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Contributions à l’étude de comportements extrêmes et
Applications

Résumé : Cette thèse a pour objectif d’explorer plusieurs approches pour traiter des com-
portements extrêmes. Nous commençons par définir une nouvelle classe M de fonctions
positives et mesurables à support R+ ayant un comportement asymptotique polynomial,
strictement plus grande que la classe de fonctions à variation régulière (RV). Les fonctions
U ∈ M sont identifiées à un indice réel, appelé leM-indice de U , correspondant à l’indice
de RV si U est RV. Nous démontrons des propriétés algébriques et analytiques, ainsi que
plusieurs caractérisations de M. Nous pouvons étendre M et certaines de ses propriétés à
deux classes,M∞ etM−∞, ensembles de fonctions dont le comportement asymptotique est
de type ex et e−x respectivement. Nous généralisons également le théorème de Karamata
et le théorème Taubérien de Karamata àM, et mettons en relation le domaine d’attraction
de Fréchet et M, ainsi que celui de Gumbel et M−∞. Nous pouvons proposer une preuve
unifiée des théorèmes Taubériens de type exponentiel donnés par Kohlbecker, de Bruijn, et
Kasahara, en utilisant une caractérisation deM. La seconde partie de la thèse traite d’une
part de l’analyse empirique des avantages économiques générées par le partenariat de Swiss
Life France avec un organisme tiers, révélant des relations non linéaires entre les variables
impliquées dans l’étude; d’autre part de l’analyse empirique des relations entre les risques de
mortalité et de marché mettant en évidence une dépendance faible entre ces extrêmes. Dans
la dernière partie de la thèse, nous proposons un nouveau modèle relationnel à risque ac-
céléré, intégré dans une régression de Poisson, montrant un excellent ajustement aux données
réelles.

Mots clés : Domaine d’attraction; Etude actuarielle sur le poste optique; Extrêmes; Modèle
de mortalité; Risques de marché et de mortalité; Variation régulière
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Contributions to the study of extreme behaviors and
Applications

Abstract : The main objective of this thesis is to explore several approaches to deal with
extreme behaviors. We start defining a new class M of positive and measurable functions
with support R+ and polynomial asymptotic tail behavior, strictly larger than the class of
regularly varying (RV) functions. The functions U ∈M are identified by a real index, called
theM-index of U , which corresponds to the RV index when U is RV. Algebraic and analytic
properties and characterizations of M are given. M is extended into two classes, called
M∞ andM−∞, of which functions have exponential asymptotic tail behaviors of the types
ex and e−x respectively. Properties satisfied on M also hold on those classes. Extensions
on M of Karamata’s theorem and Karamata’s Tauberian theorem are given. Relations
between the domain of attraction of Fréchet andM, as well as that of Gumbel andM−∞
are provided. Using a characterization ofM, a unified proof of the Tauberian theorems of
exponential type given by Kohlbecker, de Bruijn, and Kasahara is given. The second part
of the thesis presents on one hand an empirical analysis on the economic benefits generated
by the partnership of Swiss Life France with a third-party organization revealing non-linear
relations between variables involved in the study; on the other hand, an empirical study on
relations between mortality and market risks provides evidence of weak dependence between
these extremes. The last part of the thesis presents an accelerated hazard relational model,
embedded in a Poisson regression framework, showing an excellent fit to real data.

Keywords : Actuarial study on vision services; Domain of attraction; Extremes; Market
risks and mortality; Mortality model; Regularly varying
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Résumé

Bien que la Théorie des Valeurs Extrêmes (EVT) ait vu le jour dans un contexte de catastrophes
naturelles comme des inondations et des sécheresses, son développement actuel concerne différents do-
maines. Ceci est dû au fait que des évènements extrêmes qui surviennent subitement ne peuvent pas
être décrits par une loi Gaussienne. Par exemple, nous pouvons observer dans le monde des assur-
ances ce type d’évènements extrêmes sur les pertes liées aux catastrophes naturelles et dans un contexte
d’augmentation de la durée de vie. Ces évènements, caractérisés par leur rareté, doivent être finement
étudiés car ils peuvent être causes de faillites d’assureurs.

Les valeurs extrêmes, considérées comme des variables aléatoires, sont décrites par une loi de probabilité.
La difficulté dans le développement d’une théorie statistique des valeurs extrêmes, vient de celle de
déterminer la loi de probabilité issue de l’échantillon associé. Un outil important dans le développement
de cette théorie est la notion de variation régulière (RV), caractérisée par un paramètre fondamental
appelé l’indice de RV. Lorsque des distributions sont concernées, la valeur négative de cet indice est
appelée l’indice de queue. La notion de RV est liée à la caractérisation du domaine d’attraction de
Fréchet, qui constitue l’un des résultats les plus importants de la EVT. Ce domaine, qui concerne des
lois telles que la loi de Pareto, est largement utilisé dans la modélisation des données par des distributions
à queue lourde. La notion de RV a également permit la formulation d’estimateurs de l’indice de queue et
le calcul du taux de convergence de ces estimateurs. Déterminer l’indice de queue revient à caractériser
la distribution sous-jacente des évènements analysés lorsque cette distribution est RV.

Des efforts importants ont été développés pour décrire les distributions au-delà de RV, où la no-
tion d’indice de queue n’a plus cours. A cette fin, d’autres notions de queue lourde, telles la sous-
exponentialité, ont été introduites.

Il est intéressant d’étudier des approches alternatives pour décrire des valeurs extrêmes afin de mieux
comprendre leurs propriétés. Ceci pourrait conduire à revisiter des résultats bien connus sur les domaines
d’attraction et les distributions à queues lourdes, entre autres.

L’objectif principal de cette thèse est d’explorer différentes approches sur les comportements extrêmes,
dans différentes situations. Dans un premier temps, nous nous intéressons à une nouvelle extension
de la classe RV et définissons une classe de fonctions positives et measurables ayant un comportement
asymptotique polynomial ou exponentiel, dont les distributions à queues à variation régulière. Dans
une seconde étude, nous proposons une nouvelle stratégie pour analyser la dépendance entre les risques
de marché et mortalité. Puis, nous introduisons un nouveau modèle afin de modéliser la mortalité aux
âges élevés, basé sur la méthode relationnelle. Ces approches, développées en trois parties dans la thèse,
révèlent de nouvelles caractéristiques de comportements extrêmes.

Notons que la première partie aborde la théorie des valeurs extrêmes de façon plutôt théorique, alors
que les deux autres le font au travers d’applications actuarielles.

Dans la première partie de la thèse, nous introduisons un nouveau cadre théorique pour l’étude de
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valeurs extrêmes. Nous définissons des classes de fonctions positives et mesurables selon leur comporte-
ment asymptotique. Une première classe, appelée M, regroupe les fonctions ayant un comportement
asymptotique polynomiale caractérisé par un indice réel unique, appelé le M-indice. Nous étudions
les propriétés algébriques et analytiques sur cette classe, ainsi que différentes caractérisations. L’une
des caractérisations est de type “représentation de Karamata” et une autre est basée sur des ratios de
logarithmes utilisés dans des Q-Q plots avec des échelles logarithmiques. Cette classe est strictement
plus grande que la classe de fonctions RV et leM-indice correspond à l’indice de RV quand la fonction
deM est RV. Nous étendons cette classe à deux autres classes, appeléesM∞ etM−∞, en considérant
les fonctions ayant des comportements asymptotiques exponentiels de type ex et e−x respectivement.
Le M-indice ne peut être défini sur ces classes, mais elles sont identifiées d’une manière unique par
les limites ∞ et −∞ respectivement. Nous étendons à ces deux classes certaines propriétés algébriques
et analytiques, ainsi que des caractérisations, satisfaites parM. Nous démontrons que le théorème de
Pickands-Balkema-de Haan ne s’applique pas aux queues de distribution n’appartenant pas au complé-
ment de M∪M∞ ∪M−∞ dans l’ensemble des fonctions positives et mesurables à support R+. Cet
ensemble complément a la propriété que ses fonctions n’ont pas de comportement asymptotique poly-
nomiale ou exponentiel. Cette caractérisation signifie que leM-indice n’est pas unique sur cet ensemble
complément. Ceci permet de construire des exemples de fonctions explicites appartenant à cet ensemble
complément, notamment en faisant varier leM-indice.

Nous considérons ensuite les applications suivantes. Nous étendons d’abord à M, sous certaines con-
ditions, le théorème de Karamata, qui caractérise les fonctions RV par des intégrales de ces fonctions,
lorsque l’indice de RV est différent de −1. Puis, nous généralisons le théorème Taubérien de Karamata à
M. Rappelons que ce théorème, sous sa forme standard, établit qu’une fonction U est RV avec indice α
si et seulement si sa transformation de Laplace-Stieljes est elle-même RV avec indice α, lorsque α > 0 et
U est non-décroissante. Nous utilisons, dans cette généralisation, des conditions plus faibles sur U . Puis,
nous prouvons que les domaines de Fréchet et de Gumbel (avec support infini à droite) sont strictement
inclus dansM etM−∞ respectivement. Nous donnons une preuve unifiée des théorèmes Taubériens de
type exponentiel de Kohlbecker, de Bruijn et Kasahara, basée sur une caractérisation deM.

Dans la deuxième partie de la thèse, nous présentons deux études empiriques, l’une, sur les bénéfices
économiques générés par le partenariat de Swiss Life France (SLF) avec une organisation tierce privée
(Carte Blanche Partenaires, CBP), et l’autre, sur la recherche de relations entre risques de marché et
mortalité.

La première étude empirique analyse les bénéfices économiques générés par le partenariat de SLF avec
CBP, CBP étant consacré à la gestion, tant des fournisseurs de produits en optique que des clients
de services en optique. L’objectif est de mesurer l’impact sur les polices d’assurance en optique, de la
mise en place d’un système de services en optique offrant des prix compétitifs et facilitant l’accès aux
fournisseurs de produits en optique. A cet effet, nous étudions l’utilisation ou non des services de CBP,
la valeur payable par l’assuré et les remboursements effectués par SLF à l’assuré. En collaboration avec
des actuaires de SLF, nous explorons alors les relations entre ces variables et les caractéristiques des
assurés, des contrats, et des consommations de services en optique faites dans le passé. Nous analysons
des données annuelles de SLF et CBP sur les consommations de services en optique. CBP enregistre
seulement les consommations faites via les services de CBP. Nous décrivons alors les comportements
des clients ayant des polices d’assurance en optique à l’aide de l’analyse en composantes principales, de
l’analyse de contingence et de l’analyse de correspondances, mais aussi des arbres de régression, outil
emprunté au data-mining. Nous trouvons que des variables telles le nombre d’assurés par contrat, la
gamme commerciale du contrat et la zone géographique associée au contrat, aident à la discrimination
entre l’utilisation ou non des services de CBP. Considérant la description de la valeur payable par l’assuré
et les remboursements faits par SLF à l’assuré, nous trouvons que les variables clés pour cela sont la
gamme commerciale du contrat, la zone géographique associée au contrat, l’âge de l’assuré, le niveau de
gamme du contrat, le type de remboursement et l’ancienneté du contrat. Par ailleurs, nous observons que
certains assurés peuvent profiter de ce système de façon stratégique. L’information disponible ne permet
pas d’obtenir des détails sur ces comportements. De plus, la granularité grossière de l’information limite
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l’analyse. Afin de réduire cette granularité, nous recommandons quelques mesures, comme l’utilisation
de données trimestrielles à la place de données annuelles.

La deuxième étude empirique analyse des relations possibles entre risques de mortalité et de marché.
Ces type d’étude est généralement fait d’un point de vue économique ou basé sur les cas de pandémies
bien-connues, comme la peste noire et la grippe espagnole. Notre stratégie d’analyse est différente: nous
introduisons des indicateurs comme des indices de mortalité, des périodes d’analyse, et identifions des
valeurs extrêmes dans les variations de la mortalité. Cette stratégie, inspirée de celle de Ribeiro et di
Pietro ([122]), envisage d’autres pays, prend en compte plus de variables économiques et financières,
plus d’indices de mortalité, et introduit une définition différente d’évènements extrêmes de la mortalité.
Ribeiro et di Pietro définissent ces évènements extrêmes via la variance, notion qui n’existe pas pour des
variables ayant des distributions à queue lourde d’indice de queue inférieur à 2. Nous définissons alors ces
évènements extrêmes via le classement des variations de l’indice de mortalité (approche standard dans
EVT), en prenant en compte les pires n années de la mortalité, à n donné. Ces années sélectionnées sont
appelées années extrêmes. Nous montrons alors une dépendance certaine entre la mortalité et certaines
variables financières, lorsque la mortalité extrême se produit, notamment lorsque nous considérons les
10 pires années de mortalité et lorsque l’indice de mortalité choisi est basé sur la durée de vie. Nous
constatons que, en cas de changements de mortalité extrême, les performances des indices boursiers et
des rendements obligataires sont réduites lorsque nous considérons l’ensemble de l’échantillon, ce qui
indique une dépendance entre les risques de mortalité et de marché. Nous observons aussi une plus forte
corrélation linéaire entre l’indice de mortalité (basé sur des taux de mortalité) et les indices financiers
lors des périodes de mortalité extrême, mais avec des signes différents selon les pays étudiés. Poursuivre
cette étude en envisageant d’autres notions de dépendance semble donc nécessaire. Nous trouvons que
la signification statistique de ces réductions de performances (et des augmentations de corrélation),
examinée à l’aide de techniques de bootstrap, est faible. Cependant, la stabilité des résultats rencontrée
sur six pays et plusieurs indices financiers, laissent à présager d’un résultat crédible. De plus, nous
trouvons que les résultats globaux ne changent pas significativement lorsque nous modifions la définition
de l’indice de mortalité.

Dans la troisième partie de la thèse, nous proposons des nouveaux modèles de mortalité basés sur la
méthode relationnelle afin de traiter le risque dû à l’augmentation de l’espérance de vie. Ce risque est
dû au fait que l’espérance de vie observée a considérablement diminué et plus rapidement que prévu.
L’idée de la méthode relationnelle est de relier deux variables de mortalité à travers une fonction de lien
inconnu à décrire. Des auteurs tels Camarda et al. [38] ont utilisé cette approche, en se concentrant
sur la fonction de densité de probabilité. Nous proposons un nouveau modèle relationnel au risque
accéléré qui consiste à lier la force de mortalité µ d’une population d’intérêt à une force de mortalité
de référence µ? en modifiant l’échelle des âges. Ce modèle utilise une fonction semi-paramétrique, lisse
et indéterminée w qui est basée sur des B-splines pour ajuster l’âge auquel µ? est calculée. Ceci étend
la spécification linéaire du modèle standard à risque accéléré. Nous ajustons ce nouveau modèle aux
données de mortalité en utilisant un algorithme du type moindres carrés itérativement repondérés et
adapté à une régression de Poisson. Nous présentons des illustrations numériques où ce modèle semble
être robuste par rapport au choix de µ?. Nous proposons une version dynamique de ce modèle afin
de produire des prévisions de mortalité. Nous décomposons les fonctions de distorsion de l’âge wt en
la somme d’une fonction indépendante du temps w et d’un processus θt représentant des variations
annuelles. Nous produisons des projections de mortalité par extrapolation du processus θt. Comme
alternative à des modèles bien connus utilisant également des forces de mortalité ou des transformations
de cette variable, nous introduisons avec ce modèle des composantes qui sont importants pour améliorer
la précision des prévisions de mortalité, telles une fonction de distorsion de l’âge qui est flexible, ou une
force de mortalité de référence. La variation de ces composantes devrait permettre l’exploration d’un
grand nombre de variantes de notre modèle. En outre, nous analysons un modèle à deux variables pour
la projection de mortalité en reliant les processus liés aux femmes et aux hommes. Nous donnons des
illustrations numériques du nouveau modèle, suivies de discussions sur les résultats obtenus pour les
nouveaux modèles sur les périodes d’ajustement, et de la comparaison des projections de la mortalité
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avec celles données par des sources officielles.

La recherche développée dans cette thèse fournit plusieurs alternatives permettant de traiter des prob-
lèmes tant théoriques que pratiques, la plupart liés à l’analyse et la modélisation des comportements
extrêmes. Notre modèle de mortalité pourrait par exemple être utilisé pour la tarification de produits
liés à la mortalité stochastique, comme les pensions, la santé, les produits financiers sur la longévité,
ou d’autres, aidant à la gestion du risque de mortalité et offrant de nouvelles approches de recherche
dans ce domaine. De plus, le large cadre théorique développé dans la première partie, ouvre une voie
prometteuse pour résoudre des problèmes, comme, par exemple, la modélisation multivariée des valeurs
extrêmes, la formulation de nouveaux estimateurs de l’indice de queue, ou la proposition de nouvelles
distributions. D’autres domaines pourraient aussi se bénéficier de ces nouvelles classes de fonctions
comme, par exemple, la théorie des nombres, en étendant la notion de ces classes aux séquences, ou
la résolution d’équations différentielles en utilisant la notion de M. Enfin, la stratégie que nous in-
troduisons pour étudier les relations entre les risques de mortalité et de marché, dégage une nouvelle
approche pour explorer empiriquement le comportement statistique dans les extrêmes dans des domaines
qui ne sont pas généralement liés à la mortalité.



List of Abbreviations and Symbols

The following notation is used throughout the all thesis.

a.s.→ convergence almost surely (a.s.)
P→ convergence in probability
d→ convergence in distribution

min(a, b) = a ∧ b the minimum between a and b
max(a, b)a ∨ b the maximum between a and b

bxc the highest integer ≤ x

dxe the lowest integer ≥ x

1A the indicator function of the set A
op(1) it is a sequence of random values that converges to 0 in probability (see e.g. [130])
Op(1) it is a sequence of random values bounded in probability (see e.g. [130])

“ancienneté” the time that a contract is active

The following acronyms are used throughout the all thesis.

RSO Régime social obligatoire (obligatory social security scheme)
ACS Aide au paiement d’une Complémentaire Santé (complementary aid for health)
CMU Couverture maladie universelle (universal healthcare coverage)
RAC Reste à charge (value payable by the insured)
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Introduction

This thesis is divided in three parts. The first one develops a new class of functions defined in terms of
their asymptotic behaviors, and which extends the class of regularly varying functions. Algebraic and
analytic properties as well as characterizations are provided on this class; some applications follows.
The second part presents two empirical studies on the economic benefits generated by the partnership
of Swiss Life France (SLF) with a third-party private organization, and on the investigation of relations
between mortality and market risks. The third part introduces a new mortality projection model based
on the relational method.

Note that the first part of the thesis is rather theoretical and mainly concerns the tails of probability
distributions, and the other two parts concern actuarial applications.

In the first part of the thesis, we propose a new theoretical framework for studying extreme values
as those of insurances losses. This framework is wide, covering any positive and measurable function
with support R+, thus goes beyond Extreme Value Theory. We introduce a larger class than that of
regularly varying functions (RV), calledM, and study its algebraic and analytic properties, providing
several characterizations. We also develop some applications on this class, as extensions of Karamata’s
theorem and Karamata’s Tauberian theorem, relations of this class with the domain of attraction of
Fréchet, a unified proof of the well-known Tauberian theorems of exponential type given by Kohlbecker,
de Bruijn, and Kasahara, showing the relations between the various components of these theorems,
to help for their understanding. Two natural extensions of M, called M−∞ and M∞, are provided,
satisfying some of the properties ofM. The complement set ofM∪M−∞∪M∞ in the set of measurable
and positive functions with support R+ is non empty; examples of functions belonging to this set are
given.

In the second part of the thesis, we present two empirical studies, each one in a separate chapter. The
first one focuses on the analysis of the economic benefits generated by the partnership of Swiss Life
France with a private organization (Carte Blanche Partenaires) devoted to manage both vision product
furnishers and users of vision services. It is developed using standard descriptive analysis techniques
like principal component analysis, analysis of contingency, and analysis of correspondence, but also
regression trees, a tool borrowed from data-mining. The second study investigates the possible relations
between mortality and market risks. These risks may constitute a part of the portfolio of an insurance
company. If they depend on each other, it would reduce the diversification benefit of the portfolio;
the capital assessment would then vary. Thus it is important to study this dependence, particularly
in extreme situations. We do this by comparing the performance of financial indicators observed on
financial markets when mortality shocks occur, to the average performance of those indicators on the full
sample. After a number of empirical analyses, evidence of weak dependence between extreme mortality
and market risks is provided.

In the third part of the thesis, we propose new mortality models in order to tackle the risk due to the
increase in life expectancy. These models are based on mortality experiences from different years linked
to an extreme mortality behavior. Our approach is to provide a new relational model that distorts

xvii
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age making individuals younger or older according to a life table of reference. We allow this distortion
over years by using a life table of reference that is time-independent. The age distortion incorporates
additive independent age and time components. The former component is modelled using B-splines that
are estimated by applying a modification of the standard method of iteratively reweighted least squares
for Poisson regressions. The latter component is modelled as a time process, which allows forecast of
mortality. We analyze a bivariate model for mortality projection by relating the time processes linked
to females and males. Numerical illustrations of the new model are given, including discussions on the
results of the new models on fitting year periods and the comparison of mortality projections with those
given by official sources.
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Study of a new class of functions
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Introduction

In this part of the thesis we give a new theoretical framework for studying extreme values as those of
insurances losses. This framework is large, covering any positive function. Hence, the analysis to be
developed has application in other domains, extreme value theory among them. In what follows we
motivate this new framework and lead its applications to mainly the analysis of extreme values. Under
this new framework, is it possible to improve some well known results working mainly for regularly
varying functions ? We find that in several situations it is.

The notion of regularly varying (RV) is essentially related to classical real variable theory and its
applications are found in different fields as probability theory, analytic number theory, complex analysis,
differential equations, and elsewhere. Historically, the name RV seems to have been coined by Borel in
his classic Leçons sur les fonctions entières, 1900. In this publication he focuses on integer functions
and gives a definition of RV. That definition can be extended to any function satisfying mild conditions.
For a function U , Borel says that U is à croissance régulière (regularly varying) if the limit

lim
x→∞

ln lnU(x)
ln x (0.0.1)

exists (see [19], p. 108). If this limit does not exist, this author says that U is à croissance irrégulière (see
[19], pp. 120-123), say U is an irregularly varying (IV) function, and he gives examples of IV functions.
We will come back on examples of this type later since they are one of our subjects of research.

The limit (0.0.1) is key in our study since a modification of it will enable us to sort positive functions.

Some years later, works of Landau in 1911, Valiron in 1913, Pólya in 1917, and Schmidt in 1925, and
others, influenced Karamata to formulate his RV definition in 1930. He says that a function U is RV
(at infinity) if U : R+ → R+ is continuous (measurable) and satisfies the property (after the application
of his Theorem 1 given in [90])

lim
x→∞

U(tx)
U(x) = tα (t > 0), (0.0.2)

for some α ∈ R. α is called the index of RV of U , −α also known as the tail index when U is the tail
of a distribution (see e.g. [57], p. 69). Since the seminal contribution of Karamata in 1930, large and
extensive studies of RV functions have been developed in many directions. Systematic treatment of this
theory can be found in e.g. [13] and [125].

A first result of interest for us is obtained by relating (0.0.1) and (0.0.2). If we denote V (x) = ln U(x)
and assume that V is RV in the sense of Karamata, then V is RV in the sense of Borel. This is one of
our results (see the sufficiency condition of Theorem 1.1). It has been also proved by other authors, see
e.g. Karamata [93], Theorem 1. Note that the converse of this implication is not true.

In the literature the notion of RV given by Borel seems to have been forgotten, finding almost everywhere
the one given by Karamata. We found only one reference to the Borel’s RV definition, namely by Bigham
in [11], p. 357. In what follows we will assume that if a function is RV, it is in the sense of Karamata.

3
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Our work is concentrated mainly on functions U satisfying a slightly modification of (0.0.1). It concerns
functions U such that the limit

lim
x→∞

ln U(x)
ln x (0.0.3)

exists. This assumption and the relationship between (0.0.1) and (0.0.2) presented above imply that we
will analyze a class larger than the class of RV functions.

We aim to extend classical results obtained when U satisfies (0.0.2). With this objective, a first research
was developed, its results collected in [33]. It starts with the formulation of a new class which we call
the classM. This class is based on a formulation equivalent to a rewriting of (0.0.3). Considering the
relation between (0.0.1) and (0.0.2) presented above, this new class may be seen as an extension of the
class of RV functions (RV ). In the literature there are well-known extensions of RV, some of them we
briefly present. Then, we give algebraic and analytic properties and several characterizations ofM, one
of them based on (0.0.3). Besides, some applications ofM are shown, namely extensions of Karamata’s
theorem and Karamata’s Tauberian theorem and relations with the domain of attraction of Fréchet.
Natural extensions ofM, wich we call themM∞ andM−∞, are provided and some results holding on
M are proved for these extensions. A final line of work is on the complement set ofM∪M∞ ∪M−∞
in the set of measurable and positive functions with support R+, called O. There are two key results
on O: an analysis of the well-known Pickands-Balkema-de Haan theorem and the presentation of a set
of examples belonging to O. Some of these examples are related to those given by [19] on IV functions.
Chapter 1 presents all these results, which were developed in collaboration with Marie Kratz.

Chapter 2 gives another characterization of M, M∞, and M−∞. They are different of the previous
ones because they are based on ratios as the one presented in (0.0.2). Hence,M,M∞, andM−∞ and
RV are directly compared. Also, comparisons ofM,M∞, andM−∞ with the class of O-RV functions
(O-RV ), another extension of RV, are made.

This part of the thesis is complemented with one very nice application of some results onM. It concerns
([30]) a unified proof of the well-known Tauberian theorems of exponential type given by Kohlbecker,
de Bruijn, and Kasahara. A unified proof of these three theorems is also given by de Bruijn, but in our
case we dissect all these theorems helped by results onM and show how their components work. This
application is presented in Chapter 3.

New results

We list, by chapter, our contributions in this part of the thesis:

• Chapter 1 :

1. The new classesM,M∞,M−∞, and O, withM being larger than RV.
2. Algebraic and analytic properties ofM,M∞, andM−∞, including the analysis of convolu-

tion of functions.
3. Four characterizations ofM.
4. Two characterizations ofM∞ andM−∞.
5. Extensions toM of Karamata’s theorem and Karamata’s Tauberian theorem.
6. Proof of the proper inclusion of the domain of attraction of Fréchet inM.
7. Proof of the proper inclusion of the domain of attraction of Gumbel inM−∞.
8. Proof that the Pickands-Balkema-de Haan theorem does not hold on O.
9. Explicit examples of functions belonging to O.
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• Chapter 2:

1. Characterizations ofM,M∞, andM−∞ based on the ratio U(tx)
/
U(x).

2. Uniform convergence theorem of the previous characterizations.
3. Comparison betweenM,M∞, andM−∞ and O-RV.
4. Explicit examples of functions belonging toM, but not to O-RV, and of functions belonging

to O-RV, but not toM.

• Chapter 3:

1. A new unified proof of Tauberian theorems of exponential type given by Kohlbecker, de
Bruijn, and Kasahara.
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Chapter 1

An extension of the class of regularly
varying functions

This chapter is based on the study [33], from which selected results have been divided in two preprints
(sent for publications), one in analysis, the other in probability (see [34] and [35], respectively).

Note that in this chapter, we keep the formulation of the M-index as given originally in [33]. In the
next chapters, we will sligtly change this formulation to make theM-index coincide with the RV index
when the function ofM is RV.

1.1 Introduction

The field of Extreme Value Theory (EVT) started to be developed in the 20’s, concurrently with
the development of modern probability theory by Kolmogorov, with the pioneers Fisher and Tippett
(1928) who introduced the fundamental theorem of EVT, the Fisher-Tippett Theorem, giving three
types of limit distribution for the extremes (minimum or maximum). A few years later, in the 30’s,
Karamata defined the notion of slowly varying and regularly varying (RV) functions, describing a specific
asymptotic behavior of these functions, namely:

A Lebesgue-measurable function U : R+ → R+ is RV at infinity if, for all t > 0,

lim
x→∞

U(xt)
U(x) = tρ for some ρ ∈ R, (1.1.1)

ρ being called the RV index of U , and the case ρ = 0 corresponding to the notion of slowly varying
function. U is RV at 0+ if (1.1.1) holds when taking the limit as x→ 0+ instead of x→∞.

We had to wait for more than one decade to see links appearing between EVT and RV functions.
Following the earlier works by Gnedenko (see [79]), then Feller (see [73]), who characterized the domains
of attraction of Fréchet and Weibull using RV functions at infinity, without using Karamata theory in
the case of Gnedenko, de Haan (1970) generalized the results using Karamata theory and completed it,
providing a complete solution for the case of Gumbel limits. Since then, much work has been developed
on EVT and RV functions, in particular in the multivariate case with the notion of multivariate regular
variation (see e.g. [55], [57], [120], [121], and references therein).

Nevertheless, the RV class may still be restrictive, particularly in practice. If the limit in (1.1.1) does

7
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not exist, all standard results given for RV functions and used in EVT, as e.g. Karamata theorems, Von
Mises conditions, etc..., cannot be applied. Hence the natural question of extending this class and EVT
characterizations, for broader applications in view of (tail) modelling.

We answer this concern in real analysis and EVT, constructing a (strictly) larger class of functions than
the RV class on which we generalize EVT results and provide conditions easy to check in practice.

The paper is organized in two main parts. The first section defines our new large class of functions
described in terms of their asymptotic behaviors, which may violate (1.1.1). It provides its algebraic
properties, as well as characteristic representation theorems, one being of Karamata type. In the second
section, we discuss extensions for this class of functions of other important Karamata theorems, and
end with results on domains of attraction. Proofs of the results are given in Sections 1.5 and 1.6.

This study is the first of a series of two papers, extending the class of regularly varying functions. It
addresses the probabilistic analysis of our new class. The second paper will treat the statistical aspect
of it.

1.2 Study of a new class of functions

We focus on the new classM of positive and measurable functions with support R+, characterizing their
behavior at ∞ with respect to polynomial functions. A number of properties of this class are studied
and characterizations are provided. Further, variants of this class, considering asymptotic behaviors of
exponential type instead of polynomial one, provide other classes, denoted byM∞ andM−∞, having
similar properties and characterizations asM does.

Let us introduce a few notations.

When considering limits, we will discriminate between two cases, namely the limits finite or infinite (∞,
−∞), and when it does not exist.

The notation a.s. (almost surely) in (in)equalities concerning measurable functions is omitted. Moreover,
for any random variable (rv) X, we denote its distribution by FX(x) = P (X ≤ x), and its tail of
distribution by FX = 1− FX . The subscript X will be omitted when no possible confusion.

RV (RVρ respectively) denotes indifferently the class of regularly varying functions (with RV index ρ,
respectively) or the property of regularly varying function (with RV index ρ).

1.2.1 The class M

We introduce a new classM that we define as follows.

Definition 1.1. M is the class of positive and measurable functions U with support R+, bounded on
finite intervals, such that

∃ ρ ∈ R, ∀ε > 0, lim
x→∞

U(x)
xρ+ε

= 0 and lim
x→∞

U(x)
xρ−ε

=∞ . (1.2.1)

OnM, we can define specific properties.

Properties 1.1.

(i) For any U ∈M, ρ defined in (1.2.1) is unique, and denoted by ρU .
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(ii) Let U, V ∈M s.t. ρU > ρV . Then lim
x→∞

V (x)
U(x) = 0.

(iii) For any U, V ∈M and any a ≥ 0, aU + V ∈M with ρaU+V = ρU ∨ ρV .

(iv) If U ∈M with ρU defined in (1.2.1), then 1/U ∈M with ρ1/U = −ρU .

(v) Let U ∈ M with ρU defined in (1.2.1). If ρU < −1, then U is integrable on R+, whereas, if
ρU > −1, U is not integrable on R+.
Note that in the case ρU = −1, we can find examples of functions U which are integrable or not.

(vi) Sufficient condition for U to belong to M: Let U be a positive and measurable function with
support R+, bounded on finite intervals. Then

−∞ < lim
x→∞

ln (U(x))
ln(x) <∞ =⇒ U ∈M

To simplify the notation, when no confusion is possible, we will denote ρU by ρ.

Remark 1.1. Link to the notion of stochastic dominance

Let X and Y be rv’s with distributions FX and FY , respectively, with support R+. We say that X is
smaller than Y in the usual stochastic order (see e.g. [126], p. 3) if

FX(x) ≤ FY (x) for all x ∈ R+. (1.2.2)

This relation is also interpreted as the first-degree stochastic dominance of X over Y , as FX ≥ FY (see
e.g. [82], p. 289).

Let X, Y be rv’s such that FX = U and FY = V , where U, V ∈M and ρU > ρV . Then Properties 1.1,
(ii), implies that there exists x0 > 0 such that, for any x ≥ x0, V (x) < U(x), hence that (1.2.2) is
satisfied at infinity, i.e. that X strictly dominates Y at infinity.

Furthermore, the previous proof shows that a relation like (1.2.2) is satisfied at infinity for any functions
U and V in M satisfying ρU > ρV . It means that the notion of first-degree stochastic dominance or
stochastic order confined to rv’s can be extended to functions in M. In this way, we can say that if
ρU > ρV , then U strictly dominates V at infinity.

Now let us define, for any positive and measurable function U with support R+,

κU := sup
{
r : r ∈ R and

∫ ∞
1

xr−1U(x)dx <∞
}
. (1.2.3)

Note that κU may take values ±∞.

Definition 1.2. For U ∈M, κU defined in (1.2.3) is called theM-index of U .

Remark 1.2.

1. If the function U considered in (1.2.3) is bounded on finite intervals, then the integral involved can
be computed on any interval [a,∞) with a > 1.

2. When assuming U = F , F being a continuous distribution, the integral in (1.2.3) reduces (by
changing the order of integration), for r > 0, to an expression of moment of a rv:∫ ∞

1
xr−1F (x)dx = 1

r

∫ ∞
1

(xr − 1) dF (x) = 1
r

∫ ∞
1

xrdF (x)− F (1)
r

.
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3. We have κU ≥ 0 for any tail U = F of a distribution F .

Indeed, suppose there exists F such that κF < 0. Let us denote κF by κ. Since κ < κ/2 < 0, we

have by definition of κ that
∫ ∞

1
xκ/2−1F (x)dx =∞. But, since F ≤ 1 and κ/2− 1 < −1, we can

also write that
∫ ∞

1
xκ/2−1F (x)dx ≤

∫ ∞
1

xκ/2−1dx <∞. Hence the contradiction.

4. A similar statement to Properties 1.1, (iii), has been proved for RV functions (see [13], p. 16).

Let us develop a simple example, also useful for the proofs.

Example 1.1. Let α ∈ R and Uα the function defined on (0,∞) by

Uα(x) :=
{

1, 0 < x < 1
xα, x ≥ 1 .

Then Uα ∈M with ρUα = α defined in (1.2.1), and itsM-index satisfies κUα = −α.

To check that Uα ∈ M, it is enough to find a ρUα , since its unicity follows by Properties 1.1, (i).
Choosing ρUα = α, we obtain, for any ε > 0, that

lim
x→∞

Uα(x)
xρUα+ε = lim

x→∞

1
xε

= 0 and lim
x→∞

Uα(x)
xρUα−ε

= lim
x→∞

xε =∞.

Hence Uα satisfies (1.2.1) with ρUα = α.
Now, noticing that ∫ ∞

1
xs−1Uα(x)dx =

∫ ∞
1

xs+α−1dx <∞ ⇐⇒ s+ α < 0

then it comes that κUα defined in (1.2.3) satisfies κUα = −α. �

As a consequence of the definition of the M-index κ on M, we can prove that Properties 1.1, (vi), is
not only a sufficient but also a necessary condition, obtaining then a first characterization ofM.

Theorem 1.1. First characterization of M
Let U be a positive measurable function with support R+ and bounded on finite intervals. Then

U ∈Mwith ρU = −τ ⇐⇒ lim
x→∞

ln (U(x))
ln(x) = −τ, (1.2.4)

where ρU is defined in (1.2.1).

Example 1.2. The function U defined by U(x) = xsin(x) does not belong toM since the limit expressed
in (1.2.4) does not exist .

Other properties onM can be deduced from Theorem 1.1, namely:

Properties 1.2. Let U , V ∈ M with ρU and ρV defined in (1.2.1), respectively. Then:

(i) The product U V ∈M with ρU V = ρU + ρV .

(ii) If ρU ≤ ρV < −1 or ρU < −1 < 0 ≤ ρV , then the convolution U ∗ V ∈ M with ρU∗V = ρV . If
−1 < ρU ≤ ρV , then U ∗ V ∈M with ρU∗V = ρU + ρV+1.
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(iii) If lim
x→∞

V (x) =∞, then U ◦ V ∈M with ρU◦V = ρU ρV .

Remark 1.3. A similar statement to Properties 1.2, (ii), has been proved when restricting the functions

U and V to RV probability density functions, showing first lim
x→∞

U ∗ V (x)
U(x) + V (x) = 1 (see [12], Theorem

1.1). In contrast, we propose a direct proof, under the condition of integrability of the function of M
having the lowest ρ.

When U and V are tails of distributions belonging to RV, with the same tail index, Feller ([73], Propo-
sition, pp. 278-279) proved that the tail of the convolution of 1−U and 1− V also belongs to this class
and has the same tail index as U and V .

We can give a second way to characterizeM using κU defined in (1.2.3).

Theorem 1.2. Second characterization of M
Let U be a positive measurable function with support R+, bounded on finite intervals. Then

U ∈M with associated ρU ⇐⇒ κU = −ρU , (1.2.5)

where ρU satisfies (1.2.1) and κU satisfies (1.2.3).

This is another characterization ofM, of Karamata type.

Theorem 1.3. Representation Theorem of Karamata type for M

(i) Let U ∈M with finite ρU defined in (1.2.1). There exist b > 1 and functions α, β and ε satisfying,
as x→∞,

α(x)/ ln(x) → 0 , ε(x) → 1 , β(x) → ρU , (1.2.6)

such that, for x ≥ b,

U(x) = exp
{
α(x) + ε(x)

∫ x

b

β(t)
t
dt

}
. (1.2.7)

(ii) Conversely, if there exists a positive measurable function U with support R+, bounded on finite
intervals, satisfying (1.2.7) for some b > 1 and functions α, β, and ε satisfying (1.2.6), then
U ∈M with finite ρU defined in (1.2.1).

Remark 1.4.

1. Another way to express (1.2.7) is the following:

U(x) = exp
{
α(x) + ε(x) ln(x)

x

∫ x

b

β(t)dt
}
. (1.2.8)

2. The function α defined in Theorem 1.3 is not necessarily bounded, contrarily to the case of Kara-
mata representation for RV functions.

Example 1.3. Let U ∈M withM-index κU . If there exists c > 0 such that U < c, then κU ≥ 0.

Indeed, since we have lim
x→∞

ln (1/U(x))
ln(x) ≥ lim

x→∞

ln (1/c)
ln(x) = 0, applying Theorem 1.1 allows one to

conclude. �
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1.2.2 Some classes related to RV

Other classes related to RV have been proposed in the literature. Here, we briefly review some of them.
To this aim, we will use the following notations. Let U : R+ → R+ be a function, then we define (see
e.g. [13], p. 61), for λ > 0,

U∗(λ) = lim
x→∞

U(λx)
U(x) and U∗(λ) = lim

x→∞

U(λx)
U(x) .

Note that U∗(λ) = 1
/
U∗(λ).

• Extended Regularly Varying (ERV)
The class ERV is implicit in the work of Matuszewska [105]. It consists of positive and measurable
functions U satisfying the property (see e.g. [13], p. 65)

λd ≤ U∗(λ) ≤ U∗(λ) ≤ λc (λ ≥ 1),

for some constants c, d.
This class is a natural extension of RV since the limit in (0.0.2) is allowed to vary. Hence,
RV ⊆ ERV .

• O-Regularly Varying (O-RV)
The class O-RV was defined and studied by Avakumović [5], also analyzed by Karamata [94].
Other authors have also studied this class, see e.g. [105], [74], [125], [2], and [103]. This class
consists of measurable and positive functions U satisfying the property (see e.g. [13], p. 65)

0 < U∗(λ) ≤ U∗(λ) <∞ (λ ≥ 1).

O-RV is a natural extension of ERV since U∗(λ) and U∗(λ) are not bounded by any function
depending on λ. Relations between ERV and O-RV are nicely analyzed in e.g. [125] and [45].
In [31] O-RV is analyzed with respect toM. Chapter 2 presents those results. There, it is proved
that O-RV 6⊆ M and thatM 6⊆ O-RV . Besides, extensions ofM, calling themM∞ andM−∞ if
τ in (1.2.4) takes −∞ or∞ respectively, are given later. It is shown in [31] that, for τ ∈

{
∞,−∞

}
,

Mτ ∩O-RV = ∅.

• Bojanic-Karamata class
A measurable function U belongs to the Bojanic-Karamata class if (see [16], p. 6) there exist a
slowly varying function L and a real number σ such that

lim
x→∞

U(λx)− U(x)
xσL(x) = H(λ), (1.2.9)

exists and is finite for all λ > 0.
The Bojanic-Karamata class is a subclass of SV (see e.g. [10], p. 30).

• The Π classes
For g ∈ RVρ, the class Πg (see e.g. [9], p. 475, or [13], p. 128) is the set of measurable functions
U satisfying

∀λ ≥ 1, lim
x→∞

U(λx)− U(x)
g(x) = chρ(λ), (1.2.10)



1.2. STUDY OF A NEW CLASS OF FUNCTIONS 13

for some constant c called the g-index of U , and hρ is the function defined by, for x > 0,

hρ(x) =
∫ x

1
uρ−1du =

{
ln(x) ρ = 0
xρ−1
ρ ρ 6= 0.

The de Haan class Π is the set of functions U for which there exists g ∈ RV 0 such that U ∈ Πg

with non-zero g-index. The subclass Π+ (Π−) of Π consists of those U with positive (negative)
g-index.
As a property of Π, we have that this class is a proper subclass of RV 0, i.e. of the class of SV
functions (see e.g. [10], p. 30, or [13], p. 128).
The class Πg is inspired by RV. Similar classes inspied by ERV and O-RV may be built.
For g ∈ RV ρ, the class EΠg (see e.g. [9], p. 475, or [13], p. 128) is the set of measurable functions
U satisfying

dhρ(λ) ≤ U∗(λ) ≤ U∗(λ) ≤ chρ(λ) (λ ≥ 1),

for some constants c, d.
For g ∈ RV ρ, the class OΠg (see e.g. [9], p. 475, or [13], p. 128) is the set of measurable functions
U satisfying

U(λx)− U(x) = O(g(x)) as x→∞ (λ ≥ 1).

• Beurling slow varying
A measurable function U : R→ R+ is Beurling slow varying if (see e.g. [13], p. 120) U(x) = o(x)
(x→∞) and

∀t ∈ R, lim
x→∞

U(x+ tU(x))
U(x) = 1. (1.2.11)

Such functions were employed by Beurling in an extension of Wiener’s Tauberian theorem (see
[15] and references there in). When the limit in (1.2.11) converges locally uniformly in t ∈ R, U
is called self-neglecting.
As a property of the Beurling slowly varying class, we have that it contains the class of SV
functions (see e.g. [10], p. 53).

• Beurling regularly varying
Bingham and Ostaszewski introduce the notion of Beurling regularly varying (see [10], p. 39) and
give their main result: the Beurling theory includes the Karamata theory.
A measurable function U is Beurling regularly varying if (see [10]), for some fixed self-neglecting
ϕ, U posses a non-zero limit function g (non identically zero modulo null sets) satisfying

∀t ∈ R, lim
x→∞

U(x+ tϕ(x))
U(x) = g(t). (1.2.12)

• The Zygmund class
The Zygmund class is the class of positive functions U defined on R+ such that (see e.g. [13], p.
24), for all α > 0, xαU(x) is ultimately increasing, and x−αU(x) is ultimately decreasing.
Bojanic and Karamata ([16]) proved that this class coincides with the normalised slowly varying
functions, namely the functions V of the form, for x ≥ x0, for some x0 > 0,

V (x) = c exp
{∫ x

x0

δ(t)
t
dt

}
,

with δ a function satisfying δ(x) → 0 as x → ∞. Hence, the Zygmund class is a subset of the
slowly varying functions.
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We can show that the subset of M defined by the functions with M-index 0 is larger than the
Zygmund class. Indeed, we can simply look at the following example. Consider the function
U(x) = xF (x), for x ≥ 0, where F is the tail of the Peter and Paul distribution. Recall that the
Peter and Paul distribution belongs toM and hasM-index −1 (see Subsection 1.3.1). Hence, U
hasM-index 0, applying Theorem 1.1. Furthermore, since, for 2n ≤ x < 2n+1 for any n = 0, 1, . . .,
F (x) = 2−n, then we have, for y = 2m−ε with m a positive integer and 0 < ε < 1,

lim
x→∞

U(xy)
U(x) = lim

x→∞

yF (xy)
F (x)

= lim
n→∞

2m−ε2−(n+m)

2−n = 2−ε 6= 1.

This means that U is not slowly varying. In particular, U does not belong to the Zygmund class.

Note thatM restricted to tails of distributions withM-index 0, coincides with the Zygmund class
restricted to tails of distributions, since these tails are non-increasing.

1.2.3 Extension of the class M

We extend the classM introducing two other classes of functions.

Definition 1.3. M∞ and M−∞ are the classes of positive measurable functions U with support R+,
bounded on finite intervals, defined as

M∞ :=
{
U : ∀ρ ∈ R, lim

x→∞

U(x)
xρ

= 0
}
, (1.2.13)

and

M−∞ :=
{
U : ∀ρ ∈ R, lim

x→∞

U(x)
xρ

=∞
}
. (1.2.14)

Notice that it would be enough to consider ρ < 0 (ρ > 0, respectively) in (1.2.13) ((1.2.14), respectively),
and thatM∞,M−∞ andM are disjoint.

We denote byM±∞ the unionM∞ ∪M−∞.

We obtain similar properties forM∞ andM−∞, as the ones given forM, namely:

Properties 1.3.

(i) U ∈M∞ ⇐⇒ 1/U ∈M−∞.

(ii) If (U, V ) ∈ M−∞ ×M orM−∞ ×M∞ orM×M∞, then lim
x→∞

V (x)
U(x) = 0.

(iii) If U, V ∈M∞ (M−∞ respectively), then U + V ∈M∞ (M−∞ respectively).

The index κU defined in (1.2.3) may also be used to analyzeM∞ andM−∞. It can take infinite values,
as can be seen in the following example.

Example 1.4. Consider U defined on R+ by U(x) := e−x. Then U ∈ M∞ with κU = ∞. Choosing
U(x) = ex leads to U ∈M−∞ with κU = −∞.

