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Introduction

Internal waves are ubiquitous in the oceans. Indeed, these waves propagate through stably
density stratified fluids using buoyancy as a restoring force and the oceans are one of the
natural examples of stratified media. In the deep ocean, internal waves are generated
essentially by the tides [55, 56, 123] at large scales [91, 92]. They can travel through long
distances, interacting with other oceanic structures [137] and with the topography [30, 84].
They may also be unstable [101, 25] and break. All these processes are responsible for
an energy cascade [57] from large to small scales, inducing irreversible mixing in the ocean
stratification [55, 76]. This converts a fraction of the energetic input to potential energy
rise and contributes to sustain the global oceanic circulation [124, 120]. Nevertheless,
the different mechanisms bringing the tidal large-scale mostly monochromatic input to
multi-scale internal wave motion are not well understood [76, 135] and the cascade process
remains one of the fundamental problems of physical oceanography.

Another possible mechanism connecting the large and small scales in the ocean may
be the coupling of the ocean with the boundaries of its domain [65]. Indeed, when internal
waves reflect at the topography and at the surface of a basin, they can form closed orbits
or loops, called wave attractors. This is possible only if the topography presents some
super-critical slopes, meaning that the topography has a slope angle larger than the one
of the internal waves. These attractors lead to energy transfer toward smaller scales,
due to linear focusing effects. This is the beginning of the cascade. Then, regions of high
density gradients are induced, leading to high energy dissipation and possible mixing. This
corresponds to the non-linear part of the cascade.

Tang and Peacock [145] have investigated the possibility of wave attractors in realistic
ridge topographies in closed basins and pointed that the northern portion of the Luzon
ridge can support internal wave attractors. An experiment reported by Echeverri et al. [38],
in a double-ridge geometry, similar to the ones investigated by Tang and Peacock [145],
has shown that this configuration may lead to focusing and wave attractors. More recently,
Guo and Holmes-Cerfon [65] used a typical bi-dimensional oceanic bathymetry to evaluate
the possibility of presence of wave attractors in an open basin. They have found that wave
attractors are likely to be present, with a non negligible probability of 10 attractors per
1000 km.

Nevertheless, there is no evidence of observed wave attractors despite the identification
of possible configurations [38, 145, 65]. Manders et al. [106] have reported that wave
attractors cannot be present in the Mozambique channel with the stratification they have
measured. However, the configuration of the channel may allow wave attractors for different
stratification and different tidal frequencies. Thus, it seems that natural systems present
such diversity that attractors may exist. It is of course necessary to take into account
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Introduction

the differences between idealized systems and the oceanic reality [38, 145, 65]. First, the
ocean is not bi-dimensional but three-dimensional. Nevertheless, some three-dimensional
configurations may possibly exhibit wave attractors [35, 105]. Secondly, the ocean floor is
not smooth and the roughness may diffuse and destabilize possible structures. However,
the robustness of wave attractors has been tested experimentally by Hazewinkel et al. [69].

Even if no attractor has been observed directly in nature, a very large number of
works on wave attractors in closed and geometrically well-controlled basins can be found
in the literature. The first theoretical aspects of wave attractors have been developed by
Maas and Lam [98] and the first experimental attractor has been reported in [97]. Fol-
lowing these studies, several articles have described the linear state of wave attractors,
experimentally [70, 68], numerically [64, 79] and theoretically [86, 125]. More recently,
non-linear or unstable wave attractors have been investigated. Indeed, as the attractor
is defined as a closed loop of waves, a large part of the energy injected in the system is
focused along the path of the attractor. If this energy quantity is too large, the attractor
becomes unstable via triadic resonant instability [139] and may induce some mixing [64].
This instability causes a higher dissipation of the energy in the attractor [79] and may
partially destroy this structure.

In this manuscript, we propose to study the linear and non-linear cascades in inter-
nal wave attractors, using laboratory experiments. These experiments are very precisely
controlled and idealized from the oceanic point of view. We utilize a tank with a simple
trapezoidal geometry, much used in the literature [68, 70, 64, 139, 105]. The fluid inside
the tank is initially linearly stratified, with a constant buoyancy frequency. The forcing
is made using the wave-maker described by Gostiaux et al. [63] and Mercier et al. [115].
It gives us a precise control on the frequency, the amplitude and the shape of the forcing.
Tuning the geometry of the basin and the amplitude of the forcing allows us to vary the
importance of the non-linearities in the cascade induced by internal wave attractors. In
addition to the attractor experiments, I have also performed added mass measurements of
an horizontally oscillating object in a linearly stratified fluid. This has strong applications
for tidal conversion and forcing, which are necessary to understand. Indeed, tidal forcing
is expected to be the main forcing for wave attractors in the oceans [38]. This manuscript
is organized as follows.

1. Chapter 1 introduces internal waves in a stratified fluid. First, the main features
of internal wave physics are presented. Then, these waves are described in natural
systems such as oceans and the atmosphere. Their generation, propagation and ef-
fects in these systems are pointed out and the main fundamental questions presented.
Finally, as this manuscript deals with laboratory experiments, the experimental tech-
niques used to obtain a stratified fluid, generate internal waves and observe them are
described.

2. The added mass experiments on tidal conversion are reported in Chapter 2. The
concept of added mass in homogeneous and stratified fluid is first introduced. The
affine similitude theory, developed in the literature and allowing the analogy be-
tween homogeneous and stratified fluid, is explained. Then, the results obtained for
a square-shaped cylinder oscillating horizontally in a stratified fluid of infinite depth
are presented. The added mass measurements are in good agreement with the theo-
retical predictions. Finally, the results for a circular-shaped cylinder oscillating in a
stratified fluid of finite depth are described. They are not in total agreement with the
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theoretical predictions but they exhibit a very interesting feature, at low frequency
of oscillations and at very small depth. This feature is relevant for tidal conversion.

3. The linear internal wave attractors are presented in Chapter 3. The ray tracing
method is detailed in the trapezoidal geometry and experimental internal wave at-
tractors are shown. Their main characteristics such as wave length, width and ampli-
tude are discussed as a function of the geometry of the basin for the steady state. The
scaling of the attractor width is investigated and we show that, at the ocean scale,
the focusing may lead to instability. Investigations on the growth and the decay of
attractors are also presented. This shows the strong influence of the basin geometry
on the attractor characteristics. Different forcings are tested, in order to observe
the influence of the forcing on the structure of internal wave attractors. Numerically
simulated attractors, using a code developed by Ilias Sibgatullin, are compared to the
experimental ones. The comparison is not only qualitatively but also quantitatively
very good for attractors in the linear regime.

4. Chapters 4 and 5 deal with unstable attractors. Chapter 4 focuses on the start
of the triadic resonant instability, which is strongly influenced by the geometry of
the basin. We show that two kinds of triadic resonance instabilities are possible,
one which is local while the other one is global. Numerical simulations of unstable
internal wave attractors are found to be in excellent agreement with the experiments.
The three-dimensional aspects of the flow are investigated using both experiments
and numerical simulations. The flow is proved to be quasi bi-dimensional, with small
variations in the third direction.

5. Chapter 5 describes long-term experiments at high forcing amplitude. Unstable
internal wave attractors lead to a triadic energy cascade with convincing signatures
of internal wave turbulence. When the forcing is sufficiently strong, this cascade
induces partial mixing of the fluid. One shows that the intensity of the cascade is
also controlled by the geometry of the trapezoid. This may imply that wave attractors
are locally responsible for the energy cascade and the mixing processes in the oceans,
a possible role of paramount importance for the ocean dynamics.

This PhD has lead to several articles, published, submitted or in preparation:

• Reference [22]: this letter explains the main characteristics obtained on the energy
cascade in the attractors, via long-term experiments. This can be found in Chapter 5.
Energy cascade in internal wave attractors.
C. Brouzet, E. V. Ermanyuk, S. Joubaud, I. N. Sibgatullin and T. Dauxois
Published in Europhysics Letters (2016), vol. 113:44001

• Reference [23]: this article focuses on the validation of the numerical code using the
experiments. It also investigates the three-dimensional effects in the tank, from both
experimental and numerical points of view. The content of this article is presented
in Chapters 3 and 4.
Internal wave attractors examined using laboratory experiments and 3D
numerical simulations.
C. Brouzet, I. N. Sibgatullin, H. Scolan, E. V. Ermanyuk and T. Dauxois
Published in Journal of Fluid Mechanics (2016), vol. 793:109-131

• Reference [21]: this article concerns the geometry of the simplest attractor. We show
that the shape of the trapezoidal domain plays an important role in the focusing
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process of internal wave attractors. This has some strong consequences on the triadic
resonance instability that may appear if the forcing is sufficiently large. The content
of this article is described in Chapters 3, 4 and 5.
Internal wave attractors: Arnold tongue’s structure and its implications
for the instability scenario.
C. Brouzet, E. V. Ermanyuk, S. Joubaud, G. Pillet and T. Dauxois
Submitted to Journal of Fluid Mechanics (April 2016)

• This article will contain the added mass results presented in Chapter 2 and additional
results expected to be obtained in future experiments.
Added mass: a sidekick to tidal conversion.
C. Brouzet, E. V. Ermanyuk, M. Moulin, and T. Dauxois
In preparation.

• This article will describe the results concerning the influence of the basin scale on the
width of the attractor, which is presented in Chapters 3 and 4. Numerical simulations
are expected to complete the experiments.
Internal wave attractors at different laboratory scales.
C. Brouzet, E. V. Ermanyuk, S. Joubaud and T. Dauxois
In preparation.
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Chapter 1

Internal gravity waves

Signatures at the sea surface of internal
waves observed in South China Sea. From
NASA, June 1983.

Internal gravity waves are waves propagating
within a stably stratified fluid. The strat-
ification may be due to temperature, salin-
ity, density, concentration or momentum vari-
ations. Examples of such fluids on Earth are
oceans, lakes and atmosphere [129]. One can
also find stratified fluids in stars and in astro-
physical objects [131]. Internal waves are thus
naturally present and play an important role
in these stratified mediums. In the oceans,
generated by the internal tides [55, 56], they
may allow energy cascade between different
scales [57] and through large distances. More-
over, they may be responsible for partial mix-
ing of the stratified fluid [76], contributing to
the global ocean circulation [120, 123]. Note

that in a majority of systems where internal waves are found, rotation plays also an im-
portant role. When rotation only matters, this leads to another type of waves, inertial
waves. They have some common features with internal waves. In natural systems, one has
a combination of inertial and internal waves, called gravito-inertial waves. Nevertheless,
in this manuscript, I essentially focus on internal waves, without any rotation.

In this Chapter, I introduce internal waves in a density stratified fluid and I derive the
fundamental characteristics of these waves. Then, I discuss their generation, propagation
and role in the oceans and atmosphere. Finally, I describe the experimental set-up used to
study these waves in an idealized laboratory ocean, less than 1 meter deep. I present the
experimental techniques to obtain a stratified fluid, generate the waves and observe them
in the laboratory frame.
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1. Internal gravity waves

1.1 Internal waves in theory

In this section, I introduce the basic physics of internal waves propagating in a stratified
fluid. First, I show qualitatively that oscillations can exist in a stably stratified fluid.
Then, more quantitatively, I discuss the equations of linear internal waves propagating in
an inviscid or viscous stratified fluid. The dispersion relation and the phase and group
velocities are derived. Finally, the specific reflection of internal waves at a tilted boundary
is introduced.

1.1.1 Physics of a stratified fluid

Let consider a density stratified fluid, where the density changes with the altitude or
depth. This is an anisotropic medium, where the vertical direction is different from the
other ones. To be stable, the density has to increase with depth or decrease with altitude.
The mechanical static equilibrium is given by the balance between the gravity and the
pressure forces. This leads to

∂P

∂z
= −ρ̄(z)g, (1.1)

where g is the gravity acceleration, ρ̄ the local density and P the pressure in the fluid.
The vertical axis (z-coordinate) is here defined pointing upward, opposite to the gravity
acceleration ~g.

We focus now on a parcel of fluid in this stratification. One assumes that the parcel is
small enough to have only one density, called ρp, and one considers its vertical displacement
within the stratification. Its initial vertical position is named zp. Because the stratification
is stable and since the z-axis points upward, one has ρ̄(z) > ρp for z < zp and ρ̄(z) < ρp
for z > zp. This parcel undergoes the Archimedes force given, in units of volume, by

−→
Π = ρ̄(z)g~ez, (1.2)

and its own gravity volumic force −ρpg~ez. The sum
−→
R of these two forces can be written

−→
R = (ρ̄(z)− ρp)g~ez. (1.3)

This equation shows that the parcel undergoes a force pointing downward if it is surrounded
by lighter fluid, so for z > zp. The force is pointing upward if the parcel is surrounded
by heavier fluid, so for z < zp. Of course, when z = zp, no force is exerted on the parcel.
Thus, one can note that a restoring force is exerted on the parcel when it is displaced in a
stratified fluid. The force tends to bring back the parcel at its initial position.

The dynamics is given by the Newton law

ρp~a = (ρ̄(z)− ρp)g~ez, (1.4)

where ~a is the acceleration of the fluid parcel. Considering small displacements δz of the
parcel around zp, equation (1.4) leads to

d2δz

dt2
=

ρ̄(zp + δz)− ρp
ρp

g, (1.5)

=

ρ̄(zp) + δz dρ̄
dz

∣∣∣
zp
− ρ̄(zp)

ρ̄(zp)
g + o

(
(δz)2

)
, (1.6)

=
g

ρ̄(zp)

dρ̄
dz

∣∣∣∣
zp

δz + o
(

(δz)2
)
, (1.7)

≈ −N2(zp)δz. (1.8)
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1.1. Internal waves in theory

One can note that equation (1.8) is equivalent to an harmonic oscillator equation of pulsa-
tion N . The parcel oscillates around its initial position zp with a pulsation which depends
on the density gradient around this position. N is called the buoyancy frequency, defined
as

N(zp) =

√
− g

ρ̄(zp)

dρ̄
dz

∣∣∣∣
zp

. (1.9)

Note that N is defined only for stable stratifications as they have negative vertical density
gradients: the z-axis points upward while the density decreases with z. For an homogeneous
fluid, there is no density gradient and N = 0 rad/s. For a stratified fluid, the buoyancy
frequency exhibits the strength of the density gradients: the higher N , the higher the
gradients.

This section shows that a small perturbation of a stably stratified fluid can generate
some oscillating motions. In real fluid, these motions are damped by viscosity. Neverthe-
less, one can see that waves can propagate through stably density stratified fluids with the
buoyancy (combination of gravity and Archimedes forces) as the restoring force. These
waves are named internal gravity waves and very often abbreviated in internal waves. The
label "internal" is given to highlight the difference with surface waves, that propagate only
at the surface of the fluid. Indeed, internal waves propagate in the bulk of the stratified
fluid.

It worth to note that, in a homogeneous rotating fluid, one can have very similar waves,
with the Coriolis force as the restoring force. These waves are called inertial waves. Internal
and inertial waves have a lot of properties in common. Nevertheless, I study only internal
waves in this manuscript, in order to simplify the problem at the maximum. Thus, I mainly
describe them in this Chapter.

1.1.2 Linear internal waves

In the previous section, one considered a parcel of fluid in a density stable stratification.
This allowed us to define the buoyancy frequency N and to obtain qualitatively that such
medium can support the propagation of waves, named internal waves. In order to describe
quantitatively these waves, let us consider an incompressible stably stratified fluid, with a
buoyancy frequency N(z). The dynamics of the flow is given by the Navier-Stokes equation

ρ

(
∂~v

∂t
+ (~v · ~∇)~v

)
=
(
ρ− ρ(z)

)
~g − ~∇P + νρ∆~v, (1.10)

the volume conservation
~∇ · ~v = 0, (1.11)

and the mass conservation
∂ρ

∂t
+ ~v · ~∇ρ = κ∆ρ. (1.12)

~v = (vx, vy, vz) is the velocity of the fluid, ν stands for the kinematic viscosity of the fluid
and κ for the diffusive coefficient of the stratifying agent. The total density ρ(x, y, z, t) =
ρ̄(z) + ρ′(x, y, z, t) is equal to the background stratification ρ(z) added with one term
corresponding to the density perturbations ρ′(x, y, z, t) due to the internal waves. These 5
equations concern 5 unknown quantities.

To simplify the problem, one can assume that the flow is bi-dimensional and contained
in the xOz plane, with no variation along the y-direction. In this framework, using the
volume conservation (1.11), one can introduce the stream function ψ defined as

∂ψ

∂x
= −vz and

∂ψ

∂z
= vx. (1.13)

7



1. Internal gravity waves

One can then rewrite equations (1.10) and (1.12) as

∂tzψ + J(∂zψ,ψ) = −1

ρ
∂xP + ν∂z∆ψ, (1.14)

∂txψ + J(∂xψ,ψ) =
ρ′

ρ
g +

1

ρ
∂zP + ν∂x∆ψ , (1.15)

∂tρ
′ + J(ρ′, ψ) = κ∆ρ′ +

dρ̄
dz
∂xψ , (1.16)

where J is the jacobian defined as J(f, g) = ∂xf∂zg − ∂zf∂xg. Note that one uses the
convention ∂jψ = ∂ψ/∂j, where j stands for x, z or t.

One considers in the following that the density perturbations ρ′(x, z, t) are small in
comparison with the background stratification ρ̄(z). This assumption is fully true in our
experiments because we use only density stratification between 1000 g/L and 1080 g/L.
Thus, the density perturbations are limited to less than 10% of the average stratification.
One defines ρ0 = 〈ρ̄〉 as the spatial density average of the stratification. Consequently,
one can apply Boussinesq approximation in equations (1.14) and (1.15). It consists in
approximating the total density ρ everywhere by ρ0 except in the buoyancy terms. Thus,
the buoyancy frequency is now defined by

N(z) =

√
− g

ρ0

dρ̄
dz

(z). (1.17)

By differentiating equation (1.14) with respect to z and equation (1.15) with respect to x
and combining them, one gets

∂t (∆ψ) + J(∆ψ,ψ)− ν∆ (∆ψ) =
g

ρ0
∂xρ
′, (1.18)

∂tρ
′ + J(ρ′, ψ)− κ∆ρ′ = −N2 ρ0

g
∂xψ. (1.19)

Equations (1.18) and (1.19) describe the non-linear dynamics of a viscous stratified fluid,
with the stratifying agent diffusing with time. Note that the buoyancy frequency N may
depend on the vertical coordinate z. The linear dynamics is obtained by neglecting the
non-linear terms, given by the jacobians. This leads to

∂t (∆ψ)− ν∆ (∆ψ) =
g

ρ0
∂xρ
′, (1.20)

∂tρ
′ − κ∆ρ′ = −N2 ρ0

g
∂xψ. (1.21)

One considers plane wave solutions to the linear system: ψ = ψ0 exp(iωt− i~k · ~r) and
ρ′ = ρ′0 exp(iωt− i~k · ~r). The wave vector is ~k = kx~ex + kz~ez and its modulus is noted k.

The linear system can thus be written using a matrix−k2(iω + νk2) i
g

ρ0
kx

iN2 ρ0

g
kx iω + κk2

(ψ
ρ′

)
=

(
0
0

)
. (1.22)

One has non trivial solutions only if the determinant of the matrix is equal to zero. This
leads to the relation

k2
(
iω + νk2

)(
iω + κk2

)
+N2k2

x = 0. (1.23)

Equation (1.23) contains the linear physics of the propagation of a plane wave in a viscous
stratified fluid. One can make several assumptions on the fluid in order to simplify this
equation. Note that plane waves are also solutions of the non-linear problem described by
equations (1.18) and (1.19), as J(∆ψ,ψ) = J(ρ′, ψ) = 0.
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1.1. Internal waves in theory

Inviscid fluid

Let us consider an inviscid and non-diffusive fluid. Thus, ν and κ vanish. Equation (1.23)
becomes (

ω

N

)2

=
k2
x

k2
or

ω

N
= ±|kx|

k
. (1.24)

This is the dispersion relation of linear internal waves in a inviscid and non-diffusive fluid.
This can be written using the angle θ, between the vertical z-axis and the wave-vector ~k

ω

N
= ± sin θ. (1.25)

This relation is anisotropic and purely geometric. Indeed, the angle θ is determined only
by the buoyancy frequency and the pulsation of the waves, if ω < N . Thus, for given N
and ω, four different couples (±kx,±kz) are possible to fulfill equation (1.25). Each couple
corresponds to one beam in one quadrant, shown in figure 1.1. Moreover, the buoyancy
frequency N may depend on z. This defines a local θ angle: when the internal wave
propagates through a stratified fluid with non-constant but continuous N , its trajectory

x

z

~g

θ

θ

~cg

~cφ

Figure 1.1: Internal waves propagating in a linearly stratified fluid and emitted by a
vertically oscillating cylinder, in red in the center of the figure. The group velocity vectors
are in white while the phase velocity vectors are in black. The angle θ is defined for one
beam. The colors indicate the horizontal density gradient fields, obtained experimentally
by Evgeny Ermanyuk using the SyS technique described further in this Chapter.

9



1. Internal gravity waves

is bent. Note that θ does not exist for ω larger than N . In this case, the waves are
evanescent. Finally, it worths to note that the dispersion relation does not exhibit any
characteristic length scale. Thus, the wave length of the internal waves is fixed by the
boundary conditions, so the source of the waves only.

From equation (1.24), one can derive the phase and group velocities

~cφ = N
|kx|
k3

(kx~ex + kz~ez) , (1.26)

~cg = N
sign(kx)kz

k3
(kz~ex − kx~ez) , (1.27)

where sign(kx) is equal to +1 if kx > 0 and −1 if kx < 0. These two velocities bring two
interesting properties of internal waves: the group and phase velocities are perpendicular
and their vertical components have opposite signs. These two properties are illustrated in
figure 1.1. Moreover, as θ is defined between the vertical axis and the wave vector, one
can also define it as the angle between the horizontal axis and the group velocity. Thus,
the energy propagates at a fixed angle θ with respect to the horizontal for given ω and N .
One can see this property in figure 1.1 where the four emitted beams have the same angle
of propagation θ. One can define a new coordinate system, attached to a wave beam. The
group velocity direction is called the ξ direction and the phase velocity direction is defined
as η direction. Note that ξ and η are perpendicular. This system is used in the next
paragraph about the viscous attenuation and to describe more precisely the attractor in
Chapter 3.

Viscous fluid

Let us consider a non-diffusive (κ = 0) viscous fluid. Equation (1.23) becomes(
ω

N

)2

− iν k
2

N

(
ω

N

)
− k2

x

k2
= 0. (1.28)

This is a second order polynomial of the variable ω/N and its discriminant is equal to

∆ = −ν2 k
4

N2
+ 4

k2
x

k2
. (1.29)

The sign of ∆ depends on the viscosity, the buoyancy frequency and the wave vector. For
positive ∆, the roots (ω/N values) of equation (1.28) are complex while for negative ∆,
the roots are purely imaginary and the waves are evanescent. For positive ∆, one can write
ω = ωr + iωi where

ωr = ±N
√
k2
x

k2
− ν2k4

4N2
and ωi =

νk2

2
. (1.30)

The real part ωr of the pulsation of the wave is modified by the viscosity. If ν vanishes, one
finds the inviscid dispersion relation of equation (1.25). Nevertheless, the modification of
the dispersion relation due to viscosity is very small for the values used in the experiments
described in this manuscript and in the oceans. For the experiments, N ≈ 1 rad/s and
wave lengths are of the order of 10 cm while in the oceans, N ≈ 10−4−10−3 rad/s and the
wave lengths are in the range of 100− 1000 m. This implies a difference with the inviscid
dispersion relation of much less than 1%, in both cases.

10



1.1. Internal waves in theory

The imaginary part ωi gives the viscous attenuation of the wave. In the (η, ξ) frame
introduced before, one has

ψ(η, ξ, t) = ψ0 exp(iωt− ikξ), (1.31)
= ψ0 exp(iωrt− ikξ) exp(−νk2t/2). (1.32)

Equation (1.32) gives the viscous attenuation of the wave in time. To obtain this at-
tenuation in function of the traveling distance ξ, one has to relate the time t with ξ by
ξ = cgt = Nt|kz|/k2, using the inviscid group velocity. Thus, this leads to

ψ(η, ξ, t) = ψ0 exp(iωrt− ikξ) exp(−βξ), (1.33)

where

β =
νk3

2
√
N2 − ω2

. (1.34)

Thus, the waves are damped with the wave number to the power 3 as they travel through
the distance ξ. The shorter the wave length or the closer ω to N , the more the waves are
damped.

Let us consider now that κ no longer vanishes. The polynomial on ω/N in equa-
tion (1.23) becomes(

ω

N

)2

− i(ν + κ)
k2

N

(
ω

N

)
−
(
νκ

k4

N2
+
k2
x

k2

)
= 0. (1.35)

The discriminant of this polynomial is thus

∆ = −ν2

(
1− 1

Sc

)2 k4

N2
+ 4

k2
x

k2
, (1.36)

with Sc = ν/κ the Schmidt number. This number compares the effects of viscosity with
the ones of salt diffusion. For water and salt, ones has Sc ≈ 700 that allows us to neglect
the ratio 1/Sc in front of 1. Thus, the discriminant in equation (1.36) can be considered
equal to the one of a viscous but non-diffusive fluid, presented in equation (1.29).

As the viscous dispersion relation is very close to the inviscid one, one can consider
that the waves propagate with the inviscid dispersion relation but with a viscous damping
along the trajectory of the waves.

1.1.3 Vertical modes

In the previous section, we investigate the linear dynamics of a stratified fluid using plane
waves. Nevertheless, this assumes that the fluid has an infinite extent, which is not true
for the experiments and the oceans. Indeed, internal waves are vertically confined as the
vertical extent of oceans in much smaller than the horizontal extent. Consequently, it
worths to think in terms of vertical modes, of type

ψ(x, z, t) = ψ0f(z) exp(iωt− ikxx). (1.37)

With these vertical modes, the propagative part is only horizontal. For an inviscid and
non-diffusive fluid, equations (1.20) and (1.21) give

∂2∆ψ

∂t2
+N2∂

2ψ

∂x2
= 0. (1.38)

11



1. Internal gravity waves

The injection of the vertical mode in equation (1.37) leads to

d2f

dz2
+ k2

x

(
N2

ω2
− 1

)
f(z) = 0. (1.39)

Note that for equations (1.38) and (1.39), the buoyancy frequency N may depend on the
vertical coordinate z. Nevertheless, for simplicity, one assume that N is constant in the
remainder of this section. To solve equation (1.39), one needs two boundary conditions
on f . They are provided by assuming that the fluid does not go through the boundaries
at z = 0 and z = H. This implies that the stream function vanishes for any values of t
and x, so f(0) = f(H) = 0. The solutions of equation (1.39) are

fp(z) ∝ sin

(
pπ

z

H

)
, (1.40)

where p is an integer. As the system is linear, the solutions correspond to the sum of all
the possible solutions fp

ψ(x, z, t) =

∞∑
p=0

Ap sin(kz,pz) exp(iωt− ikx,px), (1.41)

with kz,p = pπ/H, kx,p the horizontal component of the wave vector obtained using equa-
tion (1.24) and Ap integration constants. Note that each p mode can be decomposed into
two plane waves propagating with two wave vectors equal to

~kp+ = kx,p~ex + kz,p~ez and ~kp− = kx,p~ex − kz,p~ez. (1.42)

In the remainder of this manuscript, the forcing is made only via a vertical mode 1 (corre-
sponding to p = 1) with the wave-maker. The horizontal and vertical velocity components
of this mode are given by

vx = vx0 cos

(
π
z

H

)
cos (ωt− kxx) , (1.43)

vz = vz0 sin

(
π
z

H

)
sin (ωt− kxx) . (1.44)

The amplitudes of these two velocity components are linked by the volume conservation
equation

vx0 = vz0

√
N2

ω2
− 1. (1.45)

1.1.4 Reflection of internal waves

The dispersion relation of internal waves is very specific because the angle of propagation
of such waves is fixed for given N and ω. This leads to a very specific reflection on a sloped
boundary, as shown in this section. This non-Descartes reflection is a key process in the
existence of internal wave attractors, studied in this manuscript in Chapters 3, 4 and 5.

One considers an inviscid linearly stratified fluid of constant buoyancy frequency N .
The sloped boundary is tilted with an angle α with respect to the vertical, as shown in
figure 1.2. Note that this configuration does not seem natural for the reflection of internal
waves on the topography at the bottom of the ocean. Nevertheless, this is the configuration
used in the set-up of this manuscript. For the sake of clarity, in this section only, the origin
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1.1. Internal waves in theory

of the coordinates is taken at the bottom of the slope, also shown in figure 1.2. It worths
to note that, as the salt flux through the boundary vanishes, the lines of constant density
must be bent very close to the boundary in order to be perpendicular to it [133, 30, 150].
This distortion of the stratification is caused by salt diffusion and is limited to a given
distance to the boundary. Following Phillips [133], this distance in our experiments is less
than 0.5 mm. Thus, one can consider that the wave propagation and reflection are not
disturbed by this phenomena.

The linear theory of internal wave reflection has been developed first by Phillips [132]
and is based on a well-known incident wave reflecting at a sloped boundary [129]. Let as-
sume that the incident wave is bi-dimensional and can be described by the stream function

ψi(x, z, t) = ψ0,i exp(iωit− i~ki · ~r). (1.46)

The index i refers to the incident wave field and ωi and ~ki are the pulsation and wave vector
of the incident wave. They verify the dispersion relation. The energy density is defined as

Ec,i =
1

2

(
|vx|2 + |vz|2

)
, (1.47)

=
1

2

(
|∂zψi|2 + |∂xψi|2

)
, (1.48)

=
1

2
k2
i |ψ0,i|2. (1.49)

When the incident wave hits the sloped boundary, a reflected wave is created and can
be expressed as follows

ψr(x, z, t) = ψ0,r exp(iωrt− i~kr · ~r), (1.50)

where the index r refers to the reflected wave field. Thus, the energy density of the reflected
wave is

Ec,r =
1

2
k2
r |ψ0,r|2. (1.51)

The complete wave field is therefore ψ = ψi+ψr. As the flow does not penetrate the sloped
boundary, the total stream function field must vanish at the boundary, where x = −z tanα.

In order to simplify the boundary condition, one defines the coordinates attached to
the slope (xs, zs), as shown in figure 1.2. The velocity fields in the slope coordinate system
are (vxs , vzs) = (−∂ψ/∂zs, ∂ψ/∂xs) and the wave number is noted ~ks = (kxs , kzs). The
non-penetration condition can be expressed as vxs = 0 at xs = 0 and for all zs and time t.
On the total stream function field, this becomes

kzs,iψ0,i exp(iωit− i~ks,i · ~rs) + kzs,rψ0,r exp(iωrt− i~ks,r · ~rs) = 0, (1.52)

at xs = 0 and for all zs and time t. This leads to

ωi = ωr ≡ ω, (1.53)
kzs,i = kzs,r and (1.54)
ψ0,i = ψ0,r ≡ ψ0. (1.55)

Thus, the frequency and the wave vector component parallel to the sloped boundary are
conserved during the reflection. The normal component of the wave vector can be deter-
mined using geometrical construction and the dispersion relation

kxs,i = kzs,i tan(θ − α), (1.56)
kxs,r = kzs,r tan(θ + α). (1.57)

13



1. Internal gravity waves

α

x

xs

zzs

θ

θ

α

x

xs

zzs

θ

θ

(a) (b)

Figure 1.2: (a): Reflection of an incident blue ray on the sloped boundary inclined with an
angle α with respect to the vertical. In optics or acoustics, the reflected ray is the dashed
red line. For internal waves, the reflected ray is the red solid line. (b): Reflection of an
incident internal wave beam in blue on a sloped boundary. The reflected wave beam is in
red. The slope coordinates (xs, zs) are shown on both panels.

Thus, the ratio between the norms of the two wave vectors is given by

kr
ki

=

∣∣∣∣cos(θ − α)

cos(θ + α)

∣∣∣∣ ≡ γ. (1.58)

This defines the focusing parameter γ, which is greater than 1 in figure 1.2. This parameter
diverges for θ+γ → 90◦. This corresponds to the case where the waves have a propagation
angle very close to the slope of the boundary. This situation is called critical reflection.
Indeed, it is critical because γ diverges and thus, the wave length of the reflected wave
tends to 0.

As the pulsation of the wave is conserved, both the incident and reflected waves prop-
agate with the same angle θ, defined as sin θ = ω/N . It worths to note that this is very
different from reflection in optics or acoustics where the electromagnetic or sound waves
conserve the angle with respect to the normal to the sloped boundary (dashed black line
in figure 1.2(a)). This is a classical Descartes reflection. The difference with internal waves
is illustrated in figure 1.2(a). The incident ray is in blue. The reflected ray for optics or
acoustics is the dashed red line while the one for internal waves is the solid red line.

One can see in figure 1.2(b) that the blue incident beam is reflected into the red one.
The width of the reflected beam is thus reduced by the factor γ, defined in equation (1.58).
Thus, this is a focusing reflection. The energy in the incident beam is concentrated into
the red one. Indeed, equation (1.58) leads to Ec,r = γ2Ec,i showing that the energy density
is increased by a factor γ2 > 1. One can also have a defocusing reflection if the incident
beam is the red one in figure 1.2(b) while the reflected beam is the blue one.

Finally, note that a reflection on a slope which is horizontal or vertical does not lead
to focusing or defocusing. Indeed, for this kind of slopes, α is equal to 0 or π. Thus, γ = 1
and everything is conserved.

In this section, I have shown the fundamental properties of internal waves propagating
in a stably stratified fluid. As oceans, lakes and atmosphere are naturally stably stratified
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1.2. Internal waves in the oceans and in the atmosphere

systems, such waves can propagate through them. In the next section, I present internal
waves in these systems.

1.2 Internal waves in the oceans and in the atmosphere

Oceans and atmosphere are natural systems which can be partly stratified and thus, the
support of internal waves. I give in this section the main characteristics of the internal
waves in the oceans and atmosphere. It worths to note that, in reality, the waves observed
in the ocean and in the atmosphere are gravito-inertial waves.

1.2.1 Stratification of the oceans and the atmosphere

(a) (b)

Figure 1.3: (a): Vertical structure of the atmosphere in temperature. (b): Atmospheric
internal waves behind the Amsterdam island, located in the south of Indian Ocean.

Figure 1.3(a) shows a typical temperature evolution as a function of the altitude in the
atmosphere. This kind of stratification can be measured using weather balloons for exam-
ple. One can identify different regions with approximately constant temperature gradient:
troposphere, stratosphere, mesosphere and thermosphere. These regions are separated by
different turning points in temperature, marked as horizontal dashed lines. The boundaries
between the regions are named tropopause, stratopause and mesopause (from low to high
altitude). This temperature profile does not define a stable stratification. Nevertheless,
the density in the atmosphere depends on the temperature and on the pressure, which
vary strongly with the altitude. Indeed, the pressure decays by three orders of magnitude
between the ground (z = 0 km) and the stratopause (z = 50 km) and by six orders of
magnitude between the ground and the upper atmosphere (z = 100 km). Thus, it it nec-
essary to define a potential temperature, which is a temperature of the atmosphere at the
same pressure. This potential temperature defines a stable stratification. The buoyancy
frequency in the atmosphere is around 10−2 rad/s. In figure 1.3(b), one can distinguish
internal waves in the atmosphere using the clouds close to an island in the Indian Ocean.

The ocean is stratified in temperature and salinity, as shown in figures 1.4(a) and (b).
This induces a stratification in density presented in figure 1.4(c). From this, one can
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1. Internal gravity waves

compute the buoyancy frequency profile, shown in figure 1.4(d). Although the stratification
depends on the geographical location on the Earth, one can identify three main layers in
the ocean:

• a mixed layer, located just below the surface. This layer is approximately 100 m thick
and is homogeneous in temperature and salinity. The mixing is due to the different
interactions with the atmosphere. Indeed, there are some momentum exchanges with
the wind in the atmosphere and also thermal transfers

• an abyssal region, below the mixed layer. In this layer, the density varies quasi-
linearly with the depth on several kilometers. The buoyancy frequency in this layer
is typically of 10−4 − 10−3 rad/s

• a pycnocline, where the density varies strongly. This layer is located in between
the mixed layer and the abyssal region and is very thin. Thus, it exhibits strong
density gradients and the buoyancy frequency in this layer is typically of 10−2 rad/s.
The pycnocline limits the exchanges between the mixed layer and the abyssal region
because of strong density gradients.

(a) (b) (c) (d)

Figure 1.4: Profiles of temperature (a), salinity (b), density (c) and buoyancy frequency
(d) as a function of the depth, extracted from [60]. Theses profiles have been measured at
40◦N in the Pacific Ocean.

1.2.2 Internal wave generation

In the atmosphere, internal waves are essentially generated by the interactions between
a mean-flow and a topography. One can characterize this wave emission by the Froude
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number Fr, defined as

Fr =
U

Nh
, (1.59)

where N is the buoyancy frequency, h the height of the obstacle and U a typical velocity
of the wind. This dimensionless number measures the importance of the kinetic energy
of the flow with respect to the stratification density. If Fr < 1, the kinetic energy of the
flow is too low to break the stratification: when a parcel of fluid encounters the obstacle,
it contours it instead of going above. Thus, no waves are generated. When Fr > 1, the
flow has enough energy to break the stratification. When a parcel a fluid encounters the
obstacle, its altitude is changed and it causes a density perturbation. Thus, internal waves
are created. Let h = 1000 m and N = 10−2 rad/s. To generate internal waves, one should
have a typical wind of 40 km/h, on the topography.

In the ocean, there are two mechanisms responsible for the generation of internal waves.
The first one is internal wave emission by a topography. Indeed, when the water is moved
upon a topography by the tides or a current, this can create internal waves. The Froude
number Fr is also important here. For example, let us consider a tidal or an oceanic current
on a 100 m high topography, with N ≈ 10−3 rad/s. This leads to internal wave generation
when the speed of the current is greater than 40 cm/s. Figure 1.5, extracted from [55],
illustrates this phenomena for tidal forcing. Note that it is not necessary to have a very
deep ocean to generate internal waves, as one can see on the left of the figure where waves
are generated by the interactions between the tides and the continental shelf.

The other internal wave generation mechanism is the pycnocline forcing by the atmo-
sphere. Indeed, the atmosphere can generate motions in the pycnocline, due to storms,
winds or surface waves. Then, the pycnocline can emit internal waves, that propagate
along the pycnocline or in the abyssal region.

Figure 1.5: Internal wave generation by tidal forcing, extracted from [55]. In the center,
waves are forced by the tides on topographies at the bottom of the ocean. On the left, waves
are forced by the tides close to a continental shelf. The waves contribute to turbulence
and mixing in the ocean: they have an effect on the density profile (here tuned by the
temperature), as shown on the right.

17
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1.2.3 Internal wave propagation in the ocean

The purpose of this manuscript is more adapted to internal waves in the ocean than in the
atmosphere. Indeed, we study the behavior of internal waves in closed domains, which are
more likely to be found in the oceans thanks to the topography than in the atmosphere.
Thus, I mainly discuss in this section the internal wave propagation in the ocean. Never-
theless, in the atmosphere, internal waves are also important and responsible for different
phenomena. For example, the quasi-biennial oscillation (QBO) is an atmospheric periodic
zonal-flow induced by internal waves [3]. Some laboratory experiments have been per-
formed on this phenomena by Plumb and McEwan [134], by Otobe et al. [128] and more
recently by Semin et al. [140].

In the ocean, internal waves have a typical wave length varying between 100 m and
several kilometers. Thus, their wave number is very small and the viscous attenuation is
vanishing, according to equation (1.34). The typical damping distance is around 50000 km.
This means that internal waves can visit the entire ocean and have global effects on the
stratification, despite they are created at a more local scale.

As viscosity does not play an important role, non-linear effects can be significative.
This can lead to partial mixing of the stratification. A way to measure the mixing in the
ocean is to observe the turbulent diffusivity. This quantity is related to the average vertical
flow of mass. The larger the diffusivity, the larger the mixing. Polzin et al. [135] measured
this quantity in the Brazil basin above two kinds of topography. The results are shown
in figure 1.6. Above the smooth topography on the left, the values of the diffusivity are
small while the diffusivity is high above the sharp topography on the right. As internal
waves are generated by the topography, one can guess that more waves are present above
the sharp topography. This can explain the high values of diffusivity.

Thus, internal waves can generate mixing of the oceanic stratification and play a role
in the oceanographic circulation. Indeed, mixing is of paramount importance for global
circulation. The ocean is not a heat engine [73], and, therefore, sustainable global circula-
tion requires an input of mechanical energy and efficient mixing. In the upper ocean, wind
stress produces a significant input of mechanical energy inducing surface waves, geostrophic
currents and Eckman drift. The energy cascades in the upper ocean are described, for in-
stance, in flourishing literature on wave turbulence [121, 151], wave breaking [130] and
stratified turbulence and mixing in shear flows [47]. Globally, about 90% of the roughly
60 TW of the energy input from the wind to the Ocean is dissipated within the upper
100 m from the water surface [48]. Energy cascade in the abyssal ocean is less clear. Ex-
isting oceanographic data suggest that order 1TW source of energy is needed to maintain
the abyssal mixing [120]. The sustainable energy input to the ocean abyss comes from
the interaction of global tides with the bottom topography yielding the global rate of en-
ergy conversion to internal tides order 1TW [56]. An efficient energy cascade must exist
to ensure the energy transfer from the internal tides to complex multi-scale internal wave
motion in the interior of the ocean and, ultimately, to abyssal mixing and dissipation [120].

There is no unified viewpoint on the dominance of a particular mechanism of abyssal
mixing under natural conditions [76]. The existing literature describes isolated events
which are likely to be at play in the energy cascade: wave focusing [25], critical and nearly-
critical reflection of internal waves at a slope [30], refraction of waves at layers of high
density gradient [108], positive interference of waves emitted by complex multi-ridge to-
pography [38], internal Lee waves [123, 100]. Possible scenarios of instability include triadic
resonant instability [16], hydrostatic instability [108], shear and bottom layer instabilities
at slopes [58, 87], etc.

Thus, severals questions remain to be addressed, in particular, about the mixing and
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1.3. Internal waves in the laboratory

Figure 1.6: Turbulent diffusivity coefficient in a depth-longitude section measured in the
Brazil basin, upon two different topographies. On the left, the topography is smooth and
the diffusivity remains small while on the right, the topography is very sharped and the
diffusivity takes large values. Extracted from [135].

the energy cascade processes. This manuscript studies the possibly that these processes
are due to internal wave attractors. It worths to examine these questions in idealized
laboratory experiments to simplify the problems. As the ocean exhibits very complex
features such as rotation, non-linear stratification, different wave forcings, very diversified
topography, one can try to model the ocean by using its fundamental characteristics but
simplified: linear stratification in a tank where both forcing and the geometry are well-
controlled. The next section deals with how internal waves are generated and observed at
the laboratory scale.

1.3 Internal waves in the laboratory

In this section, I present the frame of the experiments in laboratory. As the ocean is very
complicated to model, we consider in this manuscript idealized experiments in a tank much
smaller than the ocean. This tank is filled with linearly stratified fluid and the waves are
generated by a wave-maker.
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1. Internal gravity waves

1.3.1 Set-ups

In this section, I describe the set-up used for the attractor experiments of this manuscript,
discussed in Chapters 3, 4 and 5. The set-up used for Chapter 2 is presented in section 2.2.

Figure 1.7 shows the attractor set-up. The tank is filled by a linearly stratified fluid
using the double bucket method, described in section 1.3.2. On the left side, a wave-maker,
described in section 1.3.4, generates the internal waves at a pulsation ω0. On the right,
there is a sliding sloping side wall, inclined at an angle α. This wall is slowly inserted into
the fluid after the end of the filling procedure. This set-up delimits a trapezoidal domain
of length L (at the bottom), of height H and with an angle α. The width of the tank in
the transverse direction is named W .

The different axes are indicated in figure 1.7. z is the vertical direction while x and y
are the horizontal directions. x lies within the plane of the schema and y is the direction
perpendicular to this plane. The origin is taken at the bottom of the wave-maker in the
x− z plane and in the middle of tank for the y direction.

Figure 1.7: Schema of the set-up used in all the attractor experiments described in this
manuscript. The tank is filled with a linearly stratified fluid. The wave-maker is on the
left vertical side. The different axes are defined above the tank.

In reality, we used two set-ups. Both of them have the same geometrical configuration
described in figure 1.7, but they have different scales. Indeed, I started my PhD using a
small tank, with H × L×W = 40× 80× 17 cm3. This kind of tank has been used in our
group for a long time [15, 71]. This allows us to perform experiments with L ≈ 45 cm and
H ≈ 30 cm. During my PhD, we built a new tank, named large tank in this manuscript
by opposition to the small one. This has been done working with Denis Le Tourneau, from
the mechanical workshop of the laboratory. The dimensions of this tank are H ×L×W =
100 × 200 × 17.4 cm3. Thus, the width is unchanged while the height and the length are
more than doubled. The experiments performed in this tank are typically carried out with
L ≈ 150 cm and H ≈ 90 cm. Thus, the scale of the experiments is increased by a factor
of 3. The idea to have a larger tank is to perform experiments with larger scales, less
dissipated by the viscosity (see equation (1.34)). The large tank is made with PMMA
while the small tank is made with PETg.
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1.3. Internal waves in the laboratory

The construction of this new large tank faces different major problems. The first one
is related to the size of the experiment. As both H and L have been multiplied by 3, the
volume is approximately increased by a factor of 10. The filling procedure is thus longer
and involves larger quantities of salt and water than for the small tank. Then, one had
to develop a new wave-maker, of 90 cm height. Indeed, the maximum height accessible
with the standard wave-maker presented in section 1.3.4 is 40 cm. Thus, it was unable to
force on all the height of the fluid. We worked with the mechanical workshop to create
a new wave-maker, also described in section 1.3.4. Finally, the visualization technique
has to be adapted to the large tank. In the small one, one can perform Particle Image
Velocimetry or Synthetic Schlieren, described in section 1.3.5. During this PhD, I only
performed Synthetic Schlieren in the large tank experiment.

1.3.2 Density stratification

In order to support internal-wave propagation, the fluid in the tank must be stratified in
density. In the oceans, the stratification is made using both temperature and salinity, as
shown in figure 1.4. In the laboratory, for the experiments made in this manuscript, we used
only salt as the stratifying agent for two reasons. The first one is that salt concentration is
much easier to control than the temperature, which can be changed by the environment.
The second one is that the salt diffusivity is smaller than temperature diffusivity. Indeed,
the Schmidt number Sc, equal to the ratio between the water kinematic viscosity and the
diffusion coefficient of salt or temperature, is 700 for salt while the one for temperature is
equal to 7. Thus, the stratification is more stable with salt than with temperature.

We use salt water with densities ranging between 1000 g/L and 1030 g/L for the small
tank and between 1000 g/L and 1080 g/L for the large tank. Consequently, the largest
variation of density is less than 10% of the mean density. Thus, the average of density in
the tank ρ0 is close to the fresh water density. Moreover, the range of densities gives the
buoyancy frequency N of the order of 1 rad/s in the small tank and 0.8 rad/s in the large
tank. As internal waves propagate only with a pulsation ω0 smaller than N , the shortest
period of the waves is around 6 s. Thus, acquisition techniques giving two fields per second
allow a very good time sampling of the waves. One also can perform long experiments
with hundreds of periods of the waves within few hours.

The experimental tank is filled with linearly stratified fluid using the double bucket
method [127, 54], illustrated in figure 1.8. A bucket A of fixed density ρA is discharged
in a bucket B with a flow rate Q1. The fluid of density ρB(t) in the bucket B, always in
agitation, is discharged in the experimental tank with a flow rate Q2.

The mass and the volume are conserved. This leads to

d(ρB(t)VB(t))

dt
= ρAQ1 − ρB(t)Q2, (1.60)

d(VB(t))

dt
= Q1 −Q2. (1.61)

We derive from equation (1.61)

VB(t) = (Q1 −Q2)t+ VB(0), (1.62)

and, by combining equations (1.60) and (1.62), we obtain a differential equation for ρB(t)

d(ρB(t))

dt
= Q1

ρA − ρB(t)

(Q1 −Q2)t+ VB(0)
. (1.63)
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Q1 Q2

ρA, VA(t) ρB(t), VB(t)
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Figure 1.8: Sketch of the double bucket method for the generation of a stratified density
fluid, extracted from [15].

By integrating this differential equation, we extract the evolution of ρB(t)

ρB(t) = ρA − (ρA − ρB(0))

(
1 +

(Q1 −Q2)

VB(0)
t

)Q1/(Q2−Q1)

. (1.64)

The experimental tank can be filled from the bottom or from the top of the free surface.
Consequently, a fluid injected at time t is positioned at a height

z(t) =
Q2

SH
t, (1.65)

when filled from above, and at a height

z(t) = H − Q2

SH
t, (1.66)

when filled from below. SH is the horizontal section of the experimental tank, and H its
height. Combining these results to equation (1.64), we obtain the density in the experi-
mental tank as a function of the height,

ρB(z) = ρA − (ρA − ρB(0))

(
1 +

(Q1 −Q2)

Q2

SH
VB(0)

z

)Q1/(Q2−Q1)

, (1.67)

when filling from the top, and

ρB(z) = ρA − (ρA − ρB(0))

(
1 +

(Q1 −Q2)

Q2

SH
VB(0)

(H − z)
)Q1/(Q2−Q1)

. (1.68)

when filling from above the tank. From equations (1.67) and (1.68), we can notice that the
stratification is linear only when Q1/(Q2 − Q1) = 1, so when Q1 = Q2/2. Two different
methods allow to achieve this specific relation between flow rates: the flow rates can be
controlled independently thanks to two peristaltic pumps, or one can only impose Q2 and
obtain Q1 by communicating both buckets from below. This last method requires equal
section of the base of both buckets.
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For Q1 = Q2/2, the density profiles are

ρB(z) = ρB(0) + (ρA − ρB(0))
SH

2VB(0)
z, (1.69)

ρB(z) = ρA + (ρA − ρB(0))
SH

2VB(0)
z, (1.70)

for the filling from above and below respectively.
The densities are selected depending if one fills from above or from below. In order

to obtain a stratification that increases density with depth, one has to choose ρB(0) < ρA
when we fill from below and ρA < ρB(0) when we fill from above.

