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Abstract

This thesis addresses the problem of images indexing and retrieval in the wavelet transform

domain. In particular, two major issues are considered: the indexing of stereo images and

the impact of quantization in still image retrieval schemes.

In the first part, we propose novel retrieval approaches devoted to stereo images which

integrate the disparity information with the visual contents of stereo images. In the first

strategy, the two views are processed separately through a univariate model. An appro-

priate bivariate model is employed to exploit the cross-view dependencies in the second

method. In the third strategy, we resort to a multivariate model to further capture the

spatial dependencies of wavelet subbands.

In the second part, different strategies are designed to improve the drop of retrieval per-

formances resulting from the quantization of database or query images. First, we propose

to operate on the quantized coefficients by applying a processing step that aims at re-

ducing the mismatch between the bitrates of the model and the query images. As an

alternative, we propose to recover the statistical parameters of original wavelet coefficients

directly from the quantized ones. Then, we investigate different quantization schemes and

we exploit inherent properties of each one in order to design an efficient retrieval strategy.
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Introduction

Thesis context

The recent advances in computer technologies, the development of digital acquisition sys-

tems and the emergence of different data compression standards have resulted in a great

demand for storage and retrieval of the involved huge multimedia data. Content Based Im-

age Retrieval (CBIR) systems were found to be an efficient tool for automatically managing

still images for large databases based only on their visual contents [Smeulders et al., 2000].

Typically, color, shape and texture features can be used to describe such contents for the

indexing process. In conventional CBIR systems, these features are often extracted in the

spatial domain [Yong, Thomas, 1999; Datta et al., 2006]. However, with the increased size

of the generated data, it becomes mandatory to compress them by using some image com-

pression standards such as JPEG [Wallace, 1991] and JPEG2000 [Rabbani, Joshi, 2002]

respectively based on Discrete Cosine Transform (DCT) and Wavelet Transform (WT).

Thus, today’s CBIR systems tend to involve images not only in their original versions,

but also in their compressed forms. When the database (DB) images are available only

on their compressed form, the classical methods operating in the spatial domain can be

also applied to retrieve the resulting compressed images, they will require the decoding of

all the database images, by applying the inverse transform, which will result in a signif-

icant computational overhead for feature extraction, especially for large image archives.

Therefore, in order to design fast retrieval methods, other works have been developed by

performing the feature extraction step in the transform domain [Mezaris et al., 2004; Wang

et al., 2015]. Moreover, an additional benefit can also be drawn by exploiting the intrin-

sic sparsity of the coefficients resulting from the underlying transform. The most known

retrieval approaches operate in the WT domain where features are directly extracted from

the wavelet coefficients [Voulgaris, Jiang, 2001; Mandal et al., 1996; Do, Vetterli, 2002;
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Sakji-Nsibi, Benazza-Benyahia, 2009].

This thesis is concerned with two major issues in CBIR operating in the wavelet trans-

form. The first one is related to Stereo Images (SI) and the second one to the impact of

quantization in the CBIR schemes.

More precisely, stereo images belong to the huge multimedia data that are continuously

produced. Indeed, the recent advances in acquisition and display technologies have al-

lowed the widespread use of stereovision in various application fields such as telepresence

in videoconferences [Tzovaras et al., 1999], medical imaging [Field et al., 2009], 3D TV

[Min et al., 2009], computer games and advanced graphic application [Yahav et al., 2007]

and 3D geographic information systems [Yang et al., 2011].

Stereoscopic image display offers a simple way of presenting the depth information in a real

world scene. Indeed, the disparity information which corresponds to the displacement that

exists between the corresponding pixels of the left and right images, allows to provide the

3D-depth information of the scene. The increasing interest in SIs has led to the constitution

of huge image databases. For example, the on board stereoscopic instrument of SPOT5

covers areas of 120 km × 60 km and a single view can be represented by 1200×1200 pixels

[Poli et al., 2004]. Moreover, a single view of a scene acquired by the IKONOS satellite

corresponds to 360 MB every 3 or 4 days. Hence, there is a strong need for both managing

and storing these large amounts of stereo data [Yoon et al., 2012].

On the other side, it is worth pointing out that most of the mono-view developed methods

are well adapted for losslessly encoded images (i.e unquantized transformed coefficients).

Thus, a particular attention should be paid to the effect of the quantization operation in the

context of lossy data compression. Indeed, some studies have focused on the influence of

lossy compression on the effectiveness of different still image retrieval approaches [Guldogan

et al., 2003; Schaefer, 2008; Edmundson, Schaefer, 2012a]. It was shown that compression

adversely affects the image retrieval performance especially when the compression ratio of

the query and that of database images (called also model images) are very different. There-

fore, designing efficient indexing methods that account for the quantization step as well

as the difference of qualities between the query and model images becomes a real challenge.
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Objectives and contributions

The objectives of this thesis are twofold. The first one is to propose new retrieval approaches

devoted to the case of stereo images. The second one is to improve the retrieval performance

of wavelet based compressed images and design efficient indexing approaches robust against

the quantization effects. The main contributions of our work are the following:� In the first part, we focus on the retrieval of stereo images, and propose new meth-

ods which combine the visual contents of the stereo data with their corresponding

disparity information. In this respect, we resort to a statistical modeling of the WT

coefficients to extract the salient features. While the two views are processed sepa-

rately through a univariate modeling in the first method, the second one exploits the

correlation between the views by resorting to a bivariate modeling. We propose also

a novel approach which exploits simultaneously the spatial and cross-view dependen-

cies of the stereo images through multivariate modeling. For instance, in order to

exploit the stereo images redundancies in the second and third approaches, we will

resort to a smooth and dense disparity map.� In the second part, we propose some efficient techniques to improve the retrieval

performance of lossy compressed (i.e. quantized) images. Indeed, on one hand, we

start by focusing on the standard uniform quantizer and design salient features from

the resulting quantized coefficients. To this end, two approaches have been developed.

The first one consists in applying a preprocessing step before the indexing step in

order to reduce the difference of qualities between the query and database images.

The second one aims at recovering the statistical parameters of the original wavelet

coefficients directly from the quantized ones.

On the other hand, we investigate other quantizers with some interesting properties

that can be efficiently exploited in the retrieval process. To this end, we resort to

two specific quantization schemes which can preserve the moments and probability

distributions of the original wavelet coefficients, respectively. After that, we propose

efficient retrieval approaches well adapted to the inherent properties of each quantizer.
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Thesis outline

In Chapter 1, we first introduce the principle of content based image retrieval system.

Then, we give a brief overview on image features reported in the literature for indexing

purpose. We review the most important concepts behind lossy image compression tech-

niques. In this respect, we pay a particular attention to lifting based coding methods.

In Chapter 2, we first introduce the main aspects relevant for understanding the stereo-

scopic imaging process. We also recall the most important techniques for estimating the

disparity field. This step is a key issue for exploiting the cross-view redundancies and

therefore achieving more efficient retrieval approach.

In Chapter 3, we present our contributions for the retrieval of stereo images. First, we de-

scribe the considered dense disparity algorithm. Then, we propose three different wavelet-

based retrieval methods. While the first approach combines the visual contents of the

stereo images with their corresponding disparity information using univariate model, the

second one has been developed through bivariate statistical approach in order to take into

account the similarity between the two views. The third approach exploits simultaneously

the spatial and cross-view dependencies of the stereo images through multivariate statisti-

cal model.

In Chapter 4, we show how quantization can effect the performance of WT-based CBIR

systems for some feature extraction methods. Then, we present new strategies for improv-

ing the retrieval performances of JPEG2000 compressed images. Finally, we investigate

different quantization schemes and propose efficient retrieval approaches based on the in-

herent properties of each quantizer.

Finally, the main contributions of this reasearch work are summarized and some perspec-

tives are provided.

Publications

Journal papers� A. Chaker, M. Kaaniche, A. Benazza-Benyahia, and M. Antonini, Efficient transform-

based image retrieval techniques under quantization effects, submitted in Multimedia

tools and applications.
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Chapter 1

Useful basics

1.1 Introduction

In the last few years, CBIR has become one of the most active research areas. The de-

velopment of huge and growing amounts of visual and multimedia data, and the advent

of Internet underline the need to create thematic access methods that offer a quick and

efficient interactive search.

This chapter gives a survey on CBIR systems. In the first part, we introduce the principle

of CBIR and review different feature extraction approaches. In the second part, we present

the most important concepts behind image compression techniques.

1.2 Content-Based Image retrieval systems

1.2.1 Principe of CBIR systems

The basic principle of an image retrieval system can be conceptually described by the

framework depicted in Fig. 1.1. An image retrieval system consists of two elementary

stages: feature extraction and the retrieval procedure. The feature extraction step aims at

computing and storing relevant features (signatures) of the content of each image in the

database. This may involve in some cases several intermediate steps such as preprocessing,

image transformation and clustering process. This step is usually an off-line process, since

it may not require user interaction or computational efficiency.

The retrieval procedure consists in finding the images in the database whose features are

the closest to the query image according to a suitable similarity measure. Since the re-
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trieval is performed on-line, its computation needs to be as fast as possible.

Thus, the retrieval performance depends critically on the efficiency of signature computa-

tion and the distance function.

Database images

Query image

b

b

b

b

b

b

Signatures

bbb

Most similar images

Features
extraction

Features
extraction

Comparison

Figure 1.1: CBIR system architecture.

1.2.2 Image features

Image features are computed from visual cues contained in an image. We can distinguish

two types of visual features: global and local ones. Global features describe the whole image

without involving detailed local analysis, all pixels of the image are processed, while local

features model localized areas in the image. The appropriate choice of the image feature

depends on its ability to represent accurately the content of each image in the database

according to the application area and the user need. For example, global features are

recommended for homogenous images [Samadani et al., 1993; Hara et al., 1997], but local

features are more appropriate to identify images having different objects with variable

texture [Rao et al., 2010]. Whether features are global or local, they belong generally

to one of the three following categories: color descriptors, texture descriptors and shape

descriptors.

In this work, we are only interested in shape- and texture-based features.
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Shape features

Object shape features provide efficient information to identify objects. They contain a

valuable information for image retrieval, since humans can recognize objects just from their

shapes. Basically, shape features can be categorized into two classes contour- and region-

based descriptors. Contour-based shape descriptors exploit only boundary information of

object shapes while the region-based ones are computed from the entire region.� Contour-based features:

Some features are computed directly from contour-based representations in the spa-

tial domain such as area, circularity, eccentricity, major axis orientation [Zhang et al.,

2002]. To reduce boundary noise, a discrete curve evolution approach is presented in

[Latecki, Lakämper, 2000] to simplify contours. Another shape presentation, called

shape context, captures at a given reference point the distribution of the remaining

points relative to it. This latter is compact and robust to several image transforma-

tions [Belongie et al., 2002]. A shape retrieval approach based on token represen-

tation is presented in [Berretti et al., 2000]. Shape boundary is firstly partitioned

into tokens. Each token is described through a set of perceptually salient features.

Token attributes are then organized into a tree index structure. This approach has

been proved to be efficient in the presence of partially occluded objects, scaling and

rotation. Different approaches have presented object shapes via Fourier descrip-

tors [Zhang et al., 2002; Datta et al., 2006; Charmi et al., 2008]. More precisely,

these features represent the shape of the object in a frequency domain. Global shape

features are captured from the first few low frequency coefficients, while finer features

of the shape are extracted from higher frequency coefficients. These approaches al-

low information preserving and eliminate the noise sensitivity in the shape signature

representations [Zhang et al., 2002].� Region-based features:

When the boundary information is insufficient for defining the object shape, impor-

tant information in the shape interior should be exploited. Moments and function

of moments have been well used as region-based features [Datta et al., 2006]. The

theory of moments including moment invariants and orthogonal moments provides

useful alternative for series expansions for the representation of object shapes [Prokop,
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Reeves, 1992; Vogel, Schiele, 2006; Ruberto, Morgera, 2008]. More precisely, moment

invariants characterize images and they are independent of transformations such as

rotation, translation and scaling. Orthogonal moments such as Zernike and Legendre

moments [Prokop, Reeves, 1992] have been proven to be more robust in the presence

of noise, and they are able to reduce the information redundancy in a set of conven-

tional moments.

A complete set of Fourier-Mellin descriptors of gray-level image have been proposed

in [Derrode et al., 1999; Derrode, Ghorbel, 2004]. This set is commuted from the

analytical Fourier-Mellin transform [Ghorbel, 1994], and it is invariant to transla-

tion, rotation and scale changes of the images. Moreover, this descriptor set has also

proven to be stable and robust to shape distortions.

Texture features

Texture is one of the most important visual cue in identifying objects and describing the im-

age content. There is no precise and general definition of texture. The number of different

texture definitions by researchers, which depend upon their particular applications, explain

this difficulty to define texture [Tamura et al., 1978; Haralick, 1979]. Typically, texture is

defined in the literature as a spatial repetition of one or more local patterns in a periodic

manner and in different directions in space. However, this definition is inadequate since it

does not take into account how the human visual system processes texture. Perceptually,

texture has various discriminating properties such as uniformity, coarseness, bumpiness,

fineness, regularity. Hence, a criterion reflecting the homogeneity of the texture can be

used to distinguish between objects with different textures. It has been shown in [Julesz,

1962; Tuceryan, Jain, 1998] that the perception of texture has different dimensions due to

physical variation in the scene which explains the fact that there is no general definition

of texture. However, there are some intuitive properties of texture that are commonly

accepted:� A texture in an image can be perceived at different scales or levels of resolution

[Gibson, 1950].� A texture is the spatial arrangement of pixel intensities (gray values).� If the number of primitive objects is relatively important in the region, the region is
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perceived textured.� The definition of a texture is related to the gray values in the spatial neighborhood

whose size depends on the texture type or the size of the primitives forming the

texture.

Texture information in an image can be extracted by building mathematical models which

will be used as texture features. The related model parameters are used to characterize

the images. It is worth noting that texture features have been employed in a variety of

application fields such as aerial [Conners et al., 1983], and medical image processing [Chen

et al., 1989], document processing [Wang, Srihari, 1989] and remote sensing [Haralick et al.,

1973] thanks to their close relation to the underlying semantics in these cases [Tuceryan,

Jain, 1998].

Various techniques have been proposed for describing image texture [Kimchi, Palmer, 1982].

They can be classified into four major categories according to the characteristics of tex-

ture images [Tuceryan, Jain, 1998]: structural features, model based features, spectral

features and statistical features (Fig. 1.2). In what follows, we will describe each category

of features.

Texture features

Statistical featuresStructural features Spectral features

Discrete Fourier
transform

Gabor transform

Wavelet

Model based
features

Markov random
fields

Fracatals

First order
statistics

Second order
statistics

statistics
Higher order

mean, variance, etc

image histogram

Local binary pattern

Co-occurrence matrice

Tamura featurestransform

Figure 1.2: Different classes of texture features reported in the literature.� Structural features:

Structural approaches consider textures as an almost regular repetition of some prim-

itives [Haralick, 1979]. The structural models assume that textures are composed of
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texture primitives. The texture is produced by the placement of these primitives ac-

cording to certain rules. Morphological operations like opening and closing of interest

point detectors are applied with the aim of finding and describing the arrangement of

elements. However, texture patterns are not strictly periodic, the structural methods

can not be applied in this case. Structural methods, in general, are very weak unless

one is dealing with very regular textures [Tuceryan, Jain, 1998].� Model based features:

Model-based texture methods are based on the building of an image model captured

from textured images. The attributes derived from the models are used as image fea-

tures. Model-based approaches make use of stochastic [Cross, Jain, 1983; Chellappa,

Chatterjee, 1985] and fractal models [Pentland, 1984], to characterize an image tex-

ture by the use of stochastic model and generative image model, respectively. Several

stochastic models have been proposed, among them the most popular being, autore-

gressive and Markov Random Field (MRF) models.

The autoregressive models assume relationships between groups of neighbouring pix-

els so that the pixel intensity is a weighted sum of the neighbouring pixel intensities

[Castellano et al., 2004]. They present the advantage of simplicity and efficiency in

parameter estimation.

Markov random field is a probabilistic tool that is able to capture the local (spatial)

contextual information in an image. These models assume that the intensity of each

pixel in the image relies only on those of its neighbors [Blake, Zisserman, 1987]. MRF

models have been employed in various image processing applications, such as texture

synthesis [Cross, Jain, 1983], image segmentation [Speis, Healey, 1996] and image

restoration [Geman, Geman, 1984].

Fractal models have also been proven to be very efficient for reflecting in modeling

texture properties of natural images [Pentland, 1984; Materka et al., 1998; Mandel-

brot, 1983], especially for roughness and self-similarity quality surface and they are

relatively insensitive to image scaling. However, they lack orientation selectivity and

fail in characterizing local image structures.� Spectral features:

These features represent texture images by using their spectral information. To this
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respect, it is necessary to estimate the spectral frequency of pixel intensity. Discrete

Fourier transform (DFT) was found to be suitable for highly periodic textures, since

the DFT is an adequate tool for the analysis of periodic functions. Furthermore,

texture descriptor invariant to translation, rotation and scale changes can be simply

commuted in the DFT [Sim et al., 2000]. Local spatial/frequency representations

can be allowed by Gabor filters [Gabor, 1946] and wavelet transforms [Mallat, 1989].

The major disadvantage of the Gabor transform is that its output are not mutually

orthogonal, which may result in a significant redundancy between texture features.

In the last decade, wavelet theory has been widely used for texture retrieval purposes.

Wavelet transforms offer flexible multiresolution and directional representations of an

image consistent with the human visual system [Beck et al., 1987], especially in the

case of textured images. Once the multiresolution transformation is performed, the

different statistical features can be extracted from the wavelet subbands such as the

energy [Smith, Chang, 1994; Wouwer et al., 1999], moments at several orders [Mandal

et al., 1996], statistical modeling of the distribution of the wavelet coefficients [Do,

Vetterli, 2002; Sakji-Nsibi, Benazza-Benyahia, 2009; Sakji-Nsibi, Benazza-Benyahia,

2008; Lasmar, Berthoumieu, 2014], co-occurrence matrices [Kwitt, Uhl, 2008] and the

correlation between all combinations of subband pairs on different channels [Van de

Wouwer et al., 1997]. Several extensions of the wavelet transform using multiscale

and directional filter banks have been proposed to improve the treatment of oriented

geometric image structures such as contourlet [Po, Do, 2006], curvelets [Dettori,

Semler, 2007] and, grouplets [Peyré, 2010]. Several features were computed from the

curvelet coefficients. The most used are a combination of mean, standard deviation,

energy and entropy signal [Le Borgne, O’Connor, 2005]. The marginal and joint

distributions were also calculated from the contourlet coefficients [Po, Do, 2006].� Statistical features:

They describe the texture by its non-deterministic properties that reflect the distri-

bution and relationship between the gray levels of an image.

– First order statistics derived from image histogram is the most basic approach

describing texture. However, they only consider individual properties of pixels

and do not take into account spatial relationships among them.
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– Second-order statistical methods compute features of a texture using spatial re-

lations of similar gray values. Indeed, gray level co-occurrence matrices [Haralick

et al., 1973] can provide valuable information about the neighboring pixels in a

texture image. It is a matrix in which gray level pixels are considered in pairs

with a relative distance d and orientation θ among them. The entry G(d,θ)(i, j)

of the matrix at position (i, j) is the number of occurrences of intensity values

i and j separated by the specified displacement. Then, the set of the popular

Haralick features [Haralick et al., 1973] such as contrast, correlation, homogene-

ity and energy can be computed from these matrices. In addition, Local Binary

Pattern (LBP) [Ojala et al., 2002b] is a powerful invariant texture measure, de-

rived from a general definition of texture in a local neighborhood. The intensity

value of the current pixel is compared with that of its adjacent neighbors. If

the intensity value of neighboring pixels is larger than the central pixel value,

they are replaced by ones, or zero otherwise. The resulting eight bits are then

interpreted as a natural number in the range of [0, 255]. An histogram is then

built as an image descriptor.

– Higher order statistical features might be more accurate but they are not suitable

for real-time applications due to their high computational complexity [Conners,

Harlow, 1980]. For instance, Tamura features are designed according to psycho-

logical studies on the human visual perception of texture. Tamura features have

six dimensions including coarseness, contrast, directionality, line-likeness, regu-

larity and roughness [Tamura et al., 1978]. The first three are more often used

for image retrieval since they are more efficient in describing image textures [Liu

et al., 2007; Wang et al., 2012].

1.2.3 Retrieval performance evaluation methods

CBIR systems search a number of images similar to a query from image database. Thus

they differ from classification and recognition systems that can retrieve exact matches.

The evaluation of the retrieval performance can be carried out by defining a quantitative

objective metric. However, it is hard to quantify a measure of performance since the

similarities between images are subjective and feature dependent, and there are no common

standard image collection. Several quantitative metrics of performance are defined in the
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literature [Müller et al., 2001]. Most common and widespread evaluation measures used in

image retrieval are precision PR = Rr

Rn and recall RC = Rr

Rt where� Rr is the number of output documents considered as relevant.� Rt is the total number of relevant documents in the database.� Rn denotes the total number of documents retrieved.

Precision and recall are often presented as a precision versus recall graph. These graphs are

increasingly used by the CBIR community [Müller et al., 2001]. Several other measures are

also derived from precision and recall such as PR(10), PR(30), PR(Rt) which corresponds

to the precision after the first 10, 30, Rt documents are retrieved, RC at 0.5PR, recall at

the rank where PR drops below 0.5, etc.

Rank is an important information that should be addressed for evaluating the retreival

performance. In this context, Average Normalized Modified Retrieval Rate (ANMRR)

criterion is defined by MPEG-7 standard as a retrieval performance metric [Manjunath

et al., 2002]. ANMRR considers not only the recall and precision information, but also the

rank information among the retrieved images.

