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Résumé

Introduction

Le champ magnétique, qui s’exprime en Tesla dans le systéme international, est présent
partout dans notre environnement. Si les magnétars sont caractérisés par 'intensité de
leur champ magnétique pouvant atteindre 10'* 7', il se limite & 107'2 T pour le cerveau
humain. Le champ magnétique terrestre atteint quant a lui 4.7 x 1075 7.

Certains matériaux ont la propriété de produire naturellement du champ magnétique.
On parle alors d’aimantation permanente, que 1’on distingue de ’aimantation induite par
la circulation d’un courant électrique a travers un matériau conducteur. La description
mathématique de I’électromagnétisme, établie par James Clerk Maxwell en 1864 a donné
naissance aux équations de Maxwell, que ’on utilise encore aujourd’hui. Elle a notamment
permis de comprendre et de controler la production de champ magnétique.

Les aimants & haut champ

Les premiers développements d’aimants capables de générer un champ magnétique
"fort" datent du début des années 1900. Un solenoide produisant 5 T" a été développé par
Deslandres et Perot en 1914, suivi par le grand électro-aimant de I’Académie des sciences
|Cotton, 1928|, qui a fonctionné de 1920 a 1970 a Bellevue, France. Son grand volume
a permis la réalisation de nombreuses expériences sous champ magnétique, avant qu’il
devienne une piéce de musée. Les techniques modernes d’aimants pour champ intense
sont apparues dans les années 1940, avec les travaux de Francis Bitter.

Découverts a la fin des années 1960, les matériaux supraconducteurs permettent de
conduire le courant sans résistance électrique a basse température, typiquement pour des
température inférieures & 4 K. Les aimants supraconducteurs utilisant ce type de matéri-
aux sont maintenant produits et utilisés couramment, pouvant atteindre jusqu’a 23.5 T —
record mondial obtenu au Centre de Résonance Magnétique Nucléaire a trés haut champs,
a Lyon. Au dela de cette valeur, on parle de champ magnétique intense. Les recherches
actuelles sur les supraconducteurs a haute température (HTS) — qui conservent leurs pro-
priétés a des températures supérieures a 4 K — laissent entrevoir la possibilité de dépasser
ce record.

Les champs magnétiques intenses sont produits par des aimants résistifs, composés de

matériaux résistifs comme les alliages de cuivre, et refroidis par circulation d’eau. Utilisés
par exemple en imaginerie médicale, ce type d’aimants constitue plus généralement un
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outil puissant permettant de sonder la matiére pour mieux déterminer ses propriétés.

Seulement quelques aimants dans le monde permettent d’atteindre des champs mag-
nétiques intenses. On les trouve dans des infrastructures de recherche dédiées, permettant
a 'ensemble de la communauté scientifique d’en bénéficier.

En France, le Laboratoire National des Champs Magnétiques Intenses (LNCMI) est
présent a Grenoble et a Toulouse. Il fait partie de PTEMFL (European Magnetic Field
Laboratory) regroupant 1’ensemble des laboratoires Européens produisant des champs
magnétiques intenses. Les électroaimants développés & Grenoble peuvent atteindre jusqu’a
36 T pendant plusieurs heures.

Au LNCMI, le design de ces aimants est basé sur plusieurs technologies. Les aimants
Bitter — du nom de leur inventeur, Francis Bitter en 1933 — consistent en un empilage de
disques de cuivre formant un solenoide. Ils sont refroidis par circulation d’eau — a travers
des trous répartis réguliéerement dans les disques — permettant de controler leur montée
en température. Ce type d’électroaimants est le plus utilisé pour la production de champ
magnétique intense, et permet d’atteindre 38 T" — record récemment établi par Hefei, en
Chine.

Les aimants dits polyhélices — développés exclusivement au LNCMI — sont une alter-
native aux précédents aimants Bitter. Ils sont formés de tubes composés d’alliages de
cuivre, découpés en hélice et empilés de maniére concentrique. On en compte deux types,
qui se distinguent par la méthode de refroidissement utilisée.

Pour les polyhélices dites a refroidissement longitudinal, I’eau circule uniquement entre
les tubes. La découpe hélicoidale réalisée par électroérosion est comblée par un mélange
de colle époxy et de billes de verre, garantissant ainsi I'isolation électrique entre les tours.
Les polyhélices a refroidissement radial autorisent quant a elles la circulation d’eau entre
les spires, augmentant ainsi la surface refroidie. Dans ce cas, I'isolation électrique est
assurée des isolants disposés réguliérement le long de la découpe. Plus d’informations sur
ces technologies sont disponibles dans |Debray et al., 2012].

#

(a) Aimant Bitter (b) Aimants polyhélices
(jusqu’'a 1m de diameétre) (jusqu’a 400m de diamétre)

Figure 1 — Plusieurs technologies d’aimants résistifs sont utilisées pour produire des
champs magnétiques intenses

Pour garder son rang dans la compétition entre les différentes infrastructures mondiales
pour le record de champ magnétique, le LNCMI doit sans cesse améliorer la capacité de
ses aimants. Cependant, le dévelopement d’aimants capables de générer des champs
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magnétiques de plus en plus intenses représente un challenge en termes de matériaux et
de design. La simulation numérique s’avére étre un élément essentiel dans le procédé
d’optimisation.

Un outil pour la modélisation

Basé sur une collaboration entre 'université de Strasbourg et le LNCMI, le projet HiFi-
Magnet vise & mettre en place un outil complet pour la modélisation des aimants a haut
champ. Cette thése s’inscrit dans le cadre de ce projet, avec comme objectif principal le
développement d’une gamme de modéles dédiés. Leur couplage doit former un modéle
multi-physiques 3D qui puisse étre (i) générique pour étre facilement applicable aux
différents design, (ii) efficace au vu de la complexité des géométries et (7i) fiable compte
tenu des incertitudes sur les données d’entrée.

Les développements réalisés dans cette thése donnent la possibilité de réaliser des
simulations numériques sur des géométries d’aimants réels, en utilisant le calcul
haute performance. Pour réduire le cotut calcul associé dans un but de quantifica-
tion d’incertitude sur les paramétres d’entrée — propriétés des matériaux, conditions de
fonctionnement — , nous proposons l'utilisation de méthodes de réduction de modéle.

Les différentes physiques mises en jeu dans I’étude des aimants & haut champ sont
décrites par des équations aux dérivées partielles (EDP) sur lesquelles est basé notre mod-
éle multi-physiques. Au vu de la complexité des géométries, nous avons choisi d’utiliser
la méthode des éléments finis pour résoudre ces EDPs. La librairie élément finis Feel++
|Prud’Homme et al., 2012| — dont le nom signifie Finite Element Embedded Language
in C++ — a été choisie dans ce contexte. FElle fournit une interface C++ dédiée a la
résolution des EDPs, offrant un syntaxe proche de leur formulation mathématique.

En particulier, ses capacités de calcul haute performance sont particuliérement in-
téressantes pour gérer la complexité des problémes non concernant. Cette librairie fournit
également une interface pour 'utilisation de la méthode des bases réduites.

Plan de la thése
La theése s’organise en 4 parties.

La premiére partie concerne les outils mathématiques nécessaires aux développements
réalisés. Un premier chapitre est dédié a la description de la méthode des éléments finis
d’un point de vue théorique, et en particulier aux éléments vectoriels H g, et H.y,. inter-
venant dans la résolution des équations de Maxwell. L’implémentation des éléments de
Raviart-Thomas et de Nédélec dans la librairie Feel++ est une contribution de la thése.
Le deuxiéme chapitre est axé sur les méthodes de réduction de modéle. La méthode des
bases réduites (RB) est décrite pour les problémes non-linéaires et non affines nous con-
cernant, utilisant la méthode d’interpolation empirique (EIM). Enfin, le dernier chapitre
introduit la méthode SER - signifiant Simultaneous Empirical interpolation and Re-
duced basis method — développée dans cette thése. Combinant les méthodes EIM et RB,
la méthode SER |Daversin and Prud’Homme, 2016, Daversin and Prud’Homme, 2015a|
offre un gain considérable en coiit calcul, tout en conservant une qualité d’approximation
raisonnable. Ses performances sont illustrées sur un cas test 2D, puis sur une géométrie
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d’aimant dans la derniére partie.

La seconde partie est centrée sur le développement du modéle 3D multi-physiques
dédié a la modélisation des aimants a haut champ. On s’intéresse tout d’abord au modéle
éléments finis dont les composantes sont (i) un modéle thermo-électrique permettant
de modéliser le courant électrique circulant dans ’aimant et la montée en température
associée, (ii) un modéle magnétostatique donnant le champ magnétique produit, et
(#i) un modéle d’élasticité linéaire couplé aux deux modeéles précédents permettant
d’évaluer les déplacements et contraintes mécaniques induites par les forces magnétiques
et la dilatation thermique. L’application de la méthode des bases réduites est décrite dans
un second temps.

La troisiéme partie liste les contributions apportées a la librairie Feel++ dans le
cadre de cette thése, a savoir (i) 'implémentation des éléments finis de Raviart-Thomas
et de Nédélec, (i) le développement et 'implémentation d’un algorithme paralléle pour
la loi de Biot & Savart permettant de calculer le champ magnétique et (ii7) 'ajout de
la méthode SER dans le framework bases réduites de Feel++, rendant son utilisation
disponible pour ’ensemble des utilisateurs de la librairie.

La derniére partie de la thése illustre 'ensemble des développements présentés, sur des
applications numériques concrétes répondant aux besoins formulés par le LNCMI.
Ces exemples démontrent la capacité des modéles a étre utilisés sur des géométries réelles,
et permettent leur validation a partir de mesures expérimentales. Cette partie regroupe
entre autres, (i) des exemples d’applications du modéle réduit pour la quantification
d’incertitude, (i) la mise en place d’une campagne de mesures de champ magnétique
visant a valider les modéles de magnétostatique ou (7ii) des simulations réalisées pour la
future génération d’aimants hybride visant 43 7.

Outils mathématiques

La plupart des phénoménes physiques peuvent étre décrits par des équations aux dérivées
partielles. De nombreuses méthodes peuvent étre utilisées pour les résoudre, parmi
lesquelles les différences finies, les éléments finis ou encore les volumes finis. Partic-
uliérement adaptée a la complexité des géométries des aimants & haut champ, la méthode
des éléments finis est au coeur des développements réalisés.

Méthode des éléments finis

On considére que les équations aux dérivées partielles (EDPs) admettent une formulation
variationnelle, dont la solution u définie sur le domaine €) est la solution du probléme
variationnel consistant a trouver u € X () telle que

(1) a(u,v) = f(v) Yv € X(Q)

avec X (2) un espace de Hilbert, a : X(2) x X(©2) — R une forme bilinéaire coercive et
f: X(©2) — R une forme linéaire continue.
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D’un point de vue numérique, on résout (1.1) sous sa forme discréte, dans un sous
espace X () de X (), de dimension finie N'. Basée sur la méthode d’approximation
interne de Galerkin, la solution discréte uy provient de la résolution du systéme N x N
donnant ses coefficients dans une base de X ().

N
(2) Uy = Zuf\/gbj avec X (Q) = span{o1,...,on}

j=1

La méthode des éléments finis est utilisée pour définir le sous espace X () de X ()
en déterminant ses fonctions de base.

D’aprés le formalisme de Ciarlet, un élément fini se définit comme un triplet (K, Py, Y)
composé (i) d’un élément géométrique K, (%) d’un espace polynomial Px dans lequel
sont définies les fonctions de bases ¢; de X (Q2), et (4ii) d’'un ensemble de fonctionnelles
linéaires X = {o0;} définissant ses degrés de liberté.

Les coefficients des fonctions de bases locales ¢; (1.3) dans la base de I’espace polyno-
mial Pk sont déterminés a partir des degrés de liberté de 1'élément, K.

En pratique, pour des raisons d’efficacité, on considére chaque élément K comme
I'image d’un élément de référence K par une transformation géométrique ¢%°. Cela per-
met notamment de limiter le calcul des fonctions de bases a 1’élément de référence.

Enfin, le choix de 'espace X (£2) associé au probléme (1.1) doit garantir la conservation
des propriétés attendues pour la solution u. Le diagramme de De-Rham (1.10) établit un
lien entre les espaces vectoriels

Ly(Q)={f | [ f? < o0})

(3) Hi(Q) ={f € La(Q) | Vdf € Ly(Q)}
Haio () = {f € [La(Q)]" [ V- f € La(Q)}
Hom(Q) ={f € [LQ(Q)]d |V x fely(Q)}

avec d la dimension du domaine €.

div

(4) H(Q) 2% Houn(Q) 2% Hg(Q) % Ly©) -5 {0}

Cette relation reste vraie dans le cas discret.

Les éléments finis de Lagrange sont les plus couramment utilisés. Ces éléments nodaux
sont adaptés a la plupart des problémes variationnels, dont la solution réside dans ’espace
H; (1.9). C’est le cas pour les modéles électro-thermique et élastique dédiés a I’étude des
aimants. Ils sont définis comme les triplets (K, Ly, Ef() avec k l'ordre polynomial, et Ly
I’ensemble des polyndmes de degré inférieur a k. Les degrés de liberté de ces éléments
correspondent & I’évaluation des polynomes p € X% aux points d’interpolation de K.
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D’apreés les équations de Maxwell, le champ magnétique produit par les aimants est
dans Hg;, (€2). Le potentiel magnétique dont il dérive, solution de I’équation résolue dans le
modéle de magnétostatique, vit quant a lui dans H.,;1(2). Le développement de ce modéle
requiert un espace X r(€2) dont les fonctions de base satisfont les propriétés associées.
Dans ce but, nous définissons les éléments finis de Raviart-Thomas pour Hg;,(€2) et de
Nédélec pour H.y1(2), dont 'implémentation dans Feel++ est une contribution de la
thése.

Elément finis de Raviart-Thomas

Les éléments finis de Raviart-Thomas sont définis par les triplets (K, Dy, ET), ou k
est 'ordre polynomial. L’espace polynomial Dj est un sous ensemble de ’espace vectoriel
[P).1]" des polynomes de degré inférieur a k + 1, avec d la dimension du domaine €.

(5) Dy, = [Pi]” & xPy, C [Prja]”

On distingue deux types de fonctionnelles dans 'ensemble X2 des degrés de liberté.
Au plus bas ordre — dit ordre 0 —, 5T se limite aux degrés de liberté o localisés sur
les faces, définis comme l'intégrale sur les faces de la composante normale. Les degrés de
liberté internes o viennent s’ajouter a ces derniers a partir de 'ordre 1.

or(u) = /fu -np Vp € Pi(f)

(6)
d
riclw) = [ urq Va e [Piy(K)
K
La normale associée a chaque face des éléments du maillage joue un role important dans
la définition des degrés de liberté. Pour une face partagée par deux éléments, ’orientation
de la normale dépend de I’élément dans lequel on se place. Une attention particuliére doit
donc étre apportée pour assurer l'unicité des normales et ainsi de chaque degré de liberté.

La transformation géométrique ¢%° évoquée précédemment ne permet pas de conserver
les propriétés des éléments de Raviart-Thomas. La transformation de Piola (1.41) définie
a partir de ¢%° et de sa Jacobienne J%° est utilisée pour garantir les propriétés attendues
sur tous les éléments réels K € T,

1 1

€O A (A €O A eo—1
(7) u(x)|x = WL}%{ (%) & u(x)|x = WJ?O)J% o ¢k (x)

Elément finis de Nédélec

Il existe plusieurs types d’éléments de Nédélec. En ce qui nous concerne, on se limite
aux éléments de Nédélec de type 1 définis par les triplets (K, R™!, EkNed’l). Comme pour
les éléments de Raviart-Thomas, I’espace polynomial R*! est un sous espace de [Pk+1]d
défini par la somme

8) REL = [P)? @ S* C [Prsa]”
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otl S* est défini comme

d N
(9) St={pe P’ |p-x=0}
L’ensemble E,]jed’l se compose de plusieurs types de fonctionnelles. En 2D, les degrés
de libertés o, sont localisés sur les arétes, et complétés par des degrés de liberté internes
ok a partir de Iordre 1.

oe(u) = /(u -t)p Vp € Pile)

(10) 2
ricw) = [ urq Vo€ B (K)

K
En 3D, les arétes se distinguent des faces contrairement au cas 2D, et on a (i) des degrés
de liberté o, localisés sur les arétes, (ii) des degrés de liberté oy localisés sur les faces a
partir de 'ordre 1, et (7ii) des degrés de liberté internes ok a partir de lordre 2.

7w = [(a-tp ¥p € Bl
(11) o) = /f (uxn)-q Yg € [Pei(f)]

oxc(u) = /K u-q Vg € Peo(F)

En plus de 'orientation des normales comme dans le cas des éléments de Raviart-Thomas,
on doit s’assurer de I'unicité des tangentes associées aux arétes communes. Si les faces
ne peuvent étre partagées que par deux éléments, il y a beaucoup plus de possibilités a
considérer dans le cas des arétes en 3D.

La aussi, la transformation géométrique ¢%° ne permet pas de conserver les propriétés
des éléments de Nédélec. On utilise la transformation de Piola adaptée (1.71).

(12) u(x)li = T ) & bl = 5 0o ()

Dans la thése, on décrit précisément ces deux familles d’éléments finis. En particulier,
I’expression des fonctions de base sur I’'élément de référence est détaillée pour les cas 2D
et 3D, illustrées par leur calcul dans Feel++.

Méthode des bases réduites

L’optimisation du design ou encore le choix du matériau peuvent étre guidés par I’évaluation
de quantités d’intérét dans différentes configurations, modélisées par des EDPs dites
paramétrées. L’ensemble des configurations considérées peut également tenir compte des
incertitudes sur les données d’entrée du probléme. Les besoins actuels en ingénierie vont
ainsi au dela de la simple prédiction d’'une quantité physique, c’est le cas des aimants a
haut champ nécessitant une optimisation trés fine.

Suivant la taille du probléme, le temps de calcul associé a une seule configuration peut
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étre important, rendant ainsi le colit d’'une telle étude prohibitif. Les méthodes de ré-
duction d’ordre transforment le probléme paramétré initial en un probléme de dimension
réduite, permettant une résolution nettement plus efficace. Développée dans ce contexte,
la méthode des bases réduites [Patera and Rozza, 2007| consiste en une projection de
Galerkin sur un espace d’approximation de taille réduite, composé de solutions éléments
finis.

Chaque configuration étudiée faisant intervenir p paramétres est définie comme un
vecteur g = (ft1, ..., 1p) € D C RP. L’équivalent paramétré du probléme (1.1) consiste a
trouver u € X (Q) tel que

(13) a(u(p),v;p) = f(v: p) Yo € X(Q)

Les quantités d’intérét s(u) sont des fonctions linéaires de la solution.

La méthode des bases réduites est basée sur une stratégie hors-ligne/en-ligne. On
introduit 'espace d’approximation Wy engendré par N solutions éléments finis calculées
a I'étape hors-ligne, avec N < N. L’approximation bases réduites uy € Wy est définie
par ses coefficients dans la base de ’espace d’approximation. L’étape en-ligne désigne la
résolution du systéme N x N associé permettant de déduire uyn et sy(p) = (uy(p)).

L’efficacité de cette méthode réside également dans I'écriture d'une décomposition
affine (2.6) du probléme paramétré (2.3), permettant de pré-calculer — une seule fois lors
de ’étape hors-ligne — les termes indépendants du paramétre . Elle permet en particulier
de s’affranchir de la dimension éléments finis a ’étape en-ligne.

a(u,v; p) ZQ" Jal(u,v) Yu,v e X, VueD,
(14)
Zeq )fi(v) YwveX, VueD

Méthode d’interpolation empirique (EIM)

Lorsque le probléme considéré présente une dépendance non-affine en paramétres, la
décomposition (2.6) n’existe pas. C’est le cas pour le modéle multi-physiques dédié¢ aux
aimants a haut champ.

La méthode d’interpolation empirique (EIM) est couramment utilisée pour construire
une approximation affine wy; (2.8) des termes concernés w.

M

(15) war(u(p), x; ) = > B (u(p); 1)g,, (x)

m=1

Comme la méthode des bases réduites, cette méthode s’appuie sur une stratégie hors-
ligne/en-ligne. I’espace d’approximation associé se compose d’évaluations w(u(p),x; ),
pour des valeurs de p sélectionnées a 'aide d’un algorithme glouton (2.11).

La premiére fonction de base est construite a partir d’un parameétre choisi aléatoire-
ment dans l'espace des paramétres. Ensuite, l'algorithme glouton (2.11) sélectionne le
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parameétre qui maximise l'erreur d’approximation.

(16) [y = argmax inf  |jw(; . p) — 2]|Le(0)

peEE zeWjpr_1

Les fonctions de base q,, formant 'espace d’approximation sont basées sur le résidu

(17) (%) = w(u(p), x; fyy) — war—1(w(p), X; fyy)

et sur la définition de points d’interpolation ¢,

T X
(18) tar = argsup frar ()], qpr(x) =~
<eQ ra(tar)

La partie en-ligne consiste a évaluer les coefficient 52 de wy, (2.8) A 1’aide d’un systéme
de taille M x M, assurant que ’approximation w); soit exacte aux points d’interpolation.

En plus d’étre non affine, le probléme considéré dans le cas des aimants est non-linéaire.
Cette non-linéarité est gérée par une méthode de point fixe de type Picard ou Newton, a
la fois a I'étape hors-ligne et a ’étape en-ligne.

Méthode EIM bases réduites simultanée

Nécessaires pour écrire la décomposition affine, les approximations EIM sont construites
avant Papplication de la méthode bases réduites. L’algorithme glouton (2.11) nécessite
un grand nombre d’approximations éléments finis, pouvant rendre le cott de ’étape hors-
ligne prohibitif suivant la taille du probléme.

En effet, le nombre de solution éléments finis up /() a calculer est proportionnel a la

taille de I'espace de paramétres = C D. Suivant ’expression w considérée, la taille de cet
ensemble de parameétres joue un role important dans la qualité de "approximation.

La méthode EIM bases réduites simultanée (SER pour Simultaneous Empirical In-
terpolation and Reduced Basis Method) propose de réduire le cott hors-ligne en utilisant
I’approximation bases réduites disponible. Pour se faire, les espaces d’approximation EIM
et bases réduites sont construits simultanément.

En I'absence d’approximation bases réduites, la premiére fonction de base EIM est
construite de facon standard a partir d’'un paramétre choisi aléatoirement. L’évaluation
de w pour ce paramétre ne nécessite qu’'une seule approximation éléments finis, permet-
tant d’obtenir un premier espace d’approximation EIM. Bien que formées d’un seul terme,
les approximations EIM engendrées permettent d’avoir une premiére décomposition affine
et d’appliquer la méthodologie bases réduites. I.’ajout d’une premiére fonction de base a
Wy permet de construire une approximation bases réduite uy.

A partir de 14, 'algorithme glouton (2.11) est utilisé pour enrichir 'espace d’approximation
EIM. Contrairement a la méthode standard, il utilise 'approximation réduite u;_; obtenue
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a I’étape précédente plutdét qu’une approximation éléments finis.

19 by, = argmax inf  ||w(up— s ) — 2| e
(19) fuor = argmax inf  {fw(us—1(p); 5 1) = 2llz=@)

L’évaluation du résidu (2.13) permettant de déduire la fonction de base et le point
d’interpolation suivants, est également basée sur up;_;. Les espaces d’approximation
EIM et RB sont ainsi enrichis de maniére alternative, avec une mise a jour de la décom-
position affine & chaque étape.

Le nombre de résolutions éléments finis requis pour EIM se résume a la seule éval-
uation nécessaire pour la premiére base, et ne dépend plus de la taille de 'espace des
paramétres. Avec N + 1 résolutions éléments finis au total — ou N désigne la taille de
I'espace d’approximation RB —, la méthode SER prévoit un gain de temps considérable
pour la partie hors-ligne.

Plusieurs variantes de la méthode SER initiale sont proposées dans la thése, principale-
ment basées sur 'utilisation d’un indicateur d’erreur inspiré des récents travaux réalisés
quant au développement d’estimateurs d’erreur pour les problémes affines non-linéaires.
S’il ne constitue pas une borne d’erreur, 'indicateur d’erreur proposé permet de guider la
construction de I'espace d’approximation bases réduites.

La premiére variante propose ’enrichissement des espaces d’approximations EIM et
RB par groupes de bases, dont la taille est adaptée en fonction de I’erreur d’approximation
estimée. La deuxiéme vise a trier les évaluations bases réduites de I'algorithme glouton
(2.11) selon leur précision, éliminant celles qui seraient jugées non significatives. Nous
n’avons pas constaté d’amélioration notable en termes d’erreur d’approximation par rap-
port & la méthode SER initiale pour ces deux premiéres variantes.

La troisiéme variante propose de combiner plusieurs applications de la méthode SER.
Le premier niveau correspond a la méthode SER initiale. Les suivants utilisent 'approximation
bases réduites provenant du niveau précédent dans ’algorithme EIM. Obtenue & partir
d’une décomposition affine plus précise, cet approximation est plus proche de la solution
éléments finis, comparée au premier niveau. Les résultats obtenus montrent une nette
amélioration de la convergence EIM a partir du second niveau, permettant de réduire
Ierreur d’approximation.

L’implémentation de la méthode SER et de ses variantes dans la librairie Feel++ est
détaillée dans la thése, et illustrée par des applications sur un benchmark 2D et sur le
probléme électro-thermique dédié aux aimants & haut champ. Ayant déja fait I'objet de
deux publications [Daversin and Prud’Homme, 2016, Daversin and Prud'Homme, 2015a],
c’est une avancée importante dans l'utilisation de la méthode bases réduites pour les
probléme non-linéaires et non affines. De nombreuses variantes restent & étudier, et la
question de la convergence a prior: de cette méthode est quant a elle toujours ouverte.
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Modéle multi-physiques pour les aimants & haut champ

La plupart des installations fournissant du champ magnétique intense utilisent des aimants
de type Bitter. L’utilisation d’un modéle 2D axisymmeétrique est satisfaisante pour ce type
de géométries, et est pour le moment a la base de 'optimisation du design des aimants
polyhélices. Des résultats expérimentaux tendent & montrer que le champ magnétique pro-
duit par ce type d’aimants est 3D, et que ces hypothéses ne sont pas adaptées. Dans la
thése, nous proposons un modéle multi-physiques 3D complet pour ’étude de ces aimants.

Produire un champ magnétique intense suppose de fournir un courant électrique dont
I'intensité peut atteindre plusieurs dizaines de kA. Les pertes Joules induites provoquent
une montée en température, pouvant étre critique pour les matériaux. Le modéle électro-
thermique basé sur I’équation de la chaleur dont le terme source correspond aux pertes
Joule est la premiére composante de notre modéle.

La densité de courant qui en découle est une donnée d’entrée pour les équations de
Maxwell, permettant d’évaluer le champ magnétique produit. Deux modéles sont proposés
dans ce contexte. Le premier utilisant les éléments finis de Raviart-Thomas et de Nédélec,
le deuxiéme basé sur la loi de Biot & Savart.

La dilatation thermique provenant de la montée en température, ainsi que les forces
engendrées par le champ magnétique produit, créent des déformations dans 'aimant. Les
déplacements et contraintes induits doivent étres soigneusement pris en compte dans le
design des aimants. Pour cela, nous proposons un modéle d’élasticité linéaire couplé aux
modéles précédents, permettant d’évaluer ces quantités.

Les équations et les formulations variationnelles associées a chacun de ces modéles
sont détaillées dans la thése. La vérification des modéles est illustrée par des études de
convergence 2D et 3D, ainsi qu’a l'ordre élevé lorsque c’est possible.

Le modéle multi-physiques éléments finis

Le modéle électro-thermique

Le potentiel électrique V est solution d’une équation de diffusion, dont le coefficient
est la conductivité électrique o. Les pertes Joules provenant de la circulation du courant
dans 'aimant s’expriment comme le produit de la densité de courant j = oVV par le
champ électrique induit VV. L’équation de la chaleur faisant intervenir la conductivité
thermique k£ du matériau, est couplée au modéle précédent pour déduire la température
T dans 'aimant.

Dans la gamme de température considérée — typiquement entre 20°C' et 200°C' —,
la résistance des métaux augmente linéairement avec la température. De plus, les con-
ductivités électrique et thermique sont liées par une relation de proportionnalité faisant
intervenir T. Ces propriétés dépendent donc de la température, ce qui introduit une
non-linéarité dans le modéle (3.18).

-V - (o(T)VV) =0 dans 2

(20) —V - (K(T)VT) = o(T)VV - VV dans Q
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Des conditions aux limites sont nécessaires pour que le probléme soit bien posé. La
circulation du courant est modélisée par une différence de potentiel entre ’entrée V;, et la
sortie V,,; du courant. Et 'environnement — air ou eau de refroidissement — est supposé
électriquement isolant, se traduisant par un flux nul.

(21) V=0surV,, V=VpsurV,, et —oa(T)VV - -n=0sur 0Q\(Vi, U Vout)

On considére que les échanges thermiques sont limités aux zones 0Q¢o1eq refroidies par
circulation d’eau. La condition de Robin associée s’appuie sur un coefficient de transfert
thermique h et la température de 1'eau T,,.

(22) —Kk(T)VT -n=h(T —T,) sur Ooolea €t — k(T)VT -1 =0 on 92\0Qeooled

La non linéarité est prise en charge par des méthodes itératives de point fixe, de type
Picard ou Newton.

Une premiére étude de convergence est présentée sur une version linéaire du modéle —
avec o(T') et k(T') constants —, basée sur une solution analytique. La vérification du modéle
non-linéaire utilise quant a elle des estimateurs d’erreur a posteriori. L’implémentation
de ces estimateurs est préalablement validée par comparaison avec l’erreur réelle, obtenue
avec le modéle linéaire.

Le modéle magnétostatique

L’induction magnétique B — parfois abusivement appelée champ magnétique — est liée au
champ magnétique H par la perméabilité magnétique u, d’aprés la loi B = yH. L’équation
de Maxwell-Thomson décrit B comme un champ a divergence nulle. L’induction magné-
tique dérive ainsi d'un champ A, défini comme le potentiel vecteur magnétique.

(23) V-B=0 = 3JA|B=VxA

L’équation de la magnétostatique est basée sur le théoréme d’Ampére VxB = puj, donnant

(24) Vx(%VxA>:j

Dans notre cas, la perméabilité magnétique p est une constante égale a la perméabilité
du vide pg. Pour des matériaux dont ’aimantation n’est pas négligeable, ce coefficient
peut dépendre du champ magnétique ce qui rend le modéle non-linéaire.

Le diagramme de De Rham (1.10) donne A dans H.y, et B dans Hg;,. C’est pourquoi
les éléments de Raviart-Thomas et de Nédélec introduits dans la premiére partie sont es-
sentiels.

En supposant que la circulation du courant est limitée & un domaine fini, le champ
magnétique est considéré comme nul a l'infini. Bien que cette condition aux bords soit
nécessaire pour que le probléme soit bien posé, le domaine de calcul est de dimension finie
en pratique. Pour se faire, le domaine €2 comprend une boite enveloppant le conducteur,
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dont les bords 02 sont le plus loin possible.

(25) A xn =0 sur 09

Cependant, I’équation (3.40) n’admet pas de solution unique. Deux formulations sont
étudiées dans la thése pour faire face a cette situation.

La formulation régularisée s’appuie sur les équations de Maxwell décrites dans le do-
maine fréquentiel. L’unicité de la solution est assurée par 'ajout d’un terme de régulari-
sation & I’équation (3.40).

(26) VX(%VXAQ%fAfﬁ
L

La solution A, du probléme (3.47) tend vers A lorsque € tend vers 0.

La formulation point-selle utilise la jauge de Coulomb imposant une condition de diver-
gence nulle sur A. Cette condition supplémentaire est imposée a I'aide d’un multiplicateur
de Lagrange p.

1
(27) Vx(;VxA)—I—Vp:jonQ
V-A=0

Le conditionnement des matrices associées aux problémes (3.47) et (3.48) joue un role
important dans la convergence des solveurs itératifs utilisés pour la résolution. L’ utilisation
des éléments finis de Nédélec dont les degrés de liberté sont localisés sur les arétes peuvent
détériorer ce conditionnement, et ainsi compromettre la convergence du modéle. Dans la
thése, nous décrivons une méthode de préconditionnement dédiée a ce type de probléme,
que nous testons avec les deux formulations.

La loi de Biot & Savart

La loi de Biot & Savart est couramment utilisée pour calculer le champ magnétique
produit par un courant de densité de courant j. Pour la décrire, on introduit €..,q le
domaine associé¢ au conducteur électrique, et 1,4, la région dans laquelle on souhaite
calculer le champ. La loi de Biot & Savart donne I'expression du potentiel magnétique A
et de I'induction magnétique B en tout point r de €24,

Ho j(r,) /
28 A(r)=— ——d € Qpnan
( ) (I‘) 47T Qs | r — I‘I | r r g
o ) x@x-1) ,
29 B(r) = — d € Qnan
( ) (r) 47T /Qcond | r— r/ |3 r r g

La distance | r — r/ | apparaissant au dénominateur de (3.81) et (3.82) induit une
singularité pour les points situés dans le conducteur. Plus précise que le modéle magnéto-
statique précédent, on privilégiera la loi de Biot & Savart pour les régions ou sont placés
les échantillons lors des expériences.
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Au vu de la complexité des géométries, le calcul haute performance est un outil in-
dispensable pour nos modéles. Si son implémentation en séquentiel ne représente pas de
difficultés particuliéres, la loi de Biot & Savart n’est pas naturellement parallélisable.

Dans la thése, nous proposons un algorithme original basé sur une gestion efficace des
communications entre processeurs, dont les performances sont illustrées par des calculs
sur des géométries d’aimants réels. Cet algorithme se révéle pertinent pour ce type de
géométries, pour un cotit calcul raisonnable. De plus, la comparaison des performances
réalisée sur un supercalculateur — jusqu’a 192 processeurs — montre une scalabilité linéaire
de l'algorithme.

Le modéle d’élasticité linéaire

Le modéle d’élasticité linéaire est couplé aux modéles élecro-thermique et magnétosta-
tique pour évaluer les déplacements et contraintes générés par les forces magnétiques et
par la dilatation thermique. Il repose sur I’équation d’équilibre

(30) div(g) +f=0
oll 7 est le tenseur des contraintes, et f les forces volumiques qui s’appliquent.

Défini a partir du tenseur des petites déformations & = %(Vu + Vu?) ou le déplace-
ment u est I'inconnue de notre probléme, le tenseur des contraintes ¢ fait intervenir la
température T', pour prendre en compte la dilatation thermique.

S —p _ E
(31) o(5) =5"@E) +a" avec o' = T3 ap(T — Ty
—2u
ol F et v désignent respectivement le module Young et le coefficient de Poisson, ar est
le coefficient de dilatation thermique et Tj la température de référence.
Les forces magnétiques sont les forces volumiques f = j x B.

Les conditions aux limites sont de deux types. On peut soit fixer les déplacements
dans certaines régions d€2p avec de des conditions de Dirichlet, soit imposer des forces de
pression sur 0)p.

(32) u=up sur p ou ¢-n =g sur Ip

Dans la thése, nous détaillons I'étude de convergence réalisée jusqu’a 1’ordre polyno-
mial 3, en 2D et en 3D. Elle permet de vérifier que ce modéle satisfait les propriétés
mathématiques attendues.

Les contraintes mécaniques subies par 'aimant sont évaluées a partir du tenseur des
contraintes diagonalisé 7¢. Les critéres de Tresca (3.95) et de Von-Mises (3.97) servent &
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déterminer la nature de la déformation, i.e. élastique ou plastique.

= 51 _ 51
(33) trc‘rd - lgzgz)ézm(‘ O U]] D
1, — N2
6 = [ 3 L(at )
1<i<j<Dim

Le modele d’élasticité linéaire précédemment décrit n’est valable que dans le domaine
élastique. Pour des déformations plastiques, le tenseur des contraintes ne s’exprime plus
comme une fonction linéaire de €.

Le modéle réduit électro-thermique

Le modéle électro-thermique décrit précédemment est un élément clé dans la modélisation
des aimants, dont la température peut atteindre des valeurs critiques pour les matériaux.
Cependant, les données d’entrée nécessaires a ce modéle ne sont pas toujours connues de
maniére exacte.

Les propriétés des matériaux sont mesurées par le fournisseur, qui nous donne seule-
ment un intervalle de définition pour ces valeurs. Les paramétres de fonctionnement des
aimants — intensité du courant, conditions de refroidissement — sont également entachés
d’incertitudes car ils sont difficiles & mesurer précisément.

La réalisation d’études paramétriques ainsi que l'application de méthodes de quan-
tification d’incertitude sont essentielles dans ce contexte. Cependant, elles nécessitent un
grand nombre d’évaluations du modéle, impliquant un coiit calcul important. La méthode
des bases réduites est donc tout a fait indiquée dans ce type d’applications.

Rappelons que la méthode des bases réduites permet de résoudre efficacement les EDPs
paramétrées, pour un grand nombre de configurations. Dans notre cas, le paramétre p
considéré regroupe les propriétés des matériaux — conductivité électrique oy, coefficient de
température o et nombre de Lorentz L — et les conditions de fonctionnement de ’aimant
— voltage Vp, coefficient de transfert h et température de ’eau de refroidissement T;, —.

(35) B = (O-OaaaLa VD7h7Tw)
D’aprés expression des conductivités électrique o(7') et thermique k(7),

(36) o(T)

1+ a(T - T)

le probléme couplé électro-thermique (3.18) présente une dépendance non affine en paramétres.

L’écriture d’une décomposition affine de (3.18) pour appliquer la méthodologie bases
réduites requiert ainsi 'utilisation de la méthode d’interpolation empirique (EIM) intro-
duite dans la premiére partie. Les termes concernés sont o(T), k(T), ainsi que le terme
source de I’équation de la chaleur qui dépend de o(T).
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La non-linéarité du probléme est gérée — comme pour le modéle éléments finis sous-
jacent — par des méthodes de point fixe de type Picard ou Newton.

Les quantités d’intérét considérées pour ce modéle sont nombreuses. On peut citer
la température moyenne dans l'aimant, sa puissance, sa résistance ou encore le champ
magnétique en un point.

Pour valider 'implémentation de ce modéle réduit, on s’interesse aux erreurs d’approximation
EIM et RB commises par rapport au modéle éléments finis. L’étude de convergence con-
siste & vérifier que cette erreur décroit avec I'enrichissement de I'espace d’approximation
associé. Dans la thése, on détaille les études de convergence réalisées sur des géométries
réelles d’aimants allant d’un secteur d’aimant Bitter & une hélice a refroidissement radial
compléte. Toutes ont montré la possibilité d’obtenir une erreur d’approximation satis-
faisante pour un nombre de fonctions de base raisonnable.

Le gain en temps de calcul est démontré par son application sur une hélice a refroidisse-
ment radial, dont le maillage est formé de 500 000 noeuds. Si la résolution éléments finis
prend 16 minutes, ’approximation bases réduites est 150 fois plus rapide (6.7 secondes).

Applications numériques

La derniére partie de la thése expose différentes applications numériques reposant sur les
modéles développés, participant ainsi a leur validation. Dans ce résumé, nous introduisons
seulement une partie de ces applications, illustrées par une sélection de résultats.

Analyse de sensibilité

L’analyse de sensibilité consiste a évaluer I'influence de 'incertitude que l'on a sur les
paramétres d’entrée, sur une quantité d’intérét spécifique. Ce type d’étude nécessitant un
grand nombre d’évaluations du modéle, la méthode des bases réduites est parfaitement
adaptée pour le calcul des quantités d’intérét en question.

Pour cet exemple, nous appliquons le modéle électro-thermique réduit a 1’hélice a re-
froidissement radial (figure 8.1), dont le maillage est formé de 500 000 noeuds.

N OO0

I

5
i

D00 %

Figure 2 — Approximation RB de la température
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Les isolants insérés le long de la découpe des hélices induisent localement des points
chauds, ce qui renforce les besoins d’études précises de la température. On se focalise ici
sur la température moyenne comme quantité d’intérét.

Les propriétés des matériaux sont données par le fournisseur ou mesurées en interne.
La température de I'eau est une moyenne entre les mesures a l’entrée et a la sortie de
Iaimant. Le coefficient de transfert thermique est estimé & partir de corrélations hy-
drauliques. Enfin, on fait varier I'intensité du courant injectée dans ’aimant pour des
valeurs correspondant & une utilisation "standard".

oo | [50:50.2] MS.m!

a |[33%x107%35x1073 K-}
L | [25%x107%;2.9 x 107]

I | [25000;35000] A

h | [70000:90000] W.mn 2K~
T, | T, €[293,313] K

Table 1 — Paramétres d’entrée pour ’analyse de sensibilité

L’étude suivante est basée sur 300 évaluations, réalisées sur un ensemble de paramétres
répartis selon une loi de probabilité uniforme. Le modéle électro-thermique réduit nous
permet de calculer efficacement la température moyenne pour chacun de ces parameétres.
Notre modéle est ensuite couplé a la librairie OpenTurns dédiée a la quantification d’incertitude,
pour en déduire la moyenne des quantités d’intérét, 1’écart type, ou encore les quantiles
que nous ne détaillons pas ici.

En particulier, on s’intéresse aux indices de Sobol, qui nous permettent de quanti-
fier Pinfluence des paramétres (table 8.5) sur la température moyenne. Dans cette étude,
on se limite aux indices d’ordre 1 supposant les paramétres d’entrée comme indépendants.

oo | 1.9 x107°
a |23x10™
L ]0.0028

I 1075

h |0.069

T, ]0.16

Table 2 — Indices de Sobol pour la température moyenne

Sans compter l'influence évidente de I'intensité du courant, ce sont les paramétres de
refroidissement qui ont le plus d’impact sur la température moyenne.

