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Introduction, goal and outline of the
manuscript

The theoretical analysis of disordered systems is an outstanding challenge of mod-
ern statistical physics and probability theory that finds applications in (disorder is
present in any experimental setup and might play a crucial role) and outside of physics
(e.g. error-correcting codes and optimization problems). In such systems the inter-
play between thermal (and/or quantum) fluctuations, the disordered environment and
interactions often creates a rich ‘glassy’ phenomenology. In this thesis we focus on
d−dimensional elastic interfaces in a (d+ 1)−dimensional disordered media, described
by a single valued function u : x ∈ R

d → u(x) ∈ R (the height of the interface).
The latter are remarkable examples of disordered systems. On one hand they can be
used to describe a variety of physical situations such as domain walls in disordered
magnets, fractures fronts in brittle materials, contact lines of viscous fluids on rough
substrates... On the other hand they are sufficiently simple to allow analytical ap-
proaches and tremendous theoretical progress. For such systems, while the elasticity
tends to flatten the interface, thermal fluctuations and the disordered environment
tend to roughen it. The energy landscape of the interface is fractioned into a multi-
tude of metastable states which in some cases dramatically influence the static and
dynamic properties of the interface.

Shocks and Avalanches

In the case of the statics, one can show that in ‘small’ dimensions (d ≤ 4 for interfaces
with short-range elasticity), the temperature is irrelevant at large scale and the large
scale properties of the interface are those of its ground state: the system is pinned by
disorder (there are subtleties linked with the fact that the temperature is dangerously
irrelevant). At least in some cases, this pinning phenomena is collective and one
expects some universality and scale invariance to emerge: large scale properties of
the interface are, up to some non universal constants, independent of the underlying
disorder distribution (although there are several universality classes that one would
like to classify). In particular the interface is rough and its static roughness exponent,
ζs loosely defined by u(x) − u(0) ∼ xζs is universal. As we will review this problem
has been already well studied and a good understanding of these universal properties
has been reached. A more recent question is to understand the properties of several
successive metastable states of the interface. Confining the interface around some
position w and studying the evolution of the ground state of the interface as w is varied,

xi
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the ground state changes abruptly at a discrete sequence of positions wi. These changes
in the ground state u(x) → u(x)+S(x) define a sequence of shocks S(x). As both u(x)
and u(x) + S(x) are legitimate ground states of the interface displaying scaling and
universality, one expects the shocks S(x) to display scaling and universality inherited
from the universal physics of disordered elastic interfaces.

A closely related phenomenon occurs in the zero temperature dynamics of the
interface of sufficiently low dimensions when it is slowly driven with a mean velocity
∂tu(t, x) ∼ v → 0+ (at the ‘depinning transition’). The system reaches an out-of-
equilibrium steady-state displaying scaling and universality with a depinning roughness
exponent u(t, x) − u(t, 0) ∼ xζd that differs from the static one. In the steady-state,
most of the time the interface is actually pinned by disorder in a metastable state,
∂tu(t, x) ∼ 0, and very rarely manages to cross an energy barrier. When it does the
interface moves with a macroscopic velocity of order O(1) during a finite time window
∆t = O(1) until it is pinned again in a new metastable state. The next jump occurs
after a period of quiescence T ∼ 1/v ≫ ∆t. The motion of the interface in between
these metastable states is called an avalanche. The latter are very close cousins of
the shocks between static ground states mentioned above, but are richer as they are
a complex time-dependent phenomena for which more questions can be asked. Again
these avalanches inherit the scale invariance and the universality of disordered elastic
interfaces at the depinning transition.

More generally avalanches occur in a wide range of complex systems, from snow
avalanches to avalanches in the neural activity of the brain. While avalanches in some
systems will fall in the universality class of the disordered elastic interface model, other
may not. Important counter examples are e.g. avalanches at the yielding transition of
amorphous materials (for which plastic deformations play an important role) or earth-
quakes (for which the presence of aftershocks, whose origin is still controversial, is
certainly not captured by the simplest elastic interface model). In any case, character-
izing and understanding the universality in avalanche processes, and in particular for
the elastic interface model for which powerful analytical methods exist, is an important
challenge. It indeed allows to understand and compare efficiently seemingly unrelated
phenomena such as the fracture process of a brittle material or the jerky motion of a
contact line between a viscous fluid and a rough substrate, and to assess the importance
of various mechanisms in the dynamics. Important questions in the context of shocks
and avalanches are the characterization of the distribution of the avalanche total size
S (the area swept by the interface), the duration T ... As the avalanche processes men-
tioned above (at least for the elastic interface case) are scale-invariant processes, the
latter are distributed with probability distribution functions (PDF) displaying (in a
certain regime) a power-law behavior P (S) ∼ S−τS , P (T ) ∼ T−τT . The critical expo-
nents thereby defined are believed to be universal and related to the critical exponents
of the depinning transition (for avalanches) or of the statics (for shocks). Scaling and
universality is however not restricted to critical exponents and there exist universal
scaling functions, allowing a refined characterization of universality classes. A perfect
example of such universal scaling functions is the temporal shape of avalanches, which
received much attention lately and was computed at and beyond mean-field. Going
back to experiments, while on one hand the study of the temporal shape indeed showed
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universality between different avalanche processes, on the other hand it permitted to
highlight the (non-universal) influence of Eddy currents for avalanches in Barkhausen
noise experiments.

Out-of-equilibrium growth and the KPZ universality class

Another, seemingly unrelated phenomenon, is the out-of-equilibrium growth of an
elastic interface h(t, x) ∈ R driven by thermal fluctuations in the absence of quenched
noise, typically thought of as separating a stable and an unstable phase of a thermo-
dynamic system. The interface is rough h(t, x) − h(t, 0) ∼ xα and exhibits non-trivial
fluctuations and spatio-temporal patterns. For one dimensional interface x ∈ R and
local growth mechanisms with other reasonable assumptions, it is believed that a sin-
gle universality class, the Kardar-Parisi-Zhang (KPZ) universality class, controls the
large scale properties of growing interfaces. Remarkably, there is a very close connec-
tion with the statics of disordered elastic interfaces: the fluctuations of the free-energy
F (L, u) of a directed polymer (d = 1 elastic interface case) of length L at the tempera-
ture T in a short-range random potential with end-points fixed as u(0) = 0, u(L) = u,
defines a growing interface h(t, x) := F (L = t, u = x) in the KPZ universality class.
The KPZ universality class also encompasses models of interacting particles in one-
dimension and has emerged over the years as a paradigmatic example of universality
in out-of-equilibrium statistical physics. In this case the critical exponents are known
exactly: the roughness exponent is α = 1/2 and the height of the interface fluctuates
widely on a scale of order t1/3 (where here t refers to the duration since the beginning
of the growth).

As for avalanches, universality goes however well beyond the sole critical exponents
and the full distribution of the (rescaled) fluctuations of the interface are universal and,
interestingly, depend only on global properties of the initial condition of the growing
interface. As an example, for an interface growing from a flat initial condition, the
fluctuations of the interface at a given point are distributed with the Tracy-Widom
distribution for the largest eigenvalue of a random matrix in the Gaussian orthogonal
ensemble, thus unveiling a remarkable connection between random matrix theory and
the KPZ universality class. Observed in modern experiments, the emergence of such
universal distributions related to extreme value statistics of random matrix theory is
understood at the theoretical level through the analysis of exactly solvable models in the
KPZ universality class, in particular models of directed polymers. While this property
still lacks a ‘simple’ explanation, the wide range of application of KPZ universality, of
KPZ scaling and of the Tracy-Widom distribution, has the flavor of an extension of
the central limit theorem to strongly correlated random variables. This has motivated
in the past years a vast research effort aiming at the understanding of the KPZ fixed
point, which thus still relies on the use of exactly solvable models.

Analytical methods and the results obtained during the thesis

While in a general setting I have tried throughout the thesis to improve the under-
standing and characterization of universal properties for models of disordered elastic
interfaces in their strong disorder regime, my work can be divided following the subjects
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mentioned above.

On avalanches
On one hand I have been interested in shocks and avalanche statistics for disordered
elastic interfaces. To this aim I have used the functional renormalization group (FRG),
a method already well developed. As any renormalization procedure, the latter directly
aims at characterizing the large scale properties of the system through the identification
of the appropriate fixed point. As I will review, the fixed points are perturbative in
ǫ = 4 − d (for interfaces with short-range elasticity) and I have obtained results for
avalanche statistics using this expansion at one-loop order, i.e. at first order beyond
mean-field, i.e. at order O(ǫ).

I have first focused on the spatial shape of avalanches. While on one hand the
temporal shape of avalanches received a lot of attention, the spatial shape did not,
surely because of the involved technical difficulties and the absence of an analytically
tractable (and experimentally relevant) precise definition, in particular a centering
procedure. I first obtained results at the mean-field level for the shape of peaked
avalanches for model with short-range elasticity in d = 1: there the shape becomes
deterministic and given by a well defined spatial profile [1]. Secondly, I focused on the
mean shape of avalanches of fixed size centered on their seed for which I obtained results
beyond mean-field, valid at order O(ǫ) [2]. This ‘seed-centering’ procedure introduced
in this work appears as the most natural way, at least from the analytical point of
view, to center spatial observables in the avalanche motion, and it could be used for
other observables. In [2] I perform simulations that show that the seed-centering can
be successfully implemented in numerics, and in the future it would be interesting to
confront these results with experiments for which the spatial shape is an accessible
quantity, as is the case in some fractures experiments.

In another project I investigated the correlations between successive avalanches and
shocks. In general the question of correlations in avalanche processes has received a lot
of attention, in particular in the context of earthquakes where these are linked to the
notion of aftershocks, but in the elastic interface model they were always neglected and
their sole existence was not put forward in the previous literature. While there are no
correlations at the mean-field level where the avalanche process is a Lévy jump process
[1], beyond mean-field I showed that there are always correlations. Furthermore these
correlations are universal, of order O(ǫ), and controlled by the structure of the FRG
fixed point [3]. While these correlations do not correspond to the correlations observed
in e.g. earthquake statistics, similar correlations probably exist in any system and un-
derstanding them is likely to be necessary to obtain a quantitative understanding of
the correlations. In other systems well described by the elastic interface model, this
work shows that in most cases (for interfaces of dimension below the upper critical di-
mension), there exist important correlations in the sequence of avalanches. Comparing
these results with experiments would be very interesting.

On directed polymers
On the other hand I have been interested in understanding the emergence of KPZ
universality, or lack of thereof, in models of directed polymer on the square lattice.
To this aim I have studied and discovered models with exact solvability properties,
extending the already known exact solvability properties of the continuum directed
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polymer, the Bethe ansatz solvability and the exactly known stationary measure. In
particular I have obtained: (i) Tracy-Widom GUE fluctuations for the point to point
free-energy of the Log-Gamma polymer [4]; (ii) Tracy-Widom GUE fluctuations for the
point to point free-energy of the Inverse-Beta polymer (a model I discovered during
the thesis) and a classification of finite temperature Bethe ansatz exactly solvable
models of directed polymer on the square lattice [5]; (iii) Tracy-Widom fluctuations
for the large deviation function of a random walk on Z in a time-dependent Beta
distributed random environment, equivalent to the point to point free energy of the
Beta polymer, and Gamma fluctuations in the diffusive regime of the random walk
(suggesting a local breaking of KPZ universality due to an additional conservation
law for the Beta polymer) [6]; (iv) the stationary measures and mean quenched free-
energy/optimal energy in the Inverse-Beta polymer and in the Bernoulli-Geometric
polymer, an exactly solvable model of directed polymer on the square lattice at zero
temperature dual to the Inverse-Beta polymer which I also discovered during the thesis
[7].

This ‘world’ of exactly solvable models of directed polymer on the square lattice, in
part unveiled by this thesis, now offers a set of models with different properties allowing
to ask precise question about the KPZ fixed point and directed polymers in general.
The Bethe ansatz approach to finite temperature models of directed polymer on the
square lattice, developed in this thesis and at the same time by others, provides a new
versatile tool which hopefully will permit to obtain a variety of interesting results for
these models.

Goal and outline of the manuscript

The goal of this manuscript is to provide a self-contained and pedagogical review of
the subjects mentioned above, with an emphasis on theoretical techniques and aspects
important to the understanding of the research papers [1, 2, 3, 4, 5, 6, 7] written during
the thesis and regrouped in Appendices A-G, whose main results will also be presented
in the core of the manuscript.

In Chapter I I provide a broad introduction to disordered elastic systems, which will
serve as a background for the understanding of the two main subjects studied during
the thesis and presented thoroughly in the next chapters. In particular I re-obtain
the static phase diagram of these systems, discuss the notion of strong disorder and
the associated phenomenology, review early theoretical approaches and their caveats
to motivate the use of the more sophisticated methods already mentioned, give a brief
introduction to the more specialized subjects studied during the thesis and discuss
some experimental evidences.

In Chapter II I focus on the avalanche processes of disordered elastic interfaces
in the statics and in the dynamics (at the depinning transition) at zero temperature.
I first introduce the notion of shocks and avalanches in d = 0 toy models, and then
generalize it to interfaces. I review the functional renormalization group approach to
the statics and dynamics (at the depinning transition) of disordered elastic interfaces
at zero temperature, with an emphasis on its applications to the computation of shocks
and avalanches observables. I discuss the recent progresses made on the understanding
of avalanche processes to motivate the main subjects studied during the thesis, the
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spatial structure of avalanches and the correlations in avalanche processes. The results
obtained in the research papers [1, 2, 3], regrouped in Appendix A-C, are presented in
the end of the chapter.

In Chapter III I focus on the problem of the statics of a directed polymer at finite
temperature in a random potential in dimension 1 + 1. I recall the connection of this
problem with the out-of-equilibrium growth of an interface in the KPZ universality
class. I give an introduction to the KPZ universality class and review some recent
remarkable progresses that were made (through the study of peculiar exactly solvable
models) in the understanding of the KPZ universality class in 1 + 1d. In particular I
will present some known exact solvability properties of the continuum directed polymer
-symmetries, stationary measure, Bethe ansatz solvability- that I tried in this thesis to
generalize in discrete settings. I will then present the results obtained in the research
papers [4, 5, 6, 7], regrouped in Appendix D-G.



Index of notations and abbreviations

• use of subscripts: in this thesis the value at x of an arbitrary function f : x ∈
U → f(x) ∈ V will often be denoted using a subscript: fx ≡ f(x). To avoid
confusions, we will NEVER use subscripts to denote derivatives.
For x ∈ R

d,
∫

x ≡
∫

x∈Rd
ddx

For q ∈ R
d,
∫

q ≡
∫

q∈Rd
ddq

(2π)d

δ̂(d)(q) = (2π)dδ(d)(q) where δ(d)(q) is the usual Dirac delta distribution in d
dimension.
The Fourier transform of a function fx is denoted fq =

∫

x e
−iq·xfx. Thus

fx =
∫

q e
ix·qfq.

() is the average over disorder.
∼ denotes the equality in law between random variables
θ(x) is the Heaviside theta function
Γ(x) is Euler’s Gamma function

Aγ
d = (2

√
π)d

2
Γ(γ)

Γ(γ+1−d/2)

Cm
n = n!

m!(n−m)!

(a)n =
∏n−1

k=0(a+ k)

———

• ABBM: Allesandro-Beatrice-Bertotti-Montorsi
BA: Bethe ansatz
BFM: Brownian-Force-Model
BW: Boltzmann Weight
CDF: Cumulative Probability Distribution
DES: Disordered Elastic System
DP: Directed-Polymer
DR: Dimensional Reduction
FP: Fixed Point
FPP: First Passage Percolation
FRG: Functional Renormalization Group
GOE/GUE/GSE: Gaussian Orthogonal/Unitary/Symplectic Ensemble of Ran-
dom Matrix Theory.
gRSK: geometric/tropical RSK
GWN: Gaussian white noise
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IR: Infra-Red
KPZ: Kardar-Parisi-Zhang
KPZUC: KPZ universality class in 1 + 1d
LL: Lieb-Liniger
LPP: Last Passage Percolation
LR: Long-Range
LT: Laplace Transform
MSHE: Multiplicative Stochastic-Heat-Equation
NF: Narayan-Fisher
PDF: Probability Distribution Function
RB: Random Bond
RF: Random Field
RG: Renormalization Group
RMT : Random Matrix Theory
RSK: Robinson–Schensted–Knuth
RV: Random Variable
RW: Random Walk
RWRE: Random Walk in a Random Environment
SHE: Stochastic-Heat-Equation
SR: short-range
TD-RWRE: Random Walk in a Time-Dependent Random Environment
TFP: Thermal Fixed Point
TW: Tracy-Widom
UV: Ultra-Violet
ZRP: Zero-Range-Process



Chapter I

Disordered elastic systems

The focus of this thesis is on disordered elastic systems (DES) and the goal of this
section is to discuss some general properties of the latter that will underline all the
manuscript. We will start by very general theoretical considerations on DES that are
introduced in Sec. I.1, discuss the relevance of the disorder and draw the well-known
static phase diagram in Sec. I.2. In Sec. I.3 we briefly introduce the more specialized
topics that are the focus of Chapter II and III. Finally in Sec. I.4 we discuss some
experimental systems for which a theoretical approach using DES has been proposed.
An alternative way to read this chapter is to start by the experimental observations of
Sec. I.4. Here we have decided to first present the theoretical objects we will study in
order to already try to be precise on the specific model with which one can attempt to
understand a given experimental situation. The content of I.1 and I.2 is now standard
and similar presentations can be found in [8, 9, 10]

I.1 The Hamiltonians

Although in this thesis we will also consider discrete systems, let us here focus on
continuous systems introduce a general Hamiltonian for a DES of internal dimension
d ∈ N

∗ and external dimension N ∈ N
∗. Let us first discuss the state space,

I.1.1 The state space

A state of the system is a real function

u : x ∈ R
d → u(x) ≡ ux ∈ R

N . (I.1.1)

Where here we have introduced the subscript notation to indicate the dependence on
the position in the internal space. The latter will be heavily used in the following. The
space R

d will be referred to as the internal space, whereas RN will be referred to as the
external space. A state of the system can be embedded in the total space of dimension
d+N as the set of points (x, ux) ∈ R

d+N . The case of elastic interfaces refers to the
N = 1 case. Indeed in this case the DES can be thought of as separating two phases of
a thermodynamic system living in the total space. The case of directed polymers on the
other hand refers to the d = 1 case. Note that we already made a restricting hypothesis

1
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that will hold for all theoretical analysis present in this manuscript since more general
DES not described by a single-valued function (I.1.1) could be considered. For the case
of interfaces this is the hypothesis that there are no overhangs, while for the directed
polymer case, this is precisely the hypothesis from which the word directed comes.
More generally a point of the DES can thus be labeled by its internal coordinate x and
can only move in the external space.

In all the manuscript, whenever such a continuum description is used, we will
assume the existence of two length-scales in the internal space: (i) a small-size cutoff
a below which the elastic and continuum description of the system breaks down; (ii) a
large scale cutoff L which represents the lateral extension of the system (the system is
thus finite). Boundary conditions will be discussed later. Let us already say here that
all the results obtained in this thesis actually concern the case of elastic interfaces,
that is the special case N = 1. The Hamiltonian of the system will be generally the
sum of three contributions

HV,w[u] := Hel[u] + Hdis
V [u] + Hconf

w [u]. (I.1.2)

As we detail below, Hel[u] is the elastic Hamiltonian of the system, Hdis
V [u] is the

disorder Hamiltonian (that depends on the realization of a random potential V ) and
Hconf

w [u] is a confining Hamiltonian that confines the system around an average posi-
tion w. Here Hel[u] and Hdis

V [u] are the main players but the presence of a confining
Hamiltonian will be important to define various quantities and to study avalanches. In
this section we will keep N arbitrary, mainly to emphasize the influence of the external
dimension on the importance of the disorder on large scale properties. Let us now be
more precise and define/give examples for each term that appears in (I.1.2).

I.1.2 The elastic Hamiltonian

Our typical choice for the elastic Hamiltonian will be the case of short-range elasticity
that is modeled by the Hamiltonian

Hel
SR[u] :=

c

2

∫

x
(∇xux)2 , (I.1.3)

where c ≥ 0 is a constant. By rescaling the x axis we will assume c = 1. We will
also sometimes consider other types of elasticity. In the most general case the elastic
Hamiltonian will be defined by,

Hel
g [u] :=

1
2

∫

x,y
g−1

x,yux · uy , (I.1.4)

where we introduced the elasticity kernel g−1
x,y . We will suppose that the elasticity

kernel is rotationally and translationally invariant (in internal space) g−1
x,y = g−1

|x−y| and

to be such that Hel[u] defined above is a convex functional that attains its minimum
for flat systems: Hel[cst] = 0. We also suppose translational and rotational invariance
in external space: Hel[u + cst] = Hel[u]. Note that the ground state of the elastic
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Hamiltonian is thus degenerate. Introducing the Fourier-transform of the elasticity
kernel, g−1

q =
∫

x e
−iqxg−1

x,y, the elastic Hamiltonian can be rewritten as

Hel
g [u] =

1
2

∫

q
g−1

q u−q · uq . (I.1.5)

And the case of short-range (SR) elasticity thus corresponds to the choice g−1
q = σq2.

In this introduction we will consider elastic kernels of the form g−1
q = |q|γ and the

important examples will be γ = 2 (SR elasticity) and γ = 1. The latter is known to be
relevant in describing some systems with long-range (LR) elasticity as will be recalled
in Sec. I.4.

I.1.3 The disorder Hamiltonian

The disorder Hamiltonians will be taken as the integral of a disorder potential V :
(x, u) ∈ R

d × R
N → V (x, u) ∈ R:

Hdis
V [u] :=

∫

x
V (x, ux) . (I.1.6)

Here {V (x, u)} is a collection of random variables (RVs) that is drawn from a known
probability distribution function (PDF). In Chapter III we will define precisely the
PDF of {V (x, u)}, as we will restrict our analysis to some specific distributions allow-
ing exact treatments. We will however have in mind that some large scale properties
should be universal, where here by universal we mean independent of the distribution
of V apart from some precise properties. In Chapter II on the other hand we will
almost never specify the PDF of {V (x, u)} as we will directly use methods that will
make clear the universal character of our conclusions. Here let us only define the global
properties of the PDF of {V (x, u)} for which our results will hold.

We will restrict our analysis to the case where the distribution of V (x, u) at one
point has no fat tails: all the positive moments V (x, u)n (where from now on the over-
line () denotes the average over the random environment, i.e. over the distribution of
{V (x, u)}) are finite for n ≥ 0: V (x, u)n < +∞ (e.g. a Gaussian distributed disorder).
We will suppose that V (x, u) is homogeneously distributed. The symmetry in law
V (x + ∆x, u + ∆u) ∼ V (x, u) (where here and throughout this manuscript ∼ means
‘distributed in law as’) will sometimes be referred to as the statistical translational in-
variance of the disorder. Concerning the correlations in the set of RVs {V (x, u)}, the
two most important cases that we will consider, motivated by physical applications,
are (i) disorder of the random bond type for which the correlations of the potential
V (x, u) are short range (SR); (ii) disorder of the random field type for which it is the
force F (x, u) := −∇uV (x, u) acting on the system which has SR correlations. More
precisely we will suppose

V (x, u)V (x′, u′)
c

= δ(d)(x− x′)R0(u− u′) ,

F (x, u)F (x′, u′)
c

= δ(d)(x− x′)∆0(u− u′) , (I.1.7)
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Figure I.1: Typical shape of the second cumulant of the disorder potential and of the
disorder force for disorder of the random bond type with N = 1 and correlation length
uc ∼ 2.

where ∆0(u) = −∇2
uR0(u). Both are radial functions (i.e. even functions for N = 1).

In the random bond (RB) case R0(u) is decaying faster than any-power law at large u,
i.e. typically as R0(u) ∼ e−|u|/uc where uc is the correlation length of the disorder. The
typical shape we have in mind for this case is shown in Fig. I.1, R0(u) is positive while
∆0(u) is positive at small |u| and negative at large |u|. If R0(u) is flat at 0 and at in-
finity, we have

∫

u |u|d−1∆0(u) = 0. The case of 0 correlation length uc = 0 corresponds
to R0(u) = δ(N)(u). In the random field (RF) case, ∆0(u) has the same properties as
R0(u) in the RB case with a correlation length uc. In this case R0(u) ∼|u|→∞ −σ|u|,
see Fig. I.2. Finally we will also sometimes briefly consider periodic disorder: in this
case V0(x, u+ ∆u) = V0(x, u) where ∆u is the period (this case is relevant e.g. in the
context of charge density waves [11]).

Remark: The distinction between the internal and external space in the form of
the correlations (I.1.7) might seem strange. The reason for this is that in our renor-
malization procedure, in Chapter II, we will try to describe the effective disorder felt
at large scale by the interface. In doing so we will see that, e.g. starting from a RB
disorder with 0 correlation length R0(u) = δ(N)(u) the effective disorder at large scale
will acquire a finite correlation length in the u space. Conversely, starting with a non-
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Figure I.2: Typical shape of the second cumulant of the disorder potential and of the
disorder force for disorder of the random field type with N = 1 and correlation length
uc ∼ 2..
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zero correlation length in the internal space, the effective disorder at large scale will
have a (decreasing to) 0 correlation length in the internal space. For this reason we
will already start our renormalization procedure with disorder having the same type
of correlations than the effective disorder at large scale. Long-range correlations in
internal space can break this picture and we will not study them, see e.g. [12].

I.1.4 The confining Hamiltonian

Most of the questions one can ask about a disordered elastic system with Hamilto-
nian defined as in (I.1.2) would be ill-defined without a confining term Hconf

w [u] that
confines the system around an average position w ∈ R

N . For example, due to the
translational invariance in external space of Hel[u], the ground state of the Hamilto-
nian Hel[u] + Hdis

V [u] for a ‘typical realization of a typical’ disorder in an infinite space
would be at infinity. There are various ways of regularizing the problem and in this
thesis we will consider two possibilities.

In Chapter II we will confine the system around an average position w ∈ R
N using

a parabolic well as, for the case of a system with SR elasticity,

Hconf
w [u] :=

m2

2

∫

x
(ux − w)2 , (I.1.8)

and the parameter m > 0, which is the stiffness of the well, will be called the mass. In
this case we have

Hel
SR[u] + Hconf

w [u] =
1
2

∫

q
(q2 +m2)(u−q − w−q) · (uq − wq) . (I.1.9)

Here we have noted wq = wδ̂(d)(q). More generally for other types of elasticity we will
consider confinement such that

Hel
g [u] + Hconf

w [u] =
1
2

∫

q
g̃−1

q (u−q − w−q) · (uq − wq) (I.1.10)

with

g̃−1
q = (µ2 + q2)

γ
2 (I.1.11)

and in these cases we will denote the mass as

m =
√

g̃−1
q=0 = µ

γ
2 . (I.1.12)

Conversely we will note g̃−1
x,y =

∫

q e
iq·(x−y)g̃−1

q . In the remainder of the manuscript we
will actually drop the tilde and except otherwise stated, the ‘elastic kernel’ g−1

q will
thus also contain the confining term as in (I.1.10). Note that the confining Hamilto-
nian introduces a length-scale ℓµ := 1/µ above which different parts of the interface are
essentially elastically independent. Being interested in the regime where elasticity and
disorder compete on equal footing, we will be interested in length-scales |x− x′| ≪ ℓµ.
We will thus consider the small µ limit. Taking also into account the scales a and L
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discussed earlier we will be interested in the regime a ≪ |x− x′| ≪ ℓµ ≪ L. As such,
boundary conditions will not play a role in this case and we will not discuss them.
As we will recall below in Chapter II, adding such a confining term permits a conve-
nient renormalization group approach to disordered elastic interfaces (the case N = 1).
There ℓµ plays the role of an infra-red cutoff that smoothly cuts off fluctuations of the
system at large length and − logµ will play the role of time for the renormalization
group flow. More precisely we will be interested in understanding the properties of the
system as w is varied. In particular, under some conditions that will be discussed, we
will see that as w is varied, the ground state of the interface changes discontinuously as
a function of w. These abrupt changes define the notion of shocks or static-avalanches.
Understanding universal properties of avalanche processes is one of the main goals
of this thesis. In Chapter II the confining term (I.1.8) will thus play a major role as
moving w will allow us to probe a certain sequence of metastable states of the interface.

In Chapter III on the other hand we will consider the case of a directed polymer
in a two dimensional random medium, that is the case d = N = 1. There we will
mostly consider the so-called point-to-point problem and suppose that both ends of
the polymer at x = 0 and x = L are fixed as u0 = 0 and uL = w. This can be
implemented by a confining Hamiltonian Hconf

w [u] = −E
(

δ(N)(u0) + δ(N)(uL − w)
)

with E → ∞. There the focus will be on lattice models and on determining statistical
properties of the DP at a finite temperature using exact methods. We will obtain finite
L results but we will mostly be interested in understanding some bulk properties for
L → ∞ which are believed to be universal. One of the reasons why we will use in this
chapter a different confining Hamiltonian compared to Chapter II is that (I.1.8) does
not permit an exact solution.

I.2 Static phase diagram and the strong disorder regime

In this section we consider the statistical mechanics of a disordered elastic system
described by an Hamiltonian of the form (I.1.2) at a finite temperature T and confined
around w = 0 as in (I.1.10). The goal of this section is to discuss qualitatively the
relevance at large scale of the disorder and of the temperature and to draw the well
known equilibrium phase diagram of DES. We will start by discussing the case of the
pure system V = 0 and describe the thermal fixed point.

I.2.1 The pure system and the thermal fixed point

We thus consider an elastic system u : x ∈ R
d → R

N described by the Hamiltonian,
written in Fourier space,

Hpure[u] =
1
2

∫

q
(q2 + µ2)

γ
2 u−q · uq . (I.2.1)

At a given temperature T , the thermal average of an observable O of the u field is
defined by the path-integral

〈O[u]〉 :=
1

Z[T ]

∫

D[u]O[u]e− 1
T

Hpure[u] , Z[T ] =
∫

D[u]e− 1
T

Hpure[u] . (I.2.2)
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The Hamiltonian (I.2.1) is quadratic and the theory is Gaussian: arbitrary integer
moments of ux can be computed exactly using Wick’s theorem. In particular the
two-point function is obtained as

〈uq · uq′〉 = δ̂(q + q′)
T

(q2 + µ2)
γ
2

〈ux · ux′〉 = T

∫

q

eiq·(x−x′)

(q2 + µ2)
γ
2

(I.2.3)

Hence we have

〈(ux − ux′)2〉 = 2T
∫

q

1 − eiq·(x−x′)

(q2 + µ2)
γ
2

= 2T |x− x′|2ζThFd

(

|x− x′|
ℓµ

)

(I.2.4)

where we have introduced the thermal roughness exponent

ζTh :=
γ − d

2
, (I.2.5)

as well as the scaling function Fd(y) =
∫

q
1−cos(q1)

(q2+y2)
γ
2

where q1 is the first coordinate of

the d-dimensional vector q and we recall ℓµ = 1/µ. At large distance Fd(y) decays
algebraically as 1

|y|2ζTh
: the different points along the interface become elastically in-

dependent and 〈(ux − ux′)2〉 tends to a constant. In the regime we are interested in
|x − x′| ≪ ℓµ, Fd in (I.2.4) is constant and can be forgotten and the mean square
displacement 〈(ux −ux′)2〉 displays a power-law behavior determined by the roughness
exponent ζTh. Hence for d ≤ γ, ζTh ≥ 0 and the interface is rough (it displays a loga-
rithmic scaling for d = γ), while it is flat for d > γ ( ζTh < 0). Hence, as expected, the
effect of the temperature on the large scale fluctuations of a system of fixed internal
dimension d gets stronger as the range of elasticity is decreased.

The thermal fixed point
Let us now discuss the notion of Thermal fixed point (TFP), first at the level of the
Hamiltonian (I.2.1), and we consider the limit µ → 0 (which is the regime we are
interested in). In this limit, the following scale transformation, equivalently written in
Fourier or real space,

x = bx̃ , ũx̃ = b−ζThux=bx̃

q = b−1q̃ , ũq̃ = b−d−ζThuq=b−1q̃ (I.2.6)

leaves the Hamiltonian Hpure[u] invariant: it is a fixed point of the above scaling trans-
formation. Note that physical observables are sensitive to the combination 1

T Hpure[u]
(and not Hpure[u] alone). In this theory, conserving the thermal averages of observables
under the thermal rescaling (I.2.6) does not impose a rescaling of the temperature: this
is the thermal fixed point of the theory. The question of its stability can be simply
considered by adding other terms in the Hamiltonian (I.2.1) and checking whether or
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not they decay to 0 under the rescaling (I.2.6) as b → ∞ increases. Indeed finite x̃ cor-
responds to large x if b ≫ 1 and the theory in the variables (x̃, ũx̃) can be thought of as
a coarse-grained effective theory describing the physics of the system at a larger scale.
As an example, consider adding higher order derivative terms of the form, schemati-
cally,

∫

x(∇x)nup with n ≥ p and p even (so that the elastic Hamiltonian is still invariant
under translation and parity in the external space: Hel[u] = Hel[u + cst] = Hel[−u]))
in the Hamiltonian (I.2.1) for the case of short-range elasticity. Applying the scaling
transformation we obtain

∫

x
(∇x)nup −→ bd−n+p 2−d

2

∫

x̃
(∇x̃)n(ũx̃)p . (I.2.7)

Such a term always decays to zero under the coarse-graining procedure: the large
scale physics will be described by the simple thermal fixed point we have considered.
A similar analysis will allow us to discuss the relevance of the disorder at the TFP
below but let us warn the reader here that this ‘renormalization procedure’ will not be
the one adopted in Chapter II to truly discuss the renormalization of the theory with
disorder. The point of view we will adopt there will be to study the effective action
of the field theory (which will be a replicated field theory in the case of the static
problem). We will keep ℓµ finite as a convenient infra-red cutoff, and compute the
effective action in the limit µ → 0 and show that it takes a universal scaling form. Let
us now briefly translate here the properties of the thermal fixed point in this language.
The effective action of the theory at finite µ is defined as

eWµ,T [J ] :=
∫

D[u]e− 1
T

Hpure[u]+
∫

x
Jx·ux (I.2.8)

Γµ,T [u] := −Wµ,T [J ] +
∫

x
Jx · ux ,where J is such that ux =

δWµ,T [J ]
δJx

,

where we have emphasized the dependence on µ and on the temperature of the ef-
fective action Γµ,T [u] and on the generating function for connected diagrams Wµ,T [J ].
For a Gaussian theory described by the quadratic Hamiltonian (I.2.1), it is trivial
to compute these functionals and one obtains, up to an unimportant constant term,
Γµ,T [u] = 1

T Hpure[u]: Γµ,T [u] can be computed for arbitrary µ. In this language the
scale invariance can be written by introducing the rescaled effective action

Γ̃µ[{ũx̃}] = Γµ[{ux = µ−ζTh ũx̃=µx}] . (I.2.9)

As µ → 0, for x̃ ≤ 1 fixed of order O(1), the field ũx̃ describes the large scale fluctu-
ations in the scaling regime of the field ux in the original theory. At fixed T , ũx̃, the
scale invariance of the thermal fixed point reads in this language

−µ∂µΓ̃µ[{ũx̃}] = 0. (I.2.10)

And this holds ∀µ. In the theory with disorder the analysis will be much harder but
we will in the end obtain an equation similar to (I.2.10). We will only be able to
obtain information on the effective action Γµ[u] in the limit µ → ∞ and in the limit
µ → 0. In the latter limit, that is the one we will truly be interested in, the key point
will notably be to identify the rescalings of the field u and of the temperature T such
that a rescaled effective action Γµ[u] converges to a fixed point of a non-trivial FRG
equation.
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I.2.2 Relevance and irrelevance of short-range disorder at the thermal
fixed point

Let us now consider the effect of adding a small Gaussian short-range disorder to the
pure Hamiltonian (I.2.1):

Hdis
V [u] :=

∫

x
V (x, ux)

H[u] = Hpure[u] + Hdis
V [u] . (I.2.11)

And we suppose for simplicity that V (x, u) is Gaussian, with mean 0 and a two-point
correlation function

V (x, u)V (x′, u′) = gδ(d)(x− x′)δ(N)(u− u′) , (I.2.12)

with g ≥ 0 a parameter (a RB type disorder with 0 correlation length). Under a
general rescaling x = bx̃ and ũx̃ = b−ζux=bx̃, the disorder energy is rescaled as

Hdis
V [u] =

∫

x
V (x, ux) −→ bd

∫

x̃
V (bx̃, bζ ũx̃) ∼ b

d−Nζ
2

∫

x̃
Ṽ (x̃, ũx̃). (I.2.13)

Here and throughout the rest of the manuscript ∼ means ‘distributed in law as’ and
Ṽ (x̃, ũ) is a (new) centered Gaussian disorder with correlations Ṽ (x̃, ũ)Ṽ (x̃′, ũ′) =
gδ(d)(x̃− x̃′)δ(N)(ũ− ũ′). Note that the rescaling (I.2.13) effectively assumes that the
configuration of the field ux on which the rescaling is performed is independent of the
disorder in order to use V (x, ux)V (x′, ux′) = gδ(d)(x− x′)δ(N)(ux − ux′). This will be
true here in the sense of the leading approximation for an expansion in V since at
leading order fluctuations of ux are controlled by the thermal fixed point and here ux

can be thought of as a typical configuration of the DES at the TFP. Using ζ = ζTh,

one obtains that the disorder energy scales as b
d−N(γ−d)/2

2 . Hence small disorder is
perturbatively irrelevant at the thermal fixed point if

N >
2d
γ − d

. (I.2.14)

The result (I.2.14) however only holds for d < γ as we now explain. Indeed in larger
dimension d > γ, the thermal roughness exponent ζTh is smaller than 0. The system at
the thermal fixed point is not rough but flat. The exponent ζTh describes the algebraic
speed at which the fluctuations 〈(ux −ux′)2〉 converge to their asymptotic value. Using
the rescaling ũx̃ = b−ζux with b ≫ 1 and ζ ≤ 0 means that distances of order 1
in the coordinates ũ correspond to infinitesimal distances in the coordinates u: for a
realistic model this is dangerous since at small distances one expects the continuum
description to break down. One also necessarily starts at some point to see the effect
of the non-zero correlation length of the disorder V which was assumed to be zero for
simplicity here. For these reasons, for a realistic model of a disordered elastic system
in a flat phase, comparing the effect of the elastic energy and of the disorder energy
at large scale should rather be made by rescaling the lengths as x = bx̃ and u = ũ. In
such a rescaling the elastic energy is rescaled as Hel[u] → bd−γHel[ũ] while the disorder
energy is rescaled as Hel[u] → b

d
2 Hel[ũ]. Hence starting from a flat interface, i.e. e.g.
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in d ≥ γ for a model at the thermal fixed point or in arbitrary d at zero temperature,
weak disorder is relevant at large scale if

d ≤ duc := 2γ. (I.2.15)

Where we have introduced the upper-critical dimension of the problem. Let us now
summarize our findings.

I.2.3 Static phase diagram

1. At finite temperature for γ ≤ d ≤ 2γ and for d ≤ γ and N > 2d
γ−d and at zero

temperature for d ≤ 2γ, for arbitrary weak disorder, the elastic system is always
rough at large scale with a roughness exponent larger than the thermal roughness
exponent (the system pays more elastic energy than in the thermal phase to be
able to visit regions of space with low values of the disorder potential). From
the renormalization point of view, we will see that the effective action of the
theory flows to a new fixed point at which scaling holds and in the scaling regime
|x− x′| ≪ ℓµ,

〈(ux − ux′)2〉 ∼ |x− x′|2ζs (I.2.16)

where we defined the statics roughness exponent ζs ≥ 0. At the upper-critical
dimension of the problem duc = 2γ, since the disorder is only marginally relevant
at large scale, the roughness exponent ζs is expected to be 0 and (I.2.16) to be
replaced by a logarithmic scaling. Here the fact that the large scale cutoff scale
ℓµ is equal to the one of the pure theory ℓµ = 1/µ is a consequence of the so-
called Statistical-Tilt-Symmetry (STS) of the problem as will be discussed later.
At this fixed point, taken as a parameter of the effective action, the temperature
of the systems is irrelevant and flows to 0 when µ goes to 0 as µθ. Asking that
the combination 1

T

∫

q(q2 + µ2)
γ
2 u−q · uq that will enter into the effective action

(again as a consequence of STS) of the problem converges to a well defined limit
imposes

θ = d− γ + 2ζs = 2(ζs − ζTh) ≥ 0. (I.2.17)

This regime will be called the strong disorder regime in the remainder of the
manuscript. In this regime thus the temperature at large scale is irrelevant and
the system optimizes its energy by balancing elasticity and disorder. We will also
say that in this phase the system is pinned by disorder.

2. On the other hand, for d ≤ γ and N > 2d
γ−d (i) there exists a strong disorder fixed

point at T = 0 (ii) the thermal fixed-point is stable to weak-disorder. There are
thus at least two phases. Starting from the strong disorder, zero temperature
fixed point, it is believed that at least for small N , the strong disorder fixed point
is stable to a perturbation by a small temperature. The question of whether or
not there exists a finite critical value Nuc < ∞ such that for N > Nuc an
arbitrary small temperature makes the system depart from the strong disorder
fixed point and converge to the thermal fixed point is a difficult question which
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remains unanswered. This is true even in what might be the simplest case of SR
elasticity (γ = 2) in d = 1, the so-called directed polymer problem, see Sec. I.3.
In this case, the problem is equivalent to the KPZ equation in dimension N (see
Sec. I.3), and in this language Nuc is the unknown upper-critical dimension of
the KPZ equation, which could be equal to +∞. In this phase, for a sufficiently
large temperature / weak disorder, the large scale physics is described by the
thermal fixed point, the system is rough but it is not pinned: its fluctuations are
thermal.

3. Finally, for d > 2γ the system is always flat and the elasticity wins at large scale:
the system is in its ordered phase.

From the above discussion we thus obtain the well-known phase diagram for the
statics of disordered elastic systems as a function of the internal and external dimen-
sion d and N for RB disorder and elasticity of the type (I.1.4) with g−1

q = |q|γ as
presented in (I.3). This diagram can be more or less modified if one changes some
assumptions that were made. For example

(i) Disorder with long-range correlations: if the disorder has long-range correlations in
either the external or internal space its influence is expected to increase and the large
scale properties of the system can be different. Let us see qualitatively what changes
for the case of random field disorder which will also be considered in this thesis (see
Sec. I.1) with 0 correlation length. In this case under rescaling the disorder energy
behaves has, schematically,

∫

x
V (x, ux) =

∫

x

∫

u′
F (x, u′

x) −→ b
d−Nζ

2
+ζ
∫

x̃

∫

ũ′
F̃ (x̃, ũ′

x̃) = b
d−(N−2)ζ

2

∫

x̃
Ṽ (x̃, ũx̃)

(I.2.18)
Following the same path as before, one sees that such correlations do not modify the
upper-critical dimension of the problem which is still 2γ, but increases the minimal
value of N above which the thermal phase is stable to weak disorder as Nmin = 2 +

2d
γ−d = 2γ

γ−d . For a study of long-range correlations in internal space we refer to [12]
and references therein.

(ii) Disorder with fat-tails: although it is not clearly visible in our derivation,
disorder with fat-tails (i.e. for which there exists a finite nmax such that V n(x, u) = +∞
for n ≥ nmax) can strongly modify the static phase diagram and corresponds to new
universality classes. Naive intuition coming from the study of sums of independent
random variables would suggest that nmax > 2 would not change the phase diagram.
In general not much is known about the behavior of disordered elastic systems in
presence of fat-tail disorder. For the case of the directed polymer (DP) in a two-
dimensional random media N = d = 1 with SR elasticity γ = 2, it is known from
a Flory argument confirmed by numerical studies that nmax ≤ 5 actually suffices to
change the behavior of the DP [13, 14]. The physical origin of this modification is that
the strategy of optimization of energy of the DP changes in the presence of fat-tails
disorder. While for a Gaussian disorder the DP optimizes its energy homogeneously
along its internal direction, the optimization of energy becomes dominated by extreme
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N

d

2γ

γ
d =

γN

2 +N

Flat phase

Pinned by disorder

Pinned by disorder 

 or thermally fluctuating

Rough 

phase(s)

Figure I.3: Static phase diagram for a DES with elasticity kernel g−1
q = |q|γ in a RB

disorder potential at temperature T . For d ≥ 2γ the system is always asymptotically
flat. For d ≤ 2γ and N < 2d

γ−d , i.e. d > γN
2+N the system is always pinned by disorder

and is in a strong disorder / 0 temperature phase. For d < γN
2+N the system can a priori

be either pinned by disorder (at the strong disorder FP), or thermally fluctuating (at
the thermal FP), but is in any case always rough. The existence of a critical value Nuc

above which the system is always in the thermal phase remains debated.

value statistics in the presence of fat tails with nmax ≤ 5. The presence of a few sites
in the energy landscape with very low values of the disorder potential then dominates
the energy of the DP. We will not consider further in this thesis this complex question
and restrict our analysis to nmax = +∞.

The goal of this thesis is to understand properties of disordered elastic systems
in the strong disorder regime of the phase diagram of Fig. I.3. In this regime one
expects (and would like to prove) that the system is rough with a non-zero roughness
exponent ζs as in (I.2.16). Furthermore one expects the roughness exponent ζs to be
independent of the details of the distribution of V (x, u): since the pinning of the DES
is clearly a collective phenomenon (at least if the PDF of V (x, u) has no fat tails) and
ζs is a large scale property, one expects some universality to exist. As we will see in
Chapter II using the Functional Renormalization Group, for disorder as discussed in
Sec. I.1.3 and in the case of interfaces N = 1, there is indeed universality in the large
scale properties of disordered elastic interfaces. The different universality classes are
indexed by the choice of the range of elasticity (the experimentally most important
being LR γ = 1 and SR γ = 2) and of the correlations of the disorder (RB, RF or
random periodic).
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I.2.4 Early attempts at characterizing the strong disorder regime: Flory
arguments and the Larkin model

Let us now review two early theoretical approaches aiming at describing the strong
disorder regime of Fig. I.3. As usual we consider disordered elastic systems with an
elastic kernel g−1

q ∼ |q|γ .

a Flory scaling argument

The Flory argument is a RG-type argument that consists in equating the scaling di-
mension of the elastic energy term and of the disorder term using simple rescaling of
the different terms in the Hamiltonian as was performed in the last section to check the
relevance of small disorder close to the thermal fixed point. In this senses it is similar
to a dimensional analysis. We thus rescale x = bx̃ with ũx̃ = b−ζsux=bx̃. The elastic
Hamiltonian is rescaled as before as Hel[u] → bd−γ+2ζsHel[ũ]. For RB type disorder
(see Sec. I.1.3) the rescaling of the disorder part of the Hamiltonian is as in (I.2.13)
and we obtain

d− γ + 2ζs =
d−Nζs

2
=⇒ ζs =

2γ − d

4 +N
. (I.2.19)

In the RF type (see Sec. I.1.3) on the other hand we obtain, using (I.2.18)

d− γ + 2ζs =
d− (N − 2)ζs

2
=⇒ ζs =

2γ − d

2 +N
. (I.2.20)

The flow in the Flory argument is the following. Here we are assuming that we are
at a RG fixed point and that the effective disorder felt at large scale transforms as
in (I.2.13) or (I.2.18). However, during such a coarse-graining procedure, there can
be a non-trivial renormalization of the disorder coming from the optimization of the
energy of the interface on small scales. This scaling argument should thus be taken
with caution.

In particular we will see that (I.2.19) disagrees with the exact result for directed
polymers in 1 + 1d with short-range elasticity for which ζs = 2/3. Remarkably for the
RF case at least for N = 1, it is believed that (I.2.20) is exact. This is due to the fact
that, although the disorder is also corrected by the renormalization in this case and the
hypothesis leading to (I.2.20) are not correct, it is possible to show using the Functional
Renormalization Group that the tail of R0(u) ∼ −σ|u| is not corrected, and it is this
uncorrected large distance behavior of R0(u) which dominates the optimization of the
interface energy. For the RF case this remarkable result calls for a precise explanation
showing that there are no corrections coming from the optimization on small scales,
and for the important RB case the failure of the argument motivates the development
of a true renormalization scheme.

b The Larkin model

Larkin model
The Larkin model, introduced by Larkin in [15], is a perturbative attempt at under-
standing the properties of the strong disorder fixed point by directly looking at the



14 Chapter I. Disordered elastic systems

T = 0 problem, i.e. by considering the ground state of the interface. It consists in
linearizing the random potential V (x, u) (taken e.g. of the RB type) around a given po-
sition and retaining only the first order term. If the system is confined around a position
w = 0 the potential is linearized as V (x, u) = V (x, 0) + ∂uV (x, 0)u = V (x, 0) −F (x)u,
where we introduced the force F (x) := −∂uV (x, 0). Note that by definition F (x) does
not depend on u. The latter is chosen centered, Gaussian with short-range correlations
in the internal space and second moment F (x)F (x′) = δ(d)(x − x′)∆ where ∆ ≥ 0.
Taking as usual an elastic Hamiltonian Hel[u] = 1

2

∫

q(q2 +µ2)
γ
2 u−quq, the ground state

of the system satisfies

(q2 + µ2)
γ
2 uq − F (q) = 0 . (I.2.21)

Hence, the position field is Gaussian, with correlations in Fourier space

uq′uq = δ̂(d)(q + q′)
∆

(q2 + µ2)γ
. (I.2.22)

And in real space, for d ≤ duc = 2γ and for lengths |x− x′| ≪ 1/µ, it is rough

(ux − ux′)2 ∼ Cd∆|x− x′|2ζL (I.2.23)

with Cd = 21−2γπ−d/2 |Γ(d/2−γ)|
Γ(γ) and the roughness exponent known as the Larkin

exponent

ζL :=
2γ − d

2
. (I.2.24)

Dimensional reduction
Again the Larkin exponent (I.2.24) is not correct. One example is that it does not
reproduce the exact result already cited above ζs = 2/3 for the RB case with N = d = 1
and γ = 2. A natural question however is to understand whether or not one could
extend and improve the previous calculation by taking into account higher order terms
in the series expansion of the potential: V (x, u) =

∑∞
n=0

un

n! ∂
n
uV (x, u)|u=0. Solving the

minimization problem (I.2.21) in an expansion in u by adding higher order terms leads
to a remarkable result: to all orders in perturbation theory, it predicts (I.2.22) and
the Larkin roughness exponent (I.2.24). In the context of interfaces, this simplification
of naive perturbation theory was first discussed in [16]. In the more general context
of disordered systems it is known as the phenomenon of dimensional reduction which
asserts that disorder averaged observables of a theory at T = 0 are equivalent to
thermal averages in the pure theory at finite temperature in dimension ddr = d − γ
(see [17] for a theoretical analysis of this property using supersymmetry and e.g. [18]
for a diagrammatic approach). The thermal roughness exponent (I.2.5) ζTh = γ−d

2
is indeed equal to (I.2.24) using d → γ − d. Of course, if dimensional reduction was
true everything would be rather simple. The problem here is that the Larkin analysis
misses important non-perturbative effects and can only work at small scale as we now
discuss. First, since the Larkin model is based on a perturbation theory with the
disorder expanded around the flat interface configuration u = 0, it is hard to believe
that it is correct at large length scales for d ≤ 2γ since it predicts a rough interface.
More precisely, note that it effectively assumes that the force F (x) does not depend on
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u while a generic RB disorder has a finite correlation length uc < ∞. For this reason,
while on small scales |x− x′| ≤ Lc such that ∆u is small |∆u| ≤ uc the Larkin model
can accurately describe the fluctuations of the system, it should certainly fail above.
The length Lc is known as the Larkin length and it can be estimated as, using (I.2.23),

√

Cd∆LζL
c ∼ r i.e. Lc ∼

(
uc√
∆Cd

) 2
2γ−d

. (I.2.25)

In particular note that for uc = 0, Lc = 0 and the Larkin model is nowhere consistent.
What happens to the system above the Larkin length is that the elastic energy cost
paid by the system to wander in the energy landscape on distances ∆u ≫ uc becomes
manageable and the system starts to fully exploit the fact that there are a lot of
minima. We will see in Chapter II that the Larkin length is linked to the notion
of shocks and avalanches. Describing the optimization of energy on large scales is a
complex problem that will be tackled using renormalization method in Chapter II and
exact methods in Chapter III.

I.3 Various problems considered in this thesis

In this section we consider a disordered elastic system described by the Hamiltonian
(I.1.2) and briefly introduce some questions that will be tackled during the thesis.

I.3.1 Shocks in the statics at zero temperature for elastic interfaces

In Chapter II we will be interested in the statics at zero temperature for elastic in-
terfaces, i.e. the d ≥ 1 and N = 1 problem. We will thus be interested in the
(V−dependent) ground state uV

x (w) of the total Hamiltonian:

uV
x (w) := argminux:Rd→RHV,w[u]

= argminux:Rd→R

(

Hel[u] + Hdis
V [u] + Hconf

w [u]
)

. (I.3.1)

More explicitly we will be interested in the case of an elastic kernel g−1
q =

√

q2 + µ2

for an interface confined around a parabolic well at position w.

uV
x (w) = argminux:Rd→R

(
1
2

∫

q
g−1

q (u−q − w−q) · (uq − wq) +
∫

x
V (x, ux)

)

. (I.3.2)

Following the previous section, the interesting case on which we will focus will be the
low-dimension case d ≤ 2γ (condition for the interface to be pinned by the disorder at
large scale) and in the range of scales a ≪ |x − x′| ≪ ℓµ ≪ L. In this range of scales
one indeed expects scaling and universality to hold and we will be interested in under-
standing the process uV

x (w) as a function of w. Since for any w the interface is pinned
by disorder one expects that the evolution of uV

x (w) with w contains jumps in between
different metastable states of the disorder Hamiltonian. This will be made precise in
Chapter II, and we will see that these jumps, also called shocks will inherit the univer-
sality present in the physics of disordered elastic systems (yet to be precisely discussed).
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Irrelevance of the temperature? A natural question is to ask why we are only con-
sidering the zero temperature static problem in the questions outlined above. Indeed,
we have ‘shown’ in the previous section that the thermal fixed point of the interface
is unstable and the large scale physics of the system is described by a strong disorder
fixed point at zero temperature whenever 2d

γ−d > 1, that is for d ≥ γ/3. Since short-
range elasticity is described by γ = 2 and we will only be interested in the cases with
a longer range of elasticity, especially γ = 1, for true interfaces of dimension d ≥ 1,
the thermal fixed point will always be unstable and the system is always expected to
be in the pinned phase. Although it is true that for these problems the temperature
does not play a role for large scale properties such as the roughness exponent, it does
affect some small scales properties and in particular we will see that it smoothes the
jump process described above. Therefore, though some of our results might also be
relevant for the non-zero temperature case as we will discuss, we will focus on the
zero-temperature problem.

I.3.2 Avalanche dynamics at the depinning transition for elastic interfaces

a Introduction to the depinning transition

Another question we will be interested in is the dynamics of the interface at the depin-
ning transition that we now introduce. The depinning transition is a dynamical phase
transition that occurs in the over-damped dynamics (with viscosity coefficient η) of
elastic interfaces with elastic kernel g−1

x,y =
∫

q e
iq(̇x−y)|q|γ , driven by a non-zero force f

in a random force field F (x, ux) with second moment as in (I.1.7), and we typically
have in mind the case of a Gaussian force where ∆0(u − u′) is a short-range function
with correlation length uc. The equation of motion of the interface is

η∂tutx =
∫

y
g−1

x,yuy + F (x, ux) + f . (I.3.3)

Note that this dynamics (which corresponds to type A in the classification of [19])
is a somehow arbitrary choice on which we will focus. The presence of inertial or
viscoelastic effects are not taken into account here and thus not all disordered elastic
interfaces moving in nature can surely not be described by this dynamics. For some of
them however, at least in some regime, this type of dynamics have been proposed as
a relevant description (see Sec. I.4). For the case of SR elasticity γ = 2 this equation
is often referred to as the Quenched-Edwards-Wilkinson equation. Here the initial
condition will be basically unimportant: we will be looking at the out-of-equilibrium
steady state reached by the interface at t → ∞. Indeed it can be proved that in our
setting, starting from an initial condition such that all velocity along the interface
are either positive or 0 (i) they remain so for all time; (ii) up to a time translation
the interface position field reaches a single well-defined steady state. The two last
statements are often referred to as the Middleton theorem in the literature and were
proved by Middleton in [20]. The first question in the depinning transition is to
understand the velocity-force characteristic of the interface, that is

v(f) := lim
t→∞

utx

t
. (I.3.4)
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And here we are interested in the limit of an infinitely large interface L → ∞. The
basic physics of the depinning transition that we recall below is known since the work
of Larkin in the framework of superconductors [15], and was later developed in the
interface context, see e.g. [21] and references therein. The main observation is that
for f ≤ fc, the interface does not move, v(f) = 0 and for f larger but close to fc, the
velocity force characteristic exhibits a power-law behavior with an exponent β ≥ 0:

v(f) ∼ (f − fc)β for f ≥ fc . (I.3.5)

To estimate fc, first note that when f = 0, the interface is at rest. For d ≤ 2γ, the
interface is rough while for d ≥ 2γ is asymptotically flat. For a flat interface of internal
length L, the typical disorder force acting on the interface scales as F ∼

√

∆(0)Ld/2,
while the total driving force acting on the interface is fLd. The latter always wins for
L → ∞ and the interface starts to move: fc = 0 for d ≥ 2γ, the disorder is irrelevant at
large scale and β = 1. For d ≤ 2γ, the interface is rough when f = 0. On scales smaller
than the Larkin length (I.2.25) L ≤ Lc, the displacements of the interface are small,
and one can estimate again the typical force acting on this portion of the interface as
F ∼

√

∆(0)Ld/2. Such a small portion of the interface can stay pinned for sufficiently
small F . Seeing the interface as a collection of N = (L/Lc)d domains of length Lc

pinned by fluctuations of the disorder, an estimate of the critical force (due to Larkin)
is thus:

fc ∼
√

∆(0)L−d/2
c , (I.3.6)

and an estimate of Lc was given in (I.2.25).

b The depinning transition as a continuous out of equilibrium phase tran-
sition

Following this simple analysis, the zero temperature dynamics of disordered elastic
interfaces of dimension d ≤ 2γ as described by (I.3.3) appears to exhibit a dynamical
phase transition where the order parameter is the velocity of the interface and f is
the control parameter (see Fig. I.4). The description of this phase transition can be
made in analogy with ordinary continuous phase transitions in equilibrium statistical
mechanics, with the additional ‘complication’ that there is also a time direction in
the problem (see [11] for the discussion of this point of view in the case of sliding
charge density waves). The usual space scale invariance at the point of a continuous
equilibrium phase transition becomes a space-time scale invariance in the steady state
at the point of the dynamical phase transition which is basically summarized by saying
that time scale as t ∼ xz where z is the dynamics exponent of the transition. In the
steady-state, approaching the transition from above f → f+

c , there exists a growing
correlation length ξ ∼ (f−fc)−ν (ν ≥ 0 is another exponent) such that, for |x−x′| ≤ ξ
and |t− t′| ≤ ξz, the fluctuations of the position field satisfy the scaling form

(utx − ut′x′)2 ∼ |x− x′|2ζdG
( |t− t′|

|x− x′|z
)

(I.3.7)

where ζd is the roughness exponent and G(y) is a scaling function that satisfies

G(y) →y→0 cst , G(y) ∼y→∞ (y2ζd/z) . (I.3.8)
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The different critical exponents β, ν, ζd and z introduced above are, as will be shown
later, not independent. More precisely the depinning transition can be described by
only two independent critical exponents, which will be taken as ζd and z in the fol-
lowing. ζd is analogous to the roughness exponent in the static problem ζs but is a
priori different. As the depinning transition appears as a collective phenomenon, it is
expected that these exponents have some universality. As we will recall in Chapter II,
there are actually fewer universality classes at the depinning transition of the interface
than in the corresponding static problem since it is now known that there is a sin-
gle universality class for short-range random forces, corresponding to a random field
universality class (although different from the corresponding universality class in the
statics). In particular at depinning, the large scale properties in a random potential of
the RF and RB type are similar. As the dimension becomes close to the upper-critical
dimension duc = 2γ, the disorder becomes irrelevant at large scale and the roughness
exponent ζd must converge to 0, while the value of the dynamic exponent converges
to, as can simply be read off from (I.3.3), z = γ. As we know from the study of the
static problem, for d ≤ 2γ and without driving force, the system is pinned. As we will
see, the non-trivial dynamics that occurs at the depinning transition is due to the fact
that the interface will be most of the time pinned by disorder in a metastable state
(as we will argue these are different from the static ground states). From time to time
the interface will manage to cross the energy barrier and then moves with a velocity of
order 1 until it is pinned again by a new metastable state. Thus the interface dynamics
at the depinning transition appears as an avalanche process. At large force the system
is never pinned and flows with v(f) ∼ f/η: disorder is washed out and only leads to
small fluctuations around the deterministic behavior. The interesting regime to un-
derstand is thus clearly the avalanche process close to the depinning transition. The
universal properties of this avalanche process will be, together with shocks between
ground states presented before, at the core of Chapter II.

c Creep and the temperature

The influence of the temperature on the depinning transition is much more subtle than
on the large scale properties of the static ground state (although it can also be quite
subtle). In the static problem, as we will see in Chapter II, non-zero temperature
smoothes the shocks at small scales when the energy differences between successive
minima become of the same order as the thermal energy. In particular in the static
problem, the role of energy barriers between successive minima will be inexistent. On
the contrary, the slow, non-trivial dynamics that is observed at the depinning transition
of the interface is all about the interface being able to cross energy barriers (the fast
motion observed after such a barrier has been crossed being an avalanche). Since a
non-zero temperature allows the interface to cross an arbitrary large energy barrier, it
has important effects on the dynamics, and the temperature is not irrelevant at large
scale. In particular, at non-zero T , for arbitrary force f ≥ 0, the interface moves with
a non-zero velocity v(f). This phenomenon is known as creep. It was first described
theoretically [22, 23, 24, 25]. Rather non-trivial assumptions and scaling arguments
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v(f)

ffc

v(f) ∼ (f − fc)
β

Creep

Depinning

Flowing system

Figure I.4: Velocity-force characteristic of an infinite interface of dimension d ≤ 2γ for
the over-damped dynamics (I.3.3). Blue line: depinning velocity-force characteristic
for the interface at T = 0. Dotted black line: creep velocity-force characteristic for the
interface at low temperature.

led to the creep law, valid for f ≪ fc,

v(f) ∼ e
−Uc
T

(
fc
f

)µ

, µ =
D − 2 + 2ζs

2 − ζs
, (I.3.9)

where Uc is a system-dependent energy scale. Note in particular that (I.3.9) involves
the static roughness exponent, while the creep is a non-equilibrium phenomenon. On
the theoretical side the relation (I.3.9) was confirmed up to one loop accuracy using
FRG [26, 27]. For the case of SR elasticity in d = 1 in a random bond potential (for
which the static exponent ζs = 2/3 is exactly known and thus µ = 1/4), it was also
confirmed numerically in [28], and even experimentally using measurements on the
dynamics of magnetic domain walls [29]. Understanding more thoroughly the creep
regime of an elastic interface is still a very active area of research [30, 31] that we will
not discuss in this thesis. Let us only note the recent numerical study [32] that suggests
that avalanches of the interface during the slow creep motion of the interface exhibit
in different regimes scalings corresponding with either the scaling of static shocks, or
the one of dynamic avalanches at the depinning transition studied in this thesis. From
now on we will always restrict ourselves, for the dynamics, to the zero temperature
case.

I.3.3 Static problem at finite temperature for directed polymers with SR
elasticity and the KPZ universality class

a From the DP with SR elasticity to the KPZ equation

Another focus of this thesis is the Kardar-Parisi-Zhang (KPZ) equation which is as-
sociated with the statics of a short-range elastic directed polymer (d = 1 case) in
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dimension N at finite temperature T as we now recall. The partition sum for directed
polymer (DP) with starting point u0 = 0 and endpoint uL = u ∈ R

N can be written
as a path integral

ZL(u) =
∫ u(L)=u

u(0)=0
D[u]e− 1

2T

∫ L

0
dx(∇xux)2− 1

T

∫ L

0
dxV (x,ux) , (I.3.10)

and for now we suppose that the random potential is Gaussian with correlations

V (x, u)V (x′, u′)
c

= δ(x− x′)R0(|u− u′|) (I.3.11)

with R0(u) a SR function (RB disorder). We will see in Chapter III that (up to a sub-
tlety on which we will comment later) that ZL(u) satisfies a stochastic partial differen-
tial equation (SPDE) known as the multiplicative stochastic heat equation (MSHE).
In this equation L plays the role of the time in the heat equation and we will thus
make the change of variables

L → t , u → x . (I.3.12)

In these variable ZL(u) → Zt(x) satisfies

∂

∂t
Zt(x) =

(
T

2
(∇x)2 − 1

T
V (t, x)

)

Zt(x)) . (I.3.13)

And the initial condition is Zt=0(x) = δ(N)(x). Introducing the free-energy of the
directed polymer through the change of variables Ft(x) = −T logZt(x), we obtain, for
V (t, x) a smooth disorder,

∂tFt(x) = −1
2

(∇xF )2 +
T

2
(∇x)2Ft(x) + V (t, x). (I.3.14)

Finally, making the change of variables h(t, x) = −Ft(x), we obtain

∂th(t, x) =
1
2

(∇xh(t, x))2 +
T

2
(∇x)2h(t, x) − V (t, x) . (I.3.15)

For the case of V (t, x) taken as a Gaussian white noise, this SPDE is known in the
literature as the N -dimensional Kardar-Parisi-Zhang (KPZ) equation. Beware that x
now corresponds, in the elastic system language, to the N dimensional coordinates in
the external space, while t corresponds to the one-dimensional coordinate that spans
the internal space. The change of variables Zt(x) = eT h(t,x) that maps the MSHE to
the KPZ equation is known in the literature as the Cole-Hopf transform.

b The KPZ equation as a model of out-of-equilibrium growth of interfaces

Note that the KPZ equation (I.3.15) appears rather similar to the quenched Edwards-
Wilkinson equation (i.e. (I.3.3) with SR elasticity g−1

x,y = −δ(d)(x− y)∇2
y) for the over-

damped dynamics of a d dimensional interface at zero temperature except for the few
important differences that (i) it contains a non linear term (∇xhtx)2 (ii) the disorder is
not quenched but rather depends on time and can be interpreted as a thermal disorder.
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Let us now interpret hxt as a N -dimensional interface and (I.3.15) has a SPDE for the
dynamics of hxt. Note that the non-linear term breaks the symmetry h → −h and
makes the interface grow in the upward direction. In particular, even without driving
term and at zero disorder V = 0, an interface described by the dynamics (I.3.15)
starting from a non-flat initial condition would grow indefinitely: limt→∞ hxt = +∞.
This should be compared with the Edwards-Wilkinson equation (I.3.3) with neither
disorder nor driving. In this case the pure dynamics is rather simple: starting from an
initial configuration ux,t=0 the interface flattens through the effect of the elastic force.
The interface dynamics described by (I.3.3) and (I.3.15) are thus radically different.
While (I.3.3) can be thought of as the dynamics of an interface that separates two
equivalent phases, (I.3.15) describes an out-of-equilibrium situation where one phase
(the one below the interface) is favored compared to the other one. This is precisely
for the purpose of describing such physical situations that (I.3.15) was first introduced
in the seminal paper [33]. While in (I.3.3) all the complexity comes from the fact that
the disorder is static, in (I.3.15) the complexity comes from the presence of the non-
linear term that makes the problem an out-of-equilibrium problem. Indeed, without
the non-linear term, solving (I.3.15) is trivial since the equation is linear in htx.

c Introduction to KPZ universality in 1 + 1d

At least in 1 + 1d (i.e. N = 1) the equation (I.3.15) is believed to represent an
important universality class of out-of-equilibrium local growth processes sharing the
following properties [34]

1. The interface is elastic, of the short-range type such as (∇x)2h in (I.3.15).

2. The growth rate at x is non-linear in the local slope (∇xh) and thus favors one
phase, as (∇xh)2 in (I.3.15).

3. The interface is subjected to thermal fluctuations, i.e. V (t, x) in (I.3.15) has
short-range correlations.

4. There is no quenched disorder in the system.

The importance of the KPZ universality class goes however well beyond growth pro-
cesses (for recent review see [34, 35, 36]). One example is also that as we showed, it is
equivalent to the static problem of a DP at a finite temperature T (hence although the
KPZ equation does describe an out-of-equilibrium situation, it is fair to say that it is a
rather peculiar one). In the special case N = 1 which will be the focus of Chapter III,
much is known about the problem and the associated universality. Let us recall here a
few important features of this universality class (that will be proved in specific models
in Chapter III). Noting v∞(ϕ) = limt→∞ 1

th(t, x = ϕt)1 (the non universal, determin-
istic asymptotic growth speed of the interface) for h(t, x) an interface growing from an
initial profile h(t = 0, x) = h0(x) with a growth process in the 1 + 1d KPZ universality
class, we have

1The ballistic scaling in this definition can be expected from the non-disordered case, e.g. starting

from an initial condition Zt=0(x) = δ(x) we obtain Zt(x) ∼ 1√
t
e− x2

2T t and taking the log one obtains

h(t, x) ∼ t x2

2T2t2
.
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Scale invariance and universality of critical exponents
The centered profile

h(t, x) := h(t, x) − tv∞(x/t) , (I.3.16)

has large time fluctuations such that for t ≫ 1 and ∀b, t, x, we have the equality in law

h(t, x) ∼ b−αh(bzt, bx) , (I.3.17)

with the universal exponents

α = 1/2 , z = 3/2 . (I.3.18)

The critical exponent α is the roughness exponent of the interface. Note that it is
equal to the roughness exponent of a Brownian motion. The critical exponent z is
the dynamic exponent. Note that going back to the DP language amounts to taking
x → u and t → x: in this language the roughness exponent of the DP u ∼ xζs is thus
ζs = 1/z = 2/3 as already announced. Using (I.3.17), one obtains, for t ≫ 1 and ∀x

(h(t, x) − h(0, 0))2 = |x|2αG1(
t

|x|z ) = t2βG2(
t

|x|z ) . (I.3.19)

Where the choice of the writing is a matter of taste and G1(y) are two scaling functions
related by G1(y) = y2βG2(y),

β = α/z = 1/3 (I.3.20)

is the growth exponent, often measured in numerics, G1(y) ∼y→0+ cst and G1(y) ∼y→∞
y2α/z. Note finally that, even if one takes V (t, x) in (I.3.15) as a GWN, there is no
simple way to see that the exponents (I.3.18) are the true critical exponents of the
KPZ universality class and that the equality in law (I.3.17) holds: the KPZ equation
is not invariant by rescaling (I.3.18) and is certainly not the FP of its own universality
class. This will be further discussed in Chapter III.

Universality beyond critical exponents: universality of fluctuations
The following convergence in law holds

lim
t→∞

h(t, 0)

t
1
3

= λX, (I.3.21)

where λ is a non-universal constant and X is a RV whose distribution is universal
and depends only on some global properties of the boundary conditions. The classifica-
tion of ‘sub-universality’ classes corresponding to boundary conditions is probably still
not complete (but almost, see [34]) but a few robust examples are: (i) starting from
‘droplet’ initial condition, i.e. h0(x) = −w|x| with w → ∞, leads to X distributed
with the Tracy-Widom GUE distribution, corresponding to the (rescaled) probability
distribution function of the largest eigenvalue of a random matrix in the GUE ensem-
ble [37]; (ii) starting from flat initial condition, i.e. h0(x) = 0, leads to X distributed
with the Tracy-Widom GOE distribution, the distribution of the largest eigenvalue
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of a random matrix in the GOE ensemble [38]; (iii) starting from a stationary initial
condition (see Chapter III) leads to X distributed with the Baik-Rains distribution
[39]. Note that in the DP language (I.3.21) means that the fluctuations of the DP
free-energy scale with the length as L1/3 and are distributed according to the same
distributions.

Other remarkable known universal properties of the KPZ universality class in 1 +
1d will be reviewed in Chapter III. Let us close this section by mentioning that the
theoretical knowledge of this remarkable universality is due to the existence of various
models in the 1 + 1d KPZ universality class that possess exact solvability properties.
This notably includes the usual continuum KPZ equation itself as we will recall but
our focus in this thesis will be on discrete exactly solvable models of directed polymers
on the square lattice.

I.4 Experimental realizations

In this chapter we introduce a few of the physical systems for which a description by
a disordered elastic interface has been proposed. They all have in common the fact
that, at a mesoscopic scale in some regimes, they can be described by an interface with
different elastic behaviors which look rough and exhibit complex fluctuations. They
can however be regrouped in two different classes. In Sec. I.4.1 we will give examples
of interfaces pinned by quenched disorder, at or close to equilibrium (more precisely
such that if no force acts on the system the interface is at rest). They will be described
by various types of elasticities and disorder. In Sec. I.4.2 on the other hand we will
give examples of growing interfaces that are fundamentally out of equilibrium: they
grow indefinitely. We will present interfaces whose large scale dynamics is believed to
be captured by the standard KPZ universality class in d = 1 + 1.

I.4.1 Disordered elastic systems pinned in a quenched random environ-
ment

a Domain walls in magnetic systems and Barkhausen noise

Considering a piece of ferromagnetic material of dimension D ≥ 2 below its Curie
temperature, it is known that a variety of static and dynamic properties of the material
can be understood at a coarse grained level by describing only the domain walls (DW)
between several domains of constant magnetization. If impurities are present in the
material (without destroying the ferromagnetic order) and that the deformations of
the DW are small (e.g. at sufficiently low temperature) it is possible to describe the
domain wall by a simple elastic interface in a disordered medium without overhangs[40,
22, 41, 29] as in (I.1.1) with d = D − 1 and N = 1. Preparing the sample at low-
temperature such that there are a few domain walls, the pinning of the domain walls
by the disorder will make inhomogeneities in the magnetization persist. If the disorder
is made of random magnetic impurities it will naturally be of the random bond type,
but random field type disorder can also be studied in antiferromagnetic systems with
random impurities under a constant field (see [9] and references therein). The elasticity
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of the domain wall is naturally short-range (γ = 2) as the energy cost of creating a
domain wall is local and proportional to the area of the domain, but under certain
conditions it is known that long-range elastic interactions can be relevant (see below).
From this point a variety of situations can be investigated, in particular the static
properties of the domain wall and its dynamics under an external magnetic field.

In some experimental situations it is possible to directly visualize the domain walls
and to investigate properties such as the roughness of the interface or its response to an
external force. In particular in [29] the authors investigated the so-called creep-regime
of a domain wall in an effectively two-dimensional ferromagnetic material (D = 2) and
investigated the so-called creep regime, that is the velocity-force characteristics of the
domain-wall at very small applied force (=magnetic field). The authors obtained a
remarkable confirmation of the so-called creep law discussed above (I.3.9), and also
measured the roughness exponent of the domain-wall as ζ ≃ 0.69 ± 0.07, correspond-
ing well to the theoretical exact value of the static roughness exponent of a directed
polymer (d = N = 1) in a RB disorder with SR elasticity ζs = 2/3.

The influence of the physics of domain walls has however also direct consequences
on macroscopic properties of the sample. An important example is linked to the
notion of Barkhausen noise. Applying a slowly increasing magnetic field to a magnetic
sample, the magnetization increases following the hysteresis curve. The increase in
magnetization is however non-smooth and proceeds by jumps. These can directly be
measured (see [42, 43]), and the first experimental report of the existence of this noisy
signal is due to H. Barkhausen in [44]. Research on this process has led to distinguish
two classes of magnets: (i) hard magnets, characterized by a ‘wide’ hysteresis curve;
(ii) soft magnets, characterized by ‘small’ hysteresis curve. In the first class, the
microscopic origin of the Barkhausen noise is attributed to the coherent reversal of
domains of magnetizations. In the second class, the Barkhausen noise is attributed
to the motion of domain walls which alternate periods where they are pinned for a
long time by impurities, and period of fast motion where they jump from pinning
configurations to pinning configurations. Plotting the magnetization as a function of
time M(t), the latter exhibits a so-called avalanche dynamics characterized by jumps
M(t+ ∆t) −M(t) = S interrupted by ‘long’ (≫ ∆t) periods of quiescence. Following
the domain wall interpretation for the origin of these jumps, the size S of the jumps
of the magnetization are directly proportional to the volume (for samples in D = 3)
swept by the DW during its motion. It was found (see [45, 46] and references therein)
that the distribution of jumps S and time T are power law distributed in between two
(widely separated) cutoffs:

P (S) ∼ S−τS , P (T ) ∼ T−α . (I.4.1)

As we will see in Sec. II.3.2, these power-laws were argued to be related to the critical
exponents of the interface at the depinning transition, and thus such measurements
give access to properties of the interface (and vice versa). In Barkhausen experiments
two universality classes for soft magnets in D = 3 were found [45, 46]: (i) polycrys-
talline materials for which the exponents depend on the driving rate and for which the
exponent at slow driving are τS ≃ 3/2. In this class it was argued that due to the
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presence of dipolar interactions, the elasticity of the domain-walls are effectively long-
range with γ = 1 [47]. Taking a look at the phase diagram in Sec. I.2.3, although here
we are not in a static situation, we see that these systems have d = 2 = 2γ = duc: they
sit right at the upper-critical-dimension of the problem. We will see in the following
that the above exponents are indeed the mean-field exponents of avalanche motion.
(ii) amorphous materials, for which the empiric exponents are τS ≃ 1.27 and α ≃ 1.25,
independently of the driving rate, and for which the elasticity of the domain wall is
short-range.

b Fractures fronts in brittle materials

Another physical process for which the model of an elastic interface has been used
is for the fracture of brittle materials (see [48] for a review). Indeed it has been
argued that for these systems the propagation of the crack front can be understood
as the zero temperature over-damped dynamics of a line with long-range elasticity
(d = γ = 1) [49, 50, 51, 52] in a disordered medium. The fracture proceeds again by
avalanches, whose statistics can be experimentally measured by acoustic techniques,
or in some experimental setup by direct visualization of the crack front [53, 54, 55, 56].
The experimentally obtained value of the roughness exponent was there reported as
ζ ∼ 0.35 on large scales, while at small scales a value of ζ ∼ 0.63 was reported.
In these systems, due to the long-range nature of the elasticity, an avalanche at one
point of the interface generally triggers several avalanches at different points and when
speaking about the distribution of the size of avalanches, one has to distinguish whether
the size of single avalanches or of the cluster of avalanches is measured. In [57] the
distribution of the size of single avalanches was reported to have a power-law exponent
of τ ind

S ∼ 1.56 ± 0.04.

c Some other related situations

Contact lines of fluids on rough substrates
It has been argued that the slow motion of the contact line of a fluid on a rough
substrate could be well approximated by the motion of an elastic line with long-range
elasticity at the depinning transition [58, 59, 60]. While some aspect of this dynamics
agree (e.g. avalanches) well with the elastic interface theory, [61], the value of the
experimentally measured roughness exponent ζ ∼ 0.5 is still not understood, although
it has been argued that it could be the sign of non-linear elastic terms [62].

Earthquakes
It has been argued that some features of earthquakes and geological faults could be
captured by the model of an elastic interface in a disordered medium [63, 64, 65, 66]. It
is however a rather controversial issue and it is now clear that some important features
of earthquakes, such as aftershocks and the Omori law [67] are not contained in the
simplest elastic interface model. We will come back to this specific issue in Sec. II.6.1.

Vortex lattices in superconductors
Although it not a disordered elastic interface, let us mention here that features of the
deformation of the vortex lattice in high-Tc superconductors (d = 3, N = 2) are similar



26 Chapter I. Disordered elastic systems

to those of disordered elastic interfaces. In particular it is known that the pinning of
the lattice by the disorder plays an important role in high-Tc superconductivity and
that a similar depinning transition is observed. See [68] for a review.

Imbibition
Let us finally mention here the problem of the invasion of a viscous fluid in a porous
medium known as ‘imbibition’ where in some regime the dynamics resembles the dy-
namics of an elastic interface and scale invariant avalanches are also observed [69].
Some aspects of the problem are however not captured by elastic interfaces (in par-
ticular in the experimentally much studied context of so-called forced flow imbibition,
the conservation of the volume of the fluid imposes the mean velocity of the fluid at
all time and thus generates a complex non-local dynamics along the front). We refer
the reader to [70] for a review of this related subject.

I.4.2 Out-of-equilibrium interface growth

We now give a few examples of situations where the out-of-equilibrium growth of a
1-dimensional interface was shown to display scale-invariant behavior in agreement
with the 1 + 1-d KPZ universality class. It should be stressed here that it is easier to
find in the literature experimentally observed growth processes in d = 1 + 1 for which
the scaling behavior notably differs from the one of the KPZ universality class, see
e.g. [71, 72]. This obviously does not mean that the KPZ universality class does not
exist in nature, but it is true that some of its conditions are not always easy to realize
experimentally (e.g. absence of quenched noise). Below we mention three convincing
experiments.

a Growth of bacterial colonies and cancerous cells

Bacterial colonies growing on a Petri dish provide an experimental realization of a
growing interface in 1 + 1d. In [73] experiments on the growth of two types (B and
D) of bacteria were performed. From microscopic observation it was observed that
the microscopic growth mechanisms of the two types were quite different. While the
type B bacteria formed long chain advancing simultaneously (thus inducing a non-local
growth), for the type D bacterias the growth mechanisms were argued to be local. The
found roughness exponent of the interface were found to be αB ≃ 0.78 ± 0.02 and
αD ≃ 0.50 ± 0.01. The growth of type D bacteria was therefore argued to provide an
experimental example of a growing interface in the 1 + 1d KPZ universality class.

More recently in another biological context, the growth of cell colonies for can-
cerous and non cancerous cells on Petri dishes was investigated in [74] with the aim
of distinguishing both types of cells from their growth mechanisms. Although some
distinguishing features were reported, both types of colonies were found to exhibit a
KPZ type growth scaling with exponents measured as α ≃ 0.50 ± 0.05, β ≃ 0.32 ± 0.04
and z ≃ 1.5 ± 0.2.

b Burning paper fronts

Slowly burning sheets of paper also provide an example of interface growth in 1 + 1d.
In [75] this growth process was investigated for two different types of papers. The
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exponents were found in good agreement with the KPZ expected values: α ≃ 0.48±0.01
and β = 0.32 ± 0.01.

c Liquid crystal growths

The most convincing experimental evidence of KPZ universality in growth process in
1 + 1d comes from recent experiments on turbulent liquid crystal [76, 77, 78, 79, 80].
This experiment is very close in spirit to the original motivation for introducing the
KPZ equation [33]: the interface is a true interface between two phases (called DSM1
and DSM2) of the same system. While the microscopic properties of each phase are
rather complicated, at high electric field the DSM1 phase is unstable and the growth
of a nucleus of the DSM2 phase in an initially prepared liquid crystal in the DSM1
phase exhibit fluctuation statistics in amazing agreement with the KPZ theory in 1+1d.
These highly reproducible experiments indeed allowed the authors to obtain the scaling
exponents α ≃ 0.5 ± 0.05 and β ≃ 0.336 ± 0.001, but also to exhibit strong evidence
that the full rescaled fluctuations of the interface height at large time converges to
the GUE and GOE distributions, depending on the shape of the original nucleus of
stable phase. Traces of the Baik-Rains distribution in the stationary state were also
obtained.
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Chapter II

Avalanches and shocks of disordered
elastic interfaces

II.1 Introduction

Avalanche-type dynamics occur in a large variety of complex systems: snow avalanches,
earthquakes, fracture processes in disordered materials, fluctuations in the stocks mar-
ket, Barkhausen noise in magnets, avalanches in the neural activity of the brain... In a
general sense, a system is said to display avalanches if its response to a slow, smooth,
external loading is discontinuous and proceeds via jumps. The most interesting situ-
ation to the statistical physicist is the case where these jumps span a wide range of
space and time scales. If this occurs, then one might hope that the precise underlying
dynamics of each system is mostly (except e.g. symmetries, etc) unimportant at large
scales, i.e. that avalanche processes display some universality. In fact such systems
do exist in nature, and the experimental and theoretical analysis of systems and mod-
els displaying avalanches has created a large research activity over the past decades
[81]. Some key conceptual frameworks on the theoretical side have been the analysis of
avalanches in (i) cellular automaton models exhibiting Self-Organized-Criticality [82],
as e.g. the Manna sandpile model [83] and the Abelian sandpile model [84], see [85] for
a review; (ii) the random field Ising model [86, 87, 88] and the mean-field spin glass
SK model [89, 90]; (iii) models related to the concept of marginal stability [91]; (iv)
disordered elastic systems.

In this part of the manuscript we will review some known results on avalanches
(and the closely related notion of shocks) in disordered elastic interfaces. Understand-
ing avalanche processes in this type of systems is an important issue. Indeed on one
hand it is known that the model of an elastic interface in a disordered medium is rel-
evant to describe a variety of physical situations (see Sec. I.4), and therefore on the
theoretical side it is a perfect candidate to understand universality in some avalanche
processes. On the other hand disordered elastic systems permit the use of a variety of
existing analytical techniques. Theoretical progresses on this type of system are thus
already possible and understanding them is a good starting point for other problems.
For example it was recently argued that the Manna sandpile model is in the same uni-
versality class as the depinning of an interface in a short-range disordered medium [92],

29
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or that the yielding transition in amorphous solids share some interesting properties
with the depinning transition [93] (although it is in a different universality class, in
particular there is an additional independent critical exponent).

The outline of this section is as follows: In Sec. II.2 we introduce the notion of
shocks and avalanches in toy models of a particle on the real line (d = 0 elastic
interfaces). These notions are generalized to the case of interfaces in Sec. II.3. There
we review the phenomenology associated with avalanches, in particular we discuss
their scaling. In Sec. II.4 and Sec. II.5 we review the functional renormalization group
approach to the statics and to the depinning transition of disordered elastic interfaces,
with an emphasis on its application to the study of shocks and avalanches. Finally
in Sec. II.6, we will review some important results on avalanches in disordered elastic
interfaces, and summarize the results obtained during the thesis on this subject. These
are presented more thoroughly in the original research papers [1, 2, 3] reproduced in
Appendix A B C.

II.2 Introduction: the avalanche process(es) of a particle on
the real line

In this section we begin our study of avalanche processes of elastic interfaces by study-
ing toy models in d = 0, i.e. a particle on the real line in a disordered medium. This
analysis will prove relevant when discussing the avalanche processes of true elastic
interfaces as a basis on which we will build some intuition on shocks and avalanches
processes. In Sec. II.2.1 we introduce the notion of shocks and in Sec. II.2.2 we intro-
duce the notion of avalanches. We will conclude by comparing these two notions in
Sec. II.2.3

II.2.1 Shocks between ground states for toy models of a particle without
disorder

In this section we introduce the notion of shocks using toy models of a particle in a
deterministic potential V exhibiting several local minimas as would a true disorder
potential. We study this simple case in order to maximize the clarity of the exposi-
tion. Exact results can also be obtained for models of shocks for a particle in a random
potential: this includes the case of V (u) taken with the correlations of a Brownian mo-
tion (the Sinai model [94], a toy-model for the random field universality class of elastic
interfaces) or with short-range correlations (that corresponds to the Kida problem in
the context of Burgers’s turbulence [95] and to a toy-model for the random bond uni-
versality class for elastic interfaces). We refer the reader to [96] and references therein
for exact results on these models, and we now begin our study of shocks.

a Shocks for a particle in a cosine potential

We consider the toy model of a particle on the real line u ∈ R subject to a cosine po-
tential V (u) = cos(u) and to a confining potential 1

2m
2(w−u)2. The total Hamiltonian



II.2. Avalanches for a particle 31

of the particle is

Hw[u] := cos(u) +
1
2
m2(w − u)2 . (II.2.1)

The ‘disorder potential’ V (u) has an infinite number of exactly degenerate minima at
uk = π + 2πk, k ∈ Z. For m 6= 0, the confining potential 1

2m
2(w − u)2 breaks this

degeneracy, except at some special points wk (the points where V (w) is maximum,
that is when wk = 2πk, k ∈ Z) and the ground state

u(m;w) := argminu∈RHw[u] , (II.2.2)

is well defined except in this discrete set of points. Graphically the position of the
ground state of the system can be obtained using the so-called ‘Maxwell construction’:
for a given w with a non-degenerate ground state u(m,w) with energy E(m,w), by
definition, V (u) > E(m,w) − 1

2m
2(u − w) ∀u 6= u(m,w), with the equality at u =

u(m,w). Hence, ∀C < E(m,w), the parabola C − 1
2m

2(u − w) does not intersect
V (u). Increasing C from −∞, the position of the ground state u(m,w) is given by the
abscissa of the first point of intersection of the parabola C − 1

2m
2(u − w) with V (u)

(see Fig. II.1). For large m, the ground state u(m;w) closely follows w and u(m;w)
is smooth as a function of w. For m small enough, at the point w = wk, the ground
state of the system is degenerate between one point u+(m;w) that is close to uk, and
u−(m,w), that is close to uk−1. The critical value where this degeneracy first occurs
satisfies the equation 1

2m
2
c = 1

2
d2V (u)

du2 |u=0 = 1
2 , that is mc = 1. As m → 0, it is trivial

to see that u+(m;w) converges to uk and u−(m;w) converges to uk−1. We obtain

lim
m→0

u(m;w) =
∑

k∈Z

θ(w − wk)θ(wk+1 − w)uk

= u−1 +
+∞∑

k=0

θ(w − wk)Sk for w > 0 . (II.2.3)

Here θ denotes the Heaviside theta function, and in the second line we have introduced
the size of the kth shock Sk = uk − uk−1. In this simple model these are of course
all equal to Sk = S = 2π and u−1 = −π. The above formulae are ambiguous at the
shock points w = wk since precisely at these points the ground state is degenerate,
and thus u(m;w) is ill defined. This is resolved by using e.g. the convention that
u(m,w) is left continuous. At small, but non-zero m, m ≪ mc, the shock process gets
slightly modified, as u(m;w) is not exactly constant between wk and wk+1. Small m
corrections are given by, for wk < w < wk+1,

u(m;w) = uk +m2δuk(w) +O(m4) , δuk(w) := w − uk . (II.2.4)

Let us now discuss the influence of the temperature in a toy model of a particle in a
double-well potential.

b Smoothening of the shocks by the temperature

We now consider a particle on the real line u ∈ R at equilibrium at a finite temperature
T > 0 in a double well potential V (u) = −u2

2 + u4

4 and subject to a confining potential
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1
2m

2(w − u)2. The Hamiltonian is

Hw[u] = −u2

2
+
u4

4
+

1
2
m2(w − u)2. (II.2.5)

And we consider the average position of the particle:

u(m,T ;w) :=

∫∞
−∞ ue− 1

T
Hw[u]

∫∞
−∞ e− 1

T
Hw[u]

. (II.2.6)

First note that in the limit m → 0, we obtain limm→0 u(m,T ;w) = 0. On the other
hand, taking first the zero temperature limit we obtain, for m sufficiently small m ≤
mc = 1,

lim
T →0

u(m,T ;w) = θ(w)u+(m) + θ(−w)u−(m) (II.2.7)

with for m ≪ mc,

u+(m,w) = 1 +
m2

3
(w − 1)3 +O(m4) , u−(m,w) = −1 +

m2

3
(w + 1)3 +O(m4) .

(II.2.8)
Let us now consider the limit T small but non zero, with m ≤ mc fixed. The integrals
in (II.2.6) are dominated by two saddle-points at u−(m,w) and u+(m,w). One easily
obtains, noting ∆E(m,w) := H[u+(m,w)] − H[u−(m,w)] the difference of energy
between the right minimum and the left minimum,

u(m,T ;w) =
sign(u+(m,w))e− 1

T
∆E(m,w) + sign(u−(m,w))

1
|u+(m,w)|e

− 1
T

∆E(m,w) + 1
|u−(m,w)|

+O(1/
√
T ) (II.2.9)

Taking now the small m limit on this expression we obtain

u(m,T ;w) ≃ tanh

(

m2w +O(m4)
T

)

+O(1/
√
T ) . (II.2.10)

In particular, one retrieves for large |w| or for small temperature the shock limit (II.2.7).
For non-zero T , the shock is smoothened on a scale

wT ∼ T

m2
. (II.2.11)

Read differently, the shock is smoothened on small scales when the energy difference
between the two minima ∼ m2w is smaller than the thermal energy ∼ T . Note that
the height of the barrier of potential between the two minima does not play a role in
this problem.

II.2.2 Avalanches in the dynamics of a particle on the real line

In this section we now discuss the notion of avalanches in the zero temperature over-
damped dynamics of a particle. We first consider the case of a particle in an abstract
force landscape F (u), and then recall some features of the very instructive exact so-
lution of the Alessandro-Beatrice-Bertotti-Montorsi (ABBM) model where the force
F (u) is a Brownian motion. We refer the reader to [97] for the study of other cases.



II.2. Avalanches for a particle 33

−π π

u

π

−π

lim
m→0

u(m;w)

w

3π−3π

V (u)

3π

−3π

∼ T/m2

∼ m2

u(m,T ;w)

w

Figure II.1: Left: Shock process for a particle at zero temperature in a cosine poten-
tial. Left-up: The Maxwell construction allows to graphically find the position of the
minimum of V (u) + 1

2m
2(u − w)2 for m 6= 0: the parabola −1

2m
2(u − w)2 is raised

until it intersects V (u). The point of intersection corresponds to the position of the
minimum. For −2π < w < 0 (resp. 0 < w < 2π), the minimum is at −π (purple dot)
(resp. +π, green dot) (up to O(m2) corrections). At w = 0 (red dotted parabola)
the minimum is degenerate. Left-bottom, the jump process obtained from the above
picture in the limit m → 0. Right: smoothening of a perfect shock for a particle in a
double-well potential by non-zero T and m in the limit T ≪ m2 and m ≪ mc.

a The avalanche process of a particle in a smooth force landscape F (u).

Let us thus consider the over-damped dynamics of a particle in a force landscape F (u).
Here we typically have in mind the case F (u) = a(u)sin(b(u)u) with a(u) and b(u) > 1
some smooth bounded functions: the force landscape has a lot of minimas and does
not wander too far away from zero (see Fig. II.2). The temperature is 0 and similarly
to the static problem, we consider the over-damped dynamics of a particle driven by
a parabolic well at a constant velocity v > 0:

η∂tut = m2(vt− ut) + F (ut) . (II.2.12)

Let us suppose that at t = 0 the particle is at rest and sits in a stable minima of its
energy landscape: ut=0 = u0 with

m2u0 = F (u0) , m2 − F ′(u0) > 0 . (II.2.13)

Now, note that since F (u) is continuous, it is clear from (II.2.12) that ut is C1 and

∀t ≥ 0 , ∂tut ≥ 0 . (II.2.14)

This allows to make the change of variable u(v,m;w) = ut=w/v. Plugging it into
(II.2.12) one obtains

ηv∂wu(v,m;w) = m2(w − u(v,m;w)) + F (u(v,m;w)) . (II.2.15)
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Hence taking the limit v → 0, the quasi-static process

u(m;w) := lim
v→0

u(v,m;w) = lim
v→0

ut=w/v , (II.2.16)

satisfies

0 = m2(w − u(m;w)) + F (u(m;w)) . (II.2.17)

Of course, ∀v > 0, the function u(v,m;w) is C1 as a function of w. However, the
limit v → 0 can be singular, and indeed as in the case of shocks in the statics, if m
is sufficiently small m < mc (the latter being now given by m2

c = maxuF
′(u)), the

quasi-static process u(m;w) can exhibit discontinuities as a function of w. The classic
construction of u(m;w) is given in red in Fig. II.2: starting from u(m; 0) = u0, it is
obtained by following whenever possible the root of (II.2.17) (hence u(m;w) is left
continuous, ∀w > 0, u(m;w−) = limδw→0+ u(m;w − δw) = u(m;w)), or when not
possible at some wk with k ∈ N, u(m;w+

k ) = limδw→0 u(m;wk + δw) is given by the
smallest root of (II.2.17) that is larger than u(m;w−

k ). At these points of discontinuity
the quasi-static process makes a jump Sk = u(m;w+

k ) − u(m;w−
k ) that we call an

avalanche. Following similar arguments as before for the case of shocks in the statics,
it is clear that in the limit m → 0, this process becomes a pure jump process

ujump(w) := lim
m→0

m−ζu(m;m−ζw) = u0 +
∞∑

k=0

θ(w − wk)Sk . (II.2.18)

Here we have introduced the roughness exponent ζ ≥ 0. The latter accounts for the
fact that in general, e.g. for the case of a random process F (u), the jumps become
rarer and bigger as m → 0. In the case of shocks in the periodic potential, we had
ζ = 0 precisely because the potential was periodic and in the limit m → 0 only one
shock occurred per period of the potential, with its size being equal to the period.
Scaling u and w by ζ in (II.2.18) allows us to obtain a non-trivial jump process in
the limit. The value of ζ depends on the precise properties of F (u) and is therefore
non-universal. Why this exponent is called ζ, i.e. how it is related to the roughness
exponent for interfaces, will become clearer in the next section. In the following we
will set ζ = 0 for simplicity but the discussion can be repeated with ζ ≥ 0.

Let us now come back to the time process ut and draw some conclusions on the
dynamics of the particle. Between jumps, wk < w < wk+1, ∂wu

jump(w) = 0. Inverting
the derivative and the limits with t = w/v we obtain,

0 = ∂wu
jump(w) = lim

m→0
lim
v→0

1
v
∂tut = 0 . (II.2.19)

Hence between jumps, in the successive limit v → 0 and (= then) m → 0 the velocity
of the particle is not of order v. Rather it is o(v). Let us now ‘zoom in’ around the
kth jump and look at a window around tk, i.e. tk < t < wk/v + ∆t with by definition
∆t = o(1/v) since this smooth process happens during a time scale that is not captured
by the jump process (II.2.18). Since this process happens on such a short-time scale, we
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can forget during the jump that the well keeps moving and approximate vt ∼ wk +o(1)
and the dynamics during the jump is given by

η∂tut = m2(wk − ut) + F (ut) + o(1) (II.2.20)

At t = 0 the right hand-side is approximately equal tom2(wk−u(m;wk))+F (u(m;wk)) =
0, but here this equilibrium point is unstable since a jump occurs. After a short tran-
sient time of order τm = η/m2, the right hand-side is soon of order 1 and in the limit
of small m, it is dominated by the force F (u). Hence during the jump the velocity of
the particle is of order 1 and the jump occurs on a time scale of order 1. This dis-
cussion highlights a characteristic feature of the temporal dynamics of the avalanche
process we are interested in. Although it is clear that, since F (u) is bounded, the
mean velocity (here mean refers to the average over space) of the particle is equal to
v (i.e. limt→∞

ut−u0
t = v), the dynamics is intermittent. Most of the time the particle

is actually pinned by disorder and its velocity is o(v) (if one again uses a notion of
probability by taking a random time t this occurs with a probability of order 1), and
from time to time the particles is in an avalanche and its velocity is of order 1 (this
occurring with probability O(v)). This is quite different for a smooth motion (obtained
e.g. either by taking F → 0 or v → ∞) for which one expects to observe the velocity
of the particle to be of order v with probability 1. These considerations will become
clearer in the ABBM model.

b The ABBM model.

Let us now study our first true random process and consider the ABBM model. A
possible definition of the latter is the stochastic process

η∂tut = m2(vt− ut) + F (ut) , (II.2.21)

with the initial condition ut=0 = 0 and the force F (u) is a one-sided (i.e. F (0) = 0)
Brownian-motion (BM) with correlations

(F (u′) − F (u))2 = 2σ|u− u′| . (II.2.22)

This is one definition of the so-called Alessandro-Beatrice-Bertotti-Montorsi (ABBM)
model. It was first introduced as a phenomenological model to describe Barkhausen
noise [98, 99]. In this context ut denotes the measured magnetization of the disordered
magnetic sample under the applied magnetic field ∼ vt. It was later argued, first
on phenomenological grounds [100], then from first principles using FRG [101] that
it correctly describes the avalanche of the center of mass of realistic interfaces at
the depinning transition at the mean-field level. The model presents the peculiarity of
being in some sense exactly solvable and a lot of exact quantities can be computed (see
[42, 43] for a review). We will not recall them all here, but only focus on analyzing
the exact results for the stationary velocity distribution and for the avalanche size
distribution to highlight in a more concrete model some of the considerations of the
previous section.

To simplify the discussion first note that, using the scale invariance of the BM,
(II.2.17) can almost be entirely rescaled so that all parameters are equal to 1. Indeed,
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introducing Sm := σ/m4 and τm := η/m2, rescaling ut = Smũt̃, t = τmt̃, noting
ṽ = v/vm with vm = Sm/τm, one obtains in these dimensionless units

∂tut = vt− ut + F (ut) (II.2.23)

where here we have dropped the tildes and now F (u) is a one-sided Brownian-Motion
(BM) with correlations (F (u′) − F (u))2 = 2|u− u′|.

Stationary velocity distribution
The stationary distribution of the velocity of the particle was already obtained in
the original paper of ABBM [98]. At long time t ≫ τm, the probability distribution
function (PDF) of the velocity of the particle u̇t := ∂tut is stationary and equal to

P (v; u̇) =
1

Γ(v)
(u̇)−1+ve−u̇θ(u̇) , (II.2.24)

where Γ(v) is the Euler’s Gamma function. As expected the mean-velocity of the
particle is equal to v:

∫∞
0 u̇P (v; u̇) = v. The behavior of the PDF (II.2.24) is however

completely different depending on whether v > vm = 1 or v < 1. For v > 1, P (v; u̇ =
0) = 0: in the stationary state the particle is never pinned by the potential. In this
phase the PDF P (v, u̇) is maximum for u̇ = v− 1 and both the most probable velocity
and the mean velocity are of order O(v): the motion of the particle is more or less
smooth and the particle mostly follows the imposed driving. On the other hand when
v < 1, P (v; u̇ = 0) = +∞ and there is an accumulation of the probability at 0: the
particle is almost always at rest. In the limit v → 0, in the sense of distribution,
limv→0 P (v; u̇) = δ(u̇). At u̇ = O(1) fixed on the other hand

P (v; u̇) = vρ̂(u̇) +O(v2) , ρ̂(u̇) :=
1
u̇
e−u̇ . (II.2.25)

While ρ̂(u̇) is not normalizable, i.e. ρ̂0 =
∫
ρ̂(u̇) = +∞, it controls all the moments of

P (v; u̇). To see this, it is useful to consider the Laplace transform of P (v; u̇), defined
as, for λ < 1,

∫ ∞

0
du̇eλu̇P (v; u̇) = e−v log(1−λ) = ev

∫∞
0

du̇(eλu̇−1)ρ̂(u̇)

= 1 + v

∫ ∞

0
du̇(eλu̇ − 1)ρ̂(u̇) (II.2.26)

+
v2

2

∫ ∞

0

∫ ∞

0
du̇1du̇2(eλu̇1 − 1)(eλu̇2 − 1)ρ̂(u̇1)ρ̂(u̇2) + . . .

Now, if ρ̂0 defined above was finite, we could define a normalized probability distribu-
tion Pava(u̇) := ρ̂(v)

ρ̂0
and the above equality could be rewritten

∫ ∞

0
du̇eλu̇P (v; u̇) =

∞∑

m=0

(ρ̂0v)m

m!
e−ρ̂0v

∫

du̇1 · · · du̇me
λ(u̇1+···+u̇m)Pava(u̇1) · · ·Pava(u̇m) .

(II.2.27)
Proving explicitly that (II.2.26) can be resummed into (II.2.27) if ρ̂0 is finite is not

complicated. A similar equality is shown in Appendix D of [1] (see Appendix A). The
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formula (II.2.27) can equivalently be rewritten

P (v; u̇) =
∞∑

m=0

(ρ̂0v)m

m!
e−ρ̂0v (Pava ⋆ · · · ⋆ Pava)

︸ ︷︷ ︸

m times self−convolution of Pava

(u̇) (II.2.28)

The interpretation of this formula is as follows. At each time, the velocity u̇ of the
particle is the sum of m velocities that are independently drawn from Pava(u̇). Pava(u̇)
is thought of as the PDF of the velocity during an avalanche, and m is the number of
active avalanches at an arbitrary time t. The latter is drawn from a Poisson distribution
with intensity ρ̂0v. Thus in the ABBM model, avalanches are independent from one
another. This is characteristic of a Lévy jump process. One of the question tackled
in this thesis is to understand if this independence property is also true for models of
interfaces in a short-range random force landscape (we will see that it is not!). Taking
the limit v → 0 of (II.2.28) we obtain

P (v; u̇) = (1 − ρ̂0v)δ(u̇) + ρ̂0vPava(u̇) +O(v2) . (II.2.29)

This is the picture of avalanche motion that was described in the last section. At small
v the particle does not move at all with a probability close to 1, and sometimes move
(with a probability of order v) at a velocity of order 1. For the ABBM model, we
note that ρ̂0 is infinite and the previous interpretation is a bit tedious. This is due to
the scale invariance of the BM even at small scales: the particle is never truly pinned
in a typical realization of the BM and it always makes microscopic jumps, formula
(II.2.29) does not truly hold. For a realistic model with a smooth disorder at small
scale (II.2.29) will truly hold. Even in the ABBM model however, this interpretation
holds at the level of the moments as seen using (II.2.27). In particular

∫ ∞

0
du̇(u̇)nP (v; u̇) =

Γ(v + n)
Γ(v)

= v × (v + 1) × . . . (v + n− 1)

= v(n− 1)! +O(v2)

= v

∫

du̇ρ(u̇)u̇+O(v2) . (II.2.30)

While for v ≫ 1, the nth integer moment is of order vn, characteristic of a smooth
motion at the typical velocity v, for v ≪ 1 all integer moments are of order v: an
avalanche occurs with probability of order v but if it does, the velocity inside the
avalanche is of order 1.

Avalanche sizes
The most convenient way to define the PDF of avalanche sizes in the ABBM model

is to consider a driving during a finite duration Td (i.e. w(t) = vθ(Td − t)θ(t). Defining
the avalanches size as the total motion of the particle S = u(t = +∞) − u(t = 0) =
∫∞

0 u̇t, the PDF of avalanche sizes P (S) was computed in [102]. The result is

P (S) =
vTd

2
√
πS3/2

e− (S−vTd)2

4S . (II.2.31)

Hence, for vTd ≪ 1 (small driving) the PDF of avalanche size exhibits a power-law
behavior S−3/2 (this exponent was first identified in [103]) in between two cutoff scales,
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a small scale cutoff ∼ (vTd)2

Sm
and a large scale cutoff ∼ Sm (here Sm = σ/m4 = 1) in

dimensionless units. Since the limit m → 0 can obviously be taken on the expression
(II.2.31), this shows that the proper rescaling of u that we discussed earlier in the
general case here corresponds to u → m−ζu with ζ = 4 for the ABBM model. The
limit vTd → 0 at S fixed defines the avalanche size density in the ABBM model:

P (S) = vTdρ(S) +O((vTd)2) , ρ(S) :=
1

2
√
πS3/2

e−S/4 . (II.2.32)

As for the case of the stationary velocity distribution, the density ρ(S) is not normal-
izable due to a divergence at small S. One could apply a similar treatment as we did
before for the stationary velocity distribution and show that P (S) can be rewritten in
a certain sense as an infinite series of self-convolutions of ρ(S) with itself, a property
that defines a Lévy jump process (see also Appendix D of [1] in Appendix A). It is also
possible to precisely relate ρ(S) to the avalanches observed in the quasi-static dynam-
ics (this will be shown in Sec. II.5.2), and show that the motion of the particle in the
ABBM model between two points where the velocity is zero are distributed according
to (II.2.32). Again the accumulation of avalanches of small sizes is due to the scale
invariance of the BM. Note finally that the exponent 3/2 can simply be understood
as follows. Assume that at a time t = 0 an avalanche has started and the velocity of
the particle is v0 and its initial position is u0. Taking the limit v → 0 in (II.2.21) and
differentiating with respect to u we obtain

du̇t

du
= −1 + ξ(u) . (II.2.33)

Where now the velocity u̇t = ∂tut is seen as a function of the position of the particle u
and ξ(u) is a GWN. Hence the velocity of the particle performs a Brownian motion in
‘time’ u with a unit negative drift −1. Hence the next point u = u0 + S where u̇t is 0
corresponds to the next passage time to the origin of a Brownian motion with a unit
negative drift, which is indeed power-law distributed with an exponent 3/2 (see e.g.
[104]), and the unit drift provides an exponential cutoff as in (II.2.32). The exponent
τ = 3/2 plays an important role in avalanche statistics (recall that it is observed in
some Barkhausen noise experiments [45]) and it is interesting to understand its value
as a consequence of this well-known property of the BM.

II.2.3 Shock process versus avalanche process for a particle

Let us conclude this section by comparing the shock and avalanche processes defined
before for a particle in a smooth, bounded potential V (u) that has a lot of minimas.
The shock process was defined by the minimization of the total energy of the particle

ushock(m;w) := argminu∈R

(

V (u) +
1
2
m2(u− w)2

)

. (II.2.34)

And the latter becomes a true jump process in the limit m → 0 as discussed before. In
all this section we will keep m small but finite. Assuming that V (u) is differentiable,
the shock process verifies ∀w ∈ R,

0 = m2(w − ushock(m;w)) + F (ushock(m;w)) (II.2.35)
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and it is by definition the root of this equation with the smallest energy. On the other
hand in the dynamical case, the quasi-static process was defined again as a root of the
same equation (see (II.2.17))

0 = m2(w − uq.s.(m;w)) + F (uq.s.(m;w)) (II.2.36)

with a specific rule that we recall. Starting from an arbitrary root of (II.2.36) uq.s.(m;w)
is always increasing (since the driving was positive v = 0+), is continuous when-
ever possible (i.e. it follows a given root when the root exist), and whenever the
root it follows ceases to exist, it jumps to the smallest of bigger roots. Let us now
note, ∀w ∈ R, the set of n(w) roots of the equation 0 = m2(w − u) + F (u) as
(u1(w), · · · , un(w)(w)) with ui(w) < ui+1(w). Of course n(w) a priori varies as a
function of w. Let us suppose that at a given w = w0, uq.s.(m;w0) is the ith0 root of the
equation (II.2.36): uava(m;w) = ui0(w). Note that as w increases, from the rules spec-
ified before, ∀w ≥ w0, uq.s.(m;w) is the ith(w) root of (II.2.36): uq.s.(m;w) = ui(w)(w)
and it is clear that i(w) cannot increase if F (u) is continuous. On the contrary it
decreases as we now explain. Since F (u) is bounded, the first root of the equation
u1(w) ceases to exist at some finite w = w1 ≥ w0. In the sequence of roots of the equa-
tion (u1(w), · · · , un(w)(w)), at w = w1, u1(w) is then replaced by u2(w) (the second
smallest root becomes the smallest root as the smallest root ceases to exist). Hence
when this occurs, either i(w) decreases by one unit at w1 (since the sequence of roots
is shifted to the left at w1), or just before w1, uq.s.(m;w) is already the smallest root
and continues being the smallest root at w+

1 . This shows that after a finite driving
∆W (which however diverges as m → 0), the quasi-static process follows the smallest
root of the equation (II.2.36). Hence if one starts the dynamics at w0 = −∞, the
quasi-static process driven to the right v = 0+, noted uq.s.

+ (m;w) always follows the
smallest root of (II.2.36). Similarly, the quasi-static process starting at +∞ and driven
to the left with v = 0− always follows the largest root of (II.2.36). Hence there are
two canonical quasi-static processes and the shock process. They all follow a sequence
of roots of the same equation and

uq.s.
+ (m;w) = ui1(w)(w) , uq.s.

− (m;w) = uin(w)(w)(w) , ushock(m;w) = uishock(w)(w) .
(II.2.37)

where ∀w, uishock(w)(w) is the root with the smallest energy. In general there is no
symmetry between these different jump processes that would allow to get one from a
simple translation/reflection of another. While ushock(m;w) always follows the ground
state of the system, in general uq.s.

+ (m;w) visits a sequence of metastable states. This
sequence of states is sometimes referred to in the literature, especially in the case of
interfaces, as the Middleton states [20]. An interesting consequence/characterization
of this is related to the irreversibility of the quasi-static process.

Dissipation of energy and hysteresis in the avalanche process
Let us first remark that, at the point of a shock in the static ground state of

the particle, the total energy of the particle is conserved: Hwk [ushock(m;w+
k )] =

Hwk [ushock(m;w−
k )]. This is true since shocks between ground states precisely occur

at the position where the latter is degenerate. On the other hand in the dynam-
ics, one should not forget that between the beginning and the end of an avalanche
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uq.s.
+ (m;wk) = u0 and uq.s.

+ (m;w+
k ) = u0 + S, S > 0, the dynamics of the particle

actually (II.2.23) plays a role. During the shock vt = wk and the dynamics is

η∂tut = m2(wk − ut) + F (ut) . (II.2.38)

Multiplying by ∂tut and integrating between the beginning t0 and the end tf of the
shock one obtains

η

∫ tf

t0

(∂tut)2 = Hwk [u0] − Hwk [u0 + S] > 0 . (II.2.39)

Note that the left-hand side has no reasons to vanish in the limit m → 0. This shows
that there is a dissipation of energy in the avalanche process (graphically it can be
represented as an area as in Fig. II.2). In a protocol where one drags slowly the
particle from −∞ to +∞ and back, the particle first follows the forward quasi-static
process uq.s.

+ (m;w), and then the backward quasi-static process uq.s.
− (m;w). These are

different, see Fig. II.2, and the system exhibits hysteresis (we refer to [43] for a study
of avalanches on the hysteresis loop of the ABBM model).

II.3 Shocks and Avalanches of elastic interfaces

In this section we discuss the generalization of the notion of shocks and avalanches
introduced in the previous section for models of particle to d-dimensional interfaces.
We begin with the case of shocks in Sec. II.3.1, and study the case of avalanches in
Sec. II.3.2.

II.3.1 Shocks for an interface

a Introduction

Let us begin with the notion of shocks for an interface. We consider a d-dimensional
elastic interface u : x ∈ R

d → ux ∈ R with elasticity of range γ pinned by an harmonic
well at the position w ∈ R and subject to a ‘nice’ random potential V (x, ux) with
short-range correlations (by nice we mean as discussed in Sec. I.1.3). The Hamiltonian
is thus

HV,w[u] :=
1
2

∫

x,y
g−1

x,y(ux − w)(uy − w) +
∫

x
V (x, ux) , (II.3.1)

where we recall g−1
x,y =

∫

q e
iq(x−y)

√

q2 + µ2 with µ > 0. Here and throughout the rest
of the manuscript µ is thought of as small (i.e. ℓµ = 1/µ is very large compared to all
eventual microscopic scales of the models, as e.g. the Larkin length (I.2.25)), although
ℓµ is kept small compared to L (in order not to feel the boundary conditions). As seen
in Sec. I.2, for d < 2γ, the ground state of the interface at fixed w,

ux(w) := argminux:Rd→RHV,w[u] , (II.3.2)

is rough with a non zero roughness exponent ζs > 0:

(ux(w) − ux′(w))2 ∼ |x− x′|2ζs , for |x− x′| ≤ ℓµ = 1/µ . (II.3.3)
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Figure II.2: Top: The different jump processes (here smoothened by a non zero m)
of a particle in a force landscape F (u) (black line). The forward quasi-static process
uq.s.

+ (m;w) follows the smallest root of the equationm2(u−w) = F (u) (red construction
above). When the root ceases to exist, uq.s.

+ (m;w) jumps to the smallest one on the
right (such as the shock at w1 above). During the jumps of the forward quasi-static
process, the particle moves with a velocity equal to m2(wk − ut) + F (ut), that is the
difference of height between the red line and F (u). During such a jump, the particle
thus dissipates an energy equal to the area between the red line and F (u). In the
backward quasi-static process (blue construction above), the particle follows a different
sequence of metastable states. In the static shock-process (green-dashed construction
above), the particle jumps between ground states at the same-energy. Hence, during
a jump in the static shock process, the algebraic area enclosed in between the green-
dashed line and F (u) is 0. Dragging slowly the particle from −∞ to +∞ and back,
the dissipated energy (‘the area of the hysteresis loop’) is equal to the sum of the areas
enclosed in between the blue and black line and red and black line. Bottom: Forward
quasi-static process deduced from the top picture. Here two avalanches at w1 and w2

are visible.
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Here again the fact that the large scale cutoff scale ℓµ is equal to the one of the
pure theory ℓµ = 1/µ is a consequence of the Statistical-Tilt-Symmetry (STS) of the
problem, of which we postpone the discussion to Sec. II.4.1. What happens to the
ground state as a function of w? Although it cannot be proved in all generality, as in
the d = 0 problem of a particle discussed in the last section, one expects the ground
state of the interface to exhibit jumps at an ensemble of discrete locations {wi, i ∈ Z}
(whose density increases with the system size as Ld) as w is changed (at these precise
points the ground state (II.3.2) is ill-defined since it is actually degenerate). This was
confirmed numerically in e.g. [105, 106]. Hence we write, ∀i ∈ Z,

ux(w+
i ) = ux(w−

i ) + S(i)
x . (II.3.4)

Here S(i)
x is the local size at x of the ith avalanche. Using a stability argument it is

trivial to show that ux(w) is strictly increasing as a function of w and hence S(i)
x ≥ 0.

The sequence of shocks (wi, S
(i)
x ) is random and characterizing its statistical properties

is one of the main problems studied in this thesis. In the study of shocks for particles
on the real line of the previous section, we saw that shocks only occurred for a small
enough confinement. Using FRG we will see in Sec. II.4 that a similar property holds
for interfaces, and that shocks only occur for µ ≤ µc where µc is linked to the Larkin
length (see Sec. I.2.3) as µc := 1/Lc. Similarly, for non-zero µ, as for the d = 0 case,
one expects the motion of the interface to also contain some smooth part. We will
discuss later the appropriate scaling limit that one should take in order for ux(w) to
be a pure jump process. Before we continue let us write here

A word of caution

Let us stress that most of what we will say about shocks and avalanches for disor-
dered elastic interfaces relies on a large number of unproven assumptions. The notion
of shocks and avalanches can be seen as a phenomenological picture and it is rather
hard to see it emerge from the theory ‘from first principles’ (except e.g. in d = 0 as
in the previous section). It is mostly built from studies of toy models and numerical
simulations. However as we will see, it is a very useful phenomenological picture as
it allows to efficiently interpret -and is consistent with- the output of the calculations
of the Functional Renormalization Group. In this sense, the existence of shocks can
be seen as a hypothesis, or an ansatz, that will be plugged into the theory, and the
consistency of the ansatz will always have to be verified.

b Shock observables and scaling

A few important shock observables are (i) the lateral extension of the shocks ℓ(i); (ii)
its total size S(i) and (iii) its local size at x, S(i)

x .
(i) The lateral extension ℓ(i) denotes the diameter of the domain x ∈ R

d where S(i)
x

is non-zero. Note that in general it is actually not obvious that the latter is not
infinite (this was recently shown in a specific model, the Brownian Force Model with
SR elasticity in d = 1, defined below, in [107]), but here we will assume that it is
so, and this eventually implies that there is some small cutoff scale δu such that by
S

(i)
x = 0 we mean S

(i)
x ≤ δu.
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(ii) The total size of the shock is defined as S(i) :=
∫

x S
(i)
x . Let us now introduce the

density of avalanche sizes ρ(S), defined as

ρ(S) :=
∑

i

δ(S − S(i))δ(w − wi) . (II.3.5)

The latter does not depend on w for a statistically translationally invariant disorder.
ρ0 =

∫∞
0 dSρ(S) is the mean number of shocks per unit of w, and

P (S) :=
1
ρ0
ρ(S) (II.3.6)

is the normalized probability distribution function (PDF) of avalanche sizes. In the
following we will denote 〈〉ρ and 〈〉P the average with respect to ρ and P .

Let us now discuss some properties of the avalanche observable previously defined.

Scaling of avalanches
Since two points x and x′ with x − x′ ≥ ℓµ are essentially statistically independent,
one expects not to observe avalanches with an extension much larger than ℓµ: ℓµ is a
large scale cutoff for the avalanches lateral extension probability distribution function
(PDF) P (ℓ). On the other hand in the regime of lengths smaller than ℓµ, one expects
scale invariance to hold. That is, reintroducing an eventual short scale cutoff ℓ0, no
length scale should have any influence for ℓ0 ≪ |x − x′| ≪ ℓµ). This leads us to the
scaling hypothesis that in the scaling regime P (xℓ)/P (ℓ) does not depend on ℓ, i.e. it
is a function of x, f(x) ≤ 0. It is easily seen that f(x1x2) = f(x1)f(x2) and is f is
continuous, it well known that f(x) must be a power-law. Hence we expect, in the
scaling regime that

ℓ0 ≪ ℓ ≪ ℓµ =⇒ P (ℓ) ∼ 1
ℓτℓ

. (II.3.7)

i.e. P (ℓ) is a power-law in the scaling regime characterized by an exponent τℓ. Since
both ground states ux(w+

i ) and ux(w−
i ) are statistically equivalent and scale as in

(II.3.3), one also expects the local shape Sx to scale as |x − x0|ζs where x0 denotes
a point on the border of the avalanche and the scaling is expected to hold for ℓ0 ≪
|x−x0| ≪ ℓ. Hence the local size well inside the avalanche Sx ∼ ℓζs must be power-law
distributed as, in the scaling regime ℓζs0 ≪ Sx ≪ ℓζsµ ,

P (Sx) ∼ 1

S
τ loc
S

x

, τ loc
S := 1 +

τℓ − 1
ζs

. (II.3.8)

Similarly, one expects the total size to scale as S ∼ ℓd+ζs and to be distributed as, in
the scaling regime

S0 ∼ ℓ−d−ζ
0 ≪ S ≪ Sµ ∼ µ−d−ζ (II.3.9)

one expects

P (S) ∼ 1
SτS

, τS := 1 +
τℓ − 1
d+ ζs

. (II.3.10)
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Hence, as µ → 0 avalanches become larger and larger. It is thus expected that the
appropriate scaling to obtain a non-trivial pure-jump process is to take

ũx̃(w̃) := lim
µ→0

µζsux=µ−1x̃(w = µ−ζsw̃)

= cst+
∑

i∈Z

θ(w̃ − w̃i)S̃(i)
x . (II.3.11)

This a posteriori justifies the notation ζ used in (II.2.18). In these units the large scale
cutoff on the total size of avalanches S̃ =

∫

x S̃x is now of order 1, while the low scale
cutoff is now of order µd+ζ . In the following we will temporarily ignore the rescaling
(II.3.11) and do as if ux(w) itself was performing a jump process:

ux(w) = cst+
∑

i∈Z

θ(w − wi)S(i)
x . (II.3.12)

Knowing that in doing so we are ignoring some smooth parts (typically of order O(µγ),
see (II.3.1)) that disappear in the scaling limit (II.3.11). Using the fact that ux(w) = w
and using the definition (II.3.5), we obtain the first moment of the avalanche total size
density:

〈S〉ρ = Ld . (II.3.13)

As was shown in (II.3.7), (II.3.8) and (II.3.10), the different power-law exponents
of avalanche observable distributions are not independent. Rather they are linked
to one another by scaling relations involving the roughness exponent ζs. As for the
roughness exponent ζs, an important question is to understand whether are not the
power-law exponents defined above are universal or not, and how many universality
classes they are. A conjecture by Narayan and Fisher (NF), originally proposed in
[108] in the context of avalanches at depinning, actually states that the exponents
can all be obtained from the sole knowledge of ζs. If the latter is true, it means that
there is a single critical exponent governing both the static ground state of an elastic
interface in a disorder media (that can be measured using a snapshot of the interface),
and the power law exponents (that describe the complex shock process of switches
between the ground states of the interface). This also implies that there are exactly as
many universality classes of shocks as there are universality classes for the statics of
disordered elastic interfaces. Let us derive here the NF conjecture following e.g. [109]
(see also [110, 43] for a closely related approach).

c The NF conjecture

The NF conjecture permits to obtain the power-law exponent of the avalanche total
size distribution τS self consistently when 1 < τS < 2. It is based on several hypotheses.
The first is that the avalanche size density obeys the following scaling form, already
motivated by the previous discussion,

ρ(S) = Lαµρ 1
SτS

fcut

(

S

Sµ

)

gcut

(
S

S0

)

. (II.3.14)
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Where (i) fcut(x) is a large scale cutoff function such that fcut(x) ≈ 1 for x ≤ 1 and
fcut(x) quickly decays to 0 for x ≥ 1 ; (ii) gcut(x) is a small scale cutoff function such
that gcut(x) ≈ 1 for x ≥ 1 and gcut(x) quickly decays to 0 for x ≤ 1. The presence
of the large scale cutoff function was already justified before. The presence of a small
scale cutoff function is necessary for τS > 1 since in this case, the mean number of
avalanches per unit w diverges as S0 → 0: it is dominated by the small scale cutoff as

ρ0 =
∫ ∞

0
dSρ(S) ∼ LαµρS1−τS

0 . (II.3.15)

The low scale cutoff S0 is a priori purely of microscopic origin (or set to an arbitrary
value in a simulation) and does not scale with either µ or L. For τ < 2, the first
moment of the avalanche size density is dominated by the large scale cutoff and

〈S〉ρ = Ld ∼ LαµρS2−τS
µ ∼ Lαµρ−(2−τS)(d+ζs) . (II.3.16)

Hence we obtain from this relation

α = d , τS = 2 − ρ

d+ ζs
. (II.3.17)

The true difficulty is therefore to obtain ρ. The NF conjecture is that the density
of avalanches per unit of applied force stays constant as µ → 0. ρ0 in (II.3.15) must
therefore be proportional to the applied force which scales as µγ , and the NF conjecture
thus states

τS = 2 − γ

d+ ζs
. (II.3.18)

Although its derivation assumed here τS > 1 (if τS < 1, ρ0 is convergent at small
S0 but dominated by the large scale cutoff as ρ0 ∼ µρS1−τS

µ ), i.e. γ/(d + ζs) < 1, it
validity might actually be more general as suggested e.g. in [32]. The NF conjecture
was confirmed up to one-loop accuracy by FRG calculations in [109, 111, 101]. Note
that for models of interfaces at their upper-critical dimension d = duc = 2γ, since the
fluctuations of the interface are there expected to show a logarithmic scaling (hence
ζs = 0 at d = duc) we obtain τS = 3/2. That is, we obtain the same exponent as the
avalanche size exponent in the ABBM model (see Sec. II.2.2). We will see later that
this is not a coincidence.

II.3.2 Avalanches for an interface

In this section we now discuss the notion of avalanches for a d-dimensional interface
at the depinning transition.

a Alternative approach to the depinning transition and avalanches

To discuss the notion of avalanches at the depinning transition we will actually not
discuss the dynamics described by the equation of motion (I.3.3) (elastic interface
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driven by a force f), but rather, in analogy with the static problem and as in the d = 0
models of Sec. II.2.2, study the interface dynamics when driven by a harmonic well:

η∂tutx =
∫

y
g−1

x,y(uty − w(t)) + F (x, utx)

w(t) = vt . (II.3.19)

Here v > 0, the hypotheses on the random force are as in Sec. I.1.3 and as usual
g−1

x,y =
∫

q(q + µ2)
γ
2 eiq(x−y) with µ ≥ 0. Here again, taking an initial condition such

that the velocities of the interface are positive at t = 0, they remain so for all time
and at late times the interface position field converges to a well-defined steady state
(Middleton theorem [20]). Here the driving w(t) = vt imposes the mean velocity of
the interface, in the steady-state,

∂tutx = v . (II.3.20)

Since we are actually interested in describing the dynamics at the depinning transition,
we will be interested in the limit v → 0+. In this limit, the interface fluctuations are
expected to display a scale invariant behavior identical to (I.3.7) (only the exponents
are the same, the scaling function can be different). As for our study of the static
problem, this scale invariant behavior is expected to occur in the range of scales |x−
x′| ≤ ℓµ, |t− t′| ≤ ℓzµ with ℓ−1

µ = 1/µ. As in the static problem, the fact that the large
scale cutoff ℓµ is equal to the one of the pure theory ℓµ = 1/µ is a consequence of the
Statistical-Tilt-Symmetry (STS) of the problem, of which we postpone the discussion
to Sec. II.5.1. To study the depinning transition, we will consider the quasi-static
process, as we did for the d = 0 model of a particle (see Sec. II.2.2),

ux(w) := lim
v→0+

ut=w/v,x . (II.3.21)

The latter satisfies, ∀w ∈ R,

0 =
∫

y
g−1

x,y(uy(w) − w) + F (x, ux(w)) . (II.3.22)

Note that the static ground state of the interface studied in Sec. II.3.1 is also a solution
of this equation, and is by definition the one of minimum energy. As for the d = 0
models, in the steady-state, the correct solution of (II.3.22) is the leftmost one (see
Sec. II.2.3) and a priori differs from the ground state. This sequence of Middleton
states can have roughness different from the one of the ground state and a result of
FRG is that they are indeed different. As in the statics we expect that for µ ≤ µc

(associated with the Larkin length as µc := 1/Lc, see (I.2.25)), the quasi-static process
ux(w) is non-analytic and displays avalanches at discrete locations wk, k ∈ Z. In the
appropriate scaling limit u ∼ µ−ζd , x ∼ µ−1 and w ∼ µ−ζd , it is expected to become a
pure jump process:

ux(w) = cst+
∑

k∈Z

θ(w − wk)S(k)
x . (II.3.23)

During an avalanche, the interface dynamics plays an important role and is described by
(II.3.19) with vt → w+

k . This is a clear difference with the statics, which is in particular
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responsible for the fact that energy is dissipated during the quasi-static process (see
Sec. II.2.3 for the complete discussion in d = 0). Note that since the sequence of
metastable states visited by the interface in this forward quasi-static process is a priori
different from the sequence of ground states in the static problem (in particular these
states have different roughness exponent), the sequence of avalanches is also different.
As for the static problem, we however expect similar scaling and universality to occur
in avalanches in the interface dynamics, with different exponents however. Interesting
observables associated with the kth avalanches are (i) as in the static case: wk the
location of the avalanche, ℓ(k) the lateral extension of the avalanche, S(k)

x the local size
of the avalanche at x, S(k) =

∫

x S
(k)
x the total size of the avalanche; (ii) observables

that only exist in the dynamics: T (k) the duration of the avalanches, x(k)
0 the first point

that becomes unstable at the beginning of the avalanche (the ‘seed’ of the avalanche,
note that this is another important difference with avalanches in the statics where this
notion does not make sense), v(k)(t, x) = ∂t′ut=wk/v+tx the velocity field inside the
avalanche, v(k) the mean velocity inside the avalanche, E(k) = η

∫

tx(∂tutx)2 the energy
dissipated during the avalanche. For these observables, scaling now notably imposes
similar relations as in the static case and some new relations, associated with new
observables and that involve the dynamic exponent z:

Sx ∼ ℓζd , S ∼ ℓd+ζd , T ∼ ℓz , v ∼ ℓζd−z . (II.3.24)

These observables are expected to be distributed with PDF with power-law behavior
as in the static case. From (II.3.24) it is clear that the different power-law exponents
are not independent. It is in this context that the Narayan-Fisher conjecture was first
introduced [108]. It can be ‘shown’ using the exact same arguments as in Sec. II.3.1
and reads

τS = 2 − γ

d+ ζd
. (II.3.25)

b A side remark/a word of caution: avalanche power-law exponents de-
pend on the driving

We have up to now discussed avalanches for an elastic interface driven by a parabolic
well: the driving is soft (µ → 0) and homogeneous on the system. This type of
driving is known to be relevant in various experimental situations and in particular to
reproduce the driving by a force right at the depinning transition, but other driving
can be considered and can be relevant in other situations. Another driving that has
already been considered is the case of avalanches for an interface such that the position
of part of the interface is imposed to be w (see e.g. [112, 113]). Here we consider the
situation where an interface of internal length L, dimension d, elastic Hamiltonian
(I.1.4) with g−1

q = |q|γ , in a random potential V (x, u), is free to move in R, except on
a subspace Eddr

∈ R
d of dimension ddr where its position is imposed to be w(t) = vt.

The extreme case ddr = 0 corresponds to an interface driven at a single point. Noting
x = (x1, · · · , xd) ∈ R

d the d−dimensional coordinates of x and taking for concreteness
Eddr

= {x = (x1, · · · , xddr
, 0, · · · , 0) ∈ R

d, (x1, · · · , xddr
) ∈ R

ddr) we thus study the
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problem

η∂tutx =
∫

y
g−1

x,yuy + F (x, ux)

utx = w(t) for x ∈ Eddr
(II.3.26)

for a very slow driving w(t) = vt and v ≃ 0+, and we study the forward quasi-static pro-
cess ux(w) = limv→0+ ut=w/v,x Obviously for x ∈ Eddr

, ux(w) = w is a smooth function
of w, but for x /∈ Eddr

one still expects to observe scale invariance and some non-

analytic behavior with avalanches at discrete positions wi: ux(w+
i ) = ux(w−

i ) + S
(i)
x .

Since the roughness exponent ζd is a bulk property of the system, it is expected that the
total size of these shocks still satisfies the relation S ∼ ℓd+ζd with the same roughness
exponent as before, where ℓ is the linear extension of the shocks in the space perpendic-
ular to the driven space E

⊥
ddr

. Here the only large scale cutoff for the avalanche linear
extension is L and the large scale cutoff for the avalanche total sizes is SL ∼ Ld+ζd .
Defining again the avalanche size distribution as ρ(S) :=

∑

i δ(S − S(i))δ(w − wi), we
thus expect that it displays a power-law behavior in between two cutoff scales S0 and
SL, as

ρ(S) = Lα 1
SτS

fcut

(
S

SL

)

gcut

(
S

S0

)

, (II.3.27)

where fcut and gcut are two scaling functions such that fcut(x) ≈ 1 for x ≤ 1, fcut(x)
quickly decays to 0 for x ≥ 1, gcut(x) ≈ 1 for x ≥ 1 and gcut(x) quickly decays to zero
for x ≤ 1. Let us now apply a reasoning similar to the one used in the derivation of
the NF conjecture (II.3.18). If 1 < τS < 2 the mean-density of avalanches per unit w
is dominated by the small scale cutoff as

ρ0 =
∫ ∞

0
ρ(S)dS ∼ LαS1−τS

0 . (II.3.28)

The first moment of the avalanche size distribution must still be 〈S〉ρ = Ld and is
dominated by the large scale cutoff as

〈S〉ρ = Ld ∼ LαS2−τS
L ∼ Lα+(2−τS)(d+ζs) . (II.3.29)

In this setting, it is natural to think that the mean number per unit of w of avalanches
scales as Lddr , implying α = ddr. Indeed, here avalanches can only be triggered by
the depinning of one of the points in the vicinity of one of the driven points E

⊥
ddr

and the number of avalanches is thus expected to be proportional to the number of
driven points. Using (II.3.29) we thus obtain a generalization of the Narayan-Fisher
conjecture:

τS = 2 − d− ddr

d+ ζd
. (II.3.30)

This relation is in agreement with the result [112, 113] for the case d = 1 and ddr =
0. We are unaware whether or not this general conjecture already appeared in the
literature.
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II.4 The functional renormalization group treatment of shocks

in disordered elastic systems: a short review

In this section we now review the use of the functional renormalization group to cal-
culate shock observables. We will begin by recalling the important results of FRG for
the statics of d-dimensional interfaces in Sec. II.4.1, and in Sec. II.4.2 we will show
how to apply FRG to the study of shocks.

II.4.1 The functional renormalization group for the statics of disordered
elastic interfaces

a Introduction

We thus consider the static problem of determining the statistical properties of the
ground state of a disordered elastic interface of internal dimension d in a quenched
random potential V (x, u)

ux(w) := argminu:Rd→RHV,w[u] (II.4.1)

= argminu:Rd→R

(
1
2

∫

x,y
g−1

x,y(ux − w)(uy − w) +
∫

x
V (x, ux)

)

.

where as usual g−1
x,y =

∫

q e
iq(x−y)(q2 + µ2)

γ
2 . The disorder potential is chosen centered,

e.g. Gaussian, with second cumulant1

V (x, u)V (x′, u′) = δ(d)(x− x′)R0(u− u′) , (II.4.2)

where R0 is the bare disorder cumulant that will be chosen either as associated with
disorder of the random bond type, the random field type, or eventually periodic disor-
der R0(u + ∆u) = R0(u) that can be relevant to some applications (see Sec. I.1.3 for
definitions). In low dimensions d ≤ 2γ, we know from Sec. I.2.3 that the disorder is
relevant at large scale, that the ground state is rough and exhibits scaling in the range
of scales |x − x′| ≪ ℓµ := 1/µ, and we will be interested in the µ → 0+ limit. The
application of renormalization group ideas to disordered elastic systems has a long and
rich history that we will not thoroughly review here. The phenomenon of dimensional
reduction recalled in Sec. I.2.3 warns us that naive perturbation theory in the disorder
badly fails and one has to find a way to do better. The way out proposed by the FRG
is as follows. Let us first introduce here the replicated action of the theory.

A convenient way to perform disorder averages is to consider the replicated action
of the theory (see [96] for some background on replicas) for the statics at temperature
T . Replicating the field ux → ua

x, a = 1, · · · , n, the action is

S[w; {ua
x}] :=

1
2T

n∑

a=1

∫

x,y
g−1

x,y(ua
x − w)(ua

y − w) − 1
2T 2

n∑

a,b=1

∫

x
R0(ua

x − ub
x) + · · · .(II.4.3)

1The fact that we simply assume here that the correlations of the potential in the internal space x
are described by a δ distribution, while the correlations in the external space u are given by a function
R0(u) even for short-range disorder notably comes from the fact that this structure is stable under
renormalization. That is, starting from a bare disorder with more complex short-range correlations in
internal space, at large scale it will look just as if we started from (II.4.2). Conversely, starting from a
bare disorder with ‘trivial’ short-range correlations R0(u−u′) = σδ(u−u′), the renormalized disorder
at large scale will still be short-range in u space, but with a finite correlation length.
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here the dots indicate the eventual presence of higher cumulants of the random poten-
tial that will be generated by the renormalization procedure anyway. Physical, disorder
averaged observables of the ground state (II.4.1) of the Hamiltonian are obtained by
taking the limit of a path integral formula

O[{ux(w)}] = lim
n,T →0

∫ n∏

a=1

O[{u1
x}]D[ua]e−S[w;{uax}] . (II.4.4)

Fisher’s breakthrough and the development of FRG
Performing the naive perturbation theory of an observable (II.4.4) using an analytic
R0(u) again gives the dimensional reduction result with the Larkin roughness exponent
ζL = 2γ−d

2 . What is even more surprising with this result is the following: expanding
the even and analytic function R0(u) in (II.4.3) as R0(u) =

∑+∞
n=0

1
2n!C2nu

2n and
performing the rescaling valid at the Larkin fixed point

x = µ−1x̃ , ua
x = µ−ζL ũx̃=µx , T = µ−d+γ−2ζL , (II.4.5)

the disordered part of the action (II.4.3) is rescaled as

1
2T̃ 2

∫

x̃

n∑

a,b=1

∞∑

n=0

µαn 1
2n!

C2n(ũa
x̃ − ũb

x̃)2n

αn = −d− 2nζL − 2(−d+ γ − 2ζL) = (2γ − d)(1 − n) . (II.4.6)

Here for d < 2γ, C0 thus flows to 0 and is unimportant at large scale at the Larkin
FP, C1 = R′′(0) is left invariant as expected, but all the higher cumulants C2n with
n > 1 do flow and are relevant at the Larkin FP. This should lead the system to
flow away from the Larkin FP. However, as observed in [16], the contribution of all
higher cumulants simplify in the calculation of observables (the dimensional reduction
(DR) property). This was attributed to an underlying supersymmetric property of the
FT [17], or equivalently in a diagrammatic language, to the ‘mounting property’ of
diagrams associated with the field theory (II.4.3) [18]. The Larkin result is however as
we know incorrect (see the discussion in Sec. I.2.3). Escaping the Larkin FP using a RG
procedure calls for (i) a functional RG to take into account the fact that all cumulants
of the potential become simultaneously relevant for d < 2γ; (ii) a RG scheme that
somehow escapes DR. The solution first noted by Fisher in [114] is as follows. Using
a one-loop Wilson’s shell RG on the replicated action (II.4.3) with µ = 0 but with
a UV cutoff Λ > 0 that is sent to Λl = Λe−l to renormalize the complete function
R0(u) the bare cumulant R0(u) is renormalized into a function Rl(u) (it corresponds
to the cumulant of a renormalized disorder seen at large scale by the manifold, see
below). Following the RG flow, remarkably, the function Rl(u) becomes non-analytic
at a finite scale l = lc < ∞: the function ∆l(u) = −R′′

l (u) exhibits a cusp around 0:
∆l(u) − ∆l(0) ∼ ∆′

l(0
+)|u| +O(u2). The non-analyticity forbids the expansion (II.4.6)

and escapes DR. Several fixed point (FP) functions R(u) were found corresponding2

to the three classes listed above, i.e. random bond, random field and random periodic.
The found fixed point functions are of order O(ǫ) with ǫ = duc − d = 2γ − d, hence

2Other FP functions exist and correspond to disorder with long range correlations R0(u) ∼u→∞ uα.
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allowing to compute perturbatively any observable in an expansion in the non-analytic
renormalized disorder second cumulant R′

l(u). It was later argued in [115] that the non-
analyticity in Rl(u) is related to the presence of shocks in the ground state (this will
be clear below). Many developments followed this work and here we name a few: (i)
refinement of the result to two-loops using perturbative RG [116, 117]; (ii) development
of exact RG approaches [18, 118]; (iii) clarification of the role of the temperature
[119, 96]. References for the application of FRG to the depinning transition and to
avalanches will be discussed in Sec. II.5.1. In the following we will use the most modern
approach to FRG as presented e.g. in [96] and only state the results. We refer the
reader to [120, 121] for what are probably the most pedagogical introductions to FRG.

b Definition of the different functionals and the statistical-tilt-symmetry

Our preferred approach to FRG, as presented [96] to which we refer the reader for
more details, is to study the flow of the effective action of the replicated theory as the
strength of the confining well is varied from µ → ∞ to µ → 0. In the limit µ → ∞ the
fluctuations are frozen and the effective action is basically the bare action of the theory,
while in the limit µ → 0 that we want to study, the effective action takes a universal
scaling form. This type of approach is common in non-perturbative RG (see [122] for
a review) but here our final results will be perturbative. Although this presentation
can be quite cumbersome the first time it is probably the clearest way to understand
the validity and the interpretation of the main results of the FRG.

The renormalized disorder functional
Let us first define, for each realization of the disorder V , the renormalized disorder at
the scale µ for a well centered at wx, V̂µ[{wx}] as

e− 1
T

V̂µ[{wx}] =
∫

D[u]e
− 1
T

(
1
2

∫

x,y
g−1
x,y(ux−wx)(uy−wy)+

∫

x
V (x,ux)

)

(II.4.7)

Hence here we are considering the usual theory with a well position that is now in-
homogeneous in space. The renormalized disorder V̂µ[{wx}] is a functional of the well
position wx. It converges in the limit T → 0 to the energy of the ground state of the
Hamiltonian in the well w. In the limit µ → ∞, ux = wx and Vµ[{wx}] =

∫

x V (x,wx).
More generally the renormalized disorder combines the effects of the elasticity, the
thermal fluctuations and the disorder and we think of it as a renormalized disorder
seen by the interface on a scale ℓµ = 1/µ.

The W functional
On the other hand, let us consider, in the theory with wx = 0, the generating functional
for connected correlations in the replicated field theory:

eWµ[{jax}] :=
∫ n∏

a=1

D[ua]e−S[0,{uax}]+
∑

a

∫

x
jaxuax (II.4.8)

This functional is a standard object considered in field theory and is the sum of all
connected diagrams. Writing 〈〉S[0,.] the average with respect to the replicated action
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with w = 0 (II.4.3), the connected correlations Ga1,···an
x1,··· ,xn := 〈ua1

x1
· · ·uan

xn〉S[0,.] appear in
the polynomial expansion of Wµ as

Wµ[{ja
x}] = Wµ[0]+

1
2

∑

ab

∫

x,y
Ga,b

x,yj
a
xj

b
y+

1
4!

∑

abcd

∫

x,y,z,t
Ga,b,c,d

x,y,z,tj
a
xj

b
yj

c
zj

d
t +O(j6) . (II.4.9)

And connected correlations of the replicated field are obtained by applying functional
derivatives to Wµ. Wµ is an even functional of jx by statistical parity invariance of the
disorder. Here we assumed that it is analytic ∀T > 0.

The STS symmetry and the form of Ga,b
x,y

The Statistical-Tilt-Symmetry originates from the statistical translational invariance
of the disorder. The latter implies, for an arbitrary function φx (constant in replica
space)

S[0, {ua
x + φx}] = S[0, {ua

x}] +
1
T

∫

x,y
gx,yu

a
xφy +

1
2T

∑

a,b

∫

x,y
gx,yφxφy . (II.4.10)

This implies the identity for Wµ[{ja
x}], using jx = 1

T

∫

y g
−1
x,yφy,

Wµ[{ja
x + jx}] = Wµ[{ja

x}] + T
∑

a

∫

x,y
g−1

x,yj
a
xjy + n

T

2

∫

x,y
g−1

x,yjxjy . (II.4.11)

Taking a derivative with respect to jx at jx = 0 we obtain

∑

a

δ

δja
x

Wµ[{ja
x}] = T

∑

a

∫

y
gx,yj

a
y (II.4.12)

This being valid ∀n ∈ N and for any sources ja
x, this implies an infinite series of

identities for the ‘coefficients’ of the series expansion of Wµ[{ja
x}]. In particular, it

implies for the quadratic part
∑

b

Gab
x,y = Tgx,y , (II.4.13)

This is the same result as the one that would be obtained in the pure theory: the sum
of the connected correlations

∑

b〈ua
xu

b
y〉S[0,.] = Tgx,y is not modified by the disorder.

