
HAL Id: tel-01360945
https://theses.hal.science/tel-01360945

Submitted on 6 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Oxidation, pickling and over-pickling mechanisms of
high silicon alloyed steel grades.

Amine Alaoui Mouayd

To cite this version:
Amine Alaoui Mouayd. Oxidation, pickling and over-pickling mechanisms of high silicon alloyed steel
grades. . Chemical and Process Engineering. Université Pierre & Marie Curie - Paris 6, 2014. English.
�NNT : �. �tel-01360945�

https://theses.hal.science/tel-01360945
https://hal.archives-ouvertes.fr


 

 

Université Pierre et Marie Curie 
Spécialité: Génie des Procédés et Technologies Avancées 

Laboratoire Interfaces et Systèmes Electrochimiques 

ArcelorMittal Maizières Research SA 

Oxidation, pickling and over-pickling mechanisms of high 

silicon alloyed steel grades 

Par Amine Alaoui Mouayd 

Thèse de Doctorat 

Présentée et soutenue publiquement le 30/01/2014 

Devant un jury composé de :  

Eliane Sutter, Professeure    Directeur de thèse 

Bernard Tribollet, Directeur de recherche  Directeur de thèse 

Ricardo Nogueira, Professeur   Rapporteur 

Philippe Refait, Professeur    Rapporteur 

Farzaneh Arefi-Khonsari, Professeur   Examinateur 

Alexey Koltsov, Ingénieur-Docteur   Examinateur 

Kevin Ogle, Professeur     Examinateur 

 

 

 

 

 



2 
 

 



3 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A mes parents 
A mes deux frères 
A mes enseignants 

 



4 
 



5 
 

Remerciements 

 Je tiens à remercier mes directeurs de thèse  Eliane Sutter et Bernard Tribollet ainsi 

que  mon tuteur en entreprise Alexey Koltsov pour leur encadrement tout au long de la thèse. 

Grâce à leurs expertises complémentaires et leur générosité à me les transmettre, j’ai 

approfondi mes connaissances en métallurgie et électrochimie et surtout bien assimilé les 

approches scientifiques et industrielles lors de la rédaction des différents rapports et des 

présentations orales. 

 Je remercie chaleureusement les professeurs Ricardo Nogueira et Philippe Refait 

d’avoir accepté de juger mon travail de thèse en tant que rapporteurs et les professeurs Kevin 

Ogle et Farzaneh Arefi-Khonsari en tant qu’examinateurs. 

Je remercie ArcelorMittal et l’agence nationale de recherche et technologie pour le 

financement de ma thèse CIFRE. 

Pour la période de la thèse passée au centre de recherche « Process » d’ArcelorMittal à 

Maizières-lès-Metz, je tiens à remercier Patrick Hug, Pascal Gardin, Didier Loison et Michel 

Picard pour leur accueil dans le département « Process Engineering ». Je remercie Alexey 

Koltsov mon tuteur ainsi que les autres collègues qui ont participé dans ce travail : Michel 

Picard et Evangeline Ahtoy pour la documentations et les explications sur la partie 

« oxydation » et Sophie Jacques pour son rapport bibliographique sur la partie « décapage », 

Marie-Christine Theyssier pour sa participation dans les discussions lors des revues de projet,   

Mario Crocenzo pour la préparation des alliages, Soline de Diesbach et Patrice Alexandre 

pour l’oxydation des échantillons, Françoise Broquedis, Marie-José Cornu et Sébastien 

Cremel pour les caractérisations des échantillons, Daniel Bettinger et Christophe Mougel pour 

les mesures de rugosité, Marie-Claire Succi et Alain Galparoli pour les démarches 

administratives ainsi que tous les autres collègues qui m’ont habilité sur les différents postes 

de travail et aider d’une manière plus générale. 

Pour la période de la thèse effectuée au Laboratoire Interfaces et Systèmes 

Electrochimiques à Paris. Je voudrais remercier chaleureusement le directeur du Laboratoire 

François Huet pour son accueil, mes deux directeurs de thèse Eliane Sutter et Bernard 

Tribollet pour leur encadrement ainsi que tous les collègues du laboratoire qui ont participé à 

ce travail : Axel Desnoyer de Marbaux et Daniel Rose  pour la préparation des électrodes, 

Françoise Pillier pour les images  MEB et Damien Bricault pour l’assistance en informatique 

et tous les autres permanents du laboratoire. 



6 
 

Enfin, je n’oublierai pas de remercier les collègues avec qui j’ai sympathisé et qui 

m’ont rendu service à plusieurs reprises : Patrice, Gabriel, Abdeldjalil, Stéphane, Benjamin, 

Maryl, Karim, Fanny, Claire… du coté d’ArcelorMittal et Zineb, Mohamed, Sameer, Alain, 

Nizar, Wafaa, Yasser et les autres non permanents du laboratoire. 

I would like to thank Professor Mark Orazem for hosting me in his research team in 

the chemical engineering department of the University of Florida and his contributions to the 

interpretation of the impedance results. A special thank to Christopher for his help during my 

stay in Gainseville and to the other members of professor Orazem’s team for their sympathy. 



7 
 

Summary 

GENERAL INTRODUCTION ............................................................................................. 11 

I. LITERATURE REVIEW .................................................................................................. 15 

I. 2. Oxidation and pickling in steelmaking process ........................................................... 17 
I. 2. 1. Overview of steelmaking process ............................................................................. 17 
I. 2. 2. The hot strip mill ....................................................................................................... 18 
I. 2. 3. The pickling baths ..................................................................................................... 20 

I. 3. Oxidation of steel ............................................................................................................ 21 
I. 3. 1. Steel substrate properties .......................................................................................... 21 

I. 3. 1. 1. Low carbon steel ............................................................................................... 21 
I. 3. 1. 2. Silicon alloyed steel .......................................................................................... 21 

I. 3. 2. Oxidation conditions ................................................................................................. 21 
I. 3. 2. 1. Oxidation in the Hot Strip Mill ......................................................................... 21 
I. 3. 2. 2. Oxidation in a pilot furnace .............................................................................. 22 

I. 3. 3. Oxidation of low carbon steel ................................................................................... 23 
I. 3. 3. 1. Oxidation kinetics ............................................................................................. 23 
I. 3. 3. 2. LCS oxidation mechanism ................................................................................ 24 

I. 3. 4. Oxidation of silicon alloyed steels ............................................................................ 24 
I. 3. 4. 1. Influence of silicon on the kinetics of scale growth ......................................... 24 
I. 3. 4. 2. Influence of silicon on oxidation mechanism ................................................... 26 

I. 4. Scale and metal oxides properties ................................................................................. 27 
I. 4. 1. Hot strip mill (HSM) scales ...................................................................................... 27 

I. 4. 1. 1. Low carbon steel (LCS) scales ......................................................................... 27 
I. 4. 1. 2. Silicon alloyed steel (SiAS) scales ................................................................... 28 

I. 4. 2. Model scales .............................................................................................................. 28 
I. 4. 2. 1.  LCS model scales ............................................................................................. 28 
I. 4. 2. 2. Iron oxides properties ....................................................................................... 29 
I. 4. 2. 3. SiAS model scales ............................................................................................. 30 

I. 5. Pickling and over-pickling ............................................................................................. 32 
I. 5. 1. Pickling of hot mild steels ......................................................................................... 33 

I. 5. 1. 1. Pickling conditions ............................................................................................ 33 
I. 5. 1. 2. Influence of pickling parameters on pickling time ........................................... 34 

I. 5. 2. Pickling mechanism of low carbon steels ................................................................. 35 
I. 5. 2. 1.  Pickling steps of LCS....................................................................................... 35 
I. 5. 2. 2. Pickling reactions of LCS ................................................................................. 38 
I. 5. 2. 3. Iron oxides dissolution ...................................................................................... 40 

I. 5. 3. Effect of Silicon on pickling mechanism .................................................................. 41 

I. 5. Conclusions ...................................................................................................................... 42 

II. 1. Elaboration of steel grades samples ............................................................................. 47 
II. 1. 1 Steel chemical composition ...................................................................................... 47 
II. 2. 2. Steel grains size ....................................................................................................... 48 



8 
 

II. 2. Oxidation of steels ......................................................................................................... 48 
II. 2. 1. Oxidation experiments ............................................................................................. 48 
II. 2. 2. Oxidation methods ................................................................................................... 50 

II. 3. Scale Characterization after oxidation ........................................................................ 51 
II. 3. 1. Optical observations ................................................................................................ 51 
II. 3. 2. Spectrometric methods ............................................................................................ 51 

II. 4. Scale dissolution characterization ............................................................................... 51 
II. 4. 1. Electrochemical measurements ............................................................................... 52 

II. 4. 1. 1. Electrochemical set-up .................................................................................... 52 
II. 4. 1. 2. Electrochemical methods ................................................................................. 55 

II. 4. 2. ICP-AES setup and method ..................................................................................... 62 

II. 5. Scale characterization after pickling and over-pickling ............................................ 65 

III. OXIDATION AND SCALE CHARACTERIZATION OF SILICO N ALLOYED 
STEELS ................................................................................................................................... 67 

III. 1. Introduction ................................................................................................................. 69 

III. 2.  Steel substrate properties ........................................................................................... 70 

III. 3. Oxidation mechanisms ................................................................................................ 70 
III. 3. 1. Low carbon steel oxidation .................................................................................... 70 

III. 3. 1. 1. Oxidation kinetics .......................................................................................... 70 
III. 3. 1. 2. Oxidation mechanism ..................................................................................... 72 

III. 3. 2. Effect of Silicon content on oxidation .................................................................... 72 
III. 3. 2. 1. Oxidation kinetics .......................................................................................... 72 
III. 3. 2. 2. Oxidation mechanism ..................................................................................... 74 

III. 4. Scale characterization ................................................................................................. 75 
III. 4. 1.  Low carbon steel scale properties ......................................................................... 75 
III. 4. 2.  Silicon steel scales properties ................................................................................ 76 

III. 5.  Conclusions.................................................................................................................. 81 

IV. PICKLING AND OVER-PICKLING MECHANISMS OF LOW CA RBON STEEL.
 .................................................................................................................................................. 83 

IV. 1. Introduction .................................................................................................................. 85 

IV. 2. Model scale characteristics before pickling ............................................................... 85 

IV. 3. Electrochemical dissolution of scale ........................................................................... 86 
IV. 3. 1. Corrosion potential Ecorr ......................................................................................... 86 
IV. 3. 2. Corrosion current Icorr ............................................................................................. 87 

IV. 3. 2. 1. Tafel curves .................................................................................................... 87 
IV. 3. 2. 2. Corrosion current evolution during scale dissolution .................................... 88 

IV. 3. 3. Electrochemical Impedance Spectroscopy EIS ...................................................... 89 
IV. 3. 3. 1. EIS diagrams .................................................................................................. 89 



9 
 

IV. 3. 3. 2. Evolution of charge transfer resistance R ...................................................... 90 
IV. 3. 3. 3. Evolution of CPE parameters ......................................................................... 91 
IV. 3. 3. 4. Evolution of effective capacitance ................................................................. 92 

IV. 4. Total dissolution of scale ............................................................................................. 94 

IV. 5. Pickling and over-pickling mechanisms .................................................................... 95 
IV. 5. 1. Pickling thermodynamics ....................................................................................... 95 
IV. 5. 2. Pickling steps and reactions ................................................................................... 96 
IV. 5. 3. Over-pickling reactions .......................................................................................... 98 

IV. 6. Influence of some parameters on picking and O-P mechanism of LCS scales ...... 99 
IV. 6. 1. Scale composition and morphology ..................................................................... 100 

IV. 6. 1. 1. Influence of hematite on pickling ................................................................ 100 
IV. 6. 1. 2. Pickling of an industrial scale ...................................................................... 101 

IV. 6. 2. Influence of acid concentration ............................................................................ 102 
IV. 6. 3. Influence of pickling bath temperature ................................................................ 102 
IV. 6. 4. Influence of a cathodic applied potential ............................................................. 102 

IV. 7. Steel surface after pickling and over-pickling ......................................................... 105 
IV. 7. 1.Steel surface after insufficient pickling ................................................................ 105 
IV. 7. 2 Steel surface after long over-pickling: .................................................................. 105 

IV. 8. Conclusions ................................................................................................................. 107 

V. PICKLING AND OVER-PICKLING MECHANISMS OF HIGH SI LICON 
ALLOYED STEEL GRADES............................................................................................. 109 

V. 1. Introduction ................................................................................................................. 111 

V. 2. Model scale characteristics before pickling .............................................................. 111 

V. 3. Electrochemistry of scale dissolution ......................................................................... 113 
V. 3. 1. Corrosion potential Ecorr ........................................................................................ 113 
V. 3. 2. Corrosion current density Icorr ............................................................................... 115 

V. 3. 2. 1. Current-potential curves ................................................................................ 115 
V. 3. 2. 1. Evolution of the corrosion current density .................................................... 117 

V. 4. Total dissolution of scale ............................................................................................. 120 
V. 4. 1. Total dissolution rate (TDR) ................................................................................. 121 
V. 4. 2. Electrochemical contribution in scale dissolution ................................................. 122 

V. 5. Pickling and over-pickling (O-P) mechanism ........................................................... 122 
V. 5. 1. Pickling steps and reactions .................................................................................. 123 
V. 5. 2. Over-pickling steps and reactions ......................................................................... 123 

V. 6. Influence of some parameters on picking and O-P mechanism .............................. 125 
V. 6. 1. Scale morphology and composition ...................................................................... 126 

V. 6. 1. 1. Influence of fayalite morphology .................................................................. 126 
V. 6. 1. 2. Behaviour of industrial scale ......................................................................... 126 

V. 6. 2. Influence of pickling bath temperature ................................................................. 127 



10 
 

V. 6. 3. Influence of acid concentration ............................................................................. 128 

V. 7. Steel surface after pickling and over-pickling .......................................................... 129 
V. 7. 1. Steel surface after insufficient pickling ................................................................. 129 
V. 7. 2. Steel surface after over-pickling ............................................................................ 130 

V. 8. Conclusions .................................................................................................................. 133 

GENERAL CONCLUSION ................................................................................................ 135 

ANNEXES ............................................................................................................................. 141 

REFERENCES ..................................................................................................................... 149 
 



11 
 

General introduction 

One of the main activities of ArcelorMittal Group is the fabrication of flat carbon 

steels for the automotive industry, construction and packaging applications. Continuous 

research and development are held on the fabrication process of these steels to improve their 

quality and compatibility with the final product requirements. 

Three priorities immerge in these R&D projects: cleanness of the steel strip (reduction 

of undesirable inclusions), thermo-mechanical properties of the steel strip and physico-

chemical properties of the steel surface. 

One of the major steps in fabrication of flat carbon steel is the hot strip mill. During 

this step, steel surface is in contact with humid air at high temperatures. These conditions 

favour steel surface corrosion and the formation of an oxide layer commonly called “scale”. 

The high temperature corrosion is commonly called “Oxidation” and has a negative effect on 

the steel surface properties. 

This scale is first removed mechanically (de-scaling) then dissolved in acidic solutions 

to recover a clean and smooth steel surface and avoid defects formation and surface 

heterogeneities in the final product. This step is commonly called “Pickling” and implicates 

also “Over-pickling” which corresponds to the corrosion of the steel substrate. 

Pickling of low carbon steel grades and low alloyed steel grades is efficient in standard 

pickling lines. The empirical studies on these grades were sufficient to optimize the pickling 

process and recover a good quality surface. On fellow fundamental pickling and over-pickling 

mechanisms of these samples were proposed in the literature. 

Recently, new grades of Alloyed High Strength Steels (AHSS) were developed for 

their improved mechanical properties. These grades are highly alloyed with chemical 

elements such as silicon and aluminium forming in reheating furnace and hot strip mill mixed 

oxides at steel/scale interface and infiltrations in the steel substrate. These newly formed 

mixed oxides resist to pickling and can cause defects at steel surface if the pickling or even 

over-pickling time is not sufficient. 

The PhD is a part of a research project of ArcelorMittal Global R&D to study and 

improve the efficiency of pickling of AHSS. In parallel with more applied studies of the 

pickling process, the PhD aim was to understand the fundamentals of pickling and over-

pickling mechanisms of these steels. 
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Two representative steel grades were chosen in this work: A low carbon steel with 

very low alloying element content used as a reference and a silicon alloyed steel grade 

representing the AHSS.  

In the first chapter, an overview of the flat carbon steel fabrication process and a focus 

on the hot strip mill and pickling baths steps are developed. The literature related to oxidation 

and pickling of low carbon steel and silicon steel grades was summarized and the few 

proposed mechanisms were presented. 

In the second chapter, the different experimental set-ups and methods used in this 

work are presented. Some of these experimental protocols and methods were inspired from 

the literature and some were developed and adapted for this study. For oxidation study, scale 

growth kinetics was followed by thermo-gravimetric analysis and the resulting scale well 

characterized by crossing different high resolution techniques (scanning electrons 

microscopy, Raman spectroscopy…). For pickling and over-pickling experiments, a new 

electrode adapted for scale was developed. The pickling and over-pickling study combined, 

on one side, electrochemical methods such as open circuit potential, current-potential curves 

and electrochemical impedance spectroscopy (EIS) to quantify the electrochemical dissolution 

and model scale/solution interface, and on the other side, a total dissolution kinetic method 

using the inductively coupled plasma-atomic emission spectroscopy (ICP-AES) to evaluate 

the electrochemical and chemical contributions in pickling and over-pickling. The surface 

roughness after over-pickling was explored with interferometric analysis. 

In the third chapter, oxidation of low carbon steel and a high silicon alloyed grades at 

hot strip mill conditions was studied. Oxidation mechanisms with their kinetic and 

phenomenological aspects for both grades were proposed and compared to the literature 

where different silicon content and oxidation conditions were studied.  

 In the fourth and fifth (last) chapters, representative model and industrial scales of low 

carbon steel grades and high alloyed silicon grades with different scale compositions and 

morphologies were chosen from the samples studied in the “oxidation” part of this work to 

study their pickling and over-pickling mechanisms. 

 After the interpretation and combination of the significant results of the 

complementary experimental methods already cited, pickling and over-pickling mechanisms 

with their different aspects (phenomenology, thermodynamics, kinetics and reactions) were 

proposed for model scales and industrial scales of the chosen grades and compared with the 

literature. The effect of some pickling parameters (temperature, acid concentration and 

applied potential) on pickling and over-pickling kinetics and steel surface was also explored. 
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 In the general conclusion, the main results of this work are summarized and some 

perspectives for this research are proposed. 
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I. 1. Introduction 

The aim of this PhD is to understand the pickling mechanism and the influence of high 

silicon content in steel on both oxidation and pickling. As an industrial subject, part of related 

literature comes from steelmaking companies with a focus on technical and practical aspects 

of industrial samples.  

In this literature review, a state of the art of published works on oxidation and pickling 

is presented in three parts: 

- Industrial context of oxidation and pickling 

- Literature review on oxidation of steel 

- Literature review on pickling and over pickling 

I. 2. Oxidation and pickling in steelmaking process  

I. 2. 1. Overview of steelmaking process 

Steelmaking process is divided into two main parts: hot and cold mills. 

The hot mill starts from the raw materials and finishes at the hot coils (Figure I. 1). 

The main steps are the following: 

- Preparation of raw materials and homogenization of ores  

- Preparation of coke by coal burning 

- Elaboration of cast iron in blast furnace 

- De-sulfuration of cast iron  

- De-carburation by pure oxygen blowing 

- Continuous casting producing slabs with a typical thickness of 250 mm and a mass between 

10 to 30 t  

- Hot strip mill producing steel strips rolled in coils (thickness 1.5 to 12 mm) 

The cold factory is divided into five main parts: 

- Pickling baths: remove scale formed during hot strip mill step 

- Cold strip mill: produces strips with thickness 0.5 to 1.2 mm 

- Annealing: in bells or continuous line, re-crystallize the structure of steel modified during 

rolling operations 

- Coatings: with zinc for automotive and household electrical appliances, with chromium and 

tin for packaging. 
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Figure I. 1: Hot Mill scheme of Fos-sur-Mer plant in France [1]. 

I. 2. 2. The hot strip mill 

The Hot Strip Mill (HSM) is the last step of the hot mill (Figure I. 2).  
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Figure I. 2: General Scheme of a Hot Strip Mill steps [2]. 

It transforms steel slabs of around 250 mm thickness into coiled steel sheets of 1.5 to 5 

mm by a thermo-mechanical treatment in 6 main steps: 

- Reheating furnace: the slab is heated for nearly 3 hours at 1200°C to have a homogenous 

metallurgical structure and chemical composition. An oxide layer called primary scale of 500 

to1000 µm thickness is formed on slab surface.  

- RSB de-scaling (Roughing Scale Breaker): Primary scale formed in the reheating furnace is 

cracked and removed with high pressured water (150 bar) projected from nozzles surrounding 

the slabs. This step is necessary to avoid scale infiltration into metal surface at high 

temperature. Nevertheless, such infiltration can take place due to high grain boundaries 

oxidation or melted mixed oxides of some alloying elements. In this case the infiltrated oxides 

will appear in the rolled sheets as inherited defects. 

- Roughing Mill: the de-scaled slab passes through a first stand of vertical rollers to control its 

width, then through 5 roughing mill stands with horizontal rollers. A de-scaling ramp is 

placed between stands to remove the growing scale and recover a better surface. At the exit, 

the slab is 30 to 40 mm thick at 1100°C and covered with a 600 to 100 µm thick scale. 

- Crop shear and FSB de-scaling (Finishing Scale Breaker): the slab extremities deformed in 

the roughing mill are cut and the scale is removed to avoid rolled-in-scale defects in the 

finishing mill. 
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- Finishing Mill: Made of 5 or 7 identical stands. Every stand is composed of 2 work-rolls and 

2 support-rolls to limit deformation under loading. The strip final thickness is 1.5 to 5 mm. 

After the last stand the strip is cooled on a table before being coiled. 

- Coiling: The final steel sheet of 1.5 to 5 mm thickness and 700 m long is coiled for storage. 

I. 2. 3. The pickling baths  

Pickling is an important step of the steelmaking process. It is the interface between the 

hot factory and the cold factory, more precisely between hot rolling and cold rolling. It is the 

first step where the steel surface is revealed. 

Pickling line can be divided into three main parts (Figure I. 3) 

- An entrance section: black steel sheets covered with scale are de-coiled, welded and 

introduced in the accumulator where they are passed through crossed rollers (S form) to break 

scale. 

- The pickling baths: steel sheets are immerged in successive acid baths containing high 

concentrated acid solutions (50 to 150 g/L for  HCl and until 200 g/L for  H2SO4) at high 

temperatures  (50 to 90°C) to dissolve scale as fast as possible (< 1min). Sometimes steel 

corrosion inhibitors are added to limit over-pickling. 

- Exit section: the pickled sheet is inspected, cut and coiled. If the surface quality does not 

meet customer standards, the coil can be put at the pickling entrance to be re-pickled.  

 

Figure I. 3: Scheme of a Pickling line. 
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I. 3. Oxidation of steel 

 A literature review on steel properties and thermal oxidation of low carbon and silicon 

steels simulating the hot strip mill conditions is presented in this section.  

I. 3. 1. Steel substrate properties 

The low carbon steels are often used as reference samples for oxidation and pickling 

studies of alloyed steels. 

I. 3. 1. 1. Low carbon steel 

 Low carbon steels are soft and elastic; their composition is close to pure iron which 

makes them very corrodible. They are used mainly in packaging applications with protective 

coatings [3, 4]. 

I. 3. 1. 2. Silicon alloyed steel 

Silicon is present in Alloyed High Strength Steels (AHSS) to improve their 

mechanical and corrosion resistance, as well as in electrical steels to improve the electrical 

resistivity, which is an important property for applications as the core material of electro-

magnetic devices such as motors [5-9]. 