In a large majority of experiments presented in this manuscript, the filling of the
experimental tank is done from below. For the small tank, a typical flow rate Q2 is
300 mL/min while for the large tank, this flow rate is around 1 L/min. This leads to
typical filling time of 2 hours for the small tank and 5 hours for the large tank. These
flow rates are chosen to be sufficiently slow to avoid mixing during the filling and enough
high to fill the tank in a reasonable time. The relevant quantity to prevent mixing is the
vertical speed of the surface during the filling

dz(t)
dt

=
Q2

SH
, (1.71)

Thus, the flow rate can be larger for the large tank than the one for the small tank because
the section SH is greater for the large tank.

To obtain a linear profile, note that the horizontal section SH has to be independent
of z. In order to get a constant section SH , one carefully inserts the sloping wall at the
end of the filling procedure only.

1.3.3 Density measurements

To measure the stratification in the tank and the associated buoyancy frequency N , one
uses a conductivity probe. It measures both the electric resistivity of the fluid between
two conductive plates and the temperature. The resistivity of the fluid depends on the
ions present in the solution, and a calibration allows the association of the resistivity and
temperature values with the density. The calibration is made by measuring with the probe
the resistivity and the temperature of different homogeneous samples. These samples have
well known densities and temperatures, measured by an AntonPaar DMA 35 densimeter.
This device consists in a capillary filled with the fluid to be studied. An electro-mechanic
system vibrates the capillary and measures the resonant frequency of the capillary-fluid
system. This frequency depends on the mass of both, the known capillary mass and the
fluid mass, which allows us to extract the fluid density. This equipment measures densities
between 0 and 3 kg/L with an accuracy of 0.001 kg/L. The samples are chosen to get
densities and temperatures varying in the range of the ones of the stratification.

The probe attached to a stainless steel bar is moved in the stratified fluid by a stepper
motor. The resistivity and temperature are measured continuously as the probe moves.
The probe descends slowly in order to generate the least possible change in the stratifica-
tion. An example of the measure of the density is shown in figure 1.9, by the solid black
line. The buoyancy frequency is obtained by modeling this measurement by a linear fit,
as shown by the dashed red line. One can observe at the top of the profile, just below the
dashed dotted black line representing the surface, that the fluid is close to be homogeneous.
This homogenization can be due to convective motion of the air close to the free surface. It
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Figure 1.9: Example of a density profile obtained in the large tank. The measured profile
is plotted as the solid black line while the dashed red line shows a linear fit of the profile,
slightly shifted for the sake of clarity. The horizontal dashed dotted line represents the free
surface.

is possible to pump away this layer at the end of the filling procedure in order to get only
a linear profile. Other effects, such as filling effects and large temperatures change can also
influence the density profile, especially at the top and the bottom of the stratification.

Note that the stratification is very stable in time: it remains linear during several weeks
without any mixing caused by the waves. Nevertheless, the thickness of the homogeneous
layer close to the free surface increases with time, around half of a centimeter a day.

1.3.4 Generation of internal waves

The internal waves are generated in the tank, filled with linearly stratified fluid, using a
wave-maker, which is different for the small and large tanks. Historically, internal waves
have been produced in the laboratory by oscillating a cylinder in a stratified fluid. The
cylinder creates four wave beams in the four quadrants, as in figure 1.1. This is how the
internal wave dispersion relation has been measured for the first time [62, 119].

All the attractor experiments reported in this manuscript have been performed with a
mode 1 forcing, defined by the horizontal displacement of the wave-maker

ζ(z, t) = a sin(ω0t) cos

(
πz

H

)
, (1.72)

where a the amplitude of the maximum displacement, H the height of the fluid and ω0

the forcing frequency. The profile is thus half of a cosine modulated in time. The aim is
to impose the horizontal velocity vx, defined in equation (1.43), with p = 1. Then, as the
horizontal and vertical components of the wave fields are linked by the volume conservation,
a wave is emitted. Nevertheless, the wave-maker is not 100% efficient. Indeed, it imposes
only the horizontal velocity and the vertical one is supposed to be given by the volume
conservation, using equation (1.45).
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(a) (b)

Figure 1.10: (a): Representation of the disc and plate system which allows to transform
the rotation motion in a unidirectional translation. The white piece within the disc can
be displaced to change the eccentricity e, and therefore, the translation amplitude of the
black plate. (b): Image of discs piled over the camshaft (the discs are continuously shifted
in phase). These two images are extracted from [71, 15, 12].

The wave-maker used in the experiments performed in the small tank is the one devel-
oped by Gostiaux et al. [63], studied by Mercier et al. [115] and improved by Bordes [12].
This allows a very accurate control on the shape, the amplitude and on the frequency of
the waves generated. The working principle of this wave-maker is to transform a rotation
of a vertical camshaft of plates in an oscillatory horizontal movement. The rotation of the
camshaft is generated by a motor, and perforated discs within the plates allow the selec-
tion of the amplitude and phase of oscillation. A disc is shown in grey in figure 1.10(a).
The position of the white piece of the inside can be set in a way that the axle does not
necessarily coincide with the center of the disc. When rotated, the black plate allows to
obtain an unidirectional oscillation, where the amplitude corresponds to the distance be-
tween the axle and the center of the disc. The system allows the generation of horizontal
displacements of amplitude e, between 0 and 15 mm. This set-up also has the possibility
of changing the relative phase between two contiguous discs, in order to create profiles
with the same amplitude but different phases (see figure 1.10(b)). This typically leads
to plane waves. Nevertheless, in this manuscript, all experiments have been performed
generating a vertical mode. For these modes, all discs have the same phase but different
amplitudes. Thus, there is no need to change the phases. Practically, in the small tank, the
wave-maker is composed of 47 plates having the following horizontal displacements given
in equation (1.72). The wave-maker is built outside the tank and then inserted on the left
of the tank before the filling procedure. Once the tank is filled, one can only change the
frequency ω0 of the waves. The shape and the amplitude are fixed until one empties the
tank and changes them.

The wave-maker used in the experiments performed in the large tank is different. As
we built the large tank, we developed a new wave-maker with Marc Moulin, from the
mechanical workshop of the laboratory. The idea is to get a mode 1 shape by deforming
a flexible plate. Figure 1.11(a) shows a schema of this wave-maker. The assembly, the
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Figure 1.11: (a): Schema of the wave-maker used in the large tank. The different pieces
are shown by the arrows. (b): Picture of the wave-maker from the side with an high
amplitude a. The phase of the plate is chosen to get the maximal horizontal distance
between the bottom and the top of the plate. The dashed black line has the shape of half
a cosine, expected for the bended plate with reasonable accuracy.

fixed part of the wave-maker, is composed of three different horizontal pieces, located
at the bottom, the middle and the top of the wave-maker. These pieces are linked by
four vertical assembly rods. The deformable plate is attached at its top and bottom to
horizontally translating pieces. They move in opposition of phase, thanks to two moving
rods, using the principle of a deformable parallelogram. Moreover, the middle of the plate is
horizontally fixed to the assembly in order to get a pivot point with ζ = 0 for z = H/2. Note
that the plate is fixed at its top and bottom on the translating pieces for few centimeters,
in order to ensure that the ends of the plate remain vertical (in other words, clamped), as
for the mode 1 shape. The translating pieces are moved using a motor, fixed at the top of
the assembly. The rotating motion of the motor is converted into a horizontally translating
motion using a crank rod. The plate has the same width W as the tank and is sealed on
its sides to avoid water exchanges between the two faces of the plate. A picture of the
wave-maker viewed from the side is shown in figure 1.11(b). The position of the plate has
been chosen to have sin(ω0t) = −1 in equation (1.72). The solid line, having a shape of
half a cosine, shows that the deformation of the plate is very close to a mode 1 shape, as
expected. The shape of the wave-maker is thus fixed in a mode 1 shape. Nevertheless, one
can change the amplitude of the wave-maker by modifying the crank rod once the tank is
filled. This allows us to perform different experiments varying the forcing amplitude only.
This is not possible with the small wave-maker. Note that the forcing frequency is also
easily tunable by controlling the motor.
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1.3.5 Visualization techniques

Two different techniques have been used to visualize the internal waves propagating in
the tank: Particule Image Velocimetry (PIV) and Synthetic Schlieren (SyS). Both are
well-known techniques used to observe internal waves in laboratory experiments [147].

Synthetic Schlieren

This technique is based on the fact that the optical index of water changes with the salt
concentration. Thus, the stratification in salt induces a stratification in optical index.
When an internal wave passes through a stratified fluid, it causes density perturbations
and consequently optical index perturbations. Moreover, when a light ray passes through
an inhomogeneous refractive index medium, it is spatially bent. The bending angle in
one direction is directly linked with the density gradient in this direction. Thus, one can
measure the density gradients caused by an internal wave by measuring the ray deflections
due to this wave.
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Figure 1.12: Sketch of the Synthetic Schlieren visualization set-up, extracted from [71, 15].
A blue light ray (solid line on the left) is emitted from the Schlieren screen and is collected
by the CCD sensor of the camera, using a length of focal length f . The dashed blue line
represents the trajectory of this ray without the density gradient while the red line shows
the trajectory of this ray with the density gradient.

A camera with a lens of focal depth f measures in time a pattern placed over a luminous
screen (Schlieren screen) with a CCD sensor. A tank is located between the screen and the
camera. When this tank is filled with an homogeneous fluid, there is no density gradient
and the ray is not deflected, as shown by the dashed blue line in figure 1.12. However, the
light ray is bent by an angle αz, as shown by the solid red line in figure 1.12, when the
tank is filled with a fluid that is stratified in density and, therefore, in refractive index.
The angle αz is related to the spatial gradient of the refractive index through the relation

αz =
W

n

dn
dz

=
W

n

dn
dρ

dρ
dz
. (1.73)

In the salt concentration range used in this work, the variation of the density as a function
of the refractive index is linear and the slope is equal to dρ/dn = 4.1× 103 kg/m3.

The deviation of the ray of light generates a displacement of the pattern over the CCD
sensor. This is shown on the right of figure 1.12. Note that the image recorded by the
camera is reversed as the CCD is located at a larger distance than f from the lens. Thus,
the image shown on the right of figure 1.12 has been reversed, to have it in a normal way.
In the approximation of small angles, the deviation of the pattern with respect to the
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homogenous medium case is

∆z = αzf
D′ +W/2

D′ +W +D − f . (1.74)

We can translate the spatial displacement of the detected pattern to pixel displacement
through the relation ∆p = ∆z/r, where r is the physical size of a pixel.

The density gradient can be therefore written as

∂ρ

∂z
= r∆p

dρ
dn

n

W

(D′ +W +D − f)

f(D′ +W/2)
. (1.75)

When internal waves propagate, the density gradient is locally modified. Consequently,
the refractive index is locally modified and therefore the pattern on the camera is also
changed. The comparison of an image of the fluid with and without waves allows to deter-
mine the local variations of the refractive index caused by the internal waves. Considering
that no waves are present in the fluid at t = 0, we directly have access to the perturbations
of the refractive index

∂ρ′

∂x
=
∂ρ(t)

∂x
− ∂ρ(0)

∂x
and

∂ρ′

∂z
=
∂ρ(t)

∂z
− ∂ρ(0)

∂z
. (1.76)

In order to get a good resolution in the density gradients, one needs a good spatial resolution
in the displacements of the pattern located behind the tank. Thus, one uses a pattern
made of random black dots on a white background which gives good results with sub-pixel
accuracy. The typical frame rate used for SyS is 2 Hz. Thus, as ω0 is usually around
0.6 rad/s, this allows a very good temporal sampling of 20 density gradient fields per wave
period.

If vertical mixing occurs, the average density profile is changed and the measure of the
wave is distorted, as the mixing and the wave perturbation both contribute in the term
∂ρ(t)/∂z. In order to have reliable measurements, mixing and long experiments should
be avoided. It is also important to note that this technique is developed for flows with
specific features: they have to be two-dimensional flows or they must have some know
symmetries [126].

This technique has been used for experiments performed in both small and large tanks.

Particle Image Velocimetry

Particle Image Velocimetry (PIV) is a technique that allows to measure the velocity field
of a flow. The fluid is seeded with light-reflecting hollow glass spheres of size 8 µm and
density 1100 kg/m3. Because of their small size, the particles are dragged by the flow,
and their motion represent the flow. Even if the particles are slightly denser than the
fluid, the time-scale of particle sedimentation is very low (typically several days), with
negligible effect on results of velocity measurements. The longitudinal mid-plane of the
test section is illuminated by a vertical laser sheet coming through the transparent side
of the tank, at the right of the slope (which is also transparent). The laser sheet is made
using a cylindrical lens or an oscillating mirror. The light pattern emitted by the particles
is recorded by a camera at different times. Two successive images are compared in order
to obtain the displacement of the light pattern, and estimate the fluid velocity. Typically,
4 frames are taken per second, with a regular sampling or a burst mode. The burst mode
is performed for high forcing experiments where the velocity fields is expected to have a
strong amplitude. This mode consists in taking 2 frames very close in time, in order to
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reduce the displacements of the particles between the two images. Then, the camera waits
for a given time in order to avoid to get too large data and takes 2 more pictures. The
regular and the burst mode sampling allow to get 2 velocity fields per second and thus,
give us a good temporal resolution of around 20 fields per wave period, as SyS.

This technique has been used only for experiments performed in the small tank. Indeed,
in the large tank, as the laser sheet comes through the transparent side of the tank, the
light has to go through 2 m of water, and is drastically damped by the water. Thus, the
particles located close to the wave-maker are not lighted correctly and are not detectable
by the algorithm. Therefore, I did not perform PIV in the large tank. Nevertheless, with
coated particles reflecting better the laser light and maybe a stronger laser or a oscillating
mirror, one should be able to drive PIV experiments in the large tank.

Image correlation algorithm

The velocity or the density gradient fields are calculated with the help of the cross-
correlation technique [49], which is visualized in the uvmat graphic interface [141]. The
aim is to measure the displacements of the light pattern between two successive images
for PIV or to measure the displacements of the dot pattern between one image and an
image at t = 0 for SyS. Each image is divided in boxes of a selected size. The size of the
box is chosen such that a recognizable pattern can be observed within the box, but the
box must remain small enough to present little perturbation of the shape of the pattern
between two images, when the fluid is moving. The algorithm determines the position of
the pattern in the successive image by calculating the correlation coefficients, the maximal
correlation defining the position of the pattern in the successive image. This algorithm
allows to estimate the displacement of the pattern in a time ∆t defined by the acquisition
frequency, at a resolution of a tenth of a pixel.

For PIV in the small tank, this algorithm typically leads to a resolution of 1 velocity
vector per area of about 3× 3 mm2. For SyS, the spatial resolution is around 3× 3 mm2

for the small tank and 5× 5 mm2 for the large tank.
These two techniques have their own assets and drawbacks. SyS is better to observe

small wavelength so it is very efficient to detect triadic resonance instability (see Chapter 4).
However, if the instability is too strong or if there is some mixing, this technique becomes
inefficient because it is based on optical index variations. Moreover, the observed field is
integrated on all the width of the tank. PIV is less sensitive to small scales but it is also
useful to detect triadic resonant instability. It can be used even in case of strong instability
or mixing. In this cases, index matching in the tank increases the precision of the PIV
measurements. Moreover, PIV is related to energetic quantities and it is more localized
than SyS because the measurements are made only within the laser sheet. Finally, both
techniques are equivalent in the case of a nominally 2D problem as demonstrated in [68].

1.3.6 Hilbert filtering in time and in space

The two visualization techniques presented in the previous section give us the velocity or
the density gradient fields in the tank. As the main motions are due to waves and therefore
are periodic, it worths to filter the fields obtained to separate the different components of
the wave-field oscillating at different frequencies. It is also possible to filter spatially the
fields by keeping only the waves propagating in given directions. Such filtering is named
Hilbert filtering (or Hilbert transform) and has been developed and studied for internal
waves by Mercier et al. [114].
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The principle for the time filtering is the following. First, a temporal Fourier transform
of the signal is made. This leads to a frequency spectrum, with different peaks associated
with the waves having different frequencies. This spectrum is then multiplied by an Ham-
ming window, centered around a working frequency and with a small width in frequency.
Thus, one isolates one specific frequency. Then, from this spectrum, one perform an inverse
temporal Fourier transform which leads to a signal in the real space. The signal is complex,
one can take the real part to get the original signal filtered at the working frequency. One
also have access to the modulus of this complex signal and to the phase. There is a similar
procedure for a filtering in space. Nevertheless, for space filtering, we are used to select
all the positive (or negative) components of the horizontal or vertical wave vectors. Thus,
one selects more a quadrant than a specific wave number.

These temporal and spatial filterings are often used in the remainder of this manuscript.
For the space filtering, the quadrant selected by the filter will be indicated by a black
rectangle in a wave vector space.
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Conclusion

In this Chapter, I have introduced internal waves propagating in a stably density stratified
fluid, from a theoretical, observational and experimental point of view.

First, I have described the physics of a stably stratified fluid. I have shown that internal
waves have very specific features such as an anisotropic and geometric dispersion relation,
perpendicular group and phase velocities and specular reflection on a sloped boundary.
These properties, unusual, have a strong importance in natural systems.

Then, I have described the main features of these waves in oceans and in the atmo-
sphere, from their generation to their influence on the stratified fluid supporting them.
I have presented the main open questions regarding internal waves in the oceans. They
concern the processes of energy cascade and mixing induced by internal waves.

Finally, I have discussed the experimental details necessary to investigate internal waves
in a laboratory. I have shown how to prepare a stratified fluid, how to generate internal
waves and how to measure them using two different techniques. I have presented the
attractor set-up used in Chapters 3, 4 and 5 which can be adapted to two tanks of different
sizes. This allows us to explore different experimental scales although the ocean remains
much larger than the tanks used in the laboratory frame.
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Chapter 2

Pendulum oscillating horizontally
in a stratified fluid

Object oscillating in a stratified fluid and creating in-
ternal waves. Extracted from [119].

The interaction of the tidal motion with the
ocean bottom topography is continuously gen-
erating internal waves [7, 148, 56]. The global
rate of energy conversion from barotropic to
baroclinic tide is estimated to be around
1 TW [118, 56]. The generation of internal
wave energy has been studied in some de-
tails for obstacles in stratified fluid of infinite
extent: flat topography [7], elliptic and cir-
cular cylinders [74, 75, 143, 144], Gaussian,
witch of Agnesi and exponential ridges [91] in
two dimensions, and sphere in three dimen-
sions [82, 149, 41].

In the case of fluid of limited depth, the
tidal conversion has been estimated [92] for a
vertical barrier mimicking a very steep under-

water ridge. In particular, Llewelyn Smith and Young [92] show that the tidal conversion
is considerably enhanced in a fluid of limited depth as compared to a fluid of infinite ex-
tent. Measurements of wave power emitted by an oscillating circular cylinder placed at
mid-depth in a horizontal stripe of a uniformly stratified fluid have been performed by
Ermanyuk and Gavrilov [42]. This geometry corresponds to the case of a semi-circular
mountain. The experimental trends found by Ermanyuk and Gavrilov [42] suggest that
the tidal conversion decreases as the ratio of the obstacle height to the fluid depth de-
creases. A similar trend has been observed in calculations performed by Sturova [142].
However, Ermanyuk and Gavrilov [42] experimentally and Sturova [142] numerically were
unable to obtain precise information on the low-frequency limit of tidal conversion, the
quantity discussed by Llewelyn Smith and Young [92]. Therefore, the cross-comparison of
the mentioned results seems to be inconclusive.

In this chapter, we re-visit the problem of tidal conversion by an isolated bi-dimensional
bottom topography in a uniformly stratified fluid of limited or infinite depth, using the
concepts of added mass and affine similitude. Recently the importance of added mass in
the context of emission of internal waves by oscillating bodies has been discussed in [149].
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2. Pendulum oscillating horizontally in a stratified fluid

The rule of affine similitude relating the added masses of affinely similar bodies in uni-
formly stratified and homogeneous fluids has been proposed in [40]. This rule provides
a simple tool for evaluation of force coefficients of oscillating bodies (and the amount of
energy radiated with waves) which proves to be efficient to recover the previously obtained
results for an elliptic cylinder [74] and vertically oscillating spheroid [85] and to obtain the
estimates for other configurations such as horizontally oscillating spheroids [40], diamond-
and square-shaped cylinders [43]. In a geophysical context, the latter cases can be also
interpreted as underwater mountain ridges of triangular and rectangular (plateau-shaped)
cross-sections. This approach is extended in this chapter to the case of a ridge with square-
shaped in a uniformly stratified fluid of infinite depth and to the case of a ridge with circular
shape of cross-section in a uniformly stratified fluid of limited depth. In addition, a to-
pography lacking of tidal conversion for given frequencies [96] is tested. Experiments with
this kind of topographies have been reported recently [99] but the radiated wave power of
such structures has never been measured yet.

First, in section 2.1, I introduce the theoretical preliminaries on added mass in homo-
geneous and stratified fluids. I briefly explain the concept of affine similitude and take
the example of a flat plate in a fluid of finite depth. Then, in section 2.2, I present the
experimental set-up and the data analysis. In the two last sections, I show the experimen-
tal results that we obtained and compare them to the theoretical predictions. Section 2.3
is dedicated to a cylinder with a square-shaped cross section in a fluid of infinite depth,
in order to test the affine similitude predictions. Section 2.4 describes the results for a
cylinder with circular cross section in a fluid of finite depth and the possible tidal appli-
cations. Finally, section 2.5 presents the results obtained using the topography lacking of
tidal conversion in a fluid of finite depth.

Note that this chapter is slightly apart from the remainder of the manuscript, mainly
focused on internal wave attractors. Nevertheless, it exhibits interesting features that can
be valuable for the generation of internal wave attractors in the ocean. The notations used
in this chapter are defined and valid for this chapter only.
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2.1. Theoretical preliminaries

2.1 Theoretical preliminaries

2.1.1 Added mass in homogeneous and stratified fluids

When an object moves in an ideal fluid, it has to move the fluid around in order to pass
through. As the fluid has a given density, a higher force is necessary to displace the object
in the fluid than in the vacuum. Indeed, as both the object and the surrounding fluid have
to be accelerated, the necessary force is equal to the acceleration of the object multiplied
by the mass of the object and another mass mA, due to the fluid [152]. This mass is
called the added mass and depends on the shape of the object in the fluid. Thus, this
mass is generally described using a tensor. In naval architecture, the added mass is very
important because it can easily reach a large amount of the total mass of the ship or the
sub-marine. This leads to a large number of studies on added masses of different objects
in homogeneous fluid [20]. However, it is not necessary to take this mass into account for
aircrafts, as the air density is much smaller than the one of the water.

Added mass can be used to investigate the tidal conversion in the oceans [149]. Indeed,
the topography at the bottom of the oceanic floor can be viewed as objects moving in a
stratified fluid. In reality, the topography is fixed and the fluid moves via tidal forcing
but the two problems are totally equivalent for small amplitude oscillations. Thus, it is
possible to use the knowledge developed on added mass in homogeneous fluid to explore
the problem in stratified fluid. In such fluid, internal waves can be emitted if the body
oscillates at a frequency ω smaller than N . In this case, the added mass is complex and
depends on the frequency of oscillations ω. It can be decomposed in two parts

mA = µ(ω)− iλw(ω)

ω
. (2.1)

µ is the inertial coefficient, also called added mass and λw is the damping coefficient. It
represents the loss of energy due to wave emission. µ acts on the acceleration of the object
while λw gives an additional term linked with the speed of the object. When ω > N , there
is no wave emission and the added mass is real but depends on ω. It is worthwhile to
remark that µ and λw are linked together using Kramers-Kronig relation [42].

Note that we assume an ideal fluid, which is inviscid. In a viscous fluid, as in the
experiments, the object undergoes an attenuation of its speed due to the viscosity of the
fluid. Thus, when ω > N , there is only a viscous damping. Nevertheless, when ω < N ,
the attenuation of the speed of the object is due to the viscosity and to the wave emission.
As one can see in the experiments, the wave emission damping coefficient is much more
important than the viscous one.

2.1.2 Affine similitude in a linearly stratified fluid

Let us consider a two-dimensional object submerged at depthH/2 in a channel of full depth
H filled with an ideal continuously stratified fluid having a constant buoyancy frequency
N . This is sketched on the left panel in figure 2.1. We assume that the horizontal extent of
the channel is infinite. The upper and lower boundaries of the channel are assumed to be
rigid. A Cartesian coordinate system is introduced with the x-axis located at mid-depth
of fluid and pointing left, and z-axis pointing downwards. The y-axis is horizontal and
perpendicular to the x-axis. The horizontal and vertical sizes of the object are denoted
a and b, respectively. One defines the aspect ratio of the body p = b/a and the aspect
ratio of the fluid q = b/H. We restrict our consideration to the case of horizontal har-
monic oscillations of the object with frequency ω and amplitude A. The non-dimensional
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2. Pendulum oscillating horizontally in a stratified fluid

Stratified fluid

a

b Hx

z

Homogeneous fluid

a

αb αH

Figure 2.1: Geometries of the real and fictitious problems. Left panel: two-dimensional
object in a linearly stratified fluid of depth H. The horizontal and vertical sizes of the
object are named a and b, respectively. Right panel: fictitious body in a homogeneous fluid
after an affine transformation of the object in the left panel. The transformation changes
the vertical scales by a factor α. The horizontal and vertical sizes of the fictitious object
are a and b∗ = αb, respectively. The fluid has a depth of αH.

frequency is introduced as Ω = ω/N . Note that on the left panel in figure 2.1, the body
is a circular disk but the theoretical preliminaries of this section are also valid for other
shapes. Below we consider experimentally the cases of objects with cross section being
a square or a circular disk. In oceanographic context these geometries correspond to the
cases of ridges with triangular and circular cross-sections.

Let us consider first the problem where Ω > 1, i.e. where the added mass is a real
quantity. The added mass coefficient K of a body undergoing horizontal oscillations in
uniformly stratified fluid of infinite extent (H →∞) are known [40] to be related with the
added mass coefficient K∗ of a fictitious affinely similar body oscillating in a homogeneous
fluid

K = K∗. (2.2)

Here, the added mass coefficients are defined as K = mA/ρcS and K∗ = mA∗/ρcS∗, where
ρc is the reference density at the depth corresponding to the center of the body, mA and
mA∗ are the added masses per unit length, S and S∗ are the cross-sections of the initial and
fictitious bodies, respectively. The fictitious body is obtained by compressing the initial
body in the vertical direction α times, where α = (Ω2− 1)1/2/Ω. Note that equation (2.2)
is also valid for finite H. Consequently, it relates also the added mass coefficient K of
a body oscillating in a uniformly stratified fluid of limited depth H and the added mass
coefficient K∗ of the fictitious body oscillating in a homogeneous fluid of depth αH. This
is shown in the right panel in figure 2.1 where the fictitious body is an ellipse of major axis
a and minor axis b∗ = αb. Consequently, the surface S = πab/4 of the body is transformed
in S∗ = πab∗/4 = αS for the fictitious body.

In many problems, it is more convenient to normalize the added mass of the oscillating
cylinder by the added mass of a flat plate of height b so that k = mA/ρcπb

2 and k∗ =
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2.1. Theoretical preliminaries

mA∗/ρcπb2∗. This normalization is particularly suitable in geophysical fluid dynamics in
view of the scaling used for the tidal conversion [92]. Obviously, with such a normalization,
equation (2.2) should be replaced by

k = k∗α. (2.3)

Equation (2.2) has been obtained in Ermanyuk [40] by considering the integrals of
pressure over the body surface and the control surface surrounding the body, and applying
the Gauss theorem to the fluid volume comprised between these surfaces. The control
surface can be a material surface that undergoes the same affine transformation as the
body surface. In this case, equation (2.2) remains valid since the conversion factors relating
surface integrals over initial and fictitious bodies as well as over initial and transformed
control surfaces are the same. However, if Ω < 1, one should keep in mind that the control
surface cannot be a closed one. There must be a possibility for radiation of internal wave
energy to infinity. In this chapter, we consider a body oscillating between infinite rigid
horizontal planes and the latter requirement is fulfilled.

Now let us suppose that, for a certain family of bodies oscillating in a homogeneous
fluid between two horizontal parallel rigid planes, we know the functions, representing
the dependence of the added mass coefficients on non-dimensional geometrical parameters
p = b/a and q = b/H

K∗ = F∗ (p, q) or k∗ = f∗ (p, q) . (2.4)

Note that q = b/H does not change under affine transformation. Then, for Ω > 1, the
added mass coefficients of a body in a uniformly stratified fluid at certain given values of
p and q can be found as follows

K(Ω) = F∗ (pα, q) or k(Ω) = f∗ (pα, q)α. (2.5)

As discussed in Ermanyuk [40] in context of Hurley [74], K(Ω) and k(Ω) at Ω < 1
can be obtained by analytic continuation in frequency. This can be done if the radiation
condition formulated in the causal sense does hold true, i.e. the internal waves are radiated
from the source to infinity and never return back. For Ω < 1, the analytic continuation for
α is iη, where η = (1− Ω2)1/2/Ω is the real-value parameter. Accordingly, equation (2.5)
becomes

K(Ω) = F∗ (piη, q) or k(Ω) = f∗ (piη, q) iη. (2.6)

Thus, knowing the added mass coefficient for a family of bodies in a homogenous fluid,
one can deduce the added mass coefficient of related bodies in a linearly stratified fluid,
as a function of the frequency. This can be useful because added mass in homogeneous
fluid is well studied [20] while the added mass in stratified fluid has been investigated only
recently.

For Ω > 1, the added mass is real-valued. Accordingly, there is no wave radiation.
When Ω < 1, the added mass is complex-valued, as defined by equation (2.1). The non-
dimensional inertial and damping coefficients can be introduced as

Cµ = Re(K) =
µ

ρcS
, (2.7)

Cλ = Ω Im(K) =
λw
ρcSN

, (2.8)
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2. Pendulum oscillating horizontally in a stratified fluid

or as

cµ = Re(k) =
µ

ρcπb2
, (2.9)

cλ = Ω Im(k) =
λw

ρcπb2N
. (2.10)

The imaginary part of the added mass is related to the radiated wave power

P (ω) =
1

2
(Aω)2λw(ω), (2.11)

where A is the amplitude of oscillations. The power radiated with waves is of particular
interest since it is directly related to tidal conversion. In such a problem, we can replace
Aω with the amplitude of the tidal velocity U as it is usually done in geophysical hydro-
dynamics. Using the definition of the added mass coefficient k and equation (2.6), we can
express (2.11) as follows

P (ω) =
1

2
ρcπb

2U2ω Im
(
f∗ (piη, q) iη

)
, (2.12)

The dimensionless form for the radiated wave power is

Pw =
1

2
Ω2Cλ(Ω). (2.13)

In the case of a fluid of infinite extent, the functions of equations (2.4) are known for a
variety of geometrical shapes (see for example Korotkin [83]). As demonstrated in [40],
equations (2.5) and (2.6) can be used to re-derive the formulas for hydrodynamic loads
acting on an elliptic cylinder [74], and a vertically oscillating spheroid [85]. New solutions
can be also obtained. For example, the cases of a horizontally oscillating spheroid and
cylinders with square-shaped and rectangular cross-sections are considered in [40] and
in [43].

There are only few analytical solutions for the added mass of bodies oscillating in ideal
homogeneous fluid of finite depth. The known results are limited to the cases of vertical
flat plate [93], an elliptic cylinder [27] and a rectangle [122]. In the next section, one shows
a theoretical example of the application of the affine similitude theory for a vertical flat
plate oscillating horizontally in a stratified fluid.

2.1.3 Vertical flat plate in a linearly stratified fluid of finite depth

Let us consider the case of a vertical flat plate of height b. This is one of the only examples
where one has an analytical formula for the added mass in a homogeneous fluid of finite
depth. As the plate is infinitely thin, one has p = b/a → ∞. The added mass of this flat
plate oscillating in a homogeneous fluid of infinite depth (H → ∞ and q = b/H → 0) is
mA = ρcπb

2. Therefore for this case, the function given in equation (2.4) is f∗(∞, 0) ≡ 1.
Thus, the added mass and damping coefficients in a linearly stratified fluid are given by

Cµ =

(
Ω2 − 1

)1/2
Ω

and Cλ = 0, (2.14)

for Ω > 1 and

Cµ = 0 and Cλ =
(

1− Ω2
)1/2

, (2.15)
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2.2. Pendulum experiments

for Ω < 1. For this last case, the wave power radiated by the flat plate in an uniformly
stratified fluid of infinite extent amounts to

P∞(Ω) =
1

2
ρcπb

2U2N(1− Ω2)1/2. (2.16)

This expression coincides with the solution found by Hurley [74].
Following [93, 122], the added mass coefficient of a vertical flat plate of height b oscil-

lating in a homogeneous fluid of finite depth H is

k∗ = f∗

(
∞, b

H

)
= 2×

(
2H

πb

)2

ln

[
sec

(
πb

2H

)]
. (2.17)

Thus, when Ω < 1, the wave power radiated by the flat plate in a uniformly stratified fluid
of limited depth is

PH(Ω) =
1

2
ρcπb

2U2N(1− Ω2)1/2M

(
b

H

)
, (2.18)

where, following Llewellyn Smith and Young [92], we introduce the enhancement factor

M

(
b

H

)
=
PH(Ω)

P∞(Ω)
=
f∗(∞, bH )

f∗(∞, 0)
= f∗

(
∞, b

H

)
. (2.19)

Our expression for the enhancement factor is equivalent to the result given by a more
complicated formula in [92], with rotation neglected. The power given by equation (2.18) is
twice the power calculated by Llewellyn Smith and Young [92] since they consider the upper
half of geometry. The added mass and damping coefficients of a vertical plate oscillating
horizontally in a fluid on finite depth are equal to the ones for a fluid of infinite depth
multiplied by the enhancement factor M .

It worths to note that the expression for the wave power given in [92] is for the low-
frequency limit (Ω → 0). In this limit, the dimensionless damping coefficient is given
by

Cλ(Ω→ 0) = M

(
b

H

)
. (2.20)

When b/H → 0, M → 1. Nevertheless, for smaller H/b, M becomes higher than 1, which
highlights a more important damping coefficient at finite depth than at infinite depth for
the low frequency limit, useful for tidal conversion.

In this chapter, no experiment with a flat plate has been performed. Nevertheless, using
the affine similitude theory, we are able to predict the added mass and damping coefficients
as functions of the dimensionless frequency Ω for linearly stratified fluid of finite or infinite
depth. Moreover, one obtains a interesting result at low frequency which is discussed in
section 2.4 in the case of a circular cylinder in a fluid of finite depth. In sections 2.3,
one uses the affine similitude theory to predict the added mass and damping coefficients as
functions of the dimensionless frequency of a square-shaped cylinder oscillating horizontally
in a linearly stratified fluid.

2.2 Pendulum experiments

The experiments are performed to be compared with the theoretical predictions given by
the affine similitude, in a fluid of finite or infinite depth. In order to oscillate horizontally
the objects in a stratified fluid, they are attached at the lowest end of a pendulum. By
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2. Pendulum oscillating horizontally in a stratified fluid

measuring the time history of the angle of the pendulum after an impulse excitation, it is
possible to measure the added mass and damping coefficients of the body. This assumes
that the interactions between the fluid and the rest of the pendulum are negligible. In this
section, I present the set-up of the pendulum experiments and the data analysis used.

2.2.1 Set-up

The set-up is composed of two different apparatus. The first one is the pendulum itself
and the assembly supporting it. The second apparatus is the wave-breaker, located at the
edges of the tank in order to dissipate the waves emitted by the pendulum when oscillating
below the buoyancy frequency.

Pendulum

The set-up of the pendulum experiments is sketched in figure 2.2. This set-up has been
built by Marc Moulin, from the mechanical workshop of the laboratory. The set-up is very
similar to the one described by Ermayuk [39, 40] and Ermanyuk and Gavrilov [42, 44]. The
pendulum has a cross shape, with a massive cylinder attached at the end of the bottom
vertical arm. The cylinder has a center of gravity named G′ and a massM ′ and is invariant
in the y-direction. It can have different cross section shapes, a square as in figure 2.2 or
a disk. The cross section has a length scale a. Note that, here a = b and p = 1 using
the definition given in section 2.1. The volume of the immersed streamlined part of the
pendulum is less than 1% of the volume of the cylinder. Thus, one can neglect its influence
on the fluid-body interactions. The vertical arm opposite to the mass, at the top, is a screw
where lies a counter-weight of mass m′ = 704 g. Changing the position of the counter-
weight with respect to the axis of rotation allows to tune the characteristic frequency of
the pendulum, defined as ωc. There are also two long horizontal arms. At the end of the
right one, there is a small horizontal circle, covered by a tensioned rubber membrane. A
ball, initially hold by an electric magnet, can be dropped on the membrane to excite the
pendulum. The ball is supposed to bounce on the membrane once. Thus, the membrane is
slightly inclined to eject the ball after the first rebound. As the period of the oscillations
of the pendulum is of several seconds, if the membrane is sufficiently tight, the excitation
of the pendulum is very close to an instantaneous impulse. Attached to the right arm,
one also has a small plateau which can contain one mass m for the calibration procedure,
explained in section 2.2.2. On the left horizontal arm, there is a small annulus which can
be displaced horizontally. This is to adjust very precisely the horizontality of the pendulum
before the beginning of each experiment. The center of mass of the pendulum without the
counter-weight is noted G, its mass M and its moment of inertia is defined as J . Note
that the mass of the pendulum alone, without the object and the counter-weight is 889 g.
All the relevant distances are defined in figure 2.2(a), with respect to the rotation axis.
This axis is shown by a white spot in figure 2.2(a) and by a dashed line in figure 2.2(b).
L and ` are given in Table 2.1 for each cylinder. d is equal to 40 cm while `′ varies in the
range [5.1−21] cm. One notes d′ the vertical distance between the axis of rotation and the
position of the horizontal arms. d′ = 1 cm which is small with respect to d. The different
masses are also shown in figure 2.2(a). When the pendulum oscillates, it makes an angle θ
with respect to the vertical axis z. The coordinates are defined in figure 2.2(a). The origin
of the coordinates, O, is taken at the rotation axis.

The pendulum is surrounded by an assembly which is fixed. The rotation is made
possible by two wedge-shape supports made of very strong steel, attached to the pendulum.
Each wedge is in contact with a horizontal cylinder made of steel, oriented perpendicularly
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Figure 2.2: Schema of the pendulum set-up viewed from the side (a) and from top and
behind (b). The arrows show the different elements of the set-up and the different relevant
lengths are labelled. The coordinates are shown in panel (a).
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to the rib of the wedge and fixed on the assembly. The two lines of contact between the
wedges and the cylinders define the axis of rotation. Using the wedges, the friction between
the pendulum and the assembly is very small and can be neglected. For each experiment,
the height of the assembly is adjusted in order to have the center of gravity of the mass,
named G′, in the middle of the stratification. The fluid has a depth of H. Thus, G′ is
located at z = H/2. The angle θ is measured as a function of time using a laser and a
position sensor. The laser spot is reflected on a small mirror, fixed on the pendulum and
located on the axis of rotation. The mirror is shown in figure 2.2(b) but not the laser
neither the position sensor. As the pendulum oscillates, the mirror deflects the laser by
an angle twice larger as the angle θ. The deviation is measured via an elongated position
sensor, giving a tension proportional to the deviation of the laser spot. The angle θ is
deduced from the tension given by the sensor via a calibration. The deflection of the laser
is recorded at a frequency of 50 Hz during the experiment. Note that in this chapter, one
assumes that the angle θ remains very small and thus the object at the bottom of the
pendulum have almost horizontal motions. The quantity x is defined as the horizontal
distance between the initial position of the center of mass of the object G′ at θ = 0 and
its position at a time t. Thus, one has x = Lθ within the small angle approximation.
Experimentally, we took care to limit the forcing in order to have a maximal horizontal
displacement of 10 mm. For each experiment, the pendulum is excited three times to
increase the statistics of our measurements and to reduce the noise-over-signal ratio. Each
measurement appears to be very reproducible.

Cross-section Section a W ′ ρ M L ` J H
shape [cm] [cm] [g/cm3] [g] [cm] [cm] [g·m2] [cm]

Large Square 2.3.2 14 17 1.08 2730 57.5 40.2 655 95
Small Square 2.3.3 7 16 1.41 1453 54 25.5 215 95
Small Disk 2.4 5 16 1.43 1339 56.7 22.3 173 6− 16
Flattop Hill 2.5 20 16.4 1.21 2833 55.3 39.7 639 16− 20.3

Table 2.1: Parameters of the four cylinders used in this chapter. The shape indicates the
cross section of the cylinder, in the x − z plane. W ′ is its width in the y-direction and
ρ its density. a represents a typical length scale, so the diagonal for the squares and the
diameter for the disk. M is the total mass of the pendulum and the cylinder, without the
counter-weight. L and ` are defined in figure 2.2 while J is the moment of inertia of the
whole pendulum (without the counter-weight). Note that J and ` are carefully measured.
The fluid depth indicates the type of experiments performed with the objects: for the two
square shapes, this depth is much greater than a which means than we are close to an
infinite depth. For the disk shape and the flattop hill, the depth has the same order of
magnitude than a, these are finite depth experiments.

Different experiments have been performed, with different shapes of the body and in a
fluid of finite or infinite depth. Four different cylinders have been used for the experiments,
with different cross section shapes. For each shape, the position of the center of massG′ and
the moment of inertia J have been measured using a method described in the next section.
The object has a width W ′ slightly smaller than W , the width of the tank. Nevertheless,
one can assume that the added mass and damping coefficients do not depend on the y
coordinate. Table 2.1 summarizes the different characteristics of four cylinders used. The
height of the fluid H is given in the last column. When H = 95 cm, this means infinite
depth and the experiments are performed in the large tank. The finite depth experiments
have been performed in the small tank.
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Wave-breakers

To prevent the return of the waves after reflection on the edges of the tank, we built two
different wave-breakers. They are located at the edges of the tank, to attenuate or to trap
the waves before their reflections. Figure 2.3 shows the two types of wave-breakers used.
The first one (see panel (a)) is based on a network of grids of different sizes. The green grid
has a mesh size of 3 cm while the white one has a mesh size of 1 cm. Five layers of grids are
fixed together and placed at the edges of the tank. The space between the grids is around
5 cm. At the bottom of the tank and below the surface, only two layers of grids are present.
Both grids have a mesh size smaller than the wave length of the internal waves emitted

(a)

(b)

Figure 2.3: (a): Picture of the large tank with the wave-breaker built using grids of different
sizes. The object inside is the small square cylinder. (b): Sketch of the anechoic chamber
in the large tank, with the large square cylinder. The vertical dashed black lines in the
middle of the chamber symbolize the wave-breaker visible on panel (a). Examples of four
different rays starting from the four summits of the square are shown. The two red rays
are trapped by the anechoic chamber while the two blue rays may come back and perturb
the pendulum.
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by the pendulum. One expects the waves to be attenuated where they pass throughout.
The second wave-breaker is sketched in figure 2.3(b), in the large tank. One can call it
an internal wave anechoic chamber, by comparison with the set-ups which absorb sound
or electromagnetic waves. Note some similarities with the dissipative structures for sound
and for internal waves. This chamber is built for this particular geometry, where the source
of the waves is in the center of the tank. As the pendulum oscillates with its characteristic
frequency, the waves it emits have one fixed propagation angle. Consequently, it is possible
to compute where the waves, emitted by the four submits of the square, hit the structure
of the wave-breaker. If the waves hit a slope less steep than their propagation direction,
they reflect not in the direction of the pendulum but continue their propagation inside the
structure. They are trapped and never return. Of course, the structure has to be adapted
to the different angles of propagation: this gives smaller structures close to mid-depth.
Waves hitting the edges of the tank approximately at the depth of the pendulum itself
propagate almost horizontally. Thus, it is impossible to trap them. The anechoic chamber
presents two holes at mid-depth of the tank. These holes have been filled by the wave-
breakers built with grids of different sizes, shown in figure 2.3(a). This implies that the
almost horizontal waves are not trapped but may be slightly attenuated. It worths noting
that it is these waves that cause the major part of the problem of wave reflection. The
anechoic chamber is not expected to tackle this problem but can limit drastically the return
of high frequency waves. One can compute the minimal angle of the waves which are not
trapped in the structure and fall in one of the two holes. For a typical buoyancy frequency
of N = 0.8 rad/s, this gives that waves with Ω > 0.2 are expected to be trapped by the
anechoic chamber. Some rays with higher frequencies can fall in one of the two holes at
mid-depth, as shown by the blue ray emitted to the right in figure 2.3(b). These rays can
also come back but one can consider that they are attenuated because their trajectories
are much longer than the ones of almost horizontal rays.

2.2.2 Equation of motions

For each shape tested, one need three different steps to measure the added mass and the
damping coefficients in a stratified fluid of finite or infinite extent. Indeed, it is necessary
to perform initial experiments in the air and in homogeneous fluid before attending to
carry out an experiment in a stratified fluid. This section presents the different equations
of motions of the cylinder in the different fluids.

In the air

Let us first consider that the pendulum is surrounded by air only. It undergoes:

• its own weight, in G: Mg~ez

• the weight of the counter-weight: m′g~ez

• the weight of the calibration mass m if it is present: mg~ez.

We neglect the viscous damping of the air on the pendulum and the friction at the contact
between the pendulum and the assembly. Experimentally, this approximation is relevant
because the oscillations of the pendulum in the air can last more than 30 minutes. The
kinetic momentum theorem in O gives

(J +m′`′2)
d2θ

dt2
+ `Mg sin θ = m′g`′ sin θ +mg(d cos θ + d′ sin θ). (2.21)
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2.2. Pendulum experiments

Using the small angle approximation and x = Lθ, one has(
J +m′`′2

L

)
d2x

dt2
+
`

L
Mgx =

`′

L
m′gx+mg

(
d+

d′

L
x

)
. (2.22)

This equation uses two unknown quantities: J and `. To determine `, one has to perform
a calibration procedure. One considers the pendulum at rest with m = 0. Then, one adds
a mass m in the plateau to modify the equilibrium position of the pendulum xeq. This
position is measured always at rest. Equation (2.22) leads to

`xeq =
m′

M
`′xeq +

m

M
(dL+ d′xeq) ≈ m′`′xeq +mdL

M
, (2.23)

as d′ and xeq are much smaller than d and L, respectively. Plotting the quantity on the
right of equation (2.23) as a function of `xeq leads to the measure of ` using a linear fit.

The only unknown of equation (2.22) is now J , the moment of inertia of the pendulum.
One removes the small mass m on the plateau: the equilibrium position is x = 0. The
pendulum is excited using the ball and then relaxes. This leads to(

J +m′`′2

L

)
d2x

dt2
+
g

L
(`M − `′m′)x = 0, (2.24)

for small angle oscillations. This is the equation of a harmonic oscillator, of characteristic
frequency

ω2
c =

g(`M − `′m′)
J +m′`′2

. (2.25)

By measuring ωc for different positions of the counter-weight `′, one can deduce the moment
of inertia of the pendulum J . The values of ` and J for the three different cylinders
discussed in this chapter are shown in Table 2.1.

In homogeneous water

All the characteristics of the pendulum in the air now are known. One needs to perform
an experiment in homogeneous water in order to measure the attenuation of the pendulum
due to the viscosity of the fluid. The pendulum undergoes the same forces as in the air in
addition to

• the Archimedes force. This modifies the apparent weight of the pendulum: Cg~ez,
where C is a constant depending on the mass M of the pendulum and on the
Archimedes forces

• the viscous damping. One defines λh as the water viscous damping coefficient, pro-

portional to the speed of the pendulum: −λh
dx
dt
~ex. One assumes that this force is

applied only on the cylinder and not on the immersed streamline of the pendulum

• the added mass µ, due to the mass of the fluid that the pendulum has to move to go
through the fluid. Note that in the case of a homogeneous fluid, the added mass is
real and one has mA = µ. Again, one assumes that the added mass is applied only
on the cylinder and negligible for the rest of the pendulum. The force is proportional

to the acceleration of the object: −µd
2x

dt2
~ex.
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2. Pendulum oscillating horizontally in a stratified fluid

This leads to(
J +m′`′2 + µL2

L

)
d2x

dt2
+ λhL

dx
dt

+

(
C − `′m′g

L

)
x = mg

(
d+

d′

L
x

)
. (2.26)

From the air calibration, one knows J but C and µ are unknown. It is possible to compute
the constant C by calculating the Archimedes force for the pendulum. Nevertheless, this
constant is measurable by a similar calibration procedure as in the air. One uses the small
mass m on the plateau, which is responsible for the right-hand-side of equation (2.26).
When the pendulum is at rest, one changes its position of equilibrium by varying the
small mass on the plateau and one measures the new equilibrium position xeq. From
equation (2.26), one has

(C − `′m′g)xeq = mg(dL+ d′xeq). (2.27)

This allows us to measure C precisely, by varying the mass m′, and thus xeq.
Then, the masses on the plateau are removed and the equilibrium position is x = 0.