This indicates that connected correlations decay as e¯|x−y|/ℓµ with ℓµ := 1/µ. The
parameter µ is not modified by the renormalization. This fact was already heavily
used before. Other relations extracted from (II.4.12) are

∑

a2n
Ga1,··· ,a2n

x1,··· ,x2n = 0

Relating the Wµ functional and the renormalized disorder Vµ.
It is an elementary calculation to show that the Wµ functional is related to the renor-
malized disorder functional defined in (II.4.7) as

e
Wµ[{jax= 1

T

∫

y
g−1
x,ywax}]

e
− 1

2T

∑

a

∫

x,y
g−1
x,ywxwy =

n∏

a=1

e− 1
T

V̂µ[{wax}] . (II.4.14)

This important relation (its consequences will be shown below) was first shown in [123,
96]. Expanding in cumulants the right hand side of (II.4.9), and in replica sums the
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Wµ functional, one sees that the expansion in cumulants of the renormalized disorder
functional exactly gives Wµ[{ja

x = 1
T

∫

y g
−1
x,yw

a
x}] as, noting W̃µ[{wa

x}] := Wµ[{ja
x =

1
T

∫

y g
−1
x,yw

a
x}]

W̃µ[{wa
x}] = W̃µ[0] +

1
2T

∑

ab

∫

x,y
g−1

x,yw
a
xw

b
y +

1
2T 2

∑

ab

R̂[{wa,b
x }] +

+
∑

m≥3

1
n!Tm

∑

a1,··· ,am

Ŝ(m)[{wa1
x1

}, · · · , {wam
xm}] . (II.4.15)

where we have introduced the notation wa,b
x = wa

x − wb
x and

W̃µ[0] = −n

T
V̂µ[{wa

x}] (II.4.16)

R̂[{wa,b
x }] := V̂µ[{wa

x}]V̂µ[{wc
x}]

c
(II.4.17)

Ŝ(m)[{wa1
x1

}, · · · , {wam
xm}] := (−1)mV̂µ[{w1

x}] · · · V̂µ[{wm
x }]

c
(II.4.18)

Here STS implies that W̃µ[0] does not depend on {wa
x}, R̂[{wa,b

x }] only depends on the
difference wa

x − wb
x, and similarly the higher order cumulants of the renormalized dis-

order satisfy Ŝ(m)[{wa1
x1

+wx}, · · · , {wam
xm +wx}] = Ŝ(m)[{wa1

x1
}, · · · , {wam

xm}]. Note that
this expansion in cumulants is not trivially related to the expansion in ja

x performed
in (II.4.9) (e.g. R̂[{wa,b

x }] itself has an expansion in w).

The effective action
The last functional to introduce before we give the important results of the FRG is
the effective action functional Γµ[{ua

x}]. As usual in Field-Theory it is defined as the
Legendre transform of the Wµ functional:

Γµ[{ua
x}] = −Wµ[{ja

x}] +
∑

a

∫

x
ja

xu
a
x = −W̃µ[{wa

x}] +
1
T

∫

x,y
g−1

x,yu
a
xw

a
y

ua
x =

δWµ[{jb
y}]

δua
x

= T

∫

z
gx,z

∂W̃µ[{wb
y}]

δwa
x

. (II.4.19)

In terms of diagrams it corresponds to the sum of 1-particle irreducible diagrams
generated by the action S[0; {ua

x}]. The physical, disordered averaged observables are
contained in Wµ which can be obtained from the effective action Γµ by inverting the
Legendre transform (the latter is actually an involution). This was performed in [96].
In particular, it is shown that Γµ[{ua

x}] admits an expansion as

Γµ[{ua
x}] = Γµ[0] +

1
2T

∑

ab

∫

x,y
g−1

x,yu
a
xu

b
y − 1

2T 2

∑

ab

R[{ua,b
x }] +

−
∑

m≥3

1
n!Tm

∑

a1,··· ,am

S(m)[{ua1
x1

}, · · · , {uam
xm}] . (II.4.20)

And inverting the Legendre transform gives ‘nice’ relations between the cumulants of
the renormalized disorder and the ‘Gamma cumulants’. In particular we have Γµ[0] =
−W̃µ[0] and what will turn out to be the most important relation, the equality between
functionals

R[{wx}] = R̂[{wx}] . (II.4.21)
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c Exact RG approach: The Morris-Wetterich equation and the scaling
hypothesis

Let us first formulate the FRG result using an exact RG formalism and later connect
it to perturbative approaches. To formulate the exact RG equation, it is convenient
to define a slightly different effective action functional

Γ̂µ[{ua
x}] = Γµ[{ua

x}] − 1
2T

∑

ab

∫

x,y
g−1

x,yu
a
xu

b
y . (II.4.22)

The latter behaves well even for µ → ∞. Indeed, for µ → ∞, it is clear that the func-
tional Wµ in (II.4.8) can be evaluated using a saddle-point calculation around ua

x = wa
x.

Inserting the result into the Legendre transform (II.4.13) shows that limµ→∞ Γ̂µ[{ua
x}]

is exactly the expansion in cumulants of the bare disorder V (x, u):

lim
µ→∞

Γ̂µ[{ua
x}] = − 1

2T 2

n∑

a,b=1

∫

x
R0(ua

x − ub
x) + · · · , (II.4.23)

where again we have added dots to signify the presence of higher order cumulants if
the initial disorder is non-Gaussian3. As a function of µ, the effective action functional
satisfies the Morris-Wetterich equation [124, 125, 118, 96]

−µ∂µΓ̂µ[{ua
x}] = β[Γ̂µ][{ua

x}] , (II.4.24)

where the functional β function is

β[Γ̂µ][{ua
x}] = −1

2

∑

a

∫

x,y,z
µ(∂µgx,y)g−1

y,z

(

G−1
)a,a

z,x
, Ga,b

x,y = 1 − T

∫

z
gx,z

δ2Γ̂µ

δua
zu

b
y

.

(II.4.25)
At our level of rigor (II.4.23) is an (awfully complicated) well posed problem: we
have an initial condition at µ → ∞4 for a differential equation that we want to solve.
Actually we do not want to follow completely the RG flow from µ → ∞ to µ = 0+, but
rather, although it is not obvious, show that close to µ = 0, an appropriately rescaled
version of Γ̂µ[{ua

x}] tends to a fixed point functional. More precisely, reintroducing
explicitly T as a parameter and rescaling,

x = µ−1x̃ , ux = µ−ζs ũx̃ , T ∼ µ−θT̃ (II.4.26)

the scaling hypothesis can be phrased in an unambiguous way as follows. We require
that the effective action in the ‘tilde’ variables, that describe the large scale physics of
the original theory,

˜̂Γµ[T̃ ; {ũx̃}] = Γµ[T = µ−θT̃ , {ux = µζs ũx̃=µx}] (II.4.27)

converges, as µ → 0, to a constant, well-defined action:

lim
µ→0

˜̂Γµ[T̃ ; {ũx̃}] = ˜̂Γ∗[T̃ ; {ũx̃}] . (II.4.28)

3Note here that something bad can happen if the bare disorder has fat tails since then the expansion
in cumulants is ill-defined.

4If a small scale cutoff a is assumed then the initial condition (II.4.23) holds at µ = 1/a.
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Inserting the scaling form (II.4.27) into the RG equation (II.4.24), ˜̂Γµ[T̃ ; {ũx̃}] itself
satisfies a Morris-Wetterich equation with a rescaled β function:

−µ∂µ
˜̂Γµ[T̃ ; {ũx̃}] = β̃[˜̂Γµ][{ũx̃}] . (II.4.29)

And since −µ∂µ = −∂log(µ) and log(µ) →µ→0 −∞, (II.4.28) actually implies that the
limiting functional is a fixed point of the rescaled Beta function

β̃[˜̂Γ∗] = 0 . (II.4.30)

The hypothesis (II.4.28) is thus rather strong and allows us not to follow completely
the RG flow (since we are thus only interested in the fixed point), while defining the
Beta function in (II.4.24) as generating the flow associated with −µ∂µ (an not e.g. ∂µ)
is not a random choice. Obviously these are all strong hypotheses (that will not be
proven). Before we describe the solution of this problem at T = 0, let us note that
since the effective action contains the term 1

2T

∑

ab

∫

x,y g
−1
x,yu

a
xu

b
y where g−1

x,y is the bare
propagator that is not corrected by the renormalization (STS), the exponent θ must
be given by d− γ + 2ζs and there is only one unknown critical exponent here.

d Solving the Morris-Wetterich equation at T = 0 in d = duc − ǫ: the multi-
local expansion

The main result of the FRG approach to disordered elastic interface is: there exists
a solution of (II.4.30) such that, in the T → 0 limit, it converges to a fixed point

functional ˜̂Γ∗ that admits a perturbative expansion in ǫ = 2γ − d. In this limit the
action is non-analytic around ua

x = 0. This non-analyticity is smoothed at T 6= 0 on a
small scale called the thermal boundary layer, ua

x ∼ T̃ ∼ µθT . Considering carefully the
T → 0 by taking this smoothing into account allows to obtain the β function directly
at T = 0 [96]. In the end the structure of the solution is as follows. The functional
R[{ux}] can be separated into its local R(u) and non-local part R̃[u] as

R[{ux}] =
∫

x
R(ux) + R̃[{ux}]

(II.4.31)

where the decomposition is unambiguously defined by the fact that R̃[{ux}] is 0 for a
constant field ux = u for which R[{ux = u}] = LdR(u). At the fixed point, the func-
tion R(u) is O(ǫ), the non-local part R̃[{ux}] is O(ǫ2) and the higher-order cumulants
are S(m)[{ua1

x1
}, · · · , {uam

xm}] are O(ǫm). They can be computed by plugging the decom-
position (II.4.20) into (II.4.24) and assuming that they scale with ǫ as written above.
Using this decomposition, the differential equation for the local part can be closed, in
principle, up to an arbitrary order in ǫ. We now show this differential equation up to
order O(ǫ2) as obtained in [116]. Let us first introduce the loop integrals

I1 = µd−2γ Ĩ1 , Ĩ1 =
∫

q

1
(q2 + 1)γ

(II.4.32)

IA = µ2d−4γ ĨA , ĨA =
∫

q1,q2

1

(q2
1 + 1)

γ
2 (q2

2 + 1)
γ
2 ((q1 + q2)2 + 1)γ

+O(ǫ)
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Note that the combination ǫĨ1 stays finite as ǫ → 0. We will often use

Aγ
d :=

1
ǫĨ1

=
(2

√
π)d

2
Γ(γ)

Γ(γ + 1 − d/2)
(II.4.33)

= 2−1+2γπγΓ(γ) . (II.4.34)

Rescaling

R(u) = Aγ
dµ

ǫ−4ζsR̃(µζ
su) (II.4.35)

one obtains [116, 96]

−µ∂µR̃(u) = (ǫ− 4ζs)R̃(u) + ζuR̃′(u)
︸ ︷︷ ︸

rescaling

+
(

1
2
R̃′′(u)2 − R̃′′(0)R̃′′(u)

)

︸ ︷︷ ︸

1−loop

+
1
2
X
(

(R̃′′(u) − R̃′′(0))R̃′′′(u)2
)

− λs

2
X(R̃′′′(0+)2)R̃′′(u)

︸ ︷︷ ︸

2−loops

+O(R̃4) (II.4.36)

where λs = 1 and X = 2ǫ(2ĨA−Ĩ2
1 )

(ǫĨ1)2 , i.e. X = 1 +O(ǫ) for γ = 2 (short-range elasticity)

and X = 4 ln(2) + O(ǫ) for γ = 1. We are looking for a solution of the equation
−µ∂µR̃(u) = 0. Since we are expanding around d = duc where the disorder is only
marginally relevant, ζs is expected to be O(ǫ) and thus the solution of −µ∂µR̃(u) = 0 in
(II.4.36) is also, as announced, O(ǫ). The value of the exponent ζs = ǫζ1 + ǫ2ζ2

2 +O(ǫ3)
has to be adjusted so that a solution of (II.4.36) with the desired properties hold.
Note that if R̃∗(u) is a fixed point of (II.4.36), R̃(u) = 1

κ4 R̃
∗(κu) is also a fixed point

and thus there are several families of fixed points. Thus when talking about a FP
one has to specify one scale. Universal quantities can nevertheless be constructed as
e.g. R̃′′′′(0), R̃(0)/(R̃′′(0))2... (see [116]). A standard choice is to fix the value at 0 as
R̃∗(0) = ǫ. It was found that

• A single value of ζ1, ζ2 leads to a fixed point function in the random bond
universality class with R̃∗(u) quickly decaying to 0. The latter was obtained using
a shooting method in ([116]) as (the O(ǫ) result is coherent with the previous
result from [114]) ζ1 = 0.20829806(3) and ζ2 = 0.006858(1) for SR elasticity
(γ = 2).

• A single value of ζs leads to a FP in the random field universality class, i.e. with
R̃∗(u) ∼|u|→∞ |u| and R̃∗′′(u) decaying quickly to 0. It is given by ζs = ǫ/3+O(ǫ2)
(independently of γ). This result was actually argued to hold to any order [116]
in ǫ, in agreement with the simple Flory argument of Sec. I.2.3.

• For periodic disorder R̃∗(u) = R̃∗(u+ 1), the value of ζ is necessarily 0. Interest-
ingly in this case it was found in [116] that R̃∗(u) = f(ǫ)u(1−u) with f(ǫ) = O(ǫ)
a function. This form was also conjectured to hold to all order.
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Figure II.3: Cartoon of the shape of FRG fixed point functions ∆∗(u) = −R∗′′(u) for
the RB universality class (left) and the RF universality class (right).

These different fixed points were argued to be stable in [114, 116]. The typical shape
of the RF and RB FP functions ∆∗(u) = −R∗′′(u), here normalized as ∆∗(0) = ǫ, are
plotted in Fig. II.3. Other generic long-range fixed points with R̃(u) ∼u→∞ u2(1−α)

with ζα
s = ǫ

2(1+α) (holding presumably to all order) were also found and argued to
be stable as long as they lead to a roughness exponent larger than the RB roughness
exponent [116] (otherwise the system flows to the RB FP). Let us conclude this section
with a few remarks:

1. The first line of (II.4.36) (i.e. the rescaling and the one-loop part) were already
obtained by Fisher in [114] using a Wilson’s RG scheme and can be easily ob-
tained using a standard perturbative RG from the beginning.

2. It is instructive to study the flow of R̃′′(0) and R̃′′′′(0): to one-loop these close as
−µ∂µR̃

′′(0) = (ǫ− 2ζs)R̃′′(0) + R̃′′′(0)2 and −µ∂µR̃
′′′′(0) = ǫR̃′′′′(0) + 3R̃′′′′(0)2 +

4R̃′′′(0)R̃′′′′′(0). Starting from an initially smooth disorder at some scale µ0,
Rµ0(u), at the beginning of the flow the function stays analytic: R̃′′′(0) =
R̃′′′′′(0) = 0. At the beginning of the flow R̃′′(0) thus does not flow, and if it
were so for all time one would find ζs = ǫ/2 i.e. the dimensional reduction result.
However, R̃′′′′(0) becomes infinite, and thus the function non-analytic around 0,

in a finite renormalization time. More precisely, for µ > µc = µ0

(

3R̃′′′′
0 (0)

3R̃′′′′
0 (0)+ǫ

) 1
ǫ

,

one obtains R̃′′′′(0) = R̃′′′′
0 (0)ǫµǫ0

(3R̃′′′′
0 (0)+ǫ)µǫ−3R̃′′′′

0 (0)µǫ0
and R̃ becomes non-analytic around

0 for µ ≤ µc: the function ∆̃(u) = −R̃′′(u) acquires a linear cusp around 0:
∆̃(u) − ∆̃(0) ≃ ∆̃′(0+)|u| + O(u2). The occurrence of this cusp will be related
to shocks below. Note that once the cusp appears, R̃′′(0) starts to flow and the
system escapes dimensional reduction. Note that the cusp appears when the

system probes length scales larger than L′
c := 1/µc = 1

µ0

(

1 + ǫ
3R̃′′′′

0 (0)

) 1
ǫ

. Using

the simple estimate R̃′′′′
0 (0) ∼ ∆(0)

u2
c

, one shows that L′
c essentially reproduces the

Larkin length Lc computed in (I.2.25). Thus, following the renormalization group
flow, the system actually believes that it is flowing to the Larkin fixed point up
to a scale corresponding to the Larkin length where the cusp, associated with
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metastability in the system (see below), appears. The fact that no ‘supercusp’
appears later in the flow, i.e. all derivative of R̃ at 0 up to the fourth one remain
finite, was discussed in [116].

3. The second line of (II.4.36) was first obtained in [116] where the authors used
standard (although functional) perturbative RG to directly attempt to renormal-
ize the field theory at T = 0. The problem with this approach is that one then
encounters so-called ‘anomalous terms’ involving R̃′′′(0) and one has to decide
whether it is R̃′′′(0+) or R̃′′′(0−). The proper way to do so is to regularize the
non-analytic behavior by studying the zero temperature limit of the renormalized
theory at finite temperature as outlined above and reviewed in [96]. In [116] the
authors nevertheless obtained (II.4.36) with a value of λ a priori not specified
by the perturbative method, which was imposed to be one to respect the ‘po-
tentiality’ of the problem, i.e. the existence of FP function of the RB type (see
[116]).

4. The FRG equation (II.4.36) is both UV and IR universal. It is UV universal in
the sense that, by construction, it does not depend on the microscopic details of
the models. The more subtle property is to prove that it does not depend on the
chosen IR cutoff scheme [116], that was here chosen as a massive scheme.

II.4.2 Applying the functional renormalization group to shocks

In this section we now discuss the application of FRG methods presented in Sec. II.4.1
to the study of the shock statistics of the interface presented in Sec. II.3.1. We begin
by linking the non-analyticity of the fixed point effective action of FRG with the oc-
currence of shocks. We then show how FRG can be use to compute shocks observables
on the example of the density of total size of shocks.

a The cusp and the shocks

As already remarked we first note that as T → 0, the renormalized disorder potential
for a constant well V̂µ(w) := V̂µ[{wx = w}] defined in (II.4.7) converges to (assuming
no degeneracy of the ground state, which is true with probability 1 except at some
discrete positions)

V̂µ(w) =
1
2

∫

g−1
x,y(ux(w) − w)(uy(w) − w) +

∫

x
V (x, ux(w)) , (II.4.37)

where as usual ux(w) denotes the ground state of the interface as defined in (II.4.1).
Using the saddle-point structure in (II.4.1), one shows that the renormalized force at
the scale µ, defined by

F̂µ(w) := −∂wV̂µ(w) (II.4.38)

admits the expression at zero temperature

F̂µ(w) =
∫

x,y
g−1

x,y(w − ux(w)) =
∫

x
fx(w) with fx(w) = m2(w − ux(w)) . (II.4.39)
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where the second equality is true for elastic kernel of the form g−1
x,y =

∫

q e
iq(x−y)(q2 +

µ2)
γ
2 and we recall that m = µ

γ
2 . Hence, using (II.4.16), (II.4.21) and the definition

of the local part (II.4.31), one sees that the local part of the second cumulant of the
renormalized force at the scale µ, defined by,

∆(u) := −R′′(u) (II.4.40)

is linked to an observable of the ground state as

∆(w − w′) =
1
Ld
∂w∂w′ V̂µ(w)V̂µ(w′) =

m4

Ld

∫

x

∫

y
(w − ux(w))(w − uy(w)

c
. (II.4.41)

Or equivalently, in terms of the position of the center of mass of the interface defined
by

u(w) :=
1
Ld

∫

x
ux(w), (II.4.42)

we have

∆(w − w′) = Ldm4(u(w) − w)(u(w′) − w′) . (II.4.43)

This relation, first shown in [123, 96], has deep consequences. On its left hand side it
involves the second cumulant of the renormalized disorder that naturally appears in
the effective action of the replicated theory. As a function of m = µ

γ
2 , the rescaled

cumulant

∆̃(w) := (Aγ
d)−1µ2ζs−ǫ∆(µ−ζsw) (II.4.44)

obeys a RG equation that is the second derivative of (II.4.36). In the limit µ → 0 it
converges to a fixed point function, depending on the universality class of the initial
bare disorder. This fixed point function is non-analytic and exhibits a cusp around 0
(see Fig. II.3) and for small µ we thus have ∆̃(w) − ∆̃(0) ≃ ∆̃′(0+)|w| + O(w2). On
the right hand side on the other hand it involves a simple observable linked to the
ground state of the interface. This relation thus provides a protocol to measure the
FRG function ∆(u). The latter was first implemented in numerics with an excellent
agreement with the theory [105], and later also in experiments [61] (for the related
case of the depinning). On the other hand, since the left hand side of (II.4.43) is
non-analytic beyond the Larkin scale µc ∼ L−1

c this shows that the right-hand side is
also non-analytic beyond the Larkin scale. More precisely, using u(w) = w, (II.4.43)
can be rewritten as, introducing û(w) = u(w) − w,

(û(w) − û(0))2 = −2
∆(w)
Ldm4

. (II.4.45)

For a smooth motion, the left-hand side of (II.4.45) isO(w2) for small w. Obviously this
could just mean that with some probability û(w) ∼ √

w close to w = 0. The natural
interpretation from the study of d = 0 models, numerics (and physical intuition) is,
however, that with a small probability proportional to w, the center of mass of the
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interface makes a jump of size S/Ld, distributed with a PDF P (S) and (II.4.45) is
rewritten

ρ0w
〈S2〉P

L2d
+O(w2) = −2∆′(0+)w

Ldm4
+O(w2) , (II.4.46)

where 〈〉P denotes the average with respect to P and ρ0 already introduce in Sec. II.3.1,
is the density of shocks per unit length. Equivalently, using the definitions of the
density ρ(S) and PDF P (S) = ρ(S)/ρ0 of avalanche total size introduced in Sec. II.3.1,
see (II.3.5) and (II.3.6), as well as the relation shown there 〈S〉ρ = ρ0〈S〉P = Ld,
(II.4.46) is rewritten

Sm :=
〈S2〉ρ

2〈S〉ρ
=

〈S2〉ρ

2〈S〉ρ
=

σ

m4
, σ = −∆′(0+) ≥ 0 . (II.4.47)

Note that the relation (II.4.47) is exact here since ∆(w) is exactly given by (II.4.43)5.
It can also be easily obtained by assuming that the shock decomposition

ux(w) = cst+
∑

i

S(i)
x θ(w − wi) , (II.4.48)

holds at small µ. The basic idea of applying FRG to shocks is to interpret the short-
scale singularities that appear in the FRG flow of the effective action as consequences
of the presence of shocks as written in (II.4.48). Here (II.4.47) actually does not tell
much about the shock statistics since ∆′(0+) contains one non-universal scale κ as
discussed in Sec. II.4.1. Here we have thus linked this non universal scale to a precise
(non-universal) observable in (II.4.47). On the other hand the result of the FRG is that
all higher order cumulants of the renormalized disorder potential and the full effective
action can be obtained using the structure of the ǫ expansion as functions of ∆(u). In
the end this will imply that all higher order moments of the shock total size density
〈Sn〉ρ (and other shocks observables) can be expressed using the ǫ expansion in terms
of only one non-universal scale, that we can choose as Sm. The true input of FRG in
the study of shock statistics basically works in three steps:
(i) Assume the shock decomposition (II.4.48) and relate a given shock observable to a
disorder averaged observable of ux(w) (actually we will need disorder average observ-
ables of the ground state for different well position w in the same environment, see
below).
(ii) Compute the disorder averaged observable in the limit µ → 0 using the results of
the FRG.
(iii) Draw the consequences for the shock observable.

b Shocks and the ǫ expansion: the case of the one-shock total size distri-
bution

Let us now briefly recall how the above program goes for the one-shock total size
density ρ(S). The following is based on [109, 111]. Let us first study the scaling of Sm

5Up to a non universal scale it can also be computed in an ǫ expansion using FRG but that is not
what we are doing here.
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defined in (II.4.47) with µ and ǫ. Note that since for small m, ∆(w) takes the scaling
form ∆(w) = Aγ

dµ
ǫ−2ζs∆̃(µζsw) with ∆̃(w) = O(ǫ) a function close to one of the fixed

points of the FRG equation, we have, defining σ̃ = ∆̃′(0+),

Sm =
〈S2〉ρ

2〈S〉ρ
= Aγ

d

µǫ−ζs

m4
σ̃ = Aγ

dµ
−d−ζs σ̃ , (II.4.49)

and we recall m = µγ/2. First, note that Sm diverges as µ → 0 and that the scaling
(II.4.49) is consistent with the scaling hypothesis

ρ(S) = Lαµρ 1
SτS

fcut

(
S

Sm

)

gcut

(
S

S0

)

. (II.4.50)

with τS ≤ 2 that was made in the derivation of the NF conjecture in Sec. II.3.1 (there
Sm was denoted Sµ in (II.3.14)). Indeed, the second moment 〈S〉ρ diverges as Sm → ∞
and is controlled by the massive cutoff.
On the other hand, note that Sm = O(ǫ). Therefore it is natural to assume, and the
end result will be consistent with this assumption, that all moments of the avalanche
size distribution scale as, for n ≥ 2 ∈ N, 〈Sn〉ρ ∼ Sn−1

m ∼ ǫn−1µ−(n−1)(d+ζs). The
proper object which is expected to have a well defined (and universal) µ → 0, ǫ → 0
limit is thus the density of shocks total size in units of Sm:

ρ̃(S̃) := Smρ(SmS̃) . (II.4.51)

which is O(1). The latter is normalized as
∫

S̃>0 S̃ρ̃(S̃)dS̃ = Ld and
∫

S̃>0 S̃
2ρ̃(S̃)dS̃ =

2Ld. Let us introduce (almost) its Laplace transform (dropping from now on the tilde)

Z(λ) := L−d
∫

S>0

(

eλS − 1
)

ρ(S)dS . (II.4.52)

Here the −1 in the definition of Z(λ) is to ensure that (II.4.52) is finite even when
τS > 1 (which will be true, at least close to ǫ = 0) and the small scale cutoff S0

in (II.4.50) is sent to 0. The L−d ensures that it is finite as L → ∞. Altogether,
Z(λ) = λ + 2λ2 + O(λ3), and note that the coefficient in front of λ and λ2 are exact
(i.e. they are consequences of our definition). The real input of FRG is to provide the
ǫ expansion of the coefficients in front of the higher order terms in λn, n ≥ 3.

(i) The first step is now to relate Z(λ) to a disorder averaged observable of the
position field, assuming that the shock decomposition (II.4.48) holds. This was done
in [109, 111] and the result is

Z(λ) = ∂δGδ(λ)|δ=0+ , Gδ(λ) := L−de
λLd

Sm
(û(w+δ)−û(w)) (II.4.53)

Here û(w+δ) = 1
Ld

∫
(ux(w)−w). Let us give a quick justification that (II.4.53) holds: if

there is no shock between w and w+δ, Lnd(û(w+δ)−û(w))n is of order O(δn) and such
events do not contribute to (II.4.53). The order O(δ) in Lnd(û(w + δ) − û(w))n is thus
dominated by the probability ρ0δ that one shock occurred and (û(w + δ) − û(w))n ∼
ρ0δ〈Sn〉P + O(δ2) = δ〈Sn〉ρ + O(δ2). (Here we neglect possible contributions coming
from the simultaneous occurrence of more than one shock at w+, this hypothesis is
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sometimes referred to as the fact that the shocks are dilute, and the probability that
two shocks occurred is thus O(δ2)). This justifies (II.4.53) at each order in an expansion
in λ.

(ii) In the second step, we now want to compute the right hand-side of (II.4.53)
using FRG. To do this we need to consider the replicated action for several copies
of the same disordered elastic system. We therefore consider the theory for r = 2
position fields ui

x coupled to different parabolic wells centered at positions wi in the
same disordered environment (w1 = w and w2 = w + δ). The Hamiltonian of the
problem is

H[{u}, {w}] =
r∑

i=1

Hel[ui, wi] +
r∑

i=1

∫

x
V (ui

x, x) . (II.4.54)

This leads to a replicated action of the form

S[u] =
1

2T

∑

a,i

∫

xx′
g−1

xx′(ui
ax −wi)(ui

ax′ −wi)− 1
2T 2

∑

a,i;b,j

∫

x
R0(ui

ax −uj
bx)+ · · · (II.4.55)

where a is a replica index and R0 is, as in (II.4.2), the bare cumulant of the disorder
V (x, u). The results from FRG of the previous section for the r = 1 case can be
generalized6 to this new problem [109, 111]. In particular one shows that the effective
action of the theory is given by, in the limit µ → 0,

Γ[u] =
1

2T

∑

a,i

∫

xx′
g−1

xx′(ui
ax − wi)(ui

ax′ − wi) − 1
2T 2

∑

a,i;b,j

∫

x
R(ui

ax − uj
bx) +O(ǫ2) .

(II.4.56)
Here R(u) = O(ǫ) is the same renormalized disorder correlator as already introduced
in the previous section, while the neglected terms are higher-order terms in ǫ that
can be expressed as loop integrals with higher powers of R. Using the effective action
(II.4.56) is often referred to as the improved tree theory. Here one can a priori use
either the renormalized disorder correlator R(u) as computed to order O(ǫ) from the
FRG, or the true renormalized disorder correlator R(u), since (II.4.56) is then still true
up to O(ǫ2). The observable Gδ(λ) is then computed by singling out the first replica
as

Gδ(λ) = L−d lim
T,n→0

∫

D[u]e
λ
Sm

∫

x
(u2

1x(w2)−u1
1x(w1)−w2+w1)−S[u] (II.4.57)

This path integral is evaluated using a saddle-point calculation on the effective action
(II.4.56). The saddle-point equations are solved in the limit T, n → 0 (see [111]).

(iii) In the end one obtains the result, valid for λ < 1/4,

Z(λ) = λ+ Z(λ)2 +O(ǫ)

Z(λ) =
1
2

√
1 − 4λ+O(ǫ) . (II.4.58)

Which corresponds to a tree result for ρ(S):

ρ(S) =
Ld

2
√
πS3/2

e−S/4 +O(ǫ) . (II.4.59)

6Actually it is exactly the same theory since (II.4.55) is equivalent to taking all wi = 0 but coupling
the action to a source that depends on the replica index as done in Sec. II.4.1, see (II.4.14).
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In terms of the avalanche size distribution exponent we have thus

τS =
3
2

+O(ǫ) = 2 − γ

d+ ζs
+O(ǫ) . (II.4.60)

i.e. the result agrees well with the NF conjecture to order O(1) since ζs = O(ǫ) and
d = 2γ − ǫ. The results (II.4.58), (II.4.59), (II.4.60) have the status of mean-field
theory results for the shock total size density. We will see that these are equivalent to
the mean-field theory results obtained in the dynamics and there we will describe more
precisely what this mean-field theory corresponds to. Before we turn to the analysis
of avalanches at depinning let us make a few comments on (II.4.59)

• Dimensions in (II.4.59) are reintroduced using (II.4.51), in particular note that,
as announced, the dimensionful result for ρ(S) contains only one non-universal
scale that was here chosen as Sm (defined in (II.4.49)).

• The exponent τS = 3/2 appears completely universal, i.e. independent of both
the UV (hidden in σ) and IR (the massive cutoff) details of the models.

• The form of the distribution (II.4.59) (i.e. the exponential cutoff) is UV indepen-
dent but non-universal in the sense that it depends on the chosen IR regularizing
scheme, here a massive cutoff with ℓµ = 1/µ ≪ L. We note that such massive
cutoffs have been argued to be relevant in some experimental setups, as e.g. for
fluid contact line experiments [61].

• The above calculations have been extended using FRG to one-loop accuracy in
[109, 111]. One of the result shown there is that the avalanche size exponent
τS does agree with the NF conjecture. To this date this is the most precise
calculation and we thus have τS = 2 − γ

d+ζs
+O(ǫ2).

II.5 The functional renormalization group treatment of avalanches

in disordered elastic systems: a short review

In this section we now review the use of the functional renormalization group to cal-
culate avalanche observables. We will begin by recalling the important results of FRG
for the dynamics of d-dimensional interfaces at the depinning transition in Sec. II.5.1,
and in Sec. II.5.2 we will show how to apply FRG to the study of avalanches.

II.5.1 The functional renormalization approach to the depinning transition

a Introduction

In this section we now review important FRG results on the depinning transition. We
will try to make as many parallels as possible with the FRG theory for the static
problem and therefore give less details in this section. As for the static problem at
T = 0, a naive perturbative approach to the depinning transition gives the trivial
dimensional reduction result. The FRG approach escapes this phenomenon through a
renormalization procedure which involves a non-analytic action. As for the statics, this
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was first found by a one-loop perturbative analysis using Wilson’s RG [126, 127, 128,
108]. This analysis surprisingly led to results identical to the one-loop results in the
static problem, while the two problems are clearly different (in particular the random
bond universality class is unstable at depinning, see below). The FRG analysis was
extended to two-loops in [129], and there the differences with the statics appeared. An
interesting extension to the creep regime was also made in [26], though some questions
remain open. Pedagogical reviews of FRG for the depinning transition can be found
in [9, 43]. Let us now introduce the main objects and state the results. We study the
problem

η0∂tutx =
∫

y
g−1

x,y(w(t) − uty) + F (x, utx)

w(t) = vt . (II.5.1)

As usual g−1
x,y =

∫

q

√

q2 + µ2eiq(x−y) and the random force is chosen centered, Gaussian
with a second cumulant

F (x, u)F (x′, u′) = δ(d)(x− x′)∆0(u− u′) . (II.5.2)

We are interested to study (II.5.1) in the successive limits: (i) t → ∞ (more precisely
we want to describe correlations in the steady state reached by an interface described by
(II.5.1), the latter being uniquely defined up to trivial time-translations [20] and thus
the initial condition of (II.5.1) will be unimportant); (ii) v → 0+ (depinning regime);
(iii) µ → 0 (where observables are expected to reach a universal scaling limit and
avalanches to occur). Disorder-averaged observables of the position field are computed
using the Martin-Siggia-Rose (MSR) formalism (see [130, 131] for historical references
and [132, 133] for reviews).

O[{utx}] :=
∫

DuDû O[{utx}] e−S[u,û] ,

S[u, û] := S0[u, û] + Sdis[u, û] + Sdri[u, û] . (II.5.3)

Where here ût,x ∈ iR is the MSR response field and we have split the action between
the quadratic part S0, the disorder part Sdis and the driving part Sdri as:

S0[u, û] :=
∫

tx
ûtx

(

η0∂tutx +
∫

y
g−1

x,yuty

)

,

Sdis[u, û] := −1
2

∫

t,t′,x
ûtxût′x∆0(utx − ut′x) + · · · ,

Sdri[u, û] = −
∫

x

∫

y
ûtxg

−1
x,yw(t) = −m2

∫

x
ûtxvt . (II.5.4)

Here we have implicitly adopted the Ito convention to interpret (II.5.1) and the dots
in Sdis[u, û] indicates eventual higher order cumulants of the bare disorder force if the
latter is non Gaussian. In the following we will denote by 〈〉S the average with respect
to the MSR action (II.5.3). The latter is identical to the disorder average () in the
steady state of (II.5.1) for observables of the position field utx, but in the following we
will also consider averages involving the MSR field ûtx.



II.5. FRG approach to avalanches 65

b Definition of the different functionals and the statistical tilt symmetry

As in the statics, we consider the generating function for connected correlations:

eWµ[{jtx},{ĵt,x}] := 〈e
∫

t,x
jt,xutx+

∫

t,x
ĵt,xûtx〉S , (II.5.5)

and its Legendre transform, the effective action of the theory,

Γµ[u, û] := −W [j, ĵ] +
∫

t,x
jt,xutx +

∫

t,x
ĵt,x , (II.5.6)

where on the right hand side the sources j and ĵ are given in terms of the fields u and
û by inverting

ut,x =
δW

δjt,x
, ûtx =

δW

δĵt,x
. (II.5.7)

Let us begin with

The Statistical Tilt Symmetry in the dynamics and the relation statics/dynamics
Note that the total action S[u, û] has the symmetry, for any time-independent

function φx, S[u+ φx, û] = S[u, û] +
∫

txy ûtxg
−1
x,yφy. Hence, for any observable O[u, û],

we obtain the STS relation,

〈O[u− φ, û]〉S =
∫

DuDû O[{utx}] e−S[u+φ,û] = 〈O[u, û]e
¯
∫

txy
ûtxg−1

x,yφy〉S . (II.5.8)

In a differential form the latter is rewritten, applying δ
δφx

|φx=0 to the last identity,

∫

t
〈 δ

δutx
O[u, û]〉S = 〈O[u, û]

∫

t,y
g−1

x,yûty〉S , (II.5.9)

where we have explicitly used the symmetry g−1
x,y = g−1

y,x. For the observable O[u, û] =
utf ,xf , we thus obtain

δ(d)(x− xf ) =
∫

ty
g−1

x,y〈ût,yutf ,xf 〉S . (II.5.10)

Introducing the response function

R(xf − xi, tf − ti) := 〈ûti,xiutf ,xf 〉S , (II.5.11)

(recall here that from causality and the Ito convention that R(∗, t) = 0 for t ≤ 0) we
thus obtain that

∫

t,y
g−1

x,yR(xf − y, tf − t) = δ(d)(x− xf ) . (II.5.12)

I.e. inverting the elastic kernel and going into Fourier space we obtain

R(q, ω = 0) =
1

(q2 + µ2)
γ
2

, R(q, ω) :=
∫

q,ω
e−iqx−iωtR(x, t) . (II.5.13)
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On the other hand, note that in the theory without disorder, the bare response function
R0(xf − xi, tf − ti) := 〈ûti,xiutf ,xf 〉S0 is easily obtained as

R0(q, ω) =
1

iη0ω + (q2 + µ2)
γ
2

. (II.5.14)

Hence the zero frequency part of the response function R(q, ω) is not modified by
the disorder. Note that STS does not say anything on the non-zero frequency part.
Indeed the latter will be modified and the viscosity coefficient η receives a correction
from the disorder. Before we proceed, let us emphasize here an idea that can be seen
in much of the calculation performed in the dynamics: there is an analogy between
the time in the dynamic theory and the replica index in the statics. This can be seen
by comparing the calculations performed above with the one in the discussion of STS
in the static theory in Sec. II.4.1. This analogy can be pushed quite far [129]. Note
that in the dynamics, when two position fields are far from each other in time, they
are effectively independent but see the same disorder, just as would two replicated
fields with different replica index in the statics. More generally there will be close
links between observables at 0 frequency in the dynamics and observables in the static
theory.

c Main Results of FRG in the dynamics

The result of FRG for depinning is that the effective action of the theory Γµ[u, û] takes,
in the limit v → 0+ first and µ → 0 then, a scaling form as follows. Rescaling

x = µ−1x̃ , t = µ−z t̃ ,

ut,x = µ−ζd ũt̃,x̃ , ût,x = µd+z−γ+ζd ˜̂ut̃,x̃ . (II.5.15)

The rescaled effective action

Γ̃µ[{ũt̃,x̃}, {˜̂ut̃,x̃}] = Γµ[{ut,x = µ−ζd ũt̃=µzt,x̃=µx}, {ût,x = µd+z−γ+ζd ˜̂ut̃=µzt,x̃=µx}]
(II.5.16)

converges, as µ → 0, to a fixed point of a rescaled functional Beta function

lim
µ→0

Γ̃µ[{ũt̃,x̃}, {˜̂ut̃,x̃}] = Γ̃∗[{ũt̃,x̃}, {˜̂ut̃,x̃}] , β̃[Γ̃∗] = 0 . (II.5.17)

In this limit the effective action can be computed in an expansion in ǫ = 2γ − d. As
for the statics the critical exponents ζ and z are adjusted so that a fixed point indeed
exists. The latter has the same form as the initial action of the theory, except that
(i) one must replace η by a renormalized value

η → µγ−z η̃µ (II.5.18)

where η̃µ flows with the RG and converges to a constant η∗ := limµ→0 ηµ (which
depends on the flow, i.e. it is non-universal). The Beta function associated with the
flow of η was computed up to order O(ǫ2) in [129].
(ii) The disorder part of the effective action is changed to

Γdis[u, û] := −1
2

∫

t,t′,x
ût,xût′,x∆(utx − ut′,x) +O(ǫ2) , (II.5.19)
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where, as in the statics, the O(ǫ2) contains higher order cumulants (and the non-local
part of the second order cumulant) of the renormalized pinning force. The latter
admits an expansion in ∆, that can be computed using a standard loop expansion and
handling carefully the non-analyticities (see below). Close to the fixed point, ∆(u)
takes a scaling form

∆(u) = Aγ
dµ

ǫ−2ζd∆̃(µζdu) (II.5.20)

where ∆̃(u) = O(ǫ) is closed to a FP of the following FRG flow equation (computed
up to two-loops in [129]):

−µ∂µ∆̃(u) = (ǫ− 2ζd)∆̃(u) + ζdu∆̃′(u)
︸ ︷︷ ︸

rescaling

− 1
2

[(∆̃(u) − ∆̃(u))2]′′

︸ ︷︷ ︸

1−loop

+
1
2
X[(∆(u) − ∆(0))∆′(u)2]′′ − λd

2
X(∆̃′(0+)2)∆̃′′(u)

︸ ︷︷ ︸

2−loops

+O(∆̃4) (II.5.21)

where λd = −1. As in the statics, if ∆̃∗(u) is a fixed point, 1
κ2 ∆̃∗(κu) is also a fixed

point and thus there are several families of fixed points. The fixed point toward which
the system flows depends on the full flow (in particular it depends on the starting
point, i.e. microscopic parameters). Remarkably, to one-loop order, the flow equation
(II.5.21) is identical to the one of the statics. Namely, taking two derivatives of (II.4.36)
and defining ∆̃(u) = −R̃′′(u), one obtains exactly (II.5.21), up to the change λs → λd

(we remind λs = 1). Hence, up to two loop order, the FRG equation for the depinning
and the statics only differs by the coefficient in front of the ‘anomalous terms’ involving
the R̃′′′(0+) = −∆̃′(0+). This change has drastic consequences:

• The random bond universality class of the statics, the universality class for short-
range correlated disorder, is unstable in the dynamics and flows to the random
field universality class (see below). This is a signature of irreversibility in the
depinning process: since the interface always moves forward in the dynamics,
it does not know whether it is dragged in a random force landscape that is the
derivative of a potential or not. This difference was confirmed numerically in
[134].

• The random field universality class thus appears as the unique universality class
for the depinning with non-periodic short-range disorder. Moreover this random
field universality class is different from the static one. The roughness exponent
was shown to be different with ζd ≃ ǫ

3(1 + 0.143313ǫ) + O(ǫ3) for SR elasticity
(z ≃ 2 − 2

9ǫ − 0.0432087ǫ2 + O(ǫ3)) and ζd ≃ ǫ
3(1 + 0.39735ǫ) + O(ǫ3) (z =

1 − 2
9ǫ− 0.1132997ǫ2 +O(ǫ3)) for LR elasticity. The fixed point function ∆̃∗(u)

is also different from the static one, as confirmed numerically in [134].

• The random periodic universality class is also different and the fixed-point func-
tion is non-potential. See [129] for more details.
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This shows that it is crucial, when performing a perturbative calculation in the statics
or in the dynamics in terms of the non-analytic, renormalized disorder, to evaluate
carefully the possible non-analytical terms that arise because of the short-distance
singularities of the fixed point functions. In the statics as we explained, the correct
evaluation of such anomalous terms require to take very carefully the T → 0 limit. In
the dynamics the situation is somehow simpler and the short-distance singularities are
regularized by the non-zero velocity: since the renormalized disorder correlator always
comes with ∆(uxt − uxt′) and uxt ≥ uxt′ if t ≥ t′, there should never be ambiguities
regarding the side of the cusp that appears. In particular, the higher cumulants of the
renormalized pinning force (the O(ǫ2) in (II.5.19)) can be computed using a standard
loop expansion (at least up to two-loop [129]) directly at T = 0 and v = 0+.

Other exponents at the depinning transition
In our field theory approach to depinning, the correlation length ξ mentioned in the
introduction to the depinning transition in Sec. I.3.2 is equal to ℓµ := 1/µ since µ is not
corrected by the renormalization (STS). On the other hand, an appropriate definition
of the critical force is the mean force exerted by the well on the interface as v → 0+

in the steady state:

fc(µ) := lim
v→0+

µγvt− utx . (II.5.22)

Hence, at non-zero velocity, slightly above the depinning transition, we expect that
f − fc(µ) = µγvt− utx − limv→0 µ

γvt− utx to scale as µγ−ζd . Hence the exponent ν
defined by ξ ∼ (f − fc)−ν is thus

ν =
1

γ − ζd
. (II.5.23)

On the other hand the exponent β defined by v = ∂tutx ∼ (f − fc)β must scale as
µz−ζd = µβ(γ−ζd) and hence

β =
z − ζd

γ − ζd
. (II.5.24)

II.5.2 Applying the functional renormalization group to avalanches

a Introduction

Let us now extend our analysis of Sec. II.3.2 of shocks in the statics to the case of
avalanches in the dynamics. We first note the relation, shown in [97], that extends the
relation (II.4.43) of the statics:

∆(w − w′) = Ldm4(u(w) − w)(u(w′) − w′)
c
, (II.5.25)

where ∆(w−w′) is the renormalized second cumulant of the pinning force at depinning
and u(w) is the center of mass of the interface in the forward quasi-static process

u(w) :=
1
Ld

∫

x
ux(w) , ux(w) := lim

v→0+
ut=w/v,x . (II.5.26)



II.5. FRG approach to avalanches 69

Note that it slightly differs from (II.4.43) by the fact that the average in (II.5.25) is a
connected average. While in the statics we have u(w) = w, in the dynamics u(w) 6= w
and the difference m2(w−u(w)) is the critical force of the system. Apart from this the
interpretation and consequences of the formula (II.5.25) are mostly equivalent to those
of (II.4.43) and we refer the reader to the discussion after (II.4.43). In particular as
µ → 0, beyond the Larkin length, the left-hand-side of (II.5.25) takes a universal, non-
analytic scaling form (II.5.20). This non-analyticity is interpreted as the occurrence of
avalanches in the forward quasi-static process and we assume that in the scaling limit
ux(x) ∼ µ−ζd ,

ux(w) = cst+
∑

i

S(i)
x θ(w − wi) . (II.5.27)

As in the statics, the density for the total size of the shocks, S(i) =
∫

x S
(i)
x , is defined

as

ρ(S) :=
∑

i

δ(w − wi)δ(S − S(i)) , (II.5.28)

and does not depend on w in the steady-state. Without repeating the same discussion
as in the statics we obtain the two important exact relations

〈S〉ρ = Ld , Sm :=
〈S2〉ρ

2〈S〉ρ
=

σ

m4
= Aγ

dµ
−d−ζd σ̃ , (II.5.29)

where σ = −∆′(0+) and σ̃ = −∆̃′(0+) are O(ǫ). Let us now see how to relate more
generally an observable associated with the avalanche motion of the interface to an
observable of the MSR field theory. Before we do so let us note that it is important to
have in mind the discussion of avalanches in the d = 0 case given in Sec. II.2.2.

b The MSR response field as the generator of avalanche motion

Let us now consider the theory for the interface velocity field u̇tx = ∂tu̇tx. It is obtained
by taking a derivative of (II.5.1)

η0∂tu̇tx =
∫

y
g−1

x,y(v − u̇ty) + ∂tF (x, utx) (II.5.30)

We consider, for an arbitrary source λtx, the generating functional of the velocity field
in the steady state of (II.5.30)

G[λtx] := e
∫

tx
λtxu̇tx . (II.5.31)

Let us suppose that λtx is non-zero only in a time window t ∈ [0, T ]. The latter is
taken to be large compared to the typical time scale of the avalanche motion (so that
every avalanche that occurs in this time window terminates), and small compared to
the waiting time in between successive avalanche (that is of order O(1/v)). This will
be automatically ensured later by taking the limit v → 0 first and T → ∞ afterwards.
Let us now denote: (i) pti [u̇tx] the probability distribution functional of the velocity
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field of the interface knowing that an avalanche started somewhere along the interface
at time ti, normalized as

∫
D[u̇]pti [u̇tx] = 1; (ii) ρ0 the mean number of avalanches

per unit of driving. From the general picture of avalanche motion built on d = 0 toy
models in Sec. II.2.2, we know (i.e. that is how we would like to interpret the FRG
results) that in the limit v → 0+, G[λtx] admits the expansion

G[λtx] = (1 − ρ0vT ) + ρ0v

∫ T

ti=0

∫

D[u̇]e
∫

tx
λtxu̇txpti [u̇tx] +O(v2) . (II.5.32)

Equivalently we can write, introducing the density functional of the velocity field inside
an avalanche starting at time ti: ρti [u̇tx] = ρ0pti [u̇tx],

G[λtx] − 1 = v

∫ T

ti=0

∫

D[u̇]
(

e
∫

tx
λtxu̇tx − 1

)

ρti [u̇tx] +O(v2) . (II.5.33)

On the other hand, G[λtx] can be computed using the MSR field theory associated
with the velocity theory. The latter is a simple adaptation of (II.5.3)-(II.5.4) and we
obtain

G[λxt] =
∫

D[ũ]D[u̇]e
∫

xt
λxtu̇xt−S[u̇,ũ]+m2v

∫

tx
ũtx , (II.5.34)

where S[u̇, ũ] := S0[u̇, ũ] + Sdis[u̇, ũ] with

S0[u̇, ũ] :=
∫

tx
ũtx

(

η0∂tu̇tx +
∫

y
g−1

x,yu̇ty

)

,

Sdis[u̇, ũ] := −1
2

∫

t,t′,x
ũtxũt′x∂t∂t′∆0(utx − ut′x) . (II.5.35)

Taking now the expansion in v of (II.5.34) we obtain

G[λxt] − 1 = m2v〈
∫

tx
ũtxe

∫

xt
λxtu̇xt〉S +O(v2) . (II.5.36)

Hence, comparing (II.5.36) with (II.5.34) we identify

Z[λ] :=
∫ T

ti=0

∫

D[u̇]
(

e
∫

tx
λtxu̇tx − 1

)

ρti [u̇tx] = m2
∫

tx
〈ũtxe

∫

xt
λxtu̇xt〉S . (II.5.37)

Note now that from a diagrammatic point of view, all diagrams that contribute to

〈ũtxe
∫

xt
λxtu̇xt〉S correspond to ‘histories of the interface motion’ such that the first

non-zero velocity of the interface is at a time larger or equal to t and at a position x.
It is thus natural to identify

Zti,xi [λ] :=
∫

D[u̇]
(

e
∫

tx
λtxu̇tx − 1

)

ρti,xi [u̇tx] = m2〈ũtixie
∫

xt
λxtu̇tx〉S , (II.5.38)

where ρti,xi [u̇tx] is the density for the velocity field inside avalanches that are triggered
at time ti at the position xi. This formula first appeared in [2] (see Appendix B).
Although, as it is usual when dealing with avalanches, one could debate some heuristic
steps that were taken in its derivation, it is also coherent with the more controlled
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setting of avalanches following a kick in the force in a non-stationary setting in a
solvable model, and we refer to [2] (see Appendix B) for a more complete discussion of
(II.5.38). Let us now discuss how to use FRG to obtain a simplified action that allows
us to compute the ǫ expansion of the right-hand side of (II.5.38) in the limit µ → 0,
and thus obtain the ǫ expansion of a generic observable associated with the avalanche
motion.

c The simplified action for the motion inside avalanches in the velocity
theory

One way to use FRG to compute avalanche observables at depinning is to follow the
same route as presented for the statics in Sec. II.4.2. This route is presented in detail in
[101] and shown to be equivalent, to one-loop accuracy and for observables associated
with a single avalanche such as (II.5.38), to a simplified theory. We now present this
simplified theory following [101] and [43]. The essential steps will be:
(i) Express the bare disorder force-force cumulant ∆0(u) and viscosity coefficient η0

of the theory by formally inverting the one-loop expressions for ∆(u) and η obtained
from one-loop perturbative FRG.
(ii) Express the MSR action for the velocity theory in terms of the renormalized disorder
∆(u) and viscosity η.
(iii) Take into account the fact that the scale of avalanches, Sm, is O(ǫ) to obtain a
simplified action valid to describe the velocity field inside a single avalanche.
Let us start with the first step. The one-loop expression for ∆(u) in terms of ∆0(u) is
[129]

∆(u) = ∆0(u) − I1(∆0(u) − ∆0(0))∆′
0(u) . (II.5.39)

It can formally be inverted7 as

∆0(u) = ∆(u) + I1(∆(u) − ∆(0))∆′(u) . (II.5.40)

In the same way [129]

η = η0(1 − ∆′′
0(0+)I1) , η0 = η(1 + ∆′′(0+)I1) . (II.5.41)

Of course these expressions and the inversions that were made are completely formal:
while the bare disorder correlator appearing on the left of (II.5.40) can be a smooth
function of u, we know that the renormalized disorder on the right of (II.5.40) is non
analytic for µ ≤ µc. As usual with perturbative RG, this type of manipulations and
one-loop expression (II.5.39) are only appropriate to obtain the RG flow of the param-
eters close to a perturbative FP (see e.g. [135]). More precisely, taking the derivative
−µ∂µ of (II.5.39) at fixed ∆0(u) and then replacing on the right-hand side ∆0(u) by
the expression (II.5.40) leads to the correct one-loop Beta function (II.5.21). This
inversion allows however to obtain self-consistently a bare action that will lead, us-
ing a one-loop perturbative calculation of an observable, to the correct result up to

7The formal expansions and inversions of series performed here are controlled under the assumption
that ∆ and ∆0 are small and of the same order.
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order O(ǫ). Hence to obtain our avalanche observables (II.5.38) we will perform one-
loop perturbative calculations with an action similar to (II.5.35) with the replacement
η0 → η, ∆0 → ∆ and reminding ourselves in the end that counter-terms involving the
loop-integral I1 as in (II.5.40), (II.5.41) must be added.

The above considerations are the steps (i) and (ii) in the announced program. Let
us now finally perform the last step, namely use that Sm, the upper-cutoff of the
avalanche size distribution, is O(ǫ). We thus need to rescale (II.5.38) in a way that
allows us to study the limit µ → 0 and ǫ → 0. We will do the rescaling in two steps
for clarity. We thus consider

Z̃ti,xi [λ̃] := Zti,xi [λ = λ̃/Sm] = m2〈ũtixie
∫

xt

λ̃xt
Sm

u̇xt〉S (II.5.42)

Let us first take care of the scaling with µ: we must adapt the scaling of (II.5.15)
to the fields of the velocity theory. We thus take,

x = µ−1x̄ , t = µ−z t̄ ,

u̇t,x = µz−ζd ˙̄ut̄,x̄ , ũt,x = µd−γ+ζd ¯̃ut̄,x̄ , (II.5.43)

using here (̄) for rescaled quantity, and where the dots mean either ∂t or ∂t̄, depending
on the field to which they are applied. The elastic kernel is rescaled as g−1

µ−1x̄,µ−1ȳ =

µd+γ ḡ−1
x̄,ȳ with ḡ−1

x̄,ȳ =
∫

q e
iqµ−1(x−y)(q2 + 1)

γ
2 and we remind ourselves that in the limit

µ → 0 the rescaled renormalized disorder and friction are close to one of the fixed
points of the FRG flow:

η ∼ µγ−z η̃∗ , ∆(u) ∼ Aγ
dµ

ǫ−2ζd∆̃∗(µζdu) . (II.5.44)

Using this rescaling, our ‘model’ avalanche observable (II.5.38) is expressed as, using
that Sm = Aγ

dµ
−d−ζd σ̃∗,

Z̃ti,xi [λ̃] = µd+ζd

∫

D ˙̄uD ¯̃u ¯̃ut̄ix̄i e
(Aγ
d

)−1
∫

t̄,x̄
λ̃tx

˙̄utx
σ̃∗ −S̄[¯̇u,¯̃u]

, (II.5.45)

where the action S̄[¯̇u, ¯̃u] is now as in (II.5.34) with η → η̃∗, ∆̃ → ∆̃∗ and the de-
pendence on µ has completely disappeared (apart from the prefactor). Finally, we
must now ‘zoom’ in on the O(ǫ) scale of the avalanche motion that is controlled by
σ̃∗ = −∆̃∗′(0+) = O(ǫ). To this aim we thus rescale

˙̄ut̄,x̄ = Aγ
d σ̃

∗u̇t̄,x̄ , ¯̃ut̄,x̄ = (Aγ
d σ̃

∗)−1ũt̄,x̄ . (II.5.46)

This final rescaling allows us to make an expansion of the renormalized disorder cor-
relator around u = 0: for u of order 1 we have

∆̃∗(Aγ
d σ̃

∗u) = ∆̃∗(0) −Aγ
d(σ̃∗)2|u| +

1
2

∆̃∗′′(0)
(
Aγ

d σ̃
∗)2 u2 +O(ǫ4) . (II.5.47)
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This rescaling leaves the quadratic part of the action invariant but changes the disorder
part as, following the different changes of variables,

Sdis[u̇, ũ] = −1
2

∫

t,t′,x
ũtxũt′x∂t∂t′∆(utx − ut′x)

= −Aγ
d

2

∫

t̄,t̄′,x̄
¯̃ut̄x̄

¯̃ut̄′x̄∂t̄∂t̄′∆̃∗(ūt̄x̄ − ūt̄′x̄)

= − 1
2Aγ

d(σ̃∗)2

∫

t̄,t̄′,x̄
ũt̄x̄ũt̄′x̄∂t̄∂t̄′∆̃∗(Aγ

d σ̃
∗(ut̄x̄ − ut̄′x̄)) (II.5.48)

Sdis[u̇, ũ] = −
∫

t̄,x̄
(ũt̄x̄)2 u̇t̄,x̄ +

Aγ
d∆̃∗′′(0)

2

∫

t̄,t̄′,x̄
ũt̄x̄ũt̄′x̄u̇t̄x̄u̇t̄′x̄ +O(ǫ2) .

We refer the reader to [101] for more details on the simplification in the last line
that notably uses u̇t̄x̄ ≤ u̇t̄′x̄ for t̄ ≤ t̄′. Hence our model observable (II.5.45) can be
calculated when µ is close to 0 using the ǫ expansion as

Z̃ti,xi [λ̃] =
1
Sm

∫

Du̇Dū ¯̃utixi
e

∫

t̄,x̄
λ̃txu̇tx−S[u̇,ũ]

, (II.5.49)

where the action S[u̇, ũ] is similar to (II.5.34) with η → η̃∗, µ → 1 and the disorder
part is as in (II.5.48). The observable can be computed to order O(ǫ) using one loop
perturbative RG. Possible divergences appearing in the calculation are canceled by
counter-terms associated to the renormalization of η and ∆ (II.5.40) and (II.5.41)8. In
the following we conclude our introduction to the analysis of avalanches using FRG by
focusing on the mean-field theory that is obtained by retaining only the terms of order
O(1) in (II.5.48), i.e. we set ∆̃∗′′(0) → 0.

d The mean-field theory: the Brownian Force Model

Let us now discuss in more details avalanche observables in the dynamics of elastic
interfaces to lowest order in ǫ = 2γ − d. As discussed in the previous section we thus
only need to consider an interface whose velocity field dynamics inside an avalanche is
described by the action

O[{u̇tx}] :=
∫

Du̇Dũ O[{u̇tx}] e−S[u̇,ũ] ,

S[u̇, ũ] := S0[u̇, ũ] + Sdis[u̇, ũ] + Sdri[u̇, ũ]

S0[u̇, ũ] :=
∫

tx
ũtx

(

η∂tu̇tx +
∫

y
g−1

x,yu̇ty

)

,

Sdis[u̇, ũ] := −σ
∫

tx
ũ2

txu̇tx ,

Sdri[u̇, ũ] := −m2v

∫

tx
ũtx . (II.5.50)

Here we have reintroduced a possible driving velocity v ≥ 0, the different units and
the renormalized parameters η and σ. Let us first comment on the nature of this theory.

8A subtlety linked to calculations using the simplified action (II.5.48) is that one has also to take
care of a formal renormalization of µ forbidden by STS in the full theory. We refer the reader to
[43, 101] for more details on this issue.
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The Brownian Force Model
It is a simple exercise [101] to show that the MSR action (II.5.50) is equivalent to the
following stochastic equation for the velocity field of the interface:

η∂tu̇tx =
∫

y
g−1

x,y(v − u̇tx) +
√

2σu̇txξtx , (II.5.51)

where ξxt is a centered and normalized Gaussian white noise (GWN):

ξtxξt′,x′ = δ(d)(x− x′)δ(t− t′) . (II.5.52)

In turn, the equation (II.5.51) appears as the time derivative of an equation for the
position field of the interface as

η∂tutx =
∫

y
g−1

x,y(vt− utx) + F (x, uxt) , (II.5.53)

where for each x, F (x, u) is a Brownian motion (BM) in u independent of the others
and with increments

(F (x, u) − F (x, u′))2 := 2σ|u− u′| . (II.5.54)

This theory was called the Brownian Force Model (BFM) in [111, 101, 102]. Note that
the emergence of a BM should not be surprising: we obtained the BFM as the mean-
field theory for the depinning of interfaces in short-range disorder by linearizing the
correlator of the renormalized pinning force around the cusp because avalanches are
small, that is of order O(ǫ). For an arbitrary pinning force F̃ (x, u) that is stationary
with F̃ (x, u)F̃ (x′, u′)

c
= δ(d)(x− x′)∆(u− u′) and has a cusp, we have

(F̃ (x, u) − F̃ (x, u′))2 = 2(∆(0)−∆(u−u′)) ≃ −2∆′(0+)|u−u′|+O(|u−u′|2) . (II.5.55)

hence we retrieve generally the BFM with σ = −∆′(0+) through such considerations.
A subtle issue here is, however, that the BM is not a stationary process. While in
(II.5.51) we did not define precisely the initial condition since it is implicit that we are
looking at the stationary process for the velocity field u̇tx (which exists), the process
in (II.5.53) has generally no stationary state. The definition (II.5.53) thus requires
some precisions. One way is to make the Brownian motion F (x, u) stationary in u by
considering Brownian bridges in a large box [101] F (x, 0) = F (x,W ) = 0 with W ≫ 1
and looking at the process in the middle of the box in a width of order 1: u → W/2+u
with u = O(1). The correlations between the different BM constructed in this way
are then to leading order F (x, u)F (x′, u′)

c
= δ(d)(x − x′)(∆(0) − σ|u − u′|). This is,

however, a bit artificial and in this setup ∆(0) is huge, ∆(0) ∼ W . From a more
pragmatic point of view one can consider one-sided Brownian motion with the initial
condition that the interface is at rest at t = 0:

F (x, 0) = 0 , u̇tx = utx = 0 , (II.5.56)

In this setup one can now consider an arbitrary (non-stationary) driving w(t) with the
equation of motion

η∂tutx =
∫

y
g−1

x,y(w(t) − utx) + F (x, uxt) , (II.5.57)
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and w(t = 0) = 0. If w(t) is always increasing, ẇ(t) ≥ 0, the interface dynamics in the
velocity theory is described by the same MSR action as in (II.5.50) with Sdri[u̇, ũ] =
m2

∫

tx ũtxẇ(t).

The BFM as a FRG fixed point in any d and the scaling exponents of the BFM
As was first remarked in [111], and can be checked by differentiating the static FRG
equation for R̃(u) (II.4.36) three times with respect to u or the dynamic FRG equation
(II.5.21) once with respect to u to obtain in both cases a FRG equation for ∆̃′(u), the
model defined by

∆̃′(u) =
d

du
(−σ̃|u|) = −σ̃sign(u) (II.5.58)

is a fixed point of the FRG equation in any d with the exponent ζs = ζd = ǫ and
the dynamic exponent z = γ. Furthermore this fixed point was argued in [111] to be
stable and to be an exact fixed point for an arbitrary number of loops. In [102] it was
even shown that it is a fixed point of the (more complicated and not shown in this
manuscript) FRG equation for the dynamics at non-zero velocity. Note that inserting
the scaling (II.5.43) in (II.5.50) it is easily seen that the critical exponents z = γ and
ζ = ǫ does lead to a µ independent action (this is linked to the exact scale invariance
of the BM).

Back to the ABBM model
Let us now look at the dynamics of the center of mass in the BFM model. Defining
ut = 1

Ld

∫

x utx, we obtain from (II.5.51)

η∂tu̇t = m2(v − u̇t) +
√

2σLξt (II.5.59)

where we have used the identity in law 1
Ld

∫

x

√
u̇t,xξtx =

√
σLu̇tξt with σL = σ/Ld and

ξt a unit centered GWN ξtξt′
c

= δ(t − t′). The equation (II.5.59) is equivalent to the
time-derivative of the equation of motion of a particle in the ABBM model already
considered in Sec. II.2.2b. Hence the mean-field theory for the motion of the center
of mass of an elastic interface inside an avalanche at the depinning transition is the
ABBM model. In particular, the mean-field value for the power-law exponent τS is, as
in the shocks case, 3/2. Note that this value is also consistent with the NF conjecture
applied to the BFM in any d since τS = 2 − γ/(d+ ζ) = 3/2 as ζ = ǫ = 2γ − d. Let us
remind here the reader that this mean-field exponent is linked to the first return time to
the origin of the one-dimensional BM as shown in Sec. II.2.2. The mean-field nature
of the ABBM model was already argued on phenomenological grounds in [100, 42].
Here it has been derived from first principles using FRG but more importantly it is
now clear how to go beyond the predictions of the ABBM model. Namely, the BFM,
first introduced in [136, 101, 102], provides the proper mean-field theory to describe
spatial correlations in the avalanche process. Finally, FRG also permits to go beyond
mean-field and to compute corrections in an ǫ expansion. Before we close this chapter,
let us finally recall here that the BFM has an important exact solvability property and
show an application of this property.
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e Exact solvability of the BFM and the avalanche size distribution

We now discuss a remarkable solvability property of the BFM. We consider a non-
stationary case with an inhomogeneous driving wx(t) described by the equation of
motion

η∂tutx =
∫

y
g−1

x,y(wx(t) − utx) + F (x, uxt) , (II.5.60)

where as before the BM is one sided F (x, 0) = 0 and at t = 0 the interface is at rest
utx = 0 and wx(t = 0) = 0. We suppose that the driving is always increasing ẇx(t) ≥ 0
during a finite amount of time and note the total displacement wx =

∫∞
0 ẇx(t)dt. Our

goal is to compute the generating function for the velocity field for an arbitrary source
λxt:

G(λxt) := e

∫

t≥0,x
λxtu̇xt (II.5.61)

=
∫

D[u̇]D[ũ]e
−
∫

tx
ũtx

(

η∂tu̇tx+
∫

y
g−1
x,yu̇ty

)

+σ
∫

tx
ũ2
xtu̇tx+m2

∫

tx
ũtxẇx(t)

e

∫

t≥0,x
λtxu̇xt

Here we have rewritten the average over disorder using the MSR action. As first
remarked in [136], a remarkable simplification of the BFM is that the action for the
velocity theory is linear in u̇tx. The path integral over u̇ thus simply leads to a
functional Dirac delta distribution. One then easily obtains

G(λxt) = em2
∫

tx
ũλtxẇx(t), (II.5.62)

where ũλ
tx is the solution of the ‘instanton’ equation:

η∂tũtx −
∫

y
g−1

x,yũty + σũ2
tx + λtx = 0 (II.5.63)

with the condition ũtx = 0 for t ≥ tmax = min{t ∈ R, λxt′ = 0 ∀t′ ≥ t}. A remarkable
feature of (II.5.63) is that that it does not depend on the driving: the dependence
of the observable on the driving only appears in (II.5.62). Before we show a simple
application of this formula let us mention that the solution (II.5.62-II.5.63) can also
be obtained without using the MSR formalism, see [102].

Distribution of avalanche total size in the BFM
As an application of (II.5.62-II.5.63) consider the calculation of the PDF P (S) of the
total displacement of the interface S =

∫

t≥0,x u̇tx for a homogeneous driving wx = w.
The Laplace transform of P (S)

G(λ) :=
∫ ∞

S=0
P (S)eλSdS , (II.5.64)

is obtained using (II.5.62-II.5.63) with λxt = λ. The solution of II.5.63 is time and
space independent and reads

ũλ
tx =

m2

σ
Z(λSm) , Z(λ) =

1
2

(

1 −
√

1 − 4λ
)

, Sm := σ/m4 . (II.5.65)
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Note that the function Z(λ) already appeared in the mean-field calculation of the
shocks total size density in (II.4.58). Here we thus obtain

G(λ) = e
Ldw
Sm

Z(λSm) . (II.5.66)

Performing the Inverse-Laplace transform of (II.5.66) as in [101], we obtain the result
given in the discussion of the ABBM model (II.2.31) (there it was given in dimensionless
units Sm = 1 and with vTd = Ldw):

P (S) =
Ldw

2
√
π

√
SmS3/2

e− (S−Ldw)2

4SSm (II.5.67)

In order to see the link between this quantity and avalanches in the quasi-static steady
state of the interface, consider now the density of avalanche total size ρx=0(S) triggered
at an arbitrary time t at position x = 0 in the quasi-static steady state (for the velocity
theory) of the BFM. Its ‘Laplace transform’ is obtained using (II.5.65) with λxt = λ.
We can again use the instanton equation to evaluate the path-integral over u̇tx and we
obtain

∫

S>0

(

eλS − 1
)

ρx=0(S) = m2〈ũt,x=0〉S = m2ũλ
t,x=0 =

1
Sm

Z(λSm) . (II.5.68)

Inverting (see e.g. [101]), we obtain

ρx=0(S) =
1

2
√
π

√
SmS3/2

e− S
4Sm . (II.5.69)

And we note the equality

ρx=0(S) =
1
Ld

∂P (S)
∂w

|w=0 , (II.5.70)

that shows the link between avalanches defined in the quasi-static steady state or in
the non-stationary setting. Here the factor 1

Ld
accounts for the fact that avalanches

contributing to P (S) can be triggered with equal probability at any point of the inter-
face. Using the fact that the BFM is a Lévy jump process it is also possible to ‘invert’
(II.5.70) and obtain P (S) in terms of ρx=0(S). This is a similar calculation as the one
given in Sec. II.2.2 for the stationary velocity distribution of the ABBM model and it
is detailed in [1] (see Appendix A). Let us conclude this section by remarking that the
density of avalanche total size in the BFM (II.5.69) is the same as the one for shocks
in the statics (II.4.59) at the level of mean-field theory. This is not surprising since
the differences between depinning and statics only appear at two-loop order in FRG.

II.6 Summary of (and more context around) the results ob-
tained during the thesis

In this section we present the main results obtained on shocks and avalanches during
this thesis. We begin in Sec. II.6.1 with a quick summary of the previous section and
also present the actual research context around the obtained results. The next sections
present the main results obtained in [1, 2, 3].
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II.6.1 Introduction

Summary of the previous sections
In the last section we have introduced the notion of shocks and avalanches in disordered
elastic systems. We have shown how the Functional Renormalization Group can be
efficiently used to calculate universal properties of these jump processes: the latter
inherit the universality and the scale invariance of the FRG fixed points and gives
a natural interpretation to the non-analytic nature of these FPs. For non periodic,
short-range disorder we have shown that there are a priori two universality classes for
shocks, random bond and random field disorder, and a unique universality class for
avalanches that corresponds to random field disorder, which is however different from
the Random Filed universality class for shocks. Close to the upper-critical-dimension,
which depends on the range of the elasticity of the interface as duc = 2γ, we have
identified the relevant mean-field theory to describe the motion inside avalanches at
the depinning transition as the BFM model. The center of mass dynamics in the BFM
model was shown to be equivalent to the ABBM model. Based on these constructions,
we can now ask various questions about the universality in avalanche processes using
mean-field approaches, but also beyond mean-field in a controlled ǫ = duc−d expansion
of observables using the structure of the FRG FPs. Let us now review some known
results and introduce the subjects which will be the focus of Sec. II.6.2, Sec. II.6.3 and
Sec. II.6.4.

Critical exponents
The first focus of the community has been on the determination of the exponents char-
acterizing the power-law distribution of quantities such as the extension, duration or
total size of the avalanches. Since those are linked to one another by scaling relations
involving the critical exponents of the statics (for shocks) or of the depinning tran-
sition (for avalanches), an important question was to understand whether or not the
exponents can be entirely deduced from the exponents of the statics and depinning
transition. The NF conjecture that was presented earlier, first proposed for avalanches
at depinning [108] and later generalized to the case of shocks [106, 109], provides a
precise affirmative answer to this question. Since it is however based on unproven as-
sumptions, it is still important to obtain an independent derivation of these exponents.
At the mean-field level the exponent τS = 3/2, first derived in [103], agrees with the
NF conjecture. More recently, the NF conjecture was shown to hold up to one-loop
both for shocks and avalanches in [109, 111, 101].

Universal distribution
Besides critical exponents, it is interesting to obtain the full PDF of avalanche ob-
servables. Although these in general depend on the IR cutoff of the theory (i) cutoffs
such as the massive scheme discussed in this thesis have proved relevant in the descrip-
tion of some experimental setups [61]; (ii) the scaling with the cutoff of the different
avalanche observables distributions on the IR cutting length is also expected to be
universal, e.g. here Sµ ∼ µ−d−ζ ; (iii) this implies the universal scaling behavior of
various avalanche observables since the (sufficiently high order) moments of avalanche
observables distributions are dominated by their cutoff. For the ABBM model the
PDF of avalanche size and duration were obtained in [97, 136, 137, 102]. Still in the
ABBM model, the distribution of the maximum velocity inside an avalanche was also
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computed in [137, 138] where the authors also obtained the dependence of the expo-
nents on the velocity. The joint distribution of size and duration was obtained in [102].
The distribution of the extension of avalanches was computed in the BFM with SR
elasticity in d = 1 in [107]. Results beyond-mean field for the avalanche total and
local size distribution were obtained at one loop-order in [109, 111] (shocks) and [101]
(avalanches). These notably predicted the characteristic ‘bump’ that is observed in
numerics [139] in the avalanche size distribution close to the large-scale cutoff.

Universal scaling functions
Recently universality in avalanche processes has been pushed one step further and a
lot of attention was devoted to the study of universal scaling functions. Indeed, the
full velocity field of the interface u̇(t, x) inside an avalanche (where t refers to the time
since the beginning of the avalanche and x is the d-dimensional internal coordinate
according to some centering procedure) is expected to be universal and scale invariant.
For example, using the scaling (II.3.24) and a sum rule, for avalanches of fixed duration
T inside the scaling regime T0 ≪ T ≪ Tm, one expects to have the equality in law

u̇(t, x) ∼ T ζd/z−1vfixed duration(t/T, x/T 1/z) , (II.6.1)

where the rescaled spatio-temporal process vfixed duration(t, x) is a well defined T−independent
stochastic process. Alternatively, for avalanches of fixed total size S in the scaling
regime, one expects

u̇(t, x) ∼ S1−(z+d)/(ζd+d)vfixed size(t/Sz/(d+ζd), x/S1/(d+ζd)) , (II.6.2)

where the rescaled spatio-temporal process vfixed size(t, x) is a well defined S−independent
stochastic process. Of course it is one thing to write (II.6.1) or (II.6.2) but it is an-
other to prove it and to characterize in some way these rescaled stochastic processes.
In recent years a lot of attention has been devoted to the study of the mean temporal
shape of avalanches at fixed duration or size.

Ffixed duration
temporal shape(t) :=

∫

x
ufixed duration(t, x) ,

Ffixed size
temporal shape(t) :=

∫

x
ufixed size(t, x) . (II.6.3)

At the mean-field level in the ABBM model, the closely related mean temporal shape
at fixed size as a function of the interface position was first computed in [140, 141]. The
mean temporal shape at fixed duration was computed in [142], with the remarkably
simple result Ffixed duration

temporal shape(t) ∼ t(1 − t). Interestingly, these remarkable observables
are also well suited to investigate non-universal effects in avalanche processes which are
also interesting for practical applications. In particular, it was known experimentally
that the mean temporal shape at fixed duration of Barkhausen pulses present an
asymmetry and are skewed to the left, a fact which was attributed to the slow relaxation
of Eddy currents affecting the domain wall dynamics [143, 42]. Years later these
effects were introduced in a modified ABBM model, the temporal shape was again
computed analytically and presented the asymmetry observed experimentally [144].
Finally, results beyond mean-field (at one-loop) were recently obtained for the average
temporal shape at fixed duration and size in [43, 110]. The very recent comparison



80 Chapter II. Avalanches and shocks of disordered elastic interfaces

with experiments confirmed the increase of precision brought by one-loop corrections
[145].

The spatial shape of avalanches
On the other hand the equally interesting spatial shape of avalanches was left aside from
theoretical studies until recently. This was a rather disappointing state of affairs since
the latter could also be measured in some modern experimental setups on e.g. fracture
processes. In [1] (presented in Sec. II.6.2 and Appendix A), as will be detailed in the
next section, we made the first progress in this direction and showed that at the mean-
field level, i.e. in the BFM, the shape of avalanches in d = 1 becomes deterministic
in the limit of peaked avalanches S/ℓd+ζ ≫ 1 and we identified the limiting shape.
Fluctuations around this deterministic profile were also studied in an expansion in
ℓd+ζ/S. Comparison with numerical simulations showed a good to perfect agreement.
In [2] (presented in Sec. II.6.3 and Appendix B) we went further in analyzing the spatial
shape of avalanches. We first obtained the mean velocity field inside avalanches of fixed
total size at the mean-field level. This observable contains both the mean temporal
shape at fixed size previously studied and a new result, the mean spatial shape at fixed
total size. Going beyond mean field we were able to compute the one-loop corrections
to the mean spatial shape at fixed total size. Comparison with numerical simulations
showed a good agreement.

What about correlations?
Up to now all the observables that were mentioned concern what one may call ‘one-
shock/avalanche statistics’. However, an interface in a given disordered medium gener-
ally experiences a sequence of shocks/avalanches {wi, S

(i)
x }. The observables mentioned

before do not fully characterize the properties of this sequence since there can be cor-
relations between different shocks/avalanches. In the context of earthquakes the study
of these correlations has been a major focus of the field. From the phenomenological
point of view the main result is the Omori law that characterizes the number of af-
tershocks after a main shock [67]. Several mechanisms have been advanced to explain
these strong correlations, all involving an additional dynamical variable [146, 147]. For
elastic interfaces, in an attempt to explain the Omori law from simple mechanisms,
correlations between avalanches were until recently only studied as a result of such
additional degrees of freedom in the interface dynamics, such as relaxation processes
[148, 149] or memory effects [144]. Overall there is a belief that these correlations
are not captured by the simple interface model. While this is certainly true, it is
still clearly of interest to understand first the correlations in interface models (as the
example of the temporal shape of Barkhausen avalanches teach us, it is important
to first thoroughly understand what is universal to understand what is not!). These
universal correlations were remarkably left aside from all theoretical studies until re-
cently. There was even a belief that avalanches were uncorrelated in elastic interfaces
model. While this is certainly true for the ABBM and the BFM model, as we very
precisely show in [1] (presented in Sec. II.6.2 and Appendix A), correlations always
exist in non mean-field models. Using FRG we showed in [3] (presented in Sec. II.6.4
and Appendix C) that correlations between shocks in disordered elastic interfaces are
universal, of order ǫ and are controlled by the renormalized disorder correlator ∆(u).
While as we showed, the one-shock statistics is only sensitive to the behavior of ∆(u)
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around the cusp, correlations between static shocks feel the full shape of ∆(u). We
obtained quantitative results on the correlations that notably permits and original and
unambiguous distinction between the RB and RF universality class.

Before we begin a more detailed presentation of the results obtained during the
thesis (we will only present the main results and encourage readers to look at the
original research papers in Appendices A-B-C), let us mention here that the list of
problems introduced above is of course very incomplete. Other interesting important
open problems of the field will be mentioned in the conclusion.

II.6.2 Presentation of the main results of [1]

An exact formula for the local size of avalanches following an arbitrary driving in
the BFM on an arbitrary graph

In [1] we consider the BFM on an arbitrary graph and consider the avalanches
following a stepped driving (defined below). That is we consider the equation of
motion

η∂tuit =
N∑

j=1

cijujt −m2(uit − wit) + Fi(uit) (II.6.4)

where (i) i = 1, · · · , N ∈ N label the points of the graph; (ii) uit is the position of the
ith point at time t; (iii) the points are linked to one another by a time-independent
elasticity matrix cij such that

∑

j cij = 0 and cij ≥ 0 for i 6= j; (iv) the random forces
Fi(u) are a collection of independent one-sided BM with [Fi(u) − Fi(u′)]2 = 2σ|u− u′|
and σ ≥ 0; (v) the interface is at rest at time 0 and uit=0 = Fi(0) = wit=0 = 0; (vi) for
t ≥ 0 the driving verifies ẇit ≥ 0 and wi := wi,t=+∞ < ∞.

Under these conditions, we obtain an exact formula for the joint distribution of
avalanche local size defined as Si := ui,t=∞ (which is smaller than ∞ with probability
1) for an arbitrary driving ~w = (w1, · · · , wN ). We obtain (in dimensionless units
wi → wi/Sm and Si → Si/Sm with Sm = σ/m4)

P~w(~S) =
(

1
2
√
π

)N
(

N∏

i=1

Si

)− 1
2

exp

(

−1
4

N∑

i=1

(wi −∑N
j=1CijSj)2

Si

)

det (Mij)N×N

Mij = Cij + δij
wi −∑N

k=1CikSk

Si
, Cij = δij − 1

m2
cij . (II.6.5)

The formula is obtained both (i) using an ‘instanton’ method similar as (II.5.61-II.5.63)
to obtain formally the Laplace Transform (LT) of (II.6.5), the LT is then formally
inverted using heuristic calculations involving Grassmann variables; (ii) an exact proof
by deriving the Kolmogorov backward equation satisfied by (II.6.5) in the case where
the driving is ẇit = wiδ(t).

Exact formula for the densities and the BFM as a Lévy-Jump process
Based on the formula (II.6.5) and on the form of its Laplace Transform, we show that
the BFM is an infinitely divisible process. Namely ∀k ∈ N, ∀~w1, · · · , ~wk ∈ (R+)N such
that ~w =

∑k
i=1 ~wi, we have

P~w(~S) =
(
P~w1

⋆ P~w2
⋆ · · · ⋆ P~wk

)
(~S) . (II.6.6)
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This rigorously shows that the BFM on an arbitrary graph is a Lévy jump process
(see e.g. [104]). The motion of the interface is a succession of jumps independently

generated in time and in space by the densities ρi(~S) = ∂P~w(~S)
∂wi

|~w=0 which, for each
site i, corresponds to the density of avalanches triggered at the ith site (which depends
non-trivially on i on an arbitrary graph). Based on (II.6.5) we obtain an exact formula
for these densities and are able to take the k → ∞ limit of (II.6.6) as

∫

dN ~Se
~λ·~SP~w(~S) =

∞∑

n=0

∑

(i1,...,in)

wi1 . . . win

n!

n∏

l=1

∫

dN~sil(e
λ~sil − 1)ρi1(~si1) . . . ρin(~sin)

(II.6.7)
In (II.6.7) each term wi1 . . . win corresponds to events where the total motion ~S of the
interface was generated by n elementary avalanches triggered by the density ρi at the
site i1, · · · , in and ~S = ~si1 +· · ·+~sin (note that there can be several avalanche triggered
from the same seed, i.e. the terms ik = ik′ are contained in the above summation).

The formulae (II.6.5) and (II.6.7) are rather remarkable as they contain in principle
all the information on the spatial structure of avalanches in a completely general version
of the BFM model. The possibility to obtain such a formula is linked to the non-
trivial exact solvability property of the BFM. Although it was previously known that
the avalanches in the BFM are independent, this independence property was never
described as precisely as in (II.6.7). It is however fair to say that extracting more
information (e.g. a marginal probability) from these formulae is quite hard. In [1]
we are able to make progress in the fully connected model for arbitrary N . The
study of the large N limit from these formulae is rather instructive and we encourage
readers to read the 5th section of [1] (see Appendix A). Here we present only one result
extracted from (II.6.5) namely the deterministic shape taken by peaked avalanches in
the continuum BFM model with SR elasticity in d = 1.

The shape of peaked avalanches in the BFM with SR elasticity in d = 1
Taking the continuum limit of the above formulae, we obtain a formula for the

density of avalanches in the BFM with SR elasticity in d = 1 on a line of length L
with periodic boundary conditions as (in dimensionless unit, see Appendix A for more
details and Sec. II.5.2 for the definition of the BFM in the continuum)

ρ[Sx] ∼
(
∫ L

0 dxSx)
∫ L

0
1

S2
x

(
∏

x Sx)
1
2

exp

(

−
∫ L

0
dx

(Sx − ∇2Sx)2

4Sx

)

. (II.6.8)

This allows us to obtain observable such as the mean shape of avalanches using a
path integral on the shape of avalanches Sx with statistical weight ρ[Sx]. We show
that for avalanches of extension ℓ and total size S, in the limit of peaked avalanches
S/ℓ4 ≫ 1, the centered, reduced shape s(x) = 1

SℓS(x−x0)/l, defined such that the support

of the reduced shape is x ∈ [−1/2, 1/2] and
∫ 1/2

−1/2 s(x)dx = 1, becomes deterministic
s(x) = s0(x) (given by a saddle-point of the path integral associated with (II.6.8)) and
solves

Aφ(x) = φ(4)(x) +
5φ′(x)4

φ(x)3
− 10φ′(x)2φ′′(x)

φ(x)2
. (II.6.9)
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Figure II.4: Left: Mean shape obtained by averaging over the 1000 avalanches with
the largest S/ℓ4 in the simulations of the BFM of [1] (blue dots, compared to the
optimal shape s0(x) solution of (II.6.9) (red line). Right: test of the predicted behavior
s0(x) ∼ (x+ 1/2)4 close to the boundaries. Figures taken from [1].

where s0(x) = φ0(x)2 with φ0(x) the solution of (II.6.9) with the saddle-point parame-
ter A0 ensuring

∫ 1/2
−1/2 φ0(x)2 = 1. (II.6.9) was solved numerically with a high precision.

The solution is predicted to decay close to the boundary as s0(x) ∼x→1/2− (1/2 − x)4.
This is confronted with numerical simulations of the BFM (see Appendix A for more
details) with a very good agreement, as shown in Fig. II.4. In [1] we also investigate
the

√

ℓ4/S corrections to this deterministic behavior and obtain, based on the optimal
shape s0(x), the tails of the PDF of aspect ratios S/ℓ4. These additional results are
successfully confronted with numerical simulations (see [1] in Appendix A).

II.6.3 Presentation of the main results of [2]

The seed-centering

In [2] we pursued the analysis of the spatial shape of avalanche processes. One of the
main contributions of our work was to remark that the most convenient way to center
the shape of avalanches (from the perspective of performing analytical calculations) is
to center them around their seed. Indeed, as was shown with (II.5.38), the structure of
the MSR action for the depinning of elastic interface allows quite naturally to isolate
in any observable O[u̇tx] the contribution of avalanches starting at a given time ti and
position xi. In some sense this is natural since this is the only centering which respects
the causal structure of avalanche processes: the seed centering is a conditioning on
the stochastic process of the velocity field inside an avalanche with respect to its
initial condition. Another type of centering, e.g. the centering with respect to the
maximum or to the center of mass of the avalanche, does not respect this causality
since it corresponds to a conditioning on the full history of the stochastic process. It is
reasonable to think that it is this absence of an adapted centering procedure that made
the mean spatial shape of avalanches ignored from theoretical studies until this paper.
Of course, having a centering procedure that is analytical-work friendly is almost
useless if the observable cannot be measured in numerical simulations and experiments.
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Figure II.5: Plot of the mean-field result for the space-time mean velocity profile inside
an avalanche in d = 1 for SR (left, see (II.6.11)) and LR elasticity (right, see (II.6.12)).
Figures taken from [2].

One of the challenge of [2] was therefore to devise an algorithm allowing a simple study
of seed-centered shapes. We refer the reader to the paper [2] presented in Appendix B
for a description of this algorithm and only give the results here, everywhere presented
in dimensionless units x = x̃/m, t = τmt̃, S = SmS̃ with τm = η/m2 and Sm = σ/m4

(as usual m is the mass of the driving spring and η and σ are linked to the renormalized
parameters of the models, see Appendix B for details and Sec. II.3.2 and Sec. II.5.2
for the notations and definitions used in this section)

The mean velocity field inside avalanches of fixed size in the BFM in arbitrary d
We first showed that for the BFM in arbitrary d with SR and LR elasticity, the

scaling formula for the mean value of the velocity field inside seed-centered avalanches
of fixed size S in the scaling regime

〈u̇tx〉S = S
ζ−z
d+ζ F (t/S

z
d+ζ , x/S

1
d+ζ ) , (II.6.10)

holds with a simple scaling function for SR elasticity in arbitrary d, ∀S

F (t, x) = 2te−t2 1
(4πt)d/2

e−x2/(4t) , (II.6.11)

and for LR elasticity (obtained in arbitrary d in Fourier space and in d = 1 in real
space) ∀S ≪ Sm

F (t, x) = 2te−t2
∫

q
eiqy−|q|t =d=1

2t2e−t2

π(x2 + t2)
. (II.6.12)

These are shown in Fig. II.5 but have not been measured in simulations.

The mean spatial shape of avalanches of fixed size in the BFM and at one loop for
SR elasticity

Integrating (II.6.11) with respect to time leads to the mean shape of seed centered
avalanches in the BFM for SR elasticity in arbitrary d. The latter can be checked to
satisfy the following scaling form ∀S, equivalently written in Fourier or real space

〈S(x)〉S = S
1− d

d+ζ Fd(
x

S
1
d+ζ

) , 〈S(q)〉S = SF̃d(qS
1
d+ζ ) . (II.6.13)
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Figure II.6: Analytical results at MF and O(ǫ) level for the universal scaling function
F̃d=1 in Fourier space (Left) and Fd in real space for d = 1 (Middle) and d = 2 (Right)
for SR elasticity. Black lines: tree/mean-field results. Dotted blue lines: universal
corrections, δF̃1(q) (left, O(ǫ) correction in Fourier space in d = 1), δF1(x) (middle)
and δF2(x) (right). Red-dashed lines: O(ǫ) estimate obtained by simply adding the
corrections to the MF value. Red lines: improved O(ǫ) estimate, which, through a re-
exponentiation procedure, takes properly into account the modification of exponents
(II.6.17) and (II.6.18) (see [2] in Appendix B). Note that the cusp at the origin of the
avalanche shape at O(ǫ) is not obvious in this plot since the non-analyticity is rather
small, but it can be emphasized using a log-log scale. Figures taken from [2].

Fd(x) can be expressed using hypergeometric functions (see [2] in Appendix B), and
F̃d(q) has the remarkably simple, d−independent form

F̃BFM
d (q) = F̃BFM(q) = 1 −

√
πq2

2
e
q4

4 erfc

(

q2

2

)

. (II.6.14)

The result for these scaling functions in the BFM in any d in Fourier space and in
d = 1, 2 in real space are shown in black in Fig. II.6.
For more realistic models of interfaces in a short-range (SR) correlated disorder, the
above results are the O(ǫ0) results to the mean spatial shape of avalanches. In order
to go beyond mean-field, we use the results of FRG and in [2], using the simplified
action (II.5.48), we were able to compute the O(ǫ) corrections to the mean shape. In
Fourier space we show that the scaling (II.6.13) is still compatible with one-loop FRG
in the scaling regime S ≪ Sm and we obtain the O(ǫ) correction

F̃BFM
d (q) = F̃MF(q) + δF̃d(q) +O(ǫ2) , (II.6.15)

where δF̃d(q) = ǫF̃ (1)(q). Here F̃ (1)(q) =
∫

C
dµ
2iπe

µH̃(µ, q) is obtained as an Inverse
Laplace Transform (ILT) µ → 1 of:

H̃(µ, q) =
4
√
π

9

[
2 − 3γE

8
1

q2 + 2
√
µ

− 4
√
µ

(q2 + 2
√
µ)2

(II.6.16)

×
(

q2 + 9
√
µ

q
√

q2 + 8
√
µ

sinh−1




q

2
√

2
√
µ



− 1 +
3
16

ln(4µ)
)]

,



86 Chapter II. Avalanches and shocks of disordered elastic interfaces

where γE is Euler’s Gamma constant (see [2] in Appendix B for the choice of the
contour C). We then define the correction to the mean shape in real space as the
d-dimensional Fourier transform δFd(x) =

∫ ddq
(2π)d

e−iqxδF̃d(q). We were not able to
perform the ILT of (II.6.16) in full generality but obtained the behavior of the mean
shape in Fourier space at small and large q and in real space at small and large x. In
particular we show that:
(i) At large q in Fourier space,

F̃d(q) ≃q≫1 Ãdq
−η̃d , η̃d = 4 − 4ǫ

9
+O(ǫ2) , (II.6.17)

with a universal prefactor Ãd = 2(1 − (2 + γE
4 )2ǫ

9 ). In real space this implies, in the
expansion of Fd(x) at small x, a non-analytic term ∼ |x|ηd with ηd = η̃d−d = 5ǫ

9 +O(ǫ2).

Restoring the S dependence from (II.6.13) this leads to 〈S(q)〉S ∼q→+∞ S
1− η̃d

d+ζ q−η̃d

and the non-analytic part 〈S(x)〉n.a
S ∼x→0 S

1− η̃d
d+ζ |x|ηd . Note that in the BFM case

(retrieved by taking ǫ = 0) the value η̃d = 4 = d + ζBF M implies that the large q
behavior of 〈S(q)〉S does not depend on S. This may seem natural: in the BFM the
small scales do not know about the total size of the avalanche. A generalization of this
property to the SR disorder case would suggest the guess η̃guess

d = d + ζ. Our O(ǫ)
result however explicitly shows that this property fails and η̃d > d + ζ (at least close
to ǫ = 0). Hence in the SR disorder case the large avalanches tend to be more smooth
than small avalanches. Note that the predicted value of ηd is smaller than 2 in all
physical dimensions: this non-analytic term should actually dominate the behavior of
Fd(x) around 0 (and thus lead to a cusp singularity).
(ii) At large x in real space, we obtain that the mean shape has a stretched exponential
decay as:

Fd(x) ∼ e−Cxδ , δ =
4
3

+
2
27
ǫ+O(ǫ2) , (II.6.18)

with a universal prefactor C = 3
4 + (7

√
3

36 − 1)2
9ǫ. Remarkably, using ζ = ǫ/3 + O(ǫ2),

this agrees to O(ǫ) with the general conjecture δ = d+ζ
d+ζ−1 that we justify in [2].

Comparison with numerical simulations
In [2], using an original algorithm to retrieve the seed of the avalanches we compare

the above theoretical results with simulations of the BFM and of a model with SR
disorder in d = 1, both with short-range elasticity. For the BFM (as it should since our
results are exact) we obtain a perfect agreement, see Fig. II.7. This demonstrates that
our observable is measurable in numerical simulations. For the model with SR disorder,
our results compare reasonably well with the results of the numerical simulations and
bring a substantial improvement compared to the mean-field results, see Fig. II.8. The
results look better in Fourier space: when integrated, the small discrepancy ∀q in
Fourier space gives a larger discrepancy around the origin in real space. Additional
numerical results are shown [2]. In particular it is shown that the cusp of the mean
shape for model with SR disorder that is predicted by our one-loop result is indeed
compatible with numerical simulations.

Some additional results can be found in [2], in particular we introduce and compute
to order O(ǫ) some universal ratios, which are quantities allowing us to efficiently com-
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Figure II.7: Lines: rescaled mean shapes of avalanches at fixed size S obtained from
the simulations of the BFM model in d = 1 in real (left) and Fourier (right) space, for
S = 10 (blue), S = 102 (red), S = 103 (green), S = 104 (purple) and S = 105 (yellow).
Dashed black lines: exact theoretical results in the BFM. No fitting parameter. Figures
taken from [2].

pare different shape functions when one scale is unknown. This could be particularly
useful for comparison with experiments.

II.6.4 Presentation of the main results of [3]

The two-shock density

In [3], presented in Appendix C, we investigated the presence of correlations at or-
der O(ǫ) in the sequence of shocks of the ground state (wi, S

(i)
x ))i∈Z for a d-dimensional

elastic interface in a disordered medium (we refer the reader to Sec. II.3.1 for defini-
tions). Since depinning/avalanches and statics/shocks at zero temperature for disor-
dered elastic interfaces are, for all we know, equivalent up to order O(ǫ2), our results
are expected to apply equally well for avalanches at the depinning transition. The phe-
nomenology is, however, as we will see, richer in the case of shocks due to the presence
of one more universality class (random bond) for short-range correlated disorder. We
investigate these correlations by looking at the two-shock density at a distance W > 0,
defined as,

ρW (S1, S2) :=
∑

i6=j

δ(w − wi)δ(S1 − S(i))δ(w +W − wj)δ(S2 − S(j)) .

Here
∫ w′

1
w1

dw
∫ w′

2
w2

dw′ ∫ S′
1

S1
dS
∫ S′

2
S2
dS′ρw′−w(S, S′) counts the mean number of pairs of

shocks such that the first shock occurred between w1 and w′
1, and the second between

w2 and w′
2, with sizes between S1 and S′

1, resp. S2 and S′
2. An absence of correlations

in the sequence of shocks would imply ρW (S1, S2) = ρ(S1)ρ(S2) where the one-shock
density ρ(S) was defined in (II.3.5). To investigate the presence of correlations we thus
study the connected two-shock size density ρc

W (S1, S2), defined as

ρc
W (S1, S2) := ρW (S1, S2) − ρ(S1)ρ(S2) . (II.6.19)
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Figure II.8: Lines: rescaled mean shapes of avalanches at fixed size S from the simula-
tion of the model with SR disorder in d = 1 in real (left) and Fourier (right) space for
S = 50 (blue), S = 102 (red), S = 103 (green), S = 104 (purple). Dashed black lines:
theoretical MF result. Red dashed line: improved O(ǫ) result taking into account the
modification of exponents (II.6.17) and (II.6.18). Blue dashed line on the right: O(ǫ)
obtained by simply adding one-loop corrections to the MF result. No fitting parameter.
Figures taken from [2].

At the mean-field level in the BFM, as we know (see Sec. II.6.2) shocks are independent
thus ρc

W (S1, S2) = 0. At order O(ǫ) however as we show below this is not the case and
ρc

W (S1, S2) = O(ǫ) is given by a universal scaling function.

An exact formula for the first connected moment
We first obtain an exact formula for the first connected moment

〈S1S2〉ρcW

[〈S〉ρ]2
= −∆′′(W )

Ldm4
. (II.6.20)

Here a subscript indicates the density with respect to which the average is taken. For
uncorrelated shocks the right-hand side of (II.6.20) would be 0. Here as usual ∆(W )
is the universal scaling function of the FRG, which can be measured as an observable
using (II.4.43). The above equation is a generalization to the two-shocks case of the
exact formula for Sm = 〈S2〉ρ/(2〈S〉ρ given in (II.4.47). For m close to 0 as we know
(see Sec. II.4.1) ∆(W ) takes a universal scaling form with

∆(u) = Aγ
dµ

ǫ−2ζdκ2∆∗(µζdu/κ) (II.6.21)

where κ is a non-universal microscopic scale. Depending on the range of correlations of
the initial disorder, ∆∗(u) = O(ǫ) is the fixed point of the FRG equation with ∆∗(0) = ǫ
of the RB or RF universality class. From II.6.20 the shocks appear positively correlated
for ∆′′(W ) ≤ 0 and anti-correlated for ∆′′(W ) ≥ 0. Taking a look at the cartoon of
the typical shape of the RB and RF fixed points presented in Fig. II.9, correlations
between shocks thus give an unambiguous distinction between these two universality
classes: for RF shocks are always anti-correlated, while for RB they are anti-correlated
at small distances and positively correlated at large distances. An exact equation
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Figure II.9: Cartoons of the typical shape of the renormalized disorder correlator ∆(W )
(black-dashed line) and of its second derivative ∆′′(W ) (red line) for the random field
(left) and random bond (right) universality classes (not to scale). Our results predict
that the shock sizes are always negatively correlated in the random field universality
class, whereas the random bond universality class exhibits a richer structure with
negatively (resp. positively) correlated shock sizes at small (resp. large) distances.
Figures taken from [3].

similar to (II.6.21) can be proved for avalanches at depinning. In this case random
bond bare disorder flows at large scale to random field disorder and thus avalanches
at the depinning are always anti-correlated.

The two-shock density at O(ǫ)
To go beyond the exact result (II.6.20) we use FRG in [3] to obtain ρc

W (S1, S2) at
first order in O(ǫ). We obtain

ρc
W (S1, S2) =

1
(Lµ)d

L2d

S4
m

Fd

( W

Wµ
,
S1

Sµ
,
S2

Sµ

)

. (II.6.22)

Where Wµ ≃ κµ−ζ , Sm ≃ Aγ
dκ∆∗′(0+)µ−(d+ζ) and the function Fd is universal and

apart from its three arguments depends only on the spatial dimension and range of
elasticity inside the interface (the form of the large scale cutoff, here exponential,
depends also on the chosen IR cutoff scheme of the theory). To first order in d = duc−ǫ,
and in the limit of large L and small µ, it is given by

Fd(w, s1, s2) ≃ Aγ
d

∆̃∗′′(w)
16π

√
s1s2

e−(s1+s2)/4 +O(ǫ2) . (II.6.23)

In [3] we use (II.6.23) to obtain a variety of results: the normalized PDF for
shocks sizes at a distance W , the conditional probability to observe one shock given
that another one occurred, and in particular the mean-density of pairs of shocks at a
distance W :

ρ2(W ) =
∫

dS1dS2ρW (S1, S2) = ρ2
0

[

1 − ∆′′(W )
Ldm4

(〈S〉P

2Sm

)2
]

+O(ǫ2) . (II.6.24)

Generalization to the local shapes
The factor 1

(Lµ)d
in (II.6.22) highlights the fact that correlations are local and avalanches

are correlated only if they occur in regions of space that are elastically connected (that
is at a distance |x− x′| ≪ ℓµ). To emphasize this local structure in [3] we investigated
the correlations between the local size of the shocks measured on arbitrary subspace
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Figure II.10: Left: Renormalized disorder ∆(u) measured in the d = 0 RB toy model.
Inset: its second derivative ∆′′(u), computed using a numerical fit of the measured
∆(u). Right: The same for the RF toy model. Figures taken from [3].

(see [3] in Appendix C for precise definitions). We obtained a result for the gener-
ating function of all connected moments. Here we only show the results for the first
connected moments for SR and LR elasticity: for SR we obtain

〈〈S1x1S2x2〉〉ρcW
= F11

d (
W

Wµ
,m|x1 − x2|) (II.6.25)

F11
d (w, x) = −2− d

2
−1π− d

2Ad∆∗′′(w)x2− d
2K2− d

2
(x)

+O(ǫ2) . (II.6.26)

where Kn(x) is a modified Bessel function of the second kind. For LR elasticity we
obtain

〈〈S1x1S2x2〉〉ρcW
= F11

d,LR(
W

Wµ
,m2|x1 − x2|) (II.6.27)

F11
d (w, x) = −(2π)− d

2Ad∆∗′′(w)x1− d
2K1− d

2
(x) +O(ǫ2) .

Comparison with numerical simulations of toy models in d = 0
In [3] we confronted our results with numerical simulations of toy models of a particle
on Z with either a random bond type potential, or a random field type potential. In
both cases, we measure the renormalized disorder correlator ∆(W ), the first and second
connected moment 〈S1S2〉ρcW

and 〈S2
1S2〉ρcW

, and the mean density of pairs of shocks
at a distance W , ρ2(W ). As shown in Fig. II.10 to Fig. II.12, we obtain in both cases a
perfect agreement for our exact formula (II.6.20). We also obtain a surprisingly good
agreement with our O(ǫ) formula for ρ2(W ) (II.6.24), considering that here ǫ = 4. The
results for the second connected moments 〈S2

1S2〉ρcW
are poorer and not shown here.

These simulations were more a proof of principle than a real test of our theory since
what we are really interested in is the case of interfaces for which FRG should work
better. However, we clearly see that these correlations exist, are not negligible, and
as theoretically found, possess an interesting structure since they allow to distinguish
between the RB and RF universality class.
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Figure II.11: Left: Comparison between the measurement of the normalized moment
〈S1S2〉ρc

W
〈S〉2

ρ
(blue dots) and the prediction from the exact result (II.6.20) using the mea-

surement of ∆(u) (red curve) in the RB toy model. The agreement is perfect as
expected. Right: The same for the RF toy model. Figures taken from [3].
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Figure II.12: Left: Comparison between the measurement of ρ2(W ) (blue dots) and
the prediction from the O(ǫ) result (II.6.24) using the measurement of ∆(u) (red curve)
in the RB toy model. We obtain a surprisingly good agreement. Right: the same for
the RF toy model. Figures taken from [3].
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II.7 Conclusion

The study of shocks and avalanche processes in disordered elastic interfaces is of out-
standing interest. On one hand avalanche type processes are observed in nature in
a variety of physical situations. From the statistical physics perspective, as complex
scale free spatio-temporal processes, they represent a remarkable field of applications
of universality ideas outside the standard study of continuous phase transitions in
equilibrium statistical mechanics. From a more conceptual perspective, they are fun-
damental processes at the core of the theory of disordered elastic systems. Indeed, they
are a direct consequence, and a characterization, of the presence of many metastable
states in the energy landscape of the system, and they dominate both the physics of
the statics and of depinning. Understanding avalanche processes has brought new light
to the functional renormalization group approach to disordered elastic systems. The
‘curiosity’ at the center of the theory, the non-analyticity of the effective action, is now
directly linked to avalanches: measuring the functional renormalization group fixed
point function in numerics and experiments is now possible.

In this thesis we have focused on the study of correlations and spatial shapes of
avalanches. In both cases we have obtained results beyond mean-field that unveiled a
rich structure. Many directions remain to extend these results. Concerning the spa-
tial shape of avalanches, a natural extension would be to obtain one-loop results for
the spatial shape with a long-range elastic kernel, which is of immediate experimental
interest, or also one-loop results for the mean-velocity field inside avalanches. Con-
cerning the correlations in avalanche processes, it would be interesting to extend our
results to the dynamics. Although we have argued that our results obtained in the
case of shocks should apply equally well to avalanches at depinning, it surely remains
to be shown. More importantly, some features of the avalanche process at depinning
are not present in the case of shocks, in particular the notion of seeds. Analyzing
the correlation between the seeds of successive avalanches would be a very natural
characterization of the non-Lévy nature of the avalanche process beyond mean-field.
A complementary direction of research would be to gain a better understanding of
correlations induced by mechanisms not captured by the elastic interface model, e.g.
memory effects in the dynamics as in [144]. Finally, for both the shape of avalanches
and correlations, it would be highly interesting to compare the results with refined
simulations (particularly for the correlations where ours were performed in d = 0),
and with experiments. Comparing the temporal shape of avalanches computed in the
ABBM model with the shape of Barkhausen pulses measured in soft magnets has trig-
gered important developments that we reviewed. It would be interesting if similarly
we could learn new aspects of the (eventually non-universal) physics e.g. of fracture
processes by comparing the spatial shape of avalanches with our results.

Many other interesting open (and difficult) questions not tackled during this thesis
remain. For example a better understanding of the functional renormalization group
approach to the dynamics of disordered elastic interfaces at finite temperature and/or
velocity would be of great interest. For avalanches this would lead to a better char-
acterization of avalanches during the creep dynamics, as recently investigated in [32].
In Barkhausen noise experiments, it is observed that a non-zero velocity modifies the
avalanche exponents in materials with an effective LR elasticity, but not for materi-
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als with SR elasticity [45]. While the velocity dependence of the exponents is known
in the ABBM model, a FRG approach is surely necessary to understand such thin-
ner effects. Similarly as for the effect of the temperature on avalanches, the effect of
quantum fluctuations on avalanches (related to the notion of quantum creep) remains
to be understood. Another interesting problem, of immediate experimental interest
for fracture experiments, is to understand the statistics of clusters in avalanches for
disordered elastic interfaces with LR elasticity (a question which was swept under
the carpet during most of this chapter since we were effectively considering the total
avalanche, which is eventually formed of several smaller avalanches). Finally it would
be interesting to understand how to extend our results and methods to models close
but not equivalent to disordered elastic interfaces, e.g. by taking into account plastic
deformations or an additional conservation law as would be relevant for forced-flow
imbibition experiments.
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Chapter III

Exact solvability, directed polymers
in 1+1d random media and KPZ uni-
versality

In this chapter we will focus on the study of the static properties of directed polymers
(DPs, the d = 1 problem) with short-range elasticity (γ = 2) in a random bond type
potential at a finite temperature T in dimension N = 1. Taking a look at the phase
diagram of Fig. I.3 drawn in Chapter I, the large scale properties of the system are
predicted to always be described by a strong disorder fixed point. Of course one can
use the results of Sec. II.4.1 to study this FP by taking ǫ = 3 (assuming the ǫ expansion
has a sufficiently large radius of convergence) but that is not what we will do here. In
fact in this chapter we will not focus so much on this FP. Rather, guided by the belief
that it exists, we will study very specific models with exact solvability properties, i.e.
for which exact analytical methods are available1. The large scale analysis of exact
results obtained for peculiar models will then lead to indirect information about the
FP. The main issues with these methods is that they will not be robust to arbitrary
small perturbations of the model. In particular we will study models of DP on the
square lattice that are exactly solvable, for a given distribution of random energies,
at a unique temperature. Guided by the qualitative analysis of Chapter I we however
know that the temperature is irrelevant at large scales and therefore believe that the
universal properties do not depend on its choice. Determining from the solution of the
model which property is universal will not always be trivial, however, see in particular
Sec. III.3.4. From the point of view of universality, while the choice γ = 2, d = N = 1
and RB disorder can seem awfully restrictive compared to the more general analysis
performed in Chapter I and Chapter II, we will see that (i) by restricting to this choice
we will obtain very sharp results; (ii) this universality class is actually very large;
(iii) results that, to this date, have only been obtained using exact methods have
been measured in modern experimental settings. For these first two points we already
refer the reader to Sec. I.3.3 where the links between the continuum DP problem and

1To be fair with FRG, let us mention here more precisely that it is also an exact method since it
provides an exact perturbative expansion of observables in an ǫ expansion. Its application in d = 1 is,
however, necessarily inexact since in practice one needs to truncate the expansion to a given order.

95
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the KPZ equation was recalled (thus already bringing in models of out-of-equilibrium
growth in 1 + 1d in the large universality class mentioned above) together with some
important results on the KPZ equation. For the last point we refer to Sec. I.4.2 for
good to amazing experimental verifications of properties of KPZ universality in 1+1d.

The outline of this chapter is as follows: in Sec. III.1 we will present a more complete
introduction to the KPZ universality class in 1+1d. In Sec. III.2 we will present a few
exact solvability properties that played an important role over the years. In Sec. III.3
we will finally present the results obtained during the thesis.

III.1 The KPZ universality class in 1 + 1d

In this section we review some results about the KPZ universality class in 1 + 1d.
We will start by presenting a few models in the KPZ universality class in Sec. III.1.1,
with an emphasis on directed polymers models. We will then review important results
obtained in some models and present the notion of strong universality and KPZ fixed
point in Sec. III.1.2. Finally in Sec. III.1.3 we will discuss the notion of weak univer-
sality and the universal scaling limits of directed polymers on the square lattice. The
material contained in this section is by now standard and inspired by a few excellent
reviews on the subject [34, 35, 150, 36, 151].

III.1.1 A few models in the KPZ universality class

In this section we present a few models believed, under some mild assumptions, to be
in the KPZ universality class. We mainly focus on models of DPs: in the continuum,
on the square lattice, at finite and zero temperature. But we also present some links
with interacting particle systems and growing interfaces.

a The continuum DP and the KPZ equation Vs The Edwards-Wilkinson
case

The continuum KPZ equation is in the KPZ universality class. Behind this statement
lies a rather long history that highlights the fact that many results on the KPZ univer-
sality class were obtained using exact solutions of some discrete models that resisted
proof directly in the continuum setting until recently (2010). For now we just wish to
make here a few more comments on the links between the continuum DP and the KPZ
equation. Only in this section we keep the dimension arbitrary.

Derivation of the Stochastic Heat Equation
We recall that the partition sum of the continuum DP at temperature T in a random
potential V (t, x) with both endpoints fixed was defined in (I.3.10) as the path integral
(here with the change of notations L → t and u → x)

Zt(x) :=
∫ u(t)=x

u(0)=0
D[u]e− 1

2T

∫ t

0
( du
dt

)2dt′− 1
T

∫ t

0
V (t′,u(t′))dt′

. (III.1.1)

And here, keeping the notations of Chapter I, u(t′) ∈ R
N and the random potential

is taken Gaussian with RB correlations (I.3.11), V (t, x)V (t′, x′) = δ(t− t′)R0(x− x′).
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In order to obtain the differential equation satisfied by Zt(x) (I.3.13), it is already
convenient to adopt a stochastic process language and note that the term in the path

measure D[u]e− 1
2T

∫ t

0
( du
dt

)2dt′
is just the measure on N -dimensional Brownian motion

u(t). The partition sum Zt(x) is thus written as2

Zt(x) = E

(

e− 1
T

∫ t

0
dt′V (t′,u(t′))δ(N)(u(t) − x)

)

, (III.1.2)

where here the average E is over the stochastic process u(t) now defined by

∂tu(t) =
√
Tξ(t)

u(0) = 0 . (III.1.3)

Here ξ(t) = (ξ1(t), · · · , ξN (t)) is a vector of unit centered Gaussian white noise (GWN)
with δ correlations

〈ξi(t)ξj(t′)〉ξ = δijδ(t− t′) , (III.1.4)

and 〈〉ξ is the average over the GWN. Note that in this interpretation, the elasticity
of the DP is of pure entropic origin (paths of the BM are more numerous close to the
diagonal), and the fact that it is short-range comes partly from the fact that the BM
satisfies a local stochastic partial differential equation (SPDE). Using the Feynman-
Kac formula it is possible to show that Zt(x) solves a SPDE. Let us now give a simple
derivation of this SPDE. We compute Zt+dt(x) as given by (III.1.2) and separate in
the expectation value the contribution of the last time step between t and t+ dt:

Zt+dt(x) = Zt(x) +
∂

∂t
Zt(x)dt+ o(dt) (III.1.5)

= E

(

e− 1
T

∫ t

0
dt′V (t′,u(t′))− dt

T
V (t,u(t))δ(N)(u(t+ dt) − x)

)

+ o(dt)

=
(

1 − dt

T
V (t, x)

)

E

(

e− 1
T

∫ t

0
dt′V (t′,u(t′))δ(N)(u(t+ dt) − x)

)

+ o(dt).

Let us now discretize the last time step between t and t+ dt as

u(t+ dt) = u(t) −
√
Tdtξ (III.1.6)

with ξ a unit centered normal distribution. Hence we can write

Zt+dt(x) =
(

1 − dt

T
V (t, x)

)

E

(

e− 1
T

∫ t

0
dt′V (t′,u(t′))δ(N)(u(t) − (x+

√
Tdtξ))

)

+ o(dt)

=
(

1 − dt

T
V (t, x)

)
1

(2πdt)
N
2

∫

dNξe− ξ2

2dtZt(x+
√
Tξ) + o(dt)

=
(

1 − dt

T
V (t, x)

)
1

(2π)
N
2

∫

dNξe− ξ2

2

(

Zt(x) +
N∑

i=1

(√
Tdtξi

∂

∂xi
Zt(x) +

Tdt

2
ξ2

i

∂2

∂x2
i

Zt(x)

))

+ o(dt)

=
(

1 − dt

T
V (t, x)

)(

Zt(x) +
Tdt

2
(∇x)2Zt(x)

)

+ o(dt)

2I thank Francis Comets for noticing a mistake in (III.1.2) in a preliminary version of this
manuscript.



98 Chapter III. Exactly solvable models of directed polymer

Hence, comparing the terms of order dt in the first and last line of the above calculation,
we obtain,

∂

∂t
Zt(x) =

(
T

2
(∇x)2 − 1

T
V (t, x)

)

Zt(x) , (III.1.7)

with the initial condition Zt=0(x) = δ(N)(x).

A subtlety
There is a non-trivial subtlety in the equivalence between (III.1.1), (III.1.2) and (III.1.7)
on which we now comment. On one hand, looking at (III.1.7), for a centered potential,
it seems that the mean value of Zt(x) is just the transition probability for a random
walk on R

N (since we are using Ito’s convention). On the other hand, looking at
(III.1.1) or (III.1.2) it seems that this mean value should contain a term involving
R0(0). The equivalence between (III.1.2) and (III.1.7) is ensured if one takes as a
definition of the exponential the so-called time/Wick ordered exponential as:

e− 1
T

∫ t

0
V (t,u(t)) :=

∞∑

n=0

(−1/T )n
∫

0≤t1<t2<···<tn≤t
V (t1, u(t1)) · · ·V (t1, u(tn)) . (III.1.8)

The difference with the ordinary exponential is obviously immaterial for non-random
smooth potentials V (t, x). For the case of a random potential with δ interaction in
the t direction it however makes a big difference: here the ordering ti < ti+1 en-
sures the equivalence between (III.1.2) and (III.1.7), which was actually implicit in the
derivation of (III.1.2)3. Finally, denoting now by Žt(x) the object defined by the path
integral (III.1.1), the equivalence with Zt(x) defined by (III.1.2) (with the time-ordered
exponential) or (III.1.7) (interpreted in the Ito sense) is

Zt(x) = Žt(x)e− 1
2T2

∫ t

0
dt′R0(0)

Žt(x) =
∫ u(t)=x

u(0)=0
D[u]e− 1

2T

∫ t

0
dt′( du

dt
)2− 1

T

∫ t

0
dt′V (t′,u(t′)) . (III.1.9)

This subtlety will be particularly important to make sense of the path integral formula
(III.1.1) in the important case where V (t, u) is taken as a centered Gaussian white
noise and R0(u− u′) ∼ δ(N)(u− u′). From now on we will adopt this convention.

From the MSHE to the KPZ equation
In Sec. I.3.3 we already saw that taking the logarithm of the MSHE (III.1.7), assuming
that V (t, x) is smooth, one obtains that h(t, x) = T log(Zt(x)) satisfies the KPZ equa-
tion (I.3.15). This derivation, however, assumed a smooth random potential V (t, x).
In the same spirit as above, let us take into account the fact that the random potential
is rough in the time direction and use Ito’s lemma (see e.g. [104]) to compute the time

3To see this, consider for example the exponential of the integral of a GWN Y (t) = e

∫ t

0
ξ(t′)dt′

.
Using a similar derivation as above one obtains ∂tY = ξ(t)Y (t) and thus Ito’s convention imposes
∂tY (t) = 0. This is true only if Y (t) is interpreted as Y (t) =

∑

n

∫

0<t1<···<tn<t
ξ(t1) · · · ξ(tn). Using

the regular interpretation of the exponential one obtains Y (t) = et/2.
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derivative of h(t, x) = T log(Zt(x)). We obtain

∂th(t, x) =
T

Zt(x)

((
T

2
(∇x)2 − 1

T
V (t, x)

)

Zt(x)
)

− 1
2Zt(x)2

R0(0)(Zt(x))2

=
1
2

(∇xh)2 +
T

2
∇2

xh− V (t, x) − R0(0)
2

. (III.1.10)

Hence we see that the Ito’s lemma precisely makes the short-distance correlations of
the disorder play a role again. Making a change of variables

ȟ(t, x) = h(t, x) +
R0(0)t

2
, (III.1.11)

ȟ(t, x) solves

∂tȟ(t, x) =
1
2

(∇xȟ)2 +
1
2

∇2
xȟ− V (t, x) . (III.1.12)

And note that ȟ(t, x) = T log Žt(x) where Žt(x) was defined through the path-integral
formula (III.1.9). The KPZ equation usually refers to the equation (III.1.12) satisfied
by ȟ. In the following we will drop the different checkmarks, knowing that h(t, x) =
logZt(x) is a (sometimes dangerous) shortcut. From now on we will also restrict
ourselves to the case N = 1, i.e. the directed polymer in a two dimensional random
environment, or the one-dimensional KPZ equation, hereafter referred to as the 1 + 1d
case. Before we continue we remind the reader that we already commented in Sec. I.3.3
on the interpretation of the KPZ equation as a model of out-of-equilibrium growth.

The continuum DP and KPZ equation
The continuum directed polymer and KPZ equation generally refer to the case where
V (t, x) = −ξ(t, x) with ξ a Gaussian white noise (GWN) with correlations

ξ(t, x)ξ(t′, x′) = 2σδ(t− t′)δ(x− x′) . (III.1.13)

In this case, let us emphasize that the MSHE (III.1.7) and the KPZ equation (III.1.12)
have a very different status. Focusing now on the case N = 1, while the MSHE,
interpreted in the Ito sense, remains well defined, the KPZ equation a priori is not:
we will see that log(Zt(x)) looks locally like a BM and thus taking the square of its
derivative is ill advised. The R0(0) (= +∞ in this case) wandering around in between
(III.1.7) and (III.1.12) is a sign of this issue. This calls for a regularization technique
and making sense of the ‘solution of the KPZ equation’ is a hard problem. In fact
well before a precise sense was given to solving the KPZ equation [152] people believed
that the right way to interpret the KPZ equation is through the Cole-Hopf transform,
and thus log(Zt(x)) with Zt(x) the solution of the MSHE has long been thought of as
the solution of the KPZ equation. Accordingly in this chapter when we mention the
solution of the KPZ equation, we actually mean the Cole-Hopf solution.

Ignoring from now on these issues and taking V (t, x) = −ξ(t, x) a GWN with
correlations (III.1.13), let us first note that the change of variables,

t = at̃ , x = bx̃ , a =
T

5
3

(2σ)
2
3

, b = (2σ/T )
2
3 ,

Z̃t̃(x̃) = Zt=at̃(x = bx̃) , h̃(t̃, x̃) = h(t = at̃, x = bx̃) , (III.1.14)
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make the equations (III.1.7) and (III.1.12) equivalent to (dropping the tildes)

∂

∂t
Zt(x) =

1
2

(∇x)2Zt(x) + ξ(t, x)Zt(x) ,

∂th(t, x) =
1
2

(∇xh(t, x))2 +
1
2

(∇x)2h(t, x) + ξ(t, x) . (III.1.15)

where now ξ(t, x) is a centered GWN with ξ(t, x)ξ(t′, x′) = δ(t− t′)δ(x−x′). Note that
this simple calculation shows that there cannot be any phase transition in the large
scale properties of the DP at a finite critical value of the temperature or of the noise
strength: the system is always in the same phase. This was expected from the static
phase diagram Fig. I.3 and we know that this phase corresponds to a strong disorder,
zero temperature phase for the DP.

The Edwards-Wilkinson equation
Only at e.g. vanishing non-linearity can one obtain a different large scale behavior.
The resulting equation in this case is known as the Edwards-Wilkinson equation. It
reads

∂th(t, x) =
1
2

(∇x)2h(t, x) + ξ(t, x) . (III.1.16)

Note that in this case the growth favors neither direction. The critical exponents are
easily extracted in this case by a simple scaling argument, leading to z = 2, α = 1/2
and β = 1/4 (see Sec. I.3.3 for definitions). The full solution is easily obtained by going
to Fourier space x → q: each Fourier component performs an independent Ornstein-
Uhlenbeck process with diffusivity ∼ q2 and

h(t, q) = h(0, q)e− 1
2

tq2
+
∫ t

0
e− 1

2
q2(t−t′)ξ(t, q) . (III.1.17)

The problem is thus essentially solved and fluctuations at the Edwards-Wilkinson fixed
point are Gaussian. The solution of the KPZ equation at non-zero linearity and the
description of the associated FP will be much more difficult. Before we discuss some
known properties of this FP, let us now present a few models in the KPZ universality
class in 1 + 1d (KPZUC).

b Models of DP on the square lattice at finite temperature

The definition (III.1.2) of the partition sum of the continuum DP makes it transparent
how to discretize the DP on any graph: given an underlying ‘free’ measure on directed
paths π on the graph, one associates to each path a random energy E(π) that is the sum
of all energies encountered by the path along the way. In this thesis we will be interested
in models of DP on the square lattice which is a natural discretization of the continuum
DP problem in d = 1 + 1. We thus consider the square lattice Z

2, with Euclidean
coordinates (x1, x2). Directed paths on Z

2 are up-right paths: they jump either to the
right (x1, x2) → (x1 + 1, x2), or upward (x1, x2) → (x1, x2 + 1) (see Fig. III.1). Given
a temperature T and an ensemble of random energies {Ex1,x2 , (x1, x2) ∈ Z

2} that are
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drawn from a given PDF, the point-to-point partition sum of the DP with starting
point (0, 0) and endpoint (x1, x2) ∈ N

2 is

Zx1,x2 :=
∑

π:(0,0)→(x1,x2)

e
− 1
T

∑

(x′
1
,x′

2
)∈π Ex′

1
,x′

2 . (III.1.18)

Here
∑

π:(0,0)→(x1,x2) denotes the sum over all up-right paths on N
2 from (0, 0) to

(x1, x2) ∈ N
2. Introducing the random Boltzmann weights Wx1,x2 := e− 1

T
Ex1,x2 ,

(III.1.18) is equivalently rewritten as

Zx1,x2 :=
∑

π:(0,0)→(x1,x2)

∏

(x′
1,x′

2)∈π

Wx′
1,x′

2
. (III.1.19)

Alternatively we will use, in analogy with the continuum DP case, the coordinate t
defined by

t = x1 + x2 . (III.1.20)

The latter is thus the length of the DPs. When using t, the space coordinate will be
taken either as

x = x1, or x̂ =
x1 − x2

2
, (III.1.21)

as schematized in Fig. III.1. The factor 1/2 in the definition of x̂ is to ensure that
neighboring lattice sites at the same time coordinate t are distant from 1 in units of x̂.
The coordinate t is thus strictly increasing along a DP path, x is weakly increasing,
while x̂ decreases or increases and is the coordinate that is the closest in spirit to the x
coordinate of the continuum DP. Using these coordinates, directed paths π from (0, 0)
to (x1, x2) identify with functions x(t) = x̂(t) + t

2 such that x(0) = 0, x(x1 + x2) = x1

and x(t + 1) − x(t) ∈ {0, 1} (and similarly for x̂(t)). Using these coordinates we will
note the partition sum equivalently as

Zt(x) = Zx1=x,x2=t−x1 , Zt(x̂) = Zx1=(t+2x̂)/2,x2=(t−2x̂)/2 . (III.1.22)

We will adopt a similar notation for any function on the lattice.
In each random environment and for t ≥ 0, the partition sum of the DP can also

be defined recursively as

Zt+1(x) = Wt+1(x) (Zt(x) + Zt(x− 1)) with Zt=0(x) = δx,0 (III.1.23)

⇐⇒ Zt+1(x̂) = Wt+1(x̂) (Zt(x̂+ 1/2) + Zt(x̂− 1/2)) with Zt=0(x̂) = δx̂,0

Note that (III.1.23) appears as a discrete analogue of the MSHE (III.1.15) (this will
be made more precise in Sec. III.1.3). The KPZ universality hypothesis then basically
states that, for sufficiently nice disorder (such that all the moments of the random
energy are finite, (Ex1,x2)n < ∞, and the disorder has short-range correlations), the
large scale properties of logZt(x̂) are similar to those of h(t, x) in the KPZ equation
(this will be made more precise in Sec. III.1.3). In this thesis we will often look at the
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t

x = x1

x2

x̂

ϕ

x ∼ (1/2 + ϕ)t

x̂ ∼ ϕt

Figure III.1: Different coordinate systems for directed polymers on the square lattice.
Green: an admissible directed path, i.e. up-right path, from (0, 0) to (x1, x2) = (4, 3)
i.e. (t, x) = (7, 4) i.e. (t, x̂) = (7, 1/2). Red, convention used for the asymptotic
analysis of polymers of large length t ≫ 1 in a given direction ϕ.

large scale properties in an arbitrary direction ϕ, referring to t ≫ 1 with the ballistic
scaling

x ∼ (1/2 + ϕ)t ⇐⇒ x̂ ∼ ϕt , (III.1.24)

i.e. the ‘angle’ ϕ is measured with respect to the diagonal of the square lattice see
Fig. III.1.

We should stress here that for most models in the KPZUC, there is often one
observable whose large scale properties is similar to the height in the KPZ equation,
but that does not mean that the properties of any observable of any model in the
KPZUC are related to some observable in the KPZ equation. More generally interesting
observables in one language may not necessarily be relevant in the other and vice-versa.
In particular in the DP framework, the ‘KPZ-height’ like variable is the free-energy
of the DP. The latter is certainly interesting, but does not contain all DP properties.
Before being a model in the KPZUC, the DP is the statistical mechanics of directed
paths in a random environment, and Zx1,x2 is the normalization factor that allows to
define the quenched measure on paths as, for all paths from (0, 0) to (x1, x2) ∈ N

2,

Qx1,x2(π) :=
e

− 1
T

∑

(x′
1
,x′

2
)∈π Ex′

1
,x′

2

Zx1,x2

. (III.1.25)

The latter is a deformed version of the underlying free measure on directed paths that
favors the energy, it is a probability measure on paths from (0, 0) to (x1, x2) and it is
itself a random (disorder dependent) object. The annealed measured is the average
over disorder of the quenched measure:

Px1,x2(π) := Qx1,x2(π) . (III.1.26)
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With these definitions, for a given observable on paths O(π), one is interested in the
quenched and annealed averages as

〈O(π)〉Q :=
∑

π

O(π)Qx1,x2(π) , 〈O(π)〉Q :=
∑

π

O(π)Px1,x2(π) . (III.1.27)

In the DP framework, understanding the properties of the quenched and annealed
measure are the most challenging questions. Some of these properties are indeed con-
tained in KPZ universality: taking (x1, x2) along the diagonal (x1, x2) = (T/2,T/2)
with T → ∞, parametrizing paths by functions x̂(t), one expects that (i) with prob-
ability 1 at large T the support of the quenched measure Q is on paths scaling like
x̂(t) ∼ Tζ ˜̂x(t/T) with ζ the roughness exponent of the DP related to the dynamic ex-
ponent of KPZ as ζ = 1/z = 2/3 (see Sec. I.3.3); (ii) a similar (less strong) statement
for the annealed measure P . More subtle properties like the shape of the rescaled path
˜̂x(t) or its localization properties are not trivially related to observables in the growing
interface language. In the DP framework, localization refers to the fact that, even in
the limit of infinite polymer T → ∞, with probability 1 (i.e. for almost any drawing of
the random environment), there exists a point at time t = T/2 which is visited by the
polymer with a non-zero probability. This should be compared to a standard random
walk where the point visited with maximum probability is on the diagonal and the
probability is of order 1/

√
T in d = 1 + 1. A stronger statement of localization of

the full path in the DP case is the fact that there are paths for which the quenched
measure QT/2,T/2(π) remains non-zero in the limit T → ∞. This is consistent with
the idea of Chapter I and Chapter II that temperature is (although dangerously [96])
irrelevant at large scales.

Let us finally mention that such models of DPs on the square lattice and in higher
dimensions have received a considerable amount of attention from the mathematical
community, independently of any exact solvability properties and using purely proba-
bilistic approaches, starting with the work of Imbrie and Spencer [153] and Bolthausen
[154]. Rigorous results in particular confirm the static phase diagram of Fig. I.3. We
refer the reader to [155] for a review, in particular for the mathematical definition of
the strong disorder regime in terms of martingales or localization properties of the
path [156].

c Models of DPs on the square lattice at zero temperature

As temperature is irrelevant at the strong disorder FP of the DP, it is natural that
models of DPs at zero temperature are also in the KPZ universality class. A model of
DP at zero temperature can be obtained as the limit of the model previously considered
as

Ex1,x2 := lim
T →∞

−T logZx1,x2 = minπ:(0,0)→(x1,x2)

∑

(x′
1,x′

2)∈π

Ex′
1,x′

2
. (III.1.28)

Ex1,x2 is thus the energy of the optimal path from (0, 0) to (x1, x2). KPZ universality
says here that the large scale properties of Ex1,x2 should be the same as those of the
height in the growing interface language. At a given time the profile Et(x) is interpreted
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as an interface. For t ≥ 0, it evolves according to

Et+1(x̂) = Et(x̂) + min (Et(x̂− 1/2),Et(x̂+ 1/2)) , (III.1.29)

with the initial condition Et=0(0) = 0 and Et=0(x̂) = −∞ for x̂ 6= 0. Let us denote
here for future use

h(1)(t, x̂) = −Et(x̂) , (III.1.30)

the ‘growing interface’ defined in this way. Two particular subclasses of zero temper-
ature DP models have been much studied, each having links with interesting other
models.

The first is the case where the random energies are bounded from below, say
by 0. In this case the DP model is usually referred to as a directed first passage
percolation problem (FPP). The random energies Ex1,x2 are interpreted as waiting times
tx1,x2 := Ex1,x2 and the optimal energy Ex1,x2 as a first passage time Tx1,x2 . This type
of model was originally introduced in [157] to describe the invasion of a fluid into a
porous medium. These models can provide examples of the fact that KPZ universality
should always be applied with caution: if the tx1,x2 can be zero with a finite probability
p, there can be a region of space where the first passage time converges to 0 in the
large time limit with probability 1. This precisely occurs if p is large enough and that
a percolation threshold is reached. Of course in this case the fluctuations of Tx1,x2 do
not scale with the KPZ exponent t1/3. We will see an example of such a model in
Sec. III.3.5.

The second subclass is the case where the random energies are bounded from above,
say by 0. In this case the DP model is usually referred to as a directed last passage
percolation problem (LPP). The random energies Ex1,x2 are interpreted as the opposite
of waiting times tx1,x2 := −Ex1,x2 and the optimal energy Ex1,x2 as the opposite of
the last passage time Tx1,x2 := −Ex1,x2 = maxπ:(0,0)→(x1,x2)

∑

(x′
1,x′

2)∈π tx′
1,x′

2
. See [158]

for a review. In this case it is usual to define a growing interface different from the
one mentioned previously by looking at the boundary of the set B(t) := {(x1, x2) ∈
N

2,Tx1,x2 ≤ t} see Fig. III.2. This growing interface fall in the more general class
of so-called corner growth models as we will show in the next section. Note that the
recursion equation for the last passage time reads

Tx1+1,x2+1 = tx1+1,x2+1 + max(Tx1+1,x2 , Tx1,x2+1) . (III.1.31)

And the growing interface thus necessarily has the shape shown in Fig. III.2: the
boundary is a down-right path (x1(i), x2(i))i=0,··· ,N on N

2: its starting point on the
vertical edge is (x1(0), x2(0)) = (xmax

1 , 0), with xmax
1 = maxx1∈N|Tx1,0≤t x1. Switching

to the t, x̂ coordinate, the growing interface is thus defined now as

h(2)(t, x̂) := max{t′|Tt′(x̂) ≤ t} . (III.1.32)

The fluctuations of this growing interface are believed to be in the KPZUC for suffi-
ciently nice distributions of weights [158]. We will see in the next section that growth
models defined in this way fall in a class of models known as corner growth models, and
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Figure III.2: Starting from a model of last passage percolation, a growing interface is
defined as the level lines of Tx1,x2 . The interface evolves according to a corner growth
model type dynamics. Figure obtained using a simulation of LPP on a square lattice
of 256 × 256 sites and using exponentially distributed waiting times with rate 10.

it is actually for a model of LPP with geometric or exponentially distributed weights
that the emergence of Tracy-Widom type fluctuations in the DP context was first
shown in [159]. Note that the two growing interfaces h(1) and h(2) are ∀x̂ the inverse
of one another: ∀(t, x̂), h(1)(h(2)(t, x̂), x̂) = t, and

Prob(h(1)(t, x̂) ≤ H) = Prob(Tt(x̂) ≤ H)

Prob(h(2)(t, x̂) ≤ H) = Prob(TH(x̂) ≥ t) . (III.1.33)

Their large scale fluctuations are thus linked. Assuming that, for x̂ fixed, h(1)(t, x̂) ∼
c1t + λ1t

1/3X with X a O(1) RV and c1 ≥ 0, then limt→∞ Prob(h(1)(t, x̂) ≤ c1t +
λ1t

1/3z) = F (z) with F (z) the CDF of X. We thus must have

F (z) = lim
t→∞

Prob(Tt(x̂) ≤ c1t+ λ1t
1/3z)

= 1 − lim
t′→∞

Prob(T t′
c1

− λ1

c
1/3
1

(t′)1/3z
(x̂) ≥ t′)

= 1 − lim
t′→∞

Prob(h(2)(t′, x̂) ≤ t′

c1
− λ1

c
1/3
1

(t′)1/3z) (III.1.34)

Hence h(2)(t, x̂) ∼ c2t − λ2t
1/3X ′ with c2 = 1/c1, λ2 = λ1

c
1/3
1

and the CDF of X ′ is

Prob(X ′ ≤ z) = 1 − F (z).

d Interacting particle systems

The simple exclusion process and the corner growth model
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‘Some’ interacting particle systems on Z are in the KPZ universality class. To make
the discussion clearer we consider the simple exclusion process (SEP) with exponential
waiting times (see Fig. III.3). Particles are labeled by i ∈ N or Z depending on the
setting and their position is denoted xi(t). Each particle carries two exponential clocks
and attempt jumps to the right with rate p and jumps to the left with rate q. Jumps
are suppressed if the target site is already occupied. Let us introduce the ‘spin’ variable
η̂(t, y), which is taken as +1 if y is occupied by a particle at time t and −1 if it is
empty. Denoting N(t) the number of particles that jumped from 0 to 1 up to time t,
a growing interface is defined as (see e.g. [34])

h(0, t) = N(t)

h(x > 0, t) := N(t) −
x∑

y=1

η̂(t, y)

h(x < 0, t) := N(t) +
−1∑

y=x

η̂(t, y) . (III.1.35)

Which basically consists in saying that −η̂(t, y) is, at each time, the discrete derivative
of the height field: −η̂(t, y) = h(t, x) − h(t, x − 1). From this point of view the spin
variables in the exclusion process are related to a discretization of the noisy Burgers
equation and η(t, y) is the velocity of the fluids particles (see Sec. III.2.2 for the contin-
uum Burgers equation). Note that the velocity field is conserved locally:

∑b
y=a η̂(t, y)

only evolves when events at the boundaries a, b occur. From the exclusion rule and
the fact that particle jumps are local, the interface evolves only at points where its
slope changes: a local valley is transformed into a local hill with rate p and a local
hill is transformed into a local valley with rate q. It is clear that the interface grows
upward if p > q and downward if p < q. For this reason the case p = q (symmetric
simple exclusion process) is very special and the associated field does not display fluc-
tuations in the KPZUC, but rather in the Edwards-Wilkinson universality class. All
other cases p 6= q (asymmetric simple exclusion process, ASEP) are expected to be in
the KPZUC. Let us now draw the connection with last passage percolation previously
defined by considering the case of the totally-asymmetric exclusion process (TASEP),
i.e. the SEP with q = 0 and p 6= 0 (see e.g. [160]).

From the TASEP to LPP
To do so we will consider the so-called step initial condition: particles are labelled

by i ∈ N and at t = 0 we take

xi(t = 0) = −i . (III.1.36)

And let us denote by T (i, j) the time where the particle i makes her (j + 1)th jump.
The height at the origin N(t) defined in (III.1.35) is thus equal to

N(t) = imax(t) + 1 imax(t) := maxi∈N {i , T (i, i) ≤ t} . (III.1.37)

On the other hand we have that, for (i, j) ∈ N
2

T (0, j + 1) = T (0, j) + t0,j+1 ,

T (i+ 1, 0) = T (i, 0) + ti+1,0 ,

T (i+ 1, j + 1) = ti+1,j+1 + max(T (i+ 1, j), T (i, j + 1)) . (III.1.38)
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pq

p
q

Figure III.3: Illustration of the mapping between the ASEP and the corner growth
model, that is also related in the totally asymmetric case q = 0 to LPP.

Here the ti,j are independent, exponentially distributed RVs with parameter q. Indeed
the first line corresponds to saying that the time it takes for the 0th particle to make
her (j + 2)th jump is just the time it takes her to make her (j + 1)th jump + an
exponentially distributed RV. The second line corresponds to saying that the time it
takes for the (i + 1)th particle to make her first jump is just the time it takes to the
ith particle to make her first jump + an exponentially distributed RV. Finally the last
line corresponds to saying that, before she makes her (j + 2)th jump, the (i + 1)th

particle has to wait that the ith particle makes her (j + 2)th jump (so that the arrival
site is empty) and that she first has to do her (j + 1)th jump and finally wait for an
exponentially distributed amount of time. Note that all this is true with the updating
rules that were given because an exponential clock is memoryless. This will be more
generally true for arbitrary waiting time distributions if the clock is started each time
it is possible to make a jump. We have thus shown here that the waiting times of
the TASEP (III.1.38) corresponds to the last passage time in a directed last passage
percolation problem. The height in the corner growth model (III.1.35) is exactly the
height h(2) defined in the LPP context. The TASEP with exponentially distributed
waiting times with step initial condition thus provides an example where it is possible
to switch between the interacting particle language, the language of directed polymer
at zero temperature and the growing interface language.

III.1.2 The KPZ fixed point - strong universality

There is various degrees of precision which can be achieved when describing the so-
called KPZ fixed point and we refer the reader to [161] for the most complete descrip-
tion. Once the identification of a ‘growing interface’ h(t, x) in a model has been made,
the KPZUC hypothesis is that the appropriately rescaled large time fluctuations of
the interface are completely universal. More precisely, starting from a given initial
condition, one first has to subtract the deterministic (angle-dependent) growth rate of
the interface

v∞(ϕ) := lim
t→∞

h(t, ϕt)
t

, (III.1.39)
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which is generally expected to be well-defined and non random (i.e. the above conver-
gence holds with probability 1). One then defines

h(t, x) := h(t, x) − tv∞(x/t) . (III.1.40)

And the rescaled process that involves the roughness exponent α = 1/2 and dynamic
exponent z = 3/2.

h(t, x) := lim
b→∞

b−αh(t = bzt, x = bx) . (III.1.41)

Then,
(i) The universality of critical exponents amounts to saying that h(t, x) is a well de-
fined, non trivial stochastic process.
(ii) The stronger universality property is that, up to three non-universal constants
associated with the measure of time, space, and height Ct, Cx and Ch, the random
process h(t, x) is model independent. i.e. h̃(t, x) := h(t/Ct, x/Cx)/Ch is fully universal
and depends only on the initial condition. Furthermore there are only a few attrac-
tive subclasses of initial conditions (in the sense that the large-time statistics for an
arbitrary initial condition will fall into one of these subclasses). The classification of
these subclasses is not complete and does not rely on rigorous results but the three
main classes that are commonly considered are the so called droplet initial condition,
the flat initial condition and the stationary initial condition (see below). For each of
these classes the limiting process at a fixed time h̃(t, x) is known:

1. The droplet case: in the interface language, it corresponds to an initial condition
such that the interface stays curved for all time (i.e. the mean profile v∞(ϕ) is
not flat). For the KPZ equation itself, the appropriate initial condition is often
taken as h(t = 0, x) := − limw→∞w|x|. In the DP case the latter is clearer
and corresponds to directed polymers with fixed starting point Zt=0(x) = δ(x),
and Zt(x) is the point to point partition sum. For the corner growth model it
corresponds to ASEP with a step initial condition. In this case, for a given time t

and point x, the one point distribution of h(t, x) is the GUE Tracy-Widom (TW)
distribution (introduced in [37]). Moreover at a fixed time t, as a function of x,
h̃(t, x) is a process known as the Airy2 process A2(x) (introduced in [162]). It
is a process that is stationary in x, that satisfies A2(x)A2(0)

c →x→∞= 0, whose
one point distribution is the GUE-TW distribution and which locally looks like
a Brownian motion, (A2(x) − A2(0))2 ∼x→0 |x|.

2. The flat case: in the interface language, it corresponds to a flat initial condition
h(t = 0, x) = cst. In this case v∞(ϕ) = cst′. In the DP framework this cor-
responds to a directed polymer with the starting point free to move on a line
Zt=0(x) = 1, and Zt(x) is the point to line partition sum. For the corner growth
model it corresponds to ASEP with particles only on even sites. In this case,
for a given time t and point x, the one point distribution of h(t, x) is the GOE
Tracy-Widom (TW) distribution (introduced in [38]). Moreover at a fixed time
t, as a function of x, h̃(t, x) is a process known as the Airy 1 process A1(x) (in-
troduced in [163]). It has properties similar to the Airy 2 process: stationarity
in x, A1(x)A1(0)

c →x→∞= 0, and it locally looks like a Brownian motion.
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3. The stationary initial condition is a random initial condition that ensures a sta-
tionarity property in the model dynamics. Examples and the nature of this
stationarity property will be discussed in Sec. III.2.2. In this case at large time
as a function of x, h̃(t, x) is given by h̃(t, x) = XBR + B(x) where XBR is a RV
distributed according to the the Baik-Rains distribution (introduced in [39]) and
B(x) is a two-sided Brownian motion. XBR and B(x) have non-trivial correla-
tions.

Many other things are known about these limiting spatial processes, including for
example other initial ‘crossover initial conditions’ (half flat, Brownian-flat, half Brow-
nian), see [164]. In contrast to this accurate description of spatial correlations at large
time, much less is known about two-time correlations. In an abstract setting these are
related to the notion of ‘Airy sheet’ [161], but explicit formulae are rare (see however
[165, 166, 167, 168]). Finally we should mention here the related question of growth
from a given initial condition in a restricted geometry, for example directed polymers
in a half-space, which, when both starting points are taken ‘close to the wall’, ex-
hibit large scale fluctuations of free energy scaling as t1/3 and governed by the GSE
Tracy-Widom distribution [38], see [169] for DP in the continuum.