SER appliquée au modéle électro-thermique

La seconde application introduit 'utilisation de la méthode SER sur le modéle réduit
électro-thermique précédent. Cette étude s’appuie sur la géométrie d’un secteur d’aimant
Bitter, et compare les performances obtenues par rapport a la méthode bases réduites
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Pour cela, on étudie 'erreur entre le modéle réduit — basé sur M fonctions de bases
EIM, et un espace d’approximation RB de taille N —, et le modéle éléments finis sous
jacent. La table 11.2 donne les erreurs maximales et moyennes max (e}, ) et mean(ej; y)
(resp. max(ey, v) et mean(ey, ) sur la solution (resp. sur la quantité d’intérét consid-
érée, a savoir la température moyenne), obtenues avec la méthode standard. Ces résultats
s’appuient sur un ensemble de 1000 paramétres utilisé pour ’ensemble de I’étude.

N M maz(ey y) maz(ey ) mean(ey, ) mean(€y, y)

5 9 1.64e+1 1.94e-1 1.51e+0 1.69e-2
10 10  6.84e+0 8.24e-2 4.90e-1 5.96e-3
15 15 6.30e-2 4.90e-4 5.33e-3 3.16e-5
20 20 1.31e-2 1.65e-4 1.28e-3 1.33e-5
25 25 9.80e-3 6.74e-5 6.88e-4 3.77e-6

Table 3 — Méthode RB standard

La table 11.3 donne les erreurs obtenues en utilisant la méthode SER, pour la méme
configuration.

N M max(ey y) mazv(eyy) mean(ef, y) mean(ey, )

5 9 1.05e+1 2.09e-2 1.26e+-0 3.27e-3
10 10 5.07e-1 3.42e-3 1.05e-1 4.69e-4
15 15 5.24e-1 1.05e-3 3.95e-2 1.18e-4
20 20 9.23e-2 1.89e-4 8.78e-3 2.79e-5
25 25 3.26e-2 1.90e-4 3.59e-3 2.72e-5

Table 4 — Méthode SER

Au vu des erreurs obtenues, on note que la qualité de I'approximation est peu détéri-
orée par rapport a l'approche standard. Ces résultats confirment la pertinence de la
méthode SER, montrant que 'on peut espérer de bons résultats pour un coiit calcul hors-
ligne moindre.

Les tables 11.2 et 11.3 s’appuient sur une sélection aléatoire des paramétres utilisés
pour la construction de I’espace d’approximation RB. Les résultats obtenus en combinant
SER avec |'utilisation d’un algorithme glouton — via 'indicateur d’erreur proposé — mon-
trent une amélioration significative pour la qualité de ’approximation.

Ces comparaisons, ainsi que 1’étude des variantes proposées pour SER sont détaillées
dans la thése. La variante la plus prometteuse s’avére étre la méthode multi-niveaux
combinant plusieurs applications de l'algorithme SER. La figure 11.5 montre les courbes
de convergence EIM associées aux approximations de o(7") et de k(7). On peut voir que
la qualité des approximations EIM est nettement meilleure dés le deuxiéme niveau.
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Figure 3 — Méthode SER multi-niveaux - convergence EIM

Enfin, nous détaillons dans la thése ’étude des performances de la méthode SER en
termes de temps de calcul pour I'hélice a refroidissement radial déja évoquée précédem-
ment. Le facteur de gain observé sur 'algorithme glouton EIM atteint deux ordres de
magnitude, pour une approximation bases réduites trés peu détériorée.

Validation du modéle magnétostatique

Initialement, les modéles utilisés au LNCMI pour calculer le champ magnétique produit
par les aimants sont basés sur des hypothéses 2D axisymmétriques. Des expériences de
magnétoscience réalisées au laboratoire — en Résonance Magnétique Nucléaire (RMN), ou
en lévitation magnétique — semblent pourtant indiquer que le champ magnétique mesuré
peut étre trés différent de I'approximation axisymmétrique.

Pour confirmer ces observations, nous avons mené une campagne de mesures du champ
magnétique de ce type d’aimants. Dans cet exemple, on propose d’utiliser ’algorithme
paralléle de Biot & Savart développé dans la thése pour calculer le champ magnétique
et tenter de reproduire ces résultats. Cette comparaison sert également a valider notre
implémentation.

Pour les mesures expérimentales, nous utilisons une sonde a effet Hall tri-axe (figure
9.3c) mesurant les composantes B,, B, et B, du champ magnétique (figure 9.3d). Le
porte-sonde développé pour cette expérience permet de déplacer la sonde hors de I'axe
de I'aimant — ou 'effet 3D sera le plus visible —, le long d’un cercle de rayon constant
r =17.5 mm (figure 9.8b).
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(b) Gaussmétre (LakeShore Model 460) (c) Rotation de la sonde

Figure 4 — On mesure le champ sur un cercle de rayon constant a ’aide d’une sonde a
effet Hall

Les mesures ont été réalisées sur un aimant polyhélices formé de 14 hélices a refroidisse-
ment longitudinal, dans lequel nous avons injecté un courant de 500 A pour un champ
maximum de 0.361 7T". Pour étre comparés aux résultats obtenus avec le modéle axisym-
métrique, nous étudions les variations des composantes B, et By du champ magnétique
le long du cercle.

Les figures 9.16 et 9.17 comparent les résultats obtenus a une hauteur z = 100 mm
au-dessus du centre magnétique. Elles comparent les résultats obtenus (i) lors de deux
expériences, (i) avec le modéle axisymmétrique, et (iii) avec notre modéle de Biot &
Savart appliquée sur des maillages plus ou moins fins.

x Exp 16/12/15 + Exp 17/12/15
+B&S - mesh 2 + B&S - mesh 3

25.5 [~ T T T T T T =

24.5 |-

23.5 -

225 -

0 50 100 150 200 250 300 350
0

Figure 5 — Comparaison de B, le long du cercle de rayon r = 17.5 mm a z = 100 mm
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x B&S - mesh 1+ B&S - mesh 2
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(b) Numérique
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0
(a) Experimental
Figure 6 — Comparaison de By le long du cercle de rayon r = 17.5 mm a z = 100 mm
Les mesures expérimentales réalisées sont reproductibles, et permettent tout d’abord
de confirmer les observations préliminaires, attestant que le champ magnétique produit
par les polyhélices est effectivement 3D. Les variations observées le long du cercle de rayon
r =175 mm a z = 100 mm sont bien captées par notre modéle basé sur la formulation

de Biot & Savart, validant son implémentation paralléle. D’autres comparaisons sont dé-
taillées dans la thése, notamment & z = —100 mm pour lesquelles les résultats sont moins

satisfaisants, possiblement dis & 'usure de 'aimant ou a l'environnement magnétique.
De nouvelles campagnes de mesures sont actuellement en cours pour étayer cette étude

préliminaire.
Simulations pour aimant hybride
Les aimants hybrides visent & produire des champs magnétiques continus supérieurs a
40 T en combinant un aimant résistif et un aimant supraconducteur. Actuellement, le
seul aimant de ce type en fonctionnement se trouve en Floride, et permet d’atteindre
45 T. Le développement d’un aimant hybride est en cours & Grenoble, s’appuyant a la

fois sur des aimants polyhélices et Bitter pour la partie résistive.
Pour cette application numérique, on se limite a l'insert polyhélices composé de 14
hélices & refroidissement longitudinal. Son design est d’autant plus critique du fait du

champ de fond produit par les aimants Bitter (9.2 T') et supraconducteur (8.5 T) qui
Ientourent. Cette étude vise & anticiper le comportement de cet aimant dans son envi-

ronnement de fonctionnement, & partir du modéle multi-physiques éléments finis proposé.
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20 53 86 119 1562 15 22 30 37 45

(a) Température (b) Champ magnétique
Figure 7 — Température et champ magnétique

Dans la thése, ces résultats sont comparés au comportement obtenu pour le méme
type d’aimant, mais avec un design prévu pour fonctionner dans un environnement stan-
dard, i.e. sans champ de fond supraconducteur. En plus de prévoir la répartition de la
température et des contraintes dans ’ensemble de I'insert — ce qui n’était pas réalisable
avec les anciens modéles —, cette analyse prédictive permet de donner des spécifications
plus précises notamment en termes de matériaux.

VonMises [MP3

Displacements [mm

0.00 0.18 036 053 0.71 128 255 383 510

(a) Déplacements (b) Contraintes (Von-Mises)
Figure 8 — Déplacements et contraintes

D’un point de vue numeérique, cette étude démontre la faisabilité de notre mod-
éle multi-physiques sur ce type de probléme. Le temps d’une simulation compléte est
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d’environ 1 heure sur 32 processeurs, pour un maillage comptant environ 1 million de
degrés de liberté.

Conclusion

Nous avons introduit & travers cette thése un ensemble d’outils dédiés a la modélisation
des aimants a haut champ. Ces développements sont basés sur la méthode éléments finis
et son implémentation dans la librairie Feel++.

Nous proposons un modele multi-physiques non-linéaire 3D couplant un modéle électro-
thermique, un modéle de magnétostatique et un modéle d’élasticité linéaire. Chacun d’eux
est vérifié a travers des études de convergence, et validé par comparaison avec des mesures
expérimentales lorsque c’est possible.

Les équations de Maxwell & la base du modéle de magnétostatique impliquent 'utilisation
d’éléments finis spécifiques. L’implémentation des éléments Hg;,-conforme de Raviart-
Thomas et H,-conforme de Nédélec dans Feel++ est une contribution de la thése. Le
champ magnétique produit par les aimants peut également étre calculé d’aprés la loi de
Biot & Savart pour laquelle nous proposons un algorithme paralléle original.

Au vu de la taille des problémes a résoudre, le colt calcul peut étre un frein pour la
réalisation d’études paramétriques ou la quantification d’incertitude. Dans ce contexte,
nous proposons l'application de la méthode des bases réduites pour le modéle électro-
thermique, dont les performances sont illustrées par plusieurs applications concrétes. Les
pré-calculs associés restent néanmoins coiteux, du fait de la non-linéarité et de la dépen-
dance non affine. L’algorithme SER — Simultaneous EIM and RB — est un apport original
de cette these, dédié a ce type d’équations. Cette méthode permet un gain de temps
considérable, tout en conservant une approximation bases réduites de qualité. Plusieurs
variantes pour SER sont également proposées et testées.

Pour la suite du projet, I'un des objectifs premier est I’enrichissement du modéle multi-
physiques, notamment avec un modeéle hydraulique plus avancé permettant de mieux
prendre en compte le refroidissement. On pourrait aussi envisager un modéle d’élasticité
non-linéaire pour les déformations plastiques. Un modéle instationnaire peut également
étre considéré, pour mieux comprendre ce qu’il se passe lors d’une coupure de courant par
exemple.

Les méthodes numériques sous jacentes présentent également des perspectives d’évolution.
L’implémentation des éléments Hg,-conforme et H,,;-conforme d’ordre élevé, ainsi que
Iapplication de méthodes HDG — Hybrid Discontinuous Galerkin — sont d’ores et déja
prévues. Les méthodes HDG offrent une approximation optimale a la fois pour la variable
en question et pour son flux. Dans notre cas, elles permettraient une meilleure approxi-
mation de l'intensité et de la densité du courant, aidant en particulier a la convergence
du modéle de magnétostatique.

Le modéle électro-thermique réduit pourra étre complété pour obtenir une version
réduite du modéle multi-physiques complet. Enfin, la méthode SER offre de belles per-
spectives qui méritent de continuer son exploration.
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Notations

Methods

FE . Finite Element

RB : Reduced Basis

EIM : FEmpirical Interpolation Method
SER : Simultaneous EIM and RB

Mesh

d . Geometrical dimension d =1, 2 or 3

(K, Pk,Yk) : Finite Element tuple

Iy, : Mesh of characteristic size h

K : Geometrical element K € ',

K . Reference geometrical element

P’ . Geometrical transformation ¢5° : K — K
n Unit outward normal

t : Unit outward tangent

Functional spaces

Q Regular bounded domain 2 C R¢

X () :  Continuous functional space

(,)x : Scalar product associated with function space X
Vf :  Gradient of scalar function f

vV-f : Divergence of vectorial function f

Vxf . Curl of vectorial function f

Ly(S2) : {f‘ff2<00}

Hi(Q) : {f€LaQ)| VS € [L()]}
Hao(Q) = {f €L | V- f € Ly(Q)}
Hen(Q) :+ {f €[La(Q)| V x f € [L2(Q)]}
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Finite Element method

N . Global finite element space dimension

B : Primal basis B = {¢;}

oi . FE basis function

ggi . FE basis function on reference element K

Xn(2) : FE approximation space X (Q) = span{¢; }1<i<n
UNS : FE approximation

Reduced basis method

N . RB space dimension

& : RB function

Sy : RB trainset

Wy : RB approximation space Wy = span{& }i<i<n
uy : RB approximation

M : EIM dimension

G¢n : EIM basis function

Sy ¢ EIM trainset

Wy @ EIM approximation space Wy = span{gm b1<m<m
w Input parameter

D :  Parameter space

Yg : Riesz representation of the functional g

High field magnets modeling

E . Electrical field [V.m™!]

j : Current density [A.m™?]

Ty . Reference temperature [K]

o :  Electrical conductivity at reference temperature T [S.m ™|
o(T) : Electrical conductivity [S.m™]

Po : Resistivity at reference temperature Tj [Q2.m)]

p(T) : Resistivity [Q.m)]

ko : Thermal conductivity at reference temperature Ty [W.m ™. K]

k(T) : Thermal conductivity [W.m 1. K]
Vv . Electrical potential [V]

T :  Temperature [K]|

L :  Lorentz number

h . Heat transfer coefficient [W.m=2. K]
T Water cooling temperature [K]
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Magnetic field [A.m™!]

Magnetic induction - often abusively referred as magnetic field [T]
Magnetic potential vector [V.s.m™!]

Vacuum permeability [T.m.A™]

Stress tensor

Volumic forces

Tensor of small deformations
Displacement vector [m)]

Poisson’s ratio

Young modulus [Pal]

Thermal dilatation coefficient [K ]
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Introduction

The magnetic field, given in Tesla in the International System of Units, is present through-
out our environment. For instance, the magnetic field in the human brain is about 1072 T
while the magnetars are characterized by their extremely powerful magnetic fields which
can reach up to 10'* 7. We can also quote the Earth’s magnetic field whose intensity is
4.7 x 1075 T.

Magnetic fields can be generated in various ways. There are magnetized materials
whose magnetization, either permanent or remanent, naturally produces a magnetic field.
The magnetic field can also arise from the circulation of an electrical current within
a conductive material, solid or liquid. The complete mathematical description of elec-
tromagnetism has been provided by James Clerk Maxwell since 1864 |Maxwell, 1865|,
resulting in Maxwell’s equations. Electromagnetism has hence been perfectly character-
ized for more than 100 years. From this knowledge, people have understood how to create
and control magnetic fields.

The first developments aiming to generate strong magnetic fields date from the early
1900s, based on the theoretical investigations of Fabry in 1898. In 1914, Deslandres and
Perot successfully built a solenoid able to generate 5 T'. At that time, several electromag-
nets able to produce a magnetic field of similar intensity have been developed. In France,
the big electromagnet of Bellevue |Cotton, 1928| operated from 1920 to 1970 offering
a larger useful volume, hence giving the possibility to conduct numerous experiments.
Nowadays, this 120 tons electromagnet is a museum piece. The modern techniques for
the generation of steady magnetic fields had emerged in the 1940s through the works of
Francis Bitter. Further historical details can be found in |D.H. Parkinson, 1967|.

Since then, various electromagnets have been developed following or improving the
technology introduced by F. Bitter (see [Montgomery, 1969|). In the late 1960’s, magnets
made of superconducting materials which conduct current without electrical resistance
at low temperature, namely below 4 K, were built. These magnets are now commonly
fabricated and are able to produce up to 23.5 T'. This record magnetic field value repre-
sents the current limit for Low Temperature Superconductors (LTS). It is provided by a
magnet located at the Ultra-High Field European NMR Center in Lyon, France.

Electromagnets are widely used in a large range of domains. As an example, medical

imagery uses electromagnets — generating from 1 7" to 3 1" — to put in resonance certain
atoms of the matter. These magnets enable to obtain a clear picture of the human body.

xli
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Note that there also exist High Temperature Superconductors (HTS) which remain
superconducting at higher temperature. Research is currently carried out to use this kind
of materials, discovered in the 1980s. It is the focus of active developments as they should
enable to design magnets breaking the LTS magnetic field limit.

To reach high magnetic fields, i.e. higher than 24 T, watercooled resistive magnets
made out of resistive materials as copper alloys are used.

More generally, high magnetic fields constitute a powerful tool for researchers to probe
and determine the properties of matter. For instance, they can serve to understand the
physics of superconducting state in High Temperature Superconductors. They can also
provide microgravity conditions. Indeed, the magnetic forces generated in some magnetic
materials can locally balance the gravity, allowing to perform on Earth experiments that
would otherwise have to be performed in space.

Only few electromagnets in the world allow to reach high magnetic fields. They can
be found in laboratories that operate as user facilities. The FEuropean laboratories are
grouped into the European Magnetic Field Laboratory (EMFL) providing high field mag-
nets to scientists through two annual calls for experiments. Present in Grenoble and
Toulouse, the Laboratoire National des Champs Magnétiques Intenses (LNCMI) is the
French high field magnet laboratory. The electromagnets developed on the Grenoble site
can reach up to 36 T for several hours.

At LNCMI, various electromagnet technologies are used to perform the magnet de-
sign. At first, the Bitter electromagnets, which consist of a solenoid made of a stack of
conducting disks. These disks are arranged so that the current moves in a helical path
through them. To control the increase of temperature due to the electrical current, these
magnets are cooled with water going through holes pierced in their disks. This kind of
electromagnets, invented by F. Bitter in 1933, is the most commonly used in high mag-
netic field facilities. At the present time, the record magnetic field obtained with this
technology is 38 T" reached in Hefei, China.

A second technology consists in the so-called polyhelix magnets made of concentric
copper alloy tubes, which are helically cut. Exclusively developed at LNCMI, two types
of polyhelix are considered depending on their water cooling process. In the first case, the
helical slits performed by spark erosion through Electrical Discharge Machine (EDM) are
filled with a mix of epoxy glue and glass marbles to ensure the electrical insulation be-
tween turns. The cooling water thus only circulates between the copper tubes, for which
we employ the term of longitudinally cooled helices. As to the so-called radially cooled
helices, the electrical insulation between turns is ensured by the insertion of insulators
regularly arranged over the helix cut. In this context, the cooling water flows also between

the turns, allowing a better cooling of the magnet. More details on these technologies can
be found in |Debray et al., 2002| and |Debray et al., 2012|.
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(a) Bitter magnet (b) Polyhelix magnets
(up to 1m in diameter) (up to 400mm in diameter)

Figure 9 — Various resistive magnet technologies are used to reach high magnetic fields

High field magnet modeling

In a strong international competition for higher magnetic fields, the LNCMI needs to
improve the characteristics of its magnets to remain a major competitor. Nevertheless,
the development of magnets able to generate higher and higher and/or more and more
homogeneous fields represents a challenge in terms of materials and design. As mentioned
in |Trophime et al., 2002|, numerical simulation proves to be an essential tool for the
optimization process.

Based on a collaboration between the university of Strasbourg and the LNCMI, the
HiFiMagnet project aims to develop a software toolchain for high field magnet modeling.
As part of this project, the main objective of this thesis is to provide a range of non-linear
coupled models that are suitable in this context. Besides the complexity of the geometries,
the input data is subject to uncertainty which has to be taken into account in the model.
The aimed 3D multi-physics model has hence to be efficient in addition to being generic
and reliable.

The developments provided in this thesis allow to efficiently perform numerical sim-
ulations on real magnet geometries thanks to High Performance Computing techniques.
Moreover, its combination with model order reduction methodology enables to take into
account the previously mentioned uncertainties, thus covering the whole input parameter
space. The significant gain in terms of computational time especially makes paramet-
ric studies and uncertainty quantification feasible, which was unattainable with earlier
models.

Feel++ : Finite Element Embedded Library

The physics involved within high field magnets study are described by coupled Partial
Differential Equations (PDE), which form the considered model.

Especially adapted for such complex geometries, the Finite Element (FE) method is
assessed as being suitable for the numerical resolution of these PDEs. In this context, the
FE method is at the basis of all the developments undertaken through this thesis.



xliv INTRODUCTION

The use of the Feel++ library which stands for Finite Element Embedded Language
in C++ has been selected for this purpose. It offers a language specifically designed to
address the resolution of PDEs relying on a domain specific embedded language (DSEL).
Embedded into the C++ language, this library helps in the formulation of the considered
equations being close to their mathematical synthax.

Feel++ has already been the subject of various publications, amongst which |Prud’homme,
2006| and |Prud’Homme et al., 2012].

Feel++ is an open-source library involved in numerous scientific projects which es-
pecially benefits from the development of state of the art methods coming from diverse
domains. Tt is combined with various dedicated libraries especially PETSc |Balay et al.,
2012| and Hypre |Falgout et al., 2006] which offer a wide range of solvers and precondi-
tionners, and GMSH |Geuzaine and Remacle, 2009| for meshing.

Best expressivity Best expressivity
using high using high
level language level language
Numerical Physical Numerical Physical
Methods Models Methods Models
Domain
Complexity Specific
of Scientific Embedded
Computing Language
Software for Galerkin
Methods
Computer Algebraic Computer Algebraic
Science Methods Science Methods
Best performance Best performance
using low using low
level language level language

Figure 10 — The DSEL offered by Feel++ provides high level language to break the
complexity of scientific computing software while keeping the performances of a low level
language.

Its High Performance Computing capability is also a core feature of the library allow-
ing seamless parallel computing. This is a very important aspect in the context of high
field magnet modeling in view of the size and the complexity of the considered problems.

Based on its finite element method implementation, Feel++ also provides a framework
dedicated to the reduced basis method. The use of this model order reduction method
is a key point of the developments presented in this thesis in the context of uncertainty
quantification previously discussed.

Plan

This manuscript is organized into four parts.
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The first part is dedicated to the mathematical tools on which the presented develop-
ments are based.

The Chapter 1 focuses on the finite element method in a theoretical point of view.
Starting with the description of the standard Lagrange finite elements, this chapter espe-
cially deals with the Hy;, and H.,; conforming finite elements as basis ingredients in the
development of the aimed 3D multi-physics model.

The Chapter 2 is dedicated to the reduced basis methodology specifically applied to
the non-linear and non affinely parametrized problems that concern us. To this end, we
introduce the so-called Empirical Interpolation Method (EIM) used to recover the core
ingredients involved in the reduced basis methodology.

As an original contribution, the Section 2.3 proposes a combination of these two meth-
ods allowing a decrease of the resulting computational cost. Named SER for Simultaneous
Empirical interpolation and Reduced basis method, this work is the subject of two pub-
lications |Daversin and Prud’Homme, 2016| and |Daversin and Prud’Homme, 2015a].

The second part describes the components of the multi-physics model dedicated to
high field magnets study based on the previously introduced methods. The Chapter 3
focuses on the finite element multi-physics model, while the Chapter 4 deals with the use
of the reduced basis method.

The current flow and the resulting temperature increase are ruled by the non-linear
coupled electro-thermal model detailed in the first chapter.

Coupled to the latter, the magnetostatic model secondly described in this chapter
allows to determine the magnetic effect of the current flow within the magnet. We distin-
guish two techniques to compute the magnetic field both based on Maxwell’s equations.
The 3D magnetostatic model allows to compute the magnetic field both in and around the
magnet. The initial problem being ill-posed, we consider several formulations allowing to
overcome the resulting numerical issues. This model requires also the H,,-conforming fi-
nite elements previously discussed, combined with appropriate preconditioning techniques
which are briefly described. The Biot and Savart’s law is the second alternative for solving
Maxwell’s equations. It is especially well suited to determine the magnetic field seen by
scientists.

Finally, the last section of this chapter focuses on the linear elasticity model coupled
with the two previous ones. It takes into account both the forces induced by the magnetic
field and the ones induced by the thermal dilatation, enabling to quantify their mechanical
effects.

As mentioned, the Chapter 4 lastly details the characteristics of the reduced version
of the electro-thermal model. Already introduced in several contributed talks, this model
is illustrated with numerical results in |Daversin et al., 2016b].

The third part of this manuscript deals with the significant contributions made to
Feel++ in the context of this thesis.

Initially not available within the library, the implementation of the Raviart-Thomas
and Nédélec finite elements of lowest order are the focus of the Chapter 5. This chapter
details their integration into the Feel++ finite element framework using the theoretical
considerations of the first part.

The Chapter 6 is dedicated to the implementation of the Biot and Savart’s law offering
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an accurate evaluation of the magnetic field. Although trivial in a sequential context, the
implementation of this formulation cannot be easily parallelized. We propose an algorithm
based on a smart strategy for the communications between processors. The performances
of this algorithm which is original to our knowledge are illustrated by numerical experi-
ments performed on a supercomputer.

Finally, the Chapter 7 of this part details the implementation of the previously men-
tioned SER method as part of the Feel++ reduced basis framework.

The last part of this thesis is dedicated to numerical experiments illustrating the
whole set of methods and models previously introduced. All of these applications address
concrete needs of LNCMI in terms of numerical simulations.

The Chapter 8 illustrates the use of the reduced electro-thermal in the context of para-
metric studies and uncertainty quantification providing essential information for magnet
maintenance.

The Chapter 9 is dedicated to the setting up of an experimental measurement cam-
paign especially undertaken as part of this thesis, which first enables to validate our mag-
netostatic model. These measurements especially highlight the pertinence of considering
a full 3D model instead of the existing 2D axisymmetrical ones.

Still on the subject of model validation, the Chapter 10 describes the validation of
the linear elasticity model from the comparison to commercial software since only few
experimental data are available. Indeed, the magnets are operated in a highly constrained
environment due both to high pressure and lack of space which makes the instrumentation
difficult.

The Chapter 11 focuses on the application of the proposed SER method within the
reduced electro-thermal model. The use of the initial SER method as well as its variants
on real magnet geometries proves their relevance for such applications.

Finally, the Chapter 12 emphasizes on the feasability of our multi-physics model on
complete magnet inserts in the context of the development of the future Hybrid magnet
|Pugnat et al., 2016| aiming to reach 43 7" in a 34 mm diameter bore.
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Part 1

Mathematical modeling






Chapter 1

Finite Element Method

Most of physical phenomena can be described by Partial Differential Equations (PDE),
as for the physics involved in high field magnets we focus on. Many methods have been
proven in the domain of engineering analysis for such problems, among which finite differ-
ences, finite elements or finite volumes. Especially recognized for its versatile properties,
the Finite Element (FE) method is widely used in this context and particularly suitable
for complex geometries such as those of high field magnets.

In this chapter, we start with a general description of the finite element method |Cia-
rlet, 1978|, |Brezzi and Fortin, 1991, |Canuto et al., 2006| as the basis of all further
developments of this thesis.

The first section is a reminder of the definition and the characteristics of the most stan-
dardly used finite elements, namely the H; conforming finite elements. A fuller description
can be found in |Pena, 2009 or in |Chabannes, 2013|. Even though H;-conforming La-
grange finite elements are widely used in the considered models, their development doesn’t
represent a contribution since their use was already fully available. This assessment allows
to take the next step, which focuses on other finite element types as essential ingredients
of the multi-physics model described in Chapter 3.

Especially needed for the development of the magnetostatic model detailed in Sec-
tion 3.2, the implementation of the Hg;, and H., conforming finite elements within the
Feel++ library as well as its validation represents an important contribution.

Contents

1.1 Hi-conforming finite elements . . . .. .. ... ... ......

1.2 Hg-conforming Raviart-Thomas finite elements . . . . . . ..

1.3 H.-conforming Nédélec finite elements . . . . . .. ... ... 14

We admit that all PDEs read as a variational formulation whose solution « defined on
a domain €2 is the solution of a variational problem

(1.1) Find v € X(Q) | a(u,v) = f(v) Yv € X ()
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where X () is an Hilbert space, a : X(Q) x X(©2) — R is a continuous and coercive
bilinear form, and f : X(Q2) — R is a continuous linear form.

The numerical computation of the solution u of (1.1) requires to transpose the consid-
ered continuous variational problem into a discrete one. To this end, the so-called internal
approximation replaces the continuous Hilbert space X (£2) by a subspace X (2) C X ()
of finite dimension NV in which the discrete numerical solution u shall reside.

Galerkin method We use the Galerkin method as internal approximation method. It
reduces the continuous problem (1.1) to the approximated variational problem :

(1.2) Find upn € Xar(Q) | alupn, va) = fon) Your € Xa(2)

whose solution wys can be numerically computed as a linear combination of X (Q2) basis
functions {¢; h1<icn (1.3), also called finite element basis functions :

N
(1.3) upn = Zuf\/(ﬁj with Xy(Q) =< ¢; >},

Jj=1

Introducing the stiffness matrix Ay = (a(¢;, ¢;)) € RV and the associated vector
By = (f(¢#)), the solution uy = (us,...,up) of (1.2) is the solution of the N x A
system

(1.4) An upn = By

Finite element definition The Galerkin approximation (1.2) supposes the knowledge
of the discrete subspace X (€2). The definition of this approximation space can be pro-
vided by many numerical methods, such as the finite elements we focus on.

Considering the Ciarlet formalism |Ciarlet, 1978|, the FE method defines X(€2) from
a tuple (K, Pg,Yk) which describes the finite element. K is a geometrical domain —
simplex or hypercube — resulting from the partitioning of €). Py is a polynomial space of
finite dimension in which the FE basis functions {¢; }1<;<n shall reside. Pk is commonly
known as the primal space whose basis — called primal basis — is denoted as B = {(}.
This basis is local to the element. The last component of the finite element is a set of
linear functionnals Yx = {0 : Px — R}Y,, also known as the dual space which consists
of the so-called degrees of freedom.

The definition of the discrete subspace X (£2) resides in the definition of its basis
functions {¢;}1<icn (1.3). As elements of Pk, they read as a linear combination of B
elements such that

N
(1.5) Ik | = G Vi=1,..,.N, i€eR

k=1

The coefficients ¥ of (1.5) are obtained from the definition of degrees of freedom Y



of the finite element. They have to satisfy
(16) Ui((ﬁj) = 5@'j VZ,j = 1, ,N

Thus, the FE method allows to define the discrete subspace X (£2) required to solve
(1.1) applying the internal interpolation method (1.2). This space is defined from its
basis functions which reads in the primal basis B. Their coefficient ¢ Vi = 1,..., N, Vk =
1,..., N (1.5) are the solution of the system

o1(¢) o o o) c% le\/ 1 0 --- 0
(17) - A I RO S b

: : : L : o0

on(C) oo e on(Cy) Cll\/ C/Q// 0o --- 0 1

Geometrical transformation The partitionning of the domain € is a finite collection
Iy, of non empty and disjoint open simplices or hypercubes K € I'j,. These simple geomet-
rical elements K € '), are either simplices — lines (1D), triangles (2D), tetrahedrons (3D)
— or hypercubes — lines (1D), quadrangles (2D), hexaedrons, prisms or pyramids (3D).
All further finite element descriptions are based on simplices, but similar arguments can
meet with hypercubes.

The FE method connects each element K with its own finite element tuple (K, Px, > x)
involving its proper basis functions. In practice, a wise solution consists in choosing a

reference element K for which a reference finite element ([A( , Pp, % K) is considered. Each

real element K € I, is supposed to be the image of K from a C!—diffeomorphism P’
as illustrated in Figure 1.1.

(e Yau
3 O () 3 g
M3 /\ 3
%{eo -1 ( 3 gé(
B S N e \,
& & @ 3 z

Figure 1.1 — Geometrical transformation on a 2D simplex

Many elementary computations can be performed once on the reference element. The
set {¢;}¥, (1.8) is thus deduced from the reference basis functions {¢;}, owned by the
reference element K on which ¢%° is applied.

(1.8) ¢i = %) Viel,....N

However, the finite element basis functions {¢;}Y, are arguments of the weak for-
mulation integrals. The associated variable change thus supposes the knowledge of the
Jacobian of the transformation ¢%°. In this context, we denote J&° the Jacobian matrix
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of ¢%°, and det(J5°) its determinant.

De Rham complex diagram Depending on the considered problem, the space X (2)
has to be carefully determined to guarantee that the solution it hosts has the expected
properties. As mentionned in |Zaglmayr, 2006| or in [Boffi et al., 2013|, the so-called
De Rham complex diagram (1.10) establishes a sequence relating spaces from the main
differential operators.

Let us introduce the standard differential form spaces, where d is the dimension of () :

Ly(Q) ={f| [ f* < oo}

H(Q) ={f € Ly(Q) | Vf e Ly(}
Haio(Q) = {f € [Lo(Q)] | V- f € Ly(Q)}
Heat(Q) = {f € [Lo(Q))" | V x f € Lo(Q)}

(1.9)

The De Rham complex diagram is expressed as the sequence
(1.10) H(Q) 2% Hun(Q) 28 Hyo(Q) 2% L) -5 {0}

The range of each operator relating two spaces in (1.10) coincides with the null space
of the next operator.

The discrete compactness property of the De Rham complex diagram makes it valuable
for discrete finite element space Xy C X (1.2). Denoting 7y : X —> X the Galerkin
interpolation operator resulting in discrete spaces Uy = 7{(H1(2)), Vi = 71X (Heun (),
Wy =7 (Hai (Q)) and Zy = 74(L2()), the De Rham complex (1.10) becomes

H(Q) 2% Hoaw(Q) % He(Q) 25 L) -5 {0}
(1.11) bafe bk Ll L%
Uy M Vi cur{ W ﬂ A% i> {O}

Many types of finite elements have been developed to suit each differential space. The
selection of an appropriate finite element type is then essential to ensure that the prop-
erties of the solution are satisfied.

As discussed, this chapter describes the finite element types necessary to the devel-
opment of the 3D multi-physics model for high fields magnets. Especially, the De Rham
diagram (1.11) gives Hg;, and H.,, as appropriate Hilbert spaces for the solutions of the
electromagnetic component of the model. Indeed, the Lagrange finite elements don’t fully
satisfy the conditions of the considered Maxwell’s equations. As they weren’t initially
available in Feel++, we pay particular attention to detail the Hg;,-conforming elements
of Raviart-Thomas elements and the H_,-conforming elements of Nédélec. Their imple-
mentation within the library is detailed in Chapter 5.

1.1 Hj;-conforming finite elements

Given as the most simple finite element, the Lagrange finite element is mostly sufficient to
fulfill the requirements of a great number of PDEs. This nodal finite element is suitable
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for variationnal problems whose solution resides in H; Hilbert space (1.9). The Hilbert
space H; is associated with the standard dot product

(1.12) (u,v)g, = (u,v)r, + (Vu, Vo),

which defines the H; norm

(1.13) I = V() = \/H Nz, + 1V

and the projection operator II; which defines the projection II; f of any function f € X
into Y C H; such that

(1.14) (L f,v)y, = (f,v)y, YvEY

1.1.1 Lagrange finite elements

From the definition of a finite element, the Lagrange finite elements are tuples (K L, Ef{)
where k represents the finite element order. The functional space L, coincides with P,
denoting the set of polynomials of degree less than k.

Building the vectorial space L supposes the knowledge of a basis By, of P,. The primal
basis Bj can be based on numerous polynomial families. For numerical stability reasons,
we use Dubiner polynomials which are particularly suitable for simplices.

The degrees of freedom o; of ¥ are the evaluation of the polynomials p € P, at the
interpolation points of K, denoted as d; :

(1.15) oi(p) = p(d;) Vp € Py

The Lagrange basis functions are the piecewise polynomial functions of order k£ on
each K € I'y, which are deduced from (1.6)

(1.16) o) ={ oii ]

Interpolant The Lagrange interpolation operator I, projects any continuous function
f € Co(2) to the associated discrete space Uy as described in the De Rham diagram
(1.11). To this end, the local restriction f[, of the function on any element K € [, is
the discretized local function I, f € L(K) expressed in the primal basis B, = {(;} :

N
il — D ol f1x)G
=1

From the definition of the Lagrange degrees of freedom, the coefficients of the discrete
projection of f in the primal basis consist in its evaluation at the interpolation points of
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K. The Lagrange I, interpolant reads
N

(1.18) M f =) f(di)G
i=1

1.2 Hgy,-conforming Raviart-Thomas finite elements

Weak formulations involving the integral of divergence terms require to ensure these terms
are square-integrable, i.e. in Ly(€2). As previously mentionned, Hy;, (1.19) is the appro-
priate space to meet this condition.

(1.19) Hay =A{f € [LQ(Q)]d | V- f € Ly(Q)} with La(2) = {f | /f2 < 00}
The Hilbert space Hg;, (1.19) is associated with its dot product

(1.20) (W, V)g,, = (0,v), +(V-u,V-v),

which defines the Hg;, norm (1.21)

(1.21) Y O (AT AT

and the projection operator 1z, which defines the projection Il4,f of any function f €
Y C Hg; such that

(1.22) (Mot v) g, =, v)y  VveEY

Finding the solution uy € Xy C Hgiv(§2) using the finite element method requires
elements which meet Hg;, conditions. FEspecially, we have to ensure the continuity of
the normal component u - n of the solution u along the interfaces between elements of
the mesh I'j,. Various divergence conforming finite elements are provided such as Brezzi-
Doublas-Marini (BDM) |Brezzi et al., 1985| or Raviart-Thomas |Raviart and Thomas,
1977|. In this section, we will focus on the Raviart-Thomas finite elements.

1.2.1 Definition

According to Ciarlet’s formalism |Ciarlet, 1978|, the Raviart-Thomas finite elements are
tuples (K, Dy, ©8) where k represents the finite element order. Dy, is a vectorial subspace

of [Pp41]* defined as
(1.23) Dy = [Pi]” @ xPy, C [Prya]”

where P, is the set of polynomials of total order less than k, and where d is the dimension
of the domain (2.

The set ST of degrees of freedom (dofs) is composed of two types of linear functionals.
The faces degrees of freedom {0} ez, defined at the lowest order zero, and the inner ones
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{0k} ke, defined on elements from order one.

S = {os}rer, ® {0k trer, = {0}y

The linear functionals o and ok are defined as follows

or(u) = /fu -np Vp € Pi(f)

(1.24)
d
ox(u) = / u-q Vq € [Ppq(K)]
K
We shall note that the normal n associated with each faces plays an important role in
the definition of faces dofs. Especially, the orientation of n depending on the considered
element has to be set for each face, ensuring its unicity.

1.2.2 Unicity of normals

The previously mentionned faces denote the entities of dimension n — 1 associated with
an element of dimension n. Classically, the normal n associated to a face (relative to a
particular element) is outwardly oriented. Excepted for the faces located on the boundary
of the domain, a face is shared by two elements Ky and K;. The orientation of the normal
associated with this face is not unique, since it depends on the element from which the
face is seen, as shown in Figure 1.2 for the 2D case.

1

K1 Kl

Ko

(a) 2D simplices (b) Normals of element K (¢) Normals of element K3
Figure 1.2 — Orientation of the normal associated with shared face

Let us focus on the degree of freedom of(u) associated with the shared face f. We
denote of(u) (resp. o}(u)) the degree of freedom of this face defined locally on element
Ky (resp. on element K7).

(1.25) oh(u) = /fu ‘ngp and op(u) = /fu ‘ny p Vp € Py(f)

with ng (resp. n;) the outward normal to f seen by Ky (resp. K;). From the previous
considerations illustrated in Figure 1.2, ng and n; have opposed signs which leads to

(1.26) oj(u) = —o;(u)

Nevertheless, the global degree of freedom of(u) associated with this face has to be
unique. In practice, we set the face attached with K to have positive sign, and the other
face to have negative sign. This corresponds to locally affect a sign to each degree of
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freedom, setting the orientation of the associated normal as the one of K|

oh(w) = (1) * (~o}(w) = oy(w)

Further details are given in Chapter 5 in which the implementation is detailed.

1.2.3 Basis functions

Primal space Let’s denote Byi1 = {(it1.:}: a basis of Pyy composed with Dubiner
polynomials as for Lagrange finite elements, and By, | = {Ck+1,:}: a basis of P1]”.

We remind that the Raviart-Thomas basis functions are in Dy, (1.23). Thus, we have
to determine the primal basis Bp, of Dj.

The first dim([Py]?) terms of By, , leads to a basis B{ of [P]”. From the definition of
Dy, it remains to find a basis B, for xIP,, C [Pk+1]d. This basis is composed of polynomials
q € []P’;Hl]d such that

(127) /q1 . Ck+1,i = / (Xp)ck+1,'i with pE Pk Vi
K K

The elements q; of B, (1.27) are expressed as a combination of [Pk]d basis functions.

dim([Py41]?)
(1.28) @€ P’ = Haghila= D @iy VI

j=1

The coefficients {g;;}, of each q; in the basis BZH are obtained from (1.27) using the
orthonormality property of the Dubiner polynomials, which leads to

(1.29) qQ; = / (XCh,j)Cht1,5 V7,1
K
The basis Bp, = {C?’“} of Dy we are looking for then consists in the sum B{ & B,.

Dual space The next step aims to determine the basis functions {¢; € Dy}, which
satisfy (1.6). As they belong to Dy, they are defined as a linear combination of Bp,
functions.

N
Acf | i =D ¢ vVi=1,. N
k=1

Considering N} (resp. Nk ) the number of faces (resp. inner) degrees of freedom, the
definition of the finite elements basis functions (1.6) depending on the set of degrees of
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freedom (1.24) gives

Ny
0<I<Ng: Y cF Cf’“-npzélinGIP’k
k=1

face

(1.30) 1
Nf<l<./\/'i Zcf/(f’“-qzéli‘v’qe[?’k_l]d
k=1 K

The resolution of (1.30) for each ¢« = 1,.., N gives the expression of the basis functions
kAN

{¢:}i giving their coefficients {c/}7_; in the primal basis.

As previously introduced (see Figure 1.1), the basis functions are computed once on
a reference element K. The {¢;}; on any element K are then deduced applying the
geometrical transformation ¢5° : K — K (1.8).

To ensure their correctness and to validate their implementation (see Chapter 5), we
compare the numerically computed basis functions on K to their analytical expression. In
this context, the following paragraphs describe the analytical expression of the set {¢;};
on 2D and 3D reference elements. These reference elements are illustrated by Figure 1.3,
where n; denotes the outward normal associated with " face of K.

Y.

(a) 2D simplex (b) 3D simplex
Figure 1.3 — Reference elements - normals

2D lowest order basis functions The definition (1.23) of the 2D vectorial space Dy,
for the lowest order k = 0 reads

(1.31) Do = [Po)? & ( 2 )IPO C [Py)?

