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Résumé

Les travaux présentés dans cette thèse s’inscrivent dans la problématique de la con-
nectivité cérébrale, connectivité tripartite puisqu’elle sous-tend les notions de connec-
tivité structurelle, fonctionnelle et effective. Ces trois types de connectivité que l’on
peut considérer à différentes échelles d’espace et de temps sont bien évidemment liés
et leur analyse conjointe permet de mieux comprendre comment structures et fonctions
cérébrales se contraignent mutuellement. Notre recherche relève plus particulièrement de
la connectivité effective qui permet de définir des graphes de connectivité qui renseignent
sur les liens causaux, directs ou indirects, unilatéraux ou bilatéraux via des chemins de
propagation, représentés par des arcs, entre les nœuds, ces derniers correspondant aux
régions cérébrales à l’échelle macroscopique. Identifier les interactions entre les aires
cérébrales impliquées dans la génération et la propagation des crises épileptiques à par-
tir d’enregistrements intracérébraux est un enjeu majeur dans la phase pré-chirurgicale
et l’objectif principal de notre travail. L’exploration de la connectivité effective suit
généralement deux approches, soit une approche basée sur les modèles, soit une ap-
proche conduite par les données comme nous l’envisageons dans le cadre de cette thèse
où les outils développés relèvent de la théorie de l’information et plus spécifiquement
de l’entropie de transfert, la question phare que nous adressons étant celle de la pré-
cision des estimateurs de cette grandeur dans le cas des méthodes développées basées
sur les plus proches voisins. Les approches que nous proposons qui réduisent le biais au
regard d’estimateurs issus de la littérature sont évaluées et comparées sur des signaux
simulés de type bruits blancs, processus vectoriels autorégressifs linéaires et non linéaires,
ainsi que sur des modèles physiologiques réalistes avant d’être appliquées sur des signaux
électroencéphalographiques de profondeur enregistrés sur un patient épileptique et com-
parées à une approche assez classique basée sur la fonction de transfert dirigée. En
simulation, dans les situations présentant des non-linéarités, les résultats obtenus per-
mettent d’apprécier la réduction du biais d’estimation pour des variances comparables
vis-à-vis des techniques connues. Si les informations recueillies sur les données réelles sont
plus difficiles à analyser, elles montrent certaines cohérences entre les méthodes même si
les résultats préliminaires obtenus s’avèrent davantage en accord avec les conclusions des
experts cliniciens en appliquant la fonction de transfert dirigée.





Mesures Entropiques de
Connectivité avec Application à
l’Épilepsie

Quelle est la structure du cerveau ? Quel en est le fonctionnement physiologique ? Quels
sont les dysfonctionnements qui peuvent le dénaturer et le faire passer d’un état sain
à un état pathologique ? C’est au travers de la connectivité effective que nous allons
chercher des éléments de réponse à ces questions et essayer de comprendre ce que sous-
tend ce concept que nous aborderons sous l’angle de la théorie de l’information et plus
exactement sous celui de l’entropie de transfert et de son estimation.

Chapitre 1. Contexte Clinique

Notre recherche s’inscrit dans le contexte large d’une compréhension, générique et pa-
tient par patient, de certains types d’épilepsie dont les manifestations peuvent être no-
tablement réduites, voire disparaître, à la suite d’un acte chirurgical consistant en une
résection d’une région cérébrale qui doit, pour cela, être extrêmement bien délimitée par
des examens pré-chirurgicaux incluant l’analyse de signaux électroencéphalographiques,
enregistrés en dehors et pendant les périodes critiques. Rappelons que l’épilepsie est une
maladie neurologique relativement répandue qui concerne environ 40 millions de person-
nes dans le monde, dont, en France, 7 individus sur 1000. C’est une affection chronique
qui s’étale dans le temps et se caractérise par la survenue de convulsions (ou crises con-
vulsives) qui sont le résultat de décharges électriques paroxystiques. On distingue deux
types d’épilepsie, l’épilepsie généralisée, lorsque les décharges ont lieu dans l’ensemble
du cortex cérébral et l’épilepsie partielle, lorsque les décharges se produisent dans une
partie bien délimitée du cortex cérébral, et qui sont celles concernées ici. L’épilepsie
est le résultat d’une activation survenant subitement, de manière simultanée et anor-
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malement soutenue, d’un nombre très important de groupes neuronaux, dans certaines
régions du cerveau, dites épileptogènes. Elle peut se traduire par des manifestations
neurologiques telles que des troubles visuels, olfactifs, auditifs, gustatifs, des pertes de
conscience, des convulsions...Si la cause exacte de cette maladie est parfois inconnue, elle
peut être par ailleurs la conséquence d’une tumeur au cerveau, d’un accident cérébral
vasculaire, d’une intoxication, d’une malformation des vaisseaux cérébraux, de séquelles
d’un traumatisme. Différents traitements de la maladie sont envisageables suivant la
nature du syndrome, son origine et son intensité : prise de médicaments, stimulation
électrique, traitement chirurgical. C’est dans ce dernier cas que se positionne ce travail,
lorsque l’épilepsie est pharmaco-résistante (i.e. rebelle à tout traitement médicamenteux)
et qu’il faut s’en remettre à une chirurgie curative et pratiquer une exérèse d’une partie du
cortex cérébral pour supprimer la cause de l’épilepsie. Les patients souffrant d’épilepsies
pharmaco-résistantes bénéficient d’une évaluation pré-chirurgicale visant à délimiter la
Zone Epileptogène (ZE), responsable de la genèse et de la propagation des crises épilep-
tiques. Une question clé dans la prise en charge de ces patients est donc l’identification
de cette ZE. Le service de Neurologie du CHU de Rennes, partenaire du laboratoire, fait
partie des rares unités cliniques pratiquant l’enregistrement de signaux intracérébraux
(recueillis sur des électrodes de profondeur). Bien qu’invasive, cette procédure permet
une exploration plus fine du cerveau, directement au contact des régions épileptiques, en
vue de définir au mieux quelle(s) région(s) exciser. Cette définition implique d’identifier
des interactions pathologiques entre les aires cérébrales impliquées dans la génération et
la propagation des crises. Atteindre ce but à partir d’enregistrements intracérébraux est
un enjeu clinique majeur dans la phase pré-chirurgicale et correspond à la motivation
principale de notre travail. Etablir ainsi un graphe de connectivité cérébrale à partir
de signaux enregistrés en profondeur ou en surface requiert l’application de techniques
avancées de traitement du signal. Cette connectivité se décline en trois types. La con-
nectivité anatomique (ou structurelle) réfère à l’ensemble des connexions physiques (i.e.
axonales) liant des groupes neuronaux plus ou moins grands (de la connexion synaptique
entre neurones individuels à l’analyse de paquets de connexions ou d’ensembles synap-
tiques liant des populations neuronales, voire à grande échelle, à l’analyse des connexions
vues comme des chemins liant les grandes régions du cerveau). La connectivité fonction-
nelle repose, quant à elle, sur l’étude des liens statistiques entre des signaux reflétant des
activités cérébrales dans des régions distinctes, sans ambitionner de mettre en évidence
des influences causales. Elle renvoie ainsi au concept de corrélation spatio-temporelle en-
tre activités résultant d’interactions neuronales dynamiques permises par les connexions
anatomiques permanentes. Bien évidemment, cette connectivité fonctionnelle entre deux
aires cérébrales n’implique pas nécessairement l’existence d’une connexion anatomique
directe entre elles, une corrélation mesurée pouvant être le résultat d’une médiation par
une structure tierce. Plus avant, la connectivité effective est une notion plus forte en ce
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sens qu’elle s’intéresse à l’organisation des flux d’information entre régions cérébrales et
est définie comme l’influence directe ou indirecte exercée par un système neuronal sur un
second système.

Ces trois types de connectivité que l’on peut considérer à différentes échelles d’espace
et de temps sont bien évidemment liés et leur analyse conjointe permet de mieux com-
prendre comment structures et fonctions cérébrales se contraignent mutuellement. Notre
problématique relève plus particulièrement de la connectivité effective qui permet en-
tre autres de définir des graphes de connectivité renseignant sur les liens causaux, di-
rects ou indirects, unilatéraux ou bilatéraux via des chemins de propagation (représen-
tés par des arcs) entre les nœuds, ces derniers correspondant aux régions cérébrales à
l’échelle macroscopique. Au-delà de la connectivité fonctionnelle qui renvoie à la notion
de couplage statistique entre signaux, il s’agit donc d’établir des graphes orientés, dans
lesquels les éléments constitutifs sont pondérés par des coefficients traduisant la densité
ou l’efficacité des connexions, ces graphes décrivant des flux d’informations entre popula-
tions impliquées. L’enjeu est donc de comprendre les fonctions du cerveau non seulement
en identifiant correctement les régions activées mais aussi en décelant les interactions
fonctionnelles au cours du temps parmi les ensembles neuronaux stimulés éventuellement
éloignés. Notre questionnement concerne donc le sens de circulation de l’information
entre différents sites, sens pouvant évoluer durant le décours temporel d’une crise. D’un
point de vue applicatif (investigation clinique) ce à quoi nous voulons répondre à long
terme se résume à : quelles sont les structures impliquées dans les activités neuronales au
cours des crises ? Est-il possible de détecter des structures dominantes dans les réseaux
épileptogènes ? Une réponse à ces questions doit dégager la route d’une compréhension
des mécanismes mis en jeu au cours d’activités épileptiques afin d’éradiquer la survenue
des crises de manière adaptée, patient par patient.

En amont de ces visées cliniques, la détection de causalités significatives à partir de
signaux disponibles oblige à recourir à des techniques spécifiques de traitement du signal
qui correspondent, après définition de certains indices théoriques candidats à exprimer
cette causalité, à la production d’algorithmes d’estimation de ces indices, associés à
une mesure de confiance statistique, généralement en termes de biais et de variance.
Différents indices et algorithmes sont disponibles dans la littérature, concernant aussi
bien l’analyse de mécanismes cérébraux, que celle d’autres phénomènes physiologiques,
sans compter avec de nombreuses autres applications, comme par exemple l’analyse de
systèmes dynamiques non linéaires couplés en physique. Une grande partie des résultats
publiés dans ce champ sont validés au moyen de simulations de systèmes dynamiques
aléatoires, linéaires ou non. Deux questionnements nous ont semblé a priori légitimes. Le
premier concerne l’amélioration des estimateurs d’un type particulier d’indice, l’entropie
de transfert, qui tout à la fois présente des vertus de grande généralité mais également
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l’inconvénient de souffrir de biais d’estimation notable. Le deuxième concerne l’apport
concret de certaines améliorations d’estimateurs d’entropie de transfert, parfois obtenues
au prix d’une complexité calculatoire accrue, quand on les applique aux signaux réels
rencontrés dans le domaine de l’épilepsie, bien connus pour leur nature complexe.

Chapitre 2. Etat de l’Art

L’exploration de la connectivité effective suit généralement deux approches, soit une
approche conduite par les données (incluant les méthodes de type “causalité de Granger”
ou basées sur la théorie de l’information) soit une approche basée sur les modèles comme
il en va pour la modélisation causale dynamique (Dynamic Causal Modeling (DCM)).

L’idée de base pour la première approche revient à Wiener, bien que connue sous le
nom de causalité de Granger (il est de fait plus correct de parler de causalité de Wiener-
Granger puisqu’elle fut d’abord introduite par Wiener). Celle-ci consiste à considérer
qu’un signal Y cause un signal X si Y contient des informations permettant d’affiner
la prédiction de X (où la prédiction est à structure imposée, linéaire, et optimale au
sens d’une variance d’erreur de prédiction minimale) relativement à une prédiction basée
uniquement sur le passé de X et éventuellement sur d’autres variables contextuelles.
Autrement dit, selon Granger, X est causé par Y si la prise en compte supplémentaire de
valeurs passées de Y permet de mieux prédire les valeurs de X qu’en se basant uniquement
sur les valeurs passées de X .

Depuis son introduction en économétrie par Granger en 1969, cette notion de causal-
ité linéaire en moyenne quadratique a bien évidemment fait l’objet d’un certain nombre
de débats, entre autres sur son insuffisance à capter les liens de causalité indirects pou-
vant exister entre deux variables, dès lors qu’il existe au moins une troisième série dans
le système. S’en sont ensuivies les questions de mesures de causalité conditionnelle dans
le domaine temporel, étendues par la suite au domaine fréquentiel. Si la causalité de
Granger est devenue une mesure très largement utilisée, elle n’en reste pas moins per-
fectible dans des situations où les signaux traités s’avèrent complexes, et des extensions
de cette mesure dans des situations présentant des non-linéarités ont déjà été envisagées.
Plus récemment mais souvent dans la même lignée, de nouvelles approches fréquentielles
ont été proposées et largement utilisées.

Parallèlement à ces méthodes conduites par les observations, se sont développées des
méthodes basées sur des modèles, qui tiennent compte de certaines hypothèses a priori
portant sur les mécanismes physiologiques sous-jacents, la plus connue étant sans doute
l’approche de modèle causal dynamique ainsi nommée et popularisée dans les années
2000 par Friston, initialement pour l’analyse de réseaux cognitifs. Pour cela les popula-
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tions neuronales a priori concernées dans le réseau étudié sont modélisées par des sys-
tèmes d’équations différentielles stochastiques non linéaires incluant des paramètres phys-
iologiquement significatifs et dont les interactions sont représentées par des paramètres
dits de connectivité. Les signaux d’observation, chacun attaché à l’une des populations,
sont également modélisés, ce qui constitue la sortie du modèle à confronter aux obser-
vations. Pour décider de la topologie d’un graphe de connectivité effective entre les
populations du réseau, on introduit autant de modèles du réseau que de graphes orientés
candidats. Une procédure (coûteuse en temps de calcul) d’estimation paramétrique est
ensuite appliquée à chacun des modèles envisagés, procédure qui délivre des valeurs de
paramètres de populations et de connectivité. Finalement une procédure statistique de
sélection de modèle élit le modèle le plus vraisemblable et donc le graphe de connectivité
correspondant. Notons cependant que la connaissance d’un graphe statique (orienté) de
connectivité est par essence qualitative et ne quantifie pas en elle-même les transferts dy-
namiques d’information entre populations. Une évaluation de ces derniers est théorique-
ment possible, mais nécessiterait une reconstruction des trajectoires d’état pour chaque
population, ce qui finit par constituer une méthodologie lourde, d’où l’intérêt a priori
des méthodes dirigées par les données qui sont les seules considérées dans cette thèse,
particulièrement celles qui ont été proposées pour permettre l’analyse de dynamiques non
linéaires. Ces dernières comprennent les méthodes s’appuyant sur des régressions non
linéaires paramétriques ou pseudo non paramétriques (méthodes à noyau) et les méthodes
non paramétriques dites entropiques popularisées depuis l’introduction par Schreiber de
l’entropie de transfert en 2002, pour laquelle on peut établir une relation avec l’indice
de causalité de Granger quand les observations sont assimilées à des processus aléatoires
conjointement gaussiens. L’entropie de transfert est définie initialement seulement pour
une paire (ordonnée) de signaux. Il s’avère cependant que cette méthode peut s’étendre
sans difficulté, du moins du point de vue de la définition d’un indice théorique, à une
forme conditionnelle si tant est que l’on cherche à exclure (ou plus justement à tenir
compte de) l’influence d’un signal (ou d’un groupe de signaux) tiers. L’entropie de trans-
fert sera très largement développée dans le chapitre suivant puisqu’elle est au cœur de ce
travail de recherche.

Chapitre 3. Méthodes et Matériels

Comme mentionné précédemment, les méthodes basées sur la théorie de l’information,
et plus particulièrement l’entropie de transfert, jouent un rôle essentiel dans la détec-
tion d’influences causales à partir de signaux d’observation. Lorsque ces derniers sont
non stationnaires et que chaque mesure doit s’effectuer sur un intervalle d’observation
relativement court (typiquement de l’ordre d’une à quatre secondes), la question qui se
pose d’ores et déjà est la précision des estimations produites. Plus exactement, la pierre
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d’achoppement dans cette estimation réside dans le biais qui lui est attaché. Nos travaux
s’inscrivent donc dans cette problématique, ce chapitre étant consacré à (i) définir les
quantités entropiques concernées d’un point de vue formel, (ii) présenter des estima-
teurs proposés dans la littérature pour ces quantités, et enfin (iii) proposer de nouveaux
estimateurs conçus pour abaisser le biais, la stabilité de la variance n’étant contrôlée
qu’expérimentalement.

Dans ce chapitre, nous donnons la définition des différentes quantités entropiques
(des fonctionnelles à valeurs réelles admettant en argument une ou plusieurs distribu-
tions de probabilité) impliquées dans notre travail, nommément l’entropie, les entropies
conjointe et conditionnelle, l’information mutuelle, les entropies de transfert standard et
conditionnelle. Des points communs entre le calcul de l’information mutuelle et celui de
l’entropie de transfert sont soulignés.

Puis, avant de nous focaliser sur l’entropie de transfert elle-même, nous commençons
par rappeler les techniques les plus utilisées dans l’estimation de l’entropie, à savoir
les approches à noyaux et celles basées sur les plus proches voisins. Ces dernières font
l’objet de nos développements ultérieurs. Elles impliquent l’utilisation d’une distance
dans l’espace des observations déduite d’une norme qui doit être spécifiée, en général la
norme du maximum ou la norme euclidienne. Ainsi, les deux estimateurs d’entropie qui
sont considérés par la suite peuvent être implémentés tant pour la norme euclidienne
que la norme du maximum. Toutefois, par la suite, sera essentiellement considéré le cas
de cette dernière norme, pour laquelle une boule formelle correspond concrètement à un
cube. Ces deux estimateurs issus de la littérature sont celui de Kozachenko-Leonenko
et celui de Singh, menant à des estimations très proches pour de longues séquences
d’observations.

Ce chapitre se poursuit alors par l’estimation de l’information mutuelle qui peut
s’écrire comme une somme algébrique d’entropies conjointe et marginales. Cette écriture
peut faire espérer une compensation partielle des biais à condition qu’ils soient du même
ordre de grandeur. Pour que cette dernière condition soit remplie, la première stratégie
adoptée par Kraskov consiste à fixer le nombre k de voisins dans l’espace joint (comme
d’ordinaire) et d’exporter dans les espaces marginaux la distance entre le point courant
et son kème plus proche voisin, i.e. le rayon du voisinage-boule dont le volume intervient
dans l’estimation, pour y construire des boules de même rayon que dans l’espace d’origine.
Dans une deuxième étape, Kraskov suggère de reconsidérer le voisinage dans l’espace joint
en remplaçant l’hyper-cube par un hyper-rectangle et en exportant cette fois deux valeurs
de distance distinctes dans les deux espaces marginaux, respectivement, conduisant à
l’écriture d’un second estimateur de l’information mutuelle.

La suite de ce chapitre pose logiquement la question de l’estimation de l’entropie
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de transfert en présentant tout d’abord deux estimateurs issus de la littérature basés
sur les travaux précités de Kraskov et en ouvrant sur une discussion qui pose les bases
des améliorations qui seront proposées pour les estimateurs déjà existants, soit plus
précisément :

- (i) considérant l’estimation de l’information mutuelle sous la forme d’une somme
algébrique d’entropies, il est possible d’exprimer le biais résultant comme une même
combinaison des biais attachés à leurs estimations respectives, et un choix judicieux des
rayons des voisinages dans les espaces marginaux peut permettre de le réduire (c’est
la démarche suivie empiriquement par Kraskov qui l’a appliquée au cas de la norme du
maximum). Toutefois, cette procédure requiert de disposer d’une expression théorique du
biais (pour une norme quelconque) et de pouvoir en déduire les rayons des boules dans les
espaces marginaux pour l’annuler ou du moins l’atténuer. Pour cela, les valeurs optimales
des rayons marginaux doivent pouvoir s’exprimer en fonction des seules informations
disponibles, ce qui exclut de les faire dépendre des fonctions de densité de probabilité et
de leurs dérivées ;

- (ii) une seconde idée pour réduire individuellement chaque biais est de considérer
comme voisinages les hyper-rectangles de volume minimal incluant les voisins sélection-
nés, aussi bien dans l’espace joint que dans les espaces marginaux.

Ces éléments de réflexion sont à l’origine des améliorations proposées dans la suite.

Ainsi, dans un premier temps, nous introduisons une forme analytique du biais pour
l’estimation de l’entropie individuelle basée sur un développement de Taylor à l’ordre
deux, utilisable aussi bien pour l’approche d’estimation de densité de probabilité par
noyau que pour l’approche des k plus proches voisins, à la seule condition que le rayon
de la boule-voisinage ne soit pas trop grand. Cette forme analytique du biais est donnée
à la fois dans le cas de la norme euclidienne et de la norme du maximum. Dans le cas de
signaux indépendants, une relation est alors établie entre les rayons des voisinages dans
les espaces marginaux et celui déterminé par l’emplacement du kème plus proche voisin
dans l’espace joint, pour chacune de ces deux normes, afin d’annuler le biais à la fois
dans l’estimation de l’information mutuelle et de l’entropie de transfert. Cependant, la
condition d’indépendance s’avère, dans le cas de l’entropie de transfert, peu réaliste, car
elle implique pratiquement que le signal subissant potentiellement une influence causale
soit une suite de variables indépendantes et identiquement distribuées (un bruit blanc).
Même si ce ne sera pas le cas dans ce travail, la stratégie proposée pourrait être généralisée
en vue d’être appliquée à l’estimation de l’entropie de transfert conditionnelle. Sous
l’hypothèse de non indépendance, il n’est plus possible d’annuler le biais avec la même
stratégie et notre choix s’est porté vers des combinaisons linéaires pondérées d’estimateurs
que ce soit pour le calcul de l’entropie, de l’information mutuelle ou de l’entropie de
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transfert. Il s’agit en fait de faire intervenir dans les différentes grandeurs des nombres
de voisins variables différemment pondérés et de trouver le meilleur compromis. Cette
procédure conduit aux estimateurs que nous dénommons “estimateurs composés”.

Dans une dernière partie, nous repartons des estimateurs d’entropie proposés d’une
part par Kozachenko-Leonenko, et d’autre part par Singh, dont nous résumons tout
d’abord les développements mathématiques. Nous proposons ensuite de modifier ces
deux estimateurs de la même manière, i.e. en substituant au voisinage hyper-cubique
de volume minimal incluant les k plus proches voisins un voisinage hyper-rectangulaire
de volume minimal incluant ces mêmes voisins. Avec ce type de voisinage la probabilité
d’avoir plus d’un point sur la frontière (en l’occurrence 2 points dans le cas à deux dimen-
sions) est strictement positive, ce qui nécessite de reprendre les développements mathé-
matiques précédents pour ce nouveau type de voisinage. Finalement, nous obtenons deux
nouveaux estimateurs d’entropie, le premier étendant celui de Kozachenko-Leonenko et le
second l’estimateur d’entropie de Singh. Ce dernier nécessite de déterminer le nombre de
points sur les frontières des hyper-rectangles sans que cela présente un inconvénient pra-
tique. Ces deux estimateurs d’entropie sont ensuite utilisés pour proposer respectivement
deux nouveaux estimateurs d’entropie de transfert.

Chapitre 4. Résultats Expérimentaux

Dans le chapitre précédent, nous avons proposé différentes stratégies pour l’estimation de
l’information mutuelle et de l’entropie de transfert qu’il s’agit d’évaluer en considérant
différentes situations, incluant signaux indépendants ou dépendants, relations linéaires
et non linéaires. Les premières simulations portent sur des processus blancs gaussiens
mais aussi des modèles vectoriels autorégressifs parfois non linéaires. Ces choix ont été
conduits d’une part pour disposer autant que faire se peut de valeurs de référence et
d’autre part pour une certaine représentativité de caractéristiques pouvant être celles
de signaux réels. Dans un second temps, nous nous sommes intéressés à un modèle
physiologique de populations neuronales potentiellement couplées. Pour ce modèle pour
lequel nous ne disposons pas de valeur théorique de référence, des tests statistiques sont
conduits pour valider nos approches.

Concernant les performances des différents estimateurs d’information mutuelle, comme
attendu, le premier modèle (modèle 1) testé sur deux signaux indépendants met en évi-
dence la supériorité des estimateurs récemment proposés dans la litterature comparés à
ceux utilisant le même nombre de voisins. Dans le cas de deux signaux dépendants, deux
autres modèles sont testés, le premier (modèle 2) pour considérer l’effet de matrices de
covariance des observations non diagonales, le second (modèle 3) pour mettre en exergue
“le fléau de la dimension”. Dans les deux cas, les nouveaux estimateurs présentent un
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meilleur comportement au regard des estimateurs issus de la littérature, pour les deux
normes, ce résultat étant d’autant plus vrai que la corrélation entre signaux est élevée,
leur longueur faible et la dimension importante.

Pour ce qui est de l’entropie de transfert, le premier modèle testé (modèle 4) simule
une suite d’observations (chacune rassemblant une valeur à prédire de X , un vecteur
correspondant à son passé et un vecteur correspondant au passé de Y ) indépendantes,
pour lesquelles les matrices de covariance ne sont pas nécessairement diagonales. Les
deux estimateurs proposés sont testés et comparés à l’indice de causalité de Granger ainsi
qu’aux algorithmes issus de la littérature (l’algorithme standard et l’algorithme étendu).
Pour des dimensions faibles et un nombre de voisins suffisant, les algorithmes proposés
surpassent les autres estimateurs d’entropie de transfert mais s’avèrent moins performants
que l’indice de Granger. Les deux modèles suivants (modèles 5 et 6) décrivent des signaux
autorégressifs linéaires respectivement au nombre de 2 et 3 présentant des connectivités
bidirectionnelles pour chaque paire de signaux. Là encore, l’indice de Granger se révèle
le plus pertinent au prix d’une variance parfois légèrement accrue. Toutefois, parmi les
estimateurs d’entropie de transfert, les nouveaux estimateurs ont des comportements
extrêmement corrects, l’un d’eux se montrant, de façon quasi-systématique, plus efficace
que ceux issus de la littérature. L’intérêt des estimateurs d’entropie de transfert trouve
son sens dans les résultats rapportés sur le modèle suivant (modèle 7) qui présente de
fortes non-linéarités. Dans ce cas, l’indice de Granger est mis en échec alors que les
différents estimateurs d’entropie de transfert continuent à bien se comporter et à tendre
vers la valeur théorique pour des longueurs suffisantes de signaux.

Pour finir, quatre estimateurs de transfert d’information (indice de Granger, algo-
rithmes standard et étendu, et premier estimateur d’entropie de transfert proposé) sont
appliqués sur le modèle physiologique évoqué plus haut après avoir vérifié la pertinence
des estimateurs d’information mutuelle sur la dépendance ou non des populations neu-
ronales générées. Il s’avère que l’indice de Granger et le nouvel estimateur sont les seuls
à distinguer avec pertinence les trois situations considérées (populations indépendantes,
connectivité unidirectionnelle et bidirectionnelle).

En conclusion de ce chapitre, pour l’information mutuelle, les résultats sur signaux
simulés prouvent l’efficacité de la stratégie proposée dans le chapitre précédent. Quant à
l’entropie de transfert, si l’un des estimateurs se trouve en difficulté lorsque l’on considère
un nombre de voisins faible, les deux estimateurs développés apparaissent appropriés dans
une vision de réduction du biais d’estimation, d’autant plus en présence de non-linéarités,
et ce pour des temps de calculs comparables à ceux demandés par les estimateurs déjà
existants.

9



Thèse en français

Chapitre 5. Analyse de Signaux Réels

Les estimateurs proposés dans le chapitre 3 s’étant avérés pertinents quand on les a
évalués sur des simulations (chapitre 4), l’objectif du présent chapitre est de les confron-
ter aux signaux réels enregistrés sur un patient épileptique, afin de vérifier si certaines
hiérarchies de performances se maintiennent. Ces signaux réels proviennent d’un su-
jet souffrant d’une épilepsie temporale trouvant son origine dans l’hémisphère gauche et
pour laquelle nous disposons de l’expertise de cliniciens. Les signaux à traiter s’avèrent
nettement plus complexes que ceux produits par les modèles décrits dans le chapitre
précédent, ne serait-ce que par leur caractère non stationnaire. Cette première analyse
a conduit à des catégorisations et facilité l’analyse ultérieure de mesures de causalité.
Dans ce cadre, nous avons choisi de tester différents indices, à commencer par l’indice
de causalité de Granger. Comme mesures de transfert d’entropie, nous avons retenu les
algorithmes issus de la littérature (algorithmes standard et étendu) ainsi que l’un des
deux estimateurs proposés dans le chapitre 3. Après une revue de la littérature sur les
outils les plus communément utilisés pour détecter les voies d’initiation et de propaga-
tion de l’épilepsie, nous avons également choisi de tester la fonction de transfert dirigée
qui a souvent fait l’objet d’applications dans ce domaine. De cette mise en compétition,
il ressort que, parmi les estimateurs de transfert d’entropie, celui proposé dans cette
thèse est le plus efficient. Néanmoins, sur l’ensemble des estimateurs testés, malgré une
certaine variabilité, la fonction de transfert dirigée se révèle la plus pertinente.

Cette thèse se conclut par une discussion sur les différentes contributions apportées
en indiquant dès à présent des améliorations possibles des estimateurs proposés et ouvre
des perspectives de travail sur ce vaste domaine de la connectivité effective.
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Abstract

The work presented in this thesis deals with brain connectivity, including structural
connectivity, functional connectivity and effective connectivity. These three types of
connectivities are obviously linked, and their joint analysis can give us a better un-
derstanding on how brain structures and functions constrain each other. Our research
particularly focuses on effective connectivity that defines connectivity graphs with in-
formation on causal links that may be direct or indirect, unidirectional or bidirectional.
The main purpose of our work is to identify interactions between different brain areas
from intracerebral recordings during the generation and propagation of seizure onsets,
a major issue in the pre-surgical phase of epilepsy surgery treatment. Exploring ef-
fective connectivity generally follows two kinds of approaches, model-based techniques
and data-driven ones. In this work, we address the question of improving the estima-
tion of information-theoretic quantities, mainly mutual information and transfer entropy,
based on k-Nearest Neighbors techniques. The proposed approaches we developed are
first evaluated and compared with existing estimators on simulated signals including
white noise processes, linear and nonlinear vectorial autoregressive processes, as well as
realistic physiology-based models. Some of them are then applied on intracerebral
electroencephalographic signals recorded on an epileptic patient, and compared with
the well-known directed transfer function. The experimental results show that the
proposed techniques improve the estimation of information-theoretic quantities for simu-
lated signals, while the analysis is more difficult in real situations. Globally, the different
estimators appear coherent and in accordance with the ground truth given by the clinical
experts, the directed transfer function leading to interesting performance.





Contents

Table of Contents

List of Abbreviations V

Introduction 1

1 Research Background 5

1.1 Epilepsy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.2 Epilepsy Treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Human Brain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.2 Brain Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 State of the Art 17

2.1 Introduction to Effective Connectivity . . . . . . . . . . . . . . . . . . . . 17

2.2 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Time Domain Wiener-Granger Method . . . . . . . . . . . . . . . . 19

2.2.2 Spectral Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.3 Model-based Methods . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.4 Information Theory Measurement . . . . . . . . . . . . . . . . . . . 27

I



Contents

3 Methods and Materials 31

3.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.1 Introduction to Information-theoretic Quantities . . . . . . . . . . 32

3.1.2 The Estimator Structures for MI and TE . . . . . . . . . . . . . . 43

3.2 Previous Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.1 Estimation of Entropy . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.2 Estimation of Mutual Information . . . . . . . . . . . . . . . . . . 50

3.2.3 Estimation of Transfer Entropy . . . . . . . . . . . . . . . . . . . . 52

3.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3 First Improvement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.1 New Bias Expression for the Plug-in Entropy Estimator . . . . . . 57

3.3.2 Bias Reduction of MI/TE Estimators Based on the New Bias Ex-
pression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3.3 Bias Reduction for Dependence Situations . . . . . . . . . . . . . . 66

3.4 Second Improvement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.4.1 Original k-Nearest Neighbors Strategies . . . . . . . . . . . . . . . 69

3.4.2 From Square to Rectangular Neighboring Region for Entropy Es-
timation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.4.3 Extension of the Kozachenko–Leonenko Method . . . . . . . . . . . 75

3.4.4 Extension of Singh’s Method . . . . . . . . . . . . . . . . . . . . . 76

3.4.5 Computation of the Border Points Number and of the (Hyper-)
Rectangle Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.4.6 New Estimators of Transfer Entropy . . . . . . . . . . . . . . . . . 81

3.5 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4 Experimental Results 87

4.1 Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.1.1 Abstract Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.1.2 Physiology-based Model . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.2.1 Results on Mutual Information . . . . . . . . . . . . . . . . . . . . 97

4.2.2 Results on Transfer Entropy . . . . . . . . . . . . . . . . . . . . . . 101

4.2.3 Results on the Physiology-based Model . . . . . . . . . . . . . . . . 107

II



Contents

4.2.4 Computational Costs . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.3 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5 Analysis of Real Signals 113

5.1 Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.2.1 Local Connectivity Index . . . . . . . . . . . . . . . . . . . . . . . 116

5.2.2 Experimental Protocol . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.4 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Conclusion 123

Appendices 127

A Derivation of Equ. (3.89) . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

B Proof of Property 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

C Derivation of Equ. (3.169) . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

D Derivation of Equ. (3.170) . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

E AIC and BIC Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

F Development of the Theoretical MI Value for Model 2 . . . . . . . . . . . 134

G Development of the Theoretical MI Value for Model 3 . . . . . . . . . . . 135

H Power Spectral Densities of the Signals . . . . . . . . . . . . . . . . . . . . 136

I Comparison between Entropy Estimators . . . . . . . . . . . . . . . . . . . 139

J DTF Algorithm Used in Chapter 5 . . . . . . . . . . . . . . . . . . . . . . 141

K Independence Test for Granger Causality . . . . . . . . . . . . . . . . . . . 142

Bibliography 144

III





List of Abbreviations

• ADTF: Adaptive Directed Transfer Function

• AEDs: AntiEpileptic Drugs

• AIC: Akaike’s Information Criterion

• AR: AutoRegressive

• BIC: Bayesian Information Criterion

• CMI: Conditional Mutual Information

• CSE: Causation Entropy

• CTE: Conditional Transfer Entropy

• CT: Computed Tomography

• DCM: Dynamic Causality Modeling

• DI: Directed Information

• DTE: Decomposed Transfer Entropy

• DTF: Directed Transfer Function

• ECoG: ElectroCorticoGram

• EEG: ElectroEncephaloGraphy

• EGCI: Extended Granger Causality Index

• EPDC: Extended Partial Directed Coherence

• EZ: Epileptogenic Zone

V



List of Abbreviations

• fMRI: functional Magnetic Resonance Imaging

• FDA: Food and Drug Administration

• gOPDC: generalized Orthogonalized Partial Directed Coherence

• GC: Granger Causality

• GPDC: Generalized Partial Directed Coherence

• iEEG: intracranial (or intracerebral) ElectroEncephaloGraphy

• IID: Independent and Identically Distributed

• ILAE: International League Against Epilepsy

• IP: Inhomogeneous Polynomial

• kNN: k-Nearest Neighbors

• KDE: Kernel Density Estimation

• KGC: Kernel Granger Causality

• KSG: Kraskov-Stögbauer-Grassberger

• LCI: Local Causality Index

• LLNAR: Local Linear Nonlinear AutoRegressive

• MEG: MagnetoEncephaloGraphy

• MI: Mutual Information

• MRI: Magnetic Resonance Imaging

• MSI: Magnetic Source Imaging

• MVAAR: MultiVariate Adaptive AutoRegressive

• MVAR: MultiVariate AutoRegressive

• NARX: Nonlinear AutoRegressive with eXogenous inputs

• NLGC: NonLinear Granger Causality

• PC: Partial Correlation

• PDC: Partial Directed Coherence

• PET: Positron Emission Tomography

VI



List of Abbreviations

• PMI: Partial Mutual Information

• PSD: Power Spectrum Density

• PTE: Partial Transfer Entropy

• RKHS: Reproducing Kernel Hilbert Spaces

• SDE: Stochastic Differential Equation

• SPECT: Single-Photon Emission Computed Tomography

• STE: Symbolic Transfer Entropy

• TDMI: Time-Delayed Mutual Information

• TE: Transfer Entropy

• TLMI: Time-Lagged Mutual Information

• VAR: Vectorial AutoRegressive

• VEPs: Visual Evoked Potentials

• VNS: Vagus Nerve Stimulation

• WGC: Wiener-Granger Causality

VII





Introduction

The detection of causal relations plays a fundamental role in many domains, where it is
important to identify causal relations between a set of subsystems.