The belief in these remarkable properties of the KPZUC comes from exact solu-
tions of peculiar models. At the level of one point distribution for the droplet case
the emergence of the TW-GUE distribution was first shown in the LPP model with
geometric weights in [159] (a similar result was shown just before in the related con-
text of the longest increasing subsequence of a random permutation in [170]). The
corresponding result for the KPZ equation itself is more recent [171, 172, 173, 165]
(thus the fact that the KPZ equation is in its own universality class is a recent result).
Extension to multi-points were first shown for the PNG model [162, 174], and later
for the KPZ equation in [175]. For the flat case, one-point formulae were again first
shown in discrete models [176] then for the KPZ equation [177, 178, 179, 180], while
multi-point correlations were only studied in a discrete setting [163]. A similar story
goes for the stationary case [181, 182, 183, 184, 185]. We should here that the works
cited here are not all at the same level of rigor and many other works could be cited.
We will review later the appropriate references for the scope of this chapter, namely
discrete models of directed polymers, and refer to [34] for other references.

III.1.3 Universality of the KPZ equation: notion of weak universality and
universal scaling limits of DP on the square lattice

The limiting spatial process (III.1.41) does not obey the KPZ equation: the KPZ
equation is not the KPZ fixed point. Under a general rescaling, if h(t, x) solves the
KPZ equation (III.1.15), h̃(t̃, x̃) := b−αh(t = bt̃, x = bzx̃) solves (dropping the tildes)

∂th(t, x) =
bα+z−2

2
c1(∇xh(t, x))2 +

bz−2

2
(∇x)2c2h(t, x) + b(z−2α−1)/2c3ξ(t, x) ,

(III.1.42)
where we have reintroduced explicit constants in front of each term on the right hand
side. There is no way to fix z and α to get a scale invariant equation. The values
α = 1/2 and z = 3/2 of the KPZUC, a property of the KPZ FP, are not trivially
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obtained through scaling.

In all the models in the KPZUC, however, the KPZ equation/the continuum DP
plays a peculiar role that is linked with the notion of weak universality [186]. The
latter refers to two limits:

(i) The weak asymmetry limit. Symmetric growth models (c1 = 0) are in the
Edwards-Wilkinson universality class and are characterized by exponents α = 1/2 and
z = 2. If an asymmetry is present c1 6= 0, the large scale properties are those of the
KPZ FP. Note that rescaling (III.1.42) with α = 1/2, z = 2 and c1 ∼ b−1/2 leaves the
KPZ equation itself invariant. More generally it is conjectured that (under the usual
assumptions such as locality, etc...) the KPZ equation itself is the universal scaling
limit of weakly asymmetric growth models in 1+1d when rescaling space x ∼ b, t ∼ b2

and the asymmetry as b−1/2. For this reason the KPZ equation is sometimes referred
to as implementing the universal crossover between the EW FP and the KPZ FP.
An important example of this weak-universality property is provided by the work of
Bertini and Giacomin [187] that states that, upon scaling space as x ∼ b, t ∼ b2 and
the asymmetry p−q as b−1/2 in the corner growth model previously defined, the corner
growth model height profile converges to the Cole-Hopf solution of the KPZ equation.

(ii) On the other hand the weak noise limit is linked with the DP in a disordered
medium. At zero disorder, c3 = 0, DPs are equivalent to random walks, are diffusive
z = 2 and have no disorder fluctuations α = 0. For c3 6= 0, the large scale properties
of DPs are described by the KPZ FP. Noting that the rescaling (III.1.42) with α = 0,
z = 2 and c3 ∼ b−1/2 leaves the KPZ equation invariant, it is conjectured that the
KPZ/MSHE is the universal scaling limit of weakly disordered DPs. This scaling
has also been called the intermediate disorder regime in the literature [188]. Let us
illustrate it heuristically on the case of DPs on the square lattice, using the notations
of Sec. III.1.1. We start with the discrete version of the MSHE in the variables t, x̂
given in (III.1.23) which we recall here

Zt+1(x̂) = e− 1
T

Et+1(x̂) (Zt(x̂+ 1/2) + Zt(x̂− 1/2)) . (III.1.43)

We thus scale

t = b2Dt̃ , x̂ = bx̃ , Et+1(x̂) = 1/
√
bV (t, x̂) , (III.1.44)

with V a centered O(1) RV, take b very large, b ≫ 1, and consider the limiting partition
sum

Z̃t̃(x̃) := lim
b→∞

Ab2Dt̃Zt=b2Dt̃(x̂ = bx̃) , (III.1.45)

with A left undetermined for now. We thus obtain from III.1.43

1
A

(

Z̃t̃(x̃) +
1
b2D

∂t̃Z̃t̃(x̃)
)

=
(

1 − 1√
bT
V (t, x̂)

)(

2Z̃t̃(x̃) +
1

4b2
(∂x̃)2Z̃t̃(x̃)

)

.

(III.1.46)
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This suggests to take A = 1/2 and we obtain

∂t̃Z̃t̃(x̃) =
D

8
(∂x̃)2Z̃t̃(x̃) +

D

T
b3/2V (b2Dt̃, bx̃)Z̃t̃(x̃) . (III.1.47)

In the limit b → 0, Db3/2V (b2Dt̃, bx̃) converges to a GWN. To see this explicitly,
consider for example a random potential which is uncorrelated from site to site with
cumulant (V (t, x))nc

= cn and the cumulant generating function

G[λ] := e
∫ 1

x̃=0

∫ 1

t̃=0
Db3/2V (b2Dt̃,bx̃)λ(t̃,x̃)

= eDb3/2 1
b3D

∑b

x̂=0

∑b2D

t=0
V (b2Dt̃,bx̃)λ(t/(Db2),x/b)

= e
c2

2b3

∑b

x̂=0

∑b2D

t=0
λ2(t/(Db2),x/b)+

c3

3!b9/2

∑b

x̂=0

∑b2D

t=0
λ3(t/(Db2),x/b)+...

= e
c2D

2

∫ 1

x̃=0

∫ 1

t̃=0
λ2(t̃,x̃)+

c3

3!b3/2

∫ 1

t̃=0
λ3(t̃,x̃)+...

=b→∞ e
c2D

2

∫ 1

x̃=0

∫ 1

t̃=0
λ2(t̃,x̃) . (III.1.48)

Hence in the limit b → ∞ the cumulant generating function G is equal to

G[λ] = e
∫ 1

x̃=0

∫ 1

t̃=0

√
c2Dξ(t̃,x̃) , (III.1.49)

where ξ(t̃, x̃) is a unit GWN with correlations ξ(t̃, x̃)ξ(t̃′, x̃′) = δ(t̃′ − t̃)δ(x̃′ − x̃). Hence
the rescaled partition sum (III.1.45) with A = 1/2 converges, as b → ∞, to the rescaled
solution of the MSHE

∂t̃Z̃t̃(x̃) =
D

8
(∂x̃)2Z̃t̃(x̃) +

√
2cξ(t̃, x̃)Z̃t̃(x̃) , (III.1.50)

with c = DV 2c
/(2T 2). This establishes that the MSHE is the universal scaling limit

of DPs on the square lattice with weak disorder under diffusive scaling. We refer the
reader to [188] for a rigorous approach. Note that the weak disorder regime is equiv-
alent to the regime of high temperature T ∼

√
b at fixed disorder. In this phrasing,

the continuum DP is the universal high temperature limit of DPs, see in particular
[173, 189] for a discussion of this property and an extension to disorder with non-zero
correlation length.

Before we close this chapter let us mention here that there exists another universal
scaling limit of DPs on the square lattice that has played an important role in recent
developments. Taking T and N finite, it is obtained by taking x1 = bT, x2 = N and
Ex1,x2 ∼ 1/

√
bẼx1,x2 and taking b → ∞ with N and the distribution of Ẽx1,x2 fixed so

that the Ẽx1,x2 are independent O(1) centered random variables with at least a well
defined second moment. This is the limit of long directed polymers on the square
lattice conditioned to stay close to the horizontal axes. The polymer makes an infinite
number (∼ b) of horizontal jumps, and a finite number (N) of vertical jumps. In this
case the possible polymer paths can be indexed by (s1, s2, · · · , sN ) ∈ [0,T]N where
x1 = bsi is the position of the jump from x2 = i to x2 = i + 1. Between two jumps
the random energy of the DP is a sum of all the random energies encountered on the
horizontal line at x2 = i − 1. This sum is equivalent in law to a centered Gaussian
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random variable that we can write down as the difference of two Brownian motions in
s:

x1=Nsi+1∑

x1=Nsi

Ex1,i−1 ∼ Bi(si+1) −Bi(si) (III.1.51)

where Bi(s) is a BM with Bi(0) = 0 and B′
i(s) =

√

Ẽ2ξi(s) where ξi(s) are a collection
of independent GWN with ξi(s)ξi′(s′) = δi,i′δ(s− s′) . Thus in this limit the partition
sum is rewritten as

Zs.d.
T (N) := lim

b→∞
Zx1=bT,x2=N

=
∫

0≤s1,··· ,≤sN≤T

e− 1
T

∑N

i=0
Bi(si+1)−Bi(si) , (III.1.52)

with by definition s0 = 0 and sN+1 = T . This is the definition of the O’Connell-
Yor semi-discrete directed polymer which was introduced in [190] and for which KPZ
universality (more precisely GUE TW fluctuations) in the limit N → ∞ was shown
in [191, 192]. This was later used in [193] to prove a universality result of TW-GUE
fluctuations for point to point partition sum of directed polymer in ‘thin rectangles’
[193].

III.2 A partial selection of analytical miracles in models in the

KPZ universality class

In the previous section we discussed the notion of weak and strong KPZ universality
and introduced a few models in the KPZUC. In this chapter we now present a few exact
solvability properties that permitted over the years to build the belief in the remarkable
properties of the KPZUC and focus on DPs. We will discuss: (i) in Sec. III.2.1 the
symmetries of the KPZ equation; (ii) in Sec. III.2.2 the stationary measure of the
the KPZ equation and some models of DPs on Z

2; (iii) in Sec. III.2.3 the Bethe-
ansatz solvability of the continuum DP; (iv) in Sec. III.2.4 some other exact solvability
properties: the RSK and gRSK correspondences and Macdonald processes (briefly
discussed).

III.2.1 Symmetries of the continuum KPZ equation

Hydrodynamic point of view: Galilean symmetry
The KPZ equation (III.1.15) enjoys Galilean invariance: for a given realization of the
GWN ξ(t, x), if h(t, x) is a solution of the KPZ equation, then

hv(t, x) = h(t, x− tv) − vx+
v2t

2
, (III.2.1)

is a solution of the KPZ equation in the noise ξv(t, x) = ξ(t, x− tv). Defining u(t, x) =
∂xh(t, x), u(t, x) solves the equation

∂tu(t, x) = u(t, x)∂xu(t, x) +
1
2
∂2

xu(t, x) + ∂xξ(t, x) . (III.2.2)
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Which is the Burgers’s equation for a randomly forced fluid, much studied in the liter-
ature in the context of turbulence: here u(t, x) is interpreted as the velocity field of a
one-dimensional fluid (see [194] for a review). In this framework the above symmetry
reads uv(t, x) = u(t, x− tv) − v and really is the Galilean symmetry associated with a
change of Galilean referential.

Directed polymer point of view: STS
From the DP point of view this symmetry is easily seen using the path integral formula
for the point to point partition sum (I.3.10) of the DP in a potential V (t, x) (here
rewritten using dimensionless units, i.e. T = 1)

Zt(x− tv) :=
∫ u(t)=x−tv

u(0)=0
D[u]e− 1

2

∫ t

0
dt′(∂t′ u(t′))2− 1

2

∫ t

0
dt′V (t′,u(t′))

=
∫ u(t)=x

u(0)=0
D[u]e− 1

2

∫ t

0
dt′(∂t′ u(t′))2+v

∫ t

0
dt′∂t′ u(t′)− v2

2

∫ t

0
dt′− 1

2

∫ t

0
dt′V (t′,u(t′)−t′v)

= evx− v2

2
t
∫ u(t)=x

u(0)=0
D[u]e− 1

2

∫ t

0
dt′(∂t′ u(t′))2− 1

2

∫ t

0
dt′V (t′,u(t′)−t′v) (III.2.3)

and by taking the logarithm, one obtains the symmetry (III.2.1). For a random po-
tential which satisfies the symmetry in law ∀v, V (t, x) ∼ V (t, x− tv), we then have a
statistical symmetry and in law we have hv(t, x) ∼ h(t, x). In particular this holds for
a GWN V (t, x) = ξ(t, x). In Chapter I and II this symmetry was called the statistical
tilt symmetry. In the DES context we saw that it implies a non-renormalization of the
elastic coefficient. In particular, the effective action of the theory contains the term
− 1

2T

∑n
a=1

∫

x(∇ua
x)2. This implied the symmetry between the roughness exponent of

the DP ζs and the exponent θ of the fluctuations of the free energy as.

θ = 1 − 2 + 2ζs = −1 + 2ζs . (III.2.4)

Interpreted in the KPZ context, the roughness exponent ζs of the DP is 1/z with z the
dynamic exponent, and θ is the growth exponent β, related to the roughness exponent
of the interface α as β = α/z. Hence we have

α

z
= −1 +

2
z

⇐⇒ α+ z = 2 . (III.2.5)

The KPZUC is thus characterized by a single critical exponent. Note that this sym-
metry holds in any dimension N .

III.2.2 An analytical exact solvability property: the stationary measure

a Stationary measure of the 1d Burgers equation: the continuum KPZ
case

In any model in the KPZUC, the appropriate height field is never stationary itself but
grows with time. The height gradients, however, can be stationary and the stationary
measure is known since [195, 33]. For the KPZ equation in particular, one studies
the Burgers’s equation for u(t, x) = ∂xh(t, x) already written in (III.2.2). Let us first
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study the case where the non-linearity is zero (Edwards-Wilkinson case), the equation
for u(t, x) is now

∂tu(t, x) =
1
2
∂2

xu(t, x) + ∂xξ(t, x) . (III.2.6)

where ξ(t, x) is a unit centered GWN. Let us now show that a family of stationary
processes is obtained by taking u(t, x) as u(t, x) = µ + ηt(x) where µ is the average
slope of the KPZ interface (this labels the family) and ηt(x) is distributed as a unit
centered GWN for each t. Let us start from an initial condition u(t = 0, x) = µ+ η(x)
with η(x) a GWN independent of ξ(t, x) and show that ∀t, u(t, x) = µ + ηt(x) with
ηt(x) a unit centered GWN. (III.2.6) is easily solved in Fourier space as

u(t, q) = e−1/2q2t(µ+ η(q)) +
∫ t

0
e− 1

2
q2(t−t′)iqξ(t, q)dt′ . (III.2.7)

This is sufficient to show that u(t, x) is Gaussian distributed and one easily concludes
the calculation by computing the first moment u(t, q) = µ and the first cumulant
u(t, q)u(t, q′)

c
= δ̂(q + q′). Of course a priori this concerns only the EW universal-

ity class but remarkably the same stationary measure works for the KPZ equation.
Checking this property directly in the continuum setting is, however, non-trivial due
to the non-linear term and one has to be more precise here about what is meant by the
continuum KPZ equation. Writing a functional Fokker-Planck equation for the PDF
of u(t, x), Pt[u], one obtains

∂

∂t
Pt[f ] = −

∫

x

δ

δf(x)

(

(f∂xf +
1
2
∂2

xf)Pt[f ]
)

+
1
2

∫

x,y

δ2

δf(x)δf(y)
(∂x∂yδ(x− y)Pt[f ])

(III.2.8)
And since

Pstat[f ] ∼ e− 1
2

∫
dxf(x)2+µf(x) (III.2.9)

is already stationary for the Edwards-Wilkinson case, it is stationary for the KPZ case
iff

−
∫

x

δ

δf(x)
(f∂xfPstat[f ]) = 0 . (III.2.10)

Acting with the functional derivative on the f∂xf is however rather ambiguous and
one has to define a discretization procedure. It was argued in [196] that the proper
way to discretize the non linear term in the KPZ equation is, taking h(x, t) → hi(t),

(∂xh(x, t))2 → 1
3

((∇ih)2 + (∇ih)(∇i−1h) + (∇i−1h)2) . (III.2.11)

With ∇ih(t) := hi+1(t) − hi(t). For the corresponding discretized Burgers equation,
this implies the discretization, writing ui(t) := ∇ih(t)

u∂xu → 1
3

((ui+1 − ui−1)(ui+1 + ui−1) + ui(ui+1 − ui−1)) . (III.2.12)
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With this discretization, the functional derivative is thus interpreted as
∫

x

δ

δf(x)
(f∂xf) ∼

∑

i

d

dfi

1
3

((fi+1 − fi−1)(fi+1 + fi−1) + fi(fi+1 − fi−1)

∼
∑

i

1
3

(fi+1 − fi−1)

∼
∫

x

2
3
∂xfx . (III.2.13)

And hence

−
∫

x

δ

δf(x)
(f∂xfPstat[f ]) = −

∫

x

2
3
∂xfxPstat[f ]−

∫

x
(f∂xf)(−f+µ)Pstat[f ] . (III.2.14)

Note that all three terms in this expression are total derivatives: hence Pstat[f ] is
indeed a stationary measure of the continuum KPZ equation (provided appropriate
boundary conditions are assumed). Note that this property only holds because the
discretization (III.2.11) was chosen and it is thus legitimate to ask what the KPZ
equation actually means? This reflects the difficulties related to tackling the KPZ
equation directly in the continuum. The right way to interpret it is really through
the Cole-Hopf transform. Note that at the level of the Burgers velocity field, the
discretization (III.2.12) precisely ensures that the velocity field is locally conserved:
the right hand side of (III.2.12) can be written as a difference. We already noticed this
property of the velocity field (i.e. height gradients) when we discussed the case of the
corner growth model in Sec. III.1.1. Since the derivation of the stationary measure is at
this stage quite unsatisfactory we will recover the result below in an unambiguous way
starting from a model of DP on the square lattice. Let us first draw the consequences
of the existence of this stationary measure. In the interface language, let us start from
an initial condition

h(t = 0, x) = µx+B(x) , (III.2.15)

where B(x) is a two-sided Brownian motion. Although the interface grows, the slope
field is stationary and

h(t, x) = h(t, x = 0) + µx+Bt(x) , (III.2.16)

where for each t, Bt(x) is a two-sided BM. This invariance of the Brownian motion
implies that the roughness exponent of the interface is α = 1/2, and together with
(III.2.5) this entirely determines the critical exponents of the KPZUC. Note that the
interface dynamics itself is not stationary and, as mentioned in Sec. III.1.2 (i) the
fluctuations of h(t, x = 0) grows at large time as t1/3 and are distributed with the
Baik-Rains distribution; (ii) h(t, x = 0) and Bt(x) are non-trivially correlated. In the
DP language the free-energy of the polymer thus performs a Brownian motion.

It is expected that, starting from any initial condition, the slope field of the interface
at large time will be stationary on local scales. Denoting as before v∞(ϕ) the large
time asymptotic velocity of the interface in the direction ϕ, it is expected that, in law,
we have

h(T + t, ϕT + x) − h(T, ϕT ) ∼T →∞ Xt + µx+Bt(x) (III.2.17)
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where µ = ∂ϕv∞(ϕ) (to ensure the equality of the mean value on both sides of
(III.2.17)), Bt(x) is a two-sided BM, Xt is a RV whose fluctuations grow at large time
as t1/3 and are distributed according to the Baik-Rains distribution, and x, t = O(1).
Of course if one scales x as T 2/3 one will see non-trivial correlations in the spatial
direction and the process in x is not anymore a BM but, as discussed before, the Airy
process. Conversely this explains why the Airy process and the interface at large time
locally looks like a BM.

b Stationary measure of the Log-Gamma polymer

We now recover the stationary measure of the continuum KPZ equation in the DP
framework. To this aim we first consider a model of DP on the square lattice introduced
by Seppäläinen in the landmark paper [197], the Log-Gamma polymer. It is defined
as in Sec. III.1.1 through the recursion equation (III.1.23)

Zt+1(x̂) = Wt+1(x̂) (Zt(x̂+ 1/2) + Zt(x̂− 1/2)) , (III.2.18)

where the random Boltzmann weights are all independent and distributed as the inverse
of a Gamma RV with parameter γ > 0:

Wt(x) ∼ Gamma(γ)−1 . (III.2.19)

And we recall that a RV X is distributed as a Gamma RV with parameter γ iff its
PDF is

X ∼ Gamma(γ) ⇐⇒ p(X) =
1

Γ(γ)
X1+γe−X . (III.2.20)

In [197] it was shown that, now interpreting (III.2.18) ∀t as the definition of a Markov
process, if at t = 0 the successive ratios of partition sums are chosen to be distributed
as quotients of independent Gamma RV with

Zt=0(x̂+ 1)
Zt=0(x̂)

∼ Gamma(γ − λ)
Gamma(λ)

, (III.2.21)

where 0 < λ < γ, then they remain so for all time. This model provided the first
example of a discrete model of DP on the square lattice at finite temperature where
the stationary measure is known exactly - a sign of the existence of exact solvability
properties. The model was later shown to be exactly solvable using the gRSK corre-
spondence (see Sec. III.2.4) in [198] and Bethe ansatz in [4]. As in the continuum KPZ
case, the partition sum Zt(x̂) is not stationary but logZt(x̂) performs a random walk
∀t. The random walk is in general biased, except if λ = γ/2. As already shown in
[4] and as we now recall, this model has a weak noise limit in the γ → ∞ limit where
the partition sum of the Log-Gamma polymer converges to the solution of the MSHE.
Normalizing by definition the temperature T to 1, the random energies of the model
are

Et(x̂) = −Log(Wt(x)) ∼ log(Gamma(γ)) . (III.2.22)
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And the first two moments are given in terms of the diGamma function ψ = Γ′/Γ as

E = ψ(γ) ∼γ≫1 log(γ) +O(1/γ) , E2c ∼ ψ′(γ) ∼γ≫1
1
γ

+O(1/γ2) . (III.2.23)

This shows that, taking γ = bγ′, we can use the weak universality of the MSHE as
discussed in Sec. III.1.3 4. More precisely, adapting (III.1.50) to take into account the
mean value of the energies, we now define

Z̃t̃(x̃) := lim
b→∞

eb2Dt̃ log(γ/2)Zt=b2Dt̃(x̂ = bx̃) , (III.2.24)

and Z̃t̃(x̃) satisfies the stochastic equation

∂t̃Z̃t̃(x̃) =
D

8
(∂x̃)2Z̃t̃(x̃) +

√
2cξ(t̃, x̃) . (III.2.25)

with c = D/(2γ′). To compare with our previous results on the stationary measure
we thus take D = 4 and c = 1/2, i.e. γ′ = 4. In order for the stationary initial
condition (III.2.21) of the discrete model to have a well-defined limit as b → ∞ we
take λ = γ/2−µ = bγ′/2−µ with µ = O(1). In this limit log Z̃t(x̃) performs a drifting
Brownian motion with

log Z̃t̃(x̃) − log Z̃t̃(0) ∼ bx̃(ψ(γ − λ) − ψ(λ))

∼ µx̃ (III.2.26)

and

(log Z̃t̃(x̃) − log Z̃t̃(0))2
c

∼ bx̃(ψ′(γ − λ) + ψ′(λ))

∼ x̃ . (III.2.27)

And thus we obtain in an unambiguous way that the family of stationary measures
of the MSHE corresponds to log Z̃t̃ performing a drifting BM (one easily checks that
higher cumulants (log Z̃t̃(x̃) − log Z̃t̃(0))n

c
with n ≥ 3 are O(1/bn−2)).

c Stationary measure of exponential and geometric Last-Passage-Percolation

An elegant way to obtain results on last-passage-percolation with exponential waiting
times is to use the zero-temperature limit of the Log-Gamma polymer. Although the
Log-Gamma polymer does not contain a parameter corresponding to the temperature
(which is one by definition) we saw in the last section that sending γ → ∞ corresponds
to a weak-noise limit, similar to a large temperature limit. Conversely, sending γ → 0+

yields a zero-temperature limit. More precisely, setting γ = ǫγ′ with (ǫ, γ′) ∈ R
2
+,

one easily shows that rescaled random energies in the Log-Gamma model (III.2.22)
converge in law to (minus) exponential random variables:

Ẽt(x̂) :=
Et(x̂)
ǫ

= −Log(Wt(x̂))
ǫ

∼ǫ→0+ −Exp(γ′) . (III.2.28)

4This is a slight adaptation of the weak universality since we are taking a weak noise limit while
changing the shape of the distribution at the same time. The ideas are, however, identical.



118 Chapter III. Exactly solvable models of directed polymer

We recall that the PDF of an exponential random variable is

x ∼ Exp(γ′) ⇐⇒ p(x) =
1
γ′ e

−γ′x . (III.2.29)

Hence, introducing

Et(x̂) = lim
ǫ→0+

− logZt(x̂)
ǫ

, (III.2.30)

the linear recursion relation of the Log-Gamma polymer becomes, in the limit ǫ → 0,
equivalent to

Et+1(x̂) = Ẽt(x̂) + min(Et(x̂− 1/2),Et(x̂+ 1/2)) . (III.2.31)

Switching to the waiting-time language as in Sec. III.1.1, one sees that this recursion
equation corresponds to a problem of last passage percolation with exponential waiting
times. We can now take the limit of the stationary initial condition of the Log-Gamma
polymer (III.2.21). Setting λ = ǫλ′ we obtain that, if at t = 0 the energy is taken
as a two-sided random walk with increments distributed as differences of independent
random variables with

Et=0(x̂+ 1) − Et=0(x̂) = Exp(λ′) − Exp(γ′ − λ′) , (III.2.32)

then they remain so at all time. This exact solvability property of last passage percola-
tion with exponential waiting times was first proved by Burke in [199] in the language
of stochastic queuing systems. As for the Log-Gamma case, this exact solvability prop-
erty is only the tip of the iceberg and last passage percolation with exponential weights
enjoy other remarkable properties. These notably include: (i) the possibility to use
the RSK (see Sec. III.2.4) correspondence [159]; (ii) Bethe ansatz solvability of the as-
sociated particle system, the TASEP with exponential clocks (see [200] and references
therein). Let us finally mention here that these different exact solvability properties
can be generalized to the geometric case where the random energies are discrete and
distributed as Ẽt(x̂) ∼ −Geo(q) where 0 < q < 1 and we use the convention

X = Geo(q) ⇐⇒ Proba(X = k) = (1 − q)qk . (III.2.33)

In particular in this case the stationary initial condition is obtained by setting

Et=0(x̂+ 1) − Et=0(x̂) = Geo(qb) −Geo(q/qb) (III.2.34)

with q < qb < 1. This is a generalization of the exponential case since the limit
q = 1 − γ′ǫ of the geometric distribution is the exponential distribution.

III.2.3 An algebraic exact solvability property: Bethe ansatz integrability of
the continuum DP

In this section we discuss the Bethe ansatz integrability of the continuum DP and
recall the main steps that led to the results for the fluctuations of the point-to-point
free-energy of the DP obtained in [173] (as well as in [165]).
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a From the stochastic-heat-equation to the attractive Lieb-Liniger model

We now discuss the replica Bethe ansatz solution of the continuum DP which was
first initiated by Kardar in [201]. In this section, to conform with recent works on the
subject, we will study the MSHE with the following normalization,

∂tZt(x) = (∂x)2Zt(x) +
√

2c̄ξ(t, x)Zt(x) , (III.2.35)

with as usual ξ(t, x) a unit Gaussian white noise with correlation ξ(t, x)ξ(t′, x′) =
δ(t − t′)δ(x − x′). It can be obtained from the universal scaling limit of DP on the
square lattice discussed in (III.1.47) with D = 8. For concreteness we also consider
the initial condition

Zt=0(x) = δ(x = 0) , (III.2.36)

and Zt(x) is thus a point to point partition sum. Let us introduce the ‘wave-function’

ψt(x1, · · · , xn) = Zt(x1) · · ·Zt(xn) , (III.2.37)

from which the nth integer moment of the partition sum is obtained by taking coinciding
points. Introducing n auxiliary independent Brownian motions

b′
i(t) =

√
2ηi(t) , bi(0) = 0 , (III.2.38)

with ηi(t) independents unit centered GWN, ψt(x1, · · · , xn) is obtained as a condi-
tional expectation value through the Feynman-Kac representation of the solution of
the MSHE (see (III.1.2)) as

ψt(x1, · · · , xn) = E

(

e
∑n

i=1

∫ t

0
dt′√2c̄ξ(t,bi(t′))

n∏

i=1

δ(bi(t) − xi)

)

. (III.2.39)

Exchanging the two averages we obtain5

ψt(x1, · · · , xn) = E

(

e
∑

1≤i<j≤n
∫ t

0
dt′2c̄δ(bi(t)−bi(t

′))
n∏

i=1

δ(bi(t) − xi)

)

. (III.2.40)

Using again the Feynmac-Kac type formula (or an elementary derivation as in Sec. I.3.3)
one obtains that ψt satisfies the PDE

∂tψt = −Hnψt , Hn := −
n∑

j=1

∂2

∂x2
j

− 2c̄
∑

1≤i<j≤n

δ(xi − xj) ,

ψt=0(x1, · · · , xn) =
n∏

i=1

δ(xi) . (III.2.41)

Remarkably, this equation corresponds to the Schrödinger equation written in imag-
inary time for bosons (the wave function (III.2.39) is manifestly symmetric) in the

5Note that here there is no contribution from the term i = j since we are using a time-ordered
exponential, see the discussion in Sec. III.1.1.
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attractive (c̄ ≥ 0 is the strength of the white noise) Lieb-Liniger (LL) model [202].
Note that comparing (III.2.37) with (III.2.40), we have replaced the average over dis-
order by an average over interacting Brownian paths. This is an example of stochastic
duality relations which relates the observables of two a priori unrelated stochastic pro-
cesses and the LL model is dual to the MSHE. The particles of the LL model correspond
to replica of the partition sum and we will use indifferently both denominations.

b Bethe ansatz solution of the LL model

The strategy adopted to solve (III.2.41) is to first compute all the symmetric eigen-
functions of the Lieb-Liniger Hamiltonian Hn:

Hnψµ = Λµψµ , (III.2.42)

where µ labels the different eigenvectors. As already noticed in [202], the symmetric
eigenfunctions of Hn are obtained using the Bethe ansatz (see [203] for a review) as
we now recall. Since we are looking for symmetric eigenfunctions of Hn it is sufficient
to specify their values in the so-called Weyl chamber x1 ≤ x2 ≤ · · · ≤ xn as

ψµ(x1 ≤ · · · ≤ xn) = ψ̃µ(x1, · · · , xn) , (III.2.43)

where ψ̃µ is a priori not symmetric and the other sectors are obtained by using the
symmetry of ψµ. In the interior of the Weyl chamber x1 < x2 < · · · < xn, the
interaction has no influence and the spectral equation (III.2.42) just amounts to the
free spectral equation

H free
n ψ̃µ = Λµψ̃µ , H free

n = −
∑

i

∂2

∂x2
i

. (III.2.44)

And since the values of ψ̃µ(x1, · · · , xn) outside the Weyl chamber have no influence on
ψµ, we might as well take (III.2.43) to hold ∀(x1, · · · , xn) ∈ R

n. We thus look for ψ̃µ

as a superposition of plane waves:

ψ̃µ :=
∑

σ∈Sn

Aσ

n∏

i=1

zxi
σ(i) , (III.2.45)

where Sn is the group of permutations of {1, · · · , n}, the n! complex numbers Aσ are
called amplitudes and the n complex numbers zi are called rapidities. Alternatively we
will consider the quasi-momenta λi defined by

zj = eiλj . (III.2.46)

The eigenvalue of the spectral problem (III.2.42) is completely specified by the free
equation (III.2.44) as

Λµ =
n∑

i=1

λ2
i . (III.2.47)

Note that each of the n! terms in ψ̃µ independently solve (III.2.44) with the same
eigenvalue. Here we are considering for now the most general superposition of plane
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waves to try to maintain the maximum liberty with the aim of solving the full spectral
problem (III.2.42). For now the spectral problem is already solved in the interior
of the Weyl chamber. Let us now consider the condition of solvability at the ‘two
particles boundary’ of the Weyl chamber x1 < x2 < · · · < xi = xi+1 < xi+2 < · · · <
xn. From (III.2.42) and the form of the LL Hamiltonian (III.2.41) it is clear that
we are looking for solutions ψµ that are continuous everywhere but not C1. More
precisely the derivatives of ψµ must exhibit jumps at coinciding points to compensate
the δ interaction. Assuming that these discontinuities only concern the derivatives on
coinciding points we must have

∂2ψµ

∂x2
i

=
(
∂ψµ

∂xi
|xi=x+

i+1
− ∂ψµ

∂xi
|xi=x−

i+1

)

δ(xi+1 − xi) + · · ·

∂2ψµ

∂x2
i+1

=
(
∂ψµ

∂xi+1
|xi+1=x+

i
− ∂ψµ

∂xi+1
|xi+1=x−

i

)

δ(xi+1 − xi) + · · · (III.2.48)

where the dots denote more regular terms. Using the symmetry of the wave-function
one easily obtains that these singular parts are actually equals and expressed in terms
of ψ̃µ as, considering only the most singular terms

∂2ψµ

∂x2
i

≃ ∂2ψµ

∂x2
i+1

≃
(

∂

∂xi+1

− ∂

∂xi

)

ψ̃µ|xi+1=xiδ(xi+1 − xi) + · · · (III.2.49)

Let us now integrate, for all xj fixed, distinct and ordered except xi and xi+1, the
spectral equation (III.2.42) from xi = xi+1 − ǫ to xi = xi+1 + ǫ. We obtain,

∫ xi=xi+1+ǫ

xi=xi+1−ǫ
(− ∂2

∂2
xi

− ∂2

∂2
xi+1

)ψµ − 2c̄ψµ +O(ǫ) = O(ǫ) . (III.2.50)

implying, using (III.2.48) and (III.2.49)

−
(

∂

∂xi+1

− ∂

∂xi

)

ψ̃µ|xi+1=xi = c̄ψ̃µ . (III.2.51)

And this implies for the amplitudes Aσ, that any amplitudes differing from one another
by a transposition of i ↔ j, noted τij , must satisfy

Aσ◦τij

Aσ
=
λσ(j) − λσ(i) − ic̄

λσ(j) − λσ(i) + ic̄
. (III.2.52)

There are thus 1
2C

2
nn! equations for n! variables, but they are mutually consistent [202].

The solution is defined up to a constant (i.e. the choice of AId) and we will choose
here, in agreement with e.g. [178],

Aσ =
∏

1≤α<β≤n

(

1 +
ic̄

λσ(β) − λσ(α)

)

. (III.2.53)

We have now obtained a complete solution of the spectral problem (III.2.42). Here we
have only taken care of the two-body interaction, but the Lieb-Liniger Hamiltonian
(III.2.41) has indeed only two-bodies interactions. Note that we have not yet specified
the values of the rapidities zi. We now must do so in such a way that we obtain a
complete basis of symmetric functions.
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c The string solution

Here we will adopt the same strategy as e.g. in [178] and adopt periodic bound-
ary conditions on a line of length L. More precisely we look for solutions such that
∀(x1, · · · , xn) ∈ R

n we have

ψµ(x1, · · ·xi−1, xi + L, · · · , xn) = ψµ(x1, · · · , xn) . (III.2.54)

This implies the Bethe equations for the quasi-momenta:

eiλαL =
∏

β 6=α

λα − λβ − ic̄

λα − λβ + ic̄
. (III.2.55)

These boundary conditions are appropriate to study the problem of the continuum
DP on a cylinder as in [204, 205]. For our purpose they are only a trick to obtain a
well defined complete basis6 of eigenfunctions and we will study the limit L → ∞. The
solution in this case was first described in [207] and here we recall the main features.
In the large L limit a set of solutions λα can be decomposed in ns packets, also called
strings, of mi particles (the string multiplicities) with i = 1, · · · , ns and n =

∑ns
i=1mj .

Inside the jth string, the quasi-momenta are labeled by a = 1, · · · ,mj and take the
form

λj,a := kj +
ic̄

2
(mj + 1 − 2a) + iδja , (III.2.56)

where kj is quantized as for free-particles, kj = 2πIj/L with Ij ∈ Z and δja are
corrections to this leading behavior that decay exponentially with L. Note that the
quasi-momenta inside a string are symmetric with respect to the real axis. To under-
stand this structure let us consider the two-particle case and take the log of the Bethe
equations (III.2.55): we obtain

λ1 =
2πI1

L
+

1
iL

(log(λ1 − λ2 − ic̄) − log(λ1 − λ2 + ic̄))

λ2 =
2πI2

L
− 1
iL

(log(λ1 − λ2 − ic̄) − log(λ1 − λ2 + ic̄)) , (III.2.57)

with (I1, I2) ∈ Z
2 and note that λ1 + λ2 is always real. The naive solution of this

equation in an expansion in 1/L would thus be λj = 2πIj
L +O(1/L2), i.e. an asymptotic

solution equivalent to free-particles. This however neglects the fact that the singularity
of the logarithm at 0 can kill the 1/L decay before it. More precisely if λ1 = λ2 + ic̄+
O(e−δL) with δ > 0, then I1 = I2 and we obtain

λ1 =
2πI1

L
+

1
iL

(−δL) , λ2 =
2πI1

L
− 1
iL

(−δL) . (III.2.58)

By consistency we must have λ1−λ2 ≃ ic̄ = 2iδ. Hence this solution is only consistent if
c̄ > 0: strings only exist in the attractive phase of the Lieb-Liniger model. Finally since
λ1 + λ2 must be real this implies the string form (III.2.56) for m = 2. This reasoning

6Proving the completeness of the Bethe solutions is in general a very non-trivial problem, see [206]
and references therein for the case studied here.
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can be generalized to any m and leads to (III.2.56). Note that these considerations
do not constitute in any case a proof that the string states form a complete basis in
the large L limit, but they indeed do, see [208]. In the large L limit the dynamics
of the system is thus relatively simple and the particles form string states that move
essentially independently. In particular, the wave function associated with n particles
forming a single n-string is

ψµ(x1, · · · , xn) := n!eik
∑

i
xi− c̄

2

∑

1≤i<j≤n |xi−xj | . (III.2.59)

String states thus correspond to bound states. The contribution to the eigenvalue Λµ

of a string of mj particles is the energy of the string

Ej :=
mj∑

a=1

(λj,a)2 = mjk
2
j − (c̄)2

12
mj(m2

j − 1) . (III.2.60)

The ground state of the system is thus obtained by forming a single n-string. Finally,
noting that the Bethe wavefunction (III.2.45) with (III.2.53) is symmetric by exchange
zi ↔ zj the sum over eigenstates can be computed as

∑

µ

=
n∑

ns=1

1
ns!

∑

(m1,··· ,mns )n

ns∏

j=1

∫

R

mjLdkj

2π
, (III.2.61)

where the ns! avoids a double counting of the states, the sum
∑

(m1,··· ,mns )n is over
all ns−uplets such that

∑ns
j=1mj = n and the last terms comes from the fact that

each string-state should be considered as a free-particle with total moment Kj :=
∑mj

a=1 λ
j,a = mjkj (see [209]).

d Norm of the states

As the eigenfunctions of a symmetric operator, the Bethe eigenfunctions are orthogo-
nal. They are however not normalized and for many practical applications it is impor-
tant to know their norm. A remarkable formula due to Gaudin [210] is that the norm
of the eigenstates of the system with periodic boundary conditions can be computed,
at finite L, as

||ψµ||2 =
∫

[0,L]n
dx1 · · · dxnψ

∗
µ(x1, · · · , cn)ψµ(x1, · · · , cn)

= n!
∏

1≤α<β≤n

(λLL
α − λLL

β )2 + (c̄LL)2

(λLL
α − λLL

β )2
detGLL (III.2.62)

where GLL is the Gaudin matrix whose entries are:

GLL
αβ = δαβ



L+
n∑

γ=1

K(λLL
α − λLL

γ )



−K(λLL
α − λLL

β ) (III.2.63)

K(x) =
−2c̄LL

x2 + (c̄LL)2
(III.2.64)
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Note that the entries of the Gaudin matrix in the LL case are the derivatives of the
logarithm of the Bethe equations. Performing the asymptotic analysis of this formula
at large L for string states is a non-trivial problem (due to the divergences or zeros
both in the prefactor and in the Gaudin kernel) which was only accomplished recently
in [209]. The result is

||ψµ||2 =
n!Lns

(c̄)n−ns

n∏

j=1

m2
j

∏

1≤i<j≤ns

4(ki − kj)2 + (mi +mj)2c̄2

4(ki − kj)2 + (mi −mj)2c̄2
+O(Lns−1) . (III.2.65)

Note in particular that this norm scales as Lns , a scaling that would be obtained for
ns free particles.

e Point-to-point free-energy fluctuations of the continuum DP

Starting from

Zt(x)n =
∑

µ

〈ψµ, ψt=0〉
||ψµ||2 Λt

µψµ(x, · · · , x) , (III.2.66)

and combining the ingredients presented with the previous section together with the

fact that ψµ(x, · · · , x) = n!ei
∑ns

j=1
mjkjx one obtains the formula that first appeared in

[173, 165]:

Zt(x)n =
n∑

ns=1

n!c̄n

ns!(2πc̄)ns

∑

(m1,··· ,mns )n

ns∏

j=1

dkj

mj

∏

1≤i<j≤ns

4(ki − kj)2 + (mi −mj)2c̄2

4(ki − kj)2 + (mi +mj)2c̄2

×
ns∏

j=1

e
i
∑ns

j=1
mjkjx−t

(

mjk
2
j− (c̄)2

12
mj(m

2
j−1)

)

. (III.2.67)

This formula is exact, but does not determine the probability distribution of Zt(x):

the moments grow as etn3 (c̄)2

12 (contribution from the ground state), i.e. too fast to
determine the distribution. Hence determining the Laplace transform

gt,x(u) := e−uZt(x) (III.2.68)

from (III.2.66) is impossible from a mathematical point of view. Exchanging the
average over disorder and the series expansion of the exponential in (III.2.68) leads to
a diverging series. This is a caveat of the replica method for the continuum DP and one
has to devise a recipe to resum the diverging series. The correct way used for example in

[173, 165] is to use the Airy trick
∫

R
dyAi(y)eys = e

s3

3 (valid for Re(s) > 0) to ‘linearize’
the energies of the string. Let us now give the result for the Laplace transform at x = 0
(which is not restrictive since STS holds, see Sec. III.2.1). Introducing the rescaled
Laplace transform

g̃(s) = exp

(

−eλs
Zt(0)

c̄e− c̄2t
12

)

= exp
(
−eλ(s−ft)

)
(III.2.69)
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where we have introduced the parameter λ and the rescaled free-energy

λ = (
c̄2t

4
)

1
3 , ft :=

− logZt(0) + log(c̄) + c̄2t
12

λ
. (III.2.70)

Then g̃(s) can be rewritten as a Fredholm determinant (see [211] and references therein
for background on Fredholm determinants):

g̃(s) = Det (I +K) (III.2.71)

with the kernel

K(v, v′) = −
∫

R

dk

2π
dyAi(y + k2 − s+ v + v′)

eλy−ik(v−v′)

1 + eλy
. (III.2.72)

K is an operator K : L2(R+) → L2(R+), i.e. the v, v′ variables above live on R+.
The essential steps to go from (III.2.69) to (III.2.69) are (i) (wrongfully) inverting
the average with respect to disorder and the series expansion of the exponential in
(III.2.69); (ii) use the exact formula (III.2.66); (iii) exchange in the resulting (diverging)
expression the sum over n (originating from step (i)) and the sum over ns in (III.2.66);
(iv) use the Airy trick; (v) notice the determinantal structure using the formula

det

[

1
i(ki − kj) + (mi +mj)/2

]

ns×ns

=
ns∏

i=1

1
mi

∏

1≤i<j≤ns

4(ki − kj)2 + (mi −mj)2

4(ki − kj)2 + (mi +mj)2
.

(III.2.73)
The emergence of a determinant thus in the end comes from the remarkable formula
for the norm of string states in the large L limit. We refer the reader to [173] for more
details on the derivation of (III.2.71)-(III.2.72). Finally, starting from (III.2.71) it is
possible to perform the large time (i.e. large λ) limit of the Fredholm determinant.

Assuming that the rescaled free-energy ft defined in (III.2.70) is a O(1) RV (and thus c̄2

12
is the extensive part of the free-energy of the DP while λ is the scale of the fluctuations
of the free-energy), one obtains [173] (using limλ→∞ exp(−eλ(s−f)) = θ(f − s) )

lim
t→∞

Prob

(

− logZt(0) + c̄2t
12

λ
> s

)

= Prob(f∞ > s) = F2

(

− s

22/3

)

, (III.2.74)

where F2(s) is the CDF of the Tracy-Widom GUE distribution which also admits an
expression as a Fredholm determinant [37].

f A few results obtained using Bethe ansatz

The replica Bethe ansatz approach to DP has led to a variety of exact results. Known
since the work of Kardar [201], it was first applied for technical reasons, to the study of
DP properties that can be deduced more or less from the sole knowledge of the ground
state energy, i.e. the limit of DPs of large length t ≫ 1 on a finite cylinder L (the limit
L → ∞ being eventually taken afterwards). This was used to already determine the
critical exponents [201, 212] or the large deviation function for the fluctuations of the
free-energy of the DP on the cylinder [204, 205]. Obtaining the universal distribution
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of fluctuations for the growth of an interface in an infinite space, however, requires to
consider the limit t → ∞ with at least L ≫ t2/3. The study of this limit from BA
requires a summation over all excited states. This was only achieved recently, partly
thanks to the work of Calabrese and Caux [209] who managed to compute the norm
of string states (III.2.65).

Even with this knowledge it is still far from trivial to obtain exact results. Addi-
tionally since the method is not rigorous from a mathematical point of view due to
the too rapid growth of moments, it requires a large number of tricks. Once a solid
recipe to tackle this issue has been devised (a recipe that sometimes appears retrospec-
tively to be the shadow of a rigorous derivation, as e.g. by considering a q−deformed
model, see [208]), the replica Bethe ansatz approach has led a variety of new (presum-
ably exact) results. Here we name a few: (i) TW-GUE distribution of fluctuations
for the point-to-point free energy [173, 165]; (ii) TW-GOE distribution of fluctuations
for the point-to-line free energy [177, 178, 179]; (iii) multi-point correlations for the
point-to-point free-energy and the Airy process [175, 213]; (iv) one point (Baik-Rains)
and multi-point distributions of fluctuations for the point-to-Brownian (i.e. the DP
with stationary initial condition) free-energy [183, 184]; (v) TW-GSE distribution of
fluctuations for the point-to-point free energy of a directed polymer in a half-space
[169]; (vi) fluctuations of free-energy in the crossover from droplet to stationary initial
condition [184]; (vii) fluctuations of free-energy in the crossover from droplet to flat
initial condition [214]; (viii) distribution of the endpoint of the polymer [215]; (ix)
extension to two-times [166]. Some of these results have been shown rigorously since
then (see [34]), giving credit to the replica method.

III.2.4 A few words on other exact solvability properties

In the next chapter we will review the recent progresses that have been made on
applying the replica Bethe ansatz to models of DPs on Z

2, which are one of the major
focus of this thesis. Additionally we will see that these BA exactly solvable models of
DPs have another exact-solvability property that has also been discussed previously,
namely their stationary measure can be written down exactly. Before we do so we now
mention other exact solvability properties that have played an important role in the
study of DPs, particularly for discrete models.

a A combinatorial exact solvability property: RSK and gRSK correspon-
dence

As we mentioned, the first proof of TW-GUE fluctuations for a point-to-point directed
polymer was in [159] for a model of DP at zero temperature with (minus) exponential
or geometric distribution of random energies, i.e. equivalently a model of LPP with
exponential or geometric distribution of waiting times (see Sec. III.1.1). The exact
solvability used there appears to be of purely combinatorial origin and proceeds in
three steps. It consists, for the geometric case, in: (i) mapping the problem of finding
the last passage time T (x1, x2) to the problem of finding the length of the longest
increasing subsequence in a sequence of pairs of integers (x′

1, x
′
2) where the number of

times (x1, x2) appears in the sequence is given by the value of the random waiting time
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tx1,x2 ; (ii) using the Robinson-Schensted-Kuth (RSK) algorithm to map this problem
onto the problem of finding the length of the first row in a pair of ‘semi-standard Young
tableaux’; (iii) obtain a representation of the PDF of the latter using Schur polyno-
mials. The formula obtained in the last step shares striking similarities with formulae
obtained in random matrix theory. The asymptotic analysis is carried out using the
theory of symmetric polynomials, and the role played by the Hermite polynomials for
the GUE is played by the Meixner polynomials. We refer to [160] for a pedagogical
review of this approach to LPP with geometric waiting times. This approach was later
adapted to study a model of first passage percolation with geometric waiting times
on horizontal edges of Z2 only [216]. The RSK correspondence was later ‘tropicalized’
in [217] to obtain the proof of GUE-TW distribution of free-energy fluctuations for
the semi-discrete directed polymer. This new combinatorial mapping has since then
been referred to as the geometric RSK (gRSK) correspondence. LPP with geometric
and exponential waiting times was a precursor of the first discovered exactly solvable
model of DP on the square lattice at finite temperature, the Log-Gamma polymer.
Introduced in [197] for the possibility of writing down exactly its stationary measure,
it was later shown that the gRSK correspondence could be used to tackle this finite
temperature case as well [198], the results were then later used in [218] to obtain the
first proof of the emergence of TW-GUE fluctuations in a finite temperature model
of DP on Z

2. Similarly, the LPP model discussed previously was a precursor of the
‘Strict-Weak’ polymer, the second exactly solvable model of finite temperature DP on
Z

2. Introduced in [219, 220], three exactly solvable properties were shown simulta-
neously for this model: exact stationary measure, Bethe ansatz solvability and gRSK
correspondence. TW-GUE fluctuations were shown too. The links between RSK and
gRSK correspondence was recently clarified in [221] where the authors obtained a
general correspondence that interpolates between both.

b Macdonald processes

The theory of Macdonald processes, developed in [192], has provided important results
for various models in the KPZUC. Macdonald processes are a two-parameter family of
stochastic processes which, in several limits, converge to models now known to belong
to the KPZUC in particular the q-TASEP, the semi-discrete DP and the continuum DP.
The exact solvability property of Macdonald processes notably relies on results from
the theory of symmetric functions (Macdonald functions) and Macdonald processes in
general constitute a class of processes different from BA solvable processes (but their
intersection is not empty).

III.3 Summary of (and more context around) the results ob-
tained during the thesis

III.3.1 Introduction

In the last sections we have thus discussed some aspects of the KPZUC and presented
some exact solvability properties that, in the DP context, contributed to the statement
of the KPZ universality hypothesis. Before we continue, let us emphasize here that
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there is still no simple explanation for the values of the exponents in the KPZUC, and
even less for the emergence of universal distributions related to extreme value statistics
of RMT7. Despite this, this universality class seems remarkably robust. The emergence
of the KPZ exponents and of the Tracy-Widom GUE distribution in so many different
models has the flavor of an analogue of the central limit theorem in the case of strongly
correlated RVs. Understanding simple mechanisms explaining this universality is one of
the major objectives of research in this field. This task, however, still appears beyond
reach, and most of the research in the KPZUC still relies on the study of exactly
solvable models. It is in this spirit that in this thesis we studied directed polymers on
the square lattice and tried to understand how KPZUC appears in these models (see
Sec. III.3.4).

As we discussed in the last section, the RSK and gRSK correspondences have played
a major role in the study of DPs on Z

2. While the RSK correspondence provided the
first proof of TW-GUE type fluctuations of free-energy for LPP with geometric waiting
times [159], the gRSK correspondence led to a similar result, for the first time, in a
model of a DP on Z

2 at finite temperature, the Log-Gamma polymer [197, 198, 218].

On the other hand, for the continuum DP, as reviewed in the last section, the Bethe
ansatz approach, although non-rigorous, is a powerful and versatile technique that was
recently applied to obtain a variety of exact results. This state of affairs provided the
motivation to obtain a Bethe ansatz approach to the Log-Gamma polymer. Similarly to
the continuum case, the moment problem is mapped into a discrete-time and discrete-
space dynamics of replica on Z. It was found by Éric Brunet that the transfer matrix
of the problem (equivalent to the LL Hamiltonian), could be diagonalized using the
Bethe ansatz. As we showed in the last section, this BA solvability is, however, only
the beginning of the route to the ‘proof’ of GUE-TW-type fluctuations for the DP
free-energy. The paper [4] showed how the route used for the continuum DP could be
successfully adapted to this discrete case. The results obtained in [4] will be presented
in Sec. III.3.2 and the original research paper can be found in Appendix. D.

The dynamics of the replica on Z for the Log-Gamma polymer is very similar to
the dynamics of interacting particle systems referred to as zero-range-processes (ZRP).
In the seminal paper [222], Povolotsky obtained a classification of BA solvable models
of ZRP on Z with parallel updates8. The purpose of the paper [5] was to understand
whether or not this classification could be adapted to obtain a classification of finite
temperature BA solvable models of DP on Z

2. As we will discuss in Sec. III.3.3,
with some specific hypothesis, this classification is very close to being complete. In
particular it encompasses all known models of exactly solvable models of DP on Z

2:
the already discussed Log-Gamma and Strict-Weak polymer, but also (i) the Beta
polymer introduced shortly before by Barraquand and Corwin in [224]; (ii) the Inverse-
Beta polymer, a new integrable model of DP on the square lattice that remarkably
interpolates between the Inverse-Beta and Log-Gamma polymer, and for which we
showed TW-GUE fluctuations for the point-to-point free energy. The results obtained
in [5] will be presented in Sec. III.3.3 and the original research paper can be found in
Appendix. E.

7Note that the Baik-Rains distribution has no equivalent in RMT.
8A classification later extended in [223] to the case of non-parallel updates.
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Among the classification of BA exactly solvable models of DP obtained in [5], the
Beta polymer has the remarkable peculiarity that it can also be interpreted as a model
of a random walk on Z in a time-dependent random environment (TD-RWRE). This
is the first example of an exactly solvable model of TD-RWRE and it brings to this
field the possibility of using exact techniques and the scope of KPZUC. In [224] the
authors obtained exact results for the point to half-line partition sum of the DP. In
the correspondence with TD-RWRE these correspond to results for the cumulative
distribution function (CDF) of the TD-RWRE transition probability. They notably
showed a convergence at large time of the fluctuations of the point to half-line free-
energy of the DP, in the large deviations regime of the TD-RWRE, to the GUE-TW
distribution. This suggests that KPZ universality does apply in the large deviations
regime, but the behavior of the TD-RWRE in the diffusive regime was not considered in
[224]. In [6], using the techniques developed in [4, 5], we obtained complementary exact
results for the point to point partition sum of the DP, equivalent in the correspondence
with TD-RWRE to the PDF of the TD-RWRE transition probability. We performed
the asymptotic analysis of these formulae both in the large deviations regime and in
the diffusive regime. While in the large deviations regime we obtain TW-GUE type
fluctuations for the point to point DP free-energy, in the diffusive regime we obtain
that the fluctuations of the partition sum are Gamma distributed. This permits a
discussion of the crossover between both regimes. The results obtained in [6] will be
presented in Sec. III.3.4 and the original research paper can be found in Appendix. F.

Finally in [7], on one hand we pursued the analysis of the Inverse-Beta polymer
and obtained its stationary measure exactly. Using the stationary measure we addi-
tionally recovered rigorously some results obtained in [5]. On the other hand we used
this knowledge to go back to zero temperature models of DPs on the square lattice
and we introduced a new exactly solvable model, the Bernoulli-Geometric polymer.
The motivation to look for this model came from the fact that (i) the Inverse-Beta
polymer appears as a general model encompassing the two gRSK solvable finite tem-
perature models of DP on Z

2, the Log-Gamma and the Strict-Weak polymer; (ii) the
Log-Gamma and the Strict-Weak polymer are both linked with RSK solvable zero-
temperature models of DP on Z

2 with discrete energies, namely models of first and
last passage percolation with geometric waiting times. It was thus natural to conjec-
ture that a zero-temperature model of DP on Z

2, linked with the Inverse-Beta polymer
and with discrete random energies should exist. The Bernoulli-Geometric model in-
troduced in this paper appears as this missing model and we obtained its stationary
measure exactly and deduced from it several results. The results obtained in [7] will be
presented in Sec. III.3.5 and the original research paper can be found in Appendix. G.

We now give a more detailed overview of the main results obtained in [4, 5, 6, 7].
We only focus on the main results and encourage the reader to look directly at the
original research papers in Appendices D-E-F-G. We begin with [4] on which we will
be quite exhaustive since many of the methods developed in [4] are used in [5, 6].

III.3.2 Presentation of the main results of [4]

Introduction, our strategy and an issue
In [4] we attempted to solve the Log-Gamma polymer model, already presented in
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Sec. III.2.2, using the coordinate Bethe ansatz. The model is defined through the
recursion equation for the partition sum, for t ≥ 0,

Zt(x̂) = Wt+1(x̂) (Zt(x̂− 1/2) + Zt(x̂+ 1/2)) , Z0(x̂) = δx̂,0W0(0) . (III.3.1)

Where the random Boltzmann weights Wt(x̂) are independent and distributed accord-
ing to the inverse of Gamma random variables with parameter γ > 0 (see (III.2.20)).
Note that here we have added a Boltzmann weight on the first site of the DP. The
moments of Wt(x̂) are well defined for n ≤ γ and are given by

(Wt(x̂))n =
Γ(γ − n)

Γ(γ)
=

(−1))n

(1 − γ)n
, (III.3.2)

where we introduced the Pochammer symbol (a)n =
∏n−1

k=0(a + k). For n > γ,
(Wt(x̂))n = +∞. In this paper, our goal is to compute the PDF of Zt(x̂) from the
knowledge of its integer moments (Zt(x̂))n that we will compute using BA. This prob-
lem is obviously ill-defined since only a finite number (the first γ) of moments of Zt(x̂)
exist. The problem here is thus in some sense even worse than in the continuum DP
where the moments were ‘only’ growing too fast.

A way out
Note, however, that using the analytical continuation of the Gamma function, the
right-hand side of (III.3.2) is well-defined ∀n, although these are not the moments of
the Inverse-Gamma distribution (the moments only exist for n in the complex plane
with Re(n) < γ). The question we ask here is: ‘can we still somehow use these
analytically continued moments to obtain (non-rigorously) the Laplace transform of
Wt(x̂)’, which is defined by

g(u) := e−Wt(x̂) =
∞∑

n=0

(−u)n

n!
(Wt(x̂))n . (III.3.3)

If we find a ‘solution’ to this ill-defined problem, then our goal will be to adapt this
solution to obtain the Laplace transform of Zt(x̂) from similarly analytically continued
moments. First note that in the expression (III.3.3), it is not possible to exchange the
series expansion of the exponential and the average over disorder since only a finite
number of moments of Wt(x̂) exist. We can, however, rewrite this series expansion
using a Mellin-Barnes representation:

g(u) =
−1
2iπ

∫

s∈C

πds

sin(πs)
us

(Wt(x̂))s

Γ(1 + s)
, (III.3.4)

where C is a vertical contour oriented from down to top with C = −a+iR and 0 < a < 1.
The identity between (III.3.3) and (III.3.4) follows from the (legitimate) application
of the residue theorem when closing the contour on the right and taking the poles of
the sine function in the denominator. Using (III.3.2), g(u) can thus be obtained as

g(u) =
−1
2iπ

∫

s∈C

πds

sin(πs)
us Γ(γ − s)

Γ(γ)Γ(1 + s)
. (III.3.5)



III.3. Summary of the thesis 131

This integral converges and the inversion of the integral and of the average over disorder
is legitimate. We can now ‘un-do’ the Mellin-Barnes transform. Closing the contour
C on the right and taking into account the poles of the sine function and of the Γ
function at the numerator, we obtain (using Euler’s reflection formula)

g(u) = gmom(u) + gnon−analytic(u) , (III.3.6)

gmom(u) :=
∞∑

n=0

(−u)n

n!
Γ(γ − n)

Γ(γ)
,

gnon−analytic(u) :=
∞∑

n=0

(−1)n

n!
uγ+n Γ(−γ − n)

Γ(γ)
.

The Laplace Transform thus admits a non-analytic series expansion. Note that the
analytic part of the series expansion gmom(u) can also be obtained by naively (and
wrongfully) inverting the series expansion of the exponential and the average over
disorder in (III.3.3) and using (III.3.2) ∀n. The question now is how one can guess
g(u) from the sole knowledge of gmom(u)?. The answer is: wrongfully (again) apply a
Mellin-Barnes transform using the proper analytical continuation of the coefficients of
the series expansion of gmom(u) to n ∈ C:

gmom(u) =
∞∑

n=0

(−u)n

Γ(1 + n)
Γ(γ − n)

Γ(γ)
→ −1

2iπ

∫

s∈C

πds

sin(πs)
us Γ(γ − s)

Γ(γ)Γ(1 + s)
= g(u) .

(III.3.7)
Note that there is a single analytical continuation that provides the right answer and it
has to be guessed. This ‘trick’ gives us hope to solve the problem for the Log-Gamma
polymer as follows: (i) compute the ‘moments’ (Zt(x̂))n ∀n using BA, as if the moments
of Wt(x̂) were given by the right hand side of (III.3.2) ∀n; (ii) compute the ‘moment
generating function’ gmom

t,x (u) =
∑∞

n=0 Zt(x̂)n; (iii) perform an “illegal” Mellin-Barnes
transform on gmom

t,x (u) using an analytical continuation and obtain a function gt,x(u);
(iv) check that gt,x(u) is indeed the Laplace transform of Zt(x̂) for low values of t and
x̂ and hope that it holds ∀(t, x̂).

Bethe-Brunet ansatz
Introducing the mean value of the Boltzmann weights w0 = Wt(x̂) = 1

γ−1 we consider
the ‘wave-function’ (denoting from now on x̂ by x as in [4])

ψt(x1, . . . , xn) =
1

(2)nt(w0)n(t+1)
Zt(x1) · · ·Zt(xn) . (III.3.8)

The normalization of the wave-function ensures an easy comparison with the continuum
DP case (see (III.2.24)) that is also discussed independently in the paper. Defining

hn =
(Wt(x))n

wn
0

, (III.3.9)

the transfer matrix is obtained as

ψt+1(xi) = (Tnψt)(xi) =
1
2n
ax1,··· ,xn

∑

(δ1,··· ,δn)∈{− 1
2

, 1
2

}n
ψt(x1 − δ1, · · · , xn − δn)

ax1,··· ,xn =
∏

x

h∑n

α=1
δx,xα

. (III.3.10)
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As shown by Éric Brunet, the symmetric eigenfunction of Tn

Tnψµ = θµψµ , (III.3.11)

takes a Bethe-Ansatz form: for x1 ≤ · · · ≤ xn, ψµ(x1, · · · , xn) = ψ̃µ(x1, · · · , xn) with

ψ̃µ(x1, · · · , xn) =
∑

σ∈Sn

Aσ

n∏

α=1

zxα
σ(α) , Aσ =

∏

1≤α<β≤n

[

1 +
c̄

2(tσ(α) − tσ(β))

]

,

zα = eiλα , tα = i tan(
λα

2
) =

zα − 1
zα + 1

, (III.3.12)

and

θµ =
n∏

i=1

z
1
2
α

1 + z−1
α

2
. (III.3.13)

The form (III.3.12) should be compared with (III.2.53). In an appropriate scaling limit
(the γ → ∞ weak noise limit, see Sec. III.2.2) (III.3.12) converges to (III.2.53). Impos-
ing periodic boundary conditions on a line of length L (immaterial in the computation
of a moment as long as t ≥ L) one obtains the following Bethe equations

eiλαL =
∏

1≤β≤n,β 6=α

2tα − 2tβ + c̄

2tα − 2tβ − c̄
=

∏

1≤β≤n,β 6=α

2 tan(λα
2 ) − 2 tan(λβ

2 ) − ic̄

2 tan(λα
2 ) − 2 tan(λβ

2 ) + ic̄
(III.3.14)

which should be compared with (III.2.55).

Symmetric transfer matrix, weighted scalar product and norm formula
The above transfer matrix is not symmetric and the eigenfunctions (III.3.12) are not
orthogonal with respect to the canonical scalar product on (Z/(LZ))n. In [4] we argue
that the eigenfunctions (III.3.12) are orthogonal with respect to the following weighted
scalar product:

〈φ, ψ〉 =
∑

(x1,··· ,xn)∈{0,··· ,L−1}n

1
ax1,··· ,xn

φ∗(x1, · · · , xn)ψ(x1, · · · , xn) (III.3.15)

We then conjecture a generalization of the Gaudin formula for the norm of the eigen-
functions (see [4] for some checks)

||ψµ||2 := 〈ψµ, ψµ〉 = n!
∏

1≤α<β≤n

(2tα − 2tβ)2 − c̄2

(2tα − 2tβ)2
detG (III.3.16)

with

Gαβ = δαβ



L+ (1 − t2α)
n∑

γ=1

K̃(tα − tγ)



− (1 − t2β)K̃(tα − tβ)

K̃(t) =
−2c̄

−4t2 + c̄2
. (III.3.17)
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This formula should be compared with (III.2.62). It is rather remarkable since the
Gaudin formula does not a priori seem to know that we have defined the weighted
scalar product (III.3.15).

The large L limit and the string solution
We assume c̄ > 0 (i.e. γ > 1, which is true if the first moment of the partition sum
is well defined so that it makes sense to use the Bethe ansatz at least for small n).
We then argue in [4] that the Bethe equations are solved in the large L limit similarly
as in the continuum case (see Sec. III.2.3). Namely, a general eigenstate is given by
partitioning n into ns strings, each string containing mj particles where the index
j = 1, · · · , ns labels the string and

tα = tj,a = i
kj

2
+
c̄

4
(mj + 1 − 2a) +

δj,a

2
, (III.3.18)

where we introduce an index a = 1, · · · ,mj that labels the rapidity inside a string, and
δj,a are deviations that fall off exponentially with L. This formula should be compared
with (III.2.56). To compute the norm of the string states, we adapt the derivation of
the Calabrese-Caux formula [209] to our formula (III.3.16) and obtain

||ψµ||2 = n!Lns
∏

1≤i<j≤ns

4(ki − kj)2 + c̄2(mi +mj)2

4(ki − kj)2 + c̄2(mi −mj)2

ns∏

j=1

[
mj

c̄mj−1 (
mj∑

a=1

1
1 − t2j,a

)
mj∏

b=1

(1−t2j,b)] ,

(III.3.19)
which should be compared with (III.2.65). Note that as in the LL case the norm is
almost a determinant. Here however, the additional factor

∑mj

a=1
1

1−t2
j,a

which comes

from the careful large L analysis of (III.3.16) spoils the algebraic structure9. ‘Luckily’
it will be canceled out in the final calculation by a factor coming from the phase space:
we argue that the sum over eigenstates can be computed as

∑

µ

=
n∑

ns=1

1
ns!

∑

(m1,··· ,mns )n

ns∏

j=1

∫

R

Ldkj

2π

mj∑

a=1

1
1 − t2j,a

, (III.3.20)

which should be compared with (III.2.61). Finally noting that the contribution to
the eigenvalue associated with the unit translation in time and on the lattice Z are
θµ =

∏ns
j=1 θmj ,kj with

θmj ,kj =
(

2
c̄

)mj
(

Γ(−mj

2 + γ
2 − i

kj
c̄ )Γ(−mj

2 + γ
2 + i

kj
c̄ )

Γ(mj

2 + γ
2 − i

kj
c̄ )Γ(mj

2 + γ
2 + i

kj
c̄ )

) 1
2

, (III.3.21)

and
∏

α zα =
∏ns

j=1

∏mj

a=1
1+tj,a
1−tj,a

with

mj∏

a=1

1 + tj,a

1 − tj,a
=

Γ(−mj

2 + γ
2 − i

kj
c̄ )Γ(mj

2 + γ
2 + i

kj
c̄ )

Γ(mj

2 + γ
2 − i

kj
c̄ )Γ(−mj

2 + γ
2 + i

kj
c̄ )

. (III.3.22)

9It could obviously be integrated into a determinant, but not in a symmetric form.
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An exact formula for the moments of the Log-Gamma polymer
Combining the precedent results, we obtain, for γ < n:

Zt(x)n = n!
n∑

ns=1

1
ns!

∑

(m1,..mns )n

ns∏

j=1

∫ +∞

−∞

dkj

2π

∏

1≤i<j≤ns

4(ki − kj)2 + (mi −mj)2

4(ki − kj)2 + (mi +mj)2

ns∏

j=1

1
mj

(

Γ(−mj

2 + γ
2 − ikj)

Γ(mj

2 + γ
2 − ikj)

) t
2

+1+x(
Γ(−mj

2 + γ
2 + ikj)

Γ(mj

2 + γ
2 + ikj)

) t
2

+1−x

, (III.3.23)

which should be compared with (III.2.67). Note that the right hand side of (III.3.23)
makes sense ∀n. We can use this fact to perform the rest of the program announced
earlier.

Fredholm determinant formulae for the Laplace transform of the partition sum in
the Log-Gamma polymer
Let us first perform the step (ii): we compute

gmom
t,x (u) =

∑

n∈N

(−u)n

n!
‘Zt(x)n‘ , (III.3.24)

where ‘Zt(x)n‘ denotes ∀n the right hand side of (III.3.23). Adapting the route followed
in the continuum DP case (see Sec. III.2.3 ) we obtain a Fredholm determinant formula
for gmom

t,x (u) as

gmom
t,x (u) = Det

(

I +Kmom
t,x

)

, (III.3.25)

with the kernel:

Kmom
t,x (v1, v2) =

∞∑

m=1

∫ +∞

−∞

dk

π
(−u)me−2ik(v1−v2)−m(v1+v2) (III.3.26)

(

Γ(−m
2 + γ

2 − ik)
Γ(m

2 + γ
2 − ik)

) t
2

+1+x(
Γ(−m

2 + γ
2 + ik)

Γ(m
2 + γ

2 + ik)

) t
2

+1−x

and Kmom
t,x : L2(R+) → L2(R+). Performing now the step (iii), we conjecture a formula

for the Laplace transform of the Log-Gamma polymer by changing the sum over m in
the above kernel to an integral on the complex plane as for a Mellin-Barnes transform.
We obtain

gt,x(u) = exp −uZt(x) = Det (I +Kt,x) (III.3.27)

with

Kt,x(v1, v2) =
∫ +∞

−∞

dk

π

−1
2i

∫

C

ds

sin(πs)
use−2ik(v1−v2)−s(v1+v2) (III.3.28)

(

Γ(− s
2 + γ

2 − ik)
Γ( s

2 + γ
2 − ik)

) t
2

+1+x(
Γ(− s

2 + γ
2 + ik)

Γ( s
2 + γ

2 + ik)

) t
2

+1−x

,

where C = a+ iR with 0 < a < min(1, γ) (note that the sum over m in (III.3.26) starts
at m = 1) and Kt,x : L2(R+) → L2(R+).
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KPZUC in the Log-Gamma polymer
Performing the asymptotic analysis of (III.3.28) we finally obtain

lim
t→∞

Prob

(

logZt(ϕt) + tcϕ

λϕ
< 2

2
3 z

)

= F2(z) (III.3.29)

where F2(z) is the standard GUE Tracy-Widom cumulative distribution function, and
the (angle-dependent) constants are determined by the system of equations:

0 = (
1
2

+ ϕ)ψ′(
γ

2
− kϕ) − (

1
2

− ϕ)ψ′(
γ

2
+ kϕ) (III.3.30)

cϕ = (
1
2

+ ϕ)ψ(
γ

2
− kϕ) + (

1
2

− ϕ)ψ(
γ

2
+ kϕ) (III.3.31)

λϕ =
(

− t

8

(

(
1
2

+ ϕ)ψ′′(
γ

2
− kϕ) + (

1
2

− ϕ)ψ′′(
γ

2
+ kϕ)

)) 1
3

. (III.3.32)

We recall that ψ = Γ′/Γ is the diGamma function. Here kϕ, which is implicitly defined
by the first equation, encodes the position of the saddle-point at (s, k) = (0, kϕ) in the
kernel (III.3.28). This formula reproduces the results obtained from the gRSK corre-
spondence in [218] for ϕ = ϕ∗ = 0, that is cϕ∗ = ψ(γ/2) and λϕ∗ = (−t

8 ψ
′′(γ/2))1/3,

and generalize it to arbitrary angles. It is successfully confronted to numerical simu-
lations in [4].

Other results contained in [4] (see Appendix D) are (i) additional formulae for the
PDF of Zt(x) at any t, x as differences of two Fredholm determinant formulae; (ii) ad-
ditional Fredholm determinant formulae for gt,x(u) closer to those usually encountered
in the mathematical literature; (iii) the comparison at each step of our Bethe ansatz
approach with the BA approach to the continuum DP using the weak-universality of
the continuum DP and thus the convergence of our results to the continuum case; (iv)
the study of the limit to the semi-discrete DP; (v) many checks of the above formulae.

III.3.3 Presentation of the main results of [5]

Classification of BA solvable models of a DP on Z
2: step 1

The BA solvability of the Log-Gamma polymer is not an accident and comes from
the algebraic structure of the model, more precisely as we will see below, it comes
from the structure of its moments (III.3.2) that satisfy the simple recursion relation
(Wt(x̂))n+1 = (Wt(x̂))n/(γ − n − 1). It is a natural question to understand whether
or not the Inverse-Gamma distribution is the only distribution that permits BA solv-
ability. For this purpose in [5] we investigated the conditions of BA solvability of a
DP at finite temperature on Z

210. For this purpose we consider a ‘general’ model of
DP on Z

2 where (see Fig. III.4) (i) the Boltzmann weights (BW) live on the edges;
(ii) the couple of BWs leading to the vertex (t, x) is noted (ut,x, vt,x) where ut,x is the

10By BA solvability here we mean BA solvability of the moments problem. There could be other
types of BA solvability. For example the partition sum of the Log-Gamma polymer can be obtained
as the limit of an observable of a BA solvable interacting particle system on Z, the q-Push TASEP
[221]. This BA solvability does not seem trivially related to the one studied in [4].
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Figure III.4: General scheme for the models of directed polymer in the classification
of [5]. Blue (resp. Red) : couple of correlated Boltzmann weight on edges arriving at
(t = 6, x = 1) (resp. (t = 6, x = 4)). Green: two admissible (i.e. up/right) paths for
polymers with starting point (0, 0) and endpoint (8, 4). Figure taken from [5].

BW on the vertical edge and vt,x is the BW on the horizontal edge; (iii) BWs leading
to different vertices are not correlated; (iv) the BWs are homogeneously distributed
as (ut,x, vt,x) ∼ (u, v) with (u, v) ∈ R

2
+ two (a priori correlated) positive RVs. Note

that this class of models contains models with on-site Boltzmann weights since ut,x

and vt,x can be correlated. For example the Log-Gamma case is reproduced taking
ut,x = vt,x ∼ Gamma(γ)−1. The extent of the ‘generality’ of this class of models is
precisely the one that allows us to perform the classification (see below). Other models
outside this class could be considered and are not covered by our results.

In this framework the point-to-point partition sum satisfies the recursion relation

Zt=0(x) = δx,0

Zt+1(x) = ut+1,xZt(x) + vt+1,xZt(x− 1) . (III.3.33)

And this can be translated to a recursive (i.e. transfer matrix) equation for ψt:

ψt=0(x1 . . . , xn) = δx1,0 . . . δxn,0

ψt+1(x1 . . . , xn) =
∑

{δ1,··· ,δn}∈{0,1}n
aδ1,··· ,δn

x1,··· ,xnψt(x1 − δ1, · · · , xn − δn) = (Tnψt)(x1 . . . , xn)

aδ1,··· ,δn
x1,··· ,xn =

∏

y∈Z

(u)
∑n

i=1
δxi,yδδi,0(v)

∑n

i=1
δxi,yδδi,1 . (III.3.34)

The latter generalizes the recursion equation of the Log-Gamma case (III.3.10) and
we are interested in models for which all the symmetric eigenfunctions of the transfer
matrix

Tnψµ = Λµψµ (III.3.35)
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can be obtained in the BA form

ψµ(x1, . . . , xn) = ψ̃µ(x1, . . . , xn) if x1 ≤ · · · ≤ xn ,

ψ̃µ(x1, . . . , xn) =
∑

σ∈Sn

Aσ

n∏

i=1

zxi
σ(i) . (III.3.36)

The class of models we consider is precisely the one that makes (III.3.34) similar to
the recursion equation for the PDF for the position of n particles moving on Z with a
ZRP (with parallel updates) type dynamics. In this interpretation the transfer matrix
must be stochastic (i.e. conserve the probability) and the recursion equation (III.3.34)
is often called the Master equation. In a recent work [222], Povolotsky managed to
classify all the ZRP with parallel updates for which the transfer matrix Tn can be
diagonalized by the Bethe ansatz. This construction precisely encodes the fact that
‘the n particle problem must be reminiscent of the 2 particle problem’11 in the form
of a deformed Binomial formula for non-commutative variables. For our purpose this
classification must be slightly adapted since we are not a priori only interested in
stochastic transfer matrix Tn. We will not repeat here the arguments that lead to the
classification (see [5] in Appendix E), but only give the result: the spectral problem
(III.3.35) is solved by the BA (III.3.36) iff the moments take the form

un1vn2 = (ǫ1)n1(ǫ2)n2
( ν

µ ; q)n1(µ; q)n2

(ν; q)n1+n2

(q; q)n1+n2

(q; q)n1(q; q)n2

1
Cn1

n1+n2

, (III.3.37)

with (ǫ1, ǫ2, q, µ, ν) ∈ R
5 and (a; q)n =

∏n−1
k=0(1 − aqk). In this case the symmetric

eigenfunctions of Tn are obtained as (III.3.36) with the condition (which can be solved)

Aσ◦τij

Aσ
= −

c + bzσ(j) + azσ(i)zσ(j) − zσ(i)

c + bzσ(i) + azσ(i)zσ(j) − zσ(j)
. (III.3.38)

with

a =
u2 − (u)2

(u)(v)
b =

2uv − (u)(v)
(u)(v)

c =
v2 − (v)2

(u)(v)
. (III.3.39)

Classification of BA solvable models of DP on Z
2: step 2

It remains to understand whether or not (III.3.37) are indeed the moments of pos-
itive random variables for some choice of the parameters. In ([5]) we consider, for
(ǫ1, ǫ2, q, µ, ν) ∈ R

5 fixed and x ∈ R

P (x) = (u+ xv)2c
. (III.3.40)

If (III.3.37) are moments of real variables, then P (x) must be positive ∀x ∈ R (and
maybe 0 at some xc if u and v are correlated as u + xcv = 0). P (x) being a degree
2 polynomial, its root can easily be studied and we arrive to the conclusion that the

11A feature that was not present in the continuum DP model where there are only two-bodies
interactions.
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only possibility for (III.3.37) to be the moments of real variables is to consider the
degenerate limit

ν = qα+β , µ = qβ , q → 1 . (III.3.41)

Taking this limit using (qa; q)n ≃q→1 (1 − q)n(a)n (where (a)n =
∏n−1

k=0(a+k)) we thus
restricted our search for integrable models of DP to those with moments as

un1vn2 = (ǫ1)n1(ǫ2)n2
(α)n1(β)n2

(α+ β)n1+n2

. (III.3.42)

A combinatorial identity shows that in this case ∀n, (u/ǫ1 + v/ǫ2)n = 1 and the BWs
are thus strongly correlated as u/ǫ1 + v/ǫ2 = 1. At this point we cannot obtain more
general results and only exhibit models for which the moments are given by (III.3.42).
We consider both (i) models for which the moments of the BWs are indeed given
by (III.3.42) ∀(n1, n2); (ii) models for which only a finite number of moments exist,
namely for n1 + n2 ≤ nmax with some nmax ∈ N

∗. In the second case (inspired by the
Log-Gamma case) the BA a priori only allows us to compute the first nmax moments
of the partition sum. First, this classification indeed contains the Log-Gamma case
as a degenerate limit: taking (ǫ1, ǫ2) = (+1,−1), α + β = 1 − γ with γ ≥ 0, β → ∞
and rescaling the Boltzmann weights as (implying a corresponding rescaling of the
partition sum) u = βuLG, v = βvLG we obtain

((uLG)n1 , (vLG)n2) = lim
β→∞

1
βn1+n2

(−1)n2
(1 − γ − β)n1(β)n2

(1 − γ)n1+n2

=
(−1)n1+n2

(1 − γ)n1+n2

,

(III.3.43)
which indeed reproduces the moments of the Log-Gamma polymer (III.3.2). In between
our work on the Log-Gamma polymer [4] and this work [5], two new exactly solvable
models of DP on Z

2 were obtained: the Strict-Weak (SW) polymer and the Beta
polymer. Both were shown to be solvable by BA in [219] and [224]. In the SW case
Boltzmann weights are given by vSW = 1 and uSW ∼ Gamma(α). It is obtained from
our framework by taking the limit (ǫ1, ǫ2) = (1, 1) and β → ∞ with α > 0 fixed and
uSW = βu, vSW = v. Indeed in this limit the moments are:

((uSW )n1 , (vSW )n2) = lim
β→∞

βn1
(α)n1(β)n2

(α+ β)n1+n2

= (α)n1 . (III.3.44)

This corresponds to the distribution described above. In the Beta polymer the Boltz-
mann weights are distributed as uB + vB = 1 and u ∈ [0, 1] is a Beta random variable
with parameters (α, β). Its PDF is

u ∼ Beta(α, β) ⇐⇒ p(u) =
Γ(α+ β)
Γ(α)Γ(β)

uα−1(1 − u)β−1 . (III.3.45)

and the moments are as above with (ǫ1, ǫ2) = (1, 1). We will come back to this model
in the next section. Finally in [5] we introduce a new exactly solvable model of DPs
on Z

2, the Inverse-Beta polymer. In this model (ǫ1, ǫ2) = (1,−1), v = u − 1 and u
is distributed as the inverse of a Beta random variable: u ∼ Beta(γ, β)−1 > 1. The
moments are as above with α = 1 − β − γ. In the limit β → ∞, this model converges
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to the Log-Gamma polymer, while in the limit γ → ∞ it converges to the Strict-Weak
model (this limit is different from the one mentioned above, which corresponds to the
degeneration from the Beta to the Strict-Weak polymer). In [5] we attempted a more
systematic study of possible models of DPs, but it remains inconclusive. In any case,
for now, all exactly solvable models of DPs on Z

2 are thus BA solvable and can be
regrouped using our notations as in Fig. III.5. Note that in Fig. III.5 we also include
the symmetrized version (with respect to the diagonal of Z2) of the Inverse-Beta and
Strict-Weak polymer which are both anisotropic models that favor one edge. The rest
of this section is devoted to the Inverse-Beta polymer, which thus generalizes both the
Log-Gamma and Strict-Weak polymer.

BA solution of the Inverse-Beta polymer
In the Inverse-Beta polymer, the moments of the Boltzmann weights are well defined
for (s1, s2) ∈ C

2 with Re(s1 + s2) ≤ γ and Re(s2) > −β and are given by

us1vs2 =
Γ(γ + β)
Γ(γ)Γ(β)

Γ(γ − s1 − s2)Γ(β + s2)
Γ(γ + β − s1)

. (III.3.46)

The replica Bethe ansatz approach to this model suffers from exactly the same problem
as the one for the Log-Gamma case: only a finite number of integer moments of the
partition sum exist. It is however possible to use the same strategy as for the Log-
Gamma case. The two approaches are actually remarkably similar: defining again
c̄ = 4/(γ− 1), we showed in [5] that the eigenfunctions of the transfer matrix Tn in the
Log-Gamma and Inverse-Beta case are equal. A simple incarnation of this remarkable
property is that the quotient of two amplitudes of the Bethe wave-function in (III.3.38),
which controls completely the structure of the wave-function and the Bethe equations,
does not depend on β. In particular they are equal to those in the Log-Gamma limit
β → ∞. We can thus use the same results as in the Log-Gamma case: string solution
at large L, Gaudin formula... The only things that differs is the eigenvalue associated
with the unit translation in time: the Inverse-Beta polymer is an anisotropic model
with v = u − 1, and the vertical direction is thus favored in this model. In [5] we
showed that this change leads to the following formula for the integer moments of the
DP partition sum:

Zt(x)n = n!
Γ(γ)

Γ(γ − n)

n∑

ns=1

1
ns!

∑

(m1,..mns )n

ns∏

j=1

∫ +∞

−∞

dkj

2π

∏

1≤i<j≤ns

4(ki − kj)2 + (mi −mj)2

4(ki − kj)2 + (mi +mj)2

ns∏

j=1

1
mj

(

Γ(−mj

2 + γ
2 − ikj)

Γ(mj

2 + γ
2 − ikj)

)1+x(
Γ(−mj

2 + γ
2 + ikj)

Γ(mj

2 + γ
2 + ikj)

)1−x+t(
Γ(β + ikj + γ

2 + mj

2 )
Γ(β + ikj + γ

2 − mj

2 )

)t

,

(III.3.47)

which is valid for n ≤ γ and very similar to the corresponding formula for the Log-
Gamma case (III.3.23). The first factor Γ(γ)

Γ(γ−n) , which comes out of the structure of

the BA, forbids to express e−uZt(x) as a Fredholm determinant. As in the Log-Gamma
case we thus consider a partition sum with a BW added at the origin:

Z̃t(x) = w00Zt(x) , (III.3.48)
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Figure III.5: Classification of exactly solvable finite temperature models of DPs on
Z

2 following the notations of [5]. The dashed line represents the axis of symmetry
α ↔ β, or equivalently the symmetry between vertical and horizontal edges. The
blue line indicates the line α + β = 1 or equivalently γ = 1 − (α + β) = 0. Limiting
polymer models are indicated by red arrows for the log-Gamma (LG) and blue arrows
for the Strict-Weak (with weights either on horizontal edges (SWH) or vertical edges
(SWV) ). We also emphasize the values of (ǫ1, ǫ2) which corresponds to the polymer
considered. Notice that the region α > 0, β > 0 and γ < 1 is a region of coexistence
of the Inverse-Beta and the Beta polymer, only distinguished by the value of (ǫ1, ǫ2).
Figure taken from [5].
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where w00 ∼ Gamma(γ)−1 is independent of Zt(x). The moments of Z̃t(x) are given
by (III.3.47), but without the factor Γ(γ)

Γ(γ−n) . Following the same route as in the Log-

Gamma case we express the moment generating function of Z̃t(x) as a Fredholm deter-
minant. Using a Mellin-Barnes transform inside the associated kernel, we conjecture
a formula for the Laplace transform gtx(u) = Det (I +Ktx) with

Kt,x(v1, v2) =
∫ +∞

−∞

dk

π

−1
2i

∫

C

ds

sin(πs)
use−2ik(v1−v2)−s(v1+v2) (III.3.49)
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Γ(− s
2 + γ

2 − ik)
Γ( s

2 + γ
2 − ik)

)1+x(
Γ(− s

2 + γ
2 + ik)

Γ( s
2 + γ

2 + ik)

)1−x+t(
Γ(β + ik + γ

2 + s
2)

Γ(β + ik + γ
2 − s

2)

)t

,

where C = a + iR with 0 < a < min(1, γ) and Kt,x : L2(R+) → L2(R+). Performing
the asymptotic analysis of this formula we obtain TW-GUE fluctuations in the Inverse-
Beta polymer:

lim
t→∞

Prob

(

logZt((1/2 + ϕ)t) + tcϕ

λϕ
< 2

2
3 z

)

= F2(z) , (III.3.50)

where the (ϕ-dependent) constants are determined by the system of equations:

0 = (
1
2

+ ϕ)ψ′(
γ

2
− kϕ) − (

1
2

− ϕ)ψ′(
γ

2
+ kϕ) + ψ′(β +

γ

2
+ kϕ) , (III.3.51)

cϕ = (
1
2

+ ϕ)ψ(
γ

2
− kϕ) + (

1
2

− ϕ)ψ(
γ

2
+ kϕ) − ψ(β +

γ

2
+ kϕ) ,

λϕ =
(

− t

8

(

(
1
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2
− kϕ) + (

1
2

− ϕ)ψ′′(
γ

2
+ kϕ) − ψ′′(β +

γ

2
+ kϕ)

)) 1
3

. .

These cannot be solved in full generality, except for the optimal angle ϕ∗, defined by
∂ϕcϕ = 0 for which we find

ϕ∗ = −1
2
ψ′(β + γ/2)
ψ′(γ/2)

< 0

c∗ = cϕ∗ = ψ(γ/2) − ψ(β + γ/2)

λϕ∗ =
(
t

8
(ψ′′(β + γ/2) − ψ′′(γ/2))

)1/3

. (III.3.52)

The optimal angle is the angle of maximum probability chosen by the endpoint of the
polymer with one end free to move on the line. Note that its value is non-trivial (it is
different from the value expected in an averaged environment). This thus generalizes
the explicit results obtained in the Log-Gamma case where ϕ∗ = 0 (note that here
ϕ∗ →β→∞ 0 and ϕ∗ →γ→∞ −1/2, corresponding to the Log-Gamma and Strict-Weak
limits).

Zero-temperature limit of the Inverse-Beta polymer: Bernoulli-Exponential polymer
As we saw in Sec. III.2.4, the γ → 0 limit of the Log-Gamma polymer leads to LPP
with exponential waiting times. Similarly, the Inverse-Beta polymer admits a zero
temperature limit obtained by setting γ = ǫγ′, β = ǫβ′. In this limit one shows
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[5] that the rescaled random energies of the model (Eu, Ev) = (−ǫ log(u),−ǫ log(v))
converge in law to

(Eu, Ev) ∼ǫ→0
(
−ζEγ′ , (1 − ζ)Eβ′ − ζEγ′

)
= (E ′

u, E ′
v), (III.3.53)

where ζ is a Bernoulli random variable of parameter p = β′/(γ′ + β′), Eγ′ and Eβ′ are
exponential random variables of parameter γ′ > 0 and β′ > 0, independent of ζ (the
PDF of exponential RVs was given in (III.2.29) and the Bernoulli RV is by definition
1 with probability p). The optimal energy in the model satisfies the recursion

Et+1(x) = min
(
Et(x) + Eu

t+1(x),Et(x− 1) + Ev
t+1(x)

)
. (III.3.54)

And the initial condition is Et(x = 0) = 0 and Et(x) = −∞ for x 6= 0. In the limit
β′ → ∞ the model corresponds to LPP with exponential waiting times, while in the
limit γ′ → ∞ it converges to the zero temperature limit of the Strict-Weak polymer,
which is a model of FPP with exponentially distributed waiting times on horizontal
edges only. This model thus remarkably interpolates between a model of first and last
passage percolation on Z

2. Based on our exact results for the Inverse-Beta polymer,
we obtain various exact results for this zero-temperature model. In particular we show
that Prob(Et(x) > r) = Det

(

I +KT =0
tx

)

with

KT =0
t,x (v1, v2) = −

∫ +∞

−∞

dk

π

∫

C̃

ds

2iπs
esr−2ik(v1−v2)−s(v1+v2) (III.3.55)
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where C̃ = a + iR with 0 < a < γ′ and KT =0
t,x : L2(R+) → L2(R+). The asymptotic

analysis then leads to Tracy-Widom fluctuations for the optimal energy in this zero
temperature model:

lim
t→∞

Prob

(

Et(x = (1/2 + ϕ)t)) − tc̃ϕ

λ̃ϕ

> −2
2
3 z̃

)

= F2(z̃) (III.3.56)

with

0 =
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2 + ϕ)

(γ′
2 − k̃ϕ)2

− (1
2 − ϕ)

(γ′
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, (III.3.57)

c̃ϕ = −(1
2 + ϕ)

γ′
2 − k̃ϕ

− (1
2 − ϕ)

γ′
2 + k̃ϕ

+
1

β′ + γ′
2 + k̃ϕ

, (III.3.58)

λ̃ϕ =

(

t

8
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2 − k̃ϕ)3

+
(1 − 2ϕ)

(γ′
2 + k̃ϕ)3

− 2

(β′ + γ′
2 + k̃ϕ)3

)) 1
3

. (III.3.59)

In this case the system can be solved exactly since the equation for k̃ϕ is a quartic
equation.

Let us conclude this section by mentioning that other results and many details are
given in [5] (see Appendix E). In particular we conjecture interesting n-fold integral
formulae for the Laplace transform of the partition sum/optimal energy PDF of the
Inverse-Beta/Bernoulli-Exponential model that are reminiscent of those obtained using
the gRSK/RSK correspondence for the Log-Gamma/LPP model.
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III.3.4 Presentation of the main results of [6]

The Beta Polymer and its TD-RWRE interpretation
The Beta polymer is a BA solvable model of DP on Z

2 introduced in [224] and included
in the classification of [5]. In [224] the authors studied the half-line to point partition
sum and our initial motivation was to use the results of [5] to study the point to point
partition sum. The Beta polymer is, however, a very peculiar model and in doing so
we have notably unveiled a novel fluctuation behavior (see below). The Beta polymer
has two parameters (α, β) ∈ R

2
+ and its random BWs are correlated as u+ v = 1 with

u ∼ Beta(α, β) as in (III.3.45). Thanks to these correlations and as already noticed in
[224], given a random environment specified by a drawing of the (utx, vtx = 1−utx), the
partition sum of the point to point Beta polymer can also be interpreted as a transition
probability for a random walk on Z in a time-dependent random environment (TD-
RWRE). Introducing the time coordinate t and the hopping probabilities

t = −t , pt,x = ut,x ∈ [0, 1] , (III.3.60)

the TD-RWRE is defined as follows: denoting Xt the position of the particle at time
t, the particle performs a RW on Z with the following transition probabilities

Xt → Xt+1 = Xt with probability pt,Xt
= ut=−t,Xt

,

Xt → Xt+1 = Xt − 1 with probability 1 − pt,Xt
= vt=−t,Xt

. (III.3.61)

In the RWRE language, the point to point partition sum of the Beta polymer Zt(x) is
the probability, given that a particle starts at position x at time t = −t ≤ 0, that it
arrives at position 0 at time t = t = 0:

Zt(x) = P(X0 = 0|Xt=−t = x) . (III.3.62)

In this interpretation, the recursion equation for the polymer partition sum (III.3.33)
is a Backward equation for the probability P(X0 = 0|Xt = x):

P(X0 = 0|Xt−1 = x) = pt−1xP(X0 = 0|Xt = x) + (1 − pt−1x)P(X0 = 0|Xt = x− 1)

P(0, 0|0, x) = δx,0. (III.3.63)

Note finally that the starting point of the polymer corresponds to the endpoint of the
RW and vice-versa.

Definition of the optimal direction
The optimal direction can be defined by considering the annealed PDF, defined as

Pann(X0 = 0|X−t = x) := P(X0 = 0|X−t = x) = Zt(x) , (III.3.64)

which is the transition PDF for a RW defined as above with pt,x replaced by its average:
pt,x → pt,x = u = α/(α+ β). By translational invariance of the averaged environment
we have Pann(X0 = 0|X−t = x) = Pann(Xt = −x|X0 = 0) = Zt(x) = αxβt−x

(α+β)t . In
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general, the annealed PDF decreases at large time in a given direction as, scaling
x = (1/2 + ϕt),

Zt(x = (1/2 + ϕt)) =

√

2
πt(1 − 4ϕ2)

(

2
√

1 − 4ϕ2

(
1 − 2ϕ
2ϕ+ 1

)ϕ r(1/2+ϕ)

1 + r

)t (

1 +O(1/
√
t)
)

.

(III.3.65)
where we have introduced the asymmetry parameter

r = β/α ∈ R+ . (III.3.66)

It is easily seen that Zt(x = (1/2 + ϕt)) decreases exponentially in every direction,
except at its maximum ϕ = ϕopt(r) which defines the optimal angle

ϕopt(r) =
r − 1

2(r + 1)
∈] − 1/2, 1/2[ , (III.3.67)

The optimal angle thus appears as the most probable space-time direction taken by a
RW in an averaged environment. Below we will see that the fluctuations of Zt(x) will
depend on the chosen direction and we will mainly consider the large deviations regime,
corresponding to the scaling x = (1/2 +ϕt) with ϕ 6= ϕopt(r), and the diffusive regime
around the optimal direction, corresponding to the scaling x = (1/2 + ϕopt(r)t) + κ

√
t

where (III.3.65) takes a Gaussian form.

Bethe ansatz solution of the Beta polymer
In [2] we show that, defining c = 4

α+β > 0 and

zj = eiλj , t̃j = −i cot(
λj

2
) =

zj + 1
zj − 1

, zj = −1 + t̃j
1 − t̃j

, (III.3.68)

the eigenfunctions and the Bethe equations of the Beta polymer are identical to those of
the Log-Gamma and Inverse-Beta polymer (III.3.12)-(III.3.14), up to the change ti →
t̃i and c̄ → c. However, in [2], we show that this change has important consequences:
the string solutions are not stable and c > 0 can be interpreted as a repulsive interaction
parameter. In the large L limit the replica thus behave as free particles and do not
form bound states. The repulsive nature of the model is interpreted as a consequence
of the TD-RWRE nature of the model. In this case we therefore obtain a formula
for the moments of the partition sum which is simpler (compared to (III.3.23) and
(III.3.47)) and does not contain a summation over string states:

Zt(x)n = (−1)n Γ(α+ β + n)
Γ(α+ β)

(III.3.69)

n∏
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2π
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2 )t
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2 )1+x(ikj − α+β

2 )1−x+t
.

Making the link with the nested contour integral approach to BA used in [224] we also
obtain a formula for the multi-point moments: for 0 ≤ x1 ≤ · · · ≤ xn:

Zt(x1) · · ·Zt(xn) = (−1)n Γ(α+ β + n)
Γ(α+ β)

(III.3.70)

n∏
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2π
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Figure III.6: The different regimes of sample to sample fluctuations of the PDF in
the Beta TDRWRE problem around the optimal direction (indicated by a dotted
line) for different scaling of the deviation with respect to the optimal direction x̌ =
x−(1/2+ϕopt)t. In the diffusive regime x̌ ∼

√
t the fluctuations of the PDF are Gamma

distributed. In the large deviations regime x̌ ∼ t, fluctuations of the logarithm of the
PDF are distributed according to the GUE Tracy-Widom distribution with exponents
in agreement with the usual KPZ universality expected in point to point directed
polymers problem. These two regimes are connected by a cross-over regime (C.O.) at
a scale x̌ ∼ t3/4. Figure taken from [6].

Cauchy-type Fredholm determinant formula
A further simplification that is specific to the Beta polymer is that, since the Boltzmann
weights are bounded, the moments of the partition sum (Zt(x))n do not grow too fast
in this case and indeed determine unambiguously the distribution of Zt(x). As in the
Inverse-Beta case, the first factor Γ(α+β+n)

Γ(α+β) in front of (III.3.69) forbids to express the
LT of Zt(x) as a Fredholm determinant. For this reason we consider the generating
function gt,x(u) =

∑∞
n=0

(−u)n

n! Zn with Zn = Γ(α+β)
Γ(α+β+n)(Zt(x))n. We obtain several

equivalent Fredholm determinant formulae for gt,x(u), and notably

gt,x(u) = Det
(

I + uK̂t,x

)

(III.3.71)

with the kernel K̂t,x : L2(R) → L2(R):

K̂t,x(q1, q2) = − 2
π

(1 + iq1(α− β))−x+t

(1 + iq1(α+ β))1−x+t

(1 + iq2(α− β))x

(1 − iq2(α+ β))1+x

1
2 + i(q−1

2 − q−1
1 )

.

(III.3.72)
The procedure to go from gt,x(u) to the PDF of Zt(x) is discussed in [6]. Note

that compared to the Fredholm-determinant formula presented up to now (III.2.72)-
(III.3.28)-(III.3.49), (III.3.72) has the distinguishing feature that the Laplace Trans-
form variable appears simply linearly in front of the kernel. This type of Fredholm
determinant formula is known in the literature as Cauchy-type formulae and first ap-
peared in the KPZ-related literature in the work of Tracy and Widom on the ASEP
[225].

Asymptotic analysis in the optimal direction
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In [6] we show that

Zt(κ) = α
√

2πrte
(r+1)2

2r
κ2
Zt

(

x = (
1
2

+ ϕopt(r))t+ κ
√
t

)

, (III.3.73)

converges at fixed t, in the large time limit to a process, constant in κ, with marginal
distribution a Gamma distribution with parameter α+ β

Z∞(κ) ∼ Gamma(α+ β) . (III.3.74)

From the point of view of DPs on Z
2, this result can be thought of as a breaking of

KPZUC in the optimal direction, due to the presence of an additional conservation
law, namely the conservation of the probability, encoded in the correlations of the
random BWs as u + v = 1. From the point of view of TD-RWRE this result shows
that, in a given environment, P(X0 = 0|Xt−1 = x = (1/2 +ϕopt(r))t+ κ

√
t) converges

to a Gaussian distribution, which is modulated by a κ (= starting-point) independent
Gamma distributed RV. The origin of the Gamma distribution can be traced back to
the first factor in (III.3.69), which thus plays a very important role here.

Asymptotic analysis in the large deviations regime
To perform the asymptotic analysis in the large deviations regime we find that our
formula (III.3.71)-(III.3.72) is not adapted. This was already remarked on the Cauchy-
type Fredholm determinant formula obtained by Tracy and Widom in [225] and per-
forming the asymptotic analysis required to obtain another Fredholm determinant
representation [226]. The Beta polymer is thus an example of a model where perform-
ing the asymptotic analysis using Cauchy-type formulae is well adapted to the study
of the diffusive regime of the TD-RWRE. For the large deviations regime, we thus first
obtain a formal Fredholm determinant formula for gt,x(u): gt,x(u) = Det

(

I + Ǩt,x

)

with

Ǩt,x(v1, v2) =
∫
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dk
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−1
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∫
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sin(πs)
use−2ik(v1−v2)−s(v1+v2) (III.3.75)
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,

which now appears rather similar to those for the Log-Gamma and Inverse-Beta poly-
mer (III.3.28)-(III.3.49) (see [6] for the precise sense in which this formula is formal).
Performing the asymptotic analysis of (III.3.75) we obtain, for ϕopt(r) < ϕ < 1/2 (the
other case being obtained by symmetry)

lim
t→∞

Prob

(

logZt((1/2 + ϕ)t) + tcϕ

λϕ
< 2

2
3 z

)

= F2(z) , (III.3.76)

with
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, (III.3.77)
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From the point of view of DPs, this result shows that KPZUC is restored away from
the optimal direction of the TD-RWRE. The value of cϕ was already determined in
[224] using a general theorem of [227], the value of λϕ was, however, still unknown. Our
result (III.3.77) actually appears equivalent to the one of [224] in the large deviations
regime if one replaces the point to point partition sum in (III.3.76) by the half-line to
point partition sum that is studied in [224].

Let us conclude this section by mentioning other results obtained in [6] (see Ap-
pendix F) (i) alternative Fredholm determinant formulae for gt,x(u), in particular a
formula that gives a rigorous meaning to the formal formula (III.3.75); (ii) relations
of our approach with the nested contour integral approach to the Bethe ansatz; (iii)
formula for the PDF of Zt(x) at any time; (iv) a discussion of the crossover between
the diffusive region and the large deviations regime, identified with deviations from
the optimal direction of order t3/4 (see Fig. III.6); (v) an extensive numerical study of
the validity of our results using simulations of the Beta polymer.

III.3.5 Presentation of the main results of [7]

In Sec. III.2.2 we recalled that the Log-Gamma polymer was first introduced for the
possibility of writing down exactly its stationary measure, an example of an exact solv-
ability property that led to many developments. The initial motivation of [7] was to
investigate whether or not the stationary measure of the Inverse-Beta polymer could
also be obtained. This is interesting from several points of view, in particular (i) the
links between the different types of exact solvability properties mentioned up to now are
not yet understood; (ii) the stationary measure encodes the space-time correlations of
the DP free-energy at large t on distances ≪ t2/3, an information which is notoriously
hard to obtain from the BA; (iii) the results obtained using BA for the Inverse-Beta
polymer required the use of several mathematically non-rigorous tricks and some of
them can be obtain rigorously from the stationary measure, thus partially confirming
the approach of [5]; (iv) the knowledge of the stationary measure of the Log-Gamma
is at the basis of the derivation of a variety of results, e.g. the fluctuation exponents of
the DP [197], the large deviation function of the partition sum [228], localization prop-
erties of the DP [229]. These results can thus probably be generalized to a richer model
using the results of [7]. On the other hand the possibility to write down exactly the
stationary measure indicates the presence of exact solvability properties. Considering
the fact that LPP is both exactly solvable for exponential and geometric distributions
of waiting times, it was natural to conjecture that the zero temperature limit of the
Inverse-Beta polymer, the Bernoulli-Exponential polymer, could be generalized to an
exactly solvable model with discrete energies. In [7] the Bernoulli-Geometric polymer
is introduced and corresponds to this model: we obtain its stationary measure and
deduce from it several results.

Stationary measure of the Inverse-Beta polymer
Keeping the notations of [5] and Sec. III.3.312, we thus consider the Inverse-Beta

12These notations have been changed in [7] so that the v (resp. u) BWs live on the vertical (resp.
horizontal) edges of Z2.
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t

x = x1

x2

U(0)

V (0)

V (−2)

U(−2)

π
(0)
dr

π
(4)
dr

Figure III.7: Different down-right paths on Z
2: the dotted-blue down-right path

(boundary of N
2) and dashed-red down-right path π

(4)
dr can both be obtained by a

sequence of down-left to top-right transformation (φ arrow above) from π0
dr.

polymer defined by the recursion equation

Žt+1(x) = ut+1,xŽt(x) + vt+1,xŽt(x− 1) , (III.3.78)

where vt+1,x = ut+1,x − 1 and u ∼ Beta(γ, β)−1 and the BWs are defined on the full
square lattice Z

2. We will specify later the stationary initial condition and have added
a checkmark on Žt(x) to emphasize the distinction with the point-to-point partition
sum of the Inverse-Beta polymer Zt(x) defined in Sec. III.3.3. As we saw in Sec. III.2.2,
the partition sum itself is never stationary and one has to consider ratios of partition
sums. Defining ∀t ≥ 0, ∀x ∈ Z, the ratios of partition sum on horizontal and vertical
edges as

Ǔt(x) :=
Žt(x)

Žt−1(x− 1)
, V̌t(x) :=

Žt(x)

Žt−1(x)
, (III.3.79)

these satisfy the recursion relation

Ǔt+1(x) = φ(1)(Ǔt(x), V̌t(x− 1),Wt+1(x)) , V̌t+1(x) = φ(2)(Ǔt(x), V̌t(x− 1),Wt+1(x)) .

(III.3.80)

where Wt+1(x) = vt+1,x and φ(i) are the components of the stationarity-reversibility
map defined as φ : (U, V,W ) → (U ′, V ′,W ′) with

U ′ = W + (W + 1)
U

V
, V ′ = W

V

U
+W + 1 , W ′ =

U(V − 1)
U + V

. (III.3.81)

Elementary (but non-trivial) properties of φ then show the following. Taking (III.3.80)
as the definition, ∀t, of a stochastic process for the Ǔt(x) and V̌t(x) variables, we
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consider an initial condition such that at t = 0 they are independent and distributed
as Ǔt=0(x) ∼ U and V̌t=0(x) ∼ V with

U ∼ (Beta(γ − λ, β + λ))−1 − 1 , V ∼ (Beta(λ, β))−1 . (III.3.82)

Here 0 < λ < γ is a parameter that labels a family of stationary measures. In [7] we
show that for all down-right paths πdr on Z

2 that can be obtained from the down-right
path

π
(0)
dr = {(x1, x2) = (m,−m) → (m,−m− 1) → (m+ 1,−m− 1),m ∈ Z} (III.3.83)

by a sequence of down-left to top-right transformation (which amounts to changing a
down-left corner of a down-right path to a top-right corner, see Fig. III.7 for a self-
explanatory definition of these notions), the variables Ǔt(x) and V̌t(x) living on the
down-right path are independent and distributed as in (III.3.82). Furthermore, this
stationary measure is reversible in the following sense. Considering the stationary
process (III.3.80) during a finite time window T , the time-reversed process

ǓR
tR

(xR) = Ǔt=T −tR(x = −xR + 1) , V̌ R
tR

(xR) = V̌t=T −tR(x = −xR) , (III.3.84)

satisfies the identity in law

(

Ǔt(x), V̌t(x)
)

t=0,...,T ;x∈Z
∼
(

ǓR
tR

(xR), V̌ R
tR

(xR)
)

tR=0,...,T ;xR∈Z
. (III.3.85)

For the original process of the partition sum (III.3.78) this implies that, if one starts
from an initial condition such that successive partition sum quotients are random and
distributed as

Žt=0(x+ 1)

Žt=0(x)
∼ (Beta(γ − λ, β + λ))−1 − 1

(Beta(λ, β))−1
, (III.3.86)

where the different Beta RVs appearing in this initial condition are all independent,
then these quotients remain distributed as so for all time (and are independent at t
fixed). Finally, adding for convenience the initial condition Žt=0(0) = 1 we show in
[7] that the partition sum in the stationary state in the upper-right quadrant of Z2,
(Žt(x))x∈N, are equivalent in law to the point to point partition sum Ẑt(x) of a model
defined on N

2 with peculiar boundary conditions: (Žt(x))x∈N ∼ (Ẑt(x))x∈N. We refer
the reader to [7] for the precise definition of this model.

The Bernoulli-Geometric polymer
In [7] we define the Bernoulli-Geometric polymer as a geometric discretization of the
Bernoulli-Exponential polymer defined in Sec. III.3.3 and introduced in [5]. It is a
zero-temperature model of DP on Z

2 with random energies on-edges and where the
optimal energy satisfies the relation

Et+1(x) = min
(
Et(x) + Eu

t+1(x),Et(x− 1) + Ev
t+1(x)

)
, (III.3.87)
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with the initial condition Et=0(0) = 0 and Et=0(x) = −∞ for x 6= 0. The random
energies are distributed as13

Eu ∼ −ζuvGq ∈ Z− ,

Ev ∼ (1 − ζuv)(1 +Gq′) − ζuvGq ∈ Z , (III.3.88)

where (q, q′) ∈]0, 1[2 are the two parameters of the model, and Gq generally denotes a
Geometric RV Gq ∼ Geo(q) (see (III.2.33)). ζuv is a Bernoulli RV with parameter

puv =
1 − q′

1 − qq′ ∈]0, 1[ . (III.3.89)

This value ensures an exact solvability property. This model generalizes the Bernoulli-
Exponential polymer which is now retrieved in a limit q = 1 − γ′ǫ, q′ = 1 − β′ǫ and
ǫ → 0+. The case q′ = 0 corresponds to LPP with geometric waiting times as studied
in [159], while the case q = 0 is FPP with geometric waiting times on the horizontal
edges only as in [216].

Stationary Bernoulli-Geometric polymer
We now discuss the stationary measure of the Bernoulli-Geometric polymer. The
stationary optimal energy Ět(x) satisfies the recursion equation (III.3.87) but with a
different initial condition. Similarly as for the Inverse-Beta polymer, to describe the
stationary measure, we consider the horizontal and vertical energy differences variables
defined as

Ǔt(x) = Ět(x) − Ět−1(x− 1) , V̌t(x) = Ět(x) − Ět−1(x) . (III.3.90)

These satisfy the recursion relation

Ǔt+1(x) = φ
(1)
T =0(Ǔt(x), V̌t(x− 1), Ev

t+1(x), Eu
t+1(x))

V̌t+1(x) = φ
(2)
T =0(Ǔt(x), V̌t(x− 1), Ev

t+1(x), Eu
t+1(x)) , (III.3.91)

where φT =0 is the T = 0 stationarity map defined as: φT =0 : (U,V, u, v) → (U′,V′)
with

U′ = min (u, v + U − V) , V′ = min (u + V − U, v) . (III.3.92)

An elementary (but non-trivial) property of φT =0 then shows the following. Taking
(III.3.91) as the definition, ∀t, of a stochastic process for the Ǔt(x) and V̌t(x) variables,
we consider an initial condition such that at t = 0 they are independent and distributed
as Ǔt=0(x) ∼ U and V̌t=0(x) ∼ V with

U ∼ (1 − ζU)(1 +Gqbq′) − ζUGq/qb , V ∼ −ζVGqb . (III.3.93)

where q < qb < 1 is a parameter that labels a family of stationary measure and ζU and
ζV are Bernoulli RVs with parameters

pU =
1 − qbq

′

1 − qq′ , pV =
1 − q′

1 − qbq′ . (III.3.94)

13Here we keep the notations adopted for the Bernoulli-Exponential polymer in Sec. III.3.3, which
differs from those adopted in [7].
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Similarly as before, in [7] we then show that for all down-right paths πdr on Z
2 that can

be obtained from π
(0)
dr by a sequence of down-left to top-right transformation, the vari-

ables Ǔt(x) and V̌t(x) living on the down-right path are independent and distributed
as in (III.3.93). Finally we show that the stationary measure is reversible through the
equality in law, similarly as for (III.3.85)

(

Ǔt(x), V̌t(x)
)

t=0,...,T ;x∈Z
∼
(

ǓR
tR

(xR), V̌R
tR

(xR)
)

tR=0,...,T ;x∈Z
(III.3.95)

where the time-reversed process on a finite time window T is now

ǓR
tR

(xR) = Ǔt=T −tR(x = −xR + 1) , V̌R
tR

(xR) = V̌t=T −tR(x = −xR) . (III.3.96)

This implies for the optimal energy Ět(x) that, taking for initial condition Ět=0(0) = 0
and independent energy increments distributed as

Ět=0(x+ 1) − Ět=0(x) ∼ (1 − ζU)(1 +Gqbq′) − ζUGq/qb + ζVGqb , (III.3.97)

then they remain distributed as so for all time. As before, the optimal energy in
the model with stationary initial condition in the upper-right quadrant is shown to
be identical in law to a point to point optimal energy Êt(x) in a model with special
boundaries: (Ět(x))x∈N ∼ (Êt(x))x∈N. Note that in the case q′ = 0 this reproduces the
known result for LPP with geometric waiting times (III.2.34).

Optimal energy per unit length in the Bernoulli-Geometric polymer
Defining the mean energy of the horizontal and vertical energy differences in the

stationary state of the Bernoulli-Geometric polymer

f
q,q′
U

(qb) := U =
q2

b q
′ − q

(qb − q) (1 − qbq′)
,

f
q,q′
V

(qb) := V = − 1 − q′

1 − qbq′
qb

1 − qb
. (III.3.98)

We show that the mean optimal energy per unit length in the direction ϕ ∈]−1/2, 1/2[
in the stationary Bernoulli-Geometric polymer is linear in ϕ with

f̌p.u.l.(ϕ, qb) := lim
t→∞

1
t
Ět(x = (1/2 + ϕ)t)

= (1/2 + ϕ)fq,q′
U

(qb) + (1/2 − ϕ)fq,q′
V

(qb) . (III.3.99)

And using the model with boundaries we obtain a formula for the mean optimal energy
per unit length in the direction ϕ in the point to point Bernoulli-Geometric polymer:

fp.u.l.(ϕ) := lim
t→∞

1
t
Et(x = (1/2 + ϕ)t)

= f̌p.u.l.(ϕ, q∗
b (ϕ)) . (III.3.100)

where q∗
b (ϕ) is the solution of the equation

∂qb f̌
p.u.l.(ϕ, qb)|qb=q∗

b
(ϕ) = 0 . (III.3.101)
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Figure III.8: Left: Optimal energy per-unit-length fp.u.l.(ϕ) (III.3.100) in the Bernoulli-
Geometric polymer for q = 0.5 and q′ = 0.1, 0.4, 0.8, 0.9 (plain lines, blue, orange,
green and red) and in the last passage percolation limit q′ → 0 (black dashed line).
Right: Optimal energy per-unit-length fp.u.l.(ϕ) in the Bernoulli-Geometric polymer
for q′ = 0.7 and q′ = 0.001, 0.01, 0.1, 0.2 (plain lines, blue, orange, green and red) and
in the first passage percolation limit q → 0 (black dashed line). The arrow indicates
the percolation threshold of the q → 0 limit ϕq′=0.7 = −0.2. Figures taken from [7].

This is a quartic equation for q∗
b (ϕ) that can be solved exactly, leading to an explicit

expression for fp.u.l.(ϕ) which is plotted in Fig. III.8 for various parameters q, q′, and in
particular close to the LPP and FPP limits q′ → 0 and q → 0. Note the non-analytic
behavior in the FPP limit where fp.u.l.(ϕ) = 0 for −1/2 ≤ ϕ ≤ ϕq′ = 1/2 − q′ and
fp.u.l.(ϕ) > 0 for ϕ > 1/2 − q′. This is interpreted as a percolation threshold where
for ϕ < 1/2 − q′, the optimal path manages to passes with probability 1 only on edges
with 0 energy (a feature that can only be observed in the Bernoulli-Geometric polymer
and not in the Bernoulli-Exponential polymer). Fluctuations in this region of space
should differ from naive KPZUC expectations. We obtain results similar to (III.3.99)-
(III.3.100) for the Inverse-Beta polymer that bring a rigorous confirmation of the value
of cϕ obtained from the Bethe Ansatz in [5], see (III.3.51).

Convergence to the stationary measure
Finally we discuss more qualitatively the convergence of the point-to-point partition
sum Zt(x) in the Inverse-Beta polymer / point-to-point optimal energy Et(x) in the
Bernoulli-Geometric polymer and we conjecture that the following limit holds in law
(for x, t = O(1))

lim
T →∞

ET +t(ϕT + x) − ET (ϕT ) ∼ Ět(x) , (III.3.102)

where as before Ět(x) is the optimal energy in the stationary Bernoulli-Geometric
polymer (i.e. with initial condition III.3.97), with the stationary parameter qb chosen
as qb = q∗(ϕ), the solution of the quartic equation (III.3.101). A similar conjecture is
proposed for the Inverse-Beta polymer.

Finally, in [7] (see Appendix G), we successfully check our main results (III.3.100)
and (III.3.102) for the Bernoulli-Geometric polymer using simulations of the model.
Many details on the above results are given, in particular the definition and the prop-
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erties of the Inverse-Beta and Bernoulli-Geometric polymer with boundaries briefly
mentioned here, that are actually at the center of [7].

III.4 Conclusion

In this chapter we have reviewed some recent progress in the understanding of the
KPZ universality class in 1 + 1d based on the existence of models with exact solvabil-
ity properties. In particular we reported the results obtained in this thesis on exactly
solvable models of directed polymers on the square lattice. We have showed how the
Bethe ansatz approach developed for the continuum case could be adapted in the dis-
crete setting. The Bethe ansatz approach was also used to classify exactly solvable
models of DP at finite temperature containing all known models and a new one, the
Inverse-Beta polymer. This ‘world’ of exactly solvable models of directed polymers
contain models with very different properties. In the Inverse-Beta and Log-Gamma
polymer we could show, using the Bethe ansatz, that the model have fluctuations of
free-energy scaling with t1/3 and distributed according to the Tracy-Widom GUE dis-
tribution with explicit non-universal constants. In the Beta polymer, also interpreted
as a model of random walk in a time-dependent one-dimensional random environment,
we obtained similar results for the fluctuations in the large deviations regime, and
completely different ones in the diffusive regime. This model teaches us a lot about
TD-RWRE and DPs: on one hand special short-range correlations of the disorder lead
to an additional conservation law and break KPZ universality in the diffusive region, on
the other-hand in the other directions KPZ universality is recovered in the TD-RWRE
framework. Finally in a complementary work we studied the stationary measure of
models of DPs on the square lattice and obtained the one of the Inverse-Beta poly-
mer. With this knowledge, we returned to zero temperature models and introduced
the Bernoulli-Geometric polymer. We showed that the latter has an exact solvability
property, namely we obtained its stationary measure exactly, and deduced from it sev-
eral exact results. A tentative cartoon of the relations between the models of directed
polymers considered in this manuscript is presented in Fig. III.9.

At this stage many directions of research remain. Understanding the remarkable
universality unveiled by models in the KPZUC, and more particularly directed poly-
mers, is still a work in progress for which the models we have studied and the techniques
we have developed provide valuable tools. Obvious extensions are the study of DPs
on the square lattice with different boundary conditions and extension of our results
to multi-point statistics. It would also be interesting to gain a better understanding
of the localization properties of DPs on the square lattice and in the continuum using
a Bethe ansatz approach. The Beta polymer also brought exact solvability techniques
to the TD-RWRE field and much work in this direction also remains, in particular
testing the universality of our results for more general models of TD-RWRE. Another
question is to gain a better understanding of models of DPs with complex weights,
which are related to problems of Anderson localization. In this question we already
made progress since at least some part of the classification of [5] also applies to this
case, and if an exactly solvable model of DP on Z

2 with complex weights exists, then
under some mild assumptions some signs of its existence should already be visible in
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Figure III.9: The different models of DPs encountered during this thesis can be re-
grouped in several families. Solid arrows represent various scaling limits of the models,
while the dotted arrows represent the conjectured large time convergence of the fluctu-
ations of all these models to the KPZ FP. These dotted arrows have to be taken with
caution and sometimes miss important properties: the fluctuations of the free-energy
in the Beta RWRE in the diffusive regime, or of the first passage time in the anisotropic
Geometric FPP model considered above in the percolating region, do not converge to
those of the KPZ FP.

our work (no such signs were found). A more conceptual issue is the understanding of
the links between the different exact solvability properties discussed in the manuscript.
Finally a long-standing issue is to build techniques allowing to understand the prop-
erties of the KPZ FP without relying on the use of exactly solvable models. Indeed,
although exactly solvable models allow a remarkable description of the properties of
the KPZ FP, it would be highly desirable to get a simple explanation for the emer-
gence of boundary condition dependent extreme value RMT type statistics, or even of
the critical exponents. This is particularly important in the aim of understanding the
higher-dimensional case where (at least for now) no exactly solvable model exists.



Conclusion

In this thesis we have made progress in the understanding of the properties of elastic
interfaces in disordered media in their strong disorder regime. In Chapter II we have
been interested in characterizing the universal properties of avalanches and shocks
for disordered elastic interfaces with arbitrary elastic kernels in arbitrary dimensions,
working directly at zero temperature. In Chapter III we focused on the study of the
statics of a directed polymer in a 1 + 1d random media at finite temperature and were
interested in properties related to the KPZ universality class. We refer the reader to
Sec. II.7 and Sec. III.4 for a short summary of our results and conclusions on both
subjects and now conclude the thesis with a few more general considerations on the
thesis. While in Chapter II we used an analytical approach based on the functional
renormalization group, leading to results perturbative in ǫ = duc −d, in Chapter III we
focused on (mostly Bethe ansatz) exactly solvable models for the d = 1 case. In both
cases the aim was to gain information on universal properties of the underlying renor-
malization group fixed point, but the approach was completely different. While the
functional renormalization group approach mostly ignore the microscopic properties of
the model, but rather aims at directly describing the fixed point, the approach based
on exactly solvable models is all about finding models whose microscopic properties
ensure an exact solvability property. Information of great precision about the KPZ
fixed point were later obtained through the large scale analysis of exact results.

Both these methods have their pros and cons. They were used to characterize
different observables mostly for technical reasons. While it is an exact method of out-
standing interest, studying the statistics of shocks for the directed polymer in 1 + 1d
with the Bethe ansatz appears very difficult from the technical point of view. Fur-
thermore, exact solvability methods are up to now restricted to the case of 1 + 1
dimension. In this respect the functional renormalization group approach appears
much more versatile. However, in the end, it only leads to results that are perturba-
tive in a dimensional expansion below the upper-critical dimension of the interface.
While it would certainly be interesting to obtain the (equivalent of) the Tracy-Widom
distribution in an expansion in ǫ = 4 − d, it is clear that the result would be far from
the remarkable properties observed in the d = 1 case. Those are not only theoretical
gems since they are also nowadays measured in experiments.

Overall both these methods permit an advanced understanding of different aspects
of the physics of disordered elastics interfaces and of related subjects, making these
systems remarkable example of disordered systems for which already existing analytical
techniques permit important theoretical progress. While at the quantitative level the
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only physics that is accessible through their study is the physics of the universality
class of disordered elastic interfaces -which already contains a variety of systems-, at
the qualitative level the range of application of ideas emerging from their study might
be much broader. In particular, investigating the presence of avalanches in the zero
temperature physics of various disordered systems is an interesting goal as it is a neat
characterization of the presence of many metastable states in the energy landscape,
a property which has a strong influence on many aspects of the physics of disordered
systems. This has been done e.g. in amorphous solids at the yielding transition [93],
in random field systems [87] or in spin glasses [89], but much work in this direction
certainly remains. Even more generally, searching for non-analyticities might be a
fruitful angle of approach to the study of various disordered systems, as it has clearly
been the case for disordered elastic interfaces.



Appendix A

Paper: Spatial shape of avalanches in the
Brownian force model

The following is essentially the article published as
Title: Spatial shape of avalanches in the Brownian force model
Authors: Thimothée Thiery, Pierre Le Doussal, Kay Jörg Wiese
ArXiv: 1504.05342
Journal-Ref: Journal of Statistical Mechanics: Theory and Experiment, Volume 2015, August 2015
Abstract: We study the Brownian force model (BFM), a solvable model of avalanche statistics for an interface, in a
general discrete setting. The BFM describes the overdamped motion of elastically coupled particles driven by a parabolic
well in independent Brownian force landscapes. Avalanches are defined as the collective jump of the particles in response
to an arbitrary monotonous change in the well position (i.e. in the applied force). We derive an exact formula for the joint
probability distribution of these jumps. From it we obtain the joint density of local avalanche sizes for stationary driving in
the quasi-static limit near the depinning threshold. A saddle-point analysis predicts the spatial shape of avalanches in the
limit of large aspect ratios for the continuum version of the model. We then study fluctuations around this saddle point,
and obtain the leading corrections to the mean shape, the fluctuations around the mean shape and the shape asymmetry,
for finite aspect ratios. Our results are finally confronted to numerical simulations.

A.1 Introduction

A large number of phenomena, as diverse as the motion of domain walls in soft magnets, fluid contact lines on rough
surfaces, or strike-slip faults in geophysics, have been described by the model of an elastic interface in a disordered medium
[100, 61, 63]. A prominent feature of these systems is that their response to external driving is not smooth, but proceeds
discontinuously by jumps called “avalanches". As a consequence of this ubiquitousness, much effort has been devoted to
the study of avalanches, both from a theoretical and an experimental point of view [51, 142, 86, 109]. Despite this activity,
there are few exact results for realistic models of elastic interfaces in random media.

An exactly solvable model for a single degree of freedom, representing the center of mass of an interface, was proposed
by Alessandro, Beatrice, Bertotti and Montorsi (ABBM) [98, 99] on a phenomenological basis in the context of magnetic
noise experiments. It describes a particle driven in a Brownian random force landscape. In [100, 42] it was shown that for
an elastic interface with infinite-ranged elastic couplings, the motion of the center of mass has the same statistics as the
ABBM model.

In this article, we study a multidimensional generalization of the ABBM model, the Brownian force model (BFM).
This model, introduced in [111, 136, 102, 101], was shown to provide the correct mean-field theory describing the full space-
time statistics of the velocity in a single avalanche for d-dimensional realistic interfaces close to the depinning transition.
Remarkably, restricted to the dynamic of the center of mass, it reproduces the ABBM model. This mean-field description
is valid for an interface for d ≥ duc with duc = 4 for short ranged elasticity and duc = 2 for long ranged elasticity.

As shown in [102, 101] the BFM has an exact “solvability property” in any dimension d. It is thus a particularly
interesting model to describe avalanche statistics, even beyond its mean-field applicability, i.e. for any dimension d and
for arbitrary (monotonous) driving. It allows to calculate the statistics of the spatial structure of avalanches, properties
that the oversimplified ABBM model cannot capture. In Ref. [101] some finite wave-vector observables were calculated,
demonstrating an asymetry in the temporal shape. Very recently the distribution of extension of an avalanche has also
been calculated [107].

In this article we study a general discrete version of the BFM model, i.e. N points coupled by an elasticity matrix in a
random medium, as well as its continuum limit. In the discrete model each point experiences jumps Si upon driving. We
derive an exact formula for the joint probability distribution function (PDF) P [{Si}] of the jumps Si (the local avalanche
sizes) for an arbitrary elasticity matrix. In the limit of small driving this yields a formula for the joint density ρ[{Si}] of
local sizes for quasi-static stationary driving near the depinning threshold. This allows us to discuss the “infinite divisibility
property” of the BFM avalanche process. The obtained results are rather general and contain the full statistics of the
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spatial structure of avalanches. They are, however, difficult to analyze in general since they contain many variables, and
thus require computing marginals (i.e. probabilities where one has integrated over most of the variables) from a joint
distribution. This is accomplished here in detail for the fully-connected model. We find that in the limit of large N there
exist two interesting regimes. The first one corresponds to the usual picture from mean-field depinning models [63, 11],
whereas the second one is novel and highlights the intermittent nature of the avalanche motion.

We then analyze the shape of avalanches, first in a discrete setting by considering few degrees of freedom. The probability
exhibits an interesting saddle-point structure in phase space. We then study the continuum limit of the model. We find
that the spatial shape of avalanches of fixed total size S and extension ℓ, becomes, in the limit of a large aspect ratio S/ℓ4,
dominated by a saddle point. As a result, the avalanche shape becomes deterministic, up to small fluctuations, which vanish
in that limit. We calculate the optimal shape of these avalanches. We then analyze the fluctuations around the saddle point.
This allows us not only to quantify the shape fluctuations seen in numerical experiments, but also to obtain the mean shape
for avalanches with smaller aspect ratios. We test our results with large-scale numerical simulations. While our results are
obtained in the special case of an elastic line with local elasticity (d = 1) the method can be extended to other dimensions
d and more general elasticity. Finally, we discuss the applicability of our results to avalanches in realistic, short-ranged
correlated disorder. The outline of this article is as follows: Section A.2 recalls the definition of the BFM model, which
is first studied in a discrete setting with general, non-stationary driving. The results of [136, 102, 101] allow us to obtain
the Laplace transform of the PDF of local avalanches sizes. Section A.3 contains the derivation of the main result: the full
probability distribution of the local avalanche sizes. Section A.4 focuses on the limit of small driving, and how to obtain
the avalanche density. Section A.5 contains a detailed analysis of the fully-connected model. Section A.6 studies avalanche
shapes for interfaces with a few degrees of freedom. Section A.7 contains one important application of our result, namely
the deterministic shape of avalanches with large aspect ratio for an elastic line. Section A.8 analyses the fluctuations around
this optimal shape. Section A.9 discusses the application of our results to short-ranged disorder and quasi-static driving. A
series of appendices contains details, numerical verifications and some adjunct results. In particular, in A.13, we introduce
an alternative method, based on backward Kolmogorov techniques, to calculate the joint local avalanche-size distribution,
following a kick in the driving.

A.2 The Brownian force model

A.2.1 Model

We study the over-damped equation of motion in continuous time t of an “interface", consisting of N points with positions
uit ∈ R, i = 1, . . . , N . Each point feels a static random force Fi(uit) and is elastically coupled to the other points by

a time-independent symmetric elasticity matrix cij with
∑N

j=1
cij = 0. Each particle is driven by an elastic spring of

curvature m2 centered at the time-dependent position wit. The equation of motion reads

η∂tuit =

N∑

j=1

cijujt −m2(uit − wit) + Fi(uit) (A.2.1)

for i = 1 . . . N . The Fi(u) are N independent Brownian motions (BM) with correlations

[Fi(u) − Fi(u′)]2 = 2σ|u− u′| , Fi(u)Fj(u′) = 0 for i 6= j (A.2.2)

and Fi(u) = 0; the overline denotes the average over the random forces Fi(u). For definiteness we consider 1 a set of
one-sided BMs with u ≥ 0 and Fi(0) = 0.

We furthermore suppose that (i) the driving is always non-negative: ∀t, i, ẇit ≥ 0, and (ii) the elastic energy is convex
i.e. cij > 0 for i 6= j. Under these assumptions, the Middleton theorem [20] guarantees that if all velocities are non-negative
at some initial time: ∃t0 ∈ R|∀i, u̇it0 ≥ 0, they remain so for all times: ∀i, ∀t ≥ t0, u̇it ≥ 0.

.1 Some explicit examples of elasticity matrices: Throughout the rest of this article, we sometimes
specify the elasticity matrix. The models studied are (where c denotes the elastic coefficient):

1. The fully connected model: cij = c( 1
N

− δij)

2. The elastic line with short-range (SR) elasticity and periodic boundary contitions (PBCs) cij = c (δi,j−1 + δi−1,j − 2δij)
with i+N ≡ i

3. The elastic line with SR elasticity and free boundary conditions:

cij = c [δi,j−1 + δi−1,j − δij(2 − δi1 − δiN )]

4. The general d-dimensional elastic interface with PBCs, where i ∈ Z
d and cij = c(f(||i− j||) − δij

∑

j
f(||i− j||)); here

||i − j|| is the Euclidean distance in Z
d and f(r) the elastic kernel. Long-ranged elasticity (LR) is usually described

by kernels such that f(r) ∼ r−(d+α) (i.e. ∼ qα in Fourier).

1The model can also be studied in a stationary setting, see e.g. [102, 101].
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A.2.2 Velocity Theory

Supposing that we start at rest for t = 0, ui,t=0 = u̇i,t=0 = 0, then it is more convenient (and equivalent) to study the
evolution of the velocity field directly. The equation of motion reads

η∂tu̇it =

N∑

j=1

cij u̇jt −m2(u̇it − ẇit) +
√

2σu̇itξ
i
t , (A.2.3)

where the ξit are N independent Gaussian white noises, with ξitξ
j
t′ = δ(t− t′)δij and ξit = 0. Equation (A.2.3) is taken in the

Itô sense. Note that we replaced the original quenched noise ∂tFi(uit) by an annealed one
√

2σu̇itξ
i
t, making Eq. (A.2.3)

a closed equation for the velocity of the interface. The fact that (A.2.1) and (A.2.3) are equivalent (in the sense that
disorder averaged observables are the same) is a non-trivial exact property of the BFM model. It was first noted for the
ABBM model [98, 99] and extended to the BFM [102, 101]. It originates from the time-change property of the Brownian

motion dB(f(t)) ≡in law

√
f ′(t)dB̃(t) for increasing f(t) = ut, valid as a consequence of the Middleton property u̇t ≥ 0. A

derivation of this property is recalled in A.11.

A.2.3 Avalanche-size observables

In this article we focus on the calculation of avalanche-size observables defined in the following way. Starting from rest at
t = 0 as previously described, we apply a driving wit ≥ 0 for t > 0 during a finite time interval such that

∫∞
0

dt ẇit = wi
(stopped driving protocol). In response to this driving, the points move and we define the local avalanche size Si as
Si =

∫∞
0

dt u̇it, that is the total displacement of each point. We adopt the vector notation

~S = (S1, . . . , SN ) , ~w = (w1, . . . , wN ) . (A.2.4)

The Si’s are random variables whose statistics is encoded in the Laplace transform, also called generating function G(~λ),
and defined as

G(~λ) = e~λ·~S . (A.2.5)

The BFM possesses a remarkable “solvability property” that allows us to express this functional as [102, 101]

G(~λ) = e~λ·~S = e
m2
∑N

i=1
ũiwi (A.2.6)

in terms of the solution ũi of the “instanton" equation. The latter reads

λi = −σũ2
i +m2

N∑

j=1

Cij ũj , (A.2.7)

where we have defined the dimensionless matrix

Cij = δij − 1

m2
cij , (A.2.8)

which contains all elastic and massive terms in the instanton equation. The solution of Eq. (A.2.7) which enters into
Eq. (A.2.6) is the unique set of variables ũi continuous in λj with the condition that all ũi = 0 when all λj = 0. The
derivation of this property is recalled in a discrete setting in A.11. The instanton equation thus allows us in principle to
express the PDF P (~S) of the local avalanche sizes, as the inverse Laplace transform of G(~λ). In the next section we obtain
P (~S) directly, without solving (A.2.7), which admits no obvious closed-form solution. We will note 〈. . . 〉 the average of a
quantity with respect to the probability P . Note that the PDF P (~S) depends only on the total driving wi =

∫∞
0

dt ẇit and
not on the detailed time-dependence of the wit. This is a particularity of the BFM model.

A.2.4 The ABBM model

Before going further into the calculation, let us recall the result of Ref. [102, 101] that the statistical properties of the
center of mass of the discrete BFM model is equivalent to that of the ABBM model. To be precise, if we write the total
displacement (i.e. swept area) ut =

∑

i
uit and total drive wt =

∑

i
wit then, in law, we have

η∂tu̇t = −m2(u̇t − ẇt) +
√

2σu̇tξt . (A.2.9)

Here ξt is a Gaussian white noise ξtξt′ = δ(t−t′) and ξt = 0. 2 This equivalence implies that the PDF of the total avalanche

size S =
∫∞
t=0

dt u̇t =
∑N

i=1
Si in the discrete BFM model, following an arbitrary stopped driving

∫∞
0

dt ẇt = w, is given
by the avalanche-size PDF of the ABBM model [98, 99, 102],

PABBM(S) =
w

2
√
πSmS

3
2

exp

(

− (S − w)2

4SSm

)

, Sm =
σ

m4
. (A.2.10)

Here Sm is the large-scale cutoff for avalanche sizes induced by the mass term. This first result on a marginal of the joint
distribution P (~S) will provide a useful check of our general formula obtained below for N > 1.

2Note that this result uses
∑

j
cij = 0 and that the center of mass obeys the same equation with a

noise scaled as N−1/2 and driving by N−1.
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A.3 Derivation of the avalanche-size distribution in the BFM

For simplicity we now switch to dimensionless units. We define

vi =
σ

m2
ũi , w̃i =

wi
Sm

, λ̃i = Smλi , S̃i =
Si
Sm

, (A.3.1)

where Sm = σ
m4 . The instanton equation (A.2.7) now reads

λ̃i = −v2
i +

N∑

j=1

Cijvj . (A.3.2)

The generating functional is given by

G(~λ) = G̃(~̃λ) = e

∑N

i=1
λ̃iS̃i = e

∑N

i=1
viw̃i . (A.3.3)

In the following we drop the tildes on dimensionless quantities to lighten notations, and explicitly indicate when we restore
units. For the ABBM model, it was possible to explicitly solve the instanton equation for the generating function G(λ).
The inverse Laplace transform was then computed, leading to (A.2.10). Here this route is hopeless because Eq. (A.3.2)
admits no simple closed-form solution. We instead compute directly the probability distribution P (~S) using a change of
variables in the inverse Laplace transform (ILT):

P (~S) =
(

1

2iπ

)N
∫

C
dN~λ exp

(
−~λ · ~S

)
G(~λ) (A.3.4)

=
(

1

2iπ

)N
∫

i∞

−i∞
dv1 · · ·

∫
i∞

−i∞
dvN det

(
∂λi
∂vj

)

exp

(

−
N∑

i=1

(−v2
i +

N∑

j=1

Cijvj)Si +

N∑

i=1

viwi

)

,

where “i" denotes the imaginary unit number to avoid confusion with indexes. The first formula is the ILT where we left
unspecified the multi-dimensional contour of integration C. In the second line we used the expression of λi in terms of vj
from (A.3.2), as well as the dimensionless version of (A.2.6). Changing variables from λi to vj , the contours of integration
are chosen to obtain a convergent integral, see second line of Eq. (A.3.4). This makes this derivation an educated guess,
which however is verified in A.12. We also give another derivation for a special case in A.13. To pursue the derivation, the
Jacobian is written using Grassmann variables as

det

(
∂λi
∂vj

)

=

∫ N∏

i=1

dψidψ̄i exp

(
N∑

i,j=1

ψ̄i(−2viδij + Cij)ψj

)

. (A.3.5)

Reorganizing the order of integrations and changing vi → ivi, we write

P (~S) =
(

1

2π

)N N∏

i=1

∫

dψidψ̄i

N∏

i=1

∫

R

dvi exp

(

−
N∑

i=1

(v2
i +

N∑

j=1

iCijvj)Si +

N∑

i=1

iviwi +

N∑

i,j=1

ψ̄i(−2iviδij + Cij)ψj

)

.

(A.3.6)
Integrating on vi leads to

P (~S) =
(

1

2π

)N N∏

i=1

∫

dψidψ̄i(π)(N/2)

(
N∏

i=1

Si

)− 1
2

exp

(

−1

4

N∑

i=1

(wi − 2ψ̄iψi −
∑N

j=1
CijSj)

2

Si
+

N∑

i,j=1

ψ̄iCijψj

)

. (A.3.7)

Finally, using ψ2
i = ψ̄2

j = 0, the integration over the Grassmann variables can be expressed as a determinant, leading to our
main result

P (~S) =

(
1

2
√
π

)N
(

N∏

i=1

Si

)− 1
2

exp

(

−1

4

N∑

i=1

(wi −
∑N

j=1
CijSj)

2

Si

)

det (Mij)N×N (A.3.8)

Mij = Cij + δij
wi −

∑N

k=1
CikSk

Si
, Cij = δij − 1

m2
cij .

Here cij is the elasticity matrix. This is the joint distribution expressed in dimensionless units (A.3.1). The expression in
the original units is recovered by substituting Si → Si/Sm, wi → wi/Sm and P → SNmP in (A.3.8) while keeping Cij fixed
3.

Note that for zero coupling, cij = 0, Eq. (A.3.8) becomes P (~S) =
∏N

i=1
PABBM(Si): the different points are decoupled

and one retrieves N independent ABBM models. Non-trivial tests of the formula are performed in A.12. One general

3Note that this formula can be generalized to the case of site-dependent masses and disorder
strengths, mi, σi: the expression in the original units is obtained by the substitution Si → Si/S

i
m,

wi → wi/S
i
m and P →

∏

i
SimP in (A.3.8) with Sim = σi

m4
i

and Cij = δij − 1
m2

i

σim
2
j

σjm
2
i

cij .
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property is that the average local size is 〈Si〉 =
∑N

j=1
C−1
ij wj . This average gives the shape of the interface in the large-

driving limit. When wi ≫ 1 uniformly in i, it is easy to see by expansion of the above formula that Si = 〈Si〉 +O(
√
wi)ηi

where ηi are (correlated) Gaussian random variables.
We show in A.13, using different methods, that when the driving is in the form of kicks, ẇit = wiδ(t)

4 P (~S) satisfies
the exact equation

N∑

α=1

(

− ∂P

∂wα

N∑

j=1

Cαjwj +
∂2P

∂w2
α
wα − wα

∂P

∂Sα

)

= 0 . (A.3.9)

We also show that (A.3.8) solves this equation. This alternative derivation support our result (A.3.8) ans shed some light
on its structure.

Interpretation: Some features of our main result can be understood as follows. Consider the equation of motion (A.2.3).
Upon integration from t = 0 to t = ∞ we obtain

0 =

N∑

j=1

cijSj −m2(Si − wi) +

∫ ∞

0

dt
√

2σu̇itξ
i
t . (A.3.10)

If we could replace the sum of white noises by a gaussian random variable

∫ ∞

0

dt
√

2σu̇itξ
i
t →

√

2σ

∫ ∞

0

dtu̇it Ξi =
√

2σSi Ξi , (A.3.11)

then we would obtain (A.3.8), but with a slightly different determinant given by the replacement δij → 1
2
δij in Mij in (A.3.8).

However, the replacement (A.3.11) is not legitimate because the variables u̇it are correlated in time. The determinant in
(A.3.8) takes care of that correlation.

.1 Probability distribution of the shape Even if it is far from being obvious on Eq. (A.3.8), we know from

Section A.2.4 that the probability distribution of S =
∑N

i=1
Si is given by (A.2.10) with w =

∑N

i=1
wi. This allows us to

define the probability distribution of the shape of an avalanche, given its total size S: Consider s1, . . . , sN ∈ [0, 1] with

sN = 1 −
∑N−1

i=1
si, such that Si = Ssi. The probability distribution of the si variables, given that the avalanche has a

total size S =
∑N

i=1
Si is

P (~s|S) = 2
√
π
SN+ 1

2

w
exp

(
(S − w)2

4S

)

P (S~s) ,

N∑

i=1

si = 1 . (A.3.12)

A.4 Avalanche densities and quasi-static limit

The goal of this section is to define and calculate avalanche densities. These allow us to describe the intermittent motion
of the interface in the regime of small driving, wi small. The dependence of the PDF, P~w(~S), on the driving is denoted by
a subscript ~w. We first study the jumps of the center of mass described by the ABBM model.

