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L’UNIVERSITÉ DE BORDEAUX
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Preface

This thesis consists of 4 chapters.

The first chapter is of an introductory nature. In more or less historical
order, it discusses the basic invariants associated to algebraic number
fields, and brings up the fundamental question whether or to which extent
such invariants characterize the number field. It surveys some of the
older results in the area before focusing on the case of absolute abelian
Galois groups that occurs center stage in the next two chapters, and on a
question for elliptic curves that can be attacked with the techniques from
those two chapters.

Chapters 2 and 3 are based on our 2013 paper [?]. In these chapters,
which are not subject to the size restrictions that papers for the Algo-
rithmic Number Theory Symposium ANTS have to satisfy, there is more
background material than in [?]. More importantly, the results in these
Chapters go beyond the results in the paper, and they include the non-
trivial proof of the fact that the key criterion to find imaginary quadratic
fields with ‘minimal’ absolute abelian Galois groups (Theorem 3.2.2) can
also be used to find Galois groups that are provably non-minimal.

Chapter 4 moves in a different direction. It explicitly computes adelic
point groups of elliptic curves over the field of rational numbers, and
shows that the outcome can be made as explicit as in the case of the
minimal absolute abelian Galois groups, and, in an even stronger sense
than in that case, barely depends on the particular elliptic curve. The
results obtained do generalize to arbitrary number fields, and it is this
generalization that we plan to deal with in a forthcoming paper.

v





CHAPTER 1

Invariants of Number Fields

Abstract. In this introductory chapter, we investigate to which

extent the various invariants associated to a number field characterize

the number field up to isomorphism. Special attention will be given

to the absolute abelian Galois group of the number field, which

occurs center stage in Chapters 2 and 3. In the final section, we

discuss a question on elliptic curves that can be studied using the

techniques from those Chapters.

“Reason is immortal,

all else is mortal.”

Pythagoras, 570 – 495 BC

1.1. Classical Invariants

Algebraic number fields, which are finite field extensions of Q, are

the key objects in algebraic number theory. They can be given explicitly

in the form K = Q(α) = Q[X]/(f), where α = X mod f is the root of

some monic irreducible polynomial f ∈ Z[X]. Given in this way, they

come with a subring Z[α] = Z[X]/(f) of K that can often play the role

that Z plays for the arithmetic in Q.

Many classical problems in number theory naturally lead to number

rings Z[α]. The Pell equation x2 = dy2 + 1, which was popularized by

Fermat’s 1657 challenge to the British mathematicians, can be written [?]

as

(x+ y
√
d) · (x− y

√
d) = 1

inside the quadratic number ring Z[
√
d], and finding its integral solutions

is tantamount to determining the units x+ y
√
d in that ring. Fermat’s

1



2 Chapter 1. Invariants of Number Fields

equation xp + yp = zp for odd prime exponents p was taken up in the

19th century by Kummer in the form

p∏
i=1

(x+ yζip) = zp

inside the cyclotomic number ring Z[ζp]. Euler pioneered with the arith-

metic of what we now view as quadratic number rings, discovering the

quadratic reciprocity law by numerical experimentation. Gauss proved

the quadratic reciprocity law, and generalizations to cubic and biquadratic

reciprocity, by Eisenstein and Gauss himself, were found to have their

natural formulation in the quadratic rings Z[ζ3] and Z[i]. These rings be-

have in many ways like the familiar ring Z of ordinary integers, admitting

unique prime factorization, and having only finitely many units.

Arbitrary number rings are not in general so well-behaved. Kummer

discovered in the 1840s that his cyclotomic number rings Z[ζp] may not

have unique factorization, and went on to develop a theory of prime ideal

factorization. The failure of unique factorization of elements is caused

by the existence of non-principal ideals in number rings, and they have a

class group measuring the extent of non-principality.

The theory of general number rings, as developed by Dedekind and

others during the 19th century, shows the potential need to enlarge number

rings such as Z[α] to the maximal order OK contained in K = Q(α),

which is known as the ring of integers of the number field Q(α). Only

these Dedekind domains admit unique prime ideal factorization. In the

case of quadratic rings Z[
√
d], this gave an ideal theoretic foundation to

the older theory of binary quadratic forms due to Gauss, which did not

explicitly mention quadratic rings.

The class group ClK and the unit group O∗K of the ring of integers

of K are the basic invariants of K needed to deal with the ideal theory

of OK . The unit group O∗K is a finitely generated abelian group by a

theorem of Dirichlet [?, Theorem 5.13], and the class group is a finite

abelian group [?, Corollary 5.9]. These finiteness results may be shown in
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an elegant way using techniques from the geometry of numbers developed

around 1900 by Minkowski. They can be applied since OK can be

viewed as a lattice in the Euclidean space K ⊗Q R, and O∗K also embeds

logarithmically as a lattice in a Euclidean space. The size of the respective

covolumes of these lattices is measured by the discriminant ∆K ∈ Z and

the regulator RK ∈ R of K.

The proofs of the finiteness results given using the geometry of num-

bers are often not constructive, and the actual computation of class groups

and unit groups usually proceeds by factoring sufficiently many principal

ideals over a well-chosen factor base of prime ideals. In order to decide

that ‘sufficiently many’ ideals have been factored, one needs the analytic

approximation of class number and regulator provided by the Dedekind

zeta function ζK of the number field. This is a meromorphic function on

C given by ζK(s) =
∑

06=I⊂OK
(NI)−s for <(s) > 1. It has a simple pole

at s = 1, and its residue

2r1(2π)r2
hKRK

wK |∆K |1/2

at this pole combines all the classical invariants of the number field K: the

number of real embeddings r1, the number of pairs of complex embeddings

r2, the class number hK = # ClK , the regulator RK , the number wK of

roots of unity in K, and the discriminant ∆K . From the Euler product

ζK(s) =
∏
p

(1− 1

Nps
)−1

it is clear that ζK encodes information on the splitting behavior in K of

the primes of Q.

1.2. 20th Century Invariants

In the early 20th century, Hensel and Hasse developed algebraic

number theory from a local point of view. In this setting, every non-zero

prime ideal p of the ring of integers of K corresponds to an equivalence

class of valuations | · |p : K → R≥0, and gives rise to a completion Kp



4 Chapter 1. Invariants of Number Fields

of K at p that is usually referred to as a (non-archimedean) local field.

Similarly, the real and complex embeddings of K can be viewed as ‘infinite’

primes of K giving rise to the archimedean completions R and C of K.

This point of view gives rise to the study of global invariants in terms

of local data. In this way the class group ClK , being the quotient of the

group of locally principal OK-ideals modulo the group of globally principal

OK-ideals, becomes an obstruction group to a local-global principle.

Around 1940, Chevalley combined all completions of a number field

K into a single topological ring, AK =
∏′

pKp, the adele ring of K. It

is the restricted direct product of all completions of K, both finite and

infinite, consisting of those elements in the full cartesian product that are

almost everywhere integral. More specifically we have,

(1.1) AK = {(xp)p ∈
∏
p

Kp : |xp|p ≤ 1 for all but finitely many p}.

The number field K embeds along the diagonal into AK , and becomes

a discrete subgroup of AK in the restricted product topology.

The unit group A∗K =
∏′

pK
∗
p of the adele ring is the idele group of K.

It is the restricted direct product of the groups K∗p with respect to the unit

groups O∗p of the local ring of integers Op of Kp. Under the corresponding

restricted product topology, K∗ embeds diagonally in A∗K as a discrete

subgroup. The quotient CK = A∗K/K∗, the idele class group of K, is an

invariant of K that plays a key role in class field theory (Section 2.5). It

is naturally a locally compact abelian group, and by the product formula∏
p |x|p = 1 for global elements x ∈ K∗, it comes with a well-defined

multiplicative absolute value CK → R>0 given by (xp)p 7→
∏

p |xp|p. The

subgroup C1
K of idele classes of absolute value 1 is a compact topological

group, a fact reflecting the finiteness results for class group and unit

group coming out of the geometry of numbers [?, Chapter XII, §16-18].

Every number field K also comes with an automorphism group

Aut(K), which is always finite, and of order equal to the degree [K : Q]

in the case where K is Galois over Q. The group Aut(K) acts on all
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invariants defined so far (e.g. ClK ,O∗K ,A∗K , CK), as these invariants are

of an “internal” nature: they are constructed out of objects that “live

inside K”.

Much more information is contained in the absolute Galois group

GK of K, which is defined as the automorphism group over K of an

algebraic closure K of K. Being a profinite group, it naturally comes

with a Krull topology (cf. Section 2.1). If we view all algebraic number

fields as contained in some fixed algebraic closure Q of Q, the groups

GK are the subgroups of the absolute Galois group GQ of the rational

number field that are open and (hence) of finite index in GQ. The group

GK is also a fundamental invariant of K, and in contrast to the previous

“internal” invariants, it may be considered as an “external” invariant as it

does not directly come from a structure inside the number field K. In

line with this, automorphisms of K do not have a natural action on GK .

More precisely, an automorphism of K gives rise to an automorphism of

GK that is only uniquely defined up to an inner automorphism of GK .

The absolute Galois group GK of a number field is a huge profinite

group that we are currently unable to describe ‘explicitly’ for any number

field K. The situation changes however if we pass from GK to its maximal

abelian quotient AK = Gab
K , which describes only those extensions of K

that are abelian. Automorphisms of K do have a natural action on AK ,

and there is in fact an “internal” description of AK that is provided by

class field theory, a theory established around 1920 by Takagi and Artin.

More specifically, we have the Artin reciprocity map

A∗K/K∗
φ
−� AK = Gab

K

that provides a generalization of the older quadratic, cubic and biquadratic

reciprocity laws, and shows that in abelian extensions of number fields, the

splitting of the primes only depends on congruences modulo a “conductor”.

We will provide more details on this theory in Section 2.5.
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1.3. Which Invariants Characterize Number Fields?

We now come to the basic type of question for this chapter: to which

extent is a number field characterized by its associated invariants? This

is a very natural mathematical question, and we may ask it in the case of

number fields for all invariants that we have defined so far. Some of these

questions turn out to be interesting, others less so. We will illustrate this

by looking at the most classical invariants first.

For a number field K, the first invariants we defined were the ring

of integers OK , its unit group O∗K , and its class group ClK . These are a

commutative ring, a finitely generated abelian group and a finite abelian

group, respectively. If two number fields have isomorphic rings of integers,

then they are obviously isomorphic, as K is the field of fractions of its ring

of integers. This is a case where an object can be recovered in a trivial

way from the invariant. One may then modify the question, and forget

some of the structure of the invariant, say by looking at the underlying

additive group of the ring of integers. Again, we do not get anything

very interesting: as an abelian group, the ring of integers is a free abelian

group of rank [K : Q], and all information it contains on K is its degree

over Q. In this case, more interesting questions arise when viewing OK
as a lattice embedded in K ⊗Q R, the setting of Minkowski’s geometry

of numbers. In this way, OK is provided with a shape and a covolume,

and it gives rise to questions as to whether non-isomorphic number fields

of the same degree can have the same discriminant, or how the lattice

shapes of rings of integers in families of number fields are distributed.

These are easy questions for quadratic number fields, but not for number

fields of higher degree [?].

For the unit group O∗K of the ring of integers of a number field K,

the situation is somewhat similar. As an abelian group, we know what it

looks like by the following theorem.

Theorem 1.3.1 (Dirichlet, 1846). Let K be a number field with r1

real embeddings and r2 pairs of complex conjugate embeddings. Then



1.3. Which Invariants Characterize Number Fields? 7

the unit group of any order O in K has a finite cyclic torsion group

µ(O) consisting of the roots of unity in O, and O∗/µ(O) is free of rank

r1 + r2 − 1. Less canonically, we have an isomorphism

(1.2) O∗ ∼= µ(O)× Zr1+r2−1.

We see that for a totally real number field K of degree n, the iso-

morphism type of the unit group O∗K ∼= 〈−1〉 × Zn−1 contains no more

information than the degree of the number field, so this is not an invariant

that often determines the isomorphism type of K. However, if we view

O/µ(O) as a lattice in Euclidean space, under the logarithmic map used

in the standard proof of Dirichlet’s unit theorem, we can ask questions

just as for the additive group OK . Again, these are non-trivial questions

as soon as we move beyond the case of quadratic fields [?].

The class group of a number field is a fundamental invariant that

gives us information about the arithmetic of K, but it clearly does not

characterize the number field K. For instance, there seem to be many

number fields in small degrees with trivial class group, but we cannot even

prove that there exist infinitely many pairwise non-isomorphic number

fields of class number one. In this case, the distribution of isomorphism

types of class groups in families of number fields is a question that has

been studied numerically rather extensively, but so far almost all precise

answers are entirely conjectural, and go under the name of Cohen-Lenstra

conjectures [?]. For example, in the case of real quadratic fields of prime

discriminant p ≡ 1 mod 4, we expect 75.446% of these fields to be of

class number one, but as we said, we do not even know how to prove

that infinitely many of them have class number one. Only in the case

of imaginary quadratic fields, which are somewhat special in the sense

that they have finite unit groups, the growth of the class group as a

function of the discriminant is somewhat under control, albeit often in

non-effective ways. We will come back to this in Chapter 3, when we deal

with imaginary quadratic fields for which the class number is prime.
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1.4. The Dedekind Zeta Function and the Adele Ring

The Dedekind zeta function ζK of a number field K is the classical

invariant we defined already as ζK(s) =
∑

0 6=I⊂OK
(NI)−s, where N

denotes the absolute ideal norm, I ranges over the nonzero ideals of OK
and the argument s of the function is a complex number with real part

<(s) > 1. We can write ζK(s) as a Dirichlet series
∑

m=0 amm
−s, with

am ∈ Z≥0 the number of integral OK-ideals of norm m, and two of these

Dirichlet series represent the same function if and only if the values of

the coefficients am coincide for all m. Thus, two number fields having

the same zeta function have the same number of integral ideals of given

norm m for all m ∈ Z>0. This is a rather strong equivalence relation

on number fields, and number fields with this property are said to be

arithmetically equivalent.

From the values of am for K, one immediately reads off the degree

n = [K : Q] = max
p prime

ap

and the set S = {p prime : ap = n} of primes that split completely in K.

This immediately implies that arithmetically equivalent number fields K

and K ′ have a common normal closure N , which is the largest number

field in which all primes in S split completely.

Let us define the splitting type of an arbitrary prime p in K as the list

(f1, f2, . . . , fg) of residue class field degrees fi = [OK/pi : Z/p] coming

from the factorization pOK = pe11 pe22 · · · p
eg
g of p in K, ordered to have

fi ≤ fi+1. Then two number fields are arithmetically equivalent if and

only if all rational primes p have the same splitting type in them, so an

equality of zeta functions

ζK(s) =
∏
p

(1− 1

Nps
)−1

only arises if the zeta functions have the “same” p-Euler factors.
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Let two number fieldsK andK ′, inside Q, be arithmetically equivalent.

This may of course happen because the Galois groups H = Gal(N/K)

and H ′ = Gal(N/K ′) of their common normal closure N over each of

them are conjugate subgroups of G = Gal(N/Q). In this case, K and

K ′ are actually isomorphic. However, Gassmann [?] showed in 1926 that

arithmetical equivalence of K and K ′ amounts to requiring something

weaker, namely, that H and H ′ intersect every conjugacy class C of G in

the same number of elements:

#(C ∩H) = #(C ∩H ′).

Such Gassmann-equivalent subgroups are not necessarily conjugate, and

Gassmann himself found the very first examples with subgroups of index

[G : H] = [G : H ′] = 180.

Perlis [?] found that examples of arithmetically equivalent number

fields exist in degree 7 already, and he gave an explicit family of such

fields in degree 8. From the functional equation of the Dedekind zeta

function, he derived that arithmetically equivalent number fields have

the same discriminant, the same number of real and complex primes,

and isomorphic unit groups. He was unable to prove that they also have

isomorphic class groups, and in fact, later numerical work by De Smit

and Perlis [?] showed that the class group may actually differ.

Example 1.4.1. Let a ∈ Z be an integer for which ±a and ±2a are

non-squares in Q. Then the polynomial f1(x) = x8 − a is irreducible

over Q, and the number field K = Q(α) generated by a root of f1

has normal closure N = Q(ζ8, α) of degree 32, generated over K by a

primitive 8-th root of unity ζ8. The Galois group G = Gal(N/K) is the

affine group Z/8Zo(Z/8Z)∗ over Z/8Z. The polynomial f2(x) = x8−16a

is irreducible over Q as well, and as 16 = (
√

2)8 = (
√
−2)8 = (1+i)8 is an

8-th power in Q(ζ8), its roots lie in N . The field K ′ generated by a root

α′ of f2 is an explicit example of a number field that is arithmetically

equivalent to K, but not isomorphic to K. At odd primes p, we have an
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N

4 4

C8

H H′

G
K = Q[θ]

8

K ′ = Q[θ′]

8
Q(ζ8)

4

Q

Figure 1.1. Perlis’ example.

isomorphism

Qp[X]/(X8 − a) ∼= Qp[X]/(X8 − 16a)

of Qp-algebras, as Qp will contain a square root of at least one of 2, −2

and −1. In particular, the splitting types in K and K ′ of all odd primes

p coincide.

At p = 2, we do have the same splitting type, but we may or may

not have a local isomorphism of Q2-algebras. To see this, we note first

that 1 + 32Z2 ⊂ Z∗2 is the subgroup of 8-th powers in Z∗2. If we now

take for a an integer a ≡ 1 mod 32, the Q2-algebras Q2[X]/(X8− a) and

Q2[X]/(X8 − 16a) are non-isomorphic, as they equal

Q2[X]/(X8 − 1) ∼= Q2 ×Q2 ×Q2(i)×Q2(ζ8)

and

Q2[X]/(X8 − 16) ∼= Q2(i)×Q2(i)×Q2(
√

2)×Q2(
√
−2),

respectively, by the factorizations

X8 − 1 = (X − 1)(X + 1)(X2 + 1)(X4 + 1)
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and

X8 − 16 = (X2 + 2X + 2)(X2 − 2X + 2)(X2 − 2)(X2 + 2)

into irreducible polynomials over Q2. In this case the prime 2 has splitting

type (1, 1, 1, 1) in both K and K ′, but the four primes over 2 in K and

K ′ have different ramification indices.

