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Résumé

Le syndrome de détresse respiratoire aiguë (SDRA) présente un taux de mortalité élevé, près de 40%, dans des unités de soins intensifs. Il est défini comme un ensemble de manifestations cliniques, radiologiques et physiologiques qui traduisent une intense inflammation pulmonaire et une hyperperméabilité pulmonaire, correspondant aux différentes agressions aiguës du poumon. Le prise en charge des patients atteints du SDRA nécessite une ventilation assistée qui, en cas de mauvaise adaptation des paramètres de ventilation, notamment, pression et volume, peut aggraver l'état du patient. Le réglage de ces paramètres est basé sur l'analyse de l'aération pulmonaire en réponse à la ventilation assistée. Cette analyse peut être faite sur des images tomodensitométriques (CT en anglais) après y avoir segmenté le parenchyme pulmonaire. Néanmoins, cette segmentation est entravée par l'augmentation de la densité du parenchyme, qui réduit le contraste entre le poumon et les structures voisines. Cette thèse cherche à fournir des outils de traitement d'images qui permettent aux experts l'analyse de l'aération pulmonaire dans des images CT acquises dans le cadre d'un projet sur le SDRA utilisant un modèle animal.

Notre première contribution est une méthodologie de segmentation requérant un seul point défini dans une seule image, pour segmenter les poumons dans toutes les images acquises pour un sujet dans le projet mentionné. La méthode est basée sur les caractéristiques du protocole d'acquisition qui impose, d'une part, l'acquisition d'une image à haute pression et, d'autre part, des changements graduels des paramètres de ventilation utilisés lors de l'acquisitions des images consécutives pour le même sujet. Nous proposons d'abord d'obtenir une segmentation initiale du poumon dans l'image acquise à haute pression où les poumons paraissent sains grâce au fort contraste observé entre le poumon et les structures environnantes. Ensuite, une série de recalages est utilisée pour déformer la segmentation initiale vers les autres images. Le point innovant de cette méthodologie est la génération des masques de mouvement ajustés aux images en question, pour permettre aux processus de recalage de prendre en compte les discontinuités dans la transformation induites par le glissement du poumon contre la paroi thoracique. Les résultats obtenus en utilisant cette méthodologie présentent des valeurs élevées des métriques de chevauchement (Dice moyen de 0.9 et sensibilité moyenne de 0.93) en comparaison avec des segmentations faites par un expert.

Nous proposons une deuxième contribution qui permet d'éliminer -de façon cohérente -les arbres bronchiques des poumons segmentés dans chaque image de la série. Les arbres bronchiques extraits d'images acquises dans des conditions de ventilation distinctes, peuvent présenter des différences topologiques à cause des plusieurs facteurs comme des éventuelles obstructions de petites bronches. Ces différences entre les arbres bronchiques introduisent des erreurs dans des mesures comparatives d'aération entre les images. Visant à réduire ces erreurs, nous proposons une méthode d'appariement des arbres bronchiques capable de trouver une large quantité des correspondances pour des branches aussi bien proximales que distales, entre deux arbres bronchiques du même sujet. Cette méthode utilise une nouvelle fonction de distance qui combine l'information topologique et géométrique. Comparée aux méthodes de l'état de l'art, notre méthode a trouvé une quantité d'appariements corrects significativement plus grande avec une sensibilité supérieure à 0,93 et une précision supérieure à de 0,90.

La troisième contribution prévoit l'utilisation de la segmentation du poumon et du recalage dans des futures études chez l'humain. Par rapport aux études utilisant un modèle animal, les études chez l'humain doivent minimiser l'exposition du patient à la radiation et, par conséquent, réduire le nombre d'acquisitions d'images CT. Cette restriction implique que les paramètres de ventilation des images acquises peuvent différer considérablement, ce qui conduit à des grands déplacements et changements d'intensité à l'intérieur des poumons. Afin de faire face à ces différences et aux régions à forte densité créés par les infiltrations, nous proposons une approche hybride qui combine l'information des niveaux de gris des images avec les appariements obtenues par la méthode d'appariement d'arbres bronchiques. Des expériences préliminaires sur des images appartenant à l'étude animale ont été effectuées et les résultats sont encourageants.

Mots clés: Appariement d'arbres, Quantification de l'aération pulmonaire, Recalage, Segmentation du poumon, Syndrome de Détresse Respiratoire Aiguë, Tomographie computérisée, Ventilation mecanique.

Thése préparée au sein des laboratoires:

Introduction

Le syndrome de détresse respiratoire aiguë (SDRA) présente un taux mortalité élevé au sein des unités de soins intensifs. Son traitement nécessite une assistance respiratoire, qui, en cas de réglage inadapté, peut détériorer l'état du patient. Les protocoles de ventilation recommandés visent à réduire le taux de mortalité, mais idéalement la ventilation mécanique devrait être adaptée à chaque cas particulier. Afin d'adapter cette ventilation, d'examiner l'état du poumon et d'évaluer sa réponse à la ventilation, des images tomodensitométriques (CT en anglais) peuvent être acquises et analysées. Ces images ont l'avantage de fournir des informations sur la concentration de l'air dans chaque voxel. La combinaison de cette information et la distribution spatiale de voxels, peut être utilisée pour calculer la distribution de l'air et sa concentration à l'intérieur du poumon. Par ailleurs, les variations de ces mesures, extraites à partir d'une série d'images acquises pour un même sujet, peuvent fournir des informations primordiales sur le comportement des poumons du sujet dans le temps. Dans le cas du SDRA, ces images peuvent être acquises à différentes conditions de ventilation mécanique. Les changements dans la distribution de l'air et de la concentration entre ces images permettent d'évaluer l'impact de la ventilation sur le poumon. Néanmoins, dans le but d'en extraire et analyser les informations mentionnées, des étapes de pré-traitement d'images sont nécessaires. Dans cette thèse, nous nous intéresons aux deux étapes particulieres de pré-traitement: la segmentation du poumon et l'élimination -de façon cohérente -des arbres bronchiques, dans une série d'images CT d'un même sujet.

Problematique et objectifs

L'extraction et analyse de l'aération pulmonaire de façon rapide et précise peuvent contribuer à réduire le taux de mortalité dans le SDRA. En outre, l'évolution de l'état des poumons peut également être évaluée dans la mesure où un ensemble de données en différents points de temps est disponible. L'extraction de cette information, cependant, nécessite la segmentation du parenchyme pulmonaire, qui peut être définie comme étant la région enveloppée par la plèvre à l'exclusion des structures non-parenchymateuses comme les vaisseaux, les bronches, et les nerfs de grande taille.

La première étape, pour extraire le parenchyme pulmonaire, est la segmentation de la région enveloppée par la plèvre, opération couramment appelée segmentation du poumon. Cette segmentation peut être obtenue par contourage manuel ou en utilisant des méthodes de traitement d'images semi-automatiques ou automatiques. La version manuelle est une tâche chronophage et exigeante, et qui peut être influencée par des variabilités inter-et intra-utilisateur. Les méthodes semi-automatiques existantes diminuent le temps de segmentation mais sont peu robustes au problème de faibles contrastes entre les poumons et les structures voisines, caractéristique du SDRA. Enfin, les performances des algorithmes automatiques classiques, conçus pour la segmentation des poumons dans des images normalement contrastées se dégradent considérablement en absence de contraste due à la pathologie.

Une fois la segmentation du poumon obtenue, le parenchyme devrait être isolé par élimination des structures non-parenchymateuses, notamment: vaisseaux, bronches, et nerfs de grande taille. Parmi ces structures, seules les broches changent leur volume suivant les conditions de ventilation appliquées et au cours du cycle de respiration, ce qui peut particulièrement perturber la quantification des régions sur-aérées du poumon, par exemxi Synthèse ple, si les bronches ne sont pas préalablement éliminées d'une manière cohérente. Ce pour cette raison nous nous intéressons à cette élimination cohérente des arbres bronchiques. La notion de cohérence est ici basée sur les ressemblances topologiques et géométriques: dans chaque image du même sujet, il s'agit d'éliminer les mêmes branches de l'arbre bronchique, en ignorant celles qui n'ont pas pu être segmentées dans certaines images.

En effet, la segmentation de l'arbre bronchique peut être réalisée avec des outils automatiques, ce qui peut suffire pour l'analyse d'une seule image, mais ne convient pas lors de la comparaison quantitative de différentes images. Ces segmentations dans des images distinctes du même sujet peuvent différer en raison de multiples facteurs, tels que le volume partiel ou le bruit, mais aussi à cause des infiltrations dues au SDRA et des différentes conditions de ventilation mécanique. Pour pouvoir comparer l'aération entre les images acquises à différentes conditions de ventilation, il faut pouvoir s'affranchir de ces variations entre les segmentations des arbres.

L'objectif de ce travail est de développer de nouvelles stratégies de traitement d'image capables de surmonter les difficultés dues à l'expression radiologique du SDRA dans les images CT. Dans le but d'une extraction ultérieure de mesures cohérentes d'aération pulmonaire, ces stratégies doivent fournir, d'une part, une segmentation correcte des poumons pour la quantification de leur aération, et, d'autre part, doivent systématiquement retirer l'influence des bronches dans les images analysées pour garantir des quantifications comparatives d'aération du poumon cohérentes. Les objectifs spécifiques qui traitent les difficultés précédemment exposées sont listées ici:

1. Définir une stratégie pour la segmentation du poumon sur l'ensemble d'images CT d'un même sujet au sein de l'étude animale visée.

2. Proposer une méthode pour l'élimination cohérente des arbres bronchiques à partir d'images acquises à differentes conditions de ventilation pour le même sujet.

Dans cette thèse nous présentons trois contributions visant à accomplir les objectifs ainsi définis. La première contribution et presentée dans le chapitre 3. C'est une méthodologie pour la segmentation des poumons dans des images acquises pour un sujet dans le cadre de l'étude sur le modèle animal. La deuxième contribution est une méthode d'appariement des arbres bronchiques, décrite dans le chapitre 4. Finalement, nous proposons une dernière contribution envisageant l'utilisation des deux premières contributions pour des futures études chez l'humain. Cette dernière contribution est détaillée dans le chapitre 5. Ces développements s'appuient tous sur un cadre méthodologique préexistant dont l'état de l'art utile pour notre étude est résumé dans le chapitre 2.

Segmentation et recalage de poumons

La segmentation du tissu parenchymateux pulmonaire détermine les régions où les informations seront ensuite extraites pour analyser l'aération pulmonaire dans des images CT. La distribution de fréquence de voxels dans des classes d'aération et la distribution spatiale de l'air sont les principales informations requises pour l'évaluation de l'état du poumon. En outre, l'évolution de l'aération pulmonaire face à des procédures particulières xii Synthèse telles que les protocoles de ventilation mécanique peut être évaluée, si l'information peut être extraite à partir de données représentant différents instants et/ou avec des réglages du ventilateur différents. Ceci est d'un intérêt particulier chez les sujets atteints de SDRA parce que la ventilation mécanique constitue une partie essentielle du traitement. En général, la segmentation se concentre sur la région enveloppée par la plèvre, qui englobe le parenchyme pulmonaire avec les bronches, les vaisseaux et les nerfs. Cette segmentation est entravée par l'expression radiologique du syndrome: contraste réduit ou manquant entre les poumons et les structures environnantes. Nous proposons une méthodologie qui combine la segmentation du poumon, dans une image particulière, et le recalage d'images pour segmenter les poumons dans l'ensemble des images acquises pour un sujet dans de cadre de l'étude SDRA présentée.

La méthode est basée sur deux faits: d'une part, le protocole d'acquisition d'images inclut une condition de ventilation avec une valeur élevée de PEEP de 20cmH 2 O, et, d'autre part, les mouvements des tissus et les changements de leur densité sont relativement petits entre images acquises à des conditions de ventilation similaires, correspondant aux étapes consécutives du protocole. Le premier fait garantit l'acquisition d'une image où le poumon a l'apparence bien contrastée d'un poumon sain, permettant ainsi l'utilisation de méthodes classiques pour obtenir une segmentation initiale. Le deuxième fait est la base de l'utilisation d'un processus de recalage et de transformation en cascade qui permet la déformation de la segmentation initiale du poumon à toutes les autres images acquises dans le protocole. Un élément clé de la méthode est l'utilisation de masques de mouvement adaptés "sur mesure" pour chaque recalage de la cascade. Ces masques permettent à la méthode de prendre en compte le mouvement de glissement entre le poumon et la cage thoracique.

L'évaluation de la méthode à l'aide de tracés manuels réalisés par des experts a démontré ses bonnes performances, notamment un coefficient de Dice moyen supérieur à 0,9.

Appariement d'arbres bronchiques

L'air à l'intérieur des voies respiratoires est une partie de l'espace mort, volume d'air inhalé qui ne fait pas partie de l'échange de gaz, et, par conséquent, il devrait être éliminé des segmentations pulmonaires en images CT avant d'extraire et d'analyser l'aération du poumon. Une solution pratique serait de segmenter les voies respiratoires et les supprimer des segmentations pulmonaires. Cependant, cette solution peut induire des erreurs dans des mesures comparant l'aération entre les différentes images. Ces erreurs sont dues au fait que les arbres bronchiques segmentées dans des images distinctes peuvent présenter des différence anatomiques, par exemple, certaines branches dans un arbre bronchique peuvent ne pas exister dans un autre arbre bronchique segmenté, même pour des images intra-sujet. Ceci aussi bien en raison des imperfections des techniques de segmentation que des changements qui interviennent en fonction des conditions de ventilation (inondation ou fermeture de certaines petites bronches à basse pression, modifications de contraste dues aux infiltrations ...).

Afin de faire face à ces différences, nous proposons une méthode pour trouver les xiii Synthèse branches qui sont communes dans un ensemble d'images du même sujet. Ces branches communes sont ensuite retirées des segmentations pulmonaires respectives, afin d'éviter les erreurs dues à des différences dans les segmentation. La méthode proposée est un algorithme d'appariement de graphes représentant les arbres bronchiques. Trois hypothèses soutiennent la conception de l'algorithme.

1. Les arbres bronchiques du même sujet sont censés avoir la même morphologie et la même topologie.

2. Les images étant acquises pour un sujet immobilisé, les éventuelles rotations par rapport aux axes longitudinal et antéro-postérieur sont négligeables.

3. La principale composante de déplacement dans la respiration, plus particulièrement d'une condition de ventilation à l'autre, pour notre cas, suit la direction craniocaudale.

L'algorithme est basé sur la programmation dynamique. A chaque niveau de la récursion, l'algorithme prend une paire de noeuds déjà appariés et utilise une métrique spécialement conçue, pour comparer les sous-arbres qui émergent de ces noeds jusqu'à une certaine profondeur. A la suite de cette comparaison, une nouvelle paire de noeds appariés est déterminée, celle qui minimise la métrique et satisfait aux exigences de cohérence topologique. Afin de faire face à l'augmentation de la distance géométrique entre les régions correspondantes, et aux différences topologiques entre les arbres, qui se produisent dans la pratique à cause d'imperfections de traitement à des stades antérieurs (acquisition de l'image, segmentation, squelettisation, construction de graphe), nous proposons trois contributions que nous appelons: translation/appariement successif, recherche Q-Best-first, et distance père/famille. Ces contributions représentent le noyau de l'algorithme proposé. La première exploite la nature du mouvement observé dans les poumons et consiste à réaliser récursivement la translation de chaque sous-arbre dont la racine a été appariée, avant de procéder à l'appariement de noeds suivants de ce sous-arbre. La deuxième est une extension d'une stratégie classique d'appariement, dans laquelle les sous-arbres sont comparés jusqu'à une profondeur Q prédéfinie. La troisième enfin est une métrique qui combine la topologie et la géométrie d'un sous-arbre formé par le noed courant (père) et ses descendants (famille). La méthode présentée atteint une grande proportion d'appariements corrects dans les arbres avec plus de deux cent branches. Des valeurs élevées de précision et de sensibilité ont été obtenues par l'algorithme pour les appariements intra-pression, ainsi que inter-pression.

Recalage hybride

Dans les études du SDRA chez l'humain, le nombre d'acquisitions par sujet est réduit, en comparaison avec les études sur les animaux. Ce nombre restreint d'acquisitions est dû à la minimisation des doses de rayonnement chez les patients. Ces acquisitions peuvent alors correspondre à des conditions de ventilation sensiblement différentes, en fonction de divers facteurs tels que les manoevres de ventilation et de l'évolution du patient. Ces études, xiv en outre, exigent une analyse rapide de l'image, ce qui implique que les segmentations manuelles doivent être évitées.

Les meilleurs résultats en segmentation de poumons dans les images contenant des opacités pulmonaires, rapportés dans la littérature, ont été obtenuspar des méthodes basées sur le recalage. Ces méthodes, cependant, n'ont pas été testées spécifiquement sur des études du SDRA. Le recalage d'images de SDRA, dans les études chez l'humain, présente deux défis majeurs: larges déplacements de structures et changements d'intensité considérables qui se produisent à l'intérieur des poumons d'une image à l'autre. Nous proposons une approche de recalage hybride qui combine des informations de niveau de gris avec les appariements des voie respiratoires (trouvés par la méthode de mise en correspondance des arbre proposée) pour améliorer les résultats de recalage entre les images acquises à des conditions de ventilation très différentes. L'algorithme proposé prend en compte le mouvement de glissement entre le poumon et la cage thorasique, en utilisant des masques de mouvement obtenus automatiquement.

Les correspondances d'amers sont trouvées en utilisant notre méthode d'appariement des voies respiratoires décrite dans le chapitre 4. Les masques de mouvement utilisés par la méthode hybride proposée, sont obtenus par la technique décrite dans le chapitre 3. La nouveauté de notre recalage hybride réside dans la combinaison d'une métrique basée sur les niveaux de gris et de la distance entre les amers appariés, dans une même fonction de coût.

La méthode hybride, évaluée sur des images acquises dans des conditions de ventilation diamétralement opposées, a donné de meilleurs résultats que la méthode uniquement basée sur les niveaux de gris. Cependant, bien qu'elle puisse gérer la plupart des grands déplacements, les régions distales latérales n'ont pas été complètement alignées. Ceci peut être expliqué par le manque de points de repère dans ces régions où l'information de niveau de gris est également insuffisante pour déterminer le bon déplacement.

En conclusion, nous avons développé une méthode qui permet de segmenter les poumons dans des séries d'images où les contrastes se dégradent progressivement. Les segmentations ainsi obtenues permettent déjà aux médecins de calculer, à l'intérieur des régions ainsi délimitées, les mesures d'aération classiques, tels que le recrutement global. Ces segmentations, ainsi que les champs de déformation obtenus dans le processus de recalage, peuvent également être utilisés pour calculer des nouvelles mesures, notamment de recrutement alvéolaire local, jusqu'à présent inaccessibles. Le travail de développement de telles mesures innovantes est en cours. 

Introduction

Acute respiratory distress syndrome (ARDS) presents a high mortality rate in intensive care units (ICU). Its treatment requires respiratory support from a mechanical ventilator, which, if not appropriately adjusted, may deteriorate the state of the patient. Although different ventilation protocols have been proposed and probed to reduce the mortality rate, mechanical ventilation must be adapted to each particular case. In order to evaluate the state of the lung, adapt the mechanical ventilation, and assess the response of this organ to therapy, computed tomography (CT) images may be acquired and analysed.

CT images have the advantage of providing information about air concentration in each voxel. This information, combined with the spatial distribution of voxels, may be used to calculate air distribution and concentration inside the lung. Moreover, variations of these measures, in multiple images from a single patient, may provide paramount information about the behavior of lungs in time. In the case of ARDS, images may be acquired at different mechanical ventilation conditions. Changes in air distribution and concentration among these images allow to evaluate the impact of the ventilation on the lung. However, in order to extract and analyze the mentioned information, pre-processing steps on the images are required. In this thesis we deal with two pre-processing steps: lung segmentation and consistent removal of airway trees, both from a series of CT images from a single subject.

In this introductory chapter, first, we present the medical context of ARDS (section 1.1), then we detail the experimental setup that was implemented to analyse the response of the lung to mechanical ventilation using an animal model (section 1.2). The objectives and problem statement of this work and our contributions are respectively presented in sections 1.3 and 1.4. Finally, we sketch the outline of this document in section 1.5.

Medical context

This section introduces the medical background needed to explain the ARDS. Section 1.1.1 introduces the anatomy of the lungs, and section 1.1.2 presents the physiology of the respiration process. ARDS is detailed in section 1.1.3. Finally, in section 1.1.4 we explain the techniques, including imaging techniques, used to quantify the aeration inside the lung.

Anatomy of the lungs

The lungs are the main organ of the respiratory system: they are in charge of the exchange of oxygen and carbon dioxide. Humans have two lungs, divided by a medial region called the mediastinum, located inside the thorax. Each lung is divided into lobes, right and left lungs are respectively divided into two and three lobes. Vessels, bronchi, and nerves coming from the mediastinum penetrate and propagate throughout the lungs. These structures are not defined as being part of the lungs until they reach the structural unit of the lung, called the lung-lobule or acinus [Cunningham (1914)] and described in detail later in this section. Figure 1.1 presents the lungs, their lobes, and their connections to mediastinal structures. Lungs' structure has three parts: the pleura, the sub-serous areolar tissue, and the parenchyma [Gray (1918)]. The pleura is a thin coat that covers the lungs and allows them to slide against the ribcage during the respiration process. It separates the lungs from the mediastinum, ribcage, and diaphragm (see Figure 1.2). The sub-serous areolar tissue covers the surface of the lung and also goes deep in between the lobules. It is a connective tissue containing many elastic fibers which allow the lung to expand and recoil. As for the parenchyma, it may be seen as composed of secondary lobules containing primary lobules or lung-lobules. Inside the lung-lobules the respiration process attains its objective: gas exchange. The structure of a lung-lobule is shown in Figure 1.3. Its main components are the respiratory bronchioles with their ending air-spaces, blood-vessels, lymph vessels, and nerves. Respiratory bronchioles are the last bifurcations of the bronchi (Figure 1.4). They divide into alveolar ducts which end in groups of air-spaces or olveolar-sacs called the atria. Alveoli appear scattered in the respiratory bronchioles, denser in alveolar ducts, and inside the atria they are gathered in alveolar sacs. The blood vessels come from the division of the pulmonary artery and leave the lung-lobule to join the pulmonary vein, which returns the oxygenated blood to the heart. The pulmonary artery divides the same way as the bronchi with the difference that in the last divisions it becomes a capilary network that covers the alveoli. Lymph vessels come from the thoracic duct1 , and are divided in surface lymphatic vessels, located beneath the pleura, and deep lymph vessels. The latter are divided in bronchial submucous, only for large bronchi, and peribronchial, which go along the bronchi and pulmonary arteries before reaching the alveoli. As for nerves, they come from the vagus nerve and the sympathetic system. (Image (a) was extracted from [Gray (1918)], source: http://www.bartleby.com/107/ illus975.html; and images (b) and (c) were taken from [Mescher (2013)].)

Respiratory physiology

The respiration process has two phases: inhalation and exhalation. During inhalation (inspiration), air moves into the lungs passing from the mouth through the pharynx, larynx, trachea, and bronchi to the respiratory bronchioles. Inside lung-lobules, air coming from the respiratory bronchioles goes through the alveolar ducts and arrives to the alveoli. Here, inside the lung-lobules, the CO 2 coming in the blood from the pulmonary arteries is ) and number of branches according to the airway-tree model presented in [Weibel (1963)]. The airway tree starts with the trachea which branches into two main bronchi, right and left. According to [Weibel (1963)], the airway-tree has 23 generations, with the trachea being generation zero. In this model, respiratory bronchioles are found in the 16th to 19ht generations. As seen in (a), the trachea and main bronchi have cartilaginous walls. This wall disappears when airways reach a diameter of 1mm, thus increasing flexibility as diameters decrease. (Source: (a) Image taken from http://www.visiblebody.com/ , access granted by Universidad de los Andes, (b) Adapted from Weibel's model [Weibel (1963)] ).

exchanged with O 2 by diffusion: CO 2 goes from capillaries to alveoli, and O 2 from alveoli to capillaries. The oxygenated blood returns to the heart via the pulmonary veins. During the second phase of respiration, called exhalation or expiration, the CO 2 is moved out from the lungs through the inverse path used to get the oxygen inside. Pressure difference is the mechanism that moves the air into and outside the lungs. This movement of air is referred to as bulk flow. Inspiration is started when the diaphragm pulls the lungs down, in the caudal direction, and the intercostal muscles open the thorax. These forces expand the lungs, thus increasing their volume. By the Boyle's law 2 , which describes the relationship between pressure and volume of gases, this increase of volume implies a decrease of the air pressure inside the lungs. This pressure decreases below the atmospheric pressure of the air (typically 760 mmHg at the sea-level), thus generating a difference of pressures, called pressure gradient, between the air outside and inside the lungs. To compensate the pressure difference, air from the atmosphere moves into the lungs. Once the pressure inside lungs reaches the same value of the atmospheric pressure, the diaphragm and intercostal muscles are relaxed and they return to their original positions. The relaxation of these muscles makes the lungs recoil, thus reducing the volume of the lung and, consequently, increasing the lung-air pressure over the atmospheric pressure. Using the same mechanism of particles moving from high to low pressure values, air inside the lung, filled with CO 2 , is moved out.

Air moving in and out of the lungs represents a portion of the range of volume that lungs can handle. Air inside the lung may be divided in four lung volumes (see Figure 1.5). The amount of volume that is inhaled and expired during normal breathing is called tidal volume (V t ). The residual volume corresponds to the volume of air that is kept inside the lung after maximal exhalation. The volume that can be expired after normal expiration, reaching the maximal expiration, is called expiratory reserve volume. Finally, the inspiratory reserve volume is the amount of air that can be inspired beyond the normal inspiration limit. These volumes may be added to define capacities of the lung to hold a certain volume of air. Two of the most used capacities are the Total Lung Capacity (TLC), corresponding to the maximal capacity of the lungs, i.e., the sum of all the volumes, and the Functional Residual Capacity (FRC), which is the capacity of the lung at end-expiration, i.e., the sum of the residual and expiratory reserve volumes. Lung capacities serve to name respiration conditions, for instance when a subject is asked to hold the breath after expiration we speak about the FRC condition or when a subject is asked to make a maximum inhalation and then hold the respiration we say that the patient is in TLC condition. 

Acute respiratory distress syndrome

In this section we first present the definition and diagnosis criteria of ARDS (section 1.1.3.1). Then, we introduce ARDS treatment (section 1.1.3.2), and ARDS medical challenges that, still nowadays, are to be resolved (section 1.1.3.3).