Before describing the formulas of ANMRR, let Rt(q), K(q) and R(k) be denoted as follows:� Rt(q) is the number of the ground truth images for a query q;� K(q) = min(4Rt(q), 2GTM), where GTM is the maximum of Rt(q) over all queries;� R(k) represents the rank of an image k in retrieval results.

The rank of the kth ground truth images is defined as:

Rank(k) =





R(k) if R(k) ≤ K(q)

K(q) + 1 if R(k) > K(q).
(1.1)

ANMRR is given by the following formulas [Manjunath et al., 2002]:

AVR(q) =

Rt(q)∑

k=1

Rank(k)

Rt(q)
, (1.2)

MRR(q) = AVR(q)− 0.5 − Rt(q)

2
, (1.3)

NMRR(q) =
MRR(q)

K(q) + 0.5− 0.5Rt(q)
, (1.4)
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ANMRR =
1

Q

Q∑

q=1

NMRR(q). (1.5)

where Q is the number of queries. NMRR and ANMRR are in the range of [0, 1] and

smaller values represent better retrieval performance.

In what concerns us, we have retained the most widespread measures in image retrieval

works, namely PR and PC. We have also employed the ANMRR criterion to confirm

results obtained by precision versus recall graph.

1.2.4 Applications of CBIR

The improvements of image acquisition systems in various areas such as remote sensing,

astronomy, medical imaging and stereovision, have led to the production of huge amounts

of scientific data that are available in digital form. For instance, the volumes of remotely

sensed data gathered by the U.S. agencies NASA, NOAA, and USGS have dramatically

grown resulting in about 18 Petabytes by 2010 [Ramapriyan, 2002]. The use of content-

based image retrieval (CBIR) systems has become widespread as it allows a convenient and

efficient data access by organizing images based only on their visual contents [Smeulders

et al., 2000]. Many CBIR systems both commercial and research have been built. The

earliest commercial CBIR system is QBIC [Flickner et al., 1995] was developed by IBM, it

uses color, texture, shape descriptors and keywords. Virage [Bach et al., 1996] uses color

and texture descriptors. Moreover, a large number of academic retrieval systems have been

developed by universities, companies and hospitals such as Photobook [Minka, Picard,

1996], Netra [Ma, Manjunath, 1999], and VisualSEEK [Smith, Chang, 1997] allow query

by image content. Several CBIR applications have been developed not only for commercial

and academic purposes but also for medical diagnostics [Long et al., 2009; Müller et al.,

2004]. They are powerful to find similar images in various modalities acquired in different

stages of the disease progression. Furthermore, CBIR becomes widely used on different

hardware and platforms such as mobile phones [Quack et al., 2004].

In what follows, we will review the basic concepts behind image compression techniques.

1.3 Compression techniques

Image compression algorithms are used to reduce the number of bits required to repre-

sent an image. They aim at representing information in a compact form. Based on the
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requirement of image reconstruction, image compression approaches can be divided into

two classes: lossless compression techniques, in which the reconstructed image is exactly

identical to the original one and, lossy compression techniques which enable much higher

compression with quality degradation of the reconstructed image. A typical lossy com-

pression method can easily be represented in the form of a functional scheme composed of

three blocks: transformation, quantization, and entropy encoding.

1.3.1 Transformation

In almost all images, there is typically a high redundancy between the neighboring pixels.

The objective is then to reduce the amount of data by exploiting the spatial redundancies

in the images. To this end, two fundamental compression techniques can be considered:

predictive and transform ones. Although predictive coding methods are simple and can

be effective, the key methods use orthogonal transform in order to generate transformed

coefficients that present less mutual redundancies than pixels in the original spatial domain.

Moreover, an appropriate transform should provide a new representation where the energy

is concentrated on a few coefficients. The optimal transform for the data decorrelation

is the discrete Karhunen-Loève Transform (KLT) [Hua, Liu, 1998] as it provides a strict

diagonal autocorrelation matrix for the resulting coefficients. Even though it is optimal, it

is not widely adopted because it involves a high computational load. Furthermore, as it is

data-dependent, the Karhunen-Loève should be computed for each image. Although several

fast algorithms have been proposed, the computational complexity is still very high [Hua,

Liu, 1998]. It has been shown in [Feng, Effros, 2002], the KLT and its fast variants range

in complexity requirement from O(n2) to O(n log n) for vectors of dimension n. This has

motivated to resort to other transforms that are sub-optimal (in terms of decorrelation)

but whose computation is dramatically less expensive. Currently, the Discrete Cosine

Transform (DCT) [Rao, Yip, 1990] and the Wavelet Transform (WT) [Mallat, 1999] are

the main transforms widely used in image compression.

Discrete cosine transform

The DCT is a signal independent approximation of the KLT, recognized as an effective

technique for image and video compression. It has been adopted by most image coding

standards such as JPEG [Wallace, 1991], H.261 [Liou, 1991] and MPEG coding standard
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[Le Gall, 1991]. More precisely, DCT is a block transform which consists firstly in par-

titioning the image into nonoverlapping adjacent blocks of size N × N blocks (typically,

N = 8) and then DCT is applied independently to each block to separate the high and

low frequency information. The DCT of an input pixel x(i, j) in a current block, for

(i, j) ∈ {0, · · · , N − 1}2 is defined as:

X(u, v) =
2

N
C(u)C(v)

N−1∑

i=0

N−1∑

j=0

x(i, j) cos
(2i+ 1)uπ

2N
cos

(2j + 1)vπ

2N
(1.6)

where

C(u) =





1/
√
2 for u = 0

1 otherwise.

DCT has an almost optimal energy concentration since the most significant information

is contained in a few low-frequency coefficients. Indeed, among the N2 coefficients, the

continuous component X(0, 0) (DC coefficients) contains the average block (up to a mul-

tiplicative factor), while the (N2 − 1) AC coefficients present the higher frequencies. In

addition to the advantage of energy compacting, DCT reduces the correlation between the

coefficients. It achieves acceptable compression results, and it gives a low memory imple-

mentation, since the encoding is performed on small individual blocks of pixels. However,

the main limitation of block processing in the DCT is the appearance of blocking artifacts

which lead to a degradation in coding performance, mainly at very low bitrate coding.

Blocking artefact remains a major concern of DCT-based coding. Many research works

have been done in order to eliminate its effects, but there is a considerable scope for further

research.

Discrete wavelet transform

Unlike the DCT that transforms image from the spatial domain into the frequency domain,

the discrete wavelet transform (WT) achieves a good tradeoff between space and frequency

localization. Moreover, wavelet transform has been found to be one of the most powerful

compression tools. For instance, it has been retained by JPEG2000 image coding standard

as it achieves high compression ratio and a scalable decoding. The multiresolution analysis

algorithm proposed in [Mallat, 1999] is recommended to process the wavelet transform of

the image. The procedure starts with passing the input signal s0 through a pair of filters

with impulse response h̄0(n) = h0(−n) and h̄1(n) = h1(−n), called analysis filters. Note
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that h0 and h1 are respectively a low-pass and high-pass filters. Then, the filtered signals

are subsampled with a factor of 2 which results in a low-pass version s1 and and respec-

tively a high-pass version d1 of the input signal. The low-pass version is the approximation

subband, while the high-pass one correspond to the detail subband.

In practice, the decomposition procedure is iterated on the resulting approximation signal

as illustrated in Fig. 1.3. The decomposition scheme corresponding to two-levels decom-

position.

2

2

2

2

d1(n)

s0(n)

h̄0

h̄1

h̄0

h̄1

s2(n)

d2(n)

s1(n)

Figure 1.3: One dimensional wavelet decomposition over 2 resolution levels.

The approximation coefficients sj at resolution level j are related to the approximation

coefficients sj+1 and the detail ones at resolution j + 1 as follows:

sj+1(n) =
+∞∑

k=−∞

sj(k)h0(k − 2n)

dj+1(n) =
+∞∑

k=−∞

sj(k)h1(k − 2n).
(1.7)

The reconstruction is straightforward. The outputs sj+1 and dj+1 are first upsampled by

a factor 2, then passed through the synthesis filters with impulse responses g0 and g1 and,

finally added together to form a reconstructed signal s̃j:

s̃j(n) =
+∞∑

k=−∞

sj+1(k)g0(n− 2k) +
+∞∑

k=−∞

dj+1(k)g1(n− 2k). (1.8)

In the case of an image, such 1D decomposition is generally applied along the rows first

then the columns (or inversely) in a separable way. Fig. 1.4 shows how an image xj(m,n)

can be decomposed using separable filter bank. First, each row of the image is 1D trans-

formed to obtain an approximation subband sj+1(m,n) and a detail subband sj+1(m,n).

Then, each column of every subband is 1D transformed. Thus, four subbands are gener-

ated: an approximation subband x
(LL)
j+1 and three detail subbands x

(HL)
j+1 , x

(LH)
j+1 and x

(HH)
j+1
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Figure 1.4: 2D separable filter bank.

corresponding respectively to the horizontal, vertical and diagonal orientations. This de-

composition procedure can be applied on the approximation subband until the desired

subband structure is obtained.

Lifting schemes

The Lifting Scheme (LS) is a flexible tool for computing the WT [Sweldens, 1996]. It was

introduced to construct biorthogonal wavelets by a simple and reversible process. LS was

found to be a very effective structure for encoding still and stereo images [Kaaniche et al.,

2009a], and it has been retained in the JPEG2000 image compression standard [Taubman,

Marcellin, 2001]. A generic LS is performed in three steps namely split, predict and update.� Split: The input 1D signal sj(n) is firstly divided into two subsets composed respec-

tively of even sj(2n) and odd samples sj(2n + 1).� Predict: Then, thanks to the local correlation, the samples of one subset (say the

odd ones) are predicted from the neighboring even samples. Thus, the prediction

error, referred to as detail signal, is computed as follows:

dj+1(n) = sj(2n+ 1)− p⊤
j sj(n) (1.9)

where pj is the prediction vector, and sj(n) is a reference vector containing the even

image samples used in the prediction step.



1.3. Compression techniques 35� Update: The approximation signal sj+1(n) is generated by smoothing the even

samples through some detail coefficients:

sj+1(n) = sj(2n) + u⊤
j dj+1(n) (1.10)

where uj is the update vector, and dj+1(n) is a reference vector containing the detail

coefficients used in the update step.

In the case of an image, such 1D-LS can be separately applied to the lines and, to the

columns, as for the filter bank-based method. A multiresolution representation of the

input image is obtained by recursively repeating these steps to the resulting approximation

coefficients.

One of the interesting properties of the LS is its easy and intrinsic reversibility, it does

not require any condition on the prediction and update operators. This flexibility has

challenged researchers to develop various nonlinear wavelet transforms [Claypoole et al.,

2003; Combettes, Pesquet, 1998]. The reconstruction algorithm can be obtained from the

forward transform simply by inverting the three step procedure which results in:� Undo update:

sj(2n) = sj+1(n)− u⊤
j dj+1(n). (1.11)� Undo predict:

sj(2n+ 1) = dj+1(n) + p⊤
j sj(n). (1.12)� Merge:

{sj(n), n ∈ Z} = {sj(2n), n ∈ Z} ∪ {sj(2n + 1), n ∈ Z}. (1.13)

Several examples of LS have been introduced in [Calderbank et al., 1998]. Among them, the

set of LSs denoted by (L, L̃) wavelet transforms is known to be effective for image coding,

where L and L̃ is the number of vanishing moments of the analyzes and the synthesis

high pass filters, respectively. The conversion into an integer wavelet transform, which is

essential for lossless compression, requires rounding steps. We present some examples of

this group:

– (2, 2) transform

dj+1(n) = sj(2n + 1)− ⌊12(sj(2n) + sj(2n+ 2)) + 1
2⌋

sj+1(n) = sj(2n)− ⌊14 (dj+1(n− 1) + dj+1(n)) +
1
2⌋.

(1.14)
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This transform is also known as the 5/3 transform. It has been retained for lossless

compression mode of the JPEG2000 standard.

– (4, 2) transform

dj+1(n) = sj(2n + 1)− ⌊ 9
16 (sj(2n) + sj(2n + 2)) − 1

16(sj(2n− 2) + sj(2n + 4)) + 1
2⌋

sj+1(n) = sj(2n) + ⌊14 (dj+1(n− 1) + dj+1(n)) +
1
2⌋.

(1.15)

In addition, 9/7 symmetric biorthogonal transform is another popular transform selected

for the lossy compression mode of the JPEG 2000 standard.

ďj+1(n) = sj(2n+ 1) + α(sj(2n) + sj(2n + 1))

šj+1(n) = sj(2n) + β(ďj+1(n− 1) + ďj+1(n))

d̃j+1(n) = ďj+1(2n+ 1) + γ(šj+1(n) + šj+1(n + 1))

s̃j+1(n) = šj+1(n) + δ(d̃j+1(n− 1) + d̃j+1(n))

dj+1(n) =
1
ζ d̃j+1(n)

sj+1(n) = ζs̃j+1(n)

(1.16)

where α = −1.586134342, β = −0.05298011854, γ = 0.8829110762,δ = 0.4435068522,

ζ = 1.149604398 are lifting coefficients.

1.3.2 Quantization and entropy coding

Quantization is a simple operation that converts a continuous set of values (or a large

number of possible discrete values) to a relatively small discrete and finite set, which

implies a loss of information. This loss is of course irreversible. Thus, the design of the

quantizer has a significant impact on the compression ratio. We can define two main classes

of quantization: scalar and vector quantization. A scalar quantization is applied to each

input simple (i.e transform coefficient) independently from the other input, whereas the

vector quantization is applied to blocks of transform coefficients.

∆ ∆ ∆ ∆ ∆ ∆2∆

Figure 1.5: Uniform quantizer with deadzone with step size ∆.

The uniform quantizer with a central deadzone is a simple example to perform the scalar
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quantization. Fig. 1.5 shows a uniform quantizer with a deadzone twice the quantization

step-size. Let xj (m,n) the input sample, the output of the quantizer x̄j (m,n) is given by:

x̄j (m,n) = sign (xj (m,n))

⌊ |xj (m,n)|
∆

⌋
(1.17)

where ∆ is the quantization step size and ⌊·⌋ denotes the rounding operator. It is worth

noting that a small (resp. high) ∆ value corresponds to a high (resp. low) bitrate and,

results in a high (resp. low) reconstructed subband quality.

After quantization, the finitely different values at the output of the quantizer must be

encoded. The entropy encoding converts the quantized coefficients into a binary stream.

JPEG specifies two entropy coding methods: Huffman coding [Huffman, 1952] and arith-

metic coding [Rissanen, Langdon, 1979]. A variety of powerful and sophisticated algorithms

have been developed for wavelet-based coding schemes. Among them, we cite the Embed-

ded Zerotree Wavelet (EZW) coding [Shapiro, 1993], Set Partitioning in Hierarchical Tree

(SPIHT) coding [Said et al., 1996], and the Embedded Block Coding with Optimized Trun-

cation (EBCOT) algorithm [Taubman, 2000] which is adapted in the JPEG2000 standard.

These algorithms can achieve an excellent image quality while generating embedded bit-

stream. A general overview on wavelet codecs can be found in [Fowler, Pesquet-Popescu,

2007].

EBCOT is the basic encoding tool of JPEG2000 [Taubman, Marcellin, 2001]. It is a block-

based encoder organized around two passes: each subband is divided into small blocks

called codeblocks, which are typically of size 32 × 32 or 64 × 64. Then, an embedded

bitstream is independently generated for each codeblock which results in a separately em-

bedded and layered bit-stream organization. Thus, each codeblock bitstream is truncated

in some fashion, and the truncated bitstreams are concatenated together to form the final

bitstream. In JPEG2000, the method for codeblock bitstream truncation is a Lagrangian

rate-distortion optimal approach referred to as Post-Compression Rate-Distortion (PCRD)

optimization [Taubman, Marcellin, 2001]. An optimal truncation point for each code block

is produced by processing this technique simultaneously across all of the codeblocks from

the image. More precisely, the PCRD optimization distributes the total bite rate for the

image spatially across the codeblocks in an optimal rate-distortion sense such that code-

blocks with higher energy receive greater rate. Moreover, the constructed bitstream is

organized in an optimal order such that the final bitstream is close to being rate-distortion

optimal at many truncation points.
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Bit allocation

In order to optimize the reconstruction quality of an image, the bit allocation process in

wavelet based coders allows to efficiently distribute a given budget of bits among all sub-

bands of a wavelet-based coded image [André et al., 2007]. Generally, the bit allocation

is expressed as an optimization problem based on Rate-Distortion (R-D) theory where the

average distortion is minimized subject to a constraint on the available bitrate. The ob-

jective is to find the optimal quantization steps for the constrained minimization problem.

The bit allocation algorithms in the literature can be classified into empirical and ana-

lytical based methods. Algorithms in the first category estimate the R-D curves by mea-

suring a large number of R-D operating points for all possible quantization settings for

each subband. The obtained R-D curves are often assumed to be both differentiable and

convex [Sermadevi, Hemami, 2004]. Then, different iterative techniques are employed to

find the optimal quantization parameters [Ortega, Ramchandran, 1998]. To this end, the

standard Lagrangian optimization technique is well applied to solve the constrained mini-

mization problem [Shoham, Gersho, 1988]. While this empirical method results in better

optimization results, it is computationally intensive. To reduce the complexity, instead of

estimating R-D curves for all quantization settings, the curves are generated by the compu-

tation of a few points and interpolating them using spline approximations in [André et al.,

2007]. Thus, to further overcome the complexity of these empirical methods, analytical

approaches consist of finding closed-form analytical expressions of the R-D functions by

assuming various input distributions and quantizer characteristics [Kaaniche et al., 2014].

1.4 Conclusion

In this chapter, we have described the principle as well as the different stages involved in

content based image retrieval systems. In this respect, we have reviewed shape and texture

feature extraction techniques as well as different application fields of CBIR. Then, we have

given some background on image compression tools by focusing on wavelet transforms, and

particularly lifting schemes.
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Chapter 2

Stereo images and disparity map

2.1 Introduction

A stereo system involves at least two cameras from which the depth information can be

inferred by triangulation if corresponding (homologous) pixels are found. Hence, it is useful

to recover the depth information of the underlying scene in order to exploit the 3D infor-

mation during the retrieval procedure of Stereo Images (SI). To this end, the fundamental

problem reduces to match the pixels from a pair of left and right views (if a binocular

stereo system is considered). More precisely, the challenge is to estimate the difference in

location between two corresponding pixels (called the disparity).

In this chapter, we focus on the stereo matching process. First, we will provide an in-

troduction to stereo vision. Next, we will present the stereo correspondence problem and

some constraints that can be used in order to simplify the matching process. Then, we will

give an overview of the most commonly used disparity estimation methods.

2.2 Stereoscopic imaging

2.2.1 Image acquisition

The pinhole camera model is the simplest and the most used model for describing image

acquisition. It has proven to be very efficient in approximating the geometry and optics of

most modern cameras [Faugeras, 1993]. In this model, the image is rendered in perspective
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projection that it is formed by a geometry mappingM from 3D onto a 2D plane:

M : R
3 → R

2

(X,Y,Z) → (f X
Z , f Y

Z )
(2.1)

where f is the focal distance of the camera and (X,Y,Z) are the 3D coordinates.

2.2.2 Homologous points

In a binocular stereoscopic imaging systems, two images of the scene are simultaneously

acquired from two slightly different view angles by two cameras (see Fig. 2.1). The objective

is to recover from the two images (left and right views) the third dimension (the depth)

which has been lost during the image formation. The projections of any point M in the

scene visible by the two cameras do not have the same coordinates in the two image planes.

The position of this scene point can be retrieved if its two projections m(l) and m(r) onto

the left and right images are identified as shown in Fig. 2.1. These points m(l) and m(r)

are called homologous.

M

C(r)C(l)

m(r)

m(l)

B

Figure 2.1: Stereoscopic imaging system.

Geometry

In order to establish the stereo matching problem, it is important to understand the two-

view geometry, which describes the relation between the two views. This geometry, known

as epipolar geometry, is illustrated in Fig. 2.2.

Let C(l) and C(r) be respectively the optical centers of the left and right cameras. As shown
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in Fig. 2.2, a scene point M , their projection points m(l) and m(r) in the left and right

images and C(l) and C(r) are co-planar and present the epipolar plane Π.

Suppose we only know m(r) and we have to search its corresponding point m(l). The plane

Π is determined by the line joining the optical centers (called baseline) and the ray defined

by m(r). From above, the ray must pass through m(l) and lies in Π. Thus, the point m(l)

lies on the line of intersection l(l) of Π with the left image plane. This line is called the

epipolar line l(r) associated to m(r).

Several entities involved in this geometry are illustrated in Fig. 2.2 and defined as following:� The epipolar plane Π of a scene point M is the plane determined by M and the

centers of projection of the two cameras C(l) and C(r).� The epipoles are two points e(l) and e(r) obtained by the intersection of the baseline

with the image plane.� The epipolar line is the intersection of the epipolar plane with the image plane.

All the epipolar lines in the image pass through a single point the epipole. The

intersection of the epipolar plane with each of the two image planes are called the

conjugate epipolar lines.

Given an image point m(r) lying on the right epipolar line l(r), its corresponding point m(l)

must lie on the conjugate epipolar line l(l). This corresponds to the epipolar constraint

which can be represented mathematically by a 3×3 matrix F called the fundamental matrix.

