
HAL Id: tel-01359621
https://theses.hal.science/tel-01359621

Submitted on 2 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adaptive Consistency Protocols for Replicated Data in
Modern Storage Systems with a High Degree of

Elasticity
Sathiya Prabhu Kumar

To cite this version:
Sathiya Prabhu Kumar. Adaptive Consistency Protocols for Replicated Data in Modern Storage
Systems with a High Degree of Elasticity. Document and Text Processing. Conservatoire national des
arts et metiers - CNAM, 2016. English. �NNT : 2016CNAM1035�. �tel-01359621�

https://theses.hal.science/tel-01359621
https://hal.archives-ouvertes.fr

CONSERVATOIRE NATIONAL DES
ARTS ET MÉTIERS

École Doctorale du Conservatoire National des Arts et Métiers

LABORATOIRE CEDRIC - CNAM
LABORATOIRE LISITE - ISEP

THÈSE DE DOCTORAT

présentée par : Sathiya Prabhu KUMAR

soutenue le : 15 Mars 2016

pour obtenir le grade de : Docteur du Conservatoire National des Arts et Métiers

Spécialité : INFORMATIQUE

Adaptive Consistency Protocols for Replicated Data in
Modern Storage Systems with High Degree of Elasticity

THÈSE dirigée par
M. GRESSIER-SOUDAN Eric Professor, CEDRIC-CNAM

Encadrée par
Mme. CHIKY Raja Enseignant-Chercheur, LISITE-ISEP
M. LEFEBVRE Sylvain Enseignant-Chercheur, LISITE-ISEP

RAPPORTEURS
M. DEFUDE Bruno Professor, TELECOM SUDPARIS
M. HAGIMONT Daniel Professor, IRIT/ENSEEIHT

EXAMINATEURS
Mme. CHABRIDON Sophie Assistant professor, TELECOM SUDPARIS
Mme. RONCANCIO Claudia Professor, GRENOBLE INP

To my supervisor Dr. Raja Chiky
who gave me this opportunity.

Acknowledgments

I owe an indebted gratitude to my supervisor Ass Prof. Raja Chiky, who gave me
this opportunity believing in me and put so much effort in finding the funding for the
thesis. I was very fortunate to have Prof. Eric Gressier Soudan as my thesis director. He
is very kind and caring. He always managed to find some time to make him available
for any questions or discussions regarding the thesis. During each meeting, he was like
rain of knowledge, gave tons and tons of useful references and valuable ideas to move
forward. Words are not enough to thank Ass Prof. Sylvain Lefebvre who gave me a
wealth of technical support and constantly pushed me forward regarding the quality of
the work. He was very energetic and gave his full dedication for the goodness of the
thesis work. Without his support and remarks, this thesis would not have been well
accomplished.

I am very thankful to Olivier Hermant for his time and effort in helping me with
the formalism part of Chapter 3. I also owe a sincere gratitude to all the team members
of RDI - LISITE: Yousara Chabchoub, Zakia Kazi-Aoul, Matthieu Manceny, Mohamed
Sellami for being very kind to me and helped me with any question or suggestion
regarding the thesis. I am very thankful to Gilles Carpentier for taking care of all the
teaching activities that I was involved in these three years and making sure the time
and schedule of my teaching activities do not affect the thesis work. I also thank all
my ISEP colleagues particularly Ahmad, Manuel, Chen, Navneet, Nuraishah, Amadou
and Rayane who took part in all ups and downs of my Phd journey.

I am very grateful to Minyoung Kim and Mark Oliver Stehr for offering me an op-
portunity to work with them as an International Fellow at Stanford Research Institute,
California. The fellowship was very fruitful and filled with lot of learning and expe-
rience. Minyoung and Mark are very kind, motivating and are responsible for Chapter
7 of the thesis.

I sincerely thank all the midterm and defense jury members: Prof. Philippe Rigaux,
Prof. Bruno Defude, Prof. Daniel Hagimont, Prof. Claudia Roncancio and Ass Prof.
Sophie Chabridon for accepting to be a part of the jury and providing their valuable
time and cooperation in realizing the defense in time.

I thank Duyhai Doan from Datastax for his support and helpful feedback on the
Chapter 7 of the thesis. I also appreciate Datastax and other enterprises, communities,
association and individuals for enlightening the world with lot of knowledge and infor-
mation via tons of websites, blogposts, tutorials, meetups, workshops and conferences.

Last but not least I would like to thank my father for giving me lot of strength,
lessons and blessings for facing all the goods and bads throughout my life and making
me who I am. The love and affection from my mom and my sister have also been
invaluable. Special thanks to all my friends, well wishers and the almighty who stood
by me and continue hoping for my best.

I also acknowledge Amazon AWS Research grant for supporting my experimentation
and partial support from NSF grant 0932397 for supporting my international fellowship.
Any opinion, findings, and conclusions or recommendations expressed in this material
are those of the author(s) and do not reflect the view of NSF.

3

Résumé

Les systèmes de base de données modernes stockent les objets sous forme de paires

de clé et de valeur(s), où chaque valeur est identifiée par une clé unique. Cette approche

facilite la distribution des données sur le réseau (grâce aux tables de hachage distribuées)

et permet un accès rapide et simple à chaque objet. La plupart de ces systèmes choisissent

de privilégier un meilleur niveau de disponibilité et de meilleurs temps de réponse contre

une gestion de la cohérence des données. Comme ces systèmes sont des systèmes pair

à pair, chaque noeud traite les requêtes en écriture ou en lecture à l’aide de stratégies

de réplication optimiste. Il est ainsi possible que des incohérences temporaires entre les

éventuelles répliques existent. Ces incohérences peuvent se manifester sous la forme de

lectures obsolètes, ou de mises à jour conflictuelles. Le niveau de cohérence obtenu dans

ces systèmes dépend du nombre de noeuds contactés à chaque requête. Certains systèmes

autorisent l’utilisateur à choisir le nombre de répliques à contacter en fonction du niveau

de cohérence attendu et adapte son fonctionnement pour chaque requête ou chaque table.

Choisir un haut niveau de cohérence ajoute un coût supplémentaire en terme d’échanges

de messages et donc de latence, et risque de provoquer l’échec de la requête s’il n’est pas

possible de contacter un nombre suffisant de répliques.

Les principales contributions de cette thèse sont au nombre de trois. La première partie

de cette thèse concerne le développement d’un nouveau protocole de réplication nommé

LibRe, permettant de limiter le nombre de lectures obsolètes dans un système de stockage

distribué. LibRe est un acronyme signifiant "Library for Replication". Le principal objectif

de LibRe est d’assurer la cohérence des données en contactant un minimum de répliques

durant les opérations de lectures et d’écritures. Dans ce protocole, lors d’une opération

d’écriture, chaque réplique met à jour un registre (la "librairie"), de manière asynchrone,

5

avec l’identifiant de version de la donnée modifiée. Lors des opérations de lecture, la requête

est transférée au réplica le plus approprié en fonction de l’information figurant dans le

registre. Ce mécanisme permet de limiter le nombre de lectures obsolètes. L’évaluation de

la cohérence d’un système reste un problème difficile à résoudre, que ce soit par simulation

ou par évaluation en conditions réelles. Par conséquent nous avons développé un simulateur

appelé Simizer, qui permet d’évaluer et de comparer la performance de différents protocoles

de cohérence. Le système d’évaluation de bases de données YCSB a aussi été étendu pour

évaluer l’échange entre cohérence et latence dans les systèmes de stockage modernes. Le

code du simulateur et les modifications apportées à l’outil YCSB sont disponibles sous

licence libre.

Bien que les systèmes de bases de données modernes adaptent les garanties de cohérence

à la demande de l’utilisateur, anticiper le niveau de cohérence requis pour chaque opération

reste difficile pour un développeur d’application. La deuxième contribution de cette thèse

cherche à résoudre ce problème en permettant à la base de données de remplacer le niveau

de cohérence défini par défaut par d’autres règles définies à partir d’informations externes.

Ces informations peuvent être fournies par l’administrateur ou un service extérieur. Dans

cette thèse, nous validons ce modèle à l’aide d’une implémentation au sein du système de

bases de données distribué Cassandra. La troisième contribution de cette thèse concerne

la résolution des conflits de mise à jour. La résolution de ce type de conflits nécessite

de retenir toutes les valeurs possibles d’un objet pour permettre la résolution du conflit

grâce à une connaissance spécifique côté client. Ceci implique des coûts supplémentaires en

termes de débit et de latence. Dans cette thèse nous discutons le besoin et la conception

d’un nouveau type d’objet distribué, le registre à priorité, qui utilise une stratégie de

détection et de résolution de conflits spécifique au domaine, et l’implante côté serveur.

Notre approche utilise la notion d’ordre de remplacement spécifique. Nous montrons qu’un

type de donnée paramètrée par un tel ordre peut fournir une solution efficace pour les

applications demandant des solutions spécifiques à la résolution des conflits. Nous décrivons

aussi l’implémentation d’une preuve de concept au sein de Cassandra.

Mots clés : NoSql, Théorème CAP, Cohérence éventuelle, Systèmes de Quorums.

6

Abstract

In modern distributed database systems, data objects are stored as key-value pairs,

in which each data object is identified by a unique key. Storing data with a unique key

makes it easy to distribute the data over a storage network (e.g., using hashing techniques)

and access the data object simply by passing the key. Most of these data stores choose to

trade consistency in favor of request latency and availability by letting any replica node

handle read and write requests following optimistic replication strategies. These systems

let the replicas hold different values for the same key, accepting temporary inconsistency

between the replicas. Two major variants of the inconsistency issues are Stale Reads and

Update Conflicts. Ensuring strong consistency in these systems depends on number of

replica nodes contacted during read and write requests. The system lets the users choose

the number of replica nodes to contact depending on the needed consistency level and

adapts the consistency level of the system on a per query or per table basis. In addition to

an extra cost spent on request latency in contacting a sufficient number of replica nodes,

if a sufficient number of nodes is unable to be contacted, the system fails the request,

affecting the availability of the system.

The main contributions of this thesis are three folds. The first contribution of the

thesis focuses on an efficient way to control stale reads in modern database systems with

the help of a new consistency protocol called LibRe. LibRe is an acronym for Library

for Replication. The main goal of the LibRe protocol is to ensure data consistency by

contacting a minimum number of replica nodes during read and write operations with

the help of a library information. According to the protocol, during write operations each

replica node updates a registry (library) asynchronously with the recent version identifier

of the updated data. Forwarding the read requests to a right replica node referring the

9

registry information helps to control stale reads during read operations. The evaluation of

data consistency remains challenging both via simulation as well as in a real world setup.

Hence, we implemented a new simulation toolkit called Simizer that helps to evaluate the

performance of different consistency policies in a fast and efficient way. We also extended

an existing benchmark tool YCSB that helps to evaluate the consistency-latency tradeoff

offered by modern database systems. The codebase of the simulator and the extended

YCSB are made open-source for public access. The performance of the LibRe protocol is

validated both via simulation as well as in a real setup with the help of extended YCSB.

Although the modern database systems adapt the consistency guarantees of the system

on a per query basis, anticipating the consistency level of an application query in advance at

application development time remains challenging for the application developers. In order

to overcome this limitation, the second contribution of the thesis focuses on enabling

the database system to override the application-defined consistency options during run

time with the help of an external input. The external input could be given by a data

administrator or by an external service. The thesis validates the proposed model with the

help of a prototype implementation inside the Cassandra distributed storage system.

The third contribution of the thesis focuses on resolving update conflicts. Resolving

update conflicts often involve maintaining all possible values and perform the resolution

via domain-specific knowledge at the client side. This involves additional cost in terms of

network bandwidth and latency, and considerable complexity. In this thesis, we discuss

the motivation and design of a novel data type called priority register that implements

a domain-specific conflict detection and resolution scheme directly at the database side,

while leaving open the option of additional reconciliation at the application level. Our

approach uses the notion of an application-defined replacement ordering and we show

that a data type parameterized by such an order can provide an efficient solution for

applications that demand domain-specific conflict resolution. We also describe the proof

of concept implementation of the priority register inside Cassandra.

Keywords: NoSql Systems, CAP Theorem, Eventual Consistency, Quorum Systems.

10

Table of Contents

1 Introduction 45

1.1 Contributions . 47

1.1.1 Better Consistency-Latency tradeoff for quorum-based replication

systems . 47

1.1.2 Evaluation of consistency protocols via simulations 48

1.1.3 Evaluating Data Consistency on the fly using YCSB 49

1.1.4 Overriding application-defined consistency option of a query during

run-time . 50

1.1.5 Application-defined Replacement Orderings for Ad Hoc Data Re-

conciliation . 51

1.2 Organization of the Manuscript . 52

1.3 Publications . 53

1.3.1 International Publications . 53

1.3.2 National Publications . 54

2 State of the Art 55

2.1 Event Ordering . 56

2.2 Time in distributed systems . 57

2.2.1 Physical Clock . 57

2.2.2 Logical Clock . 58

11

TABLE OF CONTENTS

2.2.3 Lamport Clock . 58

2.2.4 Vector Clock . 59

2.2.5 Version Vector . 59

2.2.6 Update-Conflicts . 60

2.2.7 Data Reconciliation . 61

2.3 Consistency models . 61

2.3.1 Strict Consistency . 61

2.3.2 Sequential Consistency or Serializability 62

2.3.3 Snapshot Isolation . 63

2.3.4 Causal Consistency . 65

2.3.5 Eventual Consistency . 66

2.3.6 Comparison of consistency models 66

2.4 Evolution of Modern Database Systems . 67

2.4.1 CAP influence . 68

2.4.2 BASE Paradigm . 70

2.5 Tradeoffs of modern database systems . 71

2.5.1 Consistency-Latency Tradeoff . 71

2.5.2 Durability-Latency Tradeoff . 73

2.6 Replica Control Protocol . 73

2.6.1 Primary-copy Algorithm . 74

2.6.2 Voting-based replica control protocols 74

2.7 Consistency guarantees of quorum based voting systems 76

2.7.1 Majority Quorum: . 76

2.7.2 Weighted Voting: . 76

2.7.3 ROWA: . 77

12

TABLE OF CONTENTS

2.7.4 ROWA-A: . 77

2.7.5 Missing Writes Protocol: . 78

2.7.6 Epoch Protocol: . 78

2.7.7 Probabilistic Quorum . 79

2.7.8 Partial Quorum: . 79

2.8 Client-side versus Server-side guarantees . 82

2.8.1 Server-side guarantees: . 82

2.8.2 Client-side guarantees . 83

2.9 Adaptive Consistency . 85

2.9.1 Categories of consistency models . 85

2.9.2 Categories of adaptive consistency 87

2.10 Modern Database System - Example . 90

2.11 Discussion . 91

3 LibRe: A New Consistency Protocol for Modern Distributed Database

Systems 95

3.1 LibRe . 96

3.1.1 LibRe Registry . 96

3.1.2 Algorithm Description . 97

3.2 Adaptation of LibRe for Modern Distributed Database Systems 99

3.2.1 Targeted System . 99

3.2.2 LibRe Registry . 100

3.2.3 LibRe Messages . 101

3.2.4 LibRe Write Operation . 102

3.2.5 LibRe Read Operation . 103

3.2.6 LibRe Reliability . 104

13

TABLE OF CONTENTS

3.2.7 LibRe Cost . 104

3.3 LibRe Formalization . 105

3.3.1 Notations . 105

3.3.2 System States . 108

3.3.3 Stable State Properties . 111

3.3.4 Unstable States Properties . 114

3.4 Related Works . 116

3.5 Summary . 118

4 Evaluation of Consistency Protocols via Simulations 121

4.1 Simizer description and architecture . 123

4.1.1 Entities . 123

4.1.2 Processor simulation . 125

4.1.3 Request Execution . 126

4.2 Simulator usage . 126

4.2.1 Workload description files . 127

4.2.2 Request description file . 128

4.2.3 Servers description file . 128

4.3 Simulation of Consistency options with Simizer 129

4.4 Consistency Evaluation using Simizer . 133

4.5 Conclusion . 135

5 Performance of LibRe against Cassandra’s Native Consistency options 137

5.1 Implementation of LibRe inside Cassandra 138

5.1.1 Cassandra data model . 138

5.1.2 LibRe implementation inside Cassandra 141

5.2 YCSB for evaluating data consistency . 142

14

TABLE OF CONTENTS

5.2.1 YCSB . 143

5.2.2 Extension to YCSB . 144

5.3 CaLibRe performance evaluation using YCSB 146

5.3.1 Test Setup . 146

5.3.2 Test Evaluation . 146

5.4 Conclusion . 148

6 Overriding Application-Defined Consistency Options during Run-Time151

6.1 Sample Use Cases . 152

6.1.1 Inventory Control Systems . 153

6.1.2 Auction Systems . 153

6.1.3 Bike Sharing Systems . 154

6.1.4 Emergency Situation . 154

6.2 Learning Consistency Needs . 155

6.3 Proposed Model . 156

6.4 Adaptive Consistency for Bike Sharing System 159

6.5 Experimental Evaluation . 160

6.5.1 Prototype Implementation . 160

6.5.2 Test Setup . 161

6.5.3 Test Evaluation . 162

6.6 Conclusion . 164

7 Application-defined Replacement Orderings for Ad Hoc Reconciliation 167

7.1 Syntactic and Semantic Reconciliation . 168

7.1.1 Syntactic Reconciliation . 168

7.1.2 Semantic Reconciliation . 170

7.2 Motivation . 173

15

TABLE OF CONTENTS

7.3 Priority Register . 175

7.3.1 Comparison with CRDTs . 177

7.3.2 Sample Use Cases . 178

7.4 Implementation of the Priority Register inside Cassandra 179

7.4.1 Cassandra Read-Write Pattern . 180

7.4.2 Priority Register Implementation . 180

7.4.3 Prototype Sample Session . 183

7.5 Conclusion . 188

8 Conclusion and Future Works 191

Bibliographie 196

Glossaire 217

16

List of Tables

2.1 Distributed Storage Systems in the PACELC model 70

2.2 Dynamo: Example of modern database systems 91

4.1 Distribution laws available in Simizer . 127

17

List of Figures

2.1 Order that is compliant and noncompliant with strict consistency 62

2.2 Order that is compliant and noncompliant with Sequential Consistency . . 63

2.3 Order that is compliant and noncompliant with Snapshot Isolation 64

2.4 Order that is compliant and noncompliant with Causal Consistency 65

2.5 Consistency Models Comparisons . 67

2.6 CAP Theorem . 69

3.1 LibRe General Architecture Diagram . 98

3.2 LibRe General Sequence Diagram . 98

3.3 Architecture Diagram of DHT-based LibRe 100

3.4 Sequence Diagram of DHT-based LibRe . 101

4.1 Architecture de Simizer . 123

4.2 Architecture simulation classes . 125

4.3 Server description file example . 129

4.4 Experimental Results . 135

5.1 Column-Family data store . 139

5.2 Extended YCSB . 145

5.3 CaLibRe Performance Evaluation under Partial Update Propagation 147

19

6.1 Tunable Consistency model . 156

6.2 Overriding Application-defined Consistency options 158

6.3 Overriding Consistency Options of Velib system 163

7.1 Column reconciliation in Cassandra . 182

Résumé étendu

Problématique

La quantité croissante d’informations à stocker et traiter a mis en exergue l’impor-

tance d’une gestion efficace des ressources de stockage et de calcul. Il est attendu que ce

phénomène, avec la mouvance “Big Data” se renforce encore dans le futur. Ce déluge de

données entraîne la recherche de nouvelles approches pour organiser, gérer et explorer ces

grandes quantités d’informations.

Les systèmes de bases de données distribués sont une réponse à cette problématique.

Ces systèmes incluent des mécanismes d’échanges permettant de se conformer aux besoins

des applications.

La réplication est utilisée dans les systèmes de stockages distribués afin d’améliorer

la performance et la fiabilité du système. La réplication est le processus par lequel une

donnée est copiée en plusieurs exemplaires répartis sur des machines physiques différentes.

Bien que l’emplacement de ces copies soit différent, logiquement chaque copie représente

la même information. En fonction des besoins de l’application, une donnée peut être répli-

quée entièrement ou partiellement, et le nombre et l’emplacement des copies peut varier.

Dans le reste de ce document, nous appellerons indifféremment les copies d’une donnée

et la machine stockant une copie “répliqua”. Le fait de recopier les données introduit im-

médiatement le problème de la mise à jour des différentes répliques: lorsqu’une copie est

modifiée, les autres copies deviennent obsolètes et ces changements doivent être reflétés sur

les autres copies. Ce processus permet de maintenir la cohérence des données du système

distribué. En cas de mises à jour fréquentes des données, il est nécessaire de faire appel à

un protocole de réplication [LAEA95b], permettant de gérer correctement les opération de

21

création, lecture, mise à jour et suppression des données. Le comportement de ce protocole

aura des conséquences sur plusieurs autres propriétés du système telles que : la cohérence,

évidement, mais aussi la latence, la disponibilité, le passage à l’échelle et la tolérance aux

pannes.

Le théorème CAP (Consistency, Availability, Partition Tolerance) [FGC+97; GL02a]

énonce qu’un système distribué ne peut garantir en même temps les trois propriétés que

sont la tolérance aux partitions (isolation d’une sous partie des noeuds du système), la

cohérence et la disponibilité du système. En revanche, il est possible de garantir deux de

ces propriétés à la fois parmi les trois. Par conséquent, la plupart des systèmes de stockage

distribués relâchent la propriété de cohérence afin de garantir une meilleure disponibilité

et une meilleure tolérance aux pannes.

Plus récemment, une nouvelle conjecture, appelée PACELC, qui s’exprime ainsi : s’il

existe une partition (P), comment le système fait un compromis entre disponibilité (A)

et Cohérence (C) sinon (E) quand il fonctionne normalement sans partitionnement, com-

ment le compromis s’effectue entre latence (L) et cohérence (C) a été énoncée par D. Abadi

[Aba12]. Cette reformulation limite la portée du théorème CAP. Il introduit des objectifs

différents si le système fonctionne en mode panne ou non. Le choix de deux des trois pro-

priétés CAP, n’est finalement pas un choix binaire mais un choix à effectuer graduellement

en fonction des conditions dans lesquelles le système se trouve. Un nouvel objectif apparaît

en mode normal : la latence. La latence n’est pas que la latence réseau, c’est la latence

d’un accès à une donnée pour un programme client.

Les bases de données distribuées modernes telles que Dynamo [DHJ+07a], Cassan-

dra [LM10], ou Riak [Klo10] n’assurent pas une cohérence forte par défaut et se fondent

sur une cohérence éventuelle. L’objectif est de favoriser les temps de réponse courts, la

disponibilité des données, et le passage à l’échelle du système, mais cela se paie avec un

risque de lecture de données obsolètes. L’utilisation de politiques de réplication par quo-

rum [Vuk10] permet de limiter ces problèmes et régler finement le niveau de cohérence

pour chaque requête ou chaque table de la base [dd15]. Cette approche est appelée cohé-

rence adaptative, et permet à l’utilisateur de choisir exactement le niveau de cohérence

attendu pour chaque requête.

22

L’estimation du niveau de cohérence nécessaire à une requête reste difficile pour le

développeur. Certaines approches poussent le concept d’adaptation du niveau de cohérence

plus loin en tentant l’adaptation dynamique et autonome en cours d’exécution. Le théorème

CAP a ouvert une voie en identifiant des choix d’architecture, PACELC a affiné l’espace

des considérations. Ces travaux montrent clairement que le choix entre cohérence forte ou

faible n’est pas binaire mais qu’un ensemble de choix intermédiaires existe. L’exploration

de ces différents niveaux d’échange permet d’observer les différentes marges de manoeuvre

possibles pour le développeur.

Le travail présenté dans cette thèse présente trois approches de gestion de la cohérence

des données pour les bases de données distribuées. Dans le reste de ce chapitre, nous ré-

sumons les contributions de ces travaux en quatre parties. Nous commenceront dans la

partie suivante par un travail sur la simulation des problèmes de cohérence dans les sys-

tèmes distribués, qui a permis la simplification de l’évaluation des protocoles mis au point

dans cette thèse. Dans la seconde partie de ce chapitre nous décrivons le protocole LibRe,

et son implantation dans le système de bases de données distribué Cassandra [LM10]. La

description d’un protocole de gestion adaptative de la cohérence fondé sur l’analyse tem-

porelle des requêtes utilisateurs est présentée ensuite. Enfin, la dernière contribution de

ce travail est une structure de donnée distribuée, nommée “priority register” (registre a

priorité) qui permet au développeur de résoudre les conflits de cohérence par la spécifica-

tion d’un ordre de priorité sur les données à conserver. Cette section sera suivie par nos

conclusions et perspectives sur les travaux menés durant ces trois ans.

Partie 1 - Évaluation de protocoles de cohérence par simula-
tion

Les travaux de cette thèse portant sur l’évaluation et la comparaison de protocoles

de maintien de la cohérence, il a été nécessaire de développer un simulateur permettant

de comparer et d’exécuter rapidement des tests à grande échelle sur ces protocoles. Cette

approche a permis de valider les implantations réalisées en amont de leur déploiement sur

une vraie plate forme. Ce travail a été publié dans [LKC14].

23

Travaux similaires

Les simulateurs de stockage distribués ont d’abord émergés avec l’apparition des grilles

de calcul. Ces outils ont ensuite été adaptés pour les architectures de type cloud.

CloudSim [CRB+11b], est une des bibliothèques de simulation les plus populaires,

permet de simuler un grand nombre d’applications différentes. Cependant, les métriques

fournies par ce simulateur sont généralement d’un niveau de granularité trop grand. Il s’agit

par exemple de consommation électrique totale d’un centre de calcul, ou de l’efficacité des

machines pour un niveau de service donné, etc.. Cet outil n’était donc pas adapté aux

objectifs de la thèse.

OptorSim [BCC+03], qui a été développé dans le cadre du projet européen DataGrid 1

adresse bien la problématique de la répartition mais se concentre plutôt sur le problème

de l’évaluation du coût d’un protocole au niveau réseau, au lieu de mesurer son efficacité

en termes de latence ou de cohérence pour les clients.

La bibliothèque SimGrid [BLM+12] a été originellement conçue pour simuler les sys-

tèmes distribués massifs. Au moment où les travaux de cette thèse ont commencé, le

système ne prenait pas encore en compte la simulation des disques ou la simulation des

clouds, contrairement au simulateur Simizer que nous avons développé.

Le simulateur GreenCloud[KBAK10], reposant sur le simulateur réseaux NS-2 [MFF],

se concentre sur la modélisation de consommation électrique des centres de données. Cette

approche n’était pas adaptée à notre besoin et était peu extensible. Enfin, le simulateur

ICanCloud [NVPC+12] se concentre quant à lui sur l’estimation des coûts d’utilisation

d’une plate-forme de Cloud cible, comme la plate-forme Amazon EC2 2.

De part la nature partagée et multi-tenant des infrastructures en nuage, l’évaluation de

la performance des applications en mode cloud est un problème difficile [BS10; IOY+11].

Par conséquent, il existe un besoin de fournir des outils de simulation adéquats. Sakellari

et al. [SL13a], notait qu’en 2013 aucun simulateur de cloud connu ne permettait d’estimer

le comportement d’un application existante déployée dans le cloud. Le peu d’efforts qui

1. http://eu-datagrid.web.cern.ch/eu-datagrid/
2. http://aws.amazon.com, October, 5th, 2013

24

ont été faits en ce sens tels que le simulateur CDOSim [FFH12], ne sont pas disponibles

publiquement.

Nous avons finalement constaté que les simulateurs de plate-formes Cloud existants

n’étaient pas utilisables pour l’étude d’impacts à grande échelle au niveau du centre de

données, ou bien qu’ils ne possédaient pas les fonctionnalités nécessaires à la simulation

détaillée d’algorithmes distribués, ce dont nous avions besoin.

Nous avons donc développé le simulateur Simizer dans le cadre de cette thèse dans le

but de fournir un interface de programmation simple pour modéliser les système distribués

et les systèmes de stockage distribués.

Simulation de protocoles de cohérence avec Simizer

SImizer est un simulateur libre à événements discrets écrit en JAVA. Il est basé sur

une architecture à trois couches: la couche Application, la couche Architecture et la couche

Événements (Event). La couche Événements fournit les classes permettant la gestion des

événements et la génération de nombres aléatoires selon différentes lois mathématiques. La

couche Architecture fournit les classes permettant de décrire l’environnement de simulation

comme les machines, les réseaux... Enfin, la couche application permet à l’utilisateur de

décrire ses protocoles et leurs comportements. La couche Application permet aussi de

décrire le comportement des clients d’un système. C’est à travers ces interfaces qu’il est

possible de décrire une politique de gestion de la cohérence.

Le théorème CAP indique qu’à partir d’une certaine échelle, la cohérence dans un

système distribué ne peut être maintenue qu’au prix du sacrifice de disponibilité ou de la

tolérance aux partitionnements. Des travaux supplémentaires sur ce sujet ont montré que

que la disponibilité du système est liée à la latence des requêtes [Aba12]. Simizer permet

donc de comparer les protocoles choisis selon deux métriques principales: le nombre de

lectures erronées et le temps d’exécution des requêtes en écriture ou en lecture. Nous

définissons une lecture erronée comme la lecture d’une donnée qui n’est pas à jour par

rapport au nombre de requêtes en écriture effectuées jusqu’au moment de la requête en

lecture.

25

Le processus de réplication des données est central dans un protocole de gestion de

la cohérence. La mise en oeuvre d’un nouveau protocole dans Simizer utilise ce fait en

attribuant à chaque donnée (appelée Resource) du système simulé un temps de disponibilité

(alive time). Le temps de disponibilité est le temps au delà duquel une version d’une

donnée devient visible à la machine qui la stocke. La politique de gestion de la cohérence

est implantée de sorte à calculer le temps de disponibilité pour chaque donnée en fonction

des requêtes effectuées par les clients (lectures ou écritures). Une lecture erronée est donc

détectée lorsque, lors d’une requête en lecture, la donnée cible n’est pas disponible ou

bien qu’elle n’est pas encore visible par le système. Dans le second cas, cela signifie que la

donnée n’est pas à jour par rapport à ses répliques.

La gestion de la réplication dans Simizer, se fait en dérivant la classe Processor qui

fournit trois méthodes : read, write et update, prenant chacune en paramètre une donnée

cible ainsi que sa taille. Chaque politique de cohérence est donc implémentée dans sa

propre classe et le choix de la classe à utiliser est un paramètre de la simulation. Cette

approche a permis la comparaison de plusieurs politiques de répartition et a donné des

résultats acceptables par rapport à des tests dans le cloud.

Résumé et conclusions

Dans cette partie, nous avons résumé le travail réalisé au cours de cette thèse en matière

de simulation de protocoles de gestion de la cohérence des données. Dans la thèse nous

avons montré que les simulateurs existant à l’époque de ce travail, ne fournissaient pas les

fonctionnalités nécessaires ou le niveau d’abstraction approprié pour simuler des protocoles

de cohérence. Simizer permet la simulation des protocoles applicatifs eux mêmes, et ainsi,

la comparaison de différents protocoles par rapport aux mêmes comportements de clients

et à des métriques bien définies. Grâce à Simizer il a été possible de simuler efficacement

plusieurs protocoles dans différentes conditions et en amont d’un déploiement dans un

système réel. Simizer est une librairie de simulation en logiciel libre, open-source, qui

permet une simulation rapide et efficace de systèmes distribués. L’interface de Simizer est

intuitive et permet de décrire rapidement une infrastructure et le comportement des clients

de l’application simulée. Le développeur / chercheur n’a ainsi plus qu’à se concentrer sur

26

le développement de son modèle de simulation. A cet effet, cet outil a été particulièrement

utile au cours de cette thèse pour le développement du protocole LibRe, décrit dans la

section suivante.

Partie 2 - LibRe: un autre rapport Cohérence / Latence pour
les bases de données distribuées

La stratégie de réplication affecte le comportement des systèmes distribués en ce qui

concerne les propriétés de cohérence, disponibilité et tolérance au partitionnement. Nous

savions d’après le théorème du CAP (Consistency, Availability, Partition Tolerance)[GL02a]

qu’un système distribué ne peut respecter les trois propriétés à la fois. Ce théorème énonce

que tout système distribué peut répondre à deux propriétés parmi trois : la cohérence

(Consistency, i.e tous les noeuds du système voient exactement les mêmes données au

même moment), la disponibilité (Availability, i.e les données sont toujours accessibles même

en cas de panne), tolérance aux partitionnements (Partitionning, l’application continue à

rendre le service attendu malgré le partitionnement du réseau). Dans notre étude, nous

avons supposé la propriété P toujours satisfaite, il reste alors à faire un choix entre l’une des

propriétés C ou A. Par conséquent, les hypothèses traditionnelles, telles que la réplication

complète ou le support des transactions, doivent être assouplies. Les solutions existantes

diffèrent quant au degré de cohérence des données qu’elles fournissent, un compromis reste

à déterminer entre la latence, la cohérence et la disponibilité des données [Aba12].

LibRe, la contribution initiale de cette thèse, est un protocole de gestion de la cohérence

permettant de fournir la dernière mise à jour d’une donnée à l’utilisateur tout en ne

consultant qu’un minimum de répliques des données. Ceci se fait en stockant la liste des

mises à jour estampillées dans un annuaire. Ce protocole a été évalué par simulation grâce

à la plate-forme Simizer [LKC14]. Nous avons également évalué LibRe en le mettant en

oeuvre au sein du système de stockage Cassandra [LM10] afin de le comparer avec les

niveaux de cohérence offerts par ce système.

La suite de cette partie est organisée comme suit : la section suivant décrit l’état de

l’art. Dans la section “Description de LibRe”, nous présentons notre approche de gestion

de la cohérence : LibRe. Enfin, la section “Résumé et conclusion” conclut cette partie.

27

État de l’art

Le problème de la cohérence des données se pose quand une mise à jour pour une

des répliques se produit. Par conséquent, la cohérence des données est principalement

influencée par la stratégie de réplication de données adoptée par le système. Daniel Abadi

explique dans [Aba12] que les mises à jour se propagent de trois façons différentes selon la

stratégie de réplication adoptée (une combinaison de ces modes de propagation peut être

envisagée): Synchrone, asynchrone ou hybride.

Synchrone Si les mises à jour sont appliquées de manière synchrone, la lecture des

données de n’importe quelle réplique est correcte (cohérence forte). Cependant, le temps

de propagation peut être affecté par la lenteur d’un noeud ou son emplacement physique

dans le système. Il est d’usage de verrouiller l’accès à une donnée le temps que les mises

à jour se propagent afin d’assurer une cohérence forte [SS05]. Dans ce cas, la demande de

lecture doit attendre ou doit être abandonnée jusqu’à ce que les données soient disponibles

après mise à jour. Par conséquent, cela affecte la disponibilité du système.

Asynchrone Dans l’approche asynchrone, le noeud qui reçoit la première mise à jour

l’applique localement et renvoie un message de succès au client. La mise à jour est ensuite

propagée à ses répliques de manière asynchrone (en arrière-plan). Dans ce cas, il existe un

compromis entre cohérence et latence en fonction de la façon dont les demandes de lecture

sont traitées par le système.

— Cas 1: Les requêtes de lecture sont servies à partir d’un noeud particulier en tant que

point d’entrée central. Il n’y aura donc pas de sacrifice de la cohérence. Cependant,

puisque les demandes sont servies à partir d’un noeud central, il existe un risque

de surcharge de ce noeud ce qui peut affecter le temps de latence.

— Cas 2: Si il n’y a pas de point d’entrée central pour les requêtes de lecture, il

y a un risque de lecture d’une réplique où la mise à jour récente n’est pas encore

appliquée. Dans ce cas, la latence pour la lecture serait minimisée mais en sacrifiant

la cohérence des données.

28

Hybride La combinaison des modes synchrone et asynchrone dans l’objectif d’atteindre

un meilleur compromis entre la latence, cohérence et disponibilité est également possible.

Ce mode est connu sous le nom de cohérence au vote majoritaire (Quorum consistency).

La majorité des répliques forme un quorum. La taille du quorum peut être estimée par la

formule N/2 + 1, où N est le nombre de répliques. Le système va propager la mise à jour

de façon synchrone au quorum et de manière asynchrone pour le reste des répliques. Dans

ce cas, la cohérence du système peut être assurée par la formule W +R > N où N est le

nombre de répliques, W et R sont respectivement le nombre de répliques contactées pour

l’écriture et la lecture.

Par ailleurs, il existe plusieurs niveaux de cohérence qui peuvent être classés de la façon

suivante:

Cohérence forte Les systèmes de cohérence forte garantissent que toute lecture sur un

élément puisse accéder à la dernière écriture faite sur cet élément. Les systèmes assurant

une cohérence forte suivent les principes de sérialisabilité et linéarisabilité afin d’éviter la

divergence des répliques [HW90].

Cohérence à terme Les systèmes qui respectent ce type de cohérence, garantissent

qu’une mise à jour se propage vers toutes les répliques pour former un état cohérent si

aucune autre mise à jour n’a été opérée entre temps. La lecture/écriture est considérée

comme réussie si au moins une des répliques répond correctement à l’émetteur de la requête

(valide la mise à jour). Les mises à jour sont ensuite propagées à travers le réseau et en

arrière-plan de manière asynchrone. Dans ce type de cohérence, il n’ y a aucun ordre

imposé aux opérations, ainsi il peut y avoir des conflits de mises à jour. Ces conflits sont

généralement résolus au niveau du client ou par des règles applicatives [Vog09].

Cohérence causale Ce type de cohérence permet de limiter les conflits qui peut subve-

nir dans le cas d’une cohérence à terme (comme vu précédemment). Il est également conçu

pour des systèmes concurrents multi-lectures/écritures donnant la possibilité à toute ré-

plique de répondre aux requêtes utilisateurs. Toutefois, le système qui vérifie la cohérence

29

causale impose qu’une mise à jour ne s’opère que si d’autres mises à jour ont été exécutées

avant, ainsi les conflits peuvent être évités. En d’autres termes, la pré-condition définit

un ordre partiel des opérations qui doivent être exécutées sur la base de leur causalité.

Il peut y avoir tout de même des conflits si deux mises à jour sur la même donnée ar-

rivent en même temps. La phase de résolution de conflit est toujours nécessaire. Même si

la cohérence causale est plus "forte" que la cohérence à terme, il ne faut pas négliger sa

consommation en débit4 et en nombre de messages transmis à travers le réseau.

Cohérence faible Ce type de cohérence est généralement utilisé dans des systèmes hors-

ligne. Les répliques ne sont pas tout le temps connectées entre elles, elles peuvent l’être à de

courtes périodes qui ne sont a priori pas connues. Quand deux noeuds se connectent, elles

partagent leurs mises à jour pour converger vers un état cohérent. Ainsi, si une donnée est

modifiée, cette modification sera propagée aux répliques au bout d’un certain temps[SS05].

A noter que d’autres définitions existent dans la littérature [VV15]

Description de LibRe

La principale composante de LibRe est un annuaire qui répertorie toutes les écritures

et mises à jour opérées dans le système. Ainsi, un noeud peut être cohérent pour quelques

données mais erroné pour d’autres. A titre d’exemple, supposons une topologie où les

serveurs sont connectés à un réseau commun. Si un noeud particulier dans la topologie est

en panne ou séparé du réseau pendant une période de temps, le noeud sera incohérent pour

les opérations qui ont eu lieu pendant cette période. Toutefois, le noeud sera cohérent pour

les données non affectées par ces opérations. En d’autres termes, nous souhaitons identifier

les mises à jour qui ne se sont pas encore exécutées sur les noeuds. Ceci permet au système

d’arrêter de transmettre les demandes au noeud erroné jusqu’à ce qu’il soit à nouveau

cohérent. Un noeud est considéré comme erroné s’il contient des données périmées pour

la requête entrante. Cette restriction peut être libérée une fois que les mises à jour sont

opérées sur le noeud.

Pour cela, les noeuds annoncent leurs mises à jour à l’annuaire. L’annonce contient

l’identifiant de la ressource modifiée ainsi que l’identifiant du noeud qui a reçu la mise

30

à jour. L’annuaire a été implémenté de façon décentralisée selon une table de hachage

distribuée (DHT) [ZWXY13] afin d’éviter un unique point d’entrée SPOF (Single Point of

Failure) si celui-ci tombe en panne. A noter également que la fiabilité de LibRe, son coût

d’exécution ainsi qu’une étude formelle de son comportement ont été effectués. Cette étude

ne sera pas présentée dans ici, mais pour plus d’information, le lecteur peut se référer à

[KLCG15].

La figure 1 montre où se positionne LibRe dans le système complet.

Nous appelons le "Frontend" le noeud par lequel un client se connecte pour envoyer ses

requêtes. Nous considérons une architecture multi-lecture/écriture où chaque noeud peut

jouer le rôle du frontend. Le frontend interroge le registre LibRe afin de trouver le noeud

cible pouvant répondre à la requête.

Tel que le montre la figure 1, le protocole LibRe est constitué de 3 composants à savoir:

l’annuaire également appelé registre (Registry), le gestionnaire de disponibilité (Availabi-

lity Manager), le gestionnaire de notification (Advertisement Manager). L’annuaire est une

structure de stockage en mémoire sous format clé-valeur: la clé étant l’identifiant d’une

ressource (donnée) et la valeur est une liste des répliques contenant les données les plus

récentes. Si la taille de la liste des noeuds mis à jour atteint le nombre de répliques dans

le système, cela signifie que cette donnée est cohérente. L’enregistrement clé-valeur pour

cette donnée peut donc être supprimé de l’annuaire en toute sécurité. Le gestionnaire de

disponibilité est en charge de transmettre la requête de lecture vers le noeud contenant la

version récente des données. Le gestionnaire de notifications quant à lui se charge d’enre-

gistrer dans l’annuaire les notifications des noeuds ayant reçu des mises à jour pendant les

opérations d’écritures. Ces composants sont stockés dans les noeuds répliques suivant une

architecture de DHT [ZWXY13].

A noter que tous les noeuds contiennent un annuaire. Toutefois, celui-ci n’est pas

répliqué, il est co-localisé avec les données dont il est en charge (supervision de leurs

versions). En cas de défaillance d’un noeud, son annuaire est reconstruit dynamiquement

avec le flot des requêtes transmis aux noeuds responsables de la réplication. LibRe est

destiné à être adopté dans des systèmes éventuellement cohérents. Par conséquent la mise

à jour de l’annuaire peut ne pas être exactement la même que celle des noeuds de réplication

31

sans nuire de manière importante à l’utilisateur.

Figure 1 – Architecture globale de LibRe

(a) LibRe Write/Update Operation (b) LibRe Read Operation

Figure 2 – Diagramme de séquence LibRe

Les figures 2a et 2b montrent le diagramme de séquence du comportement de LibRe

pendant les opérations d’écriture et de lecture respectivement.

Opération d’écriture

Dans tout système distribué, quand un frontend reçoit une requête d’écriture, il la

transfère à toutes les répliques. Si tous ces derniers lui accusent la bonne réception de la

modification, le frontend émet une réponse de succès au client. Si le nombre suffisant de

réponses des répliques n’a pas été reçu dans les délais, le frontend émet une réponse d’échec.

Le protocole LibRe suit ce même comportement usuel, en l’étendant avec un message de

notification que la réplique envoie de manière asynchrone à l’annuaire. Cette notification

32

est constituée de la clé de la donnée, sa version version-id et le noeud ayant reçu la mise

à jour.

L’algorithme 3 décrit la contribution du gestionnaire de notifications lors d’une opéra-

tion d’écriture. On distingue deux cas:

— Insertion: Lorsqu’une donnée est écrite dans le système de stockage pour la première

fois ;

— Mise à jour: Quand la donnée à mettre à jour existe déjà dans le système de stockage.