This work takes place in the context of human epileptic seizures. Epilepsy is a
neurological disease, which is the fourth most common neurological disorder and affects
people of all ages. This disease is characterized by the repetition of seizures, called ictal
periods, whose frequency and duration are variable. Many epileptic patients may have
other symptoms of neurological problems as well. In about 30% of cases, the patients do
not successfully respond to anti-seizure drug therapy, or in other words, the epilepsies
remain drug-resistant. In this case, surgery is an alternative for those patients, whose
seizures cannot be controlled by medications.

The use of epilepsy surgery increased in the 1980s and 90s, which reflects its effec-
tiveness as an alternative to seizure medicines. However, for this kind of treatment,
there is no guarantee of success in controlling seizures, and the benefits of surgery should
be weighed carefully against its risks. For a given patient, the foremost difficulty is to
determine the epileptogenic zone which is responsible for the seizure, and the surgery
should be carried out under the constraint that post-surgical deficits (sensitive, driving
or cognitive) are limited. The initiation and the propagation of epileptic activities often
take place in a network of neuronal ensembles which are distributed in distant structures.
Now, the localization and the characterization of these distributed epileptogenic networks
are known as difficult tasks but they are essential to expect eradicating seizures.

Technically, these tasks imply to adopt some quantitative description of causality and
to develop algorithms aimed at estimating the strength of influence between different
subsystems. In this work, we mainly focus on information-theoretic measures, such as
mutual information and transfer entropy, which consider no assumption on the underlying
model. These two quantities are generally estimated using a sum of individual entropies.
A drawback of these measures is that it is difficult to obtain an accurate estimation with
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a limited number of samples, which is common in real applications. Moreover, difficulty
arises when those information-theoretic quantities are calculated in high-dimensional
spaces, that is commonly called the “curse of dimensionality”. So, it is meaningful to
make effort to improve the estimation of these quantities. To this end, we consider two
different ways in this work, (i) quantify the estimation bias of each individual entropy,
and try to cancel out their combination in the summation, (ii) reduce the bias of each
individual entropy estimation so as to decrease the total bias in the summation.

In this thesis, we first give some technical discussions on the estimation of information-
theoretic quantities, and then apply different causality detection measures to real epileptic
signals.

The remainder of this thesis is organized as follows.

Chapter 1 is a general introduction to the research background. In this chapter,
firstly, we make a short summary of epilepsy and its treatment, including both medication
and surgery. The structure of the human brain is recalled and different types of brain
connectivity are presented.

In this work, we are interested in effective connectivity, which plays an important role
in the treatment of epilepsy. Chapter 2 presents a detailed study of different effective
connectivity estimation methods. We classify the measurements of effective connectiv-
ity into two classes, (i) data-driven methods, including Granger causality related and
information-theoretic approaches which are the only ones to be addressed in this thesis,
and (ii) model-based methods such as dynamic causal modeling (DCM).

Chapter 3 concerns the estimation of information-theoretic quantities. After a de-
tailed summary of previous works, two novel improvements are deeply investigated. First
of all, a novel analytical form of the bias for the estimation of entropy is presented. Then,
we apply it into the estimation of mutual information and transfer entropy. Secondly,
we discuss the estimation of information-theoretic quantities using the maximum norm.
For the standard maximum norm, the determined region around the center point is a
(hyper-)cube, where the sizes in all directions are identical. In this chapter, we propose
to release this restriction, and use a (hyper-)rectangle instead of a (hyper-)cube, so that
the sizes in the different directions can be of different lengths. In this chapter, several
new mutual information and transfer entropy estimators are proposed.

In chapter 4, the performance of the different algorithms we propose is evaluated
through numerical simulations under different situations, including independent and de-
pendent signals, linear and nonlinear relations. Different types of models are tested,
including white processes, linear vectorial autoregressive models, nonlinear models as
well as a physiology-based model.
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In chapter 5, we analyze intracranial (or intracerebral) electroencephalographic
(iEEG) signals recorded in the cerebral cortex of an epileptic patient. Both Granger
causality and different transfer entropy estimators are tested on these epileptic signals.
Since the directed transfer function is a measure widely used in recent literature in
the analysis of electroencephalographic (EEG) datasets, we decide to compare a local
connectivity index based on our two-channel algorithms.

To conclude this thesis, we summarize our contributions to the field of the effec-
tive connectivity analysis and possible directions for further work are also addressed for
essential improvement in clinical context.
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Chapter 1
Research Background

Our research is performed in the context of epilepsy surgery and, in this chapter, we give
a brief introduction to this field. In section 1.1, we present epilepsy and briefly describe
the human brain in section 1.2 (including both external and internal morphologies), and,
finally, in section 1.3, launch a short discussion on human brain connectivities.

1.1. Epilepsy

1.1.1. Introduction

Epilepsy [Magiorkinis 2010] is a group of neurological disorders, and it includes many
different manifestations depending on various factors, like the age of the individual, the
part of the brain that is affected, the underlying causes, among others [Smithson 2012].
This kind of disease has a very long history, and the first known detailed record of the
disorder can be traced back to more than 3,000 years ago, which is written in a Babylonian
cuneiform medical text [WHO 2005].

Nowadays, epilepsy is one of the most serious common neurological diseases, and
there is a growing recognition of its harm on modern society. Worldwide, about 50
million people (1% of the world’s total population) are affected by epilepsy, and nearly
80% of cases occur in the developing countries. In 1990, about 111,000 people died from
epilepsy, and this number increased to 116,000 in 2013 [Naghavi 2015]. In Europe, due
to epilepsy, the direct economic lost is around 15.5 billion Euros in 2004 [Nunes 2012]. It
also impairs the quality of people’s life; as a matter of fact, in many areas of the world,
due to the high risk of being involved in a traffic accident, people with epilepsy have
restrictions placed on their ability to drive or are not permitted to drive [Devlin 2012].

This kind of disease can be caused by brain injury, stroke, brain tumor, and drug/al-
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cohol misuse, and in some rare cases, it is linked to genetic mutations [Malani 2012].
However, currently, the exact cause of most cases of epilepsy remains unknown.

Epilepsy is usually characterized by repetitive seizures, which are the results of ex-
cessive and abnormal cortical nerve cell activity in the brain [Fisher 2005]. Practically,
the basis for the diagnosis of epilepsy is two or more unprovoked seizures occurring more
than 24 hours apart [Engel 2008]. In the document of the international league against
epilepsy (ILAE) [Fisher 2005], an epileptic seizure is defined as “a transient occurrence
of signs and/or symptoms due to abnormal excessive or synchronous neuronal activity
in the brain”. The duration of an epileptic seizure can vary from nearly undetectable
to long periods, where the patient often becomes unconscious and loses control of his
body [Browne 2008].

Recurrent and unprovoked epileptic seizures are the main characteristics of epilepsy,
but epilepsy is more than seizures. A fundamental definition of epilepsy can be found in
the document of ILAE [Fisher 2005]:

“A chronic condition of the brain characterized by an enduring propensity
to generate epileptic seizures, and by the neurobiological, cognitive, psycho-
logical, and social consequences of this condition.”

According to this definition, there is a persistent intrinsic epileptogenic abnormality
existing in the brain of epileptic patient, even outside the duration of seizures. So, as
illustrated in Fig. 1.1, for the affected patient, epilepsy is not only limited to seizures,
but also includes psychological and social consequences.

1.1.2. Epilepsy Treatment

Once a firm diagnosis of epilepsy has been made, the treatment of this disease must be
considered, for which the desired goal is “no seizures, no side effects ”.

1.1.2.1. Medications

For the majority of patients (about 70% [Eadie 2012]), seizures can be controlled by
taking antiepileptic drugs (AEDs), which can contribute to decrease the number and/or
duration of seizures. Usually, anticonvulsant medication treatment lasts for one person’s
entire life. Epilepsy cannot be cured by AEDs, and anticonvulsant prevents seizures from
occurring by changing the levels of the chemicals in the brain that conduct electrical
impulses. So, seizures may still occur while taking antiepileptic medication.

The choice of anticonvulsant depends on various factors, like seizure type, epilepsy
syndrome, or other medications used [Nunes 2012]. Currently, there are about twenty
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Figure 1.1: Different interacting factors that contribute to the totality of epilepsy
[Engel 2008].

medications in the United States, which are approved for the use of epilepsy treatment
by the food and drug administration (FDA), and several new drugs are in the clinical
testing stages.

It is possible for the antiepileptic medication to cause some side effects, which can be
divided into three categories [RCH 2015]: (a) common mild side effects at the beginning
of medication, especially with a rapidly increasing dose, like abdominal pain, dizziness,
sleepiness, irritability, (b) side effects caused by a too large dose, including unsteadiness,
poor concentration, double vision, (c) peculiar side effects in individual medications,
involving liver troubles, severe behavior disturbance and worsening of seizure control.

However, for about 30% of patients, medication is not effective or is intolerable (due
to the side effects of the medication), and in this case, epilepsy surgery could be an
option [Duncan 2006].

1.1.2.2. Surgery

Epilepsy surgery is a brain operation, whose goal is to resect the area of the brain
involved in seizures, or restrict the spread of seizure activities (or reduce the seizure
frequency or severity), where the corresponding results of such a surgery can be curative
or palliative. Depending on the type of seizures and the location of the seizure focus, there
are two different types of surgical strategies [Ellen 2015]: (a) curative procedures, such
as temporal lobectomy, cortical excision, or hemispherectomy, (b) palliative procedures,
such as corpus callosotomy or vagus nerve stimulation (VNS).
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This kind of surgery is risky since it can worsen existing problems or create new
ones in the brain functions, for instance loss of functions such as vision, speech, memory
or movement. Therefore, epilepsy surgery is considered only within certain situations:
(a) seizures are uncontrollable with medications, (b) the seizure focus can be clearly
identified and is not responsible for any critical functions, such as language, sensation
and movement, and (c) the life quality of the patient is significantly affected by the
seizures.

Figure 1.2: Intracerebral electrodes are surgically implanted into the brain tissue to
map the seizure activities before removing brain structures [Ellen 2015].

Several modalities are used for the evaluation of seizures, including neuropsychologi-
cal testing, invasive intracranial monitoring, and neuroimaging such as skull radiography,
computed tomography (CT), magnetic resonance imaging (MRI), positron emission to-
mography (PET), single-photon emission CT (SPECT), and magnetoencephalography/-
magnetic source imaging (MEG/MSI).

During intracranial monitoring, the surgical implantation of EEG electrodes is often
performed in order to map brain area, or localize the seizure focus. Generally, electrodes
placed on the brain surface and/or directly inside the brain can be used to map seizure
activity and/or identify important functional areas. As shown in Fig. 1.2, electrodes
are surgically implanted into the brain tissue, and this kind of practice, where electroen-
cephalographic signals are recorded via depth electrodes, is called iEEG [Palmini 2006].
Currently, iEEG is the only technique that provides direct access to electrophysiological
recordings in the seizure onset zone, and it allows the determination of the depth of
epileptogenic areas. It should be mentioned here that, currently, this procedure is risky,
and it could lead to brain hemorrhage and infection in rare cases (less than 1%) [Cossu
2005].
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During the mapping, the patient has to be awakened to identify functional areas
such as language, sensation or vision [Ellen 2015]. These data collected with small
electric probes are examined by the experts on a comprehensive epilepsy board, and
surgery is processed based on their conclusions. In some rare cases, further surgery is
not recommended if a single seizure focus cannot be revealed during the intracranial
monitoring.

In some cases, seizures can be completely controlled after surgery, while, for others,
the frequency of seizures is significantly reduced. After surgery, most patients need to
continue taking anti-seizure medication for at least one year. In 2011, a study, which
was performed among 615 adults who underwent epilepsy surgeries, identified long-term
outcomes of epilepsy surgery in adults [de Tisi 2011]. According to this study, about 52%
of patients remained seizure-free five years after the surgery.

The problem is then to exploit collected iEEG signals to discover strategic infor-
mations about the spatio-temporal epileptic propagation mechanisms between involved
structures in the brain. This leads to an approach which has its roots in the connectivity
paradigm introduced in the next section.

1.2. Human Brain

1.2.1. Introduction

The brain acts as the center of human nervous system, and a good understanding on the
internal organization of the brain, which is always the central issue of modern neurobi-
ology, would help in the treatment of brain diseases, especially epilepsy.

1.2.1.1. Morphology of the Brain

The brain weighs about 1300 � 1400 grams (about 2% of total body weight) [Eric 2015]
and is protected by the skull. Compared with the brain of other mammals, the human
brain has a larger relative size. It is composed of two hemispheres (left and right),
which are nearly symmetrical. These two hemispheres are separated by a deep median
furrow (longitudinal fissure of the brain, or inter-hemispheric fissure) and interconnected
by a very large nerve bundle (the corpus callosum, which crosses the midline above the
level of the thalamus) and two other smaller connections, the anterior commissure and
hippocampal commissure [Mooshagian 2008]. On the surface of the hemispheres, there is
a pallium of very pleated gray matter. This superficial gray matter is the cerebral cortex,
which contains many folds. On the cerebral cortex, the deepest folds are called furrows
(or fissures). Each hemisphere can be conventionally divided into four lobes: the frontal
lobe, parietal lobe, occipital lobe, and temporal lobe. The temporal lobe is on the side of
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the brain, the parietal lobe is positioned above the occipital lobe and behind the frontal
lobe. Fig. 1.3 and 1.4 display the lateral and medial surfaces of the cerebral hemisphere
respectively.

Figure 1.3: Lateral surface of the cerebral hemisphere [Dewey 2007]. On each hemi-
sphere, there are four lobes bounded by fissures: the frontal lobe, parietal lobe, occipital

lobe, and temporal lobe.

By cutting the interhemispheric commissures and opening the third ventricle, we have
a vision on the medial aspect of the hemisphere. As shown in Fig. 1.4, on the medial
side, there is a special cortical convolution, called cingulate gyrus (or limbic gyrus),
which is delimited by the cingulate sulcus (calloso-marginal fissure). This convolution
is wrapped around the deep part of the hemisphere. Above the limbic convolution, one
can distinguish the frontal lobe. The medial surface of the occipital lobe is the cuneus,
delimited by the groove parietaloccipital sulcus (internal perpendicular fissure) and the
calcarine sulcus (fissure calcarine), which is the cortical projection of vision.

Different regions on the lower face of the hemispheres are shown in Fig. 1.5. In the
center of the underside of the brain between two hemispheres, there is the isthmus of the
brain, which corresponds to the junction of the brain stem and the brain.

1.2.1.2. Brain Gray and White Matter

The central nervous system contains two different major components: the grey matter
and the white matter (as displayed in Fig. 1.6). The first one contains numerous cell
bodies and relatively few myelinated axons (myelinization speeds up the neural electric
propagation), while the second one is composed of long-range myelinated axon tracts and
contains relatively very few cell bodies [Miller 1980].
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Figure 1.4: Medial surface of the cerebral hemisphere [Haines 2015]. Different lobes and
their associated gyri and sulci are marked in this figure.

Figure 1.5: Lower face of the hemispheres [Bertrand 2015]. A: temporal lobe, B: frontal
lobe, C: occipital lobe, D: olfactory bulb, E: olfactory tract, F: optic chiasm, G: cerebral

peduncle, H: brainstem, I: pituitary gland, J: mammillary tubercle.
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Figure 1.6: Gray and white matter in human brain [Giovannoni 2015].

The neocortex is the largest part of the cerebral cortex, and it covers the entire
surface of the two hemispheres. There are two primary types of neurons in the neocortex,
excitatory pyramidal neurons (�80% of neocortical neurons) and inhibitory interneurons
(�20%) [Noback 2005]. The thickness of the neocortex is about 4 mm, and, as shown
in Fig. 1.7, it is made up of six horizontal layers segregated principally by cells types
and neuronal connections [Kurzweil 2013]. Also, there are numerous vertical structures
in the neocortex (with a diameter of about 0.5 mm and a depth of about 2 mm), called
cortical columns, where the neurons are arranged vertically. The number of cortical
columns in neocortex is approximately 500,000, and each of them contains about 70,000
neurons [EPFL 2015].

White matter, which is located beneath the gray matter, is composed of millions of
axons and forms a large part of the fabric of the cerebral hemispheres. Its white color
comes from the electrical insulator, myelin, which surrounds axons. Myelin is found in all
long nerve fibers and increases the speed of transmission of all nerve signals [Breedlove
2007]. If it is damaged, the nerve conduction will be affected, and thus alter the sensory,
movement and cognitive functions. Three different kinds of tracts (or bundles of axons)
are observed in the white matter: (a) projection tracts that carry information between the
cerebrum and the rest of the body, (b) commissural tracts that cross from one cerebral
hemisphere to the other through commissures and (c) association tracts that connect
different regions within the same hemisphere of the brain [Kenneth 1998].

1.2.2. Brain Connectivity

As mentioned previously, the neurons in the brain act as information processing units
and assembled circuits that perform brain functions, or in other words, they form a
distributed network. Therefore, the study of the connectivity between different brain
components is always a central issue in neuroscience, which aims to find links between
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Figure 1.7: Histological structure of the cerebral cortex [Michael 2012]. The neocortex
is composed of nerve cells which arranged in six horizontal layers segregated principally
by cells types and neuronal connections. Layer 1: cell surface association, Layer 2: cells
of intra-hemispheric association, Layer 3: small pyramidal cells, Layer 4: projection of
sensitive and sensory cells, Layer 5: large pyramidal cells of Betz (origin of pyramidal

tract), Layer 6: inter-hemispheric cells association (callosal fibers).

structures and functions at different levels of description [Alexandre 2013].

Mathematically, a network is considered as a graph structure which represents some
type of links/interactions between units. In the brain network, the word “unit” may
correspond to an individual neuron, a neuronal population, or an anatomically segregated
brain region [Sporns 2007]. This graph includes a list of devices (or nodes) and a set of
links, grouped in a connectivity matrix. The links can be oriented or not. If they are
binary values, we get a pure structural graph. Now, the graph can be valued: each unit
and each link may have a value (i.e. corresponding respectively to a state of activation
and neuronal synaptic weight).

There are three types of brain connectivity [Friston 1994]: structural connectivity
(anatomical), functional connectivity (measuring statistical dependence between neu-
ronal activations) and effective connectivity (measuring the causal interactions or infor-
mation flows on a network). These three types of connectivity are obviously linked,
and their joint analysis allows a better understanding of brain structures and func-
tions [Alexandre 2013].
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In Fig. 1.8, these three types of brain connectivity [Sporns 2007] are displayed in dif-
ferent forms. In the lower half, there are the connectivity matrices, where (a) structural
connectivity forms a sparse and directed matrix, (b) functional connectivity leads to a
full symmetric matrix and (c) effective connectivity yields a full non-symmetric matrix.
All these matrices can be weighted, with weights representing connection densities or effi-
cacies for structural connectivity, strength of statistical dependence or proximity between
two elements (neurons, recording sites, voxels) of the system for functional connectivity,
and quantity of information flow for effective connectivity. Applying a threshold to such
matrices will yield binary directed graphs with the setting of the threshold controlling
the degree of sparsity, where the binary elements indicating the presence or absence of a
connection.

Figure 1.8: Patterns of brain connectivity [Honey 2007, Sporns 2007]. The upper half
of this figure illustrates structural connectivity (fiber pathways), functional connectivity
(correlations), and effective connectivity (information flow) among four brain regions
in macaque cortex. In the lower half of the figure, three different matrices show binary
structural connections (left), symmetric mutual information (middle) and non-symmetric

transfer entropy (right), respectively.

In this thesis, we essentially focus on functional and effective connectivities.

1.2.2.1. Structural Connectivity

Several studies [Bassett 2006,He 2007,Alexandre 2013] on the structural network have
already shown the existence of a small-world network, at several levels, with the pres-
ence of clustered areas and long connections that permit rapid communication between
these areas. This type of organization allows a compromise between structural cost and
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processing efficiency. A good understanding of the structural contributions of individual
areas allows us to identify and classify the brain network hubs, which are defined as
highly connected brain regions, including areas of parietal and prefrontal cortex. How-
ever, due to various reasons (measurement noise or variability), currently, a considerable
number of details on the structural networks of the human cerebral cortex are still not
clear [Sporns 2005].

1.2.2.2. Functional Connectivity

Functional brain network is another important issue, which is concerned by a large num-
ber of studies. The functional connectivity refers to the connectivity between brain
regions that share functional properties, and can be defined as a temporal correlation
between spatially remote neurophysiological events [Biswal 1997]. The functional connec-
tivity is particularly sensitive to learning, which is based primarily on Hebb’s rule [Hebb
2005]. Several studies show that small-world networks facilitate the synchronization of
the entire network [Wang 2002]. Additionally, the functional brain network suggests
that small-world attributes possibly reflect the underlying structural organizations of
anatomical connections [Achard 2006].

1.2.2.3. Effective Connectivity

Effective connectivity describes the influence from one neuronal system (such as individ-
ual neuron, neuronal population, or anatomically segregated brain region) to another one,
and possibly reflects the causal relation between different systems [Lang 2012]. The study
of effective connectivity helps us in the analysis of the dynamic information processing.
This can be done by estimating linear/nonlinear, temporal/frequential theoretical corre-
lation indexes. For instance, in cognitive tasks, we are mainly interested in studying the
organization of the information flows between different brain regions. Generally, these
studies rely on a combination of several techniques, such as fusion of anatomical atlases,
electroencephalography or functional magnetic resonance imaging (fMRI) data (for lo-
cating activation regions) and transcranial magnetic stimulation to disrupt the network
during a task and observe the reactions of the volunteers [Alexandre 2013].

1.3. Problem Statement

As mentioned above, epilepsy is a neurological disease that affects approximately 1% of
the population and is characterized by the repetition of seizures (called ictal periods)
whose frequency and duration are variable. Epilepsies remain drug-resistant in about
30% cases, which can require a surgical operation.

For a given patient, the key-point is to determine or confirm the accurate boundaries

15



1.3. Problem Statement Chapter 1

of the “epileptogenic zone” (EZ), which define the brain areas to be eventually surgically
resected to achieve freedom from epileptic seizures, and make sure that, if these areas are
partially or completely removed after surgery, the post-surgical deficits (such as vision
or language) remain limited. However, such a surgery is challenging, because, in most
cases, the epileptogenic zone, which is responsible for the initiation and the propagation
of seizure activities, corresponds to a network of neuronal ensembles distributed in distant
structures. Due to this distributed characteristic, the localization and characterization
of the epileptogenic networks are difficult tasks but they are crucial to help in delimiting
the cerebral volume to be resected to avoid epileptic activity.

The long-term objective is to help to understand the mechanisms of the seizure in
order to cancel it or at least to stop it. This implies to address the following issues:
What are the structures that are involved in such activities? What is the effective
connectivity between these structures? Is it possible to detect dominant structures in
this epileptogenic network?

Compared to functional connectivity, which underlies the notion of coupling between
different structures, the issue of effective connectivity involves the information of direc-
tionality and is more challenging. The simplest investigation is the one which detects
and quantifies effective connectivity marginally for all oriented pairs of iEEG signals. A
more accurate investigation is the one which tries to characterize the directed connec-
tivity from one channel towards another one conditionally to the contextual information
provided by the other iEEG channels.

This second approach can be implemented through multichannel causal modeling, for
instance VAR modeling, if we limit the causality characterization to causal linear effects.
Now, if it is necessary to take nonlinear effects into account, the conditional statistical
causal analysis may have to face identifiability condition and computational load.
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2.1. Introduction to Effective Connectivity

During the past several decades, there has been an increasing interest in the research of
human brain structure and functions. However, our knowledge on the effective connec-
tivity, which could provide us a deep understanding of the brain, is still poor [Petkov
2015].

The concept of effective connectivity firstly appeared in the work of Aertsen and
Preissl [Aertsen 1991]. Shortly later, this concept was studied by several authors on
rat/human projects [McIntosh 1991,McIntosh 1992,Grafton 1994,McIntosh 1994,Friston
1994]. So far, the term “effective connectivity” has been defined by various authors
[Horwitz 2003], and usually, it is understood as a measure of the impact of one neural
system on another, directly or indirectly [Friston 1994]. Therefore, one important feature
of effective connectivity is that it contains the information on the directionality of causal
influence. More specifically, if an observation of the neuronal activity in one brain region
allows us to get a better prediction on the neuronal activity in another brain region, then
it is said that the former region has an influence on the latter [Lang 2012]. Fig. 2.1
illustrated the different possibilities of the connectivities among three neural populations
[Wendling 2000].

The new causality indexes proposed in this thesis correspond to (semi)nonparametric
entropic methods. To position this work among other possible approaches, we give in
section 2.2 a list of methods developed in more or less recent literature to address this
topic.
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Figure 2.1: Possible connectivities among three neural populations, both unidirectional
couplings (single-sided arrow) and bidirectional coupling (double-sided arrows)

[Wendling 2000].

2.2. State of the Art

The measurements of effective connectivity can be categorized into two classes: (i) data-
driven methods, including Granger causality related [Bressler 2011] and information-
theoretic approaches [Hlaváčková-Schindler 2007] (see sections 2.2.1 and 2.2.3), and (ii)
model-based methods, such as dynamic causality modeling (DCM) [Friston 2003] (see
section 2.2.2).
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2.2.1. Time Domain Wiener-Granger Method

2.2.1.1. Linear Granger Causality

The notion of “causality” has been discussed by many authors [Friston 1994,Pearl 2009,
Valdes-Sosa 2011,Roebroeck 2011a,Roebroeck 2011b], the most conventional meaning of
the word “causal” could be “a cause occurs prior to its effect” [Amblard 2012].

The basic idea of Granger causality (GC) can be traced back to the work of Wiener
[Wiener 1956] and Granger [Granger 1969]. It measures the statistical dependence be-
tween the past of a process and the present of another one. Precisely, given two time
series X and Y , including the lagged value of X , if the lagged value of Y provides sta-
tistically significant information about the future value of X (through a series of t-test
and F-test [Greene 2003]), we can say that Y Granger-causes X . This concept was later
generalized by Geweke [Geweke 1982,Geweke 1984], and the index of causality from Y

to X was defined as the logarithm of the ratio of the asymptotic mean square error when
predicting the future value of X from its own past, to the asymptotic mean square error
when making the same prediction from the lagged value of both X and Y .

Granger causality was developed originally in econometrics, and nowadays, it is one
of the most popular measures to infer causal interactions between time series. Due
to its simplicity and effectiveness, it has been widely used in neuroscience, including
both fMRI [Roebroeck 2005, Sato 2006, Deshpande 2009, Deshpande 2010b, Seth 2013]
and EEG/MEG [Hesse 2003,Gow 2008,Ploner 2009,Gow 2009,Adhikari 2013]. Besides
neuroscience, it has also numerous applications in a variety of research areas including
climate [Kaufmann 1997,Triacca 2001,Mosedale 2006, Smirnov 2009], engineering [Kim
2012,Yuan 2014], energy [Pao 2011, Bozoklu 2013,Tiwari 2014], economics [Comincioli
1996,Granger 2000,McCracken 2007,Chiou 2008], and others [Seth 2007].

Since its introduction in 1969 [Granger 1969], discussions on this causal measure never
end, and several authors dedicated their research to its implementation [Cui 2008, Seth
2010,Barnett 2014]. In 1984, Geweke [Geweke 1984] introduced the concept of conditional
GC. Recently, Ding et al. [Ding 2006] demonstrated that pairwise GC cannot distinguish
some specific situations, where there are joint dependencies between X and Y and a third
set of time series Z (as illustrated in Fig. 2.2), and they defined conditional Granger
causality (also called partial Granger causality in the literature [Guo 2008a,Krishna 2008,
Guo 2008b,Wu 2012]) to determine whether the causal influence between two channels is
direct or mediated by another group of channels. In most applications, Granger causality
is used to analyze the relation among multiple channels, which explains the expanding
popularity of conditional Granger causality [Zhou 2009,Liao 2010,Gao 2011,Roelstraete
2012,Detto 2013].
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(a) (b)

Figure 2.2: Granger causality fails to distinguish these two situations: (a) there is direct
influence from X to Y , (b) the influence from X to Y is mediated by Z, which is indirect.

In 2010, Angelini et al. [Angelini 2010] indicated that the redundant variables in
multivariate Granger causality would lead to under-estimated causalities. In [Barnett
2011], Barnett and Seth discussed the behavior of Granger causality under filtering, and
drew the conclusion that Granger causality of a stationary vectorial autoregressive (VAR)
process is fully invariant when the data are preprocessed with an arbitrary invertible
filter. As pointed out in [Hu 2011], Granger causality is not a perfect measure, and it
fails to determine the real strength of causality among channels in certain simulations.
Barrett et al. [Barrett 2013] gave a deeper discussion to this issue: Granger causality
cannot work perfectly with all kinds of signals, and if the observed data are not obtained
with straightforward autoregression process, then this causality is only an approximate
measure of the real causal influence, or in other words, Granger causality is designed to
measure the effect but not the mechanism. In 2013, Davey et al. [Davey 2013] delineated
the equivalence of linear Granger causality connectivity methods and correlation-based
connectivity methods, such as partial correlation (PC).

To sum up, Granger causality, also termedWiener-Granger causality (WGC) [Bressler
2011], is usually operationalized in the context of VAR model theory [Hamilton 1994,
Lütkepohl 2005], thus it reflects only the linear features of the signals. Additionally, it
also assumes that the analyzed signals are covariance stationary [Seth 2007]. During
the past several decades, Granger causality has been greatly developed and extended in
numerous studies [Pereda 2005], some of its extensions being recalled in the following
sections.

2.2.1.2. Nonlinear Extensions of Granger Causality

In the standard application of WGC, only the linear features are captured whereas many
target systems are known to be nonlinear. Therefore, the exploration of nonlinear infor-
mation transmission could provide additional information about the system [Marinazzo
2011]. To this end, several studies have been conducted to extend WGC to nonlinear
situations.
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One possibility of extending linear GC to nonlinear situations is to replace linear
autoregression with other nonlinear prediction schemes. The local linear nonlinear au-
toregressive model (LLNAR) is a generalization of linear autoregression. The nonlinearity
of LLNAR is controlled by a parameter, the bandwidth, and LLNAR reduces to the or-
dinary autoregressive model when the bandwidth tends to infinity. The flexibility of
LLNAR in describing nonlinear characteristics of EEG signals has been demonstrated by
Hernández et al. [Hernández 1996]. In 1999, based on LLNAR, Freiwald et al. [Freiwald
1999] introduced a generalized definition of GC, which is valid for both linear and non-
linear systems. With this method, Freiwald et al. successfully revealed the existence of
both unidirectional and bidirectional influences between neural groups in the macaque
inferotemporal cortex.

Another important nonlinear extension of Granger’s idea was proposed by Chen et
al. [Chen 2004] in 2004, and named extended Granger causality index (EGCI). The
basic idea of EGCI is that, even in nonlinear systems, one can locally approximate the
dynamics linearly, and so apply linear GC to each local neighborhood and get average
statistical quantities that properly reflect the nonlinear dynamics. In the experiments
presented in [Chen 2004], the effectiveness of EGCI has been proved on artificial data.
The same year, Ancona et al. [Ancona 2004] proposed a nonlinear extension of Granger
causality for bivariate time series, further called nonlinear Granger causality (NLGC)
in [Sun 2008] and [Ishiguro 2008]. In NLGC, a nonlinear kernel autoregression scheme
is employed, instead of a linear autoregression one. Specifically, Ancona et al. [Ancona
2004] argued that not all nonlinear prediction schemes are suitable for the extension of
linear GC. These schemes should follow the following property: given two time series
X and Y , if Y is statistically independent of X , then the variance of prediction error
obtained when predict the future of X with the past information of both X and Y ,
should be equal to the one predicted with only the past information of X itself, and
analogously for the opposite direction. It should be mentioned that, according to this
property, the EGCI method proposed in [Chen 2004] satisfied the above property only
if the number of points in the local neighborhood, where linear regression is performed,
is sufficiently high to obtain reliable statistics, but this assertion is in contradiction with
the basic idea of local linearization [Ancona 2004].

In 2008, based on the theory of reproducing kernel Hilbert spaces (RKHS) [Shawe-
Taylor 2004], a kernel version of Granger causality (KGC) was proposed by Marinazzo
et al. [Marinazzo 2008b] to detect nonlinear cause-effect relationship. In this method,
the linear GC was performed in the feature space of suitable kernel functions (Gaussian
kernels and inhomogeneous polynomial (IP) kernels as those presented in [Marinazzo
2008b]). KGC assumes arbitrary degree of nonlinearity, i.e. it is able to handle all orders
of nonlinearity [Marinazzo 2011]. This measure was also generalized to the multivariate
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case to analyze dynamical networks [Marinazzo 2008a]. As pointed out by the authors,
the multivariate version of this approach is still able to reveal the real causalities while
complexity of the model increases. Shortly after its introduction, KGC was adopted
in the analysis of fMRI data [Liao 2009]. Using both simulated and real fMRI data,
this newly proposed approach was shown to capture the effective coupling which was
missed by linear GC. The effectiveness of the multivariate KGC was validated by different
studies. In [Angelini 2009], Marinazzo’s method was applied on several physical systems,
and the results showed that the information flow was properly identified. Stramaglia
et al. [Stramaglia 2011] tested the same approach on EEG data to reveal nonlinear
interaction. In [Liao 2011], Liao et al. used multivariate KGC and graph theory on
resting-state fMRI recordings to reveal the network architecture of the brain network.

In [Bezruchko 2008], Bezruchko et al. proposed to use a polynomial of degree p
instead of the linear autoregressive model to capture nonlinear causality. This method
can be viewed as a special case of KGC with IP kernel functions. The well-known
NARX (nonlinear autoregressive with exogenous inputs) model [Billings 2013] is another
extension of the linear model, which could be used as the basis of the nonlinear Granger
analysis. This possibility has been firstly explored by Li et al. [Li 2012]. Recently, in 2013,
Zhao et al. [Zhao 2013] went further with this idea: different indexes were designed to
investigate the linear and nonlinear causalities between time series separately. Moreover,
it should be noted that, compared to all the nonlinear extensions of GC mentioned above,
these methods based on NARX are time-variant, which is supposed to provide extra
important insights into the signals. In both [Li 2012] and [Zhao 2013], the usefulness of
their methods was demonstrated with real EEG signals.