The reference shape functions ¢; (i = 0,1,2) on K are in Dy. The basis Bp, is the
sum BY & 2By, leading to

(1.32) s ={(0) (1) ()}

The expressions of these basis functions ¢; in Bp, are based on the coefficients c¥ (i, k =
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0,1,2) such that

(133 di=e () (D) re (D)

The & (i,k = 0,1,2) coefficients are then deduced from (1.6) solving the system

i = b= [ 0

(1.34) Ul((lgi) = /f i) - s = / . (-1,0)"- ¢ = 01

To=—1
|
o9(;) = / Ny - @5 = / / 0, —1)" - p; = 5o
i dr=—1 Jap=—1

And the expressions of basis functions (]3z 1 =0,1,2 hence read

o 1/1—7 ~ 1/ -1+2 W 1 -z

The shape functions computed by Feel++ on the reference element K (Figure 1.4) are
in coherence with solutions of (1.34).

(

\

>

(a) No (b) Ny (c) Na
Figure 1.4 — Raviart-Thomas lowest order - 2D shape functions

3D lowest order basis functions In 3D, Dy is defined as

X1 1 0 0 fl
(1.35)  Dy=Pl@| 2 |PocPf==( 0|, 1,0}, | 2]
T3 0 0 1 f?)

The expressions of ¢; (i = 0,1,2,3) in the basis of 3D vectorial space Dy (1.35) depend
on coefficients c¢f (i,k = 0,1,2,3) which are deduced from (1.6) as for previous 2D case :

) 1 0 0 )
(1.36) = 0 |+ | 1 |+ 0 |+ | 7
0 0 1 T3
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The condition (1.6) combined with (1.36) results in the system

oo(i) = /fo o+ s = /m__l /xz__l /m__l (0,0, —1)" - b3 = do.;
o1(s) = /f1 My - s = /m__l /m:__l x:: —1,0,0)" - ; = 61,

rbo=fmdm [T /m__l“»l’” i
ECE /f - i = / - / . / _ Y7 s = b

whose solutions (1.38) are also in good agreement with basis functions computed by
Feel++ implementation (Figure 1.5).

(1.37) <

A 1+ 2 ) 1 -1+ 2
¢o(71, 22, T3) = 1 1+ 2 @1 (71,29, T3) = —— 1 -2
—1+ 73 1+ 25
(1.38)
. 1 1‘{‘1?1 R 1 1 —1?1
P2 (L1, To, 73) = 1 1+ P3(L1, 29, 73) = — [ =142
1+.TA3 1+f3

N A \
() & ) ; bs

Figure 1.5 — Raviart-Thomas lowest order - 3D shape functions

1.2.4 Raviart-Thomas Interpolant

The Raviart-Thomas interpolant Ilp, is a projection operator relating continuous function
space Hgiy(2) with the associated discrete function space Wy, as previously described in
(1.11). Considering a continuous vectorial function f € [Cy(€)]%, its restriction ], on
any element K is the discretized function Ilp, f € Dy (K) expressed from Dy (K) basis
functions.

(1.39) p, : [Co(K)]" — Di(K)
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From definition of X2 functionnals set (1.24), IIp, reads

Ny N

(1.40) p, f = Z {/acef : an:—l,i:| Gi + Z {/Kf . Ck—&j] G

i=1 J=Ns+1

The basis functions ¢; € Dy(K) should be deduced from the reference basis func-
tions ¢; € Dy(K) applying the geometrical transformation ¢%° (1.8) which unfortunately
doesn’t preserve the properties of Hg;,(€2).

Piola transformation Defined from the standard geometrical transformation ¢%°, the
Piola transform (1.41) has the particularity to conserve Hg;, space properties. This bijec-
tive map gives restriction u(x)|x of any function u on element K from its restriction on
reference element K ensuring conservation of Raviart-Thomas finite element space prop-
erties. We remind that J5° stands for the Jacobian of ¢%°, and that det(J5°) refers to
its determinant.
(14])  u®lk = — e JER(R) © ()i = s JE 0 ¢80 (x)
det(JE°) K det(JE°) K K

As a specific geometrical transformation for Raviart-Thomas finite elements, the Raviart-
Thomas Piola transform (1.41) is especially used to deal with the computation of {; from
¢; needed by the interpolant. Moreover, standard operators applied on u € Haiv ()
naturally derivates from their application of the reference element from (1.41)

1 A

Vu——det(J}g;O)Vu

1 “
1.42 R S -
(1.42) V-u det(Jfff’)V v

1
. — JgeoA _Jgeo»x
/K“ Y /Kdetufg?) Ry

1.3 H.-conforming Nédélec finite elements

This section describes the characteristics of the H.,-conforming finite elements of Nédélec
in the same way as the previous Hg;,-conforming finite elements of Raviart-Thomas. These
have been introduced in the 80’s by J.C. Nédélec [Nédélec, 1980, [Nedélec, 1986] who gave
them his name. Widely used since then, these elements are especially described in |Schnee-
beli, 2003| and |Zaglmayr, 2006].

Weak formulations involving the integral of curl terms require to ensure these terms are

square-integrable, i.e. in Ly(Q2). As previously mentionned, H, (1.43) is the appropriate
space to meet this condition.

(143)  Hewn = {f € [Lo(Q)|V x £ € [Lo(Q)]%} with Ly(Q) = {f | /f2 < 00})
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We shall note that the dimensional parameter d.,; appearing in (1.43) can differ from
the dimension d of the domain 2 according to curl operator definition (1.44)

LY [ on_on
! 0 0

(1.44) v | M 2o_on o _ 3% 8;3

' f Jxr Oy f2 92 oz

2 o) \onon

° Jdx 0Oy

Indeed, the curl of a 2D vector gives a scalar but the curl of a 3D vector stays a 3D vector
which means d.,; = 1 for d = 2, and d.,,; = 3 when d = 3.
H.. is a Hilbert space supplied with the dot product

(1.45) (W, V)g,, =W, V), +(Vxu,Vxv),

which defines the Hg;, norm (1.21)

(1.46) | o= Vit = 1 I+ 195 I,

and the projection operator Il.,,; which defines the projection II.,.;f of any function f € X
into Y C H_ ., such that

(1.47) (Ieurif, v)

curl

=, v)y A VWEY

Many finite elements are suitable to be used within H., function space and they
ensure the continuity of the tangential component of the solution. Nédélec finite elements
are widely used in this context and group two elements types which especially differ from
their primal space. The next section details the characteristics of the Nédélec elements of
first kind whose implementation is described in Chapter 5.

1.3.1 Definition

The Nédélec finite elements of first type consist in tuples (K, R™!, Eg'id’l) where R™! is
. d
a vectorial subspace of [P1]” defined as

(1.48) RM = [Pk]d oSk c [Pk+1]d
The space S* of (1.48) is itself defined as
(1.49) St={pelP)'|p-x=0}

with % € K is in the reference element.

The set of linear functionals EkNed’l hosted by R*! consists in three kinds of functionals.
The lowest order degrees of freedom {o. }.ecs, are located on the set &, grouping the whole
set of edges of the mesh I';. For higher polynomial order, face located degrees of freedom
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{0} ser, and inner ones {0k} ke7, have to be considered.

(1.50) Sy = {0 e, @ {0s}pem @ Lok rer, = {0},

In 2D case, the edges are combined with the faces leading to o, = oy with

o(u) = / (u-t)p Vp € Py(c)

(1.51)
aKWJZKb“qVqEkaKW

In 3D case, o, and o are distinguished such that

sz/mﬂpWEM@
(1.52) op(u) = /f(u xn)-q Vg€ Ppa(f)]

OMMZAWQWGMAMP

The faces degrees of freedom (1.52) require to consider the normal n associated with
each face which involves to ensure the unicity of the normal orientation. Already needed
for Hg;,-conforming elements, this requirement is handled as described in Section 1.2.2.
Moreover, the tangents defined along edges have also to be carefully considered since they
are at least shared by two elements. Thus, the unicity of edges located degrees of freedom
supposes to ensure the unicity of tangent orientation in a global point of view.

1.3.2 Unicity of tangents

The edges are the entities of dimension 1 associated with an element of dimension n. An
edge e is caracterized by two nodes {e1,es} which form its boundary. A tangent of an
edge can then be oriented either from e; to e; or conversely from es to e;. We consider
here that a tangent connecting e; to e; is always oriented from e; to e; with i < j. As
for normals in Section 1.2.2; the Figure 1.6 illustrates these considerations in 2D case. A
similar process can obviously be performed in 3D case based on the same arguments.

c5 el
K, X{i
e e
(a) 2D simplices (b) Tangent from K (c¢) Tangent from K,

Figure 1.6 — Orientation of the tangent associated with shared edge

Let us denote o.(u) the lowest order degree of freedom associated with a inner edge,

and then shared by two elements. Considering o?(u) (resp. ol(u)) as this degree of
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freedom defined locally from element K (resp. K;), we obtain

ag(u)—/u-top and og(u)—/u-tlp

with tg and t; of opposed signs.
This leads to the non unicity of the concerned degree of freedom

In practice, we set the edge attached with K, to have a positive sign. In 2D (Figure
1.6), the edge attached with K; has the opposite orientation and hence the opposite sign.

oo () = (=1) * o5 (u) = oe(u)

In 3D, the edges can be shared by more than two elements. The sign affected to the
edges is defined from their orientation compared to the one attached with K.

1.3.3 Basis functions

Primal space As for Raviart-Thomas basis functions (Section 1.2.3), let us denote
Bii+1 = {Cr+1.}i abasis of Py y composed with Dubiner polynomials, and B,‘fH = {Crt1,i}i
a basis of [Py1]%.

The Nédélec basis functions of first kind live in the previously described function space

RF1 (1.48). Hence, they can be written in the primal basis Bgr1 of RFL.

The first dim([P4]?) terms of By, | give a basis B for [P;]” which has to be completed
by a basis B%, of S* (1.49), leading to

(1.53) Bria = B @ B,

Let us first focus on the case of 8%, introducing q; = (@1,-..,@q) in [Pl]d. The
condition for q; to be in S° becomes

d d d
i=1 i=1 j=1

where {a;;}; are the coefficients of polynomials ¢;; € Py i = 1,...,d. The identification
of coefficients {ai;}i; from the definition of S* (1.49) gives the 2D (resp. 3D) basis B%
(resp. B3,) of S°

. T -3 0
(155) 8(250 == {( _:U; )} and B‘?%O - _i‘l ) 0 ) ij‘3
! 0 1 —Z9

We shall remark that the elements of ng involve the curl operator V x x. Indeed,
they are equivalent to the basis elements of P, multiplied by V x x.
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Consequently, S* can be defined as S* = (V x X) Py, and R*! becomes
(1.56) R = [P © (V x X) Py,

The basis B%, consists in the set {q; € [Py11]*}; whose elements are defined such that

/ qr - Cr41,i = / (VX X) p Crt,i
K K

with p € Py, Vi = 1, ..., dim([Pea]?), VI = 1, ..., dim(S¥).
By definition, each q; € []P’Hl]d reads as linear combination of {{x+1,;}; basis functions.

dim([Pr41]%)

(1.57) Ha¥lolaw= > @y Cerry

J=1

The {q;;} coefficients obtained from the orthonormality property of Dubiner polyno-
mials then read

(1.58) Qi = / (V X X)Cr,iCht1,6 Vi, L
K
The basis Brri = {¢F"'} of R¥! can then be built as the concatenation B¢ & BL,.

Dual space Let’s remind that the basis functions {¢;}¥, live in R*'. They can hence
be written as a linear combination of the primal basis elements C?k’l such that

3| s = chCR“ Vi=1,..N

Considering N., Ny and N respectively the number of edges, faces and inner degrees
of freedom, the requirement (1.6) combined with (1.51) leads to

l<N Zecf/ Rkl' —(5l1Vp€IP’k
(1.59) =L o
Ne\l<NZ ZCi 5 ~q:5h qu [Pk_1]2

k=1 JK_x.

while (1.52) gives

<I<N,: Z / R t)p =06,V EP,
(1.60) N, U< N+ Ng e 2 (R x n)q =6, Vq € [Pr_i]®
1 fi-ne
No+ N <L< N Z RM L q =6 Vq € [Pr_o]®

=1 Ki-np-ne
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The resolution of (1.59) and (1.60) for each i = 1,.., N gives the coefficients {cF}2,

As for Raviart-Thomas, the numerically computed basis functions on K are compared
with their analytical expression. This allows to ensure their correctness and validate their
implementation. The following paragraphs describe analytical expression of {¢;}; on 2D
and 3D reference elements. The latter are illustrated in Figure 1.7, where t; denotes the
tangent associated with the " edge of K.

(-1, 1)

(—-1,-1) (1,-1)

(a) 2D simplex (b) 3D simplex

Figure 1.7 — Reference elements - tangents

2D lowest order basis functions From the previously introduced basis B%,, the 2D
function space R° reads as

(1.61) RO:[P0]2@<< _fgl)>=<(é>,<?),(_f;)>

Each shape function ¢; (i = 1,2) on reference element K is a element of R? space and
reads as a linear combination of its base (1.61).

(1.62) Wi (G=1,...,3) | s =& Y a0y 2
) 7 0 7 1 7 —%

The condition (1.6) on the reference basis functions {(ﬁz}l leads to the system

( UO(QEz‘) :[to ¢z /ﬂcl_l/z_‘751 ¢;i:50,z‘
(1.63) (i) = / hdi= / B / G E
k 02(&-):/ by Gi= /1/1 (L0 - G = b,

whose solutions results in the basis functions which are fully coherent with their compu-
tation from Feel++ (Figure 1.8).

PR N e 2 P AR P AR )
¢’0(5U1,952)—Z( 1+ 44 >a ¢1($1,1’2)——Z<1_f1)7 ¢2(1’17$2)—Z<1+f1
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(a) No (b) Ny

Figure 1.8 — Nedelec order 1 - shape functions

3D lowest order basis functions From the previously introduced basis Bf;o, the 3D
space RY is defined as

&y i3 0
(1.64) RO=P @ (| =21 |, 0 |.[ & |
0 _— — i

As previously, each shape function d;z is a element of R° space and reads a linear
combination of its basis functions.

A 1 0 0 29 23 0
(1.65) dps=c) | 0 |+ | 1 |+t | 0 |+ | 21 |+cf 0 |+ 5
0 0 1 0 —71 —To

The condition (1.6) results in a system whose solutions read

—1— 2y —1— 25

Po(21, 2o, 73) = 1 1+ P1(21, 2o, 73) = i + 23

0 —1— 25

(1.66) P2(21, 2o, T3) = — 1+2 Ps3(21, 2o, T3) = — 1+ 25
4 A 4 N N
1+2 —T1 — T2

1 —1— 15 1 0
¢4(f17f27f3) = = O ¢5(J?1af27f3) = = _1 - xA3
1+ 2 14+ 2y

Moreover, the basis functions computed with Feel++ (Figure 1.9) are in good agree-
ment with (1.66).
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(d) Ps () b4 ) ds

Figure 1.9 — Nédélec lowest order - 3D shape functions

1.3.4 Nédélec Interpolant

The Nédélec interpolant IIx« is a function which associates a continuous vectorial function
f € [Co(K)]” to its interpolation Ixif € Ry(K) defined as

(1.67) Mge: [Co(K)] — Riu(K)
N
(1.68) £ = o)

with {o;}, the linear functionnals X “*' (1.50).

The 2D linear functionals previously defined by (1.51) lead to the expression of the
interpolation of f in 2D case

Ne

k,1 N k,1
(1.69) Mgef = [/.(f't)gk,i] SRS [/K f'Ck—l,j] G

i=1 J=Ne+1
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while 3D case distinguishes edges and faces degrees of freedom according to (1.52)

=1 i J=Ne+1

(1.70) !
N Rk,l
LR VR A ck_z,k] k
E=Nj+Ne+1 i Ki__/\/'e__/\/'f

As for Raviart-Thomas interpolant (1.67), the basis functions C?k’l € Dy(K) should
k,1

Ne k1 N +Ne [ k1
Meef = > {/ (f - t)(k,z} C? + fz / (f x H)Ck—l,j] CZ’Z
e fi—j\/e

~

. € Dy(K) applying the geometrical
transformation ¢%° (1.8) which unfortunately doesn’t preserve the properties of Hu1(€2).

~RFS
be deduced from the reference basis functions ¢,

Piola transformation Defined from the standard geometrical transformation ¢%°; a
Piola transform (1.71) has been designed to conserve these properties. This is also a
bijective map which gives restriction u(x)|x of any function u on element K from its
restriction on reference element K ensuring conservation of Nédélec finite element space
properties. We remind that J5° stands for the Jacobian of ¢%°, and that det(J5") refers
to its determinant.

(1.71) u(x)|x = JETTa®) & ux)|k = J5 T o o5 (x)

As a specific geometrical transformation for Nédélec finite elements, the Piola trans-
k,1

, AR
form (1.71) is especially used to deal with the computation of ka " from ¢; needed by
the interpolant. Moreover, standard operators applied on u € H,;1(£2) naturally derivates
from their application of the reference element from (1.71)

Vu = J&TVa (J§°)!
Vou=tr(JETTVa ()

(1.72) o

V xu=JE T (JE0) !

[ou-v=] (JfﬁO‘Tﬁ) : <J§§°_T0> det(JE°)
Conclusion

At the basis of the multi-physics model consisting in the core ingredient of this work,
this chapter gives an overview of the finite element method. More specifically, we are
interested in the definition of the Hg;, and H, conforming elements which are necessary
for the magnetostatic model further described in section 3.2.

The implementation of the Raviart-Thomas and Nédélec finite elements of lowest order
within the library Feel++ is a contribution of this thesis. Their description in this section
is at the basis of the chapter 5 which details the implementation.



Chapter 2

Reduced Basis Method

In an industrial context, the optimal design of a component as well as the optimal choice
in terms of material or experimental setup are based on the evaluation of a quantity of
interest for various configurations. Essentially coming from experimental measurements,
the variables describing these realizations are subject to uncertainties whose influence on
the considered quantity of interest can be non negligible. Besides the simple prediction of
a physical quantity for a given configuration, the current needs in engineering applications
then reside both in optimization processes and uncertainty quantification. This is the case
for the high field magnet design we focus on, which requires a fine constrained optimiza-
tion aiming to achieve the expected magnetic field profile while ensuring good thermal and
mechanical conditions. The reader can find examples of applications in chapters 8 and 11.

We have then to consider a large number of configurations denoted as inputs which
are described by a set of parameters that appear in our model. We want to determine a
quantity of interest called output which depends on the solution of the associated PDEs
for each of these configurations. This input/output relation requires to efficiently solve
parametrized PDEs.

Model order reduction methods aim to replace the parametrized problem — usually of
large size — by a reduced problem whose dimension, and hence the cost, is much lower. Es-
pecially, the Reduced Basis (RB) method |Prud’homme et al., 2002|, |Veroy et al., 2003a),
[Veroy et al., 2003c|, |Prud’homme and Patera, 2004|, |[Rozza et al., 2007|, |Quarteroni
et al., 2011| has been designed for real-time and many-query contexts. It consists in a
Galerkin projection on a reduced approximation space based on FE snapshots, whose size
is greatly lower than the FE approximation space. As the solution of a low-dimensional
system, each evaluation is thus cheaper, allowing to cover a large range of parameters.

A core enabler of the reduced basis method is the so-called offline /online decomposition
of the problem. Tt allows to compute the terms which don’t depend on parameters only
once. The dependence of the latter on the finite element dimension can indeed make
them costly to compute. The affine decomposition is hence an essential ingredient for the
efficiency of the RB method.

Besides its non-linearity, the multi-physics model we are interested in presents a non-
affine dependence on parameters. In this context, a specific treatment is requested before
the application of the reduced basis methodology as described in |Veroy et al., 2003a),

23
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[Veroy et al., 2003¢|.

This chapter aims to describe how to apply the reduced basis methodology in such
a context. To this end, it first introduces the Empirical Interpolation Method (EIM)
[Barrault et al., 2004, |Grepl et al., 2007| which is necessary to deal with the non-affine
parametrization of our model. Based on the use of this method, the second part focuses
on the description of the reduced basis methodology applied to non-linear and non-affinely
parametrized problems.

The Certified Reduced Basis (CRB) method |Prud’homme et al., 2002|, |Veroy et al.,
2003a], [Veroy et al., 2003c|, |[Prud’homme and Patera, 2004|, |Rozza et al., 2007|, |Patera
and Rozza, 2007|, |Quarteroni et al., 2011| combines the previous reduced basis method
with error estimators allowing to quantify the error coming from the reduced basis ap-
proximation. These error estimators both allow to establish error bounds for the solutions
of the reduced system, and to optimize the parameter selection involved in the built RB
approximation space.

The application of this method to non-linear problems |Veroy et al., 2003b]|, |Veroy
et al., 2003al, [Veroy and Patera, 2005|, |[Canuto et al., 2009]|, |Janon et al., 2013| is rela-
tively recent. For non-affinely parametrized problems as in our case, the error estimation
has also to take into account the approximation error resulting from the EIM use. In
this context, [Canuto et al., 2009| provides a generalization of |Veroy and Patera, 2005]
for non-affine problems. The computation of such error bounds is mainly based on the
Brezzi-Rappaz-Raviart (BRR) theory which provides error bounds for non-linear equa-
tions. However, this method (i) is restrictive with respect of the form of the equations
and (i) involves limiting conditions on inf-sup and continuity constants, whose compu-
tational cost can be prohibitive. The problems that we are considering don’t fully satisfy
the BRR theory conditions, which prevents us from applying the method introduced in
|Canuto et al., 2009].

In this chapter, we introduce the development of an error indicator allowing to guide
the parameter selection process. Nevertheless, it doesn’t enable to certify our reduced
basis approximation since it isn’t provably an error bound.

Finally, the last section concerns the so-called Simultaneous Empirical interpolation
and Reduced basis (SER) method which consists in an original contribution of this thesis.
Especially designed for non-linear and non-affinely parametrized problems, SER combines
the EIM and RB methods in order to decrease the associated computational cost of the
offline stage. We present some variants of this method, mainly based on the previous
error indicator.

Contents
2.1 Empirical Interpolation Method . . . . . . .. ... ... .... 26
2.2 RB for non-affine and non-linear problems ... ... ... .. 28
23 SER method .. ... . ... ... .0 iiieeen. 30

As mentioned before, each investigated configuration corresponds to a set of p pa-
rameters defined as the p-vector p = (p1,...,4,) € D C RP combining both geomet-
rical parameters, material properties or operating conditions. The PDE (1.1) handling
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the considered physical phenomenon allows to relate the so-called input parameter p
with the investigated quantity of interest denoted as output. We shall then consider the
parametrized PDE which consists in finding the parameter dependent solution u(p) € X
such that

(2.1) a(u(p), v;p) = f(v; p) Vv € X(Q)

where a : X(Q2) x X(Q2) x D — R is a continuous and coercive bilinear form, and
f:X(Q) — R is a continuous linear form.

The outputs denoted as s(u) are typically expressed as linear functionals ¢ : X — R
of u(p) related with (2.1) as

(2.2) s(p) = ((u(p))

Considering a set of inputs, our problem thus consists in finding s(u) € R from
the solution u(p) of (2.1) for each given p. The optimization methods as well as the
uncertainty quantification require a large amount of realizations. Regarding the growing
complexity of today’s engineering problems coming both from their spatial and parametric
dimensions, the cost of such processes can become prohibitive.

As mentioned, the Reduced Basis (RB) methodology consists in a fast but reliable
approximation based on the projection on a low-dimensional space combined with a so-
called offline/online strategy.

Reduced basis approximation As introduced in Chapter 1, the finite element method
allows to compute a discrete approximation of u(u). Let’s remind that this approximation
upn(p) rests on the Galerkin projection on a subspace Xy C X of size N which consists
in the resolution of the N' x N system

(2.3) alun(p),v; 1) = F(05 1) Yo € Xn(Q)

The fast simulation response offered by the reduced basis method relies on a Galerkin
projection on the low-dimensional subspace Wy of size N < N, whose basis functions
read from a set of finite element approximations. Typically, the size N of the reduced
system doesn’t exceed 100.

Let’s introduce the sample Sy = {py, -+, puy} € D and its associated set of finite
element solutions S% = {ux(p;)}Y, obtained from (2.3). The parameters of Sy can be
selected in various ways, ranging from a random selection process to more advanced meth-
ods. In particular, the Proper Orthogonal Decomposition (POD) method or the Greedy
algorithms are commonly used to optimize the building of this sample. To select the
parameters p of D which maximizes the RB approximation error, the Greedy algorithms

require error estimation techniques. An error indicator is further described in this context.

The orthonormalization of S} components from a Gram-Schmidt process with respect
to the <, >x inner product associated with X results in the definition of Wy = span{¢; =
un(p;),1 < i < N}. By analogy with (1.3), the coming reduced basis approximation
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un(p) € Wy of u(p) € X then reads as the linear combination

(2.4) un(p) = Z un,i()§

whose computation resides in the resolution of the N x N reduced system
N

(2.5) > al& &Gimwuni(p) = f(&;p) Vi, N
=1

Affine decomposition When the considered problem is affinely parametrized — that is
when a and f depend affinely on the parameters —, we shall be able to decouple the terms
of (2.5) which don’t depend on the input from the others. It amounts in fact to consider
that for a finite integer @), (resp. Qf), the bilinear form a (resp. the linear form f) can
be expressed as

a(u,v; p) Z@q Jal(u,v) Yu,v e X, VueD,

(2.6) o)
flospm) =D 04w f'(v) YveX, VueD

g=1

Then, the so-called offline stage prepares the parameter-independent quantities, com-
puting them once. This allows the online simulations — which consist in the assembly and
the resolution of (2.5)— to be even faster.

The affine decomposition (2.6) is an essential ingredient for the offline/online strategy.
Such a decomposition is not necessarily available, in particular for non-affine or non-linear
problems. Indeed, the multi-physics model we focus on for high field magnet study appears
to be both non linear and non affinely parametrized, due to the non-affine dependence
of the material properties on the unknowns as introduced in |Daversin et al., 2013]. In
this context, the Empirical Interpolation Method (EIM) is standardly used to recover the
required affine decomposition (2.6) building affine approximations of the concerned terms.
The non-linearity is however handled by fixed point iterative methods.

2.1 Empirical Interpolation Method (EIM)

The non-affine parametrization of the PDE (2.3) comes from its dependence on at least
one non-affine function w(u(p),x; p). In this case, the problem (2.3) reads as

(2.7) a(u(p), v; pyw(u(p), x; p)) = f(v; psw(u(p),x;p)) Yo € X(Q)

This prevents the affine decomposition (2.6) to be obtained.

The Empirical Interpolation Method (EIM) allows to recover such a decomposition
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building an affine approximation wjy; of w such that

(2.8) war(u(p), x; ) = Bl (w(pn); ) gm (x)

This section describes the EIM methodology based on an offline/online strategy as
well. Let’s introduce the sample Sy, = {fi1,..., 1, } € DM and the associated function
space Wy = spani{€, = w(u(f,,),x; it,,),1 < m < M}. We first define a subset = of D
in which the sample points of Sy; are selected. The starting sample point i, is picked in
= assuming that &, # 0.

(2.9) Sy = {i}, 51 = w(u(fy), X; 1), Wy = span{él}

'The first interpolation point is chosen as the maximum of €., while ¢, is a normalization
of &, which leads to

(2.10) t, = m’gilelg &%), @ = E.(L)

For M > 2, the sample points p,, are determined from a Greedy algorithm choosing
[y, € = as maximizing the EIM approximation error.

2.11 = £ fJw(s ) — 2l
(2.11) Ay =argmax inf {jw(; . p) = 2l

It completesﬁg w and allows to deduce the basis function &, enriching the RB approx-
imation space Wy,.

(2.12) &y =w(pyxiu(y)), Su=3Su—1U{py}t, Wi = Wi_1 ® span{€,}

The EIM approximation wa;_1 (u(p), X; ) is defined from its coefficients {3M 1M1
evaluated on the parameter p,, (2.11). These are computed through the resolution of the
(M —1) x (M — 1) system ensuring the exactness of wy;_; at the M — 1 interpolation
points {t;}22 1. It then leads to the residual

(2.13) (%) = wlu(p), x; fyy) — war—1(w(p), X; )

on which the next interpolation point £, and basis functions ¢y, are based.

(2.14) tar = argsup [rar ()], qur(x) = 222
x€Q ra(tar)

Once the EIM approximation space W), together with the set of interpolation points
{t;}M 1 are completed, the online step consists in the evaluation wy(u, x; ) (2.8) for any
given p through the resolution of the online system

(2'15) wM( tlvu’ Z BM (tl) = w(u(U)>ti§u)’ I<is< M
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2.2 Reduced Basis for non-affinely parametrized and
non linear problems

In this section, we focus on the reduced basis method applied to non-linear and non-affinely
parametrized problems. As introduced in Section 2.1, the non affine parametrization
comes from the dependence on at least one non affine function w as described in (2.3).
The non-linearity is however handled by a fixed point iterative method, namely Picard or
Newton’s method.

In the sequel, we shall consider the Picard method whose solution at k-th iteration is
denoted *u(p). Nevertheless, all the following considerations can easily be applied to a
Newton algorithm considering the residual of (2.3) and its Jacobian.

The non-linear and non affinely parametrized considered problem thus amounts to find
u(p) € X such that

(2.16) a(u(p), v; p; "u(p); w(Fu(p), x; w) = f(Fulp), v; p; w(Fu(p), x; p) Yo € X(Q)

As a reminder, the affine approximation wy; of w built through EIM (2.8) allows
to recover an affine decomposition of (2.16). In what follows, the non-affine terms of a
(resp. f) whose affine decomposition is obtained from EIM approximations (2.8), and the
affine ones for which the affine decomposition (2.6) is naturally obtained, are considered
separately. In this context, we consider Q™ (resp. Q™) the number of non-affinely

parametrized terms of a (resp. f), while Q%7 (resp. Q“ff) refers to the affine ones.

The Mg (resp. MJ) coefficients 72 (u; ) (vesp. 7§, (u ,u)) are obtained from the EIM
approximations coefficients, leading to

Qeim ]\/[a Qaff Qeim ]\/[f a.ff
a
q l a(
373 st uv+29 =2 2wt us ) i +29f
g=1 m=1 = q=1 m=1
7 - (. _ /
v '
non—afﬁne part of a affine part of a non-affine part of f affine part of f

Let’s now turn to the offline/online strategy made possible through the previous affine
decomposition availability offered by EIM.

Offline stage The offline stage is first devoted to the building of the reduced basis
approximation space Wy, spanned by finite elements approximations selected at N points
of the parameter space. It starts with the construction of the previously defined S% =
{upn(p;)}Y,. For each p, € Sy, the non-linearity is handled by a fixed point method.
Starting from a given initial guess uy (p;), we iterate on k solving the A" x N system

(2.17) AN Fye(py) = FN owith 1<i <N
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until convergence. From the definition of the finite element solution up-(p) (1.3), the
matrix AV and vector FV at the k-th iteration are defined as

Qezm M“ aff
(2.18) Zz%m uns w)al, (6, 6;) +Zel a'(¢i, ¢;)
1 m=1
;ezm Mf aff
(2.19) =3 A Cu ) () + Z 0 (1
g=1 m=1

The basis function &; is obtained from the orthonormalization of the resulting ux(p;).
It then enriches the reduced basis approximation space W; = W,_; & &;, in which the
reduced basis approximation u;(p) shall reside.

The parameter-independent terms of (2.17) correspond to
(2:20) AN = ad(€5,6) and EMT = f1(¢))

Their precomputation stands as a core ingredient of the reduced basis method. Once
Wy is completed, these precomputations (2.20) finalize the RB offline stage.

The N x N online system, allowing to obtain the coefficients uy;(p) of the reduced
basis approximation uy(p) € Wy for any parameter p, then reads as
(2.21)

Qeim Mfl me Mf

aff aff
Z nyam uN»lJ’ 57,75] +Z‘9l 5175] Z Zﬁ)/fm uNa“’ 5] +Zef fl 5]

g=1 m=1 qg=1 m=1

Online stage The evaluation of uy(pu) for any given p then consists in the resolution
of the reduced N x N system (2.21). From a given initial guess “uy (), the fixed point
method consists in solving the reduced system

(2.22) AN Fun(p) = FN

until the convergence of the iterative algorithm is reached. The matrix A" as well as the
vector FV at the k-th iteration benefit from the precomputations (2.20) and read as

Q(jzm ]wa aff
(2.23) Zz%m Un, Aqu+ZQZ ) AN
1 m=1
g”’” M} “ff
(2.24) szfm up, p) FN4™ 4 Zﬁf VPN
g=1 m=1

allowing the efficient assembly of the reduced system (2.22).
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2.3 Simultaneous Empirical Interpolation and Reduced
Basis Method (SER)

The recovery of the affine decomposition for the non-linear and non affinely parametrized
problems (2.16) requires the use of EIM prior to the RB methodology. Thus, the EIM
approximation is necessary to the RB offline step and is consequently built first.

As described in Section 2.1, the EIM Greedy algorithm

(2.25) pyr = argmax i ffw(un(p); 5 p) = 2llr=@

performed during the offline step requires the finite element solution wy(p) computed
at all points of the EIM trainset = € D. Depending on the expression of the non affine
function w, the size of this trainset can have a significant influence on the quality of its
EIM approximation wjy;. The number of finite element approximations is proportional
to the size of = and can then become high, making the EIM cost prohibitive for large
problems. Regarding the electro-thermal component of the multi-physics model for high
field magnets (see Section 3.1), the Greedy algorithm (2.25) is clearly an obstacle due to
the finite element dimension N raising to several millions.

The Simultaneous Empirical interpolation and Reduced basis (SER) method aims to
reduce this computational cost benefiting from the readily available reduced basis approx-
imation. The key ingredient resides in the simultaneous construction of the EIM and RB
approximation spaces, allowing the Greedy algorithm (2.25) to be solely performed from
RB approximations.

As reduced basis methodology needs an affine decomposition — and then an EIM
approximation wy; for each non affine parameter dependent functions w —, SER starts
with the initialization of the EIM approximation space which corresponds to the step
M =1 of the standard EIM offline stage.

(2.26) Sy = {1, 51 = w(un (), X; i), Wy = Spcm{él}

At this step, u is the finite element solution obtained from (2.16).

The first EIM basis function &, is thus still based on a finite element approximation
since no reduced basis approximation is yet available. The first interpolation point ¢; and
the associated basis function ¢; are standardly deduced as

(2.27) ty = argsup & (x)|, @ = 2 (6)

At this stage, the first EIM approximation w, is composed of only one term

(2.28) wy(u(p),x; ) = By (u(p), p)q(x)
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whose only coefficient 31 (u(p), p) in Wi is given by

(2.29) Bi(un(p), 1) = wlun(p), tr; p)

since ¢;(t1) = 1 from (2.27).

The first affine decomposition based on the rough EIM approximation (2.28) — with
My and M({ equal to 1 — reads for all u,v € X and for all u € D as

aff
(230) a(u U?Mawluxu nyql >l*l’aq1uv +Zel

aff

(231) f(,[J,,UJlUX[J, Z’qu u, p fql +Zef

Turning to the RB offline step, the resolution of the finite element system (2.17) results
in the first RB basis function & giving W7 = {&;}. The reduced online system (2.21)
whose parameter-independent terms a?(¢;,&;), a'(&,&;) and f1(&;), f'(&;) can then be
precomputed becomes

(2.32)
Qeim aff Qelm aff

Z’Yal un; p)ai(&i, &) +Zel fufj Z”Vﬂ un; p) f1(€5) +Zef

where k stands for the current fixed point iteration.

Once the initialization stage is performed — which uses only one FE solve —, we no
longer depend on the finite element dimension V. Indeed, the EIM and RB approximation
spaces are then enriched by turns. Each new EIM basis function gy (7) is then built
from reduced basis approximation uy;_1(p) obtained at previous iteration M — 1 (i)
complete the EIM approximation to then build the affine decomposition for the next RB
approximation uy(p).

As a summary, SER modifies the EIM approximation space enrichment step into

(2.33) oy, = argmax  inf  |Jw(up—1(pw); 5 1) — 2||Le ()

HEE zeWjpr_y

(2-34) €M = w (up— 1(NM) X; ) SM = gM—l U {l_l’M}> I/T/M = WM—l D span{éM}

The next EIM basis function ¢y, as the next interpolation point t,; are obtained from
the residual ry/(x) = w(up—1,X; fiyy) — war—1(upr—1,X; foy,) computed from the previous
reduced basis approximation u,,_; as well.

(2.35) ty = argsup |ry(x)],  qu(x) = rM—(X)
xXEN rM<tM)

The resulting change on wj; leads to the update of the affine decomposition on which
the next reduced basis approximation uy, () is based. Once the RB basis function &y is
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computed, the newest parameter-independent terms a},(§;,&;) and f{;(§;) of the online
reduced system are precomputed for each 7,7 =1,..., V.

Restarting from the beginning, the reduced basis approximation wuy () € Wy, can
then be used in the next Greedy algorithm and so on until either a sufficient accuracy or
the user-defined number of basis functions.

Preliminary results To illustrate the previously introduced SER method and to con-
firm its pertinence, we now turn to its application on a 2D non-linear and non affinely
parametrized benchmark introduced in |Grepl et al., 2007|.

The considered problem states with the non linear elliptic equation

pou _
(2.36) — Au + py — = 100sin(2rz)sin(2my)
H2

in the domain Q =)0, 12, with g = (u1, o) € D = [0.01,10]%. The considered output s is
the average of the solution u over the domain.

The function g(u,z; p) = =
cal Interpolation Method (see Section 2.1) is used to recover an affine decomposition for

is clearly non affinely parametrized. The Empiri-

M
(2.36). This results in the affine approximation gy = > BM (u, p) g (x) of g.
i=1

The associated variationnal formulation consists in finding u € H*(Q) such that

(2.37) /VUVU+/Q(U,I;/J)U = / 100sin(27x)sin(2ry)v Yo € H'(Q)
Q Q Q

The training set = C D used for EIM is composed of 15 elements in each direction
which represents a subset of size 225.

The SER method has been introduced as an alternate construction, for which EIM and
RB approximations spaces are enriched once at each stage. As an intermediate method,
we can imagine to update the RB approximation every r steps. In this way, r = M
corresponds to the standard methodology while » = 1 stands for the SER method.

Moreover, the update of the affine decomposition all through the RB offline step
could deteriorate the resulting reduced approximation since each of the RB basis function
&, 1 <4 < N results from the solve of a new problem. In this context, the SER method
can be customized to rebuild the whole RB approximation space at each update of the
affine decomposition.

We shall base on the absolute errors on the solution and on the output, defined as
(2.38) exry =l uy —uy . €y =l sy — s |

where N and M respectively refer to the size of the RB and the EIM approximation space,
while r is the frequency of the affine decomposition updates.
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We start to apply the standard RB methodology to (2.36), in order to compare our
results with the ones obtained in |Grepl et al., 2007|. To this end, we consider a set of 500
realizations. The resulting errors (2.38) displayed in Table 2.1a are in good agreement
with |Grepl et al., 2007|, which validates our implementation.

Serving as reference, this table is first compared with the results obtained with » =5
illustrated in Table 2.1b. The tables 2.1c and 2.1d investigate the behavior of the SER
method (r = 1) comparing the results obtained with or without rebuilding the RB ap-
proximation space.

N M max(e%v]{,) max(ef\%\,) N M maX(eXfN) max(ef\i ~)
4 5 7.38e-3 5.75e-3 4 5 8.21e-3 6.31e-3
8§ 10 1.01e-3 2.34e-4 8§ 10 4.48e-3 6.18e-3
12 15 1.49e-4 3.09e-5 12 15 2.69e-4 2.36e-4
16 20 2.21e-5 1.25e-5 16 20 1.48e-4 9.31e-5
20 25 5.88e-6 2.82e-6 20 25 2.60e-5 1.46e-5
(a) =M (b)r=5
N M max(e%]\,) max(ef\’}?N) N M max(eqf\’zN) max(e?\iN)
5 5 9.98e-3 7.77e-3 5 D 1.30e-2 1.02e-2
10 10 2.32e-3 1.86e-3 10 10 2.20e-3 1.50e-3
15 15 4.61e-4 3.75e-4 15 15 4.83e-4 4.05e-4
20 20 2.48e-4 2.02e-4 20 20 2.42e-4 1.98e-4
25 25 3.51e-5 2.33e-5 25 25 1.50e-5 1.24e-5
(¢) r =1 (Wx recomputed) (d) r =1 (Wx not recomputed)

Table 2.1 — SER - Maximum absolute errors on solution v and on output s

As expected, the errors (2.38) observed with SER method (r = 1) are slightly higher
than with the case r = 5 which itself displays results slightly higher than the standard
method r = M. This results show the pertinence of the SER method and that we can
expect good results within a reasonable computational budget, since the number of finite
element approximations can then be reduced to N + 1 (Table 2.1d).

2.3.1 Error estimation

We have mentioned that the RB sample Sy = {4, , o5} € D can be built from vari-
ous methods. Tts influence on the resulting reduced basis approximation accuracy could
be important.

Moreover, the reduced basis approximation is used all through the offline step within
the SER method. Its accuracy is then even more crucial, since it influences the accuracy
of the affine decomposition. In this context, we propose to build the RB sample using a
Greedy algorithm, itself based on error estimation methods.

Let us first define the error e(u) associated with the reduced basis approximation
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un(p) obtained using EIM approximation wy; as

(2.39) e(p) = u(p) — un(p)

It exists various a posteriori error estimation techniques providing an upper bound
Ay () for || e(p) ||x. In this section, we stay on one of them dedicated to non-linear but
affinely parameterized problems and especially feasible on a non-linear Poisson problem
as described in [Veroy et al., 2003b|. After a brief description of the initial method, this
section investigates its validity on non-affinely parameterized problems which concern us.

Affinely parametrized problems To deal with the non-linearity of the problem,
[Veroy et al., 2003b| splits the linear (resp. non-linear) part a” (resp. a™) of the bilinear
form a.

