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Titre : Réponse de shoreline à forçage océanique multi-échelle à 
partir d’images vidéo

Résumé : 
Le but de cette étude était de développer une méthodologie pour évaluer la résilience des littoraux aux 

évènements de tempêtes, à des échelles de temps différentes pour une plage  située à une latitude 

moyenne (Biscarrosse, France). Un site pilote des tropiques, la plage de Jamestown (Ghana), non soumis 

aux tempêtes, a également été analysé. 6 ans (2007-2012) de données sur la position du trait de côte, 

obtenues quotidiennement par imagerie vidéo, ainsi que les prévisions hydrodynamiques (ECMWF 

EraInterim) ont été analysées.  Le climat de vagues est dominé par les tempêtes (Hs> 5% de seuil de 

dépassement) et leurs fluctuations saisonnières; 75% des tempêtes se produisent en hiver, et plus de 60 

tempêtes ont été identifiées au cours de la période d'étude. Une régression multiple, montre qu’alors que 

les intensités des tempêtes actuelle et précédente ont un rôle majeur sur l'impact de la tempête, la marée 

et les barres sableuses jouent un rôle majeur sur la récupération de plage.  La position moyenne du trait 

de côte calculée sur la période de récupération post-tempête montre que la plage de Biscarrosse se 

reconstruit rapidement (9 jours) après un évènement isolé et que les séries de tempêtes (clusters) ont un 

effet cumulatif diminué. Les résultats indiquent que le récurrence individuelle des tempêtes est clé. Si 

l'intervalle entre deux tempêtes est faible par rapport à la période de récupération, la plage devient plus 

résistante aux tempêtes suivantes;  par conséquent, la première tempête d’une série a un impact plus 

important que les suivantes. Le trait de côte répond, par ordre décroissant, aux évènements saisonniers, 

à la fréquence des tempête et aux d’échelle annuelle. La méthode EOF montre de bonnes capacité à 

séparer la dynamique « uniforme » et « non-uniforme » du littoral et décrit différentes variabilités 

temporelles: les échelles saisonnières et à court terme dominent, respectivement, la première EOF (2D) 

et le second mode (3D). Le littoral de Jamestown a été étudié comme base d’un projet pilote entre 2013-

2014. Les fluctuations du niveau de l'eau jouent un rôle prédominant sur l’évolution de la position du 

trait de côte. Les vagues et les estimations des marées obtenues par l’exploitation d’images vidéo sont 

corrélées avec les données de prévisions. Cette étude pionnière montre que cette technique peut être 

généralisée à toute l’Afrique de l'Ouest en tenant compte des multiples diversités et de la variabilité du 

climat régional, à travers un réseau d'observations. 

Mots clés : 

Littoral, tempêtes, récupération de plage, marées, sableuses 



Title :Shoreline response to multi-scale oceanic forcing from video 
imagery 

Abstract : 
The aim of this study was to develop a methodology to statistically assess the shoreline 

resilience to storms at different time scales for a storm-dominated mid-latitude beach 

(Biscarrosse, France). On a pilot base, storm-free tropical Jamestown beach (Ghana) was also 

analysed. 6-years (2007-2012) of continuous video-derived shoreline data and hindcasted 

hydrodynamics were analysed. Wave climate is dominated by storms (Hs>5% exceedance 

limit) and their seasonal fluctuations; 75% of storms occur in winter with more than 60 

identified storms during the study period. A multiple regression on 36 storms shows that 

whereas current and previous storm intensity have predominant role on current storm impact, 

tide and sandbar play a major role on the post-storm recovery. An ensemble average on post-

storm recovery period shows that Biscarrosse beach recovers rapidly (9 days) to individual 

storms, and sequences of storms (clusters) have a weak cumulative effect. The results point out 

that individual storm recurrence frequency is key. If the interval between two storms is low 

compared to the recovery period, the beach becomes more resilient to the next storms; and the 

first storm in clusters has larger impact than following ones. Shoreline responds in decreasing 

order at seasonal, storm frequency and annual timescales at Biscarrosse. The EOF method 

shows good skills in separating uniform and non-uniform shoreline dynamics, showing their 

different temporal variability: seasonal and short-term scales dominate first EOF (2D) and 

second (3D) modes, respectively.  

The shoreline at Jamestown was studied on pilot base from 2013-2014. Water level channges 

play a major role on shoreline changes. Waves estimates from video are in good agreement with 

hindcasts. This study shows the potential of the technique, to be replicated elsewhere in West 

Africa with all its diversity and regional climate variability through a coastal observation 

network.  
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Shoreline, storms, beach recovery, tides, sandbars 
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Glossary 

   

Variable name Phyical Significance units 

Constant 

 

g Gravitational acceleration 9.81 ms
-2

 

ρ Density of water 1.0 kg m
-3

 

   

Forcing parameters 

C Phase speed ms
-1

 

Cg Group speed ms
-1

 

dmin Lowest offshore water level m 

D Storm duration hr or days 

Dir Wave direction ° or rad 

f Camera focal length m 

hb Water depth at breaking m 

Hs Significant wave height m 

Hsmax Maximum storm height m 

Hb Wave breaker height m 

Hb[lm] Breaker height (video) m 

I Storm intensity m
2
hr 

Ii Previous storm intensity m
2
hr 

L Offshore wavelength m 

P Wave power j/m
2
 

R runup m 

RTR Relative tide range  

R-SLR Relative sea levl rise  

SLA Sea level anomaly m 

Tp Peak wave period  s 

Tp(lm) Peak wave period (video) s 

TR Tide range m 

ζ Horizontal setup m 
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γ wave breaking parameter  

   

Morphodynamic parameters 

S horizontal swash m 

Tr Post-storm impact m 

ws sediment fall velocity m/s 

X Cross-shore coordinate m 

Y Alongshore coordinate m 

Δ<Xs,i>  Storm impact m 

σ(Xs), 3D, ∆(X) Alongshore non-uniformity m 

<Xs>, 2D, <X> Alonshore averaged shoreline position m 

<Xb> Alonshore averaged sandbar position m 

ϕ Beach memory days 
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CHAPTER ONE 

Introduction 

 

 

 

“.....It ain't what you don't know  

that gets you into trouble. 

 It's what you know for sure that just ain't so” 

Mark Twain 
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1.1 Motivation 

The coastal zone is increasingly attractive given the evolution of modern socio-economic activities 

resulting in dense human settlements. Fertile coastal lowlands, abundant marine resources, water 

transportation, intrinsic values, amongst others motivate this coastal habitation. According to Small and 

Nicholls [2003], 23% of the worldwide population (1.2 billion people) lived within 100 km of the 

coastline in 1990, increasing up to 41% in 2003 [Martinez et al., 2007]. In addition, the United Nations 

(UN) Atlas of the Oceans [2010] stated that about 44% of the world population lives within 150 km of the 

coastline (e.g. Figure 1.1), and the rate of population growth is accelerating rapidly. Within the next 25 

years, the coastal population is likely to further increase by approximately 25%, or by 18 million people, 

with most of the growth occurring in the already crowded states [Scavia, 2002]. An implication is that it 

may drive important economic development for coastal nations [Finkl, 1996]. For instance, in Hawaii it is 

estimated that over 60% of all jobs are related to tourism, which is driven by the appeal of sandy beaches 

[Fletcher et al., 1997; Genz et al., 2007]. Other coastal economies include commercial and subsistence 

fisheries, ports and industrial facilities that rely on shipping to coastal waters.  

The increasing human pressure in the coastal zone, on the other hand, disturbs the natural 

equilibrium state and exposes the people to risk. Over the past century, the direct impact of human 

activities on the coastal zone has been more significant [Anthony et al., 2014] than impacts that can be 

attributed to climate change [Scavia et al., 2002; Lotze et al., 2006]. The major direct impacts include 

drainage of coastal wetlands, deforestation and reclamation, and discharge of sewage, fertilisers and 

contaminants into coastal waters. The situation whereby coastal lands are reclaimed for development 

(Figure 1.1), coastal sand is mined for construction purposes, vegetations are harvested for fuel, 

urbanisation of the coastal zone, damming, deep water harbours and dikes [Gilbert and Vellinga,1990; 

Meade and Moody, 2010], amongst others, makes coastal areas under unprecedented threat. This leads to 

increased erosion and flooding as a consequence of reduced sediment input, resulting in land and property 

loss among others. Financial losses brought about by beach erosion, submersion and storm damage are 

approaching economically and politically insupportable levels leading to changes in the paradigm: doing 

nothing costs more than finding adaptive strategies [IPCC AR5, 2013]. The importance of the coastal 

system therefore calls for better perception of its evolution.  

 Beach erosion is a difficult hazard to gauge for the stackholders because of the wide range of 

temporal scales and causes involved. For instance, it is hard to differentiate between the changes at 

seasonal or interranual scales, or those induced by the paroxysmal events (10
1
 to 10

2
 of meters), from 

long-term beach erosion due to sea level rise (centimeters to meters per year). In a sense, the general 
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public does not recognize the ubiquitous nature of beach erosion; they believe that the problem exists at 

only a few, well-publicized erosional hot spots. To further compound the problem, there is a paucity of 

quantitative shoreline change data. This can make researchers to assign, in other words generalise, e.g. a 

rate-of-change to an entire state [Galgano and Douglas, 2000], due to lack of information at other sections 

of their coasts. Recent research reports that global sea level may rise at unprecedented rate during the 

twenty-first century [0.3-0.4 mm/yr ± 0.8 m over 21th century, see Leuliette et al. 2004; Beckley et al. 

2007; Ranasinghe et al., 2013; Cazenave et al., 2014], which in turn will likely drive increased erosion 

rates [Cooper and Pilkey, 2004; Stive et al., 2004, Ranasinghe and Stive, 2009; Ranasinghe et al., 2012]. 

Sea level rise exceeding one meter in some areas within the 21st century will increase the frequency and 

severity of storm impact [Gilbert and Vellinga,1990; Brooks, 2013]. For instance, increased mean sea 

level will result in a dramatic decrease of the return period of submersion events. 

Ensuring the safety of growing coastal communities in the future requires more effective land use 

management policies based on accurate data, and a better understanding of coastal dynamics is therefore 

pressing [Galgano, 2008]. It is necessary to develop methodologies and to better quantify the causes of 

erosion to refine current and future public policy. One of the key challenges that engineers currently face 

is the lack of complete understanding on how our coastlines will potentially adapt to changing wave 

conditions and over what timescale this adaptation might occur. 

1.2 Scientific challenges 

Beach change covers a wide range of temporal and spatial scales. Stive et al. [2002] summarized 

studies around the world showing that different time scales (Table 1.1) can be identified, from hours to 

millennia. For instance, wave ripples with wavelengths of tens of centimeters, which can form or change 

within minutes [Becker et al., 2007]; and individual storm events that can alter the nearshore in hours, 

flattening the beach profile and causing offshore sandbar migration [e.g. Shepard, 1950]; seasonal (middle 

term) variations of the beach profile [Komar, 1998] with spatial scales of several km and time scales in 

the order of several years [Verhagen, 1989] or inter-annual changes in the submerged sandbar 

morphology like the so-called Net Offshore Migration including cyclic offshore migration of up 15years 

[Ruessink and Kroon, 1994]. Since the study of the nearshore is concerned with a wide range of scales, 

this must always be first assessed when approaching a certain problem at the coastal system. 

An ideal measurement campaign requires some previous knowledge of the scales in order to define 

the spatial and temporal resolution of the survey and its duration. At a certain scale of interest, the effect 

of the lower scales will be described as boundary conditions and the effect of higher scales will be 

considered as noise. For instance, Stive et al. [2002] reviewed that beach variability at short and medium 



  

16 
 

time scales are the most relevant to coastal management, though underestimating the influence of longer-

term effects as reported more and more in recent studies [among others; Yates et al., 2009; Pianca and 

Holman, 2015; Castelle et al., 2015]. 

 

Figure 1.1. Beach system, showing the use of coastal environments [credit: google images].  

Overall, the shoreline is the interface between the water and beach [Komar, 1998]. It is commonly 

adopted as an indicator of both short and long-term coastline changes [Moore, 2000; Aarninkhof et al., 

2003; Boak and Turner, 2005; Farris and List, 2007] and is central in defining coastal hazard. The 

shoreline presents temporal fluctuations at time scales of years, seasons down to single events [Yates et 

al., 2009, Davidson et al., 2009; Splinter et al., 2014; Castelle et al., 2014]. The presence of multiple time 

scales, with often predominantly percepted dramatic short-term storm event impacts might shelter longer, 

slow but key, persistent storms versus persistent impact or seasonal-to-interranual fluctuations of wave 

conditions. Although post-storm recovery is important, it is still poorly known. Scarce information 

currently exists on this transitional period as the beach comes back to its position prior to a storm event. 

This means storm recurrence frequency can influence the impact of storms and play on transient or longer 

term persistent impact. 
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Table 1.1. Spatio-temporal shoreline variability modified after Stive et al. [2002] 

Time scale Spatial 

scale 

Scale 

description  

Forcing factors Morphological 

factors 

Centuries to 

millennia  

>100 km  Very long 

term 

Relative sea-level changes and 

long-term climate changes  

Sediment availability 

and differential 

bottom changes 

 

Decades to 

centuries 

10-100 

km 

Long term Relative sea level changes, sand 

waves and extreme events 

Coastal inlet cycles 

and littoral prism 

Years to 

decades 

1-5 km Middle term Wave climate variations, storms 

/extreme events 

Surf zone bar cycles 

Hours to 

years 

0 - 1 km Short term Wave, tide, surge conditions 

and seasonal climate variations 

Beach profile and 

sandbar dynamics 

 

In spite of decades of research [e.g. Dolan and Davis, 1992; Sallenger, 2000; Coco et al., 2014; 

Karunarathna et al., 2014; Senechal et al., 2015], the immediate response of a beach system to storm 

event is still difficult to predict. This is because only wave contribution is generally considered to be the 

cause of shoreline changes. The modulation by sandbar and tide are often disregarded. Sandbars (Figure 

1.2) are elongated shoals at wave-dominated coastlines commonly located parallel to the shoreline. The 

white bands offshore (Figure 1.2) indicate wave breaking on shallow bathymetry due to the presence of 

sandbars (outer and inner). The interface between the land and the water at mean sea level is digitised to 

mark the shoreline while the centers of the white bands are digitised alongshore (horizontally) and used as 

the sandbar location (Figure 1.2). Sandbars may result in less energy available to cause shoreline change 

(sheltering effect) and thus making the dynamics of the sandbar key to nearshore changes [van Enckevort 

and Ruessink, 2003, Vousdoukas et al., 2012]. Davis and Hayes [1984] indicated that beach morphology 

is not simply dependent on the absolute wave or tide, but also on the interaction between the two. While 

the importance of waves has been well documented, the influence of tides though recognised [Wright et 

al., 1984; Wright et al, 1987; Masselink and Short, 1993], is subtler and less understood. As a 

consequence, understanding and predicting shoreline change at barred beaches in mixed wave and tide 

environments remains a challenge due to the complex interactions between waves, tide [Davis, 1985; 

Masselink and Short, 1993] and sandbars [Banno and Kuriyama, 2012] as well as to previous conditions 

[Yates et al., 2009; Davidson et al., 2013], which usually are not directly accounted for. 
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Figure 1.2. A 10-min time exposure video image on September 4, 2008 from the camEra video system, 

Biscarrosse.  

Different approaches have been used to investigate shoreline evolution. They include ground truth 

surveys of cross-shore profiles [Miller and Dean, 2007] using GPS [e.g., Morton et al., 1993; Ruggiero et 

al., 1999; Yates et al., 2009] or using airborne LIDAR systems [Sallenger et al., 1999; Stockdon et al., 

2002]. These approaches cannot be performed dayly on the long term. Such surveys are typically 

performed monthly, which does not allow capturing short-term storm-driven changes. The most 

significant changes that typically occur during and immediately after storms can therefore be missed. In 

addition, conventional methods are restricted by storm surge and wave-induced setup and runup and 

usually cannot extend much beyond the low-tide waterline. In recent decades, shore-based video cameras 

have become increasingly popular for monitoring beach changes. This is because it can be used to build a 

database of frequent (~hourly), long-term (~years) and spatially-extensive observations of beach 

behaviour [Holland et al., 1997, Holman and Stanley, 2007; Holman and Haller, 2013]. Video systems 

perform satisfactorily under diverse conditions such as storms and fair weather, and capture information 

along the entire beach (~kilometers) including the geometry of the submerged morphology such as 

sandbars [Lippmann and Holman, 1989]. This disruptive method has promoted a better understanding of 

the hydro- and morphodynamics [Holman and Stanley, 2007; Holman and Haller, 2013]. It has also 

provided operational and real time observations [Coco et al., 2005; Pearre and Puleo, 2009] as well as 
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data to feed and validate numerical [Smith et al., 2007; van Dongeren et al., 2007; Davidson et al., 2013] 

and conceptual models [e.g. Turki et al., 2013]  

 

This thesis is part of ARTS (‘Allocations de Rercherche pour une Thèse au Sud’) programmes, 

designed to strengthen research capacities in developing countries. Its purpose is to prepare young 

researchers to integrate the higher education and research systems of a developing country once they have 

finished their PhDs. In this work, the shoreline response at different scales to current and previous wave 

conditions is seen as an important concern for coastal users. This is compounded by the lack of adequate 

knowledge in the shoreline recovery, and the modulation of the shoreline variation by tides and sand bars. 

This work will contribute to increase our understanding of shoreline variability and its primary driver 

including frequency of storms and seasonal evolution, modulation of the storm impact and recovery by 

tide and sandbar, will help coastal managers appreciate shoreline evolution and better incorporate the 

impact of storms into Shoreline Management Plans (SMPs). 

The main aim of this study is to develop a methodology to statistically assess shoreline resilience to 

storm events at different time scales for Atlantic conditions applied to storm-dominated mid-latitude 

(Biscarrosse, France) and storm-free tropical (Accra, Ghana) beaches.  

 In order to achieve this, 3 objectives have been defined. 

i) Quantify shoreline resilience to storms and sequences of storms, under the modulation of tide and 

sandbar at Biscarrosse, SW France. 

ii) Assess the two-dimensional (2D) and three-dimensional (3D) shoreline behaviour at multiple 

scales at Biscarrosse, SW France. 

iii) Test a pioneering study on the influence of waves and tide on shoreline change at the microtidal 

Jamestown beach, Accra- Ghana. 

1.3 Organization of Dissertation  

The document is divided into 6 chapters and two annexes: 

Chapter 2: Processes of coastal hydro- and morphodynamics. Previous studies on multi-scale 

coastal wave climate and morphodynamics are reviewed. Other forcings such as tide and sandbars are 

described.  
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Chapter 3: Study area, data and methods. Study areas, the intermediate meso-macrotidal 

Biscarrosse and microtidal James town beaches, are presented, though Biscarrosse is the principal site of 

this dissertation.  

Chapter 4: Statistical approach of coastal response to storms. The impact of storms is 

investigated, together with the modulation of tides and cross-shore sandbar locations on storm impact and 

recovery rates, using a multi-linear regression analysis. 

Chapter 5: Two and three-dimension shoreline changes at short and seasonal scales. Cross-

shore migration and alongshore deformation of shoreline are quantified through an empirical orthogonal 

analysis and combined with equilibrium shoreline modelling.  

Chapter 6: Jamestown beach evolution under video surveillance. The potential for the 

extraction of waves, water level, and shoreline evolution is explored at the pilot site of Jamestown in 

Ghana over a 6-month period. Estimates are compared with hindcast data and main drivers of shoreline 

changes are identified  

Chapter 7: Concluding remarks, discussion and perspectives 

Bibliography: Presents a list of the references cited in this work. 

Annex: Contains a list of the different scientific contributions that resulted in the completion of this 

thesis and other extra researches. 
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2 Hydro-morphodynamic coastal processes 

 

...It is astonishing and incredible to us, but not to Nature;  

for she performs with utmost ease and simplicity  

things which are even infinitely puzzling to our minds...  

Galileo 
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2.1 Wave dynamics in the nearshore: refraction, diffraction and breaking 

 

Waves in deep water are sinusoidal in form. Ideal wind waves in sinusoidal motion are typically 

characterized by a point of maximum elevation, i.e. the wave crest, and a point of minimum elevation, the 

trough [Davidson-Arnott, 2010]. The dynamics of waves from deep water to the nearshore (defined here 

as the region where waves are significantly affected by the bottom) is crucial to estimate inshore wave 

characteristics. In the nearshore, waves undergo changes due to shoaling, diffraction, refraction and 

depth-induced breaking and can move sediment and affect the seabed morphology, particularly during 

storms [Weaver and Slinn, 2010].  

Waves bend towards shallow water along the beach due to refraction; a process in which the wave crests 

tend to parallel (Figure 2.1a) the depth contours and waves breaking parallel to the shoreline. Obliquely-

incident breaking waves generate longshore currents that cause alongshore sediment transport. Diffraction 

(Figure 2.1b) occurs for large along-crest wave energy gradients. Wave diffraction is important in ports, 

harbours or around offshore islands.  

The nearshore can be categorised into 3 distinct zones [Short, 1986] namely wave shoaling seaward of the 

breaker point, a surf zone of breaking waves and a swash zone of final wave dissipation on the upper 

beach (Figure 2.2a). The nature and extent of each of these zones ultimately determine the beach changes. 

The width of the shoaling, surf and swash zones, are functions of sediment size and wave height [Dean 

and Dalrymple, 2002]. Nearshore wave breaking, which is a widely known activity [Dean and Dalrymple, 

2002; Svendsen, 2006; Davidson-Arnott, 2010] is also responsible for energy dissipation and sediment 

movement. Generally, waves break as they reach a limiting steepness of wave height to depth ratio γ = 

hb/L, [Svendsen, 2006; Davidson-Arnott, 2010]. 
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Figure 2.1 a) Wave refraction causes wave fronts to parallel the shape of the coastline as they approach 

shore and encounter ground (courtesy of google images) b) wave diffraction around a exposed feature; 

waves bend after passing an obstacle  

These breaking waves exist in different forms namely spilling, plunging, surging and collapsing breakers 

[Iribaren, 1949; Battjes, 1974; Wang et al., 2002] which have been estimated based on the non-

dimensional surf zone similarity parameter ξb [Battjes, 1974].  

ξb = tanβ (
𝐻𝑏

𝐿
)

−0.5
       (2.1) 

where β is beach slope, hb is depth at breaking, L is deep water wavelength and Hb is the breaker height.  

Though the breaker type is difficult to generalise on a non-uniform bathymetry, on alongshore-uniform 

beaches, breaker type is classified as surging/collapsing (ξb > 3.3), plunging (0.5 < ξb < 3.3) and spilling 

(ξb< 0.5) [Iribaren, 1949; Galvin, 1968; Battjes, 1974]. Plunging waves are characterized by an arched 

shape with a convex back and a concave front (seen on Figure 2.2a).  

After breaking, the wave energy is dissipated over a variable cross-shore distance, a process that causes 

turbulence in the breaker zone. Besides, a surf bore is created as the top of the wave forms an air bubble 

between the crest and the plunging top. The kind of breaking, however, depends on the bottom 

topography. On barred beaches it is seen that after the first breaking the energy dissipation becomes zero 

as the water depth behind the bar increases and it is kept as zero until the next breaking occurs [Wanatabe, 

1988]. An important factor in the breaking process is also in the wave height and the water level that 
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determine the position of breaking. Shoaling occurs when the progressive wave encouter the seabed. If 

the water level is too high and the waves are not encoutering the seabed, shoaling will not occur and the 

waves do not break. At steep beaches, plunging or surging wave breaking occurs on the upper beach, 

while gently sloping beaches produce a spilling breaking over wide distances to dissipate wave energy 

[Galvin, 1968; Svendsen, 2006; Davidson-Arnott, 2010].  

 

Figure 2. 2 a) schematic typical beach profile, terminology and zonation b) Schematic diagram of surface 

flow in coastal and nearshore current systems. Length of arrows indicates their relative magnitudes 

[Source: Shepard and Inman, 1951]. 

When water run up on anyone standing on a beach, they often feel the water tugging the sand 

away from under their feet, due to a force called undertow. This undertow is a wave-induced current, 

generated to compensate for the shoreward mass flux of the waves. Near the bed, it interacts with wave 

motion to dictate the amount of sediment put in suspension, after wave breaking. In the water column, it 

moves sediment offshore, counteracting the suspended flux due to waves. Hence, this current is crucial in 
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determining the amount and direction of sediment movement in nearshore regions [Guannel and Ozkan-

Haller, 2014]. The breaking of waves in the nearshore results in changes of the wave-induced momentum 

that drive nearshore currents and pressure gradients [Maa et al., 2001]. Hence understanding these flows 

is a prerequisite to predicting morphological change. Besides, the mean breaking-wave driven nearshore 

circulation has a complex three-dimensional structure even on relatively simple bathymetry. 

 Breaking waves may generate strong offshore flows often call rip currents (Figure 2.2b) when 

waves push water up the beach face. If there is an area where the water can flow back out into the ocean 

more easily, such as a break in the sand bar, then a rip current can form. These are strong, offshore-

directed currents known to pull the water (or sediments) at all water depths through the surf zone and 

dissipates offshore of the breaking waves. These are also essential currents for nearshore management. 

In general, observed breaking induced currents contain substantial fluctuations [Raubenhimer, 2004] at 

infragravity periods (about 1 minute) that appear to result from a combination of gravity and vorticity 

(e.g. shear) waves, but the generation mechanisms and overall significance of these low frequency 

motions are largely unconsidered. One possible reason for this is lack of nearshore wave conditions. For 

example, on most study sites breaking waves are used [e.g. Maa et al., 2001; Guza and Feddersen, 2012; 

Splinter et al., 2014a] though breaking waves are usually obtained from mathematical relations [e.g. 

Larson et al., 2010] through some sporadic means. 

2.2 Beach system 

2.2.1 Bar-berm beach dynamics  

One approach to the quantification of beach morphology has been the identification of sets of 

morphologic states. Investigations have long showed that beaches experience distinct seasonal 

onshore/offshore transport of sand [Shepard, 1950; Shepard and Inman, 1951]. A simple but well-known 

example of such parameterisation is the summer-winter (or bar-berm) model [e.g. Shepard, 1950], based 

on observations that the shape of many beaches tends to change from unbarred to barred profiles (Figure 

2.3). The beach is considered only in a one-dimensional structure of erosion or accretion; the basic beach 

profiles attainable are the swell profile formed when the waves are of low steepness and the barred profile 

or storm profile formed when the waves are of high steepness. Variation of forcing conditions results in 

uniform sediment movement onshore/offshore. It is assumed that the exchange of material between the 

bar and the berm takes place under conservation, that is, no material is lost offshore. The volume eroded 

from the berm is assumed stored in one offshore bar (or, representative morphological volume) that will 

reach a certain equilibrium bar volume if the wave conditions are steady and the grain size does not vary. 
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If the bar volume at any given time is smaller than the equilibrium volume, then the sandbar volume will 

grow, and vice versa. From Figure 2.3, we see that growth in bar volume causes the corresponding 

decrease in berm volume (and shoreline retreat), and decay in bar volume causes increase in berm volume 

(and shoreline advance). Alongshore-averaged (or two-dimensional 2D) cross-shore sandbar dynamics 

can thus be considered as morphologic adjustment to the hydrodynamic forcing [Aagaard et al., 1998], 

and more precisely the convergence of sediment transport at the breakpoint.  

 

Figure 2.3. Seasonal transformation from a summer beach (lower plot) to a winter beach (upper plot), 

accessed on 26/01/2016 on Google search.  

Longshore bars are common features at wave-exposed beaches, and have influence on the 

foreshores [Takeda and Sunamura, 1992]. They also constitute the dominant mode of bed variability in 

the submerged nearshore area. While annual cycles are observed at most coastlines, with offshore 

migration during energetic winter months, significant changes also occur on a much shorter time scale, 

especially in response to storms. It has long been known that during storms or energetic conditions, 

sandbar moves seaward (through undertow current) and moves landward during low energetic conditions 

[Birkemeier, 1984; Gallagher et al., 1998; Hoefel and Elgar, 2003] as shown in Figure 2.4. Additionally, 

seasonal trends in sandbar location can often be observed, whereby a sandbar is located more seaward 
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after autumn and winter months with high waves than after the low-wave spring and summer months. It 

has also long been established that sandbar strongly controls the wave breaking location [Lippmann and 

Holman, 1989; Plant and Holman, 1998; Ruessink et al., 2007] and, hence, cross-shore sediment transport 

patterns; this may reinforce or suppress further bathymetric modifications [Plant et al., 2001] through a 

feedback on hydro-morphodynamics. For instance, wave-breaking across an outer bar affects the 

hydrodynamics and hence the evolution of an inner bar. Sediment transport will be affected by the 

incidence of obliquely breaking waves (they lead to longshore transport) and the kind of sandbars that 

occur.  

