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Shock waves and sonic boom in
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1.1 Sonic boom propagation in the Planetary Boundary
Layer

1.1.1 A brief overview of sonic boom

Sonic boom is a complex phenomenon [80, 181, 121, 148, 41, 122] that couples com-
pressible fluid mechanics near the aircraft, acoustic propagation in the far-field and
human perception. It occurs when a body is moving at a speed above the local sound
speed. Since the body is moving faster than the perturbation it creates, conic shocks
(Mach cones) which are attached to the geometry are created [183]. These shocks then
propagate in the atmosphere from the aircraft down to the ground. During this prop-
agation, the waveform evolves from near-field to far-field as shown on Fig. 1.1: due
to cumulative nonlinear effects, higher pressure parts of the signal travel at a slightly
higher speed than the ambient sound speed and lower pressure parts travel slightly

1



2 Chapter 1. Shock waves and sonic boom in inhomogeneous media

Figure 1.1: Schematics of waveform distortion. Extracted from [148].

slower. The shocks tend to coalesce leading to the classical N-wave shape on the
ground.

In the near field, a linearised supersonic flow theory [183, 181] was developed by
G.B. Whitham to compute the generation of the perturbation. Whitham’s theory has
been the foundation for sonic boom theory since the late 50s. It has been extended
to take into account lift effects for non axisymmetric bodies [179]. It remains today at
the basis of matching between CFD and acoustics [69], and sonic boom minimization
[159, 68]. However, this method cannot handle the case of blunt or hypersonic bodies
for which the dynamic of the flow is highly nonlinear, though it gives accurate far-field
results otherwise. Nowadays, CFD allows computations of the flow around complex
geometries including low-boom design [139] or hypersonic speeds [117, 81, 119]. In the
far-field, where the perturbations are small and regular enough to use acoustic theory,
the propagation is well described by the nonlinear geometrical acoustic theory [182,
80, 148]. The coupling between mid- and far-fields can be done directly or by using
the multipole matching [138] which extracts from CFD the part of the pressure field
satisfying assumptions of Whitham theory. Recently, anisotropic mesh adaptation has
been used to propagate the shocks far enough from the aircraft to reach sufficiently
distant zones where the assumptions of geometric acoustics are satisfied [116].

During the propagation, the atmosphere plays a major role on both the localization
of the sonic boom footprint and on the shape and amplitude of ground waveforms.
Its influence can be divided in two: (i) the macro effects due vertical gradients of
atmospheric pressure, temperature and wind; (ii) and the micro effects due to the small
scale turbulence. The macro effects result in refraction by bending the ray paths. It
defines intensity, location and lateral extent of the ground boom. As shown on Fig. 1.2,
upward refraction due to negative temperature gradients leads to a finite width carpet
under the flight path surrounded by a shadow zone were no boom is heard. After this
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Figure 1.2: Schematics of sonic boom exposure. Extracted from [122].

shadow zone, a secondary boom exists resulting from rays that have been reflected by
the upper atmosphere [105, 62]. Large scale variability due to meteorological variations
of the atmosphere stratification has been quantified for various climates [20]. Other
macro effects are the absorption and dispersion due to thermoviscosity and molecular
relaxation of nitrogen and oxygen [166] which modify the shock structure [31, 32,
33]. As will be detailed later on, micro effects due to atmospheric turbulence can
significantly alter the waveform especially in terms of peak overpressure and rise time.
They have also an effect on the lateral boom by scattering noise in the shadow zone.

The classical approach of geometrical acoustics has several limitations in the sonic
boom case because: (i) it cannot take into account diffraction and (ii) it is a high fre-
quency approximation. Sonic boom focusing occurs for an accelerating or manoeuvring
aircraft [180]. The ray tube area vanishes and ray tracing predicts infinite amplitude.
Locally, around the caustic, diffraction has to be taken into account in addition to
nonlinearities to remove the singularity [75]. A numerical solver for the resulting non-
linear Tricomi equation has recently been developed [4, 124, 155]. Another limitation
of ray theory happens for shadow zones. Geometrical acoustic predicts no ray there
and thus no signal at all. To alleviate this problem, creeping wave theory has been
developed [133, 141, 12]. It has been applied to sonic boom [40] along with proper
matching between ray tracing and creeping waves. Finally, in the Planetary Boundary
Layer (PBL), the wavelength of sonic boom is comparable to the size of the turbulent
structure and the high frequency hypothesis is not valid [120]. This is the subject of
the present study and a detailed review of this problem is now detailed in the following
Sec. 1.1.2
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Figure 1.3: Example of variability of boom waveform for a B-58 flight test in 1965.
Left: low-wind conditions (U0 ≈ 5 m.s-1); right: high-wind conditions (U0 ≈ 14 m.s-1).
Extracted from [83].

1.1.2 Influence of the turbulence on sonic boom

As stated in the previous section, atmospheric turbulence causes large variations in
boom signatures altering shock overpressure and rise time. This high variability of the
waveforms is illustrated by Fig. 1.3 which plots booms recorded by five microphones
on two days, one with low-wind conditions (stable low atmosphere), and the other one
with high-wind conditions (unstable low atmosphere).

First, this waveform variability has been investigated using flight tests [83, 67, 123,
108, 184]. They have shown that perturbations are random as expected from prop-
agation through turbulence. Most perturbations are located after the shock. The
peak shock overpressure can be doubled in some cases, but perturbations decrease
rapidly after the shock, thus leading to spiked waveforms. Such signals are visible on
the high wind case of Fig. 1.3. In other cases, on the contrary, rounded waveforms
with lessened amplitude are recorded. Also, the leading and trailing shocks are af-
fected similarly indicating that the turbulence can be considered as frozen. Recently,
D-SEND (Drop test for Simplified Evaluation of Non-symmetrically Distributed sonic
boom) flight tests [92] have been realized, measuring the boom from a dropped out
projectile. In particular, assuming thermal turbulence only, Kanamori et al. [97] com-
pared measured statistical distributions, to a numerical model combining ray tracing
and diffraction approach based on the 2D HOWARD method [45] at the basis of the
present work. An example of simulated and measured pressure waveforms is shown on
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Figure 1.4: Comparison of computed and experimental signals for the D-SEND flight
tests. Extracted from [97].

Fig. 1.4.

1.1.3 Models for sonic boom propagation in the PBL

At the end of the 60s this subject was tackled analytically by many researchers. First,
Pierce [142] proposed a model based on geometrical acoustics taking into account
diffraction for the low frequencies. This model was able to explain the apparition of
spiked and rounded waveform but the finer details of the perturbation could not be
quantified. Crow [43] developed a shock scattering model. It is a first order scattering
model inspired by linear random scattering theory [27, 167, 88] with each shock mod-
elled as a step shock. It predicts that for a Kolmogorov spectrum of turbulence, the
envelope of the perturbation varies as:

〈ψ2(t)〉 =
(
tc
t

)7/6

(1.1)

with ψ the ratio between the scattered pressure and the peak overpressure, t is the
time and tc is a characteristic time in the range of 0.5 - 1.5 m.s-1 for usual atmospheric
conditions. The power −7/6 is directly related to the inertial range of turbulence
modelled by Kolmogorov spectrum. Kamali and Pierce [96] were able to verify this
−7/6 scaling law against a large set of sonic boom signatures. One major problem
with Crow’s theory is that it does not give bounds for the shock overpressure and does
not explain the anomalously long rise time observed during flight tests [112]. To handle
this, Plotkin and George [149] extended the theory to finite time shock waves. This
lead them to a Burgers’ equation where viscosity is linked to the medium turbulence.
This allowed them to compute an upper bound for rise time. Pierce raised some
concerns about this model and proposed [143] a statistical model based on multiple
wave front folding. Ffowcs Williams and Howe also tried to tackle the problem [56].
Using multiple scattering theory, they derived a diffusion equation for the distribution
of energy in wavenumber space. However, this model fails to take into account spatial
relocation of acoustic energy caused by phase scrambling. Several reviews of these
theories can be found [145, 147, 113].
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1.1.4 Laboratory scale and numerical experiments

Validating these models is difficult since the only available data emanate from flight
tests for which the atmospheric turbulence parameters cannot be controlled and mea-
surement are scant. To overcome this difficulty, numerous laboratory scale experiments
have been carried out. Bauer and Bagley [10] performed ballistic experiments with su-
personic bullets fired in an open chamber. A turbulent flow was used to model the
atmospheric turbulence. Large distortions of the waveforms and increases in rise time
were observed. Davy and Blackstock [47], motivated by Pierce’s theory [142] based on
focusing and defocusing effect of turbulence, studied short N-waves produced by an
electrical spark propagating through a soap bubble filled with different gases. Argon-
filled bubbles acted as converging lenses leading to spiked waveforms, while helium-
filled bubbles (diverging lenses) caused rounded waveforms. Ganjehi et al. [65, 66]
reproduced nonlinear wavefront folding due to deterministic heterogeneities in a water
tank with a 1:100,000 ratio with sonic boom. Ribner [152] investigated spiking and
rounding of N-waves within a jet. He found that waves (generated in a shock tube)
travelling upstream were focused while waves travelling downstream were defocused.
Tubb [176] also used a shock tube to measure the effects of grid-generated turbulence
on the rise time of a weak shock. Statistically, passage through turbulence causes a
doubling of the rise time.

Still relying on a shock tube, Hesselink and Sturtevant [82] propagated a plane step
shock through a random medium composed of helium and refrigerant 12. They have
shown that waveform distortion is mainly due to focusing and defocusing by random
heterogeneities. They supported this result with a ray tracing approach explaining
most of their results.

Raspet et al. [151] analysed flight test results and developed a scattering center-
based model (based on Born approximation) to propagate sonic boom through single
scale gaussian turbules. They reproduced the spiked and rounded waveforms along
with the increase in rise time. Boulanger et al. [21] extended this model to a more
realistic atmosphere based on a von Kármán spectrum. This improved the comparison
to measurement but the rise time was still underestimated. Finally, Kelly et al. [99]
applied this model to an anisotropic turbulence. This did not improve the comparison
with the measurement, indicating that this single-scatter method cannot completely
describe sonic boom propagation through turbulence.

Lipkens and Blackstock [114, 115] scaled their experiments to sonic boom for both
the N-waves and characteristics of the atmosphere. N-waves produced by sparks were
propagated through kinematic turbulence within a jet. Plane and spherical waves were
both studied. Waveform distortion of actual sonic boom was successfully reproduced.
Also the average peak pressure was shown to slightly decrease through turbulence
while the rise time largely increases. This dataset was also analysed by Lipkens [113]
to validate the models of Crow [43], Plotkin and George [149], Pierce [143] and Ffowcs-
Williams and Howe [56]. It was found that Crow’s theory yielded a maximum for the
Root Mean Square (RMS) perturbations with an overestimation of a factor 5 compared
to the experiments. Its extension by Plotkin and George largely overpredicts rise time
but no clear conclusion could be drawn as the model experiment was outside the
model range of validity. Pierce’s model of multiple wave front folding was successful
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in reproducing the rise times of the experiments with an error never exceeding 20%.
Ffowcs-Williams and Howes multiple scattering model underestimated the rise time,
which supports the fact that a phase scrambling mechanism is responsible for the large
rise times.

Blanc-Benon et al. [17] relied on numerical methods to investigate shock wave
propagation through random turbulence. The turbulence was modelled as multiple
realizations of a random temperature and velocity field. First, geometrical acoustic
was used along with a nonlinear transport equation to compute the waveform. Then
a one-way model was worked out under the form of a KZK equation modified to take
into account the effect of a random temperature field. Both models confirmed the
observations of Lipkens et al. [114, 115]: average peak pressure decreases while rise
time increases. Also simulations lead to waveform distortions similar to experimental
ones. The main mechanism for waveform distortion and variability in peak pressure and
rise time is shown to be the formation of caustics (wavefront focusing). Continuing
this work, Averiyanov et al. [8] developed a KZK equation extended to a slightly
inhomogeneous and slowly moving medium. This equation was then solved numerically
at two dimensions to simulate propagation of an N-wave through kinematic turbulence
by Averiyanov et al. [6]. The same features as Blanc-Benon et al. [17] were retrieved.
The importance of taking into account diffraction and nonlinearity was shown. The
influence of the turbulence model was also assessed. The mean peak pressure depends
strongly on the the large scale heterogeneities while rise time depends on both large and
small scale heterogeneities. The presence of a turbulent transverse flow is negligible but
it becomes important when increasing the size of heterogeneities, such as for a uniform
transverse flow. In parallel, Averiyanov et al. [7] performed a series of laboratory scale
experiments using high amplitude and short duration spherical N-waves generated by
spark pulses. The turbulent medium was produced by a jet and was fully characterized.
This work confirmed the influence of the large scale heterogeneities on the average peak
pressure. Also similarly to linear acoustic [15], the probability density of the peak
pressure is shown to follow a generalised gamma distribution which smoothly varies
from a log-normal to an exponential distribution as the turbulence level is increased.
Salze et al. [157] performed analogous experiments for thermal turbulence. Results
corroborate the previous experiments and the generalised gamma distribution was
again retrieved for the probability density of the peak overpressure.

Another experiment of shock waves propagation through kinematic turbulence was
carried by Sasoh et al. [158]. The decrease of average peak pressure was recovered along
with a large standard deviation almost proportional with the RMS of the turbulent
velocity.

All these studies provide a good understanding of the phenomenon. However, one
of the difficulties is that the laboratory scale experiments cannot scale perfectly all the
sonic boom characteristics. For instance, as can be seen on Table. 1.1 for the work
of Averiyanov et al. [7], the ratio between wavelength and integral length scale is not
conserved. For Lipkens and Blackstock set-up [114], nonlinear effects are about ten
times larger than sonic boom ones. In all aerial small scale experiments, thermoviscous
effects are strongly enhanced. This can be compensated in water [66] but in this case,
only deterministic heterogeneities can be investigated.
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Atmosphere Laboratory scale experiments

Turbulent layer width 1-2 km 0.3-1.8 m
Integral length scale 100-200 m 16-18 cm
RMS fluctuation velocity 0-2.5 m/s 0-3.4 m/s
Pressure amplitude 10-100 Pa 10-100 Pa
Signal duration 0.1-0.2 s 30-80 µs
Wavelength 34-68 m 1-2.7 cm

Table 1.1: Comparison between characteristic scales for a sonic boom and laboratory
scale experiments of Averiyanov et al. [7].

1.2 Numerical methods in nonlinear acoustics

Several numerical methods are proposed in the literature for simulating propagation
of acoustic shock waves in both homogeneous, heterogeneous or moving media. Most
of them were developed either for atmospheric propagation (sonic boom, infrasound)
or more frequently for biomedical applications (HIFU, lithotripsy).

1.2.1 Geometrical acoustics

One of the first methods is the ray tracing [18, 80, 23, 141]. It solves the equations
of linear geometrical acoustics to obtain the ray path. In the nonlinear regime, a
nonlinear transport equation similar to Burgers’ equation is solved along each ray
to get the waveform evolution. This has been developed first purposely for sonic
boom [182, 80, 172, 169]. Nowadays, infrasound investigations also routinely rely on
it [104]. However this method has important limitations as (i) it is a high frequency
approximation and (ii) it does not take into account diffraction effects. This makes
it impossible to predict phenomena such as shadow zone, focusing or scattering by
turbulence. Diffraction effects therefore need to be introduced by solving a nonlinear
wave equation using various methods which are now presented.

1.2.2 One-way approaches

One important class of methods is the one way approximation. It assumes that there
is a main direction of propagation and that the backscattered field is negligible. As
a consequence it can be applied only for weakly heterogeneous media. The original
nonlinear one way wave equation is the so called Khokhlov-Zabolotskaya-Kuznetsov
(KZK) equation [200, 101]. It is a nonlinear version of the standard parabolic equation
valid only for small angles of propagation (±15◦). For a review about linear parabolic
approximation see [107]. The first numerical algorithms were developed for axisymmet-
ric narrow beams in former USSR during the seventies, alternating between frequency
domain for absorption and diffraction and time domain for nonlinear effects [9]. On
the contrary, Aanonsen et al. [1] worked entirely in the frequency domain. Coordi-
nate transformations [78, 79] allow to follow more easily beam divergence or focusing.
First extensions to 3D were proposed by Kamakura et al. [95]. A fully time domain
algorithm was achieved by Lee and Hamilton [109]. Nonlinear effects are solved by
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the exact Poisson’s solution. As a consequence, the advancement step must be small
enough so as to allow absorption effects to prevent shock formation. This can be very
penalising in case of a weakly absorbing medium or a low-frequency case such as sonic
boom or infrasound. Nevertheless this algorithm was applied to simulate a high fre-
quency, laboratory scale experiment [114] of sonic boom in a turbulent temperature
field [17]. Three dimensional extension of that algorithm is proposed in 2007 by Jing
and Cleveland [93]. Many HIFU applications rely on the KZK equation, an extensive
literature review being out of the scope of the present work. An alternative of the KZK
equation is the Nonlinear Progressive-wave Equation (NPE) [129] which still relies on a
narrow angle parabolic approximation but with advancement in time instead of space.
One application to sonic boom wavefront folding has been performed by Piacsek [140].

One of the main drawbacks of these methods is the small angle limitation. It can be
removed using for the linear part the angular spectrum method. The first approach in
this way was the work of Christopher and Parker [30] which a Discrete Hankel Trans-
form (DHT) implemented to propagate axisymmetric beams with nonlinear effects
handled in the frequency domain. DHT was replaced by Rayleigh integral [168] and
then by the more efficient Fast Fourier Transform (FFT) at 3D by Zemp et al. [201].
Both of them introduced a second order split-step between diffraction and nonlineari-
ties. This approach has been extended in 2D to the heterogeneous case by Varslot and
Taraldsen [177] and more recently through the so-called HOWARD (Heterogeneous
One-Way Approximation for the Resolution of Diffraction) method [44, 45]. Contrar-
ily to previous works, these two studies solve the nonlinear effects in the time domain
by means of Poisson’s solution. Varslot and Taraldsen solve the heterogeneities in
sound speed along with nonlinearities while Dagrau et al. handle them separately. In
this last work nonlinear effects are solved for the potential through the Burgers-Hayes
method [22, 80, 41] which enables to manage inviscid shock waves which are important
for atmospheric applications. Yuldashev et al. [199] use the same angular spectrum
approach for 3D homogeneous simulations. The heterogeneities are introduced only
by phase screens [198].

1.2.3 Full wave approaches

For cases where the assumption of a main direction of propagation is not valid such
as for strongly heterogeneous media, a full nonlinear wave equation has to be solved.
This approach has first been tackled by Sparrow and Raspet [161] at 2D for investi-
gating Mach reflection based on a Finite Differences Time Domain (FDTD) method.
Since, several authors have adapted the FDTD approach to various problems. These
algorithms are listed in Table. 1.2 along with their main characteristics: problem di-
mensionality (2D or 3D); scheme order; applications involving cases either weakly (for
instance harmonic generation) or strongly (shock waves) nonlinear.

Marsden et al. [126] solve the 2D full Euler equations in a stratified atmosphere
with no flow using high order numerical methods developed for aeroacoustics with
a shock sensor. A Finite Volume Method (FVM) [178] has been proposed to easily
handle complex geometries. Recently, a Discontinuous Galerkin (DG) method [175]
has been developed so as to handle shock waves while remaining high order thanks to
artificial viscosity and shock sensor. DG method also allows simulations in complex
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Reference Dimension Weakly nonlinear Order
or Shock

Sparrow and Raspet [161] 2D Shock 4th

Hallaj and Cleveland [76] 2D Weakly 4th

Ginter et al. [71] 2D Shock 4th DRP
Pinton et al. [146] 3D Weakly 4th

Del Pino et al. [48] 2D Shock up to 17th

Okita et al. [132] 3D Weakly 6th

Table 1.2: Main characteristics of FDTD schemes for nonlinear wave equation.

geometries. The k-wave pseudo-spectral method [174, 173, 91, 90] is an alternative
way to relax the constrains on the spatial mesh by computing spatial gradients with a
Fourier collocation method. A promising method is the Fourier continuation [2] which
seems to successfully get high order schemes and handling the presence of shock wave
while allowing for complex geometries. These methods are attractive as physics is well
represented. However, it is difficult to combine simultaneously high order schemes
necessary for the acoustic propagation and the presence of shock waves.

1.2.4 Moving medium

Note that in all the above cited works (except for the ray-tracing method), the consid-
ered medium can be heterogeneous but is always at rest. There have been relatively
few investigations on weak shock waves propagation in moving media. With this in
view, Averiyanov et al. generalized the KZK equation [8] to a slowly moving medium.
A numerical scheme extends the 2D time domain algorithm of Lee and Hamilton [109]
with axial flow convection and absorption handled in the frequency domain [6]. Also
the Poisson’s solution for the resolution of inviscid Burgers’ equation is replaced by a
spatially centred Godunov scheme. Very recently, Sabatini et al. [153] extended Mars-
den et al. work to incorporate a 2D stratified flow for infrasound application. Finally,
to our knowledge, the only other reference about shock waves in moving media is the
so-called FLHOWARD method [64, 63] that takes into account influence of a mean
shear flow at 2D. This additional effect is handled similarly to heterogeneities in the
HOWARD method.

1.3 Objective

The previous analysis shows there is currently no numerical method able to fully sim-
ulate shock waves (including sonic booms) propagation in a realistic three dimensional
turbulent atmosphere. Most of the existing algorithms are two dimensional. Only
very few include wind effects and none at 3D. Concerning sonic boom applications,
existing software have been applied mostly to compare with laboratory scale experi-
ments. Therefore, they were carried out with different parameters scaling: more intense
sources of higher frequency so more nonlinear problems with more absorption; and a
smaller ratio of acoustic wavelength to integral length scale of turbulence.
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The first main objective of this thesis is to develop such a method. Given the
high numerical cost of simulating 3D shock waves propagation, a one-way approach
has been selected as a trade-off between accuracy and efficiency. Developing a 3D
propagation code requires an efficient parallelization methodology. The so-called 2D
FLHOWARD method with stratified flow has been extended and implemented with
the following new features:

• fully three-dimensional;

• parallel programming using the Message Passing Interface (MPI) library;

• 3D flow effects;

• atmospheric absorption (thermoviscosity and molecular relaxation);

• Dirichlet or von Neuman boundary conditions instead of periodicity, in particular
for rigid ground reflection.

The resulting software has been named FLHOWARD3D.
The second main objective is to apply this newly developed software to quan-

tify influence of turbulence on sonic boom propagation in the Planetary Boundary
Layer. This has been achieved within the frame of the European Commission funded
project ATLLAS II (Aero-Thermodynamic Loads on Lightweight Advanced Stuctures
II, 2011-2015, contract ACP0-GA-2010-263913, 7th Framework Programme). ATL-
LAS II project aims at building tools to design a new aircraft for high speed flight
with a cruise Mach number around 5. The overall project is split up along the ve-
hicle design process and the development of advanced light-weight, high-temperature
material. The globally optimized vehicle targets aerodynamic, propulsive, structural
and thermal objectives but nevertheless takes into account restrictions imposed by
emissions regulations and sonic boom mitigation. With this last objective, sonic boom
of the ATLLAS II configuration is fully assessed in the present work. In particular,
this assessment is achieved in a statistical way taking into account variability resulting
from atmospheric turbulence. To our knowledge, such approach has never been used
at the early design stage.

1.4 Content

The first part of the present manuscript details the FLHOWARD3D algorithm (Chap-
ter 2). The model equation describing nonlinear shock wave propagation through a
moving heterogeneous atmosphere [37] is first recalled. It is transformed into a partially
one-way equation adapted to the numerical resolution. Resulting dispersion relation is
compared to the exact one. The numerical algorithm is then detailed. It is based on
split-step approach separating diffraction, flow, absorption and heterogeneities effects,
and nonlinearities. Handling of the boundary conditions is then addressed. The result-
ing dispersion relation is established and discussed. Finally, parallel implementation
of the algorithm is outlined.

In a second part, the FLHOWARD3D code is validated (Chapter 3). This is
achieved by comparing the results of the code either to known analytical solutions,
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or to simulations performed with other codes. Various test cases are chosen to validate
the different effects implemented in FLHOWARD3D: linear homogeneous diffraction,
medium heterogeneities, flow motion, nonlinearities, absorption and boundary condi-
tions. When possible, cases coupling several effects are investigated.