Definition and diagnosis criteria

ARDS was first described in 1967 in [START_REF] Ashbaugh | Acute Respiratory Distress in Adults|[END_REF]] as acute respiratory distress in adults. As a syndrome, compared to a disease, the explicit causes are not known; only the main symptoms of ARDS may be listed. In 1994, the American-European Consensus Committee (AECC) on ARDS stated the first definition to diagnose ARDS [START_REF] Bernard | Report of the American-European consensus conference on ARDS: definitions, mechanisms, relevant outcomes and clinical trial coordination[END_REF]]. This definition helped to conduct many studies and to compare them [START_REF] Brun-Buisson | Epidemiology and outcome of acute lung injury in European intensive care units[END_REF]]. Nonetheless, with the time, it was found that the definition required some changes. In 2011, the definition was revised and slightly modified by an international expert panel created by the European Society of Intensive Care Medicine [START_REF] Ranieri | Acute respiratory distress syndrome: The berlin definition[END_REF]]. This new definition is called "The Berlin definition".

ARDS may be the consequence of different pulmonary aggressions, e.g., bacteriological or chemical, such as pneumonia, chemical product aspiration, or extrapulmonary sepsis. Both definitions agree that ARDS is a process of pulmonary edema and hypoxemia not associated with non-hydrostatic pulmonary disease.

Modifications made by the Berlin definition with respect to the definition from the AECC respond to questioning about three aspects: (1) low diagnosis specificity (51%) [START_REF] Fanelli | Acute respiratory distress syndrome: new definition, current and future therapeutic options[END_REF]], (2) precision on the timing of the acute onset, and (3) necessity of ancillary variables, i.e., chest radiography and airway pressure. The Berlin definition removed the acute lung injury (ALI) class and created three classes of ARDS, i.e., mild, moderate, and severe. Furthermore, the onset timing was precisely established, and ancillary variables were modified and clarified. The ARDS classes were defined based on the ratio PaO 2 /FiO 23 , and the positive-end expiratory pressure (PEEP) or continuous positive airway pressure (CPAP) were included. Criteria for diagnosing ARDS, for both definitions, are given in Table 1.1.

Treatment

ARDS treatment, besides being focused on the main cause of the syndrome, uses mechanical ventilation to support the respiration process. Indeed, from the first definition of ARDS in [START_REF] Ashbaugh | Acute Respiratory Distress in Adults|[END_REF]], mechanical ventilation has been included in its treatment. Two main parameters control the mechanical ventilation: V t given in ml per kg of the subject and PEEP given in cmH 2 O (1 mmHg ≈ 1.4 cmH 2 O). Different types of ventilation strategies, focusing on different objectives, e.g., reduce hypoxemia, have been proposed, used, and tested. 

Severe:

PaO 2 /FiO 2 ≤ 100mmHg with PEEP ≥ 5 cmH 2 O.

In 1998, the second AECC listed objectives and recommendations about ventilatory strategies [START_REF] Artigas | The American-European Consensus Conference on ARDS, Part 2[END_REF]]. The objectives were: normalize the arterial blood gases, i.e., reduce hypoxemia and hypercapnia, recruit alveoli, i.e., open collapsed alveoli, minimize high airway pressures, and prevent atelactasis. These objectives may be attained by different strategies which may include the use of high tidal volumes (V t ) and high PEEP values. However, the AECC recommended to avoid high values of V t and PEEP during long periods of time, but no specification about their ideal use was made.

Nowadays, the most accepted ventilatory strategies focus on the protection of the lung. [START_REF] Ardsnet | Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome[END_REF]], the use of low V t values (5 ml/kg), compared to the normal values used in the literature (10-15 ml/kg), demonstrated a considerable mortality reduction from 39.8 to 31%. In this case, a lung-protective strategy was preferred over a hypoxemiareducing strategy and the outcomes were satisfactory. Although low values of V t were demonstrated to reduce mortality, increase of the PEEP and V t to recruit alveoli and avoid atelactasis, during short periods of time, is still a research topic. The use of positive high values of PEEP may achieve alveolar recruitment (i.e., opening of alveoli and maintaining them opened), but the amount of recruitment in response to PEEP (recruitment potential) is highly heterogeneous among ARDS patients. Patients with high potential of recruitment 1.1. MEDICAL CONTEXT may benefit from high PEEP, whereas in non-recrutable patients high PEEP may increase lung injury and ARDS mortality. In [START_REF] Fanelli | Acute respiratory distress syndrome: new definition, current and future therapeutic options[END_REF]], the outcomes of different studies were analysed, but no statistical evidence was found to probe that the use of high PEEP values may improve the survival rate.

Medical challenges

High mortality rate, estimated around 40% [START_REF] Brun-Buisson | Epidemiology and outcome of acute lung injury in European intensive care units[END_REF], [START_REF] Pierrakos | Acute Respiratory Distress Syndrome: Pathophysiology and Therapeutic Options[END_REF]] and slightly decreasing over the past two decades [START_REF] Zambon | Mortality rates for patients with acute lung injury/ards have decreased over time[END_REF]], may be reduced by overcoming medical challenges in ARDS. These challenges deal with the understanding of the development of the syndrome, improving and creating new therapies, and comprehending the response of the lung to treatments. They can be classified in ventilatory and non-ventilatory challenges.

Ventilatory strategies, the most accepted and used treatments of ARDS, present several challenges. Ventilatory lung-protective strategies are the standard treatment in ARDS. These strategies prevent ventilator induced lung injury (VILI) by using low tidal volume (V t ) and PEEP values. However, many questions have not yet been answered and constitute the set of challenges of ventilatory strategies. Here we present these challenges as series of questions:

• How to improve alveoli recruitment and prevent atelactasis without inducing VILI (over-distention)?

• What is the response of the lung to mechanical ventilation?

• How to adjust the PEEP?

• How to obtain real time information about the state of the lung?

• How to adapt, to each particular case, the mechanical ventilation?

In the case of non-ventilatory challenges, they include the improvement of existing therapies as extracorporeal lung support, gene therapy, and mesenchymal stem cell procedure. These therapies have already been used and tested, but their outcomes were not statically relevant [START_REF] Fanelli | Acute respiratory distress syndrome: new definition, current and future therapeutic options[END_REF]]. Nonetheless, they have shown promising results that encourage their enhancement.

Aeration quantification

The volume of air inside the parenchyma and its distribution may serve to evaluate the state of the lung in a subject. This information, i.e., air volume in the lung and its distribution, may serve to quantify the aerated volume of the lung and identify non-and over-aerated regions. Furthermore, the evolution of this information over time may be used to analyse the response of the lung to mechanical ventilation, and to improve the set-up of ventilation parameter setting [START_REF] Richard | Reliability of the nitrogen washin-washout technique to assess end-expiratory lung volume at variable PEEP and tidal volumes[END_REF], [START_REF] Hanson | Recruitment and PEEP level influences long-time aeration in saline-lavaged piglets: an experimental model[END_REF]].

In patients with ARDS, different techniques providing the volume of air and/or its distribution inside the parenchyma have been proposed. Three of the commonly used techniques are the nitrogen washin-washout, and the imaging techniques, namely electric impedance tomography (EIT) and CT.

Nitrogen washin-washout

Nitrogen washin-washout is a global quantification technique where the volume of the lung at end-expiration, i.e., end expiratory lung volume (EELV), is measured. This technique uses the difference of nitrogen fractions (F A N 2 ) before and after a change in FiO 2 [START_REF] Fretschner | A simple method to estimate functional residual capacity in mechanically ventilated patients[END_REF]]. A change in FiO 2 modifies the percentage of nitrogen in the inspired air, which normally is about 78%. The EELV is calculated as:

EELV = ΔN 2 (ml) ΔFiO 2 , (1.1)
where ΔN 2 is the volume of nitrogen exhaled after the change of FiO 2 . This volume is estimated by measuring the concentration of O 2 and CO 2 in the expired volume of air. These quantities are usually measured by mechanical ventilators.

The main advantages of this technique are its easy access and low acquisition time. The changes in volume are used to estimate strain, defined as change of lung volume relative to FRC, applied to lungs. Results obtained with this technique have good correlation to measures acquired using CT images [START_REF] Chiumello | Nitrogen washout/washin, helium dilution and computed tomography in the assessment of end expiratory lung volume[END_REF], [START_REF] Richard | Reliability of the nitrogen washin-washout technique to assess end-expiratory lung volume at variable PEEP and tidal volumes[END_REF]].

Electric Impedance Tomography

The electric impedance tomography is an imaging technique that allows to obtain tomography images by injecting current and measuring voltage differences among a set of electrodes [START_REF] Brown | Applied potential tomography: possible clinical applications[END_REF]]. The electrodes are located around subject's chest. A small current is injected between a pair of electrodes, usually contiguously located, and voltage differences between pairs of other electrodes are measured. Voltage measured between electrodes varies depending on the impedance of the tissue where the current was injected. These measures are used to build EIT images using a weighted retroprojection algorithm.

EIT presents many advantages compared to other imaging techniques used to measure the volume inside the lung, such as CT (see section 1.1.4.3). Starting from its acquisition frequency of ∼25 images per second, it provides continuous information useful to constantly evaluate the state of the lung and its evolution. It is a non-invasive and non-ionizing technique. Furthermore, acquisitions are performed without requiring the patient to be moved, i.e., bedside monitoring. These characteristics make the EIT a powerful technique when treating patients in ICU [Frerichs (2000)]. Nonetheless, this technique still requires some improvements.

Two main issues are still to be improved: image resolution and reconstruction a priori. First, and most important, the spatial resolution of EIT is low, in the order of cm compared to mm in CT (see Figure 1.6). Generated images have a plane thickness of nearly 5cm, similar to the height of the electrodes, and in plane resolution between 2 and 3 cm. This low resolution hinders the detection of local changes inside the lung. Second, the reconstruction algorithms are based on an a priori of circular radial position of the electrodes, and they 1.1. MEDICAL CONTEXT suppose that imaged structures are cylindrical. These suppositions are not met in thoracic images. Additionally, for the most common EITs, 2D images, instead of 3D images, are acquired representing the region surrounded by the electrodes belt (see Figure 1.6(a)). This means that, as the main movement of the lung is cranio-caudal, the tissues imaged at different times may not correspond. 

Computed Tomography

Computed Tomography, first presented in [Hounsfield (1973)], uses X-rays passing across the subject from multiple angles to reconstruct a 3D volume of the imaged body section. From a series of line projections, 2D images are reconstructed and then piled together to obtain the 3D volume.

Intensities on CT images are given in Hounsfield Units (HU) and they are associated to tissue density. In particular, in a range of the scale of the HU, intensities are described as a combination of tissue and air [Hoffman (1985)]. The percentage of air (A) in a voxel (x) is given by:

A(x) = I x -HU tissue HU air -HU tissue , (1.2)
where I x is the intensity of voxel x, HU air is the intensity of the air in HU, and HU tissue is the intensity of tissue in HU. The value of HU air is -1000 HU while the one for HU tissue is set between 0 and 40 HU depending on the study. The range of intensity containing air may be classified in aeration classes. Four classes are commonly used in the literature [START_REF] Vieira | A lung computed tomographic assessment of positive end-expiratory pressure-induced lung overdistension[END_REF]]: over-aerated [-1000,-900 HU), normally aerated [-900, -500 HU), poorly aerated [-500, -100 HU), and non-aerated [-100, 100 HU). In Figure 1.7 the intensity ranges of these classes and an example a CT image with its corresponding air classification are presented. High resolution of CT, in the order of mm, and the relation between HU and air percentage make CT images suitable to analyse the distribution of the air inside the lungs. Nonetheless, before quantifying the air, the lung, i.e., pleura, areolar tissue, and parenchyma, must be segmented on the images (see Figure 1.7 (b)). This segmentation requires two steps: delimitation of the space covered by the pleura, called lung segmentation, and, subsequently, removal of non-parenchymal structures, i.e., vessels, bronchi, and nerves (see section 1.1.1). For some applications, such as calculation of the total volume of the lung, the first step suffice, but in the case of aeration quantification, regions not belonging to the parenchyma must be excluded.

The delimitation of the space covered by the pleura, first step preceding the air quantification, may be challenging in non-healthy lungs. For healthy lungs, or lungs having notably lower densities than surrounding structures, automatic lung segmentation algorithms usually work well [START_REF] Hu | Automatic Lung Segmentation for Accurate Quantitation of Volumetric X-Ray CT Images[END_REF][START_REF] Van Rikxoort | Automatic segmentation of the airway tree from thoracic CT scans using a multi-threshold approach[END_REF]. However, cases lacking of contrast between lung and surrounding structures, e.g., ARDS or atelectasis,
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are cataloged as challenging [START_REF] Sluimer | Computer Analysis of Computed Tomography Scans of the Lung: A Survey[END_REF]]. In these cases, manual segmentation, which is a time-consuming task, or semi-automatic approaches may be used.

For the removal of non-parenchymal structures, automatic segmentation algorithms for vessels [START_REF] Rudyanto | Comparing algorithms for automated vessel segmentation in computed tomography scans of the lung: the VESSEL12 study[END_REF]] and bronchi [START_REF] Brown | The Second International Workshop on Pulmonary Image Analysis[END_REF]] are found in the literature. These algorithms assume that the structures to be segmented have lower (bronchi) or greater (vessels) densities than surrounding structures and tissue. Vessel segmentation may require the injection of intravenous contrast, which increase the opacity observed inside vessels, in order to improve the performance of segmentation algorithm. However, this procedure often cannot be applied to subjects in ICU, thus limiting its use. Compared to vessels, airway-tree segmentation does not require contrast enhancement procedures. Nevertheless, pathological cases may hinder the segmentation of branches that are non sufficiently contrasted. For example, in subjects suffering from ARDS, some bronchi may be flooded by liquids, causing an increment in their observed density, and preventing their segmentation. As a side note, manual segmentation of vessels and airways is non tractable due to their complex branching geometry and the huge number of branches (see Figure 1.4 (b)).

CT has some constraints that limit its use. Firstly, it is a ionizing technique and, consequently, the number of acquisitions is to be strongly reduced. Additionally, the acquisition of the images requires the patient to be placed in the tomograph which, in special cases such as in ICU patient, may be a complex task due to the delicate state of health of the subject and the maneuvers needed to get the patient inside the tomograph. Another restriction comes from its acquisition time, in the order of seconds, that may induce blurring on the acquired resulting images. This blurring is mainly due to the movement of the lungs, more specifically due to their cranio-caudal motion. To overcome this limitation, CT images are taken during breath-hold instants managed by the subject or by the mechanical ventilators at end-expiration (FRC) or forced end-inspiration (TLC).

Study of animal model with ARDS induced

In order to study the effects of mechanical ventilation on the lung in subjects suffering from ARDS, the team of Réanimation Médicale of the Hôpital de la Croix-Rousse, Lyon, France, started a research project based on an animal model (piglets) with induced ARDS. Three different techniques were used to quantify the lung aeration: nitrogen washin-washout, EIT, and CT. A protocol was defined to induce the syndrome in the piglets, setup the mechanical ventilation, and acquire the data for each technique of quantification.

Animal model

The study and its use on piglets was approved by the institutional review board for the care of animal subjects (comité d'expérimentation animale de l'Université Lyon 1). The piglet animal model is one of the most used, together with sheep model, when dealing with lung research. This model is interesting because of its anatomical similarities, including comparable lung sizes, in comparison to humans. Piglets, however, present three main chest anatomy differences compared to humans. Concerning the number of lobes, left and right lungs in pigs have respectively 3 and 4 lobes compared to 2 and 3 in humans. The airway-tree in pigs has a first bronchus going out before the carina point while in humans no bronchi are found before the carina. This bronchus carries the air to the top lobe on the right lung. Finally, lungs in piglets are not divided by the mediastinum, instead, the fourth lobe of the right lung is located below the heart next to the lower lobes of the left lung. The main differences are shown in Figure 1.8. the mediastinum separates the lungs on humans but not in pigs, as shown on the top images, and an additional bronchus bifurcating before the carina, which is pointed out by a black arrow on the bottom images, is found in pigs. This bronchus is pointed out by a circle on image (d).

Ventilation and acquisition protocol

The ventilation and acquisition protocol was composed of two main trials after syndrome induction: decremental pressure and random tidal volume trials [START_REF] Richard | Reliability of the nitrogen washin-washout technique to assess end-expiratory lung volume at variable PEEP and tidal volumes[END_REF]]. The syndrome was induced by repeated intra-tracheal instillations of a warmed saline solution until the ratio P aO 2 /F iO 2 was lower than 100 mmHg. Then, a sequence of different ventilation conditions was applied to the piglet. Each ventilation condition was defined by two parameters, PEEP and V t . The sequence was divided in two trials:

The first trial maintained a constant V t (6 ml/kg) while the P EEP was reduced from the highest (20 cmH 2 O) to the lowest (2 cmH 2 O) value by steps of 2 cmH 2 O (Fig. 1.9). The second trial kept a constant PEEP, (one of the following values: 5, 8, 10, 12, 14, 16, or 20 cmH 2 O) chosen for each subject according to one of three different PEEP selection methods [START_REF] Richard | Reliability of the nitrogen washin-washout technique to assess end-expiratory lung volume at variable PEEP and tidal volumes[END_REF]], while eight different V t values (4,5,6,7,8,10,15, and 20 ml/kg) were applied randomly.

Washin-washout, EIT, and CT techniques were used during the protocol to measure the aeration. For each ventilation condition, i.e., combination of PEEP and V t , washinwashout measures, EIT images, and CT images were acquired during end-expiratory and end-inspiratory pauses performed by the ventilator. The protocol was applied to 16 piglets, thus, in terms of CT images concerning this thesis, normally yielding 36 images per piglet (576 images). However, not all the subjects were exposed to all the ventilation conditions of the protocol due to different causes such as generation of pneumothorax (air inside the pleural space). This implied a total number of 503 acquired images during the protocol. Additional to these protocol images, 90 non-protocol images, i.e., pre-or post-protocol images, were acquired. Therefore a total of 593 images (503 protocol + 90 non-protocol images) were acquired in the study.

Including a number of pre-and post-protocol images, a total of 593 images were acquired.

CT images were acquired with the CT scanner Biograph mCT/S, Siemens, Munich, Germany. The settings were as follows: voltage 120kV, pitch 1.2 mm, interval 1 mm, and field of view 300 mm. Each thorax CT was taken during 15 seconds and reconstruction was performed using a medium smooth filter with the B31f kernel. Image slice thickness varied between 0.7 and 1 mm, and in-plane spacing varied from 0.46 to 0.58 mm.

Problem statement and objectives

Fast and accurate data extraction and analysis of lung aeration on CT images may contribute to reduce the mortality rate in ARDS. Lung aeration refers to the volume of air and its distribution inside the lung parenchyma. This analysis serves to evaluate lungs' state. In addition, if a set of different time-point data is available, the evolution of the lungs may be also be assessed. In ARDS subjects, this information may serve to evaluate the response of the lung to respiratory support, and to appropriately set up the mechanical ventilation parameters. The extraction of this information, however, requires the segmentation of lungs' parenchyma, which may be defined as the region wrapped by the pleura without including non-parenchymal structures. Indeed, these non-parenchymal structures, Figure 1.9: Data acquisition protocol. First, ARDS was induced, then two ventilation trials were conducted: a decreasing PEEP with constant V t trial followed by a randomly varying V t and constant PEEP trial. For each ventilation condition, i.e., combination of PEEP and V t , two images were acquired: one at end-expiration and one at end-inspiration. Axial slices of CT images, at end-inspiration (End insp.) and end-expiration (End exp.), for some ventilation conditions, corresponding to the blue dots, are presented.

i.e., vessels, bronchi, and nerves, do not belong to the parenchyma at a macroscopic scale; only when they reach the microscopic scale, inside the lung-lobule, they become part of the parenchyma (see Section 1.1.1).

The first step to extract the parenchyma is the segmentation of the region wrapped by the pleura. This task may be achieved by manual contour tracing or using semiautomatic or automatic methods. The manual version requires an expert to trace contours representing the pleura in each 2D image of the stack of images representing the 3D CT image volume being analysed. This is a tedious and time demanding task, and results may be influenced by inter-and intra-user variability. Semi-automatic approaches use as input a limited amount of contours, manually traced by an expert. Then, different
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strategies, such as the one presented in [START_REF] Top | Spotlight: Automated Confidence-based User Guidance for Increasing Efficiency in Interactive 3D Image Segmentation[END_REF], [START_REF] Top | Active learning for interactive 3D image segmentation[END_REF]], are used to find the missing contours in-between the traced ones. This approach works very well in lungs highly contrasted against its bounding structures, but in images lacking this contrast, completely or partially, such as the images acquired in the presence of ARDS (see Figure 1.10), results are not satisfactory. In effect, this process becomes a manual lung segmentation because errors must be manually corrected. In The expression changes with respect to the mechanical ventilation. When using low tidal volume and PEEP values, infiltrations and their expression may be observed. Infiltrations reduce the contrast between lung and surrounding structures, as evidenced on the dorsal region coronal slices (red-framed coronal slice in (b)), and may flood brochi. Infiltrations may increase the contrast between bronchi and surrounding tissue while flooding may hinder the segmentation of the airway-tree as shown on the most right-most images.

CHAPTER 1. INTRODUCTION artifacts that must be manually corrected on the result of a semi-automatic segmentation is presented. Finally, general purpose lung segmentation algorithms can segment the lung automatically. However, when dealing with pathological images, the achievement of good results is hindered by the low contrast of the lung against surrounding regions [START_REF] Sluimer | Computer Analysis of Computed Tomography Scans of the Lung: A Survey[END_REF]]. Once the region wrapped by the pleura is obtained, the parenchyma should be isolated by removing, from this first segmentation, the non-parenchymal structures. These structures are vessels, nerves, and bronchi. Vessels and nerves are difficult to segment, specially when the density of the parenchyma is increased, such as in ARDS, but including them as part of the parenchyma segmentation is acceptable. This is explained because it can be assumed that the volume of the vessels and nerves does not change with respect to ventilation conditions or to the breathing cycle, and, therefore, intra-subject comparative measures are not influenced by the inclusion of their volumes. As for the bronchi, given that their volume changes with respect to applied ventilation conditions and breathing cycle, it is necessary to segment them and, subsequently, to remove them for intra-subject comparative measures. Additionally, provided that most of the airway intensities belong to the over-aerated class, and that the airway volume is significantly larger than the overaerated volume that may be found inside the parenchyma, removing the bronchi from the parenchyma segmentation allows to accurately extract over-aeration volume and distribution inside the parenchyma. Actually, the presence of over-aeration inside the parenchyma may be interpreted as lung over-distention. For these reasons of variable volume and implications on the over-distention interpretation, we are interested in accurate airway-tree 1.4. CONTRIBUTIONS segmentation.

Airway-tree segmentation can be achieved with automatic tools, which may suffice for the analysis of a single image, but it is not appropriate when comparing quantification from different images. Airway segmentation from different images of the same subject may differ due to multiple factors, such as partial volume or noise, but also because of the infiltrations and the impact of different mechanical ventilation conditions. If one wants to compare the aeration among images acquired at different ventilation conditions, the segmented and removed airway-trees may induce volume quantification errors because they may not be anatomically similar (see Figure 1.10). These variations may be taken into account when comparing intra-subject lung aeration results.

The objective of this work was to develop image processing strategies that can handle the difficulties imposed by the radiological expression of ARDS in CT images for a subsequent extraction of consistent measurements of lung aeration. These strategies must provide, on the one hand, a correct lung segmentation for the quantification of the lung aeration, and, on the other hand, must consistently remove the influence of bronchi in analyzed images to guarantee coherent comparative quantifications of lung aeration among these images. Specific objectives that deal with the difficulties previously exposed are listed here:

1. Develop a strategy for the lung segmentation on a set of CT images from the same subject acquired within the proposed animal study.

2. Define a method for consistent removal of airway-trees from images acquired at different ventilation conditions for the same subject.

Contributions

In this work we present three contributions for the analysis of CT images acquired from a subject suffering from ARDS. They are listed hereafter.

Registration-based lung segmentation on a set of images of a subject

Lung segmentation in the presence of large high-density pathologies is still considered an important challenge. Indeed, in the lobe and lung analysis challenge, LOLA (2011), poor results (low overlap scores against manual 3D lung segmentation) were reported for images with large high-density regions, such as those observed in ARDS. To the best of our knowledge, only two works have dealt with ARDS images. Nevertheless, they cannot be applied for our study: one of them lacks implementation details for determining the location of the lung in the caudal-dorsal region, in the interface with the diaphragm, and the other used a different animal model where the acquired images have different properties than the ones used in the presented animal study, namely, contrast between lung and surrounding structures was still present. Most promising results in images similar to ARDS were provided by atlas registration algorithms, but the direct application of this approach may incur in errors due to the large displacements, low contrast, and intensity changes between the images we are dealing with.

In order to segment the lung in a set of images from the same subject acquired from the presented protocol (see Section 1.2.2), we propose a lung segmentation based on registration. Our method takes advantage of the acquisition protocol where a set of proximate ventilation conditions, i.e., combination of PEEP and V t , is used for mechanical ventilation. Proximal ventilation conditions exhibit small changes in terms of intensity and displacement of structures. Based on this observation, we propose the use of a general lung segmentation method to segment the lung on the image acquired at end-inspiration at the highest PEEP value (I insp,PEEP MAX ), and, then, use a sequence of registrations and transformations, that we call a cascade registration/transformation, to deform the initial lung segmentation to all the other images.

In the proposed cascade registration/transformation, the images are first registered, and, subsequently, the initial lung mask is deformed to the other images. The registration cascade registers the images in the following order: first, the image acquired at end-inspiration at highest PEEP value (I insp,PEEP MAX ) is registered to the image corresponding to the next lower PEEP value (I insp,PEEP MAX-1 ), then the process continues registering I insp,PEEP MAX-1 to I insp,PEEP MAX-2 , until the lowest pressure (I insp,PEEP MIN ) is reached. Afterwards, starting from the same initial image (I insp,PEEP MAX ), where the lung was initially segmented, the transformations resulting from the registration process are used to deform this segmentation to the other images on the cascade.

To improve the registration process, we use a strategy that enables the registration to handle the sliding motion of the pleura against the thoracic wall. The sliding motion is a discontinuous movement that occurs when the pleura slides against the thoracic wall; this movement can not be simply represented by a smooth transformation thus it requires a special treatment. In Figure 1.12 we compare some results of lung segmentation on images, acquired at different pressures at end-inspiration, obtained from the proposed method (described in Chapter 3) and manual segmentation performed by an expert.