A.4.1 Center of mass: ABBM

For the ABBM model (and for the total size S =
∑N

i=1
Si in the BFM model) the avalanche-size PDF is given by

Pw(S) =
w

2
√
πS

3
2

exp

(

− (S − w)2

4S

)

, (A.4.1)

where w =
∑N

i=1
wi is the total driving. The limit of small driving w is very non-uniform. In the sense of distributions, its

limit is a delta distribution at S = 0,

Pw(S) →w→0 δ(S) . (A.4.2)

However, this hides a richer picture and a separation of scales between typical small avalanches S ∼ w2 and rare large ones
S ∼ 1. If one defines S = w2s, the PDF of s has a well-defined w → 0 limit given by

p0(s) =
1

2
√
πs

3
2

exp
(

− 1

4s

)

, (A.4.3)

which is indeed normalized to unity
∫

ds p0(s) = 1. Hence avalanches of sizes S ∼ w2 are typical ones. However, all positive
integer moments of p0 are infinite. This indicates that these small avalanches, though typical, do not contribute to the

4This is sufficient, since we noted above that the result does not depend on the detailed time-
dependence of the driving.
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moments of Pw, which are finite and controlled by rare but much larger avalanches which we now analyze. In the limit of
small w, there remains a probability of order w to observe an avalanche of order 1. For fixed S = O(1) ≫ w2 one has

Pw(S) = wρ(S) +O(w2) , ρ(S) =
1

2
√
πS

3
2

exp
(

−S

4

)

. (A.4.4)

This defines the density (per unit w) of avalanches. These are the “main" avalanches with S ≫ w2, which are also called
“quasi-static" avalanches (see below and Section A.9). The density is not normalizable because of the divergence at small
S, but all its integer moments are finite and contain all the weight in that limit, i.e. 〈Sn〉 = w

∫
dSρ(S)Sn + O(w2). In

particular, 〈S〉 = w implies
∫

dSρ(S)S = 1.
We now show that the avalanche density contains more information and controls the moments even for finite w, a

property that follows as a consequence of Pw(S) being the PDF of an infinitely divisible process. This is best seen on its
Laplace transform

Gw(λ) =

∫

dSeλSPw(S) = ewZ(λ) , Z(λ) =
1

2
(1 −

√
1 − 4λ) . (A.4.5)

The “infinite-divisibility property” indeed follows: ∀m and ∀w = w1 + · · · + wm such that wi > 0

Gw(λ) =

m∏

i=1

Gwi
(λ) , Pw(S) = (Pw1

∗ · · · ∗ Pwm
) (S) , (A.4.6)

where ∗ denotes the convolution operation. Hence S is a sum of m independent random variables for all m. The ABBM
avalanche process can thus be interpreted as a Poisson-type jump process (a Levy process) with jump density ρ(S) [230]. In

general the density can be defined as ρ(S) = dPw(S)
dw

|w=0 for fixed S > 0 (i.e. it does not hold in the sense of distributions),

and the relation between Z(λ) := dGw(λ)
dw

|w=0 and ρ is

Z(λ) =

∫

dS(eλS − 1)ρ(S) . (A.4.7)

The −1 takes care of the divergence at small S. This allows us to write the relation between Pw and ρ, expanding (A.4.5)
in powers of w, as

∫

dSeλSPw(S) =

∞∑

n=0

wn

n!

∫

ds1 · · · dsn(eλs1 − 1) · · · (eλsn − 1)ρ(s1) · · · ρ(sn) . (A.4.8)

Taking derivatives w.r.t. λ, this decomposition shows that the (positive integer) moments of Pw are entirely controlled by ρ,
for arbitrary fixed w (beyond the small-w limit). In this sum the term of order wn can be interpreted as the contribution to
the total displacement S of the interface (after a total driving w) of a n-avalanche (quasi-static avalanche) event (of order
O(1)). The convolution structure in (A.4.8) shows that these events are statistically independent in the ABBM model.
In this model however, this interpretation only holds at the level of moments. The accumulation of infinitesimal jumps,
manifest in the non-normalizable divergence of ρ at small S prevents us to extend this interpretation to the probability
itself, see A.14 for a discussion.

A.4.2 BFM

In the BFM, “the infinite-divisibility property” of the avalanche process is even richer, since avalanches occur at different
positions along the interface. Let us define the j-th “elementary" driving which applies only to site j, i.e. wi = wjδij , and
denote the corresponding size-PDF as Pwj (~S). Consider now the PDF for the general driving, P~w(~S). From the structure
of its LT, see (A.3.3), as a product of exponential factors linear in the wi, this PDF can be written as a convolution for
~w = (w1, ..., wN ),

P~w(~S) = Pw1 (~S) ∗ · · · ∗ PwN (~S) . (A.4.9)

An avalanche in the BFM can thus be understood as a superposition of N avalanches independently generated by each local
driving wj .

As for the ABBM model (center of mass), the structure of the LT of the PDF Pwj (~S) shows that each of these elementary
jump processes is infinitely divisible. We define the avalanche density generated by the driving on the j-th point as

ρj(~S) :=
dP~w(~S)

dwj
|~w=0 =

dPwj (~S)

dwj
|wj =0 , (A.4.10)

where as in the previous case, this equality is to be understood point-wise in the ~S variables. Consider the functions vj of
~λ which appear in Eq. (A.3.3) and satisfy Eq. (A.3.2). It is the analogue of Z(λ) appearing in (A.4.5) for the ABBM model
and we thus conjecture the generalization of (A.4.7),

vj =

∫

dN ~S
(

e
~λ·~S − 1

)

ρj(~S) . (A.4.11)
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This allows us to write an equation relating Pwj (~S) to ρj(~S) similar to (A.4.8) (see A.14). The subtleties linked with the

accumulation of small avalanches and the non-normalizability of ρj(~S), are the same as in the previous case, which is also
reminiscent of the fact that the limit of small driving of P~w(~S) is very non-uniform, as we now detail. Consider wi = wfi
with w → 0 and fi fixed: the limit of P~w(~S) is again given (in the sense of distributions) by

∏N

i=1
δ(Si). More precisely, in

this small-w regime, almost all avalanches are O(w2): Si = w2
i si with the si distributed according to

p0(~s) =

N∏

i=1

p0(si) , (A.4.12)

as can be seen from an examination of (A.3.8) in that regime. The PDF p0 was defined in (A.4.3). One sees that the regime
Si ∼ w2 contains all the probability, and that for these very small avalanches the local sizes are statistically independent.

The remaining O(w) probability to observe large avalanches Si = O(1) is encoded in the densities ρj(~S),

P~w(~S) =

N∑

j=1

wjρj(~S) +O(w2) . (A.4.13)

As before, the positive integer moments are entirely controlled by ρj . A more general expression, which illustrates that
these large avalanches occur according to a Poisson process, is given in A.14.

We now give exact expressions for these densities. For a general elasticity matrix, the expression of ρj is obtained from
Eq. (A.3.8), and contains a determinant. Remarkably, one can compute this determinant in various cases, leading to the
following result

ρj(~S) =

(
1

2
√
π

)N
Sj

(
∏N

i=1
Si)

1
2

K(~S) exp

(

−1

4

N∑

i=1

(
∑N

j=1
CijSj)

2

Si

)

, (A.4.14)

where K(~S) depends on the chosen elasticity matrix:

• Fully connected model: K(~S) = ( c
Nm2 )N−1

(
∑N

i=1
Si)N−2

∏N

i=1
Si

• Linear chain with periodic boundary conditions: K(~S) = ( c
m2 )N−1

∑N

i=1
1

SiSi+1

• Linear chain with free boundary conditions: K(~S) = ( c
m2 )N−1 1

S1SN

.1 PDF of the shape in the small-driving limit As we just detailed, the small-driving limit of P~w(~S)
exhibits a complicated structure due to the accumulation of small avalanches. The situation is very different for the PDF
of the shape of the interface conditioned to a given total size S = O(1) (A.3.12). This conditioning naturally introduces a
small-scale cutoff that simplifies the small driving limit wi = wfi with w → 0 which reads

ρ(~s|S) = lim
w→0

P (~s|S) = 2
√
π
SN+ 1

2
∑

i
fi

exp
(
S

4

) N∑

j=1

fjρj(S~s) . (A.4.15)

This limit holds in the sense of distributions, and ρ(~s|S) defines a normalized probability distribution. This indicates that
the only small-scale divergence present in ρj originates from the direction Sj ∼ S → 0 uniformly in j, in agreement with
the conjecture (A.4.11).

A.5 Fully-connected model

In this section we use our result (A.3.8) and analyze it for the fully-connected model with uniform driving. Most calculations
are reported in A.15, where we also consider driving on a single site, wi = w1δi1.

.1 Structure of the PDF and marginals In the fully-connected model with homogeneous driving wi = w,
it is shown in A.15 that our main result (A.3.8) has the simple structure

P (~S) =
w

w + cS/N

N∏

i=1

pw,S/N (Si) . (A.5.1)

We defined

pw,z(Si) =
w + cz

2
√
πS

3/2
i

exp

(

− (w + cz − (1 + c)Si)
2

4Si

)

. (A.5.2)

For each w, z > 0, it is a probability distribution, that corresponds to the (dimensionless, with m2 = 1) PDF of the
avalanches of one particle in a Brownian force landscape (ABBM model), interacting with one parabolic well through the
force m2(w − ui) and with another parabolic well through the force c(z − ui). Formula (A.5.1) is thus reminiscent of the



164 Appendix A. Paper: Spatial shape of avalanches in the BFM

fact that the various sites interact with one another only through the center of mass of the interface. This simple structure
permits a direct evaluation of various marginals of (A.5.1) of the type P ({S1, . . . , Sp}, S) (local sizes on p < N sites and
total size). This is done in A.15. Here we focus on the joint PDF of the total size S, and the single-site local avalanche size
S1 < S. Its explicit form is

P (S1, S) =
w

2
√
πS

3
2

1

(N − 1)
w + cS/N

2
√
π(S − S1)3/2

exp

(

− (w + cS/N − (1 + c)S1)2

4S1

)

(A.5.3)

× exp

(

− ((N − 1) (w + cS/N) − (1 + c)(S − S1))2

4(S − S1)

)

.

Of interest is the participation ratio s1 = S1/S of a given site to the total motion. Its average is s1 = 1/N . Its second
moment, conditioned to the total size S, is easily extracted from (A.5.3),

E(s2
1|S) =

1

N
−

√
π(N − 1)e

(cS+Nw)2

4S (cS +Nw)erfc
(
cS+Nw

2
√
S

)

2N2
√
S

. (A.5.4)

We now study the limit of a large number of sites N in Eq. (A.5.3). There are (at least) two relevant regimes depending
on how the driving w scales with N .

.2 First regime: w = O(1) (“many avalanches"): Consider the case N → ∞ with w fixed. In this case,

typical values of S =
∑N

i=1
Si are of order O(N). Consider S̄ =

∑N

i=1
Si

N
(empirical mean avalanche-size Si), which is

distributed according to

P (S̄) =

√
Nw

2
√
πS̄

3
2

exp

(

−N(S̄ − w)2

4S̄

)

→N→∞ δ(S̄ − w) . (A.5.5)

The joint probability P (S1, S̄), is given by Eq. (A.5.3) (with the change of variable S → NS̄), and admits the large-N limit

P (S1, S̄) ≃N→∞
w + cS̄

2
√
πS

3
2

1

exp

(

−1

4

(
w + cS̄ − (1 + c)S1

)2

4S1

)

P (S̄)

≃ w(1 + c)

2
√
πS

3
2

1

exp

(

−1

4

(1 + c)2 (w − S1)2

4S1

)

δ(S̄ − w) . (A.5.6)

Hence the jump of the center of mass becomes peaked at S̄ = w, while the individual sites keep a broader jump distribution.
The local avalanche statistics is the same as the one for a particle submitted to the parabolic driving force m2(w−ui), and
to the elastic force from the center of mass of the interface, c(S̄ − ui). This observation extends to any number of particles
npart = O(1) with respect to N : in the large-N limit, the particles become independently distributed according to the law
(A.5.6). This picture is the “mean-field" regime usually studied in fully-connected models [63, 11], and here derived in a
rigorous way. Note that in this case, due to a cancellation in (A.5.4), the participation ratio scales as E(s2

1|S) = O(1/N2)
which shows that s1 is typically of order 1/N .

.3 Second regime: small driving w = O(1/N) (“single avalanche") We now focus on the regime

w = ŵ/N with ŵ fixed. In this case S =
∑N

i=1
Si is typically of order 1 and is distributed according to

P (S) =
ŵ

2
√
πS

3
2

exp

(

− (S − ŵ)2

4S

)

. (A.5.7)

We now compute, using (A.5.3), the joint PDF of S and S1 in the scaling regime S1 = O(1) fixed,

P (S1, S) ≃N→∞
ŵ/N

2
√
πS

3
2

1

exp

(
−(1 + c)2S1

4

)
ŵ + cS

2
√
π(S − S1)

3
2

exp

(

−1

4

(ŵ + cS − (1 + c)(S − S1))2

4(S − S1)

)

. (A.5.8)

The first factor is reminiscent of the density of avalanches and contains a non-normalizable divergence ∼ S
−3/2
1 . However

(A.5.3) implies a cutoff on small S1 of order 1
N2 . The scaling w = ŵ/N allows to isolate single (quasi-static) avalanches (in

the interpretation of the BFM avalanche process as a Levy process discussed above) and the factor of 1/N is the probability
that the site i = 1 is part of the avalanche. In this regime, the fluctuations are large and the participation ratio scales as
E(s2

1|S) = O(1/N).

A.6 Spatial shape in small systems N = 2, 3.

In this section we analyze the PDF of the spatial avalanche shape in the small-driving limit, wi = w → 0, mostly for
N = 2, 3. It already exhibits a saddle-point which allows us to discuss the general-N case below. The analysis can be
repeated for finite wi. Similarities and differences give insight into the link between the quasi-static distribution and finite
driving. This is done in A.16.
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.1 N=2,3 We start with N = 2, for which the different models we considered are all equivalent. To fix notations, we
study the linear chain with PBCs (see Section .1) and m = 1. The quasi-static PDF of the shape (A.4.15), conditioned on
the total size S, reads

ρ(s|S) =
2c

4
√
π(s(1 − s))

3
2

e
−c2S

(1−2s)2

s(1−s) . (A.6.1)

We noted s = s1 = S1/S, the shape variable of the first site. The behavior of this PDF is summarized on Figure A.1. For
small S, typical avalanches are mainly distributed on one site. As S increases, the most probable avalanches become more
homogeneously distributed over the two sites, and for S larger than Sc = 3

8c2 , the probability distribution is peaked around
s = 1

2
and the avalanche is extended over the whole system. We call this phenomenon the shape transition: For small total

size, the most probable avalanches have max(si) ≃ 1, whereas for large avalanches max(si) ≃ 1/N = 1/2.

0.2 0.4 0.6 0.8 1.0
s

0.5

1.0
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3.0

3.5

ρ (s S)

Figure A.1: Shape transition of the quasi-static PDF (A.6.1) for N = 2 and c = 1 in
the linear chain with PBCs. For S = 0.1Sc (black, solid curve) and S = 0.3Sc (blue),
the distribution has two symmetric maxima. For S = 5Sc, the distribution is peaked
around s = 1

2 (red, upper curve). The transition occurs at S = Sc = 3/8 (black,
dashed curve).

The case N = 3 for a linear chain with PBC is similar. For S < 1
c2 , the quasi-static density distribution of the shape

ρ(s1, s2, s3 = 1 − s1 − s2|S) has three symmetric maxima corresponding to avalanches mainly centered on a given site,
whereas for S > 1

c2 there is only one maximum at si = 1
3
. This can be seen on Figure A.2.

.2 General N This study already gives some insight into the structure for generic N : the quasi-static distribution
of the shape ρ(~s|S) exhibits different saddle-points, whose positions and stabilities depend on the value of S. For small
S, avalanches are preferentially located on a single site j and max(si) ≃ 1. As one increases S, the most probable
avalanches are more and more extended. The analytical calculation of the properties of these saddle points is difficult.
However, we can generalize the shape transition observed for N = 2, 3: The symmetric configuration defined by ∀i,
si = 1

N
(a situation corresponding to infinitely extended and uniformly distributed avalanches) is always a saddle-point of

translationally invariant models. This saddle-point is only stable for S > Sc(N), which is computed in A.17 for the fully
connected model, and for the linear chain with PBC. The result is

Sfc
c (N) = 3N

c2 , (A.6.2)

SPBC
c (N) ∼N→∞ 1

16c2π4 (N5 + 12N4 +O(N3)).

This critical value gives the scaling of the total size above which most probable avalanches are uniformly distributed on
all the interface. Below this scaling they adopt a more complex structure (e.g. they are localized on several sites, possess

Figure A.2: Shape transition of the quasi-static shape distribution for N = 3 and
c = 1. From left to right: S = 0.5; 1; 2.
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maxima, etc.). Let us already mention that other saddle-points of the shape PDF are numerically studied in A.19, where
the results are compared to the one obtained in the next section for the most probable avalanche shape in a continuum
model.

A.7 Continuum limit: avalanches of an elastic line and typical shape of
avalanches with large aspect ratio

A.7.1 Avalanche size PDF and density in the continuum limit

We now study the generalization of the previous result to the continuum Brownian-force model with short-ranged elasticity
for a line of length L

η∂tu̇xt = ∇2uxt −m2(u̇xt − ẇxt) +
√

2σu̇xtξxt . (A.7.1)

Here ξxt is a gaussian white noise with ξxtξx′t′ = δ(x− x′)δ(t− t′) and the boundary conditions are either free or periodic.
Starting from rest at t = 0 and imposing a driving ẇxt ≥ 0 for t ≥ 0 such that

∫

t
ẇxt = wx, we note the total displacement

of the interface Sx =
∫

t≥0
u̇xt. The method used in the discrete case can be extended to derive the PDF of avalanches in

the continuum. Another route is to consider the continuum model as the appropriate N → ∞ limit of the discrete model,
as is detailed in A.18. Both procedures give the same result, which, for the dimensionless PDF of continuum avalanches,
includes a functional determinant

P [Sx] ∼
(

1
∏

x
Sx

) 1
2

det (M) exp

(

−
∫ L

0

dx
(wx − Sx + 1

m2 ∇2Sx)2

4Sx

)

, (A.7.2)

M(x, y) = − 1

m2
(∇2)xy + δ(x− y)

(

1 +
wx − Sx + 1

m2 ∇2Sx

Sx

)

.

Here ∇2 is the usual Laplacian, (∇2)xy = δ′′(x−y). Dimensions can be reintroduced as in the discrete case using Sm = σc
m4 .

Sm is the avalanche-size scale of the continuum theory. The first factor ( 1∏

x
Sx

)
1
2 also comes from a determinant and could

be included in the definition of the operator M .
As in the discrete case, the mean displacement 〈Sx〉 satisfies −∇2〈Sx〉 + 〈Sx〉 = wx. For instance, if the driving is only

at one point, wx = wδ(x), one has 〈Sx〉 = w
2
e−|x|. The case of a general wx is obtained by superposition. This is consistent

with the discussion in Section A.4. As in the discrete case, the mean displacement gives the avalanche shape in the limit of
large driving (plus an O(

√
w) Gaussian noise).

One can also study the homogeneous quasi-static limit: w(x) = w → 0 and S(x) = O(1) uniformly in x. Then
P [S] ≃ wρ[S] with ρ[S] the quasi-static density of sizes of continuous avalanches, also obtained as the limit of the discrete
ones,

ρ[Sx] ∼
(
∫ L

0
dxSx)BC[Sx]

(
∏

x
Sx)

1
2

exp

(

−
∫ L

0

dx
(Sx − ∇2Sx)2

4Sx

)

. (A.7.3)

From now on we set m = 1 (by a rescaling of x). The term BC[Sx] depends on the chosen boundary conditions with

BC[Sx] =
∫ L

0
dx
S2

x
(resp. BC[S] = 1

S0SL
) for the periodic case (resp. free case).

.1 Other continuum models Our discrete setting allows us to obtain the avalanche-size PDF of various con-
tinuous models, Eq. (A.7.2) being generalizable to an interface of internal dimension d. One may also consider an arbitrary
elasticity matrix cxy by changing ∇2ux →

∫
dycxyuy. The continuum limit of the formula for the PDF of the shape con-

ditioned to the total size, either at finite w, see Eq. (A.3.12), or for w → 0 (quasi-static limit), see Eq. (A.4.15), are also
easily derived.

A.7.2 Rewriting the probability measure on avalanche sizes

We now wish to determine the most probable shape of quasi-static avalanches, in the limit L → ∞ 5. To render the problem
well defined, one needs to specify two scales. A natural choice is the total size S =

∫

x
dxSx and the spatial avalanche

extension (or length) ℓ, i.e. the size of the support of Sx. While the avalanche-size PDF P (S) is given by the ABBM
result (A.2.10), the existence of a finite extension ℓ (i.e. local avalanche sizes being strictly zero outside a finite interval) is
non-trivial6. Here it naturally arises in the search for saddle-points of the shape PDF: we only found solutions which vanish
outside of an interval. This property was also shown recently in [107] where the PDF of the extension P (l) is computed.

5 In general the shape of avalanches depends on the driving. However, an avalanche following an
arbitrary driving (in particular in a quasi-static setting more usual for experiments, see Sec. A.9) in
the BFM is a sum of quasi-static avalanches (Sec. A.4), whose spatial structure is, by definition,
independent of the driving.

6In a mathematical sense it may be a peculiarity of the BFM in d = 1 with short range elasticity.
Of course rapid decay in space is expected more generally beyond some support region of extension ℓ,
and often obtained in numerical simulations.
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In the following we study the shape distribution at fixed S and ℓ. We do not take into account the term implementing
boundary conditions in (A.7.3) since it should not play a role in the bulk (this hypothesis is explicitly checked on the
discrete model in A.19). So we write the density of continuum avalanches Sx as

ρ[S]
∏

x

dSx ∼
∏

x

dSx√
Sx

(
∑

x

Sx

)

e−H[S] , H[S] =

∫

x

[Sx − ∇2Sx]2

4Sx
=

∫

x

Sx
4

+
[∇2Sx]2

4Sx
. (A.7.4)

To eliminate the factor of (
∏

x
Sx)−1/2 in the measure, we set

Sx = Φ2(x) . (A.7.5)

The integration
∫∞

0

dSx√
Sx

=
∫∞

−∞ dΦ(x), thus the integral over Φ(x) runs from −∞ to ∞. To further simplify the calculations,

we note that the problem is invariant by translation. We thus impose the center of the support to be at x = 0. This leads
to the definition of the reduced shape s(x) = φ2(x)

Sx =
S

ℓ
s(x/ℓ) = Φ2(x) =

S

ℓ
φ2(x/ℓ) ,

∫ 1
2

− 1
2

dxφ2(x) = 1 , |x| ≥ 1

2
⇒ φ(x) = 0 . (A.7.6)

Note that to study fluctuations around the saddle point it is more convenient to use φ(x), but the saddle point itself can be
obtained equivalently using s(x) or φ(x). Below we use φ(x), but also indicate the corresponding formulas for s(x) when
these are simpler.

We search for the most probable shape in the limit of small driving, at fixed size S and extension ℓ. The path integral
takes the form

∏

x

dφ(x) exp
(

−S

4
− S

ℓ4
Hel[φ]

)

, Hel[φ] =

∫ 1
2

− 1
2

φ′′(x)2 +
φ′(x)4

φ(x)2
+

2φ′(x)2φ′′(x)

φ(x)
dx . (A.7.7)

The boundary conditions are φ( 1
2
) = φ(− 1

2
) = φ′( 1

2
) = φ′(− 1

2
) = 0 and

∫ 1
2

− 1
2

dxφ2(x) = 1 . (A.7.8)

Note the appearance of the factor of S
ℓ4 in front of the “elastic” energy.

A.7.3 The saddle point for large aspect ratio S/ℓ4

The path integral (A.7.7) is for large S/ℓ4 dominated by a saddle-point. To enforce the constraint (A.7.8), we minimize

Hel[φ] − A
∫ 1/2

−1/2
dxφ2(x), with Lagrange multiplier A, leading to the saddle-point equations 7.

Aφ(x) =
1

2

δHel[φ]

δφ(x)
= φ(4)(x) +

5φ′(x)4

φ(x)3
− 10φ′(x)2φ′′(x)

φ(x)2
. (A.7.9)

In order to find the solution (A0, φ0(x)) of (A.7.9) satisfying the properties written in (A.7.6), we first obtain numerically,
using a shooting method, another solution (A1, φ1(x)) of (A.7.9). We impose A1 = 2.5×105, φ1(0) = 1, φ′

1(0) = φ′′′
1 (0) = 0,

and look for the correct shooting parameter φ′′
1 (0) such that the numerical solution has a support of finite size [−xc, xc]

with the desired behavior at the boundary, i.e. φ′
1(−xc) = φ′

1(xc) = 0. The obtained (unique) solution has the following

properties: φ′′
1 (0) = −276.797090676018, xc = 0.162713,

√
φ1(x) ≃ 7.85883(xc − x) for x → xc and S1 :=

∫ xc

−xc
φ2

1(x)dx =

0.106289. We now take advantage of rescaling, setting

φ0(x) :=

√

2xc
S1

φ1(2xcx) , and s0(x) = φ2
0(x) . (A.7.10)

This function is automatically a solution of (A.7.9) with a different Lagrange multiplier A0 = (2xc)
4A1, and the desired

properties (A.7.6). By multiplying (A.7.9) by φ0(x) and integrating for x ∈ [− 1
2
, 1

2
] (using φ′

0(± 1
2
) = 0), we obtain the

relation Hel[φ0] = A0. Numerically we find

E0 := Hel[φ0] = A0 = (2xc)
4A1 = 2803.8 ± 0.2 . (A.7.11)

An estimate of the numerical accuracy is given. The error is mostly due to the imprecision in determining xc.
Alternatively, a variational solution can be used. We make the ansatz

φvar(x) = Nc

(
x2 − 1

4

)2

(

1 +

imax∑

i=1

ci(x
2 − 1

4
)i

)

, and svar(x) = φ2
var(x). (A.7.12)

7The saddle point equation has a simpler form in terms of s(x). It reads: 1
2
[s′′(x)/s(x)]′′ −

1
4
[s′′(x)/s(x)]2 = A. Hence s′′(x)/s(x) is a Weirstrass function which diverges as ∼ (x ± xc)

−2 at
the boundaries.
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Figure A.3: Left: The function s0(x) = φ2
0(x), as obtained by solving the differen-

tial equation (A.7.9) (red solid curve). This is contrasted to the variational ansatz
(A.7.12), with one (blue dotted), two (green dashed) and 15 variational parameters
(black-dashed, indistinguishable from the solution of the differential equation). Right:
Difference between the solution of the differential equation, and the best variational
solution.

The behavior at the boundary x = ± 1
2

is chosen in agreement with the numerical solution of the saddle-point equation.
One can also show that this ansatz leads to an energy which remains finite at the boundary. The ~c-dependent normalization

Nc is chosen s.t.
∫ 1/2

−1/2
dxφvar(x)2 = 1. For a given vector ~c = {c1, ..., cimax }, one then evaluates H[φvar]. Using a Monte

Carlo algorithm, the minimum energy is searched by steepest decent in the space of all ~c with given
∫ 1/2

−1/2
dxφvar(x)2 = 1.

In Figure A.3 we show that for the shape of the avalanche, this procedure rapidly converges against the solution obtained
by solving the differential equation (A.7.9). Our best estimate is for imax = 15, where we find

~c = {−1.00301, 20.6871, 83.4237, 211.353,−270.898, 179.973,−72.6636, 16.3962,

−12.2786, 6.11179,−0.33042, 11.777, 0.750034,−6.77598,−4.56253} . (A.7.13)

This result is compared to the numerical solution of the saddle point on Figure A.3. The energy of this solution gives us,
in good agreement with Eq. (A.7.11), the variational bound

E0 ≤ 2803.96 . (A.7.14)

In A.19 we confront this result to a study of the optimal shape in a discrete setting. There we also show (see also Figure
A.10 below) that this saddle-point is stable. Hence, the reduced shape of an avalanche becomes deterministic in the limit

of S/ℓ4 ≫ 1: s(x)
S/ℓ4→∞−→ s0(x) = φ2

0(x) with probability one. Formula (A.7.7) then shows that E0 is measurable in the tail
of the distribution of aspect ratios,

Proba(S/ℓ4)
S/ℓ4≫1∼ exp

(

−E0
S

ℓ4

)

(A.7.15)

with possibly some sub-dominant factors, as e.g. a power-law. This is confronted to numerics below.

A.7.4 Simulations: Protocol and first results

.1 Protocol. Here we describe the simulation used to numerically study the shape of avalanches. We use a dis-
cretization with N = 512 points of the equation of motion for the velocity in the BFM (A.7.1) using periodic boundary
conditions for a system of total size L = N . The mass is chosen as m = 10/L in order to get a scale-free statistics for
a wide range of events. The other parameters are set to unity, η = σ = 1. The time is discretized using a time-step
dt = 0.01 and a discretization scheme identical to [231]. Simulations are done via Matlab and results are analyzed using
Mathematica. At t = 0 the system is at rest and we choose to drive it using a kick of size δw = 100 on a single site. This
is motivated by the fact that we want to study (single) quasi-static avalanches: the value of δw is chosen to be small in

adimensioned units m3

σ
δw ≃ 7.4.10−4. Following the discussion of Section A.4 and A.14, we thus know that an avalanche

resulting from our driving protocol can either be a “small" avalanche O(δw2) or, with a small probability p0 = O(δw) a
quasi-static avalanche of total size S = O(1) (we neglect the O(δw2) probability that several quasi-static avalanches have
been triggered). Schematically, we write

P (~S) ≃ (1 − p0)“δ”(~S) + p0ρi0 (~S) , (A.7.16)

where i0 is the driven site. Here “δ”(~S) is not a true delta distribution since in the BFM the interface always moves, but
it rather denotes the PDF of all the small, non quasi-static avalanches, which is expected to depend highly on the driving.
This is made more precise below, and in particular we discuss how we identify the quasi-static avalanches and p0 from our
data set.
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Figure A.4: Measurement of 〈Si〉 and comparison with the exact result 〈Si〉 =
mw

2 e−m|i−i0| with i0 = 256. The total moment is measured as 〈S〉 = 99.461.

We stop the simulation for the rare events when an avalanche reaches the periodic boundary, since we are interested in
the distribution of shapes on an infinite line. For every generated avalanche, we numerically compute its shape characteristics
S, ℓ (avalanches are indeed observed as having a finite support) and s(x) (discretized with ℓ points). We report results using
nit = 2.107 simulations of a kick. As a first verification, we check on Figure A.4 a coarse-grained information on the spatial
structure by measuring the mean local avalanche size. The discrepancy at the boundaries can be attributed to the fact that
we stop the simulation when an avalanche reaches the PBCs. This is the only bias expected in our procedure. It is not a
problem since for the rest of the article we are interested in observables at large S/ℓ4, automatically excluding the largest
ℓ.

.2 Consistency check of E0 = 2804. We predicted above that E0 controls the tail of the distribution of aspect-
ratios. Numerically, we find that this distribution possesses a power-law part coherent with an exponent of 2 and an
exponential cutoff for large S/ℓ4 with a prefactor coherent with E0 = 2804: Proba(S/ℓ4) ≃ ℓ8/S2 exp(−E0S/ℓ

4) (see left
and center of Figure A.5). We also remark that the exponential cutoff function seems to entirely control the PDF of S/ℓ4

for “massive" avalanches, of extension ℓ ≥ 1/m (see right of Figure A.5). Obviously this does not constitute a precise
measurement of E0, but rather a verification of its non trivial value, which can probably only be understood by studying
the complete spatial structure of avalanches as we did.

.3 Identifying quasi-static avalanches. From now on we restrict our numerical results to avalanches of
extension ℓ ≥ 10 to obtain a decent spatial resolution. This also allows us to isolate quasi-static avalanches. Avalanches
with extension larger than 10 only represents 3.5% of the data. Obviously, this is not a proof that this subset of avalanches
only contains quasi-static avalanches, and one needs to check that it has the statistical properties of a set generated by the
quasi-static density. One “test" is to study the number n>S1 of avalanches of total size S larger than S1, for which the
quasi-static hypothesis implies,

n>S2 = n>S1

∫∞
S2
ρ(S)dS

∫∞
S1
ρ(S)dS

, (A.7.17)
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Figure A.5: Different histogram of the PDF of S/ℓ4 obtained numerically with different
binning procedures for the x axis and scale for the y axis. Left: log-log histogram
of the full distribution. Center: log histogram of the distribution for aspect ratio
S/ℓ4 ≥ 1/5E0. Right: log histogram of the distribution for avalanches of extension
ℓ ≥ 1/m. The black line on the left emphasizes the observed power-law behavior
Proba(S/ℓ4) ∼ ℓ8/S2. Blue lines are fits using an ansatz of the form Proba(S/ℓ4) ∼
ℓ8/S2 exp(−E0S/ℓ

4). The red line is a fit using only the cutoff function: Proba(S/ℓ4) ∼
exp(−E0S/ℓ

4).
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Figure A.6: Left: n>S measured from the datas (blue dots) and compared to the
quasi-static prediction ((A.7.17), black line) with S2 → S (S1 can be chosen anywhere
in [0.5, 105] and n>S1 is measured from the datas).

where ρ was defined in (A.4.4). Numerically, we find that this relation holds for all S1, S2 larger than Smin = 0.5 (see Figure
A.6). We thus further restrict our set of avalanches to avalanches of total size S ≥ Smin. Note that though our reduced set
of avalanches now only contains 2.7% of the total number of avalanches, it contributes to 99.44% to the first moment 〈S〉.
(This gives a precise sense to Eq. (A.7.16) with p0 = 0.027). We do not further study the other avalanches here, since their
characteristics is highly dependent on the chosen driving.

.4 The convergence to the saddle-point. We now check the striking prediction that the shape of avalanches

becomes deterministic in the limit of large S/ℓ4. To this aim, we measure the distance between the optimal shape s0(x) =
φ2

0(x) and the simulated shapes s(x) using either the L1 or the (squared) L2 canonical norms (see Figure A.7). As expected,
we find that the mean value of these quantities at fixed S/ℓ4 converge to 0 as S/ℓ4 becomes larger. However, we find that
the rate of convergence of these quantities is slower than what is expected from perturbation theory (this is developed in
the next section), which predicts for both a convergence as ℓ4/S. This will be taken into account when comparing the
numerical results to the prediction of perturbation theory for the fluctuations around the optimal shape.

.5 The mean shape of avalanches. Finally, we verify on Figure A.8 that the mean shape 〈s(x)〉 is given by

the optimal shape s0(x) for large S/ℓ4. We also explicitly check that the mean-shape decays as (x ± 1/2)4 close to the
boundaries. The agreement is very good, though one can notice that the numerical mean shape is slightly flatter than
expected. This observation motivates a study of the fluctuations of the shape around the optimal shape.

A.8 Fluctuations around the saddle point

A.8.1 Field theoretic analysis

We now study the fluctuations around the saddle point φ0(x). To this aim, we set

φ(x) = φ0(x) + δφ(x) . (A.8.1)

Expanding the action yields

Hel[φ] = E0 + 2E0

∫

x

φ0(x)δφ(x) + H2[φ0, δφ] + H3[φ0, δφ] + ... (A.8.2)

H2[φ0, δφ] =

∫

x

δφ(x)2

[
20φ′

0(x)2φ′′
0 (x)

φ0(x)3
− 15φ′

0(x)4

φ0(x)4

]

+ δφ′(x)2 10φ′
0(x)2

φ0(x)2
+ δφ′′(x)2 (A.8.3)

H3[φ0, δφ] = 5

∫

x

δφ(x)2δφ′(x)
3φ′

0(x)3 − φ0(x)φ′
0(x)φ′′

0 (x)
φ0(x)4

− 4δφ(x)δφ′(x)2 φ
′
0(x)2

φ0(x)3

+
4
3
δφ′(x)3 φ

′
0(x)

φ0(x)2
− 1

3
δφ(x)3 φ

′′′
0 (x)φ′

0(x) + φ′′
0 (x)2

φ0(x)3
(A.8.4)

The first term in Eq. (A.8.2) comes from the saddle-point equation (A.7.9) at φ = φ0, A0 φ0(x) = 1
2
δHel[φ]
δφ(x)

|φ(x)=φ0(x)

together with (A.7.11). We have used our freedom to integrate by part to arrive at these expressions: For H2[φ0, δφ] we
gave a form in which each term is proportional to the square of a δφ-derivative. For the cubic term, which is used in
perturbation theory our strategy is different: Since derivatives of 〈δφ(x)δφ(y)〉H2

are numerically unstable, we wrote this
expression without a second derivative δφ′′(x).
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Figure A.7: Left: (resp. Right:) Mean-value at fixed S/ℓ4 of the L1 (resp. squared
L2) norm between the optimal shape and the simulated shape

∫ 1/2
−1/2 dx|s(x) − s0(x)|

(resp.
∫ 1/2

−1/2 dx(s(x) − s0(x))2). Inset: log-log plot of the same quantity, fitted with a

power-law (ℓ4/S)1/3 (resp. (ℓ4/S)1/2). Error bars are given using a Gaussian estimate
and a numerical measurement of the variance. The fits with power-laws are of low
quality, but sufficient to prove that the convergence is slower than ℓ4/S.

Figure A.8: Left: Mean shape obtained by averaging over the 1000 avalanches with
the largest S/ℓ4 (blue dots, 0.0011 ≤ S/ℓ4 ≤ 0.0041), compared to the optimal shape
s0(x) (red line). Right: test of the predicted behavior s(x) ∼ (x + 1/2)4 close to the
boundaries.

Figure A.9: The coefficients multiplying the different terms in H2[φ0, δφ] (left) and
H3[φ0, δφ] (right), after replacing δφ(x) → (x2 − 1/4)2 and δφ′(x) → x2 − 1/4. This
shows that δφ(x) must have the same behavior ∼ (x2 −1/4)2 as φ0(x) at the boundary
x = ±1/2.
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To evaluate the coefficients, we use the variational ansatz (A.7.12), with the optimal ~c of Eq. (A.7.13). The plot in
Figure A.9 shows that δφ(x) should have the same behavior ∼ (x2 −1/4)2 as φ0(x) at the boundary x = ±1/2. We therefore
make the ansatz

δφ(x) = a0v0(x) +
nmax∑

n=1

[

a2n−1vn(x) + a2nun(x)
]

. (A.8.5)

The basis un(x), vn(x) is constructed using Gram-Schmidt out of

v̄0(x) =

√

2
3

[

1 + cos(2πx)
]

(A.8.6)

v̄n(x) = (−1)n+1 cos(2π(n+ 1)x) + cos(2πx) for n ≥ 1 (A.8.7)

ūn(x) =
(n+ 1) sin(2πx) + (−1)n+1 sin(2π(n+ 1)x)

√
n2

2
+ n+ 1

. (A.8.8)

This basis is orthonormal. In this basis, the energy H2[φ0, δφ] can be written as

H2[φ0, δφ] =
1
2

∫

x,y

δφ(x)M(x, y)δφ(y) =
1
2

∑

i,j

Mijaiaj . (A.8.9)

This defines M which we now diagonalize. Its lowest eigenvalue is λ0 = 2E0, with eigenfunction δφ0(x) = φ0(x). This can
be proven with the help of the saddle-point equation (A.7.9). The higher eigenfunctions δφn(x) have n knots, see Figure
A.10. Since M is symmetric they form an orthonormal basis. The spectrum is massive (no soft massless modes); we observe
that lnλn ≃ 13.1 + 0.256n, i.e. the eigenvalues grow in geometric progression. This ensures that a truncation at nmax = 10
is sufficient for practical purposes.

A delicate problem is to obtain results at fixed
∫

x
φ(x)2 = 1. To do so, we write for the expectation value of an

observable O[φ]

〈O[φ]〉 = 1
〈1〉
∫

D[φ] O[φ] δ
(∫

x
φ2(x) − 1

)

exp
(

− S
ℓ4

{

Hel[φ0, δφ] − E0

})

= 1
〈1〉
∫

D[φ] O[φ] δ
(∫

x
φ2(x) − 1

)

× exp
(

− S
ℓ4

{

H2[φ0, δφ] − E0

∫

x
δφ(x)2 + H3[φ0, δφ] + H4[φ0, δφ] + ...

})

(A.8.10)

We subtracted the constant E0 from the energy in the path integral and used the constraint
∫

x
φ(x)2 = 1 to rewrite the

linear term appearing in (A.8.2) as a quadratic term: 2E0

∫

x
φ0(x)δφ(x) = −E0

∫

x
δφ(x)2. It ensures that the minimum of

the exponential factor at δφ(x) = 0 becomes a global saddle point; in addition, the lowest-energy fluctuation δφ0 has zero
energy. If we write φ(x) in the basis of eigenmodes δφn(x) of M, i.e.

φ(x) = φ0(x) +
∞∑

n=0

anδφn(x) ≡ (1 + a0)φ0(x) +
∞∑

n=1

anδφn(x) , (A.8.11)

then
∫

x

φ(x)2 =

∫

x

[

φ0(x) +
∞∑

n=0

anδφn(x)

]2

= (1 + a0)2 +
∞∑

n=1

a2
n . (A.8.12)

Solving
∫

x
φ(x)2 = 1 for a0 yields

a0 =

√
√
√
√1 −

∞∑

n=1

a2
n − 1 =⇒ a0 = −1

2

∞∑

n=1

a2
n + ... (A.8.13)

With this, the path-integral (A.8.10) can be written using equations (A.8.11) and (A.8.13) as

〈O[φ]〉 = 1
〈1〉
∏∞
n=1

dan O[φ]
(
1 −

∑∞
n=1

a2
n

)− 1
2

× exp

(

− S
ℓ4

{
∑∞

n=1
λn−λ0

2
a2
n + H3[φ0, δφ] + H4[φ0, δφ] + ...

})

. (A.8.14)

The factor of
(
1 −

∑∞
n=1

a2
n

)− 1
2 comes from the derivative of the δ-function, which has been used to eliminate the integration

over a0. Note that the Jacobian of the transformation from
∏

x
dφ(x) to

∏

n
dan is det (δφn(x))x∈[− 1

2
, 1

2
],n∈N

= 1, since the

δφn(x) are orthonormal.
Hence, to leading order in an expansion in ℓ4/S, the expectation value of an observable of δφ(x) can be obtained using

the decomposition δφ(x) =
∑∞

i=0
ai δφi(x), where a0 is given by (A.8.13) and the ai are centered Gaussian variables with

correlation matrix M′ defined for i, j ≥ 1 by

〈aiaj〉M′ :=
ℓ4

S

δij
λi − λ0

. (A.8.15)
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Figure A.10: Left: The spectrum of M. The smallest eigenvalue is λ0 = 2E0 (given
with precision 10−4 for nmax = 10. The next two eigenvalues are λ1 = 5.143λ0,
and λ2 = 19.20λ0. Eigenvalues for large modes grow exponentially with the mode,
lnλn ≃ 13.1 + 0.256n (black dashed line), showing that the spectrum of fluctuations
is massive. The lowest modes are colored in red, blue, orange and cyan. Right: Plot
of the first four eigenfunctions in the same colors as the corresponding eigenvalues.
δφn(x) has n nodes.

One then uses Wick’s theorem for expectation values of δφ. As an example, the 2-point correlation function is

〈δφ(y)δφ(z)〉H =
∞∑

i=0

∞∑

j=0

〈aiaj〉M′ δφi(y)δφj(z) +O
(
ℓ8

S2

)

=
ℓ4

S

∞∑

i=1

δφi(y)δφi(z)
λi − λ0

+O
(
ℓ8

S2

)

. (A.8.16)

A.8.2 Generating a random configuration, and importance sampling

Our setting allows us to generate a random fluctuation with the measure given by the the leading behaviour of H for large
S/ℓ4: Denote by gn a series of uncorrelated Gaussian random numbers with mean zero and variance 1. Then

δφ(x)rand =
∞∑

n=0

anδφn(x) , with an =

√

ℓ4

S

gn√
λn − λ0

for n > 0 , (A.8.17)

and a0 given by Eq. (A.8.13). In Figure A.11 (left) we show as an example the expectation of δφ(x)2 (solid blue line). This
is compared to the average over 500 realizations drawn with the measure (A.8.17), repeated 5 times (the three gray-blue
lines, lower set of curves). To illustrate the importance to properly eliminate the mode φ0(x), the upper (red) curves are
obtained without the constraint on

∫

x
φ2(x), i.e. including fluctuations proportional to φ0(x) (with amplitude ∼ 1/

√
λ0),

and not constraining them by Eq. (A.8.13).
On Figure A.12 we show five realizations for the shape drawn from the measure (A.8.17), and compare this to numerical

simulations at the same ratio S/ℓ4. The agreement is quite good.

Figure A.11: Left: Plot of the fluctuations δφ(x)2 (blue solid line), and including
the mode δφ0 (red solid line). The dashed lines are averages over 500 samples using
Eq. (A.8.17), including (top pink) or excluding (bottom, blue-gray) this mode.
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Figure A.12: Left: Plot of the normalized shape
[
φ0(x)+

√
ℓ4

S δφ(x)
]2 for ℓ4

S = 3×10−3.
Right: The same functions from numerical simulations.

We can use this formulation for an efficient algorithm, known in the literature as importance sampling [232]. One writes

〈O[φ]〉 = 1
〈1〉

〈

O[φ]
(
1 −

∑∞
n=1

a2
n

)− 1
2 exp

(

− S
ℓ4

{

H3[φ0, δφ] + H4[φ0, δφ] + ...
})
〉

M′

= 1
〈1〉

〈

O[φ]
(
1 −

∑∞
n=1

a2
n

)− 1
2 exp

(

− S
ℓ4

{

Hel[φ0 + δφ] − E0 −
∑∞

n=1
λn−λ0

2
a2
n

})
〉

M′

. (A.8.18)

In the second line we reintroduced the full Hamiltonian Hel using Eq. (A.8.2). We will compare to simulations below.

A.8.3 The leading correction to the shape at large sizes

For large S/ℓ4, the mean shape is given by the optimal shape s0(x). For smaller S/ℓ4, this mean shape becomes flatter, an
effect which we now investigate using perturbation theory. Consider

〈δs(x)〉 :=
〈
s(x) − φ0(x)2

〉

=
〈(

2φ0(x)δφ(x) + δφ(x)2
)(

1 − S

ℓ4
H3[φ0, δφ] + ...

)〉

M′

=
ℓ4

S

[〈

δφ(x)2
〉

M̄′
− 2φ0(x)

〈

δφ(x)H3[φ0, δφ]
〉

M̄′

]

+O
(
ℓ4

S

)2

. (A.8.19)

The notation M̄′ indicates that all expectation values are taken at S/ℓ4 = 1, making the factors of S
ℓ4 explicit.

A.8.4 Fluctuations of the shape for large avalanches

We now consider the fluctuations of the shape of an avalanche in perturbation theory:
〈
δs(x)2

〉

c
:=
〈
s(x)2

〉
− 〈s(x)〉2

=

{
〈[
φ0(x)2 + 2φ0(x)δφ(x) + δφ(x)2

]2 (
1 − S

ℓ4 H3[φ0, δφ] + ...
)〉

M′

−
〈[
φ0(x)2 + 2φ0(x)δφ(x) + δφ(x)2

] (
1 − S

ℓ4 H3[φ0, δφ] + ...
)〉2

M′

}

= 4
(
ℓ4

S

)

φ0(x)2
〈
δφ(x)2

〉

M̄′ +O
(
ℓ4

S

)2

. (A.8.20)

Note that the only term which survives is the contraction between one δφ(x) of each factor s(x).

A.8.5 Asymmetry of an avalanche

Another interesting observable is the asymmetry A of an avalanche, defined by

A := 2

∫

x

x φ2(x) . (A.8.21)

By construction −1 ≤ A ≤ 1. The asymmetry has mean zero 〈A〉 = 0, and variance given in perturbation theory by

〈
A2
〉

= 16

(
ℓ4

S

)∫

x,y

xyφ0(x)φ0(y) 〈δφ(x)δφ(y)〉M̄′ = 1.1 × 10−5

(
ℓ4

S

)

. (A.8.22)
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Figure A.13: Left: (resp. Right:) normalized mean shape displacement 〈S/ℓ4(s(x) −
s0(x))〉 (resp. shape fluctuations 〈S/ℓ4(s(x) − s0(x))2〉c). Red line: result of per-
turbation theory (A.8.19) (resp. (A.8.20)). Dashed-blue line: result from impor-
tance sampling using (A.8.18) for ℓ4/S = 900. Dots: results from the simulations
for avalanches with aspect-ratio 0.9/1800 ≤ S/ℓ4 ≤ 1.1/1800 (7023 samples, green),
0.9/900 ≤ S/ℓ4 ≤ 1.1/900 (946 samples, blue) and S/ℓ4 ≥ 1.1/1900 (734 samples, red).
We take advantage of the symmetry of the observable 〈s(x)〉 ≡ 〈s(−x)〉 to symmetrize
the numerical result. We estimate error bars using the difference between the original
result and the symmetrized one.

A.8.6 Comparison of the perturbative corrections to the numerics

We had already shown some results of our numerical simulations above. For large S/ℓ4, the perturbation theory developed
in the preceding section gives the correction 〈δs(x)〉 of the mean shape to the saddle-point solution, as well as the shape
fluctuation

〈
δs(x)2

〉

c
around the saddle-point. However, as already pointed out in section A.7.4, the scaling of these

quantities with a factor of ℓ4/S is not seen in the convergence of the numerical simulations to the saddle point, see Figure
A.7. This indicates that, even at S/ℓ4 ≈ 10−3, the simulations are not yet in the perturbative (first-order) scaling regime.
Non-linear corrections are still important, and S

ℓ4 〈δs(x)〉 as well as S
ℓ4

〈
δs(x)2

〉

c
still depend on S

ℓ4 . This is illustrated on
Figure A.13.

As can be seen on the left of Figure A.13 (as well as on the left of Figure A.4), corrections to the mean shape are very
small, of the order of 10−4, difficult to measure, and at the limit of our simulations. The red solid line is the perturbative
result (A.8.19). The points correspond to the same quantity from the numerics with increasing S/ℓ4 from green over blue-
gray to red (see caption for the precise parameters). The dashed blue line is obtained for S/ℓ4 = 1/900 via importance
sampling, see equation (A.8.18) 8. One remarks that the amplitude is lowered as compared to the perturbative result, in
qualitative agreement with the simulations. In view of the difficulty of the numerical simulations, it is very encouraging that
at least a qualitative agreement has been obtained, and that importance sampling explains why the observed corrections
are smaller than the perturbative result, in agreement with intuition: the shape has to remain positive.

The fluctuations around the mean shape, S
ℓ4

〈
δs(x)2

〉

c
, are given on the right of Figure A.13 with the same color code

as previously. One sees that the numerical results approach the perturbative result for large S/ℓ4. In this case, importance
sampling predicts fluctuations slightly smaller than our numerical simulations, which converge more quickly towards the
perturbative result. We remark that numerically the estimation of S

ℓ4

〈
δs(x)2

〉

c
is less sensitive than the estimation of

S
ℓ4 〈δs(x)〉. This may be explained by the fact that only the latter quantity involves non-linearities of H at dominant order
in S/ℓ4.

For the asymmetry we find S
ℓ4

〈
A2
〉

= 1.1 × 10−5 in perturbation theory, and 5.97 ± 0.04 × 10−6 via exact sampling

for S/ℓ4 = 1/900. Numerical simulations give S
ℓ4

〈
A2
〉

= (7 ± 2) × 10−6 for the largest avalanches S/ℓ4 ≥ 0.002 (37
samples), (5.6 ± 0.3) × 10−6 for the data with 1.1/900 ≤ S/ℓ4 ≤ 0.002 (697 samples), (4.7 ± 0.2) × 10−6 for the data with
0.9/900 ≤ S/ℓ4 ≤ 1.1/900 (946 samples) and (3.05 ± 0.05) × 10−6 for the data with 0.9/1800 ≤ S/ℓ4 ≤ 1.1/1800 (7023
samples). Once again we see that the order of magnitude is correctly predicted (an already non-trivial achievement), and
that the numerical results get closer to the perturbative one as S/ℓ4 increases.

From a conceptual point of view it is interesting to note that most of the amplitude of the “double-peak” structure
observed on the right of Figure A.13 is due to the first sub-leading mode δφ1(x) with one node at x = 0 (see Fig. A.10).
The same holds true for

〈
A2
〉
.

In conclusion, we have seen that the numerical results agree very well with the theoretical prediction at large S/ℓ4,
and that the mean shape of avalanches is given by the optimal shape s0(x) (Figures A.7 and A.8). The consequence for

8For S/ℓ4 = 1/900, about 44% of the proposed configurations in the importance sampling have
a zero-crossing in s(x), and therefore do not contribute. The measured expectation of the weight is
〈1〉 = 1.61 ± 0.012, showing that averages are not dominated by a few configurations.
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Figure A.14: Log-Log plot of the numerical measurement of the mean shape at fixed
ℓ for ℓ = 40 (blue dots), ℓ = 70 (orange dots) and ℓ = 100 (green dots) close to
the boundary −1/2 < x < −1/4. The first point of each shape was not taken into
account to avoid discretization artefacts. As a consequence of the discretization of the
simulation, the first visible point of each shape is located at x = −1/2 + 1/ℓ. The
plain line serves as a guide to compare with the behavior (−1/2 + x)4 obtained from
the study of the optimal shape at large S/ℓ4.

the tail of the PDF of S/ℓ4 was successfully verified (Figure A.5). For finite S/ℓ4, namely fluctuations around the optimal
shape, we only got a partial, though already satisfying agreement: The discrepancy with the perturbative results was clearly
identified as a consequence of strong non-linearities, even for the largest S/ℓ4. This was qualitatively understood by an
implementation of importance sampling, though the remaining discrepancy raises the question of wether our simulations
are sufficiently precise to measure these delicate observables (Figures A.12 and A.13).

A.8.7 The optimal shape beyond extreme value statistics

Before concluding this section, let us mention that though our results on the shape of avalanches were a-priori obtained for
the most peaked avalanches (i.e. avalanches with a large aspect ratio of S/ℓ4, some of our result extend at least qualitatively
to generic avalanches. As an example we show in Figure A.14 that the characteristic decay of the optimal shape near the
boundary s0(x) ∼ (x± 1/2)4 can still be observed in the decay of the mean shape at fixed ℓ.

In this spirit, we thus encourage experimental and numerical comparison of our results to various, and non-necessary
extremal, shape observables.

A.9 Application of our results to realistic interfaces and stationary driving

Up to now we considered avalanches following a stopped driving (see Section A.2). However, as discussed in [136, 101, 102]
this setting also yields the densities for the statistics of quasi-static avalanches in the steady state (Middleton state) for
stationary driving in the quasi-static limit (ẇt = v and v → 0+). These are the avalanche densities defined in Section A.4,
hence the denomination used in this article.

Furthermore, it was shown in Ref. [101], that the BFM is the mean-field theory of an avalanche in the quasi-static limit
for an interface in short-ranged disorder with equation of motion

η0∂tuxt =

∫

y

cxyuyt +m2(wxt − uxt) + F (x, uxt) . (A.9.1)

The disorder-force correlator is given by F (x, u)F (x′, u′) = ∆0(u − u′)δd(x − x′) with ∆0(u) a fast decaying function as
|u| → ∞ and cxy a convex elastic kernel. The prediction of the functional renormalization group (FRG) for such systems is
that, in the quasi-static limit, when m → 0 and for d = duc −ǫ, ǫ ≥ 0 (duc = 4 for short-ranged elasticity and more generally
duc = 2γ for g(q) ∼q→∞ qγ), the physics becomes universal in the small-m limit (e.g. independent of microscopic details
of the disorder) and entirely controlled by only two relevant couplings, the renormalized friction ηm and the renormalized
disorder cumulant ∆m(u). The (rescaled and renormalized) second cumulant of the disorder at the fixed point is non-analytic
and exhibits a cusp. It is uniformly O(ǫ), allowing to formulate a controlled perturbative expansion of any observable. For
observables associated to a single avalanche, it was shown in [136, 101] that near the upper critical dimension duc only
the behavior of ∆m near zero, i.e. its cusp, ∆m(u) ≃u→0= −σm|u| plays a role. In this context, the mean-field theory
for single-avalanche motion is the BFM studied here, with renormalized parameters η → ηm and σ → σm. Hence, the
avalanche densities derived in Section A.4 are exact for interfaces at their upper critical dimension. They also open the
way to a perturbative calculation for d ≤ duc. Interestingly, some physical systems described by (A.9.1) are at their upper
critical dimension, as e.g. domain walls in certain soft magnets for which γ = 1 [45].
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A.10Conclusion

In this article we obtained an exact formula for the joint PDF of the local sizes of avalanches in a discrete version of
the BFM model. This result is valid for an arbitrary elasticity matrix and arbitrary monotonous driving. This allowed
us to derive the densities describing the quasi-static avalanches in the limit of small driving, and to discuss in depth the
physical picture underlying this avalanche process. We presented two applications where it was possible to go further in the
analytical calculation of detailed physical properties. For the fully connected model we obtained the joint distribution of
the local and global jumps. This allowed us to retrieve in a rigorous way the usual large-N limit, as well as a new regime,
and finite-N information.

We then presented another application by analyzing the most probable shape of avalanches of a given size and extension,
first for systems made of few coupled particles, then in the continuum limit for an elastic line with short-ranged elasticity.
Quantitative results for the optimal shape and the fluctuations around it were obtained and compared to a numerical
simulation of the model.

Let us conclude by stressing that, since our formula was obtained in a general setting and contains all the spatial
statistics of avalanches, it should be possible to extract from it a variety of new information on their spatial structure of
direct experimental interest. It would also be interesting to compare our results for the shape of avalanches to other models
through simulations or experiments, the BFM being the relevant mean-field theory for various more realistic systems.

Acknowledgments: We acknowledge support from PSL grant ANR-10-IDEX-0001-02-PSL. We thank KITP for hospi-
tality and support in part by NSF Grant No. NSF PHY11-25915.

A.11Appendix A: Recall of the result for the generating function

For completeness, we recall in this section, the derivation, here in a discrete setting, of the exact result for the generating
function of the BFM (A.2.6). Related derivations can be found in [102, 101]. The original equation of motion, including
the quenched noise term ∂tFi(uit) reads

η∂tu̇it =
N∑

j=1

cij u̇jt −m2(u̇it − ẇit) + ∂tFi(uit) . (A.11.1)

We use the dynamical field theory formalism [130, 131] which allows to compute the disorder average of any physical
observable O[u̇]. We introduce N response fields ũit such that disorder averages can be computed as

O[u] =

∫

D[u̇, ũ]O[u]e−S[u̇,ũ] . (A.11.2)

The dynamical action splits into a deterministic, quadratic part and a disorder part: S[u̇, ũ] = S0[u̇, ũ] + Sdis[u̇, ũ], with

S0[u̇, ũ] =
N∑

i=1

∫

t

ũit

(

η∂tu̇it −
N∑

j=1

cij u̇jt +m2(u̇it − ẇit)

)

= −
N∑

i=1

∫

t

m2ũitẇit +
∑

i

∫

t

u̇it

(

−η∂tũit −
N∑

j=1

cij ũjt +m2ũit

)

(A.11.3)

where in the second line, we made an integration by part assuming u̇ vanishes at infinity. The disorder part of the action is

Sdis[u̇, ũ] =
σ

2

N∑

i=1

∫

tt′
ũitũit′∂t∂t′ |uit − uit′ | , (A.11.4)

it contains all the correlation of the Gaussian force (A.2.2). As noted in [102, 101], the action functional can be simplified
using the Middleton property recalled in the main text, valid for our setting: t2 ≥ t1 ⇐⇒ uit2 ≥ uit1 so that

∂t∂t′ |uit − uit′ | = u̇it∂t′sgn(t− t′) = −2u̇itδ(t− t′) . (A.11.5)

This leads to

Sdis[u̇, ũ] = −σ
N∑

i=1

∫

t

ũ2
itu̇it . (A.11.6)

It is straightforward to check that the replacement ∂tFi(uit) → √
2σu̇itξit used in the main text leads to the same action.

This shows that both theories are equivalent for this choice of initial conditions. As written, the action is linear in u̇: this
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simplifies the calculation of the generating functional of the velocity field G[λ,w] = e

∑N

i=1

∫

t
λitu̇it :

G[λ,w] =

∫

D[u̇, ũ]e
∑N

i=1

∫

t
λitu̇it−S[u̇,ũ]

=

∫

D[ũ]e
m2
∑N

i=1

∫

t
ũitẇit

∏

it

δ

(

λit + σũ2
it + η∂tũit +

N∑

j=1

cij ũjt −m2ũit

)

= e
m2
∑N

i=1

∫

t
ũλ

itẇi(t)
. (A.11.7)

In the last line, the response field ũλit is solution to the “instanton" equation [136, 102, 101]

λit + σũ2
it + η∂tũit +

N∑

j=1

cij ũjt −m2ũit = 0 . (A.11.8)

It is imposed by the delta functional. Note that this evaluation involves a w-independent Jacobian, which equals unity since
we have supposed the interface to be at rest and stable for t ≤ 0, so that if ẇit = 0 then u̇it = 0. The above result is thus
correctly normalized. Equation (A.11.8) must in general be supplemented by some boundary conditions, depending on the
observable (e.g. if λit = 0 for all i and t > t1, we should also have ũit = 0 for all i and t > t1). Note that a rigorous version
(in discrete-time, without path integral) of this result was given in [102]. In the main text we are looking for the statistics of
avalanches Si, which is obtained using constant sources λit = λi, and for which one can look for constant solutions ũit = ũi
of (A.11.8).

A.12 Appendix B: Tests of the main formula, computation of moments and
numerical checks.

We checked (A.3.8) using two methods: the first one consists in solving exactly the instanton equation for small values of
N in an expansion in powers of c for a given elasticity matrix. This gives an approximation of the Laplace transform, which
can be inverted to give the joint probability distribution up to a certain order in c. This program has been successfully
achieved up to O(c4) for N = 2, O(c3) for N = 3 and O(c2) for N = 4. The other method consists in numerically computing
various moments of the probability distribution, which can then be compared to the exact results that use the instanton
equation (A.3.2): the cumulants are given by

〈Si1 · · ·Sin 〉c =

(
∂

∂λi1 · · · ∂λin
lnG(~λ)

)

λi=0

=
N∑

k=1

wk

(
∂vk

∂λi1 · · · ∂λin

)

vi=0

(A.12.1)

and theses derivatives are numerically computed using ∂vi
∂λj

= J−1
ij where Jij = −2viδij + Cij , as seen from (A.3.2).

A.13Appendix C: Backward Kolmogorov method for a kick driving

In this section, we provide another verification that (A.3.8) is correct when the system is driven by a kick (i.e. ẇit = wiδ(t)).
For simplicity, we directly consider the dimensionless equation of motion

∂tu̇it =
N∑

j=1

cij u̇jt − u̇it + ẇit +
√

2u̇itξ
i
t

=t>0 −
N∑

j=1

Cij u̇j +
√

2u̇itξ
i
t (A.13.1)

where in the second line we used the definition of Cij (A.2.8) and wrote the equation for t > 0 when ẇit = 0. For a kick, it is
equivalent to consider the equation of motion with u̇it=0 = 0, or to consider the equation without driving for t > 0 (A.13.1)

supplemented with the initial condition u̇i,t=0+ = wi. The generating function G is still given by G(~λ) = e

∑N

i=1
λi

∫∞

0
dtu̇it .

For a kick, we can write it as a conditional expectation value on the process without driving (A.13.1): G(~λ) = Ĝ(~λ, ~w, 0,∞)
where Ĝ is defined as

Ĝ(~λ, ~w, ti, tf ) = E

(

e

∑N

i=1
λi

∫ tf

ti
dtu̇it

∣
∣
∣u̇iti = wi

)

(A.13.2)

where u̇it evolves according to (A.13.1) for all times and E

(

. . .

∣
∣
∣u̇iti = wi

)

denotes the average on the stochastic process

without driving (A.13.1) conditioned to the initial condition u̇iti = wi. We now derive a partial differential equation (PDE)
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fo G, similar to a Backward Kolmogorov equation, using a splitting of [ti, tf ] into [ti, ti + δt] ∪ [ti + δt, tf ] with δt small:

Ĝ(~λ, ~w, ti, tf ) = E

(

e

∑N

i=1
λi

∫ tf

ti+δt
dtu̇it+

∑N

i=1
λi

∫ ti+δt

ti
dtu̇it

∣
∣
∣u̇iti = wi

)

= E

(

e

∑N

i=1
λi

∫ tf

ti+δt
dtu̇it+

∑N

i=1
λiδtwit

∣
∣
∣u̇iti = wi

)

+ o(δt) (A.13.3)

Where in (A.13.3) we used that u̇it is continuous. The expectation value in (A.13.3) can now be split in two parts. We can
first average over the noise for t ∈ [ti, ti+δt], with δt small, or equivalently on the velocity variation δwi := u̇i,ti+δt− u̇i,ti =
u̇i,ti+δt − wi, as obtained from the equation of motion (A.13.1). Secondly, we average over the noise in [ti + δt, tf ] (these
are independent) knowing that the velocity at ti + δt is u̇i,ti+δt = wi + δwi, i.e.

Ĝ(~λ, ~w, ti, tf ) = E{δwi}

(

E

(

e

∑N

i=1
λi

∫ tf

ti+δt
dtu̇it

∣
∣
∣u̇i,ti+δti = wi + δwi

)∣
∣
∣u̇iti = wi

)

e

∑N

i=1
λiδtwit + o(δt)

= E{δwi}

(

Ĝ(~λ, ~w + δ ~w, ti + δti, tf )
∣
∣
∣u̇iti = wi

)

e

∑N

i=1
λiδtwi + o(δt) (A.13.4)

The average over {δwi} can be computed at first order in δt using Ito’s lemma (we use δwα = −δt
∑N

j=1
Cαjwj and

δw2
α = 2wαδt+O(δt2)). This leads to

Ĝ(~λ, ~w, ti, tf ) =

(

Ĝ+
N∑

α=1

δt

(

∂Ĝ

∂wα
(−

N∑

j=1

Cαjwj) +
1
2
∂2Ĝ

∂w2
α

(2wα)

)

+ δt
∂Ĝ

∂ti

)

(A.13.5)

×
(

1 +
N∑

i=1

λiδtwt

)

+ o(δt).

We also expanded the last term at first order in δt. In the r.h.s. of (A.13.5), all generating functions are taken at the same
position Ĝ(~λ, ~w, ti, tf ). Now the l.h.s. is of order O(δt0) and in the l.h.s., we exactly computed the O(δt) term. This shows
that the generating function Ĝ solves the following PDE:

−∂Ĝ

∂ti
=

N∑

α=1

(

− ∂Ĝ

∂wα

N∑

j=1

Cαjwj +
∂2Ĝ

∂w2
α
wα + λαwα

)

(A.13.6)

which is also equal to ∂Ĝ
∂tf

as a consequence of the time translation invariance of the Brownian motion. The initial condition

is Ĝ(~λ, ~w, ti, ti) = 1.
To study avalanche sizes, we consider the long-time behavior of Ĝ to obtain G = Ĝ(~λ, ~w, ti,∞). In this case we can

assume that Ĝ reached the stationary state, i.e.

N∑

α=1

(

− ∂G

∂wα

N∑

j=1

Cαjwj +
∂2G

∂w2
α
wα + λαwα

)

= 0 . (A.13.7)

This is automatically satisfied if G is given by (A.2.6) and if the ũi satisfy the instanton equation (A.2.7). This provides a
connection between the two methods.

An interesting feature of this method is that one can now write a PDE directly for the probability distribution P (~w, ~S)
of avalanche sizes in the BFM model following arbitrary (positive) kicks ẇit = wiδ(t). This equation reads:

N∑

α=1

(

− ∂P

∂wα

N∑

j=1

Cαjwj +
∂2P

∂w2
α
wα − wα

∂P

∂Sα

)

= 0 . (A.13.8)

We need to find a solution which satisfies the following boundary condition:

P (~w = ~0, ~S) =
N∏

i=1

δ(Si) . (A.13.9)

Let us now discuss its solution. Inspired by our result (A.3.8), we make the change of variable P (~w, ~S) = F (~x, ~S) with
~x = ~w − C · ~S. The equation for F then takes a very simple form:

N∑

α=1

wα

(
∂2F

∂x2
α

− ∂F

∂Sα

)

= 0 (A.13.10)

where wα = xα +
∑N

j=1
CαjSj and we used that C is a symmetric matrix. In this new variables, we write our main result

(A.3.8) using the following decomposition:

F (~x, ~S) = det (Mij)N×N F̃ (~x, ~S) , Mij = Cij + δij
xi
Si

(A.13.11)

F̃ (~x, ~S) = (
1

2
√
π

)N (
N∏

i=1

Si)
− 1

2 exp

(

−1
4

N∑

i=1

x2
i

Si

)

. (A.13.12)
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This decomposition sheds some light on the structure of (A.3.8), here rewritten as F in (A.13.11): it is simple to see that F̃
defined in (A.13.12) already solves (A.13.10), F̃ can indeed be interpreted as the PDF of the position xi at "time" Si of N
independent particles diffusing from the origin at time Si = 0. However the result F = F̃ would not satisfy the boundary
conditions (A.13.9). We now check that the extra factor det(M) provides the proper solution. In order for (A.13.11) to
also solve (A.13.10), the determinant must verify

N∑

α=1

wα

(
∂2 det(M)

∂x2
α

F̃ + 2
∂ det(M)
∂xα

∂F̃

∂xα
− ∂ det(M)

∂Sα
F̃

)

= 0. (A.13.13)

Using ∂F̃
∂xα

= − xα
2Sα

F̃ , this implies an equation for det(M)

N∑

α=1

wα

(
∂2 det(M)

∂x2
α

− xα
Sα

∂ det(M)
∂xα

− ∂ det(M)
∂Sα

)

= 0. (A.13.14)

The first term ∂2 det(M)

∂x2
α

is equal to 0, since xα only appears in the α-th column of M . The remaining terms vanishes since

M depends on xα and Sα only through the combination xα
Sα

. This completes the proof that our result (A.3.8) indeed solves

the PDE (A.13.8). The boundary condition is now satisfied since P~w(~S) is a continuous PDF on positive variables and we

know (see Section A.3 and A.12) that 〈Si〉 =
∑N

j=1
C−1
ij wj vanishes when wi → 0.

A.14Appendix D: Poisson-Levy process for normalizable jump densities

.1 Center of mass We already discussed in the main text the infinite divisibility property (A.4.6) of Pw(S). Given
this property, one would like to interpret an avalanche S as the sum of n iid elementary avalanches si with n drawn from a
Poisson distribution and si drawn from a given distribution (this defines a Poisson-Levy jump process, see e.g.[230]). This
interpretation is valid at the level of the moments of Pw(S) (see (A.4.8)) but we now show that it does not extend to the
probability itself. Let us first assume that the jump density ρ appearing in (A.4.8) is normalizable (see also the discussion
in [111], Appendix J). Then one can write ρ(s) = ρ0p(s) with p a regular function normalized to unity

∫
dsp(s) = 1 and

ρ0 the density of avalanches; i.e. the mean number of quasi-static avalanches occuring in response to the total driving w is
ρ0w. Using the following identity:

∫

ds1 · · · dsn(eλs1 − 1) · · · (eλsN − 1)ρ(s1) · · · ρ(sn)

=
n∑

m=0

(ρ0w)m

m!
(−ρ0w)n−m

(n−m)!

∫

ds1 · · · dsme
λ(s1+···+sm)p(s1) · · · p(sm) (A.14.1)

(A.4.8) can be rewritten as (performing the sum over n > m):
∫

dSeλSPw(S) =
∞∑

m=0

(ρ0w)m

m!
e−ρ0w

∫

ds1 · · · dsme
λ(s1+···+sm)p(s1) · · · p(sm) . (A.14.2)

This leads to a formula for the probability, Pw(S) =
∑∞

m=0

(ρ0w))m

m!
e−ρ0w(p∗)m(S). Here (p∗)m denotes m convolutions of

p with itself, making the interpretation in terms of a Poisson jump process transparent. One can define the “complete"
avalanche-size density as

ρ̃(S) =
dPw(S)
dw

|w=0 = −ρ0δ(S) + ρ(S) . (A.14.3)

Where here the first equality holds in the sense of distributions. This total density appears as the sum of the regular density
ρ(S) (defined in the main text) and of a delta singularity that accounts for the finite probability that the interface does

not jump. As a consequence, dGw(λ)
dw

|w=0 = Z(λ) =
∫

dSẽλS ρ̃(S) =
∫

dS
(
eλS − 1

)
ρ(S). For the ABBM model, the scale

invariance of the Brownian motion leads to an accumulation of small avalanches of arbitrary small sizes, leading to ρ0 = ∞ (in

particular for any w > 0, Pw(S = 0) = e−ρ0w → 0) and one can not define ρ̃. The formula dGw(λ)
dw

|w=0 =
∫

dS
(
eλS − 1

)
ρ(S)

is however still valid and allowed us to prove (A.4.8).

.2 Levy Process for the interface The generalization to the interface is immediate: in this case, the LT of

P~w(~S) reads
∫

dN ~Se
~λ·~SP~w(~S) = e~w·~v =

∞∑

n=0

∑

(i1,...,in)

wi1 . . . win
n!

vi1 , · · · vin (A.14.4)

where the second sum is for all (i1, . . . , in) ∈ {1, . . . , N}n and the vi variables are functions of ~λ solutions of (A.3.2). Using
our conjecture (A.4.11), we obtain

∫

dN ~Se
~λ·~SP~w(~S) =

∞∑

n=0

∑

(i1,...,in)

wi1 . . . win
n!

n∏

l=1

dN~sil (e
λ~sil − 1)ρi1 (~si1 ) . . . ρin (~sin ) (A.14.5)
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which is the multidimensional generalization of (A.4.8) and shows that the densities ρj(~S) entirely control the moments of
P~w(~S). It is also in agreement with the interpretation of an avalanche ~S as a superposition of independent avalanches, as
already discussed in the main text.

A.15Appendix E: Details on the fully connected model

Here we detail the calculations leading to the results of Section A.5, and give some results for the fully-connected model
driven by a single site.

.1 Marginals distributions for uniform driving For uniform driving, the matrix C and M entering in
(A.3.8) admit the following simple expressions, allowing us to evaluate detM in a concise way:

Cij = (1 + c)δij − c

N
, Mij = δij

1
Si

(w + cS/N) − c

N

detM = w(w + cS/N)N−1

N∏

i=1

1
Si

, S =
N∑

k=1

Sk (A.15.1)

This leads to (A.5.1). Various marginals of this PDF can be computed by noting that the Laplace transform of pw,S/N (s)
entering into (A.5.1) reads

∫ ∞

0

dspw,S/N (s)e−ps = e
1
2

(1+c)(w+cS/N)(1−
√

1+
4p

(1+c)2 )

. (A.15.2)

We write the joint PDF of local and total size as

P (~S, S) = δ

(

S −
N∑

i=1

Si

)

P (~S). (A.15.3)

For any 1 ≤ m ≤ N − 1, the marginal P ({S1, . . . , Sm}, S) can be computed as

P ({S1, . . . , Sm}, S) =
w

w + cS/N

m∏

i=1

pw,S/N (Si)

∫

∑N

i=m+1
Si=S−

∑m

i=1
Si

N∏

i=m+1

pw,S/N (Si)

=
w

w + cS/N

m∏

i=1

pw,S/N (Si)p(N−m)w,(N−m)S/N (S −
m∑

i=1

Si). (A.15.4)

Where the multiple convolution of pw,S/N (s) has been easily calculated as a consequence of the simple structure of it’s
Laplace transform. In particular, this leads to the formula (A.5.3) of the main text.

.2 Single-site driving Taking wi to be non-uniform breaks the permutation invariance i ↔ j of the problem,
making the computation more complicated than for the uniform case. Another solvable case is wi = 0 for i 6= 1, for which
the PDF (A.3.8) takes the form

P (~S) =
S1w1

S(w1 + cS/N)
pw1,S/N (S1)

N∏

j=2

p0,S/N (Sj). (A.15.5)

The computation of marginals involving an integration over some Sj for j > 1 is identical to the uniform driving case and
leads, for 1 ≤ m ≤ N − 1, to

P ({S1, . . . , Sm}, S) =
S1w1

S(w1 + cS/N)
pw1,S/N (S1)

m∏

j=2

p0,S/N (Sj)p0,(N−m)S/N (S −
m∑

i=1

Si) (A.15.6)

In particular, we obtain

P (S1, S) =
w1

2
√
πS

3
2

1

(N − 1)
cS1/N

2
√
π(S − S1)3/2

exp

(

− (w1 + cS/N − (1 + c)S1)2

4S1

)

× exp

(

− ((N − 1) (cS/N) − (1 + c)(S − S1))2

4(S − S1)

)

θ(S − S1).

(A.15.7)

In this case S =
∑N

i=1
Si is typically of order 1 and is distributed according to

P (S) =
w1

2
√
πS

3
2

exp

(

− (S − w1)2

4S

)

. (A.15.8)
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The large-N limit now exhibits a single non-trivial regime, with w1 = O(N0), and for which (A.15.7) admits the limit

P (S1, S) =
w1

2
√
πS

3
2

1

cS1

2
√
π(S − S1)3/2

exp

(

− (w1 − (1 + c)S1)2

4S1

)

× exp

(

− (cS − (1 + c)(S − S1))2

4(S − S1)

)

θ(S − S1). (A.15.9)

Remarkably, in this case one can even integrate over the total size to find the marginal PDF P (S1) in the large-N limit,

P (S1) =
w1

2
√
πS

3
2

1

exp

(

− (w1 − (1 + c)S1)2

4S1

)

. (A.15.10)

In agreement with the physical intuition, this is the ABBM result for a particle with driving m2(w1 − u) and c(S̄ − u), as
discussed above, and S̄ = 0, since the center of mass has not moved appreciably.

A.16 Appendix F: Shape for small N at finite driving

Here we briefly discuss what becomes of the shape transition observed in the quasi-static PDF of avalanche shape at fixed
total size S of the linear chain with PBCs (see Section A.6) when one is interested in the full PDF for finite wi = w as
given in (A.3.12). For N = 2 and w < 3

16c
, there is now an additional regime with two transitions instead of one:

• S < −8cw−
√

3
√

3−16cw+3
8c2 : the distribution of s is peaked around 1

2
.

• −8cw−
√

3
√

3−16cw+3
8c2 < S < −8cw+

√
3

√
3−16cw+3

8c2 : the distribution possesses two symmetric maxima around s = 1
2
.

• S > −8cw+
√

3
√

3−16cw+3
8c2 , one retrieves a single maximum at s = 1

2
.

The first regime is new, and was not captured by the study of ρ. For small w → 0 it corresponds to avalanches smaller
than the lower-scale cutoff S < 4

3
w2, which are not described by ρ as we know from Section A.4. In this regime, the fact

that the saddle-point again corresponds to uniform avalanches with s = 1/2 is not a consequence of elasticity (as noted
in Section A.4, local avalanche sizes are even independent in this limit), but is related to the fast decay of p0(s) at its
lower cutoff (see Section A.4). For larger w > 3

16c
, the intermediate regime disappears, and the most probable avalanches

are homogeneously distributed. Indeed, as w increases, the motion of the interface becomes mostly deterministic and the
remaining fluctuations become negligible.

The case N = 3 is identical. For w < 1
4c

the finite w probability distribution exhibits the same three different regimes

with boundaries 0, 1−2cw−√
1−4cw

2c2 and 1−2cw+
√

1−4cw
2c2 . The interpretation is identical to N = 2.

A.17Appendix G: Stability of infinite, uniform avalanches.

In this appendix, we compute the value Sc(N) such that avalanches uniformly distributed over all the system, and of total
size S > Sc(N) are stable. We do this for the fully-connected model and for the linear chain with PBC s, for which uniform
avalanches uniformly distributed are always an extremum of the quasi-static density ρ (for uniform driving fi = 1). As
such, Sc(N) is the value of S above which all the eigenvalues of the hessian of the quasi-static distribution at this uniform
saddle-point are negative. Since this saddle-point and the elasticity matrix are translationally invariant, the Hessian of the
logarithm of the probability at the saddle point is a circular matrix given by

Hαβ =
∂2 log ρ(~s|S)
∂sα∂sβ

|si=s = − S

2s
(c2)αβ +

1
2s2

δαβ + hαβ . (A.17.1)

c is the elasticity matrix of the model (here m2 = 1), s = 1/N is the uniform local avalanche size at the saddle-point and
hαβ depends on the chosen model as hαβ = − 4

N2s2 + 1
Ns2 (4δαβ+δα,β−1 +δα,β+1) for the linear chain with periodic boundary

conditions, and hαβ = − (N−2)

(Ns)2 + 1
s2 δαβ for the fully connected one. The eigenvalues of these matrices can be computed

using a discrete Fourier transformation, showing that they are indexed by a wave-vector q = 2πk
N

with k = 1, ..., N − 1. The
q = k = 0 mode does not intervene since it corresponds to a uniform displacement of the interface, which is forbidden by
the fact that we work at fixed S:

∑

i
dsi = 0. The eigenvalues of the Hessian are all identical for the fully-connected model:

λf.c. = − S
2s
c2 + 1

2s2 + 1
s2 . For the linear model they are given by λq = − 2S

s
[1 − cos(q)]2 + 1

2s2 + 4
Ns2 [4 + 2 cos(q)]. In the

latter case, the most unstable mode is q = 2π
N

, leading to the following critical values

Sfc
c (N) =

3N
c2
, (A.17.2)

SPBC
c (N) =

N

2c2(1 − cos( 2π
N

))2
(
1
2

+
1
N

(4 + 2 cos(
2π
N

)))

≃N→∞
1

16c2π4
(N5 + 12N4 +O(N3)) . (A.17.3)
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A.18Appendix H: Continuum limit

Here we detail the scaling that allows to find the probability distribution of the dimensionless continuum avalanches P [Sx]
knowing the probability distribution of the discrete case P (~S). We denote for clarity the continuum field as ut(x), x ∈ [0, L],
and its N -point discretization as uit = ut(i LN ). We will add indices c and d to distinguish between physical quantities of the
continuum and discrete models. An easy way to ensure that the statistic of the discrete case corresponds to the statistic of
the continuum one is to compare the different terms in the dynamical action (see A.11) :

• The disorder term:
∑N

i=1

∫

t
σdũ

2
itu̇it ≡

∫ L

0
dx
∫

t
σcũt(x)2u̇t(x) ≃

∑N

i=1
L
N
σc
∫

t
ũt(i LN )2u̇t(i LN )

• The elastic term:
∑N

i=1

∫

t
ũitcd(u̇i+1t−2u̇it+u̇i−1t) ≡

∫ L

0
dx
∫

t
ũt(x)cc∆ut(x) ≃

∑N

i=1
L
N

∫

t
ũt(i LN )cc

u̇t((i+1) L
N

)−2u̇t(i L
N

)+u̇t((i−1)

L2

N2

• The driving term:
∑N

i=1

∫

t
m2
dũitẇit ≡

∫ L

0
dx
∫

t
m2
c ũt(x)ẇt(x) ≃

∑N

i=1
L
N
m2
c

∫

t
ũt(i LN )w̃t(i LN )

This indicates that the quantity of the discrete model should be m2
d = L

N
m2
c , cd = N

L
cc and σd = L

N
σc. In particular,

the rescaled quantities which appear in the text, in the formula for the dimensionless discrete distributions are cd

m2
d

= N2

L2
cc

m2
c

and Sdm = N
L
Scm. Note that we will choose everywhere in the main text cc = 1. This implies that the probability distribution

of the dimensionless rescaled continuum avalanches denoted by Pc is given in terms of its discrete analog P ≡ Pd given in
(A.3.8) as (introducing the explicit dependence in the driving):

Pc[S(x), w(x)] = lim
N→∞

(
L

N

)N

Pd

(
L

N
~S,
L

N
~w
)

(A.18.1)

where here ~S = (S(Li/N))i=1,··· ,N and ~w = (w(Li/N))i=1,··· ,N . This leads to the formula of the main text. Note also that
for η-dependent observables, one should choose ηd = L

N
ηc.

A.19Appendix I: Optimal shape in the discrete model

Here we compare the results on the continuum optimal shape with the discrete case. This is not only a consistency check,
but also allows us to compare the results of the optimization when we include boundary conditions, and to investigate the
stability of the shape. We choose to work on the discrete model with an elastic coefficient set to unity, which corresponds
to a N -point approximation of the continuum model with a line of length L = N , i.e. the index i of the discrete model is
the coordinate of the continuum line (see A.18). In the continuum, the optimal reduced shape s0 is obtained for total size
S and extension ℓ fixed, and contains all the probability when S/ℓ4 ≫ 1. To compare this result with the discrete model
we used two different optimization procedures on the discrete probability. We always impose the total size S and optimize
on the shape variables si = Si/S with

1. either the two central points tuned to coincide with the optimal continuum result: we note nmid the integer part of
N/2 and impose snmid = snmid+1 = 1

ℓ
s0(0.5/ℓ).

2. either N − l successive shape variables fixed to be small (below we use si = 10−5 )

Procedure (i) is an indirect way to impose the extension by imposing that the avalanche shape is peaked around some
region, whereas procedure (ii) is closer to the continuum setting where we directly imposed the finite extension. In both
cases we impose S ≫ ℓ4 to obtain a true maximum. The optimal shape is always found to be symmetric, which allows us
to impose this condition to study reasonably large N . The result of the optimization is then compared with the prediction
from the continuum theory: si = S(x=i)

S
=S≫ℓ4

1
ℓ
s0(i/ℓ). One can then

• Verify that the optimization on ρ (including boundary conditions) or H alone (defined in the continuum in (A.7.4))
give the same results. It is already obvious for ℓ ≪ N and Figure A.15 explicitly shows that it is always true for
S ≫ ℓ4, even if ℓ ≃ N . This validate the hypothesis made in the continuum that boundary conditions do not play a
role for large S/ℓ4.

• Using an optimization on H, we can verify that the discrete optimal shape coincides with the continuum one. The
results are shown in Figure A.16. One can see that, apart from some discretization artefacts, procedure (ii) give
results in agreement with the continuum result. On the other hand, procedure (i) leads to a shape with an effectively
larger extension. This is in agreement with the idea that the property that avalanches have a strictly finite extension
is only a feature of the continuum limit, as explained in Section A.7.2, and is coherent with the idea that procedure
(i) only imposes a “characteristic" extension in the discrete setting.

• Finally, we can study the behavior of the maximum eigenvalue λmax of the Hessian of the discrete Hamiltonian H at
the most probable shape (since the eigenvalues are negative it is the maximum one that is the closest to 0 and that
controls the stability of the saddle-point) using procedure (i). The behavior of the eigenvalues of the Hessian with S
is trivial: since S can be factorized in front of the Hamiltonian, they are proportional to S. However, in the discrete
case, there is no way to see the scaling 1

ℓ4 emerge from the Hamiltonian. Still, we clearly numerically find (see Figure
A.17) that λmax scales with 1/ℓ4 for ℓ → 0. This thus provides an alternative verification that the saddle-point is
stable, and that it’s stability is controlled by S/ℓ4 ≫ 1.



184 Appendix A. Paper: Spatial shape of avalanches in the BFM

Ç Ç
Ç

Ç

Ç

Ç Ç

Ç

Ç

Ç
Ç ÇÊ Ê

Ê

Ê

Ê

Ê Ê

Ê

Ê

Ê
Ê Ê

-4 -2 2 4
i

0.05

0.10

0.15

0.20

0.25

si

Ç Ç
Ç

Ç

Ç

Ç Ç

Ç

Ç

Ç
Ç ÇÊ

Ê

Ê

Ê

Ê

Ê Ê

Ê

Ê

Ê

Ê
Ê

-4 -2 2 4
i

0.05

0.10

0.15

0.20

0.25

si

Ç Ç
Ç

Ç

Ç

Ç Ç

Ç

Ç

Ç
Ç ÇÊ

Ê

Ê

Ê

Ê

Ê Ê

Ê

Ê

Ê

Ê
Ê

-4 -2 2 4
i

0.05

0.10

0.15

0.20

0.25

si

Figure A.15: Comparison between the most probable shape of length ℓ = 10 with
N = 12 computed using optimization on H (blue dots) or ρ (red dots), using procedure
(i), and for different total sizes S from left to right: S

ℓ4 = 10−2, 10−1, 1. The influence
of boundary conditions quickly decreases as S/ℓ4 is increased.
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Figure A.16: Most probable shape in the discrete model obtained using numerical
optimization on H with procedure (i) (blue dots) or procedure (ii) (red square) with
N = 30 and ℓ = 16 (left) or ℓ = 22 (right), compared to the continuum saddle-point
prediction s0(x/ℓ)/ℓ (straight line).
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Appendix B

Paper: Universality in the spatial shape of
avalanches

The following is essentially the article published as
Title: Universality in the mean spatial shape of avalanches
Authors: Thimothée Thiery and Pierre Le Doussal
Journal-Ref: EPL (Europhysics Letters), Volume 114, Number 3
Abstract: Quantifying the universality of avalanche observables beyond critical exponents is of current great interest in
theory and experiments. Here, we improve the characterization of the spatio-temporal process inside avalanches in the
universality class of the depinning of elastic interfaces in random media. Surprisingly, at variance with the temporal shape,
the spatial shape of avalanches has not yet been predicted. In part this is due to a lack of an analytically tractable definition:
how should the shapes be centered? Here we introduce such a definition, accessible in experiments, and study the mean
spatial shape of avalanches at fixed size centered around their starting point (seed). We calculate the associated universal
scaling functions, both in a mean-field model and beyond. Notably, they are predicted to exhibit a cusp singularity near
the seed. The results are in good agreement with a numerical simulation of an elastic line.
Together with the associated supplemental material published in
ArXiv: 1601.00174

B.1 Letter

Numerous slowly driven non-linear systems exhibit motion which is not smooth in time but rather proceeds discontinuously
via jumps extending over a broad range of space and time scales. Developing predictive models of avalanche motion and
understanding their universality, or lack thereof, has emerged as an outstanding challenge of modern statistical physics [81].
In condensed matter recent developments have led to distinguish two broad classes, depending on the importance of plastic
deformations. In systems such as dislocated solids, metallic glasses, granular media near jamming, plastic deformations play
a crucial role and despite recent progresses a theoretical description is still under construction [91, 93, 233, 234]. In many
other situations the description by an elastic interface driven in a disordered medium has proved relevant [63, 235, 236, 68].
Examples are domain walls in soft magnets [100, 45], fluid contact lines on rough surfaces [60, 61], strike-slip faults in
geophysics [64, 65, 66], fractures in brittle materials [52, 56, 55, 51] or imbibition fronts [69]. This class exhibits a dynamical
phase transition - the so-called depinning transition - accompanied by collective avalanche motion. While the microscopic
details of the dynamics are specific to each system, the large scale statistical properties of the avalanches are believed to
be universal. The most studied quantities in this context are the critical exponents characterizing the scale-free probability
distribution function (PDF) of avalanche total sizes S, P (S) ∼ S−τS and durations T , P (T ) ∼ T−τT . They are related
to the roughness and dynamical exponents, ζ and z, defined at the depinning transition of the interface, using the scaling
relations S ∼ ℓd+ζ and T ∼ ℓz with ℓ the lateral extension of the avalanche.

Recent improvements in experimental techniques allow studies of avalanches with higher accuracy and to access new,
finer quantities, with the aim of distinguishing more efficiently the different universality classes. This notably includes the
direct imaging of the spatio-temporal process of the velocity field inside an avalanche v(x, t) where x denotes the internal
coordinate of the (d-dimensional) interface and t is the time since the beginning of the avalanche. A question of great
interest is to understand whether and how scaling and universality extend to v(x, t).

Until now the focus was on the center of mass velocity vcm(t) ∼
∫
ddx v(x, t) and the mean temporal shape at

fixed duration T , 〈vcm(t)〉T , where here 〈〉T denotes the statistical average over all avalanches of fixed duration T . A
scaling analysis suggests, through the sum rule S =

∫
dtddxv(x, t), the existence of a scaling function f temp

d (t) such that
〈vcm(t)〉T = T γ−1f temp

d (t/T ), where γ = (d + ζ)/z. The universality of f temp
d (t) was shown theoretically and studied

experimentally in [143, 142, 237, 144, 145]. The beautiful parabola-shape predicted at mean field level, ftemp(t) = t(1 − t)
(and γ = 2), stimulated the excitement around this observable.

Though very interesting, this observable does not contain information on the remarkable spatial structure of avalanche
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Figure B.1: Density plot of the velocity field v(x, t) inside an avalanche of size S = 1760
in the mean-field model (Brownian Force Model) for d = 1 discretized with N = 128
points. Time is given in machine-time unit. Line in red: backward path produced by
the algorithm used to find the seed of the avalanche (see text). Inset: the spatial shape
of this avalanche when centered around its starting point.

processes (see for illustration Fig. B.1). A characterization of even the mean spatial shape of avalanches in terms of a
simple scaling function is presently lacking. In this Letter we propose and calculate such a scaling function. We consider
the mean shape of avalanches at fixed total size S, for which a scaling analysis suggests (in real or in Fourier space
〈S(q)〉S =

∫
ddxeiqx〈S(x)〉S)

〈S(x)〉S = S
1− d

d+ζ fd(
x

S
1

d+ζ

) ,

〈S(q)〉S = Sf̃d(qS
1

d+ζ ) , (B.1.1)

where S(x) =
∫
dtv(x, t) is the “local size" at x, fd(x) and f̃d(q) are radial scaling functions (hence x and q as arguments

of the scaling functions always denote the norm of the vectors x and q), normalized as
∫
ddxfd(x) = f̃d(q = 0) = 1, since

S =
∫
ddx S(x). Here the local size at x, S(x) is the local displacement of the interface between the beginning and the

end of an avalanche at the point x, while the total size S is the area swept by the interface during the avalanche. Note
that these definitions are not complete: there are various ways of centering an avalanche. Our proposal is to study the
spatial structure by centering the avalanches on their starting points. Hence in (B.1.1) 〈〉S denotes the statistical average
over all avalanches of fixed total size S and starting point x = 0. We call this procedure the seed-centering which appears
natural when one thinks of how an avalanche unfolds following a branching process (see Fig. B.1). Furthermore, it permits
analytical treatment and is thus appropriate to compare theory and experiments.

We first calculate the above scaling functions at the level of mean-field. This requires to go beyond the simplest mean-
field toy model, the ABBM model [98, 99] which only describes the center of mass motion of the interface. To this aim
we consider the Brownian Force Model (BFM), recently introduced as the relevant mean-field theory to describe spatial
correlations [111, 102, 101, 1]. For this model, we even compute the full mean velocity-field inside a seed-centered avalanche
of given size S which in general obeys the scaling form

〈v(x, t)〉S = S
ζ−z
d+ζ F (t/S

z
d+ζ , x/S

1
d+ζ ) . (B.1.2)

More generally, in this Letter we consider elastic interfaces in the quenched Edward-Wilkinson universality class with
short ranged disorder. In this context, the BFM is accurate for d ≥ dc, where dc is the upper critical dimension of the
depinning transition, dc = 4 for short-range (SR) elasticity and dc = 2 for the most common long-range (LR) elasticity. In
lower dimensions d < dc, correlations play an important role. To take them into account and study this more difficult case,
we use the Functional Renormalization Group (FRG) and calculate the scaling functions fd(x) and f̃d(q) perturbatively in
ǫ = dc−d, to one-loop, i.e. O(ǫ) accuracy (see [114, 127, 126, 116, 129, 117] for background on FRG, and [86, 109, 111, 101]
for its application to the study of avalanches). We show that the scaling ansatz (B.1.1) holds and that the scaling functions
contain only one non-universal scale ℓσ (which is discussed in details below)

fd(x) =
1
ℓdσ

Fd( x
ℓσ

) , f̃d(q) = F̃d(ℓσq) , (B.1.3)

where Fd and F̃d are fully universal and depend only on the space dimension d and the universality class of the model
(i.e. range of elasticity and disorder). The precise model that is the starting point of our theoretical analysis (for elastic
interfaces with short-ranged elasticity) is given in (B.1.12). Our conclusions however apply in much greater generality and
the details of the model are unimportant (once the range of elasticity and disorder correlation have been set). Indeed, since
the scaling functions that we compute are universal and entirely determined by the properties of the FRG fixed point for
models in the quenched Edward-Wilkinson universality class, any model in the same universality class leads to the same
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Figure B.2: Plot of the mean-field result for the space-time mean velocity profile inside
an avalanche in d = 1 for SR (left, see (B.1.4)) and LR elasticity (right, see (B.1.7)).

scaling functions. In the first part of the Letter we thus focus on stating our results, and report the discussion of the model
and of the method to the second part. For a generic system, we expect scaling and universality to hold for avalanche of

size S in a scaling regime Smin ≪ S ≪ Smax. Note that in (B.1.3), the space variable x is measured in units of S
1

d+ζ (see
(B.1.1)). In the original units, the universality in the avalanche shape should hold for both small and large x (compared

to S
1

d+ζ ) as long as xmin ≪ x ≪ xmax where xmin/max ∼ S
1

d+ζ

min/max. We will start by discussing the exact results obtained
for the BFM (defined below, see (B.1.12)). These results are also of interests for the SR disorder universality class as the
lowest order terms in the ǫ expansion (i.e. O(ǫ0) terms) of the true universal scaling functions.

Results within mean-field: The BFM can be studied analytically in any dimension d. Let us first consider the case of
SR elasticity. The exponents are τS = 3/2, τT = z = 2 and ζ = 4 − d. The scaling function in (B.1.2) admits a very simple
expression:

F (t, x) = 2te−t2 1
(4πt)d/2

e−x2/(4t) , (B.1.4)

which is plotted in Fig. B.2. Here we use dimensionless units, the original units can be recovered using x → mx, t → t/τm
and S → S/Sm where τm = η/m2 and Sm = σ/m4 and the parameters η,m and σ are those in the equation of motion
of the model (B.1.12). Time integration of (B.1.4) confirms for the BFM the general scaling law (B.1.1) and (B.1.3) with
FMF
d (x) =

∫ +∞
0

dtF (t, x) and ℓσ = σ−1/4. The result is simplest in Fourier space and does not depend on the dimension:

F̃MF
d (q) = F̃MF(q) = 1 −

√
πq2

2
e

q4

4 erfc

(
q2

2

)

, (B.1.5)

where erfc(z) = 2√
π

∫ +∞
z

e−t2 . In real space, FMF
d (x) depends on the dimension and can be expressed using hypergeometric

functions [238] with FMF
d≤4(0) = 2−dπ

1− d
2

Γ( d
4

) sin( πd
4

)
. Both F̃MF(q) and FMF

d=1,2(x) are plotted in black in Fig. B.3. A fundamental

property of F̃MF(q) is that it possesses an algebraic tail F̃MF(q) ∼ q−4 at large q, which generates a non-analytic term
∼ |x|4−d in the small x expansion of FMF

d (x) around the origin. Its behavior at large x is evaluated using a saddle-point on
(B.1.4), leading to a stretched exponential decay with a d-independent exponent 4/3:

FMF
d (x) ≃x→∞

2−d/2π
1
2

− d
2√

3
x

2−d
3 e− 3x4/3

4 . (B.1.6)

These results easily extend to LR elasticity, in which case z = 1, ζ = 2 − d and the mean shape in Fourier space is obtained
replacing q2 → q in (B.1.5). Let us also give here the spatiotemporal shape (B.1.2) for the experimentally most relevant
case of d = 1, with

F (t, x) =
2t2e−t2

π(x2 + t2)
. (B.1.7)

Results beyond mean-field for SR elasticity: For realistic SR disorder, the BFM is the starting point in the ǫ = 4 − d
expansion. It is most clearly implemented in Fourier space, since the mean-field result for F̃d(q) does not depend on d:

F̃SR
d (q) = F̃MF(q) + δF̃d(q) +O(ǫ2) , (B.1.8)

with δF̃d(q) = ǫF̃ (1)(q). Here F̃ (1)(q) =
∫

C
dµ
2iπ

eµH̃(µ, q) is obtained as an Inverse Laplace Transform (ILT) µ → 1:

H̃(µ, q) =
4
√
π

9

[
2 − 3γE

8
1

q2 + 2
√
µ

− 4
√
µ

(q2 + 2
√
µ)2

(B.1.9)

×
(

q2 + 9
√
µ

q
√
q2 + 8

√
µ

sinh−1

(

q

2
√

2
√
µ

)

− 1 +
3
16

ln(4µ)

)]
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Figure B.3: (color online). Analytical results at MF and O(ǫ) level for the universal
scaling function F̃d=1 in Fourier space (Left) and Fd in real space for d = 1 (Middle) and
d = 2 (Right) for SR elasticity. Black lines: tree/mean-field results. Dotted blue lines:
universal corrections, δF̃1(q) (left, O(ǫ) correction in Fourier space in d = 1), δF1(x)
(middle) and δF2(x) (right). Red-dashed lines: O(ǫ) estimate obtained by simply
adding the corrections to the MF value. Red lines: improved O(ǫ) estimate, which,
through a re-exponentiation procedure, takes properly into account the modification
of exponents (B.1.10) and (B.1.11) (see [238]). Note that the cusp at the origin of the
avalanche shape at O(ǫ) is not obvious in this plot since the non-analyticity is rather
small, but it can be emphasized using a log-log scale (and measured in numerics, see
Fig. B.5).

where γE is Euler’s Gamma constant (see [238] for the choice of C). We then define the correction to the mean shape in real

space as the d-dimensional Fourier transform δFd(x) =
∫

ddq

(2π)d e
−iqxδF̃d(q). Hence, FSR

d (x) = FMF
d (x) + δFd(x) + O(ǫ2).

From the ILT expression (B.1.9) we obtain the following analytical properties of the O(ǫ) corrections:
1) Its large q expansion is δF̃d(q) ≃q≫1 ǫ

8 log(q)−γE−8

9q4 , interpreted as a change in the tail exponent η̃d:

F̃d(q) ≃q≫1 Ãdq
−η̃d , η̃d = 4 − 4ǫ

9
+O(ǫ2) , (B.1.10)

with a universal prefactor Ãd = 2(1 − (2 + γE
4

) 2ǫ
9

). In real space this implies, in the expansion of Fd(x) at small x,
a non-analytic term ∼ |x|ηd with ηd = η̃d − d = 5ǫ

9
+ O(ǫ2). Restoring the S dependence from (B.1.1) this leads to

〈S(q)〉S ∼q→+∞ S
1− η̃d

d+ζ q−η̃d and the non-analytic part 〈S(x)〉n.aS ∼x→0 S
1− η̃d

d+ζ |x|ηd . Note that in the BFM the value
η̃d = 4 = d + ζ implies that the large q behavior of 〈S(q)〉S does not depend on S. This may seem natural: in the BFM
the small scales do not know about the total size of the avalanche. A generalization of this property to the SR disorder
case would suggest the guess η̃guess

d = d + ζ. Our result explicitly shows that this property fails with η̃d > d + ζ. Hence
in the SR disorder case the large avalanches tend to be more smooth than small avalanches. Note that the predicted value
of ηd is smaller than 2 in all physical dimension: this non-analytic term should actually dominate the behavior of Fd(x)
around 0 (and thus lead to a cusp singularity). A possible interpretation of this cusp singularity is that around 0 the mean
shape of avalanches Fd(x) is dominated by avalanches whose largest local size is at their seed. This could correspond to
the fact that such avalanches occur as a consequence of large fluctuations of the disorder that would pin a specific point of
the interface for a long time. These would result in configurations of the interface with a single point well behind the rest
of the interface. The depinning of such a point would then trigger an avalanche that is peaked around its seed [239].

2) At large x, we obtain that the stretched exponential decay exponent of the mean shape is modified from its MF
behavior δMF = 4/3:

Fd(x) ∼ e−Cxδ

, δ =
4
3

+
2
27
ǫ+O(ǫ2) , (B.1.11)

with a universal prefactor C = 3
4

+ ( 7
√

3
36

− 1) 2
9
ǫ. Remarkably, using ζ = ǫ/3 +O(ǫ2), this agrees to O(ǫ) with the conjecture

δ = d+ζ
d+ζ−1

that we justify in [238].

Furthermore, the ILT expression (B.1.9) is easily calculated numerically. The corrections δF̃d(q) and δFd(x) are shown
in Fig. B.3, together with the resulting estimates for the functions FSR

d (x) and F̃SR
d (q).

Model and method: For SR elasticity, the equation of motion for the interface position u(x, t) (denoted uxt) is

η∂tuxt = ∇2
xuxt −m2(uxt − wt) + F (uxt, x) , (B.1.12)

where η is the friction, m is a mass cutoff which suppresses fluctuations beyond the length ℓm = 1/m and m2wt is the
driving force. In the BFM, the random pinning force F (u, x) is an independent Brownian motion in u for each x with
(F (u, x) − F (u′, x))2 = 2σ|u − u′|. For the SR disorder universality class, the second cumulant is F (u, x)F (u′, x′) =
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δd(x − x′)∆0(u − u′) with ∆0(u) a fast decaying function. Eq. (B.1.12) is analyzed using the dynamical field theory and
the FRG [238]. This leads to an expression for 〈S(x)〉S as an ILT: 〈S(y)〉S ∼ LT−1

µ→S(〈ũ1
x=0〉ξ)/ρ(S) where ρ(S) is the

avalanche-size density (previously computed to O(ǫ) accuracy in [109, 101]) and ũ1
x=0 is the O(λ) term taken at x = 0 of

the solution ũx of the following differential equation (here in dimensionless units):

−µ+ λδ(x− y) + (ũx)2 + ∇2
xũx − (1 + ξx)ũx = 0 , (B.1.13)

where ξx is a white-noise of order
√
ǫ and 〈.〉ξ denotes the average over it. For the BFM, the result is thus obtained setting

ξx → 0 above. At O(ǫ) for the SR disorder universality class, it is thus sufficient to solve (B.1.13) perturbatively to second
order in ξx. Here the fact that we are looking at the local size of avalanches at x = y and whose seed is centered at x = 0
is encoded in (B.1.13) as the fact that we are computing the value at x = 0 (seed position) of the solution of (B.1.13) with
a delta source λδ(x − y) (local size position). The seed centering therefore allows analytical treatment here because ũx=0

only contains the contribution of avalanches starting at 0 (see [238]). Using another type of spatial centering does not allow
a similar simple treatment.

In our model (B.1.12), the non-universal scale ℓσ in (B.1.3) is m−1S
−1/(d+ζ)
m where Sm is defined from the ratio of the

first two moments of the avalanche size distribution, Sm = 〈S2〉/(2〈S〉), which can be measured in numerics and experiments.
Here 〈〉 denotes the average with respect to the avalanche size distribution. In cases where the numerical or experimental
setup corresponds to our model (as in our simulations, see below), this prediction for ℓσ allows unambiguous comparison
between our results and the data. In cases where ℓσ cannot be predicted, some scale-independent features of the mean-
shape still allow comparison with the experiments. This includes the tail exponent of F̃d(q) in (B.1.10), the small and large

distance behavior of Fd(x) in (B.1.11), and the universal ratios cp =

∫
ddx|x|2pFd(x)

(∫
ddx|x|pFd(x)

)2 . In d = 1, (c1, c2) ≃ (1.6944, 3.8197)

for the BFM while (c1, c2) ≃ (1.641 ± 0.001, 3.43 ± 0.02) for SR disorder to O(ǫ).
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Figure B.4: (color online). Plain lines: rescaled mean shapes of avalanches at fixed
size S from the simulation of the BFM model (left) and of the model with SR disorder
(right), in d = 1, for S = 10 (left only, blue), S = 50 (right only, blue), S = 102 (red),
S = 103 (green), S = 104 (purple) and S = 105 (left only, yellow). Dashed black lines:
theoretical MF result. Red dashed line: O(ǫ) result. No fitting parameter.

Numerical simulations. A convenient choice of SR disorder, amenable to Markovian evolution, is the Gaussian disorder
F (u, x) with "Ornstein-Uhlenbeck" (OU) correlator ∆0(u) = σδue−|u|/δu. It is defined by two coupled equations for the
velocity vxt ≡ v(x, t) and the force F(x, t) (the first one being the time-derivative of (B.1.12)):

η∂tvxt = ∇2vxt +m2(ẇt − vxt) + ∂tF(x, t) ,

∂tF(x, t) =
√

2σvxtχxt − vxt
δu

F(x, t) , (B.1.14)

with χxt a centered Gaussian white noise χxtχx′t′ = δd(x − x′)δ(t − t′) and initial condition vxt=0 = F(x, t = 0) = 0. In
the stationary regime, this model is equivalent [43, 92] to Eq. (B.1.12) with u̇xt = vxt and F(x, t) = F (uxt, x) and initial
condition uxt=0 = 0. When 1/δu = 0 this model becomes equivalent to the BFM. We discretize time in units dt and space
with periodic boundary conditions along x. To measure quasi-static avalanches, we apply a succession of kicks of sizes
δw: we impose vxt = (m2/η)δw at t = 0+ (beginning of the avalanche), iterate (B.1.14) and wait for the interface to stop
before applying a new kick [238]. To identify the seed of each avalanche, we record the velocity v(x, t) for the nt = 103

first time-steps of the avalanche. We find the position xmax(nt) of maximum velocity at tnt = ntdt (or at the end of the
avalanche if it has stopped before), and then successively identify at each time step tn < tnt the position xmax(n) defined as
the neighbor of xmax(n+ 1) with the largest velocity at time tn. xmax(n = 1) is identified as the seed of the avalanche. The
size of the kicks is chosen small enough so that the probability to trigger several macroscopic and overlapping avalanches is
negligible (see [238] for details).

In dimension d = 1 we use a system of size L = 2048 discretized with N = L points and a mass m = 10/L. In Fig. B.4
we show our results for the mean-shape for different values of S and compare with our theoretical predictions using the
predicted value of ℓσ (deduced from the measurement of Sm), hence with no fitting parameter. The results for the BFM
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Figure B.5: (color online). Left: (resp. Right:) Log-Log plot of Fd=1(0) − Fd=1(x)
(resp. F̃d=1(q)) numerically obtained in the BFM model (blue) and in the model with
SR disorder (red). Dotted lines: guide lines for the BFM result x2 (left) and 1/q4

(right). Dashed lines: x1.5 (left) and 1/q2.5 (right). These results are consistent with
(i) the exact result η̃d=1 = 4 for the BFM (ii) η̃d=1 ≃ 2.5 for the SR disorder model (in
between the guess η̃guess

d=1 = d+ ζ ≃ 2.25 and our O(ǫ) prediction η̃d=1 ≃ 8/3 ≃ 2.66).

are excellent. For the model with SR disorder, the improvement brought by the O(ǫ) correction is substantial. If one
instead uses a measurement of ℓσ by e.g. setting the value of the shape at the origin, the agreement with the SR disorder
model is, to the naked eye, almost perfect. We also measure properties independent of the value of ℓσ: (i) in Fig.B.5 the
small x and large q behaviors (ii) the universal ratios cp. We obtain (c1, c2) ≃ (1.699 ± 0.003, 3.83 ± 0.05) for the BFM
and (c1, c2) ≃ (1.612 ± 0.004, 3.16 ± 0.03) for the model with SR disorder (error-bars are 3 sigma estimates). The above
predictions are in perfect agreement for the BFM, and our O(ǫ) corrections go in the right direction for the SR disorder
case.

To conclude, we introduced an original way of characterizing the mean shape of an avalanche by centering around
its seed. We obtained theoretical predictions for this observable and confronted them to numerical simulations. We also
proposed a protocol to measure it. We hope that this work stimulates measurements of this quantity in numerical setups
and imaging experiments.

B.2 Supplemental Material

We give here a derivation of the results presented in the main text of the letter and details on the numerical simulations.

Dynamical Field Theory Setting

Here we first introduce the formalism used to derive the results presented in the letter.
Equation of motion and dynamical action

As written in the main text, we consider the equation of motion for the over-damped dynamic of an elastic interface of
internal dimension d in a quenched random force field and driven by a parabolic well of position wxt

η∂tuxt = ∇2
xuxt −m2(uxt − wxt) + F (uxt, x) (B.2.1)

where x ∈ R
d, t ∈ R, uxt ∈ R (the space-time dependence is indicated by subscripts). The elastic-coefficient as been set

to unity by a choice of units. In this formulation, the driving force of the parabolic well is fxt = m2(wxt − uxt). The
pinning force F (u, x) is chosen centered, Gaussian with second cumulant F (u, x)F (u′, x′) = δd(x − x′)∆0(u − u′) (the
overline denotes the average over disorder) where ∆0(u) is a short-ranged function. Higher cumulant can also exist (i.e. non
Gaussian force, and are taken into account in the FRG treatment). Note that here we have written the case of short-ranged
(SR) elasticity with an elastic term of the form ∇2

xuxt. Other elastic kernels can also be considered, by changing

∇2
xuxt −m2uxt →

∫

x′
g−1
xx′ux′t (B.2.2)

where g−1
xx′ is a translationally invariant (g−1

xx′ = g−1
x−x′ ) elastic kernel. In particular, we will consider the following kernel

(here written in Fourier space) (g−1
q =

∫

x
eiqxg−1

x , here and throughout the rest of the Supplemental Material
∫

x
=
∫

x∈Rd d
dx

and
∫

q
=
∫

q∈Rd
ddq

(2π)d )

g−1
q =

√

µ2 + q2 (B.2.3)

which is known to be relevant in the description of standard long-ranged (LR) elasticity. In this situation, the parameter
µ is related to the mass m as m =

√
µ. In most of the following, we will deal with the SR elasticity case, and explicitly

mention when we consider the LR one. Introducing a response field ũxt, the generating function of the velocity field
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G[λxt] = e

∫

xt
λxtu̇xt is computed using the dynamical action formalism for the velocity theory, that is for the time-derivative

of (B.2.1) [132, 130]:

G[λxt] =

∫

D[ũ]D[u̇]e
∫

xt
λxtu̇xt+m2

∫

xt
ũxtẇxt−S0−Sdis

S0 =

∫

xt

ũxt(η∂t − ∇2 +m2)u̇xt , Sdis = −1
2

∫

xtt′
ũxtũxt′∂t∂t′ ∆0(uxt − uxt′ ) (B.2.4)

The renormalized field theory

As discussed in [101], in the limit of small m, and in the quasi-static limit ẇxt = v → 0+, universal quantities associated
to the motion inside a single avalanche can be computed in an expansion in ǫ = 4 − d using an effective action identical to
(B.2.4) with the replacement ∆0(u) → ∆(u) = ∆(0) −σ|u| − 4π2αm4−du2 +O(ǫ2), where σ and α = O(ǫ) are renormalized
quantities. σ is a non-universal parameter whose value is related to the two first moments of the avalanche size distribution
through the exact relation 2σ/m4 = 〈S2〉/〈S〉. On the other hand α is dimensionless and universal at the FRG fixed point
with value α = −2ǫ/9 +O(ǫ2). In terms of the action, this replacement reads Sdis → Seffdis = Stree + δ1−loopS with

Stree = −σ
∫

xt

ũ2
xtu̇xt , δ1−loopS = −4π2αm4−d

∫

xtt′
ũxtu̇xtũxt′ u̇xt′ (B.2.5)

At lowest order in ǫ, the action is Seffdis = Stree. Using the renormalized value of σ, it gives the exact result for universal
quantities in d > 4. In any dimension, this tree/mean-field theory also corresponds to an interface slowly driven in a
Brownian force landscape: for each x, F (u, x) is a Brownian in u independent of the others with (F (u′, x) − F (u, x))2 =
2σ|u′ − u|. This is the Brownian Force Model (BFM). The O(ǫ) corrections around the BFM are easily computed using
the fact that δ1−loopS can also be taken into account by introducing a fictitious Gaussian centered white noise ξxt with
correlations 〈ξxξx′ 〉ξ = 8π2αm4−dδd(x− x′) through the identity

e−S0−Seff
dis = 〈e−

∫

xt
ũxt(η∂t−∇2+m2+ξx)u̇xt−Stree 〉ξ (B.2.6)

where 〈〉ξ denotes the average over ξ. One-loop observables are thus rewritten as averaged tree observables in a theory with
space-dependent mass m2 → m2 + ξx. Since ξx = O(

√
ǫ), the effect of ξx can be taken into account pertubatively up to

order O(ξ2
x).

Avalanches observables

Avalanches in non-stationary driving

Let us first introduce our avalanche observables in a non-stationary setting. We refer the reader to [102, 101, 1] for
more details on this procedure. We first prepare the interface is in its quasi-static stationary state ẇxt ∼ v = 0+, then turn
the driving off: ẇxt = 0 and finally wait for the interface to stop at some metastable position. Supposing we are in such
a state at t = 0, we apply to the interface a step in the driving force localized at x = t = 0, ḟxt = m2δwδ(x)δ(t) (local
kick) and let it evolve. Information about the resulting motion of the interface is encoded in the generating functional

G[λxt] = e

∫

x,t>0
λxtu̇xt

. Remarkably, since the action (B.2.5) (written at one-loop in terms of ξx (B.2.6)) is linear in u̇xt,
the evaluation of G[λxt] through the path-integral formalism simplifies. The integration on the velocity field u̇xt leads to a
delta functional and to the result:

G[λxt] = 〈em2δwũ
λ,ξ
x=t=0 〉ξ (B.2.7)

where ũλ,ξxt is the solution of the so-called instanton equation:

∂tũxt + ∇2ũxt − (1 + ξx)ũxt + ũ2
xt + λxt = 0 (B.2.8)

here written in dimensionless units using the variables ũx = m2

σ
ˆ̃ux̂, x = x̂/m, t = η

m2 t̂, λxt = m4

σ
λ̂x̂t̂, and omitting the hats

in what follows, to lighten notations. The boundary conditions is ũxt = 0 for t = +∞. Here we will only be interested in
single avalanche, defined as the response of the interface to an infinitesimal step in the force. We introduce the generating
functional Z[λxt] as (expanding (B.2.7) in δw):

e

∫

x,t>0
λxtu̇xt − 1 = δwZ[λxt] +O(δw2)

Z[λxt] = m2〈ũλ,ξx=t=0〉ξ (B.2.9)

In the above expansion, the δw factor just accounts for the probability to trigger an avalanche at t = x = 0. Introducing
ρt=x=0[u̇xt], the density of velocity field u̇tx inside an avalanche that starts at t = x = 0, we write

Z[λxt] =

∫

D[u̇]

(

e

∫

xt
λxtu̇xt − 1

)

ρt=x=0[u̇xt] , (B.2.10)

where here this equation can actually be viewed as a definition of the density ρt=x=0. The fact that these definitions
indeed correspond to what is usually meant by avalanches in the quasi-static limit is discussed below. This formulation
is up to now completely general. Let us now focus on two types of sources: λ1

xt = (−µ + λδ(x − y)δ(t − s))θ(t) and
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λ2
xt = (−µ+λδ(x−y))θ(t) (θ(.) denotes the Heaviside theta function). In both cases, the µ variable probes the total size of

the avalanche S =
∫

x,t>0
u̇xt. In the first case, λ probes the local velocity at t = s and x = y during the avalanche. In the

second case, λ probes the local size of the avalanche at x = y, Sy =
∫

t>0
u̇yt. We write the associated generating function

Z(1)[λ1
xt] = Z(1)(µ, λ, y, s) and Z(2)[λ2

xt] = Z(2)(µ, λ, y). These are obtained through the formula (B.2.9) by solving (B.2.8)
which leads to

Z(1)(µ, λ, y, s) =

∫

dSdu̇yse
−µS+λu̇ysρ

(1)
t=x=0(S, u̇ys) , Z(2)(µ, λ, y) =

∫

dSdSye
−µS+λSyρ

(2)
t=x=0(S, Sy), (B.2.11)

where ρ(1)
t=x=0(S, u̇ys) (resp. ρ

(2)
t=x=0(S, u̇ys)) is the joint density of total size S and velocity field u̇ys (resp. of total size

S and local size Sy) for avalanches starting at t = x = 0. In practice we will only be interested in computing the mean
velocity-field inside avalanche of total size S, 〈u̇ys〉S (resp. the mean local size inside avalanche of total size S, 〈Sy〉S).
These are computed as

〈u̇ys〉S =
LT−1

µ→S∂λZ
(1)|λ=0

ρ(S)/Ld
, 〈Sy〉S =

LT−1
µ→S∂λZ

(2)|λ=0

ρ(S)/Ld
=

∫ ∞

s=0

ds〈u̇ys〉S (B.2.12)

where LT−1
µ→S denotes the Inverse Laplace Transform (ILT) operation LT−1

µ→S = 1
2iπ

∫

C dµe
µS with appropriate contour of

integration, and we have introduced ρ(S) the density of avalanches of total size S, previously computed up to one-loop in
[109, 111, 101] (ρ(S)/Ld =

∫
du̇ysρ

(1)
t=x=0(S, u̇ys) =

∫
dSyρ

(2)
t=x=0(S, Sy) is the density of avalanches of total size S starting

at x = 0). For the observables we are interested in, we will thus only need to solve (B.2.8) at first order in λ.

Link with the stationary driving

Let us now present here how the precedent approach is linked to avalanches occurring in the quasi-static stationary
state of the interface dynamic ẇxt = v → 0+. We introduce ρ0 the mean density of avalanche per unit of driving and
p[u̇tx] the (functional) probability of velocity field u̇tx inside an avalanche. At first order in v, the generating function

G[λxt] = e

∫

xt
λxtu̇xt can be written as

G[λxt] = (1 − ρ0vT ) + ρ0vT

∫

D[u̇]e
∫

xt
λxtu̇xt

p[u̇xt] +O(v2) = 1 + vT

∫

D[u̇]

(

e

∫

xt
λxtu̇xt − 1

)

ρ[u̇xt] +O(v2)(B.2.13)

where we reintroduced ρ[u̇xt] = ρ0p[u̇tx] the density of velocity field u̇tx inside an avalanche. The equation (B.2.13) can be
seen as a definition of what is meant by avalanches in the quasi-static setting. The time scale T that appears in (B.2.13)
should be much larger than the time-scale of avalanche motion (to allow the avalanche to terminate) and much smaller
than the typical waiting time between avalanches. This only works if λxt is also non-zero in a time window smaller than
T : this ensures that the measurement made on the velocity-field is also inside a single-avalanche. On the other hand, the
small velocity expansion made directly on the action (B.2.4) and compared to (B.2.13) gives

G[λxt] = 1 + v〈m2

∫

xt

ũxt〉λxt −→
∫

D[u̇]

(

e

∫

xt
λxtu̇xt − 1

)

ρ[u̇xt] =

∫

xt

m2

T
〈ũxt〉λxt , (B.2.14)

where here the average 〈, 〉λxt refers to the average with respect to the dynamical action (B.2.4) with source λxt. In the right
of (B.2.14), the integral over time and space originates from the fact that we have consider the effect of avalanches starting
at any point of the interface, and at any time in the time-window T . From a field-theory point of view, it is then natural
to interpret m2〈ũx=t=0〉λxt as the contribution from avalanches starting at t = x = 0 (diagrams entering into 〈ũx=t=0〉λxt

can only have a first non-zero u̇xt at x = 0). Furthermore, this is supported by the non-stationary setting in which this
interpretation is immediate. In the quasi-static setting we can only a priori consider sources λxt non-zero in time windows
smaller than T to make sure that only one avalanche is taken into account. However, from a practical point of view, when
T >> τm where τm is the typical time scale of avalanches, both descriptions give exactly the same result as detailed in
[101].

Calculation in the BFM

Mean-velocity field inside an avalanche in the BFM

Here we present the calculations leading to the resuts Eq.(B.1.4) and Eq.(B.1.7) of the letter for the mean-velocity field
inside avalanche of total size S in the BFM 〈u̇ys〉S (denoted v(y, s) in the main text with y = x and s = t). We have to
solve to first order in λ the instanton equation

∂tũxt + ∇2ũxt − ũxt + ũ2
xt − µ+ λδ(x− y)δ(t− s) = 0 . (B.2.15)

Note that here, in dimensionless units, time and avalanche size are measured in terms of the natural units of avalanches
motion τm = η/m2 and Sm = σ/m4. The perturbative solution is ũxt = ũ0

xt + ũ1
xtλ+O(λ2) with

ũ0
x = Z(µ) =

1
2

(
1 − κ2(µ)

)
, κ(µ) = (1 + 4µ)

1
4 , ũ1

qt = −
∫ t

t′=+∞
e(q2+κ2(µ))(t−t′)+iqyδ(t′ − s)dt′(B.2.16)

here written in Fourier space for the O(λ) part: ũ1
qt =

∫

x
eiqxũ1

xt. This immediately gives

ũ1
t=x=0 =

∫

q

eiqy−(q2+κ2(µ))s (B.2.17)
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Using the tree result for the avalanche size density ρMF(S) = Ld

2
√
πS

3
2
e−S/4 we obtain the mean velocity field inside a single

avalanche using (B.2.12) as

< u̇ys >S= 2
√
πS3/2eS/4LT−1

µ→S

∫

q

eiqy−(q2+
√

1+4µ)s = 2se− s2

S

∫

q

eiqy−q2s = 2se−s2/S 1
(4πs)d/2

e−y2/(4s) (B.2.18)

In the notation of the main text, we thus obtain (B.1.4) that we recall here

< v(x, t) >S= S
2−d

4 F (t/S1/2, x/S1/4) , F (t, x) = 2te−t2 1
(4πt)d/2

e−x2/(4t) (B.2.19)

Extension to LR elasticity
Following the same computation, one obtains for the case of the BFM with long-ranged elasticity (with the kernel

(B.2.3))

ũt=x=0 =

∫

q

eiqy−(
√

1+q2−1+κ2(µ))s (B.2.20)

And thus

< u̇ys >S= 2se− s2

S

∫

q

eiqy−(
√

1+q2−1)s (B.2.21)

Note that here, the spatio-temporal shape does not satisfy the expected scaling form (B.1.2), < u̇ys >S= S
2−d−1

2 F (s/S
1
2 , y/S

1
2 )

for all S. This should not be surprising, it is known that the present theory describes scale-invariant avalanches only for
S ≪ Sm (here Sm = 1 in dimensionless units is the large scale cutoff Smax mentioned in the main text, and note that in
our theory the low-scale cutoff on the scaling regime Smin also mentioned in the main text can effectively be taken to 0 for
shape observables). The fact that the scaling hypothesis for the mean velocity field holds ∀S in the BFM with short-ranged
elasticity is the true surprise. Scaling in the long-ranged model is restored at small S and here

F (s, y) = lim
S→0

S
d−1

2 < u̇
S

1
2 y,S

1
2 s
>S= 2se−s2

∫

q

eiqy−|q|s (B.2.22)

Evaluating this integral in dimension 1 immediately leads to the result (B.1.7).
The mean shape of avalanches in the BFM: results in Fourier space

We now derive the result Eq.(B.1.5) of the letter. Using (B.2.17), we immediately obtain the mean-shape of avalanche
in Fourier space in the BFM as

F̃MF(q) =

∫ ∞

s=0

2se−s2−q2s = 1 −
√
πq2

2
e

q4

4 erfc

(
q2

2

)

(B.2.23)

i.e. the result (B.1.5) of the main text. Note that here avalanche sizes have been expressed in units of Sm = σ/m4 and
distances in units of 1/m. Hence the non-universal scale ℓσ of the main text is indeed ℓσ = 1

m
S

−1/4
m = σ−1/4. Let us give

here the large and small momenta behavior of F̃MF(q):

F̃MF(q) =q≫1
2
q4

− 12
q8

+
120
q12

+O(
1
q16

) (B.2.24)

F̃MF(q) =q≪1 1 −
√
πq2

2
+
q4

2
−

√
πq6

8
+O

(
q8
)

(B.2.25)

Extension to LR elasticity
We now compute the mean shape in real space. In particular we obtain the result Eq.(B.1.6) of the letter. The extension

of the precedent results to the case of LR elasticity is straightforward. As written in the main text and following the formula
(B.2.22), the mean-shape in Fourier space in the scaling regime for LR elasticity is simply obtained from the precedent
results by changing q2 → |q|:

F̃MF,LR(q) = F̃MF(
√
q). (B.2.26)

In particular it now has an algebraic tail at large q with exponent 1/q2, F̃MF,LR(q) ≃q≫1
2
q2 .

The mean shape of avalanches in the BFM: results in real space

In real space, FMF
d (x) is most simply obtained by integration of (B.2.19):

FMF
d (x) =

2
(4π)d/2

∫ +∞

0

dtt1−d/2e−t2− x2

4t (B.2.27)

This integral can be expressed either as the sum of three series:

FMF
d (x) = π1− d

2

∞∑

p=0

(−1)p2−4p[
ap

sin dπ
4

x4p −
ap+ 1

2

4 cos dπ
4

x4p+2 +
bp

sin dπ
2

x4−d+4p] (B.2.28)

ap =
2−d

(2p)!Γ
(
d
4

+ p
) , bp =

2−3

p!Γ
(
− d

2
+ 2p+ 3

) (B.2.29)



194 Appendix B. Paper: Universality in the spatial shape of avalanches

or, equivalently, as the sum of three generalized hypergeometric functions (corresponding term by term to the series):

FMF
d (x) =

1
8
π1− d

2

(23−d csc
(
πd
4

)

0F2

(

; 1
2
, d

4
; −x4

64

)

Γ
(
d
4

) −
21−dx2 sec

(
πd
4

)

0F2

(

; 3
2
, d

4
+ 1

2
; −x4

64

)

Γ
(
d+2

4

) (B.2.30)

+
x4−d csc

(
πd
2

)

0F2

(

; 3
2

− d
4
, 2 − d

4
; −x4

64

)

Γ
(
3 − d

2

)

)

The expressions (B.2.28) and (B.2.30) are adequate for d = 1, 3. For d = 2, 4 one must first take the limit d → 2, 4 before
evaluating. This is easy to do with mathematica, and we give here only the two leading terms at small x:

FMF
2 (x) =

1
4
√
π

− x2(−4 log(x) − 3γE + 2 + log(16))
16π

+O
(
x3
)

(B.2.31)

FMF
4 (x) =

−4 log(x) − 3γE + log(16)
16π2

+
x2

32π3/2
+O

(
x3
)

(B.2.32)

For d < 4 the value at zero is finite:

FMF
d (0) =

2−dπ1− d
2

Γ
(
d
4

)
sin
(
πd
4

) (B.2.33)

FMF
1 (0) ≈ 0.345684 , FMF

2 (0) ≈ 0.141047 , FMF
4 (0) ≈ 0.0813891 (B.2.34)

and FMF
d (0) diverges as 1

4π2ǫ
as d → 4− (it has a minimum near d = 3.2). For d > 4 it diverges near zero as FMF

1 (x) ≃
π

1− d
2 csc( πd

2 )
8Γ(3− d

2 )
x4−d. The large distance behavior is easily obtained from the saddle-point method on (B.2.27). It yields a

stretched exponential decay at large x with exponent 4/3, independent of d:

FMF
d (x) ≃ 2−d/2π

1
2

− d
2√

3
x

2−d
3 e− 3x4/3

4 (B.2.35)

Extension to LR elasticity
We did not attempt to find expressions for the mean-shape in real space for LR elasticity in any d. In the most

experimentally relevant case of d = 1 however it takes a simple expression: integrating (B.1.7) from t = 0 to t = ∞ leads

FMF,LR
d=1 (x) =

1√
π

− |x|ex2

erfc(|x|) . (B.2.36)

We note in particular the behavior around x = 0, FMF,LR
d=1 (x) =x≪1

1√
π

− |x| +O(x2), reminiscent of the 2/q2 tail in Fourier

space. At large x, the mean-shape now decays algebraically as FMF,LR
d=1 (x) =x≫1

1
2

√
πx2 +O(1/x4).

O(ǫ) corrections

“Brut” corrections

At O(ǫ) we focus directly on the computation of the mean-shape at fixed size 〈Sy〉S . We need to solve

∂tũxt + ∇2ũxt − (1 + ξx)ũxt + ũ2
xt − µ+ λδ(x− y) = 0 . (B.2.37)

at order 1 in λ and order 2 in ξx. When ξx = 0 (corresponding to the BFM model) this equation was recently solved exactly
[107] to study the joint distribution of total size S and local size Sy in the BFM. Here we will only be interested in its
perturbative solution up to first order in λ (to study the mean shape) but up to second order in ξx (to study O(ǫ) corrections.
We can look for time-independent solution and use a double expansion ũx =

∑1

i=0

∑2

j=0
ũij(x) where ũij(x) = O(λiξj). The

observable of interest is Z(µ, y) = ∂λZ
(2)(µ, y, λ)|λ=0 where Z(2) was introduced in (B.2.9). Using Z(2)(µ, y, λ) = m2〈ũx=0〉ξ

we obtain (in dimensionless units)

Z(µ, y) = ZMF(µ, y) + δZ(µ, y) , ZMF(µ, y) = ũ1
0(x = 0) , δZ(µ, y) = 〈ũ1

2(x = 0)〉ξ (B.2.38)

These are most simply expressed in Fourier space Z̃(µ, q) =
∫

x
eiqyZ(µ, y) and we find

Z̃MF(µ, q) = Gq(µ) =
1

q2 + κ2(µ)

δZ̃(µ, q) = 8π2α(Gq(µ))2

(∫

p

Gp(µ) (1 + 2Z(µ)Gp−q(µ))2 + 2G0(µ)

∫

p

(1 + Z(µ)Gp(µ))Z(µ)Gp(µ)

)

(B.2.39)

where we have introduced the response function Gq(µ), a dressed version of the elastic kernel gq = 1
m2+q2 .

Counter-terms

The result for δZ̃(µ, q) is not yet complete: the integrals present in (B.2.39) diverge at large q for d < 4. This is a
usual feature of one-loop computations in field theory. As detailed in [101], when doing a pertubative calculation in (B.2.5),
one has to take into account a renormalization of σ and m2 (the latter being in fact an artifact due to the utilization of
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the oversimplified one-loop action (B.2.5)). For clarity let us now denotes σ0 and m2
0 the parameters used so far in the

perturbative calculation. These are renormalized as σ0 → σ = σ0 + δσ and m2
0 → m2 = m2

0 + δm2 with

δσ = 24π2α

∫

k

g2
k , δm2 = −8π2α

∫

k

gk (B.2.40)

where gk = 1
k2+m2

0
is the bare propagator. The parameters entering in (B.2.40) are either the bare parameters or the

renormalized parameters (these choices differ from a term of order O(ǫ2)). The fact that the theory is renormalizable imply
that divergences present in (B.2.39) should disappear when expressing the results in terms of renormalized parameters. Let
us thus denote {K0} := {σ0,m

2
0} the set of important couplings and emphasize the dependance of Z̃(µ, q) by momentarily

adopting the simple notation Z̃({K0}). Rewriting the result Z̃({K0}) in terms of the renormalized coupling {K} leads to
the definition of the counter-terms δc.t.Z̃({K}) as

Z̃({K0}) = Z̃({K − δK}) = Z̃MF({K}) + δc.t.Z̃({K}) + δZ̃({K}) +O(ǫ2) (B.2.41)

and thus δc.t.Z̃({K}) = − ∂Z̃MF({K})
∂Kα

δKα. To compute these partial derivatives, we reintroduce the original units of the

problem in Z̃MF({K}):

Z̃MF({K}) =
eiqy

q2 +
√

1 + 4σµ/m4
(B.2.42)

The m2

σ
comes from the rescaling of ũ, the m−d from the rescaling of the Fourier Transform and the σ

m4−d from the rescaling
of λ. Computing the derivatives with respect to σ and m2 and going back to dimensionless units leads to the following
expression for the counter terms:

δc.t.Z̃(µ, q) = 8π2αeiqyGq=0(µ)Gq(µ)2(6µ

∫

k

g2
k −

∫

k

gk) (B.2.43)

It is then easy to check that adding (B.2.43) to (B.2.39) indeed regularizes the result. The computation of the resulting,
convergent integrals in d = 4 leads to the full result for the one loop correction δZ̃(µ, q) → δZ̃(µ, q) + δc.t.Z̃(µ, q) with

δZ̃(µ, q) = α(Gq(µ))2

(

(1 + 6µ) log(1 − 2Z) + 2Z
2(1 − 2Z)

+ 4Z

(

1 + sinh−1(
q

2
√

1 − 2Z
)
Z − (q2 + 4(1 − 2Z))

q
√
q2 + 4(1 − 2Z)

))

(B.2.44)

and Z ≡ Z(µ).
The mean-shape at O(ǫ): Laplace transform in Fourier

We now obtain the result Eq.(B.1.9) presented in the letter. Using (B.2.12), the mean-shape in Fourier space is

computed as 〈S(q)〉S = Ld

ρMF(S)
LT−1

µ→S

(
Z̃MF(µ, q)

)
. To order O(ǫ), we have Z̃(µ, q) = Z̃MF(µ, q) + δZ̃(µ, q). The density ρ

was computed to O(ǫ) in [111] with the result ρ(S) = ρMF(S) + δρ(S) with

δρ(S) = αρMF(S) × γE(S − 6) + 4S − 8
√
π

√
S + (S − 6) log(S) + 4

16
(B.2.45)

〈S(q)〉S can thus be computed to O(ǫ) as

〈S(q)〉S =
Ld

ρMF(S)
LT−1

µ→S

(
Z̃MF(µ, q)

)
− Ldδρ(S)

(ρMF(S))2
LT−1

µ→S

(
Z̃MF(µ, q)

)
+

Ld

ρMF(S)
LT−1

µ→S

(
δZ̃(µ, q)

)
+O(ǫ2) . (B.2.46)

One can check that the O(ǫ0) part of this result allows to retrieve directly the result of the precedent section for the mean-
shape (i.e. without computing 〈v(x, t)〉S first), so that everything is consistent. A new difficulty (compared to the BFM

case), is that 〈S(q)〉S defined in (B.2.46) does not satisfy the scaling form 〈S(q)〉S = SF̃d(qS
1

d+ζ ) ∀S. This is natural: the
scaling regime of the problem is for S ≪ Sm (here Sm = 1 in dimensionless units) and the universal shape of avalanches is
the one obtained from (B.2.46) as S → 0. It is thus obtained here as

F̃d(q) = lim
S→0

〈S(qS
−1

d+ζ )〉S
S

(B.2.47)

We now compute the ǫ expansion of (B.2.47) using (B.2.46). By definition F̃d(q) = F̃MF(q) + δF̃d(q). We also use the
one-loop value of ζ = ζ1ǫ (ζ1 = 1/3) and obtain

δF̃d(q) = lim
S→0

ǫ
ζ1 − 1

16
q log(S)

∂F̃MF

∂q
(q) + Ld

LT−1
µ→SδZ̃(µ, qS− 1

4 )

SρMF(S)
− F̃MF(q)

δρ(S)
ρMF(S)

(B.2.48)
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Let us first look at the second term in (B.2.48):

Ld
LT−1

µ→SδZ̃(µ, qS− 1
4 )

SρMF(S)
=

Ld

SρMF(S)

∫ c+i∞

c−i∞

dµ

2iπ
eµSδZ̃(µ, qS− 1

4 )

=
Lde−S/4

SρMF(S)

∫ c′+i∞

c′−i∞

dµ

2iπS
eµδZ̃(−1/4 + µ/S, qS− 1

4 )

≃S<<1 αLT
−1
µ→1

(

H(q, µ) − 3
√
π

2

√
µ log(S)

(
2
√
µ+ q2

)2
+O(S)

)

(B.2.49)

Where here from the first to the second line we used a change of variables µ → −1/4 +µ/S and then took the limit S → 0+

of (B.2.44) to define

H(q, µ) =

√
µ

√
π
(

q
(
6 log

(
2
√
µ
)

− 16
)√

8
√
µ+ q2 + 16

(
9
√
µ+ q2

)
sinh−1

(
q

2
√

2 4√µ

))

2q
(
2
√
µ+ q2

)2√
8
√
µ+ q2

(B.2.50)

Using similar manipulations, the other terms are inserted inside the ILT using the representation

F̃MF(q) = LT−1
µ→1

(
2
√
π

2
√
µ+ q2

)

,
∂F̃MF

∂q
(q) = LT−1

µ→1

(
−4

√
πq

(2
√
µ+ q2)2

)

,
ζ1 − 1

16
=

3α
16ǫ

(B.2.51)

This representation shows that the O(log(S)) terms present in (B.2.48) cancel and we obtain the result

δF̃d(q) = αLT−1
µ→1

(

−
√
π

8
(4 − 6γE)
(
2
√
µ+ q̃2

) +H(q, µ)

)

(B.2.52)

which leads to the result (B.1.9) in the main text. Note that the result satisfies, as required from normalization

F̃d(q = 0) = 1 , δF̃d(q = 0) = 0 (B.2.53)

which can be checked explicitly from the above expressions using that LT−1
µ→1

γE+ln(4µ)√
µ

= 0. Equivalently, the total shape
in Fourier takes the form

F̃d(q) = LT−1
µ→1

(

(1 + α
3γE − 2

8
)

2
√
π

q2 + 2
√
µ+ Σ(q, µ)

)

+O(α2) (B.2.54)

where the "self-energy" correction reads, to lowest order

Σ(q, µ) = −4α
√
µ

(
q2 + 9

√
µ

q
√
q2 + 8

√
µ

sinh−1

(

q

2
√

2
√
µ

)

− 1 +
3
16

ln(4µ)

)

(B.2.55)

Units and scales: Let us mention here that, since this result was obtained in dimensionless units, the universal scale ℓσ

appearing in the main text is here given by ℓσ = 1
m

(
1
Sm

) 1
d+ζ . Sm can always be measured as Sm = 〈S2〉

2〈S〉 and is exactly given

in terms of the parameters of the model by Sm = σ
m4 . As m → 0, the dependence of σ on m is universal: σ ∼ m4−d−ζσ∗

with σ∗ a dimensionless number. Thus ℓσ ≃ (σ∗)
−1

d+ζ . The number σ∗ is non-universal and depends on the microscopic
disorder. Thus the scale ℓσ is non-universal and depends on microscopic properties of the disorder. Note also that using
(B.2.46) one can also study the dependence of the mean-shape when S gets close to the cutoff avalanche size Sm. This
dependence is expected to be non-universal and in our model we find that the amplitude of the O(ǫ) corrections decrease
as S increases close to Sm.

Small and large q expansion of the mean-shape in Fourier space

We now derive the result Eq.(B.1.10) of the letter. The small q expansion of δF̃d(q) is obtained from (B.2.52) at any
order. The first terms are:

δF̃d(q) ≃q≪1 α

(

− 1
16

√
π(−3γE + 1 + log(4096))q2 +

1
240

(299 − 90γE)q4 +
√
πα(1890γE − 3121 − 5040 log(2))

13440
q6

+
(2299

5040
− γE

8

)

q8 +O(q10)
)

≃q≪1 α
(
−0.840378q2 + 1.02938q4 − 0.728437q6 + 0.383999q8 +O(q10)

)
(B.2.56)

For the large q expansion, the expansion at large q of δF̃d(q) cannot be naively ILT. However, since we compute the
ILT from µ to 1, one can derive the result with respect to µ an arbitrary number of times m to make the ILT convergent
before taking the ILT since this just multiplies the end result by an innocent (−1)m factor). This leads to

δF̃d(q) ≃q≫1 α

( γE
2

+ 4 − 4 log(q)

q4
− 8

√
π

q6
+

−48γE + 23 − 120 log(q)
q8

+
624

√
π

q10
+O(

1
q12

)

)

≃q≫1 α

(
−4 log(q) + 4.28861

q4
− 14.1796

q6
+

−120 log(q) − 4.70635
q8

+
1106.01
q10

+O(
1
q12

)

)

(B.2.57)
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And as explained in the main text, the first term of this expansion is interpreted as a modification of the power-law behavior
of F̃d(q), F̃d(q) ≃q≫1 2(1 + (2 + γE

4
)α)q−4−2α +O(ǫ2).

Dominant non-analyticity at small x
Let us now understand more precisely how the large q behavior of F̃d(q) generates a non-analyticity in Fd(x) at small

x. We consider the effect of a fat tail q−2β in a Fourier transform. We write
∫

ddq

(2π)d
eiq1x

q2β
=

1
Γ(β)

∫

t>0

dt

t
tβ
∫

ddq

(2π)d
eiq1x−q2t = |x|2β−d

∫

dt
2−dπ− d

2 e− 1
4t (t)β− d

2

tΓ(β)

∼ |x|2β−d 2−2βπ− d
2 Γ
(
d
2

− β
)

Γ(β)
(B.2.58)

The above derivation is formal since e.g. the first integral on q on the left-hand side of (B.2.58) do not converge but we
notice that (B.2.58) indeed gives, for β = 2, the dominant non-analyticity in the expansion (B.2.28) (i.e. the bp=0 term).
The above calculation indicates that the leading non-analyticity present in the small x expansion of Fd(x) is a term of the
form

Fsing
d (x) ≃ 2(1 + (2 +

γE
4

)α)|x|4+2α−d 2−4−2απ−d/2Γ(d/2 − 2 − α)
Γ(2 + α)

(B.2.59)

Expanding this result in α, it implies the existence of a term

δFsing
d (x) ≃ α

32
π− d

2 x4−dΓ
(
d

2
− 2
)(

−4ψ
(
d

2
− 2
)

+ 8 log(x) + 5γE + 4 − 8 log(2)
)

(B.2.60)

in the small x expansion of δFd(x) (ψ = Γ′

Γ
is the diGamma function). For d = 1, 3 this result correctly gives the dominant

non-analyticity in δFd(x). For d = 2, one has to look at the expansion of (B.2.60) around d = 2. In doing so, one obtains
terms (i) regular in x (proportional to x2) that diverge as d → 2: these terms are unimportant and would be cancelled by
other regular terms present in δFd(x), and (ii) a singular term which admit a well defined d → 2 limit and read:

δFsing
d=2 (x) ≃ α

16π
(9γE − 8 log(2) + 4 log(x))x2 log(x) . (B.2.61)

This term is the dominant non analyticity present in δFd=2(x).

Large x expansion of the mean-shape in real space

We now obtain the modification of the large x behavior of Fd(x), and derive Eq.(B.1.11) of the letter. The mean shape
in real space is obtained by Fourier transform and ILT from (i) the expressions F̃MF(q) (B.2.51), δF̃d(q) (B.2.52) and the
definition of H(q, µ), (B.2.50), or, equivalenty to lowest order in α, (ii) from the expressions (B.2.54, B.2.55). We use the
latter here:

Fd(x) =

∫
ddq

(2π)d
e−iq1x

∫

C

dµ

2iπ
eµ
(

2
√
πc

q2 + 2
√
µ+ Σ(q, µ)

)

, c = (1 + α
3γE − 2

8
) (B.2.62)

where here the contour C can be chosen as a wedge around the branch cut µ < 0 of the integrand, such as e.g. C =
(1 + e− 3iπ

4 R+) ∪ (1 + e
3iπ

4 R+). To compute this radial Fourier transform, we chose x > 0 oriented along the first axis. The
integration over the other components q2 . . . qd depends only on q =

√
q2

2 + · · · q2
d: the change of variable brings out a factor

Sd−1 = 2(π)
d−1

2

Γ( d−1
2

)
. Performing the rescaling (q1, q) →

√
2(q1, q) we obtain the more convenient form

Fd(x/
√

2) = 2
d
2

√
πc

∫ ∞

−∞

dq1

2π

∫ ∞

0

dqSd−1

(2π)d−1
qd−2e−iq1x

∫

C

dµ

2iπ
eµ

1

q2
1 + q2 +

√
µ− α

2
h(

√
2
√

q2
1 + q2, µ)

(B.2.63)

where we denote Σ(q, µ) = −α h(q, µ).
At the mean-field level, i.e. α = 0, the integral on q1 can be performed by closing the contour of integration in the upper

half plane (the integrand is then analytic in q1), and taking into account the contribution of the pole at q1(µ) = i
√
q2 +

√
µ.