If we now take a ≡ −1 mod 32, the local Q2-algebras

Q2[X]/(X8 + 1) = Q2(ζ16) and Q2[X]/(X8 + 16)

are isomorphic. In this case, we have arithmetically equivalent fields for

which even the adele rings AK and AK′ are isomorphic, giving an example

of “locally isomorphic” number fields that are not globally isomorphic.

As Iwasawa [?] showed, number fields K and K ′ have topologically

isomorphic adele rings if and only if they are “locally isomorphic” at

all primes p. We find that this notion, although strictly stronger than

arithmetical equivalence, still does not imply global isomorphism.

1.5. The Absolute Galois Group

For the Dedekind zeta function ζK and the adele ring AK of K, which

encode a lot of information on K, it may come as a surprise that they

can coincide for non-isomorphic number fields. For the absolute Galois

group GK of K, a huge profinite group that which we will consider now,

the surprise is maybe not that it does characterize the number field, but

the fact that we can actually prove such a statement without knowing

very much on the global structure of this group.

At first sight, there seems to be no obvious way to construct an

isomorphism of number fields K1
∼−→ K2 starting from a topological

isomorphism GK1

∼−→ GK2 of profinite groups. In fact, even if we have

such an isomorphism α0 : K1
∼−→ K2, there is no canonical way to obtain

an isomorphism GK1

∼−→ GK2 from α0. Indeed, we do know that α0 can

be extended to some isomorphism α : K1
∼−→ K2, which then gives rise
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to an isomorphism GK1

∼−→ GK2 given by σ 7→ ασα−1. However, there

are usually many choices for the extension α of α0, as α is only unique

up to composition with an automorphism of K2 over K2. Consequently,

the isomorphism GK1

∼−→ GK2 we get from α0 is only unique up to

composition by an inner automorphism of GK2 . In Figure 1.2 we exhibit

the corresponding isomorphisms.

GK1

σ_

K1

∼ α0

��
f

K1

∼ α

��
Q

K2

��

��
K2

ασα−1

GK2

Figure 1.2. Isomorphisms induced by α0 : K1
∼−→ K2.

The fundamental work of Neukirch [?, ?], as refined by Ikeda [?],

Neukirch [?], Uchida [?] and Iwasawa in an unpublished paper shows

that, up to this intrinsic non-uniqueness, every isomorphism of absolute

Galois groups of number fields “comes from” an isomorphism of number

fields. This result, known as the Neukirch-Uchida theorem [?, 12.2.1], is

the following.

Theorem 1.5.1. Let K1 and K2 be number fields, and suppose that

we have a topological isomorphism of absolute Galois groups

f : GK1 = Gal(K1/K1)
∼−→ GK2 = Gal(K2/K2).

Then there exists a field isomorphism α : K1
∼−→ K2 with restriction

α0 : K1
∼−→ K2 such that f is given by f(σ) = ασα−1.
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The proof of the Neukirch-Uchida theorem starts with Neukirch’s

observation that for every prime p of K1, the image f [Gp] of the decom-

position group of p is the decomposition group of a uniquely determined

prime α∗(p) of K2. This establishes a bijection α∗ between the sets of

primes of the algebraic closures K1 and K2. Primes that correspond

under α∗ lie over a common rational prime p, and we can relate the

splitting behavior of p in K1 and its finite extensions to the splitting

behavior of p in K2 and its finite extensions. One deduces that p has

an extension of degree 1 in K1 if and only if it does so in K2, and just

as in the case of arithmetically equivalent fields, we find that normal

number fields with isomorphic absolute Galois groups are isomorphic [?].

Uchida’s improvement, which was subsequently simplified by Neukirch [?],

consists in the actual construction of a map α that induces α∗ and has

the property stated in Theorem 1.5.1.

Even though we now know that a number field K is characterized by

its absolute Galois group GK , we still do not know what the absolute

Galois group of K looks like in any way that might be called explicit.

The same is true for the maximal pro-solvable quotient Gsolv
K of GK , for

which Neukirch [?] had already shown that it can take over the role of

GK in the theorems above. The situation becomes however different if

we replace Gsolv
K by an even smaller quotient, the absolute abelian Galois

group AK = GK/[GK , GK ] of K. Here [GK , GK ] denotes the closure of

the commutator subgroup [GK , GK ] of GK .

1.6. The Absolute Abelian Galois Group

The question as to whether the absolute abelian Galois group AK

of a number field characterizes the number field up to isomorphism was

studied at the same time 1976− 78 when the Neukirch-Uchida theorem

was established. As we already observed, AK is, in contrast to GK , an

invariant that may be thought of as “internal”, as it admits a class field

theoretic description “in terms of K”. This makes AK more accessible
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than GK , even though the internal description of AK as a quotient of the

idele class group A∗K/K∗ does not easily allow us to compare absolute

abelian Galois groups of number fields: the description is rather strongly

tied to arithmetical properties of the field K. For this reason, one might

be inclined to think that absolute abelian Galois groups do characterize

number fields. It therefore came a bit as a surprise when Onabe [?, ?]

discovered that this is not the case for imaginary quadratic number fields.

Onabe based her work on earlier work of Kubota [?], who studied the

dual group XK = Hom(AK ,C
∗) of continuous characters on AK . This

Pontryagin dual of the compact group AK is a discrete countable abelian

torsion group, and Kubota had expressed the structure of the p-primary

parts of XK in terms of an infinite number of so-called Ulm invariants.

It had been shown by Kaplansky [?, Theorem 14] that such invariants

determine the isomorphism type of a countable reduced abelian torsion

group, even though this Ulm-Kaplansky theorem does not provide explicit

descriptions of groups in terms of their Ulm invariants.

Onabe computed the Ulm invariants of XK for a number of small

imaginary quadratic number fields K with prime class number up to

7, and concluded from this that there exist nonisomorphic imaginary

quadratic number fields K and K ′ for which the absolute abelian Galois

groups AK and AK′ are isomorphic as profinite groups. This may even

happen in cases where K and K ′ have different class numbers. As we

discovered, the explicit example K = Q(
√
−2), K ′ = Q(

√
−5) of this

that occurs in Onabe’s main theorem [?, Theorem 2] is however incorrect.

This is because the value of the finite Ulm invariants in [?, Theorem 4]

is incorrect for the prime 2 in case the ground field is a special number

field in the sense of our Lemma 2.3.3. As it happens, Q(
√
−5) and the

exceptional field Q(
√
−2) do have different Ulm invariants at 2.

The nature of Kubota’s error is similar to an error in Grunwald’s the-

orem that was corrected by a theorem of Wang [?] occurring in Kubota’s
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paper [?, Theorem 1]. It is related to the non-cyclic nature of the 2-power

cyclotomic extension Q ⊂ Q(ζ2∞).

In Chapter 3 of the present thesis, we obtain Onabe’s corrected results

by a direct class field theoretic approach that completely avoids Kubota’s

dualization and the machinery of Ulm invariants, and we more or less

explicitly give the structure of AK . More precisely, we show that for

all imaginary quadratic number fields K 6= Q(i),Q(
√
−2), the absolute

abelian Galois group AK contains a perfectly explicit ‘inertial subgroup’

UK isomorphic to

G = Ẑ2 ×
∏
n≥1

Z/nZ

as a subgroup of finite index. The number fields that are said to be

of “type A” in [?] are those fields for which AK is isomorphic to this

“minimal” absolute abelian Galois group G.

Just likeG contains many subgroups of finite index that are isomorphic

to G as topological groups, AK can be larger than its inertial subgroup

UK ∼= G and still be isomorphic to G. The numerical data that we present

at the end of Chapter 3 suggest that imaginary quadratic number fields

K with minimal absolute abelian Galois group AK ∼= G are in fact quite

common: more than 97% of the 2356 imaginary quadratic number fields

that have odd prime class number hK = p < 100 are of this nature.

Deciding whether AK is isomorphic to its inertial subgroup UK ∼= G

is a non-trivial problem that is the main topic of Chapter 3. It reduces

the underlying splitting question for profinite groups to an explicit finite

computation, for which we provide an algorithm in Section 3.4. It allows

us to find many imaginary quadratic K with the same minimal absolute

Galois group AK ∼= G, and to understand, at least heuristically, how

many there are. We believe (Conjecture 3.6.1) that there are actually

infinitely many K for which AK is isomorphic to the minimal group G.

Our belief is supported by reasonable assumptions on the average splitting

behavior of exact sequences of abelian groups, and these assumptions are

tested numerically in the same Section 3.6.
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1.7. Adelic Points of Elliptic Curves

The situation for imaginary quadratic number fields is particularly

easy as these fields are the only number fields (apart from Q) that have a

finite unit group O∗K . Already for real quadratic fields K, the presence of a

fundamental unit εK of infinite order leads to considerable complications,

as it is not so easy to predict the p-adic behavior of fundamental units. It

is possible to extend our results to the setting of general number fields, as

was shown by Gras [?], but one does not obtain a description of AK that

is as explicit as in the imaginary quadratic case. The lack of precision in

the results is due to insufficient control of the behavior of unit groups,

but one can, at least heuristically, understand this behavior, see [?].

In the final Chapter 4 of this thesis, we use the methods of Chapter 2

to investigate a problem that, at least at first sight, appears to be rather

different: we describe the group of adelic points of an elliptic curve defined

over Q as an abstract topological group. In the case of the inertial part

UK of the absolute abelian Galois group AK of an imaginary quadratic

number field K, which is a product of local factors at rational primes p

that have a group structure that very much depends on the particular field

K, the striking result is that, when the product is taken over all p, it is

almost independent of K. In a similar way, the topological group E(Qp)

of p-adic points of an elliptic curve E defined over the rational number

field Q can be very different for different elliptic curves E. However,

we show in Theorem 4.4.2 that for an overwhelming majority of elliptic

curves E/Q, the adelic point group

E(AQ) = E(R)×
∏
p

E(Qp)

is a universal topological group

E = R/Z× Ẑ×
∞∏
n=1

Z/nZ

reminiscent of the universal group G we encountered in the case of absolute

abelian Galois groups of imaginary quadratic fields.



1.7. Adelic Points of Elliptic Curves 17

Finding an elliptic curve E/Q which gives rise to a different topo-

logical group is a non-trivial problem that one can solve in a simple

way using the extensive database [?] that was compiled by Rouse and

Zureick-Brown in 2014, in the context of the classification of 2-adic Galois

representations associated to non-CM elliptic curves E/Q. It shows that

there exist one-parameter families of elliptic curves over Q for which

the adelic point group is not isomorphic to the generic group E defined

above. Instead of referring to this database, we present an elementary

construction of such a family.

Our result in Chapter 4 should be seen as a first step, as we stick to

the basic case of elliptic curves over Q in this thesis. Much of what we say

can be generalized without too much effort to elliptic curves over arbitrary

number fields (publication in preparation), and there is also the more

difficult generalization to abelian varieties of dimension bigger than 1.

The ‘universality’ of the topological groups that occur here provides a

negative answer to a question of Cornelissen and Karemaker [?, Section 9,

Question 1], who are interested in algebraic groups G for which G(AK)

determines K up to isomorphism.





CHAPTER 2

Abelian Galois Groups as Ẑ-modules

Abstract. The infinite abelian Galois groups we study are in a

natural way modules over the ring Ẑ of profinite integers. This

chapter presents the simple structural result for the absolute abelian

Galois group of Q from this point of view, and then goes into

the generalization to arbitrary number fields, in relation to the

information that is provided by class field theory.

“For a man to conquer himself,

is the first and noblest of all victories.”

Plato, 428/427 – 348/347 BC

2.1. Infinite Galois Groups

Many of the Galois groups that we will encounter are Galois groups

of infinite algebraic extensions, and this implies that it is best to view

them as topological groups.

If K ⊂ L is a (possibly infinite) Galois extension, then L is a union

L =
⋃
i∈I Li of subfields Li ⊂ L that are finite Galois over K. As an auto-

morphism of L/K is determined by its restrictions to the finite extensions

Li, the Galois group Gal(L/K) injects into the product
∏
i∈I Gal(Li/K)

of finite Galois groups, and its image is the projective limit

lim←−
i∈I

Gal(Li/K) ⊂
∏
i∈I

Gal(Li/K),

i.e., the subgroup of the full direct product consisting of those elements

that satisfy the natural compatibility conditions coming from field inclu-

sions Li ⊂ Lj . The product
∏
i∈I Gal(Li/K) of finite groups carries a

19
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topology that is non-discrete if K ⊂ L is an infinite extension, and as

the subgroup Gal(L/K) is “cut out” by closed conditions, such profinite

Galois groups are compact topological groups.

One of the simplest examples of such an infinite Galois extension is

provided by the algebraic closure Fp of the field Fp of p elements. As

we have Fp =
⋃
n≥1 Gal(Fpn/Fp), and Gal(Fpn/Fp) is a cyclic group of

order n generated by the Frobenius automorphism x 7→ xp, we have

Gal(Fp/Fp) = lim←−
n≥1

Gal(Fpn/Fp) ∼= lim←−
n≥1

(Z/nZ) = Ẑ.

The procyclic group Ẑ, which occurs here as our first example of an

infinite abelian Galois group, is actually a profinite ring, as the maps

underlying the definition of lim←−n≥1
(Z/nZ) are also ring homomorphisms.

The elements of Ẑ are profinite integers that can be represented as infinite

sums x =
∑∞

n=1 cnn!, with cn ∈ Z and 0 ≤ cn ≤ n.

By the Chinese remainder theorem, the ring Ẑ may be decomposed

as an infinite product

(2.1) Ẑ =
∏
p

Zp

over all prime numbers p. Here the rings of p-adic integers

Zp = lim←−
n≥1

Z/pnZ =
{

(αn)∞n=1 ∈
∏
n≥1

Z/pnZ : ∀ n, αn+1 ≡ αn mod pn
}

are themselves projective limits of rings. As a group, Zp is the primordial

example of a pro-p-group, and every abelian pro-p-group is a module over

the ring Zp. Indeed, let B be an abelian pro-p-group. Then we have

B = lim←−iBi, with Bi a finite abelian p-group. Since Bi is a (Z/pniZ)-

module for some ni, the homomorphism Zp → Z/pniZ makes each Bi

into a Zp-module, and since the maps defining the projective limit lim←−iBi
inside

∏
iBi are Zp-module homomorphisms, the projective limit lim←−iBi

is a Zp-module as well.
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In a similar way, an arbitrary profinite abelian group A = lim←−iAi,
with Ai finite abelian, is a module over the ring Ẑ, as every Ai is naturally

a Ẑ-module. In explicit terms, this means that the exponentiation in

these groups by ordinary integers extends to a continuous exponentiation

map Ẑ×A→ A. Just as finite abelian groups are products of p-groups,

profinite abelian groups can be written as products A =
∏
pA(p) of pro-p-

groups A(p), with p ranging over all primes. As every A(p) is a Zp-module,

their product is a module over
∏
p Zp, in accordance with (2.1). The

possibility of decomposing Ẑ-modules into their ‘p-primary parts’ enables

us to reduce questions on modules over Ẑ to modules over Zp. As that

latter ring is a discrete valuation ring, and therefore algebraically simpler

than Ẑ, this is a useful reduction. We use it at Section 3.4 when dealing

with actual algorithms for Ẑ-modules. Often, there is however no reason

to look at a single prime p at a time, and the global picture actually

remains clearer if we do not. The next section provides a first example of

this phenomenon.

2.2. AQ as Ẑ-module

For the rational number field Q, the absolute abelian Galois group AQ

is a group that we know very explicitly by the Kronecker-Weber theorem,

and it is instructive to analyze AQ as a Ẑ-module. The Kronecker-Weber

theorem states that Qab is the maximal cyclotomic extension of Q, and

that an element σ ∈ AQ acts on the roots of unity that generate Qab by

exponentiation. More precisely, for σ ∈ AQ we have σ(ζ) = ζu for all

roots of unity ζ, with u a uniquely defined element in the unit group Ẑ∗

of the ring Ẑ. This yields the well-known isomorphism

AQ = Gal(Qab/Q) ∼= Ẑ∗ =
∏
p

Z∗p.

This is however not a decomposition of AQ into p-primary parts alluded

to above, as Z∗p is not quite a pro-p-group for p > 2.
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For Z∗p, reduction modulo p yields an exact sequence

(2.2) 1→ 1 + pZp −→ Z∗p −→ F∗p → 1.

For p 6= 2, as Z∗p contains a subgroup Tp consisting of the (p− 1)-st roots

of unity, we may split the sequence (2.2) by sending the elements of F∗p to

their Teichmüller representatives in Tp ⊂ Z∗p. This yields an isomorphism

Z∗p
∼= Tp × (1 + pZp)

of profinite groups. The subgroup 1 + pZp is a free Zp-module of rank

one, which may be generated by 1 + p. For p = 2 a similar statement

is true if we reduce modulo 4, as 1 + 4Z2 is a free Z2-module generated

by 1 + 4 = 5, and writing T2 = {±1} for the torsion subgroup of Z∗2 we

again have Z∗2
∼= T2 ×Z2 as profinite groups. Taking the product over all

p, we obtain an isomorphism

(2.3) AQ
∼= TQ × Ẑ,

with TQ =
∏
p Tp the product of the torsion subgroups Tp ⊂ Q∗p of the

multiplicative groups of the completions Qp of Q. More canonically, TQ

is the closure of the torsion subgroup of AQ = Gal(Qab/Q), and the

quotient AQ/TQ is a free Ẑ-module of rank 1. The invariant field of TQ

inside Qab is the unique Ẑ-extension of Q (see Section 2.5).