Airway-tree matching on a set of images of a subject

Given that airway-tree volume changes with respect to ventilation conditions, and that this volume may influence the quantification of lungs' over-distention, we propose a strategy to take into account the variability of airway volume among intra-subject lung aeration results. In the ideal case, airway-trees segmented from images acquired at different ventilation conditions should anatomically be the same, even if their volumes vary, and, thus, a simple removal of their volume from lung aeration would avoid their influence on the lung aeration quantification. However, in real cases, as shown in Figure 1.10, segmented airway-trees anatomically differ. The proposed strategy identifies the variability among the airway-trees, which may be seen as the detection of anatomical differences among the airway-trees, in order to take them into account in the lung aeration quantification. Indeed, we may see the strategy as finding the anatomical parts that are common among the compared airway-trees. We called those common parts, the common airway-tree. In this work we propose a method for the extraction of the common airway-tree that is able to match large proportion of proximate and distal branches.

The extraction of the common airway-tree corresponds to tree-matching in the liter- ature. Compared to the matching of graphs, where an isomorphism or sub-isomorphism may be calculated, the matching of tree-shaped structures of the human body has to take into account hierarchical relationships between the nodes of the structure, and has to overcome topological and geometrical differences between compared structures. These differences are due to multiple factors such as different patient anatomy, noise, and diseasebased deformations. Matching approaches in the bronchial field may be divided in interand intra-subject approaches. The former are mainly focused on atlas-based labeling of airways where the number of labels is typically limited to 32. These approaches are based on graph-based theory, and achieve high accuracy of matched labels. One of the main drawbacks of these approaches is the computational complexity of the solution, as the problem to solve is NP-complete. Some strategies have been proposed to reduce the com-

1.5. OUTLINE
putation time, but results of matching performances of large airway-trees, including distal branches, are missing in the literature. Intra-subject approaches were developed with the aim of following the tree branches across a set of different time-points and are expected to deal with matches going beyond a limited set of branches to be labeled. These approaches are based on dynamic programming integrating the geometrical and topological information. Although the reported results are promising, they are reduced in quantity and the used airway-trees are not as large as the ones extracted from the images of the presented project.

The proposed algorithm is able to find almost all the matching branches of two compared trees, and thus build a quasi-complete common tree. Three contributions support the algorithm: successive translation/matching steps, Q-best first search (a modified version of Best First Search), and father/family distance measure. This algorithm is presented in Chapter 4. Figure 1.13 shows an example of two segmented airway-trees with their corresponding common tree generated by the proposed matching method.

Hybrid registration-based lung segmentation on a reduced set of images

We propose a third contribution devised to be used in future analysis of images acquired from human patients suffering from ARDS. Compared to the presented animal study, the number of acquisitions from a human is reduced due to the ionization characteristic of CT. Depending on the human study these acquisitions may not correspond to proximate ventilation conditions. Instead, the ventilation conditions may notably differ, which means that structure displacements and intensity changes between the acquired images can be considerably large. These differences can not be overcame by registration methods based only on gray-level information, which we called simple registration methods. In order to deal with these differences, we introduce the results from airway-tree matching into a new registration process.

We propose a novel hybrid registration approach that combines airway-tree landmarks correspondences, which are the matchings found by the airway-tree matching, with graylevel information to improve registration results between images acquired at non-proximate ventilation conditions. The approach also includes the generation of motions masks. Some experiments were carried on the set of images from the presented protocol, providing encouraging results. Although deeper experimentation is needed, this approach represents a starting point for future developments. Deformed lung masks after hybrid and simple registrations are shown in Figure 1.14.

Outline

This documents is organized as follows. Chapter 2 presents the theoretical background of image registration and the basic theory of graphs that are used on the subsequent chapters. Chapter 3 describes the registration-based lung segmentation methodology for the segmentation of the lung in the set of images of one subject from the presented study. Chapter 4 contains the description of the new algorithm for the matching of airway trees for the application of accurate aeration quantification. Chapter 5 presents the perspectives Chapter 2

Background

In this chapter we present the theory required for the development of next chapters. In particular, we introduce image registration theory (section 2.1), used in chapters 3 and 5, and basic graph theory (section 2.2), with special emphasis in graph-trees, required in chapter 4.

Image registration

In the following sections we present the definitions and notations for the registration process (Section 2.1.1), followed by the description of its main components (Section 2.1.2).

Definitions and notations

Image registration is an optimization problem where a moving image (I M ) is deformed to be aligned to a fixed image (I F ). The degree of misaligment is represented as a distance function, also called metric, between the deformed moving image and the fixed image. In order to improve the aligment, the optimisation seeks to minimize the distance function with respect to a transformation function on the moving image. The optimization problem is defined as

T * = arg min T C(I F , I M , T ), (2.1)
where C is a cost function combining a distance function D between the images, and a regularization term P, typically used to constrain the transformation to physically plausible deformations.

C is defined as

C(I F , I M , T ) = D(I F , I M , T ) + αP(T ), (2.2)
where α is the weight given to the regularization. The solution to this minimization may be obtained using parametric and non-parametric transformations. The latter are reviewed in [START_REF] Fischer | A unified approach to fast image registration and a new curvature based registration technique[END_REF]]. For para-CHAPTER 2. BACKGROUND metric approaches, let μ be the vector of variables that defines T . Then, the registration process may be expressed as

T * μ = arg min Tμ C(I F , I M , T μ ). (2.
3)

The optimization is iteratively solved and requires an optimizer and an interpolator. The optimizer minimizes the cost function by modifying the transformation, thus the transformation parameters. The interpolator is required to calculate intensities in non-voxel positions of the images. This is necessary for the computation of the distance function. A detailed explanation of optimizers and interpolators, is respectively given sections 2.1.2.3 and 2.1.2.4.

Two additional components may be added to the process: samplers and pyramids. A sampler may be used to avoid calculating the distance function on the whole set of voxels of the fixed image. As for pyramids, they are used to help the optimization process avoid local minimima of the function to be minimized, i.e., cost function. When pyramids are present, the registration process is called multi-resolution. Registration components and their relations are shown in Figure 2.1. 

Main components

The main components of the registration process, i.e., transformation, distance function, optimizer, and interpolator, and the multi-resolution concept are presented below for the parametric approach.

Transformations

A transformation T μ : R d -→ R d , represented by a vector of parameters μ, describes how the moving image is deformed to correspond to the fixed image. Taking into ac-count that the images may not completely "overlap", i.e., not all the voxels in I M have a corresponding voxel in I F , and inversely, the correspondence may be defined only in the overlapping regions:

Z F = { f ∈ Ω F | T -1 (f ) ∈ Ω M },
(2.4)

Z M = { m ∈ Ω M | T (m) ∈ Ω F }.
(2.5)

The most common transformations are presented below.

Rigid transformation A 3D rigid transformation can be defined by six parameters: three rotation angles (θ x , θ y , θ z ) and a translation vector (t = (t x , t y , t z ) ). The transformation may be expressed using a rotation matrix R.

T μ (x) = Rx + t. (2.6)
The vector of parameters is μ = (θ x , θ y , θ z , t x , t y , t z ) .

Affine transformation A 3D affine transformation is described by 12 parameters: a 3x3 matrix (A) and a translation vector (t = (t x , t y , t z ) ). This type of transformation allows rotation, shear, scale, and translation deformations. It is defined as:

T μ (x) = Ax + t.
(2.7)

The vector of parameters is μ = (a 11 , a 12 , a 13 , a 21 , a 22 , a 23 , a 31 , a 32 , a 33 , t x , t y , t z ) .

B-spline transformation B-spline transformation uses B-splines to model the deformation of the moving image. The deformation is parametrized by a set of control points located on a regular grid over the image. The use of B-spline in image registration was first described in [START_REF] Rueckert | Nonrigid Registration Using Free-Form Deformations: Application to Breast MR Images[END_REF]]. The transformation is defined as:

T μ (x) = x + x k ∈Nx p k β 3 x -x k σ , (2.8)
where x k are the control points, β 3 (x) are the B-spline polynomials of degree 3, p k are the B-spline coefficients, σ is the spacing between control points, and N x are the set of control points corresponding to the compact support of the control point x. B-spline transformations have two main characteristics: representation of local deformations and fast computation. Local movements are controlled by a reduced number of control points, called local support, which means that changes outside the support do not affect the local deformation. Based on this characteristic, the estimation of local deformation only requires the information of the control points inside the local support, thus, reducing the calculation time compared to other approaches, e.g., thin-plate splines [START_REF] Davis | A physics-based coordinate transformation for 3-D image matching[END_REF]], not having local support.

The vector of parameters μ is composed by the B-spline coefficients p k of the control points. The number of control points (P ) in each dimension (d) is determined by the size (2.9)

For a 3D transformation the parameter vector is where W is the total number of control points:

μ = ( p 1x ,
W = 3 i=1 P i .
(2.11)

Distance functions

Distance functions quantify the degree of correspondence or alignment between two images. These functions rely on measures that quantify the similarity or dissimilarity between compared images. As the registration process minimizes a distance function, dissimilarity measures may be directly used as distance functions because their minimum values correspond to perfect image alignments. On the contrary, similarity measures must be modified, e.g., using their negative value, so that high values of similarity represent low values in distance functions.

Here we list the principal similarity/dissimilarity measures used in medical image registration. We define |Ω F | as the number of voxels of the fixed image.

Sum of Squared Differences (SSD)

This dissimilarity measure compares voxel by voxel intensities between fixed and deformed moving images. It is not robust to intensity changes between registered images, e.g., a linear shift (I (x) = I(x) + k, k ∈ R) on the intensities in one of the registered images may considerably change the outcome. Therefore, it is usually used in mono-modality image registration. This measure, called SSD, is defined as:

SSD(I F , I M , T ) = 1 |Z F | x∈Z F I F (x) -I M ( T -1 (x) ) 2 , (2.12)
where Z F is the set of voxels in Ω F having a corresponding voxel in Ω M (see eq. 2.4).

Normalised Correlation Coefficient (NCC) Normalised Correlation Coefficient, compared to SSD, is more suited for registering images where linear differences between the intensities of the registered images are observed.

NCC(I F , I M , T ) = x∈Z F (I F (x) -I F ) (I M (T -1 (x)) -I M ) x∈Z F ( I F (x) -I F ) 2 x∈Z F ( I M (T -1 (x)) -I M ) 2 , (2.13) with I F = 1 |Z F | x∈Z F I F (x) and I M = 1 |Z F | x∈Z F I M (T -1 (x)
). Z F is the set of voxels in Ω F having a corresponding voxel in Ω M (see eq. 2.4).

Mutual Information (MI)

Mutual Information (MI) is a measure that uses the concept of entropy to define the similarity between images. For being a similarity measure its negative value is used as distance function [START_REF] Rueckert | Nonrigid Registration Using Free-Form Deformations: Application to Breast MR Images[END_REF]]. It is robust to intensity changes, and is usually used in multi-modality registration. MI was first used in [START_REF] Viola | Alignment by Maximization of Mutual Information[END_REF], [START_REF] Collignon | Automated multi-modality image registration based on information theory[END_REF]]. We follow the definition given in [START_REF] Maes | Multimodality image registration by maximization of mutual information[END_REF]].

MI is defined as:

MI(A, B) = H(A) + H(B) -H(A, B), (2.14)
where H(Γ) (eq. 2.15) is the entropy of the random variable Γ, and H(Γ, Ψ) (eq. 2.16) is the joint entropy of two random variables.

H(Γ) = -p(Γ) ln(p(Γ))dΓ, (2.15) H(Γ, Ψ) = -p(Γ, Ψ) ln(p(Γ, Ψ))dΓdΨ. (2.16)
Considering images, A and B are two random variables representing intensities of corresponding voxels in images I F and T (I M ) respectively. An interpretation of MI comes when reformulating equation 2.14:

MI(A, B) = H(A) -H(A|B),
(2.17)

where H(A) represents the amount of incertainty of A, and H(A|B) represents the amount of uncertainty in A when B in known.

Normalised Mutual Information (NMI) Normalised Mutual Information (NMI) was proposed in [START_REF] Studholme | An overlap invariant entropy measure of 3D medical image alignment[END_REF]]. As MI, it is robust to intensity changes, and it is commonly used in multimodal registration. It was defined as:

NMI(A, B) = H(A) + H(B) H(A, B) , (2.18)
where H(Γ) (eq. 2.15) is the entropy of the random variable Γ, and H(Γ, Ψ) (eq. 2.16) is the joint entropy of two random variables.

Dice Dice coefficient was proposed in [Dice (1945)]. It is used as a similarity measure for registering binary images, i.e., images composed of two values representing object (O) and background components. It measures the overlap between objects on the images. Its negative value is used as distance function, as used in the registration framework elastix [START_REF] Klein | elastix: A Toolbox for Intensity-Based Medical Image Registration[END_REF], [START_REF] Shamonin | Fast Parallel Image Registration on CPU and GPU for Diagnostic Classification of Alzheimer's Disease[END_REF]].

Dice(I F , I M , T ) = 2 x∈Z F 1 ( I F (x)=O ∧ I M (T -1 (x))=O ) x∈Z F 1 ( I F (x)=O ) + 1 ( I M (T -1 (x))=O ) , (2.19)
where 1 (•) is the indicator function equals to 1 when the condition in parenthesis is true, and to 0 otherwise, and Z F is the set of voxels in Ω F having a corresponding voxel in Ω M (see eq. 2.4). Dice measure is 1 for a perfect matching, and 0 for no matching.

As it was noticed in the definition of the presented distance functions, their calcule requires the inverse of the transformation T . However, the inverse transformation T -1 may not always be available or is not possible to generate. For these reasons, most of the practical implementations of registration instead of seeking for T , strategy called "forward mapping", they look for the transformation T which is an approximation of T -1 . This strategy is called "backward mapping". A more detailed explanation about this practical implementation is given in the appendix A.

Optimizers

The minimization of the cost function is solved iteratively. These strategies use a search direction, towards the minimum, and a length step to approach in each iteration to the minimum. Given initial values for the parameter vector μ at iteration k, next values μ k+1 are found using:

μ k+1 = μ k + a k d k , k = 0, 1, 2, .... , (2.20)
where d k is the search direction and a k is the step length or gain factor. Iterative optimization methods use different approximations for the calculation of d k and a k .

Gradient descent Gradient descent strategy uses the negative of the gradient as the search direction. The gain factor or step size a k may be a predefined function or may correspond to a line search strategy. Given a calculated d k and a starting point μ k , the cost function may be described as:

Φ(a) = C(I F , I M , T μ k +ad k ).
(2.21)

In order to set the step size a k , the line search strategy may be used. Line search refers to following optimization for a univariable (a) function:

Φ(a k ) = min a Φ(a) (2.22)
where d k = -g k , with g k the gradient of the cost function C (see eq. 2.2).

IMAGE REGISTRATION

The gradient descent is stopped after a certain number of iterations or when the gradient falls below a threshold value .

Quasi-Newton This strategy uses the computation of the Hessian matrix to find the search direction. Theoretically, this strategy has better convergence properties. Inspired from the Newton-Raphson algorithm, the parameters are modified in each iteration using:

μ k+1 = μ k -[H(C)] -1 g k , (2.23)
where H(C) and g k are respectively an approximation of the Hessian matrix and the gradient of the cost function.

Stochastic gradient descent Stochastic gradient descent uses an approximation gk of g k as search direction. This is useful when the calculation of the exact g k is computationally costly. In this case the parameter vector iteration is given by

μ k+1 = μ k -a k gk .
(2.24)

Interpolators

Interpolators are required to compute the distance function between the images being registered; they are used to calculate the intensity in non-voxel positions within the images. As shown in the section 2.1.2.2, the intensity I M (T -1 (x)), with x ∈ Z F , is required for the calculation of distance functions. However, there is no guarantee that T -1 (x) falls exactly in a voxel position in Z M , and, thus, intensities in non-voxel positions must be calculated by an inteporlation process. Inteporlators use the intensity of voxels near the predicted positions to estimate the intensity in these non-voxel positions. The most common interpolators are hereafter presented.

Nearest neighbor Nearest neighbor interpolator assigns the intensity of a non-voxel position to be the same intensity of the closest voxel position. This is the fastest interpolator and is usually used on binary images in combination with the dice similarity measure (see 2.1.2.2).

Linear This inteporlator assigns the intensity of a non-voxel position using a linear combination, i.e., weighted average, of the neighbors' intensities. The weight of each neighbor is assigned based on the distance to the non-voxel position.

B-spline

B-splines may be also used as inteporlators for non-voxel positions. The order of the B-spline determines the smoothness of the interpolation. Nearest neighbor and linear interpolators are special cases of B-spline of order zero and one respectively. Although the higher B-spline order the better the interpolation, a higher order implies a higher computation cost.

Multi-resolution

The main objective of the multi-resolution approach is to avoid local minima and reach a minimum close to the global minimum of the cost function C. Due to the non-linear motion of structures on images, specially in medical imaging, e.g., lung motion againts the ribcage and heart motion, and the fine details that can be imaged, the shape of the cost function may have multiple local minima which prevent the optimization from reaching the global minimum. The multi-resolution approach provides mechanisms to help the registration get closer to the cost function global minimum. These mechanisms are called hierarchical strategies [START_REF] Lester | A survey of hierarchical non-linear medical image registration[END_REF]].

The underlying idea using hierarchical strategies is to manage complexity of images, transformations, and/or models at different scales to help the registration approach the global minimum of the cost function. Given that the cost function depends on the transformation and the input images (see eq. 2.2), one can say that the global shape of the cost function is maintained over all the scales while local shapes vary. These local shapes, which include local minima, are smoothed at low complexity scales, and become less smoothed at high complexity scales. Therefore, starting registration at low complexity scales allows the optimization to quickly approach the global minimum of the cost function. Once the best minimum is reached, using a given scale, a more complex scale, e.g., finer image or more complex transformation, is set up for a next registration. This next registration starts in a point close to the global minimum, the best minimum found by the precedent registration, and finds a better minimum on the new cost function. The process is repeated until the most complex scale is reached.

Three types of hierarchies, seen also as complexity reduction strategies, may be used: data, transformation, and model hierarchies. These strategies may also be combined to improve results.

Data hierarchy

Data hierarchy is built using scale spaces or pyramids. Scale spaces remove details from images conserving their size while pyramids reduce their size.

The most used scale space is the Gaussian. Here, the scale space is formed by applying a series of Gaussian smoothing filters, with different standard deviations, to the original images. When the size of the standard deviation of the Gaussian filter is increased, only the coarse structures, having larger size than the standard deviation, remain. This implies that the new cost function, in this scale, is smoother than the cost function from scales using smaller standar deviations. This reduction in complexity is used to first align coarse structures on the most smoothed images, and, then, align finer details in more complex, i.e., less smoothed, images.

In addition to the smoothing, pyramids add data reduction by downsampling the images. The clear advantage of pyramids is the improvement of the registration computation time because of the data reduction. The combination of scale spaces and downsampling makes sense because details are removed by smoothing, then less information is needed to represent the image. One can say that high frequencies are removed, then the reconstruction frequency may be reduced.
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Transformation hierarchy

This hierarchical strategy aims to drive the registration process from low to high complexity transformations; this is from low to high degrees of freedom. Low complexity transformations may follow global smooth movements while highly complex transformation may capture local sharp movements. For example, in the case of B-spline transformation, two parameters control the complexity, i.e., degrees of freedom, of the transformation: the order of the B-spline and the number of control points over the fixed image. The hierarchy of transformation complexity may have a reduced number of control points in the first steps of the registration process, thus allowing smooth and large movements, and an increased number of control points in the next steps to allow the transformation to follow local, finer, and less-smooth movements.

Model hierarchy

The model complexity states that the registration may be executed in different steps with increasing transformation model complexity. This refers to the change of models in successive registration steps: it starts with low complexity models, e.g., rigid or affine models, and ends with non-rigid models such as B-spline model. This strategy is generally taken into account in the registration of medical images: a rigid transformation is used, followed by non-rigid transformation models. This is explained because intra-and intersubject registration exhibit rigid movements of the patient that must be considered before more complex models are used.

Graph theory

Graphs and trees are symbolic representations of objects. A symbolic representation is an abstraction of an object where its topology and geometric features are represented as a list of components related among them. These components may have properties to represent features of the object. For instance, cerebral vasculature may be represented as a graph [START_REF] Hui | Automatic extraction and matching of neonatal cerebral vasculature[END_REF]]. In this case, the vasculature was depicted as linked bifurcation elements.

Matching graphs and trees refers to the process of finding correspondences among their elements. The advantage that represents this matching is that once objects are modeled using a symbolic representation, finding correspondences among them may be transposed to comparison of mathematical structures, e.g., graphs, where mathematical theory has been already developed.

In this section we introduce definitions and notations of graphs (section 2.2.1) and the first notions of matching 2.2.2). This theory will be used in the development of chapter 4.

Definitions and notations

A graph G is represented by a set of nodes (or vertices) V and a set of edges • A clique of a graph is a set of nodes V ∈ V where each node is connected to all other nodes, i.e., all the nodes are mutually adjacent.

E = {(a, b)|a, b ∈ V ∧ a = b } linking elements of V . This graph is denoted G = (V, E). Two
• A maximum clique of a graph is a clique with the largest cardinality. A graph may have multiple maximum cliques.

• A maximal clique of a graph is a clique that is not contained in any clique, of the same graph, having a larger cardinality. A maximal clique may have a lower cardinality than the cardinality of the maximum clique, provided that locally it is not contained in any other clique with larger cardinality.

• G = (V , E ) is a subgraph of G if V ⊂ V ∧ E ⊂ E. • G[V ] is the subgraph induced by V ⊂ V . Here, E ⊂ E and E = {(a, b)|a, b ∈ V }.
An example of a graph with some properties is given in Figure 2.2. Some graphs receive special names based on their properties. A connected graph is a graph where for any pair of nodes a, b ∈ V there is a path P (a, b). An acyclic graph does not have closed paths; it is called a forest. A tree is a connected forest, this means that for any pair of nodes a, b ∈ V there is a unique path P (a, b) joining them.

A tree has the following properties [Diestel (2000)]:

• It is minimally connected. If any edge is removed then it becomes a non-connected forest.

• It is maximally acyclic. If an edge is inserted and it links two of the nodes of the tree then a cycle is created.

Matching graphs

Matching two graphs is the problem of knowing if they are isomorphic. Two graphs

G 1 = (V 1 , E 1 ), G 2 = (V 2 , E 2 ) are isomorphic if there is a bijection φ : V 1 -→ V 2 such that for each edge e 1 (a, b) ∈ E 1 it exists an edge e 2 ( φ(a), φ(b) ) ∈ E 2 . φ is called an isomorphism.
A more general problem is when graphs do not have the same order and size, and thus a sub-graph matching is required. Sub-graph matching is the problem of finding (possibly maximal) isomorphic subgraphs from two graphs. A bijection ϕ :

V 1 -→ V 2 , with V 1 ⊂ V 1 and V 2 ⊂ V 2 is called a sub-graph isomorphism if the induced sub-graphs G 1 [V 1 ] and G 2 [V 2 ] are isomorphic. ϕ is a maximal sub-graph isomorphism if no other sub-graph isomorphism ϕ : V 1 -→ V 2 exists such that V 1 ⊂ V 1 . A sub-graph isomorphism is maximum if |V 1 | has the largest cardinality.
The problem of finding the maximum sub-graph isomorphism is NP-Hard. If the problem is defined as a decision problem, i.e., given two graphs G 1 and G 2 and a constant k, decides if it exists a sub-graph of G 1 with size greater that k that is isomorph to a subgraph of G 2 , it is NP-Complete [Cook (1971)]. 

G 1 = G 1 [V ] where V = {1, 3, 4, 5} is isomorph to graph G 2 . The bijection φ : V 1 -→ V 2
, called isomorphism, is represented with colors: corresponding nodes are highlighted with the same color in both graphs.

Chapter 3

Lung segmentation and registration

Segmentation of lung parenchymal tissue determines the regions where information is extracted to analyze the lung aeration in CT images. Voxel frequency distribution in aeration classes and spatial air distribution are the main information required for the evaluation of the lung's condition. Moreover, if the information can be extracted from different time-point data, e.g., images acquired at different times, the evolution of the lung aeration facing particular procedures such as mechanical ventilation protocols may be assessed. This is of particular interest in patients suffering from ARDS because mechanical ventilation constitutes an essential part of the treatment. In general, the specific lung parenchymal tissue is not segmented. Instead, the segmentation is focused on the region wrapped by the pleura, which encompasses lung parenchyma together with pulmonary bronchi, vessels, and nerves. This operation is commonly named "lung segmentation". In subjects suffering from ARDS this segmentation is hindered by the radiological expression of the syndrome: reduced or missing contrast between lungs and surrounding structures.

In this chapter we propose a methodology that combines lung segmentation and image registration to segment the lungs in the set of images acquired from ARDS subjects in the presented study (see chapter 1, section 1.2).

This chapter is structured as follows. First, we explain the usefulness and detail the challenges of lung segmentation in CT images from subjects with ARDS in section 3.1. Then, related work concerning lung segmentation and registration, with emphasis in lungs presenting large high-density pathologies, is presented in section 3.2. The proposed methodology is described in section 3.3, and results are shown in section 3.4. Finally, the discussion is presented in section 3.5.

Introduction

Mechanical ventilation is a cornerstone in the treatment of ARDS, but it may, unfortunately, aggravate the lung condition. The benefits of mechanical ventilation are support of the respiration process, prevention of alveoli from collapsing, i.e., open the alveoli and maintain them opened, and recruitment of collapsed alveoli. However, it is known that it may incur detrimental consequences known as ventilatory induced lung injury (VILI) [START_REF] Fan | Novel approaches to minimize ventilator-induced lung injury[END_REF]]. This problem is considered an important cause of death in ARDS. Indeed, it is believed by the research community that the use of adapted mechanical ventilation instead of general accepted protocols may improve the state of the patient. It is estimated that 22% of patients suffering from ARDS may have survived if an adapted ventilation had been applied [START_REF] Ardsnet | Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome[END_REF]]. In order to adapt the ventilation, the lung aeration and its time-evolution must be analyzed.