The scaling of this pole with µ, q1 ∼ µ
1
4 notably leads to the stretched exponential decay of the shape at large x with

exponent 4/3. Here, at O(ǫ) we cannot a priori performs this residue calculation since the integrand is non analytic in q1.
It seems however reasonable to assume that the behavior of Fd(x) at large |x| will still be dominated by this pole in the
integration on q1. At first order in O(ǫ) the position of this pole is shifted as

q1(µ) ≃ i

(
√

q2 +
√
µ− α

δq(µ)
√
q2 +

√
µ

)

, δq(µ) =
1
4
h(i

√
2µ1/4, µ) =

1
72

√
µ
(
27 log (2

√
µ) + 14π

√
3 − 72

)
(B.2.64)

And for the saddle-point calculation of the integral on q1, we can approximate

1

q2
1 + q2 +

√
µ− α

2
h(

√
2
√

q2
1 + q2, µ)

≃ 1
(q1 − q1(µ))(q1 + q1(µ) − α

2
∆q(µ))

(B.2.65)

With

∆q(µ) =
√

2
√

q2 +
√
µ(µ)− 1

4 ∂1h(i
√

2µ
1
4 , µ) =

2i
27

(13
√

3π − 63)
√

q2 +
√
µ (B.2.66)
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ǫ = 0 ǫ = 1 ǫ = 2 ǫ = 3
B at O(ǫ) −2/3 −0.298 ± 0.002 0 0.235 ± 0.014
B conjecture −2/3 −0.2876 ± 0.0001 0 0.100 ± 0.002
δ at O(ǫ) 4/3 1.410 ± 0.002 1.49 ± 0.01 1.58 ± 0.02
δ conjecture 4/3 1.4246 ± 0.0002 1.570 ± 0.001 1.800 ± 0.004

Table B.1: Predicted values for the exponents B and δ from the O(ǫ) calculation,
and from the conjecture (B.2.69) (the values are averaged over the two Pade, and the
spread is indicated), and compared to the conjecture (B.2.69) using the value of ζ
determined numerically in [240] (ζ = 0.355 ± 0.001 for d = 3 and ζ = 0.753 ± 0.002 for
d = 2) and [241] (ζ = 1.250 ± 0.005 in d = 1).

(Through rescaling one shows that higher order terms in the series expansion of h(
√

2
√

q2
1 + q2, µ) around q1 = i

√
q2 +

√
µ

do not contribute). Hence we have

Fd(x/
√

2) = c2d/2√
π

∫
dµ

2iπ
eµ
∫ +∞

0

Sd−1

(2π)d−1
qd−2dq

2iπ
2π

e
−x
(√

q2+
√
µ− αδq√

q2+
√

µ

)

2q1(µ) − α
2

∆q(µ)

≃ c2d/2−1√
π

Sd−1

(2π)d−1

∫
dµ

2iπ
e
µ−x(µ

1
4 −α δq

µ
1
4

)
∫ +∞

0

qd−2 1

(1 − α
54

(13
√

3π − 63))µ
1
4 − α δq

µ
1
4

e
−x q2(δqα+

√
µ)

2µ3/4

≃ c
π1− d

2√
2

∫
dµ

2iπ
eµ−xaµb 1

a′µb
(
aµb

x
)

d−1
2 (B.2.67)

Where we have used the fact that the dominant behavior of the integral on q is given by q ≃ 0, and we have introduced the
notation

a = 1 +
−14

√
3π + 72 − 9 log(8)

72
α , b =

1
4

− 3
16
α , a′ = 1 +

468 − 94π
√

3 − 81 log(2)
216

α (B.2.68)

So that aµb = µ
1
4 − α δq

µ
1
4

+ O(ǫ2) and a′µb = (1 − α
54

(13
√

3π − 63))µ
1
4 − α δq

µ
1
4

+ O(α2). Note that, using ζ = 1
3
ǫ and

α = −2ǫ/9, the O(ǫ) value of b is consistent with the conjecture b = 1
d+ζ

which is quite natural: the exponent b gives the

scaling with µ of the pole q1(µ) ∼ µb. We know that momenta inside avalanches of sizes S scale with S as S
−1

d+ζ . On the

other hand, µ is conjugate to S: µ ∼ S−1, hence the conjecture q1(µ) ∼ µ
1

d+ζ . At large x, the integral on µ can now be
evaluated using a saddle-point calculation. It leads to, at first order in ǫ,

Fd(x) ≃ AxBe−Cxδ

A =
2−d/2π

1
2

− d
2√

3
(1 +

1
216

α
(
4
√

3π(27 − 7d) + 9(13d+ 9(γE − 8))
)
)

B = −d− 2
2

1 − 2b
1 − b

=
2 − d

3
(1 +

1
2
α)

C =
3
4

+ α

(
36 − 7

√
3π
)

36
, δ =

1
1 − b

=
4
3

− α

3

Following the conjecture on the value of b we can also conjecture

B = − (d− 2)(d+ ζ − 2)
2(d+ ζ − 1)

, δ =
d+ ζ

d+ ζ − 1
(B.2.69)

Setting α = 0 in the above result, we retrieve the large x behavior of FMF
d (x) using here a totally different route. Lets us

warn the reader that there is some uncertainty on the values of A and B since additional contributions could come from
the branch cut in q1. The values of C and δ however should be correct. The resulting numerical values of the exponents B
and δ are summarized in Table B.1.

Note that (B.2.69) can also be expanded in α and gives the prediction

δFd(x) ≃x>>1 α
2− d

2
−3π

1
2

− d
2 e− 3

4
x4/3

x
2
3

− d
3

27
√

3

(
2π

√
3
(
−14d+ 21x4/3 + 54

)

+9
((

−4d+ 6x4/3 + 8
)

log(x) + 13d− 24
(
x4/3 + 3

)
+ 9γ

))
(B.2.70)
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Figure B.6: In blue from left to right: O(ǫ) correction to the mean-shape in Fourier

space divided by −α, − δF̃d(q)
α , in real space in d = 1, δF1(x) and in d = 2, δF2(x).

The dotted line on the left is the theoretical small q expansion (B.2.56) up to O(q20)
and the dashed line is the large q expansion (B.2.57). The dashed line in the middle
and on the right are the theoretical large x expansion (B.2.70). Middle inset: plot
of 1

x3

(
δF1(x) − δF1(0) − a0

2 x
2
)

(plain line), compared with the prediction (B.2.60)

(dashed line). Right inset: plot of − δF2(x)−δF2(0)+0.06x2

x2 (plain line), compared with
the prediction (B.2.61) (dashed line).

Numerical obtention of the mean shape

We now explain how our analytical results are used to obtain numerically the mean shape computed at O(ǫ). In
particular we explain how we obtain the theoretical curves presented in Fig. B.3 and Fig. B.4 of the letter. The correction
δF̃d(q) can easily be obtained numerically using a numerical integration on the formula (B.2.52) and choosing a contour of

integration for µ as C = (1 + e− 3iπ
4 R+) ∪ (1 + e

3iπ
4 R+). The precision of the numerical integration can be tested against

the exact results at small and large q, (see Fig. B.6). It can easily be Fourier transformed in any dimension to find the
correction δFd(x):

δFd=1(x) = 2

∫ ∞

0

dq

2π
cos(qx)δF̃d(q) , δFd(x) =

1

(2π)
d
2 x

d−2
2

∫ ∞

0

dqJ d−2
2

(qx)q
d
2 δF̃d(q) (B.2.71)

where Jn(x) denotes the Bessel function of the first kind. The large x behavior of these corrections agrees with our prediction
(B.2.70), to a surprisingly large extent (see Fig. B.6). Some properties of these corrections are their values at the origin
δFd=1(0) = 0.09227, δFd=2(0) = 0.04912, the position where they cross 0, x0 = 1.2567 (d = 1), x0 = 1.8286 (d = 2), the
position of their minimum and minimal value, xmin = 2.2783, F1(xmin) = −0.02835, xmin = 2.6634; F2(xmin) = −0.002980
(d = 2). We also investigate the presence of non-analyticities in the form of logarithm in the short-distance behavior of
the result. In dimension 1, the correction δF1(0) has a second derivative at 0 evaluated as a0 = δF ′′

1 (0) ≃ −0.512. By
plotting 1

x3

(
δF1(x) − δF1(0) − a0

2
x2
)
, we shed the light on the non analyticity present in δF1(x) at small x, which is found

to be in very good agreement with (B.2.60) (see Fig. B.6). In dimension 2, the dominant non-analyticity predicted in

(B.2.61) compares very well with the plot of δF2(x)−δF2(0)+0.06x2

x2 at small x (the 0.06x2 term is a regular term which was
not predicted by our calculations).

Adding naively these corrections to the mean-field result Fd(x) = FMF
d (x) + δFd(x) then gives a result which suffers

from several problems. At large x it becomes slightly negative in d = 1 and does not have the right non-analytic behavior
at small x. The second problem can be cured by considering the reexponentiated Fourier result

F̃ reg
d (q) = F̃MF

d (q) exp

(
δF̃d(q)
F̃MF
d (q)

)

(B.2.72)

This result is still correct to first order in ǫ and has the advantage of having the correct behavior at large q, F̃ reg
d (q) ≃

2(1 + (2 + γE
4

)α)q−4−2α +O(ǫ2). It is plotted in plain red in Fig. B.7. Taking the Fourier transform of this result we obtain
a function F reg1

d (x) which has now the correct behavior at small x but is still slightly negative at large x. On the other
hand the function

F reg2
d (x) =

1
N exp

(

− exp

(

log(− log(FMF
d (x))) +

δFd(x)
FMF
d (x) log(FMF

d (x))

))

(B.2.73)

where N is a normalization constant ensuring that
∫
ddxF reg2

d (x) = 1, is correct to O(ǫ) and takes properly into account
the change of exponent in the exponential decay of the shape at x = ∞ and is everywhere positive. However, it doesn’t have
the correct behavior at small x. Since F reg1

d (x) and F reg2
d (x) intersect themselves at some xc, we construct the function

F reg
d (x) =

1
N
(
r(x)F reg1

d (x) + (1 − r(x))F reg2
d (x)

)
(B.2.74)

where N is a normalization factor and r(x) is a function that interpolates smoothly between r(1) = 1 and r(∞) = 0

sufficiently fast to obtain a positive result everywhere. Here we have chosen r(x) = e−x2/xc2

but this choice does not matter
drastically since all these functions are close to each others (see Fig. B.7). The result (B.2.74) is still correct to O(ǫ) and
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Figure B.7: Different mean shape Fd(x) correct at O(ǫ) for d = 1 (left) and d = 2
(right). Dashed-blue lines: naive result Fd(x) = FMF

d (x) + δFd(x). Dotted lines:
F reg1

d (x) (largest at the origin) and F reg2
d (x) (smallest at the origin). Red line: regu-

larized result F reg
d (x) used for comparison with numerics.

has the right behavior at small and large x. It is plotted for d = 1 and d = 2 in plain red in (B.7) and used for comparison
to numerical simulations.

Universal ratios

Here we compute the universal ratios in dimension 1 and 2 of the various mean-shapes. These are defined as cp =∫
ddx|x|2pFd(x)

(∫
ddx|x|pFd(x)

)2 . In dimension 1 and for p even they are exactly obtained as cp =
F̃(2p)

d
(0)

(
F̃(p)

d
(0)
)2 . For p odd and in dimension

d = 2 one has to rely on direct numerical integration techniques. Fortunately, the exponential decay of the shape at large x
(which is known analytically) allows us to obtain an excellent numerical precision, we compute them pertubatively in O(ǫ)
using

cp ≃
∫
ddx|x|2pFMF

d (x)
(∫

ddx|x|pFMF
d (x)

)2
+ α

( ∫
ddx|x|2pδFd(x)

(∫
ddx|x|pFMF

d (x)
)2

− 2

∫
ddx|x|2pFMF

d (x)
∫
ddx|x|pδFd(x)

(∫
ddx|x|pFMF

d (x)
)3

)

(B.2.75)

Table B.2 contains our results in d = 1 and d = 2. The even values in d = 1 are exact for both the BFM and (to O(ǫ))
the SR case. The odd values are results of numerical integration. The uncertainty on the numerical integration is evaluated
in d = 1 by comparing the result obtained using numerical integrations for even ratios to the exact ones. The values in
d = 2 are results of numerical integrations. We also give for reference in Table B.2 the value of the universal ratios for a

Gaussian shape function (FGauss
d=1 (x) = e−x2

√
π

and FGauss
d=2 (x) = e−x2

π
)

Details on numerical simulations

We now give details on the numerical simulations leading to the results presented in Fig. B.4 and Fig. B.5 in the letter.
Parameters of the simulations

For our simulations we have used σ = 1 and dt = 0.02. The discretization in time is handled using an algorithm
similar to the one presented in [231]. The used values of δw and number of simulated kicks nkicks are: δw = 0.1 and
nkicks = 40 × 106 for the SR model; δw = 1 and nkicks = 100 × 106 for the BFM model. As discussed in the main text,
these simulations are performed in d = 1 for a line of size L = 2048 discretized with N = L points. For the SR model, δu
is chosen as δu = 5δw.

PDF of avalanche sizes and measurement of Sm
The measurement of the PDF P (S) (plotted in Fig. B.8) shows that the avalanche size distribution of both models

have a lower cutoff Sδw ≃ (Ldδw)2

SBFM
m

where SBFM
m is always given by σ/m4. In the BFM model, we observe a scaling

regime P (S) ∼ S−τBFM
S with τBFM

S = 3/2 = 2 − d
d+ζBFM (ζBFM = 4 − d) for Sδw ≪ S ≪ SBFM

m . In the SR model, for

Sδw ≤ S ≤ Sδu = Sδu ≃ (δu)
d+ζBF M

ζBF M , the interface does not feel the short-ranged nature of the disorder and we observe a

first scaling regime coherent with the BFM, P (S) ∼ S−τBFM
S . In the SR model, SSR

m is measured as 〈S2〉/(2〈S〉) with the
result SSR

m = (1.40 ± 0.05) × 105 (statistical uncertainty given with 3 sigma estimation). For Sδu ≪ S ≪ SSR
m , we observe

a second scaling regime coherent with the known features of the SR fixed point: P (S) ∼ S−τSR
S with τSR

S = 2 − d
d+ζSR

and our data are consistent with the value of ζ numerically estimated in [241], ζSR ≃ 1.250 ± 0.005 (see Fig. B.8). These
measurements allows us to identify the desired scaling regime and compare our simulations with known features of the BFM
and SR fixed point.

Details on the search for the seed

Let us now make a few comments on some subtle points and emphasize the importance of the algorithm used in the
main text to retrieve the seed of each avalanche. When we apply a uniform kick of size δw to the system, the interface
always moves from a small amount. As seen above and in Fig. B.8, avalanches of size much smaller than Sδw are very
unlikely (note that the discretization procedure introduces another sharp, artificial, small scale cutoff on the avalanches
size: since each points moves at least during the first iteration of the algorithm with velocity m2δw/η, the avalanche cannot
be smaller than Lddtm2δw/η). After the first iteration, it is actually highly probable that several points along the interface
are still moving, each of them being the seed of an avalanche. With a high probability, these small avalanches have sizes of
order Sδw and quickly perish, hence we do not analyze their shapes (they are ’microscopic avalanches’). In the following we
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c1 c2 c3 c4 c5 c6

Gaussian d = 1 1.5708 3 5.8905 11.67 29.1938 46.2
BFM d = 1: Theory 1.6944 3.8197 9.2703 23.3333 60.045 156.863
SR d = 1: Theory 1.6944 3.8197 9.2703 23.3333 60.045 156.863

+0.0798α +0.6196α +2.8α +11.4444α +37α +138.296α
≃ 1.641 ≃ 3.43 ≃ 7.53 ≃ 16.6 ≃ 38.5 ≃ 81
±0.001 ±0.02 ±0.16 ±0.9 ±3.7 ±17

Gaussian d = 2 1.27324 2 3.3953 6 10.865 20
BFM d = 2: Theory 1.3734 2.5464 5.3435 12 28.1289 67.9111
SR d = 2: Theory 1.3734 2.5464 5.3435 12 28.1289 67.9111

+0.06482α +0.4110α +1.6647α +5.7758α +18.6579α +58.0856α
≃ 1.3449 ≃ 2.369 ≃ 4.65 ≃ 9.6 ≃ 20.8 ≃ 45.7
±0.0002 ±0.006 ±0.05 ±0.2 ±0.9 ±3.6

Table B.2: Prediction for the universal ratios in dimension 1 (ǫ = 3) and 2 (ǫ = 2).
Here α = −2ǫ/9. The values displayed are the average over the two Pade and their
spread is indicated (as an indication of the uncertainty).
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Figure B.8: Blue: Measurement of the avalanche size distribution in the BFM model
(left) and the SR model (right). Yellow curve on the left: theoretical prediction for
P (S) = pMF(S) (no scaling parameter). The excess of small avalanches is an artifact
due to the discretization and does not affect the statistics of larger avalanches. Black
dashed line on the right: power-law S−τBFM

S with τBFM
S = 3/2. Red dashed line on the

right: power-law S−τSR
S with τSR

S ≃ 2 − 2
1+1.250 ≃ 1.11.



202 Appendix B. Paper: Universality in the spatial shape of avalanches

Figure B.9: Density plot of the velocity field v(x, t) inside an avalanche of size S = 1760
in the mean-field model (BFM) for d = 1 discretized with N = 128 points. Line in red:
backward path produced by the algorithm to find the seed of the avalanche. The inset
illustrates the efficiently of the algorithm to identify, from the set of moving points of
the interface just after the kick, the true seed of the observed macroscopic avalanche.
In this avalanche (at least) two points (at x = 32 and x = 57) still moves at t = 2dt,
but only the point at x = 32 is inside the cluster of moving points of the macroscopic
avalanche and can be its seed.

are only interested in the shape of avalanches of total size S > 1 ≫ Sδw (’macroscopic avalanches’), which only occur with
a small probability. When such an avalanche occurs, since there is a large separation of scales with the small avalanches of
order Sδw, we expect its shape to be only very weakly perturbed by the fact that other small avalanches could have been
triggered after the kick. We neglect the small probability that more than one macroscopic avalanche have been triggered
by the kick. A crucial step is to unambiguously identify, from the set of points still moving during the second iteration
of the algorithm, which one is the true seed of the observed macroscopic avalanche. This is what is accomplished by the
algorithm explained in the text: after nt iterations of the algorithm, all the small avalanches triggered at the beginning
of the avalanche have already stopped (thus in general nt has to be chosen sufficiently large). Identifying the maximum
velocity inside the avalanche at time nt, we are sure to have identified a point which is inside the macroscopic avalanche.
The algorithm is then devised to run within the history of the avalanche backward in time and always identify a point
moving along the interface which is in the correct cluster of moving points defining the macroscopic avalanche. This is
illustrated in Fig. B.9

Measurement of the mean-shape

We always only measure mean-shape with values of S well inside the desired scaling regime. The binning on the values
of the total size S is of 0.05, we construct a grid of total sizes with the values Si = 1 × ( 1,05

0.95
)i−1 and avalanches with

total size S such that 0.95Si < S < 1, 05Si are rescaled as S → Si. The difference between SSR
m and SBFM

m and τSR
S and

τBFM
S explains the difference between the chosen values of δw and nkicks for each model: these parameters are adjusted

so as to give a comparable numerical precision for the measurement of the mean-shape of interest (i.e. large avalanches
which provide a good spatial precision - for the same δw, one observes more large avalanches in the SR model than in the
BFM model). The shapes are rescaled onto one another using the value of ζ given above and determined numerically in
[241]. The fact that they collapse (see Fig. B.4) using this value is another check that our simulations are correct since they
appear in agreement with the high-precision simulations performed in [241]. Let us also present here the results analogous
to Fig. B.4 in Fourier space: see Fig. B.10.

Measurement of the non-analyticity at small x and fat tail at large q
To measure these observables with a good precision in d = 1, we use the models discretized using 2048 points. We first

obtain a smooth numerical mean-shape for the BFM and SR model by taking the average of several mean-shapes obtained
for various sizes (taken large to obtain a good spatial precision: for the BFM we use 20 shapes with 13575 < S < 100478,
for the SR model we use 10 shapes with 7386 < S < 20095). The resulting shapes are shown on the left of Fig. B.11. We
also plot in Fig. B.12 the difference between the mean shape measured in our numerical simulations of the SR model and
the theoretical mean-field result in d = 1 and compare it with our theoretical O(ǫ) predictions. This notably highlights
the efficiency of the reexponentiation procedure discussed previously. We then directly study the small x behavior of these
shapes, leading to the results presented on the left of Fig. B.5. The study of the large q behavior is more tedious: at large
x the mean shapes we obtained start to be dominated by the noise present in our numerical results. This noise blurs the
analysis of the large frequency content of the mean-shape. We thus first smooth our results at large x result by using an
exponential fit e−Cxδ

with the theoretical value of δ previously obtained exactly for the BFM and using our conjecture
(B.2.69) for the SR model (see Table B.1). This fitting procedure is illustrated in Fig. B.11. By Fourier transform, we then
obtain the results presented on the right of Fig. B.5.

Measurement of the universal ratios

Here we describe the protocol used to measure the universal ratios. We measure the universal ratios defined in (B.2.75)
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Figure B.10: The mean shape in Fourier space measured in simulations (left: BFM and
right: SR), (plain lines, same color code as Fig. B.4) and compared to the theoretical
predictions (dashed-black: BFM result, dotted-blue: naive O(ǫ) result and dashed-red:
improved O(ǫ) result (B.2.72).
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Figure B.11: Left: mean shapes obtained in the simulations of the SR model (red) and
of the BFM model (blue) compared with the O(ǫ) result (dashed, black) and BFM
result (dotted black). Right: blue (resp. red) large x behavior of the mean shape
measured in the BFM model (resp. SR model). To avoid the noise present at large x
to dominate the large q behavior of the mean shape, we smooth our result at large x
using an exponential ansatz as explained below.
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Figure B.12: Left: (resp. Right:) Black line: Difference between the mean shape
measured in the numerical simulations of the SR model in real space F1(x) (resp.
in Fourier space F̃1(q)) and the theoretical mean field result FMF

1 (x) (B.2.30) (resp.
F̃MF(q) (B.1.5)). Red line: theoretical O(ǫ) result δF1(x) (B.2.71) (resp. δF̃1(q)
(B.2.52)). Red-dashed line: improved (through the reexponentiation procedure) theo-
retical O(ǫ) result F reg

1 (x) − FMF
1 (x) (B.2.74) (resp. F̃ reg

1 (q) − F̃MF(q) (B.2.72)). The
reexponentiation procedure chosen in Fourier space sensibly improves the accuracy of
the result. Nevertheless, higher loop corrections will be necessary to account for the
remaining difference.
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Figure B.13: Universal ratios c1(ℓcut) (left) and c2(ℓcut) (right) measured in the BFM
for various cutoff length ℓcut = 4, 6, 8, 10, 12 (Blue, Orange, Red, Purple and Green)
as a function of the total sizes S = Si = 1 × (1.05

0.95)i−1. For the BFM, as a consequence
of these plots, the results presented in Table B.3 are averages on the universal ratios
obtained for S > Si with i = 60 and ℓcut = 8 to obtain a result that do not depend on
ℓcut and is free of discretization artifacts as explained in the text. A similar procedure
is used for the SR model. Note that the important variations observed here for large
i are just a consequence of the fact that only a few avalanches with the largests Si

have been measured, hence the statistical uncertainty on the measurements of ci(ℓcut)
increases when Si increases.

using severall cutoff length ℓcut for the integral on x (i.e. we consider different approximations of the universal ratios

cj(ℓcut) =

∫ ℓcut

−ℓcut
dx|x|2j F1(x)

(∫ ℓcut

−ℓcut
dx|x|j F1(x)

)2 that should converge to the true universal ratios cj as ℓcut → ∞). These are measured

on the mean-shape F1(x) numerically obtained for each possible total size Si (see above for the definition of the binning
procedure). Using these measurements we make sure that ℓcut is chosen large enough so that the results are not sensitive to
its finite value. We also control discretization artifacts by studying the dependence of the measured universal ratios cj(ℓcut)
on the total size Si: for small Si, the avalanches extend only over a few sites and the mean shape deduced from them is
different from the one of the continuum theory, a difference that is seen in the universal ratios. For large enough Si, the
universal ratios become size independent and we reach the continuum regime. This is illustrated for the two first universal
ratios in the BFM model in Fig. B.13. In the end, the universal ratios are measured by performing an average over various,
large enough total sizes Si, leading to the values presented in Table B.3.

c1 c2 c3 c4 c5 c6

BFM d = 1: Theory 1.694 3.819 9.270 23.334 59.255 156.863
SR d = 1: Theory ≃ 1.641 ≃ 3.43 ≃ 7.53 ≃ 16.6 ≃ 38.5 ≃ 81

±0.001 ±0.02 ±0.16 ±0.9 ±3.7 ±17
BFM d = 1: Numerics 1.699 3.83 9.3 23 59 143

±0.003 ±0.05 ±0.3 ±7 ±26 ±41
SR d = 1: Numerics 1.612 3.16 6.4 13.6 27 57

±0.004 ±0.03 ±0.3 ±0.2 ±2 ±9

Table B.3: Universal ratios in dimension 1. First two lines: theoretical result for
the BFM and O(ǫ) theoretical result for the SR universality class. Last two lines:
numerical measurement in the simulations of the BFM and SR model. Error-bars
for the numerics are 3-sigma estimates. Note that the statistical uncertainty on the
numerical measurements of the universal ratios cj increases with j since these quantities
become more and more sensitive to the presence of noise in the large x tail of the
measured shapes of avalanches.
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Paper: Universal correlations between shocks
in the ground state of elastic interfaces in
disordered media

The following is essentially the article published as
Title: Universal correlations between shocks in the ground state of elastic interfaces in disordered media
Authors: Thimothée Thiery, Pierre Le Doussal and Kay Jörg Wiese
ArXiv: 1604.05556
Journal-Ref: Phys. Rev. E 94, 2016
Abstract: The ground state of an elastic interface in a disordered medium undergoes collective jumps upon variation
of external parameters. These mesoscopic jumps are called shocks, or static avalanches. Submitting the interface to a
parabolic potential centered at w, we study the avalanches which occur as w is varied. We are interested in the correlations
between the avalanche sizes S1 and S2 occurring at positions w1 and w2. Using the Functional Renormalization Group
(FRG), we show that correlations exist for realistic interface models below their upper critical dimension. Notably, the
connected moment 〈S1S2〉c is up to a prefactor exactly the renormalized disorder correlator, itself a function of |w2 − w1|.
The latter is the universal function at the center of the FRG; hence correlations between shocks are universal as well. All
moments and the full joint probability distribution are computed to first non-trivial order in an ǫ-expansion below the upper
critical dimension. To quantify the local nature of the coupling between avalanches, we calculate the correlations of their
local jumps. We finally test our predictions against simulations of a particle in random-bond and random-force disorder,
with surprisingly good agreement.

C.1 Introduction

The model of an elastic interface in a disordered medium has been put forward as a relevant description for a large number
of systems [63, 235, 236, 68]. Examples include domain walls in soft magnets [100, 45], fluid contact lines on a rough
surface [59, 61], strike-slip faults in geophysics [64, 66], fracture in brittle materials [52, 56, 51] or imbibition fronts [69]. An
important common property of these systems is that their response to an applied field is not smooth but rather proceeds
via jumps extending over a broad range of space and time scales. As a consequence, understanding the properties and the
universality of avalanche processes has received a lot of attention in the past years [81, 112, 145].

A problem of outstanding interest is to quantify the correlations between successive avalanches. In the context of
earthquakes those are linked to the notion of aftershocks, whose statistics is characterized through phenomenological laws
such as the Omori law [67]. Several mechanisms have been advanced to explain these strong correlations, all involving an
additional dynamical variable [146, 147]. For elastic interfaces, correlations between avalanches were yet only studied as a
result of such additional degrees of freedom in the interface dynamics, as relaxation processes [148, 149] or memory effects
[144]. In this work, we show that even in the absence of such mechanisms, avalanches in elastic interfaces are generically
correlated below their upper critical dimension. These correlations are universal.

Let us emphasize that the goal of this paper is not to understand or explain the aftershock statistics observed in
earthquakes, for which additional mechanisms such as those discussed above are necessary. Rather, it is to emphasize that for
disordered elastic systems, except for mean-field models, correlations between avalanches always exist. A precise quantitative
understanding of these correlations is necessary to correctly quantify correlations induced by additional mechanisms. In
systems where the description by the standard elastic-interface model is accurate (without additional mechanisms) our
results quantify the correlations between avalanches. To our knowledge, these correlations have up to now been ignored in
theoretical or experimental work. It would thus be interesting to quantify them better, in order to access universality, or
lack thereof, in various avalanche processes.

In this article we study the correlations between the sizes and locations of shocks in the ground state (also called
“static avalanches”) of elastic interfaces in disordered media. These static avalanches are close cousins of the (dynamic)
avalanches observed in the interface dynamics at depinning. As we discuss below, we expect most of our results to hold
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for both classes. Our study is conducted using the Functional Renormalization Group (FRG). Originally introduced as a
powerful tool to study the universal properties of the statics and dynamics (at the depinning transition) of elastic interfaces
in disordered media [114, 127, 126, 108, 116, 129, 117], the FRG has been recently adapted to the study of avalanches
[109, 111, 101, 107, 1, 110]. It has notably led to a rigorous identification of the relevant mean-field theory for the statistics
of single avalanches: the Brownian-Force Model (BFM), a multidimensional generalization of the celebrated Alessandro-
Beatrice-Bertotti-Montorsi (ABBM) model [98, 99]. Interestingly, the FRG allows to go beyond mean-field theory and to
compute in a controlled way avalanche observables in an expansion in ǫ = duc − d where d is the interface dimension, and
duc the upper critical dimension of the problem. The latter depends on the range of the elastic interactions, with duc = 4
for short-ranged (SR) elasticity and duc = 2 for the usual long-ranged (LR) elasticity.

The outline of this article is as follows: In section C.2 we summarize our results, preceded by a definition of the relevant
observables. In Section C.3 we introduce the model and the observables we are interested in. Section C.4 contains the
derivation of the main results presented above. Section C.5 gives an analysis of the correlations between the local shock
sizes. Section C.6 presents the results of our numerical analysis of these correlations for a toy model with a single degree of
freedom, i.e. d = 0. Finally, a series of appendices contains technical derivations.

C.2 Main results

Let us now state our main results. To this aim, we parameterize the position of the interface by the (real, one-component)
displacement field u(x), where x ∈ R

d is the internal coordinate of the interface. For notational convenience we denote
u(x) ≡ ux. The interface is submitted to a quenched random potential V (ux, x), and to an external parabolic confining

field m2

2
(ux − w)2 centered at w. In a given disorder realization V , upon variation of the external fiel w, the ground state

(i.e. lowest-energy) configuration of the interface, denoted ux(w), changes discontinuously at a set of discrete locations wi,
according to

ux(w−
i ) → ux(w+

i ) = ux(w−
i ) + S(i)

x . (C.2.1)

The event (wi, S
(i)
x ) is the ith shock of the interface, wi is the location of the shock, S(i)

x is its local size at x and S(i) =
∫
ddxS

(i)
x its total size. The statistical properties associated to one shock were thoroughly analyzed using FRG in [109, 111].

Such properties are encoded in the shock density ρ0, defined as

ρ0 :=
∑

i

δ(w − wi) , (C.2.2)

and in the avalanche-size density

ρ(S) :=
∑

i

δ(w − wi)δ(S − S(i)) . (C.2.3)

The shock-size density ρ(S) is linked to ρ0 through ρ0 =
∫
dS ρ(S). Note that these quantities do not depend on w

due to the statistical translational invariance (STS) of the disorder. Considering two points w < w′ and sizes S1 < S2,
∫ w′

w
dw̃
∫ S2

S1
dSρ(S) is the mean number of shocks occurring between w and w′ with size S ∈ [S1, S2], while (w′ − w)ρ0 is

the mean number of shocks (irrespective of their size). Note that throughout the rest of this section we will discuss our
results in terms of densities but they can be translated into results for normalized probabilities as we discuss in Sec. C.3.5.

These observables alone do not determine the statistical properties of the sequence {(wi, S(i))}i∈Z of shocks experienced
by the interface in a given environment. In particular, they do not contain any information about the correlations between
the shocks. For a given distance W > 0, let us therefore introduce the two-shock density at distance W,

ρ2(W ) :=
∑

i6=j
δ(w − wi)δ(w +W − wj) . (C.2.4)

This observable scales as the square of a density. Thus
∫ w′

1

w1
dw
∫ w′

2

w2
dw′ρ2(w′ −w) counts the mean number of pairs of shocks

such that the first shock occurs between w1 and w′
1, and the second one between w2 and w′

2. Equivalently, ρ̃2(W ) := ρ2(W )
ρ0

is the density of shocks at a distance W from a given shock. These observables contain information about the correlations
between shocks. Indeed an uncorrelated sequence of shocks implies ρ2(W ) = ρ2

0 (and thus ρ̃2(W ) = ρ0). A central question
addressed in this work is whether the presence of a shock at a given point decreases (ρ2(W ) < ρ2

0) or increases (ρ2(W ) > ρ2
0)

the density of shocks at a distance W .
To measure the correlations between the size of the shocks (and not only their positions) we introduce the two-shock

size density at distance W ,

ρW (S1, S2) := (C.2.5)
∑

i6=j
δ(w − wi)δ(S1 − S(i))δ(w +W − wj)δ(S2 − S(j)) .

It is linked to ρ2(W ) via

ρ2(W ) =

∫

dS1 dS2 ρW (S1, S2) . (C.2.6)
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Figure C.1: Cartoons of the typical shape of the renormalized disorder correlator
∆(W ) (black-dashed line) and of its second order derivative ∆′′(W ) (red line) for the
Random-Field (left) and Random-Bond (right) universality classes (not to scale). Our
results predict that the shock sizes are always negatively correlated in the Random-
Field universality class, whereas the Random-Bond universality class exhibits a richer
structure with negatively (resp. positively) correlated shock sizes at small (resp. large)
distances.

Here
∫ w′

1

w1
dw
∫ w′

2

w2
dw′ ∫ S′

1

S1
dS
∫ S′

2

S2
dS′ρw′−w(S, S′) counts the mean number of pairs of shocks such that the first shock

occurred between w1 and w′
1, and the second between w2 and w′

2, with sizes between S1 and S′
1, resp. S2 and S′

2. For
this observable, an absence of correlations in the sequence of shocks implies ρW (S1, S2) = ρ(S1)ρ(S2). To investigate the
presence of correlations we thus study the connected two-shock size density ρcW (S1, S2), defined as

ρcW (S1, S2) := ρW (S1, S2) − ρ(S1)ρ(S2) . (C.2.7)

At the level of mean-field theory, i.e. in the BFM model, it is known [111, 1] that the shocks are independent and the process
w → ux(w) is a Levy jump process. As a consequence, ρcW (S1, S2) = 0. On the other hand, for realistic interface models
below their upper critical dimension, the shocks are correlated, demanding to go beyond the BFM. This can be seen from
the second moment for which we show below the exact relation

〈S1S2〉ρc
W

[〈S〉ρ]2
= −∆′′(W )

Ldm4
. (C.2.8)

On the left-hand-side, 〈...〉ρc
W

denotes the average with respect to ρcW as defined in Eq. (C.2.7). On the right-hand-side,

L is the lateral extension of the system, and m2 the curvature of the confining potential, which sets the correlation length
Lm := 1/m for avalanches in the lateral direction. Finally, ∆(W ) is the renormalized disorder-force correlator, the central
object in the FRG treatment of disordered elastic systems: Denoting u(w) the center-of-mass position of the interface, given
well-position w, the correlator ∆(W ) is defined as the connected correlation function of the center-of-mass fluctuations of
the interface position [123],

∆(W ) := Ldm4[u(w) − w] [u(w +W ) − (w +W )]
c
. (C.2.9)

Up to a universal scaling factor and a single non-universal scale, the function ∆(W ) only depends on the universality class
of the problem. It was computed up to two-loop accuracy in Ref. [117] and measured numerically in Ref. [105]. For our
purpose it is important that the function ∆(W ) is uniformly of order ǫ, and that its second derivative is non-zero. Thus the
correlations (C.2.8) increase when going away from the upper critical dimension, where mean-field theory, or equivalently
the BFM is relevant. Indeed, for the BFM ∆′′(W ) = 0, and the effective disorder force is distributed as a Brownian
motion. Beyond mean-field theory, the sequence of shocks is correlated, thus the effective disorder force at large scales
has a different statistics than Brownian motion. The sign of these correlations depends on the sign of ∆′′(W ), which, in
turn, depends on the universality class of the problem. As detailed in Sec. C.3.3, our results predict qualitatively different
correlations depending on the universality class. The most important static universality classes of non-periodic, short-ranged
disorder are the random-bond (RB) universality class, which at the microscopic level has short-ranged potential-potential
correlations, and the random-field (RF) universality class, for which the force-force correlations, but not the potential-
potential correlations, are short-ranged at the microscopic level. As is summarized in Fig. C.1, for RF-disorder ∆′′(W ) > 0,
and thus avalanches are always anti-correlated. On the other hand, for RB-disorder, avalanches are anti-correlated at short
distances W , but positively correlated at larger ones.

To obtain results for higher avalanche-size moments, we use the FRG and the ǫ = (duc − d) expansion to show that, to
lowest non-trivial order in the expansion,

ρcW (S1, S2) = −∆′′(W )
Ldm4

S1S2

4S2
m
ρ(S1)ρ(S2) +O(ǫ2) . (C.2.10)

Here

Sm :=
〈S2〉ρ
2〈S〉ρ

, (C.2.11)

where 〈...〉ρ denotes the average with respect to ρ as defined in Eq. (C.2.3), is the characteristic size of avalanches, which acts
as a large-scale cutoff for the avalanche-size density ρ(S), and ∆′′(W ) introduced above is O(ǫ). Integrating Eq. (C.2.10)
times S1S2 over S1 and S2, we recover Eq. (C.2.8). Contrary to the latter equation which is exact, relation (C.2.10) is
correct only to order ǫ.
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As a consquence of Eq. (C.2.10), and its generalizations to higher order, the correlations between avalanches are
universal. To make this more transparent, we rewrite Eq. (C.2.10) as

ρcW (S1, S2) =
1

(Lm)d
L2d

S4
m

Fd
(

W

Wmu
,
S1

Sm
,
S2

Sm

)

. (C.2.12)

The function Fd is universal and apart from its three arguments depends only on the spatial dimension. To first order in
d = duc − ǫ, and in the limit of large L and small m, it is given by

F(w, s1, s2) ≃ Ad∆̃∗′′(w)
16π

√
s1s2

e−(s1+s2)/4 +O(ǫ2) . (C.2.13)

Here Ad is an explicit constant, with Ad=4 = 8π2 for SR elasticity; the scale Wmu ∼ m−ζ , with ζ the roughness exponent
contains a non-universal amplitude. The range of validity of this result is discussed in the main text. The presence of the
factor of 1/(Lm)d highlights the fact that the correlations between shocks are local (indeed N := (Lm)d counts the number
of elastically independent regions of the interface). We will analyze this local structure by studying the correlations between
the local sizes of the shocks.

To summarize, let us emphasize again our main message namely that for realistic models (beyond mean-field) the
sequence of shocks is always correlated.

C.3 Model, shock observables and method

C.3.1 Model

Consider the Hamiltonian for a d−dimensional elastic interface with position u(x) ≡ ux ∈ R (x ∈ R
d), elastic kernel g−1

xx′ ,
subjected to a harmonic well centered at w, and to a disorder potential V (u, x):

H[u;w] =
1
2

∫

xx′
g−1
xx′ (ux − w)(ux′ − w) +

∫

x

V (ux, x) . (C.3.1)

Here
∫

x
=
∫
ddx and we assume everywhere that the system is confined in a box of length L with e.g. periodic boundary

conditions (the boundary conditions will not play a role in the following). We also assume the existence of a short-scale
length cutoff a. The elastic kernel is translationally invariant (g−1

xx′ = g−1
x−x′ ) and defines a convex elastic-energy functional

(i.e. g−1
xx′ > 0 for x 6= x′). We denote g−1

q = 1/gq its Fourier transform defined as g−1
q =

∫

q
eiqxg−1

x , where
∫

q
=
∫

ddq

(2π)d . A
possible choice is the standard short-ranged elasticity defined by

g−1
xx′ = δxx′ (−∇2

x′ +m2) , g−1
q = q2 +m2 . (C.3.2)

Here δxx′ is the Dirac δ distribution, and the elastic coefficient has been set to one using an appropriate choice of units.
Another kernel we consider is

g−1
q = (q2 + µ2)

γ
2 , (C.3.3)

where γ = 2 corresponds to the previous case, and γ = 1 is relevant for long-ranged elasticity, as encountered in fracture
and contact-line experiments. For a kernel of the form (C.3.3) we define the mass term as

m2 := g−1
q=0 = µγ . (C.3.4)

It is the strength of the harmonic well. For short-ranged elasticity we have

Hel[u;w] :=
1
2

∫

xx′
g−1
xx′ (ux − w)(u′

x − w)

=
1
2

∫

x

(∇xux)2 +m2(ux − w)2. (C.3.5)

Thus Lm := m−1 defines a length scale beyond which different parts of the interface are elastically independent. It also
provides a large-scale cutoff in loop integrals encountered in the field theory. For more general kernels (C.3.3) this length
scale is Lµ := µ−1, and we suppose Lµ ≪ L, ensuring that boundary conditions do not play a role. The number of elastically
independent parts of the interface is N = (L/Lµ)d. The disordered potential V (u, x) is supposed to be short-ranged in
internal space x, and statistically translationally invariant, with a second cumulant

V (u, x)V (u′, x′)
c

= δxx′R0(u− u′) . (C.3.6)

The overline (...) denotes the average over the disorder, and superscript c stands for connected averages. The detailed form
of R0 is, apart from global features that determine the universality class of the problem (see Sec. C.3.3), unimportant. We
also consider the force-force cumulant ∆0(u) = −R′′

0 (u) such that ∂uV (u, x)∂u′V (u′, x′)
c

= δxx′ ∆0(u − u′). Introducing
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a (finite) temperature T , disorder and thermal averages in this model can efficiently be computed using a replicated field
theory. Introducing n replicated fields uax, a = 1, . . . , n, the replicated action reads

S[u] =
1

2T

∑

a

∫

xx′
g−1
xx′ (uax − w)(uax′ − w)

− 1
2T 2

∑

a,b

∫

x

R0(uax − ubx) + · · · (C.3.7)

where · · · indicates eventual higher cumulants of the disorder.

C.3.2 The ground state and the scaling limit

As discussed in the introduction, we are interested in the minimal energy configuration of the interface for a given parabolic
well position w and disorder realization V (i.e. the T = 0 problem). It is defined as the configuration ux(w), which minimises
the energy,

ux(w) := argmin
ux

H[u;w] . (C.3.8)

We denote

u(w) :=
1
Ld

∫

x

ux(w), (C.3.9)

the center of mass of the ground-state of the interface. The statistical properties of ux(w) have been extensively studied
in the literature. In particular it is known that the interface is self-affine with a (static) roughness exponent ζ, defined by
[ux(w) − ux′ (w)]2 ∼ |x− x′|2ζ . This scaling form generally holds in the scaling regime Lc ≪ |x− x′| ≪ Lµ where Lc is the
Larkin length. The scaling limit is thus obtained for Lµ → ∞ or equivalently for µ → 0, also equivalent to m → 0 a regime
which is implicit throughout this work. In the FRG treatment of this problem, the ground state statistics is studied using
the replicated field theory (C.3.7). The mass term m (or µ = m2/γ) can be conveniently used as a control parameter to
study the flow of the effective action. As m → 0 and through a proper rescaling, the effective action approaches a RG fixed
point. This fixed point is perturbative in ǫ = duc − d > 0 where duc is the upper critical dimension of the model (for kernels
of the form (C.3.3) it is given by duc = 2γ, thus duc = 4 for short-ranged elasticity and duc = 2 for long-ranged elasticity).
The central object of the theory is the effective disorder correlator R(u), a renormalized version of R0(u). It appears in the
effective action of the theory Γ[u], as R0(u) appears in the bare action S[u] of Eq. (C.3.7) (see the action (C.3.44) below).
Remarkably, as shown in Ref. [96], it is related to a physical observable, the renormalized disorder force-force correlator
∆(u) defined as

∆(w − w′) := Ldm4[u(w) − w][u(w′) − w′]
c
, (C.3.10)

through the relation ∆′′(u) = −R(u). This is the function that appears in the results (C.2.8) and (C.2.10) of the introduc-
tion. The RG flow can be equivalently studied on R or ∆. For m → ∞, the correlator ∆(w) is equal to the bare force-force
correlator: ∆(w) →m→∞ ∆0(w). In the limit m → 0 it admits a scaling form

∆(w) = Adµ
ǫ−2ζ∆̃(µζw) (C.3.11)

where Ad is a dimensionless constant, and we recall µ = m2/γ . For kernels of the form (C.3.3), a convenient choice is to
take Ad as Ad = 1

ǫĨ2
with the dimensionless loop integral Ĩ2 :=

∫

q
1

(1+q2)γ . Note that the combination ǫĨ2 stays finite as
ǫ → 0. In general

A−1
d = ǫĨ2 =

2
(2

√
π)d

Γ(γ + 1 − d/2)
Γ(γ)

, (C.3.12)

and for example ǫĨ2 =γ=2;d=4 1/(8π2) and ǫĨ2 =γ=1;d=2 1/(2π). As m → 0, the rescaled disorder correlator ∆̃ converges to
the fixed point of the FRG flow equation ∆̃∗(u), which depends only on the universality class.

Let us now recall some important properties of these fixed-point functions.

C.3.3 Properties of ∆̃∗(u) and static universality classes

Depending on the properties of the bare disorder correlator R0(u), the FRG predicts that ∆̃(u) converges as m → 0 to
one of the fixed point of the FRG equation. A property of the (zero-temperature) FRG equation is that, for non-periodic
disorder, if ∆̃∗(u) is a fixed point, κ2∆̃∗(u/κ) also is a fixed point. Hence the fixed point towards which the system flows
contains one non-universal scale whose value depends on microscopic properties of the disorder. The known fixed points
can be regrouped into four main classes1. Analytic properties of these fixed-point functions are known up to two-loop order,
i.e. O(ǫ2), see Ref. [117] to which we refer the reader for quantitative results. An important property is that all fixed points
exhibit a cusp around 0, ∆(u) ≃ ∆(0) + ∆′(0+)|u| +O(u2), related to the presence of avalanches [109, 101]. For our analys
the sign of (∆∗)′′(u) is crucial as it determines the sign of the correlations. From the exact result (C.2.8) (shown below) we
see that for (∆̃∗)′′(W ) > 0 shock sizes at distance W are anti-correlated, whereas for (∆̃∗)′′(W ) < 0) they are positively
correlated.

1There are other classes with different long-range correlations, but we will not study them.
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Random-bond: This class has a bare disorder potential V (x, u) distributed with short-ranged correlations in the u
direction: The bare disorder correlator R0(u) decays quickly to 0 as u → ∞. The most important property for our analysis
of the fixed-point function ∆̃∗

RB(u) (its typical form is plotted on the right of Fig. C.1) is that (∆̃∗
RB)′′(u) > 0 at small u

and (∆̃∗
RB)′′(u) < 0 at large u.

Random field: This class has the bare disorder force F (x, u) = −∂uV (x, u) distributed with short-ranged correlations.
Then the bare force-force correlator ∆0(u) is short-ranged and R0(u) ≃u≫1 −σ|u| where σ is called the amplitude of the
random field. The most important property for our analysis of the fixed point function ∆̃∗

RF(u) (its typical form is plotted
on the left of Fig. C.1) is that (∆̃∗

RF)′′(u) > 0 for all x.

Random periodic: This class corresponds to periodic disorder V (u + 1) = V (u). As a consequence, ∆̃∗(u) is also
periodic and (∆̃∗)′′(u) = (∆̃∗)′′(0) > 0 is constant. Though our analysis still applies to this universality class and our
results are correct to O(ǫ), we will not discuss it here. As the shock process is periodic in any dimension, correlations
naturally arise from this periodicity (in particular in d = 0 in the m → 0 limit only one shock survives per interval).

The Brownian-Force-Model universality class: Finally, the Brownian-Force-Model defined as ∆0(u) =
−σ|u| is also a fixed point of the FRG flow equation and attracts all bare disorder such that ∆0(u) ≃ −σ′|u| at large u. It
models avalanches at the mean-field level. (It resums tree diagrams). In this model shocks are uncorrelated.

Hence, from the perspective of practical applications, the qualitative behavior of the correlations between shocks as a
function of the distance strongly depends on the universality class of the model (see Fig. C.1).

C.3.4 Shocks observables: Densities

As recalled in the introduction, it is well known that in the limit of small m the (rescaled) ground state ux(w) is piecewise
constant as a function of w. In terms of the sequence of shocks {(wi, S

(i)
x )}i∈Z one can write ux(w) and u(w) as

ux(w) =
∑

i

θ(w − wi)S
(i)
x ,

u(w) =
1
Ld

∑

i

θ(w − wi)S
(i) , (C.3.13)

where θ(x) is the Heaviside theta function. We recall the definition of the one and two-shock size-density:

ρ(S) =
∑

i

δ(w − wi)δ(S − S(i)) , (C.3.14)

ρW (S1, S2) =
∑

i6=j
δ(w − wi)δ(S1 − S(i))δ(w +W − wj)δ(S2 − S(j))) .

(C.3.15)

These distributions possess a large-scale cutoff which we denote Sm; the latter diverges for m to 0 as Sm ∼ m−d−ζ .
Additionally, we suppose that they have a small-scale cutoff S0. In the scaling regime, ρ(S) behaves as a power law with a
characteristic exponent τ : ρ(S) ∼ S−τ for S0 ≪ S ≪ Sm. We us also define the connected density

ρcW (S1, S2) = ρW (S1, S2) − ρ(S1)ρ(S2) . (C.3.16)

In the first part of this work our goal is to compute ρcW (S1, S2) up to first order in ǫ using the FRG.

C.3.5 Shocks observables: Probabilities

One can normalize the above densities to define proper probability distributions as follows:

ρ0 :=

∫

ρ(S) dS , (C.3.17)

ρ2(W ) :=

∫

ρW (S1, S2) dS1 dS2 , (C.3.18)

P (S) :=
ρ(S)
ρ0

, (C.3.19)

PW (S1, S2) :=
ρW (S1, S2)
ρ2(W )

. (C.3.20)

With this definition, ρ0dw is the mean number of avalanches occurring in an interval dw and
∫ w2

w1
dw
∫ w4

w3
dw′ρ2(w′ − w)

counts the number of pairs of shocks where the first one occurs between w1 and w2 and the second between w3 and w4,
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irrespective of their sizes. Given these definitions, P (S) and PW (S) are normalized probability distribution functions (PDF).
∫ S′

S
dS̃ P (S̃) is the probability, given that a shock has occurred, that its size is between S and S′.

∫ S′
1

S1
dS
∫ S′

2

S2
dS′PW (S, S′)

is the probability, given that two shocks occurred at a distance W , that their sizes are between S1 and S′
1, and S2 and

S′
2. Note that a priori the marginal distribution

∫
dS1PW (S1, S2) is different from P (S2) since it contains the additional

information that a shock occurred at a distance W . At the level of these PDFs, the absence of correlations would imply
PW (S1, S2) = P (S1, S2) and, though in the remaining of the text we will favor the use of densities, our results can be
translated to probabilities using Eq. (C.3.20). As discussed in Ref. [109], for an avalanche-size distribution ρ(S) with
exponent τ > 1 (which is relevant here), the value of ρ0 is dominated by the small-scale cutoff S0 for avalanche sizes, and
diverges as S0 → 0,

ρ0 =

∫ ∞

S0

ρ(S)dS ∼S0→0 S
1−τ
0 . (C.3.21)

Hence, ρ0 is non-universal. In the same way ρ2(W ) is non-universal, even though its relation with ρ0 has some universal
features as we will show below. We denote by 〈...〉ρ, 〈...〉ρW , 〈...〉ρc

W
, 〈...〉P and 〈...〉PW the averages with respect to ρ, ρW ,

ρcW , P and PW .

C.3.6 Relation between avalanche-size moments and renormalized force cumulants: First
moment

The nth cumulant of the renormalized pinning force is defined as

m2n[u(w1) − w1] . . . [u(wn) − wn]
c

=

(−1)nL−(n−1)dĈ(n)(w1, . . . , wn) . (C.3.22)

By definition Ĉ(2)(w1, w2) = ∆(w1 −w2) as introduced above. By parity invariance of the disorder m2[u(w) − w] = 0, and
thus Ĉ(1)(w) = 0.

First cumulant: One immediately gets by inserting Eq. (C.3.13) into m2[u(w) − w] = 0 the exact relation

〈S〉ρ = ρ0〈S〉P = Ld . (C.3.23)

Second cumulant: Differentiating with respect to w1 and w2 the definition L−d∆(w1−w2) = m4[u(w1) − w1][u(w2) − w2]
with Eq. (C.3.13) inserted, one obtains the relation (33) of [109] (with a corrected misprint 1 → −1). It can be written in
the form

−∆′′(w1 − w2)
Ldm4

=L−2d〈S2〉ρδ(w1 − w2)

+ L−2d〈S1S2〉ρw2−w1
− 1 . (C.3.24)

Hence, as pointed out in Ref. [109], the singular part of the second derivative of ∆′′(w1 − w2) around w2 = w1 gives an
exact relation between the cusp in the renormalized disorder correlator

σ := −∆′(0+) = R′′′(0+) , (C.3.25)

and the second avalanche-size moment,

Sm :=
〈S2〉ρ
2〈S〉ρ

=
〈S2〉P
2〈S〉P

=
σ

m4
. (C.3.26)

The avalanche size Sm plays the role of a large-scale cutoff for ρ(S). On the other hand, the regular part of Eq. (C.3.24)
gives the exact relation

L−2d〈S1S2〉ρW = 1 − ∆′′(W )
Ldm4

. (C.3.27)

For uncorrelated shocks we would have obtained L−2d〈S1S2〉ρW = 1. The correlations thus come from the non-zero value
of ∆′′(W ) 6= 0, a property which is generally expected from the FRG. It is a simple signature of the fact that the effective
disordered force felt by the interface at large scale is not Brownian. Note that in terms of the moments of the connected
density, the exact relation (C.3.27) reads

L−2d〈S1S2〉ρc
W

= −∆′′(W )
Ldm4

. (C.3.28)

Let us also write the exact relation (C.3.27) in terms of the probabilities defined in Sec. C.3.5:

ρ2(W )
ρ2

0

〈S1S2〉PW

(〈S〉P )2
= 1 − ∆′′(W )

Ldm4
. (C.3.29)
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C.3.7 Generating functions

We now introduce the generating functions which encode all the moments of the density ρW (S1, S2). Let us first recall the
generating functions used in the one-shock case:

Z(λ) = L−d〈eλS − 1〉ρ ,
Ẑ(λ) = L−d〈eλS − λS − 1〉ρ = Z(λ) − λ. (C.3.30)

They are related to observables associated with the position as

Z(λ) = L−d lim
δ→0+

∂δeL
d[u(w+δ)−u(w)] ,

Ẑ(λ) = L−d lim
δ→0+

∂δeL
d[û(w+δ)−û(w)] , (C.3.31)

where û(w) := u(w) − w is the translated position field. Note that due to STS they are independent of w. These relations
were proven in Ref. [111]. For two shocks we introduce

ZW (λ1, λ2) := L−2d〈(eλ1S1 − 1)(eλ2S2 − 1)〉ρW . (C.3.32)

We show in Appendix C.8 that it can be computed as

ZW (λ1, λ2)

= ẐW (λ1, λ2) + λ2Ẑ(λ1) + λ1Ẑ(λ2) + λ1λ2

= ẐW (λ1, λ2) + λ2Z(λ1) + λ1Z(λ2) − λ1λ2 . (C.3.33)

We used the definition

Ẑw2−w1 (λ1, λ2) := L−2d × (C.3.34)

lim
δ1,δ2→0+

∂δ1,δ2e
Ldλ1[û(w1+δ1)−û(w1)]eLdλ2[û(w2+δ2)−û(w2)]

In the following we compute ẐW (λ1, λ2) using the FRG through formula (C.3.34). Let us also define the connected
generating functions

ZcW (λ1, λ2) := L−2d〈(eλ1S1 − 1)(eλ2S2 − 1)〉ρc
W

= ZW (λ1, λ2) − Z(λ1)Z(λ2)

ẐcW (λ1, λ2) := ẐW (λ1, λ2) − Ẑ(λ1)Ẑ(λ2) (C.3.35)

These functions are actually equal: ZcW (λ1, λ2) = ẐcW (λ1, λ2) as is easily seen using (C.3.33).

C.3.8 Relation between avalanche-size moments and renormalized force cumulants: Kol-
mogorov cumulants and chain rule

Using Eq. (C.3.34) and the fact that û(w) = 0, the generating function ẐW (λ1, λ2) can be written as

ẐW (λ1, λ2) =
∞∑

n,m=1

λn1λ
m
2

n!m!
lim

δ1,δ2→0+
(C.3.36)

L(n+m−2)d

δ1δ2
[û(δ1) − û(0)]n[û(W + δ2) − û(W )]m .

In the limit of δi → 0 we encounter for each (n,m) two types of terms:

[û(δ1) − û(0)]n[û(W + δ2) − û(W )]m =

[û(δ1) − û(0)]n
c × [û(W + δ2) − û(W )]m

c
(C.3.37)

+[û(δ1) − û(0)]n[û(W + δ2) − û(W )]m
c

+O(δ3
i ) .

The term in the second line of Eq. (C.3.37) produces the disconnected part of the avalanche moment 〈Sn1 〉〈Sm2 〉 and thus the
disconnected part of the generating function ẐW (λ1, λ2), that is Ẑ(λ1)Ẑ(λ2). The last term on the other hand contributes
to 〈Sn1 Sm2 〉ρc

W
and to the connected part of the generating function, ẐcW (λ1, λ2) = ZcW (λ1, λ2) which is the true unknown.

Introducing the Kolmogorov cumulants

K
(n,m)
W (δ1, δ2) := (C.3.38)

L(n+m−2)d[û(δ1) − û(0)]n[û(W + δ2) − û(0)]m
c
,

we can write

ZcW (λ1, λ2) =
∞∑

n,m=1

λn1λ
m
2

n!m!
lim

δ1,δ2→0+

1
δ1δ2

K
(n,m)
W (δ1, δ2) , (C.3.39)
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or, equivalently,

〈Sn1 Sm2 〉ρc
W

= lim
δ1,δ2→0+

1
δ1δ2

K
(n,m)
W (δ1, δ2) . (C.3.40)

The Kolmogorov cumulants (C.3.38) can be generally extracted from the renormalized force cumulants (C.3.22), as we now
explain. Let us introduce2

C(n,m)(w1, . . . , wn, wn+1, . . . , wn+m) = (C.3.41)

L(n+m−2)dû(w1) . . . û(wn)û(wn+1) . . . û(wn+m)
c
.

They are trivially linked to the renormalized force cumulants (C.3.22): C(n,m)(w1, . . . , wn, wn+1, . . . , wn+m) = 1
Ld (−1/m2)n+mĈ(n+m)(

Explicit expressions for the lowest cumulants with n + m ≤ 4 are displayed in Ref. [109], see e.g. Eq. (61) there. In the
notation for C(n,m), though the expression is symmetric in wi, we have highlighted the facts that in the end the n first wi will
be taken around w = 0, whereas the last m will be around W . Indeed, to obtain K

(n,m)
W (δ1, δ2) from the moments C(n,m),

we must successively evaluate C(n,m) with wi → δ1 minus C(n,m) with wi → 0 for each i = 1, . . . , n, then set wi → W + δ2

minus C(n,m) with wi → W for each i = n+ 1, . . . , n+m. Ambiguities associated with the possible presence of terms such
as ∆′(0±), are lifted by taking the limit of coinciding points with a given specific ordering of the wi. Consistency requires
that the end result does not depend on the chosen ordering, a property linked to the assumption that all singularities of
the field û(w) can be modeled by a finite density of dilute shocks (which guarantees e.g. the continuity of Ĉ). This iterative
procedure was called the K operation in [109].

C.3.9 Strategy of the calculation and validity of the results

In order to compute ẐW (λ1, λ2), we must be able to perform disorder averages of moments of the position field at various
positions wi for i = 1, . . . , r. For example r = 4 is sufficient in the formulation (C.3.34) and used in Appendix C.10. In the
main part of this work we report a calculation of ẐW (λ1, λ2) from the study of the moments (C.3.41) and we thus need to
keep r arbitrary. We therefore consider the theory for r position fields uix coupled to different parabolic wells centered at
positions wi in the same disordered environment. The Hamiltonian of the problem is

H[{u}, {w}] =
r∑

i=1

Hel[u
i, wi] +

r∑

i=1

∫

x

V (uix, x) . (C.3.42)

This leads to a replicated action of the form

S[u] =
1

2T

∑

a,i

∫

xx′
g−1
xx′ (u

i
ax − wi)(u

i
ax′ − wi)

− 1
2T 2

∑

a,i;b,j

∫

x

R0(uiax − ujbx) + · · · (C.3.43)

The effective action of the theory is [109, 111, 96]

Γ[u] =
1

2T

∑

a,i

∫

xx′
g−1
xx′ (u

i
ax − wi)(u

i
ax′ − wi)

− 1
2T 2

∑

a,i;b,j

∫

x

R(uiax − ujbx) +O(ǫ2) . (C.3.44)

Here R(u) = O(ǫ) is the renormalized disorder correlator already introduced in the previous section, while the neglected
terms are higher-order terms in ǫ that can be expressed as loop integrals with higher powers of R. The calculation of
observables using the effective action (C.3.44) has been called the improved tree approximation [109, 111]. Here we did
not specify the number of replicas a = 1, . . . , nr. As is usual in replica calculations, the nr → 0 limit will be implicit
in the following. Since (C.3.44) is the effective action, observables will be computed using a saddle-point calculation, or
equivalently in a diagrammatic language, by resuming all tree diagrams generated by the action (C.3.44). This calculation
allows to get the lowest order in ǫ for any observable. Let us recall the known results at the improved tree level for ρ(S)
and Z(λ) as obtained in Refs. [109, 111]:

ρ(S) =
Ld

2
√
πS

3
2 (Sm)

1
2

e
− S

4Sm , (C.3.45)

Z(λ) = λ+ SmZ(λ)2 =
1

2Sm
(1 −

√

1 − 4λSm) . (C.3.46)

2Note that those differ from C introduced in [109] by an additional factor of L−d.
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C.3.10 Connected versus non-connected averages and the ǫ-expansion

Before going further, let us now mention a subtle point. As will become clear in the following, the improved tree calculation
leads to a result of order O(ǫ) for ρcW , in contrast to ρ(S) for which it leads to a result of order O(1) 3. Hence if one computes
ρW (S1, S2) = ρ(S1)ρ(S2)+ρcW (S1, S2) to O(ǫ) one must pay attention to the fact that ρcW (S1, S2) can be computed using the
improved-tree theory, but ρ(S) has then to be computed to one-loop accuracy. In the same way, the connected generating
function

ZcW (λ1, λ2) = ZW (λ1, λ2) − Z(λ1)Z(λ2) (C.3.47)

can be computed exactly up to order O(ǫ) using the improved tree theory, but to compute ZW (λ1, λ2) up to order ǫ one must
add one-loop corrections to Z(λ). The same remark holds for the moments 〈Sn1

1 Sn2
2 〉ρc

W
= 〈Sn1

1 Sn2
2 〉ρW − 〈Sn1

1 〉ρ〈Sn2
2 〉ρ.

C.4 Correlations between total shock sizes

C.4.1 Reminder of the diagrammatic rules and extraction of shock moments

Let us now explain how the moments

C(n,m)(w1, . . . , wn, wn+1, . . . , wn+m) (C.4.1)

= L(n+m−2)dû(w1) . . . û(wn)û(wn+1) . . . û(wn+m)

= L−2d

∫

y1...yn+m

ûy1 (w1) . . . ûyn+m (wn+m)

are obtained using the diagrammatic rules developed in Ref. [109] which can also be read off from the action (C.3.44). In
the calculation of the correlator (C.3.41), the terms of the form Ldû(wi) =

∫

yi
ûyi (wi) are diagrammatically represented as

external legs at the top of the diagrams. Fields at different position wi and wj can be contracted through an interaction
vertex

∫

z
1
T2R(ûz(wi) − ûz(wj) +wi −wj), represented as a dashed-line (each contraction bringing an additional derivative

to R with the appropriate sign). The propagators are represented as plain lines. When forming tree diagrams, one produces
n + m − 1 interaction vertices 1

T2R, and 2(n + m − 1) propagators, which each carries a factor of T . For trees, all
factors of T cancel, and the diagrams survive in the 0 temperature limit. The factors of T can thus be omitted in the
diagrammatic rules. As for the integrals over the positions of the external legs yi, i = 1, . . . , n+m and the disorder vertices
zk, k = 1, . . . , n+m− 1, since the interaction is local in space and

∫

x
gx = 1

m2 , all 2(n+m− 1) propagators can be taken as

static propagators and thus this integration produces an additional factor of Ld. This procedure results in expressions for
the C(n,m)(w1, . . . , wn, wn+1, . . . , wn+m) as sums of products of terms involving derivatives ∆(p)(wi −wj) 4. In calculating
the Kolmogorov cumulants K(n,m)(δ1, δ2) to order O(δ1δ2) one must use the even but non-analytic form of ∆(u) around
the origin,

∆(u) = ∆(0) + ∆′(0+)|u| +
∆′′(0)

2
u2 +O(u3) . (C.4.2)

We checked that if one takes all limits of coinciding points with a fixed order of the wi in the calculation, one obtains a
non-ambiguous result, independent of the ordering.

C.4.2 Lowest moments

First moment: We fist consider the computation of 〈S1S2〉ρc
W

. To this aim we compute C(1,1)(w1, w2), which is given
by a single diagram:

C(1,1)(w1, w2) =

∆(w1 − w2)

1
m2

1
m2

w1 ≈ 0 w2 ≈ W

=
1

Ldm4
∆(w1 − w2) . (C.4.3)

We have introduced a new diagrammatic notation: A double-dashed line represents an interaction vertex between position
fields at a finite distance ≈ W ; we reserve the single dashed line for interaction vertices between nearby position fields.
Hence,

K
(1,1)
W (δ1, δ2) =

1
Ldm4

[

∆(−δ1 +W + δ2) − ∆(W + δ2)

−∆(−δ1 +W ) + ∆(W )
]

= −∆′′(W )
Ldm4

δ1δ2 +O(δ2
i ) . (C.4.4)

3To be rigorous, this is only true of the dimensionless density ρ̃(S̃) = Smρ(SmS̃) since Sm = O(ǫ),
we neglect this subtlety in the following.

4Each R vertex must be contracted at least twice or there would be one free-replica sum left in the
replicated theory, leading to 0 in the limit of a vanishing number of replicas.



C.4. Correlations between total shock sizes 215

Using (C.3.40) we conclude that

L−2d〈S1S2〉ρc
W

= −∆′′(W )
Ldm4

. (C.4.5)

This is the exact result (C.3.27), here retrieved diagrammatically within the improved tree approximation. A priori there
could be higher-order corrections O(ǫ2) on the r.h.s. of (C.4.5), coming from loop diagrams. However, the definition (C.3.10)
of ∆(u) as a physical observable effectively resums an infinite number of loop diagrams. The same diagrams then arise on
both sides of Eq. (C.4.5), and the result (C.3.27) is exact.

Second moment: Let us now consider the computation of 〈S2
1S2〉ρc

W
. We first need to compute C(2,1)(w1, w2, w3).

Diagramamtically it is given by

C(2,1)(w1, w2, w3)

= 2 Symw1↔w2

(
w2 ≈ 0 w1 ≈ 0 w3 ≈ W

+

w3 ≈ W w1 ≈ 0 w2 ≈ 0

+

w2 ≈ 0 w3 ≈ W w1 ≈ 0
)

=
2

Ldm8
Symw1↔w2

[

∆(w1 − w2)∆′(w1 − w3) + ∆(w1 − w3)∆′(w1 − w2) + ∆(w3 − w2)∆′(w3 − w1)
]

(C.4.6)

In doing the K operation to go from C(2,1) to K(2,1)
W , these diagrams are not equivalent. At order δ1δ2 that we are interested

in, the first term leads to 4 ∆′(0+)

m4
∆′′(W )

Ldm4 δ1δ2, the second to 2 ∆′(0+)

m4
∆′′(W )

Ldm4 δ1δ2, whereas the third one is of order O(δ2
1δ2)

and does not contribute. Using Eq. (C.3.40) we conclude that

L−2d〈S2
1S2〉ρc

W
= 6

∆′(0+)
m4

∆′′(W )
Ldm4

+O(ǫ2) . (C.4.7)

General rules for diagrams: The last example is rather instructive for the three general rules:
(i) the only diagrams that contribute to the Kolmogorov cumulant K(n,m)

W (δ1, δ2) at order δ1δ2 contain a single double-
dashed vertex (that is a single disorder interaction vertex connecting the two disjoint sets of points at w ≈ 0 and w ≈ W );

(ii) this vertex becomes a ∆′′(W ) at order δ1δ2;
(iii) the other interaction vertices are between (almost) coinciding points, and produce a factor of ∆′(0+) at order δ1δ2.
These rules come from the fact that in the K operation each external leg produces an additional factor of δ1 (for the n

legs at w1, . . . wn ≈ 0) or δ2 (for the m legs at wn+1, . . . wn+m ≈ W ), thus tend to be of higher order in δ1 and δ2. However,
from the study of the one-shock case (see Section V.C of [109]), we know the general mechanism to escape this apparent
trivialization and to allow that each part of the diagram that connects only coinciding points together brings a single δi. In
this case, starting from the top of a diagram the δi attached to an external leg can be brought to the bottom of the diagram
as long as the disorder vertex encountered along the way leads to a ∆′(0+) when taking the limit of coinciding points.
In such diagrams each vertex linking coinciding points must have two up-going propagators and one entering from below
(effectively corresponding to the ∆′(0+) cubic vertex of the BFM [101]), except for the vertex at the bottom of the diagram
which has only two up-going propagators (see Section V.D. of [109]). This last vertex is the one carrying the remaining
factor of δ1: being differentiated in the end it also leads to an additional factor of ∆′(0+). This explains why the disorder
only enters as ∆′(0+) in the one-shock improved-tree-theory result (C.3.45). The rule (iii) stated above is a generalization
of that property.

In the two-shock case the same mechanism occurs and rule (i) is obvious: a diagram cannot have more than two sets of
points separated by a double-dashed line (one around w ≈ 0 and one around w ≈ W ) since each set contributes a factor of
δi. For example, in the last diagram of Eq. (C.4.6), each leg is such a set of points, and the diagram is O(δ2

1δ2). To explain
rule (ii), let us consider one endpoint of a double-dashed line and distinguish three cases. First, if there is no propagator
entering from below this point, such as the points at w ≈ W in the first and second diagrams of Eq. (C.4.6) and the two
points in Eq. (C.4.3), then the δi originating from the set of connected points above it end at this vertex, and the vertex is
differentiated during the K operation. Second, if there is a propagator entering from below that point, such as the point at
w1 ≈ 0 in the first diagram of Eq. (C.4.6), then the δi originating from above the vertex continues downward the diagram
without modifying the vertex. Third, if there is more than one propagator entering from below the point then the diagram
will necessarily be of higher order in δi. Combining these three cases, one concludes that the double-dashed-line vertex
necessarily corresponds to a ∆′′(W ).

Hence we see that the diagrams contributing to the two-shock moments consist of diagrams reminiscent of the one-shock
case (i.e. they contain only ∆′(0+) vertices) linked together by an interaction vertex − ∆′′(W )

Ldm4 .

C.4.3 Generating function for all moments

Let us now use the above rules and give a diagrammatic computation of ZcW (λ1, λ2) = ẐcW (λ1, λ2) defined in Eq. (C.3.35).
To this aim, let us first introduce a diagrammatic notation for Z(λ) defined in Eq. (C.3.30):

Z(λ) = . (C.4.8)
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We have emphasized using dots that there is an arbitrary number of external legs at the top of the diagrams summed in
Eq. (C.4.8). Using the expansion (C.3.36) and following the rules explained in the previous section, the diagrams entering
in ẐcW (λ1, λ2) are made of two trees linked by a single doubled dashed line. It is the sum of all tree diagrams for avalanches

at w = 0, times all tree diagrams for avalanches at w = W , linked together by a single − ∆′′(W )

Ldm4 inserted between any pair
of points belonging to each tree. This can be represented as

ZcW (λ1, λ2) = ẐcW (λ1, λ2)

=

w ≈ 0 w ≈ W

w ≈ 0 w ≈ W

. (C.4.9)

The diagrams above the point of insertion of ∆′′(W ) on the left are given by Z(λ1). The terms below are all the diagrams
in Z(λ1) with an arbitrary external leg selected, that is dZ(λ1)

dλ1
. A similar contribution arises on the right-hand side. Hence

we arrive at the result

ZcW (λ1, λ2) = −∆′′(W )
Ldm4

Z(λ1)
dZ(λ1)
dλ1

Z(λ2)
dZ(λ2)
dλ2

+O(ǫ2) (C.4.10)

In terms of ZW (λ1, λ2) this result reads

ZW (λ1, λ2) = Z(λ1)Z(λ2) (C.4.11)

−∆′′(W )
Ldm4

Z(λ1)
dZ(λ1)
dλ1

Z(λ2)
dZ(λ2)
dλ2

.

It is correct to O(ǫ) if one takes into account the O(ǫ) corrections to Z(λ). Expanding the result (C.4.10) one obtains the
moments 〈Sn1 Sm2 〉ρc

W
:

〈Sn1 Sm2 〉ρc
W

= −∆′′(W )
L3dm4

n!m! (C.4.12)

×
n−1∑

p=0

m−1∑

q=0

〈Sn−p〉ρ〈Sp+1〉ρ〈Sm−q〉ρ〈Sq+1〉ρ
(n− p)!p!(m− q)!q!

+O(ǫ2) .

The diagrammatic interpretation of this result is straightforward: to construct an arbitrary diagram contributing to
〈Sn1 Sm2 〉ρc

W
, one must first choose p ≤ n − 1 external legs on the left that will be below the point of insertion of − ∆′′(W )

Ldm4

(there must be at least one leg above this point of insertion). In the K operation, all those points lead to a term that
contributes to 〈Sp〉ρ. The combinatorial term accounts for the Cnp possible choices. Note that this result was derived using
the heuristic diagrammatic rules developed in the preceding section. We observe that:

(i) It correctly reproduces the results for the small-order moments (C.4.5) and (C.4.7). We checked that it leads to

〈S3
1S2〉ρc

W
= −60 ∆′′(W )

Ldm4 S
2
m and 〈S2

1S
2
2〉ρc

W
= −27 ∆′′(W )

Ldm4 S
2
m, which can also be derived from the expression for Ĉ(4)(w1, w2, w3, w4)

given e.g. in formula (61) of Ref. [109].
(ii) We give in Appendix C.9 an alternative derivation of Eq. (C.4.11) that uses the Carraro-Duchon formalism [230, 111].
(iii) We give in Appendix C.10 a derivation using a saddle-point calculation within the effective action (C.3.44). This

also yields the local structure of correlations studied in Section C.5.

C.4.4 Results for the densities

To infer ρW from Eq. (C.4.11), we first note the identity Z(λ) dZ(λ)
dλ

= 1
2Sm

d
dλ

(Z(λ) − λ), derived from the self-consistent

equation (C.3.45) for Z(λ). Differentiating L−d ∫ dS(eλS − 1)ρ(S) = Z(λ) with respect to λ and using 〈S〉ρ = Ld yields

L−d
∫

dS(eλS − 1)Sρ(S) =
d

dλ
[Z(λ) − λ] . (C.4.13)

Finally, using Eqs. (C.3.32) and (C.4.11), we obtain

ρW (S1, S2) = ρ(S1)ρ(S2)

(

1 − ∆′′(W )
Ldm4

S1S2

4S2
m

)

. (C.4.14)

This is our main result for the two-schock density, already announced in Eq. (C.2.10) of the introduction. It can be used
to extract a variety of physical observables.



C.4. Correlations between total shock sizes 217

Mean number of pairs of shocks: Integrating over S1 and S2, we obtain two equivalent formulas for ρ2(W ):

ρ2(W ) = ρ2
0 − ∆′′(W )

Ldm4

L2d

4S2
m

(C.4.15)

= ρ2
0

[

1 − ∆′′(W )
Ldm4

(
〈S〉P
2Sm

)2
]

.

Hence, although both ρ0 and ρ2(W ) are non-universal and dominated by the non-universal small avalanche size cutoff S0

discussed in Sec. C.3.5, the connected density ρ2(W ) − ρ2
0 does not depend on S0 and is universal.

Normalized probability distribution: The above results allow us to express the probability distribution
PW (S1, S2) = ρW (S1,S2)

ρ2(W )
to O(ǫ) accuracy as

PW (S1, S2) =

P (S1)P (S2)

[

1 − ∆′′(W )
4S2

mLdm4

(

S1S2 − 〈S〉2
P

)]

. (C.4.16)

Conditional probability distribution: Another PDF of interest is the conditional probability to have a shock
with amplitude S2, given that there was a shock of amplitude S1 at a distance W before. To O(ǫ) accuracy

PW (S2|S1) =
PW (S1, S2)

∫
dS2PW (S1, S2)

(C.4.17)

= P (S2)

[

1 − ∆′′(W )S1

4S2
mLdm4

(

S2 − 〈S〉P
)]

.

Its mean value, normalized by 〈S〉P , is

〈S2|S1〉
〈S〉P

= 1 − ∆′′(W )S1

4S2
mLdm4

(

2Sm − 〈S〉P
)

. (C.4.18)

Second shock marginal: The probability for the size S2 of a second shock at W , given that there was a shock at
0, is

PW (S2) =

∫

dS1PW (S1, S2)

= P (S2)

[

1 − ∆′′(W )〈S〉P
4S2

mLdm4

(

S2 − 〈S〉P
)]

.

(C.4.19)

The normalized mean value of the second shock is

〈S2〉W
〈S〉P

= 1 − ∆′′(W )〈S〉P
4S2

mLdm4

(

2Sm − 〈S〉P
)

. (C.4.20)

C.4.5 Analysis of the results

Sign of the correlations: As discussed in Sec. C.3.3, the sign of the correlations (positively or negatively correlated
shock sizes) solely depends on the sign of ∆′′(W ), which depends on the distance W and on the universality class of the
problem. The above results thus unveil a rich phenomenology for the correlations as pictured in Fig. C.1.

Range of validity: The result (C.4.10) was obtained in the framework of the ǫ expansion. The results for the
connected part of the correlations are by definition the first non-zero terms in this expansion, since they were obtained
within the improved tree approximation, and they appear at O(ǫ). As a perturbative result, it is by definition controlled for
ǫ → 0. For finite ǫ, the predictions should be accurate as long as the corrections to the mean-field behavior are small. This
is worth emphasizing, since the moments 〈Sn1 Sm2 〉ρW predicted by the formula (C.4.12) become negative for large (n,m),
signaling a breakdown of the improved tree approximation. This is also the case of the two-shock density computed at
the improved tree level in Eq. (C.4.14) which becomes negative at large Si. There the approximation is not controlled
anymore since O(ǫ) corrections are larger than the mean-field result. Let us see when this occurs: using the simple estimate
∆′′(W ) ≈ |∆′(0+)|/Wµ, where Wµ is the length of order µ−ζ on which ∆(W ) decay, see below, and |∆′(0+)| = m4Sm, the
bound ρ(S1, S2) > 0 is violated if

1 .
Sm

Wµµ−d × 1
()d

× S1S2

4S2
m

. (C.4.21)

While the first factor is a dimensionless number of order 1, which vanishes as O(ǫ) near d = duc, the second vanishes in
the thermodynamic limit of L → ∞. Thus the bound can only be violated if S1S2/S

2
m compensates this factor. This can
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only be achieved if at least one of the avalanches is either system-spanning, or far out in the tail of the distribution, i.e. the
bound is only violated for very unlikely events.

Note however that the exact result (C.3.27) is protected from being negative since

L−2d〈S1S2〉ρW = 1 − ∆′′(W )
Ldm4

= ∂wu(w)∂wu(W + w) , (C.4.22)

and ∂wu(w) is always positive since u(w) is monotonically increasing as a function of w. The latter can be shown rigorously
using a stability argument: Writing that ux(w) is a stable minimum of the Hamiltonian (C.3.1) implies for all x two

equations, namely δH[u,w]
δu(x)

= 0, and δ2H[u,w]
δu(x)δu(y)

≥ 0. Specifying the second equation to x = y, we obtain

m2[ux(w) − w] + ∂uV (ux(w), x) = 0 , (C.4.23)

m2 + ∂2
uV (ux(w), x) ≥ 0. (C.4.24)

Taking a derivative of Eq. (C.4.23) w.r.t. w, solving for ∂wux(w), and using Eq. (C.4.24) implies

∂wux(w) =
1

1 +m−2∂2
uV (ux(w), x)

≥ 0 . (C.4.25)

Comparison with experiments and numerics: Though our predictions rely on the analysis of the model
(C.3.1), they were obtained using FRG and thus we expect Eqs. (C.4.10) and (C.4.12) to be valid for all models in the same

universality class. All our results, namely Eq. (C.4.12) and Eqs. (C.4.14)-(C.4.20), contain the combination ∆′′(W )

Ldm4 . On
one hand it can be used to give a result to order O(ǫ) in the form of a universal function (see below). On the other hand
all quantities entering the r.h.s of these equations can be measured directly in an experiment or in a numerical simulation.
Indeed we recall that

Sm :=
〈S2〉P
2〈S〉P

≡ 〈S2〉ρ
2〈S〉ρ

(C.4.26)

and the combination
∆′′(W )
Ldm4

= ∂2
W [u(w) − w][u(w +W ) − w −W ]

c
(C.4.27)

can both be measured and do not require to know the mass m which might be hard to identify. The computation of
this second derivative then gives a precise characterization of the amplitude of the correlations through the exact formula
(C.3.28). The accuracy of the ǫ expansion and universality can then be tested against the formulas given in the previous
section.

Universal function: Using rescaled quantities we can rewrite our main result as (see Eq. (C.3.11) and Sec. C.3.3)

ρcW (S1, S2) =
1

(Lµ)d
L2d

S4
m

Fd
(
W

Wµ
,
S1

Sm
,
S2

Sm

)

(C.4.28)

where the function Fd is universal and depends only on the space dimension. To first order in d = duc − ǫ, it is given by

F(w, s1, s2) ≃ Ad∆∗′′(w)
16π

√
s1s2

e−(s1+s2)/4 +O(ǫ2) (C.4.29)

in the limit of large L and small µ and Ad was given in Eq. (C.3.12). Here ∆∗′′(w) is the universal fixed point of the
FRG equation, normalized to ∆∗(0) = ǫ. Indeed, for small m the rescaled renormalized disorder correlator of the system
∆̃(w), appearing in Eq. (C.3.11), is close to one of the fixed points of the FRG equation: ∆̃(w) ≃ ∆̃∗(w). For non-periodic
disorder, the latter can be expressed using one constant κ as ∆̃∗(w) = κ2∆∗(w/κ) (see Sec. C.3.3). The parameter κ is
thus the single non-universal constant in our formula. The scales in Eq. (C.4.28) are then given by

Wmu ≃ κµ−ζ , Sm ≃ Adκ∆∗′(0+)µ−(d+ζ) (C.4.30)

for small µ. With the above normalization, to order ǫ, ∆∗′(0+) =
√
ǫ(ǫ− 2ζ) and ∆∗′′(0) = 2ǫ

9
.

Locality: Note that in the result (C.4.28) the amplitude of the correlation is inversely proportional to N = (Lµ)d,
the number of elastically independent degrees of freedom of the interface. This is a signature of the local nature of the
correlations. For two shocks a distance W apart, there is a probability of order 1/N that they occur in the same region of
space. To go further into this locality property and to remove this bias we investigate in the next section the correlations
between the local shock sizes.

C.5 Local structure of correlations

In this section we analyze the correlations between the local shock sizes. We start by deriving a general formula for the
correlations between the local shock sizes measured on an arbitrary subset of the internal space of the interface. To this
aim we define

Sφ1
1 =

∫

x

S1xφ1x , Sφ2
2 =

∫

x

S2xφ2x , (C.5.1)
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where φ1 and φ2 are two arbitrary test functions. Two extreme cases are φ1x = 1: in this case Sφ1
1 = S1, and the observable

is the total size studied in the precedent section. The other extreme is φ1x = δd(x− x1), for which Sφ1
1 = S1x1 is the local

size at x = x1.

C.5.1 Reminder: one-shock case

Here we briefly recall the essential definitions and results given in Refs. [109, 111] on the density and generating function
associated to the local one-shock size statistics. For a general test function φ we introduce

ρφ(Sφ) :=
∑

i

δ(S(i),φ − Sφ)δ(wi − w) ,

Zφ(λ) :=
1

∫

x
φx

〈eλSφ − 1〉ρφ ,

Ẑφ(λ) := Zφ(λ) − λ , (C.5.2)

where 〈...〉ρφ denotes the average with respect to ρφ. Note that Ẑφ has no linear term, since the first moment of ρφ is due
to STS

〈Sφ〉ρφ =

∫

x

φx . (C.5.3)

The generating function Ẑφ(λ) is obtained from the replica field theory using the exact relation

Ẑφ(λ) =
1

∫

x
φx
∂δe

∫

x
φx[ux(w+δ)−ux(w)−δ]|δ=0+ . (C.5.4)

It was shown in Refs. [109, 111] that Zφ(λ) can be written as

Zφ(λ) =

∫

x
Zφx (λ)
∫

x
φx

, (C.5.5)

where, at the improved-tree-theory level, Zφx (λ) satisfies the following self-consistent equation

Zφx (λ) = λφx + σ

∫

yy′
gx−ygx−y′Zφy (λ)Zφy′ (λ) . (C.5.6)

The quantity σ = −∆′(0+) was defined in Eq. (C.3.25).

C.5.2 Two-shock case: Notation and diagrammatic result

Densities and generating functions: Consider

ρφ
1φ2

W (Sφ
1

1 , Sφ
2

2 ) :=
∑

i6=j
δ(w − wi)δ(S

φ1

1 − S(i),φ1 )δ(w +W − wj)δ(S
φ2

2 − S(j),φ2 ) .

The generating functions are

Zφ
1φ2

W :=
1

∫

x
φ1
x

∫

x
φ2
x

〈(

eλ1S
φ1

1 − 1

)(

eλ2S
φ2

2 − 1

)〉

ρ
φ1φ2

W

(C.5.7)

Ẑφ
1φ2

w2−w1
(λ1, λ2) :=

1
∫

x
φ1
x

∫

x
φ2
x

lim
δ1,δ2→0+

∂δ1,δ2e

∫

x
φ1

xλ1[ûx(w1+δ1)−ûx(w1)]
e

∫

x
φ2

xλ2[ûx(w2+δ2)−ûx(w2)]
, (C.5.8)

where 〈...〉
ρ

φ1φ2

W

denotes the average with respect to ρφ
1φ2

W . The following relation holds

Zφ
1φ2

W (λ1, λ2) = Ẑφ
1φ2

W (λ1, λ2) + Zφ
1

(λ1)λ2

+λ1Z
φ2

(λ2) − λ1λ2 . (C.5.9)

(These relations are a consequence of Appendix C.8). The connected equivalents of the previous definitions are constructed
as in the previous section for the correlations between the total sizes; for example

ρc;φ1φ2

W (Sφ
1

1 , Sφ
2

2 ) = ρφ
1φ2

W (Sφ
1

1 , Sφ
2

2 ) − ρφ
1

(Sφ
1

1 )ρφ
2

(Sφ
2

2 ), (C.5.10)

and we note 〈...〉
ρ

c;φ1φ2

W

the average w.r.t. ρc;φ1φ2

W .
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Simplified notation for averages: In order that these somewhat complicated notations do not obscure our
results, we introduce simplified notations for averages. We first note that

ρφ
1φ2

W (Sφ
1

1 , Sφ
2

2 ) = ρ2(W )P(Sφ
1

1 , Sφ
2

2 ), (C.5.11)

where ρ2(W ) is as before the density of a pair of shocks and P(Sφ
1

1 , Sφ
2

2 ) denotes the probability, given that two shocks

occured at a distance W , that their local sizes measured with respect to φ1 and φ2 are Sφ
1

1 and Sφ
2

2 . We have dropped the
dependence of P on φ1 and φ2 to alleviate our notations. We also note arbitrary moments as

〈〈(Sφ1
1 )n(Sφ

2

2 )m〉〉ρW := 〈(Sφ1
1 )n(Sφ

2

2 )m〉
ρ

φ1φ2

W

(C.5.12)

〈〈(Sφ1
1 )n(Sφ

2

2 )m〉〉ρc
W

:= 〈(Sφ1
1 )n(Sφ

2

2 )m〉
ρ

c;φ1φ2

W

. (C.5.13)

We indicate the dependence on the choice of φ1 and φ2 only inside the average, and not in the measure. A moment of the

form 〈〈(Sφ1
1 )n(Sφ

2

2 )m〉〉ρW is thus equal to the product of ρ2(W ) and of the mean value of (Sφ1
1 )n(Sφ

2

2 )m for shocks at a
distance W , given that two such shocks occurred.

Diagrammatic result: In Appendix C.10 we compute these generating functions by a direct evaluation of Eq. (C.5.7)
using a saddle-point calculation on the effective action (C.3.44). Alternatively, from a diagrammatic point of view, the result
can be adapted from the reasoning that led to ZW (λ1, λ2) by keeping track of the space dependence in the different vertices,
propagators and sources in the diagram (C.4.9). Following Eq. (C.4.8), we represent Zφx (λ) as

Zφx (λ) =

φ

x

. (C.5.14)

The same diagram without the marked point x is also used to represent
∫

x
Zφx (λ), itself equal to

∫

x
φx × Zφ(λ). Then, as

before, Ẑφ
1φ2

W (λ1, λ2) is the sum of a connected and a disconnected part:

Ẑφ
1φ2

W (λ1, λ2) = Ẑφ
1

(λ1)Ẑφ
2

(λ2) + Ẑc,φ
1φ2

W (λ1, λ2) . (C.5.15)

The connected part Ẑc;φ1φ2

W (λ1, λ2) is

Ẑc;φ1φ2

W (λ1, λ2)

=
1

∫

x
φ1
x

∫

x
φ2
x

×

φ1;w ≈ 0 φ2;w ≈ W

φ1;w ≈ 0 φ2;w ≈ W
x1

x2

z z

(C.5.16)

It can be written as

Ẑc,φ
1φ2

W (λ1, λ2) = − ∆′′(W )
∫

x
φ1
x

∫

x
φ2
x

∫

zx1x2y1y2

gzx1Z
φ1

x1
(λ1)

δZφ
1

y1
(λ1)

λ1δφ1
z

gzx2Z
φ2

x2
(λ2)

δZφ
2

y2
(λ2)

λ2δφ2
z

+O(ǫ2) . (C.5.17)

We note that it is possible to obtain a more explicit formula for avalanches measured on parallel hyperplanes, see Appendix
C.10.2. In the next section we focus on the first moments which already contain valuable information.

C.5.3 First moments: arbitrary sources and kernels

The first moments of ρc;φ1φ2

W are obtained from the combination of Eqs. (C.5.7), (C.5.9), (C.5.15) and (C.5.17). One first
needs the series expansion for Zφx (λ). It is obtained from Eq. (C.5.6) at arbitrary order in λ; here we give it up to order 3:

Zφx (λ) = λφx + λ2σ

∫

yy′
gx−ygx−y′φyφy′ (C.5.18)

+2λ3σ2

∫

yy′zz′
gx−ygx−y′gy−zgy−z′φzφz′φy′ +O(λ4)
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Hence

δZφx
λδφu

= δ(x− u) + 2λσ

∫

y

gx−ygx−uφy

+2λ2σ2

(

2

∫

yy′z

gx−ygx−y′gy−zgy−uφzφy′

+

∫

yzz′
gx−ygx−ugy−zgy−z′φzφz′

)

+O(λ3) . (C.5.19)

We then obtain from Eq. (C.5.17) the local version of the exact result (C.2.8), namely 5

〈〈Sφ1

1 Sφ
2

2 〉〉ρc
W∫

x
φ1
x

∫

x
φ2
x

= − ∆′′(W )
∫

x
φ1
x

∫

x
φ2
x

∫

zx1x2

gz−x1gz−x2φ
1
x1
φ2
x2

+O(ǫ2) . (C.5.20)

Let us also give the result for the third-order moment,

〈〈(Sφ1

1 )2Sφ
2

2 〉〉cρc
W∫

x
φ1
x

∫

x
φ2
x

= − ∆′′(W )
∫

x
φ1
x

∫

x
φ2
x

σ×
(

4

∫

zx1x2y1t1

gz−x1gz−x2gy1−t1gy1−zφ
1
x1
φ1
t1φ

2
x2

+2

∫

zx1x2t1t
′
1

gz−x1gz−x2gx1−t1gx1−t′
1
φ1
t1φ

1
t′

1
φ2
x2

)

+O(ǫ2) . (C.5.21)

C.5.4 First moment: correlations between the local shock sizes for short-ranged elasticity.

Let us now give the precise form of the first connected moment for an interface with the short-ranged elasticity (C.3.2) and
for correlations between the local avalanche sizes at two points x1 and x2. We choose φ1

x = δd(x− x1) and φ2
x = δd(x− x2)

and note x = |x1 − x2| the distance between the two points. Thus Sφ
1

1 = S1x1 and Sφ
2

2 = S2x2 . We obtain

〈〈S1x1S2x2 〉〉ρc
W

= −∆′′(W )

∫

q

eiq(x1−x2)gqg−q

= −∆′′(W )md−42− d
2

−1π− d
2 (mx)2− d

2K2− d
2

(mx)

=x=0 −∆′′(W )2−dπ− d
2md−4Γ

(

2 − d

2

)

≃x≫1/m −∆′′(W )2− d
2

− 3
2 π

1
2

− d
2m

d−5
2 x

3
2

− d
2 e−mx , (C.5.22)

where Kn(x) denotes a modified Bessel function of the second kind. Note that integrating this formula yields an exact
result, ∫

x1,x2

〈〈S1x1S2x2 〉〉ρc
W

= 〈S1S2〉ρc
W

= −Ld∆′′(W )
m4

. (C.5.23)

This is equivalent to Eq. (C.3.28), which is exact. We thus expect Eq. (C.5.22) to be quite accurate even for large values
of ǫ.

As expected, we observe that the amplitude of the correlations decays exponentially beyond the length Lm = 1/m. For
smaller distances they decay algebraically with an exponent that depends on the dimension:

〈〈S1x1S2x1+x〉〉ρc
W

− 〈〈S1x1S2x1 〉〉ρc
W

≃d=1
∆′′(W )

8m
x2 +O(x3)

≃d=2 −∆′′(W )
16π

[

2γE − 1 + 2 log(mx/2)
]

x2

≃d=3
∆′′(W )

8π
x+O(x2) . (C.5.24)

5The result (C.5.20) can simply be turned into an exact one if one introduces the bi-local part
of the renormalized disorder correlator ∆x2−x1 (w1 − w2) = m4[ux1 (w1) − w1][ux2 (w2) − w2] (see also
[96]) and proceeds as in Sec. C.3.6. The result (C.5.20) can then be understood as the lowest-order
approximation of ∆x2−x1 (w) in terms of ∆(w).
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Finally, to emphasize the universal nature of Eq. (C.5.22), we note that it can be rewritten, using the notations of Sec. C.4.5
and introducing a new universal scaling function F11

d (w, x), as

〈〈S1x1S2x2 〉〉ρc
W

= F11
d (

W

Wµ
,m|x1 − x2|) (C.5.25)

F11
d (w, x) = −2− d

2
−1π− d

2Ad∆
∗′′(w)x2− d

2K2− d
2

(x)

+O(ǫ2) . (C.5.26)

C.5.5 First moment: correlations between the local shock sizes for long-ranged elasticity.

Let us now study the correlations between local avalanche sizes (we choose again φ1
x = δd(x − x1) and φ2

x = δd(x − x2)
with |x1 − x2| = x) for the case of long-ranged elasticity using the kernel (C.3.3) with γ = 1. Then the result for the first
connected moment is

〈〈S1x1S2x2 〉〉ρc
W

= −∆′′(W )
µd−2

(2π)
d
2

(µx)1− d
2K1− d

2
(xµ)

=d=1
e−µx

2µ
. (C.5.27)

As the previous formula for short-ranged elasticity, this formula should be rather accurate for the experimentally relevant
case of d = 1 (in this case ǫ = 1). We again observe an exponential decay of the correlations beyond the length Lµ = 1/µ.
However, here the correlations are constant at small distances, a signature of the long-range nature of the elasticity. As
before, the universal nature of this result can be emphasized by introducing a universal scaling function F11

d,LR(w, y):

〈〈S1x1S2x2 〉〉ρc
W

= F11
d,LR(

W

Wµ
,mu|x1 − x2|) (C.5.28)

F11
d (w, x) = −(2π)− d

2Ad∆
∗′′(w)x1− d

2K1− d
2

(x) +O(ǫ2) ,

where we used the same notations as in Sec. C.4.5.

C.6 Measurement of correlations in simulations of d = 0 toy models.

C.6.1 Models and goals

In this section we compare our results with numerical simulations of toy models of a particle in a discrete random potential.
The position of the particle can only take integer values u ∈ N and its Hamiltonian is

HV [u;w] = V (u) +
1
2
m2(u− w)2 , (C.6.1)

where V is a random potential. We consider two distributions for the random potential mimicking the two non-periodic
static universality classes of interfaces models:

RB model: The first model is a toy model for the Random-Bond universality class with short-ranged correlated
disorder where the random potentials V (i) at each site i ∈ N, are chosen as independent, centered and normalized Gaussian
random variables.

RF model: The second model is a toy model for the Random-Field universality class where V (0) = 0 and for i ≥ 1,
V (i) = −

∑i

j=1
F (j); the random forces F (i) at each site i ∈ N are chosen as independent, centered and normalized random

variables. Thus V (i) is a random walk with Gaussian increments.
In the RB model we choose the mass as mRB = 0.01 and in the RF model as mRF = 0.02. With these parameters, the

probability ρ0 to trigger a shock when moving w → w+1 is ρRF
0 = (6.959±0.001)×10−3 and ρRB

0 = (9.471±0.001)×10−3.
These small values of the masses ensure that the models efficiently approximate our continuum model in d = 0, and that
the particle optimizes its energy over a large number of random variables. We perform averages over 10 simulations of
environments of size N = 5 × 108 sites. We obtain excellent statistics for various observables studied in this work, including
ρ2(W ), ∆(W ) measured using Eq. (C.3.10), 〈S1S2〉ρW and 〈S2

1S2〉ρW .
Let us emphasize that these simulations are more a proof of principle to motivate simulations on higher dimensional

models and measurements in experiments, than a full test of the results obtained in this article. This said, our simulations
allow us to verify the exact result (C.3.27) to a very high accuracy. Second, although d = 0 is at a large value of ǫ in
the d = 4 − ǫ expansion, the FRG equation and the associated fixed-point functions for random-field disorder are known
to behave quite similarly [97, 117]. For random-bond disorder we expect less universality since ∆(u) is non-universal in
d = 0; nevertherless the relations between the correlation and ∆(u) are interesting to investigate, in particular the sign of
the correlations.
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Figure C.2: Renormalized disorder ∆(u) measured in the d = 0 RB toy model. Inset:
its second derivative ∆′′(u), computed using a numerical fit of the measured ∆(u).

C.6.2 Numerical Results: RB model

Using the definition (C.3.10) we measure the renormalized disorder correlator. The result is shown in Fig. C.2. Using an
interpolation of the result with a polynomial of degree 10, we obtain a smooth version that is later used to compute its
second derivative ∆′′(u) which appears in our analysis as the central object controlling the amplitude of the correlations.
Some measured properties are: ∆(0) ≈ 3.34 × 10−5, ∆′′(0) ≈ 6.78 × 10−9; ∆(76.2) ≈ 0, ∆′′(215) ≈ 0; the position of the
minimum and the value at the minimum: ∆(148.2) ≈ −7.3 × 10−6, ∆′′(274, 4) ≈ −5.1 × 10−10. This is compared with the
measurement of 〈S1S2〉ρW using the exact result (C.3.27), see Fig. C.3. We obtain a perfect agreement.

From a qualitative perspective, we note the following:
(i) We observe the predicted crossover from anti-correlated shocks at small distances (W < 215) to positively correlated

shocks at large distances.

(ii) The correlations are far from being negligible: by definition
〈S1S2〉ρc

W
〈S〉

ρ2
> −1, while we observe

〈S1S2〉ρc
W ≈0

〈S〉2
ρ

≈ −0.6,

an indication that the shocks in this toy model are strongly correlated.
We now check the predictions obtained using the ǫ expansion. We first measure ρ2(W ) and compare it with the result

(C.4.15), see Fig. C.4. We obtain a surprisingly good agreement between the two curves, considering that ǫ = 4. We also
measure 〈S2

1S2〉ρW and compare it with the result (C.4.7), see Fig. C.5. Here the discrepancy is large for smaller values

of W , a fact that can be anticipated since our result predicts
〈S2

1S2〉ρc
W

〈S2〉ρ〈S〉ρ
< −1 at small W , which is unphysical. This

discrepancy keeps increasing with higher-order moments. However the sign of the correlation, and its value for large W is
quite well predicted.

C.6.3 Numerical Results: RF model

In Figs. C.6 to C.9 we show the corresponding results for the RF toy model. They are similar except that as predicted in
this type of model the shocks are always anti-correlated. The value at the origin of the renormalized disorder correlator
and of its second derivative are measured as ∆(0) ≈ 3.4 × 10−3, ∆′′(0) ≈ 9.4 × 10−8. Once again we observe that these

correlations are large,
〈S1S2〉ρc

W ≈0

〈S〉2
ρ

≈ −0.6. We obtain a perfect agreement for the exact result 〈S1S2〉ρW , see Fig. C.7. The

agreement for the O(ǫ) result for ρ2(W ) (C.4.15) is surprisingly good (see Fig. C.8), whereas the O(ǫ) approximation breaks
down for higher moments at small W such as 〈S2

1S2〉ρc
W

, see Fig. C.9.

C.7 Conclusion

In this paper we shed light on the fact that, for realistic models of elastic interfaces in a random medium below their
upper critical dimension, correlations between (static) avalanches should always be expected. To do so we have studied the
correlations between the size and location of shocks in the ground state of elastic interfaces in a random potential. We found
the exact relation (C.2.8) for the first connected moment that characterizes these correlations in terms of the renormalized
disorder correlator, a universal quantity at the center of the FRG treatment of disordered elastic systems. Beyond the first
cumulant, higher-order moments (C.4.10), (C.4.12) and the full joint density of shocks (C.4.14) were computed using the
FRG at first non-trivial order in the ǫ expansion. The local structure of these correlations was made precise through a
study of local shock sizes. The qualitative phenomenology associated with these correlations clearly distinguishes between
the Random-Bond and Random-Field universality classes. This was highlighted through a numerical simulation of d = 0
toy models.

We expect our results to broadly apply to models in the universality class of the statics of disordered elastic systems.
Concerning the dynamics, and avalanches at the depinning transition of elastic interfaces, we expect our results to be
equivalently applicable and accurate. The derivation of the exact relation (C.2.8) can easily be adapted to the dynamics by
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Figure C.3: Comparison between the measurement of the normalized moment
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W
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ρ

(blue dots) and the prediction from the exact result (C.3.27) using the measurement
of ∆(u) (red curve) in the RB toy model. The agreement is perfect as expected.

100 200 300 400 500
W

0.6

0.7

0.8

0.9

1.0

1.1

ρ2(W )ρ0
2

Figure C.4: Comparison between the measurement of ρ2(W ) (blue dots) and the pre-
diction from the O(ǫ) result (C.4.15) using the measurement of ∆(u) (red curve) in
the RB toy model. We obtain a surprisingly good agreement.
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Figure C.5: Comparison between the measurement of the normalized moment
〈S2

1S2〉ρc
W

〈S2〉ρ〈S〉ρ
(blue dots) and the prediction from the exact result (C.3.27) using the measurement
of ∆(u) (red curve) in the RB toy model.
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Figure C.6: Renormalized disorder ∆(u) measured in the d = 0 RF toy model. Inset:
its second derivative ∆′′(u), computed using a numerical fit of the measured ∆(u).
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Figure C.7: Comparison between the measurement of the normalized moment
〈S1S2〉ρc

W
〈S〉2

ρ

(blue dots) and the prediction from the exact result (C.3.27) using the measurement
of ∆(u) (red curve) in the RF toy model. The agreement is perfect as expected.
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Figure C.8: Comparison between the measurement of ρ2(W ) (blue dots) and the pre-
diction from the O(ǫ) result (C.4.15) using the measurement of ∆(u) (red curve) in
the RF toy model. The agreement is surprisingly good.
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Figure C.9: Comparison between the measurement of the normalized moment
〈S2

1S2〉ρc
W

〈S2〉ρ〈S〉ρ
(blue dots) and the prediction from the O(ǫ) result (C.3.27) using the measurement of
∆(u) (red curve) in the RF toy model.

considering the quasi-static steady-state process of the position field of the interface instead of the position of its ground-
state as was done in Ref. [101]. For the results at the improved tree level, it is expected that both theories are equivalent
for those observables [101]. The most important difference is that in the dynamics the Random-Bond universality class is
unstable, and thus the observed correlations should always be of the Random-Field type (at least as long as the microscopic
disorder is short-ranged).

For physical systems where the usual model of elastic interfaces is accurate, our results give a precise description of the
correlations. Even if additional mechanisms generating correlations are present, such as in earthquake problems, correlations
due to the short-ranged nature of the disorder as described in this work should be included in order to gain a quantitative
understanding of the correlations due to these additional mechanisms.
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C.8 Appendix A: Proof of the identity on generating functions

As in the case of one shock (Appendix A of [109]), the important identity is

(∂δ + λLd)eλL
d(u(w+δ)−w−δ) =

∑

i

(eλSi − 1)eλL
d[u(w−

i
)−w−δ]δ(w + δ − wi) (C.8.1)

By definition u(w−
i ) = L−d∑

j<i
Sj . Let us consider

Gw1,w2 (δ1, δ2) = (∂δ1 + λ1L
d)(∂δ2 + λ2L

d)×
eλ1L

d[u(w1+δ1)−u(w1)−δ1]+λ2L
d[u(w2+δ2)−u(w2)−δ2]

=
∑

ij

(eλ1Si − 1)(eλ2Sj − 1)eλ1L
d[u(w−

i
)−u(w1)−δ1]×

e
λ2L

d[u(w−
j

)−u(w2)−δ2]
δ(w1 + δ1 − wi)δ(w2 + δ2 − wj)

(C.8.2)

Taking advantage of the Dirac δ-function, we can replace the u(w1) inside the exponential by u(wi−δ1) which unambiguously
gives u(w−

i ) when one takes the limit of δ1 → 0+. We thus obtain

lim
δ1,δ2→0+

Gw1,w2 (δ1, δ2) =

∑

ij

(eλ1Si − 1)(eλ2Sj − 1)δ(w1 − wi)δ(w2 − wj). (C.8.3)

Taking the average over disorder, we obtain by definition of Zw2−w1 (λ1, λ2)

Zw2−w1 (λ1, λ2) = lim
δ1,δ2→0+

L−2dGw1,w2 (δ1, δ2) . (C.8.4)
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On the other hand, developing (∂δ1 + λ1L
d)(∂δ2 + λ2L

d) = ∂δ1∂δ2 + Ldλ1∂δ2 + Ldλ2∂δ1 + L2dλ1λ2 in the expression of
Gw1,w2 (δ1, δ2) one arrives at Eqs. (C.3.33) and (C.3.34).

C.9 Appendix B: A derivation from the Carraro-Duchon formula

Let us recall the results obtained in Ref. [111], generalizing to arbitrary dimension the result from Ref. [230]. Consider

eL
d
Ẑt{ωi,wi} := e

−Ld

t

∑p

i=1
ωi[u(wi)−wi]

, (C.9.1)

where t := 1
m2 . Then, in the improved-tree theory, Ẑ solves the differential equation

∂tẐt{ωi, wi} = −
p∑

i=1

∂

∂ωi
Ẑt{ωi, wi} ∂

∂wi
Ẑt{ωi, wi}

Ẑt=0{ωi, wi} =
1
2

p∑

i,j=1

ωiωj∆(wi − wj) . (C.9.2)

It further satisfies the STS symmetry relation,

Ẑt{ωi, wi + δw} = Ẑt{ωi, wi}
∑

i

∂

∂wi
Ẑt{ωi, wi} = 0 . (C.9.3)

In order to extract the needed information for the two-shock statistics we choose p = 4 and the quadruplets (ω1, ω2, ω3, ω4) =
(−ω1 − ω̃, ω1,−ω2 + ω̃, ω2) and (w1, w2, w3, w4) = (0, δ1,W,W + δ2). We then consider (with a slight abuse of notations)

Z̃t(ω1, δ1, ω̃,W, ω2, δ2) (C.9.4)

= Ẑt(−ω1 − ω̃, 0, ω1, δ1,−ω2 + ω̃,W, ω2,W + δ2)

Because of the STS the p = 4 function Z̃t depends only on six variables (and not eight) and satisfies a closed equation.
Indeed, using Eqs. (C.9.2) and (C.9.3), one proves that Z̃t satisfies the following evolution equation

∂tZ̃t = −
(

∂

∂ω1
Z̃t

∂

∂δ1
Z̃t +

∂

∂ω̃
Z̃t

∂

∂W
Z̃t +

∂

∂ω2
Z̃t

∂

∂δ2
Z̃t

)

(C.9.5)

We are only interested in a perturbative resolution. Define the expansion

Z̃t =
∑

mnp

zpmn(t, ω1, ω2,W )δm1 δ
n
2 w̃

p . (C.9.6)

Indeed, this is sufficient to retrieve the generating function ẐW (λ1, λ2) = Ẑdisc
W (λ1, λ2) + ẐcW (λ1, λ2) as (compare with the

small-δi expansion of (C.9.1) and (C.3.34))

Ẑdisc
W (λ1, λ2) = z0

10(ω1, ω2,W )z0
01(ω1, ω2,W )

ẐcW (λ1, λ2) = L−dz0
11(ω1, ω2,W ) . (C.9.7)

On the right-hand side the arguments are ω1 = −tλ1 and ω2 = −tλ2. Inserting the expansion (C.9.6) inside Eq. (C.9.5),
we obtain the initial conditions:

z0
00(t = 0, ω1, ω2,W ) = 0

z0
10(t = 0, ω1, ω2,W ) = −∆′(0+)ω2

1

z0
01(t = 0, ω1, ω2,W ) = −∆′(0+)ω2

2

z0
11(t = 0, ω1, ω2,W ) = −∆′′(W )ω1ω2

z1
00(t = 0, ω1, ω2,W ) = 0 . (C.9.8)

Obviously we have z0
00(t, ω1, ω2,W ) = 0, ∀t. We also obtain the evolution equation:

∂tz
0
10 = −

(
∂

∂ω1
z0

10

)

z0
10 −

(
∂

∂ω2
z0

10

)
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∂
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∂tz
0
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∂ω1
z0

01

)

z0
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(
∂

∂ω2
z0

01

)

z0
01 − z1

00
∂

∂W
z0

01

∂tz
0
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∂

∂ω1
z0

10

)

z0
11 −

(
∂

∂ω1
z0

01

)

2z0
20 −

(
∂

∂ω1
z0

11

)

z0
10

−
(

∂

∂ω2
z0

10

)

2z0
02 −

(
∂

∂ω2
z0

01

)

z0
11 −

(
∂

∂ω2
z0

11

)

z0
01

−z1
00

∂

∂W
z0

11 − z1
10

∂

∂W
z0

01 − z1
01

∂

∂W
z0

10

∂tz
1
00 = −

(
∂

∂ω1
z1

00

)

z0
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(
∂

∂ω2
z1

00

)

z0
01 − z1

00
∂

∂W
z1

00

(C.9.9)
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As a consequence of the initial conditions (C.9.8), one can look for a solution of Eq. (C.9.9) such that

∂

∂ω2
z0

10 =
∂

∂ω1
z0

01 =
∂

∂W
z0

10 =
∂

∂W
z0

01 = z1
00 = 0 . (C.9.10)

Each term has an interpretation in the notations of the main text. z0
10 corresponds to Ẑ(λ1) and z0

01 corresponds to Ẑ(λ2),
which in the present notations reads (see Eqs. (C.3.30) and (C.3.45) and recall Sm = σ/m4 = σt2)

z0
10(ωi) = Ẑ(λi) =

1 + 2σωit− √
1 + 4σωit

2σt2
. (C.9.11)

This is the solution of Eq. (C.9.9) using Eq. (C.9.10). Note that z1
00 = 0 can be seen as the signature that diagrams

contributing to the avalanche at w = 0 and at w = W can be linked only by one vertex ∆′′(W ), as observed in the
diagrammatics, see Eq. (C.4.9). This is already present in the initial condition (C.9.8). The equation for z0

11 becomes

∂tz
0
11 = −

(
∂

∂ω1
z0

10

)

z0
11 −

(
∂

∂ω1
z0

11

)

z0
10

−
(

∂

∂ω2
z0

01

)

z0
11 −

(
∂

∂ω2
z0

11

)

z0
01 . (C.9.12)

One can check that the result (C.4.10) obtained diagrammatically in the main text, and which in the present notations
reads

z0
11 = −∆′′(W )

4σ2t2
1 − √

1 + 4σω1t√
1 + 4σω1t

1 − √
1 + 4σω2t√

1 + 4σω2t
,

solves this equation with the initial condition (C.9.8). This demonstrates the equivalence of the two methods and results.

C.10Appendix C: Saddle-point calculation for the local structure.

C.10.1 Algebraic derivation of Eq. (C.5.17)

In this appendix we prove formula (C.5.17) “from first principles” using a saddle-point calculation on the improved action
(C.3.44). This computation is similar to the one presented in Ref. [111] for the calculation of the one-shock density. Here
the observable of interest is

Ẑφ
1φ2

W (λ1, λ2) =
1

∫

x
φ1
x

∫

x
φ2
x

lim
δ1,δ2→0+

∂δ1,δ2GW (δ1, δ2)

GW (δ1, δ2) = (C.10.1)

e

∫

x
φ1

xλ1(ûx(w1+δ1)−ûx(w1))
e

∫

x
φ2

xλ2(ûx(w2+δ2)−ûx(w2))
,

where w2 = w1 +W . This observable can be expressed using the improved action Γ[u] of the replicated field theory (C.3.44)
with i = 1, . . . , 4 sets of a = 1, . . . , n replicated position fields ũiax feeling a parabolic well at position w̃i with w̃1 = w1,
w̃2 = w1 + δ1, w̃3 = w1 +W , w̃4 = w1 +W + δ2:

GW (δ1, δ2) =

∫

D[u]e
∫

x

∑4

i=1
νiψ

i
x(ui

1x−w̃i)−Γ[u]
(C.10.2)

Here and for the rest of this appendix, the n → 0 limit is implicit. To compute the disorder average we have singled out
replica a = 1. In order to write the formulas in a compact form, we introduced new variables ν2 = λ1, ν1 = −λ1, ν4 = λ2,
ν3 = −λ2, ψ1

x = ψ2
x = φ1

x, ψ3
x = ψ4

x = φ2
x. At the improved tree level, the functional integral is evaluated through a

saddle-point calculation as

GW (δ1, δ2) = e

∫

x

∑4

i=1
νiψ

i
x(ui

1x−w̃i)−Γ[u]
, (C.10.3)

where the position fields uiax solve the saddle-point equation
∫

x′
g−1
xx′ (u

i
ax′ − w̃i) − 1

T

∑

cj

R′(uiax − ujcx) = Tνiψ
i
xδa1 . (C.10.4)

We are interested in the solution of Eq. (C.10.4) in the T → 0 limit. As in Ref. [111], we look for a solution that isolates
the first replica (a = 1) in each set (i = 1, . . . , 4) of position fields as

uiax = uix − (1 − δa1)TU ix. (C.10.5)

Inserting the Ansatz (C.10.5) into (C.10.4) leads to
∫

x′
g−1
xx′ (u

i
1x′ − w̃i) +

∑

j

R′′(ui1x − uj1x)U jx = 0

∫

x′
g−1
xx′U

i
x′ +

∑

j 6=i
R′′′(ui1x − uj1x)U ixU

j
x = νiψ

i
x .
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Being ultimately interested in the computation of (C.10.1), we solve this equation in an expansion in δ1 and δ2 as

u1
x =

w̃1 + w̃2

2
− u11

x δ1 + u12
x δ2

u2
x =

w̃1 + w̃2

2
+ u21

x δ1 + u22
x δ2

u3
x =

w̃3 + w̃4

2
+ u31

x δ1 − u32
x δ2

u4
x =

w̃3 + w̃4

2
+ u41

x δ1 + u42
x δ2

U ix = U i0x + U i1x δ1 + U i2x δ2. (C.10.6)

Using now the definition (C.10.1) we need to perform the following derivatives of (C.10.3), ∂δ1∂δ2 = ∂w̃2∂w̃4 . Since the
fields uiax are evaluated at the saddle point, we can differentiate only with respect to the explicit dependence in the w̃i.
Using the form (C.3.44) for Γ[u], these derivatives can be calculated by repeating the identity

∂w̃iGW =

(

−νi
∫

x

ψix +
1
T

∑

ai

∫

xx′
g−1
xx′ (u

i
ax′ − w̃i)

)

GW .

Using that limn→0

∑

a
(uiax − w̃i) = TU ix we obtain the following decomposition

Ẑφ
1φ2

W (λ1, λ2) = Ẑφ
1

(λ1)Ẑφ
2

(λ2) + Ẑc,φ
1φ2

W (λ1, λ2) (C.10.7)

with the explicit forms

Ẑφ
1

(λ1) =

∫

x
(−ν2ψ

2
x +

∫

x′ g
−1
xx′U

20
x′ )

∫

x
ψ2
x

Ẑφ
2

(λ2) =

∫

x
(−ν4ψ

4
x +

∫

x′ g
−1
xx′U

40
x′ )

∫

x
ψ4
x

(C.10.8)

and

Ẑc,φ
1φ2

W (λ1, λ2) =
1

∫
ψ2
x

∫
ψ4
x

∫

x

∫

x′
g−1
xx′U

22
x′

=
1

∫
ψ2
x

∫
ψ4
x

∫

x

∫

x′
g−1
xx′U

41
x′ . (C.10.9)

Although not obvious, these definitions are in agreement with those of the main text. Despite their complexity, the equations
satisfied by the u and U variables obey several symmetries. The important ones are U10

x = −U20
x and U30

x = −U40
x ;

U11
x = −U21

x and U32
x = −U42

x ; U12
x = −U22

x and U31
x = −U41

x ; u11
x = u21

x and u32
x = u42

x ; u12
x = u22

x and u31
x = u41

x . We also
have U22

x = U41
x .

Using these symmetries, one finds that U20
x and U40

x satisfy

∫

x′
g−1
xx′U

20
x′ = σ(U20

x )2 + ν2ψ
2
x ,

∫

x′
g−1
xx′U

40
x′ = σ(U40

x )2 + ν4ψ
4
x , (C.10.10)

where σ = R′′′(0+). Note that these are related to the function Zφx (λ) defined in the main text in Eq. (C.5.6) through

the relation Zφ
1

x (λ1) =
∫

x′ g
−1
xx′U

20
x′ . Hence, Eq. (C.10.8) leading to the disconnected part of the result for Ẑφ

1φ2

W (λ1, λ2)
is in agreement with the main text. Let us now introduce two important kernels defined as the functional derivatives

K2(x, z) = δU20
x

ν2δψ
2
z

and K4(x, z) = δU40
x

ν4δψ
4
z

. They satisfy

∫

x′
g−1
xx′K2(x′, z) − 2σU20

x K2(x, z) = δ(x− z)

∫

x′
g−1
xx′K4(x′, z) − 2σU40

x K4(x, z) = δ(x− z)

and are important building blocks in our calculation. These kernels are symmetric: the kernel of the operator K−1
2 is given

by K−1
2 (x, x′) = g−1

xx′ − 2σU20xδ(x − x′). In particular it is a symmetric function of its arguments, and thus K2(x, z) also
is a symmetric function. The analytic expressions of the functions U20

x and U40
x are hard to obtain in generality. In Ref.

[109] they were obtained for avalanches measured on hyperplanes for SR elasticity: ψ2
x = δ(x1) where x1 denotes the first

coordinate of the d-dimensional variable x. We recall this explicit solution below in Appendix C.10.2.
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a Solutions for the u variables

Let us first consider the solution for the u variables. The equations read
∫

x′
g−1
xx′

(1
2

− u11
x′

)

− 2σU10
x u11

x = 0

∫

x′
g−1
xx′u

31
x′ = 2u11

x U
10
x R′′′(W )

∫

x′
g−1
xx′

(1
2

− u32
x′

)

− 2σU30
x u32

x = 0

∫

x′
g−1
xx′u

12
x′ = 2u32

x U
30
x R′′′(W ) (C.10.11)

The solutions are expressed in terms of the two kernels as

u11
x = u21

x = − σ

R′′′(W )
u31
x +

1
2

= − σ

R′′′(W )
u41
x +

1
2

=
m2

2

∫

z

K2(x, z) (C.10.12)

u32
x = u42

x = − σ

R′′′(W )
u12
x +

1
2

= − σ

R′′′(W )
u22
x +

1
2

=
m2

2

∫

z

K4(x, z) (C.10.13)

b Solutions for the U variables

For the U variables, the equations read
∫

x′
g−1
xx′U

21
x′ − 2σU20

x U21
x − 2R(4)(0)u11

x (U20
x )2 = 0

∫

x′
g−1
xx′U

42
x′ − 2σU40

x U42
x − 2R(4)(0)u32

x (U40
x )2 = 0

∫

x′
g−1
xx′U

22
x′ − 2σU20

x U22
x − 2R(4)(W )u32

x U
20
x U40

x = 0

∫

x′
g−1
xx′U

41
x′ − 2σU40

x U41
x − 2R(4)(W )u11

x U
40
x U20

x = 0

(C.10.14)

Its solutions are

U11
x = −U21

x = −2R(4)(0)

∫

z

K2(x, z)u11
z (U20

z )2

U32
x = −U42

x = −2R(4)(0)

∫

z

K2(x, z)u32
z (U40

z )2

U12
x = −U22

x = −2R(4)(W )

∫

z

K2(x, z)u32
z U

20
z U40

z

U31
x = −U41

x = −2R(4)(W )

∫

z

K4(x, z)u11
z U

20
z U40

z

(C.10.15)

c Final result

Using Eq. (C.10.9) we obtain

Ẑc;φ1,φ2
W (λ1, λ2) = (C.10.16)

1
∫
ψ2
x

∫
ψ4
x

R(4)(W )m4

∫

x′,z,z′
K2(x′, z)U20

z U40
z K4(z′, z)

Using the above results U20
x =

∫

x′ gxx′Zφ1
x′ (λ1), and U40

x =
∫

x′ gxx′Zφ2
x′ (λ2), as well as K2(x, z) =

∫

x′ gxx′
δZ

φ1

x′ (λ1)

λ1δφ
1
z

and

K4(x, z) =
∫

x′ gxx′
δZ

φ2

x′ (λ2)

λ2δφ
2
z

; remembering that ψ2
x = φ1

x and ψ4
x = φ2

x, one shows that this formula is equivalent to

Eq. (C.5.17).
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d Simplified form of the final result

The equivalent results (C.10.16) and (C.5.17) both involve a functional derivative, which is in general a rather complicated
object. We can however obtain a simplified formulation. From Eq. (C.10.16) it is clear that it is sufficient to compute, for
i = 1, 2,

χi(x) =

∫

z

Ki(z, x) =

∫

z

Ki(x, z) (C.10.17)

rather than the full kernel Ki, and using the symmetry of Ki. Integrating Eq. (C.10.11) over z one shows that χi(x) solves
the equation

∫

x′
g−1
xx′χ2(x′) − 2σU20

x χ2(x) = 1 ,

∫

x′
g−1
xx′χ4(x′) − 2σU40

x χ4(x) = 1 .

Solving these equations (a task a priori simpler than the computation of the functional derivative) then leads to, following
(C.10.16),

Ẑc;φ1,φ2
W (λ1, λ2) (C.10.18)

= − 1
∫
φ1
x

∫
φ2
x

∆′′(W )m4

∫

z

χ2(z)U20
z U40

z χ4(z) .

C.10.2 More explicit solution for avalanches measured on parallel hyperplanes

a Setting

We now obtain more explicit formulas in the case where avalanches are measured on two parallel hyperplanes at a distance
y > 0 from one another and where the elasticity is short-ranged with kernel (C.3.2). That is, noting for definiteness x1 the
first coordinate of the d-dimensional vector x,

φ1
x = δ(x1) , φ2

x = δ(x1 − y) . (C.10.19)

In this case the problem becomes effectively unidimensional and the functions U and χ entering into Eq. (C.10.18) only
depend on x1, abbreviated as x in the following. Furthermore, by translational invariance we can write

U20
x = Y (λ1, x) , χ2(x) = χ(λ1, x) (C.10.20)

U40
x = Y (λ2, x− y) , χ4(x) = χ(λ2, x− y) .

These quantities obey the equations
(

− d2

dx2
+m2

)

Y (λ, x) − σ (Y (λ, x))2 = λδ(x) (C.10.21)

(

− d2

dx2
+m2

)

χ(λ, x) − 2σY (λ, x)χ(λ, x) = 1.

Solving these equations then leads to

Ẑc;φ1,φ2
W (λ1, λ2) =

1
Ld−1

R(4)(W )m4× (C.10.22)

×
∫

x

χ(λ1, x)Y (λ1, x)Y (λ2, x− y)χ(λ2, x− y) .

b Solution for Y

The solution Y (λ, x) of equation (C.10.21) is already known in the literature, see Ref. [107] for details. It admits a scaling
form

Y (λ, x) =
m2

σ
Ỹ
(
σ

m3
λ,mx

)

, (C.10.23)

where Ỹ (λ̃, x̃) solves
(

− d2

dx̃2
+ 1

)

Ỹ (λ̃, x̃) −
(
Ỹ (λ̃, x̃)

)2
= λ̃δ(x̃) . (C.10.24)

An explicit solution is

Ỹ (λ̃, x̃) =
6(1 − z2)e−|x̃|

(1 + z + (1 − z)e−|x̃|)2
, (C.10.25)

where z(λ̃) is one of the solutions of
λ̃ = 3z(1 − z2) . (C.10.26)

The right solution is uniquely defined from the following properties: it is defined for λ̃ ∈] − ∞, λ̃c = 2/
√

3[, decreases from
z(−∞) = ∞ to zc = z(λ̃c) = 1/

√
3 and approaches 1 as λ̃ approaches 0.
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c Solution for χ

From the coupled equations (C.10.21), it is seen that χ(λ, x) can be deduced from Y (λ, x) as

χ(λ, x) =
1
m2

− 2σ
m2

∂Y

∂m2
. (C.10.27)

Using the scaling form (C.10.23) we obtain

χ(λ, x) =
1
m2

χ̃
(

λ̃ = λ
σ

m3
, x̃ = mx

)

, (C.10.28)

where
χ̃ = 1 − 2Ỹ + 3λ̃∂λ̃Ỹ − 2x̃∂x̃Ỹ . (C.10.29)

d Final scaling form

Combining Eqs. (C.10.22), (C.10.23) and (C.10.28) we can express our result in terms of a universal scaling function Zw̃ as

(we scale y = ỹ/m, λi = m3

σ
λ̃i, W = w̃/Wµ):

Ẑc;φ1,φ2
w̃/Wµ

(
m3

σ
λ̃1,

m3

σ
λ̃2

)

=
1

(Lm)d−1

1
(mSm)2

× Ẑw̃(λ̃1, λ̃2, ỹ) (C.10.30)

The quantities Wµ and Sm are as in Eq. (C.4.30) with here µ = m2 (SR elasticity) and

Zw̃(λ̃1, λ̃2, ỹ) = Ad∆
∗′′(w̃)× (C.10.31)

∫

x̃

χ̃(λ̃1, x̃)Ỹ (λ̃1, x̃)Ỹ (λ̃2, x̃− ỹ)χ̃(λ̃2, x̃− ỹ) ,

where Ỹ and χ̃ are explicit functions given in Eqs. (C.10.25) and (C.10.29). This is our final result; its explicit evaluation
is left for the future.

C.11Appendix D: First moment to one-loop order

In this appendix we give the result for 〈S2
1S2〉ρc

W
to one-loop accuracy for short-ranged elasticity. Note that since the

formula (C.3.27) is exact, it does not receive higher-loop contributions and the first improvement brought to moments of
ρcW is for 〈S2

1S2〉ρc
W

. The latter can be obtained from the known formulas (61) and (118) of Ref. [109],

Ĉ(3)(w1, w2, w3) = − 6
m2

sym123

{

∆′(w12)∆(w13)
}

(C.11.1)

−6I3 sym123

{

∆′(w12)2∆′(w13) + [∆(w12) − ∆(0)]
[
∆′(w13)∆′′(w12) + ∆′(w12)∆′′(w13)∆′(w23)∆′′(w13)

]}

.

The first line corresponds to the improved tree approximation, sym123 denotes the symmetrization over the wi variables,
I3 =

∫

k
1

(k2+m2)3 , and we have use the shorthand notation wij := wi−wj . As explained in the text, this formula is sufficient

to obtain 〈S2
1S2〉ρc

W
using the K operation. The final result reads

L−2d〈S2
1S2〉ρc

W
= −6Sm − 4I3

Sm
Ldm2

[

∆′′(0)∆′′(W ) + 3∆′′(W )2 + 3∆′(W )∆′′′(W )
]

+O(ǫ3) . (C.11.2)



Appendix D

Paper: Log-Gamma directed polymer with
fixed endpoints via the replica Bethe Ansatz

The following is essentially the article published as
Title: Log-Gamma directed polymer with fixed endpoints via the replica Bethe Ansatz
Authors: Thimothée Thiery and Pierre Le Doussal
ArXiv: 1406.5963
Journal-Ref: Journal of Statistical Mechanics: Theory and Experiment, Volume 2014, October 2014
Abstract: We study the model of a discrete directed polymer (DP) on the square lattice with homogeneous inverse gamma
distribution of site random Boltzmann weights, introduced by Seppalainen [197]. The integer moments of the partition
sum, Zn, are studied using a transfer matrix formulation, which appears as a generalization of the Lieb-Liniger quantum
mechanics of bosons to discrete time and space. In the present case of the inverse gamma distribution the model is integrable
in terms of a coordinate Bethe Ansatz, as discovered by Brunet. Using the Brunet-Bethe eigenstates we obtain an exact
expression for the integer moments of Zn for polymers of arbitrary lengths and fixed endpoint positions. Although these
moments do not exist for all integer n, we are nevertheless able to construct a generating function which reproduces all
existing integer moments, and which takes the form of a Fredholm determinant (FD). This suggests an analytic continuation
via a Mellin-Barnes transform and we thereby propose a FD ansatz representation for the probability distribution function
(PDF) of Z and its Laplace transform. In the limit of very long DP, this ansatz yields that the distribution of the free energy
converges to the Gaussian unitary ensemble (GUE) Tracy-Widom distribution up to a non-trivial average and variance that
we calculate. Our asymptotic predictions coincide with a result by Borodin et al. [218] based on a formula obtained by
Corwin et al. [198] using the geometric Robinson-Schensted-Knuth (gRSK) correspondence. In addition we obtain the
dependence on the endpoint position and the exact elastic coefficient at large time. We argue the equivalence between our
formula and the one of Borodin et al. As we discuss, this provides connections between quantum integrability and tropical
combinatorics.

D.1 Introduction

Recently it was realized that methods of integrability in quantum systems could be used to obtain exact solutions for the
one dimensional continuum Kardar-Parisi-Zhang equation (KPZ). The KPZ equation [33] is a paradigmatic model for 1D
noisy growth processes, encompassing a vast universality class of discrete growth or equivalent models (the so-called KPZ
class). The probability distribution function (PDF) of the KPZ height field h at time t was obtained (at one, or several space
points) and shown to converge at large t to the universal Tracy-Widom (TW) distributions [37] for the largest eigenvalues
of large Gaussian random matrices.

One route, entirely within continuum models, is to use the Cole-Hopf mapping onto the problem of the directed
polymer, h ∼ lnZ, where h is the height of the KPZ interface, and Z the partition sum (in the statistical mechanics
sense) of continuum directed paths in presence of quenched disorder. Using the replica method, the time evolution of the
moments Zn maps [201] onto the (imaginary time) quantum evolution of bosons with attractive interactions, the so-called
Lieb-Liniger model [202]. This model is integrable via the Bethe Ansatz, which ultimately yields exact expressions for the
integer moments Zn of P (Z), the PDF of Z. Although recovering from there the PDF of the KPZ height field requires the
use of some heuristics (since the moments actually grow too fast to ensure uniqueness), this method allowed to obtain the
Laplace transform of P (Z) (also called generating function) for all the important classes of KPZ initial conditions (droplet,
flat, stationary, half-space) [173, 165, 177, 183, 169, 215, 175, 214]. Interestingly, in all the solvable cases, it was obtained as
a Fredholm determinant, with various kernels and valid for all times t. Let us also mention the recently observed connection
between the continuum model and the sine-Gordon quantum field theory [242].

Another route is to study appropriate discrete models, which, in some limit, reproduce the continuum result. This
route is favored in the mathematics community since it does not suffer, in the favorable cases, from the moment problem.
In [172, 171, 34], the solution for the continuum KPZ equation with droplet initial conditions was obtained as the weak
asymmetry limit of the ASEP. Another integrable discrete model, the q-TASEP, also exhibits such a limit for q → 1, and
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was shown to be part of a broader integrability structure related to Macdonald processes. This allows for rigorous extensions
to the other class of KPZ initial conditions, which are under intense current scrutiny [192, 208, 243, 180].

Among the solvable discrete models, are the discrete and semi-discrete directed polymer models. The model studied
by Johansson in [159] considers a DP on a square lattice with a geometric distribution of the on-site random potentials,
and allows for an exact solution. It is a zero temperature DP model since it focuses on the path with minimal energy
(energy being additive along a path), as in the last passage percolation models. Another remarkable solvable model is
called the log-gamma polymer and was introduced by Seppalainen [197]. It is a finite temperature model as it focuses on
Boltzmann weights (which are multiplicative along a path). Its peculiarity is that the random weights on the sites are
distributed according to a so-called inverse gamma distribution, which has a power law fat tail. Such a choice for the
quenched disorder leads to remarkable properties: an exact expression for the Laplace transform of P (Z) (the generating
function) was obtained by Corwin et al. in [198]. The method is quite involved and uses combinatorics methods known as
the gRSK correspondence (a geometric lifting of the Robinson-Schensted-Knuth (RSK) correspondence) also called tropical
combinatorics. These involve properties of the GL(N,R) Whittaker functions, which are generalizations of Bessel functions.
Later, it was shown by Borodin et al. [218] that this generating function takes the form of a Fredholm determinant. This
form allowed them to perform an asymptotic analysis for long DP and to prove again convergence of the PDF of the free
energy to the GUE Tracy-Widom distribution. Finally, the O Connel-Yor model of the semi-discrete polymer [191], which
leads to an exactly solvable hierarchy, can be obtained as a limit of the log-gamma polymer [198]. It would be of great
interest to extend the Bethe Ansatz replica method to the discrete models. Recently, it was discovered by Brunet [244]
that eigenfunctions of the replica transfer matrix of the log-gamma polymer on the square lattice can be constructed using
a lattice version of the Bethe ansatz. The present paper aims at studying these eigenfunctions, and from them to calculate
the generating function for the integer moments Zn of the partition sum of the log-gamma polymer. Here we treat the case
of fixed endpoints. The generating function is found to take the form of a Fredholm determinant for all polymer lengths.

This goal may appear hopeless at first sight, since the integer moments Zn cease to exist for n ≥ γ where γ is the
parameter of the model and the exponent of the power law fat tail. However, our generating function reproduces all existing
integer moments. Furthermore, it suggests an analytic continuation, inspired from Mellin-Barnes identities, which leads us
to a conjecture for the Laplace transform of P (Z) in the form a Fredholm determinant, with an (analytically continued)
kernel. We use it to obtain the asymptotic behavior of the PDF of the free energy lnZ at large polymer lengths. In the limit
of a very long DP, it yields convergence to the GUE Tracy-Widom distribution up to non-trivial average and variance that
we calculate. Our asymptotic predictions coincide with the result of Borodin et al. [218] obtained by completely different
methods (using the formula obtained in [198]). In addition, we obtain the dependence in the end-point position on the
lattice, e.g. the exact elastic coefficient at large times. We perform some numerical checks of these results.

A more ambitious goal is then to show that the kernel obtained here is equivalent to the one obtained in Borodin et al.
[218]. Most steps of the correspondence are achieved and detailed here. However, the last step involves the use of heuristics,
although we present some hints that it is correct.

Of course, as we show, our results also reproduce the ones of the continuum model, both at the level of the Bethe-
Ansatz (the Lieb-Linger model) and of the final result, i.e. our kernel reproduces the finite time kernel for the corresponding
KPZ/DP continuum model [173, 165]. In yet another limit it also provides a Bethe Ansatz solution to the semi-discrete
polymer problem [191].

In general, the present work opens the way to explore the connections between quantum integrability and tropical
combinatorics.

The outline of the paper is as follows. In Section D.2 we recall the log-Gamma DP problem introduced by Seppalainen
and introduce some useful notations. In Section D.3 we present the ansatz discovered by Brunet. In Section D.4 we detail
how this ansatz can be used to recursively compute the integer moments Zn, in particular we identify the weighted scalar
product that makes the Brunet states orthogonal and (presumably) complete. In Section D.5 we identify a scaling limit
that relates the continuum model to the discrete one studied here. In Section D.6 we conjecture a formula for the norm
of the Brunet functions that generalizes the Gaudin formula. In Section D.7 we show how the Bethe-Brunet equations are
solved in the "thermodynamic" limit. This allows us to find in Section D.8 an explicit formula for Zn. In Section D.9 we
perform an analytic continuation leading to a conjecture for the Laplace transform of the PDF of Z, as well as a formula
for the PDF at fixed length. This is used in Section D.10 to explicitly show the KPZ universality class and convergence of
the fluctuations of logZ to the Tracy-Widom GUE distribution. In Section D.11 we compare our results to those obtained
in [218]. Section D.12 summarizes the main conclusions of the paper, and a series of Appendices present some conceptual
discussions and technical details.

D.2 Model

D.2.1 Model

The log-Gamma directed polymer (DP) introduced by Seppalainen [197] is defined as follows. Consider the square lattice
(i, j) ∈ Z

2 and the set of directed up-right paths (directed polymers) from (1, 1) to (I, J). To emphasize the directed nature
of the problem, we define (x, t), with each coordinate running through one diagonal of the square lattice (see Fig. D.1):

t = i+ j − 2 , x =
i− j

2
(D.2.1)

so that the x (space) coordinate of the points on a line with t (time) even (resp. odd) are integers (resp. half integers).
With this definition a directed path contains only jumps from (x, t) to (x+ 1

2
, t+ 1) or (x− 1

2
, t+ 1). We define Zt(x) the
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(finite temperature) partition sum of the directed paths from (0, 0) to (x, t):

Zt(x) =
∑

π:(0,0)→(x,t)

∏

(x′,t′)∈π

wx′,t′ (D.2.2)

in terms of the Boltzmann weights wx,t = e−Vx,t defined on the site of the lattice (the temperature is set to unity). In the
simplest (i.e. homogeneous) version of the log-Gamma DP model the wx,t are i.i.d. random variables distributed according
to the inverse-Gamma distribution:

P (w)dw =
1

Γ(γ)
w−1−γe−1/wdw (D.2.3)

with parameter γ > 0. In the following (.) denotes the average over wx,t ("disorder average").

x

t

ij

Figure D.1: The two coordinate systems for the square lattice, see (D.2.1). The starting
point of the path is (i = 1, j = 1), which corresponds to the origin (0, 0) in the (x, t)
coordinates.

Our goal is to calculate the PDF of (minus) the free energy, lnZt(x), equivalently P (Zt(x)). In the spirit of the recent
works on the replica Bethe Ansatz approach to the continuum directed polymer, we start by calculating the integer moments
Zt(x)n with n ∈ N. Clearly these moments do not exist for n ≥ γ, as can be seen already 1 from the one-site problem
Z0(0) = w0,0 = w whose moments are:

wn =
Γ(γ − n)

Γ(γ)
(D.2.4)

for n < γ, and diverge for n ≥ γ. This makes a priori the problem of the log-Gamma polymer more difficult to study using
replica. However, note that (D.2.4) is valid more generally for Re(n) < γ and possesses a simple analytic continuation to
the complex n plane (minus the poles) via the Γ function as given in (D.2.4). For this example, and for more general ones,
we show in D.13 how to obtain the Laplace transform e−uw from the integer moments (D.2.4).

This gives some hope to calculate the Laplace transform of P (Zt(x)) with the sole knowledge of its integer moments,
via an analytic continuation, in the spirit of D.13. The moment problem was a challenge for the case of the continuum

directed polymer due to the too rapid growth of the moments Zn ∼ en
3t. Here, the difficulty is the existence of poles in

the moments, however the situation for the analytic continuation appears more favorable.

D.2.2 Rescaled Potential

From now on we restrict ourselves to γ > 1 and for convenience we normalize the weights so that their first moment is
unity. We thus define:

w =
1

γ − 1
w̃ = e−V , V = Ṽ + V0 , e−V0 =

1
γ − 1

such that the integer moments become:

hn = e−nṼ =
(γ − 1)n

(γ − 1)...(γ − n)
=
n−1∏

k=0

4
4 − kc̄

(D.2.5)

where we introduced the interaction parameter:

c̄ =
4

γ − 1
> 0. (D.2.6)

In particular, h0 = h1 = 1.

1Zt(x) always contains the statistically independent factors w0,0 and wx,t, corresponding to the
endpoints.
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D.3 Evolution equation and Brunet Bethe ansatz

D.3.1 Evolution equation

The partition sum of the directed polymer defined by (D.2.2) can be calculated recursively as:

Zt+1(x) = e−Vx,t

(

Zt(x− 1
2

) + Zt(x+
1
2

)
)

, Z0(x) = e−V0,0δx,0 (D.3.1)

The moments of the partition sum are conveniently encoded in the "wavefunction" ψ, defined on Z
n (for t even) and

(Z + 1
2
)n (for t odd) as

ψt(x1, ..., xn) = 2−nteV0n(t+1)Zt(x1) · · ·Zt(xn) (D.3.2)

which satisfies the evolution equation

ψt+1(x1, · · · , xn) =
1

2n
ax1,··· ,xn

∑

(δ1,··· ,δn)∈{− 1
2
, 1

2
}n

ψt(x1 − δ1, · · · , xn − δn)

(D.3.3)

where we note:

ax1,··· ,xn = e
−
∑n

α=1
Ṽxα,t+1 =

∏

x

h∑n

α=1
δx,xα

(D.3.4)

and hn defined as in (D.2.5).

D.3.2 Bethe-Brunet Ansatz

Consider the eigenvalue problem:

ψµ(x1, · · · , xn) = θµ
1

2n
ax1,··· ,xn

∑

(δ1,··· ,δn)∈{− 1
2
, 1

2
}n

ψµ(x1 − δ1, · · · , xn − δn) (D.3.5)

It was found by Brunet [244] that fully-symmetric solutions ψµ of (D.3.5) can be obtained as superpositions of plane waves
in a form that generalizes the usual Bethe Ansatz:

ψµ(x1, · · · , xn) =
∑

σ∈Sn

Aσ

n∏

α=1

zxα
σ(α) , Aσ =

∏

1≤α<β≤n
(1 +

c̄

2
sgn(xβ − xα + 0+)

tσ(α) − tσ(β)

) (D.3.6)

with

zα = eiλα , tα = i tan(
λα
2

) =
zα − 1
zα + 1

(D.3.7)

These solutions ψµ are parametrized by a set of (distinct) complex variables {z1, · · · , zn}. It is convenient to parametrize
the zα in terms of variables λα as above, with −π < Re(λα) ≤ π, which we call rapidities by analogy with the continuum
case (see discussion below). The eigenvalue associated with ψµ is then given by: 2

θµ =
n∏

i=1

z
1
2
α

1 + z−1
α

2
(D.3.8)

The property (D.3.5) is easily checked for all xα distinct, in which case it is similar to the continuum case [202, 210]. The case
where there are two coinciding xα is reminiscent of the matching condition of the continuum case. Verifying the property
(D.3.5) for an arbitrary number of coinciding points is non-trivial, and is found to work only ewhen the hn in (D.3.4)
have values precisely given by (D.2.5) [244]. Hence this integrability property is a special property of the inverse Gamma
distribution 3. Until now the possible values of the zα remain unspecified. As an intermediate stage in our calculation we
impose here for convenience periodic boundary conditions ψ(x1, · · · , xα + L, · · · , xn) = ψ(x1, · · · , xn), α = 1, · · · , n, i.e. a
system of finite number of sites L. This can be satisfied if the rapidities satisfy the generalized Bethe equation [244]:

eiλαL =
∏

1≤β≤n,β 6=α

2tα − 2tβ + c̄

2tα − 2tβ − c̄
=

∏

1≤β≤n,β 6=α

2 tan(λα
2

) − 2 tan(
λβ

2
) − ic̄

2 tan(λα
2

) − 2 tan(
λβ

2
) + ic̄

(D.3.9)

for α = 1, · · · , n, which are derived exactly as in the continuum case.