This matrix depends on the intrinsic and extrinsic parameters of the cameras [Zhang,

Xu, 1997]. Note that the intrinsic parameters describe the geometric, optical and digital

characteristics of the camera. They do not depend on the position and orientation of

the camera. The extrinsic parameters define the orientation and position of the camera

with respect to the world coordinate system [Faugeras, 1993]. A complete review of the

techniques for estimating F can be found in [Zhang, 1998]. Thus, such a constraint allows

to reduce the correspondence research from 2D search problem to 1D one. In practice, this

problem can be further simplified by using an appropriate processing known as epipolar

rectification.
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Right epipolar lineLeft epipolar line

Epipolar plane Π

e(r)

l(r)

m(r)m(l)

l(l)

e(l)

M

C(r)C(l)

Figure 2.2: Epipolar geometry.

2.2.3 Epipolar rectification

Typically, cameras used in stereoscopic vision are rotated towards each other by a small

angle. In this case, the epipolar lines lie at a variety of angles across the two images.

This configuration is known as converging camera configuration [Dufaux et al., 2013]. In

contrast, if the optical axes of two cameras are parallels and the two cameras have the same

intrinsic parameters the epipolar lines are horizontal and, will coincide with the image scan

lines. This configuration is called parallel camera configuration.

The last configuration has several advantages. Indeed, it simplifies the correspondence

search, which will be situated on parallel horizontal lines. Furthermore, since the epipolar

lines lie on the image scan lines, two corresponding pixels are located at the same line in

the two images as shown in Fig. 2.3.

C(l)

M

C(r)

m(l) m(r)

Figure 2.3: Epipolar rectification.
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However, in practice most images are not perfectly aligned, thus a transformation process

should be applied to images such that corresponding epipolar lines become colinear and

coincide with the image scan lines. This procedure is called rectification. A survey of

different rectification techniques proposed in the literature can be found in [Hartley, Gupta,

1993; Fusiello et al., 2000b; Papadimitriou, Dennis, 1996].

2.3 Stereo matching problem

2.3.1 Disparity information

In the matching process, we consider that the mapping is performed from the right image

(called “reference”) to the left one. For a given pixel m(r) = (x(r), y(r)) in the right image,

the objective is to find its homologous pixel m(l) = (x(l), y(l)) in the left image, which cor-

responds to the same point in the scene. The difference between the coordinates of these

pixels is called disparity.

Thus, the stereo correspondence problem is equivalent to find for a function u that asso-

ciates a disparity vector to each pixel (x(r), y(r)) in the right image as follows:

u : R
2 → R

2

(x(r), y(r)) 7→ u(x(r), y(r)) = (x(l) − x(r), y(l) − y(r)).
(2.2)

If the stereo images are geometrically rectified, the disparity field is restricted to the hori-

zontal component. Hence, in this case, the disparity is a scalar:

ux : R
2 → R

(x(r), y(r)) 7→ ux(x
(r), y(r)) = x(l) − x(r).

(2.3)

It is important to note that there is an inverse relation between disparity and depth. In-

deed, objects closer to (resp. far away from) the observer result in high (resp. low) disparity

values. This information plays a crucial role in many application fields such as 3D recon-

struction and stereo/multiview image compression [Kaaniche et al., 2009b; Dricot et al.,

2015].

The depth information can be computed based on the triangulation method [Hartley,

Sturm, 1997], as shown in Fig. 2.4. Recall that a 3D object point M is defined by its

coordinates (X,Y,Z) where the Z component represents its depth and corresponds to the

distance between the object and the cameras. By employing the similarity of the triangles
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of hypotenuses (C(l)m(l)) and (C(l)M), we get:

x(l)

f
=

X

Z
(2.4)

and,
x(r)

f
=

X −B

Z
(2.5)

where B is the baseline and f is the camera focal length.

Consequently, we can express the disparity of a point M as a function of the depth Z

between the corresponding 2D points as follows:

ux(x
(r), y(r)) = x(l) − x(r) =

B · f
Z

. (2.6)

x(l)

x[pixels]

X[meter]

Z[meter]

m(l) m(r)

f

Z

X

B X − B

M

C(l)
C(r)

x(r)

Figure 2.4: Relation between the disparity and depth.

2.3.2 Difficulties in stereo matching process

Disparity estimation is considered as a difficult problem in stereo vision, because of the

presence of several sources of uncertainty such as illumination variations, depth disconti-

nuities, and lack of texture [Dhond, Aggarwal, 1989].� Illumination variations: In classical stereo matching process, the scene is assumed

to be Lambertian and corresponding pixels have consistent intensities from different
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viewpoints. However, in practice, illumination variations often occur due to slight

differences in sensitivity of the cameras or shadows that appear in only one image.

This illumination differences between two stereo images can lead to an undesirable

disparity map. To reduce the effect of illumination change, a preprocessing step like

the histogram equalization can be applied to the original stereo images.� Occlusion problem: The different viewpoints of the cameras and the presence of

discontinuities in the scene cause occlusions, which are points in one image that are

absent in the other one. An example of an occlusion is shown in Fig. 2.5, where

the point X is visible in the right image and absent in the left one. This makes the

disparity assignment a very difficult task since occlusion areas have to be detected and

discarded beforehand. A comparison of different occlusion detection methods can be

found in [Egnal, Wildes, 2002]. For example, in [Weng et al., 1992] occluded areas are

detected and replaced with an interpolation based on the disparity of neighborhoods

of the occluded area. A comparative study of five methods for occlusions detection

was conducted in [Egnal, Wildes, 2002]. To reduce the sensitivity of the matching

process to occlusions, a robust correlation measures such as normalized correlation

and M-estimator have been proposed in [Oisel et al., 2003]. To explicitly identify

occluded regions, an iterative algorithm updates the match values, by diffusing search

window among neighboring values and inhibiting others along similar lines of sight

was developped in [Zitnick, Kanade, 2000].� Textureless regions: Image regions which contain little or repetitive textures result

in ambiguities in the matching process because of the presence of multiple possi-

ble matches. This ambiguity often leads to wrong correspondences. Homogeneous

textured region are taken into account and detected using the gradient image in

[Scharstein, Szeliski, 2002].

In conclusion, there are many factors that make stereo matching an ill-posed problem.

2.3.3 Stereo matching constraints

It is important to impose some matching constraints to solve the difficulties mentioned

above. The most commonly used constraints are the following ones.
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left image right image

Figure 2.5: Illustration of occlusion effects: the point X is visible in the right image and

absent in the left one.� Epipolar constraint: This geometric constraint allows to reduce the matching prob-

lem from a 2D search problem to a 1D one by involving that the corresponding point

of a given image point in one image, must be located on an epipolar line in the other

one.

Moreover, when the stereo images are rectified, the search problem is further simpli-

fied since the horizontal scan lines reside on the same epipolar lines.� Uniqueness: It imposes that one pixel in an image can have no more than one cor-

responding pixel in the other image. But, this constraint fails in the presence of

transparent objects [Marr, Poggio, 1976].� Ordering: It constrains the order of pixels along epipolar lines to be the same for the

two images.� Smoothing constraint: It imposes that disparity varies smoothly in the uniform areas

(object interiors).

2.4 Overview of stereo matching approaches

As aforementioned, the requirement of disparity maps is motivated by several applications

in stereo vision such as 3D reconstruction of the scene, the compression of multicomponents

images. To this respect, a large number of stereo matching methods have been developed to

produce accurate disparity maps from single stereo-pairs. Numerous techniques proposed
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in the literature are summarized in [Scharstein, Szeliski, 2002; Brown et al., 2003]. They

are mainly categorized in two classes: local and global matching approaches.

2.4.1 Local approaches

Local methods seek to estimate disparity by comparing the similarity between two sets of

pixels of two reference images. They can be subdivided into feature- and area-based ap-

proaches. Feature-based methods try to establish correspondences between some high-level

features extracted from images such as edges [Ohta, Kanade, 1985], segments [Medioni,

Nevatia, 1985] or curves [Schmid, Zisserman, 1998]. These methods are efficient and very

fast since only few features are considered and less sensitive to photometric variations, as

they represent geometric properties of a scene. However, they can not ensure the sparsity

of the obtained disparity map. Thus, an interpolation step is required to produce a dense

map [Konrad, Lan, 2000].

Unlike most feature-based methods, dense disparity fields are explicitly defined for area-

based algorithms. These algorithms are efficient in highly textured areas but more sensi-

tive to locally ambiguous regions like occlusion regions or textureless regions. This class

of methods, known as correlation-based methods, uses pixels or regions to measure the

similarity between stereo images [Alkanhal et al., 1999].

It is worth noting that these techniques are highly popular and have been widely used

in several applications such as motion estimation [Alkanhal et al., 1999], image registra-

tion [Zitova, Flusser, 2003], etc.

In the context of stereo correspondence, the principle of these approaches is to compare

the neighborhood of a pixel with the neighborhood of possible candidates located on the

epipolar line associated to the other image, as illustrated in Fig. 2.6. More precisely, in

order to find for a given pixel m(r) in the right image, the corresponding pixel in the left

image, a window of pixels around m(r) is firstly selected. Then, this window is matched to

a window in the left image by shifting the current window over a search area S. Finally,

the shift which gives the best cost function is considered as a good match.

Generally, the cost function is a dissimilarity measure between the two windows. To this re-

spect, different matching measures have been used in the literature. The most commonly

used are the Sum of Square Differences (SSD), the Sum of Absolute Differences (SAD)

and, the Normalized Cross-Correlation (NCC). NCC decreases the illumination variation
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Right imageLeft image

 Correlation windowSearch area Moving window

m(r)

x(r)

y(r)

Figure 2.6: Correlation-based stereo matching method.

effect by compensating the differences of the gain and the bias between stereo images

[Hirschmüller, Scharstein, 2007]. Other nonparametric measures have been presented in

the literature [Zabih, Woodfill, 1994]. They are based on transformations which rely on

the rank of the relative ordering of local intensity values within a local window and not

on the intensity values themselves. For example, rank transform [Zabih, Woodfill, 1994] is

the number of pixels in the local region centered at the pixel of interest whose intensity is

less than the intensity of the center pixel.

The selection of the appropriate size of the search window is crucial for the effectiveness

of local methods. Indeed, the basic correlation method uses a window with a fixed size

and shape. However, this technique fails at object edges and boundaries. To overcome this

problem, more relevant techniques have been proposed using adaptive window selection

according to the intensity variation [Woo, Ortega, 2000; Veksler, 2001; Veksler, 2003; Ma

et al., 2009]. In [Veksler, 2001], Veksler estimates an appropriate window shape by opti-

mizing over a large class of rectangular and non-rectangular windows. This approach is not

efficient enough for real time implementation. To reduce the cost aggregation, Veksler uses

in [Veksler, 2003] the integral image technique [Crow, 1984] for the window adjustment

step. A multiple-window approach [Fusiello et al., 2000a], uses for each pixel, nine distinct

windows of the same size placed at different location, that are tried and the one providing

highest correlation is retained. However, the number of windows is limited and cannot

cover the whole range of different sizes needed. A difference-based adaptive searching win-

dows approach is proposed in [Ma et al., 2009] . The continuity of difference of stereo

images is employed to compute the size of adaptive searching windows.
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2.4.2 Global approaches

Global methods aim at reducing the sensitivity to local regions in the image. To compute

the disparity map u, global methods aim at minimizing a global energy function over the

whole image area. Such a function is composed of two terms and has the following form:

E(u) = Ed(u) + λEs(u) (2.7)

where Ed(u) is the data term that measures the disagreement between corresponding pix-

els, Es(u) is a regularization term that characterizes the smoothness between neighboring

pixel pairs and λ is a positive constant weighting the two terms.

The stereo correspondence problem reduces to a minimization procedure. To this end,

different energy minimization algorithms have been proposed to solve Eq (2.7). The most

commonly used approaches are dynamic programming [Veksler, 2005; Kim et al., 2005;

Sun, 2002], graph cuts [Boykov et al., 2001; Kolmogorov, Zabih, 2001] and variational

methods [Miled et al., 2006a; Miled et al., 2009b; Kosov et al., 2009; Chaux et al., 2013;

Hiltunen et al., 2012; Wang, Yang, 2011].

Dynamic programming is one of the oldest and still popular strategies for stereo match-

ing. It exploits the ordering and smoothness constraints to optimize correspondences of

all scanlines in the image independently. The matching costs of all pixels on a scanline

describe the disparity search space. The method is performed in two steps: the first one

consists in building the path cost matrix for each possible candidate pixel and the second

step aims at finding the best possible matching pixel with the minimum path cost. Al-

though dynamic programming method produces better results on occlusion boundaries, it

is unable to enforce smoothness in both horizontal and vertical directions, which leads to

the well-known streaking artifacts. To solve this problem, a multiple-label dynamic pro-

gramming [Criminisi et al., 2007] has been developed.

In order to cope with this problem of streaking effect, Roy and Cox [Roy, Cox, 1998] have

employed graph cuts to compute a global optimal solution with a single minimum cut

through a constructed graph. Then, different approaches based on graph cuts have been

developed [Kolmogorov, Zabih, 2001; Kolmogorov, Zabih, 2006; Komodakis et al., 2011].

The idea is to consider the stereo matching problem as a pixel labelling problem to find

the minimum cut through a certain graph.

Variational approaches have also been very effective for producing consistent disparity map
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while preserving the depth discontinuities [Miled et al., 2009a; Cremers et al., 2011; Wan-

ner, Goldluecke, 2014; Chaux et al., 2013]. Indeed, these techniques were introduced in

image processing for restoration and denoising problems [Combettes, Pesquet, 2004] and

have already been attracted much interest in the computer vision where they were first

designed for the purpose of estimating a dense optical flow from a sequence of images

[Nagel, Enkelmann, 1986]. Numerical studies on optical flow have shown that the vari-

ational optical flow methods are among the most powerful techniques, which motivates

their extension for disparity map estimation [Alvarez et al., 2002; Slesareva et al., 2005].

Variational methods minimize the energy function (Eq. (2.7)) by solving the associated

non-linear Euler-Lagrange equation [Alvarez et al., 2002].

While dynamic programming and graph cuts methods operate in a discrete manner, varia-

tional techniques work in a continuous space. Therefore, they allow to produce a disparity

field with ideally infinite precision. Since all these global methods achieve satisfactory re-

sults in certain situations [Miled et al., 2006b], they are often implemented using numerical

schemes which may be computationally intensive. Moreover, a suitable choice of the regu-

larization weight λ may be a difficult task.

While most of the existing works operate in the spatial domain, some wavelet based dispar-

ity estimation methods have been recently attracted much attention due to the hierarchical

and scale-space localization properties of the wavelet [Chan et al., 2006; Kosov et al., 2009;

Mukherjee et al., 2010].

2.5 Conclusion

In this chapter, we have presented the principal characteristics of stereoscopic imaging sys-

tem. We have reviewed the most frequently used techniques for estimating the disparity

field. This is a crucial step for exploiting the cross-view redundancies and therefore achiev-

ing more efficient SI retrieval system.

The different ways that can be employed to exploit the disparity information for the re-

trieval of the stereo data will be the objective of the next chapter.
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Chapter 3

Novel wavelet-based retrieval

methods for stereo images

3.1 Introduction

With the emergence of wide range of multiview applications such as video games with

autostereoscopic display and 3DTV or telepresence in videoconferences [Tzovaras et al.,

1999], many views of the same scene have been generated which has led to an impending

need for both managing and storing these large amounts of image data. In order to reduce

the storage requirements, a lot of images are saved in a compressed format by applying a

wavelet transform to the original ones according to the JPEG2000 image coding standard.

Therefore, it becomes interesting to design a CBIR system operating in the wavelet do-

main in order to avoid some decoding steps at the retrieval process. To this end, different

wavelet-based retrieval methods for mono-view images have been reported [Mandal et al.,

1996; Do, Vetterli, 2002]. It is important to note that most of these techniques are ded-

icated to the retrieval of single view images [Kiranyaz, Gabbouj, 2012]. However, to the

best of our knowledge, there is only one research work developed for the context of SI [Feng

et al., 2011]. More precisely, the reported method consists of two steps: a conventional

CBIR system is applied to only one view (for example the left one). Then, the obtained

results are refined by comparing the histograms of the estimated disparity maps. However,

such retrieval method presents a drawback as the visual contents of the right image are

not directly exploited. To alleviate this shortcoming, we investigate in this work different

techniques to improve the efficiency of a CBIR system. Our main contribution is to exploit
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the dependencies between the two views through a dense and smooth disparity map.

The remainder of this chapter is organized as follows. In Section 3.2, we give a brief descrip-

tion of a conventional CBIR system operating in the WT domain and the straightforward

extension of this system to the context of SI is discussed. Then, we motivate our choice to

resort to a smooth and dense disparity estimation (DDE) method. The retained method,

developed in [Miled et al., 2009a], will also be described in Section 3.3. After that, in

Sections 3.4, 3.5 and 3.6, we describe the proposed disparity-based SI retrieval approaches

based on univariate, bivariate and multivariate modeling, respectively. Finally, the perfor-

mance of the proposed approaches is illustrated in Section 3.7 and some conclusions are

drawn in Section 3.8.

3.2 Conventional wavelet-based CBIR System

3.2.1 Wavelet distribution model

In the case of mono-view images, a wavelet-based CBIR system consists of extracting salient

features from the wavelet coefficients of the images. As aforementioned, a statistical frame-

work could be adopted to model the wavelet coefficients of the different subbands. Indeed,

histograms of wavelet coefficients have been successfully used for representing color and

local geometric properties [Smeulders et al., 2000]. They capture local features to charac-

terize homogeneous textures [Zhang, Xu, 1997]. Since the wavelet coefficients histograms

are often monomodal and located around 0, the Generalized Gaussian distribution is rec-

ommended to model the marginal distributions [Antonini et al., 1992; Smeulders et al.,

2000]. Thus, in a given subband j, the wavelet coefficients are viewed as realizations of a

continuous zero-mean random variable Wj whose probability density function fj is given

by a Generalized Gaussian distribution:

∀ξ ∈ R fj(ξ) =
βj

2αjΓ(1/βj)
e−(|ξ|/αj)

βj
(3.1)

where Γ(z) ,
∫ +∞
0 tz−1e−tdt represents the Gamma function, αj and βj are respectively

the scale and shape parameters. Note that in the special case when βj = 2 (resp. βj = 1),

the GG distribution corresponds to the Gaussian (resp. the Laplace) distribution.
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3.2.2 Parameter estimation

Several techniques have been proposed in the literature to estimate the parameters αj and

βj [Roenko et al., 2014]. We can cite the three more popular methods:� Moment-based method [Sharifi, Leon-Garcia, 1995]

The empirical momentsm1 = E[|Wj |] andm2 = E[|Wj |2] can be employed to estimate

the parameters αj and βj by using the following relationship

m2

m2
1

=
Γ( 1

βj
)Γ( 3

βj
)

Γ2( 2
βj
)

. (3.2)

A look-up table can be used for different values of βj in order to determine the optimal

value from the pair (m1,m2) [Sharifi, Leon-Garcia, 1995]. Once β̂j is computed, α̂j

can be deduced by using:

α̂j = m1

Γ( 1
β̂j
)

Γ( 2
βj
)
. (3.3)� Maximum likelihood algorithm [Do, Vetterli, 2002]

The likelihood function of wavelet coefficients wj = (wj(1), ..., wj(Lj)) assuming that

they have independent component is defined as:

L(wj;αj , βj) = log

Lj∏

i=1

fj(wj(i)) (3.4)

where Lj is the number of wavelet coefficients in the subband j.

Maximizing the likelihood function L is carried out by first setting equal to zero the

first partial derivatives of L with respect to αj and βj , and then, solving the following

likelihood equations:

∂L(wj ;αj , βj)

∂αj
= −Lj

αj
+

Lj∑

i=1

βj|wj(i)|βjα
−βj

j

βj
= 0 (3.5)

∂L(wj ;αj , βj)

∂βj
=

Lj

βj
+

LjΨ(1/βj)

β2
j

−
Lj∑

i=1

( |wj(i)|
αj

)βj

log

( |wj(i)|
αj

)
= 0 (3.6)

where Ψ(·) is the digamma function [Abramowitz, Stegun, 1970].

Fix βj > 0 then Eq. (3.5) has a unique, real and, positive solution

α̂j =


βj
Lj

Lj∑

i=1

|wj(i)|βj




1/βj

. (3.7)
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Substitute (3.7) into (3.6), the shape parameter β̂j is the solution of the following

transcendental equation:

1 +
Ψ(1/β̂j)

β̂j
−
∑Lj

i=1 |wj(i)|βj log |wj(i)|∑
i=1 |wj(i)|β̂j

+
log
(

β̂j

Lj

∑Lj

i=1 |wj |β̂j

)

β̂j
= 0 (3.8)

which can be solved numerically by using for instance the Newton-Raphson iterative

algorithm [Kay, 1993] with the initial value β0
j obtained from the moment method.� Entropy matching estimators [Aiazzi et al., 1999; Prasad et al., 2005]

This class of estimators are based on matching the entropy of GGD distribution with

that of wavelet coefficient of a subband j (empirical data). Differential entropy H of

GGD signal is defined as:

H = log

(
2

βj

√
Γ3(1/βj)

Γ(3/βj)

)
+

1

βj log 2
. (3.9)

Let H(Wj) is the entropy value of the wavelet coefficients obtained at the output of

an optimum entropy constrained uniform quantizer with step size ∆. Then H(Wj) =

H− log ∆ and substituting the expression for H leads to

H = H(Wj)−
1

2
log

m2

∆2
. (3.10)

βj can be obtained as:

βj = H−1

(
H(Wj)−

1

2
log

m2

∆2

)
. (3.11)

In [Varanasi, Aazhang, 1989; Roenko et al., 2014], the evaluation of the accuracy of the

estimates of GGD parameters on large and small size of samples of several classic statistical

methods shows that the best accuracy is achieved by the maximum likelihood estimator,

especially for heavy-tailed distribution (which is often the case for subband coefficients).

