions
can be performed by software switches or additional network devices to reduce
the controller overhead without impairing the management flexibility offered by
OpenFlow.

3.3. Efficient Memory Management 29

3.3.3.1 Rules distribution among commodity switches

Access control rules distribution There are different solutions to split and
distribute access control rules in OpenFlow networks [KHK13, KLRW13, ZIL+14,
KARW14, HCWL15].

The first challenge is how to split original access control rules into small, semantic
equivalent subsets to fit in flow tables. The common approach is to represent access
control rules as a directed dependency graph [KHK13, KARW14, ZIL+14], which
can be decomposed into subgraphs (e.g., using Cut Based Decomposition algo-
rithm [KHK13]), corresponding to subsets of rules that maintain original semantics.
Other approaches propose splitting rules based on range [YRFW10] or using the
Pivot Bit Decomposition algorithm [KHK13].

The second challenge is how to distribute and assign these subsets of rules to
switches. To that aim, linear programming models are formalized to assign subsets
of rules to switches. Kanizo’s model [KHK13] distributes rules over all shortest
paths from ingress to the egress node, such that each flow passes through all access
control rules. However, as shown in [KLRW13], this approach is suboptimal for two
reasons. First, only some paths require enforcing all access control rules. Second,
their algorithm cannot use all available switches when the shortest path’s length
is small. In Kang’s model [KLRW13], paths are derived from the routing policy
and only the rules that affect packets traversing that path is installed. Zhang’s
model [ZIL+14] captures the rules dependency and accounts for the compression
across rules from different ingress points to further reduce the number of rules
required.

Forwarding rules distribution Different forwarding rules distribution algo-
rithms have been proposed to implement forwarding plane for different objec-
tives ([ADRC14, IMS13, NHL+13, HLGY14, NSBT15a, GMP14, LLG14]). The
key challenge in forwarding rules distribution is how to select paths to install the
forwarding rules that satisfy the policies and network constraints.

Path choice plays an important role in forwarding rules placement. Flows use
rules on the paths to reach their endpoints and each path requires different rules.
Some paths are more efficient than others; for example, the shortest hop paths
are preferred because the minimum number of forwarding rules is needed [IMS13,
NHL+13]. The path choice also depends on the traffic engineering goals (e.g., energy
efficiency [GMP14]). As shown in Fig. 3.4, to satisfy the endpoint policy (i.e., flow
F exits at E1), rules can be placed on two different paths, one path needs two rules
R1, R2 and the other needs three rules R3, R1, R2. In this case, the former path is
preferred since less memory is consumed.

Flow may not always be carried on a single path (e.g., because of bandwidth
constraints). Paths can be chosen such that they satisfy the requirements while
maximizing the number of nodes between them, so that all the forwarding rules
required can be reduced thanks to compression [HLGY14]. In context of user mobility,
paths can be predicted based on velocity and direction, and then forwarding rules can

30 Chapter 3. Literature Review

R2

R3

R1

R1

F

E1
2

1

3

R2

Rule Match Action
R1
R2
R3

F To Switch 2
F To E1
F To Switch 3

Figure 3.4: An example of path choice. To satisfy the endpoint policy (e.g., flow F

exits at E1), rules can be placed on two different paths, one path needs two rules
R1, R2 and the other needs three rules R3, R1, R2. In this case, the former path is
preferred since less memory is consumed.

be installed on potential paths to avoid transmission interruption [LLG14, WWJ+15,
DLOX15].

Proposed studies can be classified into two groups: one group enforcing routing
policy (e.g., using shortest paths) [KHK13, KLRW13, ZIL+14, NHL+13, IMS13,
LLG14, WWJ+15] and another group that does not [HLGY14, NSBT15a, MYSG12,
YRFW10, KARW14, GMP14]. In the first group, the path is an input to the
problem, while it is an output in the second group.

Strictly following the routing policy (e.g., using shortest paths) is sometimes
necessary to obtain the required performance (e.g., throughput, latency). However,
the paths specified by the routing policy may not always have enough capacity to
place all the necessary rules.

As our motivation is to make the network becomes a blackbox, we believe that
the operators do not need to care about the routing policy. Therefore, we suggest to
use relaxing routing policy, which give more flexibility to use resources on other paths
so resource utilization, in particular switch memory, can be improved. However,
relaxing routing policy may lead to numerous possible paths, which is difficult to
choose a suitable one. We will discuss this approach and propose a path heuristic in
Chapter 4.

3.3.3.2 Rules distribution among commodity switches and additional
resources

Studies presented in Sec. 3.3.3.1 aim to distribute rules on commodity switches and
cannot directly be applied to under-provisioned networks where memory budget, in
particular with TCAMs, is limited [NSBT14, KARW14].

In practice, some flows are more sensitive to network conditions than others. For
example, flows from delay-sensitive applications (e.g., VoIP) require lower latency
than best effort traffic (e.g., Web browser). As a consequence, one can allow some
flows to be processed on low performance paths and let room for critical flows on

3.3. Efficient Memory Management 31

R1

E1

2

Permit users from IP1, IP2,
IP3 to access E

Switch Memory Capacity = 2

R2

RD1

Rule Match Action
R1
R2
R3

RD1

src_ip=ip1 To E
src_ip=ip2 To E
src_ip=ip3 To E

* To Switch 2
RD2 * Drop

R3

RD2

Flows

Figure 3.5: An example of using additional devices to offload flow processing from
commodity switches. Since Switch 1 does not have enough capacity to place all
necessary rules (R1, R2, R3), it uses the default rule RD1 to redirect flows to software
switch 2 for further processing. Flow from IP1 passes through switch 1 to reach E,
while flow from IP2, IP3 passes through switches 1,2 to reach E.

high-performance paths.
Recent studies suggest placing rules on additional, inexpensive devices without

TCAM (e.g., software switches) to offload the memory burden for commodity
switches [MYSG12, KARW14]. The default rules on the commodity switches can be
used to redirect flows that do not match any rule to these devices (e.g., the controller).
These devices usually have large capacity (e.g., large flow tables implemented in
RAMs), they are cheap to build (e.g., using Open vSwitch on a general purpose
CPU [Ope15c]) but have limitations in forwarding and lookup performance, compared
to commodity switches. An example is shown in Fig. 3.5; since Switch 1 does not
have enough capacity to place all necessary rules (R1, R2, R3), the default rule RD1
is used to redirect flows to software Switch 2 for further processing. Flows from IP1
pass through Switch 1 to reach E, while flows from IP2, IP3 pass through Switches
1, 2 to reach E.

With the support from additional devices, resources are split into two kinds:
fast (e.g., TCAM matching) and default (e.g., software switch matching). Stud-
ies [MYSG12, NSBT15a, KARW14] propose rules placement solutions that achieve
the best trade-off between performance and cost. Basically, each rule is assigned
an importance value, based on its priority and its dependency to other rules. Af-
terwards, linear programming models and heuristics are used to decide the most
profitable rules to keep on commodity switches and the remaining rules to be in-
stalled on software switches. The aim of objective functions can be to minimize the

32 Chapter 3. Literature Review

redirection cost [MYSG12], or to maximize the whole values of rules installed on
TCAM [KARW14].

The split and distribution approach combines different types of resources to
perform network-wide optimization and to reduce CAPEX. For example, a switch
with a large flow table capacity can be more expensive than several switches with
smaller flow tables. Most of the studies formalize an optimization model for rules
placement to maximize or minimize an objective function while satisfying different
constraints. The main advantage of this approach is the flexibility in objective
functions it allows, and its capacity to handle many constraints in a single framework.

However, this approach usually induces a redirection overhead (e.g., redirecting
packets causing a flow table miss to other nodes), computation overhead (e.g., solving
the optimization model), or rules duplication. Some studies require prediction of
the traffic matrix, or future location of users, to be able to solve some optimization
models. Such an accurate prediction is costly, because it requires a large signaling
overhead to collect network statistics and continuous calibration of the prediction
model.

Table 3.2: Comparison of related work by rule placement mode (R: Reactive, P:
Proactive), memory management techniques (eviction, compression, distribu-
tion), use cases and validation methodology

Related work Mode Eviction Compression Distribution Use Cases Validation
Zarek et al. [ZGL14] R v - Simulation
Kim et al. [KLC+14] R v - Emulation
Xie et al. [XZZ+14] R v Traffic Engineering Simulation
Zhu et al. [ZFLJ15] R v Traffic Engineering Simulation
Vishnoi et al. [VPMB14] R v Traffic Engineering Prototype
Curtis et al. [CMT+11] P v Flow Management in Data Centers Simulation
Chiba et al. [CSS10] R v - Prototype
Luo et al. [LYL14] - v - Simulation
Braun et al. [BM14] P v BGP Flow Table Management Simulation
Yu et al. [YRFW10] R v v Flow Management Prototype
Agarwal et al. [ADRC14] R v v Data Forwarding in Data Centers Prototype
Moshref et al. [MYSG12] P v v Cloud, Data Centers Prototype
Nakagawa et al. [NHL+13] P v v Traffic Engineering Prototype
Iyer et al. [IMS13] P v v Traffic Engineering Emulation
Kanizo et al. [KHK13] P v v Distributed ACLs Simulation
Kang et al. [KLRW13] P v v Distributed ACLs, Load Balancer Simulation
Katta et al. [KARW14] P v v Distributed ACLs Prototype
Huang et al. [HLGY14] P v v Traffic Engineering Simulation
Zhang et al. [ZIL+14] P v v Distributed ACLs Simulation
Huang et al. [HCWL15] P v v Distributed ACLs Simulation
Giroire et al. [GMP14] P v v Energy efficiency routing Simulation
Li et al. [LLG14] P v Data forwarding in Mobile networks Simulation
Nguyen et al. [NSBT15a] P v v Traffic engineering Simulation
Wang et al. [WWJ+15] P v v v Data forwarding in Vehicle networks Simulation
Rifai et al. [RHC+15] R v v Traffic Engineering Prototype

3.4 Reducing Signaling Overhead

As explained in Sec. 3.2.2, the signaling overhead should not be neglected while
solving the OpenFlow rules placement problem. Reducing the signaling overhead
is a key factor to increase the scalability of any rules placement solution. In this

3.4. Reducing Signaling Overhead 33

F1
1

Controller

E1
4 7

Figure 3.6: An example of reactive rules placement. Rules are placed on demand,
after flows arrive.

F1
3

Controller

E1

Figure 3.7: An example of proactive rules placement. Rules are placed in advance,
before a flow arrives.

section, we summarize the ideas that have been proposed to reduce the signaling
overhead.

3.4.1 Reactive and Proactive Rules Placement

There are two approaches for rules placement in OpenFlow: reactive and proactive.

3.4.1.1 Reactive

With the Reactive approach, rules are populated on demand to react upon flow
events. As stated in the OpenFlow specification [Ope15b], for each new flow, the
switch enqueues the packet and informs the controller about the arrival of a new
flow. Afterwards, the controller computes the rules to be associated with the new
flow and installs them in the network. So normally, a new flow requires 2n messages,
where n is the number of path hops. Once the rules are installed on the switches,
packets are dequeued and forwarded in the network. Any subsequent packet of the
flow will then be processed by the freshly installed rules without further intervention
of the controller. An example of reactive rules placement is shown in Fig. 3.6, in
which a flow is queued at two switches (Arrow 1, 4). Four OpenFlow messages are
required, including two new flow messages (Arrow 2, 5) and two rule installation
messages (Arrow 3, 6), to forward the packets of flows towards the endpoint E1
(Arrow 7).

34 Chapter 3. Literature Review

Reactive rules placement is required to adjust network configuration continuously
with the current network state. For example, a new coming flow requires the controller
to setup the path, whereas a down link event requires the controller to reroute all
the affected flows.

However, using a reactive approach for all the flows is not the right solution be-
cause the controller and the switch buffer may be overloaded, e.g., in presence of large
number of new flows (e.g., 100k new flows per second in a cluster [KSG+09]). Another
drawback is the additional latency (e.g., 10ms to 20ms in data centers [CMT+11]).
Therefore, the reactive approach should not be used for all flows.

3.4.1.2 Proactive

In this approach, rules are populated in advance, i.e., before the first packet of a new
flow arrives. The proactive approach nullifies the setup delay of rules and reduces
the overall number of signaling messages. An example of reactive rules placement is
shown in Fig. 3.7. The controller installs rules for flow F1 in advance (Arrow 1, 2),
before the flow F1 arrives (Arrow 3). So, two OpenFlow messages are required and
there is no setup delay.

This proactive approach is common in studies focusing on access control [KHK13,
KLRW13, ZIL+14, KARW14], as access control rules are predefined by operators
independently of the traffic. The same approach can be used to decide forwarding
rules in the network but it requires predicting or estimating in advance, the traffic
demand or the user location [GMP14, NSBT15a, LLG14, HLGY14, WWJ+15]. In
some practical situations, achieving accurate prediction is difficult as it incurs the
collection of data and induces signaling messages [BAAZ11]. Therefore, the proactive
approach is suitable only for the flows that can be predicted with high accuracy.

We classify the related work that uses proactive and reactive approach in Ta-
ble 3.2.

3.4.2 Delegating Functions to OpenFlow switches

Rules placement solutions need to be frequently updated often to adapt with current
network state. But updating network and collecting statistics incurs load on the
controller (e.g., CPU, bandwidth, memory) when done frequently. In this section,
we discuss several solutions that can be used to reduce the signaling overhead.

Elementary network functions such as MAC learning and ICMP processing can
be delegated to the switches, not only to reduce the signaling overhead, but also to
keep basic network functions when controllers are not reachable [KREV+15].

To reduce both signaling overhead and delay caused by new flow setup, sev-
eral studies [CMT+11, KREV+15, NHL+13] suggest delegating some functions to
OpenFlow switches. Instead of querying the controller for each flow, switches can
identify and process some flows (e.g., mice flows) and interrogate the controller when
decisions are necessary.

Other mechanisms such as rule cloning and local actions also contribute to

3.5. Conclusion 35

reducing the signaling overhead [CMT+11]. More precisely, rule cloning allows the
switch to clone a rule from a pre-installed wildcard rule to handle a flow; local actions
allows the switch to change the action field in rules, for example, fast re-routing
to another path in case of link failures, without invoking the controller. Another
approach is to use authority switches [YRFW10], which are built on top of OpenFlow
switches. Authority switches can be used to handle flow table misses from edge
switches, thus keeping the packets causing misses in the data-plane.

On rule removal (e.g., because of a timeout), signaling messages are required to
inform the controller. To reduce the removal and re-installation overhead, eviction
mechanisms like LRU or timeouts (mentioned in Sec. 3.3.1) can be directly imple-
mented on the switches to keep rules with high matching probability in the flow
table while automatically freeing space for new flows, everytime without invoking
the controller.

Rules placement is computed using statistics queried from the network. For
example, by collecting the number of bytes sending so far, the controller can detect
that some flows are elephant and then install forwarding rules using the shortest
paths. In general, high accuracy inputs require intensive collection of traffic statistics.

To reduce the overhead due to the collection of statistics, the default pull-based
mechanism (i.e., the controller requests and receives statistics) can be replaced by
a push-based mechanism [CMT+11] (i.e., the switch pushes the statistics to the
controller when defined conditions are satisfied, for example, when the number of
packets exceeds a threshold). Another complementary solution is to replace current
OpenFlow counters by software defined counters [MC12], which support additional
features such as data compression and elephant flows detection. In this manner, the
statistics collection overhead can be further reduced.

Delegating elementary functions to switches is a way to reduce the signaling
overhead between controllers and switches and to increase the overall scalability (e.g.,
the controller is less loaded) and the availability (e.g., basic network functionalities
remain available upon controller failure). However, this approach requires more
complex software and hardware than vanilla OpenFlow switches, which increases
the cost of the device and may cause inconsistencies as each device makes its own
decision [VCB+15].

3.5 Conclusion

Software Defined Networking and OpenFlow offer the ability to simplify network
management and reduce costs by raising the level of network abstraction. An
abstraction layer between operators and the network is desired to compile the
high-level policies from operators into low level OpenFlow rules. To that aim,
it is important to solve the OpenFlow Rules Placement Problem, that decide the
OpenFlow rules that must be deployed and where to install them in order to
efficiently use network resources, such as bandwidth and memory, while respecting
operational constraints and policies.

36 Chapter 3. Literature Review

In this chapter, we present the body of the literature related to that problem.
We first formalize the problem and identify two main challenges: resource limitations
and signaling overhead. We then classify and discuss existing solutions to solve
these two challenges. Moreover, we identify a limitation of existing solutions when
enforcing the routing policy. In the following chapter, we use a new approach to
design a novel rules placement algorithm.

Chapter 4

Offline Rules Placement in
OpenFlow Networks

Contents
4.1 Introduction . 37
4.2 General Model to Allocate Rules in OpenFlow 40
4.3 Rule Allocation Under Memory Constraints 43

4.3.1 Minimizing Memory Usage . 44
4.3.2 Maximizing Traffic Satisfaction 44
4.3.3 Heuristic . 45

4.4 Evaluation . 48
4.4.1 Methodology . 49
4.4.2 Results . 51

4.5 Discussion . 53
4.5.1 Routing Policy . 53
4.5.2 Rule Aggregation . 53
4.5.3 Multipath . 53
4.5.4 Related Work . 54

4.6 Conclusion . 55

In previous chapter, we define OpenFlow Rules Placement Problem (ORPP)
and discuss related work. We also identify a limitation of existing solutions when
enforcing the routing policy.

This chapter presents a new approach for offline ORPP, in which the set of
flows are known in advance or predicted, for example, traffic matrices that represent
Source-Destination (SD) Flows, can be predicted [LHO+14]. We aim to design novel
algorithms that generate rules satisfying endpoint policies, network constraints (e.g.,
memory, bandwidth), while minimizing the percentage of traffic processed by the
default devices. The content of this chapter corresponds to our publications [NSBT14,
NSBT15a].

4.1 Introduction

The role of a network is to route each packet from an ingress link (i.e., the link from
which the packet entered the network) to an egress link (i.e., the link at which the

38 Chapter 4. Offline Rules Placement in OpenFlow Networks

packet leaves the network).1 According to operational and economical requirements,
the choice of the egress link to which a packet must be forwarded is dictated by the
Endpoint Policy and the actual path followed by a packet in the network is decided
by the Routing Policy [KLRW13].

Endpoint policies are driven by high-level economical and technical considerations.
For example, shared-cost links are often privileged by ISPs and data-centers make
sure that packets are delivered to servers able to handle them. On the other hand,
routing policies are related to the good usage of resources in the network. Shortest-
path routing is the most common routing policy. Its advantages stem from the fact
that it minimizes the amount of links and nodes traversed by a packet across the
network and that routing tables are computed in polynomial time [Bel58] but other
routing policies are also possible, for instance, compact routing [TZ01].

From that point of view, respecting the endpoint policy is essential while the
routing policy is just a tool to achieve this goal [JKM+13]. Unfortunately, relaxing
routing policies and removing strong path requirements is not practically doable
when the network relies on distributed routing algorithms as it would imply a
high signaling overhead to ensure consistency of decisions [POB+14]. But with
the advent of Software-Defined Networking (SDN) and OpenFlow in particular,
it is now possible to manage routing using a centralized approach without losing
in terms of scalability or robustness [MAB+08b]. OpenFlow allows operators to
conceive their network as a black box aiming at carrying packets from sources to
destinations [MAB+08b, JKM+13, NSBT14]. The network thus becomes a single
entity that the operator can program instead of a bunch of devices to configure.
This is achieved in OpenFlow thanks to a logically centralized controller that fetches
information from the network, computes appropriate routes according to the operator
wills and network conditions, and then transparently pushes the corresponding
forwarding rules into the switches.

We illustrate the gain from relaxing routing policy in Fig. 4.1 that shows a
symmetric network of 8 switches with two ingress links (East and West) and two
egress links (North and South). In this example, the endpoint policy stipulates
that destinations A and B must be reached by the North egress link while any other
destination must be reached by the South egress link. With the shortest path routing
policy (Fig. 4.1a), every destination is reached in 3 hops and for a total of 15 routing
entries. With a policy minimizing the number of routing entries (Fig. 4.1b), the
routing table is reduced to 9 entries but the memory reduction comes at the cost of
longer paths for A and B (i.e., 4 hops). However, in practice networks might have
bandwidth or memory constraints to be respected. For instance, suppose in our
network example that each switch can store 2 routing entries. In this case, the two
previous routing policies cannot be applied as they would violate the constraints
whereas Fig. 4.1c shows an allocation that respects both the endpoint policy and
the switches’ constraints.

1In this chapter, we use the terms packet, router and routing table in their general sense, making
no fundamental distinction between packets and frames, routers and switches, or between routing
tables and forwarding tables.

4.1. Introduction 39

Dest To
A E
B E

Dest. To
A N
B N

Others E

Dest. To
Others E

Dest. To
Others S

Dest. To
Others W

Dest. To
A N
B N

others W

Dest. To
A N
B N

Dest. To
A W
B W

A,B A,B

A,B A,B

Others Others Others Others

A,B

Others

(a) Shortest path routing policy

Dest. To

Dest. To
Others E

Dest. To
Others E

Dest. To
A N
B N

Others S

Dest. To
Others W

Dest. To
others W

Dest. To
A N
B N

Dest. To

A,BA,B A,B A,B

A,B

Others Others Others Others

A,B

Others

(b) Minimize table routing policy

Dest. To
A E

Dest. To
A N

Others E

Dest. To
Others E

Dest. To
B N

Others S

Dest. To
Others W

Dest. To
A N

others W

Dest. To
A N
B N

Dest. To
A W

BB B B

BA A

A A

Others Others Others Others

A,B

Others

(c) Constrained network

Figure 4.1: Example of the routing policy on the path followed by packets

40 Chapter 4. Offline Rules Placement in OpenFlow Networks

Departing from the flexibility offered by OpenFlow, we present OFFICER, a
general algorithm to calculate and implement efficient forwarding rules in switches.
OFFICER treats the network as a black box that must satisfy the endpoint policy
imposed by the operator and tries to get the maximum from the available resources
by adapting the routes followed by the different packets towards their desired egress
links. When the network is under-provisioned, least valuable packets are routed
through a default slow path designed to minimize resource usages. As suggested
in [JKM+13] and [NSBT14], we believe that in most networks, enforcing a particular
path is not necessary as long as the endpoint policy is respected. Actually, not
relying on strict routing policies allows better utilization of the network capacity,
reducing so bandwidth wastage and congestion events [JKM+13]. Relaxing routing
policy is particularly useful in case of scarce network resources as shown in Fig. 4.1
and in [NSBT14].

