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Preface

This thesis consists of 4 chapters.

The first chapter is of an introductory nature. In more or less historical
order, it discusses the basic invariants associated to algebraic number
fields, and brings up the fundamental question whether or to which extent
such invariants characterize the number field. It surveys some of the
older results in the area before focusing on the case of absolute abelian
Galois groups that occurs center stage in the next two chapters, and on a
question for elliptic curves that can be attacked with the techniques from
those two chapters.

Chapters 2 and 3 are based on our 2013 paper [?]. In these chapters,
which are not subject to the size restrictions that papers for the Algo-
rithmic Number Theory Symposium ANTS have to satisfy, there is more
background material than in [?]. More importantly, the results in these
Chapters go beyond the results in the paper, and they include the non-
trivial proof of the fact that the key criterion to find imaginary quadratic
fields with ‘minimal’ absolute abelian Galois groups (Theorem can
also be used to find Galois groups that are provably non-minimal.

Chapter 4 moves in a different direction. It explicitly computes adelic
point groups of elliptic curves over the field of rational numbers, and
shows that the outcome can be made as explicit as in the case of the
minimal absolute abelian Galois groups, and, in an even stronger sense
than in that case, barely depends on the particular elliptic curve. The
results obtained do generalize to arbitrary number fields, and it is this
generalization that we plan to deal with in a forthcoming paper.






CHAPTER 1

Invariants of Number Fields

ABSTRACT. In this introductory chapter, we investigate to which
extent the various invariants associated to a number field characterize
the number field up to isomorphism. Special attention will be given
to the absolute abelian Galois group of the number field, which
occurs center stage in Chapters 2 and 3. In the final section, we
discuss a question on elliptic curves that can be studied using the

techniques from those Chapters.

“Reason is immortal,

all else is mortal.”

Pythagoras, 570 — 495 BC

1.1. Classical Invariants

Algebraic number fields, which are finite field extensions of Q, are
the key objects in algebraic number theory. They can be given explicitly
in the form K = Q(a) = Q[X]/(f), where @ = X mod f is the root of
some monic irreducible polynomial f € Z[X]. Given in this way, they
come with a subring Z[a] = Z[X]/(f) of K that can often play the role
that Z plays for the arithmetic in Q.

Many classical problems in number theory naturally lead to number
rings Z[a]. The Pell equation 22 = dy? + 1, which was popularized by
Fermat’s 1657 challenge to the British mathematicians, can be written [?]
as

(z+yVd) - (z —yVd) =1
inside the quadratic number ring Z[\/&], and finding its integral solutions
is tantamount to determining the units « + yv/d in that ring. Fermat’s

1



2 Chapter 1. Invariants of Number Fields

equation a? + yP = 2P for odd prime exponents p was taken up in the
19" century by Kummer in the form
p

[[@+vg) =2

i=1
inside the cyclotomic number ring Z[(p]. Euler pioneered with the arith-
metic of what we now view as quadratic number rings, discovering the
quadratic reciprocity law by numerical experimentation. Gauss proved
the quadratic reciprocity law, and generalizations to cubic and biquadratic
reciprocity, by Eisenstein and Gauss himself, were found to have their
natural formulation in the quadratic rings Z[(3] and Z[i]. These rings be-
have in many ways like the familiar ring Z of ordinary integers, admitting

unique prime factorization, and having only finitely many units.

Arbitrary number rings are not in general so well-behaved. Kummer
discovered in the 1840s that his cyclotomic number rings Z[(,] may not
have unique factorization, and went on to develop a theory of prime ideal
factorization. The failure of unique factorization of elements is caused
by the existence of non-principal ideals in number rings, and they have a

class group measuring the extent of non-principality.

The theory of general number rings, as developed by Dedekind and
others during the 19th century, shows the potential need to enlarge number
rings such as Z[a] to the mazimal order Ok contained in K = Q(a),
which is known as the ring of integers of the number field Q(«). Only
these Dedekind domains admit unique prime ideal factorization. In the
case of quadratic rings Z[v/d], this gave an ideal theoretic foundation to
the older theory of binary quadratic forms due to Gauss, which did not

explicitly mention quadratic rings.

The class group Cli and the unit group O7; of the ring of integers
of K are the basic invariants of K needed to deal with the ideal theory
of Ok. The unit group O} is a finitely generated abelian group by a
theorem of Dirichlet [?, Theorem 5.13|, and the class group is a finite
abelian group [?, Corollary 5.9]. These finiteness results may be shown in
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an elegant way using techniques from the geometry of numbers developed
around 1900 by Minkowski. They can be applied since Og can be
viewed as a lattice in the Euclidean space K ®q R, and O} also embeds
logarithmically as a lattice in a Euclidean space. The size of the respective
covolumes of these lattices is measured by the discriminant Ag € Z and
the regulator R € R of K.

The proofs of the finiteness results given using the geometry of num-
bers are often not constructive, and the actual computation of class groups
and unit groups usually proceeds by factoring sufficiently many principal
ideals over a well-chosen factor base of prime ideals. In order to decide
that ‘sufficiently many’ ideals have been factored, one needs the analytic
approximation of class number and regulator provided by the Dedekind
zeta function (x of the number field. This is a meromorphic function on
C given by (k(s) = > o21co, (VI)7* for R(s) > 1. It has a simple pole
at s =1, and its residue

hx Rk
wi|Ax|1/?

at this pole combines all the classical invariants of the number field K: the

9" (27772

number of real embeddings r1, the number of pairs of complex embeddings
r9, the class number hx = # Clg, the regulator R, the number wg of
roots of unity in K, and the discriminant Ag. From the Euler product

o) =[]0 - 5550

P

it is clear that (i encodes information on the splitting behavior in K of

the primes of Q.

1.2. 20" Century Invariants

0*" century, Hensel and Hasse developed algebraic

In the early 2
number theory from a local point of view. In this setting, every non-zero
prime ideal p of the ring of integers of K corresponds to an equivalence

class of valuations |- |, : K — R0, and gives rise to a completion K,
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of K at p that is usually referred to as a (non-archimedean) local field.
Similarly, the real and complex embeddings of K can be viewed as ‘infinite’
primes of K giving rise to the archimedean completions R and C of K.
This point of view gives rise to the study of global invariants in terms
of local data. In this way the class group Clg, being the quotient of the
group of locally principal Og-ideals modulo the group of globally principal

Ok-ideals, becomes an obstruction group to a local-global principle.

Around 1940, Chevalley combined all completions of a number field
K into a single topological ring, Ax = H/p K, the adele ring of K. It
is the restricted direct product of all completions of K, both finite and
infinite, consisting of those elements in the full cartesian product that are

almost everywhere integral. More specifically we have,

(1.1)  Ag ={(zp)p € l_IK]J t|zplp < 1 for all but finitely many p}.
p
The number field K embeds along the diagonal into Ak, and becomes
a discrete subgroup of Ag in the restricted product topology.

The unit group A%} = H; K of the adele ring is the idele group of K.
It is the restricted direct product of the groups K7 with respect to the unit
groups Oy of the local ring of integers Oy of K. Under the corresponding
restricted product topology, K* embeds diagonally in A} as a discrete
subgroup. The quotient Cx = A} /K*, the idele class group of K, is an
invariant of K that plays a key role in class field theory (Section 2.5). It
is naturally a locally compact abelian group, and by the product formula
[1,lz], = 1 for global elements x € K*, it comes with a well-defined
multiplicative absolute value Cx — Rq given by (zp), — [, [zp[p. The
subgroup C’}< of idele classes of absolute value 1 is a compact topological
group, a fact reflecting the finiteness results for class group and unit
group coming out of the geometry of numbers [?, Chapter XII, §16-18].

Every number field K also comes with an automorphism group
Aut(K), which is always finite, and of order equal to the degree [K : Q]
in the case where K is Galois over Q. The group Aut(K) acts on all
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invariants defined so far (e.g. Clg, Oy, A}, Ck), as these invariants are
of an “internal” nature: they are constructed out of objects that “live
inside K”.

Much more information is contained in the absolute Galois group
Gk of K, which is defined as the automorphism group over K of an
algebraic closure K of K. Being a profinite group, it naturally comes
with a Krull topology (cf. Section 2.1). If we view all algebraic number
fields as contained in some fixed algebraic closure Q of Q, the groups
G are the subgroups of the absolute Galois group Gq of the rational
number field that are open and (hence) of finite index in Gq. The group
G is also a fundamental invariant of K, and in contrast to the previous
“internal” invariants, it may be considered as an “external” invariant as it
does not directly come from a structure inside the number field K. In
line with this, automorphisms of K do not have a natural action on G.
More precisely, an automorphism of K gives rise to an automorphism of
Gk that is only uniquely defined up to an inner automorphism of G.

The absolute Galois group Gk of a number field is a huge profinite
group that we are currently unable to describe ‘explicitly’ for any number
field K. The situation changes however if we pass from G to its maximal
abelian quotient Ax = G2P, which describes only those extensions of K
that are abelian. Automorphisms of K do have a natural action on A,
and there is in fact an “internal” description of Ax that is provided by
class field theory, a theory established around 1920 by Takagi and Artin.

More specifically, we have the Artin reciprocity map
* * ¢ ab

that provides a generalization of the older quadratic, cubic and biquadratic
reciprocity laws, and shows that in abelian extensions of number fields, the
splitting of the primes only depends on congruences modulo a “conductor”.
We will provide more details on this theory in Section 2.5.
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1.3. Which Invariants Characterize Number Fields?

We now come to the basic type of question for this chapter: to which
extent is a number field characterized by its associated invariants? This
is a very natural mathematical question, and we may ask it in the case of
number fields for all invariants that we have defined so far. Some of these
questions turn out to be interesting, others less so. We will illustrate this

by looking at the most classical invariants first.

For a number field K, the first invariants we defined were the ring
of integers O, its unit group 0%, and its class group Clg. These are a
commutative ring, a finitely generated abelian group and a finite abelian
group, respectively. If two number fields have isomorphic rings of integers,
then they are obviously isomorphic, as K is the field of fractions of its ring
of integers. This is a case where an object can be recovered in a trivial
way from the invariant. One may then modify the question, and forget
some of the structure of the invariant, say by looking at the underlying
additive group of the ring of integers. Again, we do not get anything
very interesting: as an abelian group, the ring of integers is a free abelian
group of rank [K : Q], and all information it contains on K is its degree
over Q. In this case, more interesting questions arise when viewing Ok
as a lattice embedded in K ®q R, the setting of Minkowski’s geometry
of numbers. In this way, Ok is provided with a shape and a covolume,
and it gives rise to questions as to whether non-isomorphic number fields
of the same degree can have the same discriminant, or how the lattice
shapes of rings of integers in families of number fields are distributed.
These are easy questions for quadratic number fields, but not for number
fields of higher degree [?].

For the unit group O} of the ring of integers of a number field K,
the situation is somewhat similar. As an abelian group, we know what it

looks like by the following theorem.

THEOREM 1.3.1 (Dirichlet, 1846). Let K be a number field with r

real embeddings and ro pairs of complex conjugate embeddings. Then
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the unit group of any order O in K has a finite cyclic torsion group
w(O) consisting of the roots of unity in O, and O*/u(O) is free of rank

r1 +ro — 1. Less canonically, we have an isomorphism
(1.2) O* = p(0) x Zr+r2=L,

We see that for a totally real number field K of degree n, the iso-
morphism type of the unit group O} = (—1) x Z" 1 contains no more
information than the degree of the number field, so this is not an invariant
that often determines the isomorphism type of K. However, if we view
O/u(0O) as a lattice in Euclidean space, under the logarithmic map used
in the standard proof of Dirichlet’s unit theorem, we can ask questions
just as for the additive group Ok . Again, these are non-trivial questions
as soon as we move beyond the case of quadratic fields [?].

The class group of a number field is a fundamental invariant that
gives us information about the arithmetic of K, but it clearly does not
characterize the number field K. For instance, there seem to be many
number fields in small degrees with trivial class group, but we cannot even
prove that there exist infinitely many pairwise non-isomorphic number
fields of class number one. In this case, the distribution of isomorphism
types of class groups in families of number fields is a question that has
been studied numerically rather extensively, but so far almost all precise
answers are entirely conjectural, and go under the name of Cohen-Lenstra
conjectures [?]. For example, in the case of real quadratic fields of prime
discriminant p = 1 mod 4, we expect 75.446% of these fields to be of
class number one, but as we said, we do not even know how to prove
that infinitely many of them have class number one. Only in the case
of imaginary quadratic fields, which are somewhat special in the sense
that they have finite unit groups, the growth of the class group as a
function of the discriminant is somewhat under control, albeit often in
non-effective ways. We will come back to this in Chapter 3, when we deal

with imaginary quadratic fields for which the class number is prime.
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1.4. The Dedekind Zeta Function and the Adele Ring

The Dedekind zeta function (i of a number field K is the classical
invariant we defined already as (x(s) = > o.;co, (NI)7°, where N
denotes the absolute ideal norm, I ranges over the nonzero ideals of Ok
and the argument s of the function is a complex number with real part
R(s) > 1. We can write (x(s) as a Dirichlet series >, _,an,m™°, with
am € Z>o the number of integral O-ideals of norm m, and two of these
Dirichlet series represent the same function if and only if the values of
the coefficients a,, coincide for all m. Thus, two number fields having
the same zeta function have the same number of integral ideals of given
norm m for all m € Z~q. This is a rather strong equivalence relation
on number fields, and number fields with this property are said to be

arithmetically equivalent.

From the values of a,, for K, one immediately reads off the degree

n=[K:Q]= max q,

p prime

and the set S = {p prime : a, = n} of primes that split completely in K.
This immediately implies that arithmetically equivalent number fields K
and K’ have a common normal closure N, which is the largest number

field in which all primes in S split completely.

Let us define the splitting type of an arbitrary prime p in K as the list
(f1, fa,..., fg) of residue class field degrees f; = [Ok/p; : Z/p| coming
from the factorization pOx = p{'ps? -+ - pg’ of p in K, ordered to have
fi < fix1. Then two number fields are arithmetically equivalent if and
only if all rational primes p have the same splitting type in them, so an
equality of zeta functions

Giels) = [0 = 550

only arises if the zeta functions have the “same” p-Fuler factors.
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Let two number fields K and K’, inside Q, be arithmetically equivalent.
This may of course happen because the Galois groups H = Gal(N/K)
and H' = Gal(N/K') of their common normal closure N over each of
them are conjugate subgroups of G = Gal(N/Q). In this case, K and
K’ are actually isomorphic. However, Gassmann [?] showed in 1926 that
arithmetical equivalence of K and K’ amounts to requiring something
weaker, namely, that H and H' intersect every conjugacy class C of G in
the same number of elements:

#(CNH)=#(CNH).

Such Gassmann-equivalent subgroups are not necessarily conjugate, and
Gassmann himself found the very first examples with subgroups of index
G : H) =[G : H'| = 180.

Perlis [?] found that examples of arithmetically equivalent number
fields exist in degree 7 already, and he gave an explicit family of such
fields in degree 8. From the functional equation of the Dedekind zeta
function, he derived that arithmetically equivalent number fields have
the same discriminant, the same number of real and complex primes,
and isomorphic unit groups. He was unable to prove that they also have
isomorphic class groups, and in fact, later numerical work by De Smit

and Perlis [?] showed that the class group may actually differ.

ExaAMPLE 1.4.1. Let a € Z be an integer for which +a and +2a are

8 _ ¢ is irreducible

non-squares in Q. Then the polynomial fi(z) = =
over Q, and the number field K = Q(«) generated by a root of f;
has normal closure N = Q((g, ) of degree 32, generated over K by a
primitive 8-th root of unity (g. The Galois group G = Gal(N/K) is the
affine group Z/8Z % (Z/8Z)* over Z/8Z. The polynomial f2(z) = 28—16a
is irreducible over Q as well, and as 16 = (v/2)® = (v/—2)% = (1+i)® is an
8-th power in Q((g), its roots lie in N. The field K’ generated by a root
o' of fy is an explicit example of a number field that is arithmetically

equivalent to K, but not isomorphic to K. At odd primes p, we have an
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FIGURE 1.1. Perlis’ example.

isomorphism

Qy[X]/(X® — a) = Qp[X]/(X® — 16a)

of Qp-algebras, as Q, will contain a square root of at least one of 2, —2
and —1. In particular, the splitting types in K and K’ of all odd primes
p coincide.