2the first factor
∏n

α=1
z

1
2
α was absent in Brunet’s formula due to a different choice of coordinates

x′ = x+ t/2.
3there are other solvable cases, by different methods, such as zero temperature model of [159],

solved in terms of a determinantal process related to free fermions.
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D.4 Time evolution of the moments, symmetric transfer matrix

D.4.1 Symmetric transfer matrix and scalar product

In this section we motivate the introduction of a peculiar weighted scalar product, for which the Brunet functions form
an orthogonal set. The Brunet functions diagonalize the evolution equation (D.3.3), which is not encoded by a symmetric
transfer operator since the variable ax1,··· ,xn depends only on the arrival point. This can be traced to the recursion (D.3.1),
which counts the contribution of the disorder only at the points on the line at t + 1. Hence the Brunet functions have no
reason to form an orthogonal set for the canonical scalar product, and we indeed find that they do not. On the other hand,
if we consider the change of function ψ̃(x1, · · · , xn) = 1√

ax1,··· ,xn
ψ(x1, · · · , xn), (D.3.3) now reads

ψ̃t+1(x1, · · · , xn) =
√
ax1,··· ,xn

∑

(δ1,..δn)∈{− 1
2
, 1

2
}n

√
ax1−δ1,··· ,xn−δn ψ̃t(x1 − δ1, · · · , xn − δn) (D.4.1)

The disorder now appears in a symmetric way, and the transformed Brunet functions ψ̃µ naturally appear as eigenvectors
of an Hermitian transfer operator, with the same eigenvalue θµ as before. This shows that θµ ∈ R . Since (D.4.1) involves
the evaluation of a function both at integer coordinates and half-odd integer coordinates, this operator acts on the function
defined on Z

n ⊕ (Z+ 1
2
)n. It appears more convenient to consider the evolution equation that links t and t+ 2: this defines

the transfer matrix Tn:

ψ̃t+2 = Tnψ̃t (D.4.2)

which is thus naturally defined as an Hermitian operator on L2(Zn), and for which the Brunet states ψ̃µ are eigenvectors
with eigenvalues e−2Eµ = θ2

µ > 0

θ2
µ = e−2Eµ =

n∏

α=1

zα + 2 + z−1
α

4
=

n∏

α=1

1
1 − t2α

(D.4.3)

where the last equation is an equivalent form, using that zα = (1 + tα)/(1 − tα).
To be more precise, we have chosen to work with periodic boundary conditions and we thus consider Tn as an operator

that acts on the function defined on {0, · · · , L− 1}n, which has dimension Ln. This is only a convenient choice and should
have no effect on the results for the case of interest here, i.e. a polymer with a fixed starting point, as long as we consider
t < L: in this case the polymer does not ever feel the boundary. In the end we will consider the limit L → ∞ at fixed t, so
that the polymer never feels the boundary.

Going back to the original wavefunctions, the above construction partially justifies the claim that the original Brunet
states {ψµ} given in (D.3.6) form a complete basis of the symmetric functions on {0, · · · , L− 1}n, and that it is orthogonal
with respect to the following weighted scalar product

〈φ, ψ〉 =
∑

(x1,··· ,xn)∈{0,··· ,L−1}n

1
ax1,··· ,xn

φ∗(x1, · · · , xn)ψ(x1, · · · , xn) (D.4.4)

We have not attempted to provide a general proof of this statement (a usually challenging goal when dealing with Bethe
Ansatz), however we did explicitly check it for various low values of (L, n). We will thus proceed by assuming that it is
correct.

.1 We conclude this section with a minor remark on a special case: if there is a solution of the Brunet equation with

zi = −1, then e−2Eµ = 0 and the Brunet state is ill-defined. In fact, it is easy to see that Tψµ = 0 if and only if Mψµ = 0
with M the transfer matrix without disorder, which can be diagonalized using plane waves. Hence to have a well-defined
complete basis, one has to complete the Brunet states with the symmetric plane waves with vanishing eigenvalues that exist
when L is even. These additional states do not play any role in the following (since they correspond to zero eigenvalues)
but they are important to assess the validity of the completeness property.

D.4.2 Time-evolution of the moments

This formalism allows us to give a simple expression for the moments with arbitrary endpoints:

Zt(x1) · · ·Zt(xn) = 2nt
(
c̄

4

)n(t+1)

ψt(x1, · · · , xn) (D.4.5)

Since the Brunet states form a complete basis of the symmetric functions on {0, · · · , L − 1}n, which are orthogonal with
respect to the scalar product (D.4.4) and since the initial condition

ψ0(x1, · · · , xn) = hn

n∏

α=1

δxα,0 (D.4.6)

is symmetric in position space, one can write the decomposition of the initial condition on the Brunet-Bethe states as:

ψ0 =
∑

µ

〈ψµ, ψ0〉
||ψµ||2 ψµ =

∑

µ

n!
||ψµ||2ψµ (D.4.7)
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using the explicit expression (D.3.6) for the (un-normalized) eigenstates. The simple iteration of the evolution equation
(D.3.3) directly leads to, for all t ∈ N:

ψt =
∑

µ

n!
||ψµ||2 (θµ)tψµ (D.4.8)

and thus

Zt(x1) · · ·Zt(xn) = 2nt
(
c̄

4

)n(t+1)∑

µ

n!
||ψµ||2 (θµ)tψµ(x1, · · · , xn) (D.4.9)

Using that:

ψµ(x, ..., x) = n!

(
n∏

α=1

zα

)x

(D.4.10)

for any eigenstate µ given by (D.3.6), we finally obtain the integer moment of the DP with fixed starting point at (0, 0) and
endpoint at (x, t) as:

Zt(x)n = 2nt
(
c̄

4

)n(t+1)∑

µ

(n!)2

||ψµ||2 (θµ)t
(

n∏

α=1

zα

)x

(D.4.11)

where we recall θµ to be given by (D.3.8). Hence the only remaining unknown quantities here are the norm of the Brunet
states, and we will now calculate them in the infinite size limit L → ∞.

Before we do so, let us indicate how the present discrete model recovers the continuum model in some limit, in particular
how the discrete space-time quantum mechanics recovers the standard continuum one.

D.5 The continuum/Lieb-Liniger limit

It is interesting to note that the Brunet equations (D.3.9) and the form of the eigenfunctions (D.3.6) tend to those of
the Lieb-Liniger model (LL) as given by the standard Bethe ansatz solution if one takes the limit of small λi and c̄
simultaneously. In such limit, one has ti ≃ iλi

2
.

More precisely, to understand the correspondence between the continuum LL model [202] and the present discrete
model, we must reintroduce a lattice spacing a that sets the dimension of the parameters of the continuum case. We define

λα = aλLLα , c̄ = ac̄LL , xα =
xLLα

a
, t = η

tLL

a2
(D.5.1)

where we keep temporarily η as a free parameter. At finite size we must also define the periodicity of the LL model,
LLL =aL.

If one now takes the LL limit defined by a → 0 with the quantities of the continuum (labelled LL) fixed, one recovers
from (D.3.6)-(D.3.7) the usual Bethe wavefunctions for the LL model, with rapidities λLLα and (attractive) interaction
parameter cLL = −c̄LL < 0. From (D.3.9) we also recover the usual Bethe equations for the LL model:

eiλ
LL
α LLL

=
∏

β 6=α

λLLα − λLLβ − ic̄LL

λLLα − λLLβ + ic̄LL
(D.5.2)

The parameter η tunes the correspondence between the LL time and our discrete time t: in the LL case the time-evolution

of an eigenfunction µ is encoded through the multiplication by a factor e−ELL
µ tLL

= e
−
∑n

i=1
(λLL

i )2tLL

, which should be
equal to the LL limit of (θµ)t. This implies

tLL
n∑

α=1

(λLLα )2 = − lim
a→0

η
tLL

a2

n∑

α=1

log




e

iaλLL
α
2 + e− iaλLL

α
2

2



 = ηtLL
n∑

α=1

(λLLα )2

8
(D.5.3)

If we now follow standard conventions and definitions of the LL model, see e.g. [173, 177], this implicates η = 8. With this
choice, the time-evolution of our wavefunction is consistent with the one of the continuum model.

To further extend the correspondence to the moments of the partition sum, we must compare the formula (D.4.5) with
the similar evolution for the LL model (where the wavefunction was simply equal to the moment). The correspondence
thus reads:

ZLL
tLL (xLL1 ) · · ·ZLL

tLL (xLLn )
VLL

= lim
a→0

2−nt
(4
c̄

)n(t+1)

Zt(x1) · · ·Zt(xn)
w

(D.5.4)

ZLLtLL (xLL) ≡inlaw lim
a→0

2−t
(4
c̄

)(t+1)

Zt(x) (D.5.5)

where on the right the limit has to be taken using (D.5.1). We have emphasized that averages in the continuum model (LL)
are computed for a Gaussian potential VLL, which is distinct from the quenched disorder in the discrete model. The second
equation states the equivalence "in law" between the discrete log-gamma DP model in the small lattice spacing limit, and
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the continuum DP model 4. For a precise definition of the continuum DP model, including VLL, with the same conventions,
see e.g. [173, 177].

Note that we have somewhat "reverse-engineered" here, since one can also establish (D.5.4) by directly starting from the
evolution equation for the moments (D.3.3), without any knowledge of the Bethe ansatz solution. A similar calculation was
performed in [245]. The present considerations thus provide a useful consistency check. Note that the various continuum
limits are also discussed in [192], Section 5.

In the following, we note ≃LL the LL limit, which is the limit of small a with the scaling (D.5.1). Note that it
corresponds to the limit of γ = 1 + 4/(ac̄LL) → ∞ in the log-gamma DP model.

D.6 Norm of the eigenstates

Here we will guess a general formula for the norm of the eigenstates for the discrete model (the Brunet states). The approach
involves some heuristics, but the final formula reproduces all numerical verifications that we performed for small values of
n, as it is summarized in D.14. The complete proof of the formula will surely be involved, e.g. as it was the case in the
continuum case [210].

Let us recall the formula for the norm for the LL model (with periodic boundary conditions):

||µ||2LL = n!
∏

1≤α<β≤n

(λLLα − λLLβ )2 + (c̄LL)2

(λLLα − λLLβ )2
detGLL (D.6.1)

where GLL is the Gaudin matrix whose entries are:

GLLαβ = δαβ

(

L+
n∑

γ=1

K(λLLα − λLLγ )

)

−K(λLLα − λLLβ ) (D.6.2)

K(x) =
−2c̄LL

x2 + (c̄LL)2
(D.6.3)

A useful remark is that the entries of the Gaudin matrix in the LL case are the derivatives of the logarithm of the LL Bethe
equations (D.5.2).

Let us assume that this property still holds. From the Brunet-Bethe equations (D.3.9) we can then summarize that in
the present case:

Gαβ =
1
i

∂

∂λβ

(

log

(

eiλαL
∏

j 6=i

2tα − 2tβ − c̄

2tα − 2tβ + c̄

))

(D.6.4)

Using that ∂iλα tα = 1−t2α
2

, this leads to a modified Gaudin matrix:

Gαβ = δαβ

(

L+ (1 − t2α)
n∑

γ=1

K̃(tα − tγ)

)

− (1 − t2β)K̃(tα − tβ) (D.6.5)

with

K̃(t) =
−2c̄

−4t2 + c̄2
(D.6.6)

And our final conjecture for the norm is:

||µ||2 = n!
∏

1≤α<β≤n

(2tα − 2tβ)2 − c̄2

(2tα − 2tβ)2
detG (D.6.7)

where the tα are given by (D.3.7) and are solutions of the Bethe-Brunet equations (D.3.9). This formula is constructed to
coincide with the formula (D.6.1) in the LL limit. It is remarkable, since it could have been constructed without knowing
the definition (D.4.4) of our peculiar weighted scalar product, and as such it is another manifestation of the nice properties
of integrable systems.

We will now proceed assuming this formula to be correct, and later on the way we will indeed carry more indirect
checks of its validity.

D.7 Large L limit

In this section we obtain the string eigenstates in the large L limit, as well as expressions for their eigenvalue (energy),
momentum, phase-space contribution and norm.

4strictly, this could be considered as a conjecture since both models have an ill-defined moment
problem (see however below).
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D.7.1 Strings

We now turn to the large L limit where the analysis can be made more precise, and the Bethe-Brunet equations (BBE) can
be solved in an asymptotic sense, the crucial point being the existence of string-states. Let us analyze the BBE equations
(D.3.9) in the large L limit:

eiλαL =
∏

β 6=α

2tα − 2tβ + c̄

2tα − 2tβ − c̄
(D.7.1)

where we recall tα = i tan(λα
2

). The analysis parallels the one of the continuum problem, with a few (important) differences.

If all the λα are real, we note λα = k̂α ∈ R and the tα are pure imaginary numbers, tα = i kα
2

with kα ∈ R. This

situation is very similar to the LL model: the left hand side in (D.7.1) is eik̂αL and the quantization of the variables k̂α is
similar to the free momenta quantization, plus corrections of order O(1/L). The momentum variable k̂α belongs to the first
Brillouin zone, ] − π, π], which is natural since we are studying a discrete model. This situation corresponds to 1-strings,
also called particles. Note that kα = 2 tan(k̂α/2), and the two quantities become identical only in the LL limit, where both
are small (see below).

If however one of the λα has an imaginary part δ, which we assume to be positive, the left hand side of the equation
tends to zero exponentially as e−δL. This indicates that there must exist another tβ such that

tβ = tα +
c̄

2
+O(e−δL) (D.7.2)

or equivalently

tan(
λβ
2

) = tan(
λα
2

) − i
c̄

2
+O(e−δL) (D.7.3)

Since z → tan(z) preserves the sign of the imaginary part, we get a new eigenvalue with a lower imaginary part and we can
continue the procedure. If the imaginary part of tγ is negative we get that there must exist γ′ such that tγ′ = tγ− c̄

2
+O(e−δL),

and this procedure has to terminates at some point. In fact, as in the Lieb-Liniger case, we believe that it is a general
fact that each set of itα solution to the Brunet equations is self-conjugate, and that in the large-time limit the tα organize
themselves as depicted above.

To conclude, the key idea is that in the large L limit, a set {tα} that solves the Brunet equations is divided into strings
such that inside each string the tα are distant from each other by c̄

2
. A general eigenstate is given by partitioning n into ns

strings, each string containing mj particles where the index j = 1, · · · , ns labels the string. We can thus write all the tα,
α = 1, · · · , n, in the form:

tα = tj,a = i
kj
2

+
c̄

4
(mj + 1 − 2a) +

δj,a
2

(D.7.4)

where we introduce an index a = 1, · · · ,mj that labels the rapidity inside a string, and δj,a are deviations that fall off
exponentially with L. Hence inside the jth string the t variables have the same imaginary part that is denoted by

kj

2
.

One easily sees that the strings of the present model reproduce the LL strings in the LL limit. For infinite L the
correspondence reads:

tα = tj,a ≃LL aλLLj,a +O(a3) , λLLj,a = i
kLLj

2
+
c̄LL

4
(mj + 1 − 2a) (D.7.5)

and the variables kj in (D.7.4) correspond to leading order to the LL string momenta through the scaling kj ≃ akLLj +O(a3).
Restriction on the multiplicity of the string: there is however an important difference with the case of LL strings.

One can see that the mapping between λα and tα is a bijection if |Re(tα)| < 1, i.e. if c̄ < 4
m−1

. Since m ≤ n this implies
c̄ < 4

n−1
or equivalently n < γ, which is exactly the condition for the moment problem to be well-defined. In the LL limit

we have γ → ∞ and one recovers that there are no restriction on m,n.

D.7.2 Eigenvalue of a string: energy

Inserting (D.7.4) into (D.4.3) easily gives that the eigenvalue associated to a string state takes the form of a product:

θµ =
ns∏

j=1

θmj ,kj (D.7.6)

where the contribution of a single string can be written in several forms 5

θmj ,kj =

(
mj∏

a=1

1
1 − t2j,a

) 1
2

=
(2
c̄

)mj






1
(

−mj c̄+c̄−2ikj +4

2c̄

)

mj

(
−mj c̄+c̄+2ikj +4

2c̄

)

mj






1
2

(D.7.7)

=
(2
c̄

)mj

(

Γ(−mj

2
+ γ

2
− i

kj

c̄
)Γ(−mj

2
+ γ

2
+ i

kj

c̄
)

Γ(
mj

2
+ γ

2
− i

kj

c̄
)Γ(

mj

2
+ γ

2
+ i

kj

c̄
)

) 1
2

(D.7.8)

5note that from (D.7.4) 1−ta = (1+tm+1−a)∗ and complex conjugation amounts to change k → −k.
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which are equivalent for integer m. Here (a)m = a(a+ 1)..(a+m− 1) = Γ(a+m)/Γ(a) is the Pochhammer symbol and we
reintroduced γ = 1 + 4

c̄
in the last expression.

Writing θµ = e−Eµ , one can verify the Lieb-Liniger limit:

Eµt ≃LL

mj∑

i=1

(

mj(k
LL
j )2 − (c̄LL)2

12
mj(m

2
j − 1)

)

tLL. (D.7.9)

in two ways. Either the easy way, on the starting expression (first equation in (D.7.7) before summing over a) using (D.7.5)
and performing an expansion similar to (D.5.3). A more tedious way is to use the final expression in (D.7.7) after summation
over a. This is detailed in D.15, where the next higher order corrections O(a2) are also given.

D.7.3 Momentum of a string

In the formula (D.4.11) for Zt(x), the temporal dependance appears through the eigenvalue whereas the position dependence
appears through the factor

(∏

α
zα
)x

which also takes a simple form in string notations:
∏

α
zα =

∏ns

j=1

∏mj

a=1

1+tj,a

1−tj,a
, the

contribution of a single string being

mj∏

a=1

1 + tj,a
1 − tj,a

=
Γ(−mj

2
+ γ

2
− i

kj

c̄
)Γ(

mj

2
+ γ

2
+ i

kj

c̄
)

Γ(
mj

2
+ γ

2
− i

kj

c̄
)Γ(−mj

2
+ γ

2
+ i

kj

c̄
)

(D.7.10)

As for the eigenvalue, one can check the Lieb-Liniger limit:
(
mj∏

a=1

1 + tj,a
1 − tj,a

)x

≃LL e
imjk

LL
j xLL

(D.7.11)

D.7.4 Phase space

The sum over all eigenstates in (D.4.11) can be computed as follows: as in the case of the Lieb-Liniger model [209], regarding
the quantization of its center of mass, each string state should be considered as a free particle in the large L limit, with
total momentum Kj =

∑mj

a=1
λja ∈ [−mjπ,mjπ] (we choose to restrict the momenta to belong to the first Brillouin zone,

since we work on a discrete model). This property allows us to compute the Jacobian and therefore to express sums over
Brunet eigenstates: we write

eiLKj =

mj∏

a=1

1 + tj,a
1 − tj,a

(D.7.12)

where we effectively ignored the interaction with the other strings. We can thus rewrite the sum over string states using
(D.7.12) as:

∑

mjstring−states
→ L

2π

∫ mjπ

−mjπ

dKj → L

2π

∫ ∞

−∞
dkj

mj∑

a=1

1
1 − t2j,a

(D.7.13)

which, in comparison with the usual formula for the LL model L
2π
mj

∫∞
−∞ dkj has an additional "Jacobian" factor.

D.7.5 Norm of the string states

As in the Lieb-Liniger case, our analogous Gaudin-like formula for the norm (D.6.7) has to be studied carefully in the limit
of a large system size to obtain the formula for the norm of the string states. The calculation is detailed in D.16 and we
only give here the result that the leading order in L is

||µ||2 = n!Lns
∏

1≤i<j≤ns

4(ki − kj)2 + c̄2(mi +mj)2

4(ki − kj)2 + c̄2(mi −mj)2

ns∏

j=1

[
mj

c̄mj −1
(

mj∑

a=1

1
1 − t2j,a

)

mj∏

b=1

(1 − t2j,b)] (D.7.14)

which is the generalization of the Calabrese-Caux formula in the case of the LL model [209]. The LL formula is recovered
by setting all tj = 0 in the above result. Note that it should be possible to derive a rigorous proof of this result and of the
completeness of the Brunet states in the L → ∞ limit, where one can use e.g. Plancherel type isomorphism techniques, as
was done in [208] for the q-Boson particle system.

D.8 Formula for the integer moments Zn

We now have all the ingredients to compute the moments in the limit of large system size L → ∞ at fixed t, x. Using the
results of the previous section, (D.4.11) can be rewritten as:
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Zt(x)n = 2nt
(
c̄

4

)n(t+1)

n!
n∑

ns=1

1
ns!

∑

(m1,..mns )n

ns∏

j=1

∫ +∞

−∞
[
dkj
2π

mj∑

a=1

1
1 − t2j,a

]
∏

1≤i<j≤ns

4(ki − kj)2 + c̄2(mi −mj)2

4(ki − kj)2 + c̄2(mi +mj)2

ns∏

j=1

(c̄)mj −1 1
mj(
∑mj

a=1
1

1−t2
j,a

)
∏mj

b=1
(1 − t2j,b)

mj∏

b=1

(
1

1 − t2j,b
)t/2(

1 + tj,b
1 − tj,b

)x (D.8.1)

where we have used that the sum over states can be written as
∑

µ
=
∑n

ns=1
1
ns!

∑

(m1,··· ,mns )n

∑

mjstring−states, where
∑

(m1,··· ,mns )n
means that we sum over all ns-uplets (m1, · · · ,mns ) such that

∑ns

i=1
mi = n, and the ns! factor avoids

counting the same string state twice. Note the cancellation in that formula between the phase space Jacobian factor and
a similar factor in the norm. The rescaling ki → c̄ki and the use of the formula for the energy term (D.7.7) and for the
momentum term (D.7.12) directly gives our main formula for the integer moments:

Zt(x)n = n!
n∑

ns=1

1
ns!

∑

(m1,..mns )n

ns∏

j=1

∫ +∞

−∞

dkj
2π

∏

1≤i<j≤ns

4(ki − kj)2 + (mi −mj)2

4(ki − kj)2 + (mi +mj)2
(D.8.2)

ns∏

j=1

1
mj

(
Γ(−mj

2
+ γ

2
− ikj)

Γ(
mj

2
+ γ

2
− ikj)

) t
2

+1+x(
Γ(−mj

2
+ γ

2
+ ikj)

Γ(
mj

2
+ γ

2
+ ikj)

) t
2

+1−x

where c̄ does not appear explicitly (it appears only via γ). The dependence of this expression on the variables (x, t) suggests
to reintroduce the original coordinates of the square lattice I = t

2
+ 1 + x and J = t

2
+ 1 − x (see Section D.2 and Figure

D.1) and in the following we note Z(I, J) = ZI+J−2( I−J
2

).

This formula should be valid for arbitrary I, J , and in particular when evaluated for (I, J) = (1, 1), for which it should
simplify to wn = Γ(γ−n)

Γ(γ)
. Verifying that property is a quite non trivial check of the procedure (e.g. of the completeness).

Although we did not attempt to provide a general proof, we have successfully checked it for various n using Mathematica
or the residues theorem (see D.20).

We stress here that this formula is ambiguity-free when the moment problem is well-defined: m ≤ n ≤ γ and should
reproduce all existing moments. Very much like what happens for wn, it also suggests an analytic continuation, which we
use below to derive results on the full probability distribution.

D.9 Generating function

Our goal is to calculate the Laplace transform of the probability distributions of the partition sum:

gI,J(u) = exp −uZ(I, J) (D.9.1)

However, as it can be seen already for the one-site problem I = J = 1, this Laplace transform must contain two pieces: (i)
one that comes from the generating function of the integer moments and (ii) a second piece, which we will conjecture below
from an analytic continuation. The one-site problem and the length 2 polymer are very instructive in that respect and are
studied in D.17.

D.9.1 Generating function for the moments

Since we only know the integer moments of the partition sum, we start by computing the contribution in gI,J(u) that comes
from the moments, i.e. we define the series:

gmomI,J (u) = 1 +
+∞∑

n=1

(−1)n
un

n!
Z(I, J)n (D.9.2)

where Z(I, J)n denotes in this expression the right hand side of (D.8.2) for arbitrary integers n ≥ 1. While this distinction
is immaterial for n < γ, it already implies an analytic continuation since Z(I, J)n does not exist for n > γ, while the r.h.s.
of (D.8.2) does.

We can use the same strategy as in [173], [177]. Since we sum over n, the summations over the ns and the mj hidden
in the expression (D.8.2) for Z(I, J)n become free summations from 1 to ∞. Permuting the summations over n and over
the mj leads to

gmomI,J (u) = 1 +
+∞∑

ns=1

1
ns!

Z(ns, u) (D.9.3)

with
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Z(ns, u) =
ns∏

j=1

+∞∑

mj =1

∫ +∞

−∞

dkj
2π

∏

1≤i<j≤ns

4(ki − kj)2 + (mi −mj)2

4(ki − kj)2 + (mi +mj)2

ns∏

j=1

(−1)mjumj
1
mj

ns∏

j=1

(
Γ(−mj

2
+ γ

2
− ikj)

Γ(
mj

2
+ γ

2
− ikj)

)I (
Γ(−mj

2
+ γ

2
+ ikj)

Γ(
mj

2
+ γ

2
+ ikj)

)J

(D.9.4)

and the sums over the mj are free.
It is shown in D.18 that this expression has the structure of a determinant, which allows us to express the generating

function as a Fredholm determinant:

gmomI,J (u) = Det
(
I +Kmom

I,J

)
(D.9.5)

with the kernel:

Kmom
I,J (v1, v2) = (D.9.6)

∞∑

m=1

∫ +∞

−∞

dk

π
(−u)me−2ik(v1−v2)−m(v1+v2)

(
Γ(−m

2
+ γ

2
− ik)

Γ(m
2

+ γ
2

− ik)

)I (
Γ(−m

2
+ γ

2
+ ik)

Γ(m
2

+ γ
2

+ ik)

)J

and Kmom
I,J : L2(R+) → L2(R+), so that the two auxiliary integration variables v1 and v2 are positive. The sum over m

is convergent and the result can be expressed in terms of high order hypergeometric functions 1F4t that are meromorphic
and well-defined on (almost) all the complex plane, see D.19. One can also verify that, at fixed m, the integral on k also
converges: rewriting the Gamma function using the Pochhammer’s symbol leads to simple rational fractions.

The main property of this function gmomI,J (u) is that its coefficient (−u)n in its Taylor expansion in u reproduces

Z(I, J)n/n!. In D.20 we verify this property for small values of (I, J), which is a non trivial test of the completeness of the
Bethe-Brunet eigenstates.

D.9.2 Generating function: Laplace transform

By analogy with the simpler cases studied in D.13 and D.17, we now conjecture that the full generating function, i.e.
the Laplace transform of P (Z) for the log-gamma polymer, can be computed using a trick inspired by the Mellin-Barnes
identity, leading to our main result:

gI,J(u) = exp −uZ(I, J) = Det (I +KI,J) (D.9.7)

KI,J(v1, v2) =

∫ +∞

−∞

dk

π

−1
2i

∫

C

ds

sin(πs)
use−2ik(v1−v2)−s(v1+v2) (D.9.8)

(
Γ(− s

2
+ γ

2
− ik)

Γ( s
2

+ γ
2

− ik)

)I (
Γ(− s

2
+ γ

2
+ ik)

Γ( s
2

+ γ
2

+ ik)

)J

where C = a + iR with 0 < a < 1 (here the sum runs from 1 to infinity) and KI,J : L2(R+) → L2(R+)6. Note that the
symmetry I ↔ J is explicit under the change of variable k ↔ −k. We discuss below in Section D.11 the connection between
this result, obtained via the Bethe Ansatz, and the previous formula of [218], obtained using a completely different route.

D.9.3 Probability distribution

Before turning to the large-length limit, let us briefly mention that one can directly obtain from (D.9.8) the probability
distribution of logZ(I, J) as a convolution: logZ(I, J) = logZ0 + log Z̃(I, J) where − logZ0 is an independent random
variable with a standard (unit) Gumbel distribution and Z̃(I, J) is distributed according to a probability density P̃IJ given
by

P̃I,J(v) =
1

2iπv

(

Det(I + Ǩ
(1)
I,J − iǨ

(2)
I,J) − Det(I + Ǩ

(1)
I,J + iǨ

(2)
I,J)
)

(D.9.9)

where Ǩ(j)
I,J , j = 1, 2, are two operators Ǩ(j)

I,J : L2(R+) → L2(R+) with kernels:

Ǩ
(j)
I,J(v1, v2) =

∫ +∞

−∞

dk

π

−1
2i

∫

C

ds

f (j)(πs)
v−se−2ik(v1−v2)−s(v1+v2) (D.9.10)

(
Γ(− s

2
+ γ

2
− ik)

Γ( s
2

+ γ
2

− ik)

)I (
Γ(− s

2
+ γ

2
+ ik)

Γ( s
2

+ γ
2

+ ik)

)J

6 Note that for I = J and s, ik on the imaginary axis the ratio of gamma function is a complex
number of modulus unity. For a > 0 is has modulus smaller than one, decaying to zero for large
|s|, k. The exponential convergence in s is ensured by the 1/sin but the convergence in k is slower
(algebraic).
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where f (1)(x) = tanx and f (2)(x) = 1. The derivation of this result is given in D.21.

D.10Limit of very long polymers and universality

In this section we show how the above formula leads to Tracy-Widom universality and derive explicit expressions for the
asymptotic probability distribution of the free energy.

Let us consider the large length limit, for which we find more convenient to use our coordinates (x, t) (see Fig. D.1),
and focus first on the scaling x ∼ ϕt with − 1

2
< ϕ < 1

2
. We define the free energy as:

Ft(ϕ) = − lnZt(x = ϕt) (D.10.1)

We thus need to analyze the t → ∞ limit of gϕ,t(u) = Det (I +Kϕ,t) with Kϕ,t : L2(R+) → L2(R+) defined by its kernel
(from (D.9.8)):

Kϕ,t(v1, v2) =

∫

R

dk

π

−1
2i

∫

C

ds

sin(πs)
use−2ik(v1−v2)−s(v1+v2) (D.10.2)

(
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2
− ik)

Γ( s
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2

− ik)
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+ϕ)(
Γ(− s

2
+ γ

2
+ ik)

Γ( s
2

+ γ
2

+ ik)

)1+t( 1
2

−ϕ)

The behavior of the large length limit is estimated through a saddle-point analysis. We define Gϕ(x) = ( 1
2

+ ϕ) log Γ( γ
2

−
x) − ( 1

2
− ϕ) log Γ( γ

2
+ x) to write the Gamma function factor as

exp
(

t
(

Gϕ(
s

2
+ ik) −Gϕ(− s

2
+ ik)

)

+ 2
(

G0(
s

2
+ ik) −G0(− s

2
+ ik)

))

(D.10.3)

We now use a Taylor expansion around the critical-point (s, k) = (0,−ikϕ)7 :

Gϕ(
s

2
+ ik) −Gϕ(− s

2
+ ik) = 0 +G′

ϕ(kϕ)s+G′′
ϕ(kϕ)isk̃ +

G′′′
ϕ (kϕ)

6
(
s3

4
− 3sk̃2) +O(s4) (D.10.4)

where k̃ = k + ikϕ and s are considered to be of the same order (this is indeed the case, see below). It is easy to see that
G′
ϕ(kϕ) corresponds to the additive part of the free-energy. This is thus the proper saddle-point only if G′′

ϕ(kϕ) is 0, which
implicitly defines kϕ as a function of ϕ as the solution of the equation:

(
1
2

+ ϕ)ψ′(
γ

2
− kϕ) − (

1
2

− ϕ)ψ′(
γ

2
+ kϕ) = 0 (D.10.5)

where ψ = Γ′

Γ
is the digamma function. The numerical solution kϕ is plotted in D.22. The expansion (D.10.4) indicates

that we have to rescale the free-energy as:
Ft(ϕ) = cϕt+ λϕft (D.10.6)

where cϕ = −G′
ϕ(kϕ) is the free-energy per unit length (which is self-averaging at large t) and λϕ =

(
tG′′′

ϕ (kϕ)

8

) 1
3

is the

scale of the free energy fluctuations, such that ft is an O(1) random variable. With these definitions, the rescaled generating

function of the λϕ rescaled free energy, g̃ϕ,t(z) = exp(−e−λϕ(z+ft)), is given by the Fredholm determinant of a rescaled
kernel, g̃ϕ,t(z) = Det(I + K̃ϕ,t), which is obtained by rescaling s → s

λϕ
, k̃ → k̃

λϕ
, as well as vi → λϕvi:

K̃ϕ,t(v1, v2) =

∫

R

dk̃

π

−1
2i

∫

C

ds

λϕ sin(π s
λϕ

)
e

−sz−2ik̃(v1−v2)−s(v1+v2)−4k̃2s+ s3

3
+O( 1

λϕ
)

(D.10.7)

where the O( 1
λϕ

) term contains higher order derivatives of Gϕ and the expansion of G0 around kϕ
8. The large polymer

length limit λϕ → ∞ can be safely taken in this last expression, leading to a kernel K̃∞ for which there is more freedom
in the choice of the integration contour C: it should only define a convergent integral and passes to the right of zero. The
t → ∞ limit of the rescaled generating function can thus be written as limt→∞ g̃ϕ,t(z) = Prob(−f < z) = Det(I + K̃∞)
with

K̃∞(v1, v2) =

∫

R

dk̃

π

∫

C

−ds
2iπs

e−sz−2ik̃(v1−v2)−s(v1+v2)−4k̃2s+ s3

3 (D.10.8)

which corresponds to the Tracy-Widom GUE distribution. Indeed, the Airy trick
∫

R
dyAi(y)eys = e

s3

3 valid for Re(s) > 0,

followed by the shift y → y + z + v1 + v2 + 4k̃2, the identity
∫

C
ds

2iπs
esy = θ(y), and the rescaling k̃ → k̃/2 give

K̃∞(v1, v2) = −
∫

R

dk̃

2π

∫

R+

dyAi(y + z + v1 + v2 + k̃2)e−ik̃(v1−v2) (D.10.9)

7this is natural since ϕ 6= 0 breaks the symmetry k → −k of (D.10.3) while the factor in the
exponential remains odd in s .

8 The extra factor e−2kϕλϕ(v1−v2) originating from the change of variable has been removed since
it is immaterial in the calculation of the Fredholm determinant.
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which is one way to define F2 as in [173] : this kernel indeed corresponds to Prob(−f∞ < z) = det(I + K̃∞) = F2(2− 2
3 z).

Putting everything together, our result for the asymptotic limit reads

lim
t→∞

Prob

(
logZt(ϕt) + tcϕ

λϕ
< 2

2
3 z

)

= F2(z) (D.10.10)

where F2(z) is the standard GUE Tracy-Widom cumulative distribution function, and the (angle-dependent) constants are
determined by the system of equations:

0 = (
1
2

+ ϕ)ψ′(
γ

2
− kϕ) − (

1
2

− ϕ)ψ′(
γ

2
+ kϕ) (D.10.11)

cϕ = (
1
2

+ ϕ)ψ(
γ

2
− kϕ) + (

1
2

− ϕ)ψ(
γ

2
+ kϕ) (D.10.12)

λϕ =
(

− t

8

(

(
1
2

+ ϕ)ψ′′(
γ

2
− kϕ) + (

1
2

− ϕ)ψ′′(
γ

2
+ kϕ)

)) 1
3

(D.10.13)

.1 Central region (i.e. square lattice diagonal): In the special case ϕ = 0 the solution is explicit: kϕ = 0
and the free energy per unit length and the scale of the free-energy fluctuations are given by

λ0 = (−tψ
′′( γ

2
)

8
)

1
3 c0 = ψ(

γ

2
) (D.10.14)

For small angle ϕ one can also compute pertubatively the first correction, which is kϕ =
2ψ′(

γ
2

)

ψ′′(
γ
2

)
ϕ + O(ϕ3). This allows to

obtain the leading correction to the extensive part of the mean-free energy as a function of the angle, and of the endpoint
position, as:

tcϕ = tψ(
γ

2
) − t

2ψ′( γ
2

)2

ψ′′( γ
2

)
ϕ2 +O(ϕ4) = tψ(

γ

2
) − κ

x2

4t
+ .. (D.10.15)

which defines the effective elastic constant κ as (the last equation is valid in the scaling region x/t ≪ 1)

κ =

(

−8
ψ′( γ

2
)2

ψ′′( γ
2

)

)

(D.10.16)

We see here that, although the discrete model does not obey an exact statistical tilt symmetry (STS), see e.g. CalabreseLeDoussal2011-
flat, this symmetry is recovered at large scale (within this scaling region) with an effective elastic constant originating from
the geometrical entropy effect.

.2 Remark on the digamma function The appearance of the digamma function in the mean free energy is
natural since, as was noted in [197], a potential V = − lnw distributed according to a log-Gamma distribution of parameter
γ verify V q = ∂q−1

γ ψ(γ). However, the appearance of the parameter γ
2

is non-trivial and has to do with the existence of
an invariant measure of parameter γ

2
as was proved in [197] using peculiar boundary conditions. Here we did not use these

boundary conditions and this is visible in the fact that limϕ→ 1
2
cϕ = ψ(γ) (see D.22): when one approaches the border

of the lattice one retrieves the original parameter γ since there is a single path. The behavior of the above equations is,
however, ill-defined in this limit: this is a signature that, at ϕ = 1

2
, the fluctuations of the free-energy become Gaussian

and scale as
√
t (as a simple application of the central limit theorem).

.3 Lieb-Liniger limit We can recover the results of [173, 165, 172, 171] in the continuum (Lieb-Liniger) limit
by considering the LL limit (see Section D.5) around the angle zero (since in that limit x/t ∼ a). Using ψ(x) ∼x→∞
log x− 1

2x
− 1

12x2 +O(x−4) and (D.5.4) one can show the following Lieb-Liniger limits:

λ0 = (−tψ
′′( γ

2
)

8
)

1
3 ≃LL (

c̄2
LLtLL

4
)

1
3 (D.10.17)

c0t ≃LL
8
a2
tLL ln(

2
ac̄LL

) +
c̄LL
12

tLL +O(a2) , κ
x2

4t
≃LL

x2
LL

4tLL

where the first term in the extensive part of the mean free energy arises from lattice entropic effect and can be anticipated
from (D.5.4). Putting all together, one recovers the result for the one point distribution of the continuum Airy2 process:

lim
tLL→∞

Prob




logZLLtLL

(xLL) +
x2

LL
4tLL

+ c̄LL
12
tLL

(
c̄2

LL
tLL

4
)

1
3

< 2
2
3 z



 = F2(z) (D.10.18)

.4 Numerical results: Using a direct simulation of (D.3.1) with Mathematica, we calculate the partition sum
for various lengths and samples of environments. This provides some numerical verifications of the above results. The
full check of (D.10.10) is qualitatively satisfying. In Fig D.2 we show the convergence of the two first cumulants of the
probability distribution of Ft(0) for γ = 3 and t = 2i, i = 1, ..., 13. Numerical cumulants are evaluated using N = 105



246 Appendix D. Paper: Log-Gamma directed polymer and BA

samples (i = 1, ..., 10) or N = 104 (i = 11, 12, 13). The mean free energy Ft(0)
t

quickly converges since the theoretical
prediction (D.10.10) already includes a finite size correction. The asymptote is ψ(γ/2) = 0.03649. The convergence of the
rescaled variance V ar(Ft(0))

2
4
3 λ2

0

is slower but in good agreement with the Tracy-Widom asymptotic value 0.813.

We also checked the dependence on ϕ of the two first rescaled cumulants. In Fig D.3 we show the obtained dependence

of Ft(ϕ)
t

and V ar(Ft(ϕ))

t
2
3

for γ = 3 and t = 4096. These cumulants are numerically evaluated using 104 samples. The

theoretical predictions are given by (D.10.10) where kϕ is evaluated as explained in D.22.

.5 Semi-discrete O’Connell-Yor polymer Let us finally mention another interesting asymptotic limit that
is briefly discussed in D.23 and that allows us to retrieve the semi-discrete directed polymer model of [191]. This limit is
most conveniently studied on the equivalent form (D.11.11) of the Fredholm determinant formula (D.9.8) that is derived in
the next section.

D.11Comparison with other results

.1 Mathematical Results Using the geometric RSK correspondence, it was shown in [198], that the Laplace
transform of the partition sum of the polymer with fixed endpoints (1, 1) → (I, J) with I ≥ J can be expressed as a J-fold
integral:

e−uZ(I,J) =
1
J !

∫

(iR)J

J∏

j=1

dwj
2iπ

J∏

j 6=k=1

1
Γ(wj − wk)

[
J∏

j=1

uwj −aΓ[a− wj ]
J Γ(α− wj)I

Γ(γ)I
] (D.11.1)

where α−a = γ > 0, the parameter of the underlying inverse Gamma distribution. In [218], it was shown that this integral
can be expressed as a Fredholm determinant: e−uZ(I,J) = Det(I +KRSK

I,J ) with

KRSK
I,J (v, v′) =

1
(2πi)2

∫

lδ2

dw
π

sin(π(v − w))
1

w − v′ u
w−v

(
Γ(α− w)
Γ(α− v)

)I (
Γ(v − a)
Γ(w − a)

)J

(D.11.2)

where 0 < δ2 < 1 , 0 < δ1 < min{δ2, 1 − δ2} and 0 < a < δ1, α > δ2. Here lδ2 denotes the axis Re(z) = δ2 oriented from
the bottom to the top. K is the kernel of an operator L2(Cδ1 ) → L2(Cδ1 ) with Cδ1 a positively oriented circle of center 0
and radius δ1. The measure of integration on Cδ1 is chosen here as the Lebesgue measure, hence the extra factor of 1/(2iπ)
as compared to [218] that uses a different convention. The contour for the v, v′ integrals is tailored so that only the pole at
v = a contributes. Using this expression, they could perform the asymptotic analysis and show that

lim
N→∞

Proba

(
log(Z(N,N)) + 2Nψ( γ

2
)

(N)
1
3

< (−ψ′′(
γ

2
))

1
3 z

)

= F2(z) (D.11.3)

which is exactly the same result as ours in (D.10.10) for the case of the central region ϕ = 0.

.2 Kernels correspondence We now sketch how we find the kernel KRSK
I,J and our kernel to be closely related.

We start from our result (D.9.8) where C = a + iR with 0 < a < 1. The first step is to make the change of variables
s = a+ is̃, which allows us to rewrite this kernel as an integral on R

2:

KI,J(v1, v2) =

∫

R2

−dkds̃
2π

1
sin(π(a+ is̃))

ua+is̃e−2ik(v1−v2)−(a+is̃)(v1+v2) (D.11.4)

(
Γ(−a+is̃

2
+ γ

2
− ik)

Γ(a+is̃
2

+ γ
2

− ik)

)I (
Γ(−a+is̃

2
+ γ

2
+ ik)

Γ(a+is̃
2

+ γ
2

+ ik)

)J

We now use the change of variables (k, s̃) → (s+, s−) with s+ = s̃
2

+ k and s− = s̃
2

− k, this gives

KI,J(v1, v2) =

∫

R2

ds+ds−A(v1, s+)B(s+, s−)C(s−, v2) (D.11.5)

where we introduced γ− = γ − a and γ+ = γ + a and

A(v1, s+) = e−v1(2is++a) C(s−, v2) = e−v2(2is−+a) (D.11.6)

B(s+, s−) =
−1
2π

1
sin(π(a+ i(s+ + s−)))

ua+i(s++s−)

(
Γ( γ−

2
− is+)

Γ( γ+

2
+ is−)

)I (
Γ( γ−

2
− is−)

Γ( γ+

2
+ is+)

)J

(D.11.7)

The kernel now has the form of a product of operators, hence we can use the identity Det(I+ABC) = Det(I+CAB) (from
the cyclic property of the trace) to obtain that the Laplace transform gI,J(u) can be expressed as the Fredholm determinant
gI,J(u) = Det(I +K′′

I,J) with K′′
I,J = CAB:

K′′
I,J(v, v′) =

∫

R

ds+

∫

R+

dv2C(v, v2)A(v2, s+)B(s+, v
′) (D.11.8)
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where in this expression, the integral on v2 is straightforward and we find

K′′
I,J(v, v′) =

∫

R

ds+
−1

4π(a+ i(s+ + v))
1

sin(π(a+ i(v′ + s+)))
ua+i(v′+s+) (D.11.9)

(
Γ( γ−

2
− is+)

Γ( γ+

2
+ iv′)

)I (
Γ( γ−

2
− iv′)

Γ( γ+

2
+ is+)

)J

where now K′′
I,J : L2(R) → L2(R). Note that the convergence of the integral over s+, a necessary condition to exchange the

integrations, is satisfied when I ≥ J , which we now assume. If J ≥ I we would instead write Det(I+ABC) = Det(I+BCA),
leading to the same kernel with I and J exchanged (and v, v′ exchanged which is immaterial in the Fredholm determinant).
Using the change of variables w = a+ γ+

2
+is+ and z = −iv′ + γ+

2
(it adds a minus sign), the result for gI,J(u) is re-expressed

as the Fredholm determinant gI,J(u) = Det(I +K′
I,J) with K′

I,J : L2( γ+

2
+ iR) → L2( γ+

2
+ iR) and

K′
I,J(z, z′) =

∫

a+
γ+

2
+iR

dw
1

4π(w − z′)
1

sin(π(w − z))
uw−z

(
Γ(γ + a− w)
Γ(γ + a− z)

)I (
Γ(z − a)
Γ(w − a)

)J

(D.11.10)

In this last expression we have some freedom in the choice of the contours: the evaluation of the Fredholm determinant
involves integrals on w and on z that are invariant as long as we translate the contours of integration by the same amount,
and that we do not cross the poles located at w = γ + a+ n and z = a− n for n ∈ N. We can thus write our final result as
gI,J(u) = Det(I +KBA

I,J ) with KBA
I,J : L2(a+ ã+ iR) → L2(a+ ã+ iR) defined as the "Bethe ansatz" kernel:

KBA
I,J (z, z′) =

∫

2a+ã+iR

dw
1

4π(w − z′)
1

sin(π(w − z))
uw−z

(
Γ(α− w)
Γ(α− z)

)I (
Γ(z − a)
Γ(w − a)

)J

(D.11.11)

where α = γ + a, 0 < a < 1 and 0 < ã < γ − a and I ≥ J .

.3 The next step to achieve the correspondence would be to deform the contour of integration of z into the circle Cδ1 .
This seems to be a difficult task since when deforming the contour one a priori encounters an infinite number of poles.
However we conjecture that it works and that:

Det(I +KBA
I,J ) = Det(I +KRSK

I,J ) (D.11.12)

We verified that identity in some simple cases, e.g. by explicitly computing the u, u2, u3 terms (for t = 0 and t = 2) and
the uγ , uγ+1 terms (t = 0 only). A proof may require lifting the model to a higher generalization involving Macdonald
processes. Note that in the case of the semi-discrete polymer (see D.23), the equivalence between such small circles and
open contours was already proved in [243].

Let us finally mention that this kernel allows to obtain another formula for the probability distribution of logZ analogous
to (D.9.10). More precisely (D.9.10) still holds with Ǩ

(j)
I,J → Ǩ

(j),BA
I,J where the kernels Ǩ

(j),BA
I,J are obtained from KBA

I,J in

(D.11.11) by substituting 1
sin(π(w−z))

uw−z → vz−w/f (j)(π(w − z)).

.4 Results from the physics literature During the last stage of the redaction of this article, we became
aware of a very recent work [222] where zero-range q-boson models with factorized steady state measures and which are
integrable via the Bethe ansatz are classified. Although these results were obtained in a different context, there is a clear
connection to the ansatz studied here. The main difference is that the stochasticity hypothesis has to be relaxed to get a
more general framework that encompasses our model. This is however easily done (work in progress) and the Brunet ansatz
then appears as a (singular) limit of this generalized ansatz.

D.12Conclusion

In this paper we have studied the problem of a directed polymer on the square lattice in presence of log-Gamma distributed
quenched random weights. Building up on an earlier work by Brunet, we have shown how the Bethe-Ansatz and integrability
techniques could be efficiently used to derive an exact formula for the n-th integer moment of the partition function for
fixed endpoints and arbitrary polymer length, (D.8.2), defined for n < γ. Based on this formula and the observations
made in D.13 and D.17, we conjectured a formula for the Laplace transform of the probability distribution of the partition
sum. From this: (i) we obtained a formula for the probability distribution of the partition function for any polymer length
(D.9.10) (ii) we showed convergence of the free energy distribution to the Tracy-Widom distribution at large time (D.10.10)
and derived the normalizing constants and their dependence in the endpoint position (i.e. in the angle with respect to the
diagonal of the lattice). Specifically, we obtained the extensive part of the mean free energy, as well as the variance of the
fluctuations. From the angle dependence we also obtained the elastic coefficient. We performed numerical simulations of
long polymers to check and confirm some of these results with very good agreement. At each stage of the calculation we
proved that all of our formulas reduce, in the continuum limit, to the ones for the Lieb-Liniger model, thereby recovering
the results for the continuum KPZ model obtained in previous works.

In the last section we showed how these results are related to the previous work of [218]. Our asymptotic limit agrees
and extends their result to arbitrary angle, and our Fredholm determinant formula are closely related, with an essential
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difference in the contours of integration. This difference seems to be a signature of the method: our integrability techniques
naturally give rise to "large" contours formulas, whereas the techniques used in the mathematical context give rise to
"small" contours formulas. Although we provided some verifications, the full proof of the equivalence of the two formulas
may require considering a regularized, (e.g. q-deformed) version of the log-Gamma model.

.1 This paper thus offers new tools which could be used to explore further the similarities between quantum integra-
bility and tropical combinatorics methods. It also opens the way to other studies on the log-Gamma directed polymer with
e.g. other boundary conditions, such as flat (as in [177]) or stationary (as in [197]) and extension to the inhomogeneous
model of [198], which are left for future studies.
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D.13Appendix A: Analytic continuation: Laplace transform from the mo-
ments

In this section, we illustrate the use of the Mellin-Barnes identity to compute the Laplace transform of a probability
distribution from its integer moments. In the most favorable cases the Laplace transform of the probability distribution
P (Z) of a positive random variable Z, such as a partition sum, can be calculated by a simple re-summation of the integer
moments:

e−uZ :=

∫

Z>0

dZP (Z)e−uZ =
+∞∑

n=0

1
n!

(−u)nZn (D.13.1)

Clearly this formula cannot be used when some of the moments do not exist, e.g. when P (Z) has an algebraic tail. In
that case however one can use a more general formula in terms of a Mellin-Barnes transform.

The basic identity is the following integral representation of the exponential function:

e−z =

∫

−a+iR

ds

2iπ
Γ(−s)zs = −

∫

−a+iR

ds

2i sin(πs)
1

Γ(1 + s)
zs (D.13.2)

where a > 0 and z > 0. It allows us to express the Laplace transform of the probability distribution P (Z) as:

e−uZ = −
∫

dZP (Z)

∫

−a+iR

ds

2i sin(πs)
1

Γ(1 + s)
(uZ)s

= −
∫

−a+iR

ds

2i sin(πs)
us

Γ(1 + s)
Zs (D.13.3)

a more general formula, which is valid provided the integral converges. This is the case for instance for the single site
problem, i.e. Z = w given by the inverse Gamma distribution, in which case ws = Γ(γ − s)/Γ(γ) for Re(s) < γ. In fact, in
that (trivial) case the formula (D.13.3) is precisely the representation given in [198], see e.g. (D.11.1) setting I = J = 1.

In the case where f(s) = Zs is analytic on the positive half-plane Re(s) ≥ 0, and satisfies the conditions of Carlson
theorem (i) ∃ C, τ , |f(z)| < Ceτz (ii) |f(iy)| < Ceπy, the integral (D.13.3) converges and we can close the contour on the
positive half plane. From the residues of the poles of the 1/ sin function one then recovers the formula (D.13.1) (equivalently,
going from (D.13.1) to (D.13.3) is nothing but the Mellin-Barnes formula).

D.14Appendix B: Verifications of the formula for the norm

Here we calculate the norm of the Brunet states in some simple cases, which provide verifications for the general formula
given in the text.

D.14.1 finite L

For fixed L one can directly compute the norm of a general 2 particles state with real momenta: ti = i ki
2
, ki ∈ R. Using

the formula for the weighted scalar product (D.4.4), one finds:

||ψµ||2 = −c̄L8 + k2
1 + k2

2

(k1 − k2)2
+ 2L2

(
c̄2 + (k1 − k2)2

)

(k1 − k2)2
(D.14.1)

in agreement with the formula (D.6.7) using the modified Gaudin determinant.
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D.14.2 in the limit L → +∞
Norm of a single n-string In the limit L → ∞, one can compute explicitly the norm of the state consisting of a single
string (see section D.7), i.e. of particle content m = n ∈ N. Inserting the string decomposition (D.7.4) into the Brunet
eigenfunctions (D.3.6), one sees that the single n-string eigenstate takes the simple form:

ψn−string(x1, · · · , xn) = n!zx1
1 · · · zxn

n , x1 ≤ · · · ≤ xn (D.14.2)

with za = 1+ta
1−ta and where the ta variables are organized as ta = i k

2
+ c̄

4
(m + 1 − 2a). For the infinite system one can

recursively sum on the variables yi = xi −xi−1 starting with yn, carefully using the definition of the scalar product (D.4.4).
Let us illustrate the calculation for n = 2, 3. One has:

||ψ2−string||2 =
∑

x1,x2

1
ax1,x2

|ψ2−string(x1, x2)|2 = 2
∑

x1<x2

4|z1|2x1 |z2|2x2 +
4
h2

∑

x1

|z1z2|2x1

≃ 8L
+∞∑

y=1

|z2|2y +
4L
h2

(D.14.3)

using |z1z2| = 1 from the Bethe equation. Using that z2 =
2− c̄

2
+ik

2+ c̄
2

−ik one sees that |z2| < 1. Using that h2 = 4/(4 − c̄) and

performing the sum one finds:

||ψ2−string||2 ≃L→∞
L
(
4(4 + k2) − c̄2

)

2c̄
(D.14.4)

in agreement with (D.7.14).
A similar calculation for n = 3 is performed using that

∑

x1,x2,x3

a−1
x1,x2,x3

|ψ(x1, x2, x3)|2 = 6
∑

x1<x2<x3

|ψ(x1, x2, x3)|2 (D.14.5)

+
3
h2

[
∑

x1<x3

|ψ(x1, x1, x3)|2 +
∑

x1<x2

|ψ(x1, x2, x2)|2] +
1
h3

∑

x1

|ψ(x1, x1, x1)|2 (D.14.6)

Inserting (D.14.2), using that |z2| = 1, |z1|2 = 1/|z3|2 and |z3|2 = (2−c̄−ik)(2−c̄+ik)
(2+c̄−ik)(2+c̄+ik)

and performing the sums leads to the
norm of the 3-string as:

||ψm=n=3||2 ∼L→∞
9L
(
−16c̄2 + c̄4 + 3(4 + k2)2

)

8c̄2
(D.14.7)

As one can see from this expression, it is hard to guess the general formula. Fortunately one can check that it agrees with
the conjecture (D.7.14).

.1 n 1-strings: In the case of n particles with ns = n, one easily obtains the norm in the large L limit. In the calculation

of
∑

x1,··· ,xn

1
ax1,..xn

ψ∗(x1, · · · , xn)ψ(x1, · · · , xn), one only encounters plane waves with real momenta. It is then easy to

see that, inserting the form (D.3.6) and expanding both wavefunctions in sum over permutations, only the terms that come
from the same permutation in ψ∗ and ψ can give a power of Ln. The computation of the other (non-diagonal) terms involve
the use of the Bethe equations (D.3.9) and give subdominant powers of L. Also, in that case, the factor ax1,..xn can be set
to unity to leading order in the large L limit. From there one easily obtains:

||ψ||2 = n!Ln
∏

i<j

c̄2 + (ki − kj)2

(ki − kj)2
+O(Ln−1) (D.14.8)

which is a consistency check of the first factor in the first formula (D.7.14), and a check of the general norm formula (D.6.7).

D.15Appendix C: Expansion of the eigenenergy around the LL limit

Consider the expression for the eigenvalue (D.7.7). The LL limit amounts to perform a small c̄ expansion at fixed k̃ =
k/c̄. We can use the expansion of the Pochhammer symbol at at large x, (x)m = xmf(x) with f(x) = 1 + m(m−1)

2x
+

m(3m3−10m2+9m−2)

24x2 + O(1/x3), with x = −m
2

+ γ
2

+ ik̃ and γ = 1 + 4
c̄
. Then θ2

m,k = ( 2
c̄
|x|)2f(x)f(x∗), where x∗ is the

complex conjugate. Since 2
c̄
|x| → 1 as c̄ → 0 one can easily take the logarithm and expanding in c̄, up to O(c̄4) one finds,

up to terms of O(c̄6, k6, ..):

− 8 ln θm,k = mk2 +
1
12

(m−m3)c̄2 −
c̄4m

(
3m4 − 10m2 + 7

)

1920
+

1
16
c̄2k2m

(
m2 − 1

)
− k4m

8
(D.15.1)

This expression is O(a2) +O(a4) in the LL limit and when combined with the scaling of t = tLL

8a2 it gives the correct finite
LL limit displayed in the text, together with the first correction in a.
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D.16Appendix D: Norm of strings from modified Gaudin formula in the limit
L → ∞

We start from the formula (D.6.7) for the norm of an eigenstate given in the main text. As in the case of the Lieb-Liniger
model, this formula is a-priori singular and the limit should be taken with care for L → +∞ when string states appear.
Here we follow the strategy of [209]. In that limit we split the n particles into ns strings of multiplicity mj :

tj,a = i
kj
2

+
c̄

4
(mj + 1 − 2a) +

δj,a

2
(D.16.1)

where j = 1, ..., ns and a = 1, ...,mj .

.1 Limit of the prefactor in string notations: The prefactor is most conveniently written as

∏

1≤α<β≤n

(2tα − 2tβ)2 − c̄2

(2tα − 2tβ)2
=
∏

α6=β

2tα − 2tβ − c̄

2tα − 2tβ
(D.16.2)

We now use the string notations and split the intra-string part from the inter-string part:

∏

α6=β

2tα − 2tβ − c̄

2tα − 2tβ
=

∏

i6=j

mi∏

a=1

mj∏

b=1

i(ki − kj) + c̄
2
(mi −mj − 2(a− b+ 1))

i(ki − kj) + c̄
2
(mi −mj − 2(a− b))

ns∏

j=1

mj∏

a=1

∏

b6=a

c̄(a− b+ 1)−δ(a,b)
j

c̄(a− b)
(D.16.3)

where we denote δ(a,b)
j = δj,a − δj,b and keep these strings deviations only where needed for the limit. After some work one

finds that the leading term in the expansion in the strings deviations is given by:

∏

1≤i<j≤ns

4(ki − kj)2 + c̄2(mi +mj)2

4(ki − kj)2 + c̄2(mi −mj)2

∏

1≤j≤ns

mj

(1
c̄

)mj −1
mj −1
∏

a=1

δ
(a,a+1)
j (D.16.4)

.2 Limit of the modified Gaudin determinant: Consider formula (D.6.5) in the main text. As in the

Lieb-Liniger case, the determinant is singular and contains terms of the form K(tj,a − tj,a+1) = K
(a,a+1)
j = 1

δ
(a,a+1)
j

+O(1)

that become exponentially large. It is easy to see that the leading term in the string deviation is obtained when one
computes the determinant as if all string were decoupled: detG ∼

∏ns

j=1
detGj where

detGj =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

L+ (1 − t2j,1)
∑

b6=1
K

(1,b)
j −(1 − t2j,1)K(1,2)

j · · · −(1 − t2j,1)K
(1,mj )

j

−(1 − t2j,2)K(1,2)
j L+ (1 − t2j,2)

∑

b6=2
K

(2,b)
j · · · −(1 − t2j,2)K

(2,mj )

j

. . · · · .

. . · · · .

−(1 − t2j,mj
)K

(1,mj )

j −(1 − t2j,mj
)K

(2,mj )

j · · · L+ (1 − t2j,mj
)
∑

b6=mj
K

(b,mj )

j

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(D.16.5)

This determinant can be handled in the same spirit as in [209]. One starts by adding the first column to the second

one, then one adds to the second row the first one multiplied by
1−t2j,2

1−t2
j,1

. The singular term K
(1,2)
j now only appears in

the top-left entry and the entry (2, 2) now contains L(1 +
1−t2j,2

1−t2
j,1

). One now iterates this procedure by adding the second

column to the third one, and adding to the third row the second one multiplied by
1−t2j,3

1−t2
j,2

, and the entry (3, 3) now contains

L
(

1 +
1−t2j,3

1−t2
j,2

(1 +
1−t2j,2

1−t2
j,1

)
)

= L
(

1 +
1−t2j,3

1−t2
j,2

+
1−t2j,3

1−t2
j,1

)

. In the end all the singular terms K(a,a+1)
j are located on the first

mj −1 diagonal entries and the last term contains the leading power in L which is L(1− t2j,mj
)
∑mj

b=1
1

1−t2
j,b

. We thus obtain

detGj ∼ L

(
mj −1
∏

a=1

(1 − t2j,a)K(a,a+1)
j

)

(1 − t2j,mj
)

mj∑

b=1

1
1 − t2j,b

(D.16.6)

Note that we can do the exact same operation on the full modified Gaudin determinant to explicitly show that the different
strings decouple. Taking all the strings into account, we thus arrive to:

detG ∼
ns∏

j=1

L

(
mj −1
∏

a=1

1

δ
(a,a+1)
j

)
mj∏

a=1

(1 − t2j,a)

mj∑

b=1

1
1 − t2j,b

(D.16.7)

The divergent part precisely cancels the vanishing part of the prefactor and leads to the formula of the main text.
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D.17Appendix E: Laplace transform versus moment generating function:
some simple cases.

.1 Calculations for the one-site problem I = J = 1 In the case of Z = w distributed according to the
inverse gamma distribution one can still close the contour in (D.13.3). This coincides with the formula of [198] applied to
one site. This leads to the result:

e−uZ =
∞∑

n=0

(−u)n

n!
Γ(γ − n)

Γ(γ)
+

∞∑

n=0

(−1)n

n!
uγ+nΓ(−γ − n)

Γ(γ)
(D.17.1)

=
2

Γ[γ]
u

γ
2 Kγ(2

√
u) (D.17.2)

One can check that this is an exact formula. Notice that in the expansion, both sums converge separately but just give a
part of the total Laplace transform:

∞∑

n=0

(−u)n

n!
Γ(γ − n)

Γ(γ)
= uγ/2Γ(1 − γ)I−γ

(
2
√
u
)

(D.17.3)

∞∑

n=0

(−1)n

n!
uγ+nΓ(−γ − n)

Γ(γ)
=
uγ/2Γ(−γ)Γ(γ + 1)Iγ

(
2
√
u
)

Γ(γ)

where we used the usual notations for the Bessel functions. This is not apparent, but one can also notice that the sum of the
(analytically-continued) moments possesses the symmetry γ → 2 − γ, which is also the case for the Fredholm determinant
computed in terms of hypergeometric functions computed in D.19. Note however that neither the Laplace transform,
nor P (w), possess this symmetry, another manifestation that the integer moments give only a part of the total Laplace
transform. The same property holds for the general case of arbitrary t, as discussed below.

.2 Calculation for t=2 We now give a non-trivial check of the procedure for a length 2 polymer. Consider the
moments of Z2(0) = w0,0(w− 1

2
,1 + w 1

2
,1)w0,2 : they are given for n < γ by

Z2(0)n =
n∑

k=0

Ckn
Γ(γ − n)2Γ(γ − k)Γ(γ − (n− k))

Γ(γ)4
(D.17.4)

Because of the sum over k, it is not straightforward to analytically continue this formula in n. However, if we compute the
moment generating function gmom(u) =

∑∞
n=0

(−1)n u
n

n!
Z2(0)n, we obtain:

gmom(u) =
∑

k1≥0,k2≥0

(−u)k1+k2

Γ(1 + k1)Γ(1 + k2)
Γ(γ − n)2Γ(γ − k)Γ(γ − (n− k))

Γ(γ)4
(D.17.5)

On this function we can now perform the Mellin-Barnes trick to conjecture a formula for the Laplace transform g(u) =
e−uZ2(0) :

g(u) =
1

4π2

∫

−a+iR

∫

−a+iR

dk1dk2u
k1+k2 Γ(−k1)Γ(−k2)

Γ(γ − n)2Γ(γ − k)Γ(γ − (n− k))
Γ(γ)4

(D.17.6)

where we used the reflection formula for the Gamma function. This formula is similar to the exact result obtained in
[198], and we have numerically verified that the two results coincide. This provides a verification, for t = 2 , of the
general procedure detailed in the text to conjecture the formula (D.9.8) for the Laplace transform for arbitrary t using the
Mellin-Barnes trick.

D.18Appendix F: Generating Function as a Fredholm determinant

We start from the formula (D.9.4) for the partition sum at fixed number of strings. As in [173] we use the following crucial
identity:

∏

1≤i<j≤ns

4(ki − kj)2 + (mi −mj)2

4(ki − kj)2 + (mi +mj)2
= det[

1
2i(ki − kj) +mi +mj

] ×
ns∏

j=1

(2mj) (D.18.1)

Hence we can rewrite (D.9.4) as:

Z(ns, u) =
ns∏

j=1

+∞∑

mj =1

∫
dkj
π
det[

1
2i(ki − kj) +mi +mj

]

×
ns∏

j=1

(−u)mj

ns∏

j=1

(
Γ(−mj

2
+ γ

2
− ikj)

Γ(
mj

2
+ γ

2
− ikj)

)I (
Γ(−mj

2
+ γ

2
+ ikj)

Γ(
mj

2
+ γ

2
+ ikj)

)J

(D.18.2)
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The determinant can be written as a sum over permutations σ, and we also introduce the representation 1
x

=
∫

R+
dve−vx,

which leads to

Z(ns, u) =
∑

σ∈Sn

(−1)σ
ns∏

j=1

+∞∑

mj =1

∫
dkj
π

∫

vj>0

e−vj (2i(kj −kσ(j)+mj +mσ(j))(−u)mj

×
ns∏

j=1

(
Γ(−mj

2
+ γ

2
− ikj)

Γ(
mj

2
+ γ

2
− ikj)

)I (
Γ(−mj

2
+ γ

2
+ ikj)

Γ(
mj

2
+ γ

2
+ ikj)

)J

We then perform the change
∑

j
vjkσ(j) =

∑

j
vσ−1(j)kj ( and the same for

∑

j
vjmσ(j)) and relabel as σ → σ−1, this leads

to:

Z(ns, u) =
∑

σ∈Sn

(−1)σ
ns∏

j=1

+∞∑

mj =1

∫
dkj
π

∫

vj>0

e−2ikj (vj −vσ(j))−mj (vj +vσ(j))(−u)mj

(
Γ(−mj

2
+ γ

2
− ikj)

Γ(
mj

2
+ γ

2
− ikj)

)I (
Γ(−mj

2
+ γ

2
+ ikj)

Γ(
mj

2
+ γ

2
+ ikj)

)J

which has the structure of a determinant:

Z(ns, u) =
ns∏

j=1

∫

vj>0

det[Kmom
I,J (vi, vj)]ns×ns (D.18.3)

with the kernel Kmom
I,J given in (D.9.6). Summation over ns leads to the Fredholm determinant expression given in the text.

D.19Appendix G: Moments-kernel in term of hypergeometric functions

We show that the moments-kernel Kmom can be exactly expressed in terms of hypergeometric functions by separating the
summation over m even and m odd. We restrict to t even and x = 0 and define:

Gn(k, z) =
∞∑

m=1

(−z)m
(

Γ(−m
2

+ γ
2

− ik)Γ(−m
2

+ γ
2

+ ik)

Γ(m
2

+ γ
2

− ik)Γ(m
2

+ γ
2

+ ik)

)n

= −1 +An(k, z2) − zBn(k, z2)

with

An(k, z) =
∞∑

m=0

zm
(

Γ(−m+ γ
2

− ik)Γ(−m+ γ
2

+ ik)

Γ(m+ γ
2

− ik)Γ(m+ γ
2

+ ik)

)n

(D.19.1)

and

Bn(k, z) =
∞∑

m=0

zm
(

Γ(−m− 1
2

+ γ
2

− ik)Γ(−m− 1
2

+ γ
2

+ ik)

Γ(m+ 1
2

+ γ
2

− ik)Γ(m+ 1
2

+ γ
2

+ ik)

)n

(D.19.2)

Using the Euler reflection formula three times, we obtain:

Γ(−m+
γ

2
− ik)Γ(−m+

γ

2
+ ik) =

Γ( γ
2

− ik)Γ(1 − γ
2

+ ik)Γ( γ
2

+ ik)Γ(1 − γ
2

− ik)

Γ(1 +m− γ
2

+ ik)Γ(1 +m− γ
2

− ik)

This allows to express

An(k, z) = 1F4n

(

{1}, {(1 − γ

2
+ ik), (1 − γ

2
− ik), (

γ

2
− ik), (

γ

2
+ ik)}n; z

)

(D.19.3)

where we denote:

{(1 − γ

2
+ ik), (1 − γ

2
− ik), (

γ

2
− ik), (

γ

2
+ ik)}n = (D.19.4)

n⊕

i=1

{(1 − γ

2
+ ik), (1 − γ

2
− ik), (

γ

2
− ik), (

γ

2
+ ik)}

The same type of calculation leads to

Bn(k, z) =

(
4

(γ − 1)2 + 4k2

)n

(D.19.5)

1F4n

(

{1}, {(
3
2

− γ

2
+ ik), (

3
2

− γ

2
− ik), (

1
2

+
γ

2
− ik), (

1
2

+
γ

2
+ ik)}n; z

)

And this allows to express Kmom in (D.9.6) as:

Kmom(v1, v2) =

∫

R

dk

π
e−2ik(v1−v2)

(

−1 +A t
2

+1(k, u2e−2(v1+v2)) − ue−(v1+v2)B t
2

+1(k, u2e−2(v1+v2))
)

(D.19.6)

The interesting feature is that on this result, the symmetry γ → 2 − γ holds. Since we know that the Laplace transform
cannot have this symmetry, this shows once again that it cannot be equal to the moment generating function.
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D.20Appendix H: Some verifications of the various kernels

For t even and x = 0 (centered arrival point), the kernel (D.9.6) takes the form

Kmom
t (v1, v2) = (D.20.1)

∞∑

m=1

∫ +∞

−∞

dk

π
(−1)mume−2ik(v1−v2)−m(v1+v2)

(
Γ(−m

2
+ γ

2
− ik)Γ(−m

2
+ γ

2
+ ik)

Γ(m
2

+ γ
2

− ik)Γ(m
2

+ γ
2

+ ik)

) t
2

+1

The integration over k can be performed by noting that there are two series of poles ik = ±(−p + m−γ
2

), p ∈ N, in the
gamma functions (the use of the residues formula here is legitimate, since, as in the main text, one can easily rewrite the
quotient of Gamma functions as a rational fraction).

Consider t = 0. Let us consider for now only the terms m < γ, our goal will be to recover the moments n < γ from the
Fredholm determinant. The integral over k can be performed by closing the contour on the side ik > 0 or ik < 0 depending
on the sign of v1 − v2 leading to:

Kmom
t=0 (v1, v2) = 2

∞∑

m=1

m−1∑

p=0

(−1)p

p!
Γ(γ + p−m)

Γ(m− p)Γ(γ + p)
(−u)me−(2p+γ−m)|v1−v2|−m(v1+v2)

since for m < γ one picks either the first series of poles ik > 0 or the second.
Here at t = 0, we want to check that:

Det (I +Kmom
t=0 ) |(−u)n = n!Γ(γ − n)/Γ(γ) (D.20.2)

We can use the expansion:

Det(I +K) = eln(I+K) = 1 +K +
1
2

((K)2 −K2) (D.20.3)

+
1
6

((K)3 − 3KK2 + 2K3) + ..

we now denote K =
∑

m
Km and check up to order 3 or 4 ..

The same reasoning can be applied to the different kernels obtained from this one in the text. One can check that
(D.9.8) and (D.11.11) indeed give the moments of the distribution (checked at t = 0 and t = 2). One can also check that
the first non-analytic terms in the Laplace transform of the probability distribution at t = 0 are reproduced. For that one
starts from (D.11.11) and explicitly calculate the integral over w using residues

KBA
1,1 (z, z′) =

1
2πi

∞∑

n1=1

(−u)n1

z + n1 − z′
Γ(α− z − n1)Γ(z − a)
Γ(z + n1 − a)Γ(α− z)

(D.20.4)

+
1

2πi

∞∑

n2=0

π

sin(π(z − α− n2))
(−1)n2

n2!
uα+n2−z

α+ n2 − z′
Γ(z − a)

Γ(α+ n2 − a)Γ(α− z)

Using this expansion allows to recover the first terms in D.17.3 and in particular the non analytic terms (−1)n

n!
uγ+n Γ(−γ−n)

Γ(γ)

(we checked it for n = 0, 1). The various traces can be computed using the residues theorem. Integer powers of u come from
the first part of the expansion and from the poles of the sine function in the second part, whereas non-integer powers of u
come from the poles of the Gamma function in the second part. The fact that we can extract the correct integer moments
from the kernels is a consistency check of the procedure. On the other hand, being able to retrieve the non analyticity is
another sign that the Mellin-Barnes trick indeed provides the correct analytic continuation.

D.21Appendix I: Probability distribution at any time

Starting from the expression for the generating function gI,J(u) = e−uZ(I,J) and writing formally Z(I, J) as the product
of a variable Z0 with an exponential distribution: P0(Z0) = e−Z0 (i.e. logZ0 has a unit Gumbel distribution), and a new
positive random variable Z̃(I, J) distributed according to P̃I,J , one has

gI,J(u) = e−uZ0Z̃(I,J) =

∫

dZ0e−uZ0Z̃(I,J)e−Z0 =
1

1 + uZ̃(I, J)
=

∫

dZ̃
1

1 + uZ̃
P̃I,J(Z̃) (D.21.1)

Assuming an analytic continuation, we write

gI,J(
1

−v − iǫ
) =

∫

dZ̃
−v

Z̃ − v − iǫ
P̃I,J(Z̃) (D.21.2)

And the limit ǫ → 0+ allows to extract the probability distribution P̃I,J as

P̃I,J(v) =
1

2iπv
lim
ǫ→0+

(

gI,J(
1

−v + iǫ
) − gI,J(

1
−v − iǫ

)
)

(D.21.3)
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Figure D.4: Saddle-point position kϕ as a function of ϕ for γ = 3. The dotted-line
is the approximation to lowest order in ϕ, i.e. kϕ ∼ ϕ (STS). The losanges are the
numerical solution. The dashed line is a high order perturbative approximation and
the solid line is the final result that uses the non-analytic behaviour near ϕ = 1

2 . The
additional points below arise from numerical artefacts.

Using (D.9.8), we write gI,J( 1
−v±iǫ ) = Det(I + Ǩ±

I,J) with

Ǩ±
I,J(v1, v2) =

∫ +∞

−∞

dk

π

−1
2i

∫

C

ds

sin(πs)

( 1
−v ± iǫ

)s

e−2ik(v1−v2)−s(v1+v2) (D.21.4)

(
Γ(− s

2
+ γ

2
− ik)

Γ( s
2

+ γ
2

− ik)

)I (
Γ(− s

2
+ γ

2
+ ik)

Γ( s
2

+ γ
2

+ ik)

)J

Using the principal determination of the logarithm, and since v has to be positive, we have

lim
ǫ→0+

( 1
−v ± iǫ

)s

= exp(−s log(v) ∓ iπs) (D.21.5)

Finally, writing e∓iπs = cos(πs) ∓ i sin(πs) leads to the formula of the main text.

D.22Appendix J: Saddle point position

The numerical resolution of the saddle-point equation (D.10.5), i.e.:

1
2

+ ϕ
1
2

− ϕ
=
ψ′( γ

2
− kϕ)

ψ′( γ
2

+ kϕ)
(D.22.1)

is complicated by the divergence near ϕ = 1
2
. In fact there is a solution such that the argument of the ψ′ function remains

positive. Since limx→0+ ψ′(x) = +∞ it is easy to see that limϕ→ 1
2
kϕ = − γ

2
. Explicitly, the leading behavior of kϕ is

kϕ ≃ϕ→ 1
2

−γ

2
+

(
1
2

− ϕ

ψ′(γ)

) 1
2

+ ... (D.22.2)

This divergence makes the numerical solution fail around ϕ = 1
2
: kϕ crosses the singularity at − γ

2
. On the other hand, the

non-analyticity makes a perturbative calculation inefficient close to this point. The most accurate determination appears
to be a fit between the numerical result and the known non analyticity, which is what was used for Fig. D.2 and D.3 in the
text. Fig D.4 summarize the situation.

D.23Appendix K: The semi-directed random polymer

The semi-directed random polymer was introduced by O’Connell and Yor in [190, 191]. In [193] it was argued that
it constitutes an universal scaling limit for polymer restricted to stay close to the boundary (with proper rescaling of the
temperature or in our case, of the parameter of the inverse-gamma distribution). In the simplest case (no drift, temperature
and total polymer length t set to unity) it is defined as the partition sum

Zs.d.N =

∫

0<s1<···<sN−1≤1

eB1(s1)+(B2(s2)−B2(s1))+···+(BN (1)−BN (sN−1)) (D.23.1)
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where Bj(s) are N independent standard Brownian motions. In [198], it was shown that this model could be obtained
as the following scaling limit of the log-Gamma polymer: Zs.d.N ∼inlaw limn→∞ en log(n)− 1

2Z(n,N)|γ=n. Here we show
how this scaling limit naturally appears and we obtain a Fredholm-Determinant formula for the Laplace transform of the
semi-directed polymer partition sum. Starting from (D.11.11) we need to analyze the large n limit of Det(I +KBA

n,N ) where

KBA
n,N (z, z′) =

∫

a+iR

ds
1

4π(s+ z − z′)
1

sin(πs)
us
(

Γ(z)
Γ(z + s)

)N (
Γ(n− z − s)

Γ(n− z)

)n

(D.23.2)

and z, z′ ∈ ã+ iR. We have defined s = w − z and renamed z − a → z. Here the factor
(

Γ(n−z−s)
Γ(n−z)

)n

takes a simple form

in the large n limit:
(

Γ(n− z − s)
Γ(n− z)

)n

= exp
(

n
(

−sψ(n) +
1
2
ψ′(n)(2sz + s2) +O(

1
n2

)
))

(D.23.3)

where use that ψ(k)(n) = O( 1
nk ) for n → ∞. Using ψ(n) =n→∞ log(n) − 1

2n
+O( 1

n2 ) and ψ′(n) =n→∞ 1
n

+O( 1
n2 ), we thus

arrive at:
(

Γ(n− z − s)
Γ(n− z)

)n

∼n→∞ exp
(

−s(n logn− 1
2

) + sz +
1
2
s2
)

(D.23.4)

The first term indeed imposes to rescale the partition sum as Ẑ(n,N) = en log(n)− 1
2Z(n,N) so that the laplace transform

of Ẑ(n,N), ĝn,N = exp −uẐ(n,N) has a well-defined n → ∞ limit given by a Fredholm determinant, with:

lim
n→+∞

ĝn,N = Det(I + K̂N ) (D.23.5)

K̂N (z, z′) =

∫

a+iR

ds
1

4π(s+ z − z′)
1

sin(πs)
us
(

Γ(z)
Γ(z + s)

)N

esz+ 1
2
s2

(D.23.6)

and z, z′ ∈ ã+ iR. We recall 0 < a < 1 and 0 < ã (in the limit). This result is identical to Theorem 3 of [218] for the case
of zero drift and t = 1 (see also Theorem 1.5 in [34]) apart from the (now usual) difference of contours. There z, z′ belong
to a small circle around 0, while the s contour is the same. A similar (large-contour) formula can be found in Theorem
1.17. of [243]. There (for our case), the contour of integration on z is a wedge Cα,φ = {α+ ei(π+φ)

R+} ∪ {α+ ei(π−φ)
R+}

where α > 0 and 0 < φ < π/4, and the contour of integration on s, Dz, is z-dependent and given by straight-lines joining
R(z) − i∞ to R(z) − id to 1

2
− id to 1

2
+ id to R(z) + id to R(z) + i∞, where R(z) = −Re(z) + α + 1 and d > 0 is small

enough so that to ensure that z +Dz do not intersect Cα,φ. These contours are more involved but are similarly located as
ours with respect to the poles of the integrand.



Appendix E

Paper: On integrable directed polymer mod-
els on the square lattice

The following is essentially the article published as
Title: On integrable directed polymer models on the square lattice
Authors: Thimothée Thiery and Pierre Le Doussal
ArXiv: 1506.05006
Journal-Ref: Journal of Physics A: Mathematical and Theoretical, Volume 48, Number 46
Abstract: In a recent work Povolotsky [222] provided a three-parameter family of stochastic particle systems with zero-
range interactions in one dimension which are integrable by coordinate Bethe ansatz. Using these results we obtain the
corresponding condition for integrability of a class of directed polymer models with random weights on the square lattice.
Analyzing the solutions we find, besides known cases, a new two-parameter family of integrable DP model, which we call
the Inverse-Beta polymer, and provide its Bethe ansatz solution.

E.1 Introduction and main results

E.1.1 overview

There is considerable recent interest in exact solutions for models in the universality class of the 1D stochastic growth
Kardar-Parisi-Zhang equation (KPZ) [33]. Models in the KPZ class share the same large time statistics, also found to be
related to the universal statistics of large random matrices [37]. Methods developped in the context of quantum integrability
are exploited and broadly extended to solve a variety of 1D stochastic models. The Bethe ansatz solution of the attractive
delta Bose gas (the Lieb-Liniger model [202, 209]) was combined with the replica method [201], to obtain exact solutions
for the KPZ equation directly in the continuum and at arbitrary time, for the main classes of initial conditions (droplet,
flat, stationary, half-space) [173, 165, 177, 183, 169, 215, 175, 214, 242]. The Cole-Hopf mapping h ∼ lnZ is used, where
h is the height of the KPZ interface and Z the partition sum of a directed polymer in a random potential (DP). Hence in
the continuum, studying KPZ growth is equivalent to studying the DP model, an equilibrium statistical mechanics problem
with quenched disorder. The time in KPZ growth becomes the length of the polymer t. The replica Bethe ansatz (RBA)
method then allows to calculate the integer moments Zn and, from them, to retrieve the probability distribution function
(PDF) of Z. Since the last step is non-rigorous because of the fast growth of these moments, the mathematical community
has concentrated on the exact solution of discrete models, which in favorable cases, do not suffer from the moment growth
problem. Discrete models, such as the PNG growth model [39, 246], the TASEP and ASEP particle transport model [226]
and discrete DP models [159, 190] played a pionneering role in unveiling the universal statistics of the KPZ class at large
time (the Airy processes). Recently they have been considerably generalized, unveiling a very rich underlying "stochastic
integrability" structure [192, 222, 191, 208, 243, 208, 34, 247]. Since in suitable limits (e.g. ASEP with weak asymmetry,
q-TASEP with q → 1, semi-discrete DP) they converge to the continuum KPZ equation, they also led to some recent
rigorous results for KPZ at arbitrary time [172, 171, 34, 185, 180].

Besides their interest in relation to KPZ growth, directed polymers are also important in a variety of fields. This
includes optimization and glasses [248, 249], vortex lines in superconductors [235], domain walls in magnets [29], disordered
conductors [250], Burgers equation in fluid mechanics [194], exploration-exploitation tradeoff in population dynamics and
economics [251] and in biophysics [252, 253]. In some situations (heavy tailed disorder) they exhibit anomalous (non-
standard KPZ) scaling [13, 14]. Apart from models on trees, exactly solvable models of DP (e.g. on regular lattices)
remain, however, exceedingly rare. We will present in this paper a new solvable DP model.

On the square lattice a few remarkable solvable DP models have been found. The first that was discovered is at zero
temperature T = 0 (i.e. it amounts to find the minimal energy path, energies being additive along a path), with a geometric
distribution (of parameter q < 1) of on-site random potentials [159]. The second that was discovered, called the log-Gamma
polymer [197], is a finite temperature model (as it focuses on Boltzman weights, which are multiplicative along a path),
with a so-called inverse gamma distribution for the on-site random weights, with parameter γ. This weight distribution
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has the peculiarity of exhibiting a fat tail P (w) ∼ w−1+γ . These models are not unrelated: in the limit γ → 0 (so-called
zero temperature) the log-Gamma converges to the q → 1 limit of the Johansson model (i.e. with exponentially distributed
on-site weights) [198]. They were both proved to belong to the KPZ class, with convergence of the free energy PDF to the
GUE Tracy Widom distribution. The Johansson model was solved as a determinantal process [159]. The log-Gamma model
was solved using the gRSK correspondence (a geometric lifting of the Robinson-Schensted-Knuth (RSK) correspondence)
leading finally to an expression for the Laplace transform of P (Z) as a Fredholm determinant [198, 218].

Recently, we provided a solution of the log-Gamma polymer using replicas and the coordinate Bethe ansatz, closer in
spirit to the integrability methods used to solve KPZ [4]. As in the continuum, this replica Bethe ansatz approach consists in
computing the moments of the partition sum of the DP using a transfer matrix (i.e. recursive) formulation of the problem.
This formulation can formally be interpreted as a discrete-time quantum mechanical model of interacting Bosons. Such a
connection between discrete-time particle models and lattice DP was also noted, and exploited in [219] to unveil and study
a new integrable DP model with Gamma distributed Boltzmann weights, called the “Strict-Weak” DP model, as the q → 1
limit of the discrete time q-TASEP model [254]. In parallel, this DP model was also solved using the gRSK correspondence
in [220].

In a recent seminal work, Povolotsky [222] provided a three parameter family of discrete-time stochastic interacting par-
ticles systems with zero range interactions (“zero-range processes” (ZRP)) called the (q, µ, ν)-Boson process and integrable
by coordinate Bethe ansatz. This led to further rigorous work on this class of particle model and on a dual model, termed
the q-Hahn TASEP, which eventually allowed to unify integrability properties of ASEP and q-TASEP, a long-standing goal
[208, 208, 34]. On the directed polymer side, this work also led to the discovery of a new integrable model, called the “Beta”
polymer, introduced and studied in [224]. There the model was solved as a q → 1 limit of the (q, µ, ν)-Boson (in analogy
with the Strict-Weak case), but the authors also already provided a direct replicas Bethe ansatz solution of the model.

The aim of the present paper is to explore more systematically the consequences of Povolotsky’s work to directly search
for, and attempt to classify, the corresponding family of integrable DP models. Integrability then leads to a constraint on
the integer moments of the Boltzmann weights distributions, and we search for solutions in terms of PDF of bond and site
disorder.

We find that there are two main solutions, the first one corresponding to the Beta polymer[224]. The second however
is new and corresponds to weights v on horizontal bonds, and u on vertical bonds of the square lattice, with the following
PDF: u, is distributed according to:

p̃γ,β(u) =
Γ(γ + β)
Γ(γ)Γ(β)

1
u1+γ

(

1 − 1
u

)β−1

, u ∈ [1,+∞[ , γ, β > 0 (E.1.1)

The weights are correlated on bonds which share a top/right site (see Fig. E.1), with v = u − 1 ∈ [0,+∞[ but otherwise
uncorrelated. Given the form of (E.1.1) we call our new model the Inverse-Beta polymer1.

We will provide in this paper the coordinate Bethe ansatz solution to this model, as well as some explicit integral
representation and Fredholm determinant formulas for its Laplace transform. It is interesting to note that for β → +∞
this model, under suitable rescaling, converges to the log-Gamma polymer (see below). Hence it can be considered as a
generalization of the log-Gamma polymer.

E.1.2 Main results and outline of the paper

The first result of this paper, obtained in Section E.2, are some general conditions for a finite temperature model of directed
polymer on the square lattice to be integrable using the coordinate Bethe ansatz. The only hypothesis are that Boltzmann
weights on horizontal edges and vertical edges can be correlated only if they share the same top or right site (an example of
short-range correlations), and that they are homogeneously distributed. Within this framework, in Section E.3, we attempt
a classification of integrable DP models, retrieve the known integrable models and introduce a new one, the Inverse-Beta
polymer, whose Boltzmann weights are distributed as (E.1.1). This model has two parameters γ, β > 0 and contains
the log-Gamma and Strict-Weak polymers as scaling limits. More precisely, we show that the partition sum Zt(x) of the
Inverse-Beta model (see Section E.2.1 for the definition) converges in law to the partition sum of the log-Gamma (resp.
Strict-Weak) polymer ZLGt (x) (resp. ZSWt (x)) as

lim
β→∞

1
βt
Zt(x) ∼ ZLGt (x) , lim

γ→∞
γxZt(x) ∼ ZSWt (x) . (E.1.2)

In Section E.4 we use the coordinate Bethe ansatz to study the Inverse-Beta polymer with point-to-point boundary
conditions. We obtain an exact result for the integer moments of the partition sum Zt(x)n (E.4.18), defined for n < γ. Using
this result, we conjecture the formula (E.4.27) that expresses the Laplace transform of Zt(x) as a Fredholm determinant
e−uZt(x) = Det (I +Ktx) with

Kt,x(v1, v2) =

∫ +∞

−∞

dk

π

−1
2i

∫

C

ds

sin(πs)
use−2ik(v1−v2)−s(v1+v2) (E.1.3)

(
Γ(− s

2
+ γ

2
− ik)

Γ( s
2

+ γ
2

− ik)

)1+x(
Γ(− s

2
+ γ

2
+ ik)

Γ( s
2

+ γ
2

+ ik)

)1−x+t(
Γ(β + ik + γ

2
+ s

2
)

Γ(β + ik + γ
2

− s
2
)

)t

1Note that a nomenclature based on the names of the weight distributions, the log-Gamma polymer
could be called the Inverse-Gamma polymer, and the Strict-Weak the Gamma polymer. Alternatively
our model could be called the log-Beta polymer.
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where C = a + iR with 0 < a < min(1, γ) and Kt,x : L2(R+) → L2(R+). Alternatively, we obtain an equivalent Fredholm
determinant for the same quantity with a different kernel (which contains notably one less integral) in (E.4.28). By analogy
with a known formula for the log-Gamma polymer, we also conjecture a n-fold integral formula (E.4.29) for the Laplace
transform

e−uZt(x) =
1
J !

∫

(iR)J

J∏

j=1

dwj
2iπ

J∏

j 6=k=1

1
Γ(wj − wk)

(
J∏

j=1

uwj −aΓ[a− wj ]
J

(
Γ(γ + a− wj)

Γ(γ)

)I (
Γ(wj − a+ β)

Γ(β)

)I+J−2
)

, (E.1.4)

with 0 < a < min(1, γ), valid for Re(u) > 0, 1 ≤ J ≤ I and where x = I − 1 and t = I + J − 2. Using an asymptotic
analysis of our Fredholm determinant formulas, we show in Section E.4.3 the KPZ universality of the model for polymers
of large length t → ∞ with an arbitrary angle ϕ ∈] − 1/2, 1/2â[ with respect to the diagonal. More precisely, we show

lim
t→∞

Prob

(
logZt((1/2 + ϕ)t) + tcϕ

λϕ
< 2

2
3 z

)

= F2(z) (E.1.5)

where F2(z) is the standard GUE Tracy-Widom cumulative distribution function, λϕ ∼ t1/3 and the (ϕ-dependent) constants
are determined by a system of equations (E.4.38) that involves the digamma function ψ. As a particular case we study
these characteristic constants for long polymers with the ‘optimal angle’ ϕ = ϕ∗ (in the sense that the mean free energy cϕ
is minimal for this angle) and find explicit expressions as

ϕ∗ = −1
2
ψ′(β + γ/2)
ψ′(γ/2)

< 0

cϕ∗ = ψ(γ/2) − ψ(β + γ/2)

λϕ∗ =
(
t

8
(ψ′′(β + γ/2) − ψ′′(γ/2))

)1/3

. (E.1.6)

Finally, in Section (E.4.4) we study a two parameters zero temperature DP model that we obtain as the limit γ = ǫγ′

and β = ǫβ′ with ǫ → 0 of the Inverse-Beta polymer. This study is close in spirit to the one made in [224] where the
zero temperature limit of the Beta polymer is studied, but the models are qualitatively very different. The energy of this
model are distributed as (E ′

u, E ′
v) = (−ζEγ′ , (1 − ζ)Eβ′ − ζEγ′ ) where (E ′

u, E ′
v) are the energies on vertical and horizontal

edges, ζ is a Bernoulli random variable of parameter p = β′/(γ′ + β′) and Eγ′ and Eβ′ are exponential random variables
of parameter γ′ > 0 and β′ > 0, independent of ζ. This model generalizes the known zero temperature limit of the
log-Gamma directed polymer and we obtain exact results for the cumulative distribution of the optimal energy, noted
E(t,x), of this zero temperature model Prob(E(t,x) > r). In particular we obtain a Fredholm determinant formula (E.4.57)
Prob(E(t,x) > r) = Det

(
I +KT=0

tx

)
with

KT=0
t,x (v1, v2) = −

∫ +∞

−∞

dk

π

∫

C

ds

2iπs
esr−2ik(v1−v2)−s(v1+v2) (E.1.7)

(
s
2

+ γ′

2
− ik
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2

+ γ′
2

− ik

)1+x(
s
2

+ γ′

2
+ ik

− s
2

+ γ′
2

+ ik

)1−x+t(

β′ + ik + γ′

2
− s

2

β′ + ik + γ′
2

+ s
2

)t

.

where C̃ = a+ iR with 0 < a < γ′ and KT=0
t,x : L2(R+) → L2(R+). We also conjecture an equivalent n-fold integral formula

(E.4.59)

Prob(E(t,x) > r) =
1
J !

∫

(iR)J

J∏

j=1

dwj
2iπ

J∏

j 6=k=1

(wj − wk)
J∏

j=1

er(wj −a)

(a− wj)J

(
γ′

γ′ + a− wj

)I (
β′

wj − a+ β′

)I+J−2

. (E.1.8)

with 0 < a < γ′. Using our exact results, we conclude this section by showing the KPZ universality of the zero temperature
model in (E.4.64). In the case β′/γ′ → ∞ the model maps onto the Johansson DP model with an exponential distribution
and we show that our solution reproduces all the (non trivial) angle dependent normalizing constants in the statement of
convergence to the GUE Tracy Widom distribution.

A series of appendices also contains additional discussions and some technical details separated from the main text for
clarity.
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Figure E.1: General scheme for the models of directed polymer studied here. Blue
(resp. Red) : couple of correlated Boltzmann weight on edges arriving at (t = 6, x = 1)
(resp. (t = 6, x = 4)). Green: two admissible (i.e. up/right) paths for polymers with
starting point (0, 0) and endpoint (8, 4).

E.2 Directed Polymers on the square Lattice: Replica method and integra-
bility

E.2.1 Definition of the model

We consider the square lattice Z
2 with coordinates (t, x) with x the usual horizontal coordinate and t a coordinate2 running

through the diagonal of Z2 as depicted in Fig. E.1. We will also sometime use the usual euclidean coordinates (I, J) on Z
2

with x = I − 1 and t = I + J − 2. The first quadrant is thus I, J ≥ 1 and x, t ≥ 0. A directed polymer model on Z
2 is

defined by the partition sum

Zt(x) =
∑

π:(0,0)→(t,x)

∏

e∈π
we (E.2.1)

where the sum is on all directed (i.e. up/right) paths with fixed starting point (0, 0) (corresponding to (I, J) = (1, 1)) and
endpoint (t, x), and the product is on all edges e = (t′, x′) → (t′ + 1, x′) or e = (t′, x′) → (t′ + 1, x′ + 1) visited by π.
Here for definiteness we consider a directed polymer model with fixed endpoints, but the model can be generalized to other
boundary conditions. We also restrict ourselves to models with on-links Boltzmann weights we. Obviously, by redefining
the weights we, one can also include on-sites Boltzmann weights so that this hypothesis is non restrictive. The Boltzmann
weights are positive random variables we ∈ R+. We will generally note u (resp. v) the Boltzmann weights on vertical (resp.
horizontal) edges:

we = ut,x if e = (t− 1, x) → (t, x) ,

we = vt,x if e = (t− 1, x− 1) → (t, x) . (E.2.2)

We will consider the class of models with the following structure of local correlations, which naturally emerges in the
integrable family we are studying: the weights on edges arriving at different sites are statistically independent, but the
weights of two edges arriving at the same site are correlated. Thus the model is defined by a (common) joint PDF for the
weights of the type (ut,x, vt,x), denoted p(u, v) (see Fig. E.1). The pairs (ut,x, vt,x) are chosen independently from site to
site. In the following, the overline (.) denotes the average of a quantity over all realizations for the (ut,x, vt,x).

E.2.2 The replica method and the coordinate Bethe Ansatz.

In general, one is interested in computing the PDF of Zt(x) or of its logarithm logZt(x). The replica method consists in
first studying the equal-time moments of Zt(x): for n ∈ N and whenever they exist, one defines

ψt(x1 . . . , xn) = Zt(x1) . . . Zt(xn) . (E.2.3)

2Note that the (t, x) coordinates of the present paper do note coincide with the ones of [4] that we
denote (T,X). To compare formulas, one can use t = T and x = t/2 +X.
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In the general case these moments are only defined for n ≤ nmax, because of possible fat-tail in the distribution of Boltzmann
weights, such that un1vn2 are finite for n1 + n2 ≤ nmax but are infinite for some (n1, n2) with n1 + n2 > nmax. In the
log-Gamma case one has nmax = ⌊γ−⌋ whereas in the Beta polymer case nmax = ∞. Obtaining the PDF of Zt(x) from the
knowledge of the moments is usually non-trivial, especially when nmax < ∞. In this case the procedure is non-rigorous and
one has to perform some analytical continuation as in the log-Gamma case. In most of this section we will not discuss this
issue and only focus on computing the moments for n ≤ nmax, which is a well-defined problem. The problem of computing
ψt is manageable thanks to a the recursive formulation of (E.2.1):

Zt=0(x) = δx,0

Zt+1(x) = ut+1,xZt(x) + vt+1,xZt(x− 1) . (E.2.4)

This can be translated to a recursive (i.e. transfer matrix) equation for ψt:

ψt=0(x1 . . . , xn) = δx1,0 . . . δxn,0

ψt+1(x1 . . . , xn) =
∑

{δ1,··· ,δn}∈{0,1}n

aδ1,··· ,δn
x1,··· ,xn

ψt(x1 − δ1, · · · , xn − δn) = (Tnψt)(x1 . . . , xn)

aδ1,··· ,δn
x1,··· ,xn

=
∏

y∈Z

(u)
∑n

i=1
δxi,yδδi,0 (v)

∑n

i=1
δxi,yδδi,1 . (E.2.5)

Where we used the statistical independence of the Boltzmann weights ending at different sites and the definition of (u, v).
Note that the evolution equation (E.2.5) is symmetric by exchange xi ↔ xj . Therefore, since the initial condition is
also fully symmetric, if one is able to find all the symmetric eigenfunctions ψµ of Tn, i.e. a complete basis of symmetric
functions such that Tnψµ = Λµψµ, the problem is essentially solved. In the already known models, it was possible to find
the eigenfunctions of Tn in the form of the coordinate Bethe Ansatz. More precisely, in the sector Wn = {x1 ≤ · · · ≤ xn}
(this defines the Weyl chamber), one looks for eigenfunctions of the form

ψµ(x1, . . . , xn) = ψ̃µ(x1, . . . , xn) if x1 ≤ · · · ≤ xn

ψ̃µ(x1, . . . , xn) =
∑

σ∈Sn

Aσ

n∏

i=1

zxi
σ(i) (E.2.6)

where the sum runs over all permutations of {1, . . . , n}, and the variables Aσ and zi are complex numbers. The wave
function ψµ(x1, . . . , xn) is deduced in the other sectors by using that it is fully symmetric function of its arguments. As
one can guess, this form of eigenfunction is restrictive and it can only works if the variables aδ1,··· ,δn

x1,··· ,xn , or equivalently the
integer moments un1vn2 for (n1, n2) ∈ N

2 obey a particular structure. Thus one can hope to classify the models that are
solvable by the coordinate Bethe Ansatz. In fact, (E.2.5) is reminiscent of the equations usually considered in the study
of zero-range stochastic particle systems, for which a classification was proposed in [222] and latter extended in [247]. In
the next section we follow the route of [222] and adapt it to our setting to deduce a classification of integrable directed
polymers models3.

E.2.3 The constraint of integrability on integer moments.

If one can diagonalize the evolution equation (E.2.5) using the Bethe Ansatz (E.2.6), then in the sector
◦
Wn= {x1 < · · · < xn}

(i.e. the interior of the Weyl chamber where all particles sit on distinct sites and do not interact), one must have

Λµψµ(x1, . . . , xn) = (Tnψµ)(x1, . . . , xn)

Λµψ̃µ(x1, . . . , xn) =
∑

{δ1,...,δn}∈{0,1}n

(u)n−
∑n

i=1
δi (v)

∑n

i=1
δi ψ̃µ(x1 − δ1, . . . , xn − δn)

=
n∏

i=1

(u+ vz−1
i )ψ̃µ(x1, · · · , xn) , (E.2.7)

and this already imposes the eigenvalue to be Λµ =
∏n

i=1
(u+ vz−1

i ). Note that this is a direct consequence of the weights

having zero-range interaction: in the
◦
Wn sector, the operator Tn just acts as a (biased) diffusion operator on the one-

dimensional line. Let us now look at what happens when exactly two particles are at the same position: x1 < · · · < xi =
xi+1 < · · · < xn. In this case, the evolution equation reads

Λµψµ(x1, . . . , xn) =
∑

{δ1,··· ,δn}−{δi,δi+1}∈{0,1}n−2

(u)
n−2−

∑n

j=1,j 6=i,i+1
δi (v)

∑n

j=1,j 6=i,i+1
δi
(
u2ψµ(x1 − δ1, . . . , xi, xi, . . . , xn − δn)

)
(E.2.8)

+2uvψµ(x1 − δ1, . . . , xi − 1, xi, . . . , xn − δn) + v2ψµ(x1 − δ1, . . . , xi − 1, xi − 1, . . . , xn − δn)
)
,

3Note that the extension of [247] of the classification of [222] corresponds to stochastic particles
systems with non-simultaneous updates. Hence the classification of [222] is sufficient in our context.
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Where we used the symmetry of ψµ to express each terms with coordinates in the Weyl chamber Wn. However, the left-hand
side of (E.2.8) is already constrained to be equal to the right-hand side (last line) of (E.2.7) even for xi = xi+1 because
the eigenvalue Λµ is entirely determined by (E.2.7). For this equality to hold ∀x1 < · · · < xi = xi+1 < · · · < xn for an
eigenfunction of the form (E.2.6) one must have, rewriting (E.2.8) in terms of ψ̃µ,

u2ψ̃µ(x1 − δ1, . . . , xi, xi, . . . , xn − δn) + 2uvψ̃µ(x1 − δ1, . . . , xi − 1, xi, . . . , xn − δn)

+v2ψ̃µ(x1 − δ1, . . . , xi − 1, xi − 1, . . . , xn − δn)

= (v)2ψ̃µ(x1 − δ1, . . . , xi − 1, xi − 1, . . . , xn − δn) + (v)(u)ψ̃µ(x1 − δ1, . . . , xi − 1, xi, . . . , xn − δn)

+(u)(v)ψ̃µ(x1 − δ1, . . . , xi, xi − 1, . . . , xn − δn) + (u)2ψ̃µ(x1 − δ1, . . . , xi, xi, . . . , xn − δn) . (E.2.9)

Notice that the third term in the right-hand side in (E.2.9) involves coordinates outside of the Weyl chamber and is thus
not a physical term. For the two particles problem to be solved, it must have the value

ψ̃µ(xi, xi − 1) = aψ̃µ(xi, xi) + bψ̃µ(xi − 1, xi) + cψ̃µ(xi − 1, xi − 1)

a =
u2 − (u)2

(u)(v)
b =

2uv − (u)(v)
(u)(v)

c =
v2 − (v)2

(u)(v)
, (E.2.10)

where here, for clarity, we did not write the other particles positions. For obvious reasons, (E.2.10) is called the two-particles
boundary condition. It is also a consequence of the short-ranged nature of the correlations between Boltzmann weights
that the two-particles evolution equation can simply be interpreted as a two particles boundary conditions. In terms of the
Bethe Ansatz (E.2.6), it imposes the quotient of two amplitudes Aσ related to each other by a permutation to be given by

S(zi, zj) :=
A...ji...
A...ij...

= −c + bzj + azizj − zi
c + bzi + azizj − zj

. (E.2.11)

Where this defines the S matrix. This can be solved as

Aσ = ǫ(σ)
∏

1≤i<j≤n

c + bzσ(i) + azσ(i)zσ(j) − zσ(j)

c + bzi + azizj − zj
. (E.2.12)

As a consequence, up to a multiplicative factor, the form of the Bethe Ansatz is now entirely specified and something
special has to happen if it also solves the m particles problem (case where m particles are at the same position) for
arbitrary 2 ≤ m ≤ n. Indeed, for arbitrary m, one can repeat the same analysis and check that the ansatz (E.2.6) works,
i.e. that the evolution equation with m particles at the same position (generalization of (E.2.8)) can be transformed into the
free evolution equation (generalization of (E.2.9)) by only applying (E.2.10) recursively. Schematically, this is conveniently
encoded in a non-commutative algebras with two generators (A,B) such that

BA = aA2 + bAB + cB2 , (E.2.13)

which encodes what happen when one transforms a forbidden term of the form ψ̃µ(. . . , xi, xi − 1 . . . ) into a sum of terms
with coordinates in the Weyl chamber. In this language, the model is indeed integrable with the coordinate Bethe Ansatz
(E.2.6) if and only if

(uA+ vB)m =
m∑

n1=0

un1vm−n1Cn1
m An1Bm−n1 . (E.2.14)

Where the right-hand side represents the true evolution equation that only contains terms in the Weyl chamber, i.e. in this
language, that only contains ordered words of the form An1Bn2 , and the left hand side is the formal free evolution equation,
which contains various terms outside the Weyl chamber, i.e. wrongly ordered words. The right-hand side of (E.2.14) can
be computed using the formula appearing in [222]. In the context of this paper, only models satisfying the “stochasticity
hypothesis”, a + b + c = 1 (corresponding to a conservation of probability) were considered. Here in general, this hypothesis
has to be relaxed and a + b + c 6= 1. This is easily done by a scale transformation4, i.e. we introduce new parameters
(ρ, a′, b′, c′) and generators (A′, B′), such that

a = a
′ρ , b = b

′ , c =
c′

ρ
(E.2.15)

A =
A′

ρ
, B = B′ , B′A′ = a

′A′2 + b
′A′B′ + c

′B′2 (E.2.16)

4We thank A.M. Povolotsky for this remark.
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where ρ is chosen such that a′ + b′ + c′ = 1, in which case we can use the results of Ref. [222] in terms of the new generators
(A′, B′) and parameters (a′, b′, c′) (called there (A,B) and α, β, γ). We obtain

(uA+ vB)m = (
u

ρ
A′ + vB′)m

=

(
u

ρ
+ v

)m

(pA′ + (1 − p)B′)m

=

(
u

ρ
+ v

)m m∑

n1=0

φq,µ,ν(n1|m)(A′)n1 (B′)m−n1

=

(
u

ρ
+ v

)m m∑

n1=0

ρn1φq,µ,ν(n1|m)An1Bm−n1 (E.2.17)

where we used the same notations introduced in Ref. [222] for the three parameters of the model q, µ, ν and the auxiliary
parameter p, so that

p =
u

u+ ρv
, a

′ =
ν(1 − q)
1 − qν

, b
′ =

q − ν

1 − qν
, c

′ =
1 − q

1 − qν
, µ = p+ ν(1 − p)

φq,µ,ν(n1|m) = µn1
( ν
µ

; q)n1 (µ; q)m−n1

(ν; q)m

(q; q)m
(q; q)n1 (q; q)m−n1

(E.2.18)

from equations (8) and (26-27) in Ref. [222]. The q-Pochhammer symbol (used extensively below) is defined as, for n > 0:

(a; q)n =
n−1∏

k=0

(1 − aqk) , (a; q)−n =
n∏

k=1

(1 − aq−k)−1 (E.2.19)

and (a; q)0 = 1. For given parameters q, µ, ν the first equation in (E.2.18) fixes the scale factor ρ as a function of u/v.
Comparing this equation with (E.2.14) one sees that one must have, ∀(n1, n2) such that n1 + n2 ≤ nmax,

un1vn2 = (
u

p
)n1 (

v

1 − p
)n2 (µ)n1

( ν
µ

; q)n1 (µ; q)n2

(ν; q)n1+n2

(q; q)n1+n2

(q; q)n1 (q; q)n2

1
Cn1
n1+n2

. (E.2.20)

We can now explicitly check that for (n1, n2) = (1, 0), (0, 1) the r.h.s gives u and v and that for (n1, n2) = (2, 0), (1, 1), (0, 2) it
yields second moments compatible with all relations (E.2.10) and (E.2.15), (E.2.18). Thanks to the above construction based
on Ref. [222] we know that it solves the integrability constraint for all higher positive integer moments with n1 +n2 ≤ nmax.

In this expression, the power-law parts are unimportant (they can be absorbed into a rescaling of the Boltzmann weights
which cannot break the integrability of the model). We can now reverse the construction and study a polymer model defined
with weights with moments given by

un1vn2 =
( ν
µ

; q)n1 (µ; q)n2

(ν; q)n1+n2

(q; q)n1+n2

(q; q)n1 (q; q)n2

1
Cn1
n1+n2

:= ψq,µ,ν(n1, n2) , (E.2.21)

where (q, µ, ν) ∈ R
3 to obtain real Boltzmann weights. This model is automatically integrable, and with the hypothesis

that we made, it is the only form for the moments that leads to integrability. However, we now need to check if this DP
model really exists, namely that (E.2.21) corresponds to the moments of a PDF p(u, v).

Let us now define the moment problem that we must now solve. We are interested in finding a joint PDF p(u, v)
with positive integer moments given by (E.2.21) and random variables (u, v) living in one of the four quadrants (R±,R±).
Indeed, if that is the case we automatically find, using a change of the type (u, v) → (±u,±v), positive random variables with
moments given by (E.2.21) (eventually multiplied by additional power laws (±1)n1 (±1)n2 which do not spoil integrability).
Since we extend our search to also include polymer models with nmax < ∞, we will generally look for PDF with moments
given by (E.2.21) for n1 + n2 ≤ nmax for some nmax. Note that if nmax < ∞, this replica Bethe ansatz method allows us to
compute a-priori only a few integer moments of Zt(x). The ultimate goal of computing the PDF from this knowledge is not
a mathematically well-posed problem. Fortunately, as e.g. in the case of the log-Gamma polymer (see [4] for more details
on this issue), and in the case of the Inverse-Beta polymer studied below in this paper, the situation turns out to be more
favorable. Indeed in these cases, though nmax < ∞, the complex moments un1vn2 of the PDF p(u, v) exist for (n1, n2) in
a large domain of the complex plane plane C. These are given by an analytical continuation of (E.2.21) and allow, using
a Mellin-Barnes type contour integral formula, to recover the Laplace transform of p(u, v) in a rigorous manner. In this
paper and as in the log-Gamma case, we adapt this observation to conjecture a formula for the LT of Zt(x) by using an
analytical continuation of the formula for the integer moments that we compute using the replicas Bethe ansatz.

The search of such a PDF p(u, v) with moments given by (E.2.21) is in general a difficult task. Notice however that

it is sufficient to examine the case |q| ≤ 1. Indeed, using that ( 1
a

; 1
q
)n = (−a)−nq− n(n−1)

2 (a; q)n one easily sees on (E.2.21)
that the simultaneous change q → 1/q, µ → 1/µ and ν → 1/ν in ψq,µ,ν(n1, n2) just multiplies it by power-law terms, easily
absorbed in rescaling of the variables (u, v) and which cannot break the integrability of the model.
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E.3 Integrable polymer models

E.3.1 The |q| < 1 case.

Without loss of generality we restrict ourselves in the following to |q| < 1, and we further restrict to q, µ, ν ∈ R.
We now consider the case where the moments exist at least up to the second moments (i.e. nmax ≥ 2). Let us consider

the random variable zx = u+ xv, x ∈ R. A simple calculation from (E.2.21) gives that its variance is:

z2
x − zx

2 =
(µ− 1)(1 − q)(µ− ν)(µx− 1)(µx− ν)

µ2(ν − 1)2(νq − 1)
(E.3.1)

Under our assumptions this expression must be positive. Since the polynomial in x changes sign at x = ν
µ

and x = 1
µ

this
clearly rules out the generic case for q < 1, µ, ν.

We must thus look for degenerations with ν/µ = 1/µ so that the variance of zx can eventually be positive ∀x. The
various cases are studied systematically in Appendix E.6 where we show that the only possibility for the existence of such
a PDF is in the q → 1 limit which we now study in details. Moreover, we also show there that the limit q → 1 and µ, ν → 1
at the same speed than q, contains all the interesting cases.

Finally, note that the above considerations do not rule out completely the existence of an integrable polymer model
with q < 1 since it could correspond to a model with nmax < 2. From the discussion of the previous Section, this would
involve however an exhaustive study of the possible analytical continuations of (E.2.21) which goes beyond the present
work.

E.3.2 The q → 1 limit

a Form of the moments.

Let us now discuss the q → 1 limit. We use that at fixed n, a, (qa; q)n ≃q→1 (1 − q)n(a)n, where (a)n = a(a+ 1)..(a+n− 1)
is the standard Pochhammer symbol. This is easily seen setting q = e−ǫ and taking ǫ → 0. The ratio (q;q)n

(q;q)m(q;q)n−m
thus

tends to the standard binomial coefficient Cmn .
To obtain a meaningful limit we scale ν = qα+β , µ = qβ . In this case, one gets as q → 1:

un1vn2 = (ǫ1)n1 (ǫ2)n2
(α)n1 (β)n2

(α+ β)n1+n2

, (E.3.2)

where we have added two power law terms with (ǫ1, ǫ2) ∈ {−1, 1}2. We were allowed to do it if we start to examine the
moment problem for real variables. These two additional parameters are then tuned so that (u, v) are positive random
variables. Since they are a-priori arbitrary we must examine all cases. Other interesting limits can also be considered but
they can all be obtained from (E.3.2) as a new limit (see Appendix E.6). Note that (E.3.2) implies, ∀n ∈ N,

(u/ǫ1 + v/ǫ2)n =
n∑

n1=0

Cn1
n

(α)n1 (β)n−n1

(α+ β)n
= 1 , (E.3.3)

so that, except maybe in some marginal cases discussed in Appendix E.7, this implies that u and v are correlated as
ǫ2u+ ǫ1v = ǫ1ǫ2. In Appendix E.7, we initiate a more systematic study of all possible cases as ǫi are varied.

b The Beta Polymer and the Strict-Weak limit

The case of (ǫ1, ǫ2) = (1, 1), α > 0 and β > 0 indeed corresponds to the moments of two positive random variables. In this
case, one has v = 1 − u and u ∈ [0, 1] is distributed according to Beta random variable:

u ∼ Beta(α, β) ⇐⇒ pα,β(u) =
Γ(α+ β)
Γ(α)Γ(β)

uα−1(1 − u)β−1ÃÂ

v = 1 − u , un1vn2 =
(α)n1 (β)n2

(α+ β)n1+n2

. (E.3.4)

Where from now on ∼ means distributed as or the equivalence in probability. Note that Beta distributions satisfy
Beta(α, β) ∼ 1 − Beta(β, α), and that in the Beta polymer model, interverting horizontal and vertical edges amounts
to permute α and β.

Note that for this distribution of (u, v), the formula for the moments (E.3.4) can be extended to the complex moments
and admits a more general expression as

us1vs2 =
Γ(α+ β)
Γ(α)Γ(β)

Γ(α+ s1)Γ(β + s2)
Γ(α+ β + s1 + s2)

(E.3.5)

which is valid for arbitrary complex numbers (s1, s2) ∈ C
2 in the domain Re(s1) > −α and Re(s2) > −β. The corresponding

Directed Polymer model was introduced and studied in [224]. As already observed there, this model also contains the Strict-
Weak polymer model introduced in[219] as a limit β → ∞:

lim
β→∞

(βu)n1vn2 = (α)n2 =
Γ(α+ n1)

Γ(α)

(βu, v) ∼ (βBeta(α, β), (1 −Beta(α, β))) ∼β→∞ (Gamma(α), 1) , (E.3.6)
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which corresponds to a Strict-Weak polymer model with random Boltzmann weights on vertical edges distributed according
to a Gamma distribution of parameter α > 0, more precisely the rescaled Boltzmann weight u′ = βu is distributed according
to a PDF pα(u′) such that

u′ ∼ Gamma(α) ⇐⇒ pα(u′) =
1

Γ(α)
(u′)−1+αe−u′

. (E.3.7)

A second, and completely symmetric, Strict-Weak DP limit exists for α → ∞ at fixed β, with random Gamma(β) weights
on horizontal edges.

c The Inverse-Beta polymer

We now investigate the case (ǫ1, ǫ2) = (1,−1) with β > 0 and α+β < 1, and for convenience let us introduce the parameter
γ as:

γ := 1 − (α+ β) (E.3.8)

In this case, a solution to the moment problem (E.3.2) is given by v = u − 1 (in agreement with the general argument
proposed above) and u ∈ [1,+∞[ distributed as

p̃γ,β(u) =
Γ(γ + β)
Γ(γ)Γ(β)

1
u1+γ

(

1 − 1
u

)β−1

, v = u− 1 , u ∈ [1,+∞[ , γ > 0

un1vn2 = (−1)n2
(α)n1 (β)n2

(α+ β)n1+n2

for n1 ≤ 1 − α = γ + β , n1 + n2 ≤ 1 − (α+ β) = γ . (E.3.9)

In this case the moments problem (E.3.2) is indeed truly solved only for n1 + n2 ≤ γ since the moments cease to exist
beyond this bound, due to divergence for large values of u, v. However there is a more general expression of the moments
for complex (s1, s2) ∈ C

2 with Re(s1 + s2) ≤ γ and Re(s2) > −β

us1vs2 =
Γ(γ + β)
Γ(γ)Γ(β)

Γ(γ − s1 − s2)Γ(β + s2)
Γ(γ + β − s1)

. (E.3.10)

Using the analytical continuation of the Gamma function to the full complex plane, one thus see, using (E.3.10), that the
moment problem (E.3.2) is indeed solved in an analytical continuation sense. This situation is very similar to the case
of the log-Gamma polymer which the present model generalizes, as we show below. Note that for the present model, the
variable 1/u is distributed according to a Beta distribution of parameters γ and β, 1/u ∼ Beta(γ, β) and for this reason
we call this model the Inverse-Beta polymer. This observation renders the proof of the convergence of this model to the
log-Gamma polymer immediate. Indeed, one has

lim
β→∞

(
u

β

)n1
(
v

β

)n2

ÃÂ =
Γ(γ − (n1 + n2))

Γ(γ)
(
u

β
,
v

β

)

∼
(

1
βBeta(γ, β)

,
1 −Beta(γ, β)
βBeta(γ, β)

)

∼β→∞
(1, 1)

Gamma(γ)
. (E.3.11)

And this limit thus corresponds to a model of polymer with on sites Boltzmann weights (since the weights on neighboring
links are equals in the limit) distributed according to an inverse Gamma distribution, i.e. the log-Gamma polymer. This
analysis thus unveil a natural duality between known integrable directed polymer models, as can be seen comparing (E.3.6)
and (E.3.11). However, more surprisingly, this model also contains the Strict-Weak polymer model as a limit. Indeed, one
has

lim
γ→∞

un1 (γv)n2 =
Γ(β + n2)

Γ(β)

(u, γv) ∼
(

1
Beta(γ, β)

,
γ(1 −Beta(γ, β))

Beta(γ, β)

)

∼γ→∞ (1, Gamma(β)) (E.3.12)

which corresponds to a Strict-Weak polymer model with Boltzmann weights on horizontal edges distributed with a Gamma
distribution of parameter β > 0. In terms of the partition sum, the convergence of the Inverse-Beta model to the log-
Gamma and Strict-Weak (E.1.2) is easily obtained using (E.3.11) and (E.3.12). Note that one can formally take a limit
on the moments of the Beta polymer to obtain the moments of the log-Gamma polymer. Indeed, taking on the moments
appearing in (E.3.4) α+ β = 1 − γ fixed and letting α → ∞, one obtain

lim
|α|,|β|→∞,α+β=1−γ

(
u

−α
)n1

(
v

−β

)n2

=
(−1)n1+n2

(1 − γ)n1+n2

=
Γ(γ − (n1 + n2))

Γ(γ)
. (E.3.13)

But in doing so, the parameters α and β passes through region where the PDF Beta(α, β) is not normalizable and the
convergence of the Beta to the log-Gamma polymer thus does not hold in probability. The situation and relations between
this different polymer models is summarized in Fig. E.2. Notice that parts of this scheme remain empty, and there still
remains some room for new integrable models with moments of the form (E.3.2). In Appendix E.7 we attempt a first step
in this direction by studying different analytical continuations of (E.3.2),
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Figure E.2: Duality between polymers models in the (α, β) plane. The dashed line
represents the axe of symmetry α ↔ β, or equivalently the symmetry between vertical
and horizontal edges. The blue line indicates the line α + β = 1 or equivalently
γ = 1 − (α+β) = 0. Limiting polymer models are indicated by red arrows for the log-
Gamma (LG) and blue arrows for the Strict-Weak (with weights either on horizontal
edges (SWH) or vertical edges (SWV) ). We also emphasize the values of (ǫ1, ǫ2) which
corresponds to the polymer considered. Notice that the region α > 0, β > 0 and γ < 1
is a region of coexistence of the Inverse-Beta and the Beta polymer, only distinguished
by the value of (ǫ1, ǫ2).

E.4 Study of the Inverse-Beta Polymer

We now turn to the analysis of the Inverse-Beta polymer. In Section E.4.1 we us the Bethe ansatz solvability of the model to
obtain formulas for the firsts (i.e. those that exist) integer moments of the partition sum of the model. In Section E.4.2 we
use the prescription already used in [4] for the log-Gamma polymer to conjecture a formula for the Laplace transform of the
partition sum from the knowledge of its moments. Based on this conjecture, we show in Section E.4.3 the KPZ universality
of the model. Finally, we study in Section E.4.4 a zero temperature model associated to the Inverse-Beta polymer.

E.4.1 Moments Formula and Coordinate Bethe Ansatz

a Coordinate Bethe Ansatz

The moments of the Boltzmann weights of the Inverse-Beta polymer read (in the following we keep the notations and
coordinates introduced in the general setting of the precedent section)

un1vn2 = (−1)n2
(α)n1 (β)n2

(α+ β)n1+n2

. (E.4.1)

where α < 0, β > 0 and α+β < 1. As we showed in Section E.3.2, this model is integrable using a coordinate Bethe ansatz
Eq. (E.2.6) with a two body S-matrix S(zi, zj) given by (E.2.11). Its parameters are calculated from the second moment
equation Eq. (E.2.10) and their definition (E.4.1), leading to:

a = c = − 1
1 + α+ β

=
1

γ − 2
, b =

−1 + α+ β

1 + α+ β
=

γ

γ − 2
, γ = 1 − (α+ β) (E.4.2)

where we have recalled the definition of the parameter γ. We now introduce

c̄ =
4

γ − 1
= − 4

α+ β

zj = eiλj , tj = i tan(
λj
2

) =
zj − 1
zj + 1

, zj =
1 + tj
1 − tj

. (E.4.3)

In the following we suppose c̄ > 0, i.e. γ > 1. As in the log-Gamma case, this is only a technical assumption that allows us
to use the coordinate Bethe ansatz to compute the n < γ first moments of the partition sum, and we will specify when the
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validity of some results extends to γ < 1. Using these notations, it is a simple exercise to check that the S-matrix of the
Inverse-Beta polymer can be expressed as

S(zi, zj) =
2tj − 2ti + c̄

2tj − 2ti − c̄
. (E.4.4)

Remarkably, it is equal to the S-matrix of the log-Gamma polymer studied in our previous work [4]. Hence, the Bethe
eigenfunctions of this model can be taken as the one already introduced for the log-Gamma polymer, namely

ψ̃µ(x1, · · · , xn) =
∑

σ∈Sn

Aσ

n∏

α=1

zxα
σ(α) , Aσ =

∏

1≤α<β≤n
(1 +

c̄

2(tσ(α) − tσ(β))
) . (E.4.5)

Note that it only differs from the solution (E.2.12) proposed in [222] by a global multiplicative constant. Following the same
approach than in [4], we now study the model using periodic boundary conditions and look for eigenstates of the transfer
matrix such that ψµ(x1, · · · , xj + L, · · · , xn) = ψ(x1, · · · , xn). This imposes the Bethe equations

eiλiL =
∏

1≤j≤n,j 6=i

2ti − 2tj + c̄

2ti − 2tj − c̄
, i = 1, ..n (E.4.6)

Note that this is only a convenient choice and should have no effects on Zt(x) as long as t < L as discussed there. We will
now recall some useful properties of the eigenstates (E.4.5) that were obtained[4] and generalize some of them.

b Recall of some properties of the eigenstates

b.1 A weighted scalar product The eigenfunctions (E.4.5) form a basis of the set of periodic functions of n
variables on N

n. They are orthogonal with respect to the following scalar product

〈φ, ψ〉 =
∑

(x1,··· ,xn)∈{0,··· ,L−1}n

1
∏

x
h∑n

α=1
δx,xα

φ∗(x1, · · · , xn)ψ(x1, · · · , xn) , hn =
n−1∏

k=0

4
4 − kc̄

= (γ − 1)n
Γ(γ − n)

Γ(γ)
.

(E.4.7)

b.2 The string solution In the large L limit, the solutions of the Bethe equations (E.4.6) organized themselves
into strings. Each set {tα} that solve (E.4.6) is given by partitioning n into ns strings, each string containing mj particles
where the index j = 1, · · · , ns labels the string. Inside a string, the tα are given by (we use the notations of [4]):

tα = tj,a = i
kj
2

+
c̄

4
(mj + 1 − 2a) +

δj,a
2

(E.4.8)

where we introduced an index a = 1, · · · ,mj that labels the rapidities inside a string,
kj

2
∈ R denotes their common

imaginary part and δj,a are deviations that fall off exponentially with L. In the large L limit, the strings behave as
independent free particles with total momentum Kj =

∑mj

a=1
λj,a ∈ [−mjπ,mjπ]. In particular, in the large L limit, the

sum over all eigenstates can be computed as

∑

mjstring−states
→ L

2π

∫ mjπ

−mjπ

dKj → L

2π

∫ ∞

−∞
dkj

mj∑

a=1

1
1 − t2j,a

. (E.4.9)

We will also need the norm of an eigenstate composed of strings in the large L limit. This was computed in [4].

||µ||2 = n!Lns
∏

1≤i<j≤ns

4(ki − kj)2 + c̄2(mi +mj)2

4(ki − kj)2 + c̄2(mi −mj)2

ns∏

j=1

[
mj

c̄mj −1
(

mj∑

a=1

1
1 − t2j,a

)

mj∏

b=1

(1 − t2j,b)] (E.4.10)

b.3 Energy-momentum of the strings Although the eigenfunctions are the same as the one for the log-
Gamma polymer, the eigenvalues are different. The eigenvalue of the transfer matrix Tn associated to an eigenstate ψµ was
given in (E.2.7) as Λµ =

∏n

i=1
(u+ vz−1

i ) and depends only on the first moments of the weights. Inserting their values from
(E.4.1) and taking into account that for a string state, it is a product of string contributions, we obtain Λµ =

∏ns

j=1
Λj

with:

Λj =
m∏

a=1

(
α

α+ β
− β

α+ β

1 − tj,a
1 + tj,a

) =

(

−β − ikj

c̄
− γ

2
− mj

2
+ 1
)

mj
(

− ikj

c̄
− γ

2
− mj

2
+ 1
)

mj

=
Γ
(

β +
ikj

c̄
+ γ

2
+

mj

2

)

Γ
(

β +
ikj

c̄
+ γ

2
− mj

2

)

Γ
(
ikj

c̄
+ γ

2
− mj

2

)

Γ
(
ikj

c̄
+ γ

2
+

mj

2

) . (E.4.11)
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Where, in the second line, we have rewritten the Pochhammer symbols using Gamma functions, an indentity valid for
integer mj .

Another important quantity is the eigenvalue associated to the action of the unit translation operator on a string state,
defined as

mj∏

a=1

zj,a =

mj∏

a=1

1 + tj,a
1 − tj,a

=
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)Γ(
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2
+ i

kj

c̄
)
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kj
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)
, (E.4.12)

an expression identical to the one obtained in [4]. Finally, we will also need
(
mj∏

a=1

1
1 − t2j,a

)

=
(2
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)2mj

(

Γ(−mj
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)

. (E.4.13)

c Moments formula

We have now all the ingredients to compute the integer moments of the partition sum. As will appear clearly in the
following, it is convenient to start with an initial condition

Zt=0(x) = w0,0δx,0 , (E.4.14)

where w0,0 is Boltzmann weight, statistically independent of the others, and distributed with an inverse Gamma distribution
of parameter γ. The problem with initial condition Zt=0(x) = δx,0 is obviously simply connected to this one and the details
of the relations are given in Appendix E.8. In terms of the wave-function ψt(x1, · · · , xn), the initial conditions reads
ψt=0(x1, · · · , xn) = Γ(γ−n)

Γ(Γ)

∏n

i=1
δxi,0 and we use the scalar product (E.4.7) to decompose it on the Bethe eigenstates.

Using this decomposition we obtain

ψt(x1, · · · , xn) =
∑

µ

Γ(γ − n)n!
Γ(γ)hn||ψµ||2 (Λµ)tψµ(x1, · · · , xn) . (E.4.15)

In particular,

Zt(x)n =
∑

µ

Γ(γ − n)(n!)2

Γ(γ)hn||ψµ||2 (Λµ)t
(

n∏

α=1

zα

)x

. (E.4.16)

Replacing in this expression each terms by its value in the large L limit, one obtains:

Zt(x)n =
Γ(γ − n)(n!)2

Γ(γ)hn

n∑
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1
ns!
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(m1,..mns )n
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Where we have written the sum over all eigenstates as
∑

µ
=
∑n

ns=1
1
ns!

∑

(m1,··· ,mns )n

∑

mjstring−states, where
∑

(m1,··· ,mns )n

means summing over all ns-uplets (m1, · · · ,mns ) such that
∑ns

i=1
mi = n, and the ns! factor avoids multiple counting of a

same string state. Rearranging this formula and rescaling k → c̄k, we finally obtain:

Zt(x)n = n!
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, (E.4.18)

valid for n < γ. The convergence of the various integrals is algebraic, the integrand being O(1/k
2mj

j ) as can be checked
by rewriting the quotient of Gamma functions as Pochhammer symbols. This formula was checked using direct numerical
integrations for low values of t ≤ 2, x ≤ 2 and n ≤ 2. The case t = 0 is already non-trivial since it confirms the completeness
of the eigenstates. Note that if one chooses the initial condition Zt=0(x = 0) = δx,0, then Zt(x)n is trivially given by (E.4.18)
with an additional factor of Γ(γ)/Γ(γ − n) in front.

Degenerations towards the log-Gamma and Strict-Weak polymers: Since the Inverse-Beta polymer contains the log-
Gamma polymer and the Strict-Weak polymer as limits (see (E.3.11) and (E.3.12)), (E.4.18) also contains moments formula
for the Strict-Weak and log-Gamma cases as we show now.

• The moments of the log-Gamma polymer are obtained as the limit (ZLGt (x))n = limβ→∞
1
βntZt(x)n, where ZLGt (x)

is the partition sum of the log-Gamma polymer. Indeed, the factor 1
βnt exactly cancels the divergence of the last

quotient of Gamma functions in (E.4.18), leading to the formula (54) of [4]. Let us recall that the present coordinates
are t = T and x = t/2 +X as a function of those, T,X (but denoted there t, x) of that work.
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• We now obtain a moment formula for the Strict-Weak polymer with initial condition ZSWt (x = 0) = δx,0, following
(E.3.12), we consider the limit (ZSWt (x))n = limγ→∞

Γ(γ)
Γ(γ−n)

γnxZt(x)n. In this case, the point-wise limit of the
integrand cannot be taken as simply and we need to first perform the change of variables kj → kj + i γ

2
. We obtain
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. (E.4.19)

Where L = −i γ
2

+ R. Since the integral over kj quickly converges as O(1/k
2mj

j ), we can now close the different
contours of integrations on the upper half plane before taking the limit γ → ∞. This leads to:

(ZSWt (x))n = n!
n∑
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1
ns!

∑

(m1,..mns )n

ns∏

j=1

∫

L̃n

dkj
2π

∏

1≤i<j≤ns

4(ki − kj)2 + (mi −mj)2

4(ki − kj)2 + (mi +mj)2

ns∏

j=1

1
mj

(
Γ(−mj

2
+ ikj)

Γ(
mj

2
+ ikj)

)1−x+t(
Γ(β + ikj +

mj

2
)

Γ(β + ikj − mj

2
)

)t

, (E.4.20)

where L̃ is an horizontal line that stays below all the poles of the integrand. This formula is formal because the
resulting integral does not converge, but one must remember that we have formally already closed the contours of
integrations. Computing the integral on ki thus just amounts at taking the sum over the residues of all the poles of
the integrands except those of the type ki = kj − iA where A > 0 (since the contours have been closed on the upper
half-plane).

E.4.2 Fredholm determinant formulas and KPZ universality

In this section, we use the formula (E.4.18) to obtain the Laplace transform of the distribution of Zt(x),

gt,x(u) = exp (−uZt(x)) . (E.4.21)

The issue of obtaining this generating function from the sole knowledge of the integer moments of the partition sum was
thoroughly discussed in [4] and here we follow the same route.

a The moment generating function

We start by computing the moment generating function

gmomt,x (u) =
∞∑

n=0

(−u)n

n!
Zt(x)n . (E.4.22)

where u > 0. Here, though Zt(x)n is only defined for n ≤ γ, the right hand side of formula (E.4.18) is well defined for n ∈ N

(except if γ ∈ N) and we take advantage of this analytical continuation to perform the sum (E.4.22). Note that this object
has no reason to correspond to the Laplace transform of Zt(x) but5, as in the log-Gamma case, we will use it to conjecture
a formula for the true Laplace transform gt,x(u) defined in (E.4.21). Since we perform the sum over n ∈ N, the constrained
sum appearing in (E.4.18) becomes free summation and one can write

gmomt,x (u) = 1 +
+∞∑

ns=1

1
ns!

Z(ns, u) (E.4.23)

where
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(E.4.24)

In this formula and following [4], one recognizes the structure of a Fredholm determinant

gmomt,x (u) = Det
(
I +Kmom

t,x

)
(E.4.25)

5And indeed it is not, a simple reason being that, just as the Laplace transform of the PDF p̃γ,β
of the Boltzmann weights of the Inverse-Beta polymer (see (E.3.9)), the Laplace transform of Zt(x) is
not an analytic function. See also Appendix E.9 for more details on this question.
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with the kernel:

Kmom
t,x (v1, v2) =

∞∑

m=1

∫ +∞

−∞

dk

π
(−u)me−2ik(v1−v2)−m(v1+v2) (E.4.26)
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and Kmom
t,x : L2(R+) → L2(R+), so that the two auxiliary integration variables v1 and v2 are positive6.

b The Laplace transform as a Fredholm determinant

We now use the same prescription used in [4] to obtain a conjecture for the Laplace transform gt,x(u) from the moment
generating function gmomt,x (u). It consists in rewriting the sum over m in the Kernel Kmom

t,x as a Mellin-Barnes integral.
In Appendix E.9 we also show how this type of manipulation efficiently works on a simpler object, namely the Laplace
transform of the PDF p̃γ,β defined in (E.3.9). We thus conjecture, gtx(u) = Det (I +Ktx) with

Kt,x(v1, v2) =

∫ +∞

−∞

dk
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−1
2i

∫

C
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sin(πs)
use−2ik(v1−v2)−s(v1+v2) (E.4.27)
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where C = a+ iR with 0 < a < min(1, γ) and Kt,x : L2(R+) → L2(R+). As in the log-Gamma case, we expect this formula
to be also valid for 0 < γ < 1. Note that in going from (E.4.26) to (E.4.27) we have to choose an analytical continuation
to go from m ∈ N to s ∈ C. Here the chosen analytical continuation is the most natural one in the sense that it generalizes
the one used for the log-Gamma polymer in [4], and also mimics the calculation of Appendix E.9. This Kernel is the one
that is naturally obtained from the Bethe Ansatz and its structure is reminiscent of the string solution: the integral over s
encodes for the contributions of the different types of strings, whereas the integral over k is the summation on the momenta
of the strings. As shown in [4] (section 11), it is also possible to rewrite gtx(u) as the Fredholm determinant of another
Kernel which contains one less integral. Since the proof is strictly analogous to the case of the log-Gamma polymer, we
only give here the final result: we also have gtx(u) = Det

(
I +KBA

tx

)
where

KBA
t,x (z, z′) =

∫

2a+ã+iR

dw
1
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(E.4.28)

where : KBA
t,x : L2(a + ã + iR) → L2(a + ã + iR) 0 < a < min(1, γ) and 0 < ã < γ − a. Note that here this formula

should be valid for arbitrary x, whereas for the log-Gamma polymer the analogous formula was only valid for 2x ≤ t (with
a mirror formula for the other case)7. This formula is a large contour formula and an analogous small contour formula
should also exist, as in the log-Gamma polymer. Let us also mention here that, following the same procedure that led in
the log-Gamma case to formula (63) and (64) of [4], it is possible to directly obtain from (E.4.27) or (E.4.28) formulas for
the PDF of logZt(x) as differences of two Fredholm determinants.

c The Laplace transform as a n-fold integral

In [218], a formula giving an identity between a certain class of Fredholm determinant with Kernels similar to the one in
(E.4.28) and a class of n-fold contour integrals was given (Theorem 2). Though the explicit form of (E.4.28) explicitly
breaks the hypothesis under which this formula was proven, an analogous formula should also exist in a more general
setting. Guided by this belief, we conjecture the following formula for the Laplace transform:

e−uZt(x) =
1
J !

∫

(iR)J
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)

, (E.4.29)

with 0 < a < min(1, γ), valid for Re(u) > 0, 1 ≤ J ≤ I and where x = I − 1 and t = I + J − 2. This can be seen as a
modification to our model of the formula given in [198] (Theorem 3.8), and also stated in [218] (Proposition 1.4), for the
log-Gamma polymer. Since ours is merely a conjecture, we have tested it numerically against direct numerical computations
of the Laplace transform for various u, β and γ and for J = 1 , I = 1, 2, 3 and J = 2, I = 2.

6Note that this FD structure would have been broken by the initial condition Zt=0(x) = δx=0. (In
which case (E.4.24) contains a non factorizable term of the form Γ(γ)/Γ(γ −

∑ns

i=1
mi) ).

7Convergence of the w integral is checked using that |Γ(x+ iy)| ≃
√

2π|y|x− 1
2 e− π

2
|y|.
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d Degeneration towards the log-Gamma polymer.

The results of the last three paragraphs for the Laplace transforms of Z are easily seen to degenerate into the usual results
for the log-Gamma polymer as β → +∞ using that exp(−uZLGt (x)) = limβ→∞ exp(− u

βtZt(x)). For example, taking the
limit on formula (E.4.27), this introduces a term exp(−st log(β)) in the Kernel that exactly cancels the divergence of the
last quotient of Gamma functions, and similarly for the other formula.

E.4.3 The large length limit and the KPZ universality.

We now study the limit of polymers of large length t ≫ 1 for polymers with fixed endpoints (0, 0) and (t, x) = (t, (1/2+ϕ)t)
where ϕ ∈ [−1/2, 1/2] represents the average angle of the path measured from the diagonal of the square lattice. The large
t behavior of (E.4.27) is estimated through a saddle-point analysis similar to the one in [4] to which we refer for details.
We define

Gϕ(y) = (
1
2

+ ϕ) log Γ(
γ

2
− y) − (

1
2

− ϕ) log Γ(
γ

2
+ y) + log Γ(β +

γ

2
+ y) . (E.4.30)

So that the leading behavior of the product of Gamma functions appearing in (E.4.27) is

(ΓΓ)t := exp
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t
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2
+ ik) −Gϕ(− s

2
+ ik)

))

. (E.4.31)

We now look for the critical point (s, k) = (0,−ikϕ) such that G′′
ϕ(kϕ) is 0. This defines implicitly kϕ as

(
1
2
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2
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Where ψ = Γ′

Γ
is the diGamma function . Expanding (E.4.31) around this critical point, one obtain

(ΓΓ)t = exp

(

t

(

G′
ϕ(kϕ)s+

G′′′
ϕ (kϕ)

6
(
s3

4
− 3sk̃2) +O(s4)

))

(E.4.33)

where k̃ = k + ikϕ and s are considered to be of the same order (this is consistent with the rest of the calculation, see
below). The linear term G′

ϕ(kϕ) corresponds to an additive constant in the limiting free energy, whereas the cubic term
sets the scale of the free-energy fluctuations. To pursue the asymptotic analysis, we define

Ft(ϕ) = − logZt(x = (1/2 + ϕ)t) = cϕt+ λϕft(ϕ)

cϕ = −G′
ϕ(kϕ) , λϕ =

(
tG′′′

ϕ (kϕ)
8

) 1
3

g̃t,ϕ(z) = exp
(
−e−λϕ(z+ft(ϕ))

)
(E.4.34)

Where Ft(ϕ) is the free-energy of the directed polymer and g̃t,ϕ(z) is a rescaled Laplace transform which has a proper
t → ∞ limit for fixed z ∈ R. Indeed, since gt,x=(1/2+ϕ)t(u) can be written exp (−elog(u)−Ft(ϕ)), one has the identity

g̃t,ϕ(z) = gt,x=(1/2+ϕ)t(u = ecϕt−λϕz). Rescaling s → s/λϕ, k̃ → k̃
λϕ

, vi → λϕvi and inserting u = ecϕt−λϕz, as well as the

expansion (E.4.33), into (E.4.27), one obtains g̃t,ϕ(z) = Det
(
I + K̃t,ϕ(v1, v2)

)
8

K̃t,ϕ(v1, v2) =

∫

R

dk̃

π

−1
2i

∫

C

ds

λϕ sin(π s
λϕ

)
e

−sz−2ik̃(v1−v2)−s(v1+v2)−4k̃2s+ s3

3
+O( 1

λϕ
)

(E.4.35)

where K̃t,ϕ : L2(R+) → L2(R+) . The large polymer length limit λϕ → ∞ can be safely taken in this last expression,
leading to a kernel K̃∞ for which there is more freedom in the choice of the integration contour C: it should only define a
convergent integral and passes to the right of zero. The t → ∞ limit of the rescaled generating function can thus be written
as limt→∞ g̃t,ϕ(z) = Prob(−f < z) = Det(I + K̃∞) where K̃∞ : L2(R+) → L2(R+) is given by

K̃∞(v1, v2) = −
∫

R

dk̃

2π

∫

R+

dyAi(y + z + v1 + v2 + k̃2)e−ik̃(v1−v2) (E.4.36)

where we used the Airy trick
∫

R
dyAi(y)eys = e

s3

3 valid for Re(s) > 0, followed by the shift y → y + z + v1 + v2 + 4k̃2,

the identity
∫

C
ds

2iπs
esy = θ(y), and the rescaling k̃ → k̃/2 . As in [4], this kernel corresponds to the Tracy-Widom GUE

distribution as det(I + K̃∞) = F2(2− 2
3 z) where F2(z) is the standard GUE Tracy-Widom cumulative distribution function.

We have thus shown

lim
t→∞
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(
logZt((1/2 + ϕ)t) + tcϕ

λϕ
< 2

2
3 z

)

= F2(z) (E.4.37)

8 The extra factor e−2kϕλϕ(v1−v2) originating from the change of variable has been removed since
it is immaterial in the calculation of the Fredholm determinant.
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where the (ϕ-dependent) constants are determined by the system of equations:
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. (E.4.40)

Angle of maximal probability The free energy per unit length cϕ is maximal in the direction defined by the angle ϕ∗
such that ∂

∂ϕ
cϕ|ϕ=ϕ∗ = 0. It is easily seen from (E.4.38) that it is realized for kϕ = 0, and ϕ∗ is thus given by

ϕ∗ = −1
2
ψ′(β + γ/2)
ψ′(γ/2)

< 0 , (E.4.41)

and the optimal energy per unit length is thus

c∗ = cϕ∗ = ψ(γ/2) − ψ(β + γ/2) . (E.4.42)

The amplitude of the fluctuations in the direction ϕ∗ are

λϕ∗ =
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8
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8
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8
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And one recognizes the usual log-Gamma result for ϕ = 0. In the log-Gamma limit β → ∞, one recovers ϕ∗ = 0, but the
parameter β > 0 biases the DP towards the vertical direction. More precisely,

ϕ∗ ≃β→0 −1
2

− ψ′′(γ/2)
ψ′(γ/2)

β +O(β2)

ϕ∗ ≃β→∞ − 1
2ψ′(γ/2)β)

+O(1/β2) . (E.4.44)

For small displacement around this optimum direction ϕ = ϕ∗+δϕ, one retrieves an isotropic continuum limit characterized
by an elastic coefficient κ such that cϕ ≃ cϕ∗ − 1

4
κδϕ2. One easily find using (E.4.38):

κ = −8
(ψ′(γ/2)ÃÂ)2

ψ′′(γ/2) − ψ′′(β + γ/2)
, (E.4.45)

which generalizes the known result for the log-Gamma.