Sonic boom of the ATLLAS II hypersonic aircraft is assessed in Chapter 4. A model
for the Planetary Boundary Layer is first proposed mixing Monin-Obukhov Similarity
Theory (MOST) for the mean stratified atmosphere (wind and temperature), along
with homogeneous isotropic fluctuations satisfying a von Kármán energy spectrum.
Sonic boom is then evaluated first in the standard atmosphere with no turbulence as
the reference case. This is achieved by matching near-field CFD simulations based
on automatic mesh refinement to nonlinear ray tracing describing long range propa-
gation. Sonic boom of ATLLAS II configuration is quantified both ground track and
laterally at the edges of the geometrical carpet, both in terms pressure signature, peak
overpressure and annoyance metrics. Statistical effect of turbulent wind fluctuations is
then investigated for ground track boom by means of FLHOWARD3D software for two
intensities of turbulence. Typical distorted waveforms and spectra are presented and
peak overpressure variability is analysed. The sonic boom penetration in the shadow
zone is also reproduced numerically comparing the cases with and without turbulence.

According to catastrophe theory, and in the linear regime, caustics are struc-
turally stable, thus should persist in an heterogeneous medium. However, for shock
waves, linear catastrophe theory is not sufficient and nonlinear effects have to be taken
into account to predict the caustic field. Using the tools previously developed (FL-
HOWARD3D software and turbulence synthesis), we are able to investigate numerically
structural stability of cusped caustics in the unexplored case of nonlinear shock waves
as detailed in Chapter 5.
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In this chapter, a model equation describing nonlinear shock wave propagation
through a moving heterogeneous atmosphere [37] is first recalled. Then it is trans-
formed into a partially one-way equation adapted to the numerical resolution. Re-
sulting dispersion relation are computed and compared to the exact one and to the
parabolic equation. The numerical algorithm is then detailed. It is based on split-
step approach separating diffraction, flow, absorption and heterogeneities effects, and
nonlinearities. Handling of the boundary conditions is then addressed. The resulting
numerical dispersion relation is established and discussed. Finally, parallel implemen-
tation of the algorithm is outlined.
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2.1 Model

2.1.1 Equation for nonlinear propagation through a moving hetero-
geneous medium

A viscous fluid in a Cartesian domain is considered; x is the main propagation direction,
z the vertical coordinate, and y the transverse one. At a position x and time t,
we denote ρ(x, t) the density, c0(x, t) the sound speed, v(x, t) the flow velocity, and
p(x, t) the pressure. Since the atmospheric characteristic time scale is much larger
than the acoustical one (a few hours for atmospheric state, a few minutes for turbulent
fluctuations and a fraction of seconds for a sonic boom signal), the medium can be
considered as frozen which means that the quantities associated with the ambient
medium (•0) can be separated from the time varying acoustical fluctuations (•a):

f(x, t) = f0(x) + fa(x, t) (2.1)

with f = (ρ,v, p). The ambient flow is then separated between a mean vertically
stratified flow V0(z) with only horizontal components V0 · ez = 0, which is of order of
the ambient flow Mach number M , and turbulent fluctuations u0(x) of smaller order,
approximately M2:

v0(x) = V0(z) + u0(x). (2.2)

This assumption is consistent with the situation in the atmospheric boundary layer
where the mean wind velocity rarely exceeds 20 m/s, corresponding to a Mach number
M = ‖V0‖/c0 of 0.06. Its fluctuations are much lower: a few meters per second
[163, 192]. Hence, the Mach number of the fluctuation is approximately of the order
of M2 = 0.004. Finally, the temperature fluctuations are of order 5 °C to 10 °C
which implies that the sound speed and density fluctuations are also of the order of
one percent and thus O(M2). Therefore they are also separated between a mean
component (•̄) and a spatially varying one (•′):

c0(x) = c̄0 + c′
0(x) (2.3)

ρ0(x) = ρ̄0 + ρ′
0(x). (2.4)

Using these assumptions it is possible to model the nonlinear propagation of acoustic
waves in a moving inhomogeneous medium with a nonlinear scalar equation [39]:
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where the operator Ds/Dt = ∂/∂t + V0 · ∇ is the convective derivative associated
to the ambient mean flow. Eq. 2.5 takes into account quadratic nonlinearities and
atmospheric absorption; β = (γ + 1)/2 and δ =

[
4
3µ+ µB + κ(c−1

v − c−1
p

]
/ρ0 are

respectively the nonlinear parameter and diffusivity of the medium. Here µ is the
shear viscosity, µb the bulk viscosity and κ the thermal conductivity. cp and cv are the
specific heats at constant pressure and constant volume, respectively. γ = cp/cv is the
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ratio of the specific heats and is equal to 1.4 in air so that β = 1.2. Eq. 2.5 is of mixed
order between 1 and 2 in Mach number as it contains O(M2) terms for V0j in the
convective derivative while neglecting the O(M2) terms corresponding with the effect
of shear associated with dV0j

dz . The first ones are involved in phase effects which are
dominant as soon as frequency is high enough while the other ones are involved only
in amplitude effects and therefore play a smaller role for the considered frequencies.
These approximations are quantified numerically in [39, 64, 63]. The same work is done
on the turbulent fluctuations where terms with du0j

dxi
are neglected. Moreover, formally,

the time derivatives associated with nonlinearities and absorption should be convective
derivatives but the effect of convection can be neglected as explained in [39].

2.1.2 Partially one-way equation

Eq. 2.5 is not easily handled numerically so some transformations have to be per-
formed. First, it is written in the form of a homogeneous wave equation with a per-
turbation term on the right hand side:

1
c̄0

2

∂2pa

∂t2
− ∂2pa

∂x2
− ∂2pa

∂y2
− ∂2pa

∂z2
= P. (2.6)

The right hand side P contains all terms linked to flow motions, medium hetero-
geneities, sound absorption and nonlinearities. They all are of order M at most.

In a second stage, in order to use a one-way propagation approach, the retarded
time τ = t− x/c̄0 is introduced. Eq. 2.6 is rewritten in a time frame moving with the
mean sound speed in the x-direction.

2
c̄0

2

∂2pa

∂x∂τ
− ∂2pa

∂x2
− ∂2pa

∂y2
− ∂2pa

∂z2
= P ′. (2.7)

As a third step, a wide-angle parabolic approximation is applied only on the per-
turbation terms P ′ rather than on the full wave equation 2.7. To do this, the second
order derivative in x is replaced using the linear homogeneous equation written in
retarded time:

∂2pa

∂x2
=

2
c̄0

2

∂2pa

∂x∂τ
− ∂2pa

∂y2
− ∂2pa

∂z2
+O(M). (2.8)

This wide-angle approximation is of order M2 since it is applied only on terms that
are already of order M at most. It is therefore of a higher order than applying a wide-
angle approximation to the full equation as P ′ itself is of order M . As a counterpart,
a second order derivative in x remains on the homogeneous part of the equation. Thus
it is only a partially one-way equation. This second order derivative will be dealt with
during the numerical resolution in 2.2.2. Finally, in order to handle shock waves, the
acoustic pressure pa is replaced by a pseudo-potential:

pa(x) =
∂φ

∂t
(x). (2.9)

The pseudo-potential has the advantage to remain continuous through shocks and is
well adapted for the resolution of the nonlinear part of the equation [80, 37]. It results
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finally in the following equation:

∂2φ

∂x∂τ
(x, τ) = Dφ(x, τ) +Hφ(x, τ) +Nφ(x, τ) +Aφ(x, τ), (2.10)

where D is an operator representing diffraction effects:

Dφ(x, τ) =
c̄0

2

(
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2

)
, (2.11)

The heterogeneities and wind effects are described by operator H decomposed as:

Hφ(x, τ) = FLH(1)(x, τ) + FLH(2)(x, τ) + TH(x, τ). (2.12)

FLH(1) is the operator for the effect of the mean vertically stratified flow on propaga-
tion:

FLH(1)φ(x, τ) =
V0x

c̄0
2

∂2φ

∂τ2
− V0x

c̄0

∂2φ

∂x∂τ
− V0y

c̄0

∂2φ

∂y∂τ

+
V 2

0x

¯2c0

(
∂2φ

∂y2
+
∂2φ

∂z2

)
− V 2

0x

2c̄0
3

∂2φ

∂τ2

+
V0xV0y

c̄0

(
1
c̄0

∂2φ

∂τ∂y
− ∂2φ

∂x∂y

)
−
V 2

0y

¯2c0

∂2φ

∂y2

+ c̄0V0x

∫ τ

−∞

∂3φ

∂x∂z2
dτ ′ − c̄0

∫ τ

−∞

∂

∂z

[
V0x

∂2φ

∂x∂z

]
dτ ′

+
d

dz

[
V0x

∂φ

∂z

]
− V0x

∂2φ

∂z2

+ c̄0V0y

∫ τ

−∞

∂3φ

∂y∂z2
dτ ′ − c̄0

∫ τ

−∞

∂

∂z

[
V0y

∂2φ

∂y∂z

]
dτ ′, (2.13)

First line of Eq. 2.13 describes linear convection terms by the mean stratified flow.
The second and third lines are for the nonlinear quadratic convection terms. The last
three lines emanate from the gradient of the ambient flow. FLH(2) is the operator for
the effect of the turbulent fluctuations on propagation:

FLH(2)φ(x, τ) =
u0x

c̄0
2

∂2φ

∂τ2
− u0x

c̄0

∂2φ

∂x∂τ
− u0y

c̄0

∂2φ

∂y∂τ
− u0z

c̄0

∂2φ

∂z∂τ
. (2.14)

Eq. 2.14 takes only into account the linear convection effects due to the flow fluctua-
tions. TH is the operator describing the influence of the sound speed and density of
the medium inhomogeneities on the propagation:

THφ(x, τ) =
1

2ρ0

(
∂ρ0

∂x

∂φ

∂τ
− c̄0

∂ρ0

∂x

∂φ

∂x

)

− c̄0

2ρ0

(
∂

∂y

[
ρ0
∂φ

∂y

]
+

∂

∂z

[
ρ0
∂φ

∂z

])
+
c̄0

2

(
∂2φ

∂y2
+
∂2φ

∂z2

)

+
ǫ

2c̄0
3

∂2φ

∂τ2
, (2.15)
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with
ǫ = 2c̄0c

′
0 + c′2

0 . (2.16)

The first line of Eq. 2.15 stands for the density heterogeneities in the main propaga-
tion direction x, the second line for those in the transverse directions y and z. The
last term takes into account all effects due to sound speed heterogeneities. Note that
in the definitions of FLH(1) (Eq. 2.13), FLH(2) (Eq. 2.14) and TH (Eq. 2.15) the
components V0x, u0x and ∂ρ0/∂x appear differently from the other ones because of
the introduction of retarded time in the main propagation direction x. A simplified
FLHOWARD equation can be written by considering only the dominant linear con-
vection flow effects for both the mean wind and its fluctuations. In this case, the H
operator has to be replaced by H(s) defined as:

H(s)φ(x, τ) = FLH(s)(x, τ) + TH(x, τ), (2.17)

with

FLH(s)φ(x, τ) =
v0x

c̄0
2

∂2φ

∂τ2
− v0x

c̄0

∂2φ

∂x∂τ
− v0y

c̄0

∂2φ

∂y∂τ
− v0z

c̄0

∂2φ

∂z∂τ
. (2.18)

Here, only the dominant linear convection effects are taken into account for the total
ambient velocity field v0 defined in Eq. 2.2. Note that for the velocity fluctuations
u0(x), operators FLH(s) and FLH(2) are identical. Operators H and H(s) differ only
for the mean stratified flow V0(z).

Finally, N is the operator associated to the nonlinearities:

Nφ(x, τ) =
β

2ρ̄0c̄0
3

∂

∂τ

[(
∂φ

∂τ

)2
]
, (2.19)

and A to the absorption:

Aφ(x, τ) =
∂

∂τ

(
δ

2c̄0
3

∂2φ

∂τ2

)
. (2.20)

More details on the establishment of Eq. 2.10 are given in Appendix A. The main
physical effects are clearly separated in equation 2.10. We will take advantage of this
for the numerical resolution of the problem in 2.2.1.

2.1.3 Dispersion relation

The validity of the model equation 2.10 in linear propagation (operators Nφ(x) and
Aφ(x) are set to zero) can be examined precisely in two cases by writing its dispersion
relation for a bi-dimensional plane wave:

φ(x, y, z, τ) = A exp
[
ik0

(
(k̄x − 1)x+ k̄zz − c̄0τ

)]
(2.21)

where k0 = ω0/c0 is the wave number, and k̄x = kx/k0, k̄z = kz/k0 are the dimension-
less components of the wave vector. Two cases will be investigated.
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Sound speed heterogeneities: The first case was studied by Dagrau et al. [45], it
is a no-flow case with ρ′

0 = 0 and c′
0 is constant. In this case, for Eq. 2.10 we have:

k̄x =
√

1 − ǫ/c̄0
2 − k̄z

2
(2.22)

while the exact dispersion relation is:

k̄x =
√
c̄0

2/c2
0 − k̄z

2
. (2.23)

To retrieve the exact dispersion relation and get a higher precision, ǫ can be redefined
as:

ǫ(x) = c̄0
2

[
1 − c̄0

2

c2
0(x)

]
= 2c̄0c

′
0 +O(c′2

0 ) = 2c̄0c
′
0 +O(M4). (2.24)

Velocity heterogeneities: The second case investigated is the propagation of a
plane wave in a uniform flow parallel to the direction of propagation (V0x = cte,
V0y = 0). The exact equation is given by:

D2
spa

Dt2
− c2

0∆pa = 0 (2.25)

which corresponds to the dispersion relation:

k̄x
2

+
2M

1 −M2
k̄x +

k̄z
2 − 1

1 −M2
= 0. (2.26)

Flhoward equation for FLH(1) (in this case FLH(2) = 0) is written:

∂2φ

∂x∂τ
=
c̄0

2

(
∂2φ

∂x2
+
∂2φ

∂z2

)
+
V0x

c̄0
2

∂2φ

∂τ2
− V0x

c̄0

∂2φ

∂τ∂x
+
V 2

0x

2c̄0

(
∂2φ

∂y2
− 1
c̄0

2

∂2φ

∂τ2

)
(2.27)

and its associated dispersion relation is:

k̄x
2

+ 2Mk̄x +
(
k̄z

2 − 1
) (

1 +M2
)

= 0. (2.28)

Equations 2.26 and 2.28 differ only by a term of order O(M3) which is consistent with
the assumption made in establishing Eq. 2.10. To obtain a higher order of precision,
the Mach number M can be replaced by M/

(
1 −M2

)
, in a way similar as was done

previously for the sound speed velocity. The difference between the two dispersion
relations then becomes a term of order O(M4) [64, 63]. The lower order FLHOWARD
equation for FLH(s):

∂2φ

∂x∂τ
=
c̄0

2

(
∂2φ

∂x2
+
∂2φ

∂z2

)
+
V0x

c̄0
2

∂2φ

∂τ2
− V0x

c̄0

∂2φ

∂τ∂x
(2.29)

has the dispersion relation:

k̄x
2

+ 2Mk̄x +
(
k̄z

2 − 1
)

= 0, (2.30)
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which clearly differs from Eq. 2.26 by terms of orderM2. Finally, the last equation to
compare is the parabolic equation of Averyianov et al. [6, 8, 5]:

∂2φ

∂x∂τ
=
c̄0

2
∂2φ

∂z2
+
V0x

c̄0
2

∂2φ

∂τ2
(2.31)

which leads to the dispersion relation:

(
k̄x − 1

)
+M +

k̄z
2

2
= 0. (2.32)

On Fig. 2.1, the various dispersion relations are compared for M = [0.0, 0.5]. It can be
seen that the full FLHOWARD equation with FLH(1) is highly accurate as expected.
Simplified FLHOWARD equation with FLH(s) is also more accurate than the classical
parabolic equation. The improvement is due mostly to the diffraction term ∂2φ

∂x2 and
not to the higher order flow terms especially for the low Mach numbers, since there
are only small differences between FLH(1) and FLH(s). Also, it is to be noted that
both approximations behave really well even with relatively high Mach numbers, even
if the Mach numbers were supposed to be small for the derivation of the equations.

2.2 Numerical resolution

2.2.1 Split-step method

As explained in the previous section, Eq. 2.10 is set in a time frame moving at the
mean sound speed in the propagation direction. Thus a spatially advancing scheme in
the x-direction is needed. A split-step method is chosen [197]. It allows to solve each
part of Eq. 2.10 separately and then to couple the solution by assembling the results.
The L.H.S. is the coupling term.

φ(x+ ∆x, y, z, τ) = φD
∆x ◦ φH+A

∆x ◦ φN
∆x(x, y, z, τ) +O(∆x). (2.33)

with ◦ is the operator composition: g ◦ f(x) = g(f(x)). φX
∆x is solution of the formal

equation ∂2φ
∂x∂τ (x, τ) = Xφ(x, τ) on the ∆x step with operator X = D,H + A or N .

Equation (2.33) is a first order split-step. For numerical reasons explained in 2.2.5,
absorption and heterogeneities are solved during the same sub-step. Alternatively, the
following second order split-step [162, 197] can be used:

φ(x+ ∆x, y, z, τ) = φN
∆x
2

◦ φD
∆x
2

◦ φH+A
∆x ◦ φD

∆x
2

◦ φN
∆x
2

(x, y, z, τ) +O(∆x2). (2.34)

The main advantage of the split-step scheme is that each part of the equation is
solved using an efficient numerical method adapted for each physical effect:

• Diffraction using the angular spectrum method [74] in the 3D spectral space
(ω, ky, kz),

• Heterogeneities, wind and absorption in the frequency domain (ω, y, z): an ana-
lytic solution is used for phase effects, the remaining terms are solved using finite
differences,
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Figure 2.1: Comparison of dispersion relations.

• Nonlinear effects in the physical domain (τ, y, z) with the semi-analytic Burgers-
Hayes method [37].

Between these steps, Fourier transforms are used to change the space in which the
resolution is done.
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Figure 2.2: First order split-step scheme.

Fig. 2.2 shows the algorithm of the first order split-step used for the resolution of
Eq. 2.10.

2.2.2 Resolution of diffraction effects

Diffraction effects are contained in the operator D defined in Eq. 2.11. It results into
the equation:

∂2φ

∂x∂τ
=
c̄0

2

(
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2

)
. (2.35)

Eq. 2.35 is solved using the angular spectrum method in the spectral domain (ky, kz, ω).
The time Fourier transform along the τ axis is defined:

φ̂(y, z, ω) =
∫ ∞

−∞
φ(y, z, τ)e−iωτdτ. (2.36)

The 2D spatial Fourier transform in the plane orthogonal to the main propagation
direction x is:

¯̄φ(ky, kz, τ) =
∫ ∞

−∞

∫ ∞

−∞
φ(y, z, τ)e−ikyye−ikzzdydz. (2.37)

Using these transforms, equation 2.35 becomes:

d2 ¯̂̄
φ

dx2
− 2ik

d
¯̂̄
φ

dx
−
(
k2

y + k2
z

) ¯̂̄
φ = 0 (2.38)

with k = ω/c̄0. This is a second order ordinary differential equation which can be
solved analytically. Its discriminant is:

∆ = 4
[
−k2 +

(
k2

y + k2
z

)]
. (2.39)
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Eq. 2.38 has two solutions: one for propagation in the positive x direction and one for
the propagation in the negative x direction. Only the solution propagating in the pos-
itive x direction is selected in the algorithm: the backscattered field is cancelled. Thus
the numerical solution is fully one-way. If −k2 +

(
k2

y + k2
z

)
> 0, only the evanescent

wave propagating and decaying in the positive x-direction is selected. The solution is:

¯̂̄
φ(x+ ∆x) =

¯̂̄
φ(x)exp

(
∆x

[
ik −

√
−k2 + k2

y + k2
z

])
. (2.40)

If −k2+
(
k2

y + k2
z

)
< 0, only the wave propagating in the positive x-direction is selected.

The solution is:
¯̂̄
φ(x+ ∆x) =

¯̂̄
φ(x)exp

(
∆x

[
ik − i

√
k2 − (k2

y + k2
z)
])
. (2.41)

The solution is then retrieved in the physical space using the inverse Fourier trans-
forms. Practically, the Fourier transforms are implemented using Fast Fourier Trans-
form (FFT) algorithm provided by the FFTW library [57]. This method has the ad-
vantages to be fast due to the speed of the FFT algorithm while keeping a spectral
accuracy.

2.2.3 Resolution of flows and heterogeneities effects

Heterogeneities and flows effects are contained in operator H which is rewritten as
H = H1 +H2 with:

H1 =
V0x

c̄0
2

∂2φ

∂τ2
− V0x

c̄0

∂2φ

∂x∂τ
− V 2

0x

2c̄0
3

∂2φ

∂τ2

+
u0x

c̄0
2

∂2φ

∂τ2
− u0x

c̄0

∂2φ

∂x∂τ

+
ǫ

2c̄0
3

∂2φ

∂τ2

+
1

2ρ0

(
∂ρ0

∂x

∂φ

∂τ
− c̄0

∂ρ0

∂x

∂φ

∂x

)
, (2.42)

and

H2 = −V0y

c̄0

∂2φ

∂y∂τ
− u0y

c̄0

∂2φ

∂y∂τ
− u0z

c̄0

∂2φ

∂z∂τ

+
V 2

0x

¯2c0

(
∂2φ

∂y2
+
∂2φ

∂z2

)
+
V0xV0y

c̄0

(
1
c̄0

∂2φ

∂τ∂y
− ∂2φ

∂x∂y

)
−
V 2

0y

¯2c0

∂2φ

∂y2

+ c̄0V0x

∫ τ

−∞

∂3φ

∂x∂z2
dτ ′ − c̄0

∫ τ

−∞

∂

∂z

[
V0x

∂2φ

∂x∂z

]
dτ ′

+ c̄0V0y

∫ τ

−∞

∂3φ

∂y∂z2
dτ ′ − c̄0

∫ τ

−∞

∂

∂z

[
V0y

∂2φ

∂y∂z

]
dτ ′

+
d

dz

[
V0x

∂φ

∂z

]
− V0x

∂2φ

∂z2

+
c̄0

2

(
∂2φ

∂y2
+
∂2φ

∂z2

)
− c̄0

2ρ0

(
∂

∂y

[
ρ0
∂φ

∂y

]
+

∂

∂z

[
ρ0
∂φ

∂z

])
. (2.43)
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For a plane wave, H1 handles the phase effects which are preponderant as long as
the frequency is high enough, which is the case for the considered applications. It
corresponds to the terms of Eq. 2.12 containing only x and τ derivatives. It is worth
noting that phase effects in operator H1 involve only: (i) convection in the main
propagation direction x (terms linear or nonlinear with respect to V0x and linear with
respect to u0, (ii) sound speed heterogeneities, (iii) gradient of density in the main
propagation direction. The remaining terms of Eq. 2.12 are contained in the operator
H2 which represents the coupling between diffraction, heterogeneities and wind for
a non planar wave. Amplitude effects in operator H2 involve: (i) linear convection
due to the transverse component of the velocity field (first line), (ii) some quadratic
convection terms (second line), (iii) gradient of ambient flow (lines 3 to 5), (iv) density
gradients in the transverse directions (last line). The effects contained in operator
H are handled in the frequency domain (ω, y, z). For stability and accuracy reasons
[63], all phase effects are solved analytically. The coupling of the multiple effects is
achieved through a second order finite differences scheme with semi-implicit second
order Crank-Nicolson advancement scheme. For the simplified FLHOWARD equation
case, operator H1 is replaced by operator H(s)

1 defined as:

H
(s)
1 =

v0x

c̄0
2

∂2φ

∂τ2
− v0x

c̄0

∂2φ

∂x∂τ

+
ǫ

2c̄0
3

∂2φ

∂τ2

+
1

2ρ0

(
∂ρ0

∂x

∂φ

∂τ
− c̄0

∂ρ0

∂x

∂φ

∂x

)
, (2.44)

and operator H2 is replaced by operator H(s)
2 defined as:

H
(s)
2 = −v0y

c̄0

∂2φ

∂y∂τ
− v0z

c̄0

∂2φ

∂z∂τ

+
c̄0

2

(
∂2φ

∂y2
+
∂2φ

∂z2

)
− c̄0

2ρ0

(
∂

∂y

[
ρ0
∂φ

∂y

]
+

∂

∂z

[
ρ0
∂φ

∂z

])
. (2.45)

In this simplified case, phase effects in operator H(s)
1 involve only: (i) linear convection

in the main propagation direction x, (ii) sound speed heterogeneities, (iii) gradient of
density in the main propagation direction. Amplitude effects in operator H2 involve
only: (i) linear convection due to the transverse components of the velocity field (first
line), (ii) density gradients in the transverse directions (last line).
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Phase effects

Phase effects are defined through operator H1 in Eq. 2.42 and are solved analytically.
The equation to solve is:

∂2φ

∂x∂τ
=
V0x

c̄0
2

∂2φ

∂τ2
− V0x

c̄0

∂2φ

∂x∂τ
− V 2

0x

2c̄0
3

∂2φ

∂τ2

+
u0x

c̄0
2

∂2φ

∂τ2
− u0x

c̄0

∂2φ

∂x∂τ

+
ǫ

2c̄0
3

∂2φ

∂τ2
+

1
2ρ0

(
∂ρ0

∂x

∂φ

∂τ
− c̄0

∂ρ0

∂x

∂φ

∂x

)
. (2.46)

In the frequency domain, it can be cast as a first order linear ordinary differential
equation:
(
iω

[
1 +

V0x

c̄0
+
u0x

c̄0

]
+

c̄0

2ρ0

∂ρ0

∂x

)
∂φ̂

∂x
=
(
ω2

[
V 2

0x

2c̄0
3 − V0x

c̄0
2 − u0x

c̄0
2 − ǫ

2c̄0
3

]
+

iω

2ρ0

∂ρ0

∂x

)
φ̂.