CT is the preferred method to measure and analyze lung aeration due to its capacity to acquire high-resolution images, in the order of millimeters, and to the characteristic relating the volume of air and intensity of a voxel. The combination of both characteristics allows to image specific parenchymal structures, such as an acinus [START_REF] Gattinoni | What Has Computed Tomography Taught Us about the Acute Respiratory Distress Syndrome?[END_REF]], and to extract the air and tissue proportion of each voxel, a determined region, or the whole lung. Because of these advantages, CT is the imaging modality where gold standards of lung aeration are created to assess other modalities such as EIT (see section 1.1.4.1) and nitrogen washin-washout [START_REF] Richard | Reliability of the nitrogen washin-washout technique to assess end-expiratory lung volume at variable PEEP and tidal volumes[END_REF]] (see section 1.1.4.1). The counterpart, however, are its ionization property and the implications of moving the patient inside the scanner, displacement that may be difficult for delicate patients. Despite these restrictions, it continues to be the most used imaging modality for the extraction and analysis of lung aeration [START_REF] Gattinoni | Lung Recruitment in Patients with the Acute Respiratory Distress Syndrome[END_REF], Ochiai (2015)]. Only one task is required before analysing lung aeration: the lung segmentation.

Lung segmentation may be achieved by manual, interactive, or automatic segmentation. Manual segmentations, consisting in manual tracing of 2D contours of the lungs in axial slices, produce high-quality results at the expense of a large amount of time spent by the user. A manual segmentation of a 3D CT image requires the tracing of contours in near 300 slices (image slice-thickness of 1mm). For this reason, automatic and interactive strategies are preferred. These methods produce high quality segmentations in healthy lungs, or lungs with normal appearance on CT images in a couple of minutes. Nevertheless, when dealing with images where lung presents large high-density pathologies, i.e., lungs with atelectasis or ARDS, manual segmentation becomes a harder task, and automatic and interactive segmentation methods do not provide the same quality. Indeed, pathology specific or more advanced methods are required to segment the lung on these images.

In ARDS, lung parenchyma is locally filled with liquid, i.e., infiltrations, that reduce, and in some cases erase, the clear definition of lung's boundaries which is an essential characteristic used by lung segmentation methods. In fact, these infiltrations increase the density of the parenchyma until a point where no intensity distinction may be observed between lungs and surrounding tissue, such as liver and intercostal spaces (see Figure 3.1). The effect becomes more notorious when infiltrations are located near the borders of the lungs, where the distinction becomes more difficult even for radiological experts. This contrast-missing characteristic has been identified as one of the main challenges for lung segmentation algorithms [START_REF] Sluimer | Computer Analysis of Computed Tomography Scans of the Lung: A Survey[END_REF], [START_REF] Reinhard | The lobe and lung analysis challenge[END_REF]].

In this work we propose a methodology that combines lung segmentation and image registration for the segmentation of lungs in CT images from the set of images acquired for a given subject under the protocol of the presented study (see chapter 1 section 1.2.2). We use an initial lung segmentation from a convenient image, i.e., the most contrasted image, and deform it by means of a registration/transformation cascade to the other images of the set. This methodology exploits the characteristics of the acquisition protocol where the images are acquired at proximate ventilation conditions, and the fact that some images are acquired at high PEEP values.

Related work

In this section, first, we present conventional and advanced approaches for lung segmentation (subsection 3.2.1). Then, we describe state-of-the-art methods for lung registration (subsection 3.2.2). Both subsections are focused on works dealing with ARDS or similar images.

Lung segmentation

Lung segmentation in CT has many applications and thus a large amount of work using this task as a pre-processing step may be found in the literature. For instance, it is used as a preliminary step to delimit the region of interest in applications such as airway segmentation [van Rikxoort et al. (2009)a], pulmonary vessel segmentation [START_REF] Shikata | Segmentation of Pulmonary Vascular Trees from Thoracic 3D CT Images[END_REF], [START_REF] Orkisz | Segmentation of the pulmonary vascular trees in 3D CT images using variational region-growing[END_REF], [START_REF] Rudyanto | Comparing algorithms for automated vessel segmentation in computed tomography scans of the lung: the VESSEL12 study[END_REF]] and nodule detection [START_REF] Armato | Computerized Detection of Pulmonary Nodules on CT Scans[END_REF], [START_REF] Zhao | Automatic detection of small lung nodules on CT utilizing a local density maximum algorithm[END_REF], [START_REF] Pu | Adaptive border marching algorithm: Automatic lung segmentation on chest CT images[END_REF], [START_REF] Li | Pulmonary CT image registration and warping for tracking tissue deformation during the respiratory cycle through 3D consistent image registration[END_REF][START_REF] Duindam | Nodule volume change estimation in thoracic CT using sphere fitting, morphological segmentation and image registration[END_REF]]. In most of these applications the lungs are healthy or present healthy radiological appearance which is characterized by high contrast between lungs (low attenuation) and surrounding tissue (high attenuation). These characteristics are exploited by conventional lung segmentation methods.

Conventional lung segmentation methods use mathematical morphological operations and region growing to segment the lungs. The most used and cited method in the literature was proposed in [START_REF] Hu | Automatic Lung Segmentation for Accurate Quantitation of Volumetric X-Ray CT Images[END_REF]]. Other conventional methods use similar operations but applied on 2D axial slices [START_REF] Armato | Computerized Detection of Pulmonary Nodules on CT Scans[END_REF], Armato III and MacMahon (2003)]. These methods, however, are not devised to handle pathological cases and, thus, may lead to erroneous segmentations if the assumptions are not met. Nonetheless, they serve as starting point for more sophisticated methods dealing with this kind of challenging images.

More sophisticated lung segmentation methods deal with large high-density regions appearing inside the lung. These large abnormalities are due to different diseases and syndromes such as interstitial lung disease, fibrosis, atelectasis, and ARDS. For the case of interstitial lung diseases, texture information was used in [START_REF] Wang | Automated segmentation of lungs with severe interstitial lung disease in CT[END_REF]] to segment lung regions not reached by a common lung segmentation algorithm. In this case large high-density regions present texture patterns which differentiate them from the tissue surrounding the lung. In [START_REF] Sluimer | Toward Automated Segmentation of the Pathological Lung in CT[END_REF]], an atlas approach was used to segment lungs with general large dense pathologies. Here, manual lung segmentations were performed in a selected set of images, called atlas. The lung segmentation in a new image was done by registering all the atlas images to the new image, deforming each lung mask onto the new image, and combining the deformed lung masks into a final binary mask. Deformed masks were combined using a voting strategy. Afterwards, a classification strategy over lung border was used to refine the boundaries of the segmentation. This method obtained a relativealy low average dice score against the manual reference (0.58) for both lungs in ARDS cases. An hybrid method that uses the above presented work [START_REF] Sluimer | Toward Automated Segmentation of the Pathological Lung in CT[END_REF]] when errors are detected in a conventional lung segmentation method was presented in [START_REF] Van Rikxoort | Automatic segmentation of the airway tree from thoracic CT scans using a multi-threshold approach[END_REF].

In 2011, eight lung segmentation methods were presented and evaluated in the "lobe and lung analysis" (LOLA11) challenge [START_REF] Reinhard | The lobe and lung analysis challenge[END_REF]]. Five methods reported poor overlap between the segmentation results and the reference for images with large high-density pathologies; the authors of the remaining methods did not comment on the results over these images. After the LOLA challenge, other approaches using supervised learning methods and active shape models (ASM) in the intent to cope with large highdensity pathologies were proposed. In [START_REF] Hua | Segmentation of pathological and diseased lung tissue in CT images using a graph-search algorithm[END_REF]], Hu's method was used to define an initial segmentation that was then refined by a k-Nearest Neighbors (kNN) classifier and finally adjusted to the image by a graph-cut strategy. The classifier was trained with manual segmentations of images including high-density pathologies such as atelectasis. This strategy can go further where there are non-contrasted regions, but it depends on the initial segmentation to create a good graph initialization. The strength of the method cannot be evaluated because the work lacks of information about the number of images that were selected to assess the results. In [START_REF] Sun | Automated 3-D Segmentation of Lungs With Lung Cancer in CT Data Using a Novel Robust Active Shape Model Approach[END_REF]], an ASM generated on the lung was initialized by using rib cage anatomical information. This initialization was then matched using a Robust ASM Matching (RASM). Finally, the small local shape variations were detected by an optimal surface approach that used image gradient information. Although those methods improve the segmentation, they rely on image gradient information which To the best of our knowledge, only two articles dealt with actual ARDS images. The first work, proposed in [START_REF] Cuevas | Automatic Lung Segmentation of Helical-CT Scans in Experimental Induced Lung Injury[END_REF]], built a dorsal surface utilizing rib landmarks to define the dorsal limits of the lungs. Then, a threshold based segmentation delineated the aerated zones (intensities between -1000 and -300 HU) of the lungs. The complete lung segmentation was achieved by extending the lung mask to the dorsal surface, thus adding the non-aerated zones of the lungs to the threshold based segmentation. Although this approach seems to be appropriate, there was no explanation about the algorithm behavior near the diaphragm, i.e., how the shape of the diaphragm was found, and there was not a quantitative assessment of the results. The second work, presented in [START_REF] Talakoub | An Automatic Wavelet-Based Approach for Lung Segmentation and Density Analysis in Dynamic CT[END_REF]], used ARDS images of rabbits with induced syndrome. The lung was segmented by considering the confined area inside detected contours of the lungs. These contours were found after a wavelet edge detection process. The main drawback of this work is a pre-processing step where, in order to avoid the detection of borders between bones and soft-tissue during the edge detection process, the voxels with intensity higher than the average body intensity were trimmed. This pre-processing, however, can only be done if the intensities inside the lung are significantly lower with respect to soft-tissue, but this is not the case in ARDS images.

In order to segment the lungs in the set of images from the same subject acquired in the presented animal study, we propose a methodology which combines common lung segmentation methods and image registration. The methodology takes advantage of the presented acquisition protocol, which imposes the acquisition of CT images in at least one ventilation condition where lungs have the appearance of being healthy. This characteristic is exploited to obtain an initial lung segmentation using a modified common lung segmentation method. Based on the fact that the best results for lung segmentation in images with large high-density pathologies, similar to ARDS images, have been reported using atlas registration [START_REF] Sluimer | Toward Automated Segmentation of the Pathological Lung in CT[END_REF]], we propose to deform the initial lung segmentation to the other images in the set by means of registration. The state of the art of registration focused on the registration of lungs is presented in the next section.

Lung registration

Lung registration has various applications such as accurate evaluation of radiation dose received by tissues during radiotherapy, longitudinal pathology studies, and, also as seen in the precedent section, lung segmentation using atlas. The registration methods used in these applications can be classified, based on the information used to quantify the degree of correspondence between images, into those using only gray-level information (simple methods) and those combining gray-level and landmark information (hybrid methods).

Methods based on gray-level information use standard and advanced similarity measures. Standard measures such as SSD, NCC, and NMI (section 2.1.2.2) are principally used for intrasubject image registration in lungs with healthy appearance, i.e., not containing large opacities. Eventually, NCC and NMI are preferred to SSD in cases where intensity changes occur in the images to be registered. For instance, SSD is mostly used on images acquired from breathing cycle where it is supposed that no or little intensity changes may be present. In the case of NMI, although it was in principle created for multi-modality registration, it has also been used in mono-modality registration. In [START_REF] Sluimer | Toward Automated Segmentation of the Pathological Lung in CT[END_REF]], this measure was used in an atlas registration application for the segmentation of lungs having large high-density pathologies. Concerning advanced similarity measure, a new measure called sum of squared tissue volume difference (SSTVD) was introduced in [START_REF] Yin | Local tissue-weight-based nonrigid registration of lung images with application to regional ventilation[END_REF]] with the specific objective of dealing with intensity changes between images acquired in the same scanning session or over short periods of time. SSTVD measures the difference of tissue volume between the registered images, assuming that the lung mass is conserved among the registered images.

Although SSTVD and NMI measures can overcome intensity changes between fixed and moving images, additional information is needed when large homogeneous regions are present in one or both of the registered images. In this case, the image intensity information is not sufficient to find the correct displacement that aligns the regions, as in lung-caudal zones in ARDS images (see Fig. 3.1). Another drawback of gray-level based measures is the misregistration that can be obtained in the presence of large structures displacement. Here, the cost function has multiple local minima which may cause the optimization to get stuck in one of them before being near a good solution.

The presented drawbacks may be overcame by methods using landmark correspondences combined with gray-level information, called hybrid methods. In these methods, landmarks are extracted, on each image, and, subsequently, a matching process finds corresponding pairs of landmarks between the images. These landmarks are anatomical reference points such as bifurcation points in the pulmonary vessels or airways, e.g., the carina point. Once the matching pairs are detected, the registration is enhanced by adding this information to the cost function or adding steps of landmark registration. The essential step in this approach is the landmark extraction which may be, in some cases, a complex task. In [START_REF] Li | Establishing a Normative Atlas of the Human Lung: Intersubject Warping and Registration of Volumetric CT Images[END_REF], [START_REF] Li | Pulmonary CT image registration and warping for tracking tissue deformation during the respiratory cycle through 3D consistent image registration[END_REF]a], 20 to 30 airway-tree bifurcation points were selected and matched between the images to be registered. Then, the registration process was modified so that a gray-level registration was preceded by a landmark registration. Results in images acquired from healthy subjects presented low landmarks registration errors compared to a simple intensity registration approach. A hybrid approach for the lung registration based on SSTVD measure and landmarks extracted from the bifurcations of major vascular and airway trees was proposed in [START_REF] Yin | A cubic B-spline-based hybrid registration of lung CT images for a dynamic airway geometric model with large deformation[END_REF]]. Results for segmentation between TLC and FRC images in six normal human subjects were more accurate for the hybrid approach than for only intensity or landmark registrations. Although the authors claimed that large intensity changes were observed between the registered images, the evaluation was made in normal human subjects where intensity changes must be small compared to the ones found in images acquired from subjects suffering from ARDS. In ARDS cases, intensities may drastically change from aerated to non-aerated aeration class, or inversely (see chapter 1 section 1.1.4.3).

Another aspect that must be taken into account is the physical movement of the lung against the chest wall, called "sliding motion". It is generated by the sliding of the lungs against the chest wall, and is provided by the pleura interface between these structures. This motion represents a deformation discontinuity in the interface where the sliding is observed. More specifically, the motion is continuous in the normal direction of the interface because the structures remain joint, but is discontinuous in the tangential direction given that on one side of the interface the structures remain almost still, i.e., ribs and intercostal tissue, and on the other side the structures slide, i.e., lungs. As most of the registration methods use smooth transformations, provided by regularization terms in the cost function, which cannot represent this discontinuity, erroneous deformations, near the frontier pleura-chest wall, are generated.

In order to deal with sliding motions, the complete registration process is divided in two separate registration steps avoiding to take into account this motion in the transformation. In [START_REF] Wu | Evaluation of deformable registration of patient lung 4DCT with subanatomical region segmentations[END_REF]], a double registration approach was proposed: one for moving structures and the other one for less moving structures. The lungs, mediastinum, and abdomen were defined as moving structures, and the rest as less moving structures. A pre-registration step was setup to segment both types of structures in each of the registered images. To avoid the influence of less moving structures onto moving structures, intensities of less moving structures were set to a unique value (-1200 HU), in each image, and the registration was carried on. Same operation was made for the registration of less moving structures. Another approach was presented in [START_REF] Vandemeulebroucke | Automatic motion mask extraction for deformable registration of the lungs[END_REF]], where motion masks, wrapping all the moving structures in the registered images, were used to delimit the regions to be registered. A strategy to obtain the motion masks, based on the level set framework and requiring the segmentation of the lung as input, was also presented. The motion masks were used to perform one registration only for the structures inside the motion masks of both images, and another only for the structures outside the motion masks. This approach is different from the one presented in [START_REF] Wu | Evaluation of deformable registration of patient lung 4DCT with subanatomical region segmentations[END_REF]], where the two registration used the whole set of voxels from both images while here only the information inside or outside the motion masks is used. These approaches, [START_REF] Wu | Evaluation of deformable registration of patient lung 4DCT with subanatomical region segmentations[END_REF], [START_REF] Vandemeulebroucke | Automatic motion mask extraction for deformable registration of the lungs[END_REF]], however, may produce artifacts in the interface between the deformed structures. These artifacts may be overlaps, e.g., some regions of less moving and moving structures arrive at the same position after being deformed, or gaps, e.g., the distance between deformed moving and less moving structures is not zero at some regions.

To reduce the presented artifacts, a multi-transformation registration allowing the sliding of the moving structures against the less moving structures was presented in [START_REF] Delmon | Direction dependent B-splines decomposition for the registration of sliding objects[END_REF], [START_REF] Delmon | Registration of sliding objects using direction dependent b-splines decomposition[END_REF]]. In this approach, the cost function depends on three transformations: one for the moving structures, another one for the less moving structures, and a final one that prevents the generation of overlaps or gaps in the interface of the sliding motion. Compared to the other two presented methods, only one motion mask, usually on the fixed image, is required. These approaches must be used when dealing with registration of images with significant structure displacements near sliding interfaces.

In this chapter, we propose a cascade of successive registrations to deform an initial lung mask to all the images in the set of images acquired from a subject in the presented animal study. The cascade is based on the characteristic of proximate ventilation conditions provided by the acquitision protocol. We call proximate ventilation conditions two conditions, in which the difference of acquisition parameters, i.e., PEEP and V t , is small. Images acquired at proximate ventilation conditions present smaller lung-structure dis-placements and smaller intensity changes than non-proximate images. The novelty of our approach is the use of automatic customized motion masks generated over all the images, including those with the largest infiltrations. These masks allow us to take into account the sliding motion, and are generated using the same cascade of successive registration approach.

Method

In this section we present the first contribution of this thesis: a method for the segmentation of the lung in CT images acquired in the presented animal study. We focus on the lung segmentation on the set of images acquired for one subject. The method relies on two facts: first, the lung is imaged at a ventilation condition with a high PEEP value of 20cmH 2 O, acquired at the beginning of the acquisition protocol, and second, tissue movements and intensity changes of the lung are smaller in images acquired at proximate ventilation conditions than in non-proximate ones. The former fact ensures an image where lung has the appearance of a healthy lung, thus allowing the use of conventional lung segmentation methods to obtain an initial lung segmentation (see Fig. 3.2). The latter is the basis for the use of a cascade registration/transformation process which enables the deformation of an initial lung segmentation to all the other images acquired in the protocol. A key feature of the method is the use of customized motion masks, to take into account the sliding motion, for each registration of the cascade without having the lung segmentation in all the images.

The method is presented as follows. We first introduce the definition of the cascade registration/transformation process (Section 3.3.1). Then, we present the specific application of the cascade registration/transformation process for the segmentation of the lung on the CT images acquired in the presented animal study (Section 3.3.2).

Cascade registration/transformation

The inputs of the cascade registration/transformation are a sequence of images L, and a binary image B 1 on the spatial support of the first image (I 1 ) in the sequence L. A supplementary list of binary images Ψ, containing the motion masks corresponding to each image in L, may be added to the inputs. The output is a sequence of images corresponding to the deformed version of the image B 1 to the spatial support of all the images in L\{I 1 }. In other words, the output corresponds to the deformation of the binary image B 1 , for instance a mask representing the lungs, to all the images in L\{I 1 }. In order to configure the registration process between two images, all the parameters for the registration process, e.g., transformation, optimizer, interpolator, and distance functions, must be provided.

Let L be a sequence of n images defined as:

L = I 1 , I 2 , ... , I n , (3.1)
and the corresponding motion masks: a sequence of motion masks where M i corresponds to a motion mask for image I i .

Ψ = M 1 , M 2 , ... , M n , (3.2)
We define the set of transformation functions T, issued from a registration process, on the sequence of images (L) including the additional motion masks Ψ as:

T(L, Ψ) = { T i,i+1 = arg min T C( I i+1 , I i , T , M i+1 ), ∀i < n }, (3.3)
where I i+1 is referred to as the fixed image, and I i as the moving image, as presented in Section 2.1. Given a set of transformation functions T(L, Ψ), the output sequence of binary images O is defined as

O( T(L, Ψ) ) = B 1 , B 2 , B 3 , ... , B n-1 , B n (3.4)
where B i for 1 < i < n is defined as:

B i (x) = B 1 ( T 1,2 • T 2,3 • ... • T i-1,i (x) ). (3.5)
The cascade registration/transformation takes its name from the equation 3.5. Here, given a voxel x i ∈ Ω i , where Ω i is the support of the image B i , its corresponding voxel on the first binary image B 1 is obtained by successive transformations. This process may be explained as follows. First, the corresponding voxel

x i-1 ∈ Ω i-1 of x i ∈ Ω i is found. Then, the corresponding voxel x i-2 ∈ Ω i-2 of x i-1 ∈ Ω i-1 is
obtained, and the process continues until the corresponding voxel x 1 ∈ Ω 1 of x 2 ∈ Ω 2 is found. This creates a series of correspondences x i-1 ∼ x i-2 ∼ ... ∼ x 2 ∼ x 1 , leading to obtain x i ∼ x 1 . This allows finding the corresponding voxel in B 1 for each voxel on any image of the list L\{I 1 }.

We denote a cascade registration/transformation process, to be used in the following section, as

CRT(L, B 1 , Ψ, R) , (3.6)
where R is the registration process used in the cascade. An example of a cascade registration/transformation process is presented in Figure 3.3.

In this work we actually use two initial binary masks: the motion mask M 1 (section 3.3.2.2), and the initially segmented lung B 1 (section 3.3.2.3).

Lung segmentation by cascade registration/transformation

In order to segment the lung in all the images acquired from one subject in the presented animal model, we propose the use of a basic lung segmentation method combined with the cascade registration/transformation approach. A key point of the method is the use of a tailored motion mask for each registration of the cascade. The generation of these motion masks is also supported by a cascade registration/transformation. In this section we present the input sequences that we setup to be used by cascade registration/transformation processes (subsection 3.3.2.1), then we explain the extraction of motion masks (subsection 3.3.2.2), and, finally, the lung segmentation (subsection 3.3.2.3). .. , I n on the left, the initial binary image to be transformed B 1 , and a list of binary images Ψ (the motion masks) used in the registration process. It can be observed that the input images are registered in a cascade way, which means that the image I i is registered to the image I i+1 , and that for each registration, a transformation function T i,i+1 is obtained. Finally, the binary image B 1 is deformed to the other images by a similar cascade process where image B 1 is transformed to image B 2 , and B i to B i+1 until the last image B n is reached.

Input sequences

In order to take advantage of the fact that tissue movements and intensity changes of the lung are smaller in images acquired at proximate ventilation conditions than in non-proximate ones, we setup a list of proximate-image sequences to be used in different cascade registration/transformation processes.

We defined six cascades including both sets of images acquired at end-inspiration and end-expiration. Let I p,v ins and I p,v exp be the images acquired at PEEP=p and V t = v at end-inspiration and end-expiration respectively. The first sequence L t0,ins belongs to the trial of variable PEEP and constant V t = v c , and the images in this sequence are sorted by decreasing PEEP value:

L t0,ins = I 20,vc
ins , I 18,vc ins , ..., I 2,vc ins .

(3.7)

The second and third sequences belong to the trial of variable V t and constant PEEP = peep c ; they are respectively defined for increasing and decreasing V t as follows: 

, v k > v c ∧ v k+1 > v k , v l < v c ∧ v l+1 < v l ,
and v max and v min are respectively the maximum and minimum values for V t in the constant PEEP trial.

For the set of the images acquired at end-expiration, the same sequences are proposed with only one modification on the first sequence: where the image I 20,vc ins is first deformed to initial image I 20,vc exp for the cascades at expiration. As shown in section 3.3.1, for a given sequence L there is an initial binary image B 1 associated to the image L 1 . In our case, the initial B 1 for the sequences L t0,ins and L t0,exp corresponds to a segmentation on the image acquired at maximum PEEP value for the trial of variable PEEP. For the rest of the sequences, B 1 is a result of the cascade registration/transformation on sequences L t0,ins and L t0,exp . This implies that only a segmentation in the image acquired at maximum PEEP value for the trial of variable PEEP is required to execute all the sequences.

Motion mask extraction

Motion masks separate moving structures from less-moving structures. This separation is taken into account in the registration process in order to allow representing the discontinuity imposed by the sliding motion between these structures in the deformation field. In the case of lung registration, the motion mask must separate the thoracic-cage interior (mainly lungs and mediastinum) and the abdominal cavity from the exterior structures. The abdominal cavity is included as part of the moving structures because it remains in touch with the lungs during the respiration process, or during the mechanical ventilation, without incurring sliding motion. If, on the contrary, the motion mask separated the lungs from abdominal cavity, the registration might produce motion discontinuities in the deformation field that do not physiologically exist in the interface between these regions.

METHOD

The surface of the motion mask is defined as follows. The dorsal frontier is delimited by the ribs, intercostal tissue, and the vertebral column. The lateral boundaries are defined by the ribs and intercostal tissue. The ventral limits are: the sternum with its connected ribs and the intercostal tissue, and, below the sternum, the abdominal adipose tissue and the skin. Top frontier is delimited by the ribs and intercostal tissue. On the bottom, the limit is defined by the pelvis, but it is not observed in the acquired CT thoracic images. An example of a motion mask is presented in Figure 3.4. From these images we can see that the motion mask is inside the thoracic cage and that below the sternum it extends until the abdomen. In the (d) we can observe that the lung and the abdominal cavity are inside the motion mask.

In the case of ARDS, motion masks for all the images cannot be obtained by using the extraction process in each single image. Only at high values of PEEP, the interface between the lungs and the ribcage can be accurately localized. As the PEEP values decrease, the contrast also decreases, particularly in the dorsal regions, and finding the border of the motion mask encounters the same pitfalls as the lung segmentation, for which it is intended to serve. We therefore propose an original approach, in which the extraction of the motion mask avoids the direct identification of lung boundaries in all but one image.

The proposed method exploits the well-contrasted image acquired at high PEEP value, i.e., PEEP=20 cmH 2 O to extract an initial motion mask, and then uses a modified version of the cascade registration /transformation approach to extract the motion mask in all the other images of one subject from the proposed study.

The extraction of the motion mask in a first image has two stages, first, the extraction of a raw motion mask, and, second, the refinement. Raw motion masks have correct limits next to the bony structures, i.e, ribs, vertebral column, and sternum, and on the ventral region below the sternum, but lack of precision on the intercostal regions. These imperfections may have an important impact on the registration because moving regions near the sliding interface may be treated as less-moving regions, and vice versa. Therefore, a refinement step is required in order to correct these imperfections. In this step, the limits concerning the thoracic cage are refined using a lung segmentation which provides the correct delimitation of the motion mask in this region.

The initial rough motion mask may be extracted using the method described in [ [START_REF] Vandemeulebroucke | Automatic motion mask extraction for deformable registration of the lungs[END_REF]] or the methodology presented in [Torres González (2013)]. We actually used the latter, and the corresponding refinement step is detailed in the appendix B. Once the initial motion mask is extracted, it is transformed to the other images using the cascade registration/transformation approach defined by the general expression in Eq. 3.6.