I. 3. 2. Oxidation conditions 

The thermal oxidation of steel takes place when the metallic surface is in contact with 

an atmosphere containing O2 or H2O at high temperatures. The oxide layer formed is called 

commonly scale [10].  

Oxidation must not be confused with rusting which happens at low temperatures, takes 

longer time and produces iron hydroxides.  

I. 3. 2. 1. Oxidation in the Hot Strip Mill 

In the Hot Strip Mill, the thermal and atmospheric conditions favorable for scale 

formation are present. In addition to high temperature and humid air, the mechanical forces 

applied by rollers and de-scaling water nozzles on the growing scale modify its morphology 

continuously [11-14]. 
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Steel surface follows a thermo-mechanical cycle during annealing. The steel sheet is 

globally cooled with temperature drops and scale loss at rollers. Scale growth occurs in 

passages between rollers (Figure I. 4). 

500

600

700

800

900

1000

1100

0 5 10 15 20 25
0.0

0.5

1.0

1.5

2.0

Time (s)

T
em

pe
ra

tu
re

 (
°C

) Δ
m

/S
 (m

g/cm
²)

Grade with 1%Si
in HSM

 

Figure I. 4: An example of modeling of oxidation in a hot strip mill of a steel containing 

1%wt. Si [1]. 

 

In industrial conditions, at the exit of the hot strip mill, scales thickness varies from 5 

to 20 µm. Chemistry and morphology of industrial scales are described in the section I. 4. 

I. 3. 2. 2. Oxidation in a pilot furnace 

In a pilot furnace, the mechanical effect on scale growth is absent. Only the heat cycle 

and oxidizing atmosphere are controlled, the furnace can be equipped with a thermo-

gravimetric analyzer to study oxidation kinetics. Model scales are elaborated in pilot furnaces 

or thermo-gravimetric devices [15].  

The literature review about the oxidation process and the resulting scale characteristics 

will be restricted to low carbon and silicon alloyed steel grades oxidized at high temperatures 

simulating the hot strip mill conditions. 
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I. 3. 3. Oxidation of low carbon steel 

The oxidation of low carbon steel (LCS) and the characterization of the resulting scale 

were widely studied and its mechanism well defined. 

I. 3. 3. 1. Oxidation kinetics 

As oxidation is a reaction of oxygen and metal surface to form adherent oxides, the 

best method used to identify its kinetic profile is to follow the mass gain due to oxygen versus 

time during oxidation. If the curve fits a mathematical law, the extraction of kinetic 

parameters is then possible. 

A set of mathematical laws for oxidation kinetics exists in literature: linear, parabolic, 

linear-parabolic, para-linear, logarithmic and sigmoid [16-18]. 

If no kinetic law can be extracted, we talk about chaotic or catastrophic scale growth. 

Oxidation kinetic model and parameters depend on steel grade, oxidation temperature 

and atmosphere composition. 

In low alloyed steel grades, the content of alloying elements is so low that their 

influence can be neglected. During oxidation at high temperatures only iron and its oxides are 

considered.  

Scale growth kinetics for low alloyed steel grades obeys a mixed law depending on the 

oxidation stage. A short linear oxidation rate is observed at the beginning of oxidation 

followed by a longer parabolic rate [19-25].  

- The first linear step: 

tkSm l .)/( =∆   (I. 1) 

- The parabolic step: 

tkSm p
n .)/( =∆

  
(I. 2) 

Sm/∆  : Mass gain for surface unit 

kl:  Linear constant 

kp:  Parabolic constant 

t: oxidation time 

n: parabolic power, n > 1 and n = 2 for long oxidation times 
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I. 3. 3. 2. LCS oxidation mechanism 

The first linear period corresponds to the oxidation and de-carburation of the metallic 

surface of steel in an oxygen rich atmosphere (no limitation by gas supply) until the coverage 

of the entire metallic surface with iron oxide [26-28]. 

During the parabolic growth period, iron cations Fe2+ must diffuse through the newly 

formed wüstite Fe1-xO layers [29-32]. The vacancies of the non stoichiometric wüstite host the 

Fe2+ while diffusing to scale surface to react with the oxidizing atmosphere [10, 19-21, 23]. 

I. 3. 4. Oxidation of silicon alloyed steels 

The elaboration of new silicon alloyed steel grades and the difficulties to pickle them 

triggered many recent studies and interest on the effect of silicon on oxidation kinetics and 

final scale morphology based on. Some of these studies proposed some oxidation mechanisms 

for silicon alloyed samples but were limited to medium silicon alloyed grades and/or did not 

correspond completely to the Hot Strip Mill conditions [1, 33-43]. 

I. 3. 4. 1. Influence of silicon on the kinetics of scale growth 

The effect of silicon on scale growth rate profile depends mainly on silicon content 

and oxidation temperature and the final mass gain depends on oxidation duration. Two main 

scale growth regimes are observed depending on oxidation temperature [1]. 

For oxidation temperatures lower than 1100°C and silicon contents between 0.3 and   

1 wt.% Si, an oxidation passivation period appears between the linear and the parabolic scale 

growth periods observed for low carbon steels (Figure I. 5).  

At oxidation temperatures lower than 1177°C, the duration of the passivation period 

increases with silicon content. If the oxidation time is very long, the passivation period is 

masked by the long parabolic phase. The presence of silicon slows down oxidation and 

reduces oxidation kinetics parameters and final mass gain in comparison with low carbon 

steels [1, 2, 34, 36, 39, 41-44]. 

At oxidation temperatures higher than 1177°C, the passivation period disappears and 

scale growth profiles similar to low carbon steel grade are observed. Scale growth kinetic 

parameters and final mass gain increase with silicon content and they are higher than those of 

low carbon steels (Figure I. 6) [1, 2, 43]. 
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Figure I. 5: Mass gain for samples containing 0.84 wt.% Si; oxidations at 800°C, 900°C, 

1000°C and 1100°C during 900 s under 20%O2, 15%H2O and N2: when temperature 

increases, the passivation period shortens (800, 900 and 1000°C); at high temperatures 

(1100°C) there is no passivation [1]. 

 

 

Figure I. 6: Oxidation of samples containing 0.02, 0.49, 0.60 and 0.84 (wt.%) of Si during 15 

min under process atmosphere at 1200°C; higher the silicon content, higher is the mass gain 

[1]. 

0.02%Si 
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I. 3. 4. 2. Influence of silicon on oxidation mechanism 

The passivation period in Silicon alloyed steels oxidation seems to be due to the 

formation of a silica layer at the beginning of oxidation. It slows down the diffusion of Fe2+ 

towards the oxidizing atmosphere and therefore reduces oxidation rate. Presence of defects 

and cracks in the silica layer and the formation of solid fayalite-wüstite mixture lead to a post-

diffusion parabolic oxidation regime with lower kinetic values in comparison with low carbon 

steels [45-48]. 

Silicon contained in steel has more affinity with oxygen than iron. It is first oxidized 

into silica which forms an interfacial sub-layer between wüstite and steel substrate.  The 

internal oxidation of steel can also be observed (oxide particles inside the steel), especially for 

the steel containing more than 0.3 wt.%Si [33-36, 49]. 

Yang et al. [41] observed internal oxidation banded layers under metal/scale interface 

and proposed a mechanism of its formation in four steps:  

- Super saturation of oxygen in the steel after external iron oxide formation 

- Internal oxidation of silicon leading to silicon depleted zones 

- Oxidation of iron in the silicon depleted zones, and 

- Repeated processes of saturation-depletion to form the banded oxide scale. 

If oxidation time is long enough, the silica thin layer at steel/scale interface and upper 

wüstite transform into a fayalite phase with the reaction: 

422 2 SiOFeFeOSiO →+   (I. 3) 

 While silica grains from internal oxidation remain in the steel substrate under fayalite-

wüstite mixture layer [1, 50].  

Scale adhesion is lower on silicon steels than that of FeO on pure iron. On the 

contrary, adhesion between silica or fayalite and the substrate is strong. It is more difficult to 

remove scale containing silicate phases during pickling due to this higher adhesion [51].  

Above 1177°C, the FeO-Fe2SiO4 eutectic melt infiltrates scale and steel grain 

boundaries (Figure I. 7). The penetration depth into the scale increases with the silicon 

content, while that into the substrate varies slightly. The presence of a liquid phase improves 

the scale adherence for steels containing < 0.5 wt.%Si, but for higher Si contents (up to 1.5 

wt.%) the tendency is inversed. The molten fayalite-wüstite eutectic enhances the iron ions 

diffusion rate and the oxidation rate is higher than for a pure FeO at the same temperatures [1, 

31, 52, 53]. 
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Figure I. 7: FeO-SiO2 phase diagram [54]. 

I. 4. Scale and metal oxides properties 

I. 4. 1. Hot strip mill (HSM) scales 

 At the exit of the finishing mill, steel sheets are recovered with scale. They are coiled 

immediately and stocked. The coils of the hot strip mill are commonly called black coils due 

to the dark colour of scale. Scale composition depends on coiling temperature, cooling rate 

and position on the strip. 

I. 4. 1. 1. Low carbon steel (LCS) scales 

Scales of black coils of LCS are mainly composed of a wüstite layer covered by 

magnetite and hematite superficial layers.  

Depending on the cooling rate, wüstite is transformed partially or completely into 

magnetite and iron eutectoid (see also I.4.2.2 section and Figure I.9). Water quenching and 

high temperature coiling favor wüstite conservation. Air cooling and low temperature coiling 

enhances its transformation. 

Scale is generally thin (of 5-20 µm in thickness), spread and brittle due to the 

mechanical pressure in the hot strip mill. Wüstite is plastic at high temperatures; it is rolled 

softly in the hot strip mill conditions and at lower temperatures it is brittle which facilitates 

de-scaling. Magnetite is less plastic than wüstite at high temperatures and less brittle at room 

temperatures, its cohesion and adherence are higher. Hematite is brittle and extremely hard. It 

is undesirable during rolling, cooling and also at room temperature [55-62]. 
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I. 4. 1. 2. Silicon alloyed steel (SiAS) scales 

 Black coils of silicon alloyed steels coming from the hot strip mill have scales with 

fayalite grains and sometimes with fayalite infiltrations in steel at scale/metal interface. The 

outer scale is composed of thin and dense wüstite similar to that of low carbon steels. This is 

due to mechanical pressure of rollers. As fayalite is resistant to pickling, its infiltrations stay 

on pickled sheets surface and lead to later defects in cold rolling [56, 63]. 

I. 4. 2. Model scales 

I. 4. 2. 1.  LCS model scales 

Model scales of low carbon steel grades obtained in laboratory furnaces at high 

temperature, humid oxidizing atmosphere and relatively short oxidation times (below 15 min) 

reproduce well the chemical composition of hot rolled scales. They are composed mainly of 

iron oxides; the effect of traces of alloying elements is neglected.  

Three oxides are present as continuous parallel sub-layers classified by increasing 

oxidation degrees on steel: wüstite FeO, magnetite Fe3O4 and hematite Fe2O3. They are 

formed by iron ions vacancies diffusion and contact with oxygen. According to [23], the mean 

thickness ratio of hematite, magnetite and wüstite thicknesses in the total scale is 1:4:95 

respectively (Figure I. 8). 

 

Figure I. 8: Scheme of iron oxides with vacancies diffusion directions and thickness ratios. 

[23] 

Yang et al. [41] showed that very  long oxidation time at high temperatures produces 

very thick and cracked scale at the metal/wüstite interface. The diffusion of Fe2+ to form 

wüstite is then blocked by the gap formed by the crack at the steel/wüstite interface and the 

excess of oxygen favors magnetite layer growth from wüstite and hematite iron supply. The 

final ratio of hematite, magnetite and wüstite thicknesses in the scale is 1:5:2 respectively 

[41]. 
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 In these conditions, magnetite is the dominant phase in comparison with Païdassi’s 

results shown above [23, 41]. 

I. 4. 2. 2. Iron oxides properties 

Iron oxides can be natural or synthetic. Thermal oxidation of iron or of low carbon 

steel is not the only way to obtain iron oxide films. It is chosen to better simulate scales of the 

hot strip mill.  

In the literature, other forms of synthetic pure iron oxides such as bulk oxides, sintered 

powders or sputtered layers on a membrane were elaborated. They were studied in order to 

obtain information on the behaviour of oxides passive films. It has been shown that the 

electronic properties of synthetic iron oxides are in good agreement with the behaviour of 

natural passive films on iron [64-66]. 

Some properties of the three iron oxides are presented. 

Wüstite 

Fe1-xO is a non stoichiometric oxide, it shows a p-type semi-conductivity (excess of 

anions), it is mainly composed of Fe2+ cations over-balanced by O2-, x Fe3+ compensate 

electrical charges loss due to Fe2+ vacancies inside the oxide. The concentration of   vacancies 

increases with oxygen percentage and is responsible for cationic diffusion [27, 28, 67-69]. 

Below 570°C, wüstite is thermodynamically unstable: it transforms into iron and 

magnetite eutectoid (Figure I. 9).  

 

Figure I. 9: Iron-oxygen phase diagram [67]. 

Chemical reaction and Gibbs free energy of formation of Wüstite is: 
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FeOOFe 22 2 →+   (I. 4) 

TmolJG 125519582).( 1 +−=∆ −   (I. 5) [27, 28] 

Magnetite 

Fe3-xO4 is a non stoichiometric oxide. It shows a p-type semi-conductivity. It has more 

Fe3+ than Fe2+ sites in comparison with wüstite, which makes it less prone to oxidation. The 

number of iron vacancies in magnetite is less important than in wüstite. The diffusion through 

vacancies can be anionic (O2-) or cationic (Fe+2) [27, 28, 67-69]. 

Chemical reaction and Gibbs free energy of formation of magnetite is: 

432 26 OFeOFeO →+   (I. 6) 

TmolJG 250624879).( 1 +−=∆ −   (I. 7)  [27, 28] 

Hematite 

Unlike the two other iron oxides, hematite or Fe2O3 is a semi-conductive oxide of n-

type, with major oxygen vacancies. Diffusion through the vacancies is therefore anionic. 

Hematite can be formed from magnetite between 200 and 400°C or from iron at ambient 

temperature [27, 28, 67-69]. 

Chemical reaction and Gibbs free energy of formation of hematite from magnetite is: 

32243 64 OFeOOFe →+   (I. 8) 

TmolJG 282499279).( 1 +−=∆ −   (I. 9)  [27, 28] 

I. 4. 2. 3. SiAS model scales 

 Scale morphology and chemistry after oxidation of silicon steels in a furnace depends 

on the combination of different factors such as silicon content, oxidation temperature, 

atmosphere and time. 

 In all cases, silicon oxides or iron silicon oxides are present at the steel/scale interface 

and as grains in the steel substrate under this interface [1, 2, 34, 36, 39, 41, 43, 63, 70, 71]. 

 For short oxidation times, steel surface is covered partially with silica nodules or 

completely with a silica porous layer (Figure I. 10) [1, 2, 63]. 

For longer oxidation times and high temperatures but below 1177°C, an intermediate 

layer composed of fayalite Fe2SiO4 grains in a wüstite matrix is present between steel and 

wüstite layer (Figure I. 11) [1, 2, 39, 70, 71]. 
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Figure I. 10: SEM observation of the internal layer of a sample containing 0.49 wt.%Si 

oxidized during 315 s at 900°C: scale layer is porous and is formed by a silica skeleton [1]. 

 

 

Figure I. 11: Cross-section of a sample with 0.84 wt.%Si oxidized at 1100°C during 15 min. 

Wüstite appears in light grey, fayalite in dark grey [1]. 

This intermediate layer is present as a continuous fayalite layer with infiltrations into 

the steel substrate for oxidation temperatures above 1177°C (Figure I. 12) [43, 71]. 

Scale nodules with a hematite outer layer surrounded by a supposed silica layer are 

observed on the surface after oxidation of high silicon alloyed steels at temperatures below 

1000°C (Figure I. 13). The nodules are composed of iron oxides layers: hematite, magnetite 

and wüstite and a fayalite-wüstite mixture layer at steel/wüstite interface [34, 36, 39] 
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Figure I. 12: Cross section of the oxide grown in an electric furnace on the 2 wt.% silicon 

steel at 1200°C for 8 min [43]. 

 . 

 

Figure I. 13: SEM micrographs of (a) 0.02 wt.%Si and (b) 1.9 wt.%Si steel oxidized in air at 

900°C for 10 h.  

I. 5. Pickling and over-pickling   

The aim of pickling is the dissolution of the oxide layer or scale in an acid solution. 

When the acid solution reaches the metal/scale interface, the metal starts to corrode and we 

talk about over-pickling [72, 73]. 

In this part, the literature review on pickling and over-pickling of low carbon steels 

and silicon alloyed steels will be summarized. As the objective of this thesis is the 

Fayalite 
Infiltrations 
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understanding of the pickling mechanism, a literature review on the dissolution of iron oxides 

and silicon oxides obtained by processes other than thermal oxidations is also included. 

I. 5. 1. Pickling of hot mild steels 

Unlike oxidation, where scale growth is controlled by the atmospheric and temperature 

conditions in the hot strip mill, pickling is a step where the operator can manage the strip 

speed to obtain complete scale removal and good surface quality. 

I. 5. 1. 1. Pickling conditions 

The majority of plants uses the same pickling line to remove the scale on classical low 

carbon steel grades and alloyed steel grades. Sometimes, on alloyed grades surface defects 

can be generated by mixed oxides, due to insufficient time or inadequate conditions of 

pickling [74]. 

Pickling conditions vary from one plant to another; the main pickling conditions are 

listed below: 

- Pickling line: it can be continuous, continuous coupled or push-pull. 

- Acidic solution: Hydrochloric acid (predominant) or Sulfuric acid (mainly for Packaging 

steels) are used. 

- Corrosion inhibitors : are generally commercial solutions coming from De Leuze, Kebo, 

Henkel,… suppliers. Their concentrations depend on the type of inhibitor. The maximum 

concentration is about 1.5 g.L-1 [74]. 

- Acid concentration: it depends on the tank and line and varies between 10 and 230 g.L-1 for 

HCl from the first to the last line tank, where injection of fresh acid is provided. 

- Iron concentration: it depends on the tank and line and varies between 3 and 400 g.L-1 

from the last to the first line tank. 

- Line speed: it varies between 50 and 270 m.min-1, depending on the line geometry (length 

and tank number), steel grade and bath conditions (acid type, concentration and temperature). 

- Bath temperature: It is comprised between 70 and 90°C for HCl and up to 100°C for 

H2SO4. 

 Kop et al. elaborated a laboratory pickling cell to simulate pickling conditions at the 

laboratory. The scale sample is put in a rotating holder simulating the hydrodynamics. The 

pickling bath with the industrial acid solution and the inhibitor types and concentrations is 

heated with a thermostatic circulating fluid [75, 76]. 
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I. 5. 1. 2. Influence of pickling parameters on pickling time 

The objective of pickling is to dissolve the entire scale layer in a short time to increase 

productivity and at the same time, to protect steel from mass loss and high surface roughness 

due to an excessive over-pickling. Actually, optimal pickling time is defined when all scale is 

removed with pickling and over-pickling. 

Pickling time depends on the metal and scale characteristics and the pickling 

conditions: 

- Scale thickness: it increases with the rolling and coiling temperature and is different at the 

centre and tail of the sheet due to slower cooling. The required pickling time depends on the 

scale thickness and chemistry [77-79]. 

- Scale composition: for low carbon steel scales, hematite and magnetite dissolution is very 

slow compared to that of wüstite. For example, in a 88 g.L-1 HCl solution at 80°C, the 

dissolution rates of Fe3O4 and FeO are 0.1 g.m-2.min-1 and 1.6-2.0 g.m-2.min-1 respectively. 

FeO decomposition into Fe3O4 and Fe can accelerate its dissolution up to a factor 10  [79-81]. 

- Scale morphology: scale cracking and elongation of 1 to 2 % accelerates pickling with a 

factor 2 to 3 [82]. 

- Bath temperature: pickling efficiency increases with bath temperature. Pickling is usually 

performed at 70-90°C [79, 83]. 

- Acidic solution: scale is dissolved quickly in highly concentrated and hot HCl or H2SO4 

acid solutions. For given concentration and temperature, HCl is more efficient [75, 79, 84]. 

- Iron cations concentration (Fe2+ and Fe3+): in an HCl medium, the unfavorable effect of 

Fe2+ does not appear below 80 g.L-1, and remains in every case more moderate than in H2SO4 

medium. The ferric ions Fe3+ are known to decrease the pickling time and facilitate the attack 

reaction of the base metal. But their concentration must be well controlled to avoid over-

pickling, mainly for grades which can be pickled rapidly. Generally, the salt concentrations 

are 50-100 g.L-1 for FeCl2 and 3-5 g.L-1 for FeCl3 at the end of pickling [74, 76, 79]. 

- Alloying elements concentration: PO4
3-, Mn2+, Cr3+ coming from steel dissolution increase 

slightly pickling time. 

- Corrosion inhibitors : steel is protected from over-pickling by adding small quantities of 

corrosion inhibitors [85]. 

- Hydrodynamics: Pickling rate is controlled by two phenomena: the dissolution reaction of 

scales and the diffusion through the boundary layer, which renews the acid consumed on the 

steel surface. The pickling rate of steels is therefore dependent on the hydrodynamics, which 
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defines the boundary layer thickness. Indeed, the dissolution reaction rate at the scale surface 

is determined by the acid concentration, which depends on H+ diffusion rate through the 

boundary layer and scale dissolution rate. The hydrodynamics induces a decrease of the 

boundary layer thickness and an increase of the pickling rate. Ultrasound can also accelerate 

pickling by detaching scale particles [71, 75, 76, 86].  

Pickling parameters and their influence on pickling time are summarized in Table I. 1.  

 

Table I. 1: Summary of parameters and their influence on pickling time [74]. 

 Modern pickling lines are controlled by software. Empirical methods are used to 

correlate the optimal pickling conditions and time. The preset values are then entered in the 

software and adapted to each steel grade [75, 87]. 

I. 5. 2. Pickling mechanism of low carbon steels 

 Scale of low carbon steels is composed of iron oxides. These oxides form parallel 

layers in the following order from the interface with steel: wüstite, magnetite and hematite. 

Scale of black coils is a mixture of wüstite, magnetite and iron coming from the wüstite 

transformation (see also §I.4). 

I. 5. 2. 1.  Pickling steps of LCS 

The evolution of scale morphology and electrochemical state during pickling and 

over-pickling were observed by coupling an open circuit potential OCP monitoring with a 

series of cross-section micrographs of scale at significant OCP values [88]. 

Figure I. 14 shows the evolution of the open circuit potential and scale morphology of 

a continuous and thick model scale of low carbon steel, dissolved in H2SO4 acid. The pickling 

and over-pickling steps are well separated with an open circuit potential drop once the acid 

reaches the steel/scale interface [88-90]. 
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Figure I. 14: Pickling steps and the corresponding electrochemical values during pickling in 

H2SO4 solution of a non cracked scale of low carbon steel [88-90]. 

According to [88, 89], the evolution of the open circuit potential of a low carbon steel 

model scale immersed in a H2SO4 acid is correlated to the following pickling stages: 

- Acid infiltration through the micro-cracks of the superior oxides layer, reaching the wüstite 

FeO layer (step a-b). Superior oxides are practically not dissolving; these layers keep for a 

long time a good cohesion. The value of the rest potential increases until the potential of FeO 

dissolution (approximately + 300 mV/SCE) is reached.  

This proposition shows some weaknesses. Indeed, the potential increase from 0 

V/SCE to + 300 mV/SCE could be attributed to the acquisition system of the potentiostat 

starting from 0 V/SCE and not to the dissolved phase nature. A corrosion potential curve of a 

similar scale will be presented in chapter IV. 

- Chemical dissolution of FeO (step b-c). When the sample is thermally treated (quenching 

and tempering for example), the superficial layer, initially grey-blue (or dark brown), takes an 

orange color due to a modification of the layer hydration. According to the conditions 

(temperature, chemical nature of the pickling reagent, characteristics of the scale…), this step 

will be more or less fast. The potential value remains positive (+ 300 mV/SCE approximately) 

during this period. 