(2.40) alu, v; 1) = a*(u,v; 1) + (v )

We now introduce the residual Ry(v; u) = f(v) — a(un(p),v; p) reading from (2.39)
and (2.40) as

(2.41) Ry (v; ) = a®(e(p), v; ) + a™* (u(p), v; p) — ™ (un(p), v; p)

Assuming that the linear component a” of a is coercive, we define its coercivity con-
stant a(p) as
a” (w, w; )

(2.42) a(p) = inf
weX  lw [l%

and we denote &(p) < a(p) Yu € D a lower bound for o (). There are various methods
to compute the lower bound &(u) of a(p), including the inspection method or the min-
theta approach. When the assumptions required by these methods are not satisfied, the
Successive Constraint Method (SCM) [Huynh et al., 2007|, [Rozza et al., 2007|, [Veys,
2014| can be used more generally.

Regarding the evaluation of the residual Ry (2.41) on e(w), the definition of the
coercivity constant () (2.42) results in the inequality

(2.43) Ry(e(p); p) = a™(e(p),e(p); p) = a(p) || e(p) 1%

based on the condition a™*(u(p), e(p); ) — ¥ (un(p), e(p); p) = 0.

Moreover, the error bound introduced by [Veroy et al., 2003b| relies on the Riesz
representation ) defined for a given function g € X as

(2.44) (Vg,v)x =g(v) Vv e X
The expected error bound Ay () of || e(p) || x expressed from (2.44) then reads

_ YRy ) lIx
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Non-affinely parametrized problems Let us remind that we are considering the
solution u(p) of a non affinely parameterized problem depending on at least one non-
affine function w defined as

(2.46) a(u, v; pyw(u,x; ) = f(v; p; (u, x; p))

The reduced approximation uy(p) requires an affine decomposition, which is com-
monly recovered through the EIM approximation wj; of w leading to

(2.47) alun, v; ps wa (un, x; ) = f(v; s wa (un, X5 )

Related with the error coming from the EIM approximation, we introduce the residual
RS™ (u,v; ) defined as
(2.48) R (u,v; ) = alu, v; s w(u, x; @) — alu, v; s way(u, x; @)

The global residual Ry p(v; p) inspired from |Veroy et al., 2003b| taking into account
both EIM and reduced basis approximations errors then reads

Ryu(vsp) = f(v;pyw(u,x;p)) — alun, vi g wa(un, X; p))

(2.49) — (v (% ) — aluy, s s w(uy, X ) + R (uy, v; )

In practice, the accessed residual is based on the affine decomposition. Denoted as
R?\ﬂ/[(v; p), it is defined as

R (i) = flvs s war(u,x; ) — alun, v; 5 wag (un, X; )

(2.50) = Rwu(vip) = Rif" (u, v; )

Decomposing the bilinear form into its linear and non linear part as performed in

(2.40), the evaluation of the so-called affine residual R?\f@ on e(p) — aiming to define a
bound inspired by (2.43) — gives

RS (e(m)im) = a(e(p), e(p); pyw(u, x; p))
(2.51) a™(u(p), e(p); psw(u, x; p) — ™ (un (), e(p); p; wluy, x; @)

+
+ RE (uws e(p); ) — Rig"(u, e(p); p)

We consider again a(p) as a lower bound of the coercivity constant of a®. The
previously obtained condition related to (2.43), allowing to define the error bound from

(2.52) RYT (e(p); ) = a™(e(p), e(p); i w(u,x; ) > a(pe) || e(p) %

now reads from the residual R$/™ taking into account the EIM approximation error as
(2.53) ‘ '
a™ (u(p), e(p); p; w) — a (un (), e(p); p; w) = RS (u, e(p); p) — R (u, e(p); )
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Assuming the existence of the Riesz representations ay ., and f,,, defined as

(2.54) (Ggmns V)x = Qgm(Ensv) and (fom v)x = fom(v)

the Riesz representation of yR%fw(g w) of R(f\fﬂ reads

Qr MJ Qu Mg
(255) yR(]l\{f z;z:lf}/qm ay’ z;zzlz;’qu a“ uNnaqmn
qg=1m =1 m=1n

If (2.53) is satisfied, the expected error bound Ay (u) of || e(p) ||x shall read as

YRV G llx

In a practical point of view, the validity of the condition (2.53) can be hard to de-
termine. Moreover, &(p) can be computationally costly when it exists. Although it is
not an error bound, the norm of the Riesz representation YRy 3, off could rank as an error
indicator and could then serve as a guide for the RB Greedy algorlthm

Preliminary results Based on the same benchmark as previously, the use of the pre-
vious error indicator is illustrated in the following tables. It is employed in the parameter
selection process on which the RB approximation is based. Table 2.2a first displays the
absolute errors obtained with standard methodology combined with the use of the previ-
ous error indicator.

N M max(e%N) max(eﬁ]v) N M max(eﬁj\,) max(ef\i]\,)

5 5 8.22e-3 6.27e-3 5 5 1.04e-2 8.09e-3

10 10 2.87e-4 2.09e-4 10 10 2.40e-3 1.87e-3

15 15 1.96e-5 1.47e-5 15 15 2.38e-4 2.0le-4

20 20 1.57e-5 1.32e-5 20 20 3.02e-5 1.67e-5

25 25 3.14e-6 2.52¢-6 25 25 2.65e-5 1.94e-5
(a) Standard + error estimation (b) r=1- RB Greedy

Table 2.2 — SER - Maximum absolute errors with error estimation

Although confirming the relevance of the Greedy algorithm in the RB approximation
space build, the error indicator doesn’t seem to improve the errors compared with the
previous random selection. The same behavior is observed with both SER (Table 2.2b)
and standard RB method (Table 2.2a).

2.3.2 SER variants

The previous section detailed the development of an error indicator adapted to non-linear
and non-affinely parametrized problems. Its use all through the building of the RB ap-
proximation space consists in the first SER variant, whose results on the 2D benchmark
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were already displayed in Table 2.2.

Besides its primary goal, this error indicator can however serve as a quantifier of the
reduced basis approximation accuracy all through the SER offline procedure. This section
describes the various alternatives that have been investigated in this direction. Each of
them is illustrated with results coming from its application of the previously considered
2D benchmark.

r-adaptation The SER method offers the possibility to perform the alternative enrich-
ment of the EIM and RB approximation spaces, by groups of size r. Table 2.1 compares
the errors obtained with various values of the update frequency. These results tend to
show that the increase of r could help the RB approximation error decrease. It is therefore
difficult to determine a suitable value for r beforehand and to ensure this value would be
adapted for the whole offline step.

The construction of both EIM and RB approximations is based on a Greedy algorithm,
which enables to select the maximizer of a functional mimicking the approximation error.
Regarding the RB approximation space, this functional is based on the previous error
indicator. Its increment between two affine decomposition updates allows to quantify
the gain in terms of accuracy. The error indicator then appears as a criterion providing
guidance to perform a smart adaptation of r during the SER process. The so-called r-
adaptation method thus aims to continue the enrichment until a relevant decrease of the
approximation error.

We distinguish the criterions used for the two KIM and RB approximation spaces.
Each are based on the increment of the maximal value of its Greedy algorithm’s func-
tional. For EIM, this functional (2.11) stands for the EIM approximation error. Regarding
the RB space, it relies on the error indicator introduced in Section 2.3.1 as the norm of

the Riesz representation yRELfoW.

Table 2.4 takes as reference the results previously obtained with » = 1 combined with
the use of the error indicator (Table 2.3a). These results are compared with the errors
obtained from the use of the r—adaptation method.

Table 2.3b adapts the update frequency of EIM approximation space only, with a given
tolerance of 20%. Table 2.4a focuses on the RB approximation space only, with the same
tolerance. Finally, Table 2.4b investigate the r—adaptation on both approximation spaces.

Compared with the reference Table 2.3a, the obtained results don’t allow to assess the
pertinence of the proposed r-adaptation method. Indeed, the resulting errors remains at
the same order of magnitude whatever the approximation space considered for adaptation.
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N M max(e%N) max(eﬁN) N M max(eﬁj\,) max(eﬁN)
5 5 1.04e-2 8.09e-3 5 5 1.04e-2 8.09e-3
10 10 2.40e-3 1.87e-3 10 10 2.40e-3 1.87e-3
15 15 2.38e-4 2.01le-4 15 15 2.34e-4 1.95e-4
20 20 3.02¢-5 1.67e-5 20 20 4.36¢-5 2.74e-5
25 25 2.65e-5 1.94e-5 25 25 2.16e-5 1.36e-5
(a) r =1 - RB Greedy (b) r—adaptation - EIM 20%
N M max(eﬁ’z]\,) max(ej’fl’]\,) N M max(equf]\,) max(eﬁ]v)
5 5 1.04e-2 8.09e-3 5 5 1.04e-2 8.09e-3
10 10 2.40e-3 1.87e-3 10 10 2.40e-3 1.87e-3
15 15 5.90e-4 4.16e-4 15 15 2.34e-4 1.95e-4
20 20 2.87e-5 1.61e-5 20 20 3.46e-5 2.01e-5
25 25 2.35e-5 6.35e-6 25 25 1.61e-5 9.19e-6
(a) r—adaptation - RB 20% (b) r—adaptation - EIM 20% - RB 20%

Table 2.4 — SER r—adaptation - Maximum absolute errors on solution v and on output s

Hybrid Greedy algorithm The core of the proposed SER method resides in the use
of a reduced basis approximation in the EIM offline stage. The accuracy of the current
reduced basis approximation thus plays a key role in the Sy, building step. Especially
regarding the first basis functions, a reduced basis approximation of poor quality could
damage the EIM approximation, and consequently the quality of the affine decomposition.

The proposed error indicator, used as a quantifier of the current reduced basis approxi-
mation quality, allows to sort the considered reduced approximations from their accuracy.
In this context, the Greedy algorithm can employ the reduced basis approximation solely
on parameters for which it proves relevant.

Nevertheless, the maximizer of the functional could be one of the remaining parame-
ters. In order not to ignore them, the reduced basis approximations qualified as irrelevant
is replaced by a parametric finite element solution. Although more costly, these ap-
proximations rely on the affine decomposition which allows to benefit from the offline
precomputations.

As a compromise between the standard reduced basis methodology introduced in Sec-
tion 2.2 and the initial SER method, this variant consists in a hybrid Greedy algorithm
within the EIM offline stage combining finite element and reduced basis approximations.

Turning back to the previous benchmark, Table 2.5 illustrates the errors obtained with
the proposed method for two given selection tolerances. The combination of these two
types of approximation appears to deteriorate the behavior of the SER method. This
underscores the importance of considering only one single model all through the EIM
training set.
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N M max(e%N) max(e‘;’},N) N M max(e%]\[) max(ej’}w)
5 5 9.10e-3 7.11e-3 5 5 7.59¢e-3 5.70e-3
10 10 3.10e-3 2.49e-3 10 10 2.68e-3 2.23e-3
15 15 1.94e-4 7.62e-5 15 15 7.05e-4 4.26e-4
20 20 2.61le-4 1.49¢-4 20 20 1.90e-4 1.11e-4
25 25 5.21e-5 3.74e-5 25 25 8.18e-5 4.19e-5
(a) EIM hybrid Greedy - 20% (b) EIM hybrid Greedy - 10%

Table 2.5 — Hybrid Greedy algorithm - Maximum absolute errors on solution u and on
output s

Multi-levels SER(l) The last proposed SER variant rests on the application of the
SER methodology several times during the offline stage.

The first level consists in the previously described SER offline stage, resulting in a first
reduced basis approximation. Instead of settling for such a reduced basis approximation,
the multi-levels SER (1) variant proposes to continue the offline stage by making a second
application. The Greedy algorithm allowing to build the EIM approximation space is that
time based on the reduced basis approximation coming from the previous level.

More generally, let us denote uy the reduced basis approximation obtained at the level
[. The EIM Greedy algorithm reads for [ < 2 as

(2.57) o =argmax_inffw(uy’ ()5 p) = 2llix@

From the second level, the EIM approximation is computed from a more accurate
reduced approximation than at first level. It is consequently expected that the accuracy
of the KIM approximations is improved, resulting in a better affine decomposition. Thus,
we expect the reduced basis approximation coming from the second application of the
offline step to be improved as well.

We shall note that the multi-levels SER variant is not limited to a single SER config-
uration. All the previously proposed variants can be used in this context as long as it is
applied several times.

Table 2.6 shows the errors resulting from the fourfold application of the initial SER
methodology on the 2D benchmark. Each level is based on a random selection process in
the building of the RB approximation space.

The overall online simulations are performed at the end of each offline stage to evaluate
the gain brought by each level. By construction, the first level (Table 2.6a) gives errors
whose order of magnitude is similar to those obtained in Table 2.1d. As to the tables
2.6b, 2.6¢c and 2.6d, they illustrate the errors at the next levels highlighting the expected
error decrease.
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N M max(e}Q’N) max(eMN) N M max(eMN) max(ej“v)
5 5 1.06e-2 8.40e-3 5) 5 9.13e-3 7.12e-3
10 10 2.33e-3 1.72e-3 10 10 3.19¢-4 1.12e-4
15 15 6.51e-4 5.12e-4 15 15 7.56e-5 5.36e-5
20 20 2.32e-4 1.94e-4 20 20 1.54e-4 2.67e-5
25 25 7.08e-5 5.64e-5 25 25 3.52e-5 2.76e-5
(a) SER(1) (b) SER(2)
N M max(ef; ) max(ey, ) N M max(ef; y) max(ey, y)
5 5 7.26e-3 5.58e-3 5) 5) 8.67¢e-3 6.58e-3
10 10 2.00e-3 1.13e-3 10 10 5.07e-3 3.35e-3
15 15 5.50e-4 4.43e-4 15 15 2.78e-4 2.30e-4
20 20 2.08e-4 3.27e-5 20 20 2.67e-4 4.35e-5
25 25 1.37e-5 6.87e-6 25 25 5.62e-6 2.56e-6
() SER(3) (d) SER(4)

Table 2.6 — SER multi-levels - Random

Table 2.7 reproduces the previous study using a Greedy algorithm in the RB approx-
imation space, instead of a random selection.

As expected, the reference Table 2.7a is exactly the same as the one previously ob-
tained in Section 2.3.1. The tables 2.7b, 2.7c and 2.7d confirm the behavior observed in
Table 2.6, emphasizing on the decrease of the errors through the SER levels.

N M max(ef; y) max(el, ) N M wmax(ef; y) max(ey, y)
5 b 1.04e-2 8.09e-3 3 O 9.17e-3 6.99e-3
10 10 2.39e-3 1.86e-3 10 10 2.89e-4 2.07e-4
15 15 2.38e-4 2.00e-4 15 15 4.12e-5 1.87e-5
20 20 3.03e-5 1.65e-5 20 20 1.44e-5 7.61e-6
25 25 3.42e-5 2.45e-5 25 25 2.72e-5 2.20e-5
(a) SER(1) (b) SER(2)
N M max(ef; ) max(ey, ) N M max(ej; ) max(ey, )
2 7.93e-3 6.01e-3 3 D 8.46e-3 6.36e-3
10 10 2.99e-4 1.80e-4 10 10 4.34e-4 2.24e-4
15 15 1.75e-4 1.35e-4 15 15 6.28e-5 3.05e-5
20 20 1.69e-5 6.02e-6 20 20 1.76e-5 1.17e-5
25 25 7.86e-6 5.37e-6 25 25 1.92e-5 1.51e-5
(c) SER(3) (d) SER(4)

Table 2.7 — SER multi-levels - RB Greedy

Finally, the previous comments concerning the tables 2.6 and 2.7 are supported by the
convergence study of the considered EIM approximation.
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Figure 2.1 — SER multi-levels - EIM convergence

Figure 2.1 plots the maximal value of the functional used in the EIM Greedy algorithm,
depending on the number of basis functions which compose the EIM approximation space.
We can indeed notice a significant improvement of the quality of our EIM approximation
from the second level.

The next levels remains comparable to the latter, already very close to the EIM ap-
proximation performed from the standard method.

Conclusion

This chapter deals with the application of the Reduced Basis method to non-linear and
non-affinely parametrized problems which concern us. In this context, the Empirical In-
terpolation Method is introduced to recover the affine decomposition necessary to apply
the Reduced Basis methodology.

We propose the Simultaneous Empirical interpolation and Reduced basis (SER) method,
which combines these two methods in order to benefit from the efficiency of the reduced
basis approximation within the EIM offline stage. This provides a huge computational
gain for the offline step since it requires only N + 1 finite element solves, where N is
the dimension of the RB approximation. Especially, the number of FE approximations
required in the EIM offline stage no longer depends on the size of the considered trainset.

This section introduces the SER method drawing on results obtained on a 2D bench-
mark introduced in |Grepl et al., 2007|. These results show the pertinence of this method
for non-linear and non-affine PDEs, and prove that we can expect good results within a
reasonable computational budget.

We present also some variants investigated for this method. They are mainly based



42 CHAPTER 2. REDUCED BASIS METHOD

on the development of an error indicator we propose for non-linear and non affinely
parametrized problems. Although it doesn’t provide error bounds for the reduced ba-
sis approximation, this error indicator serves to guide the parameter selection performed
to build the RB approximation space. On the 2D benchmark, the impact of the Greedy
algorithm in the selection process is limited. But we will see in Chapter 11 that it is
significant on other applications.

The multi-levels SER(l) method appears as the most promising variant for SER. How-
ever, many other variants remain to be investigated.
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Chapter 3

Three-dimensional non-linear
multi-physics FE model

Although electromagnetism equations are at the basis of high field magnet modeling,
physics involved in electromagnets study are many. Indeed, high field magnet design is
not only driven by magnetic field considerations, but also by others physics. The magnetic
field intensity is controlled by the current density provided to the electromagnet. An
important current supply (typically few tens of kA) is necessary to produce high magnetic
field. This current induces Joule losses within the magnet insert, leading to an important
heating which could degrade the mechanical properties of the material. Thus, a magnet
design study asks for an accurate account of this temperature increase which consists in
computing Joule losses term to be considered as the source of a standard heat equation.

This temperature increase leads to thermal dilatation which causes deformations.
Added to the mechanical forces induced by magnetic field, these stresses form a supple-
mentary constraint for high field magnets design. This confirms the need of an efficient
and reliable multi-physics model in the context of high field magnets design.

Most high magnetic field facilities use Bitter magnet technology described in the in-
troduction of this thesis. The optimization of such magnets is performed from 2D axisym-
metrical models, based on the hypothesis that these objects are symmetric. Nevertheless,
the polyhelix magnets developped at LNCMI present an asymmetry which makes this
hypothesis inaccurate. The accurate modeling of such magnets cannot simply rely on
the existing 2D axisymmetrical models. This chapter gives an overview of the three-
dimensional non-linear multi-physics model developped through this thesis.

The current density computation being at the basis of other quantities of interest, the
electrical model is the first to be considered. Due to the temperature dependence of mate-
rial properties, the latter is coupled with the heat equation leading to the electro-thermal
model described in Section 3.1. Coupled with the resulting current density, the magnetic
field computation can be performed in different ways. Two of which are considered in
this section, both coming from Maxwell’s equations. Section 3.2 details the finite element
magnetostatic model, while the next (Section 3.3) describes the computation of the mag-
netic field from the Biot & Savart’s law. Finally, the mechanical stresses coming both
from magnetic and thermal forces are computed from a linear elasticity model described

45
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in Section 3.4. The induced displacements as well as the yield strength criterions are
deduced from this model to help the optimization in terms of materials.

Contents
3.1 Electro-thermal model . .. ... ................. 46
3.2 Magnetostaticmodel . . . ... ... o 000 o 0L 56
3.3 Biot & Savart’slaw . .. ... ... .. ... 00000 68
3.4 Linear elasticity model . . ... .. ... ... .......... 71

Each of these sections detail the equations of the concerned model along with conver-
gence studies required for its verification. The coupling between the components of the
multi-physics model is established all through this chapter. The validation of this model
is further described in the last part of the manuscript.

3.1 Electro-thermal model

3.1.1 Equations

Electric potential

Magnetic field variation over time induces an electric field proportional to this variation.
Discovered by Faraday in 1831, this relation became an assumption for electromagnetism
and appears in the so-called Maxwell’s equation as the Maxwell-Faraday equation (3.1).

OB
(3.1) VAE=-"2

The current density j we focus on is proportional to this electric field E from the local
form of the Ohm’s law

(3.2) j=0E

where o is the electrical conductivity of the material.

This section focuses on the steady case. Thus, the time derivative term in the previous
Maxwell-Faraday equation (3.1) is null. Since its rotational is zero, the electrical field E
can read as the gradient of a scalar potential V' defined as the electrical potential.

(3.3) VAE=0 = 3V|E=-VV

The charge conservation principle gives the electric charge variation over time as the
opposite of the electric charge flux j.n through the surface. In steady case, this ensures a
divergence-free condition for current density j.

The steady electrical potential equation then reads

(3.4) V- (—oVV) =0
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Temperature

The heat equation is determined by the first thermodynamic principle ensuring the
energy conservation in the systems. The energy variation 0U over time reads as the sum
of heat 0() and work dW variations in the system. In our case, W is neglected as we
consider small deformations assuming that the volume of the system remains unchanged.
The energy variation is then only controlled by heat which involves temperature variation
in the system

(3.5) SU = 6Q = cpr%

where C), and pg are respectively the specific heat capacity and the mass density of the
material.

The heat variation d() reads also from the heat flux density jg, which defines the heat
received by surface unit as jo - n, with n the outward normal. Eventual internal sources
of heat P (as Joule effect) are also added to 6@Q) which becomes

(3.6) 5Q=V-jo+P

The heat flux density jg is proper to the material. Fourier’s law defines it from the
thermal conductivity k£ of the material giving jo = VT, allowing to deduce the heat
equation from (3.5) and (3.6)

oT
(3.7) =V (kVT) + Cypg g = P

The internal source of heat is limited to Joule effect in our case. The local form of
Joule’s law then defines the source term P as P = j- E, where j and E are the current
density and the electric field previously defined. From relations (3.2) and (3.3), the
internal heat source term reads

(3.8) P=0oVV.VV
The steady heat equation used for electro-magnet study then reads

(3.9) — V- (kVT) =oVV -VV

Material properties

The electrical potential and temperature equations (3.4) and (3.9) involve electrical
(resp. thermal) conductivities o (resp. k), which are proper to the material used. The
electrical conductivity describes the ability of electric charges to move in the material.
Metals at room temperature or higher have resistance, and the electric charges mobility
is countered by the resistivity of material defined as the inverse of its conductivity. For
metals at room temperature or higher as for high field magnets, the material’s resistivity
p increases linearly with the temperature such that

(3.10) p(T) = po(1 + (T - Tp))
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with po the resistivity at reference temperature Tj, and « the so-called temperature coef-
ficient obtained empirically from measurements.

The electrical conductivity expression can then be easily deduced from the linear
relation (3.10) considering oy the electrical conductivity at reference temperature Ty

0o

(3.11) o(T) = TTer =T

Moreover, the thermal conductivity of a metal is proportionnal to its electrical conduc-
tivity and its temperature. This relation is established by Wiedemann-Franz law leading
to the expression of the thermal conductivity

(3.12) k(T) = o(T)LT

where L is a constant known as the Lorentz number which is proper to the considered
material.

This dependence on temperature for conductivities involved in (3.4) and (3.9) leads
to a non-linearity in the coupled electro-thermal model.

Boundary conditions

The current circulation in the magnet is imposed as a difference of potential Vp be-
tween current input and output. This corresponds to an homogeneous Dirichlet boundary
condition imposed on current input Vj,, associated with the Dirichlet condition V = Vp
on current output V.

V=0onV,

(3:13) V = Vp on Vg

The air and the cooling water surrounding the magnets are considered as electrically
insulating. This means that the current density flux j-n accross the borders is null. From
(3.2) and (3.3) this leads to an homogeneous Neumann boundary condition

(3.14) —o(T)VV -n =0 on 0Q\(Vi, U Vo)

The thermal flux jg - n is controlled by the water cooling of the magnet, and is non
zero only accross the cooled surfaces denoted 9€2.o01eq- The thermal exchange between the
conductor and the cooling water is governed by a convection phenomenon. The amount
of heat exchanged depends on a heat tranfer coefficient h, and defines the thermal flux
on cooled regions as jo - n = h(7 —T,). The heat transfer coefficient is determined from
the thermal conductivity k(7'), the hydraulic diameter D), and the Nusselt number Nu
commonly used in heat transfer considerations |Colburn, 1933|.

k(T)Nu

.1 h =
(3.15) B

The Nusselt Number Nu is proper to the considered flow and can be determined by stan-
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dard hydraulic correlations. For perpendicular flows in annular region between cylinders
as for high field magnet cooling, the Colburn correlation is used.

The cooling process is thus handled by a Robin condition applying the Fourier’s laws
to the thermal flux on the cooled regions

(316) - k(T)VT n = h(T - Tw) on anooled

The thermal exchanges in uncooled regions are not considered, leading to a null ther-
mal flux accross the concerned surfaces giving the homogeneous Neumann condition

(3.17) — k(T)VT -n =0 on 0Q\0Qcooled

Considering the electrical conductor as a domain €2, the resulting non-linear coupled
electro-thermal model reads as follows with the considered boundary conditions

( -V - (o(T)VV)=01in Q
V- (KT)VT) = o(T)VV - YV in
V=0onV,
(3.18) V = Vb on Vpu
—o(T)VV -n =0 on 90\ (Vin U Vi)
—k(T)VT -1 =0 on 92\0o0led
—k(T)VT -1 = h(T —T,,) on 0Qcooled

3.1.2 Variational formulation

The variational formulation of the non-linear coupled electro-thermal model (3.18) consists
in finding (V,T') € Xy x X such that

ay(V,ov) = fv(ov) V ¢y € Xv
ar(T,¢r) = fr(¢r) ¥V ¢r € Xr

with ¢y (resp. ¢r) the test functions associated with electrical potential V' (resp. with
the temperatue T'), and Xy (resp. X7) function spaces to be defined.

(3.19)

Electrical potential From electrical potential equation (3.4) and associated boundary
conditions, the variational formulation consists in finding V' € Xy C H;(Q2) such that
\ (bv S X¢v C Hl(Q)

(3.20) /J(T)VV -Voy — / o(T)(VV -n)py =0
Q o0
Imposed in strong form, Dirichlet conditions (3.13) are embedded into the Xy func-
tion space definition and the boundary term of (3.20) vanishes as we have a Neumann
homogeneous condition (3.14) on 0f2. By this way, the formulation (3.20) with strong
Dirichlet boundary conditions consists in finding V' € Xy = {v € H1(Q) | v =0 on V;,, |
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v="Vp on V,,} such that V ¢y € Xy, ={v e Hi(Q) |v=0o0n V;,, UV .}
(3.21) /U(T)vv Véy =0

Q

Dirichlet conditions can also be weakly imposed using Nitsche’s method which consists
in adding symetrization and penalisation terms without conditions in the function space
definition. In this case, (3.20) consists in finding V' € Xy = H;(Q2) such that V ¢y € Xy

oV Vo - / D) ey / DTy Y+ | Jewwve

‘/inUVout
(3.22) :—/ o(T)(Voy -n)Vp +/ %U(T)qubv
\Vout , \Vout ,
symet;irzation penaﬁgation

Temperature From the heat equation (3.9) and its boundary conditions, the variational
formulation consists in finding 7' € Xr C H{(Q) such that V ¢r € Xp

(3.23) /Q KT)VT - Vér — /

E(T)(VT -n)or = /U(T)VV -VVor
o)

Q
Contrary to previous electrical potential formulation, there is no Dirichlet boundary
conditions for temperature. Boundary conditions are naturally applied to the formulation

and Xr is simply H;(£2). The variationnal formulation then consists in finding V' € Xp =
H1(Q2) such that ¥V ¢r € Xp

(3.24) /Q KT)VT - Vor + /

hWT gy = / o(T)VV -VV + / hT,or
BQcooled Q

anooled

The non-linearity due to the dependence of material properties o and k on temperature
is handled by iterative methods. Either Picard or Newton are used for this model.

Picard method The Picard method is the most standard way to deal with such a
non-linearity. From an initial guess X° = (V° T°) value given for the couple potential-
temperature, this methods consists in computing X! = (V71 77 from X" =
(V™. T™) solving alternately (3.20) and (3.23) until convergence. Convergence is based
on the increment A = X" — X" and is considered as reached when A becomes lower
than a user-defined tolerance.

Newton method The solution X = (V,T) of the previous electro-thermal problem
(3.18) can be seen as the root of a functional R (3.25)

oo ns(f ) (R - (o k)

where R, and R, are defined from (3.20) and (3.23)
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The Newton’s method allows to find the zeros of (3.25) solving the matricial system
Jr(X™) * (X" — X™) = —R(X™)

where X = (V™ T") is the solution at the n' iteration and Jx the Jacobian of R given
by (3.25).

OR, OR,
(3.26) Jp=| 9V 0T
OR, OR,
v oT

3.1.3 Convergence study

Let u,, be the exact solution of a considered problem (electrical potential or heat equation
solution) and u its approximation. The approximation error reads

(3.27) €= Uez — U
The verification step ensures that convergence order properties are satisfied, that is
(3.28) e, < ch* and | e | g, < ch”

with A the mesh size, k the polynomial order of the approximation and ¢ a constant.
The convergence study checks that requirements (3.28) are satisfied by our approximation,
plotting || e ||z, and || e ||z, depending on the mesh size h. In logarithmic scale, (3.28)
corresponds to a linear function of slope k + 1 (resp. k) for || e ||z, (resp. || € ||m,). How-
ever, the computation of such an error norm || e || (3.27) obviously induces the knowledge
of the exact solution u.,, which is usually unknown. Based on axisymmetrical consider-
ations, an analytical solution is available for the linearized electro-thermal model — that
is with constant electrical and thermal conductivities — and serves as initial verification.
This solution doesn’t work for the non-linear model, due to the dependence of material
properties on temperature. In this context, a posteriori error estimators are used to esti-
mate || e ||

Introduced by Zienkiewicz and Zhu in |Zienkiewicz and Zhu, 1992|, the gradient re-
covery based error estimators apply in this context. The latter are based on the approx-
imation of the error ey = Ve on the gradient. This error is estimated by a global error
estimator ey (3.29) mimicking the gradient Vu,, of the exact solution using the gradient
recovery operator Rh(Vu) interpolating Vu from its nodal values.

(3.29) ev ~ ey = Rh(Vu) — Vu

This section first gives the convergence results performed on linear electro-thermal
model both from analytical solution as an initial verification step and from a posteriori
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error estimators in order to prove their efficiency. The convergence study for non-linear
electro-thermal model is based on these error estimators and is performed with both
Picard and Newton iterative methods.

Linear model - Analytical solution

The expression of an analytical solution for the linear electro thermal model can be es-
tablished in a cylindrical frame from axisymmetrical considerations. The considered ax-
isymmetrical geometry (Figure 3.2a) illustrates the sector of a magnet turn traversed by a
current and longitudinaly water cooled. We shall note the similarity with a Bitter magnet
without the cooling holes. Input parameters are given in table 3.1.

oo | k| L | a | n |T,]|Vp
4.8 x 107 | 377 | 2.477% | 3.357% | 6 x 10* | 303 | 0.25

Figure 3.1 — Thermo-electric analytical solution - Parameter values
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anoolcd
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Figure 3.2 — Analytical solution of axisymmetrical geometry

The linear electro-thermal model (3.30) is obtained from (3.18) considering that the
electrical (resp. thermal) conductivity o (resp. k) doesn’t depend on temperature.

( -V - (VV)=0inQ

V. (VT) = %vv - VV in Q

V =0o0n ij

(3.30) V =Vp on Vyu

—0oVV -n =0 on 90\ (Vi U Vour)
_k;OVT -n=0on 8Q\anooled

\ _kaOVT -n = h(T — Tw) on anooled

The electrical current circulation from Vj, (0 = 0) to V,,; (¢ = %) imposed by Dirichlet
boundary conditions induces that V,,, depends only on 6. From divergence and gradient
operators in cylindrical coordinates system, we easily deduce that V,,, reads as a first
order polynomial

(3.31) Vana(0) = Av0 + By
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The Dirichlet boundary conditions on V;,, and V,,; satisfied by V,,,, allow to determine
the values of Ay and By constants and consequently the expression of V,,, to be replaced
in the heat equation as

2Vp6 4V32
(332) V;.na: VD 5 _v'(vTana) @ VD

T ko r2m2

in

Moreover, the zero flux boundary conditions on temperature and the current orienta-
tion suppose that T,,, depends only on r. From this consideration, 7,, can be expressed
as the second order [og(r) polynomial

(3.33) Tuna = Arlog(r)? + Brlog(r) + Cr

with A7, Br and C7 constants. The cooling boundary conditions allows to determine
those constants to be replaced in (3.33) where r. (resp. r;) names the external (resp.
internal) radius

200 VA —Ar(B; + Be
(3.34) ko "

[(B; — Be)Ar + (ko(re — i) — hrerdog(rer;))Br] + Ty,

where

B; = 2korclog(r;) — hrerdog(r;)?  and  B. = 2kgrilog(re) + hrerilog(re)?
B, =ko(r; +re) + hrerilog(E)
"

Figures 3.3 to 3.6 illustrate the 2D and 3D convergence studies performed on this
model. These graphs plot the Ly and H; norms of approximation error obtained with the
linear model depending on the mesh size. They display both exact and estimated errors
for two polynomials orders, where P1 refers to the first polynomial order while P2 refers
to the second one.
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Figure 3.3 — Linear electrical potential - 2D convergence study
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Figure 3.6 — Linear temperature - 3D convergence study
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Non-linear model - A posteriori error estimation

As previously mentionned, exhibiting an analytical solution (Vpa, Tana) is not feasible for
the non-linear case. In this context, the verification is performed from errors estimators
whose relevance has been emphasized in the previous convergence studies.

Similarly with the previous study, the figures 3.7 and 3.8 focus on the 2D non-linear
model, while the figures 3.9 and 3.10 illustrate the convergence of the 3D one. These con-
vergence studies conclude the verification of the electro-thermal model for its two versions
namely linear and non-linear. They confirm as well its validity at high polynomial orders.
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Figure 3.7 — Non-linear electrical potential - 2D convergence study
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Figure 3.8 — Non-linear temperature - 2D convergence study
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Figure 3.10 — Non-linear temperature - 3D convergence study

3.2 Magnetostatic model

3.2.1 Equations

The magnetic field is defined as a quantifier of the magnetic effect coming from the current
flow into magnetic materials. Relating magnetic and electric fields, Maxwell’s equations
are at the core of the magnetic field computation.

Established in 1823, Ampére’s law relates the magnetic field to its electrical current
source, considering the integral of magnetic field around a closed curve C' as proportional
to the intensity of this current source. Expressed from the current density j, the current
intensity defines the current flow through the surface S surrounded by the curve C.

(3.35) jfcﬂzfz/sj-n

where n denotes the outward normal to the surface S.
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Introduced in Section 3.1, Omh’s law (3.2) expresses the current density j as the prod-
uct of the temperature dependent electrical conductivity o by the electric field. Deriving
from an electrical potential, the electric field coming into (3.2) reads from the solution of
the previously introduced electro-thermal model (3.4). Thus, the magnetostatic model is
naturally coupled with the previous electro-thermal one by the current density j defined
as

(3.36) j=-—o(T)VV
From (3.36), Ampére’s law (3.35) reads in differential form as
(3.37) VxH=—-0(T)VV

The contribution of the displacement current defined as the time derivative of the
electrical charge has to be added to the original Ampére’s law (3.35) to ensure the charge
conservation principle. But as we focus on the steady model, we are not concerned by
this term.

Most commonly used in the study of magnetism, the magnetic induction B is related
to the magnetic field H (3.37) by the magnetic permeability ;1 through the constitutive
law

(3.38) B = uH

The magnetic permeability of the so-called ferromagnetic materials composed for ex-
ample of iron or steel depends on the magnetic field H leading to a non-linear model.
Nevertheless, the resistive magnets we focus on are composed of diamagnetic materials
based on copper alloys whose magnetization is negligible. In our case, the magnetic
permeability p relating B to H is the vacuum permeability uy = 47 x 1077T.m.A~L.
Considering the linear relation (3.38) in this context, the magnetic induction B is often
abusively refered as the magnetic field.

As part of Maxwell’s equations, the Gauss law describes the magnetic induction B as
divergence free. Thus, the magnetic induction derives from a magnetic potential A :

(3.39) V.-B=0 = 3JA|B=VxA

Combining Ampére’s law (3.35) with the constitutive law (3.38) relating H to B, the
considered model whose solution is the magnetic potential A then reads

(3.40) V x (%V X A) =]

We shall also note that the current density j is divergence-free from the electrical po-
tential equation (3.4). The De-Rham diagram (1.11) defined in Chapter 1 thus places j

in Hgy space, A in H.,, space from (3.37) and B in Hyg;, as the curl of an element of
H.u. The finite element method used to compute A solving (3.40) consequently have
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to preserve the properties of H,, function space. Defined to this end, the Nédélec finite
elements introduced in Section 1.3 are definitely convenient. Their use especially allows
to impose only the continuity of the tangential component. Turning to Ampére’s law
(3.35), we shall remark that this condition is inherent to the Maxwell’s equations. The
divergence free condition (3.39) coming from Maxwell’s equations imposes the continuity
of the normal component of B accross the boundary of two media, which confirms that
B is an Hyg;, element. And the definition of the magnetic potential A (3.39) then leads
to the continuity of the tangential component of A on interfaces.

The well posedness of the magnetostatic problem (3.40) requires the definition of
boundary conditions. Assuming that the current density is located to some finite region
in space, the boundary condition consists in considering B is zero at infinity. Neverthe-
less, the finite element method supposes the spatial discretization of the domain and then
imposes €2 to be of finite dimension. In practice, the domain is composed of the conduc-
tor plus a surrounding box whose boundaries model the infinity. In 3D, the boundary
condition is expressed in terms of magnetic potential such that

(3.41) A xn=0on 02

Since the curl of any gradient field is null, the problem (3.40) doesn’t admit a unique
solution. Considering A as a solution of (3.40), any A = A + V¢ defined as the sum of A
with the gradient of a function ¢ satisfies (3.40) as well. Although the gradient field V¢
doesn’t affect the magnetic flux B in a physical point of view, the unicity of the solution
A is essential in terms of numerical solving.

As a first option to guarantee the unicity of the solution, we consider (3.40) as a
specific case of the potential-based full Maxwell problem expressed in frequency domain.
The regularization method |Bebendorf and Ostrowski, 2009 amounts to consider the
additional terms coming from Fourier transforms of time derivatives as a regularization
term which tends to zero. A second option consists to impose an additional condition
on the divergence V - A. The Coulomb gauge corresponds to a divergence-free condition
leading to a saddle-point problem. Further details can be found in |Dumitru, 2013|.

Other methods can be employed to regularize the curl-curl matrix of (3.40), such as
the tree-cotree gauging |Biro et al., 1996| which is not discussed here.

Regularized formulation Based on the Maxwell’s equation in frequency domain, the
regularized formulation rests on Fourier transform F, defined for any time dependent
function f(t) as

“+oo

(3.42) FUONw) : ) — FIFO)(w) = f(t)e " dt

—0o0

As mentionned, the ungauged magnetostatic problem (3.40) reading as the time har-
monic Maxwell’s problem with frequency zero doesn’t admit a unique solution. Consid-
ering that electromagnetic fields obtained at low frequencies are a good approximation of
magnetostatic fields, the regularized formulation enjoys from the regularity of full Maxwell
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problem with w # 0. Coming back to the Maxwell-Faraday equation (3.1), the electric
field expresses from the magnetic potential A such that

0A

Let’s consider the contribution of the displacement current in the previous Ampére’s
law (3.35) ensuring the charge conservation

1 OE
44 — A)=]j E+e—
(3.44) VX(MVX ) jto +E(‘9t

The relation (3.43) leads to the unsteady problem

1 0’A 0A

on which we apply the Fourier transform (3.42), resulting in the time harmonic equation
1 , 9 )

(3.46) VX |=VXA)|+(ciw—ew’)A =j
1

The considered regularization method aims to mimick the last term (oiw — ew?)A of
(3.46) with low frequencies. To this end, the regularization term consists in the addition
of a weighted term tending to zero to get closer to the initial formulation such that

(3.47) v x (lv x AE) teA, =j
W

with A, the solution of the corresponding regularized problem converging to the solution
A of the initial problem (3.40) when ¢ — 0.

Saddle-point formulation As previously mentionned, the so-called Coulomb gauge
guarantee the unicity of the solution of (3.40) imposing a divergence free condition to
A. This extra condition is handled by a Lagrange multiplier p as an additional scalar
unknown of (3.40) on which homogeneous Dirichlet boundary conditions are imposed
leading to

1
(3.48) V x (;VxA) +Vp=jonQ
V-A=0

with A xn =0 and p =0 on 0f2.

3.2.2 Variational formulation

Regularized formulation Let us remind that the regularized formulation (3.47) results
in a vectorial solution A, which tends to A when e decreases. Denoting ¢, € X C
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Heun(€2) the associated test functions, the variational formulation of (3.47) consists in
finding A, € X C H.uu(Q2) such that

1 1
| (V80 (Vxon) + [ (VA (on, )

(3.49) K

+/6A6-¢A6=/j-¢AF Véa € X
Q Q

As for the thermoelectric model, Dirichlet boundary conditions can be imposed on
their strong or weak form. In their strong form, they are inherent to the space X =
Hoew1(Q) ={v € Hon(2) | v x n = 0 on 0N2}. This definition of X allows to vanish the
boundary term of (3.49), leading to a problem which consists in finding A, € Hp cui(€2)
such that

(3.50) / LW xA) - (Vxop)+ / A, - by — / i ba Vba € Hyon(Q)
QM Q Q
In their weak form, the Dirichlet boundary conditions are imposed through Nitsche’s
method adding symetrization and penalisation terms without any additional condition
on X = H.n(Q2). Considering h the mesh size and ~ the penalization term, the weak
formulation thus consists in finding A, € Hp cun(€2) such that

(3.51)
1 1
/Q;<VXA€)'<VX¢AF) +/()Q;(VXA6)(¢A‘ Xn>+/S;EA€.¢Ae

L : n N ' "
+/89M(V><¢Ae) (A, x )+/3Qhu(¢Afxn) (A, x )J

N

Vv Vv
symetrization penalisation

_ /Q §-ba Voba € Hon(®)

Saddle-point formulation Considering the Lagrange multiplier introduced to deal
with the divergence free condition on A, the saddle-point problem (3.48) consists in
finding the couple (A,p) € X C (Heun(Q2), H1(Q2)) such that

1 1 .
(3.52) /Q;WxA>-<VX¢A>+/m;<V><A>-<¢A><n>+/QVp-¢A=/QJ-¢A

359 [ (A-mo,~ [ A-V0,=0 W(@u0,) € X

where ¢, (resp. ¢,) are the tests functions associated with A (resp. p).