Even though it looks at first sight as if the isomorphism type of TQ

depends on the properties of prime numbers, one should realize that in

an infinite product of finite cyclic groups, the Chinese remainder theorem

allows us to rearrange factors in many different ways. One has for instance

a non-canonical isomorphism

(2.4) TQ =
∏
p

Tp ∼=
∏
n≥1

Z/nZ,

as both of these products, when written as a countable product of cyclic

groups of prime power order, have an infinite number of factors Z/`kZ for

each prime power `k. Note that, for the product
∏
p Tp of cyclic groups of

order p− 1 (for p 6= 2), this statement is not completely trivial: it follows
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from the existence, by the well-known theorem of Dirichlet, of infinitely

many primes p that are congruent to 1 mod `k, but not to 1 mod `k+1.

In order to compare isomorphism types of abelian groups T arising

as countable products of finite abelian groups, one may write

(2.5) T =
∏

` prime

∞∏
k=1

(Z/`kZ)e(`,k)

for exponents e(`, k) that can be defined in terms of T as

(2.6) e(`, k) = dimF`
T [`k]/

(
T [`k−1] + `T [`k+1]

)
.

Note that the F`-dimensions e(`, k) are either finite, in which case e(`, k)

is a non-negative integer, or countably infinite. In the latter case we write

e(`, k) = ω, and we have

(Z/`kZ)ω = Map(Z>0,Z/`
kZ).

Profinite abelian groups T written in the form (2.5) are isomorphic if and

only if their exponents e(`, k) coincide for all prime powers `k.

For arbitrary number fields K, the absolute abelian Galois group AK

is not as easily described as in the case K = Q. Still, the direct analogue

Ô∗ of Ẑ∗, with Ô the profinite completion of the ring of integers O of K,

will be a major building block in the description of AK . We therefore will

need the structure of Ô∗ as a Ẑ-module, and this description is the main

result of the next section.

2.3. Ô∗ as Ẑ-module

2.3.1. Structure of Ô∗. Let K be an arbitrary number field, and

write Ô = lim←n≥1(O/nO) for the profinite completion of the ring of

integers O of K. Just as Ẑ decomposes as a product
∏
p Zp of its p-adic

completions, we have a decomposition Ô ∼=
∏

pOp into local rings of

integers Op, with p ranging over the finite primes of K. We denote by

Tp the torsion subgroup of O∗p , i.e., the subgroup of roots of unity in K∗p ,
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and put

(2.7) TK =
∏
p

Tp ⊂
∏
p

O∗p = Ô∗.

Then the analogue for arbitrary number fields of the isomorphism AQ
∼=

TQ × Ẑ from (2.3) is the following.

Lemma 2.3.1. The closure of the torsion subgroup of Ô∗ equals the

group TK from (2.7), and Ô∗/TK is a free Ẑ-module of rank [K : Q].

Less canonically, we have an isomorphism

Ô∗ ∼= TK × Ẑ[K:Q].

Proof. As the finite torsion subgroup Tp ⊂ O∗p is closed in O∗p ,

the first statement follows using (2.7) and the definition of the product

topology on Ô∗ =
∏

pO∗p .

Reduction modulo p in the local unit group O∗p gives rise to an exact

sequence

(2.8) 1→ 1 + p −→ O∗p −→ k∗p → 1

that can be split by mapping the elements of the unit group k∗p of the

residue class field to their Teichmüller representatives in O∗p . These form

the cyclic group of order #k∗p = Np− 1 in Tp consisting of the elements

of order coprime to p, which is the characteristic of kp. The kernel of

reduction 1 + p is by [?, One-Unit Theorem, p. 231] a finitely generated

Zp-module of free rank d = [Kp : Qp] having a finite torsion group

consisting of roots of unity in Tp of p-power order.

Combining these facts, we find that O∗p/Tp is a free Zp-module of

rank d or, less canonically, that we have a local isomorphism

(2.9) O∗p ∼= Tp × Z
[Kp:Qp]
p

for each prime p. Taking the product over all p, and using the fact that

the sum of the local degrees at p equals the global degree [K : Q], we

obtain the desired global conclusion. �
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In order to completely describe Ô∗, we need to know now what

TK =
∏

p Tp looks like as Ẑ-module.

2.3.2. Structure of TK . In order to derive a characterization of

TK =
∏

p Tp for arbitrary number fields K similar to the characterization

in the previous section of the torsion part TQ =
∏
p Tp
∼=
∏
n≥1 Z/nZ of

AQ, we observe that we have an exact divisibility `k ‖ #Tp of the order

of the cyclic group Tp by a prime power `k if and only if the local field Kp

at p contains a primitive `k-th root of unity, but not a primitive `k+1-th

root of unity. We may reword this as: the prime p splits completely in

the cyclotomic extension

K ⊂ K(ζ`k),

but not in the cyclotomic extension

K ⊂ K(ζ`k+1).

If such p exist at all for `k, then there are infinitely many of them, by the

Chebotarev density theorem [?]. Thus, if we write TK in the standard

form

(2.10) TK =
∏

` prime

∞∏
k=1

(Z/`kZ)e(`,k)

from (2.5), then each of the exponents e(`, k) is either equal to zero or

to ω. The prime powers `k > 1 that occur for K, i.e., for which we have

e(`, k) = ω, are all but those for which we have an equality

K(ζ`k) = K(ζ`k+1).

For K = Q all prime powers `k occur, but for general number fields

K, there are finitely many prime powers that may disappear. This is due

to the fact that the infinite cyclotomic extension Q ⊂ Q(ζ`∞) which has

Galois group isomorphic to Z∗`
∼= T` × Z`, can partially ‘collapse’ over K.

As Q ⊂ Q(ζ`∞) is totally ramified at `, it can only do so at primes ` that

ramify in Q ⊂ K.
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To describe the prime powers `k that disappear for K, we consider,

for ` an odd prime, the number

w(`) = wK(`) = #µ`∞ (K(ζ`))

of `-power roots of unity in the field K(ζ`). For almost all `, including

those ` that do not ramify in Q ⊂ K, this number equals `, and we call `

exceptional for K if it is divisible by `2.

For the prime ` = 2, we consider instead the number

w(2) = wK(2) = #µ2∞ (K(ζ4))

of 2-power roots in K(ζ4) = K(i). If K contains i = ζ4, or w(2) is

divisible by 8, we call 2 exceptional for K.

The number w(K) of exceptional roots of unity for K is now defined

as

w(K) =
∏

` exceptional

w(`).

Note that w(K) refers to roots of unity that may or may not be contained

in K itself, and that every prime ` dividing w(K) occurs to an exponent at

least 2. In the case where w = 1 we simply say that K has no exceptional

roots of unity.

For given K, computing w(K) is not difficult. Here is an easy example

for quadratic number fields.

Lemma 2.3.2. The number of exceptional roots of unity for the qua-

dratic number fields Q(i),Q(
√
−2) and Q(

√
2), is 4, 8 and 8, respectively.

For all other quadratic fields K, we have w(K) = 1.

Proof. Let K be quadratic. If l is an odd prime, the number field

K(ζl) of degree dividing 2(l−1) cannot contain a root of unity of order l2,

which is of degree l(l−1) over Q, and we have wK(l) = 1. For K = Q(i)

we have w2(K) = 4. For all other K, the quartic field K(i) contains an

eighth root of unity ζ8, and is therefore equal to K(i) = Q(ζ8), if and

only if we have K = Q(
√
±2). �



2.3. Ô∗ as Ẑ-module 27

The prime powers `k > 1 that do not occur when TK is written

as a direct product of groups (Z/`kZ)Z are strict divisors of w(`) at

exceptional primes `, with ` = 2 giving rise to a special case.

Theorem 2.3.3. Let K be a number field, and w = w(K) its number

of exceptional roots of unity. Then we have a non-canonical isomorphism

of profinite groups

TK =
∏
p

Tp ∼=
∏
n≥1

Z/nwZ,

except in the case when 2 is exceptional for K and i = ζ4 is not contained

in K. In this special case, we have

TK =
∏
p

Tp ∼=
∏
n≥1

(Z/2Z× Z/nwZ).

The group TK is isomorphic to the group TQ in (2.4) if and only if K

has no exceptional roots of unity.

Proof. If ` is odd, the tower of field extensions

(2.11) K(ζ`) ⊂ K(ζ`2) ⊂ . . . ⊂ K(ζ`k) ⊂ K(ζ`k+1) ⊂ . . .

is a Z`-extension, and the steps K(ζ`k) ⊂ K(ζ`k+1) with k ≥ 1 in this

tower that are equalities are exactly those for which `k+1 divides w(`).

Similarly, the tower of field extensions

K(ζ4) ⊂ K(ζ8) ⊂ . . . ⊂ K(ζ2k) ⊂ K(ζ2k+1) ⊂ . . .

is a Z2-extension in which the steps K(ζ2k) ⊂ K(ζ2k+1) with k ≥ 2

that are equalities are exactly those for which 2k+1 divides w(2). The

extension K = K(ζ2) ⊂ K(ζ4) that we have in the remaining case k = 1

is an equality if and only if K contains i = ζ4.

Thus, a prime power `k > 2 that does not occur when TK is written

as a product of groups (Z/`kZ)Z is the same as a strict divisor `k > 2

of w(`) at an exceptional prime `. The special prime power `k = 2 does

not occur if and only if i = ζ4 is in K. Note that in this case, 2 is by

definition exceptional for K.
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It is clear that replacing the group
∏
n≥1 Z/nZ from (2.4) by the

group
∏
n≥1 Z/nwZ has the effect of removing cyclic summands of order

`k with `k+1|w in its standard decomposition (2.5), and this implies that

the groups given in Theorem 2.3.3 are indeed isomorphic to TK . Only for

w = 1 we obtain the group TQ in which all prime powers `k occur. �

Now that we understand the explicit Ẑ-module structure of Ô∗ as

the product of TK and a free module Ẑ[K:Q], we have to relate Ô∗ to the

absolute abelian Galois group AK of K. For K = Q, the groups Ô∗ = Ẑ∗

and AQ are isomorphic. For arbitrary K, the relation is given by class

field theory, the theory of abelian extensions of number fields that was

developed in the first half of the 20th century.

2.4. Class Field Theory

2.4.1. Classical Point of View. In Section 2.2 we managed to

describe AQ since by Kronecker-Weber we knew that every finite abelian

extension Q ⊂ L is contained in some cyclotomic extension Q ⊂ Q(ζm).

If we now consider abelian extensions over arbitrary number fields K 6= Q,

class field theory provides us with an analogue of Kronecker-Weber: every

abelian extension K ⊂ L is contained in a ray class field extension

K ⊂ Hm. The main difference from the case where K = Q is that we do

not in general have canonical generators of the ray class field Hm. In fact,

finding such generators is known as Hilbert’s 12th problem, which has

remained open since 1900. However, we will use knowledge of how the

primes ramify and split in the extension Hm and the information that we

can retrieve from the Galois group Gal(Hm/K), which is the ray class

group of K of conductor m denoted by Clm. This group plays the same

role as (Z/mZ)∗ plays for Q ⊂ Q(ζm).

Let K ⊂ L be an abelian extension. We define the Artin map for

L/K as the homomorphism

(2.12) ψL/K : IK(∆L/K) −→ Gal(L/K), p 7−→ Frobp
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on the group of IK(∆L/K) of fractional OK-ideals generated by the

primes p that do not divide the discriminant ∆L/K . Here Frobp is the

Frobenius automorphism, which is well defined as a function of p as the

extension is abelian, and p unramified. For an ideal a ∈ IK(∆L/K) we

call its image under the Artin map the Artin symbol of a in Gal(L/K).

A modulus m = m0 · m∞ of K is a non-zero OK-ideal m0 times a

subset m∞ of the real primes of K. For this modulus we have that

x ≡ 1 mod∗ m if ordp(x − 1) ≥ ordp(m0) for p|m0 and σ(x) > 0 at the

real primes σ : K → R in m∞. The ray Rm modulo m consists of prin-

cipal ideals xOK generated by elements x ≡ 1 mod∗ m. For an abelian

extension K ⊂ L a modulus m is admissible if and only if all primes p in

the ray Rm modulo m split completely in L. One of the key statements

of class field theory is the existence of admissible moduli for all abelian

extensions, and given their existence, it is not difficult to see that there

is a minimal admissible modulus (under divisibility). It is called the

conductor fL/K of K ⊂ L. The primes that ramify in L are the primes

that occur in the conductor.

Let m = m0 · m∞ be an admissible modulus for K ⊂ L, and Im

the group of fractional OK-ideals generated by the primes p that are

coprime to the finite part of the modulus. Then the Artin map induces a

homomorphism on the ray class group Clm = Im/Rm modulo m:

(2.13) ψL/K : Clm = Im/Rm −→ Gal(L/K), p 7−→ Frobp.

The norms of the OL-ideals that are coprime to m are in the kernel

of the Artin map (2.13), and they can be shown to generate the kernel.

This implies that the ideal group Am ⊂ Im that corresponds to L is equal

to NL/K(ImOL
) · Rm. The ray class field Hm modulo m is the maximal

abelian extension of K in which all primes in the ray Rm split completely.

For the extension K ⊂ L = Hm the Artin map (2.13) is an isomorphism,

Clm ∼= Gal(Hm/K).



30 Chapter 2. Abelian Galois Groups as Ẑ-modules

The ray Rm is contained in the subgroup of Pm ⊂ Im of principal

ideals in Im, and by the approximation theorem, the quotients Im/Pm are

for all moduli m isomorphic to the class group ClK of K. We therefore

have the exact sequence

(2.14) O∗K −→ (OK/m)∗ −→ Clm −→ ClK → 1,

from which we can see that the ray class group Clm is an extension of the

class group ClK . The residue class in (OK/m)∗ of x ∈ OK coprime to

the finite part of the modulus consists of its residue class modulo m0 and

the signs of its images for the real primes in m∞:

(2.15) (OK/m)∗ = (OK/m0)∗ ×
∏
p|m∞

〈−1〉.

Since all ray class fields Hm contain the Hilbert class field H = H1, for

their Galois groups over H we have an Artin isomorphism

(2.16) (OK/m)∗/im[O∗K ]
∼−→ Gal(Hm/H).

Since we want to describe the absolute abelian Galois group AK =

Gal(Kab/K) of K, taking the projective limit in the sequence (2.14), we

have an exact sequence

(2.17) 1→ O∗K −→ Ô∗K ×
∏
p real

〈−1〉 ψ−→AK −→ ClK → 1.

Here ÔK =
∏

pOp is the profinite completion of the ring of integers OK of

K of which we studied the unit group Ô∗ = Ô∗K =
∏

pO∗p in the previous

section, and O∗K is the closure in Ô∗K ×
∏

p real〈−1〉 of the unit group O∗K
of OK . The image of ψ is the Galois group Gal(Kab/H) ⊂ AK of Kab

over the Hilbert class field H of K. For an abelian extension K ⊂ L that

contains H, the image of the group O∗p ⊂ Ô∗K in Gal(L/H) is the inertia

group at p in L/K.

In the case K = Q, the group O∗K = {±1} has order 2, there is

a single real prime, and the class group ClK is trivial, so (2.17) easily

yields the isomorphism Ẑ∗
∼−→ AQ = Gal(Qab/Q). For arbitrary K, the
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relation between O∗K and AK is more complicated, as O∗K will usually

not be finite, and ClK may be non-trivial.

2.4.2. Idelic Point of View. Our final exact sequence (2.17) de-

scribing AK , which removes the need of a chosen conductor m, is very

much in the spirit of the idelic description of class field theory. In this

description, one systematically uses a single group, the idele group

A∗K =
∏′

p≤∞
K∗p = {(xp)p : xp ∈ O∗p for almost all p}

of K, as the domain of definition of the Artin map. The definition of A∗K
does not depend on how we define O∗p for the finitely many archimedean

primes of K – one may take O∗p = K∗p for these p. Using the idele group,

one is able to deal simultaneously with all primes of K, including those

that are real or ramified.

The topology of A∗K is not the restriction of the product topology,

but the so-called restricted product topology: elements are close if their

quotient is p-adically close to 1 at finite number of p, and in O∗p for all

other p. Under this topology, K∗ embeds diagonally into A∗K as a discrete

subgroup.

To an idele x = (xp)p we associate an ideal xOK =
∏

p<∞ pordp(xp),

making the group of fractional OK-ideals IK into a quotient of the idele

group A∗K . If we consider a global element x ∈ K∗ ⊂ A∗K , then the

ideal xOK is indeed the principal OK-ideal generated by x. We have the

following exact sequence, which describes the idele class group A∗K/K∗

of K:

(2.18) 1→ O∗K −→
∏
p<∞
O∗p ×

∏
p|∞

K∗p −→ A∗K/K∗ −→ ClK → 1,

with A∗K/K∗ 3 xK∗ 7→ [xOK ].

No matter which of the two approaches we will choose to describe AK ,

the results will be the same. This is something that becomes clear if we

associate to a modulus m = m0 ·m∞ of K an open subgroup Wm ⊂ A∗K .
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In order to do so, we write the modulus as a product
∏

p p
n(p), with the

exponent n(p) to be the order of m0 at p for finite p, and 0 or 1 in case p

is infinite. If p is complex then the exponent n(p) is 0. Finally we define

the subgroups U
(k)
p ⊂ K∗p to be:

U
(k)
p =


Up, if k = 0;

1 + pk, if p is finite and k > 0;

U+
p ⊂ Up = R∗, if p is real and k = 1,

where by U+
p we denote the subgroup of positive elements in Up. The

subgroup Wm ⊂ A∗K is defined as the product
∏

p U
(n(p))
p . By [?, Lemma

3.4, p. 505] we have for every modulus m of K an isomorphism

(2.19) A∗K/K∗Wm
∼−→Clm,

under which the residue class of a prime element at a finite prime p - m
is mapped to the ideal class [p] ∈ ClK .