At p = 2, we do have the same splitting type, but we may or may
not have a local isomorphism of Q9-algebras. To see this, we note first
that 1 + 32Zy C Z3 is the subgroup of 8-th powers in Z3. If we now
take for a an integer a = 1 mod 32, the Qg-algebras Q2[X]/(X® —a) and
Q2[X]/(X® — 16a) are non-isomorphic, as they equal

Qa[X]/(X® = 1) = Q2 x Q2 x Qa(i) x Qa2((s)

and
Qa[X]/(X® - 16) = Qa(i) x Qa(i) x Qa(V2) x Qa(V=2),
respectively, by the factorizations

X—1l=(X-1D)X + D)X+ 1)(X*+1)
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and
X816 = (X2 +2X +2)(X2 —2X +2)(X? - 2)(X? +2)

into irreducible polynomials over Qs. In this case the prime 2 has splitting
type (1,1,1,1) in both K and K’, but the four primes over 2 in K and
K’ have different ramification indices.

If we now take a = —1 mod 32, the local Q2-algebras

Qu[X]/(X®+1) = Qa(Cis)  and  QaX]/(X® +16)

are isomorphic. In this case, we have arithmetically equivalent fields for
which even the adele rings Ax and A g are isomorphic, giving an example
of “locally isomorphic” number fields that are not globally isomorphic.

As Twasawa [?] showed, number fields K and K’ have topologically
isomorphic adele rings if and only if they are “locally isomorphic” at
all primes p. We find that this notion, although strictly stronger than

arithmetical equivalence, still does not imply global isomorphism.

1.5. The Absolute Galois Group

For the Dedekind zeta function (i and the adele ring Ax of K, which
encode a lot of information on K, it may come as a surprise that they
can coincide for non-isomorphic number fields. For the absolute Galois
group Gk of K, a huge profinite group that which we will consider now,
the surprise is maybe not that it does characterize the number field, but
the fact that we can actually prove such a statement without knowing
very much on the global structure of this group.

At first sight, there seems to be no obvious way to construct an
isomorphism of number fields K; — K, starting from a topological
isomorphism Gk, — G, of profinite groups. In fact, even if we have
such an isomorphism ag : K1 — Ko, there is no canonical way to obtain
an isomorphism G, — G, from ap. Indeed, we do know that o can
be extended to some isomorphism « : K1 —+ Ko, which then gives rise
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to an isomorphism G, — G, given by o — aca~!. However, there
are usually many choices for the extension a of ag, as « is only unique
up to composition with an automorphism of Ko over K,. Consequently,
the isomorphism Gg, — Gg, we get from aq is only unique up to
composition by an inner automorphism of G,. In Figure 1.2 we exhibit
the corresponding isomorphisms.

Ggk, ..
e
K T Fl
-
Q ~ | oo f ~ |«
N Y
K2 I Ko
s 040'0471,*"

. GK2
FIGURE 1.2. Isomorphisms induced by ag : K3 = K.

The fundamental work of Neukirch [?, ?], as refined by Ikeda [?],
Neukirch [?], Uchida [?] and Iwasawa in an unpublished paper shows
that, up to this intrinsic non-uniqueness, every isomorphism of absolute
Galois groups of number fields “comes from” an isomorphism of number
fields. This result, known as the Neukirch-Uchida theorem [?, 12.2.1], is
the following.

THEOREM 1.5.1. Let K1 and Ko be number fields, and suppose that
we have a topological isomorphism of absolute Galois groups
f : GK1 = Gal(fl/Kl) ;> GK2 = Gal(fg/Kg).

Then there exists a field isomorphism o : K1 — Ko with restriction

ao: K1 =5 Ky such that f is given by f(o) = aca™!.
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The proof of the Neukirch-Uchida theorem starts with Neukirch’s
observation that for every prime p of K1, the image f[Gy] of the decom-
position group of p is the decomposition group of a uniquely determined
prime a.(p) of Ko. This establishes a bijection a. between the sets of
primes of the algebraic closures K; and Ko. Primes that correspond
under «, lie over a common rational prime p, and we can relate the
splitting behavior of p in K and its finite extensions to the splitting
behavior of p in K5 and its finite extensions. One deduces that p has
an extension of degree 1 in K if and only if it does so in K5, and just
as in the case of arithmetically equivalent fields, we find that normal
number fields with isomorphic absolute Galois groups are isomorphic [?].
Uchida’s improvement, which was subsequently simplified by Neukirch [?],
consists in the actual construction of a map « that induces «, and has
the property stated in Theorem [1.5.1]

Even though we now know that a number field K is characterized by
its absolute Galois group G, we still do not know what the absolute
Galois group of K looks like in any way that might be called explicit.
The same is true for the maximal pro-solvable quotient Gﬁ?lv of G, for
which Neukirch [?] had already shown that it can take over the role of
Gk in the theorems above. The situation becomes however different if
we replace Gigl" by an even smaller quotient, the absolute abelian Galois
group Ax = Gi/|Gk,Gk] of K. Here |Gk ,Gk] denotes the closure of
the commutator subgroup [Gx, G| of Gk.

1.6. The Absolute Abelian Galois Group

The question as to whether the absolute abelian Galois group Ag
of a number field characterizes the number field up to isomorphism was
studied at the same time 1976 — 78 when the Neukirch-Uchida theorem
was established. As we already observed, A is, in contrast to Gg, an
invariant that may be thought of as “internal”, as it admits a class field
theoretic description “in terms of K”. This makes Ag more accessible
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than G, even though the internal description of Ay as a quotient of the
idele class group A} /K* does not easily allow us to compare absolute
abelian Galois groups of number fields: the description is rather strongly
tied to arithmetical properties of the field K. For this reason, one might
be inclined to think that absolute abelian Galois groups do characterize
number fields. It therefore came a bit as a surprise when Onabe [?, ?]

discovered that this is not the case for imaginary quadratic number fields.

Onabe based her work on earlier work of Kubota [?], who studied the
dual group Xx = Hom(Ag, C*) of continuous characters on Agx. This
Pontryagin dual of the compact group Ax is a discrete countable abelian
torsion group, and Kubota had expressed the structure of the p-primary
parts of X in terms of an infinite number of so-called Ulm invariants.
It had been shown by Kaplansky [?, Theorem 14] that such invariants
determine the isomorphism type of a countable reduced abelian torsion
group, even though this Ulm-Kaplansky theorem does not provide explicit

descriptions of groups in terms of their Ulm invariants.

Onabe computed the Ulm invariants of Xg for a number of small
imaginary quadratic number fields K with prime class number up to
7, and concluded from this that there exist nonisomorphic imaginary
quadratic number fields K and K’ for which the absolute abelian Galois
groups Ax and A+ are isomorphic as profinite groups. This may even
happen in cases where K and K’ have different class numbers. As we
discovered, the explicit example K = Q(v/=2), K’ = Q(v/=5) of this
that occurs in Onabe’s main theorem [?, Theorem 2] is however incorrect.
This is because the value of the finite Ulm invariants in [?, Theorem 4]
is incorrect for the prime 2 in case the ground field is a special number
field in the sense of our Lemma . As it happens, Q(v/—5) and the
exceptional field Q(v/—2) do have different Ulm invariants at 2.

The nature of Kubota’s error is similar to an error in Grunwald’s the-

orem that was corrected by a theorem of Wang [?] occurring in Kubota’s
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paper [?7, Theorem 1]. It is related to the non-cyclic nature of the 2-power

cyclotomic extension Q C Q((2).

In Chapter 3 of the present thesis, we obtain Onabe’s corrected results
by a direct class field theoretic approach that completely avoids Kubota’s
dualization and the machinery of Ulm invariants, and we more or less
explicitly give the structure of Ax. More precisely, we show that for
all imaginary quadratic number fields K # Q(i), Q(v/—2), the absolute
abelian Galois group Ag contains a perfectly explicit ‘inertial subgroup’
Uk isomorphic to

G=2*x]]2z/nz
n>1
as a subgroup of finite index. The number fields that are said to be
of “type A” in [?] are those fields for which Ag is isomorphic to this

“minimal” absolute abelian Galois group G.

Just like G contains many subgroups of finite index that are isomorphic
to G as topological groups, Ax can be larger than its inertial subgroup
Uk =2 G and still be isomorphic to G. The numerical data that we present
at the end of Chapter 3 suggest that imaginary quadratic number fields
K with minimal absolute abelian Galois group Ax = G are in fact quite
common: more than 97% of the 2356 imaginary quadratic number fields
that have odd prime class number hx = p < 100 are of this nature.

Deciding whether Ay is isomorphic to its inertial subgroup Ux = G
is a non-trivial problem that is the main topic of Chapter 3. It reduces
the underlying splitting question for profinite groups to an explicit finite
computation, for which we provide an algorithm in Section 3.4. It allows
us to find many imaginary quadratic K with the same minimal absolute
Galois group Ax = G, and to understand, at least heuristically, how
many there are. We believe (Conjecture that there are actually
infinitely many K for which Ag is isomorphic to the minimal group G.
Our belief is supported by reasonable assumptions on the average splitting
behavior of exact sequences of abelian groups, and these assumptions are
tested numerically in the same Section 3.6.
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1.7. Adelic Points of Elliptic Curves

The situation for imaginary quadratic number fields is particularly
easy as these fields are the only number fields (apart from Q) that have a
finite unit group O7F. Already for real quadratic fields K, the presence of a
fundamental unit ex of infinite order leads to considerable complications,
as it is not so easy to predict the p-adic behavior of fundamental units. It
is possible to extend our results to the setting of general number fields, as
was shown by Gras [?], but one does not obtain a description of Ax that
is as explicit as in the imaginary quadratic case. The lack of precision in
the results is due to insufficient control of the behavior of unit groups,

but one can, at least heuristically, understand this behavior, see [?].

In the final Chapter 4 of this thesis, we use the methods of Chapter 2
to investigate a problem that, at least at first sight, appears to be rather
different: we describe the group of adelic points of an elliptic curve defined
over Q as an abstract topological group. In the case of the inertial part
Uk of the absolute abelian Galois group A of an imaginary quadratic
number field K, which is a product of local factors at rational primes p
that have a group structure that very much depends on the particular field
K, the striking result is that, when the product is taken over all p, it is
almost independent of K. In a similar way, the topological group E(Q,)
of p-adic points of an elliptic curve E defined over the rational number
field Q can be very different for different elliptic curves E. However,
we show in Theorem that for an overwhelming majority of elliptic
curves E/Q, the adelic point group

E(Aq) = ER) x [[ E(Q))
p
is a universal topological group

[ee]
E=R/ZxZx || 2/nZ
n=1
reminiscent of the universal group G we encountered in the case of absolute
abelian Galois groups of imaginary quadratic fields.
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Finding an elliptic curve E/Q which gives rise to a different topo-
logical group is a non-trivial problem that one can solve in a simple
way using the extensive database [?] that was compiled by Rouse and
Zureick-Brown in 2014, in the context of the classification of 2-adic Galois
representations associated to non-CM elliptic curves E/Q. It shows that
there exist one-parameter families of elliptic curves over Q for which
the adelic point group is not isomorphic to the generic group £ defined
above. Instead of referring to this database, we present an elementary

construction of such a family.

Our result in Chapter 4 should be seen as a first step, as we stick to
the basic case of elliptic curves over Q in this thesis. Much of what we say
can be generalized without too much effort to elliptic curves over arbitrary
number fields (publication in preparation), and there is also the more
difficult generalization to abelian varieties of dimension bigger than 1.
The ‘universality’ of the topological groups that occur here provides a
negative answer to a question of Cornelissen and Karemaker [?, Section 9,
Question 1], who are interested in algebraic groups G for which G(Ag)

determines K up to isomorphism.






CHAPTER 2

Abelian Galois Groups as Z-modules

ABSTRACT. The infinite abelian Galois groups we study are in a
natural way modules over the ring Z of profinite integers. This
chapter presents the simple structural result for the absolute abelian
Galois group of Q from this point of view, and then goes into
the generalization to arbitrary number fields, in relation to the
information that is provided by class field theory.

“For a man to conquer himself,

1s the first and noblest of all victories.”

Plato, 428/427 — 348/347 BC

2.1. Infinite Galois Groups

Many of the Galois groups that we will encounter are Galois groups
of infinite algebraic extensions, and this implies that it is best to view

them as topological groups.

If K C L is a (possibly infinite) Galois extension, then L is a union

L = ;¢ Li of subfields L; C L that are finite Galois over K. As an auto-
morphism of L/K is determined by its restrictions to the finite extensions
L;, the Galois group Gal(L/K) injects into the product [[,.; Gal(L;/K)
of finite Galois groups, and its image is the projective limit

lim Gal(L;/K) C [ [ Gal(Li/K),

el il
i.e., the subgroup of the full direct product consisting of those elements
that satisfy the natural compatibility conditions coming from field inclu-
sions L; C Lj. The product [[,.; Gal(L;/K) of finite groups carries a

19
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topology that is non-discrete if K C L is an infinite extension, and as
the subgroup Gal(L/K) is “cut out” by closed conditions, such profinite

Galois groups are compact topological groups.

One of the simplest examples of such an infinite Galois extension is
provided by the algebraic closure F, of the field F,, of p elements. As
we have F,, = |J,,~; Gal(Fyn /F,), and Gal(F,»/F)) is a cyclic group of
order n generated_by the Frobenius automorphism z — xP, we have

Gal(F,/F,) = %n Gal(Fpn [F)) & I%(Z/nz) =7

3
=

The procyclic group 2, which occurs here as our first example of an
infinite abelian Galois group, is actually a profinite ring, as the maps
underlying the definition of @m(z /nZ) are also ring homomorphisms.

The elements of Z are profinite integers that can be represented as infinite
cpn!, with ¢, € Z and 0 < ¢, < n.

[e'S)
n=1

sums = Y
By the Chinese remainder theorem, the ring Z may be decomposed

as an infinite product
(2.1) z=]]z
p
over all prime numbers p. Here the rings of p-adic integers
Z,= T&lZ/p”Z = {(an)ff’:l € H Z/p"Z :V n, apy1 = a, mod p”}
n>1 n>1
are themselves projective limits of rings. As a group, Z, is the primordial
example of a pro-p-group, and every abelian pro-p-group is a module over
the ring Z,. Indeed, let B be an abelian pro-p-group. Then we have
B = 1&11 B;, with B; a finite abelian p-group. Since B; is a (Z/p™Z)-
module for some n;, the homomorphism Z, — Z/p™Z makes each B;
into a Z,-module, and since the maps defining the projective limit @1@ B;
inside [[; B; are Z,-module homomorphisms, the projective limit @Z B;
is a Z,-module as well.
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In a similar way, an arbitrary profinite abelian group A = 1&nl A;
with A; finite abelian, is a module over the ring Z, as every A; is naturally
a Z-module. In explicit terms, this means that the exponentiation in
these groups by ordinary integers extends to a continuous exponentiation
map Z x A — A. Just as finite abelian groups are products of p-groups,
profinite abelian groups can be written as products A = Hp A(p) of pro-p-
groups Ay, with p ranging over all primes. As every A(,) is a Zy-module,
their product is a module over Hp Z,, in accordance with . The
possibility of decomposing Z-modules into their ‘p-primary parts’ enables
us to reduce questions on modules over Z to modules over Z,. As that
latter ring is a discrete valuation ring, and therefore algebraically simpler
than 2, this is a useful reduction. We use it at Section 3.4 when dealing
with actual algorithms for Z-modules. Often, there is however no reason
to look at a single prime p at a time, and the global picture actually
remains clearer if we do not. The next section provides a first example of

this phenomenon.

2.2. Aq as Z-module

For the rational number field Q, the absolute abelian Galois group Aq
is a group that we know very explicitly by the Kronecker-Weber theorem,
and it is instructive to analyze Aq as a Z-module. The Kronecker-Weber
theorem states that Q® is the maximal cyclotomic extension of Q, and
that an element o € Aq acts on the roots of unity that generate Q2 by
exponentiation. More precisely, for o € Aq we have o({) = ¢* for all
roots of unity ¢, with u a uniquely defined element in the unit group Z*
of the ring Z. This yields the well-known isomorphism

Aq = CGal(Q*/Q) = H zZ,.

This is however not a decomposition of Aq into p-primary parts alluded

to above, as Z; is not quite a pro-p-group for p > 2.
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For Z;, reduction modulo p yields an exact sequence
(2.2) 1= 1+pZy — Z, — F, — 1.

For p # 2, as Z; contains a subgroup Tj, consisting of the (p — 1)-st roots
of unity, we may split the sequence (2.2)) by sending the elements of F; to
their Teichmiiller representatives in T}, C Z;. This yields an isomorphism

Z,=T,x (1+pZy)

of profinite groups. The subgroup 1 + pZ, is a free Z,-module of rank
one, which may be generated by 1+ p. For p = 2 a similar statement
is true if we reduce modulo 4, as 1 4+ 4Z5 is a free Zs-module generated
by 1+ 4 =5, and writing 75 = {£1} for the torsion subgroup of Z3 we
again have Z5 = T X Zo as profinite groups. Taking the product over all

p, we obtain an isomorphism
(2.3) Aq = Tq x Z,

with Tq = Hp T}, the product of the torsion subgroups 7), C Q; of the
multiplicative groups of the completions Q,, of Q. More canonically, Tq
is the closure of the torsion subgroup of Aq = Gal(Q*/Q), and the
quotient Aq/Tq is a free Z-module of rank 1. The invariant field of Tq
inside Q2 is the unique Z-extension of Q (see Section .