We conclude this subsection with a brief presentation of the h2 index introduced in
neuroscience by [Pijn 1990] in the scope of Wiener-Granger causality. This index can
be considered as a nonlinear correlation index. It extends the linear r2 index defined as
the square of the Pearson correlation coefficient between X.t/ and Y.t � �/, maximized
with respect to � . This index is also equal to one minus the ratio of the estimated linear
mean squared prediction error (when predicting X.t/ from Y.t � ��/ where �� is the
optimal lag) to the estimated variance of X.t/. If � is constrained to be strictly positive,
log

�
1 �

�
1=r2

��
can be considered as a degenerate Granger causality index from Y to

X where the past of X is reduced to an empty set and the past of Y to Y.t � ��/, i.e.
to only one past scalar value. Now, this scalar value is optimally selected among the
values Y.t � �/, 0 < � � �max, and so r2 implicitly depends from all past values in an
authorized set specified by �max. Clearly, if � is constrained to be strictly negative, then
log

�
1 �

�
1=r2

��
quantifies the reverse causality, from X to Y . To obtain the h2 index,

the mean square linear prediction error in the expression of r2 is replaced by the mean
square nonlinear regression error when estimating X.t/ from Y.t � �/, maximized by
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tuning � . The regression function is estimated from the observed values of X and Y , and
is constrained to be a piecewise affine function on a given partition (union of intervals) of
the real line. Finally, when �� is selected among the authorized strictly positive values, h2

can be interpreted as a degenerate nonlinear Wiener-Granger causality index. Compared
to the Wiener-Granger approach, even if the past values of X are not considered in
the h2 index, the low dimensionality of the corresponding statistical inference algorithm
can lead to a not too spread estimation of the regression error variances, in comparison
to more complex nonlinear regression algorithms. This can partly explain its practical
efficiency, for instance when it is used to analyze real epileptic signals as in [Caparos
2006,Dorr 2007].

This subsection was devoted to give an overview of nonlinear non-entropic methods
that are not considered in the rest of the document.

2.2.2. Spectral Methods

In the past few years, several frequency-domain causality detection methods have been
introduced to analyze the directional connectivity in neural systems [Chicharro 2011,Hu
2012]. With these spectral measures, it becomes possible to detect the frequency band(s)
where causality occurs [Brovelli 2004, Bressler 2008, Ladroue 2009], which is a priori
interesting for iEEG signals analysis.

Most spectral methods of causality are related to the spectral form of Granger causal-
ity based on transfer functions derived from multivariate autoregressive modeling. As a
matter of fact, a great advantage of Granger causality is that it could be decomposed in
the frequency domain [Geweke 1982,Geweke 1984]. Compared to its spectral form, this
quantity in the time domain may be considered as an average over all frequencies (up
to the Nyquist frequency). In other words, given two time series X and Y , the spectral
Granger causality from Y to X at frequency ! quantifies the directed contribution of Y
to the power of X at frequency ! [Chen 2006,Barrett 2014].

To our best knowledge, the first spectral decomposition of linear GC was proposed by
Geweke [Geweke 1982,Geweke 1984], and then easily extended to other different forms:
(i) conditional spectral Granger causality, which calculates the causality contribution
of Y to the power of X , in addition to the causality contribution of a third group of
variables to the power of X [Chen 2006], (ii) multivariate form, which computes the
causality contribution from one group of variables to another group [Barrett 2010]. Since
its conception, this spectral measure has generated interest among scientific researchers.
For example, Bernasconi and König have used this method to find neuronal interactions
in the visual cortical areas of the cat [Bernasconi 1999,Bernasconi 2000]. In 2004, Brovelli
et al. used it to find the Beta oscillatory networks in monkey sensorimotor cortex [Brovelli
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2004]. Chen et al. used its conditional form to analyze neural field potential time series
[Chen 2006]. In 2013, Croux and Reusens [Croux 2013] used this method to investigate
the predictive power for the future domestic economic activity that is contained in the
domestic stock prices. In [Epstein 2014], to investigate the features of preictal seizure
networks, this spectral method was employed for the analysis of iEEG signals recorded
at high frequencies (500 or 1000 Hz).

In 2014, one important generalization of spectral GC was introduced by He et al. [He
2014]. This method uses the nonlinear NARX [Billings 2013] signals modeling, and can be
considered as the spectral decomposition of the nonlinear GC described in [Li 2012,Zhao
2013]. In their experiments, He et al. validated the effectiveness of the proposed method
with both artificial data and a real human intracranial EEG data set.

In 1975, the concept of causality was also introduced in the study of feedback relations
between input and output variables by Caines and Chan [Caines 1975], and generalized
later to the multivariate situation by Kamiński and Blinowska [Kamiński 1991] who
proposed a new spectral causality measure, the directed transfer function (DTF). Using
a multivariate autoregressive model to fit multi-channel signals, the DTF method, which
is based on spectral domain functions, is designed to detect the directional influences
between any given pair of signals in a multivariate data set. It has been demonstrated
that the DTF function could be interpreted in terms of GC [Kamiński 2001]. After its
introduction, DTF has been widely investigated, especially in the analysis of EEG signals,
for the purpose of localizing epileptogenic foci in patients with partial epilepsy [Ding
2007,Dorr 2007,Wilke 2010,Lu 2012].

In some special cases, for instance cognitive experiments, the signals length may be
too short [Ding 2000] to provide good estimates, and DTF becomes ineffective with such
data. To overcome this issue, the repetition of the task can improve the final estimate
[Ding 2000,Philiastides 2006], and/or the introduction of an important overlapping of the
processed windows can allow a better estimation, as is the case in short time DTF [Ding
2000]. Using this technique, data are processed by highly overlapped time windows,
and the multivariate autoregressive (MVAR) modeling coefficients are adapted to each
window. The window’s length must be short enough to consider local stationarity. Ding
et al. applied this method to a visuomotor integration task, and revealed rapidly changing
cortical dynamics. In [Liang 2000], short-time DTF was used to detect causal influence
between cortical sites on a fraction-of-a-second time scale. In 2006, Philiastides and
Sajda [Philiastides 2006] used this method for the analysis of multi-channel EEG data
recorded during a face discrimination task.

Standard DTF algorithm assumes that the signals are stationary. The short-window
DTF mentioned above introduces a windowing technique so as to consider local sta-
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tionarity, while Wilke et al. [Wilke 2007,Wilke 2008] provided another solution, termed
adaptive DTF (ADTF), where the coefficients of the multivariate adaptive autoregres-
sive (MVAAR) model are time-dependent. Tested on both simulated and real electro-
corticogram (ECoG) data, ADTF appeared more suited for the detection of time-variant
connectivities than the standard DTF.

For the time-varying causality detection algorithm mentioned above, the non-zero
covariance of the model’s residual was used to describe the causality phenomenon. How-
ever, in some situations, for example, the blurring of the neuronal activity with the
sluggish latent response, non-zero covariance of model residuals can be observed. This
zero-lag correlation would lead to spurious time-lagged causality detection [Deshpande
2010a]. To solve this problem, Xu et al. [Xu 2014] introduced another adaptive exten-
sion of DTF, termed time-lagged adaptive DTF. Compared with the adaptive algorithm
proposed in [Wilke 2008], Xu’s method employed a more general adaptive model, and
took the influence of instantaneous connectivity into consideration. The effectiveness of
this method has been demonstrated through the detection of dynamic spectral causality
in real visual evoked potentials (VEPs) data.

Another multivariate measure was proposed by Sameshima and Baccalá [Sameshima
1999, Baccalá 2001], called partial directed coherence (PDC). Contrary to DTF, PDC
measures the direct causality between two channels discounting the influence of all other
recorded channels, while DTF captures the influence of the whole network by taking all
the channel transmission pathways into consideration [Sameshima 2014]. Both DTF and
PDC assume that the signals are stationary, and for non-stationary data, it could be
divided into windows to obtain approximate stationarity [Bressler 2011].

In 2007, Baccalá introduced a scale-invariant form of PDC, the generalized partial
directed coherence (GPDC) [Baccald 2007]. The GPDC measure overcomes the draw-
backs of PDC (as discussed in [Schelter 2009]): (i) GPDC is not affected by the relation
between the given source and a third group of channels, (ii) GPDC is scale invariant,
(iii) GPDC allows the analysis of the absolute strength of coupling.

Since its introduction in 2001, PDC has interested a lot of researchers for multiple
applications. With both simulated and real data, Astolfi et al. [Astolfi 2005, Astolfi
2006] tested PDC for the estimation of human cortical connectivity. In [Schelter 2006],
Schelter et al. discussed the statistical properties on the estimation of PDC, and tested
PDC on EEG and EMG data recorded from an essential tremor patient. Sato et al. [Sato
2009] applied PDC for connectivity analysis of multisubject fMRI data using multivariate
bootstrap. In [Sun 2009], PDC was used to study the cortical connective network under
audiovisual cognitive processes. In [Wang 2015], PDC was used for automatic epileptic
seizure detection.

25



2.2. State of the Art Chapter 2

Both standard PDC and GPDC are based on a MVAR model, which only describes
the lagged effects among different signals. To overcome this limitation, Faes and Nollo
[Faes 2010] proposed an extended version of PDC (EPDC) based on the utilization of
an extended MVAR model including both instantaneous and lagged effects. The authors
proved the effectiveness of EPDC with two different EEG data sets.

Recently, Omidvarnia et al. [Omidvarnia 2012,Omidvarnia 2014] have extended the
classical PDC connectivity analysis, and introduced a novel measure, called generalized
orthogonalized PDC (gOPDC). In the development of gOPDC, the coefficients of MVAR
were orthogonalized. This new measure was supposed to be less affected by the vol-
ume conduction and amplitude scaling, and evaluated on both simulated models and
newborns’ EEG signals.

2.2.3. Model-based Methods

As mentioned above, Granger causality is data-driven and can be estimated without any
a priori physiological hypothesis. On the contrary, model-based causal measures involve
neural population models and take physiological evidences into account.

An important model-based approach was first proposed by Friston [Friston 2003], and
called dynamic causal modeling (DCM). The basic idea of DCM is to consider the brain as
a dynamic input-state-output system with multiple inputs and outputs, and construct an
explicit forward or generative model. In some situations, different dynamic causal models
for a system of interest can be constructed, standing for different competing hypotheses
about the mechanisms that generate the observed data. In this case, considering both
model fitting and relative complexity, Bayesian model selection can be used to identify
the most optimal DCM [Penny 2004].

Shortly after its introduction by Friston in 2003 [Friston 2003], this nonlinear and
dynamic method has obtained numerous attentions, and several improvements and ex-
tensions have been brought to DCM for specific applications, such as fMRI [Kiebel
2007, Stephan 2007,Marreiros 2008, Stephan 2008] and EEG/MEG [Kiebel 2006, Chen
2008,Marreiros 2009,Moran 2009,Daunizeau 2009,Penny 2009].

Both aiming at detecting causality, DCM and GC have been compared in the litera-
ture [David 2008]. However, there is fundamental difference between these approaches:
DCM employs a biophysical realistic model and focuses on how the observed data are
generated, while GC examines for statistical dependencies between different physiological
responses [Friston 2009]. Compared with GC, the important number of parameters to
estimate in DCM may limit its practical use [Seth 2010]. Now, Friston et al. [Friston
2014] demonstrated that the spectral Granger causality can be unreliable on noisy data,
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and also showed that this problem can be finessed by deriving spectral causality measures
based on the parameters estimated using dynamic causal modeling.

2.2.4. Information Theory Measurement

Largely spread since 1948 [Shannon 1948], information theory concerns quantities that
measure the uncertainty in random variables based on a probabilistic concept, and it has
been applied in numerous fields, including neuroscience [Dimitrov 2011]. Using infor-
mation theory based approaches, we can measure the amount of uncertainties reduced
in one random process after observing another one. Compared with the methods men-
tioned above, such as GC or DCM, information-theoretic quantities assume almost no
a priori information on data modeling and may capture both linear and nonlinear rela-
tions between time series [Jin 2010], as illustrated in papers such as [Vicente 2011]: these
techniques are fully “model-free”.

One well-known information-theoretic quantity is mutual information (MI) [Cover
2012], which is widely used to quantify the amount of uncertainty shared between two
random variables. Now, the drawback of this kind of measure is its symmetrical nature,
so that it only reflects some unidirectional dependence. Thus, to detect the directed
information flow between two variables, the time-lagged form of mutual information
(TLMI) (also termed time-delayed mutual information (TDMI) [Na 2002]) was intro-
duced [Hlaváčková-Schindler 2007], which estimates the shared information between one
process and the lagged version of another one. Several authors have applied TLMI to the
analysis of EEG signals [Jeong 2001,Na 2002,Min 2003]. However, as demonstrated by
some authors [Schreiber 2000,Kaiser 2002], TLMI sometimes fails in revealing the actual
information flow.

In 2000, Schreiber [Schreiber 2000] introduced an information-theoretic statistic mea-
surement, named transfer entropy (TE), to quantify the amount of time-delayed infor-
mation between two dynamical systems. Given the past time evolution of a dynamical
system A, transfer entropy from another dynamical system B to the first system A is the
amount of Shannon uncertainty reduction in the future time evolution of A when includ-
ing the knowledge of the past evolution of B. As demonstrated in [Schreiber 2000,Kaiser
2002], compared with TLMI, TE is capable to distinguish the information exchanged
from shared information due to common history and input signals. Like Granger causal-
ity, this method can be extended so as to get its conditional form [Wibral 2014b] to
exclude the influence of a third group of variables. Transfer entropy, as classical Granger
causality, does not reveal instantaneous coupling. This coupling is taken into account in
the more general notion of directed information (DI) [Amblard 2012].

As an information-theoretic implementation of Wiener’s principle of observational
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causality, TE is related to some other causality measures. As known, GC emphasizes
the concept of “prediction”, while TE is framed in terms of “resolution of uncertainty”.
So, TE can be considered as a measurement of the degree to how Y disambiguates the
future of X beyond the degree to how X disambiguates its own future [Paluš 2001].
The work by Barnett et al. [Barnett 2009] specified the relation of these two causality
measures for the first time, and bridges the information-theoretic and autoregressive
methods. Under Gaussian assumptions, TE and GC are entirely equivalent, up to a
factor of 2. Therefore, Granger causality can be understood as a linear approximation
of transfer entropy [Hlinka 2013]. The Gaussian assumption seems to be strict for many
biological and physical mechanisms. Based on the results of Barnett et al. [Barnett 2009],
Hlavácková-Schindler investigated how the equivalence of the two causality measures can
be extended under some conditions on probability density distributions of the data, and
generalized this relation to other common types of distributions [Hlaváčková-Schindler
2011]. Later, with a very general class of continuous or discrete Markov models, Barnett
and Bossomaier [Barnett 2012] extended TE to a log-likelihood ratio in a maximum
likelihood framework.

It has been indicated that [Paluš 2001,Hlaváčková-Schindler 2007] TE is actually an
equivalent expression for conditional mutual information with the history of the influ-
enced variable in the condition. In [Chicharro 2011], Chicharro discussed the spectral
decomposition of several causality measures, however, he argued that, as most general
information-theoretic measures related to GC, TE lacks a spectral representation in terms
of the recorded processes. Standard transfer entropy may be sometimes defective. As
a matter of fact, when estimating the causality between two systems, according to the
definition of TE, a non-zero value of TE is a clue of causality relation. However, for
unidirectional relation, it is rather possible to obtain non-zero TE value for both direc-
tions, which would cause spurious conclusions. In [Smirnov 2013], Smirnov discussed the
following three typical factors leading to such phenomenon (i) unobserved state variables
of the driving system, (ii) low temporal resolution, and (iii) observation errors.

Due to its information-theoretic background, TE is model-free (inherently nonlinear)
and has already shown its superiority in the detection of effective connectivity for non-
linear interactions [Nichols 2005, Lungarella 2007a, Vicente 2011]. Also, several open
source tools are available for its practical use [Wibral 2011b,Lizier 2014,Montalto 2014].
Thus TE obtains wide applications in various fields, including neuroscience [Chávez 2003,
Gourévitch 2007,Garofalo 2009,Vakorin 2009,Sabesan 2009,Vakorin 2010,Besserve 2010,
Buehlmann 2010, Lüdtke 2010,Wibral 2011a, Lizier 2011,Neymotin 2011,Vakorin 2011,
Roux 2013,Pampu 2013,Wibral 2014a,Marinazzo 2014,Faes 2014,Lobier 2014], climate
[Pompe 2011], complex system theory [Lizier 2008, Lizier 2010], physiology [Faes 2006,
Faes 2011, Faes 2012], economics [Kwon 2008, Kim 2013], and other fields [Materassi
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2007,Ver Steeg 2012].

After its introduction by Schreiber in 2000, TE gained its popularity immediately, and
many researchers have greatly contributed to its development. Hereafter, are synthesized
some important extensions of this approach.

In 2007, Lungarella et al. [Lungarella 2007b] extended transfer entropy into a wavelet-
based form to measure directional transfer of information between coupled systems at
multiple time scales. With this method, the time series were projected into the wavelet
space to obtain a new set of variables, and then the causal dependencies between the new
variables are extracted. Due to their experimental results, this wavelet-based extension
of transfer entropy is capable of analyzing signals at multiple scales, even in the pres-
ence of nonstationarities, and it also succeeds in detecting the scale-dependent causal
dependencies between coupling systems.

Another important extension of TE is based on symbolizing technique. This tech-
nique first comes from the concept of permutation entropy [Bandt 2002a,Bandt 2002b],
where the symbolic presentation of the time series determined from ordering the ampli-
tude values instead of these time series themselves is used to reduce noise contributions
in observed data. The symbolizing technique could be summarized as follows [Melzer
2014]: start from a time series X D fxig with value xi for the ith sampling point.
Given an embedding dimension k and a delay � , the amplitude values are combined to
fx.i/; x.iC�/; : : : ; x.iC.k�1/�/g, giving a sequence of length k for the ith point. These
sequences are then sorted in ascending order fx.iC .ti1�1/�/ � x.iC .ti2�1/�/ � : : : �
x.i C .tik � 1/�/g. A symbol then denotes the order indices bxi , .bt i1;bt i2; : : : ;bt ik/ thus
mapping this sequence onto one of the possible kŠ permutations of the number 1 to k, re-
flecting the successive order of the amplitude values. Staniek and Lehnertz [Staniek 2008]
introduced this technique into the estimation of TE and proposed a new method called
symbolic transfer entropy (STE). Compared with transfer entropy, STE is computation-
ally faster and more robust to noise [Staniek 2008]. In [Staniek 2009], Staniek and Lehn-
ertz gave another discussion on this measure of directed interactions, and demonstrated
its performance in the analysis of human epileptic brain. Melzer and Schella [Melzer
2014] applied STE to analyze the behavior of changed-particle systems, and revealed the
information transportation successfully.

In 2008, Bettencourt et al. [Bettencourt 2008] demonstrated that, analogous to a
Taylor series, mutual information between a stochastic variable and a set of other vari-
ables, could be expanded into a sum of information quantities, which allowed to obtain a
new view of high-order correlations. Based on this work [Bettencourt 2008], Stramaglia
et al. [Stramaglia 2012] proposed a formal expansion of transfer entropy, involving irre-
ducible sets of variables which provided information for the future state of the target.
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Also, for practical applications, the authors argued that a conspicuous amount of phe-
nomenology in the brain can be explained by linear models, and introduced the assump-
tion of Gaussianity [Barnett 2009] to obtain computational convenience. The application
of this proposed expansion was illustrated to both simulated data and two real EEG data
sets.

As pointed out in [Sun 2014], transfer entropy often results in erroneous identifi-
cation of network connections, especially for time-dependent networks. To break this
limit, in 2014, Sun and Bollt [Sun 2014] developed a measure called causation entropy
(CSE) to obtain reliable identification of true couplings. CSE could be considered as
a generalization of transfer entropy. It measures the extra information flow between
two processes in addition to the information already provided by a third group of pro-
cesses. Through numerical simulations, the authors highlighted the superiority of CSE
over transfer entropy, where CSE successfully inferred the real causal relationships while
TE gave misinterpretations.

The common definition of transfer entropy involves infinite vectors [Schreiber 2000],
which leads to the calculation of infinite-dimensional densities. Also, despite its numer-
ous advantages, transfer entropy has been mostly applied in a bivariate scene, since it
is difficult to obtain reliable TE estimation in high dimensions due to the “curse of di-
mensionality”. To overcome this limitation, by embedding TE into the framework of
graphical models [Dahlhaus 2000, Eichler 2012], Runge et al. [Runge 2012] presented
a formula that decomposes TE into a sum of finite-dimensional contributions, called
decomposed transfer entropy (DTE). Compared with TE, DTE drastically reduces the
estimation dimension which leads to a more reliable estimation, and the graphical model
also enables a richer picture of causal interactions. In [Runge 2012], the advantages of
this approach were demonstrated on observational climate data (sea level pressure).

Despite all these advantages, it remains a tough task to obtain accurate estimations
of the information-theoretic measures while carried out on finite sample length signals,
particularly in the field of neuroscience [Pereda 2005,Hlaváčková-Schindler 2007], where
getting large amounts of stationary data is still problematic. This issue is largely dis-
cussed in the next chapter.
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Chapter 3
Methods and Materials

As mentioned previously, the information-theoretic approaches, especially transfer en-
tropy, play an important role in the detection of causality. A common problem is how
to obtain an accurate estimation of these information-theoretic quantities, which has
been proven to be difficult. More precisely, a well-known problem arises when estimating
entropy is the difficulty to lower the estimation bias. This chapter presents previous pub-
lished work and some proposed improvements concerning this problem, and it is arranged
in three parts.

In section 3.1, we introduce the mathematical definition of different information-
theoretic quantities, and discuss some similarities in the calculation of mutual information
and transfer entropy. Some important non-parametric approaches for the estimation of
these quantities are reviewed in section 3.2. With these previous works, several questions
are raised, and to answer them, we propose two different improvements of the existing
approaches. In section 3.3, we introduce an analytical form of bias for the estimation
of individual entropy, and then apply it into the estimation of both mutual information
and transfer entropy, where the bias reduction strategies of relation-specific distance
are proposed. These strategies vary with different norms, and it should be mentioned
that, when the strategy with maximum norm is retained, our results well explain the
conclusions drawn by Kraskov et al. in [Kraskov 2004], which were only derived from
numerical experiments. Additionally, to further decrease the bias estimation of mutual
information between two dependent variables, a weighted linear combination of distinct
mutual information estimators is introduced. In section 3.4, based on the idea proposed
in [Kraskov 2004], we deeply discuss the improvement in the estimation of information-
theoretic quantities using the maximum norm, when a (hyper-)rectangle is used instead
of a (hyper-)cube. Following two different methodologies [Kozachenko 1987,Singh 2003],
we extend the existing kNN (k-Nearest Neighbors) entropy estimators to the rectangular
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situation, which results in two other estimators. Applying these new entropy estimators
into the calculation of transfer entropy, we present two novel TE estimators. Finally, in
section 3.5, we discuss some other issues while applying transfer entropy in the analysis
of neural signals, such like order selection. For ease of readability, the links between the
concepts and methodologies described in this chapter are summarized and illustrated in
Fig. 3.6. In this diagram, a box identified by a number n in a circle is designed by box
n○ hereafter.

Note that only the bias analysis is addressed in the theoretical developments proposed
in this thesis. The variances estimations are investigated only experimentally in other
sections.

3.1. Problem Statement

3.1.1. Introduction to Information-theoretic Quantities

In this section, we give mathematical descriptions of different information-theoretic quan-
tities.

3.1.1.1. Entropy, Joint Entropy and Conditional Entropy

Entropy

Initially defined in statistical physics as being proportional to the logarithm of the
number of possible configurations of a physical system (typically a system of molecules),
the entropy formalized by Shannon [Shannon 1948] measures the amount of “uncertainty”
on what can be observed at the output of a random information source. In other words,
it quantifies the amount of information needed in order to specify completely this out-
put. Furthermore, other theoretical measures were proposed by Shannon, as conditional
entropy and mutual information, called entropic measures, which extended the practical
and conceptual usefulness of source entropy. Besides their applications in theoretical and
applied information systems, entropic measures have been applied in various fields, like
independent component analysis [Pham 2004], image analysis [Chang 2006], genetic anal-
ysis [Martins Jr 2008], speech recognition [Jung 2008], manifold learning [Costa 2004],
time delay estimation [Benesty 2007], among others [Brillouin 2013]. As explained here-
after, transfer entropy is a more recently introduced entropic measure.

Given a dX -dimensional random vector X (i.e. a measurable function X W �! RdX

defined on some underlaying probability space .�; �; P /). To define the entropy of X , we
first assume that the image set X D X .�/ (the set of possible realizations of X in RdX ) is
finite or enumerable, i.e. X D fxi ; i 2 I g where I is countable. Then, if we consider that
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log
�

1
P.XDxi /

�
is the decrease of uncertainty (i.e. the information gain) resulting from

the observation of the value xi , the entropy Hdis.X/ associated to the random vector X
is defined as the expectation (computed with respect to the probability distribution of
X on X) of this information gain. If we denote the function x ! P .X D x/ on X by
pX .x/, this expectation can be written

Hdis.X/ D E
�
log

1

pX .X/

�
D �E ŒlogpX .X/�

D �

X
i2I

pX .xi / logpX .xi /;

(3.1)

where 0 � log.0/ , 0. Here, the units of Hdis.X/ are “nats” when the natural logarithm
is used, and “bits” for base 2 logarithm. The change of variable pX .xi / D pi leads to
Hdis.X/ D �

P
i2I pi logpi and this underlines that the entropy does not depend on

the particular values set X D fxi ; i 2 I g. It depends only on the probability distribution
fpi ; i 2 I g on this set, so that the random variables X and Y D h.X/ admit the same
entropy whenever h is an injective transformation. The particular case fpi ; i 2 I g Dn
1
2K ; i D 1; : : : ; 2

K
o
, i.e. an uniform distribution on a finite set including 2K elements,

leads to 8i W log
�

1
P.XDxi /

�
D log

�
2K
�
and to an expected information gain equal to

Hdis.X/ D K bits. Now, let us consider a random variable X continuously distributed
on RdX , with a probability density function denoted by pX .x/, x 2 RdX . If we try
to introduce a definition of its entropy which originates from the one adopted for a
discrete distribution, a natural way could be (i) introduce a discretely distributed random
variable X"dis such that sup!2�

X .!/ �X"dis .!/


sup � " which approximate X better if
we decrease ", (ii) impose a small " value to have a small maximal difference between
X"dis and X and (iii) define the entropy of X , approximately, by that of X"dis. To follow
this idea, let us introduce a partition fci ; i 2 Ng of RdX (i.e.

S
i2N ci D RdX , i ¤ j )

ci\cj D ∅) such that supi2N fdiameter .ci / ; i 2 Ng � " and choose for each i an arbitrary
point xi in ci . For example we can retain for fci ; i 2 Ng a coverage of RdX obtained from
a lattice with the same period " along each Cartesian axis in RdX (i.e. such that the sets
ci are disjoint (hyper-)cubes, half open along each direction with an edge length equal
to "). Then X"dis can be defined univocally as a function of X by imposing X"dis .!/ D xi

if and only if X .!/ 2 ci , where each xi is arbitrary chosen in ci . This leads to

Hdis.X
"
dis/ D �

X
i2N

P
�
X"dis D xi

�
log

�
P
�
X"dis D xi

��
D �

X
i2N

P .X 2 ci / log .P .X 2 ci // :
(3.2)
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The discrete probability distribution of the discrete random variable X"dis taking its
values in the countable set fxi ; i 2 Ng can be approximated by˚

P
�
X"dis D xi

�
' pX .xi /v .ci / ; i 2 N

	
(3.3)

when " is small. So, it seems natural to approximate Hdis.X
"
dis/ as follows:

Hdis.X
"
dis/ ' �

X
i2N

pX .xi /v .ci / log .pX .xi /v .ci //

D �

X
i2N

pX .xi / log .pX .xi // v .ci / �
X
i2N

pX .xi / log .v .ci // v .ci / ;
(3.4)

where v .ci / D ."/dX is the Lebesgue measure of ci . Now, considering the two sums in
the second line of Equ. (3.4), when the supremum value of the v .ci / is sufficiently small,
we have:

�

X
i2N

pX .xi / log .pX .xi // v .ci / ' �
Z

x2RdX

pX .x/ log .pX .x// v .dx/ (3.5)

and
�

X
i2N

pX .xi / log .v .ci // v .ci / ' � log .v .ci //
Z

x2RdX

pX .x/v .dx/

D � log .v .ci // :

(3.6)

So we can approximate the sum in Equ. (3.4) by

Hdis.X
"
dis/ ' �

Z
x2RdX

pX .x/ log .pX .x// v .dx/ � log .v .ci //

D �E Œlog .pX .X//� � dX log ":

(3.7)

Now, clearly this approximation is not bounded below when " decreases and we can
note that the divergent term �dX log " does not depend on the density function pX .
Consequently a continuous-specific entropy definition has been proposed. It is named
differential entropy [Papoulis 1985], denoted here by Hcnt.X/ and obtained by keeping
only the first term in Equ. (3.7):

Hcnt.X/ D �E Œlog .pX .X//� : (3.8)

This definition is used currently when the observed data are modelized as continuously
distributed in probability, and will be generally retained in the sequel. It seems strange to
neglect �dX log ". But, In fact, the unbounded increase of �dX log " (when " decreases)
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can be interpreted as the necessary increase of information to localize more precisely a
point in RdX and can be considered as to be non-relevant to quantify the uncertainty
inherent to the shape of the probability distribution of X on RdX . Moreover, if one
wants to compare the uncertainty associated with two random variables X1 and X2, each
of them continuously distributed on RdX , we have no clear argument leading to choose
two distinct values of ", "1 and "2. So, we can consider that it is sufficient to compute
the differential entropies to make this comparison. Finally, considering Equ. (3.1) and
(3.8), a same formula can be retained, H.X/ D �E ŒlogpX .X/�, where H.X/ corresponds
to Hdis.X/ or Hcnt.X/ and pX .�/ corresponds respectively to a discrete distribution or
to a density distribution. When the context is clear, this common symbolization will
not introduce any confusion. But in the continuous distribution case, it must be clear
that H.X/ may be negative contrary to the discrete case. Another important difference
between the discrete and continuous cases is the influence of an invertible transformation
h W RdX ! RdX on the value of the entropy H.Y / of the random vector Y D h .X/.
In the discrete case, the entropy is invariant under any invertible transformation, i.e.
8h invertible W Hdis .Y / D Hdis .h .X// D Hdis .X/ and in the continuous case this prop-
erty is no more fulfilled.

It is interesting to introduce the following integral representation of entropy (which
will be useful later)

H.X/ D �E ŒlogpX .X/�

D

Z
RdX

log
�
dPX
d�r

.x/

�
dPX .x/;

(3.9)

where the sum is defined with respect to the probability measure PX (on the Borel
sets of RdX ) induced by the random vector X W � ! RdX , and which can be discrete
or continuous. Here the derivative of the measure PX with respect to the reference
measure �r , dPX

d�r
.x/, represents the discrete probability distribution or the probability

density function (in the discrete case, this reference measure is the uniform counting
measure supported by the countable set X .�/ D fxi ; i 2 I g, and in the continuous case
it corresponds to the Lebesgue measure on RdX ).

Joint Entropy

The entropy of a pair .X W � ! RdX ; Y W � ! RdY / of random vectors must
correspond, clearly, to the entropy of the (column) vector

�
XT ; Y T

�T . It is named joint
entropy and is denoted by H.X; Y /. Consequently, we have:

H.X; Y / D �E
�
logpX;Y .X; Y /

�
: (3.10)

This definition can be easily extended to a finite set comprising more than two random
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vectors. Equ. (3.10) implies that, if X and Y are independent, i.e. if pX;Y .�; �/ D
pX .�/pY .�/, we have the following relation

H.X; Y / D H.X/CH.Y /: (3.11)

Conditional Entropy

The conditional entropy H.X jY / measures the uncertainty about X when Y is ob-
served beforehand

H.X jY / D �E
�
logpX jY .X jY /

�
; (3.12)

where pX jY .xjy/ D
pX;Y .x;y/

pY .y/
is the conditional discrete distribution or the conditional

probability density function. Note that the expectation in Equ. (3.12) is computed with
respect to the joint probability distribution of .X; Y / as indicated below

H.X jY / D �E
�
logpX jY .X jY /

�
D

Z
RdX

log
�
dPX jY .�jy/

d�r
.x/

�
dPX;Y .x; y/ ;

(3.13)

where �r is defined on the Borel sets of RdX . The following basic property is easy to
verify:

H.X jY / D H.X; Y / �H.Y /: (3.14)

3.1.1.2. Mutual Information

Mutual Information (MI), besides its historical central role in telecommunication theory
and engineering, is a widely used information-theoretic independence measurement which
has received particular attention during the past few years [Urbanczik 2003, Stögbauer
2004,Wissman 2011,Foster 2011,Dunleavy 2012].

For two discrete random variables X and Y , with outcomes x and y from X and Y
separately, the mutual information I.X; Y / is defined as

Idis.X; Y / D
X
y2Y

X
x2X

pX;Y .x; y/ log
�
pX;Y .x; y/

pX .x/pY .y/

�
; (3.15)

where pX;Y .x; y/ D P.X D x; Y D y/, pX .x/ D P.X D x/ and pY .y/ D P.Y D y/.

If X and Y are continuous random variables with dimensions dX and dY respectively,
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the definition changes to

Icnt.X; Y / D

Z
y2RdY

dy
Z

x2RdX

pX;Y .x; y/ log
�
pX;Y .x; y/

pX .x/pY .y/

�
dx: (3.16)

Equ. (3.15) and (3.16) can be summarized by the following integral with respect to
the measure PX;Y

I.X; Y / D
Z

.x;y/2RdX�RdY

log
�

dPX;Y
d .PX ˝ PY /

.x; y/

�
dPX;Y .x; y/; (3.17)

where the derivative in brackets is defined with respect to the tensor product of PX
and PY (by definition, PX ˝ PY is equal to the joint probability measure for a pair of
random vectors U and V , respectively valuated in RdX and RdY , such that PU D PX

and PV D PY ).

Theoretically, I.X; Y / is always non-negative, and I.X; Y / D 0 if and only if X and
Y are independent (i.e. pX;Y .�; �/ D pX .�/pY .�/).

Mutual information is symmetric,

I.X; Y / D I.Y;X/; (3.18)

and it can also be expressed in terms of entropies

I.X; Y / D H.X/CH.Y / �H.X; Y /; (3.19)

or, equivalently
I.X; Y / D H.X/ �H.X jY /: (3.20)

According to Equ. (3.20), I.X; Y / can also be considered as the decrease of uncer-
tainty on X supplied by the observation of Y . The relation between the information-
theoretic quantities mentioned above given non-independent random variables X and Y
is summarized in Fig. 3.1.

