
HAL Id: tel-01361325
https://theses.hal.science/tel-01361325

Submitted on 7 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Radio logicielle pour des réseaux de capteurs sans fil
cognitifs : un standard IEEE 802.15.4 reconfigurable

Rafik Zitouni

To cite this version:
Rafik Zitouni. Radio logicielle pour des réseaux de capteurs sans fil cognitifs : un standard IEEE
802.15.4 reconfigurable. Computation and Language [cs.CL]. Université Paris-Est, 2015. English.
�NNT : 2015PESC1126�. �tel-01361325�

https://theses.hal.science/tel-01361325
https://hal.archives-ouvertes.fr


 ! " # $

en vue de l’obtention du titre de

 !"#$%& '$ ()*+,-$&.,#/ '$ 01&,. 2.#

Spécialité :  !"#$%&'()*+

Présentée Par: Rafik Zitouni

#%&'()*+ ,+&-.+/ 0)/-% &%* 1%2.-'-3+

4-*+5+66 #+.6%* 7+'(%*869

: *+;%.&-2<*)=5+ >+++ ?@ABCDBE #')./)*/

Soutenue le 14 Octobre, 2015

Jury

Directeur : Laurent  !"#$! - CNRS/UPEMLV/ESIEE/ENPC (LIGM), France
Rapporteurs : Michel %&''"( - Université de Blaise Pascal/LIMOS, France

Pascale %&(!) - INRIA, France
Examinateurs : Didier *! +,-!) - CNAM, France

Fabien *&$#!., - Safran Engineering Services, France
Stefan /).0.( - ECE Paris, France

Invitée : Marie %.)1&.( - ECE Paris, France



PhD prepared at

ECE Paris – LACSC

Laboratoire d’Analyse et Contrôle des Systèmes Complexe

37, Quai de Grenelle

CS 71520

75725 PARIS CEDEX 15

PhD in collaboration with

UPEC – LiSSi (EA 3956)

Laboratoire Images, Signaux et Systèmes Intelligents

Domaine Chérioux

122 rue Paul Armangot

94400 Vitry sur Seine



Software Defined Radio for Cognitive Wireless Sensor Networks:

A reconfigurable Ieee 802.15.4 Standard

Abstract

The Increasing number of Wireless Sensor Networks (WSNs) applications has led industries to design the

physical layer (PHY) of these networks following the IEEE 802.15.4 standard. The traditional design of

that layer is on hardware suffering from a lack of flexibility of radio parameters, such as changing both

frequency bands and modulations. This problem is emphasized by the scarcity of the radio-frequency

spectrum. Software Defined Radio (SDR) is an attracting solution to easily reconfigure radio parameters.

In addition to SDR, a cognitive radio concept can be proposed by spectrum sensing and Dynamic Spectrum

Access (DSA) both to overcome the spectrum scarcity problem. This thesis proposes a new SDR solution

for WSNs based on the IEEE 802.15.4 standard. Our aim is to characterize an SDR platform that

implements two standardized PHY layers and cognitive radio for WSNs.

In this thesis, we carried out SDR implementations using a GNU Radio and Universal Software

Peripheral Radio (USRP) platform. We chose this particular platform because it is one of the most

practical and well-performed ones. A thorough study was performed to analyze GNU Radio software

architecture before its usage. USRPs and their daughter boards were also analyzed through experimental

radio-frequency measurements. The analysis of the GNU Radio USRP platform brought a detailed

description of its architecture and performances as well as the way to implement an SDR. This description

particularly assists researchers to quickly develop efficient SDR receivers and transmitters. We show

through our experiments that the measured performances of daughter boards mounted on a USRP are

lower than expected ones. Despite these results, some daughter boards have many interesting features

such as large covered frequency bands and with a linear output power. An empirical model was introduced

to accurately characterize the average output power of a particular daughter board.

Then, we implemented a new possible standardized PHY layer for the 868/915 MHz frequency band.

A reverse engineering process of another implementation was performed for the 2450 MHz frequency band.

These two PHY layers were described by communication chains or flow graphs. We suggested a new

Cognitive Radio by a reconfiguration of these flow graphs within the corresponding frequency bands. The

particularity of our cognitive radio is to reconfigure flow graphs in function to the selected frequency. This

selection is performed by both DSA and spectrum sensing based on energy detection through real wireless

communications. We introduced a message based algorithm in order to reconfigure the flow graphs and to

synchronize the selection of a carrier frequency.

Our two implemented PHY layers for the 2450 MHz and the 868/915 frequency bands were found

functional. The first one was tested by exchanging data packets with real sensor nodes. The second

was also experienced by a packet exchange, but via GNURadio/USRP communications. Both tests were

carried out through real communications. We were also able to measure two wireless communication

parameters: Bit Error Rate (BER) and the Packet Success Rate (PSR). The result of functional PHY

layers was beneficial for realization and experiments of our cognitive radio. We found that our DSA

significantly improves the packet success rate compared to that obtained with static spectrum access in

an indoor environment. The results of this thesis lead to experiment a cognitive radio with an SDR not

only for a WSN, but also for other wireless networks and radio standards.

Keywords: Software Defined Radio (SDR), IEEE 802.15.4, Wireless Sensor Networks (WSN),

Physical Layer, Cognitive Radio, Dynamic Spectrum Access (DSA), Universal Software Radio Peripheral

(USRP), GNU Radio



Radio Logicielle pour des Réseaux de Capteurs Sans Fil Cognitifs:

Un Standard IEEE 802.15.4 Reconfigurable

Résumé

Le nombre croissant d’applications des Réseaux de Capteurs Sans Fils (RCSFs) a conduit les industriels à

concevoir ces réseaux avec une couche Physique (PHY) suivant le standard IEEE 802.15.4. Actuellement,

cette couche est implémentée en matériel souffrant d’un manque de flexibilité du changement des paramètres

radio, telles que bandes de fréquences et modulations. Ce problème est accentué par la rareté du spectre

radio fréquences. La Radio Logicielle (RL) est une nouvelle solution pour reconfigurer plus facilement

des paramètres radio. A partir d’une RL, il est possible de développer une radio cognitive permettant

une écoute de spectre et un Accès Dynamic au Spectre (ADS). Ces deux possibilités sont utiles pour

surmonter le problème de la rareté du spectre. Cette thèse propose une nouvelle solution Radio logicielle

pour un RCSF basé sur le standard IEEE 802.15.4. Notre objectif est de caractériser une plate-forme RL

qui implémente à la fois deux couches PHY standardisées et une radio cognitive pour des RCSFs.

Dans cette thèse, nous avons réalisé des implémentations RL en utilisant une plateforme composée de

la solution Universal Software Peripheral Radio (USRP) d’Ettus Research et de GNU Radio. Nous avons

choisi cette plateforme particulière puisqu’elle est parmi les outils les plus performants et les plus pratiques

d’après notre état de l’art. Une étude minutieuse a été effectuée pour analyser l’architecture logicielle

de la GNU Radio avant son utilisation. Des USRPs et leurs cartes filles ont été aussi analysés à travers

des mesures expérimentales radio fréquences. L’analyse de la plate-forme GNU Radio USRP a apporté

une description détaillée de son architecture et de ses performances pour la réalisation d’une RL. Cette

description doit permettre à la communauté de chercheurs de développer rapidement des récepteurs et

émetteurs radio logiciels. Nous avons prouvé à travers nos expériences que les performances mesurées sont

plus faibles que celles attendues pour certaines cartes filles d’USRP. Malgré ces résultats, certaines cartes

ont de nombreuses caractéristiques intéressantes, comme de grandes bandes de fréquences couvertes et

avec une puissance de sortie linéaire. Un modèle empirique a été introduit pour caractériser avec précision

la puissance de sortie moyenne d’une carte fille particulière.

Nous avons ensuite implémenté une nouvelle couche PHY standardisée pour la bande de fréquence

868/915 MHz basée sur le standard 802.15.4. Un processus de rétro-ingénierie d’une autre implémentation

développée pour la bande 2.4GHz a été effectué. Ces deux couches ont été décrites par des chaines de

communications ou des graphes de flux. Nous avons finalement proposé une nouvelle radio cognitive

par une reconfiguration de ces graphes de flux dans les deux bandes de fréquences correspondantes. La

particularité de notre radio cognitive est de reconfigurer les graphes de flux en fonction de la fréquence

sélectionnée. Cette sélection est effectuée par un ADS et une écoute de spectre basé sur une détection

d’énergie, validés tous les deux au travers des réelles communications sans fil. Nous avons introduit un

algorithme à base de messages afin de reconfigurer les graphes de flux et de synchroniser la sélection sur

une fréquence porteuse.

Les deux couches physiques en radio logicielle pour les bandes 2.4 GHz et 868/915 MHz ont été testées

et sont fonctionnelles. La première a été testée en échangeant des paquets de données avec des nœuds

capteurs réels. La deuxième a été expérimentée par l’échange de paquets, à travers une communication entre

deux radios logicielles USRP/GNU Radio. Les deux tests ont été réalisés à travers des communications

réelles. Nous avons réussi à mesurer deux paramètres réels d’une communication sans fil : le taux d’erreur

binaire et le taux de succès des paquets. Les couches PHY résultantes ont servi à la réalisation et à

l’expérimentation d’un ADS de notre radio cognitive. Un ADS a amélioré significativement le taux de

succès de paquets par rapport à celui obtenu avec un accès statique dans un environnement indoor.

Les résultats de cette thèse conduisent à expérimenter une radio cognitive avec une radio logicielle non

seulement pour un RCSF, mais pour d’autres réseaux sans fil et standards radio.

Mots-clés : Radio Logicielle, IEEE 802.15.4, Réseaux de Capteurs Sans fils (RCSFs), Couche physique,

Radio Cognitive, Accès Dynamique au Spectre (ADS), Universal Software Radio Peripheral (USRP), GNU

Radio



Remerciement

Je tiens tout d’abord à remercier Laurent George pour avoir dirigé cette thèse.
Laurent m’a fait confiance dès le début en me proposant un sujet de recherche
d’actualité. Il m’a guidé, encouragé, conseillé tout en me laissant une grande liberté
de travail et en me déléguant plusieurs responsabilités ; ce fut un honneur et j’espère
avoir été à la hauteur.

Cette thèse a été traitée en marge d’un projet de recherche auquel l’ECE Paris
participait. Le consortium du projet a financé une partie de la thèse, en facilitant
l’acquisition de nouveaux matériels de test et d’expérimentation. Je remercie les
financeurs de ce projet qui se reconnaîtront en lisant ces lignes.

Je remercie également Stefan Ataman qui était mon encadrant de thèse.
Stefan m’a permis avec sa rigueur d’appréhender certains concepts nécessaires
à l’avancement de cette thèse. Il m’a facilité l’acquisition des connaissances en
traitement de signal et en communication numériques. Mes remerciements vont aussi
à Marie Mathian qui était mon encadrante au début de cette thèse et qui m’a
épaulé dans le projet de recherche.

Je remercie aussi Michel Misson et Pascale Minet d’avoir bien voulu être
mes rapporteurs. Je remercie vivement Didier Le Ruyet et Fabien Ligreau

pour leur participation au jury.
J’adresse un remerciement particulier à Yacine Amirat directeur du laboratoire

LISSI de l’Université de Paris Est Créteil. Yacine m’a initié à la recherche et ses
conseils étaient utiles pour la concrétisation de ce doctorat.

Mon arrivée à Paris peut être considérée comme une "nouvelle" date de naissance.
Paris m’a permis d’accéder facilement à de multiples sources de savoir : conférences
en philosophie, en culture d’orient et en psychologie, etc. Ces activités m’ont enrichi,
m’ont marqué et ont nourri ma soif de savoir. Cela m’a permis également de prendre
du recul par rapport à mon domaine de recherche. Bien que ces savoirs soient
accessibles virtuellement via le web, elles restent beaucoup plus stimulantes à travers
un contact réel. Comme le dit si bien la sagesse arabe "Il est préférable d’acquérir le
savoir en étant proche des Hommes de la science". Je remercie donc le destin qui
m’a donné la chance de m’enrichir à travers cette ville.

Mon travail à l’ECE Paris était particulièrement riche d’expériences. Je reconnais
l’apport de l’environnement stimulant de l’ECE et je dis merci à ceux qui y ont
participé de près ou de loin. Je commence par les collègues doctorants, ceux qui
ont fini leurs thèses : Pierre et Vincent, c’étaient des collègues sympathiques
et modestes. Pierre était proche, bienveillant et m’a initié à la culture française.
La rencontre des autres doctorants comme Clément, Thomas, Olivier, Ermis

ou Nora était aussi enrichissante humainement. Les enseignants chercheurs de
l’ECE ont été une source de courage, en l’occurence ceux qui partagent mon bureau :
Fréderic Fauberteau, Xiaoting Li, Benaoumeur Senouci, Jean François



2 Remerciement

Hermant et Yves Rakotondratsimba. Je n’oublie pas ceux avec qui j’ai partagé
des discussions intéressantes : Max Agueh et Houari Mechkour. Un merci
aux collègues généreux et généreuses, qui ont relu mes résumés en anglais et en
français, en particulier : Waleed Mouhali et Kristen Bini. Je remercie aussi
Assia Soukane et Valéria Nuzzo qui m’ont permis de rédiger ma thèse dans les
meilleures conditions possibles.

J’adresse ensuite une dédicace aux personnes que j’ai eu le plaisir de côtoyer
durant ces dernières années. Hafid, Ihssen, Mouhamed et Mehdi m’ont soutenu
depuis le début de ma thèse. C’étaient pour moi des compagnons présents et proches
durant les bons et les mauvais moments.

Je remercie Claire Bozec, son mari Jean-Jacques et leur fille Sylvie pour
leur générosité. En effet, ils m’ont beaucoup aidé en acceptant de relire une partie
de mon manuscrit. . . Les premières corrections de mon manuscrit m’ont permis
d’améliorer mon anglais.

Ma gratitude et mes remerciements vont aussi à toute ma famille pour leur soutien
et leur amour. Un grand Merci à ma mère et mon père qui m’ont transmis les
valeurs nécessaires pour avancer et surmonter les difficultés de cette thèse. Merci
à mes grand-mères et ma tante qui ont été une source d’affection et d’énergie
mentale, et à mes frères et sœurs, Imad et Mourad, Nassima, Nadia, Sihem,
Habiba et Randa, eux aussi une source de courage et d’inspiration. Encore une
fois : merci à tous !

Je finis mes remerciements et mes dédicaces par ma femme. Merci à Yasmine

qui m’a accompagné durant les mois de rédaction de ce manuscrit. Sa patience et sa
confiance en moi m’ont permis d’avancer avec assurance jusqu’au bout de cette thèse.
Elle était la lumière me montrant le bout du chemin de cette aventure : la thèse.

Ceux qui par la science vont au plus haut du monde

Qui par l’intelligence, scrutent le fond des cieux

Ceux-là, pareils aussi à la coupe du ciel

La tête renversée, vivent dans leur vertige

[ Omar Khayyam ]



Author’s publication list

International Conference Papers

SDR’2012 Rafik Zitouni, Stefan Ataman, Marie Mathian, and Laurent George. “IEEE
802.15.4 transceiver for the 868/915 MHz band using Software Defined Radio”.
In: Proceedings of Wireless Innovation Forum SDR’12 abs/1304.8028 (2012)

CyberC’2013 Rafik Zitouni, Stefan Ataman, and Laurent George. “RF Measurements of
the RFX 900 and RFX 2400 Daughter Boards with the USRP N210 Driven by
the GNU Radio Software”. In: Proceedings of 5ths International Conference on

Cyber-Enabled Distributed Computing and Knowledge Discovery. IEEE, Oct.
2013, pages 490–494. isbn: 978-0-7695-5106-7

SSD’2015 Rafik Zitouni and Stefan Ataman. “An empirical model of the SBX daughter
board output power driven by USRP N210 and GNU Radio based Software
Defined Radio”. In: Proceedings of 12th Multi-Conference on Systems, Signals

and Devices SSD’15. IEEE, Mar. 2015

SDR’2015 Rafik Zitouni, Laurent George, and Yacine Abouda. “A Dynamic Spectrum
Access on SDR for IEEE 802.15.4e networks”. In: Proceedings of Wireless

Innovation Forum SDR’15 (Mar. 2015)

M&N’2015 Rafik Zitouni, Stefan Ataman, Mathian Marie, and Laurent George. “Ra-
dio Frequency Measurements on a SBX Daughter Board using GNU Radio
and USRP N-210”. In: Proceedings of 3rd IEEE International Workshop on

Measurements and Networking 2015. IEEE, Oct. 2015

Posters in International Conferences

GR’2015 Rafik Zitouni, Stefan Ataman, and Laurent George. “Radio Frequency
Measurements on SBX Daughter Boards using GNU Radio/USRP N-210”. In:
GNU Radio 2015 conference (Aug. 2015)



4 Author’s publication list



 !"#$! !%&'(# (& )* +,-"&

Résumé
Ce résumé étendu récapitule l’essentiel des travaux réalisés dans le cadre de

cette thèse intitulée "Radio Logicielle pour des Réseaux de Capteurs Sans fils

Cognitifs : Un standard IEEE 802.15.4 reconfigurable". Cette thèse s’intéresse au

problème de la reconfiguration des paramètres radios de la couche PHYsique

(PHY) des Réseaux de Capteurs Sans Fils (RCSFs) et en particulier à la

problématique de la rareté du spectre radiofréquence. Notre solution est basée

sur une Radio Logicielle (RL). Nous avons analysé et évalué une plate-forme

RL afin de réaliser cette solution. Nous avons implémenté sur cette plate-forme

des spécifications IEEE 802.15.4 pour la bande de fréquences 868/915 MHz.

Cette nouvelle implémentation a été détaillée conjointement avec celle pour la

bande de fréquence 2.4 GHz. En outre, nous avons introduit une radio cognitive

définie par un Accès Dynamique au Spectre (ADS) à deux bandes de fréquences

868/915 MHz et 2.4 GHz. Un ADS a amélioré significativement la robustesse de

communication des paquets de données. Ce résultat ainsi que la caractérisation

de la plate-forme contribuent à la réalisation de nouvelles solutions basées sur

une RL.

1 Introduction et objectifs

Le nombre croissant d’applications basées sur les RCSFs a conduit les industriels
à concevoir ces réseaux avec une couche PHY suivant le standard IEEE 802.15.4
[16] [17]. Un des problèmes de cette couche est la reconfiguration de ses paramètres
radios tels que la bande de fréquence ou la technique de modulation. La source de ce
problème est liée à la nature physique de cette couche et à la nécessité de conformité
au standard. De plus, le nombre croissant de réseaux sans fils et de technologies
radios conduit à une rareté du spectre radiofréquence. En outre, la communauté de
recherche traite ces problèmes ainsi que d’autres en rapport avec la couche PHY en
se basant généralement sur des outils de simulation.

Une RL est une solution émergente d’expérimentation réelle de transmissions
sans fils. Elle intéresse à la fois les industriels et la communauté de recherche,
puisqu’elle permet de définir les paramètres et les fonctions d’une radio en logiciel
à la place du matériel (c.-à-d. puce électronique). Ces paramètres peuvent être
la bande de fréquence, le type de modulation et la puissance radio d’émission [10].
La reconfigurabilité est parmi les principaux avantages d’une RL. Étant donné cet
avantage, un nombre croissant de plates-formes, d’architectures et de standards ont
été proposés dans la littérature. Dans cette thèse, nous présentons un état de l’art sur



6 Résumé étendu de la Thèse

la radio logicielle. Nous nous intéressons principalement à des solutions performantes
et simple à mettre en oeuvre.

L’Universal Software Radio Peripheral (USRP) de Ettus Research [34] et
l’outil logiciel GNU Radio [72] constituent tous les deux une plate-forme RL
basée sur une architecture avec un processeur générique (ou General Purpose
Processor (GPP)). L’USRP/GNU Radio est facilement accessible et avec des per-
formances radiofréquences élevées (disposant d’une large bande de fréquence et
d’un taux d’échantillonnage élevé). La GNU Radio est un logiciel libre permettant
l’implémentation (ou le prototypage) d’une radio à l’aide d’un ordinateur hôte dis-
posant d’un GPP. Une implémentation se présente sous la forme de chaînes de blocs
de communication (ou graphes de flux) pour un émetteur et un récepteur radio. Un
USRP est un périphérique qui porte des cartes filles permettant à un graphe de
flux GNU Radio de recevoir un signal en bande de base et de transmettre un signal
modulé. Dans la littérature [35] [36] [37] [82] [83], la plate-forme USRP/GNU Radio
a été utilisée pour expérimenter des solutions dans la recherche sans une connaissance
à priori des performances radios. Notre thèse propose une analyse minutieuse de la
plate-forme. En effet, nous proposons une évaluation des performances des cartes
filles des USRPs [2] [3].

Le standard IEEE 802.15.4 [16][17] spécifie plusieurs couches PHYs en fonction
de la bande de fréquence et de la modulation. Les spécifications pour la bande de
fréquences Industrial Scientific Medical (ISM) à 2.4 GHz avec la modulation Offset-
Quadtrature Phase Shift Keying (O-QPSK) ont été implémentées sous la GNU
Radio/USRP [35]. Cette implémentation a été testée et trouvée fonctionnelle dans la
littérature. Par contre, nos premiers tests ont montré certaines difficultés à recevoir
et à transmettre des paquets de données. Notre thèse présente une rétro-ingénierie
de cette implémentation. Notre objectif est de détailler les chaînes de l’émetteur
et du récepteur radio. L’émission doit être décrite de la génération des paquets de
données jusqu’à leurs transmissions sous forme d’un signal modulé. De même, la
réception doit être détaillée de la réception d’un signal en bande de base, en passant
par une démodulation et en finissant par une construction des paquets.

Plusieurs couches PHY spécifiées dans le standard 802.15.4 ne sont explorées ni
par l’industrie ni par la communauté de recherche. La couche PHY pour la bande
de fréquence 868/915 MHz permet une portée de transmission plus grande que celle
pour la bande 2.4 GHz [1]. Cette thèse présente une nouvelle implémentation en
radio logicielle pour la bande 868/915 MHz.

Une radio cognitive est un concept proposé comme une solution au problème de la
rareté du spectre radiofréquence. Ce concept est réalisé concrètement par une écoute
de spectre et un ADS. Dans la bande de fréquence ISM 2.4 GHz, un RCSF basé sur
le standard 802.15.4 partage cette bande avec d’autres réseaux, par exemple IEEE
802.11 b/g (WiFi). Le problème d’interférence des canaux de ces réseaux conduit à
un manque de robustesse des communications radios. Bien que la nouvelle version
802.15.4e [17] propose un nouveau mécanisme de saut de fréquence (ou canaux),



2. État de l’art sur la Radio Logicielle 7

ce mécanisme définit en avance des valeurs statiques (ou pseudo aléatoires) à ces
fréquences. Dans cette thèse, nous introduisons une nouvelle solution radio cognitive
réalisée avec un ADS et une écoute de spectre basée sur une détection d’énergie.
Notre ADS est effectuée à travers les deux bandes de fréquences 2.4 GHz et 868/915
MHz avec une reconfiguration des chaînes d’émission et de réception.

Ce résumé étendu est organisé en quatre principales parties. La Section 2 présente
une brève présentation de notre état de l’art sur la radio logicielle. L’analyse de
la GNU Radio et les mesures expérimentales sur des cartes filles des USRPs sont
présentées, respectivement dans Section 3 et Section 4. Les implémentations radio
logicielles, en suivant le standard IEEE 802.15.4, sont décrites dans la Section 5. Un
réseau de capteurs sans fil cognitif basé sur le 802.15.4 est détaillé dans la Section 6.
Nous finissons notre résumé par une conclusion et des perspectives.

2 État de l’art sur la Radio Logicielle

Notre objectif est de découvrir les solutions radios logicielles qui permettent une
réalisation en logiciel des nœuds d’un RCSF basé sur le standard IEEE 802.15.4.
Nous avons dressé un état de l’art sur les solutions existantes dans la littérature.

Une architecture typique d’une RL est composée de trois parties : Une partie
RadioFréquence (RF) de front-end, une partie de Fréquence Intermédiaire (FI) et
une dernière pour un traitement en bande de base (voir Figure 2.2) [39]. La partie
RF permet la réception et l’émission d’un signal en bande de base via des antennes.
La partie FI est introduite dans cette architecture générale, puisque le Convertisseur
Analogique Numérique (A/N) nécessite une puissance de calcul et une fréquence
d’échantillonnage élevées. En général, cette conversion peut être accomplie par un
Field Programmable Gate Array (FPGA), par exemple dans un USRP. La dernière
partie de traitement en bande de base remplace des fonctionnalités analogiques par
d’autres numériques. Des technologies programmables permettent ce remplacement
par exemple en utilisant un FPGA, un Processeur de traitement de signal (ou Digital
Signal Processor (DSP)) ou un GPP.

La reconfigurabilité est la principale propriété de cette architecture. Elle permet
à un émetteur ou à un récepteur radio de changer ces paramètres (fréquence) et
fonctions (modulations) en logiciel. Ce changement est effectué par un concepteur
radio ou par la radio elle-même (c.-à-d. en-ligne ou durant l’exécution). La portabilité
et l’interopérabilité sont aussi parmi les avantages d’une telle architecture. La
portabilité est définie par la mobilité de traitement des formes d’ondes d’une plate-
forme matérielle à une autre. L’interopérabilité est la possibilité d’interconnecter des
technologies et des réseaux sans fils via la couche PHY. Par ailleurs, l’optimisation
des performances des dispositifs matériels comportant les trois parties d’une RL
représente un enjeu majeur. Le traitement en bande de base peut être accompli via
un Application Specific Integrated Circuit (ASIC). Ce dernier est préféré pour un



8 Résumé étendu de la Thèse

calcul efficace sur une puce miniaturisée, mais au détriment de la flexibilité [42]. Un
FPGA, un DSP ou un GPP offrent plus de flexibilité. Le choix de ces dispositifs
matériels et leur disposition (centralisée et distribuée) peut impacter la facilité de
la prise en main d’une RL. La programmation peut se faire avec des langages de
haut niveau dans un GPP et un DSP alors qu’elle est en Very high speed integrated
circuit Hardware Description Language (VHDL) avec un FPGA. Par conséquent,
un nombre important d’architectures et de plates-formes sont proposées dans la
littérature.

L’architecture de communication logicielle Software Communication Architecture
(SCA) [44] et le système radio reconfigurable Reconfigurable Radio System (RRS)
[49] sont les principales architectures qui tentent de standardiser l’usage d’une RL. La
première se base sur une architecture distribuée de type Common Object Request
Broker Architecture (CORBA) [44]. La deuxième réutilise une plate-forme GNU
Radio/USRP modifiée [49].

Nous avons suggéré une classification des radios logicielles adaptées aux pé-
riphériques embarqués. Deux classes ont été définies: l’une basée sur un GPP et une
deuxième basée sur un matériel reconfigurable [52][53]. Le dernier désigne l’utilisation
d’un FPGA ou une architecture granulaire (en anglais coarse-grained architecture).
Le développement logiciel en utilisant un matériel reconfigurable peut être lent avec
des langages de programmation comme le VHDL. Par contre, un GPP permet un
portage facile d’applications radios programmées en langage de haut niveau, par
exemple en C++, Python, C, etc. Un ordinateur hôte est facilement accessible par
une grande communauté d’usagers. Par conséquent, contrairement à l’utilisation
d’un FPGA, un ordinateur hôte permet un prototypage rapide d’une RL. Il est
à noter qu’une architecture peut se baser sur la combinaison d’un FPGA et d’un
GPP. Un FPGA peut être dédié aux fonctions lourdes en puissance de calcul de la
partie FI, et un GPP pour un traitement en bande de base. Un exemple d’une telle
combinaison est la GNU Radio/USRP (voir la prochaine Section).

Dans notre état de l’art, nous avons synthétisé deux classifications de radios logi-
cielles [54] [55] : une classification qui prend en compte le modèle de programmation
et une deuxième qui considère le matériel utilisé pour le traitement en bande de base.
Les tableaux 2.1 et 2.2 récapitulent les classes avec un nombre de solutions radio
logicielles. De plus, nous avons compté plus de soixante solutions et plates-formes
radio logicielles (une sélection est illustrée dans le tableau 2.3). Nous avons déterminé
deux principaux paramètres de performances pour le choix d’une plate-forme. Il s’agit
du taux d’échantillonnage et de la bande passante de radiofréquence d’un matériel
front-end d’une plate-forme. Dans notre état de l’art, les valeurs de ces paramètres
sont parmi les plus élevées pour un périphérique USRP [34] quand nous les comparons
avec les autres solutions matérielles. Ce périphérique peut couvrir une bande de
fréquence allant de 4 MHz à 6 GHz avec un taux d’échantillonnage allant jusqu’à
400 MS/s (Mega Samples per second). En outre, un USRP peut être connecté avec
un GPP. Ce dernier, en exécutant des programmes GNU Radio, réalise une RL. La



3. Analyse de la plate-forme Radio Logicielle USRP/GNU Radio 9

GNU Radio est un logiciel libre facilement accessible sur le réseau Internet. À travers
notre étude théorique, nous avons caractérisés les limites du matériel pour l’obtention
d’une RL pure. La partie de FI de l’architecture générale est nécessaire pour la
conversion numérique analogique (N/A) et surtout pour la conversion analogique
numérique (A/N). La reconfiguration d’une radio (ou la flexibilité) a été identifiée
comme l’avantage principal de cette architecture.

Cette partie de la thèse nous a permis de comparer les performances des plates-
formes permettant le prototypage/implémentation d’une RL. Une plate-forme basée
sur un GPP offre un accès facile à ses ressources logicielles et matérielles. La GNU
Radio/USRP a montré, en plus de son architecture basée sur un GPP, des perfor-
mances radios élevées par rapport aux autres plates-formes existantes. Néanmoins,
ces performances n’ont pas été explorées par la communauté de recherche. De plus,
cette plate-forme n’a pas été suffisamment documentée pour faciliter sa prise en
main.

3 Analyse de la plate-forme Radio Logicielle US-
RP/GNU Radio

Le but de cette section est de résumer le Chapitre 3 consacré à l’architecture logicielle
et matérielle de l’USRP/GNU Radio. Nous avons établi notre analyse en nous basant
sur notre recherche bibliographique et notre rétro-ingénierie de la plate-forme. Par
analogie avec l’architecture générale, le GPP en exécutant un graphe de flux GNU
Radio représente la partie bande de base. Les fonctions des deux parties de FI et
de front-end radiofréquence sont assurées par un USRP. Ce dernier est disponible
en plusieurs versions avec différents performances. De même, différentes liaisons
physiques sont possibles avec un ordinateur hôte (ou un GPP). Dans nos travaux
d’expérimentations et d’implémentations, nous avons utilisé les deux versions USRP
1 et USRP N210. Le Tableau 3.1 récapitule les performances de ces deux USRPs.

La GNU Radio est exécutée par un ordinateur hôte. Une implémentation sous la
GNU Radio reprend la conception de Mitola [39] qui consiste à définir une RL sous
forme d’une chaîne de blocs. Chaque bloc permet une fonction de traitement de signal
ou de données, de modulation et de démodulation numérique, etc. Ces fonctions
sont disponibles dans une boîte à outils avec une possibilité d’intégrer de nouveaux
blocs. Une chaîne de réception ou d’émission radio est décrite par un graphe de flux.
Un graphe de flux est exécuté par un GPP. Il traite en entrée un signal en bande de
base et génère en sortie un signal modulé. Il s’agit de l’interconnexion d’un ensemble
de blocs logiciels. Ces derniers sont programmés, généralement en C++ et connectés
via un script Python. La pile des langages de programmation a été détaillée avec
sept couches dans la Figure 3.1. L’implémentation d’une RL se base principalement
sur la maîtrise des deux langages Python et C++. Les blocs possèdent des ports
en entrée, en sortie ou en entrée et en sortie. Les entrées et les sorties des blocs



10 Résumé étendu de la Thèse

sont des échantillons (ou Samples en anglais) ayant différents types de données, par
exemple Char, Short, Complex, etc. Ces types définissent les tailles des échantillons
et indiquent les types de ports d’entrée et de sortie d’un bloc. Le design d’un bloc
se fait par une instanciation d’objet en C++ de quatre classes : gr_sync_block,
interpolator, gr_sync_decimator et gr_block. Un bloc peut aussi être créé en
instanciant un objet bloc de la classe gr.hier_block2. La connexion des blocs peut
se faire facilement avec l’interface graphique de la GNU Radio. Des arcs connectent
les blocs à condition que les types des ports des blocs soient compatibles. Cette
condition permet à un flux numérique (une succession d’échantillons) de traverser
ces blocs. En programmation, un graphe de flux peut être dérivé de deux classes
: top_block du module gr ou std_top_block du module stdgui2 (voir Figure
3.4). Un graphe de flux est exécuté soit via une commande sur un terminal ou via
l’interface graphique. Pour éviter un temps de calcul supplémentaire nécessaire à
l’affichage, il est recommandé d’utiliser un terminal de commande tout en évitant
aussi les commandes d’affichage.

La GNU Radio est dotée d’un ordonnanceur qui ordonnance l’exécution des blocs
en permettant une gestion de l’écoulement des échantillons du flux à travers ses
blocs. Notre débogage de graphes de flux nous a montré l’existence de deux types
d’ordonnanceurs : Single Threaded Scheduler (STS) et Thread-Per-Block Scheduler
(TPS). Ce résultat est confirmé dans la littérature [40]. Le premier ordonnanceur
alloue un seul thread à un graphe de flux. Par contre, le deuxième, comme son nom
l’indique, alloue pour chaque bloc un thread d’exécution.

Afin de réduire et d’uniformiser le temps d’exécution des blocs à travers les
différents types de processeur, une solution Single Instruction Multiple Data (SIMD)
a été proposée dans [77]. Cette solution est appelée Vector Optimazed Libraray of
Kernels (VOLK). Elle permet à un bloc d’exécuter une seule instruction avec des
vecteurs d’échantillons en entrée. La difficulté du VOLK réside dans la gestion des
tailles des vecteurs avec la variation des temps d’inter-arrivée des échantillons.

Nous avons analysé les performances d’une implémentation radio logicielle sous
GNU Radio/USRP. Ces performances dépendent du délai (ou latency) et du débit
d’écoulement du flux (ou throughput). Le délai est engendré par la séparation via un
lien physique entre l’ordinateur hôte qui exécute un graphe de flux et l’USRP. Ce
délai est dû à la nature des graphes (une succession de blocs séparés). Pour réduire
ce délai, des buffers sont intégrés entre les blocs logiciels et les composants matériels
(entre les deux convertisseurs A/N, N/A et le FPGA, entre un USRP et un GPP).
La Figure 3.10 schématise l’existence de buffers entre ces différents composants.

Le recours à des buffers introduit la notion de débit d’écoulement qui est défini
par le nombre d’échantillons passant par un buffer durant une unité de temps. L’effet
du délai et du débit sont pris en compte en premier lieu par l’ordonnanceur. Cet effet
peut aussi être traité en imposant un paramètre de délai pour chaque bloc ou pour
tout le graphe de flux [80]. De plus, des outils d’estimation du temps d’exécution des
blocs sont proposés par la communauté [41]. Il s’agit d’un compteur de performances



4. Mesures de performances radios sur des cartes filles des USRPs 11

(Performance counters et ControlPort). Ces deux outils sont utiles pour le débogage
d’un graphe de flux et la détection des blocs provoquant le plus de temps de calcul.
Dans le chapitre 3 l’architecture générale d’un USRP a été proposée en se basant sur
la littérature [34] (voir Figure 3.8). La carte mère d’un USRP porte un FPGA, des
cartes filles et convertisseurs A/N et N/A. Le rôle du FPGA est principalement de
convertir la fréquence du signal en entrée en une fréquence adaptée au contrôleur de
la liaison physique avec le GPP. Les cartes filles (en anglais daughter boards) sont
les front-ends radio-fréquence de la radio logicielle. La bande de fréquence couverte
est parmi les principaux paramètres d’une carte fille (voir Table 3.2). Un USRP est
reconnu par un pilote logiciel appelé l’USRP Hardware Driver (UHD). Ce dernier
permet l’initialisation des paramètres radio par exemple : gain, fréquence centrale,
taux d’échantillonnage, etc.

Notre analyse nous a apporté une compréhension de l’architecture logicielle de
la GNU Radio. Les langages de programmation ont été organisés en couches pour
plus de clarté. Nous avons mis l’accent sur la méthode à suivre pour implémenter
une chaine de communication radio. Une implémentation radio logicielle est une
interconnexion de blocs logiciels ou un graphe de flux. Nous avons aussi identifié
les techniques d’ordonnancement d’exécution de ces blocs. Cet ordonnanceur peut
profiter des outils comme le VOLK et de la présence de buffers entre les blocs logiciels.
Les sources de génération de délai au niveau logiciel et matériel ont été identifiées.
Par contre, les performances radiofréquences de l’architecture USRP n’ont pas été
mesurées d’une façon précise. En particulier, la partie front-end de radiofréquence
ou les cartes filles d’un USRP.

4 Mesures de performances radios sur des cartes
filles des USRPs

Les travaux du Chapitre 4 sont motivés par l’obtention de résultats inattendus lors
de tests effectués en utilisant des cartes filles des USRPs. L’interprétation de certains
résultats a été difficile en raison du manque d’informations précises sur ces cartes.
L’objectif de nos tests a été d’estimer le rapport signal sur bruit (ou Signal-to-Noise
Ratio (SNR)) via un bloc de la GNU Radio. Cette dernière comporte déjà des
estimateurs proposés dans la littérature [84] [85]. Nous avons simulé en boucle fermée
une transmission via un canal radio. Ensuite, nous avons calculé des valeurs estimées
du SNR (voir Figure 4.3). En se basant sur les résultats obtenus, un estimateur a été
choisi pour calculer le Bit Error Rate (BER) en fonction du SNR (BER est l’erreur
en bit) pour une modulation/démodulation Binary Phase-Shift Keying (BPSK)
simulée et expérimentée en réel. Les résultats obtenu par simulation ont été en accord
avec la théorie (voir Figure 4.5). Par contre, l’expérimentation réelle avec une carte
fille RFX 2400 a donné des résultats non cohérents. La Figure 4.7 montre un nuage
de points au-dessus de la limite théorique. Ce nuage de points a été obtenu avec



12 Résumé étendu de la Thèse

des valeurs de BER élevées pour des puissances radios de sortie faibles et vice-versa.
Ce résultat a été interprété par l’inégalité entre la valeur de la puissance fixée dans
un graphe de flux et la vraie puissance radio de sortie. Par ailleurs, Ettus Research
[34] annonce des informations non détaillées de la puissance de sortie des cartes. La
Figure 4.8 affiche les bandes passantes radiofréquence annoncées dans [34]. En outre,
les travaux ayant traité les performances des USRPs dans [87] [88] ne se sont pas
intéressés aux paramètres : bandes de fréquences et puissance de sortie des cartes
filles. Cependant, nos travaux publiés dans [2] et [3] sont les premiers à avoir reporté
des mesures sur ces deux paramètres. Notre caractérisation des performances des
cartes filles est basée sur une approche expérimentale. L’objectif a été de calculer
précisément pour des cartes filles les bandes de fréquences couvertes et la linéarité
de puissance de sortie. Par conséquent, une puissance en sortie d’une carte a été
mesurée pour des valeurs de fréquence centrale et de puissance fixées dans un graphe
de flux. Les mesures ont été accomplies via deux outils : avec un analyseur de spectre
et en utilisant la GNU Radio elle-même. Ces outils interceptent le signal en bande de
base généré par un graphe de flux source. Nous nous sommes intéressés aux cartes
couvrant des bandes ISM et des bandes spécifiées dans le standard IEEE 802.15.4.
Les cartes filles explorées par nos mesures sont la RFX 2450, la RFX 900, la SBX
et l’USRP B210 qui couvrent respectivement les bandes de fréquences [2.3 GHz,
2.9 MHz], [750 MHz, 1.050 GHz], [400 MHz, 4.4 GHz] et [70 MHz, 6 Ghz]. Ces
intervalles sont annoncés par Ettus Research dans [34] (voir aussi Figure 4.8).
Dans les mesures accomplies via un analyseur de spectre, nous avons utilisé un
oscilloscope LeCroy 640 Zi [89] (voir Figure 4.9). Ce dernier a été connecté via un
câble coaxial [90] à un USRP N210 qui a porté les cartes RFX 2450, RFX 900 et
SBX. La carte USRP B210 a été connectée directement à l’oscilloscope, puisque
cette carte porte à la fois une carte mère et une carte fille. Par ailleurs, un graphe
de flux source a été implémenté avec la possibilité de générer deux types de signaux :
un signal sinusoïdal à bande étroite (ou porteuse) et un signal modulé BPSK (voir
Figure 4.10). Dans ce graphe de flux, la puissance de ces signaux peut être ajustée
via deux paramètres : DAC et UHDG. Le DAC est défini dans un bloc séparé du
graphe de flux. Le deuxième paramètre UHDG est un gain radio défini dans le dernier
bloc d’un graphe appelé USRP puits. Ces deux paramètres peuvent être modifiés
par l’utilisateur. Nous avons établi la relation quadratique espérée entre la puissance
mesurée réelle et la valeur du DAC introduite via le graphe de flux (voir équation
(4.6)).
Les résultats de la linéarité de puissance de sortie en fonction des valeurs de DAC ont
été obtenus pour les deux signaux : BPSK modulé et sinusoïdal. Cette linéarité est
meilleure avec une carte RFX 2400 qu’une carte RFX 900 (voir Figures 4.12, 4.13 et
4.15). La relation quadratique espérée (équation (4.6)) est vérifiée pour la carte RFX
2400 et elle dévie légèrement avec une carte RFX 900. Les deux cartes RFX 2400 et
RFX 900 couvrent respectivement seulement 24 % et 18 % des bandes de fréquences
annoncées par Ettus Research. Précisément, une carte RFX 900 couvrant une bande



4. Mesures de performances radios sur des cartes filles des USRPs 13

est de 72 MHz dans une fenêtre de puissance entre 0 et -30 dB contrairement aux
300 MHz annoncés. De plus, pour une carte RFX 2400 et dans la même fenêtre de
puissance cette bande est de 168 MHz au lieu de 600 MHz. Ces résultats sont reportés
dans les courbes des Figures 4.11 et 4.14. Pour les deux cartes SBX et l’USRP
B210, les bandes de fréquences sont bien égales à celles annoncées. Néanmoins, la
puissance de sortie diminue avec des valeurs de fréquences centrales élevées (voir les
Figures 4.16 et Figures 4.22). La courbe obtenue dans la Figure 4.16 pour la carte
SBX suit une forme modélisable par un modèle analytique. Par ailleurs, l’UHDG a
été identifié comme un amplificateur supplémentaire pour les deux cartes SBX et
USRP B210, son augmentation devrait se faire avec précaution. En effet, nous avons
observé une distorsion du signal et une émission de puissance sur des fréquences
harmoniques au-delà d’une valeur seuil de l’UHDG (voir Figures 4.18 et 4.19). Ces
deux phénomènes ont été caractérisés par le calcul d’un Total Harmonic Distortion
(THD). La Figure 4.17 montre des courbes des valeurs mesurées de THD en fonction
des puissances de sortie sur des harmoniques avec l’augmentation de l’UHDG.
Étant donné la forme modélisable des courbes obtenues pour des cartes SBX, nous
avons effectué des mesures complémentaires sur d’autres cartes (au total quatre). Les
résultats obtenus nous ont permis de proposer un modèle empirique par interpolation
(voir Figures 4.24, 4.25, 4.26 et 4.27). Il s’agit de la définition d’une fonction qui
prédit la puissance de sortie en fonction des variables du DAC, de l’UHDG et de la
fréquence centrale. Ce modèle a été simplifié pour permettre sa réutilisation facile
par la communauté ou pour son implémentation sous la GNU Radio (voir formule
4.11).
La deuxième partie des mesures a été accomplie uniquement avec des graphes de flux.
L’objectif est la caractérisation de la puissance d’une carte par un graphe de flux
en recevant une porteuse générée également par un graphe de flux. Pour cela, nous
avons réutilisé le même graphe de flux source en émission. En réception, nous avons
implémenté un graphe de flux capable de calculer l’énergie reçue sur une fréquence
en utilisant une densité spectrale de puissance. Nous nous sommes limités dans ces
mesures à l’usage des cartes RFX 2400 et SBX. En effet, une carte SBX a été utilisée
en sortie et des cartes SBX et RFX 2400 en entrée. Les résultats obtenus, et ce pour
les deux cartes, montrent l’effet du paramètre UHDG du récepteur (voir Figure 4.23).
L’amplificateur sature avec un effet inverse de perte de puissance sur des fréquences
harmoniques, si la valeur de l’UHDG est supérieure à 30 dB.
Nous avons apporté de nouvelles informations sur les performances d’un USRP. Ces
informations ont contribué à la maîtrise de la réaction des cartes filles. Particulière-
ment, pour des implémentations radio logicielles sur la plate-forme USRP/GNU
Radio.