Even though it looks at first sight as if the isomorphism type of Tq
depends on the properties of prime numbers, one should realize that in
an infinite product of finite cyclic groups, the Chinese remainder theorem
allows us to rearrange factors in many different ways. One has for instance
a non-canonical isomorphism
(2.4) To =[] =[] z/nz.

p n>1
as both of these products, when written as a countable product of cyclic
groups of prime power order, have an infinite number of factors Z/¢*Z for
each prime power ¢¢. Note that, for the product Hp T, of cyclic groups of
order p — 1 (for p # 2), this statement is not completely trivial: it follows
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from the existence, by the well-known theorem of Dirichlet, of infinitely
many primes p that are congruent to 1 mod ¢*, but not to 1 mod ¢**1.

In order to compare isomorphism types of abelian groups 1" arising
as countable products of finite abelian groups, one may write

(2.5) T = H ﬁ(z/gkz)e(é,k)

¢ prime k=1

for exponents e(¢, k) that can be defined in terms of 7" as
(2.6) e(¢, k) = dimg, T[¢*]/ (T[Zk‘l] + mek“]) .

Note that the Fy-dimensions e(, k) are either finite, in which case e(¢, k)
is a non-negative integer, or countably infinite. In the latter case we write

e(l,k) = w, and we have
(Z/0*Z)* = Map(Z0, Z/(*Z).

Profinite abelian groups 7' written in the form (2.5|) are isomorphic if and
only if their exponents e(¢, k) coincide for all prime powers /¥

For arbitrary number fields K, the absolute abelian Galois group Ag
is not as easily described as in the case K = Q. Still, the direct analogue
O* of 2*, with O the profinite completion of the ring of integers O of K,
will be a major building block in the description of Ax. We therefore will
need the structure of O* as a Z—module, and this description is the main
result of the next section.

2.3. O* as Z-module

2.3.1. Structure of O*. Let K be an arbitrary number field, and
write O = lim, ,,>1(O/nO) for the profinite completion of the ring of
integers O of K. Just as Z decomposes as a product Hp Z,, of its p-adic
completions, we have a decomposition O = Hp O, into local rings of
integers Oy, with p ranging over the finite primes of K. We denote by
T, the torsion subgroup of Oy, i.e., the subgroup of roots of unity in K,
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and put
(2.7) Tk =[5 cJ]o; =0
p p

Then the analogue for arbitrary number fields of the isomorphism Aq =
Tq x Z from (2.3) is the following.

LEMMA 2.3.1. The closure of the torsion subgroup of O* equals the
group Tk from (2.7)), and 6*/TK is a free Z-module of rank [K : Q.

Less canonically, we have an isomorphism
@* =T X Z[K:Q].

PROOF. As the finite torsion subgroup 7, C Oy is closed in Oy,
the first statement follows using (2.7) and the definition of the product
topology on O* =[], O;.

Reduction modulo p in the local unit group Oy gives rise to an exact

sequence
(2.8) L=14+p—0, — k;, =1

that can be split by mapping the elements of the unit group k, of the
residue class field to their Teichmiiller representatives in Oy. These form
the cyclic group of order #k; = Np — 1 in T} consisting of the elements
of order coprime to p, which is the characteristic of k,. The kernel of
reduction 1+ p is by [?, One-Unit Theorem, p. 231] a finitely generated
Z,-module of free rank d = [K, : Q] having a finite torsion group
consisting of roots of unity in 7}, of p-power order.

Combining these facts, we find that Oy /T} is a free Zj-module of
rank d or, less canonically, that we have a local isomorphism

(2.9) OF =T, x Zy 'Y

for each prime p. Taking the product over all p, and using the fact that
the sum of the local degrees at p equals the global degree [K : Q], we
obtain the desired global conclusion. O
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In order to completely describe (5*, we need to know now what
Tx = T1, T} looks like as Z-module.

2.3.2. Structure of Tk. In order to derive a characterization of
T = Hp T, for arbitrary number fields K similar to the characterization
in the previous section of the torsion part Tq = [[,T) = [],,>; Z/nZ of
Aq, we observe that we have an exact divisibility ¢* || #7, of the order
of the cyclic group 7T}, by a prime power % if and only if the local field K,
at p contains a primitive £*-th root of unity, but not a primitive £¥*t1-th
root of unity. We may reword this as: the prime p splits completely in
the cyclotomic extension

K C K(Gp),

but not in the cyclotomic extension
KcK (Cgkﬂ).

If such p exist at all for £%, then there are infinitely many of them, by the
Chebotarev density theorem [?]. Thus, if we write Tk in the standard
form

(o.)
(2.10) T = [[ [[@/ez) >
£ prime k=1
from ([2.5)), then each of the exponents e(, k) is either equal to zero or
to w. The prime powers ¢¥ > 1 that occur for K, i.e., for which we have

e(l, k) = w, are all but those for which we have an equality

K (Cr) = K (Cprsr)-

For K = Q all prime powers ¥ occur, but for general number fields
K, there are finitely many prime powers that may disappear. This is due
to the fact that the infinite cyclotomic extension Q C Q((s~) which has
Galois group isomorphic to Zj = T, x Zy, can partially ‘collapse’ over K.
As Q C Q({y=) is totally ramified at ¢, it can only do so at primes ¢ that
ramify in Q C K.
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To describe the prime powers ¢* that disappear for K, we consider,
for £ an odd prime, the number

w(l) = wi (£) = #pee (K(Cr))

of ¢-power roots of unity in the field K ({y). For almost all ¢, including
those £ that do not ramify in Q C K, this number equals ¢, and we call ¢
exceptional for K if it is divisible by £2.

For the prime ¢ = 2, we consider instead the number

w(2) = wi(2) = #pa= (K(C1))

of 2-power roots in K({y) = K(i). If K contains i = (4, or w(2) is
divisible by 8, we call 2 exceptional for K.

The number w(K) of exceptional roots of unity for K is now defined
as
wK)= J[ w@.
¢ exceptional
Note that w(K) refers to roots of unity that may or may not be contained
in K itself, and that every prime ¢ dividing w(K’) occurs to an exponent at
least 2. In the case where w = 1 we simply say that K has no exceptional

roots of unity.

For given K, computing w(K) is not difficult. Here is an easy example

for quadratic number fields.

LEMMA 2.3.2. The number of exceptional roots of unity for the qua-

dratic number fields Q(i), Q(v/—2) and Q(v/2), is 4, 8 and 8, respectively.
For all other quadratic fields K, we have w(K) = 1.

ProOOF. Let K be quadratic. If [ is an odd prime, the number field
K () of degree dividing 2(I—1) cannot contain a root of unity of order /2,
which is of degree (I — 1) over Q, and we have wi (I) = 1. For K = Q(i)
we have we(K) = 4. For all other K, the quartic field K (i) contains an
eighth root of unity (g, and is therefore equal to K (i) = Q((s), if and
only if we have K = Q(v/%2). O
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The prime powers ¢ > 1 that do not occur when Tk is written
as a direct product of groups (Z/¢*Z)% are strict divisors of w(f) at

exceptional primes ¢, with ¢ = 2 giving rise to a special case.

THEOREM 2.3.3. Let K be a number field, and w = w(K) its number
of exceptional roots of unity. Then we have a non-canonical isomorphism
of profinite groups

Tk = l_IT,J = H Z/nwZ,
p n>1
except in the case when 2 is exceptional for K and i = (4 is not contained
m K. In this special case, we have
Tx =[[ T = [[(2/2Z x Z/nw1Z).
P n>1
The group Tk is isomorphic to the group Tq in if and only if K

has no exceptional roots of unity.

ProoF. If £ is odd, the tower of field extensions
(2.11) K(¢) C K(¢p)C...C K((w) C K(prr) C ...

is a Zs-extension, and the steps K((pn) C K(Cpr+1) with £ > 1 in this

tower that are equalities are exactly those for which ¢*+1 divides w(f).
Similarly, the tower of field extensions
K(C1) CK(() C...C K(Cor) C K(Cop1) C ...

is a Zs-extension in which the steps K((or) C K((ors1) with k& > 2
that are equalities are exactly those for which 251 divides w(2). The
extension K = K ({2) C K({4) that we have in the remaining case k = 1

is an equality if and only if K contains ¢ = (4.

Thus, a prime power £ > 2 that does not occur when T is written
as a product of groups (Z/¢*Z)?% is the same as a strict divisor /¢ > 2
of w(¢) at an exceptional prime . The special prime power (¥ = 2 does
not occur if and only if ¢ = (4 is in K. Note that in this case, 2 is by
definition exceptional for K.
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It is clear that replacing the group [][,~; Z/nZ from by the
group [[,~; Z/nwZ has the effect of removin_g cyclic summands of order
% with F+1 |w in its standard decomposition , and this implies that
the groups given in Theorem [2.3.3|are indeed isomorphic to Tk. Only for

w = 1 we obtain the group Tq in which all prime powers 0k occur. O

Now that we understand the explicit Z-module structure of O* as
the product of Tk and a free module ZIE Q) we have to relate O* to the
absolute abelian Galois group Ax of K. For K = Q, the groups O* = 7+
and Aq are isomorphic. For arbitrary K, the relation is given by class
field theory, the theory of abelian extensions of number fields that was
developed in the first half of the 20*" century.

2.4. Class Field Theory

2.4.1. Classical Point of View. In Section 2.2 we managed to
describe Aq since by Kronecker-Weber we knew that every finite abelian
extension Q C L is contained in some cyclotomic extension Q C Q((pm)-
If we now consider abelian extensions over arbitrary number fields K # Q,
class field theory provides us with an analogue of Kronecker-Weber: every
abelian extension K C L is contained in a ray class field extension
K C Hy. The main difference from the case where K = Q is that we do
not in general have canonical generators of the ray class field Hy,. In fact,
finding such generators is known as Hilbert’s 12th problem, which has
remained open since 1900. However, we will use knowledge of how the
primes ramify and split in the extension Hy, and the information that we
can retrieve from the Galois group Gal(Hy/K), which is the ray class
group of K of conductor m denoted by Cly,. This group plays the same

role as (Z/mZ)* plays for Q C Q(¢m)-

Let K C L be an abelian extension. We define the Artin map for
L/K as the homomorphism

(212) wL/K IK(AL/K) —>Gal(L/K), p’—>FI'Obp
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on the group of Ix(Ar k) of fractional O-ideals generated by the
primes p that do not divide the discriminant Ay x. Here Froby is the
Frobenius automorphism, which is well defined as a function of p as the
extension is abelian, and p unramified. For an ideal a € Ix(Ar k) we
call its image under the Artin map the Artin symbol of a in Gal(L/K).

A modulus m = mg - my of K is a non-zero Ok-ideal mg times a
subset my, of the real primes of K. For this modulus we have that
z = 1 mod” m if ordy(x — 1) > ordy(mg) for plmg and o(x) > 0 at the
real primes o : K — R in my. The ray Ry, modulo m consists of prin-
cipal ideals 2O generated by elements z = 1 mod* m. For an abelian
extension K C L a modulus m is admissible if and only if all primes p in
the ray Ry modulo m split completely in L. One of the key statements
of class field theory is the existence of admissible moduli for all abelian
extensions, and given their existence, it is not difficult to see that there
is a minimal admissible modulus (under divisibility). It is called the
conductor fr g of K C L. The primes that ramify in L are the primes
that occur in the conductor.

Let m = mg - my be an admissible modulus for K C L, and I
the group of fractional Og-ideals generated by the primes p that are
coprime to the finite part of the modulus. Then the Artin map induces a

homomorphism on the ray class group Cly = I/ Ryn modulo m:
(2.13) Y/ Cln = In/ R — Gal(L/K), p+—— Frob.

The norms of the Op-ideals that are coprime to m are in the kernel
of the Artin map , and they can be shown to generate the kernel.
This implies that the ideal group Ay C I that corresponds to L is equal
to Np/k(Imoy) - Bm. The ray class field Hy modulo m is the maximal
abelian extension of K in which all primes in the ray Ry, split completely.
For the extension K C L = Hy, the Artin map is an isomorphism,

Cly = Gal(Hy/K).
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The ray Ry is contained in the subgroup of P, C I, of principal
ideals in Iy, and by the approximation theorem, the quotients I,/ Py, are
for all moduli m isomorphic to the class group Clg of K. We therefore
have the exact sequence

(2.14) O} — (Og/m)* — Cl, — Clg — 1,

from which we can see that the ray class group Cly, is an extension of the
class group Clg. The residue class in (Og/m)* of x € Ok coprime to
the finite part of the modulus consists of its residue class modulo my and

the signs of its images for the real primes in my:

(2.15) (O /m)* = (O /mo)* x [] (-1
plmeo
Since all ray class fields Hy, contain the Hilbert class field H = Hy, for

their Galois groups over H we have an Artin isomorphism
(2.16) (Ok/m)*/im[0%] — Gal(Hy/H).

Since we want to describe the absolute abelian Galois group Ax =
Gal(K?®*/K) of K, taking the projective limit in the sequence (2.14)), we
have an exact sequence
(2.17) 10 — O x [[ (-1) %Ak — Clg — 1.

p real

Here O K= Hp Oy is the profinite completion /(\)f the ring of integers O of
K of which we studied the unit group O* = 07 = Hp Oy in the previous
section, and O% is the closure in (5}( X [y rear(—1) of the unit group Oj
of Ok. The image of ¢ is the Galois group Gal(K®®/H) C Ak of K
over the Hilbert class field H of K. For an abelian extension K C L that
contains H, the image of the group Oy C @} in Gal(L/H) is the inertia
group at p in L/K.

In the case K = Q, the group O% = {41} has order 2, there is
a single real prime, and the class group Clg is trivial, so (2.17) easily
yields the isomorphism AR Aq = Gal(Q**/Q). For arbitrary K, the
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relation between O} and Ag is more complicated, as O} will usually
not be finite, and Clx may be non-trivial.

2.4.2. Idelic Point of View. Our final exact sequence (2.17) de-
scribing Ak, which removes the need of a chosen conductor m, is very
much in the spirit of the idelic description of class field theory. In this

description, one systematically uses a single group, the idele group
/
= — . *
K= Hpgoo Ky = {(zp)p : 7, € O, for almost all p}

of K, as the domain of definition of the Artin map. The definition of Aj
does not depend on how we define Oy for the finitely many archimedean
primes of K — one may take Oy = K for these p. Using the idele group,
one is able to deal simultaneously with all primes of K, including those
that are real or ramified.

The topology of A7 is not the restriction of the product topology,
but the so-called restricted product topology: elements are close if their
quotient is p-adically close to 1 at finite number of p, and in Oy for all
other p. Under this topology, K* embeds diagonally into A% as a discrete
subgroup.

To an idele x = (xp), we associate an ideal 20k = [, porde(zp)

making the group of fractional Og-ideals Ik into a quotient of the idele
group A%-. If we consider a global element x € K* C A%, then the
ideal xO is indeed the principal Og-ideal generated by x. We have the

following exact sequence, which describes the idele class group A%, /K*
of K:

(218) 1= 0% — ] 05 x [[ Ky — Ak/K* — Clg — 1,
p<oo ploo
with A} /K* 5 2 K* — [20k].
No matter which of the two approaches we will choose to describe Ag,

the results will be the same. This is something that becomes clear if we
associate to a modulus m = mg - my, of K an open subgroup Wy, C AJ..
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In order to do so, we write the modulus as a product Hp p™(®) with the
exponent n(p) to be the order of my at p for finite p, and 0 or 1 in case p
is infinite. If p is complex then the exponent n(p) is 0. Finally we define
the subgroups Up(k) C K to be:

Uy, if k = 0;

Up( =< 14 p*, if p is finite and k > 0;
UpJr cU,=R", ifpisreal and k =1,

where by U;r we denote the subgroup of positive elements in U,. The
subgroup Wy, C AJ. is defined as the product Hp Up("(p)). By [?, Lemma
3.4, p. 505] we have for every modulus m of K an isomorphism

(2.19) o/ KWy — Cly,

under which the residue class of a prime element at a finite prime p t m
is mapped to the ideal class [p] € Clg.

Let K C L be a finite abelian extension. Then for an admissible
modulus m of it, we may compose (2.19)) with the map (2.13)) to obtain
an Artin map

(2.20) Uit A /K* — Gal(L/K)

that has no reference to the modulus m. If we take the limit of ([2.20)
for all finite abelian extensions K C L inside K, and denote by A the
Galois group Gal(K?/K), we obtain the idelic Artin map

(221) ’LﬂK A%/K* —>AK.