- Acid reaches the metallic interface (step c-d). Hydrogen bubbles come from cracks due to 

the reaction between acid and iron. A fast decrease of the open circuit potential is observed. 

Insoluble fragments get loose and stay in suspension in the solution; 
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- Electrochemical dissolution of oxides (step d-e). The potential takes the value of the cell 

oxide/acid/iron and is approximately - 420 mV/SCE. The iron is the anode of the 

electrochemical cell; iron is thus going to dissolve at the same time as FeO.  

 This proposition is not convincing. Indeed, the negative corrosion potential is the 

result of the anodic dissolution of the steel substrate by the H+ of the acid and not the 

electrochemical cell proposed above (see chapter IV). 

At the bottom of cavities dug in FeO, the concentration of acid decreases and that of 

FeCl2 (for HCl solutions) salt increases. The protoxide continues to dissolve thanks to the 

agitation which renews the acid in contact with FeO. Corrosion inhibitors allow to avoid a too 

important attack of the metal and to reduce the quantity of acid consumed. 

- Obtaining of well pickled surface (step e-f). The intensity of gaseous release decreases due 

to the adsorption of inhibitor. The metal is then well pickled. In some cases, residues of scale 

which are adherent and difficult to eliminate by rinsing remain. We observe a slight increase 

of the potential value. 

The open circuit potential profiles of scale during its dissolution in H2SO4 and HCl 

acids are similar, only potential values are slightly different. In H2SO4 bath, specific values 

are +300 mV/SCE for the positive plateau and - 420 mV/SCE for the negative plateau (Figure 

I. 14). In HCl bath, the positive and negative plateau values are + 320 mV/SCE and - 360 

mV/SCE respectively [89]. 

 There are few differences between the two mechanisms. For the first step, there is a 

widening of the micro-cracks of external oxides in HCl solutions and not simple infiltration. 

The surface after pickling presents rounded holes and not angular one as for H2SO4; this can 

explain a more beautiful aspect of surface of steel sheets pickled in HCl [89]. 

According to [82], pickling steps depend also on initial scale composition and 

morphology (Figure I. 15): 

- If scale is composed only of continuous magnetite and hematite layers, the acid may not 

reach the metal due to the low dissolution rates of these two phases unless they are cracked. 

- In triple phase scale, the acid infiltrates the hematite and magnetite continuous layers slowly 

through micro-cracks and dissolves the underneath wüstite forming growing holes and 

detaching blocks of the outer magnetite and hematite.  

- Wüstite decomposition into magnetite and iron eutectoid enhances dissolution and holes 

widening. It is due the formation of numerous Fe/Fe3O4 couples which behave as electrodes 

for an electrochemical coupling in presence of the acid electrolyte. 
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 The high value of the corrosion potential during wüstite dissolution is not compatible 

with the anodic dissolution of iron (more cathodic). An alternative mechanism implicating the 

oxidation of magnetite and wüstite seems to be more coherent (chapter IV). 

- Big cracks in scale let the acid reach quickly the metal. The Fe/Fe3O4/acid electrochemical 

cell is formed and enhances scale dissolution.  

 

Figure I. 15: Pickling steps for different low carbon steel initial scale compositions and 

morphologies [82]. 

I. 5. 2. 2. Pickling reactions of LCS 

Pickling reactions and mechanism depend mainly on scale composition and 

morphology and secondly on the nature of the acid. Many mechanisms were proposed for 

pickling of low carbon steels. 

Hematite and magnetite dissolution:  

Acid “infiltrates” through micro-cracks of superior oxides to reach wüstite or iron [88, 

89, 91]. The two phases are insoluble [91] or almost not dissolved [88, 89] in pickling 

conditions.  

If scale is cracked, a Fe3O4/acid/Fe electrochemical cell is formed. The Fe3O4  can be 

reduced by iron coming from wüstite or metal substrate [82]. This mechanism is not 

convincing and will be criticized in chapter IV. 

 

Wüstite dissolution:  

Non decomposed wüstite is dissolved chemically [88, 89]  in acid solutions: HCl [75, 

76, 79] or H2SO4 [75, 76]. 
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The partial or complete transformation of wüstite at temperatures lower than 570°C 

produces a mixture of wüstite, iron and magnetite.  

434 OFeFeFeO +→   (I. 10) 

According to Bullough [91], the electrochemical dissolution of wüstite after its 

transformation takes place in a small electrochemical cell between iron particles, acid and 

magnetite. Iron and magnetite produced by wüstite transformation plays the role of anode and 

cathode respectively. The anodic dissolution of iron produces iron cations Fe2+ and the 

cathodic reaction is the reduction of Fe3O4 producing more Fe2+. This proposition is not 

convincing and an alternative mechanism will be presented in chapter IV. 

Non stoichiometric wüstite Fe1-xO has an excess of Fe3+. The x Fe3+ sites can be 

reduced by iron coming from steel substrate or wüstite decomposition [92]. 

The main chemical reaction of scale during pickling corresponds to the dissolution of 

wüstite in the acid, the dissolved iron cations were presented in a form of salts with chlorides 

and sulfides. In HCl, FeO dissolves with the chemical reaction [79]: 

OHFeClHClFeO 222 +→+   (I. 11) 

And in H2SO4 with the chemical reaction [75, 76]: 

OHFeSOSOHFeO 2442 +→+   (I. 12) 

 In pickling baths, the salt form seems theoretical since the concentration of the anions 

does not reach the solubility limit of the salts. 

Steel dissolution:  

Once the acid reaches the metal/scale interface, electrochemical dissolution of the 

remaining oxides starts with the formation of Fe/acid/oxides electrochemical cell where iron 

is the anode and the oxides are the cathode [88, 89]. This proposition is not convincing and an 

alternative mechanism will be presented in chapter IV. 

 In addition to the electrochemical cell mechanism, the acid attacks any metallic 

surface producing hydrogen. The majority of this hydrogen is in molecular form. H2 bubbles 

assist mechanical removal of scale and another part diffuses through steel and can cause some 

embrittlement [91]. 

The electrochemical reactions take place in iron/acid/iron oxides electrochemical 

cells. The anodic reaction is the dissolution of iron  and the cathodic reaction is the 

reduction of iron oxides in the acid solution. Iron comes from wüstite dismutation during 

pickling and steel substrate during over-pickling. Protons reduction also takes place as 

cathodic reaction on metallic surface during pickling and over-pickling.  
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- Anodic reaction [92, 93] :  

−+ +→ eFeFe 22   (I. 13) 

- Cathodic reactions [92, 93]:  

OHFeHeFeO 222 +→++ +−   (I. 14) 

+−
−

+ →+ 2
1

3 1)( FeeOFeFe x   (I. 15) 

OHFeHeOFe 2
2

43 4382 +→++ ++−   (I. 16) 

OHFeHeOFe 2
2

32 3262 +→++ ++−   (I. 17) 

222 HeH →+ −+   (I. 18) 

Some of these reactions cannot take place at the same corrosion potential. They will be 

placed in the right corrosion potential ranges in chapter IV. 

As for the chemical reactions, the dissolved iron cations coming from the 

electrochemical reactions can form salts with chlorides and sulfides. The yield reactions in 

HCl [79] can be written as: 

OHFeClHClFeOFe 2232 336 +→++   (I. 19) 

OHFeClHClFeOFe 2243 448 +→++   (I. 20) 

222 HFeClHClFe +→+   (I. 21) 

 In pickling baths, these salts are not observed since their concentration does not reach 

their solubility limit. 

I. 5. 2. 3. Iron oxides dissolution 

As seen in the section I. 5. 2. 2 above, the majority of studies on pickling of low 

carbon steel were empirical and basic mechanisms were proposed. In these mechanisms, the 

dissolution of the iron oxides in scale can be chemical and/or electrochemical and often 

implicates a mixture of iron and iron oxides phases.  

To gain a better insight in the overall mechanism, in the literature, a large amount of 

work has been carried out on natural and synthetic pure iron oxides to characterize their 

dissolution mechanism [94-102]. 

The main difficulty is to find experimental methods which allow distinguishing the 

chemical and electrochemical dissolutions mechanism [98, 100-102]. For instance, in situ X-

ray absorption near-edge spectroscopy (XANES) was used simultaneously with 

electrochemical methods on synthetic oxide to determine the nature of the dissolution 

reaction, leading to the conclusion that dissolution of hematite and magnetite is mainly 
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chemical in the anodic potential range, and that electrochemical dissolution of magnetite has 

to be taken into account in the cathodic range [100, 101]. 

I. 5. 3. Effect of Silicon on pickling mechanism  

After oxidation in the hot strip mill, silicon oxides (silica and fayalite) concentrate at 

the steel/scale interface in many forms; silica thin layer, fayalite grains in wüstite, fayalite 

infiltrations and silica internal oxidation grains in steel substrate.  

The upper iron oxides layer dissolves easily but the low solubility of silicon oxides 

present at steel/scale interface increases the pickling time. In the fayalite infiltrations and high 

internal oxidation cases, a long over-pickling step is necessary to suppress fayalite and oxides 

at the grain boundaries [80, 89, 103]. 

According to [104] a relatively long pickling time is necessary to suppress completely 

the scale of a 3 wt.% Si steel, whatever  the nature of acidic solution. In HCl bath, the 

addition of nitric acid induces a more reactive bath towards the metallic surface. The addition 

of HF acid increases the pickling efficiency without increasing the metal dissolution, due to 

its efficiency to dissolve silicon oxides. 

Chattopadhyay et al. [105] studied the effect of  silicon contents from 0.06 to 2 wt % 

in automotive steels on pickling time in  5, 8, 11 and 14% HCl solution at 82°C simulating the 

industrial process. The different steel grades have the same scale thickness but do not clean at 

the same pickling rate. This is due to differences in scale composition. Fayalite  Fe2.44Si0.55O4  

appears for  silicon content higher than 0.35 wt. % and has a negative effect on pickling. 

Pickling time increases with silicon content (Figure I. 16). 

 

Figure I. 16: Relationship between the Silicon content (wt.%) in steel and the pickling time 

(seconds). 
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The role of silicon and aluminum contents on pickling time of a low alloyed hot rolled 

steel sheet has been investigated by Y.N. Chang [106]. The increase of silicon content from 

0.5 to 2 wt.% induces an increase of the amount of FeO required combining with SiO2 to form 

Fe2SiO4 at high temperature. The Fe3O4 transformation was reduced at room temperature. The 

pickling rate was thus slightly promoted as mentioned by Chattopadhyay et al. [105]. 

However, an addition of 0.4 wt. %Al was detrimental to pickling due to the formation of 

segregated FeAl2O4 at the scale/base metal interface. 

I. 5. Conclusions  

Oxidation of low carbon steels was widely studied and its mechanism is well 

described. Scale growth follows first a linear then parabolic law. The linear step corresponds 

to the oxidation of steel surface and the parabolic to iron ions oxidation after diffusion in 

scale. Scale is composed of iron oxides with increasing oxidation degree for iron: wüstite 

(FeO), magnetite (Fe3O4) and hematite (Fe2O3). Wüstite is unstable below 570°C, it 

transforms partially into iron and magnetite eutectoid. The scale of black coils is composed of 

thin and brittle wüstite due to mechanical pressure in the hot strip mill. 

The presence of silicon slows down the oxidation rate and a passivation period appears 

between the linear and parabolic steps. This passivation period disappears for oxidation 

temperatures higher than 1177°C and the oxidation rate is higher than the one of low carbon 

steels. Silicon is first oxidized into silica SiO2, it forms a barrier layer for iron diffusion 

towards oxygen and reduces oxidation rate. Silica can also appear in the steel substrate, due to 

internal oxidation at grains boundaries. Silica and wüstite are transformed into fayalite 

Fe2SiO4 and form a fayalite-wüstite internal layer. Above 1177°C, molten fayalite enhances 

iron diffusion and oxidation rate, and after cooling forms an internal layer with infiltrations in 

steel. 

The oxidation and scale characterization of low carbon steels are well known while 

there are some points to study or confirm in the oxidation of high silicon alloyed steels 

especially in humid atmospheres and at high temperatures.  

The first part of this work will be the exploration of the oxidation conditions to form 

model scales of low carbon steel and high silicon alloyed steel and the well characterization 

of iron-silicon oxides. 

Pickling and over-pickling steps of low carbon steel were extrapolated from the 

evolution of electrochemical potential of a non cracked scale. Hematite and magnetite resist to 
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pickling, they are slowly infiltrated by the acid. Wüstite is easily dissolved by formation of 

holes and widening of cracks. Once acid reaches metal, the electro-chemical potential drops 

and over-pickling starts. 

As wüstite is the main component of low carbon steels scale, its chemical dissolution 

reaction is considered to be the reference reaction for pickling: 

OHFeHFeO 2
22 +→+ ++   (I. 22) 

According to Bullough [91] and Quantin [89], iron coming from wüstite dismutation 

or scale/wüstite interface is assumed to be dissolved in a micro-electrochemical cell where 

iron and magnetite plays the role of anode and cathode respectively. 

For silicon steels, silica and fayalite at steel/scale interface resist to pickling and 

increases pickling time. If fayalite infiltrations and silica grains are important, a long over-

pickling step is necessary to remove them. 

The literature review shows some critical points in the proposed pickling mechanisms 

for low carbon steel scales. Only empirical studies were conducted on silicon alloyed steels to 

estimate the effect of Si-containing phases on pickling time. 

In the second part of this work, model scales of low carbon steels and high silicon 

steels will be pickled in soft conditions. The modelling of scale/acidic solution interface and 

the chemical and electrochemical contributions during scale dissolution will be presented. 
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II. Experimental and methods 
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II. 1. Elaboration of steel grades samples 

A new quick and simple way to fabricate samples of steel with different grades was 

elaborated in ArcelorMittal Maizières Research, it uses a 1 kg (Annex I) furnace where a de-

rusted bloc of low carbon steel called Si00 is heated with induction until melting state then 

adequate masses of silicon are added to create the desired grades. After each addition, molten 

steel pencils are extracted with a glass tube and let at room temperature for cooling. Once the 

solidification completed and the pencils are at room temperature, the glass tubes are broken. 

The pencils have a cylindrical form with a 4 mm diameter and 120 to 150 mm length; they are 

cut with a SiC disc motor saw to reach nearly 5 mm length. In the case of elaboration of one 

steel grade, no pencils are extracted after silicon addition; the final steel bloc is recovered 

after cooling and cut with a SiC disc motor saw into parallelepipeds of 5x10x20 mm 

maximum dimensions. 

Samples of steel grades from industrial lines (example of Si00) are recovered as large 

sheets cut from black coils at the exit of the hot strip mill. The large sheets are cut into smaller 

sheets of an A4 paper size. Discs of 25 mm diameter are extracted from the small sheets with 

a mould put under high pressure in an automatic vice. Small blocs of parallelepiped form of 

5x10x20 mm maximum dimensions are cut with a SiC disc motor saw. The samples surfaces 

are then polished with a SiC-paper up to grade 800, cleaned in ethanol and then dried in air 

before oxidation tests in order to remove rust and scale before oxidation. The same surface 

polishing and cleaning is provided for scale free samples before pickling experiments.  

II. 1. 1 Steel chemical composition 

In this study, samples of three grades with high silicon content for oxidation then 

pickling experiments are chosen: Si00, Si16 and Si32. To determine the real composition of 

the three grades, especially the silicon mass fraction, chemical analysis with an Optical 

Emission Spectrometer is done on a sample of each grade (Table II. 1). This spectrometer 

makes a correlation between the intensity of an emitted light at a given frequency specific to 

an element and the mass fraction of that element. 

The tolerated error for the OES is about 0.2%, the values obtained are close to the 

composition of the target and respect the error interval. The Si00 is a low carbon steel with 

few alloying elements, their influence on oxidation and pickling is weak. The other grades 

chosen for oxidation and pickling Si16 and Si32 have both high enough silicon concentration 

to have a significant effect on oxidation and pickling. 
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Sample Elements (wt%)               

C Si Mn P Cr Ni Cu N Fe 

Si00 0.04 0.02 0.19 0.01 0.025 0.017 0.025 0.01 Balance 

Si16 0.04 1.55 0.19 0.01 0.025 0.017 0.025 0.01 Balance 

Si32 0.04 3.25 0.19 0.01 0.025 0.017 0.025 0.01 Balance 

Table II. 1: Chemical composition of the three steel grades with optical emission 

spectroscopy (OES). 

II. 2. 2. Steel grains size 

The observations of Si00 and Si16 surfaces after Nital attack are shown in Figure II. 1. 

The majority of grains have an average size of 150 µm that is almost identical for the three 

grades. The grains sizes and their distribution will not have any influence on oxidation rate 

between the samples. 

 

Figure II. 1: Grains size by optical microscope. Left: Si00. Right: Si16. 

II. 2. Oxidation of steels 

 Scale free steels were oxidized in adapted furnaces simulating the hot strip mill 

conditions and their oxidation kinetics followed with a thermo-gravimetric method.  

II. 2. 1. Oxidation experiments 

The oxidation experiments with continuous mass change measurement are conducted 

in a Linseis® Thermo-Gravimetric Analyser (TGA). The TGA setup used for this study is 

shown in Figure II. 2 and Annex II. 

It uses an electrical resistor for heating, an outer water circuit for cooling and 

electromagnetic mass change analyser. The oxidation tests are programmed and the mass 

change and temperature data are recorded with a Linseis® domestic software. 
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Figure II. 2: General set-up of the Linseis Thermo-gravimetric Analyser used for oxidation 
tests. 

Before oxidation tests, the sample is ground with a SiC-paper up to grade 800, cleaned 

in ethanol, dried in air and suspended in the TGA sample holder with a welded hook. The 

TGA chamber is depressurized then filled with nitrogen continuous flow. 

The mass change is recorded continuously. The sample is heated in a nitrogen 

atmosphere at a rate of 40°C/min and 5°C/min for the last 50°C to avoid over-heating once 

the desired oxidation temperature is reached. All oxidations of this study are isothermal in the 

temperature range 850-1200°C, in a 15% humid air during 15 minutes (samples heating until 

the desired temperature is provided under inert gas (N2) atmosphere). Some additional 

experiments have been performed at lower durations for characterization purposes or specific 

scales. After the test, the TGA chamber is cooled in a N2 atmosphere down to room 

temperature with a 40°C/min rate (Figure II. 3). 
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In the TGA, only one sample can be oxidized and the sample holder size is limited to 

maximum 20x10x5 mm, larger samples can damage the thermocouple at the base of the TGA 

sample holder during oxidation. For oxidations of a set of samples with bigger sizes, an 

Orion® pilot furnace with a large and flat sample holder (40x80 mm) is used. The samples are 

deposited on the flat sample holder with the face to be oxidized on the top; one sample is 

sacrificed to measure the current temperature with a welded thermocouple. The samples 

preparation and oxidation conditions program with the Orion® Pilot domestic software are the 

same as for TGA, except mass change measurement, an option not available in the pilot 

furnace. 

II. 2. 2. Oxidation methods 

Oxidation of metal is a high temperature corrosion reaction between a metal surface 

and an oxygen based atmosphere - O2 or H2O or both are often used as the oxidizing species 

due to their presence in the hot strip mill atmosphere - where a certain amount of oxygen 

atoms are fixed on the metal surface increasing the mass of the new metal-oxide bloc. The 

correlation between mass change and oxidation kinetics is therefore evident and made the 

thermo-gravimetric analysis the best method for this study. 

The mass change obtained with TGA is divided by the sample surface to give a 

normalized mass change per surface unit versus time curve: 

Figure II. 3: Typical oxidation temperature profile and atmosphere compositions. 

T(°C) 
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(s) 
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)(/ tfSm =∆   (II. 1) 

Δm/S: Mass change per surface unit 

t: oxidation time 

The curve profiles are analyzed to see if they fit some common mathematical 

functions (linear, parabolic; exponential…), the corresponding kinetic law and constants can 

therefore be estimated. In the case of random profile, the oxidation is considered chaotic. 

II. 3. Scale Characterization after oxidation 

II. 3. 1. Optical observations 

After oxidation in the thermo-gravimetric analyser or pilot furnace, the samples are 

moulded in a cold resin and ground with SiC papers up to grade 4000 to obtain cross-sections 

micrographs. For scale external surface observations, no treatment is needed after oxidation. 

Cross-section and surface micrographs of scale phases are obtained with an Optical 

Microscope (OM) integrated in a Raman spectroscopy device and a Scanning Electron 

Microscopy (SEM) device.  

II. 3. 2. Spectrometric methods 

The nature of phase is identified using Raman spectroscopy analyses and estimation of 

elements content given by Energy Dispersive Spectroscopy (EDS). Some samples are 

analysed by X-rays Photoelectron Spectroscopy (XPS) and Auger-FEG. The XPS setup used 

for characterizations is a Perkin-Elmer PHI 5500 with monochromatic Al Kα X-ray source of 

187 eV (for survey spectra) and 11 eV (for high resolution spectra) pass energies of the 

analyzer. XPS characterizations show a depth resolution of 10 nm. Analyzed area is of 0.8×2 

mm2. Auger-FEG characterizations are performed with a Jeol Jamp 9500F device. Analyses 

are done at an acceleration voltage of 15 kV, a beam current of 1 x 10-8 A and a sample tilt of 

0°.  

II. 4. Scale dissolution characterization 

 Pickling and over-pickling tests are conducted on three types of samples: 

- Black coils coming from the hot strip mill. 
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- Model samples with scales grown in the thermo-gravimetric analyzer (TGA) or the pilot 

furnace. 

- Scale free steel cylinders or blocs. 

 Samples preparation for pickling tests depends firstly on their initial form and size 

(sheets, cylinders, discs, parallelepipeds) and nature (scale free steel or scaled steel) and 

secondly on the pickling cell and measurement method. 

 Two pickling experimental setups are used: 

- Electrochemical set-up for corrosion potential, corrosion current and electrochemical 

impedance spectroscopy measurements. 

- Inductively Coupled Plasma – Atomic Emission spectroscopy (ICP-AES) coupled with a 

potentiostat for total dissolution rates coupled with corrosion potential and corrosion current 

measurements. 

II. 4. 1. Electrochemical measurements 

Electrochemical measurements during pickling and over-pickling were done in an 

experimental setup adapted to steel samples covered with scale. It consists of an 

electrochemical cell connected to a potensiostat and frequency response analyzer. 

Different electrochemical methods were programmed to extrapolate the different 

aspects and contribution of electrochemical processes in pickling and over-pickling 

mechanism.   

II. 4. 1. 1. Electrochemical set-up 

 The electrochemical cell used for pickling and over-pickling experiments is composed 

of three electrodes immerged in an acid bath and connected to a potentiostat: 

- Reference electrode: has a constant potential in the same range of temperature. All potential 

values are given versus this potential. As pickling and over-pickling experiments in this study 

are conducted in hydrochloric acid (HCl) solutions, the saturated calomel electrode (SCE) 

with KCl solution was used to avoid contamination of the acid solution by foreign ions (K+ is 

inert and Cl- is already present in the acid solution). A saturated KCl extension tube is used to 

protect the reference electrode during high temperature dissolutions. 

- Auxiliary electrode: is a platinum grid with a surface high enough to avoid current 

saturation. The potential is applied between the reference electrode and the working electrode. 

The current is measured in the circuit made of the WE and the auxiliary electrode. 
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- Working electrode: A rotating electrode with a three cylindrical pieces sample holder was 

elaborated (Figure II. 4). The outer piece is open partially at the bottom to expose the sample 

surface to the solution. Acid infiltration into the sample holder is prevented with a rubber 

circular joint between the outer piece bottom and the sample. The intermediate piece is 

screwed on the bottom piece pressing the sample on the rubber joint. The central piece made 

of stainless steel is screwed on the intermediate piece ensuring electrical contact between the 

back of the sample and the head of the rotating electrode.  