Degeneration towards the log-Gamma and Strict-Weak polymers.

• The Laplace transform of the partition sum of the log-Gamma polymer is obtained as exp(−uZLGt (x)) = limβ→∞ exp(− u
βtZt(x)).

This amounts to change us → us exp(−ts log(β)) in the above formulas. For large β we use the limits ψ′(x) →x→∞ 0,
ψ′′(x) →x→∞ 0 and ψ(x) = log(x) − 1

2x
+ O( 1

x2 ). It is then easily seen that the presence of β do not change the
position of kϕ in this limit nor the amplitudes of the fluctuations λϕ, whereas cϕ receives a contribution proportional
to − log(β) which exactly cancels the rescaling of the partition sum. This shows that the system of equation (E.4.38)
converges to the one of the log-Gamma.

• In the case of the Strict-Weak polymer, the rescaling of the partition sum introduces a term that amounts to change
us → us exp(sx log(γ)) = exp(s(1/2+ϕ) log(γ)) in the above formulas. This suggest to look for a solution of the form
kϕ = − γ

2
+ kSWϕ . The system of equation (E.4.38) then converges to

0 = −(
1
2

− ϕ)ψ′(kSWϕ ) + ψ′(β + kSWϕ ) (E.4.46)

cSWϕ = (
1
2

− ϕ)ψ(kSWϕ ) − ψ(β + kSWϕ ) (E.4.47)

λSWϕ =
(

− t

8

(

(
1
2

− ϕ)ψ′′(kSWϕ ) − ψ′′(β + kSWϕ )
)) 1

3

, (E.4.48)

so that we retrieve the result of [219] for the Strict-Weak polymer case (the precise correspondence with their notations
reads κ = 1/(1/2 − ϕ), t̄ = kϕ, k = β, f̄k,κ = −κcSWϕ and ḡk,κ = 8

t(1/2−ϕ)
(λϕ)3.
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E.4.4 A low temperature limit.

a Definition of the zero temperature model

In this section we study the limit γ = ǫγ′ and β = ǫβ′ of the model with ǫ → 0 (hence, α → 1). As we show now, this
model converges to a zero temperature problem.

The analysis is similar to [224]. There (Lemma 4.1) is was shown that for a random variable z chosen with a Beta(α =
ǫa, β = ǫb) distribution, the joint PDF of the pair (−ǫ ln z,−ǫ ln(1 − z)) converges in law to (ξEa, (1 − ξ)Eb) as ǫ → 0 where
ξ a Bernouilli random variable (i.e. ξ = 0, 1 with probabilities p = b/(a+ b), 1 −p) and Ea, Eb exponential random variables
of parameters a and b respectively (i.e. p(E) = ae−aEθ(E)) statistically independent from ξ. Note that the correlations
between Ea and Eb are unimportant since they are multiplied by ξ and 1− ξ which cannot be non-zero simultaneously. The
occurence of the Bernouilli variable is intuitively understood since in that limit p(u) exhibits two peaks, one near u = 0
and one near u = 1 with weights p and 1 − p, and the exponential distributions arise by zooming-in on these peaks and
rescaling (u for the first peak, v = 1 − u for the other peak).

Since in the Inverse-Beta model 1/u is distributed as a Beta(γ, β) random variable, we immediately obtain that the
rescaled random energies of the model (Eu, Ev) = (−ǫ log(u),−ǫ log(v)) converge in probability to

(−ǫ log(u),−ǫ log(v)) ∼ǫ→0 (−ζEγ′ , (1 − ζ)Eβ′ − ζEγ′ ) = (E ′
u, E ′

v), (E.4.49)

where ζ is a Bernoulli random variable of parameter p = β′/(γ′ + β′), Eγ′ and Eβ′ are exponential random variables of
parameter γ′ > 0 and β′ > 0, independent of ζ. Equivalently one can choose:

(E ′
u, E ′

v) = (0, Eβ′ ) , with proba 1 − p (E.4.50)

(E ′
u, E ′

v) = −Eγ′ (1, 1) , with proba p (E.4.51)

i.e. a model where disorder is chosen randomly either on the site or on the pair of edges arriving at it, with a penalty for the
horizontal edge. The two cases corresponds to two peaks near (u, v) = (1, 0) and (u, v) = (+∞,+∞) in their distribution
in that limit. In terms of the partition sum of the polymer, the limit reads

−ǫ log(Zt(x)) = −ǫ log(
∑

π:(0,0)→(t,x)

exp(
∑

e∈π
log(we)))

= −ǫ log(
∑

π:(0,0)→(t,x)

exp(−1
ǫ

∑

e∈π
Ee))

∼ǫ→0 minπ:(0,0)→(t,x)

∑

e∈π
E ′
e := E(t,x) . (E.4.52)

which justifies the name zero temperature limit: the rescaled free energy of the original model converges in probability
to the minimal energy E(t,x) for the set of all polymers with starting points (0, 0) and ending points (t, x) in the random
environment with energies E ′

e distributed according to (E.4.49).

Degeneration to the Exponential (i.e. q = 1) Johansson model: In the so-called log-Gamma limit, i.e. β′ → +∞, one
obtains p = 1 hence:

(E ′
u, E ′

v) = −Eγ′ (1, 1) (E.4.53)

i.e. the on-site exponential distribution model of parameter γ, also identical to the q → 1 limit of the Johansson model,
studied in [159]. Note that the extra weight w00 at the origin which we included, allows to precisely recover the Johansson
polymer model (with an exponential variable also on the site x = t = 0.). To make contact with the notations of [159] we
have E(t,x) = −H(M,N) with M = I = 1 + x and N = J = 1 + t− x.

Degeneration to the zero-temperature limit of the Strict-Weak model: In the limit γ′ → ∞ one obtains p = 0 hence:

(E ′
u, E ′

v) = (0, Eβ′ ) (E.4.54)

This model can be interpreted as a discretization of a zero temperature version of the semi-discrete polymer model where
one replaces the set of independent Brownian motions by a set of independent random walks.

b Fredholm determinant formula for the zero temperature model

In order to obtain a Fredholm determinant for the zero temperature model starting from our expressions for gtx(u) =
exp(−uZt(x)), we rescale u as u = exp(r/ǫ) with r ∈ R fixed. Indeed, one then has

gtx(− exp(r/ǫ)) = exp(− exp
1
ǫ

(r + ǫ logZt(x)))

→ǫ→0 θ(−r + E(t,x))

= Prob(E(t,x) > r) . (E.4.55)
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We can thus directly write a Fredholm determinant formula for Prob(E(t,x) > r) by inserting u = exp(r/ǫ) in (E.4.27). The
point-wise ǫ → 0 limit of the Kernel is taken using a rescaling s → ǫs, a → ǫa (so that the contour C do not crosses poles
when we take the limit), k → ǫk and vi → vi/ǫ and using

ǫ

sin(πǫs)
→ǫ→0

1
πs

, Γ(ǫx) ≃ǫ→0
1
ǫx

+O(1) . (E.4.56)

We thus obtain Prob(E(t,x) > r) = Det
(
I +KT=0

tx

)
with

KT=0
t,x (v1, v2) = −

∫ +∞

−∞

dk

π

∫

C

ds

2iπs
esr−2ik(v1−v2)−s(v1+v2) (E.4.57)

(
s
2

+ γ′

2
− ik

− s
2

+ γ′
2

− ik

)1+x(
s
2

+ γ′

2
+ ik

− s
2

+ γ′
2

+ ik

)1−x+t(

β′ + ik + γ′

2
− s

2

β′ + ik + γ′
2

+ s
2

)t

.

where now C̃ = a+ iR with 0 < a < γ′ and KT=0
t,x : L2(R+) → L2(R+). Using the same type of rescaling as above, we also

obtain an analogous expression to (E.4.28) as Prob(E(t,x) > r) = Det
(
I +KBA,T=0

tx

)
where

KBA,T=0
t,x (z, z′) =

∫

2a+ã+iR

dw
1

4π(w − z′)
1

π(w − z)
er(w−z)

(
γ′ + a− z

γ′ + a− w

)1+x (
w − a

z − a

)1−x+t
(
z − a+ β′

w − a+ β′

)t

(E.4.58)

where : KBA,T=0
t,x : L2(a+ ã+ iR) → L2(a+ ã+ iR) 0 < a < γ′ and 0 < ã < γ′ − a.

We also immediately obtain a formula analogous to our conjecture (E.4.29) as a conjecture for the T = 0 model: for
I ≥ J

Prob(E(t,x) > r) =
1
J !

∫

(iR)J

J∏

j=1

dwj
2iπ

J∏

j 6=k=1

(wj − wk)
J∏

j=1

er(wj −a)

(a− wj)J

(
γ′

γ′ + a− wj

)I (
β′

wj − a+ β′

)I+J−2

.(E.4.59)

with 0 < a < γ′.
Limit to the Johansson model: For β′/γ′ = +∞ one thus finds a formula for the DP model of Johansson (i.e. with

independent exponentially distributed on-site energies). It is then interesting to compare our formula with the one obtained
in [159] (formula (1.18), which reads (for r < 0), I ≥ J ≥ 1:

Prob(−E(t,x) < −r) =
1
Z′
IJ

∫

[0,−r]J

J∏

j=1

dxj
∏

1≤i<j≤J
(xi − xj)

2

N∏

j=1

xI−J
j e−xj (E.4.60)

which coincides with the CDF of the largest eigenvalue of the Laguerre Unitary Ensemble (LUE) of random matrices (the
constant Z′

IJ simply ensures the normalisation to unity of the measure on (R+)J).

c Asymptotic analysis and KPZ universality for the zero temperature model

We now study the large length limit of the zero temperature model: t → ∞ and x = (1/2+ϕ)t. The analysis is similar to the
one made for the finite temperature model and here we only give the main steps. As before, the t → ∞ limit is dominated
by a saddle point. The dominating term in the Fredholm determinant (E.4.57) now reads exp(t(G̃ϕ( s

2
+ ik)− G̃ϕ(− s

2
+ ik)))

with

G̃ϕ(y) = −(
1
2

+ ϕ) log(
γ′

2
− y) + (

1
2

− ϕ) log(
γ′

2
+ y) − log(β′ +

γ′

2
+ y) . (E.4.61)

Note that with the contour previously chosen the arguments of G̃ϕ stay away from the branch cut of the logarithm. As
before we look for a critical point, (s, k) = (0,−ik̃ϕ) such that G̃′′

ϕ(k̃ϕ) = 0. This defines k̃ϕ as

( 1
2

+ ϕ)

( γ
′

2
− k̃ϕ)2

− ( 1
2

− ϕ)

( γ
′

2
+ k̃ϕ)2

+
1

(β′ + γ′
2

+ k̃ϕ)2
= 0. (E.4.62)

Note that this equation as in general several solutions, but the only physical one must have |k̃ϕ|Â < γ′/2 to truly dominate
the integration. To this point, we can now follow the exact same steps as before by taking

r = tc̃ϕ − λ̃ϕz̃

c̃ϕ = −G̃′
ϕ(k̃ϕ) , λ̃ϕ =

(
tG̃′′′

ϕ (k̃ϕ)
8

) 1
3

(E.4.63)

and using the same rescalings in (E.4.57). In the large length limit, this leads to

lim
t→∞

Prob

(
E(t,x=(1/2+ϕ)t) − tc̃ϕ

λ̃ϕ
> −2

2
3 z̃

)

= F2(z̃) (E.4.64)
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with

c̃ϕ = − ( 1
2

+ ϕ)
γ′
2

− k̃ϕ
− ( 1

2
− ϕ)

γ′
2

+ k̃ϕ
+

1

β′ + γ′
2

+ k̃ϕ
(E.4.65)

0 =
( 1

2
+ ϕ)

( γ
′

2
− k̃ϕ)2

− ( 1
2

− ϕ)

( γ
′

2
+ k̃ϕ)2

+
1

(β′ + γ′
2

+ k̃ϕ)2
(E.4.66)

λ̃ϕ =

(
t

8

(
(1 + 2ϕ)

( γ
′

2
− k̃ϕ)3

+
(1 − 2ϕ)

( γ
′

2
+ k̃ϕ)3

− 2

(β′ + γ′
2

+ k̃ϕ)3

)) 1
3

. (E.4.67)

Note that this result is coherent with the one obtained at finite temperature (E.4.37) and (E.4.38) and can be obtained
from it by scaling γ = ǫγ′, β = ǫβ′ and kϕ = ǫk̃ϕ.

Angle of optimal energy The angle of minimum energy ϕ̃∗ of the model is obtained by solving ∂
∂ϕ
c̃ϕ = 0. This imposes

k̃ϕ = 0 and, using (E.4.65), we thus obtain

ϕ∗ = −γ′2

8
1

(β′ + γ′
2

)2
< 0. (E.4.68)

As for the finite temperature model, we thus retrieve that β′ > 0 biases the DP towards the vertical direction. For β′ → 0
we obtain once again ϕ∗ = − 1

2
. The optimal energy per unit length, and the scaling parameter λ̃ϕ∗ at the optimal angle

are respectively

c̃ϕ∗ = − 2β′

γ′(β′ + γ′
2

)
, λ̃ϕ∗ =

(
2

(γ′)3
− 2

(γ′ + 2β′)3

) 1
3

t
1
3 (E.4.69)

recovering the results for the Johansson model:

In the limit β′ = +∞ the above equations (E.4.65) can be solved explicitly. One finds k̃ϕ = − γ′

4ϕ
(1 −

√

1 − 4φ2), where
we have chosen the root which vanished at the optimal angle ϕ∗ = 0 (i.e. the diagonal which is a symmetry axis in this
case). This yields:

c̃ϕ = − 1
γ′ (1 +

√

1 − 4ϕ2) , λ̃ϕ =
1
γ′ t

1
3

(
8ϕ4

(1 −
√

1 − 4φ2)2
√

1 − 4φ2

) 1
3

(E.4.70)

We can now compare with Johansson result (formula 1.22 in [159]) which reads (for γ′ = 1):

H(gJ, J) ≃J→+∞ (1 +
√
g)2J + g−1/6(1 +

√
g)4/3J1/3χ2 (E.4.71)

where χ2 is a Tracy-Widom GUE random variable (of CDF given by F2). With a little bit of algebra one can check that
this is exactly equivalent to our result, namely:

E(t,x=(1/2+ϕ)t) ≃t→+∞ tc̃ϕ − 22/3λϕχ2 (E.4.72)

with E(t,x=(1/2+ϕ)t) = −H(gJ, J), taking into account that J = 1 + t− x ≃ ( 1
2

− φ)t, hence g = 1+2ϕ
1−2ϕ

.

E.5 Conclusion

In this paper we attempted a classification of finite temperature directed polymer models on the square lattice with
homogeneously distributed random Boltzmann weights and a certain type of short-range correlations (Section E.2.1), for
which the moments of the partition sum Zt(x) can be calculated via a coordinate Bethe ansatz. Following the pioneering
work of [222], we obtained a rigorous expression (E.2.21) that constrains the possible forms for the moments of the underlying
distribution of weights. We discussed in details the possibilities of finding PDF’s with the appropriate moments (E.2.21)
and, though the classification is still not complete, we were able to exclude a large number of cases. In cases where the
moment problem has a solution, we retrieved all the previously known finite temperature integrable DP models (Section
E.3.2), and introduced a new one, the Inverse-Beta polymer, which appears as a natural two parameters generalization of
the log-Gamma polymer, but also contains the Strict-Weak polymer as a limit. Using the Bethe ansatz, we obtained an
integral formula for the moments of the partition sum (E.4.18) of the Inverse-Beta polymer, with point-to-point boundary
conditions. Along this route, most of the tools developed in [4] for the Bethe ansatz solution of the log-Gamma polymer
proved very useful and were generalized.

Starting from the moments formula and using analytical continuations, we obtained two equivalent Fredholm determi-
nant formulas for the Laplace transform of the PDF of the partition sum (E.4.27) and (E.4.28), and conjectured a n-fold
integral formula (E.4.29) for the same object, which generalizes a known formula for the log-Gamma polymer obtained in
[198] in the framework of the gRSK correspondence. Using our Fredholm determinant formulas and an asymptotic analysis
in the limit of large polymer length, we were able to obtain the KPZ universality of the model (critical exponents and
Tracy-Widom GUE free-energy fluctuations) (E.4.37) and as well as exact implicit expressions for the mean free energy and
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the amplitude of fluctuations as a function of the polymer orientation w.r.t. the diagonal. As an application we obtained
an exact expression for the optimal angle which minimizes the free-energy of the polymer (E.4.41).

In Section E.4.4 we introduced a zero-temperature DP model as a limit of the Inverse-Beta polymer, which generalizes
the previously known zero-temperature limit of the log-Gamma polymer. Using the exact formulas obtained for the Inverse-
Beta polymer, we showed analogous formulas for this zero-temperature model. In particular we obtained exact formulas
(Fredholm determinant and n-fold integrals) for the cumulative distribution of optimal energy of the model (E.4.57), (E.4.58)
and (E.4.59). Using an asymptotic analysis, we showed the KPZ universality (E.4.64) of the model. Our formula compare
successfully with some results obtained by Johansson in his pioneering study of the Exponential zero-temperature polymer
[159], a particular case of our zero-temperature model.

We believe that the present work could be used as a guide for future research of new integrable DP models. In addition,
we once again showed that the replica Bethe ansatz method is a valuable and versatile tool for the analysis of such DP
models. In particular, some results of this paper could prove useful and adaptable to the analysis of the model with different
boundary conditions.

For future works on the Inverse-Beta polymer, it should be very interesting to obtain a solution of this model using
the gRSK correspondence or a generalization of the latter (as in the recent work [221]). Our conjecture (E.4.29) could
be proven (or invalided) using these techniques. In addition, we know that an inhomogeneous version of the log-Gamma
polymer was amenable to analytical treatment in the framework of the gRSK correspondence, and it is thus likely that an
inhomogeneous version of the Inverse-Beta model should also exist.

For future works on the classification of directed polymer models, various directions of research remain. The most
direct one is to understand if some integrable models remain to be found to fill the left voids in Fig. E.2 (as e.g. our
proposal of Appendix E.7). Other directions would be to extend this framework to introduce inhomogeneous models, or
different disorder correlations. The precise implications of our classification of finite temperature DP model for possible
zero temperature integrable DP models remain to be elucidated. Indeed all the models we found in our framework admit
a zero temperature limit. For example, the zero temperature limit of the log-Gamma model is the q → 1 limit (beware
that this q is a priori different from the one used in Section E.3) of the zero temperature model of Johansson [159], i.e. the
Exponential zero-T model (as was pointed out in [198]). However, at this stage, our framework seems to miss the q 6= 1 case
of the Johansson model. A natural question is then to understand if a finite temperature integrable DP model sits above the
Johansson model ∀q, and whether the zero temperature model studied in this paper admits a q 6= 1 generalization. Since
Johansson’s model is determinantal, a related outstanding question is to obtain a deeper and more systematic understanding
of the relations between Bethe ansatz solvable models and determinantal processes which seem to often occur as limit cases
of the former.

We are very grateful to G. Barraquand, I. Corwin and A.M. Povolotsky for very useful remarks and discussions. We
gratefully acknowledge hospitality and support from Galileo Galilei Institute (program "Statistical Mechanics, Integrability
and Combinatorics) where part of this work was conducted.

E.6 Appendix A: The |q| < 1 case: study of degenerations.

Here we study in details the possible degenerations of the parameters (q, ν, µ) that would eventually lead to a PDF p(u, v)
such that the moments of u and v are given by (E.2.21) and nmax ≥ 2. As in the main text, we restrict to the domain
|q| < 1 and consider the random variable zx = u+ xv, x ∈ R. Its variance is:

z2
x

c
=

(µ− 1)(1 − q)(µ− ν)(µx− 1)(µx− ν)
µ2(ν − 1)2(νq − 1)

(E.6.1)

which must be positive. Since the polynomial in x changes sign at x = ν
µ

and x = 1
µ

one must look for cases where ν
µ

= 1
µ

.
The different cases to investigate are thus ν = 1, |µ| = ∞, µ = 0 and a combination of these cases. It is instructive to look
at the variance for x = 1:

z2
1

c
=

(µ− 1)2(1 − q)(µ− ν)2

µ2(ν − 1)2(νq − 1)
(E.6.2)

One sees that the positivity of the variance implies qν > 1, as long as we do not consider degenerations µ → 1, µ → ν, or
q → 1 (in which case the variance of z1 may vanish and the condition may disappear).

• If ν → 1, it is easy to see from the variance of z1 that there must be at least one additional degeneration, either (i)
µ → 1 or (ii) q → 1 (iii) both q → 1 and µ → 1. The first one can be ruled out as follows: setting µ = 1 + aǫ and

ν = 1 + bǫ with ǫ → 0, one finds that the variance is z2
x

c
= a(b−a)

b2 (1 − x)2 and that from (E.2.21) the marginals have
integer moments un = 1 − a

b
and vn = a

b
for all n ≥ 1. This implies that u+ v = 1 and v = 0, 1 with probability a

b
,

which then predicts joints moments different from the ones obtained from (E.2.21) in that limit, hence no joint PDF
exists in case (i). The case (ii) and (iii) both imply a q → 1 limit which we discuss in the end of this appendix.

• If |µ| → ∞. In this case, looking at the original moments (E.2.21), we see that we must scale v → v/µ to obtain a
well defined random variable. We define (u′, v′) = (u, v/µ). In the limit µ → ∞, the moments are

u′n1v′n2 =
(−1)n2q

n2(n2−1)
2

(ν; q)n1+n2

(q; q)n1+n2

(q; q)n1 (q; q)n2

1
Cn1
n1+n2

(E.6.3)
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we now define the random variable z′
x = u′ + xv′ and compute its variance:

(z′
x)2

c
=

(1 − q)(x− 1)(x− ν)
(ν − 1)2(νq − 1)

(E.6.4)

which must also be positive for all x. However, this polynomial changes sign at x = 1 and x = ν so we must have
ν = 1. Since the constraint qν > 1 still holds and q < 1, the only possibility is to have q → 1 as well, a case discussed
below.

• If µ = 0, looking at (E.2.21), we see that we must now rescale (u, v) as (u′, v′) = (µu, v) and we obtain

u′n1v′n2 =
(−1)n1q

n1(n1−1)
2

(ν; q)n1+n2

(q; q)n1+n2

(q; q)n1 (q; q)n2

1
Cn1
n1+n2

(E.6.5)

i.e. this is a case identical to the previous one, and we also conclude that we must have q → 1 .

Let us now discuss all the possibilities in the q → 1 limit. Taking the limit directly on (E.2.21), one obtains

un1vn2 =
(1 − ν/µ)n1 (1 − µ)n2

(1 − ν)n1+n2
(E.6.6)

where we used that at fixed n, a, (qa; q)n ≃q→1 (1 − q)n(a)n, where (a)n = a(a + 1)..(a + n − 1), and here we took a = 1.
Obviously, the limit we took only works if ν, µ and ν/µ are all different from 1, but it also encompasses other limits such
that the µ → ∞ and q → 1 case discussed when analyzing (E.6.3). The moments (E.6.6) correspond to deterministic
weights u = 1−ν/µ

1−ν and v = 1−µ
1−ν . These models are obviously integrable, but trivial.

We must thus study the q → 1 limit with at least one of those parameters that goes to 1. The question of the speed
of the convergence then arises. In general, taking q = 1 − ǫ and a = 1 − a′ǫζ with ζ > 0, one has (a; q)n ≃q→0 ǫ

n(a′)n (if
ζ = 1), (a; q)n ≃q→0 ǫ

ζa′ǫn−1(n − 1)! (if ζ > 1 and n ≥ 1) and (a; q)n ≃q→0 ǫ
nζ(a′)n (if ζ < 1). The possibility of using

ζ < 1 for the convergence of µ and/or ν (slow convergence compared to q) is uninteresting since it leads to pure power-laws.
The possibility of using ζ > 1 (fast convergence compared to q) is also uninteresting since one cannot rescale (u, v) to
obtain well-defined moments in the ǫ → 0 limit. In the following, we thus only consider the possibility of convergence of
the parameters at the same speed than q. Let us first examine the cases where only one of those parameters goes to 1. We
obtain

• If µ = qβ and ν 6= 1,

un1vn2 = (β)n2 × power − laws (E.6.7)

• If ν = qα+β and µ 6= 1,

un1vn2 =
1

(α+ β)n1+n2

× power − laws (E.6.8)

• If ν/µ = qα, ν 6= 1 and µ 6= 1,

un1vn2 = (α)n1 × power − laws (E.6.9)

where we have not written the precise form of the unimportant power-law terms. As discussed in the main text (Section
E.3.2), these cases indeed correspond to proper PDF’s and known integrable models for some range of parameters α, β. The
first and third ones correspond to the moments of the Strict-Weak polymers, the second one corresponds to the moments
of the log-Gamma polymer. Notice however that these models can all be obtained as limits of the case (q, µ, ν) → (1, 1, 1).
Indeed, taking µ = qβ , ν = qα+β and q → 1, we obtain

un1vn2 =
(α)n1 (β)n2

(α+ β)n1+n2

. (E.6.10)

Taking appropriate limits on this last formula, we can retrieve the three precedent cases. For example the limit β → ∞ of
(E.6.10) leads to, rescaling u as βu, (βu)n1vn2 = (α)n1 , and we obtain the moments of the third case. Taking a similar
limit |α|, |β| → ∞ with α+ β fixed, we obtain the second case.

Hence, in this sense, the most general limit of (E.2.21) that can lead to distributions with a well-defined variance is the
(q, µ, ν) → (1, 1, 1) limit. This limit is studied in details in Section E.3.2.

E.7 Appendix B: A more systematic study of analytical continuations of
moments.

Starting with a polymer model with moments given by

un1vn2 = (ǫ1)n1 (ǫ2)n2
(α)n1 (β)n2

(α+ β)n1+n2

, (E.7.1)
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where (α, β) are arbitrary, (ǫ1, ǫ2) ∈ {−1, 1}2, we look for distributions p(u, v) such that (E.7.1) corresponds to the moments
of positive random variables. It is natural, in agreement with the examples of the Beta and Inverse-Beta polymers studied
in the text, to analytically continue (E.7.1) to (n1, n2) = (s1, s2) ∈ C

2. Obviously there is an infinite number of possible
analytical continuations and here we only study arguably the most natural ones (using Euler inversion formula Γ(x)Γ(1−x) =
π/sin(πx) and (−1)n = sin(π(x+ n))/ sin(πx) for integer n), which we now enumerate.

• First type, (ǫ1, ǫ2) = (1, 1):

us1vs2 =
Γ(α+ β)
Γ(α)Γ(β)

Γ(α+ s1)Γ(β + s2)
Γ(α+ β + s1 + s2)

. (E.7.2)

• Second type (ǫ1, ǫ2) = (1,−1):

us1vs2 =
Γ(1 − α)

Γ(1 − α− β)Γ(β)
Γ(1 − α− β − s1 − s2)Γ(β + s2)

Γ(1 − α− s1)
. (E.7.3)

• Third type (ǫ1, ǫ2) = (−1,−1):

us1vs2 =
1

Γ(α)Γ(β)Γ(1 − α− β)
Γ(α+ s1)Γ(β + s2)Γ(1 − α− β − s1 − s2) . (E.7.4)

• Fourth type, (ǫ1, ǫ2) = (−1, 1):

us1vs2 =
Γ(α+ β)Γ(1 − α)

Γ(β)
Γ(β + s2)

Γ(1 − α− s1)Γ(α+ β + s1 + s2)
. (E.7.5)

• Fifth type (ǫ1, ǫ2) = (−1,−1):

us1vs2 = Γ(α+ β)Γ(1 − α)Γ(1 − β)
1

Γ(1 − α− s1)Γ(1 − β − s2)Γ(α+ β + s1 + s2)
. (E.7.6)

• Sixth type (ǫ1, ǫ2) = (1, 1):

us1vs2 =
Γ(1 − α)Γ(1 − β)

Γ(1 − α− β)
Γ(1 − α− β − s1 − s2)

Γ(1 − α− s1)Γ(1 − β − s2)
. (E.7.7)

a First type

Let us first consider the first type of analytical continuation (E.7.2). Assuming it to be valid on the full complex plane, the
distribution p(u, v) can be directly obtained as an ILT

p(u, v) =
1

Nα,β

∫

C1

ds1

2iπ

∫

C2

ds2

2iπ
u−1−s1v−1−s2

Γ(α+ s1)Γ(β + s2)
Γ(α+ β + s1 + s2)

(E.7.8)

where N−1
α,β = Γ(α+β)

Γ(α)Γ(β)
is a normalization factor, and different contours Ci can be considered. Here we first consider the

most natural choices: vertical lines passing through the right of all the poles of the integrands located at s1 = −α − m1

and s2 = −β −m2 with (m1,m2) ∈ N
2, e.g. s1 = −α+ 1 + iy1 and s2 = −β + 1 + iy2 with (y1, y2) ∈ R

2. We first consider
the integration on s2. If v > 1, the contour can be closed to the right, giving 0 as a result. On the other hand, if v < 1, the
contour can only be closed to the left and all the poles of s2 contribute. This shows

p(u, v) = θ(0 < v < 1)
1

Nα,β

∫

C1

ds1

2iπ
u−1−s1

∞∑

m2=0

v−1+β+m2
(−1)m2

m2!
Γ(α+ s1)

Γ(α+ s1 −m2)
. (E.7.9)

In this expression, one recognizes the taylor expansion

(1 − v)η =
∞∑

k=0

(−v)k
Γ(η + 1)

Γ(1 + k)Γ(η − k + 1)
=

∞∑

k=0

(−v)k

k!
Γ(η + 1)

Γ(η − k + 1)
, (E.7.10)

with η = α+ s1 − 1, and the convergence is here assured by the fact that v < 1. We thus get

p(u, v) = θ(0 < v < 1)
1

Nα,β

∫

C1

ds1

2iπ
u−1−s1v−1+β(1 − v)α+s1−1 . (E.7.11)

And one now recognizes the integral representation of the Dirac δ distribution:
∫

C1

ds1
2iπ

ws = δ(w − 1), and

p(u, v) = θ(0 < v < 1)
1

Nα,β
u−1v−1+β(1 − v)α−1δ(

1 − v

u
− 1)

= θ(0 < u < 1)
Γ(α+ β)
Γ(α)Γ(β)

u−1+αv−1+βδ(u+ v − 1) . (E.7.12)

Which is exactly the Beta distribution of the Beta polymer, and the normalizibility condition imposes α > 0 and β > 0.
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b Second type

Introducing as in the main text γ = 1 − α− β, we now study E.7.3, which reads in these variables:

us1vs2 =
Γ(γ + β)
Γ(γ)Γ(β)

Γ(γ − s1 − s2)Γ(β + s2)
Γ(γ + β − s1)

. (E.7.13)

We follow the same step as before

p(u, v) =
1

Ñγ,β

∫

C1

ds1

2iπ

∫

C2

ds2

2iπ
u−1−s1v−1−s2

Γ(γ − s1 − s2)Γ(β + s2)
Γ(γ + β − s1)

(E.7.14)

where Ñ−1
γ,β = Γ(γ+β)

Γ(γ)Γ(β)
. The contours C1 and C2 are chosen so as to avoid the poles s1 = γ − s2 +m1 and s2 = −β −m2 for

(m1,m2) ∈ N
2, e.g. we choose s2 = −β + 1 + iy2 and s1 = γ + β − 2 + iy2 with (y1, y2) ∈ R

2. Integrating first on s1 and
following the same steps as before, we now obtain

p(u, v) = θ(1 < u)
1

Ñγ,β

∫

C2

ds2

2iπ
v−1−s2

∞∑

m1=0

(−1)m1

m1!
u−1−γ+s2−m1

Γ(β + s2)
Γ(β + s2 −m1)

=
θ(1 < u)

Ñγ,β

∫

C2

ds2

2iπ
v−1−s2u−1−γ+s2 (1 − 1

u
)β+s2−1

=
θ(1 < u)

Ñγ,β
v−1u−1−γ(1 − 1

u
)β−1δ

(
u

v
(1 − 1

u
) − 1

)

=
θ(1 < u)

Ñγ,β
u−1−γ(1 − 1

u
)β−1δ(v − 1 + u)

We thus obtain the same distribution as before, which is indeed normalizable for γ > 0 and β > 0. Note the interesting
fact that, though the moments of the distribution only exist for n1 + n2 < γ, the analytical continuation of the moments
offered by the Gamma function allows us to retrieve the distribution. Though non-rigorous it gives some insight to under-
stand why the replica method developed in this paper to retrieve the PDF of the partition sum of the associated polymer
model works. This is also in agreement with Appendix E.9

c Third type

For the third type (E.7.4), it seems difficult to compute the involved integrals in full generality since they depend on
the precise position of the poles. However, we now directly exhibit some examples that define proper distributions for
1 − (α+ β) = γ > 0. We take u = ũw, v = ṽw with ũ, ṽ and w independent random variables distributed with PDF

pw(w) =
1

Γ(γ)
w−1−γe−1/w

pu(u) =
1

Γ(α)
u−1+α(e−u − (

⌊−α⌋
∑

k=0

uk

k!
))

pv(v) =
1

Γ(β)
u−1+β(e−u − (

⌊−β⌋
∑

k=0

uk

k!
)) (E.7.15)

Where ⌊()⌋ denotes the integer part, and the sum appearing in pu (resp. pv) is present only if α < 0 (resp. β < 0) and
regularizes the eventual divergences near the origin. These distributions are singular and only have a few integer moments,
but their complex moments us1vs2 do exist on a domain Re(s1 + s2) ≤ γ, supplemented by the condition |Re(s1)| < 1/2
(resp. |Re(s2)| < 1/2) if α < 0 (resp. β < 0), and are there given by (E.7.4). As in the log-Gamma and Inverse-Beta cases,
these moments can be analytically continued to the full complex plane, opening a way for a Bethe ansatz solution of this kind
of model. In terms of contours integrals, pu can be obtained using the same technique as before with us = Γ(α+ s1)/Γ(α),
but always choosing a contour of integration as a vertical line passing by the origin (and eventually separating the poles
of the integrand). It would be of great interests to understand if one can obtain exact results for a polymer model defined
with these types of weights (e.g. the PDF of logZt(x)) using analytical continuations of other known results. This is left
for future work. Notice that these models could well be good candidates to fill the void left in the down-left quarter of Fig.
E.2.

d Other types

For the other types, one intuitively see that they “lack of poles” in the complex plane (s1, s2) ∈ C
2 to obtain a meaningful

result after Laplace inversion, and the corresponding integrals diverge. For the fourth (E.7.5) and fifth cases (E.7.6), another
argument goes in the same direction. Writing schematically us1vs2 = f(s1, s2), we have

(lnu)2
c

=
∂2

∂s2
1

f |s1=s2=0 , (ln v)2
c

=
∂2

∂s2
2

f |s1=s2=0 , (E.7.16)
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where (.)2
c

denotes the variance. Applying this formula on (E.7.5) and (E.7.6) always leads to negative results which is
incompatible with lnu having a PDF with a second moment. We do not consider here the possibility of such very singular
distributions.

For the sixth type (E.7.7), there remains small windows of parameters for which both (lnu)2
c

and (ln v)2
c

are positive
simultaneously, so that this argument is inconclusive. We do not investigate further the possibility of the existence of
another integrable model here.

E.8 Appendix C: Effect of an additional inverse Gamma weight at the start-

ing point

Consider the two partition sums, one, noted Zt(x) and studied in the text, in presence of the additional inverse Gamma
random variable w00 on the site x = t = 0, and the other one, Z̃t(x), in absence of such a weight (which in a sense is the
true point to point problem). Clearly one has:

Zt(x) = w00Z̃t(x) (E.8.1)

for any x, t where w00 and Z̃t(x) are uncorrelated random variables.
There are various ways to express one problem into the other. Let us use here the shorthand notation Z ≡ Zt(x) and

Z̃ ≡ Z̃t(x). The moments are related as:

Zs =
Γ(γ − s)

Γ(γ)
Z̃s (E.8.2)

And the Laplace transforms as:

e−uZ = e−uw00Z̃ =
2

Γ(γ)
(uZ̃)γ/2Kγ(2

√

uZ̃) (E.8.3)

Since the l.h.s. is known explicitly as a Fredholm determinant, we see that to obtain P (Z̃) one needs to invert a modified
type of Laplace transform involving Bessel functions.

There is also a useful relation between the CDF’s. Let us define the CDF of lnZ, as F (y) = Prob(lnZ < y), and the
one of ln Z̃, as F̃ (y) = Prob(ln Z̃ < y). Clearly

F (y) = Prob(lnZ < y) = 〈Prob(ln Z̃ < y − lnw00)〉w00 = 〈F̃ (y − lnw00)〉w00 = 〈e− lnw00∂y 〉w00 F̃ (y) (E.8.4)

=
Γ(γ + ∂y)

Γ(γ)
F̃ (y) (E.8.5)

Hence, knowing F (y) from Fredholm determinants, one can obtain the CFD F̃ (y) as:

F̃ (y) =
Γ(γ)

Γ(γ + ∂y)
F (y) (E.8.6)

an operator which can be interpreted in the sense of a Taylor expansion w.r.t. ∂y. At fixed γ in the large time limit studied
in E.4.3, the rescaling (E.4.34) renders the term ∂y smaller by t−1/3. Defining as in (E.4.37)

Fres(z) = Prob(2− 2
3

logZ + tcϕ
λϕ

< z) = F (y = 22/3λϕz − tcϕ) (E.8.7)

and similarly for F̃res(z) w.r.t. log Z̃, we obtain:

F̃res(z) =
Γ(γ)

Γ(γ + 2−2/3λ−1
ϕ ∂z)

Fres(z) (E.8.8)

a relation exact for all t, but which for t → +∞ shows that the effect of the operator ∂y becomes negligible in the scaling
variable z (we recall that λϕ ∼ t1/3. The rescaled CDF’s are thus the same, a very intuitive result: the large-length is
insensitive to such a change in the energy of the first site. The formula allows to calculate the subleading corrections.

In the T = 0 limit the formula (E.8.6) simplifies. Defining FT=0(r) = Prob(E(t,x) > r) and similarly for F̃T=0(r)
in presence of the additional exponentially distributed energy random variable at site (x, t) = (0, 0), we obtain from the
definition (E.4.52):

F̃T=0(r) = (1 − 1
γ′ ∂r)FT=0(r) (E.8.9)

valid for arbitrary t. At large time the same argument on the rescaled variable z̃ again shows the derivative term to be
negligible.

Finally note that such relations have been studied also in the context of stationary models in the KPZ class [183, 185]
where it seems also mandatory to add an inverse Gamma variable at the origin in order to obtain a FD representation. Its
occurence in a point to point problem is, to our knowledge, new.
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E.9 Appendix D: Laplace transform Vs Moment Generating function: recall

In this appendix we briefly recall the idea, discussed in [4] and to which we refer for more details, that leads to the conjecture
(E.4.27). It it best illustrated on the simple problem of obtaining the Laplace transform of (E.1.1):

g(λ) = e−λu =
Γ(γ + β)
Γ(γ)Γ(β)

∫ +∞

1

due−λu 1
u1+γ

(

1 − 1
u

)β−1

e−λu =
Γ(γ + β)
Γ(γ)Γ(β)

∫ +∞

1

du

∞∑

n=0

(−λ)n

n!
un

1
u1+γ

(

1 − 1
u

)β−1

(E.9.1)

In this formula, it is obvious that one cannot invert the sum and integrals sign because the different terms converge only if
n < γ. In which case

Γ(γ + β)
Γ(γ)Γ(β)

∫ +∞

1

du
(−λn)
n!

un
1

u1+γ

(

1 − 1
u

)β−1

=
(−λ)n

n!
Γ(γ + β)Γ(γ − n)
Γ(γ + β − n)Γ(γ)

. (E.9.2)

Note however that, using the analytical continuation of the Gamma function, the right hand side of (E.9.1) also makes
sense for n > γ. We can thus consider the object, called the “moment generating function” defined as

gmom(λ) =
∞∑

n=0

(−λ)n

Γ(1 + n)
Γ(γ + β)Γ(γ − n)
Γ(γ + β − n)Γ(γ)

. (E.9.3)

The question is now to understand how (E.9.3) and (E.9.1) are related. Let us now rewrite (E.9.1) using an integral
representation of the exponential as

g(λ) =
Γ(γ + β)
Γ(γ)Γ(β)

∫ +∞

1

du(−1)

∫

C

ds

2i sin(πs)
λs

Γ(1 + s)
us

1
u1+γ

(

1 − 1
u

)β−1

= − Γ(γ + β)
Γ(γ)Γ(β)

∫

C

ds

2i sin(πs)
λs

Γ(1 + s)

∫ +∞

1

us
1

u1+γ

(

1 − 1
u

)β−1

= −
∫

C

ds

2i sin(πs)
λs

Γ(1 + s)
Γ(γ + β)Γ(γ − s)
Γ(γ + β − s)Γ(γ)

(E.9.4)

where here the contour of integration C is a vertical line C = −a+iR with 0 < a < 1. In this way, one can invert the different
integrals and the results only contains complex moments us in a region where they are defined. The relation between g(λ)
and gmom(λ) now appears clearly by comparing (E.9.3) and (E.9.4): g(λ) can formally be obtained by rewriting the sum
appearing in gmom(λ) as a Mellin-Barnes transform. Note that when closing the contour of integration C on the Re(s) > 0
half-plane in E.9.4, one obtains two types of poles. A first series coming from the sine function that reproduces the series
that defines gmom(λ), as well as a second series of terms of the form λγ+n with n ∈ N coming from the poles of Γ(γ − s):
g(λ) is not an analytic function of λ. Rewriting the sum appearing in gmom(λ) as a Mellin-Barnes integral thus allows us
in some way to retrieve the missing, non-analytic terms that are present in the Laplace transform. In the main text we use
the same prescription to go from a Fredholm determinant formula for gmomt,x (u) to a formula for gt,x(u) by rewriting the
sum over m appearing in the expression of the kernel (E.4.26) as a Mellin-Barnes type integral in (E.4.27). Notice that in
(E.4.26), the sum over m runs from 1 to ∞, and the associated integral written in (E.4.27) is thus chosen as a line that
passes through the right of 0 (a trivial modification of the case studied here), and to the left of γ to avoid crossing a pole.
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Appendix F

Paper: Exact solution for a random walk in
a time-dependent 1D random environment:
the point-to-point Beta polymer

The following is essentially the article published as
Title: Exact solution for a random walk in a time-dependent 1D random environment: the point-to-point Beta polymer
Authors: Thimothée Thiery and Pierre Le Doussal
ArXiv: 1605.07538
Abstract: We consider the Beta polymer, an exactly solvable model of directed polymer on the square lattice, introduced
by Barraquand and Corwin (BC) in [224]. We study the statistical properties of its point to point partition sum. The
problem is equivalent to a model of a random walk in a time-dependent (and in general biased) 1D random environment. In
this formulation, we study the sample to sample fluctuations of the transition probability distribution function (PDF) of the
random walk. Using the Bethe ansatz we obtain exact formulas for the integer moments, and Fredholm determinant formulas
for the Laplace transform of the directed polymer partition sum/random walk transition probability. The asymptotic
analysis of these formulas at large time t is performed both (i) in a diffusive vicinity, x ∼ t1/2, of the optimal direction (in
space-time) chosen by the random walk, where the fluctuations of the PDF are found to be Gamma distributed; (ii) in the
large deviations regime, x ∼ t, of the random walk, where the fluctuations of the logarithm of the PDF are found to grow
with time as t1/3 and to be distributed according to the Tracy-Widom GUE distribution. Our exact results complement
those of BC for the cumulative distribution function of the random walk in regime (ii), and in regime (i) they unveil a
novel fluctuation behavior. We also discuss the crossover regime between (i) and (ii), identified as x ∼ t3/4. Our results are
confronted to extensive numerical simulations of the model.

F.1 Introduction and main results

F.1.1 Overview

Random walks in random media is a subject of great interest in physics and mathematics. A lot of works have been devoted
to the case of time-independent quenched media especially in the context of anomalous diffusion (see [255] for a review,
[256, 257]). The case of a time-dependent random medium, with short range correlations both in space and time, has
attracted less attention in physics in this context, mainly since diffusive behavior of the walk at large time is expected in
that case. However the problem is still non-trivial and can exhibit interesting properties. For example, the trajectories of
a set of identical walkers diffusing independently in the same realization of the random environment, exhibit non-trivial
space-time correlations, e.g. typically they tend to stick together. This, and other properties, such as large deviations,
have been studied recently in mathematics [258, 259, 227, 260]. On the other hand, there has been much work of the
problem of directed polymers (DP), i.e. the statistical mechanics of directed paths in a short-range correlated random
potential pioneered in [249]. In this framework, recent outstanding progresses have been achieved, notably thanks to the
discovery of exactly solvable models on a square lattice in D = 1 + 1 dimension. This has allowed to put forward a
remarkable universality in the DP problem, connected to the 1D Kardar-Parisi-Zhang (KPZ) universality class [33] (for
review see e.g. [151, 34, 35]), in particular the emergence of the universal Tracy-Widom distributions [37] in the large
scale fluctuations of the DP free energy. These integrable models include last passage percolation with geometric weights
[159], the so-called log-Gamma polymer [197, 4, 198, 218], the Strict-Weak polymer [219, 220], the Inverse-Beta polymer
[5], the Bernoulli-Geometric polymer [7] and the Beta polymer [224]. Among those the Beta polymer, introduced and first
studied by Barraquand and Corwin (BC)1, has the peculiarity that it can also be interpreted as a a random walk in a time

1Note that random walk in time-dependent Beta distributed random environment already appeared
in [261]. There the authors notably considered the Beta-TDRWRE on the discrete circle Z/(NZ) and
showed the large scale N → ∞ convergence of the process defined by the motion of independent
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dependent random environment (TD-RWRE). This is due to a very specific choice of local weight which satifies conservation
of probability. The connection between DPs and TD-RWRE was already remarked in [262], and more generally we note that
the interpretation of statistical mechanics models on special varieties in parameter space in terms of a stochastic process has
been previously used in other contexts (for review see e.g. [263, 264] and references therein). The Beta polymer provides
a remarkable first example of an exactly solvable TD-RWRE. We note however that extracting physical properties from
the exact solution still represents a technical challenge, as is often the case in integrable systems. Thus the existence of an
integrable model of TD-RWRE is far from being the end of the story, and we expect a variety of interesting result to come
in the future from the analysis of the Beta polymer.

The goal of this paper is indeed to pursue this program by obtaining exact results on the sample to sample fluctuations
of the probability distribution function (PDF) of the random walk in a given environment, equivalent to the point to point
polymer partition sum. We thus complement the results of BC in [224], where the statistics of the half-line to point DP
partition sum was studied, equivalent to the cumulative distribution function (CDF) of the random walk (note that it far
from trivial to relate the two observables). More precisely in [224] it was notably shown that in the large deviations regime
of the RWRE, the fluctuations of the logarithm of the CDF of the random walk scale as t1/3 and are distributed according
to the Tracy-Widom GUE distribution. Here we will study the fluctuations of the PDF of the random walk (RW) both in
the large deviations regime (close in spirit to the results obtained in [224] for the CDF fluctuations) and in the diffusive
regime around the optimal direction chosen by the RWRE.

F.1.2 Main results and outline of the paper

We recall in Sec. F.2 the definition of the Beta polymer model with parameters α, β > 0 and introduce our notations for
the point to point partition sum, Zt(x). The latter refers to the partition sum for directed polymers of length t ∈ N,
with starting point x = 0 and endpoint x ∈ N (see Fig.F.2 for the coordinate system used in this work). Thanks to the
interpretation of the Beta polymer as a random walk in a random environment (RWRE), as detailed below, this point to
point partition sum can also be interpreted as a transition probability distribution function (PDF) for a directed RWRE
where time is reversed and the starting point (resp. endpoint) of the polymer is the endpoint (resp. starting point) of the
RW. Our results can thus be interpreted, and are of interest, using both interpretations. In Sec. F.3 we use the coordinate
Bethe ansatz to obtain an exact formula (F.3.27) for the integer moments of the partition sum:

Zt(x)n = (−1)n
Γ(α+ β + n)

Γ(α+ β)

n∏

j=1

∫ +∞

−∞

dkj
2π

∏

1≤i<j≤n

(ki − kj)2

(ki − kj)2 + 1

n∏

j=1

(ikj + β−α
2

)t

(ikj + α+β
2

)1+x(ikj − α+β
2

)1−x+t
. (F.1.1)

Where here and throughout the rest of the paper the overline () represents the average over the random environment. Using
this formula we obtain in Sec. F.4 a Fredholm determinant formula (F.4.12) for the Laplace transform of the partition sum:

e−uZt(x) =
1

Γ(α+ β)

∫ +∞

0

dww−1+α+βe−wgt,x(uw) , gt,x(u) = Det
(
I + uK̂t,x(q1, q2)

)
(F.1.2)

with

K̂t,x(q1, q2) = − 2
π

(1 + iq1(α− β))t−x

(1 + iq1(α+ β))1+t−x
(1 + iq2(α− β))x

(1 − iq2(α+ β))1+x

1

2 + i(q−1
1 − q−1

2 )
, (F.1.3)

where Kt,x : L2(R) → L2(R). We also obtain other, equivalent Fredholm determinant formulas (F.4.7) and (F.4.10). The
asymptotic behavior of these results at large t in a given direction x = (1/2 + ϕ)t with −1/2 < ϕ < 1/2 is found to
drastically depends on the chosen angle ϕ as we now detail.

We show that there exists an optimal angle, ϕopt := β−α
2(β+α)

, defined as the only angle for which Zt(x = (1/2 + ϕ)t)
decreases algebraically and not exponentially. It corresponds to the center of the Gaussian regime in the RWRE interpre-
tation, i.e. the expected direction in space-time chosen by the RW.

In a diffusive vicinity around the optimal angle, we show in Sec. F.4 that the fluctuations of an appropriately rescaled
partition sum are Gamma distributed. More precisely we show that the rescaled spatial process defined as,

Zt(κ) = α
√

2πrte
(r+1)2

2r
κ2

Zt

(

x = (
1
2

+ ϕopt(r))t+ κ
√
t
)

, (F.1.4)

with r = β/α, converges at fixed t, in the large time limit to a process, constant in κ, with marginal distribution a Gamma
distribution with parameter α+ β

Z∞(κ) ∼ Gamma(α+ β) . (F.1.5)

Let us mention here that we first found this result at the level of one-point observables (i.e. at fixed κ, Z∞(κ) ∼ Gamma(α+
β)) using (F.1.1) and (F.1.3), and were later able to extend it to multi-point correlations in this diffusive regime using results
by BC [265]. Note that these results would not be expected from the naive application of usual KPZ universality to the
point-to-point Beta polymer. This breaking of KPZ universality is due to the RWRE nature of the Beta polymer. Finally,

random walkers in the same environment to so-called Brownian sticky flows on the unit circle.
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Figure F.1: The different regimes of sample to sample fluctuations of the PDF in
the Beta TDRWRE problem around the optimal direction (indicated by a dotted
line) for different scaling of the deviation with respect to the optimal direction x̂ =
x−(1/2+ϕopt)t. In the diffusive regime x̂ ∼

√
t the fluctuations of the PDF are Gamma

distributed. In the large deviations regime x̂ ∼ t, fluctuations of the logarithm of the
PDF are distributed according to the GUE Tracy-Widom distribution with exponents
in agreement with the usual KPZ universality expected in point to point directed
polymers problem. These two regimes are connected by a cross-over regime (C.O.) at
a scale x̂ ∼ t3/4.

let us also mention that, from the RWRE point of view, although the above results only apply in a diffusive vicinity of a
single space-time direction, this spatial region actually contains all the probability in the large time limit.

For all other directions ϕ 6= ϕopt we find in Sec. F.5 that the fluctuations of an appropriately rescaled free-energy are
described by the Tracy-Widom GUE distribution. More precisely we show using a non-rigorous approach that

lim
t→∞

Prob

(
logZt((1/2 + ϕ)t) + tcϕ

λϕ
< 2

2
3 z

)

= F2(z) , (F.1.6)

where F2 is the cumulative distribution function (CDF) of the GUE Tracy-Widom distribution and the parameters cϕ and
λϕ ∼ t

1
3 are given by the solutions of a system of transcendental equations in (F.5.15). This regime of fluctuations is the

one expected from KPZ universality for point to point directed polymers. In the RWRE interpretation, it corresponds to
the fluctuations of the PDF in the large deviations regime. A similar result was proved in [224] for the case of the half line
to point Beta polymer problem, corresponding to the CDF in the RWRE picture. Quite remarkably we find that (F.1.6)
is formally exactly equivalent to the result of [224] if one replaces the half line to point partition sum by the point to point
partition sum. In the RWRE picture this shows that the fluctuations of the PDF and of the CDF in the large deviations
regime are identical up to order O(t1/3) included.

Using the above results, we also briefly discuss in Sec. F.5 the crossover between the two regimes (F.1.5) and (F.1.6)
and identify the crossover scale as associated with deviations of order O(t3/4) around the optimal direction (see Fig. F.1 for
a summary of the different regimes). Finally in Sec. F.6, we compare our results with the approach used by BC [224, 265]
and check in Sec.F.7 our results using extensive numerical simulations of the Beta polymer. Two appendix contain technical
details.

F.2 Model and earlier work

F.2.1 The Beta polymer

Let us now define the point to point Beta polymer problem. We consider the square lattice with coordinates (t, x) as in
Fig. F.2: x is just a regular (euclidean) coordinate along the horizontal axis whereas t goes along the diagonal of the square
lattice. On each vertex (i.e. site) of the square lattice lives a random variable (RV) bt,x ∈ [0, 1] that is distributed as a Beta
RV with parameters α, β > 0. That is,

bt,x ∼ b ∼ Beta(α, β) , PBetaα,β (b)db =
Γ(α+ β)
Γ(α)Γ(β)

b−1+α(1 − b)−1+βdb , (F.2.1)

where here PBetaα,β is the probability distribution function (PDF) of b, Γ is the Euler’s Gamma function and ∼ means
‘distributed as’. We suppose that the different RV on different vertex are uncorrelated. To each vertex (t, x) and RV bt,x
we associate two random Boltzmann weights we on the vertical and horizontal edges arriving at t, x as

we := ut,x = bt,x if e = (t− 1, x) → (t, x) is the vertical edge leading to (t, x) ,

we := vt,x = 1 − bt,x if e = (t− 1, x− 1) → (t, x) is the horizontal edge leading to (t, x) . (F.2.2)

Hence in the Beta polymer, the Boltzmann weights live on the edges (i.e. bonds) of the square lattice and are correlated
only when the edges lead to the same site. Noting generally u (resp. v) the Boltzmann weights on vertical (resp. horizontal)
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x

t

t

u7,5

v7,5

= b7,5

= 1− b7,5

u6,2 = b6,2

v6,2 = 1− b6,2

Figure F.2: The Beta polymer and its RWRE interpretation. The random Boltzmann
weights live on the edges of the lattice. Blue and Red: two couples of Boltzmann
weights. Boltzmann weights leading at the same vertex are correlated: the vertical one
u is a Beta RV b, whereas the horizontal one v is 1−u. Green: one admissible directed
polymer path from (t, x) = (0, 0) to (t, x) = (9, 5). In the RWRE interpretation, a
particle (purple dot above) performs a directed random walk in time t = −t and the
Boltzmann weights are used as hopping probabilities.

edge and v, we have u + v = 1 and u ∼ Beta(α, β). Given a random environment defined by a drawing of the Boltzmann
weights on each edge of the square lattice, the partition sum of the point to point Beta polymer with starting point (0, 0)
and endpoint (t, x) is defined as

Zt(x) =
∑

π:(0,0)→(t,x)

∏

e∈π
we. (F.2.3)

Where here the sum is over all directed (up/right) paths π from (0, 0) to (t, x): such a path can only jump to the right
following the edge (t, x) → (t+ 1, x+ 1) (in which case the encountered Boltzmann weight is vt+1,x+1) or upward following
the edge (t, x) → (t + 1, x) (in which case the encountered Boltzmann weight is ut+1,x). Equivalently, the partition sum
can be defined recursively as for t ≥ 0,

Zt+1(x) = ut+1,xZt(x) + vt+1,xZt(x− 1)

Zt=0(x) = δx,0. (F.2.4)

F.2.2 Relation to a random walk in a random environment

As already noticed in [224], given a random environment specified by a drawing of the (utx, vtx = 1 − utx), the partition
sum of the point to point Beta polymer can also be interpreted as a transition probability for a directed random walk (RW)
in the same random environment. We now recall the construction. Let us first introduce a new time coordinate t as

t = −t . (F.2.5)

An let us also note

pt,x = ut,x ∈ [0, 1] . (F.2.6)

A random walk in the Beta distributed random environment is then defined as follows: we note Xt the position of a
particle at time t. The particle then performs a RW on Z with the following transition probabilities

Xt → Xt+1 = Xt with probability pt,Xt
= ut=−t,Xt

,

Xt → Xt+1 = Xt − 1 with probability 1 − pt,Xt
= vt=−t,Xt

.

(F.2.7)

Hence, the correlations between the Boltzmann weights in the Beta polymer, u + v = 1, allows to define a RW 2 on Z

in a time-dependent random environment defined in terms of the hopping probabilities pt,x (see Fig. F.2). In the RWRE

2Note that with this choice of coordinates, at each time step t → t + 1 the particle either stays
at the same position (with probability pt,x), or decreases by one unity (with probability 1 − pt,x).
Alternatively one obtains a more symmetric formulation using the coordinate x̃ = −t + 2x = t + 2x
and noting p̃t(x̃) = p

t,x= x̃−t

2
and X̃t = t + 2Xt. The particle then performs a RW on Z and, at each

time step t → t + 1, the particle either jump by one unity to the right (i.e. X̃t+1 = X̃t − 1 with
probability p̃t(X̃t)) or to the left (i.e. X̃t+1 = X̃t + 1 with probability 1 − p̃t(X̃t)).
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language, the partition sum of the Beta polymer is

Zt(x) = P(X0 = 0|Xt=−t = x) , (F.2.8)

the probability, given that a particle starts at position x at time t = −t ≤ 0, that it arrives at position 0 at time t = t = 0.
In this language, the recursion equation for the polymer partition sum (F.2.4) reads:

P(X0 = 0|Xt−1 = x) = pt−1xP(X0 = 0|Xt = x) + (1 − pt−1x)P(X0 = 0|Xt = x− 1)

P(0, 0|0, x) = δx,0. (F.2.9)

This equation thus relates the probability for a RW to arrive at the same point starting from different, neighboring points.
As such it can be thought of as a Backward equation for the probability P(X0 = 0|Xt = x). Note that the starting point
of the polymer corresponds in this language to the endpoint of the RW and vice-versa. In the rest of the paper, following
this mapping, we will sometimes refer to the random walk in a random environment (RWRE) interpretation of the Beta
polymer.

Remark: The RW defined above is a random walk in a one dimensional (Z) time-dependent random environment.
Equivalently, it can be thought of as a directed random walk in a two-dimensional (Z2) quenched static random environment.

F.2.3 Relation to the problem and notations of Barraquand-Corwin

The Beta polymer and its RWRE interpretation were introduced in [224] where the half-line to point problem was considered.
The half-line to point partition sum can be defined recursively as

ZHLt+1(x) = ut+1xZ
HL
t (x) + vt+1xZ

HL
t (x− 1)

ZHLt=0(x) = θ(x), (F.2.10)

where θ is the Heaviside function (θ(0) = 1), and the random environment encoded in the variables (utx, vtx) is the same
as before. In the RWRE language,

ZHLt (x) = P(X0 ≥ 0|Xt=−t = x) (F.2.11)

is the probability that the particle arrives at a position larger than 0 at time t = 0, knowing it started from a position x at
time t = −t ≤ 0. Hence it is the CDF of the RWRE while the point to point is the PDF, with respect to the arrival point
X0.

Let us now give here a dictionary between this paper and Ref. [224]. In the latter, the half-line to point partition sum
was denoted as Z̃(t, n). t represents the length of the path and corresponds to our t variable. At each step n can either
stay identical or increase by one unit. When n stays constant the polymer encounters a Boltzmann weight distributed
as Beta(α, β), whereas when n increases the polymer encounters a Boltzmann weight distributed as 1 − Beta(α, β). The
parameters α and β are also parametrized as µ = α and ν = α + β. Finally, the initial condition in [224] is Z̃(t = 0, n) =
θ(x− 1). From this we conclude that the results obtained in [224] for Z̃(t, n) identify to results for ZHLt (x) in our notations
by either correspondences

(n, α, β) → (x+ 1, α, β)

or, (F.2.12)

(n, α, β) → (t− x+ 1, β, α) .

These two choices being related by a reflection along the diagonal of the square lattice.

F.3 Bethe Ansatz solution of the Beta polymer

In this section we compute the integer moments of the point-to-point Beta polymer using the replica Bethe Ansatz. The
following differs from the results of [224] by two aspects:

(i) The boundary conditions are different: in [224] the chosen boundary conditions were polymers with one end fixed
and one end free on a half-line (half-line to point problem, see also Sec. F.2.3).

(ii) In [224] the replica Bethe Ansatz solution of the model was made directly on the infinite line, naturally leading
to a so-called nested contour integral formula for the moments of the Beta polymer. Here, as in [5, 4, 173, 165], we use a
different strategy by imposing to the Bethe eigenfunctions artificial boundary conditions on a line of length L, and studying
the solutions of the associated Bethe equations in the limit L → ∞. In doing so we obtain moments formulas with all
integrals on the same contour, and unveil the repulsive nature of the model, a physical aspect that distinguish further this
model from the log-Gamma and Inverse-Beta polymer.

F.3.1 Bethe ansatz on a line with periodic boundary conditions

The moments of the Beta polymer random Boltzmann weights are obtained from (F.2.1) and (F.2.2) as

un1vn2 =
(α)n1 (β)n2

(α+ β)n1+n2

, (F.3.1)
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where here and throughout the rest of the paper the overline () denotes the average over disorder. We consider, for n ≥ 1,

ψt(x1, · · · , xn) := Zt(x1) · · ·Zt(xn) , (F.3.2)

which is a symmetric function of its arguments. Using the recursion (F.2.4), one shows [5] that ψt satisfies a linear recursion
relation of the form

ψt+1(x1, · · · , xn) = (Tnψt) (x1, · · · , xn) , (F.3.3)

where Tn is a linear operator called the transfer matrix. The precise form of Tn was given in Eq.(13) of [5] for arbitrary
moments un1vn2 . The latter is unimportant for our purpose and we will only use here one of the conclusion of [5]: the
symmetric eigenfunctions of the transfer matrix, that are the symmetric solutions of the spectral problem

Tnψµ = Λ̃µψµ , (F.3.4)

can be obtained using a coordinate Bethe ansatz, with for x1 ≤ · · · ≤ xn, ψµ(x1, . . . , xn) = ψ̃µ(x1, . . . , xn) :=
∑

σ∈Sn
Aσ
∏n

i=1
z
xσ(i)

i ,
and the other sectors obtained using that the function is fully symmetric. The sum is over all permutations of the n variables
zi which parameterize the eigenstates. We note that this fact was also already known from [224]. In the notations of [5],
(see Eq. (18) and (19) there) the S-matrix S(zi, zj) is given by S(zi, zj) = − c+bzj +azizj −zi

c+bzi+azizj −zj
with

a =
u2 − (u)2

(u)(v)
=

1
1 + α+ β

, b =
2uv − (u)(v)

(u)(v)
=

−1 + α+ β

1 + α+ β
, c =

v2 − (v)2

(u)(v)
=

1
1 + α+ β

. (F.3.5)

We note that a + b + c = 1 which is the hallmark of a stochastic model with conservation of probability. Here the
moment problem corresponds to a zero-range process as in [222]. We recall that the Bethe ansatz solvability of the two
particles problem imposes that the quotient of two amplitudes Aσ related to each other by the transposition of i ↔ j is
A...ji...

A...ij...
= S(zi, zj). Let us now introduce

c =
4

α+ β
> 0

zj = eiλj , t̃j = −i cot(
λj
2

) =
zj + 1
zj − 1

, zj = −1 + t̃j

1 − t̃j
. (F.3.6)

Using these notations, the S-matrix of the Beta polymer reads

S(zi, zj) =
2t̃j − 2t̃i − c

2t̃j − 2t̃i + c
. (F.3.7)

It has a structure very similar the one of the Inverse-Beta and log-Gamma polymer [5, 4] that we recall here for comparison
(see Eq. (45) and (46) in [5]):

SIB(zi, zj) =
2tj − 2ti + c̄

2tj − 2ti − c̄
, tj = i tan(

λj
2

) =
zj − 1
zj + 1

. (F.3.8)

That is, the S-matrix of the Beta polymer (F.3.7) is identical to the S-matrix of the Inverse-Beta polymer (F.3.8) with the
change c̄ > 0 → −c with c > 0 and tj → t̃j . We will see in the following that this change is responsible for the emergence
of a repulsive property of the Bethe ansatz for the Beta polymer. Here c > 0 can be interpreted as a repulsive interaction
parameter, while in the Inverse-Beta case c̄ > 0 was interpreted as an attractive interaction parameter. Apart from this,
the similarity between the Bethe ansatz applied to the Inverse-Beta and Beta polymer will help us in finding the Bethe
ansatz solution of the Beta polymer using the changes c̄ → −c and ti → t̃i (since the S-matrix completely controls the
form of the Bethe eigenfunction up to a multiplicative constant). In particular, by analogy with the notations used for the
Inverse-Beta polymer (see Eq.(47) in [5]) we will write the Bethe eigenfunctions of the present model as

ψ̃µ(x1, · · · , xn) =
∑

σ∈Sn

Ãσ

n∏

α=1

zxα
σ(α) , Ãσ =

∏

1≤α<β≤n
(1 − c

2(t̃σ(α) − t̃σ(β))
) . (F.3.9)

Imposing periodic boundary conditions on a line of length L, i.e. ψµ(x1, · · · , xj + L, · · · , xn) = ψ(x1, · · · , xn) (which is
immaterial [5] in the computation of moments as long as t < L) leads to Bethe equations of the form (see Eq. (48) of [5]):

eiλiL =
∏

1≤j≤n,j 6=i

2t̃i − 2t̃j − c

2t̃i − 2t̃j + c
. (F.3.10)

F.3.2 Resolution of the Bethe equations in the large L limit: repulsion and free particles

In the large L limit, contrary to the case of the log-Gamma and the Inverse-Beta polymer, the Bethe roots λα of this model
are all real and are distributed as for a model of free particles. The particles do not form bound states, also called strings
in the Bethe ansatz literature. In this sense the moment problem of the Beta polymer is similar to the repulsive phase of
the Lieb-Liniger (LL) model 3, while the moment problems of the Inverse-Beta polymer (see [5]), the log-Gamma polymer

3at this stage this is only a formal similarity. In fact we have not found a continuum limit of the
Beta polymer which would identify to the repulsive LL model.



F.3. Bethe Ansatz solution of the Beta polymer 289

(see [4]) and the continuum directed polymer (see [173]) were similar to the attractive phase. To see this explicitly, let us
use a proof by contradiction and consider the possibility of forming a 2-string. The logarithm of the Bethe equation for two
particles (n = 2 of (F.3.10)) is:

λ1 =
2πI1

L
− i

L

(
log(2(t̃1 − t̃2) − c) − log(2(t̃1 − t̃2) + c)

)
,

λ2 =
2πI2

L
− i

L

(
log(2(t̃2 − t̃1) − c) − log(2(t̃2 − t̃1) + c)

)
. (F.3.11)

Note that Im(λ1)+Im(λ2) = 0 (a property related to the translational invariance of model). Let us consider the possibility
of having Im(λ1) 6= 0 in the large L limit. Since everything on the right hand side of (F.3.11) is proportional to 1/L, this
means that the t̃i variables must flow exponentially fast to the singularity of the logarithm at 0. Let us e.g. suppose

2(t̃1 − t̃2) − c = O(e−δL) (F.3.12)

with δ > 0. Taking the large L limit of (F.3.11), we obtain

−Im(λ2) = Im(λ1) ≃L→∞ − 1
L

(−δL) = +δ > 0 , (F.3.13)

consistency with (F.3.12) in the L → ∞ limit thus implies

−2i(cot(Re(λ1) + iδ) − cot(Re(λ2) − iδ)) = c > 0. (F.3.14)

However, this last equality cannot be satisfied since c > 0 and the imaginary part of cot(x+ iy) has a sign opposite to the
sign of y. Hence it is impossible to form a bound state of two particles and c can be interpreted as a repulsive interaction
parameter. Generalizing this phenomenon to arbitrary n, the large-L limit of the Bethe equations is particularly simple,
namely

λi =
2πIi
L

+O(
1
L2

) . (F.3.15)

That is, to first order in 1/L the particles behave as free particles as already announced. In the following we will parametrize
the particle quasi-momentas by the t̃i variables. These are pure imaginary numbers that we write (to maintain the analogy
with [5], see Eq.(50) there):

t̃α = i
kα
2

, kα ∈ R . (F.3.16)

Interpretation of the repulsive nature of the model:
One interpretation of the repulsive nature of the model can be traced back to the relation

u+ v = 1 (F.3.17)

that holds in this model for Boltzmann weight for edges arriving on the same vertex. In this model, if it is favorable for
the polymer to travel through the edge carrying the disorder u, then it means that u is large. Hence v must be small
and it is not favorable for the polymer to travel through the edge carrying v. Consider now two replicas (second moment
problem). Clearly the transition (x − 1, x) → (x, x) for these two replica is not favorable. This can be interpreted as a
nearest neighbor repulsion for these two replicas (i.e particles). Of course the transition (x − 1, x − 1) → (x, x) remains
favorable (on site attraction). The balance between the two processes however seems to favor the repulsive nature of the
model. In the Inverse-Beta (resp. Log-Gamma) polymer, (F.3.17) is replaced by v − u = 1 (resp. v = u) and the model is
attractive.

Another way to see this is through the fact that (F.3.17) precisely permits to interpret the Beta polymer as a RWRE
(in this language (F.3.17) is the conservation of probability on each vertex). In this interpretation time is reversed (see
Sec. F.2.2) and if two particles stay together at time t in the random environment, then they are more likely to stay on the
same site at time t + 1 and the transition (x, x) → (x, x− 1) is not favored. The attraction between particles in the RWRE
language becomes a repulsion in the polymer language when time is reversed.

F.3.3 Bethe ansatz toolbox

Scalar product and norm in the large L limit
Using the already discussed analogy between the Bethe ansatz for the Inverse-Beta and Beta polymer, we easily conclude

from Eq.(49) of [5] that the eigenfunctions of the Beta polymer are orthogonal with respect to the following weighted scalar
product:

〈φ, ψ〉 =
∑

(x1,··· ,xn)∈{0,··· ,L−1}n

1
∏

x
h̃∑n

α=1
δx,xα

φ∗(x1, · · · , xn)ψ(x1, · · · , xn) ,

h̃n =
n−1∏

k=0

4
4 + kc

= (α+ β)n
Γ(α+ β)

Γ(α+ β + n)
. (F.3.18)
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We also obtain the formula for the norm of a general eigenstate of n particles in the large L limit (see Eq.(52) of [5], here
adapted for the only relevant case here, that is for the case without string states)

||µ||2 = 〈ψ̃µ, ψ̃µ〉 = n!Ln
∏

1≤i<j≤n

(ki − kj)2 + c2

(ki − kj)2
+O(Ln−1) . (F.3.19)

Quantization in the large L limit
The model being repulsive, the sum over eigenstates is computed using the free-particle quantization (similar to Eq.(51)

of [5]):

∑

λα

=
L

2π

∫ π

−π
dλα =

L

2π

∫ ∞

−∞

4dkα
4 + k2

α
. (F.3.20)

Energy-momentum
We will also need the eigenvalue associated with the unit translation-operator on the lattice:

n∏

α=1

zα =
n∏

α=1

2 + ikα
−2 + ikα

, (F.3.21)

as well as the eigenvalue associated with the translation in time Λ̃µ =
∏n

i=1
(ū+ v̄z−1

i ) which gives

Λ̃µ =
n∏

α=1

(
α

α+ β
+

β

α+ β
(−1)

1 − t̃α

1 + t̃α
) =

n∏

α=1

(
2(α− β) + i(α+ β)kα
2(α+ β) + i(α+ β)kα

)

. (F.3.22)

F.3.4 A large contour-type moment formula

We have now all the ingredients to compute the integer moments of the partition sum. The initial condition is:

Zt=0(x) = δx,0 =⇒ ψt=0(x1, · · · , xn) =
n∏

i=1

δxi,0 . (F.3.23)

We use the scalar product (F.3.18) to decompose it onto the Bethe eigenstates:

ψt(x1, · · · , xn) =
∑

µ

n!

h̃n||ψµ||2
(Λ̃µ)tψµ(x1, · · · , xn) . (F.3.24)

In particular,

Zt(x)n =
∑

µ

(n!)2

h̃n||ψµ||2
(Λ̃µ)t

(
n∏

α=1

zα

)x

. (F.3.25)

Replacing in this expression each terms by its value in the large L limit, one obtains:

Zt(x)n =
Ln

(2π)n
1
n!

n∏

i=1

∫ +∞

−∞

4dki
4 + k2

i

(n!)2

(α+ β)n
Γ(α+ β + n)

Γ(α+ β)
1

n!Ln

∏

1≤i<j≤n

(ki − kj)2

(ki − kj)2 + c2

n∏

j=1

(
2(α− β) + i(α+ β)kj
2(α+ β) + i(α+ β)kj

)t(
2 + ikj

−2 + ikj

)x

. (F.3.26)

Rescaling k → − 4
α+β

k = −ck and rearranging, we obtain

Zt(x)n = (−1)n
Γ(α+ β + n)

Γ(α+ β)

n∏

j=1

∫ +∞

−∞

dkj
2π

∏

1≤i<j≤n

(ki − kj)2

(ki − kj)2 + 1

n∏

j=1

(ikj + β−α
2

)t

(ikj + α+β
2

)1+x(ikj − α+β
2

)1−x+t
. (F.3.27)

Which is our main result for the positive integer moments of the point-to-point partition sum of the Beta polymer. Let
us now make a remark and introduce a more general formula.

Remark and multi-points moment formula
Let us first note that the formula (F.3.27) has a different structure compared to other formulas obtained using the

replica Bethe ansatz on other exactly solvable models of DP (by this we mean using the same replica Bethe ansatz as the
one used in this paper, i.e. using periodic boundary conditions and solving the Bethe equations in the large L limit as
e.g. in [5, 4, 173, 165]). Indeed, in other cases, one obtains a formula which contains a discrete summation over strings
configurations, corresponding to the sum over all eigenstates of an attractive quantum problem (see e.g. Eq.(60) of [5])
and that is expressed as the sum of different ns-dimensional integrals with 1 ≤ ns ≤ n. Here the repulsive nature of the
model leads to a simpler formula since the nth moment is expressed as a single n-dimensional integral. We note however
that such type of moments formulas already appeared in the literature. In a more general context (see e.g. in the context
of Macdonald processes [192]), it is usual to encounter moments formulas of one of the following three types:
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1. The first type consists in expressing the nth moments of an observable of a stochastic process as one n-dimensional
nested-contours integral with n contours chosen to avoid some poles of the integrand and arranged in a so-called
nested fashion (see Fig. F.3 at the end of the paper for an example). In the following we will refer to this type of
formula as the nested-contours type.

2. In the second type of formula all the contours of the nested-contours integral formula are deformed onto the largest
one. If there are no poles encountered along this deformation, one then obtains a formula with n integrals on the
same contour as in (F.3.27). In the following we will refer to this type of formula as the large-contours type

3. In the third type of formula all the contours of the nested contours integral formula are deformed onto the smallest
one. In doing this operation, one generally encounters multiple poles of the integrand and one has to keep track of
the resulting residues. This process of “book-keeping” residues then lead to formula for the nth moment as a sum of
ns-dimensional integrals with 1 ≤ ns ≤ n integration variables on one contour, corresponding to the summation over
strings configurations evoked above. In the following we will refer to this type of formula as the small-contours or
string type.

The specificity of the replica Bethe ansatz applied to the Beta polymer case is thus the fact that we directly obtained
a large-contours formula for the moments (see (F.3.27)), rather than a string type formula as could have been naively
expected. For the Beta-polymer half-line to point problem considered in [224], Barraquand and Corwin obtained directly
a nested contour integral formula for the moments of the partition sum. They also adapted their approach to study the
moments of the point-to-point problem and obtained a nested-contours integral formula for the moments Zt(x)n which was
recently brought to our attention by them [265]. We show in Sec. F.6 how their work compares to ours. In particular we
establish the equivalence between our formula (F.3.27) and a nested-contours type formula. Before going further, let us
also mention here that with their approach it is also possible to derive rigorously another formula of type 2 valid for the
multi-points moments of the partition sum that we now display: if 0 ≤ x1 ≤ · · · ≤ xn, then,

Zt(x1) · · ·Zt(xn) = (−1)n
Γ(α+ β + n)

Γ(α+ β)

n∏

j=1

∫

R

dkj
2π

∏

1≤i<j≤n

ki − kj
ki − kj + i

n∏

j=1

(ikj + β−α
2

)t

(ikj + α+β
2

)1+xj (ikj − α+β
2

)1−xj +t
.(F.3.28)

This formula will be used below to extract interesting information about the correlations of the fluctuations in the diffusive
regime.

F.4 Cauchy-type Fredholm determinant formula for the Laplace transform

and asymptotic analysis in the optimal direction of the RWRE

F.4.1 The issue of the first site

In the following we will consider the sequence, with n ∈ N

Zn =
Γ(α+ β)

Γ(α+ β + n)
Zt(x)n , (F.4.1)

and the associated generating function

gt,x(u) =
∞∑

n=0

(−u)n

n!
Zn , (F.4.2)

the reason being that only the latter can be simply expressed as a Fredholm determinant. Note that the sum in (F.4.2)
converges since 0 < Zn < Zt(x)n and 0 < Zt(x) < 1 (since Zt(x) can be interpreted as a probability, see Sec. F.2.2). The
situation here is also quite different compared to other exactly solvable models of DP: in the continuum case the growth of
the moment is too fast to obtain a convergent generating function, while in the log-Gamma and Inverse-Beta case only a
finite number of moments exist. Here all the moments exist and do determine the PDF of Zt(x). Note that it is a priori
not clear whether Zn are the moments of a (positive or not) random variable Z̃t(x) (one can e.g. check that this is not
the case at t = 0). If it is the case, then Zt(x) is given in law by the product w00Z̃t(x) where w00 is a random variable
(independent of Z̃t(x)) distributed as

w00 ∼ Gamma(α+ β) , Pw00 (w) =
1

Γ(α+ β)
w−1+α+βe−wθ(w) ,

∫

dwwnPw00 (w) =
Γ(α+ β + n)

Γ(α+ β)
, (F.4.3)

where Pw00 (w) is the PDF of w00. Note that the situation is here also different compared to the Inverse-Beta case. In the
latter, one needs to add a Boltzmann weight on the first site to obtain a partition sum whose Laplace transform can be
expressed as a Fredholm determinant [5]. Here we are formally removing a Boltzmann weight on the first site. In any case
the Laplace transform of the original partition sum can be obtained from gt,x(u) using

e−uZt(x) = 〈gt,x(uw00)〉w00 =

∫ +∞

0

dwgt,x(uw)Pw00 (w) . (F.4.4)

Note that alternatively, using the Hypergeometric function defined ∀u ∈ C by 0F1(α + β;u) =
∑∞

n=0

Γ(α+β)
Γ(α+β+n)

(−u)n

n!
,

the generating function gt,x(u) can be rewritten as

gt,x(u) = 0F1(α+ β; −uZt(x)) . (F.4.5)
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F.4.2 Cauchy type Fredholm determinant formulas

Starting from (F.3.27), it can be shown (see Appendix F.9) that the generating function gt,x(u) can be written as a Fredholm
determinant:

gt,x(u) = Det (I + uKt,x) , (F.4.6)

with the kernel:

Kt,x(v1, v2) =

∫ +∞

−∞

dk

π
e−2ik(v1−v2)−(v1+v2) (ik + β−α

2
)t

(ik + α+β
2

)1+x(ik − α+β
2

)1−x+t
, (F.4.7)

and Kt,x : L2(R+) → L2(R+). Note that the integral on k defining (F.4.7) converges ∀(t, x) ∈ N
2 (at large k the integrand

decays as 1/k2). We can also write a simpler expression for the Kernel, writing (F.4.7) as a product of operators

KI,J(v1, v2) =

∫

p

A(v1, p)B(p, v2)

A(v1, p) = − 2
π
θ(v1)e−v1(1+ip) (p+ i(α− β))I−1

(p− i(α+ β))I

B(p, v2) = θ(v2)e−v2(1−ip) (p+ i(α− β))J−1

(p+ i(α+ β))J
(F.4.8)

where we have reintroduced the euclidean coordinate of the square lattice I = 1 + x and J = 1 + t− x (in this coordinate
system the starting point of the polymer is (I, J) = (1, 1)) and performed the change of variables k = p/2. We then use
Det (I +AB) = Det (I +BA), leading to

gI,J(u) = Det
(
I + uK̃I,J

)
(F.4.9)

with the kernel:

K̃I,J(p1, p2) =

∫

v

B(p1, v)A(v, p2)

=

∫

v>0

e−v(1−ip1) (p1 + i(α− β))J−1

(p1 + i(α+ β))J
× (− 2

π
)e−v(1+ip2) (p2 + i(α− β))I−1

(p2 − i(α+ β))I

= − 2
π

(p1 + i(α− β))J−1

(p1 + i(α+ β))J
(p2 + i(α− β))I−1

(p2 − i(α+ β))I
1

2 + i(p2 − p1)
(F.4.10)

and K̃I,J : L2(R) → L2(R). Performing the change of variables p → 1/q this is also equivalent to

gI,J(u) = Det
(
I + uK̂I,J

)
(F.4.11)

with the kernel K̂I,J : L2(R) → L2(R):

K̂I,J(q1, q2) = − 2
π

(1 + iq1(α− β))J−1

(1 + iq1(α+ β))J
(1 + iq2(α− β))I−1

(1 − iq2(α+ β))I
1

2 + i(q−1
2 − q−1

1 )
(F.4.12)

A final expression which will be preferred in the following. We will also equivalently use the coordinate system (t, x) and the
notation K̂t,x = K̂I=1+x,J=1+t−x. In Appendix F.10 we use the above Fredholm determinant formulas to obtain a formula
for the PDF of Zt(x).

Remark:
Note that the formulas (F.4.6), (F.4.9) and (F.4.11) have the distinctive feature that the Laplace transform variable

u simply multiplies the kernel inside the Fredholm determinant. This should be contrasted with formulas obtained using
similar replica Bethe ansatz calculations for other exactly solvable directed polymers models: in these other cases the
Laplace transform variable u appears inside the kernel in a non-trivial manner. In a more general context, (see e.g. [192])
this appears as a simple consequence of the fact that the moments formula we obtained is a so-called large-contours type
formula (see the discussion in F.3.4). Indeed, it is known in the literature that such formulas lead after summation to
Fredholm determinant formulas with the variable u appearing in front of the kernel (usually referred to as Cauchy-type
formulas). In this context, the other usually encountered Fredholm determinant formulas are known as Mellin-Barnes type
formulas and are obtained after summation of small contours moments formulas (see F.3.4).

It is usually assumed that performing the asymptotic analysis on Cauchy-type formulas is extremely difficult (see in
particular the work of Tracy and Widom on the ASEP [225, 226] on which we will comment more later). We will however
see in the following that our Cauchy-type formula (F.4.12) is well suited to perform the asymptotic analysis in a specific
spatial direction (which will actually turns out to be the optimal direction chosen by the RWRE). In the other directions
however, this will not be the case and we will first obtain an alternative Fredholm determinant formula for gt,x(u) of the
Mellin-Barnes type in order to carry out the asymptotics.

F.4.3 Asymptotic analysis of the first-moment: definition of the optimal direction and of
the asymptotic regimes

Let us now perform an asymptotic analysis in the large time limit with

t ≫ 1 , x = (1/2 + ϕ)t , (F.4.13)
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i.e. I = 1 + x = 1 + (1/2 + ϕ)t and J = 1 + t− x = 1 + (1/2 − ϕ)t. We first consider the trace of K̂t,x, or equivalently Z1:

−Z1 = Tr(K̂t,x) =
−1
π

∫

dq
(1 + iq(α− β))t

(1 − iq(α+ β))1+x(1 + iq(α+ β))1+t−x . (F.4.14)

Note that this integral can be performed exactly, the result being, as expected, Z1 = 1
α+β

Zt(x) = αt−xβx

(α+β)t+1C
x
t where Cxt is

the binomial coefficient. Note that in terms of RWRE, the mean value of the partition sum is the mean value of the PDF
transition probability. The latter can also be interpreted as the PDF of a RW in an averaged environment: the annealed
PDF, defined as

Pann(X0 = 0|X−t = x) := P(X0 = 0|X−t = x) = Zt(x) (F.4.15)

is the transition PDF for a RW defined as in (F.2.9) with pt,x replaced by its average: pt,x → pt,x = u = α/(α + β). Note
also that by translational invariance of the averaged environment we have Pann(X0 = 0|X−t = x) = Pann(Xt = −x|X0 =
0) = Zt(x). The asymptotic analysis could easily be performed on this exact formula but the goal here is to understand
how the properties of the asymptotic regime emerge from the integral formula (F.4.14). A simple calculation shows that
the integral on q in (F.4.14) is dominated by a saddle-point at

qsp = − i(r(2ϕ− 1) + 2ϕ+ 1)
α(r + 1)(r(2ϕ− 1) − 2ϕ− 1)

(F.4.16)

where we introduced the assymmetry ratio

r = β/α ∈ R+ . (F.4.17)

We obtain

Z1 =
1
π

(

2r
(
r−2rϕ
2ϕ+1

)ϕ

(r + 1)
√

r − 4rϕ2

)t ∫

dq
1

1 + α2(1 + r)2q2
sp
e
t(q−qsp)2 α2(r+1)2(−2rϕ+r+2ϕ+1)4

32r2(4ϕ2−1)
+tO((q−qsp)3)

=
1

α(1 + r)

√
2

πt(1 − 4ϕ2)

(

2
√

1 − 4ϕ2

(
1 − 2ϕ
2ϕ+ 1

)ϕ
r(1/2+ϕ)

1 + r

)t
(
1 +O(1/

√
t)
)
. (F.4.18)

where from the first to the second line we rescaled q − qsp → (q − qsp)/
√
t. Note that |qsp| < 1/(α+ β) = 1/(α(1 + r)) and

the implicit deformation of contours in (F.4.18) is legitimate. We thus obtain that the first moment Zt(x = (1/2 + ϕ)t) =

(α + β)Z1 decays exponentially with time at a rate log(ψr(ϕ)) where ψr(φ) = 2√
1−4ϕ2

(
1−2ϕ
2ϕ+1

)ϕ r(1/2+ϕ)

1+r
. Note that ψr(φ)

is always smaller than 1 except at its maximum, the optimal angle, defined by

ϕopt(r) =
r − 1

2(r + 1)
∈] − 1/2, 1/2[ , (F.4.19)

for which ψr(ϕopt) = 1 ans qsp = 0. In this specific direction Zt(x) actually decreases only algebraically as

Z1 =
1

α+ β
Zt(x) ≃ϕ=ϕopt

1

α
√

2πrt

(
1 +O(1/

√
t)
)
. (F.4.20)

In terms of RWRE, we thus have that the annealed PDF (F.4.15) decreases exponentially in all directions, except in the
direction ϕopt where Pann(Xt = −x|X0 = 0) ≃ (1+r)√

2πrt

(
1 +O(1/

√
t)
)

. The optimal angle thus appears as the most probable
space-time direction taken by a RW in an averaged environment. Let us now show that it is at the center of a region where
Pann(Xt = −x|X0 = 0) is a Gaussian distribution. To see this explicitly, let us now consider a diffusive perturbation around
the optimal direction as

x = (
1
2

+ ϕopt(r))t+ κ
√
t . (F.4.21)

Inserting this scaling in (F.4.14), it is easily seen that the large time behavior of Z1 = −Tr(K̂t,x) is still controlled by the
same-saddle point around qsp = 0. We now obtain, rescaling again q → q/

√
t,

Z1 = −Tr(K̂t,x) =

∫

R

dq

π
√
t

1

1 + α2(1 + r)2 q
2

t

e
−2rα2q2+2i((1+r)ακq+O( 1√

t
))

=
1

α
√

2πrt
e− (r+1)2

2r
κ2

(

1 +O(
1√
t
)

)

. (F.4.22)

Or equivalently, in terms of the annealed PDF,

x = (
1
2

+ ϕopt(r))t+ κ
√
t =⇒ Pann(Xt = −x|X0 = 0) =

(1 + r)

α
√

2πrt
e− (r+1)2

2r
κ2

(

1 +O(
1√
t
)

)

. (F.4.23)

And the annealed PDF, that is the transition PDF of the RW in an averaged environment, is in the large time limit
in the diffusive scaling (F.4.21) Gaussian distributed with a diffusion coefficient Dann = r

2(r+1)2 . Note that this spatial
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region actually contains all the probability in the large time limit. Note also that (F.4.23) can be seen as a consequence of
the central limit theorem in an averaged environment. Finally, note that the saddle-point position qsp (see (F.4.16)) is 0
only in the optimal direction. Following the change of variables from the quasi-momentas λ of the particles in the Bethe
wavefunction (F.3.9) to the variable q in the kernel (F.4.12), we note that q ∼ 0 corresponds to λ ∼ 0.

In the following we will refer to the regime described by the scaling (F.4.21) as the Gaussian regime, or, to avoid
confusion with other sources of randomness, as the diffusive vicinity of the optimal direction. Indeed, although the scaling
(F.4.21) corresponds to the Gaussian regime for the RW in an averaged environment (see (F.4.23)), in the following we will
be interested in the sample to sample fluctuations of the RWRE PDF. As we will show these fluctuations will turn out to be
Gamma (and not Gaussian) distributed. The other regime described by the scaling (F.4.13) with ϕ 6= ϕopt will be referred
to, using the RWRE language, as the large deviations regime. Let us now investigate the consequences of the existence of
the saddle-point (F.4.16) beyond the first moment, i.e. on the full Fredholm determinant.

F.4.4 Asymptotic analysis in the diffusive vicinity of the optimal direction on the Cauchy-
type Fredholm determinant

The saddle-point performed on the trace of the kernel (F.4.12) is under control for arbitrary ϕ. A natural question is now
to understand whether one can use the same saddle-point on the full Fredholm determinant (57) and (F.4.12). In most
cases (more precisely that is whenever qsp 6= 0) the answer is negative. Indeed, if qsp 6= 0, Im(qsp) 6= 0 and the evaluation
of e.g. the Tr(K̂ ◦ K̂) term (or equivalently Z2) using the saddle point involves a shift of the integrals on q to ensure that
the contour of integration on q, initially equal to R, passes upon the saddle-point at qsp. However the presence of the term

1

2+i(q−1
2

−q−1
1

)
present in (F.4.12) forbids that shift and we cannot use the saddle-point (i.e. it is impossible to deform the

contours of integrations without crossing poles). If one tries to perform the saddle-point analysis on the form of the kernel
(F.4.10) the difficulty is different: the trace is still dominated by the saddle point at psp = 1

qsp
and it seems a priori easy

to shift all contours of integrations to avoid crossing the poles of the term 1
2+i(p2−p1)

(using a simple translation of all
contours). However in this case |Im(psp)| > (α+β) so that the difficulty is now to avoid crossing the pole at p = ±i(α+β).
One way to do so is to try to close the contours of integration on the upper half plane, but in this case one inevitably crosses
the poles of the term 1

2+i(p2−p1)
. This difficulty thus appears as a true property of the asymptotic analysis of the kernels

(F.4.7), (F.4.10), (F.4.12): the saddle-point suggested by the study of the trace cannot be used for higher order terms. We
will come back to this point in Section F.5.

In the optimal direction however (and in its diffusive vicinity (F.4.21)), we noticed that qsp = 0. In this case there is no
shift to perform and all the terms (corresponding to all the moments) in the series expansion of the Fredholm determinant
can be evaluated using the saddle-point, as we will see below. We thus now write

x = (
1
2

+ ϕopt(r))t+ κ
√
t , (F.4.24)

and consider the saddle point at qsp = 0 for the evaluation of the Fredholm determinant, using the expansion

Det(I + uK̂) = eln(I+uK̂) = 1 + uK̂ +
u2

2
((K̂)2 − K̂ ◦ K̂) (F.4.25)

+
u3

3!
((K̂)3 − 3K̂K̂ ◦ K̂ + 2K̂ ◦ K̂ ◦ K̂) + . . .

In this expansion, all the terms that involve powers of the Kernel, such as K̂ ◦ K̂ and K̂ ◦ K̂ ◦ K̂ contain terms such as
q1q2

q1q2+(q2−q1)
. Using the saddle-point and rescaling qi → qi/

√
t, these terms bring out additional factors of 1/

√
t and are

subdominant. Hence we have

Det(I + uK̂) = 1 + uK̂ +
u2

2
(K̂)2 +

u3

3!
(K̂)3 + · · · +O(1/

√
t)

= euK̂ +O(1/
√
t) (F.4.26)

If one rescales u as u = α
√

2πrte
(r+1)2

2r
κ2

ũ such that uZ1 = −uK̂ ≃t→∞ ũ = O(1), then we obtain the following
convergence (that holds at each order in the expansion in ũ):

gt,x(α
√

2πrte
(r+1)2

2r
κ2

ũ) = Det(I + α
√

2πrte
(r+1)2

2r
κ2

ũK̂) ≃t≫1 e
−ũ +O(1/

√
t) . (F.4.27)

Note here that the relatively slow growth of moments shows that the convergence in moments imply the convergence of
Laplace transform, and hence in distribution. Let us now define for convenience a rescaled partition sum as

Zt(κ) = α
√

2πrte
(r+1)2

2r
κ2

Zt

(

(
1
2

+ ϕopt(r))t+ κ
√
t
)

. (F.4.28)

We thus find that, using (F.4.4),

e−ũZt(κ) = 〈gt,x(α
√

2πrte
(r+1)2

2r
κ2

ũw00)〉w00 = 〈e−ũw00 〉w00 +O(1/
√
t) (F.4.29)
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i.e.

Zt=∞(κ) ∼ Gamma(α+ β) , (F.4.30)

and corrections are of order O(1/
√
t). The form of the Gamma distribution was recalled in (F.4.3). The rescaled partition

sum (F.4.28) is thus distributed as a Gamma random variable in the large t limit at fixed κ. Using the convergence in law
(F.4.30), we obtain that the positive integer moments of the partition sum are

x = (
1
2

+ ϕopt(r))t+ κ
√
t =⇒ Zt(x)n =

Γ(α+ β + n)
Γ(α+ β)

e−n (r+1)2

2r
κ2

(α
√

2πrt)n
+O(1/(

√
t)n+1) . (F.4.31)

Using again (F.4.30), we obtain the first two moments of the directed polymer free-energy at large t in the diffusive scaling
(F.4.24):

log
(

Zt

(

(
1
2

+ ϕopt(r))t+ κ
√
t
))

= −1
2

log(2πrt) − log(α) + ψ(rα+ α) − (r + 1)2

2r
κ2 +O(1/

√
t)

log
(

Zt

(

(
1
2

+ ϕopt(r))t+ κ
√
t
))2

c

= ψ′(α+ αr) +O(1/
√
t) , (F.4.32)

where ψ = Γ′/Γ is the diGamma function and ()
c

denotes the connected average over disorder. Those results are quite
different from what could naively be expected from the usual KPZ universality. Notably we find that here the free-energy
is not extensive and its fluctuations are of order 1 and not t1/3. These unusual results (in the context of directed polymers)
are linked to the fact that the Beta polymer is also a RWRE. We note that all the fluctuations of the free-energy (which are
small) are entirely due to the presence of the fictitious Boltzmann weight w00 whose distribution is subtly encoded in the
algebraic content of the model (that is it comes out of the structure of the Bethe ansatz). The question of the universality
of this behavior for TD-RWRE in other type of random environments deserves further investigations in the future.

F.4.5 Multi-point correlations in a diffusive vicinity of the optimal direction

We now go further and study the asymptotic limit for multi-point correlations in a diffusive vicinity of the optimal direction.
We consider the formula for the multi-points moments (F.3.28) with, for i = 1, · · · , n

xi = (
1
2

+ ϕopt(r))t+ κi
√
t , κ ∈ R , t → ∞ , (F.4.33)

and here κ1 ≤ · · · ≤ κn for formula (F.3.28) to apply. As before, let us first perform the change of variables kj → 1/2qj .
We obtain a formula equivalent to (F.3.28) as

Zt(x1) · · ·Zt(xn) =
Γ(α+ β + n)

Γ(α+ β)

n∏

j=1

∫

R

dqj
π

∏

1≤i<j≤n

qj − qi
qj − qi + 2iqiqj

n∏

j=1

(qj − i(β − α))t

(qj − i(α+ β))1+xj (qj + i(α+ β))1−xj +t
.(F.4.34)

Using the same saddle-point calculation around q ≃ 0 we now obtain, changing qj → qj/
√
t in (F.4.34),

Zt(x1) · · ·Zt(xn) =
Γ(α+ β + n)

Γ(α+ β)

n∏

j=1

∫

R

dqj

π
√
t

∏

1≤i<j≤n

qj − qi

qj − qi + 2i√
t
qiqj

×
n∏

j=1

1

1 + α2(1 + r)2
q2

j

t

e
−2rα2q2

j +2i((1+r)ακjq+O( 1√
t

)

Zt(x1) · · ·Zt(xn) =
Γ(α+ β + n)

Γ(α+ β)

(
1

α
√

2πrt

)n

e
− (r+1)2

2r

∑n

j=1
κ2

j +O(
1

(
√
t)n+1

) (F.4.35)

As before, taking into account the interactions between particles (encoded in the
∏

1≤i<j≤n
qj −qi

qj −qi+2iqiqj
term) just leads to

O(1/
√
t) corrections to this leading behavior. Hence we now obtain that in the diffusive vicinity of the optimal direction, the

rescaled spatial process defined in (F.4.28) converges in the large time limit to a constant process with marginal distribution
a Gamma distribution

Z∞(κ) ∼ Gamma(α+ β) , (F.4.36)

where here the equality now holds in the sense of the full spatial process, extending the one-point result (F.4.30). The
fact that all different rescaled partition sum in (F.4.28) share the same fluctuations suggests that these fluctuations are not
influenced by the last edges visited by the typical polymer path. Correspondly, in the RWRE language, the fluctuations of
the probability to arrive at the site (0, 0) starting from infinity in a diffusive vicinity of the optimal direction are Gamma
distributed and not sensitive to the first edges visited by the RWRE.

On the other hand, for a fixed starting point, the probability for the RW to arrive at different end points in the diffusive
regime are all distributed as Gamma random variables from (F.4.30), but these Gamma random variables are a priori
different, and we now show that they must be. Indeed, applying a general theorem from [259] to the Beta TD-RWRE, we
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know that for a given environment, with probability 1 (here probability refers to the disorder distribution), the random
walk rescaled diffusively converges to a Gaussian distributed RV with a quenched diffusion coefficient equal to the annealed
diffusion coefficient Dquenched = Dann = r

2(r+1)2 . That is, with probability 1, we have

P

(
Xt + (1/2 + ϕopt(r))t√

t
∈ [κ, κ+ dκ]|X0 = 0

)

∼t→∞,dκ≪1=
(α+ β)

α
√

2πr
e− (r+1)2

2r
κ2

dκ. (F.4.37)

(Here the apparent change of sign comes from (F.2.8)). In (F.4.37) the disordered environment seems erased and no traces
of Gamma fluctuations are found in the diffusive region. This result however only concerns the probability for a RW to
arrive in a vicinity of order

√
t of a given point, while our result (F.4.36) really gives the probability to arrive at one

point. This means that the Gamma RVs at each arrival points must be different in some way so that, when summing their
contribution in a with of order

√
t , they are effectively averaged out to lead to (F.4.37) (here the α+ β in the numerator

is now interpreted as Z∞(κ)). Our result is thus not inconsistent with the general result of [259] if this averaging can take
place [266]. Note finally that the Gamma variables on different end points can still be correlated, but only on a width of
order tδ with δ < 1/2.

We have thus now obtained a rather complete understanding of the fluctuations of the partition sum of the Beta
polymer / RWRE transition probability in a diffusive vicinity of the optimal direction. Let us now investigate the large
deviations regimes.

F.5 Asymptotic analysis in the large deviations regime: KPZ universality

In this section we show how the usual KPZ universality is hidden in the Beta polymer in the large time limit in all directions
ϕ 6= ϕopt. In most of this section we use heuristic arguments that will be supported in the next section (see Sec. F.6) by
using results of BC.

F.5.1 Recall of the results of Barraquand-Corwin

Let us first recall the results of [224] that will be of interest in the following. In the half-line to point problem, one shows
that, in any direction ϕ < ϕopt(r),

lim
t→∞

Proba

(
logZHLt ((1/2 + ϕ)t) + I(ϕ)t

t
1
3 σ(ϕ)

≤ y

)

= F2(y) (F.5.1)

where F2 is the cumulative distribution function of the Tracy-Widom GUE distribution. This was rigorously proven for the
case of α = β = 1 (a technical argument) and presented in [224] as Theorem 1.15. The constants I(ϕ) and σ(ϕ) are solution
of a system of transcendental equations which reads (we now introduce the notations of [224], parametrizing ϕ = −x(θ)

2
,

and θ implicitly given by the first equation below)

x(θ) =
ψ′(θ + α+ β) + ψ′(θ) − 2ψ′(θ + α)

ψ′(θ) − ψ′(θ + α+ β)

I(θ) =
ψ′(θ + α+ β) − ψ′(θ + α)
ψ′(θ) − ψ′(θ + α+ β)

(ψ(θ + α+ β) − ψ(θ)) + ψ(θ + α+ β) − ψ(θ + α)

2σ(θ)3 = ψ′′(θ + α) − ψ′′(α+ β + θ) +
ψ′(α+ θ) − ψ′(α+ β + θ)
ψ′(θ) − ψ′(α+ β + θ)

(
ψ′′(α+ β + θ) − ψ′′(θ)

)
. (F.5.2)

Where ψ = Γ′/Γ is the diGamma function. Here the assumption ϕ < ϕopt(r) ensures here that one looks at a direction in
the large deviations regime of the cumulative distribution of the RW. With the notations of Sec. F.2.2: ZHLt ((1/2 +ϕ)t) =
P(X0 ≥ 0|Xt=−t = (1/2 + ϕ)t) and if ϕ ≥ ϕopt(r) the probability that the Random walk arrives on the half-line x ≥ 0
remains finite as t → ∞. If ϕ < ϕopt(r) it decreases exponentially as a function of t with a rate function given by I(θ),
corresponding to the extensive part of the free-energy in the polymer language. For our purpose we note, as already
emphasized in [224], that this result also implies that for ϕ < ϕopt(r) (using that under mild assumptions satisfied here the
large deviation rate function of the CDF in a RWRE problem is the same as the one of the PDF, see [227])

lim
t→∞

logZt((1/2 + ϕ)t)
t

=a.s. −I(x(θ)) , (F.5.3)

where as in (F.5.2) x(θ) = −2ϕ. That is the point to point free energy of the Beta polymer is the same as the half line to
point free energy in the large deviations regime. Note that the point-to-point free-energy in the region ϕ > ϕopt(r) can be
obtained by using the symmetry (x, α, β) → (t − x, β, α), which amounts at using the result (F.5.2) for ϕ > ϕopt(r) and
(α, β) → (β, α).

A first challenge in the following will thus be to retrieve using our formulas the result (F.5.3), and to extend it to obtain
a description of the fluctuations of the logZt(x) in the large deviations regime as well.
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F.5.2 An inherent difficulty and a puzzle

In this section we put forward an issue that one encounters if one tries to perform the asymptotic analysis x = (1/2 + ϕ)t
and t ≫ 1 of gt,x(u) in a direction ϕ 6= ϕopt(r) using one of the Fredholm determinant expression derived in Sec. F.4.2, e.g.
using the kernel (F.4.12). The problem can be formulated as follows: one one hand we have

gt,x(u) = Det
(
I + uK̂t,x

)
. (F.5.4)

Starting from this expression, the most natural idea is to perform an asymptotic analysis by rescaling u in some way
while keeping the Fredholm determinant structure in (F.5.4) intact. Following the computation of Sec.F.4.3, we know that
imposing the rescaling on u to be such that the trace of the kernel converges implies

u ∼
√
t

(

2
√

1 − 4ϕ2

(
1 − 2ϕ
2ϕ+ 1

)ϕ
r(1/2+ϕ)

1 + r

)−t

. (F.5.5)

On the other hand however, we know that we want to obtain (F.5.3) in the large time limit. This result suggests that the
leading part of the proper rescaling of u should be

u ∼ eI(θ)t+o(t) , (F.5.6)

in order to properly take into account the non-zero free-energy of the DP. The two scalings (F.5.5) and (F.5.6) are not
mutually consistent. The rescaling (F.5.5) ensures the convergence of the trace of the kernel, as a result of the saddle-
point that controls the trace (see Sec. F.4.3), but cannot be used for higher order terms in the Fredholm determinant (see
Sec. F.4.4) and is in apparent contradiction with the free-energy (F.5.3). The rescaling (F.5.6) on the other hand does not
ensure the convergence of the trace. The series expansion in u defined by the Fredholm determinant expression (F.5.4) thus
does not appear well suited to perform the asymptotic analysis. As we will se in the following, the way out of this dilemma
will be to recast this series expansion as, schematically

Det(I + uK̂t,x) = Det(I + Ǩt,x(u)) , (F.5.7)

i.e. finding a new Fredholm determinant expression for gt,x(u) where u appears non-trivially in the expression of the
kernel Ǩt,x(u). It is interesting to note that the first Cauchy-Type Fredholm determinant formula that appeared in the
literature around KPZ was in the work of Tracy and Widom on the ASEP [225]. There it was also emphasized that the
asymptotic analysis of this type of formula was extremely difficult, and the solution was later found in [226] and involved
a transformation of Fredholm determinants similar as (F.5.7). On the other hand in our case it is interesting to note that
the Cauchy-type Fredholm determinant formula did appeared very well suited to perform the asymptotic analysis in the
diffusive regime of the TD-RWRE.

F.5.3 A formal formula for the moments of the Beta polymer in terms of strings

From other studies on other exactly solvable models of directed polymer and related models (see also the discussion in
Sec. F.4.2), we know that alternative Fredholm determinant formulas can be obtained by starting from strings-type/small-
contours moments formulas for Zt(x)n. In Appendix F.11 we explain how one can use the known relations between different
exactly solvable models of directed polymers on the square lattice to arrive at the following conjecture

(Zt(x))n “ = ”
Γ(α+ β + n)

Γ(α+ β)
n!

n∑

ns=1

1
ns!

∑

(m1,..mns )n

ns∏

j=1

∫

Ln

dkj
2π

∏

1≤i<j≤ns

4(ki − kj)2 + (mi −mj)2

4(ki − kj)2 + (mi +mj)2

ns∏

j=1

1
mj

(
Γ(−mj

2
+ α+ β + ikj)

Γ(
mj

2
+ α+ β + ikj)

)1+x(
Γ(−mj

2
+ ikj)

Γ(
mj

2
+ ikj)

)1−x+t(
Γ(β + ikj +

mj

2
)

Γ(β + ikj − mj

2
)

)t

. (F.5.8)

where here
∑

(m1,··· ,mns )n
means summing over all ns-uplets (m1, · · · ,mns ) such that

∑ns

i=1
mi = n. In this formula the

integration
∫

L

dkj

2π
is actually not a real integration (hence the presence of quotes around the equality sign) as we now detail.

This formula is only valid in the sense of a specific residue expansion of the integrand. It consists in recursively taking,
always with a plus sign, starting with the integration over kns and then iterating up to k1, the residues of the integrand
coming from the Γ(−mj

2
+ ikj)/Γ(

mj

2
+ ikj) term as well as the residue at kj = kl + i

2
(ml + mj) and iterating. Note

that when one takes the residue at kj = kl + i
2
(ml + mj), it creates new residues for the “integration” on kl in the term

Γ(−mj

2
+ ikj)/Γ(

mj

2
+ ikj). Note also that the position of these residues do not depend on α and β, permitting an easy

implementation using e.g. Mathematica.

This formula is strictly speaking a conjecture, and only arises from an educated guess (see Appendix F.11). Its validity
was tested against direct checks for small values of x, t and n. Unfortunately, we could not find a contour of integration
L which makes this formula correct as a true contour integral formula. From the discussion in Sec. F.3.4 we know that
the correct way to find such a formula is first to use a nested contour integral representation of (Zt(x))n. This is done in
Sec. F.6 where we obtain a formula similar to this one.
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F.5.4 A formal Fredholm determinant and KPZ universality

The formal formula (F.5.8) is very close to the formula (60) obtained in [5] for the Inverse-Beta polymer. (See Appendix
F.11 for the comparison). As such, we can follow the same steps as done in [5] and obtain a new Fredholm determinant
formula gtx(u) = Det

(
I + Ǩt,x

)
with

Ǩt,x(v1, v2) =

∫

L

dk

π

−1
2i

∫

C

ds

sin(πs)
use−2ik(v1−v2)−s(v1+v2) (F.5.9)

(
Γ(− s

2
+ α+ β + ik)

Γ( s
2

+ α+ β + ik)

)1+x(
Γ(− s

2
+ ik)

Γ( s
2

+ ik)

)1−x+t(
Γ(β + ik + s

2
)

Γ(β + ik − s
2
)

)t

.

As before, this formula is formal since the integration on L is actually not an integration. A similar (but not formal)
formula can be derived using an approach based on nested contour integrals (see Sec. F.6). Let us however ignore this for
now and try to perform a saddle-point analysis on (F.5.9) by sending t → ∞ with x = (1/2 + ϕ)t and proceed as if (F.5.9)
was well defined using a true integration. The analysis is then strictly similar to the one made in [5] from which we borrow
the notations and to which we refer the reader for more details. The “integration” in (F.5.9) is dominated in the large t
limit by the factor

exp {t (Gϕ(ik + s/2) −Gϕ(ik − s/2))} , (F.5.10)

where

Gϕ(x) = log Γ(β + x) − (1/2 − ϕ) log Γ(x) − (1/2 + ϕ) log Γ(α+ β + x) . (F.5.11)

We look for a cubic saddle-point at (s, k) = (0,−ikϕ). Its position is implicitly defined by

ψ′(β + kϕ) − (
1
2

− ϕ)ψ′(kϕ) − (
1
2

+ ϕ)ψ′(α+ β + kϕ) (F.5.12)

With the same notations as in [5] we define a rescaled free energy ft(ϕ) as

Ft(ϕ) = − logZt(x = (1/2 + ϕ)t) = cϕt+ λϕft(ϕ)

cϕ = −G′
ϕ(kϕ) , λϕ =

(
tG′′′

ϕ (kϕ)
8

) 1
3

. (F.5.13)

Following the exact same steps as in [5] (see also Appendix C there for a discussion that can be adapted to our setting to
consider the effect of the additional weight w00 introduced in Sec. F.4.1) we obtain

lim
t→∞

Prob

(
logZt((1/2 + ϕ)t) + tcϕ

λϕ
< 2

2
3 z

)

= F2(z) , (F.5.14)

where F2 is the cumulative distribution function of the Tracy-Widom GUE distribution and the parameters cϕ and λϕ ∼ t
1
3

are given by (F.5.13) with

ϕ =
ψ′(β + kϕ) − 1

2
(ψ′(kϕ) + ψ′(α+ β + kϕ))

ψ′(α+ β + kϕ) − ψ′(kϕ)

cϕ = −G′
ϕ(kϕ) =

(

ϕ+
1
2

)

ψ(kϕ + α+ β) − ψ(kϕ + β) +
(1

2
− ϕ
)

ψ(kϕ)

8λ3
ϕ

t
= G′′′

ϕ (kϕ) = −
(

ϕ+
1
2

)

ψ′′(kϕ + α+ β) + ψ′′(kϕ + β) −
(1

2
− ϕ
)

ψ′′(kϕ) . (F.5.15)

The above system of equations is expected to be valid for ϕopt(r) = β−α
2(α+β)

< ϕ < 1/2, a limitation which is not
visible from our formal derivation but that we now explain. A first hint is to consider the limit ϕ = ±1/2. In the
limit ϕ → − 1

2
, Zt =

∏t

i=1
ui, the product of t independent u variables. In the limit ϕ → − 1

2
, Zt =

∏t

i=1
vi. This

implies −logZt(0)/t = ψ(α+ β) − ψ(α) and −logZt(t)/t = ψ(α+ β) − ψ(β). The second limit is correctly reproduced by
(F.5.15) using kϕ →ϕ→1/2− 0+, whereas the first one is not. Furthermore, the two first equations in (F.5.15) (i.e. those
that determines the extensive part of the free-energy) are also equivalent to the two first equations in (F.5.2) using the
symmetry (ϕ, α, β) → (−ϕ, β, α) on (F.5.2) with the identification θ = kϕ, I(θ) = −G′

ϕ(kϕ). To see this more explicitly
rewrite cϕ in (F.5.15) as

cϕ = −G′
ϕ(kϕ) =

(

ϕ+
1
2

)

ψ(kϕ + α+ β) − ψ(kϕ + β) +
(1

2
− ϕ
)

ψ(kϕ)

= (ϕ− 1/2) (ψ(kϕ + α+ β) − ψ(kϕ)) + ψ(kϕ + α+ β) − ψ(kϕ + β)

cϕ = −G′
ϕ(kϕ) =

ψ′(α+ β + kϕ) − ψ′(β + kϕ)
ψ′(kϕ) − ψ′(α+ β + kϕ)

(ψ(kϕ + α+ β) − ψ(kϕ)) + ψ(kϕ + α+ β) − ψ(kϕ + β)(F.5.16)

where from the first to the second line we have only rearranged the terms, and from the second to the last we have inserted
ϕ as given by (F.5.15). Applying the identification mentioned above shows the identity between the two first equations in
(F.5.2) and those in (F.5.15).
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This fact was expected since the extensive part of the free-energy should be the same in the half-line (in the large
deviation regime) and in the point-to-point Beta polymer problem. The condition of validity of (F.5.2), ϕ < ϕopt(r), then
becomes our condition of validity after applying the symmetry.

The new, non-trivial predictions from our formal computations are that

• The fluctuations of the free-energy in the point-to-point Beta polymer problem are also of the GUE Tracy-Widom
type with the characteristic t1/3 scaling.

• The non-universal constant in front of these fluctuations are exactly the same in the point-to-point and in the half-line
to point problem. To see this, notice that the third line of (F.5.15) is also equivalent to the third line of (F.5.2) using
the identification 2σ(θ)3 = G′′′(ϕ).

The first prediction could have been expected from the KPZ universality of directed polymer problem, a paradigm
which however appears dangerous to apply in the Beta polymer as we saw from the study of the fluctuations in the optimal
direction. The second is interesting from the RWRE point of view. Indeed, although it is known on general grounds (see
[227]) that the large deviations rate functions of the PDF and CDF of a TD-RWRE are identical, a similar identity for the
fluctuations of the logarithm of the PDF and CDF is to our knowledge not known. Here, in the particular example of the
Beta TD-RWRE, we have showed that these fluctuations are identical up to order t1/3 included. It would be interesting to
understand if this holds more generally for other TD-RWRE.

F.5.5 Crossover between Gamma and Tracy-Widom fluctuations

Let us now use our results (F.4.32) and (F.5.15) to try to gain some information on the crossover between the diffusive
regime and the large deviations regime of the RW. Let us first see how both regimes are connected and study the behavior
of (F.5.15) around the optimal angle: ϕ = ϕopt(r) + δϕ. Expanding in δϕ > 0, the solution of (F.5.15) reads

kϕ ≃ αr

(r + 1)δϕ
+
(1

2
− αr

)

+O(δϕ)

−G′
ϕ(kϕ) ≃ (1 + r)2

2r
δϕ2 +

(r − 1)(r + 1)3

6r2
δϕ3 +O(δϕ4)

G′′′
ϕ (kϕ) =

(r + 1)4

α2r3

(

δϕ4 +
r2 − 1
r

δϕ5 +O(δϕ6)

)

. (F.5.17)

Hence, at fixed, small angle around the optimal position, ϕ = ϕopt(r) + δϕ, we conclude from (F.5.13) that

logZt(x) ≃ − (1 + r)2

2r
tδϕ2 +

(
(r + 1)4

2α2r3

) 1
3

t
1
3 δϕ

4
3χGUE ,

x = (
1
2

+ ϕopt(r) + δϕ)t , t ≫ 1 . (F.5.18)

Where χGUE is a RV which is distributed with the GUE Tracy-Widom distribution. On the other hand, we know from
Sec. F.4.5 that, on a diffusive scale around the optimal direction,

logZt(x) ≃ − log(α) − 1
2

log(2πrt) − (1 + r)2

2r
κ2 + logχα+β ,

x = (
1
2

+ ϕopt(r))t+ κ
√
t , t ≫ 1 . (F.5.19)

Where χα+β is a RV distributed with a Gamma distribution of parameter α + β. Introducing the coordinate x̂ = x −
( 1

2
+ ϕopt(r))t and changing δϕ → x̂/t in (F.5.18) and κ → x̂/

√
t in (F.5.19), one sees that both regimes are connected

by the angle-dependent term in the extensive part of the free-energy − (1+r)2

2r
tδϕ2 = − (1+r)2

2r
κ2 = − (1+r)2

2r
x̂2

t
. Though the

following is non-rigorous, it thus appears reasonable to schematically give a more complete picture of fluctuations at large
t around the central region as

logZt(x) ≃ −1
2

log(2παβt) − (α+ β)2

2αβ
x̂2

t
+ logχα+β +

(
(α+ β)4

2α3β3

) 1
3 x̂

4
3

t
χGUE

x = (
1
2

+ ϕopt(r))t+ x̂ , t ≫ 1 , x̂ = o(t) . (F.5.20)

The latter being exact at large time in the central region x̂ = O(1) and including the diffusive regime x̂ ∼
√
t, as well as

in the beginning of the large deviations regime x̂ = δϕt with δϕ ≪ 1. In between, in the crossover region
√
t ≪ x̂ ≪ t

the fluctuations should be an interpolation between Gamma and Tracy-Widom fluctuations and the above picture is too
simple. Equating the amplitude of these two sources of fluctuations, it predicts the existence of a cross-over scale where
the competition between Tracy-Widom and Gamma type fluctuations is maximal as

x̂c.o. ∼ t
3
4 . (F.5.21)
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As summarized in Fig. F.1. A way to formalize the identification of this crossover scale is to introduce an (a priori unknown)
scaling function involving e.g. the second cumulant of the fluctuations, as

(
(logZt(x))2

c)1/2
= tγf(

x̂

tδ
) (F.5.22)

for x̂ = o(t), where 1
2
< δ < 1. Imposing the matching conditions on the two above mentioned regimes we obtain

tγf(y =
x̂

tδ
) ≃y→0 ψ

′(α+ β) (F.5.23)

tγf(y =
x̂

tδ
) ≃y→+∞

(
(α+ β)4

2α3β3

) 1
3 x̂

4
3

t

√

V ar(χGUE) (F.5.24)

This implies γ = 0 and δ = 3/4 recovering (F.5.21). A more precise characterization of the fluctuations in this regime and

of the scaling function remains to be obtained. Note that since the formula logZt(x) − logZt(0) ≃ − (α+β)2

2αβ
x̂2

t
was found

to hold in both regimes, it is also expected to hold in the crossover regime. Hence in this regime, writing x̂ = ωt
3
4 , with a

fixed ω, we expect that logZt(x) ≃ −
√
t(r+1)2ω2

2r
at large t.

F.6 Nested-Contour integral formulas for the point-to-point problem

During the late stages of redaction of this work, we were informed [265] by Guillaume Barraquand and Ivan Corwin of the
existence of a nested contour integral formula for the multi-points moments of the Beta polymer, from which (F.3.28) was
derived. This approach also allows to obtain other moments formulas and Fredholm determinant formulas which partially
justify the heuristic approach used in the last section. The goal of this section is to make the link between our formulas
and theirs.

F.6.1 Alternative moments formulas

A nested contour integral formula:
Let us start from the moments formula (F.3.27) that we now recall for readability of the reasoning:

Zt(x)n = (−1)n
Γ(α+ β + n)

Γ(α+ β)

n∏

j=1

∫ +∞

−∞

dkj
2π

∏

1≤i<j≤n

(ki − kj)2

(ki − kj)2 + 1

n∏

j=1

(ikj + β−α
2

)t

(ikj + α+β
2

)1+x(ikj − α+β
2

)1−x+t
. (F.6.1)

We first note that the first part of the integrand in (F.6.1), i.e. the interaction term between particles, can be rewritten
as:

∏

1≤i<j≤n

(ki − kj)2

(ki − kj)2 + 1
=

1
n!

∑

σ∈Sn

∏

1≤i<j≤n

kσ(i) − kσ(j)

kσ(i) − kσ(j) + i
. (F.6.2)

where Sn is the group of permutation of {1, · · · , n}. This identity is shown in App. F.12. Inserting (F.6.2) in (F.6.1), using
that the second part of the integrand

n∏

j=1

(ikj + β−α
2

)t

(ikj + α+β
2

)1+x(ikj − α+β
2

)1−x+t
(F.6.3)

is symmetric by exchange ki ↔ kj , relabelling kσ(i) → ki, and using that the number of elements of Sn is n! we obtain:

Zt(x)n = (−1)n
Γ(α+ β + n)

Γ(α+ β)

n∏

j=1

∫ +∞

−∞

dkj
2π

∏

1≤i<j≤n

ki − kj
ki − kj + i

n∏

j=1

(ikj + β−α
2

)t

(ikj + α+β
2

)1+x(ikj − α+β
2

)1−x+t
. (F.6.4)

Let us now make the change of variables kj = −i(zj + α+β
2

). We obtain

Zt(x)n =
Γ(α+ β + n)

Γ(α+ β)

n∏

j=1

∫

L

dzj
2πi

∏

1≤i<j≤n

zi − zj
zi − zj − 1

n∏

j=1

(zj + β)t

(zj + α+ β)1+x(zj)1−x+t
, (F.6.5)

where here the contour L = −α+β
2

+ iR is oriented from top to down. Note that the poles of the integrand are now located
at zj = 0, zj = −(α+ β) < 0 and zj = zi − 1 if i < j. Apart from these, the integrand being analytic in zn, and decaying
as 1/z2

n at infinity, the contour of integration on zn can be transformed into Cn, a small, positively oriented, circle around 0
and that excludes −(α+β). Note that this transformation of contour is only possible because we have eliminated the poles
at zj = zi + 1 for j < i that would have arose if one had performed the change of variable kj → zj directly on (F.6.1) and
not on (F.6.4). At this point, one can now recursively close all contours in a so-called nested manner so that, ∀i < j, Ci is
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Re(z)

Im(z)

Figure F.3: The different contours involved in (F.6.6) and (F.6.8). In (F.6.6) the n
variables zi are integrated on the vertical line L which is oriented from top to down
(dotted blue above). In (F.6.8) the zi variables are integrated on different contours
Ci organized in a nested fashion as explained in the text. In the above picture the
red colour is used to emphasize the important properties of the nested contours: they
enclose 0 but not −(α + β), and are such that the contour Cj+1 + 1 (dotted contours
above) is inside Cj ∀j = 2, · · · , n.

positively oriented, contains Cj + 1 (to avoid the pole at zj = zi − 1 for i < j) and excludes −(α+ β) and 0 (see Fig. F.3).
We thus obtain

Zt(x)n =
Γ(α+ β + n)

Γ(α+ β)

n∏

j=1

∫

Cj

dzj
2πi

∏

1≤i<j≤n

zi − zj
zi − zj − 1

n∏

j=1

(zj + β)t

(zj + α+ β)1+x(zj)1−x+t
. (F.6.6)

This formula is almost identical to the formula obtained in Proposition 3.4 of [224] for the moments of the partition
sum in the half-line to point Beta polymer problem, using nj = t− x+ 1 and β ↔ α. Actually, suppressing the first factor
of Gamma function in (F.6.6) and changing

n∏

j=1

(zj + β)t

(zj + α+ β)1+x(zj)1−x+t
→

n∏

j=1

(zj + β)t

(zj + α+ β)x(zj)1−x+t
, (F.6.7)

one obtains exactly the same formula. Hence, from a computational point of view, the half-line to point problem and the
point to point problem appears extremely similar for the Beta polymer. This interesting fact and the formula (F.6.6) was
first pointed out to us by BC [265]. In the end it appears that it is this similarity between the half-line to point and the
point to point problem that is responsible for the fact that both problems have exactly the same fluctuations in the large
deviations regime (see the discussion below (F.5.15)).

Multi-points formulas:
Interestingly, using the techniques used in [224] it is also possible to obtain a formula for the multi-point moments of

the partition sum of the point-to-point Beta polymer as

Zt(x1) · · ·Zt(xn) =
Γ(α+ β + n)

Γ(α+ β)

n∏

j=1

∫

Cj

dzj
2πi

∏

1≤i<j≤n

zi − zj
zi − zj − 1

n∏

j=1

(zj + β)t

(zj + α+ β)1+xj (zj)1−xj +t
, (F.6.8)

where the contours are the same nested contours as those used in (F.6.6) and here 0 ≤ x1 ≤ x2 ≤ ... ≤ xn. The existence
of this formula was pointed out to us by BC [265]. From this formula, successively un-nesting the contours from the Ci to
the L in an opposite manner as what was just done (see Fig. F.3), and performing the change of variables zj = ikj − α+β

2
,

we obtain the formula (F.3.28) that was extensively discussed above.

Moment formula for the Beta polymer in terms of strings
Finally, it is also possible to obtain a formula for the moments of the point-to-point Beta polymer problem using a

decomposition into strings. Proving this formula involves successively shrinking the contours Ci in (F.6.6) on Cn and keeping
track of all the residues encountered in the calculation. This procedure is actually quite tedious but the steps being exactly
similar as those performed in [224] we can easily adapt them to obtain 4

4following the above remarks, (F.6.9) is an adaptation of Proposition 3.6. of [224] with an incorrect
minus sign in the determinant there, which has been corrected here
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Zt(x)n =
Γ(α+ β + n)

Γ(α+ β)
n!

n∑

ns=1

1
ns!

∑

(m1,..mns )n

ns∏

j=1

∫

Cn

dzj
2iπ

det

(
1

zi +mi − zj

)

ns×ns

ns∏

j=1

(
Γ(zj + α+ β)

Γ(zj + α+ β +mj)

)1+x(
Γ(zj)

Γ(zj +mj)

)1−x+t(
Γ(zj + β +mj)

Γ(zj + β)

)t

, (F.6.9)

where C is a small circle around 0 of radius r < 1/2, excluding −(α+ β) and as in (F.5.8)
∑

(m1,··· ,mns )n
means summing

over all ns-uplets (m1, · · · ,mns ) such that
∑ns

i=1
mi = n. We note that performing in this formula the shifts zj =

ikj − α+β
2

−mj/2, we obtain, using

det

[
1

i(ki − kj) + (mi +mj)/2

]

ns×ns

=
ns∏

i=1

1
mi

∏

1≤i<j≤ns

4(ki − kj)2 + (mi −mj)2

4(ki − kj)2 + (mi +mj)2
(F.6.10)

exactly the integrand inside formula (F.5.8), with the difference that here all contours of integrations are well specified
and are different for each ki. It does not seem possible to deform all these contours of integrations onto a single contour L
(one would encounters many poles in doing so) as suggested in the formal formula (F.5.8) and this explain why we could
only find a formal formula. The formula (F.6.9) thus appears as the correct interpretation of (F.5.8)) as a contour integral.

F.6.2 Mellin-Barnes type Fredholm determinant

Finally, following the same steps as in [224] for the half-line to point problem, we obtain from (F.6.9) another Fredholm
determinant formula gt,x(u) = Det

(
I +KMB

t,x

)
defined in (F.4.2) with the kernel 5

KMB
t,x (v, v′) =

1
(2πi)2

∫ 1/2+i∞

1/2−i∞

πds

sin(πs)
(u)s

(
Γ(v + α+ β)

Γ(v + α+ β + s)

)1+x(
Γ(v)

Γ(v + s)

)1−x+t(
Γ(v + β + s)

Γ(v + β)

)t
1

v′ − v − s
,

(F.6.11)

where (v, v′) ∈ C2
0 , with C0 a small circle around 0 of radius r < 1/4 excluding −(α + β) and −1. This formula is valid

for u ∈ C\R−. Repeating the saddle-point analysis on this kernel would lead to the same result (F.5.15) as the one found
heuristically earlier.

F.7 Numerical results

In this section we verify numerically some of the results obtained in the paper. All the results presented in the following are
based on numerical simulations of the Beta polymer with parameters α = β = 1. Using a transfer matrix type algorithm,
we compute numerically the partition sum for 5 × 105 different random environments. For each random environment, we
store the value of the partition sum for different polymers length t from t = 90 to t = 2048 with a power-law type binning as

t = ti = ⌊128
√

2
i/10⌋ with i = 1, · · · , 10, and for different positions. The studied positions are chosen as x = ⌊t/2 + x̂⌋ with

either x̂ = κit
3
4 with κi = 3i/20 and i = 0, · · · , 20 (to study the diffusive regime around the optimal direction ϕopt(1) = 0)

or x̂ = ϕit with ϕi = i/40 with i = 0, · · · , 20 (to study the large deviations regime of the TD-RWRE).

F.7.1 In the diffusive regime.

One-point
Let us first focus on one-point statistics of the rescaled spatial process at finite time Zt(κ) (see (F.4.28)). Using

the simulations described previously, we obtain numerical approximations of its PDF for different times ti and diffusion
parameters κj , and compare it to the infinite time prediction (F.4.36) which we recall here (for the choice α = β = 1):
Z∞(κ) is distributed as Z ∼ Gamma(2). The PDF of Z is thus (see (F.4.3) for the PDF of a Gamma RV with parameter
α+ β)

PGamma(2)(Z) = Ze−Z . (F.7.1)

In Fig. F.4 we compare the numerically obtained PDF for t = 2048 and κ = 0 (i.e. exactly in the central region) in log
and linear scale. The agreement is excellent. In Fig. F.5 we show how this result vary as a function of the diffusion constant
κ and the time t. As a function of the diffusivity constant κ. Important deviations from the asymptotic behavior start to
appear only for κ ≥ κ7 ≃ 0.95. To compare this value, note that the mean value of Zt(κ

√
t) is theoretically predicted to

converge to a gaussian form with

Zt(κ
√
t) ≃ 1

σ
√

2πt
e

− κ2

2σ2 , σ = 1/2 . (F.7.2)

Hence κ7/σ ≃ 1.9 and in terms of probability in the RWRE picture, more than 94% of the accessible positions of the
particles appear very well-described by our asymptotic result for t = 2048.

5similarly (F.6.11) is an adaptation of Theorem 1.12. of [224] with the minus sign missprint there
signaled above corrected here as well
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Figure F.4: Left: Blue line: Empirical PDF of Zt=2048(0) obtained from the numerical
simulations. Black-dashed line: PDF of a Gamma(2) distributed RV (F.7.1). Right:
Same figure in a logarithmic scale. There are no fitting parameters.
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Figure F.5: Left: Difference between the empirical PDF of Zti(0) and the PDF of a
Gamma(2) distributed RV (F.7.1) for i = 1, · · · , 10 (from light gray to black). Middle:
Empirical PDF of Zt=2048(κi) for i = 0, · · · , 9 (from black to light gray) together with
the PDF of a Gamma(2) distributed RV (F.7.1) (black-dashed line). Right: Difference
between the empirical PDF of Zt=2048(κi) and the PDF of a Gamma(2) distributed
RV (F.7.1) for i = 0, · · · , 9 (from black to light gray). There are no fitting parameters.
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Figure F.6: Left (resp. Middle): Blue line: Empirical PDF of Zt=2048(κ0, κ6)
(resp. Zt=2048(κ0, κ3, κ6)). Black-dashed line: PDF of a Gamma(2) distributed RV
(F.7.1) (here there are no fitting parameters.). Right: Blue dots: Empirical variance

(Zt(κ6) − Zt(κ0))2c
obtained from numerical simulations in a log-log scale. The blue

line corresponds to a power-law decay as 1/t3/2.

Multi-points
Let us now verify some of the predictions of our results for the multi-points correlations in the diffusive regime. The

prediction (F.4.36) is that, up to O(1/
√
t) deviations, Zt(κ) converges to a constant process with marginal distribution

Z∞ ∼ Gamma(2). We show here the verification of two consequences of this result. The first one is that, at fixed

κ(1), . . . , κ(n) for n arbitrary, the RV Zt(κ(1), · · · , κ(n)) =
(
Zt(κ(1)) · · · Zt(κ(n))

)1/n
converges to a Gamma(2) distributed

RV. In Fig. F.6 we compare this prediction with the numerically obtained PDF of Zt(κ(1), · · · , κ(n)) for n = 2 with κ(1) = κ0

and κ(2) = κ6 and n = 3 with κ(1) = κ0, κ(2) = κ3 and κ(3) = κ6 and t = 2048 and obtain an excellent agreement. Another

implication of this result is that the variance (Zt(κ(1)) − Zt(κ(2)))2
c

must, for arbitrary κ(1) and κ(2), decay to 0 at large
t faster than 1/

√
t (since corrections to (F.4.36) are O(1/

√
t)). We show in Fig. F.6 that this is the case for κ(1) = κ0 and

κ(2) = κ7 and actually measure a faster decay as 1/t3/2.

F.7.2 In the large deviations regime.

In the ballistic regime we check the result (F.5.14) and (F.5.15). As a function of the angle ϕ the predictions are notably
that, noting Ft(ϕ) = − logZt(ϕ) the free-energy of the DP,

Ft(ϕ)
t

→t→∞ cϕ ,
(Ft(ϕ))2

c

8
1
3 λ2

ϕ

→t→∞ V ar(χGUE) (F.7.3)

where V ar(χGUE) ≃ 0.813 is the variance of the Tracy-Widom GUE distribution and in the case α = β = 1 studied here
the parameters cϕ and λϕ given implicitly by (F.5.15) admits simple expressions (those were already obtain in [224] for the
half-line to point problem):

cϕ = 1 −
√

1 − 4ϕ2 , λϕ =






1
8

2
(

1 −
√

1 − 4φ2

)2

√

1 − 4φ2






1
3

t
1
3 . (F.7.4)

These predictions are checked in Fig. F.7 and Fig. F.8 where we show both the dependence of these results on t (hence
the convergence to the infinite time prediction) and on the angle at fixed t = 2048. The results are satisfying, though the
convergence of the variance is slow as one approaches the optimal angle ϕ = 0 where the Gamma-type fluctuations studied
previously slowly start to dominate for finite time observations.

We now check the prediction (F.5.14) for the full distribution of fluctuations that we now recall: it is predicted that
the rescaled free-energy

f̂t(ϕ) = −−Ft(ϕ) + tcϕ

2
2
3 λϕ

, (F.7.5)

converges as t → ∞ to −χGUE where χGUE is a RV distributed with the GUE Tracy-Widom distribution. This prediction is
checked in Fig. F.8 for t = 2048 and ϕ = ϕ13 by directly comparing the numerically obtained distribution of −f̂t=2918(ϕ13)
with the PDF of the GUE TW distribution. The agreement is satisfying. We also show in Fig. F.9 the convergence of the
rescaled free-energy to the GUE Tracy-Widom distribution as a function of t.

F.8 Conclusion

In this paper we obtained using the Bethe ansatz, based on the results of [5], exact formulas for the statistical properties
of the point to point partition sum of the Beta polymer, or equivalently for the PDF of a directed random walk in a Beta
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Figure F.7: Left: Dots: Empirical mean value Ft(ϕit)/t as a function of t for i =
2, 9, 14 (green, orange and blue). Lines: asymptotic prediction (F.7.3). Right: Dots:
Empirical mean value Ft=2048(ϕt)/t as a function of ϕ. Line: asymptotic prediction
(F.7.3). The numerical values for ϕ ≥ 0.4 are not obtained due to numerical errors
caused by the difficulty of dealing both with ’large’ (∼ 1/

√
t) values of the partition

sum at small ϕ and exponentially small (∼ e−cϕt) values of the partition sum at large
ϕ that are simply set to 0 by the algorithm. There are no fitting parameters..
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largest values of ϕ are not obtained due to numerical errors, see Fig. F.7. There are
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Figure F.9: Left : Blue line: Empirical PDF of −f̂t=2048(ϕ13). Black-dashed line: PDF
of a GUE Tracy-Widom distributed RV. Midlle: same as left in a logarithmic scale.
Right: Difference between the empirical PDF of −f̂ti(ϕ13) and the PDF of a GUE
Tracy-Widom distributed RV for i = 1, · · · , 10 (from light-gray to black). There are
no fitting parameters.
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distributed random environment. These results complement the results of [224] where the half line to point partition sum,
or equivalently the CDF of the RWRE, were considerer and a different type of Bethe ansatz approach was used.

We first obtained in Sec. F.3 an exact formula for the moments of the point to point partition sum (F.3.27). This
formula was derived using the Bethe ansatz with periodic boundary conditions on a line of length L → ∞. This procedure
highlighted the repulsive nature of the model, an interesting property that distinguishes this model from other exactly
solvable models of directed polymers, and which was related to the RWRE interpretation of the model. Based on this
formula we obtained in Sec. F.4 Cauchy-type Fredholm determinant formulas for the Laplace transform of the partition
sum (F.4.7), (F.4.10), (F.4.12). Using these formulas we obtained asymptotic results for the PDF of the partition sum of
the DP in the large time limit in the diffusive regime around the optimal direction of the RWRE. In this regime we showed
that the distribution of a rescaled partition sum (F.4.28) converges to a Gamma distribution (F.4.30). This result was then
extended to multi-point correlations (F.4.36). We therefore obtained a complete picture of the fluctuations in the diffusive
regime around the optimal direction, the spatial region which, in the RWRE language, actually asymptotically contains all
the probability. The results in this regime of fluctuations are qualitatively new, as they are different from the KPZ scaling
unveiled in BC [224], and they open new perspectives in the study of RWRE.

We then obtained in Sec. F.5 an alternative formula for the moments of the partitions sum of the Beta polymer (F.5.8)
expressed in terms of residues calculations. This formula allowed us to formally perform the asymptotic analysis in other
directions (thus in the large deviations regime of the RWRE). There we showed that the fluctuations of the free energy
of the polymer scale as t1/3 and are distributed with the Tracy-Widom GUE distribution (F.5.14), a result expected from
KPZ universality for point to point directed polymers. Interestingly we found that this result was formally equivalent to
the result of [224] for the half line to point partition sum and therefore showed that the fluctuations of the PDF and of the
CDF in the RWRE picture are identical up to O(t1/3) included. Based on our results in both the large deviations regime
and the optimal direction regime, we also discussed the very interesting crossover regime between them, and identified the
crossover scale x ∼ t3/4.

In Sec. F.6 we discussed the relations between our approach and the approach of BC [224, 265] and justified a posteriori
some results obtained using formal computations in Sec. F.5. Finally in Sec. F.7 we checked our main results using numerical
simulations.

For future works it would be interesting to obtain a better understanding of the crossover regime between Gamma
and Tracy-Widom fluctuations in this model. Another interesting aspect would be to understand the universality of our
conclusions. In this spirit this work, together with [224], provides tools and results to analyze an exactly solvable model of
RWRE which could serve as a testbed for future works on the subject.

We are very grateful to G. Barraquand and I. Corwin for useful remarks and discussions and for sharing their results
with us. We also thank them for useful comments on a preliminary version of this manuscript. We acknowledge hospitality
from the KITP in Santa Barbara where part of this work was conducted. This research was supported in part by the
National Science Foundation under Grant No. NSF PHY11-25915. We acknowledge support from PSL grant ANR-10-
IDEX-0001-02-PSL.

F.9 Appendix A: Fredholm determinant formula

In this appendix we show how to obtain the Fredholm determinant formula (F.4.7) starting from the moment formula
(F.3.27). It is based on the following Cauchy determinant identity:

∏

1≤i<j≤n

(ki − kj)2

(ki − kj)2 + 1
= det

[
1

i(ki − kj) + 1

]

n×n
. (F.9.1)

This allows to rewrite gt,x(u) as, absorbing a factor 2 in the determinant,

gt,x(u) =
∞∑

n=0

un

n!

n∏

j=1

∫

R

dkj
π

det

[
1

2i(ki − kj) + 2

]

n×n

n∏

j=1

(ikj + β−α
2

)t

(ikj + α+β
2

)1+x(ikj − α+β
2

)1−x+t

=
∑

σ∈Sn

(−1)|σ|
∞∑

n=0

un

n!

n∏

j=1

∫

R

dkj
π

∫

vj>0

e−2vj (i(kj −kσ(j))+1) (ikj + β−α
2

)t

(ikj + α+β
2

)1+x(ikj − α+β
2

)1−x+t
(F.9.2)

where from the first to second line we have rewritten the determinant as a sum over permutations and used the identity
1/z =

∫

v>0
e−vz, valid for Re(z) > 0. We then perform the change

∑

j
vjkσ(j) and relabel as σ → σ−1 to obtain

gt,x(u) =
∑

σ∈Sn

(−1)|σ|
∞∑

n=0

un

n!

n∏

j=1

∫

R

dkj
π

∫

vj>0

e−2ikj (vj −vσ(j))−(vj +vσ(j)) (ikj + β−α
2

)t

(ikj + α+β
2

)1+x(ikj − α+β
2

)1−x+t

=
∞∑

n=0

un

n!

n∏

j=1

∫

R

dkj
π

∫

vj>0

det

[

e¯2ikj (vj −vi)−(vj +vi) (ikj + β−α
2

)t

(ikj + α+β
2

)1+x(ikj − α+β
2

)1−x+t

]

n×n
, (F.9.3)

ans the last expression is exactly the Fredholm determinant expression associated with the kernel (F.4.7).
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F.10 Appendix B: Probability distribution of Zt(x) for finite polymers lengths.

In this section we obtain, at least a formal level, a formula for the PDF of Zt(x) for arbitrary (t, x) ∈ N
2. To do so, let us

assume that Zt(x) can be written as the product of 3 independent ‘random variables’:

Zt(x) = Z1Z2Z3(t, x) . (F.10.1)

Where (i) Z1 is distributed as an exponential distribution, i.e. its positive integer moments are Zn1 = n!; (ii) Z2 is distributed
as a Gamma variable with parameters α + β, i.e. its moments are Zn2 = Γ(α + β + n)/Γ(α + β); (iii) Z3 is distributed
according to an unknown density (which might not be a PDF) P (Z3) that we determine self-consistently below. Using the
definition of gt,x(u) in (F.4.2), we obtain

gt,x(u) =
∞∑

n=0

(−u)nΓ(α+ β)
n!Γ(α+ β + n)

Zt(x)n =
∞∑

n=0

(−u)n(Z3(t, x))n =

∫

dZ3P (Z3)
1

1 + uZ3
. (F.10.2)

Assuming an analytical continuation of gt,x(u) we write,

gt,x

( 1
−v − iǫ

)

=

∫

dZ3P (Z3)
−v

Z3 − v − iǫ
. (F.10.3)

And we obtain

P (Z3) =
1

2iπv
lim
ǫ→0+

(

gt,x

( 1
−v + iǫ

)

− gt,x

( 1
−v − iǫ

))

. (F.10.4)

Hence, using the Fredholm determinant formulas for gt,x(u) (F.4.6), (F.4.9), (F.4.11) or also (F.6.11), one obtains P (Z3)
by computing the limit (F.10.4). The distribution of Zt(x) is then obtained using (F.10.1).

F.11 Appendix C: Obtention of formula (F.5.8).

In this appendix we detail the heuristic reasoning that led to formula (F.5.8). It is based on the comparison of two equivalent
formulas for the moments of the Strict-Weak polymer that we obtain in the first part of the Appendix. These formulas are
obtained using either the fact that the Strict-Weak polymer can be obtained as a limit of the Inverse-Beta polymer or as a
limit of the presently studied Beta polymer. More precisely, in the following we will use that,

ZSWt (x) = lim
γ→∞

γxZIBt (x) , (F.11.1)

ZSWt (x) = lim
α→∞

Zt(x) . (F.11.2)

Where here,

1. ZSWt (x) is the point-to-point partition sum of the so-called Strict-Weak polymer with disorder on horizontal weights
only. It is a model defined similarly to the Beta polymer with u = 1 and v ∼ Gamma(β). We refer the reader to
[219, 220] for more details on this model.

2. ZIBt (x) is the point-to-point partition sum of the Inverse-Beta polymer with the same conventions as those of [5]
and parameter γ > 0. We refer the reader to [5] for more details on this model, in particular the proof of the limit
(F.11.1).

3. Zt(x) is the point-to-point partition sum of the Beta polymer studied in this paper. We refer the reader to [224] for
the proof of the limit (F.11.2).

Using these two limits, we will obtain two equivalent formulas for (ZSWt (x))n that will suggest a correspondence between
two different types of residues expansion.

F.11.1 Two equivalent formulas for the Strict-Weak polymer

a From the Inverse-Beta to the Strict-Weak

In [5] we obtained a formal expression for the moments of the Strict-Weak polymer with horizontal weights. We recall here
the full discussion for completeness. Starting from the moment formula of the Inverse-Beta polymer

ZIBt (x)n =
Γ(γ)

Γ(γ − n)
n!

n∑

ns=1

1
ns!