The map ¥k is a continuous surjective map, and its kernel is the connected
component of the unit element in A}, /K*, denoted by Dy . Thus we have
the isomorphism

(2.22) (A% /K*) /Dy —+ Ag.

The expression ([2.22)) is more involved than the corresponding identity
Aq = Z~ for the rational number field, and the connected component D g
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is a rather complicated subgroup of A} /K™ in the case of number fields
with infinitely many units, cf. [?, Chapter IX, Theorem 3]. In the case
of imaginary quadratic fields K that we will be dealing with in the next
Chapter, Dy is simply the image of the unique archimedean component
Ky = C* of Aj in A} /K*. In this case, the inertial part of Ak, i.e.,
the subgroup Ux C Ak generated by all inertia groups Oy C A} JK*,
admits a description very similar to Aq = Tq X Z, as we will show in
Theorem B.1.3
For general K, the inertial part of Ax has the form

(2.23) Uk = (H O;)/@*,
p

and in case K has no real primes, (2.18) gives rise to the sequence

(2.24) 1—Ug — Ag — Clg — 1.

2.5. Z, and Z-extensions of Number Fields

As we are to describe the absolute abelian Galois group A for certain
number fields K as a Z-module, or their p-primary parts as a Z,-module,
the question naturally arises whether K admits abelian extensions with

group Z, or Z.

In the case K = Q, the group Aq is isomorphic to 7 = Hp Z,,

which we may rewrite as in as Aq = Tq x 7= Tq x [1,Zp. This
shows that Q has a unique Z-extension, which is the compositum over
all primes p of a unique Zp-extension Z, of Q. We can describe this
‘cyclotomic’ Z,-extension Z, of Q as the subfield of Q({p~) left invariant
by the finite torsion subgroup of Gal(Q((y=)/Q) = Z;, that we already
saw in Section

For odd p, the torsion subgroup is a cyclic group Cp,_1 of order p — 1
consisting of the (p— 1)-st roots of unity in Z, indicated in the diagram of
associated fields of Figure For the prime 2, the torsion subgroup of Z3
is of order 2 and generated by —1, making Q((2) into the compositum
of its maximal real subfield Z2 and the quadratic extension Q(7) = Q((4)-
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Q(Cp‘x’)

FIGURE 2.1. The unique Z,-extension of Q for p odd.

If K is any number field, its intersection (inside an algebraic closure
of Q) is a number field Ky = K N Z), of finite degree, and Gal(Z,/K)) is,
as a closed subgroup of finite index of Gal(Z,/Q) = Z,, itself isomorphic
to Z,. This shows that the compositum K - Z, is a Z,-extension of K.
It is known as the cyclotomic Z,-extension of K (see Figure . If K
contains ¢, (for p odd) or (4 (for p = 2), then it is obtained by adjoining
all the p-power roots of unity to K. Their compositum over all primes p
gives rise to the cyclotomic Z-extension of K.

In principle, class field theory tells us for any number field K how
many different, or, more precisely, how many K-linearly independent
Z,-extensions it admits. For this, it suffices to determine the Z,-rank of
the maximal Z,-free quotient of the inertial part Ux = (7)\}( /O* of the
absolute abelian Galois group Ax of K that we encountered in .

The free Z,-rank of the p-primary part of the group (/9\}( = T X ZIK:Q]
equals [K : Q], and a famous conjecture going back to Leopoldt is that,
for all number fields K and all primes p, quotienting (/’)\}} by the closure
of the subgroup of global units O} of K, of free Z-rank 7 + ry — 1,
will result in a group for which the p-primary part has free Z,-rank
[K:Q]—(ri+7r2—1) =ro+1. It is however not at all obvious that the p-
adic rank of (5}(, which is obviously bounded by r1 4172 — 1, should always
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FIGURE 2.2. The cyclotomic Z,-extension of K.

be equal to it. Using class field theory, we may phrase the conjecture in

the following way, cf. [?, Conjecture 1.6.4].

CONJECTURE 2.5.1 (Leopoldt). Let K be a number field with ro
complex primes, and p a prime number. Then K admits exactly ro + 1

linearly independent Z,-extensions.

It follows from Leopoldt’s conjecture that the compositum of all Z-
extensions of K is a Galois extension of K with group Z2+1, For general
number fields K the conjecture is still open, but it has for instance been
proved true (Ax-Brumer, 1965-1967, [?], [?]) for all abelian fields K.

In case K is imaginary quadratic, its unit rank is 0, over Z and over
Z,, so Leopoldt’s conjecture trivially holds and there are two independent
Z,-extensions for all p. In this case, they can in fact be generated in a
very explicit way, using complex multiplication, see [?]. We will however
not need this in our explicit description of Ag for imaginary quadratic
K in the next chapter.






CHAPTER 3

Imaginary Quadratic Number Fields

ABSTRACT. In this chapter, we study the structure of the absolute
abelian Galois group Ax of an imaginary quadratic field K. We
show that for all but two exceptional fields, Ax contains a subgroup
of finite index isomorphic to G = Z? x [1,>1Z/nZ. We are able
to determine algorithmically whether we have Ag =2 G, and we
will produce many different K having the ‘same’ minimal absolute
abelian Galois group Ax = . Based on numerical investigations,

we conjecture that there are infinitely many such K.

“You will never do anything in the world
without courage.

It is the greatest quality of the mind

4

next to honor.”

Aristotle, 384 — 322 BC

3.1. The Inertial Part of Ay

In this chapter, the field K will be an imaginary quadratic number
field. For such K, the connected component Dy of the identity of the
idele class group A} /K* in is the subgroup K3 = C* C A} /K*
coming from the unique infinite prime of K. In this case, it is conve-
nient to replace the idele group A% from the previous chapter by the
group Af}{n = H; <00 Ky of finite ideles obtained by leaving out its single
archimedean component. Using the notation @ as shorthand for e ®z Z,
we have

AN =R =K®zZ=K®qQ=Q®z0.

37
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For imaginary quadratic K, the Artin isomorphism (2.22)) for the absolute
abelian Galois group Ax = Gal(K*/K) of K simply reads
~ !/
(3.1) A = K*/K* = (H K;‘)/K*.
p<oo
For the purposes of this chapter, which tries to describe Ax as a

profinite abelian group, it is convenient to treat the isomorphism for Ag
in (3.1) as an identity — exactly as we have written it down.

Under the description and the sequence the inertial part
of A takes the form
(3.2) Uk =0 /ux = (I] 03) /0",

p<co

since the unit group O* of O is finite, and equal to the group ux of roots
of unity in K. Imaginary quadratic fields K are the only number fields
different from Q for which the Artin map O - A k has finite kernel and
cokernel, and in this case the knowledge of the Z-module (5*, obtained
in the previous chapter, enables us to characterize A in a very explicit

way.

Apart from the quadratic fields of discriminant —3 and —4, which
have 6 and 4 roots of unity, respectively, we always have ux = {£1}, and
can be viewed as the analogue for K of the identity Aq = Uq = Z*.
However, as Uk is a subgroup of index hx = # Clg in Ak, and the class
number of hg tends to infinity with the absolute value of the discriminant
for imaginary quadratic fields K, it is clear that we will need more than

just Ug = @*/MK in order to describe Ag.

Lemmas and Theorem tell us what O* looks like as

a Z-module. In particular, it shows that the dependence on K is limited
to just two quantities: the degree [K : Q], which is reflected in the rank
of the free 2—part of (’3*, and the number of exceptional roots of unity of
K. In particular, for an imaginary quadratic field K # Q(i), Q(v/—2),
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Lemmas and Theorem tell us that
0" =7*x [[ z/nz
n>1

is a completely explicit Z-module that is independent of K. We will now
show that this is also true for its quotient O* /1K, for the simple reason
that this group is non-canonically isomorphic to O* for any number
field K. The proof below, which nowhere uses that K is imaginary
quadratic, is in the spirit of Section [2.3] and uses the notation Tk =
[1, T} from that Section.

LEMMA 3.1.1. There are infinitely many primes p of K for which we
have

ged(Fur, #1p /#0K) = 1.

PRrROOF. For every prime power £* > 1 that exactly divides #x, the
extension K = K((px) C K((m+1) is a cyclic extension of prime degree
¢. For the different prime powers /% || #pux, we get cyclic extensions of
different prime degrees, so there are infinitely many primes p of K that
are inert in all of them. For such p, we have ged(#uk, #1,/#1K) =
1. O

LEMMA 3.1.2. We have a non-canonical isomorphism T /pr = Tk

PROOF. Pick a prime py of K that satisfies the conditions of Lemma
3.1.1, Then px embeds as a direct summand in Tj,;, and we can write
Tho = i % Ty /1K as a product of two cyclic groups of coprime order.
It follows that the natural exact sequence

1= [ T — Tw/px — Tpo/ux — 1
p#£po

can be split using the composed map
Tpo/,uK — TPO — T — TK/MK'

This makes Tk /ug isomorphic to the product of Hp 4po Tp and a cyclic
group for which the order is a product of prime powers that already
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“occur” infinitely often in Tx. Thus Tk /ug is isomorphic to a product
of exactly the same groups (Z/¢*Z)?% that occur in Tk. O

Since O* /uk constitutes the inertial part Ux of A from (3.2)), we
may now rephrase the results of the last section of the previous chapter

in the following way.

THEOREM 3.1.3. For imaginary quadratic fields K # Q(i), Q(v/—2),
the subgroup Tk /ux C Uk is a direct summand, and we have isomor-

phisms

Uk = O /ux = Z* x (Tx/ux) 2 Z° x [ 2/nZ
n=1

of profinite groups.

For K equal to Q(i) or Q(1/—2), the prime 2 is exceptional for K,
and only in these two cases the groups Tk /ux = T are not isomorphic

to the universal group

(3.3) T =] z/nz,
n=1
as they ‘lack’ cyclic direct summands of order 2 and 4, respectively.

In order to describe the full group Ax from (3.1)), we consider the

exact sequence
(3.4) 1= Uk = 0% Jux — A = K*JK* -5 Clg — 1

that describes the class group Clx of K in idelic terms. Here % maps
the class of the finite idele (zp), € K* to the class of its associated ideal

[1, p, with e, = ordy xp. For K # Q(i), Q(v—2) as in Theorem
the sequence (3.4)) takes the form

(3.5) 1 5T x7Z2 — A —» Clg — 1.

The universal group T from (3.3)) does not depend on K, so we imme-
diately recover Onabe’s discovery that different K can have the same
absolute abelian Galois group.
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THEOREM 3.1.4. An imaginary quadratic number field K of class
number 1 different from Q(i) and Q(v/—2) has absolute abelian Galois
group isomorphic to

G=12>x[] z/nz.

n>1

The two exceptional fields of class number 1 do give rise to different

absolute abelian Galois groups. For K = Q(¢) we obtain
Aquy =2 x [[(2/22 x 2/4nZ)
n>1

because the presence of the 4th root of unity ¢ prevents the unit groups
k; of all residue class fields to have direct summands Z/2Z. For K =
Q(v/-2) we run into the more subtle phenomenon missed by Kubota
and Onabe that the number of exceptional roots equals 8, even though

K itself contains only 2 roots of unity. By Lemma and Theorem
we then have

~ 72
Aqu=a) = Z° x [[(Z/22 x Z/8nZ),
n>1
since in this case the unit groups ky of the residue class fields containing
a primitive 4th root of unity necessarily contain a primitive eighth root

of unity, preventing the occurrence of direct summands Z/4Z.

In Onabe’s paper [?, §5], the group G, which is not explicitly given
but characterized by its infinitely many Ulm invariants, is referred to as
“of type A”.

We will refer to G as the minimal Galois group, as every absolute
abelian Galois group of an imaginary quadratic field different from Q(%)
and Q(y/—2) contains an open subgroup isomorphic to G. We will show
that there are actually many more K having this absolute abelian Galois
group than the seven fields K of class number 1 to which the preceding
theorem applies.
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Let us now take for K any imaginary quadratic number field different

from Q(i) and Q(v/—2). Then Theorem and the sequence ([3.4)

show that A is an abelian group extension of Cly by the minimal Galois
group G from Theorem If the extension were split, we would
find that A is isomorphic to G x Clg = G, since from the structure of G
we have the isomorphism ([[,,~; Z/nZ) x Clg = [],,~; Z/nZ. However,
it turns out that splitting at this level never occurs for nontrivial Clg,
in the following strong sense.

THEOREM 3.1.5. For every imaginary quadratic number field K, the
sequence
1 0% Jux — K*/K* 25 Cly — 1
is totally nonsplit, i.e., there is no nontrivial subgroup C C Clg for which
the associated subextension 1 — U — O] — C — 1 is split.

PRrROOF. Let C' = ([a]) C Clg be a subgroup of prime order p for
which the subextension of (3.4]) associated to C' is split. Then there
exists an element

(ap)p mod K7) € v ([a]) € Ax = K*/K*

of order p. In other words, there exists a € K* such that we have
mg =« € K, for all p, and such that o generates the ideal a”. But this
implies by [?, Chapter IX, Thm. 1] that « is a p-th power in K*, and
hence a is a principal ideal. Contradiction. O

3.2. Galois Group Extensions

A property of Z-modules is that finite abelian groups that require no
more than k generators do allow extensions by free Z-modules of finite
rank k that are again free of rank k, just like they do with free Z-modules

in the classical setting of finitely generated abelian groups.

The standard example for k = 1 is the extension

15 Z 57— Z/pZ — 1
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describing multiplication in Z by an integer p # 0, prime or not. Ap-
plying to this the functor Hom(—, M) for a multiplicatively written Z-

module M, we obtain an isomorphism
(3.6) M/M? = Ext(Z/pZ, M)

by the Hom-Ext-sequence from homological algebra [?, Chapter III, Prop.
1.1]. We will use it in Section

LEMMA 3.2.1. Let B be a finite abelian group, F' a free Z-module of
finite rank k, and
1-F—F i> B—1
an exact sequence of Z-modules. Then E is free of rank k if and only

if this sequence is totally nonsplit, i.e., there is no non-trivial subgroup
B' C B for which 1 — F —s ¢~ [B'] — B’ — 1 is split.

PROOF. One may reduce the statement to the familiar case of mod-
ules over principal ideal domains by writing Z= Hp Z,, and consider
the individual p-parts of the sequence. O

At first sight, Theorem [3.1.5] seems to indicate that whenever the
class number exceeds 1, the group Ax will not be isomorphic to the
minimal Galois group G = Uk from Theorem We will see from
Theorem in this section that this is not the case.

In order to apply Lemma we replace the extension (3.4]) by the
pushout under the quotient map

Uk = @*//LK — UK/TK = @*/TK

from Uk to its maximal Z-free quotient. This yields the exact sequence
of Z-modules

(3.7) 1— O Tk — K*/(K* - Tx) — Clg — 1

in which Clg is finite and O~ /T is free of rank 2 over Z by Lemma

231
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It is instructive to see what all the preceding extensions of Galois
groups amount to in terms of field extensions. The diagram of fields in
Figure lists all subfields of the extension K C K?P corresponding to
the various subgroups we considered in analyzing the structure of Ag.

We denote by H the Hilbert class field of K. This is the maxi-
mal totally unramified abelian extension of K, and it is finite over K
with group Clg. The inertial part of Ax is the Galois group Ux =
Gal(K?P/H), which is isomorphic to G for all imaginary quadratic fields

K #Q(i), Q(vV-2).
The fundamental sequence
(13.4)) 1—>@*/MK—>I?*/K*i>CIK—>1
corresponds to the tower of fields
K CHCK™.

By Theorem the invariant field L of the closure Tk /ux of the
torsion subgroup of Uk is an extension of H with group z2.

The tower of field extensions
KcHCL

corresponds to the exact sequence of Galois groups (3.7)).

We define Ly as the ‘maximal Z-extension’ of K , l.e., as the com-
positum of the Z,-extensions of K for all primes p. As we observed in
Section an imaginary quadratic field admits two independent Z,-
extensions for each prime p, so F' = Gal(Lo/K) = Z2 is a free Z-module
of rank 2, and Lg is the invariant field under the closure Tj of the torsion
subgroup of Ax. The image of the restriction map Ty — Clg is the
maximal subgroup of Clg over which splits. The invariant subfield
of H, corresponding to it, is the intersection Lo N H, and we denote by
So the Galois group Sy = Gal(H /Lo N H), which is a subgroup of Clg.
In the case where splits, we have Sy = Clg.
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?AK

FIGURE 3.1. The structure of Ax = Gal(K?*/K).