The great advantage of the moment-based estimators is their relative simplicity from the

computation point of view. It has been proved in [Do, Vetterli, 2002] that the maximum

likelihood estimator requires typically around three iteration steps to obtain solutions with

good accuracy degrees. The entropy matching estimators have been found to be biased for

βj > 1 because of the high steepness of entropic functions.

In our work, we have estimated the GGD model parameters at each subband using the

maximum likelihood algorithm to obtain the best accurate estimation. Hence, the feature
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vector of each image of the database is composed of the distribution parameters of all the

detail subbands (αj , βj)1≤j≤3J , where J is the number of resolution levels used with the

wavelet decomposition.

3.2.3 Similarity measure

Finally, for the different subbands j with j ∈ {1, . . . , 3J}, an appropriate metric should be

defined in order to measure the similarity between the probability density function (pdf)

fdb
j of an image in the database Idb and the pdf fq

j of the query image Iq. To this respect,

different divergences have been defined to measure the difference between two probability

density functions in information theory [Cover, Thomas, 1991]. Among them, the Kullback-

Leibler Divergence (KLD) is often invoked [Do, Vetterli, 2002; Lasmar, Berthoumieu, 2010;

Yuan, Zhang, 2004; Nafornita et al., 2012] in image retrieval purpose. Indeed, it has several

advantages:� It is robust with respect to possibly noisy data.� It is numerically stable, (in particular according to the data size).

Recall that KLD is defined using a paradigm from source-coding since it provides the

degradation of coding efficiency when the code is designed based on the first probability

while the symbols are generated according to the other one [Cover, Thomas, 1991]. Thanks

to the closed form of the KLD for several distributions, the similarity measure between two

images involves simple computation using only model parameters. In the case of the GG

distribution, the KLD, denoted by D̃GG, is expressed as:

D̃GG(α
db
j , βdb

j ‖ αq
j , β

q
j )

△
= log

(
βdb
j αq

jΓ(1/β
q
j )

βq
j α

db
j Γ(1/βdb

j )

)
− 1

βdb
j

+

(
αdb
j

αq
j

)β
q

j Γ((βq
j + 1)/βdb

j )

Γ(1/βdb
j )

(3.12)

where (αdb
j , βdb

j ) and (αq
j , β

q
j ) represent the distribution parameters of fdb

j and fq
j , respec-

tively. Thus, the resulting similarity measure DGG between the two images Idb and Iq is

deduced as follows:

DGG(I
db, Iq) =

3J∑

j=1

D̃GG(α
db
j , βdb

j ‖ αq
j , β

q
j ). (3.13)

3.2.4 Intuitive extension to SI retrieval

Let us now proceed to the retrieval problem in the case of database composed of stereo

images. A straightforward solution consists in separately applying the aforementioned
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conventional CBIR system to each view. More precisely, the retrieval procedure aims

at comparing the left and right images of the query stereo pair (I(l,q), I(r,q)) to those of

the database (I(l,db), I(r,db)). Thus, after extracting their corresponding feature vectors

(α
(l,q)
j , β

(l,q)
j )1≤j≤3J , (α

(r,q)
j , β

(r,q)
j )1≤j≤3J , (α

(l,db)
j , β

(l,db)
j )1≤j≤3J and (α

(r,db)
j , β

(r,db)
j )1≤j≤3J ,

the similarity criterion D
(r,l)
GG can be simply obtained by computing the KL divergences

defined on the right and left images:

D
(r,l)
GG = DGG(I

(r,db), I(r,q)) +DGG(I
(l,db), I(l,q)). (3.14)

3.3 Retained dense disparity estimation

3.3.1 Motivation

The disparity information is related to the depth structure of the scene and, hence, it is

expected to provide salient features for the stereo retrieval system. Thus, our goal is to

enrich features extracted from stereo images by incorporating those of the disparity maps.

Among the existing disparity estimation techniques, it is important to use an efficient

method that ensures the smoothness property of the produced disparity map because such

property allows us to interpret this map as an image, and therefore can undergo a wavelet

decomposition in order to be efficiently exploited in the retrieval process of the stereo

images.

As mentioned in the previous chapter, unlike the local approaches which can not ensure

the accuracy of the disparity map and preserve the discontinuities of the object boundaries,

global methods offer the advantage of producing a smooth disparity map. In particular,

it has been shown that variational-based disparity estimation methods yield a consistent

disparity map with ideally infinite precision while preserving the depth discontinuities

[Miled et al., 2006a]. This motivates us to generate the disparity maps of the stereo image

database by using the global convex variational framework presented in [Miled et al., 2009a].

This retained disparity estimation method will be described in what follows.

3.3.2 Retained disparity estimation method

The principle of the retained Dense Disparity Estimation (DDE) method is to formulate the

matching problem as a convex programming problem within a global variational framework.

Indeed, a convex quadratic objective function is minimized over the intersection of specific
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constraint sets. Then, the resulting optimization problem is solved via a block-iterative

algorithm.

Energy function

Let I(l) and I(r) be the left and right intensity images of a stereo pair. We assume that these

images are geometrically rectified, so that the disparity field is limited to the horizontal

component that will be denoted by u. DDE methods aim at finding for each pixel (x, y)

in the right image I(r) the best corresponding pixel in the left image I(l), which amounts

to search the disparity field û = (û(x, y))(x,y)∈D that minimizes a given cost functional J̃ .
The most commonly used criterion is the sum of squared intensity differences:

û = (û(x, y))(x,y)∈D = argmin
u∈Ω
J̃ (u)

= argmin
u∈Ω

∑

(x,y)∈D

[
I(r) (x, y)− I(l)(x+ u(x, y), y)

]2
(3.15)

where D = {1, . . . , Nl} × {1, . . . , Nc} is the image support and Ω is the range of candidate

disparity values. Assuming that an initial estimate ū of u is available (by using for example

a correlation-based method) and the magnitude difference of fields u and ū is small enough,

the warped left image around ū can be approximated by a Taylor expansion:

I(l)(x+ u, y) ≃ I(l)(x+ ū, y) +∇I(l)(x+ ū, y)(u− ū) (3.16)

where ∇I(l)(x + ū, y) is the horizontal gradient of the warped left image. Using this

linearization (3.16), the criterion J̃ in (3.15) can be approximated by a quadratic functional

J which is convex in u:

J (u) =
∑

s∈D

[r(s)− L(s)u(s)]2 (3.17)

where s denotes the spatial position (x, y) in each image, and

L(s) = ∇I(l)(x+ ū, y)

r(s) = I(r)(s)− I(l)(x+ ū(s), y) + ū(s)L(s).

In order to guarantee the convergence of the DE algorithm [Combettes, 2003], the objective

function J must be strictly convex. For this reason, an additive term has been introduced

in the criterion J as follows:

J(u) =
∑

s∈D

[r(s)− L(s)v(s)]2 + α
∑

s∈D

[u(s)− ū(s)]2, with u = (u(s))s∈D (3.18)
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where α is a positive real number.

Minimizing this objective function is an ill-posed problem as the components of L may

locally vanish. To solve this problem, appropriate convex constraints should be added so

as to formulate the problem within a set theoretic framework [Combettes, 1993]. In what

follows, we will give some examples of possible constraints that could be defined.

Convex constraints

The main concern of set theoretic estimation is to find a feasible solution efficiently sat-

isfying various constraints arising from prior knowledge. Generally, each constraint is

represented by a closed convex set Sk with k ∈ {1 . . . K}, in a Hilbert image space H.

The intersection S of all the K sets (Sk)1≤k≤K forms the family of admissible solutions

[Miled et al., 2006a; Miled et al., 2009a]. Consequently, the disparity estimation problem

is equivalent to find an acceptable solution in S which minimizes the underlying objective

function J :

Find û ∈ S =
K⋂

k=1

Sk such that J (û) = inf
u∈S
J (u). (3.19)

The constraint sets can be represented as level sets:

∀k ∈ {1, . . . ,K}, Sk = {u ∈ H | fk(u) ≤ δk} (3.20)

where fk : H→ R is a continuous convex function for every k ∈ {1, . . . ,K} and (δk)1≤k≤K

are real parameters such that S =
⋂K

k=1 Sk 6= ∅.

In what follows, we will define the convex sets (Sk)1≤k≤K of H so as they reflect the expected

properties of the disparity field to be estimated. We focus on two possible constraints

(K = 2). The first one is the range of the disparity values. We can restrict the variation of

the disparity values within a specific range [umin, umax]. Consequently, the corresponding

constraint set S1 is defined by:

S1 = {u ∈ H | umin ≤ u ≤ umax}. (3.21)

Furthermore, in order to obtain a disparity map with smooth homogeneous areas while

preserving edges, another constraint could be added. The total variation measure tv(u),

defined as the sum over D of the norm of the spatial gradient of u [Rudin et al., 1992],

has been recently recognized to be an effective tool to recover smooth images in various
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research fields. We recall that the total variation of the discrete disparity image u is given

by:

tv(u) =

Nl−1∑

x=1

Nc−1∑

y=1

√
| u(x+ 1, y)− u(x, y) |2 + | u(x, y + 1)− u(x, y) |2

+

Nl−1∑

x=1

| u(x+ 1, Nc)− u(x,Nc) |

+

Nc−1∑

y=1

| u(Nl, y + 1)− u(Nl, y) | .

(3.22)

Hence, a total variation based regularization constraint involves to impose an upper bound

τ on tv:

S2 = {u ∈ H | tv(u) ≤ τ}. (3.23)

It should be noted that the positive constant τ can be estimated from a scale value of the

total variation of the initial disparity map ū. It was shown in [Kaaniche, 2010] that lower

scale values produce more smoothing disparity map.

Therefore, the disparity estimation problem can be formulated as a constrained optimiza-

tion problem where the quadratic objective function J in (3.19) is minimized over the

feasibility set S = S1 ∩S2. Several optimization methods have been proposed to solve this

problem [Boyle, Dykstra, 1986; Yamada et al., 1998]. We employ a parallel block iterative

algorithm developed in [Combettes, 2003]. This algorithm enables to achieve real-time

performance and offers a great flexibility in the incorporation of several constraints. The

optimization algorithm developed in [Miled et al., 2009a] and some basic facts on subgra-

dient projections are described in Appendix A.

Examples of estimated disparity maps

In order to show the benefit of using the retained DDE approach, we illustrate in Figures 3.1

and 3.2 the “Shrub” and “Teddy” stereo image pair, respectively, and their corresponding

disparity maps provided by the block-based disparity estimation method and the retained

DDE method. It can be noticed that the DDE method generates a smooth map while

preserving the depth discontinuities.
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(a) left image (b) right image

(c) block-based DE method (d) DDE method

Figure 3.1: The obtained disparity maps for the“Shrub”stereo image using (c) block-based

DE method and (d) the considered DDE method.

3.4 Proposed disparity-based retrieval approaches through

a univariate model

The aforementioned intuitive strategy for indexing a SI pair is not so efficient since only the

left and right images are used during the comparison process. Indeed, an important feature

of the stereoscopic system, which corresponds to the estimated disparity map, has not been

taken into account. A more efficient retrieval method could be designed by incorporating

the disparity information in the feature vector. Thanks to the retained DDE method, the
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(a) left image (b) right image

(c) block-based DE method (d) DDE method

Figure 3.2: The obtained disparity maps for the“Teddy”stereo image using (c) block-based

DE method and (d) the considered DDE method.

produced disparity map can be interpreted as an image, and therefore a wavelet transform

can be applied to it in order to be exploited in the retrieval of stereo images. In what

follows, we describe two novel disparity-based retrieval approaches relying on a univariate

statistical model.

3.4.1 Stereo images-based modeling

In the first approach, the disparity is implicitly taken into account by computing the

compensated left image in the wavelet domain I
(c)
j from the multiresolution representation
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of the left image I
(l)
j as follows:

I
(c)
j (x, y) = I

(l)
j (x+ uj(x, y), y) (3.24)

where the disparity uj is obtained by sampling and dividing by 2j the initial disparity field

u:

uj(x, y) =
1

2j
u(2jx, 2jy). (3.25)

Then, the GG distribution parameters of the different detail subbands of the right image

(α
(r)
j , β

(r)
j )1≤j≤3J and the compensated left one (α

(c)
j , β

(c)
j )1≤j≤3J are extracted. Finally,

the retrieval procedure for a given query stereo pair (I(l,q), I(r,q)) aims at finding the best

stereo pairs (I(l,db), I(r,db)) that minimize the KL divergences, D
(r,c)
GG , defined on the right

image and the compensated left one:

D
(r,c)
GG = DGG(I

(r,db), I(r,q)) +DGG(I
(c,db), I(c,q)) (3.26)

where I(c,q) and I(c,db) represent respectively the compensated left images of the query and

candidate stereo pairs.

3.4.2 Stereo images and disparity-based modeling

Unlike the first approach, the second one aims to exploit explicitly the disparity information

by extracting a relevant signature from the disparity map and, combining it with the

features defined previously on the SI pair. To this end, since a smooth disparity map

is produced while preserving the depth discontinuities, we propose to apply a wavelet

transform to the estimated disparity field. After performing an intensive experiments

on a large data set of the estimated disparity maps, we have noticed that their wavelet

coefficients can also be successfully modeled by a GG distribution. Fig. 3.3 shows a block

diagram of the proposed approach.

Indeed, to objectively assess the appropriateness of the GG model, we have applied the

Kolmogorov-Smirnov (KS) goodness-of-fit test [Massey, Frank, 1951; Justel et al., 1997].

Note that the KS test is based on comparing the cumulative distribution functions. As an

example, by taking three disparity maps and considering their horizontal detail coefficients,

Fig. 3.4 shows the histograms of these coefficients (in blue) and the fitted GG distributions

(in red) as well as their resulting KS measures. By performing this test on all the disparity
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Left image

Right image

Wavelet transform

Features extraction

Features extraction

Disparity map

Wavelet transform

Wavelet transform
f (u)

Features extraction

f (r)

f (l)

Figure 3.3: Stereo images and disparity-based modeling approach.
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Figure 3.4: Modeling the distribution of the horizontal detail subband at the second reso-

lution level for three examples of disparity maps using the GG model.
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maps of the data set, the average of the KS values is equal to 0.1 which is very small. This

confirms that the GG distribution is well-suited for modeling the disparity maps.

Based on these observations, we select the distribution parameters of all the resulting detail

subbands (α
(u)
j , β

(u)
j )1≤j≤3J to characterize the disparity map u. Therefore, at the retrieval

step, the candidate stereo pairs of the database (I(r,db), I(l,db)) that are similar to the query

one (I(r,q), I(l,q)) are determined by comparing the right and left images as well as their

associated disparity maps u(db) and u(q). More precisely, we propose to define the similarity

measure as follows:

D
(r,l,u)
GG = a ·DGG(I

(r,db), I(r,q)) + b ·DGG(I
(l,db), I(l,q)) + c ·DGG(u

(db), u(q))

=
∑3J

j=1

(
a · D̃GG(α

(r,db)
j , β

(r,db)
j ‖ α(r,q)

j , β
(r,q)
j )

+b · D̃GG(α
(l,db)
j , β

(l,db)
j ‖ α(l,q)

j , β
(l,q)
j )

+c · D̃GG(α
(u,db)
j , β

(u,db)
j ‖ α(u,q)

j , β
(u,q)
j )

)
(3.27)

where a, b and c are three positive weights.

To conclude this part, we should note that this first category of SI retrieval approaches

are based on univariate model since, up to now, the right and left images are modeled

separately without taking into account the cross-view dependencies.

3.5 Proposed disparity-based retrieval approaches through

bivariate model

3.5.1 Motivation

Since the left and right views correspond to the same scene, and so have similar contents,

the wavelet coefficients of both images could present strong statistical dependencies. For

example, such dependencies between the two images have already been successfully ex-

ploited for SI compression purpose [Kaaniche et al., 2009a; Woo, Ortega, 1997]. Therefore,

a suitable statistical model should be employed to capture the dependencies across the

wavelet coefficients of the left and right images.

3.5.2 Bivariate generalized Gaussian model

First, we should recall that recent works on color image retrieval [Sakji-Nsibi, Benazza-

Benyahia, 2009; Kwitt et al., 2011; Verdoolaege, Scheunders, 2011; Lasmar, Berthoumieu,
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2010] have shown that the distribution of the wavelet coefficients could be modeled by

some specific multivariate models. The latter outperform the conventional univariate ap-

proaches in terms of accuracy since they account for both the spatial and the cross-channel

dependencies. Motivated by these reasons, we propose in this work to resort to a bivariate

model to further exploit the dependencies between the wavelet coefficients of the left and

right images. Generally, the choice of the appropriate model should fulfill the following

constraints:� The retained model should reflect accurately the sparsity of the wavelet coefficients

of each view and also the cross-view dependencies.� The model structure should enable a straightforward estimation of the parameters

from the coefficients in each subband.� The bivariate model should allow an easy computation of a meaningful similarity

measure. For example, knowing that the KLD has been widely used in mono-view

image retrieval [Do, Vetterli, 2002; Lasmar, Berthoumieu, 2010; Yuan, Zhang, 2004;

Nafornita et al., 2012], it would be interesting to select a bivariate model from which a

closed form expression of the KLD could be derived in order to facilitate the retrieval

stage by avoiding Monte-Carlo estimation procedures.

Based on the previous points, we find that using the well-known Bivariate Generalized

Gaussian (BGG) distribution could be an appropriate way for characterizing the depen-

dencies between the wavelet coefficients of the left and right images.

To introduce this model, let us denote by wj the bivariate vector composed of the wavelet

coefficients of two correlated components, for each subband j. We assume that the set

of coefficient vectors wj in each subband constitutes an independent identical distributed

sample of a random vector Wj.

Under the hypothesis of a zero-mean vector, the generic expression of the probability den-

sity function fWj
of the BGG distribution is given by:

∀w ∈ R
2, fWj

(w;βj ,Σj) =
2

πΓ(1 + 1
βj
)2

1+ 1
βj

| Σj |−1/2 e

(
− 1

2
(wT

Σ
−1
j w)βj

)

. (3.28)

where βj > 0 denotes the shape parameter, and Σj is a positive definite symmetric matrix

(the scale matrix) of size 2 × 2. where βj > 0 denotes the shape parameter and, Σj is a
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symmetric positive-definite matrix of size 2 × 2 (the scaling matrix). It is easy to show

that the autocovariance matrix Vj is related to Σj and, βj as follows:

Vj =
2

1
βj

−1
Γ( 2

βj
)

Γ( 1
βj
)

Σj (3.29)

Hence, Σj is proportional to the covariance matrix. Thus, the problem reduces to estimate

a 2× 2 matrix Σj and the shape parameter βj . These parameters can be estimated using

the moment method [Gómez et al., 2003] or the maximum likelihood criterion [Verdoolaege,

Scheunders, 2011]. In [Kwitt et al., 2009], it has been shown that moment method is nu-

merically more stable and a computationally inexpensive way. In the following paragraph,

we will describe both estimation techniques.� Moment estimation method

The idea is to estimate the autocovariance matrix Vj and Mardia’s multivariate kurtosis

coefficient [Zografos, 2008; Mardia, 1970] by their classical empirical estimates. First, the

shape parameter β̂j is determined and then used to compute Σ̂j. We recall that Mardia’s

multivariate kurtosis coefficient γ2 is defined as:

γ2 = E

[
(WT

jΣjWj)
2
]
− 8. (3.30)

It has a closed-form expression in the case of BGG distribution given by:

γ2 =
4Γ( 1

βj
)Γ( 3

2βj
)

Γ2( 2
βj
)

− 8. (3.31)

Given that Sj denotes the classic sample autocovariance matrix, γ2 can be estimated by

γ̂2

γ̂2(wj(1), . . . ,wj(Lj)) =
1

Lj

Lj∑

ℓ=1

(
wj(ℓ)

TS−1
j wj(ℓ)

)2
− 8. (3.32)

where Lj denotes the number of wavelet coefficients in each subband. By matching

Eqs. (3.31) and (3.32), we can then derive the estimate β̂j . Using this result together

with the expression for the variance V, Eq. (3.29) allows to calculate Σj. Then, the matrix

Σj can be estimated from β̂j and Sj .
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model 67� Maximum likelihood estimation

The likelihood function L̃ can be easily obtained from the definition of fWj
given in

Eq. (3.28) :

L̃(βj ,Σj ;wj(1), . . . ,wj(Lj)) =

Lj∏

l=1

2

πΓ(1 + 1
βj
)2

1+ 1
βj

| Σj |−1/2 e

(
− 1

2
(wj(l)

T
Σ

−1
j wj(l))

βj

)

(3.33)

Taking the logarithm leads to the following expression:

Ľ(βj ,Σj;wj(1), . . . ,wj(Lj)) = Lj log Γ(1)− Lj log Γ(
1

βj
) + Lj log(βj)

−Lj log(π)−
2Lj

βj
log(2) − Lj

2
log(| Σj |)−

1

2

Lj∑

l=1

(wj(l)
TΣ−1

j wj)
βj .

(3.34)

It can be used to compute the partial derivatives with respect to βj and Σj:

∂

∂βj
Ľ(βj ,Σj ;wj(1), . . . ,wj(Lj)) =

1

βj

[
Lj +

2Lj

βj

(
log(2) + Ψ(

1

βj
)

)]

−1

2

Lj∑

l=1

log(wj(l)
TΣ−1

j wj)(wj(l)
TΣ−1

j wj)
βj )

(3.35)

and,

∂

∂Σj
Ľ(βj ,Σj ;wj(1), . . . ,wj(Lj)) = −

Lj

2
Σ−1

j +
βj
2
(wj(l)

TΣ−1
j wj)

βj−1Σ−1
j wj(l)wj(l)

TΣ−1
j

(3.36)

where Ψ denotes the digamma function. It is worth noting, that after setting the right-hand

side of Eq. (3.36) to zero and performing some simple manipulations, we have:

Σ̂j =
β̂j
Lj

Lj∑

l=1

wj(l)wj(l)
T(wj(l)

TΣ̂−1
j wj(l))

βj−1 (3.37)

which allows to employ a fixed-point iteration directly (e.g. Picard iteration). However, it

is difficult to prove that Eq. (3.37) is a contraction to guarantee convergence of the fixed-

point.