 

Figure 2.4. Sandbar migration during storms and non-storm period. Upper panel: rapid offshore 

movement of sandbar resulting from ten stormy days [Gallagher et al., 1998]. Lower: slow onshore 

migration of the outer bar during a six month period of low wave conditions [Birkemeier, 1984]. 

Lippmann and Holman [1990] identified that the most frequently observed sandbar morphologies are the 

longshore-periodic (rhythmic) bars where linear bars occur under highest wave conditions, though 

unstable (mean residence time = 2 days). The study found out that shore-attached rhythmic bars were the 

most stable (mean residence time of 11 days) and generally form 5-16 days following peak wave events. 

Non-rhythmic, three-dimensional bars are very transient (mean residence time = 3 days), making the 
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beach changes more complex than the usual 2D-structure. Given that transitions to higher states occur 

under rising wave energy among the possible higher beach states, this suggests that up-state, erosional 

transitions (based on offshore bar migration) are better described by an equilibrium model where response 

is better correlated with incident wave energy than with preceding morphological state. Therefore, further 

understanding is required especially in regions where tide range and wave conditions are very 

comparable.  

2.2.2 Wave-induced short term morphodynamics 

Numerous attempts [Wright and Short, 1984;Hansen and Barnard, 2010; Splinter et al., 2014b] 

have been made to relate short term (daily or weekly) fluctuations in the wave field with beach changes. 

Notably, Wright and Short [1984] developed an empirical predictive model to relate beach states to the 

dimensionless Dean parameter, Ω. In order to understand the complexity of the beach due to variation in 

forcing and morphology, they used Ω [Goulay, 1968] given in Eq. 2.2 to classify three distinctive beach 

types based on the wave breaking height Hb, period T, and sediment characteristics (the sediment fall 

velocity ws): 

𝛺 =
𝐻𝑏

𝑊𝑠𝑇
          (2.2) 

Wright and Short [1984] showed that the three distinctive beach states are related to Ω with Ω>6, 1< Ω<6 

and Ω < 1 for dissipative, intermediate and reflective beaches, respectively. In this classification, these 

three beach states are subdivided into six commonly occurring beach states: dissipative, longshore bar 

trough (LBT), rhythmic bar and beach (RBB), transverse bar and rip (TBR), low-tide terrace (LTT), and 

reflective. Following this beach classification by Wright and Short [1984], a beach cannot be resumed to a 

pure cross-shore profile evolution but present irregularities in the longshore due to variation in forcing 

(Figure 2.5). 

As indicated earlier, the cross-shore beach dynamics can be of an alongshore uniform (or two-

dimensional, 2D) character and reflect overall on/offshore shoreline migration depending on the energy 

incident on the beach. Variation of the beach cross-shore position, for example the isolevel position, is a 

clear and easily-understood indicator of beach accretion and erosion, with seaward and landward 

migration, respectively. From Wright and Short [1984], beaches are mostly 2D for very energetic 

conditions or 3D for intermediate conditions. In the 2D state, the beach varies minimally or not all 

alongshore (Figure 2.5a). By the Wright and Short model, a beach can therefore have 2D patterns if it is 

in the dissipative or reflective state. In times when larger amount of energy due to forcing occurs, 

erosional sequences [Short, 1999] could cause the beach state to jump to the dissipative state within hours 
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[Lippmann and Holman, 1990; Van Enckevort and Ruessink, 2003; Ranasinghe et al., 2004]. In the 

dissipative state (Figure 2.5a), it is believed that there would be the removal of berm feature yielding a 2D 

profile and the development of bar type profiles. Simply, beach cusps are non-existent or minimal while 

the beach now shows no alongshore variations. In the dissipative state, the beach is gentle and is 

characterized by wide surf zone. On the other hand, during the reflective state (Figure 2.5f) when wave 

conditions are weak, the beach becomes steep with berms prograding seaward to give a wider beach and 

narrow surf zone leaving the beach in 2D form. The trends and prediction of 2D positions are therefore 

tricky because the beach state can only be identified by its modal state [Wright and Short, 1984]; in other 

words the present beach state is determined by the recent history of both the wave field and the beach 

morphology. 

During an accretionary (downstate) sequence with decreasing energy, the 2D dynamics turn into 

3D as the beach advances through several intermediate states, from high energy dissipative members 

towards the reflective state over a number of days to weeks [Lippmann and Holman, 1990; Van 

Enckevort et al., 2004] and become 2D again. In the intermediate state of moderate to high energy, the 

longshore beach component is alongshore non-uniform (or three-dimensional, 3D) and mostly 

corresponds to changes in the non-uniformities in the shoreline. 3D shoreline development are associated 

with periodic developments such as cusps [Coco and Murray, 2007] or forced pattern from sandbar 

irregularities (Figure 2.5b to e) that form during the intermediate states according to the Wright and Short 

classification. With characteristic rip circulation, dynamic bar forms, abundant surf zone and beach 

sediment and moderate waves, they can undergo rapid changes as wave height fluctuates causing rapid 

reversals in onshore-offshore and alongshore sediment transport [Wright and Short, 1984].  

Increasing in energy and irregularity, the intermediate states are identified as LTT, TBR, RBB, 

and LBT (Figure 2.5b to Figure 2.5e). Wright and Short [1984] show that the intermediate beaches 

exhibit complex morphologies with increasing three dimensionality due to structures such as the bar-

trough topography or bathymetry, formed during the mechanism of an up or downstate. As explained 

earlier, sandbar dynamics may therefore be significant for the nearshore complexity as sandbar moves 

about beneath the water, altering the movement of waves and water depth. Recently, Stokes et al. [2015] 

additionally showed that a tidally-modulated wave power term may influence the rate of morphological 

change, like the 3D dynamics. Besides, given this likely interaction between 2D sandbar and shoreline, it 

is possible to hypothesise that sandbar positions can affect 3D shoreline variations and the larger 

nearshore dynamics. 
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Figure 2.5. Plan and profile configurations of the six major beach states [Wright and Short, 1984; Short, 

2006] based on the dimensioless Dean parameter Ω = Hb/wsT. From (a) to (f), we have decreasing energy 

and Ω, respectively for dissipative, LBT, RBB, TBR, LTT and reflective states.  

2.2.3 Tides and their control on nearshore processes  

Astronomical tides drive substantial modulation of wave action on beach dynamics and 

subsequent beach types (Figure 2.6). Beaches are classified as microtidal (<2 m), or meso-tidal (2-4 m) or 

macro-tidal (> 6 m) based on the tide properties [Davies, 1964; Masselink and Short, 1993; Short, 1996]. 
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Micro-tidal beach systems are assumed to be wave dominated, with a low tide range that has a minor to 

negligible role in determining beach morphology. Tide is therefore largely ignored in assessing general 

beach morphodynamics. At microtidal beaches, the swash, surf and shoaling zones are therefore assumed 

to be stationary [Short, 1996]. In contrast, tide range is important on macro-tidal beaches as it could result 

in the formation of multiple sandbars and changes in swash processes. When waves suspend sediment in 

the narrow surf zone, inducing pulse-like high sediment concentration in shallow water, the suspended 

sediment can be advected by the tidal current causing erosion [Shi et al., 2013). Davidson and Turner 

[2009] found that increasing the tidal range diminishes the bar amplitude and spread it out across the 

profile. The impact on shoreline erosion is thus lessened by increasing the tidal range TR, as the impact is 

distributed over a broader region of the profile. 

Generally, small tidal range is expected to increase surf zone and swash processes and thus to 

result in rather short response times to time-varying incident wave conditions, whereas a large meso- to 

macro-tidal range favours shoaling-wave processes and, hence, increases the response time. The 

significance of tidal oscillations for the beach morphodynamics can be quantified by the ratio of tidal 

range to wave height [Masselink and Short, 1993; Short, 1996; Masselink et al., 2006]. For values of the 

relative tide range (RTR, Eq. 2.3) exceeding 5-10, morphodynamic effects of tidal translation is 

significant [Masselink and Short, 1993].  

𝑅𝑇𝑅 =  
𝑇𝑅

𝐻𝑏
     (2.3) 

From equation 2.2 and equation 2.3, the RTR can be linked to the dimensionless fall velocity, Ω that 

Wright and Short [1984] took to describe the beach states: 

Ω =
𝑇𝑅

𝑅𝑇𝑅(𝑊𝑆 𝑇)
       (2.4) 

This formulation suggests that increasing RTR values result in low Ω and reflective beaches, while 

decreasing values may result in more dissipative beaches. Landward of the breaker zone, single bar 

beaches are dominated by surf and swash zone processes. This is not always so especially on two or 

multiple barred beaches [Masselink and Short, 1993; Short, 1996]. As tide range increases the impact of 

both the swash and surf zone processes decreases. The RTR values do define tide-dominance when the 

values are large and wave-dominance when RTR values are small. For each tidal cycle, the maximum Hb 

can be considered representative of the breaker condition; even during energetic waves and large tides. 

Masselink and Short [1993] as well as Short [1996] reviewed that when Ω>1 or RTR < 5 the formation of 

sandbars is prevalent, whereas when Ω<1, there is formation of berm under dominant onshore transport 

(Figure 2.6).  
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Figure 2.6. Conceptual beach model [Masselink and Short, 1993]. The Beach state is a function of the 

relative tide range (RTR = TR/Hb). HT and LT refer to mean high tide and mean low tide levels, 

respectively. 

In addition, the formation of an intertidal bar around the mid-tide position during low-wave conditions 

and neap tides can be triggered by a reduction in TR but not the rise in Hb. For example, a new forcing 

parameter, Hydrodynamic Forcing Index (HFI), has been proposed that allows representing the 

cumulative effect of wave and tide forcing [Almar et al., 2010]. The HFI index is defined as the ratio of 

offshore significant wave height Hs to the (averaged over a tidal cycle) lowest offshore water level dmin 

experienced over a tidal cycle above the lowest astronomical tide (LAT): 

HFI = 
𝐻𝑠

𝑑𝑚𝑖𝑛
     (2.5) 

This HFI parameter is somewhat more suited to storm impact than the RTR at the time scale of storms as 

HFI is high during a storm, which is not necessarily the case for RTR. 
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2.3 Shoreline dynamics 

2.3.1 Shoreline definition: a review 

The shoreline has been broadly investigated and defined [e.g. Crowell et al., 1991; Moore et al., 

2000; Stockdon et al., 2002]. Shoreline is commonly identified with indicators (proxies) based on 

geographical, morphological or hydrodynamical considerations [e.g. List and Farris, 1999; Zhang et al., 

2002; Stockdon et al., 2002]. The shoreline can be defined at the location of the waterline identified by a 

change in colour or gray tone caused by differences in water content around it or a line of seaweed and 

debris. For some, shoreline is the seaward edge of the vegetation. Boak and Turner [2005] reviewed these 

proxies (Figure 2.7) into visually discernible coastal features (e.g. high water lines, HWL) and specific 

tidal datum (the intersection of the coastal profile with a specific vertical elevation, e.g. mean high water, 

MHW line).  

The HWL, which delineates the landward extent high tide watermark, is commonly chosen as the 

shoreline. However, a vast number of studies [Crowell et al., 1991; Moore et al., 2000; Stockdon et al., 

2002] indicate difficulties in interpreting HWL from aerial photographs. In addition, on a low-sloping 

beach the horizontal offset of the shoreline indicator HWL due to wave, tide, or wind effects can be on 

the order of several tens of meters [Thieler and Danforth, 1994].  

On the other hand, tide-coordinated or datum-based shorelines based on tidal elevation generally 

consist of the position of a specified elevation contour. Figure 2.7 (lower section) shows an example of 

the shoreline definitions based on tidal datums [Plant and Holman, 1997; Madsen and Plant, 2001; 

Aarninkhof et al., 2003; Kingston, 2003; Moore et al., 2006] commonly used with digital detection 

techniques (e.g. video images). The shoreline is defined at the interface between the beach and the sea 

only at the selected tide (elevation contour). Despite this, unlike microtidal beaches, on meso- to 

macrotidal barred beaches it is not straightforward to select the elevation that best represents the overall 

beach response. In line with this, Castelle et al. [2014] recently found out that the intersection of the 

coastal profile with the MHW level is an effective shoreline proxy for meso- to macrotidal, high-energy, 

multiple-barred beaches. Due to its location on the upper beach, the inner-bar and berm dynamics have 

little influence on the shoreline estimation. Such selection is also motivated by previous findings at Ocean 

Beach where changes in the MHW and MSL shoreline proxies are well correlated (R = 0.9 for most of the 

beaches) to volumetric change [Hansen and Barnard, 2009; List and Farris, 2007].  
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Figure 2.7. Shoreline indicators based on specific tidal datums (upper plot). On the lower plot are tidal 

datums used along the New South Wales coastline, Australia [adapted from Boak and Turner, 2005] as 

proxy for shoreline. 

2.3.2 Sandbar and shoreline coupling  

Sandbars reduce the amount of wave energy reaching the shoreline by limiting the wave height 

through breaking. The coupling between sandbar and the shoreline may be linked to the distance between 

the sandbar and the shoreline [e.g. Sonu, 1973; Wright and Short, 1984; Van de Lageweg et al., 2013]. 

Sonu [1973] observed an out-of-phase relationship of inner bar and shoreline patterns, i.e. an inner bar 

bay facing a seaward bulge in the shoreline. An in-phase relationship can also sometimes be observed 

with an inner bar horn facing a seaward bulge in the shoreline [Castelle et al., 2010; Price and Ruessink, 

2011]. The relationship between inner- and outer bar patterns is reminiscent of the more commonly 

observed relationship between inner bar patterns and shoreline rhythms [e.g. Wright and Short, 1984; 

Coco et al., 2005; Thornton et al., 2007]. In a related study, Davidson and Turner [2009] identified that 
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when the bar is lower in amplitude and located closer to the shoreline, it lessens shoreline erosion. Several 

processes and physical parameters have been hypothesised to affect the sandbar-shoreline coupling. 

Birkemeier [1984] showed that the beach profile configuration is modified by the location and horizontal 

movements of the sandbar crest. That large change to the profile in terms of volume movements always 

resulted in significant sandbar movement.  

One parameter that links this sandbar and the morphology is the beach steepness (slope) 

parameter, γ (defined as hb/L in section 2.1); it dictates where the wave breaks on the beach. Recent works 

[e.g. Davidson and Turner, 2009] have shown that increasing γ can move the bar progressively 

shoreward, while decreasing γ causes a seaward translation. However, Davidson and Turner [2009] found 

that on average, varying γ has negligible impact on the shoreline evolution. From Davidson and Turner 

[2009] review, it is deduced that although the shoreline and sandbar sections of the profile could be 

coupled in the sense that erosion of sediment from the shoreface is deposited on the sandbar, it is still 

insufficient to substantiate that enhanced dissipation over a developed sandbar might reduce energy levels 

at the shoreline relative to erosion. Interestingly, no increase in sandbar width was seen to impact the 

shoreline evolution. In essence, this indicates not all sandbar characteristics affect the shoreline. Another 

parameter, the sandbar crest depth variability, though important [Coco et al., 2005; Ruessink et al., 2007] 

maybe less useful as an indicator of sandbar activity on the shoreline, since large sandbar movements 

occur with little or no change in crest depth. However, Pruszak et al. [2011] revealed that the location of 

the inner sandbar and the shoreline can exhibit a reasonably high correlation showing their 

onshore/offshore movements are very consistent even if in the outer sandbar region the location of the 

outer bars subsystem is much less correlated with the shoreline position. Finally, the angle of wave 

incidence has been suggested to affect the phase of coupling of shoreline and sandbar since larger angle 

of incidence drive strong longshore currents, while longshore currents destroy sandbar variability [Price 

and Ruessink, 2013].  

There seems to be some debate as to how and what is associated to sandbar to shoreline coupling. 

Although the variability of bars and their links to environmental factors has been the objective of many 

analyses, the direct interactions between sandbar and the shoreline still seem to be insufficiently 

identified. The relation between the sandbar and the shoreline could be more complex due to the presence 

multiple sandbars, as there can be interaction between the inner bar and outer bar [e.g. Castelle et al., 

2010; Price and Ruessink, 2013]. At present, previous models and methods have not explained the 

quantitative content of the sandbar in relation to shoreline change in comparison to other parameters such 

as the waves and tides and antecedent conditions. The link between shoreline and sandbar location is 

sketchy as we found in the literature. For instance the relative contribution of the sandbar location to 
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shoreline changes during storms in isolation and during recovery has not been clearly observed in the 

literature. Questions like how the sandbar to shoreline distance will influence beach recovery magnitudes 

and recovery duration can be used to establish a relation between the location of sandbar and the 

shoreline.  

2.4. Transient and persistent effect of storms 

 

2.4.1 Wave climate and storminess: regional to beach scale  

2.4.1.a Wave climate 

Waves are the main driver of nearshore hydro-morphodynamics and are generated by wind either 

locally or from distant location. The height and period of the waves depend on the speed and duration of 

the generating winds and the fetch. The types of waves that break on a beach and their seasonal variance 

are known as the wave climate. Several findings suggest that along wave-dominated coastlines, the 

impact of regionally-varying wave climates will have a more significant impact in the coming decades 

and cannot be ignored in forecasting future shoreline variability [Brunel and Sabatier, 2009; Ranasinghe 

et al., 2012; Ruggiero, 2013]. In light of this, offshore and coastal wave climate evolution is particularly 

important for human activities at high energetic regions (e.g. Bay of Biscay and the French Atlantic 

coast). To achieve this, the storminess (intensity and recurrence of storms) [Masselink and van Heteren, 

2014] and wave seasonality are key. 

In the last half-century, the variation in wave climate has been analysed along the North Atlantic. 

Wang and Swail [2001] detected an upward trend in seasonal extremes of Hs from 1958-1997, where 

higher rates occur in winter. Dodet et al. [2010] investigated the variability in the North-East Atlantic 

Ocean (25°W-0°W and 30°N–60°N), with hindcast (1953–2009) waves. They detected strong seasonal 

and inter-annual fluctuations of wave climate, with winters characterized by large and long-period waves 

of mean direction spreading from south-west to north-west, and summers characterized by smaller and 

shorter-period waves originating from northern directions. From northern (55°N) to southern (35°N) 

latitudes, the significant wave height (Hs) decreases by roughly 40%, the mean wave direction rotates 

clockwise by about 25% while the peak period (Tp) only grows by 5%. Linear trend analysis between 

these years showed spatially variable long-term trends, with a significant increase of Hs (up to 0.02 m/yr) 

and a counterclockwise shift of direction (up to -0.1° per year) at the northern latitude, contrasting with a 

fairly constant trend for Hs and a clockwise shift of direction (up to +0.15° yr) at southern latitudes, while 

in the long-term trends of Tp are less significant. This variation in the trend of wave parameters is very 

significant especially when wave effect dominates the beach processes.  
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Using dynamical and statistical methods [Charles et al., 2012; Laugel et al., 2014], projected 

wave heights, periods and directions have been analysed at regional scale along the coast of the Bay of 

Biscay. Clockwise shift of winter swell directions is linked to the intensification and the northeastward 

shift of strong wind core in the North Atlantic Ocean. As offshore changes in the wave height and the 

wave period as well as the clockwise shift in the wave direction continue toward the coast, it would 

impact the coastal dynamics by reducing longshore wave energy. Similarly, the large scale spatial 

variability of sea states at the French Atlantic coast was assessed by Butel et al. [2002] using wave rider 

time series at Biscarosse (in 26 m depth). 3D histogram distributions (Figure 2.8) of significant wave 

heights, periods and directions indicate that a wide range of wave directions and age can be measured at 

Biscarosse, mainly due to atmospheric forcing.  

 

Figure 2.8. Left: 1-D histograms of significant wave height (Hs) and, Right: mean period (Tp). Gray 

shade is for Biscarosse, dashed surface is for Yeu, and white with thick lines is for Biscay after Butel et 

al. [2002]. 

It is shown that Biscarosse beach, a characteristic of most of the beaches encountered in the SW 

France is exposed to long and energetic waves originating mainly from the W-NW. During fall and winter 

seasons (typically November to March) the mean significant wave height and mean period are high while 

during spring and summer (typically April to October) the mean significant wave height is low [Butel et 

al., 2002]. Woolf et al. [2002] established a relationship between wave height anomalies and large scale 

atmospheric pressure patterns over the Northeast Atlantic on the basis of satellite altimetry. More 

precisely they attributed part of the variability to the North Atlantic Oscillation (NAO) and secondarily to 

the East Atlantic Pattern (EA). In most cases, North Atlantic Oscillation (NAO) and other climatic indices 
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of the Atlantic Ocean have been mainly linked with temperature, precipitation and large scale circulation 

patterns over Europe which has been found to drive the trend of wave parameters and consequently an 

effect on storms. For example, Dodet et al. [2010] found strong positive and negative Pearson correlation 

between the Hs and NAO for the northern and southern sections of northeast Atlantic, respectively. Even 

though, several findings have found low [in summer e.g. Bauer, 2001] or no [with local conditions e.g. 

Dupuis et al., 2006] relation between NAO and Hs over several times, it stresses the importance of 

atmospheric pressure gradient, and that comparisons between other wave parameters and NAO index 

could be relevant. 

2.4.1.b Storms 

Storms definition exist in different topics. In meteorology, a storm is defined relative to the wind 

intensity that is characterised by a low pressure center, spiral rain bands and strong winds [Geng and 

Sugi, 2003]. While storms are generally well-defined from a meteorological perspective, it is not so in 

coastal erosion studies [Lee et al., 1998; Ferreira, 2005; Callaghan et al., 2008; Vousdoukas et al., 2012; 

Coco et al., 2014].  More common storm definition are based on their intensity: hurricane (when a storm's 

maximum sustained winds reach 74 mph) Katrina,  Camille and Andrew in the tropical or subtropical 

waters [Blake et al., 2011]. In coastal science, some studies propose a classification based on duration 

[e.g. Saffir, 1977] or wave characteristics [e.g. Dolan and Davis, 1992] with the Saffir-Simpson Scale. 

Based on the wave characteristics, the impact of larger wave conditions could therefore be site specific, 

depending on the resilience of each beach which accounts for the complications in coastal storm 

definition (Table 2.1). Studies such as Dolan and Davis [1992] and Mendoza et al. [2011] use storm 

energy to define storm intensity. These classifications consider the magnitudes and duration of the storms, 

statistically called hierarchical agglomerative techniques due to some step-by-step similarity measure, 

which do not necessarily relate directly to the damage they cause. Storms have been variously defined as 

dramatic changes in wave conditions or distinct events during which waves exceed a certain height for a 

certain amount of time.  

For example, Callaghan et al. [2008] chose a threshold of 3 m for analysis of the wave climate off 

Australia to define storms. Ferreira [2005], on the Portuguese west coast, used 6 m (Table 2.1) to insure 

that they only considered storms that were responsible for significant beach erosion. To remove 

subjectivity, the storm threshold maybe determined using probability distribution of the wave height 

(Figure 2.9); for example, the 99.5% exceedance level [Luceno et al., 2006] or the 95% exceedance level 

[Splinter et al., 2014a) or the impact on the beach (erosion or inundation). In case of continuous stormy 

conditions, if they occur within a short interval, they are considered as one, taking an empirically arbitrary 

https://en.wikipedia.org/wiki/Hurricane_Camille
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value: 3 days interval is considered in Luceno et al. [2006], 6 hours in Li et al. [2014], amongst others. 

Table 2.1 shows a literature review of storm definitions.  

 

Figure 2.9. Time-series of 3-hourly wave height along the SW coast of France from April, 2007 to 

December, 2012.The subplot in the upper part of this Figure shows three exceedances (marked as storms) 

but considered as single cluster if the time span was less than 9 days. The threshold is set at the 95 % 

probability distribution of all the wave conditions.  

As for individual storms, the definition of storm clusters is unclear in coastal research. Sequence 

of storms (or clusters) generally follow the ‘morphological’ definition when storm recurrence interval is 

shorter than the time needed by the beach to recover to individual storms [e.g. Morton et al., 1995]. As 

indicated on Figure 2.9 (inset), a cluster could be defined based only on the storm occurrence time 

interval and Hs. This definition is still widely used in coastal erosion studies [e.g. Loureiro et al., 2012; 

Karunarathna et al., 2014; Senechal et al., 2015]. Classifying storms in clusters still remains a challenge 

in the coastal domain. This is in line with Birkemeier et al. [1999] that design storm conditions may need 

to be recomputed based on the frequency of storm sequences, as opposed to individual wave or storm 

conditions.  
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What is lacking in the literature is the detail description of the clusters; maximum, minimum and average 

duration and how the cluster relates to the nearshore morphology. There is no global clustering principle 

(though not done here), and most of the literature given in Table 2.1 have actually not shown the criteria 

for defining the clusters. In most cases, however, speculative recovery duration is used. In chapter IV, this 

study has outlined a simple methodology that links this morphology and storm clusters, through the post-

storm beach behaviour. 

2.4.2 Storm impact  

Storm-dominated coast erode largely during winter compared to summer. Investigations on storm 

impact include non-cumulative storm analyses [e.g. Ruggiero et al., 1999; Frazer et al., 2009; Coco et al., 

2014; Splinter et al., 2014a] where individual storms are independent events in which frequent storms or 

storm sequences do not have a persistent influence on longer term shoreline change, but individual major 

storms of varied magnitudes at large return periods; and grouped (clustered) storm analyses [e.g. Ferreira 

2005; Karunarathna et al., 2014] where storm sequences enhance shoreline erosion. The latter result has 

further been evidenced recently by equilibrium-based semi-empirical shoreline models [e.g. Yates et al., 

2009; Davidson et al., 2013; Castelle et al., 2014] with storms rapidly eroding a beach due to a large 

disequilibrium between the high-energy storm and the previous beach state, as the beach progressively 

reaches a new equilibrium under prolonged constant waves. The fact that individual or sequence of storms 

at several sites follow different response durations makes storm characterization still uncertain [e.g. Davis 

and Dolan, 1992; Mendoza et al., 2011; Splinter et al., 2014a; Senechal et al., 2015]. The debate on which 

is the most severe; individual storm or a cluster of the storms, further complicates the definition of storms. 

During storm, as wave heights increase to storm level, beach berms and sometimes the dunes 

erode in response, lowering the beach slope as sand is pulled offshore from the upper portions of the 

beach [Coco et al., 2014] and deposited in protective offshore sandbars. The beach profile becomes flat 

and gentle as more sediment is spread resulting in a more concave beach shape [Wright and Short, 1984]. 

Individual storm impact on shoreline has been accessed commonly through the correlation of the storm 

energy and the shoreline change. In an example, Ferreira [2005] used the convolution morphological 

model developed by Kriebel and Dean [1993], to analyse the consequences of these storms. This model 

consists of simple analytical solutions to predict the time-dependent beach profile response to severe 

coastal storms. The model tries to answer the need for simple methods of analysing beach erosion or 

accretion due to variable wave and water-level conditions. An important assumption in the model is that 

beaches subjected to steady-state erosion forcing conditions respond toward a stable or equilibrium form 

in consistence with the equilibrium models [e.g. Yates et al., 2009; Davidson et al., 2013].  
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Table 2.1. Selection of storms and storm clusters at several sites. Minimum hours describe how long time 

is required for a wave to last and be considered a storm after exceeding the selected threshold. Maximum 

time of cluster gives the time between storms beyond which two or more storms are considered desolate. 

‘None’ in the table means the authors did not define the criteria.  

Site Storm Hs 

threshold 

Min.  

duration  

Defining 

reason 

Cluster 

definition 

Reference 

France SW  4 m 12  98% exceedance 14 days Senechal et al        2015 

Australia 3 m  1  None 9 days Karutharathna et al 2014 

Narrabeen 2 m  None 95% exceedance 1-2 months Splinter et al            2014 

Portugal 6 m None  Erosion 2-3 weeks Ferreira                   2005 

Catalonia 2 m 6 Erosion 72 hr Mendoza et al         2011  

Australia 3 m 1 None None Callaghan et al        2008 

Carolina 4 m None Erosion 39 days Lee et al                   1998 

Atlantic 1.5 m None Erosion Varies Dolan and Davis    1992 

 

To mention, the effects of not only astronomical tide but also atmospherical tides have been addressed in 

the Storm Impact Scale model proposed by Sallenger [2000]. This is often used to predict storm impacts 

on beach and dune systems [e.g. Stockdon et al., 2007; Masselink and van Heteren, 2014]. Amongst the 

active factors that affect beach profile changes include tides, however, most model investigations neglect 

the effects of tides, winds and rainfall [Gourlay, 2011] and reproduce only the action of waves upon 

various beach materials. Storm surge, defined as the water level associated with inverse barometer, might 

have a substantial influence under low-pressure systems and seasonal variations [Weaver and Slinn, 

2004;Walton and Dean, 2009;Melet et al., 2016]. As it is still unclear what the dominant process in 

shoreline dynamics is associated to, tides could improve model perfomances.  

