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Ce résumé simplifié de mon travail est
une adaptation de notre communiqué sur
le site actu.u-psud.fr, à l’occasion de la
publication de notre article dans PNAS.

Figure 1: Simulation par ordinateur de la
transmission de force dans un réseau de
fibres biologiques. Les moteurs molécu-
laires (représentés par des cercles jaunes)
réarrangent le réseau pour créer des mo-
tifs étoilés de fibres sous tension, respon-
sables de l’amplification des forces con-
tractiles.

La cellule tire ses forces de son squelette

Les propriétés mécaniques des fibres microscopiques structurant

les cellules sont à l’origine des forces contractiles dans notre corps

à grande échelle.

De nombreuses cellules de notre corps ont la faculté de se mouvoir
et de se déformer de leur propre chef. Ces forces à l’œuvre pour des
processus aussi divers que la division cellulaire, le façonnement de
l’embryon ou encore la contraction musculaire ont toutes la même
origine : elles sont produites par l’action simultanée d’une multitude
de moteurs moléculaires contenus à l’intérieur de la cellule. Ces forces
sont ensuite transmises pour passer de l’échelle nanométrique du
moteur à celle de la cellule, mille fois plus grande, par un assemblage
de fibres souples. Cet assemblage, véritable squelette de la cellule, lui
confère sa structure et sa rigidité.

Cette thèse de physique porte sur la façon dont de tels réseaux de
fibres transmettent les forces dans le vivant. Par des calculs théoriques
et des simulations numériques, j’ai découvert que ces réseaux de fibres
font bien plus que transmettre les forces : ils les réorganisent et les am-
plifient, générant ainsi des forces considérables aux grandes échelles.
À l’origine de ce phénomène se trouve une propriété fondamentale
inhérente aux fibres biologiques : de la même façon qu’une fine tige de
plastique, ces fibres résistent si on les tire, tandis qu’en les comprimant
elles vont avoir tendance à plier et se tordre.

En incluant cet effet, connu sous le nom de « flambage », dans
les équations de transmission des forces, nous avons remarqué qu’un
certain type de forces en ressortait amplifié. En effet, les forces contrac-
tiles, qui mettent le réseau sous tension, peuvent après transmission
être vingt fois supérieures à ce qu’elles seraient sans flambage. Plus
surprenant encore, ces forces contractiles émergent du seul fait des
propriétés élastiques des filaments. Ainsi, les propriétés mécaniques
de fibres microscopiques expliquent l’omniprésence des forces con-
tractiles dans notre corps à grande échelle : non seulement sont-
elles transmises très efficacement... Mais ce sont aussi les seules à
être transmises ! Ceci explique peut-être pourquoi, de façon contre-
intuitive, nous devons contracter nos muscles pour effectuer un mou-
vement d’extension – par exemple pour étendre les bras ou gonfler
nos poumons : nos tissus musculaires génèrent des forces contractiles,
et les os de notre squelette, par effet de levier, convertissent cette
contraction en extension.
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Foreword

Tomorrow, and tomorrow, and tomorrow,
Creeps in this petty pace from day to day,
To the last syllable of recorded time;
And all our yesterdays have lighted fools

The way to dusty death. Out, out, brief candle!
Life’s but a walking shadow, a poor player

That struts and frets his hour upon the stage

And then is heard no more. It is a tale

Told by an idiot, full of sound and fury

Signifying nothing.

— William Shakespeare, Macbeth.

These are exciting times for a theoretical physicist to start a career. A
few months ago, a new window on the universe was opened. Putting
our ear to the ground, we heard the echo of an ancient cataclysm,
as the ripples through the fabric of spacetime arrived to us a billion
years later2. Four years before, the keystone to our description of the
most intimate aspects of matter was finally set3; the theory stands, and
physicists are now looking through the largest microscope in the world
to find its flaws. In both cases, I was watching the webcast announcing
the discovery, waiting eagerly for the news to break, and was elated
when it did, as I felt I belonged to a community which was touching
something absolute. Yet for some reason, I have decided that I prefer
working on a much less absolute object of study – something a bit tepid,
and somewhat slimy – soft living matter.

I haven’t regretted this choice. This field is full of everyday surprises
and hidden beauty, and because it is relatively new, there are many
stones left unturned. Behind some of them, with a bit of luck and
intuition, we can find what, as a theorist, I cherish the most: something
novel, universal and, most of all, simple.



14

Figure 2: Cover illustration for our article
(Ronceray et al., 2016).
4 Ronceray, P. and Lenz, M. (2015). Con-
necting local active forces to macroscopic
stress in elastic media. Soft Matter,
11(8):1597–1605

5 Ronceray, P., Broedersz, C. P., and Lenz,
M. (2016). Fiber networks amplify ac-
tive stress. Proc. Natl. Acad. Sci. U.S.A.,
113(11):2827–2832

About this Thesis

This document presents my PhD work, performed under the super-
vision of Martin Lenz, at the Laboratoire de Physique Théorique et
Modèles Statistiques, and, to a vast extent, in collaboration with Chase
Broedersz. It tackles the questions of force transmission and active
stress production in biological networks of fibrous polymers.

When I started my PhD with Martin in April 2013, the original sub-
ject was slightly more specific, and titled “Contraction of disordered
actin networks”. I didn’t think it would keep me occupied for three
years. Actually, six months later, I was convinced I had nailed the prob-
lem, and that it was time to write up and move on. Quite frustratingly,
Martin disagreed, and told me that there was no hurry, and to keep
digging. And I dug. Three years later, I’m still at it, and I hope to
convince the reader that it was worth it.

During this PhD, I have published two research articles on this
subject, which I fully detail in this Thesis. The first one was published
in Soft Matter in early 20154, and presents our mathematical framework
for quantifying contraction, as well as an exact solution to the stress
production problem in linear elastic media. These results are presented
in Chapter 4. A bit later, we started writing a second article, where
we addressed the question of active stress production in linear and
non-linear elastic fiber networks. This paper was published5 in PNAS
in early 2016 and, much to my pleasure, was featured on the cover
(Figure 2). It condenses, in six pages, most of my PhD results, and
this Thesis can be seen as an extended version of it. It culminates at
the derivation of a comprehensive phase diagram for stress production
summarizing our theoretical findings, which I present in Chapter 7.
These theoretical results, in my opinion, solve the question posed by
my PhD subject, as they explain why active fiber networks have a strong
propensity to contract, and how much they do so.

This Thesis ends with a gallery of figures, where I present a selection
of figures I made, chosen for their aesthetic value rather than their
scientific content.

What this Thesis is not about

I have chosen not to present the integrality of my research work in
this Thesis, but rather to focus on one consistent story. I have however
worked on other scientific projects during my PhD, two of which I
shortly present here.
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6 Ronceray, P. and Harrowell, P. (2011).
The variety of ordering transitions in liq-
uids characterized by a locally favoured
structure. EPL (Europhysics Letters),
96(3):36005

Ronceray, P. and Harrowell, P. (2012). Ge-
ometry and the entropic cost of locally
favoured structures in a liquid. The Jour-
nal of chemical physics, 136(13):134504

Ronceray, P. and Harrowell, P. (2013). In-
fluence of liquid structure on the thermo-
dynamics of freezing. Physical Review E,
87(5):052313

Figure 3: Heat capacity curve of a liquid
with low-symmetry stable local structure,
revealing multiple phase transitions. In-
set: snapshot of a dynamically arrested
amorphous state in the Favoured Local
Structures lattice model.
7 Ronceray, P. and Harrowell, P. (2014).
Multiple ordering transitions in a liquid
stabilized by low symmetry structures.
Physical review letters, 112(1):017801
8 Ronceray, P. and Harrowell, P. (2015a).
Favoured local structures in liquids and
solids: a 3d lattice model. Soft matter,
11(17):3322–3331

Favoured Local Structures in supercooled liquids

One of the greatest open challenges in statistical physics is the nature of
the glass transition: how a liquid of identical particles can undergo dy-
namical arrest on cooling, while remaining apparently amorphous. Two
questions are intimately connected: why doesn’t the supercooled liquid
crystallize? Why does it slow down? Transient, stable local structures
have been invoked as a reason for supercooled liquid (meta-)stability
for more than 60 years. Their characterization has become classical, yet
due to the descriptive nature of usual approaches, the causal links be-
tween the existence of such favoured local structures and the resulting
crystallization (or lack thereof) has remained elusive.

During my first year of Master at École Normale Supérieure de Paris,
I was lucky enough to go for a six-months research internship in Sydney,
Australia. I started a project there with Peter Harrowell, at the School
of Chemistry of the University of Sydney. The (a posteriori) aim was to
investigate the role of stable local structures in stabilizing supercooled
liquids, through the study of a novel two-dimensional lattice model
allowing direct selection of a favoured local structure among a small
pool of discrete geometries. This model turned out to be very rich,
and I carried on analyzing it on the side since then. By the time I
started my PhD, we had published three articles about this Favoured
Local Structures model6, and it was only the beginning. In these articles,
we used our model to unravel the deep, surprisingly non-universal
influence of local geometry on the ordering properties of condensed
phases. By demonstrating analytically the importance of symmetry and
overlap properties of the local structures in the loss of configurational
entropy on cooling, we provided hints as to what kind of structures
will best stabilize a liquid.

In the first year of my PhD, I completed our study of this two-
dimensional model by a thorough study of an intriguing specific case,
where a low-symmetry stable structure stabilizes the supercooled liquid
to the point of dynamical arrest7 (Figure 3). We related this apparent
glassiness to the frustrated, structurally degenerate nature of the ground
state of this system, and the presence of a liquid-liquid phase transition.

I then started extending these results to three dimensions. The
adapted model was challenging to study, as the number of possible
favoured local structures jumped from 9 in 2D to 144 in 3D. I simulated
and characterized the ordering properties of each of them (Figure 4),
developing en passant new tools to identify the ground state of lattice
spin models. Using the statistical power of this large data set, we
demonstrated counter-intuitive connections between the dense tiling
properties of local structures and their symmetry properties8. However,
rather disappointingly, almost all of these systems crystallized easily,
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Figure 4: The three-dimensional
Favoured Local Structures model.
Graphical abstract of (Ronceray and
Harrowell, 2015a).

Figure 5: The 218 possible favoured lo-
cal structures in the three-dimensional
model.

Figure 6: Low-temperature states of simi-
lar systems with two ill-packing favoured
local structures. Left: a crystal; right: an
amorphous arrested state. What micro-
scopic parameter controls this dramatic
difference?

9 Ronceray, P. and Harrowell, P. (2015b).
The free energy of a liquid when viewed
as a population of overlapping clus-
ters. accepted for publication in Mol. Simul.,
(arXiv:1510.03073)
10 Ronceray, P. and Harrowell, P. (2016a).
From Liquid Structure to Configurational
Entropy: Introducing Structural Covari-
ance. submitted to the Journal of Statistical
Mechanics: Theory and Experiment

11 Ronceray, P. and Harrowell, P. (2016b).
Suppression of crystalline order by com-
peting liquid structures. in preparation

which prevented us from addressing deeper questions about the glass
transition and the conditions to observe low-temperature amorphous
states.

In this project, we had focused so far on the implications of a sin-
gle stable local structures. In molecular supercooled liquids however,
the connection between local configuration and energy density can be
complex, with, e.g., many stable local structures. This lead us to new
questions: how do distinct favoured local structures interact within
a supercooled liquid? What influence do they have on its stability?
Recently, we started to tackle this more complex problem by adapt-
ing our model to the case of multiple favoured local structures. The
number of possibilities here is daunting, and there would be no point
in a comprehensive study of the ways to combine even only two sta-
ble local structures (Figure 5). However, using our knowledge from
the single favoured local structure model, we found that when com-
bining two low-symmetry, ill-packing local structures, the resulting
system often arrests into a glassy state, while for other pairs of struc-
tures it crystallizes easily (Figure 6). In order to understand how local
geometrical properties can have such a dramatic influence on the ther-
modynamic properties of the system, I developed a new type of exact,
high-temperature approach for calculating the configurational entropy
in such systems9. Using this framework, we introduced a new quan-
tity to measure the geometrical affinity between different structures,
namely the structural covariance10, which we have shown to correlate
with glass-forming ability: geometrically compatible structures tend
to crystallize well, while ill-fitting structures compete for ordering as
they mutually exclude each other, hindering crystallization. We suggest
that the presence of such competing stable structures in supercooled
liquid can provide a way to stabilize it against crystallization down
to low temperature – a prerequisite for the system to undergo a glass
transition11.
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Figure 7: The phase diagram of surfac-
tants reveals a variety of self-assembled
structures of all possible dimensionali-
ties.

Figure 8: Low temperature dilute states
of a lattice model for self-assembly with
different particle geometries. What de-
termines the dimensionality of the final
aggregate?

12 M. Galassi et al, GNU Scientific Li-
brary Reference Manual (3rd Ed.), ISBN
09546120
13 Perez, F. and Granger, B. E. (2007).
IPython: A System for Interactive Scien-
tific Computing. Computing in Science &
Engineering, 9(3):21–29
14 Oliphant, T. E. (2007). Python for Scien-
tific Computing. Computing in Science &
Engineering, 9(3):10–20
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Self-assembly of proteins and colloids

The aggregation of dilute, identical particles with irregular shapes can
lead to a surprising variety of morphologies. This generic problem is
perhaps best illustrated by the well-known phase diagram of surfactants,
which exhibits a rich variety of micellar structures in very similar
systems. However, the more general question of the morphology of
self-assembled aggregates of particles with attractive, directional short-
range interactions remains essentially uncharted. For instance, globular
proteins often tend to aggregate into one-dimensional fibers, which are
involved in a number of pathologies, ranging from sickle cell anemia
to neurodegenerative diseases such as Parkinson’s or Alzheimer’s, to
type II diabetes. Recently, model systems such as patchy colloids
have focused a lot of experimental efforts. From the theoretical side
however, the aggregation of spherically symmetric particles already
represents a challenging problem. To tackle this problem in systems
of particles interacting with high specificity and directionality requires
the development of new tools and techniques.

I have started studying this problem early in my PhD, as a side
project also with Martin Lenz. Making use of the discrete geometries
defined in favoured local structures model (Figure 5), I have introduced
a new lattice model adapted to this study. Its originality lies in the
selection of the geometry of irregular particles among this large yet
finite pool. Preliminary results show that depending on this geometry,
a wide variety of such morphologies can be obtained on annealing
(Figure 8). We now aim at finding out which local quantities control the
macroscopic shape of an aggregate, and in first place its dimensionality.
Geometrical frustration – reflecting the specificity and geometrical
incompatibility of interactions – will serve as a guide to define such
local quantities.

Methods

Numerical simulations take a central place in my research, as will be
apparent in this Thesis. I am proud to say that I conduct my research
using only free, open-source software, which I cite here. My operating
system is GNU/Linux, with a Linux Mint distribution. My text editor
is GNU Emacs. I program in C++ 2014 using gcc, the GNU Scientific
Library12, and Eigen. I also extensively use Python, including the
IPython13 console, and the SciPy14 libraries. I use Matplotlib15 for data
visualization and plotting, and Mayavi16 for 3D imaging. I also use
Inkscape17 for figures. Movies are assembled using avconv18. This
Thesis was written in LaTeX using the Tufte-LaTeX19 class.
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Introduction

Muchos años después, frente al pelotón de

fusilamiento, el coronel Aureliano Buendía

había de recordar aquella tarde remota en que

su padre lo llevó a conocer el hielo.

— Gabriel García Márquez, Cien años de soledad.

Living systems constantly convert biochemical energy into forces
and motion. In cells, forces are largely generated internally at the
nanometer scale by molecular motors acting on the cytoskeleton, a
scaffold of fibrous biopolymers (Figure 1.1a). Forces from multiple
motors are propagated along this fiber network, driving numerous
processes such as mitosis, cell motility1 and adhesion2, and allowing
the cell as a whole to exert stresses on its surroundings. At the larger
scale of connective tissue, many such stress-exerting cells act on another
type of fiber network known as the extracellular matrix (Figure 1.1b).
This network propagates cellular forces to the scale of the whole tis-
sue, powering processes such as wound healing3 and morphogenesis.
Despite important differences in molecular details and length scales, a

Actomyosin cortex Contractile cell in ECMa. b.

Figure 1.1: Biological fiber networks
(green) transmit forces generated by local-
ized active units (red). a: Myosin molec-
ular motors consume ATP to move pro-
cessively along the polar filaments of the
actin cytoskeleton, and exert forces on
it. b: Contractile cells exert forces on the
extracellular matrix. The goal of this The-
sis is to investigate the generic problem
of the transmission of these active forces
through semiflexible fiber networks.
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Figure 1.2: Wound healing involves transmission of forces by fiber networks at multiple scales. When skin is damaged, a
blood clot forms, constituted of a matrix of fibrin polymers. This clot contracts and stiffens under the forces exerted by
platelets, which helps close the wound. The contractile forces generated by platelets originate at the intracellular scale
from the cytoskeleton, where myosin molecular motors exert active forces on the actin cortex. The microscopic origin of
these forces are the power strokes that individual myosin heads exert on actin, using the energy released by the hydrolysis
of a single ATP molecule to perform elementary steps along the polar actin filaments. Sources: (Lam et al., 2011; Jen and
McIntire, 1982; Ehrlich, 1988), en.wikipedia.org/wiki/wound_healing.

common physical principle thus governs stress generation in biological
matter: internal forces from multiple localized “active units”—motors
or cells—are propagated by a fiber network to generate large-scale
stresses (Figure 1.2). However, a theoretical framework relating micro-
scopic internal active forces to macroscopic stresses in these networks
is lacking. The aim of this Thesis is to propose such a framework:

How do elastic fiber networks transmit microscopic
active forces, and what is their resulting macroscopic

stress?

We investigate this question from a theoretical physics point of
view. While molecular motors are traditionally regarded as the defining
elements of biological force generation, we will show here that the
surrounding network also plays a central role in this process. Indeed,
rather than merely propagating forces like a simple elastic medium,
fiber networks can produce emergent, dramatically amplified stresses,
and can go so far as reversing small-scale extensile forces into large-
scale contraction. The theory we develop quantitatively accounts for
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experimental measurements of contraction, and suggests mechanisms
for the physiological regulation of biological active stresses.

This Thesis is organized as follows. In Chapter 2, we present a
theoretical model for these networks, and study their passive mechan-
ical properties in the absence of active units in Chapter 3. Chapter 4

then presents our mathematical framework for studying force trans-
mission. We show that in the linear, small-force regime, this problem
admits an exact, simple solution that we term dipole conservation. Im-
portantly however, this relationship is not applicable to most biological
systems, since typical active forces are amply sufficient to probe the
nonlinear properties of their constitutive fibers, which stiffen under
tension and buckle under compression4. Indeed, recent experiments
on reconstituted biopolymer gels have shown that individual active
units induce widespread buckling and stiffening5. In Chapter 5 we
show that non-linearities at the scale of the network’s mesh size, such
as filament buckling, result in an emergent contractility of the system,
with dramatic deviations to dipole conservation. In Chapter 6, we study
the role of filament buckling in large-scale force transmission, showing
that it dramatically increases the range of propagation of contractile
stresses. Finally, Chapter 7 deals with collective stress production by
many active units. We present a comprehensive theory in the form
of a scaling phase diagram, which elucidates the origins and magni-
tude of stress amplification observed in experiments on reconstituted
tissues and actomyosin networks. We thus provide a new conceptual
framework allowing for quantitative predictions for stress generation
in biological fiber networks.





Figure 2.1: Buckling in nonsarcomeric
contractile actomyosin bundles: time-
lapse images of fluorescent actin (in-
verted contrast) show F-actin buckling
(arrowheads) following the addition of 1

mM ATP. Scale bar, 5µm. Source: (Lenz
et al., 2012b)).

2

Modelling fiber networks

— Morris and Goscinny, L’héritage de Rantanplan.

In this Chapter, we present the theoretical model that we use through-
out this Thesis. We start by describing in Section 2.1 the physical in-
gredients that we include in our model for elastic fiber networks. We
give its mathematical definition in Section 2.2. In Section 2.3, we then
present a (non-exhaustive) discussion of the physical effects neglected in
this Thesis. In Section 2.4, we discuss the dimension of the parameters
of our model, and give orders of magnitude corresponding to realistic
biological situations. We conclude this Chapter by a short discussion of
other possible theoretical models for biopolymer networks.

2.1 Physical ingredients

Semiflexible fibers. Semiflexible biopolymers are ubiquitous in living
systems, both inside and outside cells. In contrast with most artificial
polymers which form thermal coils, they tend to be quite stiff, and
resist bending. When subjected to thermal fluctuations, the length
below which they remain approximately straight – the persistence length
�p – is much larger than the monomer scale; for instance, �p ≈ 10 µm in
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Figure 2.2: Left: Confocal microscopy
image of a fluorescently labeled colla-
gen network. Source: (Broedersz and
MacKintosh, 2014). Right: Electron micro-
graph of a F-actin network crosslinked
with filamin proteins. Source: (Kasza
et al., 2009).

Figure 2.3: Power stroke of a
myosin motor on an actin fila-
ment: pre-power stroke state (top)
and rigor state (bottom). Source:
http://pdb101.rcsb.org/motm/18.

filamentous actin, a key component of the cell cytoskeleton. While the
curvature due to thermal fluctuations remains therefore small at the cell
scale, these transverse deformation modes are nonetheless important
for the mechanical properties of these filaments: indeed, stretching
or compressing them respectively decreases or increases this thermal
curvature, as it is much easier than changing the filament’s arc length.
When compressed, these filaments tend to soften and eventually buckle
(Figure 2.1), while stretching them pulls out the thermal curvature,
which effectively stiffens the filaments. Because physiological filaments
are generally shorter than their persistence length, it is much easier to
bend them than to stretch them.

Biopolymer networks. In many physiological situations, these semi-
flexible fibers form networks, as the filaments entangle, branch or are
bound together by specific cross-linking proteins (Figure 2.2). These
networks typically behave as soft elastic media on short enough time
scales, which we consider here; at longer times they tend to remodel and
flow as biological processes such as polymer turnover and cross-link
detachment take place.

Active units. The mechanical forces involved in processes as diverse
as intracellular transport, cell mitosis and migration, blood clot stiff-
ening, muscular contraction and animal locomotion all have the same
microscopic origin: the power strokes exerted by motor proteins. These
molecular machines harness the chemical free energy released by the
hydrolysis of ATP in order to perform mechanical work. In contrast
with macroscopic human-made combustion engines, motor proteins
convert directly chemical energy into mechanical work without the
intermediate of thermal energy.

Skeletal myosin II motors, for instance, forms polymers of hundreds
of heads which are responsible for muscular contraction. Each of these
heads is bound about 2% of the time to another kind of cytoskeletal
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Figure 2.4: Myosin motors bound to
actin filaments slide toward their “barbed
ends”. (a) In striated muscle, motors are
localized close to the filaments’ pointed
ends. When activated, every motor pulls
in the neighboring filaments and thus in-
duces local contraction. (b) If filament po-
larities are not carefully selected, striated
muscle-like locally contractile configura-
tions (top) are just as likely as extensile
ones (bottom), and the overall behavior
of the actomyosin assembly is unclear.
Adapted from (Lenz, 2014).

1 Quoting (Alberts et al., 2002), “each
head cycles about five times per second in
the course of a rapid contraction—sliding
the myosin and actin filaments past one
another at rates of up to 15 µm s−1 and
enabling the sarcomere to shorten by 10%
of its length in less than 1/50th of a sec-
ond. The rapid synchronized shorten-
ing of the thousands of sarcomeres lying
end-to-end in each myofibril gives skele-
tal muscle the ability to contract rapidly
enough for running and flying, and even
for playing the piano.”
2 Lenz, M. (2014). Geometrical Origins of
Contractility in Disordered Actomyosin
Networks. Phys. Rev. X, 4(4):041002

3 Broedersz, C. P., Mao, X., Lubensky,
T. C., and MacKintosh, F. C. (2011). Crit-
icality and isostaticity in fibre networks.
Nat Phys, 7(12):983–988

filament known as actin, and exerts a force of approximately 4 pN
during this power stroke (Figure 2.3). Muscular actomyosin is organized
in regular structures known as sarcomeres (Figure 2.4a.), which harness
these forces to shorten, resulting in contraction1. In the cell cytoskeleton
however, there is no such sarcomeric organization, and it has been
argued that myosin motors have no intrinsic propensity to contract in
such disordered networks2.

In this Thesis, we will not explicitly describe the structure of such
active units, but simply model them as distributions of point forces. In
particular, we will not always assume that they are contractile; instead,
we focus on the generic response of fiber networks to localized forces
– which can model cytoskeletal motor proteins as well as contractile
cells, on a much larger scale. Since these active units are physically
embedded in the network, and isolated from the rest of the universe,
we only consider force distribution with zero total force and torque.
Note that in the literature, the term “active” generally refers to systems
out of thermodynamic equilibrium. In this Thesis however, this out-of-
equilibrium nature of active units is hidden in the internal parameters
of the the units, and the problem we consider here of the equilibrium
mechanical response of networks to localized forces is not intrinsically
out-of-equilibrium.

2.2 The lattice fiber network model

We now introduce the model we employ throughout this Thesis. This
model was originally introduced by Broedersz et al.3, and consists in
identical fiber segments arranged on a regular lattice. Straight fibers
are connected at each lattice vertex by crosslinks that do not constrain
their relative angles. Each lattice edge represents a “bond” made of two
straight segments and can thus stretch, bend, or buckle, as pictured in
Figure 2.5. The position of the lattice vertices, along with that of the
mid-edge nodes, are the degrees of freedom of this model.

Segments behave as Hookean springs with a stretching rigidity µ

and a rest length equal to one, implying a stretching energy

Estretch(�) =
µ

2
(�− 1)2 (2.1)
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Figure 2.5: Our model for elastic fiber net-
works consists in identical bonds, com-
prising two hinged fiber segments with
stretching rigidity µ and unit bending
rigidity (left). These bonds are arranged
on a regular lattice, which is bond de-
pleted: each bond is present with a prob-
ability p. Here (right) we take a 2D trian-
gular network with p = 0.6. We consider
the mechanical equilibrium response of
such networks to local active forces (red
arrows), which induce deformations of
the network. The color of the bonds in-
dicate the stress: red for compression,
blue for tension. Unstressed bonds are in
green.

4 In the literature – for instance in (Broed-
ersz et al., 2011) – the convention is usu-
ally to set µ = 1 and to have the bending
rigidity κ as a parameter. In this Thesis,
our focus on buckling makes our conven-
tion more convenient, as it implies a unit
buckling force.

5 A note on non-linearities in our Hamil-
tonian: the sine form for the bending en-
ergy involves non-linear terms in θ. This
cannot be avoided, as any reasonable ex-
pression for this energy should be 2π-
periodic in θ to remain relevant at large
deformations. Besides, the degrees of
freedom of the model are the coordinates
of the nodes, and so even the stretching
energy δ�2/2 is non-linear in these vari-

ables, as δ�ij =
√

x2
ij + y2

ij − 1. All in

all, it is impossible to design a Hamilto-
nian which would be linear in its degrees
of freedom and physically reasonable at
large deformations.

Figure 2.6: Schematic representation of
the lattice model. The mid-bond vertices
allow buckling of individual bonds.

per segment of length �. The fiber bending rigidity is set to unity4

by penalizing angular deflections θ between two consecutive fiber
segments through a bending energy

Ebend(θ) = 2 sin2 θ

2
(2.2)

This specific form was chosen because of its simplicity and regularity5;
it is maximal as θ = π (corresponding to a fully folded filament)
and its first-order term at small angles is simply Ebend(θ) ∼ θ2/2.
Consequently, individual bonds buckle under a critical force Fb = 1.
We consider nearly inextensible fibers by assuming µ � 1.

Network disorder is introduced through bond depletion, i.e., by
randomly decimating the lattice so that two neighboring vertices are
connected by a bond with probability p. This probability controls the
network’s connectivity, the average fiber length, and the amount of
disorder. The regular lattice case simply corresponds to p = 1.

In this Thesis, we investigate the response to localized active forces,
with an energy of the form −Fi · Ri where Ri is the position of vertex
i of the network, as illustrated in Figure 2.6. In Chapters 4 and 5, we
will consider simple force distributions in the form of two-point force
dipoles, like the red arrowheads in Figure 2.5. In Chapter 6 we will
introduce another, slightly more complicated model to study the large
force case.

Summing the associated elastic energy with all fiber stretching and
bending contributions, our total Hamiltonian reads:

H = − ∑
forces i

Fi · Ri + ∑
segments (i,j)

µ
(�ij − 1)2

2
+ ∑

hinges (i,j,k)

2 sin2 θijk

2

(2.3)
where �ij is the length of the segment (i, j) linking vertices i and j, θijk

is the angle formed between two consecutive segments (i, j) and (j, k).
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In depleted networks, only segments which have not been removed
contribute to these sums. We consider only the athermal equilibrium
response of the system, which is obtained by numerically minimizing
the total Hamiltonian. Details on the numerical implementation of this
model are presented in Section 2.A.