A first characterization ofM∞ andM−∞ can be provided, as done forM in Theorem 1.1.
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Theorem 1.4. First characterization of M∞ and M−∞
Let U be a positive measurable function with support R+, bounded on finite intervals. Then we have

U ∈M∞ ⇐⇒ lim
x→∞

ln (U(x))
ln(x) = −∞, (1.2.15)

and

U ∈M−∞ ⇐⇒ lim
x→∞

ln (U(x))
ln(x) =∞. (1.2.16)

Remark 1.5. Link to a result from Daley and Goldie.

If we restrict M∪M±∞ to tails of distributions, then combining Theorems 1.1 and 1.4 and Theorem
2 in [53] provide another characterization, namely

U ∈M∪M±∞ ⇐⇒ XU ∈MDG,

where XU is a rv with tail U andMDG is the set of non-negative rv’s X having the property introduced
by Daley and Goldie (see [53]) that

κ(X ∧ Y ) = κ(X) + κ(Y ),

for independent rv’s X and Y . We notice that κ(X) defined in [53] (called there the moment index) and
applied to rv’s, coincides with theM-index of U , when U is the tail of the distribution of X.

An application of Theorem 1.4 provides properties as in Properties 1.2, namely:

Properties 1.4.

(i) If (U, V ) ∈ M∞ ×M∞ orM±∞ ×M orM−∞ ×M−∞, then U · V ∈M∞ orM±∞ orM−∞,
respectively.

(ii) If (U, V ) ∈ M∞ ×M with ρV ≥ 0 or ρV < −1, then U ∗ V ∈M with ρU∗V = ρV .
If (U, V ) ∈M∞ ×M∞, then U ∗ V ∈M∞.
If (U, V ) ∈ M−∞ ×M orM−∞ ×M±∞, then U ∗ V ∈M−∞.

(iii) If U ∈ M±∞ and V ∈ M such that lim
x→∞

V (x) =∞ or V ∈ M−∞, then U ◦ V ∈M±∞.

Looking for extending Theorems 1.2-1.3 toM∞ andM−∞ provide the next results. On the converses
of the result corresponding to Theorem 1.2 extra-conditions are required.

Theorem 1.5.

Let U be a positive measurable function with support R+, bounded on finite intervals, with κU defined
in (1.2.3). Then

(i) (a) U ∈M∞ =⇒ κU =∞.

(b) U continuous, lim
x→∞

U(x) = 0, and κU =∞ =⇒ U ∈M∞.

(ii) (a) U ∈M−∞ =⇒ κU = −∞.

(b) U continuous and non-decreasing, and κU = −∞ =⇒ U ∈M−∞.

Remark 1.6.
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1. In (i)-(b), the condition κU =∞ might appear intuitively sufficient to prove that U ∈ M∞. This
is not true, as we can see with the following example showing for instance that the continuity
assumption is needed. Indeed, we can check that the function U defined on R+ by

U(x) :=
{ 1/x if x ∈

⋃
n∈N\{0}

(n;n+ 1/nn)

e−x otherwise,

satisfies κU =∞ and lim
x→∞

U(x) = 0, but is not continuous and does not belong toM∞.

2. The proof of (i)-(b) is based on an integration by parts, isolating the term trU(t). The continuity
of U is needed, otherwise we would end up with an infinite number of jumps of the type U(t+)−
U(t−)(6= 0) on R+.

Theorem 1.6. Representation Theorem of Karamata Type for M∞ and M−∞

(i) If U ∈M∞, then there exist b > 1 and a positive measurable function α satisfying

α(x)/ ln(x) →
x→∞

∞, (1.2.17)

such that, ∀x ≥ b,
U(x) = exp {−α(x)} . (1.2.18)

(ii) If U ∈M−∞, then there exist b > 1 and a positive measurable function α satisfying (1.2.17) such
that, ∀x ≥ b,

U(x) = exp {α(x)} . (1.2.19)

(iii) Conversely, if there exists a positive function U with support R+, bounded on finite intervals,
satisfying (1.2.18) or (1.2.19), respectively, for some positive function α satisfying (1.2.17), then
U ∈M∞ or U ∈M−∞, respectively.

1.2.4 On the complement set of M∪M±∞

Considering measurable functions U : R+ → R+, we have, applying Theorems 1.1 and 1.4, that U
belongs to M, M∞ or M−∞ if and only if lim

x→∞

ln (U(x))
ln(x) exists, finite or infinite. Using the notions

(see for instance [13], p. 73) of lower order of U , defined by

µ(U) := lim
x→∞

ln (U(x))
ln(x) , (1.2.20)

and upper order of U , defined by

ν(U) := lim
x→∞

ln (U(x))
ln(x) , (1.2.21)

we can rewrite this characterization simply by µ(U) = ν(U).

Hence, the complement set ofM∪M±∞ in the set of functions U : R+ → R+, denoted by O, can be
written as

O := {U : R+ → R+ : µ(U) < ν(U)}.

This set is nonempty: O 6= ∅, as we are going to see through examples. A natural question is whether
the Pickands-Balkema-de Haan theorem (see Theorem 1.16 in Subsection 1.5.3) applies when restricting
O to tails of distributions. The answer follows.
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Theorem 1.7.
Any distribution of a rv having a tail in O does not satisfy Pickands-Balkema-de Haan theorem.

Examples of distributions F satisfying µ(F ) < ν(F ) are not well-known. A non explicit one was given
by Daley (see [52], p. 34) when considering rv’s with discrete support (see [53], p. 831). We will
provide a couple of explicit parametric examples of functions in O which include tails of distributions
with discrete support. These functions can be extended easily to continuous positive functions not
necessarily monotone, for instance adapting polynomials given by Karamata (see [92], pp. 70-71).
These examples are more detailed in Subsection 1.5.3.

Example 1.5.

Let α > 0, β ∈ R such that β 6= −1, and xa > 1. Let us consider the increasing series defined by
xn = x

(1+α)n
a , n ≥ 1, well-defined because xa > 1. Note that xn →∞ as n→∞.

The function U defined by

U(x) :=
{

1, 0 ≤ x < x1

x
α(1+β)
n , x ∈ [xn, xn+1), ∀n ≥ 1

(1.2.22)

belongs to O, with 
µ(U) = α(1 + β)

1 + α
and ν(U) = α(1 + β), if 1 + β > 0

µ(U) = α(1 + β) and ν(U) = α(1 + β)
1 + α

, if 1 + β < 0.

Moreover, if 1 + β < 0, then U is a tail of distribution whose associated rv has moments lower than
−α(1 + β)

/
(1 + α).

Example 1.6.

Let c > 0 and α ∈ R such that α 6= 0. Let (xn)n∈N be defined by x1 = 1 and xn+1 = 2xn/c, n ≥ 1,
well-defined for c > 0. Note that xn →∞ as n→∞.

The function U defined by

U(x) :=
{

1 0 ≤ x < x1
2αxn xn ≤ x < xn+1, ∀n ≥ 1

belongs to O, with  µ(U) = αc and ν(U) =∞, if α > 0

µ(U) = −∞ and ν(U) = αc, if α < 0.
Moreover, if α < 0, then U is a tail of distribution whose associated rv has moments lower than −αc.

1.3 Extension of RV results

In this section, well-known results and fundamental in Extreme Value Theory, as Karamata’s relations
and Karamata’s Tauberian theorem, are discussed onM. A key tool for the extension of these standard
results toM is the characterizations ofM given in Theorems 1.1 and 1.2.

First notice the relation between the classM introduced in the previous section and the class RV defined
in (1.1.1).
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Proposition 1.1. RVρ (ρ ∈ R) is a strict subset ofM.

The proof of this claim comes from the Karamata relation (see [93], Theorem 1) given, for all RV
function U with index ρ ∈ R, by

lim
x→∞

ln (U(x))
ln(x) = ρ, (1.3.1)

which implies, using Properties 1.1, (vi), that U ∈ M with M-index κU = −ρ. Moreover, RV 6= M,

noticing that, for t > 0, lim
x→∞

U(tx)
U(x) does not necessarily exist, whereas it does for a RV function U . For

instance the function defined on R+ by U(x) = 2 + sin(x), is not RV, but lim
x→∞

ln (U(x))
ln(x) = 0, hence

U ∈M.

1.3.1 Karamata’s theorem

We will focus on the well-known Karamata theorem developed for RV (see [90] and e.g. [55], Theorem
1.2.1) to analyze its extension toM. Let us recall it, borrowing the version given in [55].

Theorem 1.8. Karamata’s theorem ([90]; e.g. [55], Theorem 1.2.1)

Suppose U : R+ → R+ is Lebesgue-summable on finite intervals. Then

(K1)

U ∈ RVρ, ρ > −1 ⇐⇒ lim
x→∞

xU(x)∫ x
0 U(t)dt

= ρ+ 1 > 0.

(K2)

U ∈ RVρ, ρ < −1 ⇐⇒ lim
x→∞

xU(x)∫∞
x
U(t)dt

= −ρ− 1 > 0.

(K3) (i) U ∈ RV−1 =⇒ lim
x→∞

xU(x)∫ x
0 U(t)dt

= 0.

(ii) U ∈ RV−1 and
∫ ∞

0
U(t)dt <∞ =⇒ lim

x→∞

xU(x)∫∞
x
U(t)dt

= 0.

Remark 1.7. The converse of (K3), (i), is false in general. A counterexample can be given by the

Peter and Paul distribution which satisfies lim
x→∞

xU(x)∫∞
x
U(t)dt

= 0 but is not RV−1. We return to this, in

more details, in Subsection 1.3.1.

Theorem 1.8 is based on the existence of certain limits. We can extend some of the results toM, even
when theses limits do not exist, replacing them by more general expressions.
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Karamata’s theorem on M

Let us introduce the following conditions, in order to state the generalization of the Karamata theorem
toM:

(C1r) xrU(x)∫ x
b
tr−1U(t)dt

∈M withM-index 0, i.e. lim
x→∞

(
ln
(∫ x
b
tr−1U(t)dt

)
ln(x) − ln (U(x))

ln(x)

)
= r.

(C2r) xrU(x)∫∞
x
tr−1U(t)dt

∈M withM-index 0, i.e. lim
x→∞

(
ln
(∫∞
x
tr−1U(t)dt

)
ln(x) − ln (U(x))

ln(x)

)
= r.

Theorem 1.9. Generalization of the Karamata theorem to M

Let U : R+ → R+ be a Lebesgue-summable on finite intervals, and b > 0. We have, for r ∈ R,

(K1∗)

U ∈M withM-index (−ρ) such that ρ+ r > 0 ⇐⇒


limx→∞

ln
(∫ x
b
tr−1U(t)dt

)
ln(x) = ρ+ r > 0

U satisfies (C1r).

(K2∗)

U ∈M withM-index (−ρ) such that ρ+ r < 0 ⇐⇒


limx→∞

ln
(∫∞
x

tr−1U(t)dt
)

ln(x) = ρ+ r < 0

U satisfies (C2r).

(K3∗)

U ∈M withM-index (−ρ) such that ρ+ r = 0 ⇐⇒


limx→∞

ln
(∫ x
b
tr−1U(t)dt

)
ln(x) = ρ+ r = 0

U satisfies (C1r).

This theorem provides then a fourth characterization ofM.

Note that if r = 1, we can assume b ≥ 0, as in the original Karamata’s theorem.

Remark 1.8.

1. Note that (K3∗) provides an equivalence contrarily to (K3).

2. Assuming that U satisfies the conditions (C2r) and∫ ∞
1

trU(t)dt < ∞, (1.3.2)

we can propose a characterization of U ∈M withM-index (r + 1), namely

U ∈M withM-index (r + 1) ⇐⇒ lim
x→∞

ln
(∫∞
x
trU(t)dt

)
ln(x) = 0.

This is the generalization of (K3) in Theorem 1.8, providing not only a necessary condition but
also a sufficient one for U to belong toM, under the conditions (C2r) and (1.3.2).
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Illustration using Peter and Paul distribution

The Peter and Paul distribution is a typical example of a function which is not RV. It is defined by (see
e.g. [80], p. 440, [71], p. 82, [70], p. 50, or [108], p. 101)

F (x) := 1−
∑

k≥1: 2k>x

2−k, x > 0. (1.3.3)

Let us illustrate the characterization theorems when applied to the Peter and Paul distribution; we do
it for instance for Theorems 1.1 and 1.9, proving that this distribution belongs toM.

Proposition 1.2.

The Peter and Paul distribution does not belong to RV, but toM withM-index 1.

This proposition can be proved using Theorem 1.1 or Theorem 1.9. To illustrate the application of these
two theorems, we develop the proof here.

(i) Application of Theorem 1.1

For x ∈ [2n; 2n+1) (n ≥ 0), we have, using (1.3.3), F (x) =
∑

k≥n+1
2−k = 2−n, from which we deduce

that n

n+ 1 ≤ −
ln
(
F (x)

)
ln(x) < 1, hence lim

x→∞

ln
(
F (x)

)
ln(x) = −1, which by Theorem 1.1 is equivalent to

F ∈M with M− index 1.

(ii) Application of Theorem 1.9
Let us prove that

lim
x→∞

ln
(∫ x
b
F (t)dt

)
ln(x) = 0.

Suppose 2n ≤ x < 2n+1 and consider a ∈ N such that a < n. Choose w.l.o.g. b = 2a.
Then the Peter and Paul distribution (1.3.3) satisfies

∫ x

b

F (t)dt =
n−1∑
k=a

∫ 2k+1

2k
F (t)dt+

∫ x

2n
F (t)dt =

n−1∑
k=a

2−k(2k+1− 2k) + (x− 2n)2−n = n− a+x2−n− 1.

Hence
ln(n− a+ x2−n − 1)

(n+ 1) ln(2) ≤
ln
(∫ x
b
F (t)dt

)
ln(x) ≤ ln(n− a+ x2−n − 1)

n ln(2) ,

and, since 1 ≤ 2−nx < 2, we obtain lim
x→∞

ln
(∫ x
b
F (t)dt

)
ln(x) = 0.

Moreover, we have

lim
x→∞

ln
(

xF (x)∫ x
b
F (t)dt

)
ln(x) = 1 + lim

x→∞

ln
(
F (x)

)
ln(x) − lim

x→∞

ln
(∫ x
b
F (t)dt

)
ln(x) = 1.

Theorem 1.9 allows one then to conclude that F ∈M withM-index 1. �
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Note that the original Karamata theorem (Theorem 1.8) does not allow one to prove that the Peter and
Paul distribution is RV or not, since the converse of (i) in (K3) does not hold, contrarily to Theorem
1.9. Indeed, although we can prove that

lim
x→∞

xF (x)∫ x
b
F (t)dt

= lim
x,n→∞

x 2−n

n− a+ x2−n − 1 = 0,

Theorem 1.8 does not imply that F is RV−1.

1.3.2 Karamata’s Tauberian theorem

Let us recall the well-known Karamata Tauberian theorem which deals with Laplace-Stieltjes (L-S)
transforms and RV functions.

The L-S transform of a positive, right continuous function U with support R+ and with local bounded
variation, is defined by

Û(s) :=
∫

(0;∞)
e−xsdU(x), s > 0. (1.3.4)

Theorem 1.10. Karamata’s Tauberian theorem (see [91])

If U is a non-decreasing right continuous function with support R+ and satisfying U(0+) = 0, with finite
L-S transform Û , then, for α > 0,

U ∈ RVα at infinity ⇐⇒ Û ∈ RVα at 0+.

Now we present the main result of this subsection which extends only partly the Karamata Tauberian
theorem toM.

Theorem 1.11.

Let U be a continuous function with support R+ and local bounded variation, satisfying U(0+) = 0. Let
g be defined on R+ by g(x) = 1/x. Then, for any α > 0,

(i) U ∈M withM-index (−α) =⇒ Û ◦ g ∈M withM-index (−α).

(ii)
{
Û ◦ g ∈M withM-index (−α)
and ∃ η ∈ [0;α) : x−ηU(x) concave =⇒ U ∈M withM-index (−α).

1.3.3 Results concerning domains of attraction

Von Mises (see [131]) formulated some sufficient conditions to guarantee that the maximum of a sample of
independent and identically distributed (iid) rv’s with a same distribution, when normalized, converges
to a non-degenerate limit distribution belonging to the class of extreme value distributions. In this
subsection we analyze these conditions onM.

Before presenting the well-known von Mises’ conditions, let us recall the theorem of the three limit
types.
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Theorem 1.12. (see for instance [75], [79])

Let (Xn, n ∈ N) be a sequence of iid rv’s and Mn := max
1≤i≤n

Xi. If there exist constants (an, n ∈ N) and

(bn, n ∈ N) with an > 0 and bn ∈ R such that

P

(
Mn − bn

an
≤ x

)
= Fn(anx+ bn) →

n→∞
G(x), (1.3.5)

with G a non degenerate distribution function, then G is one of the three following types:

Gumbel : Λ(x) := exp
{
e−x

}
, x ∈ R.

Fréchet : Φα(x) := exp
{
−x−α

}
, x ≥ 0, for some α > 0.

Weibull : Ψα(x) := exp
{
−(−x)−α

}
, x < 0, for some α < 0.

The set of distributions F satisfying (1.3.5) is called the domain of attraction of G and denoted by
DA(G).

In what follows, we refer to the domains of attraction related to distributions with support R+ only, so
the Fréchet class and the subclass of the Gumbel class, denoted by DA(Λ∞), consisting of distributions
F ∈ DA(Λ) with endpoint x∗ := sup{x : F (x) > 0} =∞.

Now, let us recall the von Mises’ conditions.

(vM1) Suppose that F , continuous and differentiable, satisfies F ′ > 0 for all x ≥ x0, for some x0 > 0. If
there exists α > 0, such that

lim
x→∞

xF ′(x)
F (x)

= α,

then F ∈ DA(Φα).

(vM2) Suppose that F with infinite endpoint, is continue and twice differentiable for all x ≥ x0, with
x0 > 0. If

lim
x→∞

(
F (x)
F ′(x)

)′
= 0,

then F ∈ DA(Λ∞).

(vM2bis) Suppose that F with finite endpoint x∗, is continue and twice differentiable for all x ≥ x0, with
x0 > 0. If

lim
x→x∗

(
F (x)
F ′(x)

)′
= 0,

then F ∈ DA(Λ) \DA(Λ∞).

It is then straightforward to deduce from the conditions (vM1) and (vM2), the next results.

Proposition 1.3.

Let F be a distribution.

(i) If F satisfies lim
x→∞

xF ′(x)
F (x)

= α > 0, then F ∈M withM-index 1/α.

(ii) If F satisfies lim
x→∞

(
F (x)
F ′(x)

)′
= 0, then F ∈M∞.
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So a natural question is how to relateM orM∞ to the domains of attraction DA(Φα) and DA(Λ∞).
To answer it, let us recall three results on those domains of attraction that will be needed.

Theorem 1.13. (see e.g. [57], Theorem 1.2.1)

Let α > 0. The distribution function F ∈ DA(Φα) if and only if x∗ = sup{x : F (x) < 1} = ∞ and
F ∈ RV−α.

Corollary 1.1. De Haan (1970) (see [55], Corollary 2.5.3)

If F ∈ DA(Λ∞), then lim
x→∞

ln
(
F (x)

)
ln(x) = −∞.

Theorem 1.14. Gnedenko (see [79], Theorem 7)

The distribution function F ∈ DA(Λ∞) if and only if there exists a continuous function A such that
A(x)→ 0 as x→∞ and, for all x ∈ R,

lim
z→∞

1− F (z (1 +A(z)x))
1− F (z) = e−x. (1.3.6)

De Haan [56] noticed that Gnedenko did not use the continuity of A to prove this theorem.

These results allow one the formulation of the next statement.

Theorem 1.15.

(i) ∀α > 0, F ∈ DA(Φα) =⇒ F ∈M withM-index (−α), and the converse does not hold:

{F ∈ DA(Φα), α > 0} ( {F : F ∈M}.

(ii) DA(Λ∞) ( {F : F ∈M∞}.

Let us give some examples illustrating the strict subset inclusions.

Example 1.7. The Peter and Paul distribution.

To show that DA(Φα) 6= {F : F ∈ M withM-index (−α)}, α > 0, in (i), it is enough to notice that
the Peter and Paul distribution does not belong to DA(Φ1), but its associated tail of distribution belongs
toM.

Example 1.8. To illustrate (ii), we consider the distribution F defined in a left neighborhood of ∞ by

F (x) := 1− exp (−bxc ln(x)) , (1.3.7)

Then it is straightforward to see that F ∈ {F : F ∈ M∞}, by Theorem 1.6 and the fact that

lim
x→∞

bxc ln(x)
ln(x) =∞ .

We can check that F 6∈ DA(Λ∞). The proof, by contradiction, is given in Subsection 1.6.3.

Remark 1.9.

Lemma 2.4.3 in [55] says that if F ∈ DA(Λ∞), then a continuous and increasing distribution function
G satisfying

lim
x→∞

F (x)
G(x)

= 1, (1.3.8)
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exists. Is it possible to extend this result toM? The answer is no. To see that, it is enough to consider
Example 1.8 with F ∈M \DA(Λ∞) defined in (1.3.7) to see that the De Haan’s result does not hold.

Indeed, suppose that for F defined in (1.3.7), there exists a continuous and increasing distribution
function G satisfying (1.3.8), which comes back to suppose that there exits a positive and continuous
function h such that G(x) = 1 − exp (−h(x) ln(x)) (x > 0), in particular in a neighborhood of ∞. So
(1.3.8) may be rewritten as

lim
x→∞

F (x)
G(x)

= lim
x→∞

exp (− (bxc − h(x)) ln(x)) = lim
x→∞

xh(x)−bxc = 1.

However, since bxc cannot be approximated for any continuous function, the previous limit does not
hold.

1.4 Conclusion

We introduce a new class of positive functions with support R+, denoted by M, strictly larger than
the class of RV functions at infinity. We extend to M some well-known results given on RV class,
which are crucial to study extreme events. These new tools allow one to expand EVT beyond RV. This
class satisfies a number of algebraic properties and its members U can be characterized by a unique
real number, called the M-index κU . Four characterizations of M are provided, one of them being
the extension to M of the well-known Karamata’s theorem restricted to RV class. Furthermore, the
cases κU =∞ and κU = −∞ are analyzed and their corresponding classes, denoted byM∞ andM−∞
respectively, are identified and studied, as done forM. The three setsM∞,M−∞ andM are disjoint.
Tails of distributions not belonging toM∪M±∞ are proved not to satisfy Pickands-Balkema-de Haan
theorem. Explicit examples of such functions and their generalization are given.

Extensions to M of the Karamata theorems are discussed in the second part of the paper. Moreover,
we prove that the sets of tails of distributions whose distributions belong to the domains of attraction of
Fréchet and Gumbel (with distribution support R+), are strictly included inM andM∞ , respectively.

Note that any result obtained here can be applied to functions with finite support, i.e. finite endpoint
x∗, by using the change of variable y = 1/(x∗ − x) for x < x∗.

After having addressed the probabilistic analysis ofM, we will look at its statistical one. An interesting
question is how to build estimators of the M-index, which could be used on RV since RV ⊆ M. A
companion paper addressing this question is in progress.

Finally, we will develop a multivariate version ofM, to represent and describe relations among random
variables: dependence structure, tail dependence, conditional independence, and asymptotic indepen-
dence.

1.5 Proofs of results given in Section 1.2

1.5.1 Proofs of results concerning M

Proof of Theorem1.1. The sufficient condition given in Theorem1.1 comes from Properties 1.1, (vi). So
it remains to prove its necessary condition, namely that

lim
x→∞

− ln (U(x))
ln(x) = −ρU , (1.5.1)
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for U ∈M with finite ρU defined in (1.2.1).

Let ε > 0 and define V by

V (x) =
{

1, 0 < x < 1
xρU+ε, x ≥ 1.

Applying Example 1.1 with α = ρU + ε with ε > 0 implies that ρV = ρU + ε, hence ρV > ρU . Using
Properties 1.1, (ii), provides then that

lim
x→∞

U(x)
V (x) = lim

x→∞

U(x)
xρU+ε = 0,

so, for n ∈ N∗, there exists x0 > 1 such for all x ≥ x0,

U(x)
xρU+ε ≤

1
n
, i.e. nU(x) ≤ xρU+ε.

Applying the logarithm function to this last inequality and dividing it by − ln(x), x ≥ x0, gives

− ln(n)
ln(x) −

ln(U(x))
ln(x) ≥ −ρU − ε,

hence
− ln(U(x))

ln(x) ≥ −ρU − ε

and then
lim
x→∞

− ln(U(x))
ln(x) ≥ −ρU − ε.

We consider now the function
W (x) =

{
1, 0 < x < 1
xρU−ε, x ≥ 1,

with ε > 0 and proceed in the same way to obtain that, for any ε > 0, lim
x→∞

− ln(U(x))
ln(x) ≤ −ρU + ε.

Hence, ∀ε > 0, we have

−ρU − ε ≤ lim
x→∞

− ln(U(x))
ln(x) ≤ lim

x→∞
− ln(U(x))

ln(x) ≤ −ρU + ε,

from which the result follows taking ε arbitrary.

Now we introduce a lemma, on which the proof of Theorem 1.2 will be based.

Lemma 1.1. Let U ∈M with associatedM-index κU defined in (1.2.3). Then necessarily κU = −ρU ,
where ρU is defined in (1.2.1).

Proof of Lemma 1.1. Let U ∈ M with M-index κU given in (1.2.3) and ρU defined in (1.2.1). By

Theorem 1.1, we have lim
x→∞

ln(U(x))
ln(x) = ρU .

Hence, for all ε > 0 there exists x0 > 1 such that, for x ≥ x0, U(x) ≤ xρU+ε.

Multiplying this last inequality by xr−1, r ∈ R, and integrating it on [x0;∞), we obtain

∫ ∞
x0

xr−1U(x)dx ≤
∫ ∞
x0

xρU+ε+r−1dx

which is finite if r < −ρU − ε. Taking ε ↓ 0 then the supremum on r leads to κU = −ρU .
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Proof of Theorem 1.2.

The necessary condition is proved by Lemma1.1. The sufficient condition follows from the assumption
that ρU satisfies (1.2.1).

Proof of Theorem 1.3.

• Proof of (i)
For U ∈M, Theorems 1.1 and 1.2 give that

lim
x→∞

− ln(U(x))
ln(x) = −ρU = κU with ρU defined in (1.2.1) and κU in (1.2.3). (1.5.2)

Introducing a function γ such that
lim
x→∞

γ(x) = 0, (1.5.3)

we can write, for some b > 1, applying the L’Hôpital’s rule to the ratio,

lim
x→∞

γ(x) +
∫ x
b

ln(U(t))
ln(t)

dt
t

ln(x)

 = lim
x→∞

ln(U(x))
ln(x) = −κU . (1.5.4)

. Suppose κU 6= 0. Then we deduce from (1.5.2) and (1.5.4), that

lim
x→∞

ln(U(x))
γ(x) ln(x) +

∫ x
b

ln(U(t))
t ln(t) dt

= 1. (1.5.5)

Hence, defining the function εU (x) := ln(U(x))
γ(x) ln(x) +

∫ x
b

ln(U(t))
t ln(t) dt

, for x ≥ b, we can express

U , for x ≥ b, as

U(x) = exp
{
αU (x) + εU (x)

∫ x

b

βU (t)
t

dt

}
,

where αU (x) := εU (x) γ(x) ln(x) and βU (x) := ln(U(x))
ln(x) . (1.5.6)

It is then straightforward to check that the functions αU , βU and εU satisfy the conditions
given in Theorem1.3. Indeed, by (1.5.3) and (1.5.5), lim

x→∞

αU (x)
ln(x) = lim

x→∞
εU (x) γ(x) = 0.

Using (1.5.2), we obtain lim
x→∞

βU (x) = lim
x→∞

ln(U(x))
ln(x) = −κU = ρU . Finally, by (1.5.5), we

have lim
x→∞

εU (x) = 1 .

. Now suppose κU = 0.
We want to prove (1.2.7) for some functions α, β, and ε satisfying (1.2.6).

Notice that (1.5.2) with κU = 0 allows one to write that lim
x→∞

ln(xU(x))
ln(x) = 1.

So applying Theorem1.1 to the function V defined by V (x) = xU(x), gives that V ∈M with
ρV = −κV = 1. Since κV 6= 0, we can proceed in the same way as previously, and obtain a
representation for V of the form (1.2.7), namely, for d > 1, ∀x ≥ d,

V (x) = exp
{
αV (x) + εV (x)

∫ x

d

βV (t)
t

dt

}
,
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where αV , βV , εV satisfy the conditions of Theorem1.3 and βV = ln(V (x))
ln(x) (see (1.5.6)).

Hence we have, for x ≥ d,

U(x) = V (x)
x

= exp
{
− ln(x) + αV (x) + εV (x)

∫ x

d

ln(t U(t))
t ln(t) dt

}
= exp

{
αV (x) + (εV (x)− 1) ln(x)− εV (x) ln(d) + εV (x)

∫ x

d

ln(U(t))
t ln(t) dt

}
.

Noticing that lim
x→∞

αV (x) + (εV (x)− 1) ln(x)− εV (x) ln(d)
ln(x) = 0, we obtain that U satisfies

(1.2.7) when setting, for x ≥ d, αU (x) := αV (x) + (εV (x)− 1) ln(x)− εV (x) ln(d), βU (x) :=
ln(U(x))

ln(x) and εU := εV .

• Proof of (ii)
Let U be a positive function with support R+, bounded on finite intervals. Assume that U can be
expressed as (1.2.7) for some functions α, β, and ε satisfying (1.2.6). We are going to check the
sufficient condition given in Properties 1.1, (vi), to prove that U ∈M.

Since ln(U(x))
ln(x) = α(x)

ln(x) + ε(x)
∫ x
b
β(t)
t dt

ln(x) and that, via L’Hôpital’s rule,

lim
x→∞

∫ x
b
β(t)
t dt

ln(x) = lim
x→∞

β(x)/x
1/x = lim

x→∞
β(x),

then using the limits of α, β, and ε allows one to conclude.

Proof of Properties 1.1.

• Proof of (i)
Let us prove this property by contradiction.
Suppose there exist ρ and ρ′, with ρ′ < ρ, both satisfying (1.2.1), for U ∈ M. Choosing ε =
(ρ− ρ′)/2 in (1.2.1) gives

lim
x→∞

U(x)
xρ′+ε

= 0 and lim
x→∞

U(x)
xρ−ε

= lim
x→∞

U(x)
xρ′+ε

=∞,

hence the contradiction.

• Proof of (ii)
Choosing ε = (ρU − ρV )/2, we can write

V (x)
U(x) = V (x)

xρV +ε
xρV +ε

U(x) = V (x)
xρV +ε

(
U(x)
xρU−ε

)−1
,

from which we deduce (ii).

• Proof of (iii)
Let U, V ∈M, a > 0, ε > 0 and suppose w.l.o.g. that ρU ≤ ρV .

Since ρV − ρU > 0, writing aU(x)
xρV ±ε

= a

xρV −ρU
U(x)
xρU±ε

gives lim
x→∞

aU(x) + V (x)
xρV +ε = 0 and

lim
x→∞

aU(x) + V (x)
xρV −ε

=∞, we conclude thus that ρaU+V = ρU ∨ ρV .
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• Proof of (iv)
It is straightforward since (1.2.1) can be rewritten as

lim
x→∞

1/U(x)
x−ρU−ε

=∞ and lim
x→∞

1/U(x)
x−ρU+ε = 0.

• Proof of (v)
First, let us consider U ∈M with ρU < −1.
Choosing ε0 = −(ρU + 1)/2 (> 0) in (1.2.1) implies that there exist C > 0 and x0 > 1 such that,
for x ≥ x0, U(x) ≤ C xρU+ε0 = C x(ρU−1)/2, from which we deduce that∫ ∞

x0

U(x) dx <∞.

We conclude that
∫ ∞

0
U(x) dx <∞ because U is bounded on finite intervals.

Now suppose that ρU > −1.
Choosing ε0 = (ρU + 1)/2 (> 0) in (1.2.1) gives that for C > 0 there exists x0 > 1 such that, for

x ≥ x0, U(x) ≥ C x(ρU−1)/2
∫ ∞

0
U(x) dx ≥

∫ ∞
x0

U(x) dx ≥ ∞.

• Proof of (vi)

Assuming −∞ < lim
x→∞

ln (U(x))
ln(x) < ∞, we want to prove that U satisfies (1.2.1), which implies

that U ∈M.
So let us prove (1.2.1).

Consider ρ = lim
x→∞

ln (U(x))
ln(x) well defined under our assumption, and from which we can deduce

that,
∀ε > 0,∃x0 > 1 such that, ∀x ≥ x0, − ε2 ≤

ln (U(x))
ln(x) − ρ ≤ ε

2 .

Therefore we can write that, for x ≥ x0, on one hand,

0 ≤ U(x)
xρ+ε

= exp
{(

ln (U(x))
ln(x) − ρ− ε

)
ln(x)

}
≤ exp

{
− ε2 ln(x)

}
−→
x→∞

0,

and on the other hand,

U(x)
xρ−ε

= exp
{(

ln (U(x))
ln(x) − ρ+ ε

)
ln(x)

}
≥ exp

{ ε
2 ln(x)

}
−→
x→∞

∞,

hence the result.

Proof of Properties 1.2.

Let U , V ∈ M with ρU and ρV respectively, defined in (1.2.1).

• Proof of (i)
It is immediate since

lim
x→∞

ln (U(x)V (x))
ln(x) = lim

x→∞

(
ln (U(x))

ln(x) + ln (V (x))
ln(x)

)
= ρU + ρV .
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• Proof of (ii)
First notice that, since U, V ∈M, via Theorems 1.1 and 1.2, for ε > 0, there exist xU > 0, xV > 0,
such that, for x ≥ x0 = xU ∨ xV ,

xρU−ε/2 ≤ U(x) ≤ xρU+ε/2 and xρV −ε/2 ≤ V (x) ≤ xρV +ε/2.

. Assume ρU ≤ ρV < −1. Hence, via Properties 1.1, (v), both U and V are integrable on R+.
Choose ρ = ρV .
Via the change of variable s = x− t, we have, ∀ x ≥ 2x0 > 0,

U ∗ V (x)
xρ+ε

=
∫ x/2

0
U(t)V (x− t)

xρ+ε
dt+

∫ x

x/2
U(t)V (x− t)

xρ+ε
dt

≤ 1
xε/2

∫ x/2

0
U(t)

(
1− t

x

)ρV +ε/2
dt+ 1

xρV −ρU+ε/2

∫ x/2

0
V (s)

(
1− s

x

)ρU+ε/2
ds

≤
max

(
1, cρV +ε/2)
xε/2

∫ x/2

0
U(t)dt+

max
(
1, cρU+ε/2)

xρV −ρU+ε/2

∫ x/2

0
V (s)ds,

since, for 0 ≤ t ≤ x/2, i.e. 0 < c <
1
2 ≤ 1− t

x
≤ 1,(

1− t

x

)ρV +ε/2
≤ max

(
1, cρV +ε/2

)
and

(
1− t

x

)ρU+ε/2
≤ max

(
1, cρU+ε/2

)
.

Hence we obtain, U and V being integrable, and since ρV − ρU + ε/2 > 0,

lim
x→∞

max
(
1, cρV +ε/2)
xε/2

∫ x/2

0
U(t)dt = 0 and lim

x→∞

max
(
1, cρU+ε/2)

xρV −ρU+ε/2

∫ x/2

0
V (s)ds = 0,

from which we deduce that, for any ε > 0, lim
x→∞

U ∗ V (x)
xρ+ε

= 0.
Applying Fatou’s Lemma, then using that V ∈M with ρV = ρ, gives, for any ε,

lim
x→∞

U ∗ V (x)
xρ−ε

≥ lim
x→∞

∫ 1

0
U(t)V (x− t)

xρ−ε
dt ≥ lim

x→∞

∫ 1

0
U(t)V (x− t)

xρ−ε
dt ≥

∫ 1

0
U(t) lim

x→∞

(
V (x− t)
xρ−ε

)
dt =∞.

We can conclude that U ∗ V ∈M with ρU∗V = ρV .
. Assume ρU < −1 < 0 ≤ ρV . Therefore U is integrable on R+, but not V (Properties 1.1,
(v)). Choose ρ = ρV .
Using the change of variable s = x− t, we have, ∀ x ≥ 2x0 > x0(> 0),

U ∗ V (x)
xρ+ε

=
∫ x−x0

0
U(t)V (x− t)

xρ+ε
dt+

∫ x

x−x0

U(t)V (x− t)
xρ+ε

dt

=
∫ x−x0

0
U(t)V (x− t)

xρ+ε
dt+

∫ x0

0
V (s)U(x− s)

xρ+ε
ds

≤
∫ x−x0

0
U(t) (x− t)ρV +ε/2

xρ+ε
dt+

∫ x0

0
V (s) (x− s)ρU+ε/2

xρ+ε
ds

= 1
xε/2

∫ x−x0

0
U(t)

(
1− t

x

)ρV +ε/2
dt+ 1

xρV −ρU+ε/2

∫ x0

0
V (s)

(
1− s

x

)ρU+ε/2
ds.

Noticing that for 0 ≤ t ≤ x − x0, so
(

1− t

x

)ρV +ε/2
≤ 1, and for 0 ≤ s ≤ x0 < 2x0 ≤ x,

0 < c <
1
2 ≤ 1− x0

x
≤ 1− s

x
≤ 1, so

(
1− s

x

)ρU+ε/2
≤ max

(
1, c ρU+ε/2

)
, we obtain

U ∗ V (x)
xρ+ε

≤ 1
xε/2

∫ x−x0

0
U(t)dt+

max
(
1, c ρU+ε/2)

xρV −ρU+ε/2

∫ x0

0
V (s)ds .
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Since U is integrable, V bounded on finite intervals, and ρV − ρU + ε/2 > 0, we have

lim
x→∞

1
xε/2

∫ x−x0

0
U(t)dt = 0 and lim

x→∞

max
(
1, c ρU+ε/2)

xρV −ρU+ε/2

∫ x0

0
V (t)dt = 0.

Therefore, for any ε > 0, we have lim
x→∞

U ∗ V (x)
xρ+ε

= 0.
Applying Fatou’s Lemma, then using that V ∈M with ρV = ρ, gives, for any ε,

lim
x→∞

U ∗ V (x)
xρ−ε

≥ lim
x→∞

∫ 1

0
U(t)V (x− t)

xρ−ε
dt ≥ lim

x→∞

∫ 1

0
U(t)V (x− t)

xρ−ε
dt ≥

∫ 1

0
U(t) lim

x→∞

(
V (x− t)
xρ−ε

)
dt =∞.

We can conclude that U ∗ V ∈M with ρU∗V = ρV .
. Assume −1 < ρU ≤ ρV . Then both U and V are not integrable on R+ (Properties 1.1, (v)).
Choose ρ = ρU + ρV + 1.

Let 0 < ε < ρU + 1. Since V is not integrable on R+, we have
∫ x

0
V (t)dt →

x→∞
∞. So we can

apply the L’Hôpital’s rule and obtain

lim
x→∞

∫ x
0 V (t)dt
xρV +1+ε = lim

x→∞

(∫ x
0 V (t)dt

)′
(xρV +1+ε)′

= lim
x→∞

V (x)
(ρV + 1 + ε)xρV +ε = 0,

and

lim
x→∞

∫ x
0 V (t)dt
xρV +1−ε = lim

x→∞

(∫ x
0 V (t)dt

)′
(xρV +1−ε)′

= lim
x→∞

V (x)
(ρV + 1− ε)xρV −ε =∞,

from which we deduce that WV (x) :=
∫ x

0
V (t)dt ∈M withM-index ρV + 1.

We obtain in the same way that WU (x) :=
∫ x

0
U(t)dt ∈M withM-index ρU + 1.

We have, via the change of variable s = x− t, ∀ x ≥ 2x0 > 0,

U ∗ V (x)
xρ+ε

=
∫ x/2

0
U(t)V (x− t)

xρ+ε
dt+

∫ x

x/2
U(t)V (x− t)

xρ+ε
dt

≤ 1
xρU+1+ε/2

∫ x/2

0
U(t)

(
1− t

x

)ρV +ε/2
dt+ 1

xρV +1+ε/2

∫ x/2

0
V (s)

(
1− s

x

)ρU+ε/2
ds

≤ max
(

1, cρV +ε/2
) WU (x/2)
xρU+1+ε/2 + max

(
1, cρU+ε/2

) WV (x/2)
xρV +1+ε/2 ,

and

U ∗ V (x)
xρ−ε

=
∫ x/2

0
U(t)V (x− t)

xρ−ε
dt+

∫ x

x/2
U(t)V (x− t)

xρ−ε
dt

≥ 1
xρU+1−ε/2

∫ x/2

0
U(t)

(
1− t

x

)ρV −ε/2
dt+ 1

xρV +1−ε/2

∫ x/2

0
V (s)

(
1− s

x

)ρU−ε/2
ds

≥ min
(

1, cρV −ε/2
) WU (x/2)
xρU+1−ε/2 + min

(
1, cρU−ε/2

) WV (x/2)
xρV +1−ε/2 ,

since, for 0 ≤ t ≤ x/2, i.e. 0 < c <
1
2 ≤ 1− t

x
≤ 1,

min
(

1, cρV −ε/2
)
≤
(

1− t

x

)ρV −ε/2
≤
(

1− t

x

)ρV +ε/2
≤ max

(
1, cρV +ε/2

)
,
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and

min
(

1, cρU−ε/2
)
≤
(

1− t

x

)ρU−ε/2
≤
(

1− t

x

)ρU+ε/2
≤ max

(
1, cρU+ε/2

)
.

Hence, for any 0 < ε < ρU + 1, we have lim
x→∞

U ∗ V (x)
xρ+ε

= 0 and lim
x→∞

U ∗ V (x)
xρ−ε

=∞. We can
conclude that U ∗ V ∈M with ρU∗V = ρU + ρV + 1.

• Proof of (iii)
It is straightforward, since we can write, with y = V (x)→∞ as x→∞,

lim
x→∞

ln(U(V (x)))
ln(x) = lim

y→∞

ln(U(y))
ln(y) × lim

x→∞

ln(V (x))
ln(x) = ρU ρV .

Hence we obtain ρU◦V = ρU ρV .

1.5.2 Proofs of results concerning M∞ and M−∞

Proof of Theorem1.4.

It is enough to prove (1.2.15) because by this equivalence and Properties 1.3, (i), one has

U ∈M−∞ ⇐⇒ 1/U ∈M∞ ⇐⇒ lim
x→∞

− ln (1/U(x))
ln(x) =∞ ⇐⇒ lim

x→∞
− ln (U(x))

ln(x) = −∞,

i.e. (1.2.16).

• Let us prove that U ∈M∞ =⇒ lim
x→∞

ln (U(x))
ln(x) = −∞.

Suppose U ∈ M∞. This implies that for all ρ ∈ R, one has lim
x→∞

U(x)
xρ

= 0, i.e. for all ε > 0

there exists x0 > 1 such that, for x ≥ x0, U(x) ≤ εxρ which implies ln (U(x))
ln(x) ≤ ln(ε)

ln(x) + ρ, hence

lim
x→∞

ln (U(x))
ln(x) ≤ ρ and the statement follows since the argument applies for all ρ ∈ R.

• Now let us prove that lim
x→∞

− ln (U(x))
ln(x) =∞ =⇒ U ∈M∞.

For any ρ ∈ R, we can write

lim
x→∞

−
ln
(
U(x)
xρ

)
ln(x) = lim

x→∞

(
− ln (U(x))

ln(x) + ρ

)
=∞ under the hypothesis,

which implies that U(x)
/
xρ < 1 and hence lim

x→∞

U(x)
xρ

= 0.
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Proof of Theorem 1.5.

• Proof of (i)-(a)
Suppose U ∈ M∞. Then, by definition (1.2.13), for any ρ ∈ R, lim

x→∞
xρU(x) = 0, which implies

that for c > 0, there exists x0 > 1 such that, for all x ≥ x0, U(x) ≤ cx−ρ, from which we deduce
that ∫ ∞

x0

xr−1U(x)dx ≤ c
∫ ∞
x0

xr−1−ρdx,

which is finite whenever r < ρ. This result holds also on (1;∞) since U is bounded on finite
intervals.
Thus we conclude that κU =∞, ρ being any real number.

• Proof of (i)-(b)

Note that U is integrable on R+ since
∫ ∞

1
xr−1U(x)dx < ∞, for any r ∈ R, in particular for

r = 1. Moreover U is bounded on finite intervals.
For r > 0, we have, via the continuity of U ,∫ ∞

0
xr+1dU(x) = (r + 1)

∫ ∞
0

∫ x

0
yrdy dU(x) = (r + 1)

∫ ∞
0

yr
(∫ ∞

y

dU(x)
)
dy,

which implies, since lim
x→∞

U(x) = 0, that

−
∫ ∞

0
xr+1dU(x) = (r + 1)

∫ ∞
0

yrU(y)dy, (1.5.7)

which is positive and finite.
Now, for t > 0, we have, integrating by parts and using again the continuity of U ,

tr+1U(t) = (r + 1)
∫ t

0
xrU(x)dx+

∫ t

0
xr+1dU(x),

where the integrals on the right hand side of the equality are finite as t→∞ and their sum tends
to 0 via (1.5.7). This implies that, ∀r > 0, tr+1U(t)→ 0 as t→∞.
For r ≤ 0, we have, for t ≥ 1, using the previous result, tr+1U(t) ≤ t2U(t)→ 0 as t→∞.
This completes the proof that U ∈M∞.

• Proof of (ii)-(a)

Suppose U ∈ M−∞. Then, by definition (1.2.14), for any ρ ∈ R, we have lim
x→∞

U(x)
xρ

=∞, which
implies that for c > 0, there exists x0 > 1 such that, for all x ≥ x0, U(x) ≥ cxρ, from which we
deduce that, U being bounded on finite intervals,∫ ∞

1
xr−1U(x)dx ≥ c

∫ ∞
x0

xr−1+ρdx,

which is infinite whenever r ≥ −ρ.
The argument applying for any ρ, we conclude that κU = −∞.
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• Proof of (ii)-(b)
Let r ≥ 0. We can write, for s+ 2 < 0 and t > 1,

0 ≥ −
∫ t

1
xs+1d (xrU(x)) (xrU(x) being non-decreasing)

=
∫ t

1

(∫ t

x

d
(
ys+1) − ts+1

)
d (xrU(x))

=
∫ t

1
ys+1

(∫ y

1
d (xrU(x))

)
dy − ts+1

∫ t

1
d (xrU(x))

=
∫ t

1
ys+r+1U(y)dy − ts+2 − 1

s+ 2 U(1) − ts+1 (trU(t)− U(1)) ( U being continue).

Hence we obtain, as t→∞, ts+r+1U(t)→∞ since
∫ t

1
ys+r+1U(y)dy →∞ and ts+2

s+ 2 + ts+1 → 0

(under the assumption s < −2).
This implies that U ∈M−∞ since s+ r + 1 ∈ R.