 To fit in the holder, the sample must have a disc form with 25 mm diameter and a 

maximum thickness of 5 mm. 

 

Figure II. 4: Scheme of a cross-section of the sample in the rotating electrode sample holder. 

 

The elaboration of the working electrode with a disc form and specific size 

requirements depends on the origin of the sample: 

- Directly from the black coils sheets: discs are extracted from the sheets with a cylindrical 

mould with  25 mm diameter put under pressure in an automatic vice, polished on the back 

face to ensure electrical conductivity and put in the rotating electrode sample holder with the 

scaled face at the bottom in contact with the rubber joint. The intermediate and central pieces 

are screwed gently to avoid scale cracking on the rubber joint. For scale free measurements 

both disc faces are polished before being put in the sample holder. 

- For samples oxidized in the Thermo-gravimetric analyzer (TGA): due to limited sample 

holder size in the TGA, only cylinders with 4 mm diameter and 5 mm length are oxidized in 
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this device. The difference of size is compensated with a cold resin poured around the small 

sample in a 25 mm diameter mould (Figure II. 5). The scale surface of one disc face of the 

sample is protected from the resin with a soft paste spread on the bottom of the mould; the 

sample bottom surface penetrates a little bit in the soft paste to avoid any infiltration of the 

resin under the sample. After solidification of the cold resin, the enlarged sample is removed 

from the mould; the soft paste is removed from the sample face to be pickled. Before putting 

the enlarged sample in the rotating electrode sample holder, the other face is polished until 

removing all resin and scale to ensure electrical conductivity. 

 

Figure II. 5:  Cross section scheme of a resin sample enlargement mould. 

- Oxidation in the pilot furnace: the oxidized samples in this case are discs with 25 mm 

diameter. After oxidation, the disc surface in contact with the flat sample holder of the furnace 

is polished to ensure the electrical conductivity. The sample is placed in the rotating electrode 

sample holder with scale at the bottom in contact with the rubber joint. The intermediate and 

central pieces must be screwed gently to avoid scale cracking on the joint rubber. 

 The acid solutions with the desired concentration are prepared by dilution of a 

concentrated hydrochloric acid solution 37% in mass and kept in phials in a hood. 

 The acid solution is poured in a double layer container where a thermostat fluid 

circulates to fix the temperature of the bath. The reference and auxiliary electrodes and a 

thermometer are immerged in the bath while it is heating (Figure II. 6). Once the bath reaches 

the desired temperature and the sequence of the electrochemical methods is programmed in 

the potensiostat pilot software, the working electrode is immerged and the measurement 

sequence is launched immediately. 
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Figure II. 6: Electrochemical cell with pickling bath. 

Two potensiostats were used for electrochemical studies: a Schlumberger® Solartron® 

SI 1286 potentiostat coupled with a  Schlumberger® Solartron®  Frequency Response 

Analyser, with Corrwave® and Zplot® as pilot softwares and a VoltaLab® 80 with 

VoltaMaster® as pilot software. 

II. 4. 1. 2. Electrochemical methods 

 In a pickling or over-pickling process, a solid phase – scale and steel – is dissolved in 

an acid solution. To evaluate the electrochemical contribution and characteristics in this 

dissolution, different methods were used. 

Corrosion is the result of the electrochemical transformation of a metallic substrate or 

oxide into cations dissolved in aqueous solution. In the case of the metallic substrate, the 

corrosion occurs according to the anodic reaction: 
−+ +→ zeMM z   (II. 2) 

This reaction is thermodynamically possible if the system is in the corrosion domain 

of the pH-E or Pourbaix diagram. The boundary between the immunity and corrosion 

domains is given by the Nernst Potential of the reaction. 



56 
 

 A cathodic reaction is always parallel to the anodic reaction. The corrosive species 

are reduced by the electrons lost by the metal. In the case of metallic substrate corrosion in an 

acidic solution, the reduction of protons is the main cathodic reaction: 

22 HeH →+ −+   (II. 3) 

 Four methods were used to study the electrochemistry of pickling and over-pickling 

for each sample of this study: 

Open Circuit Potential (OCP) 

 The open circuit potential in this study corresponds to the corrosion potential. It is 

measured and recorded continuously during pickling and over-pickling experiments: 

)(tfEcorr =   (II. 4) 

Ecorr: Corrosion potential (V/SCE) 

t: Dissolution time (t) 

 The corrosion potential value indicates the electrical state of the sample in the 

solution. It is a mixed potential fixed by the equality between the anodic and cathodic 

currents. At corrosion potential the resulting current is null: 

0=+= caOCP III   (II. 5) 

By convention: Ia ≥ 0 and Ic ≤ 0 

  This method does not disturb the system. The corrosion potential values evolution 

depends on the nature of the phases reached by the acid solution during scale dissolution and 

gives an estimation of the time needed for the acid to cross each phase.  

Current density: 

 Electrochemical corrosion kinetics are evaluated with the anodic corrosion current 

Ianod, it measures the electrical charge transfer velocity between the dissolved anode and the 

oxidant species at the electrode surface in contact with the solution. If the anodic reaction is 

identified, the anodic current can be expressed with mass loss or moles of the corroded solid 

phase according to Faraday’s law: 

dt

dn
Fz

dt

dm

M

Fz

dt

dq
I ...

. ===   (II. 6) 

I: corrosion current (A: Ampère) 

q: electrical charge (C: Coulomb)  

t: time (s: seconds) 

M: molar mass (g.mol-1) 

m: mass  (g: gram) 
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n: number of moles (mol) 

F: Faraday’s constant (96500 C.mol-1) 

z: number of electrons exchanged 

 In general, corrosion current rate is expressed as current density. The current values 

are normalized with the electrode surface to be comparable with literature and reference 

values. Therefore, the mass and mole loss rates are also normalized with the electrode surface. 

The common surface unit is cm2. 

The corrosion current at a constant applied potential Ei is monitored with the chrono-

ampero-metry method: 

),( tEfI icorr =   (II. 7) 

At open circuit potential, the resulting current is null (equation II. 5), no direct 

measurement is possible. The anodic (or cathodic) current must be extrapolated with indirect 

methods. 

The Tafel curves extrapolation method [107] was used to evaluate the corrosion 

current at discrete times of pickling and over-pickling. The Tafel behaviour is only observed 

if the half reaction is controlled by the charge transfer rate, this is usually the case for the H+ 

reduction in acidic solutions (pH < 3). It consists of a potential scan deviation from the 

corrosion potential toward negative values for the cathodic curve and positive values for the 

anodic curve with a chosen potential scan rate and interval. Both curves are represented in the 

same semi-logarithmic graph: 

)()( EfILog =   (II. 8) 

A Tafel corrosion process is controlled by the activation energy, the anodic or cathodic 

reaction can be expressed by the equation: 

bEeII .0=   (II. 9) 

The Tafel constant b is defined by the equation: 

RT

Fz
b

..τα=   (II. 10) 

Where αt is the transfer coefficient with 0 ≤ αt ≤ 1, R the universal gas constant (8.31 J.mol-

1.K-1) and T the absolute temperature (K). 

As the total current is the sum of the anodic and cathodic currents it is expressed with 

the following equation: 
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Eb
c

Eb
aca

ca eIeIIII .
0

.
0 +=+=   (II. 11) 

By considering the corrosion potential Ecorr as the reference potential the equation 

becomes: 

)( EbEb
corr

ca eeII ∆∆ −=   (II. 12) 

With:  

corrEEE −=∆   (II. 13) 

 For a Tafel reactive system, if ΔE is high enough, the anodic (or cathodic) contribution 

is dominant, and the anodic (or cathodic) curve is linear in a semi log graph. The anodic (or 

cathodic) current is extrapolated from the anodic (or cathodic) straight line at the corrosion 

potential. 

A long sequence of repeated anodic and cathodic Tafel curves separated by an open 

circuit potential period between each couple of Tafel curves measurement is programmed 

automatically with the potentiostat pilot Software to avoid data loss. The same potential and 

scan rate and interval is entered for all Tafel measurements. The sequence is launched 

immediately after immersion of the working electrode. At the end of the experiment, all data 

are recovered as text files and treated with an Excel Macro.  

The Tafel method was applied to extrapolate the anodic and cathodic currents. To 

compensate the experimental and data treatment effects on the current values, the corrosion 

current is given as an average of the anodic and cathodic experimental values. 

2

// ca
corr

II
I

+=   (II. 14) 

 The discrete corrosion potential and current couples versus their corresponding times 

are presented in a double ordinates axis to follow their evolution during pickling and over-

pickling process. Both pickling steps and electrochemical contribution in pickling kinetics can 

be shown with this method. 

)(),( icorrcorr tfIE =   (II. 15) 

  

Ecorr: Discrete corrosion potential values 

Icorr : Discrete corrosion current values 

ti: Discrete dissolution times  
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Electrochemical Impedance Spectroscopy: 

 Impedance Z of an electrochemical system is the ratio between an oscillating potential 

excitation ΔE around a potential E applied on the system and the oscillating current ΔI 

response of this system.  

If ΔE is a sinusoidal excitation, ΔI is also a sinusoidal response but with a phase 

difference. 

)2sin( fEE π∆=∆   (II. 16) 

)2sin( θπ +∆=∆ fII   (II. 17) 

/ΔE/: Potential oscillation amplitude (V) 

/ΔI/: Current oscillation amplitude (A) 

f: Frequency (Hz) 

θ: Phase change (rad) 

Z is a complex number with a resistance dimension. For practical reasons, it is 

expressed with a resistance by surface dimension. 

θj
jr eZjZZ

I

E
Z =+=

∆
∆=   (II. 18) 

Z: Impedance (Ω.cm2) 

Zr: Real part of impedance (Ω.cm2) 

Zj: Imaginary part of impedance (Ω.cm2) 

/Z/ Modulus of impedance (Ω.cm2) 

θ: Phase of impedance (rad) 

 The Electrochemical Impedance Spectroscopy method gives impedance values versus 

decreasing excitation frequencies spectra. The results are represented in impedance diagrams 

where combination of impedance elements is chosen to emphasize on specific electrical 

aspects of the system.  

  The objective of interpretation of impedance diagrams and values is to elaborate a 

model describing the electrochemical interface. The model can be represented by an 

equivalent circuit or general kinetic equation which fit the experimental values and 

correspond to the physical reality of the electrochemical system. 

 In this study, the EIS was used to elaborate a model describing scale and metallic 

substrate dissolutions and to estimate electrical resistance, effective capacitance and effective 

surface during pickling. Impedance measurements were conducted on scaled and scale free 

samples at discrete times of pickling. 
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 The EIS results have shown an equivalent circuit represented by an electrolyte 

resistance RE in series with a constant phase element CPE parallel to a polarization resistance 

RP. In this study, the parallel polarization resistance corresponds to the charge transfer 

resistance RT: 

TP RR =   (II. 19) 

The impedance of a CPE is given by: 
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ZCPE −==
  

(II. 20) 

α: CPE parameter, dimensionless,  α  < 1, α  = 1 for a perfect capacitor 

Q: CPE parameter, (F s(α-1) cm-2), has a capacitance dimension for α  = 1. 

 CPE parameters α and Q can be extracted graphically. On the imaginary part of 

impedance versus the frequency curve plotted in a logarithmic diagram, α corresponds to the 

inverse of the slope of the regression straight line at the high frequency range.  

Once α estimated, Q values are calculated from the imaginary part Zj with: 

)
2

sin(
)2)((

1 απ
π αffZ

Q
j

−=
  

(II. 21) 

Q is almost constant in the high frequency range; its average value is calculated in this 

range and sometimes written as QHF. 

 The electrolyte resistance RE and the parallel resistance RT values were obtained by 

regression method using CPE parameters values extracted graphically and the equivalent 

circuit global equation: 

QRfj

R
RZ

T

T
E απ )2(1+

+=
  

(II. 22)
 

The effective capacitance Ceff was extrapolated from the CPE parameters and 

resistances with two different approaches: 

Power law model 

 This model was developed by [108-111] to analyze the impedance response of a 

passive film with a CPE behaviour caused by a normal distribution  of time constants (Figure 

II. 1).  
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Figure II. 7: Schematic representation of a normal distribution of time constants resulting in a 

distributed time-constant behaviour that, for an appropriate time-constant distribution, may be 

expressed as a CPE [112]. 

 

According to this model, the CPE parameters Q and α can be related to physical 

parameters of the film with the equation: 

α
δ

α

δρ
εε

−= 1
0)(

g
Q  

ε: permittivity of the film 

ε0: permittivity of vacuum, 8.85.10-14 F.cm-1 

δ: film thickness, cm 

ρδ: resistivity at the film/electrolyte interface, Ω.cm 

g: numerical function given by: 

375.2)1(88.21 α−+=g   (II. 23) 

By definition, the capacitance is related to the film thickness with the equation:  

δ
εε0=C

  
(II. 24) 

The effective capacitance of the Power Law model CPL can be estimated from the CPE 

parameters with equation:  

α
δ

α ρεε −−= 11
0)( gQCPL   (II. 25) 
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Brug’s model 

 This model was developed by [113] to analyze the impedance response of electrodes 

showing a CPE behavior caused by a surface distribution of time constants and to extract the 

effective capacitance (Figure II. 8).  

 

Figure II. 8: Schematic representation of a surface distribution of time constants resulting in 

a distributed time-constant behaviour that, for an appropriate time-constant distribution, may 

be expressed as a CPE [112]. 

  

According to [113], the effective capacitance is related to the CPE parameters with the 

formula: 

R

RQ
CSurf

α/1)(=
  

(II. 26) 

Where R is defined by: 

TE RRR

111 +=
  

(II. 27) 

In the case of RT >> RE , R = RE. For conductive phases, the effective capacitance Ceff 

corresponds to a double layer capacitance CDL: 

E

E
DL R

QR
C

α/1)(
=

  
(II. 28)

 

 CPE parameters Q and α, charge transfer resistances RT and effective capacitances CPL 

or CDL were estimated from impedance diagrams with the most adequate model and plotted 

versus scale dissolution time. 

II. 4. 2. ICP-AES setup and method 

 An electrochemical cell coupled with an ICP-AES (Inductively Coupled Plasma 

Atomic Emission Spectroscopy) device was developed by [114-116] in ArcelorMittal 
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Maizières Research centre to quantify continuously the amount of dissolved elements at open 

circuit potential, potentiostatic or galvanostatic conditions.  

 The global experimental setup connecting the electrochemical cell and its potentiostat 

on one side and the ICP-AES bloc on the other side is shown in Figure II. 9. 

 To fit in the electrochemical cell, the sample must have at least two flat and parallel 

surfaces and a 10x20 mm2 dimensions for the dissolved surface. The surface to be dissolved 

of the sample is pressed against the hole of the flow solution chamber with a hydraulic piston. 

A rubber joint is placed around the solution chamber hole to avoid air or solution leaks during 

solution pumping. The contact between the solution and the sample surface is made on a 

5x15mm2 surface. A thin and small metallic sheet is placed between the polished surface of 

the sample and the hydraulic piston; it is connected to the working electrode wire with pincers 

to ensure the electrical contact with the potentiostat.  

Before placing the different electrodes in their compartments, the system is purged 

with the electrolyte to remove contaminations. The reference and auxiliary electrodes are 

immerged in the compartment separated from the solution flow chamber by a semi selective 

membrane to avoid metallic cations contaminations. A by-pass is used to diverse the 

electrolyte flow from the cell while placing the sample. 
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Figure II. 9: ICP-AES experimental setup inspired from [116] 
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 The ICP-AES allows the multi-element analysis in the electrolyte downstream from 

the dissolution cell, but in the present case only the iron and silicon concentrations were 

followed. The spectrometer is a commercial set-up from Jobin-Yvon, Inc. (JY ULTIMA 2) 

using an argon plasma source consisting of a 40 MHz, 1 kW inductively coupled plasma, into 

which the electrolyte sample is continuously aspired. In the flow cell used, the working 

electrode of the electrochemical cell is in an anodic small compartment (0.2 mL of 

electrolyte), which is separated by a membrane from an adjacent compartment containing the 

reference and counter electrodes. The electrolyte passes through the cell with a flow rate of 

about 2.5-3 mL/min and the iron and silicon composition of the electrolyte is measured in real 

time. Previous calibration of the set-up allowed the establishment of the relationship between 

dissolution rate and concentration, taking into account the time resolution of the hydraulic 

system. 

 In the ICP-AES software iron and silicon were chosen as monitored elements. 

Solutions at three well defined concentrations of each element are passed with a fixed debit in 

ICP to obtain the correlation between the AES intensity unit and the corresponding mass or 

mole numbers units. The electrochemical data coming from the potentiostat are also 

transformed into AES intensities expressed with AES arbitrary units. The same procedure is 

followed for the potential and current by using a dummy cell in potentiostatic and 

galvanostatic modes. 

 Two sequences were programmed in the ICP-AES software giving different curves 

after data treatment with a Macro spreadsheet. 

- Open circuit potential: the total dissolution measured without perturbation of scale   

)(),,( tfEnn SiFe =   (II. 29) 

- Applied potential: reveals the effect of an applied potential on the total dissolution rate  

)(),,( tfInn SiFe =   (II. 30) 

nFe : number of mole of iron passed in the solution (mmol.s-1.cm-2) 

nSi : number of mole of silicon passed in the solution (mmol.s-1.cm-2) 

E: open circuit potential (V/SCE) 

I: Corrosion current at a fixed applied potential (mA) 

 The ICP-AES gives the total dissolution rate of each element. The comparison 

between these values and the corrosion current values obtained by Tafel method gives an 

estimation of the electrochemical contribution in pickling at the corrosion potential. 
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II. 5. Scale characterization after pickling and over-pickling 

 After pickling or over-pickling tests in the electrochemical cell, the rotating electrode 

is extracted from the acid solution, the sample is removed from the rotating electrode sample 

holder, cleaned with ethanol to remove the acid solution drop and remaining scale and put 

under vacuum to protect the surface from dust and atmospheric corrosion. In the ICP-AES 

cell, the sample is removed from its lodge and follows the same treatment as for the one in the 

electrochemical cell.  

  The sample surface was observed with a LEICA® S440 SEM or Zeiss® Ultra 55 SEM-

FEG after a low pressure carbon deposition treatment to facilitate electrical charges 

evacuation. A global first micro-graph is taken to identify the phases on the surface 

corresponding to different pickling levels; they are distinguished with their brightness in the 

SEM backscattered electrons mode. Then zooms on each zone are performed to observe the 

form and roughness of the surface with the secondary electrons mode and identify its 

composition with EDS. 

 For over-pickling tests done on polished steel samples at different temperatures and 

applied potentials, an optical microscope and a Zygo® NewView® interferometric microscope 

observations were performed on over-pickled surfaces after increasing immersion times. 

Sample surface is cleaned with ethanol after each test and observed immediately in parts of 

the surface to evaluate its roughness and morphology. The surface roughness data were 

treated with a MoutainsMap® proTM® software. The results were presented as roughness 

cartographies or parameters. Two roughness parameters were chosen:  

- Sq: the standard deviation of the height distribution of the surface. 

- Sz: the average difference between the highest height peaks and lowest valleys. 

The evolution of these two parameters and the roughness cartographies during over-pickling 

were analysed to study the distribution and amplitude of roughness. 
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III. Oxidation and scale characterization of silicon alloyed 

steels 
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III. 1. Introduction 

In the hot strip mill process, steel surface is in contact with humid air at high 

temperatures: from nearly 1200°C (reheating furnace) to nearly 700°C (coiling). At these 

conditions an oxide layer called commonly “scale” is formed. It is usually removed by 

dissolution in an acid bath to recover a clean steel surface. For non alloyed steels, scale is 

mainly composed of iron oxides and dissolved easily in pickling baths. 

 Some alloying elements such as Si, Mn, Al are added to steel to reach high level of 

mechanical properties like elasticity limit, strain strength, elongation, formability and crash 

worthiness. These elements segregate at high temperatures towards the scale/metal interface 

forming mixed oxides for silicon and aluminium or solid solutions in scale for Mn [59, 61, 

117]. The presence of these oxides in scale and at the steel/metal interface affects the pickling 

efficiency.   

In this study, the focus is put on silicon effect on scale formation kinetics and 

chemistry during oxidation at hot strip mill temperatures. Silicon is present in Alloyed High 

Strength Steels (AHSS) to improve their mechanical and corrosion resistance, as well as in 

electrical steels for improving the electrical resistivity, which is an important property for 

applications as the core material of electro-magnetic devices such as motors [5, 7, 9]. 

The elaboration of new silicon alloyed steel grades and the difficulties to pickle them 

triggered many recent studies on the effect of silicon on oxidation kinetics and final scale 

morphology. Some of these studies proposed some oxidation mechanisms for silicon alloyed 

samples but were limited to medium silicon alloyed grades and did not correspond completely 

to the Hot Strip Mill conditions [12, 21, 37, 43, 49].  

According to Atkinson [35] and Adachi et al. [36] silicon contained in steel is first 

oxidized into silica which forms an interfacial sub-layer between wüstite and steel.  The 

internal oxidation of steel can be also observed (oxide particles inside the steel), especially for 

the steel containing more than 0.3 wt.%Si. Genève [118] pointed out that scale adhesion is 

lower on Si steels than in that of FeO on pure Fe. On the contrary, adhesion between silica or 

fayalite and the substrate is strong: leading to an increased difficulty to remove scale 

containing silicate phases during pickling. Above 1177°C, FeO-Fe2SiO4 [54] eutectic melts 

and infiltrates scale and steel grain boundaries. The penetration depth into the scale increases 

with the Si content, while that into the substrate varies slightly. The presence of liquid phase 

improves the scale adhesion for steels containing less than 0.5 wt.%Si, but for higher Si 

contents (up to 1.5 wt.%) the tendency is inversed.  
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In our study, temperature and humidity conditions corresponding to those in the hot 

strip mill were applied on a medium and a highly silicon alloyed steel grades to determine the 

silicon effect on scale formation kinetics and the chemistry of the resulting scale.  

III. 2.  Steel substrate properties 

Three grades with silicon contents 0.02 wt.%Si (Si00), 1.6 wt.%Si (Si16) and 3.2 

wt.%Si (Si32) were chosen, their chemical composition is given in Table II.1. Si00 is the low 

carbon steel reference. Si16 and Si32 are the intermediate and high silicon alloyed grades 

respectively. 

III. 3. Oxidation mechanisms 

III. 3. 1. Low carbon steel oxidation 

III. 3. 1. 1. Oxidation kinetics 

The mass gain per surface unit (Δm/S) of non-alloyed sample Si00 during oxidation in 

15% humid air, at temperatures 900-1200°C is reported in Figure III. 1. For non-alloyed 

sample Si00 at all oxidation temperatures, scale growth first follows a linear law (1) then a 

parabolic law (2). 

Mass gain laws can be described by following formulas: 

- First linear step: 

tkSm l .)/( =∆   (III. 1) 

- Parabolic step: 

tkSm p
n .)/( =∆

  
(III. 2) 

With n > 1 

RT

Q

ii ekk
−

= .0   (III. 3) 

 According to Arrhenius law (III. 3) ki is the kinetic constant (kl for the linear part and 

kp for the parabolic part), Q is the activation energy and R the gas constant. The value of n in 

the parabolic law varies from 1 to 2 during the linear-parabolic transition period before being 

fixed to 2 after few minutes of oxidation. 
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Figure III. 1 : Mass gain of Si00 during oxidation in 15% humid air at temperatures 900-
1200°C. 

Kinetics parameters for linear and parabolic parts of oxidation of Si00 were evaluated 

at the four tested temperatures. They are reported in Table III. 1 (kl and kp for the different 

oxidation temperatures and silicon contents). On an Arrhenius diagram representing the 

variation of the linear and parabolic kinetics constants as a function of (1/T) on a logarithmic 

scale, the slope of the regression straight line gives an estimation of the activation energy Q 

for the linear and parabolic steps of oxidation: Ql = 54 kJ mol-1 and Qp = 144 kJ mol-1, as well 

as the origin of the kinetics constants kl0 = 2.4 x 103 mg cm-2 min-1 and kp0 = 3.04 x 107 mg 

cm-2 min-1. 