14 Résumé étendu de la Thèse

5 Implémentations Radio Logicielles pour les
RCSFs basés IEEE 802.15.4

Notre objectif est de présenter le standard IEEE 802.15.4 en première étape et après
de le traduire sous forme d’implémentations radio logicielle. Nous avons présenté
deux implémentations de deux couches PHYs pour les deux bandes de fréquences
2.4 GHz et 868/915 MHz. Nous avons détaillé les spécifications ou les attributs
de ces deux couches en deux parties : des spécifications communes et d’autres
propres à chaque bande. Le format d’un paquet et le type d’étalement de spectre
Direct Sequence Spread Spectrum (DSSS) sont les deux spécifications communes.
L’occupation du spectre, les séquences Pseudo Aléatoires (PAs) du DSSS ainsi que
la modulation sont des attributs propres à chaque couche. La modulation pour la
couche de la bande 2.4 GHz est l’O-QPSK, alors que c’est la Differential-Phase Shift
Keying (D-BPSK) dans la bande 868/915 MHz. Les plans d’allocation des canaux
(ou fréquences centrales), les séquences PAs sont récapitulés dans Figures 5.1, Figure
5.2 et Tableaux 5.2, 5.3.

La couche de la bande 2.4 GHz a été implémentée sous la GNU Radio/USRP
et présentée dans [35] [36]. Dans la littérature, nous n’avons pas trouvé de détails
sur les graphes de flux représentant l’émetteur et le récepteur GNU Radio. De plus,
au début de notre exploration, nous avons observé certaines difficultés en testant
ces graphes de flux. Cependant, notre travail a apporté le maximum de détails sur
les paramètres de configuration des graphes de flux. Ces détails ont servi, en partie,
à proposer une nouvelle implémentation pour la couche PHY de la bande 868/915
MHz.

Les Figures 5.3 et 5.4 reportent respectivement les graphes de flux de l’émetteur
et du récepteur de la couche PHY 2.4 GHz. L’émetteur est décrit allant du bloc de
génération de paquets jusqu’au bloc puits d’envoi d’un signal modulé en O-QPSK. Le
récepteur représente l’opération inverse commençant par une démodulation O-QPSK
et finissant par une construction de paquets. Cette dernière étape est détaillée sous
forme d’un algorithme divisé en trois sous-parties. La recherche du début ou du
préambule de paquet est la première partie (voir l’Algorithme 1). La deuxième
partie est la recherche et la construction de l’entête de paquet, elle est présentée
dans l’Algorithme 2. La dernière étape compacte les fragments d’octets en donnant
des paquets insérés dans une file d’attente. Les instructions de condition des trois
algorithmes contrôlent la compatibilité du flux d’octets décodé avec la séquence
PA correspondante (voir Tableau 5.2). Notre nouvelle implémentation est basée,
principalement, sur la rétro-ingénierie de celle de la bande 2.4 GHz. Les graphes de
flux de l’émetteur et du récepteur sont présentés respectivement dans la Figure 5.5
et la Figure 5.6 [1]. L’émetteur génère des paquets et construit une constellation
des symboles en D-BPSK tout en suivant un étalement de spectre DSSS. Ce dernier
reprend la séquence PA spécifiée par le standard pour la bande 868/915 MHz (voir
Tableau 5.3). Inversement, le récepteur démodule le signal en première étape avec



6. RCSF cognitif basé sur le standard IEEE 802.15.4 15

un démodulateur BPSK. Le décodage différentiel est retardé pour la dernière étape
de décodage des paquets pour construire à la fin un démodulateur D-BPSK. Le
décodeur de paquets reprend le même principe de celui de la bande 2.4 GHz à
quelques différences. La première partie de recherche du préambule construit des
bits différemment en fonction de la séquence PA correspondante tout en appliquant
un décodage différentiel. La construction d’entête et le compactage d’octets sont
aussi repris avec l’usage de la séquence PA correspondante. Le fonctionnement des
graphes des flux dans la bande 2.4 GHz a été testé via deux communications réelles
de paquets de données. La première communication expérimente une émission et
une réception entre les graphes de flux (ou USRP/GNU Radio configurations). Nous
avons mesuré le taux de réussite d’envoi de paquet (Packet Success Rate (PSR))
en fixant l’ensemble des paramètres logiciels et matériels nécessaires. Ce taux varie
en fonction de la taille des paquets (voir Figure 5.7). Nous avons trouvé qu’une
augmentation de ce taux est liée aux taux d’échantillonnage à la réception/émission.
La deuxième communication utilise des nœuds capteurs (ou motes Telos B et Raven
stiks) et les graphes de flux de l’émetteur et du récepteur. Nous avons réussi à
échanger des paquets en réception et en émission avec les nœuds capteurs. Les
implémentations pour la bande 868/915 MHz ont été testées avec deux USRP 1
pilotées par les graphes de flux. Nous avons mesuré le taux d’erreur en bit et
en paquet d’une communication (voir Figures 5.9 et 5.10). Une constellation des
symboles a été obtenue dans la Figure 5.9.2. La perte de paquet augmente dans le
cas d’un déphasage entre l’émetteur et le récepteur. En effet, cette désynchronisation
peut être provoquée par deux sources : le déséquilibre entre les temps de calcul des
graphes de flux et la gestion des buffers entre GNU Radio et USRP. Malgré ces
difficultés et l’environnent indoor bruité des expérimentations, nos implémentations
sont fonctionnelles.

6 RCSF cognitif basé sur le standard IEEE
802.15.4

Le problème de la rareté du spectre radiofréquence est une conséquence principale
de la régulation et la rigidité des standards de télécommunication. La bande ISM est
définie libre pour de nombreuses applications. Un réseau de capteurs sans fil basé
sur le standard IEEE 802.15.4 partage la bande 2.4 GHz avec d’autres réseaux IEEE
802.11 b/g et IEEE 802.15.1. Les canaux de ces réseaux se chevauchent comme
présentés dans la Figure 6.1. De plus, même si la nouvelle version du standard IEEE
802.15.4e [17] définie un mécanisme de saut de fréquences (ou saut de canal), les
valeurs de ces fréquences sont statiques une fois attribuées. Cependant, un réseau de
capteurs sans fil cognitif apporte une nouvelle solution au problème de la rareté du
spectre.

Une radio cognitive existe concrètement si la radio peut écouter le spectre radio



16 Résumé étendu de la Thèse

et peut aussi accéder dynamiquement et en ligne à d’autres bandes de fréquences.
Notre ADS suit un modèle ouvert de partage (ou en anglais spectrum common). Ce
modèle est celui où tous les réseaux ont les mêmes droits en accédant à une bande
de fréquences sans licence. Nous avons considéré un RCSF comme un Utilisateur
Secondaire (US) et les autres réseaux comme des Utilisateurs Primaires (UPs). Les
deux implémentations pour les 2.4 GHz et 868/915 MHz bandes de fréquences ont
été réutilisées.

Notre RCSF cognitif est composé d’un émetteur et d’un récepteur, où chacun est
composé d’un nombre de graphes de flux. Le spectre radiofréquence comprend les
deux bandes 2.4 GHz et 868/915 MHz. Par conséquent, le ADS peut conduire à un
changement de graphe de flux de réception et d’émission. Cependant, le récepteur
US est obtenu avec cinq graphes de flux (voir Figure 6.3). Il comporte un détecteur
d’énergie, un récepteur/émetteur de messages avec un démodulateur/modulateur
Gaussian Minimum Shift Keying (GMSK) et les deux récepteurs pour les deux
bandes de fréquences 2.4 GHz et 868/915 MHz. L’émetteur quant à lui comporte
les émetteurs correspondants aux bandes de fréquences pour les mêmes graphes de
flux de modulateur/démodulateur GMSK (voir Figure 6.4). L’écoute du spectre est
basée sur une détection d’énergie effectuée uniquement par le récepteur. Dans notre
configuration de radio logicielle, l’UP est un modulateur Orthogonal Frequency-
Division Multiplexing (OFDM) de signal généré aléatoirement (voir Figure 6.5). Cet
UP simule la modulation OFDM ou le perturbateur de notre réseau US (ou IEEE
802.15.4).

Notre détecteur d’énergie réutilise le graphe de flux proposé dans [113]. Ce dernier
a été adapté et intégré au récepteur de l’US (ou IEEE 802.15.4). Le principe de la
détection est basé sur l’estimation de la moyenne d’une densité spectrale de puissance
de sortie (voir Figure 6.6). Il s’agit de recevoir un flux de signal et de le transformer
en vecteurs de 512 échantillons complexes pour une fréquence donnée. Ensuite,
chaque vecteur est traité dans une fenêtre Balkman-Harris avec une Transformée de
Fourrier Rapide (ou Fast Fourier Transform (FFT)). Cette fenêtre se déplace afin
de balayer une bande de fréquence. L’énergie détectée sur une fréquence centrale est
donnée par l’équation (6.1).

La sélection dynamique de fréquence porteuse est accomplie après l’exécution d’un
algorithme de coordination par échange de messages. Cet algorithme est inspiré des
requêtes automatiques de répétition (ou Automatique Repeat reQuest (ARQ)). Les
Algorithmes 5 et 6 sont exécutés respectivement par le récepteur et l’émetteur USs.
La sélection est effectuée par le récepteur après la détection de l’énergie minimale sur
une bande de fréquence. Un seuil minimal d’énergie est fixé afin d’arrêter la détection
dans un temps limité. La valeur initiale de ce seuil est définie à partir des expériences
de détection précédentes. L’échange de message d’acquittement de changement de
fréquence est assuré via les modulateurs/démodulateurs GMSK. Cette modulation
est choisie, puisque sous la GNU Radio/USRP nous avons observé un taux de PSR
élevé avec une modulation GMSK. Le récepteur envoie continuellement une requête



6. RCSF cognitif basé sur le standard IEEE 802.15.4 17

avec la valeur de la fréquence sélectionnée. Entre-temps, il attend un acquittement
de l’émetteur avant d’envoyer de nouveau un message de confirmation indiquant
qu’il est prêt à recevoir des données. Du côté de l’émetteur, l’attente est continuelle
jusqu’à ce qu’il reçoive une requête. Cette réception déclenche l’envoi répétitif du
message d’acquittement jusqu’à la réception d’une confirmation d’aptitude à recevoir
des données. Ensuite, l’émetteur déclenche l’envoi des paquets de données IEEE
802.15.4.

Nous avons réalisé une expérimentation avec trois USRP 1 dans un environnement
indoor. Deux USRP 1 sont dédiés à l’émetteur et au récepteur de notre RCSF cognitif
(ou US). Un USRP 1 est avantageux, puisqu’il permet le montage de deux cartes
filles avec pour chacune deux sorties antenne, une pour la réception (Rx) et une
deuxième pour réception/émission (Rx/Tx). Nous avons utilisé quatre cartes filles
SBX. Le détecteur d’énergie et le modulateur/démodulateur GMSK occupent une
carte fille avec pour chacun, respectivement, les antennes Rx et RX/Tx. Par ailleurs,
l’UP (modulateur OFDM) est joué par un troisième USRP 1.

Une fréquence de communication centrale est initialisée pour commencer
l’expérimentation. Ensuite, le détecteur d’énergie balaye par division de 8 MHz dans
la bande de fréquence 2.4 GHz. Cette division est due à la limitation en 8 MHz de la
liaison USB 2 de l’USRP 1. D’autres paramètres hors-ligne et en-ligne sont définis,
respectivement, avant l’exécution et au moment de l’exécution des graphes de flux.
La bande passante d’un canal et le taux d’échantillonnage sont définis hors-ligne. Par
contre, les paramètres en-ligne sont : la fréquence centrale, la tranche de balayage et
le nombre de pistes (ou bins en anglais) d’une fenêtre FFT (voir Tableau 6.1). Une
fenêtre FFT est définie par son début, sa taille et sa fin calculés respectivement, par
les équations (6.2), (6.3) et (6.4).

Avant d’évaluer les performances de notre ADS, une caractérisation préalable a
été effectuée sur ce spectre en détectant l’énergie reçue pour chaque fréquence (voir
Figure 6.7 et 6.8). En effet, nous avons détecté plus de pics de puissance dans la
bande 2.4 GHz par rapport à la bande 868/915 MHz. Après la caractérisation, nous
avons considéré deux scénarios : avec un ADS et avec une définition statique d’un
canal du standard, mais les deux ont été perturbés par un PU. La robustesse de
l’ADS est mesurée par le taux PSR et le taux des paquets reçus (ou Packet Received
Rate (PRR)). Ce dernier mesure le nombre de paquets reçus avec erreur par rapport
à la somme totale des paquets envoyés. La Figure 6.9 et la Figure 6.10 montrent,
respectivement, les résultats d’une communication sans l’ADS et avec l’ADS. Une
amélioration de 80 % du PSR est obtenue avec notre ADS par rapport à un accès
statique.



18 Résumé étendu de la Thèse

7 Conclusion et perspectives

Après la description résumée des différentes parties de la thèse, nous rappelons les
contributions de notre travail comme suit :

• Notre état de l’art a suggéré deux classes de radio logicielles pour des pé-
riphériques embarqués. Il s’agit d’une classe d’architecture avec un GPP et une
autre avec un matériel reconfigurable. De plus, nous avons synthétisé d’autres
classifications avec une étude comparative des performances des plates-formes.

• Nous avons apporté une caractérisation de la plate-forme GNU Radio/USRP.
La GNU Radio a été analysée avec une description de l’architecture logicielle et
du modèle en graphe de flux d’une implémentation radio logicielle. Nous avons
identifié les techniques d’ordonnancement et les sources de délais d’exécution de
ces graphes. En outre, l’architecture SIMD (ou VOLK), les outils ControlPort
et compteur de performances ont été étudiés et présentés.

• Nos mesures de performance sont les premiers travaux de recherche en rapport
avec les cartes filles RFX 2400, RFX 900, SBX et USRP B210 des USRPs.
Les bandes de fréquences et les puissances de sorties de ces cartes ont été
mesurées via une méthode expérimentale. Des cartes SBX et USRP B210
ont été trouvées avec des bandes de fréquences larges compatibles avec les
intervalles annoncés par Ettus Research [34]. Néanmoins, la puissance de sortie
de ces deux cartes diminue en augmentant la fréquence. Un modèle empirique
reprend cette relation afin de prédire la puissance de sortie d’une SBX en
fonction des amplificateurs logiciels. Par ailleurs, les cartes RFX 2400 et RFX
900 couvrent, respectivement, seulement 24 % et 18 % des bandes annoncées.
Ces résultats sont utiles pour l’implémentation de radios logicielles en utilisant
la GNU Radio/USRP.

• Nous avons implémenté une nouvelle couche PHY possible pour un RCSF basé
sur le standard IEEE 802.15.4. Des graphes de flux ont été proposés pour la
bande de fréquences 868/915 MHz. De plus, la couche PHY pour la bande
2.4 GHz a été détaillée via une rétro-ingénierie de son implémentation sous
forme de graphes de flux. Ces graphes sont fonctionnels pour ces deux bandes,
puisqu’ils ont été testés via une communication réelle de paquets de données
avec des nœuds capteurs.

• Nous avons proposé un ADS en exploitant les deux couches PHYs IEEE 802.15.4
implémentées. Cet ADS est l’étape la plus importante vers le développement
d’un réseau de capteur sans fil cognitif. Ce réseau a été considéré comme un
US des deux bandes 2.4 GHz et 868/915 MHz. Nous avons réussi à assembler
dans un nœud du réseau un ensemble de graphes de flux : modulateurs et
démodulateurs GMSK de messages, les deux implémentations pour le standard



7. Conclusion et perspectives 19

IEEE 802.15.4 et un détecteur d’énergie. La synchronisation et la coordination
de changement de fréquences et de graphes de flux ont été assurées via un
algorithme avec échange de messages. Notre ADS a été expérimentée à travers
une communication réelle de paquets dans un environnement indoor. Le PSR
mesuré de cette communication est amélioré de 80 % avec notre ADS par
rapport à un accès statique.

Les principales perspectives de notre thèse sont au nombre de trois :

• Nous pourrions améliorer la synchronisation des graphes de flux émetteur et
récepteur. Une estimation précise du temps d’exécution des blocs de graphe
est possible à travers les outils : compteur de performances et ControlPort.

• Pour la couche PHY proposée, les tests peuvent être étendus à un échange de
paquets avec un émetteur/récepteur matériel.

• D’autres couches PHYs du standard IEEE 802.15.4e peuvent être explorées.
Nous pouvons considérer celle avec une modulation Differential-Quadtrature
Phase Shift Keying (D-QPSK) et un étalement de spectre Chirp Spread
Spectrum (CSS) pour la bande 2.4 GHz.





Contents

1 Introduction et objectifs . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 État de l’art sur la Radio Logicielle . . . . . . . . . . . . . . . . . . . 7
3 Analyse de la plate-forme Radio Logicielle USRP/GNU Radio . . . . 9
4 Mesures de performances radios sur des cartes filles des USRPs . . . . 11
5 Implémentations Radio Logicielles pour les RCSFs basés IEEE 802.15.4 14
6 RCSF cognitif basé sur le standard IEEE 802.15.4 . . . . . . . . . . . 15
7 Conclusion et perspectives . . . . . . . . . . . . . . . . . . . . . . . . 18

1 Introduction 31
1 Historical Elements and Context . . . . . . . . . . . . . . . . . . . . . 32
2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.1 Software Radio and Software Defined Radio . . . . . . . . . . 35
2.2 Cognitive Radio . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2.1 Spectrum Sensing . . . . . . . . . . . . . . . . . . . . 36
2.2.2 Dynamic Spectrum Access . . . . . . . . . . . . . . . 36

2.3 Wireless Sensor Networks . . . . . . . . . . . . . . . . . . . . 37
2.3.1 IEEE 802.15.4 standard . . . . . . . . . . . . . . . . 37

3 Thesis motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.1 Context of WSNs . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2 Applications of WSNs and SDRs . . . . . . . . . . . . . . . . 40

4 Thesis objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.1 SDR platform to implement standardized PHY layer of WSNs 41
4.2 Cognitive Radio for Spectrum Scarcity . . . . . . . . . . . . . 42

5 Thesis Organization and Contributions . . . . . . . . . . . . . . . . . 43
5.1 State of the art on Software Defined Radio . . . . . . . . . . . 43
5.2 Analysis of GNU Radio and experimental measurements on

USRP’s Daughter boards . . . . . . . . . . . . . . . . . . . . . 44
5.3 SDR implementations of IEEE 802.15.4 standard . . . . . . . 45
5.4 Cognitive Wireless Sensor Network based on IEEE 802.15.4 . 45

2 State of the art on Software Defined Radio-SDR 47
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2 Typical architecture of an SDR . . . . . . . . . . . . . . . . . . . . . 48

2.1 SDR Receiver (Receiver (Rx)) . . . . . . . . . . . . . . . . . . 49
2.2 SDR Transmitter (Tx) . . . . . . . . . . . . . . . . . . . . . . 50

3 Features and Challenges of SDR . . . . . . . . . . . . . . . . . . . . . 50
3.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1.1 Reconfigurability . . . . . . . . . . . . . . . . . . . . 50
3.1.2 Portability . . . . . . . . . . . . . . . . . . . . . . . 51



22 Contents

3.1.3 Interoperability . . . . . . . . . . . . . . . . . . . . . 51
3.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.1 Handling of an SDR platform . . . . . . . . . . . . . 51
3.2.2 Hardware physical dimensions . . . . . . . . . . . . . 52
3.2.3 Radio frequency performances . . . . . . . . . . . . . 52
3.2.4 Baseband processing hardware . . . . . . . . . . . . 53

4 SDR standards and architectures . . . . . . . . . . . . . . . . . . . . 53
4.1 Software Communication Architecture SCA . . . . . . . . . . 53

4.1.1 Open Source SCA Implementation::Embedded
(OSSIE) . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Reconfigurable Radio System RRS . . . . . . . . . . . . . . . 54
5 SDR for Embedded Devices . . . . . . . . . . . . . . . . . . . . . . . 56

5.1 GPP based architecture . . . . . . . . . . . . . . . . . . . . . 56
5.2 Reconfigurable hardware based architecture . . . . . . . . . . 56

6 SDR classifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.1 Programming model . . . . . . . . . . . . . . . . . . . . . . . 57
6.2 Used hardware . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.3 SDR platforms . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3 Analysis of GNU Radio and USRP SDR 65
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2 GNU Radio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.1 Programming language layers . . . . . . . . . . . . . . . . . . 67
2.2 Software blocks . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.3 Flow graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.4 Software scheduler . . . . . . . . . . . . . . . . . . . . . . . . 70
2.5 SIMD programming (Volk) . . . . . . . . . . . . . . . . . . . . 71

3 Universal Software Radio Peripheral . . . . . . . . . . . . . . . . . . . 72
3.1 USRP Architecture . . . . . . . . . . . . . . . . . . . . . . . . 74
3.2 Transmit and Receive Paths . . . . . . . . . . . . . . . . . . . 74
3.3 RF daughter boards . . . . . . . . . . . . . . . . . . . . . . . 75
3.4 Firmware and FPGA images . . . . . . . . . . . . . . . . . . . 75
3.5 Universal Hardware Driver (UHD) . . . . . . . . . . . . . . . 76

4 GNU Radio and USRP properties . . . . . . . . . . . . . . . . . . . . 76
4.1 Latency and throughput . . . . . . . . . . . . . . . . . . . . . 77
4.2 Buffers organization . . . . . . . . . . . . . . . . . . . . . . . 78
4.3 Performance counters and ControlPort . . . . . . . . . . . . . 78

5 Advantages of GNU Radio and USRP . . . . . . . . . . . . . . . . . . 79
6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80



Contents 23

4 Radio Frequency Measurements on USRP Daughter boards 83
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

2.1 An overview of BPSK modulation . . . . . . . . . . . . . . . . 85
2.1.1 The BER and SNR parameters . . . . . . . . . . . . 85
2.1.2 BER/SNR estimators on GNU Radio simulation . . 86
2.1.3 BER/SNR estimators in real experiment . . . . . . . 88

2.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3 Experimental approach . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.1 Hardware Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.2 Software Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.2.1 The expected DAC vs ouput power relationship . . . 93
4 Spectrum Analyzer measurements . . . . . . . . . . . . . . . . . . . . 93

4.1 RFX2400 Daughter board . . . . . . . . . . . . . . . . . . . . 93
4.1.1 Frequency bandwidth . . . . . . . . . . . . . . . . . 94
4.1.2 Output power versus DAC value . . . . . . . . . . . 95

4.2 RFX900 Daughter board . . . . . . . . . . . . . . . . . . . . . 95
4.2.1 Frequency bandwidth . . . . . . . . . . . . . . . . . 97
4.2.2 Output power versus DAC value . . . . . . . . . . . 97

4.3 SBX Daughter board . . . . . . . . . . . . . . . . . . . . . . . 98
4.3.1 Frequency bandwidth . . . . . . . . . . . . . . . . . 99
4.3.2 Total Harmonic Distortion (THD) . . . . . . . . . . 99
4.3.3 Output power versus DAC value . . . . . . . . . . . 101

4.4 MIMO USRP B210 . . . . . . . . . . . . . . . . . . . . . . . . 103
4.4.1 Frequency bandwidth . . . . . . . . . . . . . . . . . 104

5 Measurements through flow graphs . . . . . . . . . . . . . . . . . . . 104
5.1 RFX and SBX Daughter boards . . . . . . . . . . . . . . . . . 105

6 Empirical model for SBX daughter boards . . . . . . . . . . . . . . . 106
7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5 SDR implementations for IEEE 802.15.4-based WSN 113
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
3 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4 IEEE 802.15.4 PHY layers . . . . . . . . . . . . . . . . . . . . . . . . 118

4.1 Common specifications for 868/915 MHz and 2450 MHz PHY
layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.2 2450 MHz specifications . . . . . . . . . . . . . . . . . . . . . 119
4.3 868/915 MHz specifications . . . . . . . . . . . . . . . . . . . 120

5 Software Implementations . . . . . . . . . . . . . . . . . . . . . . . . 121
5.1 Software transmitter/receiver for 2450 MHz PHY . . . . . . . 121

5.1.1 Tx flow graph . . . . . . . . . . . . . . . . . . . . . . 121



24 Contents

5.1.2 Rx flow graph . . . . . . . . . . . . . . . . . . . . . . 122
5.1.3 Packet decoder . . . . . . . . . . . . . . . . . . . . . 123

5.2 Software transmitter/receiver for 868/915 MHz PHY . . . . . 124
5.2.1 Tx flow graph . . . . . . . . . . . . . . . . . . . . . . 127
5.2.2 Rx flow graph . . . . . . . . . . . . . . . . . . . . . . 128
5.2.3 Packet decoder . . . . . . . . . . . . . . . . . . . . . 129

6 SDR communications for 2450 MHz . . . . . . . . . . . . . . . . . . . 131
6.1 Communications between two SDRs . . . . . . . . . . . . . . . 131
6.2 Communications between sensor motes and SDRs . . . . . . . 132

7 SDR communications for 868/915 MHz . . . . . . . . . . . . . . . . . 133
8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6 Cognitive Wireless Sensor Network based on IEEE 802.15.4 139
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
3 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

3.0.1 Related specifications . . . . . . . . . . . . . . . . . 142
3.0.2 Related implementations . . . . . . . . . . . . . . . . 143

4 Dynamic spectrum access on GNU Radio USRP SDR . . . . . . . . . 143
4.1 Reconfigurable SDR settings . . . . . . . . . . . . . . . . . . . 144
4.2 Energy Detector . . . . . . . . . . . . . . . . . . . . . . . . . 146
4.3 Dynamic frequency selection . . . . . . . . . . . . . . . . . . . 146

5 Experiments and results . . . . . . . . . . . . . . . . . . . . . . . . . 148
6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

7 Conclusions and Future Work 153
1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Glossaries 159
Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166



List of Figures

1.1 The opportunity to replace Wireless communications devices by Soft-
ware Defined Radio . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.2 The crowded frequency spectrum from 300 MHz to 3 GHz in USA [9] 34
1.3 Interaction stack of CR, SDR, DSA and SS . . . . . . . . . . . . . . . 36

2.1 Ideal architecture of a Software Radio . . . . . . . . . . . . . . . . . . 49
2.2 General architecture of SDR . . . . . . . . . . . . . . . . . . . . . . . 49
2.3 SDR receiver block diagram . . . . . . . . . . . . . . . . . . . . . . . 49
2.4 SDR transmitter block diagram . . . . . . . . . . . . . . . . . . . . . 50
2.5 Version 4 of the SCA architecture [49] . . . . . . . . . . . . . . . . . 54
2.6 ETSI architecture [51] . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.7 Hardware tasks associated with process intensity and flexibility . . . . 61

3.1 Software layers of the GNU Radio . . . . . . . . . . . . . . . . . . . . 67
3.2 Source, Sink and Intermediate blocks . . . . . . . . . . . . . . . . . . 68
3.3 C++ signal processing modules . . . . . . . . . . . . . . . . . . . . . 68
3.4 Programming layers of GNU Radio implementation . . . . . . . . . . 69
3.5 An example of a flow graph . . . . . . . . . . . . . . . . . . . . . . . 70
3.6 GNU Radio Software layers [78] . . . . . . . . . . . . . . . . . . . . . 70
3.7 VOLK programming model . . . . . . . . . . . . . . . . . . . . . . . 72
3.8 General USRP Architecture with a daughter board (USRP N210 with

WBX) [37] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.9 UHD in GNU Radio/USRP . . . . . . . . . . . . . . . . . . . . . . . 76
3.10 Latencies between GPP, FPGA and DAC/ADC . . . . . . . . . . . . 77
3.11 Latencies between Software blocks . . . . . . . . . . . . . . . . . . . . 78
3.12 Buffers in GNU Radio USRP SDR . . . . . . . . . . . . . . . . . . . 78
3.13 Controlport clients with GNU Radio applications over a TCP connection 79
3.14 An example of the performance’s counters graph of a given flow graph 79

4.1 Constellation diagram for BPSK modulation . . . . . . . . . . . . . . 85
4.2 Loop back flow graph for SNR estimation . . . . . . . . . . . . . . . . 87
4.3 Known theoretical SNR compared to the estimated ones through GNU

Radio and python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.3.1 Simple estimator of the SNR. . . . . . . . . . . . . . . . . . . 87
4.3.2 Skew estimator of the SNR. . . . . . . . . . . . . . . . . . . . 87
4.3.3 M2M4 estimator of the SNR. . . . . . . . . . . . . . . . . . . 87
4.3.4 SVR estimator of the SNR. . . . . . . . . . . . . . . . . . . . 87

4.4 Loop back flow graph for BER estimation . . . . . . . . . . . . . . . 88



26 List of Figures

4.5 Compared BER versus Eb/N0 obtained under simulation and theoret-
ical processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.6 Two USRP 1 connected to a host computer which run a BPSK modu-
lator/demodulator flow graph . . . . . . . . . . . . . . . . . . . . . . 89

4.7 BER versus SNR obtained with a BPSK modulation on RFX2400
daughter board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.8 Daughter boards frequency band coverage . . . . . . . . . . . . . . . 90
4.9 Experimental setup for the measurements . . . . . . . . . . . . . . . 92
4.10 A simplified sinusoidal and BPSK transmitter flow graph . . . . . . . 93
4.11 Measured bandwidth of the RFX2400 daughter board. The reference

level of 0 dB was taken at 2434 MHz. Units are logarithmic (dB). . . 94
4.12 The average output power of the RFX2400 versus the DAC value for 6

frequencies (unmodulated carrier). The 〈Pout〉 ∼ DAC2 law is closely
followed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.13 The average output power of the RFX2400 versus the DAC value for 3

frequencies in the cases: unmodulated carrier and BPSK transmission.
The 〈Pout〉 ∼ DAC2 law breaks down for BPSK at DAC = 0.7. . . . . 96

4.14 Measured bandwidth of the RFX900 daughter board. The reference
level of 0 dB was taken at 910 MHz. Units are logarithmic (dB). . . . 97

4.15 The average output power of RFX900 versus the DAC value at 900

MHz (unmodulated carrier). . . . . . . . . . . . . . . . . . . . . . . . 98
4.16 Measured bandwidth of the SBX daughter boards for UHDG of 0, 10,

20 dB. The small oscillation between 2.2 and 3.4 GHz is probably due
to a slight mis-adaptation in the SBX board. . . . . . . . . . . . . . . 99

4.17 THD measured at carrier frequencies f1 = 600 MHz, 900 MHz and
2400 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.18 Time domain waveform at 600 MHz for UHDG from 10 to 40 dB.
Beyond the UHD gain value of 20 dB, the waveform becomes heavily
distorted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.19 The measured output power for a carrier frequency f1 = 600 MHz
and f1 = 900 MHz versus the UHDG. . . . . . . . . . . . . . . . . . . 102
4.19.1 f1 = 600 MHz. The second harmonic at f2 = 1800 shows a

sharp increase between 20 and 30 dB, partially explaining the
increase in the THD. . . . . . . . . . . . . . . . . . . . . . . . 102

4.19.2 f1 = 900 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.20 The output power on the carrier frequency and the total output power

versus the DAC value for UHDG = 15 and UHDG = 20 dB at f1 = 900

MHz. The square law from Equation 4.6 is closely followed for a
UHDG of 15 dB, however it breaks down for a gain of 20 dB and for
DAC ≥ 0.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.21 A simplified sinusoidal MIMO flow graph . . . . . . . . . . . . . . . . 103



List of Figures 27

4.22 The measured frequency bandwidth of the MIMO B210 USRP board
for different UHDG values . . . . . . . . . . . . . . . . . . . . . . . . 104

4.23 Output power results measured over SBX and RFX 2400 daughter
boards within the GNU Radio USRP SDR . . . . . . . . . . . . . . . 106
4.23.1 Relative average of output power measured with RFX daughter

board. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.23.2 Relative average of output power obtained with SBX daughter

boards. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.24 Average output power versus carrier frequency for UHDG gains of 0,

10, 20 dB for the four measured SBX boards. . . . . . . . . . . . . . 107
4.25 The average output (in mW) for the four measured SBX boards and

the average output power (thick line) versus the empirical model given
by Equation (4.10). . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.26 The average output (in mW) for the four measured SBX boards versus
the empirical model Equation (4.11) (converted to mW). . . . . . . . 109

4.27 The average output power (in dB) versus the empirical model from
Equation (4.11) for UHDG = 0 (lower curve), UHDG = 10 (moddle
curve) and UHDG = 20 (upper curve). . . . . . . . . . . . . . . . . . 110

5.1 IEEE 802.15.4 packet structure and size . . . . . . . . . . . . . . . . 119
5.2 Channel allocation in 868/915 MHz and 2450 MHz . . . . . . . . . . 119
5.3 Transmitter (Tx) flow graph for 2450 PHY layer . . . . . . . . . . . . 122
5.4 Receiver (Rx) flow graph for 2450 PHY layer . . . . . . . . . . . . . . 123
5.5 Transmitter (Tx) flow graph for 868/915 PHY layer . . . . . . . . . . 128
5.6 Receiver (Rx) flow graph for 868/915 PHY layer . . . . . . . . . . . . 129
5.7 The PSR and received packet rates versus pocket size using SDR

implementation for 2450 MHz . . . . . . . . . . . . . . . . . . . . . . 132
5.8 TelosB and Raven sticks . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.9.1 Power spectrum of our software transceiver recorded with the
USRP and drawn by FFT gnuradio plot. . . . . . . . . . . . 134

5.9.2 Receiver symbol constellations. . . . . . . . . . . . . . . . . . 134
5.9 The BER versus received SNR for central frequency 868.3 MHz and

for the MFB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.10 The PER versus SNR using two central frequencies 916 MHz and 868

MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.1 Overlapping of IEEE 802.15.4 channels with that of IEEE 802.11b/g
in 2450 MHz band . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.2 Basic cognitive cycle [15] . . . . . . . . . . . . . . . . . . . . . . . . 141
6.3 Software chain of SU receiver (Rx) . . . . . . . . . . . . . . . . . . . 145
6.4 Software chain of SU transmitter (Tx) . . . . . . . . . . . . . . . . . 145
6.5 Flow graph of PU transmitter (Tx) . . . . . . . . . . . . . . . . . . . 145
6.6 Flow graph of our energy detector based spectrum sensing . . . . . . 146



28 List of Figures

6.7 Spectrum Sensing of frequency band 2.4 GHz to 2.5 GHz . . . . . . . 149
6.8 Spectrum Sensing of frequency band 850 MHz to 950 MHz . . . . . . 150
6.9 Packet Success Rate (PSR) and Packet Received Rate (PRR) function

of spectrum distance between PU and SU without Dynamic Spectrum
Access (DSA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.10 Packet Success Rate (PSR) and Packet Received Rate (PRR) function
of spectrum distance between PU and SU with DSA. . . . . . . . . . 152



List of Tables

2.1 SDR classification refereed to a programming model . . . . . . . . . . 59
2.2 Synthesised classification of SDR hardware given in [56] based on the

DSP architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.3 Non-exhaustive list of Software Defined Radio (SDR) platforms . . . 63

3.1 USRPs and their performances [37] . . . . . . . . . . . . . . . . . . . 74
3.2 Some daughter boards and their performances [37] . . . . . . . . . . . 76

4.1 Output Power at high frequencies and high UHDG values . . . . . . . 101

5.1 Synthesized specifications of IEEE 802.15.4 [19], [20] . . . . . . . . . 115
5.2 Symbol-to-chip mapping for the 2.4 GHz band . . . . . . . . . . . . . 120
5.3 Symbol-to-chip mapping for the 868/915 MHz band . . . . . . . . . . 121
5.4 Parameters of packet transmissions between two SDRs . . . . . . . . 131

6.1 Parameters of energy detector . . . . . . . . . . . . . . . . . . . . . . 149





Chapter 1

Introduction

The fundamental problem of communication is that of reproducing at one

point, either exactly or approximately, a message selected at another point.

Claude Shannon

Contents
1 Historical Elements and Context . . . . . . . . . . . . . . . . 32

2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.1 Software Radio and Software Defined Radio . . . . . . . . . . 35

2.2 Cognitive Radio . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3 Wireless Sensor Networks . . . . . . . . . . . . . . . . . . . . 37

3 Thesis motivations . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1 Context of WSNs . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Applications of WSNs and SDRs . . . . . . . . . . . . . . . . 40

4 Thesis objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1 SDR platform to implement standardized PHY layer of WSNs 41

4.2 Cognitive Radio for Spectrum Scarcity . . . . . . . . . . . . . 42

5 Thesis Organization and Contributions . . . . . . . . . . . . 43

5.1 State of the art on Software Defined Radio . . . . . . . . . . 43

5.2 Analysis of GNU Radio and experimental measurements on

USRP’s Daughter boards . . . . . . . . . . . . . . . . . . . . 44

5.3 SDR implementations of IEEE 802.15.4 standard . . . . . . . 45

5.4 Cognitive Wireless Sensor Network based on IEEE 802.15.4 . 45



Chapter 1. Introduction

RFID

802.11d

802.11k

802.11n

GSM
ISS4

TD-SCOMA

GPRS

UWB

802.15.1

802.22

802.11

3G

5G
AMPS

SDR

Prog 2

Prog 1

Prog 3

Prog 2

Prog 1

Prog 3

Prog 2

Prog 1

Prog 3

Figure 1.1: The opportunity to replace Wireless communications devices by
Software Defined Radio

1 Historical Elements and Context

The birth of wireless technology is traced back to an equation published by James
Maxwell around 1865 [7], which caused Heinrich Hertz to prove the existence of
electromagnetic waves. Around the beginning of the 20th century, Marconi established
the first long-distance communication via a radio telegraph. During the following five
decades, analog radio communication was brought to perfection with different analog
modulations. Shannon and Nyquist launched a big change in radio development
since they publish the Nyquist-Shannon sampling theorem [8]. This theorem states
that a perfect signal reconstruction is possible when the sampling rate (or sampling
frequency) is at least twice the signal bandwidth being sampled. The digital signal
processing used in data transmission is a result of transistors and integrated circuits
on chip computing. It ensures a radio link or wireless connections between electronic
devices. Commonly, the radio interconnection of these devices (or nodes) are the
basis of wireless networks.

The wireless networks support several applications in our modern life, for example
at home, office and car. Each network answers to particular end-user needs, e.g.

internet connection, mobile phone communications and home automation, etc. In
order to answer to some questions related to networking; standard organizations
and groups have been formed such as the Institute of Electrical and Electronics
Engineers (IEEE), the Internet Engineering Task Force (IETF) and the International
Telecommunication Union (ITU). They impose specifications in order to ensure the
interoperability between developed wireless devices.

32



33

Figure 1.1 shows the growing number of wireless networks and technologies
over the last twenty years. The end-user expectations, industrial constraints and
market opportunities are the main driving force of this significant progress. Diverse
applications can be supported, such as voice, video, and data communications. Each
one needs an appropriate hardware air-interface supporting specific radio techniques
and protocols. In fact, each application has its packet structures, data types, and
signal processing techniques, and each radio has to communicate and decode signals
using a dedicated circuitry, e.g. one Smartphone contains 3G, 4G, GSM, Bluetooth
and Wifi modules. In addition, hardware manufacturers wish to develop quickly and
cheaper new wireless technologies. Moreover, radio modulation techniques are static,
since they are implemented in hardware; neither radio designer nor the radio itself can
change these techniques without replacing the hardware. The physical layer (PHY
layer) of wireless networks uses these hardware radios, and cope with their limitations.
Furthermore, with the high number of networks and technologies, the radio-frequency
spectrum is scarce and radio communications can interfere and leading to a radio
performances degradation. As shown in Figure 1.2, the radio-frequency spectrum in
USA is crowded by the large number of wireless technologies and networks.

Wireless Sensor Networks (WSN) is a particular case with high number of
applications. It also requires self-awareness of its environment and self-adapting of
its radio parameters to improve its performances.

Form the above limitations, a virtual definition of radio transceivers (transmitter
and receiver) could be an suitable solution. The objective is to substitute the
signal processing objects and operation with software running on computer machine.
However, writing a set of programs for reproduce signal processing is more efficient,
since software can be customized more easily than hardware. Thus, the ideal solution
for an industrial or a standard organization is to have existing wireless technologies
defined in software running a top a common hardware. As shown in Figure 1.1,
Software Defined Radio (SDR) can substitute a traditional hardware radio by a
software one.