The remaining of this chapter presents our algorithm OFFICER to allocate
forwarding rules in OpenFlow networks. This algorithm is the result of a general ILP
optimization model formulated in Sec. 4.2, where the OpenFlow network is modeled
as a directed graph interconnecting switches and the rules to install on switches are
to be found. Our model is general in the sense it can accept any endpoint policies
and can accommodate any reward functions (i.e., high-level objective) that the
operator aims to maximize. Its novelty can be summarized in two main points: (i)
modeling the network as a black box respecting the endpoint policy, and (ii) getting
the maximum from the available resources by relaxing routing policy, the rest of the
traffic that cannot be installed is routed on a default path. As to be discussed in
the related work section (Sec. 4.5.4), we are the first to propose a solution making
such abstraction of an OpenFlow network, with a clear gain in terms of the volume
of traffic that can be correctly assigned to its desired egress point. To illustrate
the flexibility of our proposition, we study the particular case of network that is
missing memory to account for all forwarding rules in Sec. 4.3. This is a growing
problem in networks because of the increase in size of routing tables but also due to
the trend to keep outdated routers in operation [BFCW09]. This problem can even
be exacerbated with OpenFlow as it enables very fine granularity on forwarding
decisions. In Sec. 4.4 we numerically evaluate the costs and benefits of relaxing
routing policy on ISP and data-center topologies and present different heuristics that
approximate the optimal algorithm in polynomial time. We open some discussion in
Sec. 3.5 to finally conclude in Sec. 4.6.

4.2 General Model to Allocate Rules in OpenFlow

In this section, we formalize a general optimization model for OpenFlow rule
allocation and endpoint policy enforcement. The goal of the optimization is to
find an allocation of forwarding rules in an OpenFlow network such that the high-
level objectives of the operator are respected and network constraints are satisfied.
However, depending on the high-level objectives and the network constraints, it may

4.2. General Model to Allocate Rules in OpenFlow 41

not be possible to satisfy the endpoint policy for every flow and packets of flows
that cannot respect the endpoint policy are then forwarded on an arbitrary default
path. In the context of OpenFlow, we assume the existence of: (1) a centralized
controller that can be reached from every switch in the network and (2) a default
path used in every switch to forward packets that do not match any forwarding rule
to the controller. 2

Based on these assumptions, our optimization model is expressed as an Integer
Linear Program (ILP) with constraints and the goal is to maximize an objective
function that abstracts the high-level objectives of the operator. Without loss of
generality, we assume that one forwarding rule is used for at most one flow. This
assumption is also used in [JLG+14] to keep the core simple with exact matching
rules and easy to manage flows (e.g., rate limitation, accounting). Moreover this
has the advantage of keeping our model linear (see 4.5.2).

In the following, we define a flow f ∈ F as a set of packets matching a pattern,
starting from one ingress link lf ∈ I and targeting one of the egress links el ∈ E(f).
We mean by F the network workload, I the set of ingress links of the network,
E(f) ⊆ E is the set of all possible egress links and pf is the packet rate of flow f .

The optimization builds an |F |-by-|L| Boolean allocation matrix denoted by
A = (af,l), where af,l indicates whether flow f passes through the directional link
l = (u, v);u, v ∈ S+ from node u to node v or not. We refer to Table 4.1 for the
definition of the different notations used along this paper.

Our optimization model is twofold. One part implements the high-level objectives
and the other defines the constraints imposed by the network. For the first part, and
without loss of generality, the optimization of the high-level objectives can be written
as the maximization of an objective function F(A, . . .). Additional constraints can
be added to account for the real network conditions and to limit the space of possible
solutions.

The second part of the model consists of a set of constraints on the allocation
matrix A to ensure that network limitations and the endpoint policy are respected.
Constraints related to the network are defined so to avoid forwarding loops, band-
width overload, or memory overflow while endpoint policy constraints ensure that
packets can only be delivered to valid egress links.
Network constraints:

∀f ∈ F,∀l ∈ L+ : af,l ∈ {0, 1} (4.1)
∀f ∈ F,∀s ∈ S :

∑
v∈N→(s)

af,(v,s) =
∑

v∈N←(s)
af,(s,v) (4.2)

∀f ∈ F : af,l =

0 if l ∈ I \ {lf}
1 if l = lf

(4.3)

Constraint (4.1) verifies that af,l is a binary variable. To avoid forwarding loops,
acceptable solutions must satisfy flow conservation constraints (4.2) that ensure that

2Our model supports multiple controllers.

42 Chapter 4. Offline Rules Placement in OpenFlow Networks

Table 4.1: Notations used for the Optimization model.

Notation Description
F Set of flows.
S Set of OpenFlow switches composing the network.
Se Set of external nodes directly connected to the network

but not part of the network to be optimized (e.g., hosts,
provider or customer switches, controllers, blackholes).

S+ Set of all nodes (S+ = S ∪ Se).
L Set of directed links, defined by (s, d) ∈ S × S, where s is

the origin of the link and d is its termination.
I Set of directed ingress links that connect external nodes

to OpenFlow switches, defined by (s, d) ∈ Se × S. The
particular ingress link of a flow f ∈ F is written lf by abuse
of notation.

E Set of directed egress links that connect the OpenFlow
switches to external nodes, defined by (s, d) ∈ S × Se.

L+ Set of all directed links (i.e., L+ = L ∪ I ∪ E).
N→(s) ⊆ S+ set of incoming neighboring nodes of switch s ∈ S (i.e.,

neighbors from which s can receive packets).
N←(s) ⊆ S+ Set of outgoing neighboring nodes of switch s ∈ S (i.e.,

neighbors towards which s can send packets).
E(f) ⊆ E Set of valid egress links for flow f ∈ F according to the

endpoint policy.
E∗(f) ⊆ E E∗(f) = E(f) ∪ ∗, where ∗ denotes the set of links

attached to the controller.
def(s) ∈ S+ Next hop toward the controller from switch s ∈ S.
M Total switch memory limitation.
Cs Memory limitation of switch s ∈ S.
Bl Capacity of link l ∈ L+.
pf Packet rate of flow f ∈ F .

the traffic entering a switch always leaves the switch. Constraint (4.3) is a sanity
constraint. It indicates that among all ingress links, packets of the flow can only
traverse the ingress link of f .
Bandwidth Constraints:

∀l ∈ L+ :
∑
f∈F

pfaf,l ≤ Bl (4.4)

Constraint (4.4) accounts for bandwidth limitation and ensures that the sum of
the rates of the flows crossing a link l does not exceed its capacity.3

3The capacity of a link corresponds to the minimum capacity reserved for delivering packets

4.3. Rule Allocation Under Memory Constraints 43

Memory Constraints:

∀s ∈ S :
∑

v∈N←(s)\{def(s)}

∑
f∈F

af,(s,v) ≤ Cs (4.5)

∑
s∈S

∑
v∈N←(s)\{def(s)}

∑
f∈F

af,(s,v) ≤M (4.6)

Constraint (4.5) accounts for when the memory of each switch is known in
advance. On the contrary, when the memory to be allocated on a switch is flexible
(e.g., in a Network-as-a-Service context or in virtual private networks where the
memory is divided between multiple tenants), the operator may see the memory as
a total budget that can be freely divided between switches which is accounted by
constraint (4.6).

To route a flow f via a directed link l = (s, d), a rule must be installed on switch
s. However, if the next hop dictated by the forwarding rule is the same as the one
of the default action of the switch, it is unnecessary to install the rule. This simple
aggregation of forwarding rules is taken into account in constraints (4.5) and (4.6).
We refer to Sec. 4.5.2 for a discussion about rule aggregation.
Endpoint policy constraints:

∀f ∈ F,∀l ∈ E \ E∗(f) : af,l = 0 (4.7)
∀f ∈ F :

∑
l∈E∗(f)

af,l = 1 (4.8)

Flows need to satisfy the endpoint policy, i.e., packets of flow f should exit the
network at one of the egress points predefined in E(f). However, it may not be
possible to allocate each single flow and thus, some will be diverted to the controller
instead of their preferred egress point. Constraint (4.7) and (4.8) ensure that the
endpoint policy is respected by imposing that packets of a flow either exit at one
valid egress link or at the controller.

The allocation matrix is a source of information for an operator as it provides at
the same time the forwarding table, switch memory occupation, and link usage for
a given high-level objective and endpoint policy. It is also important to notice that
while a problem may have several equivalent solutions, it may also be unsolvable,
depending on the objective function and the constraints. In addition, the general
problem is NP-hard as Sec. 4.3.2 demonstrates.

4.3 Rule Allocation Under Memory Constraints

Considering the network as a black box offers flexibility but may lead to the
creation of a potentially very large set of forwarding rules to be installed in the
network [KLRW13, NSBT14, KHK13]. With current switch technologies, this large

of flows satisfying the endpoint policy. If the link may be used to forward packets of flows not
satisfying the endpoint policy, capabilities must be set up to reserve a capacity of at least Bl on the
link for flows satisfying the endpoint policy, independently of the total traffic carried by the link.

44 Chapter 4. Offline Rules Placement in OpenFlow Networks

volume of rules poses a memory scaling problem. Such a problem can be approached
in two different ways: either the memory capacity of switches is not known and the
problem is then to minimize the overall memory usage to reduce the cost, or the
memory capacity is known and the problem becomes the one of finding an allocation
matrix that satisfies as much as possible high-level objectives of the operator and
the endpoint policy.

In Sec. 4.3.1, we show how to use our model to address the memory minimization
problem while in Sec. 4.3.2 we use our model to maximize the traffic satisfaction in
case of constrained switch memory. Unfortunately, finding the optimal solution in
all circumstances is NP-hard, so we propose a computationally tractable heuristic in
Sec. 4.3.3 and evaluate different allocation schemes over representative topologies in
Sec. 4.4.

4.3.1 Minimizing Memory Usage

A first application of our model is to minimize the overall amount of memory used in
the network to store forwarding rules. This objective is shared by Palette [KHK13]
and OneBigSwitch [KLRW13], with always the possibility in our case to relax the
routing policy and view the network as a black box. To do so, one has to define the
objective function so as to count the number of assigned entries in the allocation
matrix as detailed in Eq. (4.9).

F(A,S,N←, F) = −
∑
s∈S

∑
v∈N←(s)\{def(s)}

∑
f∈F

af,(s,v) (4.9)

Constraint (4.10), derived from constraint (4.8), is added to prevent packets
to always be diverted to the controller (which would effectively minimize memory
usage).

∀f ∈ F :
∑
l∈∗
af,l = 0 (4.10)

Parameters Cs, ∀s ∈ S and M used by constraints (4.5) and (4.6) should be set
to ∞. However, if for technical or economical reasons the individual memory of
switches cannot exceed a given value, then Cs must be set accordingly.

4.3.2 Maximizing Traffic Satisfaction

When the topology and switch memory are fixed in advance, the problem transforms
into finding a rule allocation that satisfies the endpoint policy for the maximum
percentage of traffic.4 The definition given in Sec. 4.3.1 is sufficient to this end. It
must however be complemented with a new objective function, that models the
reward from respecting the endpoint policy where a flow that does not see its

4This objective is equivalent to minimize the percentage of traffic processed by default devices,
a.k.a the default load.

4.3. Rule Allocation Under Memory Constraints 45

endpoint policy satisfied is supposed not to bring any reward. A possible objective
function for this problem is:

F(A,F,E) =
∑

f∈F

∑
l∈E(f)

wf,l af,l (4.11)

where wf,l ∈ R+ is the normalized gain from flow f ∈ F if forwarded on link l ∈ E(f).
In other words, wf,l rewards the choice of a particular egress link. In the typical
case where the goal is to maximize the volume of traffic leaving the network via an
egress point satisfying the endpoint policy, we have ∀f ∈ F,∀l ∈ E(f) : wf,l = pf .

Theorem 1. The rule allocation problem defined to maximize traffic satisfaction is
NP-hard.

Proof. Let us consider an instance of the problem defined with the objective func-
tion (4.11), with the topology consisting of one OpenFlow switch, one ingress link,
and one egress link e for all flows. Then, let us assume that the switch memory
is larger than the number of flows and thus the limitation only comes from the
available bandwidth at the egress link e. The problem then becomes how to allocate
rules so as to maximize the gain from the traffic exiting the network at egress link e
(the rest of the traffic is forwarded to the controller over the default path). For this
instance, we can simplify the problem as follows:

maximize
∑
f∈F

wf,eaf,e (4.12)

∀f ∈ F : af,e ∈ {0, 1} (4.13)∑
f∈F

pfaf,e ≤ Be (4.14)

This is exactly the 0-1 Knapsack problem, which is known as NP-hard. In
consequence, the rule allocation problem defined with the objective function (4.11)
and from which this instance derives is NP-hard.

4.3.3 Heuristic

Finding a rule allocation that maximizes the value of the traffic correctly forwarded
in the network when switch memory is predefined is not tractable (see Theorem 1).
Therefore, an optimal solution can only be computed for small networks with a
few number of flows. Consequently, we propose in this section a heuristic to find
nearly optimal rule allocations in tractable time. The general idea of the heuristic is
described in Sec. 4.3.3.1 and the exact algorithm and the study of its complexity is
given in Sec. 4.3.3.2.

4.3.3.1 Deflection technique

The number of paths between any pair of nodes exponentially increases with the
size of the network. It is therefore impractical to try them all. To reduce the space

46 Chapter 4. Offline Rules Placement in OpenFlow Networks

 E

CE

CF FF

DefaultPath

Controller I

Figure 4.2: Deflection techniques illustrated with 3 deflection strategies.

to explore, we leverage the existence of the default path. Our idea is to forward
packets of a flow on the shortest path between the egress point of the flow and one
of the nodes on the default path. Consequently, packets of a flow are first forwarded
according to the default action and follow the default path without consuming
any specific memory entry, then are deflected from the default path (consuming so
memory entries) to eventually reach an egress point. That way, we keep tractable
the number of paths to try while keeping enough choices to benefit of path diversity
in the network. The decision of using the shortest path between default paths and
egress points is motivated by the fact that the shorter a path is, the least the number
of memory entries to be installed is, letting room for other flows to be installed as
well.

To implement this concept, for every flow, switches on the default path are
ranked and the algorithm tries each of the switches (starting from the best ranked
ones) until an allocation respecting all the constraints is found. If such an allocation
exists, a forwarding rule for the flow is installed on each switch of the shortest path
from the selected switch on the default path to the egress point. The rank associated
to each switch on a default path is computed according to a user-defined strategy.
Three possible strategies are:

• Closest first (CF): as close as possible to the ingress link of the flow.

• Farthest first (FF): as close as possible to the controller.

• Closest to edge first (CE): as close as possible to the egress link.

In CF (resp. FF) the weight of a switch on the path is then the number of hops
between the ingress link (resp. controller) and the switch. On the contrary, the
weight of a switch with CE is the number of hops separating it from the egress point.
The deflection techniques and the three strategies are summarized in Fig. 4.2.

4.3.3.2 Greedy algorithm

Algorithm 1 gives the pseudo-code of our heuristic, called OFFICER, constructed
around the deflection technique described in Sec. 4.3.3.1. The algorithm is built

4.3. Rule Allocation Under Memory Constraints 47

upon the objective function in (4.11) that aims at maximizing the overall weight of
flows eventually leaving the network at their preferred egress point. The algorithm
is greedy in the sense that it tries to install flows with the highest weight first and
fill the remaining resources with less valuable flows. The rationale being that the
flows with the highest weight account the most for the total reward of the network
according to Eq. (4.11).

Algorithm 1: OFFICER
1 INPUT: flow weights collection W : F × E → R+, set of network switches S,
set of links L+, set of default path for flows DefaultPath, a default path is a
set of switches, annotated with a rank, on the path towards the controller.

2 OUTPUT: A, a |F |-by-|L+| binary matrix
1: A ← [0]F.L+

2: M ← sort(W,descending)
3: for all (f, e) ∈M do
4: sequence ← sort(DefaultPath(f), ascending)
5: for all s ∈ sequence do
6: if canAllocate(A, f, e, s) then
7: allocate(A, f, e, s)
8: break

Line 2 constructs an order between the flows and their associated egress points
according to their weights such that the greedy placement starts with the most
valuable flow-egress option. Line 4 determines the sequence of switches along the
default path that the algorithm will follow to greedily determine from which switch
the flow is diverted from the default path to eventually reach the selected egress
point.

The canAllocate(A, f, e, s) function determines whether or not flow f can be
deflected to egress point e at switch s according to memory, links, and routing
constraints. Thanks to constraint (4.8), the canAllocate function ensures that
a flow is not delivered to several egress points. Finally, the allocate(A, f, e, s)
function installs rules on the switches towards the egress point by setting af,l = 1 for
all l on the shortest path from the deflection point to the egress point. If there are
many possible shortest paths, the allocate function selects the path with minimum
average load over all links on that path.

When the number of flows is very large w.r.t. the number of switches and the
number of links, which is the common case, the asymptotic time complexity5 of the
greedy algorithm is driven by Line 2 and is hence O(|F | · log(|F |)). Unfortunately,
even with the polynomial time heuristic, computing an allocation matrix may be
challenging, since this matrix is the direct product of the number of flows and links.
For example, in data-center networks both the number of links and flows can be very

5It is worth to notice that we assume that the algorithm to construct the DefaultPath input is
O(|F |) when the number of flows is large.

48 Chapter 4. Offline Rules Placement in OpenFlow Networks

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Capacity

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
tr

a
ff

ic
 c

o
v
e
re

d

CE_MIN

RP_MIN

OP_MIN

CE_MAX

RP_MAX

OP_MAX

(a) Abilene

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Capacity

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
tr

a
ff

ic
 c

o
v
e
re

d

CE_MIN

RP_MIN

CE_MAX

RP_MAX

(b) ScaleFree

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Capacity

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
tr

a
ff

ic
 c

o
v
e
re

d

CE_MIN

RP_MIN

OP_MIN

CE_MAX

RP_MAX

OP_MAX

(c) FatTree8

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Capacity

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
tr

a
ff

ic
 c

o
v
e
re

d

CE_MIN

RP_MIN

CE_MAX

RP_MAX

(d) FatTree16

Figure 4.3: Proportion of traffic covered

large ([BAM10]). With thousands of servers, if flows are defined by their TCP/IP
4-tuple, the matrix can be composed of tens of millions of entries. A way to reduce
the size of the allocation matrix is to ignore the small flows that, even if they are
numerous, do not account for a large amount of traffic and can hence be treated by
the controller.

4.4 Evaluation

In this section, we evaluate our model and heuristic for the particular case of memory
constrained networks as defined in Sec. 4.3, for Internet Service Provider (ISP) and
Data Center (DC) networks. We selected these two particular deployment scenarios
of OpenFlow for their antagonism. On the one hand, ISP networks tend to be built
organically and follow the evolution of their customers [SMW02]. On the other
hand, DC networks are methodically structured and often present a high degree of
symmetry [AFLV08]. Moreover, while workload in both cases is heavy-tailed with a
few flows accounting for most of the traffic, DCs exhibit more locality dependency
in their traffic with most of communications remaining confined between servers of
the same rack [BAM10].

4.4. Evaluation 49

4.4.1 Methodology

We use numerical simulations to evaluate the costs and benefits of relaxing routing
policy in a memory constrained OpenFlow network. There are four main factors
that can influence the allocation matrix: the topology, the traffic workload, the
controller placement, and the allocation algorithm.

4.4.1.1 Topologies

For both ISP and DC cases we consider two topologies, a small one and a large one.
As an example of small topology for ISP we use the Abilene [Abi] network with 100
servers attached randomly (labeled Abilene in the remaining of the paper). For the
large one we use a synthetic scale-free topology composed of 100 switches with 1000
servers attached randomly (labeled ScaleFree).

The topologies for DC consist of a synthetic fat tree with 8 pods and 128 servers
(labeled FatTree8) for the small one, and a synthetic fat tree with 16 pods and
1024 servers (labeled FatTree16) for the large one. Both synthetic topologies are
randomly produced by the generator proposed by Saino et al. in [SCP13]. Details of
the topologies are summarized in Table 4.2. To concentrate on the effect of memory
on the allocation matrix, we consider infinite bandwidth links in all four topologies.

Table 4.2: Topology description

Topology Name Type |S| |L| |H| |F |
Abilene Small ISP 12 30 100 O(104)
ScaleFree Large ISP 100 292 1000 O(106)
FatTree8 Small DC 80 512 128 O(104)
FatTree16 Large DC 320 4096 1024 O(106)

4.4.1.2 Workloads

For each topology, we randomly produce 24 workloads using publicly available
workload generators [SCP13, WSW+14], each representing the traffic in one hour.
For each workload, we extract the set F of origin-destination flows together with
their assigned source and destination servers. We then use the volume of a flow as its
normalized value for the objective function (4.11) (i.e., ∀f ∈ F,∀l ∈ E(f) : wf,l = pf).
A flow f ∈ F starts from the ingress link of the source server and asks to exit at the
egress link of the destination server.

4.4.1.3 Controller placement

The controller placement and the default path towards it are two major factors
influencing the allocation matrix. In the evaluation, we consider two extreme
controller positions in the topology: the most centralized position (i.e., the node that
has minimum total distance to other nodes, denoted by MIN), and least centralized

50 Chapter 4. Offline Rules Placement in OpenFlow Networks

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Capacity

1.0

1.2

1.4

1.6

1.8

2.0

A
v
e
ra

g
e
 P

a
th

 S
tr

e
tc

h

CE_MIN

RP_MIN

OP_MIN

CE_MAX

RP_MAX

OP_MAX

(a) Abilene

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Capacity

1.0

1.2

1.4

1.6

1.8

2.0

A
v
e
ra

g
e
 P

a
th

 S
tr

e
tc

h

CE_MIN

RP_MIN

CE_MAX

RP_MAX

(b) ScaleFree

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Capacity

1.0

1.2

1.4

1.6

1.8

2.0

A
v
e
ra

g
e
 P

a
th

 S
tr

e
tc

h

CE_MIN

RP_MIN

OP_MIN

CE_MAX

RP_MAX

OP_MAX

(c) FatTree8

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Capacity

1.0

1.2

1.4

1.6

1.8

2.0

A
v
e
ra

g
e
 P

a
th

 S
tr

e
tc

h

CE_MIN

RP_MIN

CE_MAX

RP_MAX

(d) FatTree16

Figure 4.4: Average path stretch of deflected flows

4.4. Evaluation 51

position (i.e., the node that has maximum total distance to other nodes, denoted
by MAX). In all cases, the default path is constituted by the minimum shortest path
tree from all ingress links to the controller. The most centralized position limits
the default path’s length and hence the number of possible deflection points. On
the contrary, the least centralized position allows a longer default path and more
choices for the deflection point.

4.4.1.4 Allocation algorithms

To evaluate the quality of the heuristic defined in Sec. 4.3.3, we compare it with the
following two allocation algorithms:

• Random Placement (RP): It is a variant of OFFICER where flow sets are
randomly ranked and deflection points are randomly selected.

• Optimum (OP): The allocation matrix corresponds to the optimal one as
defined in Sec. 4.3.2 and is computed using CPLEX. 6 Unfortunately, as
computing the optimum is NP-hard, it is impossible to apply it to large ISP
and large DC topologies.

Because of room constraints, we only present results for the CE strategy to
choose the deflection point. Nevertheless, with extensive evaluations, we observed
that this strategy outperforms the two others by consuming less memory resources.