Proof of Remark 1.6.
Set A =

∫ ∞
1

e−xdx = e−1 and let us prove that U ∈M∞.
If r > 0, then ∫ ∞

1
xrU(x)dx ≤ A+

∞∑
n=1

∫ n+1/nn

n

xrU(x)dx = A+
∞∑
n=1

∫ n+1/nn

n

xr−1dx

≤ A+
∞∑
n=1

∫ n+1/nn

n

xdre−1dx = A+ 1
dre

∞∑
n=1

(
(n+ 1/nn)dre − ndre

)
dx

= A+ 1
dre

∞∑
n=1

n−(n−1)dre−1
dre−1∑
k=0

(1 + 1/nn−1)k <∞ .

If r ≤ 0, then we can write
∫ ∞

1
xrU(x)dx ≤

∫ ∞
1

xU(x)dx, which is finite using the previous result
with r = 1.

Now, let us prove U 6∈ M∞ by contradiction.
Suppose U ∈M∞. Then Theorem 1.4 implies that lim

x→∞

ln (U(x))
ln(x) = −∞, which contradicts

lim
n→∞

ln (U(n))
ln(n) = lim

n→∞

ln (1/n)
ln(n) = −1 > −∞.

Proof of Theorem 1.6.

• Proof of (i)

Suppose U ∈ M∞. By Theorem 1.4, we have lim
x→∞

− ln(U(x))
ln(x) = ∞. It implies that there exists

b > 1 such that, for x ≥ b, β(x) := − ln(U(x))
ln(x) > 0. Defining, for x ≥ b, α(x) := β(x) ln(x), gives

(i).
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• Proof of (ii)
Suppose U ∈ M−∞. By Properties 1.3, (i), 1/U ∈ M∞. Applying the previous result to 1/U
implies that there exists a positive function α satisfying α(x)/ ln(x) →

x→∞
∞ such that 1/U(x) =

exp(−α(x)), x ≥ b for some b > 1. Hence we get U(x) = exp(−α(x)), x ≥ b, as required.

• Proof of (iii)
Assume that U satisfies, for x ≥ b, U(x) = exp(−α(x)), for some b > 1 and α satisfying

α(x)/ ln(x) →
x→∞

∞. A straightforward computation gives lim
x→∞

− ln(U(x))
ln(x) = lim

x→∞

α(x)
ln(x) = ∞.

Hence U ∈M∞.
We can proceed exactly in the same way when supposing that U satisfies, for x ≥ b, U(x) =
exp(α(x)) for some b > 1 and α satisfying α(x)/ ln(x) →

x→∞
∞, to conclude that U ∈M−∞.

Proof of Properties 1.3.

• Proof of (i)

It is straightforward since, for ρ ∈ R, lim
x→∞

U(x)
xρ

= 0 ⇐⇒ lim
x→∞

1/U(x)
x−ρ

=∞.

• Proof of (ii)

. Suppose (U, V ) ∈M−∞ ×M with ρV defined in (1.2.1).

Let ε > 0. Writing V (x)
U(x) = V (x)

xρV +ε

(
U(x)
xρV +ε

)−1
, we obtain lim

x→∞

V (x)
U(x) = 0 since V ∈ M

with ρV satisfying (1.2.1) and U satisfies (1.2.14) with ρU = ρV + ε ∈ R.
. Suppose (U, V ) ∈M−∞ ×M∞.

Let ρ > 0. We have lim
x→∞

V (x)
U(x) = lim

x→∞

V (x)
xρ

(
U(x)
xρ

)−1
= 0 since V satisfies (1.2.13) and

U (1.2.14).
. Suppose (U, V ) ∈M ×M∞ with ρU defined in (1.2.1).
By Properties 1.1, (iv), and Properties 1.3, (i), we have (1/U, 1/V ) ∈M×M−∞. The result

follows because lim
x→∞

V (x)
U(x) = lim

x→∞

1/U(x)
1/V (x) = 0.

• The proof of (iii) is immediate.

Proof of Properties 1.4. Let U , V ∈ M withM-index κU and κV respectively.

• Proof of (i)

It is straightforward as lim
x→∞

ln (U(x)V (x))
ln(x) = lim

x→∞

(
ln (U(x))

ln(x) + ln (V (x))
ln(x)

)
.

• Proof of (ii)
We distinguish the next three cases.
(a) Let U ∈M∞ and V ∈ M with ρV /∈ [−1, 0).
Let W (x) = xη1(x≥1) + 1(0<x<1), with η = −2 if ρV ≥ 0, or η = ρV − 1 if ρV < −1. Note that
W ∈M with ρW = η < ρV .
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By Properties 1.3, (ii), lim
x→∞

U(x)
W (x) = 0, so for 0 < δ < 1, there exists x0 ≥ 1 such that, for all

x ≥ x0, U(x) ≤ δW (x).
Consider Z defined by Z(x) = U(x)1(0<x<x0) + W (x)1(x≥x0), which satisfies Z ≥ U and Z ∈ M
with ρZ = ρW = η < ρV . Applying Properties 1.2, (ii), gives Z∗V ∈M with ρZ∗V = ρZ∨ρV = ρV
(note that the restriction on ρv corresponds to the condition given in Properties 1.2, (ii)).
We deduce that, for any x > 0, U ∗ V (x) ≤ Z ∗ V (x), and, for ε > 0,

U ∗ V (x)
xρV +ε ≤ Z ∗ V (x)

xρV +ε →
x→∞

0 .

Moreover, applying Fatou’s Lemma gives

lim
x→∞

U ∗ V (x)
xρV −ε

≥ lim
x→∞

∫ 1

0
U(t)V (x− t)

xρV −ε
dt ≥ lim

x→∞

∫ 1

0
U(t)V (x− t)

xρV −ε
dt ≥

∫ 1

0
U(t) lim

x→∞

(
V (x− t)
xρV −ε

)
dt =∞.

Therefore, U ∗ V ∈M withM-index ρU∗V = ρV .

(b) (U, V ) ∈M∞ ×M∞, then U ∗ V ∈M∞
Let ρ ∈ R.

Consider U ∈ M∞. We have, applying Theorem 1.4, lim
x→∞

ln(U(x))
ln(x) = −∞. Rewriting this limit

as
lim
x→∞

ln(U(x))
ln(1/x) =∞,

we deduce that, for c ≥ |ρ|+1 > 0, there exists xU > 1 such that, for x ≥ xU , ln(U(x)) ≤ c ln(1/x),
i.e. U(x) ≤ x−c. On V ∈M∞, we obtain in a similar way that there exists xV > 1 such that, for
x ≥ xV , V (x) ≤ x−c.
Using the change of variable s = x− t, we have, ∀ x ≥ 2 max(xU , xV ) > 0,

U ∗ V (x)
xρ

=
∫ x/2

0
U(t)V (x− t)

xρ
dt+

∫ x

x/2
U(t)V (x− t)

xρ
dt

≤ 1
xρ+c

∫ x/2

0
U(t)

(
1− t

x

)−c
dt+ 1

xρ+c

∫ x/2

0
V (s)

(
1− s

x

)−c
ds

≤ 2c

xρ+c

∫ x/2

0
U(t)dt+ 2c

xρ+c

∫ x/2

0
V (s)ds,

since, for 0 ≤ t ≤ x/2, i.e. 0 < 1
2 ≤ 1− t

x
≤ 1,

(
1− t

x

)−c
≤ 2c.

This implies, via the integrability of U and V , for ρ ∈ R, lim
x→∞

U ∗ V (x)
xρ

= 0. Hence U ∗V ∈M∞.

(c) Let U ∈M−∞ and V ∈ M orM±∞.
We apply Fatou’s Lemma, as in (a), to obtain, for any ρ ∈ R,

lim
x→∞

U ∗ V (x)
xρ

≥ lim
x→∞

∫ 1

0
V (t)U(x− t)

xρ
dt ≥

∫ 1

0
V (t) lim

x→∞

(
U(x− t)

xρ

)
dt =∞.

We conclude that U ∗ V ∈M−∞.
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• Proof of (iii)

First, note that if V ∈ M−∞, then lim
x→∞

V (x) =∞. Hence writing

ln (U(V (x)))
ln(x) = ln (U(y))

ln(y) × ln (V (x))
ln(x) , with y = V (x),

allows one to conclude.

1.5.3 Proofs of results concerning O

Let us recall the Pickands-Balkema-de Haan theorem, that we will need to prove Theorem 1.7.

Let us define the Generalized Pareto Distribution (GPD)

Gξ(x) =
{

(1 + ξx)−1/ξ ξ ∈ R, ξ 6= 0, 1 + ξx > 0
e−x ξ = 0, x ∈ R.

Theorem 1.16. Pickands-Balkema-de Haan theorem (see e.g. Theorem 3.4.5 in [70], Pickands-Balkema-
de Haan theorem)

For ξ ∈ R, the following assertions are equivalent:

(i) F ∈ DA(exp(−Gξ))

(ii) There exists a positive function a > 0 such that for 1 + ξx > 0,

lim
u→∞

F (u+ x a(u))
F (u)

= Gξ(x).

Note that Theorem 1.7 refers to distributions F with endpoint x∗ = sup{x : F (x) < 1} =∞.

Proof of Theorem 1.7:

Let us prove this theorem by contradiction, assuming that F satisfies the Pickands-Balkema-de Haan
theorem and that F satisfies µ(F ) < ν(F ). Note that x∗ =∞. We consider the two possibilities given
in (i) and (ii) in Theorem 1.16.

• Assume that F satisfies Theorem 1.16, (i), with ξ ≥ 0 (because x∗ =∞).

Let ε > 0. By Theorem 1.16, (ii), there exists u0 > 0 such that, for u ≥ u0 and x ≥ 0,

F (u+ x)
F (u)Gξ(x/a(u))

≤ 1 + ε. (1.5.8)

By the definition of upper order, we have that there exists a sequence (xn)n∈N satisfying xn →∞
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as n→∞ such that

ν(F ) = lim
xn→∞

ln
(
F (u+ xn)

)
ln(u+ xn) = lim

xn→∞

ln
(
F (u+ xn)

)
ln(xn)

≤ lim
xn→∞

ln
(
(1 + ε)F (u)Gξ(xn/a(u))

)
ln(xn) by (1.5.8)

= lim
xn→∞

ln
(
F (u)

)
ln(xn) + lim

xn→∞

ln (Gξ(xn/a(u)))
ln(xn)

=
{
− 1
ξ limxn→∞

ln(1+ξ xn/a(u))
ln(xn) if ξ > 0

− limxn→∞
xn/a(u)
ln(xn) if ξ = 0

=
{
− 1
ξ if ξ > 0
−∞ if ξ = 0.

If ξ > 0, we conclude that ν(F ) ≤ −1/ξ. A similar procedure provides µ(F ) ≥ −1/ξ. Hence we
conclude µ(F ) = ν(F ) which contradicts µ(F ) < ν(F ).
If ξ = 0, we conclude that −∞ ≤ µ(F ) ≤ ν(F ) ≤ −∞. Hence we conclude µ(F ) = ν(F ) = −∞
which contradicts µ(F ) < ν(F ).

• Assuming that F satisfies Theorem 1.16, (ii), and following the previous proof (done when assum-
ing (i)), we deduce that µ(F ) = ν(F ) which contradicts µ(F ) < ν(F ).

Proof of Example 1.5.

Let x ∈ [xn, xn+1), n ≥ 1. We can write

ln (U(x))
ln(x) =

ln
(
x
α(1+β)
n

)
ln(x) = α(1 + β) ln (xn)

ln(x) . (1.5.9)

Since ln(xn) ≤ ln(x) < ln(xn+1) = (1 + α) ln(xn), we obtain

α(1 + β)
1 + α

<
ln (U(x))

ln(x) ≤ α(1 + β), if 1 + β > 0,

and
α(1 + β) ≤ ln (U(x))

ln(x) <
α(1 + β)

1 + α
, if 1 + β < 0,

from which we deduce

µ(U) ≥ α(1 + β)
1 + α

and ν(U) ≤ α(1 + β), if 1 + β > 0,

and
µ(U) ≥ α(1 + β) and ν(U) ≤ α(1 + β)

1 + α
, if 1 + β < 0.

Moreover, taking x = xn in (1.5.9) leads to

lim
n→∞

ln (U(xn))
ln(xn) = α(1 + β),

which implies
ν(U) ≥ α(1 + β), if 1 + β > 0,
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and
µ(U) ≤ α(1 + β), if 1 + β < 0.

Hence, to conclude, it remains to prove that

µ(U) ≤ α(1 + β)
1 + α

, if 1 + β > 0, and ν(U) ≥ α(1 + β)
1 + α

, if 1 + β < 0.

If 1 + β > 0, the function ln (U(x)) / ln(x) is strictly decreasing continuous on (xn;xn+1) reaching the
supremum value α(1 + β) and the infimum value α(1 + β)/(1 + α). Hence, for δ > 0 such that

α(1 + β)
1 + α

<
α(1 + β)

1 + α
+ δ < α(1 + β),

there exists xn < yn < xn+1 satisfying

ln (U(yn))
ln(yn) = α(1 + β)

1 + α
+ δ.

Since yn →∞ as n→∞ because xn →∞ as n→∞, µ(U) ≤ lim
n→∞

ln (U(yn))
ln(yn) = α(1 + β)

1 + α
+ δ follows.

Hence we conclude µ(U) ≤ α(1 + β)
1 + α

since δ is arbitrary.

If 1 + β < 0, a similar development to the case 1 + β > 0 allows proving ν(U) ≥ α(1 + β)
1 + α

.

Moreover, if 1 + β < 0 we have that U is a tail of distribution. Let us check that the rv having a tail of
distribution F = U has a finite sth moment whenever 0 ≤ s < −α(1 + β)/(1 + α).

Let s ≥ 0. We have∫ ∞
0

xsdF (x) =
∞∑
n=1

xsn
(
U(x−n )− U(x+

n )
)

=
∞∑
n=2

xsn

(
x
α(1+β)
n−1 − xα(1+β)

n

)
=
∞∑
n=2

xsn

(
x
α(1+β)

1+α
n − xα(1+β)

n

)
≤
∞∑
n=2

x
s+α(1+β)

1+α
n <∞

because s < −α(1 + β)/(1 + α).

Note that if s ≥ −α(1 + β)/(1 + α),
∫ ∞

0
xsdF (x) =∞.

Proof of Example 1.6.

If α > 0, ν(U) =∞ comes from

ν(U) = lim
x→∞

ln (U(x))
ln(x) ≥ lim

xn→∞

ln (U(xn))
ln(xn) = lim

xn→∞

αxn ln(2)
ln(xn) =∞,

and, if α < 0, µ(U) = −∞ comes from

µ(U) = lim
x→∞

ln (U(x))
ln(x) ≤ lim

xn→∞

ln (U(xn))
ln(xn) = lim

xn→∞

αxn ln(2)
ln(xn) = −∞.

Next, let ε > 0 be small enough. Then, we have, if α > 0,

µ(U) = lim
x→∞

ln (U(x))
ln(x) ≤ lim

xn→∞

ln (U(xn − ε))
ln(xn − ε)

= lim
xn→∞

ln (2αxn−1)
ln(2xn−1/c)

ln(2xn−1/c)
ln(2xn−1/c − ε)

= lim
xn→∞

ln (2αxn−1)
ln(2xn−1/c)

= αc,



1.6. PROOFS OF RESULTS GIVEN IN SECTION 1.3 39

and, if α < 0,

ν(U) = lim
x→∞

ln (U(x))
ln(x) ≥ lim

xn→∞

ln (U(xn − ε))
ln(xn − ε)

= lim
xn→∞

ln (2αxn−1)
ln(2xn−1/c)

ln(2xn−1/c)
ln(2xn−1/c − ε)

= lim
xn→∞

ln (2αxn−1)
ln(2xn−1/c)

= αc.

It remains to prove that, if α > 0, µ(U) ≥ αc, and, if α < 0, ν(U) ≤ αc. This follows from the fact
that, for xn ≤ x < xn+1,

ln (U(x))
ln(x) = α

xn ln (2)
ln(x) = αc

ln (xn+1)
ln(x)

{
> αc, if α > 0
< αc, if α < 0.

Next, if α < 0 we have that U is a tail of distribution. Let us check that the rv having a tail of
distribution F = U has a finite sth moment whenever 0 ≤ s < −αc.

Let s > 0 and denote x0 = 0. We have∫ ∞
0

xsdF (x) =
∞∑
n=1

xsn
(
U(x−n )− U(x+

n )
)

=
∞∑
n=1

xsn (2αxn−1 − 2αxn) ≤
∞∑
n=1

2(s/c−α)xn−1 <∞,

because s < −αc.

If s = 0, let ε = −αc/2 (> 0) and the statement follows from
∫ ∞

0
dF (x) =

∫ 1

0
dF (x) +

∫ ∞
1

dF (x) ≤∫ 1

0
dF (x) +

∫ ∞
1

xαdF (x) <∞.

Note that if s ≥ −αc,
∫ ∞

0
xsdF (x) =∞.

1.6 Proofs of results given in Section 1.3

1.6.1 Section 1.3.1

Let us introduce the following functions that will be used in the proofs.

We define, for some b > 0 and r ∈ R,

Vr(x) =
{ ∫ x

b
yrU(y)dy, x ≥ b

1, 0 < x < b
; Wr(x) =

{ ∫∞
x
yrU(y)dy, x ≥ b

1, 0 < x < b.
(1.6.1)

For the main result, we will need the following lemma which is of interest on its own.

Lemma 1.2. Let U ∈M with finiteM-index κU and let b > 0.

(i) Consider Vr defined in (1.6.1) with r + 1 > κU . Then Vr ∈ M and its M-index κVr satisfies
κVr = κU − (r + 1).

(ii) Consider Wr defined in (1.6.1) with r + 1 < κU . Then Wr ∈ M and its M-index κWr satisfies
κWr = κU − (r + 1).

Proof of Theorem 1.9.
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• Proof of the necessary condition of (K1∗)
As an immediate consequence of Lemma 1.2, (i), we have, assuming that ρ+ r > 0:

U ∈M withM-index κU = −ρ such that (r − 1) + 1 = r > −ρ = κU

=⇒ Vr−1(x) =
∫ x

b

tr−1U(t)dt ∈M withM-index κVr−1 = κU − r = −ρ− r.

Hence, by applying Theorems 1.1 and 1.2 to Vr−1, the result follows:

lim
x→∞

ln
(∫ x
b
tr−1U(t)dt

)
ln(x) = lim

x→∞

ln (Vr−1(x))
ln(x) = −κVr−1 = ρ+ r > 0.

• Proof of the sufficient of (K1∗)

Using (C1r) and lim
x→∞

ln
(∫ x
b
tr−1U(t)dt

)
ln(x) = ρ+ r gives

lim
x→∞

− ln (U(x))
ln(x) = lim

x→∞
−

ln
(

xrU(x)∫ x
b
tr−1U(t)dt

)
+ ln

(
x−r

∫ x
b
tr−1U(t)dt

)
ln(x)

= r + lim
x→∞

−
ln
(∫ x
b
tr−1U(t)dt

)
ln(x) = r − (ρ+ r) = −ρ,

and the statement follows.

• Proof of the necessary condition of (K2∗)
As an immediate consequence of Lemma 1.2, (ii), we have, assuming that ρ+ r < 0:

U ∈M withM-index κU = −ρ such that (r − 1) + 1 = r < −ρ = κU

=⇒ Wr−1(x) =
∫ ∞
x

tr−1U(t)dt ∈M withM-index κWr−1 = κU − r = −ρ− r

Hence, by applying Theorems 1.1 and 1.2 to Wr−1, the result follows:

lim
x→∞

ln
(∫∞
x
tr−1U(t)dt

)
ln(x) = lim

x→∞

ln (Wr−1(x))
ln(x) = −κWr−1 = ρ+ r < 0.

• Proof of the sufficient of (K2∗)

Using (C2r) and lim
x→∞

ln
(∫∞
x
tr−1U(t)dt

)
ln(x) = ρ+ r gives

lim
x→∞

− ln (U(x))
ln(x) = lim

x→∞
−

ln
(

xrU(x)∫∞
x

tr−1U(t)dt

)
+ ln

(
x−r

∫∞
x
tr−1U(t)dt

)
ln(x)

= r + lim
x→∞

−
ln
(∫∞
x
tr−1U(t)dt

)
ln(x) = r − (ρ+ r) = −ρ,

and the statement follows.

• Proof of the necessary condition of (K3∗); case
∫ ∞
b

tr−1U(t)dt =∞ with b > 1.

On one hand, assuming ρ+ r = 0, U ∈M withM-index κU = −ρ implies, for any ε > 0,

lim
x→∞

U(x)
xρ+ε

= 0 and lim
x→∞

U(x)
xρ−ε

=∞. (1.6.2)
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On the other hand,
∫ ∞
b

tr−1U(t)dt = ∞ implies lim
x→∞

∫ x

b

tr−1U(t)dt = ∞. Hence we can apply

the L’Hôpital’s rule to the first limit of (1.6.2) to get, for any ε > 0,

lim
x→∞

∫ x
b
tr−1U(t)dt
xε

= lim
x→∞

xr−1U(x)
εx−1+ε = lim

x→∞

U(x)
εx−r−1+ε = lim

x→∞

U(x)
εxρ+ε

= 0. (1.6.3)

Moreover, we have, for any ε > 0,

lim
x→∞

∫ x
b
tr−1U(t)dt
x−ε

=
(

lim
x→∞

∫ x

b

tr−1U(t)dt
) (

lim
x→∞

xε
)

=∞×∞ =∞. (1.6.4)

Defining Vr−1 as in (1.6.1) we deduce from (1.6.3) and (1.6.4) that Vr−1 ∈ M with M-index
0 = ρ+ r. So, taking x ≥ b, the required result follows:

lim
x→∞

ln
(∫ x
b
tr−1U(t)dt

)
ln(x) = lim

x→∞

ln (Vr−1(x))
ln(x) = ρ+ r = 0.

• Proof of the necessary condition of (K3∗); case
∫ ∞
b

tr−1U(t)dt <∞ with b > 1.

Suppose U ∈M withM-index κU = −ρ. By a straightforward computation we have

lim
x→∞

ln
(∫ x
b
tr−1U(t)dt

)
ln(x) =

ln
(∫∞
b
tr−1U(t)dt

)
limx→∞ ln(x) = 0 = ρ+ r.

• Proof of the sufficient condition of (K3∗)

A similar proof used to prove the sufficient condition of (K1∗).

Proof of Lemma 1.2.

• Proof of (i)

Let us prove that Vr defined in (1.6.1) belongs toM withM-index κVr = κU − (r + 1).

Choose ρ = −κU + r + 1 > 0 and 0 < ε < ρ. Note that xρ±ε →∞ as ρ± ε > 0.

Combining, for x > 1, under the assumption r + 1 > κU , and for U ∈M,

lim
x→∞

Vr(x) =
∫ 1

b

yrU(y)dy +
∫ ∞

1
yrU(y)dy =∞,

and,

lim
x→∞

(Vr(x))′

(xρ+δ)′
= lim
x→∞

U(x)
(ρ+ δ)x−κU+δ =

{
0 if δ = ε
∞ if δ = −ε,

provides, applying the L’Hôpital’s rule,

lim
x→∞

Vr(x)
xρ+δ

= lim
x→∞

(Vr(x))′

(xρ+δ)′
=
{

0 if δ = ε
∞ if δ = −ε,

which implies that Vr ∈M withM-index κVr = −ρ = κU − (r + 1), as required.



42 CHAPTER 1. AN EXTENSION OF RV

• Proof of (ii)
First let us check that Wr is well-defined. Let δ = (κU − r− 1)/2 (> 0 by assumption). We have,

for U ∈ M, lim
x→∞

U(x)
x−κU+δ = 0, which implies that for c > 0 there exists x0 ≥ 1 such that for all

x ≥ x0,
U(x)
x−κU+δ ≤ c.

Hence, one has, ∀ x ≥ x0,∫ ∞
x

yrU(y)dy ≤ c
∫ ∞
x

y−κU+δ+rdy = c

∫ ∞
x

y
−κU+r+1

2 −1dy <∞,

because of −κU + r+ 1 < 0. Then, we can conclude, U being bounded on finite intervals, that Wr

is well-defined.
Now choose ρ = −κU + r + 1 < 0 and 0 < ε < −ρ. We have xρ±ε → 0 as ρ ± ε < 0. We will
proceed as in (i).

For x > 1, under the assumption r+1 < κU , for U ∈M, we have lim
x→∞

Wr(x) =
∫ ∞
x

yrU(y)dy = 0,

and lim
x→∞

(Wr(x))′

(xρ+δ)′
= lim
x→∞

− U(x)
(ρ+ δ)x−κ+δ =

{
0 if δ = ε
∞ if δ = −ε .

Hence applying the L’Hôpital’s rule gives

lim
x→∞

Wr(x)
xρ+δ

= lim
x→∞

(Wr(x))′

(xρ+δ)′
=
{

0 if δ = ε
∞ if δ = −ε,

which implies that Wr ∈M withM-index κWr
= −ρ = κU − (r + 1).

1.6.2 Section 1.3.2

Proof of Theorem 1.11.

• Proof of (i)
Changing the order of integration in (1.3.4), using the continuity of U and the assumption U(0+) =
0, give, for s > 0,

Û(s) = s

∫
(0;∞)

e−xsU(x)dx ,

or, with the change of variable y = x/s,

Û

(
1
s

)
=
∫

(0;∞)
e−yU(sy)dy.

Let U ∈M withM-index (−α) < 0. Let 0 < ε < α.
We have, via Theorems 1.1 and 1.2, that there exists x0 > 1 such that, for x ≥ x0,

xα−ε ≤ U(x) ≤ xα+ε.

Hence, for s > 1, we can write∫ ∞
x0/s

e−x(xs)α−εdx ≤
∫ ∞
x0/s

e−xU(xs)dx ≤
∫ ∞
x0/s

e−x(xs)α+εdx,
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so

∫ x0/s

0 e−xU(xs)dx+
∫∞
x0/s

e−xxα−εdx

s−α+ε ≤ Û
(

1
s

)
≤

∫ x0/s

0 e−xU(xs)dx+
∫∞
x0/s

e−xxα+εdx

s−α−ε
, from

which we deduce that

−α− ε ≤ lim
s→∞

−
ln
(
Û(1/s)

)
ln(s) ≤ −α+ ε.

Then we obtain, ε being arbitrary, lim
s→∞

−
ln
(
Û(1/s)

)
ln(s) = −α.

The conclusion follows, applying Theorem 1.1, to get Û ◦ g ∈ M with g(s) = 1/s, (s > 0), and,
Theorem 1.2, for theM-index.

• Proof of (ii)
Let 0 < ε < α.
Since we assumed U(0+) = 0, we have, for s > 1,

e−1U(s) ≤
∫

(0;s)
e−

x
s dU(x) ≤

∫
(0;∞)

e−
x
s dU(x) = Û

(
1
s

)
. (1.6.5)

Changing the order of integration in the last integral (on the right hand side of the previous
equation), and using the continuity of U and the fact that U(0+) = 0, gives, for s > 0,

Û

(
1
s

)
=
∫

(0;∞)
e−xU(sx)dx. (1.6.6)

Set Iη =
∫

(0;∞)
e−xxηdx, for η ∈ [0, α) (such that x−ηU(x) concave, by assumption). Introducing

the function V (x) := Iη (sx)−η U(sx), which is concave, and the rv Z having the probability
density function defined on R+ by e−xxη

/
Iη, we can write∫

(0;∞)
e−xU(sx)dx = sη

∫
(0;∞)

V (x) e
−xxη

Iη
dx = sη E[V (Z)] ≤ sη V (E[Z]) ,

applying Jensen’s inequality. Hence we obtain, using that E[Z] = Iη+1
/
Iη and the definition of

V , ∫
(0;∞)

e−xU(sx)dx ≤
I η+1
η

I ηη+1
U
(
s Iη+1

/
Iη
)
,

from which we deduce, using (1.6.6), that

1
sα−ε

Û

(
1
s

)
≤
I η+1−α+ε
η

I η−α+ε
η+1

×
U
(
s Iη+1

/
Iη
)(

s Iη+1
/
Iη
)α−ε .

Therefore, since Û ◦ g ∈M with g(s) = 1/s andM-index (−α), we obtain

I η+1−α+ε
η

I η−α+ε
η+1

×
U
(
s Iη+1

/
Iη
)(

s Iη+1
/
Iη
)α−ε −→s→∞ ∞ .

But Û ◦ g ∈M withM-index (−α) also implies in (1.6.5) that e
−1U(s)
sα+ε −→

s→∞
0.

From these last two limits, we obtain that U ∈M withM-index (−α).
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1.6.3 Section 1.3.3

Proof of Proposition 1.3.

• Proof of (i)

Suppose that F satisfies lim
x→∞

xF ′(x)
F (x)

= α. Applying the L’Hôpital’s rule gives

lim
x→∞

xF ′(x)
F (x)

= lim
x→∞

−
(
ln
(
F (x)

))′
(ln(x))′

= lim
x→∞

−
ln
(
F (x)

)
ln(x) = 1

α
,

hence F ∈M, via Theorem 1.1, withM-index κF = 1/α, via Theorem 1.2.

• Proof of (ii)

Suppose that F satisfies lim
x→∞

(
F (x)
F ′(x)

)′
=0. It implies that, for all ε > 0, there exists x0 > 0 such

that, for x ≥ x0, −ε ≤
(
F (x)
F ′(x)

)′
≤ ε.

Integrating this inequality on [x0, x] gives

−ε(x− x0) ≤
(
F (x)
F ′(x)

)
−
(
F (x0)
F ′(x0)

)
≤ ε(x− x0)

from which we deduce −ε ≤ lim
x→∞

F (x)
xF ′(x) ≤ ε, hence lim

x→∞

F (x)
xF ′(x) = 0.

lim
x→∞

xF ′(x)
F (x)

= lim
x→∞

−
(
ln
(
F (x)

))′
(ln(x))′

= lim
x→∞

−
ln
(
F (x)

)
ln(x) = 1

0 =∞,

since F ′(x) > 0 as x→∞.
We conclude that F ∈M∞, via Theorem 1.4.

Proof of Theorem 1.15.

• Let F ∈ DA(Φα), α > 0. Then Theorem 1.13 and Proposition 1.1 imply that F ∈ RV−α ⊆ M
withM-index κF = −α.

• Assume F ∈ DA(Λ∞). Applying Corollary 1.1 gives lim
x→∞

−
ln
(
F (x)

)
ln(x) = ∞. Theorem 1.4 allows

one to conclude.

Proof of Example 1.8.

Let us check that F 6∈ DA(Λ∞).

We prove it by contradiction.

Suppose that F defined in (1.3.7) belongs to DA(Λ∞). By applying Theorem 1.14, we conclude that
there exists a function A such that A(x)→ 0 as x→∞ and (1.3.6) holds.
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Introducing the definition (1.3.7) into (1.3.6), we can write, for all x ∈ R,

lim
z→∞

(
bz (1 +A(z)x)c ln

(
z (1 +A(z)x)

)
− bzc ln(z)

)
= lim
z→∞

((
bz (1 +A(z)x)c − bzc

)
ln (z) + bz (1 +A(z)x)c ln

(
1 +A(z)x

))
= x. (1.6.7)

Let us see that the assumption of the existence of such function A leads to a contradiction when
considering some values x.

• Suppose lim
z→∞

z A(z) = c > 0.

Take x > 0 such that cx/2 ≥ 1 and z large enough such that z A(z) ≥ c/2.
On one hand, we have bz (1 + A(z)x)c − bzc > 0 since z (1 + A(z)x) ≥ z + cx/2 ≥ z + 1. This
implies that

lim
z→∞

(
bz (1 +A(z)x)c − bzc

)
ln (z) =∞.

On the other hand, we have, taking z large enough to have ln
(
1+A(z)x

)
≈ A(z)x and z A(z) ≤ 2c,

bz (1 +A(z)x)c ln
(
1 +A(z)x

)
≤ z (1 +A(z)x) ln

(
1 +A(z)x

)
≈ z (1 +A(z)x)A(z)x ≤ 2 c (1 +A(z)x)x <∞.

Combining these results and taking z →∞ contradict (1.6.7).

• Suppose lim
z→∞

z A(z) = 0.

Let x > 0.
On one hand, we have that

lim
z→∞

(
bz (1 +A(z)x)c − bzc

)
ln (z) ,

could be 0 or ∞ depending on the behavior of z A(z) as z →∞.
On the other hand, we have, taking z large enough such that ln

(
1 +A(z)x

)
≈ A(z)x,

bz (1 +A(z)x)c ln
(
1 +A(z)x

)
≤ z (1 +A(z)x) ln

(
1 +A(z)x

)
≈ z (1 +A(z)x)A(z)x→ 0 as z →∞.

Combining these results contradicts (1.6.7).
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Chapter 2

Another characterization of M, M∞,
and M−∞

This chapter, based on [31], presents relationships among the classesM,M∞, andM−∞ and the class
of O-regularly varying functions. These results are based on two characterizations of M, M∞, and
M−∞ given in Chapter 1 and a new one given in [31].

2.1 Introduction

Let us recall that a positive and measurable function U defined on R+ is a regularly varying (RV)
function if, for some α ∈ R,

lim
x→∞

U(tx)
U(x) = tα (t > 0). (2.1.1)

If this limit equals 1, U is a slowly varying (SW) function.

Extensions of RV functions have been obtained by letting (2.1.1) to vary (see for instance Subsection
1.2.2). An early extension of this type was given by Avakumović in 1936 [5]. He introduced the class
O-RV of O-regularly varying (O-RV) functions U which satisfy the following condition instead of (2.1.1):

0 < U∗(t) := lim
x→∞

U(tx)
U(x) ≤ lim

x→∞

U(tx)
U(x) =: U∗(t) <∞ (t ≥ 1). (2.1.2)

Recently Cadena and Kratz [33] gave an extension of RV functions by also letting (2.1.1) to vary, but
they designed it in a different way to the previous one. They introduced the classM which consists in
functions U satisfying the following condition instead of (2.1.1):

∃ρ ∈ R, ∀ε > 0, lim
x→∞

U(x)
xρ+ε

= 0 and lim
x→∞

U(x)
xρ−ε

=∞. (2.1.3)

We have clearly RV ( O-RV and, for instance using Theorem 2.1 (see Corollary 2.1), RV (M. There
arises the natural question of how O-RV and M are related between them. We undertake this study
helping us in the characterizations of these classes: recalling well-known characterizations of O-RV and
giving proofs of three characterizations ofM, two of them provided in the previous chapter and a new
one given in this chapter.

47
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We introduced in Chapter 1 the following natural extensions ofM (see e.g. Subsection 1.2.3).

M−∞ :=
{
U : R+ → R+ : U is measurable and satisfies ∀ρ ∈ R, lim

x→∞

U(x)
xρ

= 0
}

(2.1.4)

M∞ :=
{
U : R+ → R+ : U is measurable and satisfies ∀ρ ∈ R, lim

x→∞

U(x)
xρ

=∞
}
. (2.1.5)

Notice that the definitions of M−∞ and M∞ have been interchanged with respect to those given
in Subsection 1.2.3. This is made to directly relate these sets with the result of the computation of
ln(U(x))

/
ln(x) as x → ∞. This was not observed in Chapter 1 since there these sets were defined as

in [33].

The new characterization given forM is extended toM∞ andM−∞. Relationships amongM∞ and
M−∞ and O-RV are also investigated in this part of the thesis.

This chapter is organized as follows. The main results are presented in the next section. First, the
new characterizations of M, M∞, and M−∞ based on limits are given. Next, analyses of uniform
convergence in these characterizations are presented and, finally, relationships among O-RV and M,
M∞ andM−∞ are shown. All proofs are collected in Section 2.3. Conclusion is presented in the last
section.

2.2 Main Results

The new characterizations ofM,M∞, andM−∞ follow.

Theorem 2.1. Let U : R+ → R+ be a measurable function. Then

(i) U ∈M with ρU = −τ iff
∀r < τ , ∃xa > 1, ∀x ≥ xa, lim

t→∞
tr
U(tx)
U(x) = 0

∀r > τ , ∃xb > 1, ∀x ≥ xb, lim
t→∞

tr
U(tx)
U(x) =∞.

(2.2.1)

(ii) U ∈M−∞ iff

∀r ∈ R, ∃x0 > 1, ∀x ≥ x0, lim
t→∞

tr
U(tx)
U(x) = 0. (2.2.2)

(iii) U ∈M∞ iff

∀r ∈ R, ∃x0 > 1, ∀x ≥ x0, lim
t→∞

tr
U(tx)
U(x) =∞. (2.2.3)

Example 2.1.

1. Consider a measurable and positive function U with support R+ such that, for x ≥ x0 with some
x0 > 1, U(x) = x

/
ln(x).

Noting that, for t, x > 1,

lim
t→∞

tr
U(tx)
U(x) = lim

t→∞
tr−1 ln(x)

ln(tx) =
{

0 if r > 1
∞ if r < 1,

provides, taking τ = −1 and applying Theorem 2.1, (i), U ∈M with ρU = 1.
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2. Let U be a function defined by U(x) := xsin(x), x > 0.
Writing

tr
U(tx)
U(x) = tr+sin(tx)xsin(tx)−sin(x)

gives, for r ∈ R,

lim
t→∞

tr
U(tx)
U(x) =∞ and lim

t→∞
tr
U(tx)
U(x) = 0.

Hence the necessary condition of Theorem 2.1, (i), is not satisfied and consequently gives U 6∈ M.

It follows a consequence of Theorem 2.1. This result was proved in Chapter 1 combining Theorem 1 of
[93] and Theorem 1.1.

Corollary 2.1. RV ( M.

Note that, from Corollary 2.1, RV ⊆M
⋂
O-RV .

From definitions (2.1.2) and (2.1.3) of O-RV and M, respectively, we see that it is difficult to find
common elements between these classes. However, observing the characterization ofM given in Theorem
2.1 one identifies the quotient U(tx)

/
U(x), which appears in (2.1.2). The next example exploits this

link to show a first relationship between O-RV andM.

Example 2.2. M 6⊆ O-RV.

Let U be a function defined by U(x) := exp
{

(ln x)α cos
(
(ln x)β

)}
, x > 0, where 0 < α, β < 1 such that

α+ β > 1.

I am indebted to Philippe Soulier who gave us recommendations to correct an error in an early version
of this example.

On one hand, noting that, for x, t > e, using the changes of variable y = ln(x) and s = ln(t) and
observing that s→∞ as t→∞,

lim
t→∞

tr
U(tx)
U(x) = lim

s→∞
exp

{
rs+ (s+ y)α cos

(
(s+ y)β

)
− yα cos

(
yβ
)}

= lim
s→∞

exp
{
s

(
r + 1

s1−α

(
1 + y

s

)α
cos
(
(s+ y)1/3)− yα

s
cos
(
yβ
))}

=
{

0 if r > 0
∞ if r < 0,

provides, taking τ = 0 and applying Theorem 2.1, U ∈M with ρU = 0.

On the other hand, writing, for x > e and t > 0, using the previous changes of variables, with x such
that

(
ln tx

)β = π
/

2 + 2kπ, for a given t,

U(tx)
U(x) = exp

{
−
(

ln x
)α cos

(
(ln x)β

)}
= exp

{
−yα cos

(
((π
/

2 + 2kπ)1/β − s)β
)}

= exp
{(

(π
/

2 + 2kπ)1/β − s
)α sin

(
((π
/

2 + 2kπ)1/β − s)β − (π
/

2 + 2kπ)
)}

.

Since
(
(π
/

2 + 2kπ)1/β − s
)β − (π

/
2 + 2kπ)→ 0 as k →∞, we have
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lim
k→∞

[(
(π
/

2 + 2kπ)1/β − s
)α sin

(
((π
/

2 + 2kπ)1/β − s)β − (π
/

2 + 2kπ)
)]

= lim
k→∞

((π
/

2 + 2kπ)1/β − s)β − (π
/

2 + 2kπ)(
(π
/

2 + 2kπ)1/β − s
)−α ,

which is an indetermination of type 0
/

0. Then, applying L’Hopital’s rule we have

lim
k→∞

((π
/

2 + 2kπ)1/β − s)β − (π
/

2 + 2kπ)(
(π
/

2 + 2kπ)1/β − s
)−α

= lim
k→∞

(2π)α/β
((π
/

2 + 2kπ)1/β − s)β − (π
/

2 + 2kπ)
k−α/β

= lim
k→∞

−β
α

(2π)α/β+1 ((π
/

2 + 2kπ)1/β − s)β−1(π
/

2 + 2kπ)1/β−1 − 1
k−α/β−1 ,

which is an indetermination of type 0
/

0. Then, applying again L’Hopital’s rule we have

lim
k→∞

((π
/

2 + 2kπ)1/β − s)β − (π
/

2 + 2kπ)(
(π
/

2 + 2kπ)1/β − s
)−α

= lim
k→∞

s
β(1− β)
α(α+ β) (2π)α/β+2 ((π

/
2 + 2kπ)1/β − s)β−2(π

/
2 + 2kπ)1/β−2

k−α/β−2

= lim
k→∞

s
β(1− β)
α(α+ β) (2π)(α+β−1)/βk(α+β−1)/β

=
{
∞ if s>0
−∞ if s<0.

Then, we get, for t > 1,

U∗(t) = lim
x→∞

U(tx)
U(x) =∞,

and, for t < 1,

U∗(t) = lim
x→∞

U(tx)
U(x) = 0,

which contradict (2.1.2), so U 6∈ O-RV. In particular, U 6∈ SV.

Next, the uniform convergences in x of limits given in (2.2.1), (2.2.2), and (2.2.3) are analyzed. To this
aim, we will use the next two results.

Proposition 2.1. Let U : R+ → R+ be a measurable function. Then

(i) If U ∈ M with ρU = −τ , then there exists x0 > 1 such that, for x0 ≤ c < d < ∞, there exist
0 < Mc < Md satisfying, for x ∈ [c; d], Mc ≤ U(x) ≤Md.

(ii) If U ∈ M−∞, then there exists x0 > 1 such that, for c ≥ x0, there exist Mc > 0 satisfying, for
x ∈ [c;∞), U(x) ≤Mc.
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(iii) If U ∈ M∞, then there exists x0 > 1 such that, for d ≥ x0, there exist Md > 0 satisfying, for
x ∈ [d;∞), U(x) ≥Md.

Proposition 2.2 (Given in [3]). Let µ be the Lebesgue measure on R, A a measurable set of positive
measure, and

{
xn
}
n∈N a bounded sequence of real numbers. Then, µ(A) ≤ µ

(
limn→∞(xn +A)

)
.

Now the results on uniform convergences are presented. Their proofs are inspired by [4].

Theorem 2.2 (Uniform Convergence Theorem (UCT)). Let U : R+ → R+ be a measurable function.
Then

(i) If U ∈M with ρU = −τ and r < τ , then, for any xa ≤ c < d <∞ for some xa > 1,

lim
t→∞

tr sup
x∈[c;d]

U(tx)
U(x) = 0.

(ii) If U ∈M with ρU = −τ and r > τ , then, for any xb ≤ c < d <∞ for some xb > 1,

lim
t→∞

tr inf
x∈[c;d]

U(tx)
U(x) =∞.

(iii) If U ∈ M−∞ satisfying, for s > 1, U(x) ≥ Ms for x ∈ [1; s] and some Ms > 0, then, for r ∈ R
and any constants x0 ≤ c < d <∞ for some x0 > 1,

lim
t→∞

tr sup
x∈[c;d]

U(tx)
U(x) = 0.

(iv) If U ∈M∞ satisfying, for s > 1, U(x) ≤Ms for x ∈ [1; s] and some Ms > 0, then, for r ∈ R and
any constants x0 ≤ c < d <∞ for some x0,

lim
t→∞

tr inf
x∈[c;d]

U(tx)
U(x) =∞.

Note that UCT cannot be extended to infinite intervals. For instance, from the function U given in
Example 2.2 we have that computing the supremum of the quotient U(tx)

/
U(x) in x on [x0;∞), for

any x0 > 1, gives always ∞, and hence one cannot deduce that ρU = 0.

The next results on O-RV,M,M∞, andM−∞ will be used to give more relationships between these
classes. On O-RV we need:

Proposition 2.3 (see e.g. [94], [125], [2], [78], and [13]). Let U : R+ → R+ be a measurable function.
Then the following statements are equivalent:

(i) U ∈ O-RV.

(ii) There exist α, β ∈ R and x0 > 1, c > 0 such that, for all t ≥ 1 and x ≥ x0,

c−1tβ ≤ U(tx)
U(x) ≤ ct

α.

(iii) There exist functions η(x) and φ(x) bounded on [x0;∞), for some x0 ≥ 1, such that

U(x) = exp
{
η(x) +

∫ x

1
φ(y)dy

y

}
, x ≥ 1.
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We notice from the representations of U via O-RV andM given in Proposition 2.3, (iii), and Theorem
1.3, respectively, that a key difference between those representations is the presence of a bounded
function under the integral symbol. Motivated by this observation, we aim at building a function
belonging to O-RV but not toM. This target is reached by building a bounded function φ such that

the limit lim
x→∞

∫ x
1 φ(s)dss
ln(x) does not exist. Note that if this limit exists, then, applying Theorem 1.3,

U ∈M.

Example 2.3. O-RV 6⊆ M.

Let U : R+ → R+ be a measurable function satisfying, for x ≥ 1, U(x) = exp
{∫ x

1
φ(s)ds

s

}
, where the

function φ has support [1;∞) and is defined by

φ(x) =
{

0 if x ∈ [1; e) or x ∈ In with n odd
1 if x ∈ In with n even,

where In =
[
ee
n ; een+1), n = 0, 1, . . ..

On one hand, applying Proposition 2.3, one has U ∈ O-RV.

On the other hand, writing, for x > 1, using the change of variable y = ln(s)
/

ln(x),

ln(U(x))
ln(x) =

∫ x
1 φ(s)dss
ln(x) =

∫ 1

0
φ
(
ey ln(x)

)
dy

gives, taking xn = ee
n , n = 2, 3, . . .,

ln(U(xn))
ln(xn) =

n−1∑
k=1

∫ ee
k+1

/ee
n

eek/een
φ
(
ey e

n
)
dy =



n−1∑
k=0

(−1)ke−k if n is odd

n∑
k=0

(−1)k+1e−k if n is even,

and one then gets

lim
n→∞

ln(U(xn))
ln(xn) =


1

1 + e−1 if n is odd

e−1

1 + e−1 if n is even,

which implies ν(U)−µ(U) ≥ (1− e−1)
/

(1 + e−1) > 0, hence the limit lim
x→∞

ln(U(x))
ln(x) does not exist and

thus, applying Theorem 1.1, U 6∈ M.

Now we give another relationship between O-RV andM.