The totally nonsplit case occurs when H is contained in Lg, Figure
leading to Lo N H = H and Lo = L. In this case Gal(L/K) =
Gal(Lo/K) is itself a free Z-module of rank 2, and Ay is an extension of
72 by Tk /uk that is isomorphic to G.

Figure shows that imaginary quadratic fields K # Q(7), Q(v/—2)
have ‘minimal’ absolute abelian Galois group Ax = G in cases where the

Hilbert class field extension K C H is a subextension of the maximal Z-
extension K C Lo of K. There turn out to be many such cases different

from the class number one cases that we just mentioned.

THEOREM 3.2.2. Let K # Q(i), Q(v/—2) be an imaginary quadratic
field for which the sequence

B-7) 1 O")Tx — K*/(K* - Tg) — Clg — 1
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FIGURE 3.2. The structure of Ax = Gal(K?*/K) when
H is contained in L.

is totally nonsplit. Then the absolute abelian Galois group of K is the
minimal group G occurring in Theorem [3.1.4]

PROOF. If the extension (3.7) is totally nonsplit, then K* J(K*-Tk)
is free of rank 2 over Z by Lemma In this case the exact sequence
of Z-modules

1 Tx/ug — Ag = K*/JK* — K*/(K* - Tk) — 1
is split, and Ag is isomorphic to Z2 x (T /pux ). For K # Q(i), Q(v/—=2),
we have Tk /ug = T independently of K as in (3.3)), and

22 X (TK/,U,K> ~G= 22 X H Z/nZ
n=1

by Theorem [3.1.3 g
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3.3. Non-minimal Galois Groups

We will use Theorem [3.2.2] in this chapter to find many imaginary
quadratic fields K having the same minimal absolute abelian Galois
group. In this section, we show how fields that do not satisfy the criteria
of Theorem [3.2.2) have Galois groups Ag that are ‘non-minimal’ in the
sense that although they contain a subgroup of finite index isomorphic
to the minimal Galois group G from Theorem [3.1.4] they are themselves
not isomorphic to G.

If K is an imaginary quadratic number field for which the sequence
is not totally nonsplit, its Hilbert class field H is not contained in
the maximal Z-extension Ly of K, and splits over the non-trivial
subgroup

So = Gal(H/(H N Lo)) C Clg.

We may identify Sp with the Galois group Gal(L/Ly) in Figure

The subgroup Ty = Gal(K?/Lg) is a characteristic subgroup of Ag,
as Tp = [ker Ax — Gal(Lo/K)] is the kernel of the map from Ag to its
maximal Z-free quotient. This means that for an imaginary quadratic
number field with minimal absolute abelian Galois group isomorphic to
G, the subgroup Ty C Ak in Figure [3.]] is necessarily isomorphic to
[[>1Z/nZ.

If Sy is not a 2-group, the field K has a non-minimal Galois group
by the following Theorem.

THEOREM 3.3.1. Let K be an imaginary quadratic number field for
which the sequence
B-7) 1 O")Tx — K*/(K* - Tg) — Clg — 1

splits over a subgroup of order divisible by an odd prime. Then the
absolute abelian Galois group of K is not isomorphic to the minimal
group G occurring in Theorem |3.1.4]
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PROOF. The hypothesis means that there exists a finite idele = €
K* such that (x mod K* - Tg) € I?*/(K* - Tx) has odd prime order
0. As @}/TK = ker[K*/(K* - Tx) — Clg] is torsion-free, the image of
x mod K*-Tk in Clg is an ideal class of order £. We then have inclusions

J4 ~
T:TK//J,K cT = <T,f> c1TyC K*/K*,

and the key step in showing Ax 2 G consists in showing that 77 =
(T, T) is not isomorphic to [],~; Z/nZ. We do this by showing that the
character -

T — %z /Z

defined by x(Z) = 7 and x[T] = 0 is an (-divisible character on 77, i.e.,
for every m > 1 there exists a character ¢ : 7" — W%Z/ Z satisfying
") = x. As T = [],>; Z/nZ admits no ¢(-divisible characters, this
implies 77" 22 T. As T’ is an open subgroup of finite index of T, we
deduce that Tj is also not isomorphic to [, Z/nZ, by the following

Lemma.

LEMMA 3.3.2. Let T be an open subgroup of [, Z/nZ. Then T"
is itself a profinite group isomorphic to >, Z/nZ.

PRrOOF. For every positive integer N, we have

7'c [ z/nZx [] z/n2.
1<n<N n>N
If we take N sufficiently large, then 7" will contain the subgroup Uy =
[li<nen{0} X [1,5nZ/nZ, as these subgroups form a basis of open
neighborhoods of the zero element in [[,5; Z/nZ. We therefore have
T" = X x [[,>n Z/nZ for some finite subgroup X C [[,<, .y Z/nZ,
and non-canonical isomorphisms
T'=Xx [] z/nz=X x [[ 2/nz=]] Z/nZ,

n>N n>1 n>1

as we can freely add or remove finitely many cyclic components in an

infinite product [[, -, Z/nZ without changing its isomorphism type. [
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l
FIGURE 3.3. The diagram of T'C T’ C Ty.

Figure summarizes the role of the various Galois groups, with
S’ C Sy the subgroup of odd prime order ¢ over which the sequence (3.7))
splits.

We have now reduced the proof of Theorem [3.:33] to the following

Lemma.

¢ ~

LEMMA 3.3.3. Let T = Ty /ug C T' = (T,z) C Ty C K*/K* be as

above, with x € K* a finite idele of odd prime order £ in IA(*/(K* Tk).
Then T admits a l-divisible character.

PRrROOF. As ¢ divides the class number of K, we are dealing with a
field K # Q(s), Q(i) having e = {1},

Let a be the ideal generated by x. As its ideal class is of order ¢, we
have a! = (a) for some o € K* that is well-defined up to multiplication
by ¢-th powers. Note that « is not an ¢-th power in K*. Moreover, as
z mod K* - Tk has order ¢, we can write ! = t - o for some element
t=(ty)y € Ti, and T° =% € K*/K*. We have xé =t, -« with o € K*
and t, € T}, for all primes p.

For every integer n > 1, we now pick a prime p of K such that p
splits completely in K C K((), but not in K C K({m+1) and also not
in K({s, /o). This is possible because for £ > 2 and K # Q((3), the
non-abelian extension K ((;, o) of K of degree £(¢ — 1) has intersection
K (¢) with K ((pn+1).
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K(Gri1)

FIGURE 3.4. The splitting field of the polynomial z! — « is K ({;, Va).

The cyclic group 7, has order divisible by ¢", as K, contains, by
construction of p, an £™-th root of unity. Moreover, as « is not locally
an {-th power at p, the local root of unity ¢, € 7} is not an /-th power
in T,. As we can map T}, onto a cyclic group of order ¢ in such a way
that ¢, is mapped to a generator, we can define a homomorphism

b T = Tie){£1} = Tp/{£1} — %Z/Z

that satisfies ¢(f) = . The map ¢ can be extended to 7" = (T, Z) by
putting ¢ (T) = l"%’ as we have the relation ¥ =7 in 7”. The character
M) =x:T — %Z /Z, which is independent of n, has kernel 7" and maps
T to % This shows that y is an /-divisible character on T”. So it proves

Lemma 3.3.3

X

1—T

T =(T,7)

X xI™

i Z/Z

1Z)7 — 1

Ficure 3.5. The [-divisible character x.
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and finishes the proof of Theorem [3.3.1 O

Our proof of Theorem used in various places that £ is odd, so
it cannot be taken over without changes to deal with the case ¢ = 2.

3.4. Finding Minimal Galois Groups

In order to use Theorem and find imaginary quadratic K for
which the absolute abelian Galois group A is the minimal group G from
Theorem we need an algorithm that can effectively determine, on
input K, whether the sequence of Z-modules

B-7) 15 O%Tx — K*/(K* - Tx) — Clg — 1

from Section [3.1]is totally nonsplit. This means that for every ideal class
[a] € Clg of prime order, the subextension E[a] of (3.7) lying over the
subgroup ([a]) C Clg is nonsplit.

For the free Z-module M = O*/Tx in (3.7) we write T, for the

torsion subgroup of
05 = (0222, =[] 0;.
plp
The p-primary part of M is the pro-p-group
(3.8) M, =0;/T, = [(0;/T;) = Z.
plp

In order to verify the hypothesis of Theorem [3.2.2], we need to check that
the extension Fla] has nontrivial class in Ext(([a]), M) for all [a] € Clg of

prime order p. We can do this by verifying in each case that the element
of

M/MP = M,/MP
corresponding to it under the isomorphism is nontrivial. This yields
the following theorem.
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THEOREM 3.4.1. Let K be imaginary quadratic, and define for each

prime number p dividing hx the homomorphism
¢p : Clg[p] — O;/Tp((’);)p

that sends the class of a p-torsion ideal a coprime to p to the class of a
generator of the ideal aP. Then (3.7) is totally nonsplit if and only if all

maps ¢, are injective.

PRrROOF. Under the isomorphism (3.6)), the class of the extension
1M —E-L2/p7 -1

in Ext(Z/pZ, M) corresponds by [?, Chapter III, Prop. 1.1] to the residue
class of the element (f~!(1 mod pZ))P? € M/MP. In the case of E[a], we
apply this to M = O*/Tk, and choose the identification Z/pZ = ([a])
under which 1 mod pZ is the inverse of [a]. Then f~!(1 mod pZ) is the
residue class in K*/(K* - Tx) of any finite idele 2 € K* that is mapped
to ideal class of a~! under the map 1 from .

We pick a in its ideal class coprime to p, and take for z = (x,), an
idele that locally generates a~! at all p. If @ € K* generates a?, then
zPa is an idele in O* that lies in the same class modulo K* as 2P, and
its image

(f (1 mod pZ))P = 2P = aPar

is an element of
M/MP = Mp/M;}; = O;/TP(O;)”

that corresponds to the class of FE[a] in Ext(([a]), O*/Tk).

As the idele x = (), has components z, € Oy at p | p by the choice
of a, we see that this image in M,/M}j = O}/T,(O;)P is the element
¢p([a]) we defined. The map ¢, is clearly a homomorphism, and we want
it to assume nontrivial values on the elements of order p in Clg|[p], for
each prime p dividing hx. The result follows. O
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REMARK 3.4.2. In Theorem [3.4.1} it is not really necessary to restrict
to representing ideals a that are coprime to p. One may take K /T, (K,)P
as the target space of ¢, to accommodate all a, with K, = K ®z Z,,
and observe that the image of ¢, is in the subgroup Oy /T,(O,)? as the
valuations of a? at the primes over p are divisible by p.

REMARK 3.4.3. It is possible to prove Theorem [3.4.1] without explicit
reference to homological algebra. What the proof shows is that, in order

to lift an ideal class of arbitrary order n under the sequence
(3.7) 1— O T — K*/(K* - Tx) — Clg — 1,

it is necessary and sufficient that its n-th power is generated by an ele-
ment « that is locally everywhere a n-th power up to multiplication by
local roots of unity. This extra leeway in comparison with the situation
in Theorem makes it into an interesting splitting problem for the
group extensions involved, as this condition on « may or may not be
satisfied. Note that at primes outside n, the divisibility of the valuation

of a by n automatically implies the local condition.

In Onabe’s paper, which assumes throughout that Clg itself is a
cyclic group of prime order, the same criterion is obtained from an anal-

ysis of the Ulm invariants occurring in Kubota’s setup [?].

Our Theorem itself does not assume any restriction on Clg,
but its use in finding K with minimal absolute Galois group G does
imply certain restrictions on the structure of Clg. The most obvious
implication of the injectivity of the map ¢, in the theorem is a bound
on the p-rank of Clg, which is defined as the dimension of the group
Clg / Cl. as an Fp-vector space.

COROLLARY 3.4.4. If Clg has p-rank at least 3 for some p, then the
sequence 1 — O* /T — K*/(K* - Tx) — Clg — 1 splits over some
subgroup of Cli of order p.

PROOF. It follows from the isomorphism in (3.8)) that the image of
¢y lies in a group that is isomorphic to (Z/pZ)%. If Clk has p-rank at
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least 3, then ¢, will not be injective. From Theorem we have that
the injectivity condition is if and only if. So the result follows.
Now apply Theorem [3.4.1 U

As numerical computations in uncountable z—modules, such as
K*/(K*-Tg), can only be performed with finite precision, it is not im-
mediately obvious that the splitting type of an idelic extension as (3.7))

can be found by a finite computation.

The maps ¢, in Theorem however are linear maps between
finite-dimensional F-vector spaces that lend themselves very well to ex-
plicit computations. One just needs some standard algebraic number

theory to compute these spaces explicitly.

A high-level description of an algorithm that determines whether the

extension
(13.7)) 1—>@*/TK—>IA{*/(K*-TK)—>CIK—>1

is totally nonsplit is then easily written down.

ALGORITHM 3.4.5.
Input: An imaginary quadratic number field K.
Output: NO if the extension (3.7) for K is not totally nonsplit, YES
otherwise.
Step 1 Compute the class group Clg of K.
If Clg has p-rank at least 3 for some p, output NO and stop.
Step 2 For each prime p dividing hg, compute one or two O-ideals
coprime to p, and put n = 1 or n = 2 accordingly, such that

their classes in Clg generate Clg [p|; and compute generators x;
up to x, for their p-th powers.

Check whether z; is trivial in Oy, /T,(O;)P.
If it is, output NO and stop.
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If n = 2, check whether x5 is trivial in O, /T}, - (z1) - (O)".
If it is, output NO and stop.

Step 3 1If all primes p | hg are dealt with without stopping, output YES
and stop.

Step 1 is a standard task in computational algebraic number theory.
For imaginary quadratic fields, it is often implemented in terms of binary

quadratic forms, and particularly easy.

From an explicit presentation of the group, it is also standard to find
the global elements x; and, if needed, x5.

The rest of Step 2 takes place in a finite group, and this means that
we only compute in the rings O, up to small precision. For instance, com-
putations in Z; / Tp(Z;)p amount to computations modulo p? for odd p,
and modulo p? for p = 2.

3.5. Minimality at 2

The splitting behavior of the sequence depends strongly on the
structure of the p-primary parts of Clx at the primes p | hx. In view of
Theorem and Corollary [3.4.4] fields with cyclic class groups and few
small primes dividing hx appear to be more likely to have minimal Galois
group G. In Section [3.6] we will provide numerical data to examine the
average splitting behavior.

For odd primes p, class groups of p-rank at least 3 arising in Corollary
B:44) are very rare, at least numerically and according to the Cohen-
Lenstra heuristics. At the prime 2, the situation is a bit different, as the
2-torsion subgroup of Clgx admits a classical explicit description going
back to Gauss. Roughly speaking, his theorem on ambiguous ideal classes
states that Clk[2] is an Fa-vector space generated by the classes of the
primes p of K lying over the rational primes that ramify in Q C K,
subject to a single relation coming from the principal ideal (/D). Thus,
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the 2-rank of Clg for a discriminant with ¢ distinct prime divisors equals
t—1.

In view of Corollary our method to construct K with absolute
abelian Galois group G does not apply if the discriminant Dy of K has

more than 3 distinct prime divisors.

If —Dg is a prime number, then hg is odd, and there is nothing to
check at the prime 2.

For Dk with two distinct prime divisors, the 2-rank of Clg equals
1, and we can replace the computation at p = 2 in Algorithm by
something that is much simpler.

THEOREM 3.5.1. Let K be imaginary quadratic with even class number,
and suppose that its 2-class group is cyclic. Then the sequence 18
nonsplit over Cli (2] if and only if the discriminant Dy of K is of one of
the following three types:

(1) Dg = —pq for primes p = —q = 5 mod 8;
(2) Dg = —4p for a prime p =5 mod 8;
(3) Dg = —8p for a prime p = +3 mod 8.

Proor. If K has a nontrivial cyclic 2-class group, then Dg = 0,1 mod

4 is divisible by exactly two different primes.

If Dg is odd, we have Dg = —pq for primes p = 1 mod 4 and
q = 3 mod 4, and the ramified primes p and q of K are in the unique ideal
class of order 2 in Clg. Their squares are ideals generated by the integers
p and —q that become squares in the genus field F' = Q(,/p, v/—q) of K,
which is a quadratic extension of K with group Cs x Cs over Q that is
locally unramified at 2.

If we have D = 5 mod 8, then 2 is inert in Q C K, and 2 splits in
K C F. This means that K and F' have isomorphic completions at their
primes over 2, and that p and —q are local squares at 2. In this case ¢9
is the trivial map in Theorem and is not injective.
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If we have D = 1 mod 8 then 2 splits in Q C K. In the case p =
—q = 1 mod 8 the integers p and —q are squares in Zj, and ¢, is again
the trivial map. In the other case p = —g = 5 mod 8, the generators p
and —q are nonsquares in ZJ, also up to multiplication by elements in
T, = {£1}. In this case ¢y is injective.