4.4.2 Results

In this section, we compare rule allocation obtained with OFFICER with the
optimal allocation and random allocation. We also study the impact of the controller
placement on the allocation. The benefit of OFFICER is identified as the amount of
traffic able to strictly respect the endpoint policy while the drawback is expressed
with the path stretch. We also link the number of flows passing through nodes with
their topological location.

In Fig. 4.3 and Fig. 4.4, the x-axis gives the normalized total memory capacity
computed as the ratio of the total number of forwarding entries to install in the
network divided by the number of flows (e.g., a capacity of 2 means that on average
flows consume two forwarding entries). Thin curves refer to results obtained with the
controller placed at the most centralized location (i.e., MIN) while the thick curves
refer to results for the least centralized location (i.e., MAX). The y-axis indicates the
average value and standard deviation over the 24 workloads for the metric of interest.
Curves are labeled by the concatenation of their allocation algorithm acronym (i.e.,
CE, RP, and OP) and their controller location (i.e., MIN and MAX).

Reference points indicate the value of the metric of interest if all flows are
delivered to their egress link when (i) strictly following the shortest path and
denoted with a square and (ii), if ever computable, when minimizing memory usage

6http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

52 Chapter 4. Offline Rules Placement in OpenFlow Networks

as formulated in Sec. 4.3.1 and denoted with a circle. For a fair comparison with
OFFICER, we also use the aggregation with the default path for these reference
points. It is worth noting that the squares are on the right of the circles confirming
so that by relaxing routing policy it is possible to deliver all the flows with less
memory capacity.

Fig. 4.3 evaluates the proportion of the volume of traffic that can be delivered to
an egress point that satisfies the endpoint policy as a function of the capacity. In all
situations, OFFICER is able to satisfy 100% of the traffic with less capacity than
with a strict shortest routing policy. In addition, when the optimal can be computed,
we note that OFFICER is nearly optimal and is even able to satisfy 100% of the
traffic with the optimal minimum capacity. This happens because there are no link
bandwidth nor per-switch memory limitations and that in our two examples flows
never cross twice the default path. On the contrary, the random allocation behaves
poorly in all situations and requires up to 150% more memory than OFFICER to
cover the same proportion of traffic.

Also, with only 50% of the minimal memory capacity required to satisfy 100%
of the traffic, OFFICER satisfies from 75% to 95% of the traffic. The marginal gain
of increasing the memory is hence limited and the choice of the memory to put in
a network is a tradeoff between memory costs and the lost of revenues induced by
using the default path.

Relaxing routing policy permits to deliver more traffic as path diversity is
increased but comes at the cost of longer paths. Fig. 4.4 depicts the average path
stretch (compared to shortest path in case of infinite memory) as a function of the
capacity. Fig. 4.4 shows that the path stretch induced by the optimal placement
is negligible in all type of topologies and is kept small for OFFICER using the CE
strategy (i.e., less than 5%). On the contrary, the random placement significantly
increases path length. In DC topologies, the average path stretch is virtually equal
to 1 (Fig. 4.4c and Fig 4.4d). The reason is that in DC networks there is a high
diversity of shortest path between node pairs, so it is more likely to find a shortest
path satisfying all constraints than in ISPs topologies. It also worth noting that
in DCs, there are many in-rack communications that consume less memory than
out-rack communications, thus the risk of overloading memory of inter-rack switches
is reduced. Interestingly, even though there is a path stretch, the overall memory
consumption is reduced, indicating that it is compensated by the aggregation with
the default rule.

For ISP networks, when the optimal allocation is computed or approximated
with OFFICER, there is a high correlation (i.e., over 0.9) between the memory
required on a switch and its topological location (e.g., betweeness centrality and node
degree). On the contrary, no significant correlation is observed in DCs where there
are much more in-racks communication than out-racks communication [WSW+14].
This suggests to put switches with the highest memory capacity at the most central
locations in ISPs and within racks in DCs.

Even though the controller placement is important in OFFICER as it leverages
the default path, Fig. 4.3 and Fig. 4.4 do not exhibit a significant impact of the

4.5. Discussion 53

location of the controller. Nevertheless, no strong conclusion can be drawn from
our evaluation. Actually, there are so many factors that drive the placement of the
controller [HSM12] that we believe it is better to consider controller placement as
an input of the rule allocation problem and we let its full study for future work.

4.5 Discussion

With this section we provide a broad discussion on the model presented in Sec. 4.2
as well as the assumptions that drove it.

4.5.1 Routing Policy

Relaxing routing policy allows better usage of the network but comes with the expense
of potential high path stretch. Nevertheless, nothing prevents to add constraints in
our model to account for a particular routing policy. For example, the constraint
∀f ∈ F :

∑
l∈L+ af,l ≤ α(f) can be added to control the maximum path length of each

flow. This constraint binds the path length to an arbitrary value pre-computed by
the operator, with α(f) : F → R. For example, α(f) = h ·shortest_path_length(f)
to authorize a maximum path stretch h (e.g., h = 1.5 authorizes paths to be up to
50% longer than the corresponding shortest paths).

4.5.2 Rule Aggregation

To aggregate two rules having the same forwarding action into one single rule, a
common matching pattern must be found between the two rules. Constraints (4.5)
and (4.6) provide a first step towards rules aggregation: on a switch, if the forwarding
decision for a flow is the same as the default action, the rule for the flow does not
need to be installed. However, a problem occurs when the common matching pattern
also matches for another rule that has a different action. The latter rule should
not be covered by the aggregating rule as that could create loop events or incorrect
forwarding. Consequently, the construction of the minimal set of rules in a switch by
using aggregation requires the knowledge of the allocation matrix that, in turn, will
be affected by the aggregation. This risk of non-linearity is a reason why we assume
that one forwarding rule is used for at most one flow and why we limit aggregation
to the default rule only.

4.5.3 Multipath

The model presented in Sec. 4.2 assigns one forwarding path per flow. As a result,
all the packets of a flow follow the same path to the egress link, which ensures
that packet arrival order is maintained. Nevertheless, our model does not prevent
multipath routing. To do so, the pattern matching of a flow to be forwarded on
several paths must be redefined from the one used in case of one forwarding path.
From a network point of view, the flow will then be seen as multiple flows, one
per matching pattern. Consequently, the optimizer might give different forwarding

54 Chapter 4. Offline Rules Placement in OpenFlow Networks

paths for packets initially belonging to the same flow. For example, one can assign
a label to packets when they enter the network and then use labels to decide to
which rule the packet matches. This may increase significantly the number of rules
to be installed in the network and the gain of having several such paths must be
compared to the cost of having them. In most situations, multipath routing at the
flow level might not be necessary as we are not enforcing any routing policy in our
model, which limits the risk of having the traffic matching one rule to be enough to
saturate one link.

4.5.4 Related Work

Rule allocation in OpenFlow has been largely covered over the last years. Part of the
related work proceeds by local optimization on switches to increase their efficiency
in handling the installed rules. The other part, which is more relevant to our work,
solves the problem network-wide and produces a set of compressed rules together
with their placement. Our present research builds upon this rich research area and
presents an original model, together with its solution, for the rule allocation problem
where the routing can be relaxed for the only objective of placing as many as rules
as possible that respect the predefined endpoint policy.

For the first part, several mechanisms based on wildcard rules have been proposed
to minimize the rule space consumption on switches as well as to limit the signaling
overhead between switches and controller. DevoFlow [CMT+11] uses wildcard rules
to handle short flows locally on switches. DomainFlow [NHL+13] divides the network
into one domain using wildcard rules and another domain using exact matching
rules. SwitchReduce [IMS13] proposes to compress all rules that have the same
actions into a wildcard rule with the exception of the first hop switch.

To reduce further memory usage, latest versions of OpenFlow support pipelining
and multi-level flow tables [Ope15b]. Consequently, the large forwarding table is split
in a hierarchy of smaller tables that can be combined to build complex forwarding
rules with less entries. However, even though these techniques improve memory
usage, they do not remove the exponential growth of state with the number of flows
and nodes in the network.

As for the second part, some works suggest to use special devices to perform rule
placement. DIFANE [YRFW10] places the most important rules at some additional
devices, called authority switches. Then, ingress switches redirect unmatching
packets towards these specific devices, which enables reducing load on the controller
and, at the same time, decreasing the number of rules required to be stored on
ingress switches. vCRIB [MYSG12] installs rules on both hypervisors and switches
to increase performance while limiting resource usage. Other works optimize rule
allocation on switches themselves. Palette [KHK13] and OneBigSwitch [KLRW13]
produce the aggregated rule sets that satisfy the endpoint policy and place them on
switches while respecting the routing policy and minimizing the resources. However
both Palette and OneBigSwitch cannot be used in scenarios where resources are
missing to satisfy the endpoint policy. In [GMP14], the rule allocation is modeled as a

4.6. Conclusion 55

constrained optimization problem focusing on the minimization of the overall energy
consumption of switches. Finally, the authors in [NSBT14] propose a network-wide
optimization to place as many rules as possible under memory and link capacity
constraints.

While the related works presented above focus on particular aspects of the rule
allocation problem in OpenFlow, with OFFICER we propose an original and general
solution that is able to cope with endpoint and routing policies, network constraints,
and high-level operational objectives.

4.6 Conclusion

In this chapter, we present a new algorithm called OFFICER for offline OpenFlow
Rules Placement Problem. Starting from a set of endpoint policies to satisfy,
OFFICER respects as many of these policies as possible within the limit of available
network resources both on switches and links. The originality of OFFICER lies in its
capacity to relax the routing policy inside the network for the objective of obtaining
the maximum in terms of endpoint policies. OFFICER is based on an Integer Linear
Programming model and a set of heuristics to approximate the optimal allocation
in polynomial time. The gain from OFFICER was shown by numerical simulations
over realistic network topologies and traffic traces.

Chapter 5

Adaptive Rules Placement in
OpenFlow Networks

Contents
5.1 Introduction . 57
5.2 aOFFICER: Adaptive OpenFlow Rules Placement 59

5.2.1 Objectives . 59
5.2.2 Design . 60
5.2.3 Adaptive Threshold . 61

5.3 Evaluation . 66
5.3.1 Setup . 66
5.3.2 Adaptive Threshold . 69
5.3.3 Adaptive Timeout and Deflection Technique 73

5.4 Conclusion . 77

In Chapter 4, we study the offline OpenFlow Rules Placement Problem (ORPP),
in which the set of traffic flows is known (e.g., Source-Destination Flows) and stable
in a period. To solve that problem, we propose an Integer Linear Programming and
a greedy-based heuristic called OFFICER, that can decide the most profitable rules
satisfying policies and network constraints.

However, flows are often not known in advance and are unpredictable, because of
measurement errors. Therefore, the proposed solutions can not be directly applied
in this case. In this chapter, we study and find solutions for the online ORPP, in
which the set of flows is unknown and varies over time.

5.1 Introduction

As discussed in Chapter 3, there are two main approaches to place rules: Proactive,
i.e., placing rules in advance, before the first packet of a new flow arrives [KHK13,
KLRW13, ZIL+14, KARW14], or Reactive, i.e., placing rules on demand [GKP+08,
Flo15, Eri13, Ryu15, Ope15a].

The proactive approach nullifies the setup delay, reduces the signaling overhead,
and is commonly used to implement access control applications [KHK13, KLRW13,
ZIL+14, KARW14], as access control rules are predefined independently of the traffic.

58 Chapter 5. Adaptive Rules Placement in OpenFlow Networks

For other applications, forwarding rules can also be pre-installed, but flows must be
known in advance [GMP14, LLG14, HLGY14, WWJ+15].

In practical situations, flows are unknown and unpredictable [BAAZ11]. With
reactive approach, rules are populated on demand and continuously updated to cope
with traffic fluctuations. For example, new coming flows require new forwarding rules,
whereas a down link event requires updating rules to reroute all the affected flows.
Using this approach, controller platforms [GKP+08, Flo15, Eri13, Ryu15, Ope15a]
can install rules to respond a wide range of network events. However, they have
several limitations, as we explain in the following.

First, these controllers treat all flows equally, and install rules for all incoming
flows, from the first packet seen. However, this method causes high setup delay,
high signaling overhead because a large number of new flows may arrive (e.g., 100k
new flows/s in a cluster [KSG+09]). As consequences, the controller and the switch
buffer can be overloaded, and packets are dropped. Furthermore, the largest flows
(i.e., flow that sends many packets, often called elephant flows) may not be installed
because the switch memory is occupied by other flows. Managing large flows by
dedicated OpenFlow rules is important for traffic engineering goals [CMT+11], since
they account for a large part in the total traffic load.

Second, these controllers install rules along the shortest paths from the source to
the destination (e.g., computed using OSPF [Moy89], ECMP [Hop00]). In some cases,
this approach is necessary to obtain the required performance (e.g., throughput,
latency). However, resources on other paths are not leveraged, as we explained and
illustrated in Chapter 4.

We argue that when resources (e.g. switch memory) are limited, only rules for
important, large flows should be installed. On one hand, it is not necessary to install
rules for small flows, because rule placement decisions for small flows contribute
little to the global performance. On the other hand, managing the largest flows
is important for traffic engineering (e.g., rate limitation, accounting), since they
account for most of traffic load. Based on this observation, we propose an adaptive
rules placement framework, called aOFFICER, that can detect the important, large
flows and install rules for them on appropriate paths. Furthermore, aOFFICER
reuses the deflection technique proposed in Chapter 4, to select the paths consuming
less switch memory than other paths. We then conduct packet level simulations
for aOFFICER in realistic scenarios. Simulation results show that aOFFICER can
reduce signaling overhead significantly compared to existing solutions, and it can
adapt the parameter to cope with traffic fluctuations.

The content of this chapter is organized as follows. In Sec. 5.2, we describe
the objectives and the design of aOFFICER. In Sec. 5.3, we evaluate, compare
aOFFICER to other solutions, and discuss the obtained results. Finally, in Sec. 5.4,
we draw conclusion remarks.

5.2. aOFFICER: Adaptive OpenFlow Rules Placement 59

Default

Controller

Source
Intermediate Destination

Rules Installation

Request Rules Installation

Rules Removal

Forwarding by rules

Default fowarding

Traffic

True

Figure 5.1: Problem Statement

5.2 aOFFICER: Adaptive OpenFlow Rules Placement

5.2.1 Objectives

In Fig. 5.1, we abstract the scenario that aOFFICER aims to solve. The network is
composed of three kinds of components: controllers, commodity switches (e.g., with
TCAMs), default devices (e.g., software switches with large non-TCAM memory).
The network traffic is represented as flows, and each flow consists a sequence of
packets matching a pattern. A flow requires rules on intermediate switches to reach
its destination. On new flow arrival, switches send request messages to the controller,
and rules are installed by the controller using rules installation messages. On rule
removal (due to rule timeout), the switch send back a rules removal message.

Because of the memory limitation [SCF+12], some flows may not have matching
rules and they are forwarded by default rules, towards default devices for further
processing (i.e., default forwarding). A flow is called installed if it is not processed
by default devices. Normally, packets processed by default devices suffer from
performance penalties, e.g., high lookup latency in non-TCAM memory, so it is
necessary to minimize the default devices’ load.

aOFFICER is implemented as a plug-in on the controller platforms (e.g., Open-
DayLight [Ope15a]). Basically, aOFFICER supports the controller to find rules
satisfying the following requirements:

1. Enforcing policies from operators such as endpoint policy, which defines where

60 Chapter 5. Adaptive Rules Placement in OpenFlow Networks

the packets should go, e.g., peering links, gateways, firewalls.

2. Enforcing network constraints, such as switch memory, link capacity, controller
capacity.

3. the default load (i.e., load on default devices) and the signaling load (i.e., load
on the controller) are minimized. On one hand, default devices (e.g., software
switches) usually cause high lookup delay, because of using the non-TCAM
memory. Therefore, the traffic volume processing by default devices needs to
be minimized. On the other hand, minimizing the signaling load increases the
network scalability (e.g., more nodes and flows can be managed).

5.2.2 Design

Since flows are not known in advance and varies over time, aOFFICER uses the
reactive approach to place rules enforcing policies and constraints. aOFFICER
involves in two important decisions, including how rules are chosen and how rules
are installed.

First, some flows are important and worth to install than others, e.g., flows from
delay sensitive applications (e.g., Voice over IP, Video on Demand), or flows from
premium users. Large flows (i.e., flow that sends many packets or bytes) are also
important, since they account for most of the traffic load. These flows need to be
managed using OpenFlow rules (e.g., rate limitation, accounting) and forwarded on
appropriate paths. For example, the controller installs rules to forward them on the
least congested links and to avoid default devices. In the rest of the chapter, we
focus in a challenging case, in which flows are unpredictable, so aOFFICER must
detect which flow is potentially large and worth to be installed.

Installing rules for a flow from the first packet seen, like implemented in [Flo15,
Eri13, GKP+08], is not efficient because most of the flows send just few packets,
according to traffic measurement studies [BAM10, KSG+09]. Departing from the
state of the art, aOFFICER only installs rules for a flow if that flow is potential
large, by using traditional large flow detection techniques, such as packet sampling.
By using a reasonable number of samples, large flows can be identified quickly
with very low error [CPZ04]. In aOFFICER, at the beginning, all flows must use
default rules to reach default devices. Default devices act as center hubs for all flows,
and they use large flow detection mechanisms (e.g., using the mechanism proposed
in [CMT+11]) to detect potential large flows and to notify the controller. Large
flow detection can be implemented on ingress switches, however, the memory space
limits the number of flows it can monitor.

A flow f is labeled as “worth to install”, if it sends H packets to a default device.
H ∈ Z+ is a configurable parameter called the threshold, and can be modified by
aOFFICER, e.g., through the OFConfig protocol [Fou]. Furthermore, in aOFFICER,
H is adjusted according to traffic fluctuations. For example, when traffic demands
are high, H is large, so only very large flows can be installed.

5.2. aOFFICER: Adaptive OpenFlow Rules Placement 61

After f is marked as “worth to install”, aOFFICER verifies available resources
(e.g., switch memory and link capacity) to check if f can be installed. If yes, rules
for f are installed along the shortest paths from the source to the destination of f ,
or along the paths selected by deflection techniques (Chapter 4). The subsequent
packets of f are forwarded by these rules, without passing via default devices. If it is
not possible to install rules for f , aOFFICER ignores the request. Therefore, packets
of f continue to be processed by default devices, and default devices continue sending
requests for each new packet of f . In this manner, the large flow will eventually be
installed because of many requests.

The advantage of using aOFFICER is multifold. First, the signaling load
is reduced, because the controller receives less requests than other approaches.
Second, large flows have a higher installation probability than others, because
more requests are sent. Third, the penalty caused by default devices can be
reduced, as only mice flows with few packets are processed by default devices. Forth,
aOFFICER automatically adjust its parameter H according to traffic fluctuations,
to use resources more efficiently. A drawback of using aOFFICER is that flows need
to wait longer before getting installed than using traditional approaches. Another
drawback is that flows may follow a long path, because of the deflection technique.

In the following section, we explain the adaptive threshold mechanism used in
aOFFICER to adjust H according to traffic fluctuations. We present a formalization
for the problem of selecting the optimal H (Sec. 5.2.3.1), and an adaptive algorithm
to adjust H (Sec. 5.2.3.2).

5.2.3 Adaptive Threshold

5.2.3.1 Problem formalization

As motivated in the previous section, H should be adapted according to traffic
fluctuations. To that goal, we first formalize the problem of selecting H to minimize
the cost, using the notations in Table 5.1.

Table 5.1: Notations

Notation Meaning
H Threshold determined when to notify the controller (H ∈ Z+)
T Interval (s)
F Set of flows f in T
nf Number of packets of flows f in T
r Success installation probability (0 ≤ r ≤ 1)
af Number of packets of f sending to the default device
bf Number of request packets of f sending to the controller
df Number of rejected packets of f
pf Installation probability of f
βf Number of signaling messages needed to install f

62 Chapter 5. Adaptive Rules Placement in OpenFlow Networks

The network traffic is modeled as a set of flows F , each flow f ∈ F sends nf

packets in the period T . The threshold H ∈ Z+ determines when the request is
sent to the controller. If the request can be satisfied, the controller installs rules for
f . For sake of simplicity, we assume that once the flow f is installed, rules for f
remains in the rest of the interval T .

Because of resource limitations, some requests can not be satisfied. Therefore,
we denote 0 ≤ r ≤ 1 as the average success installation probability during T . We
adapt H according to r, since r reflects the current traffic load and can easily be
measured by the controller.

aOFFICER is designed to minimize two metrics, which are the the default load
(i.e., the load on the default devices) and the signaling load (i.e., the load on the
controller). Both metrics are expressed in terms of number of packets. There is a
trade-off between two metrics. For example, if more flows are installed, the default
load reduces but the signaling load increases. Therefore, we aim to minimize the
total of two metrics, called total cost, to find the best trade-off between them.

To formalize the cost as a function of (r,H), for each flow, we estimate the
number of packets seen at the default devices (denoted as af), the number of request
packets (denoted as bf), the installation probability (denoted as pf), and the number
of rejected packets (denoted as df).

For the flow f with nf < H, all packets of f arrive to the default devices and
there is no request for f , and therefore, af = nf , bf = 0, df = 0.

For the flow f with nf ≥ H, H ≤ af ≤ nf . To estimate af , we compute the
probability of the event af = k, denoted as P(af = k) (H ≤ k ≤ nf). Basically,
af = k (H ≤ k < nf) means that there are k − H + 1 requests for f , in which
requests with id from (0 → k −H − 1) are not satisfied, and the request with id
k−H is satisfied. The success installation probability of each request is r. Therefore,
we derive the following:

P(af = k) = (1− r)k−H · r (H ≤ k < nf) (5.1)

For the case af = nf , there are two possibilities: the last request for f is satisfied,
or all requests for f are not satisfied, therefore:

P(af = nf) = (1− r)nf−Hr + (1− r)nf−H+1 = (1− r)nf−H (5.2)

By using the law of the total probability:

af =
nf∑
H

P(af = k)× k (5.3)

In summary, af is expressed as the following:

af =

nf ;nf < H∑nf−1
i=H i · r · (1− r)i−H + (1− r)nf−H · nf ;nf ≥ H

(5.4)

5.2. aOFFICER: Adaptive OpenFlow Rules Placement 63

As designed in aOFFICER, after sending H − 1 packet, a request for f is sent
for each new packet of f , until f is installed, so bf is expressed as the following:

bf =

0 ;nf < H

af −H + 1 ;nf ≥ H
(5.5)

A flow f with nf ≥ H will not be installed if all (nf −H + 1) requests for f
are rejected, the probability of that possibility is (1 − r)nf−H+1. Therefore, the
installation probability of f is pf = 1− (1− r)nf−H+1. To summarize:

pf =

0 ;nf < H

1− (1− r)nf−H+1 ;nf ≥ H
(5.6)

df represents the number or rejected requests, is computed based from bf . If
the flow f is installed, df = bf − 1. Otherwise, df = bf . Using the law of total
probability, we derive that:

df = (1− pf)bf + pf (bf − 1) = bf − pf (5.7)

The total cost C includes the default load Cd and the signaling load Cs. The
default load Cd is computed based on af :

Cd =
∑
f∈F

af (5.8)

To compute the signaling load Cs, we denote βf as the number of signaling
messages needed to install for flow f . For example, assuming that the installation
path length for f is n. The controller need to process 1 request message, to generate
n rule installation messages, and to process n removal messages (because of rules
timeout), thus βf = (1 + 2n). Therefore, for each flow f , the controller needs to
process df + βfpf messages.