If the Dirichlet boundary conditions on (A, p) are imposed in strong form, they are
inherent to the function space X which defines as X = (V,Q) = (Hocun(Q), H5 (Q)).
The boundary term of (3.52) is eliminated since ¢4 € Hp cuni(€2), while the one of (3.53)
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vanishes from the definition of ¢, € Hj(€2). The variational formulation then reads :
Find (A, p) € (Hocun (), H3(€2)) such that

(3.54) /Q %(V < A) - (V x )+ /Q Vp -, = /Q §obs Ve Hooun(®)

(3.55) / A-V¢,=0 V¢, € Hy()
Q
As for the weak Dirichlet conditions, Nitsche’s method is applied on both two variables

A and p with X = (V,Q) = (Heun(§2), H1(£2)). The variational formulation then consists
in finding (A, p) € (Heun(92), H1(£2)) such that

(3.56)
1 1
- A)- - A)- .
[vxa)(@xen +[ TxA)@uxw+ [ Vo,
1
[ - Axmt [ Lan) (6,4xn)
symet;irzation ah penaﬁgation ’

- /ﬂ - da Vo€ Hoom(Q)

)b, — . Y pb, = HO
| amo,— [ Ao, + [ Ty, =0 vo,em@

3.2.3 Preconditionning

The discretization of problems (3.47) and (3.48) are solved from their matricial form Kx =
b. Thus, the conditionning of the matrix I plays an important role in the convergence of
the iterative solvers used to compute the magnetic potential A. Especially, the definition
of A € H.y from Nédélec finite elements whose degrees of freedom are located on the
edges of the mesh can highly deteriorate this conditioning.

The resolution of such problems could then require adapted preconditioning techniques
to ease the convergence of the iterative solvers. Moreover, we have to pay particular at-
tention to the scalability of these methods to be used in a high performance computing
context. This section gives an overview of appropriate preconditioning techniques, pro-
posed in |Greif and Schoétzau, 2007| and |[Hiptmair and Xu, 2007|. These have been
implemented within Feel++, to be applied on our magnetostatic model.

Regularized formulation The discretized system associated with (3.49) whose solu-
tion is denoted as A, consists in finding A.;, € X;, C X — with X depending on the
Dirichlet boundary condition treatment — such that

(357) ae(Ae,ha ¢A€,h) = fG(d)Ae,h) vque’h € Xh
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where a, (resp. fe) are the bilinear (resp. linear) forms defines from (3.50) as

(3.58) ac(Aun b p) = /

Q

(3.59) flan) = /Q i b

1
;(V X Acp) - (V x ¢A€7h) + / €EAch- Gy p
Q

The expression of a. and f. with weak Dirichlet conditions can be easily obtained adding
corresponding terms from (3.51).

Let’s now introduce {gbi}ﬁ“f” the shape functions of the discrete function space X; C
Heun of size Ny The finite element A, € Xh of (3.57) consists in a linear combination
of these shape functions whose coefficients as denoted as a$, 1 < i < Ny

Ncurl
(3.60) Acn =) asy,
i=1
Turning to (3.57), the solution A, = (af,...,aj. ) is the solution of the matricial

system A.A.; = b with Ac;; = ac(;,1;) and b.; = f(1;) for 1 <i,j < Neyri. The
large number of non zero entries in A., coming from the definition of the unknown using
H_.1-conforming finite elements, could lead to a poor conditionning for A..

The mass matrix M can be added to A, serving as a preconditionner to (3.57) |Greif
and Schotzau, 2007

(361) PM - AE + M Wlth Mi}j - / ¢j : 'l,bz‘, 1 g 27] < Ncurl
Q

Saddle-point formulation The saddle-point formulation introduced as (3.52) and
(3.53) results in a discretized system as well. Let’s denote (Ay,ps) the solution of the
discrete formulation consisting in finding (A, pr) € Xp = (Vi, Qn) C X such that

(3.62) a((An,pn) (@ an, bpn)) = F((Dan, bpn)) V(D ap, pn) € Xn

where a (resp. f) are the bilinear (resp. linear) forms are defined from the sum of (3.54)
and (3.55) as

a((An, pn), (D ps bpn)) = /

1
LT % AL - (V x ) + / Vin - Gt / Ay Vo,
QM Q Q

F( D Spn)) = /Q i b

Considering {1, }s* the shape functions of V},, we introduce {¢;}, the basis func-
tions of @),. The finite element approximations Aj, and p, are described from their
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coefficients a; 1 <1 < Ny and p; 1 < ¢ <N in these basis as

Ncu'r'l

N
(3.63) Ap=) asp; and py,=) pipi

i=1 i=1

Coming back to (3.62), the couple of solutions (Ap,pn) = (a1,-..,an,,,sD1s-- - PA)
is obtained from the resolution of the block matricial system

T
= (5 5)()-()
where AZ‘J = fQ ,u_l(V X ’ll)]> . (V X d"z)? Bi,j = fQ ¢j . VQOZ and fz = fQJ . ”l./)Z

The expression of a and f, as well as the corresponding components of (3.64) correspond-
ing to weak Dirichlet boundary conditions can be deduced from (3.56).

For same reasons as previously, the poor conditioning of the block matrix of (3.64)
can degrade the convergence of the iterative solvers used. The block diagonal preconi-
tioner Ppy is proposed in [Hiptmair and Xu, 2007| to solve (3.64). Further details on
auxiliary space based preconditioners employed in this context can be found in |Kolev
and Vassilevski, 2009).

Defined from (%) the previously introduced Pa (3.61) as the first block and (%) from
the scalar Laplacian matrix £ as the second one, Py . reads

o Py O . A+ M 0
(3.65) Prmr = ( 0 r ) = ( 0 r )
with M the mass matrix on V}, and £ defined as
(3.66) M, ;= / Y-, and L= / Vo; -V, 1<i,j<m
Q Q

Handling the whole system (3.64), the so-called outer solver is preconditioned by Py ¢
(3.65) leading to the linear system

PM 0 Vhn o Cp,
o4 (oe) )= (%)
where v, = AAy, + BTpy,, ¢, = BA}, and ¢;, = Py of from (3.64).

While the solving of the scalar elliptic problem Lg, = 0 can be efficiently performed
with standard methods, the conditioning of the first block Prvy, = ¢, of (3.67) suffers the
consequences of H.yi-conforming elements use. As for the previous regularized system,
this block requires to be itself preconditioned. To this end, the use of the auxiliary space
preconditioner is proposed in |Hiptmair and Xu, 2007| resulting in the so-called inner
solver. Denoted as Py, this second level preconditionner is defined such that

(3.68) Pyt = diag(Pa) ™" + P(L+ Q) PT + C(L™)C"
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leading to the system Pywy = r, where wj, = Ppyvy, and 1, = Pycy, from (3.67).

The matrix P of (3.68) denotes the nodal interpolation operator II{™ from Q3 to V;,
while Q is the scalar mass matrix on @),

(3.69) Qz/ﬁy@,MUJ<m
Q
The block matrices Q and £ are defined from Q (3.69) and £ (3.66) as
1 _
(3.70) L= ;diag(ﬁ, L,L) and Q= diag(M, M, M)

The matrix C' is composed by the coefficient vector of Vi, in Vi, =< ap; >, such that
(3.71) Vo; = Zci,ﬂpm l<jsm
i=1

Thus, the solution wj, = P vy, of the preconditionned system Py wj,, = r;, reads
(3.72)  wy = diag(Py) 'vr + Py + Cz withy = (£L+ Q) 'P'r andz= L 'C'r
In practice, the solution wy, (3.72) is obtained from the resolution of two linear problems
(3.73) (L+ Q)y=P'r
(3.74) Lz =CTr

The iterative solvers used in the inner solve for the problems (3.73) and (3.74) and
the ones solving the second block of the outer problem can be independently customized,
leading to a large number of available setups.

3.2.4 Convergence study

Let A.; be the exact solution of the initial problem (3.40) with magnetic permeability
p set to 1. We denote as e = A, — A (resp. e. = A, — A.) the approximation error
resulting from the saddle-point (resp. regularized) formulation. Considering h as the
mesh size, it exists a constant ¢ defining the expected convergence properties as

(3.75) lell< ch | ecll,< ch and e

I—]Curl< Ch’7 || 66 | chrl< Ch/

which corresponds to a straight line of slope one for the Ls and H., norms within
a logarithmic scale. We shall remark that the polynomial order is not considered in
(3.75) compared to (3.28). Indeed, we only focus on the lowest polynomial order for
Hyn—conforming elements to which our implementation is limited (see Section 5.4).
This section illustrates the convergence properties obtained from the magnetostatic
formulations of Section 3.2.2, captionned with the value of the slope obtained with loga-
rithmic scale. Many values of the regularization coefficient € have been considered aiming
to investigate its influence. As to the saddle-point formulation, many configurations have
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been tested from various solving techniques within the preconditionned blocks. An inter-
mediate method corresponds to a simple block solve, preconditionned by the standard LU
or GAMG methods. Denoted as Auxiliary space Maxwell Solver (AMS) from |Falgout
et al., 2006], the latest introduced two levels preconditionning method is tested as well.

The 2D convergence study is based on the square domain ©Q = [—1,1] x [—1,1] on
which the considered exact solution A, reads

(1=
(376) Aem - < 1—1’2 )

Figure 3.11 plots the Ly and H,1 norms of the magnetic potential A, coming from
the regularized formulation (3.50) with various values of €. These experiments are based
on the standard LU preconditionner, without specific treatment. As expected, the con-
vergence requirements (3.75) are only obtained for low values of e.
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Figure 3.11 — Magnetic potential A convergence - 2D regularized formulation

Figure 3.12 plots the Ly and H.y) norm of the magnetic potential A obtained from
the saddle-point formulation. Although the conditioning of the considered system is good
enough to ensure the convergence with a standard LU preconditionner, this study aims to
compare the results obtained with various preconditioning techniques. The requirements
(3.75) are satisfied for all configurations, which confirms the pertinence of the precondi-
tioners.
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Figure 3.12 — Magnetic potential A convergence - 2D block saddle point formulation

The figures 3.13a (resp. 3.13b) focus on the convergence properties of B obtained with
the regularized (resp. saddle-point) formulation.
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(a) Regularized formulation (b) Saddle-point formulation

Figure 3.13 — Magnetic flux B - 2D Convergence study

The resulting behaviour is similar to the one of the magnetic potential, which conclude
the verification step of the 2D magnetostatic model.
As an extension of the previously described 2D one, the 3D convergence study is based
on the square domain Q = [—1,1] x [—1,1] x [—1, 1] for which the exact solution A., is
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defined as

(1—9*)(1—2%)
(377) Aex = (1 - xQ)(]' - 22)
(1—a*)(1-y?)

As in 2D case, Figure 3.14 plots the L, and H,, norms of the magnetic potential
A, coming from the regularized formulation (3.50), with adapted values of € tending to
zero. As expected, the convergence requirements (3.75) are as well obtained for the lowest
values of e.
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Figure 3.14 — Magnetic potential A convergence - 3D regularized formulation

The tested configurations for the saddle-point formulations are the same as in 2D case,
for which convergence study is illustrated by Figure 3.15. The conditioning of the initial
system is reasonable for such a problem, leading to the expected convergence proper-
ties with the standard LU preconditionner. The convergence order obtained with other
preconditionning techniques is similar to the latter and confirms the relevance of these
methods in 3D case.

The convergence order of the magnetic induction B is finally considered in Figure
3.16a and 3.16b for both regularized and saddle-point formulation. As previously, the
behaviour of B is similar to the one of the magnetic potential A.

Concerning the computational cost, the use of the saddle-point formulation is more ex-
pensive. Indeed, the system to solve with this formulation is larger than the one associated
with the regularized problem, due to the use of the Lagrange multiplier. Nevetheless, the
saddle-point formulation is freed of the regularization coefficient which has to be chosen
carefully.
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Figure 3.15 — Magnetic potential A convergence - 3D block saddle point formulation
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Figure 3.16 — Magnetic flux B - 3D Convergence study

3.3 Biot & Savart’s law

Besides the magnetostatic model introduced in Section 3.2, the Biot and Savart law is
a standard way to compute magnetic potential and magnetic field in a delimited region

outside the current conductor.

We denote .nq the conductor in which the current is passing, and 2,4, the do-
main on which we want to evaluate the generated magnetic field. We consider here that
Qeond N Qimgn = @ which is a necessary condition to apply Biot and Savart’s formulation.
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Turning to the magnetostatic equation (3.40) with a constant magnetic permeability
combined with the divergence-free condition enforced by Coulomb Gauge, the magnetic
potential A is the solution of the Poisson’s equation

(3.78) VZA = —4j

The general solution to this equation (3.78) reads from the Green’s function G(r,r’) with
r € Qugn and r' € Qg as

(3.79) Ar) = —p / G(r.)j(r')

cond

Considering the 3D Green’s function for Poisson’s equation defined as

-1
Cdm|r—1 |

(3.80) G(r,r')
we deduce the expression of the magnetic potential A from (3.79) as

(3.81) A(r) = @/ﬂ ﬂdr' r € Qngn

 4r cOnd|r—r’|

The definition (3.39) of B as the curl of A (3.81) then leads to the so-called Biot &
Savart’s law

s( o
(3.82) B(r) = @/ W)X v eq,,
Qcond

4w |r—1' |3

We shall indeed remark that the distance | r —r’ | between r € Q,,4, and 1’ € Qg
in the Green’s function (3.80) makes the use of the Biot & Savart’s law difficult on points
inside the conductor, that is with Qcong N Qpgn # 9.

As a first validation of our Biot and Savart law implementation, we make a comparison
with a 2D model introduced in [A. Hervé, 1997|,|Conway, 2001| based on axisymmetrical
hypothesis. To this end, we consider the conductor €.,,q as a torus of rectangular cross
section on which the analytical current density j is analytically imposed. The region
gn on which the magnetic induction is computed consists in a z-oriented cylinder.
Considering (r, 0, z) the cylindrical coordinates suitable for the 2D axisymmetrical model
and (z,y, z) the cartesian ones to be used in our 3D model, the current density j reads

(3.83) j= J?O ( C_Ozl(gge) ) (cylindrical) & j= inEyQ < ;y ) (cartesian)

with jo = 10 A.m=2.

Figure 3.17a displays the magnetic induction map obtained on the ,,,, cylinder with
the 3D model. The match between the two considered models is illustrated in Figure
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3.17b which compares the results obtained along z axis. The relative error between the
two models doesn’t exceed 2 x 107* in this example which validate the considered 3D
model.

04 .
E 03 .
N
Q
02 .
| | I I I | |
-3 -2 -1 0 1 2 3
(a) Magnetic induction in Qg (b) B, along z axis

Figure 3.17 — Magnetic field produced by a torus

As long as r € €4, and 1’ € Qg are far enough from each other as in Figure 3.17a,
the standard integration methods gives good results. Nevertheless, it is no longer the
case when the point r € ,,,, at which we compute the magnetic field is too close to the
conductor Q.ond.

We introduce the distance d expressed as the minimal distance Qcpng and €24,

(3.84) d = Mineeg el T —1'])

To investigate the impact of this distance d on the Biot & Savart integrals computation,
we consider a domain 2,4, whose boundary are close to the conductor 2.,,q — which
remains the same as in Figure 3.17a.

We consider (2,4, as a cylinder of radius close to the one of €2,,,,, and whose height
is centred around the top extremity of the conductor.

This study compares the z-component of the magnetic field obtained along vertical
axis, taken at various distance d with 2D axisymmetrical model and with Biot & Savart’s
law. Figure 3.18a plots the value of B, along the z axis for various distances d, while
Figure 3.18b displays the associated absolute error.

As expected, the highest errors are obtained for the smallest distance since the 3D
Green kernel (3.80) used in (3.82) becomes almost singular. Nevertheless, the results are
good at the points located in the region above the extremity of the conductor.
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Figure 3.18 — Impact of the distance between €4, and Qg on Biot & Savart

Although they have not been investigated in our implementation, there are various
approaches allowing to deal with the singularity. These are mainly based on the numerical
integration of a singular kernel over a triangle. Two of them relying on exact integration
can be found in |Graglia, 1993| and |Masserey et al., 2005|.

To complete the validation, other numerical experiments have been performed on real
magnet geometries, to be compared both with 2D axisymmetrical results and with exper-
imental measurements (see Chapter 9).

The application of Biot & Savart’s law on real magnets is very expensive computa-
tionally. Thus, we have developed an efficient parallel algorithm for this model. If the
sequential implementation is trivial since the unique processors computing the integrals
(3.81) and (3.82) owns the whole Q = Qg U Qygn, the condition is no longer satisfied
in the parallel implementation which supposes the partitionning of the domain 2. In this
context, a smart strategy to manage communications between partitions is proposed in
Chapter 6. This algorithm allows to compute both (3.81) and (3.82) even though the
computation of B (3.82) is preferred from a practical point of view.

3.4 Linear elasticity model

In addition to the Lorentz forces induced by the magnetic field (Section 3.2), there are
also dilatation forces coming from the Joule heating (Section 3.1). The linear elasticity
model — coupled with electro-thermal and magnetostatic models — aims to study both
deformation and stresses induced by these forces.
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3.4.1 Equations

Let us consider 2y a domain at initial state (no forces). The forces applied on our object
will submit it to a deformation D, until an equilibrium final state 1 is reached. We
denote My a point in Qy with coordinates py, and the corresponding point My = D(M,)
in Qp with coordinates pr. The objective is to calculate the displacement vector u =
(u1,uz,uz)? = pr — po for each point M of our domain.

As Q7 is at equilibrium state, the equation of motion becomes the following equilibrium
equation

(3.85) div(g) +f=0
where 7 is the stress tensor and f represents the volume forces applied on €.

The quantity we focus on is the displacement vector u, which doesn’t appear in the
equilibrium equation (3.85).
We have to introduce the tensor of small deformations ¢ :

(3.86) = 5(Vu + Vvu®)

Hooke’s law allows to link the stress tensor & with the tensor of small deformation € :

(3.87) 5 = L (e—+ . Tr(e‘)])

1—-2v
where E is the Young modulus, v is Poisson’s ratio and I is the identity tensor.
The forces coming from Joule heating are modeled by adding a thermal dilatation

term &7 to the stress tensor a¥. This term involves the linear dilatation coefficient o :

(3.88) 5(5) =) +5"(2) with &"(8)=-

1 QVOéT(T — To)]

3.4.2 Variational formulation

Let ¢ = (¢1,...,04) (where d is the space dimension) be the test functions of the weak
formulation.
The integration of (3.85) multiplied by test functions over the domain €2 gives

d
(3.89) —/Qzaa?@:/ﬂfi@ Vi=1,....d
» j

Jj=1

Rewriting previous equation into matricial form, we obtain

(3.90) —/Q(V-ff)oqb:/gfogb
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where o denote the element-wise product.

To ensure well posedness of the problem, boundary conditions have to be considered.
Positions of My = D(My) can be set imposing the displacement vector u on 0Q2p as the
Dirichlet boundary condition

(3.91) u = up on Ip

Surface forces — namely pressure forces — can also be imposed in 0Q2p as

(3.92) g-n=gondlp

Using Green’s theorem on (3.89) and including boundary conditions, we obtain

d
0¢; FEar 0¢; ,
E _ —
(3.93) /Q JEZl Tij o, /asz g (oijn;)¢ /fngZ / 20 7s, (T—-Ty) Vi=1,...,d

Let HH(Q) = {v = (v1,v9,v3)" | v; € H{(Q),1 < i < d} be the set vectorial functions
whose components are in H;. Dirichlet conditions imposed in strong form lead to define
the function spaces

H{ (@) ={ue H(Q) |[u=upondQp} and H{,(Q) ={p € H{(Q) | =00n0Qp}

Using the tensor of small deformations and Hooke’s law, we obtain the final variational
formulation consists in finding u € H{ () such that

1fV)/TT (2<V“+V“ ) %(V¢+V¢T)> +

= [ror | s [T m-n)E-9

for all ¢ € H{ ().

Ev
1+v)1— 21/)/Q(V (V- ¢)

We can also impose Dirichlet boundary conditions in weak form that don’t need ad-
ditional function space definition. To this end, we introduce

= 1 T - E - 14 — E
B 2(V¢—|—V¢ ) such that &(s) T+ <3+ T r(S) ) 3

VOCT(T — To)[
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Adding the penalization and consistance terms, the variational formulation with weak
Dirichlet conditions consists in finding u € H{(2) such that

E 1 r 1 T Ev
o 7 (3T T 59090 )+ i [ w70

- [eeme- [ e@meas [ e [ror ] g

o[ e [ e@ s [ o

for all ¢ € H{(Q).

3.4.3 Convergence study

As for electro-thermal model, the verification of the previously described elasticity model
needs a convergence study to ensure that the convergence order is the awaited one. To
this end, we provide an exact solution u., for the displacement u to study the error
e = u — Uu,, which has to satisfy

(3.94) | e, <ch ™ and | e|n < ch”

with h the mesh size, k the polynomial order of the approximation and ¢ a constant.

The volumic forces are deduced from the equilibrium equation (3.85) with & evaluated
from u.,. The thermal dilatation term in not taken into account here since it doesn’t
depend on the displacement and consequently doesn’t have any effect on the matrix of
the system to solve.

The figures 3.20 and 3.21 illustrate respectively the 2D and 3D convergence studies
performed on the cubic domain [—1 : 1]¢ with d = 2,3. The provided solution u,, is the
vectorial polynomial (cos(y), sin(x)), with a null z-component in 3D.

—_—

054 073 092 112 131

Figure 3.19 — Elasticity - 2D exact solution ue, = (cos(y), sin(z))
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Figure 3.21 — Linear elasticity - 3D convergence study

3.4.4 Tresca and Von-Mises criterions

From an engineering point of view, it is a common practice to use some criteria based on
the stress tensor ¢ (3.85) to determine the nature of the deformation. Tresca and Von
Mises yield surfaces are the most commonly used in isotropic materials study.

Tresca Also known as the maximal shear criterion, the Tresca yield surface tr is built
from the components of the diagonalized stress tensor ¢ obtained from &. The Tresca
criterion tr is built from the components of the diagonalized stress tensor ¢ obtained
from o as

= 54 5
(3.95) trse = max (|5 —0j;|)

Von Mises The Von-Mises criterion is an energy based criterion which evaluates the
elastic distorsion energy coming from both pulling, compression and shearing. This yield
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surface can be computed directly from & (3.96) or using the diagonalized tensor &% (3.97)
as for Tresca (3.95)

1 _ - .92 -
(3.96) vms = Z | §(Uz~,i—0j,j) +357;
1<i<j<Dim
1 ,_ — N2
_ =4  =d
(3.97) UMga = Z ) (@ — 755)
1<i<j<Dim

In a context of optimization in terms of materials, these criterions prove essential
to determine the necessary yield strength which indicates whether or not the material
is deformed plastically. The development of materials which exhibit high yield strength
while keeping a good electrical conductivities is a technological research challenge for high
field magnets development. Typically, we expect to reach a yield strength higher than
500 MPa with an electrical conductivity which remains higher than 52 MS.m~1.

Conclusion

In this chapter, we describe the physics involved in the multi-physics model designed for
the study of high field magnets. The equations as well as the variational formulations
necessary to apply the finite element method are given for each considered physic, together
with the suitable boundary conditions.

We also establish the coupling between these equations leading to a non-linear multi-
physics coupled model. The implementation of this full 3D multi-physics model within
the Feel++ library represents a contibution of this thesis.

We present in this chapter the convergence studies performed for each of the compo-
nents, showing that the expected mathematical properties are satisfied. Especially, we
propose to use a posteriori error estimators in the context of the non-linear electro-thermal
model for which the exact solution is not readily available.

Regarding the magnetostatic model, three formulations are investigated. Two of which
are based on the H,-conforming elements introduced in Section 1.

In our multi-physics model, the water cooling of the magnets is mimicked through a
constant heat transfer coefficient, as a boundary condition of the heat equation. There
is a need to improve the cooling model, with a more advanced hydaulic model based on
Navier Stokes equations. Nevertheless, the development of such model is challenging due
to the complexity of the water flow coming from the high flowrate.

Finally, the hybrid Galerkin methods are currently investigated to improve the quality
of our approximations. The Hybridized Discontinuous Galerkin (HDG) method |Egger
and Schoberl, 2010| provides an optimal approximation of both the primal and flux vari-
ables. In our model, it should allow to obtain a better approximation of the current
density and hence of the current intensity which reads as its flux. It should be helpful to
the preconditionners, for which the divergence free condition on the current density is a
key ingredient.



Chapter 4

Reduced electro-thermal model

The electro-thermal model presented in Section 3.1 is a core ingredient for the high field
magnet design, as it gives an estimation of the temperature and the current density. How-
ever, the input data involved in this model may not be as well understood. The material
properties — electrical conductivity and temperature coefficient — are measured by the
material supplier, which only provides an interval of definition for this quantities. As for
the Lorentz number, many values can be found in the literature depending on the type
of copper alloy.

The magnet operating conditions — the current intensity or the voltage as well as the
cooling conditions — can also be flawed. The water temperature is only measured at the
input and at the output of the magnet. In the model, we assume that it is a constant
defined as the mean of these two measurements. The heat transfer coefficient is also
difficult to measure, due to the complexity of the water flow to consider. For now, it is
approximated through standard hydraulic correlations and considered as constant in all
cooled regions.

In this context, parametric studies and uncertainty quantification are essential, both
to cover the whole parameter ranges and to evaluate the influence of their uncertainty
on specific quantities of interest. The Reduced Basis method introduced in Chapter 2 is
perfectly suited to address these issues.

The development of the reduced electro-thermal model, in addition to the finite ele-
ment one described in Section 3.1, relies on the establishment of the ingredients requested
by the Reduced Basis method.

This chapter thus starts with the description of the affine decomposition of the con-
sidered problem obtained from the Empirical Interpolation Method introduced in Section
2.1. The convergence studies allowing to assess the pertinence of this reduced model on
real magnet geometries consists in the second part of this chapter.

Contents
4.1 Affine decomposition . .. ... ... . 000000000 79
4.2 Convergence study . . . . . . ¢« v i it e e e e e e e e e e 80

7
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Let’s remind that this model considers the heat equation with Joule losses as source
term. Driven by the electrical potential, the right hand side of the heat equation is
obtained from the resolution of a diffusion problem, coupled with the latter.

(4.1) V- (o(T)VV)=01in Q
' —V - (k(T)VT) =o(T)VV - VV in Q
Two Dirichlet boundary conditions on electrical potential mimic the current flow from
a difference of potential between the current input V,, and output V,,;. As to the boundary
conditions on temperature, we consider that the heat exchanges are limited to the water
cooled region 9€cooleq-

V=0onV,
V= VD on V;)ut
(4.2) —o(T)VV -n =0 on 0Q\(Vin U Vour)

—k(T)VT -1 =0 on 9Q\0ooled
—k(T)VT -n=h(T —T,) on 9Qeooled

Section 3.1 presents two formulations for the electrical potential equation, depending
on the Dirichlet boundary conditions treatment. In the context of the reduced basis
method, the framework offered by the Feel++ imposes — at least for now — to implement
the boundary conditions on their weak form. The associated variationnal formulations
detailed in (3.22) and (3.24) thus form a single problem whose variationnal formulation
is given as the sum of the two.

/Q (T)VV - Vi — /V oDV mey — (Vv mV 4 Vo)
(4.3) + /Q KT)VT - Vér + / W

8Qcooled

— VYV — : J
= /QO’(T)VV \A% /Vouta(T)(ngv n)Vp + /Voutha(T)Vmbv + /89¢oolethw¢T

We also remind that the considered electro-thermal model exhibits a non-linearity
coming from the dependence of its coefficients on temperature. Indeed, the electrical and
thermal conductivities involved in (4.2) are expressed as

(4.4) o(T) =

0o

TTal =Ty and k(T)=o(T)LT

with og the electrical conductivity measured at reference temperature 7)), a the temper-
ature coefficient and L the Lorentz number. These materials properties and the magnet
operation conditions form the considered input parameter

(45) H = (007a>L>VD7h7Tw>

The quantities of interest we are concerned for are many. We investigate the current
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intensity, the power, the resistance of the magnet and the mean temperature over the
domain defined as

(4.6) S(T(w)) = ,ﬁﬂ / T()d2

In the following, we focus on the mean temperature (4.6) as output.

The efficiency of the Reduced Basis method is especially based on an offline/online
strategy. This methodology supposes the availability of an affine decomposition for (4.3)
enabling the precomputation of terms which don’t depend on the parameter p (4.5).
Turning back to the expression of material properties depending on temperature (4.4),
we note that the considered electro-thermal model is non-affinely parametrized.

4.1 Affine decomposition

We are thus in the situation where the Reduced Basis method is applied to a non-linear
and non-affinely parametrized problem detailled in Section 2.2. In this context, the Em-
pirical Interpolation Method (EIM, see Section 2.1) is mandatory to recover the necessary
affine decomposition. Since the non-affine parametrization results from the definition of
the electrical and thermal conductivities on temperature, both of them are approximated
through EIM. Their affine approximations respectively denoted as oy and ky« are ex-
pressed as

Mk

MU
(4.7) o(T) = ope = Z Boan, and  k(T) = kyn = Z Bt gk
m=1 m=1

Moreover, the source term of the heat equation presents also a non-affine parametriza-
tion due to its dependence on o(7"). We consequently introduce the EIM approximation
Qe of this term as

MQ

(4.8) o(T)VV - VV & Quo = > 245

m=1

Replacing the non-affinely parametrized terms of 4.3 by their approximations EIM
(4.7) and (4.8), the affine decomposition of the electro-thermal model reads as

fjlﬁ; Mq;;w-wv—/

V"LnUVout

Mk'
(4.9) + ) B / ¢ NT -Vor+h /
m=1 Q g
MQ Me°

= Z Bfi/qfﬁ + Zﬁfn {—/ 4 (Vov -n)Vp  + / %%‘;Vmbv] + hTw/ or
m=1 Q m=1 Vout Vout 8Qcooled

C]%((VV ‘n)py — (Vov -n)V + %Vcbx/)]

Qcooled

Tor
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The decomposition (4.9) enables us to apply the offline/online strategy introduced in
Section 2.2.

4.2 Convergence study

The last section of this chapter focuses on the convergence study of the considered re-
duced electro-thermal model. In the context of non-linear and non-affinely parametrized
problem, this convergence study involves two levels. The first of them consists in the
study of the EIM approximations errors depending on the size of the EIM approximation
space. To this end, we introduce the Ly relative error of each approximation EIM w,,; of
w as

| w—wu |,
(4.10) er, = Lo WM Ly
: | w |z,

The second level aims to study the convergence of the reduced basis approximation
itself. The error on the solution (resp. on the output) is obtained from the corresponding
finite element solution (resp. output) computed from the affine decomposition. The
considered finite element model — denoted as PFEM — thus takes into account the involved
EIM approximations. The relative Ly (resp. H;) error on the reduced approximation ugp
then reads from the finite element solution uprgas as

o || URB — UPFEM ||H1

_ || URB — UPFEM HL2 and -

(411) €L, €H

|| UpFEM ||L2 || UpFEM ||H1

The next subsections deal with the EIM and RB convergence studies performed on
different problems, all based on existing high field magnets.

4.2.1 Sector of a Bitter magnet

The first convergence study focus on a sector of a Bitter magnet (see Figure 4.1a). We
are interested in the mean temperature over the domain as output. It is obtained from
the reduced basis approximation of temperature as illustrated in Figure 4.1b.

(a) Bitter magnet (b) RB-temperature

Figure 4.1 — RB approximation on a sector of a Bitter magnet

The next results are based on an EIM approximation space of size 40 whose basis func-
tions are built from an EIM trainset of size 300. The parameters used to built the reduced
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basis functions are selected randomly through a sampling of size 1000. The resulting RB
approximation space in which the reduced basis approximation shall resides is composed
of 15 finite element solutions. The mean as well as the extremum of the relative error are
obtained from a set of 50 online realizations.

As previously introduced, the EIM convergence study investigates the Ly error of the
considered EIM approximations. Figure 4.2a (resp. 4.2b) plots the Lo error defined in
(4.10) for the EIM approximation oy, (resp. kyw) of o(T) (resp. k(T)) depending on
the number of EIM basis functions comprising the EIM approximation space.
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Figure 4.2 — Convergence of EIM approximations of a helix sector
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Figure 4.3 — Convergence of RB approximation of a helix sector

As expected, the relative error decreases with the number of EIM basis functions. Tak-
ing a better look on these graphs, we observe that the decrease ends with a plateau from
a number of basis function close to 25. Regarding the value of the relative error in this
region, we assess that the convergence of the considered EIM approximations is ensured
and that an EIM approximation space of size 25 is sufficient in this context. Although it
is not illustrated, the last EIM approximation dealing with the heat equation source term
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has the same behavior.

Figure 4.3a (resp. 4.3b) displays the Lo (resp. H;) relative errors defined in (4.11)
depending on the size of the RB approximation space. As to the previous EIM approxima-
tions, the relative error decreases with the size of the approximation space. This behavior
was expected to confirm the good convergence of the electro-thermal model reduced model.

4.2.2 Sector of a radially cooled helix magnet

As mentioned in introduction, the radially cooled helices (see Figure 4.4a) is a promising
solution to reach higher magnetic field. Indeed, their design allows a larger cooling surface
and hence a better cooling enabling to impose a higher current density thus resulting in
higher magnetic field. Nevertheless, the corresponding geometry is more complex due to
the insulators which have to be inserted between the turns.

The use of the reduced model is even more significant for such a complex application.
In order to confirm the convergence properties are ensured for this problem as well, the
following convergence study focus on a sector of this type of helix. Mimicking the pres-
ence of insulators, the sector illustrated by Figure 4.4a is chosen as centered around an
insulator at halfway up the helix.

Based on the previous numerical experiment, we take only 30 EIM basis functions
whose parameters are selected in a trainset of size 100. By constrast, we choose to
slightly increase the size of the RB approximation space composed of 20 bases selected
randomly among a sampling of size 1000.

As previously, the results are based on a set of 50 realizations.

(b) RB-Potential

(a) Radially cooled helix
(¢) RB-Temperature

Figure 4.4 — RB approximations on a sector of a radially cooled helix magnet

Figure 4.5a and 4.5b display the relative L, errors on the EIM approximations o,
and k. respectively. These results confirm the previous ones obtained on the Bitter
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magnet. Regarding the value of the relative errors, the considered EIM approximations
thus provide an accurate affine decomposition for this problem. The EIM approximation
obtained for k(T") is even limited to 27 basis functions since the error tolerance has been
exceeded before reaching the expected approximation space size.
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Figure 4.5 — Convergence of EIM approximations of a helix sector

Finally, the RB convergence study illustrated in Figure 4.6a (resp. 4.6b) is ensured as

well. Indeed, the Ly (resp. Hi) relative errors between the reduced basis solution and the
corresponding parametric finite element model (PFEM) are satisfactory.
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Figure 4.6 — Convergence of RB approximation of a helix sector

4.2.3 Radially cooled helix magnet

Following on the previous convergence study, the last one focus on the complete radially
cooled helix. Concerning EIM, we keep the same set up expecting a similar behavior
for the complete helix and for the considered sector. For computational cost reasons, we
nevertheless limit the size of the RB approximation space to 10 regarding the previous
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study which gives satisfying relative errors for this number of basis. These basis functions
are as previously built from a random selection through a sampling of size 1000.
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Figure 4.7 — Temperature map of a radially cooled helix

Figure 4.8a displays the relative Ly error on the reduced basis approximation, while
Figure 4.8b plots the L, error corresponding to the output. In both cases, we assess
that the convergence properties are satisfied which confirms the relevance of our reduced
electro-thermal model in the high field simulations context.
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Drawing on the reduced basis methodology introduced in the Chapter 2 for non-linear and
non-affinely parametrized problems, this chapters describes the ingredients of the reduced
electro-thermal model, established from its finite element equivalent described in Section
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3.1. Especially, we detail the affine decomposition recovered through EIM approximations
of the non-affinely parametrized terms of the formulation.

The second part of this chapter is dedicated to the convergence study of this reduced
model, considering both EIM and RB approximation spaces. Based on two concrete
applications related with high field magnets modeling, this study assesses the feasability
and the relevance of the reduced basis method on such problem. Various studies based
on this reduced electro-thermal model are depicted in Chapter 8 dedicated to numerical
applications.



86

CHAPTER 4. REDUCED ELECTRO-THERMAL MODEL



Part 111

Contributions to Feel+-+ library

87






Chapter 5

Hg, and H., ] conforming elements

As stated in Chapter 1, the resolution of the discrete problem (1.2) supposes the knowledge
of the discrete subspace X (£2) C X(2). In this context, the definition of X (Q2) required
to apply the Galerkin method is handled by the finite element method which defines it
from its basis function {¢;}Y,.

(5.1) Xn(Q2) = span{¢y, -, dn}

As a reminder, each element K of the mesh I'j, is the image of a reference element K
from the geometrical transformation ¢%° (see figure 1.1). In the following, we distinguish
the global number of degrees of freedom N, — which corresponds to the size N of the FE
approximation space — and the local number of degrees of freedom A in each element
of I'y. The relationship between local and global degrees of freedom is given through a
correlation table, allowing to deduce the global index of each degree of freedom from (i)

the element K to which it belongs and (ii) its local index within this element.

The finite element basis functions are deduced from the reference basis functions
{i fﬁl computed only on K. They are themselves described from their expression in
the primal basis B = {¢, .

The essential ingredients serving to define the polynomial space X () are (i) the
primal basis B hosting the finite element basis functions, (ii) the reference basis functions
{$: ¥V, in K expressed from their coefficients in the primal basis and (iii) the geometrical
transformation ¢%° allowing to deduce the {¢; N

The Feel++ library offers a generic finite element framework, using a language very
close to mathematics. The development of the multi-physics model for high field magnets
requires the use of Hg;,, and H.,, finite elements, as mentioned in Chapter 3. We remind
that the description of these elements is given in Chapter 1.

Starting from a short description of the Feel++ finite element framework, we first sum
up how Lagrange finite elements come within this scope. This section then focuses on
the implementation of the Hy;, and H.,j-conforming finite elements within the Feel++
framework. It takes on the same structure as Chapter 1. As a complement, some details

89
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on the assembly of these kind of finite element can be found in |Rognes et al., 2009).

This development allows Feel++ to fully support the De-Rham complex diagram.

Contents
5.1 Feel++ finite element framework . . . .. .. .. ... ... .. 90
5.2 Lagrange finite elements . . .. ... ... .. .. .. ...... 93
5.3 Raviart-Thomas finite elements . . . . . ... ... ... .... 94
5.4 Nédélec finite elements . . . . ... ... ... ... .. 0., 97

5.1 Feel++ finite element framework

The implementation of any additional finite element family in Feel++ implies to become
familiar with the framework. To this end, this section focuses on the key ingredients of a
finite element definition within the framework.

5.1.1 General structure

class PolynomialSet In Feel++, the elements identified as defining the polynomial
space X (2) are grouped in an object PolynomialSet, illustrated in figure 5.1. The poly-
nomials of the primal basis B, as well as the coefficient {c}'} of the reference basis functions
{(%Z} in this basis, are variable members of this class. The member class PreCompute han-
dles all the precomputations which can be performed on K , while the class Context carries
the geometrical transformation ¢%:°.

template<typename Poly, // type of polynomials {(;3}x (Dubiner)
template<uintl6_type> class PolySetType> // Scalar, Vectorial or Matricial
class PolynomialSet

— I T~

(o : N e - 3 1 . )
P”m?' _baSIS 5; e Ref basis functions {gbi}fﬁl Ggee(())me'grlcal transformation
kCoefflaents {c}ik ) Ref element K ) \¢K K — K

( I A ( I N e I

basis_type M_basis; class PreCompute class Context
matrix_type M_coeff; {0...17 3} {0...1 3

- J - J - J

Figure 5.1 — The class PolynomialSet contains X ingredients

Let’s remind that each finite element is characterized by a tuple (K, Py, Y ). Its basis
functions are defined by their coefficient {cF} in the primal basis. These are the solutions
of the system (1.7) which read from the finite element degrees of freedom.
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class FiniteElement The generic class FiniteElement defines any finite element as its
tuple (K, Pg,Yk) from template parameters, which makes it compatible with any finite
element type, provided that such a definition is available. As illustrated in figure 5.2, this
class assembles the system (1.7) from the definitions of the primal and dual spaces. It
then computes the coefficients {cf}, which are given to the M_coeff member of the object
PolynomialSet describing X, () (figure 5.1). We remind that all of these computations
are performed on the reference element K only.

Finite Element Ciarlet formalism

( [class Pts « K ] ’ [M_primal — Py ] ; [M_dual —Xp
[ —

Ve

template< typename P, //Polynomial space Pg
template< [...] > class PDual, //Set of dofs Xk
template< [...] > class Pts > // Geometrical element K
class FiniteElement{ [...]
dual_space_type M_dual; //Set of dofs Xg
primal_space_type const& M_primal; //Polynomial space Pk

}s
.
e | ~
( N\ ( N\ (
- 0 0
oo(Co) - oolCwm) © Oy
: - : X : : - Id
lon(G) o on(Cw) o cﬁ/fj
. J . J .
( L N\ ( L N\ ( L
A(M_dual (M_primal)); |, |// Solution _|// NixN; Identity
LU<matrix> 1lu( A ); C = lu.solve(D); D = id(A.size());
. J . J .

this->setCoefficient( trans( C ) ); // PolynomialSet::M_coeff <« C

Figure 5.2 — The class FiniteElement computes the ¢ coefficients from (f(, Pr,¥5)

Each finite element type then consists in a specific class which derives from this generic
object FiniteElement, to which the characteristics (K, Pk, Y k) are given.