La mise à jour peut provenir du frontend ou transférée par un noeud réplique.

Algorithm 1 Opération d’écriture avec LibRe
1: function log(dataKey, versionId, nodeIP)
2: if Reg.exists(dataKey) then
3: RegV ersionId← Reg.getVersionId(dataKey)
4: if versionId = RegV ersionId then
5: replicas← Reg.getReplicas (dataKey)
6: replicas← appendEP(replicas, nodeIP)
7: Reg.updateReplicas(dataKey, replicas)
8: else if versionId > RegV ersionId then
9: replicas← reinitialize(nodeIP)

10: Reg.updateReplicas(dataKey, replicas)
11: Reg.updateVersionId(versionId)
12: end if
13: else
14: replicas← nodeIP
15: Reg.createEntry(dataKey, replicas)
16: Reg.updateVersionId(versionId)
17: end if
18: end function

Quand un noeud réplique envoie un message de notification concernant une mise à

jour, le Gestionnaire de disponibilité suit les actions suivantes. D’abord il vérifie si la clé

de la donnée data-key existe déjà dans l’annuaire: la ligne 2. Si oui (opération de mise à

jour), ligne 3: la version-id pour cette ressource est récupérée. Version-id est un nombre

(qui croit de façon monotone) représentant le caractère récent de la mise à jour, cela peut

être par exemple le timestamp de l’opération.

Ligne 4: Si la version-id enregistrée dans l’annuaire correspond à la version-id de l’opé-

ration (la mise à jour), alors la ligne 7: l’adresse IP du noeud sera ajoutée avec la liste des

répliquas existant. Ligne 8: Si les deux versions-ID ne correspondent pas et si la version-id

de l’opération est supérieure à la version-id existant dans l’annuaire (ce qui signifie, la mise

à jour est nouvelle), la ligne 9 -10: la liste des répliques pour la data-key sera réinitialisée

à l’adresse IP du noeud. La Version-id sera également mise à jour (Ligne 11).

Si data-key n’existe pas dans l’annuaire (ligne 13), ce qui signifie que c’est une insertion,

33

alors une nouvelle entrée sera créée avec la nouvelle data-key, l’adresse IP du noeud et la

version-id de l’opération (lignes 14 à 16). Cette approche correspond à la politique LWW

(Last Writer Wins: dernière mise à jour gagnante) [SS05].

Opération de lecture

Quand le frontend reçoit une requête de lecture, il envoie un message de demande

de disponibilité (avec la requête et la data-key) au noeud hébergeant l’annuaire. Celui-ci

envoie la requête aux répliques se trouvant dans l’annuaire. Si aucune entrée n’est trouvée,

alors la requête sera envoyée à n’importe quel noeud réplique (cf. figure 2b). L’algorithme

4 décrit ce comportement.

Algorithm 2 Opération de lecture avec LibRe
1: function getTargetNode(dataKey)
2: replicas← Reg.getReplicas(dataKey)
3: targetNode← getTargetNode(replicas)
4: if targetNode is NULL then
5: targetNode← useDefaultMethod(dataKey)
6: end if
7: forwardRequestTo(targetNode)
8: end function

Résumé et conclusion

Nous avons présenté dans cette section des méthodes de gestion de la cohérence dans

les systèmes de stockage de données à large échelle. L’objectif de cette étude est de trouver

le meilleur compromis entre la cohérence, la latence et la disponibilité dans ces systèmes.

Après étude des différents types de cohérence existants et des algorithmes mis en oeuvre

dans les systèmes actuels, nous nous sommes rendus compte qu’il existait une possibilité

non encore explorée: assurer la cohérence la plus forte possible tout en ne consultant

qu’une seule réplique. Pour cela, nous avons proposé un algorithme appelé LibRe que nous

avons évalué par simulation grâce à la plateforme Simizer mais aussi dans un cas réel en

l’intégrant au système de stockage Cassandra. Les résultats de ces expérimentations ont

démontré l’efficacité de notre approche.

34

Partie 3 - Cohérence adaptative

Une des limitations majeure des systèmes de gestion de données distribuées modernes

est l’inévitable intermédiation entre cohérence, disponibilité et latence des requêtes issue

du théorème de CAP. Un contournement de ce problème peut être trouvé en concevant

le système de sorte qu’il choisissent automatiquement le niveau de cohérence nécessaire

au bon fonctionnement du système en fonction de l’application ou du contexte. Cette

fonctionnalité s’appelle la “cohérence adaptative”. Grâce à la cohérence adaptative, un

développeur peut optimiser précisément la performance de son application en traitant dif-

féremment les données ou les requêtes nécessitant un fort niveau de cohérence et celles

qui n’en ont pas besoin. Cependant, ces décisions dépendant souvent d’invariants appli-

catifs ou de phénomènes externes, décider du niveau de cohérence automatiquement reste

un problème ouvert, surtout dans le cas de systèmes où le comportement des utilisateurs

change au cours du temps.

travaux similaires

La littérature existante sépare les travaux en matière de cohérence adaptative en deux

grandes catégories: définie par l’utilisateur, ou définie par le système.

Définie par l’utilisateur : Ces systèmes permettent au développeur, grâce à un en-

semble de paramètres, de définir le niveau de cohérence attendu pour chaque opération

sur le système. Ces opérations peuvent être la création, la modification, la lecture ou la

suppression d’une donnée. Le développeur décide donc soit statiquement, soit dynami-

quement de choisir un niveau de cohérence donné pour une requête. Cette souplesse de

configuration des requêtes est un modèle sûr car le développeur de l’application est en gé-

néral le mieux placé pour connaître le comportement du système et donc choisir un niveau

de cohérence approprié. La plupart des systèmes de bases de données distribués modernes

tels que Cassandra [LM10], Amazon Dynamo [DHJ+07a] ou Riak [Klo10] offrent cette

possibilité. Dautres travaux dans ce domaine sont les travaux sur la Red-Blue consistency

[LPC+12] et SALT[XSK+14].

35

Définie par le système Dans ce modèle de cohérence adaptative, le système de ges-

tion de données sélectionne automatiquement le niveau de cohérence à attribuer à chaque

requête. Le principal défi de cette approche consiste à catégoriser correctement les re-

quêtes dans un niveau de cohérence avant leur exécution. A cet effet, différentes approches

peuvent être utilisées, telles que la liste des opérations précédentes, la valeur de la donnée

elle-même, la probabilité d’apparition d’un conflit, la charge réseau, la latence, etc... Diffé-

rentes approches existent dans la littérature comme la cohérence continue [YV00], IDEA

[LLJ07] ou Harmony [CIAP12]. Certaines méthodes, comme le rationnement de cohérence

[KHAK09] utilisent un mélange de ces deux approches.

La plupart des approches “systèmes” utilisent un service séparé au-dessus du système

de stockage pour ajouter le paramètre approprié à la requête avant son exécution. Ce type

d’architecture peut donc être aisément sujet à un goulot d’étranglement. Nous pensons

que l’intégration de ces techniques au niveau du système de stockage lui-même permet

de réduire considérablement la surcharge provoquée par l’analyse des requêtes. De plus,

cette approche permettrait de régler plus finement les choix du système sur la base d’une

requête ou d’une session plutôt qu’au niveau d’une table entière.

Changement dynamique du niveau de cohérence

L’approche développée dans cette thèse consiste à mettre à jour dynamiquement le

niveau de cohérence des requête sur la base de données, à partir d’un niveau de cohérence

par défaut. Ce niveau par défaut est le plus bas, dans lequel un seul noeud est écrit ou lu

à chaque requête. A partir de l’analyse temporelle des requêtes effectuées sur le système,

l’utilisateur spécifie des plages de temps et de données avec des niveaux de cohérence

différents du niveau par défaut. Ces informations permettront au système de détecter

rapidement si les requêtes en cours on besoin d’utiliser un niveau de cohérence plus fort.

L’information sur les données nécessitant un niveau de cohérence plus fort est diffusée

à tous les noeuds coordinateurs du système. Comme ce type de noeud est très inférieur

au nombre total de noeuds dans le système, cela ne représente pas une grande quantité

de données. Les données fournies aux coordinateurs consistent en un ensemble de clefs

identifiant des données stockées dans le système. A chaque clé est adjointe un niveau de

36

cohérence et un intervalle de temps avec une heure de départ et une heure de fin. A la

réception de ces données, les identifiants ayant des intervalles et un niveau de cohérence

similaires sont regroupés dans un filtre de Bloom [BMM02]. Ceci permet de compresser

largement l’information contenue dans les listes.

À la date correspondant au début de l’intervalle associé à un filtre, le filtre est basculé

en mode “actif” sur tous les noeuds coordinateurs. Lors d’une opération en lecture ou en

écriture, le noeud va vérifier la présence de la donnée cible dans les filtres actuellement

actifs. Si la donnée est présente dans l’un des filtres, alors le système applique le niveau

de cohérence correspondant à ce filtre. Si l’identifiant est introuvable dans les filtres, alors

le niveau de cohérence par défaut sera appliqué.

Le filtre de Bloom étant une structure de données probabiliste, il existe un risque de

faux positif, indiquant l’élément est présent dans le filtre alors qu’il n’en fait pas partie

en réalité. Dans le cadre de notre approche, cela implique qu’un élément présent dans

une liste pourrait se voir appliquer un niveau de cohérence différent de celui attendu par

l’utilisateur. C’est pour cette raison que le niveau de cohérence le plus bas a été choisi

par défaut: en cas de faux positif, un élément se verra toujours appliquer un niveau de

cohérence plus élevé que celui qui lui a été attribué. Cet approche conservatrice permet

de limiter les risques de lectures erronées, au détriment de la performance pour une petite

partie des données.

La figure 3, schématise ce fonctionnement : lors de l’arrivée d’une requête sur le noeud

Coordinateur, notre algorithme de sélection de cohérence itère sur les filtres de Bloom

présents sur le coordinateur, jusqu’à trouver l’identifiant utilisé dans la requête reçue.

Ce modèle a été développé et déployé dans une version modifiée du système de stockage

Cassandra, et a été testé sur un cas d’application représentatif. Ce cas d’application est

fondé sur les besoins du système Vélib’, le système de partage de vélos parisien. Ce système

nécessite l’application d’un niveau de cohérence fort pour fournir l’information sur la

disponibilité des vélos dans ses stations. Or, il est plus important de garantir la précision de

cette information lorsque le nombre de vélos utilisables ou que le nombre d’emplacements

libres sont très bas. Ainsi, grâce aux travaux sur le partitionnement de séries temporelles

décrits par Chabchoud et al. dans [CF14], il a été possible de créer une série de filtres

37

Figure 3 – Overriding Application-defined Consistency options

permettant d’ajouter un niveau de cohérence plus fort pour les stations les plus demandées.

Nous avons testé notre approche en rejouant les requêtes du système à un rythme plus

élevé pour créer des lectures erronées.

Résumé et conclusions

Les travaux décrits dans cette section proposent une nouvelle méthode de cohérence

adaptative définie par le système. Notre méthode est intégrée directement au sein du sys-

tème de stockage, pour limiter la surcharge impliquée par l’analyse des requêtes pour la

sélection du bon niveau de cohérence. Nous avons utilisé l’analyse de séries temporelles

pour repérer les données qui ont besoin de niveaux de cohérence différents du niveau stan-

dard. Ces éléments sont regroupés dans des listes compressées grâce aux filtres de Bloom

et le système utilise ces filtres pour déterminer dynamiquement le niveau de cohérence

requis pour chaque requête. Nous avons testé cette approche sur le système Cassandra et

les résultats sont encourageants.

38

Partie 4 - Registre de priorité: Ordre de remplacement spé-
cifique pour la réconciliation

La dernière contribution de cette thèse se concentre sur les problématiques de réso-

lutions de conflits entre répliquas. En effet, les systèmes de stockage récents troquent la

cohérence des données pour un meilleur temps de réponse, et laissent donc de temps en

temps les répliquas diverger vers des valeurs différentes. La réconciliation est le processus

durant lequel les conflits entre répliquas divergents [Mai08]. Identifier la version la plus à

jour entre les différentes versions d’une même donnée et la diffuser le plus rapidement aux

répliques est un défi clé de la réconciliation.

Nous décrivons dans cette section un nouveau type de donnée distribué appelé le “re-

gistre à priorité”. Après avoir introduit quelques notions clés sur la résolution des conflits

entre répliquas, nous décrirons la motivation et l’approche développées dans ces travaux.

Notions-clés

En fonction de la technique de détection de conflits, les processus de réconciliation

peuvent être classés en deux types: réconciliation syntaxique et réconciliation séman-

tique [DGMS85; Mai08]. Les techniques de reconciliation syntaxique sont fondées sur les

relations de sérilisabilité ou de causalités qui peuvent être capturées par les différents types

d’horloges logiques: vecteurs d’horloges [Fid88], vecteurs de versions [PPR+83], ou bien

encore des horloges physiques. Les techniques de réconciliation syntaxiques sont rapides,

efficaces et peuvent être gérées automatiquement par le système. Cependant, elles ne sont

pas idéales dans tous les cas. De plus, en combinaison avec des stratégies de réplications

optimistes, ces techniques sont sujettes à des problèmes de conflits syntaxiques, qui ne

peuvent êtres résolus que par la reconciliation sémantique.

La réconciliation sémantique est utilisée lors des conflits syntaxiques, ou lorsque le cri-

tère de cohérence ne peut être fondé sur les principes de sérialisibilité ou les relations de

causalité. Les techniques de réconciliation sémantique sont fondées sur la connaissance spé-

cifique du domaine pour la résolution des conflits entre répliquas. Cette technique peut être

appliquée dans un grand nombre de cas d’utilisation. Cependant, ces techniques peuvent

39

être lentes ou complexes et sujettes aux erreurs [SPBZ11b]. Certains types de données

rassemblent les bénéfices des deux approches en une. Ces types sont appelés conflict-free

replicated data types (CRDTs) [SPBZ11b]. Les CRDTs utilisent la sémantique des opéra-

tions disponibles sur le type de données utilisé pour fournir des garanties de cohérence à

terme plus ou moins fortes, en fonction du type: registres, compteurs, ensembles, graphes,

ou autres [SPBZ11a; Bur14]. Il peut arriver qu’aucune de ces variantes ne soit applicable

pour une application cible. Dans ce cas les développeurs utilisent des techniques de récon-

ciliation sémantique pour détecter et résoudre les conflits [RD15b].

Une technique fréquente est l’utilisation de l’action des utilisateurs pour décider de la

version à conserver. Un exemple célèbre de cette approche est le cas du panier d’achat

utilisé dans les travaux sur le système de bases de données distribué Dynamo[DHJ+07a].

En cas de conflits entre deux versions du panier d’un même utilisateur, le système demande

directement à l’acheteur quel panier est le bon. Cette approche de résolution est lente et

entraîne une mauvaise expérience utilisateur et ralentit le processus d’achat, ce qui peut

nuire à la réputation du site.

Nous pensons donc que d’autres techniques doivent être appliquées pour résoudre ce

type de conflits.

Cas d’utilisation et motivation

Ce travail a été motivé par le modèle de connaissance partagée à ordre partiel pour les

systèmes distribué faiblement couplés [SKT14].

Ce modèle a été utilisé pour les objets de données du projet de réseaux fondé sur le

contenu ENCODERS 3 . Dans ce projet, les objets circulant sur le réseau, sont mis en

cache afin d’améliorer leur dissémination et leur accessibilité. La technique d’éviction de

cache utilisée se fonde sur les méta-données associées à chaque objet. L’utilisateur peut

spécifier un ordre de remplacement pour une classe d’objets possédant certains attributs

(méta-données). L’ordre utilisé est par défaut un ordre lexicographique sur les attributs

(chacun d’entre eux se voit attribué une priorité), et les valeurs associées à ces attributs.

L’ordre global définit sur tous les objets du système est appelé ordre de remplace-
3. Edge Networking with Content Oriented Declarative Enhanced Routing and Storage

40

ment défini par l’application. Cet ordre global n’est que partiel car les objets de classes

différentes (qui n’ont pas d’attributs en commun) ne peuvent pas être ordonnés les uns

par rapport aux autres. Cette forme de remplacement peut être vue comme une forme

de réconciliation sémantique. Par exemple, supposons que le framework ENCODERS ait

besoin d’être étendu pour fonctionner dans le Cloud. Une base de données distribuée de-

vrait être utilisée pour stocker les objets du framework et permettre la contribution entre

plusieurs réseaux à travers le cloud. Cependant la grande quantité d’objets nécessiterait

que la base de données suive le même système de remplacement qu’ENCODERS pour

économiser l’espace de stockage.

Par conséquent nous proposons d’étendre une base de données distribuée pour utiliser

le même principe de remplacement pour résoudre les conflits entre répliques.

Le registre à priorité

Dans cette section nous décrivons le registre à priorité, qui est un registre paramétré

par un ordre défini par l’utilisateur. Ce registre est un registre multi-valué, qui résout les

conflits en utilisant un ordre définit sur les valeurs stockées dans le registre au lieu d’utiliser

les relations entre opérations. En tant que registre valué, ce registre peut contenir plusieurs

valeurs, chacune maximales dans leurs ordres respectifs.

Un cas particulier est celui d’un registre où une seule classe d’objets peut être contenue.

Dans ce cas plusieurs objets différents peuvent être stockés si leurs méta-données sont

égales. Dans le cadre de la preuve de concept développée au cours de cette thèse, ce type

d’égalité est géré en utilisant le timestamp (horodatage) des données pour départager les

répliques.

Une application définit un ordre partiel en déclarant pour une classe d’objets, la liste

des attributs à utiliser dans l’ordre lexicographique voulu. Notre preuve de concept étant

développée sur le système de stockage Cassandra, cela s’est traduit dans notre implé-

mentation par l’introduction de paramètres supplémentaires pour marquer les attributs

couvert par l’ordre partiel. En cas de conflit, le système compare les différentes versions à

l’aide de l’ordre défini et ne conserve que la version qui est la plus haute dans l’ordre. En

cas d’absence de certaines valeurs, les valeurs manquantes sont considérées comme étant

41

minimales dans leurs valeurs respectives.

Résumé et conclusions

Les techniques de réconciliation syntaxiques ne peuvent pas être appliquées à tous les

cas d’usage. L’utilisation de techniques de réconciliation sémantiques s’avère donc néces-

saire, car elles peuvent se décliner sur des cas très spécifiques, cependant ces techniques

sont parfois lourdes à mettre en oeuvre.

Le registre à priorité devrait permettre de combiner le meilleur de ces deux approches

en permettant une grande expressivité au niveau applicatif tout en bénéficiant d’une grande

efficacité dans la résolution des conflits. Grâce à ce système les techniques de résolutions

coté clients peuvent être intégrées coté serveur à un coût relativement faible.

Partie Conclusion globale

Cette thèse expose trois solutions à des problèmes récurrents de gestion de la cohérence

dans les bases de données distribuées. Dans l’ordre chronologique, la première contribution

au domaine est la mise au point du protocole LibRe qui permet de fournir un nouvel

échange entre cohérence et latence dans les bases de données distribuées, en particulier en

cas de faible connectivité.

Un second travail a été effectué dans le domaine de la cohérence adaptative, avec le

développement d’une preuve de concept utilisant le partitionement de séries temporelles

pour permettre à l’utilisateur d’identifier les intervalles de temps et les données nécessitant

un niveau de cohérence plus élevé que la normale.

La contribution principale de cette thèse est la définition du “priority register” qui est

un type distribué permettant de paramétrer un ordre de remplacement sur ses valeurs.

Cette fonctionnalité permet d’assurer une forme de réconciliation sémantique des réplicas

en conflit, sans faire appel à l’utilisateur de l’application.

Chacune de ces contributions a fait l’objet d’une implémentation dans le système de

gestion de bases de données distribuées Cassandra.

Ces travaux offrent de nombreuses perspectives de recherche. Tout d’abord sur les

42

relations entre les proprietes de coherence et les proprietes souhaitees d’un systeme distri-

bue. Pas seulement disponibilité et tolérance aux fautes, mais par exemple prouvabilité ou

respect des specifications du systeme. Le protocole LibRe, par sa flexibilité basée sur l’uti-

lisation d’un registre, offre des perspectives interessantes au probleme de la reconciliation

du point de vue des applications et plus seulement du point de vue du systeme.

Sur le registre à priorité, son extension à d’autres formes d’ordres mérite d’être étu-

diée, afin de permettre le support de nouveaux cas d’utilisation, particulièrement dans le

traitement des données massives.

Chapter 1

Introduction

The growing amount of information to be stored and processed has increased the

importance of efficient data and computational resource management. This phenomenon

is expected to grow in amplitude in the near future and is referred to as “Big Data”

management. This huge data increase raises great challenges for data management lifecycle

and requires innovative approaches to organize, manage, and explore the overwhelming

amount of information. The scaling requirements of big data management demands a

distributed database system that allows to configure tradeoffs according to the application

needs.

In distributed database systems, data replication is inevitable to improve the perfor-

mance and availability of the system. Data replication is the process of replicating the

same data among various storage elements (nodes). Although the physical copy of a data

item varies, logically they are one and the same. The number of physical copies and the lo-

cation of the copies can vary based on the application needs. By introducing more than one

physical copies of a data item via replication, an immediate problem that a storage system

encounters is Data Consistency. Data Consistency is not violated as long as there are no

updates in the system. When a data item is modified on one of the replicas, the same data

item stored on other replica nodes becomes stale. The copies of same data item stored on

different nodes are called replicas and the nodes storing the replicas are called the replica

nodes. Hence updating the same data before any of the replica nodes start processing on

the stale replica is very important. Due to this case, a Replica control protocol [LAEA95b],

45

which can safely handle the CRUD (Create, Read, Update, Delete) operations, forms the

core of the replication service. The Replica Control Protocol drives the desirable proper-

ties of the storage system that includes Latency, Consistency, Availability, Scalability and

Partition Tolerance.

According to CAP conjecture [GL02a], a distributed storage system can not ensure

Consistency and Availability at the same time in case of network partition. Due to this

reason, most of the systems that prefer to remain highly available need to relax consis-

tency guarantees without affecting the application invariants. Abadi in his paper [Aba12]

proposed a new conjecture called PACELC taking into account the request latency and

discusses the different tradeoffs between Consistency, Availability and Request Latency.

Although, one has to be sacrificed among Consistency and Availability, the sacrifice is

not a binary option, it can be tuned to different levels depending on the use case. The

consistency guarantees could be sacrificed to a certain limit for the benefit of Latency and

Availability. The first level of tradeoff could go between Consistency and Latency, the level

of consistency could be sacrificed till certain extent for the benefit of request Latency.

In the second level, the level of consistency could be sacrificed further for the benefit of

Availability and the third level is a pure decision between the Consistency and Availability.

Modern distributed data storage systems such as Dynamo [DHJ+07a], Cassandra [LM10],

Riak [Klo10] do not ensure strong consistency by default, instead, they ensure eventual

consistency. Although eventual consistency favors request latency, availability and scala-

bility of the system, they are prone to consistency issues such as Stale Reads and Up-

date Conflicts. In order to better address the consistency issues, these storage systems

use quorum-based replication policies [Vuk10] and enables to tune the tradeoff between

Consistency, Latency and Availability per query basis. Tuning the tradeoffs involves spe-

cifying the number of nodes to contact during read and write operations. The intersection

of one or more nodes that are contacted during both read and write operation ensures

the consistency of the data, which is also known as Quorum Intersection Property. The

user/application specifies the number of nodes to contact for each request and the system

handles the requests with the appropriate consistency level. Some databases like Volde-

mort [SKG+12], use quorum replication policy and define the consistency level for each

46

1.1. CONTRIBUTIONS

table in order to tune the tradeoff per table basis instead of each query [dd15]. This

practice of using the appropriate consistency level based on the application/user needs or

depending on the criticality of the requests is called Adaptive Consistency.

Although these systems offer adaptive consistency, in addition to offering higher la-

tency cost for stronger consistency options, it is difficult for the application developers to

decide the needed consistency option for a particular request/ data item in advance. In

order to acquire the benefits of adaptive consistency feature to a higher extent, adapting

the consistency needs of each query dynamically during run time depending on various

environmental factors is desired. In addition, the choice between the consistency and avai-

lability of these quorum-based replication systems remains binary. If the system could not

ensure the liveness of a sufficient number of replica nodes (to ensure intersection property),

the system rejects the operation affecting the system availability. In order to finely tune

the choice between consistency and availability, various intermediate consistency options

between the default eventual consistency and the stronger consistency options that are

derived via the quorum intersection property will be helpful.

1.1 Contributions

The contributions of this Ph.D thesis are summarized as follows:

1.1.1 Better Consistency-Latency tradeoff for quorum-based replication
systems

As stated by Abadi in [Aba12], request latency works closely with Consistency and

Availability of the system. The modern distributed database systems that are based

on Dynamo [DHJ+07a] bloodline such as Cassandra [LM10], Riak [Klo10] and Volde-

mort [SKG+12] sacrifice consistency not only for the favor of availability and partition

tolerance, but also for the favor of request latency. These database systems follow quorum-

based replication for replica control. Quorum-based replication systems aka NRW systems

ensure consistency based on the number of nodes contacted during write and read ope-

rations. These systems ensure consistency based on the formula R + W > N , where R

signifies the number of nodes acknowledged for Read operation, W signifies the number of

47

1.1. CONTRIBUTIONS

nodes acknowledged for Write operation and N signifies the number of replica nodes confi-

gured for the particular data item. The formula R+W > N , is the intersection property

of the quorum, or overlapping quorum.

In order to ensure minimum request latencies, these modern database systems do not

satisfy the quorum intersection property by default, and hence they compromise strong

consistency guarantees for the favor of request latency. However, in order to ensure strong

consistency on demand, the system has to satisfy the quorum intersection property (R +

W > N) by contacting a sufficient number of replica nodes. One of the limitations in

satisfying the quorum-intersection property is that the number of replica nodes to be

contacted during read and write operations increases linearly with the number of replica

nodes of a particular data item. Hence in order to overcome this limitation, we proposed

a new consistency protocol for quorum-based replication systems called LibRe. LibRe is

an acronym for Library for Replication. As the name suggests, in LibRe, we maintain a

library of information about the recent version identifier for each data item and the list

of replica nodes that contain the recent version id. By forwarding the read requests to

an up-to-date replica node that contains the data with the most recent version-id, the

protocol ensures consistency of read operations with minimum read and write latencies.

The proof-of-concept of the protocol was implemented inside the Cassandra distributed

storage system and was benchmarked against Cassandra’s native consistency options. The

results of our experimentation confirm that LibRe ensures consistency with minimum read

and write latencies.

1.1.2 Evaluation of consistency protocols via simulations

Large-scale system studies are often challenging due to the cost and time frame involved

in the deployment of related software and physical infrastructure. In this context, testing

a new protocol or strategy could be cumbersome unless relying on appropriate simulation

tools. These tools are very useful for evaluating new policies or strategies in a fast and

efficient way before testing them in real world. In the literature there are several large-scale

distributed systems simulation tools starting from Grid architecture to Cloud architecture.

Some of those popular simulation libraries are SimGrid [CLQ08], OptorSim [BCC+03],

48

1.1. CONTRIBUTIONS

GridSim [MB02] and CloudSim [CRB+11a]. Most of these simulation tools are focused on

evaluating various features that are related to physical infrastructure and do not facilitate

to simulate application or application-level semantics. Since evaluating data consistency is

closely related to application semantics and application related constraints, it is difficult

to evaluate data consistency with the existing simulation tools. Hence, in order to evaluate

data consistency via simulation, we have implemented a cloud-based simulation tool called

Simizer [SL13b], which is focused on simulating application level semantics. Simizer is an

event-driven simulation tool written in JAVA language. Using Simizer, users can extend

the existing application class to override the default application behaviors such as read,

write, processing and can implement the needed application level semantics. Simizer takes

input about the physical infrastructure, workload pattern and evaluates the application

performance and prints the results in an output file. The needed metrics can be studied

by processing the output file.

1.1.3 Evaluating Data Consistency on the fly using YCSB

Due to a massive data explosion in the last decade, revolution in storage systems

led to the evolvement of modern distributed database systems. These systems are not

ACID [Ram03] compliant, instead they rely on BASE (Basic Availability, Soft state, Even-

tual consistency) paradigm [Pri08]. In order to achieve optimal performance, these storage

systems play different tradeoffs depending on the application needs. One of the indispen-

sable among that is the tradeoff between Consistency, Latency and Availability.

Existing database benchmarks such as TPC-Class 1 are not well suited to evaluate the

modern data storage systems (at the time of YCSB implementation) due to their query

interface and workload patterns. For these reasons, Yahoo ! 2 developed a benchmark tool:

the Yahoo Cloud Serving Benchmark (YCSB) [CST+10], which intends to benchmark dif-

ferent NoSql systems under similar workload patterns. Although YCSB offers good support

for different database interfaces and workload patterns, the evaluation metrics of YCSB

do not take into account data consistency of the system. This makes YCSB insufficient to

evaluate system tradeoffs between consistency, latency and availability. Hence, in order to

1. http://www.tpc.org
2. www.yahoo.com

49

1.1. CONTRIBUTIONS

enable YCSB to evaluate the system tradeoffs between consistency, latency and availabi-

lity, we have extended the YCSB code base to add a new evaluation metrics about data

consistency. With the extended YCSB code, users can assess the different performance

metrics of the system along with the number of stale reads encountered by the test client.

The extended YCSB code has been made public for the open source community to take

advantage of it [Kum15].

1.1.4 Overriding application-defined consistency option of a query du-
ring run-time

As eventual consistency belongs to weaker consistency guarantees, most of the even-

tually consistent data stores offer additional stronger consistency options and adapt the

consistency guarantees of the requests per query basis. These systems enable the user/ de-

velopers to specify the needed consistency option for each query and the system processes

the request according to the specified consistency option. One of the limitations of this

method is the application developers have to decide the needed consistency options for

each query in advance during the development time. There are very few works in the lite-

rature, that try to adapt the consistency option of the application queries during run-time

instead of the application development time.

However, most of the existing works analyze different factors that can influence the

consistency needs of the system and adapts the consistency guarantees of the whole system

according to the absorbed factors such as the ones described in [CPAB13; MSV+10]. On

the other hand, some of the approaches finely tune the adaptive consistency feature on

a per query/ data item basis according to the current environment factors. However, in

the latter approach, the application queries have to pass through a centralized service in

order to query the data with an appropriate consistency option. The limitation of this

approach is that the throughput and performance of the centralized service could become

a bottleneck for the system. In order to overcome this limitation, we propose to facilitate

the modern database systems to adapt the consistency options of the incoming queries

according to an external input. The input can be given by the database administrator

or by an external monitoring service. By this way, the necessity to pass the application

50

1.1. CONTRIBUTIONS

queries through a centralized service will be avoided and instead, the participation of the

external services will be moved to the background for providing input about the consistency

decisions. Based on this input, the system can adapt (override) the consistency options

of the application queries that are defined during application development time by the

needed consistency options.

1.1.5 Application-defined Replacement Orderings for Ad Hoc Data Re-
conciliation

Reconciliation of replicated data items is one of the major challenges in reaching consis-

tency among the replicated data items. As eventually consistent data stores rely on partial

ordering of the updates on the system, the ordering often leads to update conflicts. Data

reconciliation is often required to verify the values of conflicting updates on the different

replicas and to arrive at a single agreed upon value among all the replicas. Data recon-

ciliation could be broadly classified into two types such as Syntactic Reconciliation and

Semantic Reconciliation. Syntactic reconciliation techniques use serializability or causality

as the basis for conflict-detection and resolution. These techniques are fast and efficient

and the resolutions can be directly managed at the database side. However, for use cases

where conflict resolution demands knowledge of the application semantics, domain-specific

semantic reconciliation is required. Semantic reconciliation techniques often involve main-

taining all possible values and perform the resolution via domain-specific knowledge at the

client side. This involves additional costs in terms of network bandwidth and latency, and

considerable complexity. In this thesis, we discuss the design of a novel data type called

priority register that implements a domain-specific conflict detection and resolution scheme

directly at the database side, while leaving open the option of additional reconciliation at

the application level. Our approach uses the notion of an application-defined replacement

ordering and we show that a data type parameterized by such an order can provide an

efficient solution for applications that demand domain-specific conflict resolution. We also

describe the proof-of-concept implementation of the priority register inside the Cassandra

distributed storage system.

51

1.2. ORGANIZATION OF THE MANUSCRIPT

1.2 Organization of the Manuscript

This thesis document is organized as follows:

In the next chapter we provide the state-of-the-art information about the consistency

of the replicated data in eventually consistent data stores. This includes information about

the evolvement of eventually consistent data stores and its underlying paradigm, different

categories of consistency options including its tradeoffs, and the need for adaptive consis-

tency and its challenges.

The contributions of this thesis are focused on two types of inconsistency issues that are

normally encountered by the eventually consistent data stores. The first part that includes

Chapters 3, 4, 5 and 6 deals with consistency issues related to Read-Read inconsistency

(stale reads) and the second part that includes Chapter 7 deals with the issues related to

Write-Write inconsistency (update-conflicts).

Chapter 3 describes the design and working principle of a new consistency protocol

called LibRe that helps to read the most recent version of a needed data item with mini-

mum read and write latencies. In Chapter 3, we first discuss the general idea of the LibRe

protocol and the enhancement of the protocol using Distributed Hash Table (DHT). We

also formally describe the behavior and properties of the protocol in Chapter 3. Chap-

ter 4 describes the need and implementation of a new simulation toolkit called Simizer

that helps to evaluate different consistency protocols via simulation. We also show the

performance evaluation of LibRe against existing consistency protocols using simizer. In

Chapter 5, we discuss the prototype implementation of the DHT-based LibRe protocol in-

side the cassandra distributed database system, which is named CaLibRe: Cassandra with

LibRe. The extensions to Yahoo Cloud Serving Benchmark (YCSB) in order evaluate

consistency-latency tradeoff and the evaluation results of CaLibRe against Cassandra’s

native consistency options are also included in the same chapter. Chapter 6 discusses the

adaptive consistency feature offered by the modern distributed database systems and its

limitations, followed by an approach to address the limitations.

Data Reconciliation is one of the inevitable measures used by the eventually consistent

data stores. Chapter 7 provides a simple means to reconcile the conflicting replica states

52

1.3. PUBLICATIONS

via a new register data type named Priority Register that reconciles the data items via

application-defined replacement orders. The description about application-defined repla-

cement orders and a prototype implementation of the Priority Register inside Cassandra

including a case-study evaluation are included in the Chapter 7. Chapter 8 summarizes the

contributions of this thesis with concluding remarks and discusses the future dimensions

of the thesis work.

1.3 Publications

1.3.1 International Publications

— AKDM 2016 (Journal): Publisher: Springer, Sathiya Prabhu Kumar, Sylvain

Lefebvre, Raja Chiky, Olivier Hermant, LibRe: A Better Consistency-Latency Tra-

deoff for Quorum Based Replication Systems, Advances in Knowledge Discovery

and Management Vol. 7 (AKDM-7), 2016 (To Appear).

— SCDM 2015: Publisher: IEEE, Sathiya Prabhu Kumar, Sylvain Lefebvre, Mi-

nyoung Kim, Mark-Oliver Stehr, Priority Register: Application-defined Replace-

ment Orderings for Ad Hoc Reconciliation, 3rd Workshop on Scalable Cloud Data

Management, 2015, Santa Clara, CA, U.S.

— GLOBE 2015: Publisher: Springer, Sathiya Prabhu Kumar, Sylvain Lefebvre,

Raja Chiky, Eric-Gressier Soudan, CaLibRe: A Better Consistency-Latency Tra-

deoff for Quorum Based Replication Systems, International Conference on Data

Management in Cloud, Grid and P2P Systems, Valencia, Spain.

— IWCIM 2014: Publisher: IEEE, Sathiya Prabhu Kumar, Sylvain Lefebvre, Raja

Chiky, Evaluating Consistency on the fly using YCSB, International Workshop on

Computational Intelligence for Multimedia Understanding, Prais, France.

— PaPEC 2014: Publisher: ACM, Sylvain Lefebvre, Sathiya Prabhu Kumar, Raja

Chiky, Simizer: evaluating consistency trade offs through simulation, EuroSys-2014,

53

1.3. PUBLICATIONS

Amsterdam, Netherland.

— ACMCompute 2013: Publisher: ACM, Sathiya Prabhu Kumar ; Raja Chiky ;

Sylvain Lefebvre ; Eric-Gressier Soudan, LibRe: A Consistency protocol for Mo-

dern Storage Systems, ACM Compute 2013, Vellore, India.

— ICSCS 2012: Publisher: IEEE, Sylvain Lefebvre, Raja Chiky, Sathiya Prabhu

Kumar, ISEP, WACA: Workload And Cache Aware Load Balancing policy for web

services, 1st International Conference on Systems and Computers Science, 2012.

1.3.2 National Publications

— EGC 2016: Raja Chiky, Sathiya Prabhu Kumar, Sylvain Lefebvre and Eric Gressier-

Soudan, LibRe: Protocole de gestion de la coherence dans les systemes de stockage

distribues.

— RNTI 2013: Sylvain Lefebvre and Sathya Prabhu Kumar and Raja Chiky, WACA:

Politique de repartition de charge des services web dans une architecture de type

Cloud, Revue des Nouvelles Technologies de l’Information, 2013.

— NOTERE 2012: Sylvain Lefebvre, Raja Chiky, Sathiya Prabhu Kumar, WACA:

Politique de repartition de charge des services web dans une architecture de type

Cloud, in Conference annuelles des NOuvelles TEchnologies de la REpartition, 2012.

54

Chapter 2

State of the Art

Ensuring consistency of replicated data in distributed database systems has always

been challenging since past decades. Consistency models ensure the correctness of execu-

tion of any distributed program/ application. As stated by Lamport in [Lam89], a dis-

tributed program consists of two important properties namely Safety and Liveness. The

safety property includes all the rules that ensure the bad things (invariance violation) do

not happen. The liveness property guarantees that the system will make progress despite

of criticality of the system. The intersection of these two properties ensures the correctness

of the distributed program. It is not possible for a distributed program to hold proper-

ties that are strong in both safety and liveness. The distributed program has to do some

tradeoff between the safety and liveness properties according to the application needs in

order to achieve an optimal system. In this chapter, we first introduce the fundamentals

of consistency models in Section 2.1 and 2.2. In Section 2.3, we describe some of the fun-

damental consistency models that ensure different levels of consistency guarantees. The

evolution of modern database systems and its underlying principles are discussed in the

Section 2.4. The role of replica control protocol and its types are discussed on the Sec-

tion 2.6. The server-side guarantees that help to resolve inconsistency in data stores and

the client-side guarantees that help to avoid causing inconsistency in data stores are dis-

cussed in Section 2.8. In Section 2.9 we describe the idea of adaptive consistency and its

types.

55

2.1. EVENT ORDERING

2.1 Event Ordering

Consistency models are a set of rules that governs the execution of processes in a

data store [TS06]. Processes consist of a set of events that can alter the current state

of a data store or read the value of the current state. An event can also stimulate the

execution of a process. Each process executes autonomously and independently from the

other processes. But in order to define the correctness of the execution of the processes

we need to identify the order of the events execution. The ordering of events depends on

identifying the happened-before relationship.

Happened-Before Relationship The happened-before relation states the order of the

produced events and help to execute processes in a consistent order on all data replicas.

The happened-before relation is usually denoted by the symbol →.

If a and b are two concurrent events and if a happened before b, then the happened-

before relationship between the two events will be denoted as a→ b.

The happened-before relation satisfies the following three properties [Lam78] such as:

— If a, b are two events received by a node, and if a is received before b, then the

happened-before relationship is denoted as a→ b.

— If a is an event of sending a message and b is an event of receiving the same message

sent by a, then the happened-before relationship is a→ b.

— If a 6→ b and b 6→ a and the relation between the two events a and b could not be

defined, then the two events are considered to be concurrent. This is denoted by

a ‖ b.

Partial Order Identifying the happened-before relationship between one or more events

defines the partial order between events. The happened-before relation a→ b denotes the

partial order a ≤ b.

If S is the set of all events occurring in a distributed system, then the partial order

relation between the events hold the following two properties [Lam78].

i Irreflexivity: a 6→ a, ∀a ∈ S.

56

2.2. TIME IN DISTRIBUTED SYSTEMS

ii Transitivity: a ≤ b and b ≤ c, implies a ≤ c, where a, b, c belong to S

Total Order While the partial order defines the happened-before relationship between

only a set of events occurred in the system, a total order defines the happened-before

relationship between all the events in the system. In total order any two events occurring

in the system are ordered in some way and there are no two events that are concurrent

(a 6‖ b).

2.2 Time in distributed systems

In distributed systems, happened-before relations are identified via the notion of a

clock time. Time in distributed systems is represented by an integer counter value given

by a clock that respects two properties as described by Lamport in [Lam78]

P1: All clocks increment the counter value approximately at the same rate. The rate at

which a clock runs at time t is dCi(t)
dt ≈ 1, where

∣∣dCi(t)
dt

∣∣− 1 < k � 1.

P2: The difference between two clocks at some point in time is negligible, Ci(t)˘Cj(t) <

ε� 1.

Based on the above two properties, time in distributed systems can be described in

two types of clock:

— Physical Clock

— Logical Clock.

2.2.1 Physical Clock

Physical clocks are the electronic timers (clocks) that each computing node (compu-

ter) carries along. These clocks are based on the crystal oscillations frequency and are

subject to clock drifts due to variation in oscillation frequency and temperature [CDK01].

Although the clock drifts are initially very small, eventually they add up to a larger num-

ber. Hence, periodic clock synchronization is very important in distributed systems that

rely on physical clocks timing. However, clock synchronization is a continuous process as

57

2.2. TIME IN DISTRIBUTED SYSTEMS

the clocks tend to drift very often. Network Time Service Protocol (NTP) 1 is one of the

popular clock synchronization protocol that compensates clock drifts over the Internet.

2.2.2 Logical Clock

Although it is possible to synchronize clocks across different machines to a single value,

the value is still an estimation and it is hard to reach a more precise value. Moreover, most

of the applications require to derive relative (causal) order of execution of the events rather

than deriving order based on the time at which the events are executed. For this reason, the

notion of clock called logical clock was introduced by Lamport in [Lam78]. Logical clocks

capture the relative order of execution of the events more precisely than the synchronized

physical clocks. Logical clocks are nothing but a distributed algorithm that captures the

happened-before relationship between the communications between the various processes.

Logical clocks are based on two operations:

P1: Method to locally update the logical clock during the reception of new events.

P2: Method to synchronize two logical clocks during the reception of synchronization/

propagation/ gossip message from another node.

2.2.3 Lamport Clock

The initial model of logical clock was named after Lamport as Lamport Clock. In

Lamport clock, each process stores a logical clock (say Ci), which is incremented as follows:

i Each time a process Pi receives an event, it increments its logical clock by one Ci =

Ci + 1.

ii When a process sends a messagemk, it increments the logical clock by one (Ci = Ci+1)

and sends the Ci along with the message.

iii On reception of a message ml from another process with a logical clock Cj , the process

sets its logical clock to the maximum of its clock and the clock received along with the

message Ci = max(Ci, Cj) and then increments the clock by one Ci = Ci + 1.

1. http://www.ntp.org

58

2.2. TIME IN DISTRIBUTED SYSTEMS

2.2.4 Vector Clock

One of the limitations of the Lamport logical clock is that it does not show the precise

causal ordering of the events. For example, if a→ b, then Ca ≤ Cb, but the reverse Ca ≤ Cb

does not necessarily signifies a → b. Hence in order to capture the causal ordering of the

events more precisely, an enhancement of Lamport logical clock called Vector clock was

introduced in [Fid88].

Vector clock consists of an array of N integers (say., Ci[N]), where N corresponds to

the number of processes in the system. The clock Ci[N] is updated as follows.