33



Chapter 1. Introduction

3
 G

H
z

1215.0

1240.0

1300.0

1350.0

1390.0

1392.0

1395.0

1400.0

1427.0

1429.5

1430.0

1432.0

1435.0

1525.0

1559.0

1610.0

1610.6

1613.8

1626.5

1660.0

1660.5

1668.4

1670.0

1675.0

1700.0

1710.0

1755.0

1850.0

2000.0

2020.0

2025.0

2110.0

2180.0

2200.0

2290.0

2300.0

2305.0

2310.0

2320.0

2345.0

2360.0

2390.0

2395.0

2417.0

2450.0

2483.5

2495.0

2500.0

2655.0

2690.0

2700.0

2900.0

3000.0

EARTH
EXPLORATION-

SATELLITE
(active)

RADIO-

LOCATION

RADIONAVIGATION-

SATELLITE

(space-to-Earth)

(space-to-space)

SPACE
RESEARCH

(active)

Spaceresearch
(active)

Earth
exploration-

satellite
(active)

RADIO-

LOCATION

SPACE
RESEARCH

(active)

AERONAUTICAL

RADIO
-

NAVIGATION

Amateur

AERONAUTICAL RADIONAVIGATION

FIXED MOBILE RADIOLOCATION

FIXED MOBILE ** Fixed-satellite (Earth-to-space)

FIXED MOBILE **
LAND MOBILE (medical telemetry and medical telecommand)

SPACE RESEARCH
(passive)RADIO ASTRONOMY

EARTH EXPLORATION - SATELLITE
(passive)

LAND MOBILE
(telemetry and telecommand)

LAND MOBILE
(medical telemetry and

medical telecommand

Fixed-satellite

(space-to-Earth)

FIXED (telemetry and

telecommand)
LAND MOBILE

(telemetry & telecommand)

FIXED MOBILE **

MOBILE (aeronautical telemetry)

MOBILE SATELLITE (space-to-Earth)

AERONAUTICAL
RADIONAVIGATION-SATELLITE

(space-to-Earth)(space-to-space)

MOBILE SATELLITE
(Earth-to-space)

RADIODETERMINATION-
SATELLITE (Earth-to-space)

MOBILE SATELLITE

(Earth-to-space)
RADIODETERMINATION-

SATELLITE (Earth-to-space)
RADIO

ASTRONOMY

MOBILE SATELLITE

(Earth-to-space)
RADIODETERMINATION-

SATELLITE (Earth-to-space)
Mobile-satellite
(space-to-Earth)

MOBILE SATELLITE(Earth-to-space)

MOBILE SATELLITE
(Earth-to-space)RADIO ASTRONOMY

RADIO ASTRONOMY

FIXED MOBILE **

METEOROLOGICAL AIDS
(radiosonde)

METEOROLOGICAL
SATELLITE (space-to-Earth)

METEOROLOGICAL
SATELLITE (space-to-Earth)

FIXED

FIXED

MOBILE

FIXEDMOBILESPACE OPERATION (Earth-to-space)

FIXED MOBILE

MOBILE SATELLITE
(Earth-to-space)

FIXED

MOBILE

SPACE RESEARCH (passive)

RADIO ASTRONOMY

METEOROLOGICAL AIDS
(radiosonde)

SPACE
RSEARCH

(Earth-to-space)
(space-to-space)

EARTH
EXPLORATION-

SATELLITE
(Earth-to-space)
(space-to-space)

FIXED

MOBILE

SPACE OPERATION
(Earth-to-space)
(space-to-space)

MOBILE FIXED

SPACE
RESEARCH

(space-to-Earth)
(space-to-space)

EARTH
EXPLORATION-

SATELLITE
(space-to-Earth)
(space-to-space)

SPACE OPERATION
(space-to-Earth)
(space-to-space)

MOBILE
(line of sight only)

FIXED
(line of sight only)

FIXED
SPACE RESEARCH

(space-to-Earth)

(deep space)
MOBILE**

Amateur

FIXEDMOBILE**Amateur RADIOLOCATION

RADIOLOCATION MOBILE FIXED
Radio-
location

Mobile Fixed

BROADCASTING - SATELLITEFixedRadiolocation

FixedMobile
Radio-
location

BROADCASTING

SATELLITE
FIXEDMOBILERADIOLOCATION

RADIOLOC ATION

MOBILE

MOBILE

AMATEUR

AMATEUR

Radiolocation

MOBILE FIXED

Fixed

Amateur

Radiolocation

MOBILE SATELLITE
(space-to-Earth)

RADIODETERMINATION-
SATELLITE (space-to-Earth)

MOBILE SATELLITE
(space-to-Earth)

RADIODETERMINATION-
SATELLITE (space-to-Earth) FIXEDMOBILE**

MOBILE** FIXED

Earth exploration-
satellite

(passive)

Space research
(passive)

Radio
astronomy

MOBILE**

FIXED
EARTH

EXPLORATION-
SATELLITE

(passive)

RADIO

ASTRONOMY

SPACE RESEARCH
(passive)

AERONAUTICAL

RADIONAVIGATION
METEOROLOGICAL

AIDSRadiolocation

Radiolocation

RADIOLOCATION

MARITIME

RADIO-

NAVIGATION

Radiolocation

Fixed

(telemetry)

FIXED (telemetry and

telecommand)
LAND MOBILE (telemetry & telecommand)

AERONAUTICAL

RADIONAVIGATION

AERONAUTICAL

RADIONAVIGATION

AERONAUTICAL

RADIONAVIGATION

AERONAUTICAL

RADIONAVIGATION

Spaceresearch
(active)

Earth
exploration-

satellite
(active)

EARTH
EXPLORATION-

SATELLITE
(active)

Fixed

FIXEDMOBILE

MOBILE SATELLITE
(space-to-Earth)FIXEDMOBILE

BROADCASTING

SATELLITE

3
0

0
 M

H
z

300.0

328.6

335.4

399.9

400.05

400.15

401.0

402.0

403.0

406.0

406.1

410.0

420.0

450.0

454.0

455.0

456.0

460.0

462.5375

462.7375

467.5375

467.7375

470.0

512.0

608.0

614.0

698.0

763.0

775.0

793.0

805.0

806.0

809.0

849.0

851.0

854.0

894.0

896.0

901.0

902.0

928.0

929.0

930.0

931.0

932.0

935.0

940.0

941.0

944.0

960.0

1164.0

AERONAUTICAL RADIONAVIGATION

FIXED MOBILE

RADIONAVIGATION SATELLITE
MOBILE SATELLITE

(Earth-to-space)

STANDARD FREQUECY AND TIME SIGNAL - SATELLITE

(400.1 MHz)

MET. AIDS
(Radiosonde)

MOBILE
SAT (S-E)

SPACE RES.
(S-E)

Space Opn.
(S- E)

MET. SAT.
(S-E)

MET. AIDS
(Radiosonde)

SPACE OPN.
(S- E)

MET-SAT.
(E- S)

EARTH
EXPL

SAT. (E-S)

Earth Expl Sat
(E-S)

Earth Expl Sat
(E-S)

EARTH EXPL
SAT. (E-S)

MET-SAT.
(E- S)

MET. AIDS
(Radiosonde)

Met-Satellite
(E- S)

Met-Satellite
(E- S)

METEOROLOGICAL AIDS (RADIOSONDE)

MOBILE SATELLITE (Earth-to-space)

RADIO
ASTRONOMY FIXED MOBILE

FIXED MOBILE SPACE RESEARCH
(space-to-space)

RADIOLOCATION Amateur

LAND MOBILE

FIXED LAND MOBILE

LAND MOBILE

FIXED LAND MOBILE

Meteorological
Satellite

(space-to-Earth)

LAND MOBILE FIXED

LAND MOBILE

FIXEDLAND MOBILE

LAND MOBILE

LAND MOBILE FIXED

BROADCASTING

(TVCHANNELS14-20)

FIXED

BROADCASTING

(TV CHANNELS 21-36)

LAND MOBILE
(medical telemetry and

medical telecommand)
RADIO ASTRONOMY

BROADCASTING
(TV CHANNELS 38-51)

BROADCASTING

(TV CHANNELS 52-61)
MOBILE

FIXED MOBILE

FIXED MOBILE

FIXED MOBILE

FIXED MOBILE

LAND MOBILE

FIXED LAND MOBILE

AERONAUTICAL MOBILE

LAND MOBILE

AERONAUTICAL MOBILE

FIXED LAND MOBILE

FIXED LAND MOBILE

FIXED MOBILE

RADIOLOCATION

FIXED

FIXED LAND MOBILE

FIXED MOBILE

FIXED LAND MOBILE

FIXED

FIXED LAND MOBILE

FIXED MOBILE

FIXED

FIXED

AERONAUTICAL

RADIONAVIGATION

RADIONAVIGATION-SATELLITE

(space-to-Earth)(space-to-space)

MOBILEFIXED

BROADCASTING

BROADCASTING

AERONAUTICAL

RADIONAVIGATION

FIXED

LAND MOBILE

IS
M

 9
15

 +
/-

 1
3

M
H

z

IS
M

 2
45

0
 +

/-
 5

0M
H

z

F
ig

ur
e

1.
2:

T
he

cr
ow

de
d

fr
eq

ue
nc

y
sp

ec
tr

um
fr

om
30

0
M

H
z

to
3

G
H

z
in

U
SA

[9
]

34



35

2 Definitions

Before giving the motivations behind this thesis and its contributions, we introduce
the primary involved concepts.

2.1 Software Radio and Software Defined Radio

Software Radio (SR) is a set of technologies for defining radio transceiver parameters
and functions in software, including carrier frequency, modulation bandwidth and
frequency/space/time/code agility [10] [11] [12]. An ideal SR technology refers to
the complete software control of the entire system. The aim of SR is to have an
analog conversion only at antennas, ensuring the support for a wide frequency band.

SDR is a realizable implementation of Software Radio, as defined above; it is
a reconfigurable radio, in which the radio functionalities are defined as much as
possible in software. The SDR should provide a radio architecture which allows us
changing these functionalities in real-time. The formal definition of SDR is given by
ITU [13] as:

"A radio transmitter and/or receiver employing a technology that allows the RF

Radio Frequency (RF) operating parameters including, but not limited to, frequency

range, modulation type, or output power to be set or altered by software."

Mitola [12] argues for the substitution of chains of circuitry signal processing
systems by software processing blocks. We give more details about that objective in
the next chapter.

2.2 Cognitive Radio

The SDR capabilities provide an opportunity for a system designer to build a new
intelligent radio system with different functions. The Cognitive Radio (CR) is a
conceptual layer over SDR. It is an abstraction layer to program the SDR satisfying
application and user requirements. CR intends to describe an intelligent radio that
can autonomously make decisions using Radio Frequency environment information.
The intelligence of the CR is defined by the level of self-awareness to the environment
and user requirements. The Federal Communication Commission (FCC) introduces
it as:

"a radio that can change its transmitter parameters based on the environment in

which it operates." [14]

In the research community, Haykin [15] defines CR as a radio capable of being aware
of its surroundings, learning, and adaptively change its operating parameters in
real-time. According to this definition, the objective is to provide reliable wireless
communications, most of the time, anywhere, and spectrally efficient. The cognitive

35



Chapter 1. Introduction

S
p
e
c
tru

m
 S

e
n
s
in

g

D
y
n
a
m

ic
 S

p
e
c
tru

m
 

A
c
c
e
s
s

Cognitive Radio

Software Defined Radio

Figure 1.3: Interaction stack of CR, SDR, DSA and SS

entity is a node in a network managed locally or globally depending on the problem
definition. In this thesis, we consider the network as a unique entity.

2.2.1 Spectrum Sensing

Spectrum Sensing (SS) is a very important component in order to establish a cognitive
radio. It is a mechanism to get awareness about the spectrum usage in a geographical
area. The mechanism consists in detecting radio frequency activities in a given
spectrum. By default, only licensed users (or Primary Users (PUs)) are specified to
occupy a spectrum. Opportunistic users (or Secondary Users (SUs)) accomplish a
spectrum sensing for cognitive radio operations. The conventional spectrum sensing
exploits only three dimensions of the spectrum space: frequency, time, and space.
Commonly, it is treated as a detection and an estimation of the signal problem.

2.2.2 Dynamic Spectrum Access

Dynamic Spectrum Access (DSA) is also an important operation in a cognitive radio.
It is the spectrum sharing paradigm that allows SUs to solve the inefficiency of
spectrum usage. The Dynamic Spectrum Access Networks (DySPAN) [16] standards
committee claims that:

"DSA is real time adjustment of spectrum utilization in response to changing

circumstance and objectives".

In fact, SUs use the unused frequency spectrum based on returned information of
spectrum sensing.

We summarize the interaction of CR with SDR, DSA and SS by a conceptual
stack shown in Figure 1.3. The base of Cognitive Radio is Software Defined Radio
allowing Dynamic Spectrum Access and Spectrum Sensing operations.

36



37

2.3 Wireless Sensor Networks

A Wireless Sensor Network (WSN) consists of distributed wireless nodes used to
measure and communicate physical information [17]. The nodes can measure, process
and communicate sensed data to a sink node or a base station through a wireless
ad-hoc network1. The sensor nodes communicate their data via radio in a single
or multiple hops manner. Generally, they are deployed in a hostile environment
and typically for event-driven applications. When an event occurs, the source nodes
sense, generate and communicate data packets. WSNs applications are constrained
by the characteristics of sensor nodes, which are limited in power processing, memory
resources and in their residual energy.

Commonly, every network is defined by its conceptual stack of layers or Open
Systems Interconnection (OSI) model. Seven layers features an OSI model: Physical
(PHY), Link (with Medium Access Control (MAC) sub-layer), Network, Transport,
Session, Presentation and Application [18]. Their main objectives are to ensure the
interoperability of diverse networks and the modularity of development. WSN can
be featured by mainly four layers, PHY, MAC, Network and Application. Of course,
the application layer covers the upper ones of the OSI model. Each layer serves
the upper one, by performing techniques and/or protocols, which are commonly
standardized by competent organizations. IEEE, ITU, IETF are well-known standard
organizations.

2.3.1 IEEE 802.15.4 standard

The suffix number of each IEEE standard defines a working group (or committee)
on a particular network, e.g. 802.11 for Wifi and 802.15.1 for Bluetooth networks
and 802.15.4 for WSN. IEEE 802.15.4 is a standard specified for PHY and MAC
layers of Low-rate Wireless Personal Area Network (LR-WPAN). The IEEE is an
association which approves specifications of several communication protocols.

The IEEE 802.15.4 standard is designed for data communication devices using
low data-rate, low-power, and low-complexity short-range radio frequency (RF)
transmissions in a wireless personal area network (WPAN). However, many WSN
implement standard specifications, regarding node’s capabilities. The IEEE 802.15.4
has been enhanced from the first version of 2003 [19] to that of 2012 IEEE 802.15.4e
[20]. The main contribution of this last version is introducing a channel-hopping
mechanism in addition to old specifications of the standard.

Zigbee is only an example of a suitable product available commercially. Zigbee
Alliance organization proposes the two network and application layers, above the
IEEE 802.15.4 standard. Obviously, other protocols can be defined for specific
applications, such as IEEE 802.15.5 standard [21], WirelessHART [22], ISA100 [23]
and 6LoWPAN [24].

1The nodes of the network forward data dynamically based on the network connectivity

37



Chapter 1. Introduction

3 Thesis motivations

The motivations are primarily related to the WSN and SDR issues. We regroup both
issues and motivations from the context of WSNs to the interesting applications of
WSNs and SDRs.

3.1 Context of WSNs

Several research works deal with network layer issues for Wireless Sensor Networks.
Data routing under energy constraints and node positioning in an indoor environment
are two active research problems [25] [26]. Some solutions have been proposed based
on PHY layer parameters. For the data routing problem, the objective is to define for
each node an efficient metric. The latter can be based on nodes residual-energy and
energy consumed for each communication mode, i.e. transmission, reception and idle
mode. In general, the efficiency of the data routing is measured through simulators,
e.g. NS-2 simulator, OPNET, OMNET, etc. However, the obtained results depend
on the ability to manipulate available PHY parameters, in particular the energy
model. Numerous energy consumption models have been defined, each one, for a
specific simulator [27]. The problem of node localization in an indoor environment
has been addressed in some works using Received Signal Strength Indication (RSSI)
parameter [26]. The latter can be calculated by each sensor node in a real world
network. Each node estimates the distance between its position and those of other
neighboring nodes. The nodes calculate this distance when they receive a signal,
and after they estimate its output power. Commonly, the obtained positions are
with notable variations due to the interference, fading and multi-path in an indoor
environment [28]. The effectiveness of the calculated positions is related to the
measured output power, which is defined by default in the hardware transceiver of
nodes.

These two research problems, i.e. energy-aware data routing and localization in
WSN, showed that the PHY layer’s parameters are, at the same time, essential and
useful for OSI model’s upper layers. The output power of a transmitted signal is
managed by the PHY layer. Since it features the node’s energy consumption, its
capture by the network layer helps defining efficient routing metrics. The PHY layer
can also exploit information passed by the network layer. If the requested data rate
is low, then the PHY layer can choose an adapted digital modulation. To realize
this inter layer communication Cross layer concept has been proposed [29]. The idea
behind the Cross Layer design is to break down the rigid separation between the
OSI’s layers. The drawback of this design is the technology dependency which means
that the designed architecture is not portable to multiple technologies. Furthermore,
software platforms are needed to test and to implement this architecture.

Diverse software tools have been proposed to establish a model for PHY layer
parameters of WSNs. A Simulator is a traditional and simple possibility to design

38



39

and to emulate wireless hardware and transmission environment e.g. MATLAB
with Simulink, NS-2, OPNET, and OMNET , etc. Commonly, they are the base of
tests and validation of proposed solutions for networking problems. These solutions
tested on a simulator, cannot be neither reproduced nor verified without real-world
examples. In addition, several simulators are optimistic when they model network
environment, such as the channel model between network’s nodes. In simulation, we
assume that the inter-node communications are ensured without possible changes of
digital signal processing techniques. From the point of view of problem complexity
and interoperability, it is more efficient to isolate problems by layers. But if the
solution needs only a little modification at another layer, it would be more efficient to
facilitate layer interactions. For example, if we deal with the data rate improvement
at the network layer, nodes queue management and routing path optimization
could be possible solutions. Whereas this problem can be solved only by changing
the digital modulation, e.g. data rate can be improved at least 6 times with 64-
Quadrature Amplitude Modulation (QAM) instead of Binary Phase-Shift Keying
(BPSK) modulation. Furthermore, the sponsors of research and development projects
often criticize fundamental research, mostly if its proposal is not realistic and without
real-world tests [30].

Standards help ensuring product functionality, compatibility and facilitate in-
teroperability. A good example of the power of standardization is the GSM mobile.
This technology has been deployed world-wide [31]. As seen in Section 2.3.1, IEEE
802.15.4 is the defacto standard for WSNs. It addresses general requirements of
WSNs, such as energy and processing limitation of sensor nodes. However, all node’s
manufacturers must follow one standard instead of developing new proprietary tech-
niques. But the applications of WSNs are diverse with specific requirements. To test
a standard adaptation or exploration, the manufacturer requires passing through a
manufacturing process. In addition, standards evolve gradually from a first version
to an improved one. For example, 802.15.4e is a new version of the IEEE 802.15.4
including additional specifications. Thus, the challenge is to find a tool able to
explore these specifications faster and cheaper.

The frequency scarcity mentioned in Section 1 is also a problem for WSNs.
Currently, Industrial Scientific Medical (ISM) available frequency bands for WSN
are shared with many other wireless communication standards and technologies, such
as IEEE 802.15.1, IEEE 802.11b/g/n and Microwave oven. As we have explained
above, standard organizations specify a carrier frequency in those frequency bands. A
carrier frequency (or central frequency )defines a channel of communication between
network nodes. The value in Hertz of that frequency is specified statically even if
its selection can be done dynamically. However, these values should be chosen also
dynamically to guarantee more robustness to spectrum perturbations. Of course,
central frequencies are fixed and integrated in the PHY layer of WSN.

The research community of wireless networks is interested in the SDR opportunity
to explore PHY layer parameters in real time. These parameters are implemented

39



Chapter 1. Introduction

in software to offer more flexibility for possible functions tests and experiments.
The researcher can adjust, quite easily, some parameters. Thus, these opportunities
could be explored throughout new proposals solving some research issues, and
complementary knowledge could be acquired in addition to existing experiences. In
addition, I think that we have more chances to convince industrial companies to
sponsor research projects, when we offer real-world tests rather than simulations.
Hence, we can lead our research and prototyping works on well performed and
convincing SDR platform for real profs of concepts.

3.2 Applications of WSNs and SDRs

The SDR emergent technology allows researchers and manufacturers to build real time
experiments and realistic characterizations. It also tries to meet to requirements raised
by researchers, hobbyists, developers and manufacturers. These requirements can be
summarized by fast and less costly access to PHY layer techniques and parameters,
such as radio modulation and central frequency. In addition, the SDR usage is
adapted to a rapid evolution of user applications. Some wireless communication
standards are not able to follow permanently commercial needs. For example, users
of 3G smart-phones are not able to benefit from a 4G even if mobile operators offer
a 4G service. Hence, a standard defined in software is more attractive to upgrade its
specifications than a costly hardware replacement.

Several applications can benefit from SDR. In military, the Joint Tactical Radio
Systems (JTRS) project is an SDR based solution for soldier to soldier communica-
tions under radio systems heterogeneity. Other confidential projects are based on
GNU Radio [32] [32] software despite its open-source aspect. They are funded by
Department of Defence (DoD) in USA and Thales in France. However, the SDR’s
business market evolves gradually, it will reach 27.3 $ billion by 2020, according to
ASDReports [33]. The major actors are the companies of aerospace, defense and
transportation manufacturers.

The open-source propriety of some SDR platforms allows the hobbyists and
scientists to develop applications under General Public License (GPL). It results
in the appearance of diverse projects from simple radio broadcast transceivers to
aerospace receivers. For example, we can obtain easily a source code of Radio Data
System (RDS) [34] receiver on GNU Radio. Similarly, satellite communications can
be performed using International Sun/Earth Explorer 3 (ISEE-3) [35] software. The
latter allows the user to control an old NASA (National Aeronautics and Space
Administration) satellite. We can also receive the Automatic Dependent Surveillance
ADS-B signal for airplanes localization [36].

SDR addresses multi-standard challenges of mobile phone applications. An in-
creasing number of cellular, broadcast and multimedia standards push manufacturers,
such as Intel, to propose new mobile SDR-based devices. The objective is to quickly
adapt mobile devices to the rapid growth of mobile system technologies, e.g. 2G,

40



41

3G, 4G and 5G.
WSNs are playing a key role in several scenarios such as healthcare, agriculture,

environment monitoring, and smart metering. Some manufacturer companies try to
replace wired sensors by wireless ones to reduce the weight of machines, e.g. planes,
trains. Thus, the energy consumption and the cost of such machines are reduced. We
can also quote smart buildings, cities, transports, etc. where each application needs
a WSN. A new paradigm called “Internet of Things” (IoT) [24] integrates WSNs
as a key element where nodes join the Internet network dynamically, and use it to
collaborate and accomplish specific tasks. For example, 6LoWPAN/IPv6 technology
[24] has been developed to integrate IP-based sensor networks.

4 Thesis objectives

We can summarize the objectives of the thesis as follows: We specify an SDR platform
adapted to WSNs and we address the problem of spectrum scarcity via a cognitive
radio.

4.1 SDR platform to implement standardized PHY layer of
WSNs

Some PHY layer’s parameters of wireless networks are easily accessible through
SDR, such as output power, modulation, frequency spectrum. To realize software
transmitter/receiver chains for a given wireless technology, we need a software and
hardware SDR platform. Numerous SDR platforms have been proposed for general
and particular applications. It is useful to classify these platforms by analyzing
their properties and performances. The goal of study existing architectures is to
find one, adapted to implement the PHY layer of IEEE 802.15.4. A comparative
study throughout numerous platforms and architectures is necessarily to select this
adapted SDR platform.

Existing SDR platforms based on General Purpose Processor (GPP) or a combi-
nation of GPP and Digital Signal Processor (DSP), are relatively inexpensive. Since
the programming can be written in high level languages (C, C++, python), several
open source projects have been developed. GNU Radio software with Universal
Software Radio Peripheral (USRP) [37] SDR platform has been considered by the
researcher community as a suitable solution for rapid development and prototyping.
Its main advantage is that it is open-source. An open-source software often suffers
from a lack of rigor in source program writing and organization. Thus, the analysis
of software and hardware architecture is needed to provide more information about
the manner to prototype an SDR transmitter/receiver.

USRP is also an open-source hardware proposed by Ettus Research [37]. It is the
front end of the GNU Radio USRP based SDR. Its main parameters interacting with

41



Chapter 1. Introduction

GNU Radio software are frequency and output power. The unknown performances
of this hardware, requires a deep analysis which can be done through an experi-
mental approach. The objective is to see if the announced performances of some
parameters, i.e. frequency bandwidth and output power conform to specifications
[37]. The characterization of the hardware can be obtained with an experimental
plan. The research can be carefully carried, and the measurements can be obtained
under controlled conditions. In general, the measured parameters can be controlled
independently and an empirical model, can be also formulated to predict parameters’
behaviors. Such characterization of the USRP is essential to realize a powerful
prototype.

The possibility to customize (with scalability issues) the IEEE 802.15.4 standard
motivates its prototyping via an SDR implementation. Furthermore, not all the
standard specifications have been implemented by manufacturers of sensor nodes.
However, it is interesting to have these specification in software to facilitate their
upgrading. In the literature we can find some SDR realizations for IEEE 802.15.4
standard on GNU Radio USRP SDR [38] [39] [40] and others on different SDR
platforms [41]. That of Thomas Schmid [38] has been proposed for 2450 MHz
frequency band.

Reverse engineering process or back engineering allows an engineer and a re-
searcher to extract a knowledge or design information from existing prototypes. In
our case, the objective is to disassemble an already proposed SDR prototype for 2450
MHz frequency [38]. SDR transmitter and receiver steps should be explained from
data generation to baseband signal transmissions and vice versa. Furthermore, our
aim is to reuse some source codes and implement a new prototype for 868/915 MHz
frequency band of the IEEE 802.15.4 standard. Note that this band offers a wider
coverage for network devices compared to the frequency band of 2450 MHz. These
two SDR prototypes for two particular bands lead us to think about a Cognitive
Radio.

4.2 Cognitive Radio for Spectrum Scarcity

ISM frequency band for WSN based on IEEE 802.15.4 is shared with many other
communication standards and technologies, such as IEEE 802.15.1, IEEE 802.11b/g/n
and Microwave ovens. The coexistence of these technologies in the same frequency
band degrades the transmission performances. The packet collisions at MAC layer and
signal interference at physical layer are the main sources of performance degradation.
Frequency band overlapping can be avoided by an intelligent use of three types of
diversity, namely frequency, space and time. The agile use of frequency spectrum
and transmission parameters of sensor nodes can be insured with their software
transceivers.

Cognitive Wireless Sensor Network is a new solution. Primarily, it has been
proposed as an answer to frequency scarcity issue. The growth of the number of

42



43

applications and the standard rigidity is a fertile ground for this solution. In some
geographical areas over the world, for example, in America and Europe, the spectrum
frequency is crowded and wireless technologies can share the same frequency band.
Traditional radio defines static carrier frequencies (or channels) for each network or
technology. For example, only 16 and 13 channels are respectively available for IEEE
802.15.4 and IEEE 802.11 networks in 2450 MHz frequency band. If these channels
interfere, only a static definition of these channels is possible. By contrast, over a
software radio, more flexibility can be ensured, especially by a dynamic change of
channels definition, i.e. a channel can take any central frequency in a frequency band.
Such changes can improve at the same time interference avoidance and packet success
rate. The communication context needs to be analyzed before a dynamic spectrum
access. Spectrum sensing and dynamic spectrum access are possibles operations
which can be implemented on SDR platform.

We have seen, in Section 2.2, that the cognitive radio is a high level of abstraction
of software radio. It involves two operations: Spectrum Sensing (SS) and Dynamic
Spectrum Access (DSA). We have also mentioned that IEEE 802.15.4 defines nu-
merous specifications, each one for a particular frequency band. Based on these two
operations DSA and SS, we would define Cognitive Radio for WSNs. We can also
deal with that using real world communications, since the cognitive radio has been
largely addressed but with theoretical works. Analyzing all the available resources
within GNU Radio USRP SDR, we can realize proofs of concept of cognitive WSN
on this SDR.

5 Thesis Organization and Contributions

This dissertation is organized in four main parts. Chapter 2 presents the state of the
art on Software Defined Radio. Analysis of GNU Radio and experimental measure-
ments on USRP hardware are presented in Chapter 3 and 4. SDR implementations
of IEEE 802.15.4 standard are described in Chapter 5. A Cognitive Wireless Sensor
Network based IEEE 802.15.4 is detailed in Chapter 6. We conclude the thesis with
final remarks and suggestions for further works in Chapter 7.

5.1 State of the art on Software Defined Radio

We start by defining, featuring and classifying existing Software Defined Radios. We
put the light on the general architecture of an SDR transmitter and receiver as well
as its advantages. We can summarize this architecture in three parts: the radio
frequency front-end part, the intermediate frequency and the baseband processing
part. The two first parts cannot be obtained in software regarding some processing
constraints, which are explained in Chapter 2. The second part can be featured by a
chain of blocks programmed and executed on specific architecture. After that, we
discuss the advantages of an SDR. The reconfigurability is its main feature. The

43



Chapter 1. Introduction

software part of an SDR can be easily reconfigured autonomously or by a designer.
We show also the limits of the SDR performances as well as its constraints. We
also notice the large panel of SDR technology platforms. Since we are interested in
implementing WSN physical layer on an SDR, we propose to classify the possible
SDR platforms into two classes: The GPP based architecture and the reconfigurable
hardware-based architecture. This classification allowed us to present a general one
which is based on hardware and programming model of SDRs. We end Chapter
2 by comparing the announced performances for most used SDR platforms. The
GNU Radio and USRP SDR promote more flexibility and high level programming
languages, as well as a high covered frequency band.A difference between their
announced performances and the observed ones led us to analyze in details the GNU
Radio and USRP SDR in Chapter 3 and Chapter 4.

5.2 Analysis of GNU Radio and experimental measure-
ments on USRP’s Daughter boards

We propose to analyze the architecture of the GNU Radio USRP SDR since it is an
open-source platform. One drawback of an open-source platform’s is the lack of an
accurate and detailed documentation. However, we describe this SDR from bottom to
top starting from USRP to GNU Radio. The USRP’s architecture handles two parts:
the radio frequency front end and the intermediate frequency. One USRP version
can carry up to four daughter boards and several antennas. The daughter boards
are the radio frequency interface between antennas and the USRP motherboard. In
Chapter 3, we summarize the different versions of the USRP and daughter boards
as well as their properties. We concentrate our study on those which are used in
our thesis. We show that the radio frequency bandwidth, and the output power of
the SDR can be affected by the daughter boards behavior. Furthermore, we detail
how the USRP’s motherboard interacts with GNU Radio throughout a particular
Universal Hardware Driver (UHD).

GNU Radio software provides signal and data processing blocks, which construct
the transmitter and receiver chains or flow graphs. It is based on the Mitola’s
[10] thought as briefly defined in Section 2.1. Its usage in our research works is
also motivated in the previous sections. We characterize the software architecture
describing the stack of programming languages. Python simplicity helps the radio
designer to construct communication chains, which are called flow graphs. The C++
language supported by GPP architecture permits to develop fast processing blocks.
We summarize the C++ source code object oriented architecture by presenting its
main classes to generate flow graphs. In addition, we approve the result obtained
by Chiang et .al [42] towards the two types of schedulers: single thread and Thread
Per block Scheduler (TPS). The debugging of the flow graphs’ programs can be
performed easily knowing the scheduler approach. We also report an abstract of the
last modifications to improve the processing time of blocks using SIMD architecture

44



45

(or VOLK). Before summarizing the advantages of GNU Radio and USRP SDR, we
discuss the trade-offs between its performances and its features. In fact, we precise
the sources of processing latency between hardware and software. The processing
time within each block of a given flow graph can be estimated using Performance
counters and ControlPort tools, which are proposed in [43]. We explain their
operating principle regarding their importance for program debugging, processing
synchronization and processing optimization, .e.g we need to know which block
spends more time than others.

In Chapter 4, we measure, throughout experiments, two main parameters: the
frequency bandwidth and the output power of some USRP’s daughter boards. We
select the RFX2400, RFX900, SBX and the MIMO B210 board. We motivate
the experimental approach by performing loop-back GNU Radio simulations. We
discuss the estimated quality of BPSK communication using a traditional BER/SNR
parameter. Although the communication is in the GNU Radio loop-back, we show
that the BER/SNR deviates slightly from expected theoretical results. We also
show a similar behavior using a USRP and an RFX 2400 daughter board. We prove
that this behavior is partly due to daughter boards’ output power and frequency
bandwidth. We feature this insufficiency throughout curves for each selected daughter
board. We choose SBX daughter board’s measurements for a deep analysis regarding
its large frequency bandwidth. We construct an empirical model drown upon the
obtained results,. This model is simple and can be implemented to calibrate and
predict the output power at each central frequency under the covered bandwidth.

5.3 SDR implementations of IEEE 802.15.4 standard

This part contains a documented reverse engineering process of existing SDR trans-
mitter/receiver, and it reports a new one. Both are based on IEEE 802.15.4 standard
specifications. Existing one reproduces the specifications of the worldwide ISM
frequency band of 2450 MHz. We bring more details about transmitter and re-
ceiver flow graphs compared to that available in the literature [38]. Furthermore,
we formulate the packet decoding operation in pseudo code algorithms. Then we
propose a new implementation of the IEEE 802.15.4 for a frequency band of 868/915
MHz. In addition to the flow graphs, we bring more details about the setup of
USRP parameters. We achieve real-world communications between true hardware
transceivers of WSNs and SDR implementations. The particularity of our work is
the ability to measure two different parameters in PHY and network layers.

5.4 Cognitive Wireless Sensor Network based on IEEE
802.15.4

In chapter 6, we realize a first step toward a cognitive wireless sensor network. We
propose a Dynamic Spectrum Access drawn upon the two implemented SDR for the

45



Chapter 1. Introduction

frequency bands of 868/915 MHz and 2450 MHz of IEEE 802.15.4. For that, we use
a Spectrum Sensing technique to quantify the quality of a central frequency under
disturbed transmissions. We propose a message exchange algorithm to synchronize
transmitter and receiver in the same central frequency. Then, we detail the SDR
settings for each node. We show the interest of using DSA through experiments in
an indoor environment. Under a list of setup parameters, the DSA improves by 80
% the packet success rate in a one to one communication.

46



Chapter 2

State of the art on Software
Defined Radio-SDR

Is it possible to replace all processing devices by software?

Me

Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2 Typical architecture of an SDR . . . . . . . . . . . . . . . . . 48

2.1 SDR Receiver (Receiver (Rx)) . . . . . . . . . . . . . . . . . 49

2.2 SDR Transmitter (Tx) . . . . . . . . . . . . . . . . . . . . . . 50

3 Features and Challenges of SDR . . . . . . . . . . . . . . . . 50

3.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 SDR standards and architectures . . . . . . . . . . . . . . . . 53

4.1 Software Communication Architecture SCA . . . . . . . . . . 53

4.2 Reconfigurable Radio System RRS . . . . . . . . . . . . . . . 54

5 SDR for Embedded Devices . . . . . . . . . . . . . . . . . . . 56

5.1 GPP based architecture . . . . . . . . . . . . . . . . . . . . . 56

5.2 Reconfigurable hardware based architecture . . . . . . . . . . 56

6 SDR classifications . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.1 Programming model . . . . . . . . . . . . . . . . . . . . . . . 57

6.2 Used hardware . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.3 SDR platforms . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64



Chapter 2. State of the art on Software Defined Radio-SDR

1 Introduction

This chapter introduces a feasible design of SDR based on Transmitter (Tx) and
Rx chains. It shows detailed architectural diagrams for both radio transmission and
reception. It highlights the limits of software definition of hardware radio. However,
the SDRs present several advantages for industrial users and researchers in wireless
communications. Indeed, a lot of hardware/software platforms and architecture have
been developed. And some standards have also been proposed to harmonize existing
SDRs. These SDRs must be compared and classified considering their architectures,
properties and performances. This comparative study facilitates the selection of a
suitable SDR platform. The time and cost to build software transmitter and receiver
are the main parameters to select an SDR platform.

2 Typical architecture of an SDR

Mitola describes an ideal Software Radio in his paper [10]. He recommends that, a
Digital to Analog Converter (DAC) and an Analog to Digital Converter (ADC) are
respectively at the closest proximity to antennas of transmitter and receiver chains.
Mitola assumes that the communication chain is achieved by a set of software blocks
which perform signal or data processing functions, such as signal generation and
modulation/demodulation functions (see Figure 2.1).

Figure 2.2 highlights a classical SDR architecture [10]. The first part is Radio
Frequency (RF) Front End (FE). It receives or transmits a baseband signal through
an input and output antenna. An Intermediate Frequency (IF) part is introduced
since the processing capabilities of an ADC are slower than the Software Defined
Radio (SDR) function expectations. This leads to the impossibility for ADCs and
DACs to cope up with high-frequency signals. The ADC requires a high-sampling
rate, high-power consumption, and a reduced frequency bandwidth [44]. Thus, an
intermediate Frequency (IF) part is used to ensure a pragmatic Software Radio or
Software Defined Radio. The IF section selects a bandwidth and shifts it from RF
to an Intermediate section. It is considered as a brake of the SDR domain, as it is
limited in sampling rate and a frequency bandwidth. In addition, it accomplishes a
channelization, i.e. choose a specific central frequency, which cannot be performed
at a Radio Frequency (RF) Front End (FE). In the last section, the baseband
processing replaces analog functionalities by digital ones. Programmable-processing
technologies perform this function using, for example, Field Programmable Gate
Array (FPGA), Digital Signal Processor (DSP), General Purpose Processor (GPP),
Programmable System-on-Chip (SoC) and other application specific-processing
entities e.g. Application Specific Integrated Circuit (ASIC). The following section
allows us to understand the several steps of Tx/Rx chains.

48



49

���

���

��������
�����	
���������

����	�����

������	�����

��
�����	

��	�������
�������

Figure 2.1: Ideal architecture of a Software Radio

Radio Frequency 

Front End

ADC

DAC

Baseband 

processing

RF part IF part Baseband part

Figure 2.2: General architecture of SDR

2.1 SDR Receiver (Rx)

Figure 2.3 shows a general SDR Rx, starting with a RF tuner which converts analog
RF signal to analog IF frequency. Then, the ADC digitizes the IF thereby converting
it into digital samples. These samples enter to a Digital Down Conversion (DDC)
which could be a monolithic single chip or an FPGA. A DDC decimates a data
stream to a lower sampling rate and adapts a stream to a lower speed processor. It
contains a digital mixer, a digital local oscillator, and a Finite Input Response (FIR)
lowpass filter. The digital mixer and the local oscillator translate IF samples down to
a baseband signal. The primary function of FIR low-pass filter is to limit the signal
bandwidth. The DSP performs a demodulation, decoding, and other processing tasks
via software radio programs [45].

RF 

TUNER

AD 

CONV
DIGITAL

MIXER

LOWPASS

FILTER

DIGITAL

LOCAL 

OSC

DSP

DDC Digital Downconverter

Analog

RF signal

Analog

IF signal

Digital IF 

Samples

Digital 

Baseband 

Samples

Figure 2.3: SDR receiver block diagram

49



Chapter 2. State of the art on Software Defined Radio-SDR

Power 

Ampli er

INTERPOLATION

FILTER
DIGITAL

MIXER
DAC

DIGITAL

LOCAL 

OSC

DSP

DUC 

Digital IF 

Samples

Analog

IF signal

Analog

RF

Signal

Digital 

Baseband 

Samples

RF

Upconverter

Figure 2.4: SDR transmitter block diagram

2.2 SDR Transmitter (Tx)

Similarly to Rx, Figure 2.4 shows SDR Tx chain. Tx firstly generates a digital
baseband signal of a transmission chain. Digital Up Converter (DUC) interpolates
a baseband signal and up-converts it to an intermediate frequency band. Then DAC
converts a digital IF samples into an IF analog signal. The RF Upconverter that
follows, converts an IF analog signal to RF frequencies. Finally, a power amplifier
boosts the signal energy into the antenna [45].

3 Features and Challenges of SDR

The wireless transmission has multiple requirements and properties depending on
user expectations and hardware performances. Some advantages are reported in the
first chapter and in Section 2. In this section, we report features and challenges of
SDR based transmissions.

3.1 Features

The features of a software defined radio are for different types of application as
follows:

• Reconfigurability,

• Portability,

• Interoperability,

3.1.1 Reconfigurability

The behavior of traditional radio transceivers is static and defined by a manufacturer.
It cannot be changed by the transceivers’ designer or by itself. Thus, devices (or
nodes) of wireless networks handle only specific applications. A reconfigurable system
has the ability to dynamically change the transceiver behavior. Since all blocks of
communication chains are in software, a simple modification is possible during, before

50



51

or after a transmission. For an SDR designer, modifying these chains should be
performed transparently. However, wireless communication standards implemented
in SDR can be maintained only by changing software. For an SDR itself, a dynamic
auto configuration is interesting, since it brings cognitive radio capabilities [44].

3.1.2 Portability

The portability refers to the waveform mobility. From end user point of view,
it is the ability to implement and migrate waveform processing from one SDR
platform to another. From end-user view, migration should be carried out with a
maximum of transparency. This means that waveform processing should be possible
on another platform without rewriting the whole application. However, some specific
architecture of SDR defines its components as software programming objects. In
this case, a waveform can be handled by one of these objects. For example, Software
Communication Architecture (SCA) details an object oriented architecture which
is based on a transport mechanism of waveform components mapped on DSPs and
FPGAs [46] (see Section 4). Nevertheless, portability requires a correct migration
from and to a new platform without information losses. In addition, hardware
performances should be the same when changing the hardware platform or the
programming language.

3.1.3 Interoperability

The interoperability or radio bridging enables heterogeneous radio networks to inter
operate by dissimulating their differences. The challenge is to have a multi-standard,
multiband and an open radio system. Traditionally, a radio transceiver is limited to
communications only with nodes that share the same radio properties. The latter
could be waveform, frequency band, modulation type and data communication proto-
col. However, a radio bridge acts as a translator between heterogeneous transceivers.
It receives a signal encoded in one format and retransmits it following another
specification. Primarily, the interoperability is addressed in military applications
[47].

3.2 Challenges

In section 2, we saw that the main SDR challenge is to overcome the limited processing
power. Consequently, Intermediate Frequency part (see Section 2) is unavoidable to
get an SDR processing look like Software Radio. In this section, other challenges of
SDR solution are addressed.

3.2.1 Handling of an SDR platform

Numerous SDR platforms have been developed in the last decade with different
integration levels of hardware and software architecture. For software-designer,

51



Chapter 2. State of the art on Software Defined Radio-SDR

high-level programming could be an easy way to handle software, but at the expense
of a high hardware physical dimensions. Furthermore, the type of the architecture,
i.e. distributed or centralized, is an important element to understand how to use
different components. A centralized architecture could be easier to manage than a
distributed one. For example, the SCA [46] is distributed and interoperability is guar-
anteed via Common Object Request Broker Architecture (CORBA) middleware.
Understanding software architecture and programming with CORBA require more
efforts than programming on a host computer. In CORBA, the software/hardware
object locations of architecture are hidden to designers. Whereas, programming on
host computer is more simple, since all objects are present in the same physical
place. GNU Radio and Universal Software Radio Peripheral (USRP) [37] follow a
centralized architecture with a host computer programming. On GNU Radio soft-
ware, mastering high-level programming languages is required to construct software
communication chains. In fact, source codes are written in C++ and Python and
most of the time not commented (lack of comments) making them hard to understand.
In addition, these codes are commonly generated by a machine. RF performances
of USRP hardware, which is connected to GNU Radio are not documented. Thus,
implementations on USRP and GNU Radio can be time consuming. In spite of these
drawbacks, this platform presents several advantages which will be discussed in the
next Chapter.

3.2.2 Hardware physical dimensions

Physical dimensions issue comes from the need to integrate SDRs in constrained
applications, such as WSNs applications. It affects SDR capabilities, especially,
power processing and energy autonomy. Commonly, it depends on the hardware
front-end size and on the baseband processing software. Signal processing is a greedy
operation, and it is performed at various stages of the transmitting and receiving
chains. Thus, the capabilities of baseband processing part can be considered as a
reference to define hardware dimensions and programming languages of an SDR
platform. In the case of a GPP configuration, a high-level programming language on
a host computer is preferred by designers. Thus, the platform is cumbersome and
less usable for Wireless Sensor Networks (WSNs). In the case of an interoperable
architecture like SCA [46], a middleware manages several technologies, e.g. FPGA,
DSP, and GPP, etc. Actually, SDR nodes for WSNs is a futuristic technology,
regarding constraints of one SDR.

3.2.3 Radio frequency performances

We have shown in Section 2 the general architecture of an SDR, IF is the bottleneck
of an ideal SDR. In fact, SDR performances depend on hardware’s computational
resources and front end design. Dedicated purpose and non programmable chips
offer high-performances, but they are avoided, since they are limited in terms of

52



53

flexibility. However, an IF or a baseband filter sets the analog bandwidth from a
minimum to a maximum frequency. Furthermore, ADCs and DACs define SDR’s
sampling rate or a processing bandwidth.

3.2.4 Baseband processing hardware

Several hardware components of baseband processing could match with SDR require-
ments. ASIC is not a reconfigurable processing component, but it is useful when
efficient processing is preferred [44]. However, an FPGA is an alternative to an ASIC.
It rapidly reconfigures any waveform component through a specific program. Hence,
it is a preferred choice for an environment with real time constraints, particularly
when an application needs some permanent connectivity. Furthermore, an FPGA
requires significant energy and produces unpleasant heat for a handheld SDR.

A host computer simplifies the reconfiguration of baseband signal processing. It
runs SDR’s source codes over GPPs. The Operating System (OS) of host computers
creates an abstraction layer over a GPP by running different applications. In fact,
the OS handles software programs with little or no knowledge of underlying hardware
management [48]. The memory manager of such architecture also combines numerous
programs without a special care on Random-Access Memory (RAM) of software
development.

DSPs are similar to GPPs, since they can be programmed with a high-level lan-
guage such as C or C++ for processing and running under an Operating System (OS).
However, the difference comes from instructions set and on memory management.
The instructions of a DSP are dedicated to a particular application.

4 SDR standards and architectures

In this chapter, we quote a list of existing Software Defined Radios. This list is
organized in standards and architectures. Furthermore, they are classified, regarding
main parameters, i.e. baseband programming languages and front-end hardware.

4.1 Software Communication Architecture SCA

Software Communication Architecture (SCA) is an open and common architecture
allowing a designer to define hardware and software elements running on Joint
Tactical Radio Systems (JTRS) SDR [46]. Software radio programs are defined to
process waveforms in different layers while CORBA ensures interactions among them
[48]. For an embedded application, CORBA is greedy in processing power and in
memory resources. Hence, the focus of embedded SDR community shifted away from
CORBA. Architecture improvements have been made by SDR forums and by the
Object Management Group (OMG). The objective was to simplify the architecture

53



Chapter 2. State of the art on Software Defined Radio-SDR

Figure 2.5: Version 4 of the SCA architecture [49]

and to separate the SCA and waveform components from the operating environment
(see Figure 2.5).