5.1.2 Interpolation

The interpolation operators 7ar in the De-Rham diagram (1.11) allow to relate continuous
spaces with their discrete equivalent. Each finite element type provides an interpolant, as
described in Chapter 1.

In Feel++, the interpolation process is implemented in a generic way, within a unique
function on, which seamlessly selects the appropriate interpolation operator. Let’s intro-
duce u as a discrete function of X,,. The following example gives u as the interpolant of
a continuous expression f on the whole mesh.
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auto u = Xh->element(); // uée Xy
u.on( _range=elements(mesh), _expr=£f); //u=mn(f)

Each finite element type has its own interpolant operator, depending on the definition
of its degrees of freedom. In practice, this corresponds for each finite element class to have
its own version of the interpolate function which implements the appropriate operator.
The generic function on simply calls the interpolate embedded in the definition of the
function space Xy .

Covering all geometrical elements of the range given to the function on, the interpolate
function builds the local interpolant IhLoc to be assigned to the current element K.

auto* __fe = this->functionSpace()->fe().get(); // Get FE from Xy

__fe->interpolate( [...], IhLoc ); // IhLoc : local interpolant
this->assign( curElt, IhLoc ); //

5.1.3 Unicity of normals and tangent

The description of Hg;, and H, conforming elements in sections 1.2 and 1.3 addresses
the importance of the unicity of normals and tangents shared with more than one element.
This requires to consider the mesh in a global point of view, and not only elements by el-
ements. To this end, the class dofTable defines the global numbering of the mesh related
to the local numbering of its entities. Although essential to the Feel++ finite element
framework, we won’t details this part but simply consider this numbering as available.

It is essential to have a coherent global numbering. We have thus to take care of the
numbering of each real element K. Each of the real elements results from the application
of the geometrical transformation ¢%° to K which has its own numbering.

Actually, the reference element K hides several reference elements K allowing to
cover all permutations of its local numbering. Going back to the example introduced with
figures 1.2 and 1.6 in Chapter 1, K, (resp. K;) consists in the image of K; (resp. K7) by

a geometrical transformation ¢7:” (resp. @%;).

3 EI]{?’ g(elo ’ K0:¢%§(Ko),K1:¢%lo(k1)

The local numbering of K7 is a permutation of Ky local numbering. As mentioned, the
unicity of the normals and tangents is handled affecting a sign to the concerned entities
of the mesh from this permutation.

Considering the example of Nédélec finite elements for which the degrees of freedom
are attached to the edges, we remind that the unique orientation of each shared edge is
the one seen by K, (figure 1.6).

From K element, the numbering of the concerned edge is a reverse permutation com-
pared to one of K. The sign affected to the corresponding degree of freedom is embedded
in the dofTable object as illustrated in the following sample of code.
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if (__elt.edgePermutation( i ).value()==IDENTITY)
M_doftable->M_locglob_signs[iel[lc] = 1;

else if (__elt.edgePermutation( i ).value()==REVERSE_PERMUTATION)
M_doftable->M_locglob_signs[iel[lc] = -1;

All key ingredients of finite element implementation have now been introduced. The
next sections focus on the three finite element type considered in Chapter 1.

5.2 Lagrange finite elements

The Lagrange finite elements are tuples (K, Ly, Ef() (see Section 1.1).

Primal space The primal space Ly is the set of polynomials of degree less than k. We
remind that the X, ingredients are contained in an object of type PolynomialSet. The
object OrthonormalPolynomialSet defining L, derives from PolynomialSet to which the
orthonormality condition is added. The Dubiner polynomials are used as the basis of the
primal space.

class OrthonormalPolynomialSet<Dim, Order, [...] >

public PolynomialSet <Dubiner<Dim, Order, Scalar, [...] >,
PolySetType >

The Dubiner class gives access to the set of Dubiner polynomials, to build the primal
basis. As B is simply composed of Dubiner polynomials, the coefficients in this basis are
set to identity.

OrthonormalPolynomialSet ()
super ( Dubiner<Dim, RealDim, Order [...] >0 )

this->setCoefficient( m );// m is identity

Dual space The dual space % (1.15) is the set of linear functionals which correspond
to the evaluation of the polynomials of Lx at interpolation points. In practice, this
functional set is built from the class PointsEvaluation, which computes the coefficients of
its elements in the primal basis. The class LagrangeDual implements the building of the
corresponding dual space.

template<typename Basis, // primal basis type
template< [...] > class PointSetType>
class LagrangeDual
{
// Compute functionals o¢; on set of points M_pts
M_fset.setFunctionalSet (PointsEvaluation<[...]1>( primal,__pts ));
}

The primal and dual spaces we just built are given to the main class , defined
from FiniteElement.
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class

public FiniteElement<OrthonormalPolynomialSet<Dim, Order, [...I1>,
LagrangeDual,
Pts >

Interpolant The interpolant for Lagrange finite elements simply consists in the eval-
uation of the concerned expression on points. Its definition resides in the interpolate
function embedded to the dedicated class. The following sample of code illustrates the
filling of the local interpolant IhLoc to be assigned to each geometrical element K.

template<typename ExprType>
void
interpolate( ExprType& expr, local_interpolant_type& Ihloc ) const
{
for(int q=0; q<nLocalDof; ++q) // K dofs
for(int c¢1=0; cl<M; ++cl) // vectorial components
for(int ¢2=0; c2<N; ++c2) // matricial components
Ihloc((c2+N*cl)*nLocalDof+q) = expr.evalq( cl, c2, q );

5.3 Raviart-Thomas finite elements

The section 1.2 introduces the Raviart-Thomas finite elements as tuples (K, Dk,ZﬁT)
where k represents the polynomial order.

Primal space The primal space Dy (1.23) associated with Raviart-Thomas finite ele-
ments is a subspace of [IF’kH]d consisting in the sum D), = [Pk]d P xPy.

The dedicated object RaviartThomasPolynomialSet derives from the definition of [Py 1]
handled by the class OrthonormalPolynomialSet introduced to define P, for Lagrange pri-
mal space (see Section 5.2).

As for the Lagrange primal space P, (Section 5.2), the definition of [P ]* is handled
by the class OrthonormalPolynomialSet. The dedicated object RaviartThomasPolynomialSet
naturally derives from this class.

class RaviartThomasPolynomialSet

public OrthonormalPolynomialSet<Dim, Order+1, Vectorial,[...]>

The primal space D, is built as the sum of [P;]* — built from the dim(P},) first terms of
[Pk+1]d basis — and xP, — where PP, is obtained from the P, basis functions. The sum is
performed using a Singular Value Decomposition embedded in the unite function.
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RaviartThomasPolynomialSet ()

{
Pkpl_s_type Pkpl; // Py
Pkpl_v_type Pkpl_v; // [Pps1]®
vectorial_type Pk_v(Pkpl_v.polynomialsUpToDimension (dim_Pk));
scalar_type Pk(Pkpl.polynomialsUpToDimension(dim_Pk));
// xPk < xPPg
this->setCoefficient ( unite( Pk_v, xPk ).coeff(), true );
}

Dual space The dual space Z£T is composed by face located degrees of freedom {0} e 7,
at lowest order, completed by degrees of freedom {0 }xer, on elements. For now, only
lowest order degrees of freedom are available in Feel++ for these elements. We will
hence restrict ourselves to the lowest order, even though the implementation of high order
Raviart-Thomas elements is currently in progress.

The corresponding degrees of freedom (1.24) consist in the integral of the normal
component on faces. In practice, we instead perform ponctual computations to approach
these integrals. This is handled by the class DirectionalComponentPointsEvaluation,
whose constructor needs the unit normal besides the primal space definition. The points
M_pts_per_face — on which the functionals {0} er, are evaluated — are local to the cur-
rent face e.

RaviartThomasDual ( primal_space_type const& primal )
{

// Iterates on faces of K
auto it = M_convex_ref.entityRange( nDim-1 );
typedef DirectionalComponentPointsEvaluation<[...]> dcpe_type;
for (int e=it.begin();e!=it.end ();++e )
{
node_type dir = M_convex_ref.normal( e ); // Normal
// Compute oy(u)
dcpe_type __dcpe( primal, dir, M_pts_per_facelel] );
// Complete the functional set
copy(__dcpe.begin(),__dcpe.end(), back_inserter(fset));
}
M_fset.setFunctionalSet( fset );
}

The class also derives from the FiniteElement object. It needs (i) the
primal space Dy embedded in RaviartThomasPolynomialSet, and (ii) the set of functionals
YR contained by RaviartThomasDual.

class

public FiniteElement<RaviartThomasPolynomialSet<Dim, Order, [...]1>,
RaviartThomasDual,
PointSetEquiSpaced >
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Interpolant In a silimar way to Lagrange (Section 5.2), the function interpolate fills
the locate interpolant IhLoc from the interpolant operator Ilp, (1.39).

The evaluation of the integral of the normal component is computed as the sum of its
evaluation on local interpolation points.

To this end, we need access to the normal of each faces. The function faceNormal is
used to this purpose. The next code illustrates the implementation of the interpolate
function.

template<typename ExprType>

void

interpolate( ExprType& expr, local_interpolant_type& Ihloc ) const
{

for( int f = 0; f < convex_type::numTopologicalFaces; ++f )

{
expr.geom()->faceNormal( f, n, true ); // n : normal of face f
for (int 1=0; l<nLocalDof; ++1 ) // K dofs
{

for(int c¢1=0; cl<M; ++cl ) // K components
Thloc(f*nLocalDof+1l)+=expr.evalq(cl,0,f*nLocalDof+1 )*n(cl);

Piola transformation The class Context contains as member M_phi the geometrical
transformation ¢%° to be applied on reference finite element basis functions. As men-
tioned in Chapter 1, this transformation doesn’t naturally preserve the properties of Hg;y
function space and has to be combined with the so-called Piola transform. The Raviart-
Thomas Piola transformation introduced by (1.41) then has to be embedded updating
this variable member.

void
PolynomialSet<[...]>::Context< [...] >::
update( geometric_mapping_context_ptrtype const& __gmc, [...] )

for (uintl6_type 1i=0; ii<I; ++ii) //Reference dofs
{
for (uintl6_type q=0; q<Q; ++q)
{
geo 1 geo
[/ 9K g Vo
M_phi[iil[ql.noalias() = K*(*M_pc)->phi(ii,q); // K : V¢°
M_phil[iillql /= gmc->J(q); // T : |[V¢%°|
}
3
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5.4 Nédélec finite elements

The last component required to support the De-Rham sequence are the H,,-conforming
elements. This section describes the implementation of the Nédélec finite elements of first
kind describes in Section 1.3.1 as the tuples (K, R*1, Efcved’l) where £ is the polynomial
order.

Primal space The primal space R*! to be considered for Nédélec elements of first kind
: . d
is — as for Raviart-Thomas — a subspace of [Pj44]".

Thus, the class NedelecPolynomialSet also derives from the definition of [Py ] han-
dled by OrthonormalPolynomialSet.

class NedelecPolynomialSet <Dim,Order ,NedelecKind::NED1,[...]>

public OrthonormalPolynomialSet<Dim, Order+l, Vectorial,[...]>

RF1is defined as the sum of the vectorial polynomial spaces [Py]* and S* (1.49). The
building of such a space is performed in a similar way as the Raviart-Thomas primal space
Dy.. Indeed, S* reads as the product (V x x) Py from the remark (1.56).

NedelecPolynomialSet ()
{
Pkpl_s_type Pkpl; // Pri1
Pkpl_v_type Pkpil_v; // [Pps1]®
vectorial_type Pk_v(Pkpl_v.polynomialsUpToDimension (dim_Pk));
scalar_type Pk (Pkpl.polynomialsUpToDimension{(dim_Pk));
// txPk <+ (VxX)Pyg
this->setCoefficient ( unite( Pk_v, rxPk ).coeff (), true );

Dual space The set of linear functionals Zﬁed’l is composed of degrees of freedom on

edges (at lowest polynomial order), on faces and on elements (at high order). As for
H 4y-conforming elements, the current implementation is limited to lowest order, that is
with degrees of freedom located on edges only.

The edges degrees of freedom consists in the integrals of the tangential component, as
introduced in (1.51) and (1.52). The principle is the same as for Raviart-Thomas dual
space definition. But we give the tangential direction to DirectionalComponentPointsEvaluation
instead of the normal.

NedelecDualFirstKind ( primal_space_type const& primal )

{
// Iterates on edges of K
auto it = M_convex_ref.entityRange( (nDim== 2)?nDim-1:1 );
typedef DirectionalComponentPointsEvaluation<[...]> dcpe_type;
for (e=it.begin();e!=it.end();++e )
{

node_type dir= M_convex_ref.tangent(e); //Tangent
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// Compute oc(u)

dcpe_type __dcpe( primal, dir, Gt );

// Complete the functional set

copy( __dcpe.begin(), __dcpe.end(), back_inserter(fset));

As for the previous two cases, the dedicated class is built from the FiniteElement
object. We use the primal space NedelecPolynomialSet and the set of degrees of freedom
embedded in NedelecDualFirstKind.

class

public FiniteElement<NedelecPolynomialSet<Dim, Order, [...I1>,
NedelecDualFirstKind,
PointSetEquiSpaced >

Interpolant As other finite element kind, Nedelec defines its own interpolate func-
tions filling the local interpolant IhLoc as the integral of the tangential component of the
considered expression.

The implementation is very similar to Raviart-Thomas interpolant where the tangent
along edges replaces the normal of faces.

template<typename ExprType>
void
interpolate( ExprType& expr, local_interpolant_type& Ihloc ) const
{
for( int e = 0; e < convex_type::numEdges; ++e )
{
expr.geom()->edgeTangent (e, t, true); // t : tangent of edge e
for (int 1=0; 1l<nDofPerEdge; ++1)
{
for(int ¢1=0; cl1<M; ++cl)
Ihloc(e*nDofPerEdge+1l)+=expr.evalq(cl,0,e*nDofPerEdge+1)*t(cl);

Piola transformation As for Raviart-Thomas (Section 5.3), the geometrical transfor-
mation ¢%° from reference element to real one doesn’t allow to preserve the H.,, function
space properties.

The application of the Nédélec Piola transform (1.71) which ensures that interpolated
values remains in H.,, consists as previously in updating the member variable M_phi of
the Context class.
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void
PolynomialSet<[...]>::Context< [...] >::
update( geometric_mapping_context_ptrtype const& __gmc, [...] )

for (uintl6_type 1ii=0; 1i<I; ++ii) //Reference dofs
{
for (uintlé_type q=0; q<Q; ++q)
{
/] 5 Ve
M_phi[iil[ql.noalias() = Bt*(*M_pc)->phi(ii,q); //Bt : ¢ T
s
1
}

Conclusion

Needed in the context of the magnetostatic model development, the implementation of
lowest order Hg;, and H.y, conforming finite elements completes the De Rham sequence
in Feel++. The implementation described in this chapter offers the possibility to work
with discrete subspace of Hg;, and H.,, in addition to H;.

The flexibility of the Feel++ language and the genericity of its implementation eases
the definition of these discrete spaces.

auto H1 = <k>(mesh) //H; based on Lagrange

auto Hcurl = Nh<k=0>(mesh) //H., based on Nedelec

auto Hdiv = Dh<k=0>(mesh) //Hgy based on Raviart-Thomas

auto L2 = Pdh<0>(mesh) //Ly based on Lagrange (Fy discontinuous)

The main differential operators gradient, curl and divergence are simply defined as
relating the previous spaces

Igrad Grad ( _domainSpace=H1, _imageSpace=Hcurl);
Icurl Curl( _domainSpace=Hcurl, _imageSpace=Hdiv);
Idiv = Div( _domainSpace=Hdiv, _imageSpace=L2);

u = Hl->element ();
auto grad_u = Igrad( u );

which allows to fully support the De Rham diagram within the library
id Igrad Icurl Idiv
R — H =—

Hcurl — Hdiv — L2
Table 5.1 — De Rham diagram in now fully supported in Feel++

As the implementation of these finite element types as new features, elementary tests
has been developed to ensure its validity. These tests, carried out regularly, checks the
basis functions definition and the interpolant, but also on their use on toy problems.

Further developments quite naturally aims to the implementation of the high order
Hg, and H., conforming finite elements. Other kinds of finite element can also be
investigated, such as Brezzi-Doublas-Marini (BDM) or Nédélec elements of second type.
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Chapter 6

Parallel algorithm for Biot & Savart

The Biot & Savart’s law allows to compute the magnetic field (see Section 3.3). To avoid
dealing with the singularity of this method — due to the definition of the underlying Green
function —, we restrict the use of this formula to a region without current. Typically, the
considered region is the zone of interest for researchers.

In high field magnets context, the complexity of the considered geometries requires to
pay a particular attention on the efficiency of the associated model. The computation of
the magnetic induction B (3.82) and the magnetic potential A (3.81) requires the knowl-
edge of the whole {2.,,q by each r € Qpgn, Qeong and €4, being respectively the current
conductor and the region on which B and A are computed. The parallel computation of
(3.82) and (3.81) supposes the partitioning of = Qcppg U Qygn, distributed on a set of
processors, which conflicts with the previous requirement.

To deal with this issue, we propose a parallel algorithm dedicated to the Biot &
Savart law application, aiming to establish a smart communication strategy between pro-
cessors. In the literature, we found various ways to compute the magnetic field through
Biot & Savart’s law. The low-rank approximation |White et al., 2006 consists of a low-
dimensional approximation of the matricial system mimicking the Biot & Savart’s calcu-
lation on a large set of points. We find also multipole expansion techniques [Sabariego
et al., 2006].

The proposed development is an original contribution to our knowledge. In this chap-
ter, we detail the design of our parallel algorithm. The last two parts focus on the
performances of the algorithm, through numerical experiments on a supercomputer.
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Let’s denote {py}}_, the set of n processors, and €2, the subdomain associated with
the processors p with 1 < k£ < n. As displayed in Figure 6.1, the partitionning of €2 leads
t0 Qeond = U; Qppg and Qpgn = U]. Qiond. Since the partitioning is performed in such a
way that the work load is equidistributed, each partition €2, could be (i) only composed
of Qeona points as Q, = Q. (ii) only composed of Qpg, points as Q,, = Q. (i)
composed of both Qepnq and Qg points as Q, = Qp, ,UQ .

=
9

Figure 6.1 — Repartition of subdomains

6.1 Classification of processors

The first step of the proposed algorithm provides a ranking of the processors, depending
on their partition €2, . We distinguish the processors owning points of {2,,,4,,, from the ones
owning points of {2.,,4. Locally assigned to each processor, the vector isIn[ ] owns this
information through two integers. The first component isIn[0] focuses on {2.,,q while
the second one isIn[1] focuses on Q.

Step 1 Processors classification

if proc has dofs in Q.,,q4 then

isIn[0] =1

end if

if proc has dofs in €,,,4, then
isIn[1] =1

end if

> isIn| | = [(proc has dofs in Qcna), (proc has dofs in €,,4,)]

Readily available with Feel++, the number of degrees of freedom associated with the
function space allows to easily perform this step 1.

Listing 6.1 — Processors classification

if( Xh_cond_global->nLocalDof() > 0 )
isIn[0] = 1;

if ( Xh_box_global ->nLocalDof () > 0 )
isIn[1] = 1;
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Once locally established, the ranking of processors from their degrees of freedom local-
ization has to be shared by all processors. To this end, the previous local arrays isIn[ ]
are gathered into one global array isInGlob[ ]. This is the step 2.

Step 2 Localization gathering
ALL GATHER(worldcomm, isIn.data(), isinGlob)

In Feel++, the parallel communications are handled by the Boost: :mpi |Boost, 2008|
library.

Listing 6.2 — Localization gathering

std::vector<int> isInGlob (2% ::worldComm().size ());
mpi::all_gather ( ::worldComm(),isIn.data(),2,isInGlob);

At this point, the information is known by all the processors of the global communi-
cators through an array illustrated in Table 6.1.

| P | i | Pn |
‘ Qp1 C Qczmd ‘ Qpl C ngn ‘ s ‘ Qpi C Qcond ‘ Qpi C ngn ‘ cee ‘ Qpn C Qczmd ‘ Qpn - ngn ‘
Table 6.1 — Global localization table

6.2 Sub-communicators

The computation of B(r) and A(r) through Biot & Savart’s law involves the knowledge
of the concerned r € 4, and all r' € Q4. The processor owning r € €2,,,, has to
communicate with all processors having degrees of freedom in €2.,,4. The communication
strategy we propose is based on the definition of subcommunicators. Each of these com-
munication group (Figure 6.2) is composed of one processor having degrees of freedom
in $,gn, plus all processors having dofs on ,,q. That amounts to consider as many
subcommunicators as processors having degrees of freedom in ,,,y,.

=
&

Figure 6.2 — Sub-communicators

For each of these groups, the coordinates of all r € angn are sent to all processors

forming €..,q4, allowing them to compute the integrals. From an algorithmic point of
view, this corresponds to a broadcast operation from the processor of rank zero which
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owns points of ngn, to the whole set of processors which compose the rest of the group.
This operation (Figure 6.3) uses the standard MPI broadcast function (step 3).

Figure 6.3 — Broadcast operation

Step 3 Broadcast : Q7 t0o {Qcona}s

mgn

if processor has rank 0 (€/,,,) then
dofM = [set of Q7 dofs|

end if

BROADCAST (subcomm, dofM.data(), 2, 0)

mgn

6.3 Integral computation

As soon as the data of . has been received by processors composing Qeona = J; Qopas
the latter computes their contribution A;(r) and B;(r) for magnetic potential A and
magnetic field B defined as

Air) = “0/ D Bi(r):@/i LCOTAN Gt Y

A =1 4 lr—1' 3 man

All are stored into an array intM[ ], in order to ease the sum of these contributions.
This is the step 4.

Step 4 Integral computation : A(r), B(r) with r € ], ,
if isIn[0] == 1 (2, C Qcona) then
for d = 0 to d =size of doﬂ\/[ (re,,) do
intM[2d] = leo in [r— r’|

intM[2d+1] = fm o jAGr=r) > Magnetic field

g 4 r—r/3

> Magnetic potential

end for
end if
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6.4 Reduction operation

Once the local contributions are computed, the integrals (3.82) and (3.81) may be deduced
from the reduction operation illustrated by Figure 6.4.

Figure 6.4 — Reduction operation

The reduction operation consists of the sum of the local arrays intM[ 1, filled by the
processors owning €).,,q. The result of this operation is sent to processor of rank zero —
related with Q{ngn — allowing its degrees of freedom to be assigned with the corresponding
values.

Step 5 Reduction : A(r) =3, A;(r), B(r) = >, Bj(r)

REDUCE((subcomm,intM.data(),intM.size(),plus<double>(), 0)
if processor has rank 0 (€2/,,,) then
for d = 0 to d =size of dofM (Vr €, ) do
A(r) < intMsum|2 x d]
B(r) < intMsum[2 x d + 1]
end for

end if

Processed one after the other, each considered subcommunicator follows the similar
procedure.

6.5 Scalability analysis on a real magnet

The first validation of the sequential Biot & Savart’s law implementation was presented
in Section 3.3 (figures 3.17a and 3.17b). This section details the validation of its parallel
version on a more complex geometry.

Let’s consider (2,4 the innermost helix of a magnet insert, into which €,,,,,, consists of
a centered thin cylinder oriented along the vertical axis. In this use, the current density in
the magnet .,,q is not known analytically. Therefore, it is obtained from the previously
described electro-thermal model (see Section 3.1).

Figure 6.5 displays the computed current density j in 2.,.q4, While the cylinder cor-
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responding to 2,4, is colored from the parallely computed magnetic field values. This
simulation has been carried out on a mesh composed of 333005 nodes, forming 1.7 - 10°
tetrahedrons. Composed of 24 subdomains, the partitionning is such that the domain
Qpgn — itself composed of 1730 nodes — is owned by a unique processor.

1

j[AIm2]
4.0e+08

B[T]

2.04
3.0e+08 1.53
2.0e+08 1.02
1.0e+08 0.51

0.0e+00 0.00

Figure 6.5 — Innermost helix with j obtained from I = 29974 A
Commonly used as quantity of interest, we introduce the homogeneity defined as

- Bz - BZ<O)
(6.1) h=E

where B, is the vertical component of the magnetic field.

Let’s denote hgp (resp. hgqi) the homogeneity (6.1) obtained from the 3D parallel Biot
& Savart’s algorithm (resp. from the existing 2D axisymmetrical one). Figure 6.6a com-
pares the resulting values of homogeneity, while Figure 6.6b plots the difference between
3D and 2D axisymmetrical results.

I I I I
0 [ _|hazi_h3D‘
0.06 |- |
—0.2 — JR—
Q
<
—04 | i 0.04 |- .
~ 04 |
g
S
—0.6 |- 1 = oo02| 8
—0.8 -
0 | .
| | | | | | | | | |
~100  —50 0 50 100 100  —50 0 50 100
z axis z axis
(a) Homogeneity along z axis at 7 =0 (b) Difference on homogeneity

Figure 6.6 — Innermost helix
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Figure 6.6 confirms that the two models are coherent. However, Figure 6.6b empha-
sizes on the difference between the models. The maximum difference is observed in the
regions near the end of the helical cut.

Besides the validation, the setup of this simulation is used to assess the performances
of the proposed algorithm. Simulations were run on various number of processors to this
purpose, on Curie supercomputer (TGCC,France).

With n times more processors, a linear scaling supposes a gain of a factor n in terms of
computational time. Considering a reference number of processors n,.¢ and its associated
reference time ¢,.¢, we define the scaling efficiency as

tref * Nyef

(6.2) t*xn

Table 6.2 gives the scaling efficiency (6.2) on various number of processors.

nb procs total time (s) scaling efficiency

48 1.4-10% 1

96 7.05-10° 0.99
144 4.98 - 103 0.93
192 4.31-103 0.81

Table 6.2 — Scalability analysis

We observe that the speed-up (Figure 6.7) is ideal up to 100 processors, and that it
deteriorates with higher number of processors.

T I I
4 feenns ideal .
— speed-up
3 [ |
2 [ |
1 [ |
| | | | |

| | | |
40 60 80 100 120 140 160 180 20
nb procs
Figure 6.7 — Speed-up

To better understand, Table 6.3 shows the repartition of the total time. As expected,
the computation of the integrals is the most costly operation. The cost of the broadcast
operation logically increases with the size of the global communicator, since the number
of processors sharing €2..,4 increases, which make the number of communications increase.
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nb procs broadcast dofs (s) integrals (s) reduction (s)

96 2.40-107! 6.89 - 10° 1.44-10~*
144 3.14-1071 4.84-10° 2.63-107*
192 4.32-1071 4.04 - 10° 1.59-10~*

Table 6.3 — Scalability analysis : details

The number of integrals to compute is 1.7 millions of tetras x 1730 points for which
we evaluate the magnetic field x 3 components. Given this number of integrals, Table
6.4 gives the computational time needed per integral, obtained from Table 6.3.

nb procs time for one integrals (s)

96 7.81-1077
144 5.48 - 1077
192 4.58 - 1077

Table 6.4 — Scalability analysis : time per integral

The time per integral decreases when we increase the number of processors. Neverthe-
less, we see that the integrals computation doesn’t scale well up to 100 processors. Which
explains the speed-up results displayed in Figure 6.7.

6.6 Optimization of integrals computation

The important computational cost related with the magnetic field computation resides
in the number of integrals to compute, even though the time needed by integral remains
reasonable.

The numerical integration requires the setting up of various ingredients within the
implementation. For each integral, we need to compute the geometrical transformation
and the interpolants for each point of the domain on which we integrate, namely 2.o,4-
This is what was done in the initial version of our parallel algorithm.

However, the domain Q.. — and its subdomains €’  , distributed among the proces-
sors — remains the same all along the computation. The geometrical transformation and
the interpolants associated with its points could then be computed once.

The proposed optimization hence consists in defining the integral as a operator, which
consider the whole set of points r € Q%lgn? for each partition Q%gn of Qp,gn. By this way,
we benefit from the computation of the geometrical transformation and the interpolants
of all v’ € Q. 4, for all the integral computations of €/ .

Table 6.5 displays the computational time necessary to compute the whole set of in-
tegrals, to be compared with Table 6.3. The second column of Table 6.5 displays the
corresponding gain factor, which exceeds 300.
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nb procs integrals (s) gain factor

48 4.04 - 10! .

96 2.07 - 10 332.8
144 1.38 - 10! 350.7
192 1.03 - 10! 392.2

Table 6.5 — Integrals computation : time needed

The impact of this change on the scalability of our algorithm is clearly seen on Figure
6.8. Now, the speed up is ideal whatever the number of processors, contrary to what was
observed in Figure 6.7.

4 e ideal o
— speed-up

3 L |

2 [ -

1 [ -

| | | |
20 100 150 200
nb procs

Figure 6.8 — Integrals computation : Speed-up

Regarding the detail of the time consumption for each step of the algorithm displayed
in Table 6.6, most of the time is still spent within the integrals computation. Neverthe-
less, the required computational time is reduced with a 102 factor thanks to the proposed
optimization. The time required by broadcast and reduction operations remains similar
to the previous runs (see Table 6.3).

nb procs broadcast dofs (s) integrals (s) reduction (s)

96 2.39-1071 2.07 - 10* 1.43-1074
144 3.07-1071 1.38 - 10! 1.25-107*
192 4.24 1071 1.03 - 10! 1.42-107*

Table 6.6 — Scalability analysis : details

Conclusion

In this chapter, we detail the parallel implementation of the Biot & Savart’s law introduced
in Section 3.3. From its definition, this formulation is not readily parallelizable and
requires to smartly handle the communications between processors.

The proposed parallel algorithm represents, to our knowledge, an original contribution
in this context. Illustrated on a real magnet geometry, the performances of this algorithm
prove its relevance on large problems, as well as its scalability in HPC context.
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Chapter 7

SER 1n the Reduced Basis framework

The reduced basis method detailed in Chapter 2 consists in a Galerkin projection on a
low-dimensional space, spanned by finite element approximations. This method relies on
the availability of an affine decomposition of the considered problem, which then allows
to develop an offline/online strategy. The Feel++ library offers a reduced basis frame-
work providing an interface to which the specification of the model are passed (Figure 7.1).

User-defined Affine OpenTurns
specifications Decomposition Octave

Figure 7.1 — Feel++ Reduced Basis framework

From the mesh and the PDE together with its affine decomposition, the reduced
basis framework builds seamlessly the RB approximation space Wy, and performs the
precomputations consisting in the offline stage. Once Wy is computed and stored, the
coming reduced basis approximation uy(u) € Wy can be evaluated, for any given p
leading to the output computation.

As illustrated in Figure 7.1, the resulting input/output relation can be provided to
external libraries such as Octave or Openturns |[Dutfoy et al., 2009]|, for further studies
such as sensitivity analysis (see Chapter 8). The Feel++ RB framework covers a large
range of problems, from linear elliptic to parabolic non-linear ones, and also provides error
estimators. Further details can be found in |Daversin et al., 2013] or |Veys, 2014].

The Empirical Interpolation Method (EIM) introduced in Section 2.1 is available in
the framework, allowing to tackle non-affinely parametrized problems. This method is
employed prior to the reduced basis methodology (Figure 7.2), in order to recover the
affine decomposition when it is not readily available.

B
User-defined Affine R output
. . T D N R >
specifications Decomposition

ke PFEM

Figure 7.2 — Feel++ RB framework for non-affinely parametrized problem
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In Section 2.3, we introduced the possibility to build alternately the EIM and RB ap-
proximation spaces making the EIM offline stage more efficient. As illustrated in Figure
7.3, the so-called SER method consists in using solely RB approximations in the EIM
algorithm.

t=---mmmmmmoe- SER -----------%
User-defined | Affine RB _output N
specifications ! Decomposition
: = PFEM
e EIM -=------ ’

Figure 7.3 — SER in the Feel++ RB framework

This method provides a good trade-off between the results accuracy and the compu-
tational budget, since the number of finite elements approximation is greatly reduced.

The SER method is presently available into the Feel++ library. This section details
its implementation within the RB framework.

First of all, we start with a brief description of the existing components on which this
implementation is based. The next part then focuses on their use within SER, and on
the changes to be made to set up the method. The changes related to the investigated
variants of SER introduced in Section 2.3.2 are as well presented in the last part.

Contents
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7.1 Preliminaries

Let’s remind that SER applies in the context of non-linear and non-affinely parametrized
problems. Based on these considerations, the standard reduced basis methodology com-
bined with the empirical interpolation method — used to deal with the non-affine depen-
dence on parameters — is described in Section 2.2.

First, let’s start with an illustration of the method described in Section 2.2 from an
algorithmic point of view. To deal with the non-linearity, the computation of the reduced
basis functions at the offline stage, as well as the resolution of the online reduced system,
are based on the Picard’s method.

Keeping the same notations as in Section 2.2, the algorithm 6 (resp. 7) illustrates the
steps needed to perform these offline (resp. online) resolutions.

The online stage remains unchanged within the SER algorithm. Indeed, it simply
consists in applying the algorithm 7 for each considered parameter p. The function de-
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scribed in the algorithm 6 is used to build each basis functions which compose the RB
approximation space. These functions are at the root of the changes to be made in the
offline stage to implement the SER method introduced in Section 2.3.

Algorithm 6 Offline fixed point : compute finite element solution war(p)

function OFFLINEFIXEDPOINT (s, {a%,}ym, {a'}, {f%}gm, {f'})
Qup < initialGuess( p ), k < 0
while % < nblterMax and increment > tolerance do

Compute 2, (*un (10); 1), (1), 77 Cun () 1), 0 (1)

chm Ma ngf

AV =SS Fun pag, + S O ()l
g=1 m=1 =1
Qezm ]V[f folff

FN Z Z T Cws ) fi 30 0 () f

¢=1 m=1
el () e solue(AY Fluy() = )
increment <—|| ¥ lup () — Fup ||
end while

un(p) < "y (p)
end function

Algorithm 7 Online fixed point : compute reduced basis approximation uy ()

function ONLINEFIXEDPOINT (i, N, {ad,}om, {a'}, {f%}ams {F )
Oupy < initialGuess( p ), k < 0
while % < nblterMax and increment > tolerance do

Compute vE,, ("un(p); ), 04(12), 75 Funr(p); ), 05 (1)

Qezm M(l Qaff
=2 Zl%m(’“ ul, ) AN Z 0, () AN
q m
Qezm ]u.f Qaff
= 5 3 At W FN S 6P
q m

FMlun(p) < solve( AN ¥luy(u) = .FN)

end while

end function

From these considerations, the next sections provide the details about the implemen-
tation of the SER method within the Feel++ reduced basis framework. We start with the
initial version of SER, that is the alternate enrichment of the EIM and RB approximation
spaces per groups of size r. The changes related to the investigated variants (see Section
2.3.2) are then described.

7.2 SER algorithm

The first stage of the SER method (Section 2.3) consists in the initialization of the EIM
approximation space. The first rough EIM approximation resulting from this initialization
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provides the first affine decomposition, allowing to apply the reduced basis methodology.
The algorithm 8 illustrates this initialization step as the starting point of the method.

Algorithm 8 SER method : Initialization of SER offline step

for all non-affinely parametrized function w do

Sy {m} ) ) > Choose [,
& — w(u(fry),x; 1y) Wy« span{&,}
) < argsup,cq €, (x)] > Interpolation point
q — 8% > Deduce EIM basis
£1(t1)
end for

At this step, EIM approximation for w reads wy(u(p),x; pu) = 81 (u(p), p)qr(x)
{al}, and {f}}, terms are precomputed and stored (no dependence on p)

St {m}

OFFLINEFIXEDPOINT (py, {a?},, {a'}, {f1}e, {1 H) > Compute up ()
&, < orthonormalization(un(,)) > Gram-Schmitt orthonormalization
Wy « span{&,} > Deduce RB basis

Within the Feel++ reduced basis framework, the algorithm 8 corresponds to (i) the
EIM initialization step illustrated by 7.1 and (i7) the building of the first reduced basis
function illustrated in 7.2. This step requires no change in the framework. It simply uses
the existing functions.

Listing 7.1 — EIM initialization step

// **x*x%xx* For each EIM approximations ****x*x

// Pick the first parameter and add it to the parameter space
mu = M_model ->parameterSpace ()->max();

M_model ->addParameter ( mu );

// Solve the finite element problem and store the solution
solution = M_model->solve( mu );

M_model ->addSolution( solution );

// Compute the interpolation point

auto t = M_model->computeMaximumOfExpression( mu
M_model ->addInterpolationPoint( t );

// The first EIM basis function is the residual (w-0)
auto q = M_model->Residual (0);

// Enrich the EIM approximation space

M_model ->addBasis( q );

, solution );

Listing 7.2 — RB initialization step

// Compute affine decomposition from the rough EIM basis approx.
boost::tie( Mgm, Aqm, Fqm ) = M_model->computeAffineDecomposition();
// Solve the finite element non-linear problem

u = offlineFixedPointPrimal( mu );

// Enrich the RB approximation space

M_model ->rBFunctionSpace()->addPrimalBasisElement ( u );




7.2. SER ALGORITHM 115

Once this initialization step is performed, we have access to a first rough reduced basis
approximation, which can be used within the EIM Greedy algorithm. The algorithm 9
summarizes the necessary steps for the simultaneous construction of » EIM and RB basis
functions. It hence corresponds to the construction of a single group of basis functions
between two affine decomposition updates.

Algorithm 9 SER method : Offline step
while M < M,,,, do

Build » EIM basis functions

for i=M toi=M+r do
ONLINEFIXEDPOINT(p, @ — 1, {a%}ym, {a'}i, {2 gm, {f'H)
p; < argmaxyes infoew, , [|w(ui—i(p); ;) — 2|[=(0)

Si = Sim1 U{m,}

Wi — T/T/i_l @ Span{éi = w(ui—l(ﬂi)a)(% ﬂz)}

ri(x) < wui—1,x; ;) — wi—1(wi—1,X; [1;) > Residual

t; < argsupycq |ri(x)| > Interpolation point

¢(x) :((;‘)) > Deduce EIM basis
end for

At this step, EIM approximation reads w;(u(p), x; ) = > 8% (u, o) gm(X)
m=1

{a?}, and {f!}; terms are precomputed and stored (no dependence on )

Build r RB basis functions
for =M toj=M+r do

p;<—pnebD > Random or from Greedy algorithm
Sj < {m;}
OFFLINEFIXEDPOINT(pt;, {agm fgm> {fom fam) > Compute u(p;)
§; < orthonormalization(ux(p;)) > Gram-Schmitt orthonormalization
W; < W;_1 @ span{§;} > Deduce RB basis
end for
end while

The implementation of the SER method given in the algorithm 9 uses as much as
possible the existing components of the Feel++ RB framework. The already implemented
offline() functions — performing the offline steps both for EIM (listing 7.3) and for RB
(listing 7.4) — are slightly changed to be used in a global function SER(), as displayed in
the listing 7.5. This allows to apply the algorithm 9 for each groups of basis functions.

In the two offline() functions, the number of basis functions to build has to be
adapted in the case of SER. The group size r is contained in the variable ser_freq, and
max denotes the total number of functions to build all through the offline step. The key
point of the implementation resides in the use of the RB approximation instead of the FE
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one within the EIM offline() function.

Regarding the main SER() function, it simply consists in alternate calls to the offline ()
functions of RB and EIM. We shall note that we start with the RB offline step. Indeed,
the EIM initialization step (see algorithm 8 and listing 7.1) is performed out, and before
the call to SER(). Since it changes between each simultaneous build, the affine decompo-
sition is updated through the function assemble().

Listing 7.3 — EIM offline

void offline ()

{
// Number of functions to build is adapted for SER
if ( ser && M_model ->mMax() + ser_freq <= max )

Mmax = M_model ->mMax () + ser_freq;
else
Mmax = max;

// Build group of EIM basis functions
for( ; M_M <=Mmax; ++M_M ) //err >= this->M_tol )

{
// EIM Greedy algorithm
for( auto mu : *subtrainset )
{
if ( ser )
solution = M_model->computeRbExpansion( mu ); //RB
else
solution = M_model ->solve( mu ); //FEM
resmax = M_model ->computeMaximumOfResidual (mu, solution);
maxerr (i) = resmax.template get<0>();
+
// Update mu from Greedy algorithm
auto err = maxerr.array().abs().maxCoeff( &index );
mu = trainset->at(index);

// Compute the solution (using RB for SER)
if( ser )
solution = M_model->computeRbExpansion( mu ); // RB
else
solution = M_model->solve( mu ); //FEM
M_model ->addSolution( solution );
// Compute the interpolation point
auto t = M_model->computeMaximumOfResidual ( mu,solution);
M_model ->addInterpolationPoint ( t );
// Deduce the new EIM basis function
element_type res = M_model->Residual( M_M-1 );
// Enrich the EIM approximation space
M_model ->addBasis( q );
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Listing 7.4 — RB offline

void offline ()

{

// Number of functions to build is adapted for SER
if( ser && Nold + ser_freq <= max ) // SER

M_iter_max = Nold + ser_freq;
else

M_iter_max = max;
while ( M_N < max )

{
// Compute affine decomposition
tie( Mgm, Aqm, Fgqm ) = M_model->computeAffineDecomposition();
// Solve the finite element non-linear problem
u = offlineFixedPointPrimal ( mu );
// Enrich the RB approximation space
M_model ->rBFunctionSpace () ->addPrimalBasisElement ( u );

Listing 7.5 — SER offline

void SER()

{

}

do
{
// Perform RB offline
rb->0ffline ();
// Perform offline step for each EIM
for( auto eim : eim_vector )
{
eim->setRB( crb );
eim->setModel ( model );
eim->0ffline ();
¥
// Update the affine decomposition
model ->assemble () ;
}
while( crb->continueOfflineStep () );

7.3 SER variants

We have just described the implementation of the initial SER method within the Feel++
RB framework. This last section then focuses on the SER variants, introduced in Section
2.3.2.

The variants investigated within the SER method are based on the error indicator

introduced in Section 2.3.1. This error estimator is itself based on the Riesz representation
of the residual.