Finally, the total cost can be written as:

C = Cd + Cs (5.9)
C =

∑
f∈F

(af + βfpf + df) (5.10)

By replacing the values of af , bf , df as functions of (r,H) into Eq. 5.10, we
establish the relationship between C and (r,H). Trivial results can be derived from
these above formulations. From the equation 5.4, when r → 0 (e.g., high demands),
af = nf ,∀f ∈ F . When r → 1, af = H,∀f with nf ≥ H. From Eq. 5.6, if H
increases, less number of flows is installed, and the flow f with larger nf has a higher
installation probability.

To better understand the relationship between r and H, we compute C with
different values of r,H, using an example value βf = 5 and flow size distributions
nf of two data center traces EDU1 and Hadoop (Table 5.2 and Fig. 5.3). We will
discuss these traces later in Sec. 5.3.1.

64 Chapter 5. Adaptive Rules Placement in OpenFlow Networks

(a) EDU1

(b) Hadoop

Figure 5.2: Total cost with different values of r and H

5.2. aOFFICER: Adaptive OpenFlow Rules Placement 65

The numerical results are represented on Fig. 5.2. In both cases, there is a high
cost zone to be avoided, which is (r → 0, H → 1). This zone reflects the fact that
when r is small, installing rules for all flows must be avoided, because it incurs
a high signaling load, while most of the requests are rejected. Therefore, in that
case, H must be adjusted to high values, in order to reduce the number of requests.
In case where r → 1, H should be decreased exponentially, so more flows can be
installed, to reduce the default load. These numerical results motivate the need to
use the adaptive control for H based on r.

5.2.3.2 Adaptive Threshold Algorithm

In the previous section, we model the cost C as the function of (r,H). In practice,
the cost function is much more complex, due to timeout effects and the traffic
fluctuations. However, the high cost zone (r → 0, H → 1) still exists and must be
avoided, since the controller receives many requests, but it cannot satisfy all of them.

Basically, r reflects the traffic load, and depends on many factors, such as
number of new flows, available resources, timeout effects. To escape the high cost
zone, it is important to maintain r at high values (e.g., r = 0.9), by adjusting H.
To that goal, we propose an adaptive algorithm, inspired from TCP Congestion
Avoidance [APB09], that adjust H to avoid the high cost zone.

First, we use Exponentially Weighted Moving Average (EWMA) model [KO90]
to estimate rn, which is the average success installation probability at step n, every
time when controller receives a request. EWMA is used because it is proved useful
to predict the long term trend of a time series, and it accounts for the weight of old
values into current values. Basically, rn is computed recursively as follows:

rn = αrn−1 + (1− α)zn (5.11)

In Eq.5.11, zn is the result of the installation trials at the controller (1 means
that the request is satisfied, 0 means that the request is not rejected); α is the
parameter from EWMA model that indicates the important of history values in
the expected value (0 < α ≤ 1) [KO90]; rn−1 is the average success installation
probability at step n− 1; r0 is the desired expected value of r (e.g., 90%).

Second, to adjust H, we implement the Multiplicative Increase/Multiplicative
Decrease (MIMD) algorithm (Algo. 2), a feedback control algorithm that is well
known for its simplicity and efficiency, especially in TCP congestion control [APB09].
In Algo. 2, I,D are the increasing and decreasing factors (e.g., I = 2, D = 2),
round() is the function that rounds a real number to the nearest integer. We use
MIMD because it quickly converges in our scenarios, as we will show in Sec. 5.3.

When r < r0, H increases exponentially (Line 2), to reduce the number of
requests and to avoid from the high cost zone. As a result, the controller only needs
to satisfy a lower number of requests with the same amount of resources, so r is
improved. On the contrary, when r > r0, H decreases exponentially to round(H/D),
so more flows can be installed (Line 4), and the default load can be reduced further.
Moreover, H is bounded by Hmin (Line 6).

66 Chapter 5. Adaptive Rules Placement in OpenFlow Networks

Algorithm 2: Adaptive Threshold
Require: Hold ∈ Z+: current value of H
1: if r < r0 then
2: H ← Hold ∗ I
3: else
4: H ← round(Hold/D)
5: if H < Hmin then
6: H ← Hmin

7: return H

Note that there is a case where H remains at very high value, so no request
is sent and flows can not installed. To avoid this case, we implement an auto-
decrement mechanism for H. If there is no request within the interval, H decreases
to round(H/D), to allow more requests are sent and more flows can be installed.

Parameters (I,D,Hmin) are selected empirically with traces, and they affect to
the convergence speed, size of oscillations and the possible values of H. In Sec. 5.3,
we will perform simulations for different values of (I,D,Hmin).

5.3 Evaluation

In this section, we evaluate and compare aOFFICER to existing algorithms [Flo15,
GKP+08, Eri13] and OFFICER (Chapter 4) in realistic scenarios.

5.3.1 Setup

Our scenarios are machine-to-machine communications in data centers. An operator
wants to deploy the forwarding rules for his data center to manage flows between
servers, such that endpoint policies and network constraints are satisfied. Basically,
a flow is a sequence of packets having the same five tuples (source/destination IP
address, source/destination port, the protocol number).

In this data center, all switches support OpenFlow protocol [Ope15b], and each
switch can store at most 1000 rules [SCF+12]. As usual, on each switch, there is a
default rule that directs non-matching packets towards a default device. The default
device is a software OpenFlow switch that can store a large number of rules, but
it has a higher processing delay than commodity switches. The default device is
attached to the most centralized switch (i.e., the average distance from this switch to
all other switches is the minimum), as setup in Chapter 4. The OpenFlow controller
controls all switches including the software switch, via a dedicate control network,
so the traffic network is not influenced.

To evaluate and compare aOFFICER to different algorithms, we implement a
Python-based simulator that replays the packet trace, and simulates behaviors of
OpenFlow switches, threshold-based detection, and timeout mechanisms. We are
aware of existing network simulators, such as NS-3 [HLR+08] but at this moment, it

5.3. Evaluation 67

Table 5.2: Packet traces summary

Trace Duration (s) # Packets # Unique flows Topology
EDU1 300 714159 55543 fat tree, 22 switches
Hadoop 300 4563784 2341 fat tree, 80 switches

does not fully support the OpenFlow protocol. For the sake of simplicity, we assume
that all links are over-provisioned, so the link constraints can be omitted and there
is no packet loss. Also, in OpenFlow networks, the memory constraints are often
stricter than bandwidth constraints. All simulations are performed on the INRIA
NEF Cluster [INR15].

We use two datasets: (i) EDU1: a packet trace and a fat tree topology from a
public university data center [BAM10]; (ii) Hadoop: a trace and a fat tree topology
from our emulated data center running Hadoop[Apa15]. To generate this dataset,
we emulate a data center on Grid5000 [gri15] using our tool DiG [Son15], deploy
Hadoop applications, and capture the packet traces from all nodes. Due to a large
number of packets in Hadoop, we use flow sampling technique with rate 10% to
reduce the size of the trace, while preserving flow size distribution. Two datasets
give us more insights on the performance of different algorithms. For the Hadoop
trace, we know exactly which IP prefix is attached to which edge switch. For the
trace EDU1, this information is not given, so each IP prefix in the trace is assigned
randomly to an edge switch.

The trace details are summarized in Table 5.2 and Fig. 5.3. Generally, two traces
have same duration (300s), but they are different in characteristics. EDU1 has more
unique flows, but less number of packets than in Hadoop. The number of active
flows per second (i.e., flows that send packets within that second) in EDU1 varies
in range [200 − 600], while in Hadoop the number of active flows is stable at the
beginning and then increases significantly around t = 250s (Fig. 5.3a). As observed
in Fig. 5.3b, 80% of flows in EDU1 send less than 10 packets, while in Hadoop, only
2% of flows send less than 10 packets. Moreover, most of the flows in EDU1 are
short live (e.g., lifetimes of 80% of flows are less than 1s), as shown in Fig. 5.3c.
Fig. 5.3d shows the CDF function for min, average, and max inter packet arrival
(i.e., the difference in timestamps of two successive packets in a flow) of all flows.
In EDU1, the average inter-packet arrival of 80% flows is less than 0.1s, while in
Hadoop, the average inter-packet arrival of 80% flows is less than 1s. Therefore, in
general flows in EDU1 need a smaller timeout than flows in Hadoop.

The following algorithms are implemented on the simulator:

• NAIVE: the algorithm used in [Flo15, GKP+08, Eri13], in which rules are
reactively installed with timeout t = 5(s) along the shortest path, from the
first packet seen.

• aOFFICER: Rules are reactively installed for flows that send more H packets.
H is adjusted using Algo. 2 (labels H = a(I,D,Hmin)). In all cases, r0 = 0.9,
and α = 0.9 (Eq. 5.11).

68 Chapter 5. Adaptive Rules Placement in OpenFlow Networks

0 50 100 150 200 250 300

Time (s)

0

100

200

300

400

500

600

700

#
 A

ct
iv

e
 F

lo
w

s

hadoop
EDU1

(a) Active Flow Rate

100 101 102 103 104 105 106

Packet

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

hadoop
EDU1

(b) Flow Size CDF

10-3 10-2 10-1 100 101 102 103

Duration (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

hadoop
EDU1

(c) Flow Duration CDF

10-3 10-2 10-1 100 101 102 103

Inter Packet Arrival of Flow

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

EDU1_min

EDU1_max

EDU1_average

hadoop_min

hadoop_max

hadoop_average

(d) Inter Packet Arrival CDF

Figure 5.3: Trace Analysis

5.3. Evaluation 69

100 101 102 103

Memory

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

D
e
fa

u
lt

 L
o
a
d

NAIVE
H=10000,t=5
H=a(1.1,1.1,1),t=5
H=a(1.1,1.1,2),t=5
H=a(1.5,1.5,1),t=5
H=a(1.5,1.5,2),t=5
H=a(2,2,1),t=5
H=a(2,2,2),t=5
OFFICER

(a) EDU1

100 101 102 103

Memory

0.0

0.2

0.4

0.6

0.8

1.0

D
e
fa

u
lt

 L
o
a
d

NAIVE
H=10000,t=5
H=a(1.1,1.1,1),t=5
H=a(1.1,1.1,2),t=5
H=a(1.5,1.5,1),t=5
H=a(1.5,1.5,2),t=5
H=a(2,2,1),t=5
H=a(2,2,2),t=5
OFFICER

(b) Hadoop

Figure 5.4: Simulated Default Load of different rule placement algorithms

• OFFICER: Rules are pre-computed and placed using OFFICER (Chapter 4),
with the assumption of knowing all flows in advance.

During the experiments, we are interested in the following metrics:

• Signaling load Cs: the number of signaling packets exchanging between the
default devices, commodity switches and the controller. Signaling load includes
rule request messages, rule installation messages, and rule timeout messages.

• Default load Cd: the number of packets processed by the default devices.

• Total load C = Cs + Cd: the sum of the default load and the signaling load,
which we aim to reduce.

• Average Path Stretch for all packets: For each packet, we have the path stretch,
which is the fraction of the actual path length and the shortest path length
of that packet. In aOFFICER, packet might follow a longer path than the
shortest path, because of the deflection technique proposed in Chapter 4. This
metrics measures how long the path is on average.

5.3.2 Adaptive Threshold

In this section, we evaluate the gain of the adaptive threshold mechanism used in
aOFFICER. To focus on the impact of the adaptive threshold mechanism, we use
the idle timeout t = 5s and the shortest path routing (ECMP) in aOFFICER, as
implemented in popular controller platforms [Flo15, GKP+08, Eri13].

In Fig. 5.4, 5.5 and 5.6, we present the simulated default load Cd, the signaling
load Cs, and the total load C of different rule placement algorithms, for the traces
EDU1 and Hadoop. In all figures, the x-axis represents the memory capacity of each
switch, while the y-axis shows the load in terms of number of packets, and normalized

70 Chapter 5. Adaptive Rules Placement in OpenFlow Networks

100 101 102 103

Memory

0.0

0.2

0.4

0.6

0.8

1.0

S
ig

n
a
lin

g
 L

o
a
d

NAIVE
H=10000,t=5
H=a(1.1,1.1,1),t=5
H=a(1.1,1.1,2),t=5
H=a(1.5,1.5,1),t=5
H=a(1.5,1.5,2),t=5
H=a(2,2,1),t=5
H=a(2,2,2),t=5
OFFICER

(a) EDU1

100 101 102 103

Memory

0.0

0.2

0.4

0.6

0.8

1.0

S
ig

n
a
lin

g
 L

o
a
d

NAIVE
H=10000,t=5
H=a(1.1,1.1,1),t=5
H=a(1.1,1.1,2),t=5
H=a(1.5,1.5,1),t=5
H=a(1.5,1.5,2),t=5
H=a(2,2,1),t=5
H=a(2,2,2),t=5
OFFICER

(b) Hadoop

Figure 5.5: Simulated Signaling Load of different rule placement algorithms

100 101 102 103

Memory

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

T
o
ta

l
Lo

a
d

NAIVE
H=10000,t=5
H=a(1.1,1.1,1),t=5
H=a(1.1,1.1,2),t=5
H=a(1.5,1.5,1),t=5
H=a(1.5,1.5,2),t=5
H=a(2,2,1),t=5
H=a(2,2,2),t=5
OFFICER

(a) EDU1

100 101 102 103

Memory

0.0

0.5

1.0

1.5

2.0

T
o
ta

l
Lo

a
d

NAIVE
H=10000,t=5
H=a(1.1,1.1,1),t=5
H=a(1.1,1.1,2),t=5
H=a(1.5,1.5,1),t=5
H=a(1.5,1.5,2),t=5
H=a(2,2,1),t=5
H=a(2,2,2),t=5
OFFICER

(b) Hadoop

Figure 5.6: Simulated Total Load of different rule placement algorithms

5.3. Evaluation 71

0 50 100 150 200 250 300

Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc

e
ss

R
a
te

M=1
M=10
M=100
M=1000

(a) r convergence

0 50 100 150 200 250 300

Time (s)

10-1

100

101

102

103

104

105

106

T
h
re

sh
o
ld

M=1
M=10
M=100
M=1000

(b) H convergence

Figure 5.7: Convergence of r and H for H = a(1.1, 1.1, 1) with EDU1 trace

0 50 100 150 200 250 300

Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc

e
ss

R
a
te

M=1
M=10
M=100
M=1000

(a) Success Rate r convergence

0 50 100 150 200 250 300

Time (s)

10-1

100

101

102

103

104

105

106

T
h
re

sh
o
ld

M=1
M=10
M=100
M=1000

(b) Threshold H convergence

Figure 5.8: Convergence of r and H for H = a(1.1, 1.1, 1) with Hadoop trace

72 Chapter 5. Adaptive Rules Placement in OpenFlow Networks

with the traffic load. For example, the default load equals to 1 means that all packets
are processed by the default device. A curve (e.g., NAIVE) represents the load for the
corresponding algorithms under different memory capacity (M = 1, 10, 100, 1000).

Using the proactive approach, OFFICER reduces significantly the signaling load
(no timeout messages, no request messages), compared to NAIVE and aOFFICER.
However, to use OFFICER, flows must be known in advance.

When the switch memory is scarce (M < 1000), NAIVE causes a high signaling
load (Fig. 5.5a and Fig. 5.5b). Moreover, the default load caused by NAIVE is
not significantly different with others (Fig. 5.4a and Fig. 5.4b). This observation
confirms that installing rules for all flows from the first packet is not a good strategy,
as it incurs a high signaling load. More precisely, many requests are sent, while
most of them are not satisfied due to memory limitations. By setting H = 10000,
only very large flows can send requests, therefore the signaling load can be reduced
greatly, but the default load is not reduced (Fig. 5.4a).

aOFFICER reduces the signaling load significantly compared to NAIVE (Fig. 5.5),
by adapting H according to traffic fluctuations. In the case EDU1, aOFFICER
is comparable with OFFICER when there is few large flows, in terms of the total
load (Fig. 5.6a). In the case Hadoop, the total load of aOFFICER is smaller than
NAIVE’s, but is higher than OFFICER’s (Fig. 5.6b). The reason is that there are
many large flows in Hadoop trace, so aOFFICER cannot decide easily which flows
should be installed.

Different parameters (I,D,Hmin) affect to the convergence for H and the total
load caused by aOFFICER, but the difference is not really significant among our
selected parameters. When the switch memory is very scarce (M = 1), a very large
H is required so only very large flows can be installed. In this case, large values of
(I,D) can increase H faster, and therefore using large values (I,D) is better than
using small values, as confirmed in Fig. 5.6a. However when the switch memory
is bigger (M = 10, 100), small values I,D allow to scan more values for H, so
aOFFICER can find a better H and outperform others (Fig. 5.6a and Fig. 5.6b).

Fig. 5.7 and Fig. 5.8 show the convergence of r and H over time under different
memory capacities, for a particular case H = a(1.1, 1.1, 1). In these figures, the
x-axis represents the simulation time, while the y-axis shows the value of r (Fig. 5.7a)
and H (Fig. 5.7b). For example, a curve (M = 100) shows the convergence of r and
H under the memory capacity M = 100.

As observed in Fig. 5.7a and Fig. 5.7b, aOFFICER tries to improve r → 1, so
all requests are satisfied. Under a higher active flow rate, more requests are sent
but rejected because of memory limitations, so r decreases.

When the switch memory is scarce (M < 1000), H rapidly increases by MI phase
of Algo. 2, and then H oscillates around a value depending on memory capacity
(Fig. 5.7b). With a high memory capacity, H converges and oscillates around a
lower value.

When M = 1000, H is stable at Hmin = 1, so all flows can be installed. For the
trace Hadoop, at the beginning (t < 250), M = 100 is enough for aOFFICER to
keep r = 1. From t = 250, many flows appear or become active, so r decreases fast.

5.3. Evaluation 73

To cope with this increasing demand, aOFFICER reacts by adjusting H to a higher
value, as observed in Fig. 5.8b.

Fig. 5.9 provides a different view about these algorithms. In this figure, the
x− axis represents the flow rank by size (from large to small) in log scale, while
the y − axis shows the success installation rate per flow rf (e.g., number of success
installation/number of requests). Higher switch memory leads to higher values of
rf , because more requests can be satisfied.

In NAIVE, large flows do not be treated differently than other flows, and many
large flows are not installed (rf = 0). For OFFICER, because flows are known in
advance, so largest flows are identified correctly and installed (rf = 1). However, at
the case EDU1-M=1000 (Fig. 5.9e), OFFICER does not install rules for some mice
flows, while all flows are installed in cases of NAIVE and aOFFICER. The reason is
that OFFICER does not use timeout mechanisms, while aOFFICER and NAIVE
use idle timeout mechanisms to recover occupied switch memory. However, these
flows are mice and does not significantly affect to the total load.

For aOFFICER, most of top 10 largest flows are installed (rf > 0), which
conforms with our motivation. In the Hadoop case, there are many large flows
competing for resources, so some large flows are not installed as expected.

5.3.3 Adaptive Timeout and Deflection Technique

The adaptive threshold mechanism used in aOFFICER can reduce the total load, as
shown in Sec. 5.3.2. In this section, we try to improve the performance of aOFFICER
by enabling complementary features, such as the adaptive timeout and the deflection
technique. We explain the need for these features in the following.

First, popular controllers are using fixed timeout mechanism (t = 5s) when
installing rules. However, in many workloads, most of the flows are short-live and
only need a smaller timeout value, as shown in Fig. 5.3d. Therefore, using t = 5s is
not memory efficient, as the switch memory may be occupied by inactive flows. To
cope with this problem, studies [VPMB14, XZZ+14] propose to adapt timeout value
for each flow, e.g., using the SmartTime algorithm [VPMB14], which is implemented
in our simulator.

Second, as shown in Chapter 4, the shortest paths may not be optimal in terms
of memory usages. Therefore, we propose the deflection technique that selects path
consuming less switch memory. In this section, we consider the strategy Close to
the Edges (CE) for the deflection technique. More details about this strategy can
be found in Chapter 4.

To extend the discussion, we perform simulations using the trace EDU1 on the
topology ScaleFree22, and the trace Hadoop on the topology ScaleFree80. Both new
topologies, generated using NetworkX [Net15], are Scale-Free topologies and they
have the same number of nodes with the original Fattree topologies. Basically, these
topologies represent the evolution of the network in practice, and their node degree
distributions follow a power law.

We perform simulations for aOFFICER including features such as adaptive

74 Chapter 5. Adaptive Rules Placement in OpenFlow Networks

(a) EDU1-M=10 (b) Hadoop-M=10

(c) EDU1-M=100 (d) Hadoop-M=100

(e) EDU1-M=1000 (f) Hadoop-M=1000

Figure 5.9: Success installation rate per flow

5.3. Evaluation 75

100 101 102 103

Memory

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

T
o
ta

l
Lo

a
d

NAIVE
H=a(1.1,1.1,1),t=1
H=a(1.1,1.1,1),t=5
H=a(1.1,1.1,1),t=5,d
H=a(1.1,1.1,1),t=a
H=a(1.1,1.1,1),t=a,d
OFFICER

(a) EDU1

100 101 102 103

Memory

0.0

0.5

1.0

1.5

2.0

T
o
ta

l
Lo

a
d

NAIVE
H=a(1.1,1.1,1),t=1
H=a(1.1,1.1,1),t=5
H=a(1.1,1.1,1),t=5,d
H=a(1.1,1.1,1),t=a
H=a(1.1,1.1,1),t=a,d
OFFICER

(b) Hadoop

100 101 102 103

Memory

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

T
o
ta

l
Lo

a
d

NAIVE
H=a(1.1,1.1,1),t=1
H=a(1.1,1.1,1),t=5
H=a(1.1,1.1,1),t=5,d
H=a(1.1,1.1,1),t=a
H=a(1.1,1.1,1),t=a,d
OFFICER

(c) ScaleFree22-EDU1

100 101 102 103

Memory

0.0

0.5

1.0

1.5

2.0

T
o
ta

l
Lo

a
d

NAIVE
H=a(1.1,1.1,1),t=1
H=a(1.1,1.1,1),t=5
H=a(1.1,1.1,1),t=5,d
H=a(1.1,1.1,1),t=a
H=a(1.1,1.1,1),t=a,d
OFFICER

(d) ScaleFree80-Hadoop

Figure 5.10: Simulated Total Load caused by different algorithms

76 Chapter 5. Adaptive Rules Placement in OpenFlow Networks

100 101 102 103

Memory

1.000

1.005

1.010

1.015

1.020

1.025

1.030

1.035

1.040

A
v
e
ra

g
e
 p

a
th

 s
tr

e
tc

h
 p

e
r

p
a
ck

e
t NAIVE

H=a(1.1,1.1,1),t=1
H=a(1.1,1.1,1),t=5
H=a(1.1,1.1,1),t=5,d
H=a(1.1,1.1,1),t=a
H=a(1.1,1.1,1),t=a,d
OFFICER

(a) EDU1

100 101 102 103

Memory

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

1.16

A
v
e
ra

g
e
 p

a
th

 s
tr

e
tc

h
 p

e
r

p
a
ck

e
t NAIVE

H=a(1.1,1.1,1),t=1
H=a(1.1,1.1,1),t=5
H=a(1.1,1.1,1),t=5,d
H=a(1.1,1.1,1),t=a
H=a(1.1,1.1,1),t=a,d
OFFICER

(b) Hadoop

100 101 102 103

Memory

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

A
v
e
ra

g
e
 p

a
th

 s
tr

e
tc

h
 p

e
r

p
a
ck

e
t NAIVE

H=a(1.1,1.1,1),t=1
H=a(1.1,1.1,1),t=5
H=a(1.1,1.1,1),t=5,d
H=a(1.1,1.1,1),t=a
H=a(1.1,1.1,1),t=a,d
OFFICER

(c) ScaleFree22-EDU1

100 101 102 103

Memory

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6
A

v
e
ra

g
e
 p

a
th

 s
tr

e
tc

h
 p

e
r

p
a
ck

e
t NAIVE

H=a(1.1,1.1,1),t=1
H=a(1.1,1.1,1),t=5
H=a(1.1,1.1,1),t=5,d
H=a(1.1,1.1,1),t=a
H=a(1.1,1.1,1),t=a,d
OFFICER

(d) ScaleFree80-Hadoop

Figure 5.11: Average path stretch per packet caused by aOFFICER

timeout (using SmartTime, denoted as t = a in figure legends), and the deflection
technique (using CE, denoted as d in figure legends).