This process is based on a realistic assumption, according to which the sliding-motion interface remains at a constant local distance from the rib-cage bones, regardless the ventilation conditions. The idea is therefore to drive the registration/transformation process by the ribs, while disregarding the changing contrasts in soft tissues, and to deform the initial motion mask M 20 by applying thus calculated deformation fields. One option would be to segment the bony structures, and, subsequently register the binary images. Nonetheless, we empirically found that this option requires a robust bone segmentation because a simple thresholding may induce irregularities inside the bones, due to low densities inside the bones, which may generate erroneous registration results. Instead of introducing an additional problem of accurate bone segmentation, we propose to remove the influence of soft tissues by applying a filter F, which assigns a value γ = 100HU to all voxels having an intensity lower than γ, to all the images, and, subsequently, use a gray-level registration for the cascade. This means that each registration of the cascade aligns only the bony structures, and, therefore, the deformed motion masks keep their attachments to these structures. For the intercostal limits, the smoothness of the transformation assures that they follow a similar movement of the bony structures.

The cascade registration/transformation process is executed on the input sequences presented in the equations 3.7 to 3.10 using the following order:

CRT(F(L t0,ins ), M 20,vc ins , ∅, R mm ) , (3.11) CRT(F(L t1a,ins ), M peep * ,vc ins , ∅, R mm ) , (3.12) CRT(F(L t1b,ins ), M peep * ,vc ins , ∅, R mm ) , (3.13)
where ∅ denotes a null list, meaning that no motion masks are used, and R mm is the registration process configured for this cascade transformation/registration as specified at the end of this section and farther in detail in section 3.3.2.4. Same sequence order is used for the cascade registration/transformation for end-expiration images. The resulting set of motion masks, denoted Ψ mm , is used for the lung segmentation presented in the next section 3.3.2.3. The registration process R mm was configured as follows. We used a B-Spline transformation based on its properties of local support and fast computation, and the SSD as distance function because the structures to be registered, bony structures, do not change 3.3. METHOD their intensity with respect to mechanical ventilation. The optimizer was a stochastic optimizer for faster optimization, and we used a B-spline interporlator. No-pyramids were used considering the minor movement of the bony structures between the registered images. Indeed, as the subject is conserved in the same prone position during the acquisition of the images, only small motion amplitudes of the bony structure are observed between images acquired at proximate ventilation conditions. Specific settings of the registration process R mm are given in section 3.3.2.4.

Lung Segmentation

In this section we present the segmentation of the lung, defined as the region wrapped by the pleura, for the set of CT images acquired for a given subject under the protocol of the presented study. The segmentation process consists of two steps: initial lung segmentation and cascade registration/transformation. The initial lung segmentation is obtained in the image acquired with PEEP value of 20cmH 2 O using the method presented in [START_REF] Hu | Automatic Lung Segmentation for Accurate Quantitation of Volumetric X-Ray CT Images[END_REF]]. This first segmentation, however, may be obtained using other algorithms or by a manual segmentation, in the case of failure to completely extract the lungs' envelop by (semi)automatic methods.

Having an initial lung segmentation (B 20,vc ins ), extracted from the image acquired at PEEP=20cmH 2 0, and a series of motion masks (section 3.3.2.2), we are ready for the segmentation of the lungs in all the other images. We use a cascade registration/ transformation, including motions masks, to segment the lung in all the other images. This approach allows us, first, to take into account the sliding motion by using the motion masks in each registration, and, most important, to segment the lungs in images lacking of contrast between lungs and surrounding tissue. This segmentation is achieved by executing the following cascade registration/transformation processes:

CRT(L t0,ins , B 20,vc ins , Ψ mm , R ls ) , (3.14) CRT(L t1a,ins , B peep * ,vc ins , Ψ mm , R ls ) , (3.15) CRT(L t1b,ins , B peep * ,vc ins , Ψ mm , R ls ) , (3.16)
where Ψ mm is the previously obtained set of motion masks and R ls is the registration process. Same order is used for the cascade registration/transformation for end-expiration images.

The registration process R ls was configured as follows. We used the approach of multiple B-Spline transformations, presented in [START_REF] Delmon | Direction dependent B-splines decomposition for the registration of sliding objects[END_REF]),Delmon et al. (2013)], to take into account the sliding motion. We chose NMI, which is robust to intensity changes, as distance function to consider the variation of the intensities inside the lung during the ventilation protocol with the change of PEEP and V t values. The optimizer was a stochastic optimizer for faster optimization, and we employed a B-spline interporlator. In order to deal with large displacements, we integrated a multi-resolution approach using a pyramid registration with three levels. Specific settings of the registration process R ls are given in section 3.3.2.4.

Implementation and parameter settings

The proposed method was implemented using the registration framework elastix [START_REF] Klein | elastix: A Toolbox for Intensity-Based Medical Image Registration[END_REF], [START_REF] Shamonin | Fast Parallel Image Registration on CPU and GPU for Diagnostic Classification of Alzheimer's Disease[END_REF]]. Both registration processes, for the generation of motion masks and for the segmentation of the lungs, employed an adaptive stochastic gradient descent optimizer with a maximum number of 2000 iterations, which is suggested when using this optimizer [START_REF] Klein | Evaluation of optimization methods for nonrigid medical image registration using mutual information and B-Splines[END_REF]]. The cascade registration/transformation for lung segmentation integrated a multi-resolution registration approach with parameters listed in Table 3.1. 

Evaluation methodology

Interactive 3D segmentations were carried out for the total set of 593 images using the software Turtleseg1 [START_REF] Top | Active learning for interactive 3D image segmentation[END_REF][START_REF] Top | Spotlight: Automated Confidence-based User Guidance for Increasing Efficiency in Interactive 3D Image Segmentation[END_REF]]. In order to speed up the interactive segmentation, the set of images for four subjects were resampled to obtain a greater slice thickness (5mm). The dimensions and spacing for original images are presented on Table 3.2. The used tool allowed the user to trace contours in 2D planes, and consistently exploited perceptible contrast in the image to interpolate the missing contours in-between the manual tracings. Although this characteristic reduced the tracing time employed in each image, some artifacts were introduced by the tool in regions lacking of contrast (see chapter 1, section 1.3). In addition to these artifacts, it was found that the expert in-charge also made some segmentation errors, which may be explained by the large amount of time required to perform one single segmentation, ranging from 20 minutes to one hour, which is exhausting when segmenting the total set of 593 images. Manual correction of these errors would have been an even harder task than the initial tracing, because the observer would have to assess each single slice, in order to detect and correct errors in each 3D volume. Given these errors, the interactive 3D segmentations were discarded as a gold standard. Instead, they were used as a comparison reference for the lung segmentations obtained with the presented method. More specifically, both sets of images, interactive 3D segmentations and lung segmentation obtained with the proposed 3.3. METHOD method, were independently assessed, quantitatively (section 3.3.3.1) and qualitatively (3.3.3.2), and their results were compared. In order to define a gold standard to assess the proposed method, after having discovered that the results of the interactive 3D segmentations contained errors, we asked an expert to carefully trace 2D lungs' contours in 288 axial slices. These slices were selected to cover the whole spectrum of ventilation conditions and regions of the lung, and represent a number of samples assuring statistically significative results. The contours were traced using the software Seg3D2 [CIBC]. For each set of images for a given piglet, 18 slices were selected according to the following criteria. The images were classified in three types of PEEP categories: low, medium, and high PEEP with corresponding ranges [2,6], [8,12], and [14,20] cmH 2 O. For each set of images in a given PEEP category, three slices, one for each region of the lung: top, middle, and bottom, were randomly selected for images at end-inspiration and for images at end-expiration. Top, middle, and bottom regions correspond to the division of each lung in three regions with same height in the axial direction. Top-and bottom-most axial slices for each lung were defined by an expert in order to find these regions. The total count of selected slices may be expressed as: 16 piglets × 3 PEEP categories/piglet × 6 images/PEEP category = 288 slices.

Quantitative assessment

Four metrics were used to quantitatively evaluate the results: Dice score, sensitivity, under-segmentation, and over-segmentation. The metrics are based on the classification of single voxels given by an evaluated segmentation and the gold standard: true positive if the voxel was classified as lung by both results, true negative if the voxel was classified as non-lung by both classification strategies, false positive is the voxel was classified as lung by the evaluated strategy, and as non-lung by the gold standard, and false negatives if the voxel was classified as non-lung by the evaluated strategy, and as lung by the gold standard. The variables TP, TN, FP, and FN are the number of voxels labeled as true positive, true negative, false positive, and false negative respectively.

The evaluation metrics are defined as follows. Dice coefficient [Dice (1945)] and sensitivity are respectively defined as (3.20)

Qualitative assessment

Qualitative evaluations were made by visual assessment of recruitment curves between lung segmentations obtained interactively and those obtained by the proposed method. For the trial of constant V t and decreasing PEEP value, recruitment curves were obtained by plotting the recruited volume versus the PEEP value. Recruitment for a given ventilation condition is defined as the difference of non-aerated tissue volume inside the lung, measured in ml, between end-expiration and end-inspiration. Recruitment values are expected to be positive because the non-aerated volume at end-inspiration must be smaller than the non-aerated volume at end-inspiration. These curves were used to evaluate the practical applicability of the resulting segmentations to infer useful biomedical information. 

Results

Quantitative results

The 288 contours, carefully traced in 2D slices, were used as gold standar to assess both, the results obtained by the proposed method (based on cascade registration/ transformation) and the interactive segmentations. Each metric (eq. 3.17 -3.20 ) was calculated for each evaluated slice, and each of thus obtained values was then processed as separate datum for the computation of mean values and standard deviations. If, on the contrary, 

Qualitative results

Recruitment curves were calculated for the set of images acquired for each piglet. All the recruitment curves obtained from the segmentation results of the proposed method were evaluated by the experts as curves presenting an expected tendency. As for the interactive segmentation, two recruitment curves were found to have non-expected tendencies, i.e., negative recruitment values, and were evaluated as erroneous by the experts. Given that the global recruitment must be a positive value, assuming that the volume of nonaerated regions is smaller at end-inspiration than at end-expiration, the negative values imply errors in the lung segmentations. Indeed, segmentation errors were confirmed by visual assessment of the interactive segmentations concerning the negative recruitment values. These recruitment curves, and some examples of erroneous interactive segmentations, are presented in Figure 3.8. 

Discussion

We proposed a method that segments the lungs in CT images acquired at different mechanical ventilation conditions for the presented animal study. For a given set of images of one subject, the method only requires the definition of the carina point in one image.

The evaluation of the method reports high agreement with the gold standard. The average dice score was over 0.9 for all the evaluated slices and for the slices selected on the top and middle regions of the lung, and over 0.8 for bottom slices, as presented in Figure 3.5(a) and Table 3.3. Bottom slices belong to the challenging caudal-dorsal region where infiltrations occupy the largest proportion of the parenchymal voxels, and where the contrast, particularly with respect to the diaphragm, quickly vanishes at lower PEEP values. This challenging characteristic is observed on the Figure 3.5(c) where bottom slices Left column corresponds to results from piglet S_13, and right column from piglet S_14. Top row represents the recruitment curves extracted from the interactively segmented lungs. Middle row shows the recruitment curves obtained from the results of the proposed lung segmentation method. Bottom row displays axial slices of images acquired at end-inspiration with lung segmentations superimposed in red and blue color respectively for interactive segmentations and segmentations from the proposed method (purple color represents the intersection of both segmentations). Recruitment is defined as the non-aerated volume at end-expiration minus non-aerated volume at end-inspiration, and must be positive. As shown in the top images, the recruitment curves from the interactive lung segmentation present negative recruitment values due to errors in the segmentations. These errors correspond to the inclusion of regions not belonging to the lung into segmentations performed in end-inspiration images. Examples of these regions are highlighted on the bottom images by yellow circles. Table 3.5: Average execution time for each step of the proposed method. Execution times for the cascades registration/transformation are given for sequences of 10 images, i.e., a full cascade for constant V t /decreasing PEEP trial at end-expiration, for example. Registrations in the cascade may be executed in parallel while transformations are sequential.

Step

Average (b), where the proposed method over-estimated more than the interactive segmentations.

Concerning the qualitative results, the disadvantage of interactive segmentations of being prone to user errors was observed regarding the recruitment curves. A clear example is described in Figure 3.8, where negative values were obtained instead of increasing positive values for two sets of images from different piglets. The explanation for these negatives values was the inclusion of extra-pulmonary structures into the segmentation of the corresponding inspiration images. This implied larger non-aerated volumes inside the lung at end-inspiration than at end-expiration, which caused a negative recruitment value. These non-aerated regions, not belonging to the lung, may be intercostal tissue, tissue from structures below the diaphragm, or the aorta as shown in bottom images in Figure 3.8. For the results of the proposed method, the estimated evolution pattern of these curves. i.e., increasing recruitment while the PEEP value is decreased, was observed and qualified as normal by the expert (see middle images in Figure 3.8).

Regarding the execution times, the proposed method performs the segmentation of one image in ∼22 minutes, which is similar to the shortest time (∼20 minutes) spent by an expert, but yet lower than the longest time used by the expert (60 minutes). Thus, summarizing, the proposed method was, on average, faster than the interactive segmentations performed by the expert while keeping similar global precision. Additionally, our method allowed avoiding local errors observed in the interactive segmentations, and thus made corresponding recruitment curves more reliable.

Chapter 4

Airway tree matching

Air inside the airways is part of the dead space, which is the volume of inhaled air that does not take part in the gas exchange, and, thus, it should be removed from CT lung segmentations before extracting and analysing lung aeration. A practical solution would be segmenting and removing the airway-tree from lung segmentations. However, this solution may induce errors when comparing the aeration among different images. These errors are due to the fact that segmented airways in distinct images may anatomically not be the same, e.g., some branches in one airway-tree may not exist in other airwaytree, even for intra-subject images. Therefore, the removal of the particular uncommon regions of each airway segmentation from its corresponding lung segmentation makes the compared lung regions anatomically different, and, thus, adds inaccurate information for the comparison of respective lung aerations. These uncommon regions are more evidenced on images acquired at different ventilation conditions and from subjects suffering from ARDS. In order to cope with these differences, we propose a method to find the branches that are common in a set of images from the same subject. These common branches are then removed from their respective lung segmentations without inducing errors due to differences among the raw segmented airways. The proposed method is an airway-tree matching algorithm specially tuned to achieve large proportion of proximal and distal matched branches. Branches having corresponding matching branches on other airways constitute the set of "common branches" to be removed.

This chapter is an adaptation of the article "A tree-matching algorithm: Application to airways in CT images of subjects with ARDS", submitted to and being reviewed by the Medical Image Analysis journal, and, therefore, may contain some repetitions concerning precedent chapters.

Introduction

In order to understand the lung response to mechanical ventilation and to improve the set-up of ventilation parameter settings, the air distribution in the parenchyma must be obtained and analyzed. In studies of animal models with induced ARDS, this analysis may be performed using computed tomography (CT) images acquired at multiple ventilation settings. These settings are mainly defined by different combinations of PEEP and tidal volume (V t ), and the images are acquired either at end-expiration [START_REF] Richard | Reliability of the nitrogen washin-washout technique to assess end-expiratory lung volume at variable PEEP and tidal volumes[END_REF], [START_REF] Hanson | Recruitment and PEEP level influences long-time aeration in saline-lavaged piglets: an experimental model[END_REF]] or at both end-expiration and end-inspiration [Morales Pinzón et al. (2014)] (Fig. 4.1 top row).

Regional lung aeration may be classified in different classes, corresponding to different intensity ranges in the scale of Hounsfield Units (HU), and the number of voxels (i.e., volume) in each class is used to analyze the state of the organ [START_REF] Vieira | A lung computed tomographic assessment of positive end-expiratory pressure-induced lung overdistension[END_REF]]. Among the different classes, the over-aerated class ([-1000,-900] HU) is of particular interest because it may indicate lung over-distention [START_REF] Vieira | A lung computed tomographic assessment of positive end-expiratory pressure-induced lung overdistension[END_REF]], a condition that may be associated with ventilator-induced lung injury. However, the quantification of voxels on this class includes those from the airways if this structure is not removed from the counting. One practical solution might be to segment the airway tree and then remove its volume from quantification. This option may be considered in single image analysis but it is not appropriate if one wants to compare the quantification from different images, as in our case where images from multiple ventilation settings must be compared.

Airway segmentation from different images of the same subject may differ not only because of usual problems such as partial volume effect and noise, but also due to changes that occur when ventilation parameters vary. Namely, the diameter of elastic airways decreases at lower pressures and at expiration, so that segmentation methods are likely to miss small bronchi (with diameter comparable to the voxel size) that are larger and visible at higher pressures and at inspiration. Additionally, the parenchyma in diseased regions appears denser (i.e., brighter in images) at lower pressures, which may locally increase the contrast and facilitate the segmentation of some bronchi. Overall, some small bronchi may be missing in low-pressure/expiration segmented images, while other low-contrast bronchi may be missing in higher-pressure/inspiration segmented images (see Fig. 4.1 middle row). Therefore, removing the segmented bronchi from quantification, separately in each image of an image set acquired at different ventilation conditions, would lead to inconsistent results, with a variability proportional to the volume of the missed branches (Fig. 4.1).

In order to avoid this variability, we propose a conservative approach, in which only the branches successfully segmented in all the analyzed images are removed from quantification. This means that only anatomical regions appearing in all segmented images must be removed. The set of those regions, called the common tree, is obtained by matching all the segmented airway trees (Fig. 4.1 bottom row). The main objective of the work presented in this chapter is to develop a tree-matching strategy capable of detecting a large proportion of common branches, and thus usable to subsequently find the largest common tree in a set of segmented airway trees of animals with experimental ARDS. Looking for an airway segmentation method most suitable for the CT images of subjects with ARDS is beyond the scope of this thesis.

The matching of 3D tree structures has been studied for various applications, mainly in the vascular and bronchial research fields. Although all the applications use a center-line (or skeleton) extraction process followed by the detection of bifurcation-and ending points which are then used to build a graph representation of the structure, each of these applications has specific objectives and, therefore, includes particular assumptions. In the vascular field, the work presented in [START_REF] Tang | Cerebral Vascular Tree Matching of 3D-RA Data Based on Tree Edit Distance[END_REF]] and [START_REF] Hui | Automatic extraction and matching of neonatal cerebral vasculature[END_REF]] dealt with the 3D airway tree segmentations (middle row); and graph representations of the airway tree (bottom row); in the left-most graph, the airway-tree common to the 3 conditions obtained by our method is black, whereas color represents non-common branches; in the remaining columns full trees are represented in black. matching of cerebral vascular trees. In [START_REF] Tang | Cerebral Vascular Tree Matching of 3D-RA Data Based on Tree Edit Distance[END_REF]], inter-patient cerebral vascular tree images from specific regions of the brain were matched using a tree-edit distance strategy. The method assumed that the same region is compared and that graph ending points correspond to skeleton voxels intersecting the image borders. Additionally, optimal matching for trees having more than 30 branches was computationally intractable, which implied the selection of the best match from a set of different executions using stochastic iterative improvements. This method was visually evaluated in one phantom and two real data matchings. In [START_REF] Hui | Automatic extraction and matching of neonatal cerebral vasculature[END_REF]], neonatal cerebral vasculatures from Magnetic Resonance Angiography images were matched after previous intensity-based registration. The process used a recursive sub-tree matching, where correspondences were found by the minimization of a distance function between vessel segments. Inconsistencies, which may be the correspondence of two segments in one tree to the same segment in the other tree, were detected and then replaced by the next best solution with respect to the distance function. For both applications, the average number of tree branches was close to 30 which is low compared to the number of branches in a bronchial airway tree.

In the bronchial research field, the number of publications is limited. A review of the principal approaches is available in [START_REF] Pu | CT based computerized identification and analysis of human airways: A review[END_REF]]. A good overview of early methods can also be found in [START_REF] Graham | Globally optimal model-based matching of anatomical trees[END_REF]a, Graham andHiggins (2006)b, Metzen et al. (2007), [START_REF] Metzen | Matching of anatomical tree structures for registration of medical images[END_REF]], where the authors explained, among others, why graph isomorphism search is not directly applicable to match anatomical trees. In [Pisupati et al. (1996)a, Pisupati et al. (1996)b] a matching algorithm based on dynamic programming has been used to find the correspondences between two airway trees, A and B, corresponding to the airway skeletons from low and high pressures respectively. In that approach, it was assumed that, if the number of branches differs between these trees, all the extra branches are located in the higher-pressure tree B, i.e., anatomically all branches in A must be found in B. A recursive algorithm was devised to use geometric characteristics, such as length, angles and average diameter, to find the best match, while preserving the parent-child topology. In graph representations, these characteristics, calculated for each branch of the tree, were assigned to nodes representing the distal extremity of the respective branches. Based on similarity thresholds on the geometric characteristics, low-similarity nodes were dismissed and the corresponding sub-trees were removed from the search-space, in order to find the best match in linear time.

The method presented in [START_REF] Tschirren | Matching and anatomical labeling of human airway tree[END_REF]] pruned small branches and then created an association graph [START_REF] Pelillo | Matching hierarchical structures using association graphs[END_REF]] and performed the maximum clique search over this graph [START_REF] Carraghan | An exact algorithm for the maximum clique problem[END_REF]] to determine the best match. Although the method achieved a high accuracy 1 of 92.9%, when compared to the reference, the comparison was limited to a small number (∼ 25 per pair of trees) of so-called verifiable matches, corresponding to nodes previously labeled and matched by experts. As this method was designed to label the principal branches, these results were good enough for this particular application, but the matching accuracy of the remaining (numerous) branches was not evaluated. In our application, the airway trees have to be matched as completely as possible, including small branches far from the tree root, and without pruning.

As finding the maximum clique in an association-graph is an NP-complete problem [START_REF] Tschirren | Matching and anatomical labeling of human airway tree[END_REF]], the work presented in [START_REF] Metzen | Matching of Tree Structures for Registration of Medical Images[END_REF], [START_REF] Metzen | Matching of anatomical tree structures for registration of medical images[END_REF]] have proposed heuristics to make it computationally tractable. The processing times reported for portal-vein trees and bronchial trees containing up to two hundred nodes were between three and six minutes, and 84 to 95% of the matches in bronchial trees were correct. However, matching derived from the maximal clique covered only a minor part of the tree nodes and, similarly to [START_REF] Tschirren | Matching and anatomical labeling of human airway tree[END_REF]], the expert-made reference matching contained between 14 and 38 significant nodes distributed all over the tree.

Another graph-theoretic optimization approach has been proposed in [START_REF] Graham | Globally optimal model-based matching of anatomical trees[END_REF]a, Graham and Higgins (2006)b]. The method builds on the assumption that the common tree can be recovered by deleting non-common nodes, and on an explicit model of the topological distortions due to imperfections of the acquisition, segmentation, skeletonization, and graph-construction processes performed prior to tree-matching. It was implemented using dynamic programming. The method has been evaluated on CT scans from 4 patients (expiration vs. inspiration) and found more matches: from 24 to 115 in tree pairs having from 67 vs. 91 to 131 vs. 341 branches. The reported processing time was quite short (five seconds). However, the authors reported no quantitative comparison with ground truth.

We present a method based on dynamic programming, which combines the following characteristics to achieve a large proportion of successful matches in trees with more than two hundred detected branches, and to effectively cope with topological differences. First, the metric used to match two sub-trees is an appropriately defined reciprocal distance between the branch pathways of these sub-trees. As the displacements of the lung tissues in the respiratory process are mainly in the cranio-caudal direction and increase towards the diaphragm, the distance might be quite large for sub-trees located in the distal part of the airways, and the matching process would be impaired. Therefore, the second characteristic of our method is a translation performed before each attempt to match two sub-trees: one of them is translated so that its root is superimposed onto the other sub-tree's root. This is much simpler and faster than a full registration of the lungs, but remains effective. Third, the matching strategy was designed so as to avoid topological errors via a modified Best-first Search algorithm.

This chapter is organized as follows: Section 4.2 presents the dataset, the pre-processing steps, the proposed method, and the evaluation methodology. The results are shown in section 4.3 and section 4.4 contains the discussion and conclusions.

Materials and methods

This section presents the input data (Subsection 4.2.1), the pre-processing steps (Subsection 4.2.2), the tree matching and reconstruction algorithms (Subsection 4.2.3), and the evaluation methodology (Subsection 4.2.4). In order to avoid confusion between anatomi-used in our experiments, chosen for the reason of their general availability, and in section 4.2.3 we will focus on our actual contribution, which is the matching algorithm.

The first operation segments the AT in the thorax CT image. We used the method proposed in [START_REF] Mori | Recognition of bronchus in three-dimensional X-ray CT images with applications to virtualized bronchoscopy system[END_REF]], where the AT is segmented given an initial seed inside the airway (usually manually placed in the trachea), and a region-growing strategy with a varying threshold. According to [START_REF] Mori | Recognition of bronchus in three-dimensional X-ray CT images with applications to virtualized bronchoscopy system[END_REF]], the AT can be modeled as a connected object with intensities varying in the range [-1024,-600] HU, which might be extracted by a region-growing operation, starting from a voxel inside the structure, and using thresholds equal to the bounds of this range. In practice, the upper-threshold must be adapted to each image, otherwise a leakage may flood the parenchyma. This leakage is the key point in this algorithm that varies the threshold and counts the voxels in the resulting BAT: the leakage is identified with a sudden large increase of this count associated with a small increase of the threshold. Other more advanced AT segmentation methods (e.g., [START_REF] Fetita | A morphological-aggregative approach for 3D segmentation of pulmonary airways from generic MSCT acquisitions[END_REF][START_REF] Fabijańska | Two-pass region growing algorithm for segmenting airway tree from MDCT chest scans[END_REF]]) might be used in this step. The skeletonization was obtained using the ITK implementation [Homann (2007)] of the surface-thinning algorithm presented in [START_REF] Lee | Building skeleton models via 3-D medial surface axis thinning algorithms[END_REF]]. Finally, the AGT was built from the branching and ending points extracted from the ATS using the ImageJ2 plugin AnalyzeSkeleton [START_REF] Arganda-Carreras | 3D reconstruction of histological sections: Application to mammary gland tissue[END_REF]]. Similarly, other implementations of skeletonization and orientedgraph construction may be used instead of those utilized in our experiments.

Tree matching and reconstruction

Notations and definitions

Here we list the notations and definitions appearing in this section, in order to help the reader clearly visualize their construction and easily find a specific item. We also recall some definitions from section 2.2.1 in chapter 2.

Rooted tree: A rooted tree is a connected graph with no cycles and a particular node called root.