The pendulum is now ruled by the equation(
J +m′`′2 + µL2

L2

)
d2x

dt2
+ λh

dx
dt

+

(
C − `′m′g

L2

)
x = 0, (2.28)

with J and C known. This equation is the equation of a damped harmonic oscillator whose
the solution is given by

x(t) = x0 exp

(
− t
τ

)
sin(ω0t), (2.29)

where

τ =
2

λh

(
J +m′`′2 + µL2

L2

)
, (2.30)

ω2
0 =

C − `′m′g
J +m′`′2 + µL2

− λ2
hL

4

4(J +m′`′2 + µL2)2
, (2.31)

≈ C − `′m′g
J +m′`′2 + µL2

≡ ω2
c , (2.32)

if λ is sufficiently small. Equation (2.29) is given for the impulse initial conditions x(0) = 0
and dx/dt(0) = ω0x0.

In density stratified water

This is the last step of the measurements. The tank is now filled by a linearly stratified
fluid with a constant buoyancy frequency N , using the double bucket method described in
section 1.3.2. Note that the tank is filled from below, with the pendulum already present
in the tank and fixed at x = 0 during all the filling procedure to avoid mixing.

The pendulum undergoes the same forces as in homogeneous water except that one has
to take into account the density stratification for the Archimedes force. Moreover, as the
pendulum oscillates at its characteristic frequency, it can emit waves if ωc is smaller thanN .
One introduces the dimensionless characteristic frequency of the pendulum, Ωc = ωc/N .
Thus, internal waves are emitted when Ωc < 1. The wave emission leads in a loss of
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2.2. Pendulum experiments

energy due to wave, which damps the pendulum. Thus, one can define an other damping
coefficient λw and the total damping coefficient is given by

λ = λh + λw, (2.33)

where λh is the damping coefficient measured in homogeneous water. The equation ruling
the horizontal displacement of the pendulum x is(

J +m′`′2 + µL2

L2

)
d2x

dt2
+ (λh + λw)

dx
dt

+

(
C − `′m′g

L2

)
x = 0. (2.34)

Once again, C can be obtained using the calibration procedure already explained for air and
homogeneous water. It uses the small mass m on the plateau and it consists in measuring
the equilibrium position of the pendulum xeq.

The next section addresses how to measure precisely µ and λ for the cases of homoge-
nous and stratified fluids, using the impulse response function analysis.

2.2.3 Impulse response function analysis

In homogeneous water

Figure 2.4 shows a typical signal recorded in a homogeneous fluid, using the large square
cylinder, in the large tank. Before t = 0 s, the pendulum is at rest x = 0. At t = 0 s, the
ball hits the membrane and the pendulum starts to oscillate until it comes back to rest,
due to viscous attenuation. One wants to use this signal to measure the values of µ and λh.

It is possible to fit the curve obtained in figure 2.4 by the equation (2.29), for the pen-
dulum motion in a homogeneous fluid. This gives access to µ and λh, at the characteristic
frequency of the pendulum ωc. Nevertheless, one can also work on the signal in the fre-
quency space, after a Fourier transform. This uses the impulse response function analysis,
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Figure 2.4: Typical oscillations x as a function of time t. This signal has been recorded in
homogeneous water for the large square-shaped cylinder and in the large tank.
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2. Pendulum oscillating horizontally in a stratified fluid

already described by Ermanyuk [39, 40] and by Ermanyuk and Gavrilov [42, 44]. The idea
is to examine the response of equation (2.28) to a forcing proportional to exp(iωt). The
response function is defined by

R(ω) =

∫ ∞
0

x(t′) exp(iωt′)dt′. (2.35)

Using equations (2.28) and (2.35), one has

R(ω) =
1

(C − `′m′g) + iL2λhω − (J +m′`′2 + µL2)ω2
. (2.36)

R(ω) is a complex quantity and one notes |R(ω)| its modulus and φ(ω) its phase. The real
and imaginary part of R are respectively(

(C − `′m′g)− (J +m′`′2 + µL2)ω2
)
|R| cosφ− L2λhω|R| sinφ = 1, (2.37)(

(C − `′m′g)− (J +m′`′2 + µL2)ω2
)
|R| sinφ+ L2λhω|R| cosφ = 0. (2.38)

Thus, this leads to

µ =
(C − `′m′g)

ω2L2

(
1− |R(0)|
|R(ω)| cosφ(ω)

)
− J +m′`′2

L2
, (2.39)

λh =
(C − `′m′g)

L2ω

|R(0)|
|R(ω)| sinφ(ω), (2.40)

|R(0)| stands for the modulus of the impulse response function for ω = 0 rad/s. As
the system is linear, the normalization of |R(ω)| by |R(0)| allows us to use this Fourier
transform approach at any value of the impulse excitation. One defines the dimensionless
added mass coefficient as

Cµ =
µ

ρ0V
, (2.41)

where V is the volume of the object and ρ0 the density of the fluid. Note that one can
transform λh in a dimensionless quantity Cλ but only in the case of a stratified fluid.

Figure 2.5 shows Cµ and λh for the signal plotted in figure 2.4. One can note that
there is a plateau around the characteristic frequency of the pendulum ωc (marked by the
two vertical dashed lines) for both panels of figure 2.5. In a homogeneous fluid, the added
mass coefficient is supposed to be constant while the variations of the damping coefficient
should be small. The impulse response function technique allows us to visualize the added
mass and damping coefficients in a range of frequencies located around the characteristic
frequency of the pendulum. Thus, this technique is better than the simple fit of the signal,
using equation (2.29). Indeed, the fit gives the black filled circles, shown in figure 2.5.
They are consistent with the impulse response function analysis but they give only access
to one value of the coefficients for the characteristic frequency. Consequently, it is more
interesting to perform the impulse response function analysis in order to get the added mass
and damping coefficients in a range of frequencies. By changing the characteristic frequency
of the pendulum using the counter-weight, one can scan a large range of frequencies and
thus, by combining the different experiments, get full curves for the coefficients. Note that
in an ideal case, the plateau around ωc should be of infinite length. This is not the case
experimentally because of the noise.

48



2.2. Pendulum experiments

0

0.5

1

1.5

2

2.5

3

C
µ

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

ω [ rad/s]

λ
h
[k
g
/
s]

(a)

(b)

Figure 2.5: Added mass coefficient Cµ (a) and damping coefficient λh (b) as a function of
ω obtained using the signal shown in figure 2.4. The two vertical dashed lines show the
characteristic frequency of the pendulum ωc. The horizontal dashed dotted line in panel
(a) represents the theoretical prediction for the added mass in homogeneous water for the
square shape: Cµ = 1.19. The two black filled circles show the values found using a fit of
the signal in figure 2.4 by the formula given in equation (2.29).

In a stratified fluid

In a stratified fluid, one can perform exactly the same impulse response function analysis.
This leads to µ and λ = λh + λw as in equations (2.39) and (2.40). In order to get the
damping coefficient due to the wave emission λw, it is necessary to subtract the damping
due to the viscosity of the water, λh, measured in homogeneous water. For a stratified
fluid, one can define

Cµ =
µ

ρ0V
, (2.42)

Cλ =
λw

ρ0V N
, (2.43)

Pw =
1

2
CλΩ2, (2.44)

where V is the volume of the object, N the buoyancy frequency of the fluid and ρ0 the
density of the fluid at the depth of the center of mass of the object G′. Pw is the radiated
wave power coefficient, depending on Cλ and Ω, the dimensionless pulsation of the waves.
In section 2.1, the coefficients have been made dimensionless by dividing by S, the section of
the cylinder, assuming a bi-dimensional object. In our case, the object is three-dimensional
but invariant in one direction. Thus the definitions are equivalent.

Note that in the case of a stratified fluid, Cµ and Cλ depend strongly on the frequency of
the pendulum. Thus, at the very beginning of the experiment, just after the ball has hit the
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2. Pendulum oscillating horizontally in a stratified fluid
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Figure 2.6: Oscillations x as a function of time t. This signal has been recorded in a
stratified fluid for the large square-shaped cylinder in the large tank. For this experiment,
Ωc = 0.96. Note the important attenuation during the first oscillation. The signal after
t ≈ 50 s is perturbed by the waves going back to the pendulum after reflecting on the edges
of the tank. This shows that the wave-breaker based on grids is not totally efficient.

membrane, all the frequencies are present in the signal, as the forcing can be approximated
by a Dirac peak in time. The pendulum emits waves at different frequencies, leading to
a very high attenuation in amplitude during the first oscillation. This can be seen in
figure 2.6, showing the time history of the horizontal displacement x, for an experiment
performed with the large square cylinder in the large tank, linearly stratified. The value
of Ωc for this experiment is slightly less than 1. Thus, the pendulum emits waves and the
oscillations are more quickly attenuated than in figure 2.4.

Figure 2.7 shows Cµ and λ for the signal shown in figure 2.6, obtained by the impulse
response function analysis. With this analysis, there is still a range of frequencies, located
around Ωc = ωc/N , where it is possible to visualize the added mass and damping coeffi-
cients. Nevertheless, as the coefficients varies strongly with the frequency, one does not
have a plateau any more. Moreover, the impulse response function analysis requires that
the system is causal. Indeed, once the waves are emitted, they must not come back to the
pendulum. Nevertheless, as the tank is limited in space, some waves are reflected by the
edges of the tank and come back to the pendulum. Thus, they act as a source of oscillations
and perturb the signal recorded. One can see such wave returns after t ≈ 50 s in figure 2.6.
Consequently, the analysis performed does not work correctly at low frequencies because
this creates low frequency noise. This is visible in both panels of figure 2.7 where the signal
is very distorted for Ω smaller than 1. However, the signal for Ω > 1 remains clear. Indeed,
in this range of frequencies, no wave is emitted and the causality is well-verified. One can
note that the dissipation λ is much more important for Ω < 1 than for Ω > 1. For Ω > 1,
the dissipation is around λh because no wave is emitted by the pendulum. This shows that
the dissipation due to wave emission is much more important than the viscous dissipation.

To get the full signal of Cµ and Cλ as a function of the frequency, we combine the
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Figure 2.7: Added mass coefficient Cµ (a) and damping coefficient λ (b) as function of
Ω = ω/N obtained using the signal shown in figure 2.6. The two vertical dashed lines show
the dimensionless characteristic frequency of the pendulum Ωc.

different measurements performed at different positions of the counter-weight, so at differ-
ent ωc. Each measurement is weighted by a weight w, centered around the characteristic
frequency ωc of the pendulum. The weight w is defined as

w(ω) =
w0

w0 + (ω − ωc)β
, (2.45)

where w0 and p are arbitrary values. w0 controls the size of the plateau around ωc and β acts
on the edges of the plateau. Figure 2.8 shows the weight w centered around ωc = 1 rad/s,
for w0 = 10−6 and β = 8. There is a range around ωc where the weight is maximal.
Then, away from this central region, w vanishes rapidly. Using this kind of weights,
one can give more importance to the frequency range where we have reliable information
using the impulse response function analysis. Indeed, the plateau obtained using the
analysis coincides with the frequency range having the maximal weight. Thus, the different
experiments are combined using the most reliable region of each measurement.

Moreover, we applied a median filter to the Cµ and λ spectra in order to smooth
slightly the curves. We used the medfilt1.m Matlab function. The median filter has been
performed on intervals of frequency ω of 0.05 rad/s.

In the next sections, I present the results in terms of added mass and damping coef-
ficients for the three different objects. Sections 2.3.2 and 2.3.3 discuss about the square-
shaped cylinder, large and small, in the large tank. This can be viewed as an ocean of
infinite depth. Section 2.4 concerns the disk-shaped cylinder in the small tank and ad-
dresses the finite-depth effects. Finally, section 2.5 deals with a topography lacking of
tidal conversion at finite depth and for a given frequency.
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Figure 2.8: Example of a weight w as a function of the frequency ω. The weight is centered
around ωc = 1 rad/s. It corresponds to equation (2.45) with w0 = 10−6 and β = 8.

2.3 Square cylinder: infinite depth

This section presents the experiments performed in a fluid of infinite depth with a pendulum
having a square-shaped cross section. We used two square cylinders: one large with the
side of the square equal to 10 cm and one smaller with a side of 5 cm long. As H = 95 cm,
we are in a good approximation in a fluid of infinite depth.

2.3.1 Affine similitude prediction

For a diamond-shaped cylinder, the added mass in homogeneous fluid of infinite depth is
given by

F∗(p) =
Γ(1.5− 1/π arctan(1/p))Γ(1/π arctan(1/p))

Γ(0.5 + 1/π arctan(1/p))Γ(1− 1/π arctan(1/p))
− 1, (2.46)

following Korotkin [83]. Γ is the Euler function and p is equal to the ratio between the
vertical and the horizontal diagonals of the diamond. For the squares in our set-up, p = 1
which leads to Cµ = F∗(p = 1) ≈ 1.19.

Using the affine similitude for a stratified fluid, p is changed by a factor α. Plugging
this formula into equations (2.5) and (2.6) and using the complex Euler function for Ω < 1,
one can calculate the solution for the square-shaped cylinder in the uniformly stratified
fluid of infinite extent. The theoretical dependencies of the added mass, damping and
radiated power coefficients on the frequency of oscillations are shown using the black solid
line in figures 2.9 and 2.10 together with the experimental points. For Ω > 1, the added
mass coefficient describes a curve, asymptotic for large Ω to the added mass value in the
homogeneous fluid. The damping and radiated wave power coefficients vanish. For Ω < 1,
the solution predicts the drop of all the coefficients at the frequency corresponding to the
transition from supercritical to subcritical case, at Ω =

√
2/2. This frequency corresponds

52



2.3. Square cylinder: infinite depth

to an angle of wave propagation θ equal to 45◦. Thus, the waves emitted at this frequency
have exactly the same angle of propagation than the slope of the sides of the square and this
marks the transition between the sub- and super-critical cases. The notion of sub-/super-
critical obstacles is commonly used in the studies on tidal conversion to distinguish the
obstacles having the slopes smaller/greater than the slope of the wave beam with respect
to the horizontal. The extreme cases of the sub-/super-critical obstacles correspond to flat
geometry [7] and infinitely thin vertical barrier [92].

The next sections compare the prediction with the experiments performed with the
large and small square-shaped cylinders.

2.3.2 Large Square

This section discusses the experiments performed in the large tank with the large square
cylinder. Its characteristic parameters obtained in the air are presented in Table 2.1. In
homogeneous water, we have found that the added mass coefficient Cµ is equal to 1.17±0.1,
which is less than 10% of error. This is consistent with the value found from equation (2.46).
One can also expect that the viscous damping coefficient λh is proportional to the square
root of the frequency [40]. A linear fit of λ2

h gives λh = 0.2
√
ω, where λh is in kg/s and ω

in rad/s.
We performed two series of experiments with two different wave-breakers. The first

series have been done with the wave-breaker composed of different grids, placed at the
edges of the tank. The second one has been carried out using the anechoic chamber. The
results are shown for the two series of experiments, using figure 2.9.

Figures 2.9(a), (b) and (c) show the damping, radiated power and added mass dimen-
sionless coefficients as a function of the dimensionless frequency Ω, for the first series of
experiments while figure 2.9(d), (e) and (f) show the same measured coefficients for the
second series. For the first (respectively second) series, the buoyancy frequency N is equal
to 0.827 rad/s (resp. 0.87 rad/s). The theoretical prediction is the solid black line. The
elliptic part of the coefficients, for Ω > 1, are in a good agreement with the theoretical
predictions. Indeed, for panels (a) and (d), the damping coefficients are both very close
to zero. For panels (c) and (f), the added mass coefficients follow very precisely the black
line. For panels (b) and (e), the radiated power should be null for Ω > 1. This is not
totally the case but the defects of the damping coefficients are amplified at high Ω because
of the definition of Pw. Thus, the slightly negative damping coefficients observed in panels
(a) and (d) give a radiated power not totally null. Nevertheless, the agreement is good.

For the hyperbolic part where Ω < 1, the agreement is not completely satisfactory. For
panel (a), the black circles follow approximately the theoretical prediction for Ω greater
than 0.5. For lower frequencies, the damping coefficient drops down significantly. This is
not visible in panel (b), for the radiated power, because the defects of Cλ are eliminated at
low frequencies, due to its definition. Nevertheless, the points are relatively dispersed and
it is impossible to visualize clearly the singularity for Ω =

√
2/2. This dispersion is due

to wave reflections which allow the waves to come back and disrupt the pendulum when
it is relaxing. Thus, the temporal signal recorded is deformed and the impulse response
function analysis does not lead to correct results. The perturbations of the signal are
visible in figure 2.6 and this creates sharp peaks in the spectra of figure 2.7. The signal
is more distorted at small frequencies because waves at low frequencies propagate almost
horizontally. Thus, these waves have the shortest trajectories before returning to the
pendulum. This is why the damping coefficient does not follow the theoretical prediction
below Ω = 0.5 in figure 2.9(a). For frequencies in between 0.5 and 1, the median filter and
the combination of the different experiments using the weight w smooth the signal better.
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Figure 2.9: Damping (first column), radiated power (second column) and added mass (third
column) dimensionless coefficients as a function of the dimensionless frequency Ω, for the
large square-shaped cylinder, in infinite depth. The results for the series of experiments
performed with the grid network as wave-breaker are in the first line (panels (a), (b) and
(c)) while the results for the series carried out with the anechoic chamber as wave-breaker
are in the second line (panels (d), (e) and (f)). On the six panels, the theoretical prediction
(see equation (2.46)) is plotted as a black line. The dashed lines on panels (c) and (f) show
the added mass coefficient for a homogeneous fluid: Cµ = 1.19.

Thus, Cλ follows approximately the theoretical prediction but the singularity is not visible.
Nevertheless, with the anechoic chamber as wave-breaker, the singularity is slightly visible
in panels (d) and (e). However, in panel (d), below Ω = 0.5, the signal remains away
from the theoretical prediction of Cλ, as in panel (a). For the added mass coefficient in
panels (c) and (f), the experimental points are totally out of the theoretical prediction for
Ω < 1. This is also due to the wave reflections but added mass is more affected, even for
dimensionless frequencies in between 0.5 and 1.

To conclude this section, the experimental results are in a good agreement with the
prediction for the elliptic part of the frequencies. This shows that the analysis technique
is efficient to describe continuously the coefficients as a function of the dimensionless fre-
quency Ω. This range of frequencies is not affected by the wave reflections because the
pendulum does not emit waves in this part of the spectrum. For the hyperbolic part, the
signal can not be used below Ω = 0.5. In the range of dimensionless frequencies between
0.5 and 1, the experimental results follow reasonably the theoretical prediction. However,
in the first series of experiments, the singularity in Ω =

√
2/2 is not visible while it is

distinguishable in the second series. Thus, it seems that the noise caused by the wave
returning is less intense in the second series than in the first one. The anechoic chamber
is more efficient to prevent wave returnings than the one based on grids of different sizes.
Nevertheless, both wave-breakers are not completely efficient and the signal is distorted
below Ω = 0.5. For the anechoic chamber, one expects some wave reflection problems only
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below Ω = 0.2, which is not the case.
In the next section, we reduce the size of the square edges to a = 5 cm. This causes

a decrease of the wave length of the waves emitted by the pendulum and increases their
viscous attenuation. Thus, one should have less problems due to wave reflections.

2.3.3 Small square

In this section, we show the results obtained for the small square cylinder in the large tank.
The characteristic parameters of this object are shown in Table 2.1. We used the wave-
breaker based on grid of different sizes only. Indeed, the second wave-breaker, the anechoic
chamber, was no built at the time when the experiment has been performed. Nevertheless,
as the size of the object is 2 times smaller than the one of the large object, the wave length
of the internal wave is decreased by a factor of 2 and the viscous attenuation is multiplied
by 23 = 8, according to equation (1.34). Thus, the wave reflections are expected to perturb
the signal only weakly or for low frequencies in the spectrum. For this series of experiments,
the buoyancy frequency is equal to N = 0.826 rad/s. In homogeneous water, the average
added mass Cµ has been found equal to 1.32 ± 0.15, which is higher than the expected
value of 1.19, predicted by equation (2.46). The damping coefficient λh is proportional to
the square root of the frequency with λh = 0.1

√
ω.

Figure 2.10 shows the damping, radiated power and added mass dimensionless coeffi-
cients obtained. As for the large square experiments, the elliptic part of the spectra is in
a good agreement with the theoretical prediction for panels (a) and (b). For panel (c),
the measured added mass coefficient seems slightly shifted above the prediction. For the
hyperbolic part of the spectrum, the measured damping coefficient follows the black line
until Ω = 0.7. Below this value, it escapes slightly before being completely out of the
prediction for Ω < 0.4. Nevertheless, one can distinguish a small jump at the singularity
in Ω =

√
2/2. The radiated power in panel (b) shows a similar pattern except that the

defects of Cλ are eliminated at low frequencies. As for the large square experiments, the
added mass coefficient does not follow the theoretical prediction.

Thus, using a smaller scale object, it is possible to reduce the wave reflection problem
and to obtain a better signal-over-noise ratio. Nevertheless, the small size of the object
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Figure 2.10: Damping (a), radiated power (b) and added mass (c) dimensionless coefficients
as a function of the dimensionless frequency Ω, for the small square cylinder, in infinite
depth. On the three panels, the theoretical prediction (see equation (2.46)) is plotted as a
black line. The dashed line on panel (c) shows the added mass coefficient for a homogeneous
fluid: Cµ = 1.19.
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2. Pendulum oscillating horizontally in a stratified fluid

presents two main defects. The first one is that the added mass is not fully recovered
for Ω > 1. Indeed, the added mass coefficient appears shifted vertically. This can be
due to the viscous boundary layers, which increase the effective volume of the cylinder.
A typical thickness of the boundary layers is given by δ =

√
ν/ω. For ω = 1 rad/s,

this gives δ = 1 mm. Thus, the boundary layers increase the volume of the object by a
factor of 10% for the small square cylinder and by a factor of 5% for the large one. As µ
has to be normalized by the volume of the cylinder to get Cµ, this could lead to higher
values of the added mass coefficient if one takes into account the volume of the object
only and not the volume of the object with its viscous boundary layers. This boundary
layer effect is supposed to be more important for the small cylinder, as the variation of
volume is more important for this cylinder. The second defect is that the small details of
the theoretical prediction, typically the singularity in Ω =

√
2/2 are difficult to see with

a small scale pendulum. With this present set-up, one has to find a compromise between
a large object, which undergoes wave reflection and a distorted signal, and a small object
where the viscous boundary layers change the added mass and where the small details of
the coefficients are smoothed.

In this section, I have shown that the affine similitude predictions for a square-shaped
cylinder in a fluid of infinite extent are in a relatively good agreement with the experiments.
Three series of experiments have been performed: two with the large square cylinder and
the two different wave-breakers and one with the small square cylinder with the gridded
wave-breaker. The main limitation to these experiments is the perturbations caused by the
reflections of the waves emitted. Thus, it is difficult to obtain a reliable signal to observe
the singularity at Ω =

√
2/2 of the prediction. Moreover, it is impossible to obtain the

damping coefficient at low frequency, where this quantity is relevant for tidal forcing. In
the next section, we address the problem of a circular-shaped cylinder at finite depth.

2.4 Small disk cylinder: finite depth effects

In this section, I discuss the finite depth effects on added mass and damping coefficients for
a circular-shaped cylinder oscillating horizontally in a stratified fluid. As it has a circular
cross section, the diameter is given by a = b and p = 1. Ermanyuk [39] has already
investigated these coefficients in the approximation of infinite depth (H/a = 7.57). Then,
Ermanyuk and Gavrilov [42] have also considered these coefficients for the same body but
in a fluid of finite depth, with H/a equals to 4.32, 3.24, 2.19 and 1.65. In this section,
four series of experiments performed at finite depth are discussed. The body used is also a
cylinder but with a slightly larger diameter a = 5 cm instead of a = 3.7 cm [39, 42]. The
ratio H/a for our experiments is equal to 3.2, 2, 1.5 and 1.2. Thus, we complete the series
performed by Ermanyuk and Gavrilov [42]. The two first series at H = 3.2 and 2 have to
be compared with the series already obtained in [42]. Then, the two last series concern
low values of H/a, never carried out before.

The characteristics of the cylinder used are given in Table 2.1. For the four series, the
pendulum has been calibrated only once in the air, in order to obtain the position of G
and J . These experiments have been carried out in two small tanks, connected between
each other. Thus, the length of the tank is 160 cm. For experiments in homogeneous or
stratified fluid, a rigid lid has been placed at the surface, to avoid that the surface modes
appear in the spectrum. Indeed, as the depth is small, the frequency of the surface wave
modes can be close to the characteristic frequency of the pendulum ωc. Thus, it is possible
to have a energy transfer from the pendulum to the surface wave modes. The rigid lid
on the surface avoids surface wave propagation. Moreover, small wave-breakers have been
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2.4. Small disk cylinder: finite depth effects

made using the grids of different sizes. In the case of finite depth, almost all the waves
reflect a large number of times at the bottom and at the surface before reaching the edges
of the tank and coming back to the pendulum. Thus, their trajectories can be long and
the wave reflection problem is expected to be small.

It is necessary to calibrate the pendulum in homogeneous water for the four different
depths, as the viscous dissipation changes with H. Table 2.2 summarizes the different
parameters for the four series. The measurements of Cµ and λh are detailed in the next
section.

Series H [cm] H/a N [rad/s] Cµ λh/
√
ω [kg/s3/2] Symbols (filled)

1 16 3.2 1.24 1.39 0.07 Green diamonds
2 10 2 1.41 1.75 0.10 Blue pentagrams
3 7.5 1.5 1.34 2.46 0.17 Red squares
4 6 1.2 1.4 5.12 0.67 Black circles

Table 2.2: Parameters and measured quantities for the four series of experiments at finite
depth and using the small disk cylinder. The symbols mentioned in the last column are
used in figures 2.11, 2.12 and 2.13.

2.4.1 Homogeneous fluid prediction

The solution for the added mass coefficient of an elliptic cylinder submerged at mid-depth
of a stripe of homogeneous fluid has been obtained by Clarke [27]
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In our case, the cross section of the cylinder is not elliptic but is perfectly circular. Thus, one
has p = 1. Using equations (2.47) and (2.48), it is thus possible to compute the added mass
coefficients for different depths H. Table 2.3 gives the measured and predicted added mass
coefficients for our four series of experiments and the five ones available in Ermanyuk [39]
and in Ermanyuk and Gavrilov [42]. First, one can see that all the experiments are in a
good agreement. Indeed, the added mass follows the same evolution when H/a decreases.
Moreover, the values obtained for H/a = 3.24 in [42] and H/a = 3 with our set-up are
close. Secondly, the prediction of Clarke [27] is very good for high values of H/a and
remains of the same order of magnitude when H/a decreases. Note that the calculations
of Sturova [142] lead to added mass values close to the ones predicted by equations (2.47)
and (2.48).

Using affine similitude, it may also be possible to use the equations (2.47) and (2.48)
to predict the added mass and damping coefficients for the stratified fluid, as for the
square shape, in section 2.3. Nevertheless, the added mass in a homogeneous fluid given
by equations (2.47) and (2.48) is not determined completely analytically. Thus, it is not
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2. Pendulum oscillating horizontally in a stratified fluid

possible to use the affine similitude theory, contrary to the cases of vertical flat plate or
square-shaped cylinder. Note that a prediction for damping coefficients has been given by
Gorodtsov and Teodorovich [61] but it works only for high values of H/a, as shown by
Ermanyuk and Gavrilov [42].

H/a Reported in Cµ measured Cµ predicted [27]
7.57 [39] 1.05 1.029
4.32 [42] 1.12 1.093
3.24 [42] 1.24 1.173
3.2 present section 1.39 1.178
2.19 [42] 1.54 1.438

2 present section 1.75 1.558
1.65 [42] 2.25 1.999
1.5 present section 2.46 2.418
1.2 present section 5.12 5.825

Table 2.3: Measured (third column) and predicted (fourth column) added mass coefficients
Cµ in a homogeneous fluid for the different H/a ratios shown in the first column. The
second column shows where the data are extracted from: references [39, 42] or present
section.
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Figure 2.11: Damping coefficient λh as a function of frequency ω for the four series of
experiments performed with our pendulum set-up in log-log scale. H/a is equal to 1.2
(black circles), 1.5 (red squares), 2 (blue pentagrams) and 3.2 (green diamonds). The solid
black line shows the power law λh ∝

√
ω.

For the damping coefficient λh in homogeneous fluid, one expect that λh ∝
√
ω as

in [42]. Figure 2.11 shows the damping coefficients for the four series of experiments

58



2.4. Small disk cylinder: finite depth effects

performed with our pendulum set-up as a function of the frequency ω, in log-log scales.
One can see that for frequencies higher than ω = 0.5 rad/s, the damping coefficient λh
depends reasonably on the square root of the frequency ω. Below ω = 0.5 rad/s, the signal
is noisy except for the smallest value of H/a (black filled circles).

2.4.2 Stratified fluid

Figure 2.12 shows the added mass coefficients for the four series of experiments. The value
of H/a is equal to 1.2 for the black circles, 1.5 for the red squares, 2 for the blue pentagrams
and 3.2 for the green diamonds, as indicated in Table 2.2. The added mass prediction [74]
for a fluid of infinite depth is represented by the solid black line. Note that for Ω < 1,
the added mass coefficient vanishes. This is a special feature of the circular cylinder. In
figure 2.12, one can see that the different added mass coefficients reach some asymptotic
values for Ω > 1, except for the smallest H/a ratio (black circles). Theses asymptotic
values are close to the added mass values measured in homogeneous water, indicated by
dashed lines. This is consistent with the prediction that, at high frequencies, the added
mass coefficients are not different from the homogeneous case. One can note that as H/a
decreases, the added mass coefficient increases. Thus, the deeper, the smaller the added
mass, at any frequency. This is consistent with the measurements made by Ermanyuk and
Gavrilov [42]. At low frequency, one can guess that the results are more perturbed. This
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Figure 2.12: Added mass coefficient Cµ as a function of the dimensionless frequency Ω
for the four different series of experiments at different depths. H/a is equal to 1.2 (black
circles), 1.5 (red squares), 2 (blue pentagrams) and 3.2 (green diamonds). The horizontal
dashed lines correspond to the added mass measured in homogeneous water for the different
depths. The colors are the same than the ones for the symbols. The solid black line
corresponds to the theoretical prediction at infinite depth made by Hurley [74] and verified
experimentally by Ermanyuk [39].
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2. Pendulum oscillating horizontally in a stratified fluid

is due to wave reflections. Note that the range of frequency where the signal is noisy is
reduced when one decreases the depth. Indeed, a small depth imposes to almost all waves
to reflect a given number of times at the top and bottom of the tank before reaching the
edges of the tank. This is more noticeable in figure 2.13.

Figure 2.13 shows the damping and radiated power coefficients for the four series of
experiments. The symbols used are the same as in figure 2.12 and are described in Table 2.2.
The prediction for a fluid of infinite depth [74] is plotted as solid black line, on both panels.
For the elliptic part, one can see that no wave is emitted as Cλ vanishes, for the four series
of experiments. For the hyperbolic part, the symbols are further and further from the
infinite depth prediction as one decreases the depth of the fluid H. This can be nicely
seen in figure 2.13(b). In panel (a), one can see the signatures of wave reflections at low
frequency. The results are distorted before Ω = 0.3 for the largest depth (green diamonds),
before Ω ≈ 0.2 for the two intermediate depths (blue pentagrams and red squares) while
no distortion of the signal is visible for the smallest depth (black circles). This shows that
the values of Cλ at Ω = 0 is greater than 1 for very small aspect ratios H/a in qualitative
agreement with predictions for the vertical ridge by Llewellyn Smith and Young [92].

The low-frequency limit of the damping coefficient is a measure of efficiency of tidal
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Figure 2.13: Damping coefficient Cλ (a) and radiated power Pw (b) as a function of the
dimensionless frequency Ω for the four different series of experiments at different depths.
As in figure 2.12, H/a is equal to 1.2 (black circles), 1.5 (red squares), 2 (blue pentagrams)
and 3.2 (green diamonds). The solid black line corresponds to the theoretical prediction
at infinite depth made by Hurley [74] and verified experimentally by Ermanyuk [39].
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2.5. Flattop hill: topography lacking of tidal conversion

conversion in terms of the scaling adopted in [92]. For example, equation (2.17) predicts
that, for a vertical flat plate in a fluid of finite depth, as H/a becomes smaller and smaller,
the dimensionless damping coefficient takes values higher than 1. In figure 2.13(a), the
black circles, corresponding to the smallest ratio H/a and having a good reliability at low
frequencies, take values higher than 1 for low frequencies, below Ω < 0.2. The prediction of
equation (2.17) for suchH/a gives Cλ(Ω→ 0) ≈ 1.58. For the black circles in figure 2.13(a),
it seems that Cλ(Ω→ 0) ≈ 1.4. Nevertheless, this predicted value is for a vertical flat plate
and not a cylinder. Thus, it is difficult to compare the measured value with the prediction,
even if both are higher than 1. It it encouraging that a very small aspect ratio H/a, one
finds Cλ(Ω → 0) > 1, as expected by Llewellyn Smith and Young [92]. This is of crucial
importance for tidal conversion.

2.5 Flattop hill: topography lacking of tidal conversion

In this section, we present experiments performed with an object having a specific shape.
This object has been designed thanks to Leo Maas in order to exhibit that, at finite
depth and for a given frequency, no tidal conversion is observed. Topographies lacking
of tidal conversion have already been exhibited theoretically by Maas [96] and a series of
experiments have been reported recently showing such lack of tidal conversion [99]. By
measuring the radiated wave power, we can expect to find a significant decay of this power
at a given frequency, depending on the total height of the fluid.

2.5.1 The shape of the object and theoretical prediction

Figure 2.14 shows the shape of the object in the x− z plane. Its height is equal to 8 cm
and it has a horizontal length of 20 cm. The object is invariant in the y-direction. As
the shape is symmetric with respect to the x and z axes, it is composed of one specific
curve shown in figure 2.14(b). The curve has a flat part for small x and then a decay
with an inflexion point. The point is marked using a blue circle in figure 2.14(b). At
this inflexion point, the slope has an angle of 36.6◦ which corresponds to a dimensionless
frequency of Ωs = 0.596 for internal waves. This slope is shown by a blue dashed line in
figure 2.14(b). The inflexion point has, by definition, the steepest slope of the curve.

−12 −8 −4 0 4 8 12
−8

−4

0

4

8

x [ cm]

z
[c
m
]

0 2 4 6 8 10 12

0

2

4

x [ cm]

z
[c
m
]

(a) (b)

Figure 2.14: (a): Shape of the object in the x − z plane. The object is symmetric with
respect to the x and z axes. (b): Zoom on the upper right quarter of the object. The
inflexion point is marked by the blue point. The slope of the shape at this point is shown
by the dashed blue line.
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2. Pendulum oscillating horizontally in a stratified fluid

According to Maas [96], it is possible to predict the frequency where the topography does
not emit internal waves. This frequency can be found by connecting two inflexions point
by internal wave rays reflecting on the surface or at the bottom of the tank. This connects
the frequency lacking of tidal conversion Ω` with the depth of the fluid H. Figure 2.15
shows the height of the fluid as a function of the frequency Ω`. This frequency is much
smaller than 1 for small depth. When H → ∞, the dimensionless frequency Ω` shifts
towards 1, i.e. the limit of the wave emission frequency range. Note that this is valid only
for frequency higher than Ωs, i.e. when the shape is subcritical. Indeed, one can easily
understand that for Ω smaller than Ωs, the internal wave rays should go through the object
to connect the two inflexion points. Thus, we should not observe a lack of wave emission
for very small depth, for H below 13 cm. Note that the height of the object is 8 cm.
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Figure 2.15: Correspondence between the height of the fluid H and the frequency where
the topography lacks of tidal conversion Ω`. The vertical dashed line shows the frequency
Ωs = 0.596. The two symbols represent the two different fluid depths tested during this
PhD and reported in the remainder of this section.

In the next sections, I discussed two series of experiments performed at H = 20.3 cm
and 16 cm. These experiments are shown by the red square and the blue diamond in
figure 2.15, respectively. The prediction gives Ω` equal to 0.8 and 0.7 for the two depths.
Before performing these two series of experiments, the pendulum with this shape has been
calibrated in the air. The main characteristics are gathered in Table 2.1.

2.5.2 Experimental results

In homogeneous fluid

Experiments have been first carried out in a homogeneous fluid of depth H equal to 20.3
and 16 cm. The added mass and viscous damping coefficients have been measured using the
impulse response function analysis. As expected, the added mass has been found constant
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2.5. Flattop hill: topography lacking of tidal conversion

for all frequencies and the viscous damping coefficient depends on the square root of the
frequency. The results are shown in Table 2.4.

Series H [cm] Cµ λh/
√
ω [kg/s3/2] Symbols (filled)

1 20.3 0.92 0.20 Red squares
2 16 1.16 0.28 Blue diamonds

Table 2.4: Parameters and measured quantities for the two series of experiments at finite
depth and using the cylinder with the flattop hill cross section. The symbols mentioned in
the last column are used in figures 2.16 and 2.17.

In stratified fluid

Figure 2.16 shows the wave damping and radiated wave power coefficients, for the two
series of experiments. The red squares represent the experiments performed atH = 20.3 cm
while the blue diamonds show the ones carried out at H = 16 cm. One can see a significant
minimum in this coefficient, at Ω = 0.8 for H = 20.3 cm (red squares) and at Ω = 0.7 for
H = 16 cm (blue diamonds). Thus, this is fully consistent with the theoretical prediction,
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Figure 2.16: Damping coefficient Cλ (a) and radiated wave power Pw (b) as a function
of the dimensionless frequency Ω for the two different series of experiments at different
depths. The symbols are indicated in Table 2.4. The two vertical dashed lines show the
prediction for Ω` using figure 2.15.
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2. Pendulum oscillating horizontally in a stratified fluid

given in figure 2.15. Below Ω = 0.5, the two curves collapse well. Note that the wave
reflection disrupts the signal for Ω smaller than 0.2 for H = 20.3 cm and for Ω smaller
than 0.4 for H = 16 cm.

Figure 2.17 shows the added mass coefficients, for the two series of experiments. As
for the damping and wave power in figure 2.16, the red squares represent the experiments
performed at H = 20.3 cm while the blue diamonds show the ones carried out at H =
16 cm. As in section 2.4, the added mass at smaller fluid depth is higher. Moreover, for
large frequency, the added mass coefficients tend to reach the asymptotic value found in the
homogeneous water. These values are represented by horizontal dashed lines in figure 2.17.
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Figure 2.17: Added mass coefficient Cµ as a function of the dimensionless frequency Ω
for the two different series of experiments at different depths. The symbols are indicated
in Table 2.4. The horizontal dashed lines correspond to the added mass measured in
homogeneous water for the different depths. The colors are the same than the ones for the
symbols.

In this section, only two different fluid depths have been tested. We have found that
the wave emission is much lower for some frequencies, in agreement with the theoretical
prediction. It can be worthwhile to perform other experiments to explore the full range of
depths. At least, one can carry out one series of experiments at very large depth in the
large tank (H = 95 cm) to obtain the radiated wave power when H → ∞. It can be also
interesting to perform another series of experiments at very small depth (H = 12 cm) to
check that there is no lack of tidal conversion at small frequency. I expect to carry out
these experiments during the month of June 2016, before the defense.
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2.5. Flattop hill: topography lacking of tidal conversion

Conclusions

In this chapter, the added mass and damping coefficients of three different bodies have
been measured in infinite or finite depth experiments. This allows us to test the affine
similitude theory, developed in Ermanyuk [40], for square- and circular-shaped cylinders
and to visualize a lack of tidal conversion for given frequencies.

First, the added mass and damping coefficients have been measured for square-shaped
cylinders in a stratified fluid of infinite depth. For Ω > 1, when no wave is emitted,
the theoretical prediction given by the affine similitude is well satisfied. For Ω < 1, the
cylinder emits waves which come back to it, despite the experimental wave-breakers set-
up at the edges of the tank. This leads to a high experimental noise, especially at low
frequency. Nevertheless, we were able to verify the theoretical prediction, at least for
Ω > 0.5. Two different sizes of cylinder have been tested in order to limit the wave emission
and reflection. The largest cylinder undergoes more wave reflections but the measurements
are more sensitive to the singularities in the coefficient variations with frequency.

Secondly, we measured the added mass and damping coefficients of a circular cylinder
in a stratified fluid of finite extent, with different depths. The results obtained are in a good
agreement with the ones reported in [39, 42]. Moreover, some experiments were carried
out at smaller depths than Ermanyuk and Gavrilov [42], leading to a very good reliability
of the signal, even at low frequency. This shows that for small depths and Ω → 0, the
damping coefficient is larger than 1, the value of this coefficient for infinite depth. Thus,
in the low frequency limit which is relevant to tidal conversion, the damping coefficient
is more important at small depth than at infinite depth. Theoretically, this is proved
for a vertical flat plate by equation (2.17) and for a steep ridge by Llewellyn Smith and
Young [92]: this has not been measured yet.

Finally, we measured the damping coefficient and the radiated wave power of an object
with a specific cross section, inspired by Maas [96]. We show that it exhibits a lack of tidal
conversion for a given frequency Ω`, as expected. This frequency depends on the height
of the fluid and the results are consistent with the theoretical prediction. This can have
some consequences in the ocean because it exists a large variety of such topography.

All these results have been obtained before the submission of this PhD manuscript
or during the review process of this manuscript (for section 2.5). Nevertheless, more
experiments would be welcome to fully investigate the added mass of objects oscillating in
a stratified fluid and its applications with tidal conversion. For example, experiments on
a vertical flat plate oscillating in a stratified fluid of finite depth seem relevant to perform,
in order to verify the prediction of equation (2.17) in the low-frequency limit for a large
range of depths. Moreover, for topographies lacking of tidal conversion, it is worthwhile to
explore the extreme cases when H tends to infinity or to the height of the object. I expect
to be able to perform these experiments before the PhD defense.
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Chapter 3

Internal wave attractors: a
geometric and linear construction

Internal wave rays converging towards an attractor in
an experiment reported in this chapter.

Internal waves are very specific because their
dispersion relation can lead to focusing or de-
focusing while the waves reflect on a slope. In
natural cases, the slope can be typically the
bottom topography of the oceans. In closed
basins of several shapes [98] or on the topog-
raphy of an ocean [65], the focusing of inter-
nal waves can form internal wave attractors.
These attractors are periodic orbits where, due
to the specificity of the geometry, the internal
waves form closed loops.

Twenty years ago, Maas and Lam [98]
studied for the first time internal wave attrac-
tors theoretically, using ray tracing in closed

domains. Few years later, Maas et al. [97] obtained the first experimental attractor in a
trapezoidal domain. Then, inertial wave attractors have been observed in numerical simu-
lations [138] or in laboratory experiments [104], and also described theoretically [125]. Few
years ago, several studies characterized precisely the geometry of internal wave attractors,
using laboratory experiments [70, 69, 68], numerical simulations [64] or theory [86]. More
recently, unstable attractors have been discussed using both experiments and numerical
simulations [79, 139].

In the ocean, to our knowledge, no attractor has been measured yet [106]. Nevertheless,
Guo and Holmes-Cerfon [65] have considered the probability to find an attractor with a
typical topography of a two-dimensional ocean. The probability, about 10 attractors per
1000 km, is small but non negligible. Moreover, they may be responsible for the energy cas-
cade from large to small scales in oceans. Thus, it worths to study the different properties
of the internal wave attractors using idealized experiments, with a linearly stratified fluid
in a trapezoidal domain. The main difference with the previous experiments performed on
wave attractors [70, 69, 68, 104] is the generation of the waves by the wave-maker [115, 63],
described in section 1.3.4. This allows us a very accurate control on the forcing and gives
us the possibility to vary it while all the other parameters remain constant.

This Chapter describes the linear regime of internal wave attractors. First, a review
is made on the internal wave ray tracing in a trapezoidal domain. The different possible
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shapes of the attractor are discussed, depending on the geometry. Then, experimental
internal wave attractors are exhibited. The remainder of the Chapter is focused on the
simplest attractor, called (1, 1) attractor, which has one reflection on each wall of the basin.
The region of existence of the (1, 1) attractors is explored and the different characteristics
of the attractors are examined via the geometry. Different forcings are also explored, using
the wave-maker. Finally, a comparison is made between attractors obtained in experiments
and in numerical simulations.
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3.1. An internal wave billiard

3.1 An internal wave billiard

Internal wave ray tracing in different closed basin shapes has been essentially studied by Leo
Maas over the last past twenty years. This can be viewed as an internal wave billiard [98].
The classical billiard studies the trajectories in a closed domain of a particle reflecting
elastically and following the standard Descartes reflection. It can exhibit periodic motion,
motion along an invariant curve or chaos [9]. For the internal wave billiard, the reflections
are ruled by the geometric dispersion relation, conserving the angle of propagation with
respect to the horizontal. This leads to attractive (focusing) or neutral trajectories, but
not to chaotic motion.

In this section, I discuss internal wave ray tracing in a trapezoidal domain using the
literature. I explain first that, depending on the geometry, rays can converge towards
periodic orbits called attractors. One can draw a map of the attractors as a function of
the geometry, as reported by Maas et al. [97]. Then, I focus particularly on the ray tracing
for specific attractors, named (1, 1). Finally, I explain how to compute theoretically the
stream function for this kind of attractors.

3.1.1 Ray tracing in a trapezoidal domain

As shown in Chapter 1 (see equation (1.38)), the linear inviscid 2D hyperbolic equation of
propagation of internal waves is

∂2

∂t2
∆Ψ +N2(z)

∂2Ψ

∂x2
= 0, (3.1)

where N(z) =

√
−g
ρ0

∂ρ̄

∂z
and Ψ the stream function. For monochromatic waves of frequency

ω0, this gives (
1− ω2

0

N2(z)

)
∂2ψ

∂x2
− ω2

0

N2(z)

∂2ψ

∂z2
= 0, (3.2)

by taking Ψ(x, z, t) = ψ(x, z) exp(iω0t). Here, if the buoyancy frequency N is constant,
internal waves propagate at the angle θ = arcsin(ω0/N) with respect to the horizontal.

One considers here the propagation of internal waves in a trapezoidal basin, defined
by figure 3.1(a). This basin has a height H, a length at the bottom L and a slope on the
right side with an angle α with respect to the vertical. To study easily the propagation of
internal waves in such a basin, one can do the change of variables

x′ =
2x

L
− 1, (3.3)

z′ =
2z

L

√
N2

ω2
0

− 1. (3.4)

This leads equation (3.2) to
∂2ψ

∂x′2
− ∂2ψ

∂z′2
= 0. (3.5)

Time is removed from this hyperbolic wave-equation, it has spatial coordinates only.
The change of variables rescales the geometry of the trapezoidal basin as shown in fig-

ure 3.1(b). The rescaled height of the basin is defined as τ =
2H

L

√
N2

ω2
0

− 1 and x′ is in
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α
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Figure 3.1: (a): Drawing of the trapezoidal basin with the different geometrical character-
istics. Here, H/L = 0.85 and α = 25.2◦. One internal wave ray, starting from the bottom
left corner, is propagating upward at an angle θ = 50.2◦ here. (b): Rescaled trapezoidal
basin using equations (3.3) and (3.4). Here, d = 0.2 and τ = 1.41. The ray, starting from
the left bottom corner, is propagating upward at an angle of 45◦.

the range [−1; 1]. One can define d as the x-coordinate of the upper corner of the slope,
as shown in figure 3.1(b). With such a definition, d = 1− 2H

L tanα. The angle α is trans-
formed in α′ by tanα′ = tanα tan θ. After this rescaling, internal waves propagate at 45◦

with respect to the horizontal. It worths to note that the origin is defined in the middle
of the bottom of the basin for the rescaled geometry while the origin is in the bottom left
corner of the basin for the real geometry. In previous works [97, 70, 64, 86], the geometry
used was also a trapezoid but the slope was located differently. Nevertheless, a simple sym-
metry with respect to the horizontal line located at z = H/2 transforms our geometry into
the geometry used in [97, 70, 64, 86]. The change of variables, given by equations (3.3)
and (3.4), and the (d, τ) diagram presented in the next section are not affected by this
slight difference, due to the symmetry.

It is much easier to perform ray tracing in the rescaled geometry because the rays are
always propagating at an angle of 45◦, with respect to the horizontal. Changing ω0 or θ
in the real space is equivalent to change τ in the rescaled geometry. However, one rescaled
geometry can be obtained from an infinite number of different geometries. For example,
the d and τ parameters are invariant through dilation or compression of both horizontal
and vertical axes of the geometry in real space. Geometries with very different aspect
ratios could also have the same dimensionless parameters d and τ by tuning the angles α
and θ.

Defining ξ′ = x′ + z′ and η′ = x′ − z′, equation (3.5) becomes

∂2ψ

∂η′∂ξ′
= 0. (3.6)

This leads to the solution

ψ(x′, z′) = f−(x′ − z′) + f+(x′ + z′). (3.7)

As rays propagate with an angle of 45◦, the quantities x′−z′ and x′+z′ are constant along
rays. Thus the values of f± are transported by the rays [102, 103]. The boundaries of the
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3.1. An internal wave billiard

basin are assumed to be rigid and there is no fluid penetration through them. This implies
that boundary conditions are ψ = 0 except on the vertical left wall where forcing can be
applied. This connects the two functions f− and f+. At the bottom, z′ = 0 and thus
f−(x′) = −f+(x′). Consequently, ψ(x′, z′) = f(x′ − z′) − f(x′ + z′). The other boundary
conditions on the surface and on the slope are less obvious to use.