1. Each time a new event is received, the processes initialize or increment the correspon-

ding integer in the logical clock by one. For example, process Px does Ci[x] = Ci[x]+1

and process Py does Ci[y] = Ci[y] + 1 and so on.

2. When a process Px sends a messagemk, it increments its corresponding integer in the

logical clock by one (Ci[x] = Ci[x] + 1) and sends the clock along with the message.

3. On reception of a new message ml from another process with a logical clock Cj , the

process compares each integer in its own clock (say Ci), and the clock received along

with the message Cj and sets its clock Ci to the maximum of each integer between

the two clocks. For all values of N , Ci[n] = max(Ci[n], Cj [n]), where n ranges from

1 .. N , where N is the number of processes in the system.

2.2.5 Version Vector

Version Vectors are similar to the Vector Clocks with a small modification to the

update rules. Both vector clocks and version vectors are widely used in replicated database

systems. Like vector clocks, version vectors consist of an array of N integers, where N

corresponds to the number of actors. An actor can be a replica node or a client who issues

an update [PBA+10]. Unlike vector clock that corresponds the integer number in the clock

to update events, version vector corresponds the integer number in the vector to the state

of each replica.

Update rules of Version Vectors are as follows:

1. Each time an actor experiences an update, the corresponding integer in the version

59

2.2. TIME IN DISTRIBUTED SYSTEMS

vector is incremented by one. For example, Actor Ax does Vi[x] = Vi[x] + 1 Actor Ay

does Vi[y] = Vi[y] + 1 and so on.

2. Each time a message is sent, the version vector Vi is sent along with the message.

3. While receiving a new message ml from another actor with a version vector Vj , a

version vector Vj will be updated to the maximum of each integer between the two

vectors Vi and Vj . For all values of N , Vi[n] = max(Vi[n], Vj [n]), where n ranges from

1 .. N , where N is the number of actors involved in the system.

2.2.6 Update-Conflicts

As mentioned earlier, logical clocks are used to signify time in distributed database

systems in order to identify the happened-before relation between the events more precisely.

The happened-before relationship helps to identify the order of the system events and apply

the events on all the replica nodes in the right order. Applying the system events on all the

replica nodes in the right order helps to achieve mutual consistency among all the replica

nodes. Lamport clock is meant to identify the total order of all the events occurred on the

system. However, sometimes two events that are received by different processes can have

identical number. In that case, it is not possible to identify the order between those two

events and hence both events are considered to be concurrent.

In multi-writer, multi-reader systems, where updates are applied in different order on

different replica nodes, Vector Clocks and Version Vectors are widely used to identify the

replica nodes that hold the recent version of a data item. Each data item consists of three

fields including name, value and a vector clock or version vector. As mentioned in the

previous section, both vector clock and version vector consists of array of N integers. If

one of the integers in a vector clock (or version vector) is higher, and all other integers are

the same as the other vector clocks, then the clock is said to be higher in the order. The

data item whose clock is higher in the order will subsume the data items that have the

same name and whose clocks are lower in the order. But in case where one of the integers

is higher and not the same in all other integers, then neither of the vector clock (or version

vector) subsumes the other and this is called as an update conflict.

For example: While comparing two vector clocks (or version vector) say A[1, 4, 4] and

60

2.3. CONSISTENCY MODELS

A[1, 3, 4], the clock A[1, 4, 4] will subsume the data item that has A[1, 3, 4]. But while

comparing two vector clocks (or version vector) say A[1, 4, 4] and A[1, 3, 5], then neither

A[1, 4, 4] subsumes A[1, 3, 5] nor A[1, 3, 5] subsumes A[1, 4, 4]. This situation is called Up-

date Conflicts.

2.2.7 Data Reconciliation

Data Reconciliation is the process of resolving conflicting states of a data replica via

certain pre-defined reconciliation rules or with the help of application or client’s support.

Data reconciliation process can be broadly classified into two types such as Syntactic

Reconciliation and Semantic Reconciliation. Syntactic Reconciliation uses causality or se-

rializability relation between the update operation for conflict detection and resolution.

Serializablity and Causality between update operations are normally identified via phy-

sical and logical clocks. Semantic Reconciliation on the other hand uses domain-specific

knowledge for conflict detection and/or resolution. The input about domain-specific know-

ledge is usually given via specifying reconciliation rules for certain conflict types. If the

reconciliation rules for a specific conflict type is not defined in advance, the system needs

to get the user or system assistance for conflict resolution. In most of these cases, the sys-

tem returns all the conflicting values during read operations and wait for the application

or user to resolve the conflicts by emitting a new vector clock (or version vector) that

dominates all conflicting updates.

2.3 Consistency models

Following are some of the fundamental consistency models of distributed database

systems.

2.3.1 Strict Consistency

Strict consistency aka Linearizability ensures that after a successful write operation,

the value of the recent write will be visible to all other processes. In other words, the read

and write operations happened on the system should follow the real-time order. The order

61

2.3. CONSISTENCY MODELS

of the operations on the system expresses a total order corresponding to the wall-clock

time.

The figure 2.1a shows the right ordering on the operations that respects Linearizability.

W (x)c signifies write operation on data item x with a value c.

R(x)c signifies read operation on data item x returns a value c.

(a) Order Compliant with Strict Consistency (b) Order Noncompliant with Strict Consistency

Figure 2.1 – Order that is compliant and noncompliant with strict consistency

From the figure 2.1a, we could observe that after the successful completion of a write

operation W (x)c, Process P2 reads the value c. However, it is normal that the process

P3 sees a previously written value b since the read operation on P3 happened before the

completion of the write operation W (x)c. In the figure 2.1b, since the process P2 did not

see the recent written value c after successful completion of W (x)c, the order does not

accord with the linearizability.

2.3.2 Sequential Consistency or Serializability

Sequential consistency was first stated by Lamport in [Lam79]. In sequential consis-

tency, the operations Read and Write on the system follow a single global order across all

processes, which does not necessarily respect the wall-clock time. That means, the client

operations on the system follow the order specified by the application program. In Se-

quential consistency, the order of the operations on the system expresses a single global

total-order as specified by the application. Hence, systems under sequential consistency

can experience stale reads with respect to the wall-clock time, but not according to the

logical clock.

Figures 2.2a and 2.2b show an example of order of the system operations that accords to

the Sequential Consistency model. From the figures, we can observe that the system accords

62

2.3. CONSISTENCY MODELS

(a) Order Compliant with Sequential Consistency (b) Order Compliant with Sequential Consistency

(c) Order Noncompliant with Sequential Consistency (d) Order Noncompliant with Sequential Consis-
tency

Figure 2.2 – Order that is compliant and noncompliant with Sequential Consistency

to a single global order of the operations following the order: W (x)c,W (x)d,R(x)c,R(x)d.

Whereas the order of the system operations shown in the figure 2.2c and 2.2d do not

accord to the Sequential Consistency behavior as the system does not follow a single

global order. Figure 2.2c shows two conflicting orders such as W (x)c,W (x)d,R(x)c,R(x)d

and W (x)c,W (x)d,R(x)d,R(x)c. Figure 2.2d again shows two conflicting orders such as

W (x)c,W (x)e,R(x)c,R(x)e,W (x)d and W (x)c,W (x)d,R(x)c,R(x)d,W (x)e.

2.3.3 Snapshot Isolation

Both Snapshot Isolation and Sequential Consistency can be used for avoiding conflic-

ting writes and achieve total order reads. Unlike Sequential Consistency that acquires

locks for preventing concurrent writes, Snapshot Isolation avoids using locks for maximum

throughput and prevents the concurrent writes during commit time by failing and rollba-

cking the conflicting write operations. In Snapshot Isolation, the system takes a snapshot

of the current database state before the beginning of a transaction (set of read and write

operations) and applies all the operations on the particular snapshot. By the end of the

transaction, if one or more values that are affected by the transaction are also affected

(and committed) by some other transaction or by an external update, the transaction has

to fail and all the values that are affected during the transaction have to rollback to their

63

2.3. CONSISTENCY MODELS

original state. Otherwise, the changes that are made during the transaction will be com-

mitted successfully. Snapshot Isolation is usually achieved via MultiVersion Concurrency

Control (MVCC) protocol [CM86].

(a) Order Compliant with Snapshot Isolation (b) Order Compliant with Snapshot Isolation

(c) Order Noncompliant with Snapshot Isolation (d) Order Noncompliant with Snapshot Isolation

Figure 2.3 – Order that is compliant and noncompliant with Snapshot Isolation

From the figure 2.3a we could see that the write operation W (x)d is started before the

operation W (x)c is committed to disk. Hence, the operation W (x)d will start applying

its changes to a copy of the database independent of the operation W (x)c. But, since the

operation W (x)c is committed to disk before W (x)d, at the end of the operation, when

W (x)d tries to commit its changes to the disk, the system will fail the operation. Therefore,

any consequent read operation in the system will only see the effect of the operationW (x)c

and not see the effect ofW (x)d. Hence the order shown in figure 2.3a is compliant with the

Snapshot Isolation, whereas, the order shown in figure 2.3c is not compliant with Snapshot

Isolation. In case of Sequential Consistency, the system avoids concurrent execution of the

two write operations using locks. In figure 2.3d, since the operation R(x)c on Process P3 is

started before the operation W (x)e on Process P2 commits to disk, it is correct to see the

R(x)c followed by R(x)e. But in Process P4, as the R(x)c is started after the operation

W (x)e on P2 commits to disk, seeing R(x)c is not compliant with Snapshot Isolation. The

counter example shown in figure 2.3b shows the order that is compliant with Snapshot

Isolation.

64

2.3. CONSISTENCY MODELS

2.3.4 Causal Consistency

Causal consistency is a relaxed form of sequential consistency and snapshot isolation.

Instead of respecting a single global order for all the operations on the system, in causal

consistency, only the operations that are causally related follow a unique order. The ope-

rations that are not causally related are relaxed to be executed in a different order. The

causality relations between the operations are captured via logical clocks such as Vector

Clock and Version Vector.

(a) Order Compliant with Causal Consistency (b) Order Compliant with Causal Consistency

(c) Order Noncompliant with Causal Consistency (d) Order Noncompliant with Causal Consistency

Figure 2.4 – Order that is compliant and noncompliant with Causal Consistency

The figure 2.4a shows an example of a system order that is compliant with causal

consistency but not compliant with sequential consistency. As the operations W (x)c and

W (x)d are not causally related, the system under causal consistency is allowed to see the

operations in different order. However, the order of the operations shown in the figure 2.4c

is not causal compliant. As the operation W (x)d follows R(x)c, the operations W (x)c and

W (x)d impose a happened-before relationshipW (x)c→W (x)d. Hence, the system should

not observe R(x)c after observing R(x)d and is not causally compliant.

In the figure 2.4b, the operations W (x)d and W (x)e are not causally related and so

the system can observe the operations in a different order. However, the order of the

operations in figure 2.4d shows a causal order between the operations W (x)e, W (x)d and

W (x)c expressing a happened-before relation W (x)d → W (x)e, W (x)c → W (x)d and by

65

2.3. CONSISTENCY MODELS

transitivity W (x)c→W (x)e. Hence, either observing the operation R(x)c after observing

R(x)d or observing R(x)d after R(x)e are not causally compliant.

2.3.5 Eventual Consistency

Eventual Consistency ensures that any update operation made on the system will be

eventually visible to all the replica nodes. Eventually consistent data stores are mostly

Multi-Writer and Multi-Reader systems, where read and write operations succeed if at

least one of the replica nodes acknowledges a request without any coordination. During

update operation, an update initially modifies the state of one of the replicas and issues

a success message to the client. The update will then be propagated in the background

asynchronously ; eventually the update will be applied on all the replicas. However, the

protocol does not ensure any order of visibility of the update operations. Due to the absence

of ordering guarantees, different replicas may apply updates in different order and may

temporarily conflict with each other: Update Conflicts. Update conflicts are common in

eventually consistent systems and have to be handled separately during conflict-resolution

phase [Vog09]. During conflict-resolution phase, the states of the conflicting replicas will be

converged to a consistent state. The system ensures an inconsistency window time, which

ensures, after a successful write operation, if there is no more future update, all replicas will

converge to a same state. In these systems, all nodes are connected to a network where

network partitions are unpredictably possible. In absence of network partition, the size

of the inconsistency window can be estimated by calculating the communication latency

between the replicas. Eventual consistency models are not advised for systems that are

more prone to update conflicts. However, the benefits of this type of consistency model

are Low Latency, High Availability and Partition Tolerance. The limitations are weak

consistency guarantee, which include stale reads and update conflicts.

2.3.6 Comparison of consistency models

Figure 2.5 shows a comparison among the list of fundamental consistency models dis-

cussed above. The comparison is made in terms of the order of reads and writes, consis-

tency guarantees, their performance and ease of programming. Linearizability, the stron-

66

2.4. EVOLUTION OF MODERN DATABASE SYSTEMS

gest among all the consistency options ensures real time reads and writes corresponding

to the wall clock time. Programming distributed systems under this consistency guaran-

tee is much easier but comes at the cost of performance. Serializability that ensures a

single global serial order of reads and writes with a relaxation from accordance with the

wall clock time is weaker than linearizability. Due to this relaxation, the performance of

serializability is better when compared to linearizability, but the ease of programming is

lower than linearizability. Snapshot Isolation that allows parallel execution of write ope-

rations for the favor of performance follows the execution order of the operations. Due to

the possibility of some write anomalies such as write skew [SKS06], snapshot isolation is

weaker than serializability. Causal Consistency that orders only the operations that are

causally related exhibits higher performance, however its consistency guarantees are lower

and even programming under causal consistency is more difficult. Eventual consistency

model that does not follow any order ensures higher performance than any other consis-

tency models. However, programming a distributed system under eventual consistency is

highly challenging.

Figure 2.5 – Consistency Models Comparisons

2.4 Evolution of Modern Database Systems

The traditional database systems that are designed with ACID guarantees [Ram03]

were poor in handling Big Data driven challenges. Thus, the revolution in database ma-

67

2.4. EVOLUTION OF MODERN DATABASE SYSTEMS

nagement led to the evolvement of modern database systems aka NoSql systems. In these

databases, data items are distributed on various storage nodes connected to common net-

work and often replicated on more than one nodes. These storage systems are usually

non-relational. They rely on the BASE [Pri08] paradigm instead of ACID [Ram03] gua-

rantees.

ACID Guarantees: ACID stands for Atomicity, Consistency, Isolation and Durability,

the properties that are claimed to be desirable for traditional database systems. ACID

offers high reliability for each operation happening on the system.

— Atomicity: Do all or Nothing. A transaction will succeed only if all parts of the

transaction are successful. If a part of the transaction fails, the other parts should

rollback to their original state.

— Consistency: The correctness of data accords to other application level semantics

such as constraints, cascades, triggers etc.

— Isolation: Transactions have to be executed in an equivalent way as if they were

independent.

— Durability: Once a transaction issues success message to a user, the changes should

continue to persist irrespective of any physical node failures.

2.4.1 CAP influence

The CAP theorem [GL02b; FGC+97] has been highly influential in modern database

systems, and is widely cited as a justification for the systems that rely on eventual consis-

tency. CAP theorem states that a distributed system would demand three important pro-

perties namely Consistency, Availability and Partition Tolerance. But unfortunately, it is

not possible to ensure all these three properties at the same time. A distributed system

needs to sacrifice one of these three properties in order to ensure the other two properties.

The definition for Consistency, Availability and Partition Tolerance given by Gilbert

and Lynch [GL02b] who formally proved CAP conjecture are as follows:

— Consistency: The clients should have a feeling of working on a single node regardless

of the number of replicas.

68

2.4. EVOLUTION OF MODERN DATABASE SYSTEMS

Figure 2.6 – CAP Theorem

— Availability: Every request sent by a client should obtain a successful response.

— Partition Tolerance: The system should continue delivering its services even if some

part of the system loses many messages arbitrarily.

Abadi in [Aba12] argues availability will be affected only in case of network partitions.

Network partition is not a feature of distributed systems, it is an unexpected event that

may happen in a network. However, network partition is a rare scenario with modern

technologies. Hence, sacrificing one among consistency and availability all the time, even

if there is no partition in the network is a wrong approach. He also suggests CAP should

be replaced by PACELC model [Aba12]. PACELC has two parts, one is PAC and another

is ELC. PAC: if there is a Partition in the network, then the tradeoff should go between

Availability and Consistency. ELC: Else, if there is no Partition in the network, then the

tradeoff should be done between Latency and Consistency. PACELC can be written using

the following equation 2.1.

Tradeoff ≈ if(Partition)?AC : LC; (2.1)

Table 2.1 shows the list of modern database Systems and how they conform to PACELC

metric [Aba12; Mur13].

69

2.4. EVOLUTION OF MODERN DATABASE SYSTEMS

Storage Systems In Partition Normal Condition
Availability Consistency Latency Consistency

Dynamo ? ?

Cassandra ? ?

Riak ? ?

VoltDB/H-store ? ?

Megastore ? ?

MongoDB ? ?

PNUTS ? ?

Table 2.1 – Distributed Storage Systems in the PACELC model

2.4.2 BASE Paradigm

BASE is an acronym for Basic Availability, Soft state, Eventual consistency. BASE

is designed specially for attaining high scalability in distributed systems [Pri08]. It was

proposed to promote rapid responses even when some replicas are not possible to be

contacted.

— Basic Availability: All changes made by a user will be committed to the system

without ensuring any guarantees about consistency and/or availability of the data

even if some replicas are slow or crashed.

— Soft state: A data stored by a user can be lost unexpectedly in case of any individual

node failure or system crash. Thus, the system does not ensure the durability of

the stored data until certain window time, after which the data will be moved to

’hard state’.

— Eventual Consistency: After an inconsistency window time, all data replicas converge

to a same state and reading from any of the data replica will see the effect of recent

write operation.

As modern storage systems are inclined towards BASE paradigm, data consistency is

not promised to the clients by default. As mentioned earlier, the fundamental justification

given for this is the CAP theorem [GL02b]. Since it is very important for the distributed

systems to be tolerant to partitions, they have no other choice than sacrificing Consistency

in order to achieve high Availability [Aba12].

70

2.5. TRADEOFFS OF MODERN DATABASE SYSTEMS

2.5 Tradeoffs of modern database systems

Modern database systems play different tradeoffs that favor targeted application needs.

Two tradeoffs that are common in these systems are as follows.

2.5.1 Consistency-Latency Tradeoff

One of the important properties of distributed systems that is missed in the CAP

conjecture is the request latency. The modern database systems relax consistency not only

for the favor of High Availability and Partition Tolerance, but also for the favor of request

latency. Abadi in [Aba12] illustrates different alternatives of data replication strategy and

describes the consistency-latency tradeoff as inevitable in distributed database systems.

Propagating updates to all replicas at the same time and in the same order:

Updating all the replicas at the same time is one of the traditional and straightforward

approaches in propagating update operations. As each replica may process the updates

in different order, sometimes the system may lead to update conflicts. In order to avoid

update conflicts, the request will be passed through a preprocessing phase. In the pre-

processing phase, the order in which all the replicas should apply the updates will be

decided before applying the updates on the replicas. The advantage of this model is a

simple and straightforward approach for ensuring strong consistency. The limitation of

the model is the additional latency due to the preprocessing phase. This latency includes

order agreement time and routing time especially when a replica is geographically far

from the preprocessing node. This preprocessing phase is one of the typical constraints for

the concurrent computing domain which is disclosed in the consistency model ’Sequential

Consistency’ [TS06].

Propagating updates from an agreed upon/ arbitrary node: The agreed-upon-

node often refers to a master node or primary copy node. The main benefit of propagating

updates from an agreed upon node is to prevent concurrent updates that lead to update

conflicts. Instead of electing an agreed-upon-node and having a central path for update

propagation, it is also possible to choose to propagate the update from any arbitrary

71

2.5. TRADEOFFS OF MODERN DATABASE SYSTEMS

node. The advantages of this model over propagating updates from agreed-upon-node is

no extra routing time and overhead for master node election. The limitation is that two

updates for the same data can begin at different replicas and propagate the update to

other replicas simultaneously (leading to update conflict). In this case, the system should

detect and resolve the conflicts in addition to managing data consistency during read

operations. In both cases (either propagating updates from an agreed-upon node or from

an arbitrary node), the consistency guarantees of the read operations depend on how the

update operations are propagated to other replica copies. The update propagation can

take one of the three alternatives as follows [Aba12]:

Synchronous If the updates are applied synchronously, reading the data from any re-

plica that is closer ensures strong consistency. However, while applying the updates, if one

of the replicas is farther or slower due to some reasons, the latency of the update operation

will be upturned by the slowest node responding to the request. Usually, in order to ensure

strong consistency, the read access for the particular data will be blocked while the update

is applying [SS05]. In this case, the read request has to wait or has to be dropped till the

data is available for read operations. Thus, the availability of the system is compromised.

Asynchronous In the asynchronous propagation of updates, the node that receives

the update first applies the update locally and returns success to the client. The update is

then propagated to its replicas asynchronously in background. In this case the consistency-

latency tradeoff depends on how the read requests are handled by the system.

— Case 1: If the read requests are served from a particular node as central point of

entry, there won’t be any sacrifice in data consistency. However, since the requests

are served from a particular node, it has the risk of overloading the node and limits

the read latency. A longer routing time in case of distant replicas also applies here.

— Case 2: If there is no central point of entry for the read requests, there is a risk

of reading from a replica node where the recent update is not yet applied. In this

case, the possible minimum read latency could be achieved, but in compromise to

stale reads.

72

2.6. REPLICA CONTROL PROTOCOL

Hybrid Approach The combination of both Synchronous and Asynchronous propaga-

tion with intent to reach better Consistency-Latency-Availability tradeoff is also possible.

This type of consistency method is known as Quorum consensus. The majority of replicas

form a quorum. The size of the quorum can be estimated by the formula N/2+1, where N

is the number of replicas for the data. The system will propagate the update synchronously

to the Quorum and asynchronously to the rest.

2.5.2 Durability-Latency Tradeoff

The reason behind this tradeoff is disk seeks are expensive. During write operations

if we write data to disk before returning a success message to the users, the writes will

be durable but the write latency will be dominated by the disk seek time. In order to

accelerate the write operations, modern database systems initially write data to an in-

memory data structure and a issue success message to the user immediately. The write

operations will be persisted to the disk eventually in the background. By this way the

system moves the disk seek time away from the write path. Although this mechanism

lacks durability guarantee, the system benefits from write latency and throughput. Thus

the writes in modern database systems are initially soft state until the writes are written

to the disk (hard state). This tradeoff is in accordance to S (Soft state) in the BASE

paradigm. Some systems keep this option configurable by allowing the user to tune this

guarantee on a per query or per table basis.

2.6 Replica Control Protocol

As consistency models are a set of rules between the processes and a data store, a

replica-control protocol helps to preserve those rules in spite of various failure situations.

The replica-control protocols depict the important properties of a system such as cost on

read and write latency, system availability, load and scalability of the system. Replica-

control protocols can be broadly classified into two types such as Primary-copy protocol

and Voting-based protocol [Gif79].

73

2.6. REPLICA CONTROL PROTOCOL

2.6.1 Primary-copy Algorithm

In primary-copy (aka. master node) protocol, one of the replica copies, say ri, among

the set of replica nodes, say r1, r2, ..rn, will be chosen as a primary-copy. The remaining

replica copies other than the primary-copy are considered as the secondary copies. There

can be a primary-copy for a set of data items or sometimes for the whole data set. The

primary copies are usually elected by the replica nodes. In case of failure of the primary

copy, the election will be re-conducted to choose one of the secondary copies as the new

primary copy. In this model, first the update will be applied on the primary copy and then

the update will be propagated in the same order to the secondary copies. Propagating the

updates to the secondary copies can be either synchronous or asynchronous, sometimes a

combination of both. Normally a replica-copy that is closer to the clients will be chosen as

the primary-copy [LAEA95a]. In a multi-site system, the primary-copy would be chosen

on the site, where a larger number of update operations originates [CRS+08].

If the primary copy node updates all the secondary copies synchronously, then the

read operations can be forwarded to one of the closest replica copies and yield a consistent

result. If the primary copy node chooses to update the secondary copies asynchronously

due to performance reasons, then the read operation has to be forwarded to the primary

copy to read the consistent result. However, as a tradeoff, a client can also read from any

of the secondary copies that is closer to yield faster read response compromising stale

reads. The main benefit of the primary copy protocol is that the model ensures the order

of the updates and thus prevents update conflicts. The limitation of the model includes

additional routing time when the agreed upon node is farther than one of the secondary

copies and possible overhead in case of failure of the primary copy. The primary copy

protocol is not well suited for write-dominant workload for scalability and performance

reasons.

2.6.2 Voting-based replica control protocols

Quorum systems are well-studied in the literature [MRW97; MR97; AEA; Kum91;

NW98; Vuk10]. In general, quorum systems consist of two or more subsets of nodes called

74

2.6. REPLICA CONTROL PROTOCOL

quorums: say q1, q2, q3 · · · qn, where each quorum consists of one or more replica nodes

such as n1, n2, · · ·nx. Let us assume, a write operation is accomplished on all the mem-

bers (nodes) of a quorum qi, and a read operation is accomplished on all the members of

the quorum qj . If there exists at least one common member between the two quorums,

qi and qj , then the read operation sees the value of the last write that is accomplished

on quorum qi. Having at least one common member in the two quorums where read and

write operations are accomplished ensures the consistency of the system and this property

is known as Quorum Intersection Property. Unlike quorum systems that determine the

quorum members in advance, quorum-based voting systems determine quorum members

based on the number of votes needed to succeed a query. For example, during write opera-

tion, a write will be forwarded to all the replica nodes and wait for the sufficient number

of votes. The first n nodes that give sufficient vote become the quorum members. During

read operation, the same technique could be followed, alternatively, since read operations

are costlier than write operations due to disk seeks, the system can determine the quorum

members in advance by choosing the first n closest available/reachable replica nodes. In

distributed database systems, quorum-based voting systems are also known as NRW sys-

tems. In NRW , N represents the number of replica nodes of a data item,W represents the

number of replica nodes contacted during write/update operation and R represents the

number of replica nodes contacted during read operation. The system will exhibit strong

consistency, if W + R > N [Vog09; Vog08]. In addition, it is also essential to maintain

W > N/2 in order to avoid update conflicts. Update conflicts are described more in the

Section 2.7.8.1.

The process involves the following steps:

— During write operation, write a value for a data item Dx with a version number

greater than the version number of the last write to all the members of a quorum

qi.

— During read operation, read the value of the data item Dx with the associated

version number from all the members of a quorum qj and choose a value that is

higher in the version number.

— Having at least one common member between the two quorums qi and qj , so-called

75

2.7. CONSISTENCY GUARANTEES OF QUORUM BASED VOTING SYSTEMS

quorum intersection property ensures consistency of the read operation.

2.7 Consistency guarantees of quorum based voting systems

In quorum-based voting systems, consistency guarantees are ensured based on the size

(number of members) of the read and write quorums. The size could be specified explicitly

to a certain number such as 1, 2, 3 or could be left implicit such as all, quorum (more than

half).

Following are some of the popular consistency options of quorum-based voting systems.

— ONE signifies the size of the quorum is one. The read or write operations should

be acknowledged by at least one of the replica nodes.

— ALL signifies the size of the quorum is N , where N signifies the number of replica

nodes. The read or write operations should be acknowledged by all the replica

nodes.

— QUORUM signifies the size of the quorum is (N/2)+1. The read or write operations

should be acknowledged by the majority of the replica nodes, given by the formula

N/2 + 1, where N is the number of replica nodes.

Based on the above consistency options, several consistency models have been proposed

as follows and are described below.

2.7.1 Majority Quorum:

In majority quorum systems, the system uses consistency-option QUORUM for both

read and write operations. Since both read and write operations are acknowledged by

majority of the replica nodes (quorum), the system ensure the intersection property and

guarantees consistency.

2.7.2 Weighted Voting:

Weighted Voting protocol [Gif79] is an earlier approach that described reasoning consis-

tency viaW+R quorum overlapping [Vog12]. Unlike majority quorum systems that assign

equal vote (usually one) for each replica nodes, weighted voting systems assign varied num-

76

2.7. CONSISTENCY GUARANTEES OF QUORUM BASED VOTING SYSTEMS

ber of votes for the replica nodes. The system ensures consistency based on the formula

W + R > V , where R denotes the number of votes obtained during read operation, W

denotes the number of votes gathered during write operation and V denotes the total

number of votes assigned for the particular data item. The protocol offers high availability

and flexibility when compared to majority voting systems. By assigning a lower number of

votes to the suspicious nodes that tends to fail often or get partitioned, the protocol will

ensure intersection property with more number of node failures.

2.7.3 ROWA:

ROWA stands for Read-One, Write-All protocol [HHB02; BHG87]. As the name sug-

gests, the read operations will be accomplished on only one of the replica nodes (consistency

option ONE), whereas write operations have to be accomplished on all the replica nodes

(consistency option ALL). The protocol is very efficient for read-heavy workloads. Since

the read operations have to contact only one of the replica nodes, the clients can connect

to one of the closest replica nodes benefiting the latency and availability of the system.

However, the protocol penalizes the write operations due to the necessity to contact

all the replica nodes. In case of contacting all the replica nodes before issuing a success

message to the client, the write latency will always be upturned by the slowest node

responding to the request. In addition, if one of the nodes is down or unreachable, the

availability of the system for the write operations will be affected.

2.7.4 ROWA-A:

In order to address the availability limitation of the ROWA protocol, ROWA-A is

proposed [HHB02; Bur14]. ROWA-A stands for Read-One, Write-All Available. Unlike

ROWA that rejects the write operations if one of the replica nodes fails to acknowledge,

ROWA-A succeeds the operation as long as one of the replica nodes acknowledges the

operation. The replica node that failed to acknowledge a particular write operation will

be noted in the coordinator node as hint. The node that responds to a client request after

querying the request from appropriate replica nodes is called coordinator node. When the

replica node that missed a write operation joins back the cluster, the coordinator node

77

2.7. CONSISTENCY GUARANTEES OF QUORUM BASED VOTING SYSTEMS

hand-offs the missed write operation using the noted hints. This process is popularly known

as Hinted Hand-off [Wik13c]. One of the limitations of this protocol is that it does not

ensure consistency in case of network partition. If a system is divided into two partitions

and writes on one partition are not propagated to the other partition, then a client reading

from one partition will not ensure data consistency.

2.7.5 Missing Writes Protocol:

In order to overcome the limitations of the ROWA-A protocol during network parti-

tion, the missing writes protocol combines both ROWA and majority quorum approaches.

According to the missing writes protocol [ES83; HHB02], the system follows the ROWA

strategy during normal situation and switches to majority quorum model if a communica-

tion failure is detected. The system follows the ROWA approach initially, and when a write

operation is not acknowledged by one of the replica nodes, the system stores ‘hint’ about

the missing writes and switches to the quorum consensus method. The information about

the missing writes will be then communicated to all other nodes in the cluster whenever a

communication between two nodes is established. So that during read operations, instead

of reading from only one replica node, the system switches to read from majority of the

replica nodes (majority quorum). However, for the data items for which the missing write

information is not recorded, the system continues to use ROWA. The limitations of this

approach include communicating the missing writes information to all the nodes in the

cluster and even a temporary failure of single replica node affects the read performance.

2.7.6 Epoch Protocol:

One of the limitations of the ROWA and ROWA-A protocols is the write operations

have to be accomplished on all the replica nodes, which in turn affects the latency and avai-

lability of the write operations. Although quorum consensus protocol minimizes this impact

by contacting only a majority of the replica nodes, the protocol needs to contact the ma-

jority of replica nodes for both read and write operations. Hence, in order to address these

limitations a new approach for replica control called epoch protocol is proposed in [RL93].

Epoch protocol is sometimes refereed as Highly Available ROWA (HA-ROWA) [Bas08].

78

2.7. CONSISTENCY GUARANTEES OF QUORUM BASED VOTING SYSTEMS

Epoch protocol consists of a set of nodes called epoch members, which consists of a set of

replica nodes that are trusted to be operational in the earlier period of time. During write

operations, instead of communicating the operation to all/ majority of replica nodes, it

is enough to communicate the operation only to the current epoch members (which are

relatively a smaller set of replica nodes). And communicating the read operations to one

of the members from the epoch ensures reading the value of the last write operation. Ho-

wever, the protocol has to run an epoch checking mechanism periodically in order to verify

the failure of the epoch member. If one of the epoch members is failed, the protocol forms

a new epoch that includes at least the majority of the previous epoch members.

2.7.7 Probabilistic Quorum

One of the main intentions of the quorum-based voting protocols is to ensure consis-

tency with high availability despite of network partition (i.e., if one or more replica nodes

are unable to contact). As a limitation, quorum-based voting protocol penalizes request

latencies and the load on the system due to the number of nodes to be contacted during

read and/or write operations. The idea of probabilistic quorum protocol [MRW97] is to

relax the need for quorum intersection for some requests based on probabilistic evalua-

tion. In other words, probabilistic quorum protocol satisfies intersection property only if

the probability that a particular request leads to inconsistency is higher than some criti-

cal number. Several approaches exist in the literature to evaluate the probability that a

particular request leads to inconsistency. In [BVF+12] Bailis et al. evaluates probabilistic

bounded staleness based on the time taken for a particular write operation to be propaga-

ted to all the replica nodes. If a read operation for the last written data item arrives before

this probabilistic propagation time, then the read would be probably stale. Hence, based

on the statistics about read/write pattern of the application or datastore, it is possible to

decide whether a particular request needs to satisfy intersection property or not.

2.7.8 Partial Quorum:

Partial quorum systems that are based on eventual consistency use consistency-option

ONE for both read and write operations in order to favor high availability and mini-

79

2.7. CONSISTENCY GUARANTEES OF QUORUM BASED VOTING SYSTEMS

mum request latency. In this mode, users can experience data inconsistency. In order to

ensure, strong consistency on demand, the user/application can use Consistency-option

ALL either during read or write operation to satisfy the formula W + R > N (Inter-

section property). For a read-heavy workload, choosing consistency-option ALL for writes

and consistency-option ONE for reads would be beneficial. For a write-heavy workload,

choosing consistency-option ALL for reads and consistency-option ONE for writes would

be beneficial.

However, in distributed systems, networks are always unreliable, and hence, expecting

to read/write from all the data replicas is a threat to data availability. If one or more

replicas are down or unreachable, then we risk unavailability. So the safer way to ensure

strong consistency on demand is to use Consistency-option QUORUM for both read as

well as write operations. In this way, the intersection property will be satisfied without

risking the system availability. One of the limitations of this approach is that both read

and write operations must be communicated to a majority of replica nodes, which involves

potential latency.

2.7.8.1 Consistency issues in partial quorum systems

Systems that choose read and write consistency-options based on the quorum inter-

section property do not run down into inconsistency issues. Systems that rely on eventual

consistency and do not satisfy the intersection property, which are popularly called as

partial quorum systems [BVF+12] mostly experience two types of data inconsistency. The

two types of data inconsistency are as follows:

Stale Reads When a value of a data item Dx observed by an actor is different from the

value observed by another concurrent actor for the same data item, then one of the two

is subjected to stale read. The causes for stale reads could be either due to lost update or

due to delay in the data replication as there is ‘no now in distributed systems’ as explained

in [She15]. The eventual consistency guarantees of the system [Vog09] ensure that when

there are no more future updates, stale reads will be automatically resolved by the system

with the help of the version number associated with the put operations (cf. Section 2.6.2).

80

2.7. CONSISTENCY GUARANTEES OF QUORUM BASED VOTING SYSTEMS

The version number identifies the state of a replica with respect to the particular data

item, and it is normally captured via physical or logical clocks.

Update Conflicts As described in the Section 2.6.2, during write operation, a data item

Dx is written with a version number that is higher than the previous version number of

Dx. In order to do so, the replica node reads the local version number of the data item and

then writes the new data value by increasing the version number by one. By maintaining

the property W > N/2 (cf. ref 2.6.2) for each write, it is guaranteed that the version

number of the new write will always be greater than the version number generated by a

previous write operation.

For example, in case of 5 replica nodes (N = 5), let us assume, a write operation on

a data item Dx is accomplished on 3 nodes say n1, n2, n3 in order to ensure W > N/2.

During the next write operation on Dx, even if the write operation is accomplished on the

nodes that have a stale version of Dx, which are n4, n5, in order to satisfy W > N/2, the

write operation has to be accomplished on at least one of the nodes among n1, n2, n3 that

have the recent version of Dx. The guarantee W > N/2 ensures an intersection between

two successive write operations in order to avoid obtaining the same version number for

two write operations. In some systems, a write operation will be first locally accomplished

at one of the replica nodes and then the operation will be broadcasted to the other replica

nodes before obtaining the sufficient number of votes. In that case, the possibilities of

update-conflicts are higher. Update conflicts can be viewed as one of the side-effects of the

lost-update or delay in data replication (stale reads).

However, systems like Cassandra 2 that uses high frequency timestamp as the version

number do not have to satisfy the condition W > N/2. As timestamp is monotonically

increasing, the timestamp of a new write operation will always be greater than the times-

tamp of the previous write operation.

2. cassandra.apache.org

81

2.8. CLIENT-SIDE VERSUS SERVER-SIDE GUARANTEES

2.8 Client-side versus Server-side guarantees

Since avoiding inconsistency during write and/or read operations affects the perfor-

mance and throughput of the system, the process of resolving inconsistency can be moved

to the background, away from the critical path. Inconsistency issues can be resolved or

avoided based on some of the guarantees of server and/or clients.

2.8.1 Server-side guarantees:

In order to resolve data inconsistency in the system, server (nodes in the system) can

adapt different mechanisms in the background as follows:

Syntactic Reconciliation: Syntactic Reconciliations are usually based on causality or

serializability relations between update operations that are captured via physical clock or

logical clocks (cf. Section 2.2). The clock information are used as the version identifiers of

the data. When a data inconsistency is detected between replica nodes, the server tries to

resolve the inconsistency by applying syntactic reconciliation. In syntactic reconciliation,

the data whose version identifier (clock) higher in the order will replace the data that is

lower in the order.

Read Repair: During read operations, the coordinator node can verify whether all the

replica nodes contain the same version of the data item and initiate read repair in case of

any mismatch. A read repair process involves the following steps.

— Retrieving the version identifier of the data item from all the replica nodes.

— Confirming whether the version identifiers retrieved from all the replica nodes are

compliant.

— Updating the value of the replicas that have lower version identifiers with the value

of the replica that is higher in the version identifier.

In partial quorum systems, where system usually read from only one replica node, the

system can be configured to initiate read repair after a certain number of read operations

on a particular data item [Gro15].

82

2.8. CLIENT-SIDE VERSUS SERVER-SIDE GUARANTEES

Active Anti-Entropy: The read repair process can resolve the inconsistency on data

items that are frequently read by the clients. However, read repair can not resolve incon-

sistency on the data items so-called ’cold data’ that are not read by the clients frequently.

Anti-Entropy [Wik13a; RD15c] is an active background process for synchronizing the dif-

ferent states of the replica nodes. During this process, each node creates a Hash Tree aka.

Merkle Tree, which is a tree of hashes representing the node’s content and exchanges the

hash tree between the neighboring replica nodes. If the hash trees of two replica nodes

do not match, an inconsistency is detected between the replica nodes and will be resolved

accordingly.

Conflict-free Replicated Data Types (CRDTs): As update-conflicts are common

in systems that rely on Eventual Consistency, a stronger guarantee of eventual consistency,

so-called Strong Eventual Consistency (SEC) that avoids update-conflicts, was introduced

in [PMSL09]. Conflict-free Replicated Data Types are recent innovative data types that

ensure Strong Eventual Consistency via deterministic merge functions that are based on

the properties of Associativity, Commutativity and Idempotence. Designing a data type

using these properties avoids update-conflicts in the system. CRDTs can be of two types

based on the type of data replication used such as Convergent Replicated Data Type

(CvRDT) and Commutative Replicated Data Type (CmRDT). In state-based replication,

where replica nodes propagate their local states, designing a merge function that satisfies

the properties of Associativity, Commutativity and Idempotence yields Convergent Repli-

cated Data Type (CvRDT). In case of operation-based replication, where update operation

is propagated instead of the replica state, designing operation execution as commutative

with a guarantee of causal delivery yields Commutative Replicated Data Type (CmRDT).

2.8.2 Client-side guarantees

Apart from server-side guarantees that resolve inconsistency in the data store via va-

rious methods, client-side guarantees help to avoid inconsistency via different tactics as

follows.

83

2.8. CLIENT-SIDE VERSUS SERVER-SIDE GUARANTEES

Read-your-writes: Read-your-writes model is one of the simplest and very useful consis-

tency model for a large class of application scenarios. The model ensures the updated values

are immediately visible to the user who issued the update and never see a version that is

lower than the version he/she issued.

Session-consistency: Session-consistency set up a sticky connection to a replica node

during a client-session. By doing so the system ensures read-your-writes and serializes the

updates with respect to the client session.

Monotonic Reads: Monotonic-reads guarantees a user sees an increasing version of a

data item. According to the approach, any successive read on a data item should return a

newer version or a previously observed version. In order to do so, the client passes his/her

last observed version of the data item along with each read operation, and the server

ensures it does not return a data version that is lower than the one already observed by

the client.

Monotonic Writes: Monotonic-writes guarantee an update issued by a process on a

data item is successfully applied before applying an another update on the same data item

by the same process.

Application-assisted Conflict Resolution The server usually resolves the data in-

consistency between replica nodes by applying syntactic reconciliation using the version

identifier attached with the data. But when the version identifiers of the data are not

comparable due to update conflicts, the inconsistency has to be resolved by applying some

domain-specific knowledge. In application-assisted conflict resolution, the application will

be built with some domain-specific rules to handle these types of conflicts that couldn’t be

resolved by syntactic reconciliation. Hence, the server exposes the conflicting values to the

application and the application resolves the conflicts by applying the business logic. This

type of conflict resolution is referred as Semantic Reconciliation. Semantic Reconciliation

is used as an alternative for syntactic reconciliation techniques where conflict resolutions

could not be made based on the causality or serializability relations between the update

84

2.9. ADAPTIVE CONSISTENCY

operations.

CALM Conjecture: CALM is an acronym for Consistency as Logical Monotonicity.

CALM states that Strong Eventual Consistency (SEC) can be achieved without ordering

constraints by designing the application via monotonic functions. Bloom [ACHM11a] is a

programming language that is based on CALM conjecture. Bloom programming language

helps programmer to identify the parts of the application code that could be built as

monotonic logic and the parts that could not be built via monotonic logic. The parts of

the application code where monotonic logic could not be applied need coordination service

to enforce order.

2.9 Adaptive Consistency

Due to the distributed nature of modern database systems (NoSql Systems), ensuring

data consistency always comes with a cost on request latency, availability and scalability

of the system. In order to find a fine balance between data consistency, performance

and throughput of the system, most of the modern database systems ensure eventual

consistency by default and offer additional consistency options in order to ensure tight

consistency on demand. These additional consistency options are relatively stronger than

eventual consistency but add appropriate cost on the request latency and availability

depending on the degree of consistency they ensure. Therefore, instead of relying on a

single consistency protocol, mixing eventual consistency along with other supplementary

consistency options makes the system more proficient. This phenomenon of using the

appropriate consistency option depending on the criticality of the requests or data items

is known as Adaptive Consistency. In this section, we first categorize the different types of

data inconsistency in modern database systems and detail the types of adaptive consistency

guarantees.