Let K ⊂ L be a finite abelian extension. Then for an admissible

modulus m of it, we may compose (2.19) with the map (2.13) to obtain

an Artin map

(2.20) ψL/K : A∗K/K∗ −→ Gal(L/K)

that has no reference to the modulus m. If we take the limit of (2.20)

for all finite abelian extensions K ⊂ L inside K, and denote by AK the

Galois group Gal(Kab/K), we obtain the idelic Artin map

(2.21) ψK : A∗K/K∗ −→ AK .

The map ψK is a continuous surjective map, and its kernel is the connected

component of the unit element in A∗K/K∗, denoted by DK . Thus we have

the isomorphism

(2.22) (A∗K/K∗)/DK
∼−→AK .

The expression (2.22) is more involved than the corresponding identity

AQ = Ẑ∗ for the rational number field, and the connected component DK
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is a rather complicated subgroup of A∗K/K∗ in the case of number fields

with infinitely many units, cf. [?, Chapter IX, Theorem 3]. In the case

of imaginary quadratic fields K that we will be dealing with in the next

Chapter, DK is simply the image of the unique archimedean component

K∗p
∼= C∗ of A∗K in A∗K/K∗. In this case, the inertial part of AK , i.e.,

the subgroup UK ⊂ AK generated by all inertia groups O∗p ⊂ A∗K/K∗,
admits a description very similar to AQ = TQ × Ẑ, as we will show in

Theorem 3.1.3.

For general K, the inertial part of AK has the form

(2.23) UK =
(∏

p

O∗p
)
/O∗,

and in case K has no real primes, (2.18) gives rise to the sequence

(2.24) 1→ UK −→ AK −→ ClK → 1.

2.5. Zp and Ẑ-extensions of Number Fields

As we are to describe the absolute abelian Galois group AK for certain

number fields K as a Ẑ-module, or their p-primary parts as a Zp-module,

the question naturally arises whether K admits abelian extensions with

group Zp or Ẑ.

In the case K = Q, the group AQ is isomorphic to Ẑ∗ =
∏
p Z∗p,

which we may rewrite as in (2.3) as AQ
∼= TQ × Ẑ = TQ ×

∏
p Zp. This

shows that Q has a unique Ẑ-extension, which is the compositum over

all primes p of a unique Zp-extension Zp of Q. We can describe this

‘cyclotomic’ Zp-extension Zp of Q as the subfield of Q(ζp∞) left invariant

by the finite torsion subgroup of Gal(Q(ζp∞)/Q) ∼= Z∗p that we already

saw in Section 2.2.

For odd p, the torsion subgroup is a cyclic group Cp−1 of order p− 1

consisting of the (p−1)-st roots of unity in Z∗p indicated in the diagram of

associated fields of Figure 2.1. For the prime 2, the torsion subgroup of Z∗2
is of order 2 and generated by −1, making Q(ζ2∞) into the compositum

of its maximal real subfield Z2 and the quadratic extension Q(i) = Q(ζ4).
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Q(ζp∞)Cp−1

Zp

Zp

Zp

Q(ζp)

Cp−1Q

Figure 2.1. The unique Zp-extension of Q for p odd.

If K is any number field, its intersection (inside an algebraic closure

of Q) is a number field K0 = K ∩Zp of finite degree, and Gal(Zp/K0) is,

as a closed subgroup of finite index of Gal(Zp/Q) = Zp, itself isomorphic

to Zp. This shows that the compositum K · Zp is a Zp-extension of K.

It is known as the cyclotomic Zp-extension of K (see Figure 2.2). If K

contains ζp (for p odd) or ζ4 (for p = 2), then it is obtained by adjoining

all the p-power roots of unity to K. Their compositum over all primes p

gives rise to the cyclotomic Ẑ-extension of K.

In principle, class field theory tells us for any number field K how

many different, or, more precisely, how many K-linearly independent

Zp-extensions it admits. For this, it suffices to determine the Zp-rank of

the maximal Zp-free quotient of the inertial part UK = Ô∗K/O∗ of the

absolute abelian Galois group AK of K that we encountered in (2.23).

The free Zp-rank of the p-primary part of the group Ô∗K ∼= TK×Ẑ[K:Q]

equals [K : Q], and a famous conjecture going back to Leopoldt is that,

for all number fields K and all primes p, quotienting Ô∗K by the closure

of the subgroup of global units O∗K of K, of free Z-rank r1 + r2 − 1,

will result in a group for which the p-primary part has free Zp-rank

[K : Q]− (r1 +r2−1) = r2 +1. It is however not at all obvious that the p-

adic rank of Ô∗K , which is obviously bounded by r1 +r2−1, should always
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K · Zp
Zp

Zp
pn0Zp

∼=Zp

Zp

K

K0 = Zp ∩K

Q

Figure 2.2. The cyclotomic Zp-extension of K.

be equal to it. Using class field theory, we may phrase the conjecture in

the following way, cf. [?, Conjecture 1.6.4].

Conjecture 2.5.1 (Leopoldt). Let K be a number field with r2

complex primes, and p a prime number. Then K admits exactly r2 + 1

linearly independent Zp-extensions.

It follows from Leopoldt’s conjecture that the compositum of all Ẑ-

extensions of K is a Galois extension of K with group Ẑr2+1. For general

number fields K the conjecture is still open, but it has for instance been

proved true (Ax-Brumer, 1965–1967, [?], [?]) for all abelian fields K.

In case K is imaginary quadratic, its unit rank is 0, over Z and over

Zp, so Leopoldt’s conjecture trivially holds and there are two independent

Zp-extensions for all p. In this case, they can in fact be generated in a

very explicit way, using complex multiplication, see [?]. We will however

not need this in our explicit description of AK for imaginary quadratic

K in the next chapter.





CHAPTER 3

Imaginary Quadratic Number Fields

Abstract. In this chapter, we study the structure of the absolute

abelian Galois group AK of an imaginary quadratic field K. We

show that for all but two exceptional fields, AK contains a subgroup

of finite index isomorphic to G = Ẑ2 ×
∏

n≥1 Z/nZ. We are able

to determine algorithmically whether we have AK
∼= G, and we

will produce many different K having the ‘same’ minimal absolute

abelian Galois group AK
∼= G. Based on numerical investigations,

we conjecture that there are infinitely many such K.

“You will never do anything in the world

without courage.

It is the greatest quality of the mind

next to honor.”

Aristotle, 384 – 322 BC

3.1. The Inertial Part of AK

In this chapter, the field K will be an imaginary quadratic number

field. For such K, the connected component DK of the identity of the

idele class group A∗K/K∗ in (2.22) is the subgroup K∗∞
∼= C∗ ⊂ A∗K/K∗

coming from the unique infinite prime of K. In this case, it is conve-

nient to replace the idele group A∗K from the previous chapter by the

group Afin
K =

∏′
p<∞Kp of finite ideles obtained by leaving out its single

archimedean component. Using the notation •̂ as shorthand for • ⊗Z Ẑ,

we have

Afin
K = K̂ = K ⊗Z Ẑ = K ⊗Q Q̂ = Q⊗Z Ô.

37
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For imaginary quadraticK, the Artin isomorphism (2.22) for the absolute

abelian Galois group AK = Gal(Kab/K) of K simply reads

(3.1) AK = K̂∗/K∗ =
(∏′

p<∞
K∗p

)
/K∗.

For the purposes of this chapter, which tries to describe AK as a

profinite abelian group, it is convenient to treat the isomorphism for AK

in (3.1) as an identity – exactly as we have written it down.

Under the description (3.1) and the sequence (2.24) the inertial part

of AK takes the form

(3.2) UK = Ô∗/µK =
(∏
p<∞
O∗p
)
/O∗,

since the unit group O∗ of O is finite, and equal to the group µK of roots

of unity in K. Imaginary quadratic fields K are the only number fields

different from Q for which the Artin map Ô∗ → AK has finite kernel and

cokernel, and in this case the knowledge of the Ẑ-module Ô∗, obtained

in the previous chapter, enables us to characterize AK in a very explicit

way.

Apart from the quadratic fields of discriminant −3 and −4, which

have 6 and 4 roots of unity, respectively, we always have µK = {±1}, and

(3.2) can be viewed as the analogue for K of the identity AQ = UQ = Ẑ∗.

However, as UK is a subgroup of index hK = # ClK in AK , and the class

number of hK tends to infinity with the absolute value of the discriminant

for imaginary quadratic fields K, it is clear that we will need more than

just UK = Ô∗/µK in order to describe AK .

Lemmas 2.3.1, 2.3.2 and Theorem 2.3.3 tell us what Ô∗ looks like as

a Ẑ-module. In particular, it shows that the dependence on K is limited

to just two quantities: the degree [K : Q], which is reflected in the rank

of the free Ẑ-part of Ô∗, and the number of exceptional roots of unity of

K. In particular, for an imaginary quadratic field K 6= Q(i),Q(
√
−2),
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Lemmas 2.3.1, 2.3.2 and Theorem 2.3.3 tell us that

Ô∗ ∼= Ẑ2 ×
∏
n≥1

Z/nZ

is a completely explicit Ẑ-module that is independent of K. We will now

show that this is also true for its quotient Ô∗/µK , for the simple reason

that this group is non-canonically isomorphic to Ô∗ for any number

field K. The proof below, which nowhere uses that K is imaginary

quadratic, is in the spirit of Section 2.3, and uses the notation TK =∏
p Tp from that Section.

Lemma 3.1.1. There are infinitely many primes p of K for which we

have

gcd(#µK ,#Tp/#µK) = 1.

Proof. For every prime power `k > 1 that exactly divides #µK , the

extension K = K(ζ`k) ⊂ K(ζ`k+1) is a cyclic extension of prime degree

`. For the different prime powers `k ‖ #µK , we get cyclic extensions of

different prime degrees, so there are infinitely many primes p of K that

are inert in all of them. For such p, we have gcd(#µK ,#Tp/#µK) =

1. �

Lemma 3.1.2. We have a non-canonical isomorphism TK/µK ∼= TK .

Proof. Pick a prime p0 of K that satisfies the conditions of Lemma

3.1.1. Then µK embeds as a direct summand in Tp0 , and we can write

Tp0
∼= µK × Tp0/µK as a product of two cyclic groups of coprime order.

It follows that the natural exact sequence

1→
∏
p6=p0

Tp −→ TK/µK −→ Tp0/µK → 1

can be split using the composed map

Tp0/µK −→ Tp0 −→ TK −→ TK/µK .

This makes TK/µK isomorphic to the product of
∏

p6=p0
Tp and a cyclic

group for which the order is a product of prime powers that already
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“occur” infinitely often in TK . Thus TK/µK is isomorphic to a product

of exactly the same groups (Z/`kZ)Z that occur in TK . �

Since Ô∗/µK constitutes the inertial part UK of AK from (3.2), we

may now rephrase the results of the last section of the previous chapter

in the following way.

Theorem 3.1.3. For imaginary quadratic fields K 6= Q(i),Q(
√
−2),

the subgroup TK/µK ⊂ UK is a direct summand, and we have isomor-

phisms

UK = Ô∗/µK ∼= Ẑ2 × (TK/µK) ∼= Ẑ2 ×
∞∏
n=1

Z/nZ

of profinite groups.

For K equal to Q(i) or Q(
√
−2), the prime 2 is exceptional for K,

and only in these two cases the groups TK/µK ∼= TK are not isomorphic

to the universal group

(3.3) T =
∞∏
n=1

Z/nZ,

as they ‘lack’ cyclic direct summands of order 2 and 4, respectively.

In order to describe the full group AK from (3.1), we consider the

exact sequence

(3.4) 1→ UK = Ô∗/µK −→ AK = K̂∗/K∗
ψ−→ClK → 1

that describes the class group ClK of K in idelic terms. Here ψ maps

the class of the finite idele (xp)p ∈ K̂∗ to the class of its associated ideal∏
p p

ep , with ep = ordp xp. For K 6= Q(i),Q(
√
−2) as in Theorem 3.1.3,

the sequence (3.4) takes the form

(3.5) 1→ T × Ẑ2 −→ AK −→ ClK → 1.

The universal group T from (3.3) does not depend on K, so we imme-

diately recover Onabe’s discovery that different K can have the same

absolute abelian Galois group.
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Theorem 3.1.4. An imaginary quadratic number field K of class

number 1 different from Q(i) and Q(
√
−2) has absolute abelian Galois

group isomorphic to

G = Ẑ2 ×
∏
n≥1

Z/nZ.

The two exceptional fields of class number 1 do give rise to different

absolute abelian Galois groups. For K = Q(i) we obtain

AQ(i)
∼= Ẑ2 ×

∏
n≥1

(Z/2Z× Z/4nZ)

because the presence of the 4th root of unity i prevents the unit groups

k∗p of all residue class fields to have direct summands Z/2Z. For K =

Q(
√
−2) we run into the more subtle phenomenon missed by Kubota

and Onabe that the number of exceptional roots equals 8, even though

K itself contains only 2 roots of unity. By Lemma 2.3.2 and Theorem

2.3.3 we then have

AQ(
√
−2)
∼= Ẑ2 ×

∏
n≥1

(Z/2Z× Z/8nZ),

since in this case the unit groups k∗p of the residue class fields containing

a primitive 4th root of unity necessarily contain a primitive eighth root

of unity, preventing the occurrence of direct summands Z/4Z.

In Onabe’s paper [?, §5], the group G, which is not explicitly given

but characterized by its infinitely many Ulm invariants, is referred to as

“of type A”.

We will refer to G as the minimal Galois group, as every absolute

abelian Galois group of an imaginary quadratic field different from Q(i)

and Q(
√
−2) contains an open subgroup isomorphic to G. We will show

that there are actually many more K having this absolute abelian Galois

group than the seven fields K of class number 1 to which the preceding

theorem applies.



42 Chapter 3. Imaginary Quadratic Number Fields

Let us now take for K any imaginary quadratic number field different

from Q(i) and Q(
√
−2). Then Theorem 3.1.3 and the sequence (3.4)

show that AK is an abelian group extension of ClK by the minimal Galois

group G from Theorem 3.1.4. If the extension (3.4) were split, we would

find that AK is isomorphic to G×ClK ∼= G, since from the structure of G

we have the isomorphism (
∏
n≥1 Z/nZ)× ClK ∼=

∏
n≥1 Z/nZ. However,

it turns out that splitting at this level never occurs for nontrivial ClK ,

in the following strong sense.

Theorem 3.1.5. For every imaginary quadratic number field K, the

sequence

1→ Ô∗/µK −→ K̂∗/K∗
ψ−→ClK → 1

is totally nonsplit, i.e., there is no nontrivial subgroup C ⊂ ClK for which

the associated subextension 1→ UK −→ ψ−1[C] −→ C → 1 is split.

Proof. Let C = 〈[a]〉 ⊂ ClK be a subgroup of prime order p for

which the subextension of (3.4) associated to C is split. Then there

exists an element

((xp)p mod K∗) ∈ ψ−1([a]) ⊂ AK = K̂∗/K∗

of order p. In other words, there exists α ∈ K∗ such that we have

xpp = α ∈ K∗p for all p, and such that α generates the ideal ap. But this

implies by [?, Chapter IX, Thm. 1] that α is a p-th power in K∗, and

hence a is a principal ideal. Contradiction. �

3.2. Galois Group Extensions

A property of Ẑ-modules is that finite abelian groups that require no

more than k generators do allow extensions by free Ẑ-modules of finite

rank k that are again free of rank k, just like they do with free Z-modules

in the classical setting of finitely generated abelian groups.

The standard example for k = 1 is the extension

1→ Ẑ
×p−→ Ẑ −→ Z/pZ→ 1
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describing multiplication in Ẑ by an integer p 6= 0, prime or not. Ap-

plying to this the functor Hom(−,M) for a multiplicatively written Ẑ-

module M , we obtain an isomorphism

(3.6) M/Mp ∼−→ Ext(Z/pZ,M)

by the Hom-Ext-sequence from homological algebra [?, Chapter III, Prop.

1.1]. We will use it in Section 3.4.

Lemma 3.2.1. Let B be a finite abelian group, F a free Ẑ-module of

finite rank k, and

1→ F −→ E
φ−→B → 1

an exact sequence of Ẑ-modules. Then E is free of rank k if and only

if this sequence is totally nonsplit, i.e., there is no non-trivial subgroup

B′ ⊂ B for which 1→ F −→ φ−1[B′] −→ B′ → 1 is split.

Proof. One may reduce the statement to the familiar case of mod-

ules over principal ideal domains by writing Ẑ =
∏
p Zp, and consider

the individual p-parts of the sequence. �

At first sight, Theorem 3.1.5 seems to indicate that whenever the

class number exceeds 1, the group AK will not be isomorphic to the

minimal Galois group G ∼= UK from Theorem 3.1.4. We will see from

Theorem 3.2.2 in this section that this is not the case.

In order to apply Lemma 3.2.1, we replace the extension (3.4) by the

pushout under the quotient map

UK = Ô∗/µK → UK/TK = Ô∗/TK

from UK to its maximal Ẑ-free quotient. This yields the exact sequence

of Ẑ-modules

(3.7) 1→ Ô∗/TK −→ K̂∗/(K∗ · TK) −→ ClK → 1

in which ClK is finite and Ô∗/TK is free of rank 2 over Ẑ by Lemma

2.3.1.
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It is instructive to see what all the preceding extensions of Galois

groups amount to in terms of field extensions. The diagram of fields in

Figure 3.1 lists all subfields of the extension K ⊂ Kab corresponding to

the various subgroups we considered in analyzing the structure of AK .

We denote by H the Hilbert class field of K. This is the maxi-

mal totally unramified abelian extension of K, and it is finite over K

with group ClK . The inertial part of AK is the Galois group UK =

Gal(Kab/H), which is isomorphic to G for all imaginary quadratic fields

K 6= Q(i),Q(
√
−2).

The fundamental sequence

(3.4) 1→ Ô∗/µK −→ K̂∗/K∗
ψ−→ClK → 1

corresponds to the tower of fields

K ⊂ H ⊂ Kab.