Proposition 2.4. Let U : R+ → R+ be a measurable function. If U ∈ O-RV and the limit

lim
x→∞

ln(U(x))
ln(x)

exists, then U ∈M.

The relationships ofM∞ andM−∞ with O-RV are simpler.

Proposition 2.5. For λ ∈
{
∞,−∞

}
, Mλ

⋂
O-RV = ∅.
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2.3 Proofs

Proof of Theorem 2.1.

• Proof of the necessary condition of (i)
Assume U ∈M with ρU = −τ . Let r ∈ R such that r 6= 0.

– If r < τ

Let 0 < ε < τ − r and δ > 0. By hypothesis, there exists a constant x0 > 1 such that, for
x ≥ x0, U(x) ≤ δx−τ+ε, and there exists x1 > 1 such that, for x ≥ x1, U(x) ≥ x−τ−ε

/
δ.

Hence, setting xa := max(x0, x1), for x ≥ xa and t > 1,

tr
U(tx)
U(x) ≤ δ

2tr(tx)−τ+εxτ+ε = δ2t−τ+r+εx2ε,

and the assertion then follows as t→∞ since −τ + r + ε < 0.
– If r > τ

Let 0 < ε < r − τ and δ > 0. By hypothesis, there exists a constant x0 > 1 such that, for
x ≥ x0, U(x) ≤ δx−τ+ε, and there exists x1 > 1 such that, for x ≥ x1, U(x) ≥ x−τ−ε

/
δ.

Hence, setting xa := max(x0, x1), for x ≥ xa and t > 1,

tr
U(tx)
U(x) ≥

1
δ2 t

r(tx)−τ−εxτ−ε = 1
δ2 t

r−τ−εx−2ε,

and the assertion then follows as t→∞ since r − τ − ε > 0.

• Proof of the sufficient condition of (i)
Let δ > 0 and η > 0.
One the one hand, since τ − δ

/
2 < τ , by hypothesis, there exists a constant xa > 1 such that, for

x ≥ xa, lim
t→∞

tτ−δ/2
U(xt)
U(x) = 0. Hence, given x ≥ xa, there exists ta = ta(x) > 1 such that, for

t ≥ ta, tτ−δ/2U(tx) ≤ ηU(x), or
U(tx)

(tx)−τ+δ ≤ η
xτ−δU(x)

tδ/2
. (2.3.1)

One the other hand, since τ + δ
/

2 > τ , by hypothesis, there exists a constant xb > 1 such that,

for x ≥ xb, lim
t→∞

tτ+δ/2U(xt)
U(x) =∞. Hence, given x ≥ max(xa, xb), there exists tb = tb(x) > 1 such

that, for t ≥ tb, tτ+δ/2U(tx) ≥ ηU(x), or

U(tx)
(tx)−τ−δ ≥ ηx

τ+δU(x)tδ/2. (2.3.2)

Combining (2.3.1) and (2.3.2), given x ≥ max(xa, xb) and for t ≥ max(ta, tb), and using the change
of variable y = tx with y →∞ as t→∞, provide, for δ > 0,

lim
y→∞

U(y)
y−τ+δ = 0 and lim

y→∞

U(y)
y−τ−δ

=∞,

which implies that U ∈M with ρU = −τ .
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• Proof of the necessary condition of (ii)
Let r ∈ R and η > 0. Set r′ < −r. Since U ∈ M∞ there exists a constant x0 > 1 such that, for
x ≥ x0, U(x) ≤ ηxr

′
. Hence, for t > 1,

tr
U(tx)
U(x) ≤ η

tr+r
′
xr
′

U(x) ,

and the assertion then follows as t→∞ since r + r′ < 0.

• Proof of the sufficient condition of (ii)
Let r ∈ R. Taking r′ < −r, by hypothesis, there exists a constant x0 > 1 such that, for x ≥ x0,
lim
t→∞

tr
′ U(xt)
U(x) = 0. Hence, for η > 0, there exists a constant t0 > 1 such that, for t ≥ t0,

tr
′
U(tx) ≤ ηU(x), or

U(tx)
(tx)r ≤ η

U(x)
xrtr+r′

.

Using the change of variable y = tx and noting that y → ∞ as t → ∞ give, for r ∈ R, being
r + r′ > 0,

lim
y→∞

U(y)
yr

= 0,

which means that U ∈M∞.

• Proof of the necessary condition of (iii)
Let r ∈ R and η > 0. Set r′ > −r. Since U ∈ M−∞ there exists a constant x0 > 1 such that, for
x ≥ x0, U(x) ≥ ηxr

′
. Hence, for t > 1,

tr
U(tx)
U(x) ≥ η

xr
′

U(x) t
r+r′ ,

and the assertion then follows as t→∞ since r + r′ > 0.

• Proof of the sufficient condition of (iii)
Let r ∈ R. Taking r′ < −r, by hypothesis, there exists a constant x0 > 1 such that, for x ≥ x0,
lim
t→∞

tr
′ U(xt)
U(x) = ∞. Hence, for η > 0, there exists a constant t0 > 1 such that, for t ≥ t0,

tr
′
U(tx) ≥ ηU(x), or

U(tx)
(tx)r ≥ η

U(x)
xr

t−r−r
′
.

Using the change of variable y = tx and noting that y → ∞ as t → ∞ give, for r ∈ R, being
−r − r′ > 0,

lim
y→∞

U(y)
yr

= 0,

which means that U ∈M∞.

Proof of Corollary 2.1.

Let U ∈ RV with RV index ρ. Then, for t > 1,

lim
x→∞

tr
U(tx)
U(x) = tr+ρ,
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which implies that, for ε > 0, there exists a constant x0 > 1 such that, for x ≥ x0,

tr+ρ − ε ≤ trU(tx)
U(x) ≤ t

r+ρ + ε.

Hence, setting τ = −ρ, gives, on the one hand, for r < τ ,

−ε ≤ lim
t→∞

tr
U(tx)
U(x) ≤ ε,

which implies lim
t→∞

tr
U(tx)
U(x) = 0 taking ε arbitrary, and, on the other hand, for r > τ ,

lim
t→∞

tr
U(tx)
U(x) =∞.

Therefore one has, applying Theorem 2.1, that U ∈M with ρU = ρ.

Finally, a function belonging toM but not to RV is for instance the function given in Example 2.2.

Proof of Proposition 2.1.

• Proof of (i)
Let ε > 0. By definition of U ∈M with ρU = −τ , there exist constants xa, xb > 1 such that,

for x ≥ xa, U(x) ≤ x−τ+ε, and, for x ≥ xb, U(x) ≥ x−τ−ε.

So, for x ≥ x0 := max(xa, xb), x−τ−ε ≤ U(x) ≤ x−τ+ε. Hence, for any x0 ≤ c < d <∞, one has,
settingMc := min(c−τ−ε, d−τ+ε) andMd := max(c−τ−ε, d−τ+ε), that U satisfiesMc ≤ U(x) ≤Md

for any x ∈ [c; d].

• Proof of (ii)
Let ε > 0. By definition of U ∈ M∞, there exists a constant x0 > 1 such that, for x ≥ x0,
U(x) ≤ xε. Hence, for any c ≥ x0, one has, setting Mc := cε, that U satisfies U(x) ≤ Mc for any
x ∈ [c;∞).

• Proof of (iii)
Let ε > 0. By definition of U ∈ M−∞, there exists a constant x0 > 1 such that, for x ≥ x0,
U(x) ≥ xε. Hence, for any d ≥ x0, one has, setting Md := dε, that U satisfies U(x) ≥Md for any
x ∈ [d;∞).

Proof of Theorem 2.2.

Let µ be the Lebesgue measure on R.

• Proof of (i)
Let U ∈ M with ρU = −τ and let r < τ . Applying Theorem 2.1, (i), there exists xa > 1 such
that, for x ≥ xa,

lim
t→∞

tr
U(tx)
U(x) = 0.
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Let xa ≤ c < d < ∞. Then using Egoroff’s theorem (see e.g. [8]), there exists a measurable
A ⊆ [c; d] of a positive measure such that

lim
t→∞

sup
x∈A

tr
U(tx)
U(x) = 0.

Let us prove by contradiction that the previous limit holds on [c; d]. Then suppose that there exist
ε > 0,

{
xn
}
n∈N ⊆ [c; d], and

{
tn
}
n∈N ⊆ R+ such that tn →∞ and

lim
n→∞

trn
U(tnxn)
U(xn) > ε. (2.3.3)

By Proposition 2.2 one has, denoting ln(A) =
{

ln(x) : x ∈ A
}
and noting that ln(A) has a positive

measure,
µ
(

lim
n→∞

(ln(A)− ln(xn))
)
≥ µ (lnA) > 0,

which implies that there exist a constant ln(u) ∈ R and a subsequence
{
xni
}
i∈N ⊆

{
xn
}
n∈N such

that ln(xni) + ln(u) ∈ ln(A), i.e. uxni ∈ A. Note that u > 0.
By Proposition 2.1, (i), there exist 0 < Mc ≤ Md < ∞ such that Mc ≤ U(x) ≤ Md, x ∈ (c; d).
Hence, one then has

trni
U(tnixni)
U(xni)

=
(
tni
u

)r U ( tniu uxni

)
U(uxni)

ur
U(uxni)
U(xni)

≤
(
tni
u

)r U ( tniu uxni

)
U(uxni)

ur
Md

Mc
.

Noting that
(
tni
u

)r U((tni
/
u)uxni)

U(uxni)
→ 0 since uxni ∈ A and tni

/
u → ∞ as ni → ∞ provide

trni
U(tnixni)
U(xni)

→ 0 as ni →∞, which contradicts (2.3.3).

• Proof of (ii)
Let U ∈ M with ρU = −τ and let r < τ . Applying Theorem 2.1, (i), there exists xb > 1 such
that, for x ≥ xb,

lim
t→∞

tr
U(tx)
U(x) =∞.

Let xb ≤ c < d < ∞ and let
{
εm
}
m∈N be a strictly increasing sequence of positive numbers such

that εm → ∞ as m → ∞. Then using Egoroff’s theorem, there exists a measurable Am ⊆ [c; d],
m ∈ N, of a positive measure such that

lim
t→∞

inf
x∈Am

tr
U(tx)
U(x) ≥ εm.

Let us prove
lim
t→∞

inf
x∈[c;d]

tr
U(tx)
U(x) =∞

by contradiction. Then suppose that there exist δ > 0,
{
xn
}
n∈N ⊆ [c; d], and

{
tn
}
n∈N ⊆ R+ such

that tn →∞ and
lim
n→∞

trn
U(tnxn)
U(xn) < δ. (2.3.4)

By Proposition 2.2 one has, denoting ln(Am) =
{

ln(x) : x ∈ Am
}
, m ∈ N, and noting that ln(Am)

has a positive measure,

µ
(

lim
n→∞

(ln(Am)− ln(xn))
)
≥ µ (lnAm) > 0,
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which implies, for m ∈ N, that there exist a constant ln(um) ∈ R and a subsequence
{
xnm,i

}
i∈N ⊆{

xn
}
n∈N such that ln(xnm,i) + ln(um) ∈ ln(Am), i.e. um xnm,i ∈ Am. Note that um > 0 and

c
/
d ≤ um ≤ d

/
c, m ∈ N.

By Proposition 2.1, (i), there exist 0 < Mc ≤Md <∞ such that Mc ≤ U(x) ≤Md for x ∈ (c; d).
Hence, one then has

trnm,i
U(tnm,ixnm,i)
U(xnm,i)

=
(
tnm,i
um

)r U ( tnm,ium
umxnm,i

)
U(umxnm,i)

urm
U(umxnm,i)
U(xnm,i)

≥ εm
( c
d

)r Mc

Md
,

implying trnm,i
U(tnm,ixnm,i)
U(xnm,i)

→∞ as m→∞, which contradicts (2.3.4).

• Proof of (iii)
Let U ∈M∞ and let r ∈ R. Applying Theorem 2.1, (ii), there exists x0 > 1 such that, for x ≥ x0,

lim
t→∞

tr
U(tx)
U(x) = 0.

Let x0 ≤ c < d <∞.
On the one hand, by hypothesis, there exists a constant Md > 0 such that, for x ∈ [1; d], U(x) ≥
Md. On the other hand, by Proposition 2.1, (ii), there exists a constant Mc > 0 such that, for
x ∈ [c;∞), U(x) ≤Mc. Combining these inequalities gives, for x ∈ [c; d],Md ≤ U(x) ≤Mc. Hence

a proof similar to the one given to prove (i) can be done to conclude that lim
x→∞

tr sup
x∈[c;d]

U(tx)
U(x) = 0.

• Proof of (iv)
Let U ∈ M−∞ and let r ∈ R. Applying Theorem 2.1, (iii), there exists x0 > 1 such that, for
x ≥ x0,

lim
t→∞

tr
U(tx)
U(x) =∞.

Let x0 ≤ c < d <∞.
On the one hand, by hypothesis, there exists a constant Md > 0 such that, for x ∈ [1; d], U(x) ≤
Md. On the other hand, by Proposition 2.1, (iii), there exists a constant Mc > 0 such that, for
x ∈ [c;∞), U(x) ≥Mc. Combining these inequalities gives, for x ∈ [c; d],Mc ≤ U(x) ≤Md. Hence

a proof similar to the one given to prove (ii) can be done to conclude that lim
x→∞

tr inf
x∈[c;d]

U(tx)
U(x) =∞.

Proof of Proposition 2.4.

Let U : R+ → R+ be a measurable function.

Assume U ∈ O-RV and the limit lim
x→∞

ln(U(x))
ln(x) exists. Applying Theorem 1.1 gives U ∈ M with

ρU = lim
x→∞

ln(U(x))
ln(x) .

Proof of Proposition 2.5. We will prove the proposition for λ = −∞. The proof for λ = ∞ is
similar.
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Let us prove it by contradiction. Assume there exists U ∈M−∞
⋂
O-RV .

By assumption U ∈ M, we have, for ρ ∈ R and δ > 0, there exists x0 > 1 such that, for x ≥ x0,
U(x) ≤ cxρ. Applying the logarithm function to this inequality, dividing it by ln(x), x > 1, and taking
the limit x→∞ give

lim
x→∞

ln(U(x))
ln(x) ≤ ρ.

Taking ρ arbitrary provides
lim
x→∞

ln(U(x))
ln(x) = −∞. (2.3.5)

Now, by assumption U ∈ O-RV , applying Proposition 2.3, (i) ⇒ (ii), there exist α, β ∈ R and x1 > 1,
c > 0 such that, for all t ≥ 1 and x ≥ x1,

c−1tβ ≤ U(tx)
U(x) ≤ ct

α.

Hence applying to these inequalities the logarithm function, dividing them by ln(t), t > 0, and taking
the limit t→∞ give ∣∣∣∣ lim

t→∞

ln(U(t))
ln(t)

∣∣∣∣ ≤ max
{
|α|, |β|

}
<∞,

which contradicts (2.3.5). The proposition is proved.

2.4 Conclusion

Another characterization of the classM has been proved, extended also to the classesM∞ andM−∞.
This characterization together with other two given in Chapter 1 allow the study of relationships between
M and the well-known class O-RV, another extension of RV. It is found that these classes satisfyM 6⊆
O-RV and O-RV 6⊆ M, and necessary conditions to have inclusions were given. Relationships among
O-RV andM∞ andM−∞ are given.

Note that any result obtained here can be applied to positive and measurable functions with finite
support by using the change of variable y = 1

/
(x∗U − x) for x < x∗U where x∗U is the endpoint of U

defined by x∗U := sup
{
x : U(x) > 0

}
.



Chapter 3

Another application on M: A note on
Tauberian theorems of exponential type

In Chapter 1 some applications of M and M−∞ were presented. A first one concerning an extension
of Karamata’s theorem, a second one regarding an extension of Karamata’s Tauberian theorem, and a
last one relating the domains of attraction DA(Φ) and DA(Λ) withM andM−∞, respectively. Now,
we give another application on a different subject.

In this chapter we give a unified proof of the Tauberian theorems of exponential type given by Kohlbecker,
de Bruijn, and Kasahara. de Bruijn gives a proof of this type in [54], but without showing the interplay
among the different elements of that proof. Our proof dissects these classical theorems to show how
they work. This is reached by using mainly the first characterization of M (see Theorem 1.1). This
chapter is based on the paper [30] (International Journal of Mathematics and Computer Science).

3.1 Motivation and main results

The Tauberian theorems of exponential type given by Kohlbecker, de Bruijn, and Kasahara appeared
in 1958, 1959, and 1978, respectively. They concern equivalences between the logarithm of functions
and the logarithm of their Laplace transforms when these two logarithms behave as regularly varying
functions. These theorems are closely related among them and hence their proofs may follow a same
structure (see for instance §4.12 of [13]). In spite of these relationships, these three theorems are often
presented independently. For a survey on these theorems see for instance [13].

We aim at unifying these theorems. This new presentation gives a general view of these classical results.
As noticed by Bingham et al., a result of this kind was already given by de Bruijn in [54]. However,
our proof is different from that given by this author because the structure of these tauberian theorems
is revealed and the interplay among its components is showed.

The Tauberian theorems of exponential type involve regularly varying (RV) functions. A measurable
function U : R+ → R+ is RV with index α ∈ R if, for t > 0, U(xt) ∼ U(x)tα (x → ∞), where
f(x) ∼ g(x) (x→ x0) means f(x)

/
g(x)→ 1 as x→ x0. The class of RV functions of index α is denoted

by RVα. If α = 0, then U is slowly varying (SV).

It follows our main result.

Theorem 3.1. Let a, b ∈ R such that ab(b − 1) < 0. Let c ∈ R such that abc < 0. Let d :=

59
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a(1 − b)
(
− ab

/
c
)b/(b−1). Assume that P (u) is a real function, that

∫ r

0
P (u)du exists in the Lebesgue

sense for every positive r, and that
∫ ∞

0
P (u)du converges if b < 0. Put f(s) := A +

∫ ∞
0

P (us)ecudu
for some real A ∈ R such that A = 0 if d < 0. Then

ln(P (x)) ∼ axb xb →∞ (3.1.1)

iff
ln(f(λ)) ∼ dλb/(1−b) (λ→∞). (3.1.2)

The proof of Theorem 3.1 is given in Section 3.2. A relationship provided by Cadena and Kratz [33] is
used to prove this result. This is Thereom 1.1. Our main result is discussed in the last section.

Note that in Theorem 1.1 we use simple forms of RV functions. They are φ ∈ RVα such that φ(x) = xα

as x→∞. In what follows we use this kind of functions only. Hence, SV functions are assumed L(x) = 1
as x→∞.

It follows the application of our theorem to prove the Tauberian theorems given by Kohlbecker, de
Bruijn, and Kasahara.

Corollary 3.1 (Kohlbecker’s Tauberian theorem [97], version given by Bingham et al. [13], p. 247).
Let µ be a measure on R, supported by [0;∞) and finite on compact sets. Let

M(λ) :=
∫

[0;∞)
e−x/λdµ(x) (λ > 0).

Let α > 1, B > 0. Then
ln(µ[0;x]) ∼ Bx1/α (x→∞)

iff
ln(M(λ)) ∼ (α− 1)(B/α)α/(α−1)λ1/(α−1) (λ→∞).

Proof. By integration by parts M(λ) may be rewritten as, using the change of variable y = x
/
λ,

M(λ) =
∫ ∞

0
e−yµ

[
0; yλ

]
dy. Taking a = B, b = α, and c = −1, gives d = (α − 1)(B/α)α/(α−1) (> 0),

and putting P (x) = µ[0;x] and f = M with A = 0, applying Theorem 1.1, the corollary then follows.

As mentioned above, de Bruijn’s Tauberian theorem tackled all of three Tauberian theorems of expo-
nential type reviewed in this note. In order to distinguish the case not concerned in the results of
Kohlbecker and Kasahara, in what follows we call this case de Bruijn’s Tauberian theorem, as often
found in the literature (see for instance [13], [110], and [127]).

Corollary 3.2 (de Bruijn’s Tauberian theorem, [54], Theorem 2). Let A > 0. Assume that P (u) is a

real function and that M(λ) := λ

∫ ∞
0

P (x)e−λAxdx converges for all λ > 0. If β < 0, then for B < 0,

ln
(
P
(
1
/
x
))
∼ Bx−β (x→∞)

iff

ln(M(λ)) ∼ B(1− β)
(
λ

Bβ

)β/(β−1)
(λ→∞).
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Proof. Using the changes of variables y = λx and s = 1
/
λ, M

(
1
/
s
)

=
∫ ∞

0
e−yP (sy)dy. Taking

a = B, b = β, and c = −A, gives d = B
(
1 − β

)(
A
/

(Bβ)
)β/(β−1) (< 0), and taking f as f(1

/
λ) with

A = 0, applying Theorem 1.1, the corollary then follows.

Corollary 3.3 (Kasahara’s Tauberian theorem [95], version given by Bingham et al. [13], p. 253).

Suppose µ be a measure on (0;∞) such that M(λ) :=
∫ ∞

0
eλxdµ(x) <∞ for all λ > 0. Let 0 < α < 1.

Then, for B > 0,
lnµ

(
x;∞

)
∼ −Bx1/α (< 0) (x→∞)

iff
ln(M(λ)) ∼ (1− α)(α/B)α/(1−α)λ1/(1−α) (λ→∞).

Proof. Noting that µ(0;∞) <∞, by integration by parts M(λ) may be rewritten as, using the change

of variable y = λx, M(λ) = µ(0;∞) +
∫ ∞

0
exµ
(
x
/
λ;∞

)
dx. Taking a = −B, b = 1

/
α, and c = 1, gives

d = −B
(
1− 1

/
α
)
(B/α)1/(α−1) =

(
1− α

)
(B/α)α/(α−1), and putting P (x) = µ

(
x;∞

)
and f = M with

A = µ(0;∞), applying Theorem 1.1, the corollary then follows.

3.2 Proof of Theorem 3.1

Assume the hypothesis given in Theorem 3.1.

Let 0 < ε <
∣∣d∣∣/2. Note that d > 0 if b > 0, and d < 0 if b < 0.

Proof of the necessary condition. Define the function h(x) = axb + cx − d, x > 0. h is continuously
differentiable, concave (h′′(x) = ab(b−1)xb−2 < 0), and, reaches its maximum at xM =

(
−c
/

(ab)
)1/(b−1)

(> 0) and h(xM ) = 0, so in particular h ≤ 0. Hence, there exists 0 < η < min(xM , 1) such that, for
x ∈

[
xM − η;xM + η

]
, h(x) ≥ −ε

/
3.

Let 0 < τ < 1 be sufficiently small, to be defined later.

Since the function P satisfies (3.1.1) there exists x0 > 0 such that, for xβ ≥ xβ0 ,∣∣∣∣ ln(P (x))
axb

− 1
∣∣∣∣ ≤ τ . (3.2.1)

Write, for ξ > 1 and ω ∈
{
ε,−ε

}
, using the changes of variable v = u

/
ln(ξ) and ψ = ln(ξ),

f
(
(ln ξ)(1−b)/b)
ξd+ω = Ae−(d+ω)ψ + ψe−ωψ

∫ ∞
0

P
(
vψ1/b)e(cv−d)ψdv. (3.2.2)

If ω = −ε and ψ ≥
(
x0
/

(xM − η)
)b, then, denoting ζ = − sign(a)τ and θ = sign(b)η, provides

e−ωψ
∫ ∞

0
P
(
vψ1/b)e(cv−d)ψdv ≥ eεψ

∫ xM+η

xM−η
e(h(v)+ζavb)ψdv ≥ 2ηe 2

3 εψeζa(xM+θ)bψ.

Combining this and (3.2.2) give, choosing τ < ε
/(

3a(xM + θ)b
)
and noting that ψ →∞ as ξ →∞,

lim
ξ→∞

f
(
(ln ξ)(1−b)/b)
ξd+ω ≥ lim

ψ→∞

(
Ae−(d+ω)ψ + 2ηψe 2

3 εψeζa(xM+θ)bψ
)

= ∞.
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Next, take ω = ε. Then, using the changes of variables introduced above,∫ ∞
0

P
(
vψ1/b)ecvψdv =

∫ x0ψ
−1/b

0
P
(
vψ1/b)ecvψdv +

∫ ∞
x0ψ−1/b

P
(
vψ1/b)ecvψdv = I1(ψ) + I2(ψ).

On I1, using the change of variable y = vψ1/b, if c < 0, then by hypothesis

I1(ψ) = ψ−1/b
∫ x0

0
P (y)ecyψ

1−1/b
dy ≤ ψ−1/b

∫ x0

0
P (y)dy,

and, if c > 0, then necessarily a > 0 and b > 1, and thus

I1(ψ) = ψ−1/b
∫ x0

0
P (y)ecyψ

1−1/b
dy ≤ ψ−1/becx0ψ

θ

∫ x0

0
P (y)dy,

for some 0 < θ < 1. So, we get, taking ψ > (|c|x0)1/(1−θ),

lim
ψ→∞

ψe−(ε+d)ψI1(ψ) ≤ lim
ψ→∞

ψ1−1/be−(ε+d−cx0ψ
θ−1)ψ

∫ x0

0
P (y)dy = 0.

On I2, if b < 0, c < 0 and one has

I2(ψ) = ψ−1/b
∫ ∞
x0

P (y)ecyψ
−1/bψdy = ψ−1/b

∫ ∞
x0

P (y)ecyψ
1−1/b

dy,

which implies that, since ecyψ1−1/b is decreasing in y,

lim
ψ→∞

ψe−(ε+d)ψI2(ψ) ≤ lim
ψ→∞

ψ1−1/be−(ε+d)ψ+cx0ψ
1−1/b

∫ ∞
x0

P (y)dy = 0.

If b > 0, denote ζ as above. Then, using (3.2.1),

e−dψI2(ψ) ≤
∫ ∞
x0ψ−1/b

e((1−ζ)avb+cv−d)ψdv.

Let g(x) = (1 − ζ)axb + cx − d, x ≥ 0, and take ζ < sign(1 − b)
([

ε

2

(
− c

ab

)1/(1−b)
+ 1
]1−b

− 1
)
.

Then, g is differentiable, concave (g′′(x) = (1 − ζ)ab(b − 1)xb−2 < 0), and reaches its maximum at
xg =

(
− c
/

(ab(1 − ζ))
)1/(b−1), and g(xg) =

(
− c
/

(ab)
)1/(b−1)[(1 − ζ)−1/(b−1) − 1

]
(< ε

/
2). Hence,

g − ε
/

2 < 0. This inequality and the integrability of eg(x)−ε/2 on (0;∞) allow again the application of
the reverse Fatou lemma giving

lim
ψ→∞

∫ ∞
0

e(g(v)−ε/2)ψdv ≤ lim
ψ→∞

∫ ∞
0

e(g(v)−ε/2)ψdv ≤
∫ ∞

0
lim
ψ→∞

e(g(v)−ε/2)ψdv = 0.

Hence, one has
lim
ψ→∞

ψe−(ε+d)ψI2(ψ) ≤ lim
ψ→∞

ψe−
1
2 εψ

∫ ∞
0

e(g(v)−ε/2)ψdv = 0.

Combining the results on I1 and I2 and (3.2.2) give

lim
ξ→∞

f
(
(ln ξ)(1−b)/b)
ξd−ω

= lim
ψ→∞

(
Ae−(d+ω)ψ + ψe−(ω+d)ψI1(ψ) + ψe−(ω+d)ψI2(ψ)

)
≤ 0.

Therefore, f being positive and measurable, U(ξ) = f
(
(ln ξ)(1−b)/b) ∈ M with ρU = d, and then,

applying Theorem 1.1,

lim
ξ→∞

ln
(
f
(
(ln ξ)(1−b)/b))

ln(ξ) = d.

By using the change of variable λ = (ln ξ)(1−b)/b the assertion follows.
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Proof of the sufficient condition. Let ε > 0. Suppose that the function f satisfies (3.1.2). Rewriting
this limit as, using the change of variable ξ = exp

{
λb/(1−b)

}
,

lim
ξ→∞

ln
(
f
(
(ln ξ)(1−b)/b))

ln(ξ) = d,

this means that, applying Theorem 1.1, U ∈M with ρU = d where U is defined as above. So, one has

lim
ξ→∞

f
(
(ln ξ)(1−b)/b)
ξd+ε = 0 and lim

ξ→∞

f
(
(ln ξ)(1−b)/b)
ξd−ε

=∞,

i.e., using the changes of variable v = u
/

ln(ξ) and ψ = ln(ξ) and denoting Q(x) = ln(P (x)),

lim
ψ→∞

ψ

∫ ∞
0

e(Q(vψ1/b)/ψ+cv−d−ε)ψdv = 0 and lim
ψ→∞

ψ

∫ ∞
0

e(Q(vψ1/b)/ψ+cv−d+ε)ψdv =∞. (3.2.3)

We claim that, given ψ > 0,

Q(vψ1/b)
/
ψ + cv − d ≤ 0 almost surely (a.s.) for all v > 0. (3.2.4)

Assuming there exist ν > 0 and v1 > 0 such that Q(v1ψ
1/b)

/
ψ + cv1 − d ≥ 2ν a.s., this means that

there exists η > 0 such that, for v ∈
[
v1 − η; v1 + η

]
, Q(vψ1/b)

/
ψ + cv − d ≥ ν. Hence, taking ε = ν

/
2,

one gets

lim
ψ→∞

ψ

∫ ∞
0

e(Q(vψ1/b)/ψ+cv−d−ε)ψdv ≥ lim
ψ→∞

ψ

∫ v1+η

v1−η
eνψ/4dv = lim

ψ→∞
2ηψeνψ/4 =∞,

which contradicts the first limit in (3.2.3).

Furthermore, we claim that, given ψ > 0,

there exists v0 > 0 such that Q(v0ψ
1/b)

/
ψ + cv0 − d = 0. (3.2.5)

Assuming for all v > 0 that Q(vψ1/b)
/
ψ + cv − d < 0, since (3.2.4) is satisfied, then, using the change

of variable z = vψ1/b, gives

Q(z) < d− cv
vb

zb.

Now, taking the following limits on v provides, for any z > 0,

Q(z) ≤



lim
v→0+

d− cv
vb

zb = 0 if b < 0

lim
v→∞

d− cv
vb

zb = −∞ if 0 < b < 1, because c > 0

lim
v→∞

d− cv
vb

zb = 0 if b > 1.

This implies that P ≡ 1 if b < 0 or b > 1, and P ≡ 0 if 0 < b < 1, which contradicts the hypothesis
(3.1.1).

Introducing the change of variable z = v0ψ
1/b in the relationship given in (3.2.5) gives, for z > 0,

Q(z) = d− cv0

vb0
zb.
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This implies that Q is continuously differentiable, concave, and then that Q(vψ1/b)
/
ψ + cv − d has a

unique maximum at v, i.e. v0. This maximum satisfies

ψ1/bQ
′(v0ψ

1/b)
ψ

+ c = ψ1/b−1 d− cv0

vb0
b
(
v0ψ

1/b
)b−1

+ c = 0,

which implies b(d − cv0) = −cv0, i.e. v0 = db
/

(c(b − 1)). v0 is positive and satisfies v0 = xM .
Straightforward computations gives a =

(
d − cv0

)/
vb0, so Q can be rewritten as Q(z) = azb. Hence

(3.1.1) follows.

3.3 Discussion of results

Our proof of the tauberian theorems given by Kohlbecker, de Bruijn, and Kasahara disects the func-
tioning of these theorems. A function like h(x) = axb + cx − d, x > 0, is identified, which has two
key properties in order to establish these theorems: concavity and non-positivity. The first of these
properties gives the possible Tauberian theorems: ab(b − 1) < 0, from which exactly three solutions
are possible, each one corresponding to a known Tauberian theorem of exponential type. The second
property guarantees the convergence of integrals of type

∫ ∞
0

P (us)ecudu and lets the control of this

integral at v0 > 0. This point satisfies h(v0) = 0, the unique maximum of h. Note that if h(v0) > 0 or
h(v0) < 0 one cannot obtain those Tauberian theorems. From the relationship h′(v0) = 0 the condition
for c is derived, and from h(v0) = 0 the corresponding condition for d. Finally, Theorem 1.1 allows the
identification of the disposition of the logarithms of functions.



Conclusion of Part I

In this part of the thesis a new theoretical framework for studying extreme values is given. It concerns
classes of positive and measurable functions U(x) organized according to their tail behavior as x→∞.
Results based on these classes show that this new framework is a promising approach not only for
describing extreme values, but also for dealing with problems of other domains as probability theory,
extreme value theory, number theory, differential equations, complex analysis, and others.

The starting point of this framework is the formulation of a new class. After the study of its properties
and extensions, theoretical and practical applications using this new class are developed. All that work
is presented in four chapters as follows.

In Chapter 1, a new class of positive and measurable functions, called M, is introduced. It is larger
than the class of regularly varying (RV) functions and consists of positive and measurable functions
U(x) with infinite endpoint that have polynomial behaviors as x → ∞. An index is associated to the
members U ofM, called theM-index of U . This index corresponds to the index of RV when U is RV.
This new class satisfies some algebraic properties and can be characterized by different ways. One of
these characterizations is a representation of Karamata type given by Karamata for RV functions.

Also, in a natural way, M is extended to two classes, called M∞ and M−∞. These classes consist in
positive and measurable functions U(x) presenting exponential behaviors as x → ∞. It is proved that
some properties satisfied onM also hold onM∞ andM−∞.

On the complement set O of M∪M∞ ∪M−∞ in the set of positive and measurable functions with
infinite endpoint, we prove that the well-known Pickands-Balkema-de Haan theorem does not hold when
this set is restricted to tails of distributions. We also provide explicit functions of this set.

Among the applications ofM, two classical theorems given by Karamata are extended toM, namely
the well-known Karamata’s theorem and Karamata’s Tauberian theorem. Also, proper inclusions of the
domains of attractions of Fréchet and Gumbel (restricted to functions with infinite endpoint) inM and
M−∞, respectively, are proved.

M,M∞,M−∞, andO concern positive and measurable functions with infinite endpoint. Similar results
to all those obtained for these four classes can be developed for positive and measurable functions with
finite endpoint x∗ by using the change of variable y = 1

/
(x∗ − x), x < x∗.

In Chapter 2, another characterization of M, M∞, and M−∞ is given. It allows the development of
relationships amongM,M∞, andM−∞ and O-RV.M and O-RV are extensions of RV, i.e. RV ⊆M
and RV ⊆ O-RV , however we prove that O-RV ( M and that M ( O-RV . Besides, we prove that
Mτ ∩O-RV = ∅ for τ ∈

{
∞,−∞

}
.

In Chapter 3, we present another application ofM, by using a characterization of this class. It consists
in a new unified proof of Tauberian theorems of exponential type given by Kohlbecker, de Bruijn, and
Kasahara. This new proof based on a characterization ofM shows how the elements of these theorems
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interact among them.

The studies ofM,M∞,M−∞, and O mentioned above as well as the different applications ofM and
M−∞ given in Chapters 1 and 3, show a great potential of all these classes to undertake analysis in the
different domains where the RV functions have been applied, such as probability theory, extreme value
theory, number theory, differential equations, complex analysis, and others. These developments may
be theoretical as well as applied, as described in what follows.

A first future research of wide interest would be the extension of the new classes to their multivariate
versions. This new framework may allow one to tackle multivariate problems, when namely the variables
involved are correlated as they take very high values. This type of behaviors called extreme correlation
are empirically observed in different domains like finance (see e.g. [101] and [104]), health claims (see
e.g. [40]), climate (see e.g. [48] and references there in), and others. Furthermore, the description of
the dependence structure is a key element in a multivariate context. In this sense, a popular way to
represent these structures is through copulas. Hence, the development of copulas using properties ofM
may give new alternatives to exploit this pair of notions together.

Another line of research is the formulation of estimators of tail indices in order to better describe
extreme values. Indeed, it may happen that large claims of several lines of insurance could exhibit
extreme claims (see e.g. [87]), which means that extreme value distributions are necessary to represent
some of those claims. This type of extreme events are observed in different insurance lines as health
(see e.g. [41]), wind storm losses (see e.g. [123]), other natural disasters as typhoons, floods, hailstorms,
tornadoes, hurricanes, and hearthquakes (see e.g. [72], [119], [69], and [68]), motor insurance (see e.g.
[128]) among others. For an insurance enterprise, in practice, the importance of extreme claims that
may lead to extreme losses comes from how these events would impact on its financial performance.
During an analysis done during my Master thesis (see [28]), we found that extreme losses in motor
insurance represented a very important part of the total losses, more than 90 %. This finding is in line
with effects like the 80-20 well-known rule of thumb from actuarial science, where 80 % of total losses
come from only 20 % of total claims, those losses being concentrated in the tail of the extreme value
distribution (see e.g. [70], section 8.2). These financial impacts imply that for an insurer the analysis
of extreme losses should be a priority, for financial reasons.

Better estimates of the tail index would also contribute to improve the assessment of the risk to which
an insurer would be exposed. Hence, these results should be considered in current risk management.
This risk would not be related to insurance losses only, but also to other types of losses like for instance
those due to operational risk. Hence, the previous risk assessments may be extended to other industries.

Finally, the modelling of data involving simultaneously extreme and non-extreme events is a frequent
issue for insurers, for instance to model losses. Commonly, this problem is solved using composite
distributions (see e.g. [116] and [109]), but their formulations are complex and sensitive to their compo-
nents, usually two components in order to address both extreme and non-extreme values. Distributions
covering simultaneously extreme as well as non-extreme values would be convenient to deal with such
modellings like, for instance, the two-parameter family of distributions of Mielke [107] and the four-
parameter kappa distribution of Hoskings [85]. Then, could properties ofM allow the development of
new distributions for the simultaneous modelling of both extreme and non-extreme values ? Note that
composite distributions dealing with both extreme and non-extreme values are used in other fields, for
instance in engineering (see e.g. [86] and [59]), so these new distributions may be applied there too.
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Introduction

This part of the thesis presents two empirical studies.

The first developed in Chapter 4 focuses on the analysis of the economic benefits generated by the
partnership of Swiss Life France (SLF) with an organization devoted to manage both vision product
furnishers and users of vision services. This is done using analysis techniques of classical type and of
data-mining, applied to data mainly of the year 2012 and to some information of the period 2008 - 2012.

The second developed in Chapter 5 is an empirical study proposed by M. Dacorogna (SCOR) to inves-
tigate the possible relations between mortality and market risks. It has been developed with him. It
focuses on new strategies based on extreme values to study those relations. These types of studies are
meaningful since mortality and markets would not be correlated when the variations of the mortality
are not important, but they do when mortality shocks happen, as for instance pandemics. These types
of relations are thus of interest for enterprises and institutions concerned directly or indirectly with
mortality. Our study strategy consists in comparing the behavior of market variables when mortality
shocks happen or not. We evaluate several mortality indices and propose a procedure to identify ex-
treme values in mortality. We analyze the influences of mortality on two financial variables (stocks and
government bond yields) and on two economic variables (gross domestic product and inflation). After
a number of empirical analyses, evidence of dependence between extreme mortality and market risks is
provided.

New results

In these two studies we found out that:

1. On the economic benefits generated by the partnership between SLF and Carte Blanche Parte-
naires (CBP).

(a) Discovering of contracts with average of net price and average of SLF refund much higher
than the corresponding averages computed over the remained contracts. It concerns contracts
where insureds covered by these contracts consumed vision services in 2012 in the following
way: some insureds made this consommation using CBP services and some insureds made it
without using CBP services.

(b) Using regression trees, detection of local non-linear relations between
i. use of CBP services and, namely, number of persons covered by the contract, commercial

classification, and department of the insured.
ii. value payable by the insured and, namely, commercial classification, classification level,

type of refund, department of the insured, and age of the insured.
iii. refunds made by SLF to the insured and, namely, commercial classification, classification

level, type of refund, time that a contract is active, and age of the insured.
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2. On relations between mortality and market risks.

(a) For five of six countries that are considered, including US, a drop in the performance of the
stock and the bond indices are detected during mortality shocks, but these relations are not
statistically significant.

(b) For all those six countries, a decrease of the variation of the index of mortality is related with
a decrease of the variation of the index of bonds, some of these relations being statistically
significant.

(c) The variations of GDP or inflation do not show clear trends when considering whole samples
and extreme samples associated to mortality shocks, and these trends are in general not
statistically significant.

(d) Retarded effect on the GDP (+1y) due to the fact that economic effects from increased
mortality are long to develop if it is not a high pandemy.



Chapter 4

Analysis of Carte Blanche data

The following description is extensively based on [29].

4.1 Introduction

Carte Blanche Partenaires (CBP), created in 2001, is a health service system which intervenes in the
fields of the third-party payer, of the management of the networks of healthcare professionals, and of the
support in health. The CBP services are available for the insureds of institutions of the complementary
insurance of health (insurers, mutual insurance companies, brokers, pension funds) (see CBP, 2013).

In that context, the objective of CBP is to facilitate the access to healthcare services for insureds and
controlling health spending for complementary organizations, in partnership with health professionals.

Swiss Life France (SLF), specialist in individual insurance, life insurance, complementary insurance
of health, and pension insurance, as partner of CBP, offers the access to the services of CBP as an
additional benefit of its products. For vision services, in particular, there are prices negotiated and
additional services offered by many partners, in a network of more than 10,000 opticians, helping in
particular the customer to find a professional of these services near her/him.

This study concerns vision services consumed by SLF insureds, accessed via CBP services or not. As
mentioned above, the use of CBP services may allow, on one hand, those insureds to find vision services
with lower prices and, on the other hand, SLF to control expenses on this kind of services.

In 2013, SLF wished to estimate the profit of the partnership with CBP on the consumption of vision
services. For that purpose, this study aims at exploring the characteristics of the use of CBP services.
This analysis is done using the information on consumptions of vision services, which is generated by
two organizations: CBP and SLF. From the former the information is available for 2012 only, and from
the latter for the period 2008 - 2012. The results of this study would form the basis for the formulation
of rates of refund in order to control expenses on vision services, in particular by encouraging the use
of CBP services.

The information supplied by SLF includes consumptions of vision services that were done without the
use of CBP services. These registers will be used to describe and to compare some variables, as the cost
of vision products or the amount payable by the insured for those products, with and without the use
of CBP services.
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We begin this study by firstly relating the two databases provided by CBP and SLF. Then, we present
descriptive statistics of certain key variables as the net price paid, the value returned by SLF, and the
value payable by the insured. We deepen then the exploratory analysis by means of several techniques,
some of classic type and others based on data-mining. The results of this study will allow the formulation
of conclusions and perspectives of further analysis.

Throughout this study we often refer to consumptions of (vision) services, which concern purchases of
glasses, frames, or lenses, or the purchase of vision products or services to a fixed price. For brevity,
when no confussion is possible, we will refer simply to services or vision services instead of referring to
consumptions.

The last section presents conclusions and perspectives of this study.

4.2 Description of databases

4.2.1 Principal variables of databases

Among the tables of the databases provided for this study, we select the following variables, which are
presented according to their origin.

We begin with the database provided by CBP, detailed in Table 4.1, which consists of the table “Infos
PEC” only (PEC is the acronym of “prise en charge”, i.e. insurance coverage for vision products). This
table contains information of the vision services used by insureds. It is linked to the table “Service” of
the database of SLF, Table 4.2, through the variable “Number of contract” that identifies each contract,
but noting that such variable is named “IDCT” (IDCT is the acronym of identifier of the contract) in
this last table. Unfortunately, “Number of contract” presents some inconsistencies since it is expressed
as a string of characters; for example, a same contract can be registered by putting in the contract
number an additional character ’0’ to the left, which could be interpreted as a different number of
contract. This problem was overcome by building a numerical version of this variable. Besides, in the
table “Infos PEC” we have other variables such as the value returned by SLF and indicators on the
purchase of lenses, glasses, or other vision product. This table also has the date of birth and the zip
code of the insured. In what follows, the value returned by SLF to the insured will be written as “SLF
refund”.

Table Variable Type of variable

Infos PEC

Number of contract String of characters
Birth date of the insured Date and time
Zip code String of characters
Refund Real
Indicator of expenses of glasses String of characters
Indicator of expenses of frames String of characters
Indicator of expenses of lenses String of characters

Table 4.1: Principal variables, CBP

Let us return to Table 4.2 which concerns tables on: insureds, contracts, and services. In all these tables
IDCT is a common variable. It allows the univocal identification of every contract.

The table on insureds shows the IDCT to which an insured is related, and some information on the



4.2. DESCRIPTION OF DATABASES 73

insured: family relation, sex, birth date, an indicator of 3rd free child (this is an advantage which
consists in no payement for 3rd child, 4th child, and so on), entrance date to the insurance coverage,
and exit date from the insurance coverage.

The table on contracts shows the IDCT, the policy number (which is also a unique identifier of the
contract, but different of the IDCT), the effective date of the contract, the date of the end of contract,
the method of payment of the premium, the position of the contract (active, cancelled, replaced, or
suspended), the code of the product, the premium collection indicator, the indicator of profit “Madelin”,
the code of the obligatory social security scheme (RSO), the zip code of the policyholder, the indicator
of profit of the complementary aid for health (ACS), the indicator of contract called responsible (if
the insured always is treated by the doctor declared as “his/her doctor”), and the indicator of family
preferential rate.

The table of services shows expenses in services. These values are aggregated by IDCT, family relation,
and code of act. A code of act is a classification of services. For our study we take the codes of act
related to vision services, i.e. OPT (optics), LUN (lenses), VER (glasses), and FO (fixed price). In this
table is also available the rate of value returned by RSO to the insured; however, the base of calculation
over which this rate is applied is not available, so this rate will not thus be used in this analysis. In
what follows, the value returned by RSO to the insured will be written as “RSO refund”. We also
find the level of RSO refund, which is low compared with the level of refund made by SLF; therefore,
this variable will not either be used in this analysis, but its numbers will be shown for informational
purposes.

Besides, we have additional information. It is about some characteristics of insurance products of
SLF. Considering this study, after discussions with the team of SLF, we decided to hold the following
characteristics of products (see Table 4.3): family, type of refund, commercial classification, level of
classification, and fixed price of prevention.

4.2.2 General characteristics

The data to be analyzed concern information of contracts, insureds, and services related to vision
insurance products offered by SLF. As indicated previously, these data have two origins. On one hand,
there is a set of tables, supplied by SLF, which describes contracts, insureds, and services, for the period
2008 - 2012. On the other hand, from CBP there are the registers of consumptions of vision services
made by insureds using CBP services during the 2012.

The database provided by CBP allows the participation of SLF with CBP to be evaluated. The part-
ners of CBP are two, SLF among them. According to this database, in 2012, SLF had an important
participation. Considering the number of services this participation was around 38.1 % of the total
number of services registered by CBP (cf. Table 4.4, computations made on accepted services only).