2.4.3 Post-storm recovery 

Storm events represent a major factor controlling short to middle term morphological evolutions 

of many sandy shorelines. In the event of changing storm regimes associated with climate change [e.g. 

see Zhang et al., 2002] it is important to understand the potential effects of storms on beaches and dunes 

and how they recover after these high-energy events. A number of studies have assessed the impact of 

storms on beaches and dunes and on their post-storm morphological adjustment, but most of them were 

conducted along microtidal (see Table 2.2) and storm-dominated coastlines [Morton et al., 1994, 1995, 

Zhang et al., 2002]. Though some authors analysed the morphological response of beaches and dunes to 
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storms on macrotidal coasts [Cooper et al 2004; Maspataud et al., 2009] very few investigated post-storm 

recovery in large tidal range coastal environments, thus our understanding of the post-storm beach 

changes is still limited.  

Remarkably, the time scale of shoreline response maybe rapid not only during the erosional 

period of high storm waves but also during the recovery period when wave heights are relatively lower 

and slow recovery is expected. This recovery period is highly site-specific [Morton et al., 1994] and yet 

not clearly addressed in the literature. Shoreline recovery from storms depends on the severity of the prior 

event(s) and on how far the sediment has been transported offshore. Recovery of beaches after either 

storm or large hazard has been observed to take several durations. On the east coast of South Africa, 

Corbella and Stretch [2012] observed an average beach recovery period of 2 years based on observations 

at three-month interval, similar to Phang-nga after the 2004 Indian Ocean tsunami [Choowong, et al., 

2009]. This data is sparse such that the recovery of significant events occurring in less than three months 

could be missed. The response of the beach system during recovery has also been highlighted by 

equilibrium models [Yates et al., 2009; Davidson et al., 2013; Splinter et al., 2014b]. Equilibrium models 

[e.g. Yates et al., 2009; Davidson et al., 2013] show that storm impact depends on the previous conditions 

of the waves or the beach state. However, the definition of clusters based on beach recovery [Ferreira, 

2005] time supposes that beach recovery occurs even if this might not be the case [Ruessink et al., 2007].  

Table 2.2. Sample shoreline recovery studies that indicate the duration of recovery for each site, the 

frequency (temporal resolution) of data collection, tidal range (TR), diagnostic and data length (size) 

Site Duration Data 

frequency 

TR Diagnostic Data size Reference 

South Africa 2 yrs 3 months Micro Profile positon 37 yrs Corbella and Stretch 

2012 

Palm & Duck 5 days 1 day Micro  Beach state 2&4 yrs Ranasinghe et al   2012 

Narrabeen 27 days 1 hour Micro  Beach state 6 yrs Davidson et al    2013 

North Sea never 1 month Macro Profile position 4 months Maspataud et al   2009 

 

This is more particular when wave conditions follow the energetic events and do not allow 

onshore sediment transport (e.g. because of wave incidence angle or waves not being energetic enough). 

The methods used to estimate the recovery (diagnostics) are different and there is the need for an 

objective  inter-site comparison of the recovery times using a single diagnostic. 
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The recovery process is clearly still not understood from the previous researches. For instance, literature 

does not define how tides relate or contribute to time variation of beach recovery or how the location of 

sandbar affects the shoreline during recovery. 

2.5 Shoreline acquisition and prediction 

2.5.1 Different conventional shoreline measurement techniques 

Several data sources such as historical land-based photographs, coastal maps and charts, aerial 

images, beach surveys, multispectral or hyperspectral images, light detection and ranging (LIDAR) digital 

elevation model (DEM) data, and microwave sensors can be used to extract the shoreline locations. There 

are two types of shorelines that people are mostly interested in extracting; the instantaneous and tide-

coordinated shoreline. The former is usually done at the moment the data source is acquired (e.g. with 

orthophotos, aerial photographs or satellite images) while the latter is done at some selected tide level [Li 

et al., 2002]. Description of these shoreline detection techniques can be found in Boak and Turner [2005] 

and in section 2.3 of this study, thus, only a few of the common data sources that are widely used for 

shoreline studies are briefly described in this section.  

Aerial photographs have been used extensively to determine shoreline positions and erosion rates. 

On aerial images, several different features on the beach and backshore have been used as proxy lines 

[Boak and Turner, 2005], including the bluff or dune line, the seaward vegetation line, and the high water 

line. The latter is usually defined as the wetted line where there is a marked contrast between the wet and 

dry sand. Various investigators [Dolan et al., 1978; Leatherman, 1983; Fisher and Overton, 1994; Boak 

and Turner, 2005] have described formalized methods for using this line to monitor shoreline change. 

Aerial images typically have broad spatial coverage but their temporal coverage is limited by the 

acquisition time. In addition, the images can be distorted with radial or projective distortions caused by 

the change in the pitch, yaw, or roll of the acquisition sensor field of view during the flight time. They 

must be undistorted before utilizing them in a shoreline extraction process [Moore, 2000; Boak and 

Turner, 2005].  

Another shoreline measurement technique is done by the use of differential GPS (geographical 

positioning systems) surveys. GPS depend on the constellation of 3 or more satellites to provide accurate 

(~cm) location of objects. With two GPS; one stationary receiver at a reference and the other receiver 

moved along the shoreline proxy of interest (e.g. HWL, LWL, transects), the beach in the intertidal region 

can be mapped. Pajak and Leatherman [2002] concluded that the GPS method was more accurate than 

aerial photography to identify specific shoreline features of interest. 
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Another method to measure shoreline is through LIDAR (LIght Detection And Ranging). LIDAR 

applications have also been widely used. Since the current study does not involve aerial or lidar data, only 

brief explanations are given. Airborne LIDAR has the ability to cover hundreds of kilometers of coast in a 

relatively short period [Stockdon et al., 2002]; LIDAR is based on the measurement of the time it takes a 

laser beam, from leaving the instrument, to return after reflection. Knowledge of the speed of light allows 

a distance to be calculated and the use of differential GPS specifies an exact location. Tidal datum-based 

shorelines such as MHW can then be found by fitting a function to cross-shore profiles of LIDAR data 

[Stockdon et al., 2002]. This data source is generally limited in its temporal and spatial availability 

because of cost. The main advantage of LIDAR data is that it can cover large areas very quickly. The 

detection of LIDAR points in water areas can also be difficult, because a laser scanner does not have 

reflectance of the water, particularly when they are standing waters, though some reflectance of the water 

is possible when there are some waves or some objects above the water surface.  

Each of these methods share basically similar techniques which include the identification of the 

wet sand line, the tracing and recording of this line, and the measurement of change, either relative to an 

earlier shoreline position, or relative to a reference line offshore. The implementation of these techniques 

has shown significant success in the coastal research albeit their challenges. They give direct 

measurement of beach changes; however, historical records can be non-existent, they can be expensive 

and unable to use during harsh weather conditions. 

 

2.5.2 Video monitoring: Context and background 

Field measurements (Figure 2.10) have provided a great deal of information on the nearshore 

beach system [e.g. Sonu, 1973; Wright and Short, 1984; Plant et al., 1998; Aarninkhof et al., 2003; Poate 

et al., 2013]. Amongst the different measurement types, shore-based video monitoring constitutes one of 

the fastest growing techniques and has become a widely recognised technique the world around. The main 

advantages of the video observations are that they can be made frequently (several times per day), over 

long time periods (decades), and they span large distances alongshore (O (km)). The primary 

disadvantage of video observation methods is that, in most cases, they do not give a direct estimate and 

need a complex pre- and post-processing of images. Another setback of most video stations is that, they 

do not operate in the night, so cameras are only operational during daylight hours. However, in situations 

where analysis is done with the interest to use one image per day, this setback is not important. 
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2.5.2.a Video monitoring of the nearshore: 25 years of developments and use 

Following the Argus video camera system [Holman et al.,1993; Holman and Stanley, 2007] 

developed initially by the Coastal Imaging Laboratory, several video systems (e.g. camEra, Sirena, Horus, 

KOSTA) can now be found around the world. A video monitoring system typically consists of several 

cameras (typically one to nine), to cover the area of interest in the field of view, and allowing a coverage 

of several kilometers. Cameras are usually mounted on an elevated position (typically >15 m above MSL) 

along the coast and connected to an ordinary PC on site, which in turn transfer data through internet to 

distant server. In a situation where none of these exists, data is manually downloaded with an external 

hard drive. Data acquisition is continuous (varies down to 2 Hz sampling frequency) during daylight 

hours and operate through all weather conditions. This is the difference between video system and 

traditional or conventional measurement techniques. 

 

Figure 2.10. Different time exposure images from around the world (a) Biscarrosse (b) Gold Coast [Plant 

et al., 2007] (c) Jamestown, Ghana (d) Duck [Plant et al., 1999]. Plot (a) shows a wide summer beach 
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with signals of multiple bars (white bands) (b) shows irregular sandbars (white bands) c) shows narrow 

beach with rocks closely outside the intertidal zone while d) shows shore-parallel sandbars. 

Since the process of data collection is fully automated, the marginal operating costs are virtually 

zero. Each standard collection usually consists of three types of images (see Argus image types and 

conventions) as indicated in Figure 2.11 are acquired every 10 min to hours typically, depending on the 

research focus; 1) A snapshot image for quality control, 2) Time exposure images (often called timex) 

commonly used for shoreline and sandbar studies as they average-out high-frequency fluctuations due to 

incident wave modulations and give a statistically stable image of the wave breaking pattern [Lippmann 

and Holman, 1989] and shoreline transition. 3) Timestack images consist in pixel transect, generally 

cross-shore, that are used to describe waves characteristics. 

2.5.2.b Shoreline and sandbar from video 

Video system observations have been applied to the extraction of several nearshore 

morphological and wave parameters. Using timex video images, several studies [e.g. Lippmann and 

Holman, 1989; Van Enckevort et al., 2003;Ruessink et al., 2007; Almar et al., 2010] analysed the scales 

and morphology of sandbars based on the dissipation over the crests of the bar, given that the pixel 

intensity is proportional to the local wave energy dissipation (breaking).  

Similarly, video system data has been used to extract shoreline location. Swash motions at the shoreline 

may generate foam and produce a distinct shore-parallel band of high light intensity in time exposure 

images. Plant and Holman [1997] named the bright band the shoreline intensity maximum (SLIM) in their 

study done along Duck, North Carolina. The SLIM was nearly always visible and was generally an 

excellent proxy for the actual shoreline. The coordinates of the shoreline can then be mapped and tidal 

elevations assigned in order to provide bathymetric data [Madsen and Plant, 2001]. Another technique to 

extract shorelines from video is the pixel intensity clustering PIC [Aarninkhof, 2003]. 

The red-green-blue color sharp transition between the dry (red dominated) and water (blue or 

green dominated) pixels is identified as the shoreline. This approach was developed because the SLIM 

method failed to work on more dissipative beaches. Other methods include the artificial neural network 

ANN [Kingston, 2003] and even datum dependent semi-automatic methods [Senechal et al., 2015]. For 

more detailed discussion, a comprehensive review of shoreline detection from video is given by Plant et 

al. [2007]. The shoreline-detection methods mentioned above are sensitive to waves and lighting 

conditions. For instance, the SLIM method by Plant and Holman [1997] and augmented SLIM [Pianca et 

al., 2015] is sensitive to variations in water levels which can scale the effects of both setup and run-up, 

http://www.coastalwiki.org/wiki/Argus_image_types_and_conventions
http://www.coastalwiki.org/wiki/Argus_image_types_and_conventions
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and fog can reduce the color signal strength [Aarninkhof et al., 2003]. Despite these, the results of 

shoreline measured from video have been comparable to that of topographic surveys [Holman and Haller, 

2013]. Plant et al. [2007] and Almar et al. [2012] present results for validation and discussion of the video 

method performances. 

 

Figure 2.11. Example of each image type on the 01/06/2009 at Biscarrosse; 1) A snapshot image for 

quality control, 2) Time exposure images (often called timex). 3) Timestack image, a pixel transect, cross-

shore used to describe waves properties. In 3), also shows two breaking locations cycled, reminiscent of a 

double barred beach.  

2.5.3. Predicting shoreline evolution using models  

Coastal managers, scientists and engineers have long sought a robust and practical methodology 

for the estimation of shoreline change, over time-scales spanning several years to decades. There are 

existing models [e.g. Cowell et al., 2003; Karunarathna et al., 2009; Horrillo-Caraballo, 2010], which are 
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currently close to satisfying these requirements and include a considerable level of empiricism and may 

be termed data-driven models. Probably the most widely used is the GENESIS model [Hanson and Kraus, 

1989] which is applicable where alongshore gradients in sediment transport dominate. Recently there 

have been several advances in the field of long-term but relatively high-resolution (weeks to months) 

shoreline prediction due to predominantly cross-shore sediment transport processes. These studies [e.g. 

Davidson and Turner 2009; Davidson et al., 2013; Yates et al., 2009] have found out that a practical 

approach to hindcasting (and potentially forecasting) of multi-year shoreline variability may be developed 

from a combined consideration of the evolving disequilibrium state of a beach through time, and the 

rapidly-varying forcing caused by prevailing wave conditions. These core ideas build upon earlier 

disequilibrium concepts introduced by several authors including the work of Wright et al. [1985], Plant et 

al. [1999] and Miller and Dean [2004], where the evolution of beach-state, sand bars and shorelines were 

examined, respectively. Davidson and Turner [2009] developed a behavioural template model which 

hindcasted beach profile evolution including beach flattening, shoreline recession and the development of 

breakpoint sandbars during episodes of erosion. Not only can these models predict the on-offshore 

location, but the alongshore irregularities development as found by Stokes et al. [2015]. However, the 

influence of tide and sandbar, that are supposed to be important for the short-term response of the 

shoreline to storm and recovery rate are to be implemented in such models that take only into account for 

waves. 
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CHAPTER THREE 

Study area, data and methods 

 

 

……No law of nature however general has been  

established all at once,  

its recognition has always been preceded by 

 many presentiments….  

Dmitri Mendeleev 
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3.1 Description of study sites 

Two sites were selected in this study: the meso-to macro-tidal Biscarrosse beach and the micro-

tidal Jamestown beach. The main site is Biscarrosse while Jamestown is studied on pilot base. Biscarrosse 

beach is the main site because we have long duration of data at that site. Biscarrosse beach is located in 

high energetic wave dominated section along the North Atlantic while Jamestown beach is a low energy 

beach in the Gulf of Guinea region. 

3.1.1 Environmental settings of Biscarrosse beach 

Biscarrosse beach is located in the southern part of the French Atlantic coast (Figure 3.1), an 

unconsolidated, low lying coast, bordered by high aeolian dunes [Pedreros et al., 1996; Michel and Howa, 

1997]. This 250 km long N-S oriented coast is only interrupted by the 5-km wide Arcachon lagoon inlet, 

in which several extensive sand banks have developed as part of a well developed tidal delta. Biscarrosse 

beach is located about 15 km south of the tidal inlet and can be considered distant from the zone of 

influence of the tidal delta, at short time scale. It is also noted that this beach is not fully a natural system 

as there have been upperbeach nourishments when necessary. Biscarosse beach, by its characteristics, 

serves as one of the prototypes of the beaches in the SW France (Figure 3.1), particularly within the 

framework of DYNALIT (DYNamique du LITtoral et du trait de côte) service of national observatory 

(SNO). 

3.1.2 Biscarrosse beach: wave and tide forcing 

Biscarrosse beach is oriented to the North at an angle of 8.5°. The beach is exposed to long and 

energetic waves originating mainly from the W-NW direction. This study area is part of the North-East 

Atlantic Ocean (25°W–0°W and 30°N–60° N), investigated by Dodet et al. [2010] using a 57-year 

hindcast data, obtained with a spectral wave model forced with reanalysis wind fields at different water 

depths. The hindcast analysis revealed firstly strong seasonal fluctuations of wave climate, with winters 

characterized by large and long-period waves of mean direction spreading from south-west to north-west, 

and summers characterized by smaller and shorter-period waves originating from northern directions. 

Using similar data, Charles et al. [2012] observed additionally several trends for recent periods. Notably, 

an increase of summer significant wave height, a southerly shift of autumn extreme wave direction, and a 

northerly shift of spring extreme wave direction. They found that wave fields can also exhibit high 

interannual variability, with a normalized standard deviation of seasonal wave height greater than 15% in 

winter time. The interannual variability of the wave climate at this area is reported to relate to the North 

Atlantic Oscillation Index [Butel et al., 2002; Dodet et al., 2010] where NAO influences the occurrence 
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and tracks of storms. The wave climate is energetic with an annual mean significant wave height of 1.4 m 

and an associated period of 6.5 s. During fall and winter seasons (typically September to March) the mean 

significant wave height is around 1.6 m with a mean period of 7.3 s, while during spring and summer 

(typically April to August) the mean significant wave height is about 1.1 m with a shorter wave period (6 

s). Butel et al. [2002] investigated large scale spatial variability of sea states at Biscarrosse from 1980 – 

2000 in a 26 m water depth as part of their study to give a complete wave classification on the Aquitanian 

coast. While there can be large variation, they indicated that maximum wave height during winter storms 

can sometimes reach 10 m. 

 

Figure 3.1. Location of the study site, Biscarrosse beach (SW France), showing the WW3 grid node 

(triangle) located at -1°30’ W, 44°30’ N and CANDHIS buoy (triangle) at 1°26.8’W, 44°39.15’ N and the 

video station. The quatitative longshore drifts are shown at the various sites along the entire French 

Atlantic coast [courtesy: Castelle et al., 2015]. 
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At this site, tide is semidiurnal with meso–to-macrotidal amplitude and an average value of 2.9 m which 

increases up to 5 m during spring tides. The tide is the main component of the water level for the water 

line variation, aside the effect due to breaking waves, the wind and inverse barometer (atmospheric 

pressure). These results are significant at Biscarrosse, and must be stimulated further for clear 

understanding in line with shoreline changes. 

3.1.3 Morphology of Biscarrosse beach  

Biscarrosse beach currently faces an erosion of about 2 m/yr [Eurosion, 2004] while the 

Aquitanian coast (SW France) is subject to an overall shoreline erosion of 1 to 3 m/year [Idier et al., 

2013]. Driven by oblique waves, the longshore drift is mainly southward and has been estimated roughly 

around 600,000 m
3
/m/yr [Figure 3.1, Abadie et al., 2006; Castelle et al., 2015]. The beach generally 

consists of a double bar system comprising intertidal and subtidal sandbars [Almar et al., 2009]. 

Following Wright and Short [1984] classification, Peron and Senechal [2011] found that the most 

typical beach states observed for Biscarrosse fall in the category of Low Tide Terrace, LTT, and 

Transverse Bar and Rip (TBR). The intertidal bar commonly exhibits complex three dimensional (3D) 

morphology with a mean wavelength of about 400 m [Lafon et al., 2002; Castelle et al., 2007; Almar et 

al., 2010] that can sustain energetic events [Ba and Senechal, 2013; Peron and Senechal 2011; Senechal et 

al., 2015]. Figure 3.2 represents the general bathymetry of Biscarrosse (Figure 3.2a) which shows the 

presence of inner sandbar between 200 and 400 m (Figure 3.2b) and the outer sandbar around 700 m from 

the shoreline, measured during the Biscarrosse field experiment in June, 2007 [Bruneau et al., 2009]. 

Figure 3.2b shows the beach is gentle, with an average observed slope of 0.03. Both sandbars migrate 

southward as a result of the southerly longshore drift [De Melo et al., 2002; Lafon et al., 2004; Castelle et 

al., 2015]. Using three years of video observations, Senechal et al., [2015] also discussed the possibility 

that the presence of the subtidal bar explained the persistence of TBR states (mean residence time of 

about 24 days reaching maximum at 103 days), even during high energetic conditions as reported by 

Almar et al., [2010]. Senechal et al. [2015] showed that the range of variation of the inner sandbar 

positions (120 m) at Biscarrosse is two and half times larger than the range of variation of the shoreline 

position and that rapid erosion can be observed, even under moderate conditions. 
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Figure 3.2. a) Biscarrosse beach bathymetry in June, 2007 and (b) the averaged profile. The two sandbars, 

intertidal and subtidal (outer) sandbars, are visible on the profile. The horizontal line indicates the tide 

level used to define shoreline (0.45 m above MSL).  

3.1.4 Introduction to Jamestown beach 

Jamestown is located in Accra (detail is shown in chapter 6), capital of Ghana, which has a 550 

km long coastline. The general Ghana coastline consists of mixed rocky and sandy beaches. The coast is 

sandy in the western part and rocky in the east [Anthony et al., 2016]; however, the section under focus is 

sandy. Tidal regime is microtidal, and wave conditions are moderate [mean wave height of 1.4 m and 11 s 

period, Appeaning Addo et al.,2008; Angnuureng et al., 2013]. Shoreline erosion along the Ghana 

coastline is on the rise with a current erosion rate of 2 m/yr [Wiafe et al., 2013]; though it can reach 17 

m/yr at some hotspots [see Angnuureng et al., 2013]. The motivation for choosing this site includes 
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amongst others, erosion with events of overtopping and breaching of the dune inducing important 

inundations [Folorunsho et al., 1995]. The site is also a major fishing community, important 

economically, but draws the attention to the impact of activities from the fisher folks.  

3.2 Hydrodynamic Data at Biscarrosse  

3.2.1 Wave data  

In this study, the wave data are retrieved from Wavewatch III [WW3; Tolman, 1991] model, 

forced by wind (NOAA) with a 3 h resolution over a 5-year period from 2007 to 2013. The WW3 model 

considers the effect of the tides and surges on forced wind waves. Data are extracted at the grid point 

(1°30’W, 44°30’N, Figure 3.1) facing the beach in about 70-m water depth. In-situ measurements are also 

collected over the same period, though intermittently, with the CANDHIS (Centre d'Archivage National 

de Données de Houle In Situ) directional wave buoy, moored in 54-m depth (1° 26.8′ W, 44° 39.15′ N; 

Figure 3.1). The model significant wave height HsWW3 are corrected via a linear regression with the buoy 

data HsCandhis [Castelle et al., 2014] and showed in Figure 3.3a and Figure 3.3b. In Figure 3.3b, the solid 

and dashed black lines indicate mean shoreline orientation and shore-normal incidence, respectively. The 

dashed grey lines indicate ground swell shadowing regions to the North and to the South. The link is 

given by HsCandhis= 0.9052HsWW3 − 0.01526. The overall directional wave climate used in our study is 

given in Figure 3.3b and Figure 3.3c, showing wind seas at a wide range of directions and high-energy 

swells from the W–NW sector. The angle represents the direction wave comes from and the color 

represents the magnitude of the significant wave height indicated in the legend. Each sector is 10° wide. 

Modal Hs (1.12 m) is below average (1.69 m) which suggests a skewed distribution with few large wave 

events. On the other hand, Tp varies between 2.5 s and 21.2 s with average and modal values as 10.2 and 

10.8 s respectively. 

Wave data present numerous storm events, with the major events identified to cause dramatic 

beach changes. To develop a storm classification, three main steps are done in this study: (1) storm 

definition and identification, (2) selection of the parameter to characterize the storms according to a given 

criterion, and (3) quantification of the impact. In Chapter four we illustrate how the storms are defined for 

this study. The storm energy are commonly used to assess the impact of the storm on morphology, 

because one of the main objectives of the classification is to provide an idea on the potential hazards 

induced by the storms and the classification variable should reflect their intensity. Apart from the Saffir-

Simpson scale [Simpson, 1971; Saffir, 1979] that is mostly used for hurricanes, the state-of-the-art storm 

classification is the Intensity Scale [Dolan and Davis, 1992]. The storm intensity I is obtained basically 

with the product of maximum or mean Hs-squared (energy E) and the duration N of the storm (see 
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literature and Chapter four). Uncertainties due to this simple method include over or underestimation of 

the storm intensity. 

 

 

Figure 3.3. a) Correcting wave data with measured significant wave height at the Candhis buoy HsCandhis 

versus 3-hour modelled significant wave height HsWW3. The solid black line indicates the relation between 

the two data sets b) Resulting distribution of entire wave data set [after Castelle et al., 2014]. Colorbar 

indicates peak wave period in seconds c) Wave rose diagram based on data from WW3.  

Recently, other researches [e.g. Mendoza et al., 2011; and Splinter et al., 2014] have found it more 

appropriate to use timeseries of waves within the storm. 
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I=∑E = ∫
1

8

𝑁

0
 𝜌𝑔𝐻𝑟𝑚𝑠

2 𝛥𝑡      (3.1) 

Assuming a Rayleigh distribution of waves, Hrms can be substituted by Hs/√2 [Dean and Dalrymple, 

1991] and Eq. (3.1) becomes:  

I = ∫
1

16

𝑁

0
 𝜌𝑔𝐻𝑠

2𝛥𝑡     (3.2) 

Similarly, assuming the waves travel in a group with speed Cg, wave power is defined as P = ECg and for 

deep-water the integrated wave power can be written as: 

∑P = ∫
1

64𝜋

𝑁

0
 𝜌𝑔2𝐻𝑠

2𝑇𝑃𝛥𝑡    (3.3) 

And assuming the storm starts at t1 and ends at t2 while all other variables are constant, E can be written 

as in Mendoza et al. [2011]: 

E = ∫ 𝐻𝑠
2𝑡2

𝑡1
𝛥𝑡      (3.4) 

where ρ is the density of sea water, g is acceleration due to gravity. The latter equation has been used 

throughout this study. It is simple yet gives similar results as the first three equations. 

3.2.2 Waterline elevation data  

The water level (combination of astronomical tide, atmospherical tide and wave setup) affects the 

wave transformation along the surf zone and can modify the breaking and swash locations. In particular, 

high-wave energy events generally coincide with high water levels (atmospherical low depth/or storm 

surge with high tide) which affect the upper part of the beach [i.e. dry beach, dunes, among others, 

Splinter et al., 2014] and coastal structures (i.e. seawalls, dune revetments). Astronmical tide data can be 

acquired through several means; models and in situ with tide gauges. For this study, there is no tide gauge 

at Biscarrosse, therefore tides (Figure 3.4) were retrieved with WXtide model [Flater, 2010] at closest tide 

gauge at Arcachon, which is 15 km distant. Figure 3.4a is a representation of all tide data used in this 

study. Daily amplitudes range between 1.1 and 5.13 m during neap and spring tide, respectively. On 

Figure 3.4b, the corresponding image times for each camera were overlaid. For example, Figure 3.4b 

shows Camera 5, C5 did not function for the last two days, indicated by an empty solid line. Other 

cameras are marked which shows the presence of images.  
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Figure 3.4 Schematic for tide and times when images were selected based on 2.7 m tide elevation above 

lowest astronomical tides (LAT). Time series of cameras one to five (C1, C2, C3, C5) were overlaid.  

3.3 Morphological data at Biscarrosse 

A shore-based video system was installed at Biscarrosse beach (Landes, France) in April 2007 by 

EPOC laboratory (CNRS/University of Bordeaux) in collaboration with the New Zealand National 

Institute of Water and Atmosphere (NIWA). Initially, the video station had five high resolution color 

cameras (3.5 MPix) fixed atop the fore dune at 26 m above the mean sea level (MSL), but only four 

cameras have been in good state and used throughout this study. The system provides three types of 

images every 15 minutes: instant snapshot to check the image quality, cross-shore time stacks (time series 

of radial pixel intensity) to compute high frequency wave characteristics and 10-min time exposure (or 

timex) images, that are used for detecting the position of sandbars and shoreline. Images that were of bad 

quality (due to fog, blurred, etc) were removed and times during which camera did not operate were 

excepted. The beach area covered by each of the four video cameras extends 2-km in the longshore and 1 

km across shore which ensures covering alongshore structures non-uniformities such as rhythmic shapes, 
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resolved at both shoreline and sandbar locations. Thus the main data to be used to analyse the 

morphological changes is obtained from the video system.  

In this study, shoreline is defined based on tidal datum which has already been discussed in the 

literature [Quartel et al., 2008; Davidson et al., 2010]. Here, the shoreline is taken as the contour at the 

lowest high tide 2.7 m ± 0.1 m above Lowest Astronomical Tide to be consistent with previous studies 

[e.g. Senechal et al., 2015]. This datum contour was found to be best correlated to the supratidal beach 

volume and is thus considered as a suitable proxy [Ba and Senechal, 2013). The other reason for the 

choice of this contour is because it gives at least, a shoreline per day that maximises the number of data 

points, in line with our need for covering shoreline evolution from daily to seasonal scales. Based on the 

chosen tidal elevation to pick the shoreline, shoreline data covers 50% (1,038 days in 1,966 days) of the 

studied period.  