If Dk is even, we either have Dg = —4p for a prime p = 1 mod 4
or Dig = —8p for an odd prime p. In the case Dg = —4p the ramified

prime over 2 is in the ideal class of order 2.

For p = 1 mod 8, the local field Q2(1/—p) = Q2() contains a square
root of 27, and ¢o is not injective. For p = 5 mod 8, the local field
Q2(v/—p) = Q2(v/3) does not contain a square root of +2, and ¢o is
injective. In the case D = —8p the ramified primes over both 2 and p
are in the ideal class of order 2. For p = +1 mod 8 the generator £p is
a local square at 2. For p = 43 mod 8 it is not. O

In the case where the 2-rank of Clg exceeds 1, the situation is even

simpler.

THEOREM 3.5.2. Let K be imaginary quadratic for which the 2-class

group is noncyclic. Then the map ¢9 in Theorem (3.4.1| is not injective.

PROOF. As every 2-torsion element in Clg is the class of a product
of ramified primes p, its square can be generated by a rational number.
This implies that the image of ¢ is contained in the cyclic subgroup

Z3/{+1}(Z3)* C O"/T5(O")?

of order 2. Thus ¢5 is not injective if Clg has noncyclic 2-part. (]

3.6. Computational Results

In Onabe’s paper [?], only cyclic class groups Clg of prime order p <
7 are considered. In this case, there are just 2 types of splitting behavior
for the extension , and Onabe provides a list of the first few K with
hx = p < 7, together with the type of splitting they represent.
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For hy = 2 the list is in accordance with Theorem In the cases
hr = 3 and hxg = 5 there are only 2 split examples against 10 and 7
nonsplit examples, and for hx = 7 no nonsplit examples are found. This
suggests that ¢, is rather likely to be injective for increasing values of

hix = p.

This belief is confirmed if we extend Onabe’s list by including all
imaginary quadratic K of odd prime class number hx = p < 100.

By the work of Watkins [?], we now know, much more precisely than
Onabe did, what the exact list of fields with given small class number
looks like.

The extended list, with the 65 out of 2356 cases in which the extension
(3.7) splits mentioned explicitly, is given in Table

As the nonsplit types give rise to fields K having the minimal group
G as its absolute Galois group, one is inevitably led to the following

conjecture.

CONJECTURE 3.6.1. There are infinitely many imaginary quadratic

fields K for which the absolute abelian Galois group is isomorphic to
G=2*x]] z/nz.
n>1

The numerical evidence may be strong, but we do not even have
a theorem that there are infinitely many prime numbers that occur as
the class number of an imaginary quadratic field. And even if we had,
we have no theorem telling us what the distribution between split and

nonsplit will be.

From Table one easily gets the impression that among all K with
hx = p, the fraction for which the sequence (3.7)) splits is about 1/p.

In particular, assuming infinitely many imaginary quadratic fields to
have prime class number, we would expect 100% of these fields to have

the minimal absolute abelian Galois group G.
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If we fix the class number hx = p, the list of K will be finite, making
it impossible to study the average distribution of the splitting behavior
over Clg[p]. For this reason, we computed the average splitting behavior
over Clg|[p] for the set S, of imaginary quadratic fields K for which the

class number has a single factor p.

In Table we started counting for absolute discriminants exceeding
B, € Z- to avoid the influence that using many very small discriminants
may have on observing the asymptotic behavior. The Tables and
make this clear, since they show how the value of p - f, approximates
1, when we change B,. Moreover we observe that for small primes the
small discriminants somehow make the product p- f, not to approximate
1 fast. Thus, for example, for p = 3 we have to start counting from
discriminants greater than 108, for p - fp to be over 0.9. On the other
hand, for p = 11, even if we start from discriminants just greater than 1,

the results are really satisfying.

For the first three odd primes, we also looked at the distribution of
the splitting over the three kinds of local behavior in K of the prime p
(split, inert or ramified) and concluded that, at least numerically, there

is no clearly visible influence; see Table [3.5

We further did a few computations that confirmed the natural hy-
pothesis that the splitting behaviors at different primes p and ¢ that both
divide the class number once are independent of each other. The groups
we examined were of the form C5 x C7 x Cy,, with 5,7t m. The Tables
and [3.8show the numerical results of this confirmation for the primes
p=>5and g ="7. The 11, 10, 01 and 00 columns correspond to the cases
where the sequence is split over Clg[5] and Clk|[7], over Clg[5] but
not over Clg[7], not over Clg[5] but over Clg|[7], neither over Clg[5] and
Clk[7], accordingly.

Finally using our algorithm we confirm that the fraction f, of K,

with class group Clg of the form C,,.,» with p { m, is approximately
equal to 1/p; Table
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] P \ {K : hg =p} \ #Nonsplit \ — Dy for split K ‘

2 18 8 35,51,91,115,123, 187, 235, 267,
403,427

3 16 13 107,331,643

5 25 19 347,443,739,1051,1123,1723

7 31 27 859,1163, 2707, 5107

11 41 36 9403, 5179,2027,10987, 13267

13 37 34 1667,2963,11923

17 45 41 383, 8539, 16699, 25243

19 47 43 4327,17299, 17539, 17683

23 68 65 2411,9587,21163

29 83 80 47563, 74827,110947

31 73 70 9203, 12923, 46867

37 85 83 20011, 28283

41 109 106 14887,21487,96763

43 106 105 42683

47 107 107 —

53 114 114 —

59 128 126 125731,166363

61 132 131 101483

67 120 119 652723

71 150 150 —

73 119 117 358747,597403

79 175 174 64303

83 150 150 —

89 192 189 48779, 165587, 348883

97 185 184 130051

TABLE 3.1. Splitting types for fields K with hx = p <
100. The second column gives the number of imagi-
nary quadratic fields with class number p; the third col-
umn gives the number of such fields for which the se-
quence does not split; and the fourth column gives
— Dy for the fields K for which splits.
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’ p ‘ Np ‘ p-fp ‘ By, ‘
3 300 0.960 108
5 500 0.930 107
7 700 0.960 107
11 1100 0.990 107
13 1300 1.070 107
17 1700 0.920 107
19 1900 1.000 107
23 2300 1.030 107
29 2900 1.000 109
31 3100 0.970 109
37 3700 0.930 106
41 4100 1.060 109
43 2150 1.080 106
47 470 0.900 107
53 530 1.000 10°
59 590 0.900 109
61 1830 0.933 10°
67 670 0.900 109
71 1000 1.136 10°
73 3650 0.900 10°
79 1399 1.130 107
83 1660 1.000 106
89 890 1.100 10°
97 970 1.100 108

TABLE 3.2. Splitting fractions at p for class number hy
divisible by p < 100. For the first N, imaginary quadratic
fields K € S, of absolute discriminant |Dg| > B, we
denote by f, the fraction of K for which the sequence (3.7))
is split over Clg[p]. Numerically, the values for p- f, ~ 1
in the table show that the fraction f, is indeed close to

1/p.

At the following two tables the z-axis corresponds to N, and the
y-axis to p- fp. The symbols —, +, x corresponds to B, = 1,10% and 10°
accordingly, and the “down” and “right” Y to B, = 107 and 108,
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TABLE 3.3. Convergence to 1 of p- f,, for p = 3 and 5.
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1.6f

1.4f

1.2f

1.0

0.8
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0.6

0.4F

TABLE

200 400 600 800 1000

3.4. Convergence to 1 of p- f,, for p =7 and 11.
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’ D \ Np \ B, \ D fp \ Split \ Inert \ Ramified ‘
3 300 107 0.960 0.925 0.947 1.025
) 500 107 0.930 0.833 0.990 1.022
7 700 107 0.960 0.972 0.963 0.897

TABLE 3.5. Splitting fractions at p according to local be-
havior at p.

| B, | 11 [ 10 | 01 | 00 |
10 ] 0.775 1.020 [ 1.060 | 0.996

10° | 0.675 0.938 | 1.090 | 1.010
10% | 1.030 0.954 | 1.160 | 0.984

TABLE 3.6. N, = 1400.

| B, | 11 [ 10 | 01 [ 00
1077 0.787 | 0.971 [ 1.090 | 1.000

10° | 0.825 | 0.992 | 0.956 | 1.156
108 | 0.913 0.942 | 1.100 | 1.000

TABLE 3.7. N, = 2400.

| B, | 11 | 10 [ 01 [ 00 |
101 ] 0.900 [ 0.961 | 1.020 | 1.010
10° | 0.900 | 0.944 | 1.010 | 1.020
105 | 0.970 | 0.953 1.14 | 0.990

TABLE 3.8. For N, = 22400 we observe that the ap-
proximations are better from these of Tables [3.6] and
and the best are when B, = 10°.
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65

|p| M, [B,=10"| B, =10° [ B, = 10° |
5[100 | 1.070 0.935 1.100
5200 0.978 0.957 0.995
71100 | 0.964 0.931 1.030
7]1200] 0911 0.900 1.020

TABLE 3.9. Once more we see that starting from funda-
mental discriminants | Dy | greater than 105 gives us bet-
ter approximations, and moreover if we take M, = 200
we have the best results.






CHAPTER 4

Adelic Points of Elliptic Curves over Q

ABSTRACT. We apply the techniques we developed in Chapter 2 in
order to explicitly determine the topological group that arises as the
group of adelic points of an elliptic curve defined over the rational

number field.

“The laws of nature are
but the mathematical thoughts
of God.”

FEuclid, lived around 300 BC

4.1. Elliptic Curves over the Adeles

The fundamental building block of all absolute abelian Galois groups
Ag in Chapter 2 was the unit group O* of the completion of the ring of
integers O of the underlying number field K. We saw that, even though
O* is obtained as a product Hp O, of local unit groups Oy that vary
considerably with K, the isomorphism type of the topological group O*
is to a large extent independent of K, as already the degree of the number
field and its number of exceptional roots of unity (which is ‘generically’
equal to 1) determine the isomorphism type of O* (Theorem . In
the case of imaginary quadratic fields, where O* and U K = O* /O* are
isomorphic topological groups due to the finiteness of O*, this enabled
us to describe Ax = K* /K* very explicitly, and to find many K with
isomorphic Ag.

In this chapter, we fix our number field to be Q, but now consider
an infinite family of objects over Q, namely elliptic curves. There are

67
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infinitely many different isomorphism classes of elliptic curves over Q,
but it is an open problem whether the number of different isomorphism
types of point groups F(Q) is infinite. More precisely, the group E(Q)
is a finitely generated abelian group by Mordell’s theorem, and while
the number of distinct isomorphism classes of torsion subgroups of F(Q)
is known to be only 15 by a celebrated theorem of Mazur, the rank of
E(Q) is not known to be uniformly bounded for all elliptic curves E/Q.
Still, it is very easy to exhibit families of elliptic curves with point groups
that are isomorphic as abelian groups. This is somewhat reminiscent of
the situation in Section 1.3, where we saw that many number fields with
isomorphic unit groups O* exist by the Dirichlet unit theorem [1.3.1

The question that we will be investigating in this chapter, entirely in
the line of Chapter 3, is whether the adelic point groups of elliptic curves
E/Q can be isomorphic topological groups. In order to define these adelic
point groups, we note that an elliptic curve E/Q is naturally an elliptic
curve over the p-adic completions Q, and the archimedean completion

o = R of Q. We call the product group

(4.1) Eh) ¥ J] E@Q) =E®R) x [ EQ)
p<oo p prime

the group of adelic points of E. Note that, even though the elements
of the Q-algebra Aq are by their very definition p-integral at almost
all p, we do get the unrestricted product of all groups F(Qp). This
is because F is a smooth projective variety defined over Q, which has
E(Qp) = E(Z,) at all finite primes p, as projective points may be scaled
to be p-integral.

Our approach in the next two sections to describe E(Aq) as a topo-
logical group will be similar to the one in Section We first study the
structure of the local point groups E(Q,) for a single prime p. It will
become clear that there are many possibilities for this group if we fix a
large prime p and vary E. Taking the product over all p, we will prove
in Lemma that E(Aq) is the product of R/Z x Z and an infinite
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product T of finite groups, similar to what we encountered in Lemma
Next, we need to determine what Tg looks like in its standard
representation used in , and this leads to an analysis of the tower
of division fields associated to F, as in Section

4.2. The Structure of E(Q,)

For the infinite prime p = oo, the structure of the group F(Qs) =
E(R) is well-known. It only depends on the sign of the discriminant
A(E) of E, which (unlike A(E) itself) is independent of the model we
choose for E. As topological groups, we have [?, Exercise 6.7 (b)]

R/Z, if A(E) < 0;

(4.2) ER)
R/Z x Z/2Z, if A(E) > 0.

For finite primes p, the point group E(Q,) of the smooth projec-
tive curve F/Q, carries a natural topology. In order to determine its
structure as a topological group, we use the reduction map modulo p in
the same way that we used the reduction map modulo p in the exact

sequence ([2.8]).

For our elliptic curve E/Q, we now choose an explicit model in the

form of a projective Weierstrass equation
(4.3) Y2Z = X34+ aXZ*+ 023

with integral coefficients a, b € Z satisfying A = A(E) = —(4a3+27b%) #
0. We might even assume, analogously to [?, Definition p. 186], that
ordy(A) is minimal among all possible short Weierstrass equations for
FE for each prime p, but this is actually not necessary for our purposes.

Having made such a choice, we obtain a continuous reduction map
(4.4) ¢y E(Qp) — E(F))

from the group of Q,-valued points to the finite set of Fj-valued points
of the curve E described by the reduced Weierstrass equation. For the

primes p 1 2A, the primes of good reduction of our model for E, the curve
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E is an elliptic curve over F,. For such p, the reduction map ¢, is a

homomorphism.

For the primes p of bad reduction, the curve E will have a singular
point, in which case its non-singular locus E™(F,) over F, carries a
natural group structure. We write Ey(Q,) for the subgroup of E(Q,)
consisting of points that do not reduce to a singular point of E(F,). By
[?7, Theorem 4.1 (a)], the index of Ey(Q,) in E(Q,) is finite for all p. For
primes of good reduction, we simply have Ey(Q,) = E(Q,). On Ey(Q,),
the restriction of the reduction map yields a group homomorphism

(4.5) ¢p - Eo(Qp) — E™(Fy)

for all primes p. This homomorphism is surjective, as smooth points on
E(F,) can be lifted to points on E(Q,) by Hensel’s lemma.

LEMMA 4.2.1. Let T}, be the torsion subgroup of E(Qp). Then T, is
a finite group, and E(Qy)/T}, is a free Z,-module of rank 1.

If p is a prime of good reduction for E, then we have an isomorphism
Tpnon—p o~ E(Fp)non—p

between the mazimal subgroups of T, and E(F)) that are of order coprime

to p.

PROOF. On the subgroup Ey(Q,) C E(Qj), the reduction map (4.5)

gives rise to an exact sequence
(4.6) 1= E1(Qp) — Eo(Qp) — E™(Fy) — 1.

The kernel of reduction E1(Qp) is a pro-p-group that we can describe as
a Zp-module using the formal group of E as in [?, Chapter IV]. With
our choice of model , one finds just as in [?, Chapter II, Theorem 4.1
and Proposition 5.4] that E;(Q,) is torsionfree, and free of rank 1 over
Z,. As E1(Q,) is of finite index #E"(F)) in Eo(Q,), and Ey(Q,) is
itself of finite index in E(Q)), we find that the p-primary part of £(Q,)
is a finitely generated Z,-module of free rank one, whereas its non-p part
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is a finite group of order coprime to p. We can non-canonically write
E(Qp) =27, xT),

with T}, the finite torsion group of E(Qp). In case p is a prime of good
reduction, we have F(Q,) = Ey(Q,) and E™(F,) = E(F,), so the non-
p-part of the sequence (4.6)) yields an isomorphism

B(Qy)™™ = T3 = F(F, )",

as was to be shown. O

Given an elliptic curve E/Q, the preceding proof shows that we have

isomorphisms of topological groups
E(Qp) =T, x Zy

for all primes p, with 7, a finite group of which we can describe the
non-p-part in an easy way for p t 2A. Taking the product over all primes
p < 00, we obtain the following result.

LEMMA 4.2.2. For the group of adelic points of an elliptic curve E/Q,
we have an isomorphism of topological groups

E(Aq) = ER) x Z x [[ T
3
with T, C E(Qy) the finite torsion subgroup of E(Qp). O

Since the structure of F(R) is known from (4.2), we need to find an
explicit description of the infinite product of finite groups

Te =[] T
p

in order to finish our description of E(Aq).