The database supplied by SLF concerns individual insureds since SLF was interested on this type of
customers only. However, the database provided by CBP includes individual and collective customers,
but without a way to distinguish them. In order to distinguish these two types of customers in this
second database, we use the policy numbers supplied by the database of collective contracts of SLF.
Surprisingly, this variable allowed the detection of contracts concerning vision services registered by
CBP, but not by SLF. These novelties on the services registered are shown in Table 4.5. The numbers of
this table correspond to the year 2012 since the database provided by CBP is involved in this analysis.
In order to know more about this set of contracts, we relate them to registers of vision services registered
by SLF from April, 2012 to March, 2013. This period is called “2013” in Table 4.5.
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Table Variable Type of variable

Insured

IDCT String of characters
Family relation String of characters
Sex String of characters
Birth date Date and time
Indicator of 3rd free child String of characters
Entrance date to the insurance coverage Date and time
Exit date from the insurance coverage Date and time

Contract

IDCT String of characters
Policy number String of characters
Effective date of the contract Date et heure
End date of contract Date et heure
Method of payment of the premium String of characters
Position of the contract String of characters
Product code String of characters
Premium collection indicator String of characters
Indicator of profit “Madelin” String of characters
RSO String of characters
Zip code of the policyholder String of characters
Indicator of profit of the ACS String of characters
Indicator of contract responsible String of characters
Indicator of family preferential rate String of characters

Service

IDCT String of characters
Family relation String of characters
Code of act (optics, lenses, glasses, fixed price) String of characters
Expenses Real
SLF refund Real
Rate of RSO refund Integer
RSO refund Real

Table 4.2: Principal variables, SLF

Table Variable Type of variable

Product

Product code String of characters
Family String of characters
Refund type String of characters
Commercial classification String of characters
Level of classification String of characters
Fixed price of prevention Integer

Table 4.3: Additional variables, SLF

A reason to have customers of SLF that used CBP services during the year 2012, but they were not
in the database provided by SLF for the year 2012, may be that the registers of the services made at
CBP were registered at SLF later. Note that most part of these customers correspond to contracts
identified during the period 2008-2012, except a few which represent less than 0.0 %. In the absence of
an explanation, these few registers will not be used, assuming that they are probably mistakes.

Table 4.5 also shows in the last column the average of the number of services used by type of contract.
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Partner %

SLF 38.1
Other 61.9

Total 100.0

Table 4.4: Global distribution of the number of services by partner (over all individual and collective
contracts), CBP

Services by type of contract (comparisons
using SLF information)

Number Number
of services of services

(%) (average)

Individual contracts unidentified in 2012, but identified in 2013 10.6 1.1
Individual contracts unidentified in 2012 and 2013 3.7 1.1
Individual contracts identified in the period 2008-2012 76.8 1.3
Collective contracts identified in 2012 8.9 2.4
Error 0.0 1.1

Total 100.0 1.4

Table 4.5: Distribution of the number of services used by type of contract, over all codes of act on vision
services, CBP

For the interpretation of this average, it is necessary to note that a register in the database of CBP
can represent more than a product (lenses, glasses or frames) purchased by an insured. We notice
unsurprisingly that this frequency is higher for the collective contracts than for the individual contracts
since there is more people involved in the collective contracts than in the individual contracts.

In the database supplied by CBP we find numbers of contracts that begin with the letter ’B’. Following
recommendations of SLF technicians, all the registers with this peculiarity will be also excluded from
this study.

Focusing on vision services, in the information supplied by CBP we find details of those services by
insured. On the other hand, in the information provided by SLF, we can observe these services only
over all contracts, because the available information does not allow the identification of the contracts
considering vision insurance coverages. On this subject, Table 4.6 shows the percentage of (individual
and collective) contracts with respect to the use or not of vision services. These results show that the
percentages of contracts that used vision services have a light trend to increase, however this increase
could be due to the fact that the number of contracts purchasing vision insurance coverages also increases.
We cannot verify it, due to lack of precise information.

We conclude this section with some remarks on data. First, we notice that sometimes the amount paid
by the insured does not exceed the sum of SLF refund and RSO refund. On this subject, Table 4.7
shows that this type of situations is not always significant with respect to the amounts paid, in fact
they represent around 0.1 % of the total amount paid by SLF. These cases will be excluded from the
analysis.
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Year
Contracts which used

Totalvision services (%)

No Yes

2008 80.4 19.6 100.0
2009 79.8 20.2 100.0
2010 79.3 20.7 100.0
2011 78.5 21.5 100.0
2012 78.3 21.7 100.0

(a) Individual contracts

Year
Contracts which used

Totalvision services (%)

No Yes

2011 50.8 49.2 100.0
2012 49.8 50.2 100.0

(b) Collective contracts

Table 4.6: Use of vision services by customer and year, SLF

Use of
CBP
services

Refunds (%)
TotalSum of refunds Sum of refunds

over the price paid under the price paid

No 0.0 53.4 53.4
Yes 0.0 46.5 46.6

Total 0.1 99.9 100.0

Table 4.7: Refunds, individual contracts consumming vision services in 2012, SLF

Secondly, there is an interest to analyze only the customers called “assujetti”. An “assujetti” customer
is a person who exercises a professional activity of self-employed person or helper. On this subject, we
notice that the levels of amounts paid by “non-assujetti” insureds are rather weak since those paiements
represent about 2.1 % of all amounts paid by customers (see Table 4.8). The contracts concerning
“non-assujetti” insureds will be also excluded from the analysis.

Use of
CBP
services

Amount paid (%)
TotalIndividual Individual

“non-assujetti” “assujetti”

Non 1.8 51.6 53.4
Yes 0.2 46.3 46.6

Total 2.1 97.9 100.0

Table 4.8: Amounts paid by “assujetti” and “non-assujetti” individual, individual contracts with con-
sumption of vision services in 2012, SLF

Finally, SLF decided, since January, 2013, not to offer products related to the CMU (universal healthcare
coverage). Therefore, the contracts concerned with this kind of coverage will be also excluded from the
analysis. In practice, we can observe the weak influence of this type of products on the global amount
paid by the insured, they represent about 0.7 % (cf. Table 4.9).
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Use of
CBP
services

Amount paid (%)
TotalProduct related Product not related

to CMU to CMU

No 0.6 52.8 53.4
Yes 0.0 46.5 46.6

Total 0.7 99.3 100.0

Table 4.9: Amounts paid by product related or not to CMU, individual contracts with consumption of
vision services in 2012, SLF

4.3 Descriptive analysis of the database provided by SLF

4.3.1 A first statistical approach

A first result using the available data is the computation, when considering several variables related to
consumption of vision services when using and not using CBP services, of the empirical mean of each
variable. Table 4.10 presents these results considering the consumption and the SLF and RSO refunds.
A variable complementary to consumption and to refunds is the value payable by the insured (RAC).
This variable is not available in databases, but it may be calculated as the amount paid by the insured
less refunds owed by SLF and RSO. According to this rule of computation, the RAC depends on the
information supplied by SLF, and cannot thus be calculated from the database provided by CBP. The
average of RAC is also included in that table.

Let us recall that the available information does not allow the identification of insureds using and not
using CBP services in a same period. The numbers presented in Table 4.10 are computed assuming
that if an insured appears in the database provided by CBP, then she/he used the CBP services during
the period analyzed. This is not necessarily true because during that period she/he may also have used
vision services without using CBP services.

According to the results presented in Table 4.10, we first notice the high use of CBP services by the
insured. However the part of customers which did not use this service remains still important; it
represents around 51.1 % of the consumers of vision services. Then, we note that the average of the net
price is lower on the set of insureds that used CBP services, with a decrease of 5.2 % with respect to
the average of the net price of the insureds which did not use CBP services. This trend of decrease is
also observed in the RAC, but with even more important differences because in percentage a decrease of
10.0 % is reached. On the contrary, on SLF refunds we note an increase of 4.7 %. Finally, RSO refund
is always low.

Let us recall that the results presented in Table 4.10 are by insured. In practice, several insureds can
be attached to the same contract. In other words, contracts are not signed by every insured. In this
sense, it is justifiable to analyze prices and refunds on the consumptions also by contract. However, we
find in the information analyzed that in certain contracts there are insureds consuming vision services
by using CBP services and others consuming them without using these services. As pointed out above,
this distinction in the consumption by contract cannot be made for every insured, because the available
databases do not have all the details to identify the consumptions with this level of desaggregation.
Seen this irregular behavior on contracts, the averages of the prices and of the SLF refunds by contract
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Parameter
Use of CBP services

Yes No Average of differences
No against Yes (%)

Frequency (%) 48.9 51.1
Average of net prices of services 629.6 664.1 5.2
Average of RSO refunds 16.2 15.6 -3.8
Average of SLF refunds 213.8 204.3 -4.7
Average of RAC 399.6 444.1 10.0
(Standard deviation RAC) (347.2) (383.8)

Table 4.10: Expenses and refunds by use of CBP services, by insured, individual contracts with con-
sumption of vision services in 2012, SLF

may depend on the way that data are aggregated to obtain results by the use or not of CBP services.
In order to discuss this problem, we present in Table 4.11 both possibilities of aggregation of data by
incorporating a third type of contract, called “mixed”, which represents contracts having consumptions
of vision services based on CBP services and others not based on these services, for a same period.

On the data presented in Table 4.11, we notice at first that the numbers are higher than those of Table
4.10, because now the average values are by contract and not by insured, noting that a contract could
concern more than an insured. Let us note that, the group of mixed contracts has a weak presence in
the whole of all the contracts, but regarding the averages of prices and SLF refunds of these contracts,
we find that they present a completely different behavior with respect to the other contracts, because
these averages are at least the double of those presented by the other contracts. As a consequence, the
average of the RAC for the mixed contracts with respect to the other contracts remains raised when
the contracts are compared among them, but weak because this kind of contracts represents 4.5 % of
the contracts only. Finally, we note that the global effect of the mixed group in the analysis of all the
contracts is important because this group allows to tip over the results by contract according to its
incorporation either to contracts using only CBP services, or to contracts without using CBP services.

In fact, without taking into account the mixed group, the average of the net price remains rather similar
between the groups of contracts which used or not CBP services, whereas the average of SLF refund is
higher for the contracts which used CBP services.

We continue now with the description of the historical data of the individual contracts during the period
2008 - 2012. We complete Table 4.6 with the frequency of vision services used with respect to all the
services used by the contracts. We obtain Table 4.12, with some small variations which are due to the
consideration of the remarks on the data presented in the previous section. We notice then that the
average of the total cost remains rather stable over the period 2008 - 2012. Besides, the average of SLF
refunds shows a clear increasing trend; as a consequence we find that the average of RAC presents a light
trend to decrease, mainly on the last three years. Finally, the average of RSO refunds always remains
low and almost constant. We notice that the averages of total cost, refunds, and RAC are slightly higher
than those of Table 4.10; this is due to the fact that Table 4.12 presents results by contract and Table
4.10 by insured.

On the other hand, Table 4.12 shows that variations of the average of the number of customers having
used vision services during the considered years are imperceptible.

These historical data also allow us, by insured, the deduction of the recurrence of annual use of vision
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Parameter

Type of data aggregation by contract

Type CBP (∗) Type without CBP (†) Type mixed (‡)

Use of Use of Use of CBP
servicesCBP services CBP services

Yes No Yes No Yes No Mixed

Frequency (%) 44.9 55.1 40.4 59.6 40.4 55.1 4.5
Average of net price 818.8 758.8 759.7 803.3 759.7 758.8 1,346.5
Average of SLF refunds 277.5 234.2 248.6 257.0 248.6 234.2 535.3
Average of RAC 520.3 506.6 493.4 525.9 493.4 506.6 761.0
(∗) Type CBP : the mixed contracts are aggregated to contracts which use CBP services
(†) Type without CBP : the mixed contracts are aggregated to contracts which do not use CBP
services

(‡) Type mixed : the mixed contracts remain separate from other contracts

Table 4.11: Expenses and refunds by use of CBP services, by contract, all individual contracts with
consumption of vision services in 2012, SLF

Year
Frequency of
vision services

used (%)

Cost of vision
services

(average)

RSO SLF RAC
(average)

Customer
number
(average)

refunds refunds
(average) (average)

2008 18.6 752 21 202 530 1.2
2009 19.6 771 21 218 532 1.2
2010 20.0 785 21 230 534 1.2
2011 21.2 781 20 239 521 1.2
2012 20.6 767 19 250 498 1.2

Table 4.12: Expenses and refunds on vision services by year and individual contract, SLF

services during the period 2008 - 2012. This recurrence may be described through the number of insureds
using vision services and the averages of cost, refunds, and RAC. The concerned results are given in
Table 4.13. We notice that this table contains several variables of Table 4.12, however the results of
Table 4.13 are expressed by insured.

In order to appropriately interpret the numbers presented in Table 4.13, we describe the case of an
insured who used vision services throughout the period considered, thus 5 years. This insured paid on
average an annual net price of 590 e for all the vision services used during any year. Due to these
purchases the insured of our example received on average an annual SLF refund of 229 e. It means
that for the analyzed period, the total expenses in vision services made by this insured were on average
590× 5 = 2, 950 e and the total SLF refunds were on average 229× 5 = 1, 145 e.

The results presented in Table 4.13 highlight that almost half of the insureds having undergone at least
an event in vision services received refunds in a single year during the period 2008 in 2012, whereas the
another half insureds used vision services by two or more years during this period. In this last case, we
notice that every time these events occurred over several years, the costs increased at first to decrease
then, but the refunds always increased. As a consequence, the RAC tended to decrease as the annual
recurrence of this type of events increased.

Following discussions with the technicians of SLF, they recommend to pay attention on the interpretation
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of the parameter “number of years of use of vision services”, which is based in calendar years. Certain
contracts not being effective for calendar years, they can result in contracts showing consumption by two
years. We may try some strategies to mitigate this limitation with the data, for instance by removing the
consumptions at the beginning and at the end of the calendar year (it is possible for CBP data because
the date of consumption is known, but not for SLF data because the available data is aggregated
over time periods), secondly we could produce quarterly data (by taking advantage of existing queries
developed by SLF).

Number of
years using

vision services

Number of
insureds
(%)

Total
refund

SLF (%)

Net price
(average)

RSO SLF RAC
(average)refunds refunds

(average) (average)

1 49.2 46.1 628 15 178 435
2 30.0 30.5 662 17 193 452
3 13.9 15.2 648 20 208 421
4 5.4 6.3 620 24 221 375
5 1.6 1.9 590 30 229 332

Total 100.0 100.0 640 17 190 433

Table 4.13: Annual expenses, refunds, and RAC for the period 2008 - 2012, insureds of individual
contracts which used at least one time vision services during the period 2008 - 2012, SLF

This time, we consider the commercial classification, which gives the commercial name of the products.
This parameter modulate the vision insurance products of SLF. We expect that the consumptions of the
insureds vary considering these characteristics. Table 4.14 presents these results. In this table includes
the averages of “ancienneté” of the contract, age, net price, RAC, and SLF funds, considering the use
or not of CBP services, thus data of 2012 are used only. Additionally, the percentage of the number
of vision services used by sex and commercial classification, and the percentage of insureds using CBP
services are included. The commercial classification has 17 categories, but only two are imperative:
“Ma Formule” and “Principale”, both together have a frequency over 75.0 % (see the second column of
Table 4.14). They are followed by the categories “Anciennes gammes”, “Familiale”, and “Swiss Santé
2000-200”. Considering the sex of the insured, in frequency terms, women consume more than men,
and the most important difference by sex is located at the category “Ma Formule”. Considering the
“ancienneté” of the contract, the category “Anciennes gammes” is related to contracts that exceeded
on average 22 years of “ancienneté”, followed by the category “Swiss Santé 2000-200” with about 11
years; the other categories have at most 7 years of “ancienneté”. Considering the age of the insured,
most of the consumptions of vision services are related to ages between 40 and 50 years old. Taking
into account the net price paid, it is on average near 650 e, but it can present meaningful variations
by considering certain categories of commercial classification. For instance, this average can increase
to 879.4 e at the category “Vitalité”, if the CBP services were used, or can decrease to 221.5 e at the
category “Avantageuses”, if the CBP services were used too. The first case corresponds to high ages,
74.4 years on average, and the second one to low ages, 32.0 years on average. We notice that generally
the average of RAC is higher when the CBP services are not used than when they are used.
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Now we consider the level of classification of products which is another parameter that allows their
modulation. This variable has less categories than the commercial classification, 8 only. We make
calculations as those presented in the Table 4.14, but by now considering the level of classification. The
results are presented in Table 4.15. There, we distinguish the levels of classification of the product “Ma
Formule” (“Entrée de gamme-Ma Formule”, “Moyenne gamme-Ma Formule”, and “Haut de gamme-Ma
Formule”) and the levels of classification of the other products. We notice that in both cases the level
of classification is a scale where the lowest levels are associated to products with basic and essential
guarantees, and the highest levels are associated to products with wider guarantees and that cover
certain specific needs. This scale has three levels, however the levels of classification of the product “Ma
Formule” carry a finer granularity giving seven levels that are usually grouped in the three levels cited
previously.

In frequency, the levels of classification of products that are different to “Ma Formule” are the most
representative involving about 75.0 % of all the insureds. However, seen that “Ma Formule” is at present
a current product, it is expected that this trend will be reversed in the future.

By sex of the insured, the most important gaps are situated at the categories “Moyenne gamme-Ma
Formule” and “Moyenne gamme”, with more frequency of consumption for women.

Considering the “ancienneté” of the contract, the results do not allow a clarification of the differences
found previously. At best, we identify the highest average of “ancienneté” at the category “Entreé
de gamme” with 8.0 years, which is less than the half of the highest average of “ancienneté” found
when the categories of the commercial classification were considered. The age either does not allow the
identification of big gaps. Furthermore, on net prices paid we find its highest average at the category
“Haut de gamme-Ma Formule” with about 800.0 e, which is over the highest average found when the
categories of the commercial classification were considered.

With respect to SLF refunds, we identify an increasing trend of the average of these refunds when
the level of classification increases. Furthermore, the highest average of SLF refund is situated at the
category “RG” with about 400.0 e. This behavior is observed independently if the CBP services were
used or not.

Finally, the average of RAC is higher when the CBP services were not used than when they were used,
excepting for the category “Entrée de gamme-Ma Formule”.
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4.3.2 Principal component analysis

We attempt to describe the linear relations among the variables taken into account in our study, the
use of CBP services among them. To this aim, a first frequently used multivariate method is principal
component analysis (PCA), which allows the transformation of the variables of the study, possibly
linearly related to each other, into new uncorrelated variables. These new variables are named “principal
components”, or main axes. One of the advantages of this method is the decrease of the number of
variables representing data and also the obtention of less redundant information, since the first axes
carry the highest levels of variability of the original information (cf. Saporta [124], 2006). We notice
that the relations analyzed by PCA are only of linear type. We shall put the accent on non-linear
relations later.

Given that PCA is a method limited only to quantitative variables, for this part of the study, we shall
take into account the variables age, “ancienneté” of contract, and refunds and expenses made in 2012
(Figure 4.1). As soon as the information was made available, we also built other variables as number of
children and number of persons assured under the same contract, number of years that the insured used
vision services, and refunds and expenses related to the contract for the period 2008 - 2011. Besides,
given that a qualitative variable taking only two values itself can be represented as a quantitative
variable, we included in the whole of variables to analyze the use of CBP services and the sex of the
insured. Let us note that for this analysis we take into account standardized variables in order to avoid
the influence of variables having high absolute values.

Figure 4.1 presents the first two principal components of PCA, from which the structure of these
components and the relations among the analyzed variables can be identified. These first two components
describe around 51.0 % of the variance of the data. The first component consists in a linear combination
of mainly variables related to refunds, expenses, amount payable by the insured, and number of years
that the insured used vision services during the period 2008 - 2011. A weak participation of refund,
expenses, and amount payable by the insured in 2012 is found. It means that this component describes
rather services and contracts. The second component represents rather insureds. This last component
is characterized, in a positive sense, by number of children in the contract and number of persons in
the contract, both variables remaining strongly related between each other, and, in a negative sense, by
age, net price, and RAC, with a certain relation between them.

We notice a weak participation of “ancienneté” of the contract and of use of CBP services in the
conformation of the first two components, and almost no participation of sex. Furthermore, the use of
CBP services is not related to any of the considered variables, however this variable has the same trend
of number of children in the contract or number of persons in the contract. The variable use of CBP
services will be analyzed in more detail later.

Another variable of interest in this study is RAC in 2012. It is strongly related to net price in 2012,
but from an operational point of view the net price is due to the result of the combination of several
factors, thus it is interesting to identify these factors to determine the behavior of RAC. At the moment,
only age of the insured allows an approximation to this variable, and more weakly “ancienneté” of the
contract.

A surprising fact of this analysis is the weak link between net prices observed in 2012 and those observed
during the period 2008 - 2011. The same applies to SLF refunds. This shows that the behaviors of
all these variables have historically changed. Furthermore, we note that for the period 2008 - 2011 the
variables net price, RAC, and SLF refunds have a certain relation among them, but in 2012 the variables
net price and RAC are linked, and SLF refund goes away from these first two variables.

Taking into account the third component, which describes much less variability of the information
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Figure 4.1: First and second components of PCA, individual contracts with consumption of vision
services in 2012, SLF

than the previous two components (12.83 % of variability only), we notice that it is built mainly by
“ancienneté” of the contract; see Figure 4.2 where we put in relation the first and third components.

The projection of the variables presented in this figure shows more clearly a different behavior of net
prices, RAC, and SLF refunds for the period 2008 - 2011 and for the year 2012, which was noticed in
Figure 4.1. Besides, use of CBP services is closer to number of children in the contract and to number
of persons in the contract, however all these three variables are close to the origin, thus their relations
are not necessarily strong, as noted in Figure 4.1.

From these results we deduce the need of including new variables in the analysis in order to improve
the description of the use of CBP services and RAC. Furthermore, by noticing that PCA is an analysis
of linear type and that its results remain valid for all the global information, it would be interesting
to apply other analysis in order to discover possible non-linear and local relations. We shall emphasize
this type of analysis later.

4.3.3 Analysis of contingency

A technique to find relations when only qualitative variables are involved is the analysis of contingency
(CtgA). This technique is based on a test of independence of couples of qualitative variables. This is
done by means of the test χ2. In our case, we do CtgA between the available qualitative variables of
the study and use of the CBP services. The results of the test χ2 are presented in Table 4.16 where the
most important parameter to be interpreted is p-value. This value measures the probability of rejection,
usually fixed as high as 5.0 %, of the null hypothesis of this test, i.e. the hypothesis of independence
between use of CBP services and any other qualitative variable of the study (cf. Saporta [124], on 2006).
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Figure 4.2: First and third components of PCA, individual contracts with consumption of vision services
in 2012, SLF

According to the results of CtgA, we notice that only comfort level is independent of use of the CBP
services. This means that it is useless to take this variable for future analysis. However it is necessary
to pay attention on this variable since it could be important in local non-linear analysis. The other
variables are dependent with use of the CBP services. This is important because these results prove
that there are links to be described, however CtgA does not specify how these relations are.

4.3.4 Analysis of correspondence

As mentioned above, CtgA does not focus on how associations among variables are. Contrarily, analysis
of correspondence (AC) helps to identify connections among the different categories of the variables
studied. An inconvenience of this method is that we can consider only two qualitative variables in each
analysis, however this method may allow the introduction of an additional variable to be evaluated,
as a supplementary variable, Saporta [124] (2006). This strategy consists in projecting a (qualitative)
variable called “supplementary” in a plan built using two given qualitative variables.

In a first AC we consider commercial classification and department to which the insured is associated.
As supplementary variable we choose the variable use of CBP services because it is of interest in the
exploratory analysis that we pursue. We find 23 categories for department, 9 of them concentrating
more than 75.0 % of all the population of insureds analyzed. We limit the study to these 9 categories.
Figure 4.3 shows the results of this AC. There, most of categories of the three variables studied are
concentrated around the origin, so including use of CBP services, which means that their participations
in the relations are almost nil. The only categories of interest in these results are part of the commercial
classification: “Monaco” and “Sérénité”, but there is no relation among them. Besides, the categories
“Ma formule hospi” of commercial classification and “Languedoc-Rouissillon” of department show some
relation, but weak.
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Qualitative variable χ2 Degrees of freedom p-value

Code of act 759.5 3 0.0000
Product code 10,968.7 138 0.0000
Code RSO 2,751.5 7 0.0000
Indicator of profit of the ACS 265.3 1 0.0000
Department 7,972.9 97 0.0000
Product family 176.6 2 0.0000
Fixed price of prevention 220.6 2 0.0000
Method of payment of the premium 2,100.8 3 0.0000
Commercial classification 10,276.7 16 0.0000
Indicator of 3rd free child 445.3 1 0.0000
Indicator of profit “Madelin” 18.9 1 0.0000
Premium collection indicator 1,090.9 1 0.0000
Comfort level 1.1 2 0.5710
Level of classification 3,657.0 12 0.0000
Level of vision service 969.1 7 0.0000
Indicator of contract responsible 2,953.4 1 0.0000
Position of contract 530.4 3 0.0000
Region 4,655.9 22 0.0000
Family relation 2,905.2 11 0.0000

Table 4.16: CtgA with respect to the use of CBP services, insureds of individual contracts with con-
sumptions of vision services in 2012, SLF

Figure 4.3: AC between commercial classification and department, with use of CBP services as supple-
mentary variable, insureds of individual contracts with consumption of vision services in 2012, SLF

In a second AC we consider the variables level of classification and department. For this last variable
we consider only 9 of its most representative categories as in the previous analysis. As supplementary
variable, once again, we choose use of CBP services. Figure 4.4 shows the results of this analysis. We
now find certain categories presenting significant relations. On one hand, we identify “Haut de gamme
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- Ma Formule”, “Haut de gamme”, and Alsace; and, on the other hand, we have Languedoc-Rouissillon,
Nord-Pas de Calais, “Entrée de gamme - Ma Formule”, and “Entrée de gamme”.

Furthermore, the category “Gar add” is significant but it remains quite isolated. The closest categories
to this level of classification are Lorraine and “Haut de gamme - Ma Formule”.

Other relations, but less significant, are among Aquitaine, “Moyenne gamme - Ma Formule”, and Center.
Other categories of level of classification and department are close to the origin, thus with no significant
participation.

Let us note finally that the categories of use of CBP services remain close to the origin, thus without
significant contribution to this analysis.

Figure 4.4: AC between level of classification and department, with use of CBP services as supplementary
variable, insureds of individual contracts with consumption of vision services in 2012, SLF

4.3.5 Regression tree

We are going to develop an exploratory analysis by including there all the variables of the database,
quantitative or qualitative, such as they appear. It is based on a technique inspired by models of
regression, with a target variable to be described, using the other variables as regressors. The resulting
model of this technique, called regression tree (RT), takes into account a set of regressors which have
categories only (cf. Breiman and al. [23], 1984).

This technique has the advantage of producing easily readable results, synthesizing multitudes of vari-
ables and observations, and without necessarily keeping linear relations as the case of PCA applied
previously. In fact, it is a technique of data-mining, of non-parametric and non-linear type.

Let us note that we will use the deviance to develop RTs. This error measure is based on the difference
of the logarithms of the likelihood functions of a model and of its saturated model (see for example
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McCullagh and Nelder [106], 1989, and Therneau and Atkinson [129], 1997), i.e.

D(y, µ) = 2
(
l(y, y)− l(y, µ)

)
,

where l(y, µ) is the log-likelihood function expressed as a function of the predicted mean value µ and of
the response value y.

We are going to do three applications of RT. At first, we shall analyze the variable “use of CBP services”
by using a binomial regression, which leads to a binomial RT. Then, we shall study RAC for the insureds
when they used CBP services by using a gamma regression, thus a gamma RT. Finally, we will study
RAC once again, but when the insureds did not use CBP services, with a gamma RT.

In what follows, all the levels of the category “Ma Formule” will be used. They are seven as mentioned
above, and in this study they are denoted by “1 - Ma Formule”, . . . , “7 - Ma Formule”.

Analysis of use of CBP services

The tree to be developed starts of a node which contains all the registers of the insureds having used
vision services in 2012. It is called the root node. Figure 4.5 presents the resulting tree. In this node
the insureds’ percentage having used CBP services is around 49.0 %, noted p = 0.49 in this figure. Let
us notice that the ideal model for the use of CBP services is p = 0 or p = 1, because in these two cases
the classification of this variable is perfect, thus without mistake.

The goal of the tree development process is the subsequent division of the root node. This is made using
the valuation of earnings of differences of deviances. The resulting difference for the node T in the case
of a binomial RT is (see e.g. [27])

2× n (f(pT )− qG × f(pG)− qD × f(pD)) , (4.3.1)

where n is the cardinality of the node T , i.e. n = |T |, the non-empty sets G and D verify G ∩D = ∅
and G ∪D = T , and qG = |G|

/
|T | and qD = |D|

/
|T |, pG and pD being estimators of the variable p on

G and on D respectively, f(x) = −x× ln(x)− (1− x)× ln(1− x).

By applying the procedure presented above to describe the use of CBP services, we find that, among
all the available variables, number of persons covered by the contract explains the most variability
(measured in terms of the difference of deviances) of use of CBP services. Moreover, this regressor being
a continuous variable, such procedure gives also the value of this variable which is used to divide the
node in analysis, i.e. the root node. This value is 2, which implies that a subset called G will be formed
by all the insureds with contracts benefiting up to 2 persons, and another subset called D will be formed
by all the insureds with contracts benefiting more than 2 persons. In terms of Figure 4.5, G corresponds
to the node 1 and D to the node 2. Considering the insureds’ percentages having used CBP services in
2012, we obtain p = 0.43 and p = 0.58 respectively. Let us note the gap between these two values of p
with respect to the one obtained for the root node. The procedure to develop RTs thus always tends to
generate values of p near either 0 or 1.

We continue with the repetition consecutive of the division process made for the root node but for
each new node, for example for nodes 1 and 2. This process of division stops at the arrival of certain
conditions only. In our case we limit the development of the tree to a certain tree size (the number of
consecutive divisions), maximum 4. The nodes that finally are not divided are called leaves. In the tree
presented in Figure 4.5 the leaves are the nodes 7, 15, 16, 9, 10, 11, 17, 18, 13, and 14, colored in grey.
Let us note that the union of these leaves is equal to the root node.

From this tree, we can deduce that:
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• Some variables are key for the development of the tree, they are: number of persons benefiting
from the contract, commercial classification, and department.

• The estimates of the use of the CBP services closest to either 0 or 1 are reached in the leaves 7,
15, and 14. Their values of p are 0.17, 0.27, and 0.68 respectively.

• Most of the leaves show weak estimates of use of CBP services. This result has relation with the
results obtained above when applying PCA and AC. For these leaves, the factors that promote
the use or not of CBP services are not clear.
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Let us describe the notes of Figure 4.5. It is about the codes of the categories of variables. Certain codes
are produced by SLF, as in commercial classification, and others are given by the available information,
as the code of department.

(1*): “Astucieuses”, “Ma formule add”, “Avantageuses”, “Minimale”, “Anciennes gammes”, “Monaco”,
“Garantie add”.

(2*): “Ma formule hospi”, “Swiss Santé 2000-200”, “Vitalité”, “Principale”, “Fondamentale”, “Ma For-
mule”, “Etudiants”, “Sérénité”.

(3*): 00, 01, 02, 04, 05, 06, 07, 08, 10, 11, 13, 15, 19, 20, 23, 25, 26, 30, 33, 36, 40, 41, 43, 46, 48, 50,
52, 54, 57, 61, 64, 65, 67, 68, 69, 73, 74, 75, 78, 79, 81, 87, 91, 92, 94, 97, 98.

(4*): 03, 09, 12, 14, 16, 17, 18, 21, 22, 24, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 42, 44, 45, 47, 49, 51,
53, 55, 56, 59, 60, 62, 63, 66, 70, 71, 72, 76, 77, 80, 82, 83, 84, 85, 86, 88, 89, 90, 93, 95.

(5*): 01, 04, 05, 06, 08, 09, 10, 18, 20, 22, 23, 25, 26, 28, 40, 42, 43, 45, 46, 48, 52, 57, 63, 64, 65, 67,
68, 69, 78, 84, 97, 98.

(6*): 02, 03, 07, 11, 13, 14, 15, 16, 17, 19, 21, 24, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 44,
47, 49, 50, 51, 53, 54, 55, 56, 58, 59, 60, 61, 62, 66, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82,
83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95.

(7*): 00, 01, 04, 05, 06, 07, 08, 12, 13, 15, 19, 20, 25, 26, 31, 32, 40, 41, 43, 47, 48, 52, 54, 57, 64, 65,
67, 68, 73, 74, 75, 78, 81, 91, 92, 94, 97.

(8*): 02, 03, 09, 10, 11, 14, 16, 17, 18, 21, 22, 23, 24, 27, 28, 29, 30, 33, 34, 35, 36, 37, 38, 39, 42, 44,
45, 46, 49, 50, 51, 53, 55, 56, 58, 59, 60, 61, 62, 63, 66, 69, 70, 71, 72, 76, 77, 79, 80, 82, 83, 84,
86, 87, 88, 89, 90, 93, 95, 98.

(9*): “Swiss Santé 2000-200”, “Ma formule add”, “Garantie add”, “Astucieuses”, “Avantageuses”, “Mo-
naco”, “Fondamentale”, “Minimale”, “Anciennes gammes”.

(10*): “Sérénité”, “Principale”, “Ma formule”, “Familiale”.

(11*): 03, 16, 17, 18, 22, 24, 28, 29, 31, 32, 34, 37, 45, 47, 49, 53, 55, 59, 60, 76, 77, 82, 83, 84, 90, 93, 95.

(12*): 09, 12, 14, 21, 27, 35, 38, 39, 42, 44, 51, 56, 62, 63, 66, 70, 71, 72, 80, 85, 86, 88, 89.

(13*): 02, 11, 13, 17, 19, 24, 30, 32, 34, 36, 38, 41, 50, 73, 74, 75, 76, 79, 81, 82, 83, 86, 87, 91, 92, 93, 94.

(14*): 03, 07, 14, 15, 16, 21, 27, 29, 31, 33, 35, 37, 39, 44, 47, 49, 51, 53, 54, 55, 56, 58, 59, 60, 61, 62,
66, 70, 71, 72, 77, 80, 85, 88, 89, 90, 95.

(15*): 00, 04, 05, 07, 08, 20, 43, 48, 52, 67, 68, 74, 81, 92, 97, 98.

(16*): 01, 02, 06, 10, 11, 13, 15, 19, 23, 25, 26, 30, 36, 40, 41, 46, 50, 54, 57, 61, 64, 65, 69, 73, 75, 78,
79, 87, 91, 94.

Analysis of RAC

We analyze RAC using a gamma RT. Indeed, since RAC is a continuous and positive variable we may
model this variable using a distribution gamma. In that case, the difference of the deviances for the
node T is given by (see e.g. [27])

2× n× (f(RACT )− qG × f(RACG)− qD × f(RACD)) , (4.3.2)
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where we keep the notations of (4.3.1), excepting RACA which is the average of RAC in the set A and
f(x) = ln(x).

The procedure of development of a binomial RT seen in the previous section may be used to generate
a gamma RT.

In a first analysis we consider RAC of the insureds when they used CBP services. Then the gamma RT
obtained is presented in Figure 4.6. From this development we can draw the following features:

• The main variables for this tree are: commercial classification, age, and department.

• The first variable used to divide the root node is commercial classification, which means that RAC,
in case of use of CBP services, is strongly influenced by this type of characteristic of products. In
this context, the categories “Familiale” and “Fondamentale” are definitively linked to low values
of RAC, and the other categories to high values of RAC.

• We notice a wide variation of RAC among the nodes, with 45 as the lowest average of RAC and
587 as the highest one. Most of these averages are well-distinguished, in subsets of size at least
10.0 % of all the registers analyzed.

• Age shows a clear positive relation with RAC. Indeed, these amounts increase with age.

• The leaf 14, linked to the highest average of RAC, represents a big subset which may carry a
differentiated behavior of RAC, because its size is important, around 34.0 % of the registers
studied. However, the tree developed shows that the available information is not enough for
finding features of the use of CBP services in this leaf.
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Description of the notes of Figure 4.6:

(1*): “Familiale”, “Fondamentale”.

(2*): “Swiss Santé 2000-200”, “Anciennes gammes”, “Astucieuses”, “Avantageuses”, “Etudiants”, “Ma
Formule”, “Ma formule hospi”, “Minimale”, “Monaco”, “Sérénité”, “Vitalité”, “Principale”, “Ma
formule add”.

(3*): 01, 02, 03, 04, 05, 08, 09, 10, 12, 14, 15, 16, 17, 18, 19, 21, 22, 24, 25, 26, 27, 28, 31, 32, 33, 35,
36, 37, 38, 40, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 64, 65, 66, 68, 69, 70, 71,
72, 74, 76, 79, 81, 84, 85, 86, 87, 88.

(4*): 06, 07, 11, 13, 20, 23, 29, 30, 34, 39, 41, 42, 43, 54, 60, 62, 63, 67, 73, 75, 77, 78, 80, 82, 83, 89,
90, 91, 92, 93, 94, 95, 97, 98.

(5*): 01, 02, 03, 04, 05, 06, 08, 09, 11, 12, 14, 15, 16, 17, 18, 19, 21, 22, 23, 26, 27, 28, 31, 32, 33, 34,
35, 36, 38, 40, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 58, 59, 60, 62, 64, 65, 66, 67, 68, 69,
70, 71, 72, 76, 79, 80, 81, 82, 83, 84, 85, 86, 87, 90, 98.

(6*): 07, 10, 13, 20, 24, 25, 29, 30, 37, 39, 41, 43, 54, 55, 57, 61, 63, 73, 74, 75, 77, 78, 88, 89, 91, 92,
93, 94, 95, 97.

(7*): 02, 04, 06, 07, 09, 10, 11, 13, 14, 16, 19, 22, 23, 26, 30, 31, 33, 34, 36, 40, 42, 47, 48, 49, 56, 57,
59, 61, 64, 65, 66, 68, 71, 72, 80, 81, 82, 83, 84, 86, 87, 88, 97, 98.

(8*): 01, 03, 05, 08, 12, 15, 17, 18, 20, 21, 24, 25, 27, 28, 29, 32, 35, 37, 38, 39, 41, 43, 44, 45, 46, 50, 51,
52, 53, 54, 55, 58, 60, 62, 63, 67, 69, 70, 73, 74, 75, 76, 77, 78, 79, 85, 89, 90, 91, 92, 93, 94, 95.

In a second analysis we consider RAC of insureds when they did not use CBP services. The gamma RT
obtained is presented in Figure 4.7. The shape of this tree looks like the one obtained when insureds
using CBP services were considered. However, we now find more regressors. From this tree we can draw
the following features:

• The first branches of the trees of Figures 4.6 and 4.7 are quite similar. This behavior changes
when RAC remains high, say the nodes 11, 12, 13, and 14 in Figure 4.7.

• The main variables for the tree are commercial classification, age of the insured, and department,
which were also used in the development of the gamma RT to model RAC when the CBP services
were used. Now other variables are added: level of classification and type of refund.

• A difference between the first branches of the trees of Figures 4.6 and 4.7 is that the categories of
the commercial classification concerned with the lowest values of RAC are now “Familiale” and
“Sérénité” (this last category replacing the category “Fondamentale” found in the previous tree).

• A positive relation between age and RAC, as in Figure 4.6, is found, but now the highest levels
of RAC are rather influenced by level of classification and type of refund. Generally, the products
“Moyenne gamme”, “Haut de gamme”, “3-Ma Formule”, “4-Ma Formule”, “5-Ma Formule”, “6-Ma
Formule”, “7-Ma Formule” push RAC upward. Other factors which promote high levels of RAC
are the categories P and S of type of refund.
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Description of notes of Figure 4.7:

(1*): “Familiale”, “Sérénité”.

(2*): “Anciennes gammes”, “Astucieuses”, “Avantageuses”, “Etudiants”, “Ma Formule”, “Ma formule
add”, “Minimale”, “Monaco”, “Principale”, “Fondamentale”, “Swiss Santé 2000-200”, “Vitalité”,
“Ma formule hospi”.

(3*): 01, 02, 03, 05, 06, 07, 08, 09, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28,
29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 54, 55,
56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 76, 78, 79, 80, 81, 82, 83, 85,
86, 87, 88, 89, 90, 98.

(4*): 04, 20, 53, 68, 75, 77, 84, 91, 92, 93, 94, 95, 97.

(5*): “RG”, “Gar add”, “Entrée de gamme”, “1-Ma Formule”, “2-Ma Formule”.

(6*): “Moyenne gamme”, “Haut de gamme”, “3-Ma Formule”, “4-Ma Formule”, “5-Ma Formule”, “6-Ma
Formule”, “7-Ma Formule”.

4.4 Descriptive analysis of the database provided by CBP

As mentioned in the second section, the database provided by CBP consists only of vision services
registered in 2012. Additionally, we developed a program, based on the IDCT and the birth date of
the insured, to integrate into the database provided by CBP the available information of contracts and
insureds provided by SLF, excepting net prices and SLF refunds since the last of these variables is not
coherent with the refunds registered in the database provided by CBP and the net prices consequently
would not have relation among the corresponding registers. On the other hand, we will use the refunds
aggregated by insured, because the available information already contains certain levels of aggregation,
for example by lenses and glasses purchased. Furthermore, we shall limit the study to the refunds
registered by CBP because, from the available information, this is the only available variable of interest
for our analysis.

We present now a series of studies as those done for the data provided by SLF. However, CtgA and AC
will be omitted because the variable to be studied is continuous. We could do such analysis if we would
have a qualitative version of this target variable, which could be made, for example by discretization.
We prefer to pass directly to the application of PCA and RT where a preprocessing of information is
not needed.

4.4.1 A first statistical approach

We are interested in the description of certain characteristics of vision products purchased. Table 4.17
shows the frequency of purchases, sex of the insured who bought vision products, average of “ancienneté”
of the contract, average of age of the insured, and average of refund. It is noted that frames and lenses,
both together, are the products more frequently purchased, mainly by women.

Besides, glasses are related to contracts with the highest average of “ancienneté” and the highest average
of insured age. In addition, among all products purchased, frames and glasses, both together, are
associated to the highest average of refund.

The products which concern frames only are the second most frequent, but very far from those concerning
frames and glasses.
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Vision product Frequency
(%)

Sex “Ancienneté”
(average)

Age SLF refund
(average)F M (average)

Frames 12.5 56.8 43.2 5.1 41.5 205.9
Lenses 3.8 69.8 30.2 4.5 33.9 133.5
Glasses 7.1 52.7 47.3 6.4 51.5 166.7
Frames and glasses 75.3 55.2 44.8 5.1 40.8 222.3
Lenses and glasses 0.0 55.6 44.4 3.0 34.4 69.9
Other than frames,
lenses or glasses 1.2 53.6 46.4 6.3 51.0 169.3

Total 100.0 55.7 44.3 5.1 41.5 212.2

Table 4.17: Some characteristics of refunds by type of vision product purchased, insureds of individual
contracts in 2012, CBP

4.4.2 Principal component analysis

We go to analyze the variable SLF refunds in 2012 of the database provided by CBP using PCA (this
method was described in Section 4.3.2), for which it is necessary to take into account only continuous
variables. Due to this fact, we have only 5 variables and can add sex since it can be represented by a
binary variable. The first two components of this analysis are presented in Figure 4.8.

This figure supplies important information. At first, with these two components we reach a high
description of the variability of all the information, around 59.0 %. These two components are very
well characterized by variables used in the analysis: the first component concerns characteristics of the
insured and his/her family, showing an inverse relation between the age of the insured and the number
of persons or children covered by the contract, and the second component aims at the characteristics of
the contract, with an inverse relation between “ancienneté” of the contract and SLF refund. Besides,
sex does not contribute to these two components.

We notice that the order of the components is inverted with respect to PCA done with the database
provided by SLF, where the first component has relations with characteristics of the contract and the
services, and the second component with characteristics of the insured.

As a consequence, with respect to our variable of interest, SLF refunds in 2012, from a linear point of
view, only “ancienneté” of the contract would contribute to the description of its behavior, without any
intervention of the characteristics of the insured.

Now we are interested on the third principal component and its relation with the first component exposed
above (see Figure 4.9). This third component explains less the variability of the information than any
of the two other previous components (16.73 % only). It consists fundamentally of the variable sex. In
this case, we identify no new relation for SLF refunds in 2012.

In conclusion, only “ancienneté” of contracts allows the formulation of linear relations with SLF refunds
in 2012. This leads to further study with non-linear analysis methods in order to search other kinds of
relations.
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Figure 4.8: First and second components of PCA, insureds of individual contracts with consumption of
vision services in 2012, CBP

4.4.3 Regression tree

For the development of a RT for the variable SLF refunds in 2012, as it is continuous and positive, we
decide to model this variable as a random variable following a gamma distribution; we will therefore
develop a gamma RT using the difference of deviances given in (4.3.2).

As regressors, we take all the available variables of both sources, those supplied directly by the database
provided by CBP and those available in the database provided by SLF.

Once applied the RT development process, the results are presented in Figure 4.10 from which we deduce
the following:

• The first variable, which allows the levels of SLF refunds in 2012 to be distinguished, is level
of classification. In fact, the lowest levels of such refund are associated to the levels “Entrée
de gamme”, “1-Ma Formule”, and “2-Ma Formule”, and the highest ones for the other levels of
classification.

• Other variables involved in the description of SLF refunds in 2012, are: type of refund, commercial
classification, insured age, and “ancienneté” of the contract.

• There are some leaves with high relative cardinalities where the available information is not enough
for describing the behavior of SLF refund, say the leaves 19 and 20.
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Figure 4.9: First and third components of PCA, insureds of individual contracts with consumption of
vision services in 2012, CBP

(1*): “Entrée de gamme”, “1-Ma Formule”, “2-Ma Formule”.

(2*): “RG”, “Gar add”, “Moyenne gamme”, “Haut de gamme”, “3-Ma Formule”, “4-Ma Formule”,
“5-Ma Formule”, “6-Ma Formule”, “7-Ma Formule”.

(3*): “Moyenne gamme”, “3-Ma Formule”.

(4*): “RG”, “Gar add”, “Haut de gamme”, “4-Ma Formule”, “5-Ma Formule”, “6-Ma Formule”, “7-Ma
Formule”.

(5*): “Entrée de gamme”, “1-Ma formule”.

(6*): “2-Ma Formule”.

(7*): “Anciennes gammes”, “Etudiants”.

(8*): “Swiss Santé 2000-200”, “Monaco”, “Ma formule add”, “Familiale”, “Ma Formule”, “Sérénité”,
“Ma formule hospi”, “Principale”, “Vitalité”.

(9*): “Anciennes gammes”, “Familiale”, “Ma Formule”.