On the other hand, the sandbar is identified from the timex images. The video system technique 

allows the visualization and subsequent quantification of nearshore morphology based on the patterns of 

incident wave breaking [Lippmann and Holman, 1989]. The premise of the technique is that more waves 

break over the shallows of the bar than surrounding areas. The sharp contrast between breaking and 

nonbreaking regions is imaged photographically. All sandbar images used here are taken at 1.7 m above 

LAT. At higher LATs may be waves do not break on the sandbar. Sandbar data covers only 20% of the 

studied duration, because an additional condition was used to ensure wave breaking is uniquely on the 

sandbar. Images are discarded when Hs > 2.5 m because breaking might occur continuously from the bar 

to the shore under such energetic conditions [e.g. Van de Lageweg et al., 2013].  

3.3.1 Pre-processing, georeferencing and rectification of images 

The intrinsic camera calibration can be done in the laboratory before the field deployment: Radial 

(distortions along radial lines from the center of an image) and tangential lens distortion are the largest 

source of errors and typically the only type of distortions accounted for in video image processing. Detail 

description of how to estimate distortion is found in the literature [Holman et al., 1993; Holland et al., 

1997; Almar et al., 2009). The photogrametric transformation between three dimensional (3-D) world and 

two dimensional 2-D image coordinates is called rectification, or geo-referencing [Lippmann and 

Holman, 1989; Holland et al., 1997]. The geometry and labeling conventions used in the rectification 

process are shown in Figure 3.5. Image coordinates will be denoted with small letters (x,y), and ground 

coordinates will be denoted with capital letters (X,Y). The optic center of the camera is located at point 

(X0, Y0, Z0), a distance Z above the ground plane. The relation between the 3D world Cartesian 

coordinates and the 2D image point is defined by the optical center, f, and the camera orientation (Eq. 3.7- 
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Eq. 3.8). The orientation is defined by the three angles; φ (azimuth), τ (tilt), and σ (roll). Using the 

parameters defined in Figure 3.6 and the information above, the coordinate transformation between image 

and world coordinates are driven in terms of the following collinearity equations under the condition that 

the camera center, the image point, and the object point all lie on a straight line [Holland et al., 1997]:  

X = (Z – Z0) Q + X0      (3.5) 

Y = (Z – Z0) P + Y0      (3.6)  

where  

Q = 
𝑚11𝑥+𝑚21𝑦− 𝑚31𝑓

𝑚12𝑥+𝑚22𝑦− 𝑚33𝑓
     (3.7) 

P = 
𝑚12𝑥+𝑚22𝑦− 𝑚32𝑓

𝑚13𝑥+𝑚23𝑦− 𝑚33𝑓
     (3.8) 

 

 

Figure 3.5. Basic geometry of video imagery of beach scenes. The camera, at location (X0, Y0, 

Z0), is mounted at a height of Z above the origin, tilted at an angle of τ with respect to the vertical, and is 

rotated through an azimuthal angle of φ with respect to the positive y-axis. Ground control points are seen 

on the screen at image coordinates that define the angle σ. 
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The notations mij are orthogonal rotation matrices or direction cosines and can be derived in terms 

of three successive rotations about the angles φ (azimuth), τ (tilt) and σ (roll). Finally, to transform the 2-

D (x, y) to 3-D cannot be estimated because the system of equations is underdetermined (two equations 

with three unknowns). This is solved by projecting the image on a planar horizontal field [Lippmann and 

Holman, 1989; Almar, 2009] by keeping z at a fixed water level.  

m= [
cos (φ) sin (φ) 0
sin (φ ) cos (φ) 0

0 0 1

] [

 1 0 0
 0 cos (τ) −sin (τ)
 0 sin (τ) cos (τ)

] [
−cos (σ) −sin (σ) 0
−sin (σ) cos (σ) 0

0 0 1

] (3.9) 

3.3.2 Processing of images: Biscarrosse video and merging images  

Figure 3.6a shows that camera viewfields overlap. These overlaps are removed and images are geo-

referenced and merge to a single plan view (Figure 3.6b). The merging was purposefully done to give a 

wide alongshore coverage after the rectification. 

 

 

Figure 3.6. Merging of images: a) Oblique timex images for cameras (2, 1, 3, and 5) that show overlaps (i, 

ii, iii); b) rectified merged image using the various timex images. 
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3.3.3 Shoreline and sandbar delineation 

Using timex images, the shoreline is manually delineated at the interface between the water and 

land on merged images (Figure 3.7) while the sandbar crest location is manually delineated from the pixel 

intensity maximum corresponding to the maximum of time-averaged incident wave breaking [Lippmann 

and Holman, 1989]. This is indicated by the white bands on the image (see Figure 3.7).  

 

Figure 3.7. This shows manual digitisation of shoreline (thick solid line) and inner sandbar location 

(dotted line) from an oblique timex image. The camera location is traced to 0 m value alongshore (Y). 

Following Plant et al. [1999], a time stack of the alongshore-averaged intensities was done to visually 

check the quality of shoreline and sandbar detection (Figure 3.8), from 2007 to 2012.This also shows the 

trend and seasonality in the data set. 

3.4. Error analysis 

3.4.1 Inaccuracy in the shoreline location  

The sources of error or uncertainty of the observed shoreline in this study originate from: 

1) The rectification of images from pixels to real world coordinates. This error includes that of pixel 

footprint (resolution) from oblique view and the accuracy of rectification from ground control points (the 

reference coordinates). Generally, the resolution of rectified images (in metric units) obtained is a 

function of the height, h of the camera and the distance of interested beach features from the camera:  

Resolution = 
𝜒

√𝑟2+ℎ2
       (3.10) 



  

64 
 

where rs = √(𝑥 − 𝑥𝑜)2 + (𝑦 − 𝑦𝑜)2, is the distance from the camera location to the object on the image, 

(xo,yo) is the image center while (x,y) is the object location on image. When χ=1, the resolution estimated 

is only in the lateral direction, while for longitudinal resolution, χ =h/rs. 

 

Figure 3.8. a) Shoreline evolution for all data sets b) sandbar evolution for all data set 

For the usual camera configuration looking down the beach with an oblique angle, the spatial resolution 

footprint is  

Lx ~ rs∆σ    (lateral resolution)   (3.11)  

Ly~ rs∆σ /cos (τ+ σ)  (longitudinal resolution)  (3.12) 

For example, a typical wide-angle view (roll) of σ = 30 °, range of 100 m and camera tilt of 75°, the pixel 

footprint is about Lx = 0.1 m and Ly = 0.39 m, good for the run-up application (Holman et al.,1991). 

At Biscarrosse, the resolution of images is estimated separately in cross shore and alongshore directions. 

Figure 3.9a represents the location of the GCPs (ground control points) on a timex image. The digitized 
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shoreline positions range from 80 m to 160 m. Figure 3.9b suggests that in front of the camera, shoreline 

cross-shore resolution (foot print) is less than 0.5 m and worsen to 1.5 m at the edge (lowest tide time or 

widest beach time), which reaches 4 m in the alongshore (Figure 3.9c).  

 

Figure 3.9. Image resolutions showing pixel foot print (m/pixels) per meter in color bar. In (b) is the foot 

print in front of the camera moving offshore (following the arrow) and in (c) is the footprint perpendicular 

(by arrow) or alongshore to the camera view direction  
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On the other hand, Figure 3.10 shows an example of the rectification of an image using 18 GCPs and 

equations 3.5 - 3.6. The errors incurred at each point can be estimated by comparing differences between 

the measured GCPs and the estimated GCPs (see Eq. 3.5 and Eq. 3.6) of objects located on the image. It 

must be pointed out that the error due to the rectification also depends on several factors that were taken 

into account; the water level elevation and wave induced set up and the camera height stated above. There 

is very strong correlation between the measured and estimated GCPs (r > 0.98) in both cross shore and 

alongshore directions. Figure 3.10c shows the measued GCPs and the estimated GCPs in the rectification. 

 

Figure 3.10. (a) Rectified image that shows the location of ground control points (circles and numbers) 

used for rectifying images with focus on the shoreline (b); c) differences between estimated GCPs (circle 

line) and measured GCPs (square line). Cross shore is in X(m) and alongshore is in Y(m). 
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Despite this, the mean absolute error obtained when rectifying pixel image can be large. At the far distant 

cross shore alongshore location (~86, 180), rectificatin is poor with about 10 m and 2 m resolutions, 

respectively, while close to the camera (the first point), resolutions are 0.4 and 0.2 m. For this study, mean 

error due to the rectification at the cross shore shoreline is 1.1 m.  

2) Elevation contour level. Selecting a single water level is particularly important as it can minimize 

significant errors. Castelle et al. [2014] observed that if water levels of 0.4 and 1.5 m above MSL are 

selected, RMSE values of 10 m and 7.5 m are attainable, respectively, when measured values are 

compared to estimated values. In this study, the average water level (tidal elevation used) selected was 2.7 

m. But we added also images that were very close to this elevation, at range of ± 0.1 m giving the tidal 

values at 2.7 m ± 0.1 m. The errors due to the selected water level were estimated by the ratio of the water 

level variation ± 0.1 m to the beach slope (0.03). In Figure 3.11, it is shown that the shoreline at MSL is 

improved by about 1 m when water level of Z = 0.4 m above MSL is considered. By this technique, each 

image or shorline had a known error associated to it. On average, a horizontal error due to tidal variation 

of 0.30 m was achieved due to this water level changes, though at sometime it reaches 5 m as indicated by 

the distribution on Figure 3.12a.  

 

Figure 3.11. Schematic shoreline location (X) due to the effect of water level and setup.  
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Figure 3.12 a) Normal distribution of the water level effect b) Nakagami distribution of wave induce 

setup on the changes of the measured shoreline 

3) Wave setup (ζ), swash and runup (R). The setup can be defined as the local elevation in the mean water 

level on the foreshore, caused by the reduction in wave height through the surf-zone [Bowen et al., 1968; 

Goulay, 1992]. It can be proportional to the wave height at breaking. The swash consists of an onshore 

uprush and an offshore accelerating downrush while the wave run-up is the maximum level the waves 

reach on the beach relative to the still water level. Wave run-up is therefore the sum of the wave set-up 

and the wave swash (Figure 3.13). Quantifying the magnitude of runup is critical to accurately estimate 

shoreline location. Using empirical correction model, Plant et al. [2007] reported that local estimates of 

setup and swash amplitudes reduced shoreline elevation errors by about 50%. Wave setup can cause an 

increase in water level elevations on the order of 20–50% of the offshore breaking wave height [see Dean 

and Walton, 2009] and can be a significant portion of the overall storm surge. In this study, the setup term 

has been computed using the formulation from Stockdon et al. [2006].  

There are several parameterizations of the runup, R and the setup but the most current and widely used 

was obtained by Stockdon et al. [2006]:  

R = <ζ> +S/2        (3.13) 

< ζ > = 0.35𝛽√𝐻𝑠𝐿𝑜  (𝛽 being upper beach slope)  (3.14) 
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Hs and Lo are the offshore wave height and length, respectively, S is the swash. The most important part 

of the shoreline here is the cross shore location. The cross-shore setup (error), ζ z, was estimated on the 

cross-shore position [see Senechal et al., 2015] when the beach slope is eliminated as in eq. 3.10: 
 

ζ z = 0.35√𝐻𝑠𝐿          (3.15) 

 

Figure 3.13. a) The quantitative assessment of wave setup, η in shoreline positions (modified from Ruggierro et al., 

1996).  

However, this is just an estimation because submerged bathymetry (e.g. presence of sandbar) and tide 

might be of substatial importace in the estimation of waterline level. Figure 3.12b shows the distribution 

of the wave induced setup that was estimated. Setup error for this study ranges from 2 to 12 m; however, 

average value obtained here is 6 m. 

Other sources of error include the atmospheric pressure and wind effects. The overall uncertainty on the 

shoreline location is about 8.6 m, due to tide (0.3 m), setup (6 m), rectification (2 m) and digitisation (0.3 

m). Only one analyst digitized the shorelines for all images to minimize different interpretations from 

multiple analysts.  

3.4.2 Inaccuracy in the sandbar location  

On the other hand, the inner sandbar positions range from 200 m to 350 m, the pixel footprint (metric 

resolution) at sandbar location ranges from 2 m to 10 m (Figure 3.9b and c). The error due to rectification 

is about 5 m in the sandbar area between 200 and 400 m cross shore, discussed in (1) of section 3.4.1. For 
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the errors associated to sandbar detection, the location of maximum intensity (reminiscent of sandbars) in 

a video image is known to deviate from the in-situ sandbar position, depending on the water level and 

wave height [Van Enckevort and Ruessink, 2001; Alexander and Holman, 2004]. Waves break further 

seaward (shoreward) of the sandbar crest with increasing (decreasing) wave height and decreasing 

(increasing) water level. A change in wave height or water level between subsequent image observations 

causes a change in location of maximum wave breaking in the images not associated with real sandbar 

migration. According to Lippmann and Holman [1989, 1990], error in identifying the maximum wave 

dissipation, in which the estimated bar crest positions are weighted offshore from the true bar crest 

location is less than 5-10% of the cross shore distance to the crest. Implementing this for this study, the 

average uncertainty to identify the true crest location is 10 m. Sandbar location in this thesis is 

approximated with an uncertainty of 16 m after combining all sources of errors including water level, 

wave effect, digitisation and rectification.  
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CHAPTER FOUR 

Statistical approach of coastal response to storms 

 

........Life is like riding a bicycle. 

 To keep your balance,  

You must keep moving...... 

Albert Einstein 
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4.1 Introduction 

As previously introduced in Chapters 2 and 3, the fluctuation of shoreline position in a variety of time 

scales introduces many difficulties when reconstructing shoreline trends [Crowell et al., 1993; Short, 

1999]. This variability in shoreline position may be the response to a single factor or a combination of 

several factors. Principal causes of coastal erosion or accretion have been individual large storm events 

[Anfuso et al., 2007; Zhang et al., 2002], seasonal variability in wave energy [Masselink and Pattiaratchi, 

2001], multiyear to decadal-scale variations in storminess and coastal morphodynamics [Stive et al., 

2002]. The analysis at medium to long term scales may be influenced by large short term events (e.g. 

storm or tide), yet, the importance of short term events always overshadows long term events if the 

duration of study is not long enough. To estimate the mean rate of shoreline changes that happen annually 

alongshore, the predictions must deal with both the erosive storm response, as well as the accretionary 

post-storm recovery, and not only with individual storms, but also sequences of storms and multi-annual 

trends , tides and climatic events. It is important to know that the short term littoral evolution is necessary 

for a proper management of coastal erosion. 

In this chapter, first a methodology is presented to extract storms and then estimate the contribution of 

their impact on shoreline evolution during and after storms through statistical multiple regressions. 

Secondly, the role of storm return frequency and recovery duration are estimated and, the effect of 

sandbar location and tidal shoreline modulations are evaluated. Finally, discussion and perspectives are 

made relating statistical outcome to equilibrium based results. 

 

4.2. ARTICLE: Shoreline resilience to individual and sequence of storms at a meso-macrotidal 

barred beach (under revision, Geomorphology).  
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Abstract  

This paper investigates the impact of individual and sequence of storms on the macrotidal 

barred Biscarrosse beach in SW France, using 6-years of daily video observations. Based on 

36 individual storms and 13 storm clusters, our results show that shoreline retreat is 

governed by the first storms in clusters, while the impact of subsequent events is less 

pronounced. Storm cluster impact on shoreline is not cumulative with the total retreat being 

less than the sum of individual storms contributions. The average post-storm beach recovery 

duration at this site is 9 days, which increases with tidal range and is modulated by the 

presence of the sandbar. Our results reveal that not only is the energy of storms important but 

also their frequency of recurrence, which underlines existing interactions between short 

storm events and longer-term sequences and seasonal evolution.  

 

Keywords: storm clusters, beach erosion, beach recovery, sandbar, extreme events impact, 

open beach, short-term morphodynamics 
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4.2.1. Introduction 

Sustainable management of coastal resources requires a thorough understanding of the processes 

that drive changes in the shoreline location. The shoreline is a highly dynamic interface between land and 

ocean and is thus affected by various forcings operating at different spatio-temporal scales. Shoreline 

evolution is to a large extent governed by meteorological and oceanic conditions: waves, tides, currents 

and atmospheric conditions (wind, inverse barometer). It is generally assumed that wave breaking is the 

main driver of coastal evolution but its role is strongly modulated by other factors. For example, on the 

lower part of the beach, a storm may have more erosive impact at low tide than at high tide. Although 

many studies have focused on either simple or complex paradigms of shoreline evolution from Wright 

and Short [1984] beach classification, to more complex cross-shore equilibrium models [Yates et al., 

2009] and a mix of cross-and longshore-based models [Morton et al., 1993; Hansen and Barnard, 2010], 

the response to perpetually changing forcing conditions is still somewhat unclear [Ranasinghe et al., 

2012; Pianca et al., 2015]. The fact that beaches eventually recover to their pre-storm state means that the 

response does not only depend on the storm conditions but also on other factors such as sea level and 

long-term trend [Zhang et al., 2002], the previous beach state [Wright et al., 1985; Grasso et al., 2009; 

Yates et al., 2009] and/or previous wave conditions [Davidson et al., 2013; Splinter et al., 2014b].  



  

75 
 

Given that individual storms can result in dramatic shoreline changes, some studies treat storms 

as outliers [Zhang et al., 2002]. Storms are considered independent from long-term evolution and 

described separately because of rapid post-storm recovery. They suggest that a storm may induce 

undulations independently to any long term trend. Zhang et al. [2002] support the assertion of Douglas 

and Crowell [2000] that the most practical option is to remove such events from any long-term evolution 

consideration, though they may contribute significant information to the long-term signal at any given 

time. In contrast, Fenster et al. [2001] observed that individual storms do not need to be excluded from a 

long-term analysis of shoreline changes while Genz et al. [2007] observed that identifying storm 

contributions improves the prediction of the long term shoreline but concluded that this needed to be 

further investigated. The short term storm-induced shoreline change ranges from rapid erosion to slower 

post-storm recovery and is influenced by storm characteristics [e.g. energy and duration, individual versus 

storm clusters; see among others, Ciavola et al., 2007; Yates et al., 2009; Karunarathna et al., 2014; Coco 

et al., 2014; Senechal et al., 2015]. 

Investigations on storm impact mainly follow two approaches; non-cumulative analyses [e.g. 

Ruggiero et al., 1999; Frazer et al., 2009; Coco et al., 2014; Splinter et al., 2014a] which take individual 

storms as independent events and show that frequent storms or storm sequences do not have a persistent 

influence on longer term shoreline evolution which is influenced only by major individual storms with 

large return periods (e.g. 1 in 100 year); and cumulative storm analyses [e.g. Ferreira, 2005; Karunarathna 

et al., 2014] which show that storm sequences enhance shoreline erosion. The latter result has been 

further evidenced recently by equilibrium-based semi-empirical shoreline models [e.g. Yates et al., 2009; 

Davidson et al., 2013; Castelle et al., 2014] with storms rapidly eroding a beach due to the large 

disequilibrium between the high-energy storm and the previous beach state, as the beach tries to reach a 

new equilibrium under prolonged high energy waves. This discrepancy in conclusions means that 

individual or storm sequences at different sites generate different responses making storm response 

characterization still rather uncertain [e.g. Dolan and Davis, 1992; Mendoza et al., 2011; Splinter et al., 

2014a; Senechal et al., 2015]. 

Shoreline recovery from storms depends on the severity of the event(s) and on how far the 

sediment has been transported offshore [Corbella and Stretch, 2012]. With high frequency (daily) video 

data, post-storm recovery durations of 5 to 10 days have been reported by Ranasinghe et al. [2012] for the 

microtidal Palm, Australia and Duck, USA beaches, respectively. The recovery duration is yet to be 

investigated at high energy meso-to macrotidal beaches with such long term high frequency data though it 

has been postulated to be rapid [Senechal et al., 2015]. Based on few storms, Ba and Senechal [2013] 

observed at the apex of the storm weak retreat of the shoreline, while the recovery period is very short as 

the shoreline was back to its initial position only 2 days after the apex of the storm. Beach recovery from 
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storms is therefore still poorly understood and the study of issues relating to the shoreline response to 

storm recurrence or frequency are uncommon in the literature. 

Although it is widely accepted that the rate of shoreline change due to cross-shore sediment 

transport is mostly affected by the incident wave energy [e.g. Wright et al., 1987; Stockdon et al., 2002; 

Callaghan et al., 2008; Yates et al., 2009], the influence of tidal range and sandbar location cannot be 

overlooked. It has been observed that storm events, while capable of causing large short-term changes in 

the shoreline, do not singularly account for the overall observed change [Hansen and Barnard, 2010), and 

wave impact could be negligible with respect to the magnitude of the seasonal signal and the effect of the 

inter-annual signals [Pianca et al., 2015]. In macrotidal environments, tides are regarded as a primary 

factor in the control of the hydrodynamic and sedimentary processes of intertidal flats [Davis et al., 1972; 

Davis, 1985; Masselink and Short, 1993; Dissanayake et al., 2012]. The tidal range and its translation 

rate, determine the action of the waves upon the beach. There is field evidence for the tidal modulation 

(attenuation) of incident wave power by the tide [Davidson et al., 2008; Guedes et al., 2011] which 

eventually affects the shoreline. Zhang et al. [2002] observed that the combination of large waves with 

high water levels during five continuous high tides caused the largest recorded dune (upper beach) 

erosion from Long Island, New York, to Cape Hatteras. This suggests that the effect of tides actually 

depends on the part of beach (upper, intertidal or lower) being investigated. Banno and Kuriyama [2012] 

reported that although offshore wave energy fluxes affect the shoreline, the maximum and minimum tides 

also play key roles. Rosen [1977] observed that a decreasing tidal range results in long-term (~80 years) 

shoreline erosion on the microtidal Virginia Chesapeake Bay. Studies on microtidal beaches have shed 

further light onto the impact of tides on the shoreline [e.g. Shi et al., 2013; Wright et al., 1987]. However, 

the effect of tides on storm erosion at macrotidal sandy shorelines is relatively poorly investigated. 

Changes in sandbar location due to varying wave conditions have been widely documented [e.g. 

Wright and Short, 1984; Wright et al., 1985; Lippmann and Holman, 1990; Gallagher et al., 1998; 

Castelle et al., 2007a] where cross-shore sandbar locations appear correlated with the changing wave 

conditions and tides [Guedes et al., 2011]. Sandbars are observed to migrate toward an equilibrium 

location which is dependent on waves [Plant et al., 1999]. Bar decay can result in its inability to offer 

protection during consequent less intense storms leading to massive and unexpected coastal erosion 

[Castelle et al., 2007b; Walstra et al., 2012]. Alongshore variation in depth and cross-shore location of 

sandbars work as a forcing template for the inshore wave field that result in localized beach and dune 

erosion during storms [Thornton et al., 2007; Castelle et al., 2015]. At barred beaches with large tidal 

ranges, it is observed [e.g. Almar et al., 2010; Ba and Senechal, 2013] that both the sandbar and the tide 

modulate onshore wave breaking intensity and control morphological changes [Coco et al., 2005; Stokes 

et al., 2015]. Although shoreline and sandbar changes have been studied rather extensively [e.g. 
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Lippmann and Holman, 1990; Plant et al., 1999; Hansen and Barnard, 2010; van de Lageweg et al., 

2013], they have been studied mostly separately and the direct interactions between them are weakly 

identified, especially in meso- to macrotidal environments. The combined effect of tides and sandbar on 

short-term shoreline evolution is uncertain, particularly for storm impact and beach recovery duration. 

In order to address the above mentioned knowledge gaps, six years (2007-2012) of daily video 

observations at Biscarrosse, a barred meso-to-macrotidal beach, are analyzed. In Section 4.2.2 the study 

site and video methods used are described. Section 4.2.3 presents the results on the shoreline response to 

storms at time scales from days to years, with an emphasis on the influence of storm recurrence and the 

modulation played by tidal range and sandbar. The role of tide on shoreline response to storms and the 

importance of the frequency of recurrence of storms on shoreline resilience are discussed in Section 4.2.4. 

  

4.2.1 Methods 

4.2.2a. Field site 

 Biscarrosse beach, located in the SW France (Figure 4.1), is exposed to long and energetic waves 

originating mainly from the W-NW. The mean annual offshore significant wave height Hs is 1.4 m with 

an associated peak period Tp of 6.5 s. Waves show a seasonal variability [Butel et al., 2002]: during fall 

and winter seasons (November to March) mean Hs is 1.6 m with a Tp of 7.3 s, while during spring and 

summer (April to October) mean Hs is 1.1 m with a shorter Tp (6 s) [Butel et al., 2002]. The tidal range 

has an average value of 2.9 m which increases up to 5 m during spring tide. The average beach slope is 

about 0.03 while sediment at the site consists of fine to medium quartz sand with median-grain sizes 

ranging from 0.2 to 0.4 mm [Lafon et al., 2002].  

Biscarrosse is an open double-barred beach; the outer bar often exhibits crescentic patterns, while the 

inner-bar in the intertidal domain commonly exhibits a transverse bar and rip (TBR) morphology with a 

mean wavelength of about 400 m [Lafon et al., 2002; Castelle et al., 2007; Almar et al., 2010]. Based on 

three years of daily video images, Peron and Senechal [2011] also indicate that both up-state and down-

state transitions were dependent on the previous beach state and that no ‘direct jump’ from the reflective 

state to the dissipative beach state was observed. They also discussed the possibility that the presence of 

the subtidal bar probably explained the persistence of TBR states (mean residence time of about 24 days 

reaching maximum at 103 days), even during high energetic conditions as reported in other similar 

environments [Almar et al., 2010]. Using three years of video observations, Senechal et al. [2015] showed 

that the range of variation of the inner sandbar location (120 m) at Biscarrosse is two and half times larger 

than the range of variation of the shoreline and that rapid erosion of the shoreline can be observed under 

moderate conditions.  
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Figure 4.1. Location of the study site, Biscarrosse beach (SW France), showing the WW3 grid node 

(triangle) located at -1°30’ W, 44°30’ N and Candhis buoy (triangle) at 1°26.8’W, 44°39.15’ N and the 

video station. 

 

4.2.2b. Video data 

A shore-based video system [e.g. Lippmann and Holman, 1989, 1990; Holman et al., 1993; Plant 

and Holman, 1997] was installed at Biscarrosse beach in April, 2007 by EPOC laboratory 

(CNRS/University of Bordeaux) in collaboration with the New Zealand National Institute of Water and 

Atmosphere (NIWA) [see Almar et al., 2009; Senechal et al., 2015]. The video station contains five color 

cameras fixed atop the fore dune at 26 m above the mean sea level (MSL), though only four camera 

images (Figure 4.2a-d) were in good state during the present study observation period. The system 

provides three types of images every 15 minutes: snapshot, cross-shore time stacks and 10-min time 

exposure (or timex) images. A region covering beach area of 1200 m longshore and 400 m cross shore is 
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selected (Figures 4.2e and 4.2f). Images are merged and rectified on a 1 m x 1 m grid using conventional 

photogrammetric methods [Holland et al., 1997]. The transformation between oblique image and real-

world coordinates was achieved using 18 control points surveyed with a differential GPS (DGPS, 

centimetric accuracy). The origin (X=0, Y=0) of the local coordinate system is the camera location 

oriented along the beach cross-shore (X) and alongshore (Y) directions. Vertical Z=0 origin is Mean Sea 

Level (MLS). The mean pixel resolution at the shoreline location is about 0.1 m and 0.2 m in the 

alongshore and cross-shore direction, respectively, which worsens to 1-3 m at the viewfield edges. 

 

 

Figure 4.2. Illustration of cameras view fields from (a-d) oblique 10-min averaged images with manual 

delineation of e) shoreline (29 Sept. 2008) and f) inner-sandbar crest (15 June, 2007) on rectified, merged 

images. 

 

  Commonly used proxies for shoreline position are either based on visual assessment (e.g. the 

high water line) or datum-based proxies [see Boak and Turner, 2005; Moore et al., 2006]. Datum-based 

shorelines generally consist of the cross-shore position of a specified elevation contour, such as mean high 

water (MHW), the method chosen in this study. Shorelines derived from video have become increasingly 

common [Plant and Holman, 1997; Aarninkhof et al., 2003; Plant et al., 2007; Smit et al., 2007]. Different 

categories of images have been used to delineate shoreline with first methods based on gray images [Plant 

and Holman, 1997; Madsen and Plant, 2001] being the popular SLIM method, a typical approach where 

an intensity peak is used as a proxy for the location of the shoreline, and suitable for reflective beaches 

[Plant et al., 2007], followed by color (or both color and gray), a more sophisticated method [Turner et al., 
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2001; Aarninkhof et al., 2003; Almar et al., 2012] based on color segmentation, applicable to detecting the 

shoreline at both reflective and dissipative beaches. In this study, errors have been minimized with the 

manual delineation of the shoreline (Figure 4.2e) to ensure quality dataset. The days when images had bad 

quality (e.g. sun glint, fog) were discarded. At meso- to macrotidal barred beaches, it is difficult to select 

the elevation that best represents the overall intertidal complex morphology, as observed by Castelle et al. 