Magaard [102, 103] and Maas [98, 97] computed the stream function in any point of
different basin shapes using f -value propagation along rays. This method is presented in
section 3.1.4 to obtain the theoretical stream function into a trapezoid, with the geometry
defined above and with the same forcing as in the experiments described below in this
manuscript.

3.1.2 The (d, τ) diagram

Figure 3.2: (d, τ) diagram extracted from [97]. The greyscale shows log10(−Λ), where Λ is
the Lyapunov exponent of the trajectories. The white regions are regions where Λ is very
negative, so attractive regions. The darker regions are regions where Λ is too close to 0
and no pattern emerge from the ray tracing. The black dots located at d = 0 and between
τ = 1 and τ = 2 correspond to the different experiments performed in [97]. The names of
the different attractive regions (1, 1), (2, 3), (2, 1), etc... are explained in the text.

In a trapezoidal domain, Maas et al. [97] used the dimensionless parameters d and τ
to build a map of the different patterns that can be obtained when internal wave rays
propagate in the basin. In the remainder of the manuscript, this map is named as the
(d, τ) diagram. This diagram is shown in figure 3.2. The greyscale represents log10(−Λ),
where Λ is the Lyapunov exponent of the wave rays. Λ is defined in [98] and measures the
rate of convergence or divergence of the rays propagating in the trapezoidal domain. Maas
et al. [98, 97] have shown that this Lyapunov exponent is generally negative or null but
never positive. Thus, almost all wave rays converge. There is no chaos here, in opposition
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3. Internal wave attractors: a geometric and linear construction

to a classical billiard with Descartes reflections [9]. White regions in figure 3.2 are regions
where |Λ| is relatively large: these regions are attractor regions and mathematically, they
correspond to Arnold tongues. Any wave ray starting from any point in the basin converges
toward a limit cycle, called attractor. This attractor is the same for all the rays and there
is only one type of attractor per region. Only one ray is periodic, the one following the
attractor. Note that this ray has at least one focusing reflection on the slope during this
orbit. Then, the darker the regions in figure 3.2, the smaller |Λ|. Thus, in the darker
regions, no pattern emerge from the ray tracing, |Λ| being too small to obtain a simple
pattern after a few number of reflections.

L0L0

H

0

(a) (b)

Figure 3.3: Convergence towards the same (1, 1) attractor of two rays starting from two
different points in the same geometry. Here, H/L = 2/3, α = 27◦ and θ = 37◦. Thus,
(d, τ) = (0.32, 1.77). The small arrows indicate the two positions where the rays start, while
the large arrows show the direction of propagation of the periodic ray on the attractor. The
two horizontal dashed lines shows that the two attractors reached are exactly identical.

The different regions where attractors exist are labelled using two indices m and n:
(m,n). m describes the number of reflections at the surface (or at the bottom) and n
the number of reflections on the vertical side wall (or on the slope). For example, in the
largest white region named (1, 1), attractors have only one reflection on the surface and on
the vertical wall. In fact, they have one reflection on each side of the basin. An example
of (1, 1) attractors is shown in figure 3.3. The reflection on the slope is focusing (see
section 1.1.4), as the periodic ray on the attractor propagates anti-clockwise. Figure 3.4
shows two examples of attractors from different white regions, the (2, 1) (a) and the (1, 3)
(b) ones. The (2, 1) attractor has only one reflection on the slope, which is focusing.
The (1, 3) attractor has three reflections on the slope, two which are focusing and one
which is defocusing. The attractors always exhibit an odd number of reflections on the
slope (n), in order to have always more focusing reflections than defocusing ones. As the
(d, τ) parameters are displaced in attractor regions, the position of the attractor in the
basin changes but it keeps the same number of reflections on each side. The region below
the dashed line at the bottom of the (d, τ) diagram and named "corner" presents point
attractors. All the wave rays end in the bottom right corner of the basin, trapped by the
reflection law for internal waves. This is shown in figure 3.4(c). The ray tracing from a
darker region is shown in figure 3.4(d). No specific pattern emerge here, the Lyapunov
exponent being very small in absolute value.

There are also lines on the diagram where there is global resonance, or seiche modes.
For these geometric configurations, there is no attractor. All rays are periodic but there
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(a) (b)

(c) (d)

L0L0

H

0

H

0

Figure 3.4: Convergence towards different attractors: (2, 1) attractor (a), (1, 3) attractor
(b), point attractor (c) and no attractor (d). As in figure 3.3, H/L = 2/3 and α = 27◦

so d = 0.32. θ (respectively τ) is equal to 58◦ (resp. 0.83) (a), 15.2◦ (resp. 4.91) (b), 75◦

(resp. 0.36) (c) and 21◦ (resp. 3.47) (d). The small arrows indicate the positions where
the ray starts while the large arrows show the direction of propagation of the wave rays
on the attractor. Note that for cases (a) and (b), the number of reflections on the slope is
odd.

is no convergence at all: the Lyapunov exponent is strictly equal to zero. For these global
resonances, all the rays have an even number of reflection on the slope (n). Thus, there
is always the same number of focusing and defocusing reflections. One of these lines is
identified on the (d, τ) diagram in figure 3.2 by (1, 2). Such a seiche is also plotted in
figure 3.5. Each ray has two reflections on the slope, one which is focusing and one which
is defocusing. The examples of rays are shown, as solid and dashed thick lines in figure 3.5.
The seiche modes appear when both the bottom corners are connected to the top ones by
rays. This is illustrated by the red and blue rays in figure 3.5.

The skeleton of the (d, τ) diagram is composed of lines delimiting the different attractor
regions. It is possible to calculate this skeleton by considering the geometries where rays
connect different corners of the basin. These geometries do not give seiche modes because
in these geometries, only one top corner is connected to one bottom corner. For a seiche
mode, both top corners are connected to both bottom ones. For example, the line τ = 2
in the diagram represents all the geometries where the ray emitted from the bottom right
corner connects directly the top left one. This line delimits the top of the (1, 1) region.
Thus, (1, 1) attractors with τ close but smaller than 2 are located in the diagonal formed
between the right bottom and left top corners. The line τ = d + 1 on the (d, τ) diagram
represents geometries where the top right corner is connected to the bottom left one. This

73



3. Internal wave attractors: a geometric and linear construction

L0

H

0

Figure 3.5: Example of a seiche or a global resonance (1, 2), where each ray is periodic.
Here, H/L = 2/3, α = 27◦ and θ = 21.88◦. Thus (d, τ) = (0.32, 3.32). Two examples of
rays are shown with the dashed and solid black lines. The red and the blue solid lines are
rays connecting the different corners of the basin. The dashed dotted black line connects
the reflection of the red line on the slope and the reflection of the blue line on the vertical
wall. All the wave rays cross themselves along this line. Note that the number of reflections
on the slope is 2, which is an even number.

line is the line below the (1, 1) region for positive d. Thus, (1, 1) attractors with τ close
but larger than d+ 1 are located in the diagonal formed by the bottom left and top right
corners. Consequently, travelling at constant d in the (d, τ) diagram through the (1, 1)
region changes the pattern of the (1, 1) attractors, from one diagonal to the other. This
is illustrated in section 3.2.1. Last example for skeleton lines: the dashed line above the
corner region is the line where the slope is critical. Thus one ray connects the top left and
bottom right corners, after a reflection on the slope. This can be done for all the attractor
regions, by looking for corner connections after a different number of lateral reflections.

My work during this PhD is mainly focused on (1, 1) attractors, from their linear
behavior to their non-linear dynamics. The next section addresses the different geometrical
properties of (1, 1) attractors, giving more details about the specificity of ray tracing in
the (1, 1) attractor Arnold tongue.

3.1.3 Ray tracing for the (1, 1) attractor

In this section, the main results of [97, 86] are recalled to describe more precisely the
behavior of the wave rays in the (1, 1) region. By simplicity, we consider a given rescaled
geometry, with (d, τ) = (0.32, 1.77). As mentioned before, in a rescaled basin, the rays
propagate at an angle of 45◦. All definitions presented in this section are valid for any
geometry of the (1, 1) attractor region.

The left vertical wall is divided into different fundamental intervals. These intervals
are set by the series of reflections on the left vertical wall of the two rays emitted from
the top and bottom right corners. Figure 3.6 shows how these fundamental intervals are
defined. In figure 3.6(a), the first reflection on the left vertical wall of the ray emitted from
the top right corner defines the bottom primary fundamental interval. It is represented by
a black rectangle and lies between 0 and the altitude of the first reflection. Then, when the
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3.1. An internal wave billiard

ray reaches the left vertical wall a second time, it defines the first secondary fundamental
interval, drawn as a gray rectangle in figure 3.6(a). It lies between the first and the second
reflections of the ray on the vertical wall. The ray converges towards the attractor, so
the altitude of its reflections on the vertical wall is higher and higher, converging also
towards the altitude of the reflection of the attractor itself on the vertical wall. This
defines other secondary fundamental intervals (second, third, ...) which are smaller and
smaller but closer and closer to the attractor reflection on the vertical wall. Thus, the
number of fundamental intervals is infinite. The four first fundamental secondary intervals
are represented by lighter and lighter gray rectangles, in figure 3.6(a). The ray emitted
from the top right corner thus defines the bottom (primary and secondary) fundamental
intervals. The top (primary and secondary) fundamental intervals are defined by the ray
starting from the bottom right corner, as shown in figure 3.6(b). The process is very similar
except that the reflections of this ray converge towards the reflection of the attractor from
the top to the bottom. The five first intervals are shown as black and gray rectangles in
figure 3.6(b).

−1 0 1
0

x
′

z
′

−1 0 1

x
′

τ

(a) (b)(a) (b)

Figure 3.6: Definition of the primary (black rectangles) and secondary (rectangles with
shades of grey) fundamental intervals, on the vertical left wall. The solid line shows the
attractor corresponding to this geometry. (a): the dashed line is the wave ray emitted from
the top right corner. It defines the bottom fundamental intervals. (b): the dashed-dotted
line is the wave ray emitted from the bottom right corner. It defines the top fundamental
intervals.

These intervals are very important for the geometry of the attractor. As shown in
figure 3.7, any point in the basin can be reached by one ray starting from one of the
two primary fundamental intervals. The attractor divides the trapezoidal basin into five
regions. There is a central region, surrounded by the attractor and there is also four
triangles in the four corners of the basin, delimited by the walls of the basin and by the
attractor. Rays emitted by the bottom primary fundamental interval propagate only in
the central region and in the two top right and bottom left triangles. By symmetry, rays
emitted by the top primary fundamental interval propagate only in the central region
and in the two top left and bottom right triangles. This is summarized in figure 3.7.
Rays starting from the primary fundamental intervals reach all the secondary fundamental
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3. Internal wave attractors: a geometric and linear construction

intervals converging towards the attractor. One secondary fundamental interval is simply
connected with its neighbors (previous and next secondary fundamental intervals) by rays
doing one tour of the basin, with one reflection on each side. As a consequence, any point
in the basin which is inside the attractor is traversed by two rays coming from the two
different primary fundamental intervals. For a basin point located outside of the attractor,
the two rays passing through this point are emitted by the same (top or bottom) primary
fundamental interval.

From these considerations, one can now imagine the trajectory of any ray starting
propagating upward or downward from any z-coordinate of the vertical left wall. We can
consider only the bottom fundamental intervals, located between 0 and the z-coordinate
of the attractor reflection on the vertical wall, because the case for the top fundamental
interval is similar by symmetry. If the ray starts propagating upward or downward from the
bottom primary fundamental interval, it will reach all the secondary fundamental intervals
as it converges towards the attractor. If the ray starts propagating downward from one of
the secondary fundamental intervals, it will go to the next secondary fundamental interval
and converge towards the attractor. If the ray starts propagating upward, it will reach
all the previous secondary fundamental intervals until it hits the primary fundamental
interval. After that, it behaves like rays emitted from this interval and reaches all the
other secondary fundamental intervals converging towards the attractor.

One can use the word "web" to define one ray trajectory. The webs are infinite and
converge towards the attractor. It worths to note that the webs are spatial structures ruled
by the equation (3.5). Thus, time does not appear directly and, despite the vocabulary
used to describe the trajectories, the way the ray tracing is done should not be considered
as a process evolving in time.

−1 0 1
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′

z
′

−1 0 1
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′

τ

(a) (b)(a) (b)

Figure 3.7: Ray propagation from the bottom (a) and the top (b) primary fundamental
intervals. Ray starting propagating upward are in solid lines, ray starting propagating
downward are in dashed-dotted lines.

3.1.4 Theoretical stream function fields

Following [98, 97, 86] and section 3.1.1, one can find the theoretical stream function
Ψ(x′, z′, t′) = ψ(x′, z′) exp(it′) for our geometry and the forcing applied by the wave-
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3.1. An internal wave billiard

maker. Here, t′ is the dimensionless time defined as t′ = ω0t. ψ is given by ψ(x′, z′) =
f(x′−z′)−f(x′+z′), where f is prescribed by the forcing. The stream functions obtained
in this section are computed with a geometry at (d, τ) = (0.32, 1.77), as in previous section.
Nevertheless, the stream functions can be computed for any geometry located in the (1, 1)
region on the (d, τ) diagram.

To determine the theoretical stream function ψ in any point of the trapezoidal basin,
one considers that the function f is first prescribed arbitrarily only on the two primary
fundamental intervals, on the left vertical wall of the basin. These intervals are delimited
by the two horizontal dashed lines on the left of figure 3.8 and the prescribed f function is
in bold. Then, the f -values are propagated by the rays towards the secondary fundamental
intervals, fixing f -values on all the left vertical wall. Finally, it is possible to compute the
theoretical stream function at any point in the basin: one simply has to make the difference
between the f -values carried by the two rays that go through this point [102, 103]. An
example of solution is represented in figure 3.8, where the stream function ψ(x′, z′) is
computed for each point in the basin. This stream function has real values only, because
the f -values are real. Thus, Ψ(x′, z′, t′) = Re

(
ψ(x′, z′) exp(it′)

)
is only a standing pattern,

which is "blinking". Maas et al. [98, 97] introduced this "blinking" term because there is no
time propagation along rays. As experiments shown in [97] and in this manuscript exhibit
that the waves in the basin propagate, this "blinking" stream function is not consistent
with the observations.

−0.5 0 0.5
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f (z ′)

z
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x ′

ψ(x ′, z ′)
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−0.5

0

0.5

1τ

Figure 3.8: Stream function ψ(x′, z′) in a trapezoidal basin computed using one arbitrary
function f prescribed on the two primary fundamental intervals. On the left, the function
f is shown on all the z-axis. The two horizontal dashed lines show the limit of the top and
bottom primary fundamental intervals. The prescribed f function is in bold on the left.

Moreover, in the experiments, the wave-maker prescribes a boundary condition for
ψ(x′, z′), on the vertical left wall. This imposes the f function for each fundamental
interval and leads to an other issue. Indeed, if f is constant along rays, as rays connect
the different fundamental intervals, f would be multi-valued.

Lam et al. [86] revisits both these problems of standing "blinking" wave and forcing.
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3. Internal wave attractors: a geometric and linear construction

These two problems are treated separately and the solutions are then combined. First, let
consider the "blinking" problem. In order to get propagative waves, f should be complex.
Indeed, one can decompose the prescribed stream function of the primary fundamental
intervals into Fourier modes. For example,

cos(z′) =
1

2
exp(iz′) +

1

2
exp(−iz′) = fU (z′) + fD(z′). (3.8)

Thus, this splits the rays in two categories: rays which start propagating upward and rays
which start propagating downward from these intervals. The complex f value associated to
these different rays are different and named fU (upward) and fD (downward). This leads
to two semi-infinite webs with constant fU or fD instead of one infinite web of constant f .
In order to compute the stream function ψ in the bulk of the basin, some bookkeeping is
needed to know if the rays going through this point were upward or downward rays when
they start from the primary fundamental intervals. After that, a complex stream function
value is computed to each point, by doing the difference between the f values of the two
rays going through this point, as before. In order to get a time evolution, one needs to

z
′

0

z
′

0

x
′

z
′

−1 0 1
0

x
′

−1 0 1

τ

τ

τ

p = 1

p = 3
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Figure 3.9: Example of stream function fields Ψ(x′, z′, t′) of an attractor with one arbitrary
function prescribed on the two primary fundamental intervals, at different times during
the period. The indices p indicate the different dimensionless times: t′ = 2(p − 1)π/12.
The colorbar is the same as the one in figure 3.8 and the p = 1 image is the same than the
one in figure 3.8.
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evaluate Ψ(x′, z′, t′) = Re
(
ψ(x′, z′) exp(it′)

)
, where t′ is the dimensionless time. This gives

the series of images, in figure 3.9. One can see a propagation of the waves emitted from
the two primary fundamental intervals. The image at the top left corner, with p = 1, is
similar to the one in figure 3.8.

Now, once the "blinking" problem has been solved, one considers the forcing problem.
In the experiments, the forcing is made on all the height of the tank. In order to mimic
the forcing of the wave-maker, Lam et al. [86] suggests to superpose partial solutions from
the different fundamental intervals. It is possible to superpose all the solutions because the
stream functions are solution of a linear problem. The two primary fundamental intervals
supply the two first solutions, ψ1 and ψ−1. Then the two first secondary fundamental
intervals supply the stream functions ψ2 and ψ−2 and so on. Thus, the two n-th secondary
fundamental intervals supply the stream functions ψn+1 and ψ−(n+1). The total stream
function is

ψ =

∞∑
n=1

(ψn + ψ−n). (3.9)

This assumes that for each contribution ψn, the external forcing is applied once and then
it is reflected on all the sides of the basin. This means that the boundary condition
ψ(x′ = −1, z′) is imposed on the left vertical wall but that the reflection nature of this
left vertical wall stays the same. This is fully possible in the experiments because the
amplitude of the wave maker is very small, few millimeters, in comparison to the size of
the tank. Thus, the reflection properties are not altered by the slight changes of shape.

To compute the stream function in any point (x′, z′) of the basin, one still has to
consider the two rays going through that point. For an easier computation, Lam et al. [86]
redefines the stream functions ψn as follows. ψ1 is defined as the forcing on the first left
wall reflections of the two leftward rays that pass to the point (x′, z′). ψ−1 is defined as
the forcing on the first left wall reflections of the two rightward rays that pass to the point
(x′, z′), after reflections on the surface, on the bottom or on the slope. Then following these
different rays, one can define the other stream functions ψn using the n-th reflections on
these rays on the left vertical wall. When n becomes large, the rays are close the attractor.
Thus the forcing is very close for the two rays and the difference vanishes. So this method
converges. ψ is obtained by adding all these contributions, and it is bounded.

It is possible to implement this method for a forcing with real f -values. A "blinking"
attractor is found, but with a forcing on all the height of the fluid. Nevertheless, it is also
possible to apply this method for the propagating case, where the forcing is splitted into
two complex parts, propagating upward and downward. Thus, some bookkeeping is also
needed following the rays passing through the point (x′, z′) and their reflections on the left
vertical wall. Using this method, one obtains the series of images presented in figure 3.10.
The propagation is very visible and the stream function field is smooth, except on the
attractor.

In section 3.5.1, a comparison between the theoretical stream function fields obtained
here and the experimental ones is made. To obtain the theoretical stream function fields,
the inviscid equation of propagation of internal waves has been used. In the experiments,
the viscosity is always present and plays a role, modifying the patterns of the attractors
and the stream function fields. Moreover, the focusing present in the attractors can lead to
non-linear effects when too much energy is focused into the attractor. These non-linearities
are discussed in Chapters 4 and 5.
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Figure 3.10: Example of stream function fields Ψ(x′, z′, t′) of an attractor with dimension-
less mode 1 forcing on all the height of the basin, at different times during the period. The
indices p indicate the different dimensionless times: t′ = 2(p−1)π/12. Arrows indicates the
velocity fields computed from the stream function. They all have the same dimensionless
scale.

3.2 Exploring the (d, τ) diagram experimentally

The first experimental attractor has been obtained in [97], in a (1, 1) configuration. Then,
several articles [70, 69, 68, 139] have reported on experimental internal wave attractors.
Manders and Maas [104] have also observed attractors in a trapezoidal basin but in the
case of inertial waves. Most of these articles, except [139], studied stable attractors. In
this Chapter, we consider only stable attractors. Instabilities in internal wave attractors
are presented in Chapters 4 and 5.

To illustrate the large variety of patterns that are accessible with the attractors, exper-
iments have been performed through the (d, τ) diagram. This diagram has been explored
using two different ways. First, the diagram is explored with experiments at constant d.
This means that the geometrical parameters setting d are fixed and only the frequency of
the waves, ω0, and consequently τ , is changed. Different regions in the (d, τ) diagram can
be investigated and the different patterns observed are presented in section 3.2.1. Then,
the (d, τ) diagram is explored in the (1, 1) Arnold tongue. First, a typical experimental
(1, 1) attractor is shown and described in section 3.2.2. Then, experiments carried on to
scan a large part of the (1, 1) region are reported in section 3.2.3. This has been done
by changing both the geometry, the d parameter, and the frequency of the waves, the τ
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parameter.
Experiments presented in sections 3.2.1 and 3.2.3 have been performed in partnership

with Grimaud Pillet, who started his PhD in September 2015.

3.2.1 With constant d

In this section, experiments have been performed with a fixed geometry, in the large tank.
The visualization technique is the SyS. For these experiments, H = 92 cm, L = 155 cm
and α = 22.2◦. Thus, d = 0.52. The τ parameter has been varied from 0.21 to 5.49,
in order to visit the different regions of the (d, τ) diagram. As one can see in figure 3.2,
regions which are accessible are, from small to large τ :

• the corner or point attractor region

• the (2, 1) region

• the (1, 1) region

• the (1, 3) region

• other very small regions like (3, 1) or (2, 3)

• all black and grey regions in between the attractor regions.

One has to pay attention that this diagram is made using the (d, τ) parameters. Exper-
imentally, once the geometry is set, d is fixed. The only mean to change τ is by changing
ω0. Nevertheless, the relation between τ and ω0 (or θ = arcsin(ω0/N)) is nonlinear. This
means that attractor regions that appears large in terms of τ could be narrow in term
of frequency (or angle θ), which is the parameter we set for the experiments. If one has
to rescale the (d, τ) diagram in terms of (d, ω0) diagram, the top (high τ) would be com-
pressed and the bottom (low τ) would be stretched. Thus, for d = 0.5, the (1, 3) and (2, 3)
are in reality thiner to our experimental control parameter than they appear on the (d, τ)
diagram. Moreover, the aspect ratio of the tank is also important. For example, (1, 3)
attractors can be seen more easily with H much greater than L in order to distinguish
clearly the three reflections on the side and (2, 1) attractors are better to visualize in a
tank whose L is much greater than H. Nevertheless, changing the aspect ratio leads to
changing the d parameter.

In addition to that, there is some experimental uncertainty on the value of τ . Indeed,
τ depends on the geometry and on the frequency of the waves. These parameters can be
slightly modified for example if the stratification is not perfectly linear or if there is a mixed
layer on the top of the stratification. This changes locally the ray trajectories and shifts the
value of τ . Thus, this increases the experimental challenges to visualize attractors located
in very small regions on the (d, τ) diagram. For example, we were unable to visualize
attractors located in the (3, 1), (2, 3) and (1, 3) regions. Indeed, with the geometrical
parameters used for the experiments presented in this section, the width of the range of
frequencies covering the (3, 1) attractor region is 0.03 rad/s. This width is 0.006 rad/s for
the (1, 3) attractors while it is 0.1 rad/s for the (1, 1) attractors and 0.06 rad/s for the
(2, 1) attractors.

Figure 3.11 shows different attractors belonging to the (1, 1) region, after filtering in
frequency to get the amplitude of the waves. All have the same d = 0.5 but τ varies
from 1.62 in panel (a) to 1.98 panel (f), changing the ray tracing prediction, plotted as
a dashed black line on each panel. One can see clearly that the energy is focused along
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Figure 3.11: Amplitude of the density gradient fields of different (1, 1) attractors, after
Hilbert filtering in frequency. They have the same d parameter but different τ parameter.
τ is increasing with the order of the letters designing the panels and is equal to 1.62(a),
1.70(b), 1.76(c), 1.83(d), 1.90(e) and 1.98(f). d is equal to 0.5. The ray tracing predictions
are indicated by the dashed black lines.

the ray tracing prediction, showing that all rays converge towards the attractor. Contrary
to the ray tracing prediction, the attractor has a given thickness, due to viscosity. The
direction of propagation appears here to be clearly anti-clockwise. Indeed, one can see
that the amplitude of the density gradient fields decreases as one follows the ray tracing
prediction in the anti-clockwise way. This is also due to viscosity, which damps the waves
during their propagation. The colorbar, which is the same for all the panels, shows that
the amplitude decays as attractors are close to the boundaries of the (1, 1) region, so in
one of the diagonals of the basin.

Figures 3.12 shows attractors belonging to the (2, 1) region, with the same d but differ-
ent τ . The images have been filtered in frequency to get the amplitude of the waves. Here
also, almost all the energy injected converges towards the attractor. It is also possible to
guess the direction of propagation of the waves, paying attention to the decrease of the
amplitude. This is consistent with the ray tracing prediction because the (2, 1) attractors
exhibit one focusing reflection on the slope.

Figure 3.13 shows snapshots of the horizontal density gradient fields for a point at-
tractor. Panel (a) has been filtered in frequency and in space, to keep only the waves
propagating from left to right (kx > 0), while panel (b) has also been filtered in frequency
and in space, but to keep only the waves propagating from right to left (kx < 0). In that
geometrical configuration, the waves are supposed to be focused into the corner of the
slope, at the bottom of the tank. It is here difficult to see what happens in this part of
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Figure 3.12: Amplitude of the density gradient fields of two (2, 1) attractors, after Hilbert
filtering. Both have the same d parameter, equal to 0.5. For panel (a), τ = 0.86 while for
panel (b), τ = 0.93. The ray tracing predictions are indicated by the dashed black lines.

the tank but one can clearly see that there is no wave propagating from right to left. This
demonstrates that all waves are trapped by the slope, in the corner, at the point attractor.
Note that the mode 1 shown in figure 3.13(a) is not perfect. This could be due to the
stratification, which is slightly nonlinear at the bottom. Thus, the buoyancy frequency
could be slightly smaller and, as the frequency of the waves is close to this frequency, the
waves are reflected before reaching the bottom of the tank.

For the experiments located in the black or grey regions in the (d, τ) diagram, no
specific pattern is supposed to emerge. The images obtained using SyS give only a signal
which is close to noise. Motions should be present in the tank but they are probably
disorganized motions, meaning that no specific path is created. The SyS is here unable
to see the motions in the fluid because it is more sensitive to patterns with a short wave
length. If no attractor is created, there is no pattern with a small wave length and thus,
this is invisible to SyS visualization. One should perform experiments in PIV in order to
see all the motions in the tank, even if they are disorganized.

(1, 1), (2, 1) and point attractors have been observed exploring the (d, τ) diagram at
a constant d. Qualitatively, these attractors exhibit the characteristics predicted by the
ray tracing, described in section 3.1. Indeed, all the energy injected by the wave-maker is
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Figure 3.13: Snapshots of the horizontal density gradient fields for a point attractor, after
Hilbert filtering in frequency and in space. Only the horizontal component of the wave
vectors have been filtered, keeping the positive part (a) or negative part (b) of the wave
vectors. The black rectangles at the right of the slope indicate where the space filtering in
wave vectors is performed.
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3. Internal wave attractors: a geometric and linear construction

focused along the ray tracing prediction and the waves seem to propagate anti-clockwise.
Nevertheless, the viscosity, inherent for experiments, has effects on the thickness of the
attractor, which is finite in the experiments. After this qualitative introduction on experi-
mental internal wave attractors, I will essentially focus on (1, 1) attractors in the remainder
of this manuscript.

3.2.2 A typical (1, 1) attractor

(1, 1) attractors have already been shown in figure 3.11. These attractors have been ob-
tained in the large tank, with the SyS visualization technique. This section shows typical
(1, 1) attractors obtained in the small tank, using SyS or PIV. These attractors are used
to define the different branches and their geometry properly.
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Figure 3.14: Snapshots of the horizontal density gradient fields of an attractor. Each
snapshot is separated by approximately one tenth of an attractor period, T0, and the
snapshots are taken around t = 65 T0. The dashed black line indicates the ray tracing
prediction for the geometry. (d, τ) = (0.38, 1.85).

Figures 3.14 and 3.15 show two (1, 1) internal wave attractors, using the two different
techniques of SyS and PIV. The images do not come from the same experiment, but
geometries of the attractors are close. As the attractor as a small wavelength, the different
branches of the attractor appear more clearly in figure 3.14 with SyS than in figure 3.15
with PIV. Nevertheless, on the two figures, one can also clearly see that all the energy
injected by the wave-maker is focused along the attractor. This energy oscillates around
the theoretical ray tracing prediction corresponding to the geometry, plotted as a dashed
black line in figures 3.14 and 3.15. To confirm that the energy is really focused along the
attractor, as in section 3.2.1, it is necessary to filter the experimental images around the
frequency of the wave-attractor, ω0. Then, one can take the modulus of this field to get
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Figure 3.15: Snapshots of the horizontal velocity fields of an attractor. Each snapshot
is separated by approximately one tenth of the period, T0, and the snapshots are taken
around t = 65 T0. The dashed black line indicates the ray tracing prediction for the
geometry. (d, τ) = (0.31, 1.84).

the amplitude. This is shown in figure 3.16, for PIV measurements. Similar results are
obtained using Hilbert filtering on SyS measurements, as in figure 3.11. It appears that all
the energy is focused around the ray tracing prediction.

From figure 3.16, one can defined the geometry of a (1, 1) attractor. As it has four
reflections, the attractor exhibits four branches, one between each reflection. The branches
are labelled anti-clockwise from 1 to 4, from the focusing reflection on the slope. For
each branch, two specific directions, ξ and η, are defined. ξ is along the branch, positive
anti-clockwise. η is normal to ξ, oriented towards the outside of the attractor.

Here again, as in figure 3.11, it is possible to see that the waves propagate anti-clockwise.
In figure 3.16, the energy is the most intense on branch 1 and then is less and less intense
from branches 2 to 4. As the waves propagate anti-clockwise, the water viscosity damps
them and the amplitude decreases. This is balanced by the focusing reflection on the
slope, between branches 1 and 4. Thus, the attractor reaches an equilibrium state where
the viscous damping all along the perimeter of the attractor (which is around 1 m) is
balanced by the focusing of the energy at the specific reflection, at one particular point.
With the definitions of ξ and η for each branch, this means that the group velocity is in
the ξ direction while the phase velocity and the wave-vectors are in the η direction. For
example, on branch 1, wave energy propagates from the slope to the surface, so leftward
and upward. As the wave-vector is normal to the group velocity, phase propagates leftward
and downward. Thus, the wave vector points towards negative η. For branches 2 and 4,
the wave-vectors point towards the positive η. For branch 3, as for branch 1, the wave
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Figure 3.16: Amplitude of the velocity fields after Hilbert filtering of the attractor presented
in figure 3.15. The ray tracing prediction is plotted in white dashed line. The different
branches and their geometrical coordinates are defined. (d, τ) = (0.31, 1.84).

vector points towards the negative η. This can be seen in figures 3.14 and 3.15. This is an
other proof that waves propagate anti-clockwise.

3.2.3 The (1, 1) Arnold tongue

0 25 50 75 100 125 150
0

2

4

6

8

t/T0

K

Figure 3.17: Typical experimental time-history of the dimensionless kinetic energy. The
vertical dotted dashed line indicates the instant where the kinetic energy saturates. The
average of the signal, computed from this instant and to the end of the experiment, is
represented by the dashed white line. The two horizontal dashed black lines represent
Kmin and Kmax, the minimal and maximal values bounding the oscillations of the kinetic
energy during the saturated state. The parameters for this experiment are: Ω0=0.59,
H=30 cm, L=45 cm, α = 27.3◦, τ = 1.84, d = 0.31 and a = 1.5 mm. For this experiment,
〈K〉 = 5 and R = 0.65.
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3.2. Exploring the (d, τ) diagram experimentally

To reveal the structure of the Arnold tongue of (1, 1) attractors, we consider the total
dimensionless kinetic energy of the fluid confined in the trapezoidal domain. Experimen-
tally, this quantity is measured in the vertical longitudinal mid-plane and defined as follows

K =

∫
S
dxdz

1

2
(v2
x + v2

z)

1

2
(aω0)2S

, (3.10)

where vx and vz are the horizontal and vertical velocity components and S is the area of the
trapezoidal domain. Section 4.3 shows that the internal wave pattern in the experimental
set-up is reasonably two-dimensional. Thus, the measurements performed in the vertical
mid-plane are representative for the whole volume except thin near-wall boundary layers.

Figure 3.17 presents a typical experimental time-history of K. It can be seen that after
a transient, which has a typical duration of about 25 periods, the process reaches satu-
ration and kinetic energy oscillates between certain well-defined minimum and maximum
values. We denote its corresponding time-averaged value as 〈K〉, performed in the satu-
rated regime. This quantity 〈K〉 can be interpreted as a susceptibility of the system to the
prescribed forcing of unit amplitude a. In addition, one can introduce R = Kmin/Kmax,
the ratio of minimum to maximum kinetic energy as a measure characterizing a particular
wave regime as standing or propagative waves. Similar to 〈K〉, this quantity is defined
for the saturated regime. For purely standing waves, R = 0, while for purely propagative
waves with vanishingly thin wave beams R → 1. In realistic systems with wave beams of
finite thickness, we observe 0 < R < 1.

Using 〈K〉 and R as variables, we performed a series of 50 short-term experiments (pa-
rameters are given in Table 3.1) with stable (1, 1) attractors to study the structure of their
domain of existence, the so-called Arnold tongue, as a function of the two parameters (d, τ)
controlling the convergence of wave rays. The limiting case of triangle geometry (d = −1)
is typically characterized by the presence of a point attractor at a vertex of the triangle,
while the case of rectangular geometry (d = 1) corresponds to classic normal modes [110]
for a discrete set of τ . The plot of the Lyapunov exponents as a function of (d, τ) is shown
in figures 3.2 and 3.18 in greyscale. It can be seen that the domain of existence of (1, 1)
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Figure 3.18: Structure of Arnold tongue of a stable (1, 1) attractor in terms of the mean
normalized kinetic energy 〈K〉 (a) and the ratio of minimum to maximum kinetic energy R
(b). The results are plotted from the 50 short-term experiments described in Table 3.1.
The solid black line shows the contour at the value R = 0.5, enclosing the region with
nearly propagating waves (NP), while nearly standing waves (NS) are outside this region.
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# α Ω0 d τ # α Ω0 d τ
1 11.3 0.552 0.73 1.93 26 31.2 0.719 0.20 1.24
2 11.3 0.554 0.73 1.90 27 31.2 0.731 0.20 1.22
3 11.3 0.574 0.73 1.86 38 34.6 0.530 0.09 1.93
4 11.3 0.588 0.73 1.83 39 34.6 0.545 0.09 1.85
5 11.3 0.602 0.73 1.81 30 34.6 0.588 0.09 1.61
6 11.3 0.609 0.73 1.79 31 34.6 0.643 0.09 1.43
7 24.2 0.551 0.41 1.94 32 34.6 0.643 0.09 1.41
8 24.2 0.559 0.41 1.89 33 34.6 0.669 0.09 1.34
9 24.2 0.587 0.41 1.85 34 34.6 0.707 0.09 1.15
10 24.2 0.615 0.41 1.74 35 37.5 0.673 0.00 1.85
11 24.2 0.642 0.41 1.42 36 37.5 0.707 0.00 1.78
12 24.2 0.668 0.41 1.37 37 37.5 0.743 0.00 1.42
13 28.5 0.554 0.28 1.90 38 37.5 0.755 0.00 1.30
14 28.5 0.574 0.28 1.83 39 37.5 0.766 0.00 1.04
15 28.5 0.602 0.28 1.71 40 40.3 0.552 -0.10 1.88
16 28.5 0.622 0.28 1.62 41 40.3 0.559 -0.10 1.85
17 28.5 0.656 0.28 1.49 42 40.3 0.602 -0.10 1.55
18 28.5 0.695 0.28 1.32 43 40.3 0.616 -0.10 1.50
19 28.5 0.707 0.28 1.30 44 40.3 0.643 -0.10 1.40
20 31.2 0.554 0.20 1.90 45 40.3 0.731 -0.10 1.22
21 31.2 0.574 0.20 1.83 46 45.0 0.530 -0.30 1.86
22 31.2 0.602 0.20 1.68 47 45.0 0.559 -0.30 1.85
23 31.2 0.636 0.20 1.54 48 45.0 0.602 -0.30 1.50
24 31.2 0.669 0.20 1.42 49 45.0 0.629 -0.30 1.40
25 31.2 0.707 0.20 1.24 50 45.0 0.669 -0.30 1.36

Table 3.1: Parameters for the series of experiments represented in figure 3.18. For all these
experiments, the working depth is 30 cm, the working bottom length is 45.5±1 cm, and
the amplitude of the wave-maker is a = 1.5 mm. # is the number of the experiment (from
1 to 50), α the angle (in ◦) of the slope, Ω0 the dimensionlesss forcing frequency, d and τ
the dimensionless parameters of the geometry.

attractor has triangular shape. Its structure is revealed by plotting 〈K〉 and R as shown
in colourfigure 3.18. Combining the information presented in terms of 〈K〉 and R, we can
conclude that there are two distinct regions with different regimes for R:

i) the central part of the Arnold tongue, with high values of R: it is indicating a
propagative wave system (denoted NP in the remainder of the text) corresponding
to a classic case of wave attractor with thin well-defined branches. It is clearly seen in
the left panel of figure 3.18 that there exists an optimum range of 〈K〉 in (d, τ)-space,
with maximum transfer of energy to the attractor. As the focusing increases (negative
d), the excitation of high-energy attractors is hindered by increased dissipation in
narrow wave beams

ii) the border regions of the Arnold tongue are typically characterized by low values of
R due to geometric degeneration of the attractor. In that domain referred as NS,
waves are nearly standing. In the right tip of the Arnold tongue, we observed high
values of 〈K〉 and low values of R, typical features for standing waves. Indeed, the
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right corner of the Arnold tongue corresponds to d → 1, i.e. to the limiting case of
a rectangular domain where standing waves are generic.

3.3 Steady state of the (1, 1) attractor

In figure 3.17, one can see that the attractor reaches a steady state, after 25 periods of
growth. In this section, we study the influence of the geometry on the (1, 1) attractor
main features, in the steady state. Different theoretical models developed to explain the
characteristics of the attractors are reminded. Then, these models are compared with the
different experiments performed during this PhD.

3.3.1 Models for the steady state

Different models have been developed in the literature to explain the different geometrical
characteristics of the attractors: branch profiles, wave length and width of the branches.
This section presents the main results of these different models in order to compare the
experiments performed with their predictions, further in this Chapter.

Virtual point source and beam width

The beam formed by the branches of the attractor can be seen as a beam emitted by a
point virtual source, located behind the focusing reflection [64, 79]. Figure 3.19 illustrates
this idea. One assumes that the thickness of the beam depends on the distance from the
virtual source to the power 1/3. This scaling is the same as the one provided by Thomas and
Stevenson [146] and is typical for self-similar internal/inertial wave beams. The distance
c between the focusing reflection and the virtual point source is set by this scaling law

Figure 3.19: Ray tracing prediction (dashed line) for an attractor with (d, τ) = (0.2, 1.6).
The slope is represented by the thick solid black line. The virtual point source is indicated
by the black dot, at the right of the slope. It emits a beam, whose the width scales to
the power 1/3 with the distance from the source. Branches are larger and larger until the
focusing reflection on the slope.
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and the geometry of the attractor. Indeed, the thickness of the beam is controlled by
the focusing parameter γ and the length of the branches in [79] or the perimeter of the
attractor Lp in our case. Note that γ is a function of the angle of the waves θ and the angle
of the slope α (see equation (1.58)). Let’s call σ(ξ) the thickness or the width of the beam.
It depends on ξ, the distance along the attractor with the 1/3 scaling. The width of the
beam just after the focusing reflection is σ(0). After propagating all along the perimeter of
the attractor, the thickness of the attractor is σ(Lp) and is related to σ(0) by the focusing
parameter γ

γ =
σ(Lp)

σ(0)
. (3.11)

Now, one can write σ as a function of the distance ξ

σ(ξ) ∝ (ξ + c)1/3, (3.12)

where c is the distance between the focusing reflection and the virtual point source. Thus,
using equations (3.11) and (3.12), one has

γ =

(
Lp + c

c

)1/3

, (3.13)

which leads to
c =

Lp
γ3 − 1

. (3.14)

Thus, the distance between the virtual source depends on the perimeter of the attractor Lp
and on the focusing parameter γ. One defines Ξ = ξ + c as the total distance along the
attractor, from the virtual point source. In [79], the beam is focused at each reflection.
Thus, there is four virtual point sources behind each reflecting wall. In our experimental
set-up, the beam is focused only once, on the focusing slope and therefore there is only
one virtual point source, located behind the focusing slope.

A more quantitative model for the width (or the thickness) of the attractor is developed
in [64], for the steady state of the attractor. This model gives the evolution of the width
of the branches all along the perimeter of the attractor

σ(ξ) = C ′
(

ν√
N2 − ω2

0

)1/3(
ξ +

Lp
γ3 − 1

)1/3

= C ′
(

ν√
N2 − ω2

0

)1/3

Ξ1/3, (3.15)

using the notations of this manuscript. C ′ is a constant and ν the viscosity of the fluid. The
1/3 scaling is observed for the distance Ξ but a similar scaling appears for the viscosity. If
one normalizes the width by the perimeter of the attractor, one gets

σ(ξ)

Lp
= C ′

(
1− Ω2

0

)−1/6
(

ν

NL2
p

)1/3(
ξ

Lp
+

1

γ3 − 1

)1/3

, (3.16)

= C ′
(

1− Ω2
0

)−1/6
(

ν

NL2
p

)1/3(
ξ + c

Lp

)1/3

. (3.17)

This shows that the ratio between the width of the attractor and its perimeter scales as
(ν/NL2

p)
1/3. In the experiment, it is impossible to change the viscosity of water but one

can change the perimeter of the attractor. Indeed, using the two tanks available, one can
realize two different experiments with the same (d, τ) parameters but with two different
perimeters. In the small tank, the perimeter is around 1 m while in the large tank it is
more than 3 m. Thus, the aspect ratio σ/Lp should be larger of a factor (32)1/3 ≈ 2 in the
small tank than in the large tank. This is explored in section 3.3.4.
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Velocity profiles

As the width scales with the distance to the power 1/3, it is normal to observe this scaling
in the branch profiles of inertial wave attractors [79]. Jouve and Ogilvie [79] performed
numerical simulations of wave attractors which are slightly different from the configuration
studied in this manuscript or in several papers cited within. Attractors are obtained
simulating inertial waves in a square. This square is rotated around an axis which is tilted
with respect to the sides of the square. Thus, each side of the tank acts as a focusing
reflection and inertial wave attractors are observed, both in a linear and non-linear regime.
In this part, only the linear regime is discussed. Adapting equations developed in [125]
to the square geometry, Jouve and Ogilvie [79] are able to predict and verify numerically
the shape of the velocity profiles of the branches. Formulas for longitudinal and normal
(in the plane normal to the attractor plane) velocity fields have been derived. As inertial
and internal waves are very similar, one can test the theoretical prediction of [79, 125]
on the velocity fields measured in our experimental configuration. Nevertheless, inertial
waves are always three-dimensional while internal waves can be two-dimensional. In our
configuration, measurements have been done to verify the two-dimensional character of the
flow. The results are presented in section 4.3 of this manuscript and show that the waves
in the tank are quasi-independant of the y component. Thus, there is no normal velocity
for internal wave attractors produced by our set-up. So, one can only test the prediction
for the longitudinal velocity field. This field, given in [79] and adapted to the notations
introduced in this manuscript, is

vξ = Re
(
U(η,Ξ) exp(iω0t)

)
, (3.18)

where ω0 is the frequency of the wave and U(η,Ξ) the complex velocity profile. Ξ is here
defined as the distance between the profile and a virtual source, which could mimic the
same inertial/internal wave beam, if it has been placed behind a reflecting focusing wall.
The expression of U is

U(η,Ξ) =

(
ω0

νΞ

)1/3

a0

∫ ∞
0

i exp(−ipη̃ − p3)dp, (3.19)

where a0 depends on the forcing, ν is the viscosity, and η̃ is the dimensionless version of
η, given by

η̃ =

(
ω0

νΞ

)1/3

η. (3.20)

One has here a self-similar profile for the longitudinal velocity fields. This profile depends
on the transverse dimensionless coordinate η̃ and its amplitude varies with respect to the
forcing (a0) and to the longitudinal distance ξ to the power −1/3. The same 1/3 scaling is
used to normalize the transverse coordinate η. This velocity profile is compared with the
one obtained experimentally in section 3.3.3.

Wave length of branches

Hazewinkel et al. [70] have developed a model to explain the spectrum of the wave profiles,
during the steady state. This model considers a wave-packet propagating in the tank.
Energy is injected in the tank at a low wave number kinj. Then, as the energy propagates,
the injected wave number kinj is transformed into larger wave numbers by the focusing
reflection and, consequently, higher wave numbers appear. First, due to focusing, the
energy of these higher wave numbers is amplified. Nevertheless, this process is limited
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3. Internal wave attractors: a geometric and linear construction

by viscosity. As higher and higher wave numbers are created, they are more and more
dissipated by viscosity which attenuates more the smaller scales. Thus, at the end, an
equilibrium is reached between the injected wave number, focused and amplified, and the
viscous damping. The spectrum exhibits a maximum, at a value kpeak = kinj/Γ

1/3, where

Γ =
2νLp√

N2 − ω2
0(γ3 − 1)

(
2π

H

)3

. (3.21)

Let assume that the injection is made by a vertical mode p. Thus, one has kinj = pπ/H.
This leads to

kpeak = p

(
γ3 − 1

16

)1/3(√
N2 − ω2

0

νLp

)1/3

∝ pγ
(√

N2 − ω2
0

νLp

)1/3

, (3.22)

for γ sufficiently greater than 1. This shows the main dependance of kpeak in term of the
different parameters of the problem: the number p of the mode, the focusing parameter
γ, the perimeter Lp, the viscosity ν and the frequencies N and ω0. With a typical value
γ = 2 for our experimental (1, 1) attractors, ones has

kpeak ≈
(√

N2 − ω2
0

Lpν

)1/3

. (3.23)

This model is illustrated by the spectrum in figure 3.20, taken from [70] and annotated to
highlight the main ideas. The experiments and the model related in [70] present a good
quantitative agreement and Grisouard et al. [64] show very similar spectra.

focusing

dissipationamplification

injection

Figure 3.20: Theoretical and experimental spectra of a cut through branch 1, extracted
from [70]. The energy is injected at the scale of the basin, at a low wave number. The
focusing drives the wave numbers from low (left) to high (right) values with time. The
vertical dashed line shows the maximum of the spectra and splits the figure in two parts:
the left part where amplification dominates and the right part where viscous dissipation is
more important.
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3.3. Steady state of the (1, 1) attractor

In order to use these models with the data collected during the experiments, one has to
measure the profiles of the branches of the attractor. The velocity profiles can be directly
compared with the model given by Jouve and Ogilvie [79] while the width and the spectrum
of the branches can be compared with the models developed by Grisouard et al. [64] and
Hazewinkel et al. [70]. This is the point of the next section.

3.3.2 Branch separation

To study in details the branches of the attractor, it can be comfortable to separate them.
It is possible to separate the four branches of the attractor using Hilbert filtering in space,
for experiments performed in SyS or PIV. As phase and group velocities are orthogonal
and as the wave vector and the group velocity have z-component opposite in sign, each
branch is associated to a quadrant into the 2D wave vector space. Table 3.2 shows the
signs of the horizontal and vertical components of the wave vector, for each branch. Thus,
keeping only the positive (or negative) horizontal and vertical components of the wave
vector allows us to separate the four different branches.

Branch 1 2 3 4

kx < 0 < 0 > 0 > 0

kz < 0 > 0 > 0 < 0

Table 3.2: Signs of the horizontal and vertical components of the wave vector for each
branch.

This is what has been done in figure 3.21. The four panels present the four different
isolated branches of an attractor. The panels are arranged to keep qualitatively the same
relative position for the branches. Thus, panel (a) is for branch 2, panel (b) is for branch 1,
panel (c) is for branch 3 and panel (d) is for branch 4. This is very convenient because,
using Hilbert filtering in space, one can look at branch profiles without interference of the
other branches. Figure 3.21 shows also that, except on the four branches, the motions of
the fluid are very weak.