2.3 Neglected phenomena

When modeling a physical system – and in particular a biophysical one
– we need to decide which physical ingredients we decide to take in, and
think about those we leave out. There is a bit of arbitrariness here, and
the hope is to keep those which are truly important in the situations
we’re interested in (and only those). In this Thesis, our choices are
motivated by simplicity: the model introduced in the previous Section
aims at giving a minimalist description of semiflexible fiber networks
in the elastic regime. There are therefore many phenomena we do not
include in our description of these networks. We propose here a short
list of them, which to us as the most important ones. We shall come
back to this list in the last Chapter of this Thesis, and briefly question
how they would modify our results if taken into account.

• fiber stiffening. We have seen in Section 2.1 that semiflexible fibers
buckle under compression, and stiffen under tension. While we take
the former effect into account, we chose not to implement the latter
in our model.

• fiber and segment length. In our model, fiber length is not an explicit
parameter of our model; it depends on the segment length and the
depletion parameter. Similarly, the distance between two cross-links
along a given fiber is also set by the mesh size, and cannot be much
larger than the average distance between fibers. We do not consider
any dispersion in the distance between cross-links either.

• non-penetration. Two filaments cannot cross each other in real net-
works. In our model, they can, as we do not implement their impen-
etrability and excluded volume.

• topology changes. Many phenomena lead to a reorganization of the
network, and possibly change its topology: attachment/detachment
of crosslink proteins, filament rupture or severing, turnover and
polymerization/depolymerization... We do not consider any of
these.

• dynamics and viscoelastic response. In connection with the previous
point, we only consider the elastic response of the network at me-
chanical equilibrium: we do not describe how this equilibrium is
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Figure 2.7: Fiber segments in our model.

reached (short times), nor how the network will flow irreversibly at
long time scales.

• thermal fluctuations. While we do not explicitly consider thermal
agitation in our model, the parameters we use for the stretching
and bending rigidities are effective values that take into account
thermal modes of deformation of individual filaments, as discussed
in Section 2.1.

• prestress. In our model, there is a reference, undeformed state in
which all fibers are unstressed. This state may not exist, in particular
when there is filament entanglement and excluded volume.

• internal dynamics of active units. In this Thesis, we will not give an
explicit description of the active units, nor take into account their
internal properties. Instead, we focus on the generic response of the
network to localized forces.

2.4 Dimensions and orders of magnitude

The model we study in this Thesis is dimensionless. In this Section
we discuss the give a dictionary to put back dimensions, and give an
estimate of relevant values for the dimensionless parameters of the
model, in the example of the cell cytoskeleton. We discuss here only
mechanical properties; the structural ones – which are encoded in our
model as the average connectivity z – have deep implications on the
network’s mechanical properties, and will be discussed in the next
Chapter.

Worm-like chain model. Semiflexible cytoskeletal filaments are well
described by the worm-like chain (WLC) model6. In this model, fibers are
inextensible, and owe their finite stretching rigidity to thermal bending
modes. They are characterized by their persistence length ℓp.

Considering a fiber segment of length ξ between two crosslinks, bent
with uniform curvature radius R, its bending energy within the WLC
model is:

Ebend =
kTℓpξ

2R2 (2.4)

where kT is the thermal energy. Its stretching energy is:

Estretch =
90kTℓ2

p

ξ4
(δℓ)2

2
(2.5)

for an elongation of δℓ. The surprisingly large numerical factor 90
originates from the thermal integration of all bending modes of the
filament.
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Hamiltonian with dimensions. We now translate these formulas into
our model parameters. The elementary constituents of our model are
fiber half-segments (Figure 2.7), which are hinged Hookean springs.
The stretching energy of such a half-segment, with length ℓ and rest
length ℓ0 = ξ/2, is therefore

Estretch =
180kTℓ2

p

ξ4
(ℓ− ℓ0)

2

2
=

45kTℓ2
p

ξ2 × 1
2

(
ℓ

ℓ0
− 1

)2

(2.6)

To each vertex and mid-edge corresponds a hinge. We can therefore
assume that the curvature corresponding to the angle θ between two
consecutive segments is localized in a region of length ℓ0 around this
hinge7, and thus the curvature radius is R = ℓ0/(2 sin(θ/2)). The
bending energy for such a hinge is thus

Ebend =
2kTℓp

ξ
× 2 sin2 θ

2
(2.7)

We can therefore rewrite the passive part of our Hamiltonian (Equa-
tion 2.3), now including the dimensions:

H =
2kTℓp

ξ




45ℓp

2ξ ∑
segments (i,j)

1
2

(
ℓij

ℓ0
− 1

)2

+ ∑
hinges (i,j,k)

2 sin2 θijk

2



 (2.8)

Our dimensionless model is obtained by setting the energy scale as
2kTℓp/ξ = 1 and the length scale ℓ0 = ξ/2 = 1. The buckling force8

for a single filament is:

Fb =
2kTℓp

ξ2 (2.9)

The stretching-to-bending rigidity ratio of our model is thus, within the
WLC model:

µ =
45ℓp

2ξ
(2.10)

These formulas apply for cytoskeletal filaments which are well de-
scribed by the WLC model.

Orders of magnitude. We now give estimate for these parameters.
We have seen that cytoskeletal actin filaments have a persistence length
lp ∼ 10 µm. The mesh size ξ can vary much depending on the context;
reasonable values are in the range ξ ∼ 0.1 µm to 1 µm. We have kT ≈
4.10−21 J. Typical values for the buckling force are therefore Fb ∼0.4 pN
to 40 pN, while the dimensionless stretching rigidity takes values in the
range

µ ∼ 200 to 2000.

We will use these values as a guide to throughout this Thesis, and often
use µ = 103.
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Figure 2.8: 2D Mikado networks at low
and high density under a small shear.
The colors indicate distribution of ten-
sions on a filament. Source: (Broedersz
and MacKintosh, 2014).

Active forces. We have seen in Section 2.1 that the force a cytoskeletal
myosin II motors exerts during a power stroke is about 4 pN. Myosin
thick filaments can consist in several hundreds of heads, each being at-
tached only a small fraction of the time, and can thus exert significantly
larger forces. In units of the buckling force, this therefore gives a wide
range of active forces:

F ∼ 0.1 to 10

Buckling of individual filaments is thus relevant in a wide range of
parameters.

2.5 Variants and alternative models

The simple lattice model used here is one of many models and variants
employed in the literature. As most lattice models, it has the advantage
to be relatively easy to implement and study numerically. Besides, its
mechanical properties have already been extensively studied, such as
its linear and nonlinear elastic moduli, which we will discuss in the
next sections. We mention here a few other approaches to modelling
biopolymer networks, which have been reviewed in (Broedersz and
MacKintosh, 2014)9.

Variants. In the original version of our model, only the linear response
of the network was investigated, and a linearized version of the Hamil-
tonian presented here (Equation 2.3) was used. These early versions
also did not include the possibility to have single bond buckling. Since
we are interested in large, nonlinear deformations of the network, we
adapted the model consequently.

Phantom networks. As mentioned in Section 2.1, in our model the
segment length – i.e., the distance between two cross-links along a
given fiber – and the typical distance between two fibers are both
comparable to the lattice mesh size. This is due to the presence of
cross-links at each lattice node: fibers that intersect at a lattice node are
constrained to move together. A popular way to relax this constraint
in such lattice models, termed phantom networks, is to duplicate some
of the nodes, such that two fibers crossing at a lattice node can either
be cross-linked and bound together, or allowed to move independently
without interaction at that node. This introduces a new parameter – the
probability that two intersecting fibers are cross-linked – that permits
to tune fiber length and network connectivity independently. This
model allowed for fruitful characterization of the deformation modes
of networks in the limit of long fibers10.
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Mikado networks. The models we have discussed so far are all lattice-
based, while biological fiber networks have no such underlying regu-
larity11. An appealingly simple way to model two-dimensional fiber
networks without the artifice of an underlying lattice, termed mikado
model, has received a lot of attention in the literature. The idea is to
“throw” fibers with monodisperse length, isotropically and uniformly,
on a 2D system, and add freely hinging cross-links at all intersec-
tions (Figure 2.8). The positions of these cross-links are the degrees of
freedom of the model, and the Hamiltonian contains stretching and
bending contributions as in our lattice model. The main flaws of this
elegant model are the difficulty to extend it to three dimensions, and the
presence of very short fiber segments (when two interactions are close)
which are thus very rigid, and impede the numerical convergence of
energy minimization schemes. In contrast, in lattice models the lattice
mesh size provides a cut-off length at small scales, which regularizes
the energy.

As we will see, most results presented in this Thesis are remarkably
robust, and we do not expect that they would be strongly affected by
such changes of model (provided that fiber buckling, a key ingredi-
ent for our results, is permitted). However, a few subtle phenomena
presented here appear to be sensitive to the precise properties of the
network, and could be affected by such a change of model, as we will
discuss in the last Chapter.
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2.A Numerical Implementation of the Model

In this Appendix, we discuss the methods employed to simulate nu-
merically our model. Figure 2.9 presents our simulation scheme, which
consists in a large, object-oriented program written in C++. This pro-
gram takes as input an instruction file (see Sample File 2.1), which is
a script written in a custom mini-language. This file points towards a
lattice file which contains the geometrical information about the lat-
tice (see Sample File 2.2). The program contains a parser that translates
these instructions into a list of commands, and creates an instance of
the System class which encodes the whole physical properties of the
system. The outer layer of the program then controls this system and
performs measurements on it. It finally outputs data files which can
then be analyzed externally using Python scripts.

2.A.1 Lattice

The system we simulate is contained in a box of dimensions height×
width× depth in lattice coordinates. Our numerical implementation
is always three-dimensional, with the third degree of freedom frozen
when considering 2D systems. At each triplet of integer coordinates
(i, j, k) lies a unit cell, which can consist in several vertices.

The geometry of the lattice is encoded in the lattice file (as in Sample
File 2.2) as:

• Its space dimension d.

• A matrix P encoding the change of basis between lattice coordinates
and cartesian coordinates. A site at lattice coordinates R will be
associated to cartesian coordinates~r = PR in the undeformed state
of the lattice. This matrix is such that the length of all undeformed
edges is 1.

For the triangular lattice,

P =






1 1/2 0
0

√
3/2 0

0 0 1






• Its number of vertices in a unit cell, and their relative positions. For
Bravais lattice, there’s only one vertex, but we will also consider
more complex network. An example we shall use in this Thesis is
presented in Sample File 2.3.

• A list V of neighbouring links between sites, both inside the unit cell
and between a cell and its neighbours.
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PROGRAM v4.2 - Elastic moduli - Poisson ratio run #

DIR= ../RESULTS/

REPEAT= 1

INSTRUCTIONS=

CREATE

LATTICE= FCC

SHAPE= 30 30 30

BOUNDARY_CONDITIONS= PERIODIC

PERCOLATION_p= 0.3

LAMBDA= 1.

SPRING_CONSTANT_mu= 100000.0

SPRING_CONSTANT_sigma= 0.

FORCE_EXTENSION_RELATION= Hooke

MID_EDGE_NODE= yes

kappa= 1.

CIRCULAR_DOMAIN= no

&

SaveNetworkFile &

RUN

gamma= 1e-100 PureDilation

Fs= 0.

FrozenRadius no

CG ALGO= BFGS Maxiter= 2000000 GradientTol= 0. LineTol= 0.1 InitialStep= 0.1

RecordConfig= no

RecordForces= no

ResetPositionsAfter= yes

&

RUN

gamma= 1e-100 SimpleShear

Fs= 0.

FrozenRadius no

CG ALGO= BFGS Maxiter= 2000000 GradientTol= 0. LineTol= 0.1 InitialStep= 0.1

RecordConfig= no

RecordForces= no

ResetPositionsAfter= yes

&

Listing 2.1: Sample instruction file used to compute the Poisson ratio
of a depleted FCC network (Figure 3.11). It consists in the following
sequence of instructions: create the system with given arguments,
save it, then run energy minimization under dilation and shear.
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2D triangular network - lattice file for ActinNetworks-v4.2

Space dimension : #

2

Projection matrix to cartesian coordinates : #

1. 0.5 0.

0. 0.8660254037844386 0.

0. 0. 1.

Number of sites ("atoms") per unit cell : #

1

Relative positions of the atoms inside the cell with respect to the cell origin : #

0. 0. 0.

Number of edge vectors : #

3

Connections between the sites :

lattice coordinates of target cell - atom index of 1st site (in *this cell) - atom

index of 2nd site (in target cell) #

1 0 0 0 0

0 -1 0 0 0

1 -1 0 0 0

That’s it ! Hinges are added automatically by detecting alignments. #

Listing 2.2: Sample lattice file: two-dimensional triangular network.
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2D regular bending-dominated network lattice file for ActinNetworks-v4.2

‘‘Martin’s Amazing Network’’

Space dimension : #

2

Projection matrix to cartesian coordinates : #

3.0 3.0 0

-1.73205080757 1.73205080757 0

0.0 0.0 1.0

Number of sites ("atoms") per unit cell : #

6

Relative positions of the atoms inside the cell with respect to the cell origin : #

0.0 0.0 0

1.0 0.0 0

2.0 0.0 0

3.0 0.0 0

0.5 -0.866025403784 0

2.5 -0.866025403784 0

Number of edge vectors in cell: #

9

Connections between the sites: Format:

lattice coordinates of target cell - atom index of 1st site (in *this cell) - atom

index of 2nd site (in target cell) #

0 0 0 0 1

0 0 0 1 2

0 0 0 2 3

0 0 0 5 3

0 1 0 3 4

0 0 0 4 1

0 0 0 2 5

1 0 0 5 0

0 0 0 0 4

That’s it ! Hinges are added automatically by detecting alignments. #

Listing 2.3: Sample lattice file: the MAN network (Figure 3.34), a
lattice with several vertices per unit cell.
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2.A.2 Geometry and boundary conditions

We consider two types of boundary conditions in this Thesis: periodic
and fixed. As usual in numerical physics, we employ periodic boundary
conditions when considering the macroscopic properties of a system, as
in Chapter 3 and Chapter 7. Indeed, this choice of boundary conditions
is the closest approximation of an infinite system. In contrast, when
considering the effects of a single active unit, as in Chapter 5 and
Chapter 6, we choose to employ fixed boundary conditions, where
the network’s vertices are held fixed to zero displacement at a given
distance R of the active unit. Indeed, periodic boundary conditions
would in this case lead to inconvenient self-interaction of the unit with
its periodic copies.

Fixed boundary conditions are straightforward. As for periodic ones,
we employ a trick to simplify our program. To each edge (A, B) we
attach the associated vector R(A,B) ∈ V (making no difference between
edges going through the boundaries and in the bulk). The cartesian
end-to-end vector of the edge is then~r(A,B) = PR(A,B). As all physical
quantities depend only on~r(A,B), it is not necessary in the following to
distinguish between the boundaries and the bulk.

Affine deformations. In Chapter 3, we consider the elastic moduli
of our networks. In order measure them, we apply a uniform strain
to the network, and measure the response. We use generalized Lees-
Edwards boundary conditions to implement such a strain with periodic
boundary conditions. This strain is characterized by the displacement
gradient tensor T, such that the action of the deformation is :

~r 7→~r + T~r (2.11)

The most simple forms for the displacement gradient tensor T are :

• Simple shear : T =






0 γ 0
0 0 0
0 0 0






• Pure dilation : T =






ǫ 0 0
0 ǫ 0
0 0 ǫ






Under such a bulk deformation, both the orientation and the length
of the edges will change : the edge vector will be written ~u = ~r +~v,
where~r is the reference vector and ~v is the displacement vector. We dis-
tinguish between affine and non-affine components of the displacement
vector, respectively ~v(aff) and ~v(nonaff).

The affine displacement of a site A is denoted as

~v(aff)
A = T~rA
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and it’s the same for the deformation of an edge (A, B) :

~v(aff)
(A,B) = T~r(A,B)

This displacement is a fixed quantity depending only on the reference
vector~r and on the displacement gradient tensor. There again there
is nothing special with the boundaries – the boundary conditions are
fully contained in the computation of~r(A,B) at the initialization of the
system. Lees-Edwards boundary conditions, which correspond to the
case of simple shear, are implemented automatically with this method.

Non-affine response Each Site of the system is assigned a non-affine

displacement vector ~v(nonaff)
A which corresponds to the degrees of freedom

of the system. In the equilibrium position (at zero temperature) these
variables minimize the total energy of the system.

Eventually the Cartesian coordinates of the site in the deformed state

are given by the vector ~uA = ~rA +~v(aff)
A +~v(nonaff)

A , and similarly the
vector representing the real-space embedding of an edge is given by :

~u(A,B) =~r(A,B) +~v(aff)
(A,B) +~v(nonaff)

B −~v(nonaff)
A

︸ ︷︷ ︸

degrees of freedom

(2.12)

2.A.3 Energetics

In this Section we present the formulas we use in our implementation
of the model.

Stretching energy The deformation of the edges of the network leads
to an increase of the free energy of the system. The length of an
undeformed edge is ℓ0 = 1 (which sets the length scale). The stretching
of an edge to a length ℓ costs an energy :

Es =
µ

2
(ℓ− 1)2 (2.13)

Let ~u be the end-to-end vector associated to the edge in the deformed
state. Then :

Es =
µ

2
(|~u| − 1)2 (2.14)

And we deduce easily the gradient with respect to the deformation:

∂Es

∂uµ = µuµ

(

1 − 1
|~u|

)

(2.15)

Bending energy Any sequence of two consecutives edges constitute
a Hinge. In order to model the stiffness of the fibres, we associate a
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bending energy to each such bend. Let θ be the angle between these
two edges. The associated bending energy is chosen to be :

Eb = 2 sin2 θ

2
(2.16)

Let ~u1, ~u2 be the end-to-end vectors for the two consecutive edges.
Then a computationally tractable form for Eb is:

Eb =

(

1 − ~u1.~u2

|~u1||~u2|

)

(2.17)

Its gradient is :

∂Eb

∂uµ
1

=
1

|~u1|3|~u2|
(

(~u1.~u2)u
µ
1 − |~u1|2uµ

2

)

(2.18)

2.A.4 Numerically precise formulas

Equations 2.14-2.18 are exact, but prone to generate large numerical
errors due to compensating terms of order one. Indeed, when writing
~u = ~r +~v, the reference vector has norm |~r| = 1 while in the small
displacement limit |~v| ≪ 1. In this section we derive equivalent forms
for these formulas that are less elegant, but avoid this problem.

In the case of the stretching energy :

Es =
µ

2

(
~v.(2~r +~v)
|~u|+ 1

)2

(2.19)

∂Es

∂uµ = µ
uµ

|~u|

(
~v.(2~r +~v)
|~u|+ 1

)

(2.20)

The solution is more painful in the case of the bending energy. At
the end of the day we find :

Eb =
1

|~u1| |~u2|
|(~v1 −~v2)×~r +~v1 ×~v2|2

~u1 · ~u2 + |~u1| |~u2|
(2.21)

And :

∂Eb

∂uµ
1

=
1

|~u1| |~u2|

[

rµ(~v2 −~v1) · ~u1 + vµ
1 (~u1.~u2)

~u1
2 − vµ

2

]

(2.22)

Using these formulas, we can study the linear response of the system
by using arbitrarily small deformations. In all the linear response part
we take 10−100 as a typical value for the strain.

2.A.5 Numerical minimization of the energy

We consider in this Thesis only the mechanical equilibrium response,
in which the total energy is minimal. The numerical resolution of this
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problem is done using the GNU Scientific Library (GSL) implementa-
tion of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm.

When performing such a minimization, the program spends most
of its time implementing Equations 2.19 to 2.22. More precisely, on a
typical run it spends:

• 35% of the run time computing the gradient of the bending energy
(Equation 2.22);

• 20% of the run time computing the bending energy itself (Equa-
tion 2.21);

• 16% of the run time computing the gradient of the stretching energy
(Equation 2.20);

• 12% of the run time computing the gradient of the bending energy
(Equation 2.19).

Most of our optimization work was done on these four formulas, which
still represent 83% of the run time. This bottleneck effect makes our
implementation near optimal. The remaining 17% are essentially dis-
tributed between the active unit forces, copying values to interface
between the GSL and our classes, and in internal operation within the
BFGS minimizer.
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3

The mechanics of elastic fiber networks

La Nature est un temple où de vivants piliers

Laissent parfois sortir de confuses paroles;
L’homme y passe à travers des forêts de symboles

Qui l’observent avec des regards familiers.

— Charles Baudelaire, Correspondances.

In this Chapter, we present a theoretical discussion of the passive
mechanical properties of elastic fiber networks, in the absence of active
units exerting forces. This subject has been abundantly discussed in the
literature in the past decades1, and here we review the main physical
features that will be useful in our discussion of the active contraction
of fiber networks.

In Section 3.1, we start by discussing the elastic properties of spring
networks, and show that they undergo a rigidity percolation transition
when depleted. We then turn to the more complex case of lattice fiber
networks. We show in Section 3.2 that they are characterized by two
rigidity transitions, delimiting three elastic regimes: floppy, bending-
dominated and stretching dominated. Section 3.3.3 then presents a
short discussion of the linear and non-linear elastic properties of these
networks. Finally, in Section 3.4 we discuss the biological relevance of
these results. As an Appendix to this Chapter, we present in Section 3.A
our study to design custom bending-dominated regular lattices.

3.1 The rigidity of spring networks

Before studying the elastic properties of fiber networks, it is instructive
to start with the simpler case of networks of Hookean springs, in the
absence of bending rigidity.
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Figure 3.1: The response of a spring network to a shear γ = 0.3 depends on its connectivity. A disconnected (a) or floppy
(b) network can be sheared at zero energy cost (the energy density of these configurations is ∼ 10−16 for a strain of order
one). In contrast, a rigid, highly connected network (c) under the same shear is stressed. The color of the bonds indicate
the stress: red for compression, blue for tension. Unstressed bonds are in green.
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Figure 3.2: The linear bulk modulus of a
depleted triangular spring network as a
function of the depletion parameter. In
the gray areas, the modulus vanishes up
to the numerical precision (K < 10−14).
Parameters: system size 1002 with pe-
riodic boundary conditions, under an
infinitesimal isotropic bulk strain γ =
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3.1.1 Rigidity percolation

Here we consider depleted lattices, starting with a regular triangular
lattice of Hookean springs with unit spring constant, and severing
bonds independently with probability 1 − p. The physics of such
spring networks has been extensively considered in the literature, as
they provide a minimal model for studying the influence of connectivity
on the network’s rigidity.

In Figure 3.2, we plot the bulk modulus of such a depleted network
as a function of the depletion parameter p. Starting from a finite value
at p = 1, the modulus steadily decreases and the network becomes
softer and softer as it is depleted. At a given value pc ≈ 0.65, the linear
elastic moduli of the network vanish exactly, and below this threshold
the network is floppy. We note that this rigidity percolation point occurs
at a much higher value than the usual connectivity percolation point2

pp = 2 sin(π/18) ≈ 0.347, where the network becomes disconnected.
Indeed, connectedness is not sufficient to ensure mechanical rigidity:

for instance, two springs hinged together can rotate freely, and do not
transmit any force. Only sufficiently connected regions of the network
are rigid, and the emergence of a macroscopic non-zero modulus occurs
when these regions percolate3. This rigidity percolation transition is
continuous, with non-trivial exponents for the elastic moduli around
the critical point, and has focused a lot of attention in the literature.



the mechanics of elastic fiber networks 43

0.0 0.2 0.4 0.6 0.8 1.0
depletion parameter p

0.0

0.5

1.0

1.5

b
u
lk

m
o
d
u
lu

s
K

d
is

c
o
n
n
e
c
te

d

floppy rigid

Figure 3.3: The linear bulk modulus of a
depleted FCC spring network as a func-
tion of the depletion parameter. Parame-
ters: system size 203 with periodic bound-
ary conditions.
4 Maxwell, J. C. (1864). On the calcula-
tion of the equilibrium and stiffness of
frames. Philosophical Magazine Series 4,
27(182):294–299
5 In Maxwell’s original article, d = 3; here
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isostatic hyperstatichypostatic

Figure 3.4: Mechanical stability of a sys-
tem of N = 4 vertices in two dimensions.
There are two bulk translational and one
bulk rotational degrees of freedom, and
thus 5 remaining internal parameters.
Left: with E = 4 edges, the system is
underconstrained, and can be deformed
at zero cost. Center: with E = 5, the sys-
tem is isostatic, and mechanically stable.
Right: with E = 6, there exists a state of
self-stress, in which edges are stressed
while the system is not deformed: for in-
stance, the blue edges can be tensed, and
the red edges compressed.

For a three-dimensional face-centered cubic network, a similar phe-
nomenology is observed (Figure 3.3), with a central-force critical point
pc ≈ 0.49, again well above the connectivity percolation point pp ≈ 0.12.

3.1.2 Maxwell’s constraint counting argument.

A simple argument can provide a good intuition on the nature of
rigidity percolation. The question of the rigidity of structures was
pioneered by Maxwell4 in 1864, where he considered a d-dimensional5

object made of an ensemble of N vertices connected by E rigid edges.
He noticed that the edges each provide a mechanical equation which
determine their internal state of stress, while the position of each vertex
provides d degrees of freedom. There are d(d + 1)/2 bulk translational
and rotational degrees of freedom, and therefore Nd − d(d + 1)/2 in-
ternal degrees of freedom in the system that characterize its mechanical
state. The numbers of equations constraining the system therefore
equates the number degrees of freedom when:

E = Nd − d(d + 1)
2

(3.1)

In such a case, the system is said to be isostatic: the constraints exactly
compensate the degrees of freedom, and thus the tensions in the edges
are uniquely determined by the positions of the vertices, and conversely.
For E < Nd − d(d + 1)/2, the system is floppy and mechanically un-
stable, or hypostatic: the edges do not constrain it enough to set the
positions of the vertices, and it can deform at no energy cost: there
are soft modes (or zero modes) of deformations. On the other hand, for
E > Nd − d(d + 1)/2, the system is overconstrained, or hyperstatic, and
the forces through the edges are not fully determined by the defor-
mation of the system: there are states of self-stress. These cases are
illustrated in Figure 3.4.

We can apply constraint counting to depleted spring networks. Con-
sider a macroscopic network of N vertices connected by E = zN/2
springs, where z is the average connectivity of the network. The iso-
static connectivity is:

zc = 2d (3.2)

where we consider N ≫ 1, making bulk rotations and translations
negligible. For z > zc, the system is therefore hyperstatic, while z < zc

leads to hypostatic networks. Since the connectivity in our depleted
networks is z = pzlattice, this translates into an isostatic depletion
parameter:

pc =
2d

zlattice
(3.3)

This threshold is also called the central-force critical point. For a two-
dimensional triangular network, zlattice = 6, and hence this argument
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6 Calladine, C. R. (1978). Buckminster
Fuller’s “Tensegrity” structures and Clerk
Maxwell’s rules for the construction of
stiff frames. International Journal of Solids
and Structures, 14(2):161–172

Figure 3.5: A system with N = 5 points
connected by E = 7 edges. Constraint
counting (Equation 3.1) predicts that it
should be isostatic. However, it actually
has a soft mode (the top dangling edge)
and a state of self-stress as in Figure 3.4.
7 Kane, C. L. and Lubensky, T. C. (2014).
Topological boundary modes in isostatic
lattices. Nat Phys, 10(1):39–45
8 There can be soft modes in disordered
hyperstatic networks as an effect of ran-
domness, but they are localized, and have
little effect on the macroscopic response.
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Figure 3.6: The linear bulk modulus of
our model fiber network on a depleted
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predicts pc = 2/3, in excellent agreement with numerical data shown in
Figure 3.2, where we find pc ≈ 0.651. Similarly, for a three-dimensional
face-centered cubic lattice, zlattice = 12 and constraint counting thus
predicts pc = 1/2, again in good agreement with the numerical value
pc ≈ 0.473 as in Figure 3.3.

3.1.3 Soft modes and states of self-stress

This simple constraints counting argument was later shown to be
incomplete6. Indeed, states of self-stress and soft modes can coexist
in such systems, as the constraints can be distributed heterogeneously,
as in Figure 3.5. Denoting by N0 the number of internal soft modes,
and Nss the number of states of self-stress, we have the exact relation at
linear order:

N0 − Nss = Nd − E − d(d + 1)
2

(3.4)

This result can be expressed in terms of an index theorem for the
dynamical matrix of the system, which connects forces to displacements.
The topological properties of soft modes and states of self-stress have
focused a lot of attention in the past years, with notable analogies
between mechanical systems and topological insulators7. However, in a
reasonably homogeneous structure, Maxwell’s argument already gives
a good idea of whether a system will be mechanically stable or not, and
we will neglect the heterogeneities leading to compensating soft modes
and states of self-stress.