[2014]. Following this and to minimize their influence of the complex intertidal zone, shoreline location 

was defined here for elevations at 0.45 m ± 0.1 m above MSL (Figure 4.2) which corresponds to the 

lowest high tide level, commonly used through video imagery to get daily shoreline data at meso-

macrotidal beaches [e.g. Birrien et al., 2013; Senechal et al., 2015]. Due to the absence of a tide gauge at 

Biscarrosse, tide used here was extracted from tidal harmonics [WXtide software, Flater, 2010] with 

reference to the closest point at Arcachon (1°10 W, 44°40 N, Figure 4.1), about 30 km from Biscarrosse, 

after correction of the phase-lag. Overall, the video-derived shoreline dataset covers 1036 days in 6 years, 

which is 54.2% of the study period. 

 Timex images (Figure 4.2f) are used to average-out high-frequency intensity fluctuations due to 

individual waves and give a statistically stable pattern of the breaking [Lippmann and Holman, 1989; van 

Enckevort and Ruessink, 2001]. The high-intensity bands associated with breaking (see Figure 2f) are 

commonly used as a proxy for bar crest location [Lippmann and Holman, 1989; Pape and Ruessink, 2008; 

Almar et al., 2010; Guedes et al., 2011]. There is always a substantial error O (1-10 m) when locating the 

cross-shore position of the bar crests [van Enckevort and Ruessink, 2001]. This is mostly due to the 

translation of the breaking zone resulting from the changes in wave characteristics and tidal level 

[Lippmann and Holman, 1989; van Enckevort and Ruessink, 2001]. In order to reduce the differences 

between the detected and actual bar crest location, and to be consistent with previous methodologies [e.g. 

van de Lageweg et al., 2013; Senechal et al., 2015] images for which Hs> 2.5 m were discarded, also 

because breaking might occur continuously from the outer bar to the shore under such energetic 

conditions. Inner bar extraction was done at constant water level of 0.55 ± 0.1 m below MSL. The 

detection resulted in 411 daily alongshore-averaged cross-shore sandbar positions <Xb> or lines which is 

20% of the entire period. 

 

4.2.2c. Storms 

 

 Wave data have been retrieved from Wavewatch III model [Tolman, 1991] at the grid point facing 

the beach (1°30’W, 44°30’N, Figure 4.1) in about 70-m water depth, at a 3-hour interval over the study 

period (2007-2012). The significant wave height, Hs was further corrected via linear regression with a 
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directional wave buoy (1°26.8’W, 44°39.15’N) moored in 50-m water depth, following Castelle et al. 

[2014]. 

A pre-selection of extreme data needs to be done before proceeding to the analysis. In statistics an 

‘extreme event’ is defined as a sample (i.e. sea state) that is deviated significantly from the mean of its 

distribution function. In engineering studies, the most common parameter that is used to define whether a 

process is extreme or not is the wave height (Hs). In the extreme value theory, two methods are described 

to select the extreme values: (1) annual maxima method and (2) peaks over threshold method [Dorschet 

al., 2008]. The main drawback of the ’Annual Maxima method’ is that it only allows the selection of one 

value per year or event, that largely reduces the data series. In the present case the peaks over threshold 

method (POT) is used. The POT method assumes that once we have placed a threshold, all the items over 

this level are peaks and significant. Unfortunately, it has always been difficult to define a correct Hs 

threshold value that describes an energetic sea state due to site specific properties. An Hs value that is 

only exceeded by the 8-10% of the time is a commonly agreed criterion among scientists [e.g. Dorschet 

al., 2008; Rangel-Buitrago and Anfuso, 2011]. In the present work, only values with a probability of 

occurrence less than 5% are considered as storms which correspond to Hs of 3.68 m, also in line with 

Splinter et al. [2014a] and Castelle et al. [2015]. A single storm is thus defined as a continuous period of 

Hs exceeding this threshold (Figure 4.3) and lasting at least one tidal cycle (12 hours), following Senechal 

et al. [2015] approach. Storm intensity I (m
2
hr) is defined in several studies [e.g. Dolan and Davies, 1992; 

Karunarathna et al., 2014; Senechal et al., 2015] as the product of the maximum Hs by the storm duration 

in line with annual maxima method. Here I follows the definition by Mendoza et al. [2011] and POT 

method, and is computed as the integration of time-varying Hs over storm duration: 

𝐼 = ∫ 𝐻𝑠(𝑡)2𝑑𝑡

𝑡2

𝑡1

                                     (1) 

            

where the duration D is the time between the beginning t1 and the end t2 of the storm (Figure 4.3b). 

Initiation of a storm t1 was defined as the time when the three hourly-averaged Hs exceeded the 0.75 

quantile (1.9 m) to be consistent with Masselink et al. [2014]; the end of the storm t2 was the time when 

the three hourly-averaged Hs returned below 1.9 m. 

Storm impact Δ<Xs,i> is estimated as shoreline migration from the beginning to the end of each 

storm, equivalent to the end point rate method [Genz et al., 2007]. The shoreline migration from the 

beginning to the first maximum recovery value after each storm was assumed as the post-storm recovery  

Tr . Following Ranasinghe et al. [2012] where the post-storm beach recovery duration was estimated 

based on the beach states, their post-storm recovery duration is the time for the nearshore morphology to 
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evolve from a post-storm state (e.g. Dissipative/LBT) to its modal state (i.e. the most frequently occurring 

beach state e.g. RBB or TBR).  

 

 

Figure 4.3. Illustration of the method to pick a) storm characteristics, beginning and end of Hs above the 

threshold (Hs=3.8 m, 95% exceedance level, shown as horizontal line) and in b) the exceedance level 

where the 50, 95 and 99% levels are shown. Definition of storm events are site-specific [Masselink et al., 

2014], and the Hs thresholds used here were selected because they produced clearly identifiable storm 

events. 

 

The time taken to reach the first maximum recovery values after each storm was accepted as the 

recovery duration in this study but this could not be related to the beach states. The recovery duration 

refers to the post-storm period of continuous accretion towards its equilibrium pre-storm state (Tr).  Thus, 



  

83 
 

to obtain the over all recovery duration  in the six years, the time taken by the daily average post-storm 

evolution to reach the maximum recovery value was found.    

A multiple linear regression is used to investigate the role of 5 forcing parameters on Δ<Xs,i> and 

Tr: the current storm energy Ii, previous storm, time interval between storms, tide range TR and sandbar-

to-shoreline distance. The current storm is defined here as the last storm while the previous storm 

precedes the current storm.  

The previous storm influence is defined as the ratio of previous storm impact to the time interval 

(in days). 

𝑌 =  𝑐𝑜 + ∑ 𝐶𝑘

𝑛

1

𝑍𝑘 + 𝜀                                          (2) 

         

where Y the response variable, Z is the predictor or causative mechanism variable, n is the number of 

events (36 here), co and Ck are the non-standardized regression coefficients and ε is the residual term. 

Forcing terms are considered independent. The use of a linear regression for possible non-linear 

relationships between the various parameters is to identify the predominant parameters.  

The relative contribution P(Z) of each forcing parameter is estimated from the ratio of individual variance 

to the total: 

𝑃(𝑍) =  100√
𝑆𝑘

𝑆𝑌
 (𝑘 = 1, 2, … 5)                                 (3)  

where Sk is the variance of CkZk and SY is the sum of variances of Y components and k the number of 

dependent parameters.  

 

4.2.3. Results  

Figure 4.4a shows that wave regime has large seasonal variations, rather low and high energetic 

in summer and winter, respectively, with Hs ranging from less than 1 m to 9 m. Figure 4.4c shows that the 

alongshore-averaged shoreline location <Xs> also follows a seasonal cycle with most onshore (85 m) and 

offshore (150 m) position in winter and summer, respectively. In Figure 4.4d, the alongshore-averaged 

sandbar location <Xb> shows a large variability (range of 110 m), varying between 212 m to 322 m with 

outermost location in winter and a less marked seasonal cycle. On average, the sandbar-to-shoreline 

distance <Xb>-<Xs> is 162 m but can be larger (227 m) or shorter (102 m) during large (winter) and 

weak (summer) wave conditions, respectively.  
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4.2.3a. Characteristics of individual storms and morphological impact 

 

 60 storms were identified over the study period (Figure 4.5), though only 36 were further 

accounted for in our analyses due to gaps in video data. The mean peak storm wave height was 4.9 m (s.d. 

= 1.04 m) with the mean wave height throughout the storms duration being 4.5 m (s.d. = 0.8 m). The 

mean storm wave periods throughout all the storms was 12.15 s (s.d. = 2.16 s), and the mean storm 

duration was 33 hr (s.d. = 32 hr). 2011 recorded the lowest number of these extreme storms with 9 storms 

and most of them did not cause erosion and any substantial shoreline change (+ 3 m) for instance. The 

overall average interval between storms is 27 days (Table 4.1) with 60% recurring within 10 days, though 

this occurrence is observed to be predominantly seasonal: sparse in summer and frequent in winter 

(Figure 4.5). 

 

Figure 4.4. Time series of a) significant wave height Hs with storm periods (Hs >3.68 m are marked in 

red), b) tidal range TR c) alongshore-averaged shoreline location <Xs> and d) alongshore-averaged 

sandbar location <Xb>. For c) and d) distance is from the camera. Winter periods (November to March) 

are indicated in grey. 
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Seasonal analysis in Figure 4.6 indicates that storms are more frequent in winter months, while occurring 

almost throughout the year. In summer months, only a few and short storms (<6 hr) are observed and not 

met the requirement of a complete tidal cycle (see Section 4.2.2.c). It is also seen in Figure 4.6 that 

standard deviation of storm energy is large in winter, which can explain the variability observed in 

shoreline response. The largest number of storms and most extremes (Hs > 5 m, defined as the 99% 

percentile, Table 4.1) are observed in 2008 (24%), 2009 (20%) and 2010 (19%), which induced cumulated 

large erosion particularly in 2009 (Table 4.1). Individual storms result in a wide range of shoreline 

impacts (Table 4.1), from large erosion (-21 m) to even accretion (+14 m). The immediate cause of this is 

unknown, but sediment input from dune erosion constitutes a possible effect of the upper beach accretion 

[van Gent et al., 2008]. The mean storm impact on shoreline throughout all the storms is an erosion of 8.7 

m (s.d. = 8.9 m). 

 

Figure 4.5. Temporal evolution of the characteristics of storms a) Hs b) storm duration (hours) D and c) 

storm recurrence interval or return time (in days). Clusters of storms (or group of storms) are shaded. In c) 

the red horizontal indicates the threshold of 60% storms with approximately 10-day return period. 
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Table 4.1. Average storm characteristics from 2007-2012 of maximum Hs (m), percentage (%) of extreme 

storms (Hs > 5.0 m, 99% threshold), storm impact Δ<Xs,i> (m), storm duration (in days) and yearly 

average return period of storms (interval in days)  

 Storm 

number 

Hsmax 

(m) 

Hsmax>5m 

(%) 

Δ<Xs,i> 

(m) 

Duration 

(days) 

Interval 

(days) 

2007 7 4.7 11.1 -6.4 2.7 38.0 

2008 18 5.0 25.9 -8.0 3.4 16.0 

2009 15 5.0 25.9 -12.4 4.0 20.0 

2010 13 4.7 22.2 -6.5 2.5 23.2 

2011 9 4.8 3.7 3.0 2.7 39.5 

2012 11 4.5 11.1 -10.3 4.5 29.8 

mean 12 4.8 1.0 -7.0 3.3 27.0  

 

 

Figure 4.6. Monthly-averaged characteristics of a) shoreline <Xs> and sandbar locations <Xb> b) 

recurrence interval between storms and c) average storm energy I (m
2
hr) and number of storms per 

month. Shaded areas around lines indicate the monthly standard deviation. 
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4.2.3b. Modulation of storm impact and recovery by previous events, tides and sandbar 

 

 Storm impact on shoreline is often quantified separately from the influence of sandbar and tide, 

despite some recent attempts [e.g. Senechal et al., 2015; Stokes et al., 2015].  

 

Figure 4.7. Multiple linear regression analyze for Δ<Xs, i> (left) and Tr (right). Scatter plots in upper 

panels a) and b) stand for the comparison between observed variables and reconstructed. Lower panel c) 

and d) describe the percentage of reconstructed signal explained by each component. Errorbars show the 

95% confidence levels. Overall correlation coefficients r are indicate on the upper panels.  
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Here, the relative contribution of the current and previous storms, tide and sandbar, are investigated 

together through a multiple linear regression (described in Section 4.2.2.c). Overall, Figure 4.7a-b show 

that a good agreement is found between reconstructed and observed Δ<Xs, i> and Tr with regression 

coefficients equal to 0.74 and 0.69 (both significant at 95% level), respectively. Considering the level of 

noise of the variables, these results suggest a robust physical relationship. Figure 4.7c shows that storm 

impact depends predominantly (55%) on current storm energy. It is a common outcome that wave 

conditions dominate the shoreline response during storms [e.g. Yates et al., 2009; Davidson et al., 2013; 

Castelle et al., 2015], with large intensities (i.e. D and/or Hs) resulting in large impacts on shoreline, but 

here we show that previous conditions have a substantial role (37%) while modulation by tide and 

sandbar plays only a minor role (9% for tide and sandbar altogether).  

By contrast, during recovery (Figure 4.7d), these results almost reverse; while current and previous wave 

conditions have a secondary importance (15% and 13%, respectively), tide and sandbar contributions rise 

to 45 and 23%, respectively. This shows clearly the difference of behavior of the beach during energetic 

wave-dominated periods and fair weather complex recovery conditions. 

 

4.2.3c. Storm sequences  

 

Figure 4.8 shows an ensemble-averaged analysis of the evolution of sandbar and shoreline 

location during the post-storm recovery period. Note that the error of each alongshore digitised shoreline 

is approximately 9 m estimated for the individual image. To reduce this error data was alongshore 

averaged and used throughout this study in the analysis.  
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Figure 4.8. Ensemble-averaged evolution during post-storm recovery period for a) Hs, b) shoreline 

location <Xs> and c) sandbar location <Xb> from their location at the end of the storm. 

 

Note that even further averaging was done on the shoreline location over daily post-storm period to 

understand the post-storm recovery, diminishing this error. Figure 4.8b shows that while waves are 

decreasing, the shoreline continuously migrates offshore (3.7 m/day) before it reaches stabilization after 9 

days on average, which can be used as an estimate for the post-storm recovery duration Tr at Biscarrosse 

[following Ranasinghe et al., 2012)]. This post-storm recovery duration is different from the time interval 

between storms; whereas the interval between storms could comprise both accretion and erosion, Tr is 

purely continuours accretion. Interestingly, while the shoreline is observed to stabilize in 9 days, the 

sandbar continuously migrates onshore under persisting moderate wave conditions, indicating a longer 

recovery but also a post-storm onshore migration that is likely to end up with the bar welding to the upper 

beach under persistent calm conditions, in line with downstate beach transition schemes [Ranasinghe et 

al., 2004; Pape and Ruessink, 2008; Almar et al., 2010].  
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Figure 4.9. Schematic of a) storm clusters total energy, b) average impact and c) the number of storm 

events in each cluster 

 

Based on this recovery duration, storm clusters are defined as a group of storms in which storms 

recur within less than 10 days. 13 clusters are identified within the 6-year period with at least one per 

year. The overall impact of clusters on shoreline location ranges from no substantial change to 16 m of 

recession (Figure 4.9). The cluster with the largest number (Ns) of storms observed in Nov-Dec 2009 with 

a total energy of 7133 m
2
hr (Figure 4.9) resulted in 14 m erosion. However, a smaller cluster of 2 events 

with sum energy of 5573 m
2
hr resulted in 11 m shoreline retreat, as this cluster includes the longest storm 

lasting 12 days.  

Figure 4.10a shows the impact of ranked storms Δ<Xs,i> from one to five in the clusters. Note 

that the storm numbering here only depends on the occurrence sequence of the individual storms in the 

cluster, which means the first storm is not necessarily the most energetic. It appears clearly that storm 

impact within a cluster decreases with storm rank. The influence of previous storms and the importance of 

recurrence is discussed in the next section.  
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4.2.3d. Uncertainties on video-derived data 

 

Maybe more than other survey techniques (e.g. DGPS, LIDAR) used in coastal science, video 

measurements are subject to large uncertainties [Stanley and Holman, 2007]. In particular, the shoreline-

detection methods are sensitive to waves and lighting conditions. For instance, the SLIM method by Plant 

and Holman [1997] is sensitive to variations in water levels which can scale the effects of both setup and 

run-up, and fog can reduce the color signal strength [Aarninkhof et al., 2003]. However, the results of 

shoreline measured from video have been comparable to that of topographic surveys [Holman and Haller, 

2013] and the cause of differences has been extensively discussed in previous works [e.g. Aarninkhof et 

al., 2003; Plant et al., 2007; Almar et al., 2012]. In addition to the error related to image rectification 

estimated here at 1 m, an error of 0.5 m is added for shoreline identification equal to the pixel footprint. 

Due to the lack of information on the actual surf zone bathymetry, the main horizontal uncertainty, the 

wave-induced setup was estimated at 0.35𝛽√𝐻𝑠𝐿, with β the upper beach slope and L the offshore wave 

length, following Stockdon et al. [2006]. Aarninkhof et al. [2003] reported that such simplification 

introduces minor deviations in the wave-induced setup at the shoreline. The associated error on shoreline 

location is about 6 m considering the average beach slope (0.03), but ranges between 2 and 12 m. At 

complex submerged morphology beaches such as Biscarrosse, alongshore variations of wave-induced 

setup can be found [e.g. Apotsos et al., 2008; Bruneau et al., 2009]. In our study, this bias is substantially 

reduced because shoreline location is estimated out of stormy periods. Given the restraints listed above 

we estimate that the overall uncertainty on video-derived shoreline location is about 9 m. 

 The reason for choosing low tide to pick the sandbar location relates to the fact that waves barely 

break over the inner bar at high tides for intermediate to fair energetic conditions. Several studies have 

shown that surveyed sandbar crests and those extracted from timex video images are in good agreement 

[R
2
 ~ 0.8; Lippmann and Holman, 1989; Plant and Holman, 1998]. The accuracy also depends on the 

rectification error of 1-2 m and due to manual digitization and the pixel footprint of 2 m, tide- and wave-

induced artificial shift [van Enckevort and Ruessink, 2001; Pape and Ruessink, 2008; Almar et al., 2010] 

of 5-10 m. An aliasing rising from inner bar longest irregularities wavelengths, not necessarily covered by 

video viewfield, can arise and impact on alongshore averaged location [Almar et al., 2010]. On the whole, 

an accuracy limit of 15 m on the inner bar location can be considered as reasonable in our study, 

consistent to what was found at Truc Vert beach, 30-km distant [Almar et al., 2010]. 
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4.2.4. Discussion 

4.2.4a. Role of waves and tide on storm impact 

 

Results in Section 4.2.3b show that the influence of tide and sandbar during storms on the 

shoreline is weak, or even not substantial (8% in total, with correlation coefficient <0.1, not significant for 

tide and 0.2, significant at 95% level for sandbar), in comparison with storm intensity and previous storm. 

Though it has been observed elsewhere [e.g. Rosen, 1977; Davidson and Turner, 2009] that spring tides 

might enhance storm impact of the upper beach, it is hard to conclude with our dataset. It is noted that the 

shoreline proxy used in this study could have an impact on the contribution of the tides during storms. 

Similarly, the sandbar has only a limited influence on storm impact; the closer the sandbar is to the 

shoreline and the more the inner sandbar will be coupled to the shoreline and plays its sheltering effect, 

for example, by limiting incoming wave height [Masselink et al., 2006; Almar et al., 2010; Senechal et al., 

2015] by the breaking over the shallow crest. Given that this is a double bar beach, a coupling between 

the inner and outer sandbars could influence the effect of the innerbar on the shoreline. During post-storm 

period, Figure 4.7d shows that both tide and sandbar location affect substantially the recovery duration. 

The relative tidal range (RTR= TR /Hs) decreases and wave action becomes strongly controlled by tidal 

level and sandbar location, or most probably a combination of both. Under such moderate wave 

conditions, large tidal range will result in reducing the occurrence of surf-zone processes at the upper 

beach and thus increase recovery duration. It will also change the breaking intensity and occurrence over 

the bar which can have a direct consequence on the fine threshold between erosion/accretion and no 

change as observed by Almar et al. [2010]. Stokes et al. [2015] observed that at seasonal scale, the 

inclusion of tide (through a modulation of incoming wave energy) improves the prediction of shoreline 

change, and it is expected that it is even truer at short event time scales, in particular the post-storm 

relaxing time. 

 

4.2.4b. Importance of the frequency of recurrence of storms for shoreline resilience 

Our results point out the significance of the so called beach memory effect [e.g. Turki et al., 2012; 

Reeve et al., 2014] where shoreline response to events depends on the antecedent conditions [e.g. see 

Splinter et al., 2014a]. Noteworthy, in Section 4.2.3b the correlation coefficient between preceding storm 

influence and storm impact is negative (-0.35, significant at the 95% level), which means that the larger 

and closer is the previous storm, the weaker is erosion. If storm recurrence is long enough, individual 

storm impacts become independent as the beach has time to recover and reach its pre-storm equilibrium. 

If the interval is sufficiently short such as for storms in sequences in Section 4.2.3c, only the previous 

storm appears to have a destabilizing effect on the beach while the subsequent conditions decreasingly 
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impact the beach. This is consistent with Dissanayake et al. [2015] who found that the largest erosion was 

always observed for the first storm, because the beach has an insufficient time to recover before the 

successive storms. In sequences, the weaker impact of higher ranked storms is thought to be associated 

with the fact that the beach is evolving toward an energetic equilibrium state, this at the time-scale of a 

sequence of a few storms. Some studies [e.g. Lee et al., 1998; Ferreira, 2005] show that the damages due 

to several moderate storms can be comparable or even greater than a single storm of higher magnitude.  

 

 

Figure 4.10. Cluster of storms. a) Cumulative storm impact and b) number of storms taken into account as 

a function of their rank in the cluster. Circles and triangles in a) stand for average and individual values, 

respectively. In a) offshore direction is traced by more positive values. 

 

Our observations are in line with Coco et al. [2014] and Splinter et al. [2014a] who demonstrated 

that a sequence of storms does not necessarily result in cumulative erosion, though sequences of frequent 

event can affect slightly the resilience capacities [Dissanayake et al., 2015]. These results support the idea 

of a link between event time scale and seasonal evolution, and that the frequency of recurrence of storms 

and its change over time (e.g. seasonal, interannual, climate change) are of primary importance in 

assessing beach equilibrium and evolution. 
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4.2.5. Conclusions   

Six years of video-derived shoreline and sandbar locations were collected at the meso- to 

macrotidal barred beach of Biscarrosse, SW France. Over 60 individual storms (~15 storms per year) 

were identified using 5% exceedance for Hs (Hs>3.68 m) as the storm threshold. The average storm 

recurrence is 27 days with 60% of the storms recurring within 10 days. This large recurrence shows a 

strong seasonality in storm occurrence, also reflected in the shoreline and sandbar locations. 

Storm impact is predominantly influenced by the current storm (55%) but previous events also 

play a significant role (37%), while modulating parameters such as the sandbar-to-shoreline distance and 

tides play only a secondary role (8%). Antecedent stormy conditions were also observed to reduce current 

storm impact, likely explained by the adjustment of the beach to a more energetic state. 

With moderate wave energy during post-storm recovery, the influence of the tidal range and the 

sandbar increases (23 and 45%, respectively), with recovery duration increasing for larger tidal range and 

larger distance between the sandbar and the shoreline. These results argue in favor of integrating sandbar 

and tide effects in shoreline equilibrium models as proposed by Stokes et al. [2015], especially the way in 

which they influence the complex beach recovery process, which could substantially improve model 

performance at longer time scales. 

An ensemble average of storm recovery conditions shows that the beach recovers within 9 days, 

and therefore a storm cluster was defined as a group of storms in which the time interval between 

successive storms is less than 10 days. Within the 13 such identified storm clusters, the first storms 

resulted in the highest erosion. This is in agreement with equilibrium-based approaches where storms are 

less and less effective in eroding the beach as the beach progressively reaches a new equilibrium with the 

prevailing wave conditions. These results clearly suggest the existence of interactions between scales and 

illustrate the key role of the temporal evolution of not only the storm intensity but also their frequency of 

recurrence when considering in beach resilience. 
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CHAPTER FIVE 

Two- and three-dimension shoreline changes at short and 

seasonal scales. 

“........................If the facts don't fit  

the theory, change  

the facts..............” 

ALBERT EINSTEIN 
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Chapter 5: Two and three dimension shoreline changes at short and seasonal scales.  

5.1 Introduction  

5.2 (Article): Two and three-dimensional shoreline behaviour at a meso-macrotidal barred beach 

5.2.1 Introduction  

5.2.2 Data and methods 
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5.2.2.c Video derived shoreline and sandbar 
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5.2.3.b Separating 2D and 3D dynamics through EOF 
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5.1 Introduction 

Although it is recognised that as a result of climate change, ongoing investment and population growth in 

the coastal zone, the risks posed by short- to medium-term storm patterns, long-term climatic variability 

and sea-level rise on shoreline change are hypothesized to increase drastically, shoreline evolution has 

often been analysed on the seasonal or long-term scales because field data collection at the event scale or 

higher frequency is difficult. It is anxious that to mitigate the impact of future climate change, one first 

requires accurate predictions of shoreline evolution from the timescales of hours (storm) to years/decades, 

including seasonal cycles. Indeed, deciphering the respective contribution of the different forcings (e.g. 

wave characteristics, tide, offshore morphology) to shoreline change is paramount to the design and 

implementation of integrated coastal zone management strategies.  

In this chapter, we describe 2D and 3D shoreline change at Biscarrosse beach. In addition, we assess 

statistical and empirical equilibrium models to hindcast shoreline change. In particular, we include the 

role of tide and sandbar in the equilibrium shoreline model, which was previously driven by wave energy 

only. Finally, the limitations of the Biscarrosse dataset and recommendations for applying this type of 

equilibrium model are discussed.  

5.2. (ARTICLE): TWO AND THREE-DIMENSIONAL SHORELINE BEHAVIOUR AT A MESO-

MACROTIDAL BARRED BEACH (in preparation) 

DONATUS BAPENTIRE ANGNUURENG*
1
, RAFAEL ALMAR

2
, NADIA SENECHAL

1
, BRUNO 

CASTELLE
1
, KWASI APPEANING ADDO

3
, VINCENT MARIEU

1
, ROSHANKA RANASINGHE

4, 

5, 6 
 

1. EPOC (University of Bordeaux/CNRS), Bordeaux, France.  

2. LEGOS (University of Toulouse/CNRS/IRD/CNES), Toulouse, France.  

3. MAFS/Remote Sensing Laboratory, University of Ghana, P. O. Box LG 99, Accra, Ghana. 

4. UNESCO-IHE, Delft, The Netherlands. 

5. Harbour, Coastal and Offshore engineering, Deltares, Delft, The Netherlands. 

6. Research School of Earth Sciences, The Australian National University, Canberra, 

Australia. 

 

 



  

98 
 

Abstract                                                                                                                                                             

The present work investigates cross-shore shoreline migration as well as its alongshore variability 

(deformation) on timescales of days to years using 6 years of time-averaged images. At the meso-to 

macro-tidal barred beach of Biscarrosse, the data show that shoreline variability is dominated (52%) by 

seasonal frequency (summer/winter modulation of waves). Our findings show the importance of short-

term events with 28% of shoreline variability. Whereas previously observed seasonal evolution is 

dominated by wave climate modulation, we found that short-term storm-driven evolution is influenced by 

tidal range and surf-zone sandbar characteristics. This is even more the case for the alongshore 

deformation of the shoreline which is dominated by short-term evolution. An EOF analysis reveals that 

the first mode of shoreline change is associated with cross-shore migration and explains 58% of the 

shoreline variability. The second mode that was associated to deformation including data noise explains 

42% of shoreline variability. Correlation analysis was used to further evaluate the linear relationship 

between each of 2D/3D shoreline variability and the spatio-temporal eigenfunctions, associated with 

individual modes.  

Keywords: video imagery, shoreline change, event scale, seasonal evolution, sandbar, tide, Biscarrosse 

beach, Aquitaine Coast, EOF 

5.2.1 Introduction 

Understanding and further predicting shoreline evolution is of primary interest for coastal scientists and 

engineers [Ranasinghe and Stive, 2009]. Sandy beach morphodynamics is mostly controlled by 

geological (e.g. headland, sediment size) and hydrodynamic (e.g. waves, tide) settings [Stive et al., 2002]. 