Fig. 5.10 shows the total load caused by different algorithms for all datasets.
In figure legends, the adaptive timeout strategy (i.e. SmartTime) is denoted as
t = a, and the deflection technique is denoted as d. With new topologies, NAIVE
still causes a high total load while aOFFICER can reduce total load significantly
compared to NAIVE, in cases where the switch memory is scarce (M = 1, 10, 100).
Furthermore, aOFFICER is comparable with OFFICER in case of EDU1, where
there is few large flows. By using the adaptive timeout strategy (t = a), the switch
memory are used better than using the fix timeout strategy and therefore, the total
load is further reduced. However, when memory is not limited (M = 1000), both
strategies can install rules for all flows, but using a fixed timeout strategy causes
less total load, as timeout messages are sent less frequently.

For data center topologies, enabling the deflection technique does not reduce the
total load further, compared to using the shortest path routing policy. These data
center topologies have short average default path length and many shortest paths

5.4. Conclusion 77

between two nodes. Therefore, the deflection technique often selects the shortest
paths to place rules. Fig. 5.11a and 5.11b confirm these observations, since the
average path stretch of using aOFFICER with the deflection technique is 1.

In ScaleFree80-Hadoop (Fig. 5.10d), the average default path length is larger
than in Hadoop topology. Therefore, the gain in total load by enabling the deflection
technique is visible, for example, from (H = a, t = a) to (H = a, t = a, d), and from
(H = a, t = 5) to (H = a, t = 5, d) at memory M = 100. For both ScaleFree22
and ScaleFree80 cases, aOFFICER also does not incur a high average path stretch
(Fig. 5.11c and 5.11d).

OFFICER outperforms other algorithms in reducing total load, but it also causes
the highest average path stretch, as observed in Fig. 5.11, even the same deflection
technique is used. In OFFICER, the paths are predefined at the computation
moment, and no memory recovery mechanism is used. In aOFFICER, paths are
decided at the request moment, and memory resources are also be recovered (by
timeout mechanisms).

In summary, our results show the efficiency and the adaptability of aOFFICER for
different scenarios, in presence of constrained switch memory. First, aOFFICER can
identify large flows and install rules for them, to reduce the signaling load compared
to NAIVE. Second, enabling the adaptive timeout strategy (e.g., SmartTime) can
reduce the total load further, compared to using the fix timeout strategy. Third, the
deflection technique should be enabled if the topology has a large average default
path (e.g., in ScaleFree topologies). For the data center topology, using the shortest
path routing policy is enough. Forth, if the workload is known or predictable with
high accuracy, OFFICER is more efficient to find rules placement, because it helps
reducing the signaling load significantly. However, it may cause a high average path
stretch, as shown in cases of ScaleFree topologies. Finally, when the switch memory
is not limited, using NAIVE is good enough.

5.4 Conclusion

In this chapter, we study the online OpenFlow Rules Placement Problem, where the
set of flows is not known in advance and varies over time. To satisfy the endpoint
policies, existing controller platforms install rules reactively for all the flows, from
the first packet seen. However, this approach is not optimal, because of a large
signaling overhead, and the fact that large flows may not be installed.

We present a novel rules placement framework, called aOFFICER, that can find
rules satisfying endpoint policies, network constraints, and reduce the signaling load.
The novelty of aOFFICER comes from its ability to install rules for important,
large flows on efficient paths, and to adjust its parameters according to traffic
fluctuations. Our simulation results in realistic scenarios have confirmed the efficiency
and adaptability of aOFFICER, in presence of constrained switch memory.

Chapter 6

Use Case: Improving Content
Delivery in LTEs

Contents
6.1 Introduction . 79
6.2 Background . 81
6.3 LTE In-network Caching Architecture 81

6.3.1 Multi-level Caching Scheme 82
6.3.2 Enabling Backhaul Caching with OpenFlow 83

6.4 Content Allocation Model . 83
6.4.1 Content Allocation Problem Approximation 86

6.5 Evaluation . 87
6.5.1 Simulation Setup . 87
6.5.2 Benefits of Caching at Different Levels 89
6.5.3 Impact of Several Levels Caching 92
6.5.4 Advantages of Using Opportunistic Caching for Networks with

Loss . 93
6.6 Related Work . 94
6.7 Conclusion . 95

In chapters 4 and 5, we presented OFFICER and aOFFICER, which are basic
blocks to implement the black box abstraction. In this chapter, we study a use case,
where such abstraction is leveraged to improve the performance of content delivery
services in cellular networks.

The content of this chapter is the result of a collaboration with the colleagues at
Aalto University (Finland) and is also reported in [KNS+15].

6.1 Introduction

Video streaming and multimedia contents distribution have taken a paramount
importance in the Internet ecosystem and generate enormous amount of traffic [Cis15],
and the ubiquity of mobile devices is not foreign to this trend. Nowadays, mobile
traffic exceeds desktop traffic [Cis15], thanks to the ubiquitous of mobile devices
and high speed mobile networks. It is evident that such traffic will continue to grow

80 Chapter 6. Use Case: Improving Content Delivery in LTEs

in the coming years with the generalization of Ultra High Definition [UHD] and the
impossibility to distribute it with traditional physical medias (e.g., Blu-ray).

While the traditional approach to face traffic growth is to increase link capacity,
it is uncertain that just upgrading link capacity will still be economically viable for
mobile carriers that must provide better services at very low prices. To overcome
this major issue, the only solution is to reduce the overall usage of links. To that
aim, we can leverage temporal and spatial locality of traffic with caches [WJP+13]
that supply contents to consumers on behalf of the content producers. In this
chapter, we thus propose Arothron, a versatile caching framework for mobile carrier
networks. With Arothron, we introduce the concept of hybrid caching that combines
opportunistic (non-collaborative) and preset (collaborative) caching. On the one
hand, opportunistic caching is used to cope with short term content demand, which
is bursty and very dynamic by essence [AAG+10]. On the other hand, we use
preset caching to cache the most valuable contents. To implement hybrid caching,
Arothron splits each storage unit into two logical storage units: one dedicated for
the opportunistic caching and the other used for preset caching. The rational behind
this duality in the caches is to combine both their advantages to reduce overall
network loads. Using only opportunistic caching is not sufficient because of high
redundancy, while using only preset caching is impractical to provide high hit ratios
for highly dynamic demands.

Unfortunately, making caching ubiquitous in mobile networks is not straightfor-
ward, because of the following reason. In LTE networks, for each user equipment, a
GTP tunnel is established between its eNodeB and a gateway of the core network
(i.e., the Evolved Packet Core) [3GP]. GTP tunnels are used to separate the radio
part from the data part in the network, in order to facilitate the handover process
and mobility. As a result, data packets are not seen by intermediate equipments in
the network, reducing the ability to perform caching. To overcome this limitation,
Arothron replaces the usage of GTP tunnels with native forwarding thanks to Open-
Flow [MAB+08b] and proposals [CR14, CRKMK14]. Thus, it becomes possible to
forward the content demands directly to the most appropriate preset caches and to
perform opportunistic caching on the way.

In this chapter, we present the Arothron, an OpenFlow based hybrid caching
architecture, that reduce the overall usages of links and improve user experience.
We first formalize a Mixed Integer Linear Programming (MILP) that decides the
contents to be cached in the preset caches. As the problem is NP-hard, we propose a
polynomial time greedy heuristic to find a content allocation solution in a tractable
way. With extensive simulations of a typical LTE network, we study the impact of
cache locations and the ratio between preset and opportunistic storage on backhaul
and provider-edge link usage, as well as the gain in terms of delay.

The remaining of the chapter is organized as follows. Section 6.2 presents the
background about LTE networks. Section 6.3 presents the architecture of Arothron,
and the different types of caches used. Section 6.4 introduces the MILP and the
heuristic used to place the contents. Section 6.5 presents the simulation results and
their analysis. Finally, Section 6.6 presents some related works.

6.2. Background 81

P-GWS-GW

MME

Internet

EPC

HSS

PCRF

UE eNodeB

BackhaulRAN

Figure 6.1: LTE architecture

6.2 Background

LTE, standing for Long-Term Evolution, is a telecommunication standard for broad-
band cellular networks [3GP]. Fig. 6.1 shows the overall architecture of LTE networks.
The Radio Access Network (RAN) consists of base stations called evolved Node B
(eNodeBs) that provide the radio access for User Equipments (UE). The RAN is
connected to the backhaul network that consists of switches aggregating the traffic
from RAN and that provides connectivity towards the network core, called the
Evolve Packet Core (EPC).

The main components in the EPC are: (i) the Mobility Management Entity
(MME) which tracks UEs and manages UE handover between eNodeBs; (ii) Packet
Data Network Gateways (P-GW) which are the gateway routers to IP networks; (iii)
Serving Gateways (S-GW), which act as the mobility anchors for UE handovers and
forward packets to P-GWs; (iv) the Home Subscriber Server (HSS) that contains
all the information about UE subscribers, such as QoS profiles; (v) the Policy
Control and Charging Rule Function (PCRF), which controls flow-based charging
functionalities in P-GWs and ensure that data flows are treated according to user
profiles.

Mobility is the critical functionality in mobile networks, and new technologies
need to provide proper reliability and low latency for handover processes. The
common handover solution is to use the GPRS Tunneling Protocol (GTP) to
establish tunnels between eNodeBs and S/P-GWs.

6.3 LTE In-network Caching Architecture

In this section, we detail Arothron, a versatile caching architecture for LTE networks.
First, in sec. 6.3.1 we present our multi-level caching scheme for LTE networks that
combines opportunistic and preset caching. Then in sec. 6.3.2, we show how to

82 Chapter 6. Use Case: Improving Content Delivery in LTEs

implement this caching scheme in practice in LTE networks.

6.3.1 Multi-level Caching Scheme

The numerous studies on Information-Centric Networking have demonstrated the
advantages of in-network caching [ZLL13] and two trends in the way to manage
caches are emerging: opportunistic caching and preset caching. The idea behind
opportunistic caching is storing contents when they pass through the cache, generally
using the LRU cache eviction policy, to leverage the spatial and temporal locality
of demands over short periods of time. On the contrary, preset caching reasons in
terms of average behaviour of the system and leverages the power law characteristics
of content demand over long periods of time. Furthermore, optimization techniques
are used to decide if and where a content should be stored in preset caches.

In LTE networks, customer terminals are inherently mobile, roaming between
eNodeBs to which they are connected over lossy radio links. Furthermore eNodeBs
are geographically spread and usually connected to the network core over long-
distance backhaul links of limited capacity. For LTE networks, it is thus desirable to
have a caching system that in addition to reducing the overall link usage, prevents
loss events at the radio access network to propagate in the core through the backhaul.
To that aim, we propose, Arothron, a versatile caching architecture for LTE networks
that combines opportunistic and preset caching.

In Arothron, any node in the LTE network can be equipped with a storage unit.
The LTE network therefore constitutes a network of caches. However, as the system
must handle at the same time highly dynamic demand caused by mobility and losses
and stable overall demand, each physical storage unit is split in two logical caching
units, one is dedicated to opportunistic caching while the other is used for preset
caching. An opportunistic cache stores any content that transits through it and
the storage space is managed according to the LRU eviction algorithm in order to
absorb short term bursty demands. On the contrary, the contents to be put in a
preset cache are determined in advance based on expected content demand. The
most beneficial contents that are cached according to the Mixed Integer Linear
Programming (MILP) formalized in Sec. 6.4 are then pre-fetched in the preset caches.
The MILP takes into account the network capacity, the diversity of paths to decide
which is the best preset cache unit to put the contents so that it maximizes the
amount of content delivered by the caching system while minimizing the network
load. The preset cache is complementary to the opportunistic cache as it favors
content with an overall high demand, regardless of their dynamics.

The ratio of storage space dedicated to the opportunistic cache on each storage
unit is a key factor in the design of Arothron as well as where to deploy the different
caches. For example, caches located between the radio access network and the
backhaul links aim to alleviate the impact of losses while caches in the core network
aim at reducing the traffic towards the Internet. We extensively evaluate these two
aspects with a simulator in Sec. 6.5.

6.4. Content Allocation Model 83

6.3.2 Enabling Backhaul Caching with OpenFlow

In LTE networks, the IP traffic between RAN and EPC is encapsulated in GTP
tunnels so that the backhaul network is agnostic of the handover process. This
architecture makes caching inside the backhaul network impossible as backhaul
network elements only see the tunnels and not the traffic carried by them. To
overcome this limitation, we leverage the fact that the backhaul typically operates
in level 2 with Ethernet or MPLS and use OpenFlow [MAB+08b] to replace the
GTP tunnels by strict hop-by-hop switching meaning that traffic will be visible for
any equipment in the backhaul network instead of being hidden in a tunnel.

The Arothron architecture consists of three elements: the analyzers, the caches
and the controller. The analyzers are implemented directly at the eNodeB level
while caches are spread in the network and the controller is joined to the MME in
a centralized location. The analyzer intercepts all requests for contents from the
customer equipments connected to the eNodeB, extracts the content name from the
request and queries the controller for the location of preset cache where the content
is available.1 After that, the request is then forwarded directly to that location.
If the location is the eNodeB itself, then the request is treated locally. Otherwise,
the request is sent natively in the backhaul network. If the cache is located in the
backhaul network or in the EPC, the packet containing the request is tagged with
the VLAN tag corresponding to the caching equipment.2 It is worth noting that
our solution does not require to modify the backhaul network equipment to work
as packets are forwarded natively in the technology of the backhaul. As packets
are never encapsulated, any intermediate network device can intercept the requests
which makes opportunistic caching anywhere in the LTE network possible with our
Arothron architecture.

Continuously updating the preset caches would cause high signaling traffic.
Therefore, in Arothron, the controller proceeds to periodic relocation operations.
During those operations, the controller gathers information from the analyzers and
caches about which contents were requested and about their requests frequency.
Based on the pool of requests created and using prediction algorithms, the controller
computes the optimal content allocation, if any. The content allocation solution is
sent to all the caches that will download the missing contents from other caches or
from the origin servers. As relocation generates extra traffic, this step is performed
during off-peak hours.

6.4 Content Allocation Model

In this section, we formalize a Mixed Integer Linear Programming (MILP) for optimal
content allocation in preset caches, based on the notations defined in table 6.1 and
6.2.

1The controller response is cached for faster processing for the subsequent requests for the same
content.

2In case of an MPLS backhaul, MPLS labels are used instead.

84 Chapter 6. Use Case: Improving Content Delivery in LTEs

Table 6.1: Parameters

Parameter Description
V set of nodes
* set of servers
V + nodes and servers (V ∪ ∗)
E set of directed links (i, j) ∈ V + × V +

Ci cache size of node i (MB)
Bl link capacity of l ∈ E (Mbps)
M set of contents
sm content size (MB)
sm

r size of the request for content m (MB)
um, rm upstream, downstream bit rate of content m (Mbps)
Pi,j sequence of links on the path from node i to j
am

i total number of requests for content m at node i ∈ V over T

The network is modeled as a finite directed graph G = (V,E) where V is the
set of nodes, E is the set of directed links between nodes. M is the set of contents
(e.g., videos). Each content has a size sm, downstream rate rm and upstream rate
um (e.g., for video streaming services). Each node has a preset cache with capacity
Ci. Servers s ∈ ∗ hold all the contents.

A mobile user sends a request for content m to a node i, if m does not exist in
the cache i, node i forwards the request to one of the neighbor caching the content,
and the content will be fetched from that node. If the content is not cached, the
request is forwarded to one of the servers. am

j stands for the total number of requests
for content m at node j in the whole modeling period T .

These parameters are used to find which content is placed at which node (xm
i) and

the probability of forwarding requests to neighbors (ym
i,j). Therefore, we formalize a

MILP for content placement (1)− (8).

The main goal of using caching is to reduce the overall traffic load in the network,
as represented in the objective function (6.1). Constraint (6.2) stands for the memory
capacity constraint, the total size of cached contents on i does not exceed the cache
capacity. Constraint (6.3) makes sure that all requests from a node will be satisfied,
locally or from other nodes. Constraint (6.4) and (6.5) define the range values for x
and y. Constraint (6.6) captures the fact that node i can serve content m if and only
if the content m is cached on i. Constraint (6.7) makes sure that the load on the
link does not exceed the link capacity. More precisely, the load on the link l = (i, j)
consists of the upstream volume from i to j (first component) and the downstream
volume from i to j (latter component). Constraint (6.8) indicates that servers hold
all the contents.

6.4. Content Allocation Model 85

Table 6.2: Variables

Variable Meaning
xm

i binary, to indicate if content m is placed at node i
ym

i,j float in [0, 1], to indicate the percentage of requests from node j to i

min
∑

m∈M

∑
i,j∈V +

(smam
j y

m
i,j + sm

r a
m
i y

m
j,i) (6.1)

∀i ∈ V :
∑

m∈M

smxm
i ≤ Ci (6.2)

∀(j,m) ∈ V ×M :
∑

i∈V +

ym
i,j = 1 (6.3)

∀(i,m) ∈ V ×M : xm
i ∈ {0, 1} (6.4)

∀(m, i, j) ∈M × V + × V : 0 ≤ ym
i,j ≤ 1 (6.5)

∀(m, i, j) ∈M × V + × V + : ym
i,j ≤ xm

i (6.6)
∀l ∈ E :∑

m∈M

∑
i,j∈V +|l∈Pi,j

(umam
j y

m
j,i + rmam

j y
m
i,j) ≤ Bl (6.7)

∀(m, i) ∈M × ∗ : xm
i = 1 (6.8)

A similar content placement model can be found in [AAG+10], however, our
MILP model accounts for upstream traffic, and the fact that requests might be
forwarded to different servers.

Corollary 1. The content allocation problem is NP-hard.

Proof. Consider an instance of the problem, with one node of cache size C, one
server, and one link l between them. Assuming that the upstream rate and size of
request messages are negligible (um = 0, sm

r = 0,∀m ∈M), the objective function is
to minimize the load on link l:

min
∑

m∈M

smam(1− xm) u max
∑

m∈M

(smam)xm (6.9)

where xm is subjected to memory constraint:

∑
m∈M

smxm ≤ C (6.10)

This is exactly the form of the Knapsack problem, which is known as NP-hard.
So the original problem is also NP-hard.

86 Chapter 6. Use Case: Improving Content Delivery in LTEs

6.4.1 Content Allocation Problem Approximation

Since the content allocation problem is intractable, we propose a polynomial time
greedy heuristic (Algo. 3) to approximate the content allocation solution in a
practical way. As content popularity usually follows an heavy tailed distribution, a
greedy approach usually provides good results [AL06].

The main idea is to cache contents with the highest demand by placing them
in the most suitable nodes that are as close as possible to the UEs. So first, the
demands, for each content at each edge node, are sorted based on their volume (line
7).

For each neighbor distance d of node i, we define a cost function (6.14) that
includes memory and bandwidth cost. The memory cost (6.11) indicates the
percentage of memory which will be occupied. Similarly, the bandwidth cost (6.12)
and (6.13) indicates the percentage of upstream and downstream bandwidth that will
be consumed. If node j does not have enough memory or bandwidth (cm,up,down > 1),
the total cost is ∞. If the content exists on this node (x[m, j] = 1), the total cost
includes the bandwidth cost only.

Among the neighbors, the one with minimum cost will be selected to place
content m, the variable X and Y are set to corresponding values, then the next
demand is processed.

For each set of demands in an eNodeB (m, i), content m will be placed in at
most one node, to avoid exceeding cache size.

cm[m, i, j] = sm

Cavailable[j] (6.11)

cup[m, i, j] = umfm
i

min(Bavailable[l]|l ∈ P [i, j]) (6.12)

cdown[m, i, j] = rmfm
i

min(Bavailable[l]|l ∈ P [j, i]) (6.13)

c[m, i, j] =
{
∞ ; cm > 1 ∨ cup > 1 ∨ cdown > 1
cmemory(1− x[m, j]) + cup + cdown; otherwise

(6.14)

The temporal complexity of our greedy heuristic is O(|V |3 + |M ||V |log(|M ||V |)+
|M ||V |2|DIAMETER|). In usual scenarios |M | >> |V |, so the complexity can
thus be rewritten as O(|M ||V |log(|M ||V |)).

The complexity of the Greedy is driven by the three following components:

• (line 3-6) Finding all pairs of shortest paths to construct the neighbor set of
each node. This is achieved using the Floyd–Warshall algorithm [Flo62], which
is O(V 3).

• (line 7) Sorting the demand, which is O(|M ||V |log(|M ||V |)).

• (line 8-14) Finding the neighbor with minimum cost, which includes
computing of bandwidth cost and verifying neighbors is of complexity
O(|M ||V |2|DIAMETER|).