2.9.1 Categories of consistency models

Data consistency is a generic term that abstracts all types of possible errors that could

be exposed to an actor. The actor can be anybody or anything that interacts with the

85

2.9. ADAPTIVE CONSISTENCY

database via get and put methods. Remember, in most of the distributed storage systems,

CRUD operations are achieved via just get and put methods, Create, Update, Delete as

Put and Read as Get. The ACID properties of relational database systems helps to avoid

all types of possible data inconsistency by ensuring ’Strong Consistency’. Since most of

the distributed database systems are not ACID compliant for performance reasons, actors

are prone to different types of data inconsistency. The types of inconsistency that an actor

can observe from a modern database systems can be categorized as follows:

— Read-Read Inconsistency

— Write-Write Inconsistency

— Read-Write Inconsistency

Read-Read Inconsistency: In Read-Read inconsistency, the data value observed by an

actor for a particular data item will be different from the data value observed by another

actor for the same key. This inconsistency could be either due to a lost update of a replica

node or the network-delay. Read-Read inconsistency is sometimes referred as replication

inconsistency [SF12]. Read-Read inconsistencies are normally resolved automatically when

the missing updates are applied on the replica nodes.

Write-Write Inconsistency: The Write-Write inconsistency or update inconsistency

also known as update conflicts mostly arise as a side effect of Read-Read inconsistency.

When an actor does an update for a data-key without reference to the most recent data-

version, the system will be unable to identify causality between the data versions and consi-

ders both the versions as concurrent updates. In case of concurrent updates, by default,

the system can not resolve the inconsistency automatically due to the conflicting replica

states. Write-Write inconsistencies are normally resolved by exposing all the concurrent

data-versions to the user/ application (actor) and get it resolved manually with the actor’s

assistance. The novel data types designed by Shapiro et al. called ‘Conflict-free Replicated

Data Types (CRDTs)’ (cf. 2.8.1), help to avoid this type of inconsistency.

Read-Write Inconsistency: The third form of the possible inconsistency is Read-

Write inconsistency, which is also known as Logical Inconsistency [SF12]. In traditional

86

2.9. ADAPTIVE CONSISTENCY

database systems, read-write inconsistency is usually avoided via database transactions. A

transaction consists of a set of update operations, which should be visible to the users only

after all the updates are applied successfully, otherwise none of them should be visible to

the users. A classical example for this consistency model is transferring money from one

bank account to another. The process involves deducting money from one bank account

and crediting it to another account. A user should see the balance of both the accounts

either before the transaction or after the transaction was carried out. Reading the balance

of the two accounts in an intermediate state is known as read-write inconsistency or dirty

read.

2.9.2 Categories of adaptive consistency

From the literature, adaptive consistency techniques can be broadly classified into two

types: User-defined and System-defined.

User-defined: In user-defined adaptability, the consistency level is tuned between each

operations depending on the user/application needs. The operations can include any type

of CRUD: Create, Read, Update, Delete operations. Based on the type or criticality of

the operation, the user/application developer defines the desired consistency-level while

querying the data store. User-defined adaptability is safer than system-defined adaptabi-

lity as the consistency option is chosen by the users themselves, expressing stronger needs.

However, it requires good knowledge of the application use case. Most of the modern

storage systems such as Cassandra [LM10], Dynamo [DHJ+07a], Riak [Klo10], Volde-

mort [SKG+12] offer multiple consistency options and let the users/application to choose

the needed consistency level based on the request severity. Existing consistency forms of

this type in the literature are RedBlue Consistency [LPC+12] and SALT [XSK+14]. In

RedBlue Consistency approach, operations are divided into two types namely RED and

BLUE. The operations that are marked BLUE ensure weaker eventual consistency fol-

lowing asynchronous lazy replication strategy. Whereas, the operations that are marked

RED ensure strong sequential consistency following synchronous active replication stra-

tegy. The operations that can commute to a same final state irrespective of the order

87

2.9. ADAPTIVE CONSISTENCY

of operation execution will be marked as BLUE. And the operations where the order of

execution could violate application invariance will be marked as RED.

SALT [XSK+14] approach combines the benefits of ease of programming with ACID

guarantees and the performance benefits of BASE guarantees by introducing a new tran-

saction model called BASE Transactions. The idea of BASE Transaction is to divide a

ACID transaction into several mini subtransactions called Alkaline Transaction. The idea

of dividing a transaction into multiple subtransactions is to leave space for more interlea-

ving in a transaction. By making more interleaving in a transaction increases the execution

performance by allowing higher concurrency. Also, it is possible to combine both ACID

as well as BASE transactions in the same system selectively and preserve the atomicity

and isolation of both transactions. The approach introduces a new level of isolation cal-

led SALT Isolation that ensures multiple granularities of isolation. In SALT isolation, an

ACID transaction can observe a BASE transaction only when all the subtransactions (al-

kaline transactions) are completed. Whereas, the intermediate state of a BASE transaction

can be observed by another BASE Transaction.

System-defined: One of the main challenges in the user-defined adaptive consistency is

in categorizing the requests to a desired consistency level in advance. Deciding a consistency-

level in advance becomes tricky for the application developers as the user and/or system

behaviors may change dynamically over time. Adding intelligence to the system to pre-

dict the needed consistency-level based on the user/system behavior is the main scope of

system-defined adaptive consistency. In system-defined adaptive consistency, the needed

consistency-level to query data is identified dynamically during the run-time by finding

a sweet point between consistency and inconsistency cost. Some of the factors that can

be used to estimate the consistency during run-time are user’s previous operations, data

access patterns, value of the querying data, probability of update conflicts, network load,

request latency, inconsistency cost and Service level agreement (SLA). This type of fine-

tuning of the system consistency level can be done via system-defined adaptability. One

of the famous consistency forms of this type that exists in the literature is Continuous

Consistency [YV00]. Continuous Consistency approach defines the amount of staleness

88

2.9. ADAPTIVE CONSISTENCY

that an application can tolerate from a particular data item. Based on the defined amount

of staleness, the system adapts the consistency needs of the application. The staleness

amount can be defined in three ways such as in terms of deviation in numerical values,

deviation between the replicas and the deviation in the order of the update operations.

In [LLJ07] authors discuss about an infrastructure called Infrastructure for Detection-

based adaptive consistency (IDEA) that helps to achieve Continuous Consistency. The

work of Chihoub et al. described in [CIAP12] is also one such model that comes under

Continuous Consistency model. The same author Chihoub et al. in [CPAB13] defines a

consistency approach called Chameleon that helps to adapt the consistency needs of the

application as a whole instead of adapting it according to individual data items. Chame-

leon uses machine learning techniques for modeling each application behavior and classi-

fies different states of the application with respect to the application time-line. It applies

the needed consistency option according to the application state. The work described

in [WFZ+11] discusses an offline algorithm that quantifies the inconsistency observed by

a client in a key-value store by merging the access traces from all system clients. The

traces include information about operation start and end time along with the value stored

or retrieved. The approach helps to decide an optimal consistency option for the system

data. Sakr et al. in [SZWL11] describe uses of a middleware component called CloudDB

AutoAdmin that sits in-between cloud data store and clients application and enable de-

clarative specification of replica management and consistency adaptation. In [WYW+10]

authors propose a system model that adapts the consistency needs of the application based

on the read and update frequency of the clients.

A mix of both user-defined and system-defined approaches is also possible, as found in

works on Consistency Rationing in [KHAK09]. Consistency Rationing divides the system

data into three categories: Category A, B and C. The data that are marked with category

A will always be handled synchronously to guarantee strong consistency. The data that

are marked as category C, will be handled asynchronously and follows lazy replication.

For the data that are marked as category B, the consistency need will be decided during

run-time based on the additional environmental factors.

89

2.10. MODERN DATABASE SYSTEM - EXAMPLE

2.10 Modern Database System - Example

This section provides an example of a modern database system that can remain highly

scalable and yet reliable in a large distributed environment where servers and network

components are tending to fail often. Dynamo [DHJ+07a] distributed data store that

is built by Amazon engineers for serving their largest e-commerce platform is one of the

earlier systems of this kind. One of the main motivations for the development of Dynamo is

to overcome the scalability and availability limitations of the existing Relational Database

Systems (RDBMS). Relational database systems ensure correctness and high reliability in

processing application queries with the guarantees of ACID properties (cf. Section 2.4).

However, since ACID properties tend to affect availability of the system (cf. Section 2.4.1),

and most of the application queries of amazon services can relax consistency over high

availability, dynamo chose to move from ACID to BASE paradigm (cf. Section 2.4.2).

Dynamo targets applications that rely on simple read and write query model and can

operate on weaker consistency guarantees. The main design motive of dynamo is to remain

always writable, where any possible conflict (update conflict: cf. Section 2.2.6) could be

handled during read time. The idea is to let customers always add or remove items to

their shopping cart, and any inconsistency (or conflict) in the number of items added or

removed is resolved later. In order to achieve that, dynamo follows an optimistic replication

strategy with quorum-based voting technique for replica control (cf. Section 2.6.2). The

number of votes that has to be collected in order to succeed a read or write operation is

usually specified along with the application queries. In quorum-based voting technique, a

write operation has to be accomplished by at least majority of the replica nodes in order

to avoid update conflicts. Hence, a system can either follow ROWA (cf. Section 2.7.3)

or majority quorum technique (cf. Section 2.7.1). But both options: Writing to All and

Writing to Majority would affect the ’always writable’ design goal of the system if sufficient

number of replica nodes can not be contacted. In this case, in order to overcome temporary

node or network failure, dynamo follows hinted handoff model as described in ROWA-A

technique (cf. Section 2.7.4).

Apart from the tradeoff between consistency and availability, the system can also play

90

2.11. DISCUSSION

Reference
Goal Always Writable [DHJ+07a]

Replica Control Protocol Quorum-based voting Section 2.6.2
Types of quorums ROWA-A, Majority, Partial Section 2.7

Tradeoffs Consistency-Latency, Durability-Latency Section 2.5
Data Versioning Vector Clock Section 2.2.4

Inconsistency Issues Read-Read, Write-Write Section 2.9.1
Server Side Guarantee Merkle-Tree exchange Section 2.8.1
Client side Guarantee Application assisted resolution Section 2.8.2
Adaptive Consistency User defined Section 2.9.2

Table 2.2 – Dynamo: Example of modern database systems

on two more additional tradeoffs: Consistency-Latency, Durability-Latency (cf. Section 2.5)

in order to achieve high efficiency. Trading consistency over high availability and effi-

ciency using partial quorum technique (cf. Section 2.7.7) leads to inconsistency issues:

Stale Reads, Update Conflicts, which have to be handled separately. Dynamo uses both

server-side as well as client-side support for handling data inconsistency and uses data

versioning with vector clock (cf. Section 2.2.4). At server side, the system actively moni-

tors the liveness of each node and makes sure nodes that are recovering from failure don’t

join back with stale data. In addition, the system employs active anti-entropy protocol

using merkle-tree exchange (cf. Section 2.8.1) for detecting conflicting values of the replica

nodes. As soon as a conflict is detected, the system tries to resolve it by applying Syntactic

Reconciliation (cf. Section 2.8.1). The conflicts that could not be resolved at the server side

via syntactic reconciliation will be resolved at the client side by applying the business logic

via Semantic Reconciliation (cf. Section 2.8.2). Table 2.2 shows how the list of techniques

that are discussed in the previous sections are used in dynamo.

2.11 Discussion

The stronger consistency options offered by the modern distributed database systems

can take one of two possible variants. First one is reading or writing from/to all the

replicas: Consistency-level ALL. Second is reading and writing to a majority of replicas:

Consistency-level QUORUM. Some of the limitations of these models include extra cost

91

2.11. DISCUSSION

on request latency, high number of message exchanges and limits the system availability

if one or few of the data replicas are cannot be contacted. In large distributed storage

systems, it is more often that one or few replicas will be down at some point in time.

Hence, in case of reading or writing to all the replicas, there is always a threat on system

availability for a set of data items.

Most of these storage systems are optimized for write intensive workloads, which re-

quires the system to acknowledge writes as fast as possible and reconcile possible conflicts

during read time. In order to guarantee the reads with minimum latency, the non-overlapping

quorum (eventual consistency) option is desirable for these systems. But, if a data item

is written with the minimum write quorum (one node), the only mode to preserve consis-

tency for this data during read time is reading from all the replicas. However, if one of

the nodes is temporarily down or can not be contacted, the read will fail. The same risk

applies when the system writes to all nodes and reads from one node. When reading and

writing from/to a majority of nodes, the failure of one or few replica nodes is tolerable. In

that case, availability guarantees will still be affected if the system is not able to commu-

nicate to a majority of replica nodes. Besides, the latency of both reads and writes will be

affected.

Performance of these modern storage systems relies on caching most of the recent data

in order to handle the read requests faster. When a request is forwarded to all or majority

of replicas to retrieve a data item, the probability that all replicas have the right data in

their cache would be low. Hence, the slowest replica node responding to the request will

increase the request latency and the advantage of cache memory is lost.

Existing “strong” consistency options offered by these storage systems are strong en-

ough to ensure data consistency when no partition occurs, but add some extra communi-

cation cost and a risk to data availability. To the best of our knowledge, there is no softer

option that can ensure consistency with availability and latency guarantees similar to the

default level of eventual consistency.

In this thesis we first explore the possibility of a new consistency protocol, which could

act as an in-between consistency option between the default eventual consistency and the

strong consistency options derived from the intersection property. The consistency protocol

92

2.11. DISCUSSION

that we designed called LibRe ensures consistency of the read operations while contacting

a minimum number of replica nodes (ONE) during both read and write operations. LibRe

protocol may coexist with different consistency options offered by the system and the

system can apply the needed consistency option according to the user/application choice.

Although the system adapts its consistency guarantees by letting the user/application

to choose the needed consistency option, deciding an appropriate consistency option for a

query/data in advance during application development time remains challenging for the

application developers. In order to overcome this challenge, the thesis proposes a system

model, which helps to override the application-defined consistency options during run-time.

As LibRe protocol contributes to read-read inconsistencies, the thesis work also focused

its contribution on write-write inconsistencies (update conflicts). In this contribution, the

thesis discusses the challenges involved in reconciling the conflicting values of a data item

and proposes a new data type called Priority Register. Priority Register is nothing but

a Last-Writer-Wins Register data type that reconciles the conflicting values of a data

item based on the application-defined replacement ordering instead of the physical or

logical time (cf. 2.2). With the help of priority register, the slow and tedious client-side

reconciliation process could be moved directly to the database side with significant benefits.

93

Chapter 3

LibRe: A New Consistency
Protocol for Modern Distributed
Database Systems

In distributed database systems, data is replicated to improve the performance and

availability of the system. However, ensuring data consistency with higher availability

and minimum request latency is notoriously challenging [Aba12; GL02a]. In order to effi-

ciently handle these challenges, the Dynamo system [DHJ+07b] designed by Amazon uses a

quorum-based voting technique that facilitates configurable tradeoffs between Consistency,

Latency and Availability. This technique inspired subsequent distributed data storage sys-

tems such as Cassandra [LM10], Voldemort [Vol15] and Riak [Klo10]. The quorum-based

voting technique ensures consistency based on the mathematical formula behind the inter-

section property of the quorum systems [NW98; Vuk10]. However, contacting a sufficient

number of nodes in order to ensure the intersection property of the quorum comes with a

communication cost and a risk to data availability. Although the systems enable the user

or the application to configure the size of the read and write quorums according to the

needs, if the intersection property cannot be satisfied, the system will reject the operations.

In this chapter, we discuss a new consistency protocol that we designed called LibRe,

which tries to ensure consistency by contacting a minimum number of replica nodes thus

reducing the communication cost and the risk to data availabilty. The protocol uses a

registry that records the list of replica nodes containing the most recent version of the

data items until all the replicas of the data item converge to a consistent state. Hence,

95

3.1. LIBRE

referring to the registry during read time helps to restrict forwarding the read requests to

the replica nodes holding the most recent version of the needed data item. This chapter is

organized as follows. In Section 3.1 we describe the general idea of LibRe protocol, following

that, in Section 3.2 we describe the adaptation of LibRe protocol for modern distributed

database systems including the system assumptions, architecture and working principles.

Section 3.3 gives the formal description of the LibRe protocol. Section 3.4 discusses some

of the works in the literature that shares few similar approaches as followed in the LibRe

enhancement. And we provide a brief summary of the protocol at the end of the chapter.

3.1 LibRe

LibRe is an acronym for Library for Replication. The main goal of LibRe is to achieve

stronger consistency while reading from only one replica copy irrespective of the number

of replica nodes disconnected during reads and/or write operations. Systems that rely

on eventual consistency protocols benefit from low request latency, high availability and

scalability. One of the main limitations of the eventual consistency is its weaker consistency

guarantees. In eventually consistent systems, at least one of the replica nodes contains the

recent version of the needed data item. Thus, by avoiding to send the read requests to

stale replica nodes (replica node that contains stale version of the needed data item), the

consistency of the read operations can be preserved.

Hence, the design considerations of LibRe are:

— To ensure read requests are forwarded to a node that holds the recent version of

the needed data item.

— To ensure system holds latency and availability guarantees similar to eventual

consistency protocol.

3.1.1 LibRe Registry

One of the main challenges of the model is ’How to know a node is stale ?’. A stale

node is the one where the recent update of a particular data item is not yet applied on it.

We can not assume a node is stale if it contains one or few stale data items among a huge

data set. The node is stale only for a particular data item, but will be consistent for the

96

3.1. LIBRE

remaining data items. Hence, the LibRe consistency model uses a registry to monitor each

write and update operations and provides information about the replica nodes that holds

the recent version of the needed data item. So that, the same node can be classified to be

stale for particular data items and consistent for remaining data items. For example, if a

particular node is down or unreachable from the network in any case for a certain period

of time, the node will be inconsistent only for the operations that happened during this

period. However, the node will be consistent for the remaining data items. Hence, the core

idea of our approach is to identify the updates missed by a particular node. It enables

the system to stop forwarding the requests to the stale node until it is consistent again.

A node is considered to be stale if it contains stale data for the incoming request. This

restriction can be freed once the lost updates are reapplied on the node. Hence, in order

to achieve so, during update of a specific data item on a node, the node has to make an

announcement to LibRe Registry. The announcement should be alike: the particular data

with corresponding resource identifier is added/modified in this node. So that, with the

Registry of nodes announcements, the Read requests will be forwarded to the node that

contains the recent version of the needed data.

The next challenge of the approach is ’Where to keep the Registry ?’. The registry

can be distributed among each node in the cluster or it can be on a single centralized

node. LibRe protocol was tested in both centralized as well as in the distributed setup.

We first describe the LibRe protocol in a Centralized Registry Management, followed by

the description of LibRe in a Distributed Registry Management by sharding the registry

across each node in the cluster.

3.1.2 Algorithm Description

Figure 3.1 shows the position of LibRe in the system architecture. LibRe is a centralized

service that holds the three components Registry, Availabilitiy Manager, Advertisement

Manager. The Frontend is a node in the system where the client connects to. In a Muti-

Writer, Multi-Reader architecture, each node in the system can take the role of Frontend

role. According to the LibRe protocol, write operations are handled in the same way as that

of an optimistic replication protocol (write to one of the replica nodes and issue success

97

3.1. LIBRE

message to the client). Whereas, in case of read operations, the frontend node identifies a

replica node that holds the recent version of the needed data item and forwards the read

request to that node.

As shown in figure 3.1, LibRe protocol consists of three components namely Registry,

Availability Manager and Advertisement Manager. The registry is a key-value store in

which, for a given data-key, the set of replica nodes containing the recent version of the

data item is stored. During write operations, the replica nodes notify the Advertisement

Manager about the current update. Advertisement Manager in turn is responsible for

updating the Registry recognizing the recentness of the data. The Availability Manager is

contacted during read operations, and is responsible for forwarding the read request to an

appropriate node that holds the recent version of the data.

Figure 3.1 – LibRe General Architecture Diagram

(a) LibRe Write/Update Operation (b) LibRe Read Operation

Figure 3.2 – LibRe General Sequence Diagram

98

3.2. ADAPTATION OF LIBRE FOR MODERN DISTRIBUTED DATABASE
SYSTEMS

Figures 3.2a and 3.2b show the sequence diagram of a distributed data storage sys-

tem that follows LibRe protocol for Write and Read operations respectively. From the

figure 3.2a, when a client issues a Write/Update request, the frontend node forwards the

request to one of the replica nodes that is responsible for the particular data item. When

the write operation is successful on a replica node, the node checks whether the update

has to be notified to the LibRe service. If yes, the replica node notifies the Advertisement

Manager of the LibRe service about the update operation. Otherwise, no action will be

taken. In the same way, when an update is propagated/gossiped to other replica nodes,

each replica node after accomplishing the write notifies the Advertisement Manager of the

LibRe service. These advertisements will be used to choose a right replica node for forwar-

ding the read operations. During read operations, as shown in figure 3.2b, the frontend

checks whether the information about the corresponding data key is managed by the LibRe

service. If yes, the frontend node uses the LibRe service to find an appropriate replica node

to query the needed data via the Availability Manager and forwards the request to that

node. Finally, after querying the needed data, the replica node forwards the read response

(result) to the client via the frontend node.

3.2 Adaptation of LibRe for Modern Distributed Database
Systems

In this section, we will describe an enhanced version of the LibRe protocol with a

distributed Registry Management while adapting the protocol according to the modern

distributed database systems that follow Dynamo [DHJ+07b] bloodline. Instead of main-

taining the LibRe components (Registry, Availability Manager, Advertisement Manager)

as a separate service, this enhanced version of the protocol tightly integrates the com-

ponents within each node in the cluster for better performance. These mechanisms are

detailed in Section 3.2.4 along with the protocol description.

3.2.1 Targeted System

Key-Value data stores that store an opaque value for a given key have seen enough

popularity in modern distributed database systems. Some of these systems ensure strong

99

3.2. ADAPTATION OF LIBRE FOR MODERN DISTRIBUTED DATABASE
SYSTEMS

consistency, whereas most of the systems such as Dynamo [DHJ+07b], Riak [Klo10] and

Voldemort [Vol15] rely on tunable consistency. In order to tune the consistency level of the

system on a per-query or per-table basis, these storage systems follow voting-based replica

control protocol as described in Chapter 2. These systems mostly use a Distributed Hash

Table (DHT) [ZWXY13] for identifying the replica nodes of a data item. LibRe protocol

targets the Key-Value data stores that offer tunable consistency based on quorum based

voting technique using DHT. In building LibRe, we assume that the underlying system

provides failure detection and tolerance mechanisms, which are building blocks for the

reliability of the LibRe Registry. Currently, we do not consider the use of LibRe for inter-

cluster replication.

3.2.2 LibRe Registry

The core entity in the LibRe protocol is its ’Registry’. The registry is an in-memory

key-value data structure that takes the data identifier as the Key and the list of replica

nodes id (IP addresses) holding the most recent version-id of the data item as the Value.

During write operation, each replica node tries to add its id in the list. If the number of

ids in the list reaches the total number of replica nodes for the data item, then confirming

the convergence of all replicas, the entry for the data item in the registry can be safely

removed.

Figure 3.3 – Architecture Diagram of DHT-based LibRe

The registry is distributed over all the nodes in the cluster, but at any point in time,

only one copy of the entry for a data item exists. An entry for a data item di will be stored

on one of the available replica nodes that is responsible for storing the data item di.

100

3.2. ADAPTATION OF LIBRE FOR MODERN DISTRIBUTED DATABASE
SYSTEMS

Figure 3.3 shows the position of LibRe in the system architecture and the components

of the LibRe protocol. LetRi be a replica set for a data item di, such thatRi = {r1, r2, ..rn},

where rx is a node identifier, and n is the number of nodes in the replica set. So, one of

the available replica nodes in Ri (say the first one: r1) will hold the registry and the other

two supporting components of LibRe: the Availability-Manager and the Advertisement-

Manager, as shown in figure 3.3. The node that holds the registry and the supporting

components is called the Registry Node or the LibRe Node for the particular data item.

For any data item di, the id of the first replica node obtained via consistent hashing

function [Kan14; KLL+97] is the registry node id. In other words, the replica node that

has the lowest token id is considered as the registry node. The registry is distributed over

each node in the cluster, so each node plays the role of replica node as well as registry

node.

(a) LibRe Write/Update Operation (b) LibRe Read Operation

Figure 3.4 – Sequence Diagram of DHT-based LibRe

3.2.3 LibRe Messages

The LibRe protocol is based on two types of messages, namely: the Advertisement

Message (figure 3.4a) and Availability Message (figure 3.4b), corresponding respectively

to the Advertisement-Manager and Availability-Manager of the LibRe components shown

in figure 3.3. The figure 3.4 and the corresponding algorithms 3 and 4 discussed at the

section 3.2.4 show the improvements of the LibRe protocol over the original algorithm

discussed in Section 3.1.2.

101

3.2. ADAPTATION OF LIBRE FOR MODERN DISTRIBUTED DATABASE
SYSTEMS

Advertisement Message: From figure 3.3, a client can connect to any node in the

system. Some storage systems call this node the Coordinator node [LM10]. In the usual

system behavior, a write request will be forwarded to all the replica nodes that are avai-

lable. If the coordinator node receives back the required number of acknowledgements (or

votes) from the replica nodes for the write, the coordinator issues a success response to

the client. If the sufficient number of votes is not received within a timeout period, the

coordinator issues a failure response to the client. LibRe protocol follows this default sys-

tem behavior, but in addition, after a successful write operation, the replica node sends

an advertisement message to the registry node asynchronously. The replica node sends

advertisement messages only for the data items that are configured to use LibRe. The

advertisement message consists of the data key, version-id and originating node id.

Availability Message: When the coordinator node receives a read request that is confi-

gured to use LibRe protocol, the coordinator sends an availability message to the Registry

Node of this particular data item. The availability message contains the original read mes-

sage received from the client and the data key of the needed data item. When the registry

node receives an availability message, it finds a replica node from the registry and forwards

the original read message to that replica node. The replica node sends the read response

directly to the coordinator node and the coordinator forwards it to the client. If an entry

for a data key is not found in the registry, then the read message will be forwarded to one

of the available replica nodes.

3.2.4 LibRe Write Operation

Algorithm 3 describes the role of LibRe’s Advertisement Manager during update ope-

ration. The update for a data item can be issued when its replicas are in converged state

or in diverged state.

When a replica node sends an advertisement message regarding an update, the Availa-

bility Manager of the LibRe node takes on the following actions. First the protocol checks

whether the data-key already exists in the Registry: line 3. If the data-key exists in the

registry (replicas are in diverged state), line 3: the version-id logged in the registry for

102

3.2. ADAPTATION OF LIBRE FOR MODERN DISTRIBUTED DATABASE
SYSTEMS

Algorithm 3 Update Operation
rk = {ni, nj , ...}: set of replica nodes holding recent version of data item k.
ek =< vk, rk >: record where v is a version-id and r is a replica set.
R : k → ek: Map of data item keys k to corresponding entry record.
N : Number of replicas

1: function advertisementManager(k, v, n)
2: entry ← R.k
3: if entry 6= ∅ and entry.v = v then
4: entry.r ← entry.r ∪ {n}
5: if |entry.r| = N then
6: R← R \ {k}
7: end if
8: else if entry = ø or v > entry.v then
9: entry.v ← v

10: entry.r ← {n}
11: end if
12: R.k ← entry
13: end function

the corresponding data-key is compared to the one sent with the update message. If the

version-id logged in the registry matches with the version-id of the operation (replica

convergence), then line 4: the node id (IP-address) will be appended to the existing re-

plicas list. Line 5-6: If the number of replicas in the list is the same as the total number

of replicas for data item k, then replicas are in converged state, and the entry is deleted.

If the entry does not exist in the registry or the version-id of the operation is greater

than the existing version-id in the registry (line 8): the entry is created or reinitialized

with the operation’s version-id and the sender node id (lines 9 and 10). Finally the en-

try is recorded in the registry (line 12). This setup helps to achieve Last Writer Wins

policy [MSZ11; SS05].

3.2.5 LibRe Read Operation

Algorithm 4 describes the LibRe policy during the read operation. According to the

algorithm, since the Registry keeps information about the replica nodes holding the recent

version of data item k, the nodes information will be retrieved from the registry (line 2).

Line 3: If an entry for the data-key exists in the registry, line 4: one of the replica nodes

from the entry will be chosen as the target node. The method first() (line 4 and 6) returns

the closest replica node sorted via proximity. Line 5: if the Registry does not contain an

entry for the needed data-key, then, line 6: one of the replica nodes that are responsible for

storing the data item will be retrieved locally via DHT lookup. Finally, the read message

will be forwarded to the chosen target node: line 8.

103

3.2. ADAPTATION OF LIBRE FOR MODERN DISTRIBUTED DATABASE
SYSTEMS

Algorithm 4 Read Operation
rk = {ni, nj , ...}: set of replica nodes holding recent version of data item k.
ek =< vk, rk >: record where v is a version-id and r is a replica set.
R : k → ek: Map of data item keys k to corresponding entry record.
Dk =< ni, nj , ... >: replica nodes for data item k that are obtained via default method.

1: function getTargetNode(k, Mread)
2: replicaNodes← R.k.r
3: if replicaNodes 6= ∅ then
4: n← replicaNodes.first()
5: else
6: n← Dk.first()
7: end if
8: forward(Mread, n)
9: end function

3.2.6 LibRe Reliability

As mentioned in Section 3.2.1, the reliability and fault tolerance of the LibRe protocol

relies on the guarantees of the target system. The systems that use DHT for quorum

based voting actively take care of the ring membership and failure detection [DHJ+07b].

The underlying DHT helps to find the first available replica node. In the event of node

joining and/or leaving the cluster, the Consistent Hashing technique supports minimal

redistribution of the nodes keys. In such case, there will be a change in the first available

replica node (registry node) for a few data items and the registry information for these

data-keys would not be available. In this case, the registry information will be rebuilt

on the new registry node by sending successive advertisement messages to this node.

This may lead to small and time limited inconsistencies in the system. Therefore, LibRe

sacrifices Consistency in favor of Availability: cf. algorithm 4. If a registry node that has

been unavailable joins back the cluster, the stale registry information has to be flushed

during a handshaking phase. Besides, periodic local garbage collection is needed to keep

the registry information clean between replica nodes.

3.2.7 LibRe Cost

The tradeoff provided by the LibRe protocol comes at the expense of some additionnal

cost on message transfers and memory consumption.

104

3.3. LIBRE FORMALIZATION

3.2.7.1 Extra Message Transfers:

In LibRe, a lookup in the registry is required during a read operation on contacting

the availability manager of the registry node to read from a right replica node. However,

this operation represents constant cost, as the number of messages sent for achieving the

consistent read does not depend on the number of replicas involved, as mentioned in sec-

tion 3.2.3. Besides, the latency spent during this lookup can be gained back via managing

the cache memory efficiently. During write operations, notifying the advertisement ma-

nager about an update is asynchronous and does not affect the write latency. Although

these messages are an additional effort when compared to the default eventual consistency

option, it is better than the strong consistency options that communicate synchronously

to a majority or all replica nodes during reads and/or write operations.

3.2.7.2 Registry in-memory data structure:

LibRe manages the registry information in-memory. This information is distributed

among all the nodes in the cluster and is maintained only for the data items whose recent

update is not effected on all replica nodes. Moreover, eventual consistency guarantees of

the targeted system and the periodic local garbage collection of the LibRe protocol helps

to reduce the amount of information to be kept in-memory.

3.3 LibRe Formalization

In this section, we formalize the LibRe protocol and provide a proof of its reliability.

This work requires the introduction of notations that will be used in the remainder of this

section.

3.3.1 Notations

A data item is a pair of key and value 〈k, v〉, where K is the set of keys. The value of

a data item k depends on time, so we must add this parameter to our model. Time can

be physical or logical (version number), the only property needed on the set of times T is

total ordering. We therefore introduce a value function, indexed by keys and time, whose

105

3.3. LIBRE FORMALIZATION

range is a set of values V:
value : K × T → V

(k, t) 7→ v

We make the assumption, throughout this Section, that all written values are distinct,

this can be obtained by tagging values themselves with the time of the write request, so

considering T × V instead of V as the set of values.

Thus, a data item at time t is the pair key/value 〈k, value(k, t)〉, denoted as kt, which is

the latest version of k at time t. We consider a domain D = {k1, ...km} of items (represented

by their keys) managed by LibRe. We also define the latest modification time with repect

to time t, as:

Definition 1. Given a key k and a time t, we let latest(k, t) = min{t′ ∈ T | kt′ = kt}.

In particular, for any t′′ ∈ T , if latest(kt) ≤ t′′ ≤ t, we have kt = kt′′ . This includes

t′ = latest(kt) itself and this is the minimal such time, for which kt′ is still the latest version

of k (at time t). This is directly related to the last write request and represents an idealized

model of storage. We will also denote latest(k, t) the current data itself, 〈k, value(k, t)〉,

which is the latest version of the data, that the system should provide when requested by

the user. We can also compute a version number :
Definition 2. Given a key k and a time t, we let version(k, t) be

function version(k, t)
if t = 0 then

return 0
else

t′ ← latest(k, t)
return (1+ version(k, t′ − 1))

end if
end function

As written values are distinct, we can define the write time of a value v ∈ V:

Definition 3. Given a key k and a value v, we let

time(k, v) = min{t ∈ T | value(k, t) = v}

t is uniquely determined, and we have in particular time(k, v) = latest(k, time(k.v)).

It can be undefined in case v was never associated to k. This also implies a new definition

of the version number:

106

3.3. LIBRE FORMALIZATION

Definition 4. Given a key k and a value v, we let version(k, v) = version(k, time(k, v)).

A replica node, denoted r, contains a partial map from key to values, that depends on

time. So its type is:

T → (K ↪→ V)

The state of the map at time t is r(t), also denoted rt, and dependency on time is usually

left implicit. It is a partial mapping (notation K ↪→ V) since it is undefined on keys it is

not in charge of. A read operation for k on that map is then rt(k) and a put operation is

denoted rt[k ← v]. It has the effect that rt+1 is the same map as rt, except on k.

Remind from Section 3.2.2, that the set of replica nodes in charge of an item k is given

by applying the consistent hasing function h(k) = {rk
1 , ..., r

k
n}. We assume that this set is

a list with no repetition, so the Registry Node for k is rk
1 , more compactly noted rk, when

no confusion arise.

The registry of a node r is called ρ = reg(r). ρ bears the same indices as r, in particular,

the registry responsible for k is ρk = ρk
1 = reg(rk

1). Registries also vary over time, therefore

are function of the following type:

T → (K ↪→ ℘(R))

ρ(t), as usual noted ρt or ρ when the dependency on time is implicit, is a partial function.

It associates a subset of R (the nodes) to some keys, at most the ones the node r is in

charge of. As discussed in Sections 3.2.4 and 3.2.5, even ρk(k) may be undefined, or more

generally ρ(k′) for any arbitrary k′ the registry ρ is in charge of. The intended meaning is

that, in such a case, the Registry Node knows that the replicas for k′ are in a consistent

state. We prove this claim later in the Section.

We also need to introduce the function Rl, that to each data item k associates the

actual set of replica nodes that contain the latest version of k (at a given time t):

Rl(k, t) ⊆ h(k),
r ∈ Rl(k, t) if and only if rt(k) = value(k, t)

As we are assuming that all written values are distinct, it cannot be the case that Rl(k, t)

contains some stale node r, for which rt(k) = value(k, t′) for t′ < latest(k, t), but still

enjoying value(k, t′) = value(k, t).

107

3.3. LIBRE FORMALIZATION

By definition ofRl(k, t), the following holds: time(k, rt(k)) < t, for any r ∈ h(k)\Rl(k, t),

i.e. r ∈ h(k) but r /∈ Rl(k, t). Otherwise, r would belong to Rl(k, t). Otherwise said,

d ∈ r ⇒ version(k, rt(k)) < version(k, t) for those r not in Rl(k, t).

The operations are of two kind, get (g) or put (p). They arrive at various time, as a

discrete stream. Each operation contains: a time t ; the data key k ; and put operations

also contains the new value v. We access those value with a dot: p.t, p.k and p.v. All put

operations p enjoy the following property:

value(p.k, p.t) = p.v

We also assume, for any key k and time t (note that p.t is different from t):

if latest(k, t) 6= 0 then ∃p, p.k = k and p.t = latest(k, t) and p.v = value(k, t)

Lastly, we assume no interference of a put operation p over the state of the system (regis-

tries, data on replica) associated with a key k′ 6= p.k.

3.3.2 System States

The system can be in one of the following two states with the associated properties.

3.3.2.1 Stable State: S1

The system is said to be in stable state at t if two conditions are met. The first one is

that there is no change in ring membership compared to t− 1, and the second one is that

the system enjoys (at t) for any k the two following properties:

ρk(k) defined ⇒ ø 6= ρk(k) ⊆ Rl(k) (3.1)

ρk(k) undefined ⇒ h(k) = Rl(k) (3.2)

As those Properties 3.1 and 3.2 are mutually exclusive, we will ensure only one of them

at a time for a given k. In case either property holds for k, we say that the registry for k is

up to date, or simply that the registries are up to date, if this holds for all k ∈ K. Note that

in Property 3.1, ρk can be strictly smaller than Rl(k), in case there was a communication

108

3.3. LIBRE FORMALIZATION

problem (cf. Lemma 1). Moreover, in state S1, we know that the last version of k is present

on some replica node, and accessible to the other nodes. As a consequence:

Rl(k) 6= ∅ (3.3)

3.3.2.2 Unstable States: S2, S3, S4 and S5

We denote the state, when a node r leaves unexpectedly the ring or becomes unacces-

sible, at time t, by S2. In this case, there is a switch of the registry for the following set of

keys:

sup(ρt−1) = {k such that ht−1(k) = {r, r2, · · · , rn}}

sup(ρ) is the support of ρ, the set of all keys it can be defined on. It is larger than

dom(ρ), the domain of ρ, which is the set of keys on which ρ is currently defined. An

undefined ρt−1(k) for k ∈ sup(ρ)\dom(ρ) just means that Rl(k, t−1) = h(k) (replicas have

converged). For such a key k, removing r has virtually no impact. Generally speaking, we

get, for k ∈ dom(ρ):

ρk(t)(k) 6= Rl(k, t)

In more details, fix some key k such that ht−1(k) = {r, r2, ..., rn}. As r has left the

mode, ht(k) = {r2, ..., rn}, and ρk(t) = ρ2(t). So ρk(t)(k) = ρ2(t)(k), which is either

undefined, or contain old stale information. If we had Rl(k, t) = ht−1(k), which corresponds

to k /∈ dom(ρ), we are safe since ρ2(t)(k) = ρ(t − 1)(k) = ø or ρ2(t)(k) ⊆ ht(k). We are

also safe if ρ2(t)(k) ⊆ ρ(t− 1)(k) or if ρ2(t)(k) ⊆ Rl(k, t).

But if we are not safe, then Algorithm 4 will pick any of the nodes of ρ2(t)(k) or h(k),

with a risk of staleness with probability that depends on |Rl(k)|/|h(k)|, see Section 3.3.4.

However, in state S2, for any k, in particular those in dom(ρ) the following property

holds, which is formally proved in Lemma 1.

∀p, (p.t > t ∧ p.k = k)⇒ ∀t′ > p.t+ τadv, Rl(k, t) = ρ2(t)(k) (3.4)

This means: as soon as we have a put operation on k, at any time after at least one

advertisement message has been received (hence the delay τadv added to the time p.t the

109

3.3. LIBRE FORMALIZATION

request was made), the registry ρ becomes up to date for k (provided other errors do not

occur in the frame [t, p.t+ τadv]).

We denote the state when a node joins the ring by S3. In this case, there is also a switch

on the registry for certain keys k. The system can fall back in the state ρk(t)(k) 6= Rl(k, t),

especially if the new node joins the ring without synchronization. The system enjoys the

same property 3.4.

The last unstable states, S4 and S5 are similar: the Registry Node r receives no ad-

vertisement message and the Coordinator Node c receives the required number of ack-

nowledgements (S4), or r receives at least one advertisement and c receives not enough

acknoledgements (S5). Those states are unlikely to happen, as it is rather an indicator

that nodes are unacessible (state S2). All states S2 through S5 produce same effect on the

system, that is to say:

S2 ≈ S3 ≈ S4 ≈ S5

There are other situations, when a write operation fails. One last instance is when no

replica is available, in which case the Coordinator will issue a failure, so this does not

produce any consistency issue.

As for the likeliness of state S4, a put operation is sent to all the replica nodes in

parallel (including rk), and the local advertisement message is likely not to be lost. In the

case where the put operation sent to rk is lost, the registry ρk will be updated on reception

of at least one of the advertisements sent by the replica nodes that have successfully voted

to the Coordinator (assuming that if the Coordinator receives the acknowledgement, the

Registry receives the advertisement). In the worst case, the put operation sent to rk is lost

and all the advertisement message sent to rk by the replica nodes, that succeeded, are lost

as well, and we fall in state S4.

As for state S5, such a situation might arise more frequently. This is less harmful, since

the nodes pointed to by the Registry Node for k would contain newer data, than the one

given by the last successful write.

110

3.3. LIBRE FORMALIZATION

3.3.3 Stable State Properties

We assume to be on a time range [t1, t2], such that there is no change in the ring

membership during the time frame [t1, t2]. As well, we assume that all the put operations

received in [t1, t2] are sucessfully advertised at least once to the Registry Node and that

the Coordinator issues a success response to p. Otherwise, we fall in one of the unstable

states, discussed in the next section.

Given a put operation p, we define τadv, abbreviated as τ , the delay with which the

first advertisement message is received by the Registry Node. As assumed there is at least

one such message.

We show that the users always read the most recent version of any data item k, except

during the time when a put operation is in process on k. We begin with lemmas that do

not depend on the state, and that we will reuse later. The next lemma does depend only

on the success of p (and on no change on ring membership):

Lemma 1. Consider a put operation p. ρp.k is up to date for p.k at time t+τadv, provided

that we do not receive another put operation p′ on k in [p.t, p.t+ τadv].

For simplicity, we assume no concurrent put operation p′ in the interval between the

reception of p and the first advertisement is successfully sent to rp.k. In practice, LibRe

takes care of overlapping put operations by applying the Last Writer Wins (LWW) policy

with the help of the tie breaking mechanism provided by the underlying system. To take

this into account, we need only to consider a set of overlapping put operations, and ensure

up-to-dateness wrt the last one.

Proof. During the operation, the Coordinator sends the update in parallel to all the re-

plica nodes in h(p.k) and waits for sufficient number of votes (nodes acknowledgement for

successful write) according to the chosen consistency option. A success message is issued

to the writer as soon as the threshold is met (at time t′ > p.t).

We assume that h(k) contains more than one replica. By Algorithm 3, ρp.k(p.k) is set to

{r}, where r is the source of the first advertisement message, received at p.t+ τ . Therefore

ρp.k(p.k) is not empty, and by definition: r ∈ ρp.k(p.k) implies data 〈p.k, p.v〉 has been

111

3.3. LIBRE FORMALIZATION

written.

Since there is no overlapping put operation on p.k, p.v = value(p.k, p.t) = value(p.k, p.t+

τ), therefore r ∈ Rl(p.k, p.t+ τ) and ρp.k(t+ τ) ⊆ Rl(p.k, t+ τ). Property 3.1 holds for k.

Lastly, if h(k) contains only one replica, then it must be r, the advertiser. We know, by

the same reasons as above, that r ∈ Rl(p.k, p.t+τ), as a consequence Rl(p.k, p.t+τ) = h(k).

ρp.k(t+ τ) = ø by the algorithm, which means, that Property 3.2 is respected.

This covers all the possible case that can happen during the execution of a successful

put operation, including loss of put messages sent to the r ∈ h(p.k) (including rp.k itself),

of advertisement messages sent to rp.k, and of acknowledgement messages sent to the

Coordinator. The important point is that the Registry Node is up to date as soon as one

advertisement message is received.

The next lemma says that up-to-dateness is hereditary in time. It does not depend on

the success of any put operation, nor on the state we are in, and only assume stability of

ring membership:

Lemma 2. Let k be a key, assume that ρk is up to date for k at t. Let t′ ≥ t. If no put

operation on k is received between t and t′, then ρk is up to date for k at t′.