Shoreline position can be defined through a wide range of proxies [see Boak and Turner, 2005], with 

shoreline dynamics being sensitive to the proxy used [Harley et al., 2011; Castelle et al., 2014]. For 

example, the upper dry beach is more impacted by extreme events than the lower beach which dynamics 

is generally smoother and influenced by intertidal features such as sandbars. Shoreline changes include 

variations in both the cross-shore (migration) and alongshore (including deformation) directions. It has 

been known for a long time that shoreline tends to slowly migrate seaward for low- to moderate-energy 

waves, including post-storm conditions, while shoreline migrates shoreward rapidly during severe storms 

[Yates et al., 2009; Splinter et al., 2014a]. These accretive and erosive sequences are generally associated 

with an increase in surf-zone sandbar three-dimensionality that is sometimes mirrored at the shoreline 

[Wright and Short, 1984].  

From observation and modelling efforts, several studies [e.g. Yates et al., 2009; Hansen and Barnard, 

2010; Splinter et al., 2013; Splinter et al., 2014b] showed that intermediate beaches respond 
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predominantly at seasonal timescales rather than to individual events, with the seasonal modulation of 

waves being the primary driver. In the meantime, over the past two decades video imagery [e.g. Argus, 

Holland et al., 1997; Holman and Haller, 2013] has been successful in monitoring continuously (daily) 

the long-term shoreline [e.g. Plant et al., 2007; Pianca et al., 2015] and sandbar [e.g. Lipmann and 

Holman, 1989; Van Enckevort, 2003] behaviour. One disadvantage of video system is that the data is 

remotely sensed, which therefore involves errors that are essentially controlled by the camera station set-

up (e.g. resolution, height, implementation rectification method). Nonetheless, video monitoring provide 

insight into short- to long-term beach change, which can potentially be used to drive mathematical and 

numerical models to further predict shoreline positions. Video monitoring is therefore used herein to 

address shoreline change on the timescales from days (storms) to years. 

Historically, 2D behaviour has been quantified by statistical methods including spectral and empirical 

orthogonal function (EOF) methods [see Rihouey and Maron, 2003; Miller and Dean, 2007a, 2007b; 

Stokes et al., 2013; Lemke et al., 2014]. The EOF method has commonly been used to describe shoreline 

spatio-temporal variability, especially on embayed or pocket beaches and constrained environments [e.g. 

close to breakwaters, Fairley et al., 2009; and river mouths, Pradjoko et al., 2010; Blossier et al., 2015] 

and in the vicinity of groins [Lemke et al., 2014]. Intermediate open sandy beaches often exhibit natural 

alongshore variability owing to the presence of rip channels. EOF modes have been used regularly to 

identify cross-shore profile variability but much less frequently to assess longshore variability. The 

relation that these EOF modes have with cross-shore averaged shoreline locations (2D) and their 

deviations (3D) has not been studied in detail. Although EOF eigenfunctions are purely mathematical in 

nature they can unravel physical interpretations [Winant et al., 1975; Winant and Aubrey, 1976]. Stokes 

et al. [2013] analysed morphodynamic changes through EOF and showed that the second most dominant 

mode of EOF involves the development of a periodic low-tide rip channel accompanied by a steepening 

of the beach and an increase in 3D structure. The authors also indicated that 40% of the beach variability 

was discarded as noise with respect to the EOF analysis. 

At barred beaches in meso-macrotidal environments; shoreline response is driven by the combined effect 

of sandbar and tide modulation of incoming wave energy [Masselink and Short, 1993]. In addition, 3D 

shoreline behaviour is sometimes linked to that of the offshore sandbar(s). When rip currents flow 

through the bay sections of crescentic sandbar it could locally erode the beach [Sonu, 1968; Van de 

Lageweg et al. 2013]. In large tidal-range environments, tide has been shown to influence the 

development of 3D features in the shoreline [Stokes et al., 2015], which is further addressed here.  
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The present paper aims at improving our understanding of shoreline change at the double barred meso-

macrotidal beach of Biscarrosse. First 2D/3D shoreline data are described through EOF modes and the 

influence of tide and sandbar on shoreline evolution on short timescales (days) is further addressed.  

5.2.2. Data and methods 

5.2.2.a Study area 

Biscarrosse beach is located in SW France (Figure 5.1), and is exposed to long and energetic waves 

originating mainly from the W-NW (yearly-averaged significant wave height, Hs = 1.4 m and the mean 

peak wave period Tp= 6.5 s). Waves reaching the Aquitanian coast are generated by W-E tracking 

subpolar deep low pressure systems over the North Atlantic Ocean. They are therefore, strongly 

seasonally modulated [Butel et al., 2002], with longer and more energetic waves in winter (November -

March) and less energetic waves in summer (April – October). This meso-macro tide is semidiurnal with 

highest astronomical and mean neap tidal ranges of 5 m and 2.9 m, respectively. 

Figure 5.1b represents the general bathymetry of Biscarrosse (Figure 5.1a) which shows the presence of 

inner sandbar between 200 and 400 m (Figure 5.1b) and the outer sandbar around 700 m from the 

shoreline, measured during the Biscarrosse field experiment in June, 2007 [Bruneau et al., 2009]. 

Biscarrosse is therefore an open double-barred beach; the outer bar often exhibits crescentic patterns, 

while the inner-bar in the intertidal domain commonly exhibits a transverse bar and rip (TBR) 

morphology with a mean wavelength of about 400 m [Lafon et al., 2002; Castelle et al., 2007b; Almar et 

al., 2010]. Peron and Senechal [2011] also indicate that both up-state and down-state transitions were 

dependent on the previous beach state and that no ‘direct jump’ from the reflective state to the dissipative 

beach state was observed. The average beach slope is about 0.03 while sediment at the site consists of fine 

to medium quartz sand with median-grain sizes ranging from 0.2 to 0.4 mm [Lafon et al., 2002]. 

5.2.2.b Offshore hydrodynamic forcing 

The wave data are obtained from the Wavewatch III model [Tolman, 1991] over the 2007-2012 period in 

about 70-m depth every 3 hours at the grid point -1°30’ W, 44°30’ N facing the beach (location of the 

WW3 grid point is shown in Figure 5.1). Wave height was corrected via a linear regression fit with in situ 

data from a directional wave buoy (1°26.8’W, 44°39.15’ N, Figure 5.1) moored at 54-m water depth 

[Castelle et al., 2014].  
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Figure 5.1. (a) Location of Biscarrosse beach (SW France), with WW3 buoy located at -1°30’ W, 44°30’ 

N and Candhis buoy (at 1°26.8’W, 44°39.15’ N) and video station (yellow dot on the beach). (b) 

Alongshore-averaged beach profile of Biscarrosse beach measured in June, 2007. The horizontal line is 

the selected water level for shoreline proxy (2.7 m above the lowest astronomical tide, i.e. 0.45 m above 

mean sea level). 

5.2.2.c Video-derived shoreline and sandbar 

A shore-based video system was installed at Biscarrosse beach in April, 2007 by Environments and 

Paleoenvironments Oceanic and Continental (EPOC) laboratory in collaboration with the New Zealand 

National Institute of Water and Atmosphere (NIWA). The video station comprises five colour cameras 
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fixed atop the fore dune at 26 m above mean sea level (MSL), but only four cameras worked over the 

study period (Figure 5.2 a-d). The system provides three types of images every 15 min: instant, cross-

shore time stacks and 10-min time exposure images which are here used for shoreline detection. The 

images are merged (Figure 5.2e and f) and rectified on a 1 m x 1 m local grid using a direct linear 

transformation. The local grid origin is the camera location and the coordinate system is oriented in the 

cross-shore and alongshore directions. In the shoreline area, in front of the video cameras, pixel resolution 

is about 0.1 m and 0.2 m in the alongshore and cross-shore direction, respectively, and worsens to about 1 

m and 3 m at the alongshore ends of the view field. Shoreline extraction from the video is now a common 

practice in coastal engineering and research studies [e.g. Ranasinghe et al., 2004; Aarninkhof et al., 2003; 

Smit et al., 2007]. Shoreline position is here defined as the intersection of the beach profile with a given 

tidal datum. In this study, the chosen datum is 0.45 m ±0.1 m above mean sea level, corresponding to the 

lowest high tide level to be consistent with Senechal et al. [2015]. This datum was chosen to insure the 

collection of daily shoreline data.  

In addition to the error margins related to image rectification, estimated close to 2 m, an error margin of 

approximately 0.3 m is added for shoreline digitization. Shoreline delineation is performed visually by a 

human operator to ensure quality dataset. The wave-induced set-up is an additional factor influencing the 

short-term (at the scale of a storm) nearshore water level that could result in a significant error. The 

assessment of this impact was made by the use of a simple setup formula (0.35𝛽√𝐻𝑠𝐿 , 𝛽 being upper 

beach slope) following Stockdon et al. [2006] and Senechal et al. (2015). The error in wave-setup induced 

cross-shore shift of the shoreline ranges from 2 m to 12 m, with an average estimated to 6 m. This 

uncertainty increases when longshore variations of setup are large owing to large waves breaking across 

alongshore variable offshore sandbar(s). In addition, the horizontal error due to tide elevation estimation 

obtained ranges from 0 to 5 m with an average of 0.3 m. In total, accounting for error on manually 

detected shoreline location from video images is about ±9 m. Secondly we estimated the error that could 

result from digitising sandbar location. Basically, the crest location of maximum wave dissipation is 

influenced by the water level, degree of wave breaking, digitisation and rectification. An average error of 

±16 m was obtained. Shoreline (Xs, in Figure 5.2f) and sandbar (Xb, Figure 5.2e) manual delineation 

procedure and shoreline uncertainties are extensively described in Angnuureng et al., in revision with 

Geomorphology. 
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Figure 5.2. Illustration of camera arrangements on field (a-d) and merged 10-min averaged image with 

manual delineation of e) inner-sandbar crest (15 June, 2007) and f) shoreline (29 Sept. 2008) as black 

solid lines. 

5.2.2.d Data processing 

The alongshore-averaged cross-shore shoreline location (2D, <Xs>) is estimated by averaging the 

shoreline positions (Xs) alongshore. The shoreline alongshore non-uniformity (3D, σ(Xs)) that accounts for 

the development of irregularities such as cuspate patterns is estimated through the alongshore standard 

deviation of the shoreline σ (Xs). The spatial extent of all shorelines is 600 m in the alongshore and 150 m 

in the cross-shore direction. The 6-year long time series of shoreline position ensures a relevant 

assessment of shoreline dynamics. The shoreline time series is separated into three different temporal 

scales; the event (daily, 1 day- a month), seasonal (monthly, 1- 3 months) and interannual (yearly, 12 

months and above) scales. For example, daily data are built by removing the neighbouring 30-day point 

average to daily values. To determine the dominant scales affecting beach variability, the relative 

contribution Cj(X) of these components to the total shoreline variability is computed as the ratio, in 

percentage, of the shoreline variance at each scale to the total variance (SY) Eq. (5.1):  

Cj(X) = 100* √
𝑆𝑗

𝑆𝑌
 (j=1, 2, 3)          (5.1) 
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where Sj is the variance (square of the standard deviation) of daily, seasonal or interannual shoreline data 

and SY is the sum of these variances. 

 

In this paper, EOF analysis is implemented to obtain the uniform and non-uniform components of daily 

shoreline data. The EOF analysis is then applied to decompose the spatio-temporal dataset into spatial 

eigenfunctions ek(x), corresponding eigenvalues and associated temporal coefficients ck(t) following 

Miller and Dean [2007a] and Lemke et al. [2014] as given by Eq. (5.2). 

y(x,t)= ∑ 𝑎𝑘e
k
(x)c

k
(t)                                  (5.2)

n

k=1

 

where y(x, t) is the shoreline spatio-temporal matrix and n = 1036 is the number of shoreline 

observations; ek(x) and ck(t) are the spatial and temporal eigenfunctions, respectively. ak = √𝜆𝑘𝑛𝑥𝑛𝑡 with 

λk the eigenvalue associated with the k
th 

eigenfunction. In the presence of sampling variability an 

ambiguity exists whenever EOFs are not well separated. The degree of separation required for uniqueness 

of the EOF modes depends upon the effective number of the degrees of freedom in the input data, N*, 

which is equivalent to the number of independent data points in the input time series. To determine the 

number of EOFs to use, North et al. [1982] gave a rule of thumb relating the error in eigenvalues to the 

intervals between them. Larger intervals mean lower errors between EOFs. Indeed, if the sampling error, 

∆𝜆 =  𝜆 (
2

𝑁∗
)

1/2
 is equal or greater than the spacing between neighbouring eigenvalues, then the errors of 

the associated EOFs are comparable. Determining N* is difficult because the number of degrees of 

freedom in geophysical time series is difficult to estimate reliably, but space averaging can increase the 

effective number of independent samples and the sampling error [Leith, 1973]. N* was defined as N* = 

Y(
1−𝑟𝑎𝑢𝑡𝑜

2

1+ 𝑟2
𝑎𝑢𝑡𝑜

), which depends on the spatial length, Y and rauto, the commulative spatial autocorrelation 

divided by n (1036). Th sampling error limits the number of EOFs that can be considered significant for 

reconstruction of the input data. Based on these criteria, a normalized eigenvalue spectrum (not shown) of 

shoreline position revealed that only two modes can be considered (i.e. one significant and rest 

indistinguishable) to the contribution of the shoreline variability.  

In contrast to Stokes et al. [2013] who use EOF to disentangle and quantify the dominant modes of 

change occurring at monthly to seasonal time scales, therefore discarding the degenerate EOFs as noise, 

this study assumes that these higher or degenerate EOFs may contribute to short term longshore 

variability. We already admitted the data noisiness in the shoreline retrieval which should be applied in 

the results. 
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5.2.3. Results  

Figure 5.3 shows that waves and morphological parameters follow large seasonal variations as previously 

reported by Castelle et al., [2014] from bimonthly beach surveys. To eliminate any shoreline data outliers, 

standard z-score approach was used. This approach is used to check also how noisy the digitized data is. 

From the first to the last year, Figure 5.3 shows that maximum summer shoreline position gradually 

advances seaward (at an average rate of 1.497 m/yr from August 2007 to August 2012) suggesting an 

overall slow accretion over the study period. This is in line with observation in Castelle et al. [2014] at 

Truc Vert beach (80 km distant) who show a 4-yr accretion trend between 2010 and 2012. The 

contribution of short, seasonal and interannual scales of shoreline evolution to the total 2D (3D) 

variability were estimated at 28 (32), 52(49) and 20(19), respectively (see method section).  

5.2.3.a Shoreline changes at daily and seasonal scales 

Before daily shoreline change estimation, specious (outliers) data identified through z-score were 

eliminated. At the daily scale, the average absolute 2D shoreline migration rate is 2.03 m/day (Table 5.1), 

with a maximum erosion of 11.86 m/day (24-September-2010) while maximum daily accretion observed 

is 15.8 m/day (23-June-2007). In the former case, all wave height conditions for this day (averaged Hs = 

2.12 m) were above the study data average (~1.7 m), though there were incidence (shoreline orientation 

of about 8.5° N) of short period waves (average Tp = 7.4 s; ø = 288°). In the latter case of accretion, wave 

conditions were moderate but wave periods remained low (Hs = 2.05 m; Tp = 8.2 s) with a much wider 

wave incidence angle (ø= 291.6°).  

The extent of 3D features also varies at an average rate of 1 m/day, and the maximum value is observed in 

summer with about 5 m/day (on 1
st
 Sept. 2012). This maximum change in daily 3D shoreline is associated 

to the wave conditions. 3D changes maybe linked to ‘potentially erosive’ wave conditions [Senechal et 

al., 2015] because one month prior to 1/09/2012 data shows Hs were comparable, however, two weeks 

prior to 1/09/2012, wave height average from 16-30 August, 2012 was 1.47 m which then decreased 

rapidly to 1.13 m on 1/09/2012 with all wave conditions becoming weaker.  

The results in Table 5.1 suggest that daily shoreline variations may be weak in winter periods when the 

beach is close to an alongshore-uniform dissipative state. In general, the link between daily Hs and daily 

shoreline position is found to be weak, (r ~ 0.35 at zero lag, significant at the 95% level) for both 2D and 

3D components. Wave direction shows the lowest link (r~0) with 3D development just as Tp seems to 

have no influence (r ~ 0.1, significant at the 95% level) with 2D. These results underline that daily 

shoreline evolution is complex and influenced by other drivers such as tide and the presence of the 
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sandbar, as previously observed in Angnuureng et al., in revision with Geomorphology. It is interesting to 

notice that 2D and 3D changes are weakly linked (r~0.20) at daily scale, which suggests they can be 

treated separately. Nonetheless, it is important to acknowledge that the shoreline dataset is noisy and, 

accordingly, that shoreline change on short timescales is to some extent distorted. 

 

Figure 5.3. Daily wave and video time series from April, 2007 to Dec., 2012; a) Hs, b) Tp, c) Dir normal 

to the beach, d) 3D or σ<X> (in black dots) e) Tide range TR, f) <X> or 2D in dots. Seasonal signals are 

shown by solid thick red lines on all the subplots.  

Shoreline average seasonal 2D variations (Figure 5.3, Table 5.1) can show large amplitude with a wide 

beach in summer and fall months (+10 m from average location of 105.5 m) while the narrowest beach is 

observed in spring and winter (-7 m from the average, see Table 5.1). This is associated with a typical 

large accretion during the spring months (+7 m/month) and a moderate erosion (-4 m/month) during the 

fall months. On the other hand, the 3D values are the largest (9 m) in spring and summer months in 
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consistence with Senechal et al. (2015). At the seasonal scale, the influence of Hs on 2D and 3D changes 

is moderate (r~ 0.3), Table 5.2. 

 

Table 5.1. Alongshore uniform, 2D (<X>) and alongshore non-uniform, 3D (σ(X)) shoreline statistics at 

the daily and monthly scales relative to the mean shoreline location (105.5 m) averaged for DJF: winter, 

MAM: spring, JJA: summer, and SON: fall.  

 

Table 5.2. Correlation r at zero lags between wave parameters and 2D/3D data averaged over daily and 

monthly values, for daily and seasonal periods as indicated.  

 Daily correlations Seasonal correlations  

 2D 3D  2D 3D 

Hs (m) -0.28 -0.35 -0.27 -0.32 

Tp (s) -0.07 -0.10 -0.35 -0.25 

Dir (/°) -0.13 -0.08 0.06  0.21 

 

5.2.3.b Separating 2D and 3D dynamics through EOF 

On most of the images, the shoreline was available between -300 m and 300 m in the alongshore 

direction. Thus, to limit data discrepancies the EOF was implemented on this section only. The first 4 

EOF components explain over 91% of the total shoreline variability distributed as 58.3, 15.6, 11.3 and 6 

Daily scale  2D (m) Absolute Δ (2D) 

 (m/day) 

3D 

(m) 

Absolute Δ(3D) 

 (m/day) 

Winter (Dec.- Feb) -7 1.8 6.5 0.0 

Spring (Mar. – May) -10 2.3 8.6 1.0 

Summer (Jun. – Aug.) +6 2.6 9.6 1.5 

Fall (Sep. – Nov.) +11 2.8 8.3 1.0 

Monthly scale  2D 

(m) 

Absolute Δ(2D) 

 (m/month) 

3D 

(m) 

Absolute Δ(3D) 

(m/month) 

Winter (Dec. - Feb.) -11 6.0 6.0 3.0 

Spring (Mar. – May) -7 13.0 8.6 5.0 

Summer (Jun. – Aug.) +4 11.0 9.6 4.6 

Fall (Sep. – Nov.) +10 10.0 8.0 3.0 
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% respectively. Based on the method described in Section 5.2.2, the degrees of freedom N* is 9 while the 

spacing between neighbouring eigenvalues Δλ is found to be larger than the difference between 

eigenvalues of the second and higher EOFs. This means only one distinct eigenvalue (i.e. the first) is 

significant while the others are indistinguishable and must be treated as one in contrast to Stoke et al. 

[2013] where higher modes were discarded. Thus only the first and combined EOF modes are analysed 

below. The coefficients of cross-correlation between the first and second temporal EOF functions and the 

2D and 3D time series that were estimated are given in Table 5.3.  

Table 5.3. Daily correlation between reconstructed shorelines of the first and second EOF functions with 

<Xs> and σ(Xs). ΔXy and δXy are the cross-shore averaged and deviations at each alonghshore position, 

while <Xs> and σ(Xs) are the alongshore averaged cross shore data. ek(x) and ck(t) are the spatial and the 

temporal EOF functions, respectively.  

Spatial ΔXy δXy 

e1(x) 0.69 0.80 

e2(x) -0.16 -0.32 

Temporal <Xs> σ (Xs) 

c1(t) 0.85 0.44 

c2(t) -0.32 -0.30 

 

The strongest correlation (r∼0.85) is obtained between the first temporal mode c1(t) and 2D data which is 

not the case for c2(t) (r~ -0.3) and 2D, that is preferentially linked to σ (Xs) data. Intuitively, due to the 

prevailing link between c2(t) and temporal σ (Xs) contribution of temporal mode 2, poor correlation is 

observed between c2(t) and the alongshore-averaged shoreline (2D). In table 5.3, the second EOF function 

shows opposite signs in the spatial eigenfunctions, indicating a deformation of the shoreline: extrema 

identify areas of maximum variability, while nodal points indicate stability [see also Miller and Dean, 

2007a]. On Figure 5.4, the temporal and spatial modes as well as the 2D/3D shorelines are compared. 

Generally, e2(x) shows fluctuations at length L~300 m, nodes and antinodes, between negative and 

positive values (Figure 5.4d) standing for beach stability and deformations; the e2(x) spatial mode is 

around zero which is not the case in e1(x), Figure 5.4b confirms the close link between the second EOF 

mode and the dynamics of the σ(Xs) data. In Figure 5.4b of e1(x), there is no node or antinode, which 

indicates an overall migration of the shoreline at all locations, similarly with ΔXy spatial pattern, 

representing an overall alongshore-uniform migration (i.e. same sign at all longhsore locations).  
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In Figure 5.4a, it can be seen that the c1(t) and <Xs> timeseries have a predominant seasonal evolution. In 

contrast, the second temporal function, c2(t) and σ(Xs) timeseries (Figure 5.4c) are more affected by 

events, which can be attributed to non-uniformities development/destruction and longshore migration of 

these features. Even though Figure 5.4c shows no scale of c2(t) variability, variation in its associated σ(Xs) 

is averagely longer than the first temporal function. The temporal variability of mode one is dominated by 

the presence of a 4 to 6 month oscillation, while in mode two both long (> a year) and short (<3 months) 

signals are evident.  

At this study area, the inner bar in the intertidal domain commonly exhibits a TBR morphology with a 

mean alongshore averaged wavelength of about 300-400 m [Lafon et al., 2002], with up- and down-state 

sequences assicated with changes of the alongshore deformation of the shoreline. Changes at -50 < Y < 

100 in Figure 5.4b suggest the influence of rip channels, however, this goes against the fact that rip 

channels migrate downdrift with no prefered spatial occurrence over the years.  

 

Figure 5.4. EOFs (a) First temporal eigenfunction (c1(t), black) of shoreline variability compared to <Xs> 

(red line); (b) first spatial functions (e1(x), thin black line) compared to ΔXy (thick red); (c) second 

temporal eigenfunction (c2(t), black) compared to σ (Xs) (red) and, (d) second spatial function (e2(x) , thin 

black line) compared to cross shore standard deviations (δXy, thick red). The thick line represents the zero 

crossing line that will signal deformation or migration. Though only the shoreline location is used, the 

complex shoreline evolution can be reduced to EOF modes 1 and 2 to describe the <Xs> and σ (Xs) data.  
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5.2.3.c Testing the effect of tides and sandbar 

Initially, Angnuureng et al. [in revision with Geomorphology], showed that during storms tidal range and 

sandbar characteristics play a negligible role on shoreline response, but with a more important role on 

beach recovery. Figure 5.5 represents the relation between daily tide range, daily waves (Hs) and 

shoreline changes for winter, spring, summer, and fall seasons. The colour bar represents the daily tide 

range. Results suggest that large tide range (red) is associated with more pronounced shoreline change 

(erosion or accretion) than small tide range.  

 

Figure 5.5. Daily changes in shoreline (Δ<Xs>) in relation to wave height and tide (color bar) range 

during each of the four seasons; a) winter (DJF), b) spring (MAM), c) summer (JJA) and fall (SON).  

Coco et al. [2014] stated that the extreme Hs coinciding with spring tide (low tide range, TR) leads to the 

largest measured erosive events, which is what we observed here. In contrast, Davidson and Turner 

[2009] showed that a rise in TR can cause the sandbar to decrease in height thus reducing the impact on 

shoreline erosion. In spring and summer, the data shows that correlations between seasonal daily TR and 

shoreline changes in these seasons were insignificant (r
2
 ~ 0, p > 5%). However, winter and fall recorded 

significant correlation between TR, Hs and shoreline changes (r
2
 ~ 0.2; p = 0). This study supports the 

idea that tides can modulate the wave power [Davidson et al., 2008] to cause shoreline changes, but also 
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shows tide may not be efficient all year round. We tested the effect of the wave period Tp through the 

linear cross correlation but it showed no impact. 

 

Figure 5.6. Daily changes in shoreline (Δ<Xs>) in relation to wave height and sandbar (color bar: lower 

values on color bar are much closer to the shoreline) location during each of the four seasons; a) winter 

(DJF), b) spring (MAM), c) summer (JJA) and fall (SON). e) Schematic of full video covered alongshore 

sandbar and shoreline: the cross shore average of shoreline locations and sandbar locations.  

The same analysis was performed for sandbar location (Figure 5.6). It can be seen on Figure 5.6a that 

much of shoreline varioability is observed when the sandbar is close to the shoreline (blue colour) while 
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when the sand bar is far from the shoreline (red color), shoreline change is weaker. Figure 5.6 also shows 

that summer and fall seasons show the largest variations. This is probably due to the fact that sandbars are 

closer to the shore during summer and move offshore during winter season. However, we do not have 

data on the sandbar amplitude and width. By linear correlation of the cross shore average shoreline and 

sandbar location, to understand further coupling links, data show that on an alongshore distance of 1200 

m (full length of study area, Figure 5.6e), sandbar (<Xb>) is negatively correlated (r= -0.4, significant at 

95% CI, p = 0) with the shoreline, suggesting that erosive shoreline features face more offshore (deeper) 

sections of the inner bar, in line with Sonu [1973].  

5.2.4. Discussion 

We showed that Biscarrosse beach is a dynamic beach with varying morphological behaviours evident at 

a variety of time and space scales. The data shows that seasonal scale is dominant in line with what has 

been previously reported by Castelle et al. [2014] who showed that the SW France beaches respond 

predominantly at seasonal timescales to wave modulation. Shoreline change that occurs over a few tens of 

years or less and that may be in the opposite direction of the long-term trend is difficult to understand and 

predict. Here, shoreline change due to daily events was observed, with short-term events that account for 

about 28% of shoreline variability. This percentage also encompasses a large amount of data noisiness 

because of large errors (~15 m) in the shoreline detection method. Data shows short-term shoreline 

changes can be quite variable alongshore. For example, the beach is advancing between -100 <Y< 180 m 

(Figure 5.5 d) while the other portions of the coast are experiencing retreat. It is important, however, for 

coastal residents to understand that even though a particular beach may have been advancing or stablized 

over a time, if it has been retreating for the previous decades, then retreat will eventually resume, except 

if something fundamental, such as an ‘unexpected’ increase or decrease in the sand supply. 

More importantly, we provide new insight into the influence of tide and sandbar distance to the shoreline 

on shoreline response. Results of the EOF produces well the pattern of alongshore uniform and non-

uniform shoreline evolution including 3D deformations presumably enforced by the presence of rip 

channels. Bruneau et al. [2014] found that rip currents are typically 20 to 45% stronger during falling tide 

(i.e. increasing TR) than during flood (i.e. decreasing TR). This is inline with the observations in this 

study provided in Figure 5.5. Bruneau et al. [2014] also found that sediment transport that takes place in 

rip channels at ebb would thus be up almost one order of magnitude larger compared to flood. This 

behaviour has the potential to impact the bar/rip system morphodynamics and subsequently the shoreline. 

As indicated in section 5.2.3.b, though rib channels may migrate (Figure 5.4.b) and affect the shoreline at 

different longshore locations that could not be addressed properly in this study. Migration of rip channels 
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and their time-scales are not therefore understood, yet our results have strong implications for tide 

variation. Obviously at some locations alongshore currents and associated littoral sand transport cause rip 

currents to migrate, but at the same time they act to destroy the rip channels by filling them [Thornton et 

al,. 2007].  

The primary modes of variability found here have been clearly associated to an alongshore uniform mode 

and a mode with alongshore varying structure. EOF 1 (Figure 5.4a, top left panel) has been interpreted as 

seasonal, and its seasonality mimics on-offshore 2D shoreline. To ascertain this we did daily cross 

correlation (Figure 5.8) of the EOF 1 with the wave conditions (r =0.2; p<5%) which yields a lag of 120 

days. This suggests the maximum length of a season in the EOF 1 time series comparable to 2D shoreline 

time scale of evolution. On the other hand, Figure 5.8 shows the correlation between EOF 2 and the Hs 

(dotted line), with no regular scale of variability which can be explained by the longshore variability. 