(a) 
T \ Sample Si00 Si16 Si32 

900°C 8.50 4.69 1.60 
1000°C 14.98 3.95 1.55 
1100°C 19.13 1.88 1.50 
1200°C 20.55 28.31 32.60 

(b) 
T \ Sample Si00 Si16 Si32 

900°C 10.50 7.18 1.50 
1000°C 47.46 14.98 0.11 
1100°C 88.00 84.58 0.09 
1200°C 238.00 460.94 975.90 

Table III. 1 : Oxidation kinetics parameters: (a) kl (mg cm-2 min-1) and (b) kp (mg2 cm-4 min-1). 
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 Linear and parabolic kinetics constants, as well as the resulting mass gain values 

during oxidation in 15% humid air for non alloyed steels, increase with temperature (Table 

III. 1) 

III. 3. 1. 2. Oxidation mechanism 

The first linear step, which takes some seconds, corresponds to the formation of 

continuous iron oxide layer (scale) on the steel surface, and then the scale growth is 

decelerated in a transition regime to follow a parabolic law. This indicates that the oxidation 

reaction is controlled by the diffusion of Fe2+ through the scale layer vacancies towards the 

surface in contact with the oxidizing atmosphere [22, 23, 48]. 

III. 3. 2. Effect of Silicon content on oxidation 

III. 3. 2. 1. Oxidation kinetics 

The effect of intermediate content of silicon on mass gain during oxidation of Si16 in 

the same temperature range 900-1200°C is shown in Figure III. 2. For oxidation temperatures 

lower than 1100°C, the mass gain follows the initial linear law but for a very short time, less 

than 10 seconds, then stagnates during 30 seconds to 2 minutes depending on oxidation 

temperature. After this passivation period, the scale growth follows a parabolic law at all 

temperatures.  The mass gain of Si16 at 1200°C shows higher values compared to lower 

temperatures. The curve profile is also different; the passivation period has completely 

disappeared and the linear then the parabolic steps similar to those of Si00 are observed.  

Oxidation kinetics parameters of Si16 are reported in Table III. 1. The intermediate 

content of silicon reduces the initial linear constants values compared to Si00 at the same 

oxidation temperatures except for 1200°C where a higher kl is observed. The post passivation 

period kinetics constant kp increases with increasing oxidation temperatures.  

In Figure III. 3, the high silicon content of Si32 induces much longer passivation 

periods especially at 1000°C and 1100°C in comparison with Si16. This passivation effect 

disappears at 1200°C. 
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Figure III. 2 : Mass gain of Si16 during oxidation in 15% humid air at temperatures 900-
1200°C (a) with a zoom on the passivation period (b). 

 

 

Figure III. 3 : Mass gain of Si32 during oxidation in 15% humid air at temperatures 900-
1200°C (a) with a zoom on temperatures ≤ 1100°C (b).   

The oxidation kinetics parameters kl and especially kp for Si32 are significantly 

affected by the long passivation period since their values are much lower compared to Si16 at 

1000°C and 1100°C. However, higher kl and kp values are observed for oxidation at 1200°C 

(Table III. 1). 

In Figure III. 4, the comparison of the final mass gain after 15 minutes of oxidation for 

all tests, confirms the switching effect of increasing silicon content for temperatures higher 

than 1100°C where the passivation is replaced by an acceleration of oxidation. 

 

(a) 
(b) 

(a) (b) 
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Figure III . 4: Effect of Si content and temperature on final mass change after oxidation in 
15% humid air during 15 minutes. 

 
The higher concentration of silicon and its random distribution on steel surface and the 

short oxidation time compared with experiments found in literature [1, 41] can explain the 

random kinetics values in our case and the difficulty to calculate the activation energy. 

III. 3. 2. 2. Oxidation mechanism 

As it will be demonstrated in the Section III.4., the passivation period is due to the 

formation of a thin silica layer as Si is more prone to oxidation than iron. This layer 

dramatically slows down the diffusion of Fe2+ towards the surface in contact with the 

oxidizing atmosphere [33, 49]. This effect increases with silicon content and temperatures 

between 950°C and 1100°C favourable for silica. The resulting scale is thin but rich in SiO2. 

The oxidation passivation effect disappears at 1200°C, this is due to the formation of a 

Wüstite-Fayalite eutectic at temperatures higher than 1177°C [54]. This melting phase favours 

the diffusion of iron ions to the external oxidizing atmosphere and oxygen to the interface, 

accelerating the external and internal oxidation rates [1]. The diffusion coefficients of iron 

and oxygen in the liquid oxides (DFe in molten FeO-SiO2 around 8 x 10-5 cm2 s−1 at 1250°C 

[53], DO (or DFe) in liquid iron oxides around 2.5 x 10-3 cm2 s-1 at 1400°C and 3 x 10-3 cm2 s-1 

at 1615°C [31, 32]) are higher by several orders of magnitude than the diffusion coefficients 

in the solid silicon oxide (DFe in silica around 1.5 x 10-10 cm2 s−1 at 1100°C [1, 52]).  
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III. 4. Scale characterization 

III. 4. 1.  Low carbon steel scale properties 

In the oxidation conditions of this study, the resulting non alloyed steel (Si00) scale is 

homogenous and essentially composed of a wüstite layer covered by a magnetite thinner layer 

(Figure III. 5a). Below 570°C wüstite is unstable: it transforms into iron and magnetite 

eutectoid. However, this transformation enables very low cooling rates. Considering a post 

oxidation cooling speed of about 40 °C min-1 in all experiments of this study, the wüstite 

transformation  can be assumed for low part of scale volume, which is not clearly visible on 

SEM even at high magnification [19, 58].  

 

Figure III. 5 : (a) Cross-section SEM micrograph of Si00 after oxidation at 850°C in 15% 

humid air during 15 minutes with (b) Raman spectra of its scale phases: hematite external 

surface, magnetite layer and wüstite layer. 

Si00 scale layers and their Raman spectra are presented in Figure III. 5b. On the scale 

top surface, Raman analysis reveals the presence of a hematite layer with intense peaks at 220 

cm-1 and 290 cm-1 and 410 cm-1, as well as small peaks at 500 and 610 cm-1. This layer is very 

thin and not visible on SEM micrograph of the sample cross-section. Raman characterizations 

performed on cross-section do not distinguish clearly magnetite from wüstite. The Raman 

spectrum provided on external layer corresponds well to the spectrum of magnetite (Fe3O4) 

with characteristic peaks at 310 cm-1, 540 cm-1 and 670 cm-1. Wüstite phase (FeO) is cubic 

and should not be visible on Raman spectra. However, a peak at 660-670 cm-1 was observed 

(a) 
(b) 
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during Raman analyses on the internal layer [105, 119]. This peak could be attributed to the 

presence of vacancies in the wüstite microstructure (wüstite Fe1-xO with relatively large x 

variation according to the phase diagram [19]) or partial wüstite transformation during 

cooling into Fe + Fe3O4 eutectoid (presence of magnetite areas).  

EDS analyses gives the chemical composition of the low carbon steel scale layers. The 

external and internal layers compositions are close to Fe3O4 and FeO respectively (Table III. 

2). 

Element (at. %) Phase 

Magnetite Wüstite Fayalite 
Fe 43.6 49.4 35.0 
O 56.4 50.6 48.9 
Si   16.1 

Table III. 2 : Chemical composition of scale phases with EDS. 

 
The presence of the two external layers with iron oxidation degrees higher than that of 

wüstite comes from the continuous oxidation of iron diffusing through lattice vacancies and 

the presence of oxygen at high concentration in the outer scale layers [57].  

The increase in the oxidation temperature and duration increases the scale thickness. 

For very high oxidation temperatures and durations, a gap appears at the scale/metal interface 

due to the difference of dilatation coefficients of steel and scale limiting the diffusion of iron 

to form wüstite. This leads to the formation of thicker magnetite and hematite layers above 

wüstite [23, 41]. 

III. 4. 2.  Silicon steel scales properties 

As for the scale growth kinetics, the scale morphology for silicon alloyed steels is very 

dependent on silicon content and oxidation temperature.  

For Si16 grade, wüstite and magnetite layers similar to those of Si00 are observed as 

external layers. Between steel and wüstite, an internal sub-layer composed of silicon-iron 

oxides appears. The morphology of this phase depends on oxidation temperature (Figure III. 6 

and Figure III. 7). 
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(a) 

 
(b) 

 
Figure III. 6 : (a) Cross-section SEM micrograph of Si16 oxidized at 1100°C in 15% humid 

air during 15 minutes with a zoom on fayalite-wüsitite mixture layer. (b) Raman spectrum of 

fayalite grains in wüstite. 

According to Raman and SEM analyses, between 950°C and ~1177°C (melting point 

of FeO + Fe2SiO4 eutectic) grains of fayalite appear in the wüstite matrix of the internal layer. 

Fayalite is clearly detected by Raman spectrometry due to its characteristic double peak at 

810 and 840 cm-1 (Figure III. 6) [120, 121].  
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(a) 

 
(b) 

 
Figure III. 7 : (a) Cross-section SEM micrograph of Si16 oxidized at 1200°C in 15% humid 

air during 1 minute with a zoom on fayalite layer. (b) Raman spectrum of fayalite layer with 

small wüstite grains. 

Above 1180°C, a continuous layer of fayalite is observed at the steel/wüstite interface 

with some infiltrations at the grain boundaries of steel and wüstite layer (Figure III. 7). This 

layer is formed at the melting of FeO + Fe2SiO4 eutectic at these temperatures. Some wüstite 

small grains appear in the fayalite layer (Figure III. 7). For long oxidation times, the presence 
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of the thick fayalite layer leads to break-down at the steel/scale interface due to volume 

shrinkage during solidification and thermo mechanical stresses. 

EDS analysis on fayalite zones of the internal layer confirms Raman spectroscopy 

results. Iron, oxygen and silicon respective atomic ratios in the iron-silicon oxide phase 

correspond to fayalite Fe2SiO4 (Table III. 2). 

 

Figure III. 8:  Cross-section SEM micrograph of Si32 oxidized at 1100°C in 15% humid air 

during 15 minutes. 

For Si32 sample, the long passivation period observed at 1000°C and 1100°C during 

scale growth produces discontinuous scale composed of islands surrounded by a very thin 

passivating layer. The islands are composed of an external curved wüstite and an internal 

curved wüstite matrix containing fayalite grains (Figure III. 8). These islands can be formed 

after local rupture of the barrier layer and enhanced iron diffusion through defects or film 

grain boundaries [41]. 

To determine the nature of the passivation layer, XPS analysis were performed on the 

Si32 sample oxidized at 1100°C during 2 min corresponding to the beginning of passivating 

regime (Figure III. 9). XPS survey spectrum performed at 45° from spectrometer axis 

indicates the presence of iron, silicon, manganese, oxygen and carbon at the sample surface 

(Figure III. 9a). On oxygen (O1s) high resolution spectrum silicon oxide of SiO2 type and 

hydroxide phases are clearly distinguished (Figure III. 9b). The iron and manganese oxides 

are also present on the sample surface, they are revealed by a peak at 529.5 eV in Figure III. 

9b. The silicon (Si2p) high resolution spectrum (Figure III. 9c) reveals three elementary 

components: two different oxide phases containing silicon and a metallic form of silicon. The 

first one of the oxide phases corresponds typically to the SiO2 [122] whereas the second one 

can be attributed to SiOx (x<2) or fayalite (Fe2SiO4).  
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XPS results are confirmed by SEM observations and Auger microanalysis of the 

sample surface (Figure III. 10). Auger spectra performed in differentiated mode show silicon 

enrichment in smooth areas of the sample surface corresponding to the presence of silicon 

oxide film (Si peak at 1619 eV and O peak at 505 eV in Fig. III. 10b). The presence of iron 

oxides can be seen on the surface of islands (Fe triplet transition at 598, 651 and 703 eV and 

O peak at 505 eV in Fig. III. 10c). These results are in good agreement with the XPS 

conclusions suggesting the presence of a SiO2 layer at the surface in smooth areas between 

iron oxide islands. This also corroborates the observations made in the kinetics study 

concerning the silicon oxide layer. Formed during the first instants of oxidation, it slows 

down the diffusion of iron and, consequently, the scale growth (passivation period). 

Nevertheless, the scale continues to grow during the passivation period, yet at a small rate, a 

consequence of the low diffusion coefficient of iron in silicon oxide. This diffusion can occur 

Figure III. 9 :  XPS analysis of Si32 sample surface after 2 minutes of oxidation at 1100°C in 

15% humid air: 45° survey (a), high resolution XPS spectra of O 1s (b) and Si 2p (c). 
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at the SiO2 layer defects such as grain boundaries leading to the formation of islands (Figure 

III. 10a). 

 

Figure III. 10 : (a) SEM micrograph of Si32 sample surface after 2 minutes of oxidation at 

1100°C in 15% humid air with Auger spectra in differentiated mode performed in (b) the 

smooth areas of the surface and (c) on iron oxide islands. 

III. 5.  Conclusions 

Oxidation of low carbon steels follows a linear law at the beginning of oxidation then 

a parabolic law after a transition period. All kinetic parameters increase with temperature. 

Scale of low carbon steel grade is composed of three parallel sub-layers with 

decreasing oxygen ratio toward the steel substrate. The hematite Fe2O3 outer layer is very thin 

and observable only on sample surface. The magnetite intermediate layer with a mixture of 

Fe3+ and Fe2+ is thick enough to be observable in SEM cross-section micro-graphs. The main 

scale sub-layer is wüstite FeO. Below 570°C, FeO is unstable and transforms partially or 

completely into Fe3O4 and Fe.  

In steel oxidations at high temperatures (850-1200°C) in humid air (15% H2O) during 

a short time (15 min), the addition of  high amounts of silicon to steel (1.6 and 3.2 wt.%) 
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slows down drastically the scale growth for temperatures below 1177°C with the formation of 

a silica sub-layer at the beginning of oxidation.  

The passivation effect disappears with the formation of FeO-Fe2SiO4 eutectic above 

1177°C and the enhancement of Fe2+ diffusion. Silicon oxides are concentrated at the 

metal/scale interface and their morphology depends on the oxidation temperature. Fayalite 

grains in wüstite matrix appear between 900°C and 1100°C and continuous layer of fayalite-

wüstite eutectic above 1177°C. For silicon content of 3.2 wt.% the passivation effect is so 

high that the resulting scale is discontinuous with islands surrounded by a silica layer. 
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IV. Pickling and over-pickling mechanisms of low 

carbon steel. 
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IV. 1. Introduction 

Since the literature review showed that iron oxide dissolution in acid solutions is 

simultaneously a chemical and an electrochemical process [98, 100-102], experimental 

methods which allow the two mechanisms to be distinguished have to be found. While 

electrochemical methods provide information on the rate of electrochemical dissolution, 

additional analytical techniques are necessary to determine the total dissolution rate. In 

reference [100, 101], in situ X-ray absorption near-edge spectroscopy (XANES) was used 

simultaneously with electrochemical methods on synthetic oxide to determine the nature of 

the dissolution reaction, leading to the conclusion that dissolution of hematite and magnetite 

is mainly chemical in the anodic potential range, and that electrochemical dissolution of 

magnetite has to be taken into account in the cathodic range. Inductively coupled plasma-

atomic (or optical) emission spectroscopy (ICP-AES or ICP-OES) has been shown to be a 

useful method for the in situ determination of material dissolution, using solution analysis in a 

flow cell [114, 115]. A similar approach was used in the present work on oxide layers grown 

on a steel substrate. Electrochemical methods such as polarization curves and impedance 

spectrometry were applied to estimate the rate of electrochemical dissolution, whereas the 

overall rate of iron dissolution in the pickling solution was followed in situ, using an 

analytical set-up composed of an inductively coupled plasma optical emission spectrometer 

(ICP-OES) placed downstream from the electrochemical flow. 

From the comparison between the electrochemical dissolution rate and the rate of total 

iron enrichment in the pickling bath, estimation of the chemical dissolution rate will be 

performed. 

A model low carbon scale and soft pickling conditions were chosen to study the 

pickling mechanism fundamentally. Then, an exploration of some oxidation and pickling 

parameters similar to those present on industrial lines will be done to correlate the proposed 

pickling mechanism with the effect of these parameters 

IV. 2. Model scale characteristics before pickling 

 Among the different model scales described in chapter III, only the model steel scale 

with a homogenous layered structure was studied, for easier modeling of the dissolution 

mechanism. As shown previously, it is essentially composed of wüstite covered by a 

magnetite layer (Figure IV. 1) and an outer very thin hematite layer. The mean thickness of 
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the scale was about 70 µm. Below 570°C, wüstite is known to be unstable and to transform 

into iron and magnetite eutectoid. However, this transformation needs very low cooling rates, 

and, since in these experiments the cooling rate was about 40 °C.min-1, it can be assumed that 

this transformation only affected a small part of the scale volume (chapter III). 

 

Figure IV. 1: Cross-section SEM micrograph of Si00 model scale after oxidation at 850°C in 

air with 15% relative humidity during 15 minutes. 

 The low carbon steel model scale will be called Si00-model scale in this chapter. The 

phases in contact with acid during pickling will be the hematite, the magnetite and the partly 

decomposed “wüstite”, containing wüstite, magnetite and iron and at the end the steel 

substrate starting over-pickling. 

IV. 3. Electrochemical dissolution of scale 

IV. 3. 1. Corrosion potential Ecorr 

From an experimental point of view, the corrosion potential of the sample during the 

pickling process is easy to follow continuously. The results are given in Figure IV. 2. At the 

beginning of immersion, the open circuit potential (OCP) was well defined and had a value of 

about + 0.4 V/SCE. Such a positive value has also been reported for sputtered hematite and 

magnetite and was attributed to a passive-like behaviour [101]. During the first 9 hours of 

immersion, the OCP decreased to + 0.15 V/SCE and then increased again to + 0.3 V/SCE. 

This value was maintained for a period of 3 hours, after which an almost instantaneous jump 

Pickling 
direction 
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was observed to a value of - 0.5 V/SCE, which is close to the OCP measured on bare steel in 

the same electrolyte. After the jump the OCP kept a roughly constant value. 

 

Figure IV. 2: Evolution of corrosion potential during scale dissolution in 1M HCl acid 

solution at room temperature. 

 

IV. 3. 2. Corrosion current Icorr 

IV. 3. 2. 1. Tafel curves 

Potentiodynamic measurements were performed in the anodic and cathodic potential 

ranges, showing a Tafel behaviour in the cathodic range. The corrosion current (I) could then 

easily be determined by extrapolating log I to the OCP. 

Every 0.5 hour, current density-potential curves were recorded around the OCP, but in 

a restricted potential range to avoid significant modification of the scale by polarization. 

Three examples of these curves are given in Figure IV. 3. In addition, the current density-

potential curves for a steel electrode without oxide are also plotted as a reference, leading to 

an estimate of 80 µA.cm-2 for the corrosion current density (Ecorr = - 0.5 V/SCE). 
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Figure IV. 3: Current-potential curves (scan rate 1 mV/s) plotted for different immersion 

times (1.5 h, 11.5 h and 12.5h), for scale covered and scale free steel electrodes. 

IV. 3. 2. 2. Corrosion current evolution during scale dissolution 

The corrosion current density determined from current-potential curves is plotted as a 

function of immersion time in Figure IV. 4. The corresponding OCP value is also reported, 

and appears to vary similarly to the variations given in Figure IV. 2. The differences between 

the temporal evolutions of potential reported in Figure IV. 2 and Figure IV. 4  are likely to be 

due to the perturbation of the sample by the polarization measurements imposed each 30 

minutes for the corrosion current determination. 

At the beginning of immersion, the corrosion current density was very low, with a 

value of about 5×10-2 µA.cm-2. This low value is in agreement with the presence of a hematite 

layer and with the value usually measured in the presence of a passive layer. The current 

increases monotonically, up to the potential jump which is observed after 12 hours. The 

increase in the corrosion current density is likely to be linked to the decrease of the area 

protected by the hematite and to the penetration of the electrolyte in the oxide layer. It is 

noticeable that after 12 hours of immersion the corrosion current density reached a value of 1 

mA.cm-2 and kept about the same value after the potential jump. This result is surprising, 

because due to the potential jump of about 700 mV the electrochemical reactions are normally 
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expected to be completely different before and after the potential jump. As shown in Figure 

IV. 4, within a period of 12 hours of immersion, the corrosion current density increased by 

more than 4 orders of magnitude passing from 5.10-5 to 1 mA.cm-2. 

 

Figure IV. 4: Evolution of corrosion potential and corrosion current during scale dissolution 

in HCl 1mol.L-1 at room temperature. 

IV. 3. 3. Electrochemical Impedance Spectroscopy EIS 

IV. 3. 3. 1. EIS diagrams 

During the immersion period, the electrochemical impedance was measured at the 

open-circuit potential every 15 minutes. A representative impedance spectrum, obtained after 

15 minutes of immersion, is presented in Figure IV. 5 in Nyquist format. The shape of the 

impedance diagram corresponds to a portion of a depressed semicircle. The lowest measured 

frequency was fixed to 0.2 Hz to enable measurement of the impedance diagram in period less 

than 2 minutes. This diagram was analyzed by use of an equivalent circuit composed of a 

resistor in parallel with a constant phase element CPE (inset of Figure IV. 5). The impedance 

of the CPE is given by ZCPE = (Q(j2πf)α)-1  where α  and Q (F s(α-1) cm-2) are the CPE 

parameters.  
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Figure IV. 5: Typical impedance diagram in Nyquist format measured after 15 minutes of 

immersion of the sample in 1M HCl at the corrosion potential (400 mV/SCE). The inset 

shows the equivalent-circuit used to analyze the spectrum. 

IV. 3. 3. 2. Evolution of charge transfer resistance R 

Similar to the variation of the corrosion current shown in Figure IV. 4, the polarization 

resistance varied by a few orders of magnitude within the immersion duration. For each 

immersion time, the CPE parameters (Q and α) and the polarization resistance (R) were 

obtained by a regression procedure using the software SIMAD developed in LISE. The 

inverse of the polarization resistance (R-1) is presented as a function of the immersion time in 

Figure IV. 6. If the polarization resistance is assumed to be the charge transfer resistance (Rt), 

then the product of the corrosion current and charge transfer resistance should be proportional 

to the Tafel slope β, i.e., RtIcorr = β/2.303. 

The comparison between the temporal variation of Icorr (Figure IV. 4) and that of R-1 

shows some differences, since the charge transfer resistance varies over more than three 

decades; whereas, the corrosion current density varies over more than four decades. This 

difference could be due to the fact that, according to the dissolution time, the reactions 

involved in the different processes are different and then the value of the Tafel slope β 
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corresponding to the product RtIcorr can vary with time. Nevertheless the variation of the two 

parameters shows the same tendency. 

 

Figure IV. 6: Temporal evolution of inverse of the charge transfer resistance R-1 

(conductance) and the corresponding corrosion potential during scale dissolution in 1M HCl 

acid solution at room temperature. 

IV. 3. 3. 3. Evolution of CPE parameters 

The variation of parameters Q and α are presented as a function of the immersion time 

in Figure IV. 7. The α values are in the range 0.8 to 0.9 within the duration of the experiment, 

indicating that the CPE can be attributed to a capacitance. Two domains are clearly observed 

for the Q values: during the first 6 hours, Q had a steady value of about 10-5 F.sα-1.cm-2, a 

jump was observed, after which Q had a roughly constant value of 10-3 F.sα-1 .cm-2 until the 

end of the experiment. According to Figure IV. 4, the jump in Q occurs at the point in time 

where the hematite layer is dissolved and the magnetite layer becomes predominant on the 

sample surface. It is noticeable that no significant Q variation is observed before and after the 

potential jump at 12 hours.  
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Figure IV. 7: Temporal evolution of regressed CPE parameters α and Q during scale 

dissolution in 1M HCl acid solution at room temperature. 