Proof. This proof is by induction on t′:

— if t′ = t, then ρk is up to date (for k, left implicit from now on) at t′ by assumption.

— assume that ρk is up to date at t′, let us show that it is up to date at time t′+ 1.

Several cases must be distinguished:

— ρk(t′)(k) = ø. Then all the nodes of h(k) contain the last version of k, by

Property 3.2. As no other put operation on k is received, Rl(k, t′ + 1) = h(k).

— Most likely ρk(t′)(k) is undefined because all advertisement messages have

already been received (Algorithm 3), so we just have ρk(t′ + 1)(k) = ø.

— But we might be in a stable state for other reasons (coming from an unstable

state), in which case some advertisement may be received at time t′ + 1. By

the algorithm, ρk(t′+1)(k) 6= ø (it becomes defined). In this case, we still are

112

3.3. LIBRE FORMALIZATION

safe, since Property 3.1 is respected, as ρk(t′ + 1)(k) ⊆ h(k) = Rl(k, t′ + 1).

— ρk(t′)(k) 6= ø. Then we distinguish the following cases:

— we receive no advertisement at t′+1, or a stale advertisement: ρk(t′+1)(k) =

ρk(t′)(k) is still up to date.

— we receive a valid advertisement from a node r. ρk will be updated. As ρk(t′)

was up to date, we have by Property 3.1, ρk(t′)(k) ⊆ Rl(k, t′). We also know

that, at t′+ 1, r has succesfully written the data, so r ∈ Rl(k, t′+ 1). Lastly,

Rl(k, t′) ⊆ Rl(k, t′ + 1). This implies ρk(t′)(k) ∪ {r} ⊆ Rl(k, t′) ∪ {r} ⊆

Rl(k, t′ + 1).

We now distinguish two possibilities. First, if ρk(t′)(k) ∪ {r} = h(k), we

set ρk(t′ + 1)(k) = ø. But this also implies, by the results just proved,

that h(k) ⊆ Rl(k, t′ + 1). Thus, Rl(k, t′ + 1) = h(k) (it cannot be larger)

and Property 3.2 is respected. Otherwise, ρk(t′ + 1)(k) ⊆ Rl(k, t′ + 1) and

Property 3.1 is satisfied.

This allows us to derive preservation of stability of a system on the interval [t1, t2].

Lemma 3. Assume that the system is in stable state S1. If we receive only successful put

operations, then the registries are up to date at any time t ∈ [t1, t2], if no put operation is

ongoing at t. In other words, the system is in stable state S1, except when a put operation

is ongoing.

Proof. Fix some key k ∈ K. We first prove by induction on t ∈ [t1, t2], that the registry

for k is up to date at t:

— if t = t1, the claim holds by assumption.

— if t = p.t + τ for some put operation on k, then the registry is up to date for k

at t by Lemma 1.

— otherwise, we apply induction hypothesis, which gives us an up-to-date registry at

time t−1, and we apply Lemma 2. No operation was ongoing on k at t−1, otherwise

we would be in the previous case, so we can apply the induction hypothesis.

113

3.3. LIBRE FORMALIZATION

This holds for any k, as soon as no put on k is ongoing at t. Therefore, if no operation is

ongoing overall, this holds for any k, and the Lemma holds.

Lemma 4. Let k be a key and t be a time. n stable state, if no put operation is ongoing

on k, ρk always returns a node id that contains latest(k, t), the latest data.

Proof. According to the system properties under stable state (S1), there are two cases

with respect to the properties 3.1 and 3.2:

1. ρk(k) is defined. As it is up to date, it returns some r ∈ Rl(k).

2. if the entry for k does not exist in ρk, then ρk returns the id of any r ∈ h(k).

According to Property 3.2, ρk(k) undefined implies Rl(k) = h(k). ρk returns any

r ∈ Rl(k) = h(k), but all the replica nodes contain the latest version.

Theorem 1. Let k be a key. If there is no ongoing write operation on k, then any user

reads the most recent version of k.

Proof. From Lemma 4, ρk always returns a node id (IP address) that contains latest(k, t),

when in stable state. According to Lemma 3, the system is in stable state, except tem-

porarily, when a write operation is ongoing. So users read the most recent version of k.

3.3.4 Unstable States Properties

When in an unstable state, information returned by the registry can be wrong in two

ways:

— The registry does not contain a subset of Rl(k), which means ρk is not up to date

for k:

ρk * Rl(k)

The probability that the registry returns an id (IP address) of a node that does not

contains latest(d, t) is 1− |common|
|ρk(k)| , where common = ρk(k) ∩Rl(k).

114

3.3. LIBRE FORMALIZATION

— The registry contains no entry for k. The probability that the registry returns the

id of a node that does not contains latest(d, t) is 1− |Rl(k)|
|h(k)| .

Lemma 5. Let r be a node with registry ρ, and k ∈ dom(ρ). When r leaves the ring,

the registry entry ρ(k) will be rebuilt on the new registry node ρk after a successful write

operation on k.

Proof. In the event of node joining or leaving the cluster (including nodes failure/ dis-

connection), the underlying system guarantees helps to detect it at the earliest. In such

a case, there will be a change in the first available replica node as mentioned in the sec-

tion 3.3.2.2. As soon as this change has been made, and assuming that no node joins or

leaves the ring, we are in the conditions of Lemma 1, that guarantees that the registry ρk

is up to date for k after the write operation, and this property is hereditary (Lemma 2), so

up-to-dateness for k holds back (see the proof of Lemma 3), as long as all put operations

on k are successful, and there is no new change in the ring membership.

In particular we might encounter some g(k, t), with t ≥ t0 (t0 is the failure time of r),

for which ρk returns r /∈ Rl(k). However, as we just saw, after the first p(k, v, t′), such that

t′ > t0, ρk(k) is up to date again and preserves this property. Therefore, for all g(k, t′′)

with t′′ ≥ t′ + τ , ρk returns r ∈ Rl(k) ⊆ h(k).

Since the put operation following the stale read updates the registry, for all subsequent

get operation, ρk returns an id (IP address) of a node that contains the latest(k, t).

Now, assume that r leaves (or joins with a stale registry, or gets a stale registry due to

a write failure, for the purpose) the ring, with registry ρ, at t0. Assume also, that a write

operation happens on all the data k ∈ sup(ρ) (the keys, of which node r has the charge),

such that the new ρk was not up to date. The registry entry ρk(k) will be rebuilt on the

new registry node and is now up to date. For the data k ∈ sup(ρ), such that ρk (the new

registry) was up to date from the inception (see discussion in Section 3.3.2.2), there is

no need for rebuilding, so no need for a write operation. As a consequence, all registries

are up to date and the system has switched back to the stable state S1. This yields the

following theorem.

115

3.4. RELATED WORKS

Theorem 2. Assuming no further joining/leaving node event or write problem, the time

taken by the LibRe protocol to recover from an unstable state is the minimum among the

time for the next successful write operation on stale data Tst and the time taken to resolve

the staleness via underlying system’s eventual consistency guarantees Pst.

From any unstable state, we converge towards stable state S1 in time min(Tst, Pst).

Proof. Let the time that a quorum based replication system resolves staleness by itself via

read-repair and generic anti-entropy protocols is given by Pst.

From Lemma 5, the registry for the stale data is rebuilt in the new nodes after the

next write operation, and we need one write operation per stale data (Tst).

Either of those solutions ensures that all the registries are up to date. From the above

two propositions, the time taken by the LibRe protocol to recover from the unstable state

is min(Pst, Tst).

We have shown different states of the LibRe protocol S1, S2, S3, S4, S5 and the pro-

perties of the protocol under each state. During normal condition, when there is no change

in the ring membership and no write failure, the protocol remains in state S1. LibRe under

state S1 ensures consistency of the read operations and we call it as stable state.

When a node joins or leaves the ring, change in the ring membership affects the consis-

tency guarantees of the protocol. The event of a node leaving (unreachable to) the ring

is denoted as state S2 and the event of node joining (or recovering from disconnection)

the ring is denoted as state S3. Since the system exhibits the same property under both

states S2 and S3, the two states are denoted commonly as unstable state, along with other

states resulting from failure of a write operation. LibRe under unstable state (S2 or S3)

do not ensure consistency of the read operations. We also formally showed that protocol

under unstable state will switch back to the stable state S1 within short period of time.

3.4 Related Works

In the literature, there are multiple works aiming at improving the performance and

reliability of quorum systems [MRW97; MR97; AEA]. However, in all these works, a suf-

116

3.4. RELATED WORKS

ficient amount of nodes has to be contacted in order to satisfy the intersection property.

Apart from the works on quorum systems, there are also a few works in the literature whose

approaches are similar to some of the techniques followed in the LibRe protocol. One of

the most famous work that has similar approach of the LibRe protocol is the ‘NameNode’

of the Hadoop Distributed File System (HDFS) [SKRC10].

The HDFS NameNode manages metadata of files in the file system and helps to locate

needed data in the cluster. But, on the contrary to the LibRe registry, which maintains

metadata about small data items, the HDFS NameNode manages metadata of large file

blocks. In addition to this, the NameNode is a centralized registry that stores information

about the whole cluster, which can make the whole system unavailable in case of failure of

the NameNode. In our approach, the LibRe registry only stores the location of partially

propagated writes, and in case of failure of a registry node, availability of the system is

not affected.

BigTable [CDG+08], which is a data store designed by Google uses a two level lookup

before contacting the actual data node for accomplishing reads and writes. In BigTable,

the UserTable that needs to be contacted for accomplishing reads and writes is found

by looking at a ROOT tablet followed by a METADATA tablet. This enables to have a

scalable and fast lookup. The earlier version of HBase [Geo11], which is an open source

implementation of BigTable, used a similar two-level lookup for finding data in the system.

In the later version, the two-level lookup is reduced to a single lookup in the METADATA

table. However, BigTable and HBase ensure strong consistency, so there is no context of

stale replicas in these data stores. In LibRe, we use a single lookup to identify a fresh

replica node only for reading some data items that are configured to use LibRe protocol.

In [LAS13], Liu et al. describe a storage service called DAX that follows a similar

approach as LibRe for avoiding stale reads from an eventually consistent data store. The

DAX system uses a similar in-memory registry to keep track of the most recent version of

each data item. But unlike LibRe, where the registry is maintained at the database side,

in DAX the registry is maintained at the client side. During read operations, the client

refers the local registry to make sure the version read from the database is not stale. If

a stale read is detected, the client retries the read operation with a stronger consistency

117

3.5. SUMMARY

option.

In [TAPV10], Tlili et al. designed a reconciliation protocol for collaborative text editing

over a peer to peer network using a Distributed Hash Table (DHT). According to the

protocol, for each document, a master peer is assigned via the lookup service of the DHT.

The master peer holds the last modification timestamp of the documents in order to

identify missing updates of a replica peer in order to avoid update conflicts. This master-

peer assignment is similar to the Registry Node assignment in the LibRe protocol. However,

in LibRe, the registry node holds the version-id of the recent update and the replica nodes

holding it in order to avoid reading from a stale replica.

The Global Sequence Protocol (GSP) designed by Burckhardt et al. in [BLPF15] uses

two states for an update such as known sequence and a pending updates sequence. When an

update is issued by a client, the update is kept in the pending updates list, and broadcasts

its origin and a sequence number to all the replicas. Once an echo is received confirming

that all the replica copies received the update, the particular update from the pending

updates list is removed. Similarly, in LibRe, when an update is applied on a replica copy, the

version-id of the update along with the replica id is kept in a Registry. Once a confirmation

is received from all the replica nodes, the entry for the corresponding data item will be

removed from the registry. However, GSP focuses on ordering the write operations, whereas

LibRe focuses on reading the value of the recent write.

The PNUTS Database [CRS+08] from Yahoo uses a per-record mastership over per-

table or per-tablet mastership and forwards all updates of the record to this master in

order to provide timeline consistency during read operations. In contrast, LibRe allows

any replica to process an update and chooses a registry node per data item (per-record

mastership) in order to identify the most recent version of the data item.

3.5 Summary

The LibRe protocol described in this chapter aims at enhancing the tradeoffs between

Consistency, Latency and Availability of an eventually consistent Key-Value store. Our

118

3.5. SUMMARY

protocol: LibRe prevents the system from forwarding read requests to the replica nodes

that contain stale version of the needed data item. In order to identify replica nodes that

contain stale replicas, LibRe maintains an in-memory data structure (registry) that keeps

track of a list of data items whose recent version is not synchronized to all the replica

nodes. The write operations under LibRe protocol issues a success message to the client as

soon as a write operation is successfully accomplished on one of the replica nodes. After

successful write operation, each replica node updates the in-memory registry using the

version-id of the recent update. The monotonically increasing guarantee of the version-id

helps to maintain the in-memory registry with the IP-addresses of replica nodes that hold

the recent version of each data item. Referring the registry during read operations helps

to forward the read requests to the replica nodes that hold recent version of the needed

data items, by the way avoids stale reads.

When there is no change in the ring membership, using LibRe protocol helps to read the

most recent version of the needed data items with minimum read and write guarantees. It is

denoted as stable state of the protocol. However, when there is churn in the system, change

in the ring membership affects the consistency guarantees of the read operations. And it

is denoted as unstable state of the protocol. The protocol relies on the underlying system

guarantees for recovering back to stable state. We gave a formal description of the behavior

of the LibRe protocol under stable and unstable state and the guarantees that the protocol

under unstable state will eventually converge back to the stable state. Due to these two

different states of the protocol, LibRe can be considered as an intermediary consistency

option that lies between eventual consistency and strong consistency guarantees of the

quorum-based replication systems. In the coming chapter, we will discuss performance

evaluation of LibRe against popular consistency protocols via simulations followed by the

performance results of the prototype implementation of LibRe inside Cassandra.

119

Chapter 4

Evaluation of Consistency
Protocols via Simulations

Due to CAP theorem, most of the distributed database systems rely on eventual consis-

tency and do not offer strong consistency by default. In order to offer better performance

with acceptable level of consistency, these storage systems offer different consistency op-

tions. These consistency options enable the user to choose needed tradeoff between Consis-

tency, Latency and Availability of the system. Hence, in order to reason on an appropriate

consistency option for different workload patterns rigorous benchmarking are demanded.

Benchmarking the different tradeoffs between Consistency, Latency and Availability re-

mains challenging both via simulation as well as in a real-world system with a live work-

load.

Distributed data simulations tools were initially focused on grid architecture. These

tools were later adapted for cloud architectures by adding extra features over grid simu-

lators like support for virtualization. Currently, the ubiquitous approach to simulate a

new policy/strategy for distributed computing architecture is to use one of these existing

simulation libraries. Some of the popular libraries among those are SimGrid [BLM+12],

OptorSim [BCC+03], GridSim [MB02], CloudSim [CRB+11b]. These utilities allow simula-

ting a cloud data center infrastructure by using a dedicated JAVA or C/C++ API defined

by the library. Each of the simulators deals with diverse features offering larger scopes for

environment level simulations.

CloudSim [CRB+11b], which is one of the popular simulation toolkit has provision for

121

almost all types of simulations. Some of the supported simulations in cloudsim are modeling

Data Centers, Virtual Machines, Network behaviors, Power Consumption, efficiency of

dynamic load balancing strategies on the overall platform performance. As we can see, these

simulations are mainly focused on environmental level behaviors rather than application

level behaviors.

OptorSim [BCC+03], which has emerged as part of the European DataGrid project 1

focuses mainly on Cost estimation based on file replication strategies for different topo-

logical setup and workloads. The Simgrid Utility [BLM+12] was originally designed for

transparently simulating massive distributed computations before their effective deploy-

ment on a grid infrastructure. Another project called the GreenCloud Simulator, which

relies on the NS-2 network simulator [MFF] aims at modeling the energy consumption

of Cloud Computing data centers. Last but not least, the iCanCloud [NVPC+12] project

uses a mathematical model to evaluate the costs of using a Cloud Computing platform

such as the Amazon Elastic Compute Cloud Platform (EC2) 2.

As it appears, these simulators are aimed more on simulating the underlying physical

infrastructure. They give useful information to the Cloud Computing service providers,

regarding cost or efficiency against a specific type of workload. They do not allow the user

to study the impact of some application level protocols such as load balancing strategies,

consistency policies or the combination of both. By the shared and multi-tenant nature

of Cloud infrastructures, application performance prediction of cloud based applications

remains difficult [BS10; IOY+11]. Therefore, there is an existing need to provide this kind

of simulation tool. Also noted in [SL13a], to this date, there is no cloud infrastructure

simulator that allows to assess the behavior of an application deployed in such an envi-

ronment. Some efforts are made in this direction, such as the CDOSim simulator [FFH12],

but they are not publicly available so far. Hence in order to provide a simple programming

interface for modeling distributed applications and data storage systems, we developed a

new simulation tool called Simizer [LKC14].

In this chapter, we describe how to evaluate the performance of a consistency protocol

1. http://eu-datagrid.web.cern.ch/eu-datagrid/
2. http://aws.amazon.com, October, 5th, 2013

122

4.1. SIMIZER DESCRIPTION AND ARCHITECTURE

against different consistency protocols using Simizer. The detailed information about the

internals and the correctness of the working principles of simizer are described in [Lef13].

This chapter is organized as follows: The general architecture description of simizer is

described in the Section 4.1. The fundamentals about describing a workload and server

configuration are discussed in the Section 4.2. Section 4.3 describes how to simulate dif-

ferent consistency options using simizer with examples. The simulation results of LibRe

performance against different consistency protocols are discussed in Section 4.4 followed

by concluding remarks.

4.1 Simizer description and architecture

Simizer is a discrete event simulator written in JAVA language. It is based on a three-

layer architecture, presented in figure 4.1. The bottom layer is the Event layer, which

provides event management utility classes and random number generation. The Applica-

tion layer is used to implement application level protocols. The Architecture Layer uses

the event layer classes to model virtual machines and networks behavior. The Architecture

Layer of Simizer represents the different entities subject to simulation. In the case of Si-

mizer, these systems are Virtual Machines executing a set of communicating applications.

Simulated entities are represented in figure 4.2.

Event Layer
- Event management

Architecture Layer
- Network Simulation
- Hardware / OS Simulation

Application Layer
- Application protocols implementation

Figure 4.1 – Architecture de Simizer

4.1.1 Entities

The Network Entity models the behavior of LAN or WAN networks. It is possible to

use pluggable networks model such as those found in other simulators such as [BLM+12]

123

4.1. SIMIZER DESCRIPTION AND ARCHITECTURE

and adapt it to Simizer. As for the time being, the current model of network simulation

relies on Gaussian distributed transfer latency. The values used for latency in LANs and

WANs are those of one presented in [Sco12]. Nodes are the entities that can communicate

with each other through a Network. There are three kinds of Nodes:

ClientNode: This class models users’ behaviors via different models that can be derived

and modified.

ServerNode: A ServerNode instance executes Requests received from the Client Nodes.

These entities model the application behaviors.

LBNode: LBNode models an application level load-balancer in order to evaluate different

policies to distribute requests to the different ServerNodes of the system. It sits as

an intermediary between ClientNodes and ServerNodes.

Clients generation can be controlled by the ClientManager class, which commands

new ClientsNodes creation following a user configurable random distribution. When a

ClientNode is created, it sends a new Request through the associated Network object. The

Network will apply its model to raise an event of RequestReceptionEvent when the request

reaches its destination ServerNode or LBNode. During this time, the Request is encap-

sulated in a Message object indicating the destination Node (cf. figure 4.2). A Request

is composed of a set of Resources, a list of parameters and the number of Instructions

needed to process the request. Resources are objects stored on the machines disks and

therefore represent chunks of data that can be read, written and modified during a request

execution. The number of instructions defines the amount of processing power needed in

order to complete the Request execution. Once the request is completed, the ServerNode

executing it sends a response to the ClientNode. On each ServerNode, a Processor simu-

lates task execution. A processor is defined by its number of cores and the amount of

instructions that each core can execute in one second in MIPS (Millions of Instructions

Per Second). Disk storage and Random Access Memory (Cache), are respectively modeled

by the StorageElement and Cache classes.

124

4.1. SIMIZER DESCRIPTION AND ARCHITECTURE

















































































Figure 4.2 – Architecture simulation classes

4.1.2 Processor simulation

The Processor class evaluates the latency involved in processing a particular read or

write request. The latency is evaluated based on the amount of instructions needed to

process the requests in addition to application-specific constraints. The application-specific

constraints include the time taken to retrieve a particular data (from cache or disk) and

locks obtained on a particular data. The processor can switch tasks while associating the

time taken to retrieve a particular data from the disk or until lock acquired on a particular

data is released. Task switching is based on the definition of so-called quantum of time. A

quantum is an amount of time during which the processor executes a single task. At the

125

4.2. SIMULATOR USAGE

end of the quantum, the processor changes the currently executing task for another one

in its task list (in Simizer it is a Request list), depending on the operating system task

scheduling policy. In current Linux-based operating systems, this value is usually set to 4

milliseconds by default [Mol07]. Each quantum end is signaled to the processor through an

event, and the next task will be started from the list of queued tasks. Tasks in the list are

ordered by quantity of instructions left to execute, which entails faster execution of smaller

tasks, which is a common approach in operating system scheduling. For example, a single

task of 10000 MI submitted to a machine equipped with a processor holding 1000 MIPS

of processing power should provide an overall simulated execution time of 10 seconds.

4.1.3 Request Execution

When a Request arrives to its destination, an event is triggered on the targeted Ser-

verNode. The ServerNode then passes the request to its Processor for execution. Before

executing the request, the processor must load the request resources in the main memory.

The delay incurred by this action is calculated according to the size of the resources and

the speed of the ServerNode disks (StorageElement). When the resources are loaded, the

processor starts processing the instructions of the request. When the request execution is

over, processor will signal a RequestEnded event to the executing ServerNode, which then

sends back a response to the ClientNode through the network. Upon response reception,

the client prints out the result as the request description, and the amount of time it took

to execute this particular request.

4.2 Simulator usage

Simizer can work in three different modes: a trace generation mode, a trace replay

mode, and a generative mode. The trace generation mode enables the user to generate a

request sequence based on a set of random distributions specified in a configuration file.

Default laws are described in table 4.1. The result of this generation is stored in a Comma

Separated Value (CSV) file, called the workload description file. Each request is stamped

by a timestamp (the Request Arrival Time) indicating the time at which the request has

to be sent to the servers. This file can also be written manually, and is useful to test a

126

4.2. SIMULATOR USAGE

Table 4.1 – Distribution laws available in Simizer

law parameters
Exponential mean (λ)
Gaussian mean & standard deviation (µ, sd)
Poisson mean (λ)
Uniform density
Zipf skew (s)

specific request sequence that would cause problem to the system.

Using this workload description file, it is possible to launch a simulation by specifying

the number of servers required in the system and by choosing a request distribution stra-

tegy. This is the trace replay mode, where the simulator will send the requests following

the order specified in the CSV file.

The generative mode is the third execution mode of Simizer, and consists in direct

simulation of both the clients and servers behaviors. In this mode, clients are dynamically

created and removed according to some user specified laws and the simulator directly

computes requests execution times for the generated workload. The user can specify the

quantity and characteristics of servers through a specific configuration file.

In these three modes, three main configuration files have to be edited by the user: the

workload description file, which specifies clients behavior, the request description file that

provides the models of requests that will be sent by the clients and the server description

file specifying the characteristics of the simulated servers.

4.2.1 Workload description files

The different distribution laws used to determine the clients behavior are specified in

a configuration file that is passed to the simulator and is called the ’workload definition

file’. These laws govern four aspects of the load as described below.

Request selection Law: Every client in the simulated system is an independent agent,

which can send a certain number of requests to the servers. For each new request, the

client selects a set of parameters among a predefined list. This selection can be done

according to a specific law to model some popular user behaviors [Fei02; GJTP12].

127

4.2. SIMULATOR USAGE

Client arrival law: Specifies the client arrival process and is defined by a time interval

and the average number of new clients being created during this interval.

Client lifetime law: Each client is created for a given amount of time. Client lifespan is

usually modeled by an exponential law [Fei02; GJTP12].

Client think time law: After receiving a response for a request, a client may send a

new request to the servers. The amount of time between the response reception and

a new request is called the ’think time’ and can be modeled by some probability

laws.

Each of the laws described in table 4.1 can be used to define one of these four descriptive

parameters. As the Law classes are dynamically loaded, it is possible for a user to define

his/her own laws and add it to the simulator.

4.2.2 Request description file

In addition to the workload description file, simizer requires a description of the re-

quests to be sent to the simulated infrastructure. This description specifies the list of

resources accessed by each type of request, and the quantity of instructions to be proces-

sed in order to achieve the request. The simulation generates the actual requests issued

by the clients from these descriptions. A request can be of different types, depending on

the kind of actions that it has to carry out. These basic types are the Read and Write

operations. In a Read request, the specified resources are read from the disk before star-

ting execution of the instruction set. In a write request, data is written to disk after the

instructions are carried out. At the current state of development, these kinds of requests

are enough to simulate the use cases presented in this work. However, future works will

enable users to implement user-defined semantics based on these basic operations.

4.2.3 Servers description file

The server description file is a JSON formatted file describing the capacity of the

different servers that the user wants to use in his test. This file describes the hardware

characteristics of a given machine such as the disk size, the type of processor, the number

128

4.3. SIMULATION OF CONSISTENCY OPTIONS WITH SIMIZER

of cores and processing capacity of its processor, the size of the RAM, and the hourly cost

of the machine.

Accordingly, the user can specify the number of servers he wants of each kind. The

example file displayed in figure 4.3 describes an infrastructure composed of 4 machines,

with two machines having 1GB of RAM, 512GB of disk storage, and two cores each capable

of processing 1500 MIPS, and another set of two machines having twice these capacities.

[
{
" nb " : 2 ,
" memorySize " : 1048576 ,
" d i s k S i z e " :512000000 ,
" co s t " : 1 0 ,
" ProcessorName " :
" s i m i z e r . p r o c e s s o r . LinuxProcessor " ,
" cpuS lot s " : 2 ,
" nbMips " : 1 5 0 0 . 0 ,
}
{
" nb " : 2 ,
" memorySize " : 2097152 ,
" d i s k S i z e " :1024000000 ,
" co s t " : 1 5 ,
" ProcessorName " :
" s i m i z e r . p r o c e s s o r . LinuxProcessor " ,
" cpuS lot s " : 4 ,
" nbMips " : 1 2 0 0 . 0 ,
}

]

Figure 4.3 – Server description file example

4.3 Simulation of Consistency options with Simizer

In this section, we discuss the pseudocode of an optimistic consistency protocol follo-

wed by LibRe and how these pseudocodes mimic the appropriate consistency protocols in

accordance to the performance results. The Simizer application layer provides two inter-

faces for implementing request distributions strategies, and/or consistency policy on the

data accessed by the requests.

The main metrics in the evaluation of consistency-latency tradeoff are the number

of stale reads and the average execution time of the requests. A stale read is defined as

129

4.3. SIMULATION OF CONSISTENCY OPTIONS WITH SIMIZER

reading a resource from a ServerNode that is not up to date compared to other versions

of the same resource stored in other ServerNodes. As summarized by the CAP theorem,

after a certain scale, consistency in a distributed system can only be maintained at the

expense of system availability or partition tolerance. Further work on this topic showed

that availability of the system is closely coupled with the latency of the request [Aba12].

Therefore, measuring the number of stale reads and comparing it to the response time of

the system is an adequate way to evaluate the efficiency of any consistency protocol.

The implementation of a consistency protocol relies on the resource replication (aka.

data replication) policy. In order to account on the replication delays, each resource on

a given ServerNode is associated to a so-called alive time. It is the time after which a

resource is available to the machine storing it. The consistency policy will determine how

the resources are replicated in the system by calculating and setting the appropriate alive

time for each resource. Hence, a stale read is detected either when a specified resource

is not found on the ServerNode processing the current request or when the associated

alive time of the resource is not yet passed. The later case means that the resource is not

currently consistent with its replicas, which are stored on other nodes. In order to avoid

reading a resource with an advanced alive time, one can use locks to block access to this

resource until the alive time matches the simulation clock time.

To implement such a protocol in Simizer, a user needs to derive the Processor class

and implement three operations: the Read, Write and Modify methods. These methods

enforce access rules to data on each node and can use different techniques to enforce data

synchronization. This enables the implementation and comparison of several consistency

protocols and helps to obtain acceptable results when compared to the theoretical behavior

of the protocols.

As an example, listing 4.1 shows the implementation of read and write operations of an

optimistic replication (eventually consistent) policy [Vog09]. In this strategy, newly written

data is replicated to all machines in the system, with an alive time corresponding to the

data local write time added to a fixed probabilistic replication time (line 5 to 16). Since

the new data is replicated without any locks, this policy is known as optimistic replication

policy [SS05]. Verifying the alive time associated with a particular data ensures whether

130

4.3. SIMULATION OF CONSISTENCY OPTIONS WITH SIMIZER

a read operation returns a stale value or not.

Listing 4.1 – Optimistic consistency Protocol
1
2 public class Opt imi s t i cPo l i cy implements Proces sor {
3
4 public Request wr i t e (Request r) {
5 al iveTime = systemTime ;
6 // l o c a l wr i t e
7 nodeInstance . getStorageElement () . wr i t e (r . getResources () , a l iveTime) ;
8 nodeInstance . getCache () . wr i t e (r . getResources () , a l iveTime) ;
9

10 // R e p l i c a t i o n to o ther nodes
11 for (Node n : nodes) {
12
13 i f (n . ge t Id () != nodeInstance . ge t Id ()) {
14 al iveTime += gossipTime ;
15 n . getStorageElement () . wr i t e (r . ge tRessource s () , a l iveTime) ;
16 n . getCache () . wr i t e (r . ge tRessource s () , a l iveTime) ;
17 }
18 }
19 }
20
21 public Request read (Request r) {
22 StorageElement d i sk = nodeInstance . getStorageElement () ;
23 Cache cache = nodeInstance . getCache () ;
24 for (I n t e g e r r Id : r . ge tRessource s ()) {
25
26 i f (cache . conta in s (r Id)) {
27 Ressource r e s = cache . read (r Id) ;
28
29 // check a l i v e time
30 i f (r e s . getAliveTime () > gSystemTime) {
31 // data i s not v a l i d to be in cache ye t
32 accessTime += di sk . getDelay (r Id) ;
33 r . s e tEr ro r (r . ge tError () +1) ;
34 }
35
36 }
37 else i f (d i sk . conta in s (r Id)) {
38 // read ing from d i s k i s s l ower
39 accessTime += di sk . getDelay (r Id) ;
40 Ressource r e s = d i sk . read (r Id) ;
41
42 i f (gSystemTime < r e s . getAliveTime ())
43 r . s e tEr ro r (r . ge tError () +1) ;
44 // cache update
45 i f (r e s != null)
46 cache . writeToCache (r e s) ;
47 }
48 else { // i f data does not e x i s t in cache as w e l l as d i s k .
49 accessTime += di sk . getDelay (r Id) ;
50 r . s e tEr ro r (r . ge tError () +1) ;
51 }

131

4.3. SIMULATION OF CONSISTENCY OPTIONS WITH SIMIZER

52 }
53 }
54 }

In case of a read request, the data needed for processing the request will be fetched

from the appropriate nodes. As shown in listing 4.1, while fetching the data, the node

checks whether the needed data exists in the node’s cache (line 26 to 33). If the data is

found there, then the Resource Access Time (cf. section 4.1.3) will be taken as zero, else

the Resource Access Time will be calculated (lines 32, 39, 49) based on its size to retrieve

the data from its disk [Sco12]. If the needed resource does not exist in the disk or the alive

time of the data is greater than the current system time, an error bit will be set on the

request indicating a stale read (lines 33, 43, 50). After a request is processed, the latency

of the request and an error count (if any) along with the request will be sent back to the

front-end node (LBNode).

Listing 4.2 – LibRe consistency protocol
1 public class LibrePo l i cy implements Proces sor {
2
3 public Request wr i t e (Request r) {
4 al iveTime = systemTime ;
5 // l o c a l wr i t e
6 nodeInstance . getStorageElement () . wr i t e (r . getResources () , a l iveTime) ;
7 nodeInstance . getCache () . wr i t e (r . getResources () , a l iveTime) ;
8 LibReService . i n s e r t (r . getRessource () , node_id , al iveTime , vers ion_id) ;
9

10 // R e p l i c a t i o n to o ther nodes
11 for (Node n : nodes) {
12
13 i f (n . ge t Id () != nodeInstance . ge t Id ()) {
14 al iveTime += gossipTime ;
15 n . getStorageElement () . wr i t e (r . ge tRessource s () , a l iveTime) ;
16 n . getCache () . wr i t e (r . ge tRessource s () , a l iveTime) ;
17 LibReService . i n s e r t (r . getRessource () , n , al iveTime , vers ion_id) ;
18 }
19 }
20 }
21
22 public Request read (Request r) {
23 StorageElement d i sk = nodeInstance . getStorageElement () ;
24 Cache cache = nodeInstance . getCache () ;
25 for (I n t e g e r r Id : r . ge tRessource s ()) {
26
27 i f (cache . conta in s (r Id)) {
28 Ressource r e s = cache . read (r Id) ;
29
30 // check a l i v e time
31 i f (gSystemTime < r e s . getAliveTime ()) {

132

4.4. CONSISTENCY EVALUATION USING SIMIZER

32 accessTime+= di sk . getDelay (r Id) ;
33 r . s e tEr ro r (r . ge tError () +1) ;
34 }
35
36 } else i f (d i sk . conta in s (r Id)) {
37 // read from d i s k i s s lower
38 accessTime+= di sk . getDelay (r Id) ;
39 Ressource r e s = d i sk . read (r Id) ;
40
41 i f (gSystemTime < r e s . getAliveTime ())
42 r . s e tEr ro r (r . ge tError () +1) ;
43 // cache update
44 i f (r e s != null)
45 cache . writeToCache (r e s) ;
46 } else { // error in t h a t case .
47 accessTime+= di sk . getDelay (r Id) ;
48 r . s e tEr ro r (r . ge tError () +1) ;
49 }
50 }
51 }
52 }

The listing 4.2 shows a simulation code example of the LibRe protocol. The only diffe-

rence between the LibRe protocol and optimistic replication protocols showed in listing 4.2

and 4.1 respectively is that with LibRe protocol, the application sends an extra notifica-

tion message to the LibRe service during write operations (lines 8, 17). Since the frontend

forwards the read requests to a right node by consulting the LibRe service, the reads in

LibRe protocol will always see the most recent version of the data without any additional

modifications to the read path of the system. Hence, the read path of the application is

the same as that of the optimistic replication protocol shown in listing 4.1. However, at

the request reception side, the frontend node has to fetch the right replica node id from

the LibRe service while forwarding the read requests.

4.4 Consistency Evaluation using Simizer

In this section we present the performance results of LibRe protocol against popular

consistency options of quorum based replication systems such as: Read One Write All,

Write Quorum Read Quorum, Read One Write One.

133

4.4. CONSISTENCY EVALUATION USING SIMIZER

Test Setup

In our test setup, we consider 1200 requests, out of which 400 of them are write opera-

tions and the rest are read operations shuffled in random order. During write operations,

data will be written in nodes cache and disk. During read operations, the latency of the

requests is calculated based on the number of instructions needed to process the request

in addition to access time of the needed data. If the needed data are available in the no-

de’s cache then resource access time is taken as zero, otherwise the resource access time

will be calculated based on the size of the data. If a needed data does not exist, an error

flag will be set in the request indicating a failure. The tradeoff between consistency and

latency is performed with the same set of requests handled through different consistency

policies such as pessimistic protocol (Synchronous Replication), eventually consistent pro-

tocol (Asynchronous Replication), Quorum replication and LibRe increasing the number

of nodes from 5, 10, 15, 20, and 25.

Test Result

Figure 4.4 shows the obtained test results. From figure 4.4a, we can see that except

eventual consistency policy all other policies offer tight consistency. But when we look at

the request latency, we can see a considerable delay in the request latencies of Quorum

and Pessimistic protocol. We can also see that the average request latency (figure 4.4b)

and standard deviations (figure 4.4c) are lesser in LibRe than in other policies and are not

affected by increasing the scale. LibRe behaves that way because requests are forwarded

to the node where the write operations have just been performed for the same data items.

Therefore, the data items will be in its cache and hence the resource access time will be low.

Both eventual consistency and pessimistic protocol take advantage of the cache memory.

In the case of eventual consistency, since requests are forwarded without the account on

cache memory optimization, some of the requests are benefited from the cache memory

while some are not. In the case of the pessimistic protocol, almost all the requests are

benefited from cache memory, but it was affected by the waiting time of the requests until

the locks on certain data items are released while doing synchronous writes. Hence, the

request latency is highly variable for the pessimistic approach and more predictable for

134

4.5. CONCLUSION

(a) Nb of Stale Reads out of 800 (b) Average Total execution Time in m.s

(c) Standard deviation

Figure 4.4 – Experimental Results

other policies which can be seen clearly in the standard deviation graph (figure 4.4c). In

the case of quorum, since the requests are forwarded to a majority of nodes in the cluster,

the possibility that all nodes get the right data in their cache is mostly limited.

4.5 Conclusion

Replicated data consistency is closely related to the application-specific constraints.

Hence, in order to evaluate consistency protocols, it is important to take into account

the application related constraints. Existing cloud based simulation tools do not provide

necessary functionality to simulate consistency policies or other application-specific be-

haviors. Simizer helps to simulate applications in order to evaluate different consistency

policies along with the application level metrics. Simizer is an event-based simulation li-

brary that enables fast and efficient simulation of distributed computing infrastructures.

By using simizer, different consistency and data synchronization strategies can be tested

135

4.5. CONCLUSION

in an efficient way before evaluating the performance of a protocol in a real cloud based

distributed computing system. Simizer provides an intuitive way to describe workload and

infrastructure characteristics, enabling the user to concentrate only on the protocol or

strategy needs to be evaluated. The simulation results of simizer provide precise and de-

tailed information that allow users to evaluate the simulated protocols on different aspects

such as latency, availability and scalability of the system. The description about how to

simulate a consistency option and its performance results are described with the code.

The performance of the proposed consistency protocol LibRe was tested against some of

the popular consistency protocols. With the encouraging performance results of the LibRe

protocol, the next chapter will discuss more about the prototype implementation of the

enhanced version of the LibRe protocol inside Cassandra.

136

Chapter 5

Performance of LibRe against
Cassandra’s Native Consistency
options

In this chapter, we discuss the implementation of the enhanced version of LibRe pro-

tocol that is described in Chapter 3 inside the Cassandra distributed database system.

The implemented version of LibRe protocol adapted to the internals of Cassandra is na-

med CaLibRe, which signifies Cassandra with LibRe. As stated in Chapter 4, evaluating

different tradeoffs of a consistency policy remains challenging both via simulation as well

as with a real system. In order to evaluate the performance of different consistency op-

tions provided by a cloud database, we extended an existing cloud database benchmark

tool YCSB (Yahoo ! Cloud Serving Benchmark) to provide an additional metric regarding

data consistency. This additional consistency metric along with the default latency and

throughput metrics offered by YCSB help to evaluate consistency-latency tradeoff of dif-

ferent consistency options. This chapter is organized as follows: Section 5.1 describes the

implementation of LibRe protocol inside Cassandra (CaLibRe). The extension to YCSB

benchmark tool that is used to evaluate the consistency metrics of Cassandra is described

in Section 5.2. Performance results of CaLibRe against Cassandra’s native consistency

options are discussed in Section 5.3 followed by conclusion and future works.

137

5.1. IMPLEMENTATION OF LIBRE INSIDE CASSANDRA

5.1 Implementation of LibRe inside Cassandra

Cassandra [LM10] is one of the most popular open-source NoSql systems that satisfies

the target system model specified in section 3.2.1 of Chapter 3. Hence, we decided to

implement the LibRe protocol inside the Cassandra workflow and evaluate its performance

against Cassandra’s native consistency options: one, quorum and all [Hew10]. Although

Cassandra is a column family data store, we used it as a Key-Value store during test setup

(refer Section 5.3.1).

5.1.1 Cassandra data model

Cassandra design is refined from two popular NoSql systems BigTable [CDG+06] and

Dynamo [DHJ+07b], borrowing the data access model from BigTable and data partitioning

scheme from Dynamo. Like BigTable, Cassandra identifies each data by its row key and

Column key. Data are first logged to an in-memory table called ‘MemTable’, which will be

compacted to SSTable, then the set of SSTable together will be considered as a table. Like

Dynamo, the data-partitioning scheme of Cassandra organizes servers in a ring structure

and replicates the data among the neighboring nodes.

5.1.1.1 Ring Structure

In the initial versions of Cassandra, each node in the cluster is a physical node organized

in a ring like structure that ranges from 0 to 2127 - 1. However, the recent versions of

Cassandra releases follow the virtual nodes technique similar to Dynamo. A token number

identifies each node (virtual node) uniquely. These token numbers are assigned depending

on the total number of nodes in the cluster and taking into account the node’s capacity.

The token numbers represent the nodes position in the ring. Each node is responsible

for the data whose token numbers are less than or equal to the node’s token number.

The node which is responsible for including other nodes into the ring by assigning token

numbers is called Seed Node. There can be more than one seed node to avoid any potential

failure. The seed node addresses are to be specified in the configuration files of each node

in the cluster. But at least one of the seed nodes should be up to join the new node in

138

5.1. IMPLEMENTATION OF LIBRE INSIDE CASSANDRA

the ring. When a new node is authenticated to join the ring by any of the seed nodes, the

information will be propagated to all the nodes in the ring. Each node in the ring stores

all the information about the ring locally including the data range for each node.

5.1.1.2 Data Model

Cassandra is a column-family data store, which is a variant of key-value data store.

Unlike holding a single value for a key as in key-value data store, Column-family data store

can hold more than one value each representing a column in a column-family. In column-

family data store, each data is identified by a unique row-key. The row-key will identify

the column-family to look-up for the needed column, and the name of the column inside

a column family represents the actual data. In other words, each data will be retrieved by

the combination of the row-key, the column-family name and the name of the column to

retrieve [SF12].

Figure 5.1 – Column-Family data store

Figure 5.1 describes a column-family storage model. The figure depicts a classic shop-

ping cart example, in which the actual data is identified by the row-key (1234), and

the column-family name (profile/orders). For instance, the combination of the row-key

’1234’ and the column-family name ’Profile’ can identify the columns such as Name, Age,

Address, Purchases. In the similar way, the combination with column-family name ’Or-

ders’ can identify the columns OR1001, OR1002, OR1003, OR1004. The main idea of the

139

5.1. IMPLEMENTATION OF LIBRE INSIDE CASSANDRA

column-family data store is to store related set of data (columns) that are frequently ac-

cessed by the application together in order to benefit the read performance [SF12]. Each

column in a column-family data store is a triplet, containing three fields: column-name,

column-value and timestamp. The column-name represents the name of a data to retrieve,

the column-value is the actual value for the data, and the timestamp is used to identify

the recent version of the data in case of update conflicts.

5.1.1.3 Read-Write Path

As Cassandra is a peer-to-peer system, a client can connect to any node in the cluster

to query a data. The node to which a client connects to query a data is called Coordinator

node. The coordinator node is responsible for identifying the list of replica nodes IP-

addresses (endpoints) that are responsible for storing the needed data via matching the

token number of the data item with the token number of the nodes. The consistency option

that is associated with each request specifies the number of replica nodes to be contacted

to succeed the operation. The coordinator node first ensures whether there is a sufficient

number of replica nodes reachable to succeed the request. If a sufficient number of replica

nodes are not available, the coordinator node fails the request immediately. During write

operation, the operation will be forwarded to all the replica nodes that are alive and

wait for the write acknowledgement from a sufficient number of nodes before issuing the

success message to the client. If the write acknowledgement is not received within a certain

time-out period, the coordinator node fails the operation.