The connectivity of a spring network thus has a dramatic influence
on its elastic properties. Indeed, in a hyperstatic material – where
there are no soft modes8 – the response to a bulk strain is energetically
costly. In contrast, in hypostatic networks, the existence of extended
soft modes allows for the system to adapt to a deformation of its
boundaries at zero energetic cost: hypostatic spring networks are floppy,
with vanishing linear elastic moduli.

3.2 Rigidity transitions in fiber networks

We now move to the study of the elastic properties of our model elastic
fiber networks, and first consider their mechanical rigidity. These
networks are more complex than spring networks, as their constituents
are characterized by two distinct types of rigidities: stretching and
bending.

Stretching constraints between two connected vertices are simple
central-force constraints, equivalent to stiff Hookean springs. In con-
trast, bending constraints are much softer three-body, angular interac-
tions, and can stabilize the network when stretching constraints are
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Figure 3.7: Linear response of depleted fiber networks to an infinitesimal shear. a. a bending-dominated network
(p = 0.55), b. at the central-force critical point, and c. a stretching-dominated network (p = 0.8). Parameters: system size
150 × 150 with periodic boundary conditions, µ = 104, strain γ = 10−100. The color of the bonds indicate the stress: red
for compression, blue for tension, unstressed bonds are in green. The stress color scale is magnified ×10 in the panel b.

and ×1000 in panel a., compared to c.
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Figure 3.8: The bulk modulus of fiber
networks on a 2D triangular network as
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not sufficient to ensure mechanical rigidity. Figure 3.6 shows the linear
bulk elastic modulus of a depleted triangular fiber network. In com-
parison with spring networks (red line), an intermediate, softer regime
appears, in which the elasticity is bending-dominated. In this Section, we
discuss each of the elastic regimes, then adapt to fiber networks the
constraint-counting arguments developed for spring networks.

3.2.1 Stretching-dominated regime

The stretching constraints in our model form a network of central-force
springs which is identical (to a scale factor) to the depleted spring
networks studied in Section 3.1. Because these constraints are or-
ders of magnitude stiffer than bending constraints, as discussed in
Section 2.4, for p > pc the latter are negligible, and the system is
therefore indistinguishable from a depleted spring network, as evident
in the top panel of Figure 3.6. In densely connected fiber networks,
the stretching properties of the filaments thus prevail in the linear
elastic response, and the elastic moduli are proportional to the stretch-
ing rigidity µ of the fibers (red squares in Figure 3.8). We qualify
such networks as stretching-dominated. The linear response of depleted,
stretching-dominated networks to a bulk strain is quite homogeneous,
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Figure 3.9: Schematic scaling diagram for
the linear elastic modulus, as discussed
in the text. We show the stretching-
dominated regime (blue), the bending-
dominated regime (green) and the inter-
mediate, mixed regime around pc (yel-
low). Floppy networks have vanishing
modulus (white). For better legibility,
the y-axis is the inverse of the stretching
rigidity µ.

9 Broedersz, C. P., Mao, X., Lubensky,
T. C., and MacKintosh, F. C. (2011). Crit-
icality and isostaticity in fibre networks.
Nat Phys, 7(12):983–988

as illustrated in Figure 3.7c.

3.2.2 Bending-dominated regime

For p < pc, stretching constraints are not sufficient to ensure the net-
work’s mechanical rigidity. While a spring network with only central
force constraints would then be floppy, in fiber network the bending
constraints, however weak, can help stabilize the network and maintain
a finite modulus. This is apparent in the lower panel of Figure 3.6,
where we observe an intermediate regime: for pb < p < pc, the network
has a small yet finite elastic modulus. We qualify such intermediate
systems, where stretching constraints alone are not sufficient to in-
duce a macroscopic rigidity, as bending-dominated. In contrast with
stretching-dominated networks, the linear response of such depleted,
bending-dominated networks to a bulk strain is heterogeneous, with
pronounced stress lines between large unstressed regions, as illustrated
in Figure 3.7a.

Further depletion of the network leads to a rarefaction of bending
constraints too, and below some lower value pb – the bending rigidity
threshold – these constraints are too sparse to ensure rigidity of the
network, which then becomes floppy.

3.2.3 Critical regimes

In spring networks without bending constraints, the central-force per-
colation threshold is a critical point, analog to a second-order phase
transition: the elastic moduli vanish continuously, with non-trivial
critical exponents and diverging correlation lengths, such as the char-
acteristic size of soft modes. In fiber networks, due to the bending
rigidity, this critical point is avoided, and depleting the system leads
to a smooth crossover between stretching- and bending-dominated
regimes. However, for large µ and near pc, bending constraints are
weak and the system is close to a critical point. This affects the bulk
modulus, and results in a mixed regime K ∼ µx, resulting from the
non-trivial interplay of bending and stretching9, as shown in Figure 3.8.
This critical region is narrow at large µ, and becomes wider when µ

is close to the bending rigidity, as schematized in Figure 3.9. This
behaviour is very similar to that of an Ising ferromagnet under a weak
magnetic field, close to the critical temperature. In this mixed regime,
large stretching-dominated regions are present, leading to a highly
heterogeneous response of the network, as pictured in Figure 3.7b

Finally, similarly to spring networks near pc, fiber networks undergo
a critical transition when p → pb, as they continuously lose their
rigidity.
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3.2.4 Counting bending constraints

Maxwell’s constraint counting method can help us estimate pb too. In
the reasoning presented here we neglect mid-edge nodes allowing for
buckling: indeed, they become relevant only if the stress of the bond
exceeds the buckling threshold.

We have seen in Section 3.1 that in a depleted lattice network with
N vertices there are

Nstretch =
z
2

N =
pzlattice

2
N (3.5)

stretching constraints.
To these we should add the bending constraints, which are associated

to hinges, i.e. pairs of consecutive, aligned fiber segments. For simplicity
we assume here that the original regular lattice is centrally symmetric
at any vertex: each bond has a symmetric, and together they form a
hinge. There are thus zlatticeN/2 hinges in a regular network. In a
depleted network, each bond is present with a probability p. A hinge
requires that both bonds are present to be effective, and thus any hinge
has a probability p2 to be present in a depleted network. Each hinge
constrains the (d − 1) angles between the two segments, resulting in

Nbend =
(d − 1)p2zlattice

2
N (3.6)

bending constraints. These angular constraints are not redundant with
the central-force constraints due to stretching, and we can therefore add
them up to determine the rigidity threshold pb, at which the number
of degrees of freedom Nd equates the total number of constraints
Nstretch + Nbend. This constraint counting argument therefore predicts
the following value for pb:

pb =

√

1 + 8d(d−1)
zlattice

− 1

2(d − 1)
(3.7)

For triangular networks, this formula predicts pb = (
√

11/3 − 1)/2 ≈
0.457, in close agreement with the numerical value pb ≈ 0.445. Sim-
ilarly, for FCC networks the prediction is pb = (

√
5 − 1)/4 ≈ 0.309,

to compare with the numerical value pb ≈ 0.268. These values are
summarized in Table 3.1.

3.3 Bulk elastic properties

In this Section, we study the passive mechanical properties of our lattice
fiber network model. In Section 3.3.1, we complement our discussion of
linear elastic moduli. In Section 3.3.2, we discuss the mesoscopic hetero-
geneities of deformation known as non-affine displacements, and their
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Lattice Connectivity Bending Central-force

Triangular pp = 0.35 pb = 0.45 pc = 0.65
d = 2, zlattice = 6

FCC pp = 0.12 pb = 0.27 pc = 0.47
d = 3, zlattice = 12

Table 3.1: The percolation thresholds in
our model fiber networks for our most
used lattices. Numerical values from
(Broedersz et al., 2011).
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Figure 3.10: The linear bulk modulus
of our model networks in 2D (a) and 3D
(b), as a function of the depletion param-
eter and for several values of µ. Parame-
ters: system size 2002 (303) with periodic
boundary conditions.
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pendent of p and µ. Top: in a 2D trian-
gular network, and bottom: in a 3D FCC
network. Parameters: system size 2002

(303) with periodic boundary conditions.

consequences on the energetics of the system. Finally, in Section 3.3.3,
we study the nonlinear response of these networks at finite strain.

3.3.1 Linear elastic moduli

The macroscopic elastic properties of an isotropic material are, at linear
order, characterized by only two positive parameters: its shear modulus
G and bulk modulus K. These two parameters can be combined as a
scale parameter K and a dimensionless number, namely the Poisson
ratio ν:

ν =
dK − 2G

d(d − 1)K − 2G
(3.8)

This number ranges between −1 (for K/G = 0, i.e. an auxetic material
that resists shear but not compression) and 1/(d − 1) (for K/G = ∞,
i.e. an incompressible material).

Lattice materials are anisotropic; however, two-dimensional lattices –
such as the triangular lattice – can possess a sufficiently high degree
of symmetry such that their linear elastic response is also fully char-
acterized by these two parameters. In the case of three-dimensional
networks such as the FCC lattice, a third parameter would be needed
to describe their anisotropy. We neglect this anisotropy in the following.
We plot in Figure 3.10 the bulk elastic modulus of two- and three-
dimensional depleted networks. We have seen in Section 3.2 that there
are three regimes of elasticity in these networks: for p > pc, the system
is rigid and similar to a spring network, and its bulk elastic modulus is
proportional to µ. For pb < p < pc, the system is much softer, as it owes
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Figure 3.12: Vector fields showing non-affine displacements in the linear response of depleted fiber networks to an
infinitesimal shear, showing large non-affine deformations at the central-force critical point. The networks are the same as
in Figure 3.7, with an infinitesimal shear of γ = 10−100. The non-affine displacement vectors are amplified ×2.1099 for
better legibility.

10 Amusingly, this is precisely the value
reported for the Poisson ratio of soil in
(Huang et al., 1999).

its rigidity to filament bending, and the bulk modulus is independent
of µ. Note however that it exhibits a strong dependence on p in this
regime, varying steadily over several orders of magnitude. Finally for
p < pb the system is floppy and its linear elastic moduli vanish.

The linear shear modulus exhibits quantitatively similar behaviour.
Indeed, using Equation 3.8, we measure the material’s Poisson ratio,
and find that it is essentially independent of p, as shown in Figure 3.11.
We can calculate these values exactly in the case of regular networks;
we find ν = 3/5 = 0.6 in 2D and ν = 2/7 ≈ 0.2857 in 3D10.

3.3.2 Non-affine deformations

In macroscopic elasticity, materials characterized by spatially homoge-
neous elastic moduli undergo affine distortions when their boundaries
are strained: the local displacements coincide with the linear inter-
polation of boundary displacements. More precisely, denoting T the
displacement gradient tensor of the boundaries, the affine displacement
at position R is:

u(affine)
µ (R) = TµνRν (3.9)

However, many materials have elastic moduli that vary randomly with
position, and they necessarily undergo nonaffine distortions in response
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11 Broedersz, C. P., Mao, X., Lubensky,
T. C., and MacKintosh, F. C. (2011). Crit-
icality and isostaticity in fibre networks.
Nat Phys, 7(12):983–988
12 DiDonna, B. A. and Lubensky, T. C.
(2005). Nonaffine correlations in random
elastic media. Phys. Rev. E, 72(6):066619
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Figure 3.13: The non-affine parameter Γ

in (a) 2D and (b) 3D depleted networks.
Note that all quantities plotted in (a) di-
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size. Parameters: system size 2002 (303)
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Figure 3.14: The ratio between bend-
ing energy and stretching energy against
bending rigidity κ, for values of p above,
at and below the central-force critical
point.

to external stress – i.e., their displacement field deviates from Equa-
tion 3.9. We can therefore define the non-affine displacement field as:

u(non−affine)
µ (R) = uµ(R)− u(affine)

µ (R) (3.10)

These non-affine displacements are a fingerprint of the heterogeneous
nature of the elastic material. They are the degrees of freedom of
our model network, and straightforwardly available in our simula-
tions. In Figure 3.12, we plot the non-affine displacement fields of the
infinitesimally sheared networks of Figure 3.7.

A common mistake is to confuse non-affinity with non-linear effects,
while non-affine displacements actually exist at linear order. We can
quantify this by defining a linear non-affine parameter Γ as11:

Γ =
1

γ2V ∑
vertices i

∣
∣
∣

∣
∣
∣u(non−affine)

∣
∣
∣

∣
∣
∣

2
(3.11)

where γ is the infinitesimal strain, and V the volume of the system.
This is a good quantity to characterize 3D materials; however, in 2D
disordered materials (no matter how small the disorder is), it diverges12

as log(V). This is one of many oddities that 2D elasticity exhibits when
considering large scale effects; in this Thesis we will carefully avoid
situations where this is a problem.

In Figure 3.13, we plot Γ as a function of the depletion parameter, for
several values of the stretching rigidity µ. Qualitatively, we observe that
stretching-dominated networks, away from the central-force percolation
point pc, are close to affine. The proximity to the critical point is charac-
terized by a bump in the non-affine parameter, which diverges at pc in
the µ → ∞ limit as the correlation length of non-affine displacements
diverges. These large correlation domains are apparent in Figure 3.12b.
In the bending-dominated regime, the non-affinity is large yet finite,
and it apparently diverges again when rigidity is lost at p = pb.

Bending and stretching energy In our model, non-affine deforma-
tions have a close connection with the energetic properties of the system.
Indeed, as the reference, unstressed state consists in straight, unbent
fibers, any affinely deformed state also has zero bending energy (note
that this would no longer be true if the filaments were initially bent).

In an infinitesimally deformed network, consider the ratio between
the amount of energy Ebend stored in bending modes to that Estretch

stored in filament stretching. In Figure 3.14, we plot this ratio as a
function of µ for several values of p. We observe different scaling,
depending on the elastic regime set by the network’s connectivity:

• For p > pc, we have Ebend/Estretch ∼ µ−1.

• For p = pc, we have Ebend/Estretch ∼ 1.
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Figure 3.15: Schematics of the repartition
of the response in the p > pc regime : the
system can either deform affinely, which
involves only stretching, or according to
non-affine modes that involve both bend-
ing and stretching.

Affine channel

µ

Non-affine channel

1

Stress

Figure 3.16: Schematics of the repartition
of the response in the p < pc regime : the
system can either deform affinely, which
involves only stretching, or according to
non-affine modes that involve only bend-
ing.

• For p < pc, we have Ebend/Estretch ∼ µ.

We can explain this striking behaviour with an analogy with a simple
mechanical toy model. There are two ways, or “channels”, by which the
network can deform: affine and non-affine. The resulting deformation
is a combination of the response of these two channels to the external
stress. We can therefore model these different channels as springs in
series, with a load that is the analog to the external stress.

• Affine channel: affine deformations which involve no bending. Thus
the stiffness associated with this channel is of order µ.

• Non-affine channe:l the system can alternatively deform in a non-affine
way, involving bending.

– if p > pc the system is rigid even in the absence of bending:
the non-affine stiffness is thus composed of both bending and
stretching rigidity. We model this by two springs in parallel, one
with stiffness µ and the other with unit stiffness (see Figure 3.15.)

– on the other hand for p < pc the system is floppy in the absence
of bending rigidity, and so there are non-affine deformations that
involve no stretching, which we model as a spring of unit stiffness
(see Figure 3.16).

Within this simple model, we find the following distribution of the
energy between bending and stretching:

Ebend

Estretch
= µ , p < pc (3.12)

Ebend

Estretch
=

µ

µ2 + (µ + 1)2 ∼ µ−1 , p > pc (3.13)

This simple model therefore accounts for the scaling of the distribution
of the energy between bending and stretching modes. This picture also
provides predictions for the limit µ ≪ 1, in which case both stretching-
and bending-dominated regimes have Ebend

Estretch
∼ µ. This is validated by

our simulations; however this regime is not relevant for biological fiber
networks.

We have therefore shown that the stretching-dominated regime is
characterized by deformations which are close to affine, and the energy
is stored in stretching modes, while the bending-dominated is elastically
heterogeneous, which translates into large non-affine deformations, and
has its energy stored into bending modes.

3.3.3 Non-linear response

We finally discuss the response of our networks to finite strains. This
subject is vast and complex, and still in development – for instance, it
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Figure 3.17: A simple example of geo-
metric non-linearity: consider the spring
on the left in its rest state, attached to
horizontal boundaries, and shear it. It
will first be under compression, and thus
exert pushing forces on the vertical axis.
At large strain its stress reverses and be-
comes tensile, and the spring pulls on
the vertical axis. A linear mechanical ele-
ment can therefore respond non-linearly
to deformation,for geometrical reasons.

was recently argued13 that the elastic response of amorphous solids is
defined only in the infinitesimal strain limit, as non-affine deformations
lead to a divergence of all non-linear elastic coefficients. We first discuss
the origins of non-linearity in our networks. Rather than attempting
a full description of this difficult problem, we then choose here to
give a qualitative description of the bulk non-linear behaviour of our
networks, for each elastic regime. We finally discuss the critical stress
for the onset of non-linearity.

Origins of non-linearity. We can distinguish two main sources of
non-linear behaviour in elastic materials:

• constituent non-linearity: the macroscopic response of the medium
will reflect the non-linearities in the intrinsic force-extension relation
of the objects.

• geometrical non-linearity: it may not be obvious, but even a material
whose constituents are purely linear will generically exhibit a non-
linear response at finite strain, as illustrated in Figure 3.17. This is
amplified when non-affine deformations are large, as the threshold
for geometrical non-linearity is lowered.

In our model, buckling is our main constituent non-linearity. Note that
when fibers are bent with an angle of order one, the bending forces are
also non-linear.

Stretching-dominated networks. In Figure 3.18, we show the en-
ergetic response of a depleted stretching-dominated 2D network to
isotropic and shear strain, along with typical network configurations
in each case. Regular networks (Figure 3.27) exhibit similar behaviour.
Qualitatively, the network yields under compression, softens slightly
then stiffens again slightly under tension, and softens under shear.

Shear and tension softening are due to buckling: regions of the
network which are under compression will yield under large enough
force, resulting in a softening of the network. We regard this effect as
rather unphysical: indeed, it occurs because of our omission of fiber
stiffening under tension.
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Figure 3.18: Response of a stretching-
dominated network to shear, compres-
sion and dilation. Parameters: system
size 202, stretching rigidity µ = 103. Be-
cause our data is noisy, we plot here
an effective elastic modulus E/γ2 rather
than the more usual differential modulus
d2E/dγ2 as in Section 3.A.

Figure 3.19: Buckling “fold” in a regular
network under small compression. Pa-
rameters: strain γ = −0.02, system size
502, µ = 103.
14 In the absence of any hard-core repul-
sion, a spring network can also fold, but
the energy barrier is much higher than in
a bucklable fiber network.

The response of our networks to compression is more complex.
Indeed, indeed, under a small compression, it is advantageous for
a large system to buckle and “fold” along a line (as in Figure 3.19)
rather than spreading the strain homogeneously. Indeed, such a fold
can accommodate arbitrarily large deformations at a sub-extensive
energetic cost14, in a similar way to failure lines in an atomic material
under tension.

Bending-dominated networks. We now turn to the non-linear re-
sponse of bending-dominated networks, as presented in Figure 3.21.
We observe that the network softens under compression, and stiffens
dramatically under tension. At large shear, a similar stiffening would be
observed as the filaments align with the shear direction. This behaviour
is qualitatively identical to that of our regular, bending-dominated
networks, such as in Figure 3.34.

Buckling under compression leads to a softening of the network, sim-
ilarly to the stretching-dominated case. More interestingly, under large
tension or shear, the network’s effective modulus increases dramatically,
to the point that it becomes stretching-dominated, i.e. proportional to
the stretching rigidity µ. Qualitatively, this is due to the system having
its soft, bending modes “pulled out”. Indeed, bending deformations
involve a variation of angles; once these angles become of order unity,
filaments align and can no longer bend. Further pulling on the network
induces stretching deformations. In the µ → ∞ limit, this becomes
an actual transition: there exists a finite strain γ̃ (which depends on
the type of deformation) such that the elastic energy is of order unity
for γ < γ̃, and ∼ µ for γ > γ̃. A new length scale, the pore size
separating tensed fibers, seems to emerge in this regime, as apparent in
Figure 3.20.
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a. 2D bending-dominated network (p = 0.55) under dilation (γ = 0.1).

b. 3D bending-dominated network (p = 0.35) under dilation (γ = 0.3).

Figure 3.20: Under a large dilation, the response of a bending-dominated network becomes stretching-dominated, as soft
bending modes are “pulled out”.
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Figure 3.21: Response of a bending-
dominated network to shear, compres-
sion and dilation. Parameters: system
size 202, stretching rigidity µ = 103.
The stress scale is ×10 compared to Fig-
ure 3.18.

Figure 3.23: Schematic scaling diagram
for the elastic energy in the response of
a network to a finite dilation. In the
stretching-dominated regime or at strain
larger than γ̃ (blue line), the response is
stretching-dominated (blue region). In
the bending-dominated regime, and in
the floppy regime for strain larger than γ̂
(green line), the response is controlled by
the bending rigidity (green region). Fi-
nally, disconnected networks or floppy
networks under small shear have zero
elastic energy.

Floppy networks. Floppy networks, which are connected but have
zero linear elastic moduli, also have interesting non-linear properties, as
shown in Figure 3.22. Their modulus is exactly zero for all compression
and in a range of dilation and shear. However, above some critical
strain value, some rigidity appears under shear or strain.

Figure 3.22: Response of a floppy net-
work to shear, compression and dilation.
The energy is zero, apart from the dilated
case. Parameters: system size 202, stretch-
ing rigidity µ = 103. The stress scale is
×150 compared to Figure 3.18.

There are three kinds of deformation modes in floppy fiber networks:
zero modes, which are completely soft; bending modes with rigidity
∼ 1; and stretching modes with rigidity ∼ µ. When dilated or sheared,
the network’s zero modes are solicited first. At some first threshold
strain γ̂, the system runs out of zero modes as they are all pulled
out, and bending modes enter the response, resulting in an elastic
energy ∼ 1. At a second, larger critical strain γ̃, these bending modes
are also exhausted, and the system’s response becomes stretching-
dominated. This scenario is summarized on our schematic scaling
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15 Hentschel, H. G. E., Karmakar, S.,
Lerner, E., and Procaccia, I. (2011). Do
athermal amorphous solids exist? Phys.
Rev. E, 83(6):061101

0.4 0.5 0.6 0.7 0.8 0.9 1.0
depletion parameter p

10−2

10−1

100

101

th
re

s
h
o
ld

s
tr

a
in

γ
∗

µ = 103

µ = 105

MAN, p = 1

Figure 3.24: The typical strain γ∗

for non-linear effects in depleted 2D
networks, without the mid-segment
nodes allowing buckling. The white,
light gray and dark gray regions in-
dicate stretching-dominated, bending-
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Figure 3.25: The typical stress σ∗ for geo-
metrically non-linear response. The buck-
ling stress σb = 1 is indicated as a com-
parison (black line).

diagram (Figure 3.23).

Critical strain and stress for geometrical non-linearity. Finally, we
give an estimate of the typical strain and stress at which the network’s
geometrical non-linear response becomes important. In order to isolate
the geometrical effects from the constituent non-linearity, here we will
prevent buckling – at least at the single segment scale – by removing
the mid-segment vertices in our model.

Even in the absence of buckling, the response of the network to
isotropic strain is singular, due to folding effects under compression.
For this reason, we consider the response to a shear strain γ. The elastic
energy takes the form:

E(γ) = G
γ2

2
+ G3

γ3

3
+ G4

γ4

4
+ O(γ5) (3.14)

By reflection symmetry, all odd coefficients should vanish in the ther-
modynamic limit, and the first non-linear coefficient is G4 (or would
be, if it existed15). However, for a given realization of the disorder in
a finite system, there will be a non-zero cubic coefficient G3, which is
a random centered variable. In order to estimate G4, we measure the
elastic energy E for three values of the strain: an infinitesimal value
ǫ = 10−100 to compute G, and two finite, opposite values γ = ±0.01 to
eliminate the cubic term. Our estimator for G4 is thus:

G4 ≈ 2

E(γ)+E(−γ)
γ2 − 2 E(ǫ)

ǫ2

γ2 (3.15)

This coefficient defines a typical strain γ∗ at which the stress becomes
dominated by the nonlinear effect:

γ∗ =

√

G
|G4|

(3.16)

Note the absolute value: indeed, in some – but not all – stretching-
dominated networks, G4 can be negative, corresponding to a shear
softening material. We plot γ∗ as a function of the depletion parameter
in Figure 3.24. Aside from taking very small values at p = pc in the µ →
∞ limit, this curve is relatively unimpressive, as γ∗ takes moderately
small values ≈ 10−2 − 10−1 in the whole bending-dominated range and
most of the depleted, stretching-dominated regime. More interesting is
the typical stress σ∗ at which this strain is reached, which is

σ∗ = G

√

G
|G4|

(3.17)

We plot σ∗ in Figure 3.25. In the whole stretching-dominated regime, we
have σ∗ > 1: the typical stress for the onset of geometrical non-linearity
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is larger than the buckling stress. Such geometrical non-linearities can
therefore be neglected, as the constituent non-linearity will take over
first: non-linear effects in stretching-dominated networks mostly reflect the
non-linearity of their constituents.

In contrast, because bending-dominated networks are much softer
than stretching-dominated ones, the associated σ∗ can be much smaller
than the buckling stress, being typically in the range σ∗ ∼ 10−3 − 10−1.
This geometrical non-linear response is intimately connected to the
network’s disorder: indeed, σ∗ ≈ 0.5 in a regular bending-dominated
MAN network (star symbol in Figure 3.25), to be compared to the value
σ∗ ∼ 10−3 in depleted networks with similar connectivity.

Therefore, in disordered bending-dominated networks, geometrical non-
linearities will start taking over before constituent non-linearity dominates,
and are thus relevant to our study. In regular bending-dominated
networks, this is not the case.

3.4 Discussion

In this Chapter, we have studied the passive elastic properties of our
model fiber networks. We have shown that the network’s connectivity –
controlled by the depletion parameter and the choice of lattice – has
a dramatic influence on the elastic properties of the network, which
delimits three elastic regimes, and we have studied their linear response
and non-linear properties.

For connectivities z > zc ≈ 2d – the central-force rigidity percolation
threshold – the network is stretching-dominated, and its linear properties
are similar to those of a dense spring networks. It deforms affinely,
and its non-linear response is controlled by that of its elementary
constituents.

At lower connectivities zb < z < zc, the network is bending-dominated,
and much softer, as it owes its rigidity to the bending deformation
modes. Its non-affine response is large, and it exhibits significant
geometrical non-linearity at stresses well below the buckling threshold.
It tends to stiffen under tension and soften under compression. We have
designed a non-depleted bending-dominated network, which exhibits
similar properties.

Finally, at low connectivities z < zb, the network is floppy, and does
not have a linear elastic response. However, when tensed, it acquires a
non-linear rigidity.

Close to zb and zc, the network exhibits near-critical behaviour,
characterized by large correlated domains of non-affine displacements
and high non-linear susceptibility.
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Biologically relevant networks. Which of these regimes correspond
to physiological situations? Cross-linking proteins generally connect
filaments by pairs, which corresponds to z = 4, while in branching
network there are z = 3 filaments at a branch point. These argu-
ments are often employed to argue that biological fiber networks are
bending-dominated – in particular in three dimensions, where con-
straint counting predicts zc ≈ 6.

However, constraints counting does not tell the whole story. A sim-
ple way to notice this is to remark that when counting constraints in our
model in Section 3.2.4, we have discreetly omitted the degrees of free-
dom associated to the mid-segment vertices that allow buckling. Had
we included them, we would have predicted that the network is always
stretching-dominated. More generally, it has been shown recently16 that
in the limit of long filaments, networks become stretching-dominated,
even when constraint counting would predict that they are not con-
nected enough for this. This limit may be physiologically relevant,
as, for instance, cytoskeletal filaments may be much longer than the
network’s mesh size.

Practical choices. Consequently, we choose not to exclude stretching-
dominated networks from our study. An additional good reason for that
is that they are simpler than bending-dominated ones: they essentially
deform affinely, and their non-linear properties simply reflect that of
individual fibers.

In practice, we will also avoid working with near-critical networks
in this Thesis. Indeed, our goal is to study the generic response of fiber
networks, not the specific case of those with finely tuned connectivity.
This choice is also convenient, as critical slowing-down impedes the
convergence of our numerical simulations near pc and pb, leading to
computation times orders of magnitude larger than away from these
points. Note that it has been argued recently17 that in vitro cytoskeletal
networks can self-organize to a critical point of connectivity; however
to the best of our knowledge the central-force critical point was not
observed experimentally.
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Figure 3.26: Large-scale zero modes of a
BCC lattice under isotropic compression
with ε = −0.01. For legibility, we show
the lattice vertices instead of the bonds
here.

3.A A study of fiber networks on regular lat-

tices

In this Thesis, we often make a distinction between stretching- and
bending-dominated networks, as presented in Section 3.2. We will
most often consider depleted networks whose regular counterpart is
stretching-dominated – such as the triangular and FCC networks. How-
ever, in such networks, it is hard to disentangle the effects of disorder
from those of the elastic regime of the network: indeed, bending-
dominated depleted networks are highly disordered in those cases. It is
therefore useful to come with a model of ordered, bending-dominated
network.