The latest specifications of the SCA in versions 2, 3 and 4 discuss the use of an
FPGA [49]. As explained in Section 3.2.4, an FPGA is more reconfigurable and
has a higher processing power than a DSP or an ASIC. The FPGA can accomplish
digital processing of the IF and that of the baseband processing part of an SDR.
It can also performs specific processing such as cryptography algorithms. Figure
2.5 shows the main parts of the SCA architecture: Operating environment, SCA
Core Framework and Waveform. The SDR’s core framework handles all underling
software responsible for running waveform processing.

4.1.1 Open Source SCA Implementation::Embedded (OSSIE)

OSSIE is an open-source SDR and Object Oriented SCA architecture [50]. It is
implemented over a CORBA middleware working on a Linux operating system and
carried out by Intel or Advanced Micro Devices (AMD) based computer. The core
framework of OSSIE contains signal-processing components and software interfaces
based on CORBA. The objective behind OSSIE is to reduce the designer’s learning
curve of the SCA and the cognitive radio. Furthermore, for a proof of concepts, SDR
prototyping can be faster than other software architecture. However, CORBA requires
a lot of memory resources, and the objects communicate with fewer throughput. In
fact, SCA performances depend on the object size, since several objects have to be
exchanged within the SCA [44].

4.2 Reconfigurable Radio System RRS

European Telecommunication Standards Institute (ETSI) introduces a
Reconfigurable Radio System (RRS) for mobile phone networks [51]. This
architecture is more specialized than the SCA architecture. It specifies the required

54



55

Figure 2.6: ETSI architecture [51]

radio resources and interfaces. Figure 2.6 shows interactions between different
abstract managers of the architecture. The configuration manager installs radio
implementation in radio computers and updates radio parameters. The Radio
Connection Manager interacts with designer or inter-implementation requests to
activate radio implementations or to switch among them. The multi-radio controller
anticipates interoperability problems by scheduling simultaneous spectrum requests.
Finally, the resources manager controls the allocation of radio hardware resources,
such as spectrum or hardware devices, according to the application importance.

RRS test bed is the only SDR platform found in the literature following the ETSI
specifications. It is a modified USRP and GNU Radio based SDR, dedicated to
security research for military applications. Next chapter gives more details about
the USRP and GNU radio platform.

55



Chapter 2. State of the art on Software Defined Radio-SDR

5 SDR for Embedded Devices

In the literature, there is neither a general architecture nor a standard proposed for
embedded devices or wireless sensor nodes. The design of a such SDR is constrained
by the application type and hardware capabilities. From our state of the art we can
notice two main architectures:

• GPP based architecture

• Reconfigurable hardware based architecture

5.1 GPP based architecture

The GPP base architecture is the case of platforms such as GNU Radio/USRP [37]
[37] and Sora platforms [52]. The GPP receives/generates baseband signal replacing a
DSP in Tx and Rx SDR architectures shown in Figures 2.3 and Figure 2.4. The SDR
implementations, prototypes or realization are designed at a GPP using high-level
programming languages. Commonly, the research community simply considers these
prototypes as SDRs, software transmitters/receivers or software transceivers.

The SDRs based on host computers are more accessible than other possible SDR
architectures. The developing and debugging become easier, especially with the
collaboration of a high number of users. Furthermore, the GPP power processing
can be significantly increased by integrating a multicore in a monolithic processor.
These cores can coherently handle a distribution of waveform processing blocks [52].
Thus, prototyping of OSI’s physical layer is simplified and efficient using GPPs.

Multi core GPP based SDR architecture is less deterministic than those combined
with an FPGA or a DSP. Moreover, without a specific processing device, reliability
decreases. The FPGA offers a good ratio between real time processing and reconfig-
urability. It can thus be used to accomplish high-power processing. What’s more,
the GPP handles software frameworks for waveform processing. An example of such
architecture is that of USRP and GNU Radio SDR.

A DSP can replace an FPGA if the GPP coordinates the assigned signal processing
operations among programmable DSPs. However, for an SDR designer, the advantage
is to have a possibility to build separately DSP programs and execute them on Multi
Processors System on Chips (MPSoC). Table 2.1 presents some DSP based SDRs
[53]

5.2 Reconfigurable hardware based architecture

In order to benefit from the flexibility and the high performances of dedicated
hardware, the entire radio communication stacks can be implemented on an FPGA.
Hardware synthesizer tools should be used, for example Register Transfer Level
(RTL) [54]. These tools allow a designer to implement a hardware conception, but

56



57

with an extra time needed to handle the associated programming languages, e.g.

Very high speed integrated circuit Hardware Description Language (VHDL).
An SDR can be implemented via an Intellectual Propriety (IP) core, which

is data or logic blocks. Ideally, an IP core should be entirely portable and easily
inserted into marketed technologies. However, IPs are expensive and consume a lot
of logic resources as well as require powerful hardware [45]. Furthermore, coarse-
grained reconfigurable architecture consists of a large number of function units
interconnected through an embedded network. Comparing this architecture to an
FPGA, the advantage is low in terms of power consumption and time needed to set
up the platform. Therefore, the gate-level reconfigurability is limited, but with a
large increase in hardware efficiency [55].

6 SDR classifications

In the literature, several classifications can be found in [56] and [57]. SDRs have
been classified by considering hardware architecture and programming model. Our
objective is to synthetize these classifications throughout comparative tables. Table
2.1 synthesizes Dardaillon et .al work [57]. It contains a classified SDRs function of
a programming model.

6.1 Programming model

From the programmer’s point of view, the architecture has a crucial impact on
programming models and tools. Six classes are proposed in [57]:

• GPP General Purpose Processor approach

• Coprocessor

• Processor centric approach

• Configurable units approach

• Programmable blocks approach

• Distributed approach

The SDR based GPPclass uses a computer processor as a computing platform,
with programming at a high-level for more flexibility. However, high-energy con-
sumption is proportional to a high demand of hardware resources. Thus, the GPP
approach is improved by integrating a coprocessor to perform heavy processing and
to reduce energy consumption. In this case, a GPP is associated to an FPGA (or
DSP), chip rate accelerators or coarse-grained cores. The processor’s centric approach
increases the SDR efficiency. For example, a dedicated processor like an Acron RISC

57



Chapter 2. State of the art on Software Defined Radio-SDR

Machine (ARM) can be used for the signal-processing part. This approach guaran-
tees high programmability but reduces flexibility from its specific architecture. The
configurable units are proposed to offer lower energy consumption by substituting
DSPs with reconfigurable processors. Programmable blocks refer to an FPGA based
architecture. They provide programmability with a great flexibility to create tailored
architecture. Finally, a distributed approach distinguishes signal-processing cores or
a distributed asynchronous array from simple processors.

Classes Name Programming Hardware

GPP approach USRP [37] C++, Python (GNU

Radio)

GPP

QuickSilver (QS1R)

[58]

SDRMAX pre-build GPP

Microsoft SORA

[59]

SORA SDK pre-build GPP

RTL-SDR [60] SDR# Pre-built and

limited use of GNU Ra-

dio

GPP

SDR4All [61] C++, Matlab GPP

Coprocessor ap-

proach

KUAR Kansas Uni-

versity Agile Radio

VHDL1 implementa-

tion or GNU radio

flow

FPGA

Texas Instrument

SDR

CHDL or MATLAB

Simulink

Programmable

DSP
Imec ADRES 2 C on DRESC com-

piler

GPP, ADRES ac-

celerator
Hiveflex HiveCC SDK HiveFlex accelera-

tor
Processor-centric

approach

Infeneon MuSic C and ASM ARM processor,

DSP

Sansblaster ANSI C on didecated

compiler

ARM processor,

Sandblaster cores

SODA University of

Michigan ARDBEG

C programming lan-

guage

ARM processor,

DSP

Tomahawk (Univer-

sity of Dresden)

C programming lan-

guage

Tensilica RISC3 pro-

cessor, DSP

Configurable units

approach

Imec BEAR: The

evolution of Imec

ADRES

C programming lan-

guage, MATLAB

ARM processor,

ASIP4, veterbi

accelerator

CEA Magali chip C programming lan-

guage, ASM

ARM processor,

coarse grain re-

configurable cores

Merphisto

1VHDL
2Architecture for Dynamically Reconfigurable Embedded Systems (ADRES)
3Reduced Instruction Set Computing (RISC)
4Application-Specific Instruction-set Processor (ASIP)

58



59

EURECOM Ex-

pressMIMO (recon-

figurable FPGA

)

C programming lan-

guage

FPGA

Programmable

blocks approach

XiSystem C programming lan-

guage

PiCoGA FPGA

WARP (Rice Uni-

versity)

VHDL Xilinx Virtex

FPGA

WINC2R (Rutgers

University)

C++, python (GNU

Radio)

FPGA, Soft Core

Processors and ac-

celerators

Lytech Simulink, MATLAB FPGA

Distributed ap-

proach

Picochip C programming lan-

guage

Matrix of small

cores
CEA Genepy C programming lan-

guage, ASM

Coarse grained

based on Mag-

ali with ARM

processor

Table 2.1: SDR classification refereed to a programming model

6.2 Used hardware

As shown in Table 2.2 SDRs can be categorized in three classes [56]:

• Coarse-grained reconfigurable

• Processor centred architecture

• Multi core and multi thread architecture

The first class is based on reconfigurable hardware, whereas the second one
consists of DSP-centred and accelerator-assisted architecture. Although an SDR
baseband processing can be done by a GPP or an FPGA, the general-purpose DSP
appears to be the most used solution for embedded systems. The processor centred
architecture is based on an ASIP, a DSP and many-cores SDRs. The DSPs exploit a
native date and a parallelism instruction level of radio kernels. In some cases, they
are assisted by accelerators, e.g. ASIC in LeoCore SDR [62]. Some SDR platforms
are based on splitting a bigger task into smaller ones and distribute them among the
cores. Behind the task’s distribution, power consumption is reduced to an acceptable
level, e.g. SODA [63]. In Section 5.2, we explained that coarse-grained reconfigurable
architecture offers more flexibility than processor centric architectures. For example,
we can cite ADRES, HERS and CREMA platforms (see table 2.2).

Architecture Name Programming Hardware

59



Chapter 2. State of the art on Software Defined Radio-SDR

Coarse-grained

reconfigurable

Montium Montium Sensa-

tion Suite Simu-

lator and Editor.

Language used is

Montium Configu-

ration Design Lan-

guage (CDL)

Chameleon SoC

BUTTER and

CREMA

VHDL SoftCore, CREMA is

synthesized on FPGA
HERS FireTool for C lan-

guage extensions

SoftCore

EURECOM

ExpressMIMO

C programming

language

FPGA

Imec ADRES ADRESC com-

piler with ANSI

C

ADRES processor,

ASIP, FlexFec processor

Processor centred

architecture

Leocore Coresoninc devel-

oper studio

Network on Chip Noc

Sandblaster C language Multi-Core and Multi-

Thread processor
Connx BBE TIE language,

C++ language

Tensilica Xtensa proces-

sor
EVP Embed-

ded Vector Pro-

cessor

EVP-C compler ASIC

Multi core and

multi thread archi-

tecture

SODA Signal

processing

On demand

architecture

C compiler gen-

erated by Opti-

moDE’s Framework,

Matlab C model

supported

Imagine Processors and

IBM Cell Processor

Tomahawk MP-

Soc

C compiler Two Tensilica processors,

ASIP

MuSIC MuSIC specific C

compiler to support

SIMD 5 C exten-

sions

Two Tensilica processors,

ASIP

Imec BEAR Matlab and C pro-

gramming language

ARM processor for control

and three ASIPs

Table 2.2: Synthesised classification of SDR hardware given in [56] based on the
DSP architecture

5Single Instruction Multiple Data (SIMD)

60



61

Flexibility 

P
ro

c
e

s
s
 I

n
te

n
s
it
y

X axis

Y
 a

x
is

Figure 2.7: Hardware tasks associated with process intensity and flexibility

6.3 SDR platforms

SDR platforms are software and hardware toolkits that allow the designer to construct
an SDR prototype or implementation. Of course, an implementation can consist
of separated transmitter or receiver. It is also possible to gather transmitter and
receiver giving an SDR transceiver.

Figure 2.7 shows the main signal processing tasks associated to an SDR imple-
mentation. They are on two vertical and horizontal axis. Intensity of processing
is associated to the vertical axis and flexibility to the horizontal one. The degree
of highly repetitive and rather primitive operations denotes the process intensity.
Flexibility refers to the uniqueness/variability of the processing and how likely the
function may have to be customized for any specific application. Figure 2.7 illustrates
the degree of flexibility vs the processing intensity. In the upper left of this figure we
find hardware structures for real time operations, such as ADC, DAC and DDCs that
can be done by ASICs. In the lower right of this Figure, we find other tasks, such as
analysis and decision tasks that need more flexibility, and can be accomplished by
DSPs and GPPs.

We notice the existence of a large panel of SDR technology platforms. More than
sixty platforms could be counted over the world in 2014. Table 2.3 summarizes a non
exhaustive list of research commercial and open source projects SDR technologies.
Numerous SDR platforms are proposed with different RF performances, program-
ming languages and hardware architecture. The sampling rate and the covered
frequency range are two primary parameters which define the capabilities of an SDR
implementation. Compared to other SDRs, the USRP brings high performances. It

61



Chapter 2. State of the art on Software Defined Radio-SDR

is proposed by Ettus Rsearch [37] in different versions . Its frequency range grows
up to 6 GHz with a DAC and ADC sampling rate up to 400 Mega Samples Per
Second (MSPS) and 100 MSPS, respectively. Furthermore, baseband processing is
handled via a GPP which executes a software toolkit.

The announced performances of the USRP led to the development of those
software toolkit. Particularly, GNU Radio [32] has been developed to drive the USRP
despite existing general software, such as Simulink MATLAB and LabView. The
GNU Radio is an open-source software used to drive not only the USRP, but also some
other SDR hardware (e.g. HackRF [64] and Nutaq ZeptoSDR [65]). However, several
communication standards and prototypes have been implemented on GNU Radio
and USRP (i.e. IEEE 802.15.4, IEEE 802.11a, IEEE 802.11p, Automatic Dependent
Surveillance-Broadcast (ADS-B) and Hight Definition Television (HDTV) etc). Of
course, the SDR based USRP and GNU Radio will be detailed deeply in the next
chapter.

62



63
Name Architecture Software

and Pro-

gramming

Frequency

range

Sampling rate connecting mech-

anism

OS Applications

USRP family [37] GPP + FPGA GNU Radio Up to 6

GHz

Up to 100 MS/s

(Rx) and Up to 400

MS/s (Tx) accord-

ing to their version

Gigabit Ethernet,

USB2, USB3 and

PCIe depending on

their version

Windows,

Linux and

Mac

General Applica-

tions

Microsoft SORA

[59]

GPP SORA SDK 2.4 GHz-5

GHz

40 MS/s-44MS/s PCI Windows General applica-

tions

SDR4all [66] GPP + FPGA MATLAB 400 MHz -

4 GHz

20 MS/s, 200 MS/s USB WINDOWS,

LINUX

General applica-

tions

UDPSDR-HF1

[67]

FPGA BeMicro

SDR

100 KHz -

30 MHz

80 MS/s USB Windows Military and Com-

mercial applications

Realtek

RTL2832U DVB-

T tuner

CMOS6 +

GPP and

Audio card

Pre-build,

Limited

GNU Radio

52 MHz-

2200 MHz

2.8 MS/s USB Windows,

Linux and

Mac

Amateur radio

RDP-100 [68] FPGA + Pow-

erPc

Pre-build RX 0-125

MHz; Tx 0-

200MHz

Rx-250 MS/s; TX-

800 MS/s

PCI Embedded

System

General applica-

tions

BladeRF [69] FPGA +

ARM proces-

sor

Pre-build 300 MHz-

3.8 GHz

40 MS/s USB 3.0 SS Windows,

Linux, Mac

Amateur Radio, Re-

search

Bitshark Express

RX [70]

FPGA + GPP Kit 300 MHz -

4 GHz

105 MS/s (Rx only) PCIe Windows

and Linux

GSM, iDEN,

CDMA2K, UMTS,

TD-SCDMA

FlexRadio SDR-

1000 [71]

DSP Pre-build

(PowerSDR)

12 KHz -

60 MHz

Not indicated Parallel port Windows Amateur radio

Matchstiq [72] GPP and

FPGA

Prebuild

SDK

300 MHz -

3.8 GHz

40 MS/s USB Windows,

Linux and

Mac

General applica-

tions

NI Flex RIO [73] FPGA NI LabView

Matlab

200 MHz-

4.4 GHz

1.6 GS/s PXI Express x4 Windows General applica-

tions

HackRF [64] GPGA and

GPP

GNU Radio 30 MHz - 6

GHz

20 MS/s USB Windows,

Linux and

Mac

General applica-

tions

Table 2.3: Non-exhaustive list of SDR platforms

63



Chapter 2. State of the art on Software Defined Radio-SDR

7 Summary

Through a theoretical study, differences between a pure SR and Software Defined
Radio have been detailed. A limitation of a pure Software Radio is the interme-
diate frequency part, since DAC and ADC sample at a low-rate with high-power
consumption. The hardware dimensions and radio-frequency performances are also
other constraints for SDR implementations. Flexibility is the main opportunity of
the SDR. The radio parameters can be changed easily by the radio designer or by
the radio itself.

We established a survey of SDR standards, architecture and platforms. We
focused on existing SDR architectures proposed for embedded devices. We showed
two approaches: reconfigurable hardware architecture and GPP based architecture.
The latter brings more facility with high level programming languages. Then, we
expanded our survey to the classes of SDRs considering their programming model
and hardware. We analyzed most important SDR platforms. From the performed
study, we have chosen an open source GNU Radio/USRP platform as it provides,
open-source high level languages with a well established community.

64



Chapter 3

Analysis of GNU Radio and
USRP SDR

Most software today is very much like an Egyptian pyramid

with millions of bricks piled on top of each other, with no structural

integrity, but just done by brute force and thousands of slaves.

Alan Kay

Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2 GNU Radio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.1 Programming language layers . . . . . . . . . . . . . . . . . . 67

2.2 Software blocks . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.3 Flow graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.4 Software scheduler . . . . . . . . . . . . . . . . . . . . . . . . 70

2.5 SIMD programming (Volk) . . . . . . . . . . . . . . . . . . . 71

3 Universal Software Radio Peripheral . . . . . . . . . . . . . . 72

3.1 USRP Architecture . . . . . . . . . . . . . . . . . . . . . . . . 74

3.2 Transmit and Receive Paths . . . . . . . . . . . . . . . . . . . 74

3.3 RF daughter boards . . . . . . . . . . . . . . . . . . . . . . . 75

3.4 Firmware and FPGA images . . . . . . . . . . . . . . . . . . 75

3.5 Universal Hardware Driver (UHD) . . . . . . . . . . . . . . . 76

4 GNU Radio and USRP properties . . . . . . . . . . . . . . . 76

4.1 Latency and throughput . . . . . . . . . . . . . . . . . . . . . 77

4.2 Buffers organization . . . . . . . . . . . . . . . . . . . . . . . 78

4.3 Performance counters and ControlPort . . . . . . . . . . . . . 78

5 Advantages of GNU Radio and USRP . . . . . . . . . . . . . 79



Chapter 3. Analysis of GNU Radio and USRP SDR

6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

1 Introduction

An SDR platform architecture based on General-Purpose Processor (GPP) or a
combination of GPP and DSP is relatively inexpensive. It is advantageous in terms
of programming environment and tools. Thus, several open source projects have
been developed by the community of researchers, hobbyists and industries. As shown
in chapter 2, the GNU Radio and USRP are suitable for rapid implementation of
wireless networks’ specifications. In this chapter, this platform is described from
top to down, starting from GNU Radio to Universal Software Radio Peripheral
(USRP).

The GNU Radio toolkit can be downloaded via the Internet, and a USRP can
be purchased around 800 euros from Ettus Research. However, the biggest difficulty
in an open-source software is the rigor in program writing throughout upgrading
GNU Radio versions, i.e. change name of objects and methods. In most cases,
these changes are not commented, and programmers need more time to adjust
radio programs from old versions to new ones. In addition, the performances of
SDRs might depend on both: Software/Hardware processing units and links, e.g.

PCI, USB, Ethernet, etc, between these units. Hence, the analysis is needed to
provide programmers with more information about software/hardware organization.
Especially, we need to estimate the delay between two processing units. The analysis
comes from the state of the art, and from reverse engineering performed through
several experiments on the platform.

2 GNU Radio

GNU Radio is an open-source project toolkit for building software radios that run
on (General Purpose Processor (GPP)) [74]. The project was founded by Eric
Blossom in early 2000, and revived by Thomas Rondeau in 2010. It can be used
with readily-available low-cost external RF hardware to create software-defined
radios, i.e. USRP, or without hardware in a simulated environment. It is widely
used in hobbyist, academic and commercial environments to support both wireless
communications research and real-world radio systems. Furthermore, the GNU Radio
can be supported by Windows, Linux and Mac OS.

Based on the philosophy of Mitola [10], the toolkit provides signal processing
blocks for modulation, demodulation, filtering and various data processing operations.
In addition, new blocks can be easily added to the toolkit. Furthermore, a software
radio program can be created by connecting these blocks to form flow graphs. Each

66



67

Figure 3.1: Software layers of the GNU Radio

block can be developed in Python or C++ programming languages. In section 2.3,
we explain how to use these blocks to form flow graphs (or software radio programs).

2.1 Programming language layers

Figure 3.1 depicts the programming language layers of the GNU Radio. Processing
blocks are written in C++ and then connected through a Python script. These C++
blocks are integrated in python script via an interface compiler called a Simplified
Wrapper and Interface Generator (SWIG). To create a flow graph, we can use a
graphical user interface called gnuradio-companion or directly via a python code.
In this case, an EXtensible Markup Language (XML) code describes C++ blocks
to facilitate the visibility of the graph’s blocks. The XML script is interpreted to
a python code via the cheetah1 tool. Finally, a Verilog HDL layer can be used to
configure the Field Programmable Gate Array (FPGA) of a USRP board.

Recently, a new layer of QT programming language has been added to these
layers. A graphical user interface of some blocks, such as the Fast Fourier Transform
(FFT) sink or the IQ (In and Quadrature) constellation, can be imported from QT
package [75].

We note that several GNU Radio versions have been published in Git (git)
repository of the GNU radio project. In each version, users can add new blocks or
update old ones. Usually, the Python and the C++ codes are the most updated
source codes, since they are the kernel of the toolkit.

2.2 Software blocks

From the previous sections, we can see that the blocks are the basic data structure
of a GNU Radio system. They are connected to construct directional flow graphs.
A stream of samples flows through the blocks from a source block to a sink block
and vice versa. Generally, C++ is suitable for signal processing functions that need

1http://www.cheetahtemplate.org/

67



Chapter 3. Analysis of GNU Radio and USRP SDR

Figure 3.2: Source, Sink and Intermediate blocks

GNU Radio C++ 

Signal Processing Blocks

Filters

Signal demodulation

Signal modulation

Mathematics

Signal sinks

Signal sources

.....

fft_filter_ccc
fft_filter_ccf 
iir_filter_ccc...

Figure 3.3: C++ signal processing modules

a short time response. Hence, Input/output streams are processed at high level
without loss of stream’s samples. For example, signal modulation and demodulation,
equalization and Fourier’s analysis have been implemented in C++. Data processing
blocks, such as vector source or message generator, can be written in Python.

The type of data samples is commonly complex floats or interleaved floats. A
first part is treated as real, and a second as imaginary part. In this case, the size of
each sample is up to 8 bytes. Other sizes exist in order to represent Float (4 bytes),
Short ( 2 bytes integer values) and Char ( 1 byte integer values). At a definition of
a given block, a new type can be created from the predefined blocks. For example,
vector types are defined to deal with a fixed number of samples. These types are
useful, since they define one or several input and output ports of a block. As shown
in Figure 3.2, source and sink blocks have only one side with ports, the output for
sources and the input for sinks.

The design is object oriented based on a hierarchical organization with inheritance
propriety [76]. It allows a community of GNU Radio to contribute easily and to
change class diagrams. Figure 3.3 shows some modules of C++ signal processing
classes. It was summarized from the Doxygen documentation of the project.

Signal processing blocks can be either synchronous or asynchronous. Synchronous

68



69

Linux, Windows 

and Mac Os

Python

GRC GUI

Figure 3.4: Programming layers of GNU Radio implementation

blocks need an integer relationship between the sample rate at input and output ports.
Usually, they are derived from classes gr_sync_block, gr_sync_ interpolator

and gr_sync_decimator. Asynchronous blocks are directly derived from gr_block.
Blocks are usually written in C++ while a work function is the main function
which processes an input flow. Furthermore, it is possible to wrap up several blocks
into a higher level block. This can be done in Python by deriving a class from
gr.hier_block2.

2.3 Flow graphs

The designer can create a flow graph in two ways, through a GUI interface called Gnu
Radio Companion (GRC) or python code. In GRC panel list, blocks are organized
in groups, regarding their functions. For example, modulators are grouped in one
drop-down list which contains AM, FM, Phase modulators. Furthermore, blocks drag-
and-drop is possible for fast and easy block’s handling. Through Python, designers
of flow graphs need a deep knowledge about class diagram and how to instantiate
new blocks. Figure 3.5 shows an example of GUI flow graph’s representation. The
three blocks are connected by edges from an audio source to a Wav File sink. Two
blocks can be connected if the type of the source block’s output, and the destination
block’s input is the same. For example, float is the type of both the output of the
audio source and the input of the low-pass filter (see Figure 3.5).

Flow graphs are derived from two possible classes: the class top_block of the
module gr, or std_top_block of the module stdgui2. The difference between two
possibilities depends on application requirements. If flow graphs are executed on
console, gr module is imported from gnuradio package. Otherwise, when designers

69



Chapter 3. Analysis of GNU Radio and USRP SDR

Figure 3.5: An example of a flow graph

Python
Application development, 

creating flow graphs

Figure 3.6: GNU Radio Software layers [78]

need an FFT Graphical User Interface (GUI) in order to analyze a spectrum, the
stdgui2 is imported from gnuradio.wxgui (see Figure 3.4).

Actually, flow graphs are only built in Python, whereas to get them in a pure
C++ is more efficient for embedded devices. However, some works are carried on
handling GNU Radio for embedded architecture. In [77], Finite Input Response
(FIR) filter block has been mapped on Zynq based FPGA architecture.

2.4 Software scheduler

Figure 3.6 shows that a scheduler is at the heart of GNU Radio functioning. It
interacts with C++ methods by managing blocks executions, and samples flow
between them. Precisely, it is assisted by customized forecast() method, which
defines the number of input samples required to produce a given output number of
samples. In addition, the scheduler triggers block processing through general_work

or work functions.
From flow graph debugging, we found two types of scheduler: single threaded

scheduler and Thread-Per-block Scheduler (TPS). This result is confirmed in the
literature by Chiang et al. [42].

By calling each block’s executor, the Single Threaded Scheduler (STS) allocates

70



71

only one thread for each flow graph. It scans through the flow graph from source to
sink looking for a block with sufficient input data and available output buffer (see
section 3.10). When it finds an eligible block, it schedules the block for processing.
Then, it continues with the next block. When it reaches the sink, it resumes at the
source block. The scheduler is essentially a cyclic poller, calling each block in turn
to perform its processing function, always cycling in the same order.

GNU Radio new versions (from 3.3.0) use TPS scheduler, which allocates a distinct
thread for each block’s execution. There is no global scheduling among blocks at
runtime. A block’s associated thread loops until GNU Radio code is terminated. In
each loop, the thread first calls a block executor, which checks whether this block has
sufficient input data and available output buffer. In this case, the executor calls the
work function for current data processing. After that, it notifies neighbor block(s) on
its status changes. Otherwise, this block waits for status change of its neighbor(s),
and then checks its status again. Following the above mechanism, all the blocks in a
flow graph together process incoming data stream.

We discovered the two types of schedulers by debugging C++ source codes of
flow graphs. The open source Data Display Debugger (DDD 2) has been used. It is a
graphical front end of the command-line debugger Gnu Project DeBugger (GDB 3).

2.5 SIMD programming (Volk)

Not far from a scheduler, the parallel programming architecture like Single Instruction
Multiple-Data (SIMD) allows a programmer to perform one operation on multiple
data points simultaneously. Commonly, signal processing blocks need more efficiency
and processing time. SIMD is a solution to run faster a signal processing application.

Vector Optimization Library of Kernels (VOLK) has recently been proposed to
support SIMD on GNU Radio [79]. It deals with code optimization within different
SIMD architectures. For example, a SIMD architecture on x86, ARM and AMD
are different. With Streaming SIMD Extensions (SSE), NEON and 3DNow! are
dedicated to x86 processor, ARM and AMD, respectively. The VOLK’s objective
is to ensure the same processing time even if the programmer changes processor.
Furthermore, VOLK provides a significant speed-up to signal processing blocks. In
fact, the VOLK is a platform-agnostic interface (or an API) called kernel for each
conceptual execution unit subject to SIMD vectorization. It has a set of proto-kernels
designed for particular platforms, SIMD architecture versions, or run-time conditions.

When we analyzed the programming model of VOLK, we found three conceptual
objects: kernels, archs and machines. The kernel is a C++ header file (extension .h)
containing definitions of its proto-kernels which are static C++ inline functions. The
arch is an abstraction for any hardware specific property. For a compiler, an arch
corresponds to one or several flags, such as -msse3 flag in a command line of GCC

2http://www.gnu.org/software/ddd/
3http://www.gnu.org/software/gdb/gdb.html

71



Chapter 3. Analysis of GNU Radio and USRP SDR

Hardware

Firmware

Assembler

Kernel

Os and 

applications

VOLK

machine.xml

arch.xml

kernel.h

proto kernelr 1 

proto kernelr n 

arch 1 : macro  

arch n : macro 

machine-arch  1 

Figure 3.7: VOLK programming model

compilation [79]. For processor, an arch describes firmware attributes enabling the
processor to execute a machine code of particular assembly instruction. Each arch
corresponds to a VOLK macro and is an entry in an XML file. Finally, a VOLK
machine is an abstraction of SIMD architecture for a processor. It describes the
various architectural and software attributes required for a processor to run binaries
within a shared object. The machine set is defined in an XML file, and it can be
considered as a list of archs. The VOLK’s position is between assembler and kernel
of a host-computer’s OS (see Figure 3.7).

Two primary conditions, buffer alignment and correctness, must be verified by
a VOLK based block. The alignment is defined by buffer requirements for vector
loads and vector stores. For example, in an SSE architecture, processing block needs
4 float per SSE register. However, forcing an output multiple can keep input and
output buffers aligned to SIMD architecture requirements. As we have seen in Section
2.4, scheduler is involved in buffer management, since it passes sufficient data to
produce output-multiple items. The VOLK ensures that all proto-kernels have the
same behavior on a given machine. In addition, the Quality Assurance (QA) is a
programming code used by designers to measure a behavior variance.

Dynamic arrival times of samples from source blocks are difficult to manage for
the VOLK mechanism. When a number of input samples is not proportional to the
output requirement, a sample processing is delayed. In fact, GNU Radio flow graphs
keep wait remaining samples until enough samples are received ensuring alignment
requirements. In the case of a significant inter-arrival time of samples, we then
experience significant latency.

3 Universal Software Radio Peripheral

Universal Software Radio Peripheral (USRP) is the most common hardware platform
to receive/transmit analog signals for SDR. It has been developed by Ettus Research
[37] under GPL license to serve as a digital baseband and IF section of a radio
communication system. For the time being, there are four USRPs versions available

72



73

on the market, categorized according to their connecting mechanism to a host
computer and to their hardware performances.

Table 3.1 shows the versions (series) those we have used further in our work, i.e.

Serial (USRP 1 and USRP B210), Ethernet (USRP N210) and Embedded (E110).
The X series remain unused, since it is the newest version. All these versions can
be connected to a host computer via multiple high speed interfaces, e.g. Peripheral
Component Interconnect express (PCIe), dual 10 GigE, dual 1 GigE.

From the previous classifications, USRP hardware belongs to the GPP based
architecture. The waveform-specific processing, such as modulation and demodulation
can be executed on a host computer. A USRP consists of a mother board which can
carry up to four daughter boards, depending on their versions. For example, USRP
1 can contain four Basic Rx/Tx daughter boards. In fact, the mother board holds
analog interfaces connected to DACs and ADCs. In addition, it holds an FPGA
which accomplishes high-speed general-purpose operations, i.e. digital up and down
conversion, decimation and interpolation.

The performances of a USRP depend on frequency coverage and on analog
bandwidth of daughter boards. Analog bandwidth is a useful bandwidth between
an RF port and an IF/baseband interface of an RF channel. Typically, the analog
bandwidth is set by IF or baseband filters on the daughter board. These filters are
designed to avoid aliasing when paired with a USRP motherboard with ADC/DAC
sample rates. Table 3.2 shows the announced analog RF coverage of some daughter
boards.

Name Host sam-

ple rate

ADC

rate

DAC

rate

Host

Connec-

tion

RF band-

width

Bus series
USRP 1 8 MS/s 64 MS/s 128 MS/s USB Defined by

a daughter

boards placed

in 2 slot

USRP B200

and B210

61.44 MS/s 61.44

MS/s

61.44

MS/s

USB 3.0 MIMO card, 70

MHz-6 GHz

Networked

series

USRP N200

and N210

50 MS/s 100 MS/s 400 MS/s GigaBit

Ethernet

Defined by

a daughter

boards placed

in 1 slot

Quad Re-

ceiver QR

210

50 MS/s 120 MS/s 120 MS/s 1 and 10

Gigabit

Ethernet

700 MHz to 4

GHz

Embedded

series

USRP E100

and E110

4 MS/s 64 MS/s 128 MS/s OMAP 4

GPMC 5

Defined by

a daughter

boards placed

in 1 space

4Open Multimedia Applications Platform (OMAP)
5Group Policy Managment Console (GPMC)

73



Chapter 3. Analysis of GNU Radio and USRP SDR

X series

USRP E100

and E110

50 MS/s 200 MS/s 200 MS/s PCIe, dual

10 GigE,

dual 1

GigE

Defined by

a daughter

boards placed

in 2 slots

Table 3.1: USRPs and their performances [37]

3.1 USRP Architecture

There is no general architecture proposed by Ettus Research for USRPs [37]. We can
consider the architecture of an USRP N210 mounted with WBX daughter boards as a
general one. Due to the numerous versions of USRPs, there is no general architecture.
A USRP requires an RF front end, mixers, filters, oscillators and amplifiers, to
translate the signal from the RF domain to the complex baseband or IF signals (see
figure 3.8). As explained in Section 2.1, the baseband of IF signals are sampled
by ADCs, and the obtained digital samples are clocked into the FPGA. The latter
provides down-conversion, which includes fine-frequency tuning and several filters
for decimation [37]. After decimating and through the host interface, raw samples
(or data) are streamed to a host computer. The reverse process is applied to the
transmission chain. Figure 3.8 presents a schematic organization of the USRP N210
from and toward a host computer. This organization can be considered as the general
USRP architecture.

The bandwidth of a USRP device is a function of the analog and the FPGA
processing bandwidth and the GPP bandwidth. The minimum of these three
bandwidths is the system bandwidth. Thus, care should also be taken to prevent the
analog bandwidth to be wider than the ADC/DAC sample rate of any device. For
example, the USRP 1 has an Altera Cyclone FPGA with 64 MS/s dual ADC and
128 MS/s dual DAC. This USRP allows a host computer to receive/transmit data
through a USB 2.0 connection. Since the sample rate of a USB 2.0 is limited to 8
MS/s then the bandwidth of the USRP 1 is only 8 MS/s.

3.2 Transmit and Receive Paths

Over GPP, radio application generates complex baseband, i.e. In and Quadrature
signal components. This signal is sent to the USRP through USB, Ethernet or
PCI Express. It is interpolated and digitally up-converted to IF by Digital Up
Converters (DUCs) on an analog device. Then, DAC converts a digital signal into
analog one and the RF daughter board takes over. Note that DUC is not performed
by an FPGA (see Figure 3.8). However, the unique signal processing blocks of the
transmitter in the FPGA are the Cascaded Integrator-Comb (CIC) interpolators
[37]. The performances of the USRP DACs are recalled in Table 3.1.

74



75

E
th

e
rn

e
t/U

S
B

 1
,2

,3
/P

C
I E

x
p
re

s
s

T
ra

n
s
m

it C
o
n
tro

l
R

e
c
e
iv

e
 C

o
n
tro

l

DUC

DUC

DDC

DDCADC

DAC

DAC

ADC

Lowpass

Filter

Lowpass

Filter

0°
90°

0°
90°

VCOPLL

.

.
RX1

TX1

RX2

RF 

Switch

RF 

Switch

GPP

Mixer

VCOPLL

Figure 3.8: General USRP Architecture with a daughter board (USRP N210 with
WBX) [37]

In the receiver path, the daughter boards down convert an RF signal to a baseband.
The signal is sampled and converted to a digital stream through the ADC (see Figure
3.8). This stream is transferred to the FPGA which down converts (DDC) the
received signal from IF to the baseband. Furthermore, the FPGA decimates the
signal samples to adapt the sample rate to the data rate of the communication
interface, i.e. Gigabit Ethernet or USB bus. Thus, the resulting signal is a complex
baseband signal (waveform) at a given frequency, and the data rates are low enough
to be transferred to the GPP.

3.3 RF daughter boards

RF daughter boards are the RF front end in a transmission chain of the USRP
GNU Radio SDR. The USRP mother board can hold up to four slots, depending on
USRP version, e.g. USRP N210 up to two, USRP 1 up to four. These slots allow
us to plug in up to 2 basic receiver/transmiter daughter boards [80]. Primarily, the
frequency tuning is accomplished in two steps. In the daughter board through Phase-
Locked Loop (PLL) and via DDC. In an FPGA, the phase generator in Numerically
Controlled Oscillator (NCO) is clocked at a frequency of the FPGA, e.g. 64 MHz in
a USRP 1. Table 3.2 lists some daughter boards and their performances.

3.4 Firmware and FPGA images

Each USRP device must be loaded with special firmware and FPGA images. The
methods of loading images into the device vary among device version. In a USRP
1, USRP-B and USRP-X, the host will automatically load the firmware and FPGA

75



Chapter 3. Analysis of GNU Radio and USRP SDR

Daughter board Frequency coverage Analog bandwidth
RFX 2400 2300 MHz-2900 MHz Not specified
RFX 900 750 MHz- 1050 MHz Not specified

SBX 400 MHz - 4.4 GHz 40 MHz
CBX 1.2 GHz - 6 GHz 40 MHz
WBX 50 MHz - 2.2 GHz 40 MHz

Table 3.2: Some daughter boards and their performances [37]

FPGA

Samples exchange

Set/Get Proprieties

Link Layer

Figure 3.9: UHD in GNU Radio/USRP

image at run time. By contrast, the user must manually write firmware images onto
the USRP 2 Secure Digital (SD) card. In USRP N series, designer programs an
image into on-board storage, which then is automatically loaded at runtime. FPGA
image is written in the VHDL language (see section 2.1).

3.5 Universal Hardware Driver (UHD)

UHD is a hardware driver library for all USRP versions and daughter boards. It
provides a consistent Application Program Interface (API). It can be used as UHD
driver standalone with other applications, such as Labview and Simulink. UHD finds
devices on a USRP system and instantiates a device object in GNU Radio toolkit.
It also allows the designer to update the desired parameters. The UHD sets/gets
radio properties (e.g. gain, amplitude, center frequency, sample rate, and time) and
transmits samples by using Operating System (OS) read() and write() operations.
The UHD creates a sending or receiving stream between the host computer and
the FPGA in the USRP to send and receive samples from/to the USRP. UHD also
supports control and management messages such as Overflow, Stream command
error (Rx path), Underflow and Sequence error (Tx path) [81]. UHD functionalities
are wrapped into radio application, e.g. GNU Radio, by using USRP source and
sink blocks (see Figure 3.9).

4 GNU Radio and USRP properties

Different operating systems and software applications can be executed on a GPP
architecture. Hence, software radio applications might behave differently, and their
performances can become difficult to predict by a designer. In particular, the problem

76



77

Memory 

Buffer

GPP FPGA
DAC

ADCFIFO

Radio Tx

Radio Rx

Low LatencyAdditional Latency

Link

Figure 3.10: Latencies between GPP, FPGA and DAC/ADC

of identifying sources of a high latency and low throughput in communication chains is
difficult. In this section, we discuss GNU Radio and USRP features and performances
trade-offs.

4.1 Latency and throughput

The benefits of a GPP based architecture is associated to trade-off in performances.
Typically, latency is the most undesirable drawback if processing chains with separated
components. This latency comes from two sources: hardware and software setups.
At hardware level, a latency is produced by the hardware link between the GPP and
DAC/ADC. The delay between an FPGA and DAC/ADC is small compared to that
between GPP and DAC/ADC. In fact, the latency depends on the link technology,
i.e. USB, Gigabit Ethernet, PCI Express (see Figure 3.10). Thus, to deal with a
hardware latency and data is buffered in the both directions from and to GPP.

At software level, additional latency is introduced by the scheduling and buffering
of individual processing blocks (see Figure 3.11). Typically, block processing function
is a function that reads a data stream from memory, processes it, and stores the
output back to memory. Latency of processing blocks is not negligible, considering
that it sums-up throughout a whole flow graph. Usually, buffer sizes are increased
to limit the frequency of memory read/write operations. If the buffer size is small,
then the data are sliced to chunks and the number of read /write operations increase.
Thus, latency is increased across the flow graph since the relationship between buffer
sizes and latency is typically proportional.

The throughput of a given buffer is the number of sample passing through the
buffer time unit. The throughput of a block characterizes how fast an input signal
can be processed. If the block’s throughput is smaller than the latency generated
in acquiring the samples to process, then the thread handling processing can either
handle some other block’s processing or sleep waiting.

To overcome the drawback of data buffering at GPP level, an FPGA can be
proposed to interconnect processing blocks. However, this solution needs a soft-core
processor to implement or to synthesize flow graphs in VHDL. GNU Radio addresses
this problem by providing a possibility to impose a latency parameter individually,
for each processing block or for all flow graphs [82].

77



Chapter 3. Analysis of GNU Radio and USRP SDR

Data Buffer

Write Read ReadWrite

Data Buffer

Additional latency Additional latency

Processing 

Block 1

Processing 

Block 2

Processing 

Block 3

Figure 3.11: Latencies between Software blocks

Data Buffer UHD Buffer USRP buffer

FPGA buffer

GNU Radio

USRP

Figure 3.12: Buffers in GNU Radio USRP SDR

4.2 Buffers organization

The previous section motivates us to identify all types of buffers in the GNU Radio
USRP SDR. We start from GNU Radio down to USRP hardware. The first buffer is
that between signal processing blocks. The second is before Kernel bus driver. It
allows GNU Radio to wait for sufficient data to generate a packet (USB, Ethernet
or GPMC (General-Purpose Memory Controller) packets). The third buffer is the
internal bus controller buffer on the USRP mother board. Finally, the FPGA buffer
gets samples before processing them. Figure 3.12 summarizes all the buffers involved
in a GNU Radio USRP SDR.

4.3 Performance counters and ControlPort

In order to estimate the processing time within each block, Thomas Rondeau et .al

[43] introduce two inspection tools: ControlPort and Performance counters. The
objective of these tools is to measure the work time of each block running in a
GNU Radio flow graph. These tools allow a designer to find which block causes the
maximum delay and try to optimize it at run time.

ControlPort is a GNU Radio tool that creates an integrated remote procedure
or call interface to GNU Radio flow graphs [43]. It enables us to debug without
requiring extra debug streams. Any GNU Radio block can register interfaces with
ControlPort. Through these interfaces, ControlPort client interacts with the GNU
Radio application, i.e. query and update properties of blocks. The general form of
these interfaces is a "set" and/or "get" functions to adjust or query the state of a
GNU Radio block’s parameter. Figure 3.13 shows two ControlPort blocks with GNU
Radio applications.