By Theorem 3.1.3, the invariant field L of the closure TK/µK of the

torsion subgroup of UK is an extension of H with group Ẑ2.

The tower of field extensions

K ⊂ H ⊂ L

corresponds to the exact sequence of Galois groups (3.7).

We define L0 as the ‘maximal Ẑ-extension’ of K, i.e., as the com-

positum of the Zp-extensions of K for all primes p. As we observed in

Section 2.5, an imaginary quadratic field admits two independent Zp-

extensions for each prime p, so F = Gal(L0/K) ∼= Ẑ2 is a free Ẑ-module

of rank 2, and L0 is the invariant field under the closure T0 of the torsion

subgroup of AK . The image of the restriction map T0 → ClK is the

maximal subgroup of ClK over which (3.7) splits. The invariant subfield

of H, corresponding to it, is the intersection L0 ∩H, and we denote by

S0 the Galois group S0 = Gal(H/L0 ∩H), which is a subgroup of ClK .

In the case where (3.7) splits, we have S0 = ClK .
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Kab

UK=G

AK

TK/µK
T0

L

Ẑ2

L0

Ẑ2

F

H

S0

ClKL0 ∩H

K

Figure 3.1. The structure of AK = Gal(Kab/K).

The totally nonsplit case occurs when H is contained in L0, Figure

3.2, leading to L0 ∩ H = H and L0 = L. In this case Gal(L/K) =

Gal(L0/K) is itself a free Ẑ-module of rank 2, and AK is an extension of

Ẑ2 by TK/µK that is isomorphic to G.

Figure 3.2 shows that imaginary quadratic fields K 6= Q(i),Q(
√
−2)

have ‘minimal’ absolute abelian Galois group AK ∼= G in cases where the

Hilbert class field extension K ⊂ H is a subextension of the maximal Ẑ-

extension K ⊂ L0 of K. There turn out to be many such cases different

from the class number one cases that we just mentioned.

Theorem 3.2.2. Let K 6= Q(i),Q(
√
−2) be an imaginary quadratic

field for which the sequence

(3.7) 1→ Ô∗/TK −→ K̂∗/(K∗ · TK) −→ ClK → 1
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Kab

Ô∗/µK

AK
∼=G

T0=TK/µK

L0 = L

Ẑ2

∼=Ẑ2

L0 ∩H = H

ClK

K

Figure 3.2. The structure of AK = Gal(Kab/K) when
H is contained in L0.

is totally nonsplit. Then the absolute abelian Galois group of K is the

minimal group G occurring in Theorem 3.1.4.

Proof. If the extension (3.7) is totally nonsplit, then K̂∗/(K∗ ·TK)

is free of rank 2 over Ẑ by Lemma 3.2.1. In this case the exact sequence

of Ẑ-modules

1→ TK/µK −→ AK = K̂∗/K∗ −→ K̂∗/(K∗ · TK)→ 1

is split, and AK is isomorphic to Ẑ2×(TK/µK). For K 6= Q(i),Q(
√
−2),

we have TK/µK ∼= T independently of K as in (3.3), and

Ẑ2 × (TK/µK) ∼= G = Ẑ2 ×
∞∏
n=1

Z/nZ

by Theorem 3.1.3. �
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3.3. Non-minimal Galois Groups

We will use Theorem 3.2.2 in this chapter to find many imaginary

quadratic fields K having the same minimal absolute abelian Galois

group. In this section, we show how fields that do not satisfy the criteria

of Theorem 3.2.2 have Galois groups AK that are ‘non-minimal’ in the

sense that although they contain a subgroup of finite index isomorphic

to the minimal Galois group G from Theorem 3.1.4, they are themselves

not isomorphic to G.

If K is an imaginary quadratic number field for which the sequence

(3.7) is not totally nonsplit, its Hilbert class field H is not contained in

the maximal Ẑ-extension L0 of K, and (3.7) splits over the non-trivial

subgroup

S0 = Gal(H/(H ∩ L0)) ⊂ ClK .

We may identify S0 with the Galois group Gal(L/L0) in Figure 3.1.

The subgroup T0 = Gal(Kab/L0) is a characteristic subgroup of AK ,

as T0 = [kerAK → Gal(L0/K)] is the kernel of the map from AK to its

maximal Ẑ-free quotient. This means that for an imaginary quadratic

number field with minimal absolute abelian Galois group isomorphic to

G, the subgroup T0 ⊂ AK in Figure 3.1 is necessarily isomorphic to∏
n≥1 Z/nZ.

If S0 is not a 2-group, the field K has a non-minimal Galois group

by the following Theorem.

Theorem 3.3.1. Let K be an imaginary quadratic number field for

which the sequence

(3.7) 1→ Ô∗/TK −→ K̂∗/(K∗ · TK) −→ ClK → 1

splits over a subgroup of order divisible by an odd prime. Then the

absolute abelian Galois group of K is not isomorphic to the minimal

group G occurring in Theorem 3.1.4.
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Proof. The hypothesis means that there exists a finite idele x ∈
K̂∗ such that (x mod K∗ · TK) ∈ K̂∗/(K∗ · TK) has odd prime order

`. As Ô∗K/TK = ker[K̂∗/(K∗ · TK) → ClK ] is torsion-free, the image of

x mod K∗ ·TK in ClK is an ideal class of order `. We then have inclusions

T = TK/µK
`
⊂ T ′ = 〈T, x〉 ⊂ T0 ⊂ K̂∗/K∗,

and the key step in showing AK 6∼= G consists in showing that T ′ =

〈T, x〉 is not isomorphic to
∏
n≥1 Z/nZ. We do this by showing that the

character

χ : T ′ −→ 1

`
Z/Z

defined by χ(x) = 1
` and χ[T ] = 0 is an `-divisible character on T ′, i.e.,

for every n ≥ 1 there exists a character ψ : T ′ → 1
`n+1 Z/Z satisfying

`nψ = χ. As T ∼=
∏
n≥1 Z/nZ admits no `-divisible characters, this

implies T ′ 6∼= T . As T ′ is an open subgroup of finite index of T0, we

deduce that T0 is also not isomorphic to
∏
n≥1 Z/nZ, by the following

Lemma.

Lemma 3.3.2. Let T ′ be an open subgroup of
∏
n≥1 Z/nZ. Then T ′

is itself a profinite group isomorphic to
∏
n≥1 Z/nZ.

Proof. For every positive integer N , we have

T ′ ⊂
∏

1≤n<N
Z/nZ×

∏
n≥N

Z/nZ.

If we take N sufficiently large, then T ′ will contain the subgroup UN =∏
1≤n<N{0} ×

∏
n≥N Z/nZ, as these subgroups form a basis of open

neighborhoods of the zero element in
∏
n≥1 Z/nZ. We therefore have

T ′ = X ×
∏
n≥N Z/nZ for some finite subgroup X ⊂

∏
1≤n<N Z/nZ,

and non-canonical isomorphisms

T ′ = X ×
∏
n≥N

Z/nZ ∼= X ×
∏
n≥1

Z/nZ ∼=
∏
n≥1

Z/nZ,

as we can freely add or remove finitely many cyclic components in an

infinite product
∏
n≥1 Z/nZ without changing its isomorphism type. �
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Kab
TT ′

T0

Ll

S′

S0

L′

L0

Figure 3.3. The diagram of T
l
⊂ T ′ ⊂ T0.

Figure 3.3 summarizes the role of the various Galois groups, with

S′ ⊂ S0 the subgroup of odd prime order ` over which the sequence (3.7)

splits.

We have now reduced the proof of Theorem 3.3.1 to the following

Lemma.

Lemma 3.3.3. Let T = TK/µK
`
⊂ T ′ = 〈T, x〉 ⊂ T0 ⊂ K̂∗/K∗ be as

above, with x ∈ K̂∗ a finite idele of odd prime order ` in K̂∗/(K∗ · TK).

Then T ′ admits a l-divisible character.

Proof. As ` divides the class number of K, we are dealing with a

field K 6= Q(ζ3),Q(i) having µK = {±1}.

Let a be the ideal generated by x. As its ideal class is of order `, we

have al = (α) for some α ∈ K∗ that is well-defined up to multiplication

by `-th powers. Note that α is not an `-th power in K∗. Moreover, as

x mod K∗ · TK has order `, we can write xl = t · α for some element

t = (tp)p ∈ TK , and x` = t ∈ K̂∗/K∗. We have xlp = tp · α with α ∈ K∗

and tp ∈ Tp for all primes p.

For every integer n ≥ 1, we now pick a prime p of K such that p

splits completely in K ⊂ K(ζ`n), but not in K ⊂ K(ζ`n+1) and also not

in K(ζ`,
√̀
α). This is possible because for ` > 2 and K 6= Q(ζ3), the

non-abelian extension K(ζ`,
√̀
α) of K of degree `(`− 1) has intersection

K(ζ`) with K(ζ`n+1).
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K(ζlk+1)

K(ζlk)

K(ζl, l
√
α)

l

zl−α

· · ·

K(ζl2)

lK(ζl)

K

Figure 3.4. The splitting field of the polynomial zl − α is K(ζl, l
√
α).

The cyclic group Tp has order divisible by `n, as Kp contains, by

construction of p, an `n-th root of unity. Moreover, as α is not locally

an `-th power at p, the local root of unity tp ∈ Tp is not an `-th power

in Tp. As we can map Tp onto a cyclic group of order `n in such a way

that tp is mapped to a generator, we can define a homomorphism

ψ : T = TK/{±1} → Tp/{±1} → 1

ln+1
Z/Z

that satisfies ψ(t) = 1
ln . The map ψ can be extended to T ′ = 〈T, x〉 by

putting ψ(x) = 1
ln+1 , as we have the relation x` = t in T ′. The character

`nψ = χ : T ′ → 1
lZ/Z, which is independent of n, has kernel T and maps

x to 1
l . This shows that χ is an `-divisible character on T ′. So it proves

Lemma 3.3.3.

1 // T // T ′ = 〈T, x〉

ψ $$

χ // 1
lZ/Z<<

×ln

// 1

1
ln+1 Z/Z

Figure 3.5. The l-divisible character χ.
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and finishes the proof of Theorem 3.3.1. �

Our proof of Theorem 3.3.1 used in various places that ` is odd, so

it cannot be taken over without changes to deal with the case ` = 2.

3.4. Finding Minimal Galois Groups

In order to use Theorem 3.2.2 and find imaginary quadratic K for

which the absolute abelian Galois group AK is the minimal group G from

Theorem 3.1.4, we need an algorithm that can effectively determine, on

input K, whether the sequence of Ẑ-modules

(3.7) 1→ Ô∗/TK −→ K̂∗/(K∗ · TK) −→ ClK → 1

from Section 3.1 is totally nonsplit. This means that for every ideal class

[a] ∈ ClK of prime order, the subextension E[a] of (3.7) lying over the

subgroup 〈[a]〉 ⊂ ClK is nonsplit.

For the free Ẑ-module M = Ô∗/TK in (3.7) we write Tp for the

torsion subgroup of

O∗p = (O ⊗Z Zp)
∗ =

∏
p|p

O∗p .

The p-primary part of M is the pro-p-group

(3.8) Mp = O∗p/Tp =
∏
p|p

(O∗p/Tp) ∼= Z2
p.

In order to verify the hypothesis of Theorem 3.2.2, we need to check that

the extension E[a] has nontrivial class in Ext(〈[a]〉,M) for all [a] ∈ ClK of

prime order p. We can do this by verifying in each case that the element

of

M/Mp = Mp/M
p
p

corresponding to it under the isomorphism (3.6) is nontrivial. This yields

the following theorem.



52 Chapter 3. Imaginary Quadratic Number Fields

Theorem 3.4.1. Let K be imaginary quadratic, and define for each

prime number p dividing hK the homomorphism

φp : ClK [p] −→ O∗p/Tp(O∗p)p

that sends the class of a p-torsion ideal a coprime to p to the class of a

generator of the ideal ap. Then (3.7) is totally nonsplit if and only if all

maps φp are injective.

Proof. Under the isomorphism (3.6), the class of the extension

1→M −→ E
f−→Z/pZ→ 1

in Ext(Z/pZ,M) corresponds by [?, Chapter III, Prop. 1.1] to the residue

class of the element (f−1(1 mod pZ))p ∈M/Mp. In the case of E[a], we

apply this to M = Ô∗/TK , and choose the identification Z/pZ = 〈[a]〉
under which 1 mod pZ is the inverse of [a]. Then f−1(1 mod pZ) is the

residue class in K̂∗/(K∗ · TK) of any finite idele x ∈ K̂∗ that is mapped

to ideal class of a−1 under the map ψ from (3.4).

We pick a in its ideal class coprime to p, and take for x = (xp)p an

idele that locally generates a−1 at all p. If α ∈ K∗ generates ap, then

xpα is an idele in Ô∗ that lies in the same class modulo K∗ as xp, and

its image

(f−1(1 mod pZ))p = xp = xpα

is an element of

M/Mp = Mp/M
p
p = O∗p/Tp(O∗p)p

that corresponds to the class of E[a] in Ext(〈[a]〉,O∗/TK).

As the idele x = (xp)p has components xp ∈ O∗p at p | p by the choice

of a, we see that this image in Mp/M
p
p = O∗p/Tp(O∗p)p is the element

φp([a]) we defined. The map φp is clearly a homomorphism, and we want

it to assume nontrivial values on the elements of order p in ClK [p], for

each prime p dividing hK . The result follows. �
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Remark 3.4.2. In Theorem 3.4.1, it is not really necessary to restrict

to representing ideals a that are coprime to p. One may take K∗p/Tp(K
∗
p)p

as the target space of φp to accommodate all a, with Kp = K ⊗Z Zp,

and observe that the image of φp is in the subgroup O∗p/Tp(O∗p)p as the

valuations of ap at the primes over p are divisible by p.

Remark 3.4.3. It is possible to prove Theorem 3.4.1 without explicit

reference to homological algebra. What the proof shows is that, in order

to lift an ideal class of arbitrary order n under the sequence

(3.7) 1→ Ô∗/TK −→ K̂∗/(K∗ · TK) −→ ClK → 1,

it is necessary and sufficient that its n-th power is generated by an ele-

ment α that is locally everywhere a n-th power up to multiplication by

local roots of unity. This extra leeway in comparison with the situation

in Theorem 3.1.5 makes it into an interesting splitting problem for the

group extensions involved, as this condition on α may or may not be

satisfied. Note that at primes outside n, the divisibility of the valuation

of α by n automatically implies the local condition.

In Onabe’s paper, which assumes throughout that ClK itself is a

cyclic group of prime order, the same criterion is obtained from an anal-

ysis of the Ulm invariants occurring in Kubota’s setup [?].

Our Theorem 3.4.1 itself does not assume any restriction on ClK ,

but its use in finding K with minimal absolute Galois group G does

imply certain restrictions on the structure of ClK . The most obvious

implication of the injectivity of the map φp in the theorem is a bound

on the p-rank of ClK , which is defined as the dimension of the group

ClK /ClpK as an Fp-vector space.

Corollary 3.4.4. If ClK has p-rank at least 3 for some p, then the

sequence 1 → Ô∗/TK −→ K̂∗/(K∗ · TK) −→ ClK → 1 splits over some

subgroup of ClK of order p.

Proof. It follows from the isomorphism in (3.8) that the image of

φp lies in a group that is isomorphic to (Z/pZ)2. If ClK has p-rank at
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least 3, then φp will not be injective. From Theorem 3.4.1 we have that

the injectivity condition is if and only if. So the result follows.

Now apply Theorem 3.4.1. �

As numerical computations in uncountable Ẑ-modules, such as

K̂∗/(K∗ · TK), can only be performed with finite precision, it is not im-

mediately obvious that the splitting type of an idelic extension as (3.7)

can be found by a finite computation.

The maps φp in Theorem 3.4.1 however are linear maps between

finite-dimensional Fp-vector spaces that lend themselves very well to ex-

plicit computations. One just needs some standard algebraic number

theory to compute these spaces explicitly.

A high-level description of an algorithm that determines whether the

extension

(3.7) 1→ Ô∗/TK −→ K̂∗/(K∗ · TK) −→ ClK → 1

is totally nonsplit is then easily written down.

Algorithm 3.4.5.

Input : An imaginary quadratic number field K.

Output : NO if the extension (3.7) for K is not totally nonsplit, YES

otherwise.

Step 1 Compute the class group ClK of K.

If ClK has p-rank at least 3 for some p, output NO and stop.

Step 2 For each prime p dividing hK , compute one or two O-ideals

coprime to p, and put n = 1 or n = 2 accordingly, such that

their classes in ClK generate ClK [p]; and compute generators x1

up to xn for their p-th powers.

Check whether x1 is trivial in O∗p/Tp(O∗p)p.

If it is, output NO and stop.
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If n = 2, check whether x2 is trivial in O∗p/Tp · 〈x1〉 · (O∗p)p.

If it is, output NO and stop.

Step 3 If all primes p | hK are dealt with without stopping, output YES

and stop.

Step 1 is a standard task in computational algebraic number theory.

For imaginary quadratic fields, it is often implemented in terms of binary

quadratic forms, and particularly easy.

From an explicit presentation of the group, it is also standard to find

the global elements x1 and, if needed, x2.

The rest of Step 2 takes place in a finite group, and this means that

we only compute in the rings Op up to small precision. For instance, com-

putations in Z∗p/Tp(Z
∗
p)
p amount to computations modulo p2 for odd p,

and modulo p3 for p = 2.

3.5. Minimality at 2

The splitting behavior of the sequence (3.7) depends strongly on the

structure of the p-primary parts of ClK at the primes p | hK . In view of

Theorem 3.4.1 and Corollary 3.4.4, fields with cyclic class groups and few

small primes dividing hK appear to be more likely to have minimal Galois

group G. In Section 3.6, we will provide numerical data to examine the

average splitting behavior.