2D networks. Here we present a study of such attempts to design
a regular bending-dominated network in two dimensions. For each
network, we show in Figures 3.27-3.36 its depictions in undeformed,
dilated, compressed and sheared states. Its elastic properties are eval-
uated by simulating a shear and compression of a single unit cell,
with periodic boundary conditions (µ = 103). In both cases, we plot
the associate differential modulus characterizing the non-linear elastic
response.

We start by noticing that no Bravais lattice is suitable: the triangular
lattice (Figure 3.27) is stretching-dominated. The square lattice (Fig-
ure 3.28) is singular, as its linear shear modulus vanishes even when
there are bending interactions. The honeycomb lattice (Figure 3.29) has
no alignment of bonds, and therefore is not adapted to our network, as
bending interactions cannot stabilize it.

A popular lattice to study isostatic systems is the Kagome network
(Figure 3.30), as it stands just at the threshold with zlattice = 4. However,
the infinite alignments of bonds make its response to bulk strains
stretching-dominated, while rotation modes of the triangular units
result in complex, pathological soft modes.

Our program allows us to simulate more complex lattices, with
several vertices per unit cell, and we investigated several possibilities.
Figures 3.30-3.36 present our study of candidates for regular bending-
dominated networks. Although we found several suitable options, we
retain only the simplest and least singular one, namely the “MAN”
network presented in Figure 3.34.

3D networks. In three dimensions, we only consider the FCC lattice in
this Thesis. The body-centered cubic (BCC) might seem a good alternate
candidate, as it is much closer to the central-force critical point, having
zlattice = 8. However, in spite of being stretching-dominated from a
constraint counting point of view, it is highly singular, and exhibits
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large-scale zero modes of deformation under compression, due to its
particular geometry: it can be “folded”. Indeed there is no linear elastic
response to an infinitesimal strain of the form :

T =






ε1 0 0
0 ε2 0
0 0 ε3






with the eigenvectors being the direction of the cubic geometry, and
ε1 + ε2 + ε3 = 0. This results in large-scale undulations when the
system is compressed, as shown in Figure 3.26.

Figure 3.27: The triangular lattice is a
Bravais lattice with zlattice = 6, which is
well suited for the study of stretching-
dominated networks. It softens under
shear and compression, as individual
bonds buckle.

Figure 3.28: The square lattice is a Bra-
vais lattice with zlattice = 4. It stands just
at the central-force threshold; however
due to its particular geometry it has zero
shear modulus, and is thus quite singu-
lar. We exclude it from our study for this
reason.
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Figure 3.29: The honeycomb lattice is a
Bravais lattice with zlattice = 3. It stands
below the central-force threshold, and
is not stabilized by bending as it lacks
hinges. We exclude it from our study for
this reason.

Figure 3.30: The Kagome lattice is a uni-
form lattice (with one type of vertices)
and with zlattice = 4. It stands at the
central-force threshold. However its me-
chanical properties are quite singular due
to soft rotation modes and infinite align-
ments of bonds. We exclude it from our
study for this reason.

Figure 3.31: The “David” lattice is
a custom lattice introduced here. It
is chiral and has two distinct types of
vertices, and with zlattice = 7/2 it is
bending-dominated. Its elastic proper-
ties are regular at small strain; however it
stiffens strongly and becomes stretching-
dominated under a finite dilation. Its
chirality is reflected by the asymmetry in
the shear curve.
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Figure 3.32: The “Windmill” lattice is
a custom lattice introduced here. It is
chiral and has three distinct types of ver-
tices, and with zlattice = 3 it is bending-
dominated. Its elastic properties are reg-
ular; the helices of the “windmill” pat-
terns rotate when it is stretched or com-
pressed. It has four-fold rotational sym-
metry, which does not guarantee that its
bulk linear properties are described by
only two coefficients.

Figure 3.33: The “Lambda” lattice is
a custom lattice introduced here. It is
chiral and has a single type of vertices.
With zlattice = 3 it is bending-dominated.
Its elastic properties are surprising, as it
appears to be multistable and can exhibit
hysteresis under shear or compression. It
also stiffens at very small dilation.

Figure 3.34: The “M.A.N.” lattice (stand-
ing for “Martin’s Amazing Network”) is
a custom lattice introduced here. It is the
achiral counterpart of the Lambda lat-
tice. It has a single type of vertices, and
with zlattice = 3 it is bending-dominated.
Its elastic properties are regular and ro-
bust, making it our top choice for regular
bending-dominated networks.
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Figure 3.35: The “Helix” lattice is a cus-
tom lattice introduced here. It has three
types of vertices, and with zlattice = 3 it is
bending-dominated. Its elastic properties
are regular, however we discard it due to
its complexity.

Figure 3.36: The “Mosaic” lattice is a
custom lattice introduced here. Because
it is a sublattice of the square lattice, it
inherits its singularities; we present it
here for aesthetic reasons.





Figure 4.1: Dipole conservation relates
local active forces to the resulting far-field
stresses in linear elastic media.

4

Linear stress production

Le hasard ne favorise que les esprits préparés.

— Louis Pasteur , discours prononcé à Douai.

In this Chapter, we start our study of the transmission of localized
forces exerted by active units in elastic fiber networks. Here we consider
the case of the linear response of these networks, corresponding to the
limit of very small active forces. We do not restrict this discussion to
our model network, but rather address the more general question:

How are forces transmitted in linear elastic media?

We show that in this linear case – when deformations are propor-
tional to forces – force transmission obeys a simple and universal law,
where the far-field stress distribution is strongly constrained by the ge-
ometry of active units. We introduce a direct relation – termed “dipole
conservation” – between the macroscopic active stress and the force
dipole tensor, a local quantity describing the individual force-exerting
elements, as illustrated in Figure 4.1. We show that this relation applies
in both continuum (Section 4.1) and discrete (Section 4.2) homogeneous,
linear elastic media, irrespective of the shape of the system and of the
spatial distribution of the active forces. To understand the biologically
relevant influence of heterogeneities, we investigate the linear response
of random spring networks and our model of depleted lattice fiber
networks in Section 4.3. We show that force transmission is unreliable
in individual realizations of the network, as we further discuss in Sec-
tion 4.4. However, dipole conservation still holds in an average sense
provided the disorder is the same everywhere. The relation we derive
is therefore widely applicable, and gives an exact prediction for the
active stress in linear elastic media, as we show in Section 4.5.
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Throughout this Chapter, the positions R

can be chosen to refer to either the unde-
formed or deformed state, provided that
the correct form of the stress (nominal vs.
Cauchy) is used. The mean-stress theo-
rem holds for arbitrary deformations in
both cases.

4.1 Dipole conservation in continuum elastic

media

The transmission of localized active forces to the outer boundary of a
continuum elastic body is a geometrically complex problem, and the
distribution of transmitted forces strongly depend on the body’s shape
and material properties. Nevertheless, here we show that strong nonlo-
cal constraints exist between body and boundary forces. In Sec. 4.1.1
we introduce the boundary dipole tensor, a quantity characterizing
the boundary forces that is directly related to the stress tensor. Using
general conditions of mechanical equilibrium, we relate this boundary
dipole to the spatial distribution of body forces in Sec. 4.1.2. Specializ-
ing our result to homogeneous linear media, we then show in Sec. 4.1.3
that the boundary dipole is exactly equal to the dipolar moment of the
body force distribution, which we refer to as “dipole conservation”.

4.1.1 Boundary dipole tensor

Let us consider a general d-dimensional piece of elastic material at
mechanical equilibrium, filling a domain Ω of space with boundary ∂Ω

and volume V. We model the active elements embedded in the elastic
body as a distribution of body forces Fµ(R). To quantify the macro-
scopic consequences of these active forces, we consider the response
of the total system composed of the elastic medium and the embed-
ded elements to an infinitesimal, affine deformation characterized by a
strain tensor γµν. Under this transformation, a point belonging to the
boundary ∂Ω of the elastic body with position R in the resting state
is displaced by a quantity δRµ(R) = γµνRν (summation over repeated
Greek indices is implied here). Denoting the elastic stress tensor by
σλµ(R) and considering a surface element dsλ lying on the boundary
∂Ω, the force exerted by the outside world on the surface element reads
−σλµ(R) dsλ. As the surface element gets displaced by an infinitesimal
δRµ, the work performed by this force is [−σλµ(R) dsλ] × δRµ. The
change in energy of the total system is given by the work performed
over the whole boundary:

δE =
∮

∂Ω
[−σλµ(R) dsλ]× δRµ

= −γµν ×
∮

∂Ω
σλµ(R)Rν dsλ. (4.1)

Noting that the integral in the right-hand side of Equation 4.1 is the
dipolar moment of the boundary forces, we refer to this quantity as the
“boundary dipole tensor” and denote it as

Dfar
µν =

∮

∂Ω
σλµ(R)Rν dsλ. (4.2)
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The meaning of this new quantity becomes clear if we note that
according to Equation 4.1, Dfar

µν is the derivative of the energy of the
total system with respect to the boundary strain γµν. This is reminiscent
of the definition of the stress tensor σµν as the derivative of the energy
density e with respect to the local strain tensor γµν(R. Considering
a coarse-grained approximation of the total system with a uniform
bulk deformation γµν and uniform stress σ̃µν, we have E = Ve with
e a uniform elastic energy density and the boundary dipole tensor is
directly related to the coarse-grained stress tensor:

Dfar
µν =

∂(Ve)
∂γµν

= −Vσ̃µν. (4.3)

Thus −Dfar
µν /V is the medium’s coarse-grained stress tensor and Dfar/(Vd) =

Dfar
µµ/(Vd) is the analog of a hydrostatic pressure. In an active medium

language, Dfar < 0 thus characterizes a contractile medium while
Dfar > 0 is associated with extensility.

Note that in a system with periodic boundary condition, the bound-
ary dipole tensor can be defined through the relation Dfar

µν = −∂E/∂(γµν),
where the affine deformation can be imposed through Lees-Edwards
boundary conditions. Unless explicitly stated, all the continuum and
discrete results presented in this manuscript can be rederived under
periodic boundary conditions with only minimal modifications to their
proofs.

4.1.2 Mean-stress theorem

As a first step towards establishing dipole conservation, here we red-
erive a result known as the mean-stress theorem1. We introduce the
dipolar moment of the active forces Fµ(R) as

Dloc
µν =

∫

Ω
Fµ(R)Rν dV. (4.4)

Note that Dloc
µν is independent of the origin of the coordinates if the

body forces sum to zero as expected for active elements embedded in
an elastic medium, and that the total force dipole exerted by several
active elements is equal to the sum of the individual force dipoles.

Inserting the force balance equation ∂νσµν = −Fµ into Equation 4.4
and integrating by part yields the mean stress theorem

Dloc
µν =

∮

∂Ω
σλµ(R)Rν dsλ +

∫

Ω
σµν(R) dV. (4.5)

Defining the integrated stress tensor Σµν =
∫

Ω
σµν dV and using the

definition of the boundary dipole Equation 4.2, Equation 4.5 can be cast
into a compact form:

Dfar
µν = Dloc

µν − Σµν. (4.6)
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Figure 4.2: Boundary forces (purple arrows) transmitted by a two-dimensional homogeneous linear elastic medium under
the influence of a localized force dipole (black arrowheads) computed using finite elements. The boundary force distribution
is strongly influenced by both the medium’s material properties (ν denotes the Poisson ratio) and the geometry of the
problem. Nevertheless, in all cases the boundary dipole tensor is equal to the body forces’ dipolar moment.
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This result holds irrespective of the medium’s material properties,
including homogeneity and linearity.

4.1.3 Dipole conservation

Despite its universality, in the general case the result of Equation 4.6
involves a complicated unknown object Σµν and is thus of limited prac-
tical use. Here we show that this limitation is lifted when considering a
linear homogeneous elastic medium with fixed boundaries.

In a linear homogeneous elastic medium, stress is related to strain
through a position-independent stiffness tensor: σµν(R) = Cµναβγαβ(R).
Integrating this relation over space, we get

Σµν = CµναβΓαβ with Γαβ =
∫

Ω
γαβ(R) dV, (4.7)

with Γαβ the integrated strain. Assuming small displacements, we
use the linear strain γαβ(R) = [∂αuβ(R) + ∂βuα(R)]/2 with uα(R) the
medium’s displacement vector. Integration of Equation 4.7) then yields
a boundary integral

Γαβ =
∮

∂Ω

[
uβ(R)

2
dsα +

uα(R)

2
dsβ

]

. (4.8)

Equation 4.6 thus provides a decomposition of the boundary stress as a
sum of a bulk term Dloc

µν involving active forces and a boundary term
Σµν = CµναβΓαβ related to the system deformation. Note that the latter
depends on the system’s elastic properties through the stiffness tensor
Cαβµν, while the former does not. Now introducing the assumption of
fixed boundary conditions, we find that the boundary displacements
in the right-hand side of Equation 4.8 vanish, implying that the whole
integral vanishes2. Using Equation 4.7, we thus find that Σµν = 0, and
thus Equation 4.6 can be rewritten as the dipole conservation relation:

Dfar
µν = Dloc

µν (4.9)
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which relates bulk and boundary forces. To understand the meaning
of this equation, we decompose it into the equality of the traces, sym-
metric traceless parts and antisymmetric parts of the two tensors. The
equality of the traces, Dfar = Dloc

µµ = Dloc, is of particular interest for
biological systems as it relates the “hydrostatic pressure” Dfar of the
medium to the local force dipole Dloc, a quantity routinely interpreted
as the amount of contractility of the active elements3. Next, the sym-
metric traceless part of each of the two dipole tensors [(Dfar

µν +Dfar
νµ )/2

and (Dloc
µν +Dloc

νµ )/2] is analogous to a nematic order parameter char-
acterizing the anisotropy of the corresponding forces, and thus their
equality means that the anisotropy of the contractile forces is also con-
served across scales. Finally, the equality Dfar

µν −Dfar
νµ = Dloc

µν −Dloc
νµ of

the antisymmetric parts is equivalent to torque balance in the elastic
medium; since embedded active elements exert a vanishing total torque
on the elastic medium, it simply reduces to Dfar

µν −Dfar
νµ = 0, and thus

expresses torque balance on the total system.
For systems without fixed boundaries, Equation 4.9 takes the more

general form

Dfar
µν = Dloc

µν − CµναβΓαβ, (4.10)

meaning that the total coarse-grained stress −Dfar
µν /V is the sum of an

active contribution and of the elastic stress CµναβΓαβ. This relation has
previously been derived in an isotropic geometry4.

Note that Equation 4.9, as well as the other dipole conservation
relations presented in this Chapter, assume a homogeneous (or statisti-
cally homogeneous in Sec. 4.3) elastic medium. In cases where a piece
of elastic material is removed to make space for an embedded active
element with different elastic properties, no generic relation holds, and
the far-field dipole will depend, for instance, on the system size.

4.2 Dipole conservation in discrete elastic me-

dia

We now prove dipole conservation in discrete media, with similar impli-
cations as in the continuum case of Sec. 4.1. Although more technically
involved, this new derivation parallels the one of the previous section
and its results have a similar physical interpretation. We introduce the
active force dipole tensor and the boundary dipole tensor in Sec. 4.2.1
and show that it satisfies a discrete mean-stress theorem in Sec. 4.2.2.
Dipole conservation is then derived in Sec. 4.2.3 under the assump-
tions of linearity and local point reflection symmetry, a variant of the
homogeneity assumption used above.
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Figure 4.3: Parametrization and point re-
flection invariance in a discrete elastic
system (a) Mobile bulk vertices (solid cir-
cles) comprised in the bulk Ω of the net-
work are connected to each other and to
zero-displacement boundary vertices be-
longing to the boundary ∂Ω (open circles).
Blue arrows represent their displacements.
(b) The partial network Ωj is obtained
by setting all displacements to zero ex-
cept that of vertex j. (c) The partial net-
work Ωj is invariant under point reflec-
tion about vertex j even though the total
network Ω (in grey) is not. The displace-
ment of vertex j is reversed under this
transformation.

4.2.1 Active force and boundary dipole tensors

We consider a d-dimensional system Ω comprised of interacting vertices
i located at positions R(i) in the reference configuration, and at R(i) +

u(i) in the deformed configuration characterized by the displacements
u(i). The system’s boundary ∂Ω consists in a set of additional vertices
whose displacements are set to zero [see Figure 4.3(a)]. The active force
dipole tensor and the boundary dipole tensor are thus respectively
defined as

Dloc
µν = ∑

i∈Ω

F(i)
µ R(i)

ν , (4.11a)

Dfar
µν = ∑

l∈∂Ω

f (i)µ R(i)
ν (4.11b)

where F(i)
µ is the body force applied on the elastic network at vertex i

and f (i)µ is the force exerted by the system on boundary vertex i.

4.2.2 Discrete stress definition and mean-stress theorem

Bulk and boundary forces are unambiguous mechanical quantities,
both in continuum and discrete systems. On the other hand, the stress
is an intrinsically continuous quantity. In order to be uniquely defined,
it requires the interactions to be purely local (i.e. to have zero range)
and thus to be mediated by a continuum. The standard definitions
of the stress tensor (globally as the force across a surface “cut” in the
material, or locally as the derivative of the energy with respect to the
local strain) are then equivalent. For a discrete system, these definitions
fail to provide a unique definition of the stress tensor: the local strain is
not defined, while the notion of force through a “surface cut” is made
ambiguous due to the finite range of the interactions. Furthermore, let
us remark that any definition of a discrete stress would depend not
only on the forces applied to a point, but also on the direction from
which this force originates.

To illustrate this ambiguity, let us consider a system of point particles,
knowing only its total Hamiltonian H. This information is sufficient to
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determine all observable quantities about this system, and in particular
its energetics and dynamics. In continuous materials, the hypothesis
of zero-range interactions ensures that the Hamiltonian is sufficient to
define the stress as

σµν(R) =
δH

δγµν(R)

On the other hand, in a discrete system, the sole data of the N-bodies
Hamiltonian does not provide enough information to specify local
stress. Actually, the simple notion of interaction between two material
points is ambiguous, and not explicitly contained in the Hamiltoni-
ant. To realize that, let us consider the following trivial example: a
set of three points (x1 < x2 < x3) on a line, such that the system’s
Hamiltonian vanishes:

H(x1, x2, x3) = 0 (4.12)

The stress obviously vanishes in this system. We can however also
write:

H(x1, x2, x3) = − f .(x2 − x1)− f .(x3 − x2)− f .(x1 − x3) (4.13)

In this second, equivalent expression, though, the point x2 receives a
force f from the left, and a force −f from the right: for positive f , we
would then say that it is subject to compressive stress. This is a simple
example of a state of self-stress in a discrete system. In general, the data
of the N-bodies Hamiltonian gives no prescription on the interaction
forces between points, leaving the notion of stress ambiguous. We thus
argue that the explicit data of interaction forces is a necessary preliminary
to any definition of stress.

We can use the mean-stress theorem connecting Dfar and Dloc, which
we derived in the continuous case, as a guide to define stress in discrete
systems. Again, we rely only on force balance. We consider only
forces between pairs of vertices, as many-body interactions can always
be decomposed into sums of pair interactions5. We assume these

interactions to have finite range. Denoting by f (ij)µ the force exerted by
vertex i on vertex j, the force balance condition reads

F(i)
µ = ∑

j∼i
f (ij)µ (4.14a)

f (i)µ = ∑
j∼i

f (ij)µ (4.14b)

for bulk and boundary vertices, respectively. Here ∑j∼i denotes a sum
over the vertices j that interact with i.

Inserting Equation 4.14a into Equation 4.11a, we obtain a double
sum over vertices of the form ∑i∈Ω ∑j∼i. Reorganizing it into a sum
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over pairs of neighboring vertices and splitting the resulting expression
into two sums, one over bulk pairs and the other over pairs straddling

the boundary, we use Newton’s third law f (ij)µ = − f (ji)
µ to find

Dfar
µν = Dloc

µν + ∑
(ij)

f (ij)µ

[

R(j)
ν − R(i)

ν

]

(4.15)

where the sum runs over all pairs of interacting vertices, including
boundary vertices. This expression yields a natural definition for the
discrete stress associated with a pair of interacting vertices as

σ
(ij)
µν = − f (ij)µ

[

R(j)
ν − R(i)

ν

]

(4.16)

Note that several different conventions can be chosen to generalize the
stress tensor to discrete systems. However, most expressions employed
in the literature, termed “atomic-level stresses”6, distribute the stress
on a local volume around each vertex in a rather arbitrary way, which
is incompatible with any expression of the mean-stress theorem. Here,
in contrast, we chose to localize the stress on the bonds of the network7,
yielding a mean-stress theorem with a concise expression:

Dfar
µν = Dloc

µν − Σµν with Σµν = ∑
(ij)

σ
(ij)
µν , (4.17)

which constitutes the discrete mean-stress theorem. This equation
relating boundary forces to the integrated stress in discrete particle
systems parallels previous works using the virial theorem for stress
computations in molecular systems8.

4.2.3 Dipole conservation

As in the continuum case, here we assume linear elasticity to demon-
strate Σµν = 0, implying dipole conservation. Linearity implies that Σµν

is a linear function of the set
{

u(i)
λ

}

i∈Ω
of equilibrium vertex displace-

ments, which are themselves unspecified functions of the active forces.
Therefore, the integrated stress in the network can be decomposed into
a sum over fictitious partial networks Ωj where all displacements but
that of vertex j are set to zero [Figure 4.3(a-b)]:

Σµν

({

u(i)
λ

}

i∈Ω

)

= ∑
j∈Ω

Σ
Ωj
µν

(

u(j)
λ

)

, (4.18)

where Σ
Ωj
µν is the integrated stress in partial network Ωj.

To demonstrate dipole conservation, we show that the partial inte-

grated stress Σ
Ωj
µν vanishes for all j in networks invariant under local

point reflection. Considering a specific partial network Ωj, we first
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note that reversing the vertex displacement also reverses the integrated
stress by linearity:

Σ
Ωj
µν

(

−u(j)
λ

)

= −Σ
Ωj
µν

(

u(j)
λ

)

. (4.19)

We next introduce the assumption that each partial network Ωj is
invariant under local point reflection about vertex j. The result of
this transformation is illustrated in Figure 4.3(c), and we denote the
symmetric of vertex i by I j(i). Since stresses are proper tensors, the
integrated stress is unchanged under this transformation:

Σ
I j(Ωj)
µν

(

I j
(

uI j(j)
λ

))

= Σ
Ωj
µν

(

u(j)
λ

)

, (4.20)

meaning that the point-reversed image of a system under, e.g., overall
compression is a system under the same amount of overall compres-
sion. Since vertex j is its own image under this transformation, its
displacement is reversed:

I j
(

uI j(j)
λ

)

= I j
(

u(j)
λ

)

= −u(j)
λ . (4.21)

Noting that local point reflection means that the partial network Ωj is
invariant under I j, i.e., I j(Ωj) = Ωj, Equation 4.20 becomes

Σ
Ωj
µν

(

−u(j)
λ

)

= Σ
Ωj
µν

(

u(j)
λ

)

. (4.22)

Combining Equations 4.19 and 4.22, we find that Σ
Ωj
µν = 0 for any j,

which we insert into Equations 4.17 and 4.18 to prove dipole conserva-
tion in the original, full network Ω:

Dfar
µν = Dloc

µν (4.23)

Although superficially different from the translational invariance used
in Sec. 4.1, our local point reflection symmetry has a similar physical
meaning. Indeed, it states that from any point of observation, the
elastic medium looks the same to two observers looking in opposite
directions. It is however more restrictive than translational symmetry,
as it does not apply to, e.g., the honeycomb and diamond lattices, or to
more complex cases such as the MAN lattice introduced in Section 3.A.
In such case, local heterogeneities will lead to violations to dipole
conservation, depending on the position and orientation of the applied
forces. Local point reflection symmetry is nevertheless fulfilled by
most usual lattices, including the triangular, square, simple-, face-
centered- and body-centered-cubic lattices, and thus the discrete dipole
conservation relation Equation 4.23 remains of wide practical interest.
Furthermore, in a regular lattice with periodic boundary conditions
translational invariance is sufficient to prove dipole conservation (with
a proof similar to that presented in Sec. 4.3.1).
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Figure 4.4: Force transmission in a linear
spring network is strongly affected by
elastic inhomogeneities. Here the opac-
ity of a bond is proportional to its stiff-
ness, and black arrowheads (purple ar-
rows) represent body (boundary) forces.
(a) In a homogeneous network, dipole
conservation Dfar = Dloc is satisfied to
the numerical precision. (b) In a random
spring network, dipole conservation is
typically violated; in this specific exam-
ple, Dfar/Dloc ≈ 0.60. Here the spring
constants are drawn from a lognormal
law with standard deviation δα = 0.8.

4.3 Linear force transmission in random elas-

tic media

We now investigate how relaxing the assumption of homogeneity affects
dipole conservation. As shown in Figure 4.4, inhomogeneous elastic
properties significantly affect dipole transmission in a spring network.
Nevertheless, we show here that in generic disordered elastic media,
linear dipole conservation is is preserved in an average sense. We start
by deriving this exact result in the case of periodic boundary conditions
(Section 4.3.1). Sec. 4.3.2 then shows numerically that fixed boundary
conditions in 2- and 3-dimensional systems spoil this result, although
deviations from it are small and go to zero for large-size systems. A
complementary proof of average dipole conservation, within a popular
mean-field treatment of disordered termed “effective medium theories”,
is presented in Appendix 4.A.

4.3.1 Average dipole conservation in periodic geometry

Consider the linear response of a regular lattice of independent, iden-
tically distributed random springs with periodic boundary condi-

tions subjected to a distribution of body forces F(i)
µ of zero sum (i.e.,

∑i F(i)
µ = 0 as expected for active elements embedded in an elastic

medium). Let G(i)
µνα be the sample-dependent linear response function

relating the body force at site i to the integrated stress:

Σµν = ∑
i

G(i)
µναF(i)

α . (4.24)

Denoting averages over lattice disorder by a bar, this equation implies

Σµν = ∑
i

G(i)
µναF(i)

α = Gµνα ∑
i

F(i)
α , (4.25)
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(b) Figure 4.5: Deviations from aver-
age dipole conservation and sample-to-
sample fluctuations in random spring
networks. (a) The average dipole con-
servation condition Dfar/Dloc = 1 (grey
line) is well respected for systems with
large enough number of mobile vertices
N. Bars represent the standard devia-
tion of this ratio, thus indicating the mag-
nitude of sample-to-sample fluctuations.
Each point in this figure represents data
averaged over O(105) samples, ensuring
that the plotted deviations in the average
Dfar are statistically significant. (b) Stan-
dard deviation of the boundary force
dipole, Dfar [proportional to the length of
the bars in panel (a)] normalized by the
second moment of the effective medium
stress Σ0 (see Appendix 4.A) as a func-
tion of disorder. We find good agreement
with the small-disorder effective medium
theory prediction Equation 4.28 (dashed
line) up to δα ≃ 1.

where the second equality stems from the statistical equivalence of all

sites in the network, implying that the average response function G(i)
µνα

is independent of i. Finally, inserting our assumption of vanishing sum
of the body forces into Equation 4.25 yields Σµν = 0, and thus through
Equation 4.17 the force dipole is conserved on average:

Dfar
µν = Dloc

µν. (4.26)

This result is valid in any system where all vertices are equivalent, and
thus also holds in infinite lattices.

4.3.2 Violations of average dipole conservation in the

presence of fixed boundaries

To investigate the influence of finite domain size on the average dipole
conservation Equation 4.26, we numerically study the linear response to
a force dipole of a finite hexagonal system with fixed boundary condi-
tions, as pictured in Figure 4.4(b). The network is a two-dimensional tri-
angular lattice of independent identically distributed random hookean
springs of unit rest length. The spring constant of the bond joining two
neighboring sites i and j is denoted α(ij) and drawn from a distribution
dP(α) with average α = 1 and variance Var(α) = δα2.

Assuming a lognormal form for dP(α), we minimize the elastic
energy of systems of different sizes using a conjugate gradient algo-
rithm. Our procedure uses displacements of order 10−100 times the
lattice constant, for which we checked that nonlinear effects are absent.
Figure 4.5(a) shows that average dipole conservation is violated for
small systems, but that these violations vanish for larger system sizes.
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Figure 4.6: A random quadrupole in a
depleted 2D network with p = 0.6.

−3 −2 −1 0 1 2 3

Dloc
×10−10

−4

−2

0

2

4

D
w
al
l

×10−10 F =1e-10
Dwall = Dloc

Regular 2D lattice

Diluted 2D network

Figure 4.7: Scatter plot of Dfar versus
Dloc for 100 realizations of random force
quadrupole, in the case of a regular net-
work (red crosses) and diluted network
(p = 0.61, green circles), with stretching
rigidity µ = 103.
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Figure 4.8: The correlation factor r be-
tween source dipole and wall dipole ver-
sus the dilution parameter p of the net-
work, for random forces located in an
area of radius Rforces = 2.5 in the linear
regime (F = 10−10). This measure is com-
plemented by that of the probability that
Dfar and Dloc share the same sign, which
goes to 1/2 as the correlation decreases.