Once each branch has been isolated, one can combine the different measured fields into
more appropriate fields for the branches, the transverse or longitudinal fields. This has
been done for SyS in [70, 64] but one can also do the same thing for PIV, as Jouve and
Ogilvie [79] give predictions on the longitudinal velocity fields for a inertial wave attractor
branch. For each branch, the group velocity is in the ξ direction while the phase propagates
in η direction. These two directions have been defined for each branch in section 3.2.2
in figure 3.16. Thus, for SyS, one can expect the strongest density gradient fields in the
transverse (η) direction and the weakest fields in the longitudinal (ξ) direction, because the
phase propagates along the transverse direction. Thus, the density gradients are stronger
in the transverse direction than in the longitudinal direction. On the other hand, for
PIV, one can expect the strongest velocity fields in the longitudinal (ξ) direction while the
weakest should be in the transverse (η) direction for the same reason. The velocity fields
is mainly oriented along the ξ direction and not in the η direction. Thus, it worths to
combine the measured fields, the horizontal and vertical density gradient or velocity fields
into more appropriate density gradient or velocity fields, depending on the visualization
technique employed. Hazewinkel et al. [70] have introduced for the first time the transverse
density gradient fields, ∂ρ′/∂η, for SyS. This transverse gradient has been used to perform
a cut through branch 1 and analyse the Fourier spectrum of this cut. One can introduce
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Figure 3.21: Snapshots of the real part of the vertical velocity fields filtered around ω0 in
frequency and around each sign of kx and kz in space. (a): branch 2; (b): branch 1; (c):
branch 3; (d): branch 4. The location of the images is chosen to conserve qualitatively the
relative position of the four branches of the attractor. The experiments is the same as the
one used in figures 3.15 and 3.16. The dashed black lines indicate the cuts made through
the branches, in figures 3.22 and 3.23. The black squares at the right of the slope indicate
where the space filtering in wave vectors is performed for each panel.

here the longitudinal velocity fields, vξ. The quantities ∂ρ′/∂η1, ∂ρ′/∂ξ1, vη1 and vξ1 for
branch 1 are given by

∂ρ′

∂η1
=

∂ρ′

∂x
sin θ +

∂ρ′

∂z
cos θ, (3.24)

∂ρ′

∂ξ1
= −∂ρ

′

∂x
cos θ +

∂ρ′

∂z
sin θ, (3.25)

vη1 = vx sin θ + vz cos θ, (3.26)
vξ1 = −vx cos θ + vz sin θ. (3.27)

The computation of the transverse and longitudinal fields for the other branches are similar,
paying attention to the orientation of ξ and η with respect to the horizontal and vertical
axis.

Figure 3.22 shows snapshots of the different velocity components along a cut through
branch 1 for an attractor, after Hilbert filtering in frequency and space. Panels (a) and
(b) show the measured horizontal and vertical velocity components, vx and vz while panels
(c) and (d) exhibit the transverse and longitudinal components, vη1 and vξ1 , computed
using the measured velocity fields. As expected, vξ1 is slightly more intense than vx and
vz while vη1 is close to zero. Similar features can be obtained for the other branches. For
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3.3. Steady state of the (1, 1) attractor

SyS, the figure is not presented in this manuscript but it exhibits the same characteristics
except that the transverse density gradient field is relevant and the longitudinal density
gradient field vanishes. Thus, one can verify that the longitudinal density gradient field
or the transverse velocity field are negligible with respect to the other fields. The relevant
fields are longitudinal velocity fields for PIV and transverse density gradient fields for SyS.
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Figure 3.22: Snapshots of the real part of the different velocity components along a cut
made through branch 1, after Hilbert filtering in frequency and space. (a): vx, horizontal
velocity component; (b): vz, vertical velocity component; (c): vξ1 , longitudinal velocity
component; (d): vη1 , transverse velocity component. The locations of the cut made through
branch 1 is shown in figure 3.21(b), as a dashed black line.

One can use the branch separation and the relevant fields to characterize the different
branches, in term of phase propagation, width and wave length.

3.3.3 Branch profiles

As the phase is normal to the group velocity for internal waves, the cuts made through
the branches are a good way to observe the phase propagation. Figure 3.23 shows this
phase propagation of the four branches, after Hilbert filtering in frequency and space. For
each branch, a black thick line represents the amplitude of the branch or the envelop and
four phases are plotted with different colors. As the wave vector is pointing towards the
negative (respectively positive) η for branches 1 and 3 (resp. for branches 2 and 4), the
phase propagates from right to left on panels (b) and (c) (resp. from left to right on panels
(a) and (d)).

Looking to the amplitude (or envelop) of the branches, it seems that the black curves
are more or less symmetric with respect to η = 0 cm. Panel (b) for branch 1 is well
symmetric with respect to η = 0 cm but for the other branches on the other panels, the
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3. Internal wave attractors: a geometric and linear construction

asymmetry is more and more important. Nevertheless, the different phases exhibit the
same characteristics. Moreover, one can see that the maximum of the amplitude of the cut
decreases as one follows the trajectory of the waves. The maximum is reached for branch 1
and then is smaller and smaller for branch 2, 3 and 4. As the amplitude goes down,
the envelop is slightly broadened. This confirms that waves propagate anti-clockwise: the
amplitude is damped by viscosity and the envelop is larger and larger because of momentum
diffusion. This has been seen by [70, 64] using Fourier spectra of cuts made through the
different branches.
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Figure 3.23: Longitudinal velocity fields along cuts made through the four branches of the
attractor at four instants. (a): branch 2; (b): branch 1; (c): branch 3; (d): branch 4. The
location of the cuts are indicated by the dashed black lines in figure 3.21. On each panel,
the thick black line shows the amplitude (modulus) and the four lines of different colors
represent the profiles at different instants. The four instants are separated by a quarter of
a period and are ordered as follows: blue, green, magenta and red.

For the experiment presented in this section, one has c ≈ 0.1Lp ≈ 10 cm, meaning
that the virtual source is distant to the focusing reflection around a tenth of the perimeter
behind the slope.

To compare the predictions of [125, 79] (see equations (3.19) and (3.20)) with our
measurements, one focuses on branch 1 which exhibits the best results in term of signal-
over-noise ratio. The signal has to be normalized because the a0 term in the amplitude
depends on the numerical forcing of [79], which is different for us. Indeed, the numerical
forcing of [79] is a bulk forcing. Thus, one can compare only the normalized signals. The
dimensionless profile of [79] is normalized and its width is scaled using equation (3.20) and
the distance Ξ between the profile and the point source. Figure 3.24 shows the comparison
between the longitudinal velocity profiles measured in our configuration and the prediction
made by [125, 79] and given in equation (3.19). Experimental (solid lines) and theoretical
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Figure 3.24: Comparison between normalized experimental (solid lines) and theoretical
(dashed lines) longitudinal velocity profiles. The theoretical profiles are given by equa-
tion (3.19).The black lines represent the envelop and four different phases are shown, from
blue, green, magenta to red. The experiment used here is the same as the one in figures 3.15
and 3.16.

(dashed lines) profiles are in a good agreement. Close to η1 = 0 cm, where the amplitude
of the attractor is the highest, theory and experiments are quantitatively consistent. The
difference between them becomes more important away from the center region η1 = 0 cm
but the profiles remain qualitatively similar. This discrepancy could be due to two reasons.
The first one is that the geometry of [79] is different from the trapezoidal geometry we used.
Thus, the rays may have a different way to converge towards the attractor and therefore do
not contribute to the attractor in the same manner as they do for the trapezoid geometry.
Moreover, the forcing is here different because it is a bulk forcing. Thus, the trajectories
of the rays converging towards the attractor are different than the ones in our set-up.

3.3.4 Branch wave length and width

We have shown in the previous section that the model for the velocity profiles developed by
Jouve and Ogilvie [79] is in good agreement with the experimental results. In this section,
we focus on the wave length and the width of the attractor branches in order to compare
them with the ones predicted by the models of Grisouard et al. [64] and Hazewinkel et
al. [70].

The peak wave number and the width of the attractor are measured using experiments
performed in the large tank with SyS as a visualization technique. The different branches
have to be separated using Hilbert filtering in frequency and in space. The results obtained
for branch 1 are similar for the other branches except that the others are slightly broader
and less intense than the first branch. The filtered horizontal and vertical gradient density
fields are combined to the transverse density gradient field, ∂ρ′/∂η1. This field is plotted
in figure 3.25(a). A cut, plotted as a dashed black line, is made through branch 1. From
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3. Internal wave attractors: a geometric and linear construction

this cut, one can have the real signal, the modulus (amplitude) and also the phase, along
the cut. These quantities are plotted as a function of the distance η1, in figures 3.25(b) and
(d). The phase is related to the wave-vector by ~k = −~∇φ. When unwrapping the phase,
one can fit it by a linear profile where the amplitude of the wave is high and get the slope.
One obtains the norm of the peak wave vector and thus, the peak wave number kpeak.
This value is consistent with the Fourier spectrum of the real part of the signal, shown on
panel (c). The maximum of the spectrum is close to the value found with the phase. The
width of the branches is defined as the width at half maximum. Consequently, the width
is the distance between the two vertical dashed black lines, surrounding the maximum of
the amplitude in η1 = 0 cm, on panels (b) and (d). The width depends of course of the
definition taken. Changing half in one third or one quarter will certainly increase the width.
Nevertheless, we are interested in the variation of the width as a function of the distance
ξ and the definition taken for the width only changes the constant C ′ in equation (3.15).
Moreover, the same definition is used in all this manuscript and this definition is more
easily applicable to the branches than the one proposed in [64].

The Fourier spectrum in figure 3.25(c) is similar to the one described in the model
of [70]. Equation (3.16) has been verified by [64] numerically, for an attractor in a steady
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Figure 3.25: (a): ∂ρ′/∂η1 of a stable attractor observed with SyS during the steady state,
after Hilbert filtering in frequency and space. The black square indicates where the space
filtering in wave vectors is performed. The cut made through branch 1 is plotted as a dashed
black line. (b): ∂ρ′/∂η1 along the cut through branch 1. The real part is represented by
a dashed dotted blue line and the modulus by the two black lines. (c): Fourier spectrum
of the real part of ∂ρ′/∂η1 shown on panel (b). The vertical dashed line shows the peak
wave number found using the phase on panel (d). (d): Unwrapped phase (black solid line)
and fit of the central part (magenta dashed dotted line). The part were the fit is done
is in between by the two vertical dashed lines, on both panels (b) and (c). The distance
between these two lines defines the width σ of branch 1.
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3.3. Steady state of the (1, 1) attractor

state. Nevertheless, the definition of the width has been changed from [64]. To verify
that the definition given in that manuscript is similar to the one proposed in [64], the
width of the attractor has been measured all along the perimeter. Several cuts have been
made through the branches 1 to 4 and the width at half maximum has been measured.
The width is plotted as a function of the distance ξ, in figure 3.26. The agreement is
relatively good with the power law predicted by equation (3.16) and is similar to the
results reported in [64]. A linear fit gives a slope of 0.43, similar to the one found in [64].
Thus, the definition taken for the width of the branch seems valid and gives results similar
to numerical simulations reported in [64].
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Figure 3.26: Width-over-perimeter ratio as a function of the normalized distance (black
dots) in log-log scales. The black line shows the predicted power law, 1/3. The points
come from the four branches, indicated on the figure. The dispersion of neighbor points
gives an estimate of the error bar of this measure.

It is now possible to check the scaling for the width of the attractor as a function of the
perimeter given by equation (3.16). Figure 3.27 shows a comparison between two attractors,
one in the small tank and the other one in the large tank, both observed using SyS. The
two attractors have very close (d, τ) parameters but different scales. The horizontal and
vertical scales of the trapezoid in panel (a) are approximately 3 times smaller than the ones
in panel (b). Thus, plotting these two attractors with the same dimension is equivalent
to normalize them. The horizontal density gradient fields are represented after a filter in
frequency around ω0 and a normalization by the maximal amplitude of the branch 1. Thus
the color bar is the same for the two attractors and lies in the range [0 − 1]. According
to equation (3.16), the width of the small tank attractor (panel (a)) appears larger than
the width of the large tank attractor (panel (b)). The width measurements made cutting
branch 1 of both attractors, at the same Ξ/Lp, show that the ratio σ/Lp is 4.55× 10−2 for
the small tank attractor and 2.25× 10−2 for the large tank attractor. There is a factor 2
between these ratios. The model described in [64] and given in equation (3.16) claims that
the ratio σ/Lp ∝ L

−2/3
p . Thus, the ratio between σ/Lp of the large and small attractors

should be equal to the ratio of the perimeters, equal to 3, to the power 2/3: 32/3 ≈ 2.
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3. Internal wave attractors: a geometric and linear construction

Thus, the width measurements are in good agreement with the model described in [64]. We
took care of measuring the width of branch 1 at the equivalent location in both attractors.
Moreover, section 3.4 demonstrates that, for stable attractors, the width of the attractor
does not depend on the amplitude of the forcing. Thus, the measured widths in the two
attractors of figure 3.27 do not depend on their amplitude.

To validate completely this scaling for the width given in equation (3.16), one should
vary the perimeter Lp or the viscosity ν on large ranges of order of magnitude. It is
difficult to do this experimentally. However, if one can imagine attractors in oceans or
lakes, this scaling shows us that, in natural structures, where the scales are kilometers or
more, the attractor width is very small in comparison to the perimeter. For example, if one
considers the experimental set-up scaled with the ocean depth, which is around 4000 m,
the perimeter Lp is approximately equal to 10000 m. In the ocean, the buoyancy frequency
is in between 10−4 and 10−3 rad/s. The scaling for the width σ gives an attractor of few
meter thick, which is unrealistically thin. For a lake of 100 m depth and a buoyancy
frequency of 10−3 rad/s, the width is less than one meter. It is impossible to confine all
the energy is such narrow beams. Thus, one can assume that stable attractors can not
be present in oceans or lakes as they are in the experimental set-up. Non-linearities play
surely an important role, as highlighted in Chapters 4 and 5.
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Figure 3.27: |∂ρ′/∂x| filtered around ω0 and normalized by the amplitude of the branch 1
for attractors made in the small (a) and large (b) tanks. (d, τ) = (0.38, 1.85) for (a) and
(d, τ) = (0.52, 1.83) for (b).

3.4 Growth and decay of the (1, 1) attractor

Experiments [70] and numerical simulations [64] have already studied the evolution of the
wave number of the branches of the attractor as a function of time, using spectra made from
a cut through branch 1. These studies have been done during the decay of the attractor,
once the forcing has been stopped. During the decay, there is no more low wave number
injection and, due to focusing, all wave numbers become higher and higher and are damped
by viscosity. Thus, the kpeak value shifts more and more to high wave number values and
the amplitude of the peak decreases [70, 64]. In this section, the wave length, the width
and the amplitude of the attractor branch 1 are followed in time, from the growth to the
decay of an internal wave attractor.
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3.4.1 Typical growth and decay

Experiments have been performed in the large tank in order to follow the branch 1 of an
attractor during the growth, the stationary state and the decay of the attractor. Moreover,
the amplitude of the wave-maker has been changed between the different experiments, to
study the effect of the forcing on the evolution of the branches. Because these experiments
were done in the large tank, the technique used was SyS. Two series of experiments have
been performed, using the same filling of the tank. The second series has been carried on the
next day of the first series. This ensures that all the experiments have exactly the same ge-
ometry, the same stratification and the same forcing frequency. Thus, (d, τ) = (0.34, 1.81)
for all the experiments presented in this section. Experiments of the first series are growth
and decay experiments, with different amplitudes of forcing. This means that the wave-
maker is started at the beginning of the experiment, the attractor grows until it reaches
the steady state and then the wave-maker is stopped. Data are collected continuously
during the three phases, until the fluid in the tank comes back to rest. Experiments of the
second series are only growth experiments, with different forcing amplitudes. Thus, the
decay phase is not recorded. In this section, only experiments where the attractor is stable
are presented. This corresponds to experiments where the amplitude of the wave-maker is
small. Experiments with unstable attractors at large forcing amplitudes are presented in
next chapter, section 4.1.2.
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Figure 3.28: Time history of the horizontal density gradient fields in a point located at
x = 85 cm and y = 63 cm, on branch 1. The wave-maker is started at t = 0 T0 and is
stopped at t = 73 T0. The position of the attractor in the tank is shown in figure 3.29.

Typical growth, steady state and decay are shown in figure 3.28, using the time-history
of the horizontal density gradient field in a point located on branch 1. The amplitude starts
to grow until the attractor reaches a stationary state around 40T0. Then this stationary
state is maintained, until the wave-maker is stopped at t = 73T0. Then, the attractor
decays and no motion is observed after t = 115T0. The part of the figure between t = 125
and 150T0 gives the noise amplitude of the signal. Although this amplitude is quite small in
comparison to the maximum amplitude of the attractor, this can lead to small fluctuations
in the amplitude of the stationary state that are visible in figure 3.28, between t = 30 and
73T0.

Figure 3.29 shows four different snapshots of an attractor, filtered around ω0 in fre-
quency. The experiment is the same as the one used in figure 3.28. Panels (a) and (b)
of figure 3.29 are during the growth and the stationary state while panels (c) and (d) are
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Figure 3.29: Horizontal density gradient fields for t = 15T0 (a), t = 50T0 (b), t = 90T0

(c) and t = 105T0 (d). (a) corresponds to growth, (b) to steady state and (c) and (d) to
decay. The images have been filtered around ω0 in frequency. The horizontal line around
z = 80 cm which presents artificial defects is due to PIV particles that converged towards
their iso-density line.

during the decay of the attractor, after the wave-maker has been stopped. One can clearly
see an evolution in the peak wave number (the peak value kpeak), in the amplitude and in
the width of the branches, as in [70, 64]. Panel (a) has the smallest wave number. Then
panels (b), (c) and (d) have larger and larger ones. This is consistent with the model
developed in [70] and illustrated in figure 3.20. The peak wave number of panel (a) is in
the left part of the steady state spectrum, the amplification part. Panel (b) corresponds to
the steady state, while peak wave numbers of panels (c) and (d) are in the right part, the
dissipation one. The amplitude of the branches grows until its stabilizes during the steady
state and then decays slowly. This is consistent with figure 3.28. Peak wave number and
amplitude of branch 1 will be investigated as a function of time in section 3.4.2.

Regarding the width of the branches, it seems that during growth and stationary state,
the width has a similar behavior as the wave length since one can see only approximately
one wave length into the branches of the attractor. Nevertheless, during the decay, it seems
that the width of the attractor remains approximately constant and therefore more wave
lengths appear into the width because the wave length is reduced during the decay. Results
about the width of the attractor are presented in section 3.4.3.

3.4.2 Wave length and amplitude evolution in time

In order to measure the peak wave number and width of branch 1 as a function of time, the
analysis presented in figure 3.25 has been done on several images, using always the same cut
location. The complete evolution in time of the wave length λ, defined as λ = 2π/kpeak, is
shown in figure 3.30(a), for three experiments with different amplitudes of the wave-maker.
The amplitudes are a = 0.7 (green), 1.5 (magenta) and 2.1 mm (blue). The attractors are
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Figure 3.30: (a): Wave length of the attractor branch 1 as a function of time. (b):
Transverse density gradient fields amplitude of the attractor branch 1 as a function of
time. (c): Normalized transverse density gradient fields amplitude, with respect to the
steady state, as a function of time. The different symbols and colors indicate experiments
of different amplitudes: green pentagons for a = 0.7 mm, magenta hexagons for a = 1.5 mm
and blue dots for a = 2.2 mm. The symbols show the instants where the wavelength and
the amplitude have been measured. There are two growth and decay experiments (green
and blue points) and one growth experiment (magenta points). The vertical dashed line
represents the moment when the wave-maker was stopped.

stable for these amplitudes. One can first note that the attractor wave length is totally
independent of the amplitude of the wave-maker at any time, because all the three curves
are superimposed. Secondly, one can see how the attractor set-up is a machine to decrease
the wave lengths. Indeed, the wave-maker injects a very large wave length, typically of
184 cm, which is equal to two times the height of the large tank. While the waves reflect
on the slope, the energy is focused and the wave lengths are smaller and smaller until a
steady state is reached. In this state, the focusing is balanced by the viscous broadening.
The ratio between the injected scale and the scale of the attractor in the steady state is
around 13.5. This value is larger than 9, which is the value of the same ratio reported for
a small tank attractor experiment [139], for linear focusing. Thus, the large tank allows an
energy transfer through a larger range of scales than the small tank. Once the wave-maker
has been stopped, there is no more large injected wave length and the slope focuses the
waves into smaller and smaller wave length until all the energy is damped by viscosity.

The influence of the amplitude of the wave-maker can be seen in figure 3.30(b), showing
the transverse density gradient field amplitude as a function of time, for the same three
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different experiments as in figure 3.30(a). The higher the amplitude of the wave-maker,
the higher the amplitude reached by the steady state. Thus, for stable attractors, all the
energy emitted by the wave-maker is focused into an attractor with the same geometri-
cal characteristics. The only difference is that the amplitude varies with the one of the
wave-maker. Figure 3.30(c) shows the normalized version of the curves presented in fig-
ure 3.30(b). Each curve is now divided by the maximum of amplitude, reached during the
steady state. All curves collapse well, showing that only geometry matters in the attractor
process, the amplitude of the wave-maker giving only the amplitude of the branches. This
shows that the creation of stable attractors is a purely linear process, evolving only through
geometrical focusing.

3.4.3 Attractor width evolution in time

One can also study the evolution of the width of the branches of the attractor as a function
of time, during the growth, stationary state and decay of the attractor. As for the wave
length and the amplitude, different images have been analyzed and the width of branch 1
has been measured always at the same location. These images come from the three different
experiments of the previous section, with exactly the same geometry but with different
amplitudes. Results are presented in figure 3.31. Figure 3.31(a) shows the evolution of
the width as a function of time. All the curves from the three experiments collapse well
as for the wave length evolution in time. During the growth and the steady state of the
attractor, the behavior of the width is very similar to the one of the wave length, presented
in figure 3.30(a). Nevertheless, after the stop of the wave-maker, the width of branch 1
increases slightly while the wave length decreases. The width-over-wave length ratio gives
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Figure 3.31: (a): Width σ of branch 1 as a function of time, for the same three experiments
as in figure 3.28. (b): Ratio between the width σ and the wave length λ of branch 1 as a
function of time. The dashed black lines show the time where the wave-maker has been
stopped. The symbols are the same than the ones in figure 3.28.
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an idea of the number of wave lengths that are present in the width of the branch. This ratio
is plotted, as a function of time, in figure 3.31(b). During the growth, this ratio slightly
decays but one can consider that the ratio is more or less constant during the growth and
the steady state. This means that there is only one wave length in the width of the branch
during this two phases. This is consistent with the snapshots in figures 3.29(a) and (b).
Once the wave-maker has been stopped, this ratio increases drastically. Indeed, the wave
length decreases a lot, due to focusing and the width of the beam slightly increases. On
the snapshots presented in figure 3.28, the width of the beam does not seem to increase.
The increase in figure 3.31(a) is probably due to the damping of the waves. Thus, the
amplitude of the beam is smaller and the envelop is flatter. Nevertheless, this shows that
there is more wave lengths that are present in the width of the branch, as the attractor
decays. This is also consistent with what it is observed in figure 3.29.

To conclude this section, one can pay attention to the scaling of both the peak wave
number and the width of the attractor, given by [70, 64] and by equation (3.16). For
the width, one has σ ∝ (νLp/

√
N2 − ω2

0)1/3 while the scaling for the wave length is
λ ∝ (νLp/

√
N2 − ω2

0)1/3 for a forcing at large scales, with a vertical mode 1. The ratio
between the two is equal to 1. This explains why one can only see one wave length per
branch in the steady state. Nevertheless, the scaling for the wave length depends on kinj,
the wave number where energy is injected. With kinj ≈ 1/H, one gets the previous scaling.
So it could be interesting to force the tank with a larger wave number, like a mode 2 or
3 for example. The wave length should be smaller and one should see more wave lengths
than only one in the width of the branch. Doing that, one has to be careful to remember
that the smaller scales are more attenuated by viscosity.

3.5 Exploring different forcings

In this section, different forcings are explored experimentally, from the forcing on all the
height of the basin to a more local forcing, on primary fundamental intervals only. The
results are compared to the theoretical stream function fields (see section 3.1.4), obtained
for the same type forcing.

3.5.1 Forcing on all the height

The experimental stream function of an attractor can be obtained by measuring the velocity
fields. This has already been done in [68], but, without comparison with the theoretical
stream function. In [86], the theoretical displacements computed from the theoretical
stream function were compared to the observed displacements in the first experiments on
internal wave attractors [97]. Moreover, in [97, 68], the forcing was different.

Using section 3.1.4, it is possible to compare the stream function obtained using this
method to the one obtained experimentally. The main difference is that the theoretical
method is inviscid (the rays and the attractor are infinitely thin) while viscosity is not neg-
ligible in the experiments. Moreover, the theoretical method exhibits only the stationary
state of the attractor while it is also possible to observe transition states (growth or decay)
of the attractor experimentally. To compare with one experiment, it is easy to transform
the dimensionless stream function field into a stream function field with dimensions. The
basin has to be rescaled and the stream function must be multiplied by the amplitude a
of the wave-maker. However, the wave-maker is not 100% efficient and this overestimates
slightly the stream function.
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Figure 3.32: (a): Snapshot of the measured horizontal velocity field, vx. (b): Stream
function obtained using the Matlab function intgrad2.m and the measured horizontal (a)
and vertical velocity fields. The arrows show the velocity fields. (c): Horizontal velocity
field, −∂Ψ/∂z, differentiated from the stream function (b). (d): Difference field between
the measured and the differentiated horizontal velocity fields. The colorbar is the same for
panels (a), (c) and (d) and is presented on the right of panel (d). The colorbar for panel
(b) is plotted to its right.

Experimentally, the stream function is obtained by integrating the measured velocity
fields with the Matlab function intgrad2.m. This function has been tested by Hazewinkel
et al. [68] in a similar context, for SyS and PIV data. Figure 3.32(a) shows a snapshot of
the measured horizontal velocity field, vx. Using this field and the measured vertical one,
the Matlab function intgrad2.m gives the stream function field, Ψ(x, z), in figure 3.32(b).
To determine the constant of integration, one makes the average of the stream function at
the right of the slope. This value is non zero because the integration is made on the whole
rectangle, with the velocity fields equal to zero at the right of the slope. The average value,
which is non-zero but small compared to the stream function amplitude, is subtracted to
the stream function.

To estimate the error made by the integration, one can take the gradient of the stream
function field obtained, which leads to differentiated horizontal and vertical velocity fields,
−∂Ψ/∂z and ∂Ψ/∂x. The corresponding horizontal velocity field, −∂Ψ/∂z, is shown in fig-
ure 3.32(c). Then, one can make the difference between the original horizontal velocity field,
vx, and the differentiated one, −∂Ψ/∂z. This is done in figure 3.32(d). Figures 3.32(a), (c)
and (d) have the same color bar, plotted at the right of figure 3.32(d). One can clearly see
that figures 3.32(a) and (c) are very similar. Thus, the error made by the integration and
the differentiation is quite small. This is confirmed by figure 3.32(d), where the amplitude
of the difference between figures 3.32(a) and (c) is very small in comparison of the ampli-
tude observed in figures 3.32(a) or (c). The difference is smaller than 5% everywhere in the
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tank. The same order of magnitude for the error made by integration and differentiation
has also been observed in [68].

Figure 3.33 shows the comparison between experimental (left column) and theoreti-
cal (right column) stream functions, for four different times within half a period. The
agreement is qualitatively excellent, the different phases of the images being very similar.
Nevertheless, the color bar needs to be adapted. This is due to viscous effects that are
present in the experiments. Moreover, for the theoretical stream function, motions are
more localized around the attractor than in the experiment. This is also due to viscosity,
branches of the experimental attractor having a given thickness.
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Figure 3.33: Comparison between the experimental stream function (left column) and the
theoretical stream function (right column) for the same geometry. The dashed black line
on the images of the left column shows the ray tracing prediction for this geometry. The
color bars are adapted to have the same visual impression. The arrows indicate the velocity
fields. The arrows very close to the attractor in the theoretical case are not represented
because they are too large.

With the wave-maker, it is also possible to force locally with different shapes. Such
set-up is also very easy to mimic in order to obtain the theoretical stream function. In
particular, forcing on primary fundamental intervals seems to be very interesting regarding
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the importance of these intervals for the geometry of the attractor. This is done in the
next section.

3.5.2 Forcing on fundamental intervals

Regarding the importance of the primary fundamental intervals for the geometry of the
attractor as it has been shown in section 3.1.3, experiments have been performed with a
forcing only on one of the primary fundamental intervals. The formation of an attractor
is expected, but only with a part of the webs. In particular, points inside the attrac-
tor are reached by webs coming from the two primary fundamental intervals. Here, one
web is missing. Outside the attractor, the points are reached by webs coming from the
same primary fundamental interval. Thus, one can expect no motion in some regions.
An example of a theoretical stream function obtained with a forcing on the top primary
fundamental interval is shown in figure 3.34. Here, the top right and bottom left corners
outside the attractor do not exhibit any motion. The stream function pattern appears to
be very different than the one obtained with forcing on all the height, as in figure 3.10 in
section 3.1.3.

Experiments have been performed in both small and large tanks. In the small tank, the
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Figure 3.34: Example of stream function fields Ψ(x′, z′, t′) of an attractor with dimension-
less mode 1 forcing on the top primary fundamental interval, at different times during the
period. The indices p indicate the different dimensionless times: t′ = 2(p−1)π/12. Arrows
indicates the velocity fields computed from the stream function. Large arrows close to the
attractor are not represented. A black rectangle on each image shows the region where the
forcing is made on the left vertical wall.
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forcing has been done on the bottom primary fundamental interval, with a mode 1 shape of
7.5 cm height and an amplitude of 3 mm. The other cams were set to zero amplitude. The
velocity fields were measured using PIV. Nevertheless, due to viscosity, the waves never
reach the ray tracing prediction. We were able to see only few reflections of the internal
waves on the basin: the wave were damped before they converge towards the attractor.
Thus, in the small tank experiments, it is impossible to observe an attractor forced locally
because of the viscosity and the size of the experiments. The wave length injected by the
wave-maker is too small.

In the large tank, the forcing has been done on the top primary fundamental interval,
using the small wave-maker raised in order to have its top at the surface of the water.
The forcing was here also a mode 1 shape, with an amplitude of 3 mm and a total height
of 30 cm. The experiments have been performed using SyS technique. During these
experiments with a fixed geometry, different frequencies of the wave maker have been
tested. Changing the frequency of the waves induces a change in the τ parameter and,
of course, in the location of the primary fundamental intervals. Thus, the forcing was
not only restricted to the top primary fundamental interval but could be smaller or larger
in height than this interval. Moreover, as the height of the mode 1 shape is 30 cm, the
wave length injected is larger than the one in the small tank. Consequently, the viscous
attenuation is reduced and the waves can reach the attractor.

Figure 3.35 shows snapshots of the horizontal density gradient fields for six different
experiments performed in the large tank. All have the same values of d = 0.37 but τ is
different, varying from 1.92 for panel (a) to 1.40 for panel (f). The forcing is applied on
the top of the vertical wall, as signaled by the black rectangles. Here, we do not have
access directly to the stream function, because the technique used is SyS. In figures 3.35(a)
and (b), one can see using the ray tracing prediction (dashed line) that the attractor
reflects on the left wall in the black rectangle, so on the wave-maker. This means that
all the top fundamental intervals are forced, but also some bottom secondary fundamental
intervals. Thus, we obtain something very close to an attractor forced on all the height.
In figures 3.35(c), (d), (e) and (f), as the reflection on the left wall is not in the black
rectangle, only some top fundamental intervals are forced. In these experiments, one can
clearly see the convergence of the rays towards the attractor. This limit cycle, plotted as a
dashed black line, is reached by the rays. As the rays propagate, they exhibit smaller and
smaller scales. In the large tank, the wave length of the forcing is thus large enough to
limit the viscous damping and to reach the attractor. As the colorbar is the same for all
panels in figure 3.35, one can see that the amplitude of the waves is very different between
the experiments. The amplitude is high in panels (a), (e) and (f), intermediate in panel
(d) and small in panels (b) and (c). The discrepancy of amplitude in panels (a) and (b)
can be explained by the fact that the attractor reflects in the middle of the wave-maker
for panel (a) while it reflects on the edge of the wave-maker in panel (b). Indeed, the
wave-maker imposes a stream function on the left wall, which is maximum in the center
of the wave-maker and null at its edges. Let us consider the periodic wave ray, the one
corresponding to the attractor. This ray is directly on the attractor, so this is the ray
with the shortest trajectory to reach the attractor. Thus, this ray contributes more to
the attractor than others, which are damped by viscosity while converging towards the
attractor. This periodic ray is forced at the maximum amplitude by the wave-maker for
panel (a) while its amplitude is close to zero for panel (b). This can explain why the
amplitude is low for panel (b). For the other panels, the ray tracing prediction reflection
on the left wall is not in the black rectangle. Thus, the periodic ray is not forced directly
and all the waves generated by the wave-maker have to converge towards the attractor.
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One can see that the general amplitude of the waves raises from panels (c) to (f), so when τ
decreases. This can be due to an increase of the focusing parameter γ, which concentrates
more the energy emitted by the wave-maker.
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Figure 3.35: Snapshots of the horizontal density gradient fields of different attractors forced
by a mode 1, only on the top of the tank. The fields are filtered around ω0, to reduce the
noise on the image. On each panel, the wave-maker is marked as a black rectangle while
the dashed black line is the ray tracing prediction. For all these experiments, d = 0.37 and
τ is equal to 1.92 (a), 1.84 (b), 1.76 (c), 1.63 (d), 1.51 (e) and 1.40 (f).

Let us focus on the experiment in figure 3.35(e). In the geometry of this experiment,
the wave-maker coincides exactly with the top primary fundamental interval. One can
isolate the attractor branch 1 by doing Hilbert filtering in frequency, around ω0, and in
space, by keeping only the negative horizontal and vertical components of the wave vector.
One then can combine the horizontal and vertical density gradients to obtain the density
gradient along η1, the direction normal to the propagation of the wave. A snapshot of this
gradient is plotted in figure 3.36(a). One only can see the branch 1. Figure 3.36(b) shows a
cut of this branch, along the dashed black line indicated in figure 3.36(a). ` is the distance
along the cut, starting from the top left corner. The amplitude of the wave is in black solid
line, while the real value is in dashed blue line. The location of the attractor, following
the ray tracing prediction, is shown by the dashed dotted black line. One can notice first
that the wave length is shorter and shorter, approaching the ray tracing prediction. The
waves are more and more focused as they converge towards the attractor. Secondly, one
can see that the amplitude of the waves is not the highest on the ray tracing prediction.
Indeed, as the waves are focused, the viscosity damps more the wave with a smaller wave
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length. Thus, an equilibrium is found by the system, between the damping of small wave
length and the amplification of the waves due to focusing. These experiments allow us to
decompose the process of ray convergence toward the attractor.
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Figure 3.36: (a): Branch 1 of the attractor presented in figure 3.35(e) after Hilbert filtering
in frequency around ω0 and in space to conserve branch 1 (kx and kz negative). The dashed
dotted line indicates the transversal cut made through the branch while the thick dashed
line indicates the location of branch 1 using ray tracing. (b): Amplitude (black solid line)
and real value (dashed blue line) of the density gradient fields along the cut presented in
(a). The black dashed dotted line indicates where the ray tracing prediction is located on
this cut. ` is the distance along the cut, varying from 0 (top left corner) to 65 cm (bottom
left).

3.6 Comparison with numerical simulations

During my PhD, we collaborated with Ilias Sibgatullin, from the Institute of Mechanics and
the Department of Mechanics and Mathematics, at Moscow State University, in Russia.
He developed a spectral element method code, especially to reproduce our experimental
set-up, and performed all the numerical simulations present in the manuscript. I was not
involved in the development of the code, but I performed almost all the analysis of the
data: Hilbert transform, time-frequency diagrams, PDFs of the wave-vectors, mean-flow
decomposition, drawing of the pictures, ... We compared the numerical simulations to the
experiments done by Hélène Scolan and reported in [139], for both stable and unstable
cases. We also used the numerics to investigate the 3D effects and the influence of the
lateral walls of the tank, in comparison with the experiments I performed. Finally, the
numerical simulations were very useful to investigate the gain of potential energy due to
mixing for unstable attractors. This is reported in the Chapter 5.

In this section, the code used is described and a comparison with a stable attractor is
made. The comparison with an unstable attractor is shown in section 4.1.3, while the 3D
effects and the influence of the lateral walls are presented in section 4.3.

3.6.1 Attractors in numerical simulations

Summing up the literature survey, we note that there are only few studies reporting direct
numerical simulations of internal [64, 68] and inertial [79] wave attractors. Apart in [35]
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in a more oceanographic context, all these studies were performed in two-dimensional set-
tings. Grisouard et al. [64] used a trapezoidal geometry, with one horizontal boundary
representing a free surface, and free-slip conditions at rigid boundaries of the fluid volume,
except at the vertical wall, where barotropic forcing was applied in the form of a uniform
horizontal flow of small amplitude oscillating at a chosen forcing frequency. The imple-
mentation of free-slip conditions avoid resolving viscous boundary layers. Hazewinkel et
al. [68] used a similar geometrical set-up but forced the system via a progressive first-mode
internal wave. In both cases, Grisouard et al. [64] and Hazewinkel et al. [68] took advan-
tage of the 2D version of MITgcm, the general circulation model developed by [107] based
on finite volume method. The Prandtl-Schmidt number (the ratio of the fluid viscosity to
the salt diffusivity) was taken equal to 100 in [64] and 770 in [68]. In their study of inertial
waves, Jouve and Ogilvie [79] used a different geometry: a tilted square. They carried
out direct numerical simulations using a two-dimensional version of the 3D spectral code
SNOOPY [88, 89, 90]. No-slip boundary conditions were imposed via a fictitious absorb-
ing layer outside the fluid domain where the velocity components were forced to vanish,
ensuring the global energy conservation with an accuracy of a few per cent.

To our knowledge, there have been no attempts of 3D simulations for direct compari-
son with experimentally generated attractors. In rectangular domains where normal modes
are of primary interest, the dissipation at rigid walls (boundary friction) can dominate the
dissipation in the bulk by a factor of 100 [8, 86]. The importance of boundary friction
for triadic resonance instability in the case of normal modes in a rectangular domain has
already been emphasized by McEwan in [110]. His experimental results of the amplitude
threshold for triadic resonance instability of normal modes are indeed in good agreement
with theoretical predictions when the sum of a bulk-internal term and a boundary-layer
term is taken into account in the calculated energy dissipation. Moreover, he noticed that,
on a laboratory scale, internal dissipation becomes comparable with wall dissipation only
from a vertical modal number of the order of 10. In the case of the normal modes, an
analytical expression for the energy dissipation can be found and reveals that the bulk
dissipation depends on the wavelength of the wave while the boundary dissipation is only
related to the direction of the wavenumber vector. In contrast to normal modes, attractors
are strongly dissipative structures which adapt their typical wavelength (and, therefore,
shear and associated dissipation rate) to reach a global balance between the injected and
the dissipated energy [125]. Thus, the role of the dissipation at rigid boundaries as com-
pared with the dissipation by shearing in the bulk of fluid is less clear for attractors than
for normal modes. It is also not obvious to what extent 3D simulations are necessary to
reproduce the experimental results quantitatively. The present paper aims at addressing
these questions about dissipation and 3D effects by performing cross-comparisons of the
available experimental data against the results of three-dimensional direct numerical sim-
ulations of internal wave attractors using a spectral element method based on the code
Nek5000 [52].

3.6.2 Numerical set-up

The numerical simulation of wave attractors faces two major challenges. First, the fluid
motion is highly nonlinear, and accounting for nonlinear interactions is crucial for the
dynamics, even for weak interactions. Second, the Schmidt number (Sc), defined as the
ratio of water kinematic viscosity and salt diffusivity, is close to 700 in a salt-stratified
fluid. So the spatial scale of the density perturbations can be much smaller than the scale
of the velocity perturbations and more demanding in terms of spatial resolution. The
scale under which no scalar gradient remains because of diffusion effect is very small and
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smaller than the usual Kolmogorov scale LK used as a mesh criterion for direct simulations
where LK = Re−3/4×L with L the integral scale and Re the large scale Reynolds number.
Strictly speaking, this small scale where scalar diffusion takes place can be estimated with
the Batchelor scale LB = LK × Sc−1/2 [5, 24, 136].

The first numerical simulation of the formation of internal wave attractors [64] used
finite volume method, one of the most popular state-of-the-art tools in computational
fluid dynamics. However, as noted by these authors, the numerical simulation could only
reproduce the dynamics of the attractors for Schmidt number less than 100. In addition,
the discretization of convective terms produces a numerical viscosity, which acts similarly
to a real viscosity. This numerical artefact blurs the fine-scale structures arising due to
the high value of the Schmidt number and it may also introduce substantial errors in
calculations of the long-term dynamics of attractors (at time scales of tens or hundreds of
periods). However, for the current study, the long time intervals are precisely of particular
interest to study the growth, saturation and cascades of secondary instabilities.

As an alternative, the Galerkin method represents a highly efficient approach to tackle
the nonlinear interactions if a full system of basis functions subject to boundary condi-
tions can be used. A pseudospectral approach offers an efficient realization of the Galerkin
method. In [79], this approach has been used to study nonlinear interactions in attractors
of inertial waves. In the present work we have chosen the method of spectral elements which
combines the accuracy and high resolution of spectral methods with geometric flexibility
of finite element methods, and what is particularly suitable for simulation of long-term
evolution of fine-scale flows in globally forced geophysical systems [46]. The computational
domain is divided into a finite number of quadrilateral (in two dimensions) or hexahedral
(in three dimensions) elements and a Galerkin approach is applied to each element. For
the numerical realization, we use the open code Nek5000, developed by Paul Fischer and
colleagues [52], [50] and [51]. In each element, the Lagrange polynomial decomposition is
used and applied at Gauss-Lobatto-Legendre points for the sake of stability (to avoid ill-
conditioning). The full resulting mesh, consisting of the elements and the Gauss-Lobatto-
Legendre points, is highly nonuniform, adding a bit more complexity in post-processing
data treatment. However, the efficiency of the code fully justifies such a nuisance. In other
words, the approach used weighted residual techniques employing tensor-product polyno-
mial bases. Besides other benefits, it allows “analytical" computation of the derivatives
through matrix-matrix products or matrix-matrix-based evaluation

u(x, y, z, t) =
∑
i,j,k

ui,j,k(t)χi(x)χj(y)χk(z), (3.28)

∂

∂x
u(x, y, z, t) =

∑
i,j,k

ui,j,k(t)χ
′
i(x)χj(y)χk(z), (3.29)

in which u represents any of the unknown variables, for instance, velocity components,
density, etc. χ is a Lagrangian interpolant through the Gauss-Lobatto-Legendre points.

The implementation of a high-order filter in Nek5000 allows to stabilize the method for
convection-dominated flows [51]. The time advancement is based on second-order semi-
implicit operator splitting methods and stable backward-difference scheme. The additive
overlapping Schwarz method is used as a pre-conditioner [50].

The most difficult regions from a computational viewpoint are located in the vicinity
of the rigid walls since, in these regions, intense folding of high-gradient density layers
may occur, especially in the case of a high-amplitude wave motion. For this reason, a
non uniform element mesh in the near-wall regions is preferable for simulations of the
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3. Internal wave attractors: a geometric and linear construction

nonlinear dynamics of wave attractors. Typically, we have used meshes with up to 0.5
million elements, with eighth to tenth order polynomial decomposition within each element.

The full system of equations being solved consists of the Navier-Stokes equation in the
Boussinesq approximation

ρm

(
∂~v

∂t
+ (~v · ~∇)~v

)
= −~∇P + ρν∆~v + ρs~g, (3.30)

the continuity equation
~∇ · ~v = 0 (3.31)

and the equation for the transport of salt
∂ρs
∂t

+ (~v · ~∇)ρs = κ∆ρs, (3.32)

where ρm is the density of solution with the constant minimal reference salinity, ρs the
density perturbation in a unit volume due to local salinity (the full density is ρ = ρm+ρs), ν
the kinematic viscosity and κ the diffusivity of salt. Dynamical viscosity and diffusivity are
assumed to be constant. We impose no-slip boundary conditions on the rigid surfaces and
stress-free condition on the upper surface. The boundary conditions on ρs are isolation:
∂ρs/∂n = 0 where n is the normal to the wall. Forcing is applied at the vertical wall
by prescribing the profile of the horizontal velocity which reproduces the motion of the
wave-maker in the vertical direction and takes into account the difference between the
width of the wave-maker W ′ and the width of the tank W . The transverse profile of the
forcing is prescribed by stepwise or piecewise linear function. At the central segment of
the width W ′, the horizontal velocity is uniformly distributed in the transverse direction
in both cases. At the side segments of width (W − W ′)/2, we prescribe either i) zero
velocity or ii) a linear decrease of the velocity from the uniform value to zero. These
two versions of transverse profiles of forcing give essentially the same results, with a small
quantitative difference in the second version where forcing gives a higher horizontal impulse
to the system. Both versions can be implemented in calculations, but the second version
of the forcing is found to be much less expensive computationally and the major part of
computations was performed with it. The efficiency of the wave-maker used in experiments
is not 100%. For this reason, the amplitude of forcing in computations with the piecewise
linear case is intentionally reduced by 10% compared to the experimental value, thereby
providing a good match between numerical and experimental results.

The comparison between numerical and experimental results is typically complicated
by the presence of a thin mixed layer close to the free surface of the stratified fluid in the
test tank. Because of this layer, the internal wave beam is not reflected precisely at the free
surface. Instead the wave beam undergoes a complex reflection, partially at the interface
between the mixed layer and the linearly stratified fluid and partially at the free surface.
This complex reflection affects the shape of the attractor [64] and the shape of envelopes
of wave motions in the wave beams. To take this layer into account in the numerical
model, we introduce a model density distribution where the full depth is denoted H as in
experiments, the thickness of the thin mixed upper layer is δ, and the depth of the linearly
stratified fluid is H ′ = H − δ.

3.6.3 Comparison with a stable (1, 1) attractor

A comparison has been made between experiments published in [139] and the numerical
simulations, using the same geometrical parameters. 2D and 3D simulations were per-
formed. Both were able to capture the dynamics of stable internal wave attractors. Nev-
ertheless, the amplitude of the attractor in 2D numerical simulations is higher than the
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Figure 3.37: Experimental (a) and numerical (b) snapshots of the horizontal density gra-
dient at t = 50 T0. The amplitude of the wave maker is a = 2 mm for the experiment
and a = 1.8 mm for the simulation. Both attractors are stable. Note that the shade
(color online) scale is the same in both panels. The small black quadrilateral defines the
acquisition region used for computing the time-frequency spectrum presented in figure 4.8.
The wave frequency is Ω0 = 0.62 ± 0.01. Experimental (c) and numerical (d) horizontal
density gradients as a function of the time, for a point located on the most energetic branch
within the black trapezoid depicted in panels (a) and (b). In the calculation we take a
piecewise linear approximation of the experimental density profile, with the lower layer of
depth H ′ = 30.8 cm and buoyancy frequency N , and the upper layer of depth δ = 1.8 cm
with a density gradient 8 times smaller. The total depth of fluid H = H ′ + δ = 32.6 cm.

amplitude in 3D simulations. This is related to the lack of dissipation, due to the absence
of the side walls, present in the 3D set-up, which fully reproduces the experimental set-up.
Thus, for a better comparison with the experiments, only 3D simulations have been used.
The 2D simulations were performed to follow the mixing caused by unstable attractors.
Indeed, simulations of mixing experiments should be very long and 2D simulations are
shorter to perform than 3D simulations.

We observe a very good quantitative agreement in our 3D simulations once we introduce
a small correction for non-perfect efficiency of the wave generator. Typical snapshots of the
computed and measured fields of the horizontal density gradient are shown in figure 3.37,
emphasizing a very good qualitative and quantitative agreement between the numerical
and experimental data. This good agreement is further confirmed with the time-series
of the horizontal density gradient at a point located in the most energetic branch of the
attractor as illustrated in figure 3.37. Note that the numerical value of the density gradient
is computed at the vertical mid-plane xOz of the test tank. With this comparison, we
tacitly assume that the flow is approximately two-dimensional and the standard schlieren
technique is applicable [29]. The effects of three-dimensionality are discussed further in
the next chapter, in section 4.3.
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3. Internal wave attractors: a geometric and linear construction

Conclusion

In this chapter, I discussed the linear behavior of internal wave attractors. I started this
chapter by reminding the different works of Leo Maas and others who contribute to study
this linear regime, which is very rich. Then, I described the different results that I obtained
on:

• the Arnold tongues of the (d, τ) diagram and especially the one for the (1, 1) attrac-
tors. This allows us to quantify the susceptibility of the geometry with respect to
the forcing and also to quantify the nature of the wave attractors: nearly standing
(NS) or nearly propagating (NP)

• the wave length and the width of the attractor branches. I have shown their de-
pendance as a function of the different geometrical parameters of the system and I
compared the different models in [79, 70, 64] with the experiments. This leads to the
conclusion that the linear regime is unlikely in oceanic basins and thus emphasizes
that the non-linear regime seems more relevant for the natural cases

• the evolution in time of the wave length, width and amplitude of the attractor
branches. This highlights the importance of the geometry, which controls totally
the focusing of the energy injected, despite the amplitude of the forcing (in the linear
regime)

• the importance of the forcing which highlights the role of the primary fundamental
intervals in the establishment of the attractor

• the comparison between experiments and numerical simulations. A spectral element
code, adapted to the experimental geometry, has been tested and compared with
stable attractor in the linear regime. We found a very good quantitative agreement
between the numerics and the experiments.