The Riesz representation {am.n}gmmn (r€Sp. {fq’m}q,m) of agm(&n,v) (resp. fym(v))

defined in (2.54) is part of the precomputations performed during the offline stage. Thus,
these terms are computed simultaneously with the {agm}qm and {f,m}gm- The compu-
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tation of the error indicator (algorithm 10) then simply consists in assembling the Riesz
representation of the residual (2.55), and compute its norm.

Algorithm 10 Riesz representation of R?v{{w

function RIESZRESIDUALNORM(p, u, {Qqmn}qmn {fq,m}q,m)
Compute 7, (u, ), v}, (u, ) ¥g, m
Assemble J)R}l\{ig/[(u; p) from 48 AL g my and fom
Returns || VRS, (<) |

end function

The use of this error indicator fits well into the SER offline stage (algorithm 9), as
displayed in the algorithm 11. The EIM offline stage remains unchanged, while the param-
eter used to enrich the RB approximation space is now selected from a Greedy algorithm
based on the previous error indicator.

Algorithm 11 SER method : Offline step with error estimation
while M < M,,4, do

Build » EIM basis functions

for i=M toi=M+r do
ONLINEFIXEDPOINT(p, i — 1, {a%}ym, {a'}, {2} gm, {f' )
pi < argmaxyez infeew,_, [Jw(ui-i(p); 5 p) = 2||Le@)
Si = Sict U{R}

Wi — I/T/i_l N> Span{éi = w(ui_l(ﬂi),x; [1’1)}

ri(x) < wui—1,x; ;) — wi—1(wi—1,X; @1;) > Residual

t; < argsupyeq |ri(x)| > Interpolation point

¢(x) :((:)) > Deduce EIM basis
end for

Build » RB basis functions
for =M toj=M+r do X
p; < arg mazyuep | RIESZRESIDUALNORM(pt, w1, {Qgmmntemmn {Samtqm) |

Si +{p;}
OFFLINEFIXEDPOINT(tt;, {agm fgm» {fom}tam) > Compute u(p;)
§; < orthonormalization(ux(p;)) > Gram-Schmitt orthonormalization
W; < W;_1 @ span{§;} > Deduce RB basis
end for
end while

The function computeRieszResidualNorm has been added to the reduced basis frame-
work to mimic the one described in the algorithm 10. As displayed in the listing 7.6,
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the Greedy algorithm — performed through the RB offline step — thus simply consists in
finding the parameter maximizing the error. This allows to prepare the construction of
next RB basis function.

Listing 7.6 — RB Greedy

for( auto mu : *sampling )
{
// Computes error indicator for each mu
error_indicator (i) = computeRieszResidualNorm( mu, ulN );
T
//Selects the maximizer
mu = *max_element (error_indicator.begin(),error_indicator.end());

r-adaptation Based on the increment of the maximal values resulting from both EIM
and RB Greedy algorithms, the r—adaptation method — introduced as the first SER
variant in Section 2.3.2 — is illustrated in the algorithm 12.

In terms of implementation, the steps remain the same, except for the number of basis
functions to build which has to be distinguished for the two approximation spaces. The
update of r depends on the criterion resulting from the considered increment.

Algorithm 12 SER method : offline step with r—adaptation
TEIM < T; TRB < T
while M < M,,,, do

Build » EIM basis functions

for i=M toi=M +rg;y do
[...] > Compute g;
current_max_ errgry < maxyez infew, | [|w(ui—i(p); 5 1) — 2|z @)
if | ref max_errgry - current_max_errgry |< adaptation tolerance then

reim < reiv + 1 > Continue EIM offline
end if
ref _max _errgry < current _max_errgrys > Update reference error
end for

Build » RB basis functions

for =M toj=M +rgrp do
[..] > Compute &;
current _errorpp < RIESZRESIDUALNORM(;, ), {@qm.itam.is {famtam)
if | ref _errorgp - current _errorgp |< adaptation tolerance then

TrB < TrB + 1 > Continue RB offline
end if
ref errorgp < current errorgpp > Update reference error
end for
YEIM < T, TRB < T
end while

In the framework, the update of the previous rgy and rgp simply amounts to the add
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of a new condition within the offline() function. The considered increment is computed
each time the approximation space is enriched, allowing to update the adaptation criterion
and to continue the enrichment if needed. The listing 7.7 provides the ingredients of such
implementation within the EIM offline stage. The equivalent change is applied to the RB
offline() function.

Listing 7.7 — r—adaptation in EIM

// New condition for r-adaptation

if ( radaptation && M_model->mMax({() < max )
Mmax = M_model->mMax() + 1;

else if ( M_model ->mMax() + ser_freq <= max )
Mmax = M_model ->mMax() + ser_freq;

else
Mmax = max;

// Continue enrichment if needed

double increment = abs(err-previous_err)/abs(previous_err);

if( increment < adaptation_tolerance )
radaptation=true;

Hybrid Greedy algorithm Introduced as the second SER variants of Section 2.3.2,
the so-called hybrid Greedy algorithm is used within the EIM offline stage. As illustrated
in the algorithm 13, the RB approximation is considered only if it is sufficiently reliable.
Its relevance for each parameter p is based on the previous error indicator available from
the function described in the algorithm 10.

Algorithm 13 SER method : offline step with Hybrid Greedy algorithm
while M < M,,,,. do

Build » EIM basis functions
for i=M toi=M+r do
if RIESZRESIDUALNORM(ft, wj—1, {Qq.m.mn}qmmn; {ﬁ,_],,l,}(,ﬂ,,,) < tol then
u < ONLINEFIXEDPOINT(p, i — 1, {a% }ym, {a'}0, {f9 ams {F 1)
else
u < OFFLINEFIXEDPOINT (4, {@qm}qms {fom}am)
end if
i < argmaxyez infeew,, |Jw(u(p); 5 p) — 2l|L= @)
Wi <= Wi1 @ span{§; = w(u(p;), x; ;) }

ri(x) < wu,x; @;) — w;i—1(u,x; @&;) > Residual

t; < argsupyeq |ri(x)| > Interpolation point

¢(x) + :((Z‘)) > Deduce EIM basis
end for

Build » RB basis functions |...|

end while

The corresponding changes in the code take place within the Greedy algorithm in-
troduced in the listing 7.3. The criterion describing the quality of the reduced basis
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approximation is determined for each parameter of the trainset. It then allows to choose
the approximation to use on a case-by-case basis. The function computePfem uses the
affine decomposition to benefit from the already performed precomputations.

Listing 7.8 — Hybrid Greedy algorithm

for( auto mu : *trainset )
{
if( ser && error_estimation && hybrid_eim )
{
// Compute the error indicator with mu
auto error_indicator = M_model->RieszResidualNorm( mu );
// Criterion associated with current mu
error_criterion[i] = error_indicator/err < rtol;
}
if( ser ) //Use SER
{
// Consider RB only if sufficiently relevant
if( ser && error_criterion[i] )
solution = M_model->computeRbExpansion( mu, uN ); //RB
else
solution = M_model->computePfem( mu ); //PFEM
+
else

solution = M_model->solve( mu ); //FEM

resmax = M_model->computeMaximumOfResidual (mu,solution);
maxerr (i) = resmax.template get<0>();

Multi-levels SER(/) Finally, the last variant for SER consists in the application of
the initial method on several levels. To this end, we turn back to the main function SER()
(see listing 7.5) which drives the whole SER offline step.

The use of the SER method at multiple levels requires the construction of one RB
approximation space per level. The corresponding objects are stored in the vector rbs
allowing to build the RB approximation associated to each level.

As mentioned in Section 2.3.2, the first iteration is equivalent to the initial method,
using the RB approximation of the current level. From the second level, the RB approxi-
mation resulting from the previous run is used. We shall note that the affine decomposition
— carried out by the model — and the resulting reduced basis approximation has always
to come from the same level.
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Listing 7.9 — Multi-levels SER(])

void SER()
{
for( int ser_level=0; ser_level < nb_levels; ++ser_level )
{
if ( ser_level > 0 )
{
rbs.push_back ( newRB( ser_level ) );
rb = rbs.back();

}
do
{
rb->o0ffline ();
for( auto eim : eim_vector )
{
// From the second level, use the previous RB approx
if ( crbs.size() > 1 )
{
eim->setRB( rbs[ser_level-1] );
eim->setModel ( models[ser_level-1] );
}
else
{
eim->setRB( rb );
eim->setModel ( model );
}
T

// Update the affine decomposition
model ->assemble () ;
Ywhile( crb->continueOfflineStep() );

Conclusion

As seen in Chapter 2, the SER method is a combination of the EIM and RB method-
ologies, aiming to decrease the computational related with the recovery of the necessary
affine decomposition. This chapter describes its introduction within the Feel++ reduced
basis framework, discussing the changes made to the existing implementation. We de-
scribe also the inclusion of each SER variants (Section 2.3.2) in the previous algorithm.

All these features are now part of the framework, making them usable for any non-
linear and/or non-affinely parametrized model. Their use on high field magnets applica-
tions are illustrated in Chapter 11.
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Chapter 8

Parametric studies and uncertainty
quantification

The thermal increase due to Joule losses within the conductor is a key point of the high
field magnets study. The heating could alter the mechanical properties of the materials,
which is why we shall take great care of temperature in the design process. Nevertheless,
we remind that the input data — materials properties, operation conditions — are generally
not exactly known. The ranges in which these input parameters vary have thus to be
investigated to cover all possible configurations.

Although the finite element model introduced in Section 3.1 could be suitable in this
context, its computational cost could become prohibitive depending on the number of
simulations considered. Especially designed for many-query context, the reduced basis
method provides a much more appropriate solution. The reduced electro-thermal model
detailed in Chapter 4 is thus preferred for this kind of study.

This chapter focus on the influence of these inputs on temperature. A ranking of how
inputs affect the temperature is established, in order to determine in which directions the
optimizations should be carried out. The second part illustrates the use of the reduced
electro-thermal model within two concrete examples of parametric studies. Performed
both with FE and RB electro-thermal models, these studies aim to validate the two mod-
els in real situations.

This kind of analysis had not been performed for LNCMI high field magnets up to
now. However, this provides essential informations on the behavior of operating magnets.

Contents
8.1 Sensitivity analysis on mean temperature . . . . .. ... ... 126
8.2 Parametric study on current density . . ... ... ... ..., 130
8.3 Parametric study on heat transfer coefficient . . . . . . . ... 131

125
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8.1 Sensitivity analysis on mean temperature

The sensitivity analysis consists in the study of how the uncertainties on inputs can in-
fluence a given quantity of interest. In this section, we focus on the mean temperature
over the domain as output.

The electro-thermal model detailed in chapters 3 and 4 is used to establish the in-
put /output relation between the inputs denoted as X, and the outputs denoted as Y. Its
acts as a function F' relating X and Y as

(8.1) Y = F(X)

We shall note that this kind of analysis requires a sampling X of sufficiently large size.
The sensitivity indices [Sobol, 1993|, |Prieur, 2014], |Janon et al., 2014a] which quantify
the influence of the inputs can be computed from various approaches. The Monte-Carlo
method is commonly used in this context. The number of simulations it requires depends
both on the size of the sampling — typically several hundreds — and on the dimension
of the parameter space — 6 in our case. For large problems, the cost related with the
FE electro-thermal model (see Section 3.1) is prohibitive for such studies. However, its
reduced version (see Chapter 4) is well suitable. We propose to use it as the previous
function F' (8.1). We also point out that meta-models |Sudret, 2008|, |Janon et al., 2014b]
can be used prior to the Monte-Carlo method in order to further decrease its cost.

The next studies rely on the library Openturns |Dutfoy et al., 2009|, dedicated to the
treatment of uncertainties. Openturns firstly provides a sample of input parameters X in
the wanted ranges following a given probability distribution. In our case, we consider an
uniform distribution.

This section focuses on the sensitivity analyses performed both on the sector of Bitter
magnet and on the radially cooled helix for which convergence studies are given in Section
4.2.

8.1.1 Bitter magnet

In this example, the input parameter related with the electrical current is the current
density j instead of the voltage (see Chapter 4). Other input parameters namely the
materials properties and the cooling conditions are the ones introduced in Chapter 4,
making p read as

(82) M= (007a7L7j7h7Tw)

In the model, the difference of potential between the current input and output which
appears as boundary condition is determined from j through the computation of the cur-
rent intensity and the Ohm’s law. For this application, we consider an input parameters
sampling of size 300, selected from a uniform distribution on the ranges displayed in Ta-
ble 8.1. This ranges are typical of copper alloys and operating conditions used in practice.
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60] MS.m™!
33 % 107,35 X 10- K1

o) [
a ||
L | [25%x1078,2.9 x 1078]
i |l
h |l

60 x 105,70 x 10°] A.m2
70000, 90000] W.m 2. K~
T, | [293,313] K

Table 8.1 — Input parameters for sensitivity analysis on Bitter magnet

Openturns provides the mean of outputs resulting from the 300 realizations, and the
associated standard deviation (Table 8.2). This results allow to determine a range for the
mean temperature, considering the uncertainties on inputs (Table 8.1). Thus, the mean
temperature in the Bitter magnet varies from 53.22°C' to 65.28°C.

Mean of outputs ‘ 332.25K ~ 59.25°C'
Standard deviation ‘ 6.03

Table 8.2 — Mean and standard deviation for mean temperature in Bitter magnet

However, we remind that the objective is to ensure that the temperature in the magnet
doesn’t exceed a critical value. In this context, the quantiles provide a threshold value for
the output which amounts to consider the worst case. From the set of resulting outputs
Y, the quantiles consist in finding the threshold value y which won’t be exceeded with a
given probability p. That is find y such that

(8.3) PY<y)=p

Table 8.3 displays the quantiles obtained for two probabilities. We are thus 99% sure
that the mean temperature shall not exceed 70°C. This reference value is particularly
useful for control system to tighten the limit temperature and to better anticipate poten-
tial incidents.

99.0% | 343K = 70°C
80.0% | 336.5K = 63.5°C

Table 8.3 — Quantiles for mean temperature in Bitter magnet

Lastly, the sensitivity indices answer the question on parameters influence on mean
temperature. The Sobol indices |Sobol, 1993| quantify it from the expected value and the
variance of the outputs. This study simply consider that the input parameters X; € X
are independent. To this end, the first order Sobol index S; associated with the 7" input
X; (8.2) is expressed as

V(ETY | Xi])

(8.4) 5= =4

Table 8.4 displays the resulting sensitivity indices. As expected, the current density
is the most influent parameter.
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oo | 0.022

a | 36x107°
L | 0.0042

i 077

h | 0.044

T, | 0.16

Table 8.4 — Sobol indices for mean temperature in Bitter magnet

Moreover, the sum of the Sobol indices listed in Table 8.4 is equal to 1. The model
is then said to be additive, which means that the function F'(X) (8.1) reads as a sum

d
F(X) =) F,(X;) with d the parametric dimension.
i=1

The water cooling temperature comes in second place. This result is counter intuitive
as we could have expected h to be more influent. Efforts have thus to be concentrated on
T, to decrease the magnet temperature associated with a given current density.

8.1.2 Radially cooled helix

The second example focuses on the radially cooled helix introduced in Chapter 4. Offer-
ing a better cooling for the magnet, this technology leads to a much more complicated
temperature field than in longitudinally cooled helices. Indeed, the insulators introduced
between the helix turns give rise to local hot spots. In this context, the study of temper-
ature for this kind of magnet is all the more crucial since the problem is bigger.

The following sensitivity analysis is as previously based on the reduced electro-thermal
model. The simulations (Figure 8.1) are performed on a mesh composed of 500 000 degrees
of freedom, distributed to 12 processors. Each FE simulation requires about 16 minutes
compared to 6.7 seconds for the corresponding reduced basis approximation. This gain
in terms of computational time — a factor 150 — confirms the pertinence of the reduced
model for this kind of study.

i
-
.
-
-
-
-
-
-
-
-
I
-
-

Figure 8.1 — RB simulation on radially cooled helix

As for the Bitter magnet, the next results are based on a sampling of size 300 whose
parameters are selected from a uniform distribution. The parameter driving the electrical
current within the magnet is the current intensity. Other parameters are the same as in
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Section 8.1.1, giving u as
(8.5) w = (0o,a, L, 1, h,T,)

The ranges for this application are given in Table 8.5.

oo | [50;50.2] MS.m™!

a | [33x107%35x 107 K-
L | [25x10%29x 1079

I | [25000;35000] A

h | [70000;90000] W.m 2.K !
T | Tw € [293,313] K

Table 8.5 — Input parameters for sensitivity analysis on a helix

The standard deviation displayed in Table 8.6 shows that the mean temperature can
vary from 90.5°C' to 114.5°C' in the specified ranges.

Mean of outputs ‘ 375.5K ~ 103°C
Standard deviation ‘ 12

Table 8.6 — Mean and standard deviation for mean temperature on a helix

Due to the local hot spots near insulators, the thresholds values given by quantiles
computation are higher than in the case of Bitter magnet. Table 8.7 indicates that we
are 99% sure that the mean temperature shall not exceed 129°C.

99.0% | 401.3K = 129°C
80.0% | 385.3K =113°C

Table 8.7 — Quantiles for mean temperature on a helix

Finally, Table 8.8 displays the first order Sobol indices allowing to establish a ranking
on the inputs parameters according to their influence on the mean temperature over the
helix. As expected, the current intensity is — as the current density is the previous ex-
ample — the most influent parameter. As for the Bitter, the cooling water temperature is
the second one, followed by the heat transfer coefficient. From a designer point of view,
these results imply that it is worth investigating how to improve the cooling parameter
to decrease the magnet temperature.

oo | 1.9 x107°
a | 23x10™
L ]0.0028

I 1075

h |0.069

T, 10.16

Table 8.8 — Sobol indices for mean temperature on a helix

Besides the current which remains the most influence parameter on the temperature,
the impact of the cooling parameters is more important that the one of material properties.
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In this context, the emphasis is placed on the water temperature and on the heat transfer
coefficient rather than on the materials.

Nevertheless, the sum of the Sobol indices is equal to 0.98 — and not to 1 as for the
Bitter magnet — which means that the model is not additive in this case. The computation
of the Sobol indices of higher order should help to identify the interactions between the
parameters.

8.2 Parametric study on current density

The increase of the magnetic field mainly resides in the increase of the current density. In
order to reach the highest possible magnetic field, the question of how much the current
density can be increased while keeping a reasonable mean temperature — that remains
beyond some heuristic limit — is often asked.

To address this question, the following parametric study fixes all the previous param-
eters except for the current density j. The values of each parameters are displayed in
Table 8.9.

58 MS.m™!

3.5x 1073 K~1

2.5 x 1078

[30 x 10%,100 x 10°] A.m~2
80000 W.m 2K~ !

293 K

Table 8.9 — Input parameters

Sﬂ:"—-hszg

Figure 8.2b plots the behavior of the mean temperature obtained with FE and RB
electro-thermal models depending on the current density. We shall first note that both
models are coherent, somehow validating the reduced model.
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Figure 8.2 — Parametric study on Bitter: Mean temperature VS current density
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The initial operating conditions for this Bitter magnet correspond to a mean tem-
perature of 40°C. From the results displayed in Figure 8.2b, the increase of the current
density from 30 A.mm~2 to 60 A.mm~2 would raise the temperature from 40°C' to 60°C.
With such increase, a gain of about 1 7" in terms of magnetic field is expected. From a
engineering point of view, this result is of great interest since a limited raise of 20°C' on
the mean temperature — which remains safe for the materials — allows a significant gain
in magnetic field.

8.3 Parametric study on heat transfer coefficient

Besides the influence of the current density illustrated in the previous study, the sensitivity
analysis introduced in Section 8.1 has proven the impact of the cooling parameters on the
mean temperature. This confirms that we have to pay particular attention to the cooling
process, ensuring that it behaves as expected. This section illustrates this insight, with a
concrete example of issue related to the water cooling.

We are interested here in the commissioning of a Bitter magnet whose cooling is
performed by water circulation through cooling holes distributed over the copper disks.
When operating for the first time, this magnet has not given the expected performances.
Cooling problems induced by assembly issues were suspected.

We proposed to employ our electro-thermal model in order to determine the heat
transfer coefficient which reproduces the operating conditions. This should indeed helps
to precisely identify potential cooling problems. We have at our disposal the voltage Vp
measured at the magnet terminals, the mean water temperature and an approximation
of the material properties. The parameter u considered in the reduced model of Chapter
4 reads

(86) Hn = (007Q7L7 VDah>Tw)

But in this study the heat transfer coefficient h is the only parameter which vary. We
also know the intensity of the current which powers the magnet, which is the considered
output in this study.

As a sort of inverse problem, the objective of this study is to vary the value of A until
reaching the experimental value of the current intensity. The value obtained for h can
be compared to its theoretical value given by standard hydraulic correlations which are
based on the water flowrate. In the considered situation, the A is expected to be close than
hey = 5.46 x 10* W.m~2.K~!. Figure 8.3 shows the values of current intensity obtained
for various heat transfer coefficients using FE and RB models.
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Figure 8.3 — Current intensity depending on heat transfer coefficient with initial conditions

From Figure 8.3, the measured current intensity I., = 27988.5 A indicated as a black
line on the graph corresponds to a heat transfer coefficient h = 4.64 x 10* W.m=2.K L.
We note that the mean difference between FE and RB outputs remains below 1072, Being
far from the expected value he, = 5.46 x 10* W.m=2.K~!, these results on h confirm a
cooling problem in the magnet. Thereafter, a water leak has been indeed identified within
the magnet. The latter has been disassembled to be repaired.

Figure 8.4 consists in the same study for which the input data has been updated in
accordance with the measurements carried out after magnet repairing.

28,050 [ ‘ ]
x FE % *
+RB S
***
—~
= 28,000 |- f .
S— e
> "
= »
z *
S 27,950 | " .
- *
| #*‘*
E 3
27,900 q,,\f* i
| | | |

50,000 52,000 54,000 56,000 58000 60,000
heat transfer coefficient (W.m=2. K1)
Figure 8.4 — Current intensity depending on heat transfer coefficient after repairing

Due to the voltage value, the results obtained in Figure 8.4 are different from ones
of Figure 8.3. Consequently, the heat transfer coefficient value corresponding to the
measured current intensity I., = 27988.5 A has changed to h = 5.58 x 10* W.m~2. K L.
Really closer to he, = 5.46 x 10* W.m~2.K~! than previously, the result of this second
study confirms that the repair has been successfully performed.
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Conclusion

This chapter illustrates the use of the reduced electro-thermal described in Chapter 4 in
the context of uncertainty quantification. The first part of this chapter is dedicated to
sensitivity analysis, from which we deduce various quantities of interest related with the
mean temperature in the magnet. These studies have been performed on two real magnet
geometries. In particular, this allows to rank the input parameters from their input of
the mean temperature.

The water temperature comes in first, confirming its non negligible impact. In the
Grenoble High Magnetic Field Laboratory, the magnet cooling is based on a double loop
system as for nuclear facilities. In this system, the secondary loop is alimented with water
which is extracted from the river and whose temperature depends on the season. There-
fore, the facility doesn’t operate during the hottest seasons.

Furthermore, this ranking can serve to identify the parameters on which we have to
focus for future experimental measure campaigns. It can also result in the simplification
of our model fixing the parameters which appears are the least relevant. Finally, the
quantiles can also be useful in the context of magnet control system to better prevent the
incidents.

The second part deals with two concrete examples of parametric studies meeting the
specific needs the research and development department of the LNCMI. It allows to assess
the scope of applications which can be addressed by our model.
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Chapter 9

Validation of 3D magnetic field

Up to now, the magnetic field was considered as axisymmetrical even if the geometry
of the magnets are 3D. However, some experiments in magneto-science dealing with the
studies of the magnetic field effects on physical or biological process have given indications
that the magnetic field is 3D. These come both from NMR experiments |Trophime et al.,
2006| and from experiments on magnetic levitation of alcohol droplets, which have shown
that the magnetic forces induced by polyhelix magnets were not axisymmetrical. This
indicates that the magnetic field itself is not axisymmetrical, unlike what is supposed in
the design optimization process performed from a 2D axisymmetrical model.

The 3D magnetic field computation offered by the Biot & Savart’s model introduced
in Section 3.3 allows nevertheless to capture this plausible "3D effect". Moreover, the
parallel implementation of this formulation detailed in Chapter 6 enables us to closely
approach the experimental conditions relying on the real magnet geometry.

A magnetic field measurement campaign has been performed at LNCMI, in order
to assess the relevance of these observations, and to validate our Biot & Savart model.
The experimental process has been specially designed to this end. Tt is the focus on the
first part of this chapter. The setting up of the experiment at LNCMI, as well as the
achievement of the measurements have been performed as part of this thesis.

The comparison between the obtained experimental data and the numerical results is
detailed in the second part. We also discuss the follow-up of these results.

Contents
9.1 Description of the experiment . . . . ... ... ... ...... 136
9.2 Preliminary measurements along z axis . .. ... ... .... 141
9.3 Comparison at off-axis positions. . . . . ... .. .. ...... 143
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9.1 Description of the experiment

The 3D magnetic field measurement requires sensors able to measure the magnetic field in
all directions. In this context, Hall effect sensors are commonly used. Moreover, this kind
of sensor has the advantage of being small, allowing measurements at numerous points
within a small volume.

This section introduces the experimental set up that has been realized to perform
such magnetic field measurements in an operating magnet at LNCMI. The M10 magnet
on which the experiment has been undertaken is an insert composed of 12 longitudinally
cooled helices which are electrically connected in series. Powered of up to 12MW with an
electrical current of 30000 A, this magnet can produce up to 21 T — and up to 31 T with
additional Bitter magnets — in 50mm bore.

The probe employed to perform the measurements is limited to a magnetic field mag-
nitude of 3 T. Moreover, we set the current to 500 A with an external power supply as
the 12MW power supply was not available at that time.

Hall effect probe These Hall effect probe consists in a set of Hall effect sensors, each
composed of a semi-conductor plate fitted with two pairs of electrodes on its boundaries.

Electron Path

VH
%

Figure 9.1 — Image taken from www.mfg.mtu.edu

The electrical current imposed to the semi-conductor plate is modeled as a uniform
electron flow. When it is subjected to a magnetic field, this flow is deflected due to the
induced Lorentz forces. As shown in Figure 9.1, this deflection then creates a voltage
difference called Hall voltage across the electrical conductor, for a magnetic field perpen-
dicular to the current. The magnetic field — the component of magnetic field which is
orthogonal to the conductor plate — can then be deduced from the measured Hall voltage.
This voltage has a sign which gives the sign of the magnetic field component.

The Hall sensor detects the component of the magnetic field which is orthogonal to
it. For our measurements, we use a tri-axis probe (Figure 9.2) with three Hall sensors
oriented orthogonally to each axis Z, ¥, 2’ in order to capture the magnetic induction B in
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all directions. Each sensor is connected to an entry of a Gaussmeter (Figure 9.3d) which
reads the signal and displays B,, B, and B.,.

- \.“..\ ?'B&H;
- 1
Z/ "™~ to end L._2m "'— 83 mm (3. 25"1) _"‘ 54mmL i

(65& 325"1) <16 mm
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= 4127 mm—s -.t 4.6 n)m—T
12.7 mm (0.5 in) diameter— (0.5 in) (0.18 in) end view

8.9 mm (0.35 in) square square
\\// ( ) sq

Figure 9.2 — Scheme of the HSE-1 tri-axis probe connectable to LakeShore Model 460
3-channels Gaussmeter (see Figure 9.3d)

Insertion into the magnet The Hall effect is inserted into the magnet thanks to a
probe holder (Figure 9.3) which can be controlled by hand from the top of the magnet.

U (d) LakeShore Model 460 3-channels Gaussmeter
(a) Whole device (b) Probe holder - display with zero current

Figure 9.3 — The probe holder has been tailored especially for the experiment. The disk
at the top allows the probe to take various positions along a circle of constant radius.

We shall remark that the magnetic field measurements obtained with zero current
(Figure 9.3d) are not the Earth’s magnetic field. Indeed, the building in which the exper-
iment is performed is composed of magnetic materials which slightly interfere with our
measurements.

The probe holder has to be carefully inserted into the magnet, both to preserve Hall
probe from damages and to avoid misalignment of the device. To this end, a camera
placed at the bottom of the magnet hole allows to view the probe holder from the bottom
of the magnet. Lighting the magnet hole with an optical fiber, we make sure that the
probe holder is centered checking the remaining space between the holder and the magnet
(Figure 9.4b).
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Probe
holder

Optical
fiber

Magnet
hole

(a) Insertion of the probe holder into the mag- (b) Image captured by camera. Scheme of

net hole. Centering of the device is monitored the probe holder has been projected on the
with a camera. camera picture to identify the position.

Figure 9.4 — Probe holder is carefully inserted into the magnet hole.

The top of the probe holder consists of a disk with uniform distributed holes (Figure
9.5) allowing to rotate the probe along a constant radius. The holes are equidistributed
giving the possibility to have a measure point each 15 degrees (24 measure points per
radius).

(a) CAD plan (b) Real use conditions

Figure 9.5 — The top of the device (figure 9.3a) consists in a holed disk allowing to position
the probe at a given angle — each 15 degrees — along a circle of constant radius.

The probe holder has to maintain in place the Hall probe (i) to avoid contact with
the magnet which could deteriorate the sensors and (i) to ensure accuracy of the mea-
surements by minimizing vibrations.

The bottom part of the probe holder (Figure 9.3) consists of a commutable box fitted
with few holes giving different possibilities for the radius on which we want to record the
magnetic field. We have two bottom pieces at our disposal for this experiment.

The first one with only a central hole —designed to make measurements on z axis
(r = 0 mm)— and the second one (figures 9.6a and 9.6b) with 6 radial positions from
r=5mmtor=17.5 mm.

Finally, the position of the probe along z axis is then handled with an elevator (Figure
9.7a). The remote control (in yellow on Figure 9.7a) is used to move the elevator up and
down. The elevator position is monitored with a graduated ruler.
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Coupe C-C

(a) Profile view (b) Top view
Figure 9.6 — The probe holder

Collecting measurements The Hall probe is fixed into the probe holder. The rotation
given to the holed disk (Figure 9.5) makes the complete device rotate, leading to a rotation
of the frame (x,y, z) of the probe at each measure.

The frame (x,y, z) rotates around the vertical axis along a circle of constant radius
with z axis oriented outwards to the circle. Due to the positioning of the probe, B, (resp.
B,) is close to B, (resp. Bj) with a constant shift angle of 15 degrees. This is due to
mechanical constraints concerning the probe holder design.
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Figure 9.7 — Overview of the elevator and zoom on the angular shift of the probe.

B,, B, and B, relative to the Hall probe (in red on Figure 9.7b) are taken for 24
positions along a circle of constant radius and transcribed to B,, By and B, (in blue on
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Figure 9.7b) following

B, = cos(0)B, — sin(6)B,

(9.1) By = sin(0) B, + cos(0) B,

We shall note that the Hall effect sensors are not all placed at the same position. The
sensors measuring B, and B, are hence shifted of 2.08 mm to the center of the probe, as
shown in Figure 9.8a. The sensor dedicated to B, is at the center.

Figure 9.8b illustrates the rotation of the Hall effect probe along with the associated
frame.
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(a) Position of the sensors into the probe (b) Scheme of the probe rotation

Figure 9.8 — Position of the Hall effect sensors

As mentioned, the second part of this chapter is dedicated to the comparison between
the experimental results obtained from the previously described process and the numeri-
cal ones coming from the 3D Biot & Savart’s model introduced in section 3.3.

The geometry of the magnet on which the experiment has been performed comes di-
rectly from CAD. We remind that this conductor is composed of 12 helices. To compute
the magnetic field inside the magnet hole, we introduce a cylindrical box of 40 mm in
diameter and 400 mm long geometrically centered inside the 50 mm bore magnet.

Three meshes are considered for this geometry resulting from the union of the conduc-
tor and the box for which the mesh remains the same. The coarser one — denoted as mesh
1 in the following — consists of 1.5 millions of nodes for 7.6 millions of tetrahedrons. The
second one — designated as mesh 2 — have about 2.2 millions of nodes for 13.3 millions of
tetrahedrons. The last mesh — denoted as mesh 3 — is the finest one with 11.1 millions of
nodes for 65.7 millions of tetrahedrons.

The figure 9.9 illustrates the magnetic field obtained with 500 A in the considered
magnet. This simulation has been performed using the Biot & Savart’s parallel algorithm
with the finest mesh on the Curie supercomputer (TGCC, Paris). In the following, all
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the simulations have been performed on the Curie supercomputer using 256 processors
for the coarser mesh and 1024 for the other two.
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Figure 9.9 — Magnetic field computation through Biot & Savart’s parallel algorithm

-

9.2 Preliminary measurements along z axis

We start the experiment by localizing the magnetic field center of the magnet, that is the
point on which the vertical component of the magnetic induction is the highest. From
theoretical considerations, the magnetic center of a symmetric solenoid is at center of the
bore tube, halfway up the magnet.

The Hall effect probe is thus firstly placed at the geometric center of the magnet hole.
Starting from this point, the objective is to determine the reference plan on which the
maximal field value is reached, denoted as z = 0. To this end, we collect the magnetic
induction components on various positions along the z axis steering the height from the
elevator illustrated in Figure 9.7a.

As displayed in Figure 9.10a, the z-component of the magnetic field rises to 0.361 T
defining the reference plan. Figure 9.10b plots the relative error between the experimental
measurements of Figure 9.10a and the numerical results obtained both from the 3D Biot
& Savart’s law implementation and from the 2D axisymmetrical model. Figure 9.10b
introduces the influence of the considered mesh.

Moreover, it shows that the 3D model allows to better evaluate the magnetic field at
the helical cut extremities of the magnet.
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Figure 9.10 — B, along z axis

Figure 9.11a (resp. 9.12a) plots the experimental data obtained for B, (resp. B,)
along z-axis. Figures 9.11b and 9.12b are their numerical equivalent, comparing the 2D
axisymmetrical and the 3D model. The 3D model highlights a variation of these com-
ponents along z, which confirms the asymmetry. Although the shape is coherent, the
amplitude is highly different between the numerical model and the measurements.
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Figure 9.12 — B, along z axis

The results presented in figures 9.11 and 9.12 provide two main observations. First,
the numerical results tend to prove that the considered magnet is not symmetrical and
that the 2D axisymmetrical model is not adequate. Nevertheless, the amplitude of exper-
imental values is widely different from one observed numerically in the 3D Biot & Savart
model. This can be due to a misalignment of the probe into the magnet. A great attention
has to be paid to the experimental set up especially to the probe older position.

From this considerations, two new measurement campaigns have been performed aim-
ing to a better alignment of the probe holder. The agreement between the results obtained
from both campaigns confirms their reproductibility.

The next sections focus on the magnetic field at off-axis position. In order to be easily
interpreted, the results are displayed in cylindrical coordinates (9.1). We don’t take into
account the shift of the sensors within the probe (Figure 9.8a), which complicates the
post-processing. Thus, we suppose that the sensors dedicated to B, and B, are located
at the same point as the one measuring B,.

9.3 Comparison at off-axis positions

9.3.1 Along a circle of radius r = 17.5 mm on plan z =0 mm

This section focus on the measurements of the magnetic field along the circle of radius
r = 17.5 mm on the reference plan z = 0 mm. If the magnet is symmetrical, the compo-
nent B, is supposed to be zero on the median plan.

The experimental results plotted in Figure 9.13a tends to show that B, varies signif-
icantly along the circle. The numerical results obtained with 3D Biot & Savart’s model
(Figure 9.13b) confirm that the magnet is not symmetric.
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Nevertheless, the order of magnitude of the experimental values collected seems abnor-
mally high. A small inclination would be sufficient to reach such values for B,, since the
measurement would contain a part of the vertical component B,. Moreover, the earth’s
magnetic field has not been taken into account during our experiment.
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Figure 9.13 — B, along a circle of constant radius r = 17.5 mm at z = 0 mm

As for the By, the observations are similar to the previous ones for B,. The experi-
mental measurements (Figure 9.14a) as well as the 3D numerical results (Figure 9.14b)
highlight a "3D effect". The order of magnitude and the amplitude of the experimental
data could be due to an angular shift of the probe holder whose influence is wide on the
median plan.
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9.3.2 Along a circle of radius r = 17.5 mm on plan z = 100 mm

This section focuses on the magnetic field obtained 100 mm above the median plan. Far
from the magnetic center, the potential angular shift of the probe holder mentioned in the
previous section would then have considerably less influence since the B, and By compo-
nents of the magnetic field are supposed to be higher.
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Figure 9.15 — B, along a circle of constant radius » = 17.5 mm at z = 100 mm

Figures 9.15a and 9.15b display the B, obtained experimentally and numerically along
the circle of constant radius r = 17.5 mm. At first, we can see that the order of magnitude
and the shape of the graph are both consistent.
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Figure 9.16 — Comparison of B, along a circle of constant radius r = 17.5 mm at z =
100 mm

To compare the previous experimental and numerical results, we have to take care
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about the angular starting position of the Hall effect probe. The numerical results of
Figure 9.16 whose starting position is known are shifted to fit with experimental ones at

best. The corresponding offset is in coherence with the position indicated in the magnet
assembly plans.

We remind that the Hall effect sensors are not exactly placed along the circle of radius
r = 17.5 mm (Figure 9.8a). The shift of 2.08 mm — which is not taken into account here
— corresponds to a difference of about 10% in terms of radius.

In an axisymmetrical solenoid, the component B, is proportional to the radius r. In
that case, the difference of radius which is about 10% results in a difference of B, of about
10%. This is what we observe on Figure 9.16 which fully stems from this radius offset.
Moreover, the influence of the considered mesh is also highlighted in this comparison.
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Figure 9.17 — By along a circle of constant radius r = 17.5 mm at z = 100 mm

The Stokes theorem establishes a relation between the surface integral of a vectorial
field and its line integral over the boundary of the surface. Let’s denote C' the closed

circle on which the measurements are performed and S the surface it induces. The Stokes
theorem applied to the magnetic field B gives

(9.2) Jq{B.dl:/vXB.ds
C S

In our case, the magnetic induction B is related to the magnetic field H by the
constitutive law B = poH where g is the vacuum magnetic permeability. The Maxwell’s
equation gives V x H = j with j the current density which is null over the surface S since
S is out of the conductor.

Then, the line integral of By along the circle C is expected to be null. Displayed
in Figure 9.17b, the results obtained for By with the 3D Biot & Savart’s model tends to
satisfy this theory. But this is not the case with the experimental data illustrated by Figure
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9.17a. It seems that the measurements for By contains also a part of the B, component
which could explain this difference in terms of order of magnitude. Nevertheless, we shall
notice that both the shape and the amplitude are coherent between the two graphs.

9.3.3 Along a circle of radius r = 17.5 mm on plan z = —100 mm

Finally, the last section presents the results obtained along the same circle of constant
radius r = 17.5 mm but this time 100 mm below the magnetic center.

The results are expected to be symmetric with ones obtained at the same distance
above the median plan z = 0. While this is true for numerical results displayed in Figure
9.18b, this is not the case for experimental results plotted in Figure 9.18a.

The difference in terms of magnitude can comes from the localization of the median
plan (see Section 9.2) which could not be exact. But we don’t explain the observed dif-
ference of shape for now.
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Figure 9.18 — B, along a circle of constant radius » = 17.5 mm at z = —100 mm

Applying the same angular offset as previously, Figure 9.19 compares the previous
experimental and numerical results.
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Figure 9.19 — Comparison of B, along a circle of constant radius r = 17.5 mm at z =
—100 mm

Concerning By, figures 9.20a and 9.20b show results whose amplitude is similar. Nev-

ertheless, the shape of the graphs are not in coherence doubtless for the same reasons as
for B, (see Figure 9.19).
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Figure 9.20 — By along a circle of constant radius » = 17.5 mm at z = —100 mm

Conclusion

Several experiments undertaken at LNCMI have highlighted the asymmetry of the poly-
helix magnets. This goes against the hypothesis considered in the existing 2D axisym-
metrical models, and tends to reinforce the need of 3D modeling in this context.

The Biot & Savart’s law introduced in Section 3.3 is used to endorse these observations.
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Furthermore, the parallel implementation of this algorithm detailed in Chapter 6 allows
to consider the whole magnet geometry within the model.

A dedicated experimental measurement campaign has been set up to validate the 3D
numerical results and confirm experimentally the suspected effect of the asymmetry on
the magnetic field. Starting with a detailed description of the experimental process, this
chapter illustrates the comparison between the numerical and experimental results.

Both experimental measurements and 3D numerical results have allowed to confirm
that the magnets are not axisymmetrical. Moreover, the periodicity of these variations
observed along the circle of constant radius is related to the helical cut of the magnet.
This is an important step in the understanding of the polyhelix magnets behavior. The
impact of these observations on the mechanical stresses has not been investigated yet.

Although it validates our 3D model, this comparison is not fully satisfying especially
in the lower part of the magnet, that is below the magnetic center. However, we shall
note that the magnet on which the experiment has been performed has thousands hours
of operation which could have altered its geometry. Aiming to better identify the factors
that may have influenced these measurements, new experiments are currently in progress.
They are performed on the two innermost helices of an recent insert, isolated from their
standard operating environment in order to minimize the potential disruptions.

Finally, this study stresses the importance of the mesh size for such problems, which
also confirms the relevance of a parallel implementation for this model.
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Chapter 10

Validation of the elasticity model

Following the verification step based on the convergence study described in Section 3.4,
this section focuses on the validation stage of the linear elasticity model. Dedicated to
high field magnets simulation, the validation of this model should ideally be performed
by comparison with experimental measurements obtained in real operating conditions.
Nevertheless, the instrumentation of magnets in such condition is particularly difficult
especially because of the cooling water flow and the high pressure environment, which
makes the stress sensors difficult to install. In this context, the comparison of our model
with Ansys commercial software applied on real magnet geometry consists in a first vali-
dation step. This work was made possible thanks to Julien Giraud, from the Laboratoire
de Physique Subatomique et Cosmologie (LPSC).