In [Kwitt, 2010], an alternative technique is employed, which is based on minimizing the

negative log-likelihood −Ľ(βj ,Σj;wj(1), . . . ,wj(Lj)) by using a gradient descent approach.

This corresponds to an optimization problem with non-linear constraints, since Σj must

be symmetric positive definite and βj > 0. We have the derivatives of the log-likelihood

function with respect to βj and Σj ( Eqs. (3.35) and (3.36)). For the positive definiteness
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criteria, the Sylvester criterion [Meyer, 2000] which requires that all leading principal

minors of Σj are positive can be employed. This is a sufficient condition to guarantee

positive definiteness.

Once the estimation problem is solved, it is logical to address the issue of the validity of

the BGG model for SIs.� Validity of the BGG for SIs

In order to validate the appropriateness of the BGG model, we have conducted the multi-

variate Kolmogorov-Smirnov (KS) test [Justel et al., 1997] on the stereo images database.

Indeed, by taking the horizontal detail subbands of the left and right images of four stereo

pairs, Fig. 3.5 illustrates the empirical bivariate histograms (in blue) fitted with the BGG

distribution (in red), and provides their associated KS measures. By repeating the same

test on the whole set of stereo images in the database, an average KS value of about 0.09 is

obtained. These results corroborate also that stereo wavelet subbands can be well modeled

by a BGG distribution.� KLD for BGG distributions

It is important to note that a closed form expression of the KLD is available for such

BGG model. Indeed, for two zero-mean BGG distributions with parameters (βq
j ,Σ

q
j ) and

(βdb
j ,Σdb

j ), the KLD is given by [Verdoolaege, Scheunders, 2011; Verdoolaege et al., 2009]:

D̃BGG(β
db
j ,Σdb

j ‖βq
j ,Σ

q
j ) = log



Γ

(
1
βq
j

)

Γ

(
1

βdb
j

)2

(
1

β
q
j

− 1

βdb
j

)(
|Σq

j |
|Σdb

j |

) 1
2 βdb

j

βq
j


−

1

βdb
j

+


2

(
β
q
j

βdb
j

−1

)
Γ

(
βq
j+1

βdb
j

)

Γ

(
1

βdb
j

) ×
(
µ1 + µ2

2

)βq
j

× 2F1

(
1− βq

j

2
,
−βq

j

2
; 1;

(
µ1 − µ2

µ1 + µ2

)2
)]

(3.38)

where µ1 and µ2 are the inverse of the eigenvalues of (Σdb
j )−1Σq

j and 2F1 represents the

Gauss hypergeometric function [Abramowitz, Stegun, 1970].

3.5.3 Improved disparity-based retrieval strategies

Now, we will describe three retrieval strategies based on the BGG distribution.
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Figure 3.5: Empirical bivariate histogram of the horizontal wavelet coefficients of the left

and right images (denoted here by w(l) and w(r))(in blue) fitted with a BGG density (in

red) for four different stereo images as well as their resulting KS measures.

First strategy

Intuitively, in the first one, the bivariate vector, defined by w
(r,l)
j =

(
w

(r)
j , w

(l)
j

)⊤
is com-

posed of the wavelet coefficients in the right and left images for each subband j. Let

us denote by
(
Σ

(r,l)
j , β

(r,l)
j

)
the distribution parameters of vector w

(r,l)
j . Thus, in the in-

dexing step, the comparison between the stereo pair in the database, characterized by its

feature vector
(
β
(r,l,db)
j ,Σ

(r,l,db)
j

)
1≤j≤3J

and the query one parameterized by the feature
(
β
(r,l,q)
j ,Σ

(r,l,q)
j

)
1≤j≤3J

is achieved by computing the global KLD:

D
(r,l)
BGG =

3J∑

j=1

D̃BGG(β
(r,l,db)
j ,Σ

(r,l,db)
j ‖ β(r,l,q)

j ,Σ
(r,l,q)
j ). (3.39)
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Second strategy

Since the highly similar pixels of the left and right images are located at different spatial

positions identified by the disparity information, it would be more interesting to focus on

the right image I(r) and the compensated left one I(c) by using their wavelet coefficients to

build the bivariate vector w
(r,c)
j =

(
w

(r)
j , w

(c)
j

)⊤
, for each subband j. Thus, in this second

retrieval strategy, the feature vectors deduced from the right and compensated left images

of the query stereo data
(
β
(r,c,q)
j ,Σ

(r,c,q)
j

)
1≤j≤3J

will be compared to those of the database

stereo pair
(
β
(r,c,db)
j ,Σ

(r,c,db)
j

)
1≤j≤3J

by computing the following measure:

D
(r,c)
BGG =

3J∑

j=1

D̃BGG(β
(r,c,db)
j ,Σ

(r,c,db)
j ‖ β(r,c,q)

j ,Σ
(r,c,q)
j ). (3.40)

Third strategy

Although it is clear that stereo images contain nearly similar contents since they correspond

to the same scene, there are some occluded areas due to the different viewpoints of the

cameras and the presence of discontinuities in the scene. Generally, increasing the depen-

dencies between the two components of the bivariate vector leads to an efficient retrieval

procedure. For this reason, we propose in the third strategy to improve the previous one by

taking into account the effect of the occlusions. Recall that the occluded areas are mainly

located at the object boundaries of the SI. Let us denote by w
(rocl)
j and w

(cocl)
j the wavelet

coefficients of the right and compensated left images resulting from the removal of the

occluded regions. These coefficients will constitute the components of the bivariate vector

w
(rocl,cocl)
j =

(
w

(rocl)
j , w

(cocl)
j

)⊤
. After estimating their associated model parameters and

building the feature vectors for the query stereo pair
(
β
(rocl,cocl,q)
j ,Σ

(rocl,cocl,q)
j

)
1≤j≤3J

and

the candidate one
(
β
(rocl,cocl,db)
j ,Σ

(rocl,cocl,db)
j

)
1≤j≤3J

, the global KLD is therefore obtained:

D
(rocl,cocl)
BGG =

3J∑

j=1

D̃BGG(β
(rocl,cocl,db)
j ,Σ

(rocl,cocl,db)
j ‖ β(rocl,cocl,q)

j ,Σ
(rocl,cocl,q)
j ). (3.41)

Finally, as it was performed with disparity-based retrieval approaches through univariate

model, these three strategies should further incorporate the disparity information into their

feature vector. In other words, in addition to the BGG distribution parameters of the right

and left (or compensated left) images, it would be interesting to consider also the GG

distribution parameters of the disparity maps u(db) and u(q) respectively associated to the
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database and query SI. Consequently, during the comparison process between a query and

a candidate stereo pair, we should add the measure DGG(u
(db), u(q)) to each of the KL

divergences given by Eqs. (3.39), (3.40) and (3.41).

3.6 Proposed retrieval approach through SIRV modeling

3.6.1 Motivation

In the previous sections, the strong similarities between the wavelet coefficients of the left

and right images have been efficiently exploited by using the disparity information and

through a bivariate model. In addition to the cross-view similarities, the spatial redun-

dancies in each subband could be further exploited and not omitted as in the case of the

statistical model BGG. For this reason, we propose in what follows to resort to an ap-

propriate multivariate statistical model to better capture these two kinds of dependencies.

We should note that different multivariate statistical models have already been reported

in the literature [Kwitt et al., 2011; Verdoolaege, Scheunders, 2011; Sakji-Nsibi, Benazza-

Benyahia, 2009]. Among them, the Multivariate Generalized Gaussian (MGG) distribution

was found to be an excellent descriptor for the heavy-tailed wavelet distributions in multi-

component images, such as color or multispectral images. To introduce this model, let us

denote by w̃j the multivariate vector composed of the wavelet coefficients of B statistically

dependent components, in each subband j. We assume that the set of coefficients vectors

w̃j constitutes an independent identical distributed sample of a random vector W̃j .

The probability density function f
W̃j

of the MGG distribution is given by:

∀w ∈ R
n, f

W̃j
(w;βj ,Σj) =

nΓ(n2 )

πn/2Γ(1 + n
2βj

)2
1+ n

2βj

| Σj |−1/2 e

(
− 1

2
(wTΣ

−1
j w)βj

)

. (3.42)

where n is the dimensionality of the probability space, βj > 0 denotes the shape parameter

and, Σj is a symmetric positive-definite matrix of size n×n (the scaling matrix). However,

computing the KLD between two MGG distributions implies solving a multidimensional

integral over the data space. Hence, it is difficult to find a closed-form expression of the

KLD and, if we except the case of the BGG, it does not exist an analytic expression for

the KLD between two MGG distributions. To overcome this problem, two solutions can

be envisaged. The first one consists in adopting another similarity. For example, the Rao

geodosic distance has been used to compute the similarity between such two distribution



72 3. Novel wavelet-based retrieval methods for stereo images

models. However, this distance has been derived in [Verdoolaege, Scheunders, 2012] in the

particular case of a fixed MGG shape parameter. Note that the case of variable shape

parameter has been also studied, and only an approximation of this distance is obtained.

To avoid the problem of choice of the similarity measure for such distributions, the second

solution will consist in resorting to another appropriate multivariate statistical model that

reflects the spatial and cross-views redundancies of the stereo data while allowing to easily

compute a meaningful similarity measure. For this reason, we have preferred to select the

Spherically Invariant Random Vectors (SIRV) model.

3.6.2 SIRV-based model

The SIRV model has been successfully used to model non-Gaussian stochastic processes

for retrieval of textured mono-view images [Lasmar, Berthoumieu, 2010; Bombrun et al.,

2011a] and SAR image segmentation [Bombrun et al., 2011b]. The SIRV model consists in

expressing W̃j as the product of a zero-mean Gaussian vector Gj , with covariance matrix

Cj = E[GjG
T

j ], by the square root of a positive random variable Sj:

W̃j =
√

SjGj (3.43)

where Sj and Gj are assumed to be independent. As the couple (Sj ,Cj) could be defined

up to a multiplicative constant, it is used to assume that tr(Cj) = B. The probability

density function (pdf) of W̃j denoted by h
W̃j

, could be deduced from that of Sj , hSj
,

thanks to Bayes’ theorem [Rzangaswamy et al., 1993]. Indeed, for every w in R
B , we have:

h
W̃j

(w) ∝
∫ +∞

0

1

s
B
2

e

(
−

w
T
C
−1
j

w

2s

)

hSj
(s)ds. (3.44)

Although there is no systematically a closed form for h
W̃j

(except for some special cases

of hSj
), the SIRV model is completely characterized by the covariance matrix Cj and, the

parameters of the multiplier hSj
. At this level, it is important to emphasize that the estima-

tion of the normalized Cj could be performed independently from the multiplier. Indeed,

in [Pascal et al., 2008], and based on a sample of Lj realizations {w̃j(1), . . . , w̃j(Lj)} of

W̃j , it has been found that the maximum likelihood estimate of Cj could be approximated

by the following matrix Ĉj :

Ĉj =
B

Lj

Lj∑

ℓ=1

w̃j(ℓ)w̃j(ℓ)
T

w̃j(ℓ)TĈ
−1
j w̃j(ℓ)

. (3.45)
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Computing Ĉj reduces to iteratively search the fixed point of the function appearing at

the right hand of Eq. (3.45). Then, at each position ℓ = 1, . . . , Lj , the maximum likelihood

estimate of the multiplier could be easily deduced as follows:

ŝj(ℓ) =
1

B
w̃j(ℓ)

TĈ−1
j w̃j(ℓ). (3.46)

We have summarized the fixed-point estimation method in Algorithm 1.

Algorithm 1 Fixed point estimator

Require: Ĉ0
j =

1
Lj

∑Lj

l=1 w̃j(ℓ)w̃j(ℓ)
T

Ensure: the covariance matrix Ĉj of the SIRV model and the multiplier values ŝj(ℓ), ℓ =

1, . . . , Lj .

MaxNiter ← 10

ǫ← 10−6

k ← 0

repeat

Ĉk+1
j = B

Lj

∑Lj

ℓ=1
w̃j(ℓ)w̃j(ℓ)T

w̃j(ℓ)T(Ĉk
j )

−1w̃j(ℓ)

k ← k + 1

until 1
2

(
tr((Ĉk+1

j )−1Ĉk
j ) + log

|Ĉk+1
j |

|Ĉk
j
|
−B

)
≤ ǫ ou k = MaxNiter

ŝj(ℓ) =
1
B w̃j(ℓ)

TĈ−1
j w̃j(ℓ), ℓ = 1, . . . , Lj

return Ĉk+1
j , ŝj(ℓ), ℓ = 1, . . . , Lj

Finally, the parameters of hSj
could be derived from the sample (ŝj(1),. . . ŝj(Lj)) by con-

sidering for instance the maximum likelihood criterion. To this respect, the selection of

a suitable pdf for the multiplier is a key issue as it reflects the way of accounting for the

non-Gaussianity of W̃j . Several distributions hSj
have been proposed for SAR images such

as Gamma distribution [Quegan, Rhodes, 1993], the inverse Gamma [Freitas et al., 2005],

and Fisher distributions [Bombrun et al., 2011b]. Recently, the Weibull distribution has

been found to be an appropriate description of the texture in natural mono-view images

[Lasmar, Berthoumieu, 2010; Bombrun et al., 2011a]. In this case, hSj
is given by:

∀s ∈ R
+, hSj

(s) =
aj
bj

(
s

bj

)aj−1

e
−

(
s
bj

)aj

(3.47)

where aj > 0 and bj > 0 represent the shape and scale parameters, respectively. These

parameters (aj , bj) can be easily estimated by (âj , b̂j) according to the maximum likelihood
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criterion by numerically solving the following equations [Balakrishnana, Kateri, 2008]:

1

âj
=

Lj∑
ℓ=1

ŝj(ℓ)
âj log(ŝj(ℓ))

Lj∑
ℓ=1

ŝj(ℓ)âj

− 1

Lj

Lj∑

ℓ=1

log(ŝj(ℓ)), (3.48)

b̂j =


 1

Lj

Lj∑

ℓ=1

ŝj(ℓ)
âj




1/âj

. (3.49)

Once the modeling step is performed, the resulting SIRV distribution parameters (Cj, aj , bj)1≤j≤3J

are used as a salient feature during the indexing process. It is important to note here that

one can explicitly compute the KLD between two SIRV distributions parameterized by

(Cdb
j , adbj , bdbj ) and (Cq

j , a
q
j , b

q
j ). The latter corresponds to the sum of the KLDs between

the multiplier models and that obtained between the multivariate Gaussian processes, as

the multiplier parameters Sj and the Gaussian processes Gj are independent [Lasmar,

Berthoumieu, 2010]:

DSIRV

(
Cdb

j , adbj , bdbj ‖C
q
j , a

q
j , b

q
j

)
= Γ

(
aqj
adbj

+ 1

)(
bdbj
bqj

)aqj

+ log
(
(bdbj )−adbj adbj

)
− log

(
(bqj )

−aqj aqj

)
+ log(bdbj )

(
adbj − aqj

)

+
γaqj
adbj
− γ − 1 + 1

2

[
tr((Cq

j )
−1Cdb

j ) + log

(
|Cq

j |

|Cdb
j |

)
−B

]
(3.50)

where γ denotes the Euler-Mascheroni constant.

3.6.3 Retrieval approach

Once the SIRV model is defined, we describe now the proposed retrieval strategy for SI

databases. Intuitively, a multivariate vector w̃
(r,l)
j can be defined by taking, for each

subband j, the set of the wavelet coefficients of the left w
(l)
j and right images w

(r)
j , located

at the same spatial position (m,n), as well as those of the neighboring pixels:

w̃
(r,l)
j =

(
w

(r)
j , w

(r)
j,p,q, w

(l)
j , w

(l)
j,p,q

)⊤
(3.51)

where for each v ∈ {l,r}, w(v)
j,p,q(m,n) = w

(v)
j (m+ p, n + q) and (p, q) ∈ (Z∗)2 refers to the

spatial support of the neighboring pixels. Note that the size of this multivariate vector

depends clearly on the number of the neighboring pixels used in each subband to take into

account the spatial redundancies. Indeed, if we denote this number by N , the number of

the components of the multivariate vector is given by B = 2(N + 1). Fig. 3.6 shows how
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the multivariate vector w̃
(r,l)
j is defined when N = 3.

Since the highly similar pixels of the left and right images are located at different spatial

positions which can be found thanks to the disparity map, it would be more interesting to

define the multivariate vector from the wavelet coefficients of the right image w
(r)
j and the

compensated left one w
(c)
j . Thus, for each subband j, a new multivariate vector can be

defined as follows:

w̃
(r,c)
j =

(
w

(r)
j , w

(r)
j,p,q, w

(c)
j , w

(c)
j,p,q

)⊤
. (3.52)

Therefore, during the indexing step, the feature vector of the right and compensated left

images of the query stereo images (C
(r,c,q)
j , a

(r,c,q)
j , b

(r,c,q)
j ) will be compared to those of the

database stereo pair (C
(r,c,db)
j , a

(r,c,db)
j , b

(r,c,db)
j ) by computing the global KLD:

D̃
(r,c)
SIRV =

3J∑

j=1

DSIRV(C
(r,c,db)
j , a

(r,c,db)
j , b

(r,c,db)
j ‖ C(r,c,q)

j , a
(r,c,q)
j , b

(r,c,q)
j ). (3.53)
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Figure 3.6: Definition of the multivariate vector w̃
(r,l)
j when considering 3 neighbors in each

view.

3.7 Experimental results

3.7.1 Experimental setup

Since there are no SI databases publicly available to evaluate the performance of SI re-

trieval methods, we have built a database which can be downloaded from 1. This database

1http://www-l2ti.univ-paris13.fr/~kaaniche/Download.html
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is composed of real SI pairs of size 248 × 248 taken from various sources. The images

correspond to a variety of contents including natural scenes 2, 3 and 4, man-made objects

available at the Middlebury stereo vision website5, and SPOT5 scenes. According to their

texture, these stereo images have been divided into 17 classes, with 40 pairs per class, such

as wooded area, tree, bushes, mountains, urban area. Note that SI of the same class are

taken from the same scene. An example of some right images of different classes in the

database is shown in Fig. 3.7.

The retained DDE method, described in Section 3.3, has been used to generate the dispar-

ity maps. The retrieval performance is evaluated in terms of precision PR = Rr

Rn and recall

RC = Rr

Rt , where Rr is the number of output pairs considered as relevant, Rt is the total

number of relevant pairs in the database and Rn denotes the number of returned pairs.

A retrieved pair is considered as relevant if it belongs to the same category of the query

pair. Note that the query images are taken from the database. Retrieval results are also

evaluated in in terms of ANMRR, which has been already defined in Section 1.2.3.

In order to show the benefits of using the disparity map in a SI retrieval system, three

rounds of experiments are performed. The first one aims at illustrating the behavior of the

univariate modeling-based retrieval approaches described in Section 3.4. The objective of

the second one is to validate the interest of the bivariate modeling presented in Section 3.5.

The third one aims to show the interest of the multivariate model described in Section 3.6.

In what follows, we describe and discuss these experimental tests.

3.7.2 Univariate model-based retrieval approaches

In this part, we are interested in evaluating the methods related to the univariate model.

The first one corresponds to the straightforward approach, where the GG distribution pa-

rameters of only the right and left images are compared. This method will be designated

by GG-RL. The second one takes into account the disparity information in an implicit

manner by computing features of the right view and the disparity compensated left view.

This method will be denoted by GG-RDCL. The third one, designated by GG-RL-GG-D,

is the second version of the proposed univariate model-based method where a new feature

2http://www.mi.auckland.ac.nz/EISATS/
3http://vasc.ri.cmu.edu/idb/html/stereo/index.html
4http://vasc.ri.cmu.edu/idb/html/jisct/
5http://vision.middlebury.edu/stereo/
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Figure 3.7: Some samples of right images for different classes in the database. From top

to bottom: pentagon, urban area, flowerpots, mountains, pyramid, buildings and tree.

vector is defined by incorporating simultaneously the visual contents of the left and right

images as well as the disparity information. We have also tested for comparison the recent

state-of-the-art approach [Feng et al., 2011]. Recall that its basic idea consists in using the

disparity to refine the results provided by a conventional CBIR system. More precisely, the

MPEG-7 edge histogram descriptor is employed for the left images and the diffusion dis-

tance is used to measure the similarity between the histograms of the disparity maps during

the refinement step. Hereafter, this method will be designated by state-of-the-art [Feng

et al., 2011]. Moreover, since the developed approaches operate in the wavelet transform
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domain, we have also proposed to apply the state-of-the-art method in the same domain.

It is important to note here that designing a CBIR system operating in the wavelet domain

may constitute an interesting feature in practice in the sense that the decoding procedure

at the retrieval step becomes unnecessary when the images are saved in a compressed

format before the design of the CBIR. To this end, the first step consists of comparing

the feature vector of the query left image (α
(l,q)
j , β

(l,q)
j )1≤j≤3J to the database left images

(α
(l,db)
j , β

(l,db)
j )1≤j≤3J using the KLD as a similarity measure. Then, the disparity features

(α
(u,db)
j , β

(u,db)
j )1≤j≤3J are used in the re-ranking step which is applied to the first 10% of

the returned images and the retrieval results are re-ordered. In what follows, this modified

version of the state-of-the-art method, applied in the WT domain, will be designated by

Mod-state-of-the-art-WT. Table 3.1 summarizes the different considered methods.