For odd primes p, class groups of p-rank at least 3 arising in Corollary

3.4.4 are very rare, at least numerically and according to the Cohen-

Lenstra heuristics. At the prime 2, the situation is a bit different, as the

2-torsion subgroup of ClK admits a classical explicit description going

back to Gauss. Roughly speaking, his theorem on ambiguous ideal classes

states that ClK [2] is an F2-vector space generated by the classes of the

primes p of K lying over the rational primes that ramify in Q ⊂ K,

subject to a single relation coming from the principal ideal (
√
DK). Thus,
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the 2-rank of ClK for a discriminant with t distinct prime divisors equals

t− 1.

In view of Corollary 3.4.4, our method to construct K with absolute

abelian Galois group G does not apply if the discriminant DK of K has

more than 3 distinct prime divisors.

If −DK is a prime number, then hK is odd, and there is nothing to

check at the prime 2.

For DK with two distinct prime divisors, the 2-rank of ClK equals

1, and we can replace the computation at p = 2 in Algorithm 3.4.5 by

something that is much simpler.

Theorem 3.5.1. Let K be imaginary quadratic with even class number,

and suppose that its 2-class group is cyclic. Then the sequence (3.7) is

nonsplit over ClK [2] if and only if the discriminant DK of K is of one of

the following three types:

(1) DK = −pq for primes p ≡ −q ≡ 5 mod 8;

(2) DK = −4p for a prime p ≡ 5 mod 8;

(3) DK = −8p for a prime p ≡ ±3 mod 8.

Proof. IfK has a nontrivial cyclic 2-class group, thenDK ≡ 0, 1 mod

4 is divisible by exactly two different primes.

If DK is odd, we have DK = −pq for primes p ≡ 1 mod 4 and

q ≡ 3 mod 4, and the ramified primes p and q of K are in the unique ideal

class of order 2 in ClK . Their squares are ideals generated by the integers

p and −q that become squares in the genus field F = Q(
√
p,
√
−q) of K,

which is a quadratic extension of K with group C2 × C2 over Q that is

locally unramified at 2.

If we have DK ≡ 5 mod 8, then 2 is inert in Q ⊂ K, and 2 splits in

K ⊂ F . This means that K and F have isomorphic completions at their

primes over 2, and that p and −q are local squares at 2. In this case φ2

is the trivial map in Theorem 3.4.1, and is not injective.
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If we have D ≡ 1 mod 8 then 2 splits in Q ⊂ K. In the case p ≡
−q ≡ 1 mod 8 the integers p and −q are squares in Z∗2, and φ2 is again

the trivial map. In the other case p ≡ −q ≡ 5 mod 8, the generators p

and −q are nonsquares in Z∗2, also up to multiplication by elements in

T2 = {±1}. In this case φ2 is injective.

If DK is even, we either have DK = −4p for a prime p ≡ 1 mod 4

or DK = −8p for an odd prime p. In the case DK = −4p the ramified

prime over 2 is in the ideal class of order 2.

For p ≡ 1 mod 8, the local field Q2(
√
−p) = Q2(i) contains a square

root of 2i, and φ2 is not injective. For p ≡ 5 mod 8, the local field

Q2(
√
−p) = Q2(

√
3) does not contain a square root of ±2, and φ2 is

injective. In the case DK = −8p the ramified primes over both 2 and p

are in the ideal class of order 2. For p ≡ ±1 mod 8 the generator ±p is

a local square at 2. For p ≡ ±3 mod 8 it is not. �

In the case where the 2-rank of ClK exceeds 1, the situation is even

simpler.

Theorem 3.5.2. Let K be imaginary quadratic for which the 2-class

group is noncyclic. Then the map φ2 in Theorem 3.4.1 is not injective.

Proof. As every 2-torsion element in ClK is the class of a product

of ramified primes p, its square can be generated by a rational number.

This implies that the image of φ2 is contained in the cyclic subgroup

Z∗2/{±1}(Z∗2)2 ⊂ Ô∗/T2(Ô∗)2

of order 2. Thus φ2 is not injective if ClK has noncyclic 2-part. �

3.6. Computational Results

In Onabe’s paper [?], only cyclic class groups ClK of prime order p ≤
7 are considered. In this case, there are just 2 types of splitting behavior

for the extension (3.7), and Onabe provides a list of the first few K with

hK = p ≤ 7, together with the type of splitting they represent.
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For hK = 2 the list is in accordance with Theorem 3.5.1. In the cases

hk = 3 and hK = 5 there are only 2 split examples against 10 and 7

nonsplit examples, and for hK = 7 no nonsplit examples are found. This

suggests that φp is rather likely to be injective for increasing values of

hK = p.

This belief is confirmed if we extend Onabe’s list by including all

imaginary quadratic K of odd prime class number hK = p < 100.

By the work of Watkins [?], we now know, much more precisely than

Onabe did, what the exact list of fields with given small class number

looks like.

The extended list, with the 65 out of 2356 cases in which the extension

(3.7) splits mentioned explicitly, is given in Table 3.1.

As the nonsplit types give rise to fields K having the minimal group

G as its absolute Galois group, one is inevitably led to the following

conjecture.

Conjecture 3.6.1. There are infinitely many imaginary quadratic

fields K for which the absolute abelian Galois group is isomorphic to

G = Ẑ2 ×
∏
n≥1

Z/nZ.

The numerical evidence may be strong, but we do not even have

a theorem that there are infinitely many prime numbers that occur as

the class number of an imaginary quadratic field. And even if we had,

we have no theorem telling us what the distribution between split and

nonsplit will be.

From Table 3.1, one easily gets the impression that among all K with

hK = p, the fraction for which the sequence (3.7) splits is about 1/p.

In particular, assuming infinitely many imaginary quadratic fields to

have prime class number, we would expect 100% of these fields to have

the minimal absolute abelian Galois group G.



3.6. Computational Results 59

If we fix the class number hK = p, the list of K will be finite, making

it impossible to study the average distribution of the splitting behavior

over ClK [p]. For this reason, we computed the average splitting behavior

over ClK [p] for the set Sp of imaginary quadratic fields K for which the

class number has a single factor p.

In Table 3.2 we started counting for absolute discriminants exceeding

Bp ∈ Z>0 to avoid the influence that using many very small discriminants

may have on observing the asymptotic behavior. The Tables 3.3 and 3.4

make this clear, since they show how the value of p · fp approximates

1, when we change Bp. Moreover we observe that for small primes the

small discriminants somehow make the product p ·fp not to approximate

1 fast. Thus, for example, for p = 3 we have to start counting from

discriminants greater than 108, for p · fp to be over 0.9. On the other

hand, for p = 11, even if we start from discriminants just greater than 1,

the results are really satisfying.

For the first three odd primes, we also looked at the distribution of

the splitting over the three kinds of local behavior in K of the prime p

(split, inert or ramified) and concluded that, at least numerically, there

is no clearly visible influence; see Table 3.5.

We further did a few computations that confirmed the natural hy-

pothesis that the splitting behaviors at different primes p and q that both

divide the class number once are independent of each other. The groups

we examined were of the form C5×C7×Cm with 5, 7 - m. The Tables 3.6,

3.7 and 3.8 show the numerical results of this confirmation for the primes

p = 5 and q = 7. The 11, 10, 01 and 00 columns correspond to the cases

where the sequence (3.7) is split over ClK [5] and ClK [7], over ClK [5] but

not over ClK [7], not over ClK [5] but over ClK [7], neither over ClK [5] and

ClK [7], accordingly.

Finally using our algorithm we confirm that the fraction fp of K,

with class group ClK of the form Cm·p2 with p - m, is approximately

equal to 1/p; Table 3.9.
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p {K : hK = p} #Nonsplit −DK for split K

2 18 8 35, 51, 91, 115, 123, 187, 235, 267,
403, 427

3 16 13 107, 331, 643
5 25 19 347, 443, 739, 1051, 1123, 1723
7 31 27 859, 1163, 2707, 5107
11 41 36 9403, 5179, 2027, 10987, 13267
13 37 34 1667, 2963, 11923
17 45 41 383, 8539, 16699, 25243
19 47 43 4327, 17299, 17539, 17683
23 68 65 2411, 9587, 21163
29 83 80 47563, 74827, 110947
31 73 70 9203, 12923, 46867
37 85 83 20011, 28283
41 109 106 14887, 21487, 96763
43 106 105 42683
47 107 107 —
53 114 114 —
59 128 126 125731, 166363
61 132 131 101483
67 120 119 652723
71 150 150 —
73 119 117 358747, 597403
79 175 174 64303
83 150 150 —
89 192 189 48779, 165587, 348883
97 185 184 130051

Table 3.1. Splitting types for fields K with hK = p <
100. The second column gives the number of imagi-
nary quadratic fields with class number p; the third col-
umn gives the number of such fields for which the se-
quence (3.7) does not split; and the fourth column gives
−DK for the fields K for which (3.7) splits.
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p Np p · fp Bp

3 300 0.960 108

5 500 0.930 107

7 700 0.960 107

11 1100 0.990 107

13 1300 1.070 107

17 1700 0.920 107

19 1900 1.000 107

23 2300 1.030 107

29 2900 1.000 106

31 3100 0.970 106

37 3700 0.930 106

41 4100 1.060 106

43 2150 1.080 106

47 470 0.900 107

53 530 1.000 105

59 590 0.900 106

61 1830 0.933 105

67 670 0.900 106

71 1000 1.136 105

73 3650 0.900 105

79 1399 1.130 107

83 1660 1.000 106

89 890 1.100 105

97 970 1.100 108

Table 3.2. Splitting fractions at p for class number hK
divisible by p < 100. For the first Np imaginary quadratic
fields K ∈ Sp of absolute discriminant |DK | > Bp, we
denote by fp the fraction ofK for which the sequence (3.7)
is split over ClK [p]. Numerically, the values for p · fp ≈ 1
in the table show that the fraction fp is indeed close to
1/p.

At the following two tables the x-axis corresponds to Np and the

y-axis to p · fp. The symbols −,+,× corresponds to Bp = 1, 105 and 106

accordingly, and the “down” and “right” Y to Bp = 107 and 108.
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Table 3.3. Convergence to 1 of p · fp for p = 3 and 5.
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Table 3.4. Convergence to 1 of p · fp for p = 7 and 11.
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p Np Bp p · fp Split Inert Ramified

3 300 107 0.960 0.925 0.947 1.025
5 500 107 0.930 0.833 0.990 1.022
7 700 107 0.960 0.972 0.963 0.897

Table 3.5. Splitting fractions at p according to local be-
havior at p.

Bp 11 10 01 00

104 0.775 1.020 1.060 0.996
105 0.675 0.938 1.090 1.010
106 1.030 0.954 1.160 0.984

Table 3.6. Np = 1400.

Bp 11 10 01 00

104 0.787 0.971 1.090 1.000
105 0.825 0.992 0.956 1.156
106 0.913 0.942 1.100 1.000

Table 3.7. Np = 2400.

Bp 11 10 01 00

104 0.900 0.961 1.020 1.010
105 0.900 0.944 1.010 1.020
106 0.970 0.953 1.14 0.990

Table 3.8. For Np = 2 · 2400 we observe that the ap-
proximations are better from these of Tables 3.6 and 3.7
and the best are when Bp = 106.
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p Mp Bp = 104 Bp = 105 Bp = 106

5 100 1.070 0.935 1.100
5 200 0.978 0.957 0.995
7 100 0.964 0.931 1.030
7 200 0.911 0.900 1.020

Table 3.9. Once more we see that starting from funda-
mental discriminants |DK | greater than 106 gives us bet-
ter approximations, and moreover if we take Mp = 200
we have the best results.





CHAPTER 4

Adelic Points of Elliptic Curves over Q

Abstract. We apply the techniques we developed in Chapter 2 in

order to explicitly determine the topological group that arises as the

group of adelic points of an elliptic curve defined over the rational

number field.

“The laws of nature are

but the mathematical thoughts

of God.”

Euclid, lived around 300 BC

4.1. Elliptic Curves over the Adeles

The fundamental building block of all absolute abelian Galois groups

AK in Chapter 2 was the unit group Ô∗ of the completion of the ring of

integers Ô of the underlying number field K. We saw that, even though

Ô∗ is obtained as a product
∏

pO∗p of local unit groups O∗p that vary

considerably with K, the isomorphism type of the topological group Ô∗

is to a large extent independent of K, as already the degree of the number

field and its number of exceptional roots of unity (which is ‘generically’

equal to 1) determine the isomorphism type of Ô∗ (Theorem 2.3.3). In

the case of imaginary quadratic fields, where Ô∗ and UK = Ô∗/O∗ are

isomorphic topological groups due to the finiteness of O∗, this enabled

us to describe AK = K̂∗/K∗ very explicitly, and to find many K with

isomorphic AK .

In this chapter, we fix our number field to be Q, but now consider

an infinite family of objects over Q, namely elliptic curves. There are

67
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infinitely many different isomorphism classes of elliptic curves over Q,

but it is an open problem whether the number of different isomorphism

types of point groups E(Q) is infinite. More precisely, the group E(Q)

is a finitely generated abelian group by Mordell’s theorem, and while

the number of distinct isomorphism classes of torsion subgroups of E(Q)

is known to be only 15 by a celebrated theorem of Mazur, the rank of

E(Q) is not known to be uniformly bounded for all elliptic curves E/Q.

Still, it is very easy to exhibit families of elliptic curves with point groups

that are isomorphic as abelian groups. This is somewhat reminiscent of

the situation in Section 1.3, where we saw that many number fields with

isomorphic unit groups O∗ exist by the Dirichlet unit theorem 1.3.1.

The question that we will be investigating in this chapter, entirely in

the line of Chapter 3, is whether the adelic point groups of elliptic curves

E/Q can be isomorphic topological groups. In order to define these adelic

point groups, we note that an elliptic curve E/Q is naturally an elliptic

curve over the p-adic completions Qp and the archimedean completion

Q∞ = R of Q. We call the product group

(4.1) E(AQ)
def
=
∏
p≤∞

E(Qp) = E(R)×
∏

p prime

E(Qp)

the group of adelic points of E. Note that, even though the elements

of the Q-algebra AQ are by their very definition 1.1 p-integral at almost

all p, we do get the unrestricted product of all groups E(Qp). This

is because E is a smooth projective variety defined over Q, which has

E(Qp) = E(Zp) at all finite primes p, as projective points may be scaled

to be p-integral.

Our approach in the next two sections to describe E(AQ) as a topo-

logical group will be similar to the one in Section 2.3. We first study the

structure of the local point groups E(Qp) for a single prime p. It will

become clear that there are many possibilities for this group if we fix a

large prime p and vary E. Taking the product over all p, we will prove

in Lemma 4.2.2 that E(AQ) is the product of R/Z × Ẑ and an infinite
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product TE of finite groups, similar to what we encountered in Lemma

2.3.1. Next, we need to determine what TE looks like in its standard

representation used in (2.10), and this leads to an analysis of the tower

of division fields associated to E, as in Section 2.3.

4.2. The Structure of E(Qp)

For the infinite prime p = ∞, the structure of the group E(Q∞) =

E(R) is well-known. It only depends on the sign of the discriminant

∆(E) of E, which (unlike ∆(E) itself) is independent of the model we

choose for E. As topological groups, we have [?, Exercise 6.7 (b)]

(4.2) E(R) ∼=

R/Z, if ∆(E) < 0;

R/Z× Z/2Z, if ∆(E) > 0.

For finite primes p, the point group E(Qp) of the smooth projec-

tive curve E/Qp carries a natural topology. In order to determine its

structure as a topological group, we use the reduction map modulo p in

the same way that we used the reduction map modulo p in the exact

sequence (2.8).

For our elliptic curve E/Q, we now choose an explicit model in the

form of a projective Weierstrass equation

(4.3) Y 2Z = X3 + aXZ2 + bZ3

with integral coefficients a, b ∈ Z satisfying ∆ = ∆(E) = −(4a3+27b2) 6=
0. We might even assume, analogously to [?, Definition p. 186], that

ordp(∆) is minimal among all possible short Weierstrass equations for

E for each prime p, but this is actually not necessary for our purposes.

Having made such a choice, we obtain a continuous reduction map

(4.4) φp : E(Qp) −→ E(Fp)

from the group of Qp-valued points to the finite set of Fp-valued points

of the curve E described by the reduced Weierstrass equation. For the

primes p - 2∆, the primes of good reduction of our model for E, the curve
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E is an elliptic curve over Fp. For such p, the reduction map φp is a

homomorphism.

For the primes p of bad reduction, the curve E will have a singular

point, in which case its non-singular locus Ens(Fp) over Fp carries a

natural group structure. We write E0(Qp) for the subgroup of E(Qp)

consisting of points that do not reduce to a singular point of E(Fp). By

[?, Theorem 4.1 (a)], the index of E0(Qp) in E(Qp) is finite for all p. For

primes of good reduction, we simply have E0(Qp) = E(Qp). On E0(Qp),

the restriction of the reduction map yields a group homomorphism

(4.5) φp : E0(Qp) −→ Ens(Fp)

for all primes p. This homomorphism is surjective, as smooth points on

E(Fp) can be lifted to points on E(Qp) by Hensel’s lemma.

Lemma 4.2.1. Let Tp be the torsion subgroup of E(Qp). Then Tp is

a finite group, and E(Qp)/Tp is a free Zp-module of rank 1.

If p is a prime of good reduction for E, then we have an isomorphism

T non-p
p

∼= E(Fp)
non-p

between the maximal subgroups of Tp and E(Fp) that are of order coprime

to p.

Proof. On the subgroup E0(Qp) ⊂ E(Qp), the reduction map (4.5)

gives rise to an exact sequence

(4.6) 1→ E1(Qp) −→ E0(Qp) −→ Ens(Fp)→ 1.