(10*): “Principale”, “Swiss Santé 2000-200”, “Vitalité”, “Fondamentale”.
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4.5 Conclusion and Perspectives

We are now able to draw the first conclusions of this study. We will distinguish those of operational type
from those of analytical type, the first focusing on certain characteristics of the analyzed information
and the second on the perspectives and analysis strategies to continue this study.

4.5.1 Operational point of view

A big effort is put to manage the aggregated information provided by CBP and SLF because the
parameters of aggregation were unknown. That is noted when the matching by refund of the databases
of these two providers produced a lot of inconsistencies. In practice, it would have been simpler to
analyze the original information, but it was not possible due to a limited access to databases. Given this
constraint, it would be interesting to have the aggregated information with the queries that generated
it, in order to design other queries to extract more information.

We make efforts to relate the information of both available sources, in particular on SLF refunds, without
reaching this goal completely.

4.5.2 Analytical point of view

Based on the analysis performed we can conclude that:

• The use or not of CBP services influences some parameters associated to vision insurance products
of SLF. That was noticed for the averages by insured of net prices, SLF refunds, and RAC. The
use of CBP services is favorable to the insured considering net prices, SLF refunds, and RAC.
Hence, SLF refunds were lower when these services were not used. We summarize some results
presented in Table 4.10, which correspond by insured, individual contracts with consumption of
vision services in 2012, SLF, in order to highlight these differences.

Parameter Use of CBP services

Yes No

Average of net price 629.6 664.1
Average of RSO refund 16.2 15.6
Average of SLF refund 213.8 204.3
Average of RAC 399.6 444.1

Table 4.18: Extract from Table 4.10, CBP

In the case of RAC, which is an important variable for SLF, details of its behavior with respect
to the use or not of CBP services can be described by taking into account some variables. For
example, regarding commercial classification, Table 4.14 shows that the average of RAC according
to the use or not of CBP services varies through the categories of commercial classification, as
emphasized in Table 4.19, extracted from Table 4.14. These variations are between 5.3 % and
8.5 % for the two main categories, “Ma Formule” and “Principale”.
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Commercial
classification

RAC (average)

All
insureds

Use of CBP services

Yes No

“Anciennes gammes” 548.1 575.6 534.0
“Astucieuses” 313.3 206.0 313.6
“Avantageuses” 223.6 184.6 244.1
“Etudiants” 420.1 442.9 399.4
“Familiale” 67.2 68.1 65.8
“Fondamentale” 127.4 51.9 188.8
“Garantie add” 499.0 499.0
“Ma Formule” 421.2 410.1 433.2
“Ma formule add” 558.5 308.3 560.9
“Ma formule hospi” 371.6 443.3 327.5
“Minimale” 260.0 247.7 266.6
“Monaco” 286.0 378.2 284.4
“Principale” 451.1 431.0 471.5
“Swiss Santé 2000-200” 501.3 478.2 521.2
“Sérénité” 169.0 194.1 143.3
“Vitalité” 614.1 618.3 611.1

Total 422.4 399.6 444.1

Table 4.19: Extract from Table 4.14, SLF

Another point of view of RAC is given by level of classification. Table 4.20, extracted from Table
4.15, shows those results. Now, we notice that for all the levels of classification, RAC is higher
when the CBP services were not used than when they were used, excepting for the category
“Entrée de gamme-Ma Formule”.

Classification level
RAC (average)

All
insureds

Use of CBP services

Yes No

“Entrée de gamme-Ma Formule” 397.2 407.4 386.6
“Moyenne gamme-Ma Formule” 428.0 409.6 448.5
“Haut de gamme-Ma Formule” 464.1 423.5 501.9
“Entrée de gamme” 453.3 446.9 458.9
“Gar add” 499.0 499.0
“Haut de gamme” 439.8 399.3 472.9
“Moyenne gamme” 402.1 372.6 431.8
“RG” 127.4 51.9 188.8

Total 422.4 399.6 444.1

Table 4.20: Extract from Table 4.15, SLF

• We detect contracts with averages of net price and SLF refund much higher than the corresponding
averages computed over the other contracts. It concerns contracts where insureds covered by these
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contracts consumed vision services in 2012 using CBP services and not using these services. This
type of contracts we call them “mixed” (see Table 4.11).

• We identify a progressive and continuous increase of the average of SLF refunds over the period
2008 - 2012, whereas averages of net prices presented stable behaviors (Table 4.12).

• Table 4.13 shows that 44.0 % of insureds used vision services by 2 or 3 years during a period of 5
years.

• We find evidence that the average of RAC is higher when the CBP services are not used. This trend
is observed for certain commercial classifications as “Astucieuses”, “Avantageuses”, “Fondamen-
tale”, “Ma Formule”, “Ma formule add”, “Minimale”, “Principale”, and “Swiss Santé 2000-200”
(see the extract of Table 4.14 above, i.e. Table 4.19). From the perspective of the classification
levels, this trend remains for all its categories excepting “Entrée de gamme-Ma Formule” (see
Table 4.20, which is an extract of Table 4.15).

• Principal component analysis allows the detection of weak linear relations between age with RAC,
and “ancienneté” of the contract with SLF refunds. To find relations when considering the use
of CBP services is more difficult. Analysis of contingency indicates the presence of relations with
almost all the variables, but without specifying how these relations work. Using the correspondence
analysis does not help neither.

• Regression trees show that the local description of the use of the CBP services would mainly
require the variables: number of persons benefiting from the contract, commercial classification,
and department. When RAC or SLF refunds are considered instead of the variable “use of CBP
services”, this technique shows that these variables may be locally described by: number of persons
covered by the contract, commercial classification, classification level, type of refund, “ancienneté”
of contract, department of the insured, and age of the insured. Furthermore, for all these target
variables, it remains sets where all the available information was not enough to analyze the behavior
of the variable of interest.

• The study is done with the information provided by SLF and the variables to be used are defined
together with its technicians. However, after the results are obtained, the technicians of SLF
suggest additional variables that could be interesting to be included in the study, as for instance
the two variables “level of guarantee” and “geographical localization of the CBP service network”.
These two variables would help explaining the behavior of the use of CBP services and the levels
of consumption of vision services.

It seems then necessary to include more information to go further in this analysis. For example registers
with more precision could bring new clues, or the information of the next years could help determining
more clearly the factors influencing the use of CBP services, RAC, and SLF refund.

Other information which could be integrated into the analysis is consumptions of the insureds in other
types of services (for instance car, health, and prevention insurance) and technical information related
to vision services provided by CBP (for instance the technical specifications of vision products). It is
important also to redo this analysis with data of 2013 in order to update the study seen that some
variables are evolving over years, for instance SLF refunds.



Chapter 5

Empirical study of dependence between
mortality and market risks

This chapter presents the study developed with M. Dacorogna (see [50]).

5.1 Introduction

The current solvency regulations are emphasizing for the capital assessment of the tails of the distribu-
tion. Solvency II requires the estimation of the Value-at-Risk (VaR) at the 99.5th percentile (see e.g.
[39]) whereas the Swiss Solvency Test requires the estimation of the Tail-Value-at-Risk (TVaR) at the
99th percentile (see e.g. [112]). This means that risk measures as VaR or TVaR should then consider
any dependencies between mortality and market risks since mortality shocks could alter the results of
these measures, for instance to estimate the risk-adjusted capital. In a risk management framework,
this would then imply the constitution of provisions in order to face financial losses due to excessive
mortality. Hence, this study attempts to find evidence of relationships between mortality and market
risks in order to contribute to adequately assess the mortality risk.

Relationships between mortality and market risks could be observed daily. This occurs when, for exam-
ple, mortality is involved directly in financial markets through investments made with funds generated
by insurance products linked to mortality. Insurers and reinsurers use this type of investment to face
their obligations. Now, what we want to know is the effects of mortality in more general situations.
More precisely, we are interested about influences of mortality shocks on some economic and financial
variables. In the example of insurance cited above, for instance a pandemic could depreciate the value
of assets which would be used to pay claims.

It might be thought that effects of mortality shocks are related to products and investments linked to
mortality only. In reality, mortality might have indirect effects. Evidences of these impacts are presented
later.

A review of literature show that studies on how extreme mortality affects economic growth are scarce
(see e.g. [21], p. 2, and [77], p. 75). Some of these studies are based on economic theory and give
ambiguous predictions regarding the relationship between large population shocks and economic growth.
Other studies analyze the economic effects of the few cases of well-known mortality extreme events, and
provide inconclusive evidence on the issue. All these studies are done with too little information, which
may be a reason on the limitations of their results. Nevertheless, the way of how these studies are
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developed may contribute to our analysis because they may give us clues on elements to be taken
into account. For instance, the well-known mortality extreme events are interesting since historical
experiences of pandemics may teach us on their implications on economy. Let us see closer the best
known cases of pandemics, the Black Death and the Spanish flu. The first case caused the largest
demographic disaster in European history and happened violently between 1343 and 1346, killing 30-
60 % of Europe’s total population (see e.g. [1]). Although this experience happened some centuries ago,
this is interesting for us since some of its economic impacts are observed on subsequent epidemics. It
concerns the decrease in the supply of labour (see e.g. [43]) and, following economic theory, the increase
of wages and conditions. The second case is more interesting since it is considered a benckmark on
implications of current pandemics, despite the loss of economic data (see e.g. [77], p. 75). Based on
the epidemic caused by the Spanish flu during 1918 - 1919, some authors (e.g. Brainerd et al. [21] and
Garrett [77]) conclude that due to modern-day epidemics some businesses could suffer loss of income,
while others specialized in health care products and services could experience an increase in revenues.
Also, an increase of wages due to the decrease in the supply of labour would be observed. This last
fact was identified among the economic effects of the Black Death. Another interesting result of these
studies on the Spanish flu concerns the time span of consequences of pandemics. This time, that is not
considered among the expected implications of pandemics, will play an important role in the formulation
of our study strategy. The time span of consequences of the Spanish flu was short, around a decade.
This time span is largely different of the one of the Black Death, which was estimated in 6 generations,
near 150 years. These different behaviors in time span may be due to that the Spanish flu was not so
lethal as the Black Death and that the socio-economic conditions where these large epidemics happened
were completely different.

Subsequently to the Spanish flu, other epidemics have appeared, but with much less number of deaths.
For instance, H2N2 Asian flu, H3N2 HK flu, AIDS (acquired immune deficiency syndrome), SARS (se-
vere acute respiratory syndrome), H5N1 Avian flu, and more currently Ebola virus. Economic impacts
of some of these epidemics are documented, for instance [20] and [26] for SARS and [25] for H1N1. The
consequences of these epidemics did not become large thanks to measures of control and erradication.
However, it is interesting to note that in some of those events some viruses were not completely errad-
icated and they could newly spread in the future (see e.g. [26]), and maybe with a mutated version of
the known viruses ? . . . it is possible as happened with the Black Death which was caused by a variety
of the Yersinia pestis bacterium considered inexistant nowadays. The situation could deteriorate even
further since some countries do not have enough resources to face this kind of events (see e.g. [26]),
mainly those with higher population densities and poverty.

Some of the above-mentioned epidemic eruptions have motivated analysis assuming the development of
severe epidemics. These studies use the Spanish flu as benchmark. In those scenarios Burns et al. [26]
conclude that the aggregate productivity would be diminished due to the infection of the population,
which would be deteriorated if there is loss of lifes. This last fact was also observed among the effects of
the Black Death where a large part of the population died. Additionally, these authors mention some
economical sectors that may suffer losses. Among they are air transportation, consumption of services as
restaurants, tourism, and mass transportation (train and bus). In terms of the gross domestic product
(GDP), losses by region in a year would vary between 2.6 % and 4.4 %. Furthermore, in the case of
flu epidemics they are typically experienced in at least two waves with peak period of infection during
the winter. The above-mentioned impacted sectors are related directly with epidemics. There are also
indirect impacts of epidemics on economic sectors, which will be analyzed later.

There are further studies on economic impacts of epidemics. We just mention that developed in [88],
whose authors conclude that Europe could suffer a contraction from 2 % to 4 % of its GDP in case of
a major epidemics.

As mentioned above, the previous studies are based on economic theory or on the analyis of mainly
the experience of the Spanish flu. They show us, in a world scale, the economic sectors that would be
impacted positively and negatively and the levels of economic losses. The time span of consequences
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of epidemics would be mainly one year, but with possible future episodes. More recently, another
kind of analysis of impacts of epidemics on economy and finance has been developed. It focuses on
the analysis of relations among the variations of observed mortality and market indices. This type
of analysis methodology was proposed by Ribeiro and di Pietro [122] from JP Morgan. This analysis
perspective is significatively different from the study procedures of mortality and market risks presented
above. For instance, suppositions made in economic theory and the experience of the Spanish flu are
no longer required. However, this kind of analysis presents an unavoidable drawback. There are no
large modern-day epidemics to be analyzed, excepting the Spanish flu which was the last observed one.
Despite this limitation, Ribeiro and di Pietro give results that show that these innovative studies are
promising approaches to deal with the implications of epidemics.

Let us briefly review the methodology proposed by Ribeiro and di Pietro, that is of interest for us, and
some of their results. Interested on the transfer of mortality risk to financial markets, these authors
claim that it is reasonable to expect very poor equity performance if epidemics would cause the global
GDP contractions from 2 % to 4.8 % predicted by Burns et al.. So, from their point of view, epidemics
could indirectly impact on finance. Then Ribeiro and di Pietro develop an innovative methodology to
prove this hypothesis, which is based mainly on the evaluation of dependencies among extreme events
of mortality and asset prices. These authors define the mortality extreme events as “. . . those where the
change in mortality rate (average of log change in US male mortality across all age groups) represented
more than a 0.5 standard deviation move relative to the previous year. The average of mortality rates
are calculated over the previous 5 years.” (see [122], p. 5). Considering equity returns, which are price
returns for Dow Jones-Industrial Average, these authors find that in US, while mortality and equities
exhibit low correlation in periods without extreme events in mortality, these variables have a larger
dependence in extreme events. More precisely, spikes up in mortality would be associated to a severe
drop of the average performance of the index (-4.6 % versus an average performance of 4.9 %), and large
improvements in mortality rates would produce positive equity returns and above performance (13.2 %
versus 4.9 %).

The previous methodology starts defining extreme events in mortality. These authors vary their method-
ology by defining equity extreme events as “. . . those where equity returns represented more than a 0.5
standard deviation move relative to the long term.” (see [122], p. 5). Then, considering mortality rate
changes following large stock market declines, these authors find no clear relation.

From the results found by Ribeiro and di Pietro, the following natural questions then arise: do those
results hold over other countries?, what about the statistical significance of their findings?, and, since
the notion of variance used to define extreme values in mortality could significatively vary when extreme
values are considered, how could extreme values be identified without using variance? We will tackle
these questions with our study. Inspired by the work of Ribeiro and di Pietro, we aim in our study to
provide some empirical evidence of a changing behavior of the economy and of the financial markets
during periods where the mortality is relatively high. This study is done by using various mortality
indices, by selecting clusters of extreme events, by taking into account economic and financial variables,
and by considering a number of industrialized countries, US included. So far, we notice that our
methodology does not consider the notion of variance for identifying extreme values.

The presentation of this study mainly follows the one given in [50]. Section 5.2 is devoted to present the
data and their transformations. Section 5.3 presents the methodology used to develop the statistical
analysis. Main results are presented in Section 5.4, and discussed in Section 5.5. We conclude in Section
5.6. An appendix contains results when varying the mortality index.
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5.2 Data

We have chosen six representative industrialized countries for our study: United States (US), United
Kingdom (UK), Japan (JP), France (FR), Sweden (SW), and Australia (AU), where the life insurance
industry is well established and financial markets are sufficiently developed to reflect all information
available at any point in time.

We analyze data samples of each of these countries, so there are six different samples.

For the mortality data, we use the Human Mortality Database publicly available on http://www.
mortality.org. This site provides comprehensive yearly data on the subject. We recovered unisex life
tables for our study, i.e. without distinction of gender. We notice that Ribeiro and di Pietro focus on
males only. All of our mortality indices are built from these tables. These indices are introduced in
Section 5.3, where the methodology we use is explained. An inconvenient that these life tables present,
is that all of them are neither standardized on the periods of information, nor on the last year of
information. In other words, the period of available mortality information can vary from one country to
another. A similar situation is observed for the financial and economic information to be used. Hence,
the periods of information to be used in this study are established in coordination with the periods of
availability of mortality, financial, and economic information. These periods are presented later.

For economic and financial data we use mainly data collected by Global Finance Data (see http:
//www.globalfinancialdata.com), but, in order to obtain long enough time series for the French GDP,
we use for it the Maddison GDP data [102]. The choice of essentially a unique source of financial and
economic data is to ensure consistency among various countries. The economic and financial variables
to be studied are GDP, inflation (here we choose the consumer price index, CPI), 10Y Government
Yield (or government bonds), and stock index. The last variable has specific names depending on the
country (see Table 5.1). Notice that the stock index for US is the S&P 500 which is more representative
than the US stock market since it contains a wider variety of companies than the Dow Jones Industrial
Average. This last index is used by Ribeiro and di Pietro as a financial index to be related to a mortality
index.

Country Stock index name

AU ASX All-Ordinaries
FR CAC All-Tradable Index
JP SE Price Index (TOPIX)
SW OMX Affärsvärldens General Index
UK FTSE All-Share Index
US S&P 500

Table 5.1: Names of stock indices used in the study

Additionally, GDP and CPI were computed considering a base year, which implies that, for any of these
variables, data from different years are comparable.

We end up with long time series that are mostly limited by the availability of mortality data in particular
for JP and for US: US starts in 1933 and JP in 1947. FR is the country that ends up having the longest
sample, from 1880 to 2009. The data periods by country to be used in this study are defined in Table 5.2.
For all these periods, mortality as well as economic and financial information is available. Additionally,
we also eliminate from our sample the years of the First and Second World Wars (1914- 1918 and
1939-1945) for all countries directly involved in it (except SW, which stayed neutral both times) as they
would introduce a bias due to the war conditions. This, of course, excludes the year 1918, which was

http://www.mortality.org
http://www.mortality.org
http://www.globalfinancialdata.com
http://www.globalfinancialdata.com
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the year of the outburst of the Spanish flu. We will discuss this data constraint in the next section.

AU(*) FR(*) JP(*) SW UK(*) US(*)

From 1921 1880 1947 1901 1922 1933
To 2011 2009 2012 2011 2011 2010

Number of observations 79 118 66 111 78 66

(*) Periods of World Wars are excluded, 1914 to 1918
and 1939 to 1945

Table 5.2: Data periods by country

The frequency of the data is yearly since it is the common higher frequency among all data.

All those data, on mortality as well as on economic and financial variables, except for bonds, are then
treated in terms of logarithmic changes:

xi = ln(pi)− ln(pi−1), (5.2.1)

where pi represents one of the indices used in the analysis. This formula is not applied to bonds because
these data were already expressed as variations.

5.3 Methodology

5.3.1 General methodology

• A first mortality index.
We start defining the mortality index for this study. It is based on the expected lifetime at birth
for the whole population of a given country, denoted by e0, and computed yearly. The mortality
index is then the logarithmic change year-by-year of e0 (see (5.2.1)).
The expected lifetime at birth is defined as the average number of years a newborn child would live.
The expected lifetime estimates used here, are period estimates. This means that the expected
lifetime for each year is computed using the mortality information of the current year and not
using the information of the birth cohort over the future years. We do not use cohort estimates
since complete mortality information for last cohorts is not available.
The period estimates of the expected lifetime are computed by using the next formula.

e0 =
1− exp

(
− µ(0)

)
µ(0) +

∑
k≥1

1− exp
(
− µ(k)

)
µ(k)

k−1∏
j=0

exp
(
− µ(j)

)
,

where µ(x) is the force of mortality at age x.
We notice that Ribeiro and di Pietro consider a different mortality index, based on mortality rates.
We also repeat the analysis for a mortality index based on mortality rates, and for other mortality
indices. All of these indices are given in Subsection 5.3.2.

• Choice of extreme values.
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We choose the worst 10 years in mortality (excluding the First and Second World Wars, 1914 to
1918 and 1939 to 1945, respectively), i.e. the years associated to the 10 lowest negative values of
the logarithmic changes of the mortality index. This is also equivalent to choose quantiles instead
of thresholds based on variances. These years we report in Table 5.3 together with the value of
the changes in parenthesis. These worst years in mortality are our definition of mortality extreme
values. We call this set of extreme values an extreme sample. Hence, our definition of mortality
extreme values is different of that given by Ribeiro and di Pietro that is based on variances.
Table 5.3 presents the results of the application of our definition of extreme values in mortality.
We notice there, on one hand, that the largest change (-16.68 %) is for SW in 1918, followed by
the second largest change (-6.44 %) for FR in 1911. From these two rates we can see that the
effect of the Spanish flu in SW was important. On the other hand, we see for FR, which has the
longest sample, that most of the worst years in mortality are concentrated on the XIXth century.
Besides, all the negative changes are modest except very few exceptions like SW in 1918 and FR
in 1890, 1898, and 1911.

US UK JP FR SW AU
Year Rate Year Rate Year Rate Year Rate Year Rate Year Rate

1934 (-1.07%) 1924 (-2.10%) 1956 (-0.21%) 1884 (-1.82%) 1905 (-1.57%) 1923 (-1.85%)
1936 (-0.89%) 1927 (-1.03%) 1957 (-0.20%) 1886 (-1.84%) 1908 (-1.01%) 1926 (-0.48%)
1957 (-0.33%) 1929 (-3.90%) 1980 (-0.04%) 1890 (-4.89%) 1910 (-1.07%) 1934 (-0.98%)
1960 (-0.09%) 1931 (-1.27%) 1988 (-0.10%) 1898 (-4.14%) 1914 (-0.70%) 1946 (-0.67%)
1962 (-0.19%) 1936 (-0.32%) 1990 (0.01%) 1899 (-1.69%) 1915 (-1.85%) 1951 (-0.44%)
1963 (-0.24%) 1949 (-0.41%) 1995 (-0.19%) 1906 (-1.29%) 1918 (-16.68%) 1959 (-0.58%)
1966 (-0.04%) 1951 (-0.57%) 1999 (-0.04%) 1911 (-6.44%) 1924 (-1.58%) 1962 (-0.32%)
1968 (-0.43%) 1961 (-0.35%) 2005 (-0.13%) 1925 (-1.61%) 1927 (-1.96%) 1964 (-0.55%)
1980 (-0.12%) 1968 (-0.53%) 2010 (-0.07%) 1929 (-2.10%) 1931 (-0.83%) 1968 (-0.49%)
1993 (-0.26%) 1972 (-0.32%) 2011 (-0.28%) 1949 (-1.39%) 1944 (-1.44%) 1970 (-0.56%)

Table 5.3: The ten worst years of the changes in mortality index (and their values) by country.

For these worst years, we look at the performance of economic and financial indicators and compare
them with the average performance over the whole sample. This gives us already an indication
of changes of the behavior in the extremes beyond a simple short-term dynamics as it would be
the case if we only looked at a particular pandemic eruption or a particular event. If there is any
effect, it will be due to underlying causes that affect both risks at the same time.

• On the statistical significance of the results on extremes.
The statistical significance of the results on extremes is analyzed using bootstrapping techniques
to choose a small sample out of a big one. We bootstrap with replacement in the full sample for
each country. This means that we randomly choose a set of 10 data from the N data of the whole
sample, N depending on the country (see Table 5.2). In our case the ith observation is a row
vector

xi =
(
xi0, xi1, xi2, xi3, xi4

)
, i = 1, . . . , N,

where xi0, xi1, xi2, xi3, xi4 are the logarithmic rates of the mortality, GDP, inflation, stock, and
bond indices respectively. Then, M = 10,000 sets of the 10 chosen years are bootstrapped for each
country, say

X(j) =
(
x

(j)
1 , . . . ,x

(j)
10
)
, j = 1, . . . ,M,

where x(j)
k ∈

{
x1, . . . ,xN

}
, k = 1, . . . , 10, and x(j)

k =
(
x

(j)
i0 , x

(j)
i1 , x

(j)
i2 , x

(j)
i3 , x

(j)
i4
)
. Now, suppose

that a statistic of interest is θ. Then, this statistic is estimated for each sample X(j), giving the
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row vector
(
θ̂

(j)
0 , . . . , θ̂

(j)
4
)

=
(
θ̂(x(j)

1,0, . . . , x
(j)
10,0), . . . , θ̂(x(j)

1,4, . . . , x
(j)
10,4)

)
. This then provides for the

lth variable the sample θ̂(1)
l , . . . , θ̂(M)

l . From all these estimates an empirical distribution of θ for
the lth variable is built as follows (see e.g. [65]):

Fθl,M (x) = 1
M

M∑
j=1

I(θ̂(j)
l ≤ x).

The statistics which are of interest in this study is the mean and the correlation coefficient.
In this way, we can compare an observed value of such statistics estimated on an extreme sample,
against the behavior of the values of this statistics on bootstrap samples. This comparison may
be made by computing a pl-value, as follows:

pl-value = P (θl ≤ θ̂l) = 1− P (θl > θ̂l), (5.3.1)

where θ̂l is the value we found for the extreme sample. As the true distribution of θl is unknown,
it is estimated by Fθl,M giving

p̂l-value = Fθl,M (θ̂l) = 1− Fθl,M (θ̂l).

Then, if p̂l-values are lower 0.05 or over 0.95 we say that θl is statistically significant.

• On other mortality shocks that occurred this last century.
To complement Table 5.3, we also present in Table 5.4 the main pandemic episodes since the
Spanish flu happened in 1918, which remains as the latest big pandemic. We see that the events
after the crisis of 1918 do not reach the severity presented in 1918, except for AIDS but which
had a long duration, more than 10 years. The number of deaths presented for AIDS corresponds
to that period.

Year 1918 1957 1968 1981 2002 2006 2014

Type Spanish Flu H2N2 Asian Flu H3N2 HK Flu AIDS SARS H5N1 Avian Flu Ebola Virus

Deaths 30 4 2 25 0.008 0.002 0.006

Table 5.4: List of the main pandemic, the year when it started, and the number of deaths attributed
to them during the last century (in million)

Comparing the years appearing in Tables 5.3 and 5.4, we see that there is not really correspondence
among them. This makes sense since most of those epidemics were not located in the analyzed
countries, excepting AIDS which had a long duration as mentioned above.

• Computation of variations averages.
One of the first statistic to be used is the mean. The empirical mean of a sample X1, . . . , Xm of
a variable X is defined by

X̄ = 1
m

m∑
i=1

Xi.

In order to do our analysis, we need also to compute the averages of economic and financial
variables corresponding to the years of extreme samples. We deal with these variables as with the
mortality index. First, their logarithmic variations are computed, except for bonds. Then, the
average of these variations corresponding to the years of extreme samples are calculated. These
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outputs then show the behavior of these variables on extreme samples. Let us see this procedure in
a real case. Considering US and the years of the extreme sample presented in Table 5.3, Table 5.5
shows the variations of the economic and financial variables, adding the variations of the mortality
presented in Table 5.3. At the bottom of Table 5.5, the averages of each variable corresponding
to the extreme and whole samples are presented. The comparison of these averages give an idea
of the influence of mortality shocks on GDP, inflation, stock, and bonds. For instance, computing
logarithmic variations (see the last row in Table 5.5), we have a decrease in GDP and an increase
in stock, both being sharp, whereas for inflation and bonds the variations are weak.

Year Mortality GDP Inflation Stock 10Y Gov. Yield

1934 -1.07 % 10.27 % 1.50 % -6.17 % 2.99 %
1936 -0.89 % 12.23 % 1.44 % 24.56 % 2.52 %
1957 -0.33 % 0.36 % 2.86 % -15.45 % 3.21 %
1960 -0.09 % 0.85 % 1.35 % -3.02 % 3.84 %
1962 -0.19 % 4.19 % 1.32 % -12.57 % 3.85 %
1963 -0.24 % 5.05 % 1.63 % 17.30 % 4.14 %
1966 -0.04 % 4.41 % 3.40 % -14.03 % 4.64 %
1968 -0.43 % 4.85 % 4.61 % 7.38 % 6.16 %
1980 -0.12 % -0.04 % 11.79 % 22.93 % 12.43 %
1993 -0.26 % 2.59 % 2.71 % 6.82 % 5.83 %

Extreme -0.37 % 4.48 % 3.26 % 2.78 % 4.96 %
Full sample 0.30 % 3.19 % 3.64 % 6.50 % 5.54 %
Variation:
ext. vs full sample -33.96 % 11.03 % 84,94 % 11,06 %

Table 5.5: Averages of variables, 10 worst years in mortality, US

• Computation of correlations of variations.
We also explore the dynamics of the results. To this aim, we use a lead-lag correlation analysis
following the methodology developed by Dacorogna et al. in [51], section 7.4.2. We lead and lag
the economic and financial variables in relation to the mortality indices during years associated to
the extreme sample to see if there are retarded effects. We compute the correlation over 5 years lag
and 5 years lead. This analysis allows one to see if any of the economic or financial indicators have
an effect on the mortality indices (lag-analysis), or if the mortality indices have lagged effects on
the economic or financial indices (lead-analysis). Note that in these computations the correlation
between the mortality index and the economic or financial indices for current years is included,
when no year is leaded or lagged.
The correlation coefficient calculated in this study is the Pearson correlation coefficient given by

r =
∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
,

where n is the sample size,
{

(x1, y1), . . . , (xn, yn)
}
is a bivariate sample, and x̄ = n−1∑n

i=1 xi and
ȳ = n−1∑n

i=1 yi.
Let us see in practice this lead-lag correlation retaking US and considering GDP, for 2 years lag
and 2 years lead only. Table 5.6 presents logarithmic variations of GDP observed from y − 2 to
y + 2, where y is a year of the 10 worst years in mortality. Note that in the column “GDP y”,
the GDP variations presented in Table 5.5 are recovered since the year y appears in this table.
Then, correlations among mortality and GDP variations are computed. These results, presented
at the bottom of the table, show a change of trend in the correlation of these two variables due to
a mortality shock with effect in the year y + 1 mainly.
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Year (y) Mortality GDP y-2 GDP y-1 GDP y GDP y+1 GDP y+2

1934 -1.07 % -13.93 % -1.29 % 10.27 % 8.53 % 12.23 %
1936 -0.89 % 10.27 % 8.53 % 12.23 % 5.00 % -3.51 %
1957 -0.33 % 6.37 % 1.98 % 0.36 % 2.63 % 4.45 %
1960 -0.09 % 2.63 % 4.45 % 0.85 % 6.18 % 4.19 %
1962 -0.19 % 0.85 % 6.18 % 4.19 % 5.05 % 5.03 %
1963 -0.24 % 6.18 % 4.19 % 5.05 % 5.03 % 8.14 %
1966 -0.04 % 5.03 % 8.14 % 4.41 % 2.66 % 4.85 %
1968 -0.43 % 4.41 % 2.66 % 4.85 % 2.05 % -0.15 %
1980 -0.12 % 6.47 % 1.29 % -0.04 % 1.28 % -1.41 %
1993 -0.26 % 1.22 % 4.24 % 2.59 % 4.05 % 2.25 %

Lead-lag correlation with mortality 0.46 0.27 -0.84 -0.56 -0.15

Table 5.6: Lead-lag correlations of GDP with mortality, 10 worst years in mortality, US

5.3.2 Varying the mortality index

In the previous subsection a mortality index based on the expected lifetime at birth was introduced. We
vary the mortality index in order to redo the study done for the mortality index and then we compare
these results with those obtained previously.

These variations of the mortality index are computed using the same information used to compute the
mortality index based on the expected lifetime at birth.

• Our second mortality index is based on the definition of the mortality rate qt,r in year t for an age
range 25− 50, which is taken as the ratio between the number of deaths Dt,r occurring in year t
in a population of individuals aged 25 at the beginning of that year by the number of individuals
Pt,25, i.e. (see e.g. [133])

qt,r = Dt,r

Pt,25
. (5.3.2)

• A variation of the previous mortality index consists in to capture the mortality between age 25
and 50, weighting by the population size of each age. So, for a given year t, we compute the
weighted mortality rate as follows:

q̃t,r =
50∑

x=25
wt,xqt,x,

where wt,x = Pt,x
/∑50

y=25 Pt,y and qt,x = Dt,x

/
Pt,x. Then, q̃t,r can be expressed as

q̃t,r =
∑50
x=25Dt,x∑50
x=25 Pt,x

. (5.3.3)

This index is not so different from qt,r since the values Dt,x for x from 25 to 50 are always low
with respect to their corresponding values Pt,x. Thus it is not surprising that it will find the same
worst years for some countries while almost the same for the other countries. These results are
presented later.

• Let us see another mortality index more. Given t, the probabilities, at age x, pt,y for y = x, x+ 1,
. . . , of dying in the yth year of age form the called curve of the deaths (see e.g. [58]). We use
pieces of these curves to define another mortality index. We define the mortality entropy St,r, for
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a range r, by computing the entropy of the curve of deaths at age 25 for individuals aged between
25 and 50 at the beginning of the year t. It is thus expressed by

St,r =
50∑

x=25
−pt,x × ln(pt,x). (5.3.4)

Note that following the usual notion of entropy, our mortality index based on St,r would evaluate
the concentration level of the curve of deaths for the range r. Hence, this variable allows the
analysis of the evolution of these curves through time.
In practical terms, as in industrialized countries the curve of deaths for ages between 25 and 50
tend to be flatter over years, this means an increase of St,r.

• Our last mortality index is inspired by the notion of variation coefficient (see e.g. Salkind, pp.
169-171). We define the mortality variation coefficient V Ct,r, for an age range r, as the ratio of
the standard deviation to the mean of the number of deaths in year t at ages x, Dt,x, being x =
25, . . . , 50. This variable is defined by

V Ct,r =

√
1
25
∑50
x=25

(
Dt,x −Dt

)2
Dt,r

, (5.3.5)

where Dt,r =
∑50
x=25Dt,x

/
26.

Note that, given a population of size Pt at year t, these numbers of deaths can be computed using
the curve of deaths only since Dt,x = pr,x × Pt for x = 25, . . . , 50. In particular, this shows that
V Ct,r is independent of Pt as well as St,r.
Similar to the usual variation coefficient, our mortality index V Ct,25−50 measures the variability
of numbers Dt,x’s without considering the unit of measurement of these numbers and it can be
thus used to compare curve of deaths obtained in different years.

5.4 Results

The first results concern the extreme and full sample averages of the variables that are studied, which
are collected in Table 5.7. In this table similar results on GDP for the year following the worst years
are included. Besides, p-values of estimates of these averages, computed using the bootstrap procedure
described above, are presented between parentheses. Additionally, to ease the reading of the results, we
include rows called reduction (R), which give the relative variations of the extreme averages (x̄e) with
respect to the whole sample averages (x̄s), i.e.

R = x̄e − x̄s
x̄s

× 100.

Values of reductions are presented for stock and bonds only since these variables systematically present
positive reductions (excepting for stock of AU), which are expected behaviors.

In this study the number of worst years in mortality being initially 10 is varied to 5, 15, and 20 in order
to extend the exploration and to check the stability of the results. Table 5.8 collect results for stocks
and bonds for all these extreme sample sizes. The numbers corresponding to the size 10 were presented
above.

Another element of analysis is the correlation coefficients between mortality and, economic and financial
variables, within extreme and whole samples. These coefficients are collected in Table 5.9, including
their corresponding p-values computed as above.
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Indicator US UK JP FR SW AU
1933-2010 1922-2011 1947-2012 1880-2009 1901-2011 1921-2011

GDP:
extreme 4.48% (93%) 3.17% (91%) 3.91% (27%) 2.81% (67%) 0.53% (4%) 4.24% (87%)
full sample 3.19% 2.26% 4.98% 2.47% 2.87% 3.47%
extreme + 1 year 4.25% (89%) 2.15% (46%) 3.19% (14%) 2.59% (71%) 6.60% (100%) 4.47% (93%)

Inflation
extreme 3.26% (47%) 2.72% (26%) 1.39% (7%) 2.25% (24%) 5.21% (81%) 4.73% (71%)
full sample 3.64% 3.86% 3.89% 4.58% 3.64% 4.21%
Stock
extreme 2.78% (25%) 2.86% (36%) 5.95% (40%) −0.40% (19%) 1.53% (27%) 7.47% (62%)
full sample 6.50% 5.16% 8.47% 5.02% 5.79% 5.93%
reduction 57.3% 44.7% 29.8% 108.1% 73.6% -26.0%
10Y Gov. Yield
extreme 4.96% (40%) 5.31% (20%) 4.79% (27%) 3.75% (3%) 4.25% (10%) 4.78% (6%)
full sample 5.54% 6.55% 5.75% 5.57% 5.64% 6.72%
reduction 10.4% 18.9% 16.7% 32.6% 24.6% 28.8%

Table 5.7: We report the average performance of various economic indicators compared to the sample
average. The sample size for the extremes is 10 worst years. For stock indices and 10Y government
yields, we also report the reduction of the average performance compared to the sample average. In
parenthesis, we present the p-values computed using (5.3.1) for the averages of the extreme sample

Additionally, other mortality indices are explored, following the analysis done for the mortality index
based on expected lifetimes. So averages and correlations as those presented in Tables 5.7 and 5.9 are
computed for those mortality indices. These results are presented in the Appendix since these indices
do not provide more sharp insights than the mortality index based on expected lifetimes. Particular
features of results concerning these other mortality indices will be discussed.

5.5 Discussion of the results

First, this study attempts to describe risks that could affect an insurance company in terms of its
solvency. Hence, it is important that the data to be used do not introduce biases related to exceptional
conditions that are not contemplated by the insurance industry. That is the case of data corresponding
to the First and Second World Wars, 1914 to 1918 and 1939 to 1945; that is why data of those periods
are excluded from this study, excepting for SW which stayed neutral in both wars.

Next, let us analyze Tables 5.3, 5.7, 5.8, and 5.9. Focusing on the years associated to the largest
mortalities (see Table 5.3), we notice that they are not the same through the countries, but they
are mainly concentrated until 1968, excepting for JP. The results for JP make sense since its data
are available from 1947 only. This feature shows that for the analyzed countries the socio-economic
conditions have influenced the mortality behavior mainly since 1969, producing in modern-days less
drastic mortality experiences. This is a well-documented fact (see e.g. [113] and [46]), which corresponds
to a so called “epidemiological transition” that produced sharp mortality reductions in the decade of
the 60’s.

Considering the mortality index rates depicted in Table 5.3, the lowest one (−16.68 %) happened in
SW, 1918. This is the only double digits change we experience in the whole set. This year is associated
to the First World War and it was thus excluded, but not from SW since this country stayed neutral.
However, in 1918 the Spanish flu happened and this may be the cause of the extreme mortality observed
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Variable n = 5 n = 10 n = 15 n = 20

US:
Stock 3.43% (33%) 2.78% (25%) 6.15% (52%) 2.84% (19%)
reduction 47.29% 57.31% 5.37% 56.36%
10y Gov. Yield 4.14% (17%) 4.96% (40%) 5.55% (77%) 5.16% (69%)
reduction 25.18% 10.39% -0.24% 6.88%
UK:
Stock −3.00% (16%) 2.86% (36%) 5.40% (56%) 3.62% (39%)
reduction 158.12% 44.68% -4.51% 29.90%
10y Gov. Yield 4.44% (8%) 5.31% (20%) 5.96% (48%) 6.23% (71%)
reduction 32.22% 18.86% 8.88% 4.87%
JP:
Stock 5.37% (40%) 5.95% (40%) 5.48% (36%) −1.07% (3%)
reduction 36.61% 29.76% 35.34% 112.62%
10y Gov. Yield 4.95% (33%) 4.79% (27%) 4.78% (32%) 4.60% (30%)
reduction 13.92% 16.65% 16.89% 19.96%
FR:
Stock 2.78% (40%) −0.40% (19%) −0.39% (14%) 6.10% (64%)
reduction 44.66% 108.06% 107.84% -21.52%
10y Gov. Yield 3.31% (2%) 3.75% (3%) 3.69% (1%) 4.01% (3%)
reduction 40.64% 32.65% 33.82% 28.12%
SW:
Stock 17.59% (90%) 1.53% (27%) 3.66% (36%) 7.32% (69%)
reduction -203.8% 73.62% 36.77% -26.45%
10y Gov. Yield 4.63% (28%) 4.25% (10%) 4.17% (6%) 5.01% (42%)
reduction 17.90% 24.64% 26.09% 11.15%
AU:
Stock 9.02% (64%) 7.47% (62%) 3.71% (33%) 4.61% (42%)
reduction -52.01% -25.96% 37.50% 22.25%
10y Gov. Yield 4.81% (10%) 4.78% (6%) 5.93% (40%) 6.46% (73%)
reduction 28.36% 28.77% 11.74% 3.85%

Table 5.8: We report the average performance and the reduction in comparison with the full sample
performance of the stock indices and the 10Y Government Yield in the extreme sample as a function of
the sample size, varying it from 5 to 20 worst years.
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Indicator US UK JP FR SW AU
1933-2010 1922-2011 1947-2012 1880-2009 1901-2011 1921-2011

GDP:
extreme −0.84 (3%) 0.07 (71%) 0.12 (11%) −0.58 (10%) 0.24 (51%) 0.12 (78%)
full sample −0.40 −0.15 0.41 0.30 0.35 −0.14
Inflation
extreme 0.31 (57%) 0.46 (93%) 0.35 (58%) 0.01 (49%) −0.93 (4%) 0.16 (67%)
full sample 0.10 −0.17 0.71 0.29 −0.42 −0.16
Stock
extreme −0.18 (26%) 0.26 (83%) −0.00 (21%) −0.45 (6%) 0.27 (83%) −0.15 (25%)
full sample 0.05 −0.06 0.40 0.07 −0.03 0.01
10Y Gov. Yield
extreme 0.42 (90%) 0.22 (87%) 0.04 (16%) 0.44 (98%) −0.60 (1%) −0.17 (12%)
full sample −0.12 −0.12 0.11 −0.06 −0.04 0.09

Table 5.9: We report the correlation of various economic indicators with the mortality index within
the extreme sample (correx) compared to the sample average. The sample size for the extremes is 10
worst years. For the correx, we put in parenthesis the p-values computed using (5.3.1).

in SW.

On the other hand, Table 5.7 reveals interesting behaviors of economic and financial variables when
mortality shocks occur. For instance, we have that the average of GDP calculated on extreme samples
increases with respect to the average of the overall sample, which is observed for four of the six countries
studied, exceptions are JP and SW. However, when the consecutive year is considered, this trend changes
in three of those four countries, and for the another country, AU, the average of GDP continues to
increase. Notice that all this behavior is not expected as observed in the Black Death and the Spanish
flu where the production decreased. This unexpected relation would be related to the fact that the
mortality shocks considered are not serious. Anyway, the extreme sample averages involved are not
statistically significant. Inflation presents a different behavior. The average of this variable on extreme
samples decreases in four of the six countries analyzed, exceptions are SW and AU. This is also observed
with stocks, but in five of the six countries, excepting AU. For this variable relative reductions with
respect to overall averages are calculated. These reductions are of at least 30 % and may increase
considerably, up to almost 110 %, depending on the country. The averages of bonds on extreme samples
present systematic behaviors in all countries. They always decrease with respect to the global averages,
but with smaller reductions than those observed for stocks. The largest reduction is observed for FR
(32.7 %) and the smallest one for US (10.4 %). Further, three of the extreme sample averages are
statistically significant, those for FR, SW and AU. Considering GDP and inflation, a few extreme
sample averages are statistically significant, without showing a clear trend.

So far, we notice that our methodology allows for some countries, US included among them, the detection
of relations between the variations of stocks and mortality shocks. These findings corroborate the
one found by Ribeiro and di Pietro for US and extend their result. However, these relations are not
statistically significant, which was not tested by these authors.

In the previous results we found that stocks and bonds are generally impacted by mortality shocks.
From this, it is natural to ask us how these trends evolve when the extreme sample size, n, varies. Table
5.8 shows the corresponding results concerning stocks and bonds for n = 5, 10, 15, and 20. Then, we
first have that reductions tend to decrease when n increases, which makes sense because the extreme
sample size approaches the size of the whole sample. Second, observed positive reductions for bonds
when n = 10 hold when n varies. This behavior changes for stocks, some reductions being positive
when n = 10 become negative when n varies, even when n decreases to 5, as the cases for SW and AU.
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This shows that stocks are highly sensitive to mortality shocks, but without presenting clear trends.
Taking into account p-values, FR bond is the most interesting case since it always presents statistically
significant extreme sample averages with positive reductions, showing that mortality shocks in FR have
systematic effects on this variable when n varies between 5 and 20. Other interesting cases are AU
whose average of bond within the extreme sample remains statistically significant when n decreases to
5, and also UK that presents for the first time a statistically significant extreme sample average of bond
when n decreases to 5. The other extreme sample averages with positive reductions in Table 5.8 are not
statistically significant.

Table 5.9 presents results on correlations. We notice the lack of correlation for financial data with
mortality on the full sample and an increase when looked at in the extreme sample. Furthermore, the
economic variables present as expected on the whole sample a certain correlation. Focusing on correla-
tions on extreme samples, only a few of them over all countries and variables studied are statistically
significant. Since the notion of correlation is important for the understanding of bivariate processes,
more studies on this subject in the framework of extreme samples are needed. In this sense, exploration
may continue by considering some analysis techniques offered by literature. Among them we have non-
parametric correlation measures (see for example [63]) or procedures suggested to assess extreme rates
correlations as those proposed by e.g. Longin and Solnik [101] and Ledford and Tawn [98]. Other
strategies may deal with the evaluation of asymptotic independence or dependence (see e.g. Balkema
and Nolde, [6] and [7]), or bounding the dependence by applying the Stein method (see e.g. [81]). We
notice that the method to be applied should consider that the number of observations used are few,
which implies inefficient estimates with large standard errors, and also that the incorporation of more
observations induces biased estimates because the observations to be added do not necessarily belong
to processes observed in extreme situations (see e.g. [101], p. 655).

The study is extended to other mortality index definitions given in Subsection 5.3.2, but their results
presented in appendix do not show important variations with respect to what was found when the
expected lifetime is used as mortality index. Let us see them.

Tables 5.10, 5.11, 5.12, 5.13, 5.14, and 5.15 present, for each country (in the order US, UK, JP, FR,
SW, and AU, respectively), the worst 10 years of mortality by varying the mortality index, including
the mortality index based on expected lifetimes. As mentioned above, the indices based on mortality
rates and weighted mortality rates give almost the same worst years of mortality, through all countries.
Besides, for any country, it is found that the mortality index based on mortality entropy gives almost
the same worst years produced by the two previous mortality indices. The worst years associated to
all these mortality indices are concentrated until 1968, as happened with the mortality index based on
expected lifetimes. Contrarily, the worst year given by the mortality index inspired by the variation
coefficient are mainly concentrated since 1969, excepting for FR and SW.