All these different results emphasize that the geometry and the choice of the operating
point in the (d, τ) diagram are determinant for the internal wave attractors in the linear
regime. However, attractors in the oceans may not be stable due to focusing until very
small scales. Experimentally, Scolan et al. have shown that attractors are prone to a
triadic resonance instability [139]. This instability is discussed in the Chapter 4 and can
be, in certain cases, also controlled by the geometry and the choice of the operating point
in the Arnold tongue.
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Chapter 4

Triadic resonance instability in
internal wave attractors

The triadic resonance instability, abbreviated
as TRI in the remainder of this manuscript, is
a resonant mechanism involving three waves.
One can also talk of three-wave interactions. A
primary wave becomes unstable and transfers
a part of its energy to two secondary waves,
which grow from infinitesimal perturbations.
This energy transfer is possible thanks to the
quadratic non-linear term of the Navier-Stokes
equation. The three waves satisfy the two fol-
lowing temporal and spatial resonant condi-
tions

Ω0 = Ω1 ± Ω2, (4.1)
~k0 = ~k1 ± ~k2. (4.2)

Ωi is the dimensionless frequency and ~ki is the wave vector of each wave. The index i can
be 0, for the primary wave, and 1 or 2 for the secondary waves.

TRI in internal-waves has been first investigated experimentally and theoretically by
Davis and Acrivos [31] and Hasselmann [67] in 1967, in a configuration with two layers
of different densities. For a linearly stratified fluid, McEwan [110, 111, 112] is the first
one to study these three wave interactions, also experimentally and theoretically, and in
a rectangular basin. The visualization technique was shadowgraphy and the forcing was
made by a moving vertical boundary, which created a vertical mode. The frequency of
this mode is set to obtain standing waves in the basin. For forcing with high amplitude,
this mode is destabilized and leads to two secondary waves. Benielli and Sommeria [8]
have performed similar experiments later, forcing the waves by vibrating the tank. They
measured the density using dye lines and a local conductivity probe. These experiments
have shown that TRI appears only above a given threshold. Approximately at the same
period, Bouruet-Aubert et al. [19] performed the first numerical simulations of the temporal
evolution of a vertical mode in a linearly stratified fluid. They measured the growth rate
of the instability and the wave vectors of the different waves, to compare with the inviscid
theory. This work has been continued by [26], to see the transfer of energy between scales.
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4. Triadic resonance instability in internal wave attractors

Few years ago, experiments on well controlled vertical modes and beams have been
carried out after the development of a new wave-maker [115]. This powerful tool allows
to generate beams with precisely controlled properties. Consequently, experiments on
unstable vertical modes have been made by [78], using SyS as a visualization technique.
The wave-maker was also used to observe TRI into inertial wave beams [13] or into internal
wave beams [16]. Bourget et al. [16] verified the TRI theory for plane waves, by measuring
the growth rate and the wave vectors of the three waves. Effects on TRI due to the size
of the beam have been reported in [17]. Indeed, if the primary wave is contained in a
narrow beam, as the secondary waves have different frequencies and consequently different
propagation angles, these secondary waves may escape very quickly from the primary beam
and thus from the source of TRI. Thus, this could limit the TRI. Karimi and Akylas [80]
and Bourget et al. [17] have developed a theory to explain such effects on TRI.

TRI in internal wave attractors has been reported only recently by Scolan et al. [139].
If the amplitude of the wave-maker and thus, the amplitude of the attractor, is higher
than a given threshold, the most energetic branch is destabilized via TRI and creates two
secondary frequencies. The resonant conditions are fulfilled by the measured frequencies
and wave vectors [139]. TRI has also been suggested in numerical simulations of inertial
wave attractors by Jouve and Ogilvie in [79]. Grisouard et al. [64] have observed an
instability in their numerical simulations of internal wave attractors but the secondary
frequencies are super-harmonics of the forcing frequency while Scolan et al. [139] reported
that the secondary frequencies are smaller than the forcing frequency.

To be complete, TRI has also been observed in the oceans as reported in [2, 1, 101]. In
the oceanographic context, the instability is named parametrical subharmonic instability
and abbreviated as PSI. This is a particular case of TRI where the two secondary waves
created have a frequency equal to the half of the forcing frequency. Indeed, in the ocean,
due to the large scales, viscosity does not play a role and the instability leads to two sub-
harmonic secondary waves with the same frequency. Gayen and Sarkar [59] also observed
PSI in their realistic numerical simulations of oceanic waves. The limitation of TRI in
the ocean is essentially due to the width of the beam instead of the viscosity. Moreover,
the rotation of the Earth is an important parameter to take into account as the waves are
gravito-inertial waves. The f parameter, controlling the rotation effects, increases the level
of complexity of TRI [109].

Three-wave interactions are not limited to internal or inertial waves. Indeed, these
interactions between waves have been first studied in the context of capillarity-gravity
waves [113]. These waves propagate only at the surface of the water and experience three-
or four-wave interactions. Ball [4] has shown that these wave interactions for surface waves
can lead to the creation of an internal wave propagating at the interface between the layers
of difference densities, under the surface. Non-linear interactions between waves have also
been observed for elastic plate waves [28, 14] or plasma waves. Wave interactions are a key
ingredient of wave-turbulence, because energy transfers and cascades are done via these
interactions. These processes are described in details in chapter 5, on the TRI cascade due
to unstable attractors.

This chapter is dedicated to the initial growth of the TRI and its consequences on the
size of the attractor branch 1 and on the flow in the tank. First, the TRI as described
in [139] is discussed. Then, an other type of TRI is exhibited. Indeed, the TRI can appear
directly as a global instability, instead of being localized. In the last part of this chapter,
both numerical simulations and experiments are used to investigate the wave structure in
the transversal y direction, for stable and unstable attractors.
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4.1. Triadic resonance instability on the most energetic branch

4.1 Triadic resonance instability on the most energetic
branch

In this section, the TRI growing from branch 1 is investigated in a experiment performed
in a large tank using SyS. Then, the evolution in time of the wave length and amplitude of
branch 1 are followed for unstable attractors. Finally, a comparison between experiments
reported in [139] and numerical simulations described in section 3.6 is done when TRI is
present.

4.1.1 Observations of the triadic resonance instability

Experiments performed in [139] have been performed in the small tank described in sec-
tion 1.3.1 of this manuscript and using the SyS visualization technique. During my PhD,
I performed unstable attractor experiments in the small tank, with PIV or SyS as visual-
ization technique, and in the large tank using only SyS. As Chapter 5 is mainly focused on
energy cascade in unstable attractors obtained in the small tank and using PIV, I exhibit
in this chapter the case of a TRI in the large tank observed with SyS.
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Figure 4.1: Horizontal density gradient fields at a point located on branch 1 as a function
of time for two attractors with exactly the same geometry but different forcing amplitudes.
(a): a = 2.2 mm and the attractor is stable. (b): a = 2.9 mm and the attractor is unstable.
(d, τ) = (0.34, 1.81).

TRI is obtained by increasing the amplitude of the wave-maker and thus, the amplitude
of the attractor itself. Indeed, the previous chapter has shown that all the energy injected is
concentrated into a beam of same width, without any dependance of the forcing amplitude,
in the linear regime. Thus, in this regime, the amount of energy of the beam increases
with the amplitude of the wave-maker. Benielli and Sommeria [8] and later Bourget et
al. [17] have shown that TRI starts once the primary wave is above a certain threshold.
Consequently, if the amplitude of the attractor is higher than this threshold, TRI starts.
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4. Triadic resonance instability in internal wave attractors

This is illustrated in figure 4.1 where two horizontal density gradient fields at a point
located on branch 1 as a function of time are shown for two attractors with exactly the
same geometry but different forcing amplitudes. The amplitude of the forcing is slightly
higher for panel (b) than the one for panel (a). The instability is clearly visible in panel
(b), after 35T0 while the amplitude is very stable in panel (a).

As in [16, 17, 139], the TRI can be investigated using time-frequency diagrams. Time-
frequency diagrams are calculated with the formula

Sr(Ω, t) =

〈∣∣∣∣∣
∫ +∞

−∞

∂ρ′

∂r
(x, z, τ)eiΩNτh(t− τ) dτ

∣∣∣∣∣
2〉

xz

, (4.3)

where h is an Hamming window and r the direction of the density gradient field along x or
z, i.e. Sx or Sz. The 〈〉x,z symbol means that the quantity is spatially averaged to reduce
the noise-to-signal ratio. Typically, this spatial average is made on a region located on
branch 1. The calculations are performed with the Matlab toolbox described in [53]. The
appropriate choice of the length of the Hamming window allows us to tune the resolution
in frequency and time. The resolution is similar to the Heisenberg uncertainty principle
in quantum mechanics: one cannot know the position and the momentum of a quantum
particle as precise as we want. Thus, the larger the length of the Hamming window, the
better the resolution in frequency and the lower the resolution in time. A compromise has
to be found between a good accuracy in time and a sufficient frequency resolution to split
the different secondary frequencies.
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Figure 4.2: (a): Typical time-frequency diagram obtained for an unstable attractor. The
experiment used is the one presented in figure 4.1(b). The quantity S0 is defined as the
time average of the main component Sx(Ω0, t). The time-frequency diagram is computed
on a 10× 10 cm2 square region, close to branch 1. (b): Cut through the diagram at 40T0.
The vertical dashed line on panel (a) shows the location of the cut. The frequencies Ω0,
Ω1, Ω2, Ω3 and Ω4 are given in front of their corresponding peaks.
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4.1. Triadic resonance instability on the most energetic branch

The time-frequency diagram of a typical unstable attractor is shown in figure 4.2(a).
The frequency Ω0 = 0.57 of the attractor can be seen from the beginning of the experi-
ment. After approximately 30 periods, two frequencies raise from the noise and increase
in amplitude. These are the two secondary frequencies, Ω1 and Ω2 created by the TRI. In
this manuscript, one defines Ω1 as the frequency located between Ω0/2 and Ω0 while Ω2 is
the frequency located between 0 and Ω0/2. Note that this definition is the opposite of the
definition taken in [139]. Figure 4.2(b) shows a cut along the frequency axis of the diagram,
at 40T0. The different frequencies are relatively peaked. For this particular experiment,
one has Ω1 = 0.34 and Ω2 = 0.24. Adding these two frequencies leads to Ω0 = 0.58.
Thus, the frequency resonant condition expressed by equation (4.1) is verified, within ex-
perimental error bars. In figure 4.2, one can also see two other frequencies, larger than
Ω0. These frequencies are labelled Ω3 and Ω4 and verify the frequency resonant conditions
Ω3 = Ω0 + Ω1 = 0.81 and Ω4 = Ω0 + Ω2 = 0.91.
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Figure 4.3: The top (respectively, bottom) row presents the real part (resp. phase) of
the horizontal density gradient fields after Hilbert transform at t = 40T0. Each column
corresponds to a filtering around the following three frequencies: Ω0, Ω1 and Ω2 in the
first, second, and third columns, respectively. The phase is displayed only where the wave
amplitude |∂ρ′/∂x| is larger than 5% of the maximum for the first column and than 20% of
the maximum for the second and third columns. There is a line with defects at z ≈ 80 cm
which is due to PIV particles that disturb the SyS measurements, along this line only.

The spatial resonant condition, expressed in equation (4.2), can be experimentally
verified using a method developed in [16, 139]. Using Hilbert filtering in frequency, it is
possible to separate the different wave fields at different frequencies. Figure 4.3 shows,
as in [139], the real part of the horizontal density gradient fields and their phase at the
different frequencies, Ω0, Ω1 and Ω2. The phase is used to measure the wave-vectors,
indicated by the arrows in figure 4.3. Indeed, the phase is related to the wave vector by
~k = −~∇φ. To measure precisely the wave vector, one needs to unwrap the phase in both
horizontal and vertical directions, using only the region where the amplitude of the waves
is the highest. This is shown on the bottom row of figure 4.3, where the phase is set to
zero where the amplitude of the waves is smaller than 20% of the maximum value of the
horizontal density gradient field. Then, this unwrapped phase is differentiated and one
gets a value for the horizontal and vertical wave vector components for any point (x, z)
in the specified region. This leads to a large set of values for kx and kz. Then, for each
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4. Triadic resonance instability in internal wave attractors

component, a probability density function (PDF) is made, which allows us to visualize how
the different values are distributed. The most probable value of the PDF gives the wave
vector components and the error associated with this measure is estimated as the width
of the Gaussian fit of the PDF. For the experiment presented in figure 4.3, the PDFs are
shown in figure 4.4, for the horizontal and vertical components of the wave vectors. They
are nicely peaked, meaning that the most probable value is well defined, even if the waves
have a beam shape, instead of being plane waves. These values are presented in table 4.1,
with the error bars.
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Figure 4.4: Probability density function (PDF) of the horizontal (a) and vertical (b) com-
ponent of the wave vector for the three different frequencies: ~k0 (black), ~k1 (red) and ~k2

(blue). The vertical dashed lines indicates the maxima of the different PDFs.

Thus, the spatial resonant condition is satisfied within the experimental error bars.
Comparing with the values found in [139], one can see that the values of the wave vector
components are lower. For the primary waves, the wave vector is more than two times
smaller. This is due to the size of the experiment. As shown in section 3.3.4, an increase
of perimeter of the attractor by a factor of three leads to a increase of the width, and thus
the wave length, of a stable attractor by a factor of 32/3 ≈ 2. Moreover, as presented in
section 4.1.2, for unstable attractors, the wave length is higher than the one for the same
stable attractor. Consequently, this is fully consistent to have a larger primary wave length
here. The secondary waves created here have also larger wave lengths than the ones created
by the TRI in [139]. Nevertheless, the ratio between the injected scale and the smallest
scale of the waves is equal to 32. Indeed, the wave-maker injects a vertical wave number of
kz,inj = π/H ≈ 3.4 m−1. Thus, the horizontal wave number is kx,inj = kz,inj tan θ ≈ 2.4 m−1

and the wave length λinj ≈ 1.51 m. The angle θ is defined by θ = arcsin Ω0. The smallest

Subscript Ω kx (m−1) kz (m−1)

0 0.57 −22 (±5) −33 (±12)

1 0.34 −45 (±9) −125 (±18)

2 0.24 +35 (±9) +115 (±14)

Table 4.1: Horizontal and vertical components of the wave vector for each frequency of the
TRI.
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4.1. Triadic resonance instability on the most energetic branch

scales is given by Ω1, whose the wave length is approximately equal to 0.05 m. Scolan et
al. [139] have found such a ratio equal to 25. This is the same order of magnitude.

4.1.2 Consequences on the size and the amplitude of the branches

For stable attractors, the size of the beam is directly linked with the geometry and the
focusing, as shown in section 3.3.4. In this section, the wave length and the amplitude of
unstable attractors have been followed in time, during the growth and the steady state.
Their time evolution are compared with the one of stable attractors, presented in sec-
tion 3.3.4.

For this section, the same series of experiments as the ones presented in section 3.3.4
have been investigated. Nevertheless, the attractors considered in this section are unsta-
ble, because performed at higher forcing amplitude. As in section 3.3.4, the experiments
have been carried out in the large tank, with the SyS visualization technique, during two
consecutive days. Only the amplitude a of the wave-maker has been changed, meaning
that all experiments have exactly the same geometrical parameters (d, τ) = (0.34, 1.81).
Table 4.2 contains the forcing amplitude of the different experiments, their stability and
the symbols used in this section to plot the data.

Experiments a [mm] Stability Symbols
1 0.7 Stable Green pentagons
2 1.5 Stable Magenta hexagons
3 2.2 Stable Blue circles
4 2.9 Unstable Cyan triangles
5 3.7 Unstable not plotted
6 4.4 Unstable Red squares
7 5.1 Unstable not plotted
8 5.8 Unstable Black diamonds

Table 4.2: Experiments used for this section. All have been performed with exactly the
same geometry: H = 92.3 cm, L = 145.5 cm, α = 27.4◦ and Ω0 = 0.57. Consequently,
(d, τ) = (0.34, 1.81). The experiments carried out at low forcing amplitude, also used in
section 3.3.4, are stable while the ones performed at high forcing amplitude are unstable.
The symbols used to plot the wave length and amplitude in figure 4.5 are detailed in the
right column. Note that two experiments (number 5 and 7) have not been plotted for the
sake of clarity.

The wave length λ and the amplitude of branch 1 |∂ρ′/∂η1| are measured as described
in section 3.3.4, after frequency and space filterings. Thus, the presence of the TRI does not
disturb the measurements of the wave length and the amplitude of the attractor because
the wave fields oscillating at different frequencies than Ω0 do not appear on the filtered
image. Figure 4.5(a) shows the time history of the horizontal density gradient field at one
point located on the branch 1 for the unstable attractor with a = 4.4 mm (see Exp. 6
Table 4.2). The TRI starts around t = 30T0. The beginning of the instability is marked
by the vertical dashed lines in the three panels of figure 4.5. The wave length and the
amplitude of this attractor are plotted as a function of time in figure 4.5(b) and (c), as red
squares. The other symbols represent the wave lengths and the amplitudes of five other
experiments at different forcing amplitude (see Table 4.2). Figure 3.30 in section 3.3.4
has shown that the three curves for the wave lengths of the stable attractors are collapsed
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Figure 4.5: (a): Time-history of the horizontal density gradient field at one point located
on branch 1 for the unstable attractor with a = 4.4 mm (Exp. 6 of Table 4.2). (b) and
(c): Wave length and amplitude of branch 1 as a function of time for three stable and
three unstable attractors (see Table 4.2). The three curves for the stable attractors are
the ones presented in figure 3.30. On panel (b), for the sake of clarity, the average of the
wave lengths of these three stable experiments is plotted as a solid black line. The vertical
dashed line on the three panels represents the time where the experiment on panel (a)
becomes unstable.

along a single curve. Thus, for the sake of clarity, only the average of the wave lengths
of these three stable experiments has been plotted as a function of time in figure 4.5(b),
using a solid black line. Let us focus on the Exp. 6 of Table 4.2, plotted using red squares.
One can see that the wave length of this unstable attractor follows this curve until 30T0.
This means that, before the start of the instability, the attractor experiences the linear
geometric focusing described in section 3.3.4. After 30T0, the wave length of the unstable
attractor escapes from the linear focusing curve (solid black line). In figure 4.5(c), where
the amplitude of branch 1 is plotted as a function of time, one can see that the amplitude of
the attractor reaches a maximum around 30T0, when the instability starts. Thus, through
linear focusing, all the energy injected by the wave-maker is focused into the attractor
and the amplitude increases until the TRI threshold is reached, around t = 30T0. After
t = 30T0, when the amount of energy focused into the branch 1 is too high, the instability
starts. This brings the attractor to a slightly larger wave length, which appears constant
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4.1. Triadic resonance instability on the most energetic branch

with time beyond a transient growth, after 50T0. The amplitude of the attractor decays
until it reaches a plateau, around 50T0. The instants when both the wave length and
amplitude are stabilized in time seem to be the same. Consequently, the TRI balances the
geometrical focusing: while the attractor is more and more focused by the reflection on
the slope, the TRI acts to limit the level of energy in the branch, by transferring part of
this energy into the secondary waves and by making the branch 1 wave length larger.

The two other unstable experiments (Exps. 4 and 8 with cyan triangles and black
diamonds) exhibit similar characteristics than Exp. 6 (red squares). Indeed, the wave
length of both these experiments follow the curve of the stable experiments, until the
instability starts. This happens when the amplitude reaches a maximum. In figure 4.5(b),
the higher the amplitude of the wave-maker, the earlier the wave length curve escapes
from the linear focusing and the earlier the maximum of the amplitude is reached. Thus,
attractors with a higher amplitude of forcing are more unstable. After, t = 50T0, the
different wave lengths are stabilized in time, but the different values reached, named as λf ,
are different. Indeed, the higher the amplitude of the wave-maker, the larger the final wave-
length. In figure 4.5(c), after t = 50T0, all the amplitudes of the unstable attractors are
stabilized around the same value, independently of the amplitude of the wave-maker. This
final value for the amplitude is noted |∂ρ′/∂η1|f . On the contrary, for stable experiments,
the final amplitude depends on the amplitude of the wave-maker only.

The final values for the wave lengths and the amplitudes are plotted as a function of the
amplitude of the wave-maker in figures 4.6(a) and (b). The values have been determined
in averaging the wave lengths or the amplitudes between 50 and 75T0. For figure 4.6, the
eight experiments of Table 4.2 (three stable and five unstable) have been used. Among the
five unstable ones, only three have been plotted in figure 4.5, for the sake of clarity (see
Table 4.2). Nevertheless, the extra-two unstable experiments (numbered 5 and 7) exhibit
very similar characteristics as the ones presented in figure 4.5. Figures 4.6(a) and (b)
summarize the steady states reached by the attractors. When the amplitude of the wave-
maker is low, there is no TRI: the wave length is constant and independent of a while the
amplitude increases with a. When the amplitude of the wave-maker is large, TRI appears:
the wave length increases with a while the amplitude is constant and independent of a.

From these final wave lengths and amplitudes, one can compute the stream function ψ0

of the attractor branch 1 as a function of the amplitude of the wave-maker a. The stream
function is related to the density thanks to

− gρ
′

ρ̄
=
−iN
Ω0

∂ψ

∂x
, (4.4)

assuming that the waves are plane waves ψ = ψ0 exp
(
i(Ω0Nt− kxx− kzz)

)
. To link the

stream function with the density gradient fields, one has to differentiate equation (4.4)
with respect to x. This leads to

ψ0 =
g

4π2ρ̄

Ω2
0

N2(1− Ω2
0)
λ2 ∂ρ

′

∂η1
. (4.5)

The stream function is thus proportional to the wave length squared and the amplitude.
One can compute the stream function in our case, even if the branch 1 of the attractor
is clearly note a plane wave. In the final state, after 50T0, when all the wave lengths
and the amplitudes appear to be constant in time, the stream function is thus constant
in time. The final stream function is plotted as a function of the amplitude of the wave-
maker a in figure 4.6(c), in log-log scales. It appears that the stream function depends on
the amplitude of the wave-maker to the power 3/2. A linear fit gives to a good accuracy
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Figure 4.6: Final wave length (a), amplitude (b) and stream function (c) of the branch 1
of attractors as a function of the amplitude of the wave-maker a. The dashed lines on
the three panels delimit the lowest amplitudes, where no TRI is observed, and the highest
amplitudes, where TRI is observed. Note that the axis of panel (c) are both in log-scale.
The solid line on panel (c) shows the 3/2 power law.

ψ0 ∝ a1.44, with an exponent 1.44 which is very close to 3/2. This seems independent of
the presence of the TRI. At low amplitudes, there is no TRI. λ is constant for geometrical
reasons and the amplitudes is thus proportional to a3/2. At high amplitudes, when the
TRI is present, the final amplitudes saturates and the final wave length increases with a
scaling law a3/2. We do not have yet any explanation of such a scaling a3/2. This is the
same scaling as the self-similar scaling developed in [146, 79, 64] and in section 3.3.1 but
the connections are unclear. Nevertheless, this gives an estimation of the TRI threshold,
which is around ψ0 ≈ 150 mm2/s. Thus the dimensionless value ψ0/ν of the threshold,
which can be assimilated to a Reynolds number, is around 150.

4.1.3 Comparison with numerical simulations

In what follows, we describe the comparison of the experimental and numerical results for
the onset of the triadic resonance instability on the most energetic branch of the attractor.
The 3D numerical simulations are performed using the spectral element method code de-
scribed in section 3.6 and have already been validated for stable attractors. Again, these
numerical simulations are compared with the experiments reported in [139].

The experimental and numerical snapshots of the horizontal density gradient fields are
presented in figure 4.7. The development of TRI is clearly seen in the most energetic branch
of the attractor. A very good quantitative and qualitative agreement is again observed
between the experimental and numerical wave fields. The experimental and numerical
time-series at a point in branch 1 of the attractor show also an excellent correspondence.
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Figure 4.7: Experimental (a) and numerical (b) snapshots of the horizontal density gradient
at t = 50T0. The amplitude of the wave maker is a = 2.5 mm for the experiment and
a = 2.4 mm for the numerical simulation. The wave frequency is Ω0 = 0.62 ± 0.01. Both
attractors are unstable and the instability appears first on the most energetic branch.
The small black quadrilateral defines the acquisition region used for computing the time-
frequency spectrum presented in figure 4.8. Experimental (c) and numerical (d) horizontal
density gradients as a function of the time, for a point located on the most energetic branch
within the black trapezoid depicted in panels (a) and (b). The density stratification is the
same as described in caption to figure 3.37.

Let us now focus on the development of the instability in more detail to see if com-
putations reproduce the experimentally observed triads in temporal and spatial domains.
We first consider the evolution of the instability in the temporal domain. The develop-
ment of the frequency spectrum of wave motion over time is presented in figure 4.8. The
time-frequency diagrams are calculated from numerical and experimental data for points
as in [16], with the formula presented in equation (4.3). The experimental and numerical
diagrams are averaged over the trapezoidal analyzing area shown in figures 4.7(a) and (b).
It can be seen that the numerical and experimental spectra agree qualitatively and quan-
titatively. The signal is initially entirely dominated by the forcing frequency Ω0 = 0.62:
it corresponds precisely to the primary (carrier) wave. Then oscillations with frequencies
Ω1 and Ω2, which correspond to two secondary waves generated by TRI, slowly develop
with time. At t = 50T0, these frequencies are Ω1 = 0.24 and Ω2 = 0.38. They satisfy the
frequency conditions for the triadic resonance

Ω1 + Ω2 = Ω0. (4.6)

In addition, one can see also two peaks Ω3 = 0.86 and Ω4 = 1.00 satisfying temporal
conditions

Ω3 − Ω1 = Ω0 and Ω4 − Ω2 = Ω0. (4.7)

127



4. Triadic resonance instability in internal wave attractors

t/T0

Ω

Experimental

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

t/T0

Numerical

 

 

0 20 40 60 80 100
−4

−3

−2

−1

0

log 10 (Sx(Ω, t)/S0)

(a) (b)

Figure 4.8: Experimental (a) and numerical (b) time-frequency diagrams of data presented
in figure 4.7. Both have been computed with the same signal processing parameters, over
the same area, located on the most energetic branch and depicted with a black trapezoid
in figure 4.7.

To verify the fulfillment of the condition for triadic resonance in space, we apply the
Hilbert transform technique [114, 16] to the numerically simulated data in the same way as
it is done in experiments reported in [16, 139] or in section 4.1.1. The signal is demodulated
with the Fourier transform, filtered around the three frequencies of interest, Ω0, Ω1 and
Ω2, and reconstructed back in real space using the inverse Fourier transform. As shown
in Figure 5 of [139] or in figure 4.3, it is possible to compute amplitude and phase of each
component. The latter appears as patterns of stripes, corresponding to a fixed moment of
time. The wave vectors can be derived by differentiating these phases along the x and z
directions.

To quantify the wave vectors involved into the triadic resonance in the numerical data,
we construct probability density functions (PDFs) for the components of wave vectors, as
in section 4.1.1. Using these PDFs for the components of the wave vector corresponding to
the primary wave oscillating at Ω0, we can estimate ~k0 = (−63.5± 1,−80.1± 1) m−1. The
same procedure for the secondary wave oscillating at Ω1 gives ~k1 = (−104.8±7,−242.5±20)
m−1. The phase pattern is slightly more complicated for the component oscillating at Ω2

as can be noticed in Figure 5 of [139] where lines of equal phase for this frequency are
not completely straight and there is a larger error bar on the measurement of the wave
vector. Numerically, it is possible to investigate further in the focusing branch of the
attractor thanks to the PDF analysis: one realizes that there are two families of collinear
wave vectors, which yield multi-peaked PDF of the wave vector components, where the
main peak corresponds to ~k2 = (46.5± 3, 174.3± 3) m−1. These values of the wave vector
components closely match the spatial condition of the triadic resonance. The physical
interpretation of the other peaks present in the PDF of the wave vector components for
the wave field filtered at Ω1 is unclear.

The triangles of the wave vectors obtained in experiments and simulations are shown
in figure 4.9. Again, we observe a good quantitative agreement between the experimental
and numerical results. This validates the numerical simulations for unstable attractors. In
the remainder of the manuscript, the spectral element code is used to investigate different
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4.2. An other type of triadic resonance instability

problems in complement to the experiments. Indeed, some physical quantities are easily
accessible from the numerical point of view. Further in this chapter, the three-dimensional
structure of stable and unstable attractors in the y direction is studied using both nu-
merical simulations and experiments. In Chapter 5, the code is used to obtain long-term
simulations with mixing in order to measure the evolution of the potential energy of the
stratification as a function of time.
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Figure 4.9: Experimental (a) and numerical (b) triads. The three wave vectors are mea-
sured from the phase of the waves after Hilbert filtering around Ω0, Ω1 and Ω2. The error
bars are given by of ellipses at the arrow tips.

4.2 An other type of triadic resonance instability

In this section, we discuss how the choice of the operating point in the Arnold tongue of
(1, 1) attractors affects the observed scenario for the onset of triadic resonance instability
(TRI). This part is related to section 3.2.3, where the susceptibility of the (1, 1) Arnold
tongue is investigated for stable attractors. Figure 4.10, also located in section 3.2.3 as
figure 3.18, is essential to understand the following section. In Table 4.3 are specified
the experimental conditions of the three main long-term experiments discussed in this
section represented by the symbols �, � and F in figure 4.10. A fourth symbol, N,
concerns another long-term experiment reported in Chapter 5. It is worth to note that the
experiments discussed in the section have been made in the small tank using PIV.

4.2.1 Different cases of TRI.

The case of TRI in standing waves in a rectangular domain has been studied in [110],
represented by the lozenges � and ♦ in figure 4.10. These cases fall on the vertical line d = 1
where R = 0. The theoretical analysis presented in [110] assumes that standing primary
wave oscillating at frequency Ω0 can feed two standing secondary waves oscillating at
frequencies Ω1 and Ω2 provided spatial and temporal conditions of the triadic resonance are
satisfied and provided the damping in the system is below a given threshold. The damping
is supposed to be primarily associated with the loss of energy in boundary layers at the walls
of the domain. The temporal resonance condition of the TRI amounts to Ω0 = Ω1 ± Ω2.
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Figure 4.10: Structure of Arnold tongue of a stable (1, 1) attractor in terms of the mean
normalized kinetic energy 〈K〉 (a) and the ratio of minimum to maximum kinetic energy R
(b). The solid black line shows the contour at the value R = 0.5, enclosing the region with
nearly propagating waves (NP), while nearly standing waves (NS) are outside this region.
These data are also shown in figure 3.18. Superimposed on this picture are four different
symbols corresponding to the location of the three main long-term experiment geometries
discussed in Chapters 4 and 5 of this manuscript and of experiments reported by McEwan
in [110]. � is for the well-focused (1, 1) attractor with propagating waves (section 4.2.1),
F is for the weakly-focused (1, 1) attractor with standing waves (section 4.2.2) and N for
the strongly-focused (1, 1) attractor with propagating waves (section 5.3.1). � and ♦ are
for the case of the rectangular domain discussed by [110].

Since all the waves involved into triadic resonance are standing ones, their half-lengths in
horizontal and vertical directions should be equal to L/M and H/N where M and N are
integer numbers. Then, the spatial resonance condition can be written as M0 = M1 ±M2

and N0 = N1±N2. In practice, high energetic contents are encountered for the triads with
"plus" and "minus" signs in temporal and spatial resonance conditions, respectively, i.e.
with the cases where secondary waves oscillate at a smaller frequency than the primary
wave, and the energy is transferred to shorter spatial scales, privileging the direct cascade.
All three waves (j = 0, 1, 2) should satisfy the dispersion relation: (Nj/Mj)

2(L/H)2 =
(1− Ω2

j )/Ω
2
j . In the experiments described in [110], the forcing typically corresponded to

low mode with N0 = 1 andM0 varying from 1 to 5. It has been shown experimentally that,
at the laboratory scale, it is possible to transfer energy to the waves that are a few times
shorter than the primary one. For example, for the low-mode forcing atN0 = 1 andM0 = 3,
McEwan [110] observed secondary waves with (N1,M1) = (6, 4) and (N2,M2) = (3, 3).

The case of TRI in well-focused attractors has been described in [139] and in sec-
tion 4.1.1. It is a typical scenario of instability in the central region of the Arnold tongue
corresponding to (1, 1) attractor in (d, τ) diagram. The experiment represented by the
symbol � in figure 4.10 is also located in the central region of the (1, 1) Arnold tongue, for
a = 5 mm. It shows a similar instability, illustrated on 4.11. For this regime, 〈K〉 is large
and R & 0.5. Accordingly, the (1, 1) attractor has thin well-localised branches. Scolan et
al. [139] have shown that the onset of instability in such a wave attractor occurs locally
first in the most energetic wave beam which has the largest amplitude but the smallest
width. This scenario of instability is consistent with the one discussed in [16, 17] and [80].
This is also what it is observed in figure 4.11, for the experiment represented by the symbol
� in figure 4.10.
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4.2. An other type of triadic resonance instability

Reference or section Unit [110] Section 4.2.1 Section 4.2.2
Symbol in figure 4.10 – � � F
H mm 326 303 303
L mm 377 444 444
a mm 4.8 5 5
α ◦ 90 25.4 14.3
Ω0 – 0.655 0.61 0.60
d – 1 0.35 0.65
τ – 0.66 1.80 1.80
Ω1 – 0.397 0.36 0.33
Ω2 – 0.277 0.25 0.27
|kx,inj| m−1 25.0 7.8 7.8
|kz,inj| m−1 9.6 10.4 10.4
|kx,0| m−1 25.0 33 9.5
|kz,0| m−1 9.6 37 12.6
|kx,1| m−1 50.0 80 25.3
|kz,1| m−1 38.5 200 66.4
|kx,2| m−1 25.0 45 15.8
|kz,2| m−1 28.9 170 53.8

Table 4.3: Parameters for the three main and long-term experiments discussed in this
Chapter. kx,inj and kz,inj are respectively the horizontal and vertical forcing wave numbers.
The horizontal and vertical wave vector components are denoted (kx,i, kz,i) in which the
subscript i refers to the primary (i = 0) or to the secondary waves (i = 1 and 2). Ωi

is the corresponding dimensionless frequency. In [110], we have chosen the data with the
frequency triplet that is close to those considered in sections 4.2.1 and 4.2.2. The values
of wave vectors are evaluated from the parameters of standing waves presented in [110].
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Figure 4.11: Horizontal velocity fields for the experiment indicated by the symbol � in
figure 4.10 and Table 4.3, filtered at Ω0(a), Ω1(b) and Ω2(c) in frequency and in space
to keep only the relevant directions. The velocity field is displayed only where the wave
amplitude is larger than 20% of the maximum. The wave vectors are represented by the
arrows. The dashed line on panel (a) shows the ray tracing prediction for this geometry.
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4. Triadic resonance instability in internal wave attractors

Owing to local character of instability, the confinement of fluid domain does not affect
the instability directly. The focusing provides the energy transfer from the input pertur-
bation which has the scale of vertical size of the fluid domain to the scale associated with
the width of the attractor beams, which serves as a primary wave. Subsequent triadic res-
onance transfers energy to secondary waves. The overall efficiency of the energy transfer
from large- to small-scale motions is remarkably high, even at the laboratory scale. Scolan
et al. [139] describe the case where the typical wavelength of the primary wave represented
by the beam of the attractor is roughly 9 times shorter than the wavelength of the input
forcing, and one of the secondary waves has even a wavelength roughly 3 times shorter than
the primary wave, leading to a reduction factor of 25! This is also visible in figure 4.11
where the primary and the two secondary waves have been disentangled using the Hilbert
transform [114].

4.2.2 TRI in weakly-focused (1, 1) attractors

In this section, we describe a new scenario for the onset of instability which is intermediate
between those described in the previous section 4.2.1. This new scenario is typical for weak
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Figure 4.12: Velocity field for the experiment indicated by the symbol F in figure 4.10
(see Table 4.3 for the parameters). (a): Picture of internal wave field, filtered around
Ω0, 200T0 after the start of the wave maker and black lines show the billiard geometric
prediction of the attractor. (b): Time-history of oscillations at the point A shown in
(a). The vertical dashed line in (b) shows the instant of the picture (a) while the dashed
square in (a) shows the region where the time-frequency diagram in figure 4.13 has been
calculated. The initial transient is due to the setting of the attractor, while the instability
is noticeable after roughly 400 periods of oscillations.
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4.2. An other type of triadic resonance instability

focusing. The observation of triadic resonance has been performed for (d, τ) = (0.65, 1.80)
and a = 5 mm. This experiment is represented by the symbol F in figure 4.10.

The snapshot of wave pattern after 200 periods of oscillations (approximately 30 min-
utes of observations) is shown in figure 4.12(a). The time history of oscillations measured
at the point A, defined in figure 4.12(a), is presented in figure 4.12(b). After a rather short
transient of approximately 25 periods, the signal is stable: the attractor is set. Then, one
can clearly see the apparent instability developing after 400 forcing periods, i.e. after more
than 1 hour of observations.

Figure 4.13(a) presents the time-frequency diagram for the case illustrated in figure
4.12. It is calculated at each point in space, as in [16], with the formula presented in
equation (4.3) and then averaged over the rectangle shown in figure 4.12(a) around point
A. Note that, here, it is the horizontal velocity field component, vx, which is used to com-
pute the time-frequency diagram instead of the horizontal density gradient field, used in
figure 4.2. It can be seen that, initially, the signal is entirely dominated by the forcing
frequency Ω0 = 0.60 corresponding to the primary (carrier) wave. Oscillations with fre-
quencies Ω1 = 0.33 and Ω2 = 0.27 slowly develop with time. These frequencies correspond
to two secondary waves generated by TRI. They satisfy the frequency conditions for the
triadic resonance

Ω1 + Ω2 = Ω0. (4.8)

In addition, one can also see two peaks satisfying differential conditions

Ω3 − Ω1 = Ω0 and Ω4 − Ω2 = Ω0. (4.9)
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Figure 4.13: (a): Time-frequency diagram of internal-wave field, obtained from a 50 mm
side square region, surrounding the point A shown in figure 4.12(a). (b): Vertical cut of
the diagram along the frequency axis at t = 400T0, indicated by the white dashed line. S0

corresponds to the time average of the frequency component associated with the primary
wave Ω0. Results are presented for the experiment indicated by the symbolF in figure 4.10
(see Table 4.3 for parameters).
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Figure 4.14 shows the decomposition of the wave field into the components correspond-
ing to the primary and secondary waves. The decomposition, performed with the help of
Hilbert transform [114], reveals node-antinode patterns of amplitudes of secondary waves,
similar to Chladni figures. These patterns are present soon in the experiment, but their
amplitude increases gradually. Thus, this is very different from TRI presented in [139] or in
sections 4.1.1 and 4.2.1 where the waves are created on a very localized region of the tank.
Here, the secondary waves appear directly everywhere in the tank, in a shape presented
in figure 4.14. The sequences of wave profiles measured along the vertical line indicated
in the images are also shown in the right panels. It can be seen that the secondary-wave
motion is represented by standing waves of high vertical modes. The standing wave pat-
terns can be further decomposed into the sums of propagating waves. All vectors satisfy
the dispersion relation individually. The length of the primary wave can be estimated
as λ0 = 2π/|k0| = 39.8 cm with horizontal and vertical components λx0 = 66.1 cm and
λz0 = 49.7 cm. The quantities λx0/2 and λz0/2 are reasonably close to the distances from
the left top corner of the trapezoidal fluid domain to the reflection points of the attractor.
The ray tracing yields the distances to the reflection points 28 and 21.6 cm in horizontal
and vertical directions, respectively. Therefore, in the present case, the primary wave has
a length scale associated with the global geometry of attractor. By contrast, in the case
of spatially localized onset of instability with high growth rate described in [139] (see sec-
tion 4.1.1 and symbol � in figure 4.10.), we have seen that the length of the primary wave
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Figure 4.14: Components of the wave field corresponding to frequencies Ω1 (a) and Ω2

(b), obtained with the Hilbert transform centered at t = 620T0 and using a 85T0 long
Hamming window. Results are presented for the experiment indicated by the symbol F in
figure 4.10 (see Table 4.3 for the parameters). Note that the components oscillating at Ω1

and Ω2 correspond to standing waves as is clearly seen on the sequences of wave profiles
shown on the right of each picture (panels (c) and (d)).
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4.2. An other type of triadic resonance instability

is associated with the width of the attractor branch.
Horizontal cuts in figure 4.13 at Ω1 and Ω2 are plotted in figure 4.15. At low amplitude

of secondary waves, the linear trend is obscured by the instrumental noise, while toward
the end of the experiment there is a trend to saturation of amplitudes of secondary waves.
The vertical logarithmic representation emphasizes a remarkably linear growth for about
three decades (!) in the amplitude of secondary waves. The growth rate of the instability
can be estimated to be around σ = 6.5× 10−4 s−1, which leads to a characteristic growth
time of the instability around 1500 s (i.e. half an hour or 150T0).

This time has to be compared with the time scale τw set by the limited size of the test
tank. It can be defined as the time for secondary waves to perform a horizontal return-trip
in the tank: τw = 2L/cgx, where cgx is the group velocity in the horizontal direction. This
group velocity can be measured using the wave numbers of the secondary waves estimated
via Hilbert transform and wave number filtering. It gives τw ≈ 60 s, which is very small
in comparison with the instability growth time of 1500 s. It is worth to note that τw is
a good measure of the return-trip time of secondary waves because these waves are only
slightly inclined. Indeed, their propagation angle is close to 20◦ since Ω1 and Ω2 are around
Ω0/2 = 0.3.

The data presented in [139] or in figure 4.11 clearly show that the triadic resonance
develops first in the most energetic branch of the wave attractor, the one connecting the
inclined slope to the surface. The data on the wave-vector components presented in [139]
yield τw around 180 and 320 s for the two secondary waves involved into the triplet which
is measured at time around 300 s after emergence of detectable secondary waves. There-
fore, the secondary waves could make only between 1 and 2 return trips, and owing to the
presence of the vertical component of the group velocity they could not return to their
generation site. So, the onset of the instability described in [139] and also seen in the ex-
periment represented by the � on the (d, τ) diagram is to a good approximation a spatially
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Figure 4.15: Cuts along the time-axis of the time-frequency diagram presented in figure 4.13
at frequencies Ω1 (red line) and Ω2 (blue line).
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4. Triadic resonance instability in internal wave attractors

isolated local event, while the onset and subsequent development of instability described in
the present section is a global event, which is inherently related to the confinement. This
event has many common features with the instability in a rectangular domain described
by McEwan [110].

4.3 Wave structure in the transversal direction: 3D effects
and role of lateral walls

A remaining question for both stable and unstable attractors is if the flow in the tank
is really independent of the y-coordinate. This is assumed experimentally because the
SyS technique needs a bi-dimensional flow, or at least some symmetries [126]. Indeed,
in this technique, the image results from the integration of the field along the transverse
direction and the ray of light is expected to cross the tank through always the same
density perturbation. Moreover, the PIV technique as described in this manuscript is
representative of the flow only if the flow does not depend on the y direction. One can
expect a bi-dimensional flow from the setup, because it has been designed on purpose.
Indeed, the tank is narrow in the transverse y direction and forcing is applied via the
wave-maker through almost all the width of the tank. So the flow is expected to be two-
dimensional, except very close to both vertical lateral walls where the viscosity plays an
important role. Nevertheless, the width is not negligible in front of the other lengths of the
system and the two-dimensionality of the flow needs to be verified. This has been done in
the experiments and numerical simulations presented in this section, for both stable and
unstable attractors. Here, the attractors are well-focused attractors. Thus, when they are
unstable, this means unstable by the local TRI, starting on branch 1. Nevertheless, the
results presented here should be valid for the global TRI, because there is no so much

x

y

z

Figure 4.16: Visualization of the three-dimensional effects in the internal wave attractor.
Snapshot of the instantaneous magnitude of the velocity field (v2

x + v2
z)

1/2 produced by
the 3D numerical simulations based on the spectral element method for a = 2.4 mm. The
snapshot corresponds to a contour plot (level 2.5 mm/s) of the amplitude of the velocity
field (v2

x + v2
z)

1/2 at t = 50T0. The inset presents a zoom to emphasize an example in
which the transversal direction is curved.
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4.3. Wave structure in the transversal direction: 3D effects and role of lateral walls

differences between the different cases of TRI regarding the y-coordinate.
An overall idea of the importance of three-dimensional effects in wave attractors can

be indeed drawn from figure 4.16 which represents an isosurface of the norm of the velocity
vector for a 3D simulation at the onset of the instability. We can see the same features
as in the vertical xOz plane view in figure 4.7 with the loop of the attractor and the
secondary perturbations. However, the iso-surface of the velocity norm is not flat in the
transversal direction as the fronts of the perturbations are visibly curved especially on the
two top S-shape features in the focusing branch near the slope. Also, close to lateral walls,
in particular in corner regions at the intersection of vertical walls, it is possible to see some
three-dimensional structures. The inset of figure 4.16 is a zoom on a region where the
3D-effects are particularly visible.

4.3.1 2D visualizations in vertical plane xz at different transversal
locations

To check this assumption that the flow is two-dimensional, we use experimental standard
PIV technique for several vertical sections at different constant y positions of the light
sheet and thus compare flow properties between the different sections. Experiments have
been performed with L=43.5 cm, H=30 cm and α = 25◦, a geometry close to experiments
performed in [139]. For these experiments, (d, τ) = (0.35, 1.85). Different vertical sections
in the transverse direction have been illuminated with a vertical laser sheet, coming from
the bottom of the tank, which is transparent. A 45◦ inclined mirror, located below and
as long as the tank, transforms a horizontal laser sheet into a vertical one. By simply
translating the mirror in the transverse direction, one can illuminate the different test
sections. Three series of experiments have been performed, each one with a different
amplitude of the wave maker: a = 1.5, 3 and 5 mm. For each series, between 9 to 12
vertical sections have been illuminated by simply translating the mirror in the transverse
direction.

Measurements have been carried out in the stationary state of the attractor. For the
lowest amplitude experiment, there is no instability of the attractor: the wave maker was
stopped only at the end of the full series, once all sections have been illuminated. For
the two other series, the instability takes place after a long transient: consequently, the
wave maker has been stopped after performing measurements at each transversal location
to avoid mixing effects that would modify the stratification and thus the attractor itself.
For all series, measurements in the central section of the tank were performed twice, once
at the beginning, once at the end. This gives an estimate of the errors made on these
measurements and also gives the possibility to check that, after a whole series, the attractor
is really unchanged. To compare the different sections of the same series, we focused only
on the most energetic branch of the attractor, i.e. the branch 1. Transversal profiles are
extracted through this branch, always at the same location. As the horizontal and vertical
velocities are measured, it is possible to calculate the velocity along this branch inclined at
the angle θ = arcsin Ω0 using the formula vξ1 = −vx cos θ + vz sin θ. The maximum value
corresponds to the center of the branch, η1 = 0, where η1 is the coordinate transversal to
the branch.

Numerically, with 3D simulation, it is possible to get velocity profiles in the transverse
y direction. Two 3D simulations have been performed, with exactly the same geometrical
parameters as in [139], and with two different amplitudes of the wave maker: a = 1.6 and
2.2 mm. For this experiment, (d, τ) = (0.18, 1.81). Velocity profiles in the transverse y
direction were extracted from the most energetic branch and the velocity vξ1 along this
branch computed as for experiments.
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4. Triadic resonance instability in internal wave attractors

It is important to note that the transverse resolution is much higher in the numerical
data (512 points for 17 cm) than in the PIV experimental ones (between 9 and 12 points
for the same 17 cm). Moreover, the different points obtained experimentally come from
different individual experiments performed at the same input parameters but not from the
same unique experiment. Thus, it is difficult to synchronize the different points and we are
limited to look at amplitudes of the filtered signals at Ω0, Ω1 and Ω2. In contrast, various
quantities can be examined numerically such as the raw signal, the whole signal filtered
around Ω0, Ω1 and Ω2 and the mean flow generated by the attractor.

4.3.2 Velocity profiles in transverse y direction

Figure 4.17(a) presents the different velocity profiles for the numerical simulation with
a = 1.6 mm. For this amplitude, the attractor is stable. The raw velocity profiles for vξ are,
as expected, very close to the two-dimensionality, except into the boundary layers where
the velocity goes to zero. Moreover, it appears clearly that the amplitude of the transverse
velocity vy (represented by a dashed line) is much smaller than the velocity vξ along the
branch. This is a clear confirmation that the attractor generated by the wave maker is two-
dimensional to a good approximation. The difference between the raw velocity magnitudes
measured in positive and negative ξ directions comes from the presence of slow near-wall
secondary currents superposed with the fundamental monochromatic wave motion in the
wave beams as discussed in more detail in the next section.

To extract only the component of the wave field oscillating at the fundamental fre-
quency, one can do Hilbert filtering on the raw profiles around Ω0 over 20T0. The modulus
of the velocity filtered for the numerical simulation with a = 1.6 mm is shown with a thick
dashed line in figure 4.17(b). As the raw profiles, it is also very close to two-dimensionality.
By looking to the real part of the filtered signal, one can be convinced that the profiles
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Figure 4.17: (a): Raw velocity profiles as a function of the transversal direction y for the
numerical simulation with a = 1.6 mm. Thick solid line and thin solid line: maximum
(max vξ1) and opposite of the minimum (-min vξ1) of the velocity vξ1 for each y over the
time history. Dashed line: maximum of the absolute value of the transversal velocity vy
over the time history for each y. (b): Modulus of vξ1 filtered over 20T0 around Ω0 (thick
dashed line), for the numerical simulation with a = 1.6 mm. Modulus of vξ1 filtered over
20T0 around Ω0 (thick solid line), Ω1 (thin solid line) and Ω2 (thin dashed line), for the
numerical simulation with a = 2.2 mm. (c): Normalized profiles of vξ1 filtered around Ω0

for the numerical simulation with a = 1.6 mm (thick dashed blue line) and a = 2.2 mm
(thin solid red line). Points were obtained using PIV experiments: a = 1.5 mm (blue
diamonds), a = 3 mm (red squares) and a = 5 mm (black circles).
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4.3. Wave structure in the transversal direction: 3D effects and role of lateral walls

for vξ are exactly the same for positive and negative values. Hilbert transform allows us
also to investigate the two-dimensionality of the TRI. As the numerical simulation with
a = 1.6 mm is stable, one can use the one with a = 2.2 mm, which is unstable. Fig-
ure 4.17(b) shows the profiles along y of the modules of vξ filtered around ω0 (thick solid
line), ω1 (thin solid line) and ω2 (thin dashed line) for this simulation. These profiles
appear to be nearly constant in the y direction, except close to the edges. This ensures
that the instability which develops in the tank is also two-dimensional.