Mutual information is tightly related to the Kullback-Leibler divergence [Latham
2009,Cover 2012], which is a non-symmetrical measure of the dissimilarity between two
distributions. Given two probability measures P and Q on the borel sets of Rd , the
Kullback-Leibler divergence of P with respect to Q is defined as

Dkl.P jjQ/ D

Z
Rd

log
�
dP
dQ

.x/

�
dP.x/: (3.21)
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( , )X Y

( | )X Y ( | )Y X

( )X ( )Y

( | )Y X

( , )X Y

( | )X Y

Figure 3.1: The relation between different information-theoretic quantities with non-
independent random variables X and Y [Abramson 1963]. The area contained by both
circles is the joint entropy H.X; Y /. The left and right circles stand for the individual

entropies H.X/ and H.Y / respectively.

The Kullback-Leibler divergence is also frequently named Kullback distance, improperly,
as this measure is not symmetric, i.e. Dkl.P jjQ/ ¤ Dkl.QjjP /. The main property is
that Dkl.P jjQ/ � 0 with equality to zero if and only if P D Q. According to Equ.
(3.21), mutual information can be written as the Kullback-Leibler divergence of the joint
measure PX;Y with respect to the measure equal to the tensorial product PX ˝ PY :

I.X; Y / D Dkl.PX;Y jjPX ˝ PY /: (3.22)

Thus, mutual information can be considered as a measure of how close the joint
distribution of .X; Y / is to the product of the marginal distributions of X and Y .

( | , )Z X Y

( | , )X Y Z ( | , )Y X Z

( , | )Y Z X( , | )X Z Y

( , | )X Y Z

( , , )X Y Z

( | , )Z X Y

( , | )X Z Y

( , | )Y Z X

( , , )X Y Z

( | , )X Y Z

( , | )X Y Z

( | , )Y X Z

( )Z

( )Y( )X

Figure 3.2: An illustration for the relations of different conditional information-theoretic
measures for three non-independent random variables X , Y , andZ [Abramson 1963]. The
lower-left, lower-right and upper circles, stand for H.X/, H.Y / and H.Z/ respectively.

For three random variablesX , Y andZ, the conditional mutual information I.X; Y jZ/
measures the information shared between X and Y conditioned on Z. By applying Equ.

38



Chapter 3 3.1. Problem Statement

(3.14) and (3.20), it can be presented in terms of joint or conditional entropies,

I.X; Y jZ/ D H.X;Z/CH.Y;Z/ �H.X; Y;Z/ �H.Z/
D H.X jZ/ �H.X jY;Z/:

(3.23)

Additionally, the concept of mutual information can also be extended to multivariate
situation. For a set of random variables fX1; X2; : : : ; XM g, I.X1; X2; : : : ; XM / quantifies
the information shared among these variables. ForM > 1, we have the following relation

I.X1; X2; : : : ; XM / D I.X1; X2; : : : ; XM�1/ � I.X1; X2; : : : ; XM�1jXM /: (3.24)

The relations between the different conditional information-theoretic quantities are
illustrated in Fig. 3.2.

3.1.1.3. Transfer Entropy

Transfer Entropy (TE) is an information-theoretic statistical measurement, which aims at
measuring the amount of time-directed information between two dynamical systems. As
described in the previous chapter, given the past time evolution of a dynamical system A,
the transfer entropy from another dynamical system B to the first system A is the amount
of Shannon uncertainty reduction in the future time evolution of A when including the
knowledge of the past evolution of B.

More precisely, let us suppose that we observe the time sampled output Xi 2 R, i 2 Z,
of some sensors connected to A. If the sequence X is supposed to be a mth order Markov
process, i.e. if considering subsequences X .k/i D .Xi�kC1; Xi�kC2; � � � ; Xi /, k > 0, the
probability measure PX (defined on measurable subsets of real sequences) attached to X
fulfills the mth order Markov hypothesis

8i W 8m0 > m W dP
XiC1jX

.m/

i

�
xiC1jx

.m/
i

�
D dP

XiC1jX
.m0/

i

�
xiC1jx

.m0/
i

�
;

xiC1 2 R; x.k/i 2 Rk;
(3.25)

then the past information X .m/i (before time instant i C 1) is sufficient for a prediction
of XiCk, k � 1, and can be considered as a m-dimensional state vector at time i (note
that, to know from X the hidden dynamical evolution of A, we need a one-to-one relation
between X .m/i and the physical state of A at time i). For sake of clarity, we introduce
the following notation:

�
X
p
i ; X

�
i ; Y

�
i

�
, i D 1; 2; : : : ; N , is an independent and identically

distributed (IID) random sequence, each term following the same distribution as a ran-
dom vector .Xp; X�; Y �/ 2 R1CmCn whatever i (in Xp, X�, Y �, the superscripts “p”
and “�” correspond to “predicted” and “past” respectively). This notation substitutes for
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the notation
�
XiC1; X

.m/
i ; Y

.n/
i

�
, i D 1; 2; : : : ; N and we denote by SXp;X�;Y� , SXp;X� ,

SX�;Y� and SX� the spaces in which .Xp; X�; Y �/, .Xp; X�/, .X�; Y �/ and X� are
respectively observed.

Now, let us suppose that a causal influence exists from B to A and that an auxiliary
random process Yi 2 R, i 2 Z, recorded from a sensor connected to B is such that, at
each time i and for some n > 0, Y �i , Y

.n/
i is an image (not necessarily one-to-one) of

the physical state of B. The negation of this causal influence implies

8n > 0 W 8i W dP
XiC1jX

.m/

i

�
xiC1jx

.m/
i

�
D dP

XiC1jX
.m/

i
;Y

.n/

i

�
xiC1jx

.m/
i ; y

.n/
i

�
: (3.26)

If Equ. (3.26) holds, it is said that there is an absence of information transfer from B
to A. Otherwise the process X can be no more considered strictly as a Markov process.
Let us suppose the joint process .X; Y / is Markovian, i.e. there exist a given pair .m0; n0/,
a transition function f , and an independent random sequence ei , i 2 Z, such that

ŒXiC1; YiC1�
T
D f

�
X
.m0/
i ; Y

.n0/
i ; eiC1

�
; (3.27)

where the random variable eiC1 is independent of the past random sequence
�
Xj ; Yj ; ej

�
,

j � i , whatever i . As Xi D g
�
X
.m/
i ; Y

.n/
i

�
where g is clearly a non-injective function,

the pair
n�
X
.m/
i ; Y

.n/
i

�
; Xi

o
, i 2 Z, corresponds to a hidden Markov Process, and it is

well known that this observation process is not generally Markovian.

The deviation from this assumption can be quantified using the Kullback pseudo-
metric. To define TE at time i let us consider the Kullback pseudo metric of the mea-
sure PXp

i
jX�

i
;Y�

i

�
�jx�i ; y

�
i

�
with respect to PXp

i
jX�

i

�
�jx�i

�
as a function of

�
x�i ; y

�
i

�
, say

Dkl

�
PXp

i
jX�

i
;Y�

i

�
�jx�i ; y

�
i

�
jjPXp

i
jX�

i

�
�jx�i

��
D g

�
x�i ; y

�
i

�
. It quantifies, conditionally to˚

X�i D x
�
i ; Y

�
i D y

�
i

	
, a deviation from the hypothesis in Equ. (3.25). Then TE at time

i can be defined at the average of this conditional Kullback distance computed with
respect to the joint probability distribution of

�
X�i ; Y

�
i

�
TEY!X;i D E

h
Dkl

�
PXp

i
jX�

i
;Y�

i

�
�jX�i ; Y

�
i

�
jjPXp

i
jX�

i

�
�jX�i

��i
D

Z
SX�;Y�

g
�
x�i ; y

�
i

�
dPX�

i
;Y�

i

�
x�i ; y

�
i

�
;

(3.28)

which can be finally written

TEY!X;i D
Z

SXp;X�;Y�

log

 
dPXp

i
jX�

i
;Y�

i

�
�jx�i ; y

�
i

�
dPXp

i
jX�

i

�
�jx�i

� �
x
p
i

�!
dPXp

i
;X�

i
;Y�

i

�
x
p
i ; x

�
i ; y

�
i

�
;

(3.29)
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where the ratio in Equ. (3.29) corresponds to the Radon-Nikodym derivative [Roman
1974] (i.e. the density) of the conditional measure dPXp

i
jX�

i
;Y�

i

�
�jx�i ; y

�
i

�
with respect

to the conditional measure dPXp

i
jX�

i

�
�jx�i

�
. Now, given two observable scalar random

time series X and Y with no a priori given model (as it is generally the case), if we
are interested in defining some causal influence from Y to X through TE analysis, we
must specify the dimensions of the past information vectors X� and Y �, i.e. m and
n. Even if we impose them, it is not evident that all the coordinates in X .m/i and Y .n/i

will be useful. To deal with this issue, variable selection procedures have been proposed
in the literature such as uniform and non-uniform embedding algorithms [Kugiumtzis
2013,Montalto 2014].

Here, we consider that the joint probability measure PXp

i
;X�

i
;Y�

i
is absolutely contin-

uous (with respect to the Lebesgue measure in RmCnC1 denoted by �mCnC1) with the
corresponding probability density function
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Then, we are sure that the following conditional densities probability functions exist:8̂̂̂̂
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and Equ. (3.29) yields to
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Equ. (3.32) can be rewritten
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or
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where H .U / denotes the Shannon differential entropy of a random vector U . Consider-
ing “log” as the natural logarithm, TEY!X;i is measured in natural units (nats). Note
that, if the processes Y and X are assumed to be jointly stationary, for any real function
g W RmCnC1 ! R, the expectation E

h
g
�
XiC1; X

.m/
i ; Y

.n/
i

�i
does not depend on i . Con-

sequently, TEY!X;i does not depend on i (and so can be simply denoted by TEY!X ),
nor all the quantities defined in Equ. (3.28) to (3.34). In theory, TE is never negative
and is equal to zero if and only if Equ. (3.26) holds.

According to the definition (in Equ. (3.28)), TE is not symmetric and it can be
regarded as a conditional mutual information (CMI) [Hlaváčková-Schindler 2007,Paluš
2001] (sometimes also named partial mutual information (PMI) in the literature [Frenzel
2007]). Recalling that definition of conditional mutual information in Equ. (3.23), TE
can be also written as

TEY!X D I
�
Xp; Y �jX�

�
: (3.35)

TE can be considered as a measurement of the degree to how past Y � of the pro-
cess Y disambiguates the future Xp of X beyond the degree to how its only past X�

disambiguates its future [Paluš 2001]. It is an information-theoretic implementation of
Wiener’s principle of observational causality. Hence TE reveals a natural relation to
Granger causality. As it is well known, Granger causality emphasizes the concept of
reduction of the mean square error of the linear prediction of Xpi when adding Y �i to
X�i by introducing the Granger causality index

GCY!X D log

0@ var
�
lpeXp

i
jX�

i

�
var

�
lpeXp

i
jX�

i
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�1A ; (3.36)

which is independent of i under the stationary hypothesis and where lpeXp

i
jU is the error

when predicting linearly Xpi from U . TE is framed in terms of reduction of the Shannon
uncertainty (entropy) of the predictive probability distribution. When the probability
distribution of

�
X
p
i ; X

�
i ; Y

�
i

�
is assumed to be Gaussian, TE and Granger causality are

entirely equivalent, up to a factor of 2 [Barnett 2009]:

TEY!X D
1

2
GCY!X : (3.37)

Equ. (3.37) can be used as a reference for the comparison between different TE
estimators. Consequently, in the Gaussian case, TE can be easily computed from a
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statistical second-order characterization of
�
X
p
i ; X

�
i ; Y

�
i

�
. This Gaussian assumption

obviously holds when the processes Y and X are jointly normally distributed and, more
particularly, when they correspond to a Gaussian autoregressive (AR) bivariate process.
In [Barnett 2009] Barnett et al. discussed the relation between these two causality
measures and this work bridged information-theoretic methods and autoregressive ones.

TE is used as a pairwise causality detection measure, however, as mentioned in chap-
ter 2, this kind of pairwise approach is not able to distinguish the direct and indirect
relations in multivariate systems. Similar as Granger causality, TE could also be ex-
tended to the conditional situation, termed conditional transfer entropy (CTE) [Yang
2012] (or partial transfer entropy (PTE) in some literature [Gómez-Herrero 2015]). Con-
sidering three random variables X , Y and Z, in order to quantify the information flow
from Y to X conditioned on Z, similarly to Equ. (3.28), CTE at time i can be defined
as
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(3.38)

where Z� stands for the past of Z with order q.

Similarly as for transfer entropy, CTE could also be presented by means of conditional
mutual information
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�
; (3.39)

and Equ. (3.39) could be rewritten in terms of joint and marginal entropies
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(3.40)

3.1.2. The Estimator Structures for MI and TE

Let us consider the estimation 3TEY!X of TEY!X as a function defined on the set
of observable occurrences .xi ; yi /, i D 1; : : : ; N , of a stationary sequence .Xi ; Yi /, i D
1; : : : ; N .

From Equ. (3.33), assuming that X and Y are jointly strongly ergodic leads to
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(3.41)
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where the convergence holds with probability one. Hence, a standard estimation 3TEY!X
of TEY!X is given by
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(3.42)
where U1, U2, U3 and U4 stand respectively for .X�; Y �/, .Xp; X�/, .Xp; X�; Y �/ and
X�. For each n, 6log .pU .un// is an estimated value of log .pU .un// computed as a func-
tion fn .u1; : : : ; uN / of the observed sequence un, n D 1; : : : ; N . With the kNN approach,
fn .u1; : : : ; uN / explicitly depends only on un and on its k NNs (nearest neighbors). So,
the calculation of 1H.U / is completely specified by the chosen estimation functions fn.
Note that if, for N fixed, these functions correspond respectively to unbiased estimators
of log .p .un//, then 3TEY!X is also unbiased, otherwise we can only expect that 3TEY!X
is asymptotically unbiased (for N large). It is like that if the estimators of log .pU .un//
are asymptotically unbiased.

Now, the theoretical derivation and analysis of the most currently used estimators

1H.U / .u1; : : : ; uN / D � 1
N

NX
nD1

4log .p.un// (3.43)

for the estimation of H .U / generally suppose that u1; : : : ; uN are N independent oc-
currences of the random vector U , i.e. u1; : : : ; uN is an occurrence of an IID sequence
U1; : : : ; UN of random vectors (8i D 1; : : : ; N W PUi

D PU ). Although the IID hypoth-
esis does not apply to our initial problem concerning the measure of TE on stationary
random sequences (that are generally not IID), the new methods presented in this the-
sis are extended from existing ones assuming this IID hypothesis (without relaxing it).
However, the chapter 4 will present results not only on IID observations but also on
non-IID stationary AR processes as our goal was to verify if some improvements can be
nonetheless obtained for non-IID data such as AR data.

If we come back to MI defined by Equ. (3.19) and compare it with Equ. (3.34), it is
obvious that estimating MI and TE shares similarities. Hence, similarly to Equ. (3.42)
for TE, a basic estimation 3I .X; Y / of I .X; Y / from a sequence .xi ; yi /, i D 1; : : : ; N , of
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N independent trials is

3I .X; Y / D � 1
N

NX
nD1

6log .pX .xn// � 1

N

NX
nD1

6log .pY .yn//C 1

N

NX
nD1

blog �pX;Y .xn; yn/�:
(3.44)

To conclude this section, we reviewed the mathematical definitions of different
information-theoretic quantities, and discussed the similarities of the estimator
structures of MI and TE. For practical use, it is important to find accurate estimators
for these quantities. Deriving a good estimator includes two aspects: unbiasness and
accuracy, which are reflected in estimation bias and variance. These issues are largely
discussed in the literature. However, the estimation remains a tough task while carried
out on finite sample length signals, for example in the field of neuroscience, where getting
large amounts of stationary data is problematical [Hlaváčková-Schindler 2007]. Moreover,
this estimation suffers from the “curse of dimensionality” [Verleysen 2005], especially for
transfer entropy. In the following section, we focus on the estimation of these quantities,
and give an overview of some important existing approaches.

3.2. Previous Works

For the estimation of information-theoretic quantities, there are two kinds of approaches,
parametric and non-parametric [Venelli 2010]. The parametric approaches make extra
assumptions on the data to be processed. For example, they can be assumed to be
issued from a known family of distributions, such as normal distribution, and the derived
estimator is optimized based on this assumption. In contrast, for the non-parametric
estimations, no a priori assumption is considered, and the estimators depend on the data
themselves. In the remainder of this section, only efficient non-parametric estimation
methods are described.

3.2.1. Estimation of Entropy

Coming back to the definition of entropy in Equ. (3.1), given a random variable X with
samples xi , i D 1; : : : ; N , the estimation of H.X/, 1H.X/, can be calculated as

1H.X/ D � 1
N

NX
iD1

log 1p.xi /; (3.45)

which requires 1p.xi / is the estimation of the probability density function p.�/ at data
point xi .

To solve this problem, for scalar observations, the most straightforward approach
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is the histogram-based method. Let us consider for example the one-dimensional case.
The real axis is first partitioned into M bins corresponding to M equal length intervals
aj D ŒsC .j � 1/ � �; sC j � �� with j D 1; : : : ;M , where s is the starting value of the first
interval a1, and � is the length of the intervals (bins). If the number of samples falling
into interval aj is denoted by nj , and the two following conditions are satisfied8<: s � minfx1; : : : ; xN g

s CM � � � maxfx1; : : : ; xN g;
(3.46)

then we have
MX
jD1

nj D N (3.47)

and the probability pX .x/ is calculated as

1pX .x/ D
X
j

nj

N�
1aj

.x/; x 2 R; (3.48)

where 1E.�/ is the indicator function of the set E.

In this case, the summation in Equ. (3.45) should be rewritten, such as

1H.X/his D �

MX
jD1

� nj
�N

log
� nj
�N

��
�; (3.49)

which corresponds, when N is large enough and � small enough to get nj

�N
' pX .x/,

x 2 aj , to a Riemann approximation of the integral �
R
x2R pX .x/ log .pX .x// dx D H.X/.

For the histogram-based method, the choice of the interval length � (related to the
number of bins M ) is critical. Even if this method is efficient in a computational point
of view, it only gives approximate estimation.

Beyond the histogram-based method, we can go further with density estimation.
Given a random variable X , drawn from the unknown density function pX .�/, the prob-
ability that a new sample of X falls into a region L.x/ around point x is given by

P.X 2 L.x// D
Z

L.x/

pX .y/dy: (3.50)

Suppose that the total number of data points drawn independently from pX .�/ is N
and that k points fall into the region L.x/, if N is large enough, this probability can be
written

P.X 2 L.x// � k

N
: (3.51)
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Moreover, if the diameter of L.x/ is small enough, pX .x/ can be considered as con-
stant in this region. So Equ. (3.50) can be rewritten as

P.X 2 L.x// D
Z

L.x/

pX .y/dy

� pX .u/

Z
L.x/

dy

D pX .u/V; u 2 L.x/;

(3.52)

where V is the volume of the region L.x/. Combining Equ. (3.51) and (3.52), we obtain

pX .u/ �
k

NV
; u 2 L.x/: (3.53)

As shown in Fig. 3.3, in order to estimate pX .x/, there are two possible starting
points: (i) choose a fixed region size with a fixed volume V and count how many points
fall into this region, (ii) choose a fixed value of neighbors k and compute the correspond-
ing volume V of the smallest ball including the k neighbors. In the literature [Bishop
1995], the first way refers to “kernel density estimation” (KDE, here with a Kernel shape
corresponding to the indicator function of the chosen region), and the second one to the
“k-Nearest Neighbors” approach.

(a) (b)

Figure 3.3: An illustration of two different ways to estimate density with a ball shape
region L.x/ around the center point, (a) the ball radius R is imposed, (b) the radius of
L.x/ is determined by the distance between kth NN and the center of the ball (in this
example, k D 6). In this example the considered norm is the standard Euclidean norm.

For KDE approach, the maximum norm, which results in a ball with a cubic shape, is
widely used. Formally we can introduce a kernel functionH.u/, also known as the Parzen
window [Parzen 1962], to determine the number k of points falling into the ball. For an
unit d -dimensional (hyper-)cube centered at the origin (with an unity edge length) H.u/
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can be defined as

H .u/ D

8̂<̂
: 1; if max

1�i�d
jui j �

1

2
;

0; otherwise:
(3.54)

So, the number k of points xi included in a (hyper-)cube centered on x and with edge
length equal to R is given by

k D

NX
iD1

H
�x � xi

R
�
: (3.55)

Finally, we obtain the following kernel density estimator

1pX .x/kde D
1

N

NX
iD1

1

V
H
�x � xi

R
�
; (3.56)

where V is the volume of the region L.x/. For this kind of density estimator, kernel
functions H.�/ other than the one used in Equ. (3.54) can be chosen. A common choice
is the Gaussian kernel function, and the corresponding density estimator is

1pX .x/kde D
1

N

NX
iD1

1

.2�R2/d
2

exp

 
�
.x � xi /

2

2R2

!
: (3.57)

So, with 1pX .x/ obtained with Equ. (3.56), 1H.X/ can be calculated with Equ. (3.45).
However, for the KDE method, the choice of the fixed width parameter R is important.
If R is too large, the estimated density is over-smoothed, and, if it is too small, the
estimation suffers from too much statistical variability. In Fig. 3.4, three different values
of R are given to highlight their influence on the results.

Now, we consider the kNN approach. Using the kth NN to determine the region
L.x/, an unbiased estimator of pX .x/ is given by [Fukunaga 2013]

bp.x/knn D
k � 1

NV
; (3.58)

where V is the volume of the neighborhood L.x/. Using this kNN density estimator, we
write the entropy estimator as

1H.X/knn D
1

N

NX
iD1

log
k � 1

Nvi
; (3.59)

where vi is the volume of the region L.xi / (around center point xi ). Since the estimator
in Equ. (3.59) has been proven to be biased [Singh 2003], two other unbiased entropy
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Figure 3.4: An example of using kernel method for density estimation with different
widths R (R D 0:1, R D 0:8 and R D 2:0). Data are generated by the mixture of
two equally weighted Gaussian distributions with mean values �1 D 0, �2 D 5, and

�1 D �2 D 1.

estimators based on the kNN technique have been introduced, as shown below.

Note that these two estimators can be implemented whatever the norm. Now, in this
section, when we refer to Fig. 3.6, we only consider the maximum norm, for which the
region of interest is a cube (Box 1○ in Fig. 3.6).

The first kNN entropy estimator is the Kozachenko-Leonenko entropy estimator [Leo-
nenko 2008] (Box 2○ in Fig 3.6),

1H.X/kl D  .N/C
1

N

NX
iD1

log .vi / �  .k/; (3.60)

where vi is the volume of the smallest ball centered on xi which includes the k NNs of
xi and  .k/ D � 0.k/

�.k/
denotes the digamma function.

The second one has been derived by Singh et al. in [Singh 2003] and is denoted by
1H.X/sg hereafter (Box 3○ in Fig. 3.6),

1H.X/sg D log.N /C
1

N

NX
iD1

log .vi / �  .k/; (3.61)

where vi and  .k/ share the same definition as in Equ. (3.60). Note that, using Equ.
(3.60) or (3.61), and for a given chosen norm, the only parameters to be fixed are the
number of observations N and the number of neighbors, k. Then, for a given N and
a given probability distribution, the choice of k determines all the estimation statistical
properties, as bias and variance. Actually, Equ. (3.60) and (3.61) give quite similar
results in practical use as, for large N , we have log.N / �  .N/. These two kNN entropy
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estimators (especially the one expressed using Equ. (3.60)) have become popular and
have been largely adopted in the estimation of both mutual information and transfer
entropy, these two quantities being deeper discussed in the rest of this chapter.

3.2.2. Estimation of Mutual Information

As mentioned previously, mutual information can be computed as a combination of joint
and marginal entropies. Let .X; Y / be a pair of multidimensional random variables with
a continuous distribution specified by a joint probability density pX;Y with marginal
densities pX and pY . Considering the entropy estimator in Equ. (3.45), the mutual
information I.X; Y / can be estimated from a sequence of independent realizations .xi ; yi /
of .X; Y / as

2I.X; Y / D 1H.X/C1H.Y / �3H.X; Y /

D �
1

N

NX
iD1

log 2pX .xi / � 1

N

NX
iD1

log 2pY .yi /C 1

N

NX
iD1

log 5pX;Y .xi ; yi /

D
1

N

NX
iD1

log
5pX;Y .xi ; yi /
2pX .xi /2pY .yi /

:

(3.62)

In order to calculate the estimator expressed by Equ. (3.62), we can first calculate
three individual densities 2pX .xi /, 2pY .yi /, and 5pX;Y .xi ; yi / separately by using the KDE
approach introduced previously. However, KDE remains a hard problem (for instance,
the tuning of the kernel) [Suzuki 2008] and could lead to unreliable estimators of the
entropic quantities. It is not considered in the scope of this work.

Another possible solution is to calculate 1H.X/, 1H.Y / and 3H.X; Y / separately, using
the kNN entropy estimators described in Equ. (3.60) or (3.61). In this way, it is possible
to adapt the neighborhood determination strategy for each of the three estimators in
order to cancel out (more or less) the bias errors in individual estimations and to avoid
an adverse accumulation of errors. To this end, Kraskov et al. [Kraskov 2004] proposed
to use a common neighboring size for both joint and marginal spaces when selecting
NNs. This strategy consisted in fixing the number of neighbors in the joint space SX;Y ,
then projecting the resulting distance (which corresponds, in this space, to the maximum
norm distance between the center of the cube and the kth NN) into the marginal spaces
SX and SY , i.e. the cubic balls in SX and SY have the same radius as the cubic ball in
SX;Y (Box 4○ in Fig. 3.6). Following this idea, the following MI estimator was proposed
by Kraskov in 2004 [Kraskov 2004] (Box 5○ in Fig 3.6)

3I .X; Y /k1 D  .k/ � h .nX C 1/C  .nY C 1/i C  .N/; (3.63)
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where N is the signal length, k is the fixed number of neighbors in SX;Y ,  .�/ denotes
the digamma function, the symbol h�i stands for an averaging on the sample data set,
nX and nY are the numbers of points which fall into the SX and SY balls which share a
same radius equal to the radius of the SX;Y ball.

In [Kraskov 2004], Equ. (3.63) was developed with the maximum norm, and one draw-
back of this estimator was highlighted. As shown in Fig. 3.5, one of the (hyper-)cube
determined in SX or SY by the distance projection procedure cannot have any point
on its border, what is not consistant with the Kozachenko-Leonenko estimation pro-
cedure. Therefore, Kraskov et al. suggested, for MI estimation, to replace minimal
(hyper-)cubes with smaller minimal (hyper-)rectangles equal to the product of two mini-
mal (hyper-)cubes built separately in subspaces SX and SY (Box 6○ in Fig 3.6), to exploit
more efficiently the Kozachenko-Leonenko approach. So, considering a (hyper-)rectangle
(the development of such a (hyper-)rectangle and the corresponding estimators will be
heavily stated in section 3.4.) instead of a (hyper-)cube, Kraskov et al. proposed a
second MI estimator [Kraskov 2004] (Box 7○ in Fig. 3.6)

3I .X; Y /k2 D  .k/ �
1

k
� h .nX /C  .nY /i C  .N/: (3.64)

According to [Kraskov 2004], Equ. (3.63) and (3.64) give quite comparable results.
Based on these kNN MI estimators, an open source toolbox, named MILCA [Sergey
2015], has been made available.

(a) (b)

Figure 3.5: An example of a cube in SX;Y space (with dX D dY D 1) determined by the
kth NN with k D 4. Denoting

�
cx; cy

�
the center of the cube in SX;Y , with probability

one, only one of the two following cases can arise: (a) "x < "y there is no point on the
border of the interval

�
�cx C

"y

2
; cx C

"y

2

�
, (b) "x > "y there is no point on the border

of the interval
�
�cy C

"x

2
; cy C

"x

2

�
.

In [Kraskov 2004], the effectiveness of this strategy to reduce bias is attested through
numerical experiments. This strategy has also been extended to the calculation of other
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information theory functionals, such as divergence [Wang 2009] or conditional mutual
information [Frenzel 2007].

In [Kraskov 2004], the following interesting conjecture has been raised from simulation
results:

E
h3I .X; Y /k1

i
D E

h3I .X; Y /k2

i
D 0; iif I .X; Y / D 0: (3.65)

In section 3.3, we propose to give some theoretical explanations to justify this result.

3.2.3. Estimation of Transfer Entropy

For the estimation of transfer entropy, using the same notations as in Equ. (3.32), and
similar with Equ. (3.62), the estimator of transfer entropy can be written as

3TEY!X D 5H .X�; Y �/C 5H �
Xp; X�

�
�
8H �
Xp; X�; Y �

�
� 2H .X�/

D �
1

N

NX
iD1

2log �pX�;Y�.x�i ; y�i /� � 1

N

NX
iD1

2log �pXp;X�.x
p
i ; x

�
i /
�

C
1

N

NX
iD1

7log �pXp;X�;Y�.x
p
i ; x

�
i ; y

�
i /
�
C
1

N

NX
iD1

7log �pX�.x�i /�
D

1

N

NX
iD1

log
4pXp;X�;Y�.x

p
i ; x

�
i ; y

�
i /

3pX�.x�i /
8pX�;Y�.x�i ; y�i /8pXp;X�.x

p
i ; x

�
i /

;

(3.66)

where .xpi ; x
�
i ; y

�
i / is an observation (realization) of .Xp; X�; Y �/. As previously, it is

possible to calculate the marginal and joint density probabilities in Equ. (3.66) using
KDE approach, and then estimate TE. This method has been adopted by some authors
[Sabesan 2007,Yang 2013]. In [Zuo 2013], Zuo et al. tried to improve this method by
introducing an adaptive bandwidth [Hwang 1994] to estimate the joint density probability

with the highest dimension,4pXp;X�;Y�.x
p
i ; x

�
i ; y

�
i /.

Inspired from the MI estimators proposed by Kraskov et al. (Equ. (3.63) and (3.64)),
two different kNN TE estimators have been proposed afterwards. Applying the same
strategy to estimate TE, the number of neighbors in the joint space SXp;X�;Y� is first
fixed. Then, for each i , the resulting distance "i , d.xp

i
;x�

i
;y�

i
/;k between .xpi ; x

�
i ; y

�
i /

and its kth NN is projected into the three other lower-dimensional spaces, leading to the
following TE estimator [Vicente 2011,Lindner 2011,Wibral 2013,Wibral 2014a,Wollstadt
2014,Gómez-Herrero 2015] (Box 8○ in Fig 3.6)

3TEY!Xk1 D  .k/C
1

N

NX
iD1

�
 .nX�;i C 1/ �  .n.X�;Y�/;i C 1/ �  .n.Xp;X�/;i C 1/

�
;

(3.67)
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where nX�;i , n.X�;Y�/;i and n.Xp;X�/;i denote the number of points which fall into
the distance "i from x�i ,

�
x�i ; y

�
i

�
and

�
x
p
i ; x

�
i

�
in the lower-dimensional spaces SX� ,

SX�;Y� and SXp;X� , respectively. An implementation of this TE estimator is available
in the TRENTOOL toolbox [Wollstadt 2015], version 3.0. Another kNN TE estimator
is derived from Equ. (3.64) and written as (Box 9○ in Fig. 3.6)

3TEY!Xk2 D
1

N

NX
iD1

�
 .k/ �

2

k
C  .nX�;i / �  .n.Xp;X�/;i /C

1

n.Xp;X�/;i

� .n.X�;Y�/;i /C
1

n.X�;Y�/;i

�
:

(3.68)

Similarly as for Equ. (3.64), Equ. (3.68) is based on the idea of rectangle described
in Fig. 3.5, and it has been implemented in the JIDT toolbox [Lizier 2014], version 1.2.
The same approach inspired by the works of Kraskov has led to propose a kNN approach
to estimate DI [Amblard 2014].

Note that, in the following development of this work, transfer entropy estimated by
the free TRENTOOL toolbox (corresponding to Equ. (3.67)) is marked as Standard
algorithm, and that estimated by JIDT (corresponding to Equ. (3.68)) is marked as
Extended algorithm.

3.2.4. Discussion

In this section, different methods for the estimation of information-theoretic quantities
have been reported. For the calculation of MI and TE, the most popular approaches
are the kNN related methods, and these estimators use similar strategies to reduce bias.
Hereafter, we give a short summary on these strategies before raising some fundamental
questions. As discussed in section 3.1.2, the estimators of MI and TE present comparable
structures, so that we consider here only mutual information but the same reasoning
applies to transfer entropy.

Given
2I.X; Y / D 1H.X/C1H.Y / �3H.X; Y /; (3.69)

if we calculate the marginal and joint entropies on the right-hand side of Equ. (3.69)
separately, this introduces estimation bias for each term, denoted by BH .X/, BH .Y / and
BH .X; Y / respectively. Then the bias for 2I.X; Y / is expressed as

BI .X; Y / D BH .X/C BH .Y / � BH .X; Y /: (3.70)

Our goal is to reduce BI .X; Y / as much as possible. To this end, there are two basic
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ideas.

(1) First, we can choose proper parameters for the estimation of individual entropies,
and try to tend towards the following approximation

BH .X/C BH .Y / � BH .X; Y /: (3.71)

In this case, the individual estimation bias would be cancelled out, and BI .X; Y /
would vanish to zero. The MI estimator in Equ. (3.63) and the TE estimator (Equ.
(3.67) follow this idea. To apply this strategy, Kraskov proposed to obtain the distance in
the joint space SX;Y , and then project the distance obtained into the marginal spaces SX
and SY . It should be mentioned that, until now, this strategy has been only implemented
with the maximum norm.

(2) A second basic idea is to reduce BH .X/, BH .Y / and BH .X; Y / as much as possible
but in a separate manner. For this purpose, we can calculate the individual entropies
using the (hyper-)rectangle region instead of a (hyper-)cube. For the MI estimator in
Equ. (3.64) (resp. Equ. (3.68) for TE), this idea is applied together with the first one.
Of course, in this case, it is impossible to support completely the first idea, because, for
a (hyper-)rectangle, the side lengths for different dimensions may be different.

However, there are still several questions to be solved with these strategies.

Firstly, for the point (1) mentioned above (marked as a red arrow in Fig. 3.6),
there are three questions to answer. Firstly, the effectiveness of the strategy proposed
in [Kraskov 2004] is verified only with numerical experiments. There is currently a lack
of theoretical explanation and a deeper analysis of the bias in the entropy estimation is
required. For the moment, the most popular bias analysis approach is dedicated to the
Edgeworth expansion [Van Hulle 2005], and it could also be used in the estimation of
mutual information. However, this method is not suitable for the investigation mentioned
here: (a) this method uses the Gaussian distribution and some additional correction terms
to approximate the entropy of a distribution, and the size-related parameters (bandwidth
for KDE, or number of neighbors for kNN) are not involved in this analysis, (b) according
to previous studies [Suzuki 2008], the Edgeworth MI estimator is accurate when the
underlying distributions are close to Gaussian distribution, and becomes unreliable when
the distributions are far from Gaussian.

Secondly, as pointed out in [Kraskov 2004], the two MI estimators could provide
accurate results for 2I.X; Y / only when X and Y are independent. The question is now:
is it possible to improve the results when X and Y are dependent?