Fig. 3.8 provides the precision-recall plots of the various approaches. It indicates that

using implicitly the disparity map by comparing the right image and the disparity com-

pensated left one of the stereo pair outperforms the intuitive approach. Moreover, thanks

to the second version of the proposed method where the disparity information is explicitly

added to the feature vector, we achieve further improvements. Our approach becomes

more performant than the other methods, and achieves a gain of about 1-12% in precision

compared to the state-of-the-art method [Feng et al., 2011]. Table 3.2 shows retrieval per-

formance according to the ANMRR criterion. These results prove the outperformance of

the GG-RL-GG-D approach (whose corresponding ANMRR value is 0.106) compared to

the state-of-the-art method (whose corresponding ANMRR value is 0.245).

We should note here that different tests have been carried out to study the impact of the

weights assigned to the disparity map and to both images on the retrieval performance of

the GG-RL-GG-D approach. Since the left and right images correspond to the same scene

and present very similar contents, we assume that the weights associated to these views

are identical (i.e. a = b). Fig. 3.9 shows the precision-recall curves for different weight

parameters.

Thus, it can be observed that selecting a very low or a high value of c leads to worse results.

More generally, we conclude that weighting alike the features of the left, right and disparity

images, by taking a value of c around 1
3 , allows to achieve good retrieval performance.

Therefore, these results corroborate that disparity gives additional cues for SI retrieval

when it is combined with the visual contents of the two views.



3.7. Experimental results 79

Table 3.1: The considered approaches for SI retrieval.

Method Description

State of the art employs the disparity information to refine the results of the conventional

CBIR system applied on one image.

Univariate model-based retrieval approaches

GG-RL computes and compares features of the left and right images (Subsection

3.2.4, Eq. (3.14)).

GG-RL-GG-D the disparity has been exploited explicitly by incorporating

simultaneously the features of the left and right images as well as those of

the disparity map (Subsection 3.4.2, Eq. (3.27)).

GG-RDCL the disparity has been exploited implicitly by computing features of the

right image and the disparity compensated left one (Subsection 3.4.1, Eq.

(3.26)).

Bivariate model-based retrieval approaches

BGG-RL computes features from the bivariate vector defined by using the wavelet

coefficients of the right and left images (Subsection 3.5.3, Eq. (3.39)).

BGG-RDCL-1 computes features from the bivariate vector built from the wavelet

coefficients of the right image and the disparity compensated left one

(Subsection 3.5.3, Eq. (3.40)).

BGG-RDCL-2 is the improved version of BGG-RDCL-1 by taking into account the

occlusion effect (Subsection 3.5.3, Eq. (3.41)).

BGG-RL-GG-D concatenates features obtained from BGG-RL and those of the disparity

map

BGG-RDCL-GG-D-1 incorporates features extracted from BGG-RDCL-1 and the disparity map

BGG-RDCL-GG-D-2 adds the disparity features to those extracted from BGG-RDCL-2

Multivariate model-based retrieval approach

SIRV-RDCL-3N-1 exploits simultaneously the spatial and cross-view dependencies of the

stereo images through SIRV modeling (Subsection 3.6.3, Eq. (3.53)).

SIRV-RDCL-3N-GG-D-1 incorporates features extracted from SIRV-RDCL-3N-1 and the GG

parameters of the wavelet coefficients of the disparity map.
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Figure 3.8: Retrieval performance in terms of precision and recall of the univariate ap-

proaches.

Table 3.2: ANMRR results of the univariate model-based retrieval approaches.

Method State-of-the-art GG-RL GG-RDCL GG-RL-GG-D

ANMRR 0.245 0.136 0.130 0.106

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.75

0.8

0.85

0.9

0.95

1

RC

P
R

 

 

a=b=0.15,c=0.7  
a=b=0.3,c=0.4
a=b=c=1/3
a=b=0.45,c=0.1
a=b=0.48,c=0.04
a=b=1/2,c=0
State−of−the−art

Figure 3.9: Impact of the weight values on the retrieval performances of the GG-RL-GG-D

approach.
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3.7.3 Bivariate model-based retrieval approaches

The second series of experiments is dedicated to the study of the effect of using a bivariate

statistical model to capture the dependencies between the wavelet coefficients of a stereo

pair and, to the illustration of the benefits of incorporating simultaneously the disparity

features and the visual ones. To this end, we have also conducted the three following

experiments related to the three retrieval strategies discussed in Subsection 3.5.3.

The first one, where the bivariate vector is constructed from the wavelet coefficients of

the right and left images, is designated by BGG-RL. The second one, where the bivariate

vector is defined by using the wavelet coefficients of the right image and the disparity

compensated left one, is denoted by BGG-RDCL-1. The third approach, corresponding

to the improved version of the previous one by taking into account the occlusion effect,

is denoted by BGG-RDCL-2. By further adding the GG distribution parameters of the

disparity map during the indexing step, these three methods will be respectively designated

by BGG-RL-GG-D, BGG-RDCL-GG-D-1 and BGG-RDCL-GG-D-2.

Fig. 3.10 depicts the precision versus recall curves for these approaches.
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Figure 3.10: Retrieval performance in terms of precision and recall of the bivariate ap-

proaches.

It can also be noted that adding disparity improves the different bivariate modeling-based

retrieval strategies. Moreover, these results show that taking into account the occlusion

effect allows us to achieve the best retrieval performance.
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Finally, we focus on comparing the performance of the proposed retrieval approaches based

on bivariate and univariate models. It can be seen from Fig. 3.11 that the joint modeling

of wavelet subbands BGG-RDCL-GG-D-1 achieves better retrieval performance compared

to the univariate model-based approach. Further improvements are achieved when the

bivariate model-based approach deals with the occlusion effect. Thus, compared to the

state-of-the-art method [Feng et al., 2011], the resulting gain reaches 15% in terms of

precision-recall. Table 3.3 confirms that the best improvement are achieved by the bivariate

model-based approach especially when dealing with the occlusion effect. The ANMRR

value decreases by 1, 34% when using the bivariate model (BGG-RDCL-GG-D-2 approach)

compared to the univariate model (GG-RL-GG-D approach).

All these results confirm the effectiveness of incorporating the disparity information for

stereo image retrieval purpose.
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Figure 3.11: Retrieval performance in terms of precision and recall of the univariate and

the bivariate approaches.

Table 3.3: ANMRR results of the univariate and bivariate approaches.

Method State-of-the-art GG-RL-GG-D BGG-RDCL-GG-D-1 BGG-RDCL-GG-D-2

ANMRR 0.245 0.106 0.0951 0.0926
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3.7.4 Multivariate model-based retrieval approach

In order to show the benefits of the multivariate SIRV modeling-based retrieval method,

we will compare it to the previous retrieval approaches. To this end, the multivariate vec-

tor will be defined from the wavelet coefficients of the right and compensated left images

as given by Eq. (3.52). To take into account the spatial dependency in each subband, 3

neighbors have been used by setting (p, q) ∈ {(1, 0), (0, 1), (1, 1)} for the sake of simplicity.

This method will be designated by SIRV-RDCL-3N-1. By adding the GG distribution

parameters of the disparity map, this method will be noted by SIRV-RDCL-3N-GG-D-1.

It can be seen from Fig. 3.12 that the SIRV modeling of wavelet subbands achieves better

retrieval performance compared to the BGG model-based approach [Chaker et al., 2014].

These results prove that exploiting both the spatial and cross-view dependencies of the

stereo images through SIRV modeling improves retrieval performances of BGG model-

based approach. Similar retrieval performance in terms of ANMRR values are presented

in Table 3.4. It can also be noticed that adding disparity information explicitly improves

the bivariate as well as multivariate modeling-based retrieval strategies. As shown in Table

3.4, the ANMRR values decrease by 4.43% , 1.16% when adding disparity information to

the BGG model- and SIRV model-based approaches, respectively.

Now, we will study the impact of the size of the neighborhood on the retrieval performance.

To this end, the SIRV modeling-based approach has also been implemented by using 8, 24,

and 48 neighbors. Knowing that (p, q) 6= (0, 0), the 8, 24 and 48 neighbors are obtained by

varying p and q from −1 to 1, −2 to 2, and −3 to 3, respectively. The related versions will

be designated by SIRV-RDCL-8N-1, SIRV-RDCL-24N-1, and SIRV-RDCL-48N-1, respec-

tively. Moreover, in order to show the benefits of exploiting the cross-view redundancies as

well as the spatial dependencies, we consider also the case where the intra-band correlation

is not taken into account. In others words, the multivariate vector is only composed of the

wavelet coefficients of the right and compensated left image without adding the neighbor-

ing pixels. This method will be denoted by SIRV-RDCL-0N-1.

Fig. 3.13 shows the plots of the precision versus recall resulting from the use of different

number of neighboring pixels. First, it is clear that combining the intra and inter-image

redundancies outperforms the scheme where only the inter-view correlations are exploited.

Moreover, it can be noticed that increasing the neighborhood size leads to a further im-

provement in the retrieval performance. However, it is worth pointing out that large



84 3. Novel wavelet-based retrieval methods for stereo images

neighborhood size implies high computational complexity. Indeed, the complexity of the

feature extraction step consists of the estimation of the covariance matrix Ĉj and the com-

putation of its inverse Ĉ−1
j which depends on its dimension B × B, where B = 2(N + 1)

and N is the number of the neighboring pixels.
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Figure 3.12: Comparison between the multivariate and bivariate approaches.

Table 3.4: ANMRR results of the multivariate and bivariate approaches.

Method BGG-RDCL-1 BGG-RDCL-GG-D-1 SIRV-RDCL-3N-1 SIRV-RDCL-3N-GG-D-1

ANMRR 0.1394 0.0951 0.0992 0.0876

3.8 Conclusion

In this chapter, we have addressed the problem of indexing and retrieval of stereo images in

the wavelet-transform domain. Our first contribution consists in employing dense disparity

maps either implicitly or explicitly during the feature extraction step. The parameters of

the generalized Gaussian distribution that model the detail subbands of each view are

combined with those of the disparity map to build a salient feature of the stereo pair

content. Our second contribution aims at resorting to an appropriate bivariate model that

accounts for the cross-view dependencies. Finally, we have exploited both the dependencies
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between the wavelet coefficients of the two views as well as those in the same subband

through a suitable multivariate model. Experimental results indicate the good performance

of the bivariate and multivariate approaches. As it has been described through this chapter,

the features have been defined and extracted from the original wavelet coefficients. Such

methods are interesting when the images are losslessly encoded. However, in the context

of lossy compression, it becomes more difficult to define salient features from the quantized

wavelet coefficients. This issue, studied with still images, will be the objective of the next

chapter.
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Figure 3.13: Impact of the neighborhood size on the retrieval performance.
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Chapter 4

Retrieval approaches for

wavelet-based quantized images

4.1 Introduction

The proliferation of images has led to very huge amount of data to be stored, managed

and/or transmitted. In order to reduce the memory requirements, these images are stored

in a compressed format. In this case, a CBIR system should be built for these coded

versions. In this context, quantization may affect the image content and, hence the image

features. Therefore, some cautions should be taken in the case of quantized images. Unlike

most of the developed CBIR systems which deals with uncompressed images, this chapter

addresses the problem of designing new retrieval schemes for lossy compressed images and,

provides some novel solutions to this problem.

The remainder of this chapter is organized as follows. In Section 4.2, we investigate the

compression effect on image retrieval performance. Then, we describe our adopted method-

ology in Section 4.3. In Section 4.4, we present new strategies to improve the retrieval per-

formances of JPEG2000 compressed images. In Section 4.5, we describe the investigated

quantization techniques as well as their corresponding proposed retrieval approaches. Fi-

nally, the performance of the different methods is illustrated in Section 4.6 and some

conclusions are drawn in Section 4.7.
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4.2 Impact of compression on image retrieval performance

4.2.1 Motivation

Many CBIR systems have been proposed in the literature to retrieve mono-view images

using appropriate features. These features are often extracted in the spatial domain [Yong,

Thomas, 1999; Datta et al., 2006]. However, with the increased size of the generated data,

it becomes mandatory to compress them by using some image compression standards such

as JPEG [Wallace, 1991] and JPEG2000 [Rabbani, Joshi, 2002] based on DCT and WT,

respectively. While classical methods operating in the spatial domain can be also applied to

retrieve the resulting compressed images, they will require the decoding of all the database

images, by applying the inverse transform, which will result in a significant computational

overhead for feature extraction, especially for large image archives. Therefore, in order to

design fast retrieval methods, other works have been developed by performing the feature

extraction step in the transform domain [Mezaris et al., 2004; Wang et al., 2015]. More-

over, an additional benefit can also be drawn by exploiting the intrinsic sparsity of the

coefficients resulting from the underlying transform. The most known retrieval approaches

operate in the DCT and WT domains where features are directly extracted from the DCT

coefficients [Ngo et al., 2001; Feng, Jiang, 2003; Chang et al., 2004; Climer, Bhatia, 2002]

and the wavelet coefficients [Voulgaris, Jiang, 2001; Mandal et al., 1996; Do, Vetterli, 2002;

Sakji-Nsibi, Benazza-Benyahia, 2009]. The most popular and fast wavelet-based technique

aims at retaining the first moments of the subband j as a salient feature [Mandal et al.,

1996], especially the energy Ej of the subband [Smith, Chang, 1994; Wouwer et al., 1999].

Note that several statistical features such as inertia, entropy and local homogeneity, defined

on the co-occurrence matrix, can also be used [Haralick et al., 1973; Wouwer et al., 1999].

Moreover, other works have been developed by resorting to a parametric modeling of the

distribution of each wavelet subband [Mandal et al., 1996; Wouwer et al., 1999]. In partic-

ular, the generalized Gaussian distribution [Do, Vetterli, 2002] and the Gaussian mixture

model [Yuan et al., 2003] were found to be well-suited for modeling the wavelet coefficients

in every subband. The related feature vector of the image is built by taking the distribu-

tion parameters of all the wavelet subbands. It is worth noting that the so far proposed

statistical models concern the unquantized coefficients wj considered as realizations of a

continuous random variable. These models are no longer valid for quantized coefficients w̄j
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which are samples of a discrete random variable. Most of the developed methods are well

adapted for losslessly encoded images (i.e unquantized transformed coefficients). However,

a particular attention should be paid to the effect of the quantization operation in the

context of lossy data compression.

4.2.2 Compression effect on image retrieval performance

A straightforward solution to CBIR system consists of directly comparing the query and

model images as it is generally performed in the case of uncompressed data. However, it is

clear that a lossy compressed image differs from its original. Since image features employed

for CBIR are computed from the image content, compressed images may be very different

from those defined on the uncompressed data.

A qualitative example is given in Fig. 4.1. We show a typical image (Lena) before and after

applying JPEG2000 compression. It can be seen that the JPEG2000 compressed version

contains visual degradations compared to its original. We also present the histograms

of wavelet subbands descriptors which are often used in lossless CBIR systems [Mandal

et al., 1996; Wouwer et al., 1999; Do, Vetterli, 2002] of the two images. As illustrated in

Fig. 4.1, the difference between the two histograms shows a large deviation that can cause a

degradation in the performance of the conventional CBIR techniques [Mandal et al., 1996;

Wouwer et al., 1999; Do, Vetterli, 2002]. This was corroborated for all the considered

images in the database. This problem has been addressed by earlier studies in [Schaefer,

2008; Edmundson, Schaefer, 2012b; Edmundson et al., 2012], where it was concluded that,

while slight compression has little effect on texture and color based CBIR systems, a

significant degradation of the retrieval performance is shown at high compression levels.

We confirm this by running retrieval experiments under different qualities of JPEG2000

compressed images. To this end, we select the Vistex database [vis, ], which contains 40

textures images of size 512×512. Each image is then divided into 16 non-overlapping images

of size 128 × 128, resulting in a collection of 640 images. The sixteen images belonging

to the same family of a query image are considered as the relevant images for this query.

These images (called model images) are compressed at bitrates RM whose values are in

the set {1.5, 1, 0.8, 0.5, 0.25, 0.1} bpp. The retrieval performances are evaluated in terms of

precision PR and recall RC. Recall that PR = Nr

N and RC = Nr

Nt , where N
r is the number

of output images considered as relevant, N t represents the total number of relevant images
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Figure 4.1: Original Lena image, its JPEG2000 compressed version at 0.15 bpp, Histograms

of the diagonal wavelet coefficients at the third resolution level for : (a) the original and

(b) compressed version of Lena image and (c) the difference between the two histograms.

in the database and N is the number of all returned images. We retain also the whole set

of the energies
(
Ej

)
j∈{1,...,3J+1}

of all quantized subbands as a feature vector to compare

the different images.

Fig. 4.2 provides the PR − RC plots for different bitrates RM. While the blue curve

corresponds to the image retrieval algorithm performed on the uncompressed data (i.e on

the original wavelet coefficients of the query and model images), the remaining ones are

generated after compressing (i.e quantizing) the model images at the different bitrates RM

(the query one is kept as uncompressed). It can be noticed that a significant drop in

the performances of the basic CBIR system occurs when model images are compressed

at very low bitrates. To better understand the quantization effect on the image retrieval

performance, we have considered another context of experiments in which the query and

model images are both quantized. These results are illustrated in Fig. 4.3 where the query
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Figure 4.2: Precision versus recall obtained for a query uncompressed images, when model

images are : (a) uncompressed, compressed at RM = (b) 1.5 bpp, (c) 1 bpp, (d) 0.8 bpp,

(e) 0.5 bpp, (f) 0.25 bpp.
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Figure 4.3: Precision versus recall obtained under compression for a query compressed at

0.5 bpp.

image is compressed at RQ = 0.5 bpp and the model images are all compressed at RM

belonging to the set {1.5, 1, 0.8, 0.5, 0.25, 0.1} bpp.

It can be observed that the best improvements are achieved when the query and model

images are quantized at the same bitrate (i.e having similar qualities).
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4.3 Adopted methodology

Original image

Transform

Quantization

Coding

Feature
extraction

Signature
Similarity
measure

Retrieval system

Lossy compressed system

I

wj

w̄j

1. Operate on the quantized coefficients

2. Operate on the quantizer

Figure 4.4: Methodology to improve retrieval performance of lossy compressed images.

The degradation of the retrieval performance are mainly due to the quantization itself

and, the gap between the bitrates of the model and query image. Consequently, in order to

avoid such drop in performance, it appears reasonable to proceed according to the following

novel strategies, as depicted in Fig. 4.4.� The first one operates on the quantized coefficients. To this end, we propose first

to apply a processing step that aims at reducing the mismatch between the bitrates

of the model and the query images. Then, we propose to recover the statistical

parameters of original wavelet coefficients directly from the quantized ones using the

maximum likelihood criterion.� Another alternative consists in acting on the quatization operators by constraining it

to preserve into the compressed domain some valuable information. More precisely,

in our work, we propose to resort to two new quantizers which have the advantages

to preserve the subband moments and distributions, respectively.

In the rest of the chapter, we will describe in more details the suggested solutions.
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4.4 Contributions to improve retrieval performance of JPEG2000

compressed images

4.4.1 Re-compression approach

Although uniform quantizer allows a good preservation of the energy of the subbands

encoded at high bitrate, it fails to guarantee this property for the subbands encoded at

low bitrate [Rabbani, Joshi, 2002]. As it has been shown in Section 4.2.2, and according

to many experiments studying the effect of quantization in the DCT domain [Edmundson,

Schaefer, 2012b], and WT domain [Chaker et al., 2012], it has been found that the best

retrieval performance is obtained when the query and model images are compressed at the

same bitrate and have similar qualities. For these reasons, instead of directly extracting the

features from the quantized query and model images, it would be interesting to add a pre-

processing step that constrains these images to have similar qualities. Since the resulting

quantization error at low bitrate is more important than that obtained at high bitrate, it

appears preferable to apply the pre-processing step on the high quality image. Thus, the

main idea is to keep the lower quality image unchanged and transform the high quality one

to the lower quality. More precisely, the following transform is firstly applied on the finely

quantized subbands w̄j(i) with the quantization step qj:

w̃j (i) =





(w̄j (i) + γ) qj if w̄j (i) > 0

(w̄j (i)− γ) qj if w̄j (i) < 0

0 otherwise

(4.1)

where 0 ≤ γ < 1 is a reconstruction parameter chosen by the decoder. Indeed, choosing

γ = 0.5 corresponds to a mid-point reconstruction as it is widely used in many encoding

strategies [Rabbani, Joshi, 2002]. It should be noted here that this step (4.1) is known

in the context of compression as “inverse” quantization process. Then, the reconstructed

subband coefficients w̃j(i) are re-quantized at the same bitrate of the lower quality image.

Once the model and query images are processed, the energy-based features are extracted

from their quantized subbands. Finally, the normalized Euclidean distance [Wouwer et al.,

1999] can be used as a similarity measure to compare the resulting feature vectors.
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4.4.2 Statistical-based approach

Motivation

It is worth noting that the previous recompression approach for the retrieval of compressed

images presents some limitations. First, when the images are quantized at very low bi-

trates, the related quantization error increases and thus, the recompression of the finely

quantized coefficients technique will negatively affect the feature relevance. Moreover, it

implies higher computational cost due to the reconstruction and requantization operations

which will be performed on all the database images when these images have higher quality

than that of the query one. To overcome these drawbacks, it would be interesting to extract

salient features directly from the quantized wavelet coefficients. To this end, by adopting a

statistical model-based approach, we propose to estimate the original distribution param-

eter from the quantized coefficients, and use it to compare the images during the indexing

step. In what follows, the parameter estimation method from the quantized coefficients as

well as the retrieval strategy will be described.

Estimation of the original parameter distribution

As mentioned before, the GG law, given by Eq. (3.1), has been extensively used to model

the distribution of the wavelet coefficients.