6.5. Evaluation 87

Algorithm 3: GREEDY
1: X ← [0]M×V ; X ← [1]M×(∗)

2: Y ← [0]M×V +×V

3: P ← [shortest_path[i, j]](i,j)∈V×V +

4: for i ∈ V do

5: for d = 0 to DIAMET ER do

6: NEIGHBOR[i, d] ← (j ∈ V +|P [i, j] = d)

7: DEMAND ← sort((m, i) ∈M × V |(fm
i × (sm + um)) ↓)

8: for (m, i) ∈ DEMAND do

9: for d = 0 to DIAMET ER do

10: c[m, i, n]← min(c[m, i, j]|j ∈ NEIGHBOR[i, d])

11: if c[m, i, n] <∞ then

12: x[m, n] = 1

13: y[m, n, i] = 1

14: break

15: return X, Y

6.5 Evaluation

6.5.1 Simulation Setup

This section describes the simulations environment we setup to evaluate Arothron.

6.5.1.1 Simulated Network

The simulated network come from a French telecom operator, which consists of 16
eNodeBs, 16 edge switches, 8 aggregation switches, 4 core routers. A data center is
at the other edge of the network, and hosts all the functions of the EPC, except
the P-GW. The 16 eNodeBs are equally distributed over the simulation area and all
have the same circular coverage area, so that all the simulation area is covered. The
strength of the signal is assumed to be sufficient to provide the highest download
speed of contents from the pool used for the simulation on any point of the coverage
area. Fig. 6.2 shows a schematic of the simulated network.

In order to apply our caching system, all the edge switches support OpenFlow
and the other switches support VLANs and consider 3 levels of caches. The first
level of caches includes all the caches that are located at the 16 eNodeBs. The
second level of caches is located at the 16 edge switches. Finally, the third level
caches is located in the aggregation switches. Each cache unit is split between
opportunistic and preset spaces and we explore the impact of the ratio of the space
for opportunistic cache to the space for preset cache as well as the impact of the
overall cache size on the performance of Arothron.

88 Chapter 6. Use Case: Improving Content Delivery in LTEs

1

2 3

0

12 13

15 14

10 Gbps – latency 0,5 ms

20 Gbps – latency 0,2 ms

eOFSs
eOFSs

5

6 7

4

eOFSs

8 9

11 10

eOFSs

Cache

Gateway

Figure 6.2: Simulation network

6.5.1.2 Simulation of user behaviour

We simulate the customer terminals movements with a Gauss-Markov mobility
model [Meg10] where the simulation area is a semi-urban square of 4km sides. The
maximum speed is set to 80 km/h for any user as the simulation is in a semi-urban
area. The average speed of the users is distributed to reflect their activities, most of
them are rather immobile, some of them use low-speed urban transportation, and a
few ones have high average speed to simulate peri-urban mobility.

The users request contents following a Zipf distribution with a decay parameter
α = 0.9 [BCF+99].3 A user can download a single content at once. Once a download
is completed, the user waits before starting a new download by a waiting time
drawn from a Poisson distribution. In all simulations, we consider 1,000 independent
customers consuming contents from a catalog of 100,000 entries of a mean size of
9 MB that is representative of user-generated videos [CDL07]. For each customer, the
average download rate is 5 Mbps and the average upload rate is 50 kbps. Simulations
have been repeated 3 times and the average values are given (the deviation is
negligible).

3Simulations with other decay parameters have been performed and confirm the findings with
α = 0.9.

6.5. Evaluation 89

6.5.1.3 Evaluation metrics

We consider the latency that represents user satisfaction (i.e., the lower the latency
the better) and the network load that summaries the operator costs (i.e., the lowest
the load the cheaper operation cost). We also evaluate impact of the location of
caches, their size, and the ratio between opportunistic and preset caches, to these
metrics.

The advantage in terms of latency is evaluated with the latency reduction metric.
This metric is computed as the average of the relative delta between the latency
induced by the network when Arothron is used and when no caching is used. The
latency reduction is an upper bound as we intentionally neglect the latency induced
by the external network when contents are fetched through the gateway.

The advantage in terms of network load is studied with the load reduction metric.
The load of a set of links is defined as the sum of the loads on all the links in the set
(both up and down links). The load reduction of a set of links is thus the average of
the relative delta between the load of the set of links when Arothron is used and
when no caching is used. We distinguish two different cases. First, when all the
links of the network are taken into account (except radio links), the load reduction
is called the network load reduction. Second, when only the peering and exchange
point links are taken into consideration, the load reduction is called the gateway
load reduction.

Several parameters of Arothron have a direct impact on the performances of the
system. In Sec. 6.5.2 we study the impact of the parameters on the performances when
caches are deployed only at one level. In Sec. 6.5.3 we determine the performance of
the system with caches deployed at all the levels. Finally, in Sec. 6.5.4 we see how
caching reacts in presence of packet losses.

6.5.2 Benefits of Caching at Different Levels

A major strength of our architecture is its ability to place caching units anywhere
in LTE networks in a multilevel way. To assess the benefit of this flexibility, this
section studies the respective advantages of deploying caches at a particular level of
the network while Sec. 6.5.3 studies how combining caches at several levels improves
network performance.

We consider 3 scenarios: (i) caches are deployed only in the eNodeBs (i.e., level
1); (ii) caches are deployed only in the backhaul (i.e., level 2); and (iii) caches are
deployed only in the EPC (i.e., level 3). In all scenarios, each storage unit is split in
an opportunistic part and a preset part and we vary the ratio of storage allocated to
the two parts. When the ratio is 0%, the caches are performing only preset caching
and when the ratio is 100%, the caching is only opportunistic. In addition to the
impact of this ratio, we study the performances of the system using four different
node storage capacities: 128 MB, 1 GB, 5 GB, and 10 GB.

The performance of the system is shown in Fig. 6.3 Fig. 6.4. We can see that,
as the intuition suggests, the location of caches in the network has a direct impact

90 Chapter 6. Use Case: Improving Content Delivery in LTEs

0 20 40 60 80 100
Caching ratio

0

20

40

60

80

100

Lo
a
d
 r

e
d
u
ct

io
n
 (

%
)

128 MB

1 GB

5 GB

10 GB

Network load reduction

Gateway load reduction

(a) Level 1

0 20 40 60 80 100
Caching ratio

0

20

40

60

80

100

Lo
a
d
 r

e
d
u
ct

io
n
 (

%
)

128 MB

1 GB

5 GB

10 GB

Network load reduction

Gateway load reduction

(b) Level 2

0 20 40 60 80 100
Caching ratio

0

20

40

60

80

100

Lo
a
d
 r

e
d
u
ct

io
n
 (

%
)

128 MB

1 GB

5 GB

10 GB

Network load reduction

Gateway load reduction

(c) Level 3

Figure 6.3: Reduction of the network and gateway load depending on the level of
caches and the caching ratio (x-axis)

on the latency with a clear advantage for deployment at level 1 as it reduces the
necessity to use long-distance backhaul links that are causing most of the delay in
LTE networks. On the contrary, the location of caches has no significant impact on
the network or gateway load reduction.

Transferring small shares of capacity from a pure preset cache to its opportunistic
counterpart induces a clear increase in the network and gateway load reduction as in
the latency reduction. Indeed, adding some opportunistic caching permits reducing
the traffic related to the dynamic part of the requests since the LRU policy captures
this dynamism. However, by increasing the ratio of space dedicated to opportunistic
caching, we observe that the performance gain saturates before dropping. The reason
is that by giving more shares to opportunistic caches, there is less space for storing
the most popular contents in the preset caches that participate the most to the
reduction of load and latency. This space reduction is not compensated by the space
provided to opportunistic caches as their lack of cooperation causes redundancy and
thus for the same total storage capacity, less contents can be stored.

Fig. 6.3 and Fig. 6.4 show that the size of caches has a clear impact on the
performance: when caches are too small the benefit is limited but using very large
caches doesn’t bring much benefits either. Moreover, the storage size impacts the
way performances evolve with the caching ratio. For 128 MB of storage capacity, the
ideal is to strictly use preset caches. This is because such small cache size only gives
space to store a limited number of contents (i.e., less than 15 on average with our

6.5. Evaluation 91

0 20 40 60 80 100
Caching ratio

0

20

40

60

80

100

La
te

n
cy

 r
e
d
u
ct

io
n
 (

%
)

128 MB

1 GB

5 GB

10 GB

(a) Level 1

0 20 40 60 80 100
Caching ratio

0

20

40

60

80

100

La
te

n
cy

 r
e
d
u
ct

io
n
 (

%
)

128 MB

1 GB

5 GB

10 GB

(b) Level 2

0 20 40 60 80 100
Caching ratio

0

20

40

60

80

100

La
te

n
cy

 r
e
d
u
ct

io
n
 (

%
)

128 MB

1 GB

5 GB

10 GB

(c) Level 3

Figure 6.4: Reduction of user perceived latency depending on the level of caches
and the caching ratio

setup), meaning that the number of contents that can be hold by one opportunistic
cache is too small and it is unlikely that two subsequent requests for the same
content will cause a hit in the cache. A small opportunistic cache only works with
highly skewed popularity distributions where some contents are so popular that they
are very likely to be requested every few requests passing the cache.

On the contrary, with larger cache sizes, the performance benefit from setting
opportunistic caching. Pure preset caching performance is half of pure opportunistic
caching, while the optimal is achieved with a combination of both in all the levels. In
both cases, using a single type of caching does not provide the highest performance.
Interestingly, the ideal ratio to adopt between opportunistic and preset caching
depends on the size of the caches, it is closer to pure preset for big caches and
closer to pure opportunistic for smaller caches. The reason is that because of
LRU, opportunistic caches must be of a minimal size, which mostly depends on the
inter-arrival times of requests for the same content. With large caches a small ratio
permits to achieve this minimal size while for small caches, it requires a higher ratio
to obtain it.

This section shows that to improve network performances, it is ideal to combine
rather small opportunistic caches and relatively large preset caches. It also shows
that if the main objective is to reduce the user perceived latency, caches should be
deployed in the eNodeBs. However, as deploying caches in the eNodeB may cause
high OPEX, if the main objective of caching is to reduce the overall network load,

92 Chapter 6. Use Case: Improving Content Delivery in LTEs

0,
0,

0

50
,0

,0

50
,5

0,
50

10
0,

0,
0

10
0,

50
,0

10
0,

10
0,

0

10
0,

10
0,

10
0

lo
ca

l o
pt

s

Ratios combination

0

20

40

60

80

100

N
e
tw

o
rk

 l
o
a
d
 r

e
d
u
ct

io
n
 (

%
)

128M

1G

5G

10G

(a) Network load reduction

0,
0,

0

50
,0

,0

50
,5

0,
50

10
0,

0,
0

10
0,

50
,0

10
0,

10
0,

0

10
0,

10
0,

10
0

lo
ca

l o
pt

s

Ratios combination

0

20

40

60

80

100

G
a
te

w
a
y
 l
o
a
d
 r

e
d
u
ct

io
n
 (

%
)

128M

1G

5G

10G

(b) Gateway load reduction

0,
0,

0

50
,0

,0

50
,5

0,
0

10
0,

0,
0

10
0,

50
,0

10
0,

10
0,

0

10
0,

10
0,

10
0

lo
ca

l o
pt

s

Ratios combination

0

20

40

60

80

100

La
te

n
cy

 r
e
d
u
ct

io
n
 (

%
) 128M

1G

5G

10G

(c) Latency reduction

Figure 6.5: Network performance in case with multiple levels of caches

deploying caches in the backhaul or in the EPC is more appropriate.

6.5.3 Impact of Several Levels Caching

We determined the optimal ratios for each possible level of caching separately
in Sec. 6.5.2 and in this section, we analyze how these ratios impact network
performances when caches are deployed simultaneously at all the levels of the
network. For that we simulate cases with various combinations of ratios and
compare their performances with the ones obtained if the ideal per-level ratios found
in Sec. 6.5.2 are used.

The network performances obtained for the most representative combinations are
displayed in histograms in Fig. 6.5. Each group of bars represents a particular ratio
combination where a distinctive bar is used per tested storage capacity. The label of
the group is a triplet a, b, c that gives the ratio used at each level (a corresponding
to level 1, b to level 2, and c to level 3). The simulations made with the optimal
ratios found in Sec. 6.5.2 is labeled local opts.

Fig. 6.5 highlights that even though the combination of local optima does not
ensure the global optimum when multiple levels of caches are used, it consistently
provides performances close, if not equal to the optimum. In an interesting manner,
the 100, 0, 0 ratios combination (i.e., pure opportunistic at the eNodeBs and pure
preset in the network) also consistently offers among the best performances. It
demonstrates the benefits of combining opportunistic and preset caching in a single
architecture. However, in Sec. 6.5.2 we saw that when only one level of caches is

6.5. Evaluation 93

used, it is preferable to use opportunistic and preset caches together on each cache,
but if several levels of caches are used, the impact of the ratio on the third level is
nearly none as then most of the caching is done on the first two levels. The ratio is
very important on the first level, where opportunistic caching is required to achieve
good performances. In the core, reducing the share of preset caching reduces the
performance of the system. Thus, preset caching should be performed in the core to
achieve the best results.

6.5.4 Advantages of Using Opportunistic Caching for Networks
with Loss

As demonstrated in previous sections, caching at the level 1 (i.e., at the eNodeB)
significantly reduces latency as well as network and gateway load. However, using
different caching techniques leads to different performances of the caches in case of
retransmissions due to losses. We thus analyze the performances of the network
when caches are installed only at level 1 and are either fully opportunistic (i.e.,
ratio = 100%) or fully preset (i.e., ratio = 0%) for three typical network loss rates:
(i) 0% for a fixed network, (ii) 0.03% for a LTE network, and (iii) 0.25% for a WiFi
network [CTN+12]. We suppose that each cache is large and that there is no loss
on the upload as the requests are considerably smaller than the responses and that
the loss occurs on the RAN.

Fig. 6.6 shows a clear advantage of opportunistic caching over preset caching in
all situations, but the advantage is boosted in case of high loss rate. The reason
is that when a loss occurs, the request is retransmitted within a short period of
time and in case of opportunistic caching, the content is likely to be in the cache
as the presence of a content in the cache only depends on the last time it has been
requested, not its popularity, which tends to favor caching of content for requests
seen within a short time scale. On the contrary, preset caches are biased towards
popular contents and less popular contents cannot benefit from the cache, even upon
retransmission. Indeed, preset caching is not able to cope with this dynamic and
variable demand as the set of contents stored is fixed between two relocations.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Loss ratio

0

20

40

60

80

100

La
te

n
cy

 R
e
d
u
ct

io
n
 (

%
)

Preset

Opportunistic

Figure 6.6: Reduction of the user perceived latency depending on the type of caching
and the loss rate

94 Chapter 6. Use Case: Improving Content Delivery in LTEs

6.6 Related Work

Overcoming the cellular mobile traffic explosion in cellular networks with limited
link capacities [XWF+15] can be achieved through four emerging caching techniques
deployed at the different layers of LTE cellular networks (See Fig. 6.1): Evolved
Packet Core (EPC) caching, Radio Access Network (RAN) caching, Device-to-Device
(D2D) caching, and Information-Centric Network (ICN [JST+09])-based caching.

Woo et al. [WJP+13] show that up to 58 % of traffic from Korean cellular networks
consists of redundant data. Ramanan et al. [RDH+13] analyze the gain of HTTP
content caching at S-GW using LTE network traces and show that the advantages
of deploying caches at EPC nodes: (i) easy management of both cache servers
and EPC nodes; (ii) high hit ratio. However, other studies ([AD12, GSD+12])
suggest to deploy caches within the radio access network (RAN). Ahlehagh et
al. [AD12] demonstrate the feasibility of performing video caching in RAN and
propose two new caching policies based on user preference profiles to improve hit
ratio at eNodesBs. Golrezaei et al. [GSD+12] introduce “helpers” base stations,
with large storage capacity and caching functionalities. They formalize the content
allocation for helpers, prove its hardness, and propose approximation algorithms.
The advantages of caching at RAN are: (i) reducing traffic on backhaul links and
(ii) improving user quality of experience. However, in practice, storage capacity is
small on eNodeBs [WCT+14] and the number of users served by each eNodeB is
small, leading to small cache hit ratios.

Device-to-Device (D2D) caching is another approach to reduce overall bandwidth
usage [GDM14, APVG14], by exploiting unused storage space available in mobile
devices to form a distributed cache system. Golrezaei et al. [GDM14] introduce a
D2D architecture and express the optimal collaboration distance as a function of the
exponential parameter of the content demand distribution. Moreover, they show that
a central coordinator is not needed. Altiari et al. [APVG14] formalize a geometric
model for distributed D2D caching, which can be used to estimate how many requests
could be served. D2D caching is suitable for synchronous streaming of live events
that can potentially improve throughput and energy efficiency, and reduce traffic
load for eNodeBs. However, D2D caching requires solving important implementation
challenges, such as interference management and resource allocation [AWM14].

The similarity in the shift of traffic towards data consumption allows to apply
the new Information-Centric Networking (ICN) communication paradigm [ZLL13].
In ICN, each node has caching capabilities, and unique resource identifiers (URI) are
used for routing and caching decisions. As a proof of concept for cellular networks,
Han et al. [HWC+13] implemented an ICN architecture on a commercial WiMAX
base station.

ICN makes caching become more ubiquitous, flexible and can be used for different
type of contents. There are enormous work on ICN covering different aspects
of caching. Several studies point out that the cache space should be allocated
proportional to node degree [PCP12] and more for edge nodes rather than core
nodes [RR12] to obtain high performance. Eum et al. [ENM+12] shows that a

6.7. Conclusion 95

simple random replacement achieves similar performance with LRU and complex
replacement algorithms are not suitable for ICN. Other studies propose caching
decision algorithms, such as based on probabilistic [RR12] or content popularity
[CLP+12].

Nevertheless, Fayazbakhsh et al. [FLT+13] point out ubiquitous caching like
ICN might not be necessary because the caching benefit comes from sa mall number
of caches, and the difference of performance between simple edge caching and
ubiquitous caching is relatively small. Moreover, ICN is a clean slate solution
and there are challenges needed to be addressed before deployment in production
networks [ZLL13].

Departing from the state of the art, our work takes into account the fact
that caches can be placed in access networks of LTEs, using our proposals [CR14,
CRKMK14, NST13a, NST13b].

6.7 Conclusion

OpenFlow enables new opportunities to simplify network management and reduce
costs. In Chapter 4 and Chapter 5, we propose OFFICER and aOFFICER, which are
basic blocks to implement the black box abstraction. With the black box abstraction,
operators can focus on defining optimal high level endpoint policies and do not need
to care about how to transform them into low level OpenFlow rules. In this chapter
we present a use case of OpenFlow blackbox abstraction for a high level application:
improving content delivery services in LTE.

The tremendous growth of mobile Internet traffic puts cellular network operators
under pressure to find solutions in order to reduce latency and bandwidth usage.
To cope with this problem, in-network caching seems to be a promising solution.
However, it is not possible to deploy caches everywhere in an LTE network, as user
equipment and the network core rely on IP, whereas the backhaul network does not
and uses tunnels to transport the traffic of customers.

In this chapter, we propose Arothron, a versatile caching framework for LTE
networks. Wee replace the usual tunneling techniques used in LTE to handle mobility
and handover by native packet switching by virtue of OpenFlow. With this approach,
it is then possible to deploy caches anywhere in an LTE network and construct a
multilevel caching infrastructure. In Arothron, each storage unit is split in two logical
caching units: one opportunistic part and one preset part. The opportunistic cache
is implemented using LRU to absorb the dynamic part of traffic while the preset
cache uses a collaborative approach to store the optimal contents. As each level of
the network has its own particularity, the storage shares given to the opportunistic
and preset caches can be adapted for each level.

We develop the Arothron architecture and formalize a Mixed Linear Integer
Programming to allocate contents in preset caches. As the content allocation problem
is NP-hard, we propose a polynomial complexity greedy heuristic to solve it. With
extensive simulations, we show that the network overall performances are better if

96 Chapter 6. Use Case: Improving Content Delivery in LTEs

each storage unit combines opportunistic and preset caching instead of using only
one caching approach. The reason is that opportunistic caching is able to deal with
the instantaneous dynamics of traffic, for example due to losses and mobility, but
is not efficient at handling long term content popularity trends. On the contrary,
preset caches are efficient for long term traffic demand pattern, but are unable to
cope with sudden demand changes. Thus, based on observations, we determine the
optimal ratio for each level of caching separately and found out that the optimal
ratio is not the same when caches are deployed at multiple levels.

Chapter 7

Conclusions and Future Work

7.1 Conclusions

Nowadays, a massive number of connected devices and an ever increasing traffic
volume are huge burdens for the network infrastructure. To keep pace, the network
is often upgraded and reconfigured. However, managing and reconfiguring many
diverse devices (e.g., switches, routers, middleboxes) using vendor-specific commands
are complicated, time consuming and error prone. The main reason is that the
network devices are closed boxes running proprietary softwares, which are hard for
operators to innovate and to customize.

By separating the network control logic from forwarding devices and providing the
programmability, Software-Defined Networking (SDN) promises to simplify network
management greatly. To implement the concepts of SDN, the OpenFlow protocol
has been proposed. In OpenFlow, control logic functions are logically centralized
in controllers, and compiled into matching-actions rules on OpenFlow switches.
Many applications (e.g., access control, traffic engineering) can be implemented by
installing appropriate OpenFlow rules. However, existing OpenFlow controllers still
force operators to handle the problem of selecting and populating rules to satisfy
policies and network constraints, which we refer as the OpenFlow Rules Placement
Problem (ORPP). This problem is not trivial, because many rules are available for
selection, while only a limited number of rules can be installed on OpenFlow switches.
Furthermore, installing inappropriate rules may degrade the network performance
and violate the policies.

We believe that SDN and OpenFlow will be widely deployed and be important
components of future network architectures, e.g., 5G cellular networks. Our vision is
that with OpenFlow, the network can be abstracted as a black box, which hides the
complexity of network management and exposes high level application programming
interfaces. Using the blackbox abstraction, high-level policies (e.g., endpoint policies)
defined by operators are compiled into low-level rules and installed on corresponding
OpenFlow switches. Moreover, rules can be automatically updated to cope with
demand fluctuations or network failures. In this thesis, we present several studies
aiming to realize the black box abstraction using OpenFlow.

In Chapter 3, we first formalize the ORPP and identify its challenges, including
resource limitations and the signaling overhead. Second, we classify and discuss the
pros and cons of existing solutions focusing on the ORPP. We find out that most of
the existing solutions enforce the shortest path routing policies (e.g., OSPF, ECMP)
when installing OpenFlow rules, which is not efficient in terms of switch memory

98 Chapter 7. Conclusions and Future Work

usage. We believe that operators do not need to care about routing policies, and
should delegate the controller to select efficient paths for rules installation.

In Chapter 4, we present a new approach for the ORPP: trading routing for
better resource efficiency. More precisely, a relax routing policy is used to leverage
resources on all available paths when installing rules. Using this approach comes
with the challenge of path selection and the fact that flow may follow a long path.
Therefore, we propose a path heuristic, called deflection, that can identify paths
consuming less switch memory than other paths and with low path stretch.