• T (V, E, r) denotes a rooted tree where V is the set of nodes, E is the set of edges, and r the root node. Two nodes u, v ∈ V are adjacent iff they are connected by an edge e ∈ E.

• P (a, b) stands for a path between the nodes a and b, i.e., a sequence of nodes u 0 , u 1 , ..., u n such that, a = u 0 , b = u n , and for i = 1...n, u i-1 and u i are adjacent. Based on the characteristic of rooted trees, for any two nodes, there exists a unique path connecting them.

• L(P ) = |P | accounts for the length of a path P , which is defined as the number of nodes in the sequence.

• P (a, b) refers to an edged-path between a and b, i.e., a sequence of edges e 1 , ..., e n such that, for i = 1...n, e i is the edge connecting nodes u i-1 and u i of the path b). P (a, b) is the dual graph of P (a, b).

P (a,
• δ(u) is the depth of a node u, and is defined as δ(u) = L(P (r, u)) where r is the root node. Node depth is often denoted as level [START_REF] Pelillo | Matching hierarchical structures using association graphs[END_REF]].

• S(T, h) = { u ∈ V | δ(u) ≤ h } denotes the set of all nodes having a depth lower or equal to a given number h ∈ Z. These nodes will be referred to as h-root-descendants of T .

Attributed rooted tree

Similarly to [START_REF] Graham | Globally optimal model-based matching of anatomical trees[END_REF]a, [START_REF] Pelillo | Matching hierarchical structures using association graphs[END_REF]], we define a number of additional notions used to augment the rooted trees T . Attributed trees will be denoted T and all definitions given for rooted trees, i.e., P, L, P , δ, and S, remain valid for attributed rooted trees.

• α(u) is a function that assigns a physical point α(u) ∈ R 3 to each node u ∈ V . By physical point we denote the corresponding voxel location on the ATS image.

• β(e) accounts for a function that assigns to an edge e ∈ E, connecting the nodes u, v ∈ V , a list of physical points β(e) = q 0 , q 1 , ..., q m , with q j ∈ R 3 for j = 0, ..., m, which connect the associated physical points α(u) and α(v). The points associated to an edge are the voxels that belong to the corresponding branch in the ATS image, excluding the starting and ending node points α(u) and α(v).

• J(a, b) defines the set of physical points connecting α(a) and α (b), where the nodes a and b are not necessarily adjacent:

J(a, b) = { q i ∈ R 3 | q i ∈ α(f ) ∪ β(g), f ∈ P (a, b), g ∈ P (a, b) }.
• T x is a sub-tree of T built from a node x ∈ V . It is defined as

T x (V x , E x , x) with V x = { u ∈ V | x ∈ P (r, u) } and E x = { e ∈ E | e ∈ P (u, v), ∀u, v ∈ V x }. • M = {(u, w) ∈ V k × V l } stands for a tree match between attributed rooted trees T k (V k , E k , r k ) and T l (V l , E l , r l ).
• D * (P k , P l ) is a (symmetric) distance function between two paths P k = P (u, v) and P l = P (z, w), defined as follows:

D * (P k , P l ) = D(P k , P l ) + D(P l , P k ), (4.1)

D(P (u, v), P (z, w)) = q i ∈J(u,v)
d(q i , P (z, w)), (4.2) d(q i , P (z, w)) = min(|q iq j |), ∀q j ∈ J(z, w). (4.3) tree roots. First, the entire AGTs are translated so that their root nodes coincide (see the beginning of Algorithm 1). Then, after finding the best match at a given recursion level (let the matched nodes be u ∈ T k and w ∈ T l ), the sub-trees T u k and T w l are translated again, so that their roots u and w coincide, and so on. This translation is necessary in order to bring corresponding branches closer, specially distal branches, thus allowing the use of a distance function between paths.

Q-Best-first search

The matching strategy corresponds to a Best-first search with two main differences (see Algorithm 2). First, the search space corresponds to non-marked nodes whose depth is at most Q. Second, at each level of the recursion, the best match, i.e., the one with the smallest father/family distance, is selected from two independent Algorithm 1: MatchTrees input: searches: For a given pair of already matched nodes, which become the roots r k and r l of the respective sub-trees T k and T l , one search (loop 1) evaluates the father/family distance between the descendants of r k up to the depth Q, and the descendants of r l , while the second search (loop 2) evaluates the father/family distance between descendants of r l up to the depth Q, and the descendants of r k . Algorithm 2 returns the pair of nodes u ∈ T k , w ∈ T l resulting in the smallest father/family distance between the paths P (r k , u) and P (r l , w), as well as an identifier idT that specifies if this result was obtained in Loop 1 or Loop 2: If the best match is found in the first search, i.e., u is one of Q-root-descendants of T k , the parameter idT is set to 1, otherwise (i.e., w is one of Q-root-descendants of T l ) idT is set to 2. In this way Algorithm 1 can mark the appropriate node within the search space. If the match found does not generate a topological error the corresponding node in the other AGT will be also marked. Indeed, the above described strategy, embedded in the recursion, allows many-to-many matching where a non-marked node may be matched to an already-marked node. In order to avoid topological inconsistencies, which may arise due to the many-to-many matching capability, only matches topologically correct are accepted (see Algorithm 3). A node u ∈ T k already matched with a node z ∈ T l may be matched to another node w ∈ T l iff one of the following conditions holds: w belongs to the path between the root of T l and z, or z belongs to the path between the root of T l and w.

T k (V k , E k , r k ), T l (V l , E l , r l ) , Q, F , M T ranslation T k ,T l = α(r l ) -α(r k ); T k ← T ranslateT ree(T k , T ranslation T k ,T l ); while card ( { v ∈ S(T k , Q) | v.IsM arked() == false } ) > 0 && card ( { z ∈ S(T l , Q) | z.IsM arked() == false } ) > 0 do [u, w, idT , D p ] ← BestP athM atch(T k , T l , Q, F ); if topologicalConsistency(T k , T l , P (r k , u), P (r l , w), M) then M.
Reciprocal conditions are formulated to match a node w ∈ T l with two different nodes in T k . An example of a topological inconsistency is presented in Figure 4.4.

Father/family distance The matching of AGTs must combine topological and geometrical information, in our algorithm those components are combined in a distance function between planted sub-trees 3 called father/family distance. Let T k and T l be two at-connecting F -descending nodes of T u k and T w l , called "family" distance. 

D F F (T k , T l , P k , P l ) = D * (P k , P l ) Eq.4.1 +D f (T k , T l , P k , P l , F ) + D f (T l , T k , P l , P k , F ), (4.4) D f (T ζ , T ξ , P ζ (u, v), P ξ (z, w), F ) =
input : T k (V k , E k , r k ), T l (V l , E l , r l ), P (r k , u), P (r l , w), M foreach { (v, z) ∈ M } do if v == u & & ( z / ∈ P (r l , w) & & w / ∈ P (r l , z) ) then return false ; if z == w & & ( v / ∈ P (r k , u) & & u / ∈ P (r k , v) )

Reconstruction algorithm

Once the matching result is obtained and saved in the set of matches M, the common tree is built (here, we refer to a volumetric binary tree, which is the common part of the BATs). This process is called reconstruction of the common tree and basically deletes from the matched trees the branches, the ends of which are not in M. First, all the nodes present in the matching set M are marked in the respective AGTs as "common". Then, "non-common" nodes that have a marked descendant are marked also as "common", this avoids the elimination of nodes that have no match but at least one of their descendants has a match. Next, for each voxel belonging to the BAT, the closest edge in the corresponding AGT is found. Let this edge connect the nodes u and v. If both nodes u and v are marked as "common", then the voxel is retained as part of the common tree, otherwise it is removed. It is to be noted that we actually reconstruct two common trees having the same topology4 but possibly different geometries, as each of them is part of a BAT extracted from a different 3D image corresponding to a different combination of V t and PEEP (Fig. 4.5).

Evaluation

Three out of 16 piglets available from the study were randomly selected for the evaluation. For each subject, images were chosen at end-inspiration and end-expiration for three different PEEP values (high, medium, and low) with constant tidal volume (V t = 6ml/kg). The AGT for each image was obtained after the execution of the pre-processing steps (see Section 4.2.2). The PEEP value for each pair of images (end-inspiration and end-expiration) and the number of nodes present in each AGT are listed in Table 4.1.

The matching method was configured using two sets of values for the input parameters Q and F . These parameters represent the search space depth (Q) for the Q-Best-first Table 4.1: Information of the 18 images and AGTs used for the evaluation. CT images from 3 piglets (A, B, and C) acquired at three different PEEP values (high, medium, and low) at end-inspiration and end-expiration were selected, i.e., 6 images per subject. All images were taken using a tidal volume (V t ) of 6 ml/kg. The airway tree from the piglet B, corresponding to end-expiration with medium PEEP value had a large false sub-tree due to a leakage of the airway segmentation into the lung parenchyma. This explains a significantly larger number of nodes compared to the corresponding airway-tree segmented at end-inspiration. search and the family descending generations (F ) used to calculate the father/family distance. First configuration, called M1, corresponds to values Q = 1 and F = 1, and the second, called M2, corresponds to values Q = 2 and F = 1. Configuration M1 is the basic configuration of the algorithm and M2 corresponds to a configuration where search space for the Q-Best-first match is extended to two levels in order to overcome difficult topological differences between the matched AGTs. Matchings were executed intra-subject and were divided in two classes: intrapressure, i.e., matching between AGTs corresponding to end-inspiration and end-expiration with the same PEEP values, and interpressure, i.e., matchings between AGTs corresponding to different PEEP values at end-inspiration. For each subject, three intrapressure and two interpressure, i.e., high-medium and medium-low PEEPs, matchings were executed.

Matching results were interactively assessed by two independent observers blinded to each other's annotations. Given a matching result obtained with one (Q, F ) parameter configuration for a pair of AGTs, each observer was asked to label every pair of matched nodes as correct or incorrect, and determine missing correspondences for the whole extent of the considered trees, so as to build an observer-specific reference also usable to evaluate the matching results obtained with other parameters Q and F . The matched AGTs were visualized in the same coordinate reference system in order to facilitate the identification of corresponding nodes. This visualization was performed in 3D, using ParaView software (Kitware Inc., Clifton Park, NY) [START_REF] Ahrens | ParaView : An enduser tool for large data visualization[END_REF]] and allowed the observers to zoom, rotate, and pan the display, in order to best compare the nodes displayed as matched or left unmatched.

In the sequel, the correct matches will be referred to as true positives, the incorrect ones as false positives, and the missing ones as false negatives. The number of true positives, false positives, and false negatives will be respectively denoted by TP, FP, and FN. These were used to calculate standard metrics: sensitivity = TP/(TP+FN), and precision = TP/(TP+FP). Similarly to other authors in this field, we do not report such metrics as specificity and accuracy, which involve true negatives, as the number of true negatives (all possible node combinations that should not be matched and actually were not) is usually huge, so these metrics are almost equal to one regardless TP, FP, and FN.

Results

Table 4.2 reports the evaluation results for all the 15 matchings, i.e., nine intrapressure and six interpressure, executed using algorithm parameter configurations M1 and M2. Details are provided for the assessment by Observer 1. The assessment by Observer 2 gave very similar results (Cohen's κ = 0.97, which means an excellent agreement). The number of matches labeled as TP, FP, or FN, for each pair of matched trees, differed between the observers at most by 5, which is small in comparison with the number of nodes in the respective trees. Therefore, the sensitivity and precision values displayed in Table 4.2 and Figure 4.6 for both observers' assessments were also very similar.

The sensitivity for both configurations, M1 and M2, remained above 88% for all the cases except for one medium-low interpressure matching, highlighted by bold characters in Table 4.2, where M1 sensitivity fell below 70%. This fall was due to the fact that the AGTs used in this interpressure matching presented topological differences than cannot be handled with M1 configuration, thus leaving large sub-trees unmatched. In contrast, M2 configuration was able to overcome these differences by increasing the search space of the Q-Best-first search. The interpressure matching, where two sub-trees of considerable size were left unmatched when Q = 1 (M1), but were correctly matched with Q = 2 (M2), is shown in Figure 4.7. This is confirmed in the evaluation results (Table 4.2, bold characters) where the number of correct matches (TP) for M2 is greater than for M1 in this interpressure matching.

Execution times, for all matchings, are displayed in Table 4.3. The matching algorithm was run on a laptop with Intel Core i7 1.73GHz.

Discussion and conclusions

In this section we compare the proposed method to the existing ones in terms of methodological contributions (Section 4.4.1) and quantitative results (Section 4.4.2). The limitations and possible improvements of the proposed method are discussed in Section 4.4.3, and the chapter is concluded in 4.4.4. 

Main contributions and results

Two AGTs from the same subject being matched may have two kinds of differences: spatial and topological. The former arise from the normal movement of the lung and from changes induced by the variation of mechanical conditions (see Fig. 4.3). The latter come from pre-processing steps where some branches may be missed and spurious branches may be added.

In the proposed method, the spatial differences are managed by the successive translation/matching step: matched nodes are translated, together with their corresponding sub-trees, to spatially coincide. This step is necessary to successfully use spatial distancebased metrics such as the proposed father/family distance. Other authors have used node translation, but not successively or losing important information. In [START_REF] Tschirren | Matching and anatomical labeling of human airway tree[END_REF]], an initial translation and rigid registration of main bronchi was executed, but this step may bring closer only few generations of the airway tree. In [START_REF] Metzen | Matching of Tree Structures for Registration of Medical Images[END_REF]], a rigid deformation of paths was obtained by bringing together their initial and andObs2). The results are separately displayed for two algorithm parameter configurations (M1 and M2) and were grouped by matching type: intrapressure (intra), i.e., high, medium, and low, and interpressure (inter), i.e., high-medium and medium-low. final nodes. However, the calculated metric was independent of the length and orientation of the paths, thus missing vital information for their comparison. In our proposal, translations successively bring the branches closer along the whole extent of the tree. The topological differences are taken into account in the father/family distance, which combines topological and geometrical information. This combination is one of the main difficulties when matching trees. In the literature, the geometrical information is obtained from one or more of the following measures: path-to-path distances extracted from pointto-point branch information [START_REF] Metzen | Matching of Tree Structures for Registration of Medical Images[END_REF], [START_REF] Metzen | Matching of anatomical tree structures for registration of medical images[END_REF]], path lengths [START_REF] Graham | Globally optimal model-based matching of anatomical trees[END_REF]a], branch orientation [START_REF] Graham | Globally optimal model-based matching of anatomical trees[END_REF])a,Pisupati et al. (1996)b, Tschirren et al. (2005)], branch diameter [Pisupati et al. (1996)b], and Euclidean distance between initial and final nodes of paths [START_REF] Graham | Globally optimal model-based matching of anatomical trees[END_REF])a, Pisupati et al. (1996)b, Tschirren et al. (2005)]. As for the topology information, it is managed by defining a set of valid matches, based on their topological differences [START_REF] Graham | Globally optimal model-based matching of anatomical trees[END_REF]a, Graham and Higgins (2006)b] or by restricting the comparison of paths based on their topological relations. The restriction of path comparison is used for the creation of association graphs, as in [START_REF] Metzen | Matching of Tree Structures for Registration of Medical Images[END_REF], [START_REF] Metzen | Matching of anatomical tree structures for registration of medical images[END_REF], Tschirren The results are shown in the corresponding AGTs with common trees in black and noncommon branches in red. Results after matching using M1 and M2 configurations are presented in the left and middle columns respectively. Top and bottom AGTs correspond to the medium and low pressure images respectively. A region with difficult topological difference between the AGTs is highlighted in magenta in the left column. This difference is shown in a zoomed view, with both trees placed in the same coordinate reference system, in the right column. Here, spurious branches, topologically different, are highlighted in yellow, and a double-bifurcation to trifurcation transformation is highlighted in magenta. In contrast to the results of configuration M1 (left column), where a large common subtree was not matched, configuration M2 overcame these topological differences, as shown in the middle column.

interpressure match which presented difficult topological differences, the use of M2 configuration greatly improved the sensitivity, as confirmed in Figure 4.6 and Table 4.2. In this case, numerous branches left unmatched with M1 were correctly matched with M2 thus increasing the TPs, but some of the additional matches were incorrect thus increasing the FPs. In our application, it is essential to avoid, as much as possible, the FPs. It is therefore preferable to use Q = 1. However, in other applications, a larger value of Q may lead to an interesting trade-off between increased sensitivity and increased FPs. We suggest to start using configuration M1, and, if large sub-trees are detected to be left unmatched, visually or automatically, then use configuration M2 (see Fig. 4.7). In our case, if M2 was used instead of M1 only for the medium-low interpressure matching in pig C, then the average sensitivity for both observers in all matchings would be greater than 94.8%, while the precision would remain larger than 92.4%.

Considering the parameter F , it should be noted that F = 0 reduces the distance function to a simple path-to-path distance. In our case, we found that F = 1 was enough to ensure the introduction of topological information in the distance function. Some tests were executed with F = 2 but, while the computational time was increased, the results did not considerably change.

Quantitative comparisons

Few articles have reported results of airway-tree matching. In these articles, evaluation was limited as compared with our work: (1) only intrapressure matching results were reported and (2) the number of nodes used as reference was small with respect to the total number of nodes in the considered trees. Thus, although airway tree pairs matched in [START_REF] Metzen | Matching of anatomical tree structures for registration of medical images[END_REF]] contained 59 vs. 66 and 151 vs. 181 nodes, only 23 (respectively 34) matches were annotated. Reported sensitivity (90.9% and 51.6% respectively) and precision (95.2% and 84.2%)5 were therefore high for the first pair, despite a small number (41 and 47) of nodes in the maximum clique corresponding to the obtained common tree. Similarly, high precision (92.9%) reported in [START_REF] Tschirren | Matching and anatomical labeling of human airway tree[END_REF]] for 17 pairs of airway trees extracted from intra-pressure images, was based on a total of 422 manually defined reference matches, i.e., only ∼25 matches per pair. The algorithm found even less (a total of 373) matches, including 236 correct ones, but missed 168 matches present in the reference (55.9% sensitivity). Only the method reported in [START_REF] Graham | Globally optimal model-based matching of anatomical trees[END_REF]a], tested on four intrapressure AGT pairs, in which the smaller tree respectively contained 131, 77, 67 and 70 nodes, detected a comparable number of matches (except the last one), respectively: 115, 70, 58, and 24. Visual assessment reported a good agreement, but quantitative evaluation was not provided. In intrapressure matchings, the presented algorithm outperformed the existing methods in terms of sensitivity: At least 96.5% out of 1434 matches contained in the reference were correctly found (∼154 matches per pair of trees), although we did not simplify the task by pruning possibly-spurious branches prior to the matching process. Such pruning, as used in [START_REF] Metzen | Matching of Tree Structures for Registration of Medical Images[END_REF], [START_REF] Metzen | Matching of anatomical tree structures for registration of medical images[END_REF], [START_REF] Tschirren | Matching and anatomical labeling of human airway tree[END_REF]], would dramatically decrease the number of difficult topological differences between the compared trees. Usually, the counterpart of a high sensitivity is an increase of false positives, which decreases the precision. Nevertheless, although our method detected, on average, significantly more matches than the work reported in literature, its precision remained higher.

Our evaluation also included six inter-pressure matchings, which were more challenging due to larger spatial and topological differences between the compared trees. The proposed method also achieved good results, which can still be improved, as discussed in Section 4.4.3.

Considering trees of comparable size (|V 1 | + |V 2 | 400) processing times reported in literature ranged from a few seconds [Graham andHiggins (2006)a,Tschirren et al. (2005)] to several minutes [START_REF] Metzen | Matching of Tree Structures for Registration of Medical Images[END_REF]], whereas our method completed the computation in less than two minutes, although its complexity O(max(|V k |, |V l |) 2 ) is lower than in [START_REF] Graham | Globally optimal model-based matching of anatomical trees[END_REF]

a] O(|V 1 | 2 • |V 2 | 2
). This can partly be explained by the fact that the existing methods left out numerous matches, while our method detected, on average, five to six times more correct matches, which required deeper recursive exploration. Additionally, our implementation was not optimized, e.g., the same path-to-path distances were calculated many times instead of being stored and reused.

Limitations and perspectives

First of all, while the sensitivity of the proposed method is high, its precision can still be improved, mainly by decreasing the FPs. To do so, several strategies can be explored. In its current version, our method exhaustively seeks the best match for each node, and only the matches detected as topologically inconsistent are rejected. However, "best" match is not always a "good" match, and some of the matches added at the end of the loop are likely to have quite large values of the father/family distance. One idea might be to reject matches having too large distance values.

It is questionable if terminal branches topologically corresponding but having significantly different lengths should be matched. The observers disagreed on this point, which gave rise to differing references. A "good" common tree is expected to have similar lengths of the matched branches. Therefore, a solution to this problem might be to modify the distance function when applied to terminal branches and to cut the extra part of the longer branch.

The presented method uses a unique metric, father/family distance, which is not always able to avoid incorrect matches when the compared branches (usually short) are topologically consistent but have different orientations. It might be beneficial to combine our metric with an orientation-based metric like in [START_REF] Graham | Globally optimal model-based matching of anatomical trees[END_REF])a,Pisupati et al. (1996)b, Tschirren et al. (2005)], provided that an appropriate weighting coefficient can be found.

The results presented in this chapter were obtained on complete trees, without previous pruning. We observed that topologically difficult configurations were mainly due to very short spurious branches emerging from considerably larger branches. Here, a generalpurpose solution might be to remove short branches prior to matching [START_REF] Tschirren | Matching and anatomical labeling of human airway tree[END_REF]], but in our particular application small branches located distally may be more meaningful than small proximal branches emerging from big ones. A specific pruning strategy taking into account the location in the tree (see [START_REF] Metzen | Matching of Tree Structures for Registration of Medical Images[END_REF], [START_REF] Metzen | Matching of anatomical tree structures for registration of medical images[END_REF]]) may therefore be more appropriate. To better cope with topological distortions, it would be interesting to combine our strategy with an explicit model of these distortions (like in [START_REF] Graham | Globally optimal model-based matching of anatomical trees[END_REF]a, Graham and Higgins (2006)b]).

The development of the proposed method was based on a restrictive assumption, according to which the compared trees are globally roughly aligned, i.e., rotation (if any) is a minor component of the global spatial transformation between them. As explained in Section 4.2.1, this assumption is justified by the image-acquisition protocol used in our study: the corresponding images were acquired using the same imaging modality and represent the same subject placed in the same position, only the mechanical ventilation conditions differ. However, this restriction can easily be overcome, as long as the compared trees come from the same subject: a global rigid alignment can be performed prior to the actual matching (see [START_REF] Tschirren | Matching and anatomical labeling of human airway tree[END_REF]]).

Finding the common tree can have a complementary application: If a given branch is detected as common in several trees at different ventilation settings, but non-common with one tree at a particular setting, it can be concluded that this branch actually exists, but was missed by the segmentation/skeletonization process of the corresponding image. Knowing from the remaining images the location and geometrical properties of this branch, these properties can be used in a post-processing step aiming at segmenting the missed branch to complete the corresponding tree.

Conclusions

A tree-matching algorithm devised to extract the common tree between airways segmented in CT images of subjects with ARDS at different ventilation conditions was presented. Three main contributions represent the core of the algorithm: successive translation/matching, Q-Best-first search, and father/family distance. These contributions allow the algorithm to combine topological and geometrical information in a single metric and to overcome topological differences between compared airways. The method achieved a large proportion of correct matches in trees with more than two hundred branches. High values of sensitivity and precision were achieved by the algorithm for intrapressure, as well as interpressure, matchings.

Chapter 5

Current work and perspectives

In this chapter, first, we present currently ongoing work with emphasis on two tasks: hybrid registration for future applications in human ARDS studies, and aeration quantification within the segmented lungs. Then we present the future work for the proposed methods.

Current work

Hybrid registration

ARDS studies on humans, compared to animal studies, count with a reduced number of acquisitions per subject. This restricted number of acquisitions corresponds to the minimization of radiation doses in patients. Depending on the human study these acquisitions may not correspond to proximate ventilation conditions. Instead, they may considerably differ according to various factors such as the ventilation maneuvers and the evolution of the patient. These studies, additionally, require fast image analysis, which implies that manual segmentations must be avoided.

The best results for segmenting the lungs in images containing pulmonary opacities have been reported by methods based on registration. These methods [START_REF] Sluimer | Toward Automated Segmentation of the Pathological Lung in CT[END_REF], van Rikxoort et al. (2009)b], however, were not tested on particular ARDS studies. Registration of ARDS images in human studies has two major challenges: first, large displacement of structures, and, second, considerable intensity changes, both taking place inside the lungs from one image to another. In this section we propose a novel hybrid registration approach that combines gray-level information with airway-tree landmark correspondences (found by the proposed airway-tree matching method) to improve registration results between images acquired at non-proximate ventilation conditions. The proposed registration takes into account the sliding motion by using motion masks.

Related work

To the best of our knowledge, only the method presented in [START_REF] Sluimer | Toward Automated Segmentation of the Pathological Lung in CT[END_REF]] has dealt with registration of images presenting high-density pathologies, large displacements, and considerable intensity changes, characteristics of ARDS images in humans studies. The method obtained high overlapping scores for different types of pathologies, but low values for ARDS images (Dice score = 0.58). This method was based on atlas registration using only gray-level information. In terms of large displacements, geometrical information, such as landmarks or surfaces of objects, may be used to improve the registration results.

A method devised for the registration of lung with intensity changes and large displacements was presented in [START_REF] Yin | A cubic B-spline-based hybrid registration of lung CT images for a dynamic airway geometric model with large deformation[END_REF]]. In this method, a hybrid registration approach was proposed to account for large displacement of the structures inside the lungs. Matched points between the registered images were used as input for a landmark registration step before a gray-level registration. Although the results of the hybrid approach were more accurate than the gray-level approach for the registration of images acquired at TLC and FRC, normal healthy patients were used for assessment.

We propose a novel hybrid registration method, that combines the branch-point landmarks, as used in [START_REF] Yin | A cubic B-spline-based hybrid registration of lung CT images for a dynamic airway geometric model with large deformation[END_REF]], but instead of adding a landmark registration step, this information is included in the cost function of the registration which combines it with gray-level information.

Method

Given two input images to be registered, we propose a novel hybrid registration method that combines branch-point landmarks correspondences with gray-level information to overcome large structure deformations and considerable intensity changes inside the lung. The landmark correspondences are found by using our airway-tree matching method described in chapter 4. The new method also uses motion masks (Ψ) to take into account the sliding motion which may have large influence on the registration of ARDS studies on humans. A schematic description of the new method is given in Figure 5.1.