Thus, by assuming that the random variable wj(i) with j ∈ {1, . . . , 3J} and i ∈ {1, . . . , Lj}
is distributed according to (3.1), the probability of the quantized value w̄j(i) is given by:

P (w̄j(i)) =

∫ w̄j(i)+
qj

2

w̄j(i)−
qj
2

βj
2αjΓ(1/βj)

e−(|ξ|/αj)
βj
dξ (4.2)

where αj and βj are the GG parameters. It can be shown that Eq. (4.2) leads to [Kaaniche

et al., 2014]:

P (w̄j(i)) =
1

2

[
Q1/βj

(
w̄j(i) +

qj
2

αj
)βj −Q1/βj

(
w̄j(i)− qj

2

αj
)βj

]
(4.3)

where Qa, with a ∈ R
∗
+, is the normalized incomplete Gamma function:

∀ξ ∈ R, Qa(ξ) =
1

Γ(a)

∫ ξ

0
θa−1e−θdθ. (4.4)



4.4. Contributions to improve retrieval performance of JPEG2000

compressed images 95

Therefore, in order to estimate αj and βj from the quantized coefficients, we need to

maximize the likelihood function which will be expressed as:

L(w̄j, αj , βj) = log(
Lj∏
i=1

P (w̄j(i)))

=
Lj∑
i=1

log(P (w̄j(i)))

=
Lj∑
i=1

log 1
2

[
Q1/βj

(
w̄j(i)+

qj

2
αj

)βj −Q1/βj
(
w̄j(i)−

qj

2
αj

)βj

]
(4.5)

Thus, the obtained likelihood function depends on the incomplete Gamma function, with

parameter 1/βj and arguments (αj , βj). Such expression makes the computation of deriva-

tives of the likelihood function with respect to αj and βj difficult and will result in very

complicated equations.

To deal with this problem, we have preferred to resort to the Laplacian distribution (i.e

particular case of GG, when βj = 1) which has been used for subband image coding [Birney,

Fischer, 1995; Price, Rabbani, 1999]. Indeed, the Laplacian distribution allows an optimal

trade-off between the simplicity and tractability of the model and modeling accuracy. The

related probability density function f̃j is given by:

∀ξ ∈ R, f̃j(ξ) =
λj

2
e−λj |ξ|. (4.6)

where λj > 0 denotes the distribution parameter. It can be estimated as the average of

the original coefficients according to the maximum likelihood criterion:

λ̂j =
Lj

Lj∑
i=1
| wj(i) |

. (4.7)

However, since we assume in this work that the original versions of the query and model

images are not available as they are compressed, we propose to estimate λj from the

quantized coefficients w̄j by considering again the maximum likelihood criterion. First,

the coefficient values of quantized subband will be distributed according to the discrete

Laplace distribution:

f̄j(w̄j(i)) =





1− e−
λjqj

2 if w̄j(i) = 0

1
2(1− e−λjqj)e−λj |w̄j(i)|+

λjqj

2 otherwise.

(4.8)

Thus, λ̂j can be estimated by maximizing over λj the log-likelihood function of hj(w̄j)
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given by:

L̄j(λj ; w̄j) = log[

Lj∏

i=1

f̄j(w̄j(i))] =

Lj∑

i=1

log[f̄j(w̄j(i))] (4.9)

hence,

λ̂j = argmax
λj

{L̄j(λj ; w̄j)}. (4.10)

Substituting (4.8) in (4.10) leads to:

λ̂j = argmax
λj

{
∑

w̄j(i)=0

log(1− e−
λjqj

2 )

+
∑

w̄j(i)6=0

log 1
2(e

−λj |w̄j |+
λjqj

2 )(1− e−λjqj)}.
(4.11)

The derivative of (4.11) with respect to λj leads to:

(Ljqj + 2Sj)e
−λjqj + L0

jqje
−

λjqj

2 + L1
jqj − 2Sj = 0 (4.12)

where Sj =
∑

w̄j(i)6=0

| w̄j(i) | and, L0
j , L

1
j are respectively the number of wavelet coefficients

quantized to zero and non-zero values and, Lj = L0
j + L1

j .

Using the substitution:

t2j = e−λjqj , (4.13)

Eq. (4.12) is then a second order polynomial with solution :

tj =
−L0

jqj +
√

(L0
jqj)

2 − 4(Ljqj + 2Sj)(L1
jqj − 2Sj)

2Ljqj + 4Sj
. (4.14)

The estimated parameter λ̂j is computed by substituting (4.12) in:

λ̂j = −
2

qj
log(tj). (4.15)

It should be noted that, at very low bitrates where the wavelet coefficients are coarsely

quantized to zero, they could not carry any useful information: the value of tj will tend

to zero, and so λ̂j will tend to infinity. This problem has also already been reported

in [Ichigaya et al., 2006]. In what follows, we will address this issue in the context of image

retrieval.

Proposed retrieval strategy

Due to the estimation problem of the distribution parameter at very low bitrate, the fea-

ture vector should be appropriately defined according to the bitrate of the different wavelet
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subbands. More precisely, before building this vector, it is necessary to check if λ̂j is a

finite number. Based on many experiments, it can be observed that the coarse-scale (resp.

fine-scale) subbands represent large (resp. small) percentage of the total bitrate. Indeed,

the cases where λ̂j is equal to infinity occur especially at low bitrates in the higher fre-

quency subbands, whereas at middle and high bitrates, λ̂j is often a finite number. Thus,

the feature vector is built by taking the λ̂j of the different wavelet subbands while omitting

those whose values are equal to infinity. As a result, the resulting feature vectors of the

query and model images may have different sizes when they are compressed at different

bitrates. For this reason, during the indexing step, we propose to adjust the descriptor

vector dimension of images compressed at high bitrate to the size of that obtained for im-

ages compressed at low bitrate by omitting the estimated parameter of the high frequency

subbands.

Once the feature vectors are generated, the retrieval procedure can be applied. The ob-

jective is to search the top candidate database images whose feature vectors (λ̂db
j )1≤j≤K

(where K is the length of the feature vector) are closer to that of the query one (λ̂q
j )1≤j≤K ,

according to a given similarity measure. More precisely, the database image Idb and the

query one Iq are compared by computing the following measure:

D(Idb, Iq) =

K∑

j=1

D̃(λ̂db
j ‖ λ̂q

j ) (4.16)

where D̃(λ̂db
j ‖ λ̂

q
j ) represents the Kullback-Leibler divergence that measures the dissim-

ilarity of the two Laplacian distributions of parameters λ̂db
j and λ̂q

j . It is given by [Do,

Vetterli, 2002]:

D(λ̂db
j ‖ λ̂q

j ) = log

(
λ̂db
j

λ̂q
j

)
+

λ̂q
j

λ̂db
j

− 1. (4.17)

It can be concluded that JPEG2000 compression, based on uniform quantization, allows

good preservation of the energy of the subbands encoded at high bitrates. However, it fails

to guarantee this property for the subbands encoded at low bitrates.

To avoid the limitations of the two previous approaches, we have also proposed to relax

the constraint of employing an uniform quantizer for encoding the database images, and

to resort to other quantizers having some interesting properties that can be exploited for

retrieval purpose.



98 4. Retrieval approaches for wavelet-based quantized images

4.5 Design of appropriate retrieval approaches for various

quantization schemes

Motivated by the fact that popular indexing methods in the transform domain employ

statistical parameters of the resulting subbands as salient features, efficient retrieval tech-

niques will be designed by resorting to quantization schemes that preserve the statistical

properties of the source regardless of the bitrate of the query and database images.

4.5.1 Retrieval with moment preserving quantizers

Design of a Moment Preserving Quantizer (MPQ)

Before addressing the MPQ scheme as well as its appropriate retrieval approach, it is worth

noting that MPQ is a generalization of block truncation coding, which turned out to be

advantageous in image coding [Delp, Mitchell, 1979]. Without loss of generality, we assume

that the image subband coefficients wj to be quantized are viewed as realizations of a

random variable Wj whose probability distribution function is denoted by FWj
. A Nj-level

MPQ can be characterized in terms of a set of Nj representation levels {yj,1, yj,2, . . . , yj,Nj
}

and (Nj−1) decision levels {sj,1, sj,2, . . . , sj,Nj−1}, with yj,1 ≤ sj,1 ≤ yj,2 ≤ . . . ≤ sj,Nj−1 ≤
yj,Nj

. The idea behind a MPQ is to find the partition and the reconstruction points of the

quantizer so that the first (2Nj−1) moments ofWj are preserved. More precisely, the design

of a Nj-level MPQ requires the knowledge of the first (2Nj − 1) moments of Wj as well as

the probability distribution function FWj
for which the recursion relationships among the

moment can be exploited. Indeed, by considering a wavelet decomposition performed over

J resolution levels, for each subband j, with j ∈ {1, . . . , 3J +1}, the Nj-level MPQ can be

designed by solving the following system of equations:

mn
j
△
=E[W n

j ] =

∫ +∞

−∞
wn
j dFWj

(wj) =

Nj∑

i=1

ynj,iPj,i (4.18)

for every n = 1, 2, . . . , 2Nj − 1, where

• sj,0
△
= −∞,

• sj,Nj

△
= +∞

• Pj,i
△
=FWj

(sj,i)− FWj
(sj,i−1).

Equation (4.18) is a form of the Gauss-Jacobi mechanical quadrature [Szegö, 1939]. The

representation levels yj,i of the Nj-level MPQ are the zeros of the Nj-th degree orthogo-
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nal polynomial associated with FWj
. Note that the polynomials can be generated using

the standard recursion relation for any three consecutive orthogonal polynomials [Jackson,

2004]. The Pj,i are Christoffel numbers and, sj,i and yj,i alternate by the separation theo-

rem of Chebyshev-Markov-Stieltjes [Szegö, 1939]. More technical details about orthogonal

polynomials, Christoffel numbers and, the separation theorem can be found in Appendix B.

As shown in Eq. (4.18), the design of the MPQ depends on the probability density function

of the input subband wj . To this end, we propose to model the subband coefficients by

using the Generalized Gaussian (GG) distribution which has been extensively employed to

model the unquantized WT coefficients [Do, Vetterli, 2002] and also the DCT ones [Muller,

1993]. Its probability density function fj is defined in Eq. (3.1).

The cumulative distribution function (c.d.f.) FWj
of a GG law is expressed as [Nadara-

jah, 2005]:

FWj
(ξ) =





1
2Q 1

βj

((− ξ
αj
)βj) if ξ ≤ 0

1− 1
2Q 1

βj

(( ξ
αj
)βj) if ξ > 0.

(4.19)

Moreover, for a GG distribution, the nth-order moment used in Eq. (4.18) will be

expressed as follows:

mn
j =





αn
j

Γ(n+1
βj

)

Γ(1/βj)
if n is even

0 otherwise.

(4.20)

Once the principle of the MPQ is addressed for a given subband j, the objective is to

define the different Nj values for all the subbands. To this end, a bit allocation among

the subbands is carried out in order to compute the levels (N1, N2, . . . , N3J+1) based on a

rate-distortion criterion. More precisely, the average distortion is minimized subject to a

constraint on the total available bitrate. The Lagrangian optimization approach will also

be used to solve this constrained minimization problem [Shoham, Gersho, 1988].

Indexing strategy with adaptive feature extraction

Unlike the conventional method involving an uniform quantizer where the energy (i.e the

second order moments) of all the subbands are retained as salient descriptors, a particular

attention should be paid to select the subbands j according to the assigned number of

quantization level Nj. Indeed, based on its definition, a Nj-level MPQ is known to preserve

the first (2Nj − 1) moments of the input subband wj. Therefore, it is first necessary to

check for each subband if Nj ≥ 2 in order to guarantee the preservation of the second
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order moment of the jth subband. Then, only the subbands which satisfy this condition

are selected and their energies (i.e. second order moments m2
j) are taken to build the

feature vector. Generally, it is well known that the coarse-scale (resp. fine-scale) subbands

represent large (resp. small) percentage of the total bitrate. For instance, after applying

the bit allocation algorithm among the different subbands, it can be observed that the

cases where the second order moment is not preserved (i.e. Nj = 1) occur frequently at

low bitrates in the higher frequency subbands, whereas at middle and high bitrates, Nj is

often greater than or equal to 2. Consequently, we propose to build the feature vector by

computing� the second order moment of only the low frequency subbands at low bitrate,� the second order moment of all the subbands at middle and high bitrates.

It is worth pointing out that the resulting feature vectors of the query and model images

may have different sizes when we encounter images compressed at different bitrates. As a

result, during the indexing step, the descriptor vector dimension of images compressed at

high bitrate will be adjusted to the size of that obtained with images compressed at low

bitrate by omitting the second order moments of the high frequency subbands.

4.5.2 Retrieval approach with distribution preserving quantizers

Design of a Distribution Preserving Quantizer (DPQ)

While the MPQ presents the advantage of preserving a certain statistical moments of the

source, its main limitation is that the rate of the MPQ and the number of moments it can

preserve are mutually dependent. For example, as aforementioned, at very low bitrate, the

Nj value is often equal to 1 which means that the energy of the subband is not preserved. To

alleviate this drawback, it has been recently developed a DPQ scheme where the probability

distribution of the source, and so all statistical properties can be preserved at any bitrate

[Li, 2011]. This scheme has shown a superior performance over conventional quantizers in

audio coding [Li et al., 2010; Li, 2011] and multiple description coding [J. Klejsa, Kleijn,

2013].

While a DPQ can be designed in different ways, it was shown that the optimal one (in terms

of rate-distortion performance) can be achieved by using a dithered quantizer followed by a

non-linear transformation [Li et al., 2010]. This latter, referred to as transformation-based
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DPQ, is illustrated in Fig. 4.5.

wj ∼ fj Uniform Quantizer
ŵj

dj ∼ U(−qj/2, qj/2)

−+
Transformation

g

w̃j

Dithered Quantizer

Dither

Figure 4.5: Diagram of a transformation-based DPQ.

Indeed, as defined in Section 4.5.1, let us emphasize that the subband coefficients wj to

be quantized are modeled by a GG distribution with probability density function fj and

c.d.f FWj
given respectively by Eqs. (3.1) and (4.19). As it can be seen in Fig. 4.5, a

dither dj, uniformly distributed over [−qj/2, qj/2], is added to wj before quantization and

subtracted from the quantized signal, yielding ŵj. Finally, a transformation g is performed

on ŵj to produce the final reconstruction signal w̃j while preserving the distribution of the

source. Let us assume that ŵj is also a realization of a random variable Ŵj. By choosing

a uniformly distributed dither dj , it is possible to check that its characteristic function φdj

satisfies the following conditions:

φdj (k/qj) = 0, for k = ±1,±2, . . . (4.21)

Indeed, Schuman has shown that the conditions in (4.21) are equivalent to guarantee that

the quantization error ej = ŵj −wj is statistically independent of the source [Schuchman,

1964]. Consequently, under the Schuman’s conditions, Ŵj follows a continuous probability

distribution and its c.d.f F
Ŵj

is related to FWj
as follows:

F
Ŵj

(ŵj) =
1

qj

∫ qj

2

−
qj

2

FWj
(ŵj − τ)dτ. (4.22)

Thus, the transformation g consists in applying firstly the above operation F
Ŵj

on ŵj and

then performing F−1
Wj

on the obtained result in order to retrieve the source (i.e subband)

distribution:

g(ŵj) = F−1
Wj

(
1

qj

∫ qj

2

−
qj
2

FWj
(ŵj − τ)dτ

)
(4.23)
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where the inverse c.d.f F−1
Wj

is given by:

F−1
Wj

(ξ) =





−αj(Q
−1
1
βj

(2ξ))
1
βj if ξ ≤ 1/2

αj(Q
−1
1
βj

(2(1 − ξ)))
1
βj if ξ > 1/2

(4.24)

with Q−1
1
βj

denotes the inverse function of the normalized incomplete Gamma function.

To illustrate the interest of the transformation g in preserving the distribution of the input

signal, Fig. 4.6 illustrates the histograms of the diagonal detail coefficients, before and after

transformation, for a given image taken from the standard VisTex dataset [vis, ]. It can

be noticed that at high bitrate, the probability distribution of the output of the dithered

quantizer ŵj is similar to that of the input subband wj, and hence, it is slightly modified

after the transformation. However, at low and middle bitrates, the probability distribution

of the output of the dithered quantizer ŵj follows a nearly uniform distribution, and it is

modified by the transformation to become very close to that of the input subband wj .

Indexing strategy

An efficient retrieval strategy which can be applied in the context of a DPQ-based coding

scheme is depicted in Fig. 4.7.

Indeed, when examining the structure of a DPQ-based coder, it can be seen that the block

involving the subtraction of the dither followed by the transformation g corresponds to

the decoding part which aims at reconstructing the subbands w̃j while maintaining the

statistical properties of the original subbands wj. From this point of view, it would be

interesting in the DPQ-based coding context to define the features from the synthesized

subbands w̃j . Since the main advantage of DPQ is its independency of the bitrate, the

feature will be extracted from all the subbands. To this end, during the indexing step, we

propose to model the synthesized detail subbands w̃j by using the GG distribution and, the

estimated scale and shape parameters (α̃j , β̃j)1≤j≤3J are used as a salient features to form

the descriptor vector. After that, a similarity measure should be defined to compare the

query image Iq and the database one Idb characterized respectively by the feature vectors

(α̃q
j , β̃

q
j )1≤j≤3J and (α̃db

j , β̃db
j )1≤j≤3J . This can be done by computing the Kullback-Leibler

divergence given by:

KLD(Idb, Iq)
△
=

3J∑

j=1

(
log
( β̃db

j α̃q
jΓ(1/β̃

q
j )

β̃q
j α̃

db
j Γ(1/β̃db

j )

)
− 1

β̃db
j

+
( α̃db

j

α̃q
j

)β̃q

j Γ((β̃
q
j + 1)/β̃db

j )

Γ(1/β̃db
j )

)
. (4.25)

To conclude this section, it is important to emphasize that the three proposed retrieval
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Figure 4.6: Histograms of the diagonal wavelet coefficients at the second resolution level

for an image taken from the VisTex dataset at high, medium and low bitrates.

approaches adapted to the different image quantization schemes constitute a general frame-

work which is independent of the transform domain used to encode the database images.

Indeed, while it is well known that the UQ has been employed to quantize the DCT and

wavelet coefficients, the MPQ- and DPQ-based methods require to model the transformed

coefficients. To this end, we have retained the GG distribution which has been successfully
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Figure 4.7: Block diagram of the proposed retrieval system under a DPQ-based encoding

scheme.

used to model the DCT and wavelet coefficients [Do, Vetterli, 2002; Muller, 1993]. There-

fore, the developed methods with MPQ and DPQ are appropriate for both DCT and WT

domains.

4.6 Experimental results

Experiments were conducted on three different well known datasets of texture images. The

first one corresponds to the Vision Texture (VisTex) database [vis, ]. The dataset 1 consists

of different natural surfaces that have quite easily distinguishable texture properties. The

visual properties of the 40 selected texture images, of size 512 × 512, do not change too

much over the image. Each image was split into 16 non-overlapping images which results

in a collection of 640 images of size 128×128. The second one is the Outex database [Ojala

et al., 2002a]. In particular, we select the Outex test suite, referred to as Outex TR 00000,

which was created for retrieval purpose. These test sets contain 319 different grayscale

textures 2, with 20 samples for each texture. The third one is the Salzburg Texture (STex)

1http://vismod.media.mit.edu/vismod/imagery/VisionTexture/
2http://www.outex.oulu.fi/
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database [Kwitt, Meerwald, ] which corresponds to a large collection of 476 images with

different textures 3. Each image of size 512×512 is divided into 16 non-overlapping subim-

ages of size 128×128, which results in a database of 7,616 images. Some samples of images

taken from the different databases are shown in Fig. 4.8.

The retrieval performances are evaluated in terms of precision and recall. Note that rele-

vant images for each query correspond to all the images from the same category. Besides,

in the experiments, each image in the dataset will be considered as a query image for the

complete database.

In the first part of our experiments, we focus on the case of wavelet-based quantized images.

To this respect, the 9/7 lifting scheme is applied to all the database images over J = 3

resolution levels. Thus, the number of resulting subbands for each image is equal to 10.

Once the wavelet representations of the different images are generated, we proceed to the

different quantization techniques in order to evaluate their associated retrieval approaches.

(a) VisTex

(b) Outex

(c) STex

Figure 4.8: Some examples of images for different databases.

3http://www.wavelab.at/sources
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Figure 4.9: Retrieval performance in terms of precision and recall for UQ-based compressed

images.

First, Fig. 4.9 provides the retrieval results for the three compressed databases VisTex,

Outex and STex when the query and model images are respectively uniformly quantized at

different bitrates RQ and RM . The intuitive approach consists in considering the energy

values of all the quantized wavelet subbands for each image. This method is denoted in
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Fig. 4.9 by UQ since the features are extracted directly from the output of the Uniform

Quantizer (UQ). Retrieval results prove that the retrieval performances are affected by

an UQ-based compression scheme, especially when query and model images have different

qualities. To improve these results, a pre-processing step that consists in re-quantizing the

high quality image to the low one is added before extracting the energy-based features.

This method is designated in Fig. 4.9 by UQ-AR (since features are extracted After Re-

quantization). Let us recall here that this approach corresponds to the state-of-the-art

method that has been recently introduced in the DCT domain in [Edmundson, Schaefer,

2012b], and then, we have extended it to the WT domain in [Chaker et al., 2012]. Thus,

we can see from Fig. 4.9 that the retrieval performances of the UQ after re-quantization

step are significantly improved. Obviously, the improvement is more important when the

difference of qualities between the query and model images increases (i.e. when |RQ−RM |
is high).
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Figure 4.10: Wavelet-based compressed images of the DPE approach and the recompression

one UQ-AR.