4.3. Torsion in F(Aq)

For the product T = Hp T, of local torsion groups at the finite
primes p that occurs in Lemma4.2.2] we want to determine the exponents



72 Chapter 4. Adelic Points of Elliptic Curves over Q

e(¢, k) for the number of cyclic summands of prime power order in the
standard representation

0o
(4.7) e= [ [[@/z)y»

£ prime k=1
of Tg. In the analogous situation of the closure Tk of the torsion sub-
group of O* in Section 2.3, we found in Theorem that we had
e(£, k) = w for all but finitely many prime powers ¢*, and characterized
the ‘missing’ prime powers in terms of the number of exceptional roots
of unity in K. In the elliptic situation, the cyclotomic extension of K
generated by the £*-th roots of unity will be replaced by the ¢*-division
field
(48) Zp(t") = QEIM(Q)
of the elliptic curve E. This is the finite Galois extension of Q obtained
by adjoining the coordinates of all #*-torsion points of E to Q. More

precisely, we have the following.

LEMMA 4.3.1. Let E/Q be an elliptic curve, and (¥ > 1 a prime

power for which the inclusion
Zp(F) C Zg(eFth)

of division fields is strict. Then we have e({,k) = w in the standard
representation (4.7)) of the group Tg.

PROOF. Let p be a prime of good reduction of E, and suppose that
p splits completely in the division field Zz(¢*), but not in the larger
division field Zg(¢¥*1). Then the elliptic curve E = (E mod p) has its
full ¢*-torsion defined over F,, but not its full /**1-torsion. It follows
that the group E(F},), which contains a subgroup isomorphic to (Z/¢*Z)?
but not one isomorphic to (Z/¢**t1Z)2, has a cyclic direct summand of
order ¢*.
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The set of primes p that split completely in Zg(¢¥), but not in
Zp(£F+1), is infinite and has positive density

[Zp(t") - Q™" — [Zp(£) - Q] > 0

by a 19th century theorem of Frobenius. Alternatively, one may invoke

the Chebotarev density theorem to obtain this density.

For all primes p # ¢ of good reduction in the infinite set thus obtained,
the group E(Fp), and therefore also T}, has a cyclic direct summand of
order ¢*. This yields e(¢, k) = w for the group Tx in (£.7). O

It follows from Lemmas [4.2.2] and [4.3.1] that for elliptic curves E

having the property that for all primes ¢, the tower of /-power division

fields has strict inclusions
(4.9) Zp(l) € Zp(®) € Zp(*) C - C Zp(£*) & -

at every level, the group T is the universal group [[}2 ; Z/nZ for which
we have e(¢, k) = w in the standard representation ([4.7). In this situation,
the group E(Aq) of adelic points of E is isomorphic to the “generic
group”

(4.10) E=R/Z x Z x ﬁ Z/nZ.

n=1

4.4. Universality of the Generic Adelic Point Group &£

In this section, we prove that for ‘almost all’ elliptic curves F/Q,
their adelic point group E(Aq) is isomorphic to the generic group £ in
([@.10).

In order to make this ‘almost all’ mathematically precise, we let C(t)
for t € R~q be the finite set of elliptic curves that are given by a Weier-
strass equation

Y?Z =X’ +aXZ*+b2°
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as in ([{4.3) satisfying the inequalities |a| < #2, |b| < t3. Note that every
elliptic curve E//Q is Q-isomorphic to some elliptic curve in C(¢) for ¢ suf-
ficiently large, but that this curve is usually not unique as the coefficient
pairs (a,b) and (r*a,7%b) for an integer r # 0 give rise to Q-isomorphic
elliptic curves. We view C' = (J;oC(t) as the collection of all elliptic
curves defined over Q, and say that a subset S C C has density ¢ if we

i #50C(0)
S #O

Clearly, such densities assume values in the closed interval [0, 1]. If S is

have
= 4.

the collection of elliptic curves in C' with some given property P, we say,
somewhat informally, that almost all elliptic curves E/Q have property
P in case S has density 1.

There are other possible ways to list elliptic curves over Q, but with
this definition, we can quote the following title of a 2010 paper by Nathan

Jones [?] as a theorem with a precise mathematical meaning.
THEOREM 4.4.1. Almost all elliptic curves are Serre curves.

To understand the importance of this result in our context, we recall
what it means for an elliptic curve E/Q to be a Serre curve. It is a

maximality property for the Galois representation

pE : Gal(Q/Q) — A = Aut(E(Q)™)

describing the action of the absolute Galois group of Q by group auto-

morphisms on the group E(Q)!" of all torsion points of E. As E(Q)!"

is isomorphic to (Q/Z)? = lim(1Z/Z)? as an abstract abelian group, we
—n

can explicitly describe the group A as
A = Aut E(Q)'" = lim GLy(Z/nZ) = GLy(Z),
~n

and pg is a continuous homomorphism of profinite groups. The image
of Galois for the representation pg is the subgroup

G = pplGal(Q/Q)] C A.
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It can be identified with the Galois group over Q of the infinite number
field Q(E(Q)®r) obtained by taking the compositum of all division fields
of E. Serre’s theorem [?] states that this group is ‘large’ for most E. More
precisely, if F/Q is without complex multiplication over Q — a property
that almost all elliptic curves E'/Q have in the sense defined above — then
G is an open subgroup of finite index in A. On A, we have a non-trivial
quadratic character

Xo: A=Aut BE(Q)™ — Aut E[2](Q) = GLy(Z/2Z) = S5 — {£1}

that maps an automorphism of E(Q)%" to the sign of the permutation
by which it acts on the three non-trivial 2-torsion points of E. A field
automorphism o of Q naturally induces a permutation of the non-trivial
2-torsion points of E, which generate the 2-division field Zg(2) of E.
The sign (o) of this permutation is reflected in the action of ¢ on the
subfield Q(vA) C Zg(2) that is generated by the square root of the
discriminant A = Ap of the elliptic curve F, and given by

The Dirichlet character Z* — {41} corresponding to Q(v/A) can be seen
as a character
Xa 1 A= GLy(Z) 25 ZF — {1}
on A. It is different from the character y2, which does not factor via the
. det 5
determinant map A — Z* on A.

The Serre character xg : A — {1} associated to E is the non-trivial
quadratic character obtained as the product xaxa. By construction, it
vanishes on the image of Galois G C A, so the image of Galois is never
the full group A. In the case where we have G = ker x g, we say that F
is a Serre curve.

If F is a Serre curve, then the image of Galois is so close to the full

group A = GLQ(Z) that for every prime power £ > 1, the extension

ZE(gk) C ZE(ekJrl)
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of division fields for E that occurs in Lemma has its ‘generic’ de-
gree ¢4 for odd /¢, and at least degree ¢3 for ¢ = 2. In particular, the
hypothesis of Lemma on E is satisfied for all prime powers ¢* in
case F is a Serre curve. We immediately deduce the following theorem.

THEOREM 4.4.2. For almost all elliptic curves E/Q, the adelic point
group E(Aq) is isomorphic to the topological group

E=R/ZxZx |]z/nZ O

n=1

4.5. Existence of Non-Generic Adelic Point Groups

The hypothesis that E be a Serre curve, which guarantees that the
division field extensions

(4.11) Zg(t*) C Zp(t*)

have full degree ¢* for all prime powers ¥ > 1, is much stronger than
what is needed in order to apply Lemma In fact, one wonders for
which elliptic curves there exist prime powers ¢* for which one encounters

equality in (4.11). In the case of odd prime powers, equality never occurs.

THEOREM 4.5.1. For E/Q an elliptic curve and £ an odd prime, the
division field extension Zg((*) C Zp(€*+1) is strict for all k € Z>o.

PROOF. In the case k£ = 0, which is not relevant in the context of
Lemma the inequality Q = Zg(1) C Zg(¥) is strict because Zg({)
contains a root of unity (; of odd order ¢, and Q does not.

For k = 1, we need to show that the natural surjection
m: G = Gal(Zp(6?)/Q) = Gy = Gal(Zp(0)/Q)
is not an isomorphism.

The action of G2 on the £2-th roots of unity in Zg(¢?) leads to a
surjective map G2 ﬂ(Z/ﬁQZ)*, and as / is odd, we can pick an element
¢ € G2 that maps to a generator of (Z/¢?Z)*. Its restriction 7(c) € Gy
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then maps to a generator of F; = (Z/¢Z)* under the map G/ ﬂ(Z/EZ)*.

Suppose that 7 is an isomorphism. Then the order of 7(c) equals the
order of ¢, which is divisible by the order £(¢—1) of (Z/?Z)*. Let s € G,
be a power of 7(c) of order £. Then s € Gy C Aut(E[{]) = GLa(Fy), when
viewed as a 2 X 2-matrix over the field Fy, is a non-semisimple matrix
with double eigenvalue 1. As 7(c) centralizes this element, its eigenvalues
as an element of Aut(E[{]) cannot be distinct, and we find that det(7(c))
is a square in F. Contradiction. (This neat argument is due to Hendrik
Lenstra.)

Once we know that ker 7w contains a non-trivial element z; € G2,
we can write it as 71 = 1 + fy; € Aut(E[(?]) C End(E[¢?]) for some
element y; € End(E[¢?]) with fy; # 0. Let z for k > 2 be an element
in Gpr1 = Gal(Zg(£*+1)/Q) that restricts to #1 on Zg(¢2). Then we
can write 7, = 1 + £y, € End(E[¢*+1]) for some y;, € End(E[¢*+1]) with
Ly, # 0, and

207 =14 thy + (FT1 2, € End(E[0FH)
is a non-trivial element in the kernel of the natural map

G = Gal(Zp(*™)/Q) — G = Gal(Zp (/%) /Q).

Note that this is analogous to the situation for the cyclotomic Z,-extension
that we had in (2.11)): if K(¢;) C K((s2) is a non-trivial extension, then
so is K(Cpr) C K(Cpr+1) for k> 1. O

For the prime ¢ = 2, the situation is different. There are many
elliptic curves for which the previous theorem fails in the case k = 0, as
we have Q = Zg(2) in case FE is defined by an affine Weierstrass equation
y? = f(z) for a cubic polynomial f € Q[z] having 3 rational roots. This
is however irrelevant in the context of Lemma [£.3.1]

It follows from the complete classification (for non-CM elliptic curves
E/Q) of all possible 2-adic images of the Galois representation (|4.4])
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from Rouse and Zureick-Brown [?] that there do exist infinite families
of elliptic curves F for which we have Zg(2) = Zg(4). Non-CM curves
E always have Zg(4) C Zg(8) according to the classification, and this
implies, by a slight adaptation of the argument in the proof of Theorem
that for such E the inclusion Zg(2F) C Zg(2F+1) is strict for all
k> 2.

We include a construction of elliptic curves with Zg(2) = Zg(4),
which is elementary and probably classical.

THEOREM 4.5.2. For every positive rational number r, the elliptic
curve E,. defined by the affine Weierstrass equation

y? = x(2? — 201 — 4z + (1 + 4r1)?)

Q(7). Conversely, every elliptic

has division fields Zg, (2 ) =Zp.(4) =
= Q(i) is Q-isomorphic to E, for some

curve E/Q with Zg(2) = ( )

rational number r.

PROOF. Let E be an elliptic curve over Q defined by a Weierstrass
equation 2 = f(z), and suppose that we have Zp(2) = Zg(4) = Q(i).
Then f € QJz] is a monic cubic polynomial with splitting field Zg(2) =
Q(7), so f has one rational root, and two complex conjugate roots in
Qi) \ Q. After translating x over the rational root, we may take 0 to be

the rational root of f, leading to the model

(4.12) f@)=z(x —a)(z — @)
for E for some element o € Q(i) \ Q. Note that in this model, the Q-

isomorphism class of E does not change if we replace « by its conjugate

or multiply it by the square of a non-zero rational number.

The equality Zg(4) = Q(i) means that the 4-torsion of E is defined
over Q(7), or, equivalently, that the 2-torsion subgroup F[2](Q(¢)) of E
is contained in 2 - E(Q(i)). In terms of the complete 2-descent map [?,
Proposition 1.4, p. 315] over K = Q(i), which embeds E(K)/2E(K) in a
subgroup of K*/(K*)?x K*/(K*)?, the inclusion E[2](Q(i)) C 2-E(Q(i))
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amounts to the statement that all differences between the roots of f are
squares in Q(7). In other words, we have Zg(2) = Zg(4) = Q(7) if and

only if & and oo — @ are squares in Q(7).

Writing a = (a + bi)? with ab # 0, we can scale a + bi inside the
Q-isomorphism class of E by an element of Q*, and flip signs of ¢ and b.
Thus we may take o = (1 + ¢i)?, with g a positive rational number. The
fact that o — @ = 4qi = (q/2)(2 + 2i)? is a square in Q(i) means that
q/2 = r? is the square of some positive rational number r. Substituting
a = (14 2ir?)? in the model that we use for E, we find that E is
Q-isomorphic to

(4.13) E.: y?=x(2? =21 — 4Nz + (1 + 4r)?)

for some positive rational number r. As we have shown that E, does
have Zg, (2) = Zg,.(4) = Q(i), this proves the theorem. O

The implications of Theorem for elliptic curves E/Q having
a behavior different from the generic behavior in Theorem are as
follows.

THEOREM 4.5.3. The family of elliptic curves E, given by
18 non-isotrivial, i.e., of non-constant j-invariant, and for none of the
elliptic curves E, withr € Q* is the adelic point group E.(Aq) isomorphic
to the topological group & occurring in Theorem[{.4.3.

PROOF. The non-isotriviality follows from the fact that the j-invariant

—32(1 — 4r)3

(E,) =172
) = 1128 s ) T 27(1 + )P

of E, is not constant.

We know that an elliptic curve E for which we have a strict inequality
Zr(2) € Zg(4) has a product of local non-archimedean torsion groups
Tk for which the standard representation has e(2,1) = w. We will
now show that the groups Tg, for the elliptic curves E, in all have
a zero number e(2,1) = 0 of direct summands Z/2Z. This implies that
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they are not isomorphic to the universal group £ from Theorem [4.4.2] as
desired.

For the elliptic curves E, in we have Zg (2) = Zg, (4) =
Q(i), and E,[2](Q) = ((0,0)). If P € E,[4](Q(i)) is a point of order
4 for which 2P is a non-rational 2-torsion point on E,., then Q = P +
P? € E,[4](Q(2)) is a 4-torsion point that is invariant under the complex
conjugation automorphism o of Q(i) and satisfies 2Q) = 2P + (2P)? =
(0,0). This shows that we have E,[4](Q) = (Q) = Z/4Z.

If p is now any prime of Q, possibly p = oo, we find
E,[4)(Q) = Z/4Z, if i & Qp;
E,[4)(Q()) = (Z/4Z)*, if i€ Qp.

Thus no summand Z/2Z ever arises, and we find e(2,1) = 0 as claimed.

g

E[4](Qp) = Er[4(Qp N Q1)) =



Abstract

The present thesis focuses on two questions that are not obviously
related. Namely,

(1) What does the absolute abelian Galois group Ag of an imaginary
quadratic number field K look like, as a topological group?
(2) What does the adelic point group of an elliptic curve over Q look

like, as a topological group?

For the first question, the focus on abelian Galois groups provides us
with class field theory as a tool to analyze Ax. The older work in this
area, which goes back to Kubota and Onabe, provides a description of
the Pontryagin dual of Ax in terms of infinite families, at each prime
p, of so called Ulm invariants and is very indirect. Our direct class
field theoretic approach shows that Ax contains a subgroup Uy of finite
index isomorphic to the unit group O* of the profinite completion O of
the ring of integers of K, and provides a completely explicit description
of the topological group Ug that is almost independent of the imaginary
quadratic field K. More precisely, for all imaginary quadratic number
fields different from Q(i) and Q(v/—2), we have

Uk =2U =2*x [[ z/nZ.

n=1
The exceptional nature of Q(v/—2) was missed by Kubota and Onabe,

and their theorems need to be corrected in this respect.

Passing from the ‘universal’ subgroup Ux to Ax amounts to a group
extension problem for adelic groups that may be ‘solved’ by passing

to a suitable quotient extension involving the maximal Z-free quotient

81
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Uk /T of Ug. By ‘solved’” we mean that for each K that is sufficiently
small to allow explicit class group computations for K, we obtain a prac-
tical algorithm to compute the splitting behavior of the extension. In
case the quotient extension is totally non-split, the conclusion is that
Ak is isomorphic as a topological group to the universal group U. Con-
versely, any splitting of the p-part of the quotient extension at an odd
prime p leads to groups Ag that are not isomorphic to U. For the prime
2, the situation is special, but our control of it is much greater as a result
of the wealth of theorems on 2-parts of quadratic class groups.

Based on numerical experimentation, we have gained a basic under-
standing of the distribution of isomorphism types of Ax for varying K,
and this leads to challenging conjectures such as “100% of all imagi-
nary quadratic fields of prime class number have Ay isomorphic to the
universal group U”.