The novelty of the hybrid registration resides in the combination of landmark correspondences and gray-level information in the cost function of the registration process. Let us define a set K of corresponding landmarks between the fixed (I F ) and moving (I M ) image as

K = { (m, f ) ∈ Ω M × Ω F }.
(5.1)

Given a set K, we redefine the registration cost function C, which was defined in the equation 2.2 (chapter 2, section 2.1.1), as:

C(I F , I M , K, T ) = (1 -β) D(I F , I M , T ) gray-level + β A(K, T ) landmark new distance function +α P(T ), (5.2)
where P is a regularization term, A is a spatial distance function between corresponding landmarks defined as: The registration configuration concerning the transformation, optimizer, interpolator, and pyramid is the same as used in chapter 3 for the cascade registration/transformation for lung segmentation. Concerning the weight β, its value was experimentally determined (β = 0.01).

A(K, T ) = 1 |K| (m,f )∈K (T (m) -f ) 2 , ( 5 

Evaluation

The proposed segmentation method, based on hybrid registration, was assessed on a selection of images acquired in extreme ventilation conditions from two piglets. They correspond to two out of the three subjects used for the evaluation of the airway-tree matching presented in chapter 4. The selected conditions for each subject correspond to the extreme conditions during the trial of decreasing PEEP/constant V t : PEEP values of 20 and 2 cmH 2 O with constant V t =5ml/kg. After registration, using the image acquired at high PEEP value as moving image, the lung segmentation in the moving image was deformed to the image of low PEEP value. The quantitative assessment of the resulting segmentation was calculated on the deformed images.

For each deformed lung segmentation, the same four metrics as in chapter 3 (Dice, sensitivity, over-, and under-segmentation) were calculated against the gold standard axial slices manually segmented. Given that the set of gold standard slices available at the specific PEEP of 2cmH 2 O is reduced, we also compared the results against 3D interactive lung segmentation from chapter 3. These 3D lung interactive segmentations were revised and evaluated as correct by an expert. Each of the interactive lung segmentations was divided in three regions equally thick in the z-direction: top, middle, and bottom. The same metrics were calculated for each region. Concerning the motion masks, two sets of masks were used: one set corresponding to the extracted motion masks proposed in the method (see Figure 5.1), and the other one corresponding to the motion masks obtained for the assessment of the cascade registration/transformation in chapter 3. The use of both sets of motion masks allowed us to separately assess the influence of the landmarks and the impact of possible errors in new generated motion masks in the hybrid registration.

Comparative results are provided for the hybrid and simple gray-level registrations.

Results

The evaluation results for the hybrid and simple gray-level registration against the gold standard are reported in Table 5.1, and against interactive segmentations in Table 5.2. An example of the obtained lung segmentations for hybrid and gray-level registrations is provided in Figure 5.2. Both tables include the results using the set of motions masks generated for the proposed hybrid registration, and the set of motion masks used in chapter 3.

Table 5.1: Overlap metric results for hybrid and simple gray-level registrations for each subject against the gold standard 2D manual contours in axial slices. Results obtained for both sets of motion masks are provided: motion masks extracted for the proposed hybrid segmentation / motion masks obtained in chapter 3. Similar results were left as one single value. Region column indicates the location of the evaluated axial slice in the lung: top, middle, or bottom. 

Discussion

The results reported in Table 5.1 suggest that both methods (hybrid and gray-level alone) achieved equally high overlap metric scores, when compared to 2D gold standard, except for the bottom region of subject B, where the gray-level registration obtained a lower dice score and a significantly higher over-segmentation rate. Unfortunately, the number of gold-standard contours available in the two subjects A and B, at the specific PEEP values considered, was very low (let us recall that the slices to be delineated were randomly drawn according to the criteria specified in Section 3.3.3), so such conclusions would not be very meaningful. Indeed, as can be seen in Table 5.2, a full volumetric comparison between both methods and the interactive 3D segmentations clearly displays that the hybrid registration provided better results than the registration based on gray-levels alone. This difference is also depicted in Figure 5.2. A visual comparison of the results from both approaches The interactive 3D segmentation is superimposed in green for all the images. It can be observed that the gray-level registration cannot follow the large displacements between the extreme conditions, specially in infiltrated regions. 5. Ribcage-driven registration of I 1 to I n in order to appropriately deform M 1 and thus obtain: M n .

6. Airway-tree matching between I 1 and I n : K 1,n .

7. Estimation of the displacements in the caudal dorsal region by plugging the matching information K 1,n into a lung-motion model for the caudal-dorsal region: K dorsal 1,n . (The output being given as landmark correspondences).

8. Hybrid registration between I 1 and I n including landmark matching information (K 1,n ∪ K dorsal 1,n ) and the motion masks M 1 and M n . 9. Deformation of the initial lung segmentation B 1 to obtain the lung segmentation in image I n : B 1 .

10. Loop to 4 unless no new image is expected.

Aeration quantification

As announced in the objectives of this thesis, the proposed methodologies were devised to be used for quantifying the aeration in CT images in the presented ARDS study. The first methodology corresponding to the segmentation of the lung has been used to quantify the recruitment with respect to the mechanical ventilation conditions, as was shown in chapter 3. The second methodology, corresponding to consistent removal of the airway-tree (chapter 4) has not been yet included to improve comparative quantification measures but will soon be integrated. Although these first results allowed obtaining global measurements, e.g., total lung volume and global recruitment, they also may be exploited for local measurements.

Regional or even more localized assessment of changes in aeration is likely to give a better insight to ventilated lung behavior than the global approach. This is explained by the fact that the distribution of ARDS manifestations, e.g., alveolar collapse, infiltrations, throughout the lung tissues, as well as the response to recruitment, are spatially inhomogeneous [START_REF] Malbouisson | Computed tomography assessment of positive end-expiratory pressure-induced alveolar recruitment in patients with acute respiratory distress syndrome[END_REF]]. Indeed, in [START_REF] Malbouisson | Computed tomography assessment of positive end-expiratory pressure-induced alveolar recruitment in patients with acute respiratory distress syndrome[END_REF]], a regional measure of the increase in gas volume present in the lung was proposed. This measure allowed the authors to quantify this increase between zero end-expiratory pressure (ZEEP) and PEEP in poorly-and non-aerated regions on the one hand, and in normally aerated regions on the other hand. The method was based on interactive delineation of the regions of interest at ZEEP, followed by manual alignment of landmarks (vessels, bronchi) and manual delineation of the same region at PEEP. However, this delineation was not possible on poorly and non-aerated regions due to the lack of contrast that hinders the identification of landmarks. In order to avoid this manual detection of corresponding landmarks and regions while providing robustness with respect to the movement of the lung, we propose to exploit the information of the tranformations obtained after registration (cascade registration/transformation presented in chapter 3) to find corresponding regions among the registered images. In this way, we allow the experts to explore aeration changes in any region of the lung.

Based on the obtained transformations from the cascade registration/transformation, a current master project is aiming to provide local (regional) information about the aeration changes and physical behavior of the lung. Given that these transformations allow us to obtain corresponding voxels between the registered images, global measures may be brought to a (macro)-voxel level. An example of some preliminary results of this master project is shown in Figure 5.3. Here, the change in aeration between registered images was calculated for each voxel (Figure 5.3 (d)), thus allowing the computation of regional measures such as the recruitment in small cubic regions (macro-voxels) (Figure 5.3 (f)). Additionally, the local Jacobian determinant value, calculated over the transformation, is used to provide information about the expansion and contraction of the parenchymal tissue (Figure 5.3 (c)). All this local information is being integrated in a visualization tool which enables the expert to visualize them at the same time for the same region. Moreover, local image information, such as inhomogenities (Figure 5.3 (e)), may also be added to the visualization scheme.

These preliminary results have been visually assessed by the experts and proved to be useful. We hope that in near future this work will be used to better understand the response of the lung to mechanical ventialtion, and that it will be integrated in clinical routines to improve the ventilation setup on humans suffering from ARDS.

Perspectives

Cascade registration/transformation

Future improvements should tackle the reduction of FP. Two enhancements may reduce this rate: first, the implementation of a lung adjusting step in the cascade, and second, a motion mask adjusting.

The first enhancement deals with the drawbacks of error propagation by the cascade registration/transformation. Indeed, if an error, e.g., intercostal tissue labeled as lung, is introduced in a step during the cascade, it is propagated to the next steps, thus increasing the rate of FP. We propose to implement an adjusting step that can handle errors in the lung surface. One possible research way would be the use of deformable models, e.g., level sets, to attach the lung segmentations to the bones while preserving smooth curves in regions lacking of contrast. In this case, the model would have two driving forces, one given by the contrast of the image, and the other one determined by a lung surface model.

The second enhancement is the adjusting of the motion mask after the cascade registration/transformation. This adjusting may be done by combining a common lung segmentation with the motion mask using the same strategy presented in appendix B for the refinement of the motion mask. This step, however, can only cover well contrasted lung regions. 

Conclusions

This thesis was framed in a project, which aims to analyze the response of the lung to mechanical ventilation in piglets with induced ARDS. Its main objective was to develop image processing strategies that can handle the difficulties imposed by the radiological expression of ARDS in CT images to allow the subsequent calculation of consistent measurements of lung aeration. Regarding this objective, we provided two contributions: first, a registration-based lung segmentation method able to segment the lung in all the images acquired from one subject within the protocol of the study, and, second, an airway-tree matching algorithm able to match a large proportion of proximate and distal branches. The first contribution, however, is valid only for animal studies providing acquisitions at proximate ventilation conditions. In order to foresee an application on humans, we provided a third contribution able to manage image acquisition at non-proximate ventilation conditions. Compared to the two first contributions, which were thoroughly evaluated, this last contribution has provided encouraging results, but requires more work before being ready to be tested on human studies. Hereafter, we present particular conclusions for methodological and application aspects of the contributions proposed.

The segmentation of the lungs in ARDS images requires a priori information to tackle the lack of contrast between the lungs and surrounding structures due to the radiological expression of the ARDS. The methodology proposed for the segmentation of the lungs in the animal study is based on three kinds of a priori knowledge:

1. The fact that at least one image in each series was acquired at a specific high pressure ventilation condition, which generates a well contrasted image where the lungs have the appearance of healthy lungs.

2. The characteristic of image acquisitions at proximate ventilation conditions, that is traduced as limited displacements and intensity changes between images acquired at proximate ventilation conditions.

3. The fact that the lungs slide against the wall of the thoracic cage, thus creating a discontinuous motion in the interface between lungs and the ribcage.

The first a priori was exploited to set an initial lung segmentation in the image acquired at the specified high pressure using a common lung segmentation method. Then, the second a priori allowed us to define a sequence of registrations, called cascade, to deform the initial lung segmentation to all the images in the series of protocol-acquisitions from one subject. Finally, the third a priori was exploited by proposing the generation of customized motion masks, which allow the registration to take into account the discontinuity created by the sliding motion, for each registration of the cascade. The methodology was assessed on 16 sets of images of different subjects. Results presented high overlapping scores when compared to a gold standard defined on 2D axial slices. Additionally, quantification results, specifically recruitment volume with respect to a series of ventilation parameters, extracted from the obtained lung segmentations were evaluated as correct and consistent by an expert.

Our second contribution is a novel airway-tree matching method relying on four assumptions. Three of these assumptions concern the movement of the subjects and their corresponding airway-trees. First, the subjects remain still, in a supine position, during the image acquisitions, and, thus, rotation movements are neglected. Second, the principal movement of the airways in the acquired images, for the same subject, occurs in the craneo-caudal direction; and third, antero-posterior movement is larger for distal branches. The final assumption states that the airway-trees from the same subject are expected to have the same topology. However, local topological errors are introduced by the segmentation and skeletonization pre-processing steps. Based on the assumptions concerning the motion, we proposed strategies, inserted in the matching process, to cope with increasing distances between corresponding branches. Moreover, we defined a distance function combining topological and geometrical information. This distance represents a state-ofthe-art novelty in the field of airway-tree matching. In terms of performance, the proposed method allowed matching a significantly larger proportion of distal branches compared to state-of-the-art methods. To further improve this performance, the distance may still be enhanced by adding more geometrical information, e.g., branch direction. This would allow the method to be more discriminant and, therefore, reduce the rate of false positive matches.

Our third contribution concerns a future application of lung segmentation on ARDS human studies where the assumption of proximate ventilation condition is not longer met. Indeed, in human studies the radiation dose must be minimized, thus implying a reduced number of acquisitions, which are not necessarily acquired at proximate ventilation conditions. As this assumption is not longer met, we propose to use an a priori information of the movement inside the lung given by the displacements of the bronchi. This information is obtained as point-or landmark-correspondences between the registered images provided by our airway-tree matching method. This new a priori information is used in a novel hybrid registration method which minimizes gray-level dissimilarities and the distance between corresponding points at the same time. This was achieved by combining a landmark-based distance and a gray-level distance into a single distance function within the cost function of the registration. This combination allowed the method to manage large displacements between the images, thus, making the method more robust to the lack of contrast in ARDS CT images. The main observation, however, was that regions with missing information, i.e., no landmarks or contrast, remained not correctly registered.

For the future application of this work in real human studies, forthcoming research may tackle the mis-registration in regions without information. Based on our experience, we suggest to use model-based information where image-based information is missing.

PERSPECTIVES

This model may be based in the relationships between bronchi-landmark displacements, specially the ones located in the caudal-dorsal region, and the displacements of the surface of the lung in this same region. These relationships may be learned from bronchi-landmark matches and the corresponding 3D interactive segmentations, using a subset of already segmented data as training set.

The results of the presented methods are available for classic (global) aeration quantification measures, e.g., global recruitment, required by the physicians. Moreover, the combination of these results with the information of the deformation obtained from the executed registrations represent a new source of data for the calculation of novel local measures, such as the local recruitment, which may allow the experts to better characterize and understand the response of the lung to mechanical ventilation, and to find the better compromise between aerated regions (positive effect) and over-distended regions (non desirable effect).

Figure 1

 1 Figure 1.1: Anatomy of the lungs. (a) Dorsal view of the lungs, heart, and insertion of vessels into the lungs. (b) and (c) present the right and left lungs respectively. Their connections with mediastinal structures are highlighted and their lobes can be clearly observed (Images taken from [Gray (1918)]. Source: http://www.bartleby.com/107/ 240.html ).

Figure 1

 1 Figure 1.2: Components of the lungs and external structures. (Source: http://cnx.org/ contents/14fb4ad7-39a1-4eee-ab6e-3ef2482e3e22@7.28:148/The-Lungs ).

Figure 1

 1 Figure 1.3: Structure of a lung-lobule. (a) Schematic representation of a longitudinal section. (b) Histological section with a higher magnification shown in (c). Conventions [image (a) -images (b) and (c)]: [a -A] alveole, [al.d. -AD] alveolar duct, [a.s. -AS] alveolar sac, [at] atrium, [l.n.] lymph node, [l] lymphatic vessel, [p.a. -PA] pulmonary artery, [p.v. -V] pulmonary vein, [r.b. -RB] respiratory bronchiole. (Image (a) was extracted from [Gray (1918)], source: http://www.bartleby.com/107/ illus975.html; and images (b) and (c) were taken from [Mescher (2013)].)

Figure 1

 1 Figure 1.4: Components, generations, and size of the airway-tree. (a) Anatomical distribution of the airway-tree with trachea, main bronchi, and carina (anatomical landmark where trachea bifurcates into the two main bronchi) highlighted. (b) Generations of the airway-tree with corresponding diameters (Diam.) and number of branches according to the airway-tree model presented in[Weibel (1963)]. The airway tree starts with the trachea which branches into two main bronchi, right and left. According to[Weibel (1963)], the airway-tree has 23 generations, with the trachea being generation zero. In this model, respiratory bronchioles are found in the 16th to 19ht generations. As seen in (a), the trachea and main bronchi have cartilaginous walls. This wall disappears when airways reach a diameter of 1mm, thus increasing flexibility as diameters decrease. (Source: (a) Image taken from http://www.visiblebody.com/ , access granted by Universidad de los Andes, (b) Adapted from Weibel's model[Weibel (1963)] ).

Figure 1

 1 Figure 1.5: Volumes and capacities of the lungs. (a) Measures from a spirometer trace, (b) typical values for 70kg adult. (Images taken from [Levitzky (2013)].)
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 16 Figure 1.6: Example of EIT (a) and CT (b) images acquired at the same time. The images were acquired in the study presented in section 1.2 at end-inspiration with PEEP=18cmH 2 O and V t=6ml/kg. Yellow rectangles on the CT image (b) highlight electrodes around the chest of the subject.
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 17 Figure 1.7: Example of a CT image, axial slice, from the thorax of a piglet with induced ARDS. (a) Axial slice from the 3D CT volume, (b) axial slice with lungs highlighted by a semi-transparent color layer, and (c) axial slice with air classification; intensities inside the lung were replaced by their corresponding color on the classification shown on the right. Over-aerated regions non-belonging to airways are highlighted by the cyan circle.
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 18 Figure 1.8: Pulmonary anatomical differences between humans and piglets. (a) and (b) respectively show coronal slices of CT images, with the mediastinum highlighted by a yellow contour, of a human and a piglet. (c) and (d) present a 3D representation of airway segmentation from a human and a piglet respectively. Two main differences are observed: the mediastinum separates the lungs on humans but not in pigs, as shown on the top images, and an additional bronchus bifurcating before the carina, which is pointed out by a black arrow on the bottom images, is found in pigs. This bronchus is pointed out by a circle on image (d).

FigureFigure 1

 1 Figure 1.10: Radiological expression of ARDS on CT images. Axial (left-most column) and coronal (central columns) slices of CT images, and airway-tree reconstruction (rightmost column) from the same subject acquired at end-inspiration with equal tidal volume (V t = 6ml/kg) and different PEEP values: 20mmH 2 O (top images) and 2mmH 2 O (bottom images). Line color, yellow or red, on the axial slice shows the location of the coronal slice framed with the same color. ARDS is expressed as bilateral infiltration on CT images.The expression changes with respect to the mechanical ventilation. When using low tidal volume and PEEP values, infiltrations and their expression may be observed. Infiltrations reduce the contrast between lung and surrounding structures, as evidenced on the dorsal region coronal slices (red-framed coronal slice in (b)), and may flood brochi. Infiltrations may increase the contrast between bronchi and surrounding tissue while flooding may hinder the segmentation of the airway-tree as shown on the most right-most images.

Figure 1

 1 Figure 1.11: Artifacts induced by a semi-automatic lung segmentation, performed usign the software Turtleseg (www.TurtleSeg.com), on a CT image from a subject suffering from ARDS. (a) 3D reconstruction of the segmentation result, (b) coronal slice on the dorsal region with segmentation result superimposed in color. On both images, artifacts are highlighted by red ellipses. These artifacts must be manually corrected, thus increasing the manual complexity of the semi-automatic lung segmentation approach.

Figure 1 .

 1 Figure1.12: Comparison of lung segmentations from different ventilation conditions obtained from the proposed method (cascade registration/transformation) and manual segmentations performed by an expert. Results are shown on axial slices (top images) and coronal slices (medium and bottom images) for three different images acquired at endinspiration with constant tidal volume (V t = 6ml/kg) and PEEP value of 18 (left column), 8 (center column), and 2 (right column) cmH 2 O. Results of the proposed segmentation method, manual segmentation, and the intersection between them are highlighted using colors. Line color, yellow or red, on the axial slices shows the location of the coronal slice framed with the same color. Results from the proposed method overlap well in contrasted regions over all PEEP values; some errors are observed in the non-contrasted infiltrated regions where the clear definition of lungs' border becomes difficult even for experts.

Figure 1 .

 1 Figure 1.13: Example of common tree reconstruction after tree matching of two airwaytrees. Images correspond to two different ventilation conditions acquired at end-inspiration with constant tidal volume (V t = 6ml/kg) and PEEP values of 20 mmH 2 O (top row) and 8mmH 2 O (bottom row). The common tree and non-common branches of the corresponding airway-trees (middle) are black and red respectively. Non-common branches on the airway-trees were removed from the initial airway-tree segmentations (left) to obtain the reconstructed common trees (right).

Figure 1

 1 Figure 1.14: Example of deformed lung segmentations after simple (b) and hybrid registrations (a) between images acquired at extreme PEEP values, i.e., 20 and 2 cmH 2 O. Sagittal and coronal slices for (a) deformed lung segmentation, superimposed in blue, after hybrid registration, and (b) deformed lung segmentation, superimposed in red, after gray-level registration. The interactive 3D segmentation is superimposed in green for all the images.

Figure 2

 2 Figure 2.1: Image registration components. Image taken from [Klein and Staring (2014)].

  CHAPTER 2. BACKGROUND of the image and the spacing between points, i.e., P d = L d σ d + γ, where L d is the image size in the dimension d, σ d is the spacing between control points in the dimension d, and γ represents the number of additional points located outside the image to allow movement in the image boundaries. Consequently, the total number of coefficients for a B-spline transformation is |μ| = d d i=1 P i .

  nodes a, b ∈ V are adjacent if it exists an edge e = (a, b) ∈ E. For the sake of clarity, herein we list some definition on graphs: • |V | is the number of vertices of the graph G; it represents the order of the graph. • |E| is the number of edges and represents the size of the graph. • P (a, b) stands for a path between the nodes a and b, i.e., a sequence of nodes u 0 , u 1 , ..., u n such that, a = u 0 , b = u n , and for i = 1...n, u i-1 and u i are adjacent. |P (a, b)| is the length of the path which equals the number of nodes in the sequence. If a = b ∧ |P (a, b)| > 1, P (a, b) is a closed path.

Figure 2

 2 Figure 2.2: Example of graphs, sub-graphs, cliques, and a trees. (a) Initial graph G(V, E), (b) sub-graph and clique of G, (c) maximal and maximum clique of G, (d) tree sub-graph extracted from G. The initial graph has order five (|V | = 5) and size eight (|E| = 8). A path on the initial graph may be P (1, 5) = {1, 2, 3, 5}. The sub-graph in (b) is an induced sub-graph G[V ] with V = {2, 3, 4}; it is also a clique because each of its nodes has a link to the other nodes in the sub-graph. Sub-graph in (c) is the maximal and maximum clique of graph G. The sub-graph in (d) is a tree because there is only one unique path between any two nodes.

  Figure 2.3 shows an example of subgraph isomorphism.

Figure 2

 2 Figure 2.3: Example of a sub-graph isomorphism. Two graphs G 1 and G 2 are respectively presented in (a) and (b). The subgraphG 1 = G 1 [V ] where V = {1, 3, 4, 5} is isomorph to graph G 2 . The bijection φ : V 1 -→ V 2 ,called isomorphism, is represented with colors: corresponding nodes are highlighted with the same color in both graphs.

Figure 3

 3 Figure 3.1: CT image acquired at low PEEP value (2 cmH 2 O) with lack of contrast in the caudal-dorsal regions of the lung. From left to right: Axial, sagittal, and coronal slices. Yellow lines indicate the position of the planes.

  3.2. RELATED WORKis absent in caudal and dorsal regions in the images of the present study as shown in Figure3.1.

Figure 3 . 2 :

 32 Figure 3.2: Coronal slices of the image acquired at the high PEEP value of 20 cmH 2 O for each subject S in the presented animal study. Each coronal slice was selected at the carina point.

Figure 3

 3 Figure 3.3: Example of cascade registration/transformation process. The inputs are the sequence of images L = I 1 , I 2 , ... , I n on the left, the initial binary image to be transformed B 1 , and a list of binary images Ψ (the motion masks) used in the registration process. It can be observed that the input images are registered in a cascade way, which means that the image I i is registered to the image I i+1 , and that for each registration, a transformation function T i,i+1 is obtained. Finally, the binary image B 1 is deformed to the other images by a similar cascade process where image B 1 is transformed to image B 2 , and B i to B i+1 until the last image B n is reached.

L

  t1a,ins = I peep * ,vc ins , I peepc,v k ins , I peepc,v k+1 ins , ..., I peepc,vmax ins , and (3.8) L t1b,ins = I peep * ,vc ins , I peepc,v l ins , I peepc,v l-1 ins , ..., I peepc,v min ins , (3.9) where I peep * ,vc ins is the image of the constant V t trial whose PEEP value peep * is the closest to the PEEP value (peep c ) for the constant PEEP trial

L

  t0,exp = I 20,vc ins , I 20,vc exp , I 18,vc exp , ..., I 2,vc exp , (3.10)

Figure 3

 3 Figure 3.4: Example of motion mask. 3D reconstructions (the motion mask is highlighted in blue): (a) Body of the piglet with the surface of the motion mask, (b) piglet bony structure and the motion mask, (c) piglet bony structure and the motion mask, both clipped in a sagittal plane, (d) reconstruction of structures inside of the clipped motion mask.From these images we can see that the motion mask is inside the thoracic cage and that below the sternum it extends until the abdomen. In the (d) we can observe that the lung and the abdominal cavity are inside the motion mask.

Figure 3

 3 Figure 3.5: Dice score (mean ± sdev) per region of the lung (a), per aeration class: over-, normally-, poorly, and non-aerated (b), and per region and class simultaneously (c), for the interactive segmentations and the segmentations obtained by the proposed method, called Cascade-Seg in this figure.

Figure 3

 3 Figure 3.6: Under-segmentation (a), over-segmentation (b) and sensitivity (c) results for the interactive segmentations and the segmentations obtained by the proposed method.Results are shown for the whole set of slices, and for the set of slices grouped by region of the lung, e.g., top, middle, and bottom. All the metrics are presented using mean ± standard deviation.

Figure 3

 3 Figure 3.7: Examples of lung segmentations obtained by interactive segmentation and the proposed method, compared to 2D manual segmentations. (a) and (b) respectively show the comparison of the lung segmentation obtained by the proposed method (blue color) against the manual gold standard segmentation (green color) for a top and a bottom axial slice. (c) and (d) respectively show the comparison of the interactive lung segmentation (blue color) against the manual gold standard segmentation (green color) for the same top and a bottom axial slices shown in (a) and (b).

Figure 3

 3 Figure 3.8: Recruitment curves and examples of erroneous interactive lung segmentations.Left column corresponds to results from piglet S_13, and right column from piglet S_14. Top row represents the recruitment curves extracted from the interactively segmented lungs. Middle row shows the recruitment curves obtained from the results of the proposed lung segmentation method. Bottom row displays axial slices of images acquired at end-inspiration with lung segmentations superimposed in red and blue color respectively for interactive segmentations and segmentations from the proposed method (purple color represents the intersection of both segmentations). Recruitment is defined as the non-aerated volume at end-expiration minus non-aerated volume at end-inspiration, and must be positive. As shown in the top images, the recruitment curves from the interactive lung segmentation present negative recruitment values due to errors in the segmentations. These errors correspond to the inclusion of regions not belonging to the lung into segmentations performed in end-inspiration images. Examples of these regions are highlighted on the bottom images by yellow circles.