Next, we have couples of tables concerning averages and correlations on extreme samples by each new
mortality index, considering always the 10 worst years of mortality. A notorious fact through the tables
of averages, Tables 5.16, 5.18, 5.20, and 5.22, is that they do not show results of interest as in the case of
the mortality index based on expected lifetimes. Then, so far, this last mortality index would give the
best descriptions of relations between mortality and market risks. On the other hand, we notice that
the mortality indices based on mortality rates or on weighted mortality rates corroborate the relation
found by Ribeiro and di Pietro for US stocks, i.e. a decrease of this variable when mortality shocks
happen.

Next, from the fact that the most of mortality indices give the same or almost the same worst years
in mortality, we have that correspondingly the extreme sample averages of economic and financial
variables do not vary or vary little. But, that does not hold when considering the mortality indices since
their numbers are always different from one index to another. This fact produces that the correlation
coefficients presented in Tables 5.17, 5.19, 5.21, and 5.23 be different from one index to another. Anyway,
these correlations are in general not statistically significant.
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5.6 Conclusion

Through an empirical study we explore relations between mortality risk and economic and financial
risks by using samples of extreme values of a small size n. This study spans six countries and covers
periods of more than 80 years. Most effects are detected on financial markets, but only a few of them
are statistically significant, say UK bonds (n = 5), AU bonds (n = 5, 10), and, systematically, FR
bonds (n = 5, 10, 15, 20). In the case of stocks, there are influences of mortality shocks but always
not statistically significant. These influences consist in a decrease in the rates of variation of stocks and
bonds when mortality shocks happen.

Considering the inflation rates on extreme samples with respect to whole samples, they decrease because
of mortality shocks, but these effects occur in four of the six countries and are not statistically significant.
The GDP rates show a different dynamic. In general, these rates increase in the year when the mortality
shock happened and then, in the next year, decrease. These behaviors are statistically significant in a
few cases.

Pearson correlation analysis on extreme samples shows a few statistically significant correlations only,
from which generalizations are not possible. Since the notion of correlation is important for the un-
derstanding of bivariate processes as the ones of mortality and economic or financial variables, it is
suggested the application of alternative procedures to analyze the dependence, as for instance the ones
mentioned in the discussion of the results.

Our study shows an effect on the financial variables because they react faster than the economic variables
like GDP or inflation. Besides, we see an unexpected effect on GDP because our sample does not include
serious pandemic oubreaks. Hence, our findings are mainly the relations found between stocks and
bonds variations and mortality shocks, some of which being statistically significant. We coud observe a
decrease of the variation of the stocks when a decrease of the variation of the mortality index happens,
and the same relation holds when bonds are considered instead of stocks. These contributions extend
and complement previous studies like that of Ribeiro and di Pietro. Also, these results depend on the
parameters considered in the study as the definition of mortality, the number of worst years of mortality,
the study period, and the identification of extreme events by applying either the block maxima method
or the peaks-over-threshold method. On the identification of extreme values, the peaks-over-threshold
method could be tried too. These studies could also be tackled using dependency analysis as mentioned
in the discussion of results. Further studies on the relations between these risks are needed.

On the other hand, new models for mortality projection provide time components giving a synthetic
index of mortality over time, see for instance [32]. These processes may be also used as mortality indices
in order to deepen this study.
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Appendix: Results by varying the definition of the mortality indices

Expected Mortality Entropy Variation Weighted
lifetime rate coefficient rate

1934 (-1.07%) 1937 (-3.92%) 1937 (-3.23%) 1964 (-2.11%) 1937 (-4.23%)
1936 (-0.89%) 1938 (-10.30%) 1938 (-8.48%) 1969 (-2.87%) 1938 (-11.00%)
1957 (-0.33%) 1946 (-5.97%) 1946 (-5.03%) 1979 (-3.17%) 1946 (-6.27%)
1960 (-0.09%) 1948 (-3.76%) 1948 (-3.23%) 1984 (-3.32%) 1948 (-3.94%)
1962 (-0.19%) 1954 (-5.74%) 1954 (-4.77%) 1986 (-7.79%) 1954 (-5.91%)
1963 (-0.24%) 1974 (-4.60%) 1974 (-3.90%) 1987 (-2.71%) 1974 (-4.74%)
1966 (-0.04%) 1975 (-4.03%) 1975 (-3.28%) 1988 (-3.09%) 1975 (-4.11%)
1968 (-0.43%) 1982 (-4.91%) 1982 (-4.12%) 1989 (-3.10%) 1982 (-5.02%)
1980 (-0.12%) 1996 (-6.96%) 1996 (-5.99%) 2001 (-2.28%) 1996 (-7.15%)
1993 (-0.26%) 1997 (-6.61%) 1997 (-5.76%) 2006 (-2.50%) 1997 (-6.78%)

Table 5.10: The ten worst years of the changes in mortality indices (and their values) for various
indices, and for US.

Expected Mortality Entropy Variation Weighted
lifetime rate coefficient rate

1924 (-2.10%) 1923 (-8.77%) 1923 (-7.19%) 1930 (-4.15%) 1923 (-9.39%)
1927 (-1.03%) 1928 (-5.94%) 1928 (-4.77%) 1978 (-3.99%) 1928 (-6.24%)
1929 (-3.90%) 1930 (-11.73%) 1930 (-9.39%) 1987 (-3.51%) 1930 (-12.31%)
1931 (-1.27%) 1934 (-8.09%) 1934 (-6.59%) 1990 (-3.88%) 1934 (-8.51%)
1936 (-0.32%) 1938 (-9.16%) 1938 (-7.47%) 1994 (-5.23%) 1938 (-9.56%)
1949 (-0.41%) 1946 (-5.27%) 1946 (-4.68%) 1996 (-3.71%) 1946 (-5.61%)
1951 (-0.57%) 1948 (-8.73%) 1948 (-7.27%) 1998 (-3.39%) 1948 (-9.03%)
1961 (-0.35%) 1950 (-4.23%) 1950 (-3.76%) 2006 (-5.40%) 1950 (-4.41%)
1968 (-0.53%) 1952 (-9.80%) 1952 (-8.30%) 2007 (-3.34%) 1952 (-10.08%)
1972 (-0.32%) 1980 (-4.87%) 1980 (-4.07%) 2009 (-3.00%) 1980 (-4.94%)

Table 5.11: The ten worst years of the changes in mortality indices (and their values) for various
indices, and for UK.
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Expected Mortality Entropy Variation Weighted
lifetime rate coefficient rate

1956 (-0.21%) 1948 (-11.09%) 1948 (-8.84%) 1966 (-3.03%) 1948 (-12.19%)
1957 (-0.20%) 1949 (-7.92%) 1949 (-6.37%) 1983 (-2.39%) 1949 (-8.73%)
1980 (-0.04%) 1950 (-9.25%) 1950 (-7.57%) 1987 (-2.87%) 1950 (-10.26%)
1988 (-0.10%) 1951 (-14.02%) 1951 (-11.57%) 1994 (-2.06%) 1951 (-15.25%)
1990 (0.01%) 1952 (-12.76%) 1952 (-10.59%) 1995 (-2.02%) 1952 (-13.65%)
1995 (-0.19%) 1953 (-6.73%) 1953 (-5.66%) 1998 (-3.76%) 1953 (-7.15%)
1999 (-0.04%) 1955 (-7.82%) 1955 (-6.58%) 1999 (-1.61%) 1955 (-8.25%)
2005 (-0.13%) 1958 (-9.00%) 1958 (-7.45%) 2003 (-2.78%) 1958 (-9.34%)
2010 (-0.07%) 1971 (-6.11%) 1971 (-5.09%) 2009 (-1.56%) 1971 (-6.24%)
2011 (-0.28%) 2012 (-11.02%) 2012 (-9.58%) 2011 (-3.60%) 2012 (-11.13%)

Table 5.12: The ten worst years of the changes in mortality indices (and their values) for various
indices, and for JP.

Expected Mortality Entropy Variation Weighted
lifetime rate coefficient rate

1884 (-1.82%) 1901 (-6.37%) 1901 (-5.02%) 1881 (-9.60%) 1897 (-6.10%)
1886 (-1.84%) 1908 (-6.08%) 1908 (-4.79%) 1884 (-7.22%) 1901 (-7.12%)
1890 (-4.89%) 1919 (-64.98%) 1919 (-47.21%) 1886 (-5.77%) 1908 (-6.74%)
1898 (-4.14%) 1920 (-27.16%) 1920 (-21.57%) 1893 (-9.19%) 1919 (-86.55%)
1899 (-1.69%) 1927 (-6.85%) 1927 (-5.44%) 1902 (-4.94%) 1920 (-31.52%)
1906 (-1.29%) 1946 (-51.37%) 1946 (-41.86%) 1911 (-7.76%) 1927 (-7.37%)
1911 (-6.44%) 1952 (-9.38%) 1952 (-8.03%) 1919 (-165.9%) 1946 (-56.34%)
1925 (-1.61%) 1958 (-10.48%) 1958 (-8.62%) 1961 (-5.90%) 1952 (-9.79%)
1929 (-2.10%) 1997 (-5.68%) 1997 (-5.16%) 1990 (-4.56%) 1958 (-10.75%)
1949 (-1.39%) 2004 (-6.07%) 2004 (-5.17%) 1991 (-6.06%) 2004 (-6.16%)

Table 5.13: The ten worst years of the changes in mortality indices (and their values) for various
indices, and for FR.
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Expected Mortality Entropy Variation Weighted
lifetime rate coefficient rate

1905 (-1.57%) 1916 (-7.29%) 1916 (-5.85%) 1903 (-8.66%) 1916 (-7.79%)
1908 (-1.01%) 1919 (-47.66%) 1919 (-36.71%) 1905 (-9.47%) 1919 (-56.25%)
1910 (-1.07%) 1920 (-13.49%) 1920 (-10.89%) 1911 (-8.43%) 1920 (-15.09%)
1914 (-0.70%) 1921 (-12.06%) 1921 (-9.79%) 1914 (-14.59%) 1921 (-13.07%)
1915 (-1.85%) 1923 (-11.45%) 1923 (-9.35%) 1919 (-143.7%) 1923 (-12.24%)
1918 (-16.68%) 1928 (-6.78%) 1946 (-8.96%) 1924 (-19.82%) 1928 (-7.22%)
1924 (-1.58%) 1946 (-10.36%) 1948 (-9.55%) 1943 (-11.70%) 1932 (-7.04%)
1927 (-1.96%) 1948 (-10.98%) 1981 (-6.97%) 1967 (-9.91%) 1946 (-10.87%)
1931 (-0.83%) 1981 (-7.94%) 1995 (-5.59%) 1982 (-8.20%) 1948 (-11.43%)
1944 (-1.44%) 2002 (-6.94%) 2002 (-5.59%) 2005 (-9.62%) 1981 (-8.10%)

Table 5.14: The ten worst years of the changes in mortality indices (and their values) for various
indices, and for SW.

Expected Mortality Entropy Variation Weighted
lifetime rate coefficient rate

1923 (-1.85%) 1922 (-7.93%) 1922 (-6.66%) 1923 (-5.00%) 1922 (-8.53%)
1926 (-0.48%) 1930 (-13.03%) 1930 (-10.56%) 1925 (-6.02%) 1924 (-4.78%)
1934 (-0.98%) 1932 (-5.43%) 1932 (-4.62%) 1928 (-4.33%) 1930 (-13.63%)
1946 (-0.67%) 1953 (-6.21%) 1953 (-5.49%) 1959 (-4.62%) 1932 (-5.78%)
1951 (-0.44%) 1971 (-6.65%) 1971 (-5.62%) 1968 (-6.32%) 1953 (-6.44%)
1959 (-0.58%) 1978 (-4.57%) 1979 (-3.76%) 1982 (-5.05%) 1971 (-6.80%)
1962 (-0.32%) 1981 (-4.56%) 1981 (-3.75%) 1985 (-4.59%) 1978 (-4.62%)
1964 (-0.55%) 1983 (-6.88%) 1983 (-5.67%) 1988 (-10.03%) 1983 (-6.97%)
1968 (-0.49%) 2001 (-6.79%) 2001 (-6.03%) 1995 (-8.05%) 2001 (-6.93%)
1970 (-0.56%) 2010 (-5.71%) 2010 (-5.03%) 1998 (-17.15%) 2010 (-5.79%)

Table 5.15: The ten worst years of the changes in mortality indices (and their values) for various
indices, and for AU.
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Indicator US UK JP FR SW AU
1933-2010 1922-2011 1947-2012 1880-2009 1901-2011 1921-2011

GDP:
extreme 0.41% (1%) 1.18% (11%) 7.16% (98%) 4.50% (93%) 4.74% (94%) 2.32% (13%)
full sample 3.19% 2.26% 4.98% 2.47% 2.87% 3.47%
extreme + 1 year 3.18% (53%) 1.79% (29%) 7.65% (99%) 2.18% (58%) 1.54% (15%) 2.27% (15%)

Inflation
extreme 4.59% (88%) 1.57% (5%) 7.96% (95%) 11.43% (98%) −0.26% (3%) 3.09% (26%)
full sample 3.64% 3.86% 3.89% 4.58% 3.64% 4.21%
Stock
extreme 4.90% (39%) 1.82% (30%) 33.11% (100%) 11.61% (87%) −2.66% (11%) 4.27% (39%)
full sample 6.50% 5.16% 8.47% 5.02% 5.79% 5.93%
reduction 24.6% 64.7% -291% -131% 146.0% 27.9%
10Y Gov. Yield
extreme 4.93% (39%) 4.42% (4%) 6.28% (81%) 4.44% (16%) 5.52% (55%) 7.65% (89%)
full sample 5.54% 6.55% 5.75% 5.57% 5.64% 6.72%
reduction 10.9% 32.4% -9.1% 20.3% 2.2% -13.9%

Table 5.16: We report the average performance of various economic indicators compared to the sample
average. The sample size for the extremes is 10 worst years. The mortality index used here is the
mortality rate defined in (5.3.2) for ages between 25 and 50. In parenthesis, we present the p-values
computed using (5.3.1) for the averages of the extreme sample

Indicator US UK JP FR SW AU
1933-2010 1922-2011 1947-2012 1880-2009 1901-2011 1921-2011

GDP:
extreme 0.29 (54%) −0.14 (20%) −0.66 (31%) −0.77 (8%) −0.80 (6%) 0.18 (60%)
full sample 0.34 0.19 −0.47 −0.37 −0.31 0.11
Inflation
extreme 0.39 (90%) 0.52 (90%) −0.22 (62%) −0.72 (16%) 0.21 (57%) 0.72 (98%)
full sample −0.12 0.05 −0.35 −0.45 0.41 0.05
Stock
extreme −0.43 (22%) 0.86 (100%) −0.57 (33%) −0.41 (14%) 0.35 (73%) 0.50 (90%)
full sample −0.10 −0.06 −0.43 −0.15 0.01 0.07
10Y Gov. Yield
extreme 0.22 (74%) 0.28 (78%) 0.55 (100%) −0.04 (49%) 0.04 (50%) 0.24 (97%)
full sample 0.10 0.13 −0.26 0.04 0.03 −0.19

Table 5.17: We report the correlation of various economic indicators with the mortality index within
the extreme sample (correx) compared to the sample average. The sample size for the extremes is 10
worst years. For the correx, we put in parenthesis the p-values computed using (5.3.1). The mortality
index used here is the mortality rate defined in (5.3.2) for ages between 25 and 50.
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Indicator US UK JP FR SW AU
1933-2010 1922-2011 1947-2012 1880-2009 1901-2011 1921-2011

GDP:
extreme 0.41% (1%) 1.18% (11%) 7.16% (98%) 4.01% (88%) 4.24% (88%) 2.28% (12%)
full sample 3.19% 2.26% 4.98% 2.47% 2.87% 3.47%
extreme + 1 year 3.18% (53%) 1.79% (29%) 7.65% (99%) 2.44% (66%) 1.24% (10%) 2.91% (35%)

Inflation
extreme 4.59% (88%) 1.57% (5%) 7.96% (95%) 11.10% (98%) −0.66% (2%) 1.74% (5%)
full sample 3.64% 3.86% 3.89% 4.58% 3.64% 4.21%
Stock
extreme 4.90% (39%) 1.82% (30%) 33.11% (100%) 10.34% (82%) 0.00% (20%) 6.93% (58%)
full sample 6.50% 5.16% 8.47% 5.02% 5.79% 5.93%
reduction 24.6% 64.7% -291% -106% 100.0% -16.8%
10Y Gov. Yield
extreme 4.93% (39%) 4.42% (4%) 6.28% (81%) 4.20% (9%) 5.45% (53%) 6.75% (65%)
full sample 5.54% 6.55% 5.75% 5.57% 5.64% 6.72%
reduction 10.9% 32.4% -9.1% 24.7% 3.4% -0.4%

Table 5.18: We report the average performance of various economic indicators compared to the sample
average. The sample size for the extremes is 10 worst years. The mortality index used here is the
weighted mortality rate defined in (5.3.5) for ages between 25 and 50. In parenthesis, we present the
p-values computed using (5.3.1) for the averages of the extreme sample

Indicator US UK JP FR SW AU
1933-2010 1922-2011 1947-2012 1880-2009 1901-2011 1921-2011

GDP:
extreme 0.30 (55%) −0.14 (20%) −0.71 (23%) −0.71 (10%) −0.80 (6%) 0.12 (55%)
full sample 0.35 0.19 −0.48 −0.36 −0.32 0.11
Inflation
extreme 0.39 (89%) 0.54 (91%) −0.26 (59%) −0.66 (18%) 0.19 (55%) 0.56 (92%)
full sample −0.11 0.06 −0.36 −0.43 0.41 0.06
Stock
extreme −0.40 (24%) 0.85 (100%) −0.57 (33%) −0.39 (15%) 0.44 (80%) 0.65 (96%)
full sample −0.09 −0.06 −0.44 −0.14 0.01 0.07
10Y Gov. Yield
extreme 0.25 (77%) 0.30 (80%) 0.52 (100%) −0.22 (22%) 0.02 (47%) 0.02 (84%)
full sample 0.10 0.13 −0.25 0.04 0.03 −0.18

Table 5.19: We report the correlation of various economic indicators with the mortality index within
the extreme sample (correx) compared to the sample average. The sample size for the extremes is 10
worst years. For the correx, we put in parenthesis the p-values computed using (5.3.1). The mortality
index used here is the weighted mortality rate defined in (5.3.5) for ages between 25 and 50.
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Indicator US UK JP FR SW AU
1933-2010 1922-2011 1947-2012 1880-2009 1901-2011 1921-2011

GDP:
extreme 0.41% (1%) 1.18% (11%) 7.16% (98%) 4.50% (93%) 4.99% (96%) 2.50% (17%)
full sample 3.19% 2.26% 4.98% 2.47% 2.87% 3.47%
extreme + 1 year 3.18% (53%) 1.79% (29%) 7.65% (99%) 2.18% (58%) 0.84% (6%) 2.15% (12%)

Inflation
extreme 4.59% (88%) 1.57% (5%) 7.96% (95%) 11.43% (98%) −0.04% (4%) 3.31% (32%)
full sample 3.64% 3.86% 3.89% 4.58% 3.64% 4.21%
Stock
extreme 4.90% (39%) 1.82% (30%) 33.11% (100%) 11.61% (87%) −3.88% (8%) 6.11% (52%)
full sample 6.50% 5.16% 8.47% 5.02% 5.79% 5.93%
reduction 24.6% 64.7% -291% -131% 167.1% -3.0%
10Y Gov. Yield
extreme 4.93% (39%) 4.42% (4%) 6.28% (81%) 4.44% (16%) 5.90% (71%) 7.78% (91%)
full sample 5.54% 6.55% 5.75% 5.57% 5.64% 6.72%
reduction 10.9% 32.4% -9.1% 20.3% -4.6% -15.8%

Table 5.20: We report the average performance of various economic indicators compared to the sample
average. The sample size for the extremes is 10 worst years. The mortality index used here is the
entropy defined in (5.3.3) for ages between 25 and 50. In parenthesis, we present the p-values computed
using (5.3.1) for the averages of the extreme sample

Indicator US UK JP FR SW AU
1933-2010 1922-2011 1947-2012 1880-2009 1901-2011 1921-2011

GDP:
extreme 0.27 (53%) −0.13 (21%) −0.62 (39%) −0.82 (8%) −0.79 (7%) 0.29 (71%)
full sample 0.34 0.20 −0.47 −0.39 −0.30 0.11
Inflation
extreme 0.38 (89%) 0.49 (89%) −0.16 (69%) −0.76 (14%) 0.22 (58%) 0.75 (99%)
full sample −0.11 0.05 −0.34 −0.47 0.40 0.06
Stock
extreme −0.44 (21%) 0.85 (100%) −0.53 (36%) −0.44 (13%) 0.33 (71%) 0.54 (92%)
full sample −0.10 −0.06 −0.42 −0.16 0.01 0.06
10Y Gov. Yield
extreme 0.21 (71%) 0.31 (79%) 0.58 (100%) −0.02 (51%) 0.12 (63%) 0.34 (98%)
full sample 0.11 0.14 −0.26 0.04 0.03 −0.17

Table 5.21: We report the correlation of various economic indicators with the mortality index within
the extreme sample (correx) compared to the sample average. The sample size for the extremes is 10
worst years. For the correx, we put in parenthesis the p-values computed using (5.3.1). The mortality
index used here is the entropy defined in (5.3.3) for ages between 25 and 50.
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Indicator US UK JP FR SW AU
1933-2010 1922-2011 1947-2012 1880-2009 1901-2011 1921-2011

GDP:
extreme 3.02% (49%) 2.01% (42%) 1.47% (0%) 2.10% (45%) 5.25% (97%) 3.99% (79%)
full sample 3.19% 2.26% 4.98% 2.47% 2.87% 3.47%
extreme + 1 year 2.75% (34%) 1.67% (24%) 3.66% (25%) 3.49% (90%) 4.94% (95%) 2.62% (24%)

Inflation
extreme 4.17% (79%) 2.45% (19%) 0.43% (0%) 3.06% (36%) 1.92% (20%) 4.21% (57%)
full sample 3.64% 3.86% 3.89% 4.58% 3.64% 4.21%
Stock
extreme 6.34% (50%) 1.76% (30%) 8.97% (56%) 1.31% (28%) 10.65% (78%) 13.35% (93%)
full sample 6.50% 5.16% 8.47% 5.02% 5.79% 5.93%
reduction 2.5% 65.8% -5.9% 73.9% -84.0% -125%
10Y Gov. Yield
extreme 7.69% (100%) 7.03% (80%) 3.43% (2%) 4.90% (33%) 5.14% (40%) 8.14% (95%)
full sample 5.54% 6.55% 5.75% 5.57% 5.64% 6.72%
reduction -38.9% -7.4% 40.3% 12.1% 8.9% -21.2%

Table 5.22: We report the average performance of various economic indicators compared to the sample
average. The sample size for the extremes is 10 worst years. The mortality index used here is the
coefficient of variation defined in (5.3.4) for ages between 25 and 50. In parenthesis, we present the
p-values computed using (5.3.1) for the averages of the extreme sample

Indicator US UK JP FR SW AU
1933-2010 1922-2011 1947-2012 1880-2009 1901-2011 1921-2011

GDP:
extreme −0.01 (65%) −0.35 (16%) −0.22 (3%) −0.51 (12%) −0.81 (9%) −0.13 (46%)
full sample −0.23 −0.06 0.43 0.02 −0.40 −0.09
Inflation
extreme 0.16 (74%) 0.07 (72%) −0.43 (1%) −0.93 (0%) 0.67 (91%) 0.11 (83%)
full sample −0.06 −0.10 0.22 0.04 0.17 −0.17
Stock
extreme −0.26 (28%) 0.32 (90%) 0.63 (83%) −0.32 (18%) 0.50 (93%) 0.13 (71%)
full sample −0.06 −0.03 0.28 −0.02 −0.06 0.00
10Y Gov. Yield
extreme −0.16 (82%) −0.07 (85%) −0.00 (9%) −0.00 (72%) −0.02 (50%) 0.13 (92%)
full sample −0.42 −0.37 0.18 −0.07 −0.02 −0.23

Table 5.23: We report the correlation of various economic indicators with the mortality index within
the extreme sample (correx) compared to the sample average. The sample size for the extremes is 10
worst years. For the correx, we put in parenthesis the p-values computed using (5.3.1). The mortality
index used here is the coefficient of variation defined in (5.3.4) for ages between 25 and 50.



Conclusion of Part II

Two empirical studies are developed using some kinds of methodologies of analysis.

In the first study techniques of classical type and of data-mining are applied to describe behaviors of
clients covered by vision insurance policies. The but of this study is to know how these clients proceeded
when a vision service system offering competitive prices and facilitating access to vision product suppliers
were made available for them. In this context, interestingly, some clients arrived themselves to profit
from this system more than others by using it strategically. The available information does not allow the
description of the precise mechanisms of these ways of use. Considering all of observations, in several
cases the use or not of this system is able to be described by parameters as the age of the client, the
characteristics of the policy, and the geographical zone associated to the policy. The coarse granularity
of the information limits the analysis. Some strategies to reduce this granularity are identified and
recommended.

In the second study an exploration on the relations between mortality and market risks is developed.
To undertake this study, which is commonly based on economic methodologies or case study, almost
all the analysis elements are formulated, among them the mortality indices, the analysis periods, and
the identification of extreme values. Our analysis strategy is based on that proposed by Ribeiro and di
Pietro, but considering information of more countries, more economic and financial information, more
mortality indices, and a different definition of extreme mortality events.

Evidence of dependence between mortality and some financial variables when extreme mortality happens
is found. These results are obtained when mainly the 10 worst years of mortality and the expected
lifetime as mortality index are considered. These relations consist in that an increase of mortality would
be associated to reductions of stocks and government bond yields. In general, whatever index whatever
size (reasonable) we get similar results.
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Part III

New mortality models
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Introduction

This part of the thesis analyzes the human mortality dynamics, which is a critical component of the
population ageing (see e.g. [114], [113], and [17]) and one of the main concerns in the ESSEC-SL
research program on ’Consequences of the population ageing on the insurances loss’. It has been done
in collaboration with Michel Denuit ([32]).

The human mortality dynamics is a complex problem due to the interaction of a multitude of factors
related to the biological, social, economic, environmental, and medical domains, among others. It has a
big impact on social and economic human needs, as health and pension requirements for elderly people.
That is why we are interested in finding better mortality projections.

To this aim, we proceed via the modelling of the human mortality dynamics. Various models and
approaches have been developed and their performances on mortality forecasts examined throughout
the years (see e.g. [117, 118, 18] and references therein). The issue is that we can observe mortality
rates that have decreased considerably faster than predicted, hence we have to investigate further for
better modelling.

In this context, we aim at investigating relations between mortality experiences from different years,
linking them to an extreme mortality behavior. We introduce a relational model, different from the
existing ones that distord entire life tables. We distord age, making individuals younger or older ac-
cording to a life table of reference. Using life table of reference that is time-independent Allowing we
allow distorsion over years.

Relationships between observed mortality and the life table of reference are built using B-splines. A
modification of the standard method of iteratively reweighted least squares for Poisson regressions allows
the computation of the B-splines considered in our formulation.

Our proposal incorporates independent age and time components. This last component is modelled as
a time process, which allows mortality projection when it is forecasted. We analyze a bivariate model
for mortality projection, relating the time processes linked to females and males.

Numerical illustrations of the new model are given. These models are backtested and mortality projec-
tions are compared with those given by official sources.

This part of the thesis consists of one chapter only. It is organized as follows. Some tools required for the
formulation of our model are presented. They concern namely a brief review of relational models and a
description of the adaptation of the method of iteratively reweighted least squares for Poisson regressions.
After the main novelties of the research are presented, with the formulation and the development of
new stochastic models applied to mortality projection. Numerical illustrations follow. as well as the
conclusion.
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Chapter 6

New mortality models

6.1 Introduction and motivation

Relational methods are often used by demographers and actuaries to relate mortality in one population
to that in others. One of the most well-known models of this type is the Cox proportional hazard model
[49] where the specific force of mortality is obtained by multiplying the reference one by a given positive
coefficient. In a general way, the idea of this method is to relate two mortality variables through an
unknown link function to be described. Subsection 6.3.1 presents two general ways to represent these
relationships, giving examples for each one of them and for different mortality variables.

In this chapter, we propose a relational model by considering scale change relationships between mortal-
ity rates. For a specific mortality rate, the idea is to distord age in order to reproduce a given mortality
rate. This modelling strategy is also known as an accelerated hazard approach (see e.g. [42]). We give
great flexibility to the unknown scale change relationship by using a semi-parametric approach based on
P-splines. This approach has been also used by other authors like Camarda et al. [38], who focused on
probability density functions. The P-splines use combine a number of B-splines (see Subsection 6.3.2)
and penalized likelihood to avoid over-fitting the data. In this way, the resulting link function between
mortality rates is a smooth function of age composed of polynomial pieces that are joined together at
points called knots. The fit of the model to data consists in to estimate the coefficients involved in
the function that distorts age. This is a challenging task due to the high complexity of the model.
Fortunately, the embedding of the model in a Poisson regression framework allows the formulation of it-
eratively reweighted least squares algorithms that are easy to put in practice, as described in Subsection
6.3.3.

The mortality rate of reference to be used is the one given by a limit life table. Hence, such mortality rate
is independent of time and allows the analysis of the evolution of an age distortion function over years.
This fact is exploited in the formulation of dynamic mortality models and then to provide mortality
projections.

The remainder of the chapter is organized as follows. Section 6.2 presents notations and definitions used
throughout this chapter. Section 6.3 presents a brief review of relational models, a brief description
de splines and how they are used in our model, and a description of the adaptation of the method of
iteratively reweighted least squares for Poisson regressions. In Section 6.4, we describe the model linking
the mortality of interest to a reference set of death rates, by means of age transformations. Numerical
illustrations based on Belgian mortality statistics demonstrate that this approach performs very well in
empirical applications. Subsection 6.5.12 then extends the construction to the whole mortality surface.
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Dynamic age transformations account for the longevity improvements experienced by the population of
interest. Extrapolating past trends to the future then provides the actuary with projected life tables.
The final Section 6.6 discusses the results and briefly concludes this chapter.

6.2 Notations and definitions

We use the following mortality variables which mainly depend on both age x and calendar year t (see
e.g. [60]):

• Tt(x) denotes the remaining lifetime of an individual aged x on the first of January of year t; this
individual will die at age x+ Tt(x) in year t+ Tt(x).

• St(x) denotes the probability of surviving from birth to exact age x on the first of January of year
t.

• Omitting t, ypx denotes the probability of an individual aged x being alive at age x + y, i.e.
ypx = P (T (x) > y).

• µt(x) denotes the mortality force at age x during calendar year t given by

µt(x) = lim
∆→0

P
(
x < Tt−x(0) ≤ x+ ∆

∣∣Tt−x(0) > x
)

∆ .

• Dxt denotes the number of deaths during calendar year t aged x last birthday.

• Lxt denotes the number of survivors during calendar year t at age x last birthday.

• ETRxt denotes the exposure to risk at age x during year t, i.e. the total time lived by people aged
x in year t.

Moreover, for a given year t which is omitted in the notation, we assume that the force of mortality,
defined by µx = −S′(x)

/
S(x), is constant within bands of age and time, but allowed to vary from one

band to the next, i.e.
µx(t) = µx+ε(t+ δ) for all 0 ≤ ε, δ < 1, (6.2.1)

which implies that µx(t) = mxt, where mxt is the central death rate.

6.3 Preliminaries

6.3.1 A brief review of relational models

Our proposed model is one of relational type. This section briefly describe this type of models.

The idea of a relational model is to relate two sources of information through a function, in order to
systematically describe one of them using the other. The simplest relational model is certainly the Cox
proportional hazards model [49] where the specific force of mortality is obtained by multiplying the
reference one by a given positive coefficient. This model and its variants are widely used (see e.g. [47],
[89], and [100]) and many models are developed as alternatives to this one (see e.g. [132] and [115]). In
[61] a systematic presentation of relational models applied to mortality is made; the authors also provide
a generalization of these models in a frame of generalized linear and generalized additive models.
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Let us give a brief description of the general features of these models. In mortality, a number of relational
models may be expressed by (see e.g. [61])

g(y(x)) = h(g(yref(x)), x), (6.3.1)

where y is a mortality variable (say mortality rates, survival probabilities, death probabilities, expected
lifetimes, among others), yref is the variable y for a set of known values, x is age, g is a function, usually
the logarithm (ln) or the logit (logit(x) = ln(x/(1−x))), and h is another function to be defined. Notice
that if g is invertible, this general expression may still be simplified, as

y(x) = f(yref(x), x), (6.3.2)

where f(u, v) = g−1(h(g(u), v)).

This last expression allows the identification of the basic elements of the relational models: the sources
y and yref are related with f in such a way that y is described by using yref.

Notice that (6.3.2) may also be expressed as

g(x) = gref(h(x)). (6.3.3)

In this case, g(x) itself is the variable to be described using the reference variable gref, after the ap-
plication of h. Hence, this type of models can also be related to accelerated failure time models (see
e.g. [89]); examples can be found in e.g. [38]. This variant of relational models introduces a different
approach for modelling mortality, which may be applied in other domains. For instance, models of type
(6.3.3) where a variable is distorted, are routinely used in accelerated failure time modelling (see for
instance [89]). The model that we propose is inspired by (6.3.3). It is original in mortality modelling
since the variable to be modelled is the mortality rate. Details of our model are given in Section 6.4
later.

Table 6.1 presents examples of frequent relational models of the types (6.3.1) and (6.3.3). There S is
St defined in Section 6.2 omitting t, θ, θ0, . . . , θ3 are constants, f1 and f2 are functions to be defined,
Φ is the cumulative normal distribution, and w is a linear combination of B-splines. Note that, in
[38], functions of probability densities are considered, from which one may deduce survival functions via
integration, and in [47] the time axis is rescaled.

Type Author y g(x) h(u, v) or h(u)

(6.3.1) Cox [49] (1972) µ(x) x θu
(proportional hazard model)

(6.3.1) Brass [22] (1971) 1 − S(x) logit(x) θ1 + θ2u
(6.3.1) Hannerz [83] (2001) 1 − S(x) logit(x) u+ θ0 + θ1v

−1 + θ2v
2 + θ3 exp(θ4v)

(6.3.1) Delwarde et al. [61] (2004) µ(x) ln(x) θ + f1(v) + f2(u)
(6.3.1) de Jong and Marshall [58] (2007) S(x) Φ−1(x) θ + u
(6.3.2) Collett [47] (2003) St θu
(6.3.2) Camarda et al. [38] (2008) 1 − S(x) w(u)

Table 6.1: Examples of relational models

6.3.2 Splines

In this section we describe the notion of P-spline, which is based on B-splines, and how we use it to
distord age.
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A B-spline (Basis spline), is a piecewise polynomial function whose pieces meet on points called knots.
Given the knots ζ1 < · · · < ζr, a partition of the interval

[
ζ1; ζr

)
into r non overlapping intervals[

ζk; ζk+1
)
is defined. The polynomial functions Blk, l ≥ 1, can be then easily computed via the recursion

B0
k(x) =

{
1 if ζk ≤ x < ζk+1,
0 else,

for k = 1, . . . , r − 1, and

Blk(x) = x− ζk
ζk+l − ζk

Bl−1
k (x) + ζk+l+1 − x

ζk+l+1 − ζk+1
Bl−1
k+1(x) for l, k ≥ 1 such that l + k ≤ r − 1.

Then, a B-spline Blk has the following two properties: in each of the intervals
[
ζk; ζk+1

)
the spline is a

polynomial of degree l (Blk is said of degree l), and at the knots ζk (the interval boundaries) the spline
is l − 1 times continuously differentiable when l > 1 and is continuous when l = 1.

Notice that, for l ≥ 1, the lth derivative of Blk is discontinuous at the internal knots, and, for l = 0, B0
k

is discontinuous at ζk and ζk+1.

We will use B-splines with equally spaced knots, i.e. ζk+1 − ζk = h for any 1 ≤ k < r. Additionally,
the interval

[
ζ1; ζr

)
must cover the range of ages to be analyzed, say

(
x0;xn

)
, so ζ1 and ζr must satisfy

ζ1 ≤ x0 and ζr ≥ xn.

We use a linear combination of B-splines to distord age, say w(x) =
∑p
k=1 βkB

l
k(x) with p > l + 1 and

l = 2. Noting that w(ζ1) = 0 and w(ζp+3) = 0, that
(
ζ1; ζp+3

)
must overlap

(
x0;xn

)
, and that the

values ζ1, . . . , ζp+3 are defined in such a way that w(x0) > 0 and w(xn) > 0. Moreover, since w(x)
could have instability problems when x is near x0 or x1, these splines are established in such a way
that w(x0) and w(x1) are computed using the maximum number of B-splines, which would avoid this
problem. To this aim, we define

h = xn − x0

p− (l + 1) ,

and

ζ1 = x0 − (2× l + 1)× h

2
ζk = ζk−1 + h, k = 2, . . . , p+ 3.

Note that x0 = (ζ3 + ζ4)
/

2, then

w(x0) =
3∑
k=1

βkB
l
k(x0),

i.e. 3 B-splines are used to build w(x0). A similar reasoning allows one to show that w(xn) is built
using 3 B-splines too: Blp−2, Blp−1, and Blp. Furthermore, for any x ∈

[
x0;xn

]
, w(x) is built using at

most 3 B-splines.

P(enalized)-splines combine the concept of B-splines and penalized likelihood (see e.g. [67]). The idea is
to provide large flexibility to the model in order to reach a good fit to the available mortality statistics
while the over-fitting to the data is avoided via penalities.

We consider P-splines during the fitting of our model that is based on regressions. The description of
penalities, how they work, and the selection of models are explained later in Section 6.4.3.

6.3.3 An adaptation of the method of IRWLS for Poisson regressions

Our model is embedded in a Poisson regression framework, where a linear combination of B-splines used
to distord age, is included. Then, the goal of this study consists in fitting the model to given data,
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i.e. in the estimation of the coefficients involved in such linear combination, which is often difficult
because non-linear equation systems must be solved. In order to reach this goal, we exploit the Poisson
regression, and use a variant of the Newton-Raphson algorithm to estimate the parameters of our model.
It is an iteratively reweighted least squares (IRWLS) algorithm discovered by Nelder and Wedderburn
[111] in 1972. In this section we describe how to obtain this particular IRWLS algorithm and how it
works.

We start considering a simple form of our model (which is introduced and developed later), namely

µ(x) = φ
(
w(x)

)
, (6.3.4)

where µ is an unknown mortality rate, φ is a given positive function satisfying suitable conditions, w is
a linear combination of B-splines, say w(x) =

∑p
k=1 βkB

l
k(x) with β =

(
β1, . . . , βp

)′ the coefficients to
be estimated, and Blk, l, k ≥ 1 such that l+k ≤ r−1, are B-splines. Hence, the description of µ defined
in (6.3.4) depends essentially on the estimates of β.

Additionally to (6.3.4), we assume that

Dx ∼ Poisson (ETRxµ(x)) ,

ETRx and µ(x) being defined in Section 6.2.

To estimate β, we consider the log-likelihood

L(β) =
∑

x∈{x0,...,xn}

(Dx ln (ETRxφ(w(x)))− ETRxφ(w(x))) ,

and assume that ages x0 < · · · < xn are such that xi−1 − xi = 1.

The estimation of β follows from the maximization of L. So, we have to solve
∂

∂β
L(β) = 0,

where 0 is a vector of 0s of dimension p, i.e.
∂

∂βj
L(β) =

∑
x∈{x0,...,xn}

(Dx − ETRxφ(w(x))) φ
′(w(x))
φ(w(x)) B

l
j(x) = 0, j = 1, . . . , p, (6.3.5)

that can be written in matricial terms as (
D − D̂

)′
X̃ = 0, (6.3.6)

where
D =

(
Dx0 , . . . , . . . , Dxn

)′
D̂ =

(
ETRx0φ(w(x0)), . . . ,ETRxnφ(w(xn)

)′
Q = diag (u)

u =
(
φ′(w(x0))
φ(w(x0)) , . . . ,

φ′(w(xn))
φ(w(xn))

)′
X̃ = QX

X =


Bl1(x0) Bl2(x0) · · · Blp(x0)
Bl1(x1) Bl2(x1) · · · Blp(x1)

...
...

. . .
...

Bl1(xn) Bl2(xn) · · · Blp(xn)


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The system (6.3.6) being non-linear, we will use numerical procedures to solve it, as for instance the
Newton-Raphson algorithm. Adopting this approach, the following iteration is formulated, for a given
β0:

βr = βr−1 +A−1(βr−1)
(
X̃
′(
D − D̂

))
, (6.3.7)

where

A(β) = −
∂
(
X̃
′(
D − D̂

))
∂β

= ∂2L(β)
∂β∂β′

=



∂2L(β)
∂β2

1

∂2L(β)
∂β2∂β1

· · · ∂2L(β)
∂βn∂β1

∂2L(β)
∂β1∂β2

∂2L(β)
∂β2∂β2

· · · ∂2L(β)
∂βn∂β2

...
...

. . .
...

∂2L(β)
∂β1∂βn

∂2L(β)
∂β2∂βn

· · · ∂2L(β)
∂β2

n


.

Now we use the fact that a Poisson regression is embedded in (6.3.6). We start noticing that

a(D̂) = ∂L(D̂)
∂D̂

= W−1
(
D − D̂

)
,

where W = diag
(
D̂
)
, from which we obtain

E
(
a(D̂)

)
= E

(
W−1 (D − D̂)) = 0,

and

I(D̂) = −E
(
∂2L(D̂)
∂D̂∂D̂

′

)
= −E

(
∂

∂D̂

(
D − D̂

)′
W−1

)
= W−1 − E

((
D − D̂

)′ ∂
∂D̂

W−1
)

= W−1.

Then, we have

I(β) = −E
(
∂2L(β)
∂β∂β′

)
= −E

((
∂2L(D̂)
∂D̂∂D̂

′
∂D̂
′

∂β′
+ ∂L(D̂)

∂D̂
′

∂2D̂
′

∂D̂
′
∂β′

)
∂D̂

∂β

)
=
(
∂D̂

∂β

)′
W−1 ∂D̂

∂β
.

Now we introduce the link function associated to the Poisson regression. We select the canonical one as
such link function, i.e. the natural logarithm function. In this way we obtain the score

η = (ln (ETRx0φ(w(x0))) , . . . , ln (ETRxnφ(w(xn))))′ ,

from which we get
∂η

∂β
= QX = X̃,

and therefore,

I(β) =
(
∂D̂

∂η

∂η

∂β

)′
W−1 ∂D̂

∂η

∂η

∂β
=
(
WX̃

)′
X̃ = X̃

′
WX̃.

Hence, approximating A(β) by its expected value, i.e. I(β), the iteration (6.3.7) may be redefined by

βr = βr−1 +
(
X̃
′
WX̃

)−1
X̃
′(
D − D̂

)
. (6.3.8)

Note that this relationship may be written as

X̃
′
WX̃βr = X̃

′
W
(
W−1(D − D̂)+ X̃βr−1

)
,
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which can be interpreted as a regression of X̃
′
W
(
W−1(D − D̂)+ X̃βr−1

)
on X̃

′
WX̃. Furthermore,

one may see (6.3.8) as a weighted least square regression, namely

βr =
(
X̃
′
WX̃

)−1
X̃
′
WZ,

where Z = X̃βr−1 + W−1(D − D̂) is the vector of adjusted dependent variables. Indeed, such βr
minimizes (

Z − βrX̃
)′
W
(
Z − βrX̃

)
.

Then, we see that each iteration (6.3.8) is the result of a weighted least squares regression of the adjusted
variable Z on X̃. Hence, our Poisson regression can be estimated by iteratively reweighted least squares.

To summaryze, the IRWLS algorithm to be applied, consists in the following steps:

1. Give an initial β0 and set r = 1.

2. While (r = 1) or (βr not convergent), do:

(a) Estimate X̃, W , and D̂ using βr−1

(b) Compute βr using (6.3.8)
(c) r = r + 1

In practice, after a few steps this algorithm converges.

How to set initial values for β is presented later, when our stochastic model for mortality projection
is defined. Moreover, penalized and dynamic versions of (6.3.4) will be required in order to generate
parsimonius regressions and mortality projections, respectively. The solution of such equations will be
based on an adaptation of the previous algorithm, when needed. These algorithms are presented in
Subsection 6.4.3, where strategies to get suitable initial values are proposed.

6.4 Accelerated hazard relational model

6.4.1 Proportional hazard, accelerated failure time and accelerated hazard models

Before specifying the relational model proposed in this chapter, let us briefly recall the definitions of
the proportional hazard model, the accelerated failure time model and the accelerated hazard model.
For more details, we refer the reader to Chen and Wang (2000) [42] and the references therein.

Let µ(x) be the force of mortality at age x in the population of interest and let µ?(x) be a reference
force of mortality at the same age. The proportional hazard model proposed by Cox (1972) [49] assumes
that

µ(x) = cµ?(x)

for some positive constant c. The quantity c can be interpreted as the relative risk or hazard ratio:
c > 1 or c < 1 implies that individuals are subject to a force of mortality proportionally increased or
decreased by the factor c. If c = 1 then there is no difference between the two populations. The survival
functions are then linked by (see Section 6.2)

tpx = (tp?x)c .
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Unlike the proportional hazard model, the accelerated failure time specification assumes that the survival
probabilities are related through (see e.g. [47])

xp0 = cxp
?
0.

This means that the lifetime T can be obtained by dividing a reference lifetime T ? with survival function
xp
?
0 with a positive constant c:

xp0 = P[T > x] = P
[
T ?

c
> x

]
= P [T ? > cx] = cxp

?
0.

This is in turn equivalent to
µ(x) = cµ?(cx).

The accelerated hazard model rescales the time axis inside the reference force of mortality, only, i.e.

µ(x) = µ?(cx).

The parameter c alters the age scale of µ? and reflects the magnitude and direction of this alteration.
The direction can be either acceleration or decelaration, depending on whether c > 1 or c < 1. For
example, if c = 0.5 (resp. c = 2) then the risks of dying for individuals in the population of interest
progress in half the time (resp. twice the time) of those individuals in the reference population. If c = 1
then the two populations do not differ in terms of mortality.

All these specifications are linear (on an appropriate scale). For actuarial applications, it appears to be
useful to allow for non-linear transformations in order to capture the particular features of mortality
experience (that can be markedly non-linear).

6.4.2 Model specification

Relational methods used for mortality modelling often consider the transformation of mortality variables.
A typical model of this type is the one given by Delwarde et al. (2004) [61], where a general formulation
f to relate lnµ(x) and lnµ?(x) with µ and µ? mortality rates and the latter the one of reference is
given. Empirically this pair of transformed variables seems to be linearly related, but in order to obtain
confirmation by the data these authors proposed an unknown, smooth function f , i.e.

lnµ(x) = f
(

lnµ?(x)
)
,

where more than one mortality rate of reference may be used in order to describe some age effects.
These authors then propose an additive combination of several reference life tables µ?1, . . . , µ?p leading
to the additive specification lnµ(x) =

∑p
j=1 fj

(
lnµ?j (x)

)
+ fp+1(x). Model selection can be achieved

using information criteria.