IV. 3. 3. 4. Evolution of effective capacitance 

According to the previous observations, the CPE measured by impedance must 

correspond to the capacitance of the hematite layer for t < 6 h, and to a double layer 

capacitance for larger immersion time. For each model the CPE analysis is different. In 

presence of the hematite layer, the time-constant distribution is through the hematite layer, 

and the power-law model described in chapter II can be applied. When the hematite layer is 

dissolved, an electrochemical dissolution of the magnetite and wüstite is assumed. In this case 

the CPE corresponds to a double layer capacitance and the time constant distribution is along 

the surface in agreement with the hypothesis of Brug’s formula [113]. 

For an immersion time smaller than about 6 hours, the hematite layer is present 

(Figure IV. 4 and Figure IV. 6), and, according to the power law model (chapter II) the 

effective capacitance C can be estimated from the CPE parameters with equation: 

Potential jump 
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α
δ

α ρεε −−= 11
0 )( gQC   (IV. 1) 

The dielectric constant ε is known and has a value of 12 for hematite [123]. The 

function g is easily calculated with the experimental α value, and, following Orazem et al. 

[110], a value of 500 Ω.cm can be assigned for 
δρ . 

Thus, from the experimental values of Q and α, values for the capacitance can be 

determined. The  corresponding  results  are  presented  in  Figure IV. 8. The capacitance 

increased from 10-7 F.cm-2 to 5×10-7 F.cm-2. Following equation (II. 24), these capacitance 

values correspond to a layer thickness which varies from 100 nm to 20 nm. The small values 

of film thickness can be used to explain why, in the SEM micrograph presented in Figure IV. 

1, the hematite layer cannot be observed.  

 

 

Figure IV. 8: Evolution of effective capacitance calculated with the power-law model [20] 

for a normal time-constant distribution and with Brug’s model [22] for a surface time-

constant distribution during dissolution of scale in 1M HCl at room temperature. 

For immersion times higher than 6 hours, the hematite layer is no longer present, and 

the corresponding double layer capacitance was calculated by applying Brug’s formula 

(chapter II).  
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The double layer capacitance varied from 6×10-5 F.cm-2 to 8×10-4 F.cm-2 (Figure IV. 

8). These values are very large, but, if we assume that the solution penetrates inside the oxide 

layer, the active area can be significantly increased. So taking the usual value of 4×10-5 F.cm-2 

for the double layer capacitance, the real active surface would be ascertained to have been 15 

to 50 times larger than the geometrical area. This temporal evolution of the active area is in 

agreement with the increase of the corrosion current density value passing from 10 µA.cm-2 

after 7 hours, to 1 mA.cm-2 after 12 h of immersion. 

IV. 4. Total dissolution of scale 

The dissolution rate of iron from the scale covered steel samples was measured by 

ICP-AES during the pickling process, and the overall variation with time is shown in Figure 

IV. 9. The evolution of the open-circuit potential (E(ICP)) was measured simultaneously. Its 

evolution is in agreement with the evolution observed during electrochemical measurements 

(E(EC)), which is also reported in Figure IV. 9. E(ICP) had a very anodic value (about 0.4V) 

at the beginning of the dissolution process, followed by an abrupt drop towards - 0.5 V after 

several hours. For easier comparison between electrochemical results and ICP measurements, 

a dimensionless time tdim is reported on the abscissa of Figure IV. 9. It is defined as the ratio 

between the elapsed time and the time corresponding to the potential jump. Moreover, from 

the corrosion current densities reported in Figure IV. 4 the electrochemical dissolution rate 

calculated using Faraday’s law (taking one electron as a first approximation) is also reported 

for comparison with the total rate of iron dissolution. 
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Figure IV. 9: Comparison between the total scale dissolution rate (DR) measured by ICP-

AES and the electrochemical dissolution rate in 1 M HCl solution at room temperature. 

 At the beginning of pickling the total dissolution rate is very high compared to the 

electrochemical dissolution then the ratio between the two rates decreases while approaching 

the potential jump. The total dissolution rate decreases faster after the potential jump but 

remains above the electrochemical dissolution rate with few gap units. 

IV. 5. Pickling and over-pickling mechanisms 

IV. 5. 1. Pickling thermodynamics 

Pickling and over-pickling of low carbon steels is assimilated to the dissolution of iron 

oxides and iron in an acid medium. The thermodynamics of this dissolution is studied with an 

E-pH or Pourbaix diagram where the different phases of the system are located according to 

their stability in potential and pH zones. The boundaries between the stability zones are 

plotted with Pourbaix’s data on iron system in water [124] and presented in Figure IV. 10. 
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Figure IV. 10: E-pH diagram of iron system and protons in water according to Pourbaix’s  

data [124]. 

The potential in E-pH diagram of Figure IV. 10 are expressed versus the SCE to 

simplify their comparison with the corrosion potential values during pickling and over-

pickling.  In general, the corrosion potential in pickling conditions (0.4 to -0.5 V/SCE) is in 

the stability zone of Fe2+, this means only that this cation is the most thermodynamically 

stable specie in the pickling bath. 

IV. 5. 2. Pickling steps and reactions 

During the early stages of immersion, the OCP was about 0.4 V/SCE and the corrosion 

current density was very low, i.e., 5.10-2 µA.cm-2. The Raman spectra suggest that the oxide 

layer at this stage was coated by a very thin layer of hematite. In agreement with the positive 

value of the OCP and the low value of the corrosion current, the hematite behaves like a 

passivating layer, with field-assisted transfer of ions within the semiconducting non-

stoechimetric layer [101]. 

The existence of some cracks in the hematite leading to a contact between the solution 

(HCl 1 mol.L-1) and Fe3O4 and/or FeO cannot be excluded, but, since Fe2O3 and Fe3O4 layers 
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have very close OCP potential values in acid solutions [101], the contribution of each 

component cannot be determined. It clearly appears from Figure IV. 9 that at this stage of 

pickling the hematite layer mainly dissolves by a chemical process, with an electrochemical 

contribution of 0.1%, in close agreement with the results of Virtanen et al. [101]. 

During the first hours, tdim<1, the corrosion current density stayed at a very low level; 

whereas, the open-circuit potential and the overall leaching rate were roughly constant. This 

period of time could be characteristic of the vanishing of the hematite layer due to chemical 

dissolution according to  

OHFeHOFe aq 2)(
3

32 326 +→+ ++   (IV. 2) 

After this period, the increase in the electrochemical dissolution (velec) rate became 

much more significant than that of total dissolution rate (vtotal), the ratio between velec/vtotal 

passing from 1/1000 to 1/4 after a pickling time close to tdim = 1. Before tdim = 1, the corrosion 

potential progressively decreases from 0.5 to 0.3 V, simultaneously with the increase of the 

electrochemical dissolution of the remaining phases beneath hematite, mainly magnetite and 

wüstite. The overall leaching rate varied from 3×10-10 to 3×10-9 mol Fe s-1 cm-2 for tdim 

varying from 0 to 1, which is two orders of magnitude higher than the value reported by 

Virtanen et al. [101] for pure hematite and pure magnetite, showing that the reactivity of the 

present scale is different from that of pure oxides. 

Potential jump at tdim =1 

At tdim =1, the huge potential jump from 0.3 V/SCE to - 0.45 V/SCE indicates that the 

electrochemical reactions involved before the jump no longer fix the corrosion potential value 

after the jump. It is then necessary to propose two sets of electrochemical equations, one set 

for the anodic domain before the jump and one set after. 

Before the jump, after dissolution of hematite, the layer under consideration is mainly 

composed of magnetite and wüstite. As mentioned previously, wüstite is unstable at room 

temperature and is partly decomposed into iron and magnetite. At this anodic potential (0.3 

V/SCE), the anodic dissolution of iron is very fast but the quantity of iron is small.  The 

electrochemical reactivity of the layer must therefore be attributed to the electrochemical 

oxidation of magnetite according to  

−++ ++→+ eOHFeHOFe aq 1438 2)(
3

43   (IV. 3) 

or to oxidation of wüstite according to  
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−++ ++→+ eOHFeHFeO aq 12 2)(
3   (IV. 4) 

It has been suggested in the literature [101] on a pure sputtered magnetite layer that  

dissolution of magnetite is mainly chemical and that oxidative dissolution is not likely to 

occur. The main reaction leading to chemical dissolution of magnetite would then be 

OHFeFeHOFe aqaq 2)(
2

)(
3

43 428 ++→+ +++   (IV. 5) 

In the present work, the composition of the scale beneath the hematite is a poorly-

defined mixture of magnetite, wustite, and iron. It can also be expected that this layer is 

heterogeneous and defective and that the composition of the scale/solution interface is 

modified throughout the dissolution. Figure IV. 9 shows clearly that chemical dissolution is 

significantly favored as compared to the electrochemical process, but this latter step cannot be 

neglected and becomes significant after a few hours of pickling. This observation is supported 

by the interfacial capacitance value shown in Figure IV. 8, which is in agreement with that of 

a double layer capacitance. 

For the cathodic reaction, the potential is too anodic to consider the proton reduction, 

but, due to the parallel chemical dissolution of the oxides layer, the solution contains Fe3+ ions 

which can be reduced to Fe2+. 

)(
2

)(
3

aqaq FeeFe +−+ →+   (IV. 6) 

IV. 5. 3. Over-pickling reactions 

When the potential drop reaches the value of - 0.45 V/SCE, which is also the Ecorr 

value for bare iron in the acidic medium; the solution has reached the metal. The anodic 

reaction is then expected to be mainly iron dissolution  

−+ +→ eFeFe aq 2)(
2   (IV. 7) 

and the cathodic reaction is expected to be primarily proton reduction, i.e.,  

222 HeH →+ −+   (IV. 8) 

Nevertheless visual observation of the surface of the sample shows that many spots of 

oxide are still present on the electrode even few hours after the potential jump, and Figure IV. 

9 confirms that chemical dissolution still contributes to the total dissolution. 

Additional cathodic reactions should therefore be considered. According to references 

[100, 102], reductive dissolution of magnetite is also expected in this potential range: 
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OHFeHeOFe aq 2)(
2

43 4382 +→++ ++−   (IV. 9) 

As before the potential drop the main cathodic reaction was assumed to be the 

reduction of Fe3+ ions coming from the chemical dissolution, the rate of this reaction should 

be highly enhanced at this cathodic potential. But since the contribution of the chemical 

process to the overall mechanism is significantly decreased, the concentration of Fe3+ near the 

surface is expected to be lowered too. The drastic decrease of the rate of chemical dissolution 

can be attributed to the fact that the rate of proton reduction is faster than the rate of chemical 

dissolution or to the fact that the production of hydrogen blocks the chemical dissolution of 

the oxide. The dissolution of iron is exclusively electrochemical and produces stable Fe2+ in 

this potential range. 

 The mechanism proposed above is in disagreement with the mechanisms proposed in 

the literature where the electrochemical dissolution corresponds to the reduction of iron 

oxides by iron in micro-electrochemical cells iron/acid/iron oxides in parallel with the 

chemical dissolution of wüstite [88, 89, 91].  

These mechanisms are based on the galvanic coupling of iron and its oxides, which is 

probably a minor contribution and is not coherent with the high anodic corrosion potential 

values during pickling. During over-pickling, the reduction of protons is the dominant 

reaction versus the reduction of magnetite. 

IV. 6. Influence of some parameters on picking and O-P mechanism of LCS scales 

 The pickling and over-pickling mechanism described above concerns a model scale 

with the three iron oxide layers in soft pickling conditions. These conditions allow the 

monitoring of different pickling steps and give a sufficient time for their characterization. 

To correlate the proposed mechanism with industrial conditions, a non exhaustive list 

of oxidation and pickling parameters closer to industrial conditions is studied to evaluate their 

effect on pickling mechanism and kinetics. The corrosion potential evolution of low carbon 

steel scale in some different pickling conditions is presented in Figure IV. 11.  

As the potential drop corresponds to the contact between the acid and the metal and to 

the start of over-pickling, the time needed to reach it will be considered as the “pickling time” 

at a first approximation and used to compare the effect of oxidation and pickling conditions 

on pickling time (see §IV.6.1.).  
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Figure IV. 11: Temporal evolution of corrosion potential during dissolution of low carbon 

steel scales in different conditions: (a) Si00-model scale with hematite outer layer in HCl 1 

mol.L-1 at room temperature, (b) Si00-model scale without hematite outer layer in HCl 1 

mol.L-1 at room temperature, (c) Si00-model scale without hematite outer layer in HCl 3 

mol.L-1 at room temperature, (d) Si00-model scale with hematite outer layer in HCl 1 mol.L-1 

at 50°C, (e) thin and cracked scale (similar to industrial black coil scale) in HCl 1 mol.L-1 at 

room temperature . 

IV. 6. 1. Scale composition and morphology 

IV. 6. 1. 1. Influence of hematite on pickling 

The pickling times were compared at room temperature in HCl 1 mol.L-1 between a 

Si00-model scale with hematite and Si00-model scale without hematite. The presence of a 

hematite outer layer delays scale dissolution due to its passive-like behavior. The electrolyte 

must diffuse through micro-cracks of this layer to reach magnetite and wüstite. Pickling time 

without hematite is lowered up to 60% of the model scale pickling time (Figure IV. 11a and 

b).  
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IV. 6. 1. 2. Pickling of an industrial scale 

Industrial scale is thin and, cracked (Figure IV. 12a). Pickling time of this kind of 

scale cannot be approximated by the corrosion potential drop since this occurs immediately 

after immersion in acid (Figure IV. 11e). ICP-AES is more adequate to monitor pickling of 

this kind of sample (Figure IV. 12b). 

 (a) 

 

(b) 

 

Figure IV. 12: (a) Cross section micro-graph of the low carbon steel oxidized in the hot strip 

mill (HSM). (b) Temporal evolution of iron dissolution rate and corrosion potential of  a low 
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carbon steel scale from the hot strip mill (HSM) and a polished steel during dissolution in HCl 

1 mol.L-1 at room temperature. 

For a hot strip mill (industrial) scale, the corrosion potential is negative immediately 

after immersion in the acid. This means that over-pickling starts also immediately. Indeed, 

pickling of black coils can be assimilated to an over-pickling with the electrochemical 

mechanism implying the oxidation of steel and the simultaneous reduction of magnetite and 

protons. 

The pickling time for this kind of sample can be approximated by the intersection 

between the dissolution rate of iron from scale and iron from the bare steel (1.4 hour in Figure 

IV. 12) 

IV. 6. 2. Influence of acid concentration 

The pickling times of two Si00-model scales without hematite were compared at room 

temperature in HCl at two concentrations: 1 mol.L-1 and 3 mol.L-1. The pickling time 

decreased when acid concentration increased by a factor of about 30 % (Figure IV. 11 b and 

c). This confirms the accelerating effect of a lower pH of the solution. 

IV. 6. 3. Influence of pickling bath temperature 

The effect of temperature increase up to 50°C was significant on pickling time. Even 

with the presence of the hematite passive layer, the pickling time was reduced by almost 95 % 

(Figure IV. 11 a and d). This is due to the higher infiltration of the electrolyte (higher 

diffusion coefficient) and the reduction of the activation energy for all chemical and 

electrochemical reactions when temperature increases. 

IV. 6. 4. Influence of a cathodic applied potential 

A cathodic potential was applied on the model scale and its effect on pickling 

mechanism was evaluated by simultaneous monitoring of the total dissolution rate of iron by 

ICP-AES and the cathodic current density. (Figure IV. 13). 

The applied cathodic potential was about 250 mV more negative than Ecorr of iron (Eap 

= - 700 mV/SCE), in order to neglect the anodic reactions. 
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Figure IV. 13: Temporal evolution of total dissolution rate of iron and cathodic current 

density at an applied potential of - 700 mV/SCE in HCl 1 mol.L-1 at room temperature. Fe 

(EC) and I (Hydrogen) curves are deduced from I (Total) curve while I (Magnetite) curve is 

deduced from Fe (Total) curve. 

 The total amount of iron measured by ICP-AES (Fe (Total) in Figure IV. 13) at this 

cathodic potential comes from the electrochemical reduction of hematite and magnetite phases 

and from wüstite and iron particles which are mechanically detached and dissolved in the 

solution. The cathodic current I (Total) comes from the reduction of iron oxides and the 

protons depending on the phase in contact with the acid. 

During the first 20 minutes of polarization, the cathodic current first increased up to a 

peak at 8 mA.cm-2 after nearly 10 minutes then decreased down to a local minimum at 3 

mA.cm-2. At the same time, the total dissolution rate of iron first followed the same tendency 

by increasing up to 5 x 10-7 mol s-1 cm-2 then decreased slightly. These similar tendencies of 

the two curves in this period confirm the contribution of the reduction of iron oxides in scale 

dissolution at cathodic potential. 

After 20 minutes of immersion, the cathodic current increased again up to 1.5 x 10-2 

A.cm-2 and kept this value after 25 minutes of immersion. At the same time, the total 

dissolution rate of iron increased again slightly up to 5 x 10-7 mol s-1 cm-2 after 25 minutes. 

Unlike the stable cathodic current after 25 minutes of immersion, the total dissolution rate 
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decreased slowly until the end of the experiment. These different tendencies imply the protons 

reduction as a dominant cathodic reaction once the acid reached the metal after 20 minutes of 

immersion. 

The current density peak during the first 20 minutes was attributed to the reduction of 

iron oxides (mainly magnetite). The reduction of protons was neglected in this period and 

estimated by I (Hydrogen) curve in Figure IV. 13. The current density can then be converted 

into moles of dissolved iron from magnetite reduction using Faraday’s law (approximation of 

1.5 Fe for 1e-). The dissolution rate of iron attributed to magnetite reduction increased up to 

about 10-7 mol.s-1.cm-2 after 10 minutes of immersion then decreased down to 5 10-7 mol.s-

1.cm-2 after 20 minutes of immersion. Based on these values, the contribution of the magnetite 

reduction in the total dissolution rate of scale varied from 1/5 to 1/9 after 10 and 20 minutes 

of immersion respectively. At the applied cathodic potential - 700 mV/SCE, the chemical 

reactions were supposed to be blocked and dominated by the reduction of magnetite. In this 

case the non electrochemical contribution in scale dissolution can only be attributed to the 

mechanical detachment of wüstite and iron particles of the decomposed wüstite or even some 

magnetite particles which did not had the time to dissolve. 

After 20 minutes, the current density second increase and stabilization at 1.5 x 10-2 

A.cm-2 corresponds to the over-pickling period where the acid is in contact with the steel. 

Neglected on the oxides surface, the H+ reduction becomes dominant on steel surface which 

explains the stable cathodic current during this period. The slow decrease of the total 

dissolution rate after the acid reaches the metal was attributed to the continuous dissolution of 

the decomposed wüstite by reduction of its magnetite particles. To estimate the cathodic 

current due to magnetite, the EC/total dissolution ratio (1/9) at the pickling to over-pickling 

transition at 20 minutes was taken as constant. By application of this ratio and Faraday’s law 

on the total dissolution rate, the cathodic current due to magnetite was calculated (I 

(Magnetite) in Figure IV. 13). It represented the continuity of the cathodic current before the 

starting of over-pickling and confirmed the decreasing contribution of magnetite reduction in 

the total cathodic current (nearly 1/1000 after 3 hours of immersion). The domination of the 

electrochemical reactions especially the protons reduction during over-pickling will be 

confirmed in chapter 5. 

In these pickling conditions, the pickling time can be approximated by the local 

minimum of the cathodic current after the first peak due to the reduction of iron oxides. It 

corresponds to 4% of the pickling time of the model scale in soft pickling conditions. The 
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cathodic potential is, so far, the most efficient pickling accelerator and at the same time a 

method to protect steel from over-pickling. 

IV. 7. Steel surface after pickling and over-pickling 

 Steel surface was observed by SEM-EDS to identify its chemical composition after 

pickling and over-pickling. The optical interferometry was used to evaluate the effect of a 

long over-pickling on steel surface roughness. 

IV. 7. 1.  Steel surface after insufficient pickling 

Steel surface of a pickled sample was observed after the potential drop to identify its 

chemical composition (Figure IV. 14). 

 

Figure IV. 14: SEM micrograph of a low carbon steel surface after pickling in HCl 1M at 

room temperature and at corrosion potential Ecorr = - 0.45 V/SCE. 

 Even though the corrosion potential is negative, steel surface is not completely pickled 

since wüstite covers part of this surface. The corrosion potential drop gives an approximation 

of pickling time but does not indicate the end of pickling. 

IV. 7. 2 Steel surface after long over-pickling: 

The roughness change of polished Si00 steel was observed with optical interferometry 

(chapter II). The roughness is estimated by the depth of holes (negative) and heights of 

summits (positive) relative to a medium plan of steel surface. They are expressed in µm and 

their intervals presented with colour codes cartographies. Examples of steel surface optical 
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micrographs at 2 different times of immersion in an acid bath at room temperature and 

pickling lines temperature (70°C) are presented in Figure IV. 15.  

(a) 

 

(b) 

 

(c) 

 

Figure IV. 15: Optical micrographs (0.7 x 0.55 mm) and 3D roughness cartographies of  a 

polished  Si00 steel surface (grit 800) after dissolution in HCl 1 mol.L-1: (a) before immersion 

(b) after 10 minutes of immersion at room temperature and (c) after 10 minutes of immersion  

in a bath at 70°C (optical micrograph not available). 

 

100 µm 

100 µm 
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In addition to the surface cartography, two parameters were chosen to characterize the 

surface roughness: Sz and Sq representing the total height and average quadratic height 

respectively. They are expressed in µm and their evolution with over-pickling time and bath 

temperature is presented in Figure IV. 16. 

 

Figure IV. 16: Evolution of roughness parameters Sz and Sq after 5 and 10 minutes of 

dissolution Si00 polished (grit 800) in HCl 1 mol.L-1. 

On Si00 surface before dissolution, the polishing traces are visible (grit 800). The 

roughness of this surface was taken as a reference (Figure IV. 15a).  

 The surface observations and evolution of roughness parameters of Si00 steel surface 

showed that the roughness increases significantly with over-pickling time and temperature. 

This can be due to absence of anti-corrosion alloying elements and high corrosion rate at 

grain boundaries. 

IV. 8. Conclusions 

In-situ ICP analyses of pickling solutions were performed simultaneously with 

electrochemical measurements on scales synthetically obtained on low carbon steels in order 

to determine the nature of the dissolution reactions. 
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It appears that dissolution of hematite is mainly of chemical nature, whereas the 

dissolution of magnetite and wüstite is both chemical and electrochemical.  

A very positive open-circuit potential was measured in the presence of hematite and 

magnetite, but once the metallic substrate was reached by the pickling solution, a huge 

potential jump of more than 700 mV towards the cathodic region was observed. Such a jump 

is only possible if the nature of the determining electrochemical reactions is drastically 

modified. 

Before the potential jump, at 0.4V, the main anodic reaction was the oxidation of 

magnetite and wüstite and the main cathodic reaction was the reduction of ferric ions formed 

by chemical dissolution. After the potential jump, at - 0.45V, the proton reduction is assumed 

to be the main cathodic reaction, whereas the oxidation of the iron substrate is the main 

anodic reaction. The reduction of ferric into ferrous ions must then become negligible, since 

the rate of chemical dissolution of iron oxide is significantly lowered in comparison with the 

electrochemical dissolution.  

A noticeable result in this work was to show the key role played by ferric ions formed 

in the pickling bath by chemical dissolution of hematite and magnetite. They provide the 

cathodic reaction enabling anodic dissolution of the scale, in a potential range in which 

protons are not reduced. 

For the scale model, the potential drop occurs simultaneously with the dissolution 

peak corresponding to a high dissolution rate of iron from the substrate at the transition time. 

While industrial scales are thinner and cracked, the negative corrosion potential and the 

dissolution peak are observed immediately at the beginning of pickling, this means that over-

picking starts simultaneously with pickling and the major part of scale is removed with over-

pickling. 