(2.47)

Solution for this equation is given explicitly by:

φ̂(x+ ∆x, y, z, ω) = φ̂(x, y, z, ω)exp

(∫ x+∆x

x
Θ(ζ)dζ

)
, (2.48)

with:

Θ(ζ) =
ω2
[

V 2
0x

2c̄0
3 − V0x

c̄0
2 − u0x

c̄0
2 − ǫ

2c̄0
3

]
+ iω

2ρ0

∂ρ0

∂x

iω
[
1 + V0x

c̄0
+ u0x

c̄0

]
+ c̄0

2ρ0

∂ρ0

∂x

. (2.49)

To compute the integral, the second order trapezoidal rule (Simpson’s rule) is used:

φ̂(x+ ∆x, y, z, ω) = φ̂(x, y, z, ω) exp
(

∆x
2

[Θ(x) + Θ(x+ ∆x)]
)

+O(∆x2). (2.50)

For the simplified FLHOWARD equation case, Θ(ζ) is replaced by Θ(s)(ζ):

Θ(s)(ζ) =
−ω2

[
v0x
c̄0

2 + ǫ
2c̄0

3

]
+ iω

2ρ0

∂ρ0

∂x

iω
[
1 + v0x

c̄0

]
+ c̄0

2ρ0

∂ρ0

∂x

. (2.51)

Coupling effects

Operator H2 which represents the coupling between diffraction, heterogeneities and
wind for a non planar wave (Eq. 2.43) cannot be solved analytically. The finite
difference method in frequency domain is employed. It is of second order accuracy in
the y and z directions. In the x-direction, a semi-implicit Crank-Nicolson scheme is
used. This scheme is unconditionally stable and of second order accuracy. We resort to
an Alternate Direction Implicit (ADI) method to separate the y and z directions. The
two resultant matrices are tridiagonal, so that they can be solved using the Thomas’
algorithm given in [150]. Details are given in Appendix B. The method is similar for
the simplified FLHOWARD equation for operator H(s)

2 .
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2.2.4 Resolution of nonlinear effects

The nonlinear effects are taken into account by the operator N (Eq. 2.19) which results
into an inviscid Burgers’ equation:

∂φ

∂x
=

β

2ρ̄0c̄0
3

(
∂φ

∂τ

)2

. (2.52)

To solve it, the quasi-analytical Burgers-Hayes methods is chosen. It relies on the
implicit Poisson solution. This solution is exact while it is single-valued (no shock).
In case of a multi-valued solution (after the shock formation), the weak shock theory
is employed. The classical equal area rule of Landau [103] is computationally too
expensive to be practical. Instead, Burgers-Hayes [22, 80, 37] method handles it using
the fact that the physical solution for the potential corresponds to the maximum value
of the multivalued Poisson’s solution as can be seen on Fig. 2.3. This condition is
necessary to satisfy the second principle of thermodynamics.

φ(x, y, z, τ) = max

[
φ(x, y, z, θ) − β∆x

ρ̄0c̄0
3

(
∂φ(x, y, z, θ)

∂θ

)]

τ = θ − β∆x
ρ̄0c̄0

3

∂φ(x, y, z, θ)
∂θ

. (2.53)

A numerical interpolation is needed to retrieve the solution Eq. 2.53 on the initial
retarded time τ grid. Practically, the order of this interpolation makes no differences
thus only a first order interpolation is used.

6 4 2 0 2 4 6
1

0

1

6 4 2 0 2 4 6

2

0

2

Figure 2.3: Illustration of Burgers-Hayes method. Top : pressure - Down : potential.
Solid black lines : initial values. Dotted red lines : multivalued Poisson solutions. Solid
red lines : maximum of Poisson solution (potential) and corresponding shock pressure
waveform.
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2.2.5 Absorption and relaxation

The operator A deals with the absorption of the medium. In the atmosphere, at
audible frequencies or below, the thermoviscous absorption included in Eq. 2.20 is not
the main attenuation mechanism. Dominant absorption terms are due to relaxation of
molecular nitrogen and oxygen and is controlled by the water vapour content [77, 166,
33, 141]. Thus an ad-hoc expression is added to include attenuation and dispersion due
to relaxation:

∂φ

∂x
= Lτ (φ). (2.54)

Lτ is a linear operator containing the effects of attenuation and dispersion in a ther-
moviscous fluids containing multiple relaxation mechanisms. It is given by:

Lτ (φ) =
δ

2c̄0
3

∂2φ

∂τ2
+
∑

j

c′
j

c̄0
2

∫ τ

−∞

∂2φ

∂τ ′2
e−(τ−τ ′)/tjdτ ′ (2.55)

with δ the diffusivity of sound defined in 2.1, tj the relaxing time of the jth relaxation
process and c′

j the increase in phase velocity associated with this mechanism when the
frequency goes from 0 to infinity. Eq. 2.54 is handled in the frequency domain (ω, y, z):

∂φ̂

∂x
=


−ω2δ

2c̄0
3 − ω

c̄0
2

∑

j

c′
jωtj

1 + iωtj


 φ̂. (2.56)

As for the heterogeneities, we solve this ordinary differential equation:

φ̂(x+ ∆x) = φ̂(x)exp


− ω2δ

2c̄0
3 − ω

c̄0
2

∑

j

c′
jωtj

1 + iωtj


 (2.57)

Practically, since the method is the same as for the phase effects of the heterogeneities
H1, the resolution is integrated in the same step to limit the computation time. Details
on the absorption coefficients in the atmosphere [89] are given in Appendix C.

2.2.6 Boundary conditions

The code is designed to perform simulations of acoustic propagation in the atmosphere
near the ground (Fig. 2.4). Hence, at least two kinds of boundary conditions are
required. The perfectly rigid ground is modelled using a perfectly reflecting boundary
condition. The other boundary conditions are handled as artificial absorbing layers
mimicking infinite medium in the vertical (z > 0) and lateral (y) directions.

Reflecting boundary conditions

The perfectly rigid condition is given by:

∂pa

∂z

∣∣∣∣
z=0

= 0. (2.58)

The difficulty to implement this boundary condition comes from the use of Fourier
transform to solve the diffraction operator. The classical Fourier transform enforces
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Figure 2.4: Example a computation case for outdoor propagation over the ground.

periodicity on the boundaries. The simplest way to take into account this boundary
conditions is the image method [131] which consists in solving the symmetric problem
of the one we are solving. Unfortunately it is numerically inefficient both in terms of
computation time and of memory usage since one has to solve the problem on a domain
twice as big as needed. This solution was previously implemented in FLHOWARD 2D
[64] but is not tractable in 3D due to the memory and computation time increase. An
other common solution is to solve the problem on a grid generated by using Chebyshev
or Legendre polynomials [59]. With this method, the grid is no longer Cartesian, which
is more complicated to implement. To overcome this problem, FLHOWARD 3D uses
the cosine transform to enforce von Neumann boundary conditions (Eq. 2.58):

φ̄(y, kz, τ) =
∫ ∞

−∞
φ(y, z, τ)cos(ikzz)dz. (2.59)

Discrete Cosine Transform (DCT) naturally enforces even parity at both of its ex-
tremities [57] and can be computed efficiently using FFTW. An other advantage is
that Dirichlet boundary condition pa(z = 0) = 0 can also be modelled using the Sine
transform. Also, combination of Cosine and Sine transform should allow us to ex-
tend this work to the propagation over a finite impedance ground as has been done in
electromagnetism [51].

Absorbing boundary layer

The current state of the art for enforcing non reflecting boundary conditions is the
Perfectly Matched Layers (PML) [35, 34]. With PML, waves arriving with any inci-
dence angle will not reflect on the boundary. Instead of PML, the simpler Absorbing
Boundary Layer (ABL) reduces the reflection on the border of the domain. It consists
in introducing an artificial absorption term in an upper layer in order to absorb the
incident wave as shown on Fig. 2.4. This artificial absorption term is implemented in
addition to the physical absorption. The absorption coefficient is quadratically increas-
ing from the beginning of the layer to the domain limit. It is the same as implemented
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in FLHOWARD 2D [45, 63]:

φ̂(x+ ∆x, y, z, ω) = φ̂(x, y, z, ω)exp (−α(z)) (2.60)

with

α(z) ==





21
(z − L)2

h3
if z > L,

0 else,
(2.61)

where L is the height of the boundary and h is the width of the ABL.

2.2.7 Dispersion relation

On Sec. 2.1.3, the dispersion relation of Eq. 2.10 was examined. This did not take
into account the effect of the numerical resolution. Here, the effect of the split-step
method on the dispersion relation is investigated. As was done in 2.1.3, a plane wave
solution under the form of Eq. 2.21 is injected in the studied equation. First, for the
angular spectrum method associated to operator D:

∂2φ

∂x∂τ
=
c̄0

2

(
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2

)
, (2.62)

one gets:
¯kx1

2
= 1 − k̄z

2
. (2.63)

Then equation associated to operator FLH(1) reduces to:

∂2φ
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2
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∂τ2
− V0x
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∂2φ
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. (2.64)

Its dispersion relation is:

¯kx2 =
1

1 +M0

(
1 − M2

0

2

(
k̄z

2
+ 1

))
. (2.65)

The total dispersion relation for the split-step method is given by:

k̄x = ¯kx1 + ¯kx2 − 1, (2.66)

and so for the combination of operators D and FLH(1) the dispersion relation is:

k̄x =
√

1 − k̄z
2

+
1

1 +M0

(
1 − M2

0

2

(
k̄z

2
+ 1

))
− 1. (2.67)

Similarly, for the operators D and FLH(s), we get:

k̄x =
√

1 − k̄z
2

+
1

1 +M0
− 1. (2.68)
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As was done in 2.1.3 a comparison is made with the parabolic approximation of Av-
eryianov Eq. 2.31 whose dispersion relation is unaffected by the split-step method
since it involves first order effects which are completely uncoupled:

k̄x = 1 − k̄z
2

2
−M0. (2.69)

The first thing that can be seen on Fig. 2.5, is that the dispersion relation for the
FLHOWARD method is indeed one way. For M < 0.3 both equations for FLH(1) and
FLH(s) agree really well with the exact dispersion relation. Starting with M = 0.3,
some discrepancies begin to appear for all wave numbers for FLH(1) while, surprisingly,
only propagation at large angles induces an error for FLH(s). So with this numerical
method, adding the higher order terms leads to a decrease in accuracy for the case
of a uniform flow. For comparison, the parabolic equation has a good accuracy only
for the same range of Mach number, as FLH(s) but, as expected, also only for small
angles of propagation.

To better understand why FLH(1) induces a larger error at large Mach numbers,
a Taylor expansion with respect to Mach number M0 up to order O(M3

0 ) is performed
on the above numerical dispersion relations. They become:

• for the exact convected wave equation:

k̄x =
√

1 − k̄z
2 −M0 +M2

0



√

1 − k̄z
2

+
1
2

k̄z
2

√
1 − k̄z

2


 ; (2.70)

• for FLHOWARD with operator FLH(1):

k̄xF LH(1) =
√

1 − k̄z
2 −M0 +

M2
0

2

(
1 − k̄z

2
)

; (2.71)

• for FLHOWARD with operator FLH(s):

k̄xF LH(s) =
√

1 − k̄z
2 −M0 +M2

0 ; (2.72)

• for Averiyanov parabolic equation:

k̄xP E = 1 − k̄z
2

2
−M0. (2.73)

The first three ones are strictly identical up to orderM0 thanks to the angular spectrum
method. As expected, parabolic equation is valid only for small angles of propagation.
At second order M2

0 , due to the combined effects of equation approximations and
numerical split step, the FLH(1) operator induces a systematic error of order M2

0 even
for small angles of propagation when k̄z << 1. On the contrary, the FLH(s) turns out
to be precise up to order M2

0 k̄z
4
. Therefore it remains much more accurate as long k̄z

is not to large.
Consequently, for practical applications this analysis proves the use of FLHOWARD

equation with simplified operator FLH(s) is recommended. This is due to the nu-
merical split-step method, combined with the underlying approximations of the FL-
HOWARD equation.
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Figure 2.5: Comparison of dispersion relations including the split-step effect.

2.2.8 Parallel computing

Even if the one-way methods are computationally cheaper than DNS calculations,
for three dimensional computations, it is necessary to use distributed memory archi-
tectures. For an acoustic wave at a frequency f0 = 10 Hz in a domain (x, y, z) =
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(3 × 3 × 3 km3) using ten points per wavelength we have δx = 3.4 m. It means that
around one thousand points in each directions are required. Around the same num-
ber of points is needed for the temporal discretization. Thus the problem has around
1012 degrees of freedom. Distributed memory computers have many processors, each
with its own memory. They allow to tackle bigger computations with the restitution
time remaining acceptable. Currently, this kind of computation is classical and a lot
of finite-differences, finite-elements or finite-volumes code implement it. The domain
can be decomposed so as to allocate one sub domain to one processor which performs
its computations on this small part of the numerical domain. It is also known as
the Single Program Multiple Data (SPMD) paradigm. However, here, this strategy
is complicated due to the presence of Fourier transforms in the algorithm. A Fourier
transform is a non-local operation incompatible with the SPMD paradigm. To han-
dle this, the 1D decomposition (also known as slice decomposition) is implemented.
The domain is only decomposed in one direction, the two others remaining local to
the processor as shown in Fig. 2.6. With this method the Fourier transform can be
applied on two directions. For the last direction, a parallel transpose is done so that
the decomposed direction is changed. This parallel transpose requires a lot of data to
be transferred between the processors: it is a MPI_ALL_TO_ALL instruction which
means that each processor broadcasts the data to the others. Communication between
processors is a time consuming task. This heavy exchange of data is the bottleneck
for the proper scaling of the code. However as it will be shown in Sec. 3.5, it turns
out that its effect on the scaling is lower than expected. Practically, the 1D decom-
position is implemented thanks again to the FFTW library which provides FFT and
DCT operators, and parallel transposition [57].

Figure 2.6: Scheme for 1D domain decomposition on two processors. In red, the
direction which is local for the processor.

2.3 Conclusion

An original three-dimensional one-way method to model and simulate the nonlinear
propagation of acoustic shock waves in the atmosphere has been developed. This
method strives to be as high order as possible while remaining computationally tractable.
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To do so, it relies on the fractional step method which permits to solve different sim-
pler problems using methods that are as efficient as possible. When possible, spectral
or analytical solutions are employed. For the other terms, finite differences method
is used. To remain consistent, both the finite differences and split-step schemes are
of second order accuracy. A lot of work has been devoted to the implementation of
boundary conditions: rigid ground and free field. Contrary to most of the current non-
linear codes which are implemented on single processor or shared-memory computers
[6, 93, 199], the method has been implemented for high performance computing on the
distributed memory architecture. The complete algorithm is illustrated Fig. 2.7.
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Figure 2.7: Implemented FLHOWARD3D algorithm. The first variable is the one
decomposed among the processors. It is also the one that is contiguous in memory.
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In this chapter, the validation of the FLHOWARD3D code is presented. This is
achieved by comparing the results of the code either to known analytical solutions,
or to simulations performed with other codes. The validation process is similar to
the one used to validate HOWARD [45, 44] and FLHOWARD [63, 64] but with new
complementary test cases. These various test cases are chosen to validate the different
effects implemented in FLHOWARD3D: linear homogeneous diffraction, medium het-
erogeneities, flow motion, nonlinearities, absorption and boundary conditions. When
possible, cases coupling several effects are investigated. The list of selected tests and
the part of the algorithm that they assess is summarized in Table 3.1.

3.1 Three-dimensional circular acoustic piston in a linear
homogeneous medium

The first part of the validation process is the 3D propagation of a pure tone wave
in a linear homogeneous medium. It is chosen to validate at 3D the diffraction part
(operator D) of the algorithm and the Absorbing Boundary Layer (ABL). The case of
a circular piston in three-dimensions (Fig. 3.1) is considered. The analytical solution
of this problem [131, 141] is given in Appendix D.1. Note that the name piston is
somewhat inappropriate in this case since pressure is imposed on the surface whereas

35
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Section Operators Dimension Reference solution
3.1 D + ABL 3D Analytical
3.2 D + TH 3D Analytical
3.3 N +A 1D Analytical

3.4.1 (D + FLH(1) or D + FLH(s)) + Rigid 2D Semi-analytical
3.4.2 D + FLH(2) 2D Numerical

Table 3.1: List of the validation test cases with tested operators and boundary condi-
tions (ABL for Absorbing Boundary Layer - Rigid for the perfectly reflecting bound-
ary).

for a true piston the velocity would be imposed. For the classical parabolic equation
it would be meaningless to make the difference but for higher-order methods such as
FLHOWARD, it is not equivalent. The parameters are chosen to correspond to high-
intensity focused ultrasound (HIFU) treatment: c0 = 1500 m/s, ρ0 = 1000 kg/m3. The
incident wave is sinusoidal with a frequency f = 1 MHz and a wavelength λ = 0.0015
m. The radius of the piston is r = 0.006 m which corresponds to 4λ. A uniform
pressure of 5 Pa is applied on this surface and the pressure is set to zero outside.
The computational domain extends from 0 m to 0.25m (0 to 250λ) in the propagation
direction (x), −0.07 m to 0.07m (−33λ to 33λ) in the transverse directions (y, z) and
from 0 s to 10−6 s (one period) in time. Numerically, each direction (x, y, z, τ) is
discretized using 1024 points. Therefore the problem has 1012 degrees of freedom.
Absorbing boundary layers of size 0.02 m are used so that the physical domain is
reduced to −0.05 m to 0.05 m in the transverse directions.

Figure 3.1: 3D pure tone piston in an homogeneous medium.

Fig. 3.2 shows the pressure amplitude radiated from the piston in the (x, y) plane
where the characteristic diffraction pattern can be seen. An interesting thing is that
there is no reflected wave at the top and bottom boundaries. This shows that the
ABLs are working properly. This can also be seen on the axis pressure Fig. 3.3 where
no oscillations due to reflections are visible in the far-field. The comparison with the
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Figure 3.2: Pressure amplitude (in Pa - Color level) radiated by a pure tone pressure
piston.

analytical solution in Fig. 3.3 shows a good agreement even in the near-field which is
usually not reproduced correctly by the parabolic approach.

3.2 Scattering of a plane wave by a a spherical hetero-
geneity

The scattering of a plane wave by a discontinuous spherical heterogeneity in sound
speed shown Fig. 3.4 is now investigated. The only two physical effects present are the
already validated diffraction and the heterogeneities, so as to validate at 3D the hetero-
geneous part (operator TH) coupled with the diffraction (operator D). This problem
has an analytical solution [3] [131] described in Appendix D.2. The physical param-
eters are chosen to correspond to sonic boom propagation through the atmosphere.
However the intensity of the heterogeneity is chosen intentionally much larger than
what is encountered in the atmosphere. The medium celerity and density are respec-
tively c0 = 340 m/s and ρ0 = 1.2 kg/m3. The incident plane wave has an amplitude
of 100 Pa and a frequency of f = 5 Hz which corresponds to a wavelength λ = 68 m.
The heterogeneity is a sphere placed at the center of the domain. Its radius is r = 68
m, equal to one wavelength. The sound speed in the sphere is ch = c0 ∗ (1 + 0.05) m/s
corresponding to a uniform 5 % increase. The computational domain extends from 0
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Figure 3.3: Pressure amplitude on the axis of a 3D pressure piston. FLHOWARD
computation, Analytical solution and Analytical solution for the parabolic
equation. The near-field is zoomed.

m to 1020m (0 to 15λ) in the propagation direction (x), −2040 m to 2040m (−30λ
to 30λ) in the transverse directions (y and z) and from 0 s to 0.2 s (one period) in
time. Numerically, each direction (x, y, z, τ) is discretized using 1024 points. Re-
flecting boundary conditions are used. They are far enough from the heterogeneity
so as not to interfere with the transmitted field in the considered domain. This case
is much more difficult than the atmospheric application the model was designed for.
First the heterogeneity is discontinuous whereas the parameters of the atmosphere are
varying continuously. Second, the intensity of the heterogeneity, 5% in sound speed,
corresponds to a variation of temperature of 34 °C, extremely large for the atmosphere
over such a short distance.

Fig. 3.5 shows the pressure amplitude scattered by the heterogeneity in the (x,
y) plane. We can see the characteristic diffraction pattern. Comparison with the
analytical results in Fig. 3.6 shows good agreement. The main differences are: (i)
the amplitude value of the low pressure just after the heterogeneity in the defocusing
zone, (ii) the lack of oscillations before the heterogeneity in our result. The difference
of amplitude in the defocusing area is dependant on the number of points used and
full convergence is hard to achieve. This is probably due to the difficulty of meshing
properly a sphere with a cartesian grid. Note that the position of the minimum is
well reproduced. The absence of oscillations is due to the one-way approach, as the
backscattered wave is not taken into account. This hypothesis is acceptable if the
heterogeneity is small (less than 5 %). An other result (not shown here) is that taking
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Figure 3.4: Scattering of a plane wave by a heterogeneous sphere.
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Figure 3.5: Pressure amplitude (in Pa - Color level) resulting from scattering of a plane
wave by a heterogeneous sphere. The grey zone marks the heterogeneity location.

into account or omitting the coupling term of the algorithm (operator H2 in 2.2.3,
solved by finite differences) has no influence in this case. This indicates that phase
effects are dominant to explain the diffraction pattern. However, the difference in
computational time between the cases with or without operator H2 is quite significant.
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Figure 3.6: Axial pressure amplitude resulting from scattering of a plane wave by a
heterogeneous sphere. FLHOWARD, Analytical. The grey zone marks
the heterogeneity location.

3.3 Nonlinear propagation in a thermoviscous medium

To validate the nonlinear and absorption part, we use the 1D case of propagation of a
pure tone acoustic wave of angular frequency ω0 in a nonlinear thermoviscous medium.
This problem has an analytical solution given by Mendousse [77]:

P =
4
Γ

∞∑

n=0

Γ(−1)n+1nIn(0.5Γ)exp(−n2αX)sin(nω0τ)
In(0.5Γ) + 2(−1)nIn(0.5Γ)exp(−n2αX)cos(nω0τ)

(3.1)

with P = pa/P0 the acoustical pressure normalized by the pressure amplitude at the
source P0, X = σρ0c0

βP0ω0
the propagation distance, α = βP0ω0

Γρ0c3
0

the absorption coefficient

and Γ = βP0ω0

αρ0c3
0

the Gold’berg number which measures the ratio between nonlinearity
and absorption. Notation σ is for the dimensionless distance and σ = 1 corresponds to
the shock distance in the inviscid case. Here, the parameters are chosen to be Γ = 50
and σ = 3 so that the final point is well beyond the shock distance and the shock wave
is well formed with a characteristic saw-tooth shape. The large Gold’berg number
implies that the primary effect is the nonlinearity which strongly dominates over the
absorption. Numerically 512 points are used to discretize the waveform in retarded
time.

Fig. 3.7 shows the waveform at σ = 3 using 200 points in the x−direction. FL-
HOWARD results and the analytical solution are indiscernible. The same conclusion
is drawn when examining the wave spectrum up to 60th harmonics on Fig 3.8. The
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Figure 3.7: Pressure amplitude for the propagation of a plane wave in a nonlinear
thermoviscous medium. FLHOWARD, Analytical.
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Figure 3.8: Pressure amplitude of the first 100 harmonics for the propagation of a
plane wave in a nonlinear thermoviscous medium. FLHOWARD, Analytical.
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Figure 3.9: Effect of the split-step and discretization (Nx number of discretization
points in the propagation direction) on the error for the propagation of a plane wave
in a nonlinear thermoviscous medium. Second order, First order.

least-square error metric defined by:

error% = 100
∑

(PF LHOW ARD(τ) − P (τ))2

∑
P (τ)2

(3.2)

is plotted against the number of discretization points in the axial direction Nx used
for propagation in Fig. 3.9. The error remains small, even if a small number of points
is used for the propagation. As expected [117], the second order split-step induces a
great improvement compared to the first order split step: the error is nearly always
under 1%, even for a very small number of points (as soon as Nx is larger than 20,
which is equivalent to say that an error less than 1% is achieved with 7 points per
shock formation distance).