Read operations follow a similar pattern, except that the request will not necessarily

be forwarded to all the replica nodes. The coordinator node sends the read request to

the closest replica node by sorting the replica nodes via proximity. The Snitches [Doc15b]

in Cassandra helps to sort the replica nodes via proximity. Then in order to ensure the

consistency option, the coordinator node requests the md5 hash of the read response from

the next closest replica nodes. The coordinator node uses the md5 of the read responses

in order to ensure whether all the replica nodes hold the same data. If the md5 of the read

responses do not match, the coordinator will send a read request to all the replica nodes in

a second trip and respond to the client with the data that is higher in the timestamp. The

140

5.1. IMPLEMENTATION OF LIBRE INSIDE CASSANDRA

system follows a similar procedure during read repair, which is periodically initiated by the

system based on the read repair chance configured per column-family as a part of eventual

consistency guarantees. Requesting only md5 of the read response instead of requesting

the full response is an optimistic approach chosen by Cassandra for read optimization.

However, in case of md5 mismatch, requesting the actual value in the second trip in order

to respond the client with the data that is higher in the timestamp is expensive in terms

of read latency.

5.1.2 LibRe implementation inside Cassandra

LibRe protocol is implemented inside Cassandra release version 2.0.0. In the native

workflow, while retrieving the set of endpoints addresses via matching the token number

of the data against the token number of the nodes, the first endpoint address before

sorting it based on proximity becomes the LibRe node for that data. As data are equally

distributed among each node in the cluster, each node maintains a registry for a set of

data items. Hence, every node in the cluster plays two roles: replica node and LibRe node

for a set of data items. A separate thread pool for the LibRe messaging service is designed

to handle the LibRe messages effectively. On system initialization, all LibRe registries are

empty until a write request is executed, which will trigger the protocol and start filling up

the registries. CaLibRe can be configured to work either by passing a list of data items in

a configuration file, or by specifying directly the name of the column family/ table(s) to

monitor. In the LibRe implementation, the write operations follow the native workflow of

Cassandra, except that the replica nodes send a ‘LibRe-Announcement’ message to update

the LibRe registry at the end of the successful write (if the data has to be managed by

LibRe).

The ’LibRe-Announcement’ message contains metadata about the write operation such

as the data-key associated with the write, IP-address of the replica node, and a version-id.

In the initial implementation of LibRe inside Cassandra, the hash of the modifying value

is used as the version-id, although the hash value is not monotonically increasing and

can not be compared directly to an existing version-id. When the LibRe node receives

a ’LibRe-Announcement’ message, the LibRe Announcement manager will take control

141

5.2. YCSB FOR EVALUATING DATA CONSISTENCY

of it and handle the message. The messaging service will un-marshal the needed data

and transfer it to the LibRe announcement manager to update the LibRe registry. The

registry is updated matching the version-id of the operation with the version-id of the

data already registered in the LibRe registry as described in Algorithm 3 of Chapter 3,

except the comparison of the two version identifiers. In the prototype implementation of

the protocol, assuming there is no delay in the update messages, the version-id that does

not match with the version-id of the registry is considered to be the new version of the

data. However, in the future implementation, the hash of the modifying value will be

replaced by the timestamp of the operation, which increases monotonically and facilitates

the comparison.

During read operation, if the data-key (Cassandra Row-key) is set to be managed by

LibRe protocol, instead of following the default path in querying the request, the node will

send a ’LibRe-Availability’ message to the LibRe node. The LibRe-Availability message is

prepared as the normal ’Read Message’ for the needed data with the data-key on top

of the message. When the LibRe node receives a ’LibRe-Availability’ message, the LibRe

availability manager finds an appropriate replica node to query the data. The data-key

added on top of the message helps to find the target node without un-marshaling the whole

message. After finding a target node to query the data, the read message will be sent to

the appropriate node extracting the ’Read Message’ from the ’LibRe-Availability’ message.

Handling the ’LibRe-Availability’ message in this way minimizes the time to un-marshal

and marshal the message and speedup the read response process.

5.2 YCSB for evaluating data consistency

Yahoo ! 1 developed a benchmark tool called Yahoo ! Cloud Serving Benchmark (YCSB)

in order to benchmark the performance of Yahoo’s PNUTS system [CRS+08] over other

cloud data serving systems. The reason behind the development of the YCSB in addition to

existing TPC like benchmark tool is due to the generation gap between the traditional da-

tabase systems and modern storage systems in terms of application workload and database

functionalities. The traditional database systems are based on ACID properties [Ram03],

1. http://labs.yahoo.com

142

5.2. YCSB FOR EVALUATING DATA CONSISTENCY

whereas modern storage systems replies on BASE (Basic Availability, Soft State, Eventual

Consistency) paradigm [Pri08]. Although YCSB provides different means to evaluate mo-

dern storage systems in terms of Latency and throughput, it does not provide any means

to evaluate consistency options. In this section, we present an extension to the YCSB

codebase that includes a new feature to evaluate the number of stale reads exhibited by

different consistency options along with the default evaluation metrics provided by YCSB.

And with the extended YCSB, we compare the Consistency-Latency tradeoffs of CaLibRe

(LibRe consistency option inside Cassandra) against different consistency options offered

by Cassandra.

5.2.1 YCSB

The main goal of YCSB is to evaluate the performance of different types of modern

storage systems under similar workload patterns. As the characteristics of the modern

storage systems vary, the querying interfaces also differ for each storage system. Hence,

using a single benchmark tool for all kinds of storage system could be challenging. In

order to overcome this challenge, YCSB consists of two layers: the core YCSB layer and

the database interface layer. YCSB users can define the test suite with the numbers of

records, online users, queries per second and workload pattern, which are taken care of

by the core YCSB layer. The second layer: Database Interface layer gets the input from

the core YCSB to query the appropriate database and logs the query performance back

to the core YCSB. The status evaluation module of core YCSB in return evaluates the

performance of the test suite using the logs produced by the database interface layer. Since

each database has different interface, a Database Interface layer is developed exclusively

to query a specific storage system. The advantage of YCSB is the availability of various

database clients and the easy extensibility of its code base.

The test metrics of YCSB are database-independent. Each test suite takes input on

multiple parameters such as: IP addresses of the database instances, number of records to

be stored, the size of the records, the number of users, the number of queries per second and

the Workload pattern. The results of YCSB test suite contains Read and Write latencies of

the system under various aspects such as Minimum, Maximum, Average, 95th percentile,

143

5.2. YCSB FOR EVALUATING DATA CONSISTENCY

99th percentile latency.

YCSB analyzes all the needed metrics and tradeoffs of modern storage systems in

terms of scalability and throughput. However, YCSB fails to provide a means to evaluate

one of the indispensable tradeoff of modern storage systems: Consistency-Latency tra-

deoff. One issue in extending the YCSB framework to add a new evaluation metric along

with the offered metrics is that, after each query, the database interface layer returns the

needed metrics to the status evaluation module instantaneously. After all the operations

are completed, the status evaluation module computes the needed metrics and prints the

evaluation of the test case to an output file. So a pact between the two layers should be

established safely without affecting the existing computations in order to compute a new

metric.

As stated by Daniel Abadi in [Aba12; ABA10], in the absence of network partition, it

is obvious to achieve both Consistency and Availability at the same time. The compromise

arises only in case of network partitions. Network partitions could be experienced not only

via partitions in the network, delays and failures of one or more nodes in the cluster also

mimic the Network Partitions [CST+10]. As the probability of seeing the number of stale

reads in presence of Network Partition is high, we choose to evaluate the performance of

the storage system under this condition. We simulated network partition in the system

via partial update propagation in order to evaluate the system performance under this

situation. These information are described more in Section 5.3.1

5.2.2 Extension to YCSB

Since YCSB by default evaluates performance metrics of modern storage systems under

various workload patterns, it is chosen to be extended for reporting the number of stale

reads. In order to count the number of stale reads in real time, the benchmark tool must

be aware of the most recent version of each data. Thus, during read operation, the version

number of the read data can be compared to ensure whether the version number is the

most recent version or not. If the version number of the read data does not match with

the most recent version number, then it is considered to be a stale read. As mentioned in

Section 5.2.1, the database interface layer of YCSB applies the write and read operations

144

5.2. YCSB FOR EVALUATING DATA CONSISTENCY

on the target database and returns the needed metrics to the core YCSB layer for the

status evaluation.

Figure 5.2 – Extended YCSB

In order to track the stale reads, a Hash-Map data structure is introduced in the

database interface layer as shown in the figure 5.2 in order to account for recent version

of a data item. During write (insert, update, delete are technically same) operations, the

data-key identifier becomes the key of the Hash-Map with the timestamp of the write

operation as its value. During read operation, the timestamp of the read value will be

compared with the one recorded for the corresponding identifier in the Hash-Map. If both

the timestamps are same, the read is considered to be consistent, else the stale read count

will be incremented by one. In case of retrieving more than one column in a read operation,

each stale column increments the stale read count. After each operation, along with the

default evaluation metrics of YCSB, a stale read count will be returned to the status

evaluation module. By this way, the status evaluation module prints the number of stale

reads encountered during the test suite in the output file along with its default statistics.

As the Hash-Map accounting the recent version of each data item has to be managed by

a single machine, this approach only works in a centralized test setting.

145

5.3. CALIBRE PERFORMANCE EVALUATION USING YCSB

5.3 CaLibRe performance evaluation using YCSB

In this section, we will show the performance results of CaLibRe against Cassandra’s

native consistency options under same setup.

5.3.1 Test Setup

The experiment was conducted on a cluster of 19 Cassandra and CaLibRe instances

that includes 4 medium, 4 small and 11 micro instances of Amazon EC2 cloud services

and 1 large instance for the YCSB test suite [CST+10]. All instances were running Ubuntu

Server 14.04 LTS - 64 bit. The workload pattern used for the test suite was the "Update-

Heavy" workload (workload-a), with a record count of 100000, operation count of 100000,

thread count of 10 and the Replication-Factor as 3. YCSB by default stores 10 columns

per RowKey. We used RowKey as the data-key, for which an entry will be managed in

the LibRe Registry. Since a RowKey can represent more that one column, using RowKey

as the data-key could lead to a situation where, if one or few columns of a RowKey is

updated on a replica node rn, the registry will assume that rn contains the recent version

for all the columns of the RowKey. In order to avoid this situation, we configured YCSB to

update all the columns during each update. The test case evaluates the performance and

consistency of the 19 Cassandra instances with different consistency options (one, quorum

and all) against 19 CaLibRe instances with a consistency option one. Performance is

evaluated by measuring read and write latencies and consistency is evaluated for each

level by counting the number of stale reads. In order to simulate a significant number of

stale reads, a partial update propagation mechanism was injected into the Cassandra and

CaLibRe clusters to account for the system performance under this scenario [KLCS14].

Hence, during update operations, instead of propagating the update to all 3 replicas, the

update will be propagated to only 2 of the replicas.

5.3.2 Test Evaluation

Figures 5.3a, 5.3b and 5.3c respectively show the evaluation of Read Latency, Write

Latency and the number of Stale Reads of Cassandra with different consistency options

146

5.3. CALIBRE PERFORMANCE EVALUATION USING YCSB

(a) Read Latency (b) Write Latency

(c) Stale Reads

Figure 5.3 – CaLibRe Performance Evaluation under Partial Update Propagation

against CaLibRe (Cassandra with LibRe) protocol. In figure 5.3a, the entity one represents

the read and write operations with consistency option ONE. The read and write operations

with consistency option QUORUM is indicated by the entity quorum. The entity one-all

represents the operations with write consistency option ONE and read consistency option

ALL. The entity calibre represents our implementation of the LibRe protocol developed

inside Cassandra. Due to the injection of the partial update propagation, ROWA (Read

One, Write All) principle could not be tested, as writes would always fail.

The read latency graph in figure 5.3a, shows that the 95th Percentile Latency of calibre

is similar to the other consistency options of Cassandra. The 99th Percentile Latency

of calibre and Cassandra with consistency level one remains same and better than the

other options one-all and quorum. The minimum and average latencies of calibre are

slightly higher when compared to Cassandra with consistency level one but better than

the consistency options quorum and one-all. This is due to the fact that LibRe protocol

imposes an additional call to the registry for all requests.

147

5.4. CONCLUSION

The write latency graph in figure 5.3b shows that the 95th percentile write latency

of calibre is the same as the 95th percentile latency of quorum, and calibre is faster in

other metrics: 99th Percentile, Minimum and Average latencies of quorum. However, while

comparing to the entities one and one-all, some of the write latency metrics of calibre are

slightly higher (but are not significant). This is due to the fact that both in one and one-

all, writes need only one acknowledgement from a replica node. In CaLibRe also writes

need only one acknowledgement, but there is an extra messaging (advertisement message)

in the background.

Graph 5.3c shows the number of stale reads for each level of consistency. Cassandra

with consistency level one shows the highest number of stale reads. There were a few stale

reads in the other consistency options, but these numbers are negligible when compared to

the total number of requests. From these results, it is possible to conclude that CaLibRe

offers a level of consistency similar to the one provided by the quorum and one-all levels

with better latency.

5.4 Conclusion

The proof-of-concept of LibRe protocol was implemented inside Cassandra storage

system as an additional module to Cassandra code base. This so-called ’CaLibRe’ imple-

mentation offers LibRe protocol as an additional consistency option for Cassandra storage

system. The implementation let the user/application to switch between LibRe protocol

and the different consistency options that are natively offered by the Cassandra storage

system. The enhanced version of YCSB benchmark tool that provides an additional me-

tric regarding database consistency was used to benchmark the CaLibRe performance.

The experiment was conducted separately on a cluster of 19 nodes CaLibRe and Cassan-

dra instances. Since encountering number of stale reads in a small test setup is minimum,

partial update propagation is injected into the test setup to account for the system per-

formance under this scenario. The performance metrics considered for evaluation are the

number of stale reads encountered versus Minimum, Average, 95th Percentile and 99th

Percentile of read and write latencies. Using the metrics, the consistency-latency tradeoff

of CaLibRe was evaluated against Cassandra’s native consistency options one, all and

148

5.4. CONCLUSION

quorum. The performance results prove that CaLibRe provides lower request latency com-

pared to the strong consistency levels offered by Cassandra, combined to a similar number

of stale reads. Hence, we can safely conclude that the LibRe protocol gives a new tra-

deoff between consistency, latency and availability. However, the performance results were

not tested under nodes joining or leaving the clusters. During such events, LibRe proto-

col would experience temporary inconsistency, which has to be studied in future works.

Another perspective to this work is to study the influence of the nature of the version-

id (timestamp, version vector, vector clocks, ...). Although additional works are required

to optimize the performance of the CaLibRe implementation, it is enough to conclude

from the results obtained via simulation and benchmark that LibRe offers better tradeoff

between data consistency and performance of the system. With this conclusion, the next

chapter will describe about the application of LibRe protocol for adapting the consistency

needs of replicated data.

149

Chapter 6

Overriding Application-Defined
Consistency Options during
Run-Time

As discussed in the previous chapters, one of the major limitations of the modern

database systems is the inevitable tradeoff between Consistency, Availability and request

Latency. In order to overcome this limitation, most of the modern database systems are

equipped with a new feature called ‘Adaptive Consistency’. By using adaptive consistency,

these storage systems offer different consistency options and let the user switch the consis-

tency guarantees of the system per query/data basis. Using this feature, an application

developer can fine tune the consistency and performance of the system by sorting data

that need strong consistency and the data that can loose the consistency guarantees.

However, one of the main challenges of the adaptive consistency feature is to decide

on the consistency level of a data in advance as the user and/or system behavior could

change over time. In order to overcome this limitation, there are enough works in the

literature that try to identify the needed consistency level of a query/data during request

execution time, instead of pre-configuring it. These works can be of two types. The first

approach is to adapt the consistency-level of the whole system depending on the various

environmental factors. In the second approach, the consistency adaptation is fine tuned

to per query/data basis instead of adapting the consistency-level of the whole system. In

order to adapt the consistency-level of the system per query/data basis during run-time,

most of the existing works studied the use of a centralized service that helps to query the

151

6.1. SAMPLE USE CASES

requests with a needed consistency option.

The limitation of this approach is the intervention of the centralized service each time

while querying the database could become the performance bottleneck of the storage sys-

tem. In this chapter, we propose a system model that will eliminate the intervention of the

centralized service during query time, but instead, move the participation of the service to

the background. In this chapter, we also show the application of the LibRe protocol in the

context of adaptive consistency. This chapter is organized as follows. In the next section,

we give a brief summary about a few use cases that need to ensure stronger consistency

guarantee for certain application queries for a temporary period of time. Section 6.2 gives

more insight about the adaptive consistency feature that is followed in most of the modern

database systems. Section 6.3 describes the proposed model to override the consistency

options of the application queries at the data store level during query execution time. The

experimental use case used for evaluating proposed model along with the experimental

evaluation are discussed in Sections 6.4 and 6.5 respectively. The conclusion and future

works of our proposed model are discussed at the end of this chapter.

6.1 Sample Use Cases

As discussed in Chapter 2, adaptive consistency depends on identifying the criticality

of each query or data item in advance and specifying the needed consistency option along

with the query. Kraska et al. in [KHAK09] showed that the consistency needs of a data can

be classified into three categories such as Category A, B and C. The data under category

A are always sensitive and hence these data will always demand strong consistency. The

data under Category C always remain insensitive and thus the consistency guarantees

of the data under this category can be relaxed all the time. Whereas, the consistency

needs of data under Category B have to be decided during run-time depending on various

environmental factors. If one or more factors influence the consistency needs of a data item

and demands to augment its consistency need for a short period of time, we mention it as

critical time frame of the use case/data item. In this section, we discuss different use cases

and a short description about their critical time frames.

152

6.1. SAMPLE USE CASES

6.1.1 Inventory Control Systems

An inventory control system keeps track of the availability of a list of resources depen-

ding on the demand and supply chain. It is widely used in e-commerce websites to keep

track of availability of each product and online reservation systems such as hotel and flight

reservation. These systems reach a critical time frame when the availability of a resource

goes to a critical number (say., less than 5). When resources are abundant, it is safe to

process the queries related to the particular resource with a weaker consistency option

offering reduced latency and high availability to the users. However, if the availability of a

particular product goes beyond a critical number, we need to enforce a stronger consistency

option for the queries regarding that particular resource. But it is still safe to process the

queries related to other resources with a weaker consistency option. Hence, in these types

of systems, the system has to adapt the consistency guarantee of the resources when the

availability of the resources goes beyond a critical number and until the resources gather

enough availability.

6.1.2 Auction Systems

Auctions are common in e-commerce websites to sell products. In auction systems,

people who wants to sell a product can bid the product publicly (eg., via internet) quoting

an initial price for the product and a deadline. People who are interested in buying the

product can bid a higher price than the recent bid value. Finally, at the end of the deadline,

the person who bid the highest price will be considered as the winner, and the product will

be sold to him/her for the price he/she bid. In this type of systems, it is normal that for

the first couple of hours/days till the auction sees enough popularity, there would not be

much bidding for the product. However, during the last minutes before the auction ends,

it is more likely that there will be high competition in bidding the product in order to win

the auction. In these systems, if a user can not see the latest bid value of a product before

the critical time (say., few minutes before the deadline), it is absolutely fine since other

users will still have enough time to bid a higher price (if he/she wants to). But if all users

cannot see the latest value during the last minutes of the auction, the user experience will

be affected. Hence, the system has to ensure strong consistency on the bid values during

153

6.1. SAMPLE USE CASES

the last minutes before a particular auction ends, whereas a relaxed consistency is enough

for the rest of the time.

6.1.3 Bike Sharing Systems

Bike sharing systems are finding enough popularity in modern cities in order to reduce

pollution and traffic. The system is composed by a set of stations containing bikes that

are deployed around the city. People who subscribed to the service are usually helped by a

mobile application in order to find the nearest station and the number of bikes available in

the stations. However, due to the limited connectivity of mobile devices and to ensure faster

response to the users, weaker consistency guarantee regarding availability of bikes in the

stations is preferred. Due to weaker consistency guarantees, it may happen that the number

of available bikes or free slots showing up in mobile applications for a requested station

is not up to date. Although, the system provides high availability and faster responses

to the users, sometimes the misguidance of the app can cause inconvenience to the users.

The inconsistent numbers shown by the app may lead the users to waste their time and

effort to move to a specific bike station containing no available bikes/ slots. Moreover, the

users can be charged an additional fee if the bikes are not parked on time. Depending

on the geographical location of the stations and time, only a fraction of stations will get

high clients interest with high frequency of bikes coming and going when comparing to

the other stations [CF14]. Hence, the system can ensure stronger consistency only for

the stations that has unbalanced number of bikes coming and going, whereas weaker

consistency guarantee is enough for the rest of the stations.

6.1.4 Emergency Situation

Emergency environments can apply to any type of use cases that need immediate,

unexpected attention that demands to override the consistency option of a data item to a

stronger consistency option for a short period of time. For example, in case of a navigation

system that includes real time traffic information about the routes, weaker consistency

guarantees are normally enough to provide additional traffic information. However, in

case of redirection of route due to accident or administrative reasons, the real time traffic

154

6.2. LEARNING CONSISTENCY NEEDS

information about the specific route needs immediate attention (with strong consistency)

to all the users who use the particular route information. Once the traffic/ route is cleared,

the consistency guarantees of the information related to the specific route can switch back

to the weaker consistency guarantee.

6.2 Learning Consistency Needs

Modern storage systems that facilitate adaptive consistency use quorum-based repli-

cation for replica management. As described in Chapter 2, consistency of a data item is

ensured depending on the number of nodes contacted during write and read operations.

The systems that rely on eventual consistency depend on contacting a minimal number

of nodes in order to reduce request latency and ensure availability of the system. The

minimum number of nodes to be contacted to proceed with a read or write operation is 1.

The maximum number of nodes that need to be contacted to ensure strong consistency is

equal to the number of replica nodes configured for the particular data item. Usually, the

application developers decide this number in advance and query the needed data items by

passing appropriate settings to the database.

As most of these systems rely on peer-to-peer architecture for scalability reasons, a

client can connect to any node in the cluster and issue the query with the specified consis-

tency option. In this case, the node to which the client connected to becomes the coordi-

nator node for the particular request and is responsible for querying the request from the

needed number of replica nodes. Figure 6.1 describes this principle.

Although these systems facilitate adaptive consistency, deciding the consistency option

for a particular data/ query in advance during application development time becomes

tedious for the application developers. For this reason, most of the adaptive consistency

systems decide the needed consistency option for the queries dynamically during query

execution time with the help of a separate service deployed on top of the eventually

consistent data stores [CIAP12; YV00; LLJ07]. These services monitor the behavior of

the application and the storage system and detect the needed consistency option of the

requests. Some of the factors that could influence the consistency need of a request/data

155

6.3. PROPOSED MODEL

Figure 6.1 – Tunable Consistency model

include request latency, probability of inconsistency, application patterns, performance

throughput etc. Routing the queries through one of these services helps to choose an

appropriate consistency option for the requests during run-time rather than application

development time. However, the problem of using a separate service for deciding the needed

consistency option during run-time demands each request to pass through this centralized

service. In this case, the system performance will be narrowed down to the performance

of this centralized service.

6.3 Proposed Model

In order to overcome the above limitation, we propose to enable consistency adap-

tability inside the storage system itself instead of relying on a third-party service that

is external to the storage system. The main goal of our model is to provide a mean to

augment the consistency guarantee of a data item from weaker to stronger consistency

level. Hence, the application developers can choose strong consistency only for the sensible

data items. For the remaining data items, default eventual consistency (consistency op-

tion: ONE) can be provided during application development time, and could be overriden

during run-time when needed. In order to override the weaker consistency level of a data

to a stronger level during run-time, we rely on external inputs. In our model, the external

156

6.3. PROPOSED MODEL

input includes information about a list of data identifiers (data keys) along with a time

period (with start and end time) and a needed consistency option. For example, as studied

by Chihoub et al. in [CPAB13], the input can be computed based on the access pattern of

the application using machine learning techniques (say., Clustering). Based on this input,

the system will apply the specified level of consistency to each given data item for the

configured time period.

The input can be provided either by an external service or by a database administra-

tor via connecting to one of the nodes in the cluster and the node will then broadcast

the information to all the coordinator nodes in the cluster. When a node receives this

information, the data items that have similar time periods and consistency option will be

grouped and packed into a bloom filter [BMM02] marking it with appropriate timestamp

and consistency option. Although there could be multiple bloom filters depending on the

timing information, only the bloom filters whose start and end times that correspond to

the current wall time will be in active mode.

When the start time of a particular bloom filter is equal to or greater than the current

wall time, the bloom filter will be in active mode. When the time period of a particular

bloom filter reaches its end time, the bloom filter will be demoted to inactive mode and

then eventually deleted. Two or more bloom filters that are similar in time period and

consistency option have to be merged accordingly to form a single bloom filter. Note that,

there could even be no active bloom filter at some point in time. The reason for choosing

bloom filter for this action is that bloom filters are fast and space efficient data structure

and the false positive chances of the bloom filter [BMM02] do not cause any impact to the

use case. In our model, as we are trying to augment the weaker consistency guarantee of

certain data items based on its existence in one of the active bloom filters, in case of false

positive, the system will apply strong consistency to some data items for which weaker

consistency is sufficient. This is absolutely fine in our case.

During a get or put operation, when a client connects to one of the nodes in the cluster

and issues an operation, the particular node (coordinator node) will check locally whether

the particular data item exists in one of the active bloom filters (if any). If the data item

that needs to be queried exists in one of the active bloom filters, the incoming request

157

6.3. PROPOSED MODEL

will be executed with the consistency option that the bloom-filter represents. If the data

item does not exist in any of the active bloom filter, the request will be executed with the

default consistency option that comes with the request.

Figure 6.2 – Overriding Application-defined Consistency options

As in Figure 6.2, each node in the cluster contains some active bloom filters (2 in the

example of the figure). When a client issues a query with a default consistency option

(option D in the example), the coordinator checks whether the data item that needs to be

queried exists in the first bloom filter. If yes, the particular request will be queried with

a consistency option that is represented by the bloom filter (option A in the example).

Else, the same process will be continued for the next set of active bloom filters. If the data

item does not exist in any of the active bloom filters, the request will be queried with the

default consistency option of the request (option D in the example).

158

6.4. ADAPTIVE CONSISTENCY FOR BIKE SHARING SYSTEM

6.4 Adaptive Consistency for Bike Sharing System

In this section, we describe adaptive consistency needs for the bike sharing system use

case that is described in the Section 6.1.3. We discuss a prototype implementation of our

proposed model inside Cassandra along with the experimental evaluation. The bike sharing

system that we studied for our experimentation is the Velib’ system [Vel]. Velib’ is a bike

sharing system deployed in the city of Paris. As described in Section 6.1.3, the system

involves a set of stations with bikes, and users are assisted by a mobile application that

sometimes provides an inconsistent number of bikes and free slots available in a particular

station. Depending on the geographical location of the stations, few stations will get high

clients interest with high frequency of bikes coming and going when comparing to the

others. Hence, handling of bikes for highly demanded stations is a problem for the Velib’

system. Several works have studied this case. In [CF14] Chabchoub et al. use k-means

clustering with DTW distance and show that Velib’ stations can be classified into three

categories depending on the frequency of bikes added and taken to/from a station.

— Balanced: The stations belonging to this cluster have similar (balanced) frequency

for the number of bikes added to the station and the number of bikes leaving

from the station. In this case, the velib’ system does not need to show special care

regarding the bike regulations (rearranging the bikes), because there will be always

enough number of bikes and free slots available in these stations.

— Under-Loaded: These stations have very few or no bikes left, which is due to the

number of bikes taken from the station is higher than the number of bike added

(parked) to it by the users. In this case, the Velib’ system has to take care of making

some availability of bikes for the users who wish to take some bikes from the station

for the trip.

— Overloaded: These stations have few or no free slots left due to more number of bikes

parked to the station than the number of bikes taken from it. In this case, the Velib’

system has to make some room for the incoming bikes to get parked by shifting

(rearranging) some of the bikes from these station to the stations that belong to

the under-loaded cluster. The work of chabchoub et al [CF14] also gives an insight

159

6.5. EXPERIMENTAL EVALUATION

of the time at which the system has higher frequency of bikes moving between the

stations that lead to the formation of these under-loaded and overloaded clusters.

This time is estimated between morning 6h00 and 9h00.

We have taken these inputs to experiment our proposed model to adapt the consistency

needs of the velib’ mobile application. The critical time frame for the Velib’ system is

considered to be between morning 6h00 and 9h00. Hence, during this time, the system has

to offer strong consistency for the requests that are related to the stations that belong to

overloaded or under-loaded clusters.

6.5 Experimental Evaluation

In this section, we will discuss about the prototype implementation of our proposed

model inside Cassandra followed by experimentation test setup and results.

6.5.1 Prototype Implementation

In the prototype implementation, we consider only one bloom filter information for

which the input is provided beforehand at the time of instantiating the storage instances.

In a configuration file, we specify the file path that contains the list of station id’s that

belongs to the Overloaded and Under-loaded cluster and the time period during which the

system turns into Overloaded and Under-loaded (morning morning 6h00 to 9h00). When

Cassandra instances are instantiated, the station ids from an input file will be used to

create Bloom Filter [BMM02] on each Cassandra instance.

During experimentation, while switching between stronger and weaker consistency mo-

dels, we choose to use CaLibRe (the protocol described in Chapter 3) as the stronger

consistency option and the consistency-level ONE as the weaker consistency option. Ac-

cording to the protocol, during write operations, each node checks whether the system

clock time is equal to or greater than the start time and less than the end time of the

bloom filter. If yes, the nodes check whether the data identifier (station id in our case) for

which the write operation has been accomplished exists in the bloom filter. If both condi-

tions are true, the system sends an advertisement message to the registry node (cf. 3.2.3) in

160

6.5. EXPERIMENTAL EVALUATION

the background. Else no action will be taken. By this way, the registry information of the

CaLibRe protocol will be built during the start time of the bloom filter and then stopped

when the end time of the bloom filter is reached. During read operations, when a node

receives a request, it checks whether the system time is between the time period specified

in the configuration file and station id for which the information is demanded exists in

the Bloom Filter. If both the conditions are true, then the data will be read following

CaLibRe protocol as described in Section 3.2.4 of Chapter 3, else the default consistency

level: Consistency-option ONE will be used for the read operation.

6.5.2 Test Setup

The data type used for the experimentation is the Register type that takes station-id

as Key and the current number of available bikes as value. In Cassandra vocabulary, the

station id is the row key and the available number of bikes in the station as the column

value. We initially keep all the stations in the balanced state (cf. Section 6.4), so the

available bikes in each station will be half of the total number of available slots in that

station.

We used a cluster of 10 Cassandra nodes, which includes 2 medium, 2 small and 6 micro

instances of Amazon EC2 1. For the test client, we used a separate medium instance. All

instances were running on the platform Ubuntu Server 14.04 LTS - 64 bit. We evaluated the

number of stale reads produced during the replay of Velib’ utilization traces of 31 March

2013 that was provided by the concerned authorities of the Velib’ system for research

purposes. The trip data includes two types of information such as the time at which a bike

is taken from a station and the time at which the bike is parked to a station along with

the bike id and station id. The test client first loads the initial number of bikes and free

slots available in each station in an in-memory Hash-Map. The test client then replays

requests from the trip file that are sorted based on the timestamp. We have scaled the 24h

trip data into 40 minutes in order to save time and experimentation cost.

The client processes two types of write operations and a read operation.

1. https://aws.amazon.com/ec2/

161

6.5. EXPERIMENTAL EVALUATION

Write 1: When the client encounters a trip information about bike taken from a station,

the client will read the available number of bikes in the specific station locally from its

in-memory Hash-Map, decrements it by one and sends an update query (write operation)

to the database and updates the local in-memory Hash-Map as well. The client records the

write latency of the request in a log file once the acknowledgement for the write operation

is received.

Write 2: In the same way, for the trip information about a bike parked to a station,

the available number of bikes in the particular station will be incremented by one and the

new number will be updated on both the local Hash-Map and the database at the same

time. The client records the write latency in the log file once the write acknowledgement

is received.

Read: After each query (both write 1 and write 2), in order to evaluate the number of

stale reads, the client will randomly connect to one of the nodes in the cluster and issue

a read for the number of available bikes in the station (using the station id) for which the

write operation is just accomplished. If the number of available bikes in the station read

from the database is consistent with the number in the local in-memory Hash-Map at the

client side, the read will be considered as consistent, else the read will be counted as stale

read. The client will record the read latency in the log file along with the information

about whether the read is consistent or stale. It is also important to note that we have

used partial update propagation inside the cluster in order simulate enough number of

stale reads as described in Section 5.3.1 of Chapter 5 and account the system performance

under this scenario. At the end of the test suite (after replaying 24h trip data), the log

file will be processed to compute the total number of stale reads and other latency related

metrics.

6.5.3 Test Evaluation

In figure 6.3, the x-axis denotes hours from 00h to 00h on the next day. The entity 1

represents the time from mid-night to 1 o’clock, entity 2 represents time from 1 o’clock to

162

6.5. EXPERIMENTAL EVALUATION

������

������

�������

�������

�������

�������

�� �� �� �� �� �� �� �� �� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���

����������������

�������������������

Figure 6.3 – Overriding Consistency Options of Velib system

2 o’clock and so on. The y-axis is the percentage of stale reads recorded during each hour.

The red bar denotes the percentage of stale reads experienced by the Cassandra cluster

that uses default consistency option ONE for all read and write operations: denoted in

the chart as ’Without Clustering’. The blue bar denotes the percentage of stale reads

experienced with our prototype implementation that uses strong consistency (LibRe) for

the read requests that belongs to vulnerable station id’s during the specified time period

and the consistency option ONE for the rest of the cases: denoted in the chart as ’With

Clustering’. Since the trip timings are scaled from 24h to 40 min and there could be a

small time drift between test client and the server, the clustering time was extended to

5h - 10h instead of 6h - 9h. From the graph, we could see clearly that the number of

stale reads recorded between 5h and 10h (entity 6,7,8,9,10) is almost negligible. And the

stale read bars during rest of the time are similar to that of the red bars. This proves

that the proposed system model helps to adapt the consistency-level of certain data item

for a temporary period of time and relaxes the consistency-level for the rest of the time

according to the provided information.

163

6.6. CONCLUSION

6.6 Conclusion

Although most of the eventually consistent systems facilitate adaptive consistency per

query basis, deciding the consistency option of a query in advance during application de-

velopment time remains challenging for the application developers. Choosing appropriate

consistency options of the incoming queries dynamically during run-time taking into ac-

count different environment factors is a broad area of research. The existing works in the

literature study various environmental factors based on which, the consistency guarantee

of a query/data could be tuned during run-time. Most of these works suggest using a sepa-

rate service on top of the eventually consistent systems to analyze the influential factors.

By contacting the service during query time helps to choose an optimal consistency option

for the incoming queries. The downside of this approach is that contacting the service each

time while querying the database in order to choose an appropriate consistency option of

the incoming queries would become a performance bottleneck of the system.

To the best of our knowledge, no work in the literature studied the possibility of

enabling the modern database systems to adapt the consistency guarantees of the incoming

queries or needed data on the fly at the storage system level instead of using an intermediate

service. In this chapter, we proposed a system model that can enable the system to adapt

the consistency options of the incoming queries with the help of an external input. This

helps to override the consistency options of the incoming queries that are chosen during

application development time with a needed consistency options that are predicted during

run-time. The external input could be given by the database admin or by an external

service directly to the system. By this way, the proposed model eliminates the intervention

of a third-party service during query time, instead, pushes it to the background in order

to augment the performance of the system.

The prototype of the proposed model was implemented inside Cassandra distributed

database system and the working of the model was validated successfully for a bike sharing

system use case. In the prototype implementation, we have focused a simple use case

by providing the external input in advance via a configuration file. However, adapting

the consistency options by receiving the external input from a database admin or by an

164

6.6. CONCLUSION

external service during run-time is considered for the future works.

165

Chapter 7

Application-defined Replacement
Orderings for Ad Hoc
Reconciliation

As most of the modern data stores choose to trade consistency in favor of request

latency and availability, these systems let the replicas hold different values for the same

key, accepting temporary inconsistency between the replicas. Identifying the most recent

replica among different copies and propagate it to other replicas as fast as possible and

achieving mutual consistency among all replicas demands effective data reconciliation.

Data Reconciliation is the process of reconciling conflicting values of the replicas to

reach a single value among all the copies [Mai08]. Conflict-free replicated data types

(CRDTs) [SPBZ11b] introduced by Shapiro et al. are very useful for fast and efficient

reconciliation of conflicting data values among the replicas based on the semantic notion

of a specific data type. Since CRDTs are designed to work on the semantics of a specific

data type, the notion of consistency and the reconciliation (merge) rules are fixed at sys-

tem implementation time. The common CRDTs are registers, counters, sets, graphs, and

object stores [SPBZ11a; SPBZ11b]. If none of these variants are applicable for the requi-

red semantics of the application, the developers usually fall back on one of the traditional

semantic reconciliation techniques for detecting and resolving the conflicts [RD15b].

In this section, we introduce a register type named priority register that is parameteri-

zed by an application-defined replacement ordering, which will be useful for a broad class

of use cases where existing CRDTs are not applicable. The following section (Section 7.1)

167

7.1. SYNTACTIC AND SEMANTIC RECONCILIATION

will provide a brief review of syntactic and semantic reconciliation techniques, providing

motivation of our work in Section 7.2. In Section 7.3, we present the general concept and

the special case of a priority register based on lexicographical orderings, following that, we

provide the details about the proof-of-concept implementation of priority register inside

Cassandra in Section 7.4. Conclusion and future work are discussed at the end of this

chapter.

7.1 Syntactic and Semantic Reconciliation

Data Reconciliation involves verifying the correctness criteria to identify conflicts

and resolve them according to the semantics of the external objects that use the data

item [DGMS85]. Based on the conflict detection schemes, data reconciliation processes

can be broadly classified into two types: Syntactic Reconciliation and Semantic Reconci-

liation [DGMS85; Mai08].

7.1.1 Syntactic Reconciliation

Syntactic Reconciliation techniques are usually based on the Serializability or Cau-

sality relations that are captured via logical clocks: Vector Clock [Fid88], Version Vec-

tor [PPR+83] or sometimes via perfectly synchronised physical clocks. Syntactic Recon-

ciliation techniques are fast, efficient and can be automatically handled by the system.

However, these techniques are not a global option that could be used for all types of use

cases. In addition, due to optimistic replication strategies, these techniques are prone to

syntactic conflicts aka update conflicts that needs to be resolved via Semantic Reconci-

liation. Serializability relies on total order on updates, whereas Causality relies on partial

order.

Serializability based syntactic reconciliation: Serializability-based syntactic recon-

ciliation ensures strong consistency among the replica states. In distributed database sys-

tems, this can be achieved via various techniques such as primary copy replication [AD76],

two-phase commit protocol [FGJ+78], quorum-based replication systems [Vuk10] and consen-

sus algorithms such as Paxos [CGR07] and Raft [OO15]. Zookeeper Atomic Broadcast

168

7.1. SYNTACTIC AND SEMANTIC RECONCILIATION

(ZAB) protocol [JRS11] is also one of the variants that uses serializability-based syntactic

reconciliation.

These techniques demand tight coordination among all the system replicas during read

and/ or write operations, adding bottleneck to the scalability and availability of the system.

As stated by Eric Brewer in CAP conjecture [FGC+97; GL02a], in distributed systems, it

is impossible to achieve Consistency, Availability and Partition Tolerance at the same time.

Since it is inevitable for a distributed system to sacrifice partition tolerance [Hal10], the

choice is even narrowed down to Consistency and Availability. Moreover, as described by

Daniel Abadi in [Aba12] consistency works closely with request latency. For these reasons,

most of the distributed systems choose to sacrifice consistency in favor of request latency,

availability and scalability concerns. These systems compromise stale reads, conflicting

writes and resolve the consistency issues at the background based on the causal ordering

of the operations on the system.

Some systems, for example Cassandra [LM10], implement serializability-based syn-

tactic reconciliation based on the timestamp of the client operations using synchronized

physical clocks. These techniques do not affect the request latency, availability or scala-

bility, but the consistency guarantees of such an approach are clearly problematic in case

clock drifts [PBA+10].

Causality-based syntactic reconciliation: In distributed file systems, Locus [WPE+83]

is one of the earliest system that used version vectors [PPR+83] for syntactic reconciliation

of files. Each file in the system is associated with a vector representing the version number

of the file in every replica nodes. When a replica node performs an update, it increases its

version number by one. With this mechanism, the system lets the disconnected replicas

handle updates to files independently and during replica synchronization, the version vec-

tor of a replica copy that is higher in some components (and equal in all others) will replace

other replica copies. The decendents of Locus, such as Coda [KS93a] and Ficus [RHR+94]

also used the same principle of syntactic reconciliation using version vectors.

Dynamo [DHJ+07a], which is one of the most influential distributed database sys-

tems implementing syntactic reconciliation by capturing the causality relation between

169

7.1. SYNTACTIC AND SEMANTIC RECONCILIATION

the updates, uses vector clocks [Fid88]. In Dynamo, each put operation contains three

components such as a key, a value and a context (vector clock) representing the causal

order [DHJ+07a] of the update. A vector clock is a version vector that is updated not only

on local modification of the data but also on every synchronization message for this data.

It enables the system to order the update operations that were performed on the data.

Based on this causal order, it is possible to identify which version of a data object can

replace another by taking the version with the highest counters in its vector clock.

Riak [Klo10; RD15a], which is a descendent of Dynamo in its latest version (from

2.0) uses dotted version vectors [PBA+10] instead of vector clocks for causality-based

replacement. Clearly, the version vectors as well as vector clocks may not be comparable,

which means that not all conflicts can be resolved in this way. Furthemore, the system

typically only has a partial view of the real world causality, so causality-based syntactic

reconciliation is necessarily incomplete.

7.1.2 Semantic Reconciliation

Semantic reconciliation techniques, which are often domain-specific, are normally nee-

ded in the following situations:

Syntactic conflicts: Update conflicts that occurred during syntactic reconciliation and

that could not be resolved.

Other notions of consistency: Use case scenarios where conflict detection or reconci-

liation cannot rely on serializability or causality.

7.1.2.1 Syntactic Conflict Resolution

As serializability-based syntactic reconciliations offer tight consistency by default, these

techniques are not subject to syntactic conflicts. Syntactic conflicts occur often in causality-

based syntactic reconciliation techniques. When the version vector of a file or data object is

higher in some of its components and lower in others, neither of the version vectors would

dominate the other and this situation will be considered as an update conflict. In order

to resolve these conflicts, the system may need some domain-specific information, which

is normally provided by the application software or certain predefined rules, or sometimes

170

7.1. SYNTACTIC AND SEMANTIC RECONCILIATION

by the users themselves. Such domain-specific information enables the system to resolve

conflicts according to the intended semantics of the data (hence, semantic reconciliation).

Systems such as Ficus [RHR+94] and Coda [KS93a] provide application-specific resolvers

(ASR) [KS93b; Pun94], which are programs that contain reconciliation rules for different

conflict types that commonly happen in the system. If none of the reconciliation rules

account for a detected conflict type, the system will notify the user by e-mail to perform

a manual reconciliation. Apart from these, there are also some special tools and programs

such as one described in [GMAB+83; How93] for reconciling conflicts in a file system.

Some systems like Dynamo maintain the conflicting replica values and return all the

conflicting values to the user to perform resolution at the application side. The conflicts

could then be resolved by exposing the conflicts directly to the user or could be resolved

by the application automatically. If the user is directly involved in resolving the conflicts,

there is clearly a negative impact on the user experience that could affect the popularity

of the system. In the other case, if the application takes care of the conflict resolution

without user intervention, additional effort during the application development is needed

to handle all possible cases.