Pickling is accelerated by many parameters. They are ranked by their lower pickling 

times as follows: pH decrease, temperature increase, cathodic potential and scale cracking. 

The cathodic potential application is the most efficient parameter to accelerate pickling and 

protect the metal from corrosion at the same time. 
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V. Pickling and over-pickling mechanisms of high 

silicon alloyed steel grades 
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V. 1. Introduction 

After oxidation in the hot strip mill, silicon oxides (silica and fayalite) concentrate at 

the steel/scale interface in many forms; silica thin layer, fayalite grains in wüstite, fayalite 

layer and infiltrations and silica internal oxidation grains in steel substrate (chapter III).  

The upper iron oxide layer dissolves easily in classical pickling baths but the low 

solubility of silicon oxides present at the steel/scale interface increases the pickling time. In 

the case of fayalite infiltrations and high internal oxidation, a long over-pickling step is 

necessary to suppress fayalite and oxides at the grain boundaries. In HCl media, the addition 

of nitric acid induces a more reactive bath towards the metallic surface. The addition of HF 

acid increases the pickling efficiency without increasing the metal dissolution, due to its 

efficiency to dissolve silicon oxides [80, 89, 103-105].  

No pickling mechanism of silicon steels was found in the literature. Only empirical 

studies were done on industrial scales of silicon steels to evaluate the pickling time and to 

explore different conditions to remove the fayalite phase. 

In this study, two model scales of high silicon alloyed steels with two different fayalite 

morphologies were chosen to model pickling mechanism of silicon alloyed steels in soft 

conditions. 

As for the low carbon steel scale, a comparison of the dissolution mechanism of model 

scales with industrial scales in pickling line conditions will be presented. 

V. 2. Model scale characteristics before pickling 

 As seen in chapter III, scale morphologies of silicon steels depend on oxidation 

temperature. Two scales with different morphologies formed at two different temperatures 

were chosen as model scales for a 1.6 wt% Si steel (Si16). 

Scale formed at 1100°C is composed of three parallel layers: a magnetite layer, a 

decomposed wüstite layer and an internal layer composed of fayalite grains in a wüstite 

matrix (Figure V. 1). The total thickness of this scale is about 280 µm. 

The hematite outer layer is absent in this scale and the magnetite and wüstite layers are 

thicker after 15 min of oxidation, their thickness was estimated to around 25 and 200 µm 

respectively versus 7 and 70 µm, in comparison with Si00-model scale sample (section IV. 2). 

The newly formed fayalite-wüstite layer has a thickness of about 55 µm. The higher thickness 
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of iron oxides was attributed to the higher oxidation temperature (1100 °C versus 850 °C 

during 15 minutes).  

The sample will be called Si16-fayalite grains in this chapter. 

 

Figure V. 1: Cross-section SEM micrograph of the steel sample after oxidation at 1100°C in 

air with 15% relative humidity during 15 minutes. 

 

Si16 scale formed at 1200°C is composed of three parallel layers: a wüstite layer, a 

fayalite internal layer containing wüstite small grains and a layer with fayalite infiltrations 

into the steel substrate (Figure V. 2). The total thickness of this scale is about 530 µm. 

As for the previous sample (Si16-fayalite grains), hematite was absent at the top of the 

scale layer. But in the present case no magnetite external layer was obvious. After 1 min of 

oxidation the wüstite layer has a thickness of about 430 µm; this higher value is due to the 

enhanced iron diffusion through the melted fayalite-wüstite eutectic (Figure I. 7). Another 

important difference between the two samples is the morphology of the fayalite phase: there 

are grains embedded in wüstite for the Si16-fayalite grains sample, and a continuous layer in 

the present case with a thickness of about 100 µm.  

This sample will be called Si16-fayalite layer in this chapter 

For the two samples, the “wüstite” phase is a mixture of wüstite, and iron + magnetite 

eutectoid due to wüstite transformation below 570°C (Figure I. 9 and Chapter III), but for 

simplicity it will be called “wüstite” in this thesis report.  

Pickling 
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Figure V. 2: Cross-section SEM micrograph of the steel sample after oxidation at 1200°C in 

air with 15% relative humidity during 1 minute. 

V. 3. Electrochemistry of scale dissolution 

The electrochemical behaviour of Si16-fayalite grains and Si16-fayalite layer 

samples will be presented and compared to a Si00-model scale without hematite outer layer 

(Annex III) to have similar iron oxides outer layers for the three samples. 

V. 3. 1. Corrosion potential Ecorr 

The corrosion potential evolution during pickling and over-pickling of Si00-model 

scale (reference sample without hematite), Si16-fayalite grains and Si16-fayalite layer 

samples (scale thicknesses in section V. 2.) are shown in Figure V. 3. 

Si16-fayalite grains 

In Figure V. 3a, at the beginning of immersion, the corrosion potential was well 

defined and had a value of about + 0.3 V/SCE then it decreases slowly until reaching + 0.15 

V/SCE after nearly 3 hours. In comparison with Si00-model scale without hematite (Figure V. 

3c), the Ecorr value is less positive in Si16-fayalite grains scales, though the composition of the 

oxide is the same (magnetite and wüstite). At this stage, it is difficult to say whether this is 

due to the formation of silicon oxides in the scale internal layer or to the different heat 

treatments during the synthesis. The positive value was maintained for a period of 3.5 hours, 

after which an almost instantaneous jump was observed to a value of - 0.3 V/SCE, and then it 

decreases slowly during 1.5 hour to reach a value of - 0.45 V/SCE close to the corrosion 
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potential measured on bare steel in the same electrolyte. After nearly 5 hours the corrosion 

potential kept a roughly constant value. 
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Figure V. 3: Evolution of corrosion potential during scale dissolution in 1M HCl acid 

solution at room temperature of (a) Si16-fayalite grains sample, (b) Si16-fayalite layer sample 

and (c) Si00-model scale without hematite outer layer sample. 

The slow decrease of the corrosion potential after the jump, instead of the abrupt 

decrease observed for the Si00-model scale sample (Figure V. 3c) can be attributed to the 

presence of fayalite grains in the intermediate layer, which delays the corrosion potential from 

reaching the bare steel values after the potential jump. 

Si16-fayalite layer 

In Figure V. 3b, during the first 4 hours of immersion, the corrosion potential kept a 

stable value at 0.2 V/SCE then starts to decrease slowly during 30 minutes to a value of about 

0 V/SCE where it oscillates during few minutes before descending to - 0.35 V/SCE after 5 

hours. A corrosion potential pseudo-plateau is observed at this value during 2.5 hours before 

decreasing to the bare steel potential - 0.45 V/SCE after 8 hours of immersion. 
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The potential pseudo-plateau observed after the jump at -0.35V/SCE can be attributed 

to the presence of the continuous fayalite layer which acts like a passive layer and delays 

significantly the potential from reaching the corrosion potential value of the bare steel. 

As mentioned previously, an obvious difference between Si16-fayalite grains and 

Si16-fayalite layer samples is the presence in the first sample of a well defined magnetite 

layer at the top of the scale. The progressive dissolution of magnetite can explain the 

monotonous decrease of Ecorr during the first 3 hours, in comparison with the latter sample in 

which Ecorr keeps a roughly constant value during this time. Moreover, for Si16-fayalite grains 

sample, the time necessary for the solution to reach the metallic substrate is lower than in 

Si16-fayalite layer sample, this can be attributed to the lower scale thickness (280 µm and 530 

µm respectively) and the presence of a wüstite matrix in the internal layer easier to dissolve in 

comparision with a fayalite layer. 

The main difference between the two samples is observed after the potential jump; 

when fayalite grains are embedded in wüstite, the potential decreases progressively before 

reaching the Ecorr value of the steel substrate. When fayalite constitutes a continuous layer, a 

potential plateau at - 0.35V/SCE is observed during few hours, which delays significantly the 

overall process. 

The electrochemical reactions sets fixing the corrosion potential at the successive scale 

dissolution phase will be discussed later in this chapter. 

V. 3. 2. Corrosion current density Icorr 

V. 3. 2. 1. Current-potential curves 

As for Si00-model scale, potentiodynamic measurements were performed in the 

anodic and cathodic potential ranges on Si16-fayalite grains and Si16-fayalite layer samples, 

showing a Tafel behaviour in the cathodic range. The corrosion current (Icorr) could then 

easily be determined by extrapolating log I to the open circuit potential. 

Examples of current-potential curves of Si16-fayalite grains and Si16-fayalite layer 

samples at different times of dissolution in HCl 1 mol.L-1 are presented in Figure V. 4  and 

Figure V. 5 respectively. 
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Figure V. 4: Current-potential curves (scan rate 1 mV/s) plotted for different immersion times 

(0.25 h, 0.75 h, 1 h, 1.5 h and 3.25 h), for Si16-fayalite grains sample and scale free steel 

electrodes. 

 
The form of the current-potential curves of Si16-fayalite grains and Si16-fayalite layer 

samples are similar to those of Si00-model scale in the same potential range (Figure IV. 3). 

Indeed, the three samples have in common the conductive wüstite phase in contact with acid 

and a steel substrate in which iron is the main element. 

The faster temporal evolutions of the discrete corrosion potential values reported in 

Figures V. 4 and V. 5 in comparison with the continuous corrosion potential of Figure V. 3, 

are likely to be due to the perturbation of the sample by the imposed polarization. This 

potential scan is necessary for the corrosion current determination by the Tafel method. 
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Figure V. 5: Current-potential curves (scan rate 1 mV/s) plotted for different immersion times 

(0 h, 0.5 h, 1.25 h and 4.8 h), for Si16-fayalite layer sample and scale free steel electrodes. 

V. 3. 2. 1. Evolution of the corrosion current density 

The corrosion current density determined from current-potential curves is plotted as a 

function of immersion time for Si16-fayalite grains and Si16-fayalite layer samples. 

Si16-fayalite grains sample 

The corrosion current density determined from current-potential curves is plotted as a 

function of immersion time in Figure V. 6. The corresponding corrosion potential value is 

also reported, and appears to vary similarly to the variations given in Figure V. 3. The shorter 

period of the positive potential is likely to be due to the perturbation of the sample by the 

polarization measurements imposed each 15 minutes for the corrosion current determination 

and a less cohesive or more decomposed wüstite in the presence of fayalite grains in the scale 

internal layer. This accelerates the infiltration and dissolution of the wüstite to reach the steel 

substrate. 

At the beginning of immersion, the corrosion current density was very low, with a 

value of about 0.2 mA.cm-2 in agreement with a wüstite dissolution. The current increases 

monotonically, up to the potential jump which is observed after 0.7 hours. The increase in the 

corrosion current density is likely to be linked to the increase of the active surface in a wüstite 

0 h 

0.5 h 
1.25 h 
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porous electrode. After 0.7 hours of immersion, the corrosion current density decreases by 2 

units then reached a second peak after 1.5 hour with a value of 3.5 mA.cm-2. After this second 

peak the corrosion current decreases down to 0.5 mA.cm-2 and kept this value until the end of 

the measurement. 

 

 

Figure V. 6: Evolution of corrosion potential and corrosion current density during Si16-

fayalite grains scale dissolution in HCl 1 mol.L-1 at room temperature. 

The second current peak occurred while the potential was decreasing slowly which 

was attributed to the presence of the wüstite-fayalite grains internal layer. It was difficult to 

say if this peak was attributed to an artefact since only one experiment was made and its 

results treated or to a physical phenomenon. For this reason, this second peak will not be 

discussed. 

This behaviour is different from the one observed for Si00-model scale with hematite 

outer layer (Figure IV. 4). The main differences appear before and after the potential jump. At 

first, the time needed to reach the potential jump is much lower in the Si16 model scale 

samples, indicating a less protective outer scale than for Si00-model scale. This observation is 

in agreement with the lower value of the corrosion potential of Si16 model scale samples in 

comparison with the Si00-model scale without hematite sample (Figure V. 3). The second 

difference is after the jump, the lower decrease of the corrosion current density in the 
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presence of fayalite in comparison with Si00-model scale. For Si16-fayalite grains sample, the 

corrosion current density decreased from 4 to 0.5 mA.cm-2 during the 2 hours following the 

jump (the second peak was not considered) (Figure V. 6) while it decreased from 8 to 0.3 

mA.cm-2 for Si00-model scale samples (Figure IV. 4). 

Si16-fayalite layer sample 

The corrosion current density determined from current-potential curves is plotted as a 

function of immersion time in Figure V. 7. The corresponding corrosion potential value is 

also reported, and appears to vary similarly to the variations given in Figure V. 3. The shorter 

period of the positive potential is likely to be due to the perturbation of the sample by the 

polarization measurements imposed each 15 minutes for the corrosion current determination 

and a more fragile wüstite layer above the fayalite internal layer.  

 

Figure V. 7: Evolution of corrosion potential and corrosion current during Si16-fayalite layer 

scale dissolution in HCl 1 mol.L-1 at room temperature. 

At the first 0.5 hours of immersion the positive corrosion potential is close to 0.2 

V/SCE and the corrosion current increases from 0.6 mA.cm-2 to a peak at 3 mA.cm-2. This 

corresponds to the dissolution of wüstite in a porous electrode mode already observed for 

Si16-fayalite grains and Si00-model scale samples. 

 After the potential jump, the electrolyte is in contact with steel substrate through 

micro-cracks in fayalite. The slow decrease of the corrosion current occurs simultaneously 
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with the pseudo plateau of the corrosion potential during 3 hours. It can be attributed to a 

decrease of the reactive surface by removal of the remaining wüstite above the fayalite 

internal layer.  

 The higher values of the corrosion current at the beginning of immersion of Si16-

fayalite grains and Si16-fayalite layer samples in comparison with Si00-model scale with 

hematite and magnetite outer layers confirms the more passivating behavior of the scale in the 

latter case. The increase of the corrosion current density in the wüstite phase of the three 

samples is attributed to the high reactive surface (porous electrode behavior). The corrosion 

current density peak is similar for the three samples and corresponds to the high 

electrochemical dissolution of the steel substrate at this high anodic potential, when the acid 

reaches the metal. The high corrosion current values after the potential jump confirm the 

presence of wüstite after this jump and the coexistence of pickling and over-pickling. 

V. 4. Total dissolution of scale 

The dissolution rate of iron and silicon was only followed for the Si16-fayalite layer 

sample using ICP-AES during the pickling process, and the overall variation with time is 

shown in Figure V. 8 . The evolution of the open-circuit potential E (ICP) was measured 

simultaneously. Its evolution is similar to the evolution observed during electrochemical 

measurements E (EC), which is also reported in Figure V. 8. E (ICP) had an anodic value 

(about 0.2 V/SCE) at the beginning of the dissolution process, followed by an abrupt drop 

towards - 0.5 V/SCE after several hours. For easier comparison between electrochemical 

results and ICP measurements, a dimensionless time tdim is reported on the abscissa of Figure 

V. 8. It is defined as the ratio between the elapsed time and the time corresponding to the 

potential jump. Moreover, from the corrosion current densities reported in Figure V. 7, the 

electrochemical dissolution rate calculated using Faraday’s law (taking one electron as a first 

approximation) is also reported for comparison with the total dissolution rate of iron. 

As for Si00-Model scale, the method above will be used to evaluate the 

electrochemical contribution in the total dissolution of scale. 
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Figure V. 8: Comparison between the electrochemical and total dissolution rates of Si16-

fayalite layer sample measured by ICP-AES in 1 M HCl solution at room temperature. 

V. 4. 1. Total dissolution rate (TDR) 

During scale dissolution at the positive corrosion potential, the total dissolution rate of 

iron increased to reach a peak at the potential drop with a value of 300 µmol.s-1.cm-2. After 

the peak, the dissolution rate of iron decreased rapidly then slowly with successive short time 

peaks after tdim = 4. 

The silicon dissolution rate follows a similar evolution with a delay due to the 

dissolution first of the wüstite layer. The dissolution peak of silicon is only reached after the 

potential drop with a value of 1 µmol.s-1.cm-2. After the peak, the silicon dissolution rate 

decreased slowly and shows also short time peaks after tdim = 4. 

The dissolution peak of iron is attributed to the wüstite layer dissolution and the 

silicon to the liberation of fayalite particles in the pickling bath. The slow decrease of the total 

dissolution rate of iron and silicon can be attributed to the continuous dissolution of the 

remaining wüstite and the removal of fayalite and wüstite particles (small peaks after tdim = 4). 



122 
 

V. 4. 2. Electrochemical contribution in scale dissolution 

As fayalite is an insulating layer, its electrochemical dissolution was neglected. The 

electrochemical dissolution of this sample concerns mainly iron oxides (wüstite and magnetite 

from wüstite decomposition) and the steel substrate.  

An average ratio vEC/vtot = 1/4 was observed before the potential jump. This ratio is 

similar to the one observed for Si00-model scale after the removal of its hematite and 

magnetite layers (dissolved mainly chemically) and during the wüstite dissolution just before 

the potential jump. Since these outer layers are absent in Si16-fayalite layer, the 1/4 ratio 

corresponds to the dissolution of the decomposed wüstite present in both Si16-fayalite layer 

and Si00 model scale samples (see chapter IV).  

 At the potential drop, vEC/vtot ratio decreased to 1/10. At this stage, mechanical 

detachment of wüstite and fayalite particles can explain the increase in iron dissolution rate 

detected by the ICP-AES when the acid reaches the metal. 

 After the potential jump, the total dissolution rate decreased faster in comparison with 

the electrochemical rate making the vEC/vtot ratio tend to 1 after tdim = 3. This value shows that 

when the acid is in contact with the steel substrate the electrochemical process becomes 

dominant in over-pickling but also in the dissolution of the remaining oxides. These oxides 

are dissolved electrochemically or removed as particles (small peaks) by corrosion of the steel 

substrate. 

The observations above confirmed the pickling mechanism of wüstite just before the 

potential jump (chapter IV). The presence of the silicon peak showed that the fayalite layer is 

not completely passive and continuous. It can be infiltrated by the acid through micro-cracks 

or the wüstite small grains. It is liberated in the pickling bath as small particles.  

V. 5. Pickling and over-pickling (O-P) mechanism 

As for the Si00 model scale, the transition between pickling and over-pickling will be 

considered at the potential drop from positive to negative values in the cases of Si16-fayalite 

grains and Si16-fayalite layer samples, though at this stage oxide layers are not completely 

removed. 
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V. 5. 1. Pickling steps and reactions 

As the outer scale for both Si16-fayalite grains and Si16-fayalite layer samples is 

composed mainly of the decomposed wüstite and its electrochemical and total dissolution 

behaviour is similar to the one observed for Si00 model scale after the removal of the 

hematite and magnetite external layers, the pickling steps and reactions during wüstite 

dissolution proposed in chapter IV can be applied in the present case.  

 The chemical reactions concerns magnetite: 

OHFeFeHOFe aqaq 2)(
2

)(
3

43 428 ++→+ +++  (V. 1) 

wüstite: 

OHFeHFeO aq 2)(
22 ++→+ ++  (V. 2) 

and also fayalite but with a  slow dissolution rate and before the acid reaches the steel 

substrate: 

OHSiOFeHSiOFe 22
2

42 2224 ++→+ ++   (V. 3) 

 The positive corrosion potential is the result of the anodic reactions of magnetite: 

−++ ++→+ eOHFeHOFe aq 1438 2)(
3

43  (V. 4) 

and wüstite: 

−++ ++→+ eOHFeHFeO aq 12 2)(
3   (V. 5) 

and the cathodic reaction is the reduction of Fe3+: 

)(
2

)(
3

aqaq FeeFe +−+ →+  (V. 6) 

 The dissolution mechanism of the internal layers depends on its morphology 

Si16-fayalite grains sample  

After dissolution of the magnetite and wüstite layers, the acid dissolves the wüstite 

matrix of the internal layer and liberates the fayalite grains in the solution.  

Si16-fayalite layer sample 

 After dissolution of the outer wüstite layer, the acid infiltrates the fayalite layer 

through micro-cracks or wüstite grains to reach the steel/scale interface. 

V. 5. 2. Over-pickling steps and reactions 

For both samples, when the acid reaches the internal layer/steel substrate interface, the 

potential drop implies the same new set of electrochemical reactions. 

The anodic reaction becomes the corrosion of iron  from the steel substrate: 
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−+ +→ eFeFe aq 2)(
2   (V. 7) 

And the cathodic reactions correspond to the reduction of H+ on steel substrate only: 

222 HeH →+ −+   (V. 8) 

and magnetite from the remaining decomposed wüstite: 

OHFeHeOFe aq 2)(
2

43 4382 +→++ ++−   (V. 9) 

 The over-pickling mechanism depends on the internal layer morphology. 

Si16-fayalite grains sample  

When the acid reaches the steel substrate after dissolution of the wüstite matrix, the 

metal is corroded. At the same time, the remaining wüstite matrix continues its dissolution by 

reduction of its magnetite. The low solubility of fayalite grains delays the removal of the 

intermediate layer.  

If the reduction of protons is assumed to be on steel surface exclusively, the slow 

decrease of the corrosion potential after the potential jump can be explained  by the evolution 

of the cathodic current (or surface) of magnetite versus the cathodic current (or steel surface) 

of the protons. Indeed, the magnetite surface (or cathodic current of magnetite) decreases 

slowly due to the presence of fayalite grains while at the same time the steel surface (anodic 

current of iron and cathodic current of protons) increases by removal of scale. The potential 

stabilizes after removal of the major part of scale. 

 

Si16-fayalite layer sample 

When the acid reaches the steel substrate after infiltration of the fayalite layer through 

micro-cracks and wüstite small grains, the metal is corroded. At the same time, the remaining 

wüstite above the fayalite layer continues its dissolution by reduction of its magnetite 

particles. The low solubility of fayalite layer delays the removal of the intermediate layer.  

As for the other sample, the reduction of protons was assumed to be on steel surface 

exclusively. The pseudo plateau of the corrosion potential after the potential jump can also be 

explained by the evolution of the cathodic current (or surface) of magnetite versus the 

cathodic current (or steel surface) of the protons adapted to the fayalite layer. Indeed, the 

magnetite surface (or cathodic current of magnetite) in the remaining upper wüstite layer 

decreases slowly while the low soluble fayalite layer covers the major surface of steel (anodic 

current of iron and cathodic current of protons). The potential stabilizes after removal of the 

major part of the fayalite layer. Fayalite infiltrations resist to pickling and reduce the reactive 

surface for over-pickling for this sample. 
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In comparison with Si00, two main differences are evidenced: 

- The oxide layer made of wüstite (and/or decomposed wüstite) shows a higher reactivity in 

the case of Si alloyed scale, even when fayalite grains are embedded in the oxide. 

- Once the electrolyte has reached the metal, over-pickling is necessary to remove 

progressively the fayalite layer. According to Figure V. 8, the dissolution rate of Si is still 

significant during over-pickling. 

 For all samples, when the acid is contact with iron oxides and fayalite phases only, 

chemical and electrochemical reactions occur and once the acid reaches the steel substrate, the 

remaining scale and steel substrate dissolution is electrochemical. Particles mechanical 

detachment occurs during both pickling and over-pickling. 

V. 6. Influence of some parameters on pickling and O-P mechanism 

 

Figure V. 9: Temporal evolution of corrosion potential during dissolution of low carbon steel 

scales in different conditions: (a) Si16-fayalite grains in HCl 1 mol.L-1 at room temperature 

(b) Si-16 fayalite layer in HCl 1 mol.L-1 at room temperature (c) Si16-fayalite grains in HCl 3 

mol.L-1at room temperature (d) Si16-fayalite grains in HCl 1 mol.L-1 at 50°C and (e) Si16-

fayalite layer in HCl 1 mol.L-1 at 50°C. 
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The pickling and over-pickling mechanisms described above concern a model scale 

with the fayalite grains or continuous layer in soft pickling conditions. These conditions allow 

the monitoring of different pickling steps and offer enough time for their characterization. 