Estimated lag is in 4 years. It describes short-lived morphological events that act to temporarily change 

the intertidal beach (e.g. bar welding, berm building, scarping etc).  

 

Figure 5.8. Daily running cross correlation between EOF mode 1 and Hs (solid line) and EOF mode 2 and 

Hs (dash line). Square boxes indicate the maximum correlation and the lag for each cross correlation. 

5.2.5. Conclusions 

The alongshore-averaged shoreline cross-shore migration (2D) and deformation (3D) at the meso-

macrotidal barred Biscarrosse is investigated from a 6-year video monitoring period. As observed in this 

area [e.g. Castelle et al., 2014; Senechal et al., 2015], shoreline variability at seasonal scale is dominant 

with seasonal scale, short term scale (possibly storm/post-storm recovery) and interannual tendency 
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contributing to 52, 28, and 20% of the total variability, respectively, even though these percentage 

encompass data noisiness (mostly in the short-term). 

One of the key difficulties with empirical orthogonal function (EOF) lies in interpreting the results in the 

broader physical context from which they were derived, especially when most of EOF application is on 

cross-shore variability. The objective here was to relate the individual modes to the local conditions 

through correlating the derived modes with 2D and 3D alongshore variability. Despite the conditions of 

data extraction, the EOF method applied on the shoreline is able to separate 2D and 3D behaviours. The 

first temporal eigenfunction which accounts for 58% of shoreline variability reflects the alongshore-

uniform cross-shore variability (2D migration). The second and higher eigenfunctions which contribute 

around 42% to the shoreline variability depict the longshore non-uniformities (3D deformation). While 

the 2D variability is dominated by seasonal changes, the 3D shows a larger impact of short term events 

(non-uniformities developments or alongshore migration). 

Our results also show that tidal range and sandbar distance to the shore affects shoreline response to wave 

regimes with closer sandbar and larger tidal range both enhancing shoreline response (accretion or 

erosion). These results support previous findings by Angnuureng et al. [in revision with Geomorphology] 

and Stokes et al. [2015] on the importance of sandbar and tidal modulation of wave impact on beach 

morphology.  

5.3. Equilibrium shoreline dynamics 

Predicting the cumulative impact of changing wave conditions on the detailed morphological evolution of 

wave-dominated coasts requires appropriate wave, current and sediment transport models. For instance, 

predicting decadal-scale trends in shoreline position along coastlines dominated by drift is most often 

done using n- line models, such as UNIBEST and GENESIS [e.g. Pelnard-Considere, 1956; Hanson and 

Kraus, 1989; Ruggiero et al., 2010]. These models, which assume a constant cross-shore profile, do not 

account for the cross-shore movement therefore rarely capture the short- or seasonal shoreline variability 

associated with these cross-shroe processes. In contrast, empirical shoreline models addressing cross-

shore sand movements can simulate both the short-term impacts of storms as well as the longer term 

trends related to changing wave conditions [e.g. Frazer et al., 2009; Yates et al., 2009; Anderson et al., 

2010; Splinter et al., 2014]. 

Behavioural models [e.g. Yates et al., 2009; Davidson et al., 2013] provide an attractive alternative 

to process-based models to address shoreline change. These models are capable of explaining substantial 

amounts of variance and accurately forecasting beach changes over storm, seasonal and interanual 
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timescales [e.g. Plant et al., 1999; Yates et al., 2009; Splinter et al., 2011], which is presently 

unachievable using process-based models. These empirical models have been used to predict two-

dimensional, 2D [Yates et al., 2009; Davidson et al., 2013; Castelle et al., 2014; Splinter et al., 2014] 

behaviour and more recently three- dimensional, 3D shoreline changes [Stokes et al., 2015] under varying 

waves. Davidson et al. [2013] observed that inclusion of temporally varying equilibrium condition can 

constrain excessive shoreline variation. They further hypothesised that an observed difference in beach 

memory (ϕ) related to the differing modal states of beaches. The variation in beach memory dictates the 

efficiency of sediment exchange between the shoreface and the offshore sandbar, nearshore circulation 

patterns and the offshore distance of sandbars. In meso-macro tidal environments [large Relative Tide 

Range index, Masselink and Short, 1993]; the shoreline response to offshore wave variations is important 

and made complex by the combined effect of sandbar and tide modulation of onshore wave energy 

[Wright et al., 1987; Banno and Kuriyama, 2012]. In large tidal-range environments, the key role played 

by the tide in the development of 3D features has been highlighted [Stokes et al., 2015]. Stokes et al. 

[2015] applied the concept of disequilibrium stress to 3D changes at the outer sandbar and the lower 

beach accounting for the tidal modulation of the response time where the model performance was 

observed to improve for the outer sandbar due to the inclusion of tide range. In their study, tidal range 

modulates incoming wave energy. Overall, the effect of sandbar and tide range on the prediction of 3D 

and 2D shoreline changes still has to be tested in equilibrium shoreline model. 

5.3.1. Data requirements to further improve equilibrium-based shoreline models on meso-

macrotidal beaches 

Both cross-shore and alongshore sediment transport processes drive changes in shoreline position, 

however, alongshore processes generally act over much longer time frames, and along many exposed 

coastlines do not dominate the annual shoreline variability [e.g. Davidson and Turner, 2009; Hansen and 

Barnard, 2010; Yates et al., 2009]. Empirical models therefore assume that shoreline variability due to 

gradients in alongshore transport is small compared to the variability associated with cross-shore 

processes and cannot be applied along coastline with prominent longshore processes. These models are 

sensitive to alongshore variability and fluctuations in data [Miller and Dean, 2004; Yates et al., 2009], 

data sampling frequency [Splinter et al., 2013], and shoreline proxy [Castelle et al., 2014]. Thus, the 

empirical nature of these models requires high-quality observational data sets to calibrate model free 

parameters. Reviewing these models, Splinter et al. [2013] showed that seasonally-dominated sites 

require longer data sets but less sensitive to sampling interval, while the storm-dominated sites converge 

on shorter, more frequently sampled data sets. This suggests that monitoring programs of at least two 

years, with shorelines sampled within the range of 30 days are sufficient to determine initial estimates of 
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calibration coefficients and hindcast short-term shoreline variability. Model inputs are mainly the 

characteristics of the time varying offshore waves (Hs, and Tp) and sediment size, with some models even 

only requiring Hs [Yates et al., 2009]. 

5.3.2. Modulation of shoreline response time by tide range and sandbar locations  

Here the equilibrium model is tested with high-frequency video observations. Additionally, we test 

the inclusion of tide and sandbar location. For example, Stokes et al. [2015] used the tidal range to 

address outer sandbar dynamics. Other studies use the relative tide range [Masselink and Short,1993], and 

hydrodynamic forcing index [Almar et al., 2010]. Below we address the influence of wave energy flux P, 

relative tide range RTR and sandbar locations<Xb> on the 2D and 3D shoreline responses. The key 

priority of this section is to implement and demonstrate the effect of tides and sandbar which is done 

through the maximum correlations between model predictions and measured data (2D and 3D). 

 Here we use ShoreFore model [Splinter et al., 2014] based on earlier work [e.g. Davidson et al., 

2013]. Davidson and Turner [2009] presented a two-dimensional profile model with considerable skill to 

hindcast weekly shoreline change. This model was later simplified by Davidson et al. [2010] into a one-

dimensional shoreline model that was further modified by Davidson et al. [2013]. Here the concept is 

extended to both shoreline cross-shore location <Xs> and longshore variability (3D), with higher interest 

on how tide and sandbar location modulate beach response. Only the key model equations are given 

below, including those containing the free model parameters, but for more detail see Davidson et al. 

[2013] and Stokes et al. [2015]. 

The rate of shoreline change that defines the initial model of Davidson et al. [2013] used here is 

given by 

𝑑𝑋

𝑑𝑡
 = b+ c(F

+
+ kF 

-
)                  (5.3)  

k in Eq. 5.3 describes the relative efficiency of positive and negative disequilibria in altering the beach 

changes, while b and c are the free parameters, with the forcing terms F (Eq. 5.4 and Eq. 5.5) defined as 

the product of the incident wave power raised to the 0.5 exponent, P
0.5 

and the normalised disequilibrium 

(ΔΩ): 

F
+
 = P 

0.5
 

𝛥𝛺

𝜎𝛥𝛺
 when Ω < Ωeq                       (5.4) 

F
-
 = P 

0.5
 

𝛥𝛺

𝜎𝛥𝛺
 when Ω >Ωeq       (5.5) 
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ΔΩ = Ωeq – Ω, and ΔΩ is normalised by its standard deviation denoted by σΔΩ, so that the rate of change 

in <Xs> or 3D is predominantly controlled by the rate parameter, c, and the wave power (P
0.5

,W/m), rather 

than the magnitude of ΔΩ. The disequilibrium term ΔΩ incorporates a time-varying equilibrium 

condition, Ωeq(t), defined as the weighted average of the antecedent dimensionless fall velocity Ω, and is 

largely dependent on a memory decay parameter ϕ (Eq. 5.6 ).  

Ω𝑒𝑞(𝑡) = [∑ 10−𝑖𝛥𝑡/𝜙

𝐷

𝑖=1

]

−1

∑ Ω𝑖10−𝑖𝛥𝑡/𝜙

𝐷

𝑖=1

                           (5.6) 

 

Δt is the time interval of Ω in days, i represents the index of data point in the wave forcing time series 

prior to the calculation point at time t (t=1) on the day and i = D on D days prior to the day of observation 

which was fixed at 2ϕ in order to reduce the number of free parameters in the model and simplify the 

optimisation. At each ϕ time, D weighted iterations (i to D) are performed. The value of ϕ is a measure of 

'memory decay' of the beach. This is the critical parameter of this section used to evaluate the effect of the 

tide and sand bar location.  

 The depth and location of the bar [e.g. Wright et al., 1987] and the associated tidal range, have 

been recognised as important modulators of wave driven horizontal circulation and therefore the 

development of nearshore morphology [e.g. Almar et al., 2010; Stokes et al., 2015]. The main effects of 

the tide consist in limiting the intensity of breaker action at high water. The modulation of both 2D and 

3D by the relative tide range (RTR) was implemented in place of the wave power given as PT in Eq. (5.7): 

𝑃𝑇 =  𝑃 ∗ 𝑅𝑇𝑅                             (5.7) 

Stokes et al. [2015] followed a similar approach when they observed improvement of the model 

predictions of 3D especially at the outer bar with monthly tidal range. 

Storm events typically cause the sandbars to both rapidly deepen and move offshore, whereas calm 

conditions lead to slow onshore migration and buiding of the bar. To estimate the effect of the wave 

height limitation due to the breaking over the sanbdbar, a modified version of the wave energy flux was 

defined Pb (Equation 5.8) that includes the effect of the sand bar location:  

Pb = P *<Xbnorm >           (5.8) 

This sandbar effect here includes sandbar location normalised by its mean, < Xbnorm> and the depth zc of 

the bar crest that limits the Hs. The crest depth zc is defined using an approximate link between sandbar 



  

118 
 

location <Xb> with the commonly used Dean [1991] beach profile equilibrium formula [Dean and 

Dalrymple, 2002] as;  

zc = A(Xb)
2/3

             (5.9) 

where A is a scale parameter (here was estimated as 0.11, but not shown) which depends primarily on 

sediment characteristics [Dean and Dalrymple, 2002]. The implementation of the crest depth is similar to 

the normalised sandbar locations. 

Model free parameters b (m/a) and c (m/s) in Eq. 5.3 and an offset a (m) were optimised through 

least-squares process [see Davidson et al., 2013 for details] after detrending the shoreline and forcing 

data. The main reason for the least‐squares fit procedure is that it approximates the closest nonlinear 

functions during high‐energy conditions, when the fluctuations are also large. Least‐squares fit procedures 

minimize the quadratic error, which biases the results toward the largest changes in the variables.  

5.3.3 Sensitivity of the beach memory to tide PT and crest depth at sandbar location Pb 

The model is first calibrated against 60% of the measured data (2007-2010). Figure 5.9 represents 

ShoreFor callibration and validation (hindcast) results. Figure 5.9a and 5.9b represent the measured and 

hindcasted evolution of 2D and 3D with the weighted P(input data), PT (data with RTR), and Pb(data with 

sandbar locations). In Figure 5.9a, model values and input data show dominantly seasonal variation. 

Overall, the model shows weak agreement with the field data for both erosion and accretion periods but is 

strongly estimating the cross-shore variability than the longshore variability. Clearly, the shoreline data is 

noisy short term events and the model therefore has no choice but to try to go in the middle of the 

scattered data to minimize root mean square error. Hindcast results showed a maximum correlation of 

approximately, r ~0.54 (Table 5.4) in all three cases. 
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 Figure 5.9. Time series of measured a) 2D data and modelled 2D data with the effect of RTR 

(green line) and sand bar (blue dotted line) b) 3D data and modelled 3D data estimated with data and 

modelled 3D data with the effect of RTR (green line) and sand bar (blue dotted line).  

Table 5.4. Model coefficients and skill assessment results after ShoreFor model and Stokes et al. [2015] 

for the alongshore-averaged (2D) and non-uniformity (3D) contours. Model skill values are given for 

calibration and validation; we indicate that the hindcast was only performed with the Davidson et al. 

[2013] model. k ranges from 0.23 to 0.55 for both 3D and 2D shorelines. 

2D Data Model parameters ϕ Model r 

 a b c (x10
-8

)   

P flux 102.7 1.24 3.14 360 0.49 (0.54) 

P + RTR 102.1 0.8 6.8 360 0.49 (0.55) 

P + sandbar 102.3 1.1 1.4 360 0.52 (0.52) 

3D Data Model parameters ϕ Model r 

 a b c(x10
-8

)  ShoreFor 

P flux 6.20 0.70 0.30 >1000 0.31 (0.28) 

P+RTR 6.50 0.57 0.22 270 0.30(0.29) 

P+ sandbar 6.20 0.70 0.22 >1000 0.30 (0.29) 
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Figure 5.10. Correlation between modelled a) 2D data estimated as well as RTR and sandbar locations 

against measured 2D data b) 3D as well as RTR and sandbar locations against measured 3D data. The 

influence of weighted RTR and sandbar location on beach memory is given by the largest correlations r in 

each of 2D or 3D data. 

Data (Table 5.4 and Figure 5.10a) show that the inclusion of RTR and sandbar location made very little 

difference in the prediction of 2D values compared to the use of input data (Figure 5.10a) especially 

during storms. Similarly, RTR poorly improves the model predictions of 3D, as low correlation was 

observed. However, it proved to be dominated by variations at shorter scale than when the sandbar is 

included. Results also reveal that the introduction of RTR in the model improved the prediction of the 3D 

data more than the sandbar, shown by the higher correlation (Figure 5.10b), with decrease in the beach 

memory (ϕ~270 days) decay parameter (Figure 5.10b) compared to that of the sandbar (ϕ>1000 days), 

suggesting that sandbar effect is not event dependent. 

This is consistent to the observations of Stokes et al. [2015] who did not observe any change to the model 

after inputting RTR in the model at the lower beach. Other parameters such as the normalised wave 

incidence direction were merged with the equilibrium profile depth zc and tested but these did very little 

improvement in r and BSS. This preliminary test indicate that peaked correlations occur at larger values of 

beach memory (ϕ >100 days), which means that beach changes result from average long term conditions. 
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The results of this section suggests alongshore shoreline naturally evolves seasonally even with the effect 

of tides and sandbar location, but the results however reveal the 2D and 3D shorelines may respond at 

individual storm frequency more to tide effect by the much reduced memory duration.  

5.3.4 Conclusions 

For the first time we applied an equilibrium shoreline model to the video data at Biscarrosse beach. 

Previous studies [Stokes et al., 2015] showed that at daily scale, tidal variation does not influence 3D 

changes at the lower beach. Our study shows that for alongshore-uniform shoreline, sand bar and tide 

effect do not affect the beach. With an error margin of 9 m on shoreline values, shoreline changes are 

largely influenced by noise which explains the very low skill of our model R
2
<0.30 compared with other 

sites using beach profiles or video data [Splinter et al. 2014]. Overall, we have recorded very little 

improvement due to tides or sandbar in the 2D/3D estimation, but these results stand clearly with the 

importance of considering tide and the presence of the sandbar in predicting rapid shoreline changes. If 

site characteristics are important, using HFI and only TR may improve the predictions. Overall, though 

not evident, these results support previous findings by Angnuureng et al. [in revision with 

Geomorphology] and Stokes et al. [2015] on the importance of taking into consideration sandbar and tidal 

modulation of wave impact on morphology. We believe that if more analysis is made with much quality 

shoreline data (with higher proxy ~1.5 m above MSL), tides and sandbar will significantly improve the 

model.  
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CHAPTER SIX 

James town beach under video surveillance 
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6. James town beach evolution under video surveillance 

6.1 Introduction 

6.2 Background 

6.3 Data and methods 

 6.3.1 Video monitoring system 

6.3.1a Camera calibration and installation  

6.3.1b Geo-rectification of oblique images to plan view 

6.3.2 Hydrodynamic data for James town 

6.3.2a Wave and tide data from Era-Interim global reanalysis  

6.3.2b Wave characteristics from video images 

6.3.3 Morphological data for James town beach: shoreline delineation 

6.4 Results 

6.4.1 Video observation of waves and shoreline change on the microtidal James town beach in 

Ghana (Special Issue of Journal of Coastal Research).  

6.4.1a Validation of vide-derived wave characteristics 

6.4.2b Shoreline and morphological evolution: event and overall evolution 

6.4.2 Comparing the contribution of Hb, sea level anomaly (SLA) and TR to shoreline change 

 

6.5 Conclusions 
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6.1 Introduction  

In this thesis a methodology to assess shoreline changes at different time scales (storm events, seasonal 

and interannual) was proposed for Biscarrosse beach (French Atlantic). A similar proposal was made for 

James town (Ghana, Gulf of Guinea). At the double barred Biscarrosse beach, wave conditions are 

dominant and tides are large, while the beach usually experiences numerous storm conditions. At the 

terrace James town beach, tides are small as well as wave conditions and the dominant forcing condition 

is unknown. The primary idea of this thesis was to contrast these two sites by following similar methods, 

to reveal the evolution of each beach. Therefore the analysis that was done for James town beach is given 

in this chapter.  

Analysis of shoreline change trend under the influence of both climatic and anthropogenic forcing is 

hampered by the availability of archival time series data, especially in developing nations where there is 

scarcity of data [Boateng, 2006]. However, the novelty/innovation in coupling of archival data with 

remotely sensed data in data starved locations, to obtain reliable information for developing shoreline 

management strategies has shown progress. Shoreline studies along the Ghanaian nearshore have been 

realised through topographic surveys and in-situ measurements using differential GPS as well as satellite 

images [Appeaning Addo et al., 2008; Angnuureng et al., 2013; Jayson-Quashigah et al., 2013; Wiafe et 

al., 2013] on irregular basis. These measurements are intermittent both in space and time and the distance 

covered is often limited. Selecting a particular method for shoreline mapping is influenced largely by 

several factors including the level of accuracy required, type of output desired, availability of funding 

and/or equipment, and the method to be adopted to analyse historic rate of change of the shoreline 

[Moore, 2000]. Although data measured using LIDAR and aerial photographs can cover large spartial 

widths, they can be expensive and have low time resolution [Li et al., 2002].  

Though several portions of the Ghanaian coastline is eroding at varying rates (Figure 6.1), a monitoring 

scheme using the traditional methods for the Ghana coast does not guarantee the capture of the short term 

temporal shoreline evolution and other key events. In general, analysing shoreline change in developing 

countries presents huge challenges (e.g. poor resolution) to coastal scientists and managers due to factors 

that affect their reliability. Data scarcity prevents studies into the past behaviour of the shoreline position 

and how it has metamorphosed into the present trend. Where data exist, the inconsistencies in the period 

of data capture influences systematic change analysis that fails to account for important events (e.g. 

storm). It is essential for the data gathering strategies to include many approaches to have data spanning a 

broad ran of times and space. This can be provided by using the video system. Combining shoreline data 

from two or more sources present a unique opportunity to trace how the shoreline has evolved over the 

period to its present position. This provides the baseline information to analyse the cyclic behaviour of the 
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shoreline in the short and long term and how other factors influence the lateral morphological change as 

well as estimate the shoreline’s historic rates of change that enables the prediction of the future position 

of the shoreline using modelling techniques.  

This study therefore focuses on a coastal community where scientific data is scarce, specialised expertise 

is rare, funding is limited, and local authorities can be unprepared to cooperate. In the wake of these, this 

chapter presents the application of a video system approach in coastal monitoring along a segment of the 

James town coastline in Ghana. The main aim was to test the ability of the video system in providing 

quality and accurate wave data sets in Ghana. First, a background of the study is given and followed by 

the process of installing the video system. Secondly, the approaches on extraction of wave data and 

shoreline location from the video system at James town over a 6-month period are discussed. Finally, 

estimates of wave data from video are compared with hindcast wave data and the main drivers of 

shoreline changes were identified among waves, water and sea level anomaly.  

 

 

Figure 6.1. Showing sample coastal erosion along the coastline of Keta-Ghana 
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6.2 Background study 

The coast of Ghana is sub-divided into three major zones (Figure 6.2) namely the Eastern, Central and 

Western coasts based on geomorphologic characteristics [Boateng, 2006].  

 The Eastern coast, which is about 149 km long, stretches from Togo Border to Prampram. It is a high-

energy beach with wave heights often exceeding 1 m in the surf zone [Ly, 1980]. Wellens-Mensah et al. 

[2001] explained that the Volta River has a dominant influence on the geomorphology of the Eastern 

coast. The surface geology of the area is made up of fluvial sediments delivered from the Volta river as 

well as marine and fluvial-marine sediments and the beaches comprised of medium to coarse sand. 

Jayson-Quashigah et al. [2013] investigated the potential of medium resolution satellite imagery for 

mapping shoreline rate of change along the eastern coastline. They showed that the Keta coastline is a 

highly dynamic feature with average rate of erosion of about 2 m/year. Individual rates along some 

transect reached 16 m/year, particularly on the east of the Keta Sea Defence site. A related study by 

Angnuureng et al. [2013] on the impact of the Keta Sea defense structure constructed to control the beach 

degradation, showed erosion could be so severe (~17 m) at the down drift side of the defense structure.  

 

Figure 6.2. Divisions (Western, Central and Eastern) and alongshore transport along the coastline of 

Ghana (after Boateng, 2006).  

Along the Ghanaian coast, erosion has been observed to be increasing over the last decades [Appeaning 

Addo et al., 2008; Boateng et al., 2009] with about 25 erosion hotspots [erosion higher than 1.5 m/yr, 

Appeaning-Addo and Lamptey, 2012] identified along the coast of Ghana. Relatively high erosion on the 
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eastern part the Ghana coast can be attributed to the method of management (e.g. groynes and revetment) 

which affects the sediment budget [Ly, 1980; Jayson-Quashigah et al., 2013].  

The Western coast covers 95 km of shoreline and is a relatively low energy beach. This coast comprises 

gently sloping, wide and fine sandy beaches backed by coastal lagoons.  

The central coast consists of about 321 km of shoreline extending from Laloi Lagoon west of Prampram 

to the estuary of River Ankobra near Axim. The morphology of this coast is influenced by sediment 

delivered from a series of north to south draining rivers. It is an embayment coast of sandy beaches, rocky 

headlands and sandbars with spits enclosing coastal lagoons. The shoreline is almost a straight line and 

runs in the south-west direction. Wiafe et al. (2013) analysed the risk factors along the entire coastline as 

summarized in Table 6.1. From Table 6.1, risk factors assigned to various variables show that rocky areas 

can be highly stable with very low vulnerability while sandy beaches are highly vulnerable. However, 

along the coastline of Accra including Jamestown, the rate of human encroachment of the coastal lands 

which influences erosion far exceeds the rate of shoreline change [Appeaning Addo et al., 2013]. 

Appeaning Addo et al. [2013] found that these large volumes of land lost to human encroachment can 

result into 1.92 m/yr erosion, which increases the vulnerability.  

The Central coast (see Figure 6.2) including Accra, the capital of Ghana and James town represents a 

medium energy environment. The shoreline position of Accra has changed progressively since 1904 

[Appeaning-Addo and Lamptey, 2012]. Accra’s shoreline is eroding in the long-term though beaches 

along certain portions of this coast are fairly stable [Armah and Amlalo, 1998; Boateng, 2006] compared 

to other zones. Orientation of Accra’s shoreline contributes largely to the observed recession trend along 

the coast [Appeaning-Addo and Lamptey, 2012]. The observed trend is predicted to continue as a result of 

increasing sea level rise due to global climate change.  
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Figure 6.3. James town beach. A video camera is located on the lighthouse [40 m above MSL]. Korle 

Lagoon is open into the sea at the far western site of the beach.  

Analysis of bathymetric data indicates that the western and central zones have relatively gentle slopes, 

while the eastern zone has a considerably steeper slope [Appeaning Addo et al., 2008]. These conditions 

have significantly influenced the trend of shoreline recession in each of the three geomorphic zones. 

Coastal erosion intensity therefore varies along the Accra coast. Vulnerability of beaches to forcing and 

anthropogenic factors has been addressed through both hard [e.g. revetments, jetties or breakwaters, and 

groins reported in Angnuureng et al., 2013] and soft approaches (e.g. revegetation and beach 

nourishment) in attempts to control the changes [e.g. Turner and Leatherman, 1997; French, 2001;] yet 

both methods are debatable. For instance with hard engineering, areas further down the coast can be 

starved of beach material resulting in more erosion, while soft methods (e.g. beach nourishment) do not 

last very long as sand will continue to be transported along the coast by longshore drift. The erosion 

problem becomes worse whenever the countermeasures (i.e. hard or soft structural options) applied is 

inappropriate, improperly designed, built, or maintained and if the effects on adjacent shores are not 

carefully evaluated. This is further made complex by the lack of adequate monitoring. 
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James town is a major fishing community in Ghana (Gulf of Guinea, West Africa) on the eastern part 

(Figure 6.3) of the Korle lagoon, which is a major ecological site in Accra under the Ghana wetlands 

management project. The increasing coastal erosion threatens the community, the lighthouse and the old 

Accra harbor presently being used as a fishing harbor. The nearshore bathymetric profile is relatively 

gentle and the area experiences periodic high-wave conditions [Sagoe-Addy and Appeaning Addo, 2013]. 

The mean wave incidence is SSW (Figure 6.4), mean peak period Tp and the mean significant wave height 

are 10.9 s and 1.4 m, respectively [Appeaning Addo et al., 2008; Angnuureng et al., 2013], but these 

could periodically rise to 20 s and 3 m. Tide range is micro-tidal with mean value of about 1 m. Oblique 

waves drive alongshore drift of about 2*10
5 

m
3
/yr [Wellens-Mensah et al., 2001] on this gentle beach 

(slope <0.03). The breaker type is plunging and the longshore current it generates ranges between 0.5 and 

2 m/s, which is significantly high and thus responsible for the relatively high rate of sediment transport in 

the littoral zone.  

Table 6.1. Ranking of coastal vulnerability index variables for the Coast of Ghana [cf. Wiafe et al., 2013] 

due to geomorphology, geology, relative sea level rise (R-SLR), shoreline erosion, tide and significant 

wave height (Hs).  

Variable Very low Low Moderate High Very high 

Geomorphology Rocky 

coasts 

Medium cliffs Low cliffs Estuary 

lagoon 

Deltas, sand, 

mangroves 

Coastal geology Pegmatite, 

biotite, 

tonalite 

Amphibolites, 

Gneiss, 

quartzite 

Lime-,sand- and 

mudstone,  

Conglomerate 

 -  

Alluvial sand, 

silt, clay 

Coastal Elevation >30.0 >20.0 – 30.0 >10.0 – 20.0 >5.0–10.0 0.0 – 5.0 

R-SLR (mm/yr) <1.8 1.8 -2.5 2.5-3.0 3.0-3.4 3.4 

Erosion (m/yr) >2.0 1.0-2.0 -1.0 – 1.0 -2 – (-1) < -2.0 

Tide (m) >6.0 4.0-6.0 2.0-4.0 1.0-2.0 <1.0 

Hs (m) <0.55 0.5-0.8 0.8-1.0 1.0-1.2 >1.2 
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Figure 6.4. James town wave rose diagrams (01/01/2013-30/10/2014) based on data from ERA-Interim 

reanalysis; a) wave direction and the magnitude of significant wave height, Hs (m), b) wave direction and 

peak period, Tp (s).  

6.3 Data and methods 

For this study data was retrieved in two ways. Hindcast wave and water level data was obtained from Era-

Interim global reanalysis model to be used to validate video observational data. Thus, this section will 

describe the installation and retrieval of video data and the presentation of the hindcasted data. 