78



79

GNU Radio app

ControlPort

Client

ControlPort

Client TCP connection

Figure 3.13: Controlport clients with GNU Radio applications over a TCP
connection

gr uhd usrp source

gr block x

gr block y

Figure 3.14: An example of the performance’s counters graph of a given flow graph

Performance Counters are a way to generating performance measurements for
each block running a GNU Radio flow graph. These counters keep track of various
states of each block that can then be used for analyzing the performance and behavior
of a running flowgraph. A specific package is launched by a designer to represent the
GNU Radio flow graph over ControlPort. It constructs a graph of nodes (see Figure
3.14), which represents blocks and where edges are the buffers between blocks. The
size of each node is proportional to the work time while the darkness of an edge is a
function of buffers filling [43].

5 Advantages of GNU Radio and USRP

The GNU Radio has several advantages that we can summarize as follows:

• GNU Radio allows a designer to process in real time a signal stream (or
waveform). Furthermore, the radio program can be simulated in a loop back.

• Over 100 blocks are available to easily develop new standards and applications
as well as wireless networks.

• Python language is relatively easy to master. It describes processing steps
throughout successive and connected blocks.

• Thanks to a Python script, a data flow can reach a maximum rate under
processing blocks.

79



Chapter 3. Analysis of GNU Radio and USRP SDR

• The community of GNU Radio’s designers is large. The toolkit can be carried
out by a simple host computer on Linux, Windows and Mac.

• A flow graph (or communication chain) can be reconfigured even at run time.
Several parameters of signal processing can be changed, such as frequency,
power and sampling rates.

We can summarize some advantages of USRPs as follows :

• USRP is an open source hardware.

• It offers more flexibility to develop several applications with high level pro-
gramming languages.

• It is compatible with Linux (2.6 kernel, any distribution), Mac OSX (PPC
and Intel), Windows XP/2000, NetBSD and FreeBSD (Berkeley Software
Distribution).

• An embedded SDR can be implemented with embedded version of USRP such
as USRP E100 and E110.

• With Rx/Tx daughter boards, USRP can cover a large frequency band from 4
MHz to 6 GHz.

6 Summary

The USRP and GNU Radio GPP based SDR have been detailed. It is a well estab-
lished open-source SDR platform. It allows a radio designer to prototype/implement
a SDR transmitter/receiver. A prototype or an implementation requires a USRP to
receive/transmit a radio signal. The latter is transformed to a digital stream and
processed by flow graphs executed on host computer.

The GNU Radio’s architecture has been analyzed by describing the program-
ming language layers. It supports interesting and numerous signal/data processing
functions, materialized by software blocks. These blocks are primarily developed
in C++ and they are connected to define flow graphs or radio applications. The
design of the GNU Radio is an object oriented with a vast class hierarchy. The SDR
designer can use and instantiate the blocks as modules via a graphical user interface.
However, for advanced use and evolutive modification, the designer needs more time
to understand the class dependency and to master the C++ programming language.

The scheduler is a kernel of the executed flow graph. It can be of two types:
single threaded scheduler and Thread-Per-Block Scheduler (TPS). The objective of
the latest scheduler is to reduce the latency and improve the throughput of a flow
graph at GPP level. Furthermore, blocks can be accelerated by programming them
using Volk’s library, which is based on SIMD architecture. Outside a block, data

80



81

stream is buffered in several levels of the GPP based SDR architecture. The buffers
are not only between software blocks; a buffer is needed between OS kernel and GNU
Radio. Hence, performance counters and ControlPort are proposed to estimate the
processing delay within blocks and among them.

A general architecture of a USRP hardware composed of two parts: the mother
board and a number of daughter boards. FPGA is irreplaceable across different
USRP versions, since it accomplishes high-speed general-purpose operations. In
the other side, the RF Front End or daughter boards define the frequency coverage
for software applications at GPP level. However, technical information remains
unexplored, especially, output power and the RF bandwidth of daughter boards.
Thus, this unknown behavior leads us to carry a deep analysis of some daughter
boards in the next chapter.

81





Chapter 4

Radio Frequency Measurements
on USRP Daughter boards

No man’s knowledge can go beyond his experience.

John Locke

Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . 84

2.1 An overview of BPSK modulation . . . . . . . . . . . . . . . 85

2.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3 Experimental approach . . . . . . . . . . . . . . . . . . . . . . 91

3.1 Hardware Setup . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.2 Software Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4 Spectrum Analyzer measurements . . . . . . . . . . . . . . . 93

4.1 RFX2400 Daughter board . . . . . . . . . . . . . . . . . . . . 93

4.2 RFX900 Daughter board . . . . . . . . . . . . . . . . . . . . 95

4.3 SBX Daughter board . . . . . . . . . . . . . . . . . . . . . . . 98

4.4 MIMO USRP B210 . . . . . . . . . . . . . . . . . . . . . . . 103

5 Measurements through flow graphs . . . . . . . . . . . . . . . 104

5.1 RFX and SBX Daughter boards . . . . . . . . . . . . . . . . 105

6 Empirical model for SBX daughter boards . . . . . . . . . . 106

7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109



Chapter 4. Radio Frequency Measurements on USRP Daughter boards

1 Introduction

Before performing a real implementation of wireless communications on a specific
SDR platform, we would like to analyze performances of USRP daughter boards.
More precisely, we would like to evaluate how these boards answer to GNU Radio
commands? This question came from our first experiment when we were trying to
get Bit Error Rate (BER)/Signal-to-Noise Ratio (SNR) parameters from a simple
Binary Phase-Shift Keying (BPSK) modulation/demodulation. The RFX2400, SBX,
RFX900 and B210 daughter boards are widely used to test and to validate research
works [83] [84] while their RF performances have not been reported through the
literature in conjunction with GNU Radio.

In this chapter, we adopt an experimental approach in order to test and to
evaluate these performances. Thus, measurements are carried out via two tools:
spectrum analyzer and GNU Radio itself. The obtained results are highlighted and
discussed thoroughly. Furthermore, a new accurate empirical model is proposed,
which is based on these results. Its usefulness comes from the possibility to predict
the daughter board’s output-power versus flow graph parameters.

2 Problem statement

The first stage of our exploration of the GNU Radio and USRP SDR, we have
done simple digital and analog communications, such as an FM receiver/transmitter,
an Automatic Dependent Surveillance-Broadcast (ADS-B) receiver, and a simple
Fast Fourier Transform (FFT) or a spectrum analyzer. In addition, some digital
modulations have been performed. For example, digital transmission of bits’ frame
through BPSK modulation has been accomplished. Over GNU Radio, two flow
graphs can be constructed by using all in one modulator/demodulator block or
connected elementary blocks. With both techniques, we observed that transmission
was functional but very sensitive to the adjustment of flow graphs and USRP
parameters.

The usability of the chosen SDR can be shown via these tests, but without a
precise information about RF front end behavior. Commonly, daughter boards’
output power and covered frequency bandwidth are useful information to feature.
Furthermore, the behavior of flow graphs has not been featured when a flow graph
controls these parameters. Particularly, UHD parameters of a USRP source and
sink block are not documented. Thus, UHD Gain and Frequency parameters can be
another aspect to clarify their impact via our experiments.

This section shows some results obtained when we implemented a BPSK modula-
tor, motivating advanced tests and measurements.

84



85

"0" "1" In

Q

Figure 4.1: Constellation diagram for BPSK modulation

2.1 An overview of BPSK modulation

BPSK is a simple and robust digital modulation compared to other Phase Shift mod-
ulations. The robustness of BPSK comes from the difficulty to alter a demodulator
decision. In the constellation diagram depicted in Figure 4.1, we distinguish without
difficulty the symbols (points) in the complex plane. The real and imaginary axes
are termed the In-phase and Quadrature axis. The two possible signals correspond
to two bits, 0 and 1 , respectively, separated by a phase shift of π radians on the
In-phase axis (see Figure 4.1). This yields to two phases, 0 and π, in the specific
form with the following signals over a time t:

s0 =

√

2Eb

Tb

cos(2πfct + π) = −

√

2Eb

Tb

cos(2πfct) (4.1)

s1 =

√

2Eb

Tb

cos(2πfct) (4.2)

where :

• fc is the central frequency of the carrier wave cos(2πfct)

•
2Eb

Tb

is the energy ratio per bit divided by time period Tb

The previous formulas simply highlight the simplicity of the modulation. A more
detailed study of BPSK modulation can be found in [85] and [86].

2.1.1 The BER and SNR parameters

Bit Error Rate (BER) is a common parameter used to evaluate a digital modulation.
It is a non linear function of the Signal to Noise Ratio (SNR). A bit error occurs
whenever the transmitted bit and the corresponding received bit do not match; this
is a random event depending on the noise level. Let n denote the number of bit
errors observed in a sequence of bits of length N [86]. The BER is defined as:

BER = lim
N→∞

n

N
(4.3)

The SNR is a dimensionless parameter. It is measured at the receiver and
represents the ratio of the average power of the received signal (i.e., channel output)
over the average power of noise measured at the receiver input. It is a common

85



Chapter 4. Radio Frequency Measurements on USRP Daughter boards

practice to express the SNR in decibels (dBs), which defined as 10 times the logarithm
(in base 10) of the power ratio. For example, signal-to noise ratios of 10, 100, and
1000 are 10, 20, and 30 dBs, respectively. The SNR can be used to measure the
quality of analog systems [86].

In communication systems, a received signal x(t) can be modeled as the sum of
the desired signal, s(t), and a narrowband noise signal, n(t):

x(t) = s(t) + n(t) (4.4)

The signal quality is the ratio of the variances of the desired and undesired signals
[87]. On this basis, the signal-to-noise ratio is formally defined by:

SNR = 10. log10





σ2
s(t)

σ2
n(t)



 (4.5)

2.1.2 BER/SNR estimators on GNU Radio simulation

It is difficult to implement a real time SNR estimator. The estimation depends on
the modulation scheme, channel model and synchronization. It requires more time
of design than other signal processing blocks. A receiver and a transmitter must
be synchronized. We primarily need three synchronization: frequency, timing, and
phase. For each one, the issue is to have a reactive change of SNR’s values. In the
literature [88], we can find a number of estimators but without real computational
possibilities.

Tom Rondeau [89] has implemented four estimators on GNU Radio, based on
the works published in [88]. Primarily, they are dedicated to Multiple Phase Shift
Keying signals and an Additive White Gaussian Noise (AWGN) channel. They
inherit from one GNU radio block, and they are named the "simple," "skew," "M2M4,"
and "SVR" estimators. The M2M4 and SVR estimators are inspired from [88].

To highlight the difference between the four estimators, we performed loop-
back GNU Radio simulations. The simulation’s purpose is to evaluate the SNR
estimators. The SNR is calculated via both techniques: a direct processing and
python code. Apparently, the flow graph needs high processing, since it involves
several programming layers. The two techniques are compared to a reference: the
expected theoretical SNR.

The SNR estimator flow graph is depicted in Figure 4.2. It contains an SNR
block which handles four estimator types adapted to an MPSK signal. A first block
is a vector source, which generates a data bit stream. Then, White Gaussian Noise
(AWGN) channel which carries a stream to the SNR estimator. Before flow graph
execution, one SNR type can be selected, i.e. "simple," "skew," "M2M4," and "SVR".
Finally, null sink drops the processed stream.

Figure 4.3 presents four curves of an estimated SNR from -5 dB to 30 dB. For each
estimator "Simple", "Skew", "M2M4" and "SVR", the obtained values are depicted in

86



87

Data vector 

source

Channel

Model

float Complex

SNR 

Estimator
Null Sink

Complex

Figure 4.2: Loop back flow graph for SNR estimation

−5 0 5 10 15 20 25 30

SNR (dB)

−5

0

5

10

15

20

25

30

35

E
s
t
i
m
a
t
e
d
 
S
N
R

SNR Estimators

Known

Python

GNU Radio

4.3.1: Simple estimator of the SNR.

−5 0 5 10 15 20 25 30

SNR (dB)

−10

−5

0

5

10

15

20

25

30

35

E
s
t
i
m
a
t
e
d
 
S
N
R

SNR Estimators

Known

Python

GNU Radio

4.3.2: Skew estimator of the SNR.

−5 0 5 10 15 20 25 30

SNR (dB)

−10

−5

0

5

10

15

20

25

30

35

E
s
t
i
m
a
t
e
d
 
S
N
R

SNR Estimators

Known

Python

GNU Radio

4.3.3: M2M4 estimator of the SNR.

−5 0 5 10 15 20 25 30

SNR (dB)

−20

−10

0

10

20

30

40

E
s
t
i
m
a
t
e
d
 
S
N
R

SNR Estimators

Known

Python

GNU Radio

4.3.4: SVR estimator of the SNR.

Figure 4.3: Known theoretical SNR compared to the estimated ones through GNU
Radio and python

Figure 4.3.1 4.3.2 4.3.3 4.3.4, respectively. The SNR is calculated by each estimator
using a GNU Radio flow graph and using a Python program. The obtained results
are compared to a linear function of expected SNR values. Higher than 5 dB, the four
estimators behave the same near the theoretical results. For SNR values less than
5 dB, the estimator’s results are different from each other. The values of "Simple"
estimator can be calibrated above 5 dB. By contrast, the three remaining estimators
present a harsh variation. Hence, the "Simple" estimator can be selected to perform
a real time transmission.

Similarly to the SNR estimator, BER block can calculate the BER by comparing

87



Chapter 4. Radio Frequency Measurements on USRP Daughter boards

Data vector 

source

BPSK 

Modulator
ADD

BPSK 

Demodulator
BER Null Sink

Data vector 

source

Gaussian 

Noise

float Complex

Complex

Complex float float

float

Figure 4.4: Loop back flow graph for BER estimation

0 2 4 6 8 10 12 14 16

Eb/N0 (dB)

10

-16

10

-14

10

-12

10

-10

10

-8

10

-6

10

-4

10

-2

B
E
R

BER Simulation

Theoretical

Simulated

Figure 4.5: Compared BER versus Eb/N0 obtained under simulation and theoretical
processing

the demodulated vector stream with a vector source. Figure 4.4 shows a corresponding
flow graph with a BPSK modulator/demodulator and a Gaussian Noise channel. The
results of the simulation are compared to the theoretical ones. They are depicted in
Figure 4.5. The BER is calculated versus Eb/N0 (the energy per bit to noise power
spectral density ratio). The curve of BER versus Eb/N0 obtained by simulation
matches that which is theoretically calculated as shown in Figure 4.5. The simulation
results deviate slightly from the theoretical ones when output power is high. This
result can be explained by an extra processing time needed by the flow graph.

2.1.3 BER/SNR estimators in real experiment

We focus in our experiments on a Hardware (Hw) setup with two USRP 1 connected
to a host computer. Each one carries an RFX 2400 daughter board (see Figure
4.6). The two USRPs are within an indoor environment, and they are separated
by a distance of 1m. The SNR as function of the BER are obtained using BPSK
modulator/demodulator flow graph. The software implementation of the BPSK
modulators is detailed in the next chapter when we report our implementation of

88



89

Figure 4.6: Two USRP 1 connected to a host computer which run a BPSK
modulator/demodulator flow graph

Figure 4.7: BER versus SNR obtained with a BPSK modulation on RFX2400
daughter board

the IEEE 802.15.4 specifications. The USRP 1 contains two RFX2400 daughter
boards for a receiver and transmitter. Through a transmitter flow graph, the signal
is amplified by sweeping an interval of possible output powers.

Figure 4.7 shows the estimated SNR/BER and a Matched Filter Bound (MFB)
curve in red. The SNR is estimated using Simple SNR estimator in black [89] [88]. In
another hand, BER is calculated by comparing the demodulated bits sequence with
the known expected one. MFB curve is the theoretical threshold of the SNR/BER. It
can be calculated via Matlab tool [90]. The transmitter amplifies the signal strength
through the GNU Radio flow graph. The amplifier is handled by a software parameter
called DAC. It is implemented in GNU Radio block and it will be detailed in Section
3.2. Consequently, the receiver’s flow graph measures the SNR and BER. However,
the measurements reported for each output power must be accomplished in the same
conditions i.e. same distance between the two USRP 1 and fixed carrier frequency.

89



Chapter 4. Radio Frequency Measurements on USRP Daughter boards

MIMO B210

[750, 1050MHz]

[2.3GHz, 2.9 GHz]

[400MHz 4.4 GHz]

[70MHz 6 GHz]

Figure 4.8: Daughter boards frequency band coverage

Results of BER depending on SNR give a scatter plot above the MFB. The
obtained points do not exceed the MFB limit, so the SNR estimator is useful even
though the shape of results is not linear. This non-linearity can be explained
by the non-equalized power amplifier. Since the analog amplifier is handled by
Front End Radio frequency, so we suspect its miss-behavior. Hence, the daughter
board’s amplifier should be analyzed via real time experiments and through several
radio-frequency measurements.

2.2 Related Works

Before presenting our experimental method, we give a brief state of the art about
works dealing with daughter boards’ performances.

Ettus research [37] claims that the selection of an RF daughter board is made
solely on the application requirements for frequency coverage. For example, the
RFX2400 and SBX boards are good candidates. They cover the Industrial Scientific
Medical (ISM) frequency band of 2.4 GHz for applications of wireless sensor networks.
Figure 4.8 depicts graphics, which sums up the frequency coverage of these daughter
boards. Even though the manufacturer has announced these frequency bands, the
maximum output power remains unknown under each band.

Some recent results dealing with performance evaluations of the N 210 USRP
have been published in [91]. In this work, the frequency stability and the phase
differences have been measured between two SBX daughter boards carried by USRP
N210. The authors concluded that the carrier frequency is sufficiently stable and
that the phase error can be a neglected. Other performance evaluations are given
in [56], where the USRPs 2 were used at the data packet level. Through this work
a measure of communication delay, jitter and throughput of wireless transmissions
is achieved. In [92], the authors objective is to evaluate the cooperative diversity
in a cellular network via USRP experimental. Their results showed the problem

90



91

of output-power variation from one USRP to another. As a solution, the authors
proposed to calibrate manually the transmission power, each USPR needing to be
attached to a spectrum analyzer. Neither the USRP series, nor the daughter board
was specified. The lack of details makes the reusability of their results difficult.

Our published work [2] is the first work dealing with frequency bandwidths
characterization of USRP daughter boards. Our RF measurements published in [2]
and [3] are organized into four sections:

• RFX2400 daughter board

• RFX900 daughter board

• SBX daughter board

• Multiple-Input and Multiple-Output (MIMO) USRP B 210

3 Experimental approach

Our experiments are based on an empirical method that arbitrates between several
hypotheses. The objective is to verify the hypotheses announced by the daughter
boards’ manufacturer, i.e. Ettus Research, particularly the frequency bandwidth
and output power parameters of some daughter boards. Furthermore, we analyze
the linearity of the output power depending on amplifier values of a flow graph.

3.1 Hardware Setup

As mentioned in Section 3, the USRP N210 provides higher-bandwidth and higher-
dynamic processing range capabilities than the other USRP versions. The USRP
architecture includes a Spartan 3A-DSP 3400 FPGA from Xilinx, 100 Mega Samples
Per Second (MSPS) dual ADC, 400 MSPS dual DAC and Gigabit Ethernet con-
nectivity to stream data to and from host processors. A modular design allows
the USRP N210 to operate from DC to 6 GHz, while an expansion port allows
multiple USRP N210 series devices to be synchronized and used in an MIMO [37]
configuration. An optional GPS Disciplined Oscillator (GPSDO) module can also
be used to discipline the USRP N210 reference clock within 0:01 parts per million
(ppm) of the worldwide GPS standard. The USRP N210 can stream up to 50 MSPS,
to and from host applications. Users can implement custom functions in the FPGA,
or in the on-board 32-bit RISC softcore. The USRP N210 provides a larger FPGA
than other USRP series, being able to run applications demanding additional logic,
memory and DSP resources. The FPGA also offers the potential to process up to 100
MSPS in both transmit and receive directions. The FPGA firmware can be reloaded
through the Gigabit Ethernet interface.

91



Chapter 4. Radio Frequency Measurements on USRP Daughter boards

Figure 4.9: Experimental setup for the measurements

In Figure 4.9, we depict the hardware setup used in our measurements. A host
computer is connected to a USPR N210 SDR via a Gigabit Ethernet Switch. The host
computer uses a Linux distribution (UBUNTU 12.04 LTS)OS (Operating System)
powered by an Intel Core i5-2400 CPU, clocked at 3,10 GHz and an RAM memory of
8 GB. The oscilloscope (spectrum analyzer) used in our measurements was a LeCroy
640 Zi [93] series oscilloscope, having an input bandwidth from 400 to 4000 MHz and
having a sampling rate of up to 40 GS/s. The oscilloscope was directly connected to
a TX/RX terminal of daughter boards through a high-frequency coaxial cable from
ATEM 404-0202-xxxxA [94].

3.2 Software Setup

Two flow graphs have been implemented on GNU Radio toolkit: BPSK and sine-wave
generator (see Figure 4.21). The BPSK is considered as a black box. The flow graph
of this modulator was already shown in Section 2.1. The second flow graph is a
source of a sinusoidal signal. For both flow graphs and before the USRP Hardware
Driver (UHD) sink, a complex stream is fed through an amplifier block called
gr.multiply_const_cc (see Figure 4.21). This block multiplies the two components
of a complex input by an amplifier DAC parameter. The latter can be represented
in floating point for more precision in the interval [0; 1]. In Figure 4.21, only one of
the two first blocks, i.e. Sinusoidal signal source and BPSK modulator, is activated
at one time, to generate the baseband signal. BPSK modulator is launched in order
to analyze the difference between a modulated and an unmodulated signal output.
In this case, the transmitter generates a scrambled bit stream of 0 and 1 with a bit

92



93

BPSK modulator

Bit rate : 250 kbits/s

Sample rate: 500 k

Waveform : Sine

Frequency : 1 k

Amplitude: 1

Multiply Const
DAC : [0, 1]

UHD: USRP Sink

Device Addr

Samp Rate : 500 K

Center Freq

Gain 

Antenna: Tx/Rx

Sinusoidal signal 

source

(a)

(b)
Complex

Complex

Complex

Figure 4.10: A simplified sinusoidal and BPSK transmitter flow graph

rate of 250 Kbits/s
The data brought after the measurements was subsequently processed and dis-

played using the Matlab R2012a software package from Mathworks Inc [90]. We
focused on two parameters of interest of the daughter boards: their output RF
bandwidth and the average output power versus the DAC value.

3.2.1 The expected DAC vs ouput power relationship

This DAC value parameter from GNU Radio is supposed to control the signal output
amplitude of the device. Therefore, we expect the following relation:

〈Pout〉 = DAC2 · P0 (4.6)

where 〈·〉 signifies the statistical average of the output signal (since it is supposed to
be ergodic) and P0 is a reference power level. In the new version of the GNU Radio,
we have 0 ≤ DAC ≤ 1. The central carrier frequency of each daughter board (f0)
was tuned in software according to their advertised frequency range.

4 Spectrum Analyzer measurements

4.1 RFX2400 Daughter board

RFX2400 is a daughter board transceiver designed to operate in the 2.4 GHz ISM
band. It can be connected with a wide range of USRP devices. The RFX2400
provides a typical power output of 50 mW, and noise figure1 of 8 dB [37]. It uses
independent local oscillators for the transmit and receive chains and is MIMO capable.
The advertised operational bandwidth is from 2300 MHz to 2900 MHz in both Tx/Rx
modes [37].

The output of RFX2400 daughter board was measured thoroughly for frequencies
in the range of 2350-2550 MHz. We also measured the frequency intervals 2300-2350

1Figure Noise: It is a numerical characteristic of a radio receiver that indicates how much its

sensitivity to an incoming signal is decreased by the effects of its internal noise

93



Chapter 4. Radio Frequency Measurements on USRP Daughter boards

2350 2400 2450 2500 2550
−60

−50

−40

−30

−20

−10

0

frequency (MHz)

A
v
e
ra
g
e
 O
u
tp
u
t 
P
o
w
e
r 
(l
o
g
 u
n
it
s
)

Figure 4.11: Measured bandwidth of the RFX2400 daughter board. The reference
level of 0 dB was taken at 2434 MHz. Units are logarithmic (dB).

and 2550-2600 MHz. Nonetheless, the output levels were extremely low, therefore
we focused only on the frequency interval discussed in this section.

4.1.1 Frequency bandwidth

The bandwidths of the daughter boards were measured by generating, with GNU
Radio, a sinusoidal non-modulated carrier. Through the flow graph of Figure 4.21,
the Sinusoidal signal source is activated and generates a carrier at central frequency
f0. Daughter board’s Tx terminal receives the signal in its input from GNU Radio
and transmits it via Tx antenna output. A high-frequency coaxial cable then carries
signal to the spectrum analyzer.

The measurements are performed with a fixed DAC value of 1 i.e. the maxi-
mum power output. The obtained results swept through the advertised bandwidth,
recording enough values in order to completely characterize the device’s bandwidth.
In Figure 4.11 the output power curves (in logarithmic units), setting the reference
power to the maximum measured value, i.e. the maximum output power is set to
0 dB and all the other values from our graphics are negative in dB. We found the
maximum value to be at 2434 MHz.

The measured −3 dB bandwidth is B3dB = 2480.5 − 2407.6 = 72.9 MHz. If we
accept a −10 dB attenuation, the bandwidth is 2390 − 2499 MHz (109 MHz) and for
a −30 dB attenuation we have a bandwidth of 2359 − 2527 (168 MHz).

Furthermore, for the case of DAC = 0.5 the found −3 dB bandwidth is equal to
B3dB = 2481.24 − 2399.52 = 81.72 MHz. This bandwidth is slightly bigger than our
result for DAC = 1.0. Thus, the advertised bandwidth of 600 MHz (2300 − 2900

94



95

MHz) is largely overstated.

4.1.2 Output power versus DAC value

The average power versus the DAC value was computed via two methods. In the
first one, we created a custom function on the oscilloscope that computes the average
of the squared amplitudes of the input samples i.e. Pt ∼ 〈v2

i 〉t where vi represents
the ith input sample and 〈·〉t represents time average. In order to have stable values,
a supplementary averaging over 1000 oscilloscope sweeps was implemented. We used
our flow graph shown in Figure 4.21 to generate a sinusoidal non-modulated signal
and swept the DAC value from 0.1 to 1.0 in increments of 0.05 (we assumed that
for DAC = 0.0, the residual output power is small enough to be ignored), each time
recording the output power in the daughteroard Tx terminal.

The second method was based on the Spectrum Analyser software package
installed on the LeCroy WaveRunner 640 Zi oscilloscope. The recorded spectral
measurements were converted from dBm to linear power units and summed over a
bandwidth of 2 MHz around the central frequency in the case of an unmodulated
carrier and over a bandwidth of 5 MHz in the case of BPSK modulation. Therefore,
the second estimator can be written as Pf =

∑

f 10PdBm(f)/10, where PdBm(f) is the
vector of spectral power samples given by LeCroy’s Spectrum Analyzer and f sweeps
all the samples from the measured bandwidth. We performed the same measurements
over the bandwidths of 10, 15 and 30 MHz and found no significant differences, which
was the expected results since our signal is either a very peaked Dirac-like function
(when we generate an unmodulated carrier) or has a bandwidth under 1 MHz (when
using the BPSK benchmark).

In Figure 4.12 we depict the average power versus the DAC value for 6 different
frequencies. The expected 〈Pout〉 ∼ DAC2 law is quite valid throughout the whole
range of the DAC parameter. Considering again the spectral power graphic results
(Figure 4.11) we note that the spectral amplitudes for the 6 frequencies from Figure
4.12 are, in decreasing order, as follows: 2460, 2450, 2470, 2480, 2490 and 2500 MHz.
This order can be found in Figure 4.12, where the curve corresponding to 2460 MHz
is the top one while the one corresponding to 2500 MHz is the bottom one.

A major change is noted when using a BPSK modulation instead of the unmod-
ulated carrier frequency. In Figure 4.13 we plot on the same graphic the average
powers for both unmodulated and BPSK modulated signals. For a DAC value around
0.7, the 〈Pout〉 ∼ DAC2 law breaks down for all BPSK curves. We can explain this
phenomenon by the large peak-to-average ratio of the BPSK modulation [86].

4.2 RFX900 Daughter board

This transceiver daughter board is intended to operate in the 900 MHz band. It
connects to all USRP SDR devices, making it a popular choice. It has a typical
power output of 200 mW, and noise figure of 8 dB. The cellular and 902 − 928 MHz

95



Chapter 4. Radio Frequency Measurements on USRP Daughter boards

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

DAC value

T
o

ta
l 
O

u
p

tu
t 

P
o

w
e

r 
−

 a
rb

it
ra

ry
 l
in

e
a

r 
u

n
it
s

2450 MHz

2460 MHz

2470 MHz

2480 MHz

2490 MHz

2500 MHz

Figure 4.12: The average output power of the RFX2400 versus the DAC value for 6

frequencies (unmodulated carrier). The 〈Pout〉 ∼ DAC2 law is closely followed.

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

DAC value

T
o

ta
l 
O

u
p

tu
t 

P
o

w
e

r 
−

 a
rb

it
ra

ry
 l
in

e
a

r 
u

n
it
s

f
c
=2430 MHz BPSK modulation

f
c
=2430 MHz unmodulated carrier

f
c
=2450 MHz BPSK modulation

f
c
=2450 MHz unmodulated carrier

f
c
=2470 MHz BPSK modulation

f
c
=2470 MHz unmodulated carrier

Figure 4.13: The average output power of the RFX2400 versus the DAC value for 3

frequencies in the cases: unmodulated carrier and BPSK transmission. The
〈Pout〉 ∼ DAC2 law breaks down for BPSK at DAC = 0.7.

96



97

860 880 900 920 940 960
−60

−50

−40

−30

−20

−10

0

frequency (MHz)

A
v
e
ra
g
e
 O
u
tp
u
t 
P
o
w
e
r 
(l
o
g
 u
n
it
s
)

Figure 4.14: Measured bandwidth of the RFX900 daughter board. The reference
level of 0 dB was taken at 910 MHz. Units are logarithmic (dB).

ISM bands are specified by Ettus research as possible applications of this board.
The advertised operational bandwidth is 750 − 1050 MHz in both transmit/receive
(Tx/Rx) modes [37].

The output power of the RFX900 daughter board was thoroughly measured in
the frequency band of 860 − 960 MHz. We summarize the obtained results below.

4.2.1 Frequency bandwidth

The bandwidth of the RFX900 daughter board has been measured using the same
method explained previously. The DAC parameter has been fixed at a value of
1.0 throughout the measurements. The results are depicted in Figure 4.14. The
maximum measured value of the output was at f = 910 MHz, where we set our
reference of 0 dB. We found the −3 dB bandwidth2 of the RFX900 daughter
board to be B3dB = 935.09 − 901.7 = 33.39 MHz and its −10 dB bandwidth
B10dB = 938.87 − 895.5 = 43.37 MHz.

We conclude that the measured bandwidth of our RFX900 daughter board is far
smaller than the advertised.

4.2.2 Output power versus DAC value

For this measurement we used an unmodulated carrier frequency on four frequencies
and the DAC value was modified, as explained earlier.

2As can be seen in Figure 4.14, there is a small dip below the −3 dB level in the center of the

graphic, from 918.5 to 924 MHz. Nonetheless, this dip has a maximum depth of −3.285 dB at 928

MHz, therefore we will disregard it and consider the RFX900’s B3dB as discussed in the main text.

97



Chapter 4. Radio Frequency Measurements on USRP Daughter boards

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

18

20

DAC value

A
v
e

ra
g

e
 O

u
tp

u
t 

P
o

w
e

r 
−

 a
rb

it
ra

ry
 l
in

e
a

r 
u

n
it
s

900 MHz

910 MHz

920 MHz

930 MHZ

Figure 4.15: The average output power of RFX900 versus the DAC value at 900

MHz (unmodulated carrier).

The average output power versus the DAC value is depicted in Figure 4.15. The
expected 〈Pout〉 ∼ DAC2 law is valid only for DAC ≤ 0.5. If DAC > 0.5, the average
output power shows a non-quadratic behavior.

According to Figure 4.14, the highest power is expected for a carrier on 910 MHz,
a result confirmed in Figure 4.15.

4.3 SBX Daughter board

The technical data of the SBX daughter board is given by the manufacturer in [37]
and [95]. The ADL5375 [96] is used as broadband quadrature modulator, the chip
being designed for operation from 400 MHz to 6 GHz. The Daughter board provides
a wide frequency range from 400 to 4400 MHz and features an output power up to
100 mW (20 dBm) with a typical noise figure equal to 5 dB. The output gain flatness
varies no more than 1 dB from 450 MHz to 3.5 GHz [96].

Given the wide operating bandwidth, the SBX is ideal for applications requiring
access to a variety of different frequency bands like ISM frequency band applications,
Radar, Satellite and Global Positioning System (GPS) receivers etc. The local
oscillators for the receive and transmit chains operate independently with a dual-
band operation. The SBX daughter board is also MIMO capable and provides 40

MHz of bandwidth.
The output power can also be increased using an UHD gain (or UHDG) parameter.

The UHD driver of an USRP sink block controls this gain. It was already examined
in the previous Chapter in Section 3.5.

98



99

500 1000 1500 2000 2500 3000 3500 4000

−20

−15

−10

−5

0

5

10

15

20

frequency (MHz)

A
v
e
ra
g
e
 O
u
tp
u
t 
P
o
w
e
r 
(d
B
m
)

Average Ouput Power in dBm, SBX

SBX no.1 0dB

SBX no.1 10dB

SBX no.2 10dB

SBX no.1 20dB

Figure 4.16: Measured bandwidth of the SBX daughter boards for UHDG of 0, 10,
20 dB. The small oscillation between 2.2 and 3.4 GHz is probably due to a slight

mis-adaptation in the SBX board.

4.3.1 Frequency bandwidth

The hardware and the software setup presented in Section 3.1 and Section 3.2 are
reproduced in order to measure the frequency bandwidth on two SBX daughter
boards. A sinusoidal signal was generated at a given carrier frequency f1 and all
important peaks in the SBX output spectral power were measured by the spectrum
analyzer. The bandwidth measurements where performed by varying the central
frequency f1 in steps of 50 MHz, except at 400 MHz and 4400 MHz, where smaller
steps were used in order to quantify the sharp drop in the output power. An extra
gain parameter UHDG was investigated over the entire bandwidth. The effect of the
UHDG was evaluated throughout the whole SBX bandwidth for UHDG 0, 10 and 20
dB. The DAC value was kept constant at a value of 1 in these measurements.

Our results are depicted in Figure 4.16, where the found bandwidth size matches
with the announced specifications, nonetheless the gain throughout (rather wide)
passband was found to decrease as the frequency increases. For example, if the
UHDG is set to 0 dB, we found P1 = 1.84 dBm (1.52 mW) at 900 MHz, P1 = −8.15

dBm (0.15 mW) at 2400 MHz and P1 = −16.49 dBm (0.02 mW) at 4000 MHz.
From 0 to 20 dB, we indeed found that this gain is reflected in the output power

of the SBX board, as can be seen from Figure 4.16.

4.3.2 Total Harmonic Distortion (THD)

The supplementary parameter called UHDG boosts the output power and can poten-
tially distorts the output signal, causing massive out-of-band RF emissions. In order

99



Chapter 4. Radio Frequency Measurements on USRP Daughter boards

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

45

50

UHD gain in dB

T
H

D
 i
n

 %

THD at 600 MHz

THD at 900 MHz

THD at 2400 MHz

Figure 4.17: THD measured at carrier frequencies f1 = 600 MHz, 900 MHz and 2400

MHz.

to quantify this distortion, we also measured the Total Harmonic Distortion (THD)
[97] [98], a widely used parameter.

The distortion introduced by this UHDG parameter was evaluated at 600, 900

and 2400 MHz. We continuously varied the UHD gain from 0 to 40 dB in steps of 1

dB and measured all output power peaks. The DAC value was constant and equal
to 1. The Total Harmonic Distortion (THD) was calculated in order to quantify the
level of unwanted harmonics in our sinusoidal waveform using the formula

THD[in %] = 100 ·

√

P2 + P3 + · · · + PN

P1

(4.7)

where P2, . . . PN are the Root Mean Square (RMS) powers measured on the
2nd . . . N th harmonic and P1 is the RMS power on the fundamental frequency f1.

According to Figure 4.17, going beyond value of UHDG equal to 20 for frequencies
below 1.5 GHz causes a sharp increase in the THD as can be seen . This phenomenon
can be explained by the saturation of the carrier frequency as seen in Figure 4.18.
The board reaches its advertised maximum power of 100 mW (20 dBm) and the
extra power demanded by the UHDG parameter “leaks” into the higher frequency
harmonics. For values of UHDG above 25 dB, the heavily distorted waveform
practically does not change anymore. It becomes obvious that for frequencies below
1 GHz, UHDG values above 20 dB should never be used.

We also performed power measurements on all harmonics of interest for f1 = 600

MHz and f1 = 900 MHz. Our results are depicted in Figures 4.19.1 and 4.19.2.
They improve our understanding of the sudden increase of the THD for UHDG

values between 20 and 25 dB. Indeed, mainly the second and fourth harmonics are

100



101

0 0.5 1 1.5 2 2.5 3
−4

−3

−2

−1

0

1

2

3

4

time (ns)

a
m
p
lit
u
d
e
 (
V
)

10dB

15dB

20dB

25dB

30dB

40dB

Figure 4.18: Time domain waveform at 600 MHz for UHDG from 10 to 40 dB.
Beyond the UHD gain value of 20 dB, the waveform becomes heavily distorted.

Freq. UHDG value set in software (in dB)

(GHz) 10 15 20 25 30 35 40

2.4 1.68 6.77 12.05 17.14 19.15 19.1 19.1

3 -2.3 2.97 8.25 13.59 17.6 18.35 18.34

3.5 -4.05 1.26 6.53 11.42 16 17.25 17.25

4 -7.5 -2.37 2.92 7.86 12.79 14.27 14.26

4.4 -11.12 -6.17 -0.71 4.19 9.43 10.88 10.89

Measured average output power (in dBm)

Table 4.1: Output Power at high frequencies and high UHDG values

responsible of this sharp increase in the THD. In addition, the saturation of the
power on the carrier frequency beyond UHD gains of 20 dB can also be clearly seen.
The third and fifth harmonics show no sudden increases, and are quite similar to the
carrier (fundamental) frequency they tend to saturate.

In Table 4.1, we summarize the effect of the UHDG at some frequencies above 2

GHz. We can conclude that the UHDG range 20 − 30 dB is quite useful and should
be used whenever needed. However, going beyond the UHD value of 30 dB brings
no significant power increase, as the power on the carrier tends to saturate.

4.3.3 Output power versus DAC value

In Figure 4.20, we depict the "leakage of the output power" phenomenon. For an
UHDG of 15 dB the square law from Equation 4.6 is closely obeyed. However, for
an UHDG of 20 dB and for DAC ≥ 0.7, the square law is no longer followed, and

101



Chapter 4. Radio Frequency Measurements on USRP Daughter boards

0 5 10 15 20 25 30 35 40
−30

−25

−20

−15

−10

−5

0

5

10

15

20

UHD gain in dB

P
o
w
e
r 
in
 d
B
m

fundamental frequency f=600 MHz

second harmonic f=1200 MHz

third harmonic f=1800 MHz

fourth harmonic f=2400 MHz

fifth harmonic f=3000 MHz

4.19.1: f1 = 600 MHz. The second harmonic at f2 = 1800 shows a

sharp increase between 20 and 30 dB, partially explaining the

increase in the THD.

0 5 10 15 20 25 30 35 40
−40

−30

−20

−10

0

10

20

UHD gain in dB

P
o
w
e
r 
in
 d
B
m

fundamental frequency f=900 MHz

second harmonic f=1800 MHz

third harmonic f=2700 MHz

fourth harmonic f=3600 MHz

fifth harmonic f=4500 MHz

4.19.2: f1 = 900 MHz.

Figure 4.19: The measured output power for a carrier frequency f1 = 600 MHz and
f1 = 900 MHz versus the UHDG.

the total power (i.e on the fundamental frequency plus the unwanted harmonics)
increases while the power on the carrier frequency saturates.

102



103

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140

160

DAC value

O
u

tp
u

t 
p

o
w

e
r 

(m
W

)

Output power for UHD gain 15dB

Output power at f=900 MHz and UHD gain 20dB

Total output power, UHD gain 20dB

Figure 4.20: The output power on the carrier frequency and the total output power
versus the DAC value for UHDG = 15 and UHDG = 20 dB at f1 = 900 MHz. The
square law from Equation 4.6 is closely followed for a UHDG of 15 dB, however it

breaks down for a gain of 20 dB and for DAC ≥ 0.7.

UHD: USRP Sink

Device Addr

Samp Rate : 500 K

Center Freq : x

Gain : y

FPGA Clock Rate; 30MHz

Antenna: Tx1

Antenna: Tx2

Complex

Sample rate: 500 k

Waveform : Sine

Frequency : 1 k

Amplitude: 1

Sinusoidal signal 

source

Figure 4.21: A simplified sinusoidal MIMO flow graph

4.4 MIMO USRP B210

This board is a fully integrated or single-board USRP platform with a large frequency
coverage from 70 MHz to 6 GHz. It is able to stream up to 56 MHz of real-time
RF bandwidth. The B210 integrates both signal-processing chains of the AD9361
transceiver [99], providing coherent MIMO capability (two transmitters and two
receivers). The onboard signal processing and control of this transceiver are performed
by Spartan6 FPGA connected to a host PC using SuperSpeed USB 3.0.

Obviously, across the frequency bandwidth, numerous applications can be handled
such as Long Term Evolution-Advanced (LTE-A), TV broadcast, cellular, GPS,
Wifi, ISM, etc. In the literature, this board has been used in wireless communication
testbeds to evaluate the performance without precise information about its RF
behavior. In [100], the Orthogonal Frequency-Division Multiplexing (OFDM)
modulation has been evaluated under large Doppler spreads with USRP B210.

103



Chapter 4. Radio Frequency Measurements on USRP Daughter boards

0 1000 2000 3000 4000 5000 6000
−70

−60

−50

−40

−30

−20

−10

0

10

20

frequency (MHz)

A
v
e
ra
g
e
 O
u
tp
u
t 
P
o
w
e
r 
(d
B
m
)

UHD 40dB

UHD 60dB

UHD 70dB

UHD 80dB

UHD 89dB

Figure 4.22: The measured frequency bandwidth of the MIMO B210 USRP board
for different UHDG values

4.4.1 Frequency bandwidth

Figure 4.22 shows the obtained bandwidth through different output power levels
measured by increasing the UHDG parameter, for values equal to 40 dB, 60 dB,
70 dB, 80 dB and 89 dB. The sinusoidal signal at each carrier frequency has been
generated using an MIMO flow graph. The signal has been generated from the source
block into two channels of the USRP sink (see Figure 4.22). The clock rate of the
USRP’s FPGA must be adjusted less than the threshold of 32 MHz. In our flow
graph, the clock rate was equal to 30 MHz.

We have seen the same behavior of the software amplifier at the two MIMO
Transmitter (Tx) outputs of the USRP. The measured values give the same bandwidth
in the announced interval. Otherwise, the output leakage is proportional to the
growth of the output frequency. In fact, a low output power is obtained with high
central frequencies. The effective output power increases when the UHD gain takes
high values. We can also notice that the signal saturation occurred when UHD gain
was higher than 90 dB.

5 Measurements through flow graphs

The daughter boards output power has been analyzed previously via a spectrum
analyzer. Consequently, this analysis remains valid only in output. At the receiver
side, the daughter board’s or GNU Radio entrance needs to be characterized. However,
we perform some complementary measurements within GNU Radio and USRP SDR.
We reuse the same transmitter’s flow graph of the previous section with the sinusoidal

104



105

signal source. At the receiver side, a new flow graph has been created. It calculates
a relative output power based on an FFT block. The latter is based on the energy
detector to estimate the output of a time-averaged Power Spectral Density (PSD).
More details about this block will be presented in Chapter 6.

As shown in Section 4.1.2 and 4.2.2, the RFX 2400 and RFX 900 are subject of
output power leakage. Thereafter, these daughter boards daughter boards have not
been used to transmit output signal. The SBX daughter board was the transmitter
in this part of experimental tests, since its output power leakage is observed only in
a small frequency band. Obviously, each daughter board has been handled by one
USRP, and each one is connected to another through a coaxial cable.