We then apply the above approach to address the offline ORPP, in which the
set of flows is assumed known and stable in a period, and that allows to apply
optimization techniques. We first formalize the offline ORPP as an Integer Linear
Programming (ILP), and prove that the offline ORPP is NP-Hard by reducing it to
the Knapsack problem. The ILP can be implemented on LP solvers (e.g., CPLEX)
to find optimal rules satisfying policies and network constraints, while minimizing
the costs, in terms of percentage of traffic processed by the default device. Second,
we propose a Greedy-based heuristic, called OFFICER, to find rules in polynomial
time complexity for large problem instances (e.g., large number of flows). Our
simulation results in realistic scenarios show that OFFICER outperforms a random
placement algorithm and closes to the optimum, without using long paths for flows.

In practice, flows are often not known in advance, and unpredictable due to
measurement errors. In Chapter 5, we study the online ORPP, in which the set of
flows is unknown and varies over time. To address this problem, existing controller
platforms install rules reactively for all flows, from the first packet seen. However,
this approach is not optimal, due to a large signaling overhead and that large flows
may not be installed. Departing from the state of the art, we propose aOFFICER,
an adaptive rules placement framework, that finds rules satisfying policies and
constraints, while reducing the signaling overhead. The novelty of aOFFICER comes
from its ability to detect and install rules for large flows on efficient paths, and to
adjust its parameter according to traffic fluctuations. Our packet level simulation
results, obtained with realistic traces and topologies, have confirmed the efficiency
and the adaptability of aOFFICER, compared to existing solutions.

OFFICER and aOFFICER are basic blocks to realize the blackbox abstraction
that allows to deploy high level, flexible endpoint policies using OpenFlow. In
Chapter 6, we study a use case, in which the blackbox abstraction is leveraged to
improve content delivery services in cellular networks. First, we argue that with
OpenFlow, switches can support in-network caching functionalities (e.g., using our
technical solution [NST13b]), and therefore, caches can be deployed everywhere to
reduce network load and improve user experience. Second, we propose a versatile
hybrid caching framework, called Arothron. The main idea of Arothon is to split
cache space on each node into two parts: one for opportunistic caching and the other
for preset caching. One one hand, the preset caches store the most popular contents
to satisfy long term demands with high cache hit ratios, and the content placements
are decided by solving a Mixed Integer Linear Programming (MILP) or using a
greedy heuristic. On the other hand, the opportunistic caches store and replace

7.2. Future Work 99

contents using LRU mechanism to absorb short term, bursty demands (e.g., flash
crowd effects). The numerical simulation results reveal that combining opportunistic
and preset caches can reduce the total link usage and the total latency further,
compared to using preset caches only or opportunistic caches only. Moreover, the
optimal ratio between the opportunistic and the preset cache storage depends on
the node location.

7.2 Future Work

We believe the ORPP is still a challenging research area, and there remain interesting
aspects to be studied and improved. In the following, we open some questions worth
for future research.

7.2.1 Robust and Fault Tolerant Rules Placement

Normally, installed rules need to be updated to adapt with varying network conditions
(e.g., changes in policies, network topology, user mobility). Most of proposed solutions
recompute the rules placement to maximize or to minimize some performance metrics
(e.g., total number of rules), which may come with the cost of computation overhead,
signaling overhead, and setup delay.

Robustness and fault tolerance are also important factors, and should be
taken into account when finding rules. On this purpose, robust optimization
techniques [BBC11] might be a promising approach. Such techniques can model the
uncertainty of inputs and produce robust rule placement solutions.

7.2.2 Impact of Default Devices

Recently, default devices, such as controllers and software switches, are used to
offload the memory burden of OpenFlow switches (see Sec. 3.3.3.2). In such a case,
default rules are often configured to redirect flow table miss from OpenFlow switches
towards these devices [MYSG12, KARW14] for further processing. An important
goal is to minimize the percentage of traffic processing by default devices, to avoid
performance penalty (e.g., high processing delay).

The impact of the default devices’ locations, and default rules’ construction on
the efficiency of rules placement are not well understood. It would be interesting
to combine the controller placement [HSM12] and the OpenFlow Rules Placement
Problem to overall optimize the network performance.

7.2.3 Multilevel Table Rules Placement

OpenFlow 1.0 uses a flat table model that cannot handle rule explosions. To address
this issue, OpenFlow 1.1+ [Ope15b] supports multi-level flow tables and pipeline
processing. Consequently, a large flow table on a switch can be split into smaller flow
tables with less rules. Furthermore, some rules require to be placed in TCAM tables

100 Chapter 7. Conclusions and Future Work

while the remaining rules are placed in non-TCAM tables. The multi-tables feature
has been implemented in commercial devices, such as NoviSwitch 1248 [Nov13].

How to benefit from multi-level architectures, how to leverage pipeline processing
ability, which rules to place in which sub-tables should be taken into account for
future research.

7.2.4 Network Function Virtualization

Networks today consist of a large number of various middleboxes and hardware
appliances (e.g., Firewall, Deep Packet Inspections). Usually, launching a new service
requires new hardware-based appliances, which increases the cost of investments,
energy, integration, operation, and maintenance.

Network Function Virtualization (NFV) [Chi12] is a network architecture con-
cept that advocates replacing network equipments by software-based functions on
high volume servers, switches, and storage devices. Basically, NFV requires dy-
namic instantiations and placement of network functions, which can be provided
by OpenFlow. For example, some L2, L3 network functions (e.g., routing, firewall)
could be implemented directly by installing appropriate rules on OpenFlow switches.
Furthermore, forwarding rules can be installed on OpenFlow switches to redirect
flows through different network functions to realize service chaining in NFV.

How and where to place network functions, how traffic is routed through them
are key challenges towards the deployment of NFV. Indeed, NFV is a fascinating
use case and new rules placement solutions must be designed to implement NFV.

Bibliography

[3GP] 3GPP, LTE architecture, http://www.3gpp.org/LTE. (Cited in
pages 80 and 81.)

[AAG+10] David Applegate, Aaron Archer, Vijay Gopalakrishnan, Seungjoon Lee,
and K. K. Ramakrishnan, Optimal content placement for a large-scale
vod system, Proceedings of the 6th International COnference (New
York, NY, USA), Co-NEXT ’10, ACM, 2010, pp. 4:1–4:12. (Cited in
pages 80 and 85.)

[Abi] Abilene, Abilene, http://http://sndlib.zib.de. (Cited in page 49.)

[ACJ+07] David A. Applegate, Gruia Calinescu, David S. Johnson, Howard
Karloff, Katrina Ligett, and Jia Wang, Compressing Rectilinear
Pictures and Minimizing Access Control Lists, Proceedings of the
Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms
(Philadelphia, PA, USA), SODA ’07, Society for Industrial and Applied
Mathematics, 2007, pp. 1066–1075. (Cited in page 25.)

[AD12] H. AhleHagh and S. Dey, Video caching in radio access network: Impact
on delay and capacity, Wireless Communications and Networking
Conference (WCNC), 2012 IEEE, Apr 2012, pp. 2276–2281. (Cited in
page 94.)

[ADRC14] Kanak Agarwal, Colin Dixon, Eric Rozner, and John Carter, Shadow
macs: Scalable label-switching for commodity ethernet, Proceedings of
the Third Workshop on Hot Topics in Software Defined Networking
(New York, NY, USA), HotSDN ’14, ACM, 2014, pp. 157–162. (Cited
in pages 21, 27, 29 and 32.)

[AFLV08] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat, A
scalable, commodity data center network architecture, ACM SIGCOMM
(2008), 63. (Cited in page 48.)

[AL06] Z. Abrams and Jie Liu, Greedy is good: On service tree placement for
in-network stream processing, Distributed Computing Systems, 2006.
ICDCS 2006. 26th IEEE International Conference on, 2006, pp. 72–72.
(Cited in page 86.)

[Apa15] Apache, Hadoop, 2015, https://hadoop.apache.org. (Cited in
page 67.)

[APB09] Mark Allman, Vern Paxson, and Ethan Blanton, Tcp congestion control,
Tech. report, RFC, 2009. (Cited in pages 14 and 65.)

http://www.3gpp.org/LTE
http://http://sndlib.zib.de
https://hadoop.apache.org

102 Bibliography

[APVG14] A. Altieri, P. Piantanida, L.R. Vega, and C.G. Galarza, A stochastic
geometry approach to distributed caching in large wireless networks,
Wireless Communications Systems (ISWCS), 2014 11th International
Symposium on, Aug 2014, pp. 863–867. (Cited in page 94.)

[AWM14] A. Asadi, Qing Wang, and V. Mancuso, A survey on device-to-device
communication in cellular networks, Communications Surveys Tutori-
als, IEEE 16 (2014), no. 4, 1801–1819. (Cited in page 94.)

[BAAZ11] Theophilus Benson, Ashok Anand, Aditya Akella, and Ming Zhang,
MicroTE: Fine Grained Traffic Engineering for Data Centers, Proceed-
ings of the Seventh COnference on Emerging Networking EXperiments
and Technologies (New York, NY, USA), CoNEXT ’11, ACM, 2011,
pp. 8:1–8:12. (Cited in pages 8, 34 and 58.)

[BAM10] Theophilus Benson, Aditya Akella, and David A. Maltz, Network
Traffic Characteristics of Data Centers in the Wild, Proceedings of
the 10th ACM SIGCOMM Conference on Internet Measurement (New
York, NY, USA), IMC ’10, ACM, 2010, pp. 267–280. (Cited in pages 21,
23, 24, 27, 48, 60 and 67.)

[BBC11] Dimitris Bertsimas, David B. Brown, and Constantine Caramanis,
Theory and Applications of Robust Optimization, SIAM Review 53
(2011), no. 3, 464–501. (Cited in page 99.)

[BCF+99] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott Shenker,
Web caching and zipf-like distributions: Evidence and implications,
INFOCOM’99. Eighteenth Annual Joint Conference of the IEEE Com-
puter and Communications Societies. Proceedings. IEEE, vol. 1, IEEE,
1999, pp. 126–134. (Cited in page 88.)

[Bel58] Richard Bellman, On a Routing Problem, Quarterly of Applied Math-
ematics 16 (1958), 87–90. (Cited in page 38.)

[BFCW09] Hitesh Ballani, Paul Francis, Tuan Cao, and Jia Wang, Making routers
last longer with viaggre, USENIX NSDI (Berkeley, CA, USA), 2009,
pp. 453–466. (Cited in page 40.)

[BM14] W. Braun and M. Menth, Wildcard Compression of Inter-Domain
Routing Tables for OpenFlow-Based Software-Defined Networking, Soft-
ware Defined Networks (EWSDN), 2014 Third European Workshop
on, Sept 2014, pp. 25–30. (Cited in pages 26 and 32.)

[CCK+10] James J. Cochran, Louis A. Cox, Pinar Keskinocak, Jeffrey P.
Kharoufeh, and J. Cole Smith, Milp software, John Wiley and Sons,
Inc., 2010. (Cited in page 12.)

Bibliography 103

[CDL07] Xu Cheng, Cameron Dale, and Jiangchuan Liu, Understanding the
characteristics of internet short video sharing: Youtube as a case study,
CoRR abs/0707.3670 (2007), 1–9. (Cited in page 88.)

[Chi12] Margaret Chiosi, Network Function Virtualisation White Paper, https:
//portal.etsi.org/nfv/nfv_white_paper.pdf, 2012, accessed 19-
Aug-2015. (Cited in page 100.)

[Chv83] V. Chvatal, Linear programming, Series of books in the mathematical
sciences, W. H. Freeman, 1983. (Cited in pages 11 and 12.)

[Cis15] Cisco, Cisco Visual Networking Index: Forecast and
Methodology, 2014-2019, 2015, http://www.cisco.com/
c/en/us/solutions/collateral/service-provider/
ip-ngn-ip-next-generation-network/white_paper_c11-481360.
html, accessed 21-Oct-2015. (Cited in pages 1 and 79.)

[CLP+12] Kideok Cho, Munyoung Lee, Kunwoo Park, T.T. Kwon, Yanghee
Choi, and Sangheon Pack, Wave: Popularity-based and collaborative
in-network caching for content-oriented networks, Computer Commu-
nications Workshops (INFOCOM WKSHPS), 2012 IEEE Conference
on, March 2012, pp. 316–321. (Cited in page 95.)

[CMT+11] Andrew R. Curtis, Jeffrey C. Mogul, Jean Tourrilhes, Praveen Yala-
gandula, Puneet Sharma, and Sujata Banerjee, DevoFlow: scaling
flow management for high-performance networks, SIGCOMM Comput.
Commun. Rev. 41 (2011), no. 4, 254–265. (Cited in pages 20, 23, 27,
32, 34, 35, 54, 58 and 60.)

[CPZ04] Baek-Young Choi, Jaesung Park, and Zhi-Li Zhang, Adaptive packet
sampling for accurate and scalable flow measurement, Global Telecom-
munications Conference, 2004. GLOBECOM ’04. IEEE, vol. 3, Nov
2004, pp. 1448–1452 Vol.3. (Cited in page 60.)

[CR14] J. Costa-Requena, SDN integration in LTE mobile backhaul networks,
Information Networking (ICOIN), 2014 International Conference on,
Feb 2014, pp. 264–269. (Cited in pages 80 and 95.)

[CRKMK14] J. Costa-Requena, M. Kimmerlin, J. Manner, and R. Kantola, SDN
optimized caching in LTE mobile networks, Information and Communi-
cation Technology Convergence (ICTC), 2014 International Conference
on, Oct 2014, pp. 128–132. (Cited in pages 80 and 95.)

[CSS10] Yasunobu Chiba, Yusuke Shinohara, and Hideyuki Shimonishi, Source
Flow: Handling Millions of Flows on Flow-based Nodes, Proceedings
of the ACM SIGCOMM 2010 Conference (New York, NY, USA),
SIGCOMM ’10, ACM, 2010, pp. 465–466. (Cited in pages 26, 27
and 32.)

https://portal.etsi.org/nfv/nfv_white_paper.pdf
https://portal.etsi.org/nfv/nfv_white_paper.pdf
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.html

104 Bibliography

[CTN+12] Yung-Chih Chen, Don Towsley, Erich M Nahum, Richard J Gibbens,
and Yeon-sup Lim, Characterizing 4g and 3g networks: Supporting
mobility with multipath tcp, Tech. report, UMass, 2012. (Cited in
page 93.)

[DKVZ99] R.P. Draves, C. King, S. Venkatachary, and B.D. Zill, Constructing
optimal IP routing tables, INFOCOM ’99. Eighteenth Annual Joint
Conference of the IEEE Computer and Communications Societies.
Proceedings. IEEE, vol. 1, Mar 1999, pp. 88–97 vol.1. (Cited in
page 24.)

[DLOX15] Mianxiong Dong, He Li, Kaoru Ota, and Jiang Xiao, Rule caching in
SDN-enabled mobile access networks, Network, IEEE 29 (2015), no. 4,
40–45. (Cited in page 30.)

[ENM+12] Suyong Eum, Kiyohide Nakauchi, Masayuki Murata, Yozo Shoji, and
Nozomu Nishinaga, Catt: Potential based routing with content caching
for icn, Proceedings of the Second Edition of the ICN Workshop on
Information-centric Networking (New York, NY, USA), ICN ’12, ACM,
2012, pp. 49–54. (Cited in page 94.)

[Eri13] David Erickson, The Beacon Openflow Controller, Proceedings of
the Second ACM SIGCOMM Workshop on Hot Topics in Software
Defined Networking (New York, NY, USA), HotSDN ’13, ACM, 2013,
pp. 13–18. (Cited in pages 4, 8, 57, 58, 60, 66, 67 and 69.)

[Fac] Facebook, Facebook draws 1 billion users in a sin-
gle day, http://www.theverge.com/2015/8/27/9217607/
facebook-one-billion-daily-active-users, accessed 21-Oct-
2015. (Cited in page 1.)

[FHF+11] Nate Foster, Rob Harrison, Michael J. Freedman, Christopher Mon-
santo, Jennifer Rexford, Alec Story, and David Walker, Frenetic: a
network programming language, Proceedings of the 16th ACM SIG-
PLAN international conference on Functional programming (New York,
NY, USA), ICFP ’11, ACM, 2011, pp. 279–291. (Cited in page 18.)

[Flo62] Robert W. Floyd, Algorithm 97: Shortest path, Commun. ACM 5
(1962), no. 6, 345–. (Cited in page 86.)

[Flo15] Floodlight, Floodlight Controller, 2015, http://www.
projectfloodlight.org/floodlight/. (Cited in pages 4, 8,
57, 58, 60, 66, 67 and 69.)

[FLT+13] Seyed Kaveh Fayazbakhsh, Yin Lin, Amin Tootoonchian, Ali Gh-
odsi, Teemu Koponen, Bruce Maggs, K.C. Ng, Vyas Sekar, and Scott
Shenker, Less pain, most of the gain: Incrementally deployable icn,

http://www.theverge.com/2015/8/27/9217607/facebook-one-billion-daily-active-users
http://www.theverge.com/2015/8/27/9217607/facebook-one-billion-daily-active-users
http://www.projectfloodlight.org/floodlight/
http://www.projectfloodlight.org/floodlight/

Bibliography 105

SIGCOMM Comput. Commun. Rev. 43 (2013), no. 4, 147–158. (Cited
in page 95.)

[Fou] Open Networking Foundation, Open networking foundation,
https://www.opennetworking.org/about. (Cited in page 60.)

[Fou13] , Optical transport working group otwg, Open Networking Foun-
dation ONF, 2013. (Cited in page 2.)

[GDM14] N. Golrezaei, A.G. Dimakis, and A.F. Molisch, Scaling behavior for
device-to-device communications with distributed caching, Information
Theory, IEEE Transactions on 60 (2014), no. 7, 4286–4298. (Cited in
page 94.)

[GKP+08] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and
S. Shenker, Nox: towards an operating system for networks, SIGCOMM
CCR 38 (2008), no. 3, 105–110. (Cited in pages 4, 8, 23, 57, 58, 60,
66, 67 and 69.)

[GMP14] F. Giroire, J. Moulierac, and T.K. Phan, Optimizing rule placement
in software-defined networks for energy-aware routing, Global Commu-
nications Conference (GLOBECOM), 2014 IEEE, Dec 2014, pp. 2523–
2529. (Cited in pages 20, 28, 29, 30, 32, 34, 54 and 58.)

[GNU13] GNU, GNU Linear Programming Kit, 2013, http://www.gnu.org/
software/glpk. (Cited in page 12.)

[gri15] Grid5000, 2015, https://www.grid5000.fr. (Cited in page 67.)

[GSD+12] N. Golrezaei, K. Shanmugam, A.G. Dimakis, A.F. Molisch, and
G. Caire, Femtocaching: Wireless video content delivery through dis-
tributed caching helpers, INFOCOM, 2012 Proceedings IEEE, Mar
2012, pp. 1107–1115. (Cited in page 94.)

[HCWL15] J. Huang, G. Chang, C. Wang, and C. Lin, Heterogeneous Flow
Table Distribution in Software-defined Networks, Emerging Topics in
Computing, IEEE Transactions on PP (2015), no. 99, 1–6. (Cited in
pages 29 and 32.)

[HLGY14] Huawei Huang, Peng Li, Song Guo, and Baoliu Ye, The Joint Op-
timization of Rules Allocation and Traffic Engineering in Software
Defined Network, May 2014, pp. 141–146. (Cited in pages 20, 26, 29,
30, 32, 34 and 58.)

[HLR+08] T.R. Henderson, M. Lacage, G.F. Riley, C. Dowell, and JB Kopena,
Network simulations with the ns-3 simulator, SIGCOMM demonstra-
tion (2008). (Cited in page 66.)

http://www.gnu.org/software/glpk
http://www.gnu.org/software/glpk
https://www.grid5000.fr

106 Bibliography

[Hop00] Christian E Hopps, Analysis of an equal-cost multi-path algorithm,
Tech. report, RFC, 2000. (Cited in page 58.)

[HSM12] Brandon Heller, Rob Sherwood, and Nick McKeown, The controller
placement problem, Proceedings of the first workshop on Hot topics in
software defined networks (New York, NY, USA), HotSDN ’12, ACM,
2012, pp. 7–12. (Cited in pages 53 and 99.)

[HWC+13] Bing Han, Xiaofei Wang, Nakjung Choi, T. Kwon, and Yanghee Choi,
Amvs-ndn: Adaptive mobile video streaming and sharing in wireless
named data networking, Computer Communications Workshops (IN-
FOCOM WKSHPS), 2013 IEEE Conference on, Apr 2013, pp. 375–380.
(Cited in page 94.)

[IBM] IBM, CPLEX Solver, http://www-01.ibm.com/software/
commerce/optimization/cplex-optimizer/. (Cited in pages 8
and 12.)

[IMS13] A.S. Iyer, V. Mann, and N.R. Samineni, SwitchReduce: Reducing
switch state and controller involvement in OpenFlow networks, IFIP
Networking Conference, May 2013, pp. 1–9. (Cited in pages 21, 26,
27, 29, 30, 32 and 54.)

[INR15] INRIA, INRIA NEF Clusters, 2015, https://wiki.inria.fr/
ClustersSophia/Clusters_Home. (Cited in pages 7 and 67.)

[JKM+13] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon
Poutievski, Arjun Singh, Subbaiah Venkata, Jim Wanderer, Junlan
Zhou, Min Zhu, et al., B4: Experience with a globally-deployed software
defined WAN, Proceedings of the ACM SIGCOMM 2013 conference on
SIGCOMM, ACM, 2013, pp. 3–14. (Cited in pages 2, 18, 38 and 40.)

[JLG+14] Xin Jin, Hongqiang Harry Liu, Rohan Gandhi, Srikanth Kandula,
Ratul Mahajan, Ming Zhang, Jennifer Rexford, and Roger Watten-
hofer, Dynamic Scheduling of Network Updates, SIGCOMM Comput.
Commun. Rev. 44 (2014), no. 4, 539–550. (Cited in pages 27 and 41.)

[JST+09] Van Jacobson, Diana K. Smetters, James D. Thornton, Michael F.
Plass, Nicholas H. Briggs, and Rebecca L. Braynard, Networking
named content, Proceedings of the 5th international conference on
Emerging networking experiments and technologies (New York, NY,
USA), CoNEXT ’09, ACM, 2009, pp. 1–12. (Cited in page 94.)

[KARW14] Naga Katta, Omid Alipourfard, Jennifer Rexford, and David Walker,
Infinite CacheFlow in Software-defined Networks, Proceedings of the
Third Workshop on Hot Topics in Software Defined Networking (New
York, NY, USA), HotSDN ’14, ACM, 2014, pp. 175–180. (Cited in
pages 20, 21, 25, 29, 30, 31, 32, 34, 57 and 99.)

http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
https://wiki.inria.fr/ClustersSophia/Clusters_Home
https://wiki.inria.fr/ClustersSophia/Clusters_Home

Bibliography 107

[KB14] Kalapriya Kannan and Subhasis Banerjee, FlowMaster: Early Eviction
of Dead Flow on SDN Switches, Distributed Computing and Network-
ing, Springer Berlin Heidelberg, 2014, pp. 484–498 (English). (Cited
in page 23.)