Thirdly, the two kNN estimators (Equ. (3.63) for MI, and Equ. (3.67) for TE) are
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only implemented with the maximum norm (MI estimator in MILCA [Sergey 2015], and
TE estimator in TRENTOOL [Wollstadt 2014]), where the distances are obtained in
the joint space with the highest dimension, and these distances are then projected into
the other spaces. Is it possible to apply this strategy to other norms, for instance, the
Euclidean one?

These three questions are covered in section 3.3 (see the blue dotted box in Fig. 3.6).
Firstly, a new analytical form of bias for the plug-in entropy estimator is introduced
(Box 10○), and using this result, a relation leading to an optimal distance is developed
for the estimation of mutual information and transfer entropy for two norms (Euclidean
norm and maximum norm, Boxes 12○ and 13○ respectively). In the case of the maximum
norm, this relation (Box 13○) actually provides the theoretical explanation for the kNN
MI and TE mentioned previously (Boxes 5○ and 8○). In Box 12○, this relation is extended
to Euclidean norm. With the relations in Boxes 12○ and 13○, we developed the “basic”
estimators for both MI (Box 14○) and TE (Box 15○), using the kNN density estimator
(Box 16○). Note that the optimized distance relations are developed only under the
independence assumption. To futher eliminate the bias for dependent X and Y , novel
MI and TE estimators, named “mixed” estimators, are also introduced (Boxes 18○ and
19○).

For point (2) (marked as a blue arrow in Fig. 3.6), there is one extra question.
In [Kraskov 2004], the development for the idea of product of cubes is based on the
Kozachenko-Leonenko entropy estimator (Equ. (3.60)) using the maximum norm. After
some extra mathematical development, this idea can be extended to a more general case
(idea of rectangle, Box 20○ in Fig. 3.6), where the determined region in the joint space is
a rectangle (the side lengths in two different dimensions can be different). Is it possible
to derive the new kNN entropy estimator with the idea of rectangle based on Singh’s
entropy estimator (Equ. (3.61))? This point is discussed in section 3.4 (marked as a red
dotted box in Fig. 3.6). The standard kNN methods using maximum norm for proba-
bility density estimation and entropy non-parametric estimation introduce, around each
data point, a minimal (hyper-)cube (Box 1○), which includes the first k NNs, as it is the
case for two already developed entropy estimators, namely the well-known Kozachenko-
Leonenko estimator (Box 2○) and the less commonly used Singh’s estimator (Box 3○).
The idea of rectangle extends the idea of the product of cubes (Box 6○). It consists in
proposing a different construction of the neighborhoods, which are no longer minimal
(hyper-)cubes, nor products of (hyper-)cubes, but minimal (hyper-)rectangles (Box 20○),
with possibly a different length for each dimension, to get two novel entropy estimators
(Boxes 21○ and 22○), respectively derived from the Kozachenko-Leonenko entropy estima-
tor and Singh’s entropy estimator . These two new entropy estimators lead respectively
to two new TE estimators (Boxes 23○ and 24○) to be compared with the Standard and
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Extended TE estimators.

3.3. First Improvement

This section 1 deals with the control of estimation bias when estimating mutual infor-
mation or transfer entropy from non-parametric approach. We focus on continuously
distributed random data and the estimators we developed are based on non-parametric
kNN approach for arbitrary metrics. Using a multidimensional Taylor series expansion,
a general relationship between the estimation error bias and neighboring size for plug-in
entropy estimator is established without any assumption on the data for two different
norms. The theoretical analysis based on the maximum norm developed coincides with
the experimental results drawn from numerical tests made by Kraskov et al. [Kraskov
2004]. To further validate the novel relation, a weighted linear combination of distinct
mutual information estimators is proposed.

3.3.1. New Bias Expression for the Plug-in Entropy Estimator

In the following development, we consider a dX -dimensional random variable X whose
outcomes are in RdX and with a probability distribution specified by the probability
density function pX .x/. L.x/ standing for a small region around x in RdX , we introduce
the volume (Lebesgue measure) of L.x/

v.x/ D

Z
L.x/

du: (3.72)

As mentioned in section 3.2.1, in most existing density estimation algorithms, includ-
ing either KDE with the Parzen window or kNN, pX .x/ is estimated as

cpX .x/ D 6P .X 2 L.x//
v.x/

D

7R
L.x/ pX .y/dy

v.x/
;

(3.73)

where 6P .X 2 L.x// corresponds to an estimation of the probability that X belongs to
the set L.x/. If we assume that P .X 2 L.x// is perfectly known (but not pX .x/), we

1This first improvement was the subject of our contribution in [Zhu 2014,Zhu 2015b].
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can use the following approximation

logpX .x/ � log
�
P .X 2 L .x//

v .x/

�
D log

 R
L.x/ pX .y/ dy

v .x/

!
:

(3.74)

Given Equ. (3.73), an estimation 4logpX .x/ of logpX .x/ is introduced

4logpX .x/ D log cpX .x/
D log

6P .X 2 L.x//
v.x/

D log

 R
L.x/ pX .y/dy

v.x/
C "

!
;

(3.75)

where the random estimation error " given by

" D

7R
L.x/ pX .y/dy

v.x/
�

R
L.x/ pX .y/dy

v.x/
(3.76)

is zero mean when 6P .X 2 L.x// is unbiased.

From observations Xi (random variables) issued from PX , the corresponding differ-
ential entropy H.X/ can be estimated as

1H.X/ D � 1
N

NX
iD1

2logpX .Xi /; (3.77)

where N is the number of data used in the averaging. Then, we approximate the proba-
bility density pX .y/ using a second-order Taylor approximation around x,

pX .y/ � pX .x/C

�
@pX

@x
.x/

�T
.y � x/C

1

2
.y � x/T

�
@2pX

@x2
.x/

�
.y � x/; (3.78)

with the superscript T standing for matrix transposition, and analyze the bias of 1H.X/
with

1H.X/ D � 1
N

NX
iD1

log cpX .Xi /
D �

1

N

NX
iD1

log

 R
L.Xi /

pX .y/dy

v.Xi /
C "i

!
;

(3.79)

where the index i refers to the sample number. Integrating Equ. (3.78) on both sides
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and dividing by v.x/, we getR
L.x/ pX .y/dy

v.x/
� pX .x/C

�
@pX

@x
.x/

�T 1

v.x/

Z
L.x/

.y � x/dy

C
1

2v.x/

Z
L.x/

.y � x/T
�
@2pX

@x2
.x/

�
.y � x/dy:

(3.80)

If we assume that L.x/ admits x as a center of symmetry, thenZ
L.x/

.y � x/dy D 0 (3.81)

and the first-order term on the right-hand side of Equ. (3.80) is zero. According to the
property tr.AB/ D tr.BA/ of the trace operator, denoted tr.�/, applied to the product of
two matrices A and B, Equ. (3.80) can be transformed intoR

L.x/ pX .y/dy

v.x/
� pX .x/C

1

2v.x/

Z
L.x/

.y � x/T
�
@2pX

@x2
.x/

�
.y � x/dy

D pX .x/C
1

2v.x/
tr

0B@ Z
L.x/

.y � x/.y � x/T dy
@2pX

@x2
.x/

1CA :
(3.82)

Finally, the estimator 2logpX .x/ of logpX .x/ is approximated by

log

 R
L.x/ pX .y/dy

v.x/
C "

!

� log

0B@pX .x/C 1

2v.x/
tr

0B@
0B@ Z
L.x/

.y � x/.y � x/T dy

1CA�@2pX
@x2

.x/

�1CAC "
1CA

� logpX .x/C
1

pX .x/

1

2v.x/
tr

0B@
0B@ Z
L.x/

.y � x/.y � x/T dy

1CA�@2pX
@x2

.x/

�1CA
„ ƒ‚ …

�BX

C
1

pX .x/
";

(3.83)
where the term

�
1

pX .x/
� "
�
is zero mean.

The bias BX in 1H.X/ is approximated by the second term in the right-hand side of
Equ. (3.83) and used as a correcting term. To build L.x/ which admits x as a center
of symmetry, we retain two norms, the Euclidean norm (k�k D k�kE) and the maximum
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norm (k�k D k�kM):
L.x/ D fy W ky � xk � R.x/g : (3.84)

The resulting domain corresponds respectively to a standard ball and to a dX dimen-
sional cube (a cubic ball). Consequently, the value R.x/ fixes respectively the radius of
the standard ball or the half of the edge length of the cube.

Note that
R
L.x/ .y � x/ .y � x/

T dy is a diagonal matrix, which can be expressed as
T � I , where I is the identity matrix and T is a scalar independent of x. Therefore, we
can move T out of the tr.�/ function

BX �
1

pX .x/

1

2v.x/
tr

0B@
0B@ Z
L.x/

.y � x/.y � x/T dy

1CA�@2pX
@x2

.x/

�1CA
D

1

pX .x/

1

2v.x/
tr
�
.T � I / �

�
@2pX

@x2
.x/

��
D

� T
2v.x/

�
�

1

pX .x/
� tr

�
@2pX

@x2
.x/

�
:

(3.85)

Now, we derive an expression for T
2v.x/

in Equ. (3.85). Assume a conventional
quadratic distance function such as

R2.x; y/ D .y � x/TA.y � x/: (3.86)

Using dX -dimensional spherical coordinates, we have (Equ. (14) in [Fukunaga 1973])Z
L.x/

.y � x/.y � x/T dy D
1

.dX C 2/�
�

2
dX

�
dX C 2

2

�
v
1C 2

dX .x/jAj
1

dX A�1; (3.87)

where �.�/ is the Gamma function, and

v.x/ D

Z
L.x/

dx

D
�

dX
2 RdX .x/

jAj
1
2�

�
dXC2
2

� : (3.88)

From Equ. (3.87) and (3.88), we have

1

2v.x/
�

Z
L.x/

.y � x/.y � x/T dy D
R2.x/

2.dX C 2/
� A�1: (3.89)
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The derivation of Equ. (3.89) can be found in Appendix A. For normal Euclidean
norm, A D I . So

1

2v.x/
�

Z
L.x/

.y � x/.y � x/T dy D
R2.x/

2.dX C 2/
� I; (3.90)

and finally
T

2v.x/
D

R2.x/
2.dX C 2/

: (3.91)

Therefore, for Euclidean norm, BX could be approximated as (Box 10○ in Fig. 3.6)

BX .x/ �
R2.x/

2.dX C 2/
�

1

pX .x/
� tr

�
@2pX

@x2
.x/

�
: (3.92)

Now, let us consider the maximum norm, for which the region L.x/ is a d -dimensional
(hyper-)cube with side length 2R.x/. Also, due to the symmetry of the region, we have

1

2v.x/
�

Z
L.x/

.y � x/.y � x/T dy

D
1

2.2R.x//dX
�

 
u3

3

ˇ̌̌̌ R.x/
�R.x/

!
� .2R.x//dX�1 � I

D
R.x/2
6
� I;

(3.93)

which results in
T

2v.x/
D

R2.x/
6

: (3.94)

So, using the maximum norm distance, the bias BX can be approximated as (Box 10○
in Fig. 3.6)

BX .x/ �
R2.x/
6
�

1

pX .x/
� tr

�
@2pX

@x2
.x/

�
: (3.95)

Note that, with the second-order approximation, the bias BX increases with larger
R.x/ whatever the norm.

Until now, no particular form of density estimator was specified in our bias analysis.
In [Kraskov 2004], the Kozachenko–Leonenko estimator [Kozachenko 1987] (Equ. (3.60))
does not use explicitly an estimation of the densities for each sample point. However,
since  .N/ � log.N / for large N , Equ. (3.60) has the following structure

1H.U / D � 1
N

NX
iD1

log

 
e .k/

Nvi

!
; (3.96)
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where the term inside the brackets can be interpreted as a density probability estimation.
Using the kNN entropy estimator proposed by Singh (Equ. (3.61)), Equ. (3.96) could
be directly derived. Therefore, using Equ. (3.75), (3.79) and (3.96), we consider the
following generic density estimator (Box 11○ in Fig. 3.6)

2pU .ui / D e .k/

Nvi
; (3.97)

and the kNN entropy estimators mentioned previously (Equ. (3.60) and (3.61)) can
be considered as estimators with the same structure as in Equ. (3.79), and so can be
discussed under our bias analysis framework.

3.3.2. Bias Reduction of MI/TE Estimators Based on the New Bias
Expression

Coming back to the estimation of MI, we can try to decrease its bias by subtracting the
bias term highlighted in Equ. (3.83):

2I.X; Y / D � 1
N

NX
iD1

�
log cpX .xi /C logcpY .yi / � log1pX;Y .xi ; yi /

�
�
BX .xi /C BY .yi / � BX;Y .xi ; yi /

� �
:

(3.98)

If X and Y are independent, we obtain for each i :

tr
�
@2pX;Y

@.x;y/2
.xi ; yi /

�
pX;Y .xi ; yi /

D

tr
�
@2pX

@x2 .xi /
�

pX .xi /
C

tr
�
@2pY

@y2 .yi /
�

pY .yi /
: (3.99)

In this case, we impose relationship-specific distances for different entropy estimations
in Equ. (3.69) to cancel out the bias, i.e.

BX .xi /C BY .yi / � BX;Y .xi ; yi / D 0: (3.100)

With the help of Equ. (3.99), for the Euclidean norm, the left side of Equ. (3.100)
can be transformed into

BX .xi /C BY .yi / � BX;Y .xi ; yi / D
� R2.xi /
2.dX C 2/

�
R2.xi ; yi /
2.dX;Y C 2/

�
�

tr
�
@2pX

@x2 .xi /
�

pX .xi /

C

� R2.yi /
2.dY C 2/

�
R2.xi ; yi /
2.dX;Y C 2/

�
�

tr
�
@2pY

@y2 .yi /
�

pY .yi /
;

(3.101)
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where dX , dY and dX;Y are the dimensions of the signals X , Y and .X; Y /, and R.xi /,
R.yi / and R.xi ; yi / are the distances used for the estimation of cpX .xi /, cpY .yi / and
1pX;Y .xi ; yi /, respectively. Here, pX .xi /, pY .yi / and their corresponding second-order
derivatives are unknown, so to get Equ. (3.101) equal to zero, the following sufficient
pair of conditions is derived 8̂̂̂<̂

ˆ̂:
R2.xi /
2.dX C 2/

D
R2.xi ; yi /
2.dX;Y C 2/

R2.yi /
2.dY C 2/

D
R2.xi ; yi /
2.dX;Y C 2/

:

(3.102)

Finally, Equ. (3.102) yields to (Box 12○ in Fig. 3.6)8̂̂̂̂
<̂̂
ˆ̂̂̂:
R.xi / D

s
dX C 2

dX;Y C 2
�R.xi ; yi /

R.yi / D
s

dY C 2

dX;Y C 2
�R.xi ; yi /:

(3.103)

Similarly, using the maximum norm, we obtain (Box 13○ in Fig. 3.6)8<:R.xi / D R.xi ; yi /
R.yi / D R.xi ; yi /:

(3.104)

Equ. (3.104) formally confirms (as suggested but not proved in [Kraskov 2004]) that,
if X and Y are independent, using the maximum norm and constraining the values
R.xi / and R.yi / to be equal to R.xi ; yi / allows to decrease the bias 2I.X; Y /� I.X; Y /.
Equ. (3.103) extends this result when the Euclidean norm is used for the 3 individual
spaces. We should mention that Equ. (3.99) no longer holds if signals X and Y are not
independent. In this case, only a part of the bias can be expected to be cancelled out.

So, finally, in the case of independence between X and Y , we introduced the following
MI estimator

2I.X; Y / D � 1
N

NX
iD1

�
log cpX .xi /C logcpY .yi / � log1pX;Y .xi ; yi /

�
(3.105)

with an (approximately) zero bias by choosing R.xi ; yi / and properly defining R.xi / and
R.yi / using Equ. (3.103) or (3.104). When R.xi ; yi / results from the kNN approach
(i.e. when R.xi ; yi / D kkNN.xi ; yi / � .xi ; yi /k is the distance from .xi ; yi / to its kth
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NN, also denoted Rk.xi ; yi /), this estimator is denoted by 2I.X; Y /kbasic with

3I .X; Y /kbasic D
1H.X/basic C1H.Y /basic �3H.X; Y /basic

D �
1

N

NX
iD1

�
log

k.xi / � 1

N � v.xi /
C log

k.yi / � 1

N � v.yi /
� log

k.xi ; yi / � 1

N � v.xi ; yi /

�
;

(3.106)

where k.xi ; yi / D k (Box 14○ in Fig. 3.6). Hereafter, this estimator is written as
2I.X; Y /kbasic;E for the Euclidean norm and by 2I.X; Y /kbasic;M for the maximum norm,
and called “basic estimator”.

Now, we consider the estimation of transfer entropy. Similarly with Equ. (3.98), Equ.
(3.34) can be rewritten as

3TEY!X D � 1
N

NX
iD1

 
log 2pX�

i
;Y�

i
.x�i ; y

�
i /C log 2pXp

i
;X�

i
.x
p
i ; x

�
i / � log bpX�

i
.x�i /

� log5pXp

i
;X�

i
;Y�

i
.x
p
i ; x

�
i ; y

�
i /

�

�
BX�

i
;Y�

i
.x�i ; y

�
i /C BXp

i
;X�

i
.x
p
i ; x

�
i / � BXp

i
;X�

i
;Y�

i
.x
p
i ; x

�
i ; y

�
i / � BX�

i
.x�i /

�!
:

(3.107)

In the same way as for mutual information, we impose relationship-specific distances
for different entropy estimations in Equ. (3.107) to cancel out the bias, and obtain the
following relation

BX�
i
;Y�

i
.x�i ; y

�
i /C BXp

i
;X�

i
.x
p
i ; x

�
i / � BXp

i
;X�

i
;Y�

i
.x
p
i ; x

�
i ; y

�
i / � BX�

i
.x�i / D 0: (3.108)

If the three random variables Xpi , X
�
i , Y

�
i are mutually independent, after calcula-

tion, for the Euclidean norm, we have

8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

R2.x�i ; y�i /
2.dX�

i
;Y�

i
C 2/

D
R2.xpi ; x�i ; y�i /
2.dXp

i
;X�

i
;Y�

i
C 2/

R2.xpi ; x�i /
2.dXp

i
;X�

i
C 2/

D
R2.xpi ; x�i ; y�i /
2.dXp

i
;X�

i
;Y�

i
C 2/

R2.x�i /
2.dX�

i
C 2/

D
R2.xpi ; x�i ; y�i /
2.dXp

i
;X�

i
;Y�

i
C 2/

;

(3.109)
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where R.x�i ; y�i /, R.x
p
i ; x

�
i /, R.x

p
i ; x

�
i ; y

�
i / and R.x�i / are the distances used for the

estimation of 2pX�
i
;Y�

i
.x�i ; y

�
i /, 2pXp

i
;X�

i
.x
p
i ; x

�
i /, 5pXp

i
;X�

i
;Y�

i
.x
p
i ; x

�
i ; y

�
i / and bpX�

i
.x�i /

at the ith point, d.�/ is the dimension of the corresponding space. After simplification,
Equ. (3.109) leads to (Box 12○ in Fig. 3.6)8̂̂̂̂

ˆ̂̂̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂:

R.x�i ; y�i / D

vuut dX�
i
;Y�

i
C 2

dXp

i
;X�

i
;Y�

i
C 2
�R.xpi ; x�i ; y�i /

R.xpi ; x�i / D

vuut dXp

i
;X�

i
C 2

dXp

i
;X�

i
;Y�

i
C 2
�R.xpi ; x�i ; y�i /

R.x�i / D

vuut dX�
i
C 2

dXp

i
;X�

i
;Y�

i
C 2
�R.xpi ; x�i ; y�i /:

(3.110)

For the maximum norm, the relation becomes (Box 13○ in Fig. 3.6)8̂̂<̂
:̂
R.x�i ; y�i / D R.xpi ; x�i ; y�i /
R.xpi ; x�i / D R.xpi ; x�i ; y�i /

R.x�i / D R.xpi ; x�i ; y�i /:
(3.111)

Equ. (3.111) corresponds to the TE estimator (Equ. (3.67)) adapted in the TREN-
TOOL toolbox [Wollstadt 2015], where the distances are obtained in the joint space with
the highest dimension, SXp;X�;Y� , and then projected into the other spaces, SX�;Y� ,
SXp;X� and SX� . Now we must highlight here that the independence condition between
the variables Xpi , X

�
i , Y

�
i , which is equivalent to the following relations set (the two first

conditions in Equ. (3.112) being redundant as being implied by the third one)8̂̂̂<̂
ˆ̂:

pX�
i
;Y�

i
.x�i ; y

�
i / D pX�i .x

�
i /pY�i .y

�
i /

pXp

i
;X�

i
.x
p
i ; x

�
i / D pXp

i
.x
p
i /pX�i .x

�
i /

pXp

i
;X�

i
;Y�

i
.x
p
i ; x

�
i ; y

�
i / D pXp

i
.x
p
i /pX�i .x

�
i /pY�i .y

�
i /

(3.112)

is difficult to justify in a context of causality analysis. Indeed this independence condition
implies than the TE value is equal to zero but is not necessary to obtain this zero value.
More precisely the second equality in Equ. (3.112) amounts to say that X is a white
sequence, what is not generally the case. So actually the TE estimator in Equ. (3.67)
seems to us more difficult to justify. To conclude about this question, only a part of the
bias can be expected to be cancelled out if Equ. (3.112) is not satisfied.

In the same manner as previously (Equ. (3.106)), we can also define the basic esti-
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mator 3TEY!Xkbasic for transfer entropy (Box 15○ in Fig. 3.6)

3TEY!Xkbasic D
5H.X�; Y �/basic C

5H.Xp; X�/basic �
8H.Xp; X�; Y �/basic �2H.X�/basic

D �
1

N

NX
iD1

 
log

k.x�i ; y
�
i / � 1

N � v.x�i ; y
�
i /
C log

k.x
p
i ; x

�
i / � 1

N � v.x
p
i ; x

�
i /

� log
k.x

p
i ; x

�
i ; y

�
i / � 1

N � v.x
p
i ; x

�
i ; y

�
i /
� log

k.x�i / � 1

N � v.x�i /

!
;

(3.113)
where k.xpi ; x

�
i ; y

�
i / D k. Hereafter, this estimator is written as 3TEY!Xkbasic;E for the

Euclidean norm and by 3TEY!Xkbasic;M for the maximum norm.

Note that, this development for the strategy of relation-specific distances can be
generalized to the estimation of entropy combinations other than MI and TE, such as
CTE [Yang 2012].

3.3.3. Bias Reduction for Dependence Situations

Previously, we discussed the bias reduction strategies of relation-specific distances for the
estimation of MI and TE. However, these strategies work well in independence situations,
and the bias is only partly cancelled out when the independence conditions are not
satisfied. To further eliminate the bias in the general case, we still consider the estimation
of individual entropies. Removing the bias BX in Equ. (3.83) is not an easy task since
its mathematical expression depends on the unknown probability density. However, we
can expect to cancel it out considering a weighted linear combination [Sricharan 2013].
Consequently, we introduce the following form of an ensemble estimator of entropy:

1H.X/ D
 
�
1

N

NX
iD1

�
.1 � ˛i / log cpX.1/.xi /�!C  � 1

N

NX
iD1

�
˛i log cpX.2/.xi /�! ; (3.114)

where ˛i , i D 1; : : : ; N is a sequence of weighting coefficients to be determined, cpX.1/.�/
and cpX.2/.�/ are two density estimations with the same structure

 
5R
L.x/ pX .y/dy

v.x/

!
ob-

tained from two distinct definitions of L.�/. Until now, L.x/ was built either from a KDE
approach or a kNN approach. In the first case, R.x/ depends on the imposed band-
width, and, in the second case, R.x/ is deduced from the kth NN. Hereafter, to carry
on with the conjecture proposed in [Kraskov 2004], we only consider the kNN approach
integrating two steps, (i) the choice of two different numbers of neighbors k1 and k2, (ii)
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the definition of the probability density estimators,8<: cpX.1/.xi / Dbpk1
.xi /cpX.2/.xi / Dbpk2
.xi /;

(3.115)

where
bpkj

.x/ D
kj � 1

N � vkj
.x/

; j D 1; 2 (3.116)

is the standard kNN density estimator as defined in [Fukunaga 2013]. The volume vk .x/
is equal to the Lebesgue measure of

Lk.x/ D fy W ky � xk � Rk.x/g ; (3.117)

and Rk.xi / is the distance between xi and its kth NN.

Considering each bias term, we write

BX .xi / , .1 � ˛i /Bk1
.xi /C ˛iBk2

.xi /: (3.118)

The question arises of how to choose ˛i in Equ. (3.118) so that BX .xi / D 0. Given
the Euclidean norm (Equ. (3.92)), we have

BX .xi / D .1 � ˛i /Bk1
.xi /C ˛iBk2

.xi /

D
.1 � ˛i /R2k1

.xi /C ˛iR2k2
.xi /

2 .dX C 2/ pX .xi /
� tr

�
@2pX

@x2
.xi /

�
:

(3.119)

Now, zeroing out Equ. (3.119) for any i D 1; : : : ; N with respect to ˛i leads to

˛i D
R2
k1
.xi /

R2
k1
.xi / �R2

k2
.xi /

: (3.120)

When starting from Equ. (3.95) instead of Equ. (3.92) to address the maximum
norm, Equ. (3.120) still holds.

Considering the estimation of MI, in the dependence case we can apply the same
strategy to X , Y and .X; Y / separately with distinct coefficients ˛xi , ˛

y
i , ˛

.x;y/
i and then

compute the ensemble MI estimator using

3I .X; Y /ens D 1H.X/k
x
1 ;k

x
2

ens C1H.Y /k
y
1 ;k

y
2

ens �3H.X; Y /k
.x;y/
1 ;k

.x;y/
2

ens ; (3.121)
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where

1H.U /k
u
1 ;k

u
2

ens D �
1

N

NX
iD1

�
.1 � ˛ui / log

ku1
N � vk1

.ui /
C ˛ui log

ku2
N � vk2

.ui /

�
; (3.122)

with the pairs
�
kx1 ; k

x
2

�
,
�
k
y
1 ; k

y
2

�
and

�
k
.x;y/
1 ; k

.x;y/
2

�
chosen independently for X , Y and

.X; Y /.

In the independence case, the basic strategy can be used. But we note that the values

˛ui D
R2
k1
.ui /

R2
k1
.ui / �R2

k2
.ui /

(3.123)

with u replaced by x, y or .x; y/, are identical if we choose R2
k1
, R2

k2
with the constraint

imposed by Equ. (3.103) (or Equ. (3.104)).

Developing Equ. (3.121) with the substitution ˛xi D ˛
y
i D ˛

.x;y/
i D ˛i , we have (Box

17○ in Fig. 3.6)

1H.U /k1;k2

mixed D �
1

N

NX
iD1

�
.1 � ˛i / log

kk1
.ui /

n � vk1
.ui /
C ˛i log

kk2
.ui /

n � vk2
.ui /

�
: (3.124)

Then, we get a mixed mutual information estimator (Box 18○ in Fig. 3.6)

3I .X; Y /k1;k2

mixed D
1H.X/k1;k2

mixed C
1H.Y /k1;k2

mixed �
3H.X; Y /k1;k2

mixed: (3.125)

In summary, this mixed MI estimator is built following the three steps:

(i) Fix the number of NNs (k1 and k2 separately) in the joint space SX;Y to get the
distances between the center point .xi ; yi / and the particular NNs (k1th NN and
k2th NN), marked as Rk1

.xi ; yi / and Rk2
.xi ; yi /

(ii) Use Rk1
.xi ; yi / and Rk2

.xi ; yi / to get respectively Rk1
.xi /, Rk1

.yi /, and Rk2
.xi /,

Rk2
.yi /, using Equ. (3.103) or (3.104) (depending on the norm) and determine the

numbers of points kk1
.xi /, kk1

.yi /, kk2
.xi / and kk2

.yi / falling into the correspond-
ing regions

(iii) Estimate H.X/ and H.Y / with Equ. (3.124), where ˛i is given by Equ. (3.123),
H.X; Y / being calculated similarly (with kk1

.xi ; yi / D k1 and kk2
.xi ; yi / D k2)

and then calculate 2I.X; Y /k1;k2

mixed by Equ. (3.125). The resulting estimator is
named “mixed estimator” and denoted by 2I.X; Y /mixed;E for the Euclidean norm
and 2I.X; Y /mixed;M for the maximum norm.
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Note that 3I .X; Y /kbasic is obtained by replacing Equ. (3.125) by Equ. (3.106) in step
(iii).

Similarly, if we consider the estimation of TE, we obtain the following mixed estimator

3TEY!Xk1;k2

mixed D
5H .X�; Y �/

k1;k2

mixed C
5H �
Xp; X�

�k1;k2

mixed

�
8H �
Xp; X�; Y �

�k1;k2

mixed �
2H .X�/

k1;k2

mixed;

(3.126)

where 1H.U /k1;k2

mixed is defined in Equ. (3.124).

For the mixed MI/TE estimators, an optimal choice of the parameters k1 and k2
is not obvious. In practice, it is possible to tune these two parameters to improve the
estimation, but the empirical choice for the parameters remains an issue which explains
why we only considered this kind of ensemble estimator in the estimation of mutual
information and not in the estimation of transfer entropy.

3.4. Second Improvement

In this section 2, we first give an overview of the original kNN strategies on the estimation
of entropy, including the Kozachenko–Leonenko entropy estimator [Kozachenko 1987]
(Box 2○ in Fig. 3.6) and the one by Singh [Singh 2003] (Box 3○), then introduce the idea
of rectangle (Box 20○). After that, we discuss the extensions of the existing kNN entropy
estimators based on the idea of rectangle, which results in two novel entropy estimators
(Boxes 21○ and 22○). Based on them, two new TE estimators are proposed (Boxes 23○ and
24○).

3.4.1. Original k-Nearest Neighbors Strategies

In this section, we consider a sequence xi , i D 1; : : : ; N in RdX (in our context this se-
quence corresponds to an outcome of an IID sequence X1; : : : ; XN such that the common
probability distribution is equal to that of a given random vector X). The set of the k
NNs of xi in this sequence (except for xi ) and the distance between xi and its kth NN
are respectively denoted by �ki and dxi ;k. We denote Dxi

�
�ki

�
� RdX a neighborhood

of xi in RdX which is the image of
�
xi ; �

k
i

�
by a set valued map. For a given norm k�k

on RdX a standard construction�
xi ; �

k
i

�
2

�
RdX

�kC1
! Dxi

�
�ki

�
� RdX (3.127)

2This second improvement was the subject of our contribution in [Zhu 2015a].
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is the (hyper-)ball of radius equal to dxi ;k, i.e.

Dxi

�
�ki

�
D
˚
x W kx � xik � dxi ;k

	
: (3.128)

The (hyper-)volume (i.e. the Lebesgue measure) of Dxi

�
�ki

�
is then

vi D

Z
Dxi
.�k

i /

dx; (3.129)

where dx , d�dX .x/.

3.4.1.1. Kozachenko-Leonenko Entropy Estimator

Recalling the kNN entropy estimator defined in Equ. (3.60), to come up with a concise
presentation of this estimator, we give hereafter a summary of the different steps to get
it starting from [Kraskov 2004]. First, let us consider the distance dxi ;k between xi and
its kth NN (introduced above) as a realization of the random variable Dxi ;k and let us
denote by qxi ;k.x/, x 2 R, the corresponding probability density function (conditioned
by Xi D xi ). Secondly, let us consider the quantity

hxi ."/ D

Z
ku�xik�

"
2

dPX .u/: (3.130)

This is the probability mass of the (hyper-)ball with radius equal to "
2
and centered

on xi . This probability mass is approximately equal to

hxi ."/ ' pX .xi /

Z
k�k� "

2

d�d .�/

D pX .xi / cd"
d ;

(3.131)

if the density function is approximately constant on the (hyper-)ball. The variable cd
is the volume of the unity radius d -dimensional (hyper-)ball in Rd (cd D 1 with the
maximum norm). Furthermore, it can be established (see [Kraskov 2004] for details) that
the expectation E

�
log

�
hXi

�
DXi ;k

���
, where hXi is the random variable associated to hxi ,

DXi ;k (which must not be confused with the notation Dxi

�
�ki

�
introduced previously)

denotes the random distance between the kth neighbor selected in the set of random
vectors fXk; 1 � k � N; k ¤ ig and the random point Xi , is equal to  .k/ �  .N/ and
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does not depend on pX .�/. Equating it with E
�
log

�
pX .Xi / cdDXi ;k

��
allows to write

 .k/ �  .N/ ' E Œlog .pX .Xi //�C E
h
log

�
cdD

d
Xi ;k

�i
D �H.Xi /C E Œlog .Vi /� ;

(3.132)

or, equivalently
H .Xi / '  .N/ �  .k/C E

h
log

�
cdD

d
Xi ;k

�i
: (3.133)

Finally, by using the law of large numbers, when N is large we have

H .Xi / '  .N/ �  .k/C
1

N

NX
iD1

log .vi /

D 1H .X/kl;

(3.134)

where vi is the realization of the random (hyper-)volume Vi D cdDdxi ;k
.

Moreover, as observed in [Kraskov 2004], it is possible to make the number of neigh-
bors k depend on i by substituting the mean 1

N

PN
iD1  .ki / for the constant  .k/ in

Equ. (3.134), so that 1H .X/kl becomes:

1H .X/kl D  .N/C
1

N

NX
iD1

.log .vi / �  .ki //: (3.135)

3.4.1.2. Singh’s Entropy Estimator

Now, let us consider the kNN entropy estimator defined in Equ. (3.61), which was pro-
posed by Singh et al. in [Singh 2003]. As mentioned previously, using the approximation
 .N/ � log.N / for large values of N , this estimator is close to that defined by Equ.
(3.60). This estimator was derived in [Singh 2003] through the four following steps:

(1) Introduce the classical entropy estimator structure

1H.X/ , � 1
N

NX
iD1

log 2pX .Xi /

D
1

N

NX
iD1

Ti ;

(3.136)

where
2pX .xi / , k

Nvi
: (3.137)

(2) Assuming that the random variables Ti , i D 1; : : : ; N are identically distributed so
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that E
h1H.X/i D E ŒT1� (note that E ŒT1� depends on N , even if the notation does

not make that explicit), compute the asymptotic value of E ŒT1� (when N is large)
by firstly computing its asymptotic cumulative probability distribution function
and the corresponding probability density pT1

, and finally compute the following
expectation

E ŒT1� D
Z
R

t pT1
.t/dt: (3.138)

(3) It appears that
E ŒT1� D E

h1H.X/i
D H.X/C B;

(3.139)

where B is a constant which is identified with the bias.

(4) Subtract this bias from 1H.X/ to get

1H.X/sg D 1H.X/ � B (3.140)

and the formula given in Equ. (3.61).