5.1 RFX and SBX Daughter boards

The hardware setup is simple with two USRP 1 connected to a host computer. It
allows experiments to be performed following two cases: with two SBX daughter
boards or with one SBX and another RFX daughter board. Each USRP 1 handles
a given daughter board separately. For each condition, only the SBX daughter
board generates the sinusoidal signal. The flow graph transmitter sets DAC to a
maximum value, i.e. DAC=1, and the UHD gain to 40 dB throughout all experiments.
Similarly to the transmitter, the flow graph receiver keeps the same UHD gain for
each experiment. However, the relative output power is measured subject to a
number of central frequencies. For 10 reported values, the receiver calculates the
average output power.

The RFX 2400 daughter board was controlled by a flow graph transmitter. The
latter changes its UHD gain to 0 dB, 20 dB and 30 dB. The transmitter sweeps
a frequency band from 2300 MHz to 2800 MHz with the same UHD gain value.
Since more applications can be implemented from 2400 MHz to 2500 MHz, several
central frequencies have been selected in this band. Figure 4.23.1 highlights results of
experiments. The curve shows a sudden attenuation of the output power near 2525
MHz frequency. It indicates a leakage output power although the receiver increases
its UHD gain. On another hand, a saturation is caused in the band from 2400 MHz
to 2500 MHz. In fact, the output power with an UHD gain = 20 dB can be greater
than that when UHD gain has a value equal to 30 dB.

In the second case where an SBX daughter board is a receiver, the average of
the output power over the band from 2300 MHz to 2800 MHz is relatively steady
(see Figure 4.23.2). This result has been similar for each UHD gain of the receiver
raised by a step of 10 dB from 0 dB to 50 dB. However, the software amplifier of the
daughter boards at UHD gain value equal to 30 dB with a measured output power
around 85 dB. The output power remains around 85 dB or decreases lower even if
UHD gain is higher than 30 dB.

The results from these experiments allow us to define a threshold of the UHD
gain amplifier for SBX and RFX daughter boards. Commonly, UHD gain = 30 dB is

105



Chapter 4. Radio Frequency Measurements on USRP Daughter boards

 20

 40

 60

 80

 100

 120

 2.3e+09  2.4e+09  2.5e+09  2.6e+09  2.7e+09  2.8e+09

R
e

la
ti
v
e

 a
v
e

ra
g

e
 o

f 
a

n
 o

u
tp

u
t 

p
o

w
e

r 
(d

B
)

frequency (Hz)

Rx UHD Gain = 0 
Rx UHD Gain = 20
Rx UHD Gain = 30

4.23.1: Relative average of output power measured with RFX

daughter board.

 20

 40

 60

 80

 100

 120

 140

 160

 2.3e+09  2.4e+09  2.5e+09  2.6e+09  2.7e+09  2.8e+09

R
e

la
ti
v
e

 a
v
e

ra
g

e
 o

f 
o

u
tp

u
t 

p
o

w
e

r 
(d

B
)

frequency (Hz)

Rx UHD gain = 0
Rx UHD gain = 20
Rx UHD gain = 30
Rx UHD gain = 30
Rx UHD gain = 60
Rx UHD gain = 40
Rx UHD gain = 50

4.23.2: Relative average of output power obtained with SBX

daughter boards.

Figure 4.23: Output power results measured over SBX and RFX 2400 daughter
boards within the GNU Radio USRP SDR

the maximum and useful UHD gain and beyond it, the amplifier saturates. Extended
experiments can be carried out on RFX 900 daughter board.

6 Empirical model for SBX daughter boards

We consider the output-power behavior of the SBX daughter boards as the steady
one. Thus, we extend the radio-frequency measurement to propose an empirical

106



107

500 1000 1500 2000 2500 3000 3500 4000

−20

−15

−10

−5

0

5

10

15

20

frequency (MHz)

A
v
e
ra
g
e
 O
u
tp
u
t 
P
o
w
e
r 
(d
B
m
)

Average Ouput Power in dBm, SBX

SBX no.1 0, 10, 20 dB

SBX no.2 0, 10, 20 dB

SBX no.3 0, 10, 20 dB

SBX no.4 0, 10, 20 dB

Figure 4.24: Average output power versus carrier frequency for UHDG gains of 0, 10,
20 dB for the four measured SBX boards.

model. Thereafter, we use four SBX boards. As shown by Figure 4.24, the spread
of the output power is fairly small among different boards. The small oscillation
between 2.2 and 3.4 GHz is probably due to a slight mis-adaptation in the SBX
board. In all measurements DAC = 1. This fact allows us to take the average value
among the four boards and use it in order to find a best fit for an empirical model.
All these results motivated us in the search of a simple, empirical model that can
provide a fast and relatively accurate average output power of the SBX board as a
function of the DAC value, the UHDG and the output frequency.

Our first observation was a near perfect DAC dependence of the average output
power, i.e. Pout[mW] ∼ DAC2, when UHDG gain values are below 20 dB. The
UHDG gain was also found to behave as expected. However, the output power
versus frequency is far from being flat. We found a roughly flat behavior only in the
frequency band 400 MHz – 1 GHz. For frequencies above 1 GHz, the average output
power is constantly falling with an almost linear drop in dB.

The objective of our model is to estimate reasonably the average output power
for a software radio N210 with a SBX daughter board. We first take into account
the contribution to the output power given by the DAC and UHDG parameters. We
have

P1[dB] = 20 log10 (DAC) + UHDG (4.8)

and P1 models the partial contribution of these two parameters.
The most simple model for the average output power versus the frequency is a

linear fit in dB, yielding

Pout[dBm] = P1 + α0 + β0 · f [MHz] (4.9)

107



Chapter 4. Radio Frequency Measurements on USRP Daughter boards

500 1000 1500 2000 2500 3000 3500 4000
0

5

10

15

20

25

frequency (MHz)

A
v
e

ra
g

e
 O

u
tp

u
t 

P
o

w
e

r 
(m

W
)

SBX no.1 10dB

SBX no.2 10dB

SBX no.3 10dB

SBX no.4 10dB

SBX average

Empirical model 1

Figure 4.25: The average output (in mW) for the four measured SBX boards and
the average output power (thick line) versus the empirical model given by Equation

(4.10).

or, in normal units (mW) we have

Pout[mW] = χDAC210UHDG/1010β0·f [MHz] (4.10)

where χ = 10α0/10 = 4.57 and β0 = −5.856 · 10−3.
In Figure 4.25, for UHDG = 10 dB we plot the measurements results for each

individual SBX board, the average value over the four measured boards (in thick
line), together with the empirical model (4.10). For frequencies above 900 MHz
the match is almost perfect. However, this simple model is not accurate for lower
frequencies as below 600 MHz.

Therefore, we improve this empirical model with a more elaborate one, defined
on two different spectral regions. For frequencies in the range 400 − 1000 MHz the
SBX board has a quadratic behavior, with a maximum output power at a frequency
of 600 MHz. For frequencies above 1 GHz, the linear fit in dB is quite accurate.
Therefore, we only adjust its parameters in order to yield a better fit. We end up
with the following model (in dBm):

Pout =

{

P1 + α1 + β1 · f + γ1 · f 2 if 400 ≤ f ≤ 1000

P1 + α2 + β2 · f if 1000 < f < 4400
(4.11)

with the coefficients α1 = −2.25, β1 = 1.49 · 10−2, γ1 = −1.167 · 10−5, α2 = 7.5 and
β2 = −6.4 · 10−3 and f is expressed in MHz.

The model is compared to the measurement results in Figure 4.26. As it can be
seen, throughout the whole frequency range of the SBX daughter board, the match

108



109

500 1000 1500 2000 2500 3000 3500 4000
0

2

4

6

8

10

12

14

16

18

20

frequency (MHz)

A
v
e

ra
g

e
 O

u
tp

u
t 

P
o

w
e

r 
(m

W
)

SBX no.1 10dB

SBX no.2 10dB

SBX no.3 10dB

SBX no.4 10dB

SBX average

Empirical model 2

Figure 4.26: The average output (in mW) for the four measured SBX boards versus
the empirical model Equation (4.11) (converted to mW).

between the average measured output power (over the four boards) and the empirical
model given in Equation (4.11) is almost perfect throughout the whole frequency
range. The too optimistic predictions of the empirical model for UHDG = 20 dB and
f < 1 GHz are due to the non-linear regime of the daughter board.

We also compare this model in Figure 4.27 with the actual measured output
of the SBX board for three values of UHDG gain, namely UHDG = 0, 10 and 20

dB. The match is nearly perfect for UHDG = 0, 10 dB but a little optimistic for
UHDG = 20 dB if f < 1 GHz. This result can be explained by the saturation of the
power RF amplifier. Indeed, further measurements showed that for output powers
above 20 dBm the THD reaches rather high values and the output power on the
fundamental frequency is accompanied with a very strong emission on the second
harmonic i.e. on a frequency 2f .

Both empirical models introduced in this section remain valid even for bigger
values of the UHDG parameter, however, the total average output power has to be
below 20 dB in order to avoid nonlinearities. For example we measured the output
power for DAC = 1 and UHDG = 30 dB at a frequency f = 3.5 GHz. We found
Pout = 15.7 dBm. The model from Equation (4.11) yields a value of Pout = 15.1

dBm.

7 Summary

In this chapter, some unexpected behavior of USRP daughter boards has been proven
via a real wireless communication of a bit stream. BPSK software modulator/de-

109



Chapter 4. Radio Frequency Measurements on USRP Daughter boards

500 1000 1500 2000 2500 3000 3500 4000
−25

−20

−15

−10

−5

0

5

10

15

20

25

frequency (MHz)

A
v
e
ra
g
e
 O
u
tp
u
t 
P
o
w
e
r 
(d
B
m
)

Figure 4.27: The average output power (in dB) versus the empirical model from
Equation (4.11) for UHDG = 0 (lower curve), UHDG = 10 (moddle curve) and

UHDG = 20 (upper curve).

modulator has been implemented. Its evaluation has been performed analyzing
SNR and BER parameters. Four SNR estimators have been explored throughout
simulation and real transmissions. The obtained results over simulations confirm the
usefulness of the "Simple" SNR estimator. Nevertheless, this estimator should also
be used with care. It gives SNR values higher than the expected (real) ones in a
lower range of SNR values. By contrast for real-time communications, the obtained
curve of the Simple estimator was not linear. However, a relation between a software
amplifier and an estimated SNR cannot be featured. These results lead us to follow
an experimental approach and to arbitrate between manufacturer hypothesis.

Throughout experiments, two measurements processes have been performed with
a spectrum analyzer and within the GNU Radio itself. We started by analyzing
performances of daughter boards using a spectrum analyzer. The first boards were
the RFX2400 and the RFX900. The overall output power linearity of the RFX2400
was better than that of the RFX900. For RFX900 daughter board, the quadratic
relationship between the DAC value and the average output power breaks down if the
DAC parameter has values above 0.5. The found frequency bandwidths are 24% and
18% smaller than the advertised bandwidths for RFX2400 and RFX900, respectively.
Accurately, for RFX900, the measured −30 dB bandwidth is 72 MHz contrary to
the 300 MHz advertised value. Furthermore, for RFX2400, the bandwidth is 168
MHz rather than 600 MHz. In contrast, the SBX daughter boards and USRP B210
bandwidth were confirmed. Nevertheless, the output power was found to decrease
with increasing carrier frequency. The UHDG was found to be a valuable parameter,
its increase has to be done with care. We were able to show that beyond a given

110



111

threshold for the UHDG, the measured THD quickly increases. The THD indicates
that the output power occurred on the unwanted harmonic frequencies. Furthermore,
an empirical model was introduced to accurately predict the average output power of
an SBX daughter board. The simplicity of the model makes it potentially useful in
SDR applications. The true values of the output power are known a priori and they
can be used for specific application. For example, we can estimate the maximum
transmission range of the USRP and GNU Radio SDR.

In the second measurements we used a flow graph as a spectrum analyzer. The
results show a threshold at receiver UHDG for SBX and RFX daughter boards. The
maximum and useful UHDG is equal to 30 dB and beyond it, the amplifier saturates.

Other complementary experiments can be carried out on RFX 900 daughter
board.

These measurements allow us to be well informed about the behavior of the
hardware driven by the GNU Radio flow graphs. Nevertheless, this information
remains usable only in an output Tx side. It might be more effective to add another
part of measurements dealing with the input behavior.

After performing these measurements and obtaining the characterization of some
USRP daughter boards, we would exhibit SDR implementations for the IEEE 802.15.4
standard.

111





Chapter 5

SDR implementations for IEEE
802.15.4-based WSN

Talk is cheap. Show me the code.

Linus Torvalds

Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . 114

3 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4 IEEE 802.15.4 PHY layers . . . . . . . . . . . . . . . . . . . . 118

4.1 Common specifications for 868/915 MHz and 2450 MHz PHY

layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.2 2450 MHz specifications . . . . . . . . . . . . . . . . . . . . . 119

4.3 868/915 MHz specifications . . . . . . . . . . . . . . . . . . . 120

5 Software Implementations . . . . . . . . . . . . . . . . . . . . 121

5.1 Software transmitter/receiver for 2450 MHz PHY . . . . . . 121

5.2 Software transmitter/receiver for 868/915 MHz PHY . . . . . 124

6 SDR communications for 2450 MHz . . . . . . . . . . . . . . 131

6.1 Communications between two SDRs . . . . . . . . . . . . . . 131

6.2 Communications between sensor motes and SDRs . . . . . . 132

7 SDR communications for 868/915 MHz . . . . . . . . . . . . 133

8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136



Chapter 5. SDR implementations for IEEE 802.15.4-based WSN

1 Introduction

We have seen in the previous chapter that real-time wireless communications can
be implemented on GNU Radio USRP SDR. IEEE 802.15.4 standard specifications
of Low-rate Wireless Personal Area Network (LR-WPAN) can be implemented by
an SDR. The standard defines Physical (PHY) and Link layers (LNK) of low-power
wireless networks or WSN. The PHY layer (Physical layer) is available as off-the-shelf
hardware transceiver. For example, we can find CC2420 and AT86RF231 transceivers
from Texas Instrument and Atmel, respectively. The Transmitter (Tx) and Receiver
(Rx) flow graphs can replace these hardware transceivers. To prove the possible
usage of software transceivers, real-world communications can be performed, and a
proof of concept validates the prototyping before its manufacturing.

In this chapter, we extract knowledge from a reverse engineering process of an
existing SDR for 2450 MHz band of IEEE 802.15.4 standard. We bring more details
than in the literature about the first SDR prototype [38]. Then, we propose a new
implementation for 868/915 MHz ISM band for the same standard. This frequency
band has been dedicated for the IEEE 802.15.4 standard but without an existing
SDR prototype based on GNU Radio USRP SDR. We present our Tx and Rx flow
graphs with some tests and performance evaluations.

2 Problem statement

PHY

(MHz)

Frequency

Band (MHz)

Propagation parameters Parameters of data transmission

Chips

rate (k

chips/s)

Modulation Bits rate

(kb/s)

Symbols

rate (k

symbols/s)

Symbols

780 779-787
1000 O-QPSK 250 62.5 16-ary or-

thogonal

1000 MPSK 250 62.5 16-ary or-

thogonal

868/915

868-868.6

300 DSSS + BPSK 20 20 Binary

400 DSSS + O-

QPSK1

100 25 16-ary or-

thogonal

400 PSSS + BPSK

et ASK

250 12.5 20 bits

PSSS

902-928 600 BPSK 40 40 Binary

1000 DSSS + O-

QPSK

250 62.5 16-ary or-

thogonal

1600 PSSS + BPSK

et ASK

250 50 5 bits

PSSS

950 950-956
— GFSK 100 100 Binary

300 BPSK 100 100 Binary

2450

(DSSS)

2400-2483.5
2000 O-QPSK 250 62.5

16 ary-

orhogonal

1Offset-Quadtrature Phase Shift Keying (O-QPSK)

114



115

UWB sub

gigahertz

250-750

2450 (CSS) 2400-2483.5 – CSS + DQPSK
250 62.5 8-ary

1M 166.667 16-ary bi-

orthogonal

UWB low

band

3244-4742 Depends on environment conditions

UWB high

band

5944-10234 Depends on environment conditions

Table 5.1: Synthesized specifications of IEEE 802.15.4 [19], [20]

Wireless sensor network (WSN) is a set of sensor nodes, which communicate
throughout radio frequency links. This simplified definition primarily involves three
lowest layers of OSI (Open Systems Interconnection) model. These layers are the
Physical, the MAC and the Network layer. Current research works, in most cases,
deal with each layer issue separately. It is the case of PHY layer problems such
as radio-frequency (or channel) interference and spectrum sensing. The solutions
are often performed and evaluated via a simulation. However, SDR based testbeds
present a potential interest for a real world proof of concept [101]. In addition,
Cognitive Radio Sensor Network can be thought as an application of an SDR [102].

IEEE 802.15.4 is standard specifications of Physical (PHY) and Media Access
Control (MAC) layers of LR-WPAN. It is emerged as the de-facto standard for WSN
and supports higher applications like WirelessHart, Zigbee and 6 LowPan. The
IEEE 802.15.4e of 2012 [20] is an enhanced version of that published in 2003 [19].
New specifications have been included throughout the proposed versions. In that
of 2012, the data rate of IEEE 802.15.4e network can reach 1 Mb/s instead of 250
kb/s. In addition, high-frequency band of Ultra Wide Band (UWB) can be used
above 3 GHz. Thus, each specification depends on the frequency bands and digital
modulations. Table 5.1 shows all possible frequency bands and modulations for each
PHY layer. Note that, all these specifications have not been implemented by sensor
mote’s manufacturer.

Standard specifications bring to manufacturers of nodes’ transceivers an oppor-
tunity to ensure the scalability and the interoperability with other Off-the-shelf
products. Nevertheless, the standard delays the evolutivity and the maintainability
of these transceivers. However, to test a little modification, the manufacturer must
go through manufacturing of a hardware prototype. In most cases, this process is
slow and needs more resources. Moreover, the applications of wireless networks,
particularly WSN, are diverse, and each application has its specific constraints.
Thus, software transceivers are an opportunity to overcome these constraints, since
a software source code can easily be modified and adapted to application’s context.

115



Chapter 5. SDR implementations for IEEE 802.15.4-based WSN

Some WSNs applications need to be implemented in specific frequency bands,
and also with completely different wireless technologies (see Table 5.1). In IEEE
802.15.4 standard, a hardware transceiver contains only one modulation such as
O-QPSK (Offset Quadrature Phase-Shift Keying), GFSK (Gaussian Frequency-Shift
Keying) or BPSK (Binary Phase-Shift Keying), and one spectrum that ranges
application from narrowband to wideband systems. Furthermore, since WSNs are
strongly application specific, it is interesting to measure performance parameters of
wireless communications. For that the Signal to Noise Ratio (SNR) is not the only
representative evaluator. A Packet Success Rate (PSR) or Packet Error Rate (PER)
can also be used to evaluate a PHY layer.

The real nodes are limited to the information that the transceiver chip provides
about their environment. Even though the nodes are able to investigate network
layer metric such as PSR, they don’t have the possibility to understand some radio
effects. For example, it can be hard to determine if packet loss occurred due to
an interference or due to a noise. Commonly, transceiver chips do not provide any
information about packets that could not be decoded. Hence, the nodes cannot
be used to investigate new PHY layer strategies. Moreover, some of the proposed
extensions for IEEE 802.15.4 PHY layers are not yet available on actual devices.

A software transceiver or SDR allows a researcher and designer the possibility
to replace real nodes with SDRs, signal processing done in software instead of
being hidden inside a transceiver chip. As explained in previous Chapters 2 and
3, only RF front end and Intermediate Frequency parts are hardware. With such
a re-programmable SDR, the software designer has full control overall baseband
processing steps.

3 Related works

Hardware implementations of the IEEE 802.15.4 specifications have been performed
by manufacturers or the research community on ASICs [41]. They are limited in
flexibility and scalability as explained in the previous section 2. However, SDRs
implementations in high level programming languages answer to these primary
constraints.

In [38], Tomas Schmid introduced decoding blocks of an O-QPSK PHY layer of
IEEE 802.15.4 within an old GNU Radio version and USRP 1. The worldwide ISM
band of 2450 MHZ was the main motivation behind this work. The decoding blocks
were connected to construct Tx and Rx flow graphs. In this work, real communications
have been carried out with real motes (sensor nodes), where USRP 1 is the RF Front
End of this SDR prototype. The author makes sure that prototype is well-running
by receiving packets from CC2420 ChipCon transceiver [103]. Obviously, the digital
modulation is an Offset Quadrature Phase Shift Keying (O-QPSK) technique. The

116



117

particularity is the non coherence 2 of the receiver, since it decodes a signal without
recovering a carrier frequency. In fact, SDR designer cannot access directly to the
carrier on the USRP daughter-board itself [38]. Indeed, we have experienced that
prototype and some difficulties in packet reception have been noticed. Even though
the receiver synchronization has not been established, the interoperability with
MicaZ and TelosB motes has been ensured. The drawback of this work is the lack of
information about setup parameters such as sampling rate, gain, signal amplitude
and USRP 1 setup.

An extension of T. Schmid works [38] has been proposed in [39]. The particularity
of this proposal is the compatibility of flow graphs with a USRP 2. It allows also the
designer to evaluate PSR/PER with a Wireshark packet analyzer [104]. The authors
implement a multichannel (multi-central frequency) reception. Five consecutive
channels from 16 existing ones have been used in the 2450 MHz band. The authors
explain that the number of channels could be higher than five if USRP resources
are enough. Another extension has been published in [40]. It reuses flow graphs
introduced by T. Schmid, but in an OSI stack form. From the physical up to the
network layer and with an attached application layer. The flow graphs interacts with
Contiki operating system, which is a state-of the-art operating system for research
in WSNs [105]. This work contributes to simplify access to IEEE 802.15.4 blocks
through GNU Radio companion GUI. The user can integrate a new application such
as Rime (A Lightweight Layered Communication Stack for Sensor Networks) from
Contiki. Furthermore, the stack includes PCAP (PaCket CAPture) to easily debug
and monitor for WSN communications. All the previous works [38], [39], [40] were
interested only in the 2450 MHz band.

The PHY layer of 868 MHz band is available in Europe, whereas the 915 MHz
band is dedicated to North America. Low frequency bands are needed when low data
rate and long distance transmissions are suitable. Indeed, both bands present a longer
range than that of the 2450 MHz band for a given link budget. The distance of radio
links with 868/915 can be around 100 km whereas this distance can be approximately
70 m in 2450 MHz [106]. Regarding these advantages, some solutions have been
proposed by the research community. For example, the authors in [107] construct an
FPGA based SDR for this band. They synthesized in VHDL a Simulink model of the
developed system. The design has been fully functional at 128 MHz and not in 868
MHz or in 915 MHz. Furthermore, a number of hardware implementations of the
IEEE 802.15.4 have been reported on ASICs or FPGAs [107], [41], but they do not
allow us to control the flexibility and the functionalities of all software stack layers.
Our work is different because it uses GPP base SDR with high level programming
language within GNU Radio platform. The study and reverse engineering of the
O-QPSK PHY layer have allowed us to introduce new blocks and construct D-BPSK
PHY layer.

2Coherent transmission is obtained when sender and receiver either share the same clock, or the

receiver decodes a synchronization signal from the carrier.

117



Chapter 5. SDR implementations for IEEE 802.15.4-based WSN

4 IEEE 802.15.4 PHY layers

As we have seen in the previous section, the IEEE 802.15.4 standard was defined
for two layers: PHY and MAC layer. Our research and prototyping works focus
only on PHY layer, for the two frequency bands 868/915 MHz and 2450 MHz. In
this section, we summarize the primary specifications by separating the common
definitions from the appropriate ones [108].

4.1 Common specifications for 868/915 MHz and 2450 MHz
PHY layers

The two frequency bands are different by their transmission parameters such as
frequency band, modulation and pseudo random sequence of a Direct Sequence Spread
Spectrum (DSSS), etc. However, after analyzing specifications of each frequency band
in [108], we find that common parameters of both 868/915 MHz and 2450 MHz PHY
layers can be aggregated on the packet structure and the spread spectrum. A number
of fields are packed to construct an IEEE 802.15.4 packet. Each field represents useful
information for synchronization, error control and network signalization (packet type
DATA or acknowledgment packet). Since the PHY layer is the last step before the
radio front end, we need to present PHY Protocol Data Unit (PPDU) format, which
contains the following fields (see Figure 5.1):

• Preamble is a part of Synchronization HeadeR (SHR) of a packet. Its length
is 8 symbols (i.e., 4 bytes), and the bits in the Preamble field shall be binary
zeros.

• Start of Frame Delimiter (SFD) is a field indicating the end of the SHR
and the start of the packet data. The SFD is formatted as illustrated in
hexadecimal by 0xA7

• PHY header (PHR) is Frame Length field which specifies the total number
of bytes contained in the Physical Service Data Unit (PSDU), i.e. PHY payload.
It is a value between 0 and 127 Bytes.

• PSDU field carries the data of the PPDU with a maximum size of 127 Bytes.
It contains a number of fields :

– Frame Control Field (FCF) that contains information defining the
frame type, addressing fields, and other control flags.

– Sequence Number field specifies the sequence identifier for the frame.
It allows to specify if the frame is a data, acknowledgment, or MAC
command frame.

– Address information can contain source/destination address and infor-
mation for security protocol.

118



119

Data payloadPHRSFDPreamble

4 bytes 1 byte 1 byte

FCF SeqN AddressInf

2 bytes 1 byte [0 20] bytes <= 104 bytes

CRC-16

2 bytes

PPDU

PSDU

FCS

SHR+PHR

Figure 5.1: IEEE 802.15.4 packet structure and size

Channel 0

868.3 MHz 902 MHz 928 MHz

2 MHzChannel 1-10

5 MHz
2450 MHz PHY Layer

868/915 MHz PHY Layer

Channel 11-26

2400 MHz 2483,5 MHz

Figure 5.2: Channel allocation in 868/915 MHz and 2450 MHz

– The payload of a data frame shall contain the sequence of bytes that
the next higher layer has requested the MAC PHY layer for transmission.

– Frame Check Sequence (FCS) field contains a 16-bit Cyclic
Redundancy Check (CRC). The FCS is computed from the MAC header
and payload parts, i.e. from FCF to data payload passing through Se-
quence Number and Address information of the frame.

Note that the size of a PPDU is up to 133 bytes with 6 bytes dedicated to packet
header.

4.2 2450 MHz specifications

This frequency band is occupied with 16 channels. The center frequency Fc of these
channels is defined as follows:

Fc = 2405 + 5(k − 11), k = 11, 12, . . . , 26 (5.1)

Where k is the channel number and Fc is central frequency in megahertz. Each
channel occupies a bandwidth of 2 MHz and the time interval between two consecutive
central frequencies is 5 MHz. Figure 5.2 shows channel allocation in this band.

This PHY layer is called O-QPSK PHY, since the signal is modulated/demodu-
lated with O-QPSK. The latter employs 16-ary quasi-orthogonal modulation tech-
nique. During each data symbol period, four information bits are used to select 1 of
16 nearly orthogonal pseudo-random noise (PN) sequences to be transmitted. The

119



Chapter 5. SDR implementations for IEEE 802.15.4-based WSN

PN sequences for successive data symbols are concatenated, and the aggregate chip
sequence is modulated onto the carrier using offset quadrature phase-shift keying
(O-QPSK). The encoding on chips sequence gives a Direct Sequence Spread Spectrum
(DSSS). Note that the modulator with half-sine pulse shape is equivalent to Minimum
Shift-Keying (MSK).

The data rate of the O-QPSK PHY is 250 kbps. Each data symbol are mapped
into a 32-chip PN sequence as specified in Table 5.2. The PN sequences are related
to each other through cyclic shifts and/or conjugation (i.e., inversion of odd-indexed
chip values). During each symbol period, the least significant chip, c0, is transmitted
first.

Data symbol Chip values (c0, c1, ... ,c30, c31) Hexadecimal

0 1 1 0 1 1 0 0 1 1 1 0 0 0 0 1 1 0 1 0 1 0 0 1 0 0 0 1 0 1 1 1 0 0xD9C3522E

1 1 1 1 0 1 1 0 1 1 0 0 1 1 1 0 0 0 0 1 1 0 1 0 1 0 0 1 0 0 0 1 0 0xED9C3522

2 0 0 1 0 1 1 1 0 1 1 0 1 1 0 0 1 1 1 0 0 0 0 1 1 0 1 0 1 0 0 1 0 0x2ED9C352

3 0 0 1 0 0 0 1 0 1 1 1 0 1 1 0 1 1 0 0 1 1 1 0 0 0 0 1 1 0 1 0 1 0x22ED9C35

4 0 1 0 1 0 0 1 0 0 0 1 0 1 1 1 0 1 1 0 1 1 0 0 1 1 1 0 0 0 0 1 1 0x522ED9C3

5 0 0 1 1 0 1 0 1 0 0 1 0 0 0 1 0 1 1 1 0 1 1 0 1 1 0 0 1 1 1 0 0 0x3522ED9C

6 1 1 0 0 0 0 1 1 0 1 0 1 0 0 1 0 0 0 1 0 1 1 1 0 1 1 0 1 1 0 0 1 0xC3522ED9

7 1 0 0 1 1 1 0 0 0 0 1 1 0 1 0 1 0 0 1 0 0 0 1 0 1 1 1 0 1 1 0 1 0x9C3522ED

8 1 0 0 0 1 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0 1 1 0x8C96077B

9 1 0 1 1 1 0 0 0 1 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 1 1 1 0 1 1 1 0xB8C96077

10 0 1 1 1 1 0 1 1 1 0 0 0 1 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 1 1 1 0x7B8C9607

11 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0 1 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0x77B8C960

12 0 0 0 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0 1 1 0 0 1 0 0 1 0 1 1 0 0x77B8C96

13 0 1 1 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0 1 1 0 0 1 0 0 1 0x6077B8C9

14 1 0 0 1 0 1 1 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0 1 1 0 0 0x96077B8C

15 1 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0 0xC96077B8

Table 5.2: Symbol-to-chip mapping for the 2.4 GHz band

4.3 868/915 MHz specifications

The two bands of 868 MHz and 915 MHz are grouped and defined as one band, since
they have a similar digital modulation.

The frequency band of 868 MHz contains only one channel in the first version
[19] and three channels in E version [20], whereas the 915 MHz band handles 10
channels in the first version and 30 channels in E version [20]. We have chosen the
first version in this thesis. The channel allocation is as follows:

Fc = 868.3, k = 0 (5.2)

Fc = 906 + 2(k − 1), k = 1, 2, ..., 10 (5.3)

120



121

where k is the channel number. The distance between two channels is 2 MHz
and their bandwidth are narrow-band signals compared to the spectrum of the ADC
input signal (see Figure 5.2).

Similarly to the previous frequency band of 2450 MHz, the name of these specifi-
cations is BPSK PHY regarding the digital modulation. In fact, a direct sequence
spread spectrum (DSSS) with BPSK are used for chip modulation. Each input is
mapped into 15-chip PN sequence as specified in Table 5.3.

Input bits Chip values (c0, c1, ... ,c13, c14) Hexadecimal

0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 0x7AC8

1 0 0 0 0 1 0 1 0 0 1 1 0 1 1 1 0x537

Table 5.3: Symbol-to-chip mapping for the 868/915 MHz band

The BPSK modulator includes a differential encoding of data symbol. It performs
the modulo-2 addition (exclusive or) of a raw data bit with its previous encoded bit.
The data rate is lower than in OQPSK PHY. It is 20 kb/s when operating in the
868 MHz band and 40 kb/s when operating in the 915 MHz band.

5 Software Implementations

After considering the main properties of each PHY layer, it is time to translate them
to software. Each PHY layer will be described separately. We start by 2450 MHz
PHY layer, which is widely used, and we will finish by the 868/915 MHz PHY layer.

5.1 Software transmitter/receiver for 2450 MHz PHY

In this frequency band, our contribution in addition to that of [40] is to have performed
reverse engineering of the implementation of Thomas Schmid [38]. Throughout flow
graphs, we have studied each block and detailed their parameters. This study
allowed us to understand the aim of each block and how to reuse them in the second
implementations for the frequency band 868/915 MHz. In addition, programs have
been adapted to the latest versions of GNU Radio and USRP hardware.

5.1.1 Tx flow graph

Figure 5.3 shows a schematic graph of the software Transmitter (Tx), where the
blocks are connected via a Python code directly without GUI of gnuradio companion.

Transmitter Tx flow graph starts by a packet generator, which creates repetitively
a flow of packets. Within this block, a set of parameters can be changed such as
size of packets, data payload and inter packet time. Obviously, the structure of

121



Chapter 5. SDR implementations for IEEE 802.15.4-based WSN

Packet 

Generator 

Byte Symbols To 

Chips

Byte Chips

To Symbols

Integer

of Symbols

Constellation Complex

Modulation 

PSK Complex
Offset/Delay

Complex

OQPSK Modulator

ComplexDAC Amplifier 

Pcked To 

Unpacked

Complex

Figure 5.3: Transmitter (Tx) flow graph for 2450 PHY layer

packets has already been described in [19] and shown in Figure 5.1. The second
block unpacks the stream of packets in Byte to symbols, which are a set of 4 bits.
Thereafter, each symbol is transformed into a sequence of chips carried by an Integer

sample and following Table 5.2. Every two chips are also grouped in symbols but
with complex output when digital stream enters the Chips to Symbol block, which
represents two chips by a complex sample. The latter are mapped on the complex
axis (IQ axis) through symbol constellations and Phase Shift Keying (PSK) blocks.
In fact, the 0, π

2
, π and 3π

2
phase variations represent chips sequences (0, 0), (0, 1),

(1, 0) and (1, 1). Up to this step, the modulator is a QPSK. Thus, PSK modulator
is connected to Offset/Delay block, which causes a delay of 0.5 ms, however, the
obtained modulator is an OQPSK. Before the last block of USRP sink, the obtained
baseband signal is amplified through DAC amplifier (the function of DAC parameter
has been explained in Section 3.2.1 of the previous chapter).

5.1.2 Rx flow graph

In contrast to the transmitter flow graph, the Rx flow graph starts with an USRP
block to receive baseband signal. Squelch block follows the USRP source block
(see Figure 5.4). It stops a signal reception when a signal strength is lower than
certain threshold of a received noise. An FM demodulator demodulates a band-
limited, complex down-converted signal into an output float stream in the range
of [−1.0, +1.0]. This stream enters an Infinite Impulse Response (IIR) filter with
float input, float output and double taps. Then, the subtraction block subtracts
from FM demodulated signal an IIR filtered signal. The result feds through a clock
recovery block, which applies a Mueller and Müller (M&M) discrete-time error-
tracking synchronizer [109]. After that, the synchronizer output is received by the
packet sink. Each packet is constructed by slicing symbols to bits and by following
symbol-to-chip mapping sequences as well as packet structure (see previous Sections
4.1 and 4.2). Finally, once the complete packet is found, it is added to the message

122



123

Packet sink

USRP 

Source 

Squelch FM

Demodulator

Frequency offset Real SUB Real
Synchronizer 

Real

OQPSK Demodulator

Complex

Filter IIR

Complex Complex

Figure 5.4: Receiver (Rx) flow graph for 2450 PHY layer

queue. The packet sink is implemented in C++ following an algorithm to decode
the received packets.

The processing time taken by each block can be estimated to detect the cause
of a delay in the receiver or transmitter flow graph. In Section 4.1 of Chapter 3 we
have seen how to calculate this time using ControlPort block. In GNU Radio 2.6,
ControlPort cannot be used, thus we found some difficulties to synchronize packet
decoding. Our solution for this synchronization problem was to increase the size
of generated packets. In Section 6, we will show how the PSR was improved by
increasing the packet size.

5.1.3 Packet decoder

The packet sink block performs packet decoding in three steps: SYNC SEARCH,
HEADER SEARCH and HAVE HEADER. These steps are cases of a switch control
mechanism, and they are separated into three algorithms 1, 2 and 3. Each step
performs a set of processing and tests on the input stream. The items flow from the
synchronizer are float samples which are the input of the packet sink. Throughout the
three steps, a while loop controls a stream processing (see Algorithm 1), and If/Else
condition statements are placed to verify the byte pattern. Some test conditions
should be verified to go from one step to another. If they are not verified the packet
decoding is relaunched several times when needed.

Algorithm 1 shows the set of actions to detect the preamble and the SFD field.
The first operation of SEARCH SYNC is to transform the input items (or samples)
to chips. Each item is equivalent to a chip which takes 0 or 1 value. In addition, each
bit is represented by 32 chips following pseudo noise sequence given in Table 5.2. The
lines from 9 to 13 concatenates a sequence of 32 chips. Then, this sequence of chips
is compared to that corresponding to the entrance number 0 in PN sequence’s table.
The decoder restarts the search if the sequence in the table entry doesn’t match the
constructed one, else it continues with next iterations until it finds all four 0x00

123



Chapter 5. SDR implementations for IEEE 802.15.4-based WSN

preamble bytes. However, it is possible to carry out the preamble search allowing
errors in preamble decoding. Even if the decoder finds less than four preamble bytes,
the decoding process and the block will also detect the frame. This trick considerably
improves the packet reception rate. After the preamble is found, the decoder checks
if the next byte value is equal to 0x7A, which correspond to the packet SFD field.

The HEADER SEARCH is the second step of the decoder. Its objective is to find
the header byte or PHR. It starts by constructing a sequence of 32 chips representing
four bits. Similarly to the SYNC SEARCH, in this step the bytes are constructed
using two times four bits. Each pair of four bits in one byte is used as a key of a
hash table defined in Table 5.2 to get corresponding chip value. The packet decoding
can be restarted if and only if one matching fails. The decoded byte gives the packet
length, which shall be less than or equal to the PSDU maximum length (128 bytes).
Thereafter, the decoder goes to the next case to decode PSDU field.

After executing the two previous steps, the decoder launches the last steps of
HAVE HEADER case. The objective in this case is to append bytes in one data
structure. Bytes are collected until reaching a number of bytes equal to the packet
length found in PHR field. Similarly to the HAVE SYNC algorithm, the byte
matching tests are performed for each iteration. Thus, the packet decoding can be
restarted if and only if one test fails. Once a complete PSDU is found, it is added to
a packet queue. Meanwhile, an external python thread is observing this queue. The
thread calls a function written in python to process the PSDU as soon as possible.

Note that the PSR of the packet decoder depends on the source code and on
the algorithm efficiency. Each operation added to a source code needs an extra
processing time, which delays the preamble decoding. Thereafter, a phase shift can
be generated at the demodulator. This delay depends on the complexity of the block
algorithm. The decoder algorithm has a complexity in O(n2) since two nested-loops
are required by the decoder.

It is recommended to avoid as much as possible print instructions. The debugging
of source code should be done before real wireless communications. For example,
transmitter and receiver flow graphs can be connected in a loop back simulation
(as seen in the previous Chapter). Hence, programming this part with GUI is not
efficient.

5.2 Software transmitter/receiver for 868/915 MHz PHY

Our work published in [1] reports an implementation of the PHY specifications for the
frequency band 868/915 MHz. This frequency band 868/915 MHz is recommended
when low data rate is needed in particular applications. Furthermore, it presents a
longer range than the 2450 MHz band for a given link budget.

The frequency band of 902–928 MHz is one of the Industrial, Scientific, and Medi-
cal bands in the US, commonly abbreviated as the 915 MHz ISM band. Furthermore,
the frequency 868,6 MHz is a license-free band for Short-Range Device (SRD860).

124



125

Algorithm 1: Work function of packet sink for 2450 MHz band - SYNC
SEARCH PART

Data: Items[], nbrItems, tab_PN_seq, data_packet_bytes
Result: PPDU of IEEE 802.15.4 for 2450 MHz

1 initialization;
2 cItems ← 0; data_packet_bytes ← 0; MAX_PKT_LEN ← 127 ;
3 tab_PN_seq[];
4 % Table of PN sequences
5 while cItems < nbrItems:
6 switch dStatedo
7 case SYNC_SEARCH:

8 while cItems < nbrItems:
9 cItems ++ ;

10 if Items[cItems] ≥ 0:
11 chips_seq ← (chips_seq ≪ 1) | 1 ;
12 else:
13 chips_seq ← chips_seq | 1 ;
14 if find_preamble(chips_seq):
15 data_packet_bytes ← (data_packet_bytes ≪ 4) | 0x00 ;
16 find_preamble ← true ;
17 if find_first_SFD_byte(chips_seq) and find_preamble:
18 % Checks if the concatenated chips (4 bits) exist in the table of PN

sequences and equal to 0x7.

19 preamble_found ← true ;
20 data_packet_bytes ← 0x7 ≪ 4;
21 else:
22 break ; % Wrong first byte of SFD and restart search

23 if find_second_SFD_byte(chips_seq):
24 % Checks the second 32 chips sequence if it constructs 4 bits and

matches with the entry 0xA in PN table.

25 SFD_found ← true ;
26 data_packet_bytes ← data_packet_bytes | 0xA ;
27 goto : HAVE_SYNC ;
28 else:
29 break % Restart search ;
30 break; ;

125



Chapter 5. SDR implementations for IEEE 802.15.4-based WSN

Algorithm 2: Work function of packet sink for 2450 MHz band -
HEADER SEARCH PART

1 case HAVE_SYNC:

2 while cItems < nbrItems:
3 cItems ++ ;
4 if Items[cItems] ≥ 0:
5 chips_seq ← (chips_seq ≪ 1) | 1 ;
6 else:
7 chips_seq ← chips_seq | 1 ;
8 byte ← decode_chips_exist(chips_seq, tab_PN_seq[] ) ;
9 if byte_exist(byte):

10 data_packet_bytes ← data_packet_bytes | (byte ≪ 8) ;
11 pkt_length = decimal(byte) ;
12 else:
13 break; % Restart search
14 if pkt_length ≤ MAX_PKT_LEN :
15 PHR_found ← true ;
16 goto HAVE_HEADER ;
17 else:
18 break ; % Restart search

Algorithm 3: Work function of packet sink for 2450 MHz band -
HAVE HEADER PART

1 case HAVE_HEADER:

2 while cItems < nbrItems:
3 cItems ++ ;
4 if Items[cItems] ≥ 0:
5 chips_seq ← (chips_seq ≪ 1) | 1 ;
6 else:
7 chips_seq ← chips_seq | 1 ;
8 byte ← decode_chips_exist(chips_seq, tab_PN_seq[] ) ;
9 if byte_exist(byte)):

10 data_packet_bytes ← data_packet_bytes | (byte ≪ 8);
11 nbr_byte_data ++ ;
12 if nbr_byte_data = pkt_length:
13 pkt_queue(data_packet_bytes) ;
14 % insert packets to queue break; % Restart search ;
15 else:
16 break; % Restart search

126



127

The latter is defined for Europe from 863 MHz to 870 MHz with Effective Radiated
Power (ERP). The IEEE 802.15.4 standard remains useful even if the SRDs also
share the same frequency band. It can be used, for example, as a backup solution of
SRDs.

As seen in Section 4.3, the differential BPSK (or D-BPSK) modulation is the same
for the two frequency bands 868 MHz and 915 MHz. The frequency agility of an SDR
motivates an implementation for two frequency band with only adapted parameters,
i.e. data rate in 868.6 MHz (respectively 915 MHz) is 20 kbps (respectively 40 kbps).

The next sections show details about our implementation in order to facilitate its
re-usability. We keep the same names used in a python flow graph developed over
GNU Radio version 3.6. In addition, technical information about USRP 1 setup is
given.

5.2.1 Tx flow graph

The Tx flow graph for this frequency band was also implemented based on the IEEE
802.15.4 specifications. Transmitter was described by a flow graph of eight connected
blocks (see Figure 5.5). This flow graph transforms messages from a packet format to
a baseband signal through D-BPSK modulator. It starts by message source, which
generates IEEE 802.15.4 packets. Each packet is divided into chunks of symbols by
the gr.packed_to_unpacked block, where one symbol represents 1 bit. Since the
C++ programming language does not allow us to have a data type of 1 bit, the bits
in the bytes of an input stream are grouped into chunks of 1 byte. The MSB (Most
Significant Bit) of 8 output bits represents the one bit from the input of gr.map_bb.
After that, the differential encoder gr.diff_encoder_bb encodes a current symbol
adding modulo-2 addition of the previous one. Then, the symbols are mapped by
gr.symbols_to_chips into 15 Pseudo Number Sequence chip as specified in Table
5.3. The output of mapping is of short-type (16 bits carrying the 15 chips). With
the same technique, the stream is unpacked to chunks of 16 bits representing chip
stream. Through gr.chunks_to_symbols_sc block, each chip is represented by
complex constellation points separated by an angle equal to π radians. The stream is
then enters through a Root Raised Cosine gr.interp_fir_filter_ccf filter which
up-samples the signal, after which it is sent from the host computer via USB to the
transmitting USRP.