To compare the numerics and the experiments, we can superimpose the experimental
and numerical vξ profiles after Hilbert filtering around Ω0 for the different amplitudes of
the wave maker. Figure 4.17(c) shows these different profiles: the solid blue line (resp.
diamonds) corresponds to numerical (resp. experimental) data for a = 1.6 mm (resp.
a = 1.5 mm) while the dashed red line (resp. squares) corresponds to numerical (resp.
experimental) data for a = 2.2 mm (resp. a = 3 mm). Experimental points for a = 5 mm
are represented by black circles. All data are normalized by the velocity in y = 0 cm to
avoid divergences in amplitude due to the location of the point where is measured the
velocity along the branch and small discrepancies in wave maker amplitude. All data show
again a very good two-dimensionality. The loss of amplitude on the edges, before the
boundary layers is less than 10%. Moreover, numerical and experimental data for a = 1.6
and a = 1.5 mm (dashed blue line and diamonds) show a good agreement between each
other. For higher amplitudes a = 2.2 and a = 3 mm (red line and squares), where the TRI is
developed, the agreement is also very good. Even for the experiment with a = 5 mm, where
TRI is well developed, the shape of the experimentally measured transverse profile is in
reasonable agreement with the simulation at a = 2.2 mm. All numerical and experimental
data collapse in a reasonable way on a curve that ensures that all waves inside the tank
are reasonably invariant in the transverse y-direction.

4.3.3 Generation of mean-flows

We previously showed that the velocity field in the transverse direction for the wave at-
tractor confirms the usual 2D approximation as a reasonable one. Nevertheless, it turns
out that a closer look on the profiles of vξ reveals a discrepancy between profiles of the
maximum (max vξ) and the opposite of the minimum (-min vξ) of the velocity vξ as illus-
trated in figure 4.17(a). Indeed, the raw profiles for the attractor are not totally symmetric:
when vξ is positive (thick solid line), even if the profile looks two-dimensional, there are
some small peaks close to boundary layers which are not present in the profiles when vξ is
negative (thin solid line). This symmetry breaking suggests the presence of a mean flow,
always in the same direction, which modifies the velocity profiles close to boundary layers.
To verify this, we analyse now further the data and check for possible mean-flow generated
within the tank. To extract this mean-flow from the raw data, we used Hilbert filtering
around Ω = 0.

The numerical simulation specially run to thoroughly study the mean-flow has been
performed with the same geometrical parameters as the one with the amplitude a = 1.6 mm
for section 4.3.2. The attractor is stable and is precisely located at the same position in
the tank as in figure 3.37. To limit the size of the data saved, the three components of
the velocities were recorded only for the two horizontal planes, z = 10 cm and z = 20 cm,
with 0.5 second time-steps. On theses planes, the velocities were saved on a mesh with a
good resolution of 128× 256 points.

Hilbert filtering at Ω = 0 was applied on time-series of the three velocity components
for each point of the x-y plane. We consider the situation once the attractor reaches
the steady state. Figure 4.18 shows the mean-flow in the two different horizontal planes,
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4. Triadic resonance instability in internal wave attractors

z = 10 cm and z = 20 cm. The color represents the vertical velocity component vz,
while arrows represent the horizontal velocity components, vx ~x + vy ~y. The wave maker
is located at x = 0 cm, on the left of the figure. The slope is indicated, on the right, by
a vertical white line. Figure 4.7 shows the location of the attractor in the x − z plane.
At z = 10 cm, the attractor is reflecting on the slope while, at z = 20 cm, it is reflecting
on the wave maker. These are the two intense regions in figure 4.18, close to the slope
at z = 10 cm and close to the wave-maker at z = 20 cm. As reflections occur in these
regions, it can be difficult to extract conclusions for the mean-flow. Nevertheless, it is still
possible to examine the mean-flow in the regions where the attractor beams intersect with
the planes located at z = 20 cm and z = 10 cm. These intersection regions are delimited
by the dashed rectangles in figure 4.18. The flow in the branches of attractors shows a clear
three-dimensional behavior, with recirculation zones where the horizontal components of
the velocity vectors are forming jet-like currents close to the vertical walls of the tank
to compensate the mean flow in the central part of the wave beam. It is important to
emphasize that the magnitude of the mean-flow is much smaller than the velocity of the
fluid due to the waves. Indeed, for this attractor, the typical amplitude of the velocity
oscillations in the most energetic branch at the intersection with the plane z = 20 cm is
about 2.5 mm/s while the typical velocities of the mean-flow are about 0.1 mm/s, thus less
than 5% of the velocity due to the waves.

−8

−4

0

4

8

y
[c
m
]

z = 20 cm

 

 

−0.2

−0.1

0

0.1

0.2

0 10 20 30 40

−8

−4

0

4

8

x [cm]

y
[c
m
]

z = 10 cm

 

 

−0.1

−0.05

0

0.05

0.1

vz [mm/s]

(a)

(b)

0.5 mm/s

0.5 mm/s

Figure 4.18: Mean-flow (Hilbert filtering analysis at Ω = 0 applied on numerical data)
generated in the two different horizontal planes z = 20 cm (panel (a)) and z = 10 cm (panel
(b)). The color represents the vertical velocity component, vz, while arrows represent the
horizontal velocity components, vx ~x+ vy ~y, with the arrow scale displayed at the right of
the figure. The wave maker is located at x = 0 cm, on the left of the figure, while the
slope is indicated, on the right, by a vertical white line. The dashed rectangles delimit the
regions where the attractor beams intersect with the planes located at z = 20 cm (panel
a) and z = 10 cm (panel b).
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4.3. Wave structure in the transversal direction: 3D effects and role of lateral walls

4.3.4 Dissipation in the bulk and in the boundary layers

To further examine the three-dimensionality of the flow, we determine the spatial distri-
bution of the dissipation in the tank. We first compute the dissipation

ε(x, y, z, t) = 2νei,jei,j (4.10)

where ν is the kinematic viscosity while the strain rate tensor is defined as

ei,j =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
. (4.11)

vi and xi are respectively the components of the velocity field and of the position. Then,
for a given y-transversal coordinate, we average on a 2× 2 cm2 square to define the locally
averaged dissipation

ε(y) = 〈 ε(x, y, z, t) 〉(x,z,t), (4.12)

which has also been averaged, after 42 periods after the start of the forcing, over three
time periods. This quantity is shown as an inset in figure 4.19.

However, as for example in [11], it is even more explicit to integrate this result hori-
zontally along the transversal y-coordinate as follows

ε̃(y) =

∫ y

−W/2
ε(y′) dy′ (4.13)

in which W is the total width of the tank.
We plot in figure 4.19 the horizontally integrated dissipation ε̃(y), normalized by the

total dissipation ε̃(W/2) within the parallelepiped 2cm×2cm×W , in two different locations:

−10 −5 0 5 10
0

0.2

0.4

0.6

0.8

1

y [ cm]

ε̃(
y
)/

ε̃(
W

/
2
)

a = 1 .6 mm

−10 −5 0 5 10

y [ cm]

a = 2 .4 mm

−10 0 10
0

0.5

1

1.5

ε(
y
)

−10 0 10
0

1

2

3

ε(
y
)

(a) (b)

Figure 4.19: Horizontally integrated dissipation ε̃(y) (see definition in Eq. 4.13), normalized
by the total dissipation ε̃(W/2). Panel (a) corresponds to the forcing amplitude a =
1.6 mm, while panel (b) to a = 2.4 mm. The solid blue line corresponds to a region
located within the most energetic branch of the attractor, while the dashed black line
corresponds to a region close to the center of the tank outside the attractor. The inset
present the locally averaged dissipation ε(y) (in mm2·s−3) for both forcing amplitudes
within the most energetic branch.
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4. Triadic resonance instability in internal wave attractors

one in branch 1 after the focusing onto the slope (with the subscript a for attractor), the
second one around the center of the tank (with the subscript c for center) and thus far
from any branch of the attractor. For a weak forcing a=1.6 mm which leads to a stable
attractor, one gets ε̃a(W/2) = 1.7 and ε̃c(W/2) = 0.013 mm2·s−3. For a larger forcing
a = 2.4 mm leading to unstable regime, above values are typically multiplied by a factor
2, since one gets ε̃a(W/2) = 3.7 and ε̃c(W/2) = 0.028 mm2·s−3.

Above figure 4.19 emphasizes that, within the most energetic branch, the spatial dis-
tribution of the dissipation is only weakly changed while increasing the amplitude of the
forcing, and therefore by passing from a stable to an unstable attractor. Approximately
1/4 of the dissipation is located in the boundary layers, which occupy less than 10% of
the total width. The three remaining quarters are within the bulk of the flow. The dissi-
pation outside the attractor is significantly altered by the amplitude of the forcing. This
is presumably because TRI has generated secondary waves which propagate, outside the
attractor and more precisely toward the center of the tank. However, it is important not
to overestimate this result since the total dissipation in the center of the tank is more than
100 times smaller than its counterpart within the most energetic branch of the attractor.
It was of course expected, since this is where waves, and therefore energy, are trapped.

4.3.5 Synthetic Schlieren test

Using the numerically computed density gradients in the transversal direction, we can
provide an estimation of the error made on experimentally measured density gradients
by assuming that the flow is two-dimensional inside the tank. We use the simulation for
a = 2.2 mm as in section 4.3.2, by considering the density gradients instead of velocity
fields. These data were available on a point located on branch 1, for all y. Figure 4.20(a)
shows the time history of the horizontal density gradient in y = 0 cm. TRI occurs after
35T0 in this simulation.

Dalziel et al. [29] have shown that the angle of deflection of a light ray crossing the
tank in the i-direction is

αi =
1

n

dn
dρ
W
∂ρ′

∂i
, (4.14)

i being x or z. Here W is the width of the tank and n the optical index of water. The
quantity dρ/dn is essentially constant and equal to 4.1 × 103 kg/m3. Equation (4.14)
assumes that the flow is two-dimensional and that the density gradients do not depend on
the y-direction. This deflection induces displacement of the dots on the camera CCD from
which we can measure the density gradients.

With the numerical simulations, one can proceed in the inverse way. Knowing the
density gradients and especially their dependence in y, one can compute the displacement
that these gradients would have caused on a CCD camera placed at typical experimental
distances. For density gradients depending slightly on y, one has to integrate over the
width of the tank to get the deflection

αi =
1

n

dn
dρ

∫ W/2

−W/2

∂ρ′

∂i
dy. (4.15)

This integration assumes that the deflection of the ray is small in x and z directions, so
the ray remains more or less at (x, z) constant. That is why one can use only a line profile
in y for density gradients. In typical experimental conditions, the CCD camera is placed
at 1.75 m of the tank and at 2.25 m of the random dot pattern. The camera has a lens
of 25 mm. Considering these experimental parameters, simple geometrical calculations
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4.3. Wave structure in the transversal direction: 3D effects and role of lateral walls

then allows us to convert the angle deflection αi into the displacement on the camera ∆i.
Displacements are indicated in figures 4.20(b) and (c) by the red squares, before the onset
of TRI (panel b) and after the onset of TRI (panel c). The order of magnitude of these
displacements is of few micrometers, while the pixel size of the two different cameras used
are equal to 3.45 and 4.65 µm. Thus, the displacements are of few pixels and sufficient
for data treatment. Interestingly, one can also compute the displacements as if the flow
was strictly two-dimensional, by assuming that, once given (x, z), the density gradients
in y = 0 are the same for all y in the tank. The deflection is thus as in equation (4.14).
These displacements are indicated in figure 4.20(b) and (c) by the blue circles, before the
onset of TRI (panel b) and after the onset of TRI (panel c). The difference between blue
circles and red squares is very small in both situations, before and after the onset of TRI.
This shows that the two-dimensional assumption for the flow is robust and the error using
it is very small. One can see in figure 4.20(b) and (c) that the displacements of blue
circles are slightly larger than those for red squares. This shows that the density gradients
in the center plane xOz are slightly underestimated in the experimental measurements
performed with the synthetic schlieren technique, typically by a factor of 5% without TRI
and by a factor of 7% with TRI. This combined experimental-numerical check is a nice
confirmation of the validity of the SyS technique that justifies the comparisons performed
in sections 3.6.3 and 4.1.3 of this manuscript.
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Figure 4.20: (a): Time history of horizontal density gradient in y = 0 cm for the numerical
simulation with a = 2.2 mm. (b): Displacement of the dots on the CCD camera that the
simulation would have caused if the density gradients have been measured using Synthetic
Schlieren technique at t = 30T0, before the onset of TRI. (c): Same as panel b) after the
onset of TRI (t = 180T0). The blue circles indicated the displacement caused if the flow
is assumed to be 2D, while the red squares show the displacement caused without this
assumption. The displacements are plotted for two periods of the wave-attractor around
the time indicated above the figures.
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Conclusion

In this Chapter, I discussed the different triadic resonant instability (TRI) occurring in
internal-wave attractors and its consequences on the attractor itself and on the flow inside
the tank.

First, I have observed that TRI can appear from the most energetic branch of the
attractor and therefore has a local character, as previously mentioned in [139]. This local
TRI can be observed in well-focused attractors. Numerical simulations are in very good
agreement with the experiments when TRI is developing. Moreover, I have also shown that
TRI has consequences on the amplitude and the wave-length of the attractor branches.
Before TRI, as described in Chapter 3, the wave length of the branches is only set by the
geometry of the basin and the amplitude increases with the forcing amplitude. When the
forcing is too high, TRI is triggered and the amplitude of the attractor becomes independent
of the forcing amplitude while the wave length increases. Thus, the TRI can balance the
geometrical focusing.

Then, I have shown that the geometry of the attractor can influence the TRI. Indeed,
for weakly-focused attractors, I observed a TRI growing globally, in all the basin, with
a very low growth rate. The secondary waves are found to be standing waves, with a
characteristic time to propagate in all the tank much smaller than the growth rate. Thus,
it worths to investigate TRI in long-term experiments. This is done in the next chapter.

Finally, I have investigated the three-dimensional aspects of the flow in the tank, using
experiments and numerical simulations. The numerically simulated distribution of wave
amplitudes across the tank is in good agreement with the experimental data, for both stable
and unstable attractors. These data show, as expected, that the flow is quasi independent
of the y-coordinate, with or without TRI. Moreover, in the most energetic branch of the
attractor, I have shown that approximately 25% of the total dissipation occurs within the
boundary layers which occupy less than 10% of the total width.

Three-dimensional calculations allow to estimate the error introduced in conventional
SyS technique which assumes two-dimensionality of the flow (or given symmetries) and con-
siders spanwise integrated optical distorsions. The validation of three-dimensional spectral
element code in a present nominally two-dimensional problem represents a necessary step
for future exploration of fully 3D problems in the spirit of Maas et al. [104, 95, 35], which
can shed light on the occurrence of attractors in oceanographic problems.

144



Chapter 5

Non-linear energy cascade and
mixing in internal wave attractors

In the previous chapter, we have seen that in-
ternal wave attractors are prone to TRI if the
amplitude of the forcing is sufficiently large.
TRI can be localized on branch 1, as described
in section 4.1.1 and in [139], or more global as
described in section 4.2.2. Moreover, to cap-
ture all the dynamics, the duration of the ex-
periments must be much larger than the time
for the secondary waves to propagate in all the
tank. Consequently, in this chapter, we de-
scribe the long-term behavior of unstable at-
tractors. They are forced at high amplitude
and this leads to a triadic cascade of energy.
The secondary waves, created by TRI, are also
unstable via triadic resonant interactions and
more secondary waves appear. The energy at
the forcing frequency, localized in the attrac-

tor, is thus transferred towards the secondary waves via a cascade mechanism. There are
strong signatures of internal wave turbulence.

Wave-turbulence (or weak-turbulence) is a regime where waves have an amplitude suf-
ficiently high that there is a transfer of energy through different spatial scales via wave-
interactions. Thus, the energy cascades through a large range of scales from an injected
scale towards a small dissipative one. Wave-turbulence has already been observed or de-
scribed at the surface of liquid with gravity waves [66] or capillary waves [45], in inertial
waves in rotating fluids [151], in elastic plates [14, 117, 37], in plasmas... In the oceans,
Lvov and Tabak [94] have explained the observed spectra of Garrett and Munk [57] by
internal wave turbulence. One can do some analogies with the 3D turbulence, but they are
limited. The wave turbulence is a statistical theory of weakly non-linear wave interactions,
developed initially by [66, 153, 154]. Let us consider a wave, with its wave vector ~k and
its frequency ω. The energy is given by:

E~k = n~kω, (5.1)
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5. Non-linear energy cascade and mixing in internal wave attractors

where n~k is the wave action. The time evolution of the wave action is given by the wave-
turbulence theory, which predicts an out-of-equilibrium solution for the inertial range, in
between the injected and dissipate scales. In this range, the energy flux ε is conserved and
one has a scaling law for the energy:

E~k ∝ ε
1/(n−1)k−r, (5.2)

where r > 1 and n is the index of the wave interactions. Typically for internal waves,
n = 3: we talk about three-wave interactions or triadic resonant interaction (TRI). This
out-of-equilibrium solution is called the Zakharov spectrum [121]. These spectra have been
computed for various systems with wave-turbulence. They also can be found simply by
dimensional analysis of the relevant parameters of the systems.

If the forcing amplitude is sufficiently strong, all the waves present in the tank are able
to partially mix the fluid. Thus, this is a retro-action of waves on the linearly stratified fluid
that carries them. As the stratification is modified, the wave propagation is also modified.
The amount of mixing is related to extreme events, caused by the random summation at
one point of different waves with different frequencies propagating in the tank. This can
cause locally overturns which disrupt the stratification once they are sufficiently intense.
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Energy cascade in long-term experiments

An experiment is qualified of "long" when its duration is greater than the time necessary
for the secondary waves created by TRI to explore the tank. In section 4.2.2, we have
demonstrated the effect of the ratio between the typical growth time of the primary insta-
bility τ∗ and the duration of the horizontal return-trip τw of secondary waves in the tank.
If τ∗ � τw, the onset of instability is local, while for τ∗ � τw the secondary waves are more
likely to appear in form of standing waves. However, τ∗ and τw do not form an exhaustive
set of time scales. The evolution of the system to saturated state where the energy injec-
tion is in balance with dissipation may have a very long time-scale τsat. Over the time
span 0 < t < τsat, the system may experience a cascade of triadic resonance instabilities
generating new time-scales of the return trips τw. For the full study of dynamics, the
system should be observed during the time τobs > τsat � τw. Thus, long-term experiments
with τobs � τw can reveal the effects of confinement for the system with τ∗ � τw similar
to the one described in [139] or in section 4.1.1. In this chapter, we analyze the long-term
evolution of the spectrum in the case of unstable attractors and present for the first time
the evidence of the effects due to confinement. Thus, most of the experiments presented in
this chapter are called long-term experiments. Typically, these experiments are two hour
long, which is approximately 700 periods of the attractor. In the two previous chapters, the
short-term experiments only last between 100 and 150T0. During these two hour experi-
ments, data are recorded continuously. Long-term experiments have been only performed
in the small tank, with the PIV visualization technique. Stratification is measured with
the conductivity probe before and after each experiment in order to evaluate the amount
of mixing generate by the waves.

This chapter is centered around two types of long-term experiments, presented in Ta-
ble 5.1. The first type is composed of experiments at intermediate forcing amplitude (case
B), typically a = 5 mm while the second type represents experiments with high forcing
amplitude a = 10 mm (case C). The first category of experiments leads to an energy cas-
cade of discrete frequencies with strong signatures of internal wave turbulence. The second
type causes also a cascade in frequencies, which has a discrete part embedded into a more
continuous part. Moreover, in the last case, the waves are enough strong to cause partial
mixing in the tank. A stable attractor (case A) is used to highlight the differences between
a stable linear case and the two unstable ones. As case A is stable, the experiment is
short-term only. The geometry of these three experiments is the same and corresponds to
the case of well-focused attractors (�). The (d, τ) parameters are approximately equal to
(0.35, 1.80).

Case Type Ω H L α a tmax
cm cm ◦ mm T0

A Stable attractor 0.59 30.0 45.0 27.3 1.5 149
B Discrete cascade 0.61 30.3 44.4 25.4 5 693
C Mixing cascade 0.60 30.1 44.2 24.8 10 651

Table 5.1: Typical experiments representative of different cases: low forcing (case A, sta-
ble), intermediate forcing (case B, unstable) and high forcing (case C, unstable with mix-
ing).

Examples of experimental velocity fields for case B are shown in figure 5.1 at different
stages. During the two first stages, the attractor is growing and is stable. Almost all the
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5. Non-linear energy cascade and mixing in internal wave attractors

energy is localized around the ray tracing prediction, shown as dashed black lines. On
panel (c), the TRI starts and two secondary waves are created, but the energy is still well
localized around the ray tracing prediction. At a later stage, on panel (d), the instability
is well developed and the attractor is slightly deformed by the secondary waves that seems
present in all the tank because one can see some energy which is not localized on the ray
tracing prediction. The observations for figure 5.1(d) are also true but amplified several
hundreds of periods after the start of TRI. The experimental velocity field is shown for
case B at a much larger stage in figure 5.2. The attractor is still visible, but branches are
deformed by the presence of secondary waves. As it will be clear below, the internal wave
frequency spectrum which was initially a Dirac function has been progressively enriched
to give rise to a very complex spectrum, through a cascade of central interest.
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Figure 5.1: Magnitude of the experimental two-dimensional velocity fields for case B (see
Table 5.1) at t = 5T0(a), 15T0(b), 25T0(c) and 100T0(d). Black dashed lines show the
billiard geometric prediction of the attractor, which is fully recovered when considering
small forcing amplitude (see Chapter 3) or at an earlier time when considering larger
forcing.

The different experiments of Table 5.1 can be analyzed using a time-frequency repre-
sentation [53] calculated at each spatial point. More precisely, we compute the quantity
given in equation (4.3) for the horizontal velocity fields. To increase the signal to noise
ratio, the data are averaged over the square represented in figure 5.2 by the white dashed
line. We present only the analysis of the horizontal velocity field, but the results are similar
for the vertical one. Figure 5.3 presents the basic types of the newly observed cascades,
with progressively increasing complexity: a simply monochromatic spectrum (case A of
Table 5.1), and rich multi-peak spectra (cases B and C).

The appropriate choice of the length of the Hamming window h allows us to tune the
resolution in frequency and time. A large (resp. small) window provides a high (resp. low)
resolution in frequency and a weak (resp. good) resolution in time. In order to separate
the different frequencies in the cases B and C, a good resolution in frequency is necessary.
The three panels have been obtained with a 15 min long Hamming window (' 80T0). As
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Figure 5.2: Magnitude of the experimental two-dimensional velocity field for case B (see
Table 5.1) at t = 400T0. Black dashed lines show the billiard geometric prediction of the
attractor.

the size of the Hamming window is on the order of the duration of the experiments, some
edge problems appear at the beginning and end of the time-frequency diagrams. This can
be clearly seen in figure 5.3, at the beginning of all diagrams, around Ω0, where the peak
is wider than in the rest of the experiments. This problem is not visible at the end because
we deliberately cut off diagrams just before. The size of the Hamming window is also
responsible of the wrong impression that the continuous spectrum can be seen right at the
start of the experiment in figure 5.3(c). We checked that a time-frequency diagram with a
shorter Hamming window emphasizes that the continuous spectrum does appear gradually
like for the secondary frequency peaks in figure 5.3(b). However, with such a choice, the
frequency resolution would not be sufficient to discriminate the frequencies.

The richness of the frequency spectrum increases with the amplitude of the wave-maker
a. Internal wave attractors in the large amplitude regime present therefore a nice cascade,
transferring energy from large-scale monochromatic input to many discrete internal wave
frequencies. Moreover, comparing figure 5.3(b) with figure 5.3(c), we note that the fre-
quency spectrum remains qualitatively similar: a “discrete" part, with well-defined peaks,
and a “continuous" part (not visible in figure 5.3(b) but really present). However, in case C,
the magnitudes of peaks in the “discrete" part of the spectrum fluctuate in time, and the
energy content of the “continuous" part is significantly higher (two orders of magnitude),
as is clearly visible from the background color. This cascade thus presents features rem-
iniscent of wave turbulence, worth to explore. Moreover, for case C, by measuring the
stratification before and after the experiments, a partial mixing of the initial stratification
has been found. For the two first cases A and B, no change in the stratification has been
observed. The different stratifications are shown further in this Chapter, in section 5.2.3.

In this chapter, we describe the different processes responsible for the discrete cascade in
section 5.1 and for the mixing in section 5.2, using cases B and C. Finally, in section 5.3, we
discuss the role in the cascade process of the geometry and of the choice of the operating
point in the Arnold tongue. Cases B and C, being for well-focused attractors (�), are
compared with weakly- or strongly-focused attractors (F or N, see figure 4.10), also forced
at large amplitude (a = 5 or 10 mm).
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Figure 5.3: Time-frequency diagrams: log10

(
Sx(Ω, t)/S0

)
, defined in equation (4.3), for

three different forcing amplitudes a. The quantity S0 is defined as the time average of the
main component Sx(Ω0, t). The time-frequency diagrams are calculated on the 5× 5 cm2

square region, located on branch 1 and indicated by the white dashed line in figure 5.2 for
case B. These three experiments have very close geometries (see Table 5.1), with (d, τ) ≈
(0.35, 1.80).

5.1 Discrete TRI cascade

In this section, the case of the discrete cascade is investigated using the experiment pre-
sented in case B of Table 5.1. Different tools to highlight the signatures of the internal wave
turbulence are developed. First, the signal is analyzed using bispectrum or bicoherence
to see the three-wave interactions. Then, the energy spectra is computed in order to see
if all the energy follows the dispersion relation of internal waves and spatial spectra are
exhibited.

5.1.1 Time-frequency diagram

The time-frequency diagram of case B presented in figure 5.3(b) is also plotted in fig-
ure 5.4(a). One can identify at least eight couples of secondary waves. On the cut made
through the frequency axis at t = 400T0 in figure 5.4(b), the four most energetic couples
in the spectrum are labelled. The secondary frequencies are named using two indices as
follows. The first index i indicates the position in the couple, i = 1 for frequencies higher
than Ω0/2 or i = 2 for frequencies smaller than Ω0/2. The second index n corresponds to
the number of the couple. Thus, n varies from 1 to 8, as one can identify at least eight
different couples. For each couple n, one has

Ω1,n + Ω2,n = Ω0 = 0.605, (5.3)

with a very large precision of the order of 10−3. The index n classifies the different couples
from the most intense (n = 1) to the less intense (n = 8). The different values of the
frequencies are given in Table 5.2.

The first couple is generated by the attractor itself, as a standard TRI described in [139]
or in section 4.2.1. This is shown in figure 4.11, where the different wave fields have been
separated. The wave vectors are measured using the method explained in section 4.1.1 and
are contained in Table 4.3. One finds ~k0 = (−33±4,−37±5) m−1, ~k1 = (−80±18,−200±

150



5.1. Discrete TRI cascade

t/T0

Ω

 

 

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

−4 −3 −2 −1 0

−4 −2 0

log 10 (Sx(Ω, 400T0)/S0)

log 10 (Sx(Ω, t)/S0)

(a) (b)

Ω0

Ω1 ,1

Ω2 ,1

Ω1 ,2

Ω2 ,2

Ω1 ,3

Ω2 ,3

Ω1 ,4

Ω2 ,4

Figure 5.4: (a): Time-frequency diagram of internal wave field, obtained from a 5× 5 cm2

side square region defined in figure 5.2. (b): Vertical cut of the diagram along the frequency
axis at t = 400T0, indicated by the black dashed line. S0 corresponds to the time average
of the frequency component associated with the primary wave Ω0. The different frequency
peaks corresponding to the four first couples are labelled.

Couple n 1 2 3 4 5 6 7 8

Ω1,n 0.355 0.500 0.460 0.397 0.565 0.312 0.544 0.418
Ω2,n 0.250 0.105 0.146 0.209 0.042 0.293 0.062 0.189

Ω1,n + Ω2,n 0.605 0.605 0.606 0.606 0.607 0.605 0.606 0.607

Table 5.2: Secondary dimensionless frequencies Ω present on the time-frequency diagram
of case B in figure 5.4.

23) m−1 and ~k2 = (+45 ± 22,+170 ± 38) m−1. Thus, the spatial resonant condition is
fulfilled within the experimental errors. This is the start of the non-linear cascade.

Then, other couples appear and one can note that all the frequencies in the tank are
linked by three-wave interactions. The different frequencies of the cascade can be generated
as follows. Once the first couple has been created by the attractor, the two frequencies of
this couple interact together to create the second couple

Ω1,1 − Ω2,1 = Ω2,2, (5.4)
Ω2,1 + Ω2,1 = Ω1,2. (5.5)

Thus, the second couple is complete. Now, several interactions are possible between the
different frequencies. An interaction between the first and the second couples leads to a
third one

Ω1,2 − Ω1,1 = Ω2,3, (5.6)
Ω1,1 + Ω2,2 = Ω1,3, (5.7)

151



5. Non-linear energy cascade and mixing in internal wave attractors

and an interaction between the frequencies of the second couple creates a forth couple

Ω1,2 − Ω2,2 = Ω1,4, (5.8)
Ω2,2 + Ω2,2 = Ω2,4. (5.9)

Here, one has four different couples, so eight frequencies. The reader can easily continue
to create other frequencies by combining the different frequencies of the different couples.
This mechanism leads to an infinite set of discrete frequencies and the first eight couples
are at least visible in figure 5.4. At the end, each frequency is linked with a large number
of other frequencies by a three-wave interaction

Ωm,n = Ωm′,n′ ± Ωm′′,n′′ , (5.10)

where m, m′ and m′′ stand for 1 or 2 while n, n′ and n′′ are the indexes of the couples with
n > n′ > n′′. It worths to note that, for all three-wave interactions, one has n = n′ + n′′.
Moreover, the larger n is, the less energy is present in the n-th couple as one can noticed
in figure 5.4. Note that all the couples interact also with the attractor frequency Ω0 (see
equation (5.3)).

From the attractor frequency and the first couple frequencies, it is very easy to find the
other secondary frequencies in the diagram. Nevertheless, in order to prove that all the
frequencies really interact between each other, one needs to be more precise and see if the
phases of the waves are connected. To do that, the bispectral analysis is used in the next
section.

5.1.2 Bispectrum and bicoherence

To detect the frequency triplets, we use the bispectral analysis. The bispectrum is the
Fourier Transform of the third-order cumulant function and it measures the extent of sta-
tistical dependence among three spectral components (Ωk, Ωi, Ωj) satisfying the frequency
resonant condition Ωk = Ωi + Ωj . The bispectrum can be normalized and considered in
form of bicoherence which is 0 for triplets with random phases and 1 for triplets with
perfect phase coupling, as in [46].

The bispectra or bicoherences presented in this manuscript are obtained using the
HOSA Matlab toolbox. The data, composed of the time history of the horizontal or
vertical velocity fields at one spatial point, is segmented into 16 different records, 50%
overlapping between each other. The mean is removed from each record, and the Fast
Fourier Transform (FFT) computed. The bispectrum of the k-th record is computed as,
Mk(Ωi,Ωj) = Fk(Ωi)Fk(Ωj)F

∗
k (Ωi+Ωj) , where Fk denotes the FFT of the k-th record and

∗ denotes the complex conjugate. The power spectrum is defined by Pk(Ωi) = |Fk(Ωi)|2.
The spectral and bispectral estimates are averaged across records, and the bicoherence is
then estimated as

B(Ωi,Ωj) =
|M(Ωi,Ωj)|2

P (Ωi)P (Ωj)P (Ωi + Ωj)
, (5.11)

where M(Ωi,Ωj) is the final estimate of the bispectrum, and P (Ωi) is the final estimate of
the power spectrum. We also perform a spatial average over the same square region used
for the time-frequency analysis. Moreover, the bispectrum and bicoherence obtained for
the horizontal and vertical velocity fields are also averaged.

In order to test this tool, one can use it on a simple TRI first. The unstable weakly-
focused attractor (F) with the global TRI presented in section 4.2.2 is perfect to test the
bicoherence and the bispectrum tools. Indeed, this experiment is a long-term one and
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Figure 5.5: Bispectrum (a) and bicoherence (b) for the weakly-focused attractor (F) pre-
sented in section 4.2.2.

it exhibits only one couple of secondary frequencies over a very long time. Morever, the
growth rate is very small, as shown in figure 4.15. Figures 5.5(a) and (b) show the bispec-
trum and the bicoherence of this experiment. The signal used to compute the bispectrum
and the bicoherence is taken between 200T0 and 700T0. First, the bispectrum and the
bicoherence in figures 5.5(a) and (b) are symmetric with respect to the bisector. This
is consistent with their definitions, where Ωi and Ωj can be exchanged. Then, on both
figures, one can note different peaks. A peak located at (Ωx,Ωy) shows the strength of
the interaction between the frequencies Ωx, Ωy and Ωx + Ωy. The most intense peak is
located at (Ω0,Ω0) = (0.61, 0.61). Then, in figure 5.5(a), one can distinguish different
lines which are horizontal, vertical or oblique. The horizontal and vertical lines are at Ω0.
The oblique line is in between the points (0,Ω0) = (0, 0.61) and (Ω0, 0) = (0.61, 0). This
oblique line shows the interaction between the frequency Ωx, Ωy and Ω0 because, on this
line, Ωx+Ωy = Ω0. Thus, the three-wave interaction between the attractor and the couple
of secondary waves created by TRI is on this line. This interaction corresponds to the two
peaks located on this line at the points (Ω1,Ω2) = (0.33, 0.27) and (Ω2,Ω1) = (0.27, 0.33).
These peaks are also present in the bicoherence in figure 5.5(b), but without the oblique
line at Ω0 because the bicoherence is normalized. On both figures, we also have other peaks
at different locations: (Ω0,Ω1) = (0.61, 0.33), (Ω0,Ω2) = (0.61, 0.27) and the symmetric
ones with respect to the bisector. They show the three-wave interactions between the
attractor, one of the two secondary waves and a third frequency, higher than the forcing
frequency. Other interactions are also present, between the different harmonics of Ω0 and
the secondary waves. Finally, there is also two peaks, close to the x- or y-axis. They
are located at (Ω1 − Ω2,Ω2) = (0.06, 0.27) and (Ω2,Ω1 − Ω2) = (0.27, 0.06). They are
visible on the bicoherence but very weak on the bispectrum. They testify of a three-wave
interactions between the two secondary waves and a third frequency, created by them.
Thus, one can guess the beginning of a cascade, in this experiment too. By looking more
carefully the time-frequency diagram in figure 4.13, one can see this third frequency and
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5. Non-linear energy cascade and mixing in internal wave attractors

its complementary to Ω0 at the end of the experiment. Thus, the three-wave interactions
are easily visible using bispectrum or bicoherence.

To validate completely the use of bicoherence of bispectrum, one can follow the intensity
of the (Ω2,Ω1) = (0.27, 0.33) peak (or the (Ω1,Ω2) = (0.33, 0.27) peak by symmetry)
as a function of time and plot it to compare with the growth rate extracted from the
time-frequency diagram in figure 4.13. To do that, the bispectrum has been computed on
different time intervals, having the length of the Hamming window used in the computation
of the time-frequency diagram. For each bispectrum, the intensity of the secondary wave
peaks is normalized by the intensity of the (Ω0,Ω0) peak and plotted as a function of time.
Figure 5.6 shows the normalized intensity and the comparison with the growth rate, also
plotted in figure 4.15 in Chapter 4. The amplitude of the secondary frequencies from the
time-frequency diagram and the intensity of the secondary waves peak have similar behavior
and show the same growth rate. This validates definitely the use of the bispectrum and
bicoherence tools to investigate the three-wave interactions in the tank.
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Figure 5.6: Cuts along the time-axis of the time-frequency diagram presented in figure 4.13
at frequencies Ω1 (solid red line) and Ω2 (solid blue line). The black dots show the intensity
of the secondary wave peak (Ω1,Ω2) of the bispectrum normalized by the (Ω0,Ω0) peak as
a function of time.

To conclude, bicoherence and bispectrum are very convenient tools to see the three-
wave interactions between the frequencies in the tank. With one simple TRI experiment,
different peaks are present. In the case of a strong TRI cascade, this will lead to a very
rich pattern.

5.1.3 Frequency resonant condition

Once one has tested the bicoherence and the bispectrum, one can choose one of these
two related tools to examine the three-wave interactions in the cascade experiments. The
bicoherence exhibits well localized peaks and the signal-over-noise ratio appears larger
as weak peaks are more visible. Thus, only the bicoherence is used in the remainder
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5.1. Discrete TRI cascade

of the manuscript. Nevertheless, the description on the three-wave interactions in the
discrete cascade experiment (case B) made below with the bicoherence is similar using the
bispectrum.

The bicoherence shown in figure 5.7 for case B is obtained in averaging over the same
square region used for the time-frequency analysis and in the time interval [200, 690] T0.
The thick black line is the bisector. The bicoherence is symmetric with respect to this
line. The three thin solid lines (horizontal, vertical and oblique) are associated with Ω0. In
addition to the strong peak (Ω0,Ω0) = (0.61, 0.61) corresponding to the forcing frequency,
at the crossing of the horizontal and vertical solid lines, the possible triplets satisfying the
definition of triadic resonance at Ωk = Ω0 can be found on the solid oblique line with slope
−1 connecting the points (0,Ω0) = (0, 0.61) and (Ω0, 0) = (0.61, 0). This emphasizes that
the mechanism at play is triadic. Other peaks are also visible corresponding to other choices
of Ωk revealing that the instability mechanism is repeated and leads to a cascade. One
horizontal, one vertical and one oblique lines are associated to each of the first secondary
frequencies: Ω1,1 (dashed) and Ω2,1 (dashed dotted). These lines intersect three times in
the diagram and a peak is present at each intersection. These peaks show that, at each
intersection, there is a three-wave interaction between the two frequencies of the first couple
and an other frequency. The two first intersections of the dashed and dashed dotted lines
are symmetric with respect to the bisector and located at (Ω2,1,Ω1,1−Ω2,1) = (Ω2,1,Ω2,2) =
(0.25, 0.105) (or the symmetric). Thus, Ω1,1 and Ω2,1 are combined to get Ω2,2. The other
intersection is on the bisector at (Ω2,1,Ω2,1) = (0.25, 0.25). The peak at this intersection
shows the second harmonics of Ω2,1 which is equal to Ω1,2 = 0.500. Thus, the interactions
between the two frequencies of the first couple generate the second couple. By the cascade
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Figure 5.7: Bicoherence for case B. The thick solid line is the bisector. The horizontal, ver-
tical and oblique lines are associated to the different frequencies: Ω0 (solid), Ω1,1 (dashed)
and Ω2,1 (dashed dotted).
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5. Non-linear energy cascade and mixing in internal wave attractors

mechanism described above, all the couples appear. All the three-wave interactions in the
basin are shown by the peaks, in figure 5.7.

The set of discrete frequencies obtained experimentally is very easy to reproduce mathe-
matically, without taking into account of the energy transfer between the waves. One starts
with three frequencies, the forcing one and the two of the first couple. At stage 0, there
is only the attractor frequency Ω0. At stage 1, it creates the first couple of secondary
frequencies, by simple TRI on branch 1. At stage 2, the fist couple creates the second one.
At stage 3, the two first couples lead to the third and fourth couples, etc... This process
is illustrated in figure 5.8(a), showing the different frequencies present at each stage. The
set of frequencies increases with the stage number: the number of frequencies is equal
to two to the power the stage number. Thus, at stage 4, there are 24 = 16 frequencies
and eight couples. These couples are the ones visible in the time-frequency diagram in
figure 5.4. Using the set of frequencies, one can mimic a bicoherence diagram. One has
to look at all the three-wave interactions in the set of frequencies and put a black dot at
the location of these interaction in a (Ω,Ω) plane. This "simulated" bicoherence diagram,
computed for the set of frequencies at stage 4, is shown in figure 5.8(b), superimposed on
the experimental bicoherence diagram shown in figure 5.7, for Ω in the range [0, 0.7]. All
the most intense peaks of the experimental bicoherence peaks are covered by the black
dots coming from the cascade process model. The weakest peaks are not covered here but
they would be if the bicoherence is calculated with the set of frequencies at stage 5. This
shows that the frequencies predicted by the model are in a very good agreement with the
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Figure 5.8: (a): Sketch of the cascade process: frequencies as a function of the stage
number. The attractor frequency is represented by the black diamonds. The frequencies
created at one stage have the same color: red for stage 1, magenta for stage 2, blue for stage
3, green for stage 4 and cyan for stage 5. At stage 4, the eight couples described in that
manuscript are present. (b): Experimental bicoherence superimposed with the three-wave
interactions obtained by the cascade process at stage 4. One point represents a three-wave
interaction between three frequencies present in the model. The black lines show Ω0.
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5.1. Discrete TRI cascade

experimentally observed ones. Moreover, all the frequencies that can interact between each
others are really interacting. If it is not the case, we would have black dots superposed on
the white background of the experimental bicoherence.

5.1.4 Energy-spectrum

The previous section has shown that the frequency resonant conditions for the triadic
cascade were fulfilled. One has also shown in section 5.1.1 that the spatial resonant condi-
tion for the first triadic interaction, between the attractor and the first couple is verified.
Nevertheless, once the two first secondary waves are created on branch 1, they can travel
through all the basin, being reflected on the different walls. As they reflect on the slope,
these waves can be focused or defocused and thus, their initial wave vectors can be changed.
Moreover, for the other couples, we did not find any localized generation as for the first
one. Thus, it seems that these couples are created more globally, like for TRI in the case of
weakly-focused attractors (see section 4.2.2). Consequently, it is impossible to verify that
the spatial resonant conditions are fulfilled by all the waves. Nevertheless, all these waves
interact together as shown by the bicoherence. Thus, the computation of a wave-energy
spectrum will allow us to verify that all the energy lies on the dispersion relation and that
we have signatures of wave-turbulence. The wave energy spectrum has already been used
as a diagnostic tool by Yarom and Sharon [151] in the case of inertial-waves.

The wave energy spectrum is computed using the following procedure. Horizontal and
vertical velocity fields vx(x, z, t) and vz(x, z, t) are obtained with 2D PIV measurements
in the entire trapezoidal domain, on a grid with 0.36 cm × 0.36 cm spatial resolution
and 0.5 s temporal resolution. As the x (respectively z) direction length is around 45 cm
(resp. 30 cm) and as we used 80 T0 to compute each energy spectrum, the total data grid
size is thus 125 × 80 × 1600 points. A three-dimensional (two dimensions for space, one
for time) Fourier transform of these fields leads to v̂x(kx, kz,Ω) and v̂z(kx, kz,Ω). For the
Fourier transform, we padded the velocity fields with zeros to increase the resolution in
wave number and frequency. The final data grid used for E(kx, kz,Ω) is 400× 400× 2000.
The resolution in wave number is thus ∆kx = ∆kz = 0.043 rad/cm and the frequency
resolution is N∆Ω = 6.28× 10−3 rad/s. One can thus define the 2D energy spectrum by

E(kx, kz,Ω) =
|v̂x(kx, kz,Ω)|2 + |v̂z(kx, kz,Ω)|2

2ST
, (5.12)

where S = 45×30 cm2 is the area of the PIV measurement and T = 80 T0 its duration. The
spatio-temporal resolution of our measurements leads to upper bounds in wave numbers
and frequency. We thus have kmax = 8.6 rad/cm and NΩmax = 6.28 rad/s.

In the dispersion relation for internal waves, Ω = sin θ, the wave vector ~k and its compo-
nents do not appear directly but they are linked with the angle θ by sin θ = kx/

√
k2
x + k2

z .
To compute the energy spectrum as a function of the variable θ, one can interpolate the
energy spectrum E(kx, kz,Ω) to get E(k, θ,Ω), where k is the norm of the wave vector.
For this interpolation, we define ∆k as the smallest wave vector that has data points in the
Cartesian coordinates. Here, ∆k = 0.043 rad/cm and we chose kmin = 5∆k ≈ 0.22 rad/cm
to have a good interpolation at low wave numbers. We chose to take 200 points for k be-
tween 0 and kmax and 300 points for θ between −π and π. Then, one can integrate over
the entire range of wave vectors [kmin, kmax] as follows

E(θ,Ω) =

∫ kmax

kmin

E(k, θ,Ω)kdk, (5.13)
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5. Non-linear energy cascade and mixing in internal wave attractors

or on any range of wave vectors between kmin and kmax. Then, because all the frequencies
in the TRI cascade case have very different levels of energy, one can normalize E(θ,Ω) by
the energy as a function of Ω only,

E(Ω) =

∫ +π

−π
E(θ,Ω)dθ. (5.14)

Consequently, the relevant quantity, plotted as a function of θ and Ω is the dimensionless
ratio E(θ,Ω)/E(Ω).

First, one tests this method on a stable attractor (case A of Table 5.1), to see what
one can visualize. Figure 5.9 shows the energy spectrum of the stable attractor (case A),
with the spatial integration range being the whole range accessible by the experiment.
The dispersion relation of internal waves is plotted using a dashed line in figure 5.9. On
this figure, there are different spots at Ω = ±Ω0 = ±0.61 and located on the dispersion
relation. These spots correspond to the attractor. The two main spots, one for Ω = 0.61
and θ ∈ [0;π/2] and one for Ω = −0.61 and θ ∈ [−π;−π/2], represent the branch 1, which
is the most energetic. Indeed, as the convention for the wave phase is φ = ΩNt−kxx−kzz,
the wave vector of branch 1 has θ ∈ [−π;−π/2] for negative frequencies. The other spots
represent the other branches, as indicated in figure 5.9.
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Figure 5.9: E(θ,Ω)/E(Ω) for a stable attractor (case A of Table 5.1) as a function of θ and
Ω. The integration range in wave vector is the full range accessible with the acquisition
parameters: 0.22 to 8.6 rad/cm (i.e. wave lengths between 28.5 to 0.75 cm). Colors indicate
the levels of energy spectrum. The black dashed lines correspond to the dispersion relation
Ω = ± sin θ. The different branches represented by the spots are indicated on the figure.

The energy spectrum us allows to visualize the repartition in θ and Ω of the energy.
For a stable attractor, one has only spots around ±Ω0 and on the dispersion relation. The
energy spectra for the TRI cascade experiment is expected to be richer, due to all the
secondary waves created by the cascade.
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5.1. Discrete TRI cascade

Figure 5.10 shows the energy spectrum for the TRI cascade experiment (case B). The
spatial integration range is the whole range accessible by the acquisition parameters. It is
much richer than the one presented in figure 5.9 for a stable experiment. In addition to
the attractor spots, one has a lot of energy at different frequencies. Almost all this energy
lies on the dispersion relation, plotted as dashed lines. This means that every frequency in
the tank correspond to an internal wave. Moreover, one can see that it is well distributed
within the four branches, or direction of propagation. Thus, the secondary waves propagate
in all directions as they reflect on the walls of the basin.
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Figure 5.10: E(θ,Ω)/E(Ω) for a TRI cascade experiment (case B) as a function of θ and
Ω. The integration range in wave vector is the full range accessible with the acquisition
parameters: 0.22 to 8.6 rad/cm (i.e. wave lengths between 28.5 to 0.75 cm). Colors indicate
the levels of energy spectrum. The black dashed lines correspond to the dispersion relation
Ω = ± sin θ.

To investigate more the energy spectrum for the TRI cascade, one can separate the
scales to see where the motions take place within the different scales. This is what has
been done in figure 5.11 where the two integration ranges are [0.22, 1] rad/cm for panel (a)
(large scales) and [1, 1.86] rad/cm for panel (b) (small scales). The first integration range
represents 84% of the energy in the entire range [kmin, kmax] while the second represents
11% of this energy. Thus, only 5% of the energy is left in the scales between 1.86 rad/cm
and kmax = 8.6 rad/cm. Figure 5.11(a) seems similar to figure 5.10 except that there is
less noise while figure 5.11(b) shows a strong difference. Indeed, in panel (b), the spots cor-
responding to the attractor at Ω = Ω0 have disappeared. This is normal because the small
scales are taken between 3.4 and 6.3 cm. Thus, the attractor whose the typical wave length
is 15 cm is located in the large scales, taken between 6.3 and 28.5 cm. Thus, the energy at
the small scales is only carried by the secondary waves. Nevertheless, figure 5.11(a) shows
that there are also secondary waves present in at large scales. All the waves follow the dis-
persion relation because all the energy on both panels lies on the dashed lines. Thus, even
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Figure 5.11: Ratio E(θ,Ω)/E(Ω) for the TRI cascade experiment and two length scale
intervals: 0.22 to 1 rad/cm for (a); 1 to 1.86 rad/cm for (b) (i.e. wave lengths 28.5 cm to
6.3 cm, for left panel, while 6.3 cm to 3.4 cm for right one). Colors indicate the levels of
energy. The black lines correspond to the dispersion relation Ω = ± sin θ.

at different scales, the dispersion relation rules. This means that all the energy present in
the TRI cascade experiment is carried by internal waves. These waves interact non-linearly
between each other, via three-wave interactions or TRI as shown with the bicoherence. All
these considerations are very strong signatures of a wave-turbulence framework for the
TRI cascade experiment. This wave-turbulence is discrete, because the set of frequencies
is discrete, but energy is exchanged between internal waves via a three-wave interaction
mechanism.