Always in the case of JPEG 2000 compressed images, the proposed retrieval approach based

on the distribution parameter estimation, which is denoted in what follows by DPE, will be

compared to the UQ-AR method. Thus, as shown in Fig. 4.10, DPE approach outperforms

the retrieval method based on the recompression technique when images are compressed
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at middle and high bitrates. However, DPE approach fails when images are compressed at

very low bitrate. This can be explained by the limitation of DPE mentioned in Section 4.4.2.

Let us recall that it has been shown that, at very low bitrate, the wavelet coefficients are

coarsely quantized to zero and therefore the estimated distribution parameter will tend to

infinity. After that, the UQ-AR and DPE approaches will be compared to the case when the

images are encoded by using the moment preserving quantizer (MPQ). Fig. 4.11 provides

the plots of the precision versus recall when the query and model images are quantized

at different bitrates.It can be seen that MPQ-based retrieval approach outperforms the

retrieval method based on an UQ followed by the pre-processing step and DPE approaches.

The gain in performances becomes much more important when the query or model images

are compressed at low and middle bitrates.

We should emphasize here on the benefits of the proposed adaptive feature extraction

method, in the context of MPQ-based coding scheme, for the definition of the feature

vector described in Section 4.5.1. This can be shown in Fig. 4.12 where the feature vectors

are built by considering the two following cases:� (i): the second order moments of all the quantized wavelet subbands are considered,� (ii): the second order moments of only the quantized wavelet subbands where Nj ≥ 2

are selected.

The obtained results confirm the interest of adapting the energy-based feature vector ac-

cording to the Nj level of the different subbands.

Finally, the retrieval approach under the MPQ is compared to the proposed method de-

veloped with a DPQ-based coding scheme. Fig. 4.13 depicts the retrieval results when the

model images and the query one are quantized at different bitrates. It can be observed

that the proposed retrieval approach under the DPQ achieves a significant improvement

compared to that proposed under the MPQ. For instance, while the latter is still ineffi-

cient when the database images is compressed at low bitrates, the image retrieval system

based on DPQ is very efficient and its performances are almost independent of the bitrate.

Furthermore, as shown in Fig. 4.13, DPQ-based retrieval approach gives similar results to

standard wavelet-based approach, used generally in the context of retrieval of losslessly en-

coded database images, where the GGD parameters are extracted from the original wavelet

subbands.
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Figure 4.11: Retrieval performance in terms of precision and recall when using the MPQ-

based coding scheme, the UQ-AR and DPE approaches.

Figures 4.14, 4.15 and 4.16 show some examples of retrieval results of the compressed

STex texture image database to demonstrate the capability the UQ-AR approach, the

MPQ-based approach and the DPQ-based approach, respectively. The query is “fabric”

compressed at 0.1 bpp, all database images are compressed at 0.5 bpp using the corre-
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Figure 4.12: Retrieval performance in terms of precision and recall of the MPQ-based

coding scheme when the feature vectors are defined by retaining the second order moments

of (i): all the wavelet subbands, (ii): only the wavelet subbands where Nj ≥ 2.

sponding compression scheme. It can be shown from Fig. 4.14, that only three of the top

twenty retrieved images are relevant. This result shows that when query is compressed at

very low bitrate, the retrieval system based on UQ-AR approach fails. From Fig. 4.15,

we can see that in the case of MPQ-based retrieval approach eight correct matches are

returned in the top twenty retrieved images. Thus, MPQ-based approach has shown lit-

tle improvement in performance when compared to the UQ-AR approach. In Fig. 4.16,

the DPQ-based retrieval system perfectly retrieves all images of the same “fabric”, and

all relevant images are correctly ranked as the top matches following by images of similar

textures.

For completeness sake, the performance of the developed retrieval approaches under the

different quantizers has also been compared when the images are quantized in the DCT

domain. Thanks to the rearrangement technique applied to the DCT coefficients to form

structures similar to wavelet subbands [Au et al., 2007], the same salient features used

previously with the wavelet-based quantized images will also be extracted from the DCT-

based quantized images. As it can be seen in Fig. 4.17, the behavior of the precision-recall

curves are similar to those obtained with the wavelet-based quantized images. Indeed, the
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Figure 4.13: Retrieval performance in terms of precision and recall for the MPQ-based

coding scheme and DPQ-based coding scheme.
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MPQ-based retrieval approach outperforms the state-of-the-art one based on UQ followed

by the re-quantization technique. Most importantly, the proposed retrieval system based

on the DPQ scheme leads to the best results and its performances remain independent of

the bitrate (i.e. the qualities of the query and model images).

Figure 4.14: Examples of retrieval results from compressed STex database images using

UQ-AR approach. Query image (compressed at 0.1bpp) is on the top left corner; all other

images (compressed at 0.5 bpp) are ranked in the order of similarity with the query image

from left to right, top to bottom.

4.7 Conclusion

In this chapter, we have investigated different quantization techniques and proposed effi-

cient retrieval methods adapted to the inherent properties of each quantizer. More precisely,

the standard uniform quantizer, the moment preserving quantizer and the new introduced

distribution preserving quantizer are considered. While the proposed retrieval approaches

under the first and second quantizers may be somewhat limited for images compressed at

low quality, it has been shown that the retrieval approach under the DPQ leads to good

results whatever the quality of the query and model images of the database.
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Figure 4.15: Examples of retrieval results from compressed STex database images using

MPQ scheme. Query image (compressed at 0.1bpp) is on the top left corner; all other

images (compressed at 0.5 bpp) are ranked in the order of similarity with the query image

from left to right, top to bottom.

Figure 4.16: Examples of retrieval results from compressed STex database images using

DPQ scheme. Query image (compressed at 0.1bpp) is on the top left corner; all other

images (compressed at 0.5 bpp) are ranked in the order of similarity with the query image

from left to right, top to bottom.



114 4. Retrieval approaches for wavelet-based quantized images

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RC

P
R

 

 
UQ: R

Q
=1 bpp,  R

M
=0.5 bpp

UQ−AR: R
Q

=1 bpp,  R
M

=0.5 bpp

UQ: R
Q

=1 bpp,  R
M

=0.1 bpp

UQ−AR: R
Q

=1 bpp,  R
M

=0.1 bpp

UQ: R
Q

=0.1 bpp,  R
M

=0.75 bpp

UQ−AR: R
Q

=0.1 bpp,  R
M

=0.75 bpp

UQ: R
Q

=0.1 bpp,  R
M

=0.5 bpp

UQ−AR: R
Q

=0.1 bpp,  R
M

=0.5 bpp

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RC

P
R

 

 

MPQ: R
Q

=1 bpp,  R
M

=1 bpp

 UQ−AR: R
Q

=1 bpp,  R
M

=1 bpp

MPQ: R
Q

=1 bpp,  R
M

=0.5 bpp

UQ−AR: R
Q

=1 bpp,  R
M

=0.5 bpp

MPQ: R
Q

=0.25 bpp,  R
M

=0.75 bpp

UQ−AR: R
Q

=0.25 bpp,  R
M

=0.75bpp

MPQ: R
Q

=0.1 bpp,  R
M

=0.5 bpp

UQ−AR: R
Q

=0.1 bpp,  R
M

=0.5 bpp

(a) (b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RC

P
R

 

 

DPQ: R
Q

=1 bpp,  R
M

=1 bpp

 MPQ: R
Q

=1 bpp,  R
M

=1 bpp

DPQ: R
Q

=0.5 bpp,  R
M

=1 bpp

MPQ: R
Q

=0.5 bpp,  R
M

=1 bpp

DPQ: R
Q

=0.5 bpp,  R
M

=0.25 bpp

MPQ: R
Q

=0.5 bpp,  R
M

=0.25bpp

DPQ: R
Q

=0.1 bpp,  R
M

=0.25 bpp

MPQ: R
Q

=0.1 bpp,  R
M

=0.25 bpp

(c)

Figure 4.17: Retrieval performance in terms of precision and recall of the DCT-based

quantized VisTex database images for the different retrieval approaches under the: (a)

UQ-AR, (b) MPQ and (c) DPQ.
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Conclusion and future work

This thesis has been devoted to the design of new and efficient retrieval schemes in the

wavelet transform domain. Two important issues in CBIR have been investigated. The

first one concerns the stereo images which play a crucial role in different application fields.

The second one is related to the quantization effect on the performance of CBIR systems

since much images are presented in the compressed format. The performances obtained by

the different proposed approaches were evaluated on different texture images databases.

Retrieval results show the relevance and robustness of the proposed methods.

The main contributions of this PhD are the followings:� Methods for content-based stereo image retrieval. Unlike the state of the art

approach which consists of applying the conventional CBIR system to only one view

(for example the left one) and refining the obtained results by comparing features

extracted from the estimated disparity maps, the proposed retrieval schemes exploit

simultaneously the visual contents of the left and right images as well as their asso-

ciated disparity fields. To this respect, we have studied different ways to account for

the disparity in order to extract relevant features. More precisely, two principal stereo

image retrieval approaches, operating in the WT domain, have been developed. The

distribution parameters of wavelet subbands of each image have been captured by

using the generalized Gaussian statistical model, and the estimated parameters are

employed in the retrieval process. More precisely, in the first scheme, the two views

are processed separately through a univariate modeling. Despite its simplicity, this

scheme does not exploit the strong statistical correlation between the wavelet coef-

ficients of two views. Thus, in order to capture the dependencies across the wavelet

coefficients of the left and right images, we have resorted to a bivariate modeling

in the second retrieval scheme. Moreover, to exploit simultaneously the spatial and
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cross-view dependencies of the stereo images, we have employed multivariate model-

ing based on SIRV model. Experimental results have indicated the outperformance

of combining the disparity information with the bivariate model.

One perspective of this work is to investigate the effect of compression of the stereo

images on the retrieval performance. Furthermore, the proposed stereo images re-

trieval approaches can be extended to the context of multiview data.� Retrieval strategies for JPEG 2000 compressed images. We have shown that

quantization has a negative impact on the performance of WT-based CBIR system.

To reduce an eventual drop in performances, we have firstly proposed a recompression

strategy that imposes on query and model images to have similar qualities before

feature extraction. Similar recompression strategy has also been investigated in the

context of DCT-based CBIR system. This approach is simple and robust. However,

it presents also some shortcomings. Indeed, the reconstruction and the requantization

steps lead to a computational overhead at the retrieval stage, particularly if the model

images have a quality higher than that of the query image. To alleviate this drawback,

we have proposed an alternative strategy which consists of recovering the statistical

parameters of the original wavelet coefficients directly from the quantized ones. To

this end, we have considered the Laplacian distribution to model the distribution

of the wavelet coefficients. Experiments, conducted on three different datasets of

texture images, have shown the benefits of using the recompression technique and

the retrieval approach based on the distribution parameter estimation.� Appropriate retrieval approaches for various quantization schemes. We

have investigated different quantization schemes that preserve statistical features of

the input signal and propose for each one an efficient retrieval approach. More

precisely, the moment preserving quantizer and the distribution preserving quantizer

have been considered. The characteristics of each quantizer have been then taken

into account in order to design an appropriate retrieval strategy, and so improve the

drop of retrieval performances resulting from the quantization effect. Experimental

results, carried out on three standard texture databases, show the benefits which can

be drawn from the proposed retrieval approaches.

An important area of research will consist in designing other sophisticated features
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more robust againt quantization effects. Last but not least, further investigations

deserve to be conducted concerning the design of retrieval strategies that account for

some visual degradations such as blurring, low contrast corrupting the model or the

query images.
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Appendix A

Subgradient projections and

optimization algorithm

A.1 Subgradient projections

We will briefly recall the basic elements on subgradient projection which are necessary for

describing the optimization algorithm. More details can be found in [Combettes, 2003].

Let Sk be a nonempty closed and convex subset of the Hilbert image space H with scalar

product < · | · > and Euclidean norm ‖ · ‖. For every point u in H, there exists a unique

point Pk(u) ∈ Sk called the projection of u onto Sk such that ‖u − Pk(u)‖ = dSk
(u),

where dSk
(u) = infv∈Sk

‖u− v‖. We assume that Sk is given by Eq. (3.20), where fk is a

continuous convex function. For every u ∈ H, fk has at least one subgradient at u, i.e., a

vector tk ∈ H such that

∀z ∈ H, < z− u | tk > +fk(u) ≤ fk(z). (A.1)

The set of all subgradients of fk at u is the subdifferential of fk at u and is denoted by

∂fk(u). If fk is differentiable at u, then ∂fk(u) = {∇fk(u)}. Fix u ∈ H and a subgradient

tk ∈ ∂fk(u). The subgradient projection of u onto Sk is given by:

Gk(u) =





u− fk(u)−δk
‖tk‖2

tkd̃i if fk(u) > δk

u otherwise.

(A.2)

It is worth noting that computing Gk(u) requires only the availability of a subgradient and

is, so, often much easier than computing the exact projection Pk(u) onto Sk. But, when
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the projection is simple to compute, one can obviously use it as a subgradient projection.

Eventually, we will need to compute the subgradient projections onto the sets S1 and S2.

A.2 Optimization algorithm

The optimization algorithm used to estimate the disparity field u is described as fol-

lows [Miled et al., 2009a]:

1. Fix ǫ ∈]0, 1/K[ and set i = 0. Compute u0 as:

u0(s) = (L(s)r(s) + αū(s))/(L(s)2 + α)

2. Take a nonempty index set Ki ⊆ {1, ...,K}.

3. For every index k ∈ Ki, set ai,k = Gk(ui) − ui, where Gk(ui) is a subgradient

projection of ui onto Sk as in Eq.(A.2).

4. Choose weights {ζi,k}k∈Ki
⊂]ǫ, 1[ such that

∑
k∈Ki

ζi,k = 1.

Set zi =
∑

k∈Ki
ζi,kai,k and ki =

∑
k∈Ki

ζi,k‖ai,k‖2,

5. If ki = 0, exit iteration. Otherwise set:� bi = u0 − ui,� ci such that

ci(s) = (L(s)2 + α)bi(s)� di such that

di(s) = zi(s)/(L(s)
2 + α)� k̃i = ki/ < di, zi >.

6. Choose λi ∈ [ǫk̃i, k̃i] and set d̃i = λidi.

7. Set πi = − < ci, d̃i >, µi =< bi, ci >, νi = λi < d̃i, zi > and ρi = µiνi − π2
i .

8. Set:

ui+1 =





ui + d̃i if ρi = 0, πi > 0,

u0 + (1 + πi/νi)d̃i if ρi > 0, πiνi ≥ ρi,

ui +
νi
ρi
(πibi + νid̃i) if ρi > 0, πiνi < ρi,

(A.3)

9. Increment i and go to step (2).
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Appendix B

Orthogonal Polynomials

While there is a variety orthogonal polynomials presented in the literature, this section

describe a review of only the basic concepts needed to understand the MPQ. For further

details about orthogonal polynomials, the reader is referred to [Szegö, 1939].

Let the probability distribution function F (x) be a fixed non-decreasing real-valued func-

tion with infinitely many points of increase in the finite or infinite interval [a, b]. The

Lebesgue-Stieltjes integral of a class of functions g(x) which are measured with respect to

F (x) is given by: ∫ b

a
|g(x)|2dF (x) (B.1)

is finite is known as L2
F (a, b).

Let πn be the set of all polynomials {ρ(x)} ∈ L2
F (a, b) with degree less than or equal to n.

Hence πn is a subspace of L2
F (a, b).

Definition A: Let the probability distribution function F (x) having moments

mn =

∫ b

a
xndF (x) ;n = 0, 1, 2, · · · (B.2)

that exist and finite. If we orthogonalize the set of functions {xn}, n = 0, 1, 2, · · · using a

Gram-Schmidt procedure we can obtain a set of orthogonal polynomials p0(x), p1(x), · · · , pn(x), · · · ,

< pn(x), pm(x) >=

∫ b

a
pn(x)pm(x)dF (x) = knδnm (B.3)

where δnm is the Kronecker delta. pn(x) is an orthogonal polynomial of degree n where

the coefficient of xn positive.

A similar definition holds if F (x) admits a density function f(x). The set {pn(x)} of

orthogonal polynomials is said to be associated with F (x). We shall use the notation
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{Ψn(x)} to denote the normalized set of {pn(x)}. If F (x) has only a finite number of

points of increase then a finite system of polynomials is obtained.

Theorem 1 : The orthonormal polynomials satisfy the three-term recurrence relationship:

xΨn(x) =
an
an+1

Ψn+1(x) +

(
bn
an
− bn+1

an+1

)
Ψn(x) +

an−1

an
Ψn−1(x) (B.4)

where an is the coefficient of xn in Ψn(x) and bn is the coefficient of xn−1 in Ψn(x) [Jackson,

2004].

Theorem 2 : The zeros of real orthogonal polynomials are real, simple and if [a, b] is a

finite interval, the zeros lie in [a, b].

Theorem 3 : Let z1 < z2 < · · · < zn be the zeros of Ψn(x); z0 = a and zn+1 = b. So, there

is exactly one zero of Ψn+1(x) in each interval [zi, zi+1], i = 0, 1, 2, · · · , n.
Theorem 4 : Between two zeros of Ψn(x), there is at least one zero of Ψm(x), m > n.

Theorem 5 (Gauss-Jacobi Mechanical Quadrature): Let z1 < z2 < · · · < zn denote

the zeros of Ψn(x), there exist real numbers λ1, λ2, · · · , λn such that

∫ b

a
ρ(x)dF (x) =

n∑

i=1

λiρ(zi) (B.5)

whenever ρ(x) ∈ π2n−1. Thus the numbers λi can be determined using uniquely the

distribution F (x) and the integer n. λi are referred to us as the Christoffel numbers. The

λk are independent of ρ(x) [Szegö, 1939].

This result is generally used in numerical integration where ρ is replaced by a general

function g(x) ∈ L2
F (a, b).

Theorem 6 : The Christoffel numbers, λk are positive and they satisfy

n∑

k=1

λk =

∫ b

a
dF (x) = F (b)− F (a) = 1. (B.6)

and given by

λ−1
k =

n∑

m=0

Ψ2
m(zk), ; k = 1, 2, · · · , n. (B.7)

From the obtained result that prove the positiveness of the λk’s and the previously cited

properties of F (x), there exists numbers q1 < q2 < · · · < qn−1, a < q1, qn−1 < b such that

λk = F (qk)− F (qk−1), ; k = 1, 2, · · · , n
q0 = a

qn = b
(B.8)
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Note that the qk’s are not in general uniquely determined.

Theorem 7 (Separation Theorem of Chebyshev-Markov-Stieltjes):

The zeros z1 < z2 < · · · < zn alternate with the numbers q1 < q2 < · · · < qn that is

qk < zk < qk+1. (B.9)

Hence, Theorem 6 could be written as

∫ b

a
ρ(x)dF (x) =

n∑

k=1

ρ(zk)(F (xk)− F (xk−1)). (B.10)

The proofs of the theorem are described in [Szegö, 1939].
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Guldogan, E., Guldogan, O., Kiranyaz, S., Caglar, K., Gabbouj, M. (2003). Com-

pression effects on color and texture based multimedia indexing and retrieval. In IEEE

International Conference on Image Processing, pages 9–12, Barcelona, Spain.

Hara, Y., Hirata, K., Takano, H., Kawasaki, S. (1997). Hypermedia navigation and

content-based retrieval for distributed multimedia databases. In Proceedings of the

sixth NEC research symposium on Multimedia computing, pages 133–148. Society for

Industrial and Applied Mathematics.



132 BIBLIOGRAPHY

Haralick, R. M. (1979). Statistical and structural approaches to texture. Proceedings of

the IEEE, 67(5):786–804.

Haralick, R. M., Shanmugam, K., Dinstein, I. H. (1973). Textural features for image

classification. IEEE Transactions on Systems, Man and Cybernetics, 3(6):610–621.

Hartley, R., Gupta, R. (1993). Computing matched-epipolar projections. In IEEE

Computer Society Conference on Computer Vision and Pattern Recognition, pages

549–555.

Hartley, R. I., Sturm, P. (1997). Triangulation. Computer vision and image under-

standing, 68(2):146–157.

Hiltunen, S., Pesquet, J. C., Pesquet-Popescu, B. (2012). Comparison of two prox-

imal splitting algorithms for solving multilabel disparity estimation problems. In the

20th European Signal Processing Conference, pages 1134–1138.

Hirschmüller, H., Scharstein, D. (2007). Evaluation of cost functions for stereo match-

ing. In IEEE Conference on Computer Vision and Pattern Recognition, 2007, pages

1–8.

Hua, Y., Liu, W. (1998). Generalized Karhunen-Loeve transform. IEEE Signal Processing

Letters, 5(6):141–142.

Huffman, D. A. (1952). A method for the construction of minimum redundancy codes.

Proceedings of the IRE, 40(9):1098–1101.

Ichigaya, A., Kurozumi, M., Hara, N., Nishida, Y., Nakasu, E. (2006). A method

of estimating coding PSNR using quantized DCT coefficients. IEEE Transactions on

Circuits and Systems for Video Technology, 16(2):251–259.

J. Klejsa, G. Zhang, M. L., Kleijn, W. B. (2013). Multiple description distribution

preserving quantization. IEEE Transactions on Signal Processing, 61(24):6410–6422.

Jackson, D. (2004). Fourier series and orthogonal polynomials. Dover Publications.

Julesz, B. (1962). Visual pattern discrimination. IRE Transactions on Information The-

ory, 8(2):84–92.



BIBLIOGRAPHY 133

Justel, A., Peña, D., Zamar, R. (1997). A multivariate Kolmogorov-Smirnov test of

goodness of fit. Statistics & Probability Letters, 35(3):251–259.

Kaaniche, M. (2010). Adaptive vector lifting schemes and applications to stereo image
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