Similarly to the first block of 2450 MHz band’s flow graph, the generated packets
follow the format described in Section 4.1 through Figure 5.1). The packet size
should be a multiple of 128 samples and a packet has a maximum size of 133 bytes
and an USB 2 hardware interface . Therefore, the transmitter performs a white
padding to adapt the packet size to hardware requirements. It appends zero bytes
(or the x/00 character) at the end of each packet. The number of zero bytes depends
on Byte_Modulus parameter, which also depends on the sampling rate and the
number of bits per symbol. The Byte_Modulus is given by:

127



Chapter 5. SDR implementations for IEEE 802.15.4-based WSN

gr.message_source D-BPSK modulator
ComplexByte

usrp_sink_c

Figure 5.5: Transmitter (Tx) flow graph for 868/915 PHY layer

Byte_Modulus = LCM

(

128 MSPS
8 MSPS

, sps

)

·

(

bps

sps

)

(5.4)

where

• 128 MSPS – is the DAC sampling rate of the USRP1

• 8 MSPS – is the Sampling rate of the USB tunnel

• sps – is the Number of samples per symbol

• bps – is the Number of bits per symbol

• LCM – is the Lowest Common Multiple of 16 MSPS and sps

The white padding can be avoided if the packet size is set equal to 130 bytes. This
size is obtained by reducing the address information field AddressInf . In addition,
a 16-bit CRC (Cyclic Redundancy Check) is attached to the packet payload, allowing
the receiver to calculate the PER (Packet Success Rate) and the PRR (Packet
Received Rate).

5.2.2 Rx flow graph

The receiver objective is to demodulate a received baseband signal using a D-BPSK
demodulation. Figure 5.6 shows the flow graph of receiver blocks. The flow graph
begins with a USRP source connected to a squelch filter gr.pwd_squelch, which
admits only signals with a certain dB strength. The squelch filter outputs 0 when
the incoming signal is too weak. The stream results of the squelch is passed to the
Automatic Gain Control gr.agc_cc (AGC) of the D-BPSK demodulator. The AGC
regulates the gain in a way that does not have a large or small amplitude and to avoid
distortions. The AGC output enters into two filters of gr.interp_fir_filter_ccf,
which are Finite Impulse Response (FIR) and Root Raised Cosine (RRC). These
two filters allow the receiver to process the change of the transmitted pulse and

128



129

gr.pwr_squelch BPSK demodulator gr.complex_to_real

Complex

gr.interp_fir_filter_ccf

FloatComplex Complex

gr.diff_decoder_bb

ieee.ieee802_15_4_packet_sink

gr.agc_cc gr.costas_loop_cc gr.clock_recovery_mm_cc

Figure 5.6: Receiver (Rx) flow graph for 868/915 PHY layer

to minimize symbol interferences. The RRC filter makes the correlation between
the received signal and the expected one. It calculates an FIR filter coefficient
or a tap weight. The demodulator synchronizer is built based on two blocks, a
Costas Loop gr.costas_loop_cc (Phase Locked Loop) and the Mueller and Müller
gr.clock_recovery_mm_cc. The Costas Loop recovers the carrier and improves
the Bit Error Rate of BPSK demodulator [110]. Furthermore, the Mueller-Müller
Timing recovery block tracks the symbol timing phase of the input signal [109]. After
the demodulator, the stream is converted from complex to float in order to send
it through ieee.ieee802_15_4_packet_sink block, which transforms the stream
to packets and decodes them. The decoding algorithm will be detailed in the next
section.

5.2.3 Packet decoder

The packet decoder for this band differs from that for 2450 MHz band in three
things: the number of bits per symbol, the table of chips sequence and the differential
decoding. The algorithm reuses the steps of the packet decoding given in Section
5.1.3, but by adjusting the quoted three things.

SEARCH SYNC algorithm (see Algorithm 1) has been adapted to the number of
chips per bit. Each bit represents 15 chips following pseudo noise sequence given in
Table 5.3. The preamble of the packet is found if the concatenated sequence matches
with that of the first entry (or 0 entry) in Table 5.3. If a preamble is found, then the
SFD field, i.e. 0x7A, is compared to the next byte. Thereafter, this field is padded
at the end of the decoded packet. Before branching the decoder to the HEADER
SEARCH part, the differential decoding is applied to the preamble and the SFD
fields (see Algorithm 4).

The HEADER SEARCH and HAVE HEADER algorithms are slightly different
than those used by 2450 MHz receiver. They perform two additional operations:
differential decoding and application of specific sequences of 15 chips. Thus, we limit
our description to highlight these two different operations instead of showing all the
algorithms.

129



Chapter 5. SDR implementations for IEEE 802.15.4-based WSN

Algorithm 4: Work function of packet sink for 868/915 MHz
band- SYNC SEARCH PART

Data: Items[], nbrItems, tab_PN_seq, data_packet_bytes
Result: PPDU of IEEE 802.15.4 for 868/915 MHz

1 initialization;
2 cItems ← 0; data_packet_bytes ← 0; MAX_PKT_LEN ← 127

;
3 tab_PN_seq[];
4 % Table of PN sequences
5 while cItems < nbrItems:
6 switch dStatedo
7 case SYNC_SEARCH:

8 while cItems < nbrItems:
9 cItems ++ ;

10 if Items[cItems] ≥ 0:
11 chips_seq ← (chips_seq ≪ 1) | 1 ;
12 else:
13 chips_seq ← chips_seq | 1 ;
14 if find_preamble(chips_seq):
15 data_packet_bytes ← (data_packet_bytes ≪

1) | 0x0 ;
16 preamble_found ← true ;
17 if find_SFD_byte(chips_seq) and find_preamble:
18 % Checks if the concatenated chips sequence exists in

the table of PN sequences

19 SFD_found ← true ;
20 data_packet_bytes ← (data_packet_bytes ≪

8) | 0x7A ;
21 differential_decoding(data_packet_bytes) ;
22 goto : HAVE_SYNC ;
23 else:
24 break; % Wrong first byte of SFD and restart search

25 break ;

130



131

6 SDR communications for 2450 MHz

We carried out real wireless one-to-one communications using implemented SDRs
for the 2450 MHz frequency band. These communications have been experimented
through two setups with:

• Two SDRs based on Tx and Rx flow graphs

• Sensor motes 3 and SDRs based flow graphs

6.1 Communications between two SDRs

We started our experiment tests by wireless communications between transmitter
and receiver SDRs. The objective was to measure the PSR versus the sizes of packets.
The idea to perform these measurements was coming from some tests carried out
when we programmed the packet decoder.

The transmitter and receiver were characterized by flow graphs. They were
executed by a host computer which is connected to a USRP (USRP 1) with an RFX
2400 daughter board. The transmitter generates and sends bursts of 100 packets
for each packet size. The packet header follows the pattern presented in Figure 5.1,
whereas the packet payload is the result of padding "00" after the header. The packet
size was increased by 10 bytes from 20 bytes to 100 bytes. The size modification was
performed after a transmission of a burst of 100 packets. An inter packet time was
fixed equal to 1 second for each burst. Other parameters of experiment tests are
shown in Table 5.4.

Parameter values

Distance between two USRP 1 2 meters

Carrier frequency 2405 MHz

Data rate 1 Mbps

Number of data packets 100 packets

Inter packet time 1 second

Sampling rate (Tx and Rx) 4 MSps

Number of samples per symbol (Tx and Rx) 2 sps

Gain radio (only at Rx) 60 dB

Table 5.4: Parameters of packet transmissions between two SDRs

Figure 5.7 shows the rate of successfully received packets (PSR) and the rate of
all received packets. The latter counts decoded packets including those with a wrong
CRC field. The PSR is higher when the packets size is increased to 100 bytes (see
Figure 5.7). The PSR depends on the packet size based on our empirical observations

3A sensor node, also known as a mote, is a node in a sensor network

131



Chapter 5. SDR implementations for IEEE 802.15.4-based WSN

 0

 20

 40

 60

 80

 100

 120

 140

20 30 40 50 60 70 80 90 100
100

%

packet size

Packet Success Rate (PSR) and Received Packets of the IEEE 802.15.4 standard for 2450 MHz

Received Packets
PSR

Figure 5.7: The PSR and received packet rates versus pocket size using SDR
implementation for 2450 MHz

and our results. This relation cannot be described by an effective model, since the
experiments were performed in indoor environment. These results can be interpreted
by the nature of GNU Radio programs on a GPP based architecture.

6.2 Communications between sensor motes and SDRs

We have carried out real communications between Tx/Rx flow graphs and hardware
transceivers (sensor motes) in an indoor environment. The Tx/Rx flow graphs
are adapted to version 2.6 of GNU Radio. In the first step, we have replicated
experiments proposed in [38]. Packets exchanges have been realized between software
transmitter/receiver and hardware transceiver. In our case, we used CC2420 from
Texas Instrument and AT86RF230 [111] from Atmel. For example, Telos B [112]
sensor nodes handle CC2420 transceiver with an msp430 micro-controller (see Figure
5.8). Contiki micro OS [113] can be loaded on TelosB motes. Numerous applications
can be performed by these motes. Unicast and Broadcast wireless communications
are two available applications on these motes.

Packet reception via SDR Receiver (Rx) has been tested with a Telos B node as
a transmitter. In our case, we selected a simple Broadcast application when each
mote periodically broadcasts the same packet. These packets have been received
by the SDR receiver (Rx).The packet success rate is difficult to calculate since the
application was a broadcast.

In another experiment, the SDR Transmitter (Tx) has been launched, and the
hardware receiver tried to receive the disseminated packets. Hardware interface has
been analyzed by Wireshark software [104], which allowed us to see a packet traffic
coming from the USB interface.

132



133

(a) (b)

Figure 5.8: TelosB and Raven sticks

7 SDR communications for 868/915 MHz

The packet communication for this band was performed with USRP 1. The experi-
mental setup and their results have been published in [1]. In this section, we give
detailed information on tests we have made and some obtained results.

Two USRP1 platforms have been coupled with RFX 900 daughterboards, covering
a frequency range from 750 MHz to 1050 MHz. The GNU Radio software has been
executed on a host computer having a one Core 2 Duo CPU running at 2.4 GHz and
2 GB of RAM. The distance between the two USRP 1 was 2 meters.

A USRP sink (see Figure 5.5) is characterized with a transmitter Interpolation
I and receiver Decimation D. They are calculated according to a symbol rate r,
DAC_s and ADC_s sampling rate, and a number of samples per symbol sps as
follows :

I =
DAC_s

r · sps
, D =

ADC_s

r · sps
(5.5)

where :

• DAC_s = 128 MSPS

• I ∈ [16, 20, 24, ... 508, 512]

• ADC_s = 64 MSPS

• D ∈ [8, 10, 12, ... 254, 256]

For 20 kbps, the transmitter and receiver parameters are respectively I = 400

and D = 200 with sps = 16. Otherwise, when the data bit rate is equal to 40 kbps,
I and D take the same values but with sps = 8. The amplifier of signal (or DAC)
amplitude is defined by a dimensionless scalar with values ranging from 0 to 32767.

Figure 5.9.1 depicts the received power spectrum of the transmitted signal. It
corresponds to the output of the FFT spectrum-analyzer tool that is included in the
GNU Radio framework. A peak is visible with our software receiver when we choose

133



Chapter 5. SDR implementations for IEEE 802.15.4-based WSN

5.9.1: Power spectrum of our software transceiver recorded with the

USRP and drawn by FFT gnuradio plot.

5.9.2: Receiver symbol constellations.

a central frequency equal to 916 MHz. In addition, the sampling rate has a value
equal to 35 samples per symbol in order obtain an intermediate frequency equal to 1.5

MHz. This value is in concordance with the values taken by the transmitted power
spectral density of the IEEE 802.15.4 standard. Furthermore, frequencies at the
edge of the main band are visible but strongly attenuated. These imperfections may
be due to the roll-off characteristics of the interpolation filter in the up-conversion
processing of the FPGA USRP.

Figure 5.9.2 shows a constellation of two symbols separated by an angle π.
Obviously, this result confirms the demodulation process of D-BPSK signal.

The D-BPSK communication has been evaluated with two parameters: BER/SNR
transmission and PER. To calculate BER parameter, we replaced at a transmitter
side the blocks of a packet generator by a source of bits. Furthermore, we placed BER
and SNR calculator block just after D-BPSK demodulator. Figure 5.9 illustrates

134



135

2 4 6 8 10 12 14

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

SNR (db)

B
E
R

868.3 MHz

MFB

Figure 5.9: The BER versus received SNR for central frequency 868.3 MHz and for
the MFB

5 10 15
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR (db)

P
E
R

916 MHz

868.3 MHz

Figure 5.10: The PER versus SNR using two central frequencies 916 MHz and 868
MHz

135



Chapter 5. SDR implementations for IEEE 802.15.4-based WSN

the average BER versus the input SNR (dB) for the frequency 868.3 MHz and for
the MFB Matched Filter Bound of D-BPSK modulation. The results have been
computed by changing the amplifier DAC values from 1000 to 12000 with a step equal
to 100 for a time period equal to 400 seconds. Despite noisy wireless environment,
the results are in concordance with the theory, proving that the implementation is
working.

To obtain the PER versus the SNR (dB), the packet generator and packet sink are
connected respectively to transmitter and to receiver chains. The PER is calculated
by the receiver for a burst of packets. In fact, the transmitter sends for a given
amplitude 100 packets. The period time between two successive packets was 0.2
sec. The PER decreases when the amplifier amplitude increases. Thus, the obtained
curve (see Figure 5.10) confirms that of the BER/SNR.

The PER depends on the synchronization between the transmitter and the
receiver. Note that the synchronization has not been obtained for each burst of
packets. This problem can be caused by two sources: the management of the USRP’s
buffer and inter-blocks delays within blocks of flow graphs.

8 Summary

In this chapter, we reported two SDR implementations of two possible PHY layers of
WSNs based on the IEEE 802.15.4 standard. The first one for 2450 MHz frequency
band and the second one for 868/915 MHz frequency band. We performed a reverse
engineering process of the available SDR transmitter and receiver for 2450 MHz. The
result of this process was depicted through flow graphs. A flow graph describe the
PHY layer from data packets generation up to their transmission in a baseband signal
and vice versa. The data packet reception was the most important step. However,
the packet decoder of a receiver flow graph was described by pseudo-code algorithms.

Our new implementation of PHY layer for the 868/915 MHz frequency band was
also described by flow graphs. It was inspired from that implemented for the 2450
MHz frequency band. Our contribution suggests the use of a new frequency band
and an optional D-BPSK modulation/demodulation. It also contributes to GNU
Radio platform by introducing a new packet decoder block. The latter integrates
differential decoding and DSSS based on new PN sequences.

We tested the implemented flow graphs through real wireless communications.
We were able to exchange IEEE 802.15.4 packets between two separated GNU Radio
USRP SDRs. Of course, these flow graphs process a baseband signal generated/re-
ceived by a host computer, where USRPs serve as a radio signals receiver and
transmitter. In addition, we ensured wireless communication between these SDRs in
one side and hardware transceiver in another side. The hardware transceivers are
the AT86RF230 and the CC2420 used by some off-the-shelf sensor motes for the
frequency band 2450 MHz.

136



137

Some conclusions can be drawn from our programming experience under the
GNU Radio USRP SDR platform. A synchronization problem of SDR transmitter
and SDR receiver can be encountered. This problem comes from both processing
speed and packet size. Within a flow graph, some blocks can take more time than
others, and a phase shift can be generated at the demodulator. This processing time
depends on the complexity of the block algorithm. In our case, the algorithm of
the packet decoder has a complexity in O(n2), which is greater than that of other
blocks. The result of an unbalanced processing time generates a phase shift between
a receiver and transmitter. Hence, the algorithms of each block need to be efficient
by avoiding unnecessary control instructions. It is preferable to do the debugging
in simulation mode, without intrusive print functions. Furthermore, the impact of
changing packet size on PSR of SDR communications was experienced. The PSR
depends on the packet size without a precise correlation.

With the presented fourth flow graphs, a reconfigurability of radio transmitters
and receivers can be planed. The flow graphs can be loaded on-line (or during
run time) of radio communications. They can also be combined to create a multi
PHY layers transmitter and receiver. Each PHY layer can be selected according to
application requirements, i.e. transmission range and data rate.

Other experiment test can be realized to communicate a new hardware transciev-
ers, such as those for 868/915 band, with proposed flow graphs.

137





Chapter 6

Cognitive Wireless Sensor
Network based on IEEE 802.15.4

What man-made machine will ever achieve the complete perfection of

even the goose’s wing?

Abbas Ibn Firnas

Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . 140

3 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

4 Dynamic spectrum access on GNU Radio USRP SDR . . . 143

4.1 Reconfigurable SDR settings . . . . . . . . . . . . . . . . . . 144

4.2 Energy Detector . . . . . . . . . . . . . . . . . . . . . . . . . 146

4.3 Dynamic frequency selection . . . . . . . . . . . . . . . . . . 146

5 Experiments and results . . . . . . . . . . . . . . . . . . . . . 148

6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

1 Introduction

The reconfigurability of the suggested flow graphs in Chapter 5 allow us to extend
our research works to their usage for Dynamic Spectrum Access (DSA). DSA is one
of the most important tasks towards developing Cognitive Radio Wireless Sensor
Networks. This chapter deals with DSA for IEEE 802.15.4 networks. Some of its
content has already been published in Wireless Innovation Forum SDR’15 [4].

The objective of DSA is to improve the IEEE 802.15.4 network reliability when
coexisting with other networks, such as IEEE 802.11b/g/n. Thanks to the flow



Chapter 6. Cognitive Wireless Sensor Network based on IEEE 802.15.4

graphs developed in Chapter 5, network nodes can communicate simultaneously in
the two unlicensed frequency bands of 868/915 MHz and 2450 MHz. Using DSA, the
network interference can be avoided, and packet success can be improved with DSA.
To reach this purpose, the network nodes need a Spectrum Sensing (SS) technique
and coordination algorithm to select the carrier frequency.

We start this chapter by motivating our proposal, after that, we outline the
related works dealing with cognitive radio, DSA and implementations of the IEEE
802.15.4 standard. In the Section 4, we describe the SDR of our DSA solution with
energy detector (or energy-sensor) and synchronization algorithms. We end this
chapter by a presentation of experiments results and discussions on the obtained
results.

2 Problem statement

Spectrum scarcity issue in wireless communications is a main consequence of spectrum
regulation and rigidity of telecommunication standards. Regulation authorities
of telecommunication, such as ITU (International Telecommunication Union) or
FCC (Federal Communications Commission), define unlicensed spectrum bands
for numerous applications in ISM bands. As seen in the previous chapter, IEEE
802.15.4 based WSN uses these bands [20]. Under 2450 MHz band, a WSN shares the
unlicensed spectrum with other networks such as IEEE 802.11 and IEEE 802.15.1.
Sharing the spectrum without coordination is the source of interference and unreliable
transmissions. Figure 6.1 shows the overlapped channels of the IEEE 802.15.4 with
those of IEEE 802.11b/g. Although the new version IEEE 802.15.4e [20] introduces
a new mechanism of frequency hopping, the values of each frequency remain static
(see Section 3.0.1).

868/915 MHz frequency band is an alternative band that depends on geographical
region, 868 MHz for Europe and 915 MHz for North America. Thus, this additional
frequency band can be used conjointly with that of 2450 MHz. The objective is to
avoid disturbed frequency bands and transmit on the good ones. The estimation of the
channel quality and channel selection should be performed on-line and transparently
for the application constraints.

Cognitive Radio (CR) is a system which senses the electromagnetic environment
and dynamically adjusts the radio parameters to improve radio performances. The
carrier frequency is one main parameter, adjusted by CR, in order to avoid interference
and to efficiently use a spectrum. According to the definition of Haykin in [15],
there are three main tasks for CR: Radio scene analysis, Channel identification
and Transmit power and frequency control (see Figure 6.2). These tasks can be
accomplished by an SDR. However, we need transmitters and receivers based SDR.
The implementations shown in Chapter 5 can be reused for a cognitive WSN.

The crowded state of 2450 MHz band can be addressed with DSA or Dynamic

140



141

IEEE 802.11 b/g

IEEE 802.15

Figure 6.1: Overlapping of IEEE 802.15.4 channels with that of IEEE 802.11b/g in
2450 MHz band

Radio environment

(Outside world)

Radio-scene

analysis

Channel-state 

estimation, and 

predictive modeling

Transmit-power

control, and spectrum

management

RF stimuli

Interference

temperature

Receiver

Quantized 

channel capacity

Transmitter

Spectrum holes

Noise-floor statistics

Traffic statistics

Action transmitted

signal

Figure 6.2: Basic cognitive cycle [15]

141



Chapter 6. Cognitive Wireless Sensor Network based on IEEE 802.15.4

Spectrum Sharing (DSS). Contrary to static spectrum access, dynamic spectrum
users can adjust the carrier frequency dynamically. DSA can be considered as a
sub-system of CR dealing with spectrum access. Similarly, Spectrum Sensing (SS)
is a DSA sub-system. It provides information about spectrum state. For example,
signal strength (power) for each carrier frequency is an information returned by
energy detector based on spectrum sensing. We are therefore interested in estimating
the quality of a central frequency and in detecting spectrum holes. In addition, we
investigate the problem of selecting the spectrum sensing node, i.e. the receiver or
transmitter.

Currently, nodes in WSNs cannot be SDRs due to a high-power consumption of
SDRs. However, GPP based software transceiver can emulate functions of wireless
sensor nodes. The two software implementations of IEEE 802.15.4 standard presented
in the previous chapter can be reused. Since the two frequency bands of 2450 MHz
and 868/915 MHz are far from each other, the particular RF front end setup is needed.
Furthermore, the packet transmission requires a coordination of the transmitter and
the receiver.

3 Related works

In the literature, the first research work dealing with cognitive radio for WSNs is that
published by Ozgur B. Akan et.al in [114]. This work motivates the development of
Cognitive Radio Sensor Networks (CRSNs) instead of classical WSN, especially when
these networks overlap in the same frequency band. However, it doesn’t give any
details about how to realize the network node coordination for dynamic frequency
change. Classification of spectrum sensing for WSNs has been proposed in [102].
The authors in [102] consider energy resources of sensor nodes as a criterion to select
an adapted spectrum sensing technique. The energy estimator (or energy detector)
was identified as simple to be implemented by sensor nodes. Nevertheless, this work
needs to be completed by proof of concepts and experiments.

Since we are interested in IEEE 802.15.4 standard, we focus on works connected
to the IEEE 802.15.4 standard and dealing with channel overlapping. In the following
two sub sections, we briefly describe the related specifications and implementations.

3.0.1 Related specifications

The main new contribution of IEEE 802.15.4e is an access mode based on Time
Slotted Channel Hopping (TSCH) mode [20]. TSCH was introduced for network
capacity increase, high reliability and predictable latency. It handles multichannels
based on channel (frequency) hopping. In the 2450 MHz band, the hopping among
16 channels is a function of time slots and on the number of available channels. Thus,
a frequency is selected based on previous chosen channels and on the number of
available channels. The channel allocation shows the possibility to dedicate different

142



143

channels to each couple of wireless nodes. However, this allocation only depends
on the time slots and not on the link quality. Link Quality Indicator (LQI) [20]
informs on the energy strength and the quality of received data frames in a selected
channel. Although the LQI is measured, the selected carrier frequency is predefined.
In addition, changing dynamically channels in TSCH is not possible without MAC
protocol coordination. These drawbacks motivate the use of spectrum sensing before
channel selection.

3.0.2 Related implementations

Several research works have been proposed on IEEE 802.15.4 standard, using GNU
Radio and USRP. The first SDR has already been detailed in Section 5.1 in Chapter
5. As we have seen, it reproduces the OQPSK layer in the 2450 MHz frequency band.
The state of the art on further development was presented in the same chapter [39]
[40]. In addition, the BPSK layer was implemented for the 868/915 MHZ frequency
band [1]. The SDR for two bands could be combined to implement a multi bands and
multi specifications SDR. The frequency bands and standard specifications changing
can be based on specific criteria. For example, spectrum sensing can be used to
formulate one criterion.

Surveys of DSA and SS techniques have respectively been proposed in [115]
and [116]. The DSA techniques have been classified in three classes: Dynamic
Exclusive Use Model, Open Sharing Model and Hierarchical Access [115]. The Open
Sharing Model employs open sharing among peer users as the basis for managing
unlicensed spectral bands. Spectrum sensing techniques have been grouped with
three main classes: Energy-detector based sensing, Cyclostationarity-Based Sensing
and Matched-Filtering. Energy-detection based spectrum sensing is a simple SS to
implement, and the only one found on GNU Radio. It is proposed in [117], based on
time averaged Power Spectral Density. This detector is used as a general dynamic
spectrum access in [118]. In [119], this energy detector is evaluated according to a
probability of detecting wireless activity for cognitive radio. The works [118] and
[119] are not specified for a particular network. However, the spectrum sensing can
be used by DSA with IEEE 802.15.4-based network.

The reminder of this chapter presents technical details about the proposed DSA
and the performed experiments.

4 Dynamic spectrum access on GNU Radio
USRP SDR

Our DSA follows an open sharing model (or spectrum commons). It is a DSA strategy
where each network has equal rights in an unlicensed frequency bands. We consider
the IEEE 802.15.4 2450 MHz and the 868/915 MHz bands, where this network is

143



Chapter 6. Cognitive Wireless Sensor Network based on IEEE 802.15.4

considered as SU and other unlicensed users are PUs. For each band, IEEE 802.15.4
Tx/Rx chains are implemented with GNU Radio and can be reused as black boxes.
In addition, we dedicate the spectrum sensing and the frequency selection only to
the SU receiver. A spectrum sensor measures the energy (power) strength in a given
frequency band, and according to a threshold, a carrier frequency is selected. Notice
that, PUs could be based an Orthogonal Frequency-Division Multiplexing (OFDM)
transmitter in these two bands.

4.1 Reconfigurable SDR settings

In our SDR we assemble a number of transmission chains, as several chains can
be handled in one GNU Radio program. For SU receiver (Rx), we implement five
chains. The two firsts are IEEE 802.15.4 Receivers (Rx) for two bands, the 2450
MHz and 868/815 MHz. The third and forth chains are Transmitter (Tx) and Rx
of Gaussian Minimum Shift Keying (GMSK) packets. Finally, the fifth chain is
an energy detector Rx. Each chain is selected to transmit or receive information
according to a synchronization algorithm. The particularity of our work is to be
able to perform real wireless transmissions of packets and to online reconfigure
transmission chains online.

The two components of the SDR are the USRP 1 front end and the GNU
Radio software. The USRP 1 has been chosen regarding its less sampling rate
compared to newest versions e.g. USRP N210 [37]. The sampling rates are sufficient
to build an IEEE 802.15.4 communication and to experiment DSA. In addition,
USRP 1 can hold two daughter boards. They contain two antennas, the first for
Transmission/Reception (TX/RX) and the second for Reception (RX) only. An SBX
daughter board is used since it covers a large frequency band at radio front end, i.e.

from 400 MHz to 4000 MHz, the boards cover the two 802.15.4 frequency bands
of 868/915 MHz and 2400 MHz. In Section 5, SDR setup will be discussed. SDR
chains are flow graphs built on GNU Radio toolkit. One flow graph represents a
chain of software blocks written in C++ and connected through Python script.

Tx and Rx of SU and PU are featured by a set of GNU Radio chains. Figure
6.3 shows chains needed by a SU receiver to sense a spectrum, to coordinate a
frequency selection and to receive IEEE 802.15.4 packets (data). Two receivers of
802.15.4 packets in two frequency bands 868/915 MHz and 2450 MHz are based
on [1] [38]. Tx and Rx chains of GMSK packets are connected to SU receiver. In
fact, through several tests, GMSK packets exchange was found reliable, i.e every
time when Tx transmits GMSK packets, Rx succeeds in packet reception without
a phase synchronization problem. Hence, to coordinate a frequency selection, the
acknowledgment GMSK packets are exchanged. The spectrum sensing is handled by
an energy detector chain (see next Section 4.2).

SU Tx chains are shown by Figure 6.4. Two sub transmitters are implemented
for each frequency band. Similarly to the SU receiver, a frequency selection is

144



145

USRP 

Sink

USRP 

Source

Spectrum Senssing ss_rx

2450 MHz  IEEE 802.15.4  RX

915/868 MHz  IEEE 802.15.4  RX

GMSK RX gmsk_rx

....

....

....

....
....

GMSK TX

Figure 6.3: Software chain of SU receiver (Rx)

USRP 

Source

USRP 

Sink

Decision

2450 MHz  IEEE 802.15.4  TX

915/868 MHz  IEEE 802.15.4  TX

GMSK TX gmsk_tx

....

....

........GMSK RX

Figure 6.4: Software chain of SU transmitter (Tx)

coordinated through GMSK acknowledgment exchange. Figure 6.5 highlights an
SDR chain of PU Tx, which generates a random data stream and modulates it via
OFDM modulator. This modulation is chosen since it is the one specified for the
IEEE 802.11 standard of Wifi network.

To separate SDR chains of SU, two daughter boards are used by the USRP
module. Each daughter board is dedicated to Tx or Rx chains of SU (Tx SU/ Rx SU).
In addition, one daughter board has two possible antennas outputs: Tx/Rx or Rx.
Hence, for SU Rx, the GMSK Tx and Rx are carried out by the first daughter board
through Tx/Rx and Rx antennas, respectively. The second daughter board supports
the energy detector and the IEEE 802.15.4 Rx chains. Separated antennas allow the
energy detector, GMSK Tx and Rx to be carried out continually. Furthermore, the
SU Rx is similar to the USRP of SU Tx, and it contains two daughter boards, and
each one supporting the GMSK Tx/Rx and the IEEE 802.15.4 Rx chains.

OFDM

Modulator

Random

Source

USRP

Sink

Figure 6.5: Flow graph of PU transmitter (Tx)

145



Chapter 6. Cognitive Wireless Sensor Network based on IEEE 802.15.4

USRP 

source

Stream 

to Vector

FFT

Blackman -Harris

Complex 

to Mag^2
bin_statistics

Figure 6.6: Flow graph of our energy detector based spectrum sensing

4.2 Energy Detector

Spectrum sensor or energy detector (see Figure 6.6) estimates the output of a time-
averaged Power Spectral Density (PSD). For this purpose, the flow graph starts by
receiving the baseband stream from USRP source. The stream is adapted to the
capacity of the USB host. Since this stream is continuous, Stream to Vector block
packs a group of samples to form vectors of complex samples. Then, under a Fast
Fourier Transform (FFT) block, a Blackman-Harris window is used for single tone
measurement, applied to each 512 sample vector. In the next block, the modulus
squared is calculated averaging the magnitudes of each bin (carrier frequency) over
many samples. The last block bin_statistics deals with USRP 1 constraints.

The average energy at a given carrier frequency is calculated using the following
model:

E =
1

2N





N
∑

n=−N

|s(n)|2



 (6.1)

where N is the number of samples and s(n) is the sample values as a function of
the sample number n.

In fact, an RF bandwidth from and to host computer is limited regarding USB 2
capacity(8 MHz). Consequently, the frequency bandwidth to examine is divided into
chunks of 8 MHz. Since a central frequency is changed via GNU Radio program, the
effective change takes an extra delay on the local oscillator. During this delay or
tune_delay, the received samples are considered wrong and dropped. As explained
in the previous section, only the receiver carried out the energy detector.

4.3 Dynamic frequency selection

The proposed algorithm is a message-based algorithm. It is defined in two parts
algorithms 5 and 6 performed at SU Rx and SU Tx, respectively. The algorithm
allows the nodes of SU to decide on which carrier frequency should be selected. It
also reconfigures the communication chains by loading online adapted ones to the
selected frequency.

In order to select a carrier frequency, the Rx triggers a coordination process. It
starts by a spectrum sensing in a given frequency band. Then, it selects a carrier
frequency which has minimum energy power. Thus, the GMSK acknowledgment
messages are exchanged to ensure the effective change of the carrier frequency.

146



147

Algorithm 5: Receiver (Rx)

1 initialization();
2 while energy > threshold do
3 spectrum_sensing(ss_rx);
4 end while
5 while not receive_freq_ack(gmsk_rx) do
6 send_new_freq(gmsk_tx);
7 if time > timeout then
8 break;
9 end if

10 ;
11 end while
12 while time ≤ timeout do
13 send_clear-to-receive(gmsk_tx);
14 end while
15 start_rx_802.15.4(802_15_4_rx);

Algorithm 5 enumerates actions of SU Rx, which senses a given frequency band
and selects a carrier frequency when a sensed energy for that frequency is less than
a fixed threshold ((2) to (4) in Algorithm 5). This threshold is taken empirically
based on previous experiments. Only 8 MHz FFT window was swept by the energy
detector. The desired frequency band is covered by shifting this window across the
frequency band. The energy detection is the output of the flow graph ss_rx (see
Figure 6.3 and Figure 6.6). Thus, the new carrier frequency is selected and forwarded
to 802.15.4 Tx via the gmsk_tx (see Figure 6.3 and see also Algorithm 5 from (5)
to (7)). As explained above in Section 4.1, one antenna is dedicated to the GMSK
exchange. Since gmsk_rx demodulation is launched simultaneously with gmsk_tx,
the forwarding of this frequency is repeated until the reception of an acknowledgment
from the SU Tx. After that, during a timeout, the SU Rx confirms to the SU Tx
that it is clear to receive data packets (from (8) to (10) in Algorithm 5).

The SU Tx starts data transmission only after receiving a new carrier frequency
and verifying if the SU Rx is clear to receive (from (5) to (7) in Algorithm 6). An
acknowledgment is transmitted using gmsk_tx to confirm the reception of a new
frequency. As compared with the receiver SU Rx, the SU Tx continually resends
acknowledgments during a timeout until it receives a clear-to-receive message. From
line (8) to (12) of Algorithm 5, the SU Tx sends data packets only if the clear-to-
receive message is received, else the reception is failed.

147



Chapter 6. Cognitive Wireless Sensor Network based on IEEE 802.15.4

Algorithm 6: Transmitter (Tx)

1 initialization();
2 while not new_freq_received do
3 receive_new_frequency(gmsk_rx);
4 end while
5 while (not clear-to-receive(gmsk_rx)) and (time ≤ timeout) do
6 send_freq_ack(gmsk_tx);
7 end while
8 if clear-to-receive(gmsk_rx) then
9 start_tx_802.15.4(802_15_4_tx);

10 else
11 transmitter failed to receive clear-to-receive;
12 end if

5 Experiments and results

In our experiments, three USRP 1 devices are connected to a laptop computer in an
office environment. Two devices represent SU transmitter (Tx) and receiver (Rx),
whereas PU transmitter is the third one. The 868/915 MHz and 2450 MHz bands
are covered by SBX daughter boards, which are plugged into a USRP 1. In GNU
Radio part of the SDR, each USRP 1 is controlled via set of chains as shown in
Figure 6.3 and Figure 6.4 of the previous Section 4.1 Each chain has its parameters
to initialize before and during SDR execution.

Table 6.1 shows offline and online parameters of spectrum sensor. The offline
parameters are the sample rate and the channel bandwidth. They are initialized
in the source code program before its execution. The online parameters are the
bandwidth of spectrum chunks, the window’s FFT, and the number of bins. They
are calculated based on the offline parameters. The size of an FFT window is defined
by a number of bins. It is given by Equation 6.2. The frequency bandwidth recovered
at software level depends on the USB port’s permeability, this bandwidth is bounded
upper by 8 MHz. Thus, bin_start and bin_stop variables are introduced to reduce
the size of one FFT window by 1/8 (see Equations 6.3 and 6.4). In fact, in our
experiments 80 bins are discarded at the beginning and the end of an FFT window.
Thus, the energy detector deals with a chunk of frequency bandwidth defined by
a number of bins (or carrier frequency) spaced by a channel of 6250 Hz. For each
frequency, the energy sensed is the average of the magnitudes of each bin over 512
samples (see Equation 6.1). For example, the frequency band from 2405 to 2480 is
divided into bandwidth chunks of 3 MHz, where the energy is calculated for each
carrier frequency spaced by 6250 Hz.

fft_size =
⌈ usrp_rate

channel_bandwidth

⌉

(6.2)

148



149

Table 6.1: Parameters of energy detector

USRP sam-
ple rate

channel
bandwidth

chunk of
bandwidth

number of
bins

FFT win-
dow

4 MS/s 6250 Hz 3 MHz 480 640

 0

 10

 20

 30

 40

 50

2.412 2.422 2.432 2.437 2.462 2.472 2.4e+09  2.5e+09

P
o

w
e

r 
(d

B
)

Carrier frequency (GHz)

Spectrum sensing of frequency band from 2400 to 2500

Power

Figure 6.7: Spectrum Sensing of frequency band 2.4 GHz to 2.5 GHz

bin_start =

⌈

fft_size
8

⌉

(6.3)

bin_stop = fft_size − bin_start (6.4)

Since the experiments are performed in an office environment, the two targeted
frequency bands of 868/915 and 2450 MHz have been sensed to get the energy power.
In addition, the WiFi board of the laptop computer has detected the presence of
seven IEEE 802.11 networks. Figure 6.7 shows the obtained Power Spectrum Density
(PSD) for each carrier frequency from 2400 MHz to 2500 MHz using the energy
detector. Two high-power zones have been observed in the interval from 2400 MHz
to 2500 MHz. In fact, the energy power is in the order of 30 dB in intervals [2430
MHz, 2450 MHz] and [2475 MHz, 2490 MHz]. The seven detected networks have
a small impact on the spectrum. In the second frequency band from 850 MHz to
950 MHz, the energy level is lower than 25 dB (see Figure 6.8). Hence, the detected
radio-frequency activities cannot significantly disturb our experimental scenarios.

After characterizing of the radio frequency environment, we consider two scenarios,
with and without the DSA. In the first scenario, the SUs are disturbed by OFDM
transmitter, i.e PU. The SUs exchange 7519 packets following the IEEE 802.15.4

149



Chapter 6. Cognitive Wireless Sensor Network based on IEEE 802.15.4

 0

 10

 20

 30

 40

 50

868 MHz 915 MHz 8.5e+08  9.5e+08

P
o

w
e

r 
(d

B
)

Carrier frequency

Spectrum sensing of frequency band from 850 to 950

Power

Figure 6.8: Spectrum Sensing of frequency band 850 MHz to 950 MHz

standard, i.e data packets, where 50 ms is the inter-packet generation time. A
disturbance is triggered at different frequencies that are around the carrier frequency
of SUs. In the second scenario, the SU performs a dynamic frequency selection. Thus,
the robustness of the dynamic frequency selection is measured using Packet Success
Rate (PSR) and Packet Received Rate (PRR) parameters.

We consider in the first scenario that the couple of SU communicates in channel
26 (carrier frequency is 2480 MHz). The Tx generates a data stream of 1 MB and
splits it into packets. Each packet has a size of 133 bytes. The data rate between Tx,
and Rx is fixed to 250 kb/s (note that this rate is the same as the OQPSK PHY).
In addition, we placed the transmitter USRP near the USRP receiver. However,
software amplifier DAC and software gain UHDG have low values equal to 0.4 and
40 dB, respectively. For amplifying the baseband signal, the constant float value
DAC is multiplied by the two signal components: In and Quadrature-phase. The
UHDG is a relative gain fixed in the block of a USRP sink.

The disturbance (or the OFDM PU) generates an OFDM data stream in frequen-
cies close to that of the SU. In fact, in an interval of 2 MHz, from 2479 MHz to 2481
MHz, the OFDM signal is triggered and sweeps this interval by a step of 0.1 MHz.
Figure 6.9 shows the obtained Packet Success Rate (PSR) and Packet Received Rate
(PRR) calculated using the Cyclic Redundancy Check (CRC). The PRR is calculated
in the case when packets are received but with a wrong CRC. Obviously, the PSR
drop to 0 when the spectral distance between PU and SU is lower than 0.3 MHz.
Indeed, the PSR and the PRR are low since the SU Tx cannot detect the PU Tx.

The second scenario proceeds like the first one but the SU adopts DSA to avoid
PU disturbance. DSA is started by SU Rx, which continually senses frequency band
from 2400 MHz to 2480 MHz and the central frequency 868 MHz. Each carrier

150



151

 0

 20

 40

 60

 80

 100

-1 -0,9 -0,8 -0,7 -0,6 -0,5 -0,3 -0,2 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

%

Spectral frequency distance between OFDM transmitter and Secondary users (MHz)

Packet Success Rate (PSR) and Packet Receive Rate (PRR)
 Secondary users communicate without DSA

PSR
PRR

Figure 6.9: Packet Success Rate (PSR) and Packet Received Rate (PRR) function of
spectrum distance between PU and SU without DSA.

frequency is characterized by an energy level. Thus, the selected one is that with a
minimum energy level. It is communicated to SU Tx following algorithms 5 and 6.
After that, SU Tx starts data transmission. The OFDM disturbance (or PU role) is
triggered for the selected frequency, meanwhile the SU Rx continually senses new
bandwidth chunks. The size of each chunk is equal to 3 MHz for the two frequency
bands 2450 MHz and 868/915 MHz. Then, the SU Rx selects a new carrier frequency
according to the lower energy sensed (see Section 4.2). In the experiment, time
period needed for every chunk is 1800 ms. Thus, a number of data packets are
dropped during spectrum sensing.

Figure 6.10 shows that PSR and PRR fall approximately by 20%, when PU is
at spectral distance of 0.3 MHz. In fact, this packet loss results in an extra time
required for spectrum sensing and for frequency selection. Obviously, this extra time
depends on the spectrum sensing parameters (see Table 6.1). The time to sense a
band of 1 MHz is around 600 ms using previous parameters. In addition, when SU
Rx selects 868 MHz, the modulation change to BPSK and bit rate decreases from
250 kbps to 20/40 kbps.

With DSA, SU improves the PSR by 80% compared to a classical transmission over
a static channel. This result depends on the spectrum sensor and the SU experimental
parameters. In fact, this percentage can be improved if SU Tx increases inter-packet
generation time, and SU Rx reduces the time to sense spectrum bandwidth.

151



Chapter 6. Cognitive Wireless Sensor Network based on IEEE 802.15.4

 0

 20

 40

 60

 80

 100

-1 -0,9 -0,8 -0,7 -0,6 -0,5 -0,3 -0,2 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

%

Spectral frequency distance between OFDM transmitter and Secondary users (MHz)

Packet Success Rate (PSR) and Packet Receive Rate (PRR)
 Secondary users communicate with DSA

PSR
PRR

Figure 6.10: Packet Success Rate (PSR) and Packet Received Rate (PRR) function
of spectrum distance between PU and SU with DSA.

6 Summary

In this chapter we have proposed a new dynamic spectrum access using an energy-
detector based spectrum sensing. Implemented on the GNU Radio, the DSA has been
performed throughout two frequency bands 868/915 MHz and 2450 MHz of the IEEE
802.15.4 standard. The two realized SDR presented in the previous chapter have
been combined. In fact, communication chains of BPSK, OQPSK, GMSK and energ
detector receiver/transmitter have been assembled in one SDR. A message based
algorithm has been developed to synchronize frequency selection. It coordinates the
reconfigurability of transmitter/receiver chains. It loads online a corresponding chain
to the frequency band of a selected carrier frequency.

Under a real packet transmission and in indoor environment conditions, we
showed the usefulness of the developed DSA. We improved the PSR by 80% when
using DSA rather than a static frequency selection, despite the extra time needed
for spectrum sensing and carrier frequency selection.

152



Chapter 7

Conclusions and Future Work

The duty of the man who investigates

the writings of scientists, if learning the truth is his goal, is to make

himself an enemy of all that he reads, and, applying his mind to the

core and margins of its content, attack it from every side. He should

also suspect himself as he performs his critical examination of it, so

that he may avoid falling into either prejudice or leniency

Ibn al-Haytham "Alhazen"

Contents
1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

1 Conclusions

WSNs are an emergent technology with their diverse applications such as in smart
metering and environment monitoring. Some industrial companies invest to replace
wired sensors by wireless ones. Such replacement require reliable WSNs. This
reliability is influenced by the coexistence of other wireless technologies in the same
frequency band within the same geographical area. Commonly, these frequency
bands are defined by standard organizations. It is the case of the IEEE 802.15.4
standard. The latter defines a number of the PHY layers corresponding to dedicated
frequency bands, nevertheless, its implementation in Hardware is not reconfigurable.
Thanks to SDR, it is possible to implement these PHY layers in software.