Morphological data is obtained from video images. Alongshore-average shoreline locations and 

alongshore variations of shoreline are automatically delineated from timex images. 

6.3.1 Video monitoring system 

6.3.1a Camera calibration and installation  

A 40-m high lighthouse (see, Figure 6.3) was built in the 1930s for navigational purpose. A video camera 

was mounted on the lighthouse on 14/09/2013, inclined to the beach at an angle of 20°. The camera 

spatial coverage is about 1.3 km across shore and 2 km along shore and set to record from 6 - 18 hours 

GMT at 2 Hz. Three types of images are collected every 15 min: snapshot (Figure 6.5a); time exposure 

(timex) (Figure 6.5b) and time stacks (Figure 6.5c). Timex images are 15 min averaged of snapshot 

images into a single image [Holland et al., 1997;Almar et al., 2012b], while timestacks are obtained by 

stack of single cross shore portion [red line Figure 6.5a] within the 15 min to obtain Figure 6.5c. The 

origin of the camera coordinate system (cross-shore X=720, longshore Y=0) is traced to the lighthouse. 
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Over six months of 15 min image data was collected including several data gaps due to camera 

malfunction and times when images were unclear. 

6.3.1b Geo-rectification of oblique images to plan view 

Seven ground control points on site (Figure 6.5b, red circles) were taken with GPS and converted to 

Universal Transverse Mercator, UTM (Easting and Northing) coordinates. Including camera location 

(5.5265, 0.2121) at 30° N UTM zone, images could be geo-rectified from oblique to plan view images by 

applying the method of direct linear transformation [e.g. Argus, Holland et al., 1997], see details in 

Chapter 3. However, to get the rectified data two approaches were primarily tested and one chosen. First, 

a zone of interest covering the beach and water (Figure 6.5a, white patch) was selected on the image and 

rectified at a 1-m resolution before desired information (e.g. shoreline) was extracted.  

 

Figure 6.5: Video image types: a) snapshot; selected zone is shaded white while timestack profile is red 

line b) timex: shoreline is shown black line and GPS points in red circles c) timestack (vertical is time 

(1800 pixels =15 min at 2 Hz)). 
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The focal length (4m) based on a least square error minimization method was used for the rectification. 

For shorter processing time purpose, the shorelines were automatically detected on the oblique images 

before the rectification. Because of the oblique camera view angle, the pixel resolution at the shoreline for 

the image lateral edges reaches about 0.5 m, whereas it is about 0.1 m at the lower beach in front of the 

video system [Almar et al., 2012a], increasing to 1 and 2 m at the lateral edges. 

 

6.3.2 Hydrodynamic data for James town 

6.3.2.a Wave and tide data from Era-Interim global reanalysis  

To validate video estimates of wave properties, hindcast data of significant wave height Hs, direction and 

peak period Tp have been obtained from Era-Interim global reanalysis [WAM model, The Wamdi Group, 

1988] at 0.5° and 6 hr spatial and temporal resolution, respectively [Sterl and Caires, 2005] at the grid 

point 30°N, 30°W. The wave data stretches from Sep. 2013 to Oct. 2014 while tide was extracted from 

WXtide model. Because there is no tide gauge at the study site, the tidal subordinate at Accra (0°12' W, 

5°32' N), from the nearest tide gauge station, Takoradi (~200 km) was used as the reference point. Hs and 

Tp were transformed into breaker conditions Hb(lm) and Tp(lm), respectively, following Larson et al. [2010] 

given in the following equations:  

Hb[lm] = γhb.         (6.1) 

 

hb = λ C
2
/9.81         (6.2) 

λ = ∆ (cos (πø/180)/ α)
 2/5

      (6.3) 

 

∆= 1 + 0.1649є + 0.5948 є
2
 - 1.6787 є

3
 + 2.86 є

4
     (6.4) 

 

є = (cos (πø/180)/α)
 2/5

 sin (πø/180)
2    

 (6.5) 

α = (C γ
 2
/Cg) (C/√9.81 𝐻𝑠)

4 
      (6.6) 

 

where γ is an arbitrary constant, C and Cg are phase and group wave velocities, respectively, ø is wave 

incidence angle, hb is the depth at breaking and Hs is the offshore significant wave height. Beach states 

were computed using the formulation of Dean parameter [see Wright and Short, 1984], Ω= Hb[lm] /Tp(lm)ws, 

where ws is sediment fall velocity, using the reanalysed wave data. A ws of 0.05 m/s was used in 

consistence with similar sandy beaches [e.g. Masselink et al., 2009]. 
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Components of storm surge on the Gulf Coast continental shelf include wind setup, inverse barometer 

effect, wave setup and Coriolis force [Walton and Dean, 2009]. The effect of these parameters on the 

shoreline may differ from region to region. Wave setup as was given in Chapter 3 can cause an increase in 

water level elevations on the order of 20–50% of the offshore breaking wave height [Dean and Walton, 

2009] and can reach values between 1 m to 12 m of the shoreline location, depending on the site 

characteristics. However, in a separate study, Walton and Dean [2009] showed that the most important 

component of storm surge is the wind setup. In this study, the combined effect of wind setup and 

atmospheric pressure data (the sea level anomaly, SLA) which were also extracted from Era-Interim 

hindcast reanalysis data is estimated at the shoreline. To assess this, a multiple linear regression was used 

to estimate the contribution of Hb, SLA and tide range on the shoreline evolution. The procedure of the 

multiple regression that was described in Chapter 4 is implemented here.  

 

6.3.2.b Wave characteristics from video images 

The detection of wave breaker height has been applied and validated at other sites [e.g. Almar et al., 

2012b] and therefore only the implementation is given here. Wave breaker height Hb and Tp were 

obtained from time stack images of James town video station and compared to the model data. Tp was 

computed from the offshore pixel intensity timeseries following Almar et al. [2008]. The time of 

propagation Δt between two wave front positions Δx = x2 - x1 is estimated as the lag of maximum of 

correlation coefficient between the two wave fronts. The Tp is thus the time lag between two wave fronts 

(troughs or crests) at the maximum correlation.  

The method of detecting wave breaker height relies on the abrupt change of wave optical characteristics at 

the breakpoint. Following the wave signature induced by breaking, sudden variation in intensity values 

are identified on the image and an intensity threshold is used to discriminate between breaking and non-

breaking pixels. Too high threshold however can affect the roller detection. Pixels above the threshold are 

grouped by space and time with respect to individual breaking waves. For the evolution of each breaking 

wave, standard deviation δ of the pixel intensity time series is estimated on a time window about the 

break point time. Almar et al. [2012b] showed that the width of the peak of δ represents the horizontal 

projection of wave face covered by the roller (L) which is subsequently projected into vertical Hb, Hb = 

Ltanβ, where β is the camera viewangle. Hb is obtained as the wave height of the average of all passing 

breakers over the timestack duration (1800 s or stacking). Hb and Tp were respectively regressed with 

Hb(lm) and Tp(lm), propagated from deep water to the breakpoint and a relationship established.  
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6.3.3 Morphological data for James town beach: shoreline delineation 

Following Almar et al. [2012a] who developed the minimum shoreline variability (MSV) approach; a 

region of interest [ROI] is demarcated on the oblique images to cover both wet (sea) and dry (land) pixels. 

Beach pixels display high red-channel (R) values and low green (G) values giving high R to G ratio, 

whereas water pixels exhibit strong green-channel values and low red values (i.e. low R:G ratio). Within 

the ROI (see Figure 6.5a), the R:G ratios are computed for all pixels. These low and high values of R: G 

mark water and beach respectively based on some bimodal distribution [Almar et al., 2012a]. The local 

minimum represents the transition between water and beach, that is, the shoreline. In other words the 

shoreline is represented by the time averaged waterline. Figure 6.5b shows the shoreline X delineated 

automatically. This was repeated for all images, and converted to metric values. To reduce uncertainties, a 

1-hr moving average (4 points) was done. The overall error (O (5m)) rises from water level uncertainties 

due to wave breaking or atmospheric pressure variations or wrong shoreline detection. 2D shoreline 

migration was estimated via the alongshore averaged cross-shore 2D location <X> (Figure 6.5c). 3D 

shoreline behaviour (non-uniformities development) was estimated through the standard deviation of 

cross-shore location along Y. Anomaly introduced by the effect of atmospheric pressure and wind was 

then quantified.  

 

6.4 Results  

First, in section 6.4.1, preliminary findings on this West Africa pilot video system that were accepted in 

the Special Issue (SI) of Journal of Coastal Research are presented. They include the validation of video-

derived wave parameters (RMSE, correlation with hindcast) and a brief description of the temporal 

evolution of shoreline and profiles, linked to waves. Secondly, in section 6.4.2, the contributions of Hb, 

sea level anomaly and tide are compared to identify the dominant influencing parameter.  

6.4.1. Video observation of waves and shoreline change on the microtidal James town beach in 

Ghana (in the Journal of Coastal Research as a Special Issue). 
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6.4.2 Comparing the contribution of Hb, sea level anomaly (SLA) and TR to shoreline 

change 

James town is a low energy beach coupled with low tide elevations, yet as was seen, shoreline variation 

can be high. This signifies the interplay of several variables responsible for the variation of the shoreline 

but the parameters which were investigated here include SLA, TR and Hb. The SLA retrieved from Era-

Inerim hindcast ranges from 0.03 to 0.1 m and is dominated by atmospheric pressure variations rather 

than wind effect as the shelf is narrow and winds are generally weak at this equatorial environment. In 

percentages, the contribution of these parameters to the variation in shoreline ∆(X) is provided in table 

6.2. Shoreline changes are largely influenced by sea level changes due to atmospheric pressure. The 

multi-linear regression analyses show that shoreline changes are preferentially explained at daily scale by 

Sea level Anomaly SLA (derived from wind and inverse barometer, 86%), waves (9%), and tide (5%) but 

change to 65%, 11 and 24, respectively at monthly scale. Data also shows that at the monthly scale, waves 

show large cross correlation (r = 0.87) with ∆(X) than tides, TR(r = -0.57). Table 6.2 also suggests waves 

have a stronger influence on the alongshore non-uniformity than TR and SLA on the seasonal scale. The 

longshore variability is thus influenced by all three at significant levels.  

 

Table 6.2 Contribution of individual parameters (wave height, Hb, tide range, sea level anomaly, SLA due 

to wind and atmospheric pressure) to the changes in alongshore averaged shoreline and non-unifomity. 

<X> ∆(X) 

       Parameter 

 

Different scales 

Hb TR SLA Hb TR SLA 

Monthly scale in % 11  24 65 40 23 37 

Daily scale in % 9 5 86 26 6 68 

 

6.5 Conclusions 

The predictions of the Hb and Tp from video images and hindcast data are in good agreement. The 

potential of the video application in estimating wave parameters has been revealed. The variability of the 

beach profile is detectable from the video images.  The profiles that were estimated during this study (in 

the JCR SI paper) showed the beach might exhibit some dissipative characteristics in contrast to the 

generally known low-tide terraced state observed at nearby sites (Abessolo et al., 2016), but this has not 

been validated. Further beach profile evolution analysis is entreated to understand and complement the 

effect of these parameters. The results show that SLA is dominant at this site. It is recommended that a 



  

141 
 

long term investigation be done as we hypothesis large influence from the nearby lagoon inlet, wind and 

pressure induced sea level anomaly which explains over 60 % of observed shoreline changes. Video 

deriving wave characteristics and shoreline change from a long-term monitoring perspective proved to be 

possible along the Ghanaian beach and should be applied on other sites. 
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CHAPTER SEVEN 

Conclusions, discussion and perspectives 
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7.1 General conclusions 

 

Coastal morphodynamics research faces the current challenge: what are the spatio-temporal scales of 

shoreline change and the physical processes involved? In this thesis, a methodology to assess shoreline 

changes at different time scales (storm events, seasonal and interannual) has been developed and applied 

to Biscarrosse (SW France) and James town (Ghana, Gulf of Guinea), respectively, characteristics of the 

meso-to-macro tidal high-energy dissipative beaches, typically observed on the French Atlantic coast and 

the low energy, reflective microtidal beaches, observed on the Gulf of Guinea coast. Video observations 

of nearshore morphodynamics and hindcasted hydrodynamics (ECMWF EraInterim) from the two sites 

were analysed. Due to the availability of long video timeseries (6 years of continuous data), Biscarrose 

was chosen as the main study site and Jamestown (1 year) as a pilot site in West Africa to develop the 

technique. Following several analysis, the main results indicate that:  

- Wave climate is dominated by storms (defined as Hs>5% exceedance threshold) and their 

seasonal fluctuation of intensity and occurrence, with 75% of storms occurring in winter yielding 

more than 60 identified storms. Over this period, continuous daily video shoreline monitoring 

shows that shoreline responds in decreasing order at seasonal, storm event frequency and annual 

timescales, even though storms are the dominant forcing at Biscarrosse.  

- A multi-linear regression on 36 storms shows that whereas current and previous storm intensity 

play a predominant role on current storm impact, tide and sandbar play a major role in post-storm 

recovery process rather than on storm impact, by the modulation of the recovery duration. 

- An ensemble average on post-storm recovery period shows that Biscarrosse beach recovers 

rapidly to individual storms (9 days). A clustering of storms also shows that storms in sequence 

may possibly have a weak cumulative effect. 

- The use of EOF method shows good skills in separating uniform and non-uniform shoreline 

dynamics, even at open beaches, and that they have different temporal variability: first EOF (2D) 

and second (3D) modes are dominated by seasonal and short term scales, respectively.  

- At Jamestown, the water level (astronomical and atmospherical tides) plays a predominant role on 

shoreline location, compared to a rather continuous wave forcing. Waves and tide estimates from 

Jamestown video system are in good agreement with hindcasts, which shows that the video 

technique can be replicated elsewhere in West Africa. 
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7.2 Discussion and perspectives 

7.2.1  Scales of variability: linking short event scale to seasonal evolution 

While the shoreline dynamics show variability at several timescales, one major question that is still 

unanswered is at what timescale a ‘modal’ beach state should be calculated. While Wright et al. (1985) 

suggested 30 days of past wave information was sufficient to estimate the current beach state, present 

results indicate this might be too short and this duration might depend on beach characteristics: 

dissipative beaches [Davidson et al., 2013; Splinter et al., 2014] are characterised with a long response 

time, with up to 2000 days of past wave information used to attain the equilibrium state, whereas only 60 

days are sufficient at intermediate beaches. The paradox is that most of the shoreline models cannot 

predict accurately short-term beach response while they perform well at seasonal or longer term. Future 

work to examine the impact of several model coefficients on timescales of days to weeks using long 

timeseries data records could improve skills to long-term forecast. This means with the assumption that 

the modal beach state evolves with the wave conditions, moderating the wave conditions by water levels 

(modulation breaking by tide morphology) could influence the modal state and certainly improve the 

short term predictions. This is also supported by the results obtained for Jamestown in this study where 

short term beach changes are dominated by water level variations rather than waves. To investigate this 

with further details, the prediction of evolution of alongshore uniform and non-uniform shorelines was 

tested using equilibrium model [Davidson et al., 2013; Splinter et al., 2014; Stokes et al., 2015], 

modulating the incident wave power with different tide levels and sandbar locations. Our results show 

that the inclusion of tides and sandbar in equilibrium beach models could potentially improve 

understanding and predicting their short-term behaviour. Given that tide and sandbar locations have the 

potential to dampen the magnitude of wave action, they stand the potential to affect the beach response 

amplitude and time, and vulnerability to erosion. 

 

7.2.2 Storminess and beach evolution: toward an equilibrium 

Our results point out that rather than individual intensity of storms, their recurrence frequency is key: the 

beach evolves to an energetic equilibrium state under frequent storms. If the interval between two storms 

is low compared to the recovery period, the beach becomes more resilient to the following storms; the 

first storm in clusters of storms has larger impact than following ones. In line with previous works [Yates 

et al., 2009; Castelle et al., 2014], the first winter storms drive the most pronounced erosion because the 

wave energy disequilibrium and erosion potential are large. During the rest of winter season, even if the 

beach is often exposed to severe storms, they do not significantly erode the beach as the disequilibrium 

energy is smaller. However, this is not usually the case as has been observed at other beaches [Ferreira, 

2005; Karunarathna et al., 2014] where storm in sequences seem to enhance the impact of storms with a 
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cumulative effect. Considering variable recurrence frequency, longer storm intervals enhance storm 

impact. The storm impact will also decrease if the frequency of storms evolves under changing climate, or 

under regional modes of climate variability [e.g. NAO; Masselink et al., 2015]. As part of the 

perspectives, the influence of tide variation and sandbars in the cluster study could improve the 

understanding of storm recurrence effect. The discussion above indicates that the resilience of the beach 

much depends on the previous state which is related to the interval of storm recurrence and it also stresses 

the fact that storm studies are still not standardized, but site specific.  

 

7.2.3 Role of bathymetry (barred profile and terrace) and tide in modulating wave action 

Tide influence is important for morphodynamics when RTR increases due to its control over incoming 

wave. The presence of double sandbar on the meso-to-macrotidal Biscarrosse beach induces a threshold 

on wave energy [Senechal et al., 2015] at the shore by height limitation due to breaking over the sandbar 

which modifies onshore wave energy and frequencies: the magnitude of shoreline change may be highly 

controlled by the conjugated effect of sandbar and tide [Senechal et al., 2002; Almar et al., 2010; Stokes 

et al., 2015]. Furthermore, in our study the control of sandbar on the upper beach was observed to 

increase when migrating toward the shore. The large alongshore non-uniformity of the shoreline could 

also reflect the signature of the crescentic shape of the sandbar through an intensified coupling [Castelle 

et et al., 2010; Castelle et al., 2015]. At low-tide terraced micro-tidal beaches such as Jamestown, tide 

controls wave height limitation by breaking over the terrace [Miles and Russel, 2004; Almeida et al., 

2016]. Interestingly, incoming wave energy at the shore is becoming almost independent to offshore wave 

conditions, making the upper beach morphodynamics to be predominantly controlled by tide (cycle neap 

to spring tide, [Abessolo et al., 2016]). 

 

7.2.4 Shoreline change: induced by waves, astronomical or atmospherical tides 

 Shoreline location is also affected at different magnitudes by variations of sea level induced by waves 

(setup) and other components such as astronomical and atmospherical tides previously given. Wave-

induced setup can cause an increase in water level elevations on the order of 20–50% of the offshore 

breaking wave height [Dean and Walton, 2009]. Results in this thesis indicate that wave-induced setup 

influences the shoreline extracttion on the range of 2 to 12 m (6 m in the horizontal). Whereas at mid-

latitude wave-dominated coasts, wave components have a predominant influence on the location of the 

shoreline, this might not be the case elsewhere like in tropical environments (e.g. Jamestown) where the 

sea level at the shore can be predominantly modulated by atmospherical tides (pressure and wind) and 

long term trends (thermal expansion). This might vary at the scale considered (event, seasonal, 

interanual), as pointed out recently by Melet et al. [2016] at Cotonou, Bénin. Long term shoreline wave 
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equilibrium energy models [e.g. Yates et al., 2009] that currently don’t account for this slow variation of 

sea level should be revised in this sense, using a mixture of both waves and sea level variation, to 

overcome the Brunn rule application [Ranasinghe et al., 2012]. The study further stresses the importance 

of tides in generating currents that are important in moulding bar-beach topography in macrotidal settings 

(and not just in modulating water levels that affect bar height and wave dissipation). This is plausible with 

such a long video data set and requires detail investigation.  

   

7.2.5 Natural and anthropized beach dynamics  

Beaches are dynamic but human interests are static. The morphodynamics and influence of anthropogenic 

factors are not discussed in this thesis. However, the two studied sites are anthropized and this might 

influence beach behaviour. For example, sand mining is reported in Ghana, which induces sediment loss 

while beach nourishment is done along Biscarrosse beach. The impact of nourishment or artificial 

stabilization with geotextiles and dune fixation also affects the evolution [Dean and Dalrymple, 2002; 

Van den Berg et al., 2010]. In particular, beach nourishment introduces a perturbation to the nearshore 

system subsequently modified by natural forces in both the cross-shore and longshore directions [Dean 

and and Dalrymple, 2002]. Van den Berg et al.[2010] found that the nourished shoreline retreats initially 

due to cross-shore transport because the nourished profile was steeper than the equilibrium profile. It can 

also cause development of alongshore irregularities and when a dominant littoral drift is present, the 

nourishment can also migrate. Urbanization/fixation of the dune makes it less potential to mobilize sand 

to the beach during major storms [Dean and and Dalrymple, 2002; Almar et al., 2009]. For instance, 

between the natural Truc Vert beach and anthropized Biscarrosse beach, which are only 50 km apart, 

response to storms is different despite similar forcing conditions. Almar et al., 2009 observe that 

Biscarrosse beach sandbar is more static compared to the rapid migration at Truc Vert probably because 

of the upper beach fixation at Biscarrosse. This suggests that when a beach loses its mobility, it might 

also lose the capacities of resilience to extreme events and adapatation to changing storm regimes. 

 

7.2.6 Advances in video imagery 

 

Interest of using the full bathymetric/topographic profiles  

Beach sedimentary system extends from the dune at a point beyond the depth of closure; the shoreline 

being a small piece of the puzzle. The extraction of full bathymetric/topographic profiles from video [e.g. 

Lippmann and Holman, 1989; Plant and Holman, 1997; Stockdon and Holman, 2000; Almar et al., 2011] 

rather than single shoreline could provide useful information on the three dimensional behavior of the 
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beach. Coastal measured data (bathymetry, time-series of waves, coastal use levels, etc.) have often been 

difficult for policy-makers to obtain and use, given the high costs involved and difficulties in their 

application and interpretation. In cases where data are available, it is important that it is sufficiently 

complete to monitor changes that occur from few days up to several years [Osorio et al., 2012]. Extracting 

topography from video images allows a better understanding of the overall beach behavior such as the 

beach state [Peron and Senechal, 2011; Ba and Senechal, 2013] and sediment availability [Stive et al., 

2013; Balouin et al., 2016], which is more insightful than shoreline for coastal management and research. 

Moreover, further investigation on applying bathymetries obtained from video on nearshore modeling is 

suggested to address the potential and limitation of such an approach. Offshore waves can be substantially 

different from nearshore waves, in particular for unknown shelf bathymetry or complex irregular coast, 

like in embayed beaches [Abessolo et al., 2016]. In this sense, using video-derived estimate has major 

interest. To test this feasibility, in this thesis, we have compared video estimation of wave parameters 

(height and periods) with local hindcast (Abessolo et al., 2016; Angnuureng et al., 2016). In addition, 

video has been used to extract water levels (tide and longer components, Abessolo et al., 2016) in order to 

get climate mode signatures, tide components and more local influences. The importance of water level 

has been outlined above. Throughout this thesis, from the French Atlantic coast to the Gulf of Guinea, it 

can be noticed that tide gauge stations are scarce and distant stations are used, which affect the accuracy 

of the analyses, in particular at Biscarrosse where the Arcachon lagoon tidal gauge is used, inducing 

phase and amplitude bias. 

 

Toward continuous coastal monitoring in West African  

At James town beach, only a single camera was mounted to monitor the beach. Throughout this study, it 

is shown that video systems can measure numerous hydrodynamic and morphodynamic parameters. This 

remote sensing technique is cheaper and safer than deploying in-situ instruments. In line with the present 

work, there is a need to create a network of video stations along the coastline of West Africa. So far, only 

three stations are established, in Ghana, Senegal and Benin, and important results were obtained at these 

sites [e.g Almar et al., 2015; Abessolo et al., 2016; Angnuureng et al., 2016]. Further effort is required for 

the validation of most of the morphodynamic and hydrodynamic parameters that are extracted from the 

video images. For example, only a field experiment (Almar et al., 2014) was conducted at Grand Popo, 

Bénin, in order to validate video estimates. At Jamestown, it was possible to extract topographic profiles 

(Figure 7.1) but the validity of these results could not be tested due to lack of beach survey. An important 

application with the video system is through structure from motion aerial photography, which is a 

photogrammetric method for creating three-dimensional models of a feature or topography from 
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overlapping two-dimensional photographs taken from many locations and orientations to reconstruct the 

photographed scene [Green, 2012]. This method could enhance the use of the video techniques.   

 

 

Figure 7.1. Schematic for beach profiles from James tow video images. In a) beach slope is 0.003 with 

narrow beach b) slope is 0.002 while wide beach is observed c) the slope is 0.0018 with very narrow 

beach and d) the steepest slope is 0.0081 with a wider beach. 

 

 

7.2.7 Implications and potential of this thesis for West Africa coastal research and management 

As part of the IRD - ARTS (‘Allocations de Rercherche pour une Thèse au Sud’) programmes, and that of 

the French Embassy in Ghana, designed to strengthen research capacities in West Africa and developing 

countries, this study is relevant to refining integrated coastal zone management strategies. This work 

contributes initially to the effort of coastal observation identified as a priority in the coastal scientific 

community in West Africa. It is anticipated that with some of the tools produced in this study, a video 

database for coastal management could be mapped as done by other programmes. For instance, WACOM 
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(MOLOA), in collaboration with IUCN, collects and provides information on coastal evolution and 

forcing in West Africa: in particular, the vulnerability of these zones to natural hazard and exacerbated 

anthropization. It is therefore proposed that coastal monitoring programmes provide quality and 

continuous information for integrated coastal zone management and guidelines for local/regional policy 

makers in these developing stations. For example, developing early warning systems throughout the coast 

to inform fishermen and coastal communities on extreme sea state, risk of flooding and erosion. This can 

be achieved soon with the propagation of the video-derived real time information through the sponsor of 

MOLOA/Convention d’Abidjan (UEMOA). It is also necessary to build upon a more integrated coastal 

observation network, maintained over long term, which is a challenge in West Africa, in order to assess 

the response of this stretch of coast, with all its diversity and regional climate changes.  

This low-cost video system intended to complement standard survey tools, although has the additional 

benefit of enabling the continuous monitoring of beach meso-scale process (spatial temporal scales in the 

order of km and years) also has the potential to introduce significant amount of errors. The developmnt of 

the video system is based on terrestrial photogrammetric techniques that involves about three main steps 

i) camera calibration where the internal camera parameters are determined in the laboratory using open-

source software ii) the development of image correction subroutines, which aimed to correct the relatively 

large image distortions induced by camera optics; this procedure is revealed to be essential as the system 

is built upon standard non-metric surveillance cameras and iii) the development of image rectification 

subroutines to transform oblique images into planview images, based on external camera orientation 

parameters obtained in the field through the surveying of ground control proints. Also, as previously 

mentioned, the proxies used in the extraction of shoreline also have the potential to be influenced largely 

due to the video way of extraction. At the moment, to have robust results it is proposed that the video 

techniques are substantiated with other methods.  
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APPENDIX A  

Shoreline Evolution under Sequences of Storms From 6-year Video Observation at a Meso-Macrotidal 

Beach (Wang Ping, Rosati Julie and D Cheng Jun. Proceedings of the Coastal Sediments, 35, 2015. World 

Scientific) 
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APPENDIX B 

Noise reduction and removal of outliers 

Noise Reduction 

Signal averaging in signal processing technique applied in time domain, increases the strength of 

a signal relative to noise that is obscuring it. By averaging a set of replicate measurements, the signal-to-

noise ratio, S/N, will be increased, ideally in proportion to the square root of the number of measurements. 

Assuming there is noise Z in a shoreline data signal, the per-sample variance of the noise is given by 

Var (Z) = σ
2
 

Averaging a random variable in definite number, 

  

Var(
1

𝑛
∑ 𝑧𝑖

𝑛
𝑖=1 ) =  

1

𝑛2 𝑉𝑎𝑟(∑ 𝑧𝑖
𝑛
𝑖=1 ) =  

1

𝑛2
∑ 𝑉𝑎𝑟 (𝑧𝑖)𝑛

𝑖=1   

Provided the noise is uncorrelated, the mean of the noise is zero and the variance is constant. Thus 

assuming the noise variance is constant, 

 

Var(
1

𝑛
∑ 𝑧𝑖

𝑛
𝑖=1 ) =

1

𝑛2 𝑛𝜎2 =  
1

𝑛
𝜎2 = 𝑁𝑎𝑣𝑔  

 

This suggests that averaging n realizations of the same, uncorrelated noise reduces noise power by a 

factor of n. 

 

Removing outliers 

In statistics, the standard score is the signed number of standard deviations an observation or datum is 

above the mean. A positive standard score indicates a datum above the mean, while a negative standard 

score indicates a datum below the mean. Standard score z is also called z-score or normal scores. The 

standard scorer of a raw data x is given by  

 

z = 
𝑥−μ 

 σ 
 

 

Where μ is the mean and σ is the standard deviation. In this study, about 99% of shoreline data have a z-

score between -3 and 3. This means if a data point is outside this range, it is considered an outlier or false 

data.  
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