Figure 4

 4 Figure 4.1: Airway trees of the same subject (here piglet) in three different end-inspiration ventilation conditions with constant tidal volume (V t = 6ml/kg) and varying PEEP values of 20, 8, and 2 cmH 2 O, from left to right: coronal slices from 3D CT images (top row), 3D airway tree segmentations (middle row); and graph representations of the airway tree (bottom row); in the left-most graph, the airway-tree common to the 3 conditions obtained by our method is black, whereas color represents non-common branches; in the remaining columns full trees are represented in black.
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 43 Figure 4.3: Superposition of BATs (top row) and AGTs (bottom row) from the same piglet for three different end-inspiration ventilation conditions with constant tidal volume (V t = 6ml/kg) and PEEP values of 20, 8, and 2 cmH 2 O coloured red, green, and blue respectively. Coronal (left), sagittal (center) and axial (left) views are presented in order to visualize spatial differences.

  (P ζ (v, a), P ξ (w, b)).

  then return false ; return true The complexity of the matching algorithm is O(|V Ω | 2 ) where V Ω = max(|V 1 |, |V 2 |). This comes from the fact that the Algorithm 1 is called at most max(|V 1 |, |V 2 |) times, and that it calls Algorithm 2, which has a complexity of O(max(|V 1 |, |V 2 |)).

Figure 4

 4 Figure 4.5: Example of common tree reconstruction after tree matching of two AGTs. Images correspond to two different ventilation conditions acquired at end-inspiration with constant tidal volume (V t = 6ml/kg) and PEEP values of 20 cmH 2 O (top row) and 8cmH 2 O (bottom row). The common tree and non-common branches of the correspoding AGTs (middle) are black and red respectively. Non-common branches on the AGTs were removed from the initial BATs (left) to obtain the reconstructed common trees (right).
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 46 Figure 4.6: Sensitivity and precision metric values obtained from the assessment of matching results by two observers (Obs1and Obs2). The results are separately displayed for two algorithm parameter configurations (M1 and M2) and were grouped by matching type: intrapressure (intra), i.e., high, medium, and low, and interpressure (inter), i.e., high-medium and medium-low.
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 47 Figure 4.7: Matching results for a case of medium-low interpressure matching. AGTs were matched using two parameter configurations: M1(Q = 1,F = 1) and M2(Q = 2,F = 1).The results are shown in the corresponding AGTs with common trees in black and noncommon branches in red. Results after matching using M1 and M2 configurations are presented in the left and middle columns respectively. Top and bottom AGTs correspond to the medium and low pressure images respectively. A region with difficult topological difference between the AGTs is highlighted in magenta in the left column. This difference is shown in a zoomed view, with both trees placed in the same coordinate reference system, in the right column. Here, spurious branches, topologically different, are highlighted in yellow, and a double-bifurcation to trifurcation transformation is highlighted in magenta. In contrast to the results of configuration M1 (left column), where a large common subtree was not matched, configuration M2 overcame these topological differences, as shown in the middle column.

  Figure 5.1: Hybrid registration process. In this example, left images were acquired at constant V t =5ml/kg, and significantly different PEEP values of 20 (top image) and 2 (bottom image) cmH 2 O. Ψ and K respectively represent the motion mask and branchpoint matching correspondences.

Figure 5

 5 Figure 5.2: Example of deformed lung segmentations after hybrid (a) and gray-level registrations (b) between images acquired at extreme PEEP values, i.e., 20 and 2 cmH 2 O. The moving image corresponds to the image acquired at high PEEP value. Sagittal and coronal slices for (a) deformed lung segmentation, superimposed in blue, after hybrid registration, and (b) deformed lung segmentation, superimposed in red, after gray-level registration.The interactive 3D segmentation is superimposed in green for all the images. It can be observed that the gray-level registration cannot follow the large displacements between the extreme conditions, specially in infiltrated regions.

  of the motion mask in image I 1 : M 1 . 4. Acquisition of a new image: I n .

Figure 5

 5 Figure 5.3: Example of preliminary results for local measures inside the lungs. These measures were extracted after registration of images acquired at TLC and FRC. Results are obtained for 3D volumes, but we present them in a 2D axial slice. (a) Original image. (b) Representation of the deformation field. (c) Jacobian value for the deformation field in each voxel. (d) Aeration change in each voxel. (e) Inhomogeneity value for each voxel. (f) Number of recruited voxels in small cubic regions (macro-voxels).

  

Table 1 .

 1 1: Definitions of ARDS from the AECC and the Berlin definition.

		AECC definition (1994)	The Berlin definition (2013)
	Timing	Accute onset is observed.		Whithin 1 week of a known clini-
					cal insult or new worsening respi-
					ratory symptoms.
	Chest	Bilateral infiltrates, presented as	Bilateral opacities -not fully ex-
	imaging	opaque region in the lung, are	plained by effusions, lobal/lung
		seen on frontal chest radiography.	collapse, or nodules in chest ra-
					diography or CT.
	Origin of	Airway pressure (Paw) ≤ 18	It is not fully explained by car-
	edema	mmHg (no left atrial or pul-	diac failure or fluid overload.
		monary capillary hypertention).	Need objective assessment (e.g.,
					echocardiography) to exclude hy-
					drostatic edema if no risk factor
					present.
		ALI: PaO 2 /FiO 2 ≤ 300mmHg	Mild:	200mmHg	<
	Oxygenation	without taking into account the	PaO 2 /FiO 2 ≤ 300mmHg with
		PEEP.			PEEP or CPAP ≥ 5 cmH 2 O.
					Moderate:	100mmHg <
					PaO 2 /FiO 2 ≤ 200mmHg with
					PEEP ≥ 5 cmH 2 O.
		ARDS:	PaO 2 /FiO 2	≤
		200mmHg	without	taking
		into account the PEEP.	

Table 3 .

 3 1: Parameters of multi-resolution registration pyramid integrated in the cascade registration/transformation of lung segmentations. Hbins refers to the number of histogram bins used to calculate the NMI, σ to the standard deviation of the Gaussian smoothing filter in each direction (NA corresponds to no-smoothing), and Samples to the number of samples provided to the optimizer at each iteration.

	Level	Control point Hbins spacing [mm]	x	σ [voxel] y	z	Samples
	1	128	32	4	4	10	3000
	2	64	32	2	2	5	5000
	3	32	32	1	1	1	5000
	4	16	64	NA NA NA	5000

Table 3 .

 3 2: Characteristics of images selected for evaluation. Non-protocol images correspond to images acquired before and after the presented acquisition protocol (see chapter 1, section 1.2.2). All the images have in-plane dimensions of 512 x 512 voxels.

	Piglet	Images Protocol Non-protocol	Dimension z	Spacing [mm] x y z
	1	30	8	377	0.49 0.49 0.70
	2	32	5	418	0.58 0.58 0.70
	3	34	5	418	0.58 0.58 0.70
	4	24	8	469	0.58 0.58 0.70
	5	32	6	504	0.54 0.54 0.70
	6	32	5	471	0.54 0.54 0.70
	7	31	7	439	0.46 0.46 0.70
	8	32	6	496	0.46 0.46 0.70
	9	33	5	307	0.46 0.46 1.00
	10	34	5	307	0.46 0.46 1.00
	11	20	3	337	0.46 0.46 1.00
	12	35	6	383	0.47 0.47 1.00
	13	34	5	324	0.46 0.46 1.00
	14	34	5	393	0.46 0.46 1.00
	15	34	5	366	0.46 0.46 1.00
	16	32	6	371	0.46 0.46 1.00
	Total	503	90		

Table 4 .

 4 2: Number of correct (TP), incorrect (FP), and missing (FN) matches assessed by Observer 1, as well as sensitivity and precision values resulting from the assessment by both observers (Obs1, Obs2). The results are listed for two algorithm parameter configurations: M1/M2. High, medium, and low PEEP values are respectively denoted by H, M, and L. The first column indicates the pig (A, B, or C) and the type of matching: intrapressure (intra) or interpressure (inter). The second column provides the number of nodes in the matched trees.

	Pig/Type #Nodes	Matches for Obs1	Sensitivity [%]	Precision[%]
		PEEPs	|V 1 |, |V 2 |	TP	FP	FN	Obs1	Obs2	Obs1	Obs2
	A	Intra	H M L	160,154 139/139 124,100 89/88 104,76 67/67	4/6 5/6 4/6	2/2 1/2 4/4	98.5/98.5 98.5/98.5 97.2/95.8 97.2/95.8 98.8/97.7 97.7/97.7 94.6/93.6 93.6/93.6 94.3/94.3 94.3/94.3 94.3/91.7 94.3/91.7
		Inter	H-M 160,124 110/110 M-L 124,104 95/93	5/6 3/8	3/3 2/4	97.3/97.3 97.2/97.2 95.6/94.8 93.0/92.2 97.9/95.8 96.0/94.0 96.9/92.0 97.9/93.0
	B	Intra	H M L	233,244 202/202 244,317 165/163 11/20 6/12 180,132 115/114 13/17	2/2 6/8 6/7	99.0/99.0 99.0/99.0 97.1/94.3 97.5/94.8 96.4/95.3 97.0/96.4 93.7/89.0 92.6/88.5 95.0/94.2 94.4/94.4 89.8/87.0 92.9/90.8
		Inter	H-M 233,244 189/186 M-L 244,180 138/137 22/25 15/16 90.1/89.5 88.9/89.6 86.2/84.5 85.6/85.1 7/18 3/6 98.4/96.8 95.8/97.3 96.4/91.1 93.8/91.6
	C	Intra	H M L	405,366 289/290 21/27 268,258 215/214 13/16 195,132 109/108 13/17 11/12 90.8/90.0 90.5/90.5 89.3/86.4 86.8/84.0 6/5 97.9/98.3 97.6/97.6 93.2/91.4 92.9/90.8 6/7 97.2/96.8 96.8/96.8 94.2/93.0 94.2/93.4
		Inter	H-M 405,268 222/226 20/26 20/16 91.7/93.3 92.1/93.8 91.7/89.6 92.1/90.0 M-L 268,195 120/148 27/35 50/22 70.5/87.0 69.5/87.3 81.6/80.8 82.3/83.0
		Total Intra	1390/1385 90/127 44/49 96.9/96.5 96.7/96.6 93.9/91.6 93.7/91.7
		Total Inter	874/900 84/118 93/67 90.3/93.0 89.3/93.1 91.2/88.4 90.6/88.8
			Total		2264/2285 174/245 137/116 94.2/95.1 93.7/95.2 92.8/90.3 92.5/90.5

Largest and main lymphatic vessel of the lymphatic system.

Boyle's law states that the relation between the pressure and volume of a mass of confined gas under constant temperature is inversely proportional. In other words, the product of pressure and volume is constant.

P aO2 refers to the partial pressure of oxygen in the arterial blood and F iO2 is the percentage of oxygen in the air inspired by the patient, e.g., 20.9% in natual air.

1.3. PROBLEM STATEMENT AND OBJECTIVES

2.1. IMAGE REGISTRATION

www.TurtleSeg.org

www.seg3d.org

actually, given the definition used by the authors as the fraction (correct matches)/(correct matches + incorrect matches), the term precision should be used instead of "accuracy"; the latter is usually defined as the fraction (true positives + true negatives)/(true positives + true negatives + false positives + false negatives), but the authors did not count the true negatives.

ImageJ stands for the "Image Processing and Analysis in Java" software. http://imagej.nih.gov/ij/

A tree is said to be planted if its root has only one child node. Here, we construct a sub-tree planted in a node u by taking only one of its children, say v, and the descendants of v. We respectively call "father"

and "family" the path connecting u to v, and the paths connecting the descendants of v, up to a defined depth.

Actually, the corresponding AGTs may be not rigorously isomorphic due to topology distortions (see[START_REF] Graham | Globally optimal model-based matching of anatomical trees[END_REF]a]) handled by our matching algorithm, namely fusion of consecutive edges into one edge by removing intermediate non-matched nodes, and transformation of two close bifurcations in one AGT into a trifurcation in the other one.

some of these results were improved by postprocessing, but this required a careful choice of a parameter value for each dataset.
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CHAPTER 3. LUNG SEGMENTATION AND REGISTRATION

the value of TP, TN, FP, and FN would have been calculated from the whole set of slices, low metric scores in slices having small gold standard volumes, i.e.,TP + FN, might had been hidden.

Each statistic was computed for the whole set of slices and for subsets of slices classified by lung position, i.e., top, middle, and bottom. Dice scores were also calculated for subsets of aeration classes, i.e., over-, normally-, poorly-, and non-aerated. Results of dice score are reported in Figure 3.5 and Table 3.3. Under-segmentation, over-segmentation, and sensitivity results are presented in Figure 3.6 and Table 3.4. All the metrics are shown using mean ± standard deviation. Examples of interactive segmentations and cascade segmentations compared against gold standard segmentations in top and bottom slices of the lungs are presented in Figure 3.7. Middle slices present high values of overlap and differences are difficult to visually identify. Execution times for each step of the method are presented in Table 3.5. The method was executed in the cluster of the laboratory CREATIS which has a set of 25 heterogeneous nodes. We used the cluster for the execution of parallel registration processes requiring a large quantity of RAM. All the nodes in the cluster are Intel Xeon with frequencies ranging from 1.7 to 3.6GHz, and RAM ranging from 16 to 200GB. Fig. 3.6(b)) and a high sensitivity over 0.85 (Fig. 3.6(c)) on bottom slices, indicates that the method achieved a high rate of TP, but also a high rate of FP. One can say that the proposed method got close to the gold standard with a low rate of under-segmentation, but, as a counterpart, it incurred some over-segmentation. It should, however, be mentioned that the over-segmentation in bottom slices is highly sensitive to small errors in the segmentation due to the small size of the lung sections at this region.

Here, the FP may be comparable to the reference (TP + FN), as seen in Figure 3.7 (b).

On the remaining regions, usually providing better contrasted lung borders, the method achieved high scores on the evaluated metrics. The lower dice scores on top slices are explained by the disagreement of the segmentation on the interface mediastinum-lung. In this transition region, the exact place where the airways, vessels, and nerves pass from the mediastinum to the lung is difficult to indicate. Indeed, there is no consensus on how to define the lung border in this interface, as was reported in [START_REF] Hu | Automatic Lung Segmentation for Accurate Quantitation of Volumetric X-Ray CT Images[END_REF]].

Concerning the quantitative results when comparing the interactive segmentations and the results from the proposed method, the presented method exhibited higher oversegmentation scores and lower under-segmentation results. As shown in Figure 3.6(a), on average, the interactive segmentation underestimated more the volume of the lung than the proposed method in all the evaluated slices and also in slices grouped by position inside the lung, e.g., bottom, middle, and top. This can be observed in the example shown in Figure 3.7, where the segmentation obtained with the proposed method extend beyond the gold standard in most of the borders (top images) while the interactive segmentation remains inside (middle-row images). This lower average under-segmentation of the proposed method induces a higher sensitivity compared to the interactive segmentation: lower under-segmentation implies lower FN, which induces higher TP, and, consequently, a higher sensitivity. However, this higher sensitivity was achieved at the ex-cal, image processing, and graph vocabulary, we first introduce a basic glossary illustrated by figure 4.2:

• Airway Tree (AT) is the anatomic tree corresponding to the lower airways including the trachea, bronchi, and bronchioles.

• Binarized Airway Tree (BAT) accounts for the binary result of AT segmentation from a 3D image.

• Airway Tree Skeleton (ATS) refers to the skeleton, i.e., set of voxels located approximately on the centerlines of the branches within a BAT.

• Airway Graph Tree (AGT) is the graph representation of the ATS, i.e., the airway root, branching, and ending points are represented as nodes, while branches are represented as edges connecting two nodes. Each node may contain additional information extracted from the image, e.g., the list of physical (ATS) points corresponding to the branch that connects the node to the next proximal node. 

Datasets

The data were retrospectively drawn from the presented study of an animal model (piglets) with induced ARDS (See chapter 1 section 1.2).

Pre-processing

Three steps have to be performed prior to airway tree matching (Fig. 4.2): The first step is the airway tree (AT) segmentation, then the binary airway tree (BAT) thus obtained is skeletonized to extract the corresponding ATS, and, finally, the graph representation (AGT) of the ATS is constructed. It should be noted that numerous methods have been proposed in the literature for these three steps, and might be used instead of those selected for the purpose of this work. Hereafter we explain the basis of the pre-processing methods

Matching algorithm

Four assumptions support the design of the algorithm. Two of them are related to the acquisition protocol of CT images and the others are associated to anatomical and functional characteristics of ATs. Images are acquired from the same subject (same animal in our case) during a non-stop protocol execution. This implies that: (1) ATs to be compared are expected to have the same morphology and topology, and (2) rotation with respect to longitudinal and antero-posterior axes, if any, is negligible. The latter is based on the evidence that the animal is maintained in the same position, i.e., supine position, during the acquisition of the images. (3) The third assumption comes from the fact that the AT main movement component in respiration, more specifically in different ventilation conditions for our case, follows the cranio-caudal direction (Fig. 4.3). However, (4) anteroposterior movement becomes larger as flexibility of bronchi increases, property related to bronchi radius and generation. This means that antero-posterior movement is larger in distal branches. These assumptions support the main ideas presented in the algorithm.

The algorithm is based on dynamic programming. Its pseudo-code is detailed in Algorithms 1 -3. At each level of the recursion, the algorithm takes a pair of already matched nodes and uses a specially designed metric to compare sub-trees emerging from these nodes up to a certain depth. As a result of this comparison, a new pair of matched nodes is determined, which is the one that minimizes the metric and fulfils topological consistency requirements. In order to cope with increasing geometric distance between corresponding regions, and with topological differences between AGTs, which occur in practice due to imperfections at previous stages (image acquisition, segmentation, skeletonization, graph construction), we propose three contributions that we called successive translation/matching, Q-Best-first search, and father/family distance (D F F ) measurement. These contributions represent the core of the matching algorithm and will be explained below in more detail.

Algorithm 1 manages the recursion, performs the successive translations, and calls Algorithms 2 and 3 respectively to determine the pair of nodes that minimize the father/family distance and to check their topological consistency. Its inputs initially are two attributed rooted trees T k and T l (then their sub-trees, at subsequent levels of recursion), and two constants Q and F the role of which will be respectively explained in paragraphs "Q-Best-first search", and "Father/family distance". A set of already found matches M is passed to the next level of recursion, where a new match can be added. At the very beginnig, this set contains one single match (r k , r l ) composed of the roots of T k and T l . Once the best match, for a given recursion level, was found by Algorithm 2, the corresponding nodes are marked if they are topologically consistent -otherwise only one of them is marked (see details in Paragraph "Q-Best-first search") -and the matching is recursively executed using as input the sub-trees rooted in the matched nodes. The recursion stops when all the Q-root-descendant nodes were marked in at least one of the two trees.

Successive translation/matching

As the physical distance between corresponding bronchi in different ATs increases with the bronchi generation, e.g, when ATs are superposed main bronchi to be matched are physically closer to each other than distal branches (Fig. 4.3), we propose a strategy of successive translation/matching, starting from the tributed rooted trees, u ∈ T k and w ∈ T l two already matched nodes, v ∈ T u k and z ∈ T w l , two candidate nodes to be matched, and F a depth. This depth represents the number of descending family generations used in the distance. The father/family distance (D F F ) is defined as the sum of the distance D * (Eq. 4.1) between paths P k = P (u, v) and P l = P (w, z), called "father" distance, and the distance D f (Eq. 4.5) between paths , or for the evaluation of possible matches [Pisupati et al. (1996)b]. The proposed metric is based on path-to-path distances, with the difference that it combines path-to-path distances between father paths and the distances among the corresponding sub-paths called families. This characteristic allows the algorithm to combine topological and geometrical information in a single measure. The topological differences between AGTs may increase in complexity when matched AGTs are extracted from images acquired at significantly different ventilation conditions, namely in interpressure matching with large differences of PEEP and/or of tidal volume. The capacity of the algorithm to cope with this complexity is controlled by parameters Q and F . The former represents the depth of the father path and the latter the number of family generations used in the father/family distance. Increasing the parameter Q increases the search space for the Q-Best-first search. This extension endows the algorithm with the capability to overcome difficult topological variations of the matched AGTs, e.g., spurious branches and trifurcations represented as two bifurcations on different AGTs. The counterpart of the extended search space is the increase of the execution time (see Table 4.3), as well as an increment of the number of FPs: when the overall number of matches increases, some of them are likely to be incorrect. For intrapressure matches, where the topological differences were not challenging, configuration M2 (Q = 2,F = 1) found approximately the same number of TPs as M1 (Q = 1,F = 1), but it slightly increased the FPs, and thus decreased the precison (see Table 4.2). In contrast, for one showed that gray-level registration was not able to manage the large displacements between the registered images. Indeed, the gray-level registration over-segmented the lung in the caudal direction, where the largest displacements are observed between the registered images (see Figure 5.2). Concerning the hybrid registration, although it could handle most of the large displacements, lateral distal regions were not completely deformed to their corresponding locations. This may be explained by the lack of landmarks in these regions where gray-level information may not be sufficient to determine the correct displacement inside the region.

Regarding the results obtained with different motions masks, the results were nearly identical, except for the bottom region of piglet A. More conclusive results may be obtained by assessing a larger and more representative number of registrations.

Future work may tackle the improvement of hybrid registration results in the caudaldorsal, specially lateral-distal, regions of the lung. Given that this region has poor graylevel information, i.e., lack of contrast, we think that displacements inside this region have to be estimated and, then, used within the proposed hybrid registration. This means that the future work may be focused on the estimation of lung movement in the caudal-dorsal region. For this task, we propose to create a lung motion model for the caudal-dorsal region of the lung. The model may be learned from the information of landmark displacements, extracted from matched landmarks, and their relationships with the surface of the lung, provided by the available 3D interactive segmentations. Thus, the complete process, once the model is created, for the final use in clinical applications may be:

1. Acquisition of the first image: I 1 .

2. Segmentation of the lung in image I 1 : B 1 (which may be a (semi-)automatic or interactive lung segmentation).

CHAPTER 5. CURRENT WORK AND PERSPECTIVES

Airway-tree matching

One additional future work concerns the matching of more than two airway-trees. We foresee the following strategy for this task: multiple pair airway-tree matching with a final joining phase.

This strategy would execute all the possible matches combinations for n airway-tree pairs to be matched, i.e., n 2 , and then combine the matching results in one final match. The combination step must check the consistency of each match before adding it to the final match. The process starts from the root. If the root matching is consistent it is retained as a matching for all the compared airway-trees, and, then, the same process is executed for each child of the root. Let us consider the matching correspondences M k,l between two airway trees T k and T l as a bijective relation, called matching function:

(5.4)

The consistency checking step must validate that the composition of every matching function combination for the evaluated match is transitive. For example, if three airways are to be matched, T k , T l , and T b , then, only the matches that are transitive may be part of the final matching. This is:

(5.7)

Future demonstrations of topology preservation by the proposed strategy are required.

Improving airway-tree segmentations after airway-tree matching

This perspective aims to give some hints for a future improvement of airway-tree segmentation after airway-tree matching. As was demonstrated in chapter 4, non-common branches from two compared airway-trees may exist for each airway-tree (see Figure 4.5). In other words, branches appearing in a subset of airway-trees may not appear in one or several other airway-trees, and vice versa. The idea of this perspective is to try to retrieve the missed branches in one airway-tree by exploiting the hierarchical structure of the airways, the already matched branches, and gray-level image information.

We propose a simple iterative algorithm to search non-common branches missing in matched airway-trees. The idea is to look for non-common branches whose fathers have been matched. The core of the perspective is the segmentation step which is in charge of finding the missing branch in the image, and, subsequently, matching it with its corresponding detected branch in the other airway-tree. Although we did not have the necessary time to explore solutions, we define the main routine of the application in Algorithm 4. In order to avoid notation confusions, let us define the two symbolic airway-trees as T k (V k , E k , r k ) and T l (V l , E l , r l ), the corresponding original images I k and I l , and the set of matched nodes

Appendices

Appendix A

Practical implementation of transformations in registration

The implementation of the standard definition of registration transformations, defined as forward mappings: from moving to fixed image, is hindered by the difficulty of finding the corresponding inverse transformations which are required to calculate distance functions between the images being registered (see section 2.1.2.2), and to avoid inconsistencies in the deformed moving image. In practical implementations, backward mapping transformations, i.e., transformations defined from fixed to moving image, are used to avoid the use of inverse transformations. In other words, the registration process seeks for the transformation T representing the inverse transformation T -1 . In this case, the overlapping region Z F is redefined as:

Given that the corresponding overlapping region Z M ⊂ Ω M is not used to calculate the distance functions, and that it requires the calculation of the inverse function, it is not defined.

Concerning the inconsistencies in the deformed moving images, they correspond to "holes" generated in the deformed images. Since the deformed moving image is created by filling the overlapping region Z F with its correspondences in Z M , for a forward mapping without inverse transformation there is no guarantee that this region is completely filled. This implies that some regions in Z F may not have a corresponding intensity, and, thus, may be seen as holes in the deformed image. Only having the inverse function may guarantee the filling of Z F . For the case of backward mapping, the transformation T guarantees that for each f ∈ Z F there is a correspondence in Ω M , and, therefore, that no holes are generated in the deformed image.

Appendix B

Motion mask refinement step

This appendix presents a refinement step required after the motion mask extraction proposed in [Torres González (2013)]. As this motion mask extraction methodology does not use the segmentation of the lung, it may generate incorrect motion mask surface in the inter-costal spaces. Indeed, this strategy estimates the position of the motion mask in the inter-costal spaces without taking into account the possible contrast of this tissue against the lung. The proposed refinement step reduces this drawback.

Once the motion mask is obtained, it is refined by combining it with a simple lung segmentation. The idea of this operation is to attach the borders of the motion mask to the real borders of the lung while avoiding errors made by approximations in the intercostal spaces. The logic behind this refinement is two-fold. First, include lung regions that may be missed by the motion mask. Second, remove over-segmentation of the lungs near the thoracic wall. To include missing lung regions we propose to add the segmentation of the lung to the final motion mask. Concerning the over-segmentation, we used the hypothesis that the motion mask may not exceed the lung segmentation at distances larger than the maximal diameter of the ribs r, so that exceeding regions must be removed. The necessary lung segmentation may be obtained by a common lung segmentation method or by a manual segmentation.

Given an initial motion mask M, a lung segmentation B, and the maximal diameter of the ribs d = 2cm, the refinement process is the following.