7.1.2.2 Other Notions of Consistency

Bayou [TTP+95] is one of the popular systems which is purely based on domain-specific

conflict detection and resolution. The system provides an explicit knowledge about the ope-

rations that were performed during network partition and how to deal with it. Each write

operation to the system includes a dependency check that specifies how to detect conflict

for the particular operation and a function to resolve it. Also, read operations provide

results along with information about whether the writes are committed or tentative.

Log Transformations [DGMS85] is a technique in which a system could let the partitio-

ned replicas perform operations independently while reflecting the order of the operations

in a log with respect to the timestamp. When the connection between the partitioned

replicas is healed, a rerun log will be created by combining the operations from the logs of

each partition according to the sequence of the timestamp. The rerun log would contain

the needed operations to be rolled back in order to reach the required semantics of the

171

7.1. SYNTACTIC AND SEMANTIC RECONCILIATION

operations.

SqlIceCube [PSL03] semantic reconciliation system follows an approach similar to the

log transformation method. Unlike the log transformation method, SqlIceCube orders ope-

rations based on the semantic relations between the operations. The reconciliation process

in SqlIceCube includes two phases: the semantic inference phase and the reconciliation

phase. During semantic inference phase, the preconditions and semantic relations between

the operations will be extracted from the code of the operations. The reconciliation phase

orders the operations in such a way that a maximum number of operations will succeed

based on the inferred information from the first phase.

The Watchdog [BP88] extends the general semantics of the Unix file system with a

user-defined semantics for individual files and also for a set of files inside a directory.

Unlike ASR that are invoked whenever a conflict is detected, Watchdog allows to express

the user-defined semantics and how to resolve a conflict [Pun94].

Operation Transformation [SE98] is one of the popular models in collaborative editing

systems for maintaining consistency among replicated documents. This approach exploits

the semantics about the consistency criteria that converge all the replicas to a same state

when operations on a document (insertion and deletion of characters) are applied in a dif-

ferent order. The approach uses a transformation algorithm that adjusts (transforms) the

position id of the characters in a document during insert and delete operations. The work

of WOOT (WithOut Operation Transformation) [OUMI06] defines a consistency model for

positioning the characters in a replicated document by representing each document cha-

racter as so-called W-characters. The W-characters include additional information about

positioning the characters with reference to its neighboring characters and to position the

characters in case some unordered additional characters exist between the neighboring

characters.

One of the significant improvements in replicated systems for defining a precise notion

of consistency is the definition of typed objects (with a well-defined set of operations) that

use type information to decide how to detect and resolve conflicts. The approach of Herlihy

in [Her86] associates the operations on a file to a specific type such as a queue, a table, or

a double buffer for efficient data replication in a quorum system. In particular, it includes

172

7.2. MOTIVATION

two parts: a serial specification that specifies the operations accepted by a specific data

type and a behavioral specification that describes how to detect conflicts [DGMS85].

Replicated Abstract Data Types (RADTs) [RJKL11] define the semantics of the data

types: arrays, hash tables, and linked lists for a replicated environment using properties

such as operation commutativity and precedence transitivity. The data types defined by

Shapiro et al. Conflict-free replicated data types (CRDTs) [SPBZ11a] use the properties

commutativity, associativity, and idempotence of operations to ensure Strong Eventual

Consistency (SEC) [SPBZ11b]. While the eventual consistency guarantees are prone to

update conflicts, strong eventual consistency (SEC) guarantees avoids update conflicts.

The Bloom programming concept introduced in [ACHM11b] assists the programmer

in the detection of possible conflicts and helps to avoid those conflicts already during

the application development phase. Both CRDT and Bloom approaches intend for strong

eventual consistency using the properties commutative, associativity, and idempotence.

These properties are also referred to as ACID2.0 (Associative, Commutative, Idempotent

and Distributed) [HC09].

In the ENCODERS project [WMJ+15], the application uses ordered replacement po-

licies for discarding redundant data objects. This project is aimed at Mobile Ad-hoc Net-

works (MANETs) [LS], where nodes can be frequently disconnected and reconnected. En-

suring reconciliation in this context is challenging, and hence, the techniques developped

in this approach are akin to semantic reconciliation. In the next section, we describe the

solutions used in the ENCODERS project and how these served as a motivation for the

work presented in this chapter.

7.2 Motivation

The motivation of this work comes from the partially-ordered knowledge sharing model

for loosely-coupled distributed computing [SKT14]. Specifically, it has been used for data

objects in the ENCODERS 1 content-based networking project [WMJ+15] and earlier for

robust knowledge dissemination in delay-/disruption-tolerant networks [M-.08] and cyber-

1. Edge Networking with Content-Oriented Declarative Enhanced Routing and Storage

173

7.2. MOTIVATION

physical networks [KSKH10; SKT10; Net]. In the ENCODERS project, the content-based

data object eviction technique aims to manage the system resources efficiently by locally

discarding certain data objects based on metadata (i.e., attributes) associated with these

objects. This technique is based on a replacement order for a class of data objects, under

which, one data object can replace another one of the same class. In the simplest case that

is currently implemented in the public version [enc], the replacement order on data objects

is a lexicographical ordering defined by specifying the priority of relevance on a subset of

the attributes.

In such a lexicographical ordering, two objects will be compared based on the value of

the first component (of highest priority), in case of equality, the comparison will be conti-

nued to the second component (of next lower priority) and so on. Typically, this order will

be defined so that the data object that has more information content for a particular ap-

plication will replace the data objects with less content. In another interpretation, fresher

data objects may replace obsolete objects if the creation timestamp is used as an attribute,

again from the perspective of a particular application. The full replacement order that is

defined by the application on all data objects is called application-defined replacement or-

der. Note that while the lexicographical ordering is a total order on the relevant attribute

vector, the full replacement ordering is a partial order, because no ordering relations exist

between different classes. Furthermore, it should be noted that the induced ordering on

the data objects can be partial even inside a class, because two different data objects may

have the same relevant attributes. This simple approach supports the replacement of data

objects according to the application-defined semantics, thereby enabling a form of seman-

tic reconciliation instead of the serializability or causality-based replacement (syntactic

reconciliation).

The ENCODERS project uses Haggle [Hag] as an underlying framework, in which data

objects are stored and transmitted with metadata in form of attribute-value pairs [SSH+07;

SHCD06]. The lexicographical replacement order is defined on a subset of attribute-value

pairs considering each attribute-value pair in this set as a component. In a typical ENCO-

DERS application, mobile nodes generate situation awareness data that has to be efficiently

disseminated to other mobile nodes, without assuming that the network is always connec-

174

7.3. PRIORITY REGISTER

ted (delay- and disruption-tolerant dissemination). Since more than one mobile node could

generate the same information multiple times, whenever the system encounters two data

objects of the same class, one of them may be evicted based on the application-defined

replacement order so that only the maximal objects in this class will be maintained and fur-

ther transmitted. Applications and use cases that involve application-defined replacement

orders are studied in the articles [CMY+13; CMKS14; KGK+13; KKS+12].

Since ordered replacement is not the right policy for all data objects, ENCODERS is

using additional utility-based techniques [enc14] in order to improve efficiency of caching

and content dissemination. In this case a notion of utility is used to define an order that

is used for prioritization instead of replacement. These extensions are however beyond the

scope of this chapter.

As a specific motivation for this work, consider now an extension of ENCODERS

where a DHT-based cloud database acts as a pool (warehouse) of data objects and intends

to bridge two or more MANETs [LS] consisting of ENCODERS nodes. Clearly, such a

database needs to be scalable to accommodate many data objects and requests from a

large number of MANETs.

Moreover, querying such a database before each insert in order to implement the repla-

cement order, i.e., checking the ordering between the incoming data object and all existing

data objects is too expensive in both bandwidth and latency. Hence, in order to overcome

the limitations and to facilitate fast and efficient semantic reconciliation we propose a

new priority register which enables the data object replacement process to happen auto-

matically on the database side without the intervention of the application (which in our

motivating use case would be ENCODERS).

7.3 Priority Register

In general, we define a priority register as a multi-value register (MV-register) [SPBZ11a]

that performs data reconciliation based on an application-defined partial replacement or-

der on the values instead of the causal relations between the updates. Like an MV-register,

which due to the partial order on the operations can contain multiple values that are maxi-

175

7.3. PRIORITY REGISTER

mal in the causal order, a priority register can contain a set of values, specifically several

data objects that are maximal elements in the replacement order. In the special case of

a lexicographical ordering with a single class of data objects, it can still contain multiple

data objects if their relevant attributes are equal. Hence, for the purpose of our proof-

of-concept implementation we further simplify this concept and focus on lexicographical

orderings that use the timestamp as the last attribute to break the tie (if all other attri-

butes are equal). In this case, the priority register will only contain a single data object as

a last-writer-wins (LWW) register 2 [SPBZ11a].

In modern data stores, data objects are identified by a unique key that is mapped to a

value. This value can be a record containing any number of fields. However, values of these

fields are normally opaque to the system [SPBZ11a]. In the case of the priority register,

we assume that some fields’ values express domain-specific information that may be useful

for semantic reconciliation, as formalized below.

Narrowing down the general definition for the purpose of this chapter, a priority register

P based on a lexicographical ordering is defined as a tuple P = (D,V,<, F, v,O), where:

(1) D is an arbitrary set of data objects, (2) (V,<) is a partially ordered set of values, (3)

F = {f0, f1, ..., fn} is a set of field identifiers, (4) v : F ×D → V is a mapping from field

identifiers and data objects to field values, (5) O = {o0, o1, ..., om} ⊆ F is an ordered set,

and (6) the set {v(o, d) | d ∈ D} is totally ordered for each o ∈ O.

The replacement order ≺P is the order on D defined such that d ≺P d′ iff v(o0, d),

v(o1, d), ..., v(om, d) < v(o0, d
′), v(o1, d

′), ..., v(om, d
′) lexicographically. Given this defini-

tion, if d ≺P d′ then we also say that the data object d′ can replace d. As mentioned

earlier, we make the simplifying assumption that all objects contain a timestamp as one

of the fields in O to break ties.

An application defines the replacement order by simply declaring, for a given class of

objects, the subset O of fields that must be considered in the order. Each field in this subset

is associated to a priority number expressing its precedence in the order. This subset can

be seen as the specification of a lexicographical order on the set of all data objects D.

2. http://docs.basho.com/riak/latest/dev/using/conflict-resolution/, June 2015

176

7.3. PRIORITY REGISTER

By carefully choosing the order O, the application designer can precisely define the be-

havior of the storage system during reconciliation. This order constitutes what we call an

application-defined replacement order. This order is a parameter of the register definition,

hence, whenever the system detects two data objects with the same key (i.e., belonging to

the same class), the system compares the values of the fields of the two data objects in the

declared order, and keeps only the version that is the highest in the order. Since the repla-

cement order is set as the default order, the system should follow the same reconciliation

process during read-repair and active anti-entropy phases 3 as well.

In some cases, it might happen that some of the values needed to compute the tra-

ditional lexicographical order are missing. In this case, the system considers the missing

value to be the minimum value possible in this field (conservative default assumption).

This allows the system to sort data objects even when the information is incomplete.

7.3.1 Comparison with CRDTs

CRDTs are defined by a join-semilattice which is associated with a binary least upper

bound (LUB) function on the possible values of the data type [SPBZ11a; SPBZ11b]. Since

the LUB is unique and satisfies the properties of associativity, commutativity, and idem-

potence, computing the LUB on replica states safely merges the values of multiple states

without any conflict. Clearly, the value set of the data type has to be designed in a way

to render the LUB appropriate for the semantics of the data type.

The basis of our priority register, which is the application-defined replacement order

is more fundamental than the LUB that one can find in CRDTs. As a general model for

distributed computing, partially-ordered knowledge sharing focusses on the replacement

ordering rather than a particular reconciliation operator. The reconciliation operation does

not have to be the LUB, and it does not have to be a binary operation. In fact, it does not

even have to be a function, because it may take into account context beyond the scope

of the data objects to be reconciled. Hence, there are differences between CRDTs and the

priority register in the general case. These differences are mainly due to the fact that the

3. https://docs.basho.com/riak/2.1.1/theory/concepts/aae/#Read-Repair-vs-Active-Anti-Entropy,
September 2015

177

7.3. PRIORITY REGISTER

priority register is based on a rather general domain-specific ordering, whereas CRDTs are

based on a join-semilattice with a specific semantic reconciliation operation.

For arbitrary replacement orders, the LUB may not always exist, but for our lexico-

graphical replacement orders, which are the focus of our prototype implementation, it is

always well-defined for two elements in the same class, which is totally ordered by defi-

nition (after taking the timestamp into account). Hence, in this special case it would be

mathematically equivalent to consider each class as a CRDT.

7.3.2 Sample Use Cases

This section describes a couple of use cases where the priority register can be applied.

The first use case,meeting room scheduler, is taken from one of the Bayou system [TTP+95]

use cases with a minor modification to the scenario. The second use case, cyber-physical

system is inspired by joint work between SRI and ISEP on cyber-physical and content-

based networks, specifically in the context of the ENCODERS architecture [WMJ+15].

7.3.2.1 Meeting Room Scheduler

The meeting room scheduler application is one of the simplest applications for unders-

tanding the use of the priority register. Let us consider a mobile application that helps

to reserve a university meeting room via a reservation form, and assume the application

is accessible in a disconnected mode. Since a particular room can only be reserved by

one person for a specific time slot, certain domain-specific decisions might be needed for

deciding who might get preference over another. One of the common decisions could be

based on the position of the person in the university who submits the reservation request.

The position of a university person who has access to the application could range from

PhD students, professors, to administrative staff like department director and dean.

Based on the position, a rank for each individual can be assigned as Student: 1, Pro-

fessor: 2, Administrative: 3. A lexicographical replacement order for this specific example

could be defined by position and timestamp (in this sequence) for reservations that have

the same room number and time slot (morning, afternoon, evening). Hence, by using this

replacement order, when the system receives more than one request with the same room

178

7.4. IMPLEMENTATION OF THE PRIORITY REGISTER INSIDE CASSANDRA

number and time slot, the conflict will be resolved based on the position of the person sub-

mitting the request. And if the requesting persons have a similar position in the university,

the preference will be given for the person who requested at an earlier time.

7.3.2.2 Cyber-Physical Systems

One of the typical use cases and the motivations for the design of the priority regis-

ter are cyber-physical networks that demand domain-specific reconciliation. For example,

consider a use case, in which the temperature of a large site or city is monitored via mul-

tiple sensors that are continuously moving and observed data is disseminated using an

epidemic protocol [EGKM04]. Depending on their locations, some sensors might be more

trustworthy than others. Therefore, the temperature data coming from these sensors is

tagged with metadata such as the time at which the reading was taken (time), the preci-

sion of the reading (precision), and the sensor rank determining the trustworthiness of the

sensor (sensor-rank).

If we want to maintain only one temperature reading for a given time, the replacement

order can be defined lexicographically in the sequence: timestamp, precision, and sensor-

rank for the readings that have the same location id and time. When the system receives

sensor readings from different sensors at the same place and on the same day, it will

only keep the temperature reading that is higher in the lexicographical order defined

by timestamp, precision, and sensor-rank. In the case, when one or more fields in the

replacement order (timestamp, precision, and sensor-rank) are absent, the missing field

will be assigned a minimum value and the data will be reconciled accordingly.

7.4 Implementation of the Priority Register inside Cassan-
dra

In this section we show how to leverage the design of Cassandra [LM10] to obtain

an efficient implementation of priority registers with application-defined lexicographical

replacement orders (that use the timestamp as the last component) directly inside the

kernel of the distributed database.

179

7.4. IMPLEMENTATION OF THE PRIORITY REGISTER INSIDE CASSANDRA

7.4.1 Cassandra Read-Write Pattern

The design of Cassandra is derived from the Dynamo datastore [DHJ+07a], in which

data objects are stored in a distributed hash table (DHT) [ZWXY13; Sit08]. Hashing the

key of a data object and matching the resultant token number against the token number of

the nodes in the DHT identifies the replica nodes to query for the data objects of interest.

Cassandra, a column family data store, uses a unique key to identify the replica nodes hol-

ding related set of columns and a column name for identifying an individual column. Each

column in Cassandra is a triplet, which contains a key, a value, and a timestamp. Cas-

sandra’s data model is write-optimized, that is generally writes are faster than reads. The

operations write, update, and delete are handled technically as ’upsert writes’ [Doc15a]. An

update operation actually inserts a column with a new value and a delete operation inserts

a so-called tombstone column with a recent timestamp. While reading or writing a column

from/to MemTables and SSTables [LM10], when the system encounters two columns with

the same name, a reconciliation process will take place between them. The reconciliation

process first compares the timestamp of both columns and chooses the column with the

latest timestamp, in other words it operates as a LWW-register. If both columns have the

same timestamp, in order to break the tie, the column that has the highest value will get

the precedence, however, this case practically never happens.

7.4.2 Priority Register Implementation

Cassandra’s column families are physically sorted in storage in order to facilitate effi-

cient column filtering and ordering [Kan14]. Hence, the structure of a column family is a

map of key to a sorted map of column key to value, as shown in the following Java syntax:
Map<RowKey , SortedMap <ColumnKey , ColumnValue>>.

Each entry in this map identifies a single row of the corresponding column family.

Cassandra rows can be either wide or skinny [Cas14]. Skinny rows carry a value for a

single column name, whereas, in wide rows, a column name and one or more column

value(s) identify a value with a timestamp. The columns inside wide rows are also known as

clustering columns or composite columns. The column name (column key) of the composite

column is known as the composite key [Cas13]. The column name and value(s) associated

180

7.4. IMPLEMENTATION OF THE PRIORITY REGISTER INSIDE CASSANDRA

with the composite key are separated by a colon (:) and are considered as individual

components. The maximum size of a composite key should be no more than 64Kb [Wik13b].

The composite comparator [Dat12] helps to compare the values inside the composite key,

in order to facilitate efficient scanning and filtering.

The design of the priority register takes advantage of the composite comparator in

order to implement the lexicographical ordering on the attributes of the data objects.

Therefore, the priority register definition follows the declaration syntax of the ’wide row’. In

Cassandra, by default, values are stored inside a column family as a LWW-Register. In our

prototype implementation, we do not consider collection data types such as map, list, or set.

In order to alter a column family to store the values as priority registers instead of LWW-

Registers, two extra metadata properties have to be added to the column family definition

while creating the column family as shown in the examples listing 7.3 and 7.5. The two

metadata properties are replacement_order_index and replacement_order_length. Both

replacement_order_index and replacement_order_length are of integer type, and they are

used to encode the replacement ordering for the composite key as follows:

replacement_order_index specifies the index of the first component inside the com-

posite key that is the replacement order

replacement_order_length specifies the total number of components including the

first component that completes the lexicographical order.

In other words, the set of "replacement_order_length" components starting from the "re-

placement_order_index" component (included) inside the composite key forms the lexi-

cographical replacement order. Since column family metadata properties are available on

every Cassandra node, the ordering information is available everywhere in the system. The

two metadata properties together with suitable modifications to the column family Sor-

tedMap class make sure that the attributes (replacement order) that are added inside the

composite key are not considered part of the composite key during column reconciliation.

The default values of the replacement_order_index and replacement_order_length

metadata of a column family definition are -1, which means the system behaves as nor-

mal, that is reconciliation is performed based on timestamp. If the values of replace-

ment_order_index and replacement_order_length are set during column family creation,

181

7.4. IMPLEMENTATION OF THE PRIORITY REGISTER INSIDE CASSANDRA

the value of the two fields will be passed along with the comparator of the SortedMap

class. The comparator of the SortedMap class masks the components inside the composite

key that are indicated by replacement_order_index and replacement_order_length during

get and put methods. Hence, technically the system can see only the components other

than those specified by replacement_order_index and replacement_order_length as the

composite key.

When encountering two columns with the same composite key, instead of reconciling the

columns based on the default timestamp method, the columns will be reconciled based on

the replacement ordering denoted by the sequence indicated by replacement_order_index

and replacement_order_length.

(a) Standard Reconciliation (b) Priority Register Reconciliation

Figure 7.1 – Column reconciliation in Cassandra

As shown in Figure 7.1a, Cassandra input columns consist of three fields: key (com-

posite key in case of wide rows), value, and timestamp, which are represented as Kn, V ,

and t, respectively. Columns are stored in Cassandra as key-value pairs with the name

of the column as key and the entire column (containing Kn, V , and t) as value. If the

MemTable already contains an entry for an input column name, reconciliation between

the two columns will take place based on the timestamp associated with the columns.

In the case of our priority register implementation, shown in Figure 7.1b, each input

column key (Kn) comes with the values of the metadata (m) associated with the lexico-

graphical replacement order. While storing the columns, the values of the metadata are

not considered part of the composite key. Hence, the part excluding the metadata (i.e.,

182

7.4. IMPLEMENTATION OF THE PRIORITY REGISTER INSIDE CASSANDRA

Kn) will be considered as composite key to store the values in the MemTable. If an entry

already exists in the MemTable for a particular key, the columns will be reconciled based

on the lexicographical replacement order defined on the associated metadata. The column

whose metadata values higher in the order will then be stored in the MemTable. The

system follows the same principle whenever two columns with a same name (i.e., Kn, not

Kn : m) are encountered.

Although the embedded attribute values inside the composite key are masked by the

comparator during column reconciliation, the attribute values are still visible for the nor-

mal purposes and at the client side as shown in the results of the examples in Section 7.4.3.

When a tie between two columns cannot be broken via the defined replacement order, the

system will use the default tie breaking mechanism, which is based on the timestamp.

Note that, the initial prototype implementation considers a total lexicographical order,

in which only a single value needs to be stored. However, in a more general case, the

priority register needs to store all data items that are equal in the lexicographical order.

In that case, the default timestamp-based method for breaking the tie between two data

objects that are equal in the order is not adequate. The future implementation of the

priority register will address this case by storing multiple data objects that are equal in

the lexicographical order, which also opens the door to additional reconciliation at the

application level.

7.4.3 Prototype Sample Session

This section illustrates how the cyber-physical system use case described in Section 7.3.2.2

can be handled by our prototype implementation. We use the location id as the row key

in Cassandra.

The following session (listing 7.1) shows an example with skinny row that contains

single column name and a value:
c r e a t e column fami ly sensor_reading with comparator=UTF8Type
AND key_va l idat ion_c las s=UTF8Type ;

s e t sensor_reading [’ Loc1 ’] [’ temperature ’]=32;
s e t sensor_reading [’ Loc1 ’] [’ time ’]=1050;
s e t sensor_reading [’ Loc1 ’] [’ p r e c i s i o n ’]= double (’ 8 . 5 ’) ;
s e t sensor_reading [’ Loc1 ’] [’ sensor −rank ’]= double (’ 5 . 2 ’) ;

183

7.4. IMPLEMENTATION OF THE PRIORITY REGISTER INSIDE CASSANDRA

get sensor_reading [’ Loc1 ’] ;

=> (name=p r e c i s i o n , va lue =8.5 , timestamp =1437505096359000)
=> (name=sensor −rank , va lue =5.2 , timestamp =1437505102951000)
=> (name=temperature , va lue =32, timestamp =1437505084943000)
=> (name=time , va lue =1050 , timestamp =1437505090455000)
Returned 5 r e s u l t s .

Listing 7.1 – An example for skinny row

The session below (listing 7.2) shows a similar example with wide row (i.e., using a

composite column), in which the value of the columns timestamp, precision, and sensor-

rank are stored along with the temperature column and a date in order to sort the columns

based on the date.
c r e a t e column fami ly sensor_reading with comparator =
’ CompositeType (LongType , UTF8Type , LongType , DoubleType , DoubleType) ’

AND key_va l idat ion_c las s=UTF8Type ;

The get and put method w i l l be as f o l l o w :
s e t sensor_reading [’ LocId ’] [’ date : temperature : time : p r e c i s i o n : sensor −rank

’]= reading−in−c e l c i o u s ;

s e t sensor_reading [’ Loc1 ’] [’ 110515: temperature : 1 0 5 0 : 8 . 5 : 5 . 2 ’]=32;
s e t sensor_reading [’ Loc1 ’] [’ 110515: temperature : 1 0 5 0 : 8 . 5 : 5 . 3 ’]=33;
s e t sensor_reading [’ Loc1 ’] [’ 110515: temperature : 1 0 5 1 : 8 . 6 : 5 . 2 ’]=36;
s e t sensor_reading [’ Loc1 ’] [’ 110515: temperature : 1 0 5 1 : 8 . 5 : 5 . 2 ’]=25;
s e t sensor_reading [’ Loc1 ’] [’ 110515: temperature : 1 0 5 0 : 8 . 6 : 5 . 2 ’]=14;

get sensor_reading [’ Loc1 ’] ;

=> (name=110515: temperature : 1 0 5 0 : 8 . 5 : 5 . 2 , va lue =32, timestamp
=1437504279816000)

=> (name=110515: temperature : 1 0 5 0 : 8 . 5 : 5 . 3 , va lue =33, timestamp
=1437504285104000)

=> (name=110515: temperature : 1 0 5 0 : 8 . 6 : 5 . 2 , va lue =14, timestamp
=1437504298456000)

=> (name=110515: temperature : 1 0 5 1 : 8 . 5 : 5 . 2 , va lue =25, timestamp
=1437504293944000)

=> (name=110515: temperature : 1 0 5 1 : 8 . 6 : 5 . 2 , va lue =36, timestamp
=1437504289752000)

Returned 5 r e s u l t s .

Listing 7.2 – An example for wide row

The session in listing 7.3 shows how to specify a priority register with a lexicogra-

phical replacement order given by time, precision, and sensor-rank during column family

creation. We also see the result of the same set and get methods as in the previous ses-

sion. If we want to maintain only one temperature reading per day for a particular row

184

7.4. IMPLEMENTATION OF THE PRIORITY REGISTER INSIDE CASSANDRA

key, the value of the parameter replacement_order_index will be 3 and the value of the

parameter replacement_order_length will be 3. The parameter replacement_order_index

signifies that the index position of the replacement order for the composite columns starts

from the third component inside the composite key, which is time. The parameter repla-

cement_order_length signifies that the three components from the index position time,

precision, sensor-rank are attributes of the sensor reading and the replacement order is

the lexicographical order defined by this sequence. Hence, the remaining components in-

side the composite key, which are date and temperature becomes the actual name of the

column (composite key). And the column reconciliation will be done based on the spe-

cified replacement order, when the system encounters two columns with the same name

(date:temperature).
c r e a t e column fami ly sensor_reading with comparator =
’ CompositeType (LongType , UTF8Type , LongType , DoubleType , DoubleType) ’

AND key_va l idat ion_c las s=UTF8Type AND replacement_order_index=3
AND replacement_order_length =3;

s e t sensor_reading [’ Loc1 ’] [’ 110515: temperature : 1 0 5 0 : 8 . 5 : 5 . 2 ’]=32;
s e t sensor_reading [’ Loc1 ’] [’ 110515: temperature : 1 0 5 0 : 8 . 5 : 5 . 3 ’]=33;
s e t sensor_reading [’ Loc1 ’] [’ 110515: temperature : 1 0 5 1 : 8 . 6 : 5 . 2 ’]=36;
s e t sensor_reading [’ Loc1 ’] [’ 110515: temperature : 1 0 5 1 : 8 . 5 : 5 . 2 ’]=25;
s e t sensor_reading [’ Loc1 ’] [’ 110515: temperature : 1 0 5 0 : 8 . 6 : 5 . 2 ’]=14;

get sensor_reading [’ Loc1 ’] ;

(name=110515: temperature : 1 0 5 1 : 8 . 6 : 5 . 2 , va lue =36, timestamp =1437503817824000)
Returned 1 r e s u l t s .

Listing 7.3 – Priority Register example using thrift interface

The prototype implementation works with the CQL (Cassandra Query Language)

as well. Specifying the same metadata properties replacement_order_index and repla-

cement_order_length while creating the table is all that is needed to get the same result.

But unlike thrift interface, which inserts one column at a time, in CQL more than one

columns can be inserted in a single query. The first column name inside table’s primary

key will be considered as the row key and the remaining column names (so-called clus-

tering key) inside the table’s primary key (if any) along with a non-primary key column

name forms a composite key. The session in listing 7.4 shows an example of how composite

key(s) are formed from a table’s primary key. We include a new colum humidity to our

use case example for better understanding.

185

7.4. IMPLEMENTATION OF THE PRIORITY REGISTER INSIDE CASSANDRA

c r e a t e t a b l e sensor_reading (
loc_id text ,
date int ,
time int ,
p r e c i s i o n f l o a t ,
sen_rank f l o a t ,
temperature int ,
humidity int ,

primary key (loc_id , date , time , p r e c i s i o n , sen_rank)) ;

i n s e r t i n to sensor_reading (loc_id , date , time , p r e c i s i o n , sen_rank ,
temperature , humidity) va lue s (’ Loc1 ’ , 110515 , 1050 , 8 . 5 , 5 . 2 , 32 , 59) ;

The above query w i l l i n s e r t three composite columns as f o l l o w s :

=> (name = 1 1 0 5 1 5 : 1 0 5 0 : 8 . 5 : 5 . 2 : , va lue =, timestamp =1437563035589000)
=> (name = 1 1 0 5 1 5 : 1 0 5 0 : 8 . 5 : 5 . 2 : humidity , va lue =0000003b , timestamp

=1437563035589000)
=> (name = 1 1 0 5 1 5 : 1 0 5 0 : 8 . 5 : 5 . 2 : temperature , va lue =00000020 , timestamp

=1437563035589000)
Returned 3 r e s u l t s

Listing 7.4 – Mapping from CQL to Thrift interface

The first composite column with an empty value in the above session is the cql row

marker. The implementation details about why cql inserts an additional row marker can

be found at the [Cql12].

In order to define priority register with the same lexicographical replacement order

time, precision, sensor-rank in CQL, the value of the parameter replacement_order_index

will be 2, since the first column name inside the table’s primary key is the row key and

it should not be counted. Hence, the value 2 of the parameter replacement_order_index

indicates the second component excluding the row key, which is time. And the value of

the parameter replacement_order_length will be 3. The session in listing 7.5 shows a few

examples of get and put methods in cql.
c r e a t e t a b l e sensor_reading (

loc_id text ,
date int ,
time int ,
p r e c i s i o n f l o a t ,
sen_rank f l o a t ,
temperature int ,
humidity int ,

primary key (loc_id , date , time , p r e c i s i o n , sen_rank))
with replacement_order_index=2
AND replacement_order_length =3;

i n s e r t i n to sensor_reading (loc_id , date , time , p r e c i s i o n , sen_rank ,

186

7.4. IMPLEMENTATION OF THE PRIORITY REGISTER INSIDE CASSANDRA

temperature , humidity) va lue s (’ Loc1 ’ , 110515 , 1050 , 8 . 5 , 5 . 2 , 32 , 59) ;
i n s e r t i n to sensor_reading (loc_id , date , time , p r e c i s i o n , sen_rank ,

temperature , humidity) va lue s (’ Loc1 ’ , 110515 , 1050 , 8 . 5 , 5 . 3 , 33 , 60) ;
i n s e r t i n to sensor_reading (loc_id , date , time , p r e c i s i o n , sen_rank ,

temperature , humidity) va lue s (’ Loc1 ’ , 110515 , 1051 , 8 . 6 , 5 . 2 , 36 , 61) ;
i n s e r t i n to sensor_reading (loc_id , date , time , p r e c i s i o n , sen_rank ,

temperature , humidity) va lue s (’ Loc1 ’ , 110515 , 1051 , 8 . 5 , 5 . 2 , 25 , 70) ;
i n s e r t i n to sensor_reading (loc_id , date , time , p r e c i s i o n , sen_rank ,

temperature , humidity) va lue s (’ Loc1 ’ , 110515 , 1050 , 8 . 6 , 5 . 2 , 14 , 85) ;

s e l e c t ∗ from sensor_reading ;

loc_id | date | time | p r e c i s i o n | sen_rank | humidity | temperature
−−−−−−−−+−−−−−−−−+−−−−−−+−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−

Loc1 | 110515 | 1051 | 8 . 6 | 5 . 2 | 61 | 36

I n s e r t i o n s with a miss ing non−primary key column

i n s e r t i n to sensor_reading (c i ty , date , time , p r e c i s i o n , sen_rank , humidity)
va lue s (’ Loc1 ’ , 110515 , 1051 , 8 . 6 , 5 . 1 , 59) ;

s e l e c t ∗ from sensor_reading ;

loc_id | date | time | p r e c i s i o n | sen_rank | humidity | temperature
−−−−−−−−+−−−−−−−−+−−−−−−+−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−

Loc1 | 110515 | 1051 | 8 . 6 | 5 . 2 | 61 | 36

i n s e r t i n to sensor_reading (c i ty , date , time , p r e c i s i o n , sen_rank , humidity)
va lue s (’ Loc1 ’ , 110515 , 1051 , 8 . 6 , 5 . 2 , 63) ;

s e l e c t ∗ from sensor_reading ;

loc_id | date | time | p r e c i s i o n | sen_rank | humidity | temperature
−−−−−−−−+−−−−−−−−+−−−−−−+−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−

Loc1 | 110515 | 1051 | 8 . 6 | 5 . 2 | 63 | 36

i n s e r t i n to sensor_reading (c i ty , date , time , p r e c i s i o n , sen_rank , humidity)
va lue s (’ Loc1 ’ , 110515 , 1051 , 8 . 6 , 5 . 3 , 64) ;

s e l e c t ∗ from sensor_reading ;

loc_id | date | time | p r e c i s i o n | sen_rank | humidity | temperature
−−−−−−−−+−−−−−−−−+−−−−−−+−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−

Loc1 | 110515 | 1051 | 8 . 6 | 5 . 3 | 64 | n u l l
Loc1 | 110515 | 1051 | 8 . 6 | 5 . 2 | n u l l | 36

i n s e r t i n to sensor_reading (c i ty , date , time , p r e c i s i o n , sen_rank , temperature
) va lue s (’ Loc1 ’ , 110515 , 1051 , 8 . 6 , 5 . 3 , 34) ;

s e l e c t ∗ from sensor_reading ;

loc_id | date | time | p r e c i s i o n | sen_rank | humidity | temperature
−−−−−−−−+−−−−−−−−+−−−−−−+−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−

187

7.5. CONCLUSION

Loc1 | 110515 | 1051 | 8 . 6 | 5 . 3 | 64 | 34

Listing 7.5 – Priority Register example using CQL interface

7.5 Conclusion

Syntactic reconciliation techniques are fast and efficient for reconciling data objects

in eventually consistent systems, but they cannot be applied to all use cases. Semantic

reconciliation techniques are needed during update conflicts and for the use cases that

demand domain-specific conflict resolutions. Although these techniques could be poten-

tially applied to all types of use cases with domain-specific information, they are normally

inefficient due to their complex resolution process. The idea of the priority register is

to combine the benefits of both syntactic reconciliation and the semantic reconciliation

techniques with the help of a very simple application-defined replacement specification.

In general, this replacement is defined by a partial order on the attributes of the data

object, specifying the necessary condition under which one data object can be replaced by

another of the same class. In this chapter, we have focussed on an important subclass of

lexicographical replacement orders which covers many important use cases.

We have shown how, with relatively minor modifications in the Cassandra kernel, the

basic LWW register can be transformed into the priority register by adding the domain-

specific replacement specification. With this design, the client-side resolution rules can be

moved directly to the server-side for efficient data reconciliation. By using the domain-

specific information as a parameter of a data type, the problem of the concurrent updates

(update conflicts) can also be eliminated for many applications.

The preliminary implementation of the priority register inside the Cassandra distribu-

ted storage system is intended as a proof of concept. The implementation is added as an

extra module to the Cassandra codebase that is configurable for each column family/table.

The operation of the priority register in the context of the Cassandra workflow complies

with the expected behavior that was tested via Thrift as well as the CQL interfaces. The

preliminary implementation of the priority register opens various interesting dimensions

for the future work including:

188

7.5. CONCLUSION

Multi-Valued Priority Register As discussed in Section 7.4, the initial implementa-

tion of the priority register considers a total order replacement that needs to store only a

single value. The future implementation of the priority register will consider a more generic

case that needs to store multiple values that are equal in the replacement order.

Adaptive Ordering In the initial implementation of the priority register inside Cassan-

dra, the replacement ordering is set during column family/table creation time. A potential

direction for future work is to enable the configuration of the replacement order at run-

time via the ‘Alter’ statement. This would facilitate a potential adaptation of the data

replacement logic according to the changing needs of the application.

Application to Content-Based Networking The design of the priority register is

motivated by applications in cyber-physical and content-based networking, specifically by

SRI’s ENCODERS project [WMJ+15]. The adaptation of the priority register to the open-

source ENCODERS architecture [enc] and the evaluation of benefits and performance in

this application is ongoing work.

Generalization to other Classes of Orders The lexicographical ordering that is used

here for the priority register is just one of many variants of application-defined replacement

orderings. The applications and feasibility of implementing other types of orderings such

as orders induced by information subsumption, information abstraction, or finite partial

orders could be studied. As explained earlier, unlike CRDTs, the general concept of partial-

order replacement does not come with a fixed reconciliation operation such as the LUB.

Hence, if a conflict cannot be resolved directly by the partial order, all data objects involved

remain accessible to the application, which can itself trigger a resolution by injecting a

new data object that is higher in the replacement order other than the objects in conflict.

Clearly, this can be the LUB, but it would also be interesting to identify applications for

which a reconciliation via LUB is not appropriate or sufficient.

Portability to other Datastores The concept of the priority register has been im-

plemented and tested for a column family datastore, namely Cassandra. The portability

189

7.5. CONCLUSION

and ease of implementation of the priority register for other datastore variants such as

key-value stores and document datastores would be worth to investigate. We also believe

that the integration of more general notions of partial-order replacement into distributed

databases is interesting in its own right, because of its applications as a general model for

loosely-coupled distributed computing [SKT14].

Release to the Open Source Community The implementation of the priority register

is under extensive testing and validation before we plan to release the new module to the

Apache Cassandra Open Source Community.

190

Chapter 8

Conclusion and Future Works

Most of the modern distributed database systems rely on quorum-based replica control

protocol and ensures consistency guarantees of the system based on the intersection pro-

perty of the read and write quorums. One of the limitations of this approach is that

the number of nodes to contact before returning response to the client increases linearly

depending on the number of replica nodes configured for the data. In addition to an ex-

tra communication cost spent on request latency to ensure data consistency, if sufficient

number of nodes is unable to contact, the system fails the request affecting the system

availability. This thesis addresses this challenge by proposing a new consistency protocol

called LibRe, which ensures better tradeoff between request latency and data consistency.

The main goal of the LibRe protocol is to find a middle ground between the default

eventual consistency option and the stronger consistency options derived from the quo-

rum intersection property. LibRe is an acronym for Library for Replication. As the name

suggests, the protocol maintains a library for each data item whose recent update is not

propagated to all the replica nodes. According to the protocol, during write operations, the

system issues success message to the client as soon as write is successfully accomplished

on one of the replica nodes similar to the eventual consistency option. But unlike even-

tual consistency option, under LibRe protocol, the replica node sends an advertisement

message to update an in-memory data structure called the LibRe Registry. By forwarding

the read requests to the right replica node by referring to the LibRe Registry, the system

reduces the stale read probability of the read operations. Since the consistency guaran-

191

tees of the LibRe protocol depend on the correctness of the LibRe Registry, one of the

main challenges of the protocol is to ensure the correctness of the registry information.

The performance of the LibRe protocol was evaluated in maintaining the registry both in

centralized as well as in the distributed setup.

Another important problem addressed in this thesis is the challenges involved in eva-

luating the performance of different consistency options. Evaluating the performance of a

distributed systems policy or strategy is expensive in terms of both cost and time. Simula-

tion results are very useful in this situation to obtain an initial performance results. Most of

the existing simulation tools for cloud based environment are focused on a coarse-grained

problems and do not provide functionalities for simulating application specific semantics.

As ensuring replicated data consistency includes application-specific constraints, the exis-

ting simulation tools are not well suited for evaluating consistency policies. The thesis

work addresses this issue by contributing an open-source simulation toolkit called ’Simi-

zer’. Simizer provides a simple programming interface for defining distributed application

behavior that helps to specify how the system should respond according to the incoming re-

quests. By taking the description about the capacity of each node in the cluster and about

request pattern as input, simizer evaluates the application performance and provides the

needed metrics in an output file.

Using Simizer, we have evaluated the performance of the LibRe protocol against some

of the well-known consistency protocols. Following the encouraging results obtained via

simulations, the performance of LibRe protocol was tested by distributing the registry

information among each node in the cluster. A prototype implementation of the enhanced

distributed version of LibRe protocol was developed inside Cassandra distributed storage

system as an additional module and is named CaLibRe. The name CaLibRe symbolizes

Cassandra with LibRe. The performance of the LibRe implementation inside Cassandra

(CaLibRe) was benchmarked against Cassandra’s native consistency option one, all and

quorum. Since existing benchmark tools do not provide needed metrics to evaluate consis-

tency options, one of the existing benchmark tool YCSB (Yahoo ! Cloud Serving Bench-

mark) was extended to evaluate the number of stale reads returned by a storage system

under different consistency options. Both simulation and benchmark results confirm that

192

using LibRe protocol, application would experience similar number of stale reads and

availability as that of the stronger consistency options with lower request latency.

Although most of the eventually consistent systems tune the consistency guarantees of

the system according to the application or users’ decision, deciding an appropriate consis-

tency option of a query/data item during application development time remains difficult

for the application developers. In order to take advantage of adaptive consistency feature to

a higher extent, the consistency needs of a query/data item has to be chosen during query

time rather than during application development. There are enough works in the literature

that study the different factors that could influence the consistency needs of a query/data

item. Most of these works use a separate service on top of the eventually consistent data

store that helps to detect an appropriate consistency option for the incoming requests

based on the absorbed factors. However, querying the data store via a centralized service

would create a bottleneck for the data store and affects the scalability and throughput of

the system. Our thesis work addresses this issue by enabling the data store to adapt the

consistency option of the incoming queries according to an external input. The external

input could be given by the database administrator or by an external service. Based on

the given input, the system can adapt the consistency options of the incoming queries

by itself without the intervention of an external service during query time. The proposed

model was implemented inside Cassandra and successfully tested for a use case where the

load on the system is higher during a specific time-period (peak time) when compared to

rest of the time. The use case chosen for our experimentation is the bike sharing system

of Paris, Velib’. Since the stronger consistency options need to contact sufficient number

of nodes in order to ensure data consistency, applying stronger consistency options during

peak time where the load on the system is already high could overload the system. By

using LibRe protocol for such use case, an application would experience similar number

of stale reads and availability as that of the stronger consistency options while mitigating

the load on the system.

Another dimension of this thesis is focused on the Write-Write Inconsistencies that

are popularly known as Update-Conflicts. In eventually consistent data stores, where any

data replicas of a data item could handle the write operations, the system would often

193

run-down into Update Conflicts. In order to resolve update conflicts, the system has to do

data reconciliation. One of the widely used techniques for resolving update conflicts is via

a system actor (user/ application) with the help of a Multi-Value Register. Multi-Value

Register keeps all the possible values of the conflicting updates and returns all the pos-

sible values during read operations. Following that, a system actor does the reconciliation

according to the domain-specific knowledge and writes the resolved value back to the data

store. The overhead of this approach includes extra bandwidth and latency to return all

the conflicting values during get operations, which could affect the Service Level Agree-

ment (SLA). In addition, if the system user is directly involved in the data reconciliation,

there is a cost on the ’bad’ user experience that could affect the service popularity of the

system. In other case, if the application takes care of the conflict reconciliation without

user intervention, additional efforts during the application development are needed.

The contribution of this thesis for this issue is to parameterize a data type using an

application-defined replacement ordering. Application-defined replacement orderings spe-

cify a necessary condition under which one data item could be replaced by another data

item of the same class. A proof-of-concept of such data type named Priority Register was

implemented inside the Cassandra distributed data store. The behavior of Priority Register

confirms the expected output and validates a data type parameterized by an application-

defined replacement ordering would help to move the client-side domain-specific reconci-

liation directly on the database side.

Perspectives

In this thesis we have addressed different challenges related to quorum-based replica

control protocols. The future perspectives of this thesis and open room for the enhance-

ments are summarized as follows.

Generalization and Application of Priority Register for different classes of

replacement-orderings: In the prototype implementation of the priority register, the

tie between the data items that are equal in the ordering are broken using the times-

tamp associated with each data item. However, in a general case, the data items those

194

are equal in the ordering have to be kept at the database side opening room for the ad-

ditional reconciliation at the client-side. Future perspectives of the priority register has

to address this case. Moreover, the replacement ordering that we focused in the thesis is

Lexicographical Order, which is just one of many variants of the replacement ordering.

The generalization of the priority register model for the application and the feasibility of

implementation for the remaining variants of replacement orderings such as information

subsumption, information abstraction, or finite partial orders remain open for the future

works.

Enhancement and Application of LibRe Protocol: In this thesis, the performance

of LibRe protocol was tested in a single data center replication when there is no churn in

the system. The performance of the protocol during nodes churn and the effect of the multi-

datacenter replication needs to be evaluated. The main goal of LibRe protocol is to find a

middle ground between the default eventual consistency and the strong consistency options

derived via quorum intersection property. Although the choice between Consistency and

Availability conjectured by CAP Theorem is not a binary choice and could be scalable to

different intermediate levels, the consistency guarantees of quorum-based replica control

protocols remain a binary choice. Quorum-based replica control protocols guarantee data

consistency only if a sufficient number of replica nodes are alive, else the protocol fails

the request. Hence, it would be helpful to explore more on the middle ground protocols

that ensure data consistency with similar latency and availability guarantees as that of

the default eventual consistency.

Overriding the application-defined consistency options at the data store le-

vel during run-time: Enabling the eventually consistent data stores to override the

consistency options dictated by the application requests helps to benefit from the adap-

tive consistency feature to a higher extent without the intervention of an external service

during query time. In the prototype implementation, we have considered a simple use case

with pre-computed clustering information. Integrating an online computation technique

that can computes the appropriate consistency options for the data items and adapts the

consistency levels of the application queries incrementally during run-time remains open

195

for the future perspective. This may need an additional work on the efficient management

of the bloom filters at each node in the cluster.

Contribution to Simizer Open Source Code-base: Simizer is an event-driven si-

mulation toolkit written in Java. The code base of simizer is open-source for the public 1

access. Simizer is currently designed for evaluating Read-Read Inconsistency (Replication

Inconsistency). The extension to simizer for evaluating the other inconsistency issues such

as Write-Write Inconsistency (Update-Conflicts) and Read-Write Inconsistency (Snapshot

Isolation) could be interesting. In addition, the simizer cluster description and network si-

mulation class are considered for single datacenter environment. The extension of simizer

for simulating data consistency options for multi-datacenter replication with configurable

network class could be helpful.

1. https://github.com/isep-rdi/simizer

196

Bibliographie

[ABA10] DANIEL ABADI. Problems with cap, and yahoo’s little known nosql

system. http://dbmsmusings.blogspot.fr/2010/04/problems-with-cap-and-

yahoos-little.html, April 2010.

[Aba12] Daniel J. Abadi. Consistency tradeoffs in modern distributed database sys-

tem design: Cap is only part of the story. Computer, 45(2):37–42, 2012.

[ACHM11a] Peter Alvaro, Neil Conway, Joseph M. Hellerstein, and William R. Marczak.

Consistency analysis in bloom: a CALM and collected approach. In CIDR

2011, Fifth Biennial Conference on Innovative Data Systems Research, Asi-

lomar, CA, USA, January 9-12, 2011, Online Proceedings, pages 249–260,

2011.

[ACHM11b] Peter Alvaro, Neil Conway, Joseph M. Hellerstein, and William R. Marczak.

Consistency analysis in bloom: a CALM and collected approach. In CIDR

2011, Fifth Biennial Conference on Innovative Data Systems Research, Asi-

lomar, CA, USA, January, 2011, Online Proceedings, pages 249–260, 2011.

[AD76] Peter A. Alsberg and John D. Day. A principle for resilient sharing of dis-

tributed resources. In Proceedings of the 2Nd International Conference on

Software Engineering, ICSE ’76, pages 562–570, Los Alamitos, CA, USA,

1976. IEEE Computer Society Press.

[AEA] D. Agrawal and A. El Abbadi. The generalized tree quorum protocol: An

efficient approach for managing replicated data. ACM Trans. Database Syst.,

17(4):689–717.

197

BIBLIOGRAPHIE

[Bas08] Robert Basmadjian. UN PROTOCOLE CONTROLE DE REPLIQUE

D’UNE STRUCTURE D’ARBORESCENCE ARBITRAIRE - AN AR-

BITRARY TREE-STRUCTURED REPLICA CONTROL PROTOCOL.

Thése de doctorat, Université Paul Sabatier, Toulouse, France, décembre

2008. (Soutenance le 04/12/2008).

[BCC+03] William H. Bell, David G. Cameron, Luigi Capozza, A. Paul Millar, Kurt

Stockinger, and Floriano Zini. Optorsim - a grid simulator for studying dyna-

mic data replication strategies. International Journal of High Performance

Computing Applications, page 2003, 2003.

[BHG87] Philip A. Bernstein, Vassco Hadzilacos, and Nathan Goodman. Concurrency

Control and Recovery in Database Systems. Addison-Wesley Longman Pu-

blishing Co., Inc., Boston, MA, USA, 1987.

[BLM+12] Laurent Bobelin, Arnaud Legrand, David Alejandro Gonzàlez Màrquez,

Pierre Navarro, Martin Quinson, Frédéric Suter, and Christophe Thiery. Sca-

lable multi-purpose network representation for large scale distributed system

simulation. In Proceedings of the 12th IEEE International Symposium on

Cluster Computing and the Grid, CCGrid’12. IEEE Computer Society Press,

2012.

[BLPF15] Sebastian Burckhardt, Daan Leijen, Jonathan Protzenko, and Manuel Fähn-

drich. Global sequence protocol: A robust abstraction for replicated shared

state. Technical report, Microsoft Research, 2015.

[BMM02] Andrei Broder, Michael Mitzenmacher, and Andrei Broder I Michael Mit-

zenmacher. Network applications of bloom filters: A survey. In Internet

Mathematics, pages 636–646, 2002.

[BP88] Brian N. Bershad and C. Brian Pinkerton. Watchdogs: Extending the unix

file system. In USENIX Winter, pages 267–275. USENIX Association, 1988.

[BS10] Sean Kenneth Barker and Prashant Shenoy. Empirical evaluation of latency-

sensitive application performance in the cloud. In Proceedings of the first

198

BIBLIOGRAPHIE

annual ACM SIGMM conference on Multimedia systems, MMSys ’10, pages

35–46, New York, NY, USA, 2010. ACM.

[Bur14] Sebastian Burckhardt. Principles of eventual consistency. Found. Trends

Program. Lang., 1(1-2):1–150, October 2014.

[BVF+12] Peter Bailis, Shivaram Venkataraman, Michael J. Franklin, Joseph M. Hel-

lerstein, and Ion Stoica. Probabilistically bounded staleness for practical

partial quorums. Proc. VLDB Endow., 5(8):776–787, April 2012.

[Cas13] Planet Cassandra. Composite keys in apache cassandra. http:

//planetcassandra.org/blog/composite-keys-in-apache-cassandra/,

May 2013.

[Cas14] Planet Cassandra. Wide rows in cassandra cql. http://planetcassandra.

org/blog/wide-rows-in-cassandra-cql, January 2014.

[CDG+06] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A

Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E Gru-

ber. Bigtable: a distributed storage system for structured data. In Pro-

ceedings of the 7th USENIX Symposium on Operating Systems Design and

Implementation - Volume 7, OSDI ’06, pages 15–15, 2006.

[CDG+08] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A

Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E Gru-

ber. Bigtable: A distributed storage system for structured data. ACM Tran-

sactions on Computer Systems (TOCS), 26(2):4, 2008.

[CDK01] George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed Systems

(3rd Ed.): Concepts and Design. Addison-Wesley Longman Publishing Co.,

Inc., Boston, MA, USA, 2001.

[CF14] Yousra Chabchoub and Christine Fricker. Classifications of the vélib stations

using kmeans, dynamic time wraping and dba averaging method. IWCIM

’14. IEEE Computer Society, Nov 2014.

199

BIBLIOGRAPHIE

[CGR07] Tushar D. Chandra, Robert Griesemer, and Joshua Redstone. Paxos made

live: an engineering perspective. In Proceedings of the twenty-sixth annual

ACM symposium on Principles of distributed computing, PODC ’07, pages

398–407, New York, NY, USA, 2007. ACM.

[CIAP12] Houssem-Eddine Chihoub, Shadi Ibrahim, Gabriel Antoniu, and Maria S.

Perez. Harmony: Towards automated self-adaptive consistency in cloud sto-

rage. In Proceedings of the 2012 IEEE International Conference on Cluster

Computing, CLUSTER ’12, pages 293–301, Washington, DC, USA, 2012.

IEEE Computer Society.

[CLQ08] Henri Casanova, Arnaud Legrand, and Martin Quinson. Simgrid: A gene-

ric framework for large-scale distributed experiments. In Proceedings of the

Tenth International Conference on Computer Modeling and Simulation, UK-

SIM ’08, pages 126–131, Washington, DC, USA, 2008. IEEE Computer So-

ciety.

[CM86] Michael J. Carey and Waleed A. Muhanna. The performance of multiversion

concurrency control algorithms. ACM Trans. Comput. Syst., 4(4):338–378,

September 1986.

[CMKS14] Jong-Seok Choi, Tim McCarthy, Minyoung Kim, and Mark-Oliver Stehr.

Adaptive wireless networks as an example of declarative fractionated sys-

tems. In Ivan Stojmenovic, Zixue Cheng, and Song Guo, editors, Mobile

and Ubiquitous Systems: Computing, Networking, and Services, volume 131

of Lecture Notes of the Institute for Computer Sciences, Social Informatics

and Telecommunications Engineering, pages 549–563. Springer International

Publishing, 2014.

[CMY+13] Jong-Seok Choi, T. McCarthy, M. Yadav, Minyoung Kim, C. Talcott, and

E. Gressier-Soudan. Application patterns for cyber-physical systems. In

Cyber-Physical Systems, Networks, and Applications (CPSNA), 2013 IEEE

1st International Conference on, pages 52–59, Aug 2013.

200

BIBLIOGRAPHIE

[CPAB13] Houssem-Eddine Chihoub, Maria Perez, Gabriel Antoniu, and Luc Bouge.

Chameleon: Customized application-specific consistency by means of beha-

vior modeling. https://hal.inria.fr/hal-00875947/file/chameleon.

pdf, 2013. [Research Report] <hal-00875947>.

[Cql12] Cql3: allow definition with only a pk. https://issues.apache.org/jira/

browse/CASSANDRA-4361, 2012.

[CRB+11a] Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, Cé ;sar A. F.

De Rose, and Rajkumar Buyya. Cloudsim: A toolkit for modeling and simula-

tion of cloud computing environments and evaluation of resource provisioning

algorithms. Softw. Pract. Exper., 41(1):23–50, January 2011.

[CRB+11b] Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, Cesar A. F. De Rose,

and Rajkumar Buyya. Cloudsim: A toolkit for modeling and simulation

of cloud computing environments and evaluation of resource provisioning

algorithms. Software: Practice and Experience (SPE), January 2011.

[CRS+08] Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silber-

stein, Philip Bohannon, Hans-Arno Jacobsen, Nick Puz, Daniel Weaver, and

Ramana Yerneni. Pnuts: Yahoo !’s hosted data serving platform. Proc. VLDB

Endow., 1(2):1277–1288, August 2008.

[CST+10] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and

Russell Sears. Benchmarking cloud serving systems with ycsb. In Proceedings

of the 1st ACM symposium on Cloud computing, SoCC ’10, pages 143–154,

New York, NY, USA, 2010. ACM.

[Dat12] DataStax. Introduction to composite columns. http://www.datastax.com/

dev/blog/introduction-to-composite-columns-part-1, January 2012.

[dd15] Project Voldemort A distributed database. Configuration. http://

www.project-voldemort.com/voldemort/configuration.html, Septem-

ber 2015.

201

BIBLIOGRAPHIE

[DGMS85] Susan B. Davidson, Hector Garcia-Molina, and Dale Skeen. Consistency

in a partitioned network: A survey. ACM Comput. Surv., 17(3):341–370,

September 1985.

[DHJ+07a] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Ka-

kulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian,

Peter Vosshall, and Werner Vogels. Dynamo: amazon’s highly available key-

value store. In Proceedings of twenty-first ACM SIGOPS symposium on Ope-

rating systems principles, SOSP ’07, pages 205–220, New York, NY, USA,

2007. ACM.

[DHJ+07b] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Ka-

kulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian,

Peter Vosshall, and Werner Vogels. Dynamo: amazon’s highly available key-

value store. SIGOPS Oper. Syst. Rev., 41(6):205–220, October 2007.

[Doc15a] DataStax Documentation. Cassandra glossary: upsert. http://docs.

datastax.com/en/cassandra/2.0/share/glossary/gloss_upsert.html,

June 2015.

[Doc15b] DataStax Documentation. Snitches. http://docs.datastax.com/en/

cassandra/2.0/cassandra/architecture/architectureSnitchesAbout_

c.html, July 2015.

[EGKM04] Patrick T. Eugster, Rachid Guerraoui, Anne-Marie Kermarrec, and Laurent

Massoulieacute ;. Epidemic information dissemination in distributed systems.

Computer, 37(5):60–67, May 2004.

[enc] ENCODERS. http://encoders.csl.sri.com/.

[enc14] ENCODERS software design description v.2.0. http:

//encoders.csl.sri.com/wp-content/uploads/2014/08/

CBMEN-SRI-Design-Description-V2.0-Dist-A.pdf, 2014.

[ES83] Derek L. Eager and Kenneth C. Sevcik. Achieving robustness in distributed

202

BIBLIOGRAPHIE

database systems. ACM Trans. Database Syst., 8(3):354–381, September

1983.

[Fei02] Dror G. Feitelson. Workload modeling for performance evaluation. In Ma-

riaCarla Calzarossa and Salvatore Tucci, editors, Performance Evaluation of

Complex Systems: Techniques and Tools, volume 2459 of Lecture Notes in

Computer Science, pages 114–141. Springer Berlin Heidelberg, 2002.

[FFH12] Florian Fittkau, Sören Frey, and Wilhelm Hasselbring. Cdosim: Simula-

ting cloud deployment options for software migration support. In Pro-

ceedings of the 6th IEEE International Workshop on the Maintenance and

Evolution of Service-Oriented and Cloud-Based Systems (MESOCA 2012),

pages 37–46. IEEE Computer Society, September 2012. doi: 10.1109/ME-

SOCA.2012.6392599.

[FGC+97] Armando Fox, Steven D. Gribble, Yatin Chawathe, Eric A. Brewer, and Paul

Gauthier. Cluster-based scalable network services. SIGOPS Oper. Syst. Rev.,

31(5):78–91, October 1997.

[FGJ+78] Michael J. Flynn, Jim Gray, Anita K. Jones, Klaus Lagally, Holger Opder-

beck, Gerald J. Popek, Brian Randell, Jerome H. Saltzer, and Hans-Rüdiger

Wiehle, editors. Operating Systems, An Advanced Course, London, UK, UK,

1978. Springer-Verlag.

[Fid88] C. J. Fidge. Timestamps in message-passing systems that preserve the partial

ordering. Proceedings of the 11th Australian Computer Science Conference,

10(1):56–66, 1988.

[Geo11] Lars George. HBase: The Definitive Guide. O’Reilly Media, 1 edition, 2011.

[Gif79] David K. Gifford. Weighted voting for replicated data. In Proceedings of the

Seventh ACM Symposium on Operating Systems Principles, SOSP ’79, pages

150–162, New York, NY, USA, 1979. ACM.

[GJTP12] Katja Gilly, Carlos Juiz, Nigel Thomas, and Ramon Puigjaner. Adaptive

203

BIBLIOGRAPHIE

admission control algorithm in a qos-aware web system. Inf. Sci., 199:58–77,

September 2012.

[GL02a] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility

of consistent, available, partition-tolerant web services. SIGACT News,

33(2):51–59, June 2002.

[GL02b] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility

of consistent, available, partition-tolerant web services. SIGACT News,

33(2):51–59, June 2002.

[GMAB+83] H. Garcia-Molina, T. Allen, B. Blaustein, R. M. Chilenskas, and D. R. Ries.

Data-patch: Integrating inconsistent copies of a database after a partition.

In Proceedings of the 3rd IEEE Symposium on Reliability in Distributed Soft-

ware and Database Systems. 1983.

[Gro15] GrockDoc. Read repair. https://www.grockdoc.com/cassandra/2.1/

articles/read-repair_69792070-ab3b-4c0c-a0ed-01cb4898e183, Sep-

tember 2015.

[Hag] Haggle - a content-centric network architecture for opportunistic communi-

cation. https://code.google.com/p/haggle/.

[Hal10] Coda Hale. You can’t sacrifice partition tolerance. http://codahale.com/

you-cant-sacrifice-partition-tolerance/, October 2010.

[HC09] Pat Helland and David Campbell. Building on quicksand. CoRR,

abs/0909.1788, 2009.

[Her86] Maurice Herlihy. A quorum-consensus replication method for abstract data

types. ACM Trans. Comput. Syst., 4(1):32–53, February 1986.

[Hew10] Eben Hewitt. Cassandra: The Definitive Guide. O’Reilly Media, Inc., 1st

edition, 2010.

204

BIBLIOGRAPHIE

[HHB02] Abdelsalam Helal, Abdelsalam Heddaya, and Bharat K. Bhargava. Replica-

tion Techniques in Distributed Systems, volume 4 of Advances in Database

Systems. Kluwer, 2002.

[How93] J.H. Howard. Using reconciliation to share files between occasionally connec-

ted computers. In Workstation Operating Systems, 1993. Proceedings.,

Fourth Workshop on, pages 56–60, Oct 1993.

[HW90] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correct-

ness condition for concurrent objects. ACM Trans. Program. Lang. Syst.,

12(3):463–492, July 1990.

[IOY+11] A. Iosup, S. Ostermann, M.N. Yigitbasi, R. Prodan, T. Fahringer, and D. H J

Epema. Performance analysis of cloud computing services for many-tasks

scientific computing. Parallel and Distributed Systems, IEEE Transactions

on, 22(6):931–945, 2011.

[JRS11] F.P. Junqueira, B.C. Reed, and M. Serafini. Zab: High-performance broad-

cast for primary-backup systems. In Dependable Systems Networks (DSN),

2011 IEEE/IFIP 41st International Conference on, pages 245–256, 2011.

[Kan14] C.Y. Kan. Cassandra Data Modeling and Analysis. Packt Publishing, 2014.

[KBAK10] D. Kliazovich, P. Bouvry, Y. Audzevich, and S.U. Khan. Greencloud: A

packet-level simulator of energy-aware cloud computing data centers. In

Global Telecommunications Conference (GLOBECOM 2010), 2010 IEEE,

pages 1–5, 2010.

[KGK+13] Minyoung Kim, Ashish Gehani, Je-Min Kim, Dawood Tariq, Mark-Oliver

Stehr, and Jin-soo Kim. Maximizing availability of content in disruptive

environments by cross-layer optimization. In Proceedings of the 28th Annual

ACM Symposium on Applied Computing, SAC ’13, pages 447–454, New York,

NY, USA, 2013. ACM.

[KHAK09] Tim Kraska, Martin Hentschel, Gustavo Alonso, and Donald Kossmann.

205

BIBLIOGRAPHIE

Consistency rationing in the cloud: Pay only when it matters. Proc. VLDB

Endow., 2(1):253–264, August 2009.

[KKS+12] Jinwoo Kim, Minyoung Kim, Mark-Oliver Stehr, Hyunok Oh, and Soonhoi

Ha. A parallel and distributed meta-heuristic framework based on partially

ordered knowledge sharing. Journal of Parallel and Distributed Computing,

72(4):564 – 578, 2012.

[KLCG15] Sathiya Prabhu Kumar, Sylvain Lefebvre, Raja Chiky, and Eric Gressier-

Soudan. Calibre: A better consistency-latency tradeoff for quorum based

replication systems. In Qiming Chen, Abdelkader Hameurlain, Farouk Tou-

mani, Roland Wagner, and Hendrik Decker, editors, Database and Expert

Systems Applications - 26th International Conference, DEXA 2015, Valen-

cia, Spain, September 1-4, 2015, Proceedings, Part II, volume 9262 of Lecture

Notes in Computer Science, pages 491–503. Springer, 2015.

[KLCS14] S.P. Kumar, S. Lefebvre, R. Chiky, and E.G. Soudan. Evaluating consistency

on the fly using ycsb. In IWCIM, 2014., pages 1–6, Nov 2014.

[KLL+97] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Le-

vine, and Daniel Lewin. Consistent hashing and random trees: Distributed

caching protocols for relieving hot spots on the world wide web. In Procee-

dings of the Twenty-ninth Annual ACM Symposium on Theory of Computing,

STOC ’97, pages 654–663, New York, NY, USA, 1997. ACM.

[Klo10] Rusty Klophaus. Riak core: building distributed applications without shared

state. In ACM SIGPLAN Commercial Users of Functional Programming,

CUFP ’10, pages 14:1–14:1, New York, NY, USA, 2010. ACM.

[KS93a] P. Kumar and M. Satyanarayanan. Supporting application-specific resolution

in an optimistically replicated file system. InWorkstation Operating Systems,

1993. Proceedings., Fourth Workshop on, pages 66–70, Oct 1993.

[KS93b] P. Kumar and M. Satyanarayanan. Supporting application-specific resolution

206

BIBLIOGRAPHIE

in an optimistically replicated file system. InWorkstation Operating Systems,

1993. Proceedings., Fourth Workshop on, pages 66–70, Oct 1993.

[KSKH10] Minyoung Kim, Mark-Oliver Stehr, Jinwoo Kim, and Soonhoi Ha. An appli-

cation framework for loosely coupled networked cyber-physical systems. In

IEEE/IFIP Int. Conf. Embedded and Ubiquitous Computing, EUC’10, pages

144–153, 2010.

[Kum91] Akhil Kumar. Hierarchical quorum consensus: A new algorithm for managing

replicated data. IEEE Trans. Comput., 40(9):996–1004, September 1991.

[Kum15] Sathiya Prabhu Kumar. Evaluating data consistency using ycsb. https:

//github.com/isep-rdi/YCSB, September 2015.

[LAEA95a] M. L. Liu, D. Agrawal, and A. El Abbadi. The performance of replica control

protocols in the presence of site failures. In Proceedings of the 7th IEEE

Symposium on Parallel and Distributeed Processing, SPDP ’95, pages 470–,

Washington, DC, USA, 1995. IEEE Computer Society.

[LAEA95b] M.L. Liu, D. Agrawal, and A. El Abbadi. The performance of replica control

protocols in the presence of site failures. In Parallel and Distributed Proces-

sing, 1995. Proceedings. Seventh IEEE Symposium on, pages 470–477, Oct

1995.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a distributed

system. Commun. ACM, 21(7):558–565, July 1978.

[Lam79] L. Lamport. How to make a multiprocessor computer that correctly executes

multiprocess programs. Computers, IEEE Transactions on, C-28(9):690–691,

Sept 1979.

[Lam89] Leslie Lamport. A simple approach to specifying concurrent systems. Com-

mun. ACM, 32(1):32–45, January 1989.

[LAS13] Rui Liu, Ashraf Aboulnaga, and Kenneth Salem. Dax: A widely distributed

207

BIBLIOGRAPHIE

multitenant storage service for dbms hosting. Proc. VLDB Endow., 6(4):253–

264, February 2013.

[Lef13] Sylvain Lefebvre. Load distribution services for the Cloud : a multimedia data

management example. Theses, Conservatoire national des arts et metiers -

CNAM, December 2013.

[LKC14] Sylvain Lefebvre, Sathiya Prabhu Kumar, and Raja Chiky. Simizer: Evalua-

ting consistency trade offs through simulation. In Proceedings of the First

Workshop on Principles and Practice of Eventual Consistency, PaPEC ’14,

pages 6:1–6:2, New York, NY, USA, 2014. ACM.

[LLJ07] Yijun Lu, Ying Lu, and Hong Jiang. Idea:: An infrastructure for detection-

based adaptive consistency control in replicated services. In Proceedings of

the 16th International Symposium on High Performance Distributed Compu-

ting, HPDC ’07, pages 223–224, New York, NY, USA, 2007. ACM.

[LM10] Avinash Lakshman and Prashant Malik. Cassandra: a decentralized structu-

red storage system. SIGOPS Oper. Syst. Rev., 44(2):35–40, April 2010.

[LPC+12] Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno Preguiça,

and Rodrigo Rodrigues. Making geo-replicated systems fast as possible,

consistent when necessary. In Proceedings of the 10th USENIX Conference

on Operating Systems Design and Implementation, OSDI’12, pages 265–278,

Berkeley, CA, USA, 2012. USENIX Association.

[LS] Kapang Lego and Dipankar Sutradhar. Comparative study of adhoc routing

protocol aodv, dsr and dsdv in mobile adhoc network 1.

[M-.08] M-.O. Stehr and Carolyn Talcott. Planning and learning algorithms for

routing in disruption-tolerant networks. In In Proc. of IEEE Military Com-

munications Conference, MILCOM 2008, 2008.

[Mai08] Siddharth Maini. Mobile database systems, vijay, kumar. wiley-interscience

inc., hoboken, nj (2006), isbn: 0-471-46792-8. Inf. Process. Manage.,

44(1):405–407, 2008.

208

BIBLIOGRAPHIE

[MB02] Manzur Murshed and Rajkumar Buyya. Using the gridsim toolkit for en-

abling grid computing education. In Proc. of the Int. Conf. on Commu-

nication Networks and Distributed Systems Modeling and Simulation, pages

18–24, 2002.

[MFF] S. Mccanne, S. Floyd, and K. Fall. ns2 (network simulator 2). http://www-

nrg.ee.lbl.gov/ns/.

[Mol07] Ingo Molnár. Cfs scheduler, 2007.

[MR97] Dahlia Malkhi and Michael Reiter. Byzantine quorum systems. STOC ’97,

pages 569–578. ACM, 1997.

[MRW97] Dahlia Malkhi, Michael Reiter, and Rebecca Wright. Probabilistic quorum

systems. PODC ’97, pages 267–273. ACM, 1997.

[MSV+10] Jesús Montes, Alberto Sánchez, Julio J. Valdés, María S. Pérez, and Pi-

lar Herrero. Finding order in chaos: A behavior model of the whole grid.

Concurr. Comput. : Pract. Exper., 22(11):1386–1415, August 2010.

[MSZ11] Carlos Baquero Marc Shapiro, Nuno Preguicça and Marek Zawirski. A com-

prehensive study of convergent and commutative replicated data types. RR-

7506, INRIA, 2011.

[Mur13] Arinto Murdopo. Consistency tradeoff in modern distributed db.

http://www.otnira.com/2012/04/21/consistency-tradeoff-in-modern-

distributed-db/, June 2013.

[Net] Networked Cyber-Physical Systems @ SRI. http://ncps.csl.sri.com.

[NVPC+12] Alberto Núñez, Jose L. Vázquez-Poletti, Agustin C. Caminero, Gabriel G.

Castañé, Jesus Carretero, and IgnacioM. Llorente. icancloud: A flexible

and scalable cloud infrastructure simulator. Journal of Grid Computing,

10(1):185–209, 2012.

[NW98] Moni Naor and Avishai Wool. The load, capacity, and availability of quorum

systems. SIAM J. Comput., 27(2):423–447, April 1998.

209

BIBLIOGRAPHIE

[OO15] Diego Ongaro and John Ousterhout. The raft consensus algorithm.

https://raftconsensus.github.io, June 2015.

[OUMI06] Gérald Oster, Pascal Urso, Pascal Molli, and Abdessamad Imine. Data

consistency for p2p collaborative editing. In Proceedings of the 2006 20th

Anniversary Conference on Computer Supported Cooperative Work, CSCW

’06, pages 259–268, New York, NY, USA, 2006. ACM.

[PBA+10] Nuno M. Preguiça, Carlos Baquero, Paulo Sérgio Almeida, Victor Fonte,

and Ricardo Gonçalves. Dotted version vectors: Logical clocks for optimistic

replication. CoRR, abs/1011.5808, 2010.

[PMSL09] Nuno Preguica, Joan Manuel Marques, Marc Shapiro, and Mihai Letia. A

commutative replicated data type for cooperative editing. In Proceedings

of the 2009 29th IEEE International Conference on Distributed Computing

Systems, ICDCS ’09, pages 395–403, Washington, DC, USA, 2009. IEEE

Computer Society.

[PPR+83] Jr. Parker, D.S., Gerald J. Popek, G. Rudisin, A. Stoughton, B.J. Walker,

E. Walton, J.M. Chow, D. Edwards, S. Kiser, and C. Kline. Detection of

mutual inconsistency in distributed systems. Software Engineering, IEEE

Transactions on, SE-9(3):240–247, May 1983.

[Pri08] Dan Pritchett. Base: An acid alternative. Queue, 6(3):48–55, May 2008.

[PSL03] Nuno Preguiça, Marc Shapiro, and J. Legatheaux Martins. Automating

semantics-based reconciliation for mobile transactions. pages 515–524, La-

Colle-sur-Loup, France, October 2003.

[Pun94] Kumar Puneet. Mitigating the effects of optimistic replication in a distribu-

ted file system. PhD thesis, Carnegie-Mellon University. Computer Science

Department. CMU-CS-94-215., 1994.

[Ram03] Gehrke Ramakrishnan. Database Management Systems. McGraw-Hill, third

edition, 2003.

210

BIBLIOGRAPHIE

[RD15a] Riak-Doc. Riak 2.0. http://docs.basho.com/riak/latest/intro-v20/,

June 2015. Version 2.1.1.

[RD15b] Riak-Docs. Client and server side conflict resolution. http:

//docs.basho.com/riak/latest/dev/using/conflict-resolution/

#Client-and-Server-side-Conflict-Resolution, June 2015. Version

2.1.1.

[RD15c] Riak-Docs. Read repair vs active anti entropy. https:

//docs.basho.com/riak/2.1.1/theory/concepts/aae/

#Read-Repair-vs-Active-Anti-Entropy, June 2015. Version 2.11.

[RHR+94] Peter Reiher, John Heidemann, David Ratner, Greg Skinner, and Gerald

Popek. Resolving file conflicts in the ficus file system. In Proceedings of

the USENIX Summer 1994 Technical Conference on USENIX Summer 1994

Technical Conference - Volume 1, USTC’94, pages 12–12, Berkeley, CA, USA,

1994. USENIX Association.

[RJKL11] Hyun-Gul Roh, Myeongjae Jeon, Jin-Soo Kim, and Joonwon Lee. Replicated

abstract data types: Building blocks for collaborative applications. J. Parallel

Distrib. Comput., 71(3):354–368, March 2011.

[RL93] Michael Rabinovich and Edward D. Lazowska. An efficient and highly avai-

lable read-one write-all protocol for replicated data management. In Pro-

ceedings of the Second International Conference on Parallel and Distributed

Information Systems, PDIS ’93, pages 56–66, Los Alamitos, CA, USA, 1993.

IEEE Computer Society Press.

[Sco12] Colin Scott. Latency numbers every programmer should know. http://www.

eecs.berkeley.edu/~rcs/research/interactive_latency.html, 2012.

[SE98] Chengzheng Sun and Clarence Ellis. Operational transformation in real-

time group editors: Issues, algorithms, and achievements. In Proceedings of

the 1998 ACM Conference on Computer Supported Cooperative Work, CSCW

’98, pages 59–68, New York, NY, USA, 1998. ACM.

211

BIBLIOGRAPHIE

[SF12] Pramod J. Sadalage and Martin Fowler. NoSQL Distilled: A Brief Guide to

the Emerging World of Polyglot Persistence. Addison-Wesley Professional,

1st edition, 2012.

[SHCD06] James Scott, Pan Hui, Jon Crowcroft, and Christophe Diot. Haggle: A net-

working architecture designed around mobile users. In Proceedings of the

Third Annual IFIP Conference on Wireless On-Demand Network Systems

and Services (WONS 2006). IEEE, January 2006.

[She15] Justin Sheehy. There is no now: Problems with simultaneity in distributed

systems. https://queue.acm.org/detail.cfm?id=2745385, March 2015.

[Sit08] Emil Sit. Storing and Managing Data in a Distributed Hash Table. PhD

thesis, Massachusetts Institute of Technology, June 2008.

[SKG+12] Roshan Sumbaly, Jay Kreps, Lei Gao, Alex Feinberg, Chinmay Soman, and

Sam Shah. Serving large-scale batch computed data with project voldemort.

In Proceedings of the 10th USENIX conference on File and Storage Technolo-

gies, FAST’12, pages 18–18, Berkeley, CA, USA, 2012. USENIX Association.

[SKRC10] K. Shvachko, Hairong Kuang, S. Radia, and R. Chansler. The hadoop distri-

buted file system. In Mass Storage Systems and Technologies (MSST), 2010

IEEE 26th Symposium on, pages 1–10, May 2010.

[SKS06] Abraham Silberschatz, Henry Korth, and S. Sudarshan. Database Systems

Concepts. McGraw-Hill, Inc., New York, NY, USA, 5 edition, 2006.

[SKT10] Mark-Oliver Stehr, Minyoung Kim, and Carolyn Talcott. Toward distribu-

ted declarative control of networked cyber-physical systems. In Proc. 7th

Int. Conf. Ubiquitous Intelligence and Computing, UIC’10, pages 397–413.

Springer-Verlag, 2010.

[SKT14] Mark-Oliver Stehr, Minyoung Kim, and Carolyn Talcott. Partially ordered

knowledge sharing and fractionated systems in the context of other models

for distributed computing. In Specification, Algebra, and Software, volume

8373 of Lecture Notes in Computer Science, pages 402–433, 2014.

212

BIBLIOGRAPHIE

[SL13a] Georgia Sakellari and George Loukas. A survey of mathematical models,

simulation approaches and testbeds used for research in cloud computing.

Simulation Modelling Practice and Theory, 2013.

[SL13b] Raja Chiky Sylvain Lefebvre, Sathiya Prabhu.K. Simizer: A cloud simulation

tool. https://forge.isep.fr/projects/simizer/, March 2013.

[SPBZ11a] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. A com-

prehensive study of Convergent and Commutative Replicated Data Types.

Technical Report 7506, January 2011.

[SPBZ11b] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. Conflict-

free replicated data types. In Proceedings of the 13th International Confe-

rence on Stabilization, Safety, and Security of Distributed Systems, SSS’11,

pages 386–400, Berlin, Heidelberg, 2011. Springer-Verlag.

[SS05] Yasushi Saito and Marc Shapiro. Optimistic replication. ACM Comput.

Surv., 37(1):42–81, March 2005.

[SSH+07] Jing Su, James Scott, Pan Hui, Jon Crowcroft, Eyal De Lara, Christophe

Diot, Ashvin Goel, Meng How Lim, and Eben Upton. Haggle: Seamless

networking for mobile applications. In Proceedings of the 9th International

Conference on Ubiquitous Computing, UbiComp ’07, pages 391–408, Berlin,

Heidelberg, 2007. Springer-Verlag.

[SZWL11] S. Sakr, Liang Zhao, H. Wada, and A. Liu. Clouddb autoadmin: Towards a

truly elastic cloud-based data store. In Web Services (ICWS), 2011 IEEE

International Conference on, pages 732–733, July 2011.

[TAPV10] M. Tlili, R. Akbarinia, E. Pacitti, and P. Valduriez. Scalable p2p reconci-

liation infrastructure for collaborative text editing. In Advances in Data-

bases Knowledge and Data Applications (DBKDA), 2010 Second Internatio-

nal Conference on, pages 155–164, April 2010.

213

BIBLIOGRAPHIE

[TS06] Andrew S. Tanenbaum and Maarten van Steen. Distributed Systems: Prin-

ciples and Paradigms (2Nd Edition). Prentice-Hall, Inc., Upper Saddle River,

NJ, USA, 2006.

[TTP+95] D. B. Terry, M. M. Theimer, Karin Petersen, A. J. Demers, M. J. Spreitzer,

and C. H. Hauser. Managing update conflicts in bayou, a weakly connected

replicated storage system. SIGOPS Oper. Syst. Rev., 29(5):172–182, Decem-

ber 1995.

[Vel] Velib - mairie de paris. http://en.velib.paris.fr.

[Vog08] Werner Vogels. Eventually consistent.

http://queue.acm.org/detail.cfm ?id=1466448, October 2008.

[Vog09] Werner Vogels. Eventually consistent. Commun. ACM, 52(1):40–44, January

2009.

[Vog12] Werner Vogels. Back-to-basics weekend reading - weighted voting

for replicated data. http://www.allthingsdistributed.com/2012/11/

weighted-voting.html, November 2012.

[Vol15] Project Voldemort. Physical architecture options. http://www.

project-voldemort.com/voldemort/design.html, April 2015.

[Vuk10] Marko Vukolic. Remarks: The origin of quorum systems. Bulletin of the

EATCS, 102:109–110, 2010.

[VV15] Paolo Viotti and Marko Vukolic. Consistency in non-transactional distribu-

ted storage systems. CoRR, abs/1512.00168, 2015.

[WFZ+11] Hiroshi Wada, Alan Fekete, Liang Zhao, Kevin Lee, and Anna Liu. Data

consistency properties and the trade-offs in commercial cloud storage: the

consumers’ perspective. In CIDR 2011, Fifth Biennial Conference on In-

novative Data Systems Research, Asilomar, CA, USA, January 9-12, 2011,

Online Proceedings, pages 134–143. www.cidrdb.org, 2011.

214

BIBLIOGRAPHIE

[Wik13a] Cassandra Wiki. Architectureantientropy. https://wiki.apache.org/

cassandra/ArchitectureAntiEntropy, November 2013.

[Wik13b] Cassandra Wiki. Cassandra limitations. http://wiki.apache.org/

cassandra/CassandraLimitations, November 2013.

[Wik13c] Cassandra Wiki. Hinted handoff. https://wiki.apache.org/cassandra/

HintedHandoff, November 2013.

[WMJ+15] Samuel Wood, James Mathewson, Joshua Joy, Mark-Oliver Stehr, Minyoung

Kim, Ashish Gehani, Mario Gerla, Hamid Sadjadpour, and J.J. Garcia-Luna-

Aceves. ICEMAN: A practical architecture for situational awareness at the

network edge. In Logic, Rewriting, and Concurrency, Lecture Notes in Com-

puter Science, 2015.

[WPE+83] Bruce Walker, Gerald Popek, Robert English, Charles Kline, and Greg Thiel.

The locus distributed operating system. SIGOPS Oper. Syst. Rev., 17(5):49–

70, October 1983.

[WYW+10] Ximei Wang, Shoubao Yang, Shuling Wang, Xianlong Niu, and Jing Xu. An

application-based adaptive replica consistency for cloud storage. In Procee-

dings of the 2010 Ninth International Conference on Grid and Cloud Com-

puting, GCC ’10, pages 13–17, Washington, DC, USA, 2010. IEEE Computer

Society.

[XSK+14] Chao Xie, Chunzhi Su, Manos Kapritsos, Yang Wang, Navid Yaghmaza-

deh, Lorenzo Alvisi, and Prince Mahajan. Salt: Combining acid and base

in a distributed database. In Proceedings of the 11th USENIX Conference

on Operating Systems Design and Implementation, OSDI’14, pages 495–509,

Berkeley, CA, USA, 2014. USENIX Association.

[YV00] Haifeng Yu and Amin Vahdat. Design and evaluation of a continuous consis-

tency model for replicated services. In Proceedings of the 4th Conference

on Symposium on Operating System Design & Implementation - Volume 4,

OSDI’00, pages 21–21, Berkeley, CA, USA, 2000. USENIX Association.

215

[ZWXY13] Hao Zhang, Yonggang Wen, Haiyong Xie, and Nenghai Yu. Distributed Hash

Table - Theory, Platforms and Applications. Springer Briefs in Computer

Science. Springer, 2013.

Glossaire

— CNAM : Conservatoire National des Arts et Métiers

— LibRe: Library for Replication.

— CaLibRe: Cassandra with LibRe.

— Y CSB: Yahoo Cloud Serving Bechmark.

— ACID: Atomicity, Consistency, Isolation, Durability

— BASE: Basic Availability, Soft state, Eventual consistency.

— DHT : Distributed Hash Table.

— ROWA: Read One, Write All.

— ROWA−A: Read One, Write All Available.

217

Sathiya Prabhu KUMAR
Adaptive Consistency Protocols for
Replicated Data in Modern Storage

Systems with High Degree of Elasticity

Résumé :
Cette thèse adresse le domaine scientifique des systèmes distribués et plus particulièrement de la cohérence
des données répliquées partagées pour les systèmes de stockage de nouvelle génération. Ce travail de thèse
aborde trois défis qui contribuent à la gestion de la cohérence des données pour des systèmes fondés sur
la cohérence éventuelle (eventual Consistency). La première contribution porte sur LibRe, "Library for
Replication", un protocole de gestion de cohérence des données centré sur les lectures qui minimise la
latence des opérations de lecture et d’écriture. LibRe est réalisé sous la forme d’une bibliothèque. Afin
d’évaluer la performance de LibRe, nous avons contribué à l’implantation d’un outil de simulation sous
licence logiciel libre, Simizer, et, à l’extension du benchmark YCSB. La seconde contribution vise à
optimiser la gestion de la cohérence des données à l’exécution. Au lieu de choisir une option de cohérence
par défaut lors des accès, le système peut la remplacer grâce à des informations externes, fournies par un
contexte, une application, un administrateur. Ce modèle est validé par une implémentation au sein de
Cassandra. Enfin, la dernière contribution se concentre sur le problème de la réconciliation de données
lors de l’émergence de copies incohérentes. Elle s’appuie sur la notion de Registre à Priorité (Priority
Register). Elle permet de déplacer la résolution de la réconcilation du client vers le serveur de base de
données. La réconciliation peut alors s’appuyer sur des critères spécifiques à l’application.
Mots clés :
NoSql, Théorème CAP, Cohérence éventuelle, Systèmes de Quorums.

Abstract :
The contribution of this thesis work mainly focuses on three types of challenges in ensuring data consis-
tency of an eventually consistent data store. In the first contribution, the thesis focuses on ensuring
consistency of the read operation with minimum read and write latencies with the help of a proposed
protocol called LibRe. LibRe is an acronym for Library for Replication. According to the protocol, the
system keeps track of data items whose recent update is not propagated to all the replica nodes. The
registry is used during read operations to forward the read requests to a replica node that contains the
most recent version of the needed data item. In order to evaluate the performance of LibRe protocol,
the thesis also contributed implementation of an open-source simulation toolkit called Simizer and the
extension of an existing benchmark tool called YCSB. The second contribution of the thesis tries to
eliminate the necessity to contact a middleware service for choosing needed consistency options of the
application queries during run-time. The final contribution focuses on moving slow and tedious client-side
data reconciliation process directly on the database-side with the help of a proposed data type called
Priority Register.
Keywords :
NoSql Systems, CAP Theorem, Eventual Consistency, Quorum Systems.