Note that the cancellation of the asymptotic bias does not imply that the bias ob-
tained with a finite value of N is also exactly cancelled. Now, we explain the origin of
the bias for the entropy estimator given in Equ. (3.136). Let us consider the equalities

E ŒT1� D �E
h
log

�3pX .X1/�i
D �E

�
log

�
k

NV1

��
;

(3.141)

where V1 is the random volume for which v1 is an outcome. Conditionally to X1 D x1,
if we have

k

NV1

pr
����!
N!1

pX .x1/ ; (3.142)

where pr denotes the convergence in probability, we could expect that

E ŒT1jX1 D x1� ����!
N!1

� log .pX .x1// (3.143)

and, by deconditioning, that

E ŒT1� ����!
N!1

�E Œlog .pX .X1//� D H.X/: (3.144)

So, the convergence
k

NV1

pr
����!
N!1

pX .x1/ (3.145)
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could lead to an asymptotically unbiased estimation of H.X/. Now, this convergence in
probability does not hold, even if we assume the following convergence of the mean

E
�
k

NV1
jX1 D x1

�
����!
N!1

pX .x1/ ; (3.146)

because we do not have
var

�
k

NV1
jX1 D x1

�
����!
N!1

0: (3.147)

The ratio
�

k
NV1

�
remains fluctuating when N ! 1, because the ratio

�p
var.V1/
EŒV1�

�
does not tend to zero even if V1 tends to be smaller: when N increases, the neighborhoods
become smaller and smaller but continue to “fluctuate”. This explains informally (see [Zhu
2014] for a more detailed analysis) why the naive estimator given by Equ. (3.136) is not
asymptotically unbiased. It is interesting to note that the Kozachenko–Leonenko entropy
estimator avoids this problem and so it does not need any bias subtraction asymptotically.

Observe also that, as for the Kozachenko–Leonenko estimator, it is possible to adapt
Equ. (3.135) if we want to consider a number of neighbors ki depending on i . Equ.
(3.61) can then be replaced by

1H.X/sg D log.N /C
1

N

NX
iD1

.log .vi / �  .ki //: (3.148)

3.4.2. From Square to Rectangular Neighboring Region for Entropy
Estimation

In [Kraskov 2004], to estimate MI, as illustrated in Fig. 3.7, Kraskov et al. discussed
two different techniques to build the neighboring region to compute 2I.X; Y /: in the
standard technique (square ABCD in Fig. 3.7(a) and 3.7(b)), the region determined by
the first k NNs is a (hyper-)cube and leads to Equ. (3.63), and, in the second technique
(rectangle A0B 0C 0D0 in Fig. 3.7(a) and 3.7(b)), the region determined by the first k
NNs is a (hyper-)rectangle. Note that the TE estimator mentioned in the previous
section (Equ. (3.67)) is based on the first situation (square ABCD in Fig. 3.7(a) or
3.7(b)). The introduction of the second technique by Kraskov et al. was to circumvent
the fact that Equ. (3.135) was not applied rigorously to obtain the terms  .nX;i C 1/ or
 .nY;i C 1/ in Equ. (3.63). As a matter of fact, for one of these terms, no point xi (or
yi ) falls exactly on the border of the (hyper-)cube Dxi

(or Dyi
) obtained by the distance

projection from the SX;Y space. As clearly illustrated in Fig. 3.7 (rectangle A0B 0C 0D0 in
Fig. 3.7(a) and 3.7(b)), the second strategy prevents from that issue since the border of
the (hyper-)cube (in this case an interval of R) after projection from SX;Y space to SX
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space (or SY space) contains one point. When the dimensions of SX and SY are larger
than one, this strategy leads to build a (hyper-)rectangle equal to the product of two
(hyper-)cubes, one of them in SX and the other one in SY . If the maximum distance of
the kth NN in SX;Y is obtained in one of the directions in SX , this maximum distance,
after multiplying by two, fixes the size of the (hyper-)cube in SX . To obtain the size of
the second (hyper-)cube (in SY ), the k neighbors in SX;Y are first projected on SY and
then the largest of the distances calculated from these projections fixes the size of this
second (hyper-)cube.

y


x

y x 

A B

CD

B

C 

A

D 

(a)

y


x

y x 

A B

CD

B

C 

A

D 

(b)

Figure 3.7: In this 2-dimensional example, k D 5. The origin of the Cartesian axis
corresponds to the current point xi . Only the 5 NNs of this point, i.e. the points in
the set �ki , are represented. The 5th NN is symbolized by a star. The neighboring
regions ABCD, obtained from the maximum norm around the center point, are squares,
with equal edge lengths "x D "y . Reducing one of the edge lengths, "x or "y , until
one point falls onto the border (in the present case, in the vertical direction), leads to
the minimum size rectangle A0B 0C 0D0, where "x ¤ "0y . Two cases must be considered,
illustrated respectively in Fig. 3.7(a) and 3.7(b). For case (a) the 5th NN is not localized
on an intersection of two edges, contrary to the case (b). This leads to obtain either two
points (respectively the star and the triangle in Fig. 3.7(a)) or only one point (the star
in Fig. 3.7(b)) on the border of A0B 0C 0D0. Clearly it is theoretically possible to have
more than 2 points on the border of A0B 0C 0D0 but the probability of such an occurrence
is equal to zero when the probability distribution of the random points Xj is continuous.

In the remainder of this section, for an arbitrary dimension d , we propose to apply
this strategy to estimate the entropy of a single multidimensional variable X observed in
Rd . This leads to introduce a d -dimensional (hyper-)rectangle centered on xi having a
minimal volume and including the set �ki of neighbors. Hence the rectangular neighboring
is built by adjusting its size separately in each direction in the space SX . Using this
strategy, we are sure that, in any of the d directions, there is at least one point on one
of the two borders (and only one with probability one). Therefore, in this approach the
(hyper-)rectangle, denoted by D"1;:::;"d

xi
, where the sizes "1; : : : ; "d in the respective d
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directions are completely specified from the neighbors set �ki , is substituted for the basic
(hyper-)square

Dxi

�
�ki

�
D
˚
x W kx � xik � dxi ;k

	
: (3.149)

It should be mentioned that the central symmetry of the (hyper-)rectangle around the
center point allows for reducing the bias in the density estimation [Fukunaga 1973] (cf.
Equ. (3.131) or (3.137)). Note that, when k < d , there must exist neighbors positioned
on some vertices or edges of the (hyper-)rectangle. With k < d it is impossible that, for
any direction, one point falls exactly inside a face (i.e. not on its border). For example
with k D 1 and d > 1 the first neighbor is on a vertex and the sizes of the edges of
the reduced (hyper-)rectangle are equal to twice the absolute value of its coordinates,
whatever the direction.

Hereafter, we propose to extend the entropy estimators by Kozachenko–Leonenko and
Singh using the above strategy before deriving the corresponding TE estimators.

3.4.3. Extension of the Kozachenko–Leonenko Method

As indicated before, in [Kraskov 2004], Kraskov et al. extended the Kozachenko–Leonenko
estimator (Equ. (3.60)) using the rectangular neighboring strategy to derive MI estima-
tor. Now, focusing on entropy estimation, we can obtain another estimator of H.X/,
denoted by 1H.X/kl2 (Box 21○ in Fig. 3.6),

1H.X/kl2 D  .N/C
1

N

NX
iD1

log .vi / �  .k/C
d � 1

k
; (3.150)

where vi is the volume of the minimum volume (hyper-)rectangle around the point xi .

Hereafter we give the mathematical development to get Equ. (3.150). As illustrated
in Fig. 3.7, for d D 2 there are two cases to be distinguished: (i) "x and "y are determined
by the same point, (ii) "x and "y are determined by distinct points.

Considering the probability density qi;k
�
�x; �y

�
,
�
�x; �y

�
2 R2 of the pair of random

sizes
�
"x; "y

�
(along x and y respectively), we can extend it to the case d > 2. Hence let

us denote by qd
xi ;k

."1; : : : ; "d /, ."1; : : : ; "d / 2 Rd the probability density (conditional to
Xi D xi ) of the d -dimensional random vector whose d components are respectively the
d random sizes of the (hyper-)rectangle built from the random k NNs and denote by

hxi ."1; : : : ; "d / D

Z
u2D"1;:::;"d

xi

dPX .u/ (3.151)

the probability mass (conditional to Xi D xi ) of the random (hyper-)rectangle D�1;:::;�d
xi

.
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In [Kraskov 2004] the equality

E
�
log

�
hxi

�
Dxi ;k

���
D  .k/ �  .N/ (3.152)

obtained for a (hyper-)cube is extended for the case d > 2 to

E
�
log

�
hxi .�1; : : : ; �d /

��
D  .k/ �

d � 1

k
�  .N/: (3.153)

So, if pX is approximately constant on D"1;:::;"d
xi

we get

hxi ."1; : : : ; "d / ' vipX .xi / ; (3.154)

where vi D
R
D"1;:::;"d

xi

d�d .�/ is the volume of the (hyper-)rectangle, and we obtain

logpX .xi / �  .k/ �  .N/ �
d � 1

k
� log .vi / : (3.155)

Finally, by taking the experimental mean of the right term in Equ. (3.155) we obtain
an estimation of the expectation E ŒlogpX .X/�, i.e. Equ. (3.150).

3.4.4. Extension of Singh’s Method

In this section, we propose to extend Singh’s entropy estimator by using a
(hyper-)rectangular domain as we did for the Kozachenko–Leonenko estimator extension
introduced in the preceding section. Considering a d -dimensional random vector X 2 Rd

continuously distributed according to a probability density function pX , we aim at esti-
mating the entropy H.X/ from the observation of a pX -distributed IID random sequence
Xi , i D 1; : : : ; N . For any specific data point xi and a fixed number k (1 � k � N ),
the minimum (hyper-)rectangle (rectangle A0B 0C 0D0 in Fig. 3.7 is fixed, we denote this
region by D"1;:::;"d

xi
, and its volume by vi . Let us denote �i (1 � �i � min.k; d/) the

number of points on the border of the (hyper-)rectangle that we consider as a realization
of a random variable „i . In the situation described in Fig. 3.7(a) and 3.7(b), �i D 2 and
�i D 1 respectively. According to [Fukunaga 2013] (chapter 6, page 269), if Dxi

�
�ki

�
corresponds to a ball (for a given norm) of volume vi , an unbiased estimator of pX .xi /
is given by

2pX .xi / D k � 1

Nvi
; i D 1; 2; : : : ; N: (3.156)

This implies that the classical estimator 2pX .xi / D k
Nvi

is biased and that presumably

log
�
k
Nvi

�
is also a biased estimation of log .pX .xi // for N large as shown in [Fukunaga

2013].

76



Chapter 3 3.4. Second Improvement

Now, in case Dxi

�
�ki

�
is the minimal (i.e. with minimal (hyper-)volume)

(hyper-)rectangle D"1;:::;"d
xi

including �ki , more than one point can belong to the bor-
der, and a more general estimator BpX .xi / of pX .xi / can be a priori considered

BpX .xi / D
Qki

Nvi
; (3.157)

where Qki is some given function of k and �i . The corresponding estimation of H.X/ is
then

1H.X/ D � 1
N

NX
iD1

Elog .pX .xi //

D
1

N

NX
iD1

ti ;

(3.158)

with
ti D log

�
Nvi
Qki

�
; i D 1; 2; : : : ; N; (3.159)

ti being realizations of random variables Ti and Qki being realizations of random variableseKi . We have
8i D 1; : : : ; N W E

h1H.X/i D E ŒTi � D E ŒT1� : (3.160)

Our goal is to derive

E
h1H.X/i �H.X/ D E ŒT1� �H.X/ (3.161)

for N large to correct the asymptotic bias of 1H.X/, according to steps (1) to (3) explained
in section 3.4.1.2. To this end, we must consider an asymptotic approximation of the
conditional probability distribution P .T1 � r jX1 D x1; „1 D �1/ before computing the
asymptotic difference between the expectation E ŒT1� D E ŒE ŒT1jX1 D x1; „1 D �1�� and
the true entropy H.X/.

Let us consider the random Lebesgue measure V1 of the random minimal
(hyper-)rectangle D�1;:::;�d

x1
(.�1; : : : ; �d / denotes the random vector for which

."1; : : : ; "d / 2 Rd is a realization) and the relation

T1 D log
�
NV1eK1

�
: (3.162)
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For any r > 0, we have

P .T1 > r jX1 D x1; „1 D �1/

DP
�
log

�
NV1eK1

�
> r jX1 D x1; „1 D �1

�
DP .V1 > vr jX1 D x1; „1 D �1/ ;

(3.163)

where vr D er
Qk1

N
since, conditionally to „1 D �1, we have eK1 D Qk1.

Property 1 : For N large,

P .T1 > r jX1 D x1; „1 D �1/ '
k��1X
iD0

 
N � �1 � 1

i

!
.pX .x1/vr/

i .1 � pX .x1/vr/
N��1�1�i :

(3.164)
(see Appendix B for proof of property 1).

The Poisson approximation (when N !1 and vr ! 0) of the binomial distribution
summed in Equ. (3.164) leads to a parameter �, such that

� D .N � �1 � 1/ pX .x1/vr : (3.165)

As N is large compared to �1 C 1, we obtain

� ' Qk1e
rpX .x1/ (3.166)

and we get the approximation

lim
N!1

P .T1 > r jX1 D x1; „1 D �1/ '
k��1X
iD0

�
Qk1e

rpX .x1/
�i

i Š
e�
Qk1e

rpX .x1/: (3.167)

Since

P.T1 � r jX1 D x1; „1 D �1/ D 1 � P.T1 > r jX1 D x1; „1 D �1/; (3.168)

we can get the density function of T1, noted gT1
.r/, by deriving P .T1 � r jX1 D x1; „1 D �1/.

After some mathematical developments, we obtain (see Appendix C for details):
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gT1
.r/ D P 0.T1 � r jX1 D x1; „1 D �1/
D �P 0.T1 > r jX1 D x1; „1 D �1/

D

�
Qk1e

rpX .x1/
�.k��1C1/

.k � �1/Š
e�
Qk1e

rpX .x1/; r 2 R;

(3.169)

and consequently (see Appendix D for details),

lim
N!1

E ŒT1jX1 D x1; „1 D �1�

D

1Z
�1

r
. Qk1pX .x1/e

r/
.k��1C1/

.k � �1/Š
e�
Qk1pX .x1/e

r

dr

D  .k � �1 C 1/ � log
�
Qk1

�
� logpX .x1/:

(3.170)

With the definition of differential entropy H.X1/ D EŒ� log .pX .X1//�, we come to

lim
N!1

E ŒT1� D lim
N!1

E ŒE ŒT1jX1; „1��

D E
�
 .k �„1 C 1/ � log

�eK1��CH.X1/:
(3.171)

Thus, the estimator expressed by Equ. (3.158) is asymptotically biased. Therefore, we
consider a modified version, denoted by 1H.X/sg2 obtained by subtracting an estimation
of the bias E

�
 .k �„1 C 1/ � log

�eK1�� given by the empirical mean 1
N

PN
iD1  .k��iC

1/C 1
N

PN
iD1 log

�
Qki

�
(according to the law of large numbers), and we obtain finally (Box

22○ in Fig. 3.6)

1H.X/sg2 D
1

N

NX
iD1

ti �
1

N

NX
iD1

 .k � �i C 1/C
1

N

NX
iD1

log
�
Qki

�
D

1

N

NX
iD1

log
�
Nvi
Qki

�
�
1

N

NX
iD1

 .k � �i C 1/C
1

N

NX
iD1

log
�
Qki

�
D log.N /C

1

N

NX
iD1

log .vi / �
1

N

NX
iD1

 .k � �i C 1/:

(3.172)

In comparison with the development of Equ. (3.150), we followed the same method-
ology except that we took into account (through a conditioning technique) the influence
of the number of points on the border.

We observe that, after cancellation of the asymptotic bias, the choice of the function
of k and �i to define Qki in Equ. (3.157) does not have any influence in the final result.
By this way, we obtain an expression for 1H.X/sg2 which simply takes into account the
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values �i that could a priori influence the entropy estimation.

Note that, as for the original Kozachenko–Leonenko (Equ. (3.60)) and Singh (Equ.
(3.61)) entropy estimators, both new estimation functions (Equ. (3.150) and (3.172))
hold for any value of k such that k � N , and we do not have to choose a fixed k

while estimating entropy in lower-dimensional spaces. So, under the framework proposed
in [Kraskov 2004], we built two different TE estimators using Equ. (3.150) and (3.172)
respectively.

3.4.5. Computation of the Border Points Number and of the (Hyper-)
Rectangle Sizes

We explain more precisely hereafter how to determine the numbers of points �i on
the border. Let us denote xji 2 Rd , j D 1; : : : ; k, the k NNs of xi 2 Rd and let
us consider the d � k array Di such that for any .p; j / 2 f1; : : : ; dg � f1; : : : ; kg,
Di .p; j / D

ˇ̌̌
x
j
i .p/ � xi .p/

ˇ̌̌
is the distance (in R) between the pth component xji .p/

of xji and the pth component xi .p/ of xi . For each p, let us introduce Ji .p/ 2 f1; : : : ; kg
defined by

Di .p; Ji .p// D max .Di .p; 1/; : : : ;Di .p; k// (3.173)

and which is the value of the column index of Di for which the distance Di .p; j / is
maximum in the row number p. Now, if there exists more than one index Ji .p/ which
fulfills this equality, we select arbitrary the lowest one, hence avoiding the max.�/ function
to be multi-valued. The MATLAB implementation of the max.�/ function selects such a
unique index value. Then, let us introduce the d � k Boolean array Bi defined by8<:Bi .p; j / D 1; if j D Ji .p/;

Bi .p; j / D 0; otherwise:
(3.174)

Then

(1) The d sizes "p, p D 1; : : : ; d of the (hyper-)rectangle D"1;:::;"d
xi

are equal respectively
to "p D 2Di .p; Ji .p//, p D 1; : : : ; d .

(2) We can define �i as the number of non-null column vectors in Bi . For example, if
the kth NN xki is such that

8j ¤ k;8p D 1; : : : ; d W
ˇ̌̌
x
j
i .p/ � xi .p/

ˇ̌̌
<
ˇ̌̌
xki .p/ � xi .p/

ˇ̌̌
; (3.175)

i.e. when the kth NN is systematically the farthest from the central point xi for
each of the d directions, then all the entries in the last column of Bi are equal to
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one while all other entries are equal to zero: we have only one column including
values different from zero and, so, only one point on the border (�i D 1), what
generalizes the case depicted in Fig. 3.7(b) for d D 2.

N.B.: this determination of �i may be incorrect when there exists a direction p such
that the number of indices j for which Di .p; j / reaches the maximal value is larger
than one: the value of �i obtained with our procedure can then be underestimated.
However, we can argue that, theoretically, this case occurs with a probability equal to
zero (because the observations are continuously distributed in probability) and so it can
be a priori discarded. Now, in practice, the measure quantification errors and the round-
off errors are unavoidable and this probability will differ from zero (although remaining
small when the aforesaid errors are small): theoretically distinct values Di .p; j / on the
row p of Di may be erroneously confounded after quantification and rounding. But the
max.�/ function then selects on the row p only one value for Ji .p/ and so acts as an error
correcting procedure. The fact that the maximum distance in the concerned p directions
can then be allocated not to the right neighbor index has no consequence for the correct
determination of �i .

Given the entropy estimators derived from the Kozachenko-Leonenko estimator (Equ.
(3.60)) and from Singh’s estimator (Equ. (3.61)), we can now derive new TE estimators.

3.4.6. New Estimators of Transfer Entropy

From an observed realization
�
x
p
i ; x

�
i ; y

�
i

�
2 SXp;X�;Y� , i D 1; 2; : : : ; N of the IID ran-

dom sequence
�
X
p
i ; X

�
i ; Y

�
i

�
, i D 1; 2; : : : ; N and a number k of neighbors, the procedure

could be summarized as follows (distances are from the maximum norm)

(1) similarly as MILCA [Sergey 2015] and TRENTOOL [Wollstadt 2015] toolboxes,
normalize, for each i , the vectors xpi , x

�
i and y�i ;

(2) in joint space SXp;X�;Y� , for each point
�
x
p
i ; x

�
i ; y

�
i

�
, calculate the distance

d.xp

i
;x�

i
;y�

i /;k
between

�
x
p
i ; x

�
i ; y

�
i

�
and its kth neighbor, then construct the

(hyper-)rectangle with sizes "1; : : : ; "d (d is the dimension of the vectors�
x
p
i ; x

�
i ; y

�
i

�
), for which the (hyper-)volume is v.Xp;X�;Y�/;i D "1 � : : : � "d and

the border contains �.Xp;X�;Y�/;i points;

(3) for each point .xpi ; x
�
i / in subspace SXp;X� , count the number k.Xp;X�/;i of points

falling within the distance d.xp

i
;x�

i
;y�

i /;k
, then find the smallest (hyper-)rectangle

which contains all these points and for which v.Xp;X�/;i and �.Xp;X�/;i are re-
spectively the volume and the number of points on the border. Repeat the same
procedure in subspaces SX�;Y� and SX� .
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From Equ. (3.150), our first proposed TE estimator named TEp1can be written as
(Box 23○ in Fig. 3.6)

3TEY!Xp1 D
1

N

NX
iD1

log
v.Xp;X�/;i � v.X�;Y�/;i

v.Xp;X�;Y�/;i � vX�;i

C
1

N

NX
iD1

 
 .k/C  .kX�;i / �  .k.Xp;X�/;i / �  .k.X�;Y�/;i /

C
dXp C dX� � 1

k.Xp;X�/;i

C
dX� C dY� � 1

k.X�;Y�/;i
�
dXp C dX� C dY� � 1

k
�
dX� � 1

kX�;i

!
;

(3.176)
where dXp D dim .SXp / ; dX� D dim .SX�/ ; dY� D dim .SY�/ and, with Equ. (3.172),
our second proposed estimator named TEp2 (Box 24○ in Fig. 3.6) is written

3TEY!Xp2 D
1

N

NX
iD1

log
v.Xp;X�/;i � v.X�;Y�/;i

v.Xp;X�;Y�/;i � vX�;i

C
1

N

NX
iD1

 
 .k � �.Xp;X�;Y�/;i C 1/C  .kX�;i � �X�;i C 1/

�  .k.Xp;X�/;i � �.Xp;X�/;i C 1/ �  .k.X�;Y�/;i � �.X�;Y�/;i C 1/

!
:

(3.177)

In Equ. (3.176) and (3.177) the volumes v.Xp;X�/;i , v.X�;Y�/;i , v.Xp;X�;Y�/;i , vX�;i
are obtained by computing, for each of them, the product of the edges lengths of the
(hyper-)rectangle, i.e. the product of d edges lengths, d being respectively equal to
dXp CdX� , dX�CdY� , dXp CdX�CdY� and dX� . In a given subspace and for a given
direction, the edge length is equal to twice the largest distance between the corresponding
coordinate of the reference point (at the center) and each of the corresponding coordinates
of the k NNs. Hence a generic formula is vU D

Qdim.U /
jD1 "Uj where U is one of the

symbols .Xp; X�/, .X�; Y �/, .Xp; X�; Y �/, X� and the "Uj are the edges lengths of
the (hyper-)rectangle.

The new TE estimator 3TEY!Xp1 can be compared with the TE estimator proposed in
[Wibral 2014a] (Equ. (3.68), implemented in the JIDT toolbox [Lizier 2014], version 1.2,
referred as the Extended algorithm). The main difference with our 3TEY!Xp1 estimator
is that our algorithm uses a different length for each sub-dimension within a variable
rather than one length for all sub-dimensions within the variable. We introduced this
approach to make the tightest possible (hyper-)rectangle around the k NNs.

Equ. (3.68) differs from Equ. (3.176) in two ways. Firstly, the first summation in the
right-hand side of Equ. (3.176) does not exist. Secondly, compared with Equ. (3.176),
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the numbers of neighbors kX�;i , k.Xp;X�/;i and k.X�;Y�/;i included in the rectangular
boxes, are replaced respectively with nX�;i , n.Xp;X�/;i and n.X�;Y�/;i which are obtained
differently. More precisely, the preceding step (2) in the Extended TE algorithm (Equ.
(3.68)) becomes:

(20) for each point .xpi ; x
�
i / in subspace SXp;X� , n.Xp;X�/;i is the number of points

falling within a (hyper-)rectangle equal to the Cartesian product of two
(hyper-)cubes, the first one in SXp and the second one in SX� , whose edge lengths
are equal, respectively, to

dmax
x

p

i

D 2 �max
nxp

k
� x

p
i

 W �xp; x�; y��
k
2 �k.xp;x�;y�/i

o
(3.178)

and

dmax
x�

i
D 2 �max

nx�k � x�i  W �xp; x�; y��k 2 �k.xp;x�;y�/i

o
; (3.179)

i.e.

n.Xp;X�/;i D card

(�
x
p
j ; x

�
i

�
W j 2 ff1; : : : ; N g � figg &

xpj � xpi  � dmax
x

p

i

&
x�j � x�i  � dmax

x�
i

)
:

(3.180)
Denote by v.Xp;X�/;i the volume of this (hyper-)rectangle. Repeat the same pro-
cedure in subspaces SX�;Y� and SX� .

Note that the important difference between the construction of the neighborhoods
used in 3TEY!Xk2 and in 3TEY!Xp1 is that, for the first case, the minimum neighborhood
including the k neighbors is constrained to be a Cartesian product of (hyper-)cubes and,
in the second case, this neighborhood is a (hyper-)rectangle whose edges lengths can be
completely different.

3.5. Discussion and Conclusion

In this chapter, we deeply discussed the estimation of information-theoretic quantities,
especially mutual information and transfer entropy. Beginning with the mathematical
definition of different information-theoretic quantities, we showed similarities between the
estimations of mutual information and transfer entropy. Based on previous work, espe-
cially [Kraskov 2004], several questions have been raised. To answer them, we developed
new calculation strategies following two different guidelines.
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In section 3.3, an analytical form of the bias for the estimation of individual entropy
was proposed. Once the new bias expression derived, we discussed bias cancellation
strategies in the estimation of both mutual information and transfer entropy, and in-
troduced bias reduction strategies based on an optimal choice of the neighborhood ra-
dius. Dealing with the maximum norm, our strategy explained the conclusions drawn
by Kraskov et al. in [Kraskov 2004] and derived from numerical experiments. Accord-
ing to these conclusions, we proposed a “basic” estimator both for mutual information
and transfer entropy, for different norms. The development of these strategies is based
on the independence assumption provided that the bias could be partly cancelled when
this hypothesis is not satisfied. So, to further eliminate the bias in dependence case, a
weighted linear combination of distinct mutual information estimators, named “mixed”
MI estimator, was introduced. In the same manner, we derived a “mixed” TE estimator.

In section 3.4, we focused on an idea already developed in existing literature [Kraskov
2004], where a (hyper-)rectangle was used instead of a (hyper-)cube. Following two differ-
ent methodologies [Kozachenko 1987,Singh 2003], we extended the existing kNN entropy
estimators to the rectangular situation, which resulted in two new entropy estimators we
considered in the proposal of two novel TE estimators.

The different concepts and methodologies involved in this chapter were illustrated in
Fig. 3.6, and the next chapter is devoted to the experimental comparison of all these
new estimators, including both mutual information and transfer entropy, with existing
techniques.

Note that one important problem has not been addressed in this chapter. It concerns
the selection of the predictors memory sizes (m and n) we have to deal with. Clearly, these
sizes must be specified in order to define the transfer entropy before estimating it. This
choice was beyond the scope of our investigations which, for a given pair .m; n/, focused
on how to improve statistical performance (bias) of existing transfer entropy estimators.
The mean conditional Kullback distance introduced in Equ. (3.28) clearly indicates
that TE calculation is equivalent to compare two predictive (conditional) probability
distributions to characterize a directional causal link, and can allow to choose between
two classes of such distributions, the one which only depends on m values in the past of
X and the one which depends on m values in the past of X but also on n values in the
past of Y . The averaged log-likelihood ratio in Equ. (3.29) could be considered as an
averaged generalized log-likelihood ratio depending on the unknown parameters m and n
introduced to test the hypothesis in Equ. (3.26). That would imply the tuning of these
parameters to maximize the ratio. This more complicated and general problem is not
really addressed in the literature. The currently retained sub-optimal method introduces
two steps (i) order selection (estimation) and (ii) TE computation for the chosen orders.
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For Granger causality which imposes linear autoregressive modelization, the first step
(i) is implemented with standard AIC or BIC algorithms [Aho 2014] (see Appendix E).
When observed data are supposed to be generated by nonlinear mechanisms, the step (i)
is generally implemented following the state reconstruction approach [Ponten 2007] which
first subsamples the observation signals X and Y according to an “optimal” subsampling
ratio, before selecting the n and m values. For some of the experimental results presented
in chapter 5 on real signals, we used subsampling without any strict optimality requisite.
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Chapter 4
Experimental Results

Previously, we proposed different strategies for the estimation of mutual information and
transfer entropy. In this chapter, the performances of different algorithms are evaluated
through numerical simulations considering various situations, including independent and
dependent signals, linear and nonlinear relations. When we compare different estima-
tors, we consider both the mean value and the corresponding standard deviation. For
the physiology-based model for which the theoretical value cannot be derived, we use
statistical hypothesis testing to validate if our approach reveals the ground truth.

4.1. Database

First of all, we present the 8 simulation models which are used hereafter to evaluate the
performance of the algorithms presented in chapter 3. The first seven models are denoted
Model 1,. . . , Model 7 and are abstract models. The eighth model is named physiology-
based model because it is built from electrophysiological hypothesis concerning the origin
of the iEEG signals. The first three models are dedicated to test mutual information
estimators in the case of IID observations. The remaining five models are dedicated to
test transfer entropy estimators. Except the physiology-based model, for all other models
tested, the theoretical value of the estimated measures can be derived (Models 1 to 6)
or computed by a Monte Carlo numerical approach (Model 7). Only Model 7 and the
physiology-based model are nonlinear models. Nevertheless, linear models are relevant
to compare statistical performance (bias and variance) of different existing and proposed
MI or TE estimators.
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4.1.1. Abstract Models

This section is divided in two subsections, the first one dealing with MI estimation
(Models 1 to 3), the second one with TE estimation (Models 4 to 7).

4.1.1.1. Models for MI Estimation

For the comparison of different mutual information estimators, we first consider the in-
dependence situation i.e. we first generated two independent d -dimensional IID random
sequences .Xt /t and .Yt /t such that both Xt and Yt followed a zero mean Gaussian dis-
tribution N .0; C/, where C was a Toeplitz matrix with first line Œ1; ˛; : : : ; ˛d�1�. For our
simulations, we used sequences of N independent samples .Xt ; Yt /tD1;:::;N . This model
is named as Model 1:

Model 1

X and Y independent; .Xt /tD1;:::;N W IID; .Yt /tD1;:::;N W IID

Xt � N .0; C/; Yt � N .0; C/; C D toeplitz
�
1; ˛; : : : ; ˛d�1

� (4.1)

Clearly, whatever the value of ˛ 2 Œ0; 1Œ, the mutual information I.Xt ; Yt / is theoret-
ically equal to zero.

Additionally, in order to briefly investigate the effect of non-independence on the
bias of MI estimation when applying the different strategies, we also considered two
dependence situations. First, we replaced the independent pairs .Xt ; Yt /mentioned above
(see Model 1) by dependent pairs, .Xt ; Y1t /, where Xt was the same as previously and
Yt was replaced by Y1t :

Model 2
X and Y as in Model 1

Y1t D cos � �Xt C sin � � Yt ; t D 1; : : : ; N
(4.2)

The parameter � , � 2
�
0; �
2

�
, allowed to tune the dependence between Xt and Y1t .

Note that, for � D �
2
, Xt and Y1t are independent. This model is named as Model 2

and the theoretical value of I.Xt ; Y1t / is equal to �d log .sin �/. The derivation of this
theoretical value can be found in Appendix F.

In a second dependence situation, data samples .Xt /tD1;:::;N and .Yt /tD1;:::;N were
generated by the following linear model more specifically to focus on the impact of the
increase in dimension of the simulated random vectors Xt and Yt . To this end, for both
of them, their components were mutually independent. This model is denoted Model 3:
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Model 3

Random sequences X and e independent; .Xt /tD1;:::;N W IID; .et /tD1;:::;N W IID

Xt � N .0; I /; et � N .0; I /
Yt D Xt C ˇ � et ; ˇ 2 R

(4.3)

where Xt and et were two independent d -dimensional random vectors, and both of them
followed a zero mean Gaussian distribution N .0; I / (I is the identity matrix, and in this
case, it is easier to test the effect of dimensionality). ˇ is a scalar coefficient. Clearly,
when ˇ decreases, the dependence between Xt and Yt increases. The theoretical value of
mutual information I.Xt ; Yt / is equal to d

2
log

�
1Cˇ2

ˇ2

�
as detailed in Appendix G.

4.1.1.2. Models for TE Estimation

For transfer entropy, we tested both Gaussian IID and Gaussian AR models, as well as
linear and nonlinear situations.

Model 4 was proposed to simulate an IID sequence
�
X
p
i ; X

�
i ; Y

�
i

�
i
as introduced

in chapter 3 except that the temporal statistical dependence inherent in the temporal
correlation of the pair of observed processes .X; Y / has been deliberately destroyed in
order to fulfill the IID observations hypothesis imposed in the theoretical derivation of
the entropy estimators.

Model 4

Xt D aYt C bZt CWt ; Wt 2 R; Y 2 RdY ; Z 2 RdZ ;

Y;Z;W W mutually independent processes

Yt � N .0; CY / ; Zt � N .0; CZ/ ; Wt � N
�
0; �2W

�
CY D toeplitz.1; ˛; : : : ; ˛dY�1/; CZ D toeplitz.1; ˛; : : : ; ˛dZ�1/

(4.4)

For the matrix CY , we chose ˛ D 0:5, and, for CZ , ˛ D 0:2. The standard deviation
�W was set to 0.5. The vectors a and b were such that a D 0:1 � Œ1; 2; : : : ; dY � and
b D 0:1 � ŒdZ ; dZ � 1; : : : ; 1�.

With this model, we aimed at estimating H.Xt jYt / � H.Xt jYt ; Zt / to test if the
knowledge of Yt and Zt could improve the prediction of Xt compared to only the knowl-
edge of Yt . The triplet .Xt ; Yt ; Zt / corresponds to the triplet

�
X
p
t ; X

�
t ; Y

�
t

�
introduced

previously in chapter 3 to define transfer entropy. Here the theoretical value of TE is
H .Xt jYt /�H .Xt jYt ; Zt / D H .bZt CWt /�H .Wt /, i.e. TE D H

�
N
�
0; bCZb

T C �2W
��
�

H
�
N
�
0; �2W

��
and can be easily computed.

The two following models (Model 5 and Model 6) are two VAR models made up of
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either two or three one-dimensional signals. For both models, there exists a bidirectional
relation between each pair of signals. The PSD of these signals can be found in Appendix
H. The models coefficients have been tuned in order to obtain signals displaying narrow
bounds PSD shapes that can be retrieved in real epileptic signals.