We also consider the analysis of mortality rates, but by distorting the age scale instead of transforming
the mortality rates. This is in line of relational methods and accelerated hazard models, giving an
accelerated hazard relational model. More precisely, we propose the model

µ(x) = µ?
(
w(x)

)
(6.4.1)

where the function w : R+ → R+ acts on age x and specifies the age transformation to be applied to the
reference mortality to reflect the actual mortality experience. In words, (6.4.1) means that the mortality
specific to the group of interest at age x is the reference one at the corrected age w(x).

Model (6.4.1) can be seen as a semiparametric extension of the accelerated hazard model where the age
transformation w is no more linear but may be explicitly non-linear. Considering actuarial practice,
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such age corrections extend the so-called Rueff’s adjustments (see, e.g., Pitacco et al., 2009 [118], Section
4.4.3) which correspond to w(x) = x−δ where δ is the constant age correction accounting for the switch
from the reference population to the one of interest. Such age shifts have also been used in demography:
see, e.g., the shifting logistic model proposed by Bongaarts [17] in 2005. Model (6.4.1) extends this idea
to general functions w, not necessarily linear.

As mentioned in Section 6.3.1, Camarda et al. [38] in 2008 proposed a similar model based on the
probability density function, following Eilers [66].

6.4.3 Statistical inference

Link function

We embed the model (6.4.1) in a Poisson regression framework. So, following Brouhns et al. [24], we
assume that the observed number of deaths Dx is Poisson distributed with mean ETRxµ(x), where
ETRx is the (central) exposure-to-risk at age x, i.e.

Dx ∼ Pois
(
ETRxµ(x)

)
,

where the death rate µ(x) is related to µ?(x) through (6.4.1).

The estimation of w is then easily performed by modifying the link function in the Poisson regression
setting. For notational convenience, define

φ = µ?.

Provided we start the analysis after the accident hump, we can safely assume that the reference death
rates are increasing with age so that φ is monotonic. Starting from (6.4.1), we see that

φ−1(µ(x)
)

= w(x)

where w is the function to be estimated. This is done by specifying the inverse φ−1 of φ = µ? as link
function in a Poisson Generalized Additive Model (GAM) where w is left unspecified. If w is assumed to
be linear then we are back to the classical Poisson Generalized Linear Model (GLM). More details about
the practical implementation are provided below but we first start with a few examples of particular
interest.

Example 6.1. If the reference force of mortality is Gompertz, i.e. µ?(x) = bcx for some b > 0 and
c > 1, then we get

lnµ(x) = ln b+ w(x) ln c = w̃(x)

and the function w̃ can be estimated using standard graduation methods such as local polynomial regres-
sion or splines, for instance, in a Poisson GAM setting. Standard actuarial or statistical software can
be used in this case. The desired function w is then easily recovered from w̃ as b and c are known.

Example 6.2. Assume that w is linear, i.e. w(x) = γx + δ. This is for instance the case with
Rueff’s adjustments (where γ = 1). In this case, γ and δ are easily estimated in a Poisson GLM
approach available in most statistical software. For instance, the glm procedure of R software supports
user-specified link functions and can therefore be used to determine optimal age shifts δ.

Example 6.3. As another option, we may consider that the mortality rate of reference is given by the
well-known logistic model (see e.g. Thatcher, 1999). In this case,

µ?(x) = exp (β(x− ϕ))
1 + exp (β(x− ϕ)) . (6.4.2)
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Here, the link function to be specified in the Poisson regression model is given by

φ−1(m) = ϕ+ 1
β

ln m

1−m,

i.e. a linear transform of the well-known logit link function.

Of course, other choices are possible, as the Weibull model for instance, leading to alternative link
functions. As user-specified link functions are not always supported by statistical software, we describe
below an algorithm to estimate w using a spline decomposition.

Spline decomposition

No parametric assumption is made about the age transform w which is modelled by P-splines (Eilers
and Marx [67], 1996). Using the notations and definitions of splines introduced in Section 6.3.2, the age
transform w is decomposed into

w(x) =
p∑
k=1

βkB
l
k(x). (6.4.3)

The fit of the model (6.4.1) to data consists in to estimate β as mentioned above. This is made using
an IRWLS algorithm as explained below.

IRWLS algorithm

In Section 6.3.3 an IRWLS algorithm to estimate β of (6.4.3) in a Poisson regression framework was
described. Now the objective is to control the adjustment of (6.4.1) to data, i.e. the shape of w, namely
for avoiding over-fitting to data. For a large number of knots used to describe w, due to variability of
the data, estimated curves tend to overfit the data and, as a result, too rough functions are obtained.

The inclusion of roughness penalties allows the actuary to overcome the difficulties of simple regression
splines. In this chapter we apply the P-splines approach by Eilers and Marx [67] (1996) that has been
successfully applied to various actuarial problems, e.g. by Delwarde et al. [60] (2007), Denuit and Lang
[62] (2004) and Klein et al. [96] (2014).

The key idea behind P-splines can be summarized as follows. First, define a moderately large number of
equally spaced knots to ensure enough flexibility of the resulting spline space. Then, define a roughness
penalty based on the sum of squared first or second order differences of adjacent B-Spline coefficients
to guarantee sufficient smoothness of the fitted curves. With second-order differences,

∆2βk = βk − 2βk−1 + βk−2,

this leads to a penalized likelihood approach where, for λ ≥ 0,

PL(β) = L(β)− λ

2

p∑
k=3

(
βk − 2βk−1 + βk−2

)2

is maximized with respect to β, being L(β) the log-likelihood of the Poisson distribution given (6.4.1)
introduced in Section 6.3.3.

The objective function PL(β) can therefore be seen as a compromise between goodness-of-fit (first term
L(β)) and smoothness of β (second term). The trade off between fidelity to the data (governed by
the likelihood term) and smoothness (governed by the penalty term) is controlled by the smoothing
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parameter λ. The larger λ the smoother the resulting fit. In the limit (λ→∞) we obtain a polynomial
whose degree depends on the order of the difference penalty and the degree of the spline. For example
for l = 3 with second-order differences (the most widely used combination) the limit is a linear fit.
The maximization of PL(β) can be achieved using a penalized version of the IRWLS algorithm for the
estimation of Generalized Linear Models. The details of this new version of the IRWLS algorithm follow.

In matrix notation, the penalty can be rewritten as
p∑
k=3

(
∆2βk

)2
= β′PP ′β

where

P =


1 −2 1 0 · · · 0

0 1 −2 1
. . . 0

...
. . . . . . . . . . . .

...
0 · · · 0 1 −2 1

 .

When λ > 0, (6.3.5) is replaced with ∂
∂βPL(β) = 0, that is,

∑
x∈{x0,x1,...,xn}

(Dx − ETRxφ(w(x))) φ
′(w(x))
φ(w(x)) B

l
j(x) + λ

p∑
k=3

∆2βk
∂∆2βk
∂βj

= 0, j = 1, . . . , p. (6.4.4)

Now,

∂∆2βk
∂βj

=


1 if j = k
−2 if j = k − 1
1 if j = k − 2
0 otherwise,

and (6.3.6) then becomes
X̃
′(
D − D̂

)
− λP ′Pβ = 0.

From reasonings as those done in Section 6.3.3, keeping the sameW and Fisher information,
(
X̃
′
WX̃

)−1
,

as above, the Newton-Raphson adapted to the new conditions is

βr = βr−1 +
(
X̃
′
W X̃

)−1(
X̃
′ (
D − D̂

)
− λP ′P βr

)
,

from which we obtain, instead of (6.3.8), the following iterative scheme

β̂r = β̂r−1 +
(
X̃
′
W X̃

)−1(
X̃
′ (
D − D̂

)
− λP ′P β̂r

)
,

from which we obtain(
X̃
′
W X̃ + λP ′P

)
β̂r = X̃

′
W
(
W−1(D − D̂)+ X̃ β̂r−1

)
. (6.4.5)

Notice that the regression of the pseudo reponses X̃
′
W
(
W−1(D−D̂)+X̃ β̂r−1

)
is now on X̃

′
W X̃+

λP ′P instead of X̃
′
W X̃ only. Formula (6.4.5) provides us with the recursive algorithm for solving

(6.4.4).

Note that when λ = 0, we come back to the recursive algorithm described in Section 6.3.3. This case is
simpler than when λ > 0. Hence, we solve the problem when λ = 0 in order to obtain initial values of
β to solve the problem for the case when λ > 0 is near to 0. This strategy can be developed in order to
progressively increase λ.
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Model selection

The choice of the smoothing parameter is crucial as we may obtain quite different fits by varying λ. Here,
we select λ by minimizing the Bayesian Information Criterion (BIC), which aims to balance goodness
of fit with parsimony. It is defined by

BIC(λ) = Dev(D;β(λ), λ) + ln(λ)× ED(β, λ)

where Dev(D;β(λ), λ) is the Poisson deviance given by

Dev(D;β(λ), λ) = 2
∑

x∈{x0,x1,...,xn}

(
Dx ln

(
Dx

ETRxφ
(
w(x)

))− (Dx − ETRxφ
(
w(x)

)))

and ED is the effective dimension of the model for a given smoothing parameter. Following [84], the
matrix Hλ required for computing the effective dimension of the model ED(β(λ), λ) when a penalty
component is included is

Hλ = X̃
(
X̃
′
W X̃ + λP ′P

)−1
X̃
′
W . (6.4.6)

The penalty component in the BIC is then given by

ED(β(λ), λ) = trace (Hλ) .

6.4.4 Numerical illustration

Let us now fit the model to Belgian life tables, general population. The mortality statistics used to
illustrate our method are provided by Statistics Belgium, the official statistical agency for Belgium.
A national population register serves as the centralizing database in Belgium and provides official
population figures. Statistics on births and deaths are available from this register by basic demographic
characteristics (including age and gender).

In what follows, we consider that the mortality rate of reference is given by (6.4.2) with parameters

β = 0.279
ϕ = 102.3

which roughly correspond to the limit life table proposed by Duchene and Wunsch [64] (1988). This
table has the properties that it is independent of time and it corresponds to a state of longevity where
it cannot be improved. In an ideal situation where the human being reaches this state, w(x) would be
then the identity function.

The mortality data to be analyzed are the observed Belgian mortality rates. Assumed (6.2.1), these
rates coincide as indicated above with the central death rates, mxt. mxt is computed using its definition
mxt = Dxt

/
ETRxt. Observed sex-sorted values of Dxt for ages x = 30, . . . , 98, and years t = 1948, . . . ,

2012, were provided by the official statistical agency for Belgium.

In order to estimate mxt we use observed sex-sorted values of Lxt, the number of survivors at age x,
also provided by that statistical agency. To this aim, ETRxt may be estimated by using the relationship
(see e.g. [61], p. 82)

ETRxt = − Dxt

ln
(
1−Dxt

/
Lxt
) .

Figure 6.1 displays the reference life table µ? together with the gender-specific period life tables for
calendar years 1950, 1980 and 2010 with x0 = 30 and xn = 98. As expected, the reference life table
contains death rates that are smaller compared to those observed during these three periods.
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Figure 6.1: Logistic reference life table µ? together with gender-specific period life tables for calendar
years 1950, 1980 and 2010; females appear on the left, males on the right.

We decompose w into piecewise quadratic polynomials using 18 equally-spaced knots located in such a
way that w(x0) and w(xn) are computed using the maximum number of B-splines, in order to avoid
numerical instability problems when age x approaches the boundaries x0 or xn. A strategy for computing
knots was explained in Section 6.3.2.

BIC values for some given years are displayed in Figure 6.2 as functions of λ. The value of the smoothing
parameter λ minimizing λ 7→ BIC(λ) is easily identified in each case. Figure 6.3 displays the estimated
age transforms w(·) matching these period life tables to the reference one. As expected, the estimated
w tend to become smaller as time passes because of longevity improvements. They also appear to
be approximately linear. In the next section, we exploit this empirical feature to obtain mortality
projections. Notice that some curvature appears near xn for some calendar years (1980 in our case).
This departure from linearity is caused by the particular shape of the mortality schedule near xn, as it
can be seen from Figure 6.4 which shows the resulting fit. We can see there that the shape of µ?

(
ŵ(x)

)
nicely smooths the crude µ̂(x).

In order to assess the sensitivity of the resulting fit to the choice of the reference mortality µ?, we have
replaced the logistic model (6.4.2) with the Weibull specification

µ?(x) = α

β

(
x

β

)α−1

with α = 14.40198275 and β = 95, taken from Duchene and Wunsch (1988). Figure 6.5 displays the
resulting fits, which are almost identical to those obtained with the logistic µ? in Figure 6.4. This
analysis suggests that the reference force of mortality µ? can be selected quite freely as the method
appears to be robust with respect to the choice of µ?. In the remainder of this chapter, we only consider
logistic µ? given in (6.4.2). In actuarial applications, life tables provided by the regulator (such as the
Makeham life tables defined in the Belgian insurance law) may also be good candidates for serving as
µ?.
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Figure 6.2: BIC values as functions of λ; females appear on the left, males on the right.
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Figure 6.3: Estimated age transforms w(·) matching the period life tables in Figure 6.1 to the logistic
reference µ?; females appear on the left, males on the right.
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Figure 6.4: Fitted µ?
(
ŵ(x)

)
with logistic µ? together with crude µ̂(x) for calendar years 1950 (top

panels), 1980 (middle panels) and 2010 (bottom panels); females appear on the left, males on the right.
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Figure 6.5: Fitted µ?
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)
with Weibull µ? together with crude µ̂(x) for calendar years 1950 (top

panels), 1980 (middle panels) and 2010 (bottom panels); females appear on the left, males on the right.
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6.5 Mortality projections

6.5.1 Dynamic version of the relational model

In this section, we propose a dynamic version of the relational model (6.4.1) to produce mortality
projections. The idea is to replace (6.4.1) with

µt(x) = µ?
(
wt(x)

)
(6.5.1)

where µt(x) is the force of mortality at age x during calendar year t and wt is the age transformation
for that year.

Figure 6.6 displays the crude central death rates µ̂t(x) for the Belgian general population, separately
for males and females.

In what follows, we use logistic µ? as given in (6.4.2) and we consider age ranging from x0 to xn = 98, x0
taking the values 30 or 60. Figure 6.7 displays the estimated functions wt by gender and initial age, for
the period 1948 - 2012. Note that each wt is computed for a given t, so wts are obtained independently
each other.
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Figure 6.6: Crude µ̂t(x) (on the log scale) by gender, period 1948 - 2012, Belgian general population.
Females appear on the left, males on the right.

6.5.2 Additive decomposition of (x, t) 7→ wt(x)

Considering Figure 6.7, it seems reasonable to decompose wt(x) into the sum w(x)+θt, i.e. into a static
component w(x) impacted by time-varying shifts θt, independent of age x. The model of interest then
becomes

µt(x) = φ(w(x) + θt). (6.5.2)

The IRWLS algorithm produces estimations of w(x) and θt for any x and t. The recursive procedure to
fit (6.5.2) is an adaptation of the algorithm described in Section 6.3.3 by including additional parameters
θt. Assume that the available data relate to calendar years t0, t1, . . . , tm with ti − ti−1 = 1. In our
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Figure 6.7: Estimated wt by gender and starting age x0 = 30 (top panels) or x0 = 60 (bottom panels),
fitting period 1948 - 2012. Females appear on the left, males on the right.

example, t0 = 1948 and tm = 2012. To avoid numerical difficulties, we proceed iteratively, including
one more calendar year at a time and using the values obtained at the preceding step as starting ones.
The final step thus corresponds to the global optimization using all calendar years. This procedure is
precisely explained next.

We start by considering mortality data for the first two years, t0 and t1, only. Without loss of generality,
we set θt0 = 0. Denoting the augmented vector parameter as β̃1 =

(
β′, θt1

)′, we have to solve the system

∂

∂βj
L(β̃1) =

∑
s∈{t0,t1},x∈{x0,x1,...,xn}

(Dx,s − ETRx,sφ(w(x) + θs))
φ′(w(x) + θs)
φ(w(x) + θs)

Blj(x) = 0,

j = 1, . . . , p, (6.5.3)
∂

∂θt1
L(β̃1) =

∑
x∈{x0,x1,...,xn}

(Dx,t1 − ETRx,t1φ(w(x) + θt1)) φ
′(w(x) + θt1)
φ(w(x) + θt1) = 0. (6.5.4)
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Let us introduce matrix notations in order to rewrite the system of non-linear equations given by (6.5.3)
and (6.5.4), and hence to deduce a numerical procedure to solve it. Define

Y 1 =
(
X 0
X 1

)
,

with X as in the previous section and 0 and 1 being vectors of appropriate dimensions with all entries
equal to 0 or to 1, respectively,

D1 =
(
Dx0,t0 , . . . , Dxn,t0 , Dx0,t1 , . . . , Dxn,t1

)′
,

D̂1 =
(
ETRx0,t0φ(w(x0)), . . . ,ETRxn,t0φ(w(xn)),

ETRx0,t1φ(w(x0) + θt1), . . . ,ETRxn,t1φ(w(xn) + θt1)
)′
,

W 1 = diag
(
D̂1

)
, and Q1 = diag (u1) with

u1 =
(
φ′(w(x0))
φ(w(x0)) , . . . ,

φ′(w(xn))
φ(w(xn)) ,

φ′(w(x0) + θt1)
φ(w(x0) + θt1) , . . . ,

φ′(w(xn) + θt1)
φ(w(xn) + θt1)

)′
.

Then, (6.5.3) and (6.5.4) can be rewritten as(
D1 − D̂1

)′
Ỹ 1 = 0 (6.5.5)

where Ỹ 1 = Q1 Y 1. Hence, in analogy with (6.3.6), the corresponding IRWLS algorithm to solve
(6.5.5), starting with a given ̂̃β1,0, is

̂̃
β1,r = ̂̃

β1,r−1 +
(
Ỹ
′
1W 1Ỹ 1

)−1
Ỹ
′
1
(
D1 − D̂1

)
.

Suppose now that ̂̃βv−1 has been estimated, i.e. that the years t1, . . . , tv−1 have been included in
the model (6.5.2), and that ̂̃βv needs to be estimated, i.e. the calendar year tv is now included in
the analysis. As θt0 = 0, the new set of parameters is made of β and θv =

(
θ1, . . . , θv

)′. Denoting
β̃v =

(
β′,θ′v

)′, we have to solve the system

∂

∂βj
L(β̃v) =

∑
s∈{t0,t1,...,tv},x∈{x0,x1,...,xn}

(Dx,s − ETRx,sφ(w(x) + θs))
φ′(w(x) + θs)
φ(w(x) + θs)

Blj(x) = 0,

j = 1, . . . , p, (6.5.6)
∂

∂θts
L(β̃v) =

∑
x∈{x0,x1,...,xn}

(Dx,ts − ETRx,tsφ(w(x) + θts))
φ′(w(x) + θts)
φ(w(x) + θts)

= 0,

s = 1, . . . , v. (6.5.7)

As above, matrix notations are helpful to rewrite the system of non-linear equations given by (6.5.6)
and (6.5.7), and hence to deduce a numerical procedure to solve it. Define

Y v =


X 0
X 1
...

...
X 1

 ,
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where X now appears v + 1 times,

Dv =
(
Dx0,t0 , . . . , Dxn,t0 , Dx0,t1 , . . . , Dxn,t1 , . . . , Dx0,tv , . . . , Dxn,tv

)′
,

D̂v =
(
ETRx0,t0φ(w(x0)), . . . ,ETRxn,t0φ(w(xn)),

ETRx0,t1φ(w(x0) + θt1), . . . ,ETRxn,t1φ(w(xn) + θt1),
. . . ,ETRx0,tvφ(w(x0) + θtv ), . . . ,ETRxn,tvφ(w(xn) + θtv )

)′
,

W v = diag
(
D̂v

)
, and Qv = diag (uv) with

uv =
(
φ′(w(x0))
φ(w(x0)) , . . . ,

φ′(w(xn))
φ(w(xn)) ,

φ′(w(x0) + θt1)
φ(w(x0) + θt1) , . . . ,

φ′(w(xn) + θt1)
φ(w(xn) + θt1) , . . . ,

φ′(w(x0) + θtv )
φ(w(x0) + θtv ) , . . . ,

φ′(w(xn) + θtv )
φ(w(xn) + θtv )

)′
.

Then, (6.5.6) and (6.5.7) can be rewritten as(
Dv − D̂v

)′
Ỹ v = 0 (6.5.8)

where Ỹ v = Qv Y v. Hence, in analogy with (6.3.6), the corresponding IRWLS algorithm to solve
(6.5.8), starting from an initial value ̂̃βv,0 based on the previous estimate for β̃v−1, is

̂̃
βv,r = ̂̃

βv,r−1 +
(
Ỹ
′
vW vỸ v

)−1
Ỹ
′
v

(
Dv − D̂v

)
.

We proceed in this way until the final year tm has been included in the analysis.

Note that penalizations must be included for the computation of ̂̃βv,r, for instance by using the penal-
ization version of the IRWLS algorithm presented in Section 6.4.3.

Figure 6.8 displays the estimated w by gender and starting age x0 whereas Figure 6.9 shows the cor-
responding estimated θt. The estimated w are approximately linear for both genders, increasing with
age. Moreover, the estimated w remain almost unaffected by the age range starting either at x0 = 30
or at x0 = 60.

The estimated θt exhibit clear decreasing trends for both genders, except that for males, this decrease
only starts in the late 1960’s. Also, θt depends on x0: increasing the initial age x0 from 30 to 60 shifts
this function up, especially for males.

6.5.3 Correction of the time-varying shifts θt

As in the Lee-Carter model, small changes in θt may have an important impact on life expectancies.
This is why we refit the θt and replace them with adjusted values so that the model exactly reproduces
the observed period life expectancies at a given age for each calendar year. This adjustment procedure
has been proposed by Lee and Miller (2001) for the Lee-Carter model.

For a given t and a reference age x, the period life expectancy is computed from

êt(x) =
1− exp

(
− µ̂t(x)

)
µ̂t(x) +

∑
k≥1

1− exp
(
− µ̂t(x+ k)

)
µ̂t(x+ k)

k−1∏
j=0

exp
(
− µ̂t(x+ j)

)
(6.5.9)
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Figure 6.8: Estimated function w appearing in (6.5.2) by gender and starting age x0, fitting period 1948
- 2012. Females appear on the left, males on the right.
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Figure 6.9: Estimated θt appearing in (6.5.2) by gender and starting age x0, fitting period 1948 - 2012.
Females appear on the left, males on the right.

where µ̂t(x) is the crude death rate at age x for that calendar year. The corrected θt, henceforth denoted
as θr,t, is the solution of the following equation in η:

êt(x) =
1− exp

(
− φ(ŵ(x) + η)

)
φ(ŵ(x) + η) +

∑
k≥1

1− exp
(
− φ(ŵ(x+ k) + η)

)
φ(ŵ(x+ k) + η)

k−1∏
j=0

exp
(
− φ(ŵ(x+ j) + η)

)
(6.5.10)

where êt(x) is given by (6.5.9), for some reference age x, keeping ŵ unchanged. As the equation (6.5.10)
is non-linear, numerical procedures are required to solve it, such as the Newton-Raphson algorithm.

The values of θr,t solving (6.5.10) for x = x0 ∈ {30, 60} are displayed in Figure 6.10. The shape of the
corrected θr,t is similar to that of the initiall estimates for θt. Then the resulting fit to the mortality
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surface, derived from (6.5.2), becomes

µ̂x(t) = φ(ŵ(x) + θ̂r,t), (6.5.11)

where ŵ is the estimated function appearing in (6.5.2).
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Figure 6.10: Comparison between estimated θt and corrected θr,t by gender and starting age x0 = 30
(top panels) or 60 (bottom panels), fitting period 1948 - 2012. Females appear on the left, males on the
right.

Figures 6.11-6.12 display the estimated functions x 7→ wt(x) and x 7→ w(x) + θr,t by gender and x0 for
t ∈ {1950, 1970, 1990, 2010}. In all cases, wt(x) and w(x) + θt are very close, sometimes with modest
departures at older ages due to the particular mortality experience near the end of the life tables, that
may affect wt but leaves the global additive decomposition unchanged. To assess the performances of
(6.5.11) for mortality projections, we now perform a backtesting analysis.
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Figure 6.11: Comparison of wt(x) and w(x) + θr,t for calendar years t ∈ {1950, 1970, 1990, 2010}, from
left to right, fitting period 1948 - 2012, x0 = 30; females appear in the top panels, males in the bottom
ones.

6.5.4 Out of sample

We aim now to evaluate the quality of the additive representation w(x)+θt for mortality projections. A
way to do this evaluation is to backtest the model on a relevant demographic indicator. Here, we select
the period life expectancy at age 65, the official retirement age in Belgium. To allow for backtesting
our model, the data are divided in two subsets: the first one from 1948 to 2002 is used as training set
for fitting the model and the second one from 2003 to 2012 serves as validation set for assessing model
performances in terms of mortality projections. Adopting this approach we fit the model over the period
1948 - 2002 and forecast mortality over the period 2003 - 2012.

The age transforms w is estimated using the IRWLS algorithm, as explained before. The estimated w is
depicted by gender and starting age x0 in Figure 6.13. It is almost identical to the estimation obtained
from the whole 1948-2012 period given in Figure 6.8. Also, the curves are almost identical for different
starting ages x0, showing that w is fairly robust with respect to the choice of x0. This confirms our
previous comments about the fit to the entire period 1948 - 2012.

Next, the dynamic component θt is estimated and corrected. The result is shown in Figure 6.14 where
the circles on the left (before 2002) represent the corrected θr,t. These estimations are similar to those
found when the fitting period 1948 - 2012 was considered, as displayed in Figure 6.9.
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Figure 6.12: Comparison of wt(x) and w(x) + θr,t for calendar years t ∈ {1950, 1970, 1990, 2010}, from
left to right, fitting period 1948 - 2012, x0 = 60; females appear in the top panels, males in the bottom
ones.

Next, we forecast θr,t to the period 2003 - 2012. We first perform a marginal analysis of gender-specific
θr,t using Autoregressive Integrated Moving Average (ARIMA) models. ARIMA models require to set
three parameters: the number of autoregressive terms (p), the number of nonseasonal differences needed
for stationarity (d), and the number of lagged forecast errors in the prediction equation (q). The fitting
year period is 1948 - 2002, but our previous analysis showed that the clear decreasing trends for θr,t
started around 1970. It is well documented that a structural break occurred in mortality during the
1970s in most industrialized countries, including Belgium. See, e.g., Coelho and Nunes (2011). This
is why we restrict the time series modelling for θr,t to 1970 - 2002. Tests of unit root, including the
augmented Dickey-Fuller test, show the necessity to differentiate the θr,t series once, and hence d = 1.
Next, we select the combination of values for p and q corresponding to the highest p-value of the Ljung-
Box statistics. This tends to guarantee no auto-correlation in the model residuals. In all cases, this
leads us to select the model (p, q) = (0, 1) so that we end up with the ARIMA (0,1,1) dynamics for the
θr,t:

θr,t = a+ θr,t−1 + εt − bεt−1 (6.5.12)

with independent Gaussian centered homoskedastic error terms εt. The estimated parameters are listed
in Table 6.2. Notice that the optimal MA(1) model can be viewed as a random walk with drift that
has been observed subject to errors which makes the MA(1) specification intuitively appealing in the
present context as the θr,t are deduced from the available mortality data and, thus, subject to errors.
Figure 6.14 shows the forecast of θr,t by gender and x0, together with prediction intervals
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Figure 6.13: Estimated function w appearing in (6.5.2) by gender and starting age x0, fitting period
restricted to 1948 - 2002. Females appear on the left, males on the right.

Gender x0 Parameter Estimation p-value Variance estimate of εt

Female 30 a -0.0723 < 0.0001 0.00557
b 0.5137 0.0020

Male 30 a -0.0628 < 0.0001 0.00332
b 0.4375 0.0084

Female 60 a -0.0789 < 0.0001 0.00734
b 0.5476 0.0004

Male 60 a -0.0687 < 0.0001 0.00541
b 0.5353 0.0007

Table 6.2: Estimated dynamics (6.5.12) for θr,t by gender and starting age x0, fitting period restricted
to 1970 - 2002.

To account for possible correlations between the θr,t for males and females, we supplement the marginal
MA(1) modelling with a joint modelling of gender-specific θr,t. To this end, let us now denote as θr,ft
and θr,mt, the time parameters θr,t for females and males, respectively. As mortality improvements expe-
rienced by males and females are often correlated, we analyze the joint dynamics for θr,t = (θr,ft, θr,mt)′
in order to project it.

As θr,ft as well as θr,mt are both integrated of order 1, and the optimal marginal modelling for the two
series correspond to (p, q) = (0, 1), we propose the following bivariate MA(1) model for θr,t:

θr,t = a+ θr,t−1 + εt −Bεt−1, (6.5.13)

where a is a constant 2 × 1 vector, B is a deterministic 2 × 2 matrix, and εt = (ε1t, ε2t)′ is a two-
dimensional white noise process, i.e. for each i ∈ {1, 2}, the random variables εit are independent with
mean 0 and constant variance σ2

i . Moreover, ε1t and ε2s are mutually independent if t 6= s.

The fit of (6.5.13) over the period 1970 - 2002 gives the following equations (where p-values appear
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between brackets) for x0 = 30

θr,ft = −0.0720(0.0001) + θr,f,t−1 + ε1t − 0.3974(0.0645)ε1,t−1 − 0.2180(0.4551)ε2,t−1

θr,mt = −0.0625(0.0001) + θr,m,t−1 + ε2t − 0.1273(0.5812)ε1,t−1 − 0.2658(0.3668)ε2,t−1,

and for x0 = 60

θr,ft = −0.0808(0.0001) + θr,f,t−1 + ε1t − 0.4194(0.0431)ε1,t−1 − 0.2910(0.3135)ε2,t−1

θr,mt = −0.0694(0.0001) + θr,m,t−1 + ε2t − 0.3865(0.0932)ε1,t−1 − 0.2119(0.4781)ε2,t−1.

The p-values appearing between brackets suggest that some coefficients are not statistically significant.
The likelihood ratio test is used to test for the restriction b12 = b21 = 0, showing that there are not
significant differences between these models. Details are reported in Table 6.3.

x0 = 30 x0 = 60

DF 2 2
χ2 0.21 1.87

p-value 0.8985 0.3926

Table 6.3: Likelihood ratio test of (6.5.13) against its restricted version b12 = b21 = 0, fitting period
1970 - 2002.

With b12 = b21 = 0, the fit of reduced models produces the following equation systems for x0 = 30

θr,ft = −0.0714(0.0001) + θr,f,t−1 + ε1t − 0.4618(0.0007)ε1,t−1

θr,mt = −0.0622(0.0001) + θr,m,t−1 + ε2t − 0.3156(0.0374)ε2,t−1,

and for x0 = 60

θr,ft = −0.0782(0.0001) + θr,f,t−1 + ε1t − 0.3655(0.0112)ε1,t−1

θr,mt = −0.0676(0.0001) + θr,m,t−1 + ε2t − 0.3080(0.0286)ε2,t−1.

The variance-covariance matrices for the bivariate errors of these models are, for x0 = 30 and x0 = 60,
respectively:

E[εtε′t] =
(

0.00544 0.00295
0.00295 0.00317

)
and E[εtε′t] =

(
0.00748 0.00496
0.00496 0.00537

)
.

Estimates for a are close to the corresponding ones (the intercepts) presented in Table 6.2. For B,
estimates are smaller compared to those resulting from the marginal analysis. All coefficients are now
statistically significant. Figure 6.14 displays the resulting fit together with the projection to 2003-12.
We can see there that the marginal ARIMA models (6.5.12) and the joint model (6.5.13) produce the
same projected θr,t, whereas the width of the prediction intervals is slightly reduced under (6.5.13).

Figure 6.15 compares the forecast for the period remaining life expectancy at age 65 over the period
2003-2012 based on the data observed during 1948-2002. In this figure, we have disregarded the sampling
errors in the estimated w and in the time series parameters. Bootstrapping can be used to take these
errors into account. See, e.g., Brouhns et al. (2005) for an application of bootstrapping procedures
in mortality projection models. We also know from Lee and Carter (1992, Appendix B) that confi-
dence intervals based on the time index alone are a reasonable approximation: for long-run mortality
projections, the error in forecasting the mortality index dominates the errors in fitting the mortality
surface.
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Figure 6.14: Comparison of univariate and bivariate models fitted to θr,t on 1970 - 2002, and extrap-
olated to 2003-2012, by gender and starting age x0 = 30 (top panels) or 60 (bottom panels). Females
appear on the left, males on the right.

We can see from Figure 6.15 that considering younger ages, i.e. using x0 = 30, leads to a underestimation
of future life expectancies at age 65. The projections obtained for females with x0 = 60 are very close to
their actual values over 2003-12. The forecast for males exhibits slight underestimation, actual values
of life expectancies exceeding their projections over 2003-2012 but staying in the prediction intervals.

6.5.5 Mortality projections

Let us now project mortality over the period 2013 - 2050 using the model (6.5.2) fitted over the entire
observation period 1948 - 2012. These results are compared with the official mortality forecast for the
Belgian population produced by the Federal Planning Bureau (FPB). FPB is a public utility institution
based in Brussels. It makes studies and projections on socio-economic and environmental policy issues for
the Belgian government, including regularly updated projected life tables for Belgium. By construction,
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Figure 6.15: Projections of period expected remaining lifetimes at age 65 over 2003-2012, model (6.5.13),
fitting period 1970 - 2002. Starting age x0 = 30 (top panels) or 60 (bottom panels). Females appear on
the left, males on the right.

the FPB forecasts are very similar to the projections obtained from the Lee-Carter model.

The estimated w and θr,t are displayed in Figures 6.8-6.10. Let us now estimate the bivariate MA(1)
model (6.5.13) for θr,t over the period 1970 - 2012. This gives the following equation systems, for
x0 = 30:

θr,ft = −0.0702(0.0001) + θr,f,t−1 + ε1t − 0.4444(0.0064)ε1,t−1 − 0.1832(0.3922)ε2,t−1

θr,mt = −0.0679(0.0001) + θr,m,t−1 + ε2t − 0.1998(0.2408)ε1,t−1 − 0.2299(0.2446)ε2,t−1,

and, for x0 = 60:

θr,ft = −0.0776(0.0001) + θr,f,t−1 + ε1t − 0.4553(0.0014)ε1,t−1 − 0.2984(0.2185)ε2,t−1

θr,mt = −0.0735(0.0001) + θr,m,t−1 + ε2t − 0.3182(0.0370)ε1,t−1 − 0.3260(0.1148)ε2,t−1.

The p-values are reduced compared to the ones obtained from the restricted fitting period 1970 - 2002.
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Some of them nevertheless suggest that the corresponding coefficients may be set to 0. As for the period
1970 - 2002, we apply the likelihood ratio test, for x0 = 30 as well as x0 = 60, to evaluate the previous
models against the reduced form satisfying b12 = b21 = 0. The results in Table 6.4 show that these
models are not significantly different.

x0 = 30 x0 = 60

DF 2 2
χ2 0.89 1.78

p-value 0.6410 0.4114

Table 6.4: Likelihood ratio test of (6.5.13) against its restricted version b12 = b21 = 0, fitting period
1970 - 2012.

With b12 = b21 = 0, the fit of reduced models produces the following equation systems for x0 = 30

θr,ft = −0.0692(0.0001) + θr,f,t−1 + ε1t − 0.4146(0.0004)ε1,t−1

θr,mt = −0.0675(0.0001) + θr,m,t−1 + ε2t − 0.2582(0.0387)ε2,t−1,

and for x0 = 60

θr,ft = −0.0748(0.0001) + θr,f,t−1 + ε1t − 0.3382(0.0062)ε1,t−1

θr,mt = −0.0718(0.0001) + θr,m,t−1 + ε2t − 0.2840(0.0127)ε2,t−1.

These models have the following variance-covariance matrices for their bivariate errors, for x0 = 30 and
x0 = 60, respectively:

E[εtε′t] =
(

0.00533 0.00303
0.00303 0.00365

)
and E[εtε′t] =

(
0.00782 0.00499
0.00499 0.00533

)
.

Let us now project the expected remaining lifetimes at age 65 and compare them with the official forecast.
This is made using official projections of death rates in (6.5.9) with ages up to 98. Figure 6.16 shows
the projections of expected lifetimes given by our model (6.5.11) together with the official projections.
We forecast more important longevity improvements for females, compared to FPB, especially with
x0 = 60. For males, both forecasts closely agree.

6.6 Discussion

In this chapter, we have proposed a semi-parametric accelerated hazard relational model to link the
force of mortality µ for a population of interest, to a reference one µ? by modifying the age scale. This
model uses a smooth, unspecified function w to adjust the age at which µ? is computed, extending the
linear specification of the standard accelerated hazard model.

This new model can be fitted to mortality data by means of a modified IRWLS algorithm in a Poisson
regression setting. Applied to mortality statistics from the Belgian general population, the proposed
model provides an excellent fit to the observations and appears to be robust with respect to the choice
of the reference µ?.

A dynamic version of the model is proposed to produce mortality forecasts. The yearly age transforma-
tions wt are decomposed into the sum of a time-independent w subject to annual shifts according to a
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Figure 6.16: Projections of expected remaining lifetimes at age 65 by gender and initial age x0 = 30
(top panels) or x0 = 60 (bottom panels), model (6.5.11) with θr,t modelled using a bivariate MA(1)
model. Females appear on the left, males on the right.

time index θt. The joint dynamics of the gender-specific time indices is then used to obtain mortality
projections. The model is backtested on the remaining life expectancies at retirement age and provides
a reasonable forecast for this demographic indicator when fitted to ages 60 and over. A comparison
with the official mortality projections performed for the Belgian population reveals that the longevity
gains for females might be underestimated.



Conclusion of Part III

In this part of the thesis a new accelerated hazard relational model is proposed. It links the force of
mortality µ for a population of interest to a reference one µ? by modifying the age scale. This model
uses a smooth, unspecified semi-parametric function w based on B-splines to adjust the age at which
µ? is computed, extending the linear specification of the standard accelerated hazard model.

This new model can be fitted to mortality data by means of a modified iteratively reweighted least
squares algorithm in a Poisson regression setting. Numerical illustrations show that this model appears
to be robust with respect to the choice of µ?.

A dynamic version of the model is proposed to produce mortality forecasts. The yearly age transforma-
tions wt are decomposed into the sum of a time-independent w subject to annual shifts according to a
time index θt. Mortality projections are obtained by mainly extrapolating the process θt.

This result then contributes to the development of the practice of mortality risk modelling that is
relatively primitive (see e.g. [37]). As an alternative to well-known models that also work with forces
of mortality or transformations of this variable, as the Lee-Carter [99] and the Cairns-Blake-Dowd [36]
models, this innovative mortality projection model introduces components that are important to improve
mortality forecast accuracies, as a flexible age distortion function and a force of mortality of reference.
These features have a great potential for exploring a number of variants, for instance by using a LOESS
(locally weighted scatter plot smooth) approach (see e.g. [44]) instead of the P-splines approach in the
age distortion, or by changing the force of mortality of reference.

Our model may be then used in the design of products concerning stochastic mortality. An example is
pension funds which has become a large issue for mainly governments due to principally the continuous
increasing of longevity. Since official retirement age and retirement pension policies are designed in
function of expected lifetimes forecasts, financial deficits may raise if experienced survival rates are
higher than the anticipated ones. A similar phenomenon is experienced by private pension funds,
suffering direct losses if higher survival rates are realized. Furthermore, as noticed in [76] (p. 123),
individuals could also be affected because they could run out of retirement resources.

Another domain of interest concerning mortality is health. It is known that longevity is promoted by
aging in better health conditions, but also changes in the mortality profiles may imply changes in the
health profiles since illness dynamics would be revealed for higher ages when such ages are reached. It
means that health insurance should hold continuous updatings of the health profiles covered by policies.
So, further studies are needed to evaluate how mortality dynamics influence on health, where robust
mortality models are crucial.

Other products of interest related to mortality are (see e.g. [37] and [14]): longevity bonds (where
coupon payments are linked to the number of survivors in a given cohort), mortality-linked securities
(where payments are linked to a mortality index), survivor swaps (where counterparties swap a fixed
series of payments for a series of payments linked to the number of survivors in a given cohort), annuity
futures (where prices are linked to a specified future market annuity rate), mortality options (contracts
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with option characteristics whose payoff depends on an underlying mortality table at the payment
date), and others. In all these products it is important to take into account stochastic mortality since
the policies involved incorporate guarantees concerning mortality. Hence, it would be interesting our
mortality model for pricing these products.
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This thesis presents several alternatives to deal with extreme behaviors. One proposes a theoretical
framework to deal with tails. Other show two actuarial applications, a first one on relations between
risks of markets and mortality, and another on mortality modelling at high ages.

In the first part of the thesis, we introduce a new theoretical framework for studying extreme values. It
concerns classes of positive and measurable functions organized according to the asymptotic behavior
of their tails. Results based on these classes show that this new framework is a promising approach not
only for describing extreme values, but also for dealing with problems in other domains as probability
theory, number theory, differential equations, complex analysis, and others. We start with the definition
of a new class, called M, and study its algebraic and analytic properties and characterizations. This
class is strictly larger than the class of regularly varying functions. Also, in a natural way, this class is
extended to two classes, calledM∞ andM−∞. Algebraic and analytic properties and characterizations
satisfied on M also hold on these extensions. On the complement set of all these new classes in the
set of positive and measurable functions with infinite endpoint, we prove that the well-known Pickands-
Balkema-de Haan theorem does not hold when this set is restricted to tails of distributions. We also
provide explicit functions of this complement set. Some applications on M are given: the well-known
Karamata’s theorem and Karamata’s Tauberian theorem are extended to M; proper inclusions of the
domains of attractions of Fréchet and Gumbel (restricted to functions with infinite endpoint) inM and
M−∞, respectively, are proved; a new unified proof of Tauberian theorems of exponential type given
by Kohlbecker, de Bruijn, and Kasahara is given.

In the second part of the thesis, we present two empirical studies, one on the economic benefits gener-
ated by the partnership of Swiss Life France (SLF) with a third-party organization, the other on the
investigation of relations between mortality and market risks.

In the first study, developed closely with Swiss Life actuaries, we apply exploratory statistical tech-
niques, such as principal component analysis, analysis of contingency, and analysis of correspondence,
but also tools from data mining, to describe behaviors of clients covered by vision insurance policies.
The goal was to measure the impact on vision insurance policies when having a vision service system
offering competitive prices and facilitating access to vision product suppliers made available to clients.
Parameters as the number of persons covered by the contract, the commercial classification of the con-
tract, and the geographical zone associated to the policy, help discriminating between clients using this
sytem and those not using it, in many cases and in a non-linear way. Then we analyze the value payable
by the insured and the refunds made by SLF to the insured, finding that they are described mainly
by the commercial classification of the contract, the geographical zone associated to the policy, the age
of the client, the classification level of the contract, the type of refund, and the time that a contract
is active. We also observe that some of the clients were able to use this system in a strategic way, in
order to make profits from it. Nevertheless we can not identify, from the available information, the
mechanisms that lead to the various behaviors. The coarse granularity of the information limits the
analysis. In order to reduce this granularity, we recommend some strategies, for instance the use of
quarterly data instead of yearly data.

The second empirical study explores the relations between mortality and market risks. To undertake this
study, which is usually considered from an economic point of view, we introduce indicators as mortality
indices, analysis periods, and identify extreme values of mortality changes. Our analysis strategy,
inspired by the one of Ribeiro and di Pietro, is to consider more countries, to take into account more
economic and financial information, more mortality indices, and particularly, to introduce a different
definition of extreme mortality events. These extreme events are defined by Ribeiro and di Pietro using
variances, a notion that does not exist for variables having heavy-tailed distributions with tail index
lower than 2, so we define them via ranking (which is a standard approach in EVT), considering the worst
n years in mortality, for a given n. We show then evidence of dependence between mortality and some
financial variables when extreme mortality happens, when considering the 10 worst years of mortality
changes and the expected lifetime as mortality index. We find that, in case of extreme mortality changes,
the performances of stock indices and bond yields are reduced compared to the overall sample, indicating
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a dependence in the tails between mortality and market risks. We also see a stronger linear correlation
between mortality and financial indicators during periods of extreme mortality changes, but with signs
varying through the studied countries. Further research considering other notions of dependence is thus
needed. The statistical significance of these reductions in performance (and increases in correlation),
examined using bootstrap techniques, is weak. However, the stability of the results over six different
countries and various indicators point to a believable result. Changing the definition of the mortality
index does not significatively change the overall results.

The third part of the thesis concerns mortality models. We propose a new accelerated hazard relational
model to link the force of mortality µ for a population of interest to a reference one µ? by modifying
the age scale. This model uses a smooth, unspecified semi-parametric function w based on B-splines to
adjust the age at which µ? is computed, extending the linear specification of the standard accelerated
hazard model. This new model can be fitted to mortality data by means of a modified iteratively
reweighted least squares algorithm in a Poisson regression setting. Numerical illustrations show that
this model appears to be robust with respect to the choice of µ?. A dynamic version of the model is
proposed to produce mortality forecasts. The yearly age transformations wt are decomposed into the
sum of a time-independent w subject to annual shifts according to a time index θt. Mortality projections
are obtained mainly by extrapolating the process θt. As an alternative to well-known models that also
work with forces of mortality or transformations of this variable, this innovative mortality projection
model introduces components that are important to improve mortality forecast accuracies, as a flexible
age distortion function and a force of mortality of reference. By varying these components, a great
potential to explore a number of variants is obtained, for instance by modifying these components or
by designing new configurations based on such components.

The research developed in this thesis provides a number of alternatives to deal with theoretical as well
as practical problems, mostly related to the analysis and modelling of extreme behavior. Indeed, on one
hand, our mortality model may be used for pricing products linked to stochastic mortality, as pensions,
health, security longevity products and others, helping the management of the mortality risk and offering
new research approaches in this domain. On the other hand, the wider theoretical framework developed
in the first opens up a promising way to tackle problems, as, for instance, the multivariate modelling
of extreme values, the formulation of new estimators of tail index, the proposal of new distributions.
Other domains may benefit from these new classes of functions determined according to the asymptotic
behavior of their tails, for instance, in theory of numbers, by extending the notion of the class M to
that of sequences, and by using this notion for solving differential equations. Finally, for studying the
relation between mortality and market risks, we propose a new approach to empirically explore the
statistical behavior in the extremes, revealing implications of the mortality risk in domains that are not
generally related to mortality.
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