4.4 Stress randomization in disordered networks

While we have shown in the previous Section that in large enough
systems the boundary dipole becomes equal to the local force dipole on
average, Figure 4.5(a) suggests that significant fluctuations around this
average subsist even in infinite systems. Physically, this stems from
the fact that the configuration of the immediate surroundings of the
force-exerting active element can strongly amplify or attenuate the local
force dipole. These near-field distortions are then faithfully propagated
to long distances by the more distant regions of the network, which
tend to transmit forces in a more dipole-conserving way. Therefore, due
to their local origin these distortions are not cured by increasing the
system size. The resulting boundary dipole fluctuations have a clear
practical significance, as they represent an intrinsic limitation on the
reliability of force transmission through disordered elastic networks
and thus represent a challenge for biological systems.

We now study these sample-to-sample variations in the amount of
transmitted force dipole. We first describe empirically the decorrelation
of the local and far-field forces in random fiber networks. We then
use an effective medium (i.e., mean-field) approach to quantify more
precisely this “stress randomization” effect in random spring networks.

4.4.1 Decorrelation between local and far-field stresses

In this Section, we consider force transmission in our model depleted
lattice fiber networks. We investigate the correlation between the local
force dipole Dloc and the wall dipole Dwall by studying the response to a
random quadrupole of force. This object is obtained as the sum of random
radial interactions between the four sites that are closest to the center
of the system (see Figure 4.6), with random prefactors (obtained with a
centered normal distribution), and such that the sum of force norms is
equal to F. Note that this force distribution shares some similarity with
that of a myosin motor anchored on two actin filaments 9. However our
main reason for studying this force distribution is that it allows us to
separate the effect of the total force norm and that of the source dipole.

The study of the linear response of diluted networks to such a
random quadrupole is plotted in Figure 4.7, for both regular and
bending-dominated depleted networks. In the case of the regular
network we recover the linear elasticity result Dwall = Dloc for all
realizations of the system. However, in the case of disordered, bending-
dominated networks, these two quantities are seemingly independent.

To quantify this effect, we plot in Figure 4.8 the linear correlation
factor r between Dfar and Dloc, defined as the quotient of the covariance
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to the product of standard deviations:

r =
Cov(Dfar,Dloc)

√

Var(Dfar)Var(Dloc)

as a function of the dilution parameter p of the network. This plot is
strikingly similar to that of the bulk elastic modulus in such systems.
Starting with a complete correlation in regular networks r(p = 1) = 1,
the correlation steadily decreases with decreasing p in the stretching-
dominated network, and is statistically negligible in the whole bending-
dominated network (p < 0.67). The effect of the disordered geometry of
the fiber network around the source of forces is therefore to randomize
the distribution of these forces, such that the far-field dipole depends
little on the local one.

4.4.2 Influence of network disorder on the reliability of

force transmission

To better understand the magnitude of this randomization effect in rela-
tion to the amount of network disorder, we compute a mean-field-type
approximation of the boundary dipole fluctuations through an effective
medium theory10. As detailed in Appendix 4.A, effective medium theo-
ries assimilate the effect of bond disorder in a fully random network to
that of a single random bond with spring constant α immersed in an
effective regular network. The spring constant αm associated with this
effective network is chosen so that the average of the displacement v of
the random bond in the regular network is equal to the elongation vm

of the non-random bonds, i.e., v = vm. This formalism allows us to cal-
culate an approximation of the tension of each random bond, allowing
us to compute the integrated stress Σ. We find that the tension of the
random bond is equal to the bond tension in a fully regular medium
plus a quantity proportional to v − vm. Since the integrated stress in
the ordered medium vanishes [Equation 4.23], our approximate system
has Σ ∝ v − vm. Now averaging this relation and using v − vm = 0, we
find

Σ = Dloc −Dfar = 0, (4.27)

i.e., the effective medium theory predicts average dipole conservation
irrespective of boundary conditions. Going beyond this vanishing
average stress, we further compute the variance Σ2 of the integrated
stress, which is proportional to (v − vm)2. For small disorder, the
typical mismatch v− vm between the random bond and its deterministic
neighbors is moreover proportional to the mismatch α − αm of their
spring constants, and thus to the amplitude δα of the disorder. This
finally yields

Std(Σ) = Std(Dfar) = Σ0δα, (4.28)
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where the geometry-dependent prefactor Σ0 in the right-hand side is
given in Appendix 4.A. Comparing this effective medium prediction
with the numerical data of Sec. 4.3.2, we find an excellent agreement
up to a bond disorder δα ≃ 1, following which our small-disorder
expansion breaks down [Figure 4.5(b)]. The deviation at large δα can
be imputed to elastic interactions between spring constant fluctuations
between distinct bonds, which are neglected in the effective medium
theory approach.

This proportionality of dipole fluctuations δΣ to the network dis-
order δα suggests that reliable dipole transmission is only possible
in well-ordered media. However, due to the linearity of the elastic
medium, the fluctuations stemming from many small contractile el-
ements scattered through space average out to zero. This scattered
geometry is reminiscent of the structure of force-generating cytoskeletal
networks.

4.5 Discussion

In this Chapter, we have considered the response of general elastic
media to localized active forces, in the small-force limit where the
medium responds linearly. We have shown that a simple, geometry-
independent law governs force transmission in homogeneous linear
elastic media, whereby the force dipole is an invariant of linear elasticity.
More specifically, the force dipole tensor exerted by the medium on
its boundaries is equal to the sum of the microscopic force dipoles
exerted on it by embedded active elements. This dipole conservation
relation is valid both for continuum media and for discrete media with
unspecified finite range interactions. It also holds true in anisotropic
media.

In disordered media, we have seen that there are fluctuations in
the far-field response to an individual active unit. This is particularly
striking in bending-dominated lattice fiber networks, which exhibit a
decorrelation of local and far-field forces. However, we have proved
that dipole conservation still holds on average in these systems, which
thus applies to the depleted lattice fiber network model on triangular
and face-centered cubic lattices studied in this Thesis.

In linear active media, this relation bridges the gap between micro-
scopic forces and macroscopic stress. Indeed, consider a mesoscopic
region of volume V in a large active medium, and write γ̃µν the strain
at the boundaries of this region (with respect to the undeformed ref-
erence state) and σ̃µν its stress. We have seen with Equation 4.3 that
the mesoscopic region exerts at its boundaries a force dipole tensor
Dfar

µν = −Vσ̃µν on the outside world, where σ̃µν is the coarse-grained
stress of this region in a macroscopic description of the active medium.
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Assuming linearity of force transmission, we can combine this with the
mean-stress theorem inside the mesoscopic region (Equation 4.10) to
obtain:

σ̃µν = Cµναβγ̃αβ −
Dloc

µν

V
(4.29)

where Dloc
µν is the total force dipole exerted locally by active units inside

the mesoscopic region, and C is the material’s stiffness matrix. If the
medium is disordered, this relation is only exact on average; however
assuming that the mesoscopic region is large enough to contain many
active units, fluctuations average out and can be neglected. Assuming
there are on average N active units in the region, we can write ρ = N/V
the active unit density, and dµν = Dloc

µν /N the average force dipole that
active units exert locally. If the orientation of the active units are
distributed isotropically, dµν is entirely characterized by its trace.

The two terms in right-hand side of Equation 4.29 can be straightfor-

wardly interpreted as a passive elastic term σ̃
(elastic)
µν = Cµναβγ̃αβ which

corresponds to Hooke’s law, and an active stress σ̃
(active)
µν = −ρdµν. The

stress in the macroscopic linear active medium is therefore the super-
position of a passive elastic stress and an active stress,

σ̃µν = σ̃
(elastic)
µν + σ̃

(active)
µν (4.30)

This decomposition is explicitly used in popular hydrodynamic ap-

proaches termed active gels11, where the active stress σ̃
(active)
µν is a pa-

rameter of the model. In this Chapter, we have demonstrated the
microscopic foundation of this decomposition, and provided an exact
formula for the active stress in terms of properties of the active unit
population:

σ̃
(active)
µν = −ρdµν (4.31)

This remarkably simple relation shows the importance of the geometry
of the active units, through the local force dipole dµν = ∑ FµRν each unit
exerts on the network. This equation contains no adjustable parameter,
and can be tested experimentally, as we will discuss in Chapter 7.
Interestingly, the active stress does not depend on the mechanical
properties of the medium, and in particular on its stiffness: in a linear
medium, the active stress depends only on the density, force and geometry of
the active units.

For this relation to hold, however, force transmission must be linear
at all scales, from the vicinity of the active unit to the macroscopic
scale at which the active gel is expressed. In biological media, this
condition is often violated; the next Chapters of this Thesis will discuss
the role of non-linearities in force transmission, and show how to adapt
Equation 4.31 to these more complex situations.
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4.A Effective medium theory for disordered

spring networks

Here we derive the results of Sec. 4.4.2 by developing an effective
medium theory, following Ref.12. In this approach the disordered net-
work described in Sec. 4.3 is approximated by an effective homogeneous
network where every bond has a spring constant αm. When subjected to
the same body forces and boundary conditions as the original network,
the effective network deforms so that the bond joining adjacent vertices

i and j has elongation v(ij)m with respect to its rest length. To determine
the value of αm, we introduce a third system obtained by replacing
bond (ij) by a random spring with constant α drawn with probability
law dP(α). This induces a change in the deformation field, and the
elongation of the considered bond in the single-random-bond system

is denoted v(ij) = v(ij)m + δv(ij). Mechanical equilibrium then imposes

δv(ij) = v(ij)m
αm − α

qαm + α
(4.32)

where q = z/2d − 1 with z the network connectivity and d the spatial
dimension. The effective spring constant αm is fixed by imposing

δv(ij) = v(ij)m

∫
αm − α

qαm + α
dP(α) = 0, (4.33)

where the average is taken over the distribution of α.
To compute the integrated stress Σ, we note that displacements in our

single random bond system are the same as in a homogeneous lattice
of αm springs with an active force dipole of amplitude (α − αm)v(ij)

applied along bond (ij). We further note that the integrated stress in this
homogeneous, linear system vanishes according to Equation 4.23. Since
stresses in this system are identical to those in our single-random-bond
system except at bond (ij), the integrated stress in the latter is equal to
the integrated stress in the former (i.e., zero) plus the contribution of
bond (ij):

Σ = 0 + (α − αm)v(ij) =
zαm

2d
δv(ij) (4.34)

where Equation 4.32 was used. Inserting Equation 4.33 into Equa-
tion 4.34, we obtain Σ = 0, i.e., the average dipole conservation equation
Equation 4.27.

Denoting σ
(ij)
m = αmv(ij)m and δσ(ij) = σ

(ij)
m + δσ(ij), we plug Equa-

tion 4.32 into Equation 4.34 and compute
[
δσ(ij)

]2
= C

[

σ
(ij)
m

]2
, where

C =
∫ [

αm − α

(1 − 2d/z)αm + 2dα/z

]2

dP(α). (4.35)

In the spirit of the effective medium theory, we approximate the fully
random lattice as a superposition of single random bond lattices and
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sum the bond stresses σ(ij) as independent identically distributed vari-
ables:

Σ2 = ∑
(ij)

[
δσ(ij)

]2
= CΣ2

0, (4.36)

where Σ2
0 = ∑(ij)

[

σ
(ij)
m

]2
can be computed from the stress field in the

homogeneous system with appropriate boundary conditions and active
body forces. This procedure is used to obtain the normalization factor
of Figure 4.5(b). Note that C takes a simple form in the weak disorder
limit Var(α) = δα2 ≪ α2. Indeed, setting α = 1 Equation 4.33 yields

αm = 1 − 2d
z
(δα)2 +O

[

(δα)3
]

, (4.37)

and the numerical factor becomes C = δα2 +O
[
(δα)3], yielding Equa-

tion 4.28.





5

Local nonlinearities in fiber networks

The most exciting phrase to hear in science, the

one that heralds new discoveries, is not “Eureka!”
(I found it!) but rather, “hmm.... that’s funny...”

— Isaac Asimov.

In the previous Chapter, we have solved the question of stress pro-
duction by active units embedded in linear elastic media, by showing
that it obeys a simple law (Equation 4.31) that is independent from the
network’s mechanical properties. This is a consequence of the conser-
vation of the force dipole, which in turn results from the symmetry
between compressive and tensile stresses in linear media.

However, biological fiber networks do not always respond linearly
to active forces. For instance, we have seen in Chapter 2 that the
active forces exerted by molecular can exceed the buckling threshold
for individual filaments, which results in a non-linear response of the
network. In the remainder of this Thesis, we will discuss how these
non-linearity modify force transmission. In this Chapter, we first focus
on the scale of the network’s mesh size:

How do nonlinear properties of single filaments, at the
scale of the fiber network’s mesh size, affect active

stress generation?

We show here that non-linear effects can modify dramatically force
distributions as they are transmitted through fiber networks. At large
forces, the network rectifies all active forces into contraction, as il-
lustrated in Figure 5.1: in this Figure, any local force distribution
considered – either contractile or extensile, isotropic or anisotropic –
results in far-field stresses that are strongly contractile and close to
isotropic stress.

Contraction thus emerges in fiber networks subjected to large local
forces. This comes in stark contrast with linear materials, in which far-
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Figure 5.1: Illustration of the non-linear emergence of contractility in fiber networks. Applied local forces (red arrowheads)
are transmitted through the network to result in boundary forces (black arrows) at the fixed boundary. The color patterns
indicate stress in the network: red for compression, blue for tension, unstressed bonds in green.

Which local force distribution (1-5) results in which far-field stresses (A-E)?

Local forces, network stresses and boundary forces are to scale between each figure. Note that the rotation varies
between the middle row and the networks. Parameters: regular triangular lattice with fixed boundaries and radius
R = 25, µ = 104. The force in (1) is F = 250, other forces are to scale. Answer: 1C-2E-3B-4A-5D .
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Figure 5.2: Filament plucking.

Figure 5.3: Filament buckling.

Unless explicitly specified, in this Chap-
ter – as in the remainder of this Thesis –
we will not consider the tensorial nature
of the force dipole, and focus on its trace.

field stresses are completely determined by the geometry of active force
distributions, regardless of the material’s properties. The mechanical
properties of the network will thus be of importance here, and in
particular the distinction we have made in Chapter 3 between stiff,
highly connected stretching-dominated networks, and softer, loosely
connected bending-dominated fiber networks. In this Chapter, we study
the local effects that result in this striking emergence of contractility. We
identify two elementary mechanisms that bias the network’s response
towards contraction, which we study in turn:

1. Plucking (Section 5.1): a filament will tense when subjected to a
transverse force, and exert effectively contractile forces on the sur-
rounding network (Figure 5.2). This purely local effect can result in
a strong stress amplification, which can occur at forces well below
the buckling threshold, although only in stretching-dominated fiber
networks.

2. Buckling: (Section 5.2): a filament will yield and buckle when com-
pressed. This results in a robust rectification of forces larger than
the buckling threshold towards contraction. This rectification effect
occurs at the local scale, irrespective of the nature of the network. At
large forces, buckling also result in a stress amplification and isotropiza-
tion, and significantly affects force transmission on large scales, as
we will show in Chapter 6.

In both cases, we study the regime of parameters in which the effect
occurs, and assess their relative importance in the network’s far-field
response. We will make use of the framework introduced in Chapter 4:
the effect of the nonlinearity on stress generation will be assessed in
terms of the deviation from force dipole conservation, i.e. the difference
between the local force dipole Dloc and the resulting far-field dipole
Dfar.

5.1 Plucking

In this Section, we consider the response of fiber networks to local active
forces applied transversely on a filament, similarly to a plucked guitar
string. We will show in Section 5.1.1 that this effect can lead to dramatic
stress amplification in stretching-dominated networks, while it remains
moderate in bending-dominated networks. To elucidate the origins
of this amplification, we consider in Section 5.1.2 the deformation of
an individual semiflexible filament in response to transverse forces.
We discuss in Section 5.1.3 the forces that are then transmitted to the
networks, establishing scaling relations for this effect. We show in
Section 5.1.4 how this results in an amplification of the far-field forces,
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a. Stretching-dominated network.

b. Bending-dominated network.

Figure 5.4: Circular forces applied in ge-
ometries with (left) and without (right)
plucking.
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Figure 5.5: Contribution of the pluck-
ing effect to the far-field contraction, as-
sessed by measuring the ratio of Dfar for
a plucked circle to that in a similar sys-
tem, without plucking (i.e., with forces
applied at lattice nodes rather than mid-
segments), as in Figure 5.4. White: tri-
angular lattice, blue: bending-dominated
regular network (“MAN”). In the gray
area, buckling occurs, resulting in large
displacements and complicated response
of the network. Parameters: µ = 104, far-
field dipole measured at a fixed bound-
ary at distance R = 20 of the active
forces.

and confirm these predictions within our lattice fiber network. We
conclude on the importance of this phenomenon by studying how it in
Section 5.1.5.

5.1.1 The relative importance of plucking

The effect of fiber plucking studied here occurs when active forces are
exerted transversely of a fiber segment, rather than at a network vertex
where several fibers intersect. To assess the magnitude of plucking-
induced stress, we can thus compare the far-field response of the
network to forces of similar magnitude exerted as a “plucked circle”
with forces exerted at mid-segments to a comparable geometry where
the forces are exerted on the fiber intersections, as in Figure 5.4.

Starting with the case of a stretching-dominated regular network
(Figure 5.4a), we plot in Figure 5.5 (white circles) the ratio between
far-field dipoles in plucked and non-plucked cases. At very small forces,
force transmission is linear, and this ratio is equal to unity. However, at
a force F ≈ 10−3, well below the buckling threshold Fb = 1, linear force
transmission breaks down, and the response of the plucked system
becomes amplified at larger forces. This effect plateaus at F ≈ 0.2,
where this amplification is Dfar

(pluck)/Dfar
(non-pluck) ≈ 17: in this range of

forces, the far-field effects of plucking can completely dominate the
response, and overwhelm the dipole resulting from linear transmission
of applied forces, as evident in Figure 5.6. In particular, the far-field
dipole is strongly contractile, regardless of the applied force dipole:
strikingly, the stress pattern for contractile (Figure 5.6b) or extensile
(Figure 5.6c) local forces are qualitatively similar, and quantitatively
very close. In this regime, plucking thus rectifies active forces into
contractile stress, which is amplified with respect to the linear prediction.
At larger forces, this amplification starts decreasing slightly, up to the
buckling threshold Fb where new phenomena appear, as the response
to non-plucking forces becomes non-linear too. In this Section, we will
focus on the case of forces smaller than Fb, where plucking is the only
relevant non-linear phenomenon.

Consider now the case of a regular, bending-dominated network as
introduced in Section 3.A. We can also distinguish situations where
forces are applied so as to pluck filaments from cases where plucking
is prevented, as shown in Figure 5.4b. However, plotting the ratio
between far-field dipoles in these two cases (Figure 5.5, blue circles)
shows only a very modest amplification due to plucking, culminating
at F = Fb with Dfar

(pluck)/Dfar
(non-pluck) ≈ 1.15.

Plucking can therefore lead to a dramatic amplification of far-field
forces in stretching-dominated networks, while it remains limited in
bending-dominated networks.
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Figure 5.6: Nonlinear plucking effect in a regular, stretching-dominated network at maximal amplification. a. In the
absence of plucking, force transmission is linear as the applied force is smaller than Fb. b. When forces of equal magnitude
are applied such that they pluck filaments, the far-field dipole is dramatically amplified, being 17× larger than in a. c.

The response to a local extensile force dipole is quantitatively very close to a locally contractile one (b.), and the stress
pattern is strikingly similar. Plucking thus dominates completely the response in this regime, and rectifies all forces into
amplified contraction. Active force and stress scale are the same in the three panels; boundary forces are magnified ×5 in
panel a. for legibility. Parameters: F = ±0.2, µ = 104.

5.1.2 Deformation of a single filament in response to

transverse forces

We now propose a theoretical framework to explain the surprising
results of the previous Section. We first set up the problem mathemati-
cally, then solve it in the case of small and large deformations. We will
discuss the magnitude of the resulting stress transmitted to the network
in the next Section.

Setup. Consider a semiflexible fiber with a transverse force applied at
its middle-point, and bound to the network at its ends, as schematized
in Figure 5.7. As we have discussed in Chapter 2, two effects oppose
the deformation of the filament: its resistance to bending and to stretch-
ing. The resistance to bending is characterized by a bending energy
Ebend(θ) = 2 sin2(θ/2), while the resistance to elongation is associated
to a stretching energy Estretch = µ(δ�)2/2. The stretching-to-bending
rigidity ratio µ � 1 characterizes the relative importance of the two
terms.

We have seen in the previous Section that the elastic properties of the
network as a whole, and not only of the plucked filament, are important
in this problem: indeed, bending- and stretching-dominated networks
respond very differently to plucking. These networks mainly differ
by their elastic modulus G, which is ∼ 1 in soft, bending-dominated
networks and ∼ µ in stiff, stretching-dominated networks.
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Figure 5.7: Schematics of the plucking
scenario: a filament is anchored to the
network (green clouds) by two springs
of stiffness k and zero rest length that
represent the network’s propensity to de-
formate. Under the active force F (red
arrow) exerted perpendicularly to the fil-
ament, it deforms and transmits forces to
the network.

In the case of our plucked filament, the endpoints of the segment
which are anchored to the rest of the network. Displacing them thus
results in a deformation of the network, and a response that depends
on the network’s rigidity. A minimal way of including this response
is to model the anchoring of the filament to the network by Hookean
springs attached to fixed points. The deformation of these springs thus
reflects the deformation of the network, and their spring constant k
models the local rigidity of the network. A minimal model gathering
all these physical ingredients is presented in Figure 5.7. The associated
energy reads:

E = −F(x0 + X)
︸ ︷︷ ︸

plucking force

+

(

µ(δ�)2 + 2 sin2 θ

2

)

︸ ︷︷ ︸

filament deformation

+ k(x2
0 + y2

0)
︸ ︷︷ ︸

network response

(5.1)

where δ� is the elongation of a filament, which is equal to:

δ� =
√

(1 − y0)2 + X2 − 1 (5.2)

As always in this Thesis, distances are normalized by setting �0 = 1
and forces by setting the buckling force to unity. There are three free
variables X, y0 and x0 in the configuration of the filament, whose
values are set by minimizing the energy in Equation 5.1. The variable
x0 corresponds to a bulk translation of the filament with respect to the
network, and is decoupled from the two other parameters, as evident
by rewriting:

E =
(

−Fx0 + kx2
0

)

+

(

−FX + µ(δ�)2 + 2 sin2 θ

2
+ ky2

0

)

(5.3)

We can therefore set the value of x0 by minimizing the first part, −Fx0 +

kx2
0, of the energy, which simply corresponds to force balance in the x

direction: the force monopole applied in the x direction is transmitted
to the rest of the network without modification, and we will omit it in
the following.

We will only consider cases where the elongation of the filament is
small, i.e. when δ� � 1. Indeed, typical values of the active forces do
not result in significant elongation of biopolymers, as we have discussed
Section 2.4. Besides, our model of filaments as hinged Hookean springs
is inadequate for large extension of the fibers, as it does not include
fiber stiffening. We now discuss solutions to the minimization of the
energy in Equation 5.3.

Small displacements. We first consider the case where the response
of the system to the active force has a small amplitude, i.e. when both
X � 1 and y0 � 1. In this regime we have

δ� ≈ X2

2
− y0 and sin

θ

2
≈ X (5.4)



local nonlinearities in fiber networks 89

Although from a strict scaling point of
view we could omit the numerical prefac-
tors factor 8, 1/4, etc., they significantly
affects the order of magnitude of the ef-
fect and the crossover values from one
regime to another. For realistic values of
µ in the 103 − 104 range, 8/

√
g is very

different from 1/
√

g. For this reason, nu-
merical prefactors are included in scaling
relations in this section.

We rewrite the energy, omitting the translation term involving x0:

E = −FX
︸ ︷︷ ︸

applied force

+ µ

(
X2

2
− y0

)2

︸ ︷︷ ︸

filament stretching

+ 2X2
︸︷︷︸

filament
bending

+ ky2
0

︸︷︷︸

network’s
response

(5.5)

Minimizing this energy yields:

F = µX(X2 − 2y0) + 4X (5.6)

0 = −µ(X2 − 2y0) + 2ky0 (5.7)

We can simplify this problem by replacing y0 by its value

y0 =
µX2

2µ + 2k
(5.8)

which yields the following equation for the value of X:

F =
µk

µ + k
X3 + 4X (5.9)

Importantly, the role of the filament’s stretching modulus and the
network’s stiffness are combined in a single parameter

g =
µk

µ + k
∼ min(k, µ) (5.10)

which corresponds to an effective stiffness of the system. This dimen-
sionless parameter controls the response of the filament to the plucking
force: indeed, its deflection X is governed by

F = gX3 + 4X (5.11)

Physically, there are two ways the end-to-end distance of the fila-
ment can vary: either by stretching the filament, or by deforming the
surrounding network. The response of the system is controlled by
the softest of these two deformation modes, encoded by the effective
stiffness g. The solution of this equation is thus determined by the
interplay between the plucking force F and the effective stiffness g. We
can distinguish two scaling regimes for the solution of Equation 5.11:

• F ≪ min
(
8/

√
g, 1

)
: the bending term dominates the energy, and

thus:

X ∼ F
4

(5.12)

and (using Equation 5.8)

y0 ∼ gF2

32k
(5.13)
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Figure 5.8: Plucking in the k � F � µ
limit.

• 8/
√

g � F � g: the stretching term dominates, hence

X ∼
(

F
g

)1/3

(5.14)

and

y0 ∼ g1/3F2/3

2k
(5.15)

Note that this regime only exists if g � 1, i.e. if both the network’s
and the filament’s stretching rigidities are much larger than the
filament’s bending rigidity.

The upper bounds of these scaling regimes are set by physical consis-
tency of our reasoning, which requires that displacements are small, i.e.
X � 1 and y0 � 1, for the simplification in Equation 5.4 to apply.

Large deformations. At large deformations, this simplification no
longer applies, and minimizing the energy is mathematically difficult.
We now briefly consider this case, where X and y0 (as defined on
Figure 5.7) are of order one, while δ� should remain small as discussed
earlier.

This requires to have k � µ to remain in the physical regime where
stretching remains small; in this situation the springs and fiber segments
align, as depicted in Figure 5.8. Even in this asymptotic regime, the so-
lution is quite complicated, and here we simply mention its asymptotic
solution when k � F � µ (and F � 1 so that the deformation is large),
in which case we have:

y0 ≈ 1 −
√

k
F
+ O(k/F) (5.16)

In this regime, we thus have y0 ∼ 1 and X ∼ 1.

5.1.3 Scaling regimes for the plucking dipole

Equations 5.12 to 5.16 describe quantitatively the deformation of a
plucked filament bound to a deformable network. We now discuss the
forces that this filament exerts on the surrounding network. They can
be decomposed in two components: a monopole of force F transmitted
in the x direction, and an additional force dipole ∆ = −2Fy = −2ky0

in the tangent direction. This plucking dipole is the relevant quantity
to assess the non-linear effects of plucking: indeed the network is
equivalent to a non-plucked network with a force F distributed at the
two anchor points of the filament, plus this additional dipole ∆ between
these two points. There are three scaling regimes for ∆, corresponding
to the three regimes for y0 (Equations 5.13, 5.13 and 5.16). In Figure 5.9,
we draw a scaling diagram for the value of ∆, as a function of the
applied force F and the effective stiffness g.
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Figure 5.9: Phase diagram for the scal-
ing regimes of the plucking dipole ∆ as a
function of applied force F and effective
stiffness g. The filled areas are the scal-
ing regions; the hatched area represents
the domain of parameters where the fila-
ment’s tangential force Fy is larger than
the applied force F, and thus non-linear
contraction dominates linear dipole trans-
mission.

a. smooth plucking

c. folded plucking

b. kinked plucking

Figure 5.10: The three regimes for
filament plucking, with everyday life
analogs. Schematics courtesy of Do-
minika Šulcová.

• smooth plucking: (F ≪ min(1, 8/
√

g)

∆ ∼ −gF2/16 (5.17)

In this regime, the filament curves smoothly, with a curvature radius
larger than the filament length. Its response is dominated by its
bending rigidity. The tangent force Fy is smaller than the buckling
force, but can be much larger than the applied force F.

• kinked plucking: (8/
√

g ≪ F ≪ g)

∆ ∼ −g1/3F2/3 (5.18)

Here the tangent force Fy is larger than both the buckling force and
the applied force F, while the stretching rigidity and the network’s
rigidity keep the deformation of the filament small. The curvature is
localized around the applied force, while the rest of the filament is
straight. This regime only exists if g ≫ 1.