This chapters describes this comparison at three levels. Starting by comparing the
results in terms of temperature field — thus confirming the validity of the electro-thermal
model —, we distinguish the displacements resulting from the thermal dilatation and from
the Lorentz forces. In this context, the first section focuses on the displacements coming
from the thermal dilatation only, while the second part deals with the displacements
coming from the Lorentz forces only. The last part assesses the validity of the considered
model considering both two forces.

Contents
10.1 Comparison on temperature . . . . . . . . . . v ¢ v v v v v o 152
10.2 Thermal dilatationonly . . . . . .. .. .. ... ... ...... 153
10.3 Lorentz forcesonly . .. .. .. .. .. ... ..., 155
10.4 Thermal dilatation and Lorentz forces . . . . .. ... ... .. 157

For this comparison, we consider the inner helix of a real magnet insert on which we
impose a current of 31000 A. In those kind of helix, the space between the turns is filled
with glass marbles fastened using epoxy glue. Two materials have then to be considered,
namely the copper alloy which forms the conductor and the glue. Since the glue contains
a high proportion of glass marbles, we model the mechanical properties of the glue with
the properties of glass as displayed in Table 10.1.
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Copper alloy | Glass
Electrical conductivity og [S.m ™| 55,6.10° 0
Thermal conductivity ko [W.m™. K~ 392 1.2
Temperature coefficient 3,35.1073 0
Lorentz number 2,41.1078 0
Young modulus [M Pal| 120.10° 69.10°
Poisson coefficient 0.33 0.21
Dilatation coefficient [K 1] 18.107° 9.10°

Table 10.1 — Physical parameters considered in elastic model validation

As to water cooling, we consider a constant heat transfer coefficient of 80000 W.m 2. K !
and the water is set to 303 K.

As mentioned in Section 3.4, the forces induced by thermal dilatation are taken into
account in the model. In our model, the temperature field is given by the non-linear
electro-thermal model introduced in Section 3.1. The difference of electrical potential
to impose as boundary condition is determined from the current intensity data, and the
non-linearity is managed by a Picard algorithm. As to the reference models coming from
Ansys software, the temperature field consists in an input data file obtained from an
external code namely GetDP |Dular and Geuzaine, 1997| software.

The 3D magnetostatic model described in Section 3.2 was not available at the time
when this study has been performed. For this reason, the magnetic field computation
is given by the 2D axisymmetrical model in both cases. Although this study should be
redone with the 3D magnetic field, it doesn’t bias the validation since the two models are
based on the same magnetic field data.

The following simulations are performed on 6 processors and based on a mesh com-
posed of 39276 nodes distributed in 179428 tetrahedrons. Starting from the comparison on
temperature field, the next section distinguish the forces coming from thermal dilatation
only, Lorentz forces only, and finally both of them. In each case, we plot the difference
between the results coming from Ansys software and from our model both over a vertical
axis centered in helix width and over a radial axis going from internal to external radius.

10.1 Comparison on temperature

To ensure the coherence of the next comparisons, we start with the comparison on tem-
perature field. Figure 10.1a (resp. Figure 10.1b) displays the relative difference between
the temperature field given by our non-linear electro thermal and from the external code
based on GetDP software over the vertical (resp. radial) direction. The comparison along
the radius is located halfway up the helix which is about 200 mm heigh and 5 mm thick.
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Figure 10.1 — Difference on temperature between the two models along axial and radial
directions

The relative difference observed in Figure 10.1 is lower than 1% which confirms that the
temperature data input is coherent in both models. Moreover, this comparison sustains
the validation of the electro-thermal model.

10.2 Thermal dilatation only

In this section, we consider the displacement and the stress coming only from the thermal
dilatation, displayed in Figure 10.2. The Lorentz forces resulting from the magnetic field
are not considered.
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Figure 10.2 — Displacement and stress criterions with thermal dilatation only
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Figure 10.3a (resp. 10.3b) illustrates the difference in terms of displacements over the
radial (resp. vertical) direction. Due to the small order of magnitude for displacements,
we consider absolute difference instead of relative one.
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Figure 10.3 — Difference on displacements between the two models along axial and radial
directions with thermal dilatation only

Figure 10.3 shows an absolute difference less than a hundredth millimeter in both
cases. This low difference can be due to the one observed for temperature field in the

previous section.

As to the stress resulting from the thermal dilatation, the figures 10.4a and 10.4b
(resp. 10.5a and 10.5b) focus on the Tresca (resp. Von-Mises) criterions values obtained
on the same locations as previously.
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Figure 10.4 — Difference on Tresca criterion between the two models along axial and radial
directions with thermal dilatation only
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Figure 10.5 — Difference on Von-Mises criterion between the two models along axial and
radial directions with thermal dilatation only

If the order of magnitude is coherent between the models, our model tends to overesti-
mate the stresses. As for displacement (Figure 10.3), this can be due to the overestimation
of temperature illustrated in Figure 10.1.

10.3 Lorentz forces only

This section focuses on the displacement and stress coming from the Lorentz forces only.
These corresponding fields are displayed in Figure 10.6.
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Figure 10.6 — Displacement and stress criterions with Lorentz forces only

The figures 10.7a and 10.7b illustrates the comparison of displacements resulting from
magnetic forces over the radial and the vertical axis respectively.
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The results obtained along the radius (Figure 10.7a) are similar to ones obtained with

thermal dilatation only, for which the absolute difference doesn’t exceed 2-1073 mm. As
to the values obtained along the vertical direction (Figure 10.7b), the models coincide

more than in the previous case.

As previously, the comparison continues with the values of the stresses criterion. Fig-
ure 10.8a and 10.8b (resp. 10.9a and 10.9b ) display them both along the vertical and the

radial axis.
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Figure 10.9 — Difference on Von-Mises criterion between the two models along axial and
radial directions with Lorentz forces only

The relative difference between our model and Ansys software are similar with the one
observed with thermal dilatation only, over the radial axis. Nevertheless, this difference
is significantly lower than in figures 10.4b and 10.5b over the vertical axis. We remind
that the magnetic field data comes from the same computation for both models.

10.4 Thermal dilatation and Lorentz forces

Finally, this last section illustrates the comparison with both Lorentz and thermal dilata-
tion forces (Figure 10.10).
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Figure 10.10 — Displacement and stress criterions with both Lorentz and thermal dilatation
forces
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The figures 10.11a and 10.11b display the differences between the two models along
axial and vertical directions, in terms of displacements. The figures 10.12a and 10.12b
focus on the Tresca yield strength, while Figure 10.13a and 10.13b concern the Von-Mises
criterion. The resulting differences come close to the sum of the differences obtained with
thermal dilatation only (Section 10.2) and Lorentz forces only (Section 10.3). We consider
these values as sufficiently low to meet the objectives of our model.
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Figure 10.11 — Difference on displacements between the two models along axial and radial
directions with both Lorentz and thermal dilatation forces

We shall even note that the absolute difference obtained for displacements over the
vertical axis are lower than previously, as if the two previous differences compensate.
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radial directions with both Lorentz and thermal dilatation forces
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Figure 10.13 — Difference on Von-Mises criterion between the two models along axial and
radial directions with both Lorentz and thermal dilatation forces

Conclusion

In this chapter, we detail the validation of the linear elasticity model coupled with the
electro-thermal and the magnetostatic ones. In the absence of experimental measure-
ments, the validation is based on the comparison with dedicated commercial software.
The coupling with the electro-thermal model through the thermal dilatation phenomenon
and with the magnetostatic model to take into account the Lorentz forces are considered
separately. In both cases, the comparison of the resulting displacements as well as the
stress criterions proves the validity of our model.
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Chapter 11

SER applied to the electro-thermal
model

This section investigates the application of the SER method introduced in Section 2.3 on
the reduced electro-thermal model detailled in Chapter 4. The objective is to assess the
feasability and the relevance of this method in the context of high field magnets.

The first application focuses on the sector of Bitter magnet, already introduced in
sections 8.2 and 8.3. As for the 2D benchmark, we compare the results obtained through
the SER method and its variants with their equivalent coming from the standard reduced
basis methodology. Moreover, this study investigates as well the impact of the training
set size within the EIM building step.

The second part focuses on the computational time and especially on the gain offered
by SER within the EIM Greedy algorithm. To this end, we apply SER on a larger
problem, for which it has been initially designed. This application focuses on the radial
helix introduced in Section 8.1.2.

Contents
11.1 Application to a Bitter magnet . . ... ... .. ........ 161
11.2 Application to a polyhelix . .. ... ... .. .. ........ 168

11.1 Application to a Bitter magnet

The first application, aiming to highlight the feasibility of SER within the multi-physics
electro-thermal model, is based on the geometry of the Bitter magnet’s sector already used
in the context of parametric studies. Apart from the previous numerical experiments of
sections 8.2 and 8.3, all parameters vary into the ranges displayed in Table 11.1. In this
section, we are interested both in the errors on the solution and on the output introduced
in (2.38) and in the convergence study of the method. In addition to the maximal values
of these errors, we investigate their average value over a set of parameters of size 1000
which remains the same throughout the study.
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[40 x 10°,60 x 105] M S.m~!
3.3 x 1073,3.5 x 1073] K1
2.5 x 1075,2.9 x 10~]

[30 x 10%,100 x 10°] A.m~2
[

[

50000, 65000] W.m=2. K1
203,313] K
Table 11.1 — Input parameters

éﬂ?“'th

EIM trainset of size 100 We start by considering a trainset of size 100 in the EIM
building step. Table 11.2 displays the behavior obtained applying the standard RB
methodology.

N M max(ey y) mazv(eyy) mean(ef, y) mean(el, )

5 9 1.64e+1 1.94e-1 1.51e+0 1.69e-2
10 10  6.84e+0 8.24e-2 4.90e-1 3.96e-3
15 15 6.30e-2 4.90e-4 2.33e-3 3.16e-5
20 20 1.31e-2 1.65e-4 1.28e-3 1.33e-5
25 25 9.80e-3 6.74e-5 6.88e-4 5.77e-6

Table 11.2 — Standard method - EIM trainset size = 100

To start with, Table 11.3 displays the maximum and average values of the errors re-
sulting from the application of the initial SER method, within the reduced electro-thermal
model. This numerical experiment relies on a random selection process for the RB ap-
proximation space building step, similar to the standard method illustrated in Table 11.2.

N M m(w(eqfww) ma:c(ej[’N) mean(éjw,N) mean(efww)

5 9 1.05e+1 2.09e-2 1.26e+-0 3.27e-3
10 10 5.07e-1 3.42e-3 1.05e-1 4.69e-4
15 15 5.24e-1 1.05e-3 3.95e-2 1.18e-4
20 20 9.23e-2 1.89e-4 8.78e-3 2.79e-5
25 25 3.26e-2 1.90e-4 3.59e-3 2.72e-5
30 30 7.48e-3 6.62e-5 1.14e-3 8.02e-6
40 40 4.59e-3 5.10e-5 6.19e-4 5.12e-6
20 50 4.17e-3 5.03e-5 1.86e-4 1.47e-6
60 60 4.17e-3 5.04e-5 1.79e-4 1.59e-6

Table 11.3 — SER - Random - EIM trainset size = 100

The conclusion resulting from the comparison of the tables 11.3 and 11.2 are multiple.
First of all, it allows to confirm the behavior observed with the 2D benchmark namely
slightly higher errors for a same number of basis functions. The further study up to 60
basis functions also show that the errors obtained with the standard RB methodology are
reachable through SER enriching the considered approximation spaces. Nevertheless, the
resulting errors eventually reach a plateau.
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Still considering the initial SER method, Figure 11.1 illustrates the convergence study
performed for each considered EIM approximations. As expected, the observed behavior
is similar to the preliminary studies performed in the context of the benchmark.
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Figure 11.1 — EIM convergence study - Comparison of standard and SER random

Figures 11.2a and 11.2b concerns the convergence obtained from the reduced basis
solution and output. Although the SER method tends to degrade the convergence of the
solution, the convergence of the output seems not to be significantly impacted. These
results especially support the relevance of SER in the context of parametric studies or
uncertainty quantification.
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Figure 11.2 — RB convergence study - Comparison of standard and SER random

Based on the same EIM trainset, the next study focuses on the error indicator in-
troduced in Section 2.3.1. Table 11.4 illustrates its use through the parameter selection
process during RB offline stage. This consists of the first variant investigated for SER.
The Greedy algorithm displays little impact on the 2D benchmark (Table 2.2), however
in this application it proves to have a significant influence.

N M mam(e}(/LN) max((—:?v]’N) mean(e?w,N) mean(efw’N)

5 9 7.66e-+0 2.71e-2 1.25e+4-0 7.88e-3
10 10 3.37e-1 7.82e-4 1.49e-1 1.97e-4
15 15 4.85e-2 2.64e-4 1.75e-2 5.02e-5
20 20 2.93e-2 3.40e-4 3.48e-3 2.68e-5
25 25 0.23e-3 4.59e-5 1.21e-3 3.47e-6

Table 11.4 — SER - Greedy - EIM trainset size = 100

Lastly, Table 11.5 studies the effect of the r—adaptation variant on the considered ap-
plication. Similarly with the results obtained on the 2D benchmark, this variant doesn’t
show any improvement compared with the previous one. By contrast, it even tends to
deteriorate the reduced basis solution.

N M max(e}@LN) max(e?w’]\,) mean(éMN) mean(efww)

5 9 6.26e+0 2.00e-2 1.41e+0 6.26e-3
10 10 8.53e-1 8.34e-3 3.89e-1 1.23e-3
15 15 6.73e-1 7.34e-4 3.61e-1 2.56e-4
20 20 3.64e-1 3.57e-4 1.34e-1 4.22e-5
25 25 8.23e-2 2.49e-4 2.39e-2 2.41e-5

Table 11.5 — SER. - Greedy - r—adaptation (EIM 20%, RB 20%)

Figure 11.3 compares the convergence of the EIM approximations, for the introduced
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SER variants. It adds the results related with the use of the error indicator to the pre-
vious ones introduced in Figure 11.1. In coherence with the previous analysis based on
the errors, these graphs highlight the influence of the smart parameter selection offered
by the use of a Greedy algorithm in the RB approximation space building step. The low
impact of the r—adaptation variant in this context is also visible through these conver-
gence studies.
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Figure 11.3 — EIM convergence study - Comparison of standard and SER Greedy

We conclude this analysis by the study of the error indicator behavior used during
the RB offline stage. Figure 11.4 plots the maximal values obtained in the parameter
selection process at each step of the RB approximation space enrichment. This graph
first allows to ensure that the expect behavior is obtained, namely the decrease of the
error indicator with the size of the RB approximation space. It confirms also the previous
remark concerning the r—adaptation method which does not improve the situation.
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Regarding the SER multi-levels variant, the first results obtained on this application
are illustrated in Figure 11.5. Like in the 2D benchmark, we observe an improvement of
the EIM approximations convergence from the 2nd SER level. Although it doesn’t allow
to reach the behavior obtained with the standard RB methodology, these preliminary
results tend to confirm the relevance of the multi-levels SER method.
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Figure 11.5 — SER multilevel - Random - EIM convergence

We point out that the preliminar results presented in Figure 11.5 for the SER multi-
levels variant need to be further developed. This variant gives promising results, but its
implementation is recent. It still needs to be verified and validated for such multi-physics
applications.
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EIM trainset of size 1000 We continue this numerical experiment by investigating
the influence of the EIM trainset size. To this end, we turn to a trainset of size 1000
which is thus ten times larger than the previous one. We note that there is no relations
between this new trainset and the previous one. Table 11.6 displays the errors obtained
with the SER method combined to the Greedy algorithm at the RB approximation space
building step. Compared to its equivalent with the previous trainset illustrated by Table
11.4, the increase of the trainset set size does not seem to have a significant impact.

N M maz(ey ) maz(eyy) mean(ei,y) mean(€y, y)

5 9 9.53e+0 3.57e-2 1.49e-+0 5.59¢e-3
10 10 3.97e-1 1.74e-3 1.47e-1 7.85e-4
15 15 7.82e-2 1.93e-4 1.51e-2 4.51e-5
20 20 2.66e-2 8.03e-5 5.39e-3 2.22e-5
25 25 6.61e-3 4.84e-5 1.63e-3 1.07e-5

Table 11.6 — SER- RB Greedy - EIM trainset size = 1000

This consideration is supported by Figure 11.6 which compares the convergence of the
EIM approximations in this context with the previous convergence studies.
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Figure 11.6 — EIM convergence study - Eim training set of size 1000

11.2 Application to a polyhelix

Still based on the electro-thermal model, the second application focuses on the radially
cooled helix introduced in Section 8.1.2. We now investigate the potential gain offered by
the SER method for this larger problem. This numerical experiment compares the com-
putational time required by the standard methodology and by SER on such a problem.

The mesh used in this study is composed of 2.2 millions of tetrahedrons, for ap-
proximately 500000 nodes (see Figure 8.1). The next simulations are performed on 12
processors, on a computer equipped with 2 multi-threaded 6 cores CPUs and 141 GB
of shared memory. Like in Section 11.1 with the Bitter magnet, all input parameters
vary. The ranges displayed in Table 11.7 are equivalent to the ones used in the sensitivity
analysis of Section 8.1.2. The current density is replaced by the difference of potential Vp
which directly gives the Dirichlet boundary condition on electrical potential.

50 x 10°,50.2 x 105] MS.m~!
3.3 x 107%,3.5 x 1073] K~1
L | [25x107%,2.9 x 1078]
[
[

55,65] V
70000, 90000] W.m 2. K~!
Ty, | [293,313] K

Table 11.7 — Input parameters

The next study is based on EIM and RB approximation spaces of size 5. It aims to
compare the computational time necessary to perform the EIM Greedy algorithm with
the standard RB methodology and with the introduced SER method. To this end, we
focus on the EIM approximation related with the electrical conductivity o(7") for which
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the trainset is composed of 100 parameters.

Consisting of the same finite element solve in both cases, the computational time re-
lated with the initialization of the EIM building step is approximately 1760 seconds. From
there, the SER method uses the reduced basis approximation which results from the first
EIM basis function, while the standard methodology uses finite elements approximations.
Regarding the first EIM Greedy algorithm for which the available reduced basis approx-
imation relies on a single basis function, the mean time required to solve the reduced
problem is 2.1 seconds compared with 2087 seconds for the corresponding finite element
one. Regarding the whole set of resolutions performed within the EIM Greedy algorithm,
this amounts to a factor close to 500 in terms of computational time.

Through each stage of the SER method, the EIM basis functions are built from a
set of reduced basis approximations based on an enriched RB approximation space. In
this context, Table 11.8 displays the mean time necessary for a single resolution and the
resulting gain factor related with the whole EIM Greedy algorithm.

N Mean time per online realization (s)  EIM Greedy algorithm gain factor
1 2.1 495
2 4.3 321
3 7.7 213
4 6.1 254

Table 11.8 — Performances of the SER method on a large scale multi-physics problem

The standard methodology with N = M = 5 results in an maximal output error of
4.5 x 1072, still considering the mean temperature over the domain as output. Only the
SER method combined with the use of the error indicator (see Section 2.3.1) ensures the
convergence of the online solver, which results in a maximal error of 2.1 x 10~! compared
with the finite element approximation.

The initial SER method using a random selection process regarding the building of
the RB approximation space shows convergence problems on some inputs. This proves
the relevance of a smart selection process in such a context.

Conclusion

As seen in the Chapter 8, the use of model order reduction is essential to perform ef-
ficiently parametric studies and sensitivity analysis in the context of high field magnet
modeling. Nevertheless, the computational cost related with the EIM approximations
carried out by the offline stage can remain prohibitive.

The SER method and its variants, introduced in Section 2.3, have been designed to
address this issue. They are thus well suited for such applications. This section empha-
sizes on the feasability and the relevance of the SER method used within the reduced
electro-thermal model, as a follow up of the results obtained with the 2D benchmark (see
Chapter 2). The use of the error indicator (Section 2.3.1) proves essential in this appli-
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cation. Especially, it is necessary to ensure the convergence of the method in the second
example (Section 11.2). Like in the 2D benchmark, the multi-levels SER(l) is the most
promising variant.

Moreover, this sections gives a first review in terms of computational cost of SER
compared with standard RB methodology. This confirms the pertinence of this method
on 3D industrial non-linear multi-physics application, and suggests that it opens various
opportunities in such contexts.

We note that the implementation of the EIM method within the Feel++ RB frame-
work can be improved. Indeed, some of the operations still depend on the finite element
dimension. We can hence expect to decrease the computational time, with an optimized
implementation of the KIM algorithm which is currently in progress.



Chapter 12

Hybrid magnet design

As mentioned in introduction, two main technologies are involved to produce magnetic
field from electrical current. On one hand, the superconducting magnets which conduct
the current without electrical resistance but which are limited in terms of magnetic field
intensity. On the other hand, the resistive magnets which are at the basis of high magnetic
fields studied in this thesis.

The combination of these two technologies resulting in the so-called hybrid magnets
intends to reach continuous field whose intensity exceeds 40 T'. The only hybrid magnet
currently in operation — located in the United States at the NHMFL, Tallahassee — reaches
45 T in 32 mm bore. In Grenoble, the development of an Hybrid magnet |[Pugnat et al.,
2016| aiming to reach 45 T is currently in progress.

As illustrated in Figure 12.1b, this magnetic field intensity is the sum of 27.3 T pro-
duced by a resistive magnet plus 9.2 T' coming from a Bitter magnet and 8.5 T coming
from the superconductor outsert.

(a) Hybrid site (b) Outline
Figure 12.1 — Illustration of the LNCMI hybrid magnet
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In this chapter, we focus on the resistive part based on the polyhelix technology de-
veloped at the LNCMI. The resistive insert (Figure 12.2) is composed of 14 longitudinally
cooled helices. Its design is all the more challenging due to the background field generated
by the superconductor.

Figure 12.2 — Illustration of the hybrid resistive part

Based on the non-linear coupled multi-physics model introduced in Chapter 3, this
study aims to anticipate the behavior of the resistive magnet within its operating envi-
ronment. The first section focuses on the thermal behavior considering the maximum
current intensity available. The second section deals with the resulting magnetic field,
while the last one focuses on the mechanical quantities of interest, namely the displace-
ments and stresses coming from the thermal dilatation and the Lorentz forces.

Contents
12.1 Temperature . . . . . . . c i v v v v v i v v e e et e e e 173
12.2 Magnetic field . . .. .. .. .. . e e e 174
12.3 Displacements and stresses . . . . . . . .. .. ..., 176

In each of these sections, we compare the behavior of two resistive magnet inserts.
The first one denoted as standard is a polyhelix designed to be operated with only Bitter
outsert. The second one is the resistive part of the hybrid magnet illustrated in Figure
12.2. The design of these two magnets composed both of 14 helices slightly differs due to
the environment in which they operate.

The two inserts are made of the same copper alloy whose properties are given in Table
12.1. We shall note that such properties cannot be achieved from standard materials.
This kind of alloy, which is still the focus of advanced research in the domain of materials,
is specifically designed for this use. The cooling parameters are based on measurements
obtained from other operating magnets. The helices of these magnets are hold in place
by two plates at the top and at the bottom of the insert, while allowing a small vertical
displacement. The plates are not considered in our geometry but are modeled by a ho-
mogeneous Dirichlet boundary condition at the bottom of the magnet.
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oo | 52.5 MS.m™! h | 85000 W.m 2. K~!
ko | 380 Wom LK~} T, | 292 K

a |36x107° K1 E | 120 GPa

L | 247x1078 v |0.33

I |31000 A ar | 18 x 1076

Table 12.1 — Input parameters

From a numerical point of view, the difficulty resides in the size of the problems
related with these simulations. The meshes of the two inserts are made directly from the
geometries coming from CAD, and indeed reach several millions of tetrahedrons. The
number of degrees of freedom comes close to one million and the simulations takes about
one hour on 32 processors.

12.1 Temperature

As already explained, the temperature is a critical variable in the context of high field
magnets design. This first section introduces the comparison of the thermal behavior in
the two resistive magnets. We remind that the design of these two inserts slightly differs,
since they are intended to work under different conditions. Nevertheless, the current im-
posed is the same in both cases reaching an intensity of 31000 A.

Figure 12.3a (resp. 12.3b) illustrates the temperature map within the magnet in stan-
dard (resp. hybrid) environment. As expected, the maximum temperature is reached
within the most internal helices due to the current density which is higher in this region.
Moreover, the difference of design leads to a slightly higher temperature within the hybrid
magnet resistive insert which limits all the more the choice in terms of material.

20 53 86 119 152

20 51 83 114 146
(a) Standard (37 T') (b) Hybrid (45 T')
Figure 12.3 — Temperature on 14 helices magnet insert
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This analysis is confirmed by Figure 12.4 which displays the thermal behavior along x
axis on the median plan. Besides the temperature values are similar within the external
helices, this plot highlights the temperature increase in the most internal helices of the
hybrid magnet resistive insert. Indeed, this polyhelix is designed to reach 27.3 T on its
own which induces a higher current density on the innermost helices.

—+— Standard —<— Hybrid

140
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Figure 12.4 — Temperature along = axis on the median plan

12.2 Magnetic field

This second section focuses on the magnetic field computation for the two previous mag-
nets. Although the 3D magnetostatic model has been introduced in Section 3.2 for this
purpose, the following study is based on a 2D axisymmetrical analytical model.

Indeed, the add of a surrounding bounding box required to impose the infinity bound-
ary conditions increase the complexity of the problem. For now, we don’t succeed in
building a mesh which could be appropriate to this 14 helices insert.

Figures 12.5a and 12.5b display the magnetic field map of the considered resistive mag-
net within their environment. The design optimization of these objects being performed
from the employed 2D axisymmetrical model, the obtained magnetic values are in good
agreement with the claimed performances. These magnets are indeed designed to reach
37 T and 45 T for a maximal current intensity of 31000 A.
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(a) Standard (b) Hybrid
Figure 12.5 — Magnetic field on 14 helices magnet insert

Nevertheless, 3D magnetic field computations have however been performed on a part
of the hybrid magnet resistive insert to investigate the impact of its asymmetry, empha-
sized in Chapter 9. Figure 12.6 displays the magnetic field generated by the 8 innermost
helices of this insert. The mesh used for this simulation is composed of 27 millions of
tetrahedrons which amounts to 4.3 x 10° vertices and 31.6 x 10° edges on which the H -
conforming finite element degrees of freedom are located. Performed on 48 processors,
the magnetic field computation on its own requires 1.3 hours.

On Figure 12.6, the conductor is colored by the current density imposed to the mag-
net while the arrows illustrating the 3D magnetic field are colored by its module. Some
isosurfaces related with the magnetic field are represented as well.

Figure 12.6 — 3D magnetic field
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Figures 12.7 and 12.8 compare the 3D magnetic field with the 2D axisymmetrical re-
sults along the axis z and along a circle of constant radius » = 20 mm. The maximum
magnetic field values along z axis (Figure 12.7a) as well as the magnetic field homogene-
ity (Figure 12.7b) are in good agreement. This shows that the magnetic field profiles
are coherent. In relation with the comparison with the dedicated measurement campaign
introduced in Chapter 9, Figure 12.8 confirms the 3D effect previously highlighted.
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Figure 12.7 — Magnetic field profile along 2 axis
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Figure 12.8 — B, along circle of radius r = 20 mm

12.3 Displacements and stresses

The displacements and the stresses caused both by the thermal dilatation phenomenon
and the Lorentz forces is a key point of the high field magnet design as well. Especially,
the choice of the material to be used in this context is guided by the estimation of the
maximal stresses to support. The latter has to combine a sufficient mechanical resistance
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with a suitable electrical conductivity.

To this end, the 3D linear elasticity model introduced in Section 3.4 is coupled with
the temperature coming from the electro-thermal computations (see Section 12.1), and
with the magnetic field obtained from the 2D axisymmetrical model (see Section 12.2),
taking into account the whole magnetic environment.

At first, this model allows to compute the displacements resulting from the thermal
dilatation and the magnetic forces as displayed in figures 12.9a and 12.9b. Although they
not exceed one millimeter, these displacements remains important compared with the
space between two copper tubes.

As described in Figure 12.9 on which the displacements are applied to the considered
geometry multiplied by a factor 50, the resulting deformation makes the magnet take a
barrel-like shape. This behavior is expected due to the compressive forces at the bottom
and at the top caused by the plates allowing to hold the helices in place.

The displacements obtained within the hybrid environment are significantly higher
due to the background field of the superconductor which increases the Lorentz forces.

Displacements [m

Displacements [mm]
[ e
0.00 0.13 0.26 0.39 0.52

(a) Standard (37 T")
Figure 12.9 — Displacements on 14 helices magnet insert

0.00 0.18 0.36 0.53 0.71
(b) Hybrid (45 T')

From an engineering point of view, we refer instead to the relative displacement known
as strain. The maximum displacement value in the standard case (Figure 12.9a) corre-
sponds to a strain of 0.28% while the maximal displacements in the hybrid environment
reaches 0.38%.

While the displacements are concentrated into the most external helices due to their
size, this is not the case for the stresses whose repartition highly depends on the design.



178 CHAPTER 12. HYBRID MAGNET DESIGN

VonMises [MP3

1 128 255 383 510

1 106 210 315 420
(a) Standard (37 T) (b) Hybrid (45 T)

Figure 12.10 — Von-Mises stress on 14 helices magnet insert

Figure 12.10a displays the Von-Mises stresses obtained within the standard environ-
ment which still reach more than 400 M Pa. As to the hybrid magnet insert, Figure 12.10b
illustrating the Von-Mises stresses emphasizes an important increase of the stresses which
exceed 500 M Pa.

Figure 12.11 compares the Von-Mises criterion computed along the z axis for the two
inserts. The difference in terms of design is all the more marked through this graph
showing that the highest stresses are not concentrated in the same helices. Besides the
knowledge of the requested mechanical resistance, these results enable to anticipate the
repartition of the stresses.
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Figure 12.11 — Von-Mises stress along x axis
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Turning back to the 3D magnetic field generated by the 8 innermost helices (Figure
12.6), we investigate the resulting stresses. In particular, the figures 12.12a and 12.12b
compare the Von-Mises stress criterions computed from the Lorentz forces coming from
the 2D axisymmetrical model and from the 3D one.

The two figures are on the same scale, and they show that the use of the 2D axisym-
metrical model underestimates the stresses, which mean that they are even higher than
expected. We also remind that the maximum magnetic field computed with the 3D model
is higher than the one given by the 2D axisymmetrical model (Figure 12.7a). This can
partly explain the difference in terms of stresses. Although this analysis doesn’t allow a
firm conclusion, it encourages to perform further studies in this sense.

VonMises [MPa] VonMises [MPa]
300.0 300.0
225.0 225.0
150.0 - 150.0
oy
75.0 75.0
=
0.0 i ii‘i ‘b 0.0
|
5
I
(a) Von-Mises (2D axi) (b) Von-Mises (3D)

Figure 12.12 — 3D stresses on the 8 most internal helices of the hybrid magnet resistive
insert

Conclusion

In this chapter, we were interested in the predictive analysis of the behavior of the hybrid
magnet resistive insert within its operating environment. To this end, we compare the
temperature, the magnetic field and the resulting stresses of two resistive inserts. This
allows both to get a better idea of the order of magnitude of the studied quantities in a
standard environment, and to assess how the design of the hybrid magnet is challenging.

The magnetic field is computed using the 2D axisymmetrical model which serves to
perform the design optimization. The 3D magnetostatic model is used on the 8 innermost
helices only due to mesh complexity issues. The resulting magnetic field emphasizes the
impact of the magnet asymmetry mentionned in the dedicated Chapter 9.
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This study allows to predict the repartition of temperature and stresses within the
whole resistive insert that was never before available. It bring insights for the specifica-
tions requested by the hybrid magnet, especially in terms of materials.

From a numerical point of view, this experiment proves the feasability of our multi-
physics model on real and complex geometries. This study however needs to be pursued,
in order to use the full 3D model on the whole 14 helices insert. The main difficulty
comes from the application of the infinite boundary conditions related with the magneto-
static model. To overcome this issue, we investigate the use of the Biot & Savart model
introduced in Chapter 3.3 on the boundaries of a smaller surrounding box.



Conclusions and outlook

Conclusion

Throughout this thesis, we have introduced a set of tools dedicated to high field magnets
modeling. Various physics are involved in this context, leading to the development of a
3D non-linear multi-physics coupled model as our primary objective.

All these developments rely on the finite element method and its implementation
within the Feel++ library. In particular, they benefit from the high performance comput-
ing features of the library.

The 3D model come as a complement to the existing 2D axisymmetrical models, pro-
viding better insight for the high field resistive magnets developed at the Grenoble High
Magnetic Field Laboratory. The core ingredients of this full 3D multi-physics model
consist of a non-linear electro-thermal model, a magnetostatic model for which various
formulations are considered, and a linear elasticity model resulting in the stresses compu-
tation. Chapter 3 precisely describes each of these models from the underlying equations,
with the corresponding variational formulations. We illustrate their implementation with
convergence studies, allowing to ensure that the expected mathematical properties are
satisfied.

Regarding the magnetostatic model, the Maxwell’s equations require to consider Hg;y,
and H.,1 conforming finite elements instead of nodal ones. The Raviart-Thomas and
Nédélec finite elements, detailed in Chapter 1, have been studied for this purpose. Their
implementation within Feel++ is an important contribution of this work. It is the focus
of Chapter 5. Thanks to this development, the De Rham diagram is now fully supported
in Feel++.

The magnetic field can also be computed from the Biot & Savart’s law, coming from
the Maxwell’s equations as well. Its sequential implementation is trivial, but doesn’t pro-
vide satisfactory performances for the large size problems we are interested in. However,
the computation of the underlying integrals is not naturally parallel. To address this
issue, we propose in Chapter 6 a parallel algorithm for the Biot & Savart’s law which is
original to our knowledge.

The validity of each developed model is illustrated through various numerical applica-
tions, choosen as meeting with the specific needs of the high magnetic field facilities. In
particular, Chapter 9 presents a measurement campaign dedicated to magnet asymmetry.
Indeed, some experiments (NMR and magnetic levitation) have shown that the magnetic
field is 3D. However, up to this development the magnetic field was considered as 2D
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axisymmetric for the magnet design. The parallel implementation of Biot & Savart’s law
especially enables to partly reproduce experimental measurements, considering the whole
3D geometry. This confirms the 3D nature of the magnetic field. It also justifies the
importance of relying on a full 3D model for a better design optimization of high field
magnets.

This multidisciplinary work has been presented in the international Magnet Technol-
ogy conference in Seoul (Korea) |Daversin et al., 2015|, along with a dedicated paper
[Daversin et al., 2016b|. More recently, an overview of this project was the focus of a
highlighted talk |Daversin et al., 2016a|, at the 10th International Symposium on Electric
and Magnetic Fields in Lyon (France).

To reach higher magnetic fields, the conception of magnets pushes the materials to
their limit, making the reliability of these models all the more important. Nevertheless,
the implementation of such a 3D model hides an important computational cost, due to
the large size of the considered problems.

The uncertainties associated with the model inputs, namely the material properties
as well as the operating conditions whose exact values are not known, must be taken into
account within our model. In order to cater to the needs in terms of parametric studies
and uncertainty quantification, the efficiency on our model requires a particular attention.
The Reduced Basis (RB) method is well suited in such a many query context. It has thus
been favored to circumvent the underlying complexity.

Its efficiency essentially relies on an offline/online strategy, which requires an affine
decomposition of the problem. Chapter 2 describes the use of this method in the con-
text of non-linear and non affinely parametrized problems. In particular, it introduces
the Empirical Interpolation Method (EIM), widely used to recover the needed affine de-
composition. Its application on the 3D electro-thermal model is presented in Chapter 4,
illustrated by two concrete examples.

However, the use of EIM can imply a large number of finite element approximations,
making its cost prohibitive. The Simultaneous Empirical interpolation and Reduced basis
(SER) method has been proposed in this context. It aims to decrease the number of finite
elements approximations, benefiting from the use of the reduced basis approximation
within the EIM offline stage. To this end, the EIM and RB approximations spaces are
built simultaneously.

Described in Chapter 2, SER is an original contribution of this thesis. We detail also
numerous variants for this method, based on the development of an appropriate error
indicator. All are backed by results on a 2D benchmark.

Turning back to the primary objective related with high field magnets modeling, Chap-
ter 8 exhibits the use of the RB model to address some practical issues. The application
of SER on this reduced electro-thermal model is the focus of Chapter 11. It proves to
be relevant on such an application, opening new possibilities while ensuring a reasonable
cost.

Firstly introduced in |Daversin and Prud’Homme, 2015a, the SER method has re-
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cently been presented at MoRePaS (Model Reduction for Parametrized Systems) in Tri-
este (Italy) |Daversin and Prud’Homme, 2015b|. A paper [Daversin and Prud’Homme,
2016| detailing the last obtained results has just been submitted in this context.

Outlook

The follow up to be given to this project extends to multiple levels.

At first, the multi-physics model aiming to study the high field magnets can be enriched
with more advanced models.

In particular, the account of water cooling process can be highly improved. The cur-
rent cooling model relies on a constant heat transfer coefficient and an average coolant
temperature. The hydraulic is far more complex and challenging especially for radially
cooled helices. Indeed in this case, as the flow is not established, there is no valid correla-
tion to estimate the heat transfer coefficient. An advanced turbulence model would then
be of great interest.

The mechanical model introduced in Chapter 3 is based on the linear elasticity equa-
tion. This model is well suited as long as the deformations remain small. We have seen,
for instance with the Hybrid magnet project detailed in Chapter 12, that the stresses
can reach high values, approaching the elastic limits of the materials. Moreover, large
deformations are observed on failing magnets. As soon as the elastic limit is exceeded,
the linear model is no longer sufficient and the results coming from our model no longer
make sense. Non-linear elasticity models should be investigated to study the potential
plastic deformations.

Lastly, the models developed through this work are all limited to the steady case.
Nevertheless, the power up of the magnets is not instant. The development of unsteady
models could help to better understand what goes at this step. In addition, this kind of
model would also be interesting to model the power failures. This is an important issue
of the hybrid magnet project.

The improvement of our multi-physics model resides also in the underlying numerical
methods. Chapter 5 describes the implementation of the Raviart-Thomas and Nédélec
finite elements at lowest order. The implementation of the high order elements introduced
in Chapter 1 is the next step. Other Hy;, and H,, conforming finite elements could also
be investigated, especially Brezzi-Douglas-Marini (BDM), and Nédélec of second type.

On the other hand, Hybrid Discontinuous Galerkin (HDG) methods |[Egger and Schéberl,
2010]| are investigated in various projects related with Feel++. It will be the focus of a
talk at the workshop "advanced numerical methods: recent developments, analysis and
applications", next October at ITHP (Paris, France). These methods have the benefit of
giving an optimal approximation of both the primal and flux variables. Regarding our
multi-physics model, this kind of method could provide a better approximation of the cur-
rent density, and of the current intensity which reads as its flux. In particular, it should
help the convergence of the magnetostatic model whose preconditioning introduced in
Chapter 3 requests a divergence-free current density. It should also improve the accuracy
of magnetic field computations, and ease the account of conditions on current intensity



184 CONCLUSIONS AND OUTLOOK

in the electro-thermal model.

Lastly, the sensitivity analysis described in Chapter 8 is currently limited to the first
order Sobol indices. The computation of k'* order sensitivity indices should give further
informations on the eventual interactions between the input parameters. Especially, the
randomized orthogonal array-based method introduced in |Tissot and Prieur, 2014]| could
be used to evaluate the 2" order indices without depending on the parametric dimension.

The experimental results introduced in Chapter 9 have assessed the pertinence of our
3D model out of the magnetic center. It consists of a promising lead in the magnet be-
havior understanding. However, the measurement campaign aiming to validate the 3D
magnetic field calculation — either using Biot and Savart’s law or from the magnetostatic
model — needs to be continued. More precision on the probe positioning system is essential
for an efficient and reliable comparison between experiment and numerical computations.
This is currently carried out on a small test bench.

Furthermore, the reduced electro-thermal model detailed in Chapter 4 proves reliable
and efficient within uncertainty quantification context. The next step focuses on the
extension of this reduced model to other physics, namely considering the magnetostatic
and linear elasticity models introduced in Chapter 3. The potential difficulty in the
multi-physics context resides in the coupling of the different physics.

The SER method introduced in this thesis consists in a significant breakthrough for the
reduced basis methodology applied to non-linear and non affinely parametrized problems.
The first investigated variants give encouraging results. However many others variants
remain to be explored. The theoretical question of the a priori convergence of the method
is still opened as well. The latest results for SER will be presented at the workshop
"recent developments in numerical methods for model reduction”, next November at THP
(Paris, France).

Finally, we have mentioned in Chapter 8 the use of OpenTurns library to perform
uncertainty quantification studies. The embedding of uncertainty quantification tools,
internally in the Feel++ reduced basis framework, might be investigated to avoid the
resort to an external library.
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Perfectly characterized since more than 100 years, the magnetic field is present through-

out our environment. Besides the numerous possibilities it opens, it constitutes a pow-
erfull tool for researchers especially to probe and determine the properties of the matter.
This kind of applications requires nevertheless magnetic fields of high intensity, namely
higher than the one achievable by superconducting magnets. The "Laboratoire National
des Champs Magnétiques Intenses" (LNCMI) develops water cooled resistive magnets
providing such magnetic field to scientists. The design of these magnets represents a
challenge in terms of design and materials. The numerical simulation proves essential to
achieve such an optimization process. This thesis fits into a research collaboration be-
tween the Institut de Recherche Mathématique Avancée (IRMA) and the LNCMI whose
goal is the development of a software toolchain for high field magnets modeling. lIts
primary objective resides in the development of a range of non-linear coupled models
taking into account the whole involved physics, except the hydraulic related with the mag-
net cooling. Based on the finite element method, the resulting multi-physics model is
implemented through the Feel++ library. The core ingredients necessary to implement
this model are detailled together with its verification and its validation from experimen-
tal results when available. Designed for many query context, the reduced basis method
applied to the multi-physics model aims to circumvent the complexity of the considered
problem. The efficiency it offers especially allows to move towards parametric studies
and sensitivity analysis in various concrete applications. Nevertheless, the necessary
precomputations hide an important computational cost due to the non-linearity and the
non-affine parametrization of the model. In order to reduce the latter, the Simultaneous
Empirical interpolation and Reduced basis method is introduced through this thesis.
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