The first vectorial AR model (marked as Model 5) was as follows:

Model 5

eX ; eY ; X; Y W random real scalar sequences

eX ; eY W independent N .0; 1/ white sequences8<:Xt D 0:45
p
2Xt�1 � 0:9Xt�2 � 0:6Yt�2 C eX;t

Yt D 0:6Xt�2 � 0:175
p
2Yt�1 C 0:55

p
2Yt�2 C eY;t

; t D 1; : : : ; N

(4.5)

The second vectorial AR model (marked as Model 6) was given by:

Model 6

eX ; eY ; eZ ; X; Y; Z W random real scalar sequences

eX ; eY ; eZ W 3 independent N .0; 1/ white sequences8̂̂<̂
:̂
Xt D �0:25Xt�2 � 0:35Yt�2 C 0:35Zt�2 C eX;t

Yt D �0:5Xt�1 C 0:25Yt�1 � 0:5Zt�3 C eY;t

Zt D �0:6Xt�2 � 0:7Yt�2 � 0:2Zt�2 C eZ;t

; t D 1; : : : ; N

(4.6)

In Section 4.2, in order to estimate both TE and Granger causality index, the predic-
tion ordersm and n will be equal to the corresponding regression orders of the AR models.
For example, when estimating TEY!X , we set m D 2, n D 2 and

�
X
p
t ; X

�
t ; Y

�
t

�
corre-

sponds to
�
XtC1; X

.2/
t ; Y

.2/
t

�
. As the 3 stochastic processes X; Y;Z are jointly Gaussian

distributed the 6 theoretical TE values can be obtained from theoretical calculation of the
corresponding Granger causality indexes. These latter can be computed from theoretical
covariances of .X; Y;Z/ or from their estimation on a sufficiently large time interval.

The following Model 7 was introduced as an example of nonlinear causal contribution
of Y �i onto Xpi to illustrate the interest of entropic methods versus Granger causality
in nonlinear situations. An a priori natural approach should have been to consider
nonlinear VAR processes. Now, with this type of model the theoretical computation of
TE values should have been cumbersome. With the proposed model we were able to
obtain a precise numerical approximation of the theoretical value of TE.
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Model 7

W;Y;Z W 3 independent N .0; 1/ scalar real white sequences

Yt � N .0; 1/ ; Zt � N .0; 1/ ; Wt � N .0; 1/ uniformly distributed on Œ0; �� � R

Xt D K �

�
rep � Yt C

q�
1 � rep2

�
Z2t

�
CWt ; t D 1; : : : ; N; K 2 R; rep 2 R

(4.7)

The parameter K allowed to weight the influences of .Yt ; Zt /. The parameter rep was
a weighting coefficient to modify the influences of Yt and Zt . In this model, .Xt ; Yt ; Zt /
corresponds to

�
X
p
t ; X

�
t ; Y

�
t

�
in chapter 3, i.e. to

�
XtC1; X

.n/
t ; Y

.m/
t

�
with m D n D 1.

An illustration of the nonlinear statistical link between Xt andZt is given in Fig. 4.1. The
visualized dimensional distribution clearly illustrates that a strong statistical dependence
does not prevent from a null correlation, leading to a Granger causality index equal to
zero.
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Figure 4.1: Experimental marginal distribution for .Xt ; Zt / with K D 1, rep D 0:1,
� D 1.

To obtain the theoretical value of TE we started from the following expression

TEZ!X D H .Xt jYt / �H .Xt jYt ; Zt /

D H .Ut / �H .Wt /
(4.8)

where Ut D K
q�
1 � rep2

�
Z2t CWt .

The entropy H.Wt / is known as Wt follows a Gaussian distribution. To compute
H.Ut / we first obtain an approximation QpUt

of the probability density function of Ut
by convolving numerically the respective density functions of Wt and K

q�
1 � rep2

�
Z2t
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(the theoretical density function of Z2t is known as Zt � N .0; 1/). Then, given a large
number NMC of realizations .zt ; wt / of .Zt ; Wt / we computed the following Monte Carlo
approximation:

H.Ut / ' �
1

NMC

NMCX
tD1

QpUt

�
K

q�
1 � rep2

�
z2t C wt

�
� log

�
QpUt

�
K

q�
1 � rep2

�
z2t C wt

�� (4.9)

which led to an accurate estimation of H.Ut /.

4.1.2. Physiology-based Model

This model aims at simulating more realistic iEEG signals as it is based on structural and
functional hypotheses on brain neural populations organization and electrophysiological
activity. As the firing mean activity of a neural population is a nonlinear response to
afferent synaptic excitation/inhibition, nonlinear static sigmoidal operators are included
in the model.

4.1.2.1. Presentation

For the physiology-based model, we used a time continuous SDE (stochastic differential
equations) model simulated in discrete time to represent the electrical activity of two
distant, and possibly coupled, neuronal populations denoted PopX and PopY . It was
based on the physiology and introduced in [Wendling 2005] to produce outputs similar to
intracranial electroencephalographic signals as those recorded with proximal electrodes
in hippocampus.

For each population, this type of model generates a mean population membrane
potential that is converted to an iEEG signal [Wendling 2005]. Each population is com-
posed of three neuronal subpopulations that mutually interact: a main pyramidal cells
subpopulation of excitatory neurons and two inhibitory subpopulations (Fig. 4.2). The
main subpopulation has an excitatory feedback loop. The first inhibitory subpopulation
projects onto the dendritic region of the main population and onto the second inhibitory
one. As for the second inhibitory subpopulation, it projects onto the somatic area of pri-
mary neurons. The corresponding mathematical representation of this population model
is given in graphical form in Fig. 4.3 [Frogerais 2008]. In this figure, the three subpopu-
lations, denoted Pe, Psi and Pfi

respectively, appear in three boxes underlined by dotted
lines. The input W.t/ represents the random influence of distant afferent neurons and is
classed as time continuous white Gaussian noise (i.e. the formal derivation of a Brow-
nian process). In each subpopulation box the synaptic transduction and dendritic time
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Peridendritic
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Slow 
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Figure 4.2: Interactions between three neuronal subpopulations of the hippocampus
[Wendling 2005]. The symbols “+” and “-” represent excitatory and inhibitory afferences

respectively.

constant effects are represented by linear transfer functions corresponding to 3 types of
time continuous impulse responses: he.t/ for the excitatory kinetics, hf i .t/ for the fast
somatic inhibitory kinetics, hsi .t/ for the slow inhibitory kinetics. Sigmoidal functions
S.�/ are also included in the subpopulations models, as a conversion law from mean neu-
ronal membrane potential to mean rate of axonal action potentials. The impulse response
GPHhph (where GPH is the static gain) is that of an instrumentation high-pass filter,
whose output is sampled at 256 Hz. Its transfer function is sGPH=.1 C �s/ where s is
the Laplace variable. The coefficients Ci , i D 1; : : : ; 7, represent the average numbers of
synaptic connections from a subpopulation to another. All impulse responses are of the
form h.t/ D ˛t exp.�˛t/, t � 0, ˛ being the inverse of a time constant, noted a for the
excitation, b for the slow inhibition and g for the fast one. Their input-output relations
can be characterized by a pair of first-order differential equations. The coefficients A, B,
G represent synaptic efficiency (synaptic gains) for excitation, dendritic inhibition and
somatic inhibition respectively. Only these three parameters are supposed to vary during
a transition from a normal process to the epileptic seizure and are the ones to be tuned
to simulate different types of activity, from healthy activity to paroxystic one.
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Fig. 2.9 – Voir figure 2.10

dèle mathématique proprement dit, elle est donnée sous forme graphique dans la figure 2.9, les
variables étant explicitées dans la figure 2.10. Ce modèle comporte en fait 4 sous-populations
car ce qui est modélisé pour le feed-back positif de la population principale sur elle-même ne
correspond pas à un feed-back d’une cellule principale directement sur elle-même. Le système
d’équations correspondant est donné ci-dessous.





dxi = xi+5dt i = 0, ..., 4

dx5 = (AaS(x1 − x2 − x3)− 2ax5 − a2x0)dt

dx6 = (Aa(mp + C2S(C1x0))− 2ax6 − a2x1)dt+Aadβ

dx7 = (BbC4S(C3x0)− 2bx7 − b2x2)dt

dx8 = (GgC7S(C5x0 − C6x4)− 2gx8 − g2x3)dt

dx9 = (BjS(C3x0)− 2jx9 − j2x4)dt

dx10 = (GPH(x6 − x7 − x8)− 1
τ x10)dt

(2.2)

On remarque que ce système est d’ordre 11. Or si on dénombre les fonctions de transfert
d’ordre 2 des filtres pré-somatiques dans la figure 2.9 on en trouve 7, ce qui devrait me-
ner à l’introduction de 14 composantes d’état. Cependant on constate que les 3 fonctions de
transfert Ahe apparaissant sur la droite de la figure 2.9 peuvent être fusionnées à la simple
condition de les commuter avec les gains C1, C3, C5, ce qui économise 4 composantes d’état.
La fonction de transfert du filtre passe-haut de sortie étant d’ordre 1 elle ne nécessite qu’une
composante d’état complémentaire et on arrive ainsi à 14-4+1=11 pour la dimension du vec-
teur d’état et celle du système différentiel. En notant W (t)dt = dβ(t), où β(t) désigne un
processus brownien de coefficient de diffusion égal à un (voir aussi section 3.2), le système
peut alors s’écrire sous la forme d’une équation différentielle stochastique à 11 composantes
dX(t) = f(X(t), θ, γ) +D(γ)d(β(t)). Les vecteurs θ et γ regroupent respectivement les para-
mètres inconnus et les paramètres connus. Les paramètres liés aux efficacités de l’excitation
et des deux types d’inhibition (A,B,G) sont à placer dans θ mais il faut évidemment leur

Figure 4.3: Interactions between different neuronal subpopulations of the hippocampus
[Wendling 2005,Frogerais 2008].

For one population the complete system of equations can be written8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
:̂

dxi D xiC5dt i D 0; : : : ; 4

dx5 D
�
AaS .x1 � x2 � x3/ � 2ax5 � a

2x0
�
dt

dx6 D
�
Aa

�
mp C C2S .C1x0/

�
� 2ax6 � a

2x1
�
dt C Aadˇ

dx7 D
�
BbC4S .C3x0/ � 2bx7 � b

2x2
�
dt

dx8 D
�
GgC7S .C5x0 � C6x4/ � 2gx8 � g

2x3
�
dt

dx9 D
�
BjS .C3x0/ � 2jx9 � j

2x4
�
dt

dx10 D
�
GPH .x6 � x7 � x8/ �

1

�
x10

�
dt:

(4.10)

The connectivity constants Ci , i D 1; : : : ; 7, the synaptic time constants 1=a, 1=b
and 1=g, and the mean and standard deviation of the input Gaussian process were fixed
as in [Wendling 2001,Wendling 2005]. Their values are reported in Tab. 4.1. Generated
signals and their corresponding PSD are shown in Fig. 4.4. for two triplets fA;B;Gg to
simulate either background activity or narrow band activity observed at a seizure onset.

Since the pyramidal cells project their axons to other areas of the brain, the model
accounts for this organization by using the average pulse rate of action potentials from
the main cells of one population PopX as an excitatory input to the main cells inputs of
a second population PopY . In addition, this connection from population PopX to PopY
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Synaptic time constants
1=a Excitatory 1/100
1=b Slow inhibitory 1/30
1=g Fast inhibitory 1/350

Connectivity constants
C1 pe � pe 135
C2 pe � pe 108
C3 pe � psi 33.8
C4 psi � pe 33.8
C5 pe � pf i 40.5
C6 psi � pf i 13.5
C7 pf i � pe 121.5
White Gaussian noise (input)

mp mean 90
� diffusion 30

Sigmoid
e0 2.5 s�1

v0 6 mV
r 0.56 mV �1

Table 4.1: Example of model constants of hippocampus.
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Figure 4.4: Example of signals generated by the model. (a) simulated EEG signal
(A D 3:67, B D 2 and G D 22:45) and simulated background signal (A D 2:8, B D 1

and G D 40). (b) corresponding PSD.

is represented by a parameter KXY which is proportional to the number of correspond-
ing active axonal links for a given type of cerebral activity. An appropriate setting of
this parameter allows for building systems where the neuronal populations are coupled
either unidirectionally or bidirectionally. The other parameters of this model are inter-
nal parameters (inside the population itself). They include excitatory and inhibitory
gains in the feedback loops as well as coefficients related to the number of synaptic con-
tacts between subpopulations. They are adjusted to control the intrinsic activity of each
population (normal background activity versus epileptic activity).
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For the physiology-based model with two populations PopX and PopY , we consider
3 situations: 1) PopX has an influence on PopY (or the inverse, which corresponds to
an unidirectional propagation), 2) both PopX and PopY have influence on the other one
(bidirectional propagation), 3) PopX and PopY are independent. For these 3 cases, the
values of the parameters A, B, G and g can be found in the following table.

PopX PopY
A B G g A B G g

Case 1 KXY D 1500, KYX D 0 5 3 20 250 3.5 3.5 84 250
Case 2 KXY D KYX D 1500 2.8 1 40 250 3.2 1 32.5 250
Case 3 KXY D KYX D 0 5 3 20 250 3.67 2.3 22.45 250

Table 4.2: Parameters of the physiology-based model. Case 1: unidirectional situation,
X ! Y , case 2: bidirectional situation, X � Y , case 3: independence situation (see

Appendix H for the PSD of these simulated EEG signals).

4.1.2.2. Surrogate Strategy

For the physiology-based model, for which the theoretical value of TE is not available
for two connected populations, the situations are more complicated. As a matter of fact,
for two populations PopX and PopY generating signals X and Y for which we measure
transfer entropy TEY!X (given that a model of connectivity is available for these two
populations), the problem is to evaluate the deviation from the H0 hypothesis (X and
Y independent), since it is difficult to obtain a theoretical distribution of TEY!X under
H0. This difficulty can be overcome using surrogate data synthesized from the original
data and guaranteeing their independence to get a reference statistics under H0. To
this end, we must develop a strategy to modify the observed signals to make them
independent while preserving their marginal frequential characteristics (the variance of
any statistics computed from these observations depends on these characteristics). In
this work, surrogate pairs were generated with the following strategy. Let us give a
series of M independent realizations .xm; ym/, m D 1; : : : ;M , obtained with the same
model (same structure, same parameters). To build independent pairs .X; Y 0/ preserving
marginal laws, we introduced new pairs .Xm; Y m0/ where m ¤ m0. According to this
strategy, two different sets of TE values can be obtained, TEY!X and TEY 0!X . If there
is an influence from signal Y to signal X , the distributions of TEY!X and TEY 0!X
are different. Otherwise, TEY!X and TEY 0!X follow the same distribution. We used
Student’s t-test to decide whether two sets of values are significantly different. This
surrogate strategy was also used to test if MI was null or strictly positive.
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4.1.2.3. Model Order Selection

To determine approximately parameters m and n in TE estimators, we imposed m D n

and computed AIC and BIC indexes versus order for a VAR model. As shown in Fig.
4.5, for both AIC and BIC, the curves decrease rapidly from the starting point, and then
remain quite constant. In this case, a very large optimal order can be selected. This situ-
ation should be avoided, because (i) a very large order will lead to large estimation error
due to the “curse of dimensionality” , (ii) the computation time increases dramatically
with an increasing model order. Hence, the model order was set to 6 in this experiment.
For MI estimators the size of the vectors, to be tested as to be independent or not, was
fixed to the same value m used for TE estimators.
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Figure 4.5: AIC and BIC indexes versus order computed under VAR hypothesis on the
physiology-based model outputs (case 1: unidirectional connectivity).

4.2. Simulation Results

In this section, we present the results of simulation of the different algorithms we tested.
Models 1�3 are used for the evaluation of different MI estimators (section 4.2.1), and dif-
ferent TE estimators are compared using Models 4�7 (section 4.2.2). For the physiology-
based model, both MI and TE estimators are tested (section 4.2.3). Here, both the mean
value and the corresponding standard deviation are plotted in the figures. Hence, for
clarity, a small decay is set among all the curves in each figure.

4.2.1. Results on Mutual Information

For mutual information, we tested the 4 different MI estimators 2I.X; Y /basic;E (Equ.
(3.106) with the Euclidean norm), 2I.X; Y /basic;M (Equ. (3.106) with the maximum
norm), 2I.X; Y /mixed;E (Equ. (3.113) with the Euclidean norm) and 2I.X; Y /mixed;M (Equ.
(3.113) with the maximum norm) to estimate I.X; Y /. We also ran the MI estimator
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algorithm freely available from the MILCA toolbox [Sergey 2015], simply denoted by
MILCA. Here, both 2I.X; Y /basic;M and MILCA use maximum norm and the same dis-
tance for all spaces, including both joint space and marginal spaces. Note that they differ
in the way that 2I.X; Y /basic;M estimates the probability density for each data sample,
while MILCA calculates MI directly (based on the kNN entropy estimator, Equ. (3.60)).
For comparison, the strategy of same k was also tested with both maximum norm and
Euclidean norm, where the same number of neighbors k was imposed for the 3 individual
entropies. Throughout the experiments, we chose k D 6 (the default k value in MILCA
toolbox) for the basic estimators, and k1 D 6, k2 D 20 for the mixed estimators. The
statistical mean and variance of these estimators were estimated by an averaging on 100
trials.

4.2.1.1. Model 1

Fig. 4.6 displays the performance of different approaches in the independence case (Model
1) with the two norms (maximum and Euclidean norms). For the two estimators using
the same k, the performance drastically falls with increasing ˛ (Fig. 4.6(a)) and high
dimensions (greater than 4) (Fig. 4.6(b)). The estimators with a given neighborhood
size (basic estimators and MILCA) clearly outperform the former significantly whatever
the norm, in terms of estimation bias and standard deviation. Unsurprisingly, in such
an independence situation, the mixed estimators, which are designed for the dependence
situation, suffer from a large bias whatever the norm. In other words, the new justified
strategy (Boxes 12○ and 13○ in Fig. 3.6) provides reliable mutual information values for
independence test, even with short signal lengths or high dimensional signals.

4.2.1.2. Model 2

For Model 2, results are displayed in Fig. 4.7. Whatever the norm, when the signals
are dependent (� close to �

16
), the mixed estimators are more accurate. Now, when

the dependence between the signals decreases (� close to �
2
), the experimental mutual

information values provided by the basic estimators and MILCA become very close to
the theoretical one. It should be mentioned that all these three estimators follow the
strategy derived in chapter 3 (based on the independence assumption, Boxes 12○ and 13○
in Fig. 3.6).

4.2.1.3. Model 3

Fig. 4.8(a) displays the performance of different algorithms, for a given dimension (d D
3), a number of points equal to N D 512, and different values of ˇ. The correlation
between X and Y is all the more important as ˇ is low. It comes out that all estimators
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Figure 4.6: (Model 1) Mutual information ÿ�I.X; Y / estimation for independent signals
using different strategies with 100 trials. (a) Mutual information ÿ�I.X; Y / (in nats) es-
timated with varying ˛, d D 3, N D 512. (b) Mutual information ÿ�I.X; Y / (in nats)

estimated versus dimension, ˛ D 0:3, N D 512.
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Figure 4.7: (Model 2) Mutual information Ÿ�I.X; Y1/ (in nats) estimation using different
strategies with varying � , ˛ D 0:4, d D 3, N D 512, 100 trials.
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Figure 4.8: (Model 3) Mutual information and mean estimation error (estimation bias)
using different estimators with 100 trials. (a) Mutual information (in nats) estimated
with varying ˇ, d D 3, N D 512. (b) Mutual information (in nats) estimated with

different signals lengths, ˇ D 0:4, d D 3. (c) Mean estimation error ÿ�I.X; Y / � I.X; Y /
(in nats) with varying dimension, ˇ D 0:5, N D 512.
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are comparable when ˇ reaches 0.8 (corresponding to a correlation coefficient around 0.78
between X and Y ). When the signals are highly correlated (low values of ˇ), the basic
estimators still show identical behaviors, but, in this case, the two new mixed estimators
clearly outperform the former whatever the norm. Even if all results are not presented
here, we find that the two new estimators outperform the basic ones using either k D 6
or k D 20.

As displayed in Fig. 4.8(b), we also tested the five estimators for different lengths of
the time series for given values of ˇ and d . The two new mixed estimators behave better
whatever the length of the signals (ranging from 256 until 2048 points), the improvement
being all the more important that the signal length is short.

When computing the mean error between the different estimators and the theoretical
value, for a given value of ˇ (ˇ D 0:5) corresponding to a correlation coefficient between
the signals equal to 0.89, and an increasing dimension, the same conclusion globally
holds, as displayed in Fig. 4.8(c). The new mixed estimators clearly outperform the
basic ones (which display comparable behavior) especially for high dimensions. However,
for very low dimensions (d D 1 or d D 2), the original estimators may be preferred.
Clearly, for all estimators, the error grows along with the dimension, the best result
being systematically obtained with the mixed estimator based on the Euclidean norm.
Since the standard deviations are quite low, they are not shown in these figures. Using
the basic estimators (or MILCA), the standard deviation varies from 0.03 to 0.06 which
is extremely low compared to the estimated values of mutual information (approximately
from 1 to 5). As for the mixed estimators, the standard deviation varies from 0.04 to
0.09. The increasing in standard deviation can be considered as negligible in comparison
to the accuracy of the estimation.

4.2.2. Results on Transfer Entropy

For a complete comparison, beyond the theoretical value of TE, we also computed the
Granger causality index as a reference (as indicated previously, in the case of linear
Gaussian signals, transfer entropy and Granger causality index are equivalent up to a
factor of 2). In the following figures, GCi/2 corresponds to Granger causality index GC
divided by 2, transfer entropy estimated by the free TRENTOOL toolbox (corresponding
to Equ. (3.67)) is marked as Standard algorithm, that estimated by JIDT (corresponding
to Equ. (3.68)) is marked as Extended algorithm, TEp1 is the transfer entropy estima-
tor given by Equ. (3.176) and TEp2 is the transfer entropy estimator given by Equ.
(3.177). Additionally, the basic TE estimators (Equ. (3.113) with both Euclidean and
maximum norms) are also tested for comparison. Concerning the basic TE estimator
with maximum norm and the Standard algorithm, they use the same distance for both
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joint space and marginal spaces. The former one estimates the probability density for
each data sample, whereas the Standard algorithm calculates TE directly (based on the
kNN entropy estimator, Equ. (3.60)).

For all results, the statistical means and the standard deviations of the different
estimators have been estimated on 100 trials. In Fig. 4.12, to demonstrate the influence
of the number of neighbors, the value of k is set to 3 and 4, while in all other figures, we
fix k D 8.

4.2.2.1. Model 4

Results for Model 4 are reported in Fig. 4.9 where the dimensions dY and dZ are identical.
We observe that, for a low dimension and a sufficient number of neighbors (Fig. 4.9(a)),
all TE estimators tend all the more to the theoretical value (around 0.26) that the length
of the signals is large, the best estimation being obtained by the two new estimators.
Compared to Granger causality, these estimators display a greater bias, but a slightly
lower variance. Due to the “curse of dimensionality”, with an increasing dimension (see
Fig. 4.9(b)), it becomes much more difficult to obtain an accurate estimation of TE. For a
high dimension, all estimators reveal a non-negligible bias, even if the two new estimators
still behave better than the two reference ones (Standard and Extended algorithms). If
we zoom in on Fig. 4.9(b), we observe that standard deviations are within the same
order of magnitude and even smaller.

4.2.2.2. Model 5 and Model 6

In this section, we firstly displayed the results of these two AR models with k D 8,
and then, using Model 5 as an example, we discuss how the choice of k influences the
performance of the proposed TE estimators.

As previously, for k D 8 (in Fig. 4.10 and 4.11), we observe that all the transfer
entropy estimators converge towards the theoretical value. This result is all the more true
when the signal length increases. As expected in such linear models, Granger causality
outperforms the TE estimators at the expense of a slightly larger variance. Contrary to
Granger causality, TE estimators are clearly more impacted by the signal length even if
their standard deviations remain lower. Here again, when comparing the different TE
estimators, it appears that the TEp1 and TEp2 estimators achieve improved behavior
compared to the Standard and Extended algorithms for k D 8.

For Model 5 (Fig. 4.10), for both directions (from X to Y and from Y to X), the pro-
posed TE estimators (TEp1 and TEp2) systematically outperform the other estimators.
For Model 6, for all directions, this hierarchy is globally preserved. In both Fig. 4.10
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Figure 4.9: (Model 4) Information transfer (in nats) from Z to X estimated for two
different dimensions with k D 8. The figure displays the mean values and the standard

deviations, (a) dY D dZ D 3, (b) dY D dZ D 8.

and 4.11, the basic estimator with Euclidean norm (Box 15○ in Fig. 3.6) always gives the
poorest performance.

In the scope of kNN algorithms, the choice of k must be a tradeoff between the esti-
mation of bias and variance. Globally, when the value of k decreases, the bias decreases
for the Standard and Extended algorithms and for the new estimator TEp1. Now, for the
second proposed estimator TEp2, it is much more sensitive to the number of neighbors
(as can be seen when comparing Fig. 4.12(a) and 4.12(b)). As shown in Fig. 4.10 and
4.11, the results obtained using TEp2 and TEp1 are quite comparable when the value of k
is large (k D 8). Now, when the number of neighbors decreases, the second estimator we
proposed, TEp2, is much less reliable than all the other ones (Fig. 4.12(b)). Concerning
the variance, it remains relatively stable when the number of neighbors falls from 8 to 3.
More details on this phenomenon are given in Appendix I.
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Figure 4.10: (Model 5) Information transfer (in nats), mean values and standard devia-
tions, k D 8. (a) From X to Y . (b) from Y to X .

4.2.2.3. Model 7

For this nonlinear model, we tuned the parameters to obtain a strong coupling between X
and Z. In this situation, the Granger causality index failed in detecting the information
flow and remained equal to zero for the different sets of tested parameters (see Fig. 4.13).
We observed the same issue as that pointed in [Gao 2015], i.e. a very slow convergence
of the kNN-based estimator when the number of observations increases, and noticed that
all the 6 TE estimators revealed comparable performance (as displayed in Fig. 4.13).
In this difficult case, the newly proposed methods do not outperform the existing ones.
For this type of strong coupling perhaps further improvement could be obtained at the
expense of an increasing computational complexity as that proposed in [Gao 2015].
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Figure 4.11: (Model 6) Information transfer (in nats), mean values and standard devia-
tions, k D 8. (a) From X to Y . (b) from Y to X . (c) from X to Z. (d) from Z to X .

(e) from Y to Z. (f) from Z to Y .
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Figure 4.12: (Model 5 with different k) Information transfer (in nats) from X to Y ,
mean values and standard deviations. (a) k D 4. (b) k D 3.

4.2.3. Results on the Physiology-based Model

For the physiology-based model, simulated signals with a Runge-Kutta numerical time
step corresponding to a 512 Hz sampling frequency were generated. Surrogate data were
obtained following the strategy described in section 4.1.2.2. For each set of surrogate
data, both dependency and information flow between two populations were considered.

Firstly, basic MI estimators with both maximum and Euclidean norms (Box 14○ in Fig.
3.6), together with the MILCA toolbox, were tested for independency (see Fig. 4.14 and
Tab. 4.3). Secondly, Granger causality, Standard algorithm, Extended algorithm and
the proposed algorithm TEp1 were tested to detect information flow (see Fig. 4.15 and
Tab. 4.4). All indexes in this section were calculated on 100 trials with 1024-point length
signals (N D 1024). For MI and TE, and for each pair festimator type, connectivity caseg
boxplots were obtained for both original data and surrogate data as displayed in Fig.
4.14 and Fig. 4.15. In cases 1 and 2 (introduced in section 4.1.2), PopX and PopY are

107



4.2. Simulation Results Chapter 4

256 362 512 724 1024 1448 2048
−0.2

0

0.2

0.4

0.6

0.8

1

signal length

T
ra

ns
fe

r 
E

nt
ro

py

 

 

Theoretical value
GCi/2
Standard TE algorithm
Extended TE algorithm
Basic TE estimator (Max. norm)
Basic TE estimator (Euclid. norm)
TE

p1

TE
p2

(a)

256 362 512 724 1024 1448 2048
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

signal length

T
ra

ns
fe

r 
E

nt
ro

py

 

 

Theoretical value
GCi/2
Standard TE algorithm
Extended TE algorithm
Basic TE estimator (Max. norm)
Basic TE estimator (Euclid. norm)
TE

p1

TE
p2

(b)

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

rep value

T
ra

ns
fe

r 
E

nt
ro

py

 

 

Theoretical value
GCi/2
Standard TE algorithm
Extended TE algorithm
Basic TE estimator (Max. norm)
Basic TE estimator (Euclid. norm)
TE

p1

TE
p2

(c)

Figure 4.13: (Model 7) Information transfer from Z to X , mean values and standard
deviations, k D 8, � D 1, 100 trials. (a) K D 1, rep D 0:8. (b) K D 0:6, rep D 0:8. (c)

K D 1, rep varies, signal length N D 1024.
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dependent. Hence, with the t-test at the 99% confidence level, all the three MI algorithms
give the right conclusion (p < 0:01). In case 3, corresponding to independence of PopX
and PopY , for any MI algorithm the same test quite rightly accepts the independence
hypothesis (see Tab. 4.3). For the information flow measures with 99% confidence level,
only the Granger causality index and the proposed algorithm are reliable and successfully
distinguish the different situations (p < 0:01). (see Tab. 4.4).
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Figure 4.14: (Physiology-based model) Boxplots of mutual information estimated values,
k D 6. For each case (1, 2 or 3) boxplots are displayed for original data (left-hand side)
and surrogate data (i.e. under H0 hypothesis, right-hand side). (a) MILCA toolbox. (b)
Basic MI estimator with maximum norm. (c) Basic MI estimator with Euclidean norm.

p-value MILCA toolbox Basic MI estimator
with Euclidean norm

Basic MI estimator
with maximum norm

Case 1 < 0.001 < 0.001 < 0.001
Case 2 0.007 0.006 0.004
Case 3 0.88 0.97 0.99

Table 4.3: (Physiology-based model) p-value of Student’s t-test for each couple
fMI estimator, caseg when comparing MI estimated values obtained from original data

and surrogate data.
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Figure 4.15: (Physiology-based model) Boxplots of information flow estimated values,
k D 30. For each case (1, 2 or 3) boxplots are displayed for original data (left-hand side)
and surrogate data (i.e. under H0 hypothesis, right-hand side). (a) Granger causal-
ity. (b) Standard algorithm, k D 30. (c) Extended algorithm, k D 30. (d) Proposed

algorithm (TEp1), k D 30.

4.2.4. Computational Costs

Computation time is also an important issue. In the computation of kNN-based esti-
mators, the most time-consuming part is the procedure of nearest neighbor searching.
Compared to Standard and Extended algorithms, both TEp1 and TEp2 involve supple-
mentary information, such as the maximum distance of the first kth nearest neighbor in
each dimension and the number of points on the border. However, most currently used
neighbor searching algorithms, such as kd tree (k-dimensional tree), ATRIA [Merkwirth
2000], provide not only information on the kth neighbor, but also on the first .k � 1/
nearest neighbors. So, in terms of computation cost, there is no significant difference

110



Chapter 4 4.3. Discussion and Conclusion

p-value Granger
causality

Standard
algorithm

Extended
algorithm

Proposed
algorithm

Case 1
X ! Y < 0.001 < 0.001 < 0.001 < 0.001
Y ! X 0.51 0.3 0.57 0.87

Case 2
X ! Y < 0.001 0.005 0.011 < 0.001
Y ! X < 0.001 0.16 0.005 < 0.001

Case 3
X ! Y 0.1 0.083 0.051 0.11
Y ! X 0.87 0.78 0.49 0.38

Table 4.4: (Physiology-based model) p-value of Student’s t-test for each couple
finformation flow estimator, caseg when comparing information flow estimated values ob-

tained from original data and surrogate data.

k D 4 k D 16 k D 30

Granger causality 47.31 - -
Standard algorithm 2.39 3.03 3.88
Extended algorithm 29.14 33.69 35.89

Basic TE estimator (Max. norm) 42.03 42.74 44.38
Basic TE estimator (Euclid. norm) 41.49 42.75 44.98

TEp1 50.87 50.51 53.28
TEp2 62.05 62.97 64.60

Table 4.5: Computational cost of the different algorithms (seconds). This table refers
to Model 5 (X ! Y ) using N D 1024 and 50 trials. Our implementation of Granger
causality involves matrix inversion and an implementation based on MATLAB system
identification toolbox would reduce the computation time. Theoretically, except for
the Standard algorithm, TE algorithms require comparable computation times, their
implementation being based on “for” loop structures, explaining slow process compared

to the Standard algorithm.

among these kNN TE estimators. A practical order of magnitude of the relative compu-
tation times is given in Tab. 4.5 which provides the computation times required by the
different algorithms according to the number of neighbors (except for Granger causality).

4.3. Discussion and Conclusion

In this chapter, we tested the MI and TE estimators proposed in chapter 3 with different
models, including linear and nonlinear structures and simulating dependent and non-
independent observations.

For mutual information, the experimental results prove the effectiveness of the strat-
egy proposed in chapter 3, and both MILCA and basic estimators (whatever the norm,
Box 14○ in Fig. 3.6) outperform the MI estimators using the same k in case of independent
signals. However, with models simulating non-independent signals, there are no signifi-
cant differences among the results. The mixed MI estimators provide good performance
on dependent signals, but suffer from large bias in independence situations. It should be
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noted that the mixed estimators are sensitive to the choice of the number of neighbors
and require some empirical tuning for practical use. To merge the respective advantages
of basic MI estimators and mixed estimators a two-step procedure could be proposed to
measure MI: in a first step the independence hypothesis would be tested with a basic
type statistic and in case of independence rejection MI would be measured with a mixed
type statistic.