• folded plucking: (max(g, 1) ≪ F ≪ µ)

∆ ∼ −2g (5.19)

In this last regime, the filament forms a cusp and folds around the
point where the force is applied, and the network undergoes large
deformations.

In all cases, the plucking dipole is contractile. Its magnitude depends
strongly on the stiffness of the network k through the effective stiffness
g ∼ min(µ, k). In Figure 5.11, we plot this plucking dipole for in the
case of a stretching- and a bending-dominated network.

A pertinent point of comparison for ∆ is the force dipole that an
active unit would exert on a filament if the same force F were exerted
tangentially on the filament: the typical force dipole is then ∆ref = −2F,
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 Figure 5.11: Force dipole exerted by a
plucked filament at its attachment points,
in the case of a. a stiff, stretching-
dominated network (k = µ), and b. a
soft, bending-dominated network (k = 1).
The blue line indicates the dipole ∆ pre-
dicted by the numerical minimization of
the energy in Equation 5.3). The dashed
lines are the scaling regimes described
in Equations 5.17 to 5.19, which are indi-
cated as colored areas in the background:
smooth (green), kinked (blue) and folded
(white). The reference dipole ∆ref = −2F
is also shown as a gray line. Force dipole
exerted by a plucked filament at its at-
tachment points, in the case of a soft,
bending-dominated network k = κ = 1,
with µ = 104.

Figure 5.12: Plucking forces applied as
a circular dipole of radius R0. The force
F is counted positive if going outwards
(i.e., an extensile dipole) and negative for
a contractile dipole, as depicted here.

which is plotted as gray lines in Figure 5.11. In other words, we compare
the tangent force Fy the filament exerts on the surrounding network
to the applied force F. In a large region of the phase diagram, as
materialized by the hatched area of Figure 5.9 (a part of the smooth
regime, and in particular in most of the “kinked” regime), the plucking
dipole’s magnitude is actually larger than ∆ref. This means that for
these parameters, contractility due to plucking is likely to dominate
the network’s response to local forces. Note however that this effect
only occurs when g � 1, i.e. when the network’s elastic modulus is
much larger than the filament’s bending rigidity. As a consequence,
this dominance of the plucking dipole can occur in stiff stretching-
dominated networks, but not in soft bending-dominated ones.

5.1.4 Force rectification and amplification in plucked net-

works

We have seen in Section 5.1.1 that plucking can result in a dramatic
amplification of the far-field dipole and, in the case of locally extensile
forces, stress rectification towards contraction. We now show that the
formulas we have derived in Section 5.1.3 in the case of a single filament
account for these effects.

We consider the system depicted in Figure 5.12, where as in Sec-
tion 5.1.1 forces are applied perpendicularly to a circle of radius R0, at
approximately πR0 mid-segment points (the rest length of a segment
being 2). The applied force dipole is thus:

Dloc = πR0 × F × R0 = πR2
0F (5.20)

Each plucked filament responds non-linearly to the applied force, and
exerts a plucking dipole ∆ in the orthoradial direction. These non-linear
contributions add up, resulting in an additional force dipole:

Dpluck = πR0∆ (5.21)



local nonlinearities in fiber networks 93

1 Read “capital alpha”.
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Figure 5.13: Force dipole for circular con-
tractile plucking forces, as in Figure 5.14.
The theoretical prediction from the mini-
mization of Equation 5.1 (blue line as in
Figure 5.11a.) was obtained by taking a
network stiffness k = µ. The agreement
between network simulations and single
filament plucking prediction is quantita-
tive for F < 1; at larger forces, buckling
occurs, which complicates the network’s
response. Parameters: µ = 104, system
radius R = 9. As force transmission is
linear beyond the plucked circle, the size
of the system is unimportant.

When F < 1, force transmission beyond the individual filament level
is then linear, and dipole conservation thus avails. The far-field force
dipole is then:

Dfar ≈ Dloc +Dpluck = πR0 (R0F + ∆) (5.22)

Dipole amplification The contribution of plucking to the far-field
dipole can be quantified by the dipole amplification1 A with respect to
the linear theory, which thus reads:

A =
Dfar

Dloc ≈ 1 +
∆

FR0
(5.23)

The three scaling regimes for ∆ discussed in Section 5.1.3 thus imply
the following scaling regimes for the dipole amplification:

A ≈







1 − gF
16R0

smooth regime, F ≪ min(1, 8g−1/2)

1 − g1/3

F1/3R0
kinked regime, 8g−1/2 ≪ F ≪ g

1 − 2g
FR0

folded regime, max(g, 1) ≪ F ≪ µ

(5.24)

In the smooth regime, the amplification increases with increasing F,
while it decreases in the kinked and folded regimes. It thus exhibits a
maximum close to the crossover value.

Stretching-dominated networks. In stiff networks, the plucking dipole
becomes of the same order of magnitude as the linear dipole within the
smooth plucking regime, for a force F ≈ 16R0/g. At forces larger than
this value, if the applied force dipole is extensile, the far-field dipole is
reversed and becomes contractile: the network rectifies extensile forces
towards contraction, as illustrated in Figure 5.14.

The maximal value of the amplification is attained at the crossover
between smooth and kinked regimes, for F ≈ 8g−1/2 (Figure 5.9), where
it culminates at

Amax ≈ 1 +
√

g
2R0

(5.25)

As g can be very large in this regime, so can the amplification. For
instance, for R0 = 2 and µ = 104, as in Figures 5.5 and 5.6, and taking
k = µ as the network is stretching-dominated, we thus predict Amax ≈
18.7. This single-filament prediction is in excellent agreement with data
presented in Figure 5.5, where we find Amax = 17.3. More generally,
we find that the predictions from Equation 5.24 are quantitative in the
whole range of values F < 1 where there is no buckling, as shown in
Figure 5.13. Our theory thus quantitatively accounts for the dramatic
stress amplification due to plucking in stretching-dominated networks.
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Figure 5.14: Linear response of a regu-
lar network to a circle of plucking forces.
Unstressed, tensed and compressed fila-
ments are respectively depicted in green,
blue and red. Red arrow represent the
plucking forces. The system is circular,
with fixed boundary conditions at the
gray circle; forces exerted by the system
at this boundary are shown as black ar-
rows. Parameters: µ = 104, F = 10−4.

a.

b.

Figure 5.15: Plucking in a bending-
dominated network. a. in the linear
regime (F = 10−4), and b. at the buckling
threshold, F = 1. Parameters: µ = 103.

Bending-dominated networks. In contrast, when g ∼ 1, the amplifi-
cation is maximal at F ≈ 4

√
2 regardless of the value of g. This maximal

amplification is

Amax ≈ 1 +
g

2
√

2R0
(5.26)

which remains close to one in this regime of parameters. For instance,
consider the case of a regular, bending-dominated network subjected to
circular plucking forces at a radius R0 = 3.2, as in Figure 5.15. Taking
a network rigidity k = 1, corresponding to a response dominated
by the bending rigidity, we predict using Equation 5.26 a maximal
amplification Amax ≈ 1.11, in very good agreement with our the data
in Figure 5.5, where we have Amax ≈ 1.15. Our local theory thus also
successfully captures the fact that the magnitude of the plucking effect
is negligible in bending-dominated networks. Indeed, in such networks
plucking is typically unable to reverse an extensile force dipole, as
shown in Figure 5.15b.

5.1.5 Discussion

In this Section, we have shown that exerting transverse forces on a semi-
flexible fiber segment, between its attachment points to the network,
results in an effective force dipole that contains a non-linear contractile
term, which we dub plucking dipole. We have proposed a simple theory
for this effect, which considers only the deformation of a single filament,
modeling the surrounding network as springs. The scaling regimes
we predict quantitatively account for far-field stress measurements in
simulated networks. We find that in soft, bending-dominated networks,
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Figure 5.16: Dipole reversal in a plucked
3D stretching-dominated network, in the
kinked regime. The extensile dipole ap-
plied at a spherical geometry (red cones)
are rectified into contractile forces at the
fixed boundary (black cones). For legibil-
ity, only half of the networks is shown.
Parameters: FCC network with F = 50
and µ = 103.

Figure 5.17: A myosin motor (blue) can
bind to a pair of actin filaments, and will
move towards their barbed end (right) un-
til it stalls. The force it transmit to each
filament includes a tangential component,
which results in plucking-induced con-
traction at the binding points of the fil-
aments to the network (black squares).
Adapted from (Lenz, 2014).
2 Lenz, M. (2014). Geometrical Origins of
Contractility in Disordered Actomyosin
Networks. Phys. Rev. X, 4(4):041002

this effect is essentially negligible. On the contrary, in stiff, stretching-
dominated networks, the plucking dipole completely dominates the
far-field response in a wide range of parameters. This results in a
dramatic amplification of the far-field dipole and, in the case of locally
extensile forces, in their rectification into effective contraction.

These effects of amplification and rectification are robust, and do
not depend on the network’s geometry or dimensionality, provided
that it is stretching-dominated. For instance, Figure 5.16 presents rec-
tification of a spherical extensile force dipole in a three-dimensional
face-centered cubic network. Indeed, the formulas derived in Sec-
tion 5.1.3 are dimensionality-independent.

Plucking was previously discussed by Lenz in the context of acto-
myosin contractility2, where he theoretically considers the force dipole
that a complex of a myosin motor bound to two actin filaments trans-
mits to the surrounding network. Actin semiflexible filaments are
modeled as worm-like chains, while myosin is modeled as a “zipper”
that processively moves along the polar filaments. Lenz then finds that
filament plucking dominates this response and can lead to large force
dipoles transmitted to the network; however he considers only rigid
anchor points for the actin filaments, which fails to capture the key
importance of the network’s rigidity on the amplitude of the plucking
dipole. Including network deformations in this kind of more realis-
tic models would be, we suggest, an interesting direction for future
research.
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Figure 5.18: Buckling of a filament pre-
vents it from transmitting compressive
stress, leading to a local dominance of
tensile stresses that results in far-field
contraction.
3 We recall the mean-stress theorem:

Dfar = Dloc − Σ

5.2 Buckling

The second kind of local non-linearity in fiber networks we consider in
this Chapter is the buckling instability. Buckling occurs when a filament
is subjected to compressive, tangential forces. If the compressive stress
is larger than the buckling threshold, the filament yields and bends, and
is unable to withstand further stress. This results in a truncation of
compressive stresses along a fiber, which cannot exceed the buckling
threshold. Tensile stresses, on the other hand, are not bounded, and
can propagate. In this Chapter, we investigate the consequences of this
constitutive asymmetry between tension and compression on the local
response of fiber networks to active forces.

The fact that fibers cannot bear compressive stresses above the buck-
ling threshold leads to a shift of the average stress towards tension,
which can propagate. We have seen in Section 4.1.2 that the mean-
stress theorem3 connects local to far-field forces through the integrated
stress Σ =

∫
σ dV. At linear order, symmetry between compression

and tension in the response to point forces makes this quantity vanish.
When there is buckling however, compressed elements yield, lead-
ing to a dominance of tensile stresses, for which σ > 0. As a result,
Σ > 0, which leads to far-field stresses that are more contractile (or
less extensile) than in the linear regime. We illustrate this effect with
Figure 5.1, where large local forces result in uniform far-field contrac-
tion, regardless of their local geometry. In the specific case where forces
are applied transversely to a filament in a stiff, stretching-dominated
network, we have shown in the previous Section how plucking accounts
for this far-field contraction. In this Section, we show how buckling,
more generically, can account for the rectification of all local forces
towards uniform, amplified contractility in both stretching-dominated
and bending-dominated elastic fiber network.

We start this Section by considering the case of regular, two-dimensional
stretching-dominated networks. In Section 5.2.1 we show how buckling
there results in such a rectification of local forces into uniform and
strongly contractile stress. In Section 5.2.2, we then show how these
results extend to soft, disordered bending-dominated networks. We
conclude on the generality of these effects in Section 5.2.3 by demon-
strating that they apply independently of the dimensionality of the
network and the distribution of local active forces. Finally, using a spe-
cific model, we demonstrate in Section 5.2.4 that buckling of individual
filaments is indeed responsible for force rectification and amplification
in fiber networks.
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Figure 5.19: Linear response to an exten-
sile force dipole.

Figure 5.21: Close-up on the network
around the strong extensile dipole in Fig-
ure 5.20.

5.2.1 Stress rectification and isotropization

We now show that in two-dimensional, stretching-dominated networks,
local forces larger than the buckling threshold are rectified into strong
isotropic contraction. Consider local forces applied in a simple, regular
triangular lattice, as in Figure 5.19. We choose forces applied in the
form of a two-points force dipole, exerted at the nodes of the network
to avoid plucking of the filaments. For emphasis of the effect, we
consider locally extensile forces. The linear response results in a simple
transmission of these pushing forces to the boundary, as depicted in
Figure 5.19. Note the presence of slightly contractile forces in the
direction normal to the dipole, which result from the fact that the
network’s Poisson ratio is positive.

Figure 5.20: Response of the network to
forces larger than Fb, respectively exten-
sile (left) and contractile (right). The am-
plification of far-field forces is A = −0.55
and A = 3.6, respectively. For better
rendering of the deformation, the follow-
ing parameters were chosen: µ = 102,
F = 40.

Rectification and amplification. The situation is dramatically differ-
ent in the large force regime (F � Fb), where fibers buckle and induce
nonlinear network response. This is illustrated in Figure 5.20, where
in response to a strong extensile force dipole, the far-field forces are
contractile. The amplification ratio A = Dfar/Dloc is thus negative.
Extensile local forces are thus rectified towards contraction. In response to
contractile local forces, on the other hand, the far-field stresses remain
contractile and become amplified, with A > 1. We will study this am-
plification ratio more thoroughly in the next Chapter, however let us
note here that it can become significantly larger than one, as in shown
in Figure 5.22.

These three regimes – linear for |F| < Fb, amplification for F < −Fb

and rectification for F > Fb – are visible in Figure 5.22, where we
plot Dfar as a function of Dloc. The breakdown of the linear relation
Dfar = Dloc is concomitant with the onset of buckling in the vicinity of
the points of application of the forces. The origin of these behaviors is
apparent from the spatial arrangement of the forces around the applied
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Figure 5.22: Amplification, linear and rec-
tification regimes for Dfar in a regular tri-
angular network, as a function of the lo-
cal dipole Dloc. The dashed line indicates
the linear relation Dfar = Dloc. Parame-
ters: µ = 2.103, system radius R = 11.

Figure 5.23: At large local forces, far-field
stresses become isotropically contractile
regardless of the local anisotropy of the
active force distribution. Parameters: µ =
104, R = 25, F = 250.

forces, as shown in Figure 5.21. While contractile and extensile active
units both induce a combination of compressive and tensile stresses in
their immediate surroundings, the buckling of the individual bonds
prevents the long-range propagation of the former. This results in
enhanced tensile stresses in the far-field, and thus in strongly contractile
far-field dipoles.

Note that in this Section, we apply force dipoles on next-to-nearest
neighbors rather than nearest neighbors, such that the two point forces
are exerted on distinct fibers. The rationale for this choice is both
physical and practical. Physically, cells embedded in extracellular
matrix, as well as myosin motors pulling on actin, typically exert forces
on different filaments (a myosin thick filament will, for instance, anchor
to a pair of actin filaments). Practically, force dipoles applied on nearest
neighbor vertices result in a stress response that is dominated by the
very stiff stretching response of the bond joining the two vertices. In
such a situation, the response of the system will be dominated by local
effects even in the bending-dominated regime, which is both unrealistic
and trivial. An alternative option would have been to systematically
remove the bond joining the two vertices. However, this biases the
network to be locally softer than average, while applying the forces on
next-to-nearest neighbors does not introduce such a bias.

Stress isotropization. In Chapter 4, we have seen that linear force
transmission preserves not only the trace of the force dipole, but also all
of its tensorial components: the local force anisotropies (up to the dipo-
lar order) are transmitted to the far-field. This comes in sharp contrast
to force transmission in the presence of buckling: on top of rectifying
all forces into contraction, buckling leads to a loss of information about
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Figure 5.24: Anisotropy parameter as a
function of the local dipole, in a regular
triangular network. Parameters: µ = 104,
R = 25.
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Figure 5.25: Decay of the anisotropy pa-
rameter at large local forces (extensile
dipole), for various values of the system
size R and stretching modulus µ. The
dashed line is a tentative exponential de-
cay fit, which works reasonably well over
three decades of αfar.

the geometry of local forces in the far-field. At relatively large forces,
this far-field stress distribution becomes close to isotropic contractility,
regardless of the geometry of the active local forces. This phenomenon
is well illustrated by Figure 5.1, where various local force distributions –
contractile (1) and extensile (2, and Figure 5.23) dipoles, and a random
set of forces with zero sum and torque (3) – all lead to very similar
far-field stresses.

We can quantify this effect of isotropization using an anisotropy
parameter for force dipoles, which we define as the squared norm
of its non-isotropic component, divided by its total squared norm:

α(D) =

∥
∥
∥D − 1

d Tr(D)Id

∥
∥
∥

2

‖D‖2 = 1 −

(

∑µ Dµµ

)2

d ∑µ,ν DµνDνµ
(5.27)

where d is the space dimension, D is a force dipole tensor, and Id

is the d-dimensional identity matrix. Defining αloc = α(Dloc) and
αfar = α(Dfar), the conservation of the force dipole tensor in linear
elastic media imply that αfar = αloc.

We plot αfar as a function of the local force dipole in Figure 5.24.
In the linear regime, for |F| < Fb, the anisotropy of the applied forces
αloc = 0.5 is indeed transmitted to the far-field, as indicated by the
dashed line. In contrast, this anisotropy parameter indeed becomes
very small for large local dipoles of either sign: the force distribution is
“isotropized” through non-linear force transmission.

More precisely, αfar appears to go to zero in the triple limit of infinite
system size R → ∞, infinite force F → ∞ and infinite stretching
modulus µ → ∞. Indeed, as shown in Figure 5.25, αfar exhibit an
apparently exponential decay with F, which saturates at a plateau that
depends on R and µ. It seems that when these two quantities are large,
the plateau value decreases, down to very small values of αfar – which
can be as small as 10−6 in our simulations – where the far-field stress
is almost isotropic. While a large system size seems to be necessary to
attain the fully isotropic limit, we note that αfar ≈ 0.05 is attainable with
a system of only two mesh sizes of radius: most of the isotropization
happens locally.

We have thus shown in this Section that in regular, stretching-
dominated lattice fiber networks, local force dipoles which exceed
the filament buckling threshold are rectified into large contraction,
which is close to isotropic at large force.

5.2.2 Disordered, bending-dominated networks

We now extend these results to the case of soft, bending-dominated
depleted networks. In contrast with the plucking effect introduced
in Section 5.1, which is relevant only in stiff, stretching-dominated
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Figure 5.26: (a-b): In the linear response
regime, the far-field dipole Dfar exhibits a
broad distribution with average Dloc and
signal-to-noise ratio = 0.3. (histogram;
the gray and white areas correspond to
contractile and extensile systems, respec-
tively). The square and red bar indicate
the mean and standard deviation of the
distribution. Insets: contractile and exten-
sile active forces (red arrowheads) propa-
gate along a complex network of force
lines (blue=tension, red=compression),
resulting in randomized force distribu-
tions at a fixed boundary (black arrows).
c-d: At larger forces, both contractile and
extensile dipoles typically result in con-
tractile forces at the boundary (Dfar < 0).
The corresponding distributions of am-
plifications are narrower than in the lin-
ear case (signal-to-noise ratio = 2.6 and
1.1, respectively). Parameters: p = 0.6,
µ = 103, F = ±10−50 (a-b) and F = ±20
(c-d), average over 104 samples.

networks, we show here that bending-dominated networks are actually
more sensitive to buckling. We thus find that the effects of rectification,
amplification and isotropization apply to these networks; in addition,
the transmission of such non-linear forces in depleted networks is more
reliable than that of infinitesimal forces, as we now show.

Randomization at linear order. We have seen in Section 4.4 that the
linear response of such networks, while obeying dipole conservation on
average, exhibits large fluctuations. The very low signal-to-noise ratio in
force transmission results in a “randomization” of the far-field response
to active local forces. We recast this result by plotting the distribution
of linear amplifications of a two-point force dipole (Figures 5.26 a-b).
For instance, a significant fraction (37%) of all network geometries
yield negative amplification, i.e., an effective extensility in response to a
contractile dipole (inset of Figures 5.26). Due to linearity, contractility
in response to an extensile dipole is just as likely. Overall, the far-field
response in the linear regime is only loosely correlated to the applied
force dipole.

Buckling and rectification. The situation is dramatically different in
the large force regime (F0 � Fb), where fibers buckle and induce nonlin-
ear network response. This is illustrated by the distributions of dipole
amplifications in two opposite cases: a large contractile and a large
extensile force dipole (Figures 5.26 c-d). While the detailed shape of
these curves are model-dependent, three robust features emerge: First,
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Figure 5.27: Far-field dipole as a func-
tion of the local dipole in a 2D bending-
dominated network, showing amplifica-
tion and rectification in the nonlinear
regime. The dashed line indicates the
linear prediction Dfar = Dloc. Parame-
ters: p = 0.6, µ = 2.103, R = 7, average
over 104 samples.
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Figure 5.28: Far-field stress anisotropy as
a function of the local force dipole in a
2D bending-dominated network. Param-
eters: p = 0.6, µ = 2.103, R = 21, average
over 103 samples.

Figure 5.29: Rectification of an extensile
force dipole due to buckling, in a regular
bending-dominated network. The dipole
amplification is A = −0.3. Parameters:
F = 3, µ = 103.

locally extensile dipoles predominantly undergo negative amplification,
and are rectified into far-field contractility irrespective of the sign of
Dloc (as in, e.g., the inset of Figure 5.26 d). Second, the randomization
observed in the linear regime is strongly attenuated, and the sign of the
amplification is very reproducible (positive for 98% of the contractile
dipoles and negative for 86% of the extensile ones). Third, the mag-
nitude of the average amplification is significantly larger than one (in
Figure 5.26 c-d 〈Dfar/Dloc〉 = 6.9 and −3.2 for contractile and extensile
dipoles, respectively).

The effects of rectification and amplification of the dipole observed
in the case of a regular network are thus preserved and statistically
robust in the case of depleted, bending-dominated random networks.

Isotropization in bending-dominated networks. The far-field stress
distributions are typically quite anisotropic for an individual sample
of a random network, as evident in the networks shown in the insets
of Figure 5.26. Indeed, the average anisotropy of the far-field stress
persists at large forces, as shown in Figure 5.28 (red curve). However,
these anisotropies are randomly oriented, and it is more relevant to
consider the anisotropy of the average far-field stress (blue curve).
Dipole conservation at linear order imposes that this quantity equals
the anisotropy of applied forces at linear order (0.5 for a uniaxial force
dipole in a 2D system). At large force, similarly to the regular stretching-
dominated case, we observe that the average far-field stress becomes
close to isotropic: the information about the orientation of the local
active forces is lost through non-linear force transmission.

5.2.3 Generality of stress rectification and amplification

On the examples of two-point force dipoles in regular stretching-
dominated and random bending-dominated 2D networks, we have
thus shown that buckling results in a rectification and amplification of
large local forces into isotropic contraction in the far-field, regardless
of their local geometry. These effects are generic properties of force
transmission in elastic fiber networks, as we illustrate here. For instance,
in contrast with plucking, rectification due to buckling can be observed
regular bending-dominated networks (Figure 5.29).

We have systematically investigated these effects of rectification,
amplification and isotropization of the stress in both bending- and
stretching-dominated depleted networks, and in two and three dimen-
sions, as shown in Figure 5.30. The far-field dipole and anisotropy
dependence on the applied forces is, in each case, qualitatively sim-
ilar to the 2D networks already discussed. Note that the very small
threshold for non-linear effects is also observed in three-dimensional,
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Figure 5.30: Rectification, amplification and isotropization effects are generic features of force transmission in fiber
networks. a-c: Illustration of the rectification effect in response to an extensile force dipole in various networks. Because
compressed segments buckle (red bonds), only tensile stresses (blue bonds) are propagated to the far-field. d, f, h: The
far-field dipole becomes large and contractile for large local force dipoles of either sign. e, g, i: The anisotropy of the
far-field stress vanishes for large local force dipoles.
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Figure 5.31: Rectification of arbitrary lo-
cal force distributions into far-field con-
tractility. We consider systems where ran-
dom forces are applied in a small area of
7 lattice vertices, with the constraint that
the total force and torque vanish. By sym-
metry, the resulting average local force
dipole is equal to zero. a: Typical con-
figuration, showing rectification at large
forces. b: The distribution of the effective
dipole measured at the boundary in the
linear limit (F � Fb). As expected, the
distribution is centered around zero, and
the average effective dipole thus vanishes.
c: In the large force limit, effective dipoles
are overwhelmingly contractile (95% of
cases), demonstrating the generality of
the rectification effect. Here p = 0.8.
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Figure 5.32: Far-field force dipole in re-
sponse to local forces, in an “antibuckling
network”, i.e. a regular triangular lattice
where all bonds are replaced by the local
unit in inset. We designed this local unit
so that it yields under tensile stress and
resists to compressive stress.

Figure 5.33: Reversal of contractile
forces into far-field extension in an “anti-
buckling network”. Parameters: µ = 104,
F = 400.

Figure 5.34: Close-up on Figure 5.33.
4 To the author, at least.

randomly depleted networks in the bending-dominated regime (Fig-
ure 5.30 h-i).

Complicated local force distributions. Finally, the precise geometry
of the applied forces does not influence much the rectification effect, as
illustrated by Figure 5.31 where we consider the response of a depleted
network to a localized set of random forces. Again, for local forces the
far-field response is overwhelmingly contractile.

5.2.4 Buckling and contraction: local asymmetry, global

consequences

We have thus shown in this Section that beyond the immediate neigh-
borhood of the active force-generating unit, strong isotropic contractile
stresses emerge in the system from a generic local force distribution,
due to the nonlinear force propagation properties of the fiber network.
The crucial role of fiber buckling in this emergence of contraction can
be further supported by the following “numerical experiment”. We
consider a similar lattice-based model, but replacing all segments of a
regular triangular lattice by the unit pictured on the inset of Figure 5.32.
This unit was designed so as to “anti-buckle”: it yields under tension
larger than a threshold force Fb, while it resists under compression.

Measuring in Figure 5.32 the far-field force dipole in response to
local forces in this network, we observe the same effects of rectification
and amplification of the stress – except that this time, extensile forces
dominate. Contractile force dipoles are reversed at large forces, and
extensility emerges in response to arbitrary local forces. This simulation
demonstrates the central role of buckling in the emergence of contrac-
tion in fiber networks: reversing asymmetry in the force-extension of
individual filaments results in a inversion of the rectification effect.

The asymmetry of the force-extension relation of the individual
bonds constituting a fiber network thus results in the dominance of far-
field contractile stresses. We note here that other physical systems, such
as granular materials, exhibit force-extension relations for individual
bonds that are essentially reversed, and closer to the anti-buckling units
presented here. Hard spheres can be seen as an extreme case of this
scenario: they can, by definition, sustain any amount of compressive
stress, but will yield under any tensile stress. The consequences of
this phenomenon are well-known in materials science: for instance,
concrete needs to be reinforced so as not to crack under tension. Our
simulations thus show that in response to large localized forces, such
materials will tend to expand, regardless of the geometry of the applied
forces. While this result may seem appealing4, it may not be particularly
useful. Indeed, the transmission of forces from the microscopic to the
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5 Note that from the point of view of a
single fiber made of atoms, buckling is
also a geometric nonlinearity, as it arises
due to the elongated geometry of the
fiber rather than of the inter-atomic in-
teractions; however, at the coarse grained
scale of the fiber network, it is an intrinsic
“constitutive” property of the individual
fibers.

macroscopic scale is, to this day, mostly interesting in the context of
biological systems – where fibrous materials are prominent – in which
local forces are exerted actively. In contrast, granular materials are
typically passive, and their response to localized bulk forces does not
have obvious applications.

5.3 The emergence of contractile stresses

We have discussed in this Chapter two kinds of local nonlinearities
in the response of elastic fiber networks to local forces: plucking in
response to normal forces, and buckling in response to compressive
forces. In spite of their apparent similarity, the nature of these two
effects is very different. Buckling is a constitutive nonlinearity: it is
a property of the force-extension relation of individual semiflexible
fibers5. It originates from their stiff, one-dimensional nature, and is
intrinsically nonlinear, as it occurs only above a threshold force. In
contrast, plucking is a purely geometrical nonlinearity, which sets in at
infinitesimal force. It arises from the geometry of the exerted forces,
while the precise nature of the force-extension relation of the filaments
is irrelevant.