[KHK13] Yossi Kanizo, David Hay, and Isaac Keslassy, Palette: Distributing
tables in software-defined networks, INFOCOM, Apr. 2013, pp. 545–
549. (Cited in pages 8, 25, 28, 29, 30, 32, 34, 43, 44, 54 and 57.)

[KLC+14] Eun-Do Kim, Seung-Ik Lee, Yunchul Choi, Myung-Ki Shin, and
Hyoung-Jun Kim, A flow entry management scheme for reducing
controller overhead, Advanced Communication Technology (ICACT),
2014 16th International Conference on, Feb 2014, pp. 754–757. (Cited
in pages 23 and 32.)

[KLRW13] Nanxi Kang, Zhenming Liu, Jennifer Rexford, and David Walker, Op-
timizing the "one big switch" abstraction in software-defined networks,
Proceedings of the Ninth ACM Conference on Emerging Networking
Experiments and Technologies (New York, NY, USA), CoNEXT ’13,
ACM, 2013, pp. 13–24. (Cited in pages 4, 8, 19, 20, 25, 28, 29, 30, 32,
34, 38, 43, 44, 54 and 57.)

[KNS+15] Mael Kimmerlin, Xuan Nam Nguyen, Damien Saucez, Jose Costa-
Requena, and Thierry Turletti, Arothron: a Versatile Caching Frame-
work for LTE, Tech. report, INRIA and Aalto University, 2015, under
submission. (Cited in pages 9 and 79.)

[KO90] Sir Maurice Kendall and J. Keith Ord, Time Series 3rd Edition,
Hodder Arnold, Great Britain, 1990. (Cited in pages 14 and 65.)

[KREV+15] D. Kreutz, F.M.V. Ramos, P. Esteves Verissimo, C. Esteve Rothen-
berg, S. Azodolmolky, and S. Uhlig, Software-defined networking: A
comprehensive survey, IEEE Communications Surveys & Tutorials
103 (2015), no. 1, 14–76. (Cited in pages 1, 2, 7, 18 and 34.)

[KSG+09] Srikanth Kandula, Sudipta Sengupta, Albert Greenberg, Parveen Patel,
and Ronnie Chaiken, The Nature of Data Center Traffic: Measure-
ments & Analysis, Proceedings of the 9th ACM SIGCOMM Conference
on Internet Measurement Conference (New York, NY, USA), IMC ’09,
ACM, 2009, pp. 202–208. (Cited in pages 23, 34, 58 and 60.)

[KSP+14] Masayoshi Kobayashi, Srini Seetharaman, Guru Parulkar, Guido Ap-
penzeller, Joseph Little, Johan van Reijendam, Paul Weissmann, and
Nick McKeown, Maturing of OpenFlow and Software-defined Network-
ing through deployments, Computer Networks 61 (2014), 151–175.
(Cited in pages 2 and 20.)

108 Bibliography

[LHM10] Bob Lantz, Brandon Heller, and Nick McKeown, A network in a
laptop: rapid prototyping for software-defined networks, Proceedings
of the Ninth ACM SIGCOMM Workshop on Hot Topics in Networks,
2010. (Cited in page 7.)

[LHO+14] Wei Liu, Ao Hong, Liang Ou, Wenchao Ding, and Ge Zhang, Prediction
and correction of traffic matrix in an ip backbone network, Performance
Computing and Communications Conference (IPCCC), 2014 IEEE
International, Dec 2014, pp. 1–9. (Cited in page 37.)

[LKA13] Bu Sung Lee, Renuga Kanagavelu, and Khin Mi Mi Aung, An efficient
flow cache algorithm with improved fairness in Software-Defined Data
Center Networks, Proceedings of the 2013 IEEE 2nd International
Conference on Cloud Networking, CloudNet 2013 (2013), 18–24. (Cited
in page 23.)

[LLG14] He Li, Peng Li, and Song Guo, Morule: Optimized rule placement for
mobile users in sdn-enabled access networks, Global Communications
Conference (GLOBECOM), 2014 IEEE, Dec 2014, pp. 4953–4958.
(Cited in pages 20, 29, 30, 32, 34 and 58.)

[LMT10] A.X. Liu, C.R. Meiners, and E. Torng, TCAM Razor: A Systematic
Approach Towards Minimizing Packet Classifiers in TCAMs, Network-
ing, IEEE/ACM Transactions on 18 (2010), no. 2, 490–500. (Cited in
page 25.)

[LYL14] Shouxi Luo, Hongfang Yu, and Le Min Li, Fast incremental flow
table aggregation in SDN, Computer Communication and Networks
(ICCCN), 2014 23rd International Conference on, Aug 2014, pp. 1–8.
(Cited in pages 27, 28 and 32.)

[MAB+08a] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, Openflow: enabling innovation
in campus networks, ACM SIGCOMM Computer Communication
Review 38 (2008), no. 2, 69–74. (Cited in pages 2, 4, 17 and 18.)

[MAB+08b] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,
Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner,
Openflow: Enabling innovation in campus networks, SIGCOMM Com-
put. Commun. Rev. 38 (2008), no. 2, 69–74. (Cited in pages 38, 80
and 83.)

[Mat] Matplotlib, Matplotlib Python Plotting, matplotlib.org/. (Cited in
page 7.)

[MC12] Jeffrey C. Mogul and Paul Congdon, Hey, You Darned Counters!: Get
off My ASIC!, Proceedings of the First Workshop on Hot Topics in

matplotlib.org/

Bibliography 109

Software Defined Networks (New York, NY, USA), HotSDN ’12, ACM,
2012, pp. 25–30. (Cited in page 35.)

[Meg10] Natarajan Meghanathan, Impact of the gauss-markov mobility model
on network connectivity, lifetime and hop count of routes for mobile
ad hoc networks, Journal of networks 5 (2010), no. 5, 509–516. (Cited
in page 88.)

[MLT12] C.R. Meiners, A.X. Liu, and E. Torng, Bit Weaving: A Non-Prefix
Approach to Compressing Packet Classifiers in TCAMs, Networking,
IEEE/ACM Transactions on 20 (2012), no. 2, 488–500. (Cited in
page 25.)

[MNL+10] Daekyeong Moon, Jad Naous, Junda Liu, Kyriakos Zarifis, Martin
Casado, Teemu Koponen, Scott Shenker, and Lee Breslau, Bridging
the Software/Hardware Forwarding Divide, 2010, UC Berkeley. (Cited
in page 21.)

[Moy89] John Moy, Ospf specification, Tech. report, RFC, 1989. (Cited in
page 58.)

[MT13] Bernhard Meindl and Matthias Templ, Analysis of commercial and
free and open source solvers for the cell suppression problem, Trans.
Data Privacy 6 (2013), no. 2, 147–159. (Cited in page 12.)

[MYSG12] Masoud Moshref, Minlan Yu, Abhishek Sharma, and Ramesh Govin-
dan, vCRIB: Virtualized Rule Management in the Cloud, USENIX
HotCloud (Berkeley, CA, USA), 2012, pp. 23–23. (Cited in pages 4,
18, 20, 21, 30, 31, 32, 54 and 99.)

[MYSG13] , Scalable Rule Management for Data Centers, NSDI’13 Pro-
ceedings of the 10th USENIX conference on Networked Systems Design
and Implementation (2013), 157–170. (Cited in page 21.)

[Net15] NetworkX, NetworkX, 2015, http://networkx.lanl.gov/. (Cited in
pages 7 and 73.)

[Nev14] Miguel Cardoso Neves, On Time-based Strategies for Optimizing Flow
Tables in SDN, Dec 2014, Master Thesis, Department of Computer
Science, The Federal University of Rio Grande do Sul, Brazil. (Cited
in pages 23 and 24.)

[Ngu12] X.N. Nguyen, Software Defined Networking in Wireless Mesh Network,
Msc. thesis, INRIA, UNSA, August 2012. (Cited in page 10.)

[NHL+13] Yukihiro Nakagawa, Kazuki Hyoudou, Chunghan Lee, Shinji
Kobayashi, Osamu Shiraki, and Takeshi Shimizu, DomainFlow: Prac-
tical Flow Management Method Using Multiple Flow Tables in Com-

http://networkx.lanl.gov/

110 Bibliography

modity Switches, ACM CoNEXT, ACM, 2013, pp. 399–404. (Cited in
pages 27, 29, 30, 32, 34 and 54.)

[NMN+14] B.A.A. Nunes, M. Mendonca, Xuan-Nam Nguyen, K. Obraczka, and
T. Turletti, A Survey of Software-Defined Networking: Past, Present,
and Future of Programmable Networks, Communications Surveys Tu-
torials, IEEE 16 (2014), no. 3, 1617–1634. (Cited in pages 2, 3, 7, 9
and 18.)

[Nov13] NoviFlow, NoviSwitch 1248 High Performance Switch,
Jan 2013, http://www.nvc.co.jp/pdf/product/noviflow/
NoviSwitch1248Datasheet.pdf. (Cited in page 100.)

[NSBT14] Xuan-Nam Nguyen, Damien Saucez, Chadi Barakat, and Thierry
Turletti, Optimizing Rules Placement in OpenFlow Networks: Trading
Routing for Better Efficiency, Proceedings of the Third Workshop on
Hot Topics in Software Defined Networking (New York, NY, USA),
HotSDN ’14, ACM, 2014, pp. 127–132. (Cited in pages 10, 30, 37, 38,
40, 43 and 55.)

[NSBT15a] Xuan Nam Nguyen, Damien Saucez, Chadi Barakat, and Thierry
Turletti, OFFICER: A general Optimization Framework for OpenFlow
Rule Allocation and Endpoint Policy Enforcement, IEEE INFOCOM,
April 2015. (Cited in pages 10, 20, 26, 27, 28, 29, 30, 31, 32, 34
and 37.)

[NSBT15b] , Rules Placement Problem in OpenFlow Networks: a Survey,
IEEE Communications Surveys & Tutorials (2015), 1–12. (Cited in
pages 9 and 17.)

[NST13a] Xuan-Nam Nguyen, Damien Saucez, and Thierry Turletti, Efficient
caching in Content-Centric Networks using OpenFlow, INFOCOM
2013 Student Workshop (Turin, Italy), Feb 2013 (Anglais). (Cited in
pages 7, 9, 10 and 95.)

[NST13b] , Providing CCN functionalities over OpenFlow switches, Inria
research report 00920554, INRIA, August 2013. (Cited in pages 7, 9,
10, 95 and 98.)

[Ope15a] OpenDaylight, OpenDaylight Controller, http://www.opendaylight.
org/, 2015, accessed 19-Aug-2015. (Cited in pages 57, 58 and 59.)

[Ope15b] OpenFlow, OpenFlow Switch Specification, http://www.
opennetworking.org/, 2015, accessed 19-Aug-2015. (Cited in
pages 3, 19, 20, 22, 23, 24, 33, 54, 66 and 99.)

[Ope15c] OpenvSwitch, OpenvSwitch, http://openvswitch.org/, 2015, ac-
cessed 19-Aug-2015. (Cited in pages 21 and 31.)

http://www.nvc.co.jp/pdf/product/noviflow/NoviSwitch1248Datasheet.pdf
http://www.nvc.co.jp/pdf/product/noviflow/NoviSwitch1248Datasheet.pdf
http://www.opendaylight.org/
http://www.opendaylight.org/
http://www.opennetworking.org/
http://www.opennetworking.org/
http://openvswitch.org/

Bibliography 111

[Pan] Pandas, Pandas Data Analysis, pandas.pydata.org/. (Cited in
page 7.)

[PCP12] Ioannis Psaras, Wei Koong Chai, and George Pavlou, Probabilistic in-
network caching for information-centric networks, Proceedings of the
Second Edition of the ICN Workshop on Information-centric Network-
ing (New York, NY, USA), ICN ’12, ACM, 2012, pp. 55–60. (Cited in
page 94.)

[POB+14] Jonathan Perry, Amy Ousterhout, Hari Balakrishnan, Devavrat Shah,
and Hans Fugal, Fastpass: A Centralized “Zero-Queue” Datacenter
Network, ACM SIGCOMM, August 2014. (Cited in page 38.)

[Pos81] Jon Postel, Internet protocol, STD 5, RFC Editor, September 1981,
http://www.rfc-editor.org/rfc/rfc791.txt. (Cited in page 27.)

[PRO15] PRONTO, OpenFlow Switch Pronto 3290, 2015, http://www4.ncsu.
edu/~acbabaog/openflow/openflow_pronto.pdf. (Cited in page 7.)

[RDH+13] B.A. Ramanan, L.M. Drabeck, M. Haner, N. Nithi, T.E. Klein, and
C. Sawkar, Cacheability analysis of http traffic in an operational lte
network, Wireless Telecommunications Symposium (WTS), 2013, Apr
2013, pp. 1–8. (Cited in page 94.)

[RHC+15] M Rifai, N Huin, C Caillouet, F Giroire, D Lopez-Pacheco, J Moulierac,
and G Urvoy-Keller, Too many SDN rules? Compress them with
MINNIE, Global Communications Conference (GLOBECOM), IEEE,
Jul 2015, pp. 1–6. (Cited in pages 26 and 32.)

[RR12] D. Rossi and G. Rossini, On sizing ccn content stores by exploiting
topological information, Computer Communications Workshops (INFO-
COM WKSHPS), 2012 IEEE Conference on, March 2012, pp. 280–285.
(Cited in pages 94 and 95.)

[Ryu15] Ryu, Ryu controller, http://osrg.github.com/ryu/, 2015, accessed
19-Aug-2015. (Cited in pages 57 and 58.)

[SCF+12] Brent Stephens, Alan Cox, Wes Felter, Colin Dixon, and John Carter,
PAST: Scalable Ethernet for Data Centers, Proceedings of the 8th
International Conference on Emerging Networking Experiments and
Technologies (New York, NY, USA), CoNEXT ’12, ACM, 2012, pp. 49–
60. (Cited in pages 4, 18, 20, 59 and 66.)

[Sch86] Alexander Schrijver, Theory of linear and integer programming, John
Wiley & Sons, Inc., New York, NY, USA, 1986. (Cited in pages 11, 12
and 13.)

pandas.pydata.org/
http://www.rfc-editor.org/rfc/rfc791.txt
http://www4.ncsu.edu/~acbabaog/openflow/openflow_pronto.pdf
http://www4.ncsu.edu/~acbabaog/openflow/openflow_pronto.pdf

112 Bibliography

[SCP13] Lorenzo Saino, Cosmin Cocora, and George Pavlou, A Toolchain for
Simplifying Network Simulation Setup, SIMUTOOLS, 2013. (Cited in
pages 7 and 49.)

[SMW02] Neil Spring, Ratul Mahajan, and David Wetherall, Measuring ISP
topologies with Rocketfuel, SIGCOMM CCR 32 (2002), no. 4, 133–145.
(Cited in page 48.)

[Son15] Hardik Soni, DiG: Data centers in the Grid, 2015, https://team.
inria.fr/diana/software/dig/. (Cited in page 67.)

[TSS+97] D.L. Tennenhouse, J.M. Smith, W.D. Sincoskie, D.J. Wetherall, and
G.J. Minden, A survey of active network research, Communications
Magazine, IEEE 35 (1997), no. 1, 80–86. (Cited in page 2.)

[TZ01] Mikkel Thorup and Uri Zwick, Compact routing schemes, SPAA, 2001.
(Cited in page 38.)

[UHD] UHD, Understanding ultra high definition television, Ericsson white
paper, 2015. (Cited in page 80.)

[VCB+15] Stefano Vissicchio, Luca Cittadini, Olivier Bonaventure, Xie Geoffrey,
and Laurent Vanbever, On the Co-Existence of Distributed and Cen-
tralized Routing Control-Planes, IEEE INFOCOM, April 2015. (Cited
in pages 18 and 35.)

[VKF12] Andreas Voellmy, Hyojoon Kim, and Nick Feamster, Procera: a lan-
guage for high-level reactive network control, Proceedings of the first
workshop on Hot topics in software defined networks (New York, NY,
USA), HotSDN ’12, ACM, 2012, pp. 43–48. (Cited in page 18.)

[VPMB14] Anilkumar Vishnoi, Rishabh Poddar, Vijay Mann, and Suparna Bhat-
tacharya, Effective switch memory management in OpenFlow networks,
Proceedings of the 8th ACM International Conference on Distributed
Event-Based Systems - DEBS ’14 (2014), 177–188. (Cited in pages 23,
24, 32 and 73.)

[VWY+13] Andreas Voellmy, Junchang Wang, Y Richard Yang, Bryan Ford, and
Paul Hudak, Maple: Simplifying sdn programming using algorithmic
policies, Proceedings of the ACM SIGCOMM 2013 Conference on
SIGCOMM (New York, NY, USA), SIGCOMM ’13, ACM, 2013,
pp. 87–98. (Cited in page 18.)

[WBR11] Richard Wang, Dana Butnariu, and Jennifer Rexford, Openflow-based
server load balancing gone wild, Proceedings of the 11th USENIX
Conference on Hot Topics in Management of Internet, Cloud, and
Enterprise Networks and Services (Berkeley, CA, USA), Hot-ICE’11,
USENIX Association, 2011, pp. 12–12. (Cited in page 20.)

https://team.inria.fr/diana/software/dig/
https://team.inria.fr/diana/software/dig/

Bibliography 113

[WCT+14] Xiaofei Wang, Min Chen, T. Taleb, A. Ksentini, and V. Leung, Cache
in the air: exploiting content caching and delivery techniques for 5g
systems, Communications Magazine, IEEE 52 (2014), no. 2, 131–139.
(Cited in page 94.)

[WJP+13] Shinae Woo, Eunyoung Jeong, Shinjo Park, Jongmin Lee, Sunghwan
Ihm, and KyoungSoo Park, Comparison of caching strategies in modern
cellular backhaul networks, Proceeding of the 11th Annual International
Conference on Mobile Systems, Applications, and Services (New York,
NY, USA), MobiSys ’13, ACM, 2013, pp. 319–332. (Cited in pages 80
and 94.)

[WNTS16] Michelle Wetterwald, Xuan Nam Nguyen, Thierry Turletti, and
Damien Saucez, SDN for Public Safety Networks, Tech. report, INRIA,
2016, under submission. (Cited in page 9.)

[WSW+14] Philip Wette, Arne Schwabe, Felix Wallaschek, Mohammad Has-
san Zahraee, and Holger Karl, MaxiNet: Distributed Emulation of
Software-Defined Networks, IFIP Networking Conference, 2014. (Cited
in pages 49 and 52.)

[WWJ+15] Xin Wang, Cheng Wang, Changjun Jiang, Lei Yang, Zhong Li, and
Xiaobo Zhou, Rule Optimization for Real-Time Query Service in
Software-Defined Internet of Vehicles, CoRR abs/1503.05646 (2015),
1–12. (Cited in pages 23, 26, 30, 32, 34 and 58.)

[XWF+15] Wenfeng Xia, Yonggang Wen, Chuan Heng Foh, D. Niyato, and Haiy-
ong Xie, A survey on software-defined networking, Communications
Surveys Tutorials, IEEE 17 (2015), no. 1, 27–51. (Cited in pages 2, 7,
18 and 94.)

[XZZ+14] Liang Xie, Zhifeng Zhao, Yifan Zhou, Gang Wang, Qianlan Ying, and
Honggang Zhang, An adaptive scheme for data forwarding in software
Defined Network, Wireless Communications and Signal Processing
(WCSP), 2014 Sixth International Conference on, Oct 2014, pp. 1–5.
(Cited in pages 23, 24, 32 and 73.)

[YRFW10] Minlan Yu, Jennifer Rexford, Michael J. Freedman, and Jia Wang,
Scalable flow-based networking with DIFANE, SIGCOMM CCR 41
(2010), no. 4, 351–362. (Cited in pages 20, 29, 30, 32, 35 and 54.)

[ZFLJ15] Huikang Zhu, Hongbo Fan, Xuan Luo, and Yaohui Jin, Intelligent
timeout master: Dynamic timeout for SDN-based data centers, Inte-
grated Network Management (IM), 2015 IFIP/IEEE International
Symposium, May 2015, pp. 734–737. (Cited in pages 23 and 32.)

114 Bibliography

[ZGL14] Adam Zarek, Yashar Ganjali, and David Lie, OpenFlow Timeouts
Demystified, 2014, Master Thesis, Department of Computer Science,
University of Toronto, Canada. (Cited in pages 23 and 32.)

[ZIL+14] Shuyuan Zhang, F. Ivancic, C. Lumezanu, Y. Yuan, A. Gupta, and
S. Malik, An Adaptable Rule Placement for Software-Defined Net-
works, Dependable Systems and Networks (DSN), 2014 44th Annual
IEEE/IFIP International Conference on Dependable Systems and Net-
works, June 2014, pp. 88–99. (Cited in pages 25, 28, 29, 30, 32, 34
and 57.)

[ZLL13] Guoqiang Zhang, Yang Li, and Tao Lin, Caching in information centric
networking: A survey, Comput. Netw. 57 (2013), no. 16, 3128–3141.
(Cited in pages 82, 94 and 95.)

	Introduction
	Problem Statement and Motivation
	Example Scenarios
	Research Methodology
	Thesis Outline
	Publications

	Preliminaries
	Linear Programming
	Greedy Algorithms
	Exponentially Weighted Moving Average Model
	Increase/Decrease Algorithms

	Literature Review
	Introduction
	OpenFlow Rules Placement Problem
	Problem Formalization
	Challenges

	Efficient Memory Management
	Eviction
	Compression
	Split and Distribution

	Reducing Signaling Overhead
	Reactive and Proactive Rules Placement
	Delegating Functions to OpenFlow switches

	Conclusion

	Offline Rules Placement in OpenFlow Networks
	Introduction
	General Model to Allocate Rules in OpenFlow
	Rule Allocation Under Memory Constraints
	Minimizing Memory Usage
	Maximizing Traffic Satisfaction
	Heuristic

	Evaluation
	Methodology
	Results

	Discussion
	Routing Policy
	Rule Aggregation
	Multipath
	Related Work

	Conclusion

	Adaptive Rules Placement in OpenFlow Networks
	Introduction
	aOFFICER: Adaptive OpenFlow Rules Placement
	Objectives
	Design
	Adaptive Threshold

	Evaluation
	Setup
	Adaptive Threshold
	Adaptive Timeout and Deflection Technique

	Conclusion

	Use Case: Improving Content Delivery in LTEs
	Introduction
	Background
	LTE In-network Caching Architecture
	Multi-level Caching Scheme
	Enabling Backhaul Caching with OpenFlow

	Content Allocation Model
	Content Allocation Problem Approximation

	Evaluation
	Simulation Setup
	Benefits of Caching at Different Levels
	Impact of Several Levels Caching
	Advantages of Using Opportunistic Caching for Networks with Loss

	Related Work
	Conclusion

	Conclusions and Future Work
	Conclusions
	Future Work
	Robust and Fault Tolerant Rules Placement
	Impact of Default Devices
	Multilevel Table Rules Placement
	Network Function Virtualization

	Bibliography