The SDR is a new way to define and manipulate radio communication components
in software. The reconfigurability is the most important feature of an SDR. It allows
engineer and researcher to implement radio standards and wireless technologies with
a maximum flexibility. It is possible to easily update radio parameters. The frequency
band and the modulation are the parameters of the WSNs PHY layer we want to



Chapter 7. Conclusions and Future Work

address in this thesis. Cognitive radio is based on SDR. It deals with frequency
scarcity problem using essentially DSA and spectrum sensing.

This thesis mainly focused on a SDR solution for WSN based on the IEEE 802.15.4
standard. The main contribution presented in this thesis is: the characterization
of an SDR platform that implements both standardized PHY layers and cognitive
radio for WSNs.

All of our works tried to answer to three main challenges:

• If we select GNU Radio and USRP platform to implement standardized PHY
layer, what is its characteristics in software and hardware?

• How to implement the two PHY layers for the two frequency bands 2450 MHz
and 868/915 MHz.

• How to realize cognitive WSN based on the IEEE 802.15.4 standard?

The first challenge led us to a theoretical study of different architectures, standards
and platforms of SDR (see Chapter 2). We focused on existing proposed SDR for
embedded devices. We suggested two classifications of existing architectures: based
on GPP and based on reconfigurable hardware. We found in the state of the art that
GPP based architecture brings more facility compared to reconfigurable hardware
architectures. An SDR platform based on GPP allows a radio designer to quickly
implement an SDR. These implementations are also cheaper using open-source high
level programming languages. These advantages were our arguments for selecting
the GNU Radio and USRP SDR platform.

The difficulty discovered in the GNU Radio is the lack of rigor in program source-
code and frequent upgrading of software design. The software architecture was
analyzed and described in Chapter 3. An implementation (or prototyping) based on
GNU Radio is a model of flow graph of blocks. The blocks are primarily developed
in C++ and they are connected through Python script. Although the design of
the GNU Radio is object oriented, the designer needs more time to understand
the class organization. Some other properties of flow graph execution were shown,
especially the scheduler and SIMD programming. We identified the presence of
buffers between OS kernel and executed flow graphs. These buffers can be a source
of delayed processing time. It is important to estimate processing time of each block
via ControlPort and performance counters tools.

The USRP hardware was detailed through a chosen general architecture for
different USRP versions. FPGA of a given USRP is irreplaceable. It accomplishes
high-speed general-purpose operations. Daughter boards are also important since they
define the radio-frequency front end. We explored the GNU Radio USRP throughout
real wireless communications and simulations. We discovered the difficulty to
estimate effectively an SNR of a BPSK modulation/demodulation (see Chapter
4). The obtained SNR values in SDR communications were not coherent with the

154



155

expected ones. This result adds to the lack of effective information about daughter
boards led us to perform a deep analysis of their performances.

Our analysis of the output power and radio-frequency bandwidth of daughter
boards was the first research work found in the literature (see Chapter 4). These
parameters were characterized through a thorough experimental approach. The
analyzed daughter boards were the RFX 2400, RFX 900, SBX and the MIMO USRP
B210. The frequency bandwidths of the RFX 2400 and RFX 900 cover, respectively,
only 24% and 18 % compared to the advertised bandwidths. The overall output
power of these two boards behaves linear with a better linearity for RFX 2400. In
contrast, SBX daughter boards and B210 effectively cover the announced frequency
bandwidth by Ettus Research [37]. Nevertheless, the output power of these two
boards is found to decrease with increasing carrier frequency. Another result of
our experiments was the characterization of the impact of signal amplifiers used in
GNU Radio flow graphs. The UHDG and DAC parameters are valuable parameters
and their modification has to be done with care. A simple empirical model was
introduced to accurately predict the average of output power of an SBX daughter
board. These results are useful for developing new implementations of SDRs based
on GNU Radio USRP.

We implemented a new possible IEEE 802.15.4 PHY layer for the frequency band
868/915 MHz. It was a result of a performed reverse engineering process of another
implementation for the frequency band of 2450 MHz. We thoroughly described the
PHY layer flow graphs from data packets generation up to their transmission in a
baseband signal and vice versa. The D-BPSK modulation and demodulation were
constructed using a set of signal-processing blocks (see Chapter 5). A new block for
packet decoding was included to the GNU Radio platform. This block includes DSSS
based on new PN sequences compared to those for the 2450 MHz. The implemented
flow graphs were tested through real wireless communications. Furthermore, we
ensured wireless packet exchange between these flow graphs and sensor nodes. We
measured two different parameters for one-to-one SDR communications: the PSR
and BER. We found that the PSR depends on the packet size for the PHY layer
of the 2450 MHz frequency band. The BER was obtained in relation with the
input SNR (dB) for the new PHY layer. Some synchronization problems were
encountered to decode packets. The cause of this problem was identified as the
unbalanced processing time of blocks and the size of transmitted packets. To avoid
such problem, the programming should be similar to that on embedded devices by
avoiding unnecessary instructions. Our solution was based on increasing the packets’
size. Despite this synchronization problem, the two PHY layers were functional to
be combined and to be reconfigured for cognitive radio.

We proposed new Dynamic Spectrum Access based on implemented IEEE 802.15.4
PHY layers (see Chapter 6). This proposal is one of the most important step towards
developing Cognitive Wireless Sensor Netwrok. The WSN was defined as SU of the
2450 MHz and 868 MHz frequency bands. The wireless technologies sharing these

155



Chapter 7. Conclusions and Future Work

bands were considered as PUs. We assembled the two implemented PHY layers to
cover their corresponding frequency bands. We also added two other flow graphs for:
spectrum sensing based energy detector and GMSK modulator/demodulator. The
energy detector was performed only by the receiver. It sweeps the two frequency
bands before the selection of a central frequency. A frequency is selected if it receives
minimum energy power among all examined frequencies. The synchronization of
DSA was ensured by a message based algorithm. The latter also coordinate the
reconfigurability of transmitter and receiver flow graphs. Our DSA was experienced
through real packet transmissions within indoor environment conditions. We found
that despite an extra needed time for sensing, our DSA improves the PSR by 80%
compared to the obtained one by a static frequency selection,

2 Future Work

The obtained results of RF measurements on USRPs are useful for future implemen-
tations on GNU Radio USRP SDR. Other applications can use the characterized
daughter boards. For some applications, the output power for each central frequency
can be used to develop effective localization algorithms. The proposed empirical
model for SBX daughter boards can be implemented within GNU Radio block. Flow
graphs can use this block to calibrate in software the output power from USRPs.
The measurement results can also be a benchmark for the research community. In
particular, when researchers work on a remote USRP platform, such as CortexLab 1.
Furthermore, our work can be extended to characterize the behavior of USRPs using
as an input a wide-band signal, e.g. an OFDM signal.

The IEEE 802.15.4 standard is still the de-facto standard for WSNs. Future
improvements could be done on the proposed implementations. We draw up three
precise extensions:

• It is interesting to estimate the processing time of each flow graph’s block.
This estimation allows us to synchronize a transmitter and receiver with less
difficulty.

• For the proposed PHY layer (868/915 MHz), the tests can be extended by
exchanging packets with hardware transceivers, such as ZigBit transceivers
[120].

• Other PHY layers can be explored (see Table 5.1 in Chapter 5). The Differential
QPSK modulation with a Chirp Spread Spectrum (CSS) can be good candidates
to implement, especially when we know that the possible data rate is equal to
1Mb/s .

1http://www.cortexlab.fr/

156



157

Our DSA can be extended by improving spectrum sensing and the frequency selec-
tion condition. The ideal extension of our DSA is to use a wide range of a frequency
band. In our research works, we were able to cover with one USRP 1 two different
frequency bands. It was possible thanks to SBX daughter boards. One important
difficulty comes from antenna levels using two different transmitters. Furthermore,
spectrum sensing could be distributed by sensing in each transmitter/receiver as well
as sharing information about spectrum state. The frequency can also be selected
using networks requirements, such as data rate and data priority.

In the literature the concept of Cognitive Radio is active with several theoretical
solutions. It is more efficient to think about the real realization of these solutions
before their theoretical formulation. Our experience through SDR implementations
brought us more comprehension of wireless networks and digital signal processing
particularities. For further works on cognitive radio, we are able to use the accumulate
knowledge of our thesis experience.

Finally, the Internet of Things (IoT) is an interesting application of WSN. The
IEEE 802.11 ah [121] is a new standard for low power wireless networks for IoT. It
addresses the network lifetime which is the most important limitation of WSN. It
also promotes a high data rate compared to the last release of IEEE 802.15.4 (version
802.15.4e). The ISM frequency band from 902 MHz to 928 MHz was specified again.
Thus, it also overlaps with other radio technologies. We think that Software Defined
Radios might be useful for IoT communications under the scarcity of the spectrum.

157





Glossaries

Acronyms

ADC

Analog to Digital Converter . 48, 49, 53, 61

ADRES

Architecture for Dynamically Reconfigurable Embedded Systems. 58

ADS

Accès Dynamique au Spectre. 5–7, 16–19

ADS-B

Automatic Dependent Surveillance-Broadcast. 62, 84

AMD

Advanced Micro Devices. 54

ARM

Acron RISC Machine. 57, 58

ARQ

Automatique Repeat reQuest. 16

ASIC

Application Specific Integrated Circuit. 7, 48, 53, 54, 59, 60

ASIP

Application-Specific Instruction-set Processor . 58–60

AWGN

Additive White Gaussian Noise. 86

BER

Bit Error Rate. 11, 12, 23, 84, 85, 88, 89

BPSK

Binary Phase-Shift Keying. 11, 12, 15, 39, 84, 85, 92, 95



Acronyms

CORBA

Common Object Request Broker Architecture. 8, 52–54, 166,
— Glossary: CORBA

CR

Cognitive Radio. 35

CRC

Cyclic Redundancy Check. 119

CSS

Chirp Spread Spectrum. 19

D-BPSK

Differential-Phase Shift Keying. 14, 15

D-QPSK

Differential-Quadtrature Phase Shift Keying . 19

DAC

Digital to Analog Converter . 48, 50, 53, 61

DDC

Digital Down Conversion. 49, 61

DSA

Dynamic Spectrum Access. 28, 139, 140, 142–144, 149–152

DSP

Digital Signal Processor . 7, 8, 29, 41, 48, 49, 52–54, 56–61

DSSS

Direct Sequence Spread Spectrum. 14

DUC

Digital Up Converter . 50

ETSI

European Telecommunication Standards Institute. 54, 55

FCC

Federal Communication Commission. 35

160



161

FFT

Fast Fourier Transform. 16, 17, 67, 70, 84

FI

Fréquence Intermédiaire . 7–9

FIR

Finite Input Response. 49, 70,
— Glossary: FIR

FPGA

Field Programmable Gate Array. 7, 8, 10, 11, 48, 49, 52–54, 56–60, 67

git

Git. 67,
— Glossary: git

GMSK

Gaussian Minimum Shift Keying. 16–18, 144–147, 152

GPL

General Public License. 40

GPMC

Group Policy Managment Console. 73

GPP

General Purpose Processor . 6–11, 18, 41, 48, 52, 53, 56, 57, 59, 61, 66

GPS

Global Positioning System. 98

GPSDO

GPS Disciplined Oscillator . 91

GUI

Graphical User Interface. 70

HDTV

Hight Definition Television. 62

161



Acronyms

Hw

Hardware. 88

IEEE

Institute of Electrical and Electronics Engineers. 32, 37

IETF

Internet Engineering Task Force. 32, 37

IF

Intermediate Frequency. 48–50, 52, 53

IP

Intellectual Propriety. 57

ISM

Industrial Scientific Medical. 6, 12, 15, 39, 42, 90, 93, 97, 98

ITU

International Telecommunication Union. 32, 35, 37

JTRS

Joint Tactical Radio Systems. 40, 53,
— Glossary: JTRS

LR-WPAN

Low-rate Wireless Personal Area Network. 37, 114, 115

LTE-A

Long Term Evolution-Advanced . 103

MAC

Medium Access Control. 37, 42

MFB

Matched Filter Bound. 89, 90

MIMO

Multiple-Input and Multiple-Output. 91

MPSoC

Multi Processors System on Chips. 56

162



163

MSPS

Mega Samples Per Second. 62, 91

O-QPSK

Offset-Quadtrature Phase Shift Keying. 6, 14, 114, 116

OFDM

Orthogonal Frequency-Division Multiplexing. 16, 17, 103

OMAP

Open Multimedia Applications Platform. 73

OMG

Object Management Group. 53, 166

OS

Operating System. 53

OSI

Open Systems Interconnection. 37

OSSIE

Open Source SCA Implementation::Embedded. 22, 54

PAs

Pseudo Aléatoires. 14

PCIe

Peripheral Component Interconnect express. 73, 74

PHY

PHYsique. 5–7, 14, 18, 19

ppm

parts per million. 91

PRR

Packet Received Rate. 17, 150

PSR

Packet Success Rate . 15–17, 19, 150

163



Acronyms

QAM

Quadrature Amplitude Modulation. 39

RAM

Random-Access Memory. 53

RCSFs

Réseaux de Capteurs Sans Fils. 5

RF

Radio Frequency. 35

RISC

Reduced Instruction Set Computing. 58

RL

Radio Logicielle. 5–9

RMS

Root Mean Square. 100

RRS

Reconfigurable Radio System. 8, 54, 55

RSSI

Received Signal Strength Indication. 38

Rx

Receiver . 21, 47–49, 114

SCA

Software Communication Architecture. 8, 51, 52, 54

SDR

Software Defined Radio. 29, 33, 35, 48, 51–57, 59, 61, 63

SIMD

Single Instruction Multiple Data. 10, 18, 60

SNR

Signal-to-Noise Ratio. 11, 23, 84–86, 88–90

164



165

SoC

System-on-Chip. 48

SWIG

Simplified Wrapper and Interface Generator . 67

THD

Total Harmonic Distortion. 13, 100, 109, 111

Tx

Transmitter . 48, 104, 111, 114

UHD

USRP Hardware Driver . 11, 92, 100, 110, 111

UPs

Utilisateurs Primaires. 16

US

Utilisateur Secondaire. 16

USRP

Universal Software Radio Peripheral. 6–18, 41, 52, 55, 56, 61, 62, 66, 67, 73,
80

UWB

Ultra Wide Band. 115

VHDL

Very high speed integrated circuit Hardware Description Language. 8, 57, 58,
60

VOLK

Vector Optimazed Libraray of Kernels. 10, 11, 18

WSN

Wireless Sensor Network. 37, 42, 52

XML

EXtensible Markup Language. 67

165



Glossary

Glossary

CORBA

Common Object Request Broker Architecture (CORBA) is an Object
Management Group (OMG) standard designed to facilitate the communi-
cation of systems that are deployed on diverse platforms, where a several
software collaborate on different operating systems. This standard has many
of the same design goals as object-oriented programming: encapsulation and
reuse. 160

FIR

Digital filter that have an impulse response which reaches zero in a finite number
of steps. An FIR filter can be implemented non-recursively by convolving its
impulse response with the time data sequence it is filtering. 161

git

Git is a distributed version control system with data integrity, and support for
distributed, non-linear programming workflows. 161

JTRS

USA Defence Project launched to gather a several military and civilian radio
communications technologies in the same device. 162

166



Bibliography

[1] Rafik Zitouni, Stefan Ataman, Marie Mathian, and Laurent George. “IEEE
802.15.4 transceiver for the 868/915 MHz band using Software Defined Radio”.
In: Proceedings of Wireless Innovation Forum SDR’12 abs/1304.8028 (2012).

(Cited on pages 3, 124, 133, 143, 144).

[2] Rafik Zitouni, Stefan Ataman, and Laurent George. “RF Measurements of
the RFX 900 and RFX 2400 Daughter Boards with the USRP N210 Driven by
the GNU Radio Software”. In: Proceedings of 5ths International Conference

on Cyber-Enabled Distributed Computing and Knowledge Discovery. IEEE,
Oct. 2013, pages 490–494. isbn: 978-0-7695-5106-7.

(Cited on pages 3, 91).

[3] Rafik Zitouni and Stefan Ataman. “An empirical model of the SBX daughter
board output power driven by USRP N210 and GNU Radio based Software
Defined Radio”. In: Proceedings of 12th Multi-Conference on Systems, Signals

and Devices SSD’15. IEEE, Mar. 2015.
(Cited on pages 3, 91).

[4] Rafik Zitouni, Laurent George, and Yacine Abouda. “A Dynamic Spectrum
Access on SDR for IEEE 802.15.4e networks”. In: Proceedings of Wireless

Innovation Forum SDR’15 (Mar. 2015).
(Cited on pages 3, 139).

[5] Rafik Zitouni, Stefan Ataman, Mathian Marie, and Laurent George. “Radio
Frequency Measurements on a SBX Daughter Board using GNU Radio and
USRP N-210”. In: Proceedings of 3rd IEEE International Workshop on

Measurements and Networking 2015. IEEE, Oct. 2015.
(Cited on page 3).

[6] Rafik Zitouni, Stefan Ataman, and Laurent George. “Radio Frequency
Measurements on SBX Daughter Boards using GNU Radio/USRP N-210”.
In: GNU Radio 2015 conference (Aug. 2015).

(Cited on page 3).

[7] J. C. Maxwell. “A Dynamical Theory of the Electromagnetic Field”. In:
Philosophical Transactions of the Royal Society of London 155 (Jan. 1865),
pages 459–512. issn: 0261-0523.

(Cited on page 32).



Bibliography

[8] Claude E. Shannon. “A Mathematical Theory of Communication”. In:
The Bell System Technical Journal 27 (1948), pages 379–423, 623–. url:
http://cm.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf.

(Cited on page 32).

[9] Ntia2015. url: http://www.ntia.doc.gov/ (visited on 04/15/07).
(Cited on page 34).

[10] J. Mitola. “Software radios: Survey, critical evaluation and future direc-
tions”. In: IEEE Aerospace and Electronic Systems Magazine 8.4 (Apr. 1993),
pages 25–36. issn: 0885-8985.

(Cited on pages 35, 44, 48, 66).

[11] J. Mitola. “The software radio architecture”. In: IEEE Communications

Magazine 33.5 (1995). issn: 0163-6804.
(Cited on page 35).

[12] Joseph Mitola. “Software Radio”. In: Wiley Encyclopedia of Telecommunica-

tions. John Wiley & Sons, Inc., 2003. isbn: 9780471219286.
(Cited on page 35).

[13] Definitions of Software Defined Radio (SDR) and Cognitive Radio System

(CRS). 2009. url: http://www.itu.int/pub/R-REP-SM.2152-2009 (visited
on 04/14/30).

(Cited on page 35).

[14] Topic 8: Cognitive Radio for Public Safety. 2003. url: http://transition.

fcc.gov/pshs/techtopics/techtopic8.html (visited on 04/14/30).
(Cited on page 35).

[15] S. Haykin. “Cognitive radio: brain-empowered wireless communications”.
In: IEEE Journal on Selected Areas in Communications 23 (2005). issn:
0733-8716.

(Cited on pages 35, 140, 141).

[16] H. Harada, Y.D. Alemseged, and O. Holland. IEEE Dynamic Spectrum Access

Networks (DYSPAN) standards committee. 2011.
(Cited on page 36).

168



169

[17] I Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. “Wireless sensor
networks: a survey”. In: Computer Networks 38 (2002), pages 393–422. issn:
13891286. arXiv: 1004.3164.

(Cited on page 37).

[18] Andrew Tanenbaum. “Computer Networks”. In: (Aug. 2002). url: http:

//dl.acm.org/citation.cfm?id=572404.
(Cited on page 37).

[19] IEEE. IEEE Standard for Local and metropolitan area networks, Part 15.4:

Low-Rate Wireless Personal Area Networks. 2003.
(Cited on pages 37, 115, 120, 122).

[20] IEEE. IEEE Standard for Local and metropolitan area networks, Part 15.4:

Low-Rate Wireless Personal Area Networks. 2011. isbn: 9780738166834.
(Cited on pages 37, 115, 120, 140, 142, 143).

[21] Myung Lee et al. “IEEE 802.15.5 WPAN mesh standard-low rate part: Meshing
the wireless sensor networks”. English. In: IEEE Journal on Selected Areas

in Communications 28.7 (Sept. 2010), pages 973–983. issn: 0733-8716. url:
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=5555922.

(Cited on page 37).

[22] Deji Chen, Mark Nixon, and Aloysius Mok. WirelessHART™. Boston, MA:
Springer US, 2010. isbn: 978-1-4419-6046-7. url: http://www.springerlink.

com/index/10.1007/978-1-4419-6047-4.
(Cited on page 37).

[23] ISA | The International Society of Automation. url: https://www.isa.org/

(visited on 05/15/17).
(Cited on page 37).

[24] Zach Shelby and Carsten Bormann. 6LoWPAN: The Wireless Embedded

Internet. John Wiley & Sons, 2011, page 244. isbn: 1119965349. url: https:

//books.google.com/books?hl=en\&lr=\&id=3Nm7ZCxscMQC\&pgis=1.
(Cited on pages 37, 41).

[25] Nikolaos A Pantazis, Stefanos A Nikolidakis, Dimitrios D Vergados, and
Senior Member. “Energy-Ef fi cient Routing Protocols in Wireless Sensor
Networks : A Survey”. In: IEEE Communications Surveys & Tutorials 15.2
(2013), pages 551–591. issn: 1553-877X.

(Cited on page 38).

169



Bibliography

[26] Mert Bal and Hamada Ghenniwa. “Localization in cooperative Wireless
Sensor Networks: A review”. English. In: 2009 13th International Con-

ference on Computer Supported Cooperative Work in Design. IEEE, 2009,
pages 438–443. isbn: 978-1-4244-3534-0. url: http://ieeexplore.ieee.

org/articleDetails.jsp?arnumber=4968098.
(Cited on page 38).

[27] Reinhard German Falko Dressler Feng Chen Isabel Dietrich. “An Energy
Model for Simulation Studies of Wireless Sensor Networks using OMNeT++”.
In: ().

(Cited on page 38).

[28] Nouha Sghaier et al. “Wireless Sensor Networks for medical care services”.
In: 2011 7th International Wireless Communications and Mobile Computing

Conference. IEEE, July 2011, pages 571–576. isbn: 978-1-4244-9539-9. url:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=

5982596.
(Cited on page 38).

[29] Fotis Foukalas, Vangelis Gazis, and Nancy Alonistioti. “Cross-layer design
proposals for wireless mobile networks: A survey and taxonomy”. English. In:
IEEE Communications Surveys & Tutorials 10.1 (2008), pages 70–85. issn:
1553-877X. url: http://ieeexplore.ieee.org/articleDetails.jsp?

arnumber=4483671.
(Cited on page 38).

[30] Cris dos Remedios. The Value Of Fundamental Research. Technical re-
port. Sydney: The University of Sydney, 2006. url: http://iupab.org/

publications/value-of-fundamental-research/.
(Cited on page 39).

[31] Why we need standards. url: http://www.etsi.org/standards/why-we-

need-standards (visited on 06/14/19).
(Cited on page 39).

[32] Gnuradio.org. Gnu Radio. url: http://gnuradio.org/redmine/projects/

gnuradio/wiki (visited on 2011).
(Cited on pages 40, 62).

[33] Premium Market Research Reports and Industry Analysis | ASDReports. url:
https://www.asdreports.com/ (visited on 05/15/18).

(Cited on page 40).

170



171

[34] “First Steps in Receiving Digital Information with RDS/TMC”. en. In: ().
url: https://fosdem.org/2015/schedule/event/sdr\_rds\_tmc/.

(Cited on page 40).

[35] Free Software on the final frontier: GNU Radio controls the ISEE-3 Spacecraft

— Free Software Foundation — working together for free software. url:
https://www.fsf.org/blogs/community/free-software-in-space-gnu-

radio-and-the-isee-3-spacecraft (visited on 05/15/26).
(Cited on page 40).

[36] Guy Gugliotta. “An Air-Traffic Upgrade to Improve Travel by Plane”. In:
The New York Times (2009). url: http://www.nytimes.com/2009/11/17/

science/17air.html?ref=science\&pagewanted=all.
(Cited on page 40).

[37] ettus.com. Ettus Research - Home. 2010. url: http://home.ettus.com/

(visited on 06/14/16).
(Cited on pages 41, 42, 52, 56, 58, 62, 63, 72, 74, 75, 76, 90, 91, 93, 97, 98,

144, 155).

[38] Thomas Schmid. “Gnu radio 802.15. 4 en-and decoding”. In: Networked &

Embedded Systems Laboratory, UCLA, . . . (). url: http://citeseerx.ist.

psu.edu/viewdoc/download?year={2006}.
(Cited on pages 42, 45, 114, 116, 117, 121, 132, 144).

[39] Leslie Choong. Multi-Channel IEEE 802.15.4 Packet Capture Using Software

Defined Radio. Technical report. University of California, Los Angeles, 2009.
(Cited on pages 42, 117, 143).

[40] Bastian Bloessl, Christoph Leitner, Falko Dressler, and Christoph Sommer.
“A GNU Radio-based IEEE 802.15.4 Testbed”. In: 12. GI/ITG KuVS

Fachgespräch Drahtlose Sensornetze (FGSN 2013). Cottbus, Germany, 2013,
pages 37–40.

(Cited on pages 42, 117, 121, 143).

[41] Nam-Jin Oh, Sang-Gug Lee, and Jinho Ko. “A CMOS 868/915 MHz direct
conversion. ZigBee single-chip radio”. English. In: IEEE Communications

Magazine 43.12 (Dec. 2005), pages 100–109. issn: 0163-6804. url: http:

//ieeexplore.ieee.org/articleDetails.jsp?arnumber=1561914.
(Cited on pages 42, 116, 117).

171



Bibliography

[42] C. J. Chiang, Y. M. Gottlieb, and R. Chadha. “GNU Radio-Based Digital
Communications: Computational Analysis of a GMSK Transceiver”. English.
In: 2011 IEEE Global Telecommunications Conference - GLOBECOM 2011.
IEEE, Dec. 2011, pages 1–6. isbn: 978-1-4244-9268-8. url: http : / /

ieeexplore.ieee.org/articleDetails.jsp?arnumber=6133692.
(Cited on pages 44, 70).

[43] Thomas W. Rondeau, Timothy O’Shea, and Nathan Goergen. “Inspecting
GNU radio applications with controlport and performance counters”. In:
Proceedings of the second workshop on Software radio implementation forum -

SRIF ’13. New York, New York, USA: ACM Press, Aug. 2013, page 65. isbn:
9781450321815. url: http://dl.acm.org/citation.cfm?id=2491246.

2491259.
(Cited on pages 45, 78, 79).

[44] Muhammad Imran Taj. “Network on chip based multiprocessor system on
chip for wireless software defined cognitive radio”. PhD thesis. Sept. 2011.
url: http://www.theses.fr/2011PEST1050.

(Cited on pages 48, 51, 53, 54).

[45] Rodger H. Hosking. Software Defined Radio Handbook. Pentek. 2012. url:
http://www.pentek.com.

(Cited on pages 49, 50, 57).

[46] Software Communications Architecture Specifications. Technical report. JTRS
Standard, 2006. url: http://jtrs.spawar.navy.mil/sca.

(Cited on pages 51, 52, 53).

[47] Matthew D. Sunderland. “SOFTWARE-DEFINED RADIO INTEROPER-
ABILITY WITH FREQUENCY HOPPING WAVEFORMS”. PhD thesis.
The Pennsylvania State University, 2010.

(Cited on page 51).

[48] Bruce A. Fette and Bruce Fette. “Cognitive Radio Technology (Communica-
tions Engineering)”. In: (Aug. 2006). url: http://dl.acm.org/citation.

cfm?id=1211272.
(Cited on page 53).

[49] Software Communications Architecture Specifications. Technical report. JTRS
Standard, 2010. url: http://jtrs.spawar.navy.mil/sca.

(Cited on page 54).

172



173

[50] Jason Snyder. “OSSIE: an open source software defined radio (SDR) toolset
for education and research (abstract only).” In: SIGCSE. Edited by Laurie
A. Smith King, David R. Musicant, Tracy Camp, and Paul T. Tymann. ACM,
2012, page 672. isbn: 978-1-4503-1098-7.

(Cited on page 54).

[51] Markus Mueck et al. “ETSI reconfigurable radio systems: Status and future
directions on software defined radio and cognitive radio standards”. In: IEEE

Communications Magazine 48 (2010), pages 78–86. issn: 01636804.
(Cited on pages 54, 55).

[52] Kun Tan et al. “Sora”. In: Communications of the ACM 54.1 (Jan. 2011),
page 99. issn: 00010782. url: http://dl.acm.org/ft\_gateway.cfm?id=

1866760\&type=html.
(Cited on page 56).

[53] Yuan Lin, Manjunath Kudlur, Scott Mahlke, and Trevor Mudge. “Hierarchical
coarse-grained stream compilation for software defined radio”. In: Proceedings

of the 2007 international conference on Compilers, architecture, and synthesis

for embedded systems - CASES ’07. New York, New York, USA: ACM Press,
Sept. 2007, page 115. isbn: 9781595938268.

(Cited on page 56).

[54] Creating High-performance SDR Architectures. url: http : / / www .

microwavejournal.com/articles/7198- creating- high- performance-

sdr-architectures (visited on 06/14/19).
(Cited on page 56).

[55] CCCP: Coarse-Grained Reconfigurable Architecture. url: http://cccp.eecs.

umich.edu/research/cgra.php (visited on 06/14/19).
(Cited on page 57).

[56] Omer Anjum et al. State of the art baseband DSP platforms for Software

Defined Radio: A survey. 2011.
(Cited on pages 57, 59, 60, 90).

[57] Mickaël Dardaillon, Kevin Marquet, Tanguy Risset, and Antoine Scherrer.
“Software Defined Radio Architecture Survey for Cognitive Testbeds”. In:
(Sept. 2013). arXiv: 1309.6466.

(Cited on page 57).

173



Bibliography

[58] QuickSilver. url: http://www.srl-llc.com/ (visited on 06/14/27).
(Cited on page 58).

[59] Sora: High Performance Software Radio Using General Purpose Multi-core

Processors - Microsoft Research. url: http://research.microsoft.com/

apps/pubs/default.aspx?id=79927 (visited on 06/14/23).
(Cited on pages 58, 63).

[60] rtl-sdr.com - A blog about software defined radio and in particular the

RTL2832U RTL-SDR radio. url: http://www.rtl- sdr.com/ (visited
on 07/14/09).

(Cited on page 58).

[61] SDR4All | Alcatel-Lucent Chair on Flexible Radio. url: http : / / www .

flexible-radio.com/sdr4all (visited on 06/14/23).
(Cited on page 58).

[62] Dake Liu, Anders Nilsson, Eric Tell, Di Wu, and Johan Eilert. “Bridging
dream and reality: Programmable baseband processors for software-defined
radio”. In: IEEE Communications Magazine 47 (2009), pages 134–140. issn:
01636804.

(Cited on page 59).

[63] Yuan Lin et al. “SODA: A high-performance DSP architecture for software-
defined radio”. In: IEEE Micro 27 (2007), pages 114–123. issn: 02721732.

(Cited on page 59).

[64] Great Scott Gadgets HackRF One. url: http://greatscottgadgets.com/

hackrf/ (visited on 07/14/15).
(Cited on pages 62, 63).

[65] ZeptoSDR | Nutaq. url: http://nutaq.com/en/products/zeptosdr

(visited on 07/14/15).
(Cited on page 62).

[66] SDR4All | Alcatel-Lucent Chair on Flexible Radio. url: http : / / www .

flexible-radio.com/sdr4all (visited on 06/14/23).
(Cited on page 63).

[67] Front | iQuadLabs, LLC. url: https://iquadlabs.com/index.php (visited
on 06/14/23).

(Cited on page 63).

174



175

[68] RDP-100. url: http://www.solenet.net/products/software-defined-

radio-platform.html (visited on 06/14/23).
(Cited on page 63).

[69] Nuand | bladeRF Software Defined Radio. url: http://www.nuand.com/

(visited on 06/14/23).
(Cited on page 63).

[70] Bitshark Express RX | Epiq Solutions. url: http://www.epiqsolutions.

com/express-rx/ (visited on 06/14/23).
(Cited on page 63).

[71] FlexRadio Systems. url: http : / / www . flexradio . com/ (visited on
06/14/23).

(Cited on page 63).

[72] Matchstiq | Epiq Solutions. url: http : / / www . epiqsolutions . com /

matchstiq/ (visited on 06/14/23).
(Cited on page 63).

[73] Radio définie par logiciel NI FlexRIO - National Instruments. url: http:

//sine.ni.com/nips/cds/view/p/lang/fr/nid/211407 (visited on
06/14/23).

(Cited on page 63).

[74] Eric Blossom. “GNU radio: tools for exploring the radio frequency spectrum”.
In: Linux journal 2004 (2004), page 4. issn: 1075-3583.

(Cited on page 66).

[75] GNU Radio 3.7.1 C++ API: QT Graphical User Interface. url: http:

//gnuradio.org/doc/doxygen- 3.7.1/page\_qtgui.html (visited on
12/14/02).

(Cited on page 67).

[76] GNU Radio Manual and C++ API Reference: Class Hierarchy. url: http:

//gnuradio.org/doc/doxygen/inherits.html (visited on 12/14/03).
(Cited on page 68).

[77] Zynq - GNU Radio - gnuradio.org. url: http://gnuradio.org/redmine/

projects/gnuradio/wiki/Zynq (visited on 12/14/03).
(Cited on page 70).

175



Bibliography

[78] Jesper M. Kristensen. GNU Radio An introduction. Technical report. 2007.
(Cited on page 70).

[79] Nicholas MacCarthy Thomas W. Rondeau and Timothy O’Shea. “SIMD
Programming in GNU Radio: Maintainable and User-Friendly Algorithm
Optimization with VOLK”. In: SDR-WInnComm. Edited by SDR Forum.
Washington, DC, USA, 2013.

(Cited on pages 71, 72).

[80] Minseok KIM. “Prototyping and Evaluation of Software Defined Radio using
GNU Radio-USRP”. In: IEICE technical report 110.153 (July 2010), pages 51–
58. issn: 09135685. url: http://ci.nii.ac.jp/naid/110007889866/en/.

(Cited on page 75).

[81] Nguyen B. Truong, Young-Joo Suh, and Chansu Yu. “Latency Analysis in
GNU Radio/USRP-Based Software Radio Platforms”. English. In: MILCOM

2013 - 2013 IEEE Military Communications Conference. IEEE, Nov. 2013,
pages 305–310. isbn: 978-0-7695-5124-1. url: http://ieeexplore.ieee.

org/articleDetails.jsp?arnumber=6735640.
(Cited on page 76).

[82] Configure Latency in GNU Radio | Nutaq. url: http://nutaq.com/en/

blog/configure-latency-gnu-radio (visited on 12/14/06).
(Cited on page 77).

[83] M Tahir, H Mohamad, N Ramli, and S P W Jarot. “Experimental imple-
mentation of dynamic spectrum access for video transmission using USRP”.
In: International Conference on Computer and Communication Engineering

(ICCCE), 2012. 2012, pages 228–233. isbn: 9781467304795.
(Cited on page 84).

[84] Dien Nguyen Van et al. “A real-time COFDM transmission system based
on the GNU radio”. In: Proceedings of the 8th International Conference on

Ubiquitous Information Management and Communication - ICUIMC ’14. New
York, New York, USA: ACM Press, Jan. 2014, pages 1–5. isbn: 9781450326445.
url: http://dl.acm.org/citation.cfm?id=2557977.2558050.

(Cited on page 84).

[85] T S Rappaport. Wireless Communications: Principles and Practice. Vol-
ume 207. 2002, pages 1–707. isbn: 0130422320.

(Cited on page 85).

176



177

[86] Simon Haykin and Michael Moher. Introduction to Analog and Digital Com-

munications. 2nd edition. Hoboken, NJ: Wiley, 2007. isbn: 0471432229.
url: http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-

20\&path=ASIN/0471432229.
(Cited on pages 85, 86, 95).

[87] Richard Lyons. Understanding Digital Signal Processing (3rd Edition). Pren-
tice Hall, 2010. isbn: 0137027419.

(Cited on page 86).

[88] David R. Pauluzzi and Norman C. Beaulieu. “A comparison of snr estimation
techniques for the awgn channel”. In: IEEE Transactions on Communications

48 (2000), pages 1681–1691. issn: 00906778.
(Cited on pages 86, 89).

[89] GNU Radio - Blog. url: http://www.trondeau.com/blog/tag/snr (visited
on 09/14/09).

(Cited on pages 86, 89).

[90] Matlab. Matlab. Technical report. Matlab. url: http://fr.mathworks.

com/products/matlab/.
(Cited on pages 89, 93).

[91] Steven Corum, Jason D. Bonior, Robert C. Qiu, Nan Guo, and Zhen Hu.
“Evaluation of phase error in a software-defined radio network testbed”.
English. In: 2012 Proceedings of IEEE Southeastcon. IEEE, Mar. 2012,
pages 1–4. isbn: 978-1-4673-1375-9.

(Cited on page 90).

[92] Glenn J. Bradford and J. Nicholas Laneman. “An experimental framework for
the evaluation of cooperative diversity”. In: 2009 43rd Annual Conference on

Information Sciences and Systems. IEEE, Mar. 2009, pages 641–645. isbn: 978-
1-4244-2733-8. url: http://ieeexplore.ieee.org/xpl/articleDetails.

jsp?arnumber=5054797.
(Cited on page 90).

[93] Teledyne LeCroy - Oscilloscope. url: http : / / teledynelecroy . com /

oscilloscope/ (visited on 09/14/01).
(Cited on page 92).

[94] Atem. url: http://www.atem.com/ (visited on 09/14/01).
(Cited on page 92).

177



Bibliography

[95] USRP Hardware Driver and USRP Manual. url: http://files.ettus.

com/manual/ (visited on 09/14/04).
(Cited on page 98).

[96] Analog Devices. ADL5375 Data sheet. Technical report. Analog Devices,
2011.

(Cited on page 98).

[97] IEEE Standard Definitions for the Measurement of Electric Power Quantities

Under Sinusoidal, Nonsinusoidal, Balanced, or Unbalanced Conditions. 2010.
(Cited on page 100).

[98] Alexander Eigeles Emanuel. “Power definitions and the physical mechanism
of power flow”. In: (2010). url: http://cds.cern.ch/record/1611482.

(Cited on page 100).

[99] ANALOG DEVICES -RF Agile Transceiver AD9361. url: http://www.

analog.com/static/imported-files/data\_sheets/AD9361.pdf (visited
on 09/14/08).

(Cited on page 103).

[100] Jose Rodriguez-Pineiro et al. “Experimental validation of ICI-Aware OFDM
receivers under time-varying conditions”. English. In: 2014 IEEE 8th Sensor

Array and Multichannel Signal Processing Workshop (SAM). IEEE, June
2014, pages 341–344. isbn: 978-1-4799-1481-4.

(Cited on page 103).

[101] Umar Saif Kay Römer Adam Dunkels Koen Langendoen Joseph Polastre
Zartash Afzal Uzmi Muneeb Ali Thiemo Voigt. “Medium access control issues
in sensor networks”. In: ().

(Cited on page 115).

[102] Gyanendra Prasad Joshi, Seung Yeob Nam, and Sung Won Kim. Cognitive

radio wireless sensor networks: applications, challenges and research trends.

Volume 13. 2013, pages 11196–228. isbn: 8253810474.
(Cited on pages 115, 142).

[103] Chipcon. “Single-Chip 2.4 GHz IEEE 802.15.4 Compliant and ZigBee(TM)
Ready RF Transceiver”. In: (2006).

(Cited on page 116).

178



179

[104] FrontPage - The Wireshark Wiki. url: https://wiki.wireshark.org/

(visited on 04/15/07).
(Cited on pages 117, 132).

[105] A. Dunkels, B. Gronvall, and T. Voigt. “Contiki - a lightweight and flexible
operating system for tiny networked sensors”. English. In: 29th Annual IEEE

International Conference on Local Computer Networks. IEEE (Comput. Soc.),
pages 455–462. isbn: 0-7695-2260-2. url: http://ieeexplore.ieee.org/

articleDetails.jsp?arnumber=1367266.
(Cited on page 117).

[106] 900 MHz versus 2.4 GHz in long distance radio links -www.afar.net. url:
http://www.afar.net/tutorials/900-mhz-versus-2.4-ghz/ (visited on
06/29/2015).

(Cited on page 117).

[107] J Sabater, J M Gomez, and M Lopez. “Towards an IEEE 802.15.4 SDR
transceiver”. In: Icecs. Ieee, 2010, pages 323–326.

(Cited on page 117).

[108] IEEE Standard for Local and metropolitan area networks–Part 15.4: Low-Rate

Wireless Personal Area Networks (LR-WPANs). 2011.
(Cited on page 118).

[109] G.R. Danesfahani and T.G. Jeans. Optimisation of modified Mueller and

Müller algorithm. 1995.
(Cited on pages 122, 129).

[110] M. Simon and W. Lindsey. “Optimum Performance of Suppressed Carrier
Receivers with Costas Loop Tracking”. In: IEEE Transactions on Communi-

cations 25.2 (1977). issn: 0090-6778.
(Cited on page 129).

[111] AT86RF230. url: http://www.atmel.com/devices/at86rf230.aspx

(visited on 04/15/07).
(Cited on page 132).

[112] TelosB Data Sheet. http://www.sentilla.com/files/pdf/eol/tmote-
skydatasheet. pdf. Sentilla, 2010.

(Cited on page 132).

179



Bibliography

[113] Contiki: The Open Source Operating System for the Internet of Things. url:
http://www.contiki-os.org/ (visited on 04/15/09).

(Cited on page 132).

[114] O. Akan, O. Karli, and O. Ergul. “Cognitive radio sensor networks”. In:
IEEE Network 23 (2009). issn: 0890-8044.

(Cited on page 142).

[115] Qing Zhao and B M Sadler. “A Survey of Dynamic Spectrum Access”. In:
Signal Processing Magazine, IEEE 24 (2007), pages 79–89. issn: 1053-5888.

(Cited on page 143).

[116] Tevfik Yucek and Huseyin Arslan. “A survey of spectrum sensing algorithms
for cognitive radio applications”. English. In: IEEE Communications Surveys

& Tutorials 11.1 (2009), pages 116–130. issn: 1553-877X. url: http://

ieeexplore.ieee.org/articleDetails.jsp?arnumber=4796930.
(Cited on page 143).

[117] H. Ebeid T. O’Shea, T. Clancy. “Practical Signal Detection and Classification
in GNUradio”. In: SDR Forum Technical Conference. 2007.

(Cited on page 143).

[118] Mutsawashe Gahadza, Minseok Kim, and Jun-ichi Takada. Implementation

of a Channel Sounder using GNU Radio Opensource SDR Platform. Technical
report. IEICE, 2009.

(Cited on page 143).

[119] Rozeha A. Rashid et al. “Spectrum Sensing Measurement using GNU Radio
and USRP Software Radio Platform”. In: ICWMC 2011, The Seventh In-

ternational Conference on Wireless and Mobile Communications. June 2011,
pages 237–242. isbn: 978-1-61208-140-3. url: http://www.thinkmind.org/

index.php?view=article\&articleid=icwmc\_2011\_11\_20\_20268.
(Cited on page 143).

[120] Atmel. ZigBit™ 700/800/900 MHz Wireless Modules. Technical report. Atmel.
url: http://www.atmel.com/Images/doc8227.pdf.

(Cited on page 156).

180



181

[121] Evgeny Khorov, Andrey Lyakhov, Alexander Krotov, and Andrey Guschin.
“A survey on IEEE 802.11ah: An enabling networking technology for smart
cities”. In: Computer Communications 58 (Mar. 2015), pages 53–69. issn:
01403664. url: http://www.sciencedirect.com/science/article/pii/

S0140366414002989.
(Cited on page 157).

181