The consequences and importance of these two effects are also very
different. Plucking leads to a force amplification, due to a geometrical
projection effect: the tension in the filament can be much larger than the
applied force. This results in dramatic effects, as this plucking tension –
which is always tensile – can completely dominate the response, and
for instance result in a reversal of extensile dipoles. However, it is a
completely local effect: it either occurs at the point where the force is
applied (if it is part of a soft mode), or not at all. Buckling, on the other
hand, does not result in any local force amplification, but changes force
transmission: it induces a better propagation of tensile stresses. This is
not confined to the force application point, but can also strongly affect
force transmission on large scales, as we will see in the next Chapter.
Finally, buckling is a more generic property of fiber networks than
plucking: while the latter occurs only in some specific configurations
and in stiff networks, the former is essentially impossible to avoid,
as soon as the applied forces are larger than the buckling force. In
particular, most biologically relevant fiber networks are considered to
be bending-dominated in physiological conditions. We have shown
here that in such networks, plucking is essentially nonexistent, while
buckling is easy and starts to be relevant at small forces.

Both of these phenomena result in far-field contraction, irrespective
of the contractility of the source – provided that the local forces are
strong enough. For this reason, we qualify this contractile nature of fiber
networks as emergent. This emergence of contraction is accompanied by
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a loss of information about the geometry of the source through force
transmission. While linear materials preserve the sign and anisotropy
of the source, we have shown here that in the presence of buckling, an
isotropization of the stress occurs. A consequence of this combination of
rectification and isotropization of the stress towards uniform contraction
is that the local geometry of applied forces is of little relevance to the
far-field response.





6

Buckling and force transmission

I think there is only one way to do science – or to do philosophy

for that matter; to meet a problem, to see its beauty and fall in

love with it; to get married to it, and to live with it happily, till

death do ye part – unless you should meet another and even

more fascinating problem, or unless indeed you should obtain a

solution. But even if you do obtain a solution you may then

discover to your delight, the existence of a whole family of

enchanting though perhaps difficult problem children for whose

welfare you may work, with a purpose to the end of your days.

— Karl Popper, Realism and the Aim of Science.

When compressed above a certain threshold force, a semiflexible
fiber will yield and buckle. In the previous Chapter, we have seen
how buckling modifies force distributions locally, and rectifies all forces
towards isotropic contraction. It truncates compressive stresses above
the buckling threshold, leading to a dominance of tensile stresses in
the neighbourhood of a strong active unit. These tensile stresses may
largely exceed the buckling force, and can thus lead to further filament
buckling as they propagate towards larger scales. In this Chapter, we
investigate the consequences of buckling at mesoscopic scales, beyond
the immediate vicinity of the active unit:

What is the role of buckling in
large-scale force transmission?

We will show that buckling modifies the scaling of stress decay away
from an active unit, leading to long-ranged transmission of tensile
forces. The distance at which an active unit is able to buckle fibers
defines a new length scale R∗, which characterizes the range of non-
linear effects that an active unit induces in the network. In Section 6.1,
we start this Chapter by theoretical, continuum considerations about the
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Lamé’s parameters are convenient, as
they yield very simple, dimensionality-
independent stress-strain and strain-
energy relations. The strain-energy re-
lation is:

E(γ̂) =
λ

2
(Trγ̂)2 + GTrγ̂2 (6.3)

The shear modulus is simply equal to G,
while the bulk modulus, for instance, is
given by

K = λ +
2
d

G (6.4)

The Poisson ratio is:

ν =
λ

2G + (d − 1)λ
(6.5)

role of buckling in force transmission. We then present in Section 6.2
the adapted numerical model and in Section 6.3 the methods by which
we study this force transmission problem in fiber networks. We finally
discuss our numerical results in Section 6.4, and present open problems
regarding soft disordered networks.

6.1 Linear and rope-like force transmission

We now study theoretically force propagation beyond the immediate
vicinity of a strong active unit. We identify two asymptotic regimes
for this propagation: in the far-field (Section 6.1.1), forces are too weak
to result in buckling (or any other kind of nonlinear response), and
linear elasticity theory applies. In the near-field, buckling results in a
modification of the equations for force transmission (Section 6.1.2). The
crossover between these two regions defines a new length scale, the
“buckling radius” R∗ (Section 6.1.3) which characterizes the far-field
amplification of the stress (Section 6.1.4).

6.1.1 Linear force transmission

We consider a single active unit, localized at r = 0, embedded in an
infinite d-dimensional fiber network. Let us start by considering the
far-field response of the network. In this regime, stresses are small,
and thus linear elasticity prevails. In the continuum limit, mechanical
equilibrium in the absence of external forces yields ∇ · σ = 0. As-
suming spherical symmetry, we can rewrite this equation in spherical
coordinates as:

1
rd−1

d
dr

(

rd−1σrr

)

− d − 1
r

σθθ = 0 (6.1)

where σrr(r) is the radial stress and σθθ(r) the angular stress (where
θ denotes any of the d − 1 angular directions). In an isotropic linear
elastic material, the stress tensor is linear in the strain tensor:

σ̂ = 2Gγ̂ + λ(Trγ̂) Îd (6.2)

where G and λ are Lamé’s parameters for the material. In a spherically
symmetric material, the strain components are:

γrr =
du
dr

(r) ; γθθ =
u(r)

r
; γrθ = 0 (6.6)

where u(r) is the radial displacement of the material. The stress com-
ponents are therefore:

σrr = (2G + λ) du
dr (r) + (d − 1)λ u(r)

r (6.7)

σθθ = λ du
dr (r) + (2G + (d − 1)λ) u(r)

r (6.8)
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It is interesting to note that the spheri-
cally symmetric deformation of a linear
elastic material does not depend on its
elastic moduli – and in particular on its
Poisson ratio. The generic solution with
arbitrary boundary conditions reads:

u(r) = Ar−(d−1) + Br.

1 The expression “cable network” can also
be found in the literature, for instance
in (Schwarz and Safran, 2013), with a
slightly different meaning.

Equation 6.1 thus yields:

(2G + λ)

(
d2u
dr2 +

d − 1
r

du
dr

− d − 1
r2 u

)

= 0 (6.9)

which can be rewritten as

d
dr

[

r1−d d
dr

(

rd−1u
)]

= 0 (6.10)

Here we are interested in the deformations in response to a localized
active unit in an infinite system, which should therefore vanish in the
r → ∞ limit. Solving Equation 6.10 yields u(r) ∝ r−(d−1), which from
Equations 6.2 and 6.6 implies:

σrr(r) ∝ r−d (6.11)

The radial stress thus decays as r−d with distance to an active unit in a
linear elastic material.

6.1.2 Rope-like networks

Let us now consider the transmission of large forces in a fiber network.
The tensile strength of fibers allows the material to sustain any tensile
stress, while compressive stresses above the buckling threshold are
truncated. In the large force limit, we can therefore neglect all compres-
sive stresses. We describe such a material as a rope network1. Indeed,
in the limit of large stresses, the bending rigidity of semiflexible fibers
becomes negligible, and they behave as flexible, almost inextensible
ropes, which can sustain arbitrarily large tension, but no compression.

In a radial geometry, where an active unit exerts contractile forces
at r = R0, we can again write the spherically symmetric force balance
equation (Equation 6.1):

1
rd−1

d
dr

(

rd−1σrr

)

− d − 1
r

σθθ = 0

Here the radial stress is tensile, while the angular components are
compressive, and can therefore be neglected due to buckling, which
yields:

1
rd−1

d
dr

(

rd−1σrr

)

= 0 (6.12)

The solution of this equation is straightforward, and reads:

σrr(r) ∝ r−(d−1) (6.13)

Tensile forces thus decay as r−(d−1) in rope networks, and are there-
fore longer-ranged than in linear elastic materials. Physically, this
longer range for forces comes from the fact that in a linear material,
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weakening materials and the elastic fields
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chanics and Physics of Solids, 85:16–32

3 Xu, X. and Safran, S. A. (2015). Nonlin-
earities of biopolymer gels increase the
range of force transmission. Phys. Rev. E,
92(3):032728

radial tensile stresses are partially balanced by angular compression
(Equation 6.1), while no such compensation occurs in a rope network
(Equation 6.12). This long-range force transmission properties of elas-
tic media with buckling was independently proposed by (Notbohm
et al., 2014)2, although using a peculiar linear-by-parts force-extension
relation which results in different force transmission exponents and a
singular absence of linear response at small force.

6.1.3 The buckling radius R∗

Consider an active unit of size R0, exerting a contractile stress F at
r = R0. When this active stress is sufficient to induce buckling in the
surrounding network, the stress decay corresponds to the rope-like
regime (Equation 6.13), and thus:

σrr(r) ≈ F
(

R0

r

)d−1

(R ≪ R∗) (6.14)

This equation remains valid as long as force-transmission is rope-like.
However, at large distance the stress decays and eventually becomes
smaller than the buckling force. At this point, compressive stresses be-
come important, and force transmission crosses over to linear elasticity.
Denoting by R∗ this crossover length, we thus have in the far-field:

σrr(r) ≈ F
(

R0

R∗

)d−1 (R∗

r

)d

(R ≫ R∗) (6.15)

We can expect that this crossover between rope-like and linear force
transmission occurs when radial stresses are comparable to the buckling
stress, which implies that the crossover length depends on the active
force as

R∗ ≈ R0

(
F
Fb

)1/(d−1)

. (6.16)

In two- and three-dimensional networks, this crossover length thus
grows as F (resp.

√
F), and can therefore be very large for strong

active units. Such a crossover length between near-field, long-range
force transmission and the far-field linear regime was independently
discussed in continuum theoretical models by (Xu and Safran, 2015)3,
although with different scaling exponents due to a different modeling
of buckling, which allows the material to sustain large compressive
stress.

6.1.4 Stress amplification

Equation 6.15 describes the far-field effect of a strong active unit which
induces buckling in a region of radius R∗ around it. We can compare it
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Figure 6.1: “Pinching” of a contractile
two-points force dipole in a depleted net-
work, where the two points of force exer-
tion have collapsed to a point. The “dust”
(small black arrowheads) in the rest of the
network indicates non-converged resid-
ual forces, an algorithmic consequence
of the singular nature of the force dipole
Hamiltonian at a pinching point. Param-
eters: p = 0.55, F = 3.
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−F0
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Figure 6.2: Force exerted by our
“isotropic puller” model for active units,
as in Equation 6.19.

to the far-field stress σ
(lin)
rr (r) it would induce in a linear elastic medium,

in the absence of buckling:

σ
(lin)
rr (r) ≈ F

(
R0

r

)d

(6.17)

The far-field stress in the presence of buckling is thus amplified with
respect to the linear stress field, as:

σrr(r)

σ
(lin)
rr (r)

≈ R∗

R0
(R � R∗) (6.18)

Since the “buckling radius” R∗ grows with F and can be arbitrarily
large, we conclude that buckling can lead to very large amplification of
the far-field effects of an active unit. We now validate numerically the
theoretical picture drawn in this Section.

6.2 A model for active units as "isotropic pullers"

In order to study transmission of large, tensile stresses in fiber networks,
we first have to adapt our model for active units. Indeed, two-point
force dipoles – as employed in the previous Chapter – are ill-fitted
for this task, as the force they can exert is limited by a “pinching”
effect: above a certain threshold, the points on which the force is
applied collapse to a point, and they cannot exert any more force on
the surrounding network. This effect is particularly notable in bending-
dominated networks, where the network undergoes large deformations
at forces just above the buckling force, as illustrated in Figure 6.1.

This effect does not reflect a physical reality: biological active units,
such as molecular motors and contractile cells, will continuously pull
fibers in without collapsing. To study the response of fiber networks to
large active forces, we thus need to adapt our model for active units.
The model we propose is a localized, quadratic-by-parts potential well
which processively “sucks in” nearby nodes of the network, and is
therefore capable of exerting arbitrarily large forces without changing
its size. This potential well is isotropic, which simplifies the study of
radial stress propagation. This choice is furthermore justified by our
study of the “isotropization” phenomenon in Chapter 5, where we have
shown that local anisotropies are physically irrelevant in the large force
case we consider here.

More precisely, our model active unit is centered on a vertex i of the
network, and pulls on every node j within a distance 2R0 with a radial
force

Fij =







−F0
rij
R0

r̂ij if rij < R0

−F0(2 −
rij
R0
)r̂ij if R0 � rij < 2R0

(6.19)
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Figure 6.3: An isotropic puller embedded
in a bending-dominated network. The
light and dark red disks respectively in-
dicate radius of 2R0 (where the active
force vanishes) and R0 (where it is max-
imal). Note the presence of a “clump”
of fibers at the bottom of the well. The
red arrows indicate tensions of the fila-
ments that span the outer boundary of
the motor.

Figure 6.4: The same active unit, repre-
sented by a single disk of radius R0, as
in the remainder of this Thesis.

where F0 is the maximum force exerted by the unit on a vertex, rij is
the distance between i and j and r̂ij is the associated unit vector. The
vertex j exerts in return a radial force −Fij on the active unit node
i, such that force and torque balance are ensured. In order to avoid
the “plucking” effects described in Section 5.1, only lattice vertices are
affected by the potential well, not mid-segment nodes. In practice, we
choose R0 = 1.95 throughout this Thesis (i.e., the force is maximal at a
distance of one lattice mesh size – or two mid-edge segments).

At infinitesimal force, such an active unit behaves exactly as a super-
position of two-point force dipoles. At larger forces, and in particular
at F0 > Fb in bending-dominated networks, the deformation around
the active unit is large (Figure 6.3). The continuous “pulling in” of
the unit results in an accumulation of fiber segments as a “clump” at
the bottom of the potential well. This accumulation is an artifact of
our model, the important part being the forces that are transmitted to
the rest of the network by the filaments spanning the potential well’s
boundary, indicated as red arrows in Figure 6.3.

A strong active unit in a soft network may thus exert forces on large
number of vertices, exerting a force ≈ F0 on each of them. Adding
the contributions of all these fibers results in a large local dipole, the
magnitude of which is not well reflected by the value of F0. Further-
more, in soft networks, a large part of these exerted forces is directly
compensated by the presence of compressive stresses inside the clump:
segments that fall inside the potential well are compressed, since both
of their endpoints are attracted towards the bottom of the well. Such
stresses are irrelevant to the physics of the problem. To account for
these effects, we employ the mean-stress theorem that we derived in
Section 4.1.2. We remind the reader that at mechanical equilibrium,
this theorem relates the force dipole Dloc exerted locally by active units
to the far-field resulting force dipole at a fixed boundary Dfar through
the integrated stress Σ, which is the sum of stresses inside the elastic
medium:

Dfar = Dloc − Σ (6.20)

We can rewrite this equation in the case of an isotropic puller i:

Dfar = ∑
j|rij<2R0

Fijrij

︸ ︷︷ ︸

Dloc

− ∑
edges e

σe (6.21)

Here Dloc is the internal force dipole that the active unit exerts directly
on filaments within its interaction range 2R0. We can now decompose
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4 And quite reassuringly these two meth-
ods give the same result numerically.

5 Strictly speaking, F as defined here
would be a stress. However, the author
feels that enough quantities are called
“stress” in this manuscript already, and
since the segment length is normalized
this is also the typical force that the active
unit exerts on a filament.

this equation into components outside and inside the active unit:

Dfar =



 ∑
j|rij<2R0

Fijrij − ∑
e inside clump

σe





︸ ︷︷ ︸

Dunit

− ∑
e outside clump

σe (6.22)

This effectively results in separating the system into two subsystems,
namely the inner and outer parts of the unit. The effective dipole that
the active unit exerts on the rest of the network is Dunit. Each of the
subsystems obeys a separate mean-stress theorem:

Dunit = Dloc − Σclump (inside) (6.23)

Dfar = Dunit − Σout (outside) (6.24)

Here Σclump and Σout are respectively the integrated stress for the
portion of the network at a distance r < 2R0 and r > 2R0. The network
edges that span the outer boundary of the active unit contribute to both
terms, in proportions corresponding to the overlap with each region.
Equation 6.23 describes the internal state of the active unit, which is
uninteresting and quite unphysical. On the other hand, Equation 6.24

involves precisely the quantities of interest: it describes how the forces
resulting from the action of the motor at the local scale propagate
through the network to result in far-field stresses. Note that Dunit can
equivalently be computed by measuring the dipolar moment of the
forces at a virtual “cut” of the system at a radius 2R0 of the active unit4,
as indicated in Figure 6.3.

Note that in the linear case, we have Dloc = Dfar (on average in dis-
ordered systems), while nothing constrains the value of Dunit: indeed,
we have proved in Chapter 4 that Σout + Σclump vanishes in the linear
regime, but generically each of these two terms is different from zero.
For this reason, A = Dfar/Dloc remains a useful quantity to measure
stress amplification, as its average equals unity in the small-force limit
where the network responds linearly.

To express the resulting dipole in terms of a typical force exerted by
the active unit on the surrounding network, we divide it by its size and
the area of the boundary of active unit5:

F =
|Dunit|

(2R0)dΓd
(6.25)

where Γd is the measure of the surface of the d-dimensional sphere (i.e.,
Γ2 = 2π and Γ3 = 4π). When an active unit pulls on many fibers, its
force is thus better represented by the typical force F than by the force
exerted on each vertex, which is of order F0.

The isotropically pulling units defined in this Section are thus suited
to the study of arbitrarily large active forces, and we use them in the
remainder of this Thesis.
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Figure 6.5: Radial stress decay away from
an isotropic puller exerting a weak force,
i.e. in the linear regime, in a large circular
piece of regular 2D network. Parameters:
F0 = 0.1, µ = 103, R = 400.

6.3 Numerical simulations of stress decay

The theoretical predictions we introduced in Section 6.1 for the decay
of the radial stress σrr around a single active unit are continuum equa-
tions valid for an infinite system. In this Section, we introduce the
tools needed to test them in our numerical simulations of a discrete,
finite systems. In Section 6.3.1, we discuss our numerical setup. In
Section 6.3.2, we describe the way we measure radial stresses. We can
then infer the infinite-system radial stress by compensating the effects
of boundary conditions, as we show in Section 6.3.3. This allows us to
estimate the buckling radius R∗ introduced in the previous Section, as
explained in Section 6.3.4.

6.3.1 Boundary conditions

We consider a large, circular (or spherical in 3D) system of radius R1

centered around an active unit. We choose here to use fixed boundary
conditions, i.e. the lattice nodes at r > R1 are frozen with zero displace-
ment. This choice of boundary conditions is motivated by simplicity
and efficiency: we are interested in the stress profile resulting from
the forces exerted by a single active unit. Periodic boundary condi-
tions would lead to a pollution of the stress by that generated by the
virtual copies of the active unit, and thus would not be radially symmet-
ric. Free boundary conditions would be acceptable, but lead to much
slower numerical convergence of our numerical energy minimization
algorithms than fixed boundary conditions.

6.3.2 Measuring radial stresses

We have introduced in Section 4.2.2 a discrete definition for the stress
carried by a lattice bond, which includes stretching and bending com-
ponents. We measure the radially averaged stress σrr(r) by performing
a virtual “cut” of the system in a circular (or spherical in three di-
mensions) shell, and averaging the radial components of the stress
(including the bending tension) of all fibers that cross this shell.

6.3.3 Compensating boundary effects

The decay of the radial stress in the linear regime in a 2D system is
shown in Figure 6.5. Note that because the system is finite, boundary
effects are visible: the stress is not a pure power law σrr ∝ r−d as in an
infinite system. This complicates our analysis of these stress profiles,
and in particular the estimation of the buckling radius R∗.

We palliate this problem by compensating these boundary effects,
using the finite size analytic solution in a linear homogeneous elastic
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Figure 6.6: Compensation of the effect
of the fixed boundaries of the system on
the spatial distribution of radial stresses,
for large active forces inducing extended
buckling. The raw data (white circles)
do not easily reveal the crossover be-
tween scaling regimes. Compensating
the boundary effects (red line) reveals the
crossover between scaling regimes and
allows for a power-law by parts fit (black
lines). Parameters: F0 = 80, µ = 103,
R = 400.
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Figure 6.7: Similar treatment for a regular
3D network. Parameters: F0 = 120, µ =
103, R = 50.

medium. For an isotropic elastic continuum with spherical symme-
try, the generic solution to the linear elastic equations for the radial
displacement ur(r) is:

ur(r) = Ar−(d−1) + Br (6.26)

where d is the space dimension, and the constants A and B are set by
the boundary conditions. The radial stress thus reads

σrr(r) = −2dGAr−d + 2G
1 + ν

1 − (d − 1)ν
B (6.27)

where G is the shear modulus and ν is the Poisson ratio of the material.
In the case of an infinite system, B = 0 and the linear regime is a pure
scaling regime σrr ∝ r−d. However, in a finite system, any choice of
boundary conditions will lead to a finite value for B, thus perturbing
the scaling regime (raw value of σrr(r) in Fig.6.6).

For the fixed boundary conditions used in this Chapter, we have
B = −A/Rd, where R is the radius of the system. We have seen in
Section 3.3.1 that the Poisson ratio of lattice fiber networks is indepen-
dent of the precise geometry and connectivity of the network: in d = 2,
ν ≈ 3/5, and in d = 3, ν ≈ 2/7 (note that these values do not corre-
spond to actual experimental Poisson ratios, but only to idealized fiber
networks, and are exact for regular networks). We can thus extrapolate
the infinite-system value of the radial stress by subtracting the part
due to the fixed boundaries. To avoid issues associated with bonds
that intersect the system’s boundary, we measure the radial stress at a
radius R1 slightly smaller than R, and compute the corrected “infinite
system” stress as a function of our finite-size “raw” measurement using
the formula:

σ
(infinite)
rr (r) = σ

(raw)
rr (r)− Rd

1

Rd
1 + gRd

σ
(raw)
rr (R1) (6.28)

where g = d − d2ν/(1 + ν). The corrected stress exhibits a clear scal-
ing regime in the far-field, as demonstrated in Figure 6.6 in 2D and
Figure 6.7 in 3D.

6.3.4 Estimating R∗

We finally use the boundary-corrected radial stress to estimate the
buckling radius, using a power-law by parts function:

σ
(fit)
rr (r) =







σ∗(R∗/r)d−1 if r < R∗

σ∗(R∗/r)d if r > R∗ (6.29)

This fit has only two parameters, the buckling radius R∗ and the radial
stress at this distance σ∗ (which is expected to be comparable to the
buckling stress, i.e. one), thus allowing for a robust estimate of R∗, as
illustrated in Figure 6.6 in 2D and Figure 6.7 in 3D.
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6.4 Force transmission in soft and stiff networks

We now make use of the tools introduced in Sections 6.2 and 6.3 to test
the scenario that we proposed theoretically in Section 6.1: in response
to active units exerting forces F much larger than the buckling force,
stress propagation crosses over from a near-field, rope-like regime to a
far-field, linear regime. We find that the result depends on the elastic
regime of the network: we show that in stretching-dominated networks
(Section 6.4.1), the our theoretical predictions match fully with our
results. In contrast, in bending-dominated networks (Section 6.4.2), we
observe anomalous deviations to this scenario, and speculate about
their origin.
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Figure 6.8: Non-linear force transmis-
sion in stretching-dominated networks
coincides with the theoretical scenario
presented in Section 6.1. a-c: A localized,
isotropically pulling active unit (red circle
of radius R0 = 1.95) induces stress lines
(left side of each panel, blue=tension and
red=compression) and buckling (right
side of each panel, in red; non-buckled
bonds are green) in the surrounding fiber
network. Black circle: radius R∗ of the
rope-like region. Panel c shows a slice
of a 3D system. d, f and h: Decay of
the average radial stress in the network
(corrected for boundary effects) as a func-
tion of the distance to the active unit.
Fitting the curve with the power laws
of Equations 6.11-6.13 yields a measure
of the crossover radius R∗. e, g and i.

This buckling radius shows a power-law
dependence on F as predicted by Equa-
tion 6.16. Parameters: 2D circular (3D
spherical) network of radius 200 (33) with
fixed boundaries and averaged over 100
samples for disordered networks.
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Figure 6.9: Crossover radius as a func-
tion of the active force, for 2D triangu-
lar lattices with variable depletion pa-
rameter. The black lines indicate power-
law fits. Stretching-dominated networks
(p > pc ≈ 0.65), either depleted or regu-
lar, are well described by Equation 6.16.
On the other hand, bending-dominated
networks exhibit a clearly different be-
haviour, with smaller exponent. Parame-
ters: R = 200, µ = 103, average over 100
systems in disordered case.

6 Heussinger, C. and Frey, E. (2007). Force
distributions and force chains in ran-
dom stiff fiber networks. Eur. Phys. J.
E, 24(1):47–53

Dasanayake, N. L., Michalski, P. J., and
Carlsson, A. E. (2011). General Mecha-
nism of Actomyosin Contractility. Phys.
Rev. Lett., 107(11):118101

6.4.1 Stretching-dominated networks

In the case of stretching-dominated networks – either regular or disor-
dered, and two- or three dimensional – our numerical results coincide
well with the scenario we have established, as we show in Figure 6.8.
Rope-like radial stresses and bond buckling are predominant in the
vicinity of the active unit, with radial stress decay as σrr ∝ r−(d−1). The
crossover to far-field linear elasticity occurs at

R∗ ≈ R0

(
F
Fb

)1/(d−1)

as predicted by our theory (Equation 6.16). Visually, this crossover
length R∗ coincides with the outer boundary of the radially tensed,
buckling-rich region (Figure 6.8 a-c, thin black circles).

In such stretching-dominated networks, we conclude that the theoret-
ical arguments developed in Section 6.1 are valid: radial stresses larger
than the buckling stress propagate in a rope-like fashion, while those
smaller than the buckling force transmit linearly. Buckling therefore
results in an amplification of far-field stresses.

6.4.2 Anomalous force transmission in soft networks

In contrast, two- and three-dimensional bending-dominated networks
display a more complex behavior, as shown in Figure 6.10. While the
system still exhibits a transition from rope-like to linear force trans-
mission, the crossover region is much broader than in the stretching-
dominated case, as visible in Figures 6.10 d,f,h. Furthermore, the
crossover length R∗ at a given force F is much larger in the bending-
dominated case, as shown in Figure 6.9: rope-like force transmission
extends to larger distances in bending- than in stretching-dominated
networks. Contrarily to the latter, the prediction of Equation 6.16 that
R∗ ≈ R0F1/(d−1) is not verified. Instead, we find that we can reasonably
well fit R∗ by a power-law:

R∗ ≈ AFα (6.30)

This phenomenological fit yields anomalous exponents α ≈ 0.4 in 2D
(Figure 6.9) and α ≈ 0.25 in 3D (Figure 6.10 i). These exponents appear
to be insensitive to the exact value of the depletion parameter p within
the bending-dominated regime (Figure 6.10 e,g,i).

Are there force chains? We speculate that this extended range for non-
linear force transmission is mediated by the strong concentration of
tensile stresses along force chains6 observed in Figure 6.10 a-c. Indeed,
such force chains are visually much more pronounced in bending-
dominated than in stretching-dominated networks (Figures 6.8 and
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Figure 6.10: Non-linear force transmis-
sion in 2- and 3-dimensional bending-
dominated networks. Parameters and no-
tations as in Figure 6.8.
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Figure 6.11: Force chains around
a strong active unit in a bending-
dominated network, in a very large sys-
tem. Only tensed fibers are shown. Pa-
rameters: p = 0.58, F0 = 10, µ = 103,
R = 500.



buckling and force transmission 121

Figure 6.12: The response of a regular,
bending-dominated “MAN” network to a
strong active unit induces rope-like force
transmission in a region of size R∗ (black
circle).
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Figure 6.13: The force dependence of R∗

in the regular bending-dominated net-
work is compatible with Equation 6.16.
At small F, there is no buckling, while at
large F the crossover radius R∗ is compa-
rable to the system size: in both cases it
is difficult to evaluate R∗. The sparsity
of data in the intermediate regime comes
from the multistability of our active units
in such nonlinear cases. The low- and
high force plateaus originate from the in-
terference of our fit with the active unit
size and system size, respectively.

6.10). Because of these large stress heterogeneities, our continuum
picture presented in Section 6.1 – which assumes spherically symmetric
stresses – might break down. However, no theoretical framework
describing the influence of these heterogeneities on force transmission
has been developed yet.

We illustrate these force chains in Figure 6.11, which shows the
distribution of tensile stresses in a large, depleted network. Note the
branching pattern of radial, tensed fibers which becomes sparse in the
far-field. The active unit leads to large displacements in the network,
with and emerging star-shaped structure around the active unit. It is
not obvious that a regular lattice underlies the network in Figure 6.11.

The difference between stretching- and bending-dominated expo-
nents thus suggests that elastic heterogeneities qualitatively affect force
transmission in such soft networks.

Regular bending-dominated networks. In order to elucidate the ori-
gin of the anomalous dependence of R∗ on F in depleted, bending-
dominated network, we consider in Figure 6.12 the response of a
regular (non-depleted), bending-dominated network as introduced in
Section 3.A. We recover the rope-like-to-linear crossover phenomenol-
ogy. We plot in Figure 6.13 the F-dependence of crossover length R∗,
which supports a normal dependence with exponent 1/(d − 1), in
contrast with depleted bending-dominated networks.