The kernel of reduction E1(Qp) is a pro-p-group that we can describe as

a Zp-module using the formal group of E as in [?, Chapter IV]. With

our choice of model (4.3), one finds just as in [?, Chapter II, Theorem 4.1

and Proposition 5.4] that E1(Qp) is torsionfree, and free of rank 1 over

Zp. As E1(Qp) is of finite index #Ens(Fp) in E0(Qp), and E0(Qp) is

itself of finite index in E(Qp), we find that the p-primary part of E(Qp)

is a finitely generated Zp-module of free rank one, whereas its non-p part
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is a finite group of order coprime to p. We can non-canonically write

E(Qp) ∼= Zp × Tp,

with Tp the finite torsion group of E(Qp). In case p is a prime of good

reduction, we have E(Qp) = E0(Qp) and Ens(Fp) = E(Fp), so the non-

p-part of the sequence (4.6) yields an isomorphism

E(Qp)
non-p = T non-p

p
∼= E(Fp)

non-p,

as was to be shown. �

Given an elliptic curve E/Q, the preceding proof shows that we have

isomorphisms of topological groups

E(Qp) ∼= Tp × Zp

for all primes p, with Tp a finite group of which we can describe the

non-p-part in an easy way for p - 2∆. Taking the product over all primes

p ≤ ∞, we obtain the following result.

Lemma 4.2.2. For the group of adelic points of an elliptic curve E/Q,

we have an isomorphism of topological groups

E(AQ) ∼= E(R)× Ẑ×
∏
p

Tp,

with Tp ⊂ E(Qp) the finite torsion subgroup of E(Qp). �

Since the structure of E(R) is known from (4.2), we need to find an

explicit description of the infinite product of finite groups

TE =
∏
p

Tp

in order to finish our description of E(AQ).

4.3. Torsion in E(AQ)

For the product TE =
∏
p Tp of local torsion groups at the finite

primes p that occurs in Lemma 4.2.2, we want to determine the exponents
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e(`, k) for the number of cyclic summands of prime power order in the

standard representation

(4.7) TE =
∏

` prime

∞∏
k=1

(Z/`kZ)e(`,k)

of TE . In the analogous situation of the closure TK of the torsion sub-

group of Ô∗ in Section 2.3, we found in Theorem 2.3.3 that we had

e(`, k) = ω for all but finitely many prime powers `k, and characterized

the ‘missing’ prime powers in terms of the number of exceptional roots

of unity in K. In the elliptic situation, the cyclotomic extension of K

generated by the `k-th roots of unity will be replaced by the `k-division

field

(4.8) ZE(`k)
def
= Q(E[`k](Q))

of the elliptic curve E. This is the finite Galois extension of Q obtained

by adjoining the coordinates of all `k-torsion points of E to Q. More

precisely, we have the following.

Lemma 4.3.1. Let E/Q be an elliptic curve, and `k > 1 a prime

power for which the inclusion

ZE(`k) ⊂ ZE(`k+1)

of division fields is strict. Then we have e(`, k) = ω in the standard

representation (4.7) of the group TE.

Proof. Let p be a prime of good reduction of E, and suppose that

p splits completely in the division field ZE(`k), but not in the larger

division field ZE(`k+1). Then the elliptic curve E = (E mod p) has its

full `k-torsion defined over Fp, but not its full `k+1-torsion. It follows

that the group E(Fp), which contains a subgroup isomorphic to (Z/`kZ)2

but not one isomorphic to (Z/`k+1Z)2, has a cyclic direct summand of

order `k.
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The set of primes p that split completely in ZE(`k), but not in

ZE(`k+1), is infinite and has positive density

[ZE(`k) : Q]−1 − [ZE(`k+1) : Q]−1 > 0

by a 19th century theorem of Frobenius. Alternatively, one may invoke

the Chebotarev density theorem to obtain this density.

For all primes p 6= ` of good reduction in the infinite set thus obtained,

the group E(Fp), and therefore also Tp, has a cyclic direct summand of

order `k. This yields e(`, k) = ω for the group TE in (4.7). �

It follows from Lemmas 4.2.2 and 4.3.1 that for elliptic curves E

having the property that for all primes `, the tower of `-power division

fields has strict inclusions

(4.9) ZE(`) ( ZE(`2) ( ZE(`3) ( · · · ( ZE(`k) ( · · ·

at every level, the group TE is the universal group
∏∞
n=1 Z/nZ for which

we have e(`, k) = ω in the standard representation (4.7). In this situation,

the group E(AQ) of adelic points of E is isomorphic to the “generic

group”

(4.10) E = R/Z× Ẑ×
∞∏
n=1

Z/nZ.

4.4. Universality of the Generic Adelic Point Group E

In this section, we prove that for ‘almost all’ elliptic curves E/Q,

their adelic point group E(AQ) is isomorphic to the generic group E in

(4.10).

In order to make this ‘almost all’ mathematically precise, we let C(t)

for t ∈ R>0 be the finite set of elliptic curves that are given by a Weier-

strass equation

Y 2Z = X3 + aXZ2 + bZ3
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as in (4.3) satisfying the inequalities |a| ≤ t2, |b| ≤ t3. Note that every

elliptic curve E/Q is Q-isomorphic to some elliptic curve in C(t) for t suf-

ficiently large, but that this curve is usually not unique as the coefficient

pairs (a, b) and (r4a, r6b) for an integer r 6= 0 give rise to Q-isomorphic

elliptic curves. We view C =
⋃
t>0C(t) as the collection of all elliptic

curves defined over Q, and say that a subset S ⊂ C has density δ if we

have

lim
t→∞

#(S ∩ C(t))

#C(t)
= δ.

Clearly, such densities assume values in the closed interval [0, 1]. If S is

the collection of elliptic curves in C with some given property P , we say,

somewhat informally, that almost all elliptic curves E/Q have property

P in case S has density 1.

There are other possible ways to list elliptic curves over Q, but with

this definition, we can quote the following title of a 2010 paper by Nathan

Jones [?] as a theorem with a precise mathematical meaning.

Theorem 4.4.1. Almost all elliptic curves are Serre curves.

To understand the importance of this result in our context, we recall

what it means for an elliptic curve E/Q to be a Serre curve. It is a

maximality property for the Galois representation

ρE : Gal(Q/Q) −→ A = Aut(E(Q)tor)

describing the action of the absolute Galois group of Q by group auto-

morphisms on the group E(Q)tor of all torsion points of E. As E(Q)tor

is isomorphic to (Q/Z)2 = lim
→n

( 1
nZ/Z)2 as an abstract abelian group, we

can explicitly describe the group A as

A = AutE(Q)tor ∼= lim
←n

GL2(Z/nZ) = GL2(Ẑ),

and ρE is a continuous homomorphism of profinite groups. The image

of Galois for the representation ρE is the subgroup

G = ρE [Gal(Q/Q)] ⊂ A.
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It can be identified with the Galois group over Q of the infinite number

field Q(E(Q)tor) obtained by taking the compositum of all division fields

of E. Serre’s theorem [?] states that this group is ‘large’ for most E. More

precisely, if E/Q is without complex multiplication over Q – a property

that almost all elliptic curves E/Q have in the sense defined above – then

G is an open subgroup of finite index in A. On A, we have a non-trivial

quadratic character

χ2 : A = AutE(Q)tor −→ AutE[2](Q) ∼= GL2(Z/2Z) ∼= S3 → {±1}

that maps an automorphism of E(Q)tor to the sign of the permutation

by which it acts on the three non-trivial 2-torsion points of E. A field

automorphism σ of Q naturally induces a permutation of the non-trivial

2-torsion points of E, which generate the 2-division field ZE(2) of E.

The sign ε(σ) of this permutation is reflected in the action of σ on the

subfield Q(
√

∆) ⊂ ZE(2) that is generated by the square root of the

discriminant ∆ = ∆E of the elliptic curve E, and given by

ε(σ) = σ(
√

∆)/
√

∆.

The Dirichlet character Ẑ∗ → {±1} corresponding to Q(
√

∆) can be seen

as a character

χ∆ : A ∼= GL2(Ẑ)
det−→ Ẑ∗ → {±1}

on A. It is different from the character χ2, which does not factor via the

determinant map A
det−→ Ẑ∗ on A.

The Serre character χE : A→ {±1} associated to E is the non-trivial

quadratic character obtained as the product χ2χ∆. By construction, it

vanishes on the image of Galois G ⊂ A, so the image of Galois is never

the full group A. In the case where we have G = kerχE , we say that E

is a Serre curve.

If E is a Serre curve, then the image of Galois is so close to the full

group A ∼= GL2(Ẑ) that for every prime power `k > 1, the extension

ZE(`k) ⊂ ZE(`k+1)
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of division fields for E that occurs in Lemma 4.3.1 has its ‘generic’ de-

gree `4 for odd `, and at least degree `3 for ` = 2. In particular, the

hypothesis of Lemma 4.3.1 on E is satisfied for all prime powers `k in

case E is a Serre curve. We immediately deduce the following theorem.

Theorem 4.4.2. For almost all elliptic curves E/Q, the adelic point

group E(AQ) is isomorphic to the topological group

E = R/Z× Ẑ×
∞∏
n=1

Z/nZ. �

4.5. Existence of Non-Generic Adelic Point Groups

The hypothesis that E be a Serre curve, which guarantees that the

division field extensions

(4.11) ZE(`k) ⊂ ZE(`k+1)

have full degree `4 for all prime powers `k > 1, is much stronger than

what is needed in order to apply Lemma 4.3.1. In fact, one wonders for

which elliptic curves there exist prime powers `k for which one encounters

equality in (4.11). In the case of odd prime powers, equality never occurs.

Theorem 4.5.1. For E/Q an elliptic curve and ` an odd prime, the

division field extension ZE(`k) ⊂ ZE(`k+1) is strict for all k ∈ Z≥0.

Proof. In the case k = 0, which is not relevant in the context of

Lemma 4.3.1, the inequality Q = ZE(1) ⊂ ZE(`) is strict because ZE(`)

contains a root of unity ζ` of odd order `, and Q does not.

For k = 1, we need to show that the natural surjection

π : G`2 = Gal(ZE(`2)/Q)→ G` = Gal(ZE(`)/Q)

is not an isomorphism.

The action of G`2 on the `2-th roots of unity in ZE(`2) leads to a

surjective map G`2
det−→(Z/`2Z)∗, and as ` is odd, we can pick an element

c ∈ G`2 that maps to a generator of (Z/`2Z)∗. Its restriction π(c) ∈ G`
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then maps to a generator of F∗` = (Z/`Z)∗ under the map G`
det−→(Z/`Z)∗.

Suppose that π is an isomorphism. Then the order of π(c) equals the

order of c, which is divisible by the order `(`−1) of (Z/`2Z)∗. Let s ∈ Gl
be a power of π(c) of order `. Then s ∈ G` ⊂ Aut(E[`]) ∼= GL2(F`), when

viewed as a 2 × 2-matrix over the field F`, is a non-semisimple matrix

with double eigenvalue 1. As π(c) centralizes this element, its eigenvalues

as an element of Aut(E[`]) cannot be distinct, and we find that det(π(c))

is a square in F∗` . Contradiction. (This neat argument is due to Hendrik

Lenstra.)

Once we know that kerπ contains a non-trivial element x1 ∈ G`2 ,

we can write it as x1 = 1 + `y1 ∈ Aut(E[`2]) ⊂ End(E[`2]) for some

element y1 ∈ End(E[`2]) with `y1 6= 0. Let xk for k ≥ 2 be an element

in G`k+1 = Gal(ZE(`k+1)/Q) that restricts to x1 on ZE(`2). Then we

can write xk = 1 + `yk ∈ End(E[`k+1]) for some yk ∈ End(E[`k+1]) with

`yk 6= 0, and

x`
k−1

k = 1 + `kyk + `k+1zk ∈ End(E[`k+1])

is a non-trivial element in the kernel of the natural map

G`k+1 = Gal(ZE(`k+1)/Q)→ G`k = Gal(ZE(`k)/Q).

Note that this is analogous to the situation for the cyclotomic Z`-extension

that we had in (2.11): if K(ζ`) ⊂ K(ζ`2) is a non-trivial extension, then

so is K(ζ`k) ⊂ K(ζ`k+1) for k > 1. �

For the prime ` = 2, the situation is different. There are many

elliptic curves for which the previous theorem fails in the case k = 0, as

we have Q = ZE(2) in case E is defined by an affine Weierstrass equation

y2 = f(x) for a cubic polynomial f ∈ Q[x] having 3 rational roots. This

is however irrelevant in the context of Lemma 4.3.1.

It follows from the complete classification (for non-CM elliptic curves

E/Q) of all possible 2-adic images of the Galois representation (4.4)
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from Rouse and Zureick-Brown [?] that there do exist infinite families

of elliptic curves E for which we have ZE(2) = ZE(4). Non-CM curves

E always have ZE(4) ( ZE(8) according to the classification, and this

implies, by a slight adaptation of the argument in the proof of Theorem

4.5.1, that for such E the inclusion ZE(2k) ( ZE(2k+1) is strict for all

k ≥ 2.

We include a construction of elliptic curves with ZE(2) = ZE(4),

which is elementary and probably classical.

Theorem 4.5.2. For every positive rational number r, the elliptic

curve Er defined by the affine Weierstrass equation

y2 = x(x2 − 2(1− 4r4)x+ (1 + 4r4)2)

has division fields ZEr(2) = ZEr(4) = Q(i). Conversely, every elliptic

curve E/Q with ZE(2) = ZE(4) = Q(i) is Q-isomorphic to Er for some

rational number r.

Proof. Let E be an elliptic curve over Q defined by a Weierstrass

equation y2 = f(x), and suppose that we have ZE(2) = ZE(4) = Q(i).

Then f ∈ Q[x] is a monic cubic polynomial with splitting field ZE(2) =

Q(i), so f has one rational root, and two complex conjugate roots in

Q(i) \Q. After translating x over the rational root, we may take 0 to be

the rational root of f , leading to the model

(4.12) f(x) = x(x− α)(x− α)

for E for some element α ∈ Q(i) \Q. Note that in this model, the Q-

isomorphism class of E does not change if we replace α by its conjugate

or multiply it by the square of a non-zero rational number.

The equality ZE(4) = Q(i) means that the 4-torsion of E is defined

over Q(i), or, equivalently, that the 2-torsion subgroup E[2](Q(i)) of E

is contained in 2 · E(Q(i)). In terms of the complete 2-descent map [?,

Proposition 1.4, p. 315] over K = Q(i), which embeds E(K)/2E(K) in a

subgroup ofK∗/(K∗)2×K∗/(K∗)2, the inclusion E[2](Q(i)) ⊂ 2·E(Q(i))
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amounts to the statement that all differences between the roots of f are

squares in Q(i). In other words, we have ZE(2) = ZE(4) = Q(i) if and

only if α and α− α are squares in Q(i).

Writing α = (a + bi)2 with ab 6= 0, we can scale a + bi inside the

Q-isomorphism class of E by an element of Q∗, and flip signs of a and b.

Thus we may take α = (1 + qi)2, with q a positive rational number. The

fact that α − α = 4qi = (q/2)(2 + 2i)2 is a square in Q(i) means that

q/2 = r2 is the square of some positive rational number r. Substituting

α = (1 + 2ir2)2 in the model (4.12) that we use for E, we find that E is

Q-isomorphic to

(4.13) Er : y2 = x(x2 − 2(1− 4r4)x+ (1 + 4r4)2)

for some positive rational number r. As we have shown that Er does

have ZEr(2) = ZEr(4) = Q(i), this proves the theorem. �

The implications of Theorem 4.5.2 for elliptic curves E/Q having

a behavior different from the generic behavior in Theorem 4.4.2 are as

follows.

Theorem 4.5.3. The family of elliptic curves Er given by (4.13)

is non-isotrivial, i.e., of non-constant j-invariant, and for none of the

elliptic curves Er with r ∈ Q∗ is the adelic point group Er(AQ) isomorphic

to the topological group E occurring in Theorem 4.4.2.

Proof. The non-isotriviality follows from the fact that the j-invariant

j(Er) = 1728
−32(1− 4r4)3

−32(1− 4r4)3 + 27(1 + 4r4)8

of Er is not constant.

We know that an elliptic curve E for which we have a strict inequality

ZE(2) ( ZE(4) has a product of local non-archimedean torsion groups

TE for which the standard representation (4.7) has e(2, 1) = ω. We will

now show that the groups TEr for the elliptic curves Er in (4.13) all have

a zero number e(2, 1) = 0 of direct summands Z/2Z. This implies that
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they are not isomorphic to the universal group E from Theorem 4.4.2, as

desired.

For the elliptic curves Er in (4.13) we have ZEr(2) = ZEr(4) =

Q(i), and Er[2](Q) = 〈(0, 0)〉. If P ∈ Er[4](Q(i)) is a point of order

4 for which 2P is a non-rational 2-torsion point on Er, then Q = P +

P σ ∈ Er[4](Q(i)) is a 4-torsion point that is invariant under the complex

conjugation automorphism σ of Q(i) and satisfies 2Q = 2P + (2P )σ =

(0, 0). This shows that we have Er[4](Q) = 〈Q〉 ∼= Z/4Z.

If p is now any prime of Q, possibly p =∞, we find

Er[4](Qp) = Er[4](Qp ∩Q(i)) =

Er[4](Q) ∼= Z/4Z, if i /∈ Qp;

Er[4](Q(i)) ∼= (Z/4Z)2, if i ∈ Qp.

Thus no summand Z/2Z ever arises, and we find e(2, 1) = 0 as claimed.

�



Abstract

The present thesis focuses on two questions that are not obviously

related. Namely,

(1) What does the absolute abelian Galois group AK of an imaginary

quadratic number field K look like, as a topological group?

(2) What does the adelic point group of an elliptic curve over Q look

like, as a topological group?