In the case of our second question, which occurs implicitly in [?,
Section 9, Question 1] with a view towards recovering a number field K
from the adelic point group E (A ) of a suitable elliptic curve over K, we
can directly apply the standard tools for elliptic curves over number fields
in a method that follows the lines of the determination of the structure

of O* we encountered for our first question.

It turns out that, for the case K = Q that is treated in Chapter 4,
the adelic point group of ‘almost all’ elliptic curves over Q is isomorphic

to a universal group

o0
E=R/ZxZx ][] 2/nZ

n=1
that is somewhat similar in nature to U. The reason for the universality
of adelic point groups of elliptic curves lies in the tendency of elliptic
curves to have Galois representations on their group of Q-valued torsion
points that are very close to being maximal. For K = Q, maximality
of the Galois representation of an elliptic curve £ means that E is a
so-called Serre-curve, and it has been proved recently by Nathan Jones
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[?7] that ‘almost all’ elliptic curves over Q are of this nature. In fact,
universality of E(Af) requires much less than maximality of the Galois
representation, and the result is that it actually requires some effort
to construct families of elliptic curves with non-universal adelic point

groups. We provide an example at the end of Chapter 4.






Résumé

Cette these traite de deux problemes dont le lien n’est pas apparent

(1) A quoi ressemble l'abélianisé Ax du groupe de Galois absolu d’un
corps quadratique imaginaire K, comme groupe topologique?

(2) A quoi ressemble le groupe des points adéliques d’une courbe

elliptique sur Q, comme groupe topologique?

Pour la premiere question, la restriction au groupe de Galois abélianisé
nous permet d’utiliser la théorie du corps de classes pour analyser Ag.
Les travaux précédents dans ce domaine, qui remontent a Kubota et
Onabe, décrivent le dual de Pontryagin de Ax en termes de familles in-
finies d’invariants de Ulm a chaque premier p, tres indirectement. Notre
approche directe par théorie du corps de classes montre que Ax con-
tient un sous-groupe Uk d’indice fini isomorphe au groupe des unités O*
de la complétion profinie O de I'anneau des entiers de K , et décrit ex-
plicitement le groupe topologique Uy, essentiellement indépendamment
du corps quadratique imaginaire K. Plus précisément, pour tout corps
quadratique imaginaire différent de Q(i) et Q(v/—2), on a

Uk =2U =2*x [[ z/nZ.

n=1

Le caractere exceptionnel de Q(1/—2) n’apparait pas dans les travaux de

Kubota et Onabe, et leurs résultats doivent étre corrigés sur ce point.

Passer du sous-groupe <universel> Uk & A revient & un probléme
d’extension pour des groupes adéliques qu’il est possible de <résoudre> en

passant a une extension de quotients convenables impliquant le quotient
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Z-libre maximal Uk /Tk de Ug. Par <résoudre>, nous entendons que,
pour chaque K suffisamment petit pour permettre des calculs de groupe
de classes explicites, nous obtenons un algorithme praticable décidant
le comportement de cette extension. Si elle est totalement non-scindée,
alors Ax est isomorphe comme groupe topologique au groupe universel
U. Réciproquement, si I’extension tensorisée par Z, se scinde pour un
premier p impair, alors Ag n’est pas isomorphe a U. Pour le premier 2,
la situation est particuliere, mais elle reste controlée grace a 'abondance

de résultats sur la 2-partie des groupes de classes de corps quadratiques.

Nos expérimentations numériques ont permis de mieux comprendre
la distribution des types d’isomorphismes de Ax quand K varie, et nous
conduisent & des conjectures telles que <pour 100% des corps quadra-
tiques imaginaires K de nombre de classes premier, A est isomorphe

au groupe universel Us.

Pour notre deuxiéme probléme, qui apparait implicitement dans [?,
Section 9, Question 1] (dans le but de reconstruire le corps de nombres
K a partir du groupe des points adéliques E(Ag) d’une courbe elliptique
convenable sur K'), nous pouvons appliquer les techniques usuelles pour
les courbes elliptiques sur les corps de nombres, en suivant les mémes
étapes que pour déterminer la structure du groupe O* rencontré dans

notre premier probleme.

Il s’avere que, dans le cas K = Q que nous traitons au Chapitre 4, le
groupe des points adéliques de «presque toutes> les courbes elliptiques

sur Q est isomorphe & un groupe universel

[o¢]
E=R/ZxZx ][] 2/nZ
n=1
de nature similaire au groupe U. Cette universalité du groupe des points
adéliques des courbes elliptiques provient de la tendance qu’ont les repré-
sentations galoisiennes attachées (sur le groupe des points de torsion a
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valeurs dans Q) & étre maximales. Pour K = Q, la représentation galoisi-
enne est maximale si est seulement si la courbe E est une courbe de Serre,
et Nathan Jones [?] a récemment démontré que <presque toutes> les
courbes elliptiques sur Q sont de cette nature. En fait, 'universalité
de E(Afk) suit d’hypotheses bien plus faibles, et il n’est pas facile de
construire des familles de courbes elliptiques dont le groupe des points
adéliques n’est pas universel. Nous donnons un tel exemple a la fin du
Chapitre 4.






Samenvatting

Dit proefschrift is gewijd aan twee vragen die niet evident gerelateerd
zijn:

(1) Hoe ziet de absolute abelse Galois group Ak van een imaginair

kwadratisch getallenlichaam K er uit, als een topologische groep?

(2) Hoe ziet de adelische puntengroep van een elliptische kromme

over Q er uit, als een topologische groep?

In het geval van de eerste vraag geeft de restrictie tot abelse Galois-
groepen ons de klassenlichamentheorie als natuurlijk instrument om Ag
te analyseren. Eerder werk op dit gebied, dat teruggaat op Kubota en
Onabe, geeft een beschrijving van de Pontryagin-duale van Ag in ter-
men van oneindige families, één per priemgetal p, van zogenaamde Ulm
invarianten, en is daarmee zeer indirect. Omngze directe aanpak via de
klassenlichamentheorie laat zien dat Ax een ondergroep Ug van eindige
index bevat die isomorf is met de eenhedengroep O* van de pro-eindige
completering O van de ring van gehelen van K, en verschaft een geheel ex-
pliciete beschrijving van de topologische groep Uy die vrijwel onafhanke-
ligk is van het imaginair kwadratische lichaam K. Preciezer geformuleerd

hebben we voor teder imaginair kwadratisch lichaam K verschillend van

Q(i) en Q(v/—2) een isomorfisme

oo
Uk 2U =2*x [[ z/nZ.
n=1
Kubota en Onabe waren zich niet bewust van het uitzonderlijke gedrag
van Q(v/—2), en hun stellingen moeten dan ook dienovereenkomstig
gecorrigeerd worden.
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Om van de ‘universele’ ondergroep Ui tot Ax te komen moet een
adelische groepsextensie berekend worden, en dat is mogelijk voor de
quotiént-extensie behorende bij het maximale 2—vrije quotiént Uy /T
van Ug. Met ‘mogelijk’ bedoelen we dat we voor iedere K die vol-
doende klein is om expliciete klassengroepberekeningen toe te laten een
praktische algoritme krijgen om het splitsingsgedrag van de extensie te
berekenen. In het geval dat de quotiént-extensie geheel ongesplitst is, is
de conclusie dat A als topologische groep isomorf is met de universele
groep U. Omgekeerd leidt iedere splitsing van een p-deel van de quotiént-
extensie voor een oneven priemgetal p tot een groep Ax die niet isomorf
is met U. De situatie is ingewikkelder voor de priem p = 2, maar hier
is onze controle over de situatie weer groter doordat we gebruik kun-
nen maken van de talrijke resultaten betreffende het 2-primaire deel van

kwadratische klassengroepen.

Op grond van numerieke experimenten hebben we een basisbegrip
kunnen krijgen van de verdeling van isomorfietypes van A g voor variérende
K, en dit leidt tot uitdagende vermoedens zoals “voor 100% van alle
imaginair kwadratische lichamen met een klassengetal dat priem is, is

Ak isomorf met de universele groep U”.

In het geval van onze tweede vraag, die impliciet voorkomt in [?,
Section 9, Question 1], in de hoop om een getallenlichaam K te kunnen
reconstrueren uit zijn adelische puntengroep E(Ag) voor een geschikt
gekozen elliptische kromme E/K, kunnen we direct de standaardmetho-
den voor elliptische krommen over getallenlichamen toepassen op een
manier die de lijnen volgt van de bepaling van de structuur van O* zoals

we die voor onze eerste vraag tegenkwamen.

Het blijkt dat, in het geval K = Q dat in hoofdstuk 4 behandeld
wordt, de adelische puntengroep van ‘bijna alle’ elliptische krommen

over Q isomorf is met de universele groep

E=R/ZxZx []z/nZ,

n=1
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die wel enigszins doet denken aan de groep U.

De reden voor de universaliteit van adelische puntengroepen van el-
liptische krommen is gelegen in de neiging van elliptische krommen om
Galoisrepresentaties op hun Q-waardige torsiepunten te hebben die ‘zo
groot mogelijk’ zijn. In het geval van K = Q betekent ‘zo groot mogelijk’
voor een elliptische kromme E/Q dat E een zogenaamde Serre-kromme
is, en Nathan Jones [?] heeft recent bewezen dat ‘bijna alle’ elliptische
krommen over Q Serre-krommen zijn. Voor universaliteit van E(Af) is
in feite veel minder nodig dan maximaliteit van de Galoisrepresentatie
van F, en het kost dan ook enige moeite om families van elliptische krom-
men op te schrijven waarvoor de adelische puntengroep niet universeel

is. We geven een expliciet voorbeeld aan het einde van hoofdstuk 4.






>0vodn

H mapodoa didaxtopxr| Swtpl3r eoTidlel o 600 gpwTAMATO Ta onola

apyxd dev alvetar vo cucyetiCovtan. Hrot,

(1) IHoud €etvar n poperi tns ardlvng aperiavris opddas Galois A €vig
pavtaotikol TeTpaywvikol owuatos apucy K, ws tomodoyixn
oudoa;

(2) Howd eivar n popen tns ouddas twv adelic onueiwr pag eAdenti-

KNS KaumUAnS ndvew and to Q, ws tomohoyikr) oudoa;

[o Ty mpdd™n gpdTNoM, 1 eoTlaon oTic afeliavés ouddeg Galois yog
Topéyel Ty Jewpla kAdoewy owudtwr og epyolelo yio TNy avéiuorn tne Ak .
O tohoudtepeg Bovketéc oto Yéua autd Twv Kubota xou Onabe, mopéyouv
wloe Oy dueon meptypapr) tou duxol Pontryagin (Pontryagin dual) g
Ak o Opoug amelpwV OXOYEVELDY, O Xd¥E TEWTO p, UE TNV enwvnula
Ulm invariants (Ulm avaAdoiwteg). H opecdtnta tng mpoc€yyiong Uag
ue Bdon tn Yewpla xAdoewv coUdtwyY, anodewviel 6Tt N Ag meptéyel pla
unoopdda Uk TENEpaoUEVOU BEXTY, LOOUORQIXT] UE TNV OB LOVAOWY O*
NG TEOTEMEQACUEVNS TAHPWONG TOU (5, Tou GaxTUAlOL TwV axepaiwy Tou
K, xau pog mop€yel uiot eEVIEADS CUYXEXQUIEVT] TIERLYEOPT] TNS TOTOANOYIXAC
ouddac Uk 1 omola ebvon oeddv avebdptnTn amod T0 QovTacTiXG TETRUYWVIXO
ooy K. IIo ouyxexpiuéva, yio dda To QUVTAOTING TETEOYWVIXE COUNTA
aprdpmy extoc v Qi) xu Q(v/—2), éxouue

o0
Uk 2U =2°x [[ z/nZ.
n=1
H e&aipetn @lon tou Q(v/—2) éhewne and g epyooiec twv Kubota xou
Onabe, xou ta Yewpruotd toug €npene va dtopdwdoly ye Bdon autd.
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94 YOvodn

[epvivtog and v «<xadohxry unooudda Uk otnv Ak, o0dnyoduacte
oe éva TpOPAnua enéxtaong ouddac yio adelic ouddec To omolo umopel va
«udely mepvadvTag e plot XaUTIAANAY eéxTacy TNAIXoU ouddwy To oTo-
{o eumhéxel to péyioTo 2—5)\801‘)890 nhixo Uk /Tg e Uk. Me tov 6po
«udely evvoolue 6Tt yia xde K to omolo elvan ixovd wixpd hOTE VoL €M
TEETEL CAUPELS LTOAOYIOUOUC XAACEWY COUATWY Yot To K, anoxtolue évay
TEOX TG oA YOeripo Yio var utohoyicouue Ty splitting cuunepupopd tng e-
TEXTAOTG OPABWY. X TNV TERINTWOT OTOL 1) ENEXTACT|, UTohoinou etvan totally
non-split, 1o cuunépaoua elvon Twe 1 Ax cbva LOOUORPIXY »C TOTOAOYIXT
oudda ye tnv xadohiny| opdda U. Avtiotpoga, xdie splitting tou p-uépoug
TOU TNAIXOL EMEXTACNC OE €vay TEPLTTO TEMOTO P 00NYel oty oudda A 1
omola dev etvan tooyopgn we Ty U. T'a tov mpdto 2, 1 xatdo taoT etvor oLo-
{tepn, ahAd mo eleyydpevn AoYw Tne TANYdpos Yewpenudtwy Tou agopoly

ToL 2-UE€QT] TOV TETRAYWVIXMY OUAOWY XAJCEWY.

Baowlbuevol oe aprduntixoie nelpauatiodols, £Youue anoxthoet uio Po-
o) XATOVONOY TNG XATAVOUNE TwV TOTWY todopop@lopod e Ax yio Oi-
dpopa K, x1 autd odnyel oe mpoxinuxéc eaoiec 6nwe «100% dhwv twv
PUVTACTIXWY TETPAYWVIXWOY CWUATOY PE optlud *AJCEWY TE®TO apLiud,

€youvv Ag woopopyn pe Ty xadohixy| oudda Us.

Yy mepintwon tne Seltepne epdtnonc yag, 1 onolo eupovileton wg
gpodtnon ato [?, Section 9, Question 1] pe tnv ontixf e avdxtnong evog
ompatog aptdudy K and ty opddo tov adelic onpeinv E(Ax) pog xatdh-
ANAng eMemTinig xaumOANg mévew and to K, umopolue eulfc auéows va
eQapuéooupe To xahepwUEva epYahela Yior TIC EANEITTINES XOUTUAES TEVE
an6d owpata apriuey e plo yédodo 1 omola axoloudel TiIC Ypuuués TOU
TEOGBLOPLoUOY TNE BouNg Tou O* ue TNV omoio acy oA XOUE OTNY TEWTN
EPWTNOY| HAG.

ArnodexvieTton 6Tl oty mepinTtwon 6mov K = Q, 7 onola avTiueTw-
niletar oto Kepdhouo 4, n oudda twv adelic onuelwyv «oyeddv dAwvy twv
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EMAELTTIXWY XOPUTVAGY &V antd To Q elvon loduopgT Ue o xadohixy| oudda

[e.9]
E=R/ZxZx ][] 2/nZ

n=1
1 omola xatd uio évvola efvon opota ex pioewg tng U. O Adyog tng xodo-
AXOTNTAC TV 0uddwY Twv adelic oNuelwy EANAEITTIXOV XOUTUAGY €YXEITOL
GTNY TACT TV EARELTTIXDV XAUTUAGY VoL EYouy avandpactdoelg Galois otny
oudda Twv onueiwy tencpacuévne TaEne mou opilovTal 6To Q ot onolec e-
tvar mOAO xovtd oTo va ebvon peyilotxés. o K = Q, n ueyiouxotnta
v avanapaotdoewy Galois piog eMemTxrc xounUAng E, onualver 6TL 1|
E eivon pio xaumOAn Serre, xi €yel mpoogota anodetydel and tov Nathan
Jones [?] 611 «oyeddy dhecy ot eMenTinéc xopumilec Tdve and To Q eivou
xopnOhec Serre. Nty mporypatxdtnta, 1 xadohxdtnta e E(Ak) amon-
TEl AT AYOTERO Amd TNV PEYIOTIXOTNTA TV avamnapactdocwy Galois, xou
TO AmOTEAEOUO Elvol OTL omouTelTon XAmotla TEOCTAUELN VO XATACHEVAT TOVY
OLXOYEVEIEG EAAELTTIXWY XOUTVAGY PE pr-xodohxr) oudda adelic onueiwy.
[opéyoupe €va mapdderyua TETOWG OWOYEVELNS 0To Téhog Tou Kegalatou
4.
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