These results support the idea that it is the strongly disordered na-
ture of these networks, rather than the fact that their elastic properties
are bending-dominated, which is responsible for the anomalous force-
dependence of the buckling radius. We note that similarly, regular
bending-dominated networks have moderate bulk non-linear suscep-
tibility, while it can be very large in depleted networks, as we have
shown in Section 3.3.3. A possible way to explore further this question,
which we have not carried out here, would be to consider depleted or
randomized versions of the regular bending-dominated network.

Are there other length scales? The apparent power-law dependence
of R∗(F) in depleted, bending-dominated networks is characterized
by an exponent α which is smaller than the stretching-dominated case.
Combined with a large prefactor A in Equation 6.30, this allows for long-
ranged nonlinear force transmission at relatively small forces compared
to the buckling force. However, extrapolating to large forces, the
consequences of such a power-law dependence are intriguing: indeed,
we would thus conclude that nonlinear effects have a shorter range in
these depleted networks than in stretching-dominated ones, which is
quite counter-intuitive given the high nonlinear susceptibility of soft
networks.
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Figure 6.14: The force-dependence of
the crossover stress in depleted, bending
dominated networks, is well described by
a power-law.

7 To obtain the curves in Figure 6.10 e,g,i,
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Furthermore, combining Equation 6.30 with rope-like force trans-
mission (Equation 6.13) in the near-field implies that at the crossover
distance, the radial stress σ∗ = σrr(R∗) depends on the force:

σ∗ ≈ F
(

R0

R∗

)d−1

≈ BF1−α(d−1) (6.31)

Since α < 1/(d − 1), we conclude that the crossover radial stress in-
creases with F, as confirmed by Figure 6.14.

This leaves us with a paradox: extrapolating to forces F ≥ 100, we
would thus predict that σ∗ can become larger than unity – i.e., that
the crossover towards linear elasticity can occur at stresses larger than
the buckling stress. This appears impossible from the far-field linear
side: indeed, linear force transmission implies that angular compressive
stresses partially compensate radial tension, and fiber networks cannot
withstand compressive stresses larger than the buckling threshold. We
are lead to conclude that a change of regime of some sort should
happen at large force, and that R∗(F) departs from the power-law
with exponent α, for instance towards the stretching-dominated scaling
regime.

This would define another length scale, at which force transmission
in depleted networks crosses over from anomalous to normal nonlinear
response. Unfortunately, this regime is not accessible numerically, as it
would occur at a value R∗ ≈ 200 of the nonlinear radius. Computations
on systems of comparable size are possible, but spoiled by boundary
effects which make R∗ impossible to estimate – and it is not currently
possible to study much larger systems.7

We thus speculate that the buckling radius at a given force is always
larger in depleted bending-dominated networks than in stretching-
dominated networks: disorder enhances the range of force transmission.
While apparent power-laws suggest that this statement might not hold
at large force, this is verified in all our numerical simulations.

Conclusion

In this Chapter, we have studied the influence of buckling on the force
transmission properties of elastic fiber networks. We have shown that
contractile forces large enough to induce buckling benefit from an
enhanced range of transmission. Indeed, the absence of compressive
stresses allows for a slower decay of tensile forces away from an active
unit – a behaviour we qualify as rope-like force transmission, in contrast
with linear elasticity. Our work parallels recent studies establishing
long-range force transmission in fiber networks due to buckling8 and
strain stiffening9.

This long-ranged nature of tensile forces results in an amplified
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far-field response to local contraction. We have already discussed local
dipole amplification due to buckling in Chapter 5. Here we have shown
that at large contractile forces, this nonlinear effect is characterized
by the mesoscopic radius of the rope-like region R∗. This new length
scale characterizes the range of nonlinear effects resulting from the
action of an active unit. It grows with the applied contractile force, and
can become much larger than the microscopic lengths characterizing
the network. Importantly, this length scale characterizes the far-field
amplification of the response to a strong active unit with respect to
linear force transmission.
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A phase diagram for stress production

Et dès lors, je me suis baigné dans le Poème

De la Mer, infusé d’astres, et lactescent,
Dévorant les azurs verts ; où, flottaison blême

Et ravie, un noyé pensif parfois descend ;

Où, teignant tout à coup les bleuités, délires

Et rythmes lents sous les rutilements du jour,
Plus fortes que l’alcool, plus vastes que nos lyres,
Fermentent les rousseurs amères de l’amour !

— Arthur Rimbaud, Le bateau ivre.

Over large length scales, active stresses in biological systems are
generated by multiple active units. In this last Chapter, we consider the
macroscopic response of fiber networks to many force-exerting objects:

What is the stress produced by a finite density of
active units in an elastic fiber network?

We have already addressed this question in Chapter 4 in the context
of the linear response of the network, when forces are weak. This linear
prediction provides a reference stress, from which we can compute
the stress amplification ratio in more complicated cases. We show in
Section 7.1 that in the presence of nonlinear effects, this stress ampli-
fication depends on the active unit force F and density ρ in a simple
and generic way, involving the interplay of three length scales: the
active unit size R0, the range for nonlinear effects R∗, and the average
distance between units Ra.u.. We will draw a phase diagram for this
stress generation problem. We then discuss the experimental validation
of these theoretical results in Section 7.2.
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Figure 7.1: The amplification ratio for
the stress with respect to the linear pre-
diction of Equation 7.1, for fiber net-
works in different dimensions and elastic
regimes. In all cases, three regimes ap-
pear as a function of active unit density ρ
and force F, as suggested by the colored
background.

Figure 7.2: Schematic linear response of a
fiber network to active units. The relevant
length scale for stress production is the
active unit size R0.

7.1 Three regimes, three length scales

We start by considering the stress amplification ratio σ/σ(lin) in the
presence of a finite density of randomly positioned active units in 2D
and 3D for various densities ρ and depletion parameters p (Figure 7.1).
In all cases we observe three stress amplification regimes as a function
of the unit force F: a low-force plateau without amplification, an
intermediate regime of increasing amplification and a saturation of the
amplification at a level that depends on ρ. We now examine in turns
these three regimes (Sections 7.1.1-7.1.3). In Section 7.1.4 we present a
phase diagram summarizing these results.

7.1.1 Linear stress production

In the low-force regime, linear force transmission prevails. We have
shown in Chapter 4 that in linear elastic materials, the active stress for
a density ρ of active units, each exerting a local force dipole Dloc, is:

σ = σ(lin) = −ρDloc (7.1)

Considering locally contractile active units, we can write their local
force dipole as Dloc = −FR0, where F is their typical force and R0

their typical size, as schematized in Figure 7.2. The large-scale linear
reference for stress production is thus:

σ(lin) = ρFR0 (7.2)

We have proved in Chapter 4 that this relation is exact, including
in disordered systems: indeed, while the response to an individual
active unit is random, these fluctuations average out in the macroscopic
response to a finite density of active units. Dipole conservation thus
implies that Equation 7.2 is correct, as verified in the low-force regime of
Figure 7.1, where the amplification ratio with respect to the linear theory
is equal to unity on average. This regime of linear stress production is
illustrated in Figure 7.3.
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Figure 7.3: A bending-dominated network with finite density of active units, in the linear regime. Parameters: system size
1002, N = 21 active units, force F = 0.05, µ = 103, p = 0.6.

Figure 7.4: The same network as in Figure 7.3, in the force-controlled regime (F = 4.5). Each active unit is surrounded by
a rope-like region in which force amplification takes place, and these regions do not overlap.
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Figure 7.5: When active forces are strong
enough to induce buckling, the relevant
length scale for stress production is the
nonlinear length R∗.

Figure 7.6: In the intermediate force
regime, the stress amplification ratio is
equal to the ratio R∗/R0 as predicted by
Equation 7.4.

Figure 7.7: At large active forces, the
whole system behaves as a network of
tensed ropes connecting active units, and
the relevant length scale is the average
distance Ra.u. between these units.

Figure 7.8: In the large-force regime, the
stress amplification ratio is equal to the
ratio Ra.u./R0 as predicted by Eq. (7.5).

7.1.2 Amplification in rope-like regions

For moderate forces, we have seen in Chapter 6 that the fibers in the
network buckle in the vicinity of each active unit, up to a distance R∗.
Individual units are thus typically surrounded by nonoverlapping non-
linear regions of size R∗, as illustrated in Figures 7.4 and 7.5. Recalling
Equation 6.18, the far-field stress is therefore amplified with respect to
the linear prediction for radial tensions:

σrr(r)

σ
(lin)
rr (r)

≈ R∗

R0
(R � R∗) (7.3)

Equivalently, we can model each nonlinear region as an effective active
unit of size R∗ and force dipole Deff ≈ −FR∗, using Equation 6.13

to describe force propagation within the nonlinear region. As the
effective units are themselves embedded in a linear medium, linear
force transmission outside of these units implies

σ ≈ −ρDeff ≈ ρFR∗ (7.4)

We thus predict that stress amplification in this regime scales as
σ/σlin ≈ R∗/R0. We confirm this prediction in Figure 7.6. Since
R∗ increases with the active unit force in this regime, the large-scale
stress amplification σ/σlin increases with F as previously observed in
Figure 7.1.

7.1.3 Stress saturation at large forces

For large forces, the radius of the rope-like regions becomes so large
as to exceed the typical distance between adjacent active units Ra.u. =

ρ−1/d. This causes the nonlinear regions associated to neighboring
active units to overlap. Once these rope-like regions percolate and start
overlapping, the forces they exert on each other balance, and the whole
network becomes mechanically equivalent to a collection of tensed,
inextensible ropes whose geometry does not change significantly upon
further increase of the force (Figure 7.9). To estimate the resulting
network stress, we approximate the system as a mosaic of effective
active units of size Ra.u. each with a force dipole Deff ≈ −FRa.u., as
illustrated in Figure 7.7. This yields

σ ≈ −ρDeff ≈ ρFRa.u. = ρ1−1/dF (7.5)

The resulting prediction for the stress amplification, σ/σlin ≈ Ra.u./R0,
is remarkably well confirmed in Figure 7.8. Strikingly, the stress gener-
ated in this large-force regime has a nonlinear dependence on ρ, again
consistent with Figure 7.1. Indeed, the addition or removal of active
units leads to large rearrangements of the rope network, resulting in
significant local modifications of force transmission.
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Figure 7.9: The same network as in Figure 7.3, in the density-controlled regime (F = 15). The rope-like regions percolate,
and filament buckling extends to the whole network, while stress is transmitted by tensed fibers.

7.1.4 Phase diagram

We summarize the physics of collective stress-generation by many ac-
tive units in a generic phase diagram in Figure 7.10. In each regime, the
magnitude of an active unit’s effective force dipole is directly propor-
tional to one of the three length scales R0, R∗ and Ra.u. [Eqs. (7.2-7.5)].
The background images show typical configurations of the network in
the associated regimes.

While we have shown that R∗ depends on the dimensionality and
connectivity of the network, the other two length scales – active unit
size R0 and spacing Ra.u. – are purely geometrical, and depend only
on the active units. An important consequence of these findings is
that the active stress generated in the associated regimes is essentially
independent of the detailed properties of the fiber network: in both the
F � Fb and F � Fb regimes, the network’s mechanical properties are
irrelevant to the amount of active stress generated by the network.
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Figure 7.10: Force transmission in the presence of a finite density ρ of active units. Left: schematics of the network
structure in each regime. The low-force linear regime (bottom) transitions to a regime of nonoverlapping nonlinear regions
(center) as soon as F is sufficient to induce buckling. These nonlinear regions grow with increasing F, and amplification
saturates as they start overlapping, which turns the whole network into a rope network (top). Center: Schematic phase
diagram indicating the domain of applicability of the three stress amplification regimes, with representative snapshots
of corresponding systems in a 2D depleted network in the background. Right: Comparison of our predictions with
experimental measurements of the active stress in in vitro systems, as detailed in Section 7.2.
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7.2 Biological relevance

Our generic phase diagram (Figure 7.10) recapitulates our quantitative
understanding of stress generation by a collection of active units based
on the interplay between three length scales: active unit size R0, rope-
like length R∗, and typical distance between units Ra.u.. To validate
these predictions, we compare them with existing measurements on
a broad range of in vitro systems, in d = 2 and d = 3 in reconstituted
cytoskeletal as well as extracellular networks. For visual comparison
with our theory, we schematically place these systems in the phase dia-
gram of Figure 7.10, and compare our predictions to the experimentally
measured active stress.

7.2.1 Three-dimensional actomyosin

We first consider a dense three-dimensional actin network illustrating
the linear regime in three-dimensional actomyosin (“3D actomyosin”
system in Figure 7.10). In Reference (Koenderink et al., 2009)1, a
crosslinked actin network with mesh size ξ = 200 nm is populated
by myosin thick filaments of size R0 = 1 µm each comprising ≃ 300
myosin heads. Each head actively exerts a f = 4 pN force 2% of the
time2. Of these 300 heads, half pull in each direction. Furthermore,
we use the simplifying assumption that the myosin thick filament is
uniformly decorated with motor heads, and thus the average span of
the force dipole is R0/2. This results in a local force dipole Dloc =

−150 × R0/2 × f × 2% and each thick filament as a whole exerts a
typical force F = Dloc/R0 ≃ 6 pN on the network. Actin filaments
have a persistence length ℓp ≃ 10 µm, implying a buckling force Fb ≈
π2kBTℓp/ξ2 = 10 pN for a single network bond. As a result, the active
unit force is too small to induce filament buckling, and we thus expect
linear force transmission in this experiment. Hence σth = −ρDloc =

ρFR0 ≃ 12 Pa, where we used ρ = 1 µm−3. This number is in very
good agreement with the estimation σexp ≃ 14 Pa of the macroscopic
stress in (Koenderink et al., 2009).

7.2.2 Two-dimensional actomyosin on a vesicle

We next consider a two-dimensional actin network bound to the outer
surface of a lipid vesicle illustrating force-controlled amplification in
two-dimensional actomyosin networks (“2D actomyosin” system in
Figure 7.10). Reference (Lemière et al., 2015)3 reports measurements
based on doublets of giant unilamellar lipid vesicle where the active
stresses generated by a membrane-supported two-dimensional acto-
myosin sheet competes with the tension of a bare lipid membrane to
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set the angle at which the sheet and the bare membrane meet. This
novel measurement technique reveals that the active stresses generated
by thick filaments (F ≃ 6 pN as above) in a two-dimensional actin
network (ξ = R0 = 1 µm) covering a giant unilamellar vesicle of ra-
dius r ≃ 10 µm are of the same order as the tension of the membrane
σexp ≈ σmembrane ≈ 10−6 − 10−4N m−1 (the vesicles are electroformed
and contain a mixture of egg-phosphatidylcholine (EPC) and biotin-
PEG lipids). The range of tensions given here are typical values for
such vesicles as no direct tension measurement are available in these
experiments. The experiments involve an average of three myosin
thick filaments per vesicle, implying ρ = 3/(4πr2) ≃ 2 × 10−3 µm−2.
Computing the buckling force as Fb ≈ π2kBTℓp/ξ2 = 0.4 pN and as-
suming a stretching-dominated network, we predict a buckling radius
R∗ = R0F/Fb = 15 µm that is both larger than the mesh size and
smaller than the inter-motor spacing Ra.u. = ρ−1/2 ≃ 20 µm, placing
this system in the force-controlled amplification regime. This yields
an amplification factor σth/σlin = R∗/R0 ≃ 15, and an overall two-
dimensional active stress σth = ρFR∗ ≃ 2 × 10−7 N m−1.

7.2.3 Reconstituted blood clot

Finally, we consider a clot comprised of fibrin filaments and contrac-
tile platelets as active units, which addresses the density-controlled
amplification regime (“3D blood clot” system in Figure 7.10). We
consider stress generation in a reconstituted clot comprised of a fibrin
network rendered contractile by a concentration ρ = 3× 108 cells ·mL−1

of blood platelets4. Atomic force microscopy measurements on indi-
vidual platelets5 show that each platelet of size R0 = 2 µm exerts a
pulling force F = 15 nN, thus yielding a force dipole Dloc = −Fd =

−3 × 10−14 N m. The linear prediction for the active stress is thus
σlin = −ρDloc ≈ 9 Pa. Comparing this to the experimentally measured
active contractile stress σexp = 150 Pa generated by a blood clot, we
thus find a stress amplification factor σexp/σlin = 17: the measured
stress is much larger than the linear prediction.

To account for this amplification, we evaluate the scaling regime in
which this system lies. As the microstructure of the fibrin network was
not investigated in (Jen and McIntire, 1982), we assume that the network
essentially consists of single fibrin filaments or of small-diameter fibrin
bundles and thus estimate a persistence length ℓp = 0.5 µm and a mesh
size6 larger than two hundred nanometers (ξ > 200 nm). To assess the
validity of these estimates, we note that they imply7 a network shear
modulus G′ ≈ 6kBTℓ2

p/ξ5 ≃ 20 Pa, consistent with the value G′ = 70 Pa
reported in (Jen and McIntire, 1982). They moreover imply a rope-like
region size R∗ = ξ(F/Fb)

1/2 > 350 µm (with Fb ≈ π2kBTℓp/ξ2), much
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larger than the inter-cell distance Ra.u. = ρ−1/3 ≃ 15 µm. The rope-like
regions of neighboring cells thus interpenetrate, implying density-
controlled amplification. In this regime, we predict a contractile stress
σth ≃ 70 Pa and a stress amplification factor σth/σlin = Ra.u./R0 ≃ 8, in
order of magnitude agreement with the experimental result. Note that
as this system lies deep in the density-controlled regime, this prediction
is insensitive to our precise estimates of ℓp and ξ.

7.2.4 Further validation of the theory

These three examples demonstrate our theory’s ability to quantitatively
account for stress amplification, and recent progress in the microme-
chanical characterization of active fiber networks opens promising
perspectives for further exploring active stress amplification8.

Particularly striking are our predictions for the linear and density-
controlled regimes. Indeed, Equations 7.2 and 7.5 contain no adjustable,
network-dependent parameter: they should therefore be relatively easy
to test. For instance, we have shown in Section 7.2.3 that contractile
blood clots in physiological conditions lie far in density-controlled
regime. We therefore expect from Equation 7.5 that

σ ≈ Fρ2/3

While varying the force exerted by platelets may not be easy, their
density is a straightforward experimental parameter. The power-law
with exponent 2/3 in the density-dependence of the active stress should
thus be testable by varying the density of platelets. The observation of
this sublinear scaling of the stress with the density of platelets would
be a strong validation of our novel theory for the nonlinear, strongly
interacting density-controlled regime.
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Discussion

Run, rabbit, run

Dig that hole, forget the sun,
And when at last the work is done

Don’t sit down, it’s time to dig another one

— Pink Floyd, Breathe.

Summary

In living organisms, microscopic units exert active forces that are trans-
mitted by fibrous networks to generate large-scale stresses. In this
Thesis, we propose a theoretical description of this force transmission
problem, and find surprisingly simple and robust behaviors. When
active forces are weak and linear force transmission avails, we uncover a
new conservation law, whereby the force dipole is an invariant of linear
elasticity. However, biological active forces are often strong enough
to result in filament buckling, which complicates our analysis. In this
case, we show that in response to any distribution of active forces, dra-
matically amplified contractile stresses emerge in the network on large
scales. This remarkable property hinges only on the local asymmetry in
elastic response between tensed and compressed fibers, and is enhanced
by network disorder. Our simple, yet realistic description of individual
fibers yields a universal scenario for force transmission: long-ranged,
rope-like propagation near a strong active unit, and linear transmission
in the far-field. Our theory provides quantitative predictions for the
macroscopic active stress, which are, in both the small-force and large-
force limits, independent of the network’s properties. These predictions
are in good agreement with experimental measures of the active stress
in in vitro active fiber networks.

In the last few pages of this Thesis, we suggest open directions for
future research, and discuss the biological implications of our findings.
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Open directions

We have already discussed in Chapter 6 the anomalous force transmis-
sion behaviour of disordered, bending-dominated, which remains to be
elucidated. Here we propose a few other directions for future work.

Non-linear active elastic equations. Our theory provides explicit for-
mulas for the active stress in fiber networks, thus giving a microscopic
foundations to this term in so-called active gel theories, which aim at de-
scribing the macroscopic properties of such systems1. We have shown
in Chapter 4 that in linear active elastic materials, the macroscopic
stress is simply the sum of the active stress predicted by our theory
and a standard elastic stress. In Chapter 7, we have extended our the-
ory to include buckling, and proposed simple equations for the active
stress, in the absence of macroscopic strain. In this non-linear regime
however, elastic and active stresses may not add up, and a full equation
of state relating stress, strain and active unit density remains to be
established. Given the simplicity of the large-force, density-controlled
regime – in which the active stress depends only on the active unit force
and density – we can hope to establish a similarly simple, comprehen-
sive description of the mechanical equilibrium states of these systems
at the macroscopic scale. Stability analysis of such equations could, for
instance, help elucidate our qualitative observation that at large forces,
active units tend to self-organize into spatially heterogeneous states,
with intriguing alignments of active units.

Active stress in floppy networks. We have also shortly discussed in
Chapter 3 the properties of floppy networks, which are connected,
although too loosely to exhibit a macroscopic rigidity. Clearly, at linear
order such networks are unable to transmit forces; however, strong
active units could rigidify them, just as they stiffen under large dilation.
Stiffening of soft, bending-dominated networks by active units was
reported in the past2. Could we extend our theory to include floppy
networks stiffened by active units, and what form would the active
stress take in such systems?

Pre-stressed networks. We have assumed in this Thesis that the net-
work is unstressed in the absence of active forces and macroscopic
strain. However, active units are not the only local source of stress in
fiber networks, and such an unstressed state does not exist in general,
as filament entanglement and cross-links can result in frustrated states,
with residual stress in any configuration. Similarly to active stress, such
pre-stress may stiffen the network, and alter its mechanical properties;
for instance, it is not clear whether bending-dominated networks would
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remain so soft in the presence of pre-stress. How would it affect force
transmission and stress production?

Network dynamics. Biological fiber networks are highly dynamic,
and their elastic response concerns only a limited range of time scales.
At short time scales t ≤ 1 s, they relax in a viscoelastic manner; at large
time scales t ≥100 s to 1000 s, crosslinker detachment and cytoskeletal
remodeling induce flow in the fibrous matrix. How do these phenom-
ena affect stress production? Can we adapt our static phase diagram to
include such dynamical effects?

Non-equilibrium properties. In the static problem treated in this The-
sis, the active nature of the local forces is not intrinsically different from
passive external forces. On the other hand, the dynamical coupling of
the internal out-of-equilibrium properties of the active units and the net-
work’s response could result in novel and interesting non-equilibrium
phenomena, which started to focus attention recently3.

Large-scale structures of the network. In this Thesis, we have con-
sidered only spatially homogeneous (although possibly disordered)
networks. However, real biological networks self-assemble, and can
exhibit correlations in their structural heterogeneities. It would be of
interest to check to what extent such correlations affect the quantitative
results of this Thesis.

Biological implications.

Active unit clustering increases stress amplification Our results sug-
gest a novel design principle for active fiber networks geared to maxi-
mize stress generation. In a linear medium, the stress generated does
not depend on the spatial distribution of active units. In contrast,
we predict that in fiber networks, larger stresses can be obtained by
clustering the active units. Indeed, for a fixed density of active units,
regrouping them results in fewer, larger and stronger “effective active
units”:

• depending on the system, their size may be larger, resulting in an
enhanced R0 value4;

• clustered active units exert larger forces than isolated units, which
results in an enhanced range R∗ for nonlinear effects;

• clustering active units increases the average density Ra.u. between
them.

All these effects result in an increase of the effective dipole size, what-
ever the stress production regime. Therefore, clustering active units is



138 pierre ronceray – active contraction in biological fiber networks
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a way for biological systems to increase the amount of stress they can
generate, using the same components, as schematized in Figure 8.1.

Such regrouping of a set number of force generators to enhance
stress amplification could play a role in smooth muscle, where the num-
ber of myosins in individual thick filament is regulated dynamically5.
Similarly, at the tissue level, clustering of contractile cells occurs during
wound repair6.

There are potential counterparts for this improvement of the macro-
scopic stress by clustering of the active units. For instance, going to
amplified stress regimes requires larger deformation of the network,
in order to rearrange it into the tensed rope networks in the buckled
area around active units. These larger deformations require that the
active units perform a larger amount of work before reaching force
balance: amplified contraction may thus be more energetically costly.
Furthermore, due to these large local deformations, the mechanical
response of the network may be slower, i.e. the time scale for stress
production is increased.

Emergent contractility in actomyosin. Far from merely transmitting
active forces, we show that fiber networks dramatically alter force prop-
agation as contractility emerges from arbitrary spatial distributions of
local active forces. This could imply that living organisms do not have
to fine-tune the detailed geometry of their active units, since any local
force distribution yields essentially the same effects on large length
scales. This emergence of contractility sheds a new light on the long-
standing debate in cytoskeletal mechanics regarding the emergence of
macroscopic contraction in non-muscle actomyosin despite the absence
of an intrinsic contractility of individual myosin motors7. Indeed, while
these motors exert equal amounts of local pushing and pulling forces8

(Figure 8.2), our result suggests that the surrounding network rectifies
pushing contributions into uniform contraction. This rectification effect
in two and three dimensions contrasts with the behavior of previously
studied one-dimensional actomyosin systems, where extensile dipoles



discussion 139

9 Lenz, M., Thoresen, T., Gardel, M. L.,
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are attenuated but not reversed9.
More broadly, we suggest that this strong propensity for the emer-

gence of contraction in fibrous materials can explain the overwhelming
dominance of contractile stresses in active biological materials up to the
tissue level. Clearly, this does not mean that it is impossible to generate
large-scale expansion in living organisms as required for limb abduc-
tion and extension or for lung inflation. Nevertheless, in each of these
examples the expansion actually results from the clever harnessing of
muscle contraction through lever structures involving our skeleton.
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Gallery

Ô Mort, vieux capitaine, il est temps! levons l’ancre!
Ce pays nous ennuie, ô Mort! Appareillons!
Si le ciel et la mer sont noirs comme de l’encre,
Nos coeurs que tu connais sont remplis de rayons!

Verse-nous ton poison pour qu’il nous réconforte!
Nous voulons, tant ce feu nous brûle le cerveau,
Plonger au fond du gouffre, Enfer ou Ciel, qu’importe?
Au fond de l’Inconnu pour trouver du nouveau!

— Charles Baudelaire, Le voyage.

The lattice fiber network model I have studied in this Thesis is not
only scientifically interesting – it can also be beautiful. As anyone who
has read through to this point will probably have already guessed, I
like showing figures. More than that: when I choose a new scientific
project, the expectation of nice graphics comes into account. I had this
in mind when I started my PhD, but still, I have often been agreeably
surprised by the visual potential of my simulation results. In these last
few pages, I present a few attempts to render it, for their aesthetic value
only.

Legend:

1. A bending-dominated network stiffened by an isotropic dilation.
Only tension lines are shown.

2. A dilated floppy network; at intermediate strain its response is
bending-dominated.

3. At large strain, the response is stretching dominated.

4. Force chains around a strong active unit in a bending-dominated
network.

5. Stress patterns around strong active units in a rope-like network.
This image was selected for the cover of PNAS when our article
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defining elements of biological force generation, here we show 
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process. Indeed, rather than merely propagating forces like a 

simple elastic medium, fiber networks produce emergent, 
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theory quantitatively accounts for experimental measurements 

of contraction, and suggests mechanisms for the physiological 

regulation of biological active stresses.

Active contraction in 

biological fiber networks

Pierre Ronceray                   Thèse de doctorat                   31 mai 2016




Cover image: computer-generated representation of an actively contracting biological fiber 

networks. The star-shaped stress patterns of tensile stress (dark blue) are responsible for a 

dramatic amplification of the local pulling forces exerted by molecular motors (spheres). 











       


          

          
      

       
            

          
          

          
 

              
          

            
          

          
          

          
           



          

              
           

        
          


      

          
            


            

          
           


          

          
            

     








         
       

      
          

          
            

          


  
      

              





            



          

  
        

          
          


          

         
 

  
        


          



 




	Remerciements
	Foreword
	Introduction
	Modelling fiber networks
	Neglected phenomena
	Dimensions and orders of magnitude
	Variants and alternative models
	Numerical Implementation of the Model

	The mechanics of elastic fiber networks
	The rigidity of spring networks
	Rigidity transitions in fiber networks
	Bulk elastic properties
	Discussion

	Linear stress production
	Dipole conservation in continuum elastic media
	Dipole conservation in discrete elastic media
	Discussion
	Effective medium theory for disordered spring networks

	Local nonlinearities in fiber networks
	Plucking
	Buckling
	The emergence of contractile stresses

	Buckling and force transmission
	Linear and rope-like force transmission
	 Numerical simulations of stress decay 
	Force transmission in soft and stiff networks

	A phase diagram for stress production
	Biological relevance

	Discussion
	Bibliography
	Gallery