5.1.5 Spatial spectrum

As strong signatures of internal wave turbulence have been highlighted in this section,
it is interesting to look at the spatial spectra of the TRI cascade experiment (case B).
Indeed, spatial spectra are very commun tools in fully 3D isotropic turbulence as in the
wave-turbulence framework [28, 14, 151].

To compute the spatial spectrum, only a 2D Fourier transform on space has to be done.
From the horizontal and vertical velocity fields vx(x, z, t) and vz(x, z, t), this leads to the
spatial spectrum

E(kx, kz) =

〈
|v̂x(kx, kz, t)|2 + |v̂z(kx, kz, t)|2

2S

〉
t

, (5.15)

where S = 45×30 cm2 is the surface of the PIV measurement and 〈〉t means an average in
time over 40T0. This average is performed during the stationary state of the experiment.
The spatial resolution of the 2D PIV measurements being 0.36 cm in both directions,
the maximum accessible wave number is the same as the one for the energy spectra:
kmax = 8.6 rad/cm. Nevertheless, the signal has been padded using 1000 points, which
increases the wave number resolution with respect to the energy spectrum: ∆kx = ∆kz =
0.0172 rad/cm. The final data grid used for E(kx, kz) is 1000 × 1000. As in the general
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5.1. Discrete TRI cascade

framework for turbulence, one can expect a power law for the energy spectra as a function
of |kx| and |kz|. Thus, the four quadrants where kx and kz are positive or negative are
averaged in order to get the energy spectrum as a function of |kx| and |kz|. Then, one
integrate over |kx| or |kz|:

E(|kx|) =

∫ kmax

kmin

E(|kx|, |kz|)d|kz|, (5.16)

E(|kz|) =

∫ kmax

kmin

E(|kx|, |kz|)d|kx|. (5.17)

The energy spectra are plotted as a function of |kx| or |kz| in figure 5.12. Both exhibit
for large values of |kx| or |kz| a power law with a −3 exponent, as highlighted by the
dashed lines on both panels. The forcing injected scales is kz,inj = 0.1 rad/cm and kx,inj =
0.08 rad/cm. Thus, the injected scales are located on the left side of both panels. The two
vertical dashed dotted lines show the horizontal and vertical wave numbers of the attractor
measured using figure 4.11. Because the energy transfer is made from the attractor scale
to the smaller scales of the secondary waves, the attractor scale marks the beginning of the
triadic energy cascade. This cascade exhibits a decay of the spectrum with a −3 exponent.

Using a Hamiltonian to describe internal wave turbulence in a three-dimensional in-
finite space, Lvov and Tabak [94] predict theoretically a −3/2 power law for kz and kH ,
the modulus of the horizontal wave vector (which is two-dimensional because the set-up
is three-dimensional). This prediction is relevant with the observations of Garrett and
Munk [57] for the oceans. Nevertheless, our −3 exponent is much larger that the Lvov
and Tabak exponent. The discrepancy can be due to several reasons. In our experimental
set-up, the flow has been proved to be quasi independent of the y-coordinate, for both
stable and unstable attractors in section 4.3. Thus, our set-up can be considered as a
two-dimensional set-up, meaning that the wave-interactions are 2D while the waves in the
oceans or in the Lvov and Tabak model are 3D. Moreover, in the basin, the waves are
really confined. This has been shown in section 4.2.2 where the TRI appears at the global
scale. Thus, the waves feel the boundaries of the basin while they are less confined in the
oceans. Reflexions on the slope can also change the wave length of the waves, via focusing
or defocusing. Consequently, the size of the basin can limit and disrupt the spatial spectra
because the wave-turbulence theory assumes that the injected and dissipative scales are
well-separated.

Even if our set-up is far from being ideal to match with the theoretical hypothe-
ses made for the predictions, one can play with the spectra using dimensional analysis.
Nazarenko [121] gives the Zakharov spectra predictions for any waves

E ∝ cβ0ε1/(n−1)kδ, (5.18)

where the dispersion relation of the waves is ω = c0k
q and

β = 2− 3

n− 1
, (5.19)

δ = D − 6 + 2q +
5−D − 3q

n− 1
. (5.20)

The dimension of the set-up is D and the number of wave interactions is n. The internal
wave dispersion relation is

Ω =
ω

N
= sin θ =

kx√
k2
x + k2

z

=
kx
k
. (5.21)
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Figure 5.12: Spatial energy spectra as a function of |kx| (a) and |kz| (b). The vertical
dashed dotted lines show the horizontal or vertical wave numbers of the attractor. The
dashed lines show a −3 slope.

Thus, the main difficulty comes from the dispersion relation, which does not depend directly
on the modulus of the wave vector. One has to choose between kx, kz or k to know the
value of q. For internal waves, n is equal to 3 and D can be equal to 2 in our set-up
or 3 for [94, 57]. If we assume that the waves are isotropic, kx ≈ kz and q = 0. As a
consequence, Ω is fixed around 0.7. Let see what happens when one varies the dimension
of the set-up D:

• if D = 3, using equation (5.18), one obtains E ∝ N1/2ε1/2k−2. The −2 exponent is
the one observed by [57] and is close to the one predicted by [94]

• if D = 2, this leads to E ∝ N1/2ε1/2k−5/2, which is closer to what we find.

Nevertheless, one can also consider than the waves are not isotropic because the secondary
waves have lower frequency than Ω0 = 0.6. Thus, kz is greater than kx and q = 1:

• if D = 3, this brings to E ∝ N1/2ε1/2k
−3/2
z . This corresponds to the prediction made

by Lvov and Tabak [94]

• ifD = 2, one has E ∝ N1/2ε1/2k−3
z , which corresponds to the power law in figure 5.12,

for the vertical wave number. Nevertheless, one also observes such a scaling for kx
and both horizontal and vertical components of the wave vectors are linked by the
dispersion relation.

One needs here to improve the theoretical predictions, for example, by reproducing the
calculus of [94] for a 2D set-up. Another option can be to quantify the dependance of the
spectra in ε, as in [117].

Above results are convincing signatures of a discrete wave turbulence framework for
internal waves in the intermediate forcing amplitude regime (case B of Table 5.1), even if
the theoretical predictions for the spatial spectrum are difficult to applicate on our system.
Nevertheless, this is the first experimental evidence of internal wave turbulence. For the
largest amplitude, we have indications that a system is beyond the wave turbulence-like
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5.2. Mixing induced by TRI cascade

regime and has reached a mixing regime. This is developed in the next section, for case C
of Table 5.1.

5.2 Mixing induced by TRI cascade

In this section, case C of Table 5.1 is discussed. This experiment is performed with a
very high forcing amplitude (a = 10 mm) and with the same geometry as case B (well-
focused attractor �, see figure 4.10). It is characterized by a partial mixing of the linear
stratification. First, one investigate this experiment as what has been done for case B
in section 5.1. The time-frequency, bicoherence, energy and spatial spectra are discussed.
Then, one focuses particularly on the extreme events responsible for the mixing in the
tank.

5.2.1 Time-frequency diagram and bicoherence

Figure 5.13(a) shows the time-frequency diagram of the high forcing amplitude experiment,
case C of Table 5.1, also presented in figure 5.3(c). A cut at t = 400T0 of this diagram is
plotted in figure 5.13(b). The time-frequency diagram is computed with exactly the same
method as the other ones presented in this chapter. It exhibits also a energy cascade, from
the attractor frequency Ω0 to other frequencies. Similarly to case B and figure 5.4, one can
see several pairs of discrete peaks. These pairs verify the frequency resonant condition but
appear to be not stationary in time. Indeed, the couple of frequency around (0.4, 0.2) is
first present before it vanishes and the couple around (0.45, 0.15) dominates at the end of
the experiment. This shows that the dynamics of the flow, inside the tank, is not stationary
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Figure 5.13: (a): Time-frequency diagram of internal wave field for case C, obtained from
a 5 × 5 cm2 side square region on branch 1. (b): Vertical cut of the diagram along the
frequency axis at t = 400T0, indicated by the black dashed line. S0 corresponds to the
time average of the frequency component associated with the primary wave Ω0.
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5. Non-linear energy cascade and mixing in internal wave attractors

at all. Moreover, below these pairs of peaks, there is a "continuous" part, revealed by the
blue color in figure 5.13(a) and on the cut of figure 5.13(b). The background is much higher
for case C, more than one order of magnitude, than the one for case B. Pairs of discrete
peaks with weak intensity are not really visible, above this high background.

Similar characteristics can be seen on the bicoherence of case C, plotted in figure 5.14.
The bicoherence is also computed with the same method as the one for case B. The two
couples of discrete peaks are visible on the oblique line between the points (Ω0, 0) and
(0,Ω0). Few other peaks, showing the beginning of the cascade as described for case B,
can be also observed. Nevertheless, the background is higher than the one for case B and
hides partially the weakest peaks. Thus, the discrete frequency peaks visible on the time-
frequency diagram fulfill the frequency resonant condition for TRI but the weakest peaks
are embedded in a "continuous" part of the background.
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Figure 5.14: Bicoherence for case C. The horizontal and vertical lines are associated to Ω0.

In this experiment, the cascade seems to present higher levels in energy at all frequen-
cies. Using the energy spectrum, one can investigate if all this energy has a wave shape or
not.

5.2.2 Energy and spatial Spectra

Figure 5.15 shows the energy spectrum E(θ,Ω)/E(Ω) as a function of the angle of propaga-
tion θ and the dimensionless frequency Ω. It has been obtained by integrating on all range
of wave numbers accessible by the experiment. The dispersion relation for internal waves is
plotted as dashed black lines. One can distinguish different peaks that are present on the
dispersion relation, for the attractor at Ω0 = 0.6 but also for secondary waves. However,
there is also some energy which is localized around θ = 0 or ±π for all frequencies. This
energy clearly escapes from the dispersion relation, meaning that there is not only waves
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propagating in the tank. The different angles θ where this energy is localized correspond
to a wave propagation at the horizontal or to horizontal motions. This could be the sig-
nature of the stratification of the fluid. Indeed, as the fluid in the tank is initially linearly
vertically stratified in density, the horizontal motions are favored while the vertical ones
are more difficult. Thus, the background noise, higher in case C than in case B appears
here to be correlated horizontally.
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Figure 5.15: E(θ,Ω)/E(Ω) for the mixing experiment (case C) as a function of θ and
Ω. The integration range in wave vector is the full range accessible with the acquisition
parameters: 0.22 to 8.6 rad/cm (i.e. wave lengths between 28.5 to 0.75 cm). Colors indicate
the levels of energy spectrum. The black dashed lines correspond to the dispersion relation
Ω = ± sin θ.

To investigate further, one can split the energy spectrum within two different scales, as
for case B. The large scales are between the basin scale and 6.3 cm while the small scale are
taken to be between 6.3 and 3.4 cm. For case C, the first range of wave numbers has 82%
of the total energy and the second one has 11%. Thus, in proportion, the energy in the
second range is slightly higher than the one in case B. Figure 5.16 shows the energy spectra,
for these two different ranges of scales. In panel (a), at large scales, one find something
similar as for case B, where almost all the energy lies on the dispersion relation. There are
different peaks, even weak, located on the dashed black lines. However, for small scales,
in panel (b), all the energy is localized around θ = 0 or ±π for all frequencies. Thus, the
motion at small scales seems to be quasi-horizontal. Consequently, the energy out of the
dispersion relation for the total energy spectrum in figure 5.15 comes from the small scales,
essentially. This could be a signature of the mixing, which is probably localized at small
scales. Indeed, the short-scale perturbations are expected to be due to extreme events,
natural precursors to mixing. Note that the energy away from the dispersion relation can
also be due to different reasons. Indeed, one can be reserved on the two-dimensionality
of the flow with such very high forcing. Thus, the mixing process may not be completely
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Figure 5.16: Ratio E(θ,Ω)/E(Ω) for the mixing experiment (case C) and two length scale
intervals: 0.22 to 1 rad/cm for (a); 1 to 1.86 rad/cm for (b) (i.e. wave lengths 28.5 cm to
6.3 cm, for left panel, while 6.3 cm to 3.4 cm for right one). Colors indicate the levels of
energy. The black lines correspond to the dispersion relation Ω = ± sin θ.

independent of the y-coordinate. Moreover, very strong motions are created by the flow.
The motions can lead to Doppler shifts on the energy spectrum if the waves propagates
through a moving stratified fluid.

The spatial spectra as a function of |kx| and |kz| computed for case C are plotted in
figure 5.17. As for case B, they exhibit also a −3 power law, although it is less convincing.
As the wave turbulence regime is changed in case C into a mixing regime, one can consider
that we are in a strong wave turbulence regime or in a stratified regime, as defined in [121].
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Figure 5.17: Spatial energy spectra as a function of |kx| (a) and |kz| (b) for case C. The
vertical dashed dotted lines show the horizontal or vertical wave numbers of the attractor.
The dashed lines show a −3 slope.
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This is a regime where the weak wave amplitude hypothesis does not hold any more. This
assumes that kz is much greater than kx and that the spatial spectra depends only on N ,
the buoyancy frequency and on kz. A dimensional analysis gives E ∝ N2k−3

z , which is the
same exponent as the one found for case B in a weak wave turbulence regime. Nevertheless,
this is consistent with our spectra and the predictions of [10, 33]. Note that the power law
is less clear than the one for case B. Moreover, one also has the same power law for the
horizontal wave number |kx|.

5.2.3 Mixing inferred from vorticity distribution

An important issue is whether or not sufficiently energetic internal wave motion can pro-
duce an irreversible energy contribution to mixing. Figure 5.18(a) presents the comparison
between density profiles measured before and after experiments: while no modification of
the density (within experimental error) can be observed in case B, one gets a clear evidence
of mixing in case C.

Differences between the regimes corresponding to low and high mixing are clearly seen
in statistics of extreme events. This statistic is obtained by the calculation of probability
density functions (PDFs), a widely used tool for describing turbulence [6]. Since we are
interested in small-scale events destabilizing the stratification, we take the horizontal y-
component of vorticity

ξy(x, z, t) =
∂vx
∂z
− ∂vz
∂x

, (5.22)

measured in the vertical midplane of the test tank as a relevant quantity and consider
the PDF of the dimensionless quantity Ξy = ξy/N . In figure 5.18(b), we present the
vorticity PDFs corresponding to different wave regimes in the attractor. Note that the
area under each PDF is equal to unity, what allows a meaningful comparison between
the probabilities of extreme events in the cases A, B and C. In a stable attractor (see
case A), extreme events are completely absent and the wave motion is concentrated within
the relatively narrow branches of the attractor while the rest of the fluid is quiescent.
Accordingly, the PDF has a sharp peak at zero vorticity and is fully localized between well-
defined maximum and minimum values of vorticity. In cases B and C, the development
of TRI increases the probability of extreme events due to summation of primary and
secondary wave components. The occurrence of local destabilizing events can be viewed as
a competition between stratification and vorticity. In a two-dimensional flow, a relevant
stability parameter is a version of the Richardson number, which can be introduced as

Riξ =

(
N

ξy

)2

=

(
1

Ξy

)2

. (5.23)

For a horizontal stratified shear flow this parameter reduces to the conventional gradient
Richardson number Ri = N2/(dvx/dz)2, where dvx/dz is the velocity shear. Flows with
large Ri are generally stable, and the turbulence is suppressed by the stratification. The
classic Miles-Howard necessary condition for instability requires that Ri<1/4 somewhere
in the flow [116, 72]. If this condition is satisfied, the destabilizing effect of shear over-
comes the effect of stratification, and some mixing occurs as a result of overturning. The
threshold value |Ξy| = 2 is marked on the plot of vorticity PDFs. It can be seen that data
corresponding to cases B and C have "tails" extending into the domains |Ξy| > 2. The
area under the tails represents the probability of event of strength |Ξy| > 2. In case C,
this probability is an order of magnitude greater than in case B, in qualitative agreement
with much higher mixing in case C as compared to case B.
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Figure 5.18: (a): Ratio between the density profiles measured after and before the experi-
ments for cases B (dashed black line) and C (solid red line). (b): Experimental probability
density functions (PDFs) of the dimensionless vorticity Ξy in the tank, calculated on the
grid from experimental image for cases A (dashed dotted blue line), B (dashed black line)
and C (solid red line). Samples are taken using 400 images close to the end of the exper-
iment, when the wave regime is fully developed. The individual PDFs are averaged over
roughly 8× 103 equally spaced points covering the whole wave field.

The measure of the mixing can be defined as the normalized potential energy

A(t) =
Ep(t)− Ep(0)

E∗p − Ep(0)
, (5.24)

in which Ep =
∫
dxdz ρ(x, z, t)gz stands for the potential energy and ∗ stands for its final

value for the fully mixed system. It worths to note that this potential energy is a linear
potential energy: one has to multiply Ep by the width of the tank W to get the right
dimension of an energy, as the mixing is assumed independent of the y-coordinate. This
has no influence of the value of A. For case C (see figure 5.18(a)), one attains a final value
A ≈ 25%. Mixing is therefore remarkably strong: two hours of experiment in case C are
equivalent to the action of molecular diffusion on a time scale of several weeks.

The density profiles measured before and after the experimental runs do not allow mon-
itoring the time evolution of the mixing dynamics. However, these dynamics are nicely
revealed in numerical calculations as shown in figure 5.19. The numerical set-up has been
described in section 3.6.2 of this manuscript and it has been validated comparing the simu-
lations with both stable and unstable attractors in sections 3.6.3 and 4.1.3. For this mixing
part, only 2D numerical simulations have been used. Indeed, as in experiments, long-term
simulations are necessary to investigate the TRI cascade and the mixing characteristics.
Thus, to decrease the computational time, we choose to perform 2D simulations only. Nev-
ertheless, as the lateral walls are not present in the 2D numerical set-up, the amplitude of
the forcing can not be directly compared with the one of the experimental wave-maker. In
figure 5.19, the dramatic effect of the amplitude of oscillations on the mixing (with other
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parameters being fixed) is clearly seen, ranging from slow erosion of initial stratification
to violent mixing. The three numerical experiments have been carried out with different
forcing amplitudes: a = 1 mm (green), a = 5 mm (magenta) and a = 9 mm (black). Their
geometry is close to the one of the three experiments A, B and C, presented in Table 5.1.
The weakest amplitude causes only a slight mixing because the gain of potential energy A
stays close to zero. However, the two highest forcing amplitudes induce significant mixing,
in the same order as in the case C. This illustrates also the discrepancies between the forc-
ing amplitude in 2D numerical simulations: no mixing has been observed in experiment
with a = 5 mm (case B) while important mixing is present in 2D numerical simulations
with the same forcing amplitude. Nevertheless, the numerical simulations are very useful
to investigate the mixing dynamics as a function of time.
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Figure 5.19: Time evolution of the normalized potential energy for three different forcing
amplitudes: green (a = 1 mm), magenta (a = 5 mm) and black (a = 9 mm).

An other option can be experimental. Indeed, recently, in our group, the development
of a PIV/PLIF combination technique has been performed. PLIF stands for Planar Laser
Induced Fluorescence, which is a technique used for density measurements. A dye is put
in the fluid, and its concentration is directly related to the density of the fluid. Thus, one
can have access to the density in all the tank. Usually, this technique has been used the
measure the mixing of two fluids of different densities. I participated in the development
of this technique in a linearly stratified fluid and we are able to quantify the mixing
through the turbulent diffusivity coefficient Kt, caused by TRI in vertical mode-1 of high
amplitude [34]. This technique can be applied to internal wave attractors in order to follow
the mixing and the relevant quantities as Kt as a function of time.

5.3 Comparison with other long-term experiments

The two previous sections have described typical cases of discrete triadic cascades (case B)
and mixing experiments (case C). However, the typical scenarios can be slightly modified by
the choice of the (d, τ) parameters, i.e. the operating point in the Arnold tongue. Indeed,
sections 3.2.3 and 4.2.2 have shown that these parameters can change the susceptibility of
the attractors and the onset of the TRI. Thus, this can have an influence on the typical
cases presented in sections 5.1 and 5.2. First, in section 5.3.1, we compare the case B (well-
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5. Non-linear energy cascade and mixing in internal wave attractors

focused attractor �) with similar experiments at the same forcing amplitude (a = 5 mm)
but with different d values: weakly-focused attractor F or strongly-focused attractor N.
Then, in section 5.3.2, one does the same thing for case C (well-focused attractor �),
with a = 10 mm. Only another experiment has been performed with a = 10 mm, with
a geometry such that there is a weakly-focused attractor F. The precise location of the
different experiments in the Arnold tongue can be found in figure 4.10.

5.3.1 Other discrete TRI cascade experiments

Case B is a typical case of a triadic energy cascade, with strong signatures of wave-
turbulence. In the (d, τ) diagram, this experiment is located on the most susceptible region
with high 〈K〉 and R values (see section 3.2.3). It corresponds to the case of well-focused
attractors (�) with the onset of TRI is local. The case of weakly-focused attractors (F) has
already been described in section 4.2.2, with exactly the same amplitude a = 5 mm. The
TRI is triggered globally and the secondary waves corresponds to global quasi-resonances
of the trapezoidal basin. For this experiment, 〈K〉 is still high but R is low. One can
only consider a last case, of strongly-focused attractors (N), with low values of 〈K〉 and
R. Figures 5.20 shows the time-frequency diagrams for these three cases: panel (a) for the
weakly-focused attractor of section 4.2.2, panel (b) for the new case of strongly-focused
attractor and panel (c) for case B of section 5.1.
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Figure 5.20: Time-frequency diagrams: log10

(
Sx(Ω, t)/S0

)
, defined in equation (4.3), for

three different focused attractors with the forcing amplitudes a = 5 mm: weakly-focusedF
(a), strongly-focused N (b) and well-focused � (c). The quantity S0 is defined as the time
average of the main component Sx(Ω0, t). The time-frequency diagrams are calculated on
a 5× 5 cm2 square region, on branch 1.

Contrary to what one can expect, the TRI cascade is weaker in the strongly-focused
attractor (N) than in case B, the well-focused attractor (�). From panels (a) to (c) of
figure 5.20, one can see a graduation in the richness of the pattern. For panel (a), there
is only one couple of secondary waves, with a very low growth rate. The onset of TRI
is global. For panel (b), there are two couples of secondary waves. One can check that
the first one is created by local TRI on branch 1 and the second couple is the product of
the triadic interaction of the first couple. This is the first step of the triadic cascade. For
panel (c), the cascade is fully developed, as one has at least eight couples of secondary
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5.3. Comparison with other long-term experiments

waves. One can explain that the strongly-focused attractor (N) is less unstable than the
well-focused attractor (�) because of the susceptibility. Indeed, 〈K〉 is smaller for the
strongly than for the well-focused attractor. Thus, tuning the (d, τ) parameters of the
experiments allows us to control the development of the cascade, from one couple only to
several pairs.

Although the instability starts and evolves differently in strong-, weak- or well-focused
attractors, they can exhibit some common features. Figure 4.14 shows in section 4.2.2 that
the secondary waves generated by the weakly focused attractor (F) are standing waves.
Some frequencies created by well- or strongly-focused attractors (� or N) in long-term
experiments can also be standing waves. For example, figure 5.21 shows that, for the well-
focused attractor, the two frequencies Ω2,1 and Ω2,2 are standing waves as it is clear from
the wave patterns filtered at these frequencies. Note that not all the frequencies present
in figure 5.4 correspond to standing waves.
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Figure 5.21: Components of the wave field for case B (�) corresponding to frequencies Ω2,1

(a) and Ω2,2 (b), obtained with the Hilbert transform centered at t = 620 T0 using a 85T0

long Hamming window. Note that the components oscillating at Ω2,1 and Ω2,2 correspond
to standing waves as is clearly seen on the sequences of wave profiles shown on the right
of each picture (panels (c) and (d)).

With the frequencies corresponding to the peaks of the spectrum shown in figure 5.20,
one can compute the values of parameters τ associated to these waves. These frequencies
are shown by points in the diagram (d, τ) in figure 5.22. The symbols for the secondary
waves are the same than the one for the attractor: � stands for the well-focused attractor,
F for the weakly-focused attractor while the N is for the strongly-focused attractor. The
symbols are white for secondary waves whose frequencies are lower than Ω0 (so larger τ)
and are black when the frequencies are larger than Ω0 (so smaller τ). The size of the symbol
is smaller for secondary waves than for the attractor. It can be seen that the τ parameters
for the standing secondary waves are close to black zones in the (d, τ) diagram. Thus,
at least some frequencies created by the weakly-, strongly- and well-focused attractors

171



5. Non-linear energy cascade and mixing in internal wave attractors

could correspond to quasi-resonant modes. In absence of commonly accepted terminology,
we can tentatively call the dark regions as geometric quasi-resonances. Previously quasi-
resonances have been discussed assuming non-zero resonance width (see [121]). Here we
refer to possibility of global quasi-resonances assuming that the Lyapunov exponent can
take very small negative non-zero value. In a realistic system with weak viscous dissipation,
we can expect that some of the quasi-resonances can exhibit a seiche-like behavior similar to
exact seiche modes discussed in [97, 104]. Therefore, at the conceptual level, the key driving
processes in long-term experiments with unstable wave attractors can be considered as a
combination of "local" and "global-scale" TRI events, with long-term transients between
the two.
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Figure 5.22: (d, τ) diagram with the different frequencies present in the tank for the weakly-
focused attractor (F), the well-focused attractor (�) and the strongly-focused attractor
(N). The symbols are white for secondary waves whose the frequencies is lower than Ω0

(so larger τ) and are black when the frequencies are larger than Ω0 (so smaller τ). When
τ is larger than 6, the symbols are not plotted.

Interesting parallels can be found in the dynamics of rotating fluids. For instance,
Duguet et al. [36] show rich multi-peak spectra for inertial oscillations in a compressible
fluid confined in a rotating cylindrical vessel. They relate the frequencies associated with
the observed peaks to global modes of the fluid motion. Similarly, Favier et al. [46] analyze
the frequency spectrum of fluid motion generated by libration-driven elliptic instability in
a rotating ellipsoid and show the presence of the eigenfrequencies of linear and quadratic
inertial modes.

5.3.2 Other mixing experiments

In this section, case C is compared to another mixing long-term experiment, caused by a
weakly-focused attractor (F) forced at the same amplitude (a = 10 mm). In Chapter 4, we
have shown that the onset of TRI in wave attractors and the parameters of wave triplets
involved into resonant interactions strongly depend on the choice of the operating points

172



5.3. Comparison with other long-term experiments

in (d, τ) plane. However, one can expect a certain level of universality when the energy
input into the continuously stratified confined system is large and the system is given a
sufficiently long time to reach a quasi-steady state with fully developed energy cascade.
This cascade can operate via the hierarchy of triadic wave-wave interactions transferring
energy to small-scale internal waves and ultimately to mixing events as it is experimentally
shown in section 5.2.3. The confinement of the system requires the global balance between
the injection and dissipation of energy at the steady state [125, 79]. A true steady state
cannot be reached in a density stratified fluid: a certain portion of available kinetic energy
induces mixing which in turn produces a slow erosion of the mean background stratification.
If the time-scale of this erosion is long, we observe a quasi steady state behaviour. Below,
we compare the case C of Table 5.1, which is a well-focused (1, 1) attractor (�) with the
case of a weakly-focused (1, 1) attractor (F). Both attractors are forced at an amplitude
equal to a = 10 mm.

The time-frequency diagrams of the two unstable attractors at different operating points
are shown in figure 5.23. Panel (a) shows the time-frequency diagrams of case C (�),
also presented in figures 5.3(c) and 5.13(a), while panel (b) exhibits the time-frequency
diagram of a weakly-focused attractor (F). Both have a forcing amplitude of a = 10 mm.
Obtained in regimes with measurable mixing (high forcing amplitude), it can be seen that
both diagrams have qualitatively similar features. Several discrete frequency peaks of
large magnitude are embedded into a continuous spectrum, which has significantly smaller
magnitude. These peaks fluctuate in time and the background is high in both cases. The
bicoherence of the weakly-focused case, not presented in this manuscript, also shows very
similar features with the one of case C.
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Figure 5.23: Time-frequency diagrams of two signals recorded in unstable wave attractors
corresponding to different operating points. Both attractors are unstable and the wave
regime is such that it induces significant mixing. The left panel corresponds to the ex-
periment indicated by the symbol � while the right one by the F (see figure 4.10 and
Table 4.3 for the parameters). Note that the forcing amplitude for these two experiments
is a = 10 mm.
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5.3.3 Probability density functions of the horizontal vorticity

Section 5.2.3 shows that the probability density function (PDF) of the dimensionless hor-
izontal y-component of the vorticity field, Ξy = ξy/N , represents a relevant quantity for
consideration of statistics of extreme events in the experimental system. This quantity
has a clear physical meaning as a ratio of the destabilizing effect of vorticity to the stabi-
lizing effect of stratification. Obviously, we can expect some mixing in the system when
significant statistics of events with high values of |Ξy| are encountered.

Figures 5.24(a) and (b) represents the PDFs of Ξy for weak- and well- focused (1, 1)
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Figure 5.24: Probability density functions of the dimensionless vorticity Ξy in the tank,
calculated from all images between 480 and 500 T0, for the two well-focused (propagating)
� (a) or weakly-focused (standing)F (b) wave experiments presented in figure 5.23. Prob-
ability density functions of the vorticity in the tank, filtered at Ω0, for the two propagating
(c) or standing (d) wave experiments. Ratio between the final and the initial stratifications
for the two well-focused (propagating) (e) or weakly-focused (standing) (f) wave experi-
ments. The red color is associated with experiments with a = 5 mm and the black color is
associated with experiments performed at a = 10 mm.
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attractors for two different values of the forcing amplitude a. The left column is for well-
focused attractors (�) while the right column is for weakly-focused attractors (F). On
each row, the red curves represent the data for attractors with a = 5 mm while the black
ones are for attractors with a = 10 mm. It can be seen that if a is fixed, the system with
weak focusing (characterized by high values of 〈K〉 and low values of R in a stable regime)
shows consistently lower statistics of extreme events. At the same time, at sufficiently high
values of the forcing amplitude a, the shape of vorticity PDFs in attractors with high and
low focusing is qualitatively similar. Indeed, the qualitative behaviour of two systems at
high a is similar as attested by their time-frequency diagrams (figure 5.23). Moreover, the
long-term effect on stratification is also similar since we observe a well-measurable mixing
when comparing the initial and final density distributions in figures 5.24(e) and (f). We
believe that the significant statistics of extreme events with high horizontal vorticity arises
from the spontaneous summation of the frequency components of the wave field. The
primary wave alone cannot produce events with sufficiently high vorticity. This is attested
by figures 5.24(c) and (d) that represents the PDFs of Ξy for the primary wave field
filtered at Ω0 for the well-focused (�) and weakly-focused attractors (F). It can be seen
that these PDFs have no tails extending to the domains with |Ξy| > 2. The threshold
value |Ξy| > 2 has been suggested in section 5.2.3 as extension of the classic Miles-Howard
criterion for stability of horizontal shear flows of continuously stratified fluid [72, 116]. In
fact, some physical considerations suggesting a wider range of applications of the Miles-
Howard criteria can be found in classic works, for example in [132]. The threshold value
of |Ξy| = 2 allows us to make some useful qualitative conclusions on the mixing efficiency.
The probability of having an extreme event with intensity |Ξy| > 2 is given by the integral
over the corresponding tails of the PDF. The cases with measurable mixing depicted in
figure 5.24(e) and (f) correspond to drastically increased probability of extreme events. It
increases from 2%� for a = 5 mm to 19%� for a = 10 mm in the "propagating waves"
case (�), and from 0.7%� for a = 5 mm to 5.6%� for a = 10 mm in the "standing
waves" case (F). We observe a comparable increase of probability, by factor 10 and
8, in both cases. Although the statistics of high-vorticity events seems to represent a
kinematic indicator for the occurence of mixing, at the present stage it is difficult to relate
this statistics directly to the overall mixing efficiency. Additional parameters should be
measured, most importantly, the typical scale of overturning structures. As an alternative,
one can make an attempt to estimate the turbulent diffusion coefficient in the experimental
system using the PIV/PLIF technique [34].
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Conclusions

In this Chapter, I discussed essentially long-term experiments and triadic energy cascade in
unstable regimes. I have shown that, for a given geometry, the forcing amplitude can tune
the amount of instabilities in the system. For low forcing, the attractor remains stable.
For an intermediate forcing, the attractor is unstable and leads, after a long transient
period, to a cascade of triadic interactions. Several couples of secondary waves are created:
they all exchange energy through three-wave interactions. This is the first experimental
signatures of internal wave turbulence. For high forcing, a cascade is also present but the
waves are sufficiently strong to partially mix the fluid. The mixing process is linked with
high vorticity events, created by the combination of the different waves. This set-up can
thus be taken as a "mixing-box".

Then, I studied the influence of the geometry on the triadic cascades. For a given forcing
amplitude, the choice of the operating point in the (d, τ) diagram (so the geometry of the
attractor) allows us to control the intensity of the cascade, limiting the number of secondary
wave couples. Some secondary frequencies are found to be quasi-resonant geometrical
modes. Nevertheless, if the forcing amplitude is sufficiently high, the geometry does not
matter anymore and different attractors can lead to comparable amounts of mixing.

This work can explain, partially, the cascade processes at play in the abyss. Guo and
Holmes-Cerfon [65] have found that, on a 2D realistic topography, the probability to get
an wave attractor is of 10 attractors per 1000 km. Interestingly, this study shows that
in the case of small-scale bathymetry the attractors with very elongated loops represent
the most probable configuration, justifying our interest to attractors with a “degenerated”
geometry. Thus, the presence of attractors in seas and lakes is not to exclude. They are
likely to be in a non-linear regime due to focusing. Consequently, one can expect that
they are responsible for energy cascade and mixing in their neighborhood. The relevance
of such a scenario in a three-dimensional topography [105, 35] is still to explore.
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The main objectives of my PhD were to understand the linear and non-linear cascade
processes at play in idealized experiments of internal wave attractors. First, in Chapter 3,
we have investigated internal wave attractors in the linear regime, at low forcing amplitude.

1. We explored the structure of the Arnold tongue corresponding to a simple attrac-
tor. We have shown that the kinetic energy of the confined fluid system represents
an appropriate global variable that allows us to classify the observed wave regimes.
A typical Arnold tongue is shown to have a central region corresponding to "clas-
sical" well focused wave attractors with thin branches where the wave energy is
concentrated. These attractors typically have a large total kinetic energy, and the
wave motion in the attractor branches is represented by a propagative wave. The
behaviour of "classical" wave attractors has been studied in great detail, both in
linear [98, 97, 138, 125, 70, 64, 69, 38, 65] and non-linear [125, 139, 79] regimes. The
central region of Arnold tongue is surrounded by border regions corresponding to
zones of geometric degeneracy which can be of two types: one in which attractors
collapse onto a line representing a diagonal of the trapezoid and the other which the
system itself does not support effective focusing. The latter case corresponds to well-
studied configuration of standing internal waves in a rectangular domain filled with
uniformly stratified fluid [110]. For the intermediate case of an elongated attractor
in the domain with weak focusing, the wave motion in the attractor represents a
nearly standing wave which, however, has increased energy concentration at the loop
predicted by the ray tracing which indicates that the propagative component of the
wave field does matter.

2. We have investigated the influence of the geometry of the basin on the different
characteristics of the attractor such as its wave length, width and amplitude. In the
linear regime and for a fixed geometry, the wave length and width of the attractor
are totally independent of the forcing amplitude while the amplitude of the wave
attractor increases with it. Moreover, the scaling of the ratio width-over-perimeter
has been tested using the two tanks of different sizes. This shows a very good
correspondence with the theoretical predictions of Grisouard et al. [64]. This leads
to the conclusion that, in the ocean, linear attractors have too narrow branches to
be stable. Thus, TRI is very likely in the oceanic context for wave attractors and it
is worthwhile to study this instability in wave attractors.

3. Different forcings have been investigated using the wave-maker described in [115, 63].
The experimental wave fields obtained have been compared with the theoretical
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stream function computed following [86, 98, 97]. For a forcing on the total height of
the basin, the experiments are in a very good agreement with the vanishing viscosity
prediction. For a forcing on a primary fundamental interval only, the scale is too
small in the small tank to allow the waves to reach the ray tracing prediction. Nev-
ertheless, in the large tank experiments, one observes rays converging towards the
attractor, with decreasing wave length when approaching the closed loop. This is in
agreement with the predicted theoretical stream function. This kind of experiment
constitutes the simplest investigation to understand the convergence of internal wave
rays towards the attractor.

As the linear focusing very likely leads to the instability of internal wave attractors
in the oceans, it is worthwhile to study the start of the triadic resonant instability (TRI)
from an experimental point of view. This has been done in Chapter 4.

1. Scolan et al. [139] have reported the local character of TRI, growing from the most
energetic branch of the attractor. We have shown that the start of TRI can be global,
depending on the choice of the operating point at the Arnold tongue. Such global
TRI occurs when the attractor is of large amplitude and close to a standing wave, so
in the right tip of the Arnold tongue. The growth characteristic time of this global
instability is found to be much larger than the return-trip time of the secondary
frequencies in the tank. Thus, it is necessary to observe global TRI through long-
term experiments. The secondary frequencies are quasi-standing waves. This global
instability thus represents an intermediate case between the local TRI [139] and the
TRI in purely standing waves [110].

2. We investigated the influence of local TRI on the wave length and on the amplitude
of the attractor. When the attractor grows, it undergoes linear focusing up until the
point that the instability starts. The attractor then escapes from the linear focusing
and its wave length remains larger than in the linear case, due to the instability. The
amplitude of the attractor is limited by the instability, because of the energy transfer
to secondary waves. The dissipation reaches a steady state, as mentioned in [79].

3. We also developed a collaboration with Ilias Sibgatullin, to perform numerical sim-
ulations of internal wave attractors with exactly the same configuration as in the
experiments. Ilias Sibgatullin wrote the code and carried out the simulations while
I performed most of the data analysis. The numerically simulated and experimental
attractors are in very good agreement for both stable and unstable cases. Exper-
iments and numerical simulations have also shown that the attractor flow is quasi
invariant in the transversal direction. Some three-dimensional effects have been in-
vestigated but appear to be small: TRI is also quasi independent of the transversal
coordinate and the mean-flow induced by the attractor remains small with respect
to the wave velocity field. The SyS technique, based on integration of the density
gradient field over the tank width, has been validated using numerical simulations,
for both stable and unstable cases. The main three-dimensional effect is that around
25% of the total dissipation in the width occurs in the viscous boundary layers of the
lateral walls of the tank.

Finally, we explored the triadic energy cascade in internal wave attractors, using long-
term experiments in Chapter 5.

1. We studied energy cascade of unstable attractors for large forcing. These exper-
iments show convincing signatures of discrete internal wave turbulence, observed
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experimentally for the first time. We used the bicoherence as a relevant tool to vi-
sualize the three-wave interactions of such an energy cascade. Almost all the energy
in the tank follows the dispersion relation showing the presence of only waves in the
experiments. We have computed the spatial spectra which exhibit a −3 power law.
Note that this exponent is different from the one predicted by the wave turbulence
theory [94]. Moreover, we have shown that the choice of the operating point at the
Arnold tongue allows us to tune the intensity of the discrete cascade, from only one
couple of secondary waves to more than eight pairs. In the oceanic context, the
Garrett and Munk measured spectra in the ocean [57] are close to the internal wave
turbulence predictions of Lvov and Tabak [94]. Thus, following our experiments, one
can expect that internal wave attractors in oceans are unstable and lead to internal
wave turbulence. This may explain a route for the energy cascade in oceans, where
the topography can enhance some attractors. Moreover, as attractors transfer a large
amount of their energy to the secondary waves, this can be difficult to observe them
directly.

2. For very high forcing, we show that some mixing can be induced by the energy cascade
of an internal wave attractor. Thus, the experimental set-up represents an "internal
wave mixing box". The mixing is caused by extreme vorticity events, higher than
the Miles-Howard threshold for vorticity defined by the Richardson number. The
extreme events are due to the random summations of the wave fields of the different
frequencies present in the tank. The attractor alone cannot cause mixing, even at
very high amplitude. Moreover, under sufficiently large forcing, the cascade does not
depend any more on the geometry of the attractor in the mixing regime. This is a
common fate for wave attractors with strong and weak focusing, with qualitatively
similar statistics of extreme events leading to mixing. Thus, this regime appears to be
universal. The choice of the operating point at the Arnold tongue and the amplitude
of the input perturbation provide extreme flexibility to control the parameters of the
energy cascade in the system. We believe that this "mixing box" configuration has a
strong potential to mimic many aspects of the energy cascade in confined geophysical
systems both experimentally and numerically.

3. We have shown that some frequencies in the spectrum of wave motions correspond
to standing and nearly-standing waves with high vertical modes. These observations
may have an important consequence on the dynamics of large stratified geophysical
systems. Lakes, for example, may be subject to very complex forcing. The cascade of
triadic instabilities that develops as a response to forcing may effectively transfer en-
ergy to standing and nearly-standing waves of high vertical modes. When the forcing
stops, the attractor-like components of the internal wave motion quickly disappear
as described in [70, 64]. In absence of energy injection, at low wave numbers, the
spectrum of wave motions in attractors quickly shifts toward large wave numbers due
to focusing, and the large wave numbers quickly decay due to viscosity. In contrast,
the normal vertical (global resonance) modes conserve their length scale and decay at
a much longer time-scale owing to purely viscous mechanism. Similar dynamics is ex-
pected for quasi-resonant modes characterized by vanishingly weak focusing. Such a
scenario can explain the presence of high vertical modes in limnological observations.
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Perspectives

In Chapter 2, I have shown interesting results about tidal conversion at finite and infinite
depths. The affine similitude theory for a square-shaped cylinder in a stratified fluid of
infinite depth is in good agreement with the measured added mass despite the waves per-
turbating the pendulum after reflecting on the edges of the tank. This causes non-reliable
measurements at low frequencies. For a circular-shaped cylinder in a stratified fluid of fi-
nite depth, the results are consistent with the ones reported in [39, 42]. The measurements
are less perturbed by the wave reflections. Moreover, at very small depths, the damping
coefficient is found to be larger than 1 in the low-frequency limit, relevant for tidal con-
version. This means that the damping coefficient at finite depth is larger than the one at
infinite depth, as predicted by Llewellyn Smith and Young [92]. I have also shown that
some topographies can exhibit a lack of tidal conversion at finite depth [96]. Nevertheless,
more pendulum experiments are necessary to completely verify the affine similitude theory
and the predictions for tidal conversion made by Llewellyn Smith and Young [92]. Indeed,
the vertical flat plate oscillating horizontally in a stratified fluid of limited depth is of par-
ticular interest since a theoretical prediction exists in [93, 122]. Moreover, the topography
lacking of tidal conversion exhibited by Maas [96] merits being completed by experiments
at very small or large depths.

For the internal wave attractors, many questions remain open. In particular, this work
may be continued and our knowledge in the attractor cascade may be improved by the
following points.

First, as we performed idealized laboratory experiments, it it necessary to keep in mind
the main differences between the oceans and our experiments.

• Guo and Holmes-Cerfon [65] pointed out that more complex attractors than the (1, 1)
attractor are more likely to be present in the ocean. Thus, it is worth considering
the energy cascade in more complicated attractors, like the (2, 1) for example. These
attractors can be obtained using the same basin geometry as for the experiments
reported in this manuscript.

• A very large part of the studies on attractors in the oceans [65, 38] and in the
experiments [139, 70, 69, 68], including our studies, is performed in a bi-dimensional
set-up. As the oceans are three-dimensional and not bi-dimensional, it is necessary
to perform 3D attractor experiments. This is the objective of Grimaud Pillet, who
started his PhD on three-dimensional attractors in our group in September 2015.

• In the oceans, the Earth’s rotation also plays a very important role, being responsible
for inertial waves. The rotation is not expected to modify the linear processes of wave
attractors, but it vastly complicates the appearance and the behavior of the triadic
instability. Thus, the triadic cascade may be modified due to this rotation. Paco
Maurer, who started his PhD in our group in September 2014, is working on TRI in
gravito-inertial plane wave beams [109]. Note that the set-up he uses cannot support
wave attractors.

• The forcing made with the wave-maker on all the height of the fluid is very specific to
the experiments and is not realistic for the oceans. Tidal forcing may be important
to test, as in the experiment reported in [38].

• In order to consider all the differences between the ocean and the idealized experi-
ments, the non-linear stratification of the ocean should also be taken into account.
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Then, in this manuscript, the mixing process has been discussed qualitatively using
vorticity PDFs and the Miles-Howard criteria on the Richardson number. Nevertheless,
it is possible to investigate further mixing in stratified fluid. Indeed, Yvan Dossmann,
who started a post-doc in our group in September 2014, is working on the PIV/PLIF
experimental technique. This allows us, by measuring simultaneously the velocity and
density fields, to get access to the turbulent diffusivity [34]. Preliminary experiments in
attractor configurations have shown that the turbulent diffusivity is much higher in the
case of a trapezoidal basin with an attractor than for a rectangular tank, with similar
forcing. Note that long-term experiments are of crucial importance to observe and study
quantitatively the mixing processes. Moreover, it is worthwhile to investigate the mixing
in the experiments from the Lagrangian point of view, which is a tool widely used for
example in atmospherical data [77, 32] or in turbulence [18].

From a more fundamental point of view, the attractor set-up may be used to study
internal wave turbulence. Indeed, one has demonstrated that attractors lead to triadic
energy cascade for high forcing and long-term experiments. Thus, we have at our disposal
a very convenient and useful set-up to explore internal wave turbulence and the cascade
associated with it. Developing PIV in the large tank will allow us to increase the size of
the experimental set-up, in order to decrease the confinement effects and to increase the
separation between the injected and dissipative scales. Thus, the basic hypothesis of the
wave-turbulence framework [121] will be further confirmed. Moreover, it may be possible
to use two cameras with this set-up: one, focused on the flow at large scales and one
dedicated to a given smaller region of the basin, in order to better resolve the small scales
of the spatial spectra. Note that, in addition, the discrete wave-turbulence obtained in
some experiments may be connected with the theoretical work of Kartashova [81].
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Abstract

A question of paramount importance in the dynamics of oceans is related to the energy cas-
cade from large to small scales and its contribution to mixing. Internal wave attractors may
be one of the possible mechanisms responsible for such a cascade. In this manuscript, we
study experimentally internal wave attractors in a trapezoidal test tank filled with linearly
stratified fluid. In such a geometry, the waves can form closed loops called attractors.

We show that the attractor formation is purely linear: small scales are thus created by
wave focusing. The attractor characteristics are found to only depend on the trapezoidal
geometry of the tank. At the ocean scale, we show that attractors are very likely to be
unstable. Indeed, internal wave attractors are prone to a triadic resonance instability,
which transfers energy from the attractor to a pair of secondary waves. This instability
and its main characteristics are described as a function of the geometry of the basin.

For long-term experiments, the instability produces several pairs of secondary waves,
creating a cascade of triadic interactions and transferring energy from large-scale monochro-
matic input to multi-scale internal-wave motion. We reveal, for the first time, experimental
convincing signatures of internal wave turbulence. Beyond this cascade, we have a mixing
regime, which appears to be independent of the trapezoidal geometry and, thus, universal.

This manuscript is completed by a study on added mass and wave damping coefficient
of bodies oscillating horizontally in a stratified fluid, with applications to tidal conversion.

Résumé

La cascade d’énergie qui a lieu dans les océans, depuis les grandes vers les petites échelles,
est capitale pour comprendre leur dynamique et le mélange irréversible associé. Les at-
tracteurs d’ondes internes font partie des mécanismes conduisant potentiellement à une
telle cascade. Dans ce manuscrit, nous étudions expérimentalement les attracteurs d’ondes
internes, dans une cuve trapézoïdale remplie d’un fluide stratifié linéairement en densité.
Dans cette géométrie, les ondes peuvent être focalisées vers un cycle limite : l’attracteur.

Nous montrons que la formation de l’attracteur est purement linéaire : des petites
échelles sont donc créées grâce à la focalisation des ondes. Les principales caractéristiques
de l’attracteur dépendent uniquement de la géométrie trapézoïdale de la cuve. A l’échelle
de l’océan, nous montrons que les attracteurs d’ondes internes sont très probablement
instables. En effet, ceux-ci sont sujets à une instabilité de résonance triadique, qui transfère
de l’énergie depuis l’attracteur vers un couple d’ondes secondaires. Cette instabilité et ses
principales caractéristiques sont décrites en fonction de la géométrie du bassin.

Pour des expériences de longue durée, l’instabilité produit plusieurs paires d’ondes
secondaires, créant une cascade d’instabilités triadiques et transférant l’énergie injectée à
grandes échelles vers des échelles plus petites. Nous montrons, pour la première fois de
façon expérimentale, de très fortes signatures de turbulence d’ondes internes. Au delà de
cet état, la cascade atteint un régime de mélange partiel du fluide stratifié. Cet ultime
régime apparait indépendant de la géométrie trapézoïdale du bassin, et donc, universel.

Cette thèse est complétée par une étude sur la masse ajoutée et l’amortissement par
émission d’ondes d’objets oscillant horizontalement dans un fluide stratifié en densité. Cela
a des applications concernant la conversion de l’énergie des marées en ondes internes.
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