For the first question, the focus on abelian Galois groups provides us

with class field theory as a tool to analyze AK . The older work in this

area, which goes back to Kubota and Onabe, provides a description of

the Pontryagin dual of AK in terms of infinite families, at each prime

p, of so called Ulm invariants and is very indirect. Our direct class

field theoretic approach shows that AK contains a subgroup UK of finite

index isomorphic to the unit group Ô∗ of the profinite completion Ô of

the ring of integers of K, and provides a completely explicit description

of the topological group UK that is almost independent of the imaginary

quadratic field K. More precisely, for all imaginary quadratic number

fields different from Q(i) and Q(
√
−2), we have

UK ∼= U = Ẑ2 ×
∞∏
n=1

Z/nZ.

The exceptional nature of Q(
√
−2) was missed by Kubota and Onabe,

and their theorems need to be corrected in this respect.

Passing from the ‘universal’ subgroup UK to AK amounts to a group

extension problem for adelic groups that may be ‘solved’ by passing

to a suitable quotient extension involving the maximal Ẑ-free quotient
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UK/TK of UK . By ‘solved’ we mean that for each K that is sufficiently

small to allow explicit class group computations for K, we obtain a prac-

tical algorithm to compute the splitting behavior of the extension. In

case the quotient extension is totally non-split, the conclusion is that

AK is isomorphic as a topological group to the universal group U . Con-

versely, any splitting of the p-part of the quotient extension at an odd

prime p leads to groups AK that are not isomorphic to U . For the prime

2, the situation is special, but our control of it is much greater as a result

of the wealth of theorems on 2-parts of quadratic class groups.

Based on numerical experimentation, we have gained a basic under-

standing of the distribution of isomorphism types of AK for varying K,

and this leads to challenging conjectures such as “100% of all imagi-

nary quadratic fields of prime class number have AK isomorphic to the

universal group U”.

In the case of our second question, which occurs implicitly in [?,

Section 9, Question 1] with a view towards recovering a number field K

from the adelic point group E(AK) of a suitable elliptic curve over K, we

can directly apply the standard tools for elliptic curves over number fields

in a method that follows the lines of the determination of the structure

of Ô∗ we encountered for our first question.

It turns out that, for the case K = Q that is treated in Chapter 4,

the adelic point group of ‘almost all’ elliptic curves over Q is isomorphic

to a universal group

E = R/Z× Ẑ×
∞∏
n=1

Z/nZ

that is somewhat similar in nature to U . The reason for the universality

of adelic point groups of elliptic curves lies in the tendency of elliptic

curves to have Galois representations on their group of Q-valued torsion

points that are very close to being maximal. For K = Q, maximality

of the Galois representation of an elliptic curve E means that E is a

so-called Serre-curve, and it has been proved recently by Nathan Jones
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[?] that ‘almost all’ elliptic curves over Q are of this nature. In fact,

universality of E(AK) requires much less than maximality of the Galois

representation, and the result is that it actually requires some effort

to construct families of elliptic curves with non-universal adelic point

groups. We provide an example at the end of Chapter 4.





Résumé

Cette thèse traite de deux problèmes dont le lien n’est pas apparent

:

(1) À quoi ressemble l’abélianisé AK du groupe de Galois absolu d’un

corps quadratique imaginaire K, comme groupe topologique?

(2) À quoi ressemble le groupe des points adéliques d’une courbe

elliptique sur Q, comme groupe topologique?

Pour la première question, la restriction au groupe de Galois abélianisé

nous permet d’utiliser la théorie du corps de classes pour analyser AK .

Les travaux précédents dans ce domaine, qui remontent à Kubota et

Onabe, décrivent le dual de Pontryagin de AK en termes de familles in-

finies d’invariants de Ulm à chaque premier p, très indirectement. Notre

approche directe par théorie du corps de classes montre que AK con-

tient un sous-groupe UK d’indice fini isomorphe au groupe des unités Ô∗

de la complétion profinie Ô de l’anneau des entiers de K, et décrit ex-

plicitement le groupe topologique UK , essentiellement indépendamment

du corps quadratique imaginaire K. Plus précisément, pour tout corps

quadratique imaginaire différent de Q(i) et Q(
√
−2), on a

UK ∼= U = Ẑ2 ×
∞∏
n=1

Z/nZ.

Le caractère exceptionnel de Q(
√
−2) n’apparâıt pas dans les travaux de

Kubota et Onabe, et leurs résultats doivent être corrigés sur ce point.

Passer du sous-groupe �universel� UK à AK revient à un problème

d’extension pour des groupes adéliques qu’il est possible de �résoudre� en

passant à une extension de quotients convenables impliquant le quotient
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Ẑ-libre maximal UK/TK de UK . Par �résoudre�, nous entendons que,

pour chaque K suffisamment petit pour permettre des calculs de groupe

de classes explicites, nous obtenons un algorithme praticable décidant

le comportement de cette extension. Si elle est totalement non-scindée,

alors AK est isomorphe comme groupe topologique au groupe universel

U . Réciproquement, si l’extension tensorisée par Zp se scinde pour un

premier p impair, alors AK n’est pas isomorphe à U . Pour le premier 2,

la situation est particulière, mais elle reste contrôlée grâce à l’abondance

de résultats sur la 2-partie des groupes de classes de corps quadratiques.

Nos expérimentations numériques ont permis de mieux comprendre

la distribution des types d’isomorphismes de AK quand K varie, et nous

conduisent à des conjectures telles que �pour 100% des corps quadra-

tiques imaginaires K de nombre de classes premier, AK est isomorphe

au groupe universel U�.

Pour notre deuxième problème, qui apparâıt implicitement dans [?,

Section 9, Question 1] (dans le but de reconstruire le corps de nombres

K à partir du groupe des points adéliques E(AK) d’une courbe elliptique

convenable sur K), nous pouvons appliquer les techniques usuelles pour

les courbes elliptiques sur les corps de nombres, en suivant les mêmes

étapes que pour déterminer la structure du groupe Ô∗ rencontré dans

notre premier problème.

Il s’avère que, dans le cas K = Q que nous traitons au Chapitre 4, le

groupe des points adéliques de �presque toutes� les courbes elliptiques

sur Q est isomorphe à un groupe universel

E = R/Z× Ẑ×
∞∏
n=1

Z/nZ

de nature similaire au groupe U . Cette universalité du groupe des points

adéliques des courbes elliptiques provient de la tendance qu’ont les repré-

sentations galoisiennes attachées (sur le groupe des points de torsion à
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valeurs dans Q) à être maximales. Pour K = Q, la représentation galoisi-

enne est maximale si est seulement si la courbe E est une courbe de Serre,

et Nathan Jones [?] a récemment démontré que �presque toutes� les

courbes elliptiques sur Q sont de cette nature. En fait, l’universalité

de E(AK) suit d’hypothèses bien plus faibles, et il n’est pas facile de

construire des familles de courbes elliptiques dont le groupe des points

adéliques n’est pas universel. Nous donnons un tel exemple à la fin du

Chapitre 4.





Samenvatting

Dit proefschrift is gewijd aan twee vragen die niet evident gerelateerd

zijn:

(1) Hoe ziet de absolute abelse Galois group AK van een imaginair

kwadratisch getallenlichaam K er uit, als een topologische groep?

(2) Hoe ziet de adelische puntengroep van een elliptische kromme

over Q er uit, als een topologische groep?

In het geval van de eerste vraag geeft de restrictie tot abelse Galois-

groepen ons de klassenlichamentheorie als natuurlijk instrument om AK

te analyseren. Eerder werk op dit gebied, dat teruggaat op Kubota en

Onabe, geeft een beschrijving van de Pontryagin-duale van AK in ter-

men van oneindige families, één per priemgetal p, van zogenaamde Ulm

invarianten, en is daarmee zeer indirect. Onze directe aanpak via de

klassenlichamentheorie laat zien dat AK een ondergroep UK van eindige

index bevat die isomorf is met de eenhedengroep Ô∗ van de pro-eindige

completering Ô van de ring van gehelen vanK, en verschaft een geheel ex-

pliciete beschrijving van de topologische groep UK die vrijwel onafhanke-

lijk is van het imaginair kwadratische lichaam K. Preciezer geformuleerd

hebben we voor ieder imaginair kwadratisch lichaam K verschillend van

Q(i) en Q(
√
−2) een isomorfisme

UK ∼= U = Ẑ2 ×
∞∏
n=1

Z/nZ.

Kubota en Onabe waren zich niet bewust van het uitzonderlijke gedrag

van Q(
√
−2), en hun stellingen moeten dan ook dienovereenkomstig

gecorrigeerd worden.
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Om van de ‘universele’ ondergroep UK tot AK te komen moet een

adelische groepsextensie berekend worden, en dat is mogelijk voor de

quotiënt-extensie behorende bij het maximale Ẑ-vrije quotiënt UK/TK

van UK . Met ‘mogelijk’ bedoelen we dat we voor iedere K die vol-

doende klein is om expliciete klassengroepberekeningen toe te laten een

praktische algoritme krijgen om het splitsingsgedrag van de extensie te

berekenen. In het geval dat de quotiënt-extensie geheel ongesplitst is, is

de conclusie dat AK als topologische groep isomorf is met de universele

groep U . Omgekeerd leidt iedere splitsing van een p-deel van de quotiënt-

extensie voor een oneven priemgetal p tot een groep AK die niet isomorf

is met U . De situatie is ingewikkelder voor de priem p = 2, maar hier

is onze controle over de situatie weer groter doordat we gebruik kun-

nen maken van de talrijke resultaten betreffende het 2-primaire deel van

kwadratische klassengroepen.

Op grond van numerieke experimenten hebben we een basisbegrip

kunnen krijgen van de verdeling van isomorfietypes vanAK voor variërende

K, en dit leidt tot uitdagende vermoedens zoals “voor 100% van alle

imaginair kwadratische lichamen met een klassengetal dat priem is, is

AK isomorf met de universele groep U”.

In het geval van onze tweede vraag, die impliciet voorkomt in [?,

Section 9, Question 1], in de hoop om een getallenlichaam K te kunnen

reconstrueren uit zijn adelische puntengroep E(AK) voor een geschikt

gekozen elliptische kromme E/K, kunnen we direct de standaardmetho-

den voor elliptische krommen over getallenlichamen toepassen op een

manier die de lijnen volgt van de bepaling van de structuur van Ô∗ zoals

we die voor onze eerste vraag tegenkwamen.

Het blijkt dat, in het geval K = Q dat in hoofdstuk 4 behandeld

wordt, de adelische puntengroep van ‘bijna alle’ elliptische krommen

over Q isomorf is met de universele groep

E = R/Z× Ẑ×
∞∏
n=1

Z/nZ,
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die wel enigszins doet denken aan de groep U .

De reden voor de universaliteit van adelische puntengroepen van el-

liptische krommen is gelegen in de neiging van elliptische krommen om

Galoisrepresentaties op hun Q-waardige torsiepunten te hebben die ‘zo

groot mogelijk’ zijn. In het geval van K = Q betekent ‘zo groot mogelijk’

voor een elliptische kromme E/Q dat E een zogenaamde Serre-kromme

is, en Nathan Jones [?] heeft recent bewezen dat ‘bijna alle’ elliptische

krommen over Q Serre-krommen zijn. Voor universaliteit van E(AK) is

in feite veel minder nodig dan maximaliteit van de Galoisrepresentatie

van E, en het kost dan ook enige moeite om families van elliptische krom-

men op te schrijven waarvoor de adelische puntengroep niet universeel

is. We geven een expliciet voorbeeld aan het einde van hoofdstuk 4.





Σύνοψη

Η παρούσα διδακτορική διατριβή εστιάζει σε δύο ερωτήματα τα οποία

αρχικά δεν φαίνεται να συσχετίζονται. ΄Ητοι,

(1) Ποιά είναι η μορφή της απόλυτης αβελιανής ομάδας GaloisAK ενός

φανταστικού τετραγωνικού σώματος αριθμών K, ως τοπολογική

ομάδα;

(2) Ποιά είναι η μορφή της ομάδας των adelic σημείων μιας ελλειπτι-

κής καμπύλης πάνω από το Q, ως τοπολογική ομάδα;

Για την πρώτη ερώτηση, η εστίαση στις αβελιανές ομάδες Galois μας

παρέχει την θεωρία κλάσεων σωμάτων ως εργαλείο για την ανάλυση της AK .

Οι παλαιότερες δουλειές στο θέμα αυτό των Kubota και Onabe, παρέχουν

μία όχι άμεση περιγραφή του δυικού Pontryagin (Pontryagin dual) της

AK σε όρους απείρων οικογενειών, σε κάθε πρώτο p, με την επωνημία

Ulm invariants (Ulm αναλλοίωτες). Η αμεσότητα της προσέγγισής μας

με βάση τη θεωρία κλάσεων σωμάτων, αποδεικνύει ότι η AK περιέχει μία

υποομάδα UK πεπερασμένου δείκτη, ισομορφική με την ομάδα μονάδων Ô∗

της προπεπερασμένης πλήρωσης του Ô, του δακτυλίου των ακεραίων του
K, και μας παρέχει μία εντελώς συγκεκριμένη περιγραφή της τοπολογικής

ομάδας UK η οποία είναι σχεδόν ανεξάρτητη από το φανταστικό τετραγωνικό

σώμα K. Πιο συγκεκριμένα, για όλα τα φανταστικά τετραγωνικά σώματα

αριθμών εκτός των Q(i) και Q(
√
−2), έχουμε

UK ∼= U = Ẑ2 ×
∞∏
n=1

Z/nZ.

Η εξαίρετη φύση του Q(
√
−2) έλειπε από τις εργασίες των Kubota και

Onabe, και τα θεωρήματά τους έπρεπε να διορθωθούν με βάση αυτό.
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Περνώντας από την «καθολική» υποομάδα UK στην AK , οδηγούμαστε

σε ένα πρόβλημα επέκτασης ομάδας για adelic ομάδες το οποίο μπορεί να

«λυθεί» περνώντας σε μία κατάλληλη επέκταση πηλίκου ομάδων το οπο-

ίο εμπλέκει το μέγιστο Ẑ-ελεύθερο πηλίκο UK/TK της UK . Με τον όρο

«λυθεί» εννοούμε ότι για κάθε K το οποίο είναι ικανά μικρό ώστε να επι-

τρέπει σαφείς υπολογισμούς κλάσεων σωμάτων για το K, αποκτούμε έναν

πρακτικό αλγόριθμο για να υπολογίσουμε την splitting συμπεριφορά της ε-

πέκτασης ομάδων. Στην περίπτωση όπου η επέκταση υπολοίπου είναι totally

non-split, το συμπέρασμα είναι πως η AK είναι ισομορφική ως τοπολογική

ομάδα με την καθολική ομάδα U . Αντίστροφα, κάθε splitting του p-μέρους

του πηλίκου επέκτασης σε έναν περιττό πρώτο p οδηγεί στην ομάδα AK η

οποία δεν είναι ισόμορφη με την U . Για τον πρώτο 2, η κατάσταση είναι ιδια-

ίτερη, αλλά πιο ελεγχόμενη λόγω της πληθώρας θεωρημάτων που αφορούν

τα 2-μέρη των τετραγωνικών ομάδων κλάσεων.

Βασιζόμενοι σε αριθμητικούς πειραματισμούς, έχουμε αποκτήσει μία βα-

σική κατανόηση της κατανομής των τύπων ισμομορφισμού της AK για δι-

άφορα K, κι αυτό οδηγεί σε προκλητικές εικασίες όπως «100% όλων των

φανταστικών τετραγωνικών σωμάτων με αριθμό κλάσεων πρώτο αριθμό,

έχουν AK ισόμορφη με την καθολική ομάδα U».

Στην περίπτωση της δεύτερης ερώτησής μας, η οποία εμφανίζεται ως

ερώτηση στο [?, Section 9, Question 1] με την οπτική της ανάκτησης ενός

σώματος αριθμών K από την ομάδα των adelic σημείων E(AK) μιας κατάλ-

ληλης ελλειπτικής καμπύλης πάνω από το K, μπορούμε ευθής αμέσως να

εφαρμόσουμε τα καθιερωμένα εργαλεία για τις ελλειπτικές καμπύλες πάνω

από σώματα αριθμών με μία μέθοδο η οποία ακολουθεί τις γραμμές του

προσδιορισμού της δομής του Ô∗ με την οποία ασχοληθήκαμε στην πρώτη
ερώτησή μας.

Αποδεικνύεται ότι στην περίπτωση όπου K = Q, η οποία αντιμετω-

πίζεται στο Κεφάλαιο 4, η ομάδα των adelic σημείων «σχεδόν όλων» των
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ελλειπτικων καμπυλών πάνω από τοQ είναι ισόμορφη με μία καθολική ομάδα

E = R/Z× Ẑ×
∞∏
n=1

Z/nZ

η οποία κατά μία έννοια είναι όμοια εκ φύσεως της U . Ο λόγος της καθο-

λικότητας των ομάδων των adelic σημείων ελλειπτικών καμπυλών έγκειται

στην τάση των ελλειπτικών καμπυλών να έχουν αναπαραστάσειςGalois στην

ομάδα των σημείων πεπερασμένης τάξης που ορίζονται στο Q οι οποίες ε-

ίναι πολύ κοντά στο να είναι μεγιστικές. Για K = Q, η μεγιστικότητα

των αναπαραστάσεων Galois μιας ελλειπτικής καμπύλης E, σημαίνει ότι η

E είναι μία καμπύλη Serre, κι έχει πρόσφατα αποδειχθεί από τον Nathan

Jones [?] ότι «σχεδόν όλες» οι ελλειπτικές καμπύλες πάνω από το Q είναι

καμπύλες Serre. Στην πραγματικότητα, η καθολικότητα της E(AK) απαι-

τεί κάτι λιγότερο από την μεγιστικότητα των αναπαραστάσεων Galois, και

το αποτέλεσμα είναι ότι απαιτείται κάποια προσπάθεια να κατασκευαστούν

οικογένειες ελλειπτικών καμπυλών με μη-καθολική ομάδα adelic σημείων.

Παρέχουμε ένα παράδειγμα τέτοιας οικογένειας στο τέλος του Κεφαλαίου

4.
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