3.4 Flow Validation

The last part to validate is the propagation in a moving medium. Two cases are
considered: the first one to validate the stratified shear flow represented by the operator
FLH(1) and the second one for the velocity fluctuations of the operator FHL(2).
Assumptions used for these tests are in agreement with those used to derive the model.
Only linear propagation in an inviscid medium is considered here, so that operators A
and N are omitted.
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3.4.1 Linear acoustic modal propagation in a two-dimensional waveg-
uide with shear flow

The first case of validation of the flow effect deals only with a stratified shear flow.
It is the linear case of propagation of an acoustic mode in a waveguide in presence of
a shear flow as illustrated on Fig. 3.10. This validation as already been used for the
2D version of the code [64]. There are two main advantages for this validation case.
First, the modes can be compared to the solution of Lilley’s equation [111], which
is an exact equation for the propagation through sheared flows. Second, modes are
only characterized by their transverse profile and their phase speed. In this case the
numerical error will cumulate along the propagation and thus this is a very demanding
test case. The main problem of [64] was the difficulty to adapt the angular spectrum
to this test case. Only FFT were used in the transverse direction, and so only periodic
boundary conditions could be imposed. Here, the use of the DCT overcomes the
problem and allows us to model a realistic duct. It was shown [64] that the profile
of the sheared flow does not change much the numerical results, so we will restrict to
a Poiseuille flow with M = +0.1. A reference solution is obtained by searching for
a solution in a modal form pa(x, z, τ) = Π(z)exp [(kx − k0)x− ω0τ ] for FLHOWARD
equation neglecting nonlinearities, absorption and heterogeneities. For the flow effects,
the operator FLH(1) is used. It results into:





d2Π(z)
dz2

+
2kxdM/dz

(1 +M2)
dΠ(z)
dz

+ k2
0

[
1 − k2

x + 2Mkx

1 +M2

]
Π(z) = 0

dΠ
dz

∣∣∣∣
z=−L

=
dΠ
dz

∣∣∣∣
z=L

= 0.

(3.3)

For comparison, the modal form of Lilley’s equation is given by:




d2Π(z)
dz2

+
2kxdM/dz

(1 − kxM)
dΠ(z)
dz

+ k2
0

[
(1 − kxM)2 − k2

x

]
Π(z) = 0

dΠ
dz

∣∣∣∣
z=−L

=
dΠ
dz

∣∣∣∣
z=L

= 0.
(3.4)

Eq. 3.3 is then solved using a shooting method to obtain the profiles of the modes
Π(z), and the associated wavenumber kx at a given frequency ω0. This also gives the
phase speed: cφ = ω0/kx. The duct half-height is chosen L = 1 m, the sound speed is
c0 = 340 m/s. We can remark that modes Π(z) are computed numerically in the line
x = 0 but since they are modal solution, their propagation is given analytically for
x > 0. Consequently, the reference solution here is semi-analytical. Fig. 3.11 displays
the two selected test modes. Mode 1 is the first symmetric mode and mode 3 is the
second antisymmetric one. Comparison with Lilley’s exact modes can be found in [39,
64, 63] and is not reproduced here.

Each mode profile is then used as input condition in the plane x = 0 for the code.
Modes are numerically propagated over a long distance: 1000λ in the x−direction.
Numerical dissipation and dispersion are assessed using respectively the amplitude of
the mode and its phase speed. The studied frequencies are f = [400, 600, 800, 1000]
Hz. The mesh is chosen with eight points per wavelength in the propagation direction
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Figure 3.10: Linear acoustic modes propagation in a two-dimensional waveguide with
shear flow.

(Nx = 8000), Nz = 512 points in the transverse direction and Nτ = 256 for the
temporal signal.

Fig. 3.12 shows the relative error on the amplitude after the propagation over
one thousand wavelengths for the selected two modes. First, for high frequencies, the
error tends to decrease. Near the cut-off, at low frequencies, the model gives erroneous
results in amplitude but the profile is conserved. These results are consistent with
the fact that a wide-angle approximation has been performed on the flow part of the
equation. Therefore, low frequency modes near cut-off propagate quite perpendicularly
to the guide axis and are poorly described due to the numerical errors as shown in
the analysis of the dispersion relation performed in Sec. 2.2.7. The other interesting
result to investigate is the importance of taking into account the operator H2 and the
corresponding finite differences part of the algorithm that is used to solve it. Without
operator H2, error is really small (nearly always under 10%) which indicates that
this operator is negligible as it was already shown for the heterogeneities in Sec. 3.2.
Moreover, even using the conservative form recommended by Gallin et al. [64], the
scheme is unstable when taking into account H2 as a cumulative increase in amplitude
can be seen. Concerning the dispersion error, Fig. 3.13 shows that FLHOWARD gives
a very accurate phase speed with a relative error smaller than the percent even near
the cut-off. Since the FLHOWARD algorithm will be used primarily for atmospheric
propagation, this validation test case shows that it can be used with confidence. In
the atmosphere there will be no hard walled duct, the ducting effect will be due to
variation in the meteorological conditions which are continuous. Also, due to the
variability of the atmosphere, the distances of ducting will be shorter and there will be
no such cumulating of error effects. It is to be noted that this validation test case has
been carried out before the numerical analysis of Sec. 2.2.7 was achieved. Therefore
no validation test based on the simplified but more precise FLH(s) operator could be
done.
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Figure 3.11: Selected acoustic modes of FLHOWARD equation for the propagation in
a two-dimensional waveguide with Poiseuille shear flow.
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Figure 3.12: Amplitude error for a propagation over 1000λ. With operator H2 solved
by finite differences for mode 1 and mode 2 . Without operator H2 for
mode 1 and mode 2 .
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Figure 3.13: Dispersion error for a propagation over 1000λ. With operator H2 solved
by finite differences for mode 1 and mode 2 . Without operator H2 for
mode 1 and mode 2 .

3.4.2 Scattering of a plane wave by a finite-circulation vortex

The second case of flow validation is the propagation of a pure tone plane wave through
a vortex shown by Fig. 3.14. This problem has been tackled using both analytical [134,
58, 85] or numerical methods such as parabolic equations [24] or DNS [36]. It has been
chosen as validation case for the Wide-Angle Parabolic Equation of Dallois et al. [46]
and the FDTD model of Cheinet et al. [26, 54]. The vortex has a finite-circulation, its
tangential speed is given by:

vθ(r) =
Γ

2πr

[
1 − exp

(
−α r

2

L2

)]
(3.5)

where r is the distance to the center of the vortex, Γ the circulation and L the size of
the vortex. α = 1.256431 is a constant chosen so that the maximum velocity occurs
at r = L. The radial velocity is set to zero. This vortex is an exact solution of the
incompressible Navier-Stokes equation, it is called the Lamb-Oseen vortex. In this work
we will present only one configuration: Γ = 1511, M = 0.25 and L = 2 m. The wave
is generated 40 m before the vortex, its frequency is f = 43 Hz. These parameters are
chosen to be the same as Colonius [36] and Cheinet [26]. It is a difficult test case since
the Mach number is relatively high while the derivation of the FLHOWARD equation
assumed a small Mach number as is expected in outdoor acoustics. The computational
domain extends from −40 m to 40m in the propagation direction (x), −90 m to 90m
in the transverse direction (y) and 0 s to 0.2 s (one period) in time. The boundary
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conditions used in y are reflections since it was found that they do not interfere with
the validation process. The domain is discretized using 2048 points in both x and
y directions. 512 points are used for the temporal signal. The mesh is voluntarily
oversampled to evaluate only the model. Two computations were performed. The
first one tested the FLHOWARD model with operator FLH(2) including the effect of
transverse flow H = H1 +H2. Note that in this case FLH(2) = FLH(s). The second
omitted the coupling operator H2 of the algorithm, which is the only one that includes
the effect of the transverse flow relative to the main propagation direction. In this case
we have H = H1. The results are presented using what Colonius called the root-mean-
square (RMS) of the scattered field. It consists in subtracting the plane incident field
from the results of the computations and then take its RMS value (for a sinusoidal
signal corresponds to dividing its amplitude by

√
2). Fig. 3.15 presents the RMS

scattered field resulting from FLHOWARD simulation. Two well known characteristics
of this case can be observed. First, the effect of refraction due to the finite circulation
of the vortex is clearly seen. The scattered field is not zero before entering the vortex.
Second, an asymmetry can be observed with an interference pattern due to the fact
that propagation is in the flow direction for y < 0 and opposite for y > 0. This validates
qualitatively the use of FLHOWARD model. Quantitatively, Figure 3.16 compares the
two FLHOWARD computations (with or without the operator H2) with Colonius DNS
results [36]. The value of the field is extracted on a circle of radius 20 m centred on the
vortex. Before going through the vortex, the refraction is perfectly taken into account.
The main maxima and minima are well reproduced even though there are differences
mostly on the amplitude. The FLHOWARD simulations lead to slightly smoother
fluctuations of the pressure field in a way similar to what was observed for scattering
by a speed of sound heterogeneity. The main differences between FLHOWARD and
DNS are mostly due to the wide-angle approximation on the correction terms that
take into account the flow effects. As expected, the transverse flow described by H2

has only a small effect, only slightly shifting the curves slightly closer to the DNS
simulations. The levels of maxima and minima are nearly the same with or without
transverse flow.
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Figure 3.14: Scattering of a plane wave by a finite-circulation vortex.
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Figure 3.15: Normalized RMS pressure amplitude (PRMS - Color level) radiated by
the scattering of a plane wave by a finite-circulation vortex. The black circle has a
radius of 2.5λ and shows where the pressure is extracted for Fig. 3.16
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Figure 3.16: Normalized RMS pressure amplitude radiated by the scattering of a plane
wave by a finite-circulation vortex on a circle placed at 2.5λ. θ = 0° is situated on
the Ox axis and θ = 90° on the Oy axis. With transverse flow, without
transverse flow, DNS (Colonius [36]).
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3.5 Performance

Two metrics are used to quantify the performance of the code. The first is the strong
scaling. It is defined as how the restitution time varies with the number of processors
for a fixed overall problem size. Ideally, the restitution time should be halved when
doubling the number of cores. Strong scaling is a measure needed when the goal is
to tackle a problem quicker when using more computational cores i.e. for cpu-bound
computation. The second is weak scaling. It is defined as how the restitution time
varies with the number of processors for a fixed problem size per processor. Ideally,
the restitution time should remain constant when both the mesh number of points and
the number of cores are doubled. It is of interest when a bigger mesh is needed, i.e.
for memory-bound computations.

These performances tests are performed on the cluster of Institut Jean le Rond
d’Alembert (UMR7190 UPMC CNRS) which has 29 nodes of four 6-cores (AMD
Opteron 2435 processors) cadenced at 2.6 GHz for a total of 696 cores. Its theo-
retical peak processing power is 3 Tflops. Each node has 64 GB of memory resulting
in a total of 1,8 TB of RAM for the entire cluster. The nodes are interconnected with
Infiniband connections. It runs on a Linux CentOS operating system. The procedure
used is the following. The simulation is the propagation of an N-wave of amplitude
100 Pa and duration 0.2 s through an acoustical lens resulting from a 3D sound speed
heterogeneity:

c0 = c̄0

(
1 − 0.3 exp

(
(x− x0)2

σ2
x

+
(y − y0)2

σ2
y

+
(z − z0)2

σ2
z

))
, (3.6)

with σx = 50 m and σy = σz = 100 m. Such a test case has already been selected
[45] for mesh convergence studies at 2D. It is here chosen because it involves all the
main operators D, N and H1 of the algorithm. The computational domain extends
from 0 m to 680 m in the propagation direction (x), and from -340 m to 340 m
in the transverse directions (y, z). The time window is 1.5 s long. All the writing
and reading operations on the hard-disk are deactivated so that only the efficiency of
the computation is quantified in the test. The results are presented in times spent
for performing one advancement step from x to x + ∆x. To compute this, hundred
steps are performed and the computational time is averaged to reduce the errors of
measurement.

Strong scaling: For the strong scaling, two configurations were tested. The first one
has a domain (Nτ ×Ny ×Nz) of (1024×1024×1024) resulting in 1 billion points while
the second one has 4 billions points with a domain of (2048 × 2048 × 1024). These two
domain sizes were chosen because they are the targeted domain sizes for the applica-
tion of the code. Computations were performed on up to 512 cores. Results presented
on Fig. 3.17 show a good strong scaling with a 1.7 decrease in computation time when
doubling the number of cores compared to the ideal linear case of factor 2. For these
sizes of mesh, the computation cost is much higher the communications between cores
even using MPI_ALL_TO_ALL calls. Let us recall that such a collective communi-
cation instruction is requested here only for transposition operations as explained in
section 2.2.8. The change in slope between 16 (where the slope is almost 2) and 32
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cores for the smallest domain occurs because for 16 cores only one node is necessary,
whereas for more than 24 cores several nodes are used. Then communications are no
longer local to the node and use the Infiniband network.

Weak scaling: During the weak scaling test, three different numbers of points per
core were tested: 220, 222 and 224. It corresponds respectively to a domain size (Nτ ×
Ny ×Nz) of (64 × 128 × 128), (256 × 128 × 128) or (256 × 256 × 256) points per core.
Computations were performed using from 8 up to 512 cores. Good overall weak scaling
is achieved as it can be seen on Fig. 3.18. The restitution time increases by a factor
around 2 only while the overall domain sizes and number of cores increase by a factor
64. As expected, the performance for the domain of smallest size (220 points per core)
is not as good (factor 2.4) as for the domains of bigger size (factor 1.8). This is because,
for a small number of points, communications between cores become more important
in the restitution time.

For both weak and strong scaling, the results do not depend on the specific value of
Nτ , Ny or Nz but only on the overall number of points (Nτ × Ny × Nz). The paral-
lelization strategy therefore seems to show good results for the considered applications
which target domain sizes between 1 and 4 billions points distributed on around 256
cores.
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Figure 3.17: Strong scaling: averaged restitution time for one step versus number of
cores for a given overall domain size. domain (1024 × 1024 × 1024), :
domain (2048 × 2048 × 1024), dashed lines: linear scaling.



3.6. Conclusion 53

8 16 32 64 128 256 512
 Number of cores

100

101

102
T
im

e
 (

s)

Figure 3.18: Weak scaling: averaged restitution time for one step versus number of
cores for a given domain size per core. : 220, 222, : 224 points per
core.

3.6 Conclusion

This chapter detailed the validation of the FLHOWARD3D code. In addition to the
already performed test cases at 2D [45, 44, 63, 64] new complementary and quanti-
tative test cases have been investigated covering all involved operators and boundary
conditions. All validations turned out to be satisfactory even in cases were the FL-
HOWARD equation is beyond its theoretical range of validity. The parallelization
performance tests showed also satisfying behaviour for both weak and strong scaling.
This allows us to target numerical domains of the order of a few billion points neces-
sary for contemplated sonic boom applications. Moreover, the theoretical analysis of
numerical dispersion summarised by Fig. 2.5 proves that the split-step method leads
to less error for the low order equation with operator H(s) than for the full equation
with operator H. It is more precise numerically to take into account only the linear
effect of flow motion and neglect quadratic convection terms. The numerical test cases
with the waveguide show that there is little benefit to take into account the coupling
terms described by operators H2 or H(s)

2 which especially include the effect of flow
gradient. In some cases, omitting this coupling operator even significantly reduces the
numerical error. The case of wave scattering by a vortex confirms these observations
and also shows that the transverse components of the flow motion have little effect
on the wave diffraction pattern. As a conclusion, we can say that the lowest order
terms for the flow motion is the most precise from a numerical point of view. In the
following, only operator H(s)

1 will be considered for heterogeneous and flow effects.
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This chapter begins by proposing a model for the Planetary Boundary Layer mixing
Monin-Obukhov Similarity Theory (MOST) for the mean stratified atmosphere (wind
and temperature), along with homogeneous isotropic turbulent fluctuations satisfying
a von Kármán energy spectrum. Sonic boom is then evaluated first in the standard
atmosphere with no turbulence as the reference case. This is achieved by matching
near-field CFD simulations based on automatic mesh refinement to nonlinear ray trac-
ing describing long range propagation. Sonic boom of ATLLAS II Mach 5 configuration
is quantified both ground track and laterally at the edges of the geometrical carpet in
terms pressure signature, peak overpressure and annoyance metrics. Statistical effects
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of turbulent wind fluctuations are then investigated for ground track boom by means
of FLHOWARD3D software for two intensities of turbulence. Typical distorted wave-
forms and spectra are presented and peak overpressure variability is analysed. Finally,
the sonic boom penetration in the shadow zone is reproduced numerically comparing
the cases with and without turbulence.

4.1 The Planetary Boundary Layer

Figure 4.1: Representation of the planetary boundary layer by Kaimal [94].

The Planetary Boundary Layer (PBL) or atmospheric boundary layer is the lower
part of the atmosphere. Its structure depends on the hour during the day, and on
the meteorological conditions. It is also heavily influenced by its contact with the
ground. There exist two major states for the PBL as can be seen on Fig. 4.1 from
Kaimal [94]. During the night, the buoyancy flux at the surface is negative and damps
the turbulence so that the stratification is stable. It is solely driven by the shear
turbulence produced by the geostrophic wind of the free atmosphere. During the day,
the atmospheric boundary layer is frequently unstable due to the positive buoyancy flux
at the surface which generates thermal instabilities. It is called the convective boundary
layer and can be divided in two zones [163]. Near the ground, the surface layer extends
vertically to about 100-200m. There, turbulence is mostly due to shear stress. Above
lies the mixed layer which extends from the surface layer to 0.5-2 km depending on
the meteorological conditions. In the mixed layer, the turbulent diffusivity tends to
be largest and mean gradients of wind and conserved scalars smallest [196]. There, the
temperature decreases almost linearly with the altitude.

In this study, we deal only with the day case for which the turbulent level is the
highest. For the propagation of sonic boom, the wind and temperature fields have to
be known. Measured data cannot be used because they are usually provided only at
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points, and not over the entire field. So one has to model the PBL. The most correct
way would be to simulate the PBL directly using the Navier-Stokes equations (DNS).
However, this is not feasible due to the computational cost. A DNS computation needs
a mesh of the order of Re3/4 in each direction; Re = UL

ν is the Reynolds number which
is used to characterize the flow. For the PBL, we have a typical flow velocity U = 15
m.s-1, the characteristic length is its height L = 1000m and the kinematic viscosity is
ν = 1.4510−5 m2.s-1. This corresponds to a Reynolds number of 109. This would lead
to a mesh of the order of 1020 points. An other method would be to perform large eddy
simulation (LES) [154], which consists in solving an approximation of Navier-Stokes
equations where the small scales of turbulence are modelled instead of computed, thus
reducing the size of the computational grid. This method is currently used in meteorol-
ogy [130, 165, 196] and has recently been applied to electromagnetic wave propagation
in a turbulent atmosphere [50, 49]. However it is computationally expensive to have a
fine enough mesh for the eddy sizes needed for the acoustic propagation. Indeed, from
the acoustical point of view, the required numerical resolution is very demanding for
shock waves. Several numerical tests of convergence for shock waves simulation can
be found in literature. For shock wave propagation in turbulent medium, [5] recom-
mends 25 points per wavelength in the transverse direction. For a typical Concorde
sonic boom, this would lead to a resolution around 3 meters. Sonic boom focusing
[124] induces a characteristic scale of diffraction hDiff = (2/(c2

0T
2
sigRcaus))−1/3 with

Tsig the signal duration (0.3s for Concorde) and Rcaus the radius of curvature of the
caustic (in the range of 10 to 100 kilometres for a stratified atmosphere, probably less
in a turbulent medium). This gives a value of around 300 meters, and with a required
mesh of about a few 100 points over this distance, this leads again to a resolution of
the order of the meter. Finally, from the perception point of view, the frequency of
maximum sensitivity of human ear is about 3 kHz which corresponds to a wavelength
about 10 cm. So for our contemplated applications, resolution of the order of the
meter or less is targeted. Coupling between LES of the PBL and acoustic propagation
has been performed in two-dimensions for linear acoustics [193, 194] to assess the effi-
ciency of simpler atmospheric models with a resolution of the order of 1 meter again.
However it cannot be used routinely. The simpler method practiced in this study is
to model the mean atmosphere (mean temperature and shear wind in the propagation
direction) by the well established Monin-Obukhov Similarity Theory (MOST) [163,
94, 196] as summarized in Section 4.2. Then a synthetic turbulence approach [61] will
be detailed in Section 4.3 for generating the turbulent fluctuations. Evaluation of the
sonic boom from ATLLAS II configuration in the non turbulent case will be the object
of Section 4.4. It will be used as an input for quantifying the impact of turbulence on
the undertrack boom in Section 4.5 and on the lateral boom in Section 4.6.

4.2 The mean atmosphere

Monin-Obukhov Similarity Theory is used to determine the vertical profiles of mean
temperature and wind velocity within the atmospheric surface layer whose thickness is
roughly 100-200 m in an unstable stratification. However, since the wind in the mixed
layer is nearly constant and the temperature adiabatic [163], it is reasonable to use



58 Chapter 4. Sonic boom of a hypersonic aircraft in the PBL

Figure 4.2: Classical profiles in the convective boundary layer by Stull [163].

MOST even for higher altitudes. MOST assumes that characterization of the surface
layer needs only two parameters that can be determined from ground measurements:
the friction velocity u∗ and the surface sensible heat flux Qs. Thus, the wind profile
V0(z) and temperature profile T (z) can be determined:

T (z) = Tr − (z − zr)Γd +
PtT∗

κv
[ln(z/zr) − Ψh(z/L0) + Ψh(zr/L0)] (4.1)

V0(z) =
u∗

κv
[ln(z/z0) − Ψm(z/L0) + Ψh(z0/L0)] . (4.2)

Here, zr is a reference height, Tr = T (zr) is the value of temperature at this height,
Γd = 0.0098 K / m2 is the dry adiabatic lapse rate, Pt = 0.95 is the turbulent Prandtl
number, T∗ is a temperature scale, κv = 0.40 is the von Kármán constant. The
Obukhov length is L0 = −u3

∗Trρ0/(κvΓdQs), and Ψh,m(ξ) are universal function profiles
given by [185]:

Ψh,m(ξ) =





2 ln 1+
√

1+ah,m|ξ|2/3

2 , if ξ < 0

−bh,mξ, if ξ ≥ 0
(4.3)

where ah = 7.9, am = 3.6, bh = 8.4, and bm = 5.3 are numerical constants. Thanks to
these universal functions, MOST can be used regardless of the state of the PBL: stable,
unstable or neutral. It can be seen as a generalization of the logarithmic wind profile
derived for neutral conditions. A profile of temperature and one of flow velocity are
presented on Fig. 4.3 for a mostly sunny day with strong wind: Qs = 200 W.m2 and
u∗ = 0.7 m.s-1. The parameters were chosen zr = 1 m, Tr = 288.15 K and z0 = 0.1 m.
The value of z0 was chosen to represent a flat ground with short grass. This example
was chosen according to Ostashev et al. [137].

4.3 Turbulent fluctuations

Characteristics of homogeneous and isotropic turbulence

As already explained in section 4.1, the best way to describe the turbulence would
be by Direct Numerical Simulation or Large Eddy Simulation but it is not possible
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Figure 4.3: Example of vertical profiles of mean sound speed (left) and flow velocity
(right) for Monin-Obukhov Similarity Theory.

due to the computational resources needed as explained in the introduction. However,
turbulence can be described statistically at least under the assumption of homogeneity
and isotropy. These assumptions are not realistic from a meteorological point of view
because of the atmosphere vertical stratification and shear wind. Some works have been
devoted to estimate the influence of anisotropy or intermittency on linear acoustics
[186, 191] but none on nonlinear acoustics.

A vector velocity fluctuation field whose ensemble average is null: 〈u0i(r)〉 = 0 is
considered where u0i(r) is the ith component of the fluctuation velocity vector u0, 〈〉
is the ensemble average and r is the position vector. The statistics of this field are
described by the covariance tensor which is determined by the spatial correlations:

Bij(r1, r2) = 〈u0i(r1)u0j(r2)〉 (4.4)

where r1 and r2 are two points of the space. In case the turbulence is homogeneous,
it depends only of the separation between the points s = r2 − r1:

Bij(s) = 〈u0i(r)u0j(r + s)〉. (4.5)

If u0 is an incompressible homogeneous isotropic vector field, Bii(0) = σ2
u is the vari-

ance of the velocity component u0i. Its total variance is 〈u2
0〉 = 3〈u2

01〉 = 3σ2
u. The

velocity spectral density is given by the Fourier transform of the correlations:

φij(k) =
1

8π3

∫ ∫ ∫

R3
Bij(s) exp (−ik · s)ds (4.6)

Bij(s) =
∫ ∫ ∫

R3
φij(k) exp (ik · s)dk. (4.7)

Here notation k is used only in this section for the turbulent wave vector. It should
not be mistaken with the acoustical wave vector used in the rest of the document. For
a scalar field n, the same definitions apply and we have the correlation:

B(r1, r2) = 〈n(r1)n(r2)〉, (4.8)
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which reduces to:
B(s) = 〈n(r)n(r + s)〉, (4.9)

if n is homogeneous and to

B(s) = 〈n(r)n(r + s)〉, (4.10)

if n is also isotropic (only the distance between the points matter). The variance is
obtained by B(0) = σ2

n. Its spectral density is given by the Fourier transform of the
correlations:

φ(k) =
1

8π3

∫ ∫ ∫

R3
B(s) exp (−ik · s)ds (4.11)

B(s) =
∫ ∫ ∫

R3
φ(k) exp (ik · s)dk. (4.12)

One way to handle some of the differences between a vector and a scalar field is to
introduce their energy spectra E(k) which is given by:

φij(k) =
Eu(k)
4πk4

(δijk
2 − kikj) (4.13)

for a non-divergent vector velocity field and:

φ(k) =
En(k)
2πk2

(4.14)

for the scalar field. The energy spectrum is also easier to interpret than the spectral
density since it relates the intensity of the vortex to the wavenumber k and thus to
its size 2π/k. It is to be noted that in this case, the vector field is isotropic but each
of its component is anisotropic. The turbulent field energy depends only on the wave
number k (assumption of isotropy) whereas its spectral densities depend on the wave
vector k. The scalar and vector fields can follow the same energy spectrum E(k) [187].
But since σ2 is taken as the variance of each component of the vector field we have
Eu(k) = 3E(k) and En(k) = E(k).

Different models for the energy spectrum are proposed in the litterature [84, 136,
170]. Here the three most used ones are presented. First the Gaussian spectrum:

E(k) =
σ2k4L5

0

24
√
π

exp

(
−k2L2

0

4

)
; (4.15)

then the classical Kolmogorov spectrum:

E(k) =
4Γ(17/6)

3
√
πΓ(1/3)

σL0(kL0)−5/3; (4.16)

and the more complete von Kármán one:

E(k) =
4Γ(17/6)

3
√
πΓ(1/3)

σ2k4L5
0

(1 + k2L2
0)17/6

. (4.17)

In the preceding equations, Γ is Euler’s gamma function. The parameters of these spec-
tra are the variance σ2 of the field and the characteristic length L0. Kolmogorov and
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Figure 4.4: Three turbulent spectra: von Kármán, Gaussian, and
Kolmogorov.

Gaussian spectra have often be used in several acoustic studies [188, 135, 6] but they
are not fully consistent with some of the features of turbulence. First, it is known that
in the inertial range of the spectrum, the energy of the vortices is decreasing as k−5/3

[84, 136, 170]. This decay is well reproduced by both von Kármán and Kolmogorov
spectra but not by the Gaussian one for which the decay is exponential. Also, for
atmospheric turbulence, there exits a length scale L0 which is the limit of the biggest
vortices. This length scale is present in both the Gaussian and von Kármán spectra
which can therefore represent the large scale inhomogeneities. The Kolmogorov spec-
trum does not reproduce this energy-containing regions and thus is not accurate for
the large scale inhomogeneities. All these features can be seen on Fig. 4.4. Thus the
von Kármán spectrum can be seen as more representative than the two others and will
be used in this work.

Generation of turbulence

Taylor’s hypothesis of frozen turbulence will be used since the characteristic time of
acoustic propagation is much smaller than the characteristic time of turbulent changes.
Acoustical waves are propagated through multiple realizations of turbulence.

To obtain a random field of turbulence (either temperature or velocity) using an
energy spectrum, several methods exist: the random Fourier modes of Kraichnan [100,
29, 98, 6], the random phase generation [70, 188], the turbules method [195, 128] and
the recent quasi-wavelet method [72, 73, 189, 191, 190]. In this work, the random field
generation method [61] is used to generate realizations of a homogeneous and isotropic
turbulent field. It was chosen for its ease of implementation and its computational
efficiency. According to Frehlich, [61], a divergence free, vectorial field can be expressed
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as:

u0j(x, y, z) =
Nx∑

mx=0

Ny∑

my=0

Nz∑

mz=0

wj(mx,my,mz) exp

[
2πi

(
xmx

Nx
+
ymy

Ny
+
zmz

Nz

)]
.

(4.18)
Here, kj = 2πmj/Nj are the components of the discrete wave vector, and Nj are the
number of discretization points of the turbulent field in each direction j = x, y, z. The
complex random vector w is generated by:



w1

w2

w3


 =



H11 0 0
H12 H22 0
H13 H23 H33


 ·



N1

N2

N3


 (4.19)

with N a vector of arrays given by:

Nj(mx,my,mz) = aj(mx,my,mz) + ibj(mx,my,mz)

〈aj(mx,my,mz)2〉 = 〈bj(mx,my,mz)2〉 = 1

〈aj(mx,my,mz)bj(mx,my,mz)〉 = 0. (4.20)

Here, aj(mx,my,mz) and bj(mx,my,mz) are uncorrelated arrays of zero mean Gaus-
sian random numbers. The coefficients of the matrix in 4.19 are:

H11(mx,my,mz) =
√
φ11(kx, ky, kz)∆kx∆ky∆kz (4.21)

H12(mx,my,mz) =
φ12(kx, ky, kz)

√
∆kx∆ky∆kz√

φ11(kx, ky, kz)
(4.22)

H22(mx,my,mz) =
√
φ22(kx, ky, kz)∆kx∆ky∆kz −H2

12(mx,my,mz) (4.23)

H13(mx,my,mz) =
φ13(kx, ky, kz)

√
∆kx∆ky∆kz√

φ11(kx, ky, kz)
(4.24)

H13(mx,my,mz) =
φ23(kx, ky, kz)∆kx∆ky∆kz −H12(mx,my,mz)H13(mx,my,mz)√

φ22(kx, ky, kz)
(4.25)

H33(mx,my,mz) =
√
φ33(kx, ky, kz)∆kx∆ky∆kz −H2

13(mx,my,mz)H2
23(mx,my,mz)

(4.26)
where ∆kj = 2π/(δjNj) with δj the grid spacing in the j-direction and j = x, y, z. We
recall here, that quantities φij are the spectral densities of the turbulent field define by
Eq. 4.6. In this method, variance of the velocity amplitude σu and characteristic length
of the vortices L0 are the only two input parameters needed to generate a homogeneous
isotropic field of turbulence. The method was presented for the generation of a random
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Figure 4.5: Example of axial velocity u0x fluctuation for a random realization of turbu-
lence in the (x, y) plane obtained using a von Kármán spectrum (top) and a Gaussian
spectrum (bottom). σu = 2 m.s-1, L0 = 100 m.



64 Chapter 4. Sonic boom of a hypersonic aircraft in the PBL

Figure 4.6: Skin mesh of ATLLAS II configuration (with courtesy of ONERA).

vector field but can also be applied to a scalar field by using only one component in
the above equations.

An example of realization of both a von Kármán and a Gaussian spectrum is
shown on Fig. 4.5. The smooth aspect of the Gaussian spectrum realization is due
to the exponential decay of small vortices. For acoustic applications, this difference is
important because smaller vortices will influence the higher frequency part of the wave
spectrum whose acoustical wavelengths are comparable to the vortices size.

4.4 Sonic boom in the standard atmosphere

4.4.1 Geometry and CFD computation

The vehicle studied is the ATLLAS2 hypersonic configuration shown on Fig. 4.6. It
is made of a main fuselage, a delta wing. Three high bypass turbofans are integrated
either in the fuselage or in two nacelles. They are equipped with variable geometry
mixed intakes. A CFD computation of this configuration was performed by ONERA
[119] using their in-house multi-physics polyhedral platform CEDRE [28] and its CFD
solver CHARME. The plane is cruising at a Mach number M = 5 and an altitude
of 26 km. The flow is assumed inviscid and the Euler equations are solved using an
AUSM+ second order flux scheme. In order to compute accurately the shock in the
mid-field, an automatic mesh adaptation was used. The Feflo.a software developed
by INRIA [116] was used to determine the mesh requirement. The computed pressure
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Figure 4.7: CFD extractions of the pressure signal on cylinders (with courtesy of
ONERA).

signal is then extracted on a cylinder around the vehicle as presented on Fig. 4.7 along
with the final adapted mesh. Cylinders of extraction are of radius comparable to the
aircraft length. On the nearest extraction from the body, the flow is shown to exhibit
a strong 3D behavior resulting from the complexity of the configuration: azimuthal
variations of the pressure field can be very abrupt at 30 meters. This justifies the
necessity to use the CFD and automatic mesh adaptation. On Fig. 4.8, the impact of
the mesh adaptation can be observed on the dimensionless field

√
r(p− p0)/p0 taking

into account the expected cylindrical decay of sonic boom as 1/
√
r with r the distance

from the flight path. Without it, the signal is completely damped before reaching the
mid-field and cannot be used as an input for the acoustic propagation phase down to
the ground. For the present study, only the most distant extraction performed at 100
meters will be used.

4.4.2 Nonlinear ray tracing method

ATLLAS II sonic boom is evaluated at the ground level in the geometrical carpet for the
standard atmosphere [86] with no wind and a perfectly reflecting ground. Attenuation
relies on the example of humidity vertical profile proposed by ISO [89]. As already
explained, the matching between CFD and ray tracing is done at R = 100 m. No
multipole matching process [138] is applied. Due to the temperature decrease with
the altitude, the sonic boom is refracted upwardly and the carpet has a well defined
lateral edge. The sonic boom prediction method is based on a standard nonlinear
ray tracing method [80, 172, 148] in a stratified, moving atmosphere [18, 141]. The
algorithm is described in Blumrich et al. [19]. To avoid singularities near cut-off when
rays are grazing, the position of a point along a given ray is parametrized by the
eikonal function rather than by its altitude. To calculate the geometrical ray tube area
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Figure 4.8: Normalized pressure signal
√
r(p − p0)/p0 extracted from CFD versus

distance along the aircraft (x in meters). From left to right: azimuth 0° (vertical), 60°
and 90° (horizontal) for 3 radii of extraction: 30 m (black), 50 m (red), 100 m (blue).
On top, without mesh adaptation, on bottom with mesh adaptation (with courtesy of
ONERA).

along the rays in a stratified medium, the implementation follows the method of [23]
and requires the numerical integration of 13 differential equations: 4 for ray tracing,
8 for determination of the ray-tube cross-section (4 for the derivative of ray equations
with respect to each of the two ray coordinates parametrizing a single ray, e.g., time
of emission and azimuthal angle) and 1 for the nonlinear age variable. Integration is
numerically achieved by using standard Runge-Kutta algorithm. Along a given ray,
the pressure field satisfies a Generalized Burgers’ Equation (GBE) [33, 32] including
nonlinearities, atmospheric absorption and geometrical spreading. Nonlinear effects are
deemed essential in the long-range propagation of finite-amplitude waves such as sonic
booms [182, 181]. They are responsible for the slow evolution of the waveform until
the typical "N" shape is achieved which is frequently recorded at ground level. After
an algebraic transformation through the introduction of the age variable, geometrical
spreading is eliminated. The resulting equation is solved with the same method as used
here (see section 2), combining Burgers-Hayes method for nonlinear effects (section
2.2.4), analytic solution in the frequency domain for absorption (section 2.2.5) and
second order split-step method (section 2.2.1). The algorithm is identical to the one
developed in the first ATLLAS project [117] and has been validated in section 3.3.

4.4.3 Sonic boom at ground level

To compute the ground sonic boom, the pressure signature is discretized with 214 points
over a time window of duration 0.95 s. This leads to a maximum computed frequency
equal to 8600 Hz, well beyond the frequency of maximum sensitivity of human ear.
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Fig. 4.9 presents the lateral extension of the carpet which is 136 km wide. Due to the
size of the vehicle and the high altitude, the duration of the signal shown on Fig. 4.10
is longer than for existing aircraft (Concorde, military fighters, Shaped Sonic Boom
Demonstrator) and thus has a lower frequency content around 1.5 Hz. The maximum
peak overpressure for under track boom is 70.7 Pa which is slightly smaller than sonic
boom recorded for Concorde (around 100 Pa). The signal waveform is very similar
to a classical N-wave shape for the compression phase. However the expansion phase
is not symmetric due to lift effect which is known to induce a signal with non-zero
mean value. The near-field signal results from the multiple shocks emanating from the
intakes, the wing edges, the exhausts and the tail. These different shocks progressively
coalesce away from the aircraft. At ground level, the shocks are slightly smeared out
by the atmospheric absorption as can be seen on zoom of Fig. 4.10. It displays the
characteristic shape of a shock wave in a relaxing medium. The frequency spectrum
shows the typical boom shape [160] with a 6 dB decay per octave until 2000 Hz and
then a 12 dB decay per octave. At the geometrical cut-off, the sonic boom is of much
smaller amplitude 18 Pa because of the reduced influence of lift at the source, as can
be seen on Fig. 4.8. Also due to this smaller lift effect, there remain two shocks in
the compression phase, the second one of very small amplitude. As for the undertrack
boom the shocks are slightly smeared out by atmospheric absorption which is not
fully negligible even at such low frequency because of the very long propagation path
and weaker nonlinearities. The frequency spectrum shows the fast decay of 12 dB
per octave occurs at much lower frequency around 100 Hz. Beyond the cut-off, the
creeping wave theory leads to an exponential decay and a fast smoothing of the shock
waves as explained in [141, 40].

4.4.4 Sonic boom metrics

One important feature when analyzing sonic boom, is the quantification of the annoy-
ance caused to the people whether they perceive the boom outdoor or indoor. This
annoyance is produce by the audible perception of sonic boom itself. However most
of reported annoyance from sonic boom is due to startle, indirect induced rattle noise,
vibrations of the structures and possible damages to buildings [121, 41, 122]. In this
section, two metrics which are loudness based will be investigated: the A-weighted
Sound Exposure Level (ASEL) and the C-weighted Sound Exposure Level (CSEL).
They are classical metrics used for sonic boom impact estimation. An other common
metric is the Perceived Loudness deciBel (PLdB). It was not chosen because it has
shown a strong correlation with ASEL while being much more complex to compute.
At the present time, there is no agreement of the scientific community on which metric
is the most suitable and on any level of acceptability. A-weighting is the most common
weighting. It simulates the human ear frequency response to noise. A good correlation
with annoyance is indicated from community surveys for military fighters [106] and
from sonic boom simulators for low-boom designed business jets [118]. It puts empha-
sis on the boom high frequencies (above 200 Hz), which correspond to the audible part
of the signal due to the shock wave and the associated startle effect. The C-weighting
has been recommended by the US Committee on Hearing, Bioacoustics and Biome-
chanics (CHABA) [25] study for high energy impulsive sound. It is putting weight on
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Figure 4.9: Sonic boom carpet with pressure amplitude (Pa) as color level computed
using ray tracing for ATLLAS II configuration in the standard atmosphere.
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Figure 4.10: Left: pressure signals on the ground computed using ray tracing for
ATLLAS II configuration in the standard atmosphere with zoom on the first shock.
Right: corresponding frequency spectrum. undertrack, at the cut-off.
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ASEL (dBA) CSEL (dBC)
ATLLAS II undertrack 90.83 105.12

ATLLAS II cut-off 71.11 92.76
N-wave (Concorde-like) 88.96 105.78

Table 4.1: ASEL and CSEL values simulated undertrack and at cut-off for ATLLAS
II configuration compared to Concorde-like N-wave.

lower frequencies than the A-weighting in order to better take into account annoyance
related to vibrations. These metrics are based both on a frequency weighting of the
power spectrum. Computation of the Sound Exposure Level (SEL) relies on Parseval
theorem for the pressure field energy:

∫ +∞

−∞
pa(t)2dt = 2

∫ +∞

0
|p̂a(f)|2df (4.27)

where p̂a(f) is the Fourier transform of the signal and f is the frequency. To take into
account the frequency dependant response, a weighting H(f) is applied to the Fourier
transform of the signal. The weighted power spectrum is then transformed into a dB
unit so as to get:

HSEL = 10 log

(
2

Tref

∫+∞
0 |p̂a(f)H(f)|2df

p2
ref

)
(4.28)

where Tref = 1 s and pref = 2 10−5 Pa. A and C weighting are given respectively by
[87]:

HASEL(f) =
122002f4102/20

(f2 + 20.62)(f2 + 122002)
√

(f2 + 107.72)(f2 + 737.92)
(4.29)

and:

HCSEL(f) =
122002f2100.06/20

(f2 + 20.62)(f2 + 122002)
. (4.30)

ASEL and CSEL values of the ATLLAS II configuration are reported in Table. 4.1.
They are compared to an ideal N-wave of amplitude 100 Pa, duration 0.27 s and rise
time 1 ms typical for Concorde boom undertrack.

According to the present knowledge [122] based on existing supersonic aircraft, N-
like booms with amplitudes in the range 50 Pa to 150 Pa and with a duration from
100 ms to 300 ms are deemed highly annoying by a percentage from 13% to 33% of
the population. Even though ATLLAS II configuration leads to a boom slightly longer
(around 400 ms), so with a lower frequency content, we expect that the percentage of
population highly annoyed by ATLLAS II configuration would be in a similar range
given the similar peak overpressure at least over the central part of the carpet.
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4.5 Effect of a turbulent atmosphere on the undertrack
boom

4.5.1 Computational process

In this section, the influence of the turbulence encountered in the planetary boundary
layer as modeled in Sec. 4.1 is investigated. The computation process is sketched on
Fig. 4.11. The ground signal from the ray tracing computation (see previous section)
is used as an input at the top of the planetary boundary layer. This waveform is then
numerically propagated with the FLHOWARD3D software in the vertical direction
down to the ground. Several assumptions are made in this process to allow for an
easy matching with ray tracing. First, geometrical spreading is neglected as the input
is taken as a plane wave. Second, refraction is not taken into account, a vertical
straight line main path of propagation being chosen. These assumptions are of little
importance in the present study as they are applied for the undertrack boom only
over a small part of the overall propagation path from the aircraft to the ground. For
propagation over the PBL thickness, geometrical spreading and refraction are small
compared to turbulence effects. Moreover geometrical spreading and refraction have
already been taken into account in the ray tracing phase down to the ground but in
a way uncoupled to the turbulence influence. However, as explained in Appendix F,
even for this low amplitude signals, nonlinearity as to be taken into account. The
meteorological conditions are: a mean sound speed c̄0 = 340 m.s-1, a density ρ0 = 1.2
kg.m-3 and a nonlinear coefficient β = 1.2. The turbulent velocity fluctuations are
considered frozen and are generated as explained in Sec. 4.3. The outer scale of the
vortices L0 is 100 meters and two kinematic turbulence intensities following a von
Kármán spectrum are chosen: σv = 0.5m.s-1 and σv = 2m.s-1. Thermal turbulence is
not considered here: c′

0 = 0. The main direction of propagation is along the x vertical
direction. The propagation distance is chosen as 1500 meters which is characteristic
for a fully developed convective boundary layer. Both the transverse directions y and
z are 1500 meters long in order to contain large structures of turbulence. Each spatial
direction uses 1024 discretization points (see Appendix E for a discussion on the mesh
convergence). Periodic boundary conditions are assumed laterally in both y and z
directions. This is coherent with the periodicity requested to synthesize turbulence.
For the time variable τ , the numerical window is [-0.6, 1.6] seconds. It is chosen (i) in
order to be long enough to capture all the scattered signals arriving after the ballistic
wave and (ii) so that these scattered waves do not interfere with the main signal through
the artificial periodicity imposed by the numerical method. Due to limited numerical
resources, the temporal window involves only a maximum number of 4096 points. This
leads to an overall 4 billions degrees of freedom per propagation step in the vertical
direction. As a consequence, the time signals have a frequency cut-off around 900 Hz
when considering the Nyquist limit. This is much lower than the 8600 Hz frequency
cut-off of the ray tracing output. This one is extended over the time window by a zero
padding and is then linearly interpolated over the new numerical grid. Consequently,
a significant part of the audible frequency content cannot be simulated. In particular,
the frequency cut-off is too low to compute precisely the loudness metrics. Computing
the ASEL value for this too limited frequency spectrum for the input signal would
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Figure 4.11: Sketch of the numerical process for evaluating sonic boom propagation
through turbulence.

give 81.94 dBA, 9 dB less than the true value. Achieving a sufficiently high frequency
resolution would require ten times more points in the time direction which is intractable
in terms of computational power. FLHOWARD3D is used with the simplified version
H = H

(s)
1 which was found to be the best compromise between precision and efficiency

in Sec. 3. This implies in particular that only the vertical component of velocity
fluctuations is considered. The computations were carried out on 128 cores on the
cluster described in Sec. 3.5. A full computation needs around 30 hours.

4.5.2 Pressure variability

Fig. 4.12 displays the maximum peak pressure in a vertical plane along the propagation
direction from the top of the PBL (x = 0 m) to the ground (x = 1500 m). For the two
turbulence intensities, a strong variability is obvious. For the strongest turbulence,
overpressure doubling can be observed at some points. Variability increases the peak
overpressure much more frequently and much more efficiently than it decreases it. The
structure of the field is clearly anisotropic as strongly influenced by the propagation
direction. This is not due to neglecting the horizontal components of the turbulent
fluctuations [5]. This anisotropic variability is due to the wave focusing in regions
of low effective sound speed (c0 + v0x), and defocusing in regions of high effective
sound speed [6]. Note however that the the notion of random caustic formation [16]
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is here applicable mostly to the high frequency part of the spectrum as the acoustical
main wavelength is comparable to the turbulence outer scale. This might reduce the
probability of occurrence of very strong amplifications. In the horizontal directions, the
scattering is clearly isotropic as illustrated by Fig. 4.13 showing the peak overpressure
at altitude x = 750 m. All these features are also visible on Fig. 4.14 showing two
transverse extractions in the two horizontal directions y = 0 and z = 0 at mid-altitude
x = 750 m. The two extractions show similar variability, no statistical difference is
visible between the two directions. The trend according to which turbulence mostly
amplifies the peak overpressure is also undeniable. Large pressure fluctuations occur
over a distance of 100 m. We hypothesize this scale is directly related to the turbulence
outer scale L0. However, as the boom main wavelength is of the same order, it could
also influence this variability scale.

Due to the effects of diffraction, nonlinearities and scattering by random inhomo-
geneities, waveforms change during the propagation. On Fig. 4.15 some signals are
presented. They were chosen because they are typical for observations of sonic boom
propagation through atmospheric turbulence [108]. From top to bottom we have: (i)
the classic N-wave which was used as input for the computation (in black); (ii) a
spiked waveform characteristics for the passage of the wavefront through a caustic;
(iii) a multiple spiked signal which has traveled through several caustics; and (iv) fi-
nally a rounded one with a longer rise time. The energy spectrum of these waves is
also displayed on the same figure (in black for the input signal, in red for the other
ones). The input spectrum is a classical N-wave spectrum with a cut-off due to the
mesh and interpolation at around 600 Hz below the theoretical value at 900 Hz. At 600
Hz, it is about 65 dB less than at 1 Hz. Due to the longer time window the spectrum is
smoother at low frequencies (below 10 Hz). On the spiked signal it can be seen that the
mid-range frequencies, roughly between 10 Hz and 100 Hz corresponding to the shocks
spikes are enhanced up to 5 dB corresponding to the strong peak pressure spike. These
spikes are of a duration 0.01 s in agreement with the 100 Hz observed frequency. As
a counterpart some energy dips are observed around 270 Hz and 570 Hz probably re-
sulting from random destructive interference. For the multiple spiked waveform, some
similar trends are observed with some frequency ranges enhanced (here between 40
Hz and 300 Hz) and some frequency ranges lessened (here between 10 Hz and 30 Hz).
Finally, the rounded waveform has a significant decrease of energy above 30 Hz linked
to the long rise time of the shocks around 0.015 s. These spectra are characteristic
of the scattering of the shocks. Their energy is redistributed spatially increasing or
decreasing the amplitude. The variance of the effective sound speed is σv = 2 m.s-1,
less than 1% of the mean sound speed value and the size of the largest vortices is
about L0 = 100 m. As a consequence the main acoustical wavelength is of the order
of 2L0 and is almost unaffected by turbulence. For visible effects of the turbulence, it
is necessary that the acoustical wavelength be small enough compared to the size L0

(here about 30 Hz). This is due to the fact that the ATLLAS II configuration leads
to a longer signal and thus to a lower spectral content (below 5 Hz) than usual sonic
booms.
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Figure 4.12: Maximum positive peak pressure (color level in Pa) for ATLLAS II con-
figuration along vertical propagation in a synthetic PBL for 2 turbulence intensities:
top σv = 0.5 m/s, bottom σv = 2 m/s.
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Figure 4.13: Maximum positive peak pressure (color level in Pa) for ATLLAS II con-
figuration in a horizontal plane (x = 750 m) for 2 turbulence intensities: top σv = 0.5
m/s, bottom σv = 2 m/s.
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Figure 4.14: Maximum positive peak pressure along 2 horizontal lines( y = 0,
z = 0) for 2 turbulence intensities: left σv = 0.5 m/s, right σv = 2 m/s.

4.5.3 Statistical analysis

Statistics on the maximum peak pressure are now investigated. To obtain statistics,
an ergodic hypothesis is used. Instead of performing many simulations for several tur-
bulent field realizations, statistics are computed spatially across the horizontal (trans-
verse) directions for a single realization. Fig. 4.16 and Fig. 4.17 presents the four first
statistical moments for peak pressure along the vertical propagation axis for the tur-
bulence levels. Average peak pressure shows an unexpected behaviour, first increasing
before reaching a plateau and then beginning to decrease. This is different from obser-
vations of laboratory scale experiments for kinematic turbulence [113, 6, 7]. Note that
similar experiments have recently been performed for thermal turbulence [157]. The
main parameters of these ones are summarized in Table. 4.2. These experiments used
spark sources to generate a high frequency shock wave propagating through a turbulent
jet. The ratio of the turbulence outer scale L0 to the thickness of the turbulent layer
(Hturb), the turbulence intensity and the signal peak overpressure are comparable to
typical sonic boom values. However, the experiment was constrained by the acoustical
source so that the main acoustic wavelength λ = c0/f is relatively small compared to
L0 and H0. Moreover, high frequency and intensity implied a shock formation distance
Lshock = ρ0c

3
0/(2πβfP0) and a viscous absorption distance Lviscous = ρ0c

3
0/(2π

2f2µ)
that are around the meter so not so large compared to Hturb. Consequently attenua-
tion due to nonlinear and absorption effects is several orders of magnitude larger than
for ATLLAS II sonic boom.

These different scaling ratios might explain the diverging pressure growth rates.
Damping effects are negligible in the present computation case which explains to our
opinion the initial growth of the average peak pressure. This one is likely to be due to
the superposition of high frequencies scattered waves to the unaffected low frequency
boom. For the low level of turbulence, the mean peak pressure initial growth is much
slower than for the intense case. For both turbulence levels, the standard deviation
shows a quick increase at the beginning of the propagation, before decreasing slowly.
It is significant even for the low level of turbulence which supports the high variability
already seen on the pressure map on Fig. 4.12. The peak of standard deviation seems
to be proportional to the turbulent intensity: about 3 Pa for σu = 0.5 m.s-1 and 12 Pa
for σu = 2 m.s-1. The next two statistical moments are skewness and kurtosis. The
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Figure 4.15: Examples of signals (left) and their energy spectrum (right). Form top
to bottom: initial N-wave, spiked waveform, multiple spiked waveform and rounded
waveform. In black the initial signal, in red signals after propagation.
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Classical ATLLAS II Laboratory scale
sonic boom configuration experiments

Turbulent layer width 1-2 km 1-2 km 0.3-1.8 m
Integral length scale 100-200 m 100-200 m 16-18 cm
RMS fluctuation velocity 0-2.5 m/s 0-2.5 m/s 0-3.4 m/s
Pressure amplitude 10-100 Pa 70 Pa 10-100 Pa
Signal duration 0.1-0.2 s 0.4 s 30-80 µs
Wavelength 34-68 m 136 m 1-2.7 cm

Table 4.2: Comparison between characteristic scales for classical sonic boom, ATLLAS
II configuration and laboratory scale experiments of Averiyanov et al. [7].

skewness measures the asymmetry of the distributions about its mean. In this case, it
grows rapidly in the positive which means that the right tail will be longer than the
left one indicating the higher probability of high peak pressures than low ones. This
effect is shown to increase with the level of turbulence. The kurtosis represents the
peakedness of the distribution. It will be positive if most of the standard deviation is
due to infrequent extreme events compared to a Gaussian distribution. It has a similar
trend as the skewness, increasing quickly and amplified by a high level of turbulence.
The rapid increase in standard deviation, skewness and kurtosis is due to the rapid
formation of caustics which widen the distribution and lead to an asymmetry with an
excess in the high pressure tail. As refocusing of a wavefront that has already gone
through a caustic is difficult due to phase scrambling [144], peak pressure begin to
decrease slowly after achieving a maximum at a propagation distance which depends on
the intensity of the turbulence. All these results can be seen clearly on the histograms
of the probability density function (PDF) which are plotted on Fig. 4.18 for five
distances of propagation. Moreover, an important result is that, as was already shown
[15, 7, 157], the PDF can be fitted by a gamma distribution:

PDF (pa) =
ξap

(a−1)
a

Γ(a)
exp(−ξpa) (4.31)

where ξ and a are two fit parameters that depend on propagation distance and tur-
bulent intensity. The fact that even with completely different conditions, numerical
simulations (present work along with [55] for linear acoustics) and experimental data
[15, 7, 157] follow the gamma distribution strongly supports its universality for the
propagation of acoustic waves (linear or nonlinear) in random media.

4.5.4 Rise time

This section investigates the behaviour of rise time θ0.1−0.9 for pressure waveforms.
For a simulated waveform pa(τ) at a given position (x, y, z), rise time is defined as
the time the pressure needs to increase from 10 % to 90% of the peak overpressure.
Note that with the chosen time resolution the rise time is not fully converged (in
particular rise times equal or shorter than the mesh size are set to 0) but the results
are nonetheless interesting. The rise time in a vertical plane (x, y, z0 = 0m) is presented
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Figure 4.16: Average (top) and standard deviation (bottom) of the positive peak pres-
sure along the propagation. σ = 0.5 and σ = 2.0
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Figure 4.17: Skewness (top) and kurtosis (bottom) of the positive peak pressure along
the propagation. σ = 0.5 and σ = 2.0
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Figure 4.18: Histograms of the positive peak pressure at increasing propagation dis-
tances. Left: σ = 0.5 in red and right σ = 2.0 in green. The blue line correspond to
the fitted gamma distribution.
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on top of Fig. 4.19 for the large turbulent intensity σv = 2 m.s-1. A high variability
is observed. As for the peak pressure it is clearly anisotropic and inhomogeneous
along the propagation direction. The main difference with the behaviour of the peak
overpressure is that the rise time spatial variations are less smooth. It can vary strongly
from one point to the next. The bottom of Fig. 4.19 representing rise time in a
horizontal plane (x0 = 750m, y, z) reinforces this observation of large variations over
short distances. In these transverse directions y, z, the rise time variations appear
isotropic and homogeneous, similarly to peak overpressure variations.

Average and standard deviation (statistics are computed over the 2 transverse y, z
directions) of the rise time along the propagation are plotted on Fig. 4.20. As expected,
the average rise time increases as the signal propagate so does its variance. The
comparison of the results for 2 turbulent intensities shows that the increase in average
and variance of rise time is proportional to the turbulence intensity σv. The size of
the numerical domain does not enable us to say whether mean rise time reaches a
plateau (as modelled by Plotkin and George [149]) or not (as suggested by Pierce
[143]). Histograms of the probability density functions of the rise time are presented
on Fig. 4.21 at different propagation distances for the 2 turbulence intensities. They
show that the distribution has an asymmetry with a large excess for the long rise
time tail especially for the strong turbulence intensity. Along the propagation, there is
an enlargement of the statistical distribution along with a decrease in the probability
amplitude of a given value.

The relation between peak overpressure and rise time is also investigated. To do
this, a scatter plot of the peak pressure in function of the rise time is displayed on
Fig. 4.19 for 2 propagation distances and for largest turbulence intensity. First, the
characteristics observed previously on histograms of rise time and peak overpressure
are retrieved. Second, for a high peak overpressure, the rise time is low. This is
likely to correspond to spiked waveforms. Large rise times occur only for small peak
overpressure, which we expect to correspond to rounded waveforms. Nevertheless,
short rise times can occur even for low amplitude signals. In case boom annoyance
is linked to rise time, this could be an important feature as it might induce large
variability in annoyance even for low amplitude N-waves. Also it is interesting to note
that in his thesis, Salze [156] presented similar scatter plots for the laboratory scale
experimental propagation of shock waves in thermal turbulence.

4.6 Sonic boom in the shadow zone

The case of sonic boom penetration into the shadow zone at the edge of the primary
carpet is now studied as illustrated by Fig. 4.23. In case of negative vertical temper-
ature gradient or adverse wind, the sonic boom is refracted upwardly and the carpet
has a finite width. In the shadow zone, the ray theory cannot predict the signal which
is due to diffraction and scattering by turbulence. The case of an idealized shadow
zone with no turbulence was studied by Coulouvrat [40]. In the present work, the
additional influence of turbulence is investigated. A plane wave is propagated in the
upwardly refracting atmosphere presented in 4.1. This atmosphere is modeled by us-
ing Monin-Obukhov similarity presented in Sec. 4.2. The case of a mostly sunny
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Figure 4.19: Rise time (color level in s) for ATLLAS II configuration in a synthetic PBL
for σv = 2 m/s. Along vertical propagation in plane z = 0 (top) and in a horizontal
plane (x = 750 m) (bottom).
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Figure 4.20: Average (top) and standard deviation (bottom) of the rise time along the
propagation. σv = 0.5 m.s-1 and σv = 2.0m.s-1.
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Figure 4.21: Histograms of the rise time for increasing propagation distances. Left:
σ = 0.5 m.s-1 in red and right σ = 2.0 m.s-1 in green.
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Figure 4.22: Peak overpressure (Pa) against rise time (s) at x = 750 m (top) and
x = 1500 (bottom) for σ = 2.0 m.s-1.



86 Chapter 4. Sonic boom of a hypersonic aircraft in the PBL

Figure 4.23: Shadow zone of a sonic boom

day with strong wind [137] is chosen. It corresponds to a surface heat flux Qs = 200
W/m 2 and a friction velocity u∗ = 0.7 m/s. The propagation is performed through
several realizations of turbulence generated as explained in Sec. 4.3. Turbulence is as-
sumed homogeneous and isotropic and obeys to a von Kármán energy spectrum. The
characteristic scale is L0 = 100 m and three levels of variance σu = 1.2, 2.4 and 3.6
m.s-1 were tested. The temporal signal of the incoming wave is extracted from the ray
tracing computation performed in Sec. 4.4 at the cut-off. Note that this waveform
results from a simulation in a standard atmosphere. The matching is therefore not
fully consistent as the mean vertical wind profile has not been taken into account for
ray-tracing. This would require to match MOST profile with atmospheric data above
the PBL which is beyond the scope of the present study. The main propagation axis
is now horizontal. Propagation is simulated over 4 km, the height and width of the
simulation domain are 4 km. In the vertical direction, an Absorbing Boundary Layer
(ABL) of thickness 400 m is imposed on the top of domain. Rigid boundary condi-
tions are imposed on all other boundaries. The duration of the time window is 2.2 s.
The temporal signal, the altitude and the transverse direction are sampled with 1024
points each. As for undertrack boom, the input signal results from zero padding and
interpolation of the ray-tracing. The maximum frequency of time mesh is therefore
233 Hz. Higher frequency sampling could not be achieved because: (i) the ground
rigid boundary condition makes simulation about twice as long as the periodic case;
(ii) simulation of multiple realizations is required to achieve statistical convergence.
The computational domain has more than 1 billions degrees of freedom; 1024 points
are used in the propagation direction.

On Fig. 4.24 we can observe the progressive decay of the ground positive peak
pressure in the central vertical plane (y = 0). On the top figure, the atmosphere is
stratified but not turbulent and the shadow zone can be clearly seen. Just above the
shadow zone, a caustic is formed due to the curvature of the initially plane wavefront
induced by atmospheric refraction. On the bottom figure, for σv = 3.6m.s-1, the turbu-
lence is shown to create multiple random variability including focusing and defocusing
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Figure 4.24: Sonic boom penetration into the shadow zone. Vertical map of peak
overpressure (color level in Pa): (above) no turbulence, (below) one realization of
turbulence with σv = 3.6m.s-1.

areas in a way similar to the undertrack boom. This process of random scattering
redirects energy into the shadow zone which turns out to be less pronounced. As a
counterpart, the geometrical caustic is strongly perturbed.

As can be seen on Fig.4.25, the positive peak pressure on the ground surface is still
globally decaying with the distance but due to turbulence, a high variability with areas
of enhanced amplitudes is nevertheless observed relatively far in the shadow zone.

Fig. 4.26 presents two simulated temporal waveforms at x = 2 km, either in the
shadow zone (z = 0) or near the caustic (z ≈ 250 m) in the cases with or without
turbulence. The presence of oscillations before the first shock is due to the periodicity
of the time window: the perturbations leaving the time window at the right side are
re-injected on the left side. In the shadow zone, without turbulence, the initial N-wave
profile progressively smears out along the ground due to exponential attenuation of
creeping waves [12, 40]. In the turbulent case, the positive peak pressure is increased
and high frequencies associated to the shocks are more strongly scattered from the
illuminated to the shadow zones than low frequencies [43]. This results into a very
large increase of the wave spectrum with turbulence for frequencies above 5 Hz. We
can therefore expect a large increase of the ASEL level of the boom in the shadow
zone due to turbulence although we are not able to quantify this because of the too
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Figure 4.25: Sonic boom penetration into the shadow zone. Ground map of peak
overpressure (color level in Pa) for one realization of turbulence with σv = 3.6m.s-1.
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Figure 4.26: Temporal signatures at 2 km (left) and their spectrum (right). The signal
is taken on the ground (top) and near the caustic (bottom). The red curve indicates
a propagation through a realization of turbulence σv = 3.6m.s-1 compared to the non-
turbulent case in black.

low frequency limit of the present numerical simulations. Near the caustic the typical
U-wave observed without turbulence is strongly affected in the turbulent realization
because of the random phase scrambling [144]. As a consequence, the positive peak
overpressure is reduced. The spectrum modification is similar to what was observed
for undertrack boom with changes mostly above 20 Hz.

Finally, to quantify the decrease of positive peak pressure qualitatively seen in
Fig. 4.25, a statistical study is conducted. The positive peak pressure is averaged
on the ground along the transverse direction. To get statistical convergence several
realizations of turbulence are necessary, here up to 10 computations for each level of
turbulence. Fig. 4.27 shows the average peak overpressure and its standard deviation
compared to the case without turbulence. Both show the classical exponential decay.
However, the average positive peak pressure increases with the turbulent intensity as
expected because of random scattering from the illuminated zone to the shadow zone.
But even for high turbulent intensities, this increase is relatively small: no more than
5 Pa. The standard deviation first increases over distances in the range from 500 m to
1000 m before slowly decaying. This behaviour is similar to what happens undertrack
but the amplitude of the deviation is much weaker. Again, the more intense the
turbulence, the more standard deviation increases.
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Figure 4.27: Statistics of the positive peak pressure along the propagation in the
shadow zone for different turbulent levels. Average(top) and standard deviation (right).
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4.7 Conclusion

An extensive sonic boom evaluation including the effects of turbulence in the atmo-
spheric boundary layer has been performed for ATLLAS II hypersonic configuration.
Using aerodynamic data provided by ONERA, a standard nonlinear ray tracing method
enabled us to quantify the overall sonic boom carpet. For the considered configuration,
it leads to a sonic boom slightly lower than Concorde’s one in terms of peak overpres-
sure, of longer duration and with a much larger carpet because of highest speed and
flight altitude. Finally, FLHOWARD3D has been applied to evaluate the effect of
atmospheric turbulence on sonic boom propagation. Two cases were investigated: (i)
ground track sonic boom in cruise conditions, (ii) sonic boom penetration into the lat-
eral shadow zone. The first case provides information on the global annoyance caused
by sonic boom, while the second precise the geographical extent of the boom.

In the first case of undertrack boom, a statistical study is performed for two in-
tensities of turbulence. For a high intensity of turbulence, the mean peak pressure
is shown to increase before reaching a plateau and then decreases. This behaviour
differs from the one observed for laboratory scale experiments. This difference is ex-
plained by the fact that at boom scale, absorption and nonlinear effects are much
weaker and the wavelength to integral length scale is larger by one order of magni-
tude. For a low turbulence intensity, pressure nearly remains unchanged. For both
turbulence intensities, the standard deviation is relatively high, indicating that there
is a high probability of enhanced peak pressure. For the second case of propagation in
the shadow zone, in the non turbulent case, the exponential wave decay associated to
creeping waves penetration is recovered along with formation of a caustic in altitude.
The turbulent case quantifies the effects of random scattering. A statistical analysis
for various turbulence intensities shows that the mean peak pressure slightly increases,
with a variability augmenting with turbulence intensity.

As a conclusion, turbulence is not decreasing the sonic boom impact as was pre-
viously thought. This is due to the specific low-frequency waveform generated by the
ATLLAS II configuration. It generally leads to a higher mean peak pressure on the
ground with a probability of occurrence of amplitudes up to twice the unperturbed
signal. Nevertheless quantification in terms of loudness metrics adapted to sonic boom
remains to be done and would deserve future studies with much more computational
resources. Nonetheless, relying on the estimations performed in this study, overland
flight of the investigated configuration is likely to be deemed highly annoying by a
significant percentage of the impacted population.
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Chapter 5

Focused weak shock wave in a
turbulent medium
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5.1 Introduction

Focusing of weak shock waves at a caustic is a fundamental phenomenon. A caustic
is an amplitude singularity which is structurally stable. Different kinds of caustics
exist: fold, cusp, swallow-tail etc. They are described and classified by the theory of
catastrophes [171, 14, 13]. This theory provides the generic form for the high-frequency
limit of the pressure field around the caustics in the linear regime, where diffraction
cannot be neglected and is the main physical mechanism. A review of the acoustical
caustics in linear regime can be found in [127]. If the incoming wave is a shock wave,
the solution given by the linear theory is invalid since it predicts infinite amplitude. To
regularize the field at the caustic, nonlinearities needs to be added to diffraction [75].
For weak shock waves, two kinds of caustics have been studied: the fold ans the cusp.
For the fold caustic, Guiraud [75] established the nonlinear Tricomi equation satisfied
by the pressure field. Numerical resolution of this equation indicates that taking into
account nonlinear effect along with diffraction is sufficient to get a bounded field [4,
124, 155]. Similarly, for the cusped caustics, Cramer ans Seebass [42] showed that for

93
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a step shock, the acoustic field satisfies locally the KZK equation. Coulouvrat [38]
generalized the previous study by showing that the KZK equation is valid for any
incident shock wave. He also formulated the boundary conditions of the problem for
its numerical resolution. Marchiano et al. [125] used these results to investigate the
pressure field resulting from an N-wave focusing at a caustic cusp; again it was found
that nonlinearity allows the field to remain bounded on the caustic.

Along with the numerical work of Marchiano et al. [125], shock wave focusing
on a caustic was explored to determine if wavefront folding could occur for weak
shock waves. First, experimentally, Sturtevant and Kulkarny and Beasley et al. [164,
11] produced focusing around caustic cusp. Then, Piacsek [140] used the Nonlinear
Progressive wave Equation (NPE) to study the issue numerically. All theses studies
showed evidence of wavefront folding.

The present work aims to study structural stability of a cusped caustic for weak
shock wave under the influence of kinematic turbulence. To do so, a focused wavefront
similar to the one proposed Piacsek is propagated through a turbulent medium as
shown on Fig. 5.1. First, a 2D computation of an N-wave focusing in a homogeneous
medium is performed to assess the validity of the FLHOWARD model to handle this
case. Then, the same focusing is simulated in a 3D turbulent medium. Results are
compared to the homogeneous case. The third direction, along which the field is
invariant in the homogeneous non turbulent case, allows us to analyse variability in
the turbulent case 5.2.

5.2 Focusing in a homogeneous medium

5.2.1 Computational process

A 2D curved wavefront is propagated in a homogeneous atmosphere. To simplify the
boundary conditions and mesh convergence, the wavefront with a parabolic ripple given
by Piacseck is used:

τc(y) =
Lc

c0

[
1 +

Lc

2Rc

(
y

Lc

)2
]−1

. (5.1)

The parabolic ripple is given in terms of arrival time τc and is function of the maximal
depth Lc = 25, 5 m and minimum radius of curvature Rc = 510 m. The temporal signal
is an ideal N-wave of peak overpressure 400 Pa and duration 0.2 s. The considered
medium of propagation is inviscid air, with a mean sound speed c̄0 = 340 m.s-1, a
density ρ0 = 1.2 kg.m-3 and a nonlinear coefficient β = 1.2. The shock formation
distance computed for a sine wave of same amplitude and 0.2 s period is 920 m.
Given the fact that the initial wave has already shocks and that its amplitude tends to
increase because of focusing, this value shows that nonlinear effects play a significant
role all along the propagation. The main direction of propagation is along the x
direction. The propagation distance is chosen as 2720 m so that the whole focusing
process occurs in the computational domain. 2048 points are used to discretize it.
The transverse direction y is 680 m long. It is discretized with 512 points. Periodic
boundary conditions are assumed laterally in the y directions. Because of focusing,
periodicity does not influence the focal region. For the time variable τ , the numerical
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Figure 5.1: Sketch of the wavefront focusing in a turbulent medium.
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Figure 5.2: 3D view of the caustic. In blue: incident wavefront, in red: geometrical
caustic in the homogeneous case, in black: sketch of turbulent structure.
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window is [-0.2, 0.3] s. As a result of the convergence study carried out in the next
section, the temporal window involves 4096 points. As a consequence, the time signals
have a frequency cut-off around 4000 Hz when considering the Nyquist frequency.

5.2.2 Nonlinear caustic

The peak overpressure (maxτ (p(x, y, τ))) in the homogeneous medium is presented on
Fig. 5.3 for linear (β = 0) and nonlinear cases. Note that simulation for linear case
for which convergence is theoretically not attainable, is made for Nτ = 16384 points
for the time window. The focusing occurs on a line at the center of the domain y = 0.
Its maximum occurs after around 575 m of propagation in the linear case, but after
950 m in the nonlinear case. It is around 3 times the initial peak overpressure in the
nonlinear case compared to 6.5 times in the linear case. Comparison can be made
with a geometrical ray tracing computation shown on Fig. 5.4 for which the rays
focus at around 500 m which is the beginning of the focal spot for nonlinear case.
As expected, in the linear case the focus is slightly shifted away from the geometrical
caustic due to diffraction. On the contrary, we observe a strong shift of the focus
position and a reduced amplification in the nonlinear case. All this indicates a strongly
nonlinear configuration. The characteristic cusped shape is clearly visible for the linear
peak overpressure field, while this one is strongly perturbed in the nonlinear case.
The transverse profile of maximum peak overpressure are presented on Fig. 5.5 for 5
distances of propagation (540 m, 1080 m, 1630 m, 2170 m and 2720 m) in the linear
(540 m, 1080 m only) and nonlinear cases. As expected in the linear case, no side lobe
is visible before the focus while 2 local maxima appear beyond, one for each branch of
the cusp. In the nonlinear case, this pattern is considerably modified. The width of
the main lobe is enlarged, its amplitude is reduced so that the 2 side lobes disappear.
This explains the differences between linear and nonlinear cases of Fig. 5.3.

In Fig. 5.6, the nonlinear wavefronts in the (τ, y) plane are displayed at 6 different
propagation distances (0m, 540 m, 1080 m, 1630 m, 2170 m and 2720 m). The first
one is the initial N-wave with the parabolic ripple in retarded time (Eq. 5.1). Then
as the propagation distance increases, the wavefront is progressively folding until a
swallow tail shape is reached for both the head and tail shock, in agreement with the
catastrophe theory. This folding goes along with the amplification of the pressure field.
Note the swallow tail shape already appears at 540 m, much beyond the focal point
of maximum amplitude but around the geometrical focus given by ray theory. This
confirms that the caustic keeps stable in the nonlinear regime even though the cusp
shape is no more visible when looking only at the pressure amplitude. Note that on
the last plot at x = 2720 m, parasite reflections occur on the lateral boundaries due
to the periodic boundary conditions. However, they do not influence the focal spot.

5.2.3 Grid convergence

The homogeneous computational case is also used to achieve a grid convergence study.
It is a highly demanding case because the amplitude of the shock is governed by a
balance between diffraction and nonlinear effects. Since results are mostly sensitive to
time discretization [45], it is chosen to only vary the discretization of the time window,
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Figure 5.3: Maximum positive peak pressure (color level in Pa) in the propagation
plane in an homogenous medium. Top: linear simulation, bottom: nonlinear simula-
tion.
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Figure 5.4: Same as bottom of Fig.5.3 superposed with distribution of acoustic rays.



5.2. Focusing in a homogeneous medium 99

200 400 600 800 1000 1200 1400
P (Pa)

300

200

100

0

100

200

300
Y
 (

m
)

0 500 1000 1500 2000 2500
P (Pa)

300

200

100

0

100

200

300

Y
 (

m
)

Figure 5.5: Transverse slice of the peak overpressure at various propagation distances.
Top figure: nonlinear simulation at 540 m, 1080 m, 1630 m, 2170 m and 2720 m (from
black to light blue); bottom figure: linear simulation at 540 m and 1080 m.



100 Chapter 5. Focused weak shock wave in a turbulent medium

0.2 0.1 0.0 0.1 0.2 0.3
τ (s)

300

200

100

0

100

200

300

Y
 (

m
)

0.2 0.1 0.0 0.1 0.2 0.3
τ (s)

300

200

100

0

100

200

300

Y
 (

m
)

0.2 0.1 0.0 0.1 0.2 0.3
τ (s)

300

200

100

0

100

200

300

Y
 (

m
)

0.2 0.1 0.0 0.1 0.2 0.3
τ (s)

300

200

100

0

100

200

300

Y
 (

m
)

0.2 0.1 0.0 0.1 0.2 0.3
τ (s)

300

200

100

0

100

200

300

Y
 (

m
)

0.2 0.1 0.0 0.1 0.2 0.3
τ (s)

300

200

100

0

100

200

300

Y
 (

m
)

400

200

0

200

400

600

800

1000

P
re

ss
u
re

 (
P
a
)

400

200

0

200

400

600

800

1000

P
re

ss
u
re

 (
P
a
)

400

200

0

200

400

600

800

1000

P
re

ss
u
re

 (
P
a
)

400

200

0

200

400

600

800

1000

P
re

ss
u
re

 (
P
a
)

400

200

0

200

400

600

800

1000

P
re

ss
u
re

 (
P
a
)

400

200

0

200

400

600

800

1000

P
re

ss
u
re

 (
P
a
)

Figure 5.6: Pressure field in the (τ, y) plane. Extracted at a distance of propagation
(from left to right and top to bottom): 0 m, 540 m, 1080 m, 1630 m, 2170 m and 2720
m.
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Figure 5.7: Maximum pressure as a function of the number of points in retarded time.
In linear regime and nonlinear regime .

Nτ in the range 64 to 16384. On Fig 5.7 the maximum of the peak pressure in the
domain is plotted against the number of temporal points. It shows the maximum
pressure increases along with mesh refinement. However, this increase is bounded in
the nonlinear case according to Guiraud’s assumption, but is unbounded in the linear
case. This confirms that FLHOWARD nonlinear code can properly capture a cusped
caustic. In the nonlinear case, the slope begins to decrease after 1024 points in time
discretization with a convergence (error smaller than 5%) after 4096 points. Therefore,
this number of points is chosen as a trade-off between accuracy and efficiency on the
rest of this Chapter. Since the chosen configuration is inviscid (no absorption nor
relaxation), the rise time is not bounded because it is controlled by the numerical
dissipation only.

5.3 Focusing in a turbulent medium

5.3.1 3D propagation medium

The computation uses the same numerical parameters as the previous homogeneous
case. However the propagation medium is now a 3D turbulent one. First a third
direction z is introduced with the same parameters as the y direction: 780 m long
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discretized with 512 points. Periodicity is also enforced on its boundaries as was
done for the y direction. This is coherent with the periodicity requested to synthesize
turbulence. Also, to reduce the computational cost of the simulation, the wave is
propagated only over 1360 m as the maximum peak pressure has been reached before
that distance in the homogeneous case. It is therefore discretized using only 1024
points in this direction thus keeping the same axial resolution as for the homogeneous
case. The turbulent conditions chosen for this study are similar to the ones selected in
the Sec. 4.5 of the previous chapter. The turbulent velocity fluctuations are considered
frozen and are generated as explained in Sec. 4.3. The outer scale of the vortices L0

is 100 meters and the turbulent intensity following a von Kármán spectrum is set to a
high value σv = 2m.s-1. Thermal turbulence is not considered here: c′

0 = 0.

5.3.2 Caustic stability

Fig. 5.8 presents the peak overpressure along the propagation. On the top, the homo-
geneous case is reproduced while on the bottom, the peak overpressure in the central
plane maxτ (P (x, y, z0 = 0, τ)) is plotted. Similarly to the plane wave and shadow zone
analysed in Chapter 4, the turbulence creates multiple random focusing and defocus-
ing areas. Nevertheless, the main focal spot remains clearly identifiable in the vicinity
of the unperturbed one. Turbulence shifts the position of the focal area randomly,
changes its amplitude and its width. Fig. 5.9, shows the positive peak overpressure
in the transverse plane (y, z) at the propagation distance x0 = 1360 m (end of the
numerical domain): maxτ (P (x0, y, z, τ)). The position of the wavefront focusing is
clearly shown to stay localized around the line y = 0. Turbulence is therefore inducing
significant random variations of the peak overpressure in terms of both amplitude and
axial position but it is only slightly shifting the position of the focus in the y transverse
direction and preserves the existence of the caustic.

Wavefront folding in the turbulent case is illustrated by Fig. 5.10 for 6 different
distances x in the central plane z = 0. Compared to the homogeneous case, one
observes that the overall shape of the wavefront is conserved. Folding still begins to
occur mostly beyond the geometrical focus x = 540 m and further develops. This
therefore numerically confirms the structural stability of the caustic. Nevertheless,
due to turbulence, additional random focusing are visible at various positions. So one
can say that the process of weaker random focusing due to turbulence superimposes
to the main geometrical focusing process.

Fig. 5.11 presents some temporal signals and their spectra. First the input N-
wave signal is presented at the top. Its spectrum is classical with a cut-off at around
3000 Hz (not shown here) below the theoretical cut-off of the mesh. Then, a signal
outside the focal area is presented in the turbulent case. It appears as a rounded N-
wave with small perturbations localized just after the head and tail shocks. Regarding
the signal spectrum, some frequencies are enhanced while others are lessened due
to constructive or destructive interferences resulting from random scattering. These
features are identical to those detailed in Chapter 4. The third signal extracted is at the
focus for the homogeneous medium. It exhibits the characteristic U shape associated
to shock wave focusing. Its spectrum is similar to the N-wave one, only being globally
increased for all frequencies because of amplification. Finally the signal at the focal
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Figure 5.8: Maximum positive peak pressure (color level in Pa) along the propagation.
Top: no turbulence, bottom, one realization of turbulence.
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Figure 5.9: Maximum positive peak pressure (color level in Pa) in a transverse plane.
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Figure 5.10: Pressure field in the (τ, y) plane. Extracted at a distance of propagation
(from left to right and top to bottom): 0 m, 270 m, 540 m, 815 m, 1085 m and 1360
m.
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point in a turbulent medium is shown (point of maximum amplitude in the central
plane z = 0). The U-wave shape is again retrieved, turbulence having little effects
on this signal: only small high frequencies ripples are visible. Let us nevertheless
recall that the position of this focus (mainly the axial one) and the peak overpressure
are strongly influenced by turbulence. Accordingly, the spectra is weakly modified
compared to the homogeneous focus.

Thus by observing the peak overpressure maps, the wavefronts and some temporal
waveforms, one can conclude that the characteristics of the caustic in an homogeneous
medium persist in the turbulent case. In particular, the focusing still takes place along
a line near the axis y = 0, main wavefront folding persists and the typical U-shaped
waveforms are retrieved at the focus. Consequently, at least for the parameters chosen
for this computation, the caustic remains stable. Nevertheless turbulence strongly
influences the axial position of the focus and its amplitude, and adds local random
focusing processes to the geometrical one.

5.3.3 Statistical analysis

In the previous section, the caustic has been shown to keep stable in a turbulent
medium even though it is not unaffected. Now the effects of the turbulence on some of
the caustic characteristic are synthesised statistically. With this in view, the third z
direction of the simulation is used to performs statistics. This is possible because the
homogeneous problem is invariant in this direction.

Peak pressure along the propagation

The main characteristic of the caustic investigated here is the peak pressure am-
plitude as caustics are defined as amplitude singularities for geometrical acoustics.
The average peak pressure is computed as the mean along the transverse direction
z of the maximum peak overpressure for each propagation distance x: 〈P 〉z(x) =
meanz(maxy,τ (P (x, y, z, τ))). This quantity is plotted on Fig. 5.12 as the black dotted
line. It is observed that this average peak pressure has a shape globally similar to the
homogeneous case (black solid line). It increases up to the geometrical focus around
550m. Then it keeps more or less constant over the numerical domain. It is likely to
decrease at larger distances which are outside the numerical domain. Compared to the
homogeneous case the pre-focus growth is larger due to the multiple turbulent focusing.
Also the corresponding standard deviation (red dotted line) has the same behaviour as
the average: increasing up to geometrical focus before reaching a plateau. Note that
we are not absolutely sure at present stage that the beginning of the plateau around
the geometrical focus is not linked to the probability of occurrence of the first caus-
tic. It is interesting to note that along the propagation, the maximum peak pressure
Pmax(x) = maxy,z,τ (P (x, y, z, τ)) in a turbulent field (green solid line) is always much
higher than for the homogeneous case and can reach really high amplitude: more than
twice the homogeneous case value. Again, the overall maximum is maxx(Pmax(x)) is
reached near the geometrical focus.
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Figure 5.11: Some signals (left) and their spectra (right). From top to bottom (i) input
N-wave, (ii) rounded N-wave outside focal spot, (iii) nonlinear focused signal (maxi-
mum amplitude) for the nonturbulent case, (iv) nonlinear focused signal (maximum
amplitude) for the turbulent case in the central plane.
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Figure 5.12: Evolution of peak overpressure statistics along the propagation. :
homogeneous case, : average peak pressure, : standard deviation peak
pressure, : maximum peak pressure.
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Figure 5.13: Evolution of the focal width along the propagation. : homogeneous
case, : average peak pressure, : standard deviation peak pressure

Focal width

Another interesting characteristic of the caustic is the width in the transverse direction
y of the focal area along the propagation distance x. In this study we define it as
the width W (x, z) of the area over which the peak overpressure maxτ (P (x, y, z, τ)) is
higher than the half of the maximum peak overpressure maxy,τ (P (x, y, z, τ)). It is then
averaged over the z direction to obtain 〈W 〉z(x). The evolution of this average width
along the propagation is observable on Fig. 5.13. In the homogeneous medium (solid
black line), it is equal to the size of the domain as long as there is no focusing. Then it
reaches its minimum value near the focal point before slowly increasing. The behaviour
is similar in the turbulent case (dashed black line) but occurs sooner because of random
focusing. Again the minimum value is close to the geometrical focus. Beyond it, its
value is very similar to the homogeneous case indicating again a weak sensitivity to
turbulence in the transverse direction. The standard deviation increases rapidly in the
early stage when focusing is only due to the turbulence and then decreases rapidly
before reaching a plateau of about 30 m.
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Figure 5.14: Distribution of the focal position (xf (z), yf (z)). Each point corresponds
to one z value. See text for legend of ellipses.

Focus position

The last characteristic of the caustic examined in the present work is the focus posi-
tion. Here, the focus is defined as the position (xf (z), yf (z)) of the maximum peak
overpressure in a given plane z = cte. An example for plane z = 0 is given on Fig. 5.8
with the corresponding focused signal shown on Fig. 5.11 (last line). For each plane
defined by a given z value this position is reported on Fig. 5.14. The variations of
focal position in the transverse direction y turn out small: always less than ±20 m
away from its position in the homogeneous medium. This confirms statistically our
previous observations from Figs. 5.8 and 5.9 according to which caustics slightly move
away in the transverse direction y. On the contrary, in the propagation direction x,
the variation is quite large with values comprised in a range of 1000 m. The mean
axial position is 888 m with a standard deviation 258 m. Note that this mean value
is shifted backward compared to the homogeneous case but is nevertheless not equal
to the geometrical focus position. Ellipses representing the average distance in both
directions from the focal point in a homogeneous medium (elongated dark pink ellipse)
and 3 times its variance (light pink ellipse) are also shown on this figure.
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5.4 Conclusion

A numerical study about the structural stability of a nonlinear cusped caustic has
been performed by propagating a rippled wavefront in a turbulent medium. To achieve
this goal, tools developed in the thesis: FLHOWARD 3D and synthesis of turbulent
field, were used. First, the caustic formation in a homogeneous medium was studied
in the linear and nonlinear regimes. It enabled us to qualitatively validate the use
of the FLHOWARD method for this study. Then the caustic stability relative to a
random perturbation is established for the chosen parameters: the cusped focusing
process is shown to persist in the turbulent medium. Finally, a statistical study was
performed on three parameters of the caustic: amplitude, width and position. In terms
of amplitude, pressure amplification occurs sooner compared to the unperturbed case
up to the geometrical focus. Mean value of the peak overpressure keeps comparable
to the homogeneous case but with a high variability. Focus position turns out to vary
mostly in the axial direction.
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Chapter 6

Conclusion and Perspective

6.1 Conclusion

In this thesis, an original three-dimensional one-way method to model and simulate the
nonlinear propagation of acoustic shock waves in the atmosphere has been developed.
It relies on a scalar wave equation which includes diffraction, flow and heterogeneities
effects, nonlinearity, thermoviscous absorption and molecular relaxation. The model
strives to be as high order as possible while remaining computationally tractable. To
do so, its numerical resolution relies on the fractional step method which permits
to solve different simpler problems using algorithms that are as efficient as possible.
When possible, spectral or analytical solutions are employed. For the other terms,
finite differences method is used. To remain consistent, both the finite differences and
split-step schemes are of second order accuracy. To asses the validity and accuracy of
the resulting FLHOWARD3D software, its dispersion relation, including the split-step
scheme, was established and shown to be exact up to order M2

0 k̄z
4

so of second order
relative to the flow Mach number M0 and fourth order relative to the propagation
angle measured by the dimensionless wavenumber k̄z. Rigid ground and free field
boundary conditions have been implemented. The algorithm is implemented for high
performance computing on distributed memory architecture.

In Chapter 3, FLHOWARD3D has been validated using quantitative test cases
covering all involved operators and boundary conditions. All validations turned out to
be satisfactory even in cases were the model equation is beyond its theoretical range
of validity. The parallelization performance tests showed also satisfying behaviour for
both weak and strong scaling. This allows us to target numerical domains of the order
of a few billion points necessary for contemplated sonic boom applications. Along to
the establishment of dispersion relations, the waveguide test case helps us to choose
the model level of accuracy. It is more precise numerically to take into account only
the linear effect of flow motion and neglect quadratic convection terms. Also, there is
little benefit to include some coupling terms (described by operators H2 or H(s)

2 ) which
especially include the effect of flow gradients. In some cases, omitting this coupling
operator even significantly reduces the numerical error. The case of wave scattering by
a vortex confirms these observations and also shows that the transverse components
of the flow motion have little effect on the wave diffraction pattern. Thus, only the
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simplest operator (H(s)
1 ) was considered for heterogeneous and flow effects in the rest

of the thesis.
Chapter 4 is dedicated to quantify the effects of turbulence in the atmospheric

boundary layer on sonic boom. This analysis has been performed for ATLLAS II
hypersonic configuration. Using aerodynamic data provided by ONERA, the overall
sonic boom carpet was quantified using a standard nonlinear ray tracing method. For
the considered configuration, it leads to a sonic boom slightly lower than Concorde’s
one in terms of peak overpressure, of longer duration and with a much larger carpet
because of highest speed and flight altitude. The tool developed in the first two chap-
ter, FLHOWARD3D software, has been applied to evaluate the effect of atmospheric
turbulence on sonic boom propagation. Two cases were investigated: (i) ground track
sonic boom in cruise conditions, (ii) sonic boom penetration into the lateral shadow
zone. The first case provides information on the global annoyance caused by sonic
boom, while the second one precises the geographical extent of the boom. For un-
dertrack boom, a statistical study is performed for two intensities of turbulence. For
a high intensity of turbulence, the mean peak pressure is shown to increase before
reaching a plateau and then decreases. This behaviour differs from the one observed
for laboratory scale experiments. This difference is explained by the fact that, at boom
scale, absorption and nonlinear effects are much weaker and the wavelength to integral
length scale ratio is larger by one order of magnitude. For a low turbulence intensity,
average peak overpressure nearly remains unchanged. For both turbulence intensities,
the standard deviation is relatively high, indicating that there is a high probability
of enhanced peak pressure. Peak overpressure statistical distribution follow a gamma
distribution thus confirming observations from laboratory scale experiments. For the
second case of propagation in the shadow zone, in the non turbulent case, the expo-
nential wave decay associated to creeping waves penetration is recovered along with
formation of a caustic in altitude. The turbulent case quantifies the effects of ran-
dom scattering. A statistical analysis for various turbulence intensities shows that the
mean peak pressure slightly increases, with a variability augmenting with turbulence
intensity. As a conclusion for ATLLAS II configuration, turbulence is not decreasing
the sonic boom impact as could have been thought a priori. This is due to the specific
low-frequency waveform generated by the ATLLAS II configuration. Turbulence sta-
tistically leads to an enhanced mean peak pressure on the ground with a probability
of occurrence of amplitudes up to twice the unperturbed signal.

Finally, the structural stability of a nonlinear cusped caustic has been investigated
numerically by propagating a rippled wavefront in a turbulent medium. First, the
caustic formation in a homogeneous medium was studied in the linear and nonlinear
regimes. It enabled us to qualitatively validate the use of the FLHOWARD3D method
for this study. Then the caustic stability relative to a random kinematic perturbation is
established for the chosen parameters: the cusped focusing process is shown to persist
in the turbulent medium. Finally, a statistical study was performed on three param-
eters of the caustic: amplitude, width and position. In terms of amplitude, pressure
amplification occurs sooner compared to the unperturbed case up to the geometrical
focus. Mean value of the peak overpressure keeps comparable to the homogeneous case
but with a high variability. Focus position turns out to vary mostly along the axial
direction.
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6.2 Perspective

New development could be added to the FLHOWARD3D software. One of the major
assumptions in the method is that the ground is plane and perfectly reflecting. Rely-
ing on previous works performed for the electromagnetic split-step Fourier parabolic
equation [51], a finite impedance model could be implemented by mixing cosine and
sine transforms. Also topography could be implemented first by knife-edge diffrac-
tion, which is a zeroth order approximation but has shown satisfying results [53, 52].
Performances of the code could be increased by adapting the parallelization so as to
run FLHOWARD3D on several thousands of cores. With this in view, a 2D domain
decomposition could be used instead of the present 1D one. This has been shown to
be a viable way to improve scaling [102] for FFT dominated algorithms. An other
possible development could be to modify the method by replacing plane wave retarded
time by cylindrical or spherical retarded times so as to better follow wavefronts for line
or point sources.

During the study of ATLLAS II sonic boom propagation in the Planetary Boundary
Layer, an increase of the mean peak overpressure was outlined. This was assumed to
be due to the ratio between acoustic wavelength and integral scale of turbulence,
which was quite high here compared to previous studies. An investigation of the
effect of the size of the heterogeneities would be needed to better understand this
phenomenon. Also, the temporal mesh in this study was not fine enough to obtain
fully converged results for rise time and to allow the computation of sonic boom metrics.
Thus performing the same study on finer meshes especially for time variable, would be
interesting. For sonic boom, it is needed to investigate other aircraft configurations:
for low boom design, the waveform is shaped so as to be less annoying. Effects of
atmospheric turbulence on this kind of pressure signals is currently unknown [122]
and would deserve further investigations. Comparison with flight test campaigns is
an indispensable step to fully qualify the present method. Sensitivity of the boom
variability to the turbulence model remains an unexplored issue, in particular effects
of PBL inhomogeneity and anisotropy. The outlined gamma distribution for pressure
characterised by only two parameters, could be used as a starting point for model
reduction, quantifying the dependence of these parameters relative to turbulence and
waveform characteristics. The present study about caustic stability could be applied
to sonic boom focusing resulting from transonic acceleration, which remains one of the
main obstacles to overland supersonic flight. Also, FLHOWARD3D capabilities are
planned to be applied to other acoustical shock waves studies, in particular resulting
from geophysical sources.
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Appendix A

Flhoward equation

Details of the development of the Eq. 2.5 is presented. It is recalled that the goal is
to obtain an equation that can be numerically solved using a one-way method. First
Eq. 2.5 is recalled:

1
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It is written in the form of an homogeneous wave equation with a perturbation term
to become Eq. 2.6.

To do this, each term is developed. For the convective derivative:
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Since V0z = 0 et V0 = V0(z), then:
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The same procedure is applied to the integral:
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∫ t
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Developing this equation gives:
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Now the same work is done on:
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First, it is written in perturbation form using:
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0. (A.7)
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For the turbulent fluctuations:
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The nonlinear and absorption terms remain the same and finally it gives the per-
turbation term:
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A.1 Retarded time

To allow for a one way numerical resolution, retarded time τ = t− x/c̄0 is introduced:
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A.2 Wide angle parabolic approximation

Since second order derivative is not adapted to one-way method, a wide angle parabolic
approximation is applied on the perturbation term:
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So the perturbation term is now:
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A.3 Potential

To handle shocks, a pseudo-potential is introduced:
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It results in:
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Appendix B

Finite differences and
tridiagonnal system

In this appendix the term that corresponds to the coupling between diffraction, het-
erogeneities and wind for a non plane wave are numerically solved thank to finite
differences in the frequency domain. It corresponds to the following equation:

∂2φ

∂x∂τ
= −V0y

c̄0

∂2φ

∂y∂τ
+
V 2

0x

¯2c0

(
∂2φ

∂y2
+
∂2φ

∂z2

)
+
V0xV0y

c̄0

(
1
c̄0

∂2φ

∂τ∂y
− ∂2φ

∂x∂y

)
−
V 2

0y

¯2c0

∂2φ

∂y2

+c̄0V0x

∫ τ

−∞

∂3φ

∂x∂z2
dτ ′ − c̄0

∫ τ

−∞

∂

∂z

[
V0x

∂2φ

∂x∂z

]
dτ ′

+c̄0V0y

∫ τ

−∞

∂3φ

∂y∂z2
dτ ′ − c̄0

∫ τ

−∞

∂

∂z

[
V0y

∂2φ

∂y∂z

]
dτ ′

+
d

dz

[
V0x

∂φ

∂z

]
− V0x

∂2φ

∂z2
− c̄0

2ρ0

(
∂

∂y

[
ρ0
∂φ

∂y

]
+

∂

∂z

[
ρ0
∂φ

∂z

])

+
c̄0

2

(
∂2φ

∂y2
+
∂2φ

∂z2

)
(B.1)

First, we go to the frequency space. For the sake of simplicity, the index corre-
sponding to the frequency will be ignored in the following.

iω
∂φ̂

∂x
= −iωV0y

c̄0

∂φ̂

∂y
+
V 2

0x

¯2c0

(
∂2φ̂

∂y2
+
∂2φ̂

∂z2

)
+
V0xV0y

c̄0

(
iω

c̄0

∂φ̂

∂y
− ∂2φ̂

∂x∂y

)
−
V 2

0y

¯2c0

∂2φ̂

∂y2

+
c̄0V0x

iω

∂3φ̂

∂x∂z2
− c̄0

iω

∂

∂z

[
V0x

∂2φ̂

∂x∂z

]

+
c̄0V0y

iω

∂3φ̂

∂y∂z2
− c̄0

iω

∂

∂z

[
V0y

∂2φ̂

∂y∂z

]

+
d

dz

[
V0x

∂φ̂

∂z

]
− V0x

∂2φ̂

∂z2
− c̄0

2ρ0

(
∂

∂y

[
ρ0
∂φ̂

∂y

]
+

∂

∂z

[
ρ0
∂φ̂

∂z

])

+
c̄0

2

(
∂2φ̂

∂y2
+
∂2φ̂

∂z2

)
. (B.2)
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The following numerical schemes are used:

∂φ̂

∂x
=
φ̂i

j,k − φ̂i−1
j,k

∆x
(B.3)

∂φ̂

∂y
= θ

φ̂i
j+1,k − φ̂i

j−1,k

2∆y
+ (1 − θ)

φ̂i−1
j+1,k − φ̂i−1

j−1,k

2∆y
(B.4)

∂φ̂

∂z
= θ

φ̂i
j,k+1 − φ̂i

j,k−1

2∆z
+ (1 − θ)

φ̂i−1
j,k+1 − φ̂i−1

j,k−1

2∆z
(B.5)

∂2φ̂

∂y2
= θ

φ̂i
j+1,k − 2φ̂i

j,k + φ̂i
j−1,k

(∆y)2
+ (1 − θ)

φ̂i−1
j+1,k − 2φ̂i−1

j,k + φ̂i−1
j−1,k

(∆y)2
(B.6)

∂2φ̂

∂z2
= θ

φ̂i
j,k+1 − 2φ̂i

j,k + φ̂i
j,k−1

(∆z)2
+ (1 − θ)

φ̂i−1
j,k+1 − 2φ̂i−1

j,k + φ̂i−1
j,k−1

(∆z)2
(B.7)

∂2φ̂

∂x∂y
=
φ̂i

j+1,k − φ̂i
j−1,k − φ̂i−1

j+1,k + φ̂i−1
j−1,k

2∆x∆y
(B.8)

∂3φ̂

∂x∂z2
=
φ̂i

j,k+1 − 2φ̂i
j,k + φ̂i

j,k−1 − φ̂i−1
j,k+1 + 2φ̂i−1

j,k − φ̂i−1
j,k−1

∆x∆z2
(B.9)

∂3φ̂

∂y∂z2
= θ

φ̂i
j+1,k+1 − 2φ̂i

j+1,k + φ̂i
j+1,k−1 − φ̂i

j−1,k+1 + 2φ̂i
j−1,k − φ̂i

j−1,k−1

2∆y∆z2

+ (1 − θ)
φ̂i−1

j+1,k+1 − 2φ̂i−1
j+1,k + φ̂i−1

j+1,k−1 − φ̂i−1
j−1,k+1 + 2φ̂i−1

j−1,k − φ̂i−1
j−1,k−1

2∆y∆z2
.(B.10)

Due to the conservative form, the following terms cannot be discretized using clas-
sical schemes while allowing the resolution of a tridiagonal sytem of equation. Instead,
half-point schemes [60] are used.

∂

∂z

[
V0x

∂2φ̂

∂x∂z

]
=

V i
0x k+1/2

∆x∆z2

(
φ̂i

j,k+1 − φ̂i
j,k − φ̂i−1

j,k+1 + φ̂i−1
j,k

)

−
V i

0x k−1/2

∆x∆z2

(
φ̂i

j,k − φ̂i
j,k−1 − φ̂i−1

j,k + φ̂i−1
j,k−1

)
(B.11)

∂

∂z

[
V0y

∂2φ̂

∂y∂z

]
= θ

V i
0y k+1/2

2∆y∆z2

(
φ̂i

j+1,k+1 − φ̂i
j+1,k − φ̂i

j−1,k+1 + φ̂i
j−1,k

)

− θ
V i

0y k−1/2

2∆y∆z2

(
φ̂i

j+1,k − φ̂i
j+1,k−1 − φ̂i

j−1,k + φ̂i
j−1,k−1

)

+ (1 − θ)
V i−1

0y k+1/2

2∆y∆z2

(
φ̂i−1

j+1,k+1 − φ̂i−1
j+1,k − φ̂i−1

j−1,k+1 + φ̂i−1
j−1,k

)

− (1 − θ)
V i−1

0y k−1/2

2∆y∆z2

(
φ̂i−1

j+1,k − φ̂i−1
j+1,k−1 − φ̂i−1

j−1,k + φ̂i−1
j−1,k−1

)
(B.12)
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∂

∂z

(
V0x

∂φ̂

∂z

)
= θ

[
V0 k+1/2

∆z2

(
φ̂i

j,k+1 − φ̂i
j,k

)
−
V0 k−1/2

∆z2

(
φ̂i

j,k − φ̂i
j,k−1

)]

+ (1 − θ)
[
V0 k+1/2

∆z2

(
φ̂i−1

j,k+1 − φ̂i−1
j,k

)
−
V0 k−1/2

∆z2

(
φ̂i−1

j,k − φ̂i−1
j,k−1

)]
.(B.13)

∂

∂y

(
ρ0
∂φ̂

∂y

)
= θ

[
ρ0 j+1/2,k

∆y2

(
φ̂i

j+1,k − φ̂i
j,k

)
−
ρ0 j−1/2,k

∆y2

(
φ̂i

j,k − φ̂i
j−1,k

)]

+ (1 − θ)
[
ρ0 j+1/2,k

∆y2

(
φ̂i−1

j+1,k − φ̂i−1
j,k

)
−
ρ0 j−1/2,k

∆y2

(
φ̂i−1

j,k − φ̂i−1
j−1,k

)]
(B.14)

∂

∂z

(
ρ0
∂φ̂

∂z

)
= θ

[
ρ0 j,k+1/2

∆z2

(
φ̂i

j,k+1 − φ̂i
j,k

)
−
ρ0 j,k−1/2

∆z2

(
φ̂i

j,k − φ̂i
j,k−1

)]

+ (1 − θ)
[
ρ0 j,k+1/2

∆z2

(
φ̂i−1

j,k+1 − φ̂i−1
j,k

)
−
ρ0 j,k−1/2

∆z2

(
φ̂i−1

j,k − φ̂i−1
j,k−1

)]
.(B.15)

All this scheme are of second order accuracy in y and z. In the propagation direction
x, a Crank-Nicolson scheme (θ = 1/2) is used. It is of second order while remaining
unconditionally stable which allows to have the same size of step as the others part of
the algorithm. This scheme results in the solving of a tridiagonal linear system. This
is done using the Thomas algorithm [150] which is really efficient.

Note: if V0x or V0y has no index, it is implicitly the k index. In the following, the
cross derivative terms (of higher orders) are neglected. It allows the use of the Alter-
nating Direction Implicit (ADI) method [110]. ADI is part of the splitting methods. It
consist in splitting the equation in the two directions so that two "small" tridiagonal
linear system are solved instead of one "big" sparse system.
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Beginning with the z-direction:

φ̂i−1
j,k−1

(
c̄0V0x

ω2∆z2
−
c̄0V0x j,k−1/2

ω2∆z2

)

− φ̂i−1
j,k−1(1 − θ)

(
− ∆xV 2

0x

2ic̄0ω∆z2
+

∆xV0x

iω∆z2
+
c̄0ρ0k−1/2∆x

2iρ0ω∆z2
− ∆xc̄0

2iω∆z2
−
V0xj,k−1/2∆x

iω∆z2

)

+ φ̂i−1
j,k

(
1 − 2c̄0V0x

ω2∆z2
+
c̄0V0x j,k−1/2

ω2∆z2
+
c̄0V0x j,k+1/2

ω2∆z2

)

− φ̂i−1
j,k (1 − θ)

(
∆xV 2

0x

ic̄0ω∆z2
− 2∆xV0x

iω∆z2
+
V0xk−1/2∆x

iω∆z2
+
V0xk+1/2∆x

iω∆z2

)

− φ̂i−1
j,k (1 − θ)

(
−
c̄0ρ0j,k+1/2∆x

2iρ0ω∆z2
−
c̄0ρ0j,k−1/2∆x

2iρ0ω∆z2
+

∆xc̄0

iω∆z2

)

+ φ̂i−1
j,k+1

(
c̄0V0x

ω2∆z2
−
c̄0V0x j,k+1/2

ω2∆z2

)

− φ̂i−1
j,k+1(1 − θ)

(
− ∆xV 2

0x

2ic̄0ω∆z2
+

∆xV0x

iω∆z2
+
c̄0ρ0j,k+1/2∆x

2iρ0ω∆z2
− ∆xc̄0

2iω∆z2
−
V0xk+1/2∆x

iω∆z2

)

= φ̂i
j,k−1

(
c̄0V0x

ω2∆z2
−
c̄0V

i
0x k−1/2

ω2∆z2

)

+ φ̂i
j,k−1θ

(
− ∆xV 2

0x

2ic̄0ω∆z2
+

∆xV0x

iω∆z2
+
c̄0ρ0j,k−1/2∆x

2iρ0ω∆z2
− ∆xc̄0

2iω∆z2
−
V0xk−1/2∆x

iω∆z2

)

+ φ̂i
j,k

(
1 − 2 ¯c0V0x

ω2∆z2
+
c̄0V

i
0x k+1/2

ω2∆z2
+
c̄0V

i
0x k−1/2

ω2∆z2

)

+ φ̂i
j,kθ

(
∆xV 2

0x

ic̄0ω∆z2
− 2∆xV0x

iω∆z2
+
V0xk−1/2∆x

iω∆z2
+
V0xk+1/2∆x

iω∆z2

)

+ φ̂i
j,kθ

(
−
c̄0ρ0j,k+1/2∆x

2iρ0ω∆z2
−
c̄0ρ0j,k−1/2∆x

2iρ0ω∆z2
+

∆xc̄0

iω∆z2

)

+ φ̂i
j,k+1

(
¯c0V0x

ω2∆z2
−
c̄0V

i
0x k+1/2

ω2∆z2

)

+ φ̂i
j,k+1θ

(
− ∆xV 2

0x

2ic̄0ω∆z2
+

∆xV0x

iω∆z2
+
c̄0ρ0k+1/2∆x

2iρ0ω∆z2
− ∆xc̄0

2iω∆z2
−
V0xj,k+1/2∆x

iω∆z2

)
.(B.16)

This equation take the form of the following linear system:

A · u = q (B.17)
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where A is the tridiagonal matrix:

A =




aj,0 cj,0 0 . . . . . . . . . 0

bj,1
. . . . . . . . .

...

0
. . . . . . . . . . . .

...
...

. . . bj,k aj,k cj,k
. . .

...
...

. . . . . . . . . . . . 0
...

. . . bj,nz−2 aj,nz−2 cj,nz−2

0 . . . . . . . . . 0 bj,nz−1 aj,nz−1




. (B.18)

Its coefficients are given by:

aj,k = 1 +
c̄0

ω2∆z2

[
−2V0x + V i

0x k+1/2 + V i
0x k−1/2

]

+
iθ∆x
ω∆z2

[
−V 2

0x

c̄0
+ 2V0x +

c̄0ρ0j,k+1/2

2ρ0
+
c̄0ρ0j,k−1/2

2ρ0
− c̄0 − V0xk+1/2 − V0xk−1/2

]

(B.19)

bj,k =
c̄0

ω2∆z2

[
V0x − V0x k−1/2

]

+
iθ∆x
ω∆z2

[
V 2

0x

2c̄0
− V0x −

c̄0ρ0j,k−1/2

2ρ0
+
c̄0

2
+ V0xk−1/2

]
, (B.20)

cj,k =
c̄0

ω2∆z2

[
V0x − V0x k+1/2

]

+
iθ∆x
ω∆z2

[
V 2

0x

2c̄0
− V0x −

c̄0ρ0j,k+1/2

2ρ0
+
c̄0

2
+ V0xk+1/2

]
. (B.21)

q coefficients are:

qj,k = φ̂i−1
j,k−1

c̄0

ω2∆z2

[
V0x − V0x j,k−1/2

]

− φ̂i−1
j,k−1

(1 − θ)i∆x
ω∆z2

[
V 2

0x

2c̄0
− V0x −

c̄0ρ0j,k−1/2

2ρ0
+
c̄0

2
+ V0xk−1/2

]

+ φ̂i−1
j,k

[
1 +

c̄0

ω2∆z2

(
−2V0x + V0x j,k−1/2 + V0x j,k+1/2

)]

− φ̂i−1
j,k

(1 − θ)i∆x
ω∆z2

[
−V 2

0x

c̄0
+ 2V0x − V0xk+1/2 − V0xk−1/2

]

− φ̂i−1
j,k

(1 − θ)i∆x
ω∆z2

[
+
c̄0ρ0j,k+1/2

2ρ0
+
c̄0ρ0j,k−1/2

2ρ0
− c̄0

]

+ φ̂i−1
j,k+1

c̄0

ω2∆z2

[
V0x − V0x j,k+1/2

]

− φ̂i−1
j,k+1

(1 − θ)i∆x
ω∆z2

[
+
V 2

0x

2c̄0
− V0x −

c̄0ρ0j,k+1/2

2ρ0
+
c̄0

2
+ V0xk+1/2

]
. (B.22)
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Now on the y directions:

φ̂i−1
j−1,k

(
− V0xV0y

2iωc̄0∆y

)

− φ̂i−1
j−1,k(1 − θ)

(
− ∆xV 2

0x

2ic̄0ω∆y2
− ∆xV0y

2c̄0∆y
+
V0xV0y∆x

2∆yc̄0
2 +

V 2
0y∆x

2ic̄0ω∆y2

)

− φ̂i−1
j−1,k(1 − θ)

(
+
c̄0ρ0j−1/2,k∆x

2iρ0ω∆y2
− ∆xc̄0

2iω∆y2

)

+ φ̂i−1
j,k

− φ̂i−1
j,k (1 − θ)

(
∆xV 2

0x

ic̄0ω∆y2
−

V 2
0y∆x

ic̄0ω∆y2
−
c̄0ρ0j+1/2,k∆x

2iρ0ω∆y2
−
c̄0ρ0j−1/2,k∆x

2iρ0ω∆y2
+

∆xc̄0

iω∆y2

)

+ φ̂i−1
j+1,k

(
V0xV0y

2iωc̄0∆y

)

− φ̂i−1
j+1,k(1 − θ)

(
− ∆xV 2

0x

2ic̄0ω∆y2
+

∆xV0y

2c̄0∆y
− V0xV0y∆x

2∆yc̄0
2 +

V 2
0y∆x

2ic̄0ω∆y2

)

− φ̂i−1
j+1,k(1 − θ)

(
+
c̄0ρ0j+1/2,k∆x

2iρ0ω∆y2
− ∆xc̄0

2iω∆y2

)

= φ̂i
j−1,k

(
− V0xV0y

2iωc̄0∆y

)

+ φ̂i
j−1,kθ

(
− ∆xV 2

0x

2ic̄0ω∆y2
− ∆xV0y

2c̄0∆y
+
V0xV0y∆x

2∆yc̄0
2 +

V 2
0y∆x

2ic̄0ω∆y2

)

+ φ̂i
j−1,kθ

(
+
c̄0ρ0j−1/2,k∆x

2iρ0ω∆y2
− ∆xc̄0

2iω∆y2

)

+ φ̂i
j,k

+ φ̂i
j,kθ

(
∆xV 2

0x

ic̄0ω∆y2
−

V 2
0y∆x

ic̄0ω∆y2
−
c̄0ρ0j+1/2,k∆x

2iρ0ω∆y2
−
c̄0ρ0j−1/2,k∆x

2iρ0ω∆y2
+

∆xc̄0

iω∆y2

)

+ φ̂i
j+1,k

(
V0xV0y

2iωc̄0∆y

)

+ φ̂i
j+1,kθ

(
− ∆xV 2

0x

2ic̄0ω∆y2
+

∆xV0y

2c̄0∆y
− V0xV0y∆x

2∆yc̄0
2 +

V 2
0y∆x

2ic̄0ω∆y2

)

+ φ̂i
j+1,kθ

(
+
c̄0ρ0j+1/2,k∆x

2iρ0ω∆y2
− ∆xc̄0

2iω∆y2

)
. (B.23)

A coefficients are:

aj,k = 1 +
iθ∆x
ω∆y2

(
−V 2

0x

c̄0
+
V 2

0y

c̄0
+
c̄0ρ0j+1/2,k

2ρ0
+
c̄0ρ0j−1/2,k

2ρ0
− c̄0

)
, (B.24)



127

bj,k =
V0y

2c̄0∆y

(
iV0x

ω
− θ∆x+

θV0x∆x
c̄0

)

+
iθ∆x

2ω∆y2

(
V 2

0x

c̄0
−
V 2

0y

c̄0
−
c̄0ρ0j−1/2,k

ρ0
+ c̄0

)
(B.25)

cj,k =
V0y

2c̄0∆y

(
− iV0x

ω
+ θ∆x− θV0x∆x

c̄0

)

+
iθ∆x

2ω∆y2

(
V 2

0x

c̄0
−
V 2

0y

c̄0
−
c̄0ρ0j+1/2,k

ρ0
+ c̄0

)
(B.26)

q coefficients are:

qj,k = φ̂i−1
j−1,k

V0y

2c̄0∆y

(
iV0x

ω
+ (1 − θ)∆x− (1 − θ)V0x∆x

c̄0

)

− φ̂i−1
j−1,k

(1 − θ)i∆x
2ω∆y2

(
V 2

0x

c̄0
−
V 2

0y

c̄0
−
c̄0ρ0j−1/2,k

ρ0
+ c̄0

)

+ φ̂i−1
j,k

[
1 − i(1 − θ)∆x

ω∆y2

(
−V 2

0x

c̄0
+
V 2

0y

c̄0
+
c̄0ρ0j+1/2,k

2ρ0
+
c̄0ρ0j−1/2,k

2ρ0
− c̄0

)]

+ φ̂i−1
j+1,k

V0y

2c̄0∆y

(
− iV0x

ω
− (1 − θ)∆x+

(1 − θ)V0x∆x
c̄0

)

− φ̂i−1
j+1,k

(1 − θ)i∆x
2ω∆y2

(
V 2

0x

c̄0
−
V 2

0y

c̄0
−
c̄0ρ0j+1/2,k

ρ0
+ c̄0

)

(B.27)
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Appendix C

Relaxation and absorption
parameters

First we introduce the new parameters: mi = 2c′

i
c0

, fi = 1
2piti

et ω2δ
2c̄0

3 = ω2tv
2c̄0

. The ISO
9613-1 norm (1993) give the following values for dioxygen :

fO =
p0

pref

[
24 + 4.04 104hm

(
0.02 + hm

0.391 + hm

)]
, (C.1)

mO = 1.3929

(
T0

Tref

)−2

e
−2239.1

T0 . (C.2)

For diazote :

fN =
p0

pref

(
T0

Tref

)−1/2

9 + 280 hm e

−4.170

[(
T0

Tref

)
−1/3

−1

]
 , (C.3)

mN = 11.667

(
T0

Tref

)−2

e
−3352.0

T0 . (C.4)

.
With pref = 1.01325 105 Pa and Tref = 293.15 K. hm is the molar concentration

of air in water vapour. It is in en percent (at the ground hm = 1%). hm is computed
using the relative humidity hr with the relation hm = hr

psat(T )
p :

psat(T ) = pref 10C(T ), (C.5)

C(T ) = −6.8346
(
Ttr

T

)(1.261)

+ 4.6151. (C.6)

Frequency for thermoviscous absorption is given by:

fv = 4.9749 108 p0
pref

Tref

T0
(C.7)

At the reference pressure and temperature, with hm = 1%, we obtain: fO = 29649 Hz,
fN = 289 Hz, fv = 497 Hz, mO = 6.71 10−4 and mN = 1.26 10−4.
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Appendix D

Analytical solution

D.1 Linear pure tone acoustic piston in an homogeneous
medium

This case is called a piston source but stricly speaking, it is not. For a piston is
the velocity is imposed on a surface whereas we use the pressure due to a simpler
implementation in the FLHOWARD method. This leads to some differences in the
analytical solution [131] [141].

We start with the Kirchhoff theorem in the frequency domain:

p̂a(x) =
∫ ∫

S0

(
p̂a(x0)

∂Ĝ(x,x0)
∂n

− Ĝ(x,x0)
∂p̂a(x0)
∂n

)
dS0 (D.1)

where p̂a(x) is the pressure at the observation point, p̂a(x0) is the pressure on the
piston, Ĝ(x,x0) is the Green function of the problem, S0 the piston surface and n the
normal to the piston. To impose the pressure condition, the Green function Ĝ(x,x0)
has to be zero over the piston surface S0. The natural choice is:

Ĝ(x,x0) = − 1
4π‖x − x1‖exp(ik‖x − x1‖) +

1
4π‖x − x2‖exp(ik‖x − x2‖) (D.2)

which is null if x1 = x2 = x0. Integral D.1 can be written:

p̂a(x) =
∫ ∫

S0

p̂a(x0)
∂Ĝ(x,x0)

∂n
dS0. (D.3)

The Green function derivative is:

∂Ĝ(x,x0)
∂z

= − z

2π
exp(ik‖x − x2‖)

‖x − x2‖3
(1 − ik‖x − x2‖). (D.4)

Thus pressure is given by:

p̂a(x) = − z

2π
p̂0

∫ 2π

0

∫ a

0

(1 − ik‖x − x2‖)
‖x − x2‖3

exp(ik‖x − x2‖)dS0. (D.5)
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The integral can be solved numerically to obtain the pressure field. Here, since the
solution is needed only on the axis we will use the cylindrical coordinates and select
only the axis to obtain:

p̂a(r) = p̂0r

(
exp(ikr)

r
− exp(ik

√
r2 − a2)√

r2 − a2

)
(D.6)

D.2 Scattering of a plane wave by a spherical heterogene-
ity

The analytical solution of Anderson [3] is briefly recalled. A spherical heterogeneity
of radius a, sound speed ch, density ρh and wavenumber kh is placed in a medium
of sound speed c0, density ρ0 and wavenumber k0. The problem is decomposed in
three wave: the incident plane wave (r > a) p0, the scattered one (r > a) psc and
the transmitted (r < a) pt with p = p0 + psc in the infinite medium. The solution is
obtained by representing these fields using spherical harmonics.

p0 = P0

∞∑

m=0

im(2m+ 1)Pm(cosθ)jm(k0r)exp(−iωt), (D.7)

psc =
∞∑

m=0

AmPm(cosθ)hm(k0r)exp(−iωt), (D.8)

pt =
∑

m = 0∞BmPm(cosθ)jm(khr)exp(−iωt), (D.9)

where Pm are the Legendre polynomials, jm the spherical Bessel functions, hm(k0r) =
jm(k0r) + inm(k0r) the spherical Hankel functions and nm the spherical Neumann
functions. To obtain Am and Bm we apply the boundary conditions on the sphere:

p0(a) + psc(a) = pt(a), (D.10)

ur,0(a) + pr,sc(a) = pr,t(a), (D.11)

with the radial velocity ur = −i/(ρc)[∂p/∂(kr)].

Am = P0i
m(2m+ 1)

st[jm(kha)αm(ka)] − jm(ka)αm(kha)
αm(kha)hm(ka) − st[αm(ka) + iβm(ka)]jm(kha)

, (D.12)

Bm =
stAm

αm(kha)
(αm(ka) + iβm(ka)) + stP0i

m(2m+ 1)
αm(ka)
αm(kha)

, (D.13)

with s = ch/c0 and t = ρh/ρ0.



Appendix E

Grid convergence for sonic boom
propagation through turbulence

The aim of this appendix is to show that the grid used for the undertrack boom compu-
tation in Sec. 4.5 is fine enough. To demonstrate this point, a second simulation with
coarser grid is performed and results are compared. The largest turbulent intensity
σu = 2 m.s-1 is chosen. In each direction(x, y, z), the number of points is divided by
2. Thus 512 points are used in each spatial direction. Statistics for the positive peak
pressure are compared for the two meshes. On Fig. E.1, the average and standard
deviation are shown to be less than 1 Pa different for the 2 meshes. This show that
positive peak pressure is converged for the fine mesh.
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Figure E.1: Average (top) and standard deviation (bottom) of the pressure along
propagation. : fine mesh, : rough mesh.



Appendix F

Effect of nonlinearity for sonic
boom propagation through
turbulence

This Appendix deals with the importance of taking into account nonlinearity for the
computation of the effect of turbulence on undertrack boom in Sec. 4.5. A computation
for the largest turbulent intensity σu = 2 m.s-1 is performed with nonlinear parameter
β set to 0 (so equivalent to linear propagation). Average and standard deviation of
the positive peak pressure are presented on Fig. F.1. For the linear computation an
increase up to 2 Pa more than the nonlinear computation is seen. One interesting result
is that most of the difference for the standard deviation is around the distance where
most of the caustics appear. In linear regime, the pressure on the caustics generated
by turbulence is theoretically infinite (see Chapter 5 for details). Thus, in linear
regime, the value of the peak overpressure strongly depends on the mesh refinement:
the finer the mesh, the higher the amplitude. This behaviour is not acceptable and
highlights why nonlinearity is needed to accurately simulate sonic boom propagation
in the planetary boundary layer.
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Figure F.1: Average (top) and standard deviation (bottom) of the pressure along
propagation. : Nonlinear (β = 1.2), : linear (β = 0).
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