To correlate the proposed mechanism with industrial conditions, a non exhaustive list 

of oxidation and pickling parameters closer to industrial conditions is studied to evaluate their 

effect on pickling mechanism and kinetics. The corrosion potential evolution of Si16 steel 

scales in some different pickling conditions is presented in Figure V. 9. 

 Due to the presence of fayalite at wüstite/steel interface, the “pickling time” for silicon 

steels was chosen as the time needed to reach the corrosion potential of steel as a first 

approximation. 

V. 6. 1. Scale morphology and composition 

V. 6. 1. 1. Influence of fayalite morphology 

The pickling times at room temperature in HCl 1M for Si16-fayalite grains and Si16-

fayalite layer samples were compared (Figure V. 9 a and b). In both cases, the presence of 

fayalite delays the reaching of the corrosion potential of the bare metal after the potential 

jump in comparison with Si00 model scale (Figure V. 3). For Si16-fayalite layer sample, the 

negative plateau after the potential jump takes nearly three hours while a slow decrease of the 

potential during nearly 1 hour after the potential jump is observed for Si16-fayalite grains 

sample. 

V. 6. 1. 2. Behaviour of industrial scale 

The evolution of the dissolution rates of iron and silicon of both industrial scales 

formed in the hot strip mill (HSM) on a 1.8 wt.% Si (0.003 wt.% C) steel and a Si16 model 

steel are reported in Figure V. 10. 

A dissolution peak of both iron and silicon and a negative corrosion potential are 

observed immediately after immersion in the acid. This confirms that scale of industrial 

samples is thin and cracked, and therefore the over-pickling starts immediately. 

The intersection between the curves of the iron dissolution from scale and from steel 

corresponds to the time needed to remove the wüstite phase. Similarly, the intersection 

between the curves of the silicon dissolution from scale and from steel corresponds to the 

time needed to remove the fayalite phase. After the intersections the dissolution rate of the 

steel substrate under scale is lower that of polished due to the presence of fayalite infiltrations. 
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This can be due to a lower reactive surface of metal and showing a partially blocked electrode 

behaviour or to the silicon depletion underneath scale to form silica and fayalite during 

thermal oxidation. 
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Figure V. 10: Temporal evolution of total iron and silicon dissolution rate and corrosion 

potential of  a 1.8 wt% Si (0.003 wt% C) steel industrial scale (HSM) and polished Si16 steel 

(model steel) during dissolution in HCl 1 mol.L-1  

V. 6. 2. Influence of pickling bath temperature 

For Si16-fayalite grains sample, the comparison of the time needed to reach the 

potential jump in HCl 1 mol.L-1 at room temperature and 50 °C (Figure V. 9 b and d) showed 

that the pickling time decreased by nearly 80 % from 3.5 hours to 0.7 hours respectively. 

The dissolution rate evolution of iron and silicon of Si16-fayalite layer sample during 

its dissolution in HCl 1 mol.L-1 at 50°C is reported in Figure V. 11. 

For Si16-fayalite layer, the comparison of the time needed to reach the potential drop 

and the dissolution peak of iron and silicon at room temperature (1.3 hour in Figure V. 8) and 

at 50°C (0.5 hour in Figure V. 11), showed a decrease of pickling time of about 60 % in the 

ICP-AES cell conditions. The dissolution rate peak values (0.5 and 0.3 µmol.s-1.cm-2 at 50°C 

and 20 °C respectively) are similar at the two temperatures. 

Pickling time 
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Figure V. 11: Temporal evolution of iron and silicon dissolution rates and corrosion potential 

of Si16-fayalite layer sample during dissolution in HCl 1 mol.L-1 at 50°C. 

  

V. 6. 3. Influence of acid concentration 

For Si16-fayalite grains, the comparison of the time needed to reach the potential jump 

at room temperature in HCl 1 and 3 mol.L-1 (Figure V. 9 b and c) showed that the pickling 

time decreased by nearly 63 % from 3.5 hours to 1.3 hours respectively. 

The evolution of the dissolution rates of iron and silicon of Si16-fayalite layer during 

its dissolution in HCl 3 mol.L-1 at room temperature is reported in Figure V. 12. 

For Si16-fayalite layer sample, the comparison of the time needed to reach the 

potential drop and the dissolution peak of iron and silicon at room temperature in HCl 1 

mol.L-1 (1.3 hour in Figure V. 8) and at room temperature in HCl 3 mol.L-1 (0.8 hour in 

Figure V. 12), showed a decrease of pickling time of about 40 % in the ICP-AES cell 

conditions. 

As a conclusion, compared to the samples pickled at room temperature and in HCl 

1M, higher temperature and acid concentration decrease the time needed for the solution to 

reach the metallic substrate, but the overall dissolution rates do not seem to be affected by a 

modification of these two factors in the conditions of the present work. 
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Figure V. 12: Temporal evolution of iron and silicon dissolution rates and corrosion potential 

of Si16-fayalite layer sample during dissolution in HCl 3 mol.L-1 at room temperature.  

V. 7. Steel surface after pickling and over-pickling 

Steel surface was observed by SEM-EDS to identify its chemical composition after 

pickling and over-pickling. The optical interferometry was used to evaluate the effect of a 

long over-pickling on steel surface roughness. 

V. 7. 1. Steel surface after insufficient pickling 

Steel surface of a pickled Si16-fayalite layer sample was observed after the negative 

potential plateau (Figure V. 3b) to identify its chemical composition (Figure V. 13). Even 

though the corrosion potential is negative with bare steel values, steel surface is not 

completely pickled since wüstite and fayalite covers part of this surface. The corrosion 

potential drop gives an approximation of pickling time but does not indicate the end of 

pickling. 
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Figure V. 13: SEM micrograph of Si16-fayalite layer sample after 10 hours of pickling in 

HCl 1M at corrosion potential Ecor = - 0.45 V/SCE. 

V. 7. 2. Steel surface after over-pickling 

As for Si00 steel, the roughness change of polished (few seconds with a grit 800 to 

remove the fayalite internal layer) Si16-fayalite layer sample was observed with optical 

interferometry (chapter II) to reveal the effect of the fayalite infiltrations in the steel substrate 

after few minutes of immersion in the acid. This sample will be called Si16-fayalite 

infiltrations steel. Examples of Si16-fayalite infiltrations steel surface optical micrographs and 

roughness cartographies at 2 different times of immersion in an acid bath at room 

temperature, pickling lines temperature (70°C) and anodic potential are presented in Figure V. 

14. 

In addition to the surface cartography, two parameters were chosen to characterize the 

surface roughness: Sz and Sq representing the total height and average quadratic height 

respectively. They are expressed in µm and their evolution with over-pickling time, bath 

temperature and applied potential is presented in Figure V. 15. 

 

 

 

 

 

 

Wüstite 

Steel 

Fayalite 



131 
 

(a) 

 

(b) 

 

(c) 

 

Figure V. 14: Examples of optical micrographs and roughness cartographies of  a polished  

S16-fayalite surface (grit 800) after dissolution in HCl 1 mol.L-1: (a) before immersion (b) 

after 10 minutes of immersion at 70°C and (c) after 10 minutes of immersion at room 

temperature  at anodic potential 0V/SCE. 
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Figure V. 15: Evolution of roughness parameters Sz and Sq after 5 and 10 minutes of 

dissolution of Si16-fayalite layer sample polished (grit 800) in HCl 1 mol.L-1 

On Si16-fayalite infiltrations steel surface before dissolution, the dark zones 

corresponding to high fayalite infiltrations concentration are visible. The roughness of this 

surface was taken as a reference (Figure V. 14a). 

The surface observations and evolution of roughness parameters of Si16-fayalite 

infiltrations steel surface (Figure V. 15) showed that the roughness increases significantly 

with over-pickling at room temperature. This can be due to the higher corrosion of the metal 

zones (holes) and the very low dissolution of the fayalite zones (heights). As for Si00 steel, 

the preferential corrosion at grains boundaries in metal zones can also contribute to the 

roughness increase. The differences in roughness parameters values of the 3 samples before 

immersion is due to the heterogeneity of their surface due to the fayalite infiltrations. 

The roughness decreases slightly in the case of pickling at 70 °C. This can be due to a 

higher infiltration of the acid through fayalite and higher corrosion rate of the surrounding 

steel in this range of temperature. The removal of fayalite particles can contribute to the 

smoothening of the surface. 

The roughness is almost constant at the 0 V/SCE applied potential. This anodic 

potential for iron was applied to accelerate the corrosion of iron surrounding the fayalite 

infiltrations. Indeed, the surface after 10 minutes is brighter which suppose the removal of 

more iron-fayalite particles and keeping the same roughness. A similar roughness can also 

come from less efficient dissolution at this applied potential. 
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V. 8. Conclusions 

 Iron oxides phases of silicon alloyed steel model scales were crossed by the acid faster 

than model scale of the low carbon steel even though they had higher thickness. This was 

attributed to a more fragile structure or wüstite decomposition due to the formation of fayalite 

grains or internal layer.  

 The external scale layers composed essentially of the decomposed wüstite were 

dissolved following the same mechanism of low carbon steel scale model by holes widening 

and removal of particles. The fayalite grains in the internal layer were mechanically detached 

in the solution by dissolution of the wüstite matrix. The fayalite layer was infiltrated slowly 

by the acid through micro-cracks or wüstite small grains and detached in the solution after a 

long corrosion of the steel substrate. 

 Before the acid reaches the metal, magnetite and wüstite are dissolved chemically and 

electrochemically. They represent the anodic reactions while reduction of Fe3+ coming from 

the chemical dissolution of magnetite initially represents the cathodic reaction. Fayalite can 

dissolve chemically but with a very low dissolution rate. The electrochemical contribution 

varied from 1/4 to 1/10 during scale dissolution. This ratio was similar to the one observed for 

the wüstite dissolution for the low carbon steel model scale since this phase is common in 

both grades. 

 The dissolution of the remaining scale internal layer with fayalite continues after the 

acid reaches the metal but with a different mechanism. The magnetite switches to a cathodic 

reaction in parallel with protons reduction while the anodic reaction is the corrosion of the 

steel substrate. The continuous reduction of magnetite and the low steel substrate surface 

available for protons reduction due to fayalite covering is responsible for the cathodic 

intermediate potential after the jump. 

 The electrochemical dissolution becomes dominant at bare steel corrosion potential. 

This means that the cathodic potential indirectly blocks the chemical reaction. The rest of 

scale is removed by particles. 

 For industrial scales, the cathodic potential is observed immediately after immersion in 

the acid and is not affected by the presence of silicon oxides since they are insulating. 

Pickling of these samples is also essentially electrochemical. The use of electrochemical 

methods to deal with the low soluble fayalite and its infiltrations can therefore be a good 

perspective for optimisation of pickling of silicon steels. 
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General Conclusion 

The study of the mechanisms of pickling and over-pickling required synthesizing well 

defined scales which reproduce industrial scales usually obtained on steel in a hot strip mill. 

This was the aim of the first part of this work. Different oxidizing conditions were applied 

and the obtained scales were characterized using SEM, Raman spectrometry, XPS and Auger 

spectroscopies. 

The main results on non alloyed carbon steels confirmed the mechanisms and scale 

characteristics found in the literature. Scale growth follows first linear then parabolic laws. 

The linear step corresponds to the oxidation of steel surface and the parabolic to iron ions 

oxidation after diffusion in scale. Model scales of low carbon steel grades are composed 

mainly of iron oxides layers with increasing oxidation degree for iron: wüstite (FeO), 

magnetite (Fe3O4) and hematite (Fe2O3). Wüstite is unstable below 570°C, it transforms 

partially into iron and magnetite eutectoid. Industrial scales are composed of thin and brittle 

wüstite due to mechanical pressure in the hot strip mill. 

For silicon alloyed steel grades, the presence of silicon is expected to slow down the 

oxidation rate. In this work silicon contents between 1.6 and 3.2 wt.%, oxidation temperatures 

between 850 and 1200°C and humidity of the oxidizing atmosphere of 15% H2O were 

explored. In comparison with non alloyed steels, the presence of silicon introduces a 

passivation period between the linear and parabolic steps of scale growth. This passivation 

period appeared for temperatures lower than 1177°C and disappeared at higher oxidation 

temperatures. The passivation period is due to the formation of a silica thin layer with a 

barrier effect for iron diffusion towards oxygen rich atmosphere, lowering the overall 

dissolution rate. Silica can also appear in the steel substrate, due to internal oxidation at grains 

boundaries. The presence of silica phase during passivation period was confirmed in this work 

by crossing different characterization methods. During oxidation, silica and wüstite are 

transformed into fayalite Fe2SiO4 and form a fayalite-wüstite internal layer. Above 1177°C, 

molten fayalite enhances iron diffusion and oxidation rate, and after cooling forms an internal 

layer with infiltrations in steel. 

Silicon oxides or iron-silicon oxides were concentrated at the steel/scale interface and 

their morphology was depending on the oxidation temperature and time. Fayalite grains in 

wüstite matrix appeared between 900°C and 1100°C and continuous layer of fayalite-wüstite 

eutectic above 1177°C. For silicon content of 3.2 wt.% the passivation effect was so high that 
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the resulting scale was discontinuous with islands composed of a wüstite external layer and an 

internal layer composed of  grains of fayalite in wüstite matrix surrounded by a silica layer. 

In the second part of this work, the pickling and over-pickling kinetics and reactions 

were followed for three model scale samples obtained at 850°C for the low carbon steel and at 

1100°C and 1200°C for the silicon alloyed steel. A hematite very thin outer layer was present 

at the surface of the low carbon steel model scale only while wüstite and magnetite were 

common phases for all samples. Fayalite was present in the internal layer of silicon alloyed 

samples as grains or continuous layer after oxidation at 1100°C and 1200°C respectively. 

Industrial scales of similar steel grades were also studied. The electrolyte used was 1 M in 

HCl (instead of 3M in industrial conditions) and the temperature was 20°C (instead of 80-

90°C) in order to allow electrochemical measurements in a reasonable time scale. 

Pickling and over-pickling mechanisms in the literature were limited to low carbon 

steels and were deduced from open circuit potential values and microscopic observations of 

scales at different stages of pickling. Accordingly the open circuit potential was positive and 

stable during scale dissolution and dropped significantly when the acid reached the steel 

substrate. It is usually admitted that dissolution of the insulating scale is mainly chemical, 

though a well defined open-circuit potential can be measured from the beginning of 

immersion in the pickling solution, indicating an electrochemical contribution from the 

beginning. To the best of our knowledge, it is the first time that electrochemical dissolution 

rates are measured in situ during the whole pickling process, using potentiodynamic and 

impedance measurements. 

In this study, combination of different electrochemical and real time quantification 

methods, and the interpretation and correlation of the different results lead to richer and more 

accurate description of pickling mechanisms of representative models for industrial scales. 

The corrosion potential values could be associated with well identified electrochemical 

reactions and the combination of ICP-AES and corrosion current gave an estimation of the 

contribution of electrochemical dissolution during pickling and over-pickling. 

From the different experiments, the following mechanisms were suggested: 



137 
 

 

 

Scheme 1: Pickling and over-
pickling steps of a low carbon 
steel model scale 

Scheme 2: Pickling and over-
pickling steps of a silicon alloyed 
steel model scale with fayalite 
grains 
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Before the acid reached the steel substrate, simultaneously with the slow dissolution 

of hematite, the main anodic reactions was the oxidations of magnetite (1) and wüstite (2) 

−++ ++→+ eOHFeHOFe aq 1438 2)(
3

43   (1) 

−++ ++→+ eOHFeHFeO aq 12 2)(
3   (2) 

and the main cathodic reaction was the reduction of ferric ions (3) formed by chemical 

dissolution of magnetite (4). 

)(
2

)(
3

aqaq FeeFe +−+ →+   (3) 

The chemical dissolution of magnetite (4) and wüstite (5) is maintained 

OHFeFeHOFe aqaq 2)(
2

)(
3

43 428 ++→+ +++   (4) 

OHFeHFeO aq 2)(
22 ++→+ ++   (5) 

 

Chemical dissolution of fayalite can be also considered, but this reaction is very slow 

comparatively to the time of pickling experiments performed in this work: 

OHSiOFeHSiOFe 22
2

42 2224 ++→+ ++   (6)  

Scheme 3: Pickling and over-
pickling steps of a silicon alloyed 
steel model scale with fayalite 
layer 
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During this phase the protons are not reduced into H2 on iron oxides but they are 

consumed by the oxides dissolution according to reactions (1), (2), (4), (5) and (6). 

The external scale layers composed essentially of the decomposed wüstite were 

dissolved following the same mechanism for low carbon steel by holes widening and removal 

of particles. The fayalite grains in the internal layer were mechanically detached in the 

solution by dissolution of the wüstite matrix. The fayalite layer was infiltrated slowly by the 

acid through micro-cracks or wüstite small grains and detached in the solution simultaneously 

with dissolution of the steel substrate. 

Iron oxide phases of silicon alloyed steel model scales were crossed by the acid faster 

than model scale of the low carbon steel, even though the latter had higher thickness. This 

was attributed to a more fragile structure or wüstite decomposition due to the formation of 

fayalite grains or internal layer 

 A noticeable result in this work was to show the key role played by ferric ions formed 

in the pickling bath by chemical dissolution of hematite and magnetite. They provide the 

species for cathodic reaction enabling anodic dissolution of the scale, in a potential range in 

which protons are not reduced.  

After the acid reached the steel substrate, the proton (7) and magnetite (8) 

reductions were assumed to be the main cathodic reactions, 

222 HeH →+ −+   (7) 

OHFeHeOFe aq 2)(
2

43 4382 +→++ ++−   (8) 

whereas the oxidation of the iron substrate (9) was the main anodic reaction. 

−+ +→ eFeFe aq 2)(
2   (9) 

The protons reduction occurred only on the steel substrate. The reduction of ferric into 

ferrous ions must then become negligible, since the rate of chemical dissolution of iron oxide 

is significantly lowered in comparison with the electrochemical dissolution.  

The presence of fayalite as grains or thin layer at steel/scale interface had an effect on 

the continuous scale dissolution after the acid reached the steel substrate. Indeed, the 

continuous reduction of magnetite and the low steel substrate surface available for protons 

reduction due to fayalite covering was responsible for the cathodic intermediate potential after 

the jump. 

A dissolution peak was observed when the acid reached the steel substrate, 

simultaneously with the significant potential jump. The electrochemical dissolution becomes 
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dominant at bare steel corrosion potential. This means that the cathodic potential indirectly 

blocks the chemical reaction. The rest of scale is removed in form of particles. 

Electrochemical impedance spectroscopy (EIS) was used for the first time as a method 

to follow scale dissolution and gave more information on scale characteristics at different 

pickling and over-pickling times. According to EIS results, scale was described with an 

electrochemical model composed of a Constant Phase Element (CPE) in parallel with a 

charge transfer resistance. The capacitance of the insulating hematite outer layer was 

estimated by a Power-Law model, while a double layer capacitance was measured on the 

conductive magnetite and decomposed wüstite. This double layer capacitance was estimated 

by Brug’s model and their huge values allowed estimating the real active surface of the 

porous oxide. 

The high corrosion current values calculated by a Tafel method confirmed the porous 

electrode behaviour during dissolution of the decomposed wüstite observed with EIS.  

The Tafel and EIS methods gave compatible results for the evolution of the corrosion 

current and the active surface but the EIS seems more appropriate since its perturbation of the 

solid/solution interface is very weak. It is well adapted for in situ studies of slow corrosion 

processes like pickling in soft conditions. 

Pickling is accelerated by many parameters. They are ranked by their effect on the 

decrease of pickling time as follows: pH decrease, temperature increase, cathodic potential 

and scale cracking. The cathodic potential application is the most efficient parameter to 

accelerate pickling and protect the metal from corrosion at the same time.  

For the scale model, the potential drop occurs simultaneously with the dissolution 

peak corresponding to a high dissolution rate of iron from the substrate at the transition time. 

While industrial scales are thinner and cracked, the negative corrosion potential and the 

dissolution peak are observed immediately at the beginning of pickling, this means that over-

picking starts simultaneously with pickling and the major part of scale is removed with over-

pickling. The use of electrochemical methods to deal with the low soluble fayalite and its 

infiltrations can therefore be a good perspective for optimisation of pickling of silicon steels. 

 

 



141 
 

Annexes 



142 
 

 



143 
 

Annex I 
 

 
Photo of the 1 kg induction furnace before the heating experiment 

 

 
Photo of the 1 kg induction furnace during the metallic charge melting (yellow to orange 
light) 
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Annex II 
  

 
Themogravimetic analyzer set-up 

 

 
Photo of the thermogravimtric analyser sample holder 



146 
 

 



147 
 

Annex III 
 

 
Cross-section SEM micrograph of the Si00 steel sample after oxidation at 850°C in air with 
15% relative humidity during 15 minute then few seconds of polishing to remove the hematite 
outer layer. 

Steel 

Wüstite 

(Magnetite) 
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Résumé: 

Les mécanismes d’oxydation, de décapage et sur-décapage d’un acier bas carbone est d’un 
acier fortement allié au silicium (1,6 et 3.2 % en masse de silicium) ont été étudiés. Le suivi 
de l’oxydation par thermogravimétrie et la caractérisation de la calamine des aciers fortement 
alliés au silicium a montré un effet très marquant de passivation de la couche de silice. Les 
calamines des échantillons modèles sont composées de couches d’hématite, magnétite et 
wüstite partiellement décomposée en fer et magnétite pour l’acier bas carbone. Pour l’acier au 
silicium, la fayalite est présente à l’interface acier/wüstite sous forme de grains ou d’une 
couche interne. Le suivi du potentiel de circuit ouvert pendant le décapage et sur-décapage de 
ces échantillons a montré un potentiel de corrosion stable et anodique pour les oxydes de fer 
et une chute drastique de ce potentiel au contact de l’acide avec le métal. Le suivi du taux de 
dissolution totale par ICP-AES combiné avec des mesures de courant de corrosion par la 
méthode de Tafel a montré une contribution importante de la dissolution électrochimique par 
oxydation de la wüstite et la magnétite et réduction de Fe3+ issu de la dissolution chimique de 
l’hématite et la magnétite. La fayalite est libérée dans la solution par dissolution de la wüstite 
ou du métal adjacents. Après le contact acide/metal, toutes les dissolutions sont exclusivement 
électrochimiques par corrosion du métal et réduction de la magnétite (cas des calamines 
industrielles). La spectroscopie d’impédance électrochimique a été utilisée pour la première 
fois pour ce type d’étude. L’estimation des valeurs de capacité a montré un comportement 
pseudo passif pour la couche d’hématite et d’électrode poreuse pour la wüstite. 
 
Mots-clés :  

Acier au silicium, oxydation, décapage et sur-décapage, ICP-AES, impédance 
 
Abstract: 

Oxidation, pickling and over-pickling mechanisms of a low carbon steel and a high alloyed 
steel (1.6 and 3.2 wt.% Si) were investigated. The monitoring of oxidation with 
thermogravimetry and characterization of scale showed a very important passivating effect of 
the silica layer. Model scales are composed of layers of hematite, magnetite and partially 
decomposed wüstite into iron and magnetite for the low carbon steel. For the silicon steel, 
fayalite is present in the steel/wüstite interface as grains or an internal layer. Open circuit 
potential measurements during pickling and over-pickling of these samples showed a stable 
and anodic corrosion potential for iron oxides and a significant potential jump once the acid 
reaches the metal. The monitoring of the total dissolution rate with ICP-AES coupled with 
corrosion current measurements with the Tafel method showed an important contribution of 
electrochemical dissolution by oxidation of wüstite and magnetite and reduction of Fe+3 from 
chemical dissolution of hematite. Fayalite is liberated in the solution by dissolution of the 
surrounding wüstite or metal. After the contact acid/metal, all dissolutions are exclusively 
electrochemical by corrosion of the metal and reduction of magnetite (case for industrial 
scales). Electrochemical impedance spectroscopy was used for the first time for this kind of 
studies. The estimation of the capacitance values showed a passive like behaviour for 
hematite and a porous electrode one for wüstite. 
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