∑

(m1,..mns )n

ns∏

j=1

∫ +∞

−∞

dkj
2π

∏

1≤i<j≤ns

4(ki − kj)2 + (mi −mj)2

4(ki − kj)2 + (mi +mj)2

ns∏

j=1

1
mj

(
Γ(−mj

2
+ γ

2
− ikj)

Γ(
mj

2
+ γ

2
− ikj)

)1+x(
Γ(−mj

2
+ γ

2
+ ikj)

Γ(
mj

2
+ γ

2
+ ikj)

)1−x+t(
Γ(β + ikj + γ

2
+

mj

2
)

Γ(β + ikj + γ
2

− mj

2
)

)t

, (F.11.3)
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We obtain a moment formula for the Strict-Weak polymer with initial condition ZSWt (x = 0) = δx,0 using the limit
(ZSWt (x))n = limγ→∞ γnxZIBt (x)n. The point-wise limit of the integrand cannot be simply taken and we need to first
perform the change of variables kj → kj + i γ

2
. We obtain

(ZSWt (x))n = lim
γ→∞

Γ(γ)
Γ(γ − n)

γnxn!
n∑

ns=1

1
ns!

∑

(m1,..mns )n

ns∏

j=1

∫

Ln

dkj
2π

∏

1≤i<j≤ns

4(ki − kj)2 + (mi −mj)2

4(ki − kj)2 + (mi +mj)2

ns∏

j=1

1
mj

(
Γ(−mj

2
+ γ − ikj)

Γ(
mj

2
+ γ − ikj)

)1+x(
Γ(−mj

2
+ ikj)

Γ(
mj

2
+ ikj)

)1−x+t(
Γ(β + ikj +

mj

2
)

Γ(β + ikj − mj

2
)

)t

. (F.11.4)

Where L = −i γ
2

+ R. Since the integral over kj quickly converges as O(1/k
2mj

j ), we can now close the different contours of
integrations on the upper half plane before taking the limit γ → ∞. This leads to:

form1 := (ZSWt (x))n = n!
n∑

ns=1

1
ns!

∑

(m1,..mns )n

ns∏

j=1

∫

L̃n

dkj
2π

∏

1≤i<j≤ns

4(ki − kj)2 + (mi −mj)2

4(ki − kj)2 + (mi +mj)2

ns∏

j=1

1
mj

(
Γ(−mj

2
+ ikj)

Γ(
mj

2
+ ikj)

)1−x+t(
Γ(β + ikj +

mj

2
)

Γ(β + ikj − mj

2
)

)t

, (F.11.5)

where L̃ is an horizontal line that stays below all the poles of the integrand. This formula is formal because the resulting
integral does not converge, but one must remember that we have formally already closed the contours of integrations.
Computing the integral on ki thus just amounts at taking the sum over the residues of all the poles of the integrand with a
plus sign except those of the type ki = kj − iA where A > 0 (since the contours have been closed on the upper half-plane).

b From the Beta to the Strict-Weak

We now obtain an alternative formula for (ZSWt (x))n, starting instead from the moment of the Beta polymer:

Zt(x)n = (−1)n
Γ(α+ β + n)

Γ(α+ β)

n∏

j=1

∫ +∞

−∞

dkj
2π

∏

1≤i<j≤n

(ki − kj)2

(ki − kj)2 + 1

n∏

j=1

(ikj + β−α
2

)t

(ikj + α+β
2

)1+x(ikj − α+β
2

)1−x+t

(F.11.6)

And we use (ZSWt (x))n = limα→∞ αnxZt(x)n. As before, the point-wise limit of the integrand cannot be taken and we need
to take first kj = −i(α + β)/2 + k′j where k′

j ∈ i(α + β)/2 + R, successively close all the contours on the lower-half-plane
and finally take the α → ∞ limit. In this way we obtain again a formal formula as

form2 := (ZSWt (x))n = (−1)n
n∏

j=1

∫

L′

dkj
2π

∏

1≤i<j≤n

(ki − kj)2

(ki − kj)2 + 1

n∏

j=1

(ikj + β)t

(ikj)1−x+t

(F.11.7)

now L′ is a straight line that stays above all the poles of the integrand. This is again true only in a formal sense given by
residues calculation (since we have already closed all the contours on the lower half plane): computing the formal integral
on ki in (F.11.7) amounts at taking the sum over the residues of all the poles of the integrand with a minus sign except
those of the type ki = kj + i.

F.11.2 A formal formula for the moments of the Beta polymer.

We now give the reasoning that leads to (F.5.8). The comparison of the two formal formulas (F.11.5) and (F.11.7) for the
moments of the Strict-Weak polymer shows that there is a correspondence between two types of residues calculation.

Let us now do two remarks:
(i) We first note that in going from (F.11.7) to (F.11.5) the product terms in the integrand are formally changed as

ikj +X → Γ(ikj +X +
mj

2
)

Γ(ikj +X − mj

2
)
. (F.11.8)

(ii) We note that the difference between the formula for the moments of the Beta polymer and (F.11.7) is only that,
for the moments of the Beta polymer, an additional

n∏

j=1

(
1

ikj + (α+ β)

)1+x

(F.11.9)
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term is present in the product terms of the integrand. Furthermore, note that it is possible to evaluate the formula for
(Zt(x))n using only the residues taken into account in (F.11.7) and not those coming from (F.11.9).

The idea beneath (F.5.8) is thus just to add in (F.11.5) the equivalent of (F.11.9) in the product term of the integrand
following the rule (F.11.8). That is we add to (F.11.5) the term

ns∏

j=1

(

Γ
(
ikj + (α+ β) − mj

2

)

Γ
(
ikj + (α+ β) +

mj

2

)

)1+x

. (F.11.10)

And the residues taken into account in the calculation of (F.5.8) are exactly those taken into account in (F.11.5). Note
that (F.5.8) can almost be obtained from the formula for the moments of the Inverse-Beta polymer (F.11.3) by using Euler’s
reflection formula on the first factor of Gamma function and putting γ = 1 − α − β. In doing so however one obtains an
additional unwanted (−1)m term.

F.12 Appendix D: Proof of a symmetrization identity

In this appendix we prove the formula (F.6.2) used in the main text. Let us show that, ∀n ∈ N, n ≥ 2 and ∀(k1, · · · , kn) ∈ C
n

1
n!

∑

σ∈Sn

∏

1≤i<j≤n

kσ(i) − kσ(j)

kσ(i) − kσ(j) + i
=

∏

1≤i<j≤n

(ki − kj)2

(ki − kj)2 + 1
. (F.12.1)

We proceed by recurrence on n and prove (F.12.1) ∀(k1, · · · , kn) ∈ C
n distincts: this is sufficient since (F.12.1) is trivially

true whenever two ki are equal. The identity (F.12.1) is trivial for n = 2. Let us now see how the identity for some n ≥ 2
imply the identity for n+ 1. Since any permutation σ ∈ Sn+1 can be written in a unique way for some m ∈ {1, · · · , n+ 1}
as σ = τm,n+1 ◦ σ̃ with σ̃ a permutation of Sn+1 such that σ̃(n+ 1) = n+ 1 (thus equivalent to a permutation of Sn) and
τm,n+1 the transposition m ↔ n+ 1 we have

1
(n+ 1)!

∑

σ∈Sn+1

∏

1≤i<j≤n+1

kσ(i) − kσ(j)

kσ(i) − kσ(j) + i

=
1

(n+ 1)!

n+1∑

m=1

∑

σ̃∈Sn+1|σ̃(n+1)=n+1

∏

1≤i<j≤n

kτm,n+1◦σ̃(i) − kτm,n+1◦σ̃(j)

kτm,n+1◦σ̃(i) − kτm,n+1◦σ̃(j) + i

n∏

i=1

kτm,n+1◦σ̃(i) − kτm,n+1◦σ̃(n+1)

kτm,n+1◦σ̃(i) − kτm,n+1◦σ̃(n+1) + i

=
1

(n+ 1)!

n+1∑

m=1

∑

σ̃∈Sn+1|σ̃(n+1)=n+1

∏

1≤i<j≤n
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i=1,i6=m

ki − km
ki − km + i

=
n!

(n+ 1)!
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2
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i=1,i6=m

ki − km
ki − km + i

(F.12.2)

=
1

n+ 1

n+1∑

m=1

∏

1≤i<j≤n

(kτm,n+1(i) − kτm,n+1(j))
2

(kτm,n+1(i) − kτm,n+1(j))2 + 1

m−1∏

i=1

ki − km
ki − km + i

n+1∏

i=m+1

km − ki
km − ki − i

=
1

n+ 1
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m=1

∏

1≤i<j≤n

(kτm,n+1(i) − kτm,n+1(j))
2

(kτm,n+1(i) − kτm,n+1(j))2 + 1

m−1∏

i=1

(ki − km)2

(ki − km)2 + 1

n+1∏

i=m+1

(km − ki)2

(km − ki)2 + 1

×
m−1∏

i=1

ki − km − i

ki − km

n+1∏

i=m+1

km − ki + i

km − ki

=
1

n+ 1

n+1∑

m=1

∏

1≤i<j≤n+1

(ki − kj)2

(ki − kj)2 + 1

m−1∏

i=1

ki − km − i

ki − km

n+1∏

i=m+1

km − ki + i

km − ki

=

(
∏

1≤i<j≤n+1

(ki − kj)2

(ki − kj)2 + 1

)

ψ(k1, · · · , kn+1) (F.12.3)

Where in (F.12.3) we have used the recursion hypothesis and we have defined

ψ(k1, · · · , kn+1) =
1

n+ 1

n+1∑

m=1

m−1∏

i=1

ki − km − i

ki − km

n+1∏

i=m+1

km − ki + i

km − ki
. (F.12.4)

Note also that in the above derivation we have taken the liberty to write products on empty set: such a product is obviously
interpreted as 1. To show (F.12.1) it remains to show that ψ is constant and equal to 1 ∀(k1, · · · , kn+1) ∈ C

n+1 distincts.
Let us first show that ψ(k1, · · · , kn+1) is analytic in k1 on C. The only thing to do is to prove that ∀j ∈ {2, · · · , n + 1},
the residue of ψ(k1, · · · , kn + 1) at k1 = kj is actually 0. It is obvious that the possible pole at k1 = kj is at most of order
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1. Let us thus write k1 = kj + δk and focus on the term of order 1/δk in (F.12.4). These terms only come from the term
m = 1 and m = j in the sum over m. We obtain

ψ(kj + δk, · · · , kn+1) =
1

n+ 1

(
n+1∏

i=2

kj + δk − ki + i

kj + δk − ki
+
kj + δk − kj − i

kj + δk − kj

j−1∏

i=2

ki − kj − i

ki − kj

n+1∏

i=j+1

kj − ki + i

kj − ki

)

+O(1)

=
i

n+ 1

(
n+1∏

i=2,i6=j

kj − ki + i

kj − ki
−
j−1∏

i=2

ki − kj − i

ki − kj

n+1∏

i=j+1

kj − ki + i

kj − ki

)

1
δk

+O(1)

= O(1) . (F.12.5)

Where again we have used the convention that a product on an empty set is 1. Hence ψ(kj + δk, · · · , kn+1) has no poles
ans is analytic on C. Finally, it is obvious that

lim
|k1|→∞

ψ(k1, · · · , kn+1) = 1 . (F.12.6)

Hence, ψ(k1, · · · , kn+1) is analytic and is necessarily bounded. It is thus constant and equal to its limit as |k1| → ∞ and
thus ψ(k1, · · · , kn+1) = 1 ∀(k1, · · · , kn+1) ∈ C

n+1. This terminates the proof of (F.12.1).
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Paper: Stationary measures for two dual
families of finite and zero temperature mod-
els of directed polymers on the square lattice

The following is essentially the article published as
Title: Stationary measures for two dual families of finite and zero temperature models of directed polymers on the square
lattice
Authors: Thimothée Thiery
ArXiv: 1604.07995
Journal-Ref: Journal of Statistical Physics, 2016
Abstract: We study the recently introduced Inverse-Beta polymer, an exactly solvable, anisotropic finite temperature
model of directed polymer on the square lattice, and obtain its stationary measure. In parallel we introduce an anisotropic
zero temperature model of directed polymer on the square lattice, the Bernoulli-Geometric polymer, and obtain its stationary
measure. This new exactly solvable model is dual to the Inverse-Beta polymer and interpolates between models of first
and last passage percolation on the square lattice. Both stationary measures are shown to satisfy detailed balance. We
also obtain the asymptotic mean value of (i) the free-energy of the Inverse-Beta polymer; (ii) the optimal energy of the
Bernoulli-Geometric polymer. We discuss the convergence of both models to their stationary state. We perform simulations
of the Bernoulli-Geometric polymer that confirm our results.

G.1 Introduction

The directed polymer (DP) problem, i.e. the statistical mechanics problem of directed paths in a random environment,
has been the subject of intense studies both from the physics and mathematics community (see e.g. [40, 201] for early
physics work). The DP is a classical example of equilibrium statistical mechanics of disordered systems, but its importance
goes well beyond this field, notably because of its connection with the Kardar-Parisi-Zhang (KPZ) universality class [33]
(for recent reviews see [151, 35, 34]). In the field of DPs in dimension 1 + 1, important progresses have been possible
thanks to the existence of models with exact solvability properties, that is models for which, for one or several reasons,
exact computations are possible. Examples of such properties include notably Bethe ansatz (BA) integrability, existence of
combinatorial mappings (Robinson-Schensted-Knuth (RSK) correspondence and geometric RSK (gRSK) correspondence)
and the exact solvability property (ESP) which is the focus of this work, an exactly known stationary measure (SM). A
given model can have one or several of those properties. The continuum directed polymer is BA solvable [201] and its
SM is also known: starting from an initial condition such that the free-energy of the DP performs a Brownian motion, it
remains so at all time [248, 195]. Geometric and exponential last passage percolation are exactly solvable using the RSK
correspondence [159], can also be mapped (see e.g. [160]) onto the totally asymmetric exclusion process (TASEP), which is
exactly solvable by BA, and its SM is also exactly known. The first discovered exactly solvable model of DP on the square
lattice at finite temperature, the Log-Gamma polymer, was introduced because of the possibility of writing down exactly
its SM [197]. It was later shown that the model was exactly solvable using the gRSK correspondence [198] and also the
BA [4]. The shortly after introduced Strict-Weak polymer also enjoy all three properties [219, 220] while for the recently
discovered Beta [224, 6] and Inverse-Beta polymer [5] only BA solvability has been shown (although a work on the SM of
the Beta polymer is currently in preparation [267]).

The links between these different types of ESPs are not yet understood. As such the discovery of an ESP in a model is of
great interest, even when the model already has one known ESP. This is true from a mathematical point of view since these
properties are signs of a rich underlying mathematical structure, but it is also important from the perspective of calculating
relevant physical observables since each ESP has interesting applications. In particular, although most of the recent focus
in exactly solvable models of DP has been on the derivation of exact distribution of fluctuations of the free-energy at large
scale, an information which is not contained in the SM and for which RSK/gRSK correspondence [159, 218, 220] and BA
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solvability [173, 165, 6, 5, 224, 4] are more adapted, the exact knowledge of the SM is of great interest. The SM indeed
contains information on the multi-point correlations of the DP free-energy at large scale. These are notoriously hard to
obtain using other analytical techniques. More generally the SM allows to study different questions in a complementary
fashion to other ESPs. An important historical example of application of the knowledge of the SM of the continuum DP
can be found in [248, 195]: together with the Galilean invariance, it provided the first (and probably still the simplest)
derivation of the critical exponents of the KPZ universality class. More recently in the Log-Gamma case, the SM was e.g.
used to obtain a rigorous derivation of the critical exponents of the DP [197], or also to derive a precise characterization of
the localization properties of the DP [229].

The goal of this paper is twofold. First we obtain the stationary measure of the recently discovered Inverse-Beta
polymer. In a few words in the stationary state the free-energy of the DP performs a random walk with Inverse-Beta
distributed increments, thus generalizing in a discrete setting the stationary measure of the continuum DP. The existence
of this stationary measure is rather natural since the Inverse-Beta polymer is an anisotropic finite temperature model (with
two parameters γ, β > 0) of DP on the square lattice which in different limits converges in law to the Log-Gamma (β → ∞,
the isotropic limit) and Strict-Weak polymer (γ → ∞, the strongly anisotropic limit). These two models possess an exactly
known SM that we will generalize to the Inverse-Beta polymer, and our approach will have a strong methodological and
conceptual overlap with the one used by Seppäläinen in [197]. Secondly we introduce a new anisotropic 0 temperature model
of DP on the square lattice (with two parameters q, q′ ∈ [0, 1[), which we call the Bernoulli-Geometric polymer, and obtain
exactly its stationary measure. This model interpolates between the exactly solvable geometric first passage percolation
problem studied in [216] (in the q → 0 limit) and the geometric last passage percolation problem e.g. studied in [159] (in the
q′ → 0 limit). The existence of this model was already suggested in [5] following the fact that a 0 temperature limit (γ = ǫγ′

β = ǫβ′ and ǫ → 0) of the Inverse-Beta polymer gave an anisotropic generalization of exponential last passage percolation.
Since (isotropic) last passage percolation is exactly solvable both for geometric and exponential distribution of random
waiting times (the exponential case being the limit q = 1 − γ′ǫ with ǫ → 0 of the geometric case), it was rather natural
to conjecture that an exactly solvable anisotropic generalization of geometric last passage percolation should exist. This
motivated the search for such a model. The Bernoulli-Geometric polymer introduced in this paper appears as this missing
model, and we thus complement the rich universe of exactly solvable models of DP on the square lattice (see Fig. G.1). For
the finite temperature case in particular, the only known model not present in this framework is the Beta polymer, which
somehow lives in a different class since it has the peculiarity of also being a model of random walk in a random environment
[224, 6].

Before we give the main results of the paper and define the Inverse-Beta and Bernoulli-Geometric polymers in Sec. G.3,
let us start by explaining more precisely the general question that is tackled in this article on a simpler model.

G.2 Recall: stationary measure of the Log-Gamma polymer

In this section for pedagogical purposes we recall the stationary measure of the Log-Gamma polymer. The results that we
obtain on the stationary measure of the Inverse-Beta polymer can be seen as a generalization of the known results presented
in this section to a richer model, and we believe it can be useful for non-specialists to first recall here those simpler results.
Specialists on the other hand are encouraged to jump directly to Sec. G.3.

Let us first consider the case of an abstract, homogeneous model of directed polymer on the square lattice with on-site
disorder: the random environment is defined by drawing random Boltzmann weights Wx1,x2 > 0 at each point (x1, x2)
of N

2. Boltzmann weights on different lattice sites are supposed to be independent and homogeneously distributed as a
positive random variable (RV) W with a probability distribution function PW (W ). The partition sum of DP with starting
point (x1, x2) = (0, 0) and endpoint (x1, x2) ∈ N

2 is defined by

Zx1,x2 :=
∑

π:(0,0)→(x1,x2)

∏

(x′
1
,x′

2
)∈π

Wx′
1
,x′

2
, (G.2.1)

where the sum
∑

π:(0,0)→(x1,x2)
is over all directed paths, also called up-right paths, from (0, 0) to (x1, x2). Those are the

paths such that the only jumps allowed are to the right, i.e. as (x1, x2) → (x1+1, x2) or upward, i.e. as (x1, x2) → (x1, x2+1)
(see Fig. G.2). For a given model of DP, one would like e.g. to characterize the asymptotic properties of Zx1,x2 in the limit
of long polymers t = x1 +x2 → ∞. In this paper we focus on the horizontal and vertical ratios of partition sums defined as

Ux1,x2 :=
Zx1,x2

Zx1−1,x2

, Vx1,x2 :=
Zx1,x2

Zx1,x2−1
. (G.2.2)

Introducing the variables t = x1 + x2 (the length of the polymers) and x = x1 and the notations Ut(x) := Ux,t−x and
Vt(x) := Vx,t−x, we are interested in obtaining the distribution of these RVs in the limit of long polymers in a given
direction. That is, for a given ϕ ∈] − 1/2, 1/2[ (see Fig. G.2) and ∀T ∈ N

∗, X ∈ N
∗, we are interested in the set of RVs

(
Ũt′ (x

′), Ṽt′ (x
′)
)

t′∈[0,T ],x′∈[−X,X]
:= lim

t→∞

(
Ut+t′ ((1/2 + ϕ)t+ x′), Vt+t′ ((1/2 + ϕ)t+ x′)

)

t′∈[0,T ],x′∈[−X,X]
. (G.2.3)

The only known finite temperature model of DP on Z
2 with on-site disorder (i.e. defined as above) for which characterizing

exactly the properties of the asymptotic process
(
Ũt′ (x

′), Ṽt′ (x
′)
)

t′∈[0,T ],x′∈[−X,X]
is possible is the Log-Gamma polymer. In

this case, the random Boltzmann weights are distributed as the inverse of a gamma random variable: W ∼ Gamma(γ)−1.
Here ∼ means ‘distributed as’ and we recall that a RV x is gamma distributed with parameter α > 0 if its PDF is
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Figure G.1: The Inverse-Beta polymer is at the center of a large class of finite tempera-
ture exactly solvable models of DP on the square lattice with continuous random ener-
gies (left), but also admits zero-temperature limiting models (‘below the dashed-line’,
in the limit min(γ, β) → 0). Conversely, the Bernoulli-Geometric polymer introduced
in this paper is at the center of a large class of zero-temperature models of DP on the
square lattice with discrete random energies (left), but it also admits limiting models
with continuous energies (‘below the dashed-line’, in the limit max(q, q′) → 1), which
coincide with the limiting zero-temperature models of the Inverse-Beta polymer. Ar-
rows indicate the possibility of taking a limit from one model to another. The models
shown in this picture are defined in Sec. G.3, Sec. G.4.4 and Sec. G.5.2. Different
known exact solvability properties of the various models are here indicated by blue
squares for BA solvability, green triangles for RSK or gRSK solvability and by red
dots for exactly known stationary measures. The red dots enclosed by a dashed-line
(as well as the definition of the Bernoulli-Geometric polymer) are some of the results
of this work.

t

x = x1

x2

ϕ

Figure G.2: A model of directed polymer on Z
2. Green: an admissible (i.e. up/right)

polymer path of length t = 9 with starting point (0, 0) and endpoint (x1, x2) = (5, 4).
We are interested in the stationarity properties that are reached in the limit of long
polymers in a given direction ϕ.
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p(x) = 1
Γ(α)

x−1+αe−xθ(x) (Γ is the Euler’s gamma function and θ is the Heaviside theta function). For this special choice
of distribution, although it is not mathematically fully proven, the (mathematically rigorous) results of [197, 268] lead to
the conjecture that in this case

At fixed t′ ∈ [0, T ] the variables (Ũt′ (x
′))x′∈[−X,X] and (Ṽt′ (x

′))x′∈[−X,X] are all independent and distributed as
Ũt′ (x

′) ∼ Gamma(γ − λ)−1 and Ṽt′ (x
′) ∼ Gamma(λ)−1. The additional parameter λ ∈]0, γ[ depends on ϕ and is the

solution of the equation 0 = −(1/2 + ϕ)ψ′(γ − λ) + (1/2 − ϕ)ψ′(λ), where ψ(x) = Γ′(x)/Γ(x) is the digamma function.

An additional property of reversibility of the process is known from [197]. These properties rely on a non trivial property
of gamma distributions (see Lemma 3.2 in [197]). Moreover, Lemma 3.2 of [197] also suggests that the Log-Gamma polymer
is the only model with on-site disorder for which it is possible to obtain exactly the stationary measure. One of the purposes
of this paper is to show that it is also possible to obtain exactly the stationary measure in the Inverse-Beta polymer, an
anisotropic finite temperature model of DP on Z

2 with on-edge disorder that generalizes both the Log-Gamma and Strict-
Weak models. We also obtain similar results for the Bernoulli-Geometric polymer, a related zero temperature model that
we introduce in this paper.

G.3 Overview: definitions, main results and outline

G.3.1 Definitions of the models of directed polymers

a General notations

All the models of DPs considered in this paper live on the square lattice Z
2. We will consider two coordinate systems on

Z
2, the usual Euclidean coordinates (x1, x2) ∈ Z

2 and the (t, x) coordinates t = x1 + x2 and x = x1 (see Fig.G.3). The
variable t will often corresponds to the length of the polymers. To avoid confusion, an arbitrary real function on the lattice,
f : (x1, x2) ∈ Z

2 → f(x1, x2) ∈ R will be denoted either as fx1,x2 := f(x1, x2), or as ft(x) = f(x1 = x, x2 = t − x). The
random environment will live on the edges of Z2 and we will generally note by e an edge of Z2.

b Finite temperature models: The Inverse-Beta polymer(s)

We now define three versions of the Inverse-Beta (IB) polymer. The first is the usual point to point IB polymer introduced
in [5]. Its partition sum will be noted Zx1,x2 . The second is the IB polymer with boundaries, a model which possesses
a stationarity property and whose definition is original to this work. Its partition sum will be noted Ẑx1,x2 . The third
model is the IB polymer with a stationary initial condition, with partition sum Žx1,x2 , which also possesses a stationary
property and whose definition is original to this work. It is intimately linked with the IB polymer with boundaries and is
closer in spirit to the stationary models considered for the continuum DP. The first model will be defined by choosing two
parameters (γ, β) ∈ R

2
+ (henceforth referred to as the bulk parameters). The others have one additional parameter λ ∈]0, γ[,

which will specify one stationary measure among a family of stationary measures at fixed (γ, β) (henceforth referred to
as the stationarity or boundary parameter). Throughout this work the use of the hat and check notations will permit to
distinguish between quantities associated to each model.

Definition G.3.1. The point to point IB polymer We recall here the definition of the point to point IB polymer
partition sum as studied using Bethe ansatz in [5]. To each vertex (x1, x2) ∈ Z

2 of the square lattice is associated a random
variable Wx1,x2 ∈ R+. The set of RVs {Wx1,x2 , (x1, x2) ∈ Z

2} consists of independent, identically distributed (iid) RVs
distributed as W ∼ 1

B
− 1 where B ∈ [0, 1] is a Beta RV of parameters γ and β > 0. The PDF P (B) of a Beta random

variable is

B ∼ Beta(γ, β) ⇐⇒ P (B) =
Γ(γ + β)
Γ(γ)Γ(β)

Bγ−1(1 −B)β−1θ(B)θ(1 −B) , (G.3.1)

where here and throughout the rest of the paper ∼ means ‘distributed as’, Γ is the Euler’s gamma function and θ is the
Heaviside theta function. Given a random environment specified by a drawing of Wx1,x2 at each vertex (x1, x2) ∈ Z

2, we
associate to each edge of the square lattice e a random Boltzmann weight (BW) w(e) as follows. The random BWs w(e) on
horizontal (resp. vertical) edges will be denoted by the letter u (resp. v) and indexed by the vertex to which they lead (see
left of Fig. G.3 and beware that we use here the opposite convention compared to [5]), and given in terms of Wx1,x2 by

w((x1 − 1, x2) → (x1, x2)) = ux1,x2 = Wx1,x2 > 0 ,

w((x1 − 1, x2) → (x1, x2)) = vx1,x2 = Wx1,x2 + 1 > 1 . (G.3.2)

Hence in this model the BWs on different edges are correlated if and only if they lead to the same vertex, since in this
case v = u+ 1, and the vertical direction is always favored compared to the horizontal one. The model is thus anisotropic.
It interpolates between two other known exactly solvable models of DP on Z

2: the Log-Gamma polymer (isotropic β → ∞
limit) and the Strict-Weak polymer (γ → ∞ limit, see Sec. G.4.4). Let us write here for clarity the PDF of W , noted
PW (W ):

W ∼ 1
Beta(γ, β)

− 1 > 0 , PW (W ) =
Γ(γ + β)
Γ(γ)Γ(β)

(

1 − 1
W + 1

)β−1 ( 1
W + 1

)γ+1

θ(W ). (G.3.3)
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Beta(γ − λ,β + λ)−1
− 1

Beta(γ,β)−1
− 1

Beta(γ,β)−1
− 1

Figure G.3: Left: The point to point Inverse-Beta polymer. Blue (resp. Red) :
couple of correlated Boltzmann weights on edges arriving at (x1, x2) = (5, 4) (resp.
(x1, x2) = (3, 4)). Green: an admissible (i.e. up/right) polymer path of length t = 9
with starting point (0, 0) and endpoint (x1, x2) = (5, 4). Right: The Inverse-Beta
polymer with boundaries. The Boltzmann weights in the bulk (blue and red) are
the same as in the model without boundaries and are distributed as in (G.3.3). The
random Boltzmann weights on the vertical (dashed-green) and horizontal (dashed-
purple) boundaries are distributed as in (G.3.7). The dotted line represents a possible
polymer path from (x1, x2) = (0, 0) to (x1, x2) = (5, 4).

Given a random environment, the partition sum of the point-to-point IB polymer with starting point (0, 0) and endpoint
(x1 ≥ 0, x2 ≥ 0) is defined as

Zx1,x2 =
∑

π:(0,0)→(x1,x2)

∏

e∈π
w(e) , (G.3.4)

where here and throughout the rest of this work the sum
∑

π:(0,0)→(x1,x2)
is over all directed paths, also called up-right

paths, from (0, 0) to (x1, x2). Those are the paths such that the only jumps allowed are either to the right, i.e. as
(x1, x2) → (x1 + 1, x2), or upward, i.e. as (x1, x2) → (x1, x2 + 1) (see Fig. G.3). Equivalently, using the (t, x) coordinate
system the partition sum Zt(x) = Zx,t−x is defined recursively as, for t ≥ 0,

Zt(x) = ut(x)Zt−1(x− 1) + vt(x)Zt−1(x) for t ≥ 1

Zt=0(x) = δx,0 , (G.3.5)

where δi,j is the Kronecker delta symbol. Following (G.3.5), the length of the polymers t will also be thought of as a time-like
variable, (G.3.5) being then thought of as a Markov process. The latter is a discrete version of the stochastic-heat-equation
satisfied by the partition sum of the continuum DP.
Definition G.3.2. The IB polymer with boundaries We define a second version of the IB polymer by changing the
BWs on the boundaries of N2. The random BWs are now denoted by ŵ(e) and given by

ŵ((x1 − 1, x2) → (x1, x2)) = ux1,x2 = Wx1,x2 > 0 , if x2 ≥ 1 ,

ŵ((x1, x2 − 1) → (x1, x2)) = vx1,x2 = Wx1,x2 + 1 > 1 , if x1 ≥ 1 ,

ŵ((x1 − 1, 0) → (x1, 0)) = Ux1,0 ,

ŵ((0, x2 − 1) → (0, x2)) = V0,x2 . (G.3.6)

Here the random BWs in the bulk ux1,x2 = Wx1,x2 and vx1,x2 = Wx1,x2 + 1 for x1, x2 ≥ 1 are distributed as before (see
(G.3.2)), and the BWs on the boundaries are all independent and distributed as Ux1,0 ∼ U and V0,x2 ∼ V where

U ∼ 1
Beta(γ − λ, β + λ)

− 1 > 0 , PU (U) =
Γ(γ + β)

Γ(γ − λ)Γ(β + λ)

(

1 − 1
U + 1

)β+λ−1 ( 1
U + 1

)γ−λ+1

θ(U),

V ∼ 1
Beta(λ, β)

> 1 , PV (V ) =
Γ(λ+ β)
Γ(λ)Γ(β)

(

1 − 1
V

)β−1 ( 1
V

)λ+1

θ(V − 1) . (G.3.7)

Here 0 < λ < γ is an additional parameter and we have written explicitly the PDF PU (U) and PV (V ) of U and V that
easily follow from (G.3.1). In the following we will refer to λ as the boundary or stationarity parameter. We consider again
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the partition sum for polymers with starting point (0, 0) and endpoint (x1 ≥ 0, x2 ≥ 0), defined as

Ẑx1,x2 =
∑

π:(0,0)→(x1,x2)

∏

e∈π
ŵ(e) . (G.3.8)

Definition G.3.3. The IB polymer with stationary initial condition We define a third version of the IB polymer.
Following the recursion equation (G.3.5), we define the DP partition sum Žt(x) for t ≥ −1 and x ∈ Z as

Žt(x) = ut(x)Žt−1(x− 1) + vt(x)Žt−1(x) for t ≥ 1 (G.3.9)

and with the initial condition

Ž0(0) = 1 ,
Ž0(x)

Ž−1(x− 1)
= U(x) ,

Ž0(x)

Ž−1(x)
= V (x) for x ∈ Z . (G.3.10)

Where (U(x))x∈Z and (V (x))x∈Z are two sets of iid RVs distributed as U(x) ∼ U and V (x) ∼ V with U, V distributed
as (G.3.7), while the RVs (ut(x), vt(x)) are distributed as before (G.3.2). The definition of Zt(x) for t = −1 is for future
notational convenience and for what concerns Zt(x) for t ≥ 0 it is equivalent to set the initial condition as Ž0(x+1)/Ž0(x) =
U(x+ 1)/V (x). This model is analogous to the point to Brownian continuum DP.

c Zero temperature models: The Bernoulli-Geometric polymer(s)

We now define as previously for the Inverse-Beta polymer three versions of the Bernoulli-Geometric (BG) polymer: the
point to point BG polymer, the BG polymer with boundaries and the BG polymer with stationary initial condition. The
first model will be defined by choosing two (‘bulk’) parameters (q, q′) ∈ [0, 1[2. The others have one additional (‘boundary’
or ‘stationarity’) parameter qb ∈]q, 1[, which will specify one stationary measure among a family of stationary measures at
fixed (q, q′). All definitions of this section are to our knowledge original to this work. Here and throughout the paper the
similarities between these models and the IB polymers will be highlighted using similar notations, with the convention that
we reserve sans-serif letters for the BG polymers. The connection between the IB and BG polymers, which was the main
motivation for introducing the BG polymer, was already mentioned in the introduction. It will be made more precise in
Sec. G.5.2.
Definition G.3.4. The point to point Bernoulli-Geometric polymer We now define the Bernoulli-Geometric poly-
mer. We assign to each edge e of Z2 a discrete random energy E(e) ∈ Z. Depending on whether the edge is horizontal or
vertical, the random energies are drawn from different probability distributions. Let us introduce the notation

E ((x1, x2) → (x1 + 1, x2)) = ux1+1,x2 ,

E ((x1, x2) → (x1, x2 + 1)) = vx1,x2+1 , (G.3.11)

hence u (resp. v) denotes a random energy on an horizontal (resp. vertical) edge. We suppose that couples of random
variables indexed by the endpoint of the edges (ux1,x2 , vx1,x2 ) are iid RVs distributed as (ux1,x2 , vx1,x2 ) ∼ (u, v) where the
couple (u, v) is distributed as

u ∼ (1 − ζuv)(1 +Gq′ ) − ζuvGq ∈ Z ,

v ∼ −ζuvGq ∈ Z− , (G.3.12)

where 0 < q < 1 and 0 < q′ < 1 are the two parameters of the models and Gq, Gq′ and ζuv are independent RVs distributed
as follows. Gq ∈ N and Gq′ ∈ N are geometric RVs with parameters q and q′ with the convention

Proba(Gq = k ∈ N) = (1 − q)qk , (G.3.13)

and similarly for Gq′ with the exchange q → q′. ζuv ∈ {0, 1} is a Bernoulli RV with parameter puv given by

puv =
1 − q′

1 − qq′ ∈]0, 1[ , (G.3.14)

and thus

Proba(ζuv = 1) = puv , P roba(ζuv = 0) = 1 − puv . (G.3.15)

As such, u ≥ v (equality occurring whenever ζuv = 1) and note that u ∈ Z can be positive or negative while v ∈ Z− is always
negative (or zero). u and v are correlated RVs since they are both functions of the same Bernoulli RV ζuv. Note that one
can also add correlations between Gq and Gq′ : since ζuv ∈ {0, 1} one easily shows that correlations between Gq and Gq′ do
not affect the PDF of (u, v). The latter can be written as

Proba(u = ku ∈ Z, v = kv ∈ Z−) = puvδ(ku = kv)δ(kv ≤ 0)(1 − q)q−kv

+(1 − puv)δ(kv = 0)δ(ku ≥ 1)(1 − q′)(q′)ku−1 , (G.3.16)

where here and throughout the rest of the paper the symbol δ is used to denote the indicator function of the set specified
inside the δ. Finally, given a random environment specified by a drawing of the random energies (ux1,x2 , vx1,x2 ), we are
interested in the optimal energy to go from the origin (0, 0) to the point (x1, x2)

Ex1,x2 = min

{

E(π) =
∑

e∈π
E(e), π : (0, 0) → (x1, x2)

}

. (G.3.17)
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Figure G.4: The Bernoulli-Geometric polymer with boundaries. In the bulk the couple
of energies on the edges (u, v) are taken with probability puv (resp. (1 − puv)) as
(u, v) = (−Gq,−Gq) (blue edges above) (resp. (u, v) = (1 +Gq′ , 0) (red edges above)).
The energies on the horizontal boundary U (dashed-purple) are taken with probability
pU (resp. 1 − pU) as U = −Gq/qb (resp. U = 1 + Gqbq′). The energies on the vertical
boundary V (dashed-green) are taken with probability pV (resp. 1 − pV) as V = −Gqb

(resp. U = 1 + Gqbq′). The dotted line represents a possible polymer path from
(x1, x2) = (0, 0) to (x1, x2) = (5, 4).

Where as before the minimization is over up-right paths. Assigning for convention the value Ex1,x2 = +∞ for vertices
(x1, x2) with either x1 < 0 or x2 < 0, the model can also be recursively defined as, using the (t, x) coordinates

Et(x) = min (Et−1(x− 1) + ut(x),Et−1(x) + vt(x)) for t ≥ 1 ,

Et=0(0) = 0 and Et=0(x) = +∞ for x 6= 0 . (G.3.18)

The definition of this model is, to our knowledge, original to this work. The model can be defined for any value of the
parameter puv ∈ [0, 1], but it is only for the value given by (G.3.14) that we can write down exactly its stationary measure.
This precise value thus makes the model special, in the sense that it possesses an ESP. In this model the parameters q and q′

do not play symmetric roles: q′ can be thought of as an anisotropy parameter which favors the vertical edges by sometimes
(with probability 1 − puv = q′ 1−q

1−qq′ ) putting a penalty on horizontal edges. Two important limits are an isotropic limit of
the model which is obtained by setting q′ → 0, and an anisotropic limit which is obtained for q → 0. In the isotropic limit
puv = 1 and the model corresponds to a problem of last passage percolation, while in the anisotropic limit puv = 0 and
the model corresponds to a problem of first passage percolation (see Sec. G.5.2). More generally the Bernoulli-Geometric
polymer thus mixes an optimization problem of the first-passage type with an optimization problem of the last-passage
type. In this interpretation puv is a mixing parameter which must have the precise value (G.3.14) for the model to be
exactly solvable. Interesting continuous limits are also obtained by letting q, q′ → 1. There the model converges to the zero
temperature limit of the Inverse-Beta polymer. This will be further discussed in Sec. G.5.2.
Definition G.3.5. The BG polymer with boundaries We now consider the BG model previously defined and change
the distribution of energies on the boundaries of N

2. In the model with boundaries the energy on the edges Ê(e) are
distributed as

Ê ((x1, x2) → (x1 + 1, x2)) = ux1+1,x2 if x2 ≥ 1,

Ê ((x1, x2) → (x1, x2 + 1)) = vx1,x2+1 if x1 ≥ 1 ,

Ê ((x1, 0) → (x1 + 1, 0)) = Ux1+1,0 ,

Ê ((0, x2) → (0, x2 + 1)) = V0,x2+1 . (G.3.19)

Where here the random energies in the bulk (ux1,x2 , vx1,x2 )|x1,x2≥1 ∼ (u, v) are distributed as before with parameters
0 < q < 1 and 0 < q′ < 1, see (G.3.12) and (G.3.16). The random energies on the edges of N

2, Ux1≥1,0 and V0,x2≥1 are
independent from the random energies in the bulk and from each other. They are distributed as Ux1,0 ∼ U and V0,x2 ∼ V

where

U ∼ (1 − ζU)(1 +Gqbq
′ ) − ζUGq/qb

∈ Z ,

V ∼ −ζVGqb ∈ Z− . (G.3.20)
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Here q < qb < 1 is a new parameter, Gqb , Gq/qb
and Gqbq

′ are independent geometric RVs distributed as in (G.3.13), while
ζU and ζV are Bernoulli RVs with parameter pU and pV distributed as in (G.3.15) with

pU =
1 − qbq

′

1 − qq′ , pV =
1 − q′

1 − qbq′ . (G.3.21)

We can also directly write the probability distribution of U and V as

Proba(U = kU ∈ Z) = pUδ(kU ≤ 0)(1 − q/qb)(q/qb)
−kU

+(1 − pU)δ(kU ≥ 1)(1 − qbq
′)(qbq

′)kU−1 ,

P roba(V = kV ∈ Z−) = pVδ(kV ≤ 0)(1 − qb)(qb)
−kV + (1 − pV)δ(kV = 0) . (G.3.22)

Given a random environment specified by a drawing of the bulk and edges random energies we are interested in the optimal
energy to go from the origin (0, 0) to the point (x1, x2)

Êx1,x2 = min

{

Ê(π) =
∑

e∈π
Ê(e), π : (0, 0) → (x1, x2)

}

. (G.3.23)

Definition G.3.6. The BG polymer with stationary initial condition We define a third version of the BG polymer.
Following the recursion equation (G.3.18), we define the DP optimal energy Ět(x) for t ≥ −1 and x ∈ Z as

Ět(x) = min
(
Ět−1(x− 1) + ut(x), Ět−1(x) + vt(x)

)
for t ≥ 1 (G.3.24)

and with the initial condition Ět(0) = 1 and

Ě0(x) − Ě−1(x− 1) = U(x) , Ě0(x) − Ě−1(x) = V(x) for x ∈ Z . (G.3.25)

Where (U(x))x∈Z and (V(x))x∈Z are two sets of iid RVs distributed as U(x) ∼ U and V(x) ∼ V with U,V distributed as
(G.3.20), while the RVs (ut(x), vt(x)) are distributed as before (G.3.12).

G.3.2 Stationarity and reversibility properties

In this section we now state the stationarity properties of the models previously defined. These properties will be shown
rigorously in Sec. G.4 and Sec. G.51. Let us first define the notion of down-right paths.
Definition G.3.7. A down-right path of length N ∈ N

∗ on Z
2 is as sequence of vertices of Z2 (x1(i), x2(i))i=0,··· ,N such

that jumps are either downward: (x1(i+ 1), x2(i+ 1)) = (x1(i), x2(i)) − (0, 1), or are to the right: (x1(i+ 1), x2(i+ 1)) =
(x1(i), x2(i)) + (1, 0). The set of edges crossed by the path πdr is {(x1(i), x2(i)) → (x1(i+ 1), x2(i+ 1)), i = 0, · · · , N − 1}.

a Stationarity and reversibility in the IB polymer with boundaries and stationary initial
condition

Let us introduce, for x1, x2 ≥ 0 and (x1, x2) 6= (0, 0), the ratios of partition sum on the horizontal and vertical edges leading
to (x1, x2) in the model with boundaries:

Ûx1,x2 :=
Ẑx1,x2

Ẑx1−1,x2

, V̂x1,x2 :=
Ẑx1,x2

Ẑx1,x2−1

. (G.3.26)

We will refer to these RVs as living on the edges of N2: Ûx1,x2 (resp. V̂x1,x2 ) is thought of as living on the horizontal (resp.
vertical) edge leading to (x1, x2). Note that on the boundaries these ratios coincide with the boundary weights in the IB
polymer with boundaries: Ûx1,0 = Ux1,0 and V̂0,x2 = V0,x2 . Similarly in the model with stationary initial condition we
define, for t ≥ 0 and x ∈ Z:

Ǔt(x) :=
Žt(x)

Žt−1(x− 1)
, V̌t(x) :=

Žt(x)

Žt−1(x)
. (G.3.27)

The following four properties hold:
Proposition G.3.1. Stationarity property of the IB polymer with boundaries For all down-right path on N

2, the
RVs Ûx1,x2 and V̂x1,x2 that live on the edges crossed by the down-right path are independent and distributed as Ûx1,x2 ∼ U
and V̂x1,x2 ∼ V with U and V distributed as in (G.3.7). In particular, since each edge of N

2 belongs to at least one
down-right path, the RVs Ûx1,x2 and V̂x1,x2 are all distributed as U and V in (G.3.7).
Proposition G.3.2. Stationarity property of the IB polymer with stationary initial condition The process
(Ǔt(x), V̌t(x))t∈N,x∈Z is stationary: ∀t ∈ N fixed, the RVs (Ǔt(x))x∈Z and (V̌t(x))x∈Z are independent and distributed as
Ǔt(x) ∼ U and V̌t(x) ∼ V with U and V distributed as in (G.3.7).

1throughout the paper we will pay attention to emphasize the degree of rigor with which each result
is shown, and in particular only fully rigorous results will be stated as Propositions
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Proposition G.3.3. Reversibility of the stationary process Considering a finite time interval of duration T ∈ N
∗

and the time-reversed coordinates and time reversed process variables defined by

tR = T − t− 1 , xR = −x (G.3.28)

ǓRtR (xR) = Ǔt=T−tR (x = −xR + 1) , V̌ RtR (xR) = V̌t=T−tR (x = −xR) , (G.3.29)

we have the identity in law

(
Ǔt(x), V̌t(x)

)

t=0,...,T ;x∈Z
∼
(
ǓRtR (xR), V̌ RtR (xR)

)

tR=0,...,T ;xR∈Z
. (G.3.30)

Proposition G.3.4. Equivalence between models with boundaries and stationary initial condition We have

(Žt(x))(t,x)∈N2 ∼ (Ẑt(x))(t,x)∈N2 . (G.3.31)

The model with boundary conditions can thus be seen as an efficient way to study the model with stationary initial
condition in the upper-right quadrant of Z2.

b Stationarity and reversibility in the BG polymer with boundaries and stationary initial
condition

Conversely, let us introduce in the BG polymer with boundaries, for x1, x2 ≥ 0 and (x1, x2) 6= (0, 0), the differences of
optimal energies on the horizontal and vertical edges leading to (x1, x2):

Ûx1,x2 := Êx1,x2 − Êx1−1,x2 , V̂x1,x2 := Êx1,x2 − Êx1,x2−1 . (G.3.32)

And similarly, in the model with stationary initial condition, for t ≥ 0 and x ∈ Z:

Ǔt(x) = Ět(x) − Ět−1(x− 1) , V̌t(x) = Ět(x) − Ět−1(x) . (G.3.33)

The following four properties hold:
Proposition G.3.5. Stationarity property of the BG polymer with boundaries For all down-right path on N

2, the
RVs Ûx1,x2 and V̂x1,x2 that live on the edges crossed by the down-right path are independent and distributed as Ûx1,x2 ∼ U

and V̂x1,x2 ∼ V with U and V distributed as in (G.3.20). In particular, since each edge of N
2 belongs to at least one

down-right path, the RVs Ûx1,x2 and V̂x1,x2 are all distributed as U and V in (G.3.20).
Proposition G.3.6. Stationarity property of the model with stationary initial condition The process (Ǔt(x), V̌t(x))t∈N,x∈Z

is stationary: ∀t ∈ N fixed, the RVs (Ǔt(x))x∈Z and (V̌t(x))x∈Z are independent and distributed as Ǔt(x) ∼ U and V̌t(x) ∼ V

with U and V distributed as in (G.3.20).
Proposition G.3.7. Reversibility of the stationary process Considering a finite time interval of duration T ∈ N

∗

and the time-reversed coordinates (G.3.28), the time reversed process is defined as

Ǔ
R
tR (xR) = Ǔt=T−tR (x = −xR + 1) , V̌

R
tR (xR) = V̌t=T−tR (x = −xR) , (G.3.34)

and we have the identity in law

(
Ǔt(x), V̌t(x)

)

t=0,...,T ;x∈Z
∼
(
Ǔ
R
tR (xR), V̌RtR (xR)

)

tR=0,...,T ;xR∈Z
. (G.3.35)

Proposition G.3.8. Equivalence between models with boundaries and stationary initial condition We have

(Ět(x))(t,x)∈N2 ∼ (Êt(x))(t,x)∈N2 . (G.3.36)

G.3.3 Quenched free-energy in point to point models without boundaries

Using the stationary properties stated above, we obtain in Sec.G.6.2 asymptotic results for the mean quenched free-
energy/optimal energy in the direction (s1, s2) ∈ R

2
+ in the point to point IB/BG polymer. These quantities are defined

as

fIB(s1, s2) := lim
N→∞

−logZNs1,Ns2

N
, fBG(s1, s2) := lim

N→∞

ENs1,Ns2

N
. (G.3.37)

Where here and throughout the paper the overline () denotes the average over the random environment. For a fixed direction
(s1, s2) ∈ R

2
+ and bulk parameters (γ, β)/(q, q′), our results involves the solution of a saddle-point equation for a boundary

parameter λ = λ∗(s1, s2)/qb = q∗
b (s1, s2). Based on some unproven ‘natural’ assumptions of convexity and regularity for

fIB(s1, s2) and fBG(s1, s2) we obtain:

fIB(s1, s2) = s1 (−ψ(β + λ∗) + ψ(γ − λ∗)) + s2 (−ψ(β + λ∗) + ψ(λ∗)) , (G.3.38)

0 = s1

(
−ψ′(β + λ∗) − ψ′(γ − λ∗)

)
+ s2

(
−ψ′(β + λ∗) + ψ′(λ∗)

)
, (G.3.39)
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where ψ = Γ′/Γ is the diGamma function and with the condition 0 < λ∗(s1, s2) < γ for the IB polymer, and

fBG(s1, s2) = −
(
q − (q∗

b )2 q′)

(q − q∗
b ) (q∗

b q
′ − 1)

s1 +
q∗
b (q′ − 1)

(q∗
b − 1) (q∗

b q
′ − 1)

s2 , (G.3.40)

(q∗
b − 1)2

(

q (q∗
b )2
(
q′)2

+
(
q2 − 4q∗

b q + (q∗
b )2
)
q′ + q

)

s1 − (q − q∗
b )2
(
q′ − 1

) (
(q∗
b )2

q′ − 1
)
s2 = 0 , (G.3.41)

with the condition q < q∗
b (s1, s2) < 1 for the BG polymer.

Note that while (G.3.39) is a transcendental equation for λ∗(s1, s2), (G.3.41) is a quartic equation for q∗
b (s1, s2), which

can be solved explicitly using radicals. These results cannot be considered as mathematical theorems since they rely on
unproven assumptions (which could likely be proven by other means). Still, their derivation is very close to a mathematical
proof. We note that the result (G.3.38) for fIB(s1, s2) coincides with the result obtained in Eq.(79)-(81) in [5]2 using
non-rigorous replica calculations, and the above result thus gives a close to rigorous confirmation of one conjecture of [5].

Optimal angles

Of interest are the optimal angles ϕopt ∈] − 1/2, 1/2[, the ‘angles’ for which the mean quenched free-energy/optimal energy
per unit length in the direction ϕ ∈] − 1/2, 1/2[, defined as

fp.u.l.
IB (ϕ) = fIB(1/2 + ϕ, 1/2 − ϕ) , f

p.u.l.
BG ϕ) = fIB(1/2 + ϕ, 1/2 − ϕ) , (G.3.42)

are maximum. These quantities are non-trivial in these anisotropic models and we obtain the explicit formulas

ϕIB
opt = −1

2
ψ′(β + γ/2)
ψ′(γ/2)

≤ 0 , ϕBG
opt = −

(√
q − 1

)2
q′

2
(√

qq′ − 1
)2

≤ 0 . (G.3.43)

These angles would correspond to the mean direction chosen by the polymer for a point to line polymer problem. The
formula for ϕIB

opt was already given in Eq.(83) of [5].

G.3.4 Convergence of point to point models to their stationary state

Finally, based on the upon results, we conjecture that the following limits in law holds: ∀(Lu, Lv) ∈ N
2 and (s1, s2) ∈ R

2
+

lim
N→∞

(
ZNs1+x1,Ns2+x2

ZNs1,Ns2

)

0≤x1≤Lu,0≤x2≤Lv

∼
(
Ẑx1,x2

)

0≤x1≤Lu,0≤x2≤Lv
(G.3.44)

lim
N→∞

(ENs1+x1,Ns2+x2 − ENs1,Ns2 )0≤x1≤Lu,0≤x2≤Lv
∼
(
Êx1,x2

)

0≤x1≤Lu,0≤x2≤Lv
(G.3.45)

where the left hand sides of these limits involve the point to point partition sum/optimal energy in the IB/BG polymer,
and the right hand sides involve the corresponding quantities in the models with boundaries with boundary parameters
λ = λ∗(s1, s2) and qb = q∗

b (s1, s2), the solutions of the equations (G.3.39) and (G.3.41).

G.3.5 Outline and some additional results not presented here

The outline of the remaining of this manuscript is as follows. In Sec. G.4 and G.5 we prove the stationarity and reversibility
properties of the Inverse-Beta and Bernoulli-Geometric polymers of Sec. G.3.2, and discuss the connections between our
work and previous works. In Sec. G.6.1 we obtain results for the asymptotic mean quenched free-energy and mean optimal
energy in the IB and BG polymers with boundaries, and using these results we obtain in Sec. G.6.2 the corresponding
formulas (G.3.38)-(G.3.40) for the point to point models. In Sec. G.6.3 we discuss the conjectures for the convergence of
both models to their stationary measure (G.3.44)-(G.3.45). In Sec. G.6.4 we briefly discuss the nature of the fluctuations
of the free-energy in the models with boundaries. Finally in Sec. G.7 we perform some simulations of the BG polymer and
check our result and conjecture (G.3.40) and (G.3.45) for this newly introduced model.

G.4 Finite-temperature model: stationary measure of the Inverse-Beta poly-
mer

In this section we show the stationarity properties of the IB polymer of Sec. a. We follow closely the approach developed
by Seppäläinen for the case of the Log-Gamma polymer [197] and adapt it to the Inverse-Beta polymer. We also discuss
the connection between out work and previous works.

2there cϕ = fIB(1/2+ϕ, 1/2−ϕ) for ϕ ∈]−1/2, 1/2[ and the equivalent of λ∗ there is the saddle-point
parameter kϕ = γ/2 + λ∗
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G.4.1 Stationary property of the model with boundaries

We begin by showing the stationarity property Prop. G.3.1 of the IB model with boundaries (see Def. G.3.2). First, note
that in the bulk of N2, i.e. for x1, x2 ≥ 1, the partition sum Ẑx1,x2 satisfies the bulk recursion

Ẑx1,x2 = ux1,x2 Ẑx1−1,x2 + vx1,x2 Ẑx1,x2−1 for x1, x2 ≥ 1 . (G.4.1)

This implies that the vertical and horizontal ratios of partition sums Ûx1,x2 and V̂x1,x2 defined in (G.3.26) satisfy the
following recursion relation, valid for x1, x2 ≥ 1,

Ûx1,x2 = φ(1)(Ûx1,x2−1, V̂x1−1,x2 ,Wx1,x2 ) , V̂x1,x2 = φ(2)(Ûx1,x2−1, V̂x1−1,x2 ,Wx1,x2 ) , (G.4.2)

where φ(i) denotes the ith component of the image of the stationarity-reversibility map φ that we now define.
Definition G.4.1. The stationarity-reversibility map is the function φ : (U, V,W ) ∈ (R∗)3 → (U ′, V ′,W ′) ∈ (R∗)3 defined
by

U ′ = W + (W + 1)
U

V
, V ′ = W

V

U
+W + 1 , W ′ =

U(V − 1)
U + V

. (G.4.3)

It has the following properties:
Proposition G.4.1. Stationarity If (U, V,W ) are three independent RVs distributed as in (G.3.7) and (G.3.3), then
(U ′, V ′,W ′) := φ(U, V,W ) are three independent RVs distributed as in (G.3.7) and (G.3.3).
Proposition G.4.2. Reversibility φ is an involution, i.e. φ ◦ φ = Id.

These properties are proved in Appendix. G.9. Based on the above properties of φ, the stationarity property of the
model with boundary conditions Prop. G.3.1 is proved by induction on the set of down-right paths (see Def. G.3.7) on N

2.
We first need a definition:
Definition G.4.2. Down-left to top-right transformation on down-right paths A down-right path πdr2 is a ‘down-
left to top-right’ (henceforth: DLTR) transformed down-right path of a down-right path πdr2 if πdr2 can be obtained from
πdr1 by a transformation where edges of πdr1 forming a down-left corner, i.e. of the form (x1, x2) → (x1, x2−1) → (x+1, x2−
1)), are replaced in πdr2 by the two edges forming the corresponding top-right corner (x1, x2) → (x1+1, x2) → (x1+1, x2−1)
(see Fig. G.5).

Let us now give the proof of the stationarity property Prop. G.3.1 of the model with boundary conditions. First, note
that the stationarity property is trivially true for the down-right paths that follow exactly the boundaries of N2 (since on
these down-right paths the RVs Ûx1,x2 and V̂x1,x2 are just the random Boltzmann weights on the boundaries Ux1,0 and V0,x2

which are independent and distributed as (G.3.7)). Let us now suppose that the stationarity property Prop. G.3.1 is true
for a down right path πdr1 such that πdr1 contains one couple of edges of the form (x1, x2) → (x1, x2 − 1) → (x+ 1, x2 − 1)
(i.e. it contains two edges forming a down-left corner, see Fig. G.5). The vertical edge then carries the RV V̂x1,x2 and
the horizontal edge carries the RV Ûx1+1,x2−1. Applying the induction (G.4.2) on this couple of edges, we obtain the
couple of RVs (Ûx1+1,x2 , V̂x1+1,x2 ). These RVs, complemented by the other RVs Ûx′

1
,x′

2
and V̂x′

1
,x′

2
that live on πdr1 and

were left untouched by this induction, now live on a down right path πdr2 defined such that the edges visited by πdr2 are
exactly those visited by πdr1 except for the couple of edges (x1, x2) → (x1, x2 − 1) → (x + 1, x2 − 1) that is replaced by
(x1, x2) → (x1 +1, x2) → (x1 +1, x2 −1) (see Fig. G.5). Using the stationarity property of φ Prop. G.4.1 one concludes that
those RVs satisfy the stationarity property Prop. G.3.1. Hence the DLTR transformation on down-right paths conserves the
stationarity property, and we will generally think of the variables (U, V ) (resp. (U ′, V ′)) in (G.4.3) as living on down-left
(resp. top right) corners (see Fig. G.5). Finally, since any down-right path on N

2 can be obtained from a down-right path
that follows exactly the edges of N2 by a sequence of DLTR transformations, the stationarity property holds for any down-
right path on N

2. In this sense, the stationarity property of the model with boundaries can be thought of as a propagation
of boundary conditions.

G.4.2 Stationarity property of the model with stationary initial condition

We now consider the IB with stationary initial condition defined in Def. G.3.3. Similarly as before, the horizontal and
vertical ratios of partition sums Ǔt(x) and V̌t(x) (defined in (G.3.27)) satisfy the following recursion equation, valid for
t ≥ 0 and x ∈ Z

Ǔt+1(x) = φ(1)(Ǔt(x), V̌t(x− 1),Wt+1(x)) , V̌t+1(x) = φ(2)(Ǔt(x), V̌t(x− 1),Wt+1(x)) . (G.4.4)

In this model, the stationary initial condition (G.3.10) is designed to provide an initial down right path on Z
2,

π
(0)
dr = {(x1, x2) = (m,−m) → (m,−m− 1) → (m+ 1,−m− 1),m ∈ Z} (G.4.5)

on which the variable Ǔt(x) and V̌t(x) defined in (G.3.27) are all independent and distributed as in (G.3.7), (see Fig. G.6).
Starting from this initial down-right path and successively applying DLTR transformations as described previously, one
obtains the following improved (compared to Prop. G.3.2) stationarity property.
Proposition G.4.3. Improved Stationarity property of the model with stationary initial condition On each
down-right path πdr on Z

2 that can be obtained from π
(0)
dr by a sequence of DLTR transformations, the variables Ǔt(x) and

V̌t(x) that live on πdr are independent and distributed as in (G.3.7).
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x2

x1

φ

φ

Û24

Û23 Û42

Û41

V̂14 V̂24

V̂32 V̂42

Figure G.5: Red: a down-right path on N
2. Red-dashed: a new possible down-right

path obtained from the first one by transforming two down-left corners into two top-
rights ones (resulting from two down-left to top-right transformations, see Def. G.4.2).
The RVs Ûx1,x2 and V̂x1,x2 on the new down-right path are either the same as for the
first path, or obtained from those on the first path using the stationarity-reversibility
map φ through the induction (G.4.2).

For concreteness let us highlight some down-right paths that can be obtained from π
(0)
dr using DLTR transformations

(see left of Fig. G.6) and prove the properties Prop. G.3.2 and Prop. G.3.4. These includes
1) For all t ≥ 1 the down-right path

π
(t)
dr = {(x1, x2) = (t+m,−m) → (t+m,−m− 1) → (t+m+ 1,−m− 1),m ∈ Z} (G.4.6)

In particular this implies the stationarity property Prop. G.3.2. Note that this shows that in the model with stationary
initial condition, for all t ≥ 1, the RVs {Y̌t(x) := Žt(x + 1)/Žt(x), x ∈ Z} are iid and distributed as U/V with U and V
distributed as in (G.3.7). This stationarity property for the Y̌t(x) variables has the advantage of only involving partition
sums at the same time coordinate t. It is trivially implied by the stronger property of stationarity of Ǔt(x) and V̌t(x) on
down-right paths and we will focus on the latter in the following.

2) The boundary of N
2, which is itself a down-right path, can also be obtained from π

(0)
dr . This shows that on the

boundaries of N
2, the partition sums in the IB polymer with stationary initial condition Žx1,x2 and in the model with

boundary conditions Ẑx1,x2 are equivalent in law. Since the partition sums in these models in the remaining of N
2 are

uniquely determined by their values on the boundaries and by the random BWs in the bulk of N2, which coincide in both
models, we obtain Prop. G.3.4, i.e. (Žx1,x2 )(x1,x2)∈N2 ∼ (Ẑx1,x2 )(x1,x2)∈N2 .

Remarks

• The condition Ž0(0) = 1 in the initial condition (G.3.10) is arbitrary and could be replaced by any other constant
or RV as long as it is independent of the variable U(x) and V (x). The equality in law between the model with
stationary initial condition in the upper right quadrant and the model with boundary conditions then more generally
reads (Žx1,x2/Ž0,0)(x1,x2)∈N2 ∼ (Ẑx1,x2 )(x1,x2)∈N2 .

• Here we have thus obtained a family (indexed by λ) of stationary measures for the Inverse-Beta polymer. These
correspond to discrete random walks at fixed t as a function of x for the free energy − log Žt(x). We will see in
the following that these random walks have generally a non-zero drift, except in the ‘equilibrium case’ λ = γ/2.
This discrete stationary measure is thus a natural generalization of the stationary measure of the continuum DP,
or equivalently of the 1 dimensional KPZ equation [248, 195]. Note also that as in the continuum case, the sta-
tionary measure only concerns quotients of partition sums/differences of free-energies and the one-point distribu-
tion of Žt(0) is not stationary. Hence the full process (Žt(x))t=0,...,T ;x∈Z, which can be equivalently parametrized
by the couple

(
Žt(x = 0), (Ǔt(x), V̌t(x))t=0,...,T ;x∈Z

)
is not stationary, but the process we are studying however

(Ǔt(x), V̌t(x))t=0,...,T ;x∈Z, is a marginal of the latter and is stationary.

G.4.3 Reversibility of the stationary measure: detailed balance property

We now discuss the reversibility of the stationary process. We first study reversibility at the level of a DLTR transformation
on down-right paths, then at the level of the process (Ǔt(x), V̌t(x))x∈Z and prove the property Prop. G.3.3.
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t

x = x1

x2
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V (0)

V (−2)

U(−2)

π
(0)
dr

π
(4)
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t

xxR

tR

φ
Ǔ2(0) = ǓR

5 (1)

Ǔ3(0) = ǓR
4 (1)

V̌2(−1) = V̌ R
5 (1) V̌3(0) = V̌ R

4 (0)

W3(0)
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5 (1)

t = T = 7

t = 0

tR = −1
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Figure G.6: Left: Stationary measure of the Inverse-Beta polymer with stationary
initial condition. The initial down right path π

(0)
dr on which the initial condition is

defined carries RVs Ǔt=0(x) = U(x) and V̌t=0(x) = V (x) for which the stationarity
property holds. Any down-right paths obtained from π

(0)
dr by down-left to top-right

transformations then carries RVs Ǔt(x) and V̌t(x) such that the stationarity property
holds. These include e.g. all down-right paths π(t)

dr for t ≥ 0 (such as π(4)
dr in dashed-

red above) and the boundaries of N
2 (in dotted blue above). Right: Illustration of

the symmetry between the forward and time-reversed process for T = 7. In the time
evolution of the forward process, the RVs Ǔ2(0) and V̌2(−1) (on the blue edges above)
are transformed using φ into the RVs Ǔ3(0) and V̌3(0) (on the green edges above) using
the random Boltzmann weight W3(0). From this evolution one stores, using φ the
random Boltzmann weights WR

5 (1) later used in the time evolution of the backward
process where the RVs ǓR

4 (1) and V̌ R
4 (0) (on the green edges above) are evolved using

φ into the RVs ǓR
5 (1) and V̌ R

5 (1).
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a At the level of a down-left to top-right transformation

We now show a detailed-balance property for the stationary measure, namely that, if (U, V,W ) are distributed as in (G.3.7)
and (G.3.3) and (U ′, V ′,W ′) = φ(U, V,W ), then the PDF of the couples of couples of RVS P ((U ′, V ′); (U, V )) is symmetric by
exchange (U, V ) ↔ (U ′, V ′). Indeed, let us consider ((U ′, V ′); (U, V )) fixed and note Pstat(U, V,W ) = PU (U)PV (V )PW (W )
the stationary PDF of the triplet of RVs in (G.4.3) (see (G.3.3) and (G.3.7) for the expressions of PU (U), PV (V ) and
PW (W )). We have

P ((U ′, V ′); (U, V )) =

∫

dWδ(U ′ − φ(1)(U, V,W ))δ(V ′ − φ(2)(U, V,W ))Pstat(U, V,W )

=

∫

dW

∫

dU ′′dV ′′dW ′′δ(U ′ − φ(1)(U, V,W ))δ(V ′ − φ(2)(U, V,W )) (G.4.7)

δ(3)((U, V,W ) − φ(U ′′, V ′′,W ′′))Pstat(U
′′, V ′′,W ′′)

=

∫

dW

∫

dU ′′dV ′′dW ′′δ(U ′ − U ′′)δ(V ′ − V ′′) (G.4.8)

δ(3)((U, V,W ) − φ(U ′′, V ′′,W ′′))Pstat(U
′′, V ′′,W ′′)

=

∫

dW ′′δ(U − φ(1)(U ′′, V ′′,W ′′))δ(V − φ(2)(U ′′, V ′′,W ′′))Pstat(U
′′, V ′′,W ′′)

=⇒ P ((U ′, V ′); (U, V )) = P ((U, V ); (U ′, V ′)) (G.4.9)

which is the desired detailed balance property. Here we have successively used that φ preserves the PDF Pstat(U, V,W ) (in
(G.4.7)) and that φ is an involution (in (G.4.8)). This property can also be rewritten in the more usual form, using that
P ((U ′, V ′); (U, V )) = P ((U ′, V ′)|(U, V ))Pstat(U, V ), with Pstat(U, V ) = PU (U)PV (V ) the stationary PDF of the couple of
RVs (U, V ),

P ((U ′, V ′)|(U, V ))
P ((U, V )|(U ′, V ′))

=
Pstat(U ′, V ′)
Pstat(U, V )

. (G.4.10)

From a more pragmatical point of view, the above detailed balance property can also be proven using direct calculations.
One easily obtains from (G.4.3) and (G.3.7) that

P ((U ′, V ′)|(U, V )) =
Γ(γ + β)
Γ(γ)Γ(β)

(

V
(

−U−V U′

V U′+V

)β (
U+V
V U′+V

)γ
)

(V U ′ − U)
δ

(

V ′ − U ′V

U

)

θ(U > 0)θ(V > 1) , (G.4.11)

and Eq. (G.4.10) can then directly be checked.

b At the level of the full space-time process

We now give two proofs of the property Prop. G.3.2, with the first only relying on the detailed balance property (G.4.10)
and which will be useful for the BG polymer case. We remind the reader that on a finite time interval t ∈ [0, T ] with T ∈ N

∗,
the time-reversed coordinates are defined as (see (G.3.28)) tR = T − t− 1 and xR = −x. The stationary forward process is
defined by drawing a random environment (Wt(x))t=1,...,T,x∈Z according to (G.3.3), an initial condition (Ût=0(x), V̂t=0(x))
according to the stationary measure (G.3.7), and let it deterministically evolve using (G.4.4). The time-reversed process
was defined for tR ∈ [0, T ] in (G.3.29) as

ǓRtR (xR) = Ǔt=T−tR (x = −xR + 1) , V̌ RtR (xR) = V̌t=T−tR (x = −xR) . (G.4.12)

Let us first comment on this definition. First note the shift by one unity of the x coordinate in the definition of ǓtR (xR)
compared to V̌ RtR (xR). The reason for this is that, in the forward evolution, φ mixes up RVs (U, V ) living on edges leading to
different vertices (forming a down-left corner) and creates RVs (U ′, V ′) living on edges leading to the same vertex (forming
a top-right corner) (see (G.4.4)). In the time-reversed process the U ′ and V ′ RVs are then reinterpreted as living on edges
leading to different vertices (forming a down-left corner in the (tR, xR) coordinates) whereas the RVs U and V live on
edges leading to the same vertex (forming a top-right corner in the (tR, xR) coordinates). The shift by one unity of the
t coordinate in the definition of ǓtR (xR) and V̌ RtR (xR) (compared to (G.3.28)) ensures that the final values at t = T of
the forward process are initial values at tR = 0 for the backward process. This is illustrated on the right of Fig. G.6.
Introducing these notations permits to rewrite the detailed balance condition (G.4.9) as

P
(
(Ǔt+1(x), V̌t+1(x)), (Ǔt(x), V̌t(x− 1))

)
= P

(
(Ǔt(x), V̌t(x− 1)), (Ǔt+1(x), V̌t+1(x))

)

= P
(
(ǓRtR+1(xR), V̌ RtR+1(xR)), (ǓRtR (xR), V̌ RtR (xR − 1))

)
(G.4.13)

(here we used that the process is homogeneous and stationary). Using inductively (G.4.13) (and using that the measure
is stationary and that the RVs Ǔt(x) and V̌t(x) at different position x are independent) shows the equality in law stated
in Prop. G.3.3 between the forward and time-reversed process. Another way to understand this reversibility property is to
explicitly construct a random environment in which the reversed process performs a forward evolution. In this case we use
the stronger (compared to the detailed balance property (G.4.9)) property of reversibility of φ Prop. G.4.2:



G.4. Stationary measure of the Inverse-Beta polymer 325

1. Start from a drawing of a random environment (Wt(x))t=1,...,T,x∈Z distributed as in (G.3.3) and of the variables
(Ǔt=0(x), V̌t=0(x)) distributed according to the stationary measure (G.3.7).

2. Evolve (Ǔt(x), V̌t(x)) from t = 0 to t = T according to (G.4.4). At each time step, store also a new disorder RV as,
for 1 ≤ tr ≤ T ,

WR
tR (xR) = φ(3)(Ǔt(x), V̌t(x− 1),Wt+1(x))|t=T−tR,x=−xR+1 . (G.4.14)

3. Then, using that φ is an involution (Prop. G.4.2) shows that the backward process satisfies

ǓRtR+1(xR) = φ(1)(ǓRtR (x), V̌ RtR (x− 1),WR
tR+1(x)) , V̌ RtR+1(x) = φ(2)(ǓRtR (x), V̌ RtR (xR − 1),WR

tR+1(xR)) , (G.4.15)

that is, the backward process satisfies a forward evolution in the random environment WR
tR (xR), which is, using the

properties of φ, a legitimate Inverse-Beta random environment (i.e. the WR
tR (xR) are independent and distributed as

(G.3.3) and are independent of the stationary initial condition (ǓRtT =0(xR), V̌ RtR=0(xR))).

This shows in a more constructive fashion that the backward process in indistinguishable from a forward process and that
the equality in law (G.3.30) holds. This procedure is illustrated on the right of Fig. G.6. Note finally that if the RVs in the
reversed process are interpreted as quotients of time-reversed partition sums ŽRtR (xR), we must have by definition

ǓRtR (xR) =
ŽRtR (xR)

ŽRtR−1(xR − 1)
= ǓT−tR (−xR + 1) =

ŽT−tR (−xR + 1)

ŽT−tR−1(−xR)
,

V̌ RtR (xR) =
ŽRtR (xR)

ŽRtR−1(xR)
= V̌T−tR (−xR) =

ŽT−tR (−xR)

ŽT−tR−1(−xR)
, (G.4.16)

and an appropriate definition of ŽRtR (xR) is thus

ŽRtR (xR) :=
1

ŽT−tR−1(−xR)
. (G.4.17)

Alternatively one can multiply this definition by a constant term as ŽRtR (xR) := ŽT−1(0)/ŽT−tR−1(−xR) to ensure the
initial condition ŽRtR (0) = 1 as well. In this case one has in law (Žt(x))t=0,...,T ;x∈Z ∼ (ŽRtR (xR))tR=0,...,T ;xR∈Z.

G.4.4 Relation to other models

In this section we explicitly consider the implication of our results for the Log-Gamma and Stric-Weak polymers, two
exactly solvable models of DPs on Z

2 that can be obtained as limits of the IB polymer. We will not discuss here the 0
temperature limits (γ, β) → (0, 0), whose discussion is reported to Sec. G.5.2. We will use here the language of polymers
with boundaries to discuss the stationary measures.

a Limit to the Log-Gamma polymer

In [5] it was shown that the point-to-point partition-sum of the Inverse-Beta polymer (without boundaries) converges to
the partition-sum of the Log-Gamma polymer as

lim
β→∞

Zx1,x2

βx1+x2
= ZLGx1,x2

, (G.4.18)

where the limit holds in law and ZLGx1,x2
is the partition sum of the Log-Gamma polymer. The latter is defined as in

Def. G.3.1 but in this case the random variables are distributed as uLG = vLG and (uLG)−1 is distributed as a Gamma
distribution with parameter γ > 03. At the level of the random Boltzmann weights the convergence in law reads

(
u

β
,
v

β

)

∼
(

1 −Beta(γ, β)
βBeta(γ, β)

,
1

βBeta(γ, β)

)

∼β→∞ (uLG, vLG) ∼ (1, 1)
Gamma(γ)

. (G.4.19)

In the same way, using (G.3.7), (G.3.3), a stationary Log-Gamma polymer with boundaries is obtained as

ẐLGx1,x2
= lim
β→∞

Ẑx1,x2

βx1+x2
,

ULG = lim
β→∞

U

β
∼ (Gamma(γ − λ))−1 ,

V LG = lim
β→∞

V

β
∼ (Gamma(λ))−1 ,

WLG = lim
β→∞

W

β
∼ (Gamma(γ))−1 , (G.4.20)

(all these limits hold in law). Here ẐLGx1,x2 is the partition sum of the Log-Gamma polymer with boundaries defined as
for the IB polymer with boundaries (see Def G.3.2) with random BWs distributed as Ux1,0 ∼ ULG, V0,x2 ∼ V LG and
ux1,x2 = vx1,x2 ∼ WLG. This is the same model as introduced in [197] and our results of stationarity in the IB polymer
imply the results Lemma 3.2 and Theorem 3.3 of [197].

3Here uLG = vLG means that the random Boltzmann weights can equally well be interpreted as
living on the vertices of the square lattice
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b Limit to the Strict-Weak polymer

In [5] it was shown that the point-to-point partition-sum of the Inverse-Beta polymer converges to the partition-sum of the
Strict-Weak polymer without boundaries as

lim
γ→∞

γx1Zx1,x2 = ZSWx1,x2
, (G.4.21)

where the limit holds in law and ZSWx1,x2
is the partition sum of the Strict-Weak polymer. It is defined as in Def. G.3.1 but in

this case the random variables are distributed as vSW = 1 and uSW is distributed with a Gamma distribution of parameter
β > 0. At the level of the random Boltzmann weights the convergence in law reads

(γu, v) ∼
(
γ(1 −Beta(γ, β))

Beta(γ, β)
,

1
Beta(γ, β)

)

∼γ→∞ (uSW , vSW ) ∼ (Gamma(β), 1) . (G.4.22)

A stationary Strict-Weak polymer with boundaries is similarly obtained as, using (G.3.7) and (G.3.3),

ẐSWx1,x2
= lim
γ→∞

γx1 Ẑx1,x2 ,

USW = lim
γ→∞

γU ∼ Gamma(β + λ) ,

V SW = lim
γ→∞

V ∼ (Beta(λ, β))−1 ,

WSW = lim
γ→∞

γW ∼ Gamma(β) , (G.4.23)

(all these limits hold in law). Here ẐSWx1,x2
is the partition sum of the stationary Strict-Weak polymer with boundaries

defined as for the IB polymer with boundaries with random BWs distributed as Ux1,0 ∼ USW , V0,x2 ∼ V SW , ux1,x2 ∼ WLG

and vx1,x2 = 1. It satisfies stationarity and reversibility properties inherited from those of the IB polymer (see Sec. a).
We note that this stationary Strict-Weak polymer with boundaries differs from the one considered in [219]. Indeed, the
admissible paths considered in [219] differ from ours, and so does the stationarity property there obtained which involve
ratios of partition sums slightly different from ours (see Definition 6.1, Proposition 6.2 and Lemma 6.3 in [219]). While these
two stationary process are different, we note that the ESPs that underly them are different incarnations of the Beta-Gamma
algebra of RVs.

G.5 Zero temperature model: Stationary measure of the Bernoulli-Geometric
polymer

In this section we obtain the stationarity properties of the BG polymer with boundary conditions and stationary initial
condition stated in Sec. b and discuss the link between our results and previous results on other models. Thanks to the
notations we used, the proof of these properties will be (almost) completely analogous to the finite temperature case and
we will thus give much less details in this section.

G.5.1 Stationarity properties of the Bernoulli-Geometric polymer

Let us first focus on the case of the BG polymer with boundaries defined in Def. G.3.5. In the bulk of N
2, the optimal

energy in the BG polymer with boundaries satisfies the following recursion equation

Êx1,x2 = min
(
Êx1−1,x2 + ux1,x2 , Êx1,x2−1 + vx1,x2

)
for (x1, x2) ∈ (N∗)2 . (G.5.1)

This implies the bulk recursion equation for the horizontal and vertical differences of optimal energies (see (G.3.32))

Ûx1,x2 = φ
(1)
T=0

(
Ûx1,x2−1, V̂x1−1,x2 , ux1,x2 , vx1,x2

)
, V̂x1,x2 = φ

(2)
T=0

(
Ûx1,x2−1, V̂x1−1,x2 , ux1,x2 , vx1,x2

)
. (G.5.2)

where we have introduced the T = 0 stationarity map that we now define.
Definition G.5.1. The T = 0 stationarity map φT=0 is the function φT=0 : (U,V, u, v) ∈ Z

4 → (U′,V′) ∈ Z
2 defined by

U
′ = min (u, v + U − V) , V

′ = min (u + V − U, v) = U
′ + V − U . (G.5.3)

It has the following properties (below and throughout the rest of the paper ⊥ means ‘independent of’):
Proposition G.5.1. Stationarity If U, V, u and v are RVs distributed as in (G.3.12) and (G.3.20) with U ⊥ V ⊥ (u, v),
then the RVs U′, V′ in (G.5.3) are distributed as in (G.3.20) with U′ ⊥ V′.
Proposition G.5.2. Detailed balance If U, V, u and v are RVs distributed as in (G.3.12) and (G.3.20) with U ⊥ V ⊥
(u, v) and U′ and V′ are given by (G.5.3), then

Proba
(
(U′,V′) = (kU′ , kV′ ), (U,V) = (kU, kV)

)
= Proba

(
(U′,V′) = (kU, kV), (U,V) = (kU′ , kV′ )

)
. (G.5.4)

These two properties are proved in Appendix G.10. Thanks to the existence of these properties and of the induction
(G.5.2), the stationarity properties of the BG polymer with boundaries (and similarly of the BG polymer with stationary
initial condition) then easily follow as in the previous section by induction on down-right paths.

Remarks
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• Note that contrary to the stationarity-reversibility map φ defined for the Inverse-Beta polymer in Def. G.4.1, the
stationarity map of the φT=0 model is not an involution. We were not able to extend as before φT=0 to an involution
φ̃T=0 : (U,V, u, v) → (U′,V′, u′, v′) that conserves the PDF and the independence of U, V and of the couple (u, v). We
believe this is related to the fact that the recursion equation (G.5.2) ‘loses some memory’, in the sense that if ux1,x2

in (G.5.2) is too large, its value cannot be inferred from the sole knowledge of Ux1,x2 and Vx1,x2 . Nevertheless, we
were still able to prove the detailed balance property (G.5.4), which is sufficient to prove the reversibility property
of the stationary process Prop. G.3.7 in the BG polymer with stationary initial condition as for the IB polymer
with stationary initial condition: the only difference is that we do not have the explicit construction of the random
environment in which the backward process (G.3.34) satisfies a forward evolution equation.

• Sets of random variables satisfying a stationarity property similar to the one of the stationarity map (G.4.3) have
played over the years an important role in the theory of queuing systems since they also provide in this framework
models with an exact solvability property. The first occurrence of a property of this type in this context is due
to Burke for the case of exponentially distributed RVs [199]. Since then such properties have been designated as
Burke properties. Examples of sets of RVs for which Burke properties have been shown notably include systems of
Geometric variables [216] and more recently mixture of Bernoulli and Geometric variables very similar to the ones
considered here [269]. The exact solvability property studied in [269] does not however seem trivially connected to
the one studied here. From the technical point of view we note that it involves 4 independent Geometric RVs (while
our property involves 5), and more conceptually the model studied in [269] naturally corresponds to a problem of
first passage percolation, while our model interpolates between problems of first and last passage percolation (see
Sec. G.5.2).

G.5.2 Relation to other models

Let us now discuss the relations between this model and other known models. We discuss this in the framework of the
model with boundaries in order to obtain the stationary measure of the limiting model as well. In the following we will
only study the limits at the level of the random energies (u, v,U,V). Each limit can be used to define a model equivalent to
the BG polymer with boundaries (see Def. G.3.5) with different distributions of energies in the bulk and on the boundaries
and a stationarity property on down-right paths.

a q′ → 0 limit: last passage percolation with geometric waiting times

An isotropic limit of the model is obtained by letting q′ → 0. In this case the random energies that enters into the definition
of the model with boundaries are distributed as

u
gLPP = v

gLPP = −Gq ,
U
gLPP = −Gq/qb

,

V
gLPP = −Gqb . (G.5.5)

This model exactly corresponds to geometric last passage percolation as e.g. studied in [159] for the case without boundaries
(note that ugLPP = vgLPP implies that the bulk random energies can be interpreted as living on the vertices of N2). Indeed,
note that while the random energies in the Bernoulli-Geometric polymer can generally be both positive and negative, in
this limit the energies are always negative and the energy-minimization problem can be reinterpreted as a maximization
problem of the last passage time. The latter is given by Tx1,x2 := −Ex1,x2 = max

{∑

e∈π te, π : (0, 0) → (x1, x2)
}

, where
the random waiting times on the edges are the opposite of the random energies, te := −E(e) ≥ 0. This model was denoted
Geo-LPP in Fig. G.1.

b q → 0 limit: a first passage percolation problem with Geometric waiting times

An anisotropic limit is obtained by letting q → 0 with q′ fixed. We obtain

(ubgFPP , vbgFPP ) = ((1 − ξuv)(1 +Gq′ ), 0) ,

U
bgFPP = (1 − ξU)(1 +Gqbq

′ ) ,

V
bgFPP = −ξVGqb . (G.5.6)

with now puv = 1 − q′, pU = 1 − qbq
′ and pV = 1−q′

1−qbq
′ . Note that in this limit the energies on the (bulk) edges are either 0

(for vertical edges) or positive. Note also that we can replace the bulk energies on horizontal edges by a simple geometric
RV since we have the equality in law (1 − ξuv)(1 + Gq′ ) ∼ Gq′ . In this limit the optimal energy Ex1,x2 is thus always the
sum of positive terms and the model is naturally interpreted as a model of first passage percolation. Here the first passage
time is Tx1,x2 := +Ex1,x2 = min

{∑

e∈π te, π : (0, 0) → (x1, x2)
}

, where the random waiting times on the edges are equal to
the random energies, te := +E(e) ≥ 0. This model was denoted Anisotropic Geo-FPP in Fig. G.1. This model was already
studied in the language of queuing system in [216] where the authors obtained an analogue Burke property and also showed
that the model could be solved exactly using the RSK correspondence.
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c Continuous limit of the Bernoulli-Geometric polymer and T = 0 limit of the Inverse-Beta
polymer

We now discuss the exponential/continuous limit. It is obtained by letting ǫ → 0+ with

q = 1 − γ′ǫ , q′ = 1 − β′ǫ , qb = 1 − (γ′ − λ′)ǫ , (G.5.7)

where γ′, β′ > 0 and 0 < λ′ < γ′ (to ensure qb > q) are three parameters. In this limit the energies have to be rescaled by
ǫ and converge in law to exponentially distributed random variables as

(uB−Exp, vB−Exp) = ǫ(u, v) →ǫ→0 ((1 − ζuv)Eβ′ − ζuvEγ′ ,−ζuvEγ′ , )

U
B−Exp = ǫU →ǫ→0 (1 − ζU)Eβ′+λ′ − ζUEγ′−λ′

V
B−Exp = ǫV →ǫ→0 −ζVEλ′ (G.5.8)

where ζuv, ζU and ζV are Bernoulli RVs with parameters puv = β′

β′+γ′ , pU = β′+λ′

β′+γ′ and pV = β′

β′+λ′ and Eγ′ , Eβ′ , Eγ′−λ′ , Eλ′

and Eβ′+λ′ denote exponentially distributed RVs. Let us recall here that the PDF of an exponentially distributed RV is

Eα ∼ Exp(α) , p(Eα) = αe−αEα . (G.5.9)

The optimal energy in this model has to be scaled accordingly as

Ê
B−Exp
x1,x2

= lim
ǫ→0

ǫÊx1,x2 , (G.5.10)

and the results previously obtained in the BG polymer with boundaries also apply to this model using the now exponentially
distributed weights (G.5.8). We call this model the Bernoulli-Exponential polymer with boundaries (denoted as Bernoulli-
Exp in Fig. G.1). This model can also be obtained from the IB polymer with boundaries using γ = ǫγ′, β = ǫβ′, λ = ǫλ′

and scaling the energies as

(uB−Exp, vB−Exp) = −ǫ(log u, log v) →ǫ→0 ((1 − ζuv)Eβ′ − ζuvEγ′ ,−ζuvEγ′ , ) ,

U
B−Exp = −ǫ logU →ǫ→0 (1 − ζU)Eβ′+λ′ − ζUEγ′−λ′ ,

V
B−Exp = −ǫ log V →ǫ→0 −ζVEλ′ ,

Ê
B−Exp
x1,x2

= lim
ǫ→0

−ǫ log Ẑx1,x2 . (G.5.11)

Here the convergence in law of the logarithm of the random Boltzmann weights of the Inverse-Beta polymer to a mixture
of Bernoulli and exponential distributions was shown in [5]. We refer the reader to [5] for the Bethe ansatz study of
this polymer model (without boundary conditions) where the authors notably obtain the full distribution of the optimal
energy and show Tracy-Widom GUE asymptotic limit. The Bernoulli-Exponential polymer with boundaries has stationarity
properties inherited from the stationarity properties of the IB polymer with boundaries, and was first introduced using the
limit (G.5.11). The definition of the Bernoulli-Geometric polymer with boundaries Def. G.3.5 was found by trial and error
as a discretization of the Bernoulli-Exponential polymer with boundaries which conserves these stationarity properties (see
in particular Appendix G.10).

Isotropic limit: Exponential last passage percolation

Note that the Bernoulli-Exponential polymer (G.5.8) admits an isotropic limit β′ → ∞ which converges to exponential last
passage percolation: in this limit

u
eLPP = v

eLPP = −Eγ′ ,

U
eLPP = −Eλ′ ,

V
eLPP = −Eγ′−λ′ . (G.5.12)

This model can also be obtained from the continuum limit ((q, qb) = (1 − ǫγ′, qb = 1 − ǫλ′), ǫ → 0) of geometric last passage
percolation (G.5.5), or also directly as the zero-temperature limit ((γ, λ) = ǫ(γ′, λ′) with ǫ → 0) of the Log-Gamma polymer
(G.4.20), and was denoted Exp-LPP in Fig. G.1. The first occurrence of this stationary model in the literature was in the
language of queuing system and is due to Burke in [199]. Here again ueLPP = veLPP implies that the random energies can
be interpreted as living on the sites of N2.

Anisotropic limit: anisotropic Exponential first passage percolation

One can also consider an anisotropic limit γ′ → ∞ of the Bernoulli-Exponential polymer (G.5.8) to obtain a first passage
percolation problem with exponential waiting times:

(ueFPP , veFPP ) = (Eβ′ , 0)

U
eFPP = Eβ′+λ′

V
eFPP = −ζV Eλ′ . (G.5.13)

This model can also be obtained from the continuum limit ((q′, qb) = (1 − ǫβ′, qb = 1 − ǫλ′), ǫ → 0) limit of (G.5.5), or
also as the zero temperature limit ((β, λ) = ǫ(β′, λ′) with ǫ → 0) of the Strict-Weak polymer (G.4.23). As for its geometric
counterpart (G.5.5) this model was studied in [216]. It was noted Anisotropic Exp-FPP in Fig. G.1.
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G.6 Quenched free-energy, Angle-Boundary parameter equivalence and con-
vergence to the stationary state of point to point models

In this section we first obtain in Sec. G.6.1 preliminary results on the mean optimal energy in the BG polymer with
boundaries and the mean free-energy in the IB polymer with boundaries. In Sec. G.6.2 we use these results to obtain the
mean quenched optimal energy/free-energy in models without boundaries (Eq. (G.3.38) and (G.3.40)). In Sec. G.6.3 we
will discuss the convergence of point to point models to their stationary state (see Sec. G.3.4). Finally in Sec. G.6.4 we will
comment on free-energy fluctuations and optimal path properties in models with boundaries.

Let us first collect here some definitions for the mean energies of bulk and boundaries random Boltzmann weights/energies
in these models. Below and as before u, v, U, V and u, v,U,V denote RVs distributed as in Def. G.3.2 and Def. G.3.5. We
define

fγ,βU (λ) := −logU = −ψ(β + λ) + ψ(γ − λ) f
q,q′

U
(qb) := U =

q2
bq

′ − q

(qb − q) (1 − qbq′)
,

fγ,βV (λ) := −log V = −ψ(β + λ) + ψ(λ) f
q,q′

V
(qb) := V = − 1 − q′

1 − qbq′
qb

1 − qb
,

fγ,βu := −log u = −ψ(β) + ψ(γ) f
q,q′
u := u =

q′ − q

(1 − q)(1 − q′)
,

fγ,βv := −log v = −ψ(β + γ) + ψ(γ) f
q,q′
v := v = − 1 − q′

1 − qq′
q

1 − q
, (G.6.1)

where ψ = Γ′

Γ
is the diGamma function. A key property of models with boundaries, that will notably play a crucial role in

the remaining of this section, is that boundaries are attractive.
Indeed it follows from the fact that ψ is strictly increasing and concave that fγ,βU (λ) ≤ fγ,βu (equality for λ → 0),

fγ,βV (λ) ≤ fγ,βv , (equality for λ → γ). Furthermore, when λ → 0 (resp. λ → γ), fγ,βV (λ) → −∞ (resp. fγ,βU (λ) → −∞) and
the vertical (resp. horizontal) boundary becomes infinitely attractive. Note also that fγ,βV (λ) increases with λ while fγ,βU (λ)
decays with λ. Finally note that for 0 < λ < γ/2 (resp. γ/2 < λ < γ), fγ,βV (λ) < fγ,βU (λ) (resp. fγ,βU (λ) < fγ,βV (λ)) and the
vertical (resp. horizontal) boundary is the most attractive. Both boundaries have the same mean energy for λ = γ/2, i.e.
fγ,βU (γ/2) = fγ,βV (γ/2), a special case referred to as the equilibrium situation in the rest of the paper. Similarly, note that for

q < qb < 1, f
q,q′

U
(qb) < f

q,q′
u , f

q,q′

V
(qb) < f

q,q′
v . Note also that f

q,q′

U
(qb) increases when qb increases with f

q,q′

U
(qb) →qb→q+ −∞

and f
q,q′

U
(qb) →qb→1− f

q,q′
u , while f

q,q′

V
(qb) decays when qb increases with f

q,q′

V
(qb) →qb→q+ f

q,q′
v and f

q,q′

V
(qb) →qb→1− −∞.

Finally f
q,q′

U
(qb) < f

q,q′

V
(qb) for qb <

√
q, f

q,q′

U
(qb) > f

q,q′

V
(qb) for qb >

√
q and in the ‘equilibrium case’ qb =

√
q we have

f
q,q′

U
(
√
q) = f

q,q′

V
(
√
q).

G.6.1 Free-energy in models with boundaries

Bernoulli-Geometric polymer

Let us first focus on the Bernoulli-Geometric polymer with boundaries defined in Def. G.3.5 and write the optimal
energy Êx1,x2 for (x1, x2) ∈ N

2 as,

Êx1,x2 =
x1∑

i=0

Ûi,0 +
x2∑

j=0

V̂x1,j . (G.6.2)

Note that this decomposition does not follow a down-right path and the variables Ûx1,x2 and V̂x1,x2 in the two sums are
correlated. Each one however is distributed as Ûi,0 ∼ U and V̂x1,j ∼ V as in (G.3.20). Hence we obtain, ∀(x1, x2) ∈ N

2,

Êx1,x2 = x1f
q,q′

U
(qb) + x2f

q,q′

V
(qb) , (G.6.3)

where f
q,q′

U
(qb) and f

q,q′

V
(qb) were given in (G.6.1). In particular the mean optimal energy in the direction (s1, s2) is, for

(s1, s2) ∈ R
2
+,

f̂BG(s1, s2, qb) := lim
N→∞

1
N

ÊNs1,Ns2 = s1f
q,q′

U
(qb) + s2f

q,q′

V
(qb) . (G.6.4)

We can also consider the mean optimal energy per-unit-length in a direction −1/2 < ϕ < 1/2 as f̂
p.u.l.
BG (ϕ, qb) := limt→∞ 1

t
Êt(x = (1/2 +

f̂BG(1/2 + ϕ, 1/2 − ϕ, qb), with conversely f̂BG(s1, s2, qb) = (s1 + s2)̂fp.u.l.
BG ( s1−s2

2(s1+s2)
, qb). Note that from (G.6.4), it is clear

that the mean optimal energy per-unit-length f̂
p.u.l.
BG (ϕ, qb) is linear in ϕ. Furthermore, note that in the special case qb =

√
q

(referred to as the equilibrium case earlier), f
q,q′

U
(qb) = f

q,q′

V
(qb) and f̂

p.u.l.
BG (ϕ, qb) does not depend on ϕ. We will come back

to this point later.
Inverse-Beta polymer

In the same way, in the case of the Inverse-Beta polymer with boundaries, ∀(x1, x2) ∈ N
2, − log Ẑx1,x2 = −

∑x1

i=0
log Ûi,0 −
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2

∑x2

j=0
log V̂x1,j . We thus have −log Ẑx1,x2 = x1f

γ,β
U (λ) + x2f

γ,β
V (λ), implying that the mean quenched free-energy in the

direction (s1, s2) ∈ R
2
+ is

f̂IB(s1, s2, λ) := − lim
N→∞

1
N

log ẐNs1,Ns2 = s1f
γ,β
U (λ) + s2f

γ,β
V (λ) . (G.6.5)

And the free-energy per-unit-length in the direction ϕ ∈] − 1/2, 1/2[, f̂p.u.l.
IB (ϕ, λ) := − limt→∞ 1

t
log Ẑt(1/2+ϕ),t(1/2−ϕ) =

f̂IB(1/2 + ϕ, 1/2 − ϕ, λ) with conversely f̂IB(s1, s2, λ) = (s1 + s2)f̂p.u.l.
IB ( s1−s2

2(s1+s2)
, λ). As before, note from (G.6.5) that

f̂p.u.l.
IB (ϕ, λ) is generally linear in ϕ, with the special case that it is constant in the equilibrium situation λ = γ/2.

G.6.2 Free-energy in models without boundaries

a Bernoulli-Geometric polymer

The first part of this section is devoted to the derivation of the formula (G.3.40) for f(s1, s2). We believe it to be rather
instructive and the main ideas are summarized in Fig. G.7. Furthermore we introduce in this derivation several elements
which will be important in Sec. G.6.3. The ideas used in this derivation are close in spirit to those used in

Derivation of a formula for fBG(s1, s2)
Let us now consider again the Bernoulli-Geometric model with boundaries defined in Def. G.3.5. ∀(x1, x2) ∈ (N∗)2 we write
the decomposition

Êx1,x2 = min

{

mini∈[1,x1]

(
i∑

j=1

Ûj,0 + vi,1 + E
i,1
x1,x2

)

,mini∈[1,x2]

(
i∑

j=1

V̂0,j + u1,i + E
1,i
x1,x2

)}

, (G.6.6)

where we have introduced ∀(x1, x2, x
′
1, x

′
2) ∈ (N∗)4 with x′

1 ≤ x1 and x′
2 ≤ x2, the minimal energy to go from (x′

1, x
′
2) to

(x1, x2)

Ê
x′

1,x
′
2

x1,x2 = min

{

Ê(π) =
∑

e∈π
Ê(e), π : (x′

1, x
′
2) → (x1, x2)

}

. (G.6.7)

Note that an up-right path from (x′
1, x

′
2) to (x1, x2) cannot pass upon an edge on the boundary of N2. Hence the random

energies encountered along the way are only of the bulk type and thus Ê
x′

1,x
′
2

x1,x2 corresponds to an optimal energy in a model
without boundaries. More precisely we have the equality in law, using the statistical translational invariance of the disorder,

Ê
x′

1,x
′
2

x1,x2 ∼ Ex1−x′
1
,x2−x′

2
, (G.6.8)

where here Ex1,x2 denotes the optimal energy in the point to point Bernoulli-Geometric model as defined in Def. G.3.4.
Using (G.6.6), the definitions (G.6.4) and (G.3.37) and the equality in law (G.6.8) we obtain, scaling i ∼ Nr in (G.6.6),

f̂BG(s1, s2, qb) = s1f
q,q′

U
(qb) + s2f

q,q′

V
(qb)

= min
{

inf0≤r≤s1 (rfq,q
′

U
(qb) + fBG(s1 − r, s2)), inf0≤r≤s2 (rfq,q

′

V
(qb) + fBG(s1, s2 − r))

}

. (G.6.9)

The goal is now to ‘invert’ (G.6.9) to obtain fBG(s1, s2). Let us fix s1, s2 > 0 and study the properties of (G.6.9) as a

function of qb ∈ [q, 1]. Note that in the limit qb → 1, f
q,q′

V
(qb) → −∞ while other quantities stay bounded. As a consequence

f̂BG(s1, s2, qb) ∼ s2f
q,q′

V
(qb) and the minimum in the right hand side of (G.6.9) is attained in the second inf with r → s2.

Conversely, in the limit qb → q, f
q,q′

U
(qb) → −∞ while other quantities stay bounded, and thus f̂BG(s1, s2, qb) ∼ s1f

q,q′

U
(qb)

and the minimum in the right hand side of (G.6.9) is attained in the first inf with r → s1. From this it is clear that there
exists a constant qs1,s2 ∈]qb, 1[ such that

s1f
q,q′

U
(qb) + s2f

q,q′

V
(qb) = θ(qs1,s2 − q)inf0≤r≤s1 (rfq,q

′

U
(qb) + fBG(s1 − r, s2))

+θ(q − qs1,s2 )inf0≤r≤s2 (rfq,q
′

V
(qb) + fBG(s1, s2 − r)). (G.6.10)

Let us implicitly define two functions r1 : qb ∈ [q, qs1,s2 ] → r1(qb) ∈ [0, s1] and r2 : qb ∈ [qs1,s2 , 1] → r2(qb) ∈ [0, s2] such
that

s1f
q,q′

U
(qb) + s2f

q,q′

V
(qb) = θ(qs1,s2 − qb)(r1(qb)f

q,q′

U
(qb) + fBG(s1 − r1(qb), s2))

+θ(qb − qs1,s2 )(r2(qb)f
q,q′

V
(qb) + fBG(s1, s2 − r2(qb))). (G.6.11)

They satisfy r1(qb) →qb→q s1, r2(qb) →qb→1 s2 and are such that

∀qb ∈]q, qs1,s2 [ , f
q,q′

U
(qb) − ∂1fBG(s1 − r1(qb), s2)) = 0 ,

∀qb ∈]qs1,s2 , 1[ , f
q,q′

V
(qb) − ∂2fBG(s1, s2 − r2(qb))) = 0 . (G.6.12)
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x2

x1s1

s2

Ns2

Ns1Nr1

Nr2

qb < qs1,s2

qb > qs1,s2

Figure G.7: Cartoon of the notations used in the derivation of (G.6.16). At large
N in a fixed direction (s1, s2) and varying the boundary parameter qb, the optimal
polymer path sticks to the horizontal (resp. vertical) boundary for Nr1 (resp. Nr2)
steps for qb < qs1,s2 (resp. for qb > qs1,s2). We show that r1 decreases from s1 to
0 (resp. r2 increases from 0 to s2) when qb increases from q to qs1,s2 (resp. from
qs1,s2 to 1). We show that qs1s2 = q∗

b (s1, s2) the solution of the saddle-point equation
∂

∂qb
f̂BG(s1, s2, qb)|qb=q∗

b
(s1,s2) = 0 and that for this boundary parameter in the direction

(s1, s2) we have the identity fBG(s1, s2) = f̂BG(s1, s2, q
∗
b (s1, s2)).

Differentiating these equations with respect to qb, we obtain

∀qb ∈]q, qs1,s2 [ , (fq,q
′

U
)′(qb) + ∂2

1 fBG(s1 − r1(qb), s2))r′
1(qb) = 0 ,

∀qb ∈]qs1,s2 , 1[ , (fq,q
′

V
)′(qb) + ∂2

2 fBG(s1, s2 − r2(qb)))r
′
2(qb) = 0 . (G.6.13)

From this and using the fact that f
q,q′

U
(qb) (resp. f

q,q′

V
(qb)) is strictly increasing (resp. decreasing) as a function of qb and

assuming that f(s1, s2)) is a strictly convex function, we obtain that r1(qb) (resp. r2(qb)) should be strictly decreasing (resp.

increasing) on ]q, qs1,s2 [ (resp. ]qs1,s2 , 1[). Note now that f̂BG(s1, s2, qb) = s1f
q,q′

U
(qb) + s2f

q,q′

V
(qb) is a concave function of qb

on ]q, 1[ with a single maximum at some q∗
b ∈]q, 1[. In particular s1f

q,q′

U
(qb) + s2f

q,q′

V
(qb) is not constant on any sub-interval

and hence both r1(qb) and r2(qb) cannot be constant on any subinterval either. Combined with the fact that r1(qb) is strictly
decreasing, this shows that r1(qb) > 0 ∀qb < qs1,s2 . In the same way r2(qb) > 0 ∀qb > qs1,s2 . Let us now differentiate
(G.6.11) with respect to qb for qb 6= qs1,s2 and use the saddle-point equation (G.6.12), we obtain

s1(fq,q
′

U
)′(qb) + s2(fq,q

′

V
)′(qb) = θ(qs1,s2 − qb)r1(qb)(f

q,q′

U
)′(qb) + θ(qb − qs1,s2 )r2(qb)(f

q,q′

V
)′(qb). (G.6.14)

In particular this shows that ∂
∂qb

f̂BG(s1, s2, qb) = s1(fq,q
′

U
)′(qb) + s2(fq,q

′

V
)′(qb) is not 0 ∀qb 6= qs1,s2 . Since we know that

∂
∂qb

f̂BG(s1, s2, qb) = 0 for qb = q∗
b we necessarily obtain

qs1,s2 = q∗
b and 0 = lim

qb→(q∗
b

)−
r1(qb)(f

q,q′

U
)′(qb) = lim

qb→(q∗
b

)+
r2(qb)(f

q,q′

V
)′(qb) . (G.6.15)

And hence limqb→(q∗
b

)− r1(qb) = limqb→(q∗
b

)+ r2(qb) = 0.

Final formula for fBG(s1, s2)
Using finally by continuity (G.6.11) for qb → q∗

b we obtain our final result for the optimal energy of the model without
boundaries: ∀(s1, s2) ∈ R

2
+,

fBG(s1, s2) = f̂BG(s1, s2, qb = q∗
b (s1, s2)) ,

∂

∂qb
f̂BG(s1, s2, qb)|qb=q∗

b
(s1,s2) = 0 . (G.6.16)

Using (G.6.1) and (G.6.4), these formal formulas are rewritten more explicitly in (G.3.40).
Free-energy per-unit-length, optimal angle and the equilibrium case

The free-energy per-unit-length in the direction ϕ ∈] − 1/2, 1/2[, f
p.u.l.
BG (ϕ) = fBG(1/2 + ϕ, 1/2 − ϕ) is similarly given by

f
p.u.l.
BG (ϕ) = (1/2 + ϕ)fqq

′

U
(q∗
b (ϕ)) + (1/2 − ϕ)fqq

′

V
(q∗
b (ϕ)) (G.6.17)

0 = (1/2 + ϕ)∂qb f
qq′

U
(q∗
b (ϕ)) + (1/2 − ϕ)∂qb f

qq′

U
(q∗
b (ϕ)) . (G.6.18)
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2

It is plotted in Fig. G.8 for various values of q, q′. f
p.u.l.
BG (ϕ) reaches its minimum at the angle ϕBG

opt such that, using the
saddle-point structure, in (G.6.17)-(G.6.18)

∂f
p.u.l.
BG (ϕ)
∂ϕ

= 0 = f
qq′

U
(q∗
b (ϕBG

opt)) − f
qq′

V
(q∗
b (ϕBG

opt)) . (G.6.19)

And using (G.6.1) this shows that f
p.u.l.
BG (ϕ) is minimum when q∗

b (ϕ) =
√
q, the boundary parameter already referred to

as the equilibrium boundary parameter. The optimal angle is thus obtained using (G.6.18) with qb =
√
q and one obtains

(G.3.43).

Last-Passage-Percolation limit

In the isotropic case q′ = 0 case we easily obtain from the above formulas, using f̂BG(s1, s2, qb)|q′=0 = q
q−qb

s1 + qb
qb−1

s2 and
that the quartic equation for q∗

b in (G.3.40) becomes a simpler quadratic equation, that

fBG(s1, 1)|q′=0 =
s1q + 2

√
s1q + q

q − 1
, f

p.u.l.
BG (ϕ)|q′=0 =

(1 − 2φ)
√

2qφ+q
1−2φ

+ q

q − 1
. (G.6.20)

This reproduces the already known result first obtained by Johansson using the RSK correspondence (see Theorem 1.1 in
[159] with there s1 = γ). The function f

p.u.l.
BG (ϕ)|q′=0 is plotted in black-dashed on the left of Fig. G.8 for q = 0.5.

First-Passage-Percolation limit

As discussed in Sec.G.5.2, the q → 0 limit of the model is a model of first passage percolation with Bernoulli-Geometric
waiting times on horizontal edges only (see (G.5.5)). Taking the limit q → 0 of the above formulas is less straightforward

than in the last-passage-percolation limit. Indeed in this limit f̂
p.u.l.
BG (s1, s2, qb)|q=0 = − qbq

′

qbq
′−1

s1 +
qb(q′−1)

(qb−1)(qbq
′−1)

s2, and

though f̂
p.u.l.
BG (s1, s2, qb)|q=0 is still concave as a function of qb, limqb→0 f̂(s1, s2, qb)|q=0 = 0 > −∞ and one of the important

element in the derivation of (G.6.16) does not hold anymore. One can however repeat a similar derivation and obtain that,
at fixed q′ and as a function of ϕ, f̂

p.u.l.
BG (ϕ, qb)|q=0 = f̂BG(1/2+ϕ, 1/2−ϕ, qb)|q=0 reaches its maximum on qb = [0, 1] at qb = 0

for ϕ ≤ ϕq′ := 1/2 − q′. In those cases f
p.u.l.
BG (ϕ)|q=0 = f̂

p.u.l.
BG (ϕ, 0)|q=0 = 0. For ϕ > ϕq′ on the other hand f̂

p.u.l.
BG (ϕ, qb)|q=0

reaches its maximum on qb = q∗
b ∈]0, 1[ at some q∗

b solution of the quadratic equation ∂qb f̂
p.u.l.
BG (ϕ, qb = q∗

b )|q=0 = 0 and in
those cases f

p.u.l.
BG (ϕ)|q=0 = f̂

p.u.l.
BG (ϕ, q∗

b )|q=0 > 0. Solving the resulting quadratic equation one obtains that f
p.u.l.
BG (ϕ)|q=0 is

given by the non-analytic form

f
p.u.l.
BG (ϕ)|q=0 = θ

(

ϕ− (
1
2

− q′)
)

(

2
√

2
√

(1 − 2ϕ)q′ − 2q′ + 2ϕ− 1
)

2 (q′ − 1)
≥ 0 . (G.6.21)

This formula can also easily be obtained by first solving explicitly the quartic equation in (G.3.40) and then taking the
limit q → 0. A ‘natural’ way to interpret this non-analytic behavior is the existence of a percolation threshold. Indeed,
the optimal energy Ex1,x2 is equal to 0 iff there exist a path from (0, 0) to (x1, x2) such that all the Bernoulli variables
ξuv on the horizontal edges encountered by the path are 0 (which occurs for each edge with probability q′, see (G.5.5)).
When (x1, x2) = t(1/2 − ϕ, 1/2 + ϕ) with t → ∞ and for ϕ = −1/2 it is trivial that this occurs with probability 1, and
an interesting question is whether there exist a critical angle ϕc up to which this still occurs with probability 1. In the
region ϕ ≥ ϕq′ this is clearly not the case since f

p.u.l.
BG (ϕ)|q=0 > 0. In the region ϕ ≤ ϕq′ , f

p.u.l.
BG (ϕ)|q=0 = 0 and a natural

guess would be ϕc = ϕq′ , although we cannot simply rule out here the possibility that the optimal path encounters a
non-extensive number (i.e. o(t)) of edges such that ξuv 6= 0. Around ϕq′ we obtain, for δϕ > 0, a quadratic behavior

f
p.u.l.
BG (ϕq′ + δϕ)|q=0 ≃ 1

4q′
δϕ2

1−q′ +O(δϕ3). The function f
p.u.l.
BG (ϕ)|q=0 is plotted in black-dashed on the right of Fig. G.8 for

q′ = 0.7.

b Inverse-Beta polymer

Let us now consider the IB polymer with boundaries defined in Def. G.3.2. ∀(x1, x2) ∈ (N∗)2, we write,

Ẑx1,x2 =
x1∑

i=1

i∏

j=1

Ûj,0vi,1Ẑ
i,1
x1,x2

+
x2∑

i=1

i∏

j=1

V̂0,ju1,iẐ
1,i
x1,x2

, (G.6.22)

where we have introduced ∀(x1, x2, x
′
1, x

′
2) ∈ (N∗)4 with x′

1 ≤ x1 and x′
2 ≤ x2, the partition sum for polymers with starting

point (x′
1, x

′
2) and (x1, x2), Ẑ

x′
1,x

′
2

x1,x2 =
∑

π:(x′
1
,x′

2
)→(x1,x2)

∏

e∈π ŵ(e). Since the Boltzmann weights taken into account in this

partition sum are all bulk-type weights, we have the equality in law Ẑ
x′

1,x
′
2

x1,x2 ∼ Zx1−x′
1
,x2−x′

2
where Zx1,x2 is the partition

sum of the point to point IB polymer as defined in Def. G.3.1. The decomposition in (G.6.22) expresses the partition sum
Ẑx1,x2 as a sum of x1 + x2 positive terms. Hence we have the two inequalities

− log Ẑx1,x2 ≥ − log

(

(x1 + x2)max

{

maxi∈[0,x1]

i∏

j=1

Û0,jv1,iẐ
1,i
x1,x2

,maxi∈[0,x2]

i∏

j=1

V̂j,0ui,1Ẑ
i,1
x1,x2

})

− log Ẑx1,x2 ≤ − log

(

max

{

maxi∈[0,x1]

i∏

j=1

Û0,jv1,iẐ
1,i
x1,x2

,maxi∈[0,x2]

i∏

j=1

V̂j,0ui,1Ẑ
i,1
x1,x2

})

. (G.6.23)
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Figure G.8: Left: Optimal energy per-unit-length f
p.u.l.
BG (ϕ) in the point to point BG

polymer (G.6.17) for q = 0.5 and q′ = 0.1, 0.4, 0.8, 0.9 (plain lines, blue, orange, green
and red) and in the last passage percolation limit q′ → 0 (black dashed line) (G.6.20).
Right: Optimal energy per-unit-length f

p.u.l.
BG (ϕ) in the point to point BG polymer

(G.6.17) for q′ = 0.7 and q′ = 0.001, 0.01, 0.1, 0.2 (plain lines, blue, orange, green and
red) and in the first passage percolation limit q → 0 (black dashed line) (G.6.21). The
arrow indicates the percolation threshold of the q → 0 limit ϕq′=0.7 = −0.2.

Taking average values in (G.6.23), scaling (x1, x2) = N(s1, s2) and i ∼ Nr with N ≫ 1 and using the definitions (G.6.5),
(G.6.1) and (G.3.37) we obtain

f̂IB(s1, s2, λ) = s1f
γ,β
U (λ) + s2f

γ,β
V (λ)

= min
{

inf0≤r≤s1 (rfγ,βU (λ) + fIB(s1 − r, s2)), inf0≤r≤s2 (rfγ,βV (λ) + fIB(s1, s2 − r))
}
. (G.6.24)

Note that this equation has the exact same structure as the equation (G.6.9) relating the optimal energies in the Bernoulli-
Geometric polymer with and without boundaries. Furthermore, the functions f̂IB(s1, s2, λ), fγ,βU (λ) and fγ,βV (λ) have similar
analytical properties as a function of λ than the mean optimal energies for the BG polymer (see (G.6.1)). We can thus
repeat the precedent derivation, and, using that f̂IB(s1, s2, λ) is a concave function of λ on ]0, γ[ with a unique maximum
λ∗ ∈]0, γ[, we obtain for the point to point IB polymer, ∀(s1, s2) ∈ R

2
+

fIB(s1, s2) = f̂IB(s1, s2, λ
∗(s1, s2))

∂λfIB(s1, s2, λ)|λ=λ∗(s1,s2) = 0 , (G.6.25)

with λ∗(s1, s2) ∈]0, λ[. Using the formulas (G.6.1) and (G.6.5) we obtain (G.3.38). The derivation of the formula (G.3.43)
for the optimal angle ϕIB

opt is identical to the BG polymer case.

G.6.3 Convergence to the stationary measures

We now discuss the conjectures (G.3.44) and (G.3.45) using heuristic arguments. We note that making rigorous and
extending the picture discussed in this section is an active research area (focusing on the existence and characterization
of so-called Busemann functions and stationary cocycles), see e.g. [270] for problems of directed last passage percolation
(including a discussion of the exactly solvable geometric case), [271] for undirected first passage percolation and [268] for
the Log-Gamma polymer. We discuss the conjecture for the BG polymer (G.3.45), the argument for the IB polymer being,
at the level of rigor of this section, identical. In the following and until the end of the paper we will heavily use the notation
q∗
b (s1, s2) to denote the solution of the saddle-point equation (G.6.16), or alternatively the notation q∗

b (ϕ) to denote the
solution of the saddle-point equation (G.6.18).

Let us thus again consider the optimal energy Ex1,x2 in the point to point BG polymer defined in Def. G.3.4. Let
us suppose that, given an arbitrary direction (s1, s2) ∈ R

2
+ and fixing a total horizontal and vertical length Lu ≥ 1 and

Lv ≥ 1, the difference of optimal energies in the rectangle delimited by the points (Ns1, Ns2) → (Ns1 + Lu, Ns2) →
(Ns1 + Lu, Ns2 + Lv) → (Ns1, Ns2 + Lv) → (Ns1, Ns2) converges to a well defined ensemble of RVs. That is

(ENs1+x1,Ns2+x2 − ENs1,Ns2 )0≤x1≤Lu,0≤x2≤Lv ∼N→∞ (Ẽx1,x2 )0≤x1≤Lu,0≤x2≤Lv . (G.6.26)

Where the Ẽx1,x2 are O(1) RVs. It is clear that if the above convergence holds, the difference of horizontal and vertical
energies Ũx1,x2 := Ẽx1,x2 − Ẽx1−1,x2 and Ṽx1,x2 := Ẽx1,x2 − Ẽx1,x2−1 should be homogeneously distributed. In other
words their distributions should be invariant by induction using the stationarity map φT=0 (G.5.3). It is thus natural to
identify the RVs Ẽx1,x2 with the optimal energies Êx1,x2 in the BG polymer with boundaries. We however need to specify
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self-consistently the value of the boundary parameter qb. To do so, let us evaluate the mean value Ẽx1,x2 as

Ẽx1,x2 = ENs1+x1,Ns2+x2 − ENs1,Ns2

≃ N fBG(s1 + x1/N, s2 + x2/N) −N fBG(s1, s2)

≃ x1∂1fBG(s1, s2) + x2∂2fBG(s1, s2)

≃ x1f
q,q′

U
(q∗
b (s1, s2)) + x2f

q,q′

V
(q∗
b (s1, s2))

≃ Êx1,x2 if qb = q∗
b (s1, s2) , (G.6.27)

where we used the definition (G.3.37), the result (G.6.16), the saddle-point equation in (G.6.16) to compute the derivatives
∂if and (G.6.3). This calculation thus suggests that we have the equality in law, already given in (G.3.45)

(ENs1+x1,Ns2+x2 − ENs1,Ns2 )0≤x1≤Lu,0≤x2≤Lv ∼N→∞ (Êx1,x2 )0≤x1≤Lu,0≤x2≤Lv with qb = q∗
b (s1, s2) . (G.6.28)

That is we relate the differences of energies in a specific direction at large length in the model without boundaries with the
optimal energy in the model with boundaries with a specific boundary parameter. Note that this result fails if one starts
to scale the length of the rectangles with N . This is obvious if one scales Lu ∼ N , but the result is also expected to fail for
the smaller scaling Lu ∼ N

2
3 . Indeed the exponent 2/3 is the known rugosity exponent of directed polymer in d = 1 + 1

and should correspond to the typical scale at which correlations between energy differences appear.

Let us now reinterpret following this picture some properties of the IB model with boundaries. Following the convergence

in law (G.6.28), the optimal energies Êt(x) in the model with boundaries with parameter qb = q∗
b (ϕ0) with ϕ0 ∈]−1/2, 1/2[,

are thus interpreted as the difference of energies in the model without boundaries when the polymer starts from infinity
in the direction with angle ϕ0 (see Fig. G.9). In this interpretation the linear dependence of the free-energy per-unit-
length in the model with boundaries f̂

p.u.l.
BG (ϕ, qb = q∗

b (ϕ0)) as a function of ϕ is natural since the model with boundaries
is obtained by ‘zooming in’ on a specific region of the model without boundaries in the direction ϕ = ϕ0. One easily
checks using calculations similar to those of (G.6.27) that f̂

p.u.l.
BG (ϕ, qb = q∗

b (ϕ0)) = f
p.u.l.
BG (ϕ0) + (ϕ − ϕ0)∂ϕf

p.u.l.
BG (ϕ)|ϕ=ϕ0 .

In particular, as we already saw, the direction of optimal energy for the model without boundaries ϕ0 = ϕBG
opt (such that

∂ϕf
p.u.l.
BG (ϕ)|ϕ=ϕBG

opt
= 0) corresponds to the equilibrium boundary parameter qb =

√
q for which the optimal energy in the

model with boundaries f̂
p.u.l.
BG (ϕ, qb) is constant: there the model with boundaries is obtained by ‘zooming in’ on the region

of optimal energy of the model without boundaries.

G.6.4 A remark on optimal paths and energy fluctuations in models with boundaries

Let us now briefly discuss some asymptotic properties of the model with boundaries. For concreteness we will consider
the Bernoulli-Geometric polymer but the discussion can be easily adapted to the Inverse-Beta case. We suppose that the
boundary parameter qb corresponds to a direction ϕ0 for which qb = q∗

b (ϕ0), the solution of the saddle-point-equation
(G.6.18). As we saw before in (G.6.28) the optimal energies Êx1,x2 = Êt=(x1+x2)(x = x1) in the model with boundaries on a
finite domain are naturally interpreted as the asymptotic limit of the difference of energies of the model without boundaries
in the direction ϕ0. That is, for T ≫ 1 and (t, x) ∈ N

2 fixed we have

Êt(x) ∼ ET+t((1/2 + ϕ0)T + x) − ET ((1/2 + ϕ0)T ) . (G.6.29)

As such, asymptotic properties of optimal energies of the model with boundaries in a direction ϕ, Êt(x = (1/2 + ϕ)t) with
t ≫ 1, are to be interpreted with caution for the model without boundaries since (G.6.29) is a priori valid only for t fixed
and T → ∞. With this in mind, let us now discuss the properties of the energy fluctuations and of the optimal path in the
model with boundaries.

Let us first comment on some elements that appeared in the proof of (G.6.16) in Sec. G.6.2. There we defined, for a
fixed direction (s1, s2) = (1/2 + ϕ, 1/2 − ϕ) and varying the boundary parameter qb, two functions rϕ1 (qb) and rϕ2 (qb) (here
we emphasize the dependence on ϕ of these quantities by superscript). These two functions correspond to the average
length divided by t spend by the optimal polymer path on the horizontal (for rϕ1 (qb)) or vertical (for rϕ2 (qb)) boundary of
N

2. Hence for qb < q∗
b (ϕ) we saw that the polymer spends on average a macroscopic amount of his time (∼ rϕ1 (qb)t) on the

horizontal boundary, while for qb > q∗
b (ϕ) the polymer spends on average a macroscopic amount of his time (∼ rϕ2 (qb)t) on

the vertical boundary.

Conversely, fixing now qb = q∗
b (ϕ0) for some ϕ0 ∈] − 1/2, 1/2[, and varying ϕ, for ϕ > ϕ0 (resp. ϕ < ϕ0), the optimal

polymer path spends on average a macroscopic amount of time ∼ r̃ϕ0
1 (ϕ)t (resp. r̃ϕ0

2 (ϕ)t) on the horizontal (resp. vertical)
boundary with r̃ϕ0

1 (ϕ) = rϕ1 (qb = q∗
b (ϕ0)) (resp. r̃ϕ0

2 (ϕ) = rϕ2 (qb = q∗
b (ϕ0))). Hence, for ϕ > ϕ0 (resp. ϕ < ϕ0), the optimal

energy Êt(x = (1/2 + ϕ)t) contains a sum of order t terms of iid distributed RVs of the U type (resp. of the V type) and
one thus expects the fluctuations of Êt(x = (1/2 +ϕ)t) to scale as

√
t. Thus, in any direction ϕ 6= ϕ0, one does not observe

fluctuations of order t1/3 as could have naively been expected from KPZ universality, the reason being that the polymer is
then typically pinned by one of the two attractive boundaries for a macroscopic (i.e. of order t) amount of time.

An important question is then to understand how the fluctuations of Êt(x = (1/2 + ϕ)t) scale with t when ϕ = ϕ0. In
[197] Seppäläinen showed in the Log-Gamma polymer case that these fluctuations scale with the characteristic exponent
t1/3 as expected from KPZ universality, and a typical polymer path then only spend a time of order t2/3 on one of the two
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Figure G.9: Convergence to the stationary measure and equivalence between direction
and stationarity parameter qb in the Bernoulli-Geometric polymer. The optimal ener-
gies in the model with boundaries with parameter qb are interpreted as differences of
optimal energies for the point to point BG polymer (purple paths above) starting from
infinity T ≫ 1 in the direction ϕ0 such that qb = q∗

b (ϕ0). Optimal path properties
in the BG polymer with boundaries strongly depend on the observed direction. For
ϕ > ϕ0 (resp. ϕ < ϕ0) the optimal polymer path sticks to the vertical boundary (blue
path) (resp. horizontal boundary (red path)) for a macroscopic amount of time ∼ t.
In the direction ϕ = ϕ0, we conjecture following the work of Seppäläinen [197] that
the optimal polymer path stays on the boundary for a time of order t2/3 only (green
path).

boundaries. It is likely that the arguments presented in [197] could be adapted to our models. We will not prove it here
and continue by assuming that the fluctuations of Êt(x = (1/2 + ϕ)t) are of order t1/3 when ϕ = ϕ0.

Following the above remarks, it is clear that the direction ϕ = ϕ0 is a special direction for the model with boundaries.
It is the only direction for which the fluctuations of the optimal energy scale with the expected t1/3 exponent. Moreover, the
direction ϕ = ϕ0 is the only direction for which the mean optimal energy in the model with boundaries f̂

p.u.l.
BG (ϕ0, q∗

b (ϕ0))
coincide with the mean optimal energy of the underlying model without boundaries f

p.u.l.
BG (ϕ0). From these two facts, it

appears reasonable to conjecture that the equivalence in law (G.6.29), which a-priori only holds for t, x ≪ T , also holds
for t = O(T ) with x = (1/2 + ϕ0)t + x̂ with x̂ = O(1). That is, asymptotic properties of the model with boundaries with
parameter qb = q∗

b (ϕ0) reproduce those of the model without boundaries if one looks in the characteristic direction ϕ = ϕ0.

On the other hand for directions ϕ 6= ϕ0 it is clear that asymptotic properties of the model with boundaries cannot be
interpreted in the model without boundaries and the equivalence in law (G.6.29) does not hold anymore. An example of
such properties is as follows. In a direction ϕ > ϕ0 we have

Êt((1/2 + ϕ)t) = Êt((1/2 + ϕ)t) − Êt((1/2 + ϕ0)t) + Êt((1/2 + ϕ0)t)

=

x=(1/2+ϕ)t
∑

x=(1/2+ϕ0)t

(
Ût(x) − V̂t(x)

)
+ Êt((1/2 + ϕ0)t) . (G.6.30)

Subtracting the average values over disorder in the above equation, one gets that Êt((1/2 + ϕ)t) − t̂fp.u.l.
BG (ϕ, qb) is the

sum of t(ϕ − ϕ0) independent centered RVs (note that these RVs indeed live on a down-right path π
(t)
dr ) distributed as

U − V − U + V, and of another centered term Êt((1/2 + ϕ0)t) − t̂fp.u.l.
BG (ϕ0, qb) whose fluctuations scale as t1/3 (admitting

the above discussion). Hence it is then clear that in the large time limit the fluctuations of Êt((1/2 + ϕ)t) are Gaussian
distributed and we have the convergence in law

Êt((1/2 + ϕ)t) − t̂fp.u.l.
BG (ϕ, qb)

σ(ϕ)
√
t

∼t→∞ χN (0,1) , (G.6.31)

where here, qb = q∗
b (ϕ0), σ(ϕ) =

√

(ϕ− ϕ0)
(
U2

c
+ V2

c)
and χN (0, 1) is a RV distributed with a standard unit centered

normal distribution.
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Figure G.10: Comparison between the exact result for the mean asymptotic optimal
energy per-unit-length in the Bernoulli-Geometric polymer f

p.u.l.
BG (ϕ) (see (G.6.17)) for

q = 0.5 and q′ = q1 = 0.1 (blue line), q′ = q2 = 0.8 (orange line) and q′ = q3 = 0.9
(green line) and the numerically obtained value Et6((1/2 + ϕk)t6)/t6 for each set of
parameters and each angle ϕk (dots, same color code).

G.7 Numerical results for the zero-temperature model

In this section we report results of numerical simulations of the point to point Bernoulli-Geometric polymer (without
boundaries, see Def. G.3.4) for three sets of parameters. For each set we have q = 0.5 and we vary the anisotropy parameter:
we consider an almost isotropic case q′

1 = 0.1 and two strongly anisotropic cases q′
2 = 0.8 and q′

3 = 0.9. For each set we
perform 2 × 105 simulations of independent random environments of size 2048 × 2048. For each random environment we
measure using a transfer matrix algorithm the optimal energy and horizontal and vertical energy differences Etj ((1/2+ϕk)tj),
Utj ((1/2+ϕk)tj) := Etj ((1/2+ϕk)tj)−Etj −1((1/2+ϕk)tj−1) and Vtj ((1/2+ϕk)tj) := Etj ((1/2+ϕk)tj)−Etj −1((1/2+ϕk)tj)
for different times tj = 2j+5 with j = 1, . . . , 6 (hence t1 = 64 and t6 = 2048) and different angle parameters ϕk = −0.4+ k−1

10

with k = 1, . . . , 9.

We first compare in Fig.G.10 for each set of parameters our exact result for the asymptotic value of the mean optimal
energy per-unit-length (G.6.17) with the numerically obtained value Etj ((1/2 + ϕk)tj)/tj for j = 6 (i.e. polymers of length
t = t6 = 2048 for each set of parameters and each angle ϕk. We obtain an excellent agreement.

We then check our conjecture (G.3.45). The latter notably implies, combined with Prop. G.3.1, that the differences
of horizontal and vertical energies in a given direction, Utj ((1/2 + ϕk)tj) and Vtj ((1/2 + ϕk)tj), converge to independent
random variables distributed as U and V in (G.3.22), with for each ϕk the boundary parameter qb chosen as qb = q∗

b (ϕk), the
solution of the saddle-point equation (G.3.41) with (s1, s2) = (1/2 − ϕk, 1/2 + ϕk). In Fig.G.11 we analyze the numerical
results for the set of parameters with q′ = q′

3 = 0.9. We first obtain numerically the PDF of horizontal and vertical
differences of optimal energies Ut6 ((1/2 + ϕ8)t6), Vt6 ((1/2 + ϕ8)t6) for an angle ϕ = ϕ8 = 0.3 and polymers of length
t = t6 = 2048, and compare it with our asymptotic prediction (G.3.22) (the appropriate boundary parameter is there found
to be q∗

b ≃ 0.922824). We obtain an excellent agreement. To check the independence of the RVs, we estimate numerically

the normalized covariance
Utj

((1/2+ϕ8)tj )Vtj
((1/2+ϕ8)tj )

c

Utj
((1/2+ϕ8)tj )×Vtj

((1/2+ϕ8)tj )
and study its behavior as a function of t. Although fluctuations

are large, the normalized covariance clearly decays to 0 with increasing t, a signature of the independence of the RVs. In
Fig.G.12 we report similarly satisfying results for the set of parameters with q′ = 0.8 and in the direction ϕ = ϕ2 = −0.3
(there the appropriate boundary parameter is found to be q∗

b ≃ 0.667665).

G.8 Conclusion

In this paper we have obtained the stationary measure of the Inverse-Beta polymer, an exactly solvable, anisotropic finite
temperature model of DP on the square lattice recently introduced in [5]. As we discussed, the stationary model can
be either studied on Z

2 with a random initial condition for the polymer such that the free-energy of the DP performs a
random walk with inverse-beta distributed increments, or also conveniently in a model on the upper-right quadrant N2 with
special boundary conditions. This thus confers to the IB polymer a second exact solvability property that complements the
coordinate Bethe ansatz solvability shown in [5].

In parallel we introduced a new model of zero temperature DP on the square lattice, the Bernoulli-Geometric polymer.
It is obtained by appropriately discretizing the distributions of random energies of the zero temperature limit of the Inverse-
Beta polymer from Bernoulli-Exponential distributions to Bernoulli-Geometric distributions. This model is thus canonically
dual to the IB polymer. In two different limits the model becomes either a first passage percolation problem, or a last
passage percolation problem. We showed that its stationary measure could be exactly obtained, thus conferring to this new
model at least one exact solvability property.
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Figure G.11: Left: (resp. Middle:) Comparison between the numerically obtained
PDF of Ut6((1/2 +ϕ8)t6) (resp. Vt6((1/2 +ϕ8)t6)) in the simulations with parameters
q = 0.5, q′ = 0.9 (yellow histogram) and the PDF of U (resp. V) given in (G.3.22) with
qb = q∗

b ≃ 0.922824 (blue dots). Right: numerically obtained normalized covariance
Utj ((1/2+ϕ8)tj)Vtj ((1/2+ϕ8)tj)

c

Utj ((1/2+ϕ8)tj)×Vtj ((1/2+ϕ8)tj)
in the simulations with parameters q = 0.5, q′ = 0.9 as a

function of tj (blue dots). Error bars are 3−sigma Gaussian estimates.
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Figure G.12: Left: (resp. Middle:) Comparison between the numerically obtained
PDF of Ut6((1/2 +ϕ2)t6) (resp. Vt6((1/2 +ϕ2)t6)) in the simulations with parameters
q = 0.5, q′ = 0.8 (yellow histogram) and the PDF of U (resp. V) given in (G.3.22) with
qb = q∗

b ≃ 0.667665 (blue dots). Right: numerically obtained normalized covariance
Utj ((1/2+ϕ2)tj)Vtj ((1/2+ϕ2)tj)

c

Utj ((1/2+ϕ2)tj)×Vtj ((1/2+ϕ2)tj)
in the simulations with parameters q = 0.5, q′ = 0.8 as a

function of tj (blue dots). Error bars are 3−sigma Gaussian estimates.
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We also showed that the two stationary measures are reversible and satisfy detailed balance. We obtained the mean
quenched free-energy (resp. optimal energy) in the IB (resp. BG) polymer. For the IB polymer, the obtained result (G.3.38)
coincides with a previously obtained result of [5], therefore confirming the validity of the non-rigorous approach of [5], while
in the BG polymer case, (G.3.40) is genuinely new. In both cases, these results allowed us to discuss the convergence of
each model to their stationary measure. Finally in Sec. G.7 we reported the results of numerical simulations of the BG
polymer and compared them with a very good agreement to our results.

Many possible research directions remain for the future. One interesting direction would be to understand if the models
studied in this paper possess other exact solvability properties. Indeed for both models it is not clear whether or not
combinatorial mappings similar to RSK and gRSK correspondences could be developed, although they both interpolate
between models for which these correspondences can be applied (gRSK at finite temperature [198, 220] and RSK at 0
temperature [159, 216]). The question of the Bethe ansatz solvability of these models is also interesting. For the IB polymer
it was shown in [5] that the moment problem is exactly solvable by coordinate BA but another BA solvability could exist.
Indeed in the Log-Gamma case it was shown in [4] that the moment problem was BA solvable, but is is also known that the
partition sum of the Log-Gamma polymer can be interpreted [221] as an observable of a BA solvable interacting particles
system on Z, the q-Push TASEP [272, 247]. The same is true for the Strict-Weak polymer which can be mapped onto an
observable of the q-TASEP [219]. Exhibiting a similar mapping for the IB polymer case remains an open question. For the
BG polymer introduced in this paper the question of BA solvability is also open. We note that in the isotropic limit of the
model, i.e. last passage percolation with geometric weights, the optimal energy can be interpreted as waiting times of the
TASEP with geometric waiting times and step initial condition, which can be solved by BA. Furthermore, we note that
a version of the q-TASEP with Bernoulli and Geometric waiting times was already considered in [254] where the authors
notably proved BA solvability. Although it is not clear how to map the optimal energies in the BG polymer to the waiting
times of an interacting particles system (since the random energies can be both positive and negative), this could be an
interesting approach.

Another interesting direction of research would be to understand how to obtain more systematically models of directed
polymers with exact solvability properties and how to classify them. For the case of Bethe ansatz solvability of the moment
problem for models of DPs at finite temperature, this was already mostly accomplished in [5]. The question remains open
for BA solvability of models at zero temperature and for other type of exact solvability properties such as the possibility
of writing down the stationary measure exactly. If this was accomplished it would be interesting to see whether or not the
two classes coincide. We note that in the related context of zero-range-processes (ZRP) with simultaneous updates, it was
recently shown that all BA solvable models have factorizable steady-states, but the converse is not true [222]. For the DP
case, a step in this direction was already made since in [197] it was shown that the Log-Gamma was the unique model
at finite temperature with on site disorder for which it is possible to write down exactly the SM, and the Log-Gamma
also appeared as the unique finite temperature model with on site disorder exactly solvable by BA in the classification of
[5]. More generally it would be interesting to gain a better understanding of the links between different exact solvability
properties.

This paper would have never existed without the numerous discussions I had with Timo Seppäläinen, discussions during
which he kindly took the time to explain to me the techniques and results developed and obtained by him and his coworkers
for the Log-Gamma polymer. These were a great source of inspiration for this work. He also took an active part during
the first stages of research on the stationary measure of the Inverse-Beta polymer and shared with me related new results
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G.9 Appendix A: Proof of the properties of the finite temperature reversibility-
stationarity map

In this appendix we prove Prop. G.4.1, Prop. G.4.2 being trivial. We thus consider three independent random variables
(U, V,W ) distributed as in (G.3.7) and (G.3.3) and consider the RVs (U ′, V ′,W ′) = φ(U, V,W ) as given in (G.4.3). The
Jacobian of the transformation (U, V,W ) → (U ′, V ′,W ′) is easily computed as, schematically,

det

(
∂φ(U, V,W )
∂(U, V,W )

)

= −UW + U + VW

UV
< 0 . (G.9.1)

The PDF of the triplet (U ′, V ′,W ′) is then directly evaluated as

P (U ′, V ′,W ′) = PU (φ(1)(U ′, V ′,W ′))PV (φ(1)(U ′, V ′,W ′))PW (φ(1)(U ′, V ′,W ′)) × UV

UW + U + VW
. (G.9.2)

Where we introduced the PDF of the independent RVs (U, V,W ) as noted in (G.3.7) and (G.3.3) and used the fact that φ
is an involution. It is then directly checked that

P (U ′, V ′,W ′) = PU (U ′)PV (V ′)PW (W ′) , (G.9.3)
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hence showing that U ′, V ′ and W ′ are independent and distributed as U ′ ∼ U , V ′ ∼ V and W ′ ∼ W .

G.10Appendix B: Proof of the properties of the zero temperature station-
arity map

In this Appendix we prove Prop. G.5.1 and Prop. G.5.2. Let us first prove the detailed balance property Prop. G.5.2b. We
thus consider U ⊥ V ⊥ (u, v) distributed as in (G.3.12) and (G.3.20). Let us first compute the conditional probability

Ψ(kU′ , kV′ , kU, kV) := Proba
(
((U′,V′) = (kU′ , kV′ )|(U,V) = (kU, kV)

)
(G.10.1)

where kU ∈ N, kV ∈ Z−, U′ = min (u, v + U − V) and V′ = min (u + V − U, v) = U′ + V − U. We have

Ψ(kU′ , kV′ , kU, kV) = puv

∞∑

Gq=0

(1 − q)(q)Gqδ(kU′ = min (−Gq,−Gq + kU − kV))δ(kV′ = kU′ + kV − kU)

+(1 − puv)
∞∑

G′
q=0

(1 − q′)(q′)G
′
qδ(kU′ = min

(
1 +G′

q, kU − kV

)
)δ(kV′ = kU′ + kV − kU)

puv

∞∑

Gq=0

(1 − q)(q)Gqδ(kU′ = −Gq)δ(kU > kV)δ(kV′ = kU′ + kV − kU) (G.10.2)

+puv

∞∑

Gq=0

(1 − q)(q)Gqδ(kU′ = −Gq + kU − kV)δ(kU ≤ kV)δ(kV′ = kU′ + kV − kU)

+(1 − puv)
∞∑

G′
q=0

(1 − q′)(q′)G
′
qδ(kU′ = 1 +G′

q)δ(kU − kV > 1 +G′
q)δ(kV′ = kU′ + kV − kU)

+(1 − puv)
∞∑

G′
q=0

(1 − q′)(q′)G
′
qδ(kU′ = kU − kV)δ(kU − kV ≤ 1 +G′

q)δ(kV′ = kU′ + kV − kU) ,

i.e.

Ψ(kU′ , kV′ , kU, kV) = puv(1 − q)(q)−k
U′ δ(kU′ ≤ 0)δ(kU > kV)δ(kV′ = kU′ + kV − kU)

+puv(1 − q)(q)−k
U′ +kU−kVδ(−kU′ + kU − kV ≥ 0)δ(kU ≤ kV)δ(kV′ = kU′ + kV − kU)

+(1 − puv)(1 − q′)(q′)kU′ −1δ(kU′ ≥ 1)δ(kU − kV > kU′ )δ(kV′ = kU′ + kV − kU)

+(1 − puv)(q
′)kU−kV−1δ(kU′ = kU − kV)δ(kU′ ≥ 1)δ(kV′ = kU′ + kV − kU)

+(1 − puv)δ(kU′ = kU − kV)δ(kU′ ≤ 0)δ(kV′ = kU′ + kV − kU) . (G.10.3)

Using this last expression and the expression of Proba((U,V) = (kU, kV)) given in (G.3.22), we obtain

Ψ̃(kU′ , kV′ , kU, kV) := Proba
(
((U′,V′) = (kU′ , kV′ ), (U,V) = (kU, kV)

)

= Ψ(kU′ , kV′ , kU, kV)Proba((U,V) = (kU, kV))

= Ψ(kU′ , kV′ , kU, kV) ×
(
pUδ(kU ≤ 0)(1 − q/qb)(q/qb)

−kU + (1 − pU)δ(kU ≥ 1)(1 − qbq
′)(qbq

′)kU−1
)

×
(
pVδ(kV ≤ 0)(1 − qb)(qb)

−kV + (1 − pV)δ(kV = 0)
)

(G.10.4)

and it is then straightforward (although technically complicated due to the large number of terms) to check the detailed
balance property Prop. G.5.2. Namely one shows that the equality

Ψ̃(kU′ , kV′ , kU, kV) = Ψ̃(kU, kV, kU′ , kV′ ) (G.10.5)

holds. Let us emphasize here that this property is rather special: the fact that (G.10.5) works requires a large number of

cancellation between terms that are made possible by the choice of only three parameters pU = 1−qbq
′

1−qq′ , pV = 1−q′

1−qbq
′ and

puv = 1−q′

1−qq′ , a characteristic sign of the existence of exact solvability properties for the model. Finally, summing (G.10.5)
on kU′ and kV′ gives the stationarity property Prop. G.5.1:

Proba((U,V) = (kU, kV)) = Proba((U′,V′) = (kU, kV)) . (G.10.6)
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Résumé 

Cette thèse présente plusieurs aspects de la 

physique des systèmes élastiques désordonnés 

et des méthodes analytiques utilisées pour les 

étudier.  

On s’intéressera d’une part aux propriétés 

universelles des processus d’avalanches 

statiques et dynamiques (à la transition de 

dépiégeage) d ’ in ter faces é last iques de 

dimension arbitraire en milieu aléatoire  à 

température nulle. Pour étudier ces questions 

nous utiliserons le groupe de renormalisation 

fonctionnel. Après une revue de ces aspects, 

nous présenterons plus particulièrement les 

résultats obtenus pendant la thèse sur (i) la 

structure spatiale des avalanches et (ii) les 

corrélations entre avalanches. 

On s’intéressera d’autre part aux propriétés 

statiques à température finie de polymères 

dirigés en dimension 1+1, et en particulier aux 

observables liées à la classe d’universalité 

KPZ. Dans ce contexte l’étude de modèles 

exactement solubles a récemment permis de 

grands progrès. Après une revue de ces 

aspects, nous nous intéresserons plus 

particulièrement aux modèles exactement 

solubles de polymère dirigé sur le réseau carré, 

et présenterons les résultats obtenus pendant 

la thèse dans cette voie: (i) classification des 

modèles à température finie sur le réseau carré 

exactement solubles par ansatz de Bethe; (ii) 

universalité KPZ pour les modèles Log-Gamma 

et Inverse-Beta; (iii) universalité et non-

universalité KPZ pour le modèle Beta; (iv) 

mesures stationnaires du modèle Inverse-Beta 

et des modèles à température nulle associés. 

Abstract 

This thesis presents several aspects of the 

physics of disordered elastic systems and of 

the analytical methods used for their study. 

On one hand we will be interested in universal 

properties of avalanche processes in the statics 

and dynamics (at the depinning transition) of 

elastic interfaces of arbitrary dimension in 

disordered media at zero temperature. To study 

these questions we will use the functional 

renormalization group. After a review of these 

aspects we will more particularly present the 

results obtained during the thesis on (i) the 

spatial structure of avalanches and (ii) the 

correlations between avalanches. 

On the other hand we will be interested in static 

propert ies of directed polymers in 1+1 

dimension, and in particular in observables 

related to the KPZ universality class. In this 

context the study of exactly solvable models 

has recently led to important progress. After a 

review of these aspects we will be more 

particularly interested in exactly solvable 

models of directed polymer on the square 

lattice and present the results obtained during 

the thesis in this direction: (i) classification of 

Bethe ansatz exactly solvable models of 

directed polymer at finite temperature on the 

square lattice; (ii) KPZ universality for the Log-

Gamma and Inverse-Beta models; (iii) KPZ 

universality and non-universality for the Beta 

model; (iv) stationary measures of the Inverse-

Beta model and of related zero temperature 

models. 

Mots Clés 

Systèmes élastiques désordonnés, 

avalanches, polymère dirigé, KPZ, groupe de 

renormalisation fonctionnelle, modèles 

exactement solubles 

Keywords 

Disordered elastic systems, avalanches, 

directed polymer, KPZ, functional 

renormalization group, exactly solvable models 
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