Concerning transfer entropy, for Gaussian distributions, experimental results show
the effectiveness of the new estimators on IID data as well as on correlated AR signals
in comparison with the standard KSG algorithm estimator. This conclusion still holds
when comparing the new algorithms with the extended KSG estimator. Globally, all TE
estimators satisfactorily converge to the theoretical TE value, i.e. to half the value of
the Granger causality index, while the newly proposed TE estimators show lower bias
for sufficiently large k (in comparison with the reference TE estimators) and comparable
variance estimation errors. Now, one of the new TE estimators, TEp2, suffers from
noticeable error when the number of neighbors is small. Some experiments allowed us
to verify that this issue already existed when estimating entropy of a random vector:
when the number of neighbors k falls below the value of dimension d , the bias drastically
increases. As expected, experiments with Model 4 showed that all the TE estimators
under examination suffer from “curse of dimensionality”, which makes it difficult to obtain
accurate estimation of TE with high dimension data. When tested on a model introducing
a strong nonlinearity in the statistical link between the two simulated signals, the new
algorithms did not longer display better performance than classical algorithms. This
point would require deeper investigations, perhaps in line with existing works as [Gao
2015]. When testing on the physiology-based model, the experiments did not show a
clear advantage of TE approaches compared to the Granger causality. Now, as the
nonlinearities included in this type of model are smooth nonlinearities, the performance
of linear approach is not surprising.
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Chapter 5
Analysis of Real Signals

In the previous chapter, the algorithms we developed have been tested on simulated
signals. Now, we apply the proposed causality measures to real signals recorded in
the cerebral cortex of an epileptic patient. To our knowledge entropic methods, and
particularly transfer entropy, have not been applied yet to analyze effective connectivity
in epileptic brain in the course of seizures (about 10 seconds before the onset of the
seizure, during and after the seizure), as they have been more investigated in cognitive
tasks. Beyond a comparison between the causality measures we developed in chapter 3,
it seems also interesting to compare these techniques tested on real signals with some
reference method. In most works in the literature dedicated to epileptic seizures analysis,
the direct transfer function (DTF) [Mierlo 2011, Jung 2011, Mierlo 2013, Zhang 2015]
remains a widely used measure. Hereafter, a N -variate statistic, called local causality
index (LCI), is introduced. Hence, besides the comparison of Granger causality with
different TE estimators discussed in the previous chapter, we also compare them with
the directed transfer function through the LCI index to discuss the information they
provide with a view to a better understanding of the patient seizure organization. To
this end, we use boxplot-based visualization of LCI values computed either with the
causality indexes detailed in chapter 3 or with DTF. For each tested causality index, to
highlight the effect of each epileptic phase, i.e. before, during or after the epileptic seizure
onset, a Student’s t-test is carried out to compare statistically this phase with a reference
phase corresponding to background activity. Based on the ground truth provided by the
clinical experts, the performances of the different algorithms are discussed.
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5.1. Database

First we present the database to be analyzed hereafter. This database is composed
of 72-second length iEEG signals recorded on 20 channels in the cerebral cortex of an
epileptic patient. These signals were recorded in brain structures whose activities are a
priori interesting to investigate according to preliminary clinical and electrophysiological
examinations. A schematic diagram of the placement of 12 iEEG electrodes on a lateral
view (left hemisphere) is displayed in Fig. 5.1. In this figure the symbol A’ means
“electrode in anatomical region of type A in the left hemisphere”. Around 10 to 15 sensors
were placed along each electrode, for example A’1 to A’15. Each iEEG signal is bipolar,
obtained by the difference of the potentials recorded on two adjacent sensors. All channels
(signals) were sampled at 256 Hz. As shown in Fig. 5.2, a seizure onset up to 32 seconds
was recorded in this database. This recording can be divided into three parts: pre-ictal
phase (0s�20s), ictal phase (20s�52s) and post-ictal phase (52s�72s) (some examples
of PSD of these signals are displayed in Appendix H, Fig. H.3). Additionally, to get a
reference in our experiments, another segment of iEEG signals has been recorded on the
same 20 channels, far apart from the seizure onset. This additional recording is called
hereafter “baseline”. According to the clinical experts, the 20 channels can be categorized
into three groups, as listed in Tab. 5.1, named respectively Onset group (group O),
Propagation group (group P) and Not-involved group (group N). The signals associated
with the Onset group are supposed to be linked to activities in brain regions from which
the seizure starts. The Propagation group contains electrodes corresponding to brain
structures acting as relays which are stimulated with some delay after the beginning of
the seizure and which possibly stimulate other structures later. The Not-involved group
corresponds to structures which are neutral with respect to epileptic processes.

Figure 5.1: Schematic diagram of iEEG electrodes placement (left hemisphere).
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Group Channels
Onset group (group O) Cp1, Cp4, Pp1, Pp4, Ap2, Ap6, Bp1

Propagation group (group P) Cp9, Pp8, Dp1, Dp5, Tp1, Fp2
Not-involved group (group N) Ap11, Bp6, Bp11, Tp8, Hp2, Ip2, Fp8

Table 5.1: Categories of the channels in the database. Each channel corresponds to a
bipolar signal. For instance, Api represents the difference between the potentials recorded

respectively from the ith sensor of electrode A’ and its .i C 1/th sensor.
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Figure 5.2: A 72-second length iEEG recording with a seizure onset up to 32 seconds.
The two red vertical lines separate this recording into three segments: pre-ictal phase

(0s�20s), ictal phase (20s�52s) and post-ictal phase (52s�72s).

5.2. Method

The idea is to determine from the 20 recorded signals and a current observation time
interval if a given channel can be considered as belonging to either a brain region implied
in the seizure initialization mechanisms, or a secondary region relaying the seizure propa-
gation, or a region not involved in the epileptic activities. To this end, we must introduce
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some statistics measuring the global transfer information from the tested signal to the
others.

5.2.1. Local Connectivity Index

In this work, to highlight the sensitivity of the causality statistics in the different epileptic
phases and in the expert electrode labeling, we propose an analysis using a boxplot-based
visualization. The target is to visualize the effect of the seizure phase factor (baseline/pre-
ictal/ictal/post-ictal) and that of the type of involvement of the brain structures during
the seizure onset (group O/group P/group N), which corresponds to a second factor in
the proposed statistics.

To proceed with this analysis, we define a generic time dependent local connectivity
(scalar) index, LCI , calculated separately for each recorded channel and parameterized
by one of the causality indexes (Granger causality, transfer entropy,. . . ) or by the DTF
index detailed in Appendix J:

LCI n.t/ D
X

m2out.n/

CIm=n.t/ �
X

m2in.n/

CI n=m.t/ (5.1)

where LCI n is the local connectivity parameter corresponding to channel n 2 f1; : : : ; 20g
when the channels listed in Fig. 5.2 numbered from 1 to 20, t is the index of the current
analysis time window, CIm=n is either one of the causality indexes parameters defined
in chapter 3 for the pair .m; n/ in the direction n ! m or the DTF index for the same
direction, out.n/ is the channels indices subset (among the channels considered excepted
n, i.e. 19 channels) obtained by selecting the numbers m such that CIm=n is significantly
different from zero, in.n/ is the channels indices subset (among the 20 channels excepted
n) obtained by selecting the numbers m such that CI n=m is also significantly different
from zero.

The addressed question should have been a priori to classify the values LCI n.t/
without supervision or in one of the 3 classes a priori defined by the experts (group O,
group P, group N). Now, building a classifier, with or without supervision, requires a
sufficiently large number of examples to set up a learning group and, for the supervised
case, a test group. Here, this number was too limited to expect to succeed by this way
and so we chose the following procedure.

Let us denote BXP .CI ; s; Te/ a boxplot computed on the set of scalar values
fLCI n.t/; n 2 s; t 2 Teg where s 2 fgroup O; group P; group Ng and e symbolizes one
epoch in a set defined by the experts to capture the dynamic behavior of the epileptic
propagation. Thus, besides the baseline, pre-ictal and post-ictal phases (named epochs
afterwards), the ictal one (20s�52s) was divided into three overlapped epochs (named ic-
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tal 1, ictal 2 and ictal 3 epochs (see Tab. 5.2)), Te including all the time indices necessary
to cover the complete duration of e. The first argument of BXP , CI , indicates the type
of causality index (Granger index, one of the TE indexes or DTF index). Concerning
the analysis of DTF results, the corresponding boxplots are denoted BXPDTF .s; Te/.

5.2.2. Experimental Protocol

Each boxplot is built on an interval of 16 seconds (indexed by t) which is divided into
eight 2-second length windows without overlapping. The relations between signals vary
over time. Tab. 5.2 displays the starting and ending time for each epoch. This partition
was adopted in accordance with the clinician.

Epoch Starting and ending points (in time)
Pre-ictal 2s�18s
Ictal 1 22s�38s
Ictal 2 28s�44s
Ictal 3 34s�50s

Post-ictal 54s�70s

Table 5.2: Starting and ending points of each epoch.

Now, we consider the question of the significance of a causality index computed from
one channel to another one. For Granger causality, as explained in Appendix K, it
is possible to derive theoretically a threshold value leading approximately to a given
probability of false positive (a causal link is decided whereas this link does not exist).
For TE and DTF, we choose to use an adaptive threshold to retain the same number
of significant links as for Granger causality for each t value. Fig. 5.3 gives an example
on this point. This method is clearly not completely satisfying but it avoids making
surrogate replications, which is time consuming for TE estimators.

After building the boxplots, a Student’s t-test is used to determine if the result
obtained on each interval (i.e. pre-ictal, ictal 1, ictal 2, ictal 3, post-ictal) is significantly
different from that on the baseline or not.

To compute the sizes of the past values vectors in Granger and TE causality index,
and also to choose the order of the multivariate AR model in DTF we must estimate the
Markovian memory length of the bivariate observed signal (suppose that the model is
approximately a Markov process). For the selection of this model order, it is not obvious
to find an optimal order using the widely used AIC and BIC criteria, as displayed in Fig.
5.4. Theoretically the estimated order corresponds to the value on the x axis for which
the criterion value is minimum but here this x value can be too large to be used in the
estimation algorithms. However we observe that the curves slopes are very small when the
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Figure 5.3: An example of the determined significant links obtained by the different
indexes for one 2-second length sliding window (2s�4s). (a) For Granger causality, using
the methods introduced in Appendix K, 45 links are considered as significant, so that
we kept the same number of links for the other 4 measures, (b) Standard algorithm, (c)

Extended algorithm, (d) proposed algorithm, (e) DTF algorithm.
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x value exceeds 6. Finally, taking account of orders estimated from many cases (different
epochs, different seizures) the model order was uniformly set to 6. Additionally, to avoid
the “curse of dimensionality”, we chose to keep the temporal memory depth (six times
the time sampling period corresponding to 256 Hz) but to subsample with a subsampling
ratio equal to 0.5. Thus, given two signals X and Y , to predict xt , only Œxt�2; xt�4; xt�6�
and Œyt�2; yt�4; yt�6� were used.
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Figure 5.4: AIC and BIC indexes values versus order (computed on channel Cp1 and
on the 72-second length signal).

Concerning LCI index, besides Granger causality and DTF, three different TE esti-
mators are tested hereafter: the Standard algorithm (Box 8○ in Fig. 3.6), the Extended
algorithm (Box 9○ in Fig. 3.6) and the first proposed algorithm (named TEp1, Box 23○
in Fig. 3.6).

5.3. Experimental Results

This section is devoted to the collection and discussion on the results. The index defined
by Equ. (5.1) is expected to be large when the sum of the significant influences of channel
n onto the other channels is much greater than the sum of the significant influences from
the other channels on it. Consequently, this index reveals whether the channel n drives
the others in some manner. For large negative values of this index, the channel n is
considered as being more influenced by the other nodes than influencing the others. Note
that the magnitude of the values taken by this index is not important if we essentially
want to observe its variations with respect to the seizure phase and the tested channel n
in Equ. (5.1).

Accordingly, what we expect with the LCI and DTF boxplot values is that: (i) for
group O, there should be significant increase during the ictal part, (ii) for group N,
there should be no significant mean deviation compared with the baseline. With the
definition in Equ. (5.1), for group P, it could be expected to observe significant mean
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Figure 5.5: Boxplot of different indexes, (a) Granger causality, (b) Standard algorithm,
(c) Extended algorithm, (d) proposed algorithm, (e) DTF algorithm.
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deviations only in the second part of the seizure, since the corresponding neural groups
are stimulated after the beginning of the seizure by group O and possibly stimulate other
structures later. Additionally, according to the clinical experts, the number of functional
connectivity links in the regions involved in the epileptic seizure drastically grows during
the post-ictal period.

Granger
causality

Standard
algorithm

Extended
algorithm

Proposed
algorithm

DTF
algorithm

Group O

Pre-ictal < 0.001 0.495 0.057 0.007 0.144
Ictal 1 < 0.001 0.41 0.16 0.033 < 0.001
Ictal 2 0.888 0.001 0.542 < 0.001 < 0.001
Ictal 3 0.491 < 0.001 0.965 < 0.001 < 0.001

Post-ictal 0.109 < 0.001 0.036 < 0.001 < 0.001

Group P

Pre-ictal 0.603 0.016 0.002 0.373 0.013
Ictal 1 0.001 < 0.001 < 0.001 0.273 0.012
Ictal 2 0.745 < 0.001 < 0.001 < 0.001 < 0.001
Ictal 3 0.333 < 0.001 < 0.001 0.001 < 0.001

Post-ictal 0.012 < 0.001 < 0.001 0.05 0.967

Group N

Pre-ictal 0.005 0.001 < 0.001 < 0.001 < 0.001
Ictal 1 0.318 0.02 0.004 0.181 0.574
Ictal 2 0.74 0.125 < 0.001 0.02 0.633
Ictal 3 0.015 0.036 < 0.001 0.008 0.118

Post-ictal < 0.001 < 0.001 < 0.001 0.006 < 0.001

Table 5.3: p-value of Student’s t-test for different indexes.

Tab. 5.3 reports the p-values obtained with the Student’s t-test. For each entry of
the table, the t-test is applied to compare the values in BXP

�
CI ; s; Te¤baseline

�
and the

values in BXP .CI ; s; TeDbaseline/ or the values in BXPDTF
�
s; Te¤baseline

�
and the values

in BXPDTF .s; TeDbaseline/. A small p-value indicates that the means of the two samples
are significantly different. If, for instance, we choose a probability of false positive equal
to 0.05, then we accept the hypothesis that the theoretical means are different if the
p-value is smaller than 0.05.

When we analyze Fig. 5.5 and Tab. 5.3, we come to the following conclusions:
(i) the Standard algorithm fails in reflecting any variation during the first ictal epoch
(ictal 1) for group O, and, on the contrary, there is a significant LCI values decrease for
ictal 2 and ictal 3 epochs. Besides, it shows important changes for group N (significant
decrease for pre-ictal, ictal 1, ictal 3 and post-ictal epochs); (ii) the Extended algorithm
is globally not better than the Standard one for group O (no significant changes during
the ictal epochs), and it leads to poor performance on group N (unexpected significant
decrease on all epochs); (iii) among the three TE algorithms, the proposed algorithm
demonstrates the best performance. Firstly, there is a significant increase for group O on
the three ictal epochs. Secondly, for group N, the decrease for all epochs is not globally
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more marked than with the two other TE algorithms; (iv) among all indexes, DTF gives
interesting results: significant increase during the three ictal epochs for group O, and
less significant changes for group N; (v) concerning the Granger causality index, despite
a good performance for group O in the beginning of the ictal phase (ictal 1), results are
globally not satisfying, as is the case for group N. For the analysis of the group P, it
appears difficult to derive general conclusions, partly due to the fuzzy nature of this class
of structure, which prevents us from detecting the most relevant methods.

5.4. Discussion and Conclusion

In this chapter, we applied both Granger causality and different transfer entropy estima-
tors discussed previously to analyze human epileptic signals. Since DTF remains popular
in the analysis of epileptic signals, it has been also tested. Based on the ground truth pro-
vided by the clinical experts, (i) among all the three tested TE estimators, the proposed
algorithm outperforms the two others, (ii) DTF appears as the most reliable measure
and gives interesting performance. Even if lots of time and effort have been spent on the
analysis of real signals, we must acknowledge that the relevance of information-theoretic
quantities is not so evident.

To detect significant causality index values, we introduced a decision threshold which
was derived theoretically for the Granger causality index (see Appendix K). Now, to test
transfer entropy, defining such a threshold is not so trivial. In this experiment, for a more
effective comparison among different algorithms, we used an adaptive threshold to make
sure that all algorithms retain the same number of links. Another critical issue is the
“curse of dimensionality”, since large dimensions always bring troubles to TE estimations,
including both computation time and estimation accuracy. Here, we tried to avoid this
problem by time subsampling the predictor vectors.

In our experiments, all indexes have been calculated on the whole frequency band.
In recent literature [Ponten 2007,Mierlo 2011,Varotto 2012,Mierlo 2013], the analysis of
epileptic data is performed on different frequency bands, and this could be a perspective
to this work.
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Our work concerns the detection of effective connectivity to be applied in the context of
epilepsy without addressing the question of direct or indirect links.

In chapter 1, we presented a brief introduction to the research background, including
the disease itself, the human brain structure and different types of brain connectivity.

As mentioned in our survey of the state of the art in chapter 2, various algorithms have
been proposed to quantify the strength of influence between different subsystems. Among
these methods, Granger causality and transfer entropy are two well-known approaches
that are linked under Gaussian assumption. For Granger causality, a linear model is con-
sidered to fit the data and its calculation is relatively simple. However, for information-
theoretic approaches, such as transfer entropy, their computation becomes relatively
difficult, especially in high-dimensional spaces. This is the main issue preventing us from
applying these methods in their conditional form taking into account the environmental
network.

In chapter 3, we deeply discussed the estimation of information-theoretic quantities
based on k-Nearest Neighbors (kNN) techniques. The estimation of mutual information
(MI) and transfer entropy (TE) is always an important issue, especially in neuroscience,
where getting large amounts of stationary data is problematic. Both MI and TE can
be calculated as a summation of different individual entropy estimations. Until now,
the most widely used MI/TE estimator follows the kNN strategy proposed in [Kraskov
2004]: compute the distance in the highest-dimensional space, and use the same distance
in other marginal spaces. In [Kraskov 2004], the effectiveness of this strategy was proved
by numerical simulations. Using multi-dimensional Taylor expansion, we introduced a
novel analytical form of the individual entropy estimation bias depending on the norm.
In the case of the maximum norm, we obtained the same conclusion as in [Kraskov 2004],
i.e. using the same distance for different spaces can be the optimal choice. We got the
proof that, with this kind of strategy, the bias could vanish if and only if the independence
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assumption was satisfied. For mutual information, to further reduce the bias in the case
of dependent signals, we proposed mixed estimators, for which the individual entropy
was calculated with a linear combination of two different individual estimations.

Another important improvement is the use of a (hyper-)rectangle instead of a
(hyper-)cube while calculating TE with maximum norm. This idea was firstly pro-
posed in [Kraskov 2004], where the (hyper-)rectangle was used only in the joint space
and not in the marginal spaces. In chapter 3, we extended this idea and proposed to
use (hyper-)rectangles in both joint space and marginal spaces, where the maximum
distances in different directions could be different. To this end, we first investigated
the estimation of Shannon entropy based on the kNN technique including a rectangular
neighboring region and introduced two different kNN entropy estimators. We derived
mathematically these new entropy estimators by extending the results and methodology
developed in [Kraskov 2004] and [Singh 2003]. Given the new entropy estimators, two
novel TE estimators have been proposed, implying no extra computation cost compared
to existing similar kNN algorithms.

In chapter 4, the new MI/TE estimators were tested with various kinds of models. To
validate the performance of the proposed estimators, we compared them with the MI/TE
estimators available in existing toolboxes: (i) Kraskov-Stögbauer-Grassberger (KSG) MI
estimator available in MILCA toolbox, (ii) Standard TE estimator and Extended TE
estimator available in TRENTOOL and JIDT toolboxes respectively. For mutual infor-
mation, as expected, in independence situations, the MI estimators following the pro-
posed strategy performed very well (mutual information very close to zero). For time
correlated observations sequences, the new mixed estimators (with both Euclidean and
maximum norms) gave the best results. However, these mixed MI estimators were very
sensitive to the selection of the number of neighbors, and so more difficult to use. For
transfer entropy, under Gaussian assumption, experimental results proved the effective-
ness of the new estimators for IID data in comparison with the standard TE estimator.
This conclusion still held when comparing the new algorithms with the extended TE es-
timator. Globally, all TE estimators satisfactorily converged to the theoretical TE value,
i.e. to half value of Granger causality, while the newly proposed TE estimators showed
lower bias for a number of neighbors sufficiently large (in comparison with the reference
TE estimators) with comparable variance estimation errors. We noticed that the two
proposed TE algorithms produced quite comparable results when the number of neigh-
bors was sufficiently large. However, one of the new TE (TEp2) estimators suffered from
noticeable error when the number of neighbors was small. Finally, experimental results
on simulated iEEG signals showed that (i) all tested MI algorithms gave the expected
results, (ii) for the detection of information flow, only Granger causality and the first
proposed TE algorithm (TEp1) successfully distinguished the three following situations:
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independency, unidirectional and bidirectional propagation flows, at 99% confident level.

In chapter 5, we applied different causal approaches, including Granger causal-
ity, transfer entropy and directed transfer function, to analyze real signals, for which
the ground truth was given by clinical experts. We first proposed a boxplot-based
visualization to compare the different algorithms. A test derived from the Granger-
Wald test was introduced for Granger causality to determine if the relation between two
channels was significant or not. For TE and DTF, the adaptive threshold was used to
retain the same number of links as Granger causality. According to the results, the pro-
posed algorithm TEp1 outperformed all other tested TE estimators, Granger causality
and DTF being slightly better.

Concerning the computation time of the different TE algorithms, we mainly have to
consider the procedure of NN searching, which is the most time-consuming part in the
computation of kNN-based estimators. The newly proposed TE estimators (TEp1 and
TEp2) involve supplementary information, (i) the maximum distance of the first k NNs
in each dimension (also used in the Extended TE algorithm), and (ii) the number of
points on the border. The most widely used neighbor searching algorithms, such as kd
tree, provide not only information on the kth neighbor but also on the first k NNs. So,
these informations required here can be retained without additional cost. Therefore, it
can be considered that there is no significant increase in computation cost for the newly
proposed kNN TE estimators.

This work is a first step in a more general context of connectivity investigation for
neurophysiological activities obtained either from nonlinear physiology-based modeling
or from real human epileptic recordings.

Several possible directions can be considered in a future work. As a matter of fact, in
our study, transfer entropy was seen as a pairwise approach. In our experiments, when
we estimated the causality between two channels, the influence of the other channels has
not been taken into account contrary to either DTF approach or other causality methods
based on N -channel VAR models. To remedy this shortcoming, the conditional transfer
entropy can be further investigated. However, this conditional measure also brings new
challenges, e.g. (i) to reduce the complexity, we would have to decide which part of the
environment influences causal relations between two specific channels, (ii) to escape the
“curse of dimensionality” due to the involvement of more channels, we could consider
causality graph following the approach proposed in [Runge 2012].

Moreover, all the causal indexes (including GC, TE and DTF) were calculated on
full frequency band in this work. However, in recent literature [Ponten 2007, Mierlo
2011,Varotto 2012,Mierlo 2013], the epileptic signals are analyzed on different frequency
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bands. So, in a further work, it would be interesting to discover the corresponding causal
relations on different frequency bands.

To summarize, on the one hand we obtained interesting improvements of entropic
bivariate measures of causality based on kNN approach that have been validated on
simulated signals. On the other hand, in order to retrieve conclusions given by clinical
experts, we applied these measures to human intracerebral epileptic signals by integrating
them in a proposed local causality index derived from the bivariate causality algorithms,
to be compared with the popular DTF causality index. Our preliminary conclusion of-
fered a mixed picture. The strong non-stationarity of epileptic signals is a priori an
additional challenge using entropic methods which require relatively long observation in-
tervals and which have been developed in the literature more particularly for the analysis
of cognitive networks. Now, the performance of the proposed entropic measures is not so
poor compared to that of the DTF reference measure. Finally, the expected advantage
of entropic methods being some enhancement in nonlinear connectivity, the existence of
this nonlinear connectivity should be questioned. Even if the epileptic signals consid-
ered individually could be produced by strongly nonlinear mechanisms, it is not obvious
that the connectivity mechanisms are strongly nonlinear and necessarily require nonlin-
ear methods to be correctly detected. Supplementary investigation on sub-band signals
should be considered to discuss this idea.
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A. Derivation of Equ. (3.89)
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B. Proof of Property 1
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where the first equivalence (the inclusion is a strict inclusion) is clearly implied by
the construction of D�
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events are independent. Hence the probability value in Equ. (B.2) can be developed as
follows

P .T1 > r jX1 D x1; „1 D �1/ '
k��1X
iD0

 
N � �1 � 1

i

!�
P
�
X 2 D�

0
1;:::;�

0
d

x1

��i
�

�
1 � P

�
X 2 D�

0
1;:::;�

0
d

x1

��N��1�1�i

:

(B.3)

If pX .x1/ is approximately constant on D�
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C. Derivation of Equ. (3.169)

With P.T1 � r jX1 D x1; „1 D �1/ D 1 � P.T1 > r jX1 D x1; „1 D �1/, we take the
derivative of P.T1 � r jX1 D x1; „1 D �1/ to get the conditional density function of T1
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D. Derivation of Equ. (3.170)
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E. AIC and BIC Algorithms

Akaike’s information criterion (AIC), proposed by Akaike [Akaike 1973] in 1973, is a
classical rule of model selection. For a collection of competing models introduced to
interpret observed data, AIC considers the trade-off between the goodness of model fitting
and the complexity of the model. It quantifies the quality of each model, relatively to the
other models in the collection. Bayesian information criterion (BIC) is another widely
used model selection criterion proposed by Schwarz in 1978 [Schwarz 1978]. These two
approaches often appear in literature as competing methods [Burnham 2002].

Now, we give brief mathematical descriptions of these two model selection measures.
Consider a d -dimensional vectorial autoregressive process Xt D Œx1t ; x2t ; : : : ; xdt �T with
model order p

Xt D c Cˆ1Xt�1 Cˆ2Xt�2 C : : :CˆpXt�p C "t ; (E.1)

where ˆi , i D 1; : : : ; p is d � d coefficient matrices, "t is an d � 1 unobservable zero
mean white noise process with time invariant covariance matrix †, and c is a constant.
Here, for the sake of convenience, we assume c D 0.

Given an observed N -length data sequence .X1; X2; : : : ; XN /, using the least-squares
method [Brockwell 2013], we can fit a q-order VAR model, leading to an estimation of
this model,

Xt D ĉ
1Xt�1 C ĉ

2Xt�2 C : : :C ĉ
qXt�q C b"t : (E.2)

Following the model (Equ. (E.1)), we write the predicted value cXt as
cXt D ĉ

1Xt�1 C ĉ
2Xt�2 C : : :C ĉ

qXt�q: (E.3)

Then, the experimental residual covariance matrix of the input noise of the VAR
model can be calculated as

b† D 1

N � q

NX
tDqC1

�
Xt �cXt��Xt �cXt�T ; (E.4)

where T stands for the transpose operator.

Note that the above procedure can be carried out with any selected order q. For a
given q, the AIC value is defined as

AIC.q/ D N log
�
det

�b†��C 2d2q; (E.5)
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where log.�/ is the natural logarithm, and det.�/ stands for the matrix determinant.
Similarly, the BIC value can be calculated as

BIC.q/ D N log
�
det

�b†��C d2q log.N /: (E.6)

For practical use, we compute the AIC (or BIC) values for a given limited set of q
values, and the selected value of q is the one leads to the minimum AIC (or BIC) value.
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F. Development of the Theoretical MI Value for Model 2

Consider the linear system described by Equ. (4.2), the parameter � has no influence on
the marginal covariance matrices CX and CY1, where CX D CY1 D C. The joint covariance
matrix CX;Y1

can be calculated as
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Considering the theoretical entropy value of Gaussian data
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G. Development of the Theoretical MI Value for Model 3

For the system described in Equ. (4.3), we have CX D Ce D I , CY D
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where C.�/ stands for the covariance matrix.
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Considering the theoretical entropy value of Gaussian data
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H. Power Spectral Densities of the Signals

In this appendix, we display the power spectral densities of signals generated by Model
5, Model 6, the physiology-based model and real signals.
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Figure H.1: Gaussian AR signals (left) and the corresponding PSD (right).
(a) Model 5. (b) Model 6.
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Figure H.2: Simulated EEG signals generated by the physiology-based model (left) and
the corresponding PSD (right). (a) unidirectional situation, KXY D 1500, KYX D 0,
PopX : A D 5, B D 3 and G D 20, PopY : A D 3:5, B D 3:5 and G D 84. (b) bidirectional
situation, KXY D KYX D 1500, PopX : A D 2:8, B D 1 and G D 40, PopY : A D 3:2,
B D 1 and G D 32:5. (c) independence situation, KXY D KYX D 0, PopX : A D 5,

B D 3 and G D 20, PopY : A D 3:67, B D 2:3 and G D 22:45.
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Figure H.3: Real signals recorded during the pre-ictal phase (left) and the corresponding
PSD (right). When focusing on different channels or different epochs, very different PSD
shapes are encountered. Here are two examples. (a) an example of fast activity (peak
around 23 Hz) in channel Fp8 as in [Wendling 2001]. This type of activity that we
deliberately generated in the physiology-based model did not occur frequently in the
pre-ictal phase of the analyzed seizure. (b) another type of activity localized at lower

frequencies in channel Ip2.
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I. Comparison between Entropy Estimators

Here, we try to explain the behavior of the estimator TEp2 in Fig. 4.12(b).
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Figure I.1: Comparison between four entropy estimators, (a) d D 3, (b) d D 8. The
covariance matrix of the signals is a Toeplitz matrix with first line ˇŒ0Wd�1�, where ˇ D 0:5.
“Curve 1” stands for the true value, “Curve 2”, “Curve 3” and “Curve 4” correspond to

the values of entropy obtained using respectively Equ. (3.60), (3.150) and (3.172).

Fig. I.1 displays the values of entropy for a Gaussian d -dimensional vector as a
function of the number of neighbors k, for d D 3 in Fig. I.1(a) and d D 8 in Fig. I.1(b),
obtained with different estimators. The theoretical entropy value is compared with its
estimation from the Kozachenko-Leonenko reference estimator (Equ. (3.60), “curve 2”,
red circles, Box 2○ in Fig. 3.6), its extension (Equ. (3.150), “curve 3 ”, black stars, Box
21○), and the extension of Singh’s estimator (Equ. (3.172), “curve 4”, blue squares, Box
22○). It appears clearly that, for the extended Singh’s estimator, the bias (true value minus
estimated value) drastically increases when the number of neighbors decreases under a
threshold slightly lower than the dimension d of the vector. This allows us to interpret
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some apparently surprising results obtained with this estimator in the estimation of TE,
as reported in Fig. 4.12(b). TE estimation is a sum of four separate vector entropy
estimations, 3TEY!X D 5H .X�; Y �/ C 5H .Xp; X�/ �8H .Xp; X�; Y �/ � 2H .X�/. Here,
the dimensions of the four vectors are dX�;Y� D m C n D 4, dXp;X� D 1 C m D 3,
dXp;X�;Y� D 1 C m C n D 5, dX� D m D 2 respectively. Note that, if we denote
by XM2 and YM2 the two components in Model 5, the general notation .Xp; X�; Y �/
corresponds to

�
Y
p
M2; Y

�
M2; X

�
M2
�
because in Fig. 4.12(b) the analyzed direction is X ! Y

and not the reverse. We see that, when considering the estimation of H .Xp; X�; Y �/ D

H
�
Y
p
M2; Y

�
M2; X

�
M2
�
, we have d D 5 and k D 3 which is the imposed neighbors number in

the global space. Consequently, from the results shown in Fig. I.1, we can expect that in
Model 5 the quantity H .Xp; X�; Y �/ will be drastically underestimated. For the other
components 5H .X�; Y �/, 5H .Xp; X�/, 2H .X�/, the numbers of neighbors to consider
are generally larger than 3 (as a consequence of Kraskov’s technique which introduces
projected distances) and d � 5, so that we do not expect any underestimation of these
terms. So, globally, when summing the four entropy estimations, the resulting positive
bias observed in Fig. 4.12(b) is understandable.
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J. DTF Algorithm Used in Chapter 5

In this appendix, we give brief mathematical descriptions of the DTF index used as a ref-
erence index in chapter 5. Let X .t/ D Œx1 .t/ ; x2 .t/ ; : : : ; xd .t/�T denote a d -dimensional
(d channels) vector process. An order p VAR model of X is given by

X .t/ D

pX
iD1

A .i/X .t � i/CE .t/ ; (J.1)

whereE stands for an innovation process vector (which is ideally a random white process).
Representing Equ. (J.1) in the frequency domain, we get

A .f /X .f / D E .f / ; (J.2)

where A .f / D �
Pp
nD0A .n/ e

�i2�n.f=fs/, fs is the sampling frequency, and A .0/ D �I
(I being the identity matrix). Equ. (J.2) can be we rewritten as

X .f / D A�1 .f /E .f /

D H .f /E .f / ;
(J.3)

where H is the transfer matrix from the innovation process to the observed process. The
basic DTF from channel i to channel j at frequency f was defined in [Kamiński 1991]
as follows

DTF2i!j .f / D

ˇ̌
Hj i .f /

ˇ̌2Pd
kD1

ˇ̌
Hjk .f /

ˇ̌2 : (J.4)

To compare this frequency domain index with Granger causality and transfer entropy,
we sum it over a chosen frequency band Œf1; f2� and then normalize the sum. Finally,
the DTF index (from channel i to channel j ) we used in chapter 5 is defined and denoted
as

DTFi!j ,

Pf2

fDf1

ˇ̌
Hj i .f /

ˇ̌2Pd
kD1

Pf2

fDf1

ˇ̌
Hjk .f /

ˇ̌2 : (J.5)

For the real signals (sampled at 256 Hz), Œf1; f2� � f0; : : : ; fs=2g is set to Œ0; 128� and
DTFi!j is calculated on a frequency grid with a 1 Hz step. Note that 0 � DTFi!j � 1,
and DTFi!j can be considered as a causality index which reveals a direct effective
connectivity which is not sensitive to spurious indirect causality paths (in the connectivity
graph built on the d nodes, corresponding to the d channels). Indeed, Equ. (J.1)
corresponds to a global model which takes into account the contextual channels set
including the d components except for the two components i and j .
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K. Independence Test for Granger Causality

In this appendix, we develop the chi-square threshold for Granger causality. First of all,
we make an introduction to the notations used in this appendix:

• N is the number of sample points extracted from each of the 2 time series X and
Y .

• b�2
X jX

is the empirical prediction error obtained with an L order AR model for X
alone (marked as model (1)).

• b�2
X jX;Y

is the empirical prediction error obtained when X is predicted from both
its own L order past and the L order past of Y (marked as model (2)).

• � D
b�2

XjXb�2
XjX;Y

.

• GC , log .�/ is the Granger causality index, while GW , N .� � 1/ defines another
statistic.

Under the H0 hypothesis, i.e. if X and Y are stochastically independent, then the
probability distribution of the statistic GW can be approximated by a �2L distribution
(centered chi-square distribution with parameter L) when N is sufficiently large (see for
example [Hlaváčková-Schindler 2007]). Note that it is easy to compute GW from GC

as, clearly, we have GW D N
�
eGC � 1

�
.

It is easy to test the hypothesis H0 corresponding to the acceptation of model (1),
with a probability of false positive equal to a given value ˛0. If we consider the threshold
value � .˛0/ defined by P

�
�2L > � .˛0/

�
D ˛0, then we have the testing procedure

If GW > � .˛0/ ; then reject H0; (K.1)

which is equivalent to

If GC > log
�
� .˛0/

N
C 1

�
; then reject H0: (K.2)

Now suppose we observe K occurrences �1; : : : ; �K of � obtained from K non-
overlapping time windows, each of them including N sampling points. If the time
correlation of .X; Y / is small comparatively to N , then �1; : : : ; �K can be considered
as resulting from K independent trials. Furthermore, if we suppose that the observation
.X; Y / is approximately stationary on each time interval supporting data points used to
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compute the respective values of �, then, under the H0 hypothesis, the statistic

GW K
1 D

KX
kD1

GWk D

KX
kD1

N
�
eGCk � 1

�
(K.3)

corresponds approximately to a sum of K independent realizations

GWk D N .�k � 1/ ; k D 1; : : : ; K (K.4)

of a random variable following a same �2L distribution. Consequently the statistic GW K
1

follows (approximately) a �2LK distribution.

N.B.: If the pair .X; Y / is locally stationary on each of time window, the fact that the AR
model could be different on distinct windows has no impact when the order L remains
constant.

Finally the following procedure can be proposed to test H0 from K non-overlapping
time windows:

• Determine �K .˛0/ such that P
�
�2LK > �K .˛0/

�
D ˛0;

• Compute GW K
1 D

KP
kD1

GWk D
KP
kD1

N
�
eGCk � 1

�
;

• If GW K
1 > �K .˛